
Reflective Embedding of Domain-Specific Languages

Vom Fachbereich Informatik der Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

vorgelegt von

Dipl.-Inform. Tom Dinkelaker

geboren in Frankfurt am Main, Deutschland

Referent: Prof. Dr.-Ing. Mira Mezini
Korreferent: Prof. Dr.-Ing. Robert Hirschfeld
Datum der Einreichung: 26.11.2010
Datum der mündlichen Prüfung: 10.12.2010

Erscheinungsjahr 2011

Darmstadt D17

Abstract

In the recent years, there is an increasing interest for new programming languages that are spe-
cial for certain problem domains – so-called domain-specific languages [MHS05]. A domain-
specific language (DSL) provides a syntax and semantics for a particular class of problems.
When writing code in a DSL, its concrete syntax enables higher end-user productivity [MHS05,
KLP+08] because the syntax is closer to the problem domain than the syntax of a general-
purpose language (GPL). However, implementing a new programming language is expensive,
because language developers need to design and develop a new syntax and semantics. Because
of these high initial costs, stakeholders desist from implementing a new DSL from scratch.

To lower the initial costs of developing a DSL, there is the idea to embed a language into an
existing language [Lan66, Hud96, Hud98, Kam98]. The existing language—often a general-
purpose language—acts as a host language for the guest language that is embedded into the
host as a library. Such an embedded language reuses the general-purpose features of the host
language. Consequently, this reduces the development costs of the embedded language by
reusing these features and by reusing the existing host language infrastructure [Hud98, Kam98,
KLP+08], i.e., its development tools, parser, compiler, and/or virtual machine. Furthermore,
new language features can be incrementally added to the embedded language by “simply” ex-
tending its library [Hud96]. Indeed, there is a comparative study [KLP+08] that shows that
embedding requires significant lower investments to implement a new language compared to
traditional non-embedded approaches.

However, existing language embedding approaches have several important limitations w.r.t. the
features that are usually supported by non-embedded approaches. First and foremost, most em-
bedding approaches and host languages lack support for designing a concrete syntax for an
embedded language. Second, current approaches do not allow embedding special language se-
mantics that the embedded language needs but that conflict the host semantics. Third, there is no
support for embedding multiple languages that have interactions in their syntax and semantics.
The lack of support for these features in current embedding approaches mostly stem from their
restrictions to adapt constructs in embedded languages and host languages.

To address these limitations, this thesis proposes the reflective embedding architecture that
embeds languages into reflective host languages. A reflective language is a special programming
language with support for reflection that enables programs to reason about their structure and
behavior. Specifically, there is support for introspection that allows analyzing programs, and
support for intercession that allows transforming programs. Using reflection helps overcoming
current limitations of language embedding, since it enables evolution of embedded languages by
analyzing and transforming their libraries.

iii

The reflective embedding architecture itself defines a process how to embed a language’s syn-
tax and semantics as a set of artifacts. Every language is an encapsulated component that has a
set of well-defined interfaces. The classes of the embedding implement these interfaces to define
the details of the execution semantics for that language component. In addition, the architecture
enables embedding of language compositions, scoping strategies, domain-specific analyses and
transformations. What is special in the architecture is that every language component implicitly
has a meta level. When necessary, the language developers can use this meta level to evolve
embeddings, which enables a number of benefits.

First, in contrast to other embedded approaches, the reflective embedding architecture enables
support for concrete syntax for embedded languages without high initial syntax costs. For an
embedded language, developers can annotate its library with meta data for rewriting DSL pro-
grams in concrete syntax into a corresponding executable form. By using a special technique for
agile grammar specification, called island grammars [Moo01], developers only need to specify
those parts of the embedded language’s grammar that deviate from the grammar of the host lan-
guage. Island grammars help significantly reducing the initial syntax costs, while supporting the
full class of context-free grammars.

Second, the meta level enables support for composition of languages with interactions in their
syntax and semantics. On the one hand, the architecture provides special language combiners
that analyze and compose the syntax of all embedded languages in a composition. On the other
hand, there are language combiners that transform embedded languages so that they can interact
at well-defined points in their evaluation logic. By allowing interacting compositions, the archi-
tecture enables embedding special language abstractions that facilitate end user programmers to
implement more modular programs.

Third, the meta level enables embedding languages that interact with their host languages. The
meta level uses reflective features to interact with the evaluation of host language constructs in
order to change the host’s semantics. Only when the host semantics can be changed, developers
can embed sophisticated DSLs.

To review the reflective embedding architecture, this thesis conducts a qualitative and quan-
titative evaluation of the proposed concepts. First, to qualitatively evaluate the concepts of this
thesis, the evaluation reviews the support of the reflective embedding architecture for supporting
a set of desirable properties and compares its support to related work. Second, to quantitatively
evaluate the concepts, the evaluation compares to embedded and non-embedded approaches us-
ing benchmarks. The results show that the architecture’s flexibility only comes with moderately
increased runtime costs.

iv

Zusammenfassung

In den letzten Jahren gibt es ein zunehmendes Interesse an neuen Programmiersprachen,
die auf bestimmte Problemdomänen spezialisiert sind, so genannte domänenspezifische
Sprachen [MHS05] (engl. domain-specific languages, DSLs). DSLs stellen eine spezielle Syn-
tax und Semantik zur Lösung einer bestimmten Klasse von Problemen zur Verfügung. Wenn
Programme mit einer DSL entwickelt werden, erlaubt ihre konkrete Syntax eine höhere Pro-
duktivität des Endanwenders [MHS05, KLP+08], da ihre Syntax näher an der Problemdomäne
ist als die Syntax einer allgemeinen Sprache (engl. general-purpose language, GPL). Jedoch ist
die Implementierung einer neuen Programmiersprache kostenintensiv, da Sprachentwickler eine
Syntax und Semantik entwerfen und umsetzen müssen. Wegen dieser hohen initialen Kosten
sehen viele davon ab eine neue DSL zu implementieren und einzusetzen.

Um die initialen Kosten für DSLs zu minimieren, gibt es den Ansatz eine DSL in eine
vorhandene Sprache einzubetten [Lan66, Hud96, Hud98, Kam98]. Dabei wird die Syntax und
Semantik der eingebetteten Sprache in Form einer Bibliothek in dieser Sprache beschrieben.
Die vorhandene Sprache fungiert dabei als eine Wirtssprache für die DSL, die als Gast-
sprache in die Wirtssprache eingebettet wird. Durch die Einbettung können Gastsprachen die
allgemeinen Sprachkonstrukte der Wirtssprache wieder verwenden, was Entwicklungskosten
einspart [Hud98, Kam98, KLP+08]. Zusätzlich erlaubt die Einbettung die Wiederverwendung
der bestehenden Sprachinfrastruktur, wie z.B. den Entwicklungswerkzeugen, dem Parser, dem
Compiler und der virtuellen Laufzeitumgebung. Neue Sprachkonstrukte können bei Bedarf
durch Erweiterungen der entsprechenden Bibliotheken [Hud96] hinzugefügt werden. Eine ver-
gleichende Studie [KLP+08] zeigt, dass durch Einbettung die Entwicklungskosten für die Im-
plementierung neuer Sprachen, im Vergleich zu traditionellen nicht eingebetten Sprachentwick-
lungsansätzen, signifikant reduziert werden können.

Trotz dieser Vorteile gibt es für bestehende Ansätze zur Spracheneinbettung wichtige Ein-
schränkungen bezüglich der Unterstützung für Spracheigenschaften, die normalerweise von
nicht eingebetten Ansätzen unterstützt werden. In erster Linie gibt es bei bestehenden Ansätzen
zur Einbettung in den meisten verwendeten Wirtssprachen keine Unterstützung für die freie
Gestaltung der konkreten Syntax für die eingebettete Gastsprache [KLP+08]. Beim Einbetten
der Gastsprache in die Wirtssprache müssen die Ausdrücke der Gastsprache mit der Syntax der
Wirtssprache übereinstimmen. Zweitens ist die Sprachsemantik, die eine Gastsprache haben
kann, durch die vorgegebene Sprachsemantik der Wirtssprache eingeschränkt. Drittens gibt es
keine Unterstützung für spezielle Kompositionen von mehreren DSLs, die Interaktionen in ihrer
Syntax und Semantik haben. Diese Einschränkungen sind vorallem auf die mangelnde Anpass-
barkeit von Konstrukten in eingebetteten Sprachen und Hostsprachen zurückzuführen.

v

Um diese Probleme anzugehen, schlägt die vorliegende Arbeit die Reflective Embedding Ar-
chitecture vor, die es ermöglicht Gastsprachen in reflexive Wirtssprachen einzubetten. Reflexive
Sprachen sind Programmiersprachen, die spezielle Sprachkonstrukte besitzen, um die Struktur
und das Verhalten von Programmen während ihrer Auswertung zu verändern. Die Verwendung
einer reflexiven Sprache ermöglicht es die obigen Einschränkungen zu überwinden, da einge-
bettete Sprachen durch Analyse und Transformation ihrer Sprachbibliotheken angepasst werden
können.

Die Reflective Embedding Architecture definiert eine neue Vorgehensweise zum Einbetten von
DSLs und beschreibt wie man für eine neue DSL die Syntax und Semantik als eine Menge von
Artefakten einbetten kann. Jede Sprache ist eine eingekapselte Komponente, die eine Menge von
wohldefinierter Schnittstellen festlegt. Die Klassen der Einbettung realisieren diese Schnittstellen,
um die Einzelheiten der Ausführungssemantik für die Sprachkomponente festzulegen. Weiterhin
unterstützt die Architektur das Einbetten von Sprachkompositionen, Scoping-Strategien, domä-
nenspezifischen Analysen und Transformationen. Das Besondere an der Architektur zur Einbet-
tung ist, dass jede Sprache automatisch eine Meta-Ebene besitzt, die Entwickler benutzen kön-
nen, um die Einbettung anzupassen. Anpassungen auf der Meta-Ebene haben folgende Vorteile:

Erstens ermöglicht die Reflective Embedding Architecture die Unterstützung von konkreter
Syntax für eingebettete Sprachen. Für jede eingebettete Sprache können die Entwickler die
zugehörige Bibliothek mit Annotationen versehen, um Meta-Daten für das Umwandeln von
DSL Programmen mit konkreter Syntax in eine entsprechende ausführbare Form zu beschreiben.
Durch die Verwendung einer speziellen Form von Agilen Grammatiken, die Insel-Grammatiken
[Moo01] genannt werden, müssen nur die Teile der eingebetteten Sprache in einer Grammatik
spezifiziert werden, die tatsächlich von der Grammatik der Wirtssprache abweichen. Insel-
Grammatiken helfen dabei die initialen Kosten signifikant im Vergleich zu anderen eingebetteten
Ansätzen zu reduzieren, wobei die volle Unterstützung für kontextfreie Sprachen gewährleistet
bleibt.

Zweitens ermöglicht die Meta-Ebene Unterstützung für Sprachkompositionen, deren Teil-
sprachen Interaktionen in ihrer Syntax und Semantik haben. Auf der einen Seite ermöglicht es
die Meta-Ebene die Syntax mehrerer Teilsprachen zu analysieren und zu einer zusammengesetz-
ten Sprachsyntax zu komponieren. Auf der anderen Seite ist es ermöglicht die eingebetteten Teil-
sprachen so anzupassen, dass sie an wohl definierten Punkten innerhalb ihrer Auswertungslogik
miteinander interagieren können. In dem Sprachkompositionen mit Interaktionen unterstützt
werden, ermöglicht die Architektur die Einbettung von speziellen Sprachabstraktionen, die es
dem Endanwender erleichtern, modulare Programme zu entwickeln.

Drittens ermöglicht die Meta-Ebene das Einbetten von Sprachen, die mit ihrer Wirtssprache
interagieren, in dem sie reflexive Mechanismen verwenden, um die Auswertung der Sprachkon-
strukte des Wirts zu beeinflussen. Nur wenn die Auswertung von Konstrukte der Wirtsspra-
che geändert werden kann, können DSLs mit speziellen Modularisierungskonzepten eingebettet
werden.

Zur Evaluation der Reflective Embedding Architecture werden die in dieser Arbeit vorgeschla-
genen Konzepte qualitativ und quantitativ überprüft. Zum einen wird eine Bewertung für die

vi

Unterstützung der Reflective Embedding Architecture für wünschenswerte Spracheigenschaften
erstellt und mit verwandten Arbeiten verglichen, um die Konzepte qualitativ zu bewerten. Zum
anderen wird eine Sprachimplementierung auf Basis der Reflective Embedding Architecture mit
Implementierungen der selben Sprache quantitativ verglichen, die auf eingebetteten Ansätze
und nicht eingebetten Ansätze aus den verwandten Arbeiten basieren. Die Evaluation zeigt im
Vergleich, dass die Reflective Embedding Architecture für einbettete Sprachen erstmals eine
umfassende Unterstützung der wünschenswerten Eigenschaften für eingebettete Sprachen er-
möglicht und dass es dabei lediglich zu moderat erhöhten Laufzeitkosten kommt.

vii

Acknowledgements

This dissertation would not have been possible without the help of many people, whom I would
like to dedicate a few lines to.

First and foremost, I would like to thank my advisor Mira Mezini for always having an open
mind for visions and new ideas, asking the right questions, giving feedback, and for patient
discussions. I also would like to thank my co-advisor Robert Hirschfeld for valuable feedback
and comments.

This work would not have been possible without the support of my collegues at the Soft-
ware Technology Group of the Technische Universität Darmstadt, who continuously gave me
feedback on my papers and presentations. I would like thank Gudrun Harris for supporting me
and for having always a honest opinion. I would like to thank my collegues Martin Monper-
rus, Michael Eichberg, Eric Bodden, Ralf Mitschke, Andreas Sewe, Vaidas Gasiunas, Roman
Knöll, Marcel Bruch, Jan Sincheck, and Lukas Satabin. Anis Charfi, Christoph Bockisch, Slim
Kallel, Vasian Cepa, Ivica Aracic, Sven Kloppenburg, Shadi Rifai, Thorsten Schäfer, Tobias
Schuh, Michael Krebs, Klaus Ostermann, Michael Achenbach, and Christian Hofer are former
collegues, which I would like to thank them for good team work.

There are two people that in particularly helped me with improving my skills. Yuecel Karabu-
lut was my supervisor when I was an intern at SAP Research Center in Palo Alto, CA, USA. My
intership was very helpful to gain insight into the special requirements of business applications,
which helped motivating my subsequent work, for which I am very thankful. Michael Haupt has
supervised my Diploma Thesis, and even after I had completed my Diploma, he was remaining
a mentor of mine.

Special thanks to the people around the domain-specific aspect languages (DSAL) workshop,
Johan Fabry, Eric Tanter, and Jacques Noye. I would like to Thank them for inviting me into the
organization committee of the DSAL workshop. Without their continuous feedback, this work
would not have been possible.

The AOSD-Europe Network of Excellence (EU grant no. FP6-2003-IST-2-004349) and the
feasiPLe project feasiPLe project (Federal Ministry of Education and Research, BMBF, Ger-
many) have partially funded part of this work. Special thanks to Mohammed Erradi, Sebastian
Oster, Karin Fetzer, Christian Wende, Henrik Lochmann, and Alisdair Johnstone, who I have
worked with in various projects.

Thanks to all students, who have contributed to the implementation of the open source projects
of POPART, TIGERSEYE, the DSL benchmark contest, or other projects, namely Kamil Erhard,
Joscha Drechsler, Oliver Rehor, Jan Stolzenburg, Olga Gusyeva, Yassine Essadraoui, Alexander

ix

Look, Philipp Zühlke, Fuest Christian, Siyu Yang, Leonid Melnyk, Eugen Fanshil, David Marx,
Thorsten Peter, Kim David Hagedorn, Christopher Mann, Florian Jakob, and Hasan Ibne Akram.

In particular, I would like to thank all people that have supported me while writing this text,
namely Martin Monperrus, Michael Eichberg, Eric Bodden, Benjamin Schmeling, Vaidas Gasi-
unas, Sebastian Oster and Michael Haupt. My brother, Peter Dinkelaker, and his wife, Stephanie
Dinkelaker, who have convinced me to graduate after I had finished my German Diploma. I
would also like to thank my best friend Joris Hensen for his valuable feedback on this text and
just for being there, when I needed a helping hand.

This work is dedicated to my parents, Edith and Albrecht Dinkelaker, and my wife, Anja
Kirschning, who gave me all the support, energy and confidence I needed to complete this big
paper.

x

Contents

1 Introduction 1
1.1 Context of this Thesis . 1
1.2 Problem Statement . 3
1.3 Thesis . 4

1.3.1 State-of-the-Art in Language Embedding Approaches 5
1.3.2 Core Architecture for Reflective Embedding 5
1.3.3 Extensions to the Core Architecture 5
1.3.4 Evaluation . 6

1.4 Summary of Contributions . 8
1.5 Organization of the Thesis . 11

I State of the Art 13

2 State of the Art in Language Implementation Approaches 15
2.1 Domain-Specific Languages . 16
2.2 Embedded Domain-Specific Languages . 19

2.2.1 Open Issues in Existing Embedding Approaches 21
2.2.1.1 Lack of Support for Concrete Syntax 21
2.2.1.2 Lack of Support for Crosscutting Composition for DSLs . . . 22
2.2.1.3 Lack of Support for Fine-Grained Composition 22

2.3 Architectures for Language Implementation 25
2.3.1 Front-End/Back-End Architectures 25
2.3.2 Extensible Compilers . 25
2.3.3 Meta-Level Architectures . 25
2.3.4 Reflective Architectures . 26
2.3.5 Meta-Object Protocols . 26

3 Desirable Properties for Language Embeddings 29
3.1 Extensibility . 30

3.1.1 Adding New Keywords . 31
3.1.2 Semantic Extensions . 33

3.1.2.1 Conservative Semantic Extensions 34
3.1.2.2 Semantic Adaptations . 35

xi

Contents

3.2 Composability of Languages . 37
3.2.1 Composing Languages without Interactions 37
3.2.2 Composing Languages with Interactions 39

3.2.2.1 Syntactic Interactions . 39
3.2.2.2 Semantic Interactions . 40

3.3 Enabling Open Composition Mechanisms . 41
3.3.1 Open Mechanisms for Handling Syntactic Interactions 42

3.3.1.1 Generic Mechanism for Conflict-Free Compositions 42
3.3.1.2 Supporting Keyword Renaming 43
3.3.1.3 Supporting Priority-Based Conflict Resolution 43

3.3.2 Open Mechanisms for Handling Semantic Interactions 44
3.3.2.1 Generic Mechanism for Crosscutting Composition of DSLs . 44
3.3.2.2 Supporting Composition Conflict Resolution 47

3.4 Support for Concrete Syntax . 48
3.4.1 Converting Concrete to Abstract Syntax 48
3.4.2 Supporting Prefix, Infix, Suffix, and Mixfix Operators 50
3.4.3 Supporting Overriding Host Language Keywords 51
3.4.4 Supporting Partial Definition of Concrete Syntax 52

3.5 Enabling Pluggable Scoping . 53
3.5.1 Supporting Dynamic Scoping . 53
3.5.2 Supporting Implicit References . 55
3.5.3 Supporting Activation of Language Constructs 56

3.6 Enabling Pluggable Analyses . 56
3.6.1 Syntactic Analyses . 57
3.6.2 Semantic Analyses . 58

3.7 Enabling Pluggable Transformations . 59
3.7.1 Static Transformations . 60

3.7.1.1 Syntactic Transformations 60
3.7.1.2 Semantic Transformations 61

3.7.2 Dynamic Transformations . 62
3.8 Review of the Support for the Desirable Properties in Related Work 63
3.9 Summary . 65

II Core Architecture for Reflective Embedding 67

4 The Reflective Embedding Approach 69
4.1 The Reflective Embedding Architecture . 71

4.1.1 Levels of the Architecture . 72
4.1.1.1 Language Interface Level 72
4.1.1.2 Language Façade Level . 75

xii

Contents

4.1.1.3 Language Model Level . 76
4.1.1.4 Language Meta Level . 77

4.1.2 Program Evaluation . 79
4.2 Key Mechanisms for Language Evolution . 84

4.2.1 Language Polymorphism . 84
4.2.1.1 Hierarchical Extensions . 85
4.2.1.2 Abstracting over Semantics 86
4.2.1.3 Program Evaluation under Alternative Semantics 88

4.2.2 Meta-Level Extensions: Semantic Adaptations using the Meta Level . . 89
4.2.2.1 Semantic Adaptation Scopes 91
4.2.2.2 Extensions Points of the Architecture 97
4.2.2.3 Program Evaluation under Adapted Semantics 101

4.2.3 Extensible Languages Combiners . 102
4.2.3.1 Composing Independent Languages 103
4.2.3.2 Composing Dependent Languages 107
4.2.3.3 Composing Languages with Custom Combiners 109

4.3 Summary . 112

5 Implementation in Groovy 115
5.1 Groovy in a Nutshell . 115
5.2 Reflective Embedding in Groovy . 118

5.2.1 Language Interface Level . 118
5.2.2 Language Façade Level . 120
5.2.3 Language Model Level . 121
5.2.4 Language Meta Level . 122

5.3 Program Evaluation in Groovy . 123
5.4 Key Mechanisms in Groovy . 124

5.4.1 Language Polymorphism . 125
5.4.2 Meta-Level Extensions . 125
5.4.3 Extensible Languages Combiners . 128

5.4.3.1 Composing Independent Languages 128
5.4.3.2 Composing Dependent Languages 130

5.5 Summary . 130

III Extensions to the Core Architecture 133

6 Reflective Domain-Specific Languages 135
6.1 Late Variability in Domain-Specific Language Semantics 137

6.1.1 The FsmDSL Running Example . 137
6.1.2 Semantic Variability in FsmDSL . 138

xiii

Contents

6.2 Implementing the Primary Interface of the FsmDSL 140
6.3 Growing a DSL into a Reflective DSL . 141

6.3.1 Reflective DSLs . 142
6.3.2 Implementation of Reflective DSLs 143

6.3.2.1 Structural Reflection . 143
6.3.2.2 Behavioral Reflection . 146

6.3.3 On the Design Properties of Reflective DSLs 146
6.3.4 Evolving from Procedural to Declarative Reflection 149

6.4 Case Study: Using Semantic Adaptation Scopes to Adapt an Open DSL Imple-
mentation . 151
6.4.1 Possible Semantic Adaptations for the FsmDSL 151
6.4.2 Dimension: Locality of Adaptations 152
6.4.3 Dimension: Atomicity of Adaptations 153
6.4.4 Dimension: Time of Adaptations . 154

6.5 Summary . 155

7 Crosscutting Composition of Embedded Domain-Specific Languages 157
7.1 Running Example: ProcessDSL—A Workflow Language 158

7.1.1 Example Scenario for Crosscutting in DSLs 159
7.2 Embedding ProcessDSL . 159
7.3 Crosscutting Composition . 160
7.4 Homogeneous Embedding of Aspect-Oriented Concepts 163

7.4.1 Crosscutting Composition at Work . 167
7.5 Summary . 169

8 Incremental Concrete Syntax for Embedded Languages 171
8.1 Concrete Syntax for Homogeneous Embedded DSLs 173

8.1.1 Defining a Homogeneous EDSL . 173
8.1.2 Enabling Concrete Syntax for EDSLs 174
8.1.3 Compiling DSL Programs . 176
8.1.4 Enabling a new Host Language . 178

8.2 Implementation of the Generic Pre-Processor for Incremental Concrete Syntax . 179
8.3 Summary . 180

IV Evaluation 181

9 Related Work 183
9.1 Homogeneous Embedding . 183

9.1.1 Functional Languages . 183
9.1.2 Dynamic Languages . 186

xiv

Contents

9.1.3 Staging/Meta Programming Languages 190
9.1.4 Typed Object-Oriented Languages . 193

9.2 Heterogeneous Embedding . 195
9.2.1 Embedded Compilers . 195
9.2.2 Source Transformation Languages . 197

9.3 Non-Embedding Approaches . 199
9.3.1 Extensibility . 200
9.3.2 Composability of Languages . 203
9.3.3 Enabling Open Composition Mechanisms 204
9.3.4 Support for Concrete Syntax . 208
9.3.5 Enabling Pluggable Scoping . 209
9.3.6 Enabling Pluggable Analyses . 209
9.3.7 Enabling Pluggable Transformations 210

10 Case Studies: Review of the Support for the Desirable Properties 211
10.1 Extensibility . 211

10.1.1 Adding New Keywords . 211
10.1.2 Semantic Extensions . 213

10.1.2.1 Conservative Semantic Extensions 213
10.1.2.2 Semantic Adaptations . 215

10.2 Composability of Languages . 218
10.2.1 Composing Languages without Interactions 218
10.2.2 Composing Languages with Interactions 219

10.2.2.1 Syntactic Interactions . 219
10.2.2.2 Semantic Interactions . 220

10.3 Enabling Open Composition Mechanisms . 221
10.3.1 Open Mechanisms for Handling Syntactic Interactions 222

10.3.1.1 Generic Mechanism for Conflict-Free Compositions 222
10.3.1.2 Supporting Keyword Renaming 225
10.3.1.3 Supporting Priority-Based Conflict Resolution 226

10.3.2 Open Mechanisms for Handling Semantic Interactions 227
10.3.2.1 Specific Mechanism for Controlling Semantic Interactions . . 227
10.3.2.2 Generic Mechanism for Crosscutting Composition of DSLs . 228
10.3.2.3 Supporting Composition Conflict Resolution 235

10.4 Support for Concrete Syntax . 237
10.4.1 Converting Concrete to Abstract Syntax 237
10.4.2 Supporting Prefix, Infix, Suffix, and Mixfix Operators 238
10.4.3 Supporting Overriding Host Language Keywords 239
10.4.4 Supporting Partial Definition of Concrete Syntax 240

10.5 Enabling Pluggable Scoping . 241
10.5.1 Supporting Dynamic Scoping . 241

xv

Contents

10.5.2 Supporting Implicit References . 245
10.5.3 Supporting Activation of Language Constructs 246

10.6 Enabling Pluggable Analyses . 247
10.6.1 Syntactic Analyses . 247
10.6.2 Semantic Analyses . 254

10.7 Enabling Pluggable Transformations . 258
10.7.1 Support for Static Transformations . 258

10.7.1.1 Syntactic Transformations 258
10.7.1.2 Semantic Transformations 260

10.7.2 Support for Dynamic Transformations 265
10.8 Review Result . 266
10.9 Summary . 268

11 Costs of Reflective Embedding 269
11.1 Implementation Costs of Reflective Embedding 270

11.1.1 Implementation Costs of Domain-Specific Languages 270
11.1.1.1 Domain-Specific Syntax . 271
11.1.1.2 Domain-Specific Semantics 271

11.1.2 Implementation Costs of Domain-Specific Aspect Languages 271
11.2 Compilation Costs of Reflective Embedding 273
11.3 Runtime Costs of Reflective Embedding . 274

11.3.1 Runtime Costs of Domain-Specific Languages 274
11.3.2 Runtime Costs of Aspect Languages 276

V Conclusion 277

12 Conclusion 279
12.1 Summary of Results . 279
12.2 Concluding Discussion . 281
12.3 Future Work . 283

xvi

List of Figures

2.1 Example DSLs in the design space of DSLs 15
2.2 The focus of this thesis in the DSL design space 15
2.3 Concrete versus compromised syntax of an SQL query 21

3.1 An example SIMPLELOGO program . 31
3.2 A FUNCTIONALLOGO program defining and using a function 39

4.1 The levels of the reflective embedding architecture 71
4.2 Levels of the architecture for SIMPLELOGO 73
4.3 The architecture for SIMPLELOGO with alternative semantics 79
4.4 Evaluation of the SIMPLELOGO program from Listing 4.1 82
4.5 A language extension to SIMPLELOGO . 85
4.6 Two different semantics for EXTENDEDLOGO 87
4.7 The meta level for language implementations 90
4.8 Dimension 1 – locality of adaptations . 93
4.9 Dimension 2 – atomicity of adaptations . 95
4.10 Dimension 3 – time of adaptations . 96
4.11 Overview of the language combiners . 103
4.12 Composing two languages with the BlackBoxCombiner 106
4.13 Keyword dispatch with the BlackBoxCombiner 107
4.14 Architecture of the meta-aspect protocol . 110

5.1 The meta-object protocol of groovy . 117
5.2 The language model of SIMPLELOGO . 122

6.1 Language model of the state machine DSL . 140
6.2 Reflective DSL architecture . 142
6.3 Continuum of procedural and declarative reflection 150

7.1 Example program with tangled security concern 160
7.2 Crosscutting composition of EDSLs . 163
7.3 Setup of the CCCombiner . 167
7.4 Evaluation of the ca closure and aspect registration 167
7.5 Evaluation of the ecp closure . 168

xvii

List of Figures

7.6 Dynamic crosscutting composition of EDSL semantics 169

8.1 Overview of the compilation process . 176

10.1 Lexical scoping vs. dynamic scoping . 244
10.2 Illustration of the position tracker analysis . 257
10.3 Comparison of sequential and parallel execution of Listing 10.38 263
10.4 Parallelization through delegating function calls to delegate turtles 264

11.1 Benchmark results for DSL program compilation time 274
11.2 Benchmark results for DSL program execution time 275

xviii

List of Tables

3.1 Review of supported properties by related embedding approaches 64

10.1 Number of grammar rules that need to be specified for the concrete syntax . . . 241
10.2 Number of grammar rules that need to be specified to enable the integration with

the host language . 241
10.3 Comparison with related embedding approaches 267

11.1 Comparison language embeddings’ support for concrete syntax 272
11.2 Comparison of FSMDSL implementation costs 272
11.3 Comparison of the support for the Cool DSAL features 273
11.4 Comparison of DSAL implementation costs 273

xix

List of Listings

2.1 A Java class and two DSAL aspects that have a conflict (from [HBA08]) 23

3.1 A program using the shortcut commands of the CONCISELOGO dialect 33
3.2 A program using the repeat abstraction from the UCBLOGO dialect 33
3.3 A logo program with four turtles . 34
3.4 A FUNCTIONAL program defining a function 38
3.5 A program that uses the ambiguous keyword define 40
3.6 An excerpt of a COMPLETELOGO program that uses the shortcuts of CONCISE-

LOGO and the repeat-loop construct of UCBLOGO 44
3.7 A program with a tracing concern . 45
3.8 An excerpt of a program trace . 46
3.9 A program with a tracing aspect . 47
3.10 The abstract syntax representation of the program from Figure 3.1a 50
3.11 Using a dynamically-scoped variable . 54
3.12 A FUNCTIONALLOGO program using the special name thisTurtle 55
3.13 A program with a tracing aspect . 57
3.14 A program with a semantic error . 59
3.15 A program using a static transformation for function applications 60

4.1 The abstract syntax of the program from Figure 3.1a (cf. Section 3.4.1) 80
4.2 A program using the EXTENDEDLOGO language extension 89

5.1 Language interface of SIMPLELOGO . 119
5.2 Excerpt of the Interpreter class . 120
5.3 Language façade of SIMPLELOGO . 121
5.4 Associating a DSL program to its interpreter 123
5.5 Implementation of the EXTENDEDLOGO dialect 126
5.6 Using the extended set of commands from EXTENDEDLOGO 126
5.7 Excerpt of a specialized meta-object class that prevents collisions 127
5.8 Semantic adaptation of SIMPLELOGO with the Groovy MOP 127
5.9 The BlackBoxCombiner class . 129
5.10 Excerpt of the implementation of FUNCTIONAL 129
5.11 Evaluating the FUNCTIONALLOGO example from Figure 5.10 with a composed

interpreter . 130

xxi

LIST OF LISTINGS

5.12 The LinearizingCombiner class . 131

6.1 Adaptive business process . 139
6.2 State machine embedded in Groovy . 141
6.3 Reflective extension of the default interpreter for structural reflection 144
6.4 A program using structural reflection . 145
6.5 A program using behavioral reflection . 147
6.6 Two implementations of handleEvent . 151
6.7 Two implementations of transitionSelection . 152
6.8 Domain type semantic adaptation . 152
6.9 Domain object semantic adaptation . 153
6.10 Method-level adaptation . 154
6.11 Semantic module adaptation . 154
6.12 Pre-execution adaptation . 155
6.13 Context-dependent adaptation . 156

7.1 An example PROCESSDSL program . 158
7.2 Implementation of PROCESSDSL . 161
7.3 Using crosscutting composition . 162
7.4 Excerpt of ProcessPointcutInterpreter . 164
7.5 The CCCombiner class . 165
7.6 Implementation of setMetaClass . 165

8.1 An embedded SQL program in Groovy . 173
8.2 The ideal grammar of TINYSQL . 174
8.3 The language interface of TINYSQL with compromised syntax 174
8.4 The implementation of TINYSQL (semantics) 175
8.5 The language interface of TINYSQL with concrete syntax 175
8.6 An embedded SQL program in Groovy . 176
8.7 The interface of TINYSQL with quotation . 176
8.8 Island grammar for Groovy . 179

10.1 Implementation of shortcut commands in CONCISELOGO 212
10.2 Implementation of the repeat command in UCBLOGO 213
10.3 Implementation of concurrent drawing for multiple turtles in CONCURRENTLOGO215
10.4 Excerpt of the meta-level extension for collision detection 216
10.5 A program excerpt that tries to compose FUNCTIONAL and STRUCTURAL with

the BlackBoxCombiner . 219
10.6 The implementation of the CONSOLE façade that depends on FUNCTIONAL and

STRUCTURAL . 221
10.7 Two programs using the LinearizingCombiner for a dependent composition . . . 222
10.8 A program excerpt with a context-specific syntax conflict 223

xxii

LIST OF LISTINGS

10.9 A custom combiner that filters the Logo keywords inside function bodies 224
10.10A custom combiner that renames the conflicting keywords of FUNCTIONAL and

STRUCTURAL . 225
10.11Program using the renamed keywords of FUNCTIONAL and STRUCTURAL . . . 226
10.12Implementation of composing the independent extensions to execute a COMPLETE-

LOGO program . 227
10.13Excerpt of a custom combiner that enforces identifiers to be unique 228
10.14Excerpt of the pointcut language implementation of AO4LOGO 230
10.15Excerpt of the advice language implementation of AO4LOGO 230
10.16Using the CCCombiner to compose the language components of AO4LOGO . . 231
10.17An entity bean with bean managed persistence 232
10.18An AO4SQL aspect that changes an entity bean and its TINYSQL queries . . . 233
10.19Handling composition conflicts by defining a static order on DSALs 236
10.20An incremental extensions to FUNCTIONAL for concrete syntax 239
10.21Overriding the host language keyword if . 240
10.22Overriding the curly brackets delimiter of Groovy 240
10.23Implementation of pluggable scoping EnvironmentInterpreter 243
10.24Example from Listing 3.11 defining a dynamically-scoped variable using let and

get . 243
10.25Excerpt of the implementation of EnvironmentInterpreter 246
10.26A Logo program using the implicit reference thisTurtle 246
10.27An AO4SQL aspect that changes an entity bean and its TINYSQL queries . . . 247
10.28Implementation of expression counting for COMPLETELOGO 249
10.29Implementation of expression counting for FUNCTIONAL 249
10.30A custom combiner for combining the expression counting analyses 250
10.31Implementation of coding convention analyzer for COMPLETELOGO 251
10.32Implementation of coding convention checking analyzer for FUNCTIONAL . . . 252
10.33Applying the coding convention analysis . 253
10.34Semantic analysis for COMPLETELOGO (abstract semantics) 256
10.35Applying the semantic analysis for Listing 3.14 256
10.36Completed implementation of FUNCTIONAL from Listing 5.10 259
10.37Excerpt of the OPTIMIZINGLOGO transformer façade 262
10.38Using OptimizingLogo to optimize a program with only one turtle 263
10.39Excerpt of the AdaptiveOptimizingLogo transformer façade 265

xxiii

1. Introduction

To cope with the increasing complexity in software systems, programming paradigms and var-
ious language features have been proposed, e.g., object-oriented languages to encapsulate data
and procedures into classes. While these languages are most frequently used in software de-
velopment today, there are several situations in which they fail to implement software modu-
larly. To address modularity problems in object-oriented software, academic research proposes
new paradigms with special language concepts that extend traditional object-oriented concepts.
These new concepts help developers to implement more modular object-oriented software.

Object-oriented programming languages are also used for implementing new programming
languages in form of a language infrastructure. Usually, a language infrastructure consists of
several components, namely a parser, an abstract syntax tree (AST), analyses on this AST, e.g.,
for verification, and transformations on this AST, e.g., for compilation. In general, there are
large initial costs associated with implementing the infrastructure.

When languages evolve and new language features need to be added, it is important to reuse
and refine parts of an existing language infrastructure. Such a reuse is only possible with an
adequate technology that helps to extend existing infrastructures.

1.1. Context of this Thesis
Most modern programming languages follow the paradigms of object-oriented programming

with classes, single inheritance, and polymorphic calls. To handle the increasing complexity,
research advocates using extensions to single inheritance. Multiple inheritance [BI82, Mey88,
MMP89], traits [SDNB03], and mixins [BC90] all allow composing modular classes that encode
diverse facets of software. Meta-classes [Coi87], computational reflection [Smi82, Mae87], and
meta-object protocols [KRB91] propose to isolate concerns as separate entities at the meta-level.
These extensions have in common that they strive for better modularity in OO software that helps
to manage its complexity.

Still, even with those extensions, software suffers from modularity problems. One of the
most prevalent problems with these paradigms is that there are concerns that are hard to local-
ize because they crosscut several modules, which is why Kiczales et al. call them crosscutting
concerns [KLM+97]. The code of crosscutting concerns is scattered across multiple types or
classes, which makes it hard to modularize them with hierarchical modularization techniques.
Additionally, the code of these concerns is tangled with code of other concerns and functional
code, which makes it hard to maintain the concerns’ code fragments.

To separate crosscutting concerns, Kiczales et al. suggest using special modules called as-
pects. Aspects can quantify [FF00] over the execution in other modules and augment these

1

1. Introduction

modules with new logic that implement crosscutting concerns. Aspects improve the modularity
in OO software at the implementation level, since they can localize the code of a crosscutting
concern into one module, while the above paradigms would require providing code in several
modules. Most existing realizations of this aspect-oriented programming (AOP) paradigm ex-
tend existing OO languages with aspects, however aspects are not exclusive to OO program-
ming. To improve the modularity of other programming languages, the language concept of
aspects would be interesting for them, too.

To support new paradigms or language concepts in an existing language, sometimes develop-
ers have to completely re-implement the language. The problem with this is that implementing
a new language is expensive, because developers often lose a significant part of the investments
of its ancestor language.

In recent years, there has been an increasing interest in new languages that provide spe-
cial syntax and semantics for certain problem domains, so called domain-specific languages
(DSLs) [vDKV00, MHS05]. DSLs provide a concrete syntax that is closer to its problem do-
main than a general-purpose language (GPL), thus their syntax allows higher end-user produc-
tivity [MHS05, KLP+08]. They provide domain-specific (DS) constraints, which provide op-
portunities for analysis and optimizations [vDKV00, MHS05]. Famous examples of DSLs are
BNF, SQL, and HTML.

Many DSLs are virtually indispensable tools for implementing software artifacts in a certain
problem domain. But, such DSL artifacts need to be integrated with other artifacts written
in GPLs. Hence, there are increasing requests to compose DSLs with existing GPLs [ME00,
BV04, TFH09], e.g. SQLj [ME00] composes SQL [DD89] and Java™ [LY99]. The increasing
numbers of requests create a challenge for traditional language implementation approaches that
have high initial costs [BV04, Cor06, HM03].

To manage the increasing requests for new special languages, there are techniques that aim
at a smoother transition by allowing a language to grow from one version to the next [Ste99],
e.g., by adding new syntax and semantics to an existing language. Those special techniques
evolve around establishing modularity, extensibility, composability, and adaptability of lan-
guages implementations. The research for modularity in language implementations strives for
building language infrastructures in a modular way (i.e. modular parsers and compilers) for
the sake of a better separation of concerns [Par72]. There are special concepts for extensi-
ble language implementation, e.g., attribute grammars [Knu68, EH07b], tree walkers or ex-
tended visitor patterns [Par93, NCM03]. Those concepts enable language developers to extend
the artifacts of an existing language infrastructure. For example, to extend a language’s syn-
tax, there is support for extending grammars with grammars inheritance [AMH90, KRV08]
and grammar imports [HHKR89, Vis97b, Par08]. Composability of multiple languages has
been addressed by special extension and composition mechanisms. For example, there is
support for composition of grammars [Vis97c, For04] and of semantic language compo-
nents [HM03, Aßm03, Hud96]. Adaptability of language are addressed by special component-
oriented language approaches [EH07b] and by composition of gray-box language compo-

2

1.2. Problem Statement

nents [dB00, DDMW00, Aßm03, EVI05, KL07b, Cle07, GWDD06]. To consolidate the con-
structs of several languages, there are several approaches that support composing the syntax and
semantics of existing languages. Composing syntax of several languages can lead to conflicts
at the lexical level [vdBSVV02]. Composing the semantics of several languages may lead to
complicated conflicts at the semantic level [KL05, KL07b, HBA08]. Despite there is a principle
support for composition, in particular when composing semantics, there are various challenges
with respect to the completeness, correctness, complexity, and implementation efforts when us-
ing existing approaches for language compositions [BV04, Cor06, Tra08].

An interesting idea that addresses parts of the aforementioned challenges is to embed a lan-
guage into an existing language [Lan66, Hud96, Hud98, Kam98], which serves as a host for im-
plementing the new language. This idea goes back to Landing [Lan66]. Hudak [Hud96, Hud98]
proposes a concrete approach for embedding DSLs into general-purpose host languages by
means of libraries written in this language. Such an embedded language can reuse the general-
purpose features of the host language. Consequently, this reduces the development costs of
the embedded language by reusing the existing host language infrastructure [Hud98, Kam98,
KLP+08], i.e., existing development tools, parsers, compilers, and virtual machines. New
language features can be added incrementally by “simply” extending the corresponding li-
braries [Hud96]. More importantly, embeddings are said to be easier to compose in contrast to
languages that are implemented with traditional approaches, such as pre-processors [MHS05].

Various embedding approaches propose using different host languages, namely languages that
allow pure functional programming [Hud98, CKS09, ALY09], dynamic programming [Pes01,
TFH09, KG07, KM09, RGN10, AO10], staging and meta-programming [COST04, SCK04,
Tra08], strong-typing for object-oriented programming [Eva03, Fow05, Gar08, Dub06, HO10],
generative programming [Kam98, EFDM03, CM07], and source code transformations [BV04,
Cor06].

Using these approaches, there are existing embedded DSL implementations for various do-
mains, such as for mathematical calculations [Hud98, COST04, Dub06, HORM08, CKS09,
ALY09], query languages [LM00, Cor06, Dub06], image processing [Kam98, EFDM03,
SCK04], user interfaces [BV04, TFH09, KG07, Gar08], code generation [BV04, CM07, Tra08],
simulations [Pes01, OSV07] and testing [FP06, AO10]. However, so far the embedding ap-
proach has been applied only for implementing languages with a rather small set of language
constructs.

The prospect of a light-weight but powerful language implementation approach has brought
forth language embedding as a major area of research in programming language implementation.

1.2. Problem Statement
There are three key problems of current embedding approaches with respect to the syntax and

semantics of embedded languages.
First and foremost, there is a missing support for concrete syntax in many embedding ap-

proaches [MHS05, KLP+08]. This is because the host and the embedded language share the
same homogeneous syntax. Although sharing the host syntax saves the initial costs for a spe-

3

1. Introduction

cial parser, still with a shared syntax embedded programs have a compromised encoding. That
means there is a syntactically compromised representation of a program running on an embedded
language in comparison to a freely designed and therefore ideal encoding when implementing
the language with a tailored parser. This is particularly unfortunate since comparative stud-
ies [KLP+08] indicate that this missing support for concrete syntax significantly lowers the end
user’s productivity in writing DSL code. Consequently, it is not recommended to follow the
embedding approach for implementing a language that requires a special syntax [MHS05].

Second, there is a missing support for special semantics in embedded approaches. When
sharing the host’s semantics, the host semantics confine the semantics of the embedded language.
That means end users can only express in embedded program what is expressible in the host
language. For example, in case the host language’s composition mechanisms cannot express
certain concerns in a modular way, when fine-granular composition semantics are not available,
such as aspects, end users programs that implement such concern suffer from bad modularity.
Consequently, when implementing a language that requires support for special semantics, such
as fine-grained composition mechanisms, language developers cannot use a host language that
disallows embedding such semantics, which requires using a more powerful host language.

Third, there is a missing support for implementing and composing multiple languages that
have interactions. There can be two forms of interactions. First, an embedded language can
have syntactic and semantic conflicts with the host language. Second, multiple embedded lan-
guages can have syntactic and semantics interactions among each other. Without having special
mechanisms to detect and resolve such interactions, developer cannot implement or compose
such embeddings.

The aforementioned problems in current embedding approaches disallow implementing con-
temporary programming languages that have complicated language constructs with a special
syntax and semantics. To overcome the limitations of current embedding approaches, the goal
of this thesis is to propose a new embedding approach that addresses these problems. Having
special support for solving these open issues could open new grounds for new types of lan-
guages, and therefore, it would mature the concept of embedding to compete with traditional
language implementation approaches.

1.3. Thesis
The research method of this thesis is organized in four steps. First, it put focus on related

work and identifies important problems in its body. Second, it proposes a novel architecture for
language embedding in which every language has a designated meta-level. Third, it presents
extensions to the core architecture that provide special language concepts and generic tools
for embeddings. These concepts and tools facilitate the language developer to implement new
languages and language compositions that have special requirements. Fourth, it evaluates the
architecture support for addressing the identified problems and compares the resulting solutions
to related work. The results of those four steps are summarized in the following subsections.

4

1.3. Thesis

1.3.1. State-of-the-Art in Language Embedding Approaches
This thesis gives an overview of architectures used in traditional non-embedded approaches

for language implementation, such as compilers, interpreters, and pre-processors. It identi-
fies seven desirable properties that traditional non-embedded approaches claim to be impor-
tant [HM03, Par10], namely (1) extensibility, (2) composability of languages, (3) special means
for composition, (4) support for concrete syntax, (5) means for controlling the scope of lan-
guage constructs, as well as (6) support for analyses and (7) transformations. Since DSLs are
themselves programming languages, they are also subject to the requirement to support these
important properties [vDKV00, MHS05]. For each of these properties, the thesis proposes con-
crete scenarios that demonstrate support for the corresponding property and that can be used
later on for evaluation of the corresponding property. In the context of this thesis, a review on
the support for the proposed properties by related work has been conducted. The review shows
that there is certain support for the properties by existing embedding approaches, but it also
reveals that all related embedding approaches have important limitations.

1.3.2. Core Architecture for Reflective Embedding
To address the current limitations in related work, this thesis proposes to use reflective host

languages for embedding and to exploit reflective features for improving the quality of em-
beddings. Most importantly, when using a reflective language for embedding, the embedded
language implicitly yields a meta-level for the embedding. A key property of the meta-level is
that embedded language constructs remain first-class objects until and during their execution.
The meta-level helps language developers to expose the internals of their embeddings to other
parties. With exposed internals, embedded analyses and transformations can access the inter-
nal information to reason about an embedded language, its language constructs, and objects in
embedded programs.

The embedding approach is based on a disciplined architecture that defines for language devel-
opers how to embed a language’s syntax and semantics. The architecture uses reflective features
for creating language embeddings and is therefore called the reflective embedding architecture.
The architecture consists of a language independent core that provides a set of accompanying
language key mechanisms that facilitates implementing and composing languages. If needed,
language developers can extend the core architecture with new language mechanisms that better
fit special requirements.

In this architecture, every language defines a language component that has a set of well-
defined interfaces of classes. By default, these classes are well encapsulated and implement
the details of the execution semantics for that language component. Whenever necessary the
language developers can break up encapsulated languages and use them as gray-box language
components. Additionally, the language developer can define abstractions that allow language
end users to manipulate language internals in a controlled way.

1.3.3. Extensions to the Core Architecture
To demonstrate the applicability of the core architecture, this thesis presents special embed-

dings and extensions on top of the reflective embedding architecture. The architecture has been

5

1. Introduction

used to implement extensible languages for computer graphics [New73], workflows [WfM],
and SQL queries [DD89]. In particular, this thesis elaborates on how to embed sophisticated
general-purpose language constructs that help to improve modularization, such as functional
and structural abstraction [AS96], scoping [AS96, Tan09], and aspects [KLM+97]. Further,
the thesis presents embedding of language prototypes for formal models, such as state ma-
chines [OMG04], feature models with dependencies [Pre97], and grammar definitions (BNF).

To enable implementations of contemporary languages with complicate language constructs
that have a special syntax and semantics, the thesis presents several extensions of the core archi-
tecture with designated concepts, frameworks, and tools that enable the evolutions of embedding
to support these special requirements.

To enable language constructs that have a special semantics, the architecture allows the em-
bedding of special semantics on top of it. As an example for special semantics, this thesis elab-
orates how to embed aspects that can localize crosscutting concerns in DSL programs. For this,
the architecture provides means for composing special DSLs in which the evaluation of DSL pro-
gram interacts with the evaluation of a DSL program in another DSL. The reflective embedding
architecture uses those means to enables crosscutting composition of aspects into DSL programs.
general means for domain-specific join points, as requested by [RMH+06, CNF+08, RMWG09].
First, it uses DS join points to enable an aspect-oriented version of the Logo language for com-
puter graphics [New73]. Second, it enables aspects for workflow languages similar to [CM04].
Third, it enables composing dynamic aspects for SQL queries.

Concerning the special syntax of DSLs, the architecture provides a generic pre-processor
that enables concrete syntax. Language developer can incrementally add meta-data to libraries
of embedded languages that specifies the concrete syntax of them. To make DSL programs
executable, the pre-processor then uses this meta-data to transform a program in a concrete
syntax to an executable form in the host language syntax.

1.3.4. Evaluation
To evaluate the reflective embedding architecture, this thesis both qualitatively and quantita-

tively reviews the proposed concepts. The evaluation compares to related work on embedded
languages. It focuses on evaluating of the support of the provided language tools for language
developer and end user at the language level, therefore evaluating the quality of integrated de-
velopment environments (IDEs) for language end user is out of the scope of the evaluation.

To qualitatively evaluate the concepts, in the context of this thesis, the evaluation reviews
the support of the reflective embedding architecture for supporting the identified properties and
compares its support to related work.

The results of the qualitative evaluation show the following advantages of the reflective em-
bedding architecture. First, language developers can extend and compose language from existing
language components for execution, analysis, and transformation. Second, it reduces the effort
to implement domain semantics, since one can reuse available OO libraries in their embeddings.
Third, they can distribute their compiled embeddings to other developers who can again pro-
vide extension and abstraction on top of existing embeddings. While existing approaches have

6

1.3. Thesis

only limited support for the desirable properties, the proposed architecture has practicable no
limitations for five of the seven desirable properties. Although the evaluation shows that devel-
opers can compose basic analyses and transformations of different languages, it remains unclear
whether the embedding approach and related embedding approaches support complicated anal-
yses and transformations.

To quantitatively evaluate the concepts, the evaluation compares to traditional approaches and
embedded approaches with benchmarks. It evaluates the implementation costs of embeddings,
its compares the basic performance of programs running on an embedding to a traditional lan-
guage implementations, and the runtime overhead when using special extensions on top of the
core architecture.

The results of the quantitative evaluation show that developers can save the initial investments
for DSLs compared to traditional approaches. A developer can grow a DSL without concrete
syntax into a DSL with concrete syntax. With those means for flexible language implementation,
the evaluation measured that there is a moderate performance overhead compared to related
approaches. When exploiting the architecture’s possibilities for embedding specific analyses
and optimizations, one can significantly reduce the performance overhead due to the indirections
of the meta-level. For example, when executing DSL programs in an optimized version of an
embedded aspect language, the execution overhead of the aspect mechanism is less than an order
of magnitude.

7

1. Introduction

1.4. Summary of Contributions
The contributions of this thesis can be classified w.r.t. which field in programming language

research they contribute to: (I) embedded domain-specific languages, (II) language architectures,
and (III) language methodologies, (IV) benchmarks for DSLs.

(I) Contributions to the research on embedded domain-specific languages: This the-
sis advances the research of embedded domain-specific languages by:

(a) Identifying desirable properties for language embedding approaches

(b) Proposing the concept of the reflective embedding architecture: This thesis
extends the concept of embedded domain-specific languages by Hudak [Hud96] with
a meta-level.

(c) Systematically studying reflective host languages for embedding

(II) Contributions to the research on language architectures: This thesis is inspired by
existing traditional language architectures, it consolidates these architectures for new ap-
plications, and it contributes back generalizing their applicability and specializing them
for new domains.

(a) An approach to grow a language into a reflective language: This thesis pro-
poses a new approach to systematically implement a reflective language [Smi82,
Mae87]. It presents how a language developer can expose parts of an embedded
languages to the users, e.g., growing a DSL into a reflective DSL. With a reflective
DSL, a user can implement reflective programs that reason about themselves using
structural and behavioral reflection [Smi82, Mae87].

(b) Generalization of meta-protocols: This thesis generalizes the concept of meta-
object protocols [KRB91] from OO languages to meta-protocols for DSLs.

(III) Contributions to the research on language methodologies: This thesis implements
technologies and prototypes that contribute to language methodologies.

(a) Composition of languages with syntactic and semantic interactions

(b) Composing crosscutting concerns in domain-specific languages

(c) Controlling the scope of aspects in domain-specific languages: This thesis
provides generic concepts and technology for controlling the scope and activation of
crosscutting concerns in domain-specific languages. With the technology, programs
can load and dynamically activate/deactivate aspects at runtime.

(IV) Benchmarking for Embedded DSLs: This thesis proposes an open-source benchmark
to measure and compare the costs of different DSL approaches.

8

1.4. Summary of Contributions

In the context of this thesis, the author has published the following papers:

Publications in Conference Proceedings:

• Tom Dinkelaker, Michael Eichberg, and Mira Mezini. Incremental Concrete Syntax
for Embedded Languages. In Proceedings of the 26th ACM Symposium on Applied
Computing—Technical Track on Programming Languages (PL at SAC). Taichung, Tai-
wan, March 21-25. ACM, NY, USA, 2011.

• Tom Dinkelaker, Michael Eichberg, and Mira Mezini. An Architecture for Composing
Embedded Domain-Specific Languages. In Proceedings of the 9th ACM International
Conference on Aspect-Oriented Software Development (AOSD). Rennes and Saint Malo,
France, March 17-19. ACM, NY, USA, 2010.

• Slim Kallel, Anis Charfi, Tom Dinkelaker, Mira Mezini, and Mohamed Jmaiel. Specify-
ing and Monitoring Temporal Properties in Web Services Compositions. In Proceed-
ings of the 7th IEEE European Conference on Web Services (ECOWS). Eindhoven, The
Netherland. IEEE Computer Society Press, 2009.

• Tom Dinkelaker, Mira Mezini, and Christoph Bockisch. The Art of the Meta-Aspect
Protocol. In Proceedings of the 8th ACM International Conference on Aspect-Oriented
Software Development (AOSD), Charlottesville, VA, March 2-6. ACM, NY, USA, 2009.

• Anis Charfi, Tom Dinkelaker, and Mira Mezini. A Plug-in Architecture for Self-Adaptive
Web Service Compositions. In Proceedings of the 7th IEEE International Conference on
Web Services (ICWS). Los Angeles, CA, USA, July 6-10. IEEE Computer Society Press,
2009.

• Tom Dinkelaker, Alisdair Johnstone, Yuecel Karabulut, and Ike Nassi. Secure Scripting
Based Composite Application Development: Framework, Architecture, and Imple-
mentation. In Proceedings of the 3rd ICST/IEEE International Conference on Collab-
orative Computing, White Plains, NY, November 12-15. IEEE Computer Society Press,
2007.

• Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, and Mira Mezini. Adapting Vir-
tual Machine Techniques for Seamless Aspect Support. In Proceedings of the 21st
Annual Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), Portland, OR, October 22-26. ACM, NY, USA, 2006.

• Michael Haupt, Mira Mezini, Christoph Bockisch, Tom Dinkelaker, Michael Eichberg,
and Michael Krebs. An Execution Layer for Aspect-Oriented Programming Lan-
guages. In Proceedings of the International Conference on Virtual Execution Environ-
ments (VEE), Chicago, IL, June 11-12. ACM, NY, USA, 2005.

9

1. Introduction

Demonstration:

• Tom Dinkelaker. Demo: A Dynamic Software Product Line Approach using Aspect
Models at Runtime. In 4th Workshop on Domain-Specific Aspect Languages (DSAL). at
the 9th ACM International Conference on Aspect-Oriented Software Development (AOSD).
Rennes and Saint Malo, France, March 17-19. http://www.dsal.cl/2010/, 2010.

Publications in Workshop Proceedings:

• Tom Dinkelaker, Johan Fabry, Anne-Francoise Le Meur, Jacques Noye, and Eric Tanter.
Proceedings of the 4th Workshop on Domain-Specific Aspect Languages (DSAL).
at the 9th ACM International Conference on Aspect-Oriented Software Development
(AOSD). Rennes and Saint Malo, France, March 17-19. http://www.dsal.cl/
2010/, 2010.

• Tom Dinkelaker, Ralf Mitschke, Karin Fetzer, and Mira Mezini. A Dynamic Software
Product Line Approach using Aspect Models at Runtime. In Proceedings of the 1st
International Workshop on Composition: Objects, Aspects, Components, Services and
Product Lines, at the International Conference on Aspect-Oriented Software Develop-
ment, Rennes and Saint Malo, France, March 17-19. CEUR-WS.org, ISSN 1613-0073,
Vol. 564, CEUR-WS.org/Vol-564/, 2010.

• Tom Dinkelaker, Martin Monperrus, and Mira Mezini. Supporting Variability with
Late Semantic Adaptations of Domain-Specific Modeling Languages. In Proceed-
ings of the 1st International Workshop on Composition: Objects, Aspects, Components,
Services and Product Lines, at the International Conference on Aspect-Oriented Software
Development, Rennes and Saint Malo, France, March 17-19. CEUR-WS.org, Vol. 564,
CEUR-WS.org/Vol-564/, 2010.

• Tom Dinkelaker, Martin Monperrus, and Mira Mezini. Untangling Cross-Cutting Con-
cerns in Domain-Specific Languages with Domain-Specific Join Points. In Proceed-
ings of the 4th Workshop on Domain-Specific Aspect Languages (DSAL), at the Interna-
tional Conference on Aspect-Oriented Software Development, Charlottesville, VA, USA,
March 2-6. ACM, NY, USA, 2009.

• Tom Dinkelaker, Mira Mezini. Dynamically linked Domain-Specific Extensions for
Advice Languages. In Proceedings of the 3rd Workshop on Domain-Specific Aspect Lan-
guages (DSAL), at the International Conference on Aspect-Oriented Software Develop-
ment. ACM, NY, USA, 2008.

10

http://www.dsal.cl/2010/
http://www.dsal.cl/2010/
http://www.dsal.cl/2010/
CEUR-WS.org/Vol-564/
CEUR-WS.org/Vol-564/

1.5. Organization of the Thesis

Technical Reports:

• Tom Dinkelaker. Review of the Support for Modular Language Implementation with
Embedding Approaches. TUD-CS-2010-2396, Technische Universität Darmstadt, Ger-
many, November, 2010.

• Tom Dinkelaker, Christian Wende, and Henrik Lochmann. Implementing and Com-
posing MDSD-Typical DSLs. TUD-CS-2009-0156, Technische Universität Darmstadt,
Germany, October, 2009.

• Mira Mezini, Danilo Beuche, Ana Moreira (Editors). 1st International Workshop on
Model-Driven Product Line Engineering (MDPLE’09), at the 5th European Confer-
ence on Model-Driven Architecture Foundations and Applications (ECMDA-FA). Centre
for Telematics and Information Technology, University of Twente, Enschede, The Nether-
lands, 2009.

• Tom Dinkelaker and Michael Haupt Inventory of Aspect-Oriented Execution Models
AOSD-Europe. Deliverable D40, AOSD-Europe-TUD-4, Technische Universität Darm-
stadt, Germany, February 28, 2006.

1.5. Organization of the Thesis
The structure of the thesis has five parts. The first part discusses the state-of-the-art. Section 2

gives an overview on existing language embedding approaches and identifies their advantages
and limitations. Then, Section 3 identifies properties that are often available in non-embedded
DSL approaches, but that have a limited support by embedding approaches.

The second part presents the concept, which begins with presenting the reflective embedding
architecture in Section 4. Next, Section 5 elaborates the implementation of the architecture in
one example host language.

The third part presents the application of the proposed concepts. Section 6 shows how lan-
guage developer can use the core architecture to implement a DSL in which a DSL program can
reason about its domain and customize the language semantics. Section 7 shows how to use the
core architecture for composing interacting of domain-specific languages. Section 8 shows how
to incrementally improve the concrete notation of programs using an embedded language.

The fourth part presents the evaluation of the proposed concepts. Section 9 compares to re-
lated work. Section 10 reviews the support for the identified properties. Section 11 presents the
quantitative evaluation and compares to related work.

The fifth and last part concludes this thesis, it summarizes the thesis results and its contribu-
tions in Section 12 and discusses future work.

The thesis assumes that the reader has a fluent understanding of Java [GJSB00] and a principle
understanding of AspectJ [KHH+01].

11

Part I.

State of the Art

13

2. State of the Art in Language
Implementation Approaches

This chapter introduces terminology and gives an overview over the state of the art relevant to
this thesis. Starting in Section 2.1 with discussing the importance of DSLs in general, Section 2.2
defines the scope of this thesis on embedded DSLs. Next, Section 2.2.1 elaborates on the prob-
lems of existing embedded DSL approaches. After that, Section 2.3 reviews architectures that
traditional approaches frequently employ for structuring language implementations.

Swing

Special SyntaxGeneric Syntax

Generic Semantics

Special Semantics

SWUL

COOL
RIDL

SQL

Caching DSL

COOL+CachingHaskell/DB

Java/RegEx BPEL
Java

AO4BPEL BNFFSM

Figure 2.1.: Example DSLs in the design space of DSLs

Special SyntaxGeneric Syntax

Generic Semantics

Special Semantics

Scope of this thesis
Small-, medium-size, and prototype DSLs

Non-expert language developer
No hard performance requirements

Integrating DSLs into GPLs

Figure 2.2.: The focus of this thesis in the DSL design space

15

2. State of the Art in Language Implementation Approaches

2.1. Domain-Specific Languages
There are two important surveys [vDKV00, MHS05] that define domain-specific languages

and analyze their role in modern software development.
In the first survey paper “Domain-Specific Languages: An Annotated Bibliogra-

phy” [vDKV00], Van Deursen, Klint and Visser proposes the following DSL definition:

“A domain-specific language (DSL) is a programming language or executable spec-
ification language that offers, through appropriate notations and abstractions, ex-
pressive power focused on, and usually restricted to, a particular problem do-
main.” [vDKV00]

The paper mentions several advantages of DSLs. They have a special syntax that allows
a developer to express a solution at a higher level of abstraction that is closer to a problem
domain. DSL programs tend to be more concise and self-documenting. Thus, domain experts
can easier understand, validate, modify, and often even non-programmer end users can develop
DSL programs. Having a more concise encoding of program improves productivity, and more
concise programs enhance reliability, maintainability and portability. A DSL implementation
directly embodies the domain knowledge and conserves this for reuse. Further, DSLs allow
validation and optimization at the domain level.

In their survey, they also discuss disadvantages of DSLs. There are high costs for designing,
implementing, and maintaining a DSL, on top of which come the costs of education for DSL
end users. While there are many problem domains, the availability of DSLs is limited. For
DSL developers, it is often difficult to find the proper scope for a DSL and to balance between
domain-specific and general-purpose language constructs in its syntax and semantics. Due to the
higher level of abstractions, DSL programs are potentially less efficient compared to hand-coded
software.

In the second survey paper with the title “When and How to Develop Domain-Specific Lan-
guages” [MHS05], Mernik, Heering, and Sloane define DSLs as follows:

“DSLs trade generality for expressiveness in a limited domain. By providing no-
tations and constructs tailored toward a particular application domain, they offer
substantial gains in expressiveness and ease of use compared with GPLs for the
domain in question, with corresponding gains in productivity and reduced mainte-
nance costs. Also, by reducing the amount of domain and programming expertise
needed, DSLs open up their application domain to a larger group of software de-
velopers compared to GPLs.” [MHS05]

They discuss developing DSLs in 3 phases: analysis, design, and implementation.
In the analysis phase, DSL developers identify the requirements, which have important im-

plications on the DSL design. A DSL design is only successful if it meet those requirements of

16

2.1. Domain-Specific Languages

the language end users. Therefore, the decisions in the design phase of a DSL should be based
on those requirements.

In the design phase, according to Mernik et.al., DSL design can be characterized along two
orthogonal dimensions: (1) the relationship of the DSL design to designs of existing languages,
and (2) the formal nature of the design. For the first dimension, they state that it easiest way is to
design a DSL is to use part of the design of an existing GPL or DSL, which they call language
exploitation. Language developers can either (a) piggy-back the DSL design by using parts of
an existing language design without special restrictions, (b) they can design a specialization by
restricting an existing language design to a certain domain, or (c) they can design an extension
to an existing language design by adding new domain concepts to it. For the second dimension,
they distinguish how formal the language developer designs a DSL. There is the informal design
that uses specifications given in natural languages or a set of illustrative DSL example programs
that can be later used as tests. Conversely, there is the formal design that uses an existing se-
mantics definition method, such as attribute grammars, rewrite rules, or abstract state machines.
The decisions made in the design phase of a DSL have important implications for the costs and
maintenance of its implementation.

For the implementation phase, Mernik et al. give an overview of existing approaches:

Interpreters: They interpret DSL constructs using a standard fetch-decode-execute cycle. They
support DSLs with a rather dynamic nature. They often have a greater simplicity and control
over the execution compared to other approaches. Yet, usually interpreters are implemented in a
monolithic way, and therefore not extensible.

Compilers or Generators: These approaches rewrite high-level programs to a target language
that is usually at a lower level of abstraction, e.g. assembler or machine code. Compilers often
support semantic analysis, e.g. for static analysis and optimization. Similarly to interpreters,
most compilers are monolithic and not extensible.

Pre-processing: DSL constructs are translated to constructs in an existing GPL. There are
different forms of pre-processing. Macro processing that usually expands DSL expressions from
syntactic macro definitions. Source-to-source transformations rewrite DSL programs to another
language, which is similar to compilers, but the transformation usually produces code in a high-
level language not machine code.

Embedding: In line with Hudak, Mernik et al. define embedding as libraries implemented
into an existing GPL. For them, even GPL application libraries are a basic form of embedding.
Mernik et al. state that because of the limitations of existing embedding approaches, embedding
can only be used if there is no need for special requirements for a DSL, such as there can be
a need for concrete syntax, analysis, verification, optimization, parallelization, or transforma-
tion. Because existing embeddings are currently confined by their host languages, they do not
recommend to follow the embedding approach, if there is a need for such a special requirement.

Extensible Compilers and Interpreters: These are special compilers/interpreters that can be
extended with domain-specific (DS) optimization rules and/or code generation. Most existing

17

2. State of the Art in Language Implementation Approaches

extensible compilers/interpreters are for one particular language, which is in most cases a GPL.
They only allow extension to GPLs. Usually, for a new DSL, an extensible compiler needs
to be implemented from scratch. Because the initial cost for an extensible compiler is even
higher than for a monolithic compiler, there are only a few extensible compilers available for
DSLs [ADDH10].

Commercial Off-The-Shelf (COTS): COTS-based approaches use standard tools and/or stan-
dard syntax that is applied to a specific domain. In COTS-based approaches like UML [OMG04]
or XML, there are standard mechanisms for syntactic extensions and transformation (rule-based
transformation).

Hybrid approaches: This can be any combination of the above approaches, e.g., a combination
embedding and compilers [EFDM03]. However, there are only a few examples that actually
combine several techniques. Mernik et al. mention two concrete DSLs, but there is no framework
approach for hybrid DSL implementation.

The two DSL survey papers by Van Deursen et al. and by Mernik et al. are widely considered
as the standard references for DSLs. Still, both definitions are very vague, as the authors them-
selves admit. Since this thesis focus are embedded DSLs, it is out of the scope of this thesis to
provide a new definition of DSLs in general.

This thesis uses the definition of Van Deursen et al. and of Mernik et al., and therefore inherits
the vagueness in these definitions. To address this vagueness, this thesis discusses different kinds
of DSLs. Indeed there is a large range in the design space of DSLs that comply to that defini-
tion. Figure 2.1 (p. 15) gives an overview1 of DSLs and points out five different kinds of DSLs:
(1) DSLs with highly specialized tools that perform analysis, verification, optimization, paral-
lelization, or transformation, such as SQL [DD89]. SQL has a special syntax for implementing
database queries, and it has special semantics with support for analysis and transformation for
an optimized execution of such queries. (2) DSLs that only define syntactic sugar for domain-
concepts but no new semantics, such as SWUL [BV04] with syntactic sugar for Java Swing.
(3) languages that are merely defined as GPL application libraries, such as Haskell/DB [LM00]
for embedding SQL queries into the Haskell programming language. (4) embedded DSLs that
encode domain objects and operations that define a DS vocabulary and execution semantics,
such as BPEL [AAB+07] that defines business processes with a workflow DSL embedded into
XML; and (5) DSLs that mix DS and general-purpose language constructs, such as Java/Reg-
Exp [BV04]. Unfortunately, except embedding and pre-processing with macros, all approaches
assume that the language developer is an expert who has special skills.

Figure 2.2 (p. 15) illustrates the focus of this thesis with respect to the DSL design space.
This thesis focuses on providing methods and technology for the DSL implementation phase.

1The following DSL examples from Figure 2.1 are from the following papers: Swing, SWUL [BV04], Haskel-
l/DB [LM00], Java/RegExp [BV04], FSM (Finite State Machines) [DWL09], BPEL [AAB+07], AO4BPEL,
COOL [Lop97], RIDL [Lop97], Caching DSL [HBA08], COOL+Caching [HBA08], BNF (Backus Naur Form),
and SQL [DD89].

18

2.2. Embedded Domain-Specific Languages

For a successful development of new DSLs, the proposed technologies in this thesis need to be
used together with requirement analysis and design approaches for DSLs. The readers who are
interested in further details on the other phases are referred to the survey paper of Mernik et
al. [MHS05].

2.2. Embedded Domain-Specific Languages
The idea to embed a language into another language goes back to Landing [Lan66] and Hu-

dak [Hud96, Hud98]. The literature often uses the term embedded domain-specific language2

(embedded DSL or EDSL for short) to refer to such language embedding, therefore this term is
used throughout the thesis. Unfortunately both Landing and Hudak do not give a clear definition
of what an embedded DSL is. Hudak states that an embedded DSL “is designed within an exist-
ing, higher-order and typed, programming language such as Haskell or ML”. This definition is
vague and restricted to functional languages, but it roughly defines an embedded DSL as being
a library in a GPL.

Kamin [Kam98] defines embedding a DSL as “the process of implementing a language by
defining functions in an existing host language; the host language with these added functions
is the new language [...]”. Further, he states that this method can be used in any language.
Therefore, Kamin’s definition of an embedded DSL is not restricted to functional languages.
Although he states that functions facilitate embedding. According to Kamin, embeddings do
not have to be compiled and executed by the host language compiler. Embedding can generate
a version of the DSL program into a version in a target language. Next, an external tool can
compile the generated version of program into an executable version. Although this definition
of embedded DSLs is accurate, it is not used often in the literature because it does not define
a precise scope. This imprecise scope also applies to non-embedded approaches (e.g. as parser
generators) that do have a clear intention to reuse the host language features for implementing a
DSL.

Fowler [Fow05] defines embedded DSLs as internal DSLs. An internal DSL is an embed-
ding that uses the internal host compiler to compile DSL programs. He considers all language
implementations that use tools that are external to the host language, i.e. a compiler of another
language, as external DSLs. While Fowler’s definition is close to the one of Hudak, unfortu-
nately his internal DSL definition excludes Kamin’s embedding approach.

Mernik et al. points out in [MHS05] that “with an application library, any GPL can act as a
DSL”. However, the expressiveness of application libraries—i.e. their syntax and semantics—is
confined by the language they are implemented in. Therefore, DSL constructs cannot always be
mapped in a straightforward way to functions or objects in a library. This definition is broader
than the previous definitions, as it roughly defines that any library in a GPL is an embedded
DSL. Such a broad definition is problematic since it does not take into account the developer’s
intention when implementing a DSL. But for embedded DSLs, it is important that developers

2To refer to a language embedding, Hudak uses the term domain-specific embedded language [Hud96]. Other
authors [Fow05] propose to refer to embedded languages as internal DSLs.

19

2. State of the Art in Language Implementation Approaches

design them with the intention to be used as an embedded DSL, otherwise embedding cannot be
expected to have an appropriate notation.

Tratt [Tra08] defines two different styles of embeddings. Language embeddings can be dis-
tinguished with respect to what particular language infrastructure is used to compile and execute
the embedding: there are homogeneous and heterogeneous approaches. On the one hand, there
are homogeneous embeddings that have a homogeneous syntax with their host, so one can mix
embedded DSL expressions with the host expressions. Homogeneous embeddings have a uni-
form compile- and/or runtime with their host language, which allows objects to flow between
DSL and host programs back and forth. On the other hand, there are heterogeneous embeddings
that have a source language (also meta language) and a target language. Because artifacts of the
source and the target language are compiled by different compilers, there is no uniform compile-
and/or runtime runtime, hence objects and language features cannot be shared. Tratt’s definition
is useful to classify existing embedding approaches. Unfortunately, his definition does not define
the process of embedding itself.

Since the above DSL definitions are too vague, this thesis consolidates the existing definitions
of Hudak, Kamin, Fowler, and Tratt:

An embedded domain-specific language is a virtual language that is implemented as
library in an existing host language. A virtual language has an implementation that
reuses parts of an existing language infrastructure in order to give end users the illu-
sion that they use a real language with specialized tools for the domain. The virtual
language enables special concepts and abstractions for a certain problem domain
on top of the reused infrastructure. This infrastructure can encompass tools such as
parsers, compilers, interpreters, virtual machines, and developer tools, whereby the
embedding can reuse the infrastructure both in a homogeneous or heterogeneous
way.

This definition consolidates all previous definitions, but it refines them by two important ob-
jectives. First, it requires the embedding to be intended. An application library is not seen as
a full-fledged embedded language, because an opportunistic usage of a library as an embed-
ding is considered problematic for end users. When using a library that was not intended as
an embedding, the resulting library likely does not give end users appropriate domain syntax
and semantic guarantees [MHS05]. Therefore, a language developer needs to clearly intend to
embed a language. Second, the illusion of the embedding can have weaknesses. There can be
differences in the quality of the illusion dependent on the embedding style and host language.
One can expect a slower performance for embedded programs than if they would be executed
on a non-embedded implementation. Further, host tools may reveals unnecessary technical de-
tails, such as technical error messages, that cannot be understood by end users [Kam98]. If the
illusion of the embedding has weaknesses, it still needs to be convincing for end users.

Although the definition of a virtual language helps to clarify the nature of embedded DSLs,
this thesis does not use this term to replace the term “embedded DSL”. Because this term has
been established in today’s literature, this thesis retains to the old terminology.

20

2.2. Embedded Domain-Specific Languages

2.2.1. Open Issues in Existing Embedding Approaches

This section elaborates on open issues with embeddings addressed by this thesis.

2.2.1.1. Lack of Support for Concrete Syntax

When a developer implements a program on top of the library of a language embedding, the
developer must encode the DSL program into the host language’s syntax. Consequently, the pro-
gram expressions do not have the exact concrete syntax, which a traditional DSL would have.
For example, consider Haskell/DB one of the most advanced pure embedding in a functional
language. Leijen et al. [LM00] use Hudak’s technique and monads to homogeneously embed
SQL [DD89] statements in Haskell. Haskell/DB provides interesting safety guarantee that are
implicitly checked be the Haskell compiler. However, since pure embedded DSL programs must
be encoded in Haskell, they have a compromised syntax, i.e. DSL programs are encoded to com-
ply with the host syntax and therefore contain various characters that are irrelevant with respect
to the problem domain. The literature often refers to those irrelevant characters as syntactic
noise. In particular in functional languages used by pure embedding, the compromised syntax
is significantly different from a desirable concrete DSL syntax. According to Mernik [MHS05]
and Kosar [KLP+08], DSL programs with such a compromised syntax make them less efficient
to encode and harder to understand.

For illustration, Figure 2.3 compares the concrete and compromised syntax of an example
SQL query. While on the left hand side, with non-embedded SQL, the end user has a concrete
syntax that is close to the problem domain, on the right hand side, the equivalent SQL query
encoded in compromised syntax for Haskell/DB. Unfortunately, when using embedded DSLs
that lack of support for concrete syntax, end users are confused by this syntactic noise, which
leads to a significant lower end user productivity [KLP+08].

�
1 SELECT name, mark
2 FROM Students
3 WHERE name=[name] AND mark=[mark]
� �

(a) Concrete syntax in non-embedded
SQL

�
1 type Student =
2 Row(name :: String, mark :: Char)
3

4 queryMark :: String −> Query Student
5 queryMark = \n −>
6 do{ student <− table students
7 ; restrict (student!name .==. Lift n)
8 ; project
9 (name = student!name

10 , mark = student!mark)
11)
12 }
� �

(b) Compromised syntax in the
pure embedding of Haskell/DB
(from [LM00])

Figure 2.3.: Concrete versus compromised syntax of an SQL query

21

2. State of the Art in Language Implementation Approaches

2.2.1.2. Lack of Support for Crosscutting Composition for DSLs
The separation of concerns is one of the most fundamental principles in software engineer-

ing [Par72]. Still, with most mainstream languages, crosscutting concerns cannot be localized
and remain scattered and tangled over several modules. To address this, for general-purpose lan-
guages, many aspect-oriented mechanisms have been provided. Such an aspect-oriented mech-
anism composes the crosscutting logic of aspects into all relevant modules. This process of
crosscutting composition is often referred to as weaving.

Nonetheless, also DSLs may suffer from scattering and tangling issues, such as Charfi et
al. have shown this for BPEL [CM04] and Rebernak et al. for grammars [RMHP06]. Despite
this, for most DSLs, no aspect-oriented mechanism is available – even for mainstream DSLs.
Without support for crosscutting composition, developers cannot localize the scattering and tan-
gling in DSL programs, which makes them hard to maintain.

With current language implementation approaches—not only for embeddings—but also for
non-embedded approaches, there is a lack of means for separating crosscutting concerns in DS
base languages. The problem is that current language implementation approaches have no ade-
quate means to integrate DS abstractions into the aspect-oriented mechanism. In particular, the
lack of crosscutting composition is due to the fact that there are no special means to represent
events in the execution of a DSL program and means to change the execution of these events.

2.2.1.3. Lack of Support for Fine-Grained Composition
There are several works in non-embedded approaches that discuss sophisticated composi-

tions of DSLs [EVI05, KL07b, HBA08]. In particularly interesting are compositions of several
domain-specific aspect languages (DSALs). DSALs are special DSLs that internally make use
of aspect-oriented concepts. In addition to general-purpose aspect languages (GPALs), DSALs
provide a domain syntax that allows implementing aspects in a more declarative way. Unfortu-
nately, existing embedding approaches lack support for composing such DSALs.

Kojarski et al. [KL05, KL07b] compose Cool [LK97] and AspectJ [KHH+01]. Cool is a
domain-specific aspect language for implementing coordination in OO software. Kojarski et
al. found co-advising and foreign advising conflicts between Cool aspects and AspectJ aspects.
E.g. such conflicts can happen whenever an AspectJ aspect advices a method on which also
advised by a Cool aspect. Specifically, when AspectJ and Cool co-advise a join point and the
AspectJ advice is executed before the Cool advice, the inserted AspectJ advice may violate
the coordination logic, which is inserted by the Cool advice, and which protects the join point
activity from side effects by concurrently executed threads. Kojarski et al. designed a special
weaver framework called AweSome that wraps Cool aspects around AspectJ aspects in order to
solve such conflicts.

Further, Havinga et al. [HBA08] compose Java, Cool, and a DSL for caching return param-
eters of method calls (cf. Section 10.3.2.2, p. 228). Havinga extended their JAMI framework
to allow composition of the two DSALs. They found that there are many co-advising con-
flicts between Cool and their caching DSL. They found that resolving the weaving interaction
of crosscutting concerns from different domains cannot be correctly resolved at the level of a

22

2.2. Embedded Domain-Specific Languages

complete aspect module, but it needs an ordering mechanism at the pointcut-and-advice level.
In particular, AspectJ can only order aspects but not advice, therefore it cannot resolve such
domain-specific interactions. Generally, any weaver that does not have support for ordering at
the level of pointcut-and-advice is not applicable for DSAL composition. To solve the prob-
lem, they show that they can resolve these interactions by specializing the aspect weaver for the
composition.�
1 class Document { //A Java class
2 List<String> content;
3

4 void addLine(String line) {...}
5 void setContent(List<String> content) {...}
6 List<String> getContent() {...}
7 long wordCount() {...}
8 } ()
9

10 coordinator Document { //A Cool aspect
11 selfex addLine, setContent;
12 mutex {addLine, setContent}; mutex {addLine, getContent}; mutex {addLine, wordCount};
13 mutex {setContent, getContent}; mutex {setContent, wordCount};
14 }
15

16 cache Document object { //A Caching aspect
17 memoize wordCount,
18 invalidated by assigning content
19 or calling addLine(java.lang.String);
20 }
� �

Listing 2.1: A Java class and two DSAL aspects that have a conflict (from [HBA08])

For example, consider the following example application in Figure 2.1 taken from [HBA08].
There are two DSAL aspects that advise the class Document in lines 1–8.

The first aspect is a Cool aspect (Figure 2.1, lines 10–14), it defines several exclusive regions at
the level of methods. The keyword selfex defines that all subsequent methods are self exclusive
for a particular thread, e.g. addLine and setContent are not allowed to be invoked again, as long as
the corresponding method remains on the stack of the current thread. The keyword mutex defines
that two or more methods are exclusive for a particular thread, e.g. addLine and setContent may
not be invoked in the same control flow.

The second aspect is a caching aspect (Figure 2.1, lines 16–20), it defines a memoization
concern that caches the return value of the Document.wordCount() method. Instead of repetitively
calculating the return value, memoization will looks up the wordCount() in the cache as long as
it is not invalidated, which happens whenever assigning a new value to content or when calling
the method addLine(String).

There is an interaction between these two DSAL aspects, because both aspects co-advise the
same method addLine. In [HBA08], Havinga et al. elaborate that the interactions of these two
aspects lead to composition conflicts. When the caching advice and the coordination advice

23

2. State of the Art in Language Implementation Approaches

are composed incorrectly, this leads to invalid cached values or violations of exclusive regions.
Indeed, Havinga et al. show how developers can adapt the JAMI framework to prototype a DSAL
composition that resolves the conflicts.

Currently, non-embedded approaches are the only option for implementing a fine-grained
composition of DSALs. However, the non-embedded approaches are not as light-weight and
flexible as embeddings. For every DSAL composition, first, language developers have to imple-
ment a new parser, second, they need to invasively manipulate the code of the weaver, and third,
they need to recompile the language infrastructure. Because the non-embedding approaches can
only adapt the language infrastructure once, the current way of composing aspect languages
cannot deal with an open set of DSALs that are composed later on in the user domain. For an
open and flexible composition, it would be interesting to have systematic support for composing
arbitrary DSALs without the demand to adapt the code of the AO mechanism. Unfortunately,
there is a lack of support for fine-grained composition that deals with such interactions.

24

2.3. Architectures for Language Implementation

2.3. Architectures for Language Implementation
Traditionally, DSLs are implemented as pre-processors, interpreters and compilers that are not

extensible. The resulting DSL implementation is rather monolithic and developers cannot extend
it without changing their internals. With such monolithic architectures, it is practicable not pos-
sible to compose interpreters and compilers. To address this, the literature has proposed various
language architectures to avoid monolithic language implementations. There are: (1) front--
end/back-end architectures, (2) extensible language architectures, (3) meta-level architectures,
(4) reflective architectures, and (5) meta-object protocols. We briefly explain these architectures
because this thesis is based on the terminology, structures, and techniques they use.

2.3.1. Front-End/Back-End Architectures
Modern languages organize their infrastructures into a front-end and a back-end. Often, front-

ends are implemented as compilers that compile programs into an intermediary representation,
such as bytecode, which is a machine-code like representation that is prepared for execution.
Back-ends are often implemented as virtual machines (VM) [SN05] that are special software
systems that model an abstract machine on which intermediary program representations are
executable. Splitting into front- and back-ends allows a greater reuse of the back-end. For
example, Java splits into the Java compiler, which compiles Java source code into Java bytecode,
which then is executed by a Java VM (JVM). Because of using bytecode, whenever a new Java
compiler front-end became available, often the old JVM back-end implementation could be
reused.

2.3.2. Extensible Compilers
Extensible compilers of GPLs allow defining domain-specific extensions to GPLs. Exam-

ples of extensible compilers are: Polyglot [NCM03], JastAdd [EH07b], or the Java syntactic
extender [BP01], LISA [MLAZ00], or Silver [VWBH06, WKBS07, VWBGK08]. Most exten-
sible compiler are not language independent (e.g., restricted to Java). They have a fixed AST
representation (e.g., an Java AST) that can be extended with domain-specific extensions (e.g.,
tuples). They allow rather little incremental extensions to the AST, but they are not adequate
for replacing large parts of the AST. Most extensible compilers do not support composing ASTs
of different languages. When implementing a new extensible DSL, therefore, a new extensible
compiler must be implemented, which one can expect as a rather large initial cost for implement-
ing a DSL. There are only few extensible compilers (e.g., JastAdd [EH07b]) that use special
techniques to overcome this limitation, but they require that developers need to be experts.

2.3.3. Meta-Level Architectures
A meta-system [Mae88, Glu91] is a computational system whose domain is another system,

i.e., it integrates, controls, and processes other systems as objects. Meta-level architectures are
used to implement language themselves. In general there is a meta-language in which another
language is specified. The execution of the meta-language then creates a language implementa-
tion in the target languages, which conforms to the specification. This approach is often used by
parser generators.

25

2. State of the Art in Language Implementation Approaches

There are different flavors of meta-system architectures, such as macro systems, code gener-
ators, and meta-programming Examples for systems that support meta-programming are parser
generators, code generators, C pre-processor, tree rewriting systems (e.g., ADF+SDF), C++
templates. Many meta-programming systems only support code generation in particular target
languages, such as HiveMind and Javassist for Java.

In general, when extending a language implementation, a problem with meta-level architec-
tures is that even with a little change to the specification of the language under development,
the developer has to regenerate and/or recompile the complete language implementation, which
is disruptive. When developers are disallowed to make extensions in the generated code, a lan-
guage cannot further be changed, e.g., for customization in the user domain, once the target code
has been generated.

2.3.4. Reflective Architectures
A reflective system [Smi84, Mae87] is a meta-system whose domain integrates, controls, and

processes itself as objects. Smith defines a reflective system as “computer system able to reason
about itself” [Smi84] and that the system’s self-representation needs to be causally connected
to its domain. Maes explains that a “system is said to be causally connected to its domain if the
internal structures and the domain they represent are linked in such a way that if one of them
changes, this leads to a corresponding effect upon the other” [Mae87]. Unfortunately, reflective
architectures are only widely available for GPLs, but not for DSLs.

2.3.5. Meta-Object Protocols
The concept of a meta-object protocol (MOP) [KRB91] has evolved from reflective languages.

In contrast to reflective architectures, which provide rather low-level means for adaptations of
programs, a MOP provides a high-level means for adaptations of the OO language semantics.
There are special meta-objects that are responsible for the interpretation of objects, and that
developers can use for adapting the behavior of their objects. With meta-objects, developers can
provide adaptations to objects in retrospect.

A MOP follows the open implementation [Kic96] design principle by exposing part of the
implementation strategies of the OO language implementation. In other words, a meta-object
protocol is an open implementation of an object-oriented language. A system built according
to the open implementation principle provides two orthogonal interfaces: the so-called primary
interface, exposes to applications the primary functionality of the system. The other interface,
called the meta-interface, provides application-level access to the implementation strategy of
the primary-interface. Using the meta-interface allows users to change the implementation strat-
egy behind the primary interface that is hidden for applications. This principle allows system
designers to design their system open for (unanticipated) adaptations later on.

In a MOP, the meta-objects provide high-level and reflective operations, called meta-methods,
that interpret part of an object’s semantics at the meta level (e.g., method dispatch). The MOP
defines all workflows as sequences of calls that interconnect the meta-methods that participate
in one extensible part of the language’s semantics. Note that, instead of static OO language se-
mantics, a MOP-based language implementation covers a range in the design space of language

26

2.3. Architectures for Language Implementation

semantics rather than representing only a single point in the spectrum of possible OO seman-
tics. Application programmers can use the MOP to create new variant languages that meet their
application-specific requirements. Hence, the distinction between language designers and users
is blurred.

In particular, the technology that this thesis proposes uses MOPs and it is inspired by the flex-
ibility MOPs provide for coping with adaptations of object-oriented languages. Existing work
on MOPs focuses on using the open implementation principle for OO languages and special
system. However, there is more potential to use open implementations in language design and
implementation.

What is not addressed by existing MOPs is to adapt language semantics beyond OO semantics.
This thesis argues that it would be interesting to provide a similar flexibility that MOPs provide
for OO languages to other languages, such as DSLs. With such flexibility, language end users
could adapt the semantics of DSL constructs.

What is missing is a general approach that describes how to implement a meta-protocol that
allows adapting the back-ends of a DSL implementation. It would be interesting to have exe-
cutable DSLs with a meta-level that allows: (i) analyzing and (ii) adapting their domain models
and constructs, or (iii) adapting the execution semantics. With such flexibility, language end
users could adapt strategies in a DSL implementation, which would enable evolutions of DSL
semantics in the user domain, like MOPs enables adapting OO semantics.

27

3. Desirable Properties for
Language Embeddings

This chapter discusses desirable properties for language embeddings. The proposed set of de-
sirable properties either has been identified by related work or identified as part of this thesis
to address open problems of language embedding approaches. For each desirable property, we
discuss one or more non-trivial scenarios that exemplify the need for the corresponding prop-
erty. These scenarios have been found studying the history of an existing language—the Logo
programming language. The author has selected Logo because it is a small language that encom-
passes both general-purpose and domain-specific abstractions. The central question we will ask
for each scenario is why the corresponding desirable property should be supported by a language
embedding approach, and how the property helps implementing new languages and extending
existing ones in a modular and reusable manner.

Parts of this chapter have been published in the following paper:

• Tom Dinkelaker. Review of the Support for Modular Language Implementation with
Embedding Approaches. TUD-CS-2010-2396, Technische Universität Darmstadt, Ger-
many, November, 2010.

In this chapter, first, we give a general overview of the Logo programming language that will
be used to exemplify the properties. Then, we discuss the properties and their corresponding
scenarios.

The Logo Programming Language. The Logic Oriented Graphic Oriented language
[FPB+70] (Logo for short)1 is a programming language that was designed for a constructive2

teaching of programming to children and non-professional programmers through interaction
with a graphical system. The Logo environment involves a robot-like turtle creature with a pen
positioned on a canvas. The turtle can be directed to move and paint on the canvas through a
set of simple commands (e.g., forward, left, right, and backward). Logo has also been used to
develop simulations, physical experiments, and to create multimedia presentations.

The first version of Logo (BBN Logo) was developed by Papert et al. [FPB+70] as a spe-
cial dialect of the LISP programming language family. There is no standard syntax for Logo,

1Details about Logo’s history can be found under: http://el.media.mit.edu/Logo-foundation/
logo.

2The constructivist method is inspired by the Swiss psychologist Jean Piaget

29

http://el.media.mit.edu/Logo-foundation/logo
http://el.media.mit.edu/Logo-foundation/logo

3. Desirable Properties for Language Embeddings

in contrast, there are more than 245 dialects3, which differ mostly in the platforms or in the
language features supported. During its evolution, the different dialects and their versions have
been extended with new language features to improve the level of abstraction and to provide
new functionality. Example extensions are subroutines and functions [New73], object-oriented
programming features4, support for concurrently drawing turtles5, as well as support for 3D
graphics6.

Consider a dialect called SIMPLELOGO that defines the most important commands of Logo.
SIMPLELOGO exposes characteristics of complex DSLs: (a) domain-specific literals, (b) domain-
specific operations, and (c) domain-specific abstraction operators.

Domain-Specific Literals. The dialect defines domain-specific literals to refer to basic col-
ors, namely: black, blue, red, green, yellow, white.

Domain-Specific Operations. The dialect defines the following operations for drawing:

• forward n: Moves the turtle by n units in the direction of the current orientation.

• backward n: Moves the turtle by n units in the opposite direction.

• right a: Turns the turtle by a degrees to the right changing its current orientation.

• left a: Turns the turtle by a degrees to the left.

Domain-Specific Abstraction Operators. The SIMPLELOGO dialect defines the domain-
specific abstraction operator turtle that is used to compose a sequence of commands. The com-
mand turtle(name:s,color:c) { code } creates a new turtle on the canvas. The created turtle
has the name s and draws the code sequence that is provided inside the curly brackets using the
given color c.

The left side of Figure 3.1 shows a SIMPLELOGO program. It defines a turtle named "Square",
initializes the turtle with the color red, and passes to it a sequence of commands enclosed in the
curly brackets. The program draws a red square whose edges have a length of 50 units, as shown
on the right side of the figure.

3.1. Extensibility
When there are new requirements for a language, i.e. the language evolves in time, a language

developer needs to extend the language’s implementation. To cope with changing requirements,

3An overview of various Logo dialects is given by the Logo Tree Project: http://elica.net/download/
papers/LogoTreeProject.pdf, last visited (26. Nov 2010).

4For example, ObjectLogo is an OO-extension of Logo: http://www.digitool.com/ol-specs.html.
5For example, concurrency support is available in StarLogo: http://education.mit.edu/starlogo/.
6For example, three dimensional drawings are possible in Logo 3D: http://sourceforge.net/
projects/logo3d/.

30

http://elica.net/download/papers/LogoTreeProject.pdf
http://elica.net/download/papers/LogoTreeProject.pdf
http://www.digitool.com/ol-specs.html
http://education.mit.edu/starlogo/
http://sourceforge.net/projects/logo3d/
http://sourceforge.net/projects/logo3d/

3.1. Extensibility

�
1 turtle {name:"Square",color:red) {
2 forward 50
3 right 90
4 forward 50
5 right 90
6 forward 50
7 right 90
8 forward 50
9 right 90

10 }
� �
(a) The source code

(b) The output (line color is red)

Figure 3.1.: An example SIMPLELOGO program

language implementation approaches should support extensibility [Ste99]. In general, a lan-
guage implementation approach is said to support extensibility if it allows the developers to
extend their language implementations [Hud96, EH07a].

When looking at the history of Logo, new Logo infrastructures have been implemented from
scratch again and again without reusing existing implementations, despite the broad similarity in
their implementations of the basic language features in the various Logo dialects. In retrospect
and w.r.t. reuse of implementation efforts, it would have been desirable if these dialects had been
implemented in an extensible way reusing available language features—not implementing them
from scratch.

Non-embedded language approaches have proposed various techniques for language extensi-
bility [Hud96, Par93, NCM03, EH07a]. In these approaches, a base language7 is extended with
new language features that form a so-called extension to the base [NCM03]. The most important
benefit is that the language features of the base language must not be re-implemented in the
extended language [vDKV00, MHS05].

When extending a language, we can distinguish two kinds of extensions w.r.t. what facet
of the language is extended: extensions that add new keywords to the language’s syntax, and
extensions that do not add new keywords but that extend the language’s semantics. Each kind of
these extensions is discussed in the following.

3.1.1. Adding New Keywords
An important form of language evolution8 is to add new language keywords, or respectively

language constructs, to an existing language [MHS05]. Looking at the evolution history of
Logo, this language has started with a very limited set of keywords [FPB+70] (similar to SIM-
PLELOGO). Since its early days, more keywords for richer forms of interactions have been
proposed resulting in new versions of the Logo dialect.

7The term base language should not be confused with the term host language. A language extension is related to
its base language, which is extended by the extension. In contrast, an embedded language is related to its host
language, which hosts the library of the embedding.

8Language evolution is the process when one version of a language evolves into a new version, which involves
adding, refining, and removing expression types of the language’s syntax and semantics.

31

3. Desirable Properties for Language Embeddings

For such continuous language evolutions, an implementation approach needs to support exten-
sibility with which developers can build incremental extensions to existing languages for adding
new language constructs [KAR+93, Ste99, Vis08]. Supporting this incremental extensibility
is particularly important for domain-specific languages, because they evolve more frequently
than general-purpose languages [MHS05]. When new keywords are frequently added to a lan-
guage, it is beneficial if the language implementation approach supports incremental extensibil-
ity [MHS05, Vis08].

Example Scenario: In the following, we discuss three extensions to SIMPLELOGO that are
motivated by existing Logo dialects. While from perspective of an end user, each extension has
its own motivation, from the perspective of a language developer, extending SIMPLELOGO with
each of those extensions is technically not very different. Although the three extensions are
admittedly similar, we discuss them here, since they reflect the fact that there are often multiple
extensions to a base language, and that such distinct paths of evolutions need to be consolidated
later.

As the first example extension, consider a Logo dialect called EXTENDEDLOGO, which ex-
tends SIMPLELOGO with keywords found in many Logo dialects. Examples are the keyword
setpencolor that allows selecting the current paint color for a turtle. The keyword home
moves a turtle back to the initial position at the center of the canvas. The keyword clearscreen
clears all painted pictures from the canvas. After using the keyword penup, the turtle does no
longer paint on the canvas when moving until pendown is used. The keyword hideturtle al-
lows hiding the physical body of the turtle (often displayed as a triangle), and showturtle shows
the physical body again. This extended set of keywords enables more sophisticated interactions
in the domain of turtle graphics.

As the second example extension, consider adding shortcut commands to SIMPLELOGO.
Shortcut commands are aliases to the corresponding verbose commands. A dialect called CON-
CISELOGO extends SIMPLELOGO with various shortcut keywords, such that forward can be
written as fd, backward as bd, right as rt, and left as lt. Shortcut commands allow writing
programs in a more concise way. For example, although the program version with shortcut com-
mands in Listing 3.1 paints the same square, its code is more concise than its verbose version in
Figure 3.1a.

As the third example extension, consider adding new abstraction operators, such as the repeat-
loop construct that has been proposed by the UCBLogo9 dialect. The operator repeat (n) {body}
takes two parameters: n is an integer that defines how often the code sequence in body should
be executed. Using an abstraction operator allows writing programs in a more abstract way by
avoiding repetitive code. For example, the program in Listing 3.2 paints the square analogous to
Figure 3.1 but it is written in fewer lines.

When language extensions are introduced as new versions of a language, continuous evolu-
tion of a language demands incremental extensions of the language. For example, a language
developer can incrementally extend SIMPLELOGO by adding the new keywords from the EX-

9The Berkeley Logo (UCBLogo) Homepage: http://www.eecs.berkeley.edu/~bh/logo.html.

32

http://www.eecs.berkeley.edu/~bh/logo.html

3.1. Extensibility

�
1 turtle {name:"Square",color:red) {
2 fd 50
3 rt 90
4 fd 50
5 rt 90
6 fd 50
7 rt 90
8 fd 50
9 rt 90

10 }
� �
Listing 3.1: A program using the shortcut commands of the CONCISELOGO dialect

�
1 turtle (name:"Square", color:red) {
2 repeat (4) {
3 forward 50
4 right 90
5 }
6 }
� �

Listing 3.2: A program using the repeat abstraction from the UCBLOGO dialect

TENDEDLOGO, UCBLOGO, and CONCISELOGO extensions. By chaining the three extensions
to extend each other, they can be integrated into one dialect, called COMPLETELOGO, that en-
compasses all keywords.

Requirements: To cope with continuous language evolution, a language implementation ap-
proach should support incremental extensions of syntax and semantics. It is important that incre-
mental extensions do not only support adding new keywords but also overriding existing ones.
Only when there is an extension mechanism that enables language developers to precisely select
what parts of existing language implementations they want to reuse, a language implementation
approach can minimize the implementation efforts of the developers for extending languages.

3.1.2. Semantic Extensions
In contrast to adding new keywords, there is a need for semantic extensions that do not al-

ter the syntax of a language, but only extend the language’s semantics [KRB91, HORM08].
When extending a language’s semantics, we can distinguish two classes of semantic extensions
w.r.t. whether the existing semantics are preserved: conservative and non-conservative exten-
sions. A conservative semantic extension does not change the meaning of existing language
constructs in their base language. When the meaning of existing constructs is preserved, pro-
grams written in the base language still produce the same results when they are evaluated using
the extended language. In other words, conservative extensions maintain backward compatibil-
ity. In contrast, non-conservative extensions can alter the meaning of existing constructs in their
base language. Therefore, when programs written for the base language are evaluated using the
non-conservative extension, the evaluation can produce different results. In that case, there is no

33

3. Desirable Properties for Language Embeddings

operational equivalence [Fel90] between the extension and its base. The next two subsections
discuss conservatives (Section 3.1.2.1) and non-conservative extensions (Section 3.1.2.2).

3.1.2.1. Conservative Semantic Extensions
To support backward compatibility for end user programs, it is desirable for a language im-

plementation approach to support semantic extensions that do not change existing semantic in-
variants of their base languages.

Example Scenario: Consider a conservative extension that evolves Logo from sequential to
parallel execution of commands. Since traditionally Logo commands are executed sequentially,
COMPLETELOGO evaluates the code in Listing 3.3 in one sequence. The program draws a pic-
ture with 4 squares (with size 50 at the x/y-positions 0/0, 100/0, 0/100, and 100/100), whereby
one turtle after the other paints the commands in its body in the sequence the commands are
defined.�
1 turtle (name:"Square1", color:red) {
2 // stay at (x=0,y=0)
3 repeat (4) { forward 50; right 90; }
4 }
5

6 turtle (name:"Square2", color:red) {
7 penup(); right 90; forward 100; left 90; pendown(); //goto (x=100,y=0)
8 repeat (4) { forward 50; right 90; }
9 }

10

11 turtle (name:"Square3", color:red) {
12 penup(); forward 100; right 90; forward 100; left 90; pendown(); //goto (x=100,y=100)
13 repeat (4) { forward 50; right 90; }
14 }
15

16 turtle (name:"Square4", color:red) {
17 penup(); forward 100; pendown(); //goto (x=0,y=100)
18 repeat (4) { forward 50; right 90; }
19 }
� �

Listing 3.3: A logo program with four turtles

Today, concurrent versions of Logo10,11 have been proposed [Res90]. Therefore, consider an
evolution of SIMPLELOGO extending the turtle operator that executes the command sequences
of all defined turtles in parallel. In this case, it is desirable that a language developer can im-
plement a concurrent version CONCURRENTLOGO as an extension to SIMPLELOGO. While
reusing the implementation of the color and drawing operations, the language developer only
needs to refine the turtle abstraction operator of the SIMPLELOGO implementation, so that the
enclosed command sequence is executed in a separate thread. Note that while CONCURRENT-

10The StarLogo Homepage: http://education.mit.edu/starlogo/.
11The NetLogo Homepage: http://ccl.northwestern.edu/netlogo/.

34

http://education.mit.edu/starlogo/
http://ccl.northwestern.edu/netlogo/

3.1. Extensibility

LOGO semantically extends SIMPLELOGO, this extension does not change the base language
syntax as no additional commands are defined. For example, when executing the same code
from Listing 3.3 with CONCURRENTLOGO, the turtles will paint the four squares concurrently.

Requirements: When providing conservative semantic extensions, language developers want
to be sure that extensions preserve all semantic invariants. E.g., when executing a program in
an extension that parallelizes, it must be ensured that according to invariants the outcome of the
program is not changed according. In case turtles with different pen colors paint concurrently,
a parallel execution must ensure that the program results in the same picture, as if it would
paint sequentially. It is not trivial for CONCURRENTLOGO program to ensure the correct order
between concurrent paint operations. Since the turtles act autonomously, it is hard to predict
the actual path of a turtle, and paths of different turtles may cross each other. When paths
cross, painting them in different orders can result in differences in the output. Such an incorrect
parallelization violates the expected sequential painting semantics of Logo. To ensuring correct
semantics, it is necessary to detect, prevent, or resolve violations of the semantic invariants.

3.1.2.2. Semantic Adaptations
There are the special requirements for language implementations to be open for extensions in

the user domain [KRB91]. This is in particular interesting in two special cases. First, the user’s
requirements for a language are not exactly known before delivering the language implementa-
tion to the user’s domain. Second, if the requirements for a language are expected to change late,
that means after the language implementation has been delivered, e.g. at runtime of a program.
Since a language designer cannot foresee all possible end user requirements for such a language,
its language implementation should be designed according to the open implementation principle
[Kic96], which allows semantically adapting a language’s implementation in the user domain by
exchanging parts of its implementation strategies.

To provide support for adapting languages, variability needs to be built into language imple-
mentations. We call this variability of languages in the user domain late variability. Having
support for such late variability in a language has a similar motivation like having support for
late variability in other software systems with changing requirements [vG00, VGBS01]. The
customizability, enabled through late variability in languages, would enable a better reuse and
extensibility of language implementations in different end user domains. Late variability enables
user-specific extensions to be provided even at runtime.

Unfortunately, existing language embedding approaches do not address late variability in their
embeddings. Existing language embedding approaches use black-box extension mechanisms of
their host languages, such as functions [Hud96, HORM08], types [OSV07, HORM08, Gar08],
traits [HORM08], and macros [Pes01], but these extension mechanisms do not adequately sup-
port late variability in language implementation. With them, language embeddings can be ex-
tended, but there are several problems. First, in [Hud96], often black-box extension mechanisms
do not support adapting the internals of an embedding for a new requirement. Therefore, lan-
guage developers may have to invasively change the source code of the language implementa-
tion, leading to copy-and-paste solutions [Par08] with repetitive development efforts. For ex-

35

3. Desirable Properties for Language Embeddings

ample, when using generative programming for the embedding [Gar08] and the developer adds
a new constraint to a language, the developers have to regenerate the entire source code of the
language implementation. Second, in [OSV07, HORM08], it is a problem when the developers
have to change the language implementation at multiple places. For example, the code that en-
forces a constraint in the language implementation must be repeated for the execution semantics
of every syntactical abstraction (e.g., for every command), which leads to unwanted repetitive
code that is scattered and tangled with the code implementing the default execution semantics.
Third, there are approaches [Hud96, Gar08] that do not allow adapting the language after its
implementation has been compiled. For example, it is not possible for a language developer to
add or customize constraints after the language has been compiled and delivered to the end user
domain.

For better flexibility, it would be desirable to support late variability in a systematic way.

Example Scenario: When a language is used in a special context, there can be the requirement
that a special constraint must be enforced. For example, when using CONCURRENTLOGO in a
physical domain in which there are plotting robots on a canvas, we need to detect and prevent
collisions of plotting robots before damage can happen. If collisions are not detected by the
default language implementation, the language end user cannot use this implementation out-of-
the-box.

A language developer could extend a language implementation with semantics that enforce
constraints. But extending a language for a single customer is problematic since there are ad-
ditional maintenance costs with each extension delivered to some customer. When single users
have a special requirement, it is better to deliver an open implementation [Kic96] of the language
so that a developer can customize for specific needs.

Therefore, consider customizing the language implementation of CONCURRENTLOGO such
that it detects and prevents collisions between turtles in concurrent programs. A collision is
defined to happen whenever there are more than one turtle at the same position and the turtles
have their pens down to paint on the canvas. Collision in CONCURRENTLOGO programs likely
happen when lines of the figures cross each other.

Another problem with enforcing such a domain-specific constraint is that it cannot be easily
implemented as an incremental extension reusing the existing implementation, since it has to be
enforced at all over the language implementation. For example, before moving a turtle on the
canvas, it has to be determined whether moving the turtle will result in a collision. If a potential
collision is detected, the potential collision must be prevented, e.g., by deferring the move oper-
ation of the turtle until the turtle that is in the way has moved on. The problem with adding code
that enforces such a constraint is that language developers must adapt all moving commands.
When the logic for an extension crosscuts several parts in its base language implementation,
incremental extensions cannot localize this logic, consequently the maintenance costs increase.

Requirements: To address these problems, a language implementation approach should pro-
vide an extension mechanism that systematically enables open implementations of languages.
On the one hand, a language developer needs to design a language in an open way, e.g. by al-

36

3.2. Composability of Languages

lowing strategies in the language implementation to be replaced. On the other hand, an expert
who knows the end users’ requirements needs to customize the language implementation for end
users, e.g. by replacing a default strategy through a more specific one.

3.2. Composability of Languages
When there are diverse requirements by groups of end users in different application domains,

this often motivates having a specialized language for each domain. For better maintainability,
as motivated in the previous section, it should be possible for specialized languages to evolve
independently from each other in a hierarchy of extensions. But, since application domains of
independent languages often overlap, language developers want to reconcile two or more spe-
cialized languages into one [BV04, OSV07, Par08]. Unfortunately, incrementally extending one
of the specialized languages with others languages is not adequate for composing them, because
the multiple extended languages share similar constructs, which leads to code duplication in the
extension implementation [Par08].

To address this limit of hierarchical extensibility, several language implementation approaches
have been proposed that support composability of languages [EVI05, KL05, Cle07]. For over-
lapping domains, the language developer can decompose languages into smaller reusable sub-
languages, from which one can compose these sublanguages into new a language. We refer to
such a composed language as a composite language, and we refer to the sublanguages as the
constituent languages. When composing languages, the advantage is that language developers
must develop each constituent language only once and that the implementations of constituent
languages can be shared among several composite languages. But, with sharing, there can be
interactions between languages, which can lead to conflicts that must be prevented. Therefore,
in the following, we discuss composing languages with and without interactions.

3.2.1. Composing Languages without Interactions
At times problem domains overlap, i.e. the same language constructs are used in several lan-

guages for different domains. In such scenarios, it is desirable to reuse those constructs of their
language implementations. To make constructs reusable, a developer can partition language
constructs into exclusive and shared sets, whereby the developer implement the semantics for
each set of language constructs in a language component. In many cases, the language con-
structs do not have any syntactic and semantic interactions, hence developers can implement the
components independently.

Example Scenario: Assume there is the stand-alone language for Logo with its domain of
turtle graphics, and another stand-alone DSL BUSINESSRULESDSL for writing business rules.
Further, there are two similar extensions to these languages (e.g., MATHLOGO and MATHBUSI-
NESSRULESDSL) that use the same constructs for a mathematical domain. Both extensions
provide pre-defined operations (e.g., sin α) and abstraction operators for defining custom func-
tions (e.g., define and apply) .

The mathematical domain overlaps with the other two, since mathematical operations help
drawing figures in Logo and mathematical operations help writing business rules. Because of

37

3. Desirable Properties for Language Embeddings

this overlapping, it would be interesting to make the shared mathematical operations in MATH-
LOGO available in line with MATHBUSINESSRULESDSL.

Technically, hierarchical extensibility allows extending the two languages, but even if the
extensions are identical for both base languages, they need to be re-implemented twice which
leads to code duplication.

Instead of developing multiple extensions (e.g., the two mathematical extensions for each base
language), the language developers can implement a reusable stand-alone language (e.g., MATH-
DSL that is a stand-alone maths language) and compose it with other stand-alone languages
(e.g., Logo composed with the MATHDSL, and BUSINESSRULESDSL composed with MATH-
DSL).

Therefore, consider composing Logo with the mathematical operations from the indepen-
dently developed language FUNCTIONAL – a subset of MATHDSL. We first introduce FUNC-
TIONAL, and then we explain its composition with Logo, called FUNCTIONALLOGO.

The FUNCTIONAL language provides a keyword define12 to define functions by associating
a name to a lambda expression. Further, FUNCTIONAL defines a keyword apply to call such
functional abstractions by their name. Listing 3.4 shows a program in FUNCTIONAL that defines
a subroutine. The command define(name:routineName) { paramList... –> body } in line 1
defines a subroutine "pow2" that takes a number x and returns its square value. E.g. in line 4,
applying "pow2" with 10 returns 100.�
1 define(name:"pow2") { x −>
2 x * x
3 }
4 apply("pow2",10)
� �

Listing 3.4: A FUNCTIONAL program defining a function

A composition of the above languages enables functional abstractions in Logo. This com-
position is natural, as many existing Logo dialects allow defining subroutines. In the resulting
composite language FUNCTIONALLOGO, the end users can use both set of abstractions—for
drawing and for defining functions.

As an example program in FUNCTIONALLOGO, consider the code example in Figure 3.2a
that uses abstractions from COMPLETELOGO and FUNCTIONAL. In line 1, the command define
is used to define a function named "square" that paints a square figure with a variable length of
its edges passed to the function as the parameter length. The function can be called by using the
command apply that takes as the first parameter the function’s name and a (variable-length) list
of parameters passed on to the function. In the code in Figure 3.2a, the turtle paints a blue square
(line 10) and a green square (line 13) using the function, as illustrated in Figure 3.2b.

12The define is inspired by Scheme [SS98].

38

3.2. Composability of Languages

�
1 define(name:"square") { length −>
2 repeat (4) {
3 forward length
4 right 90
5 }
6 }
7

8 turtle (name:"TwoSquares", color:red) {
9 setpencolor blue

10 apply("square")(50)
11 right 180
12 setpencolor green
13 apply("square")(100)
14 }
� �

(a) The source code (b) The output (lower left square is green,
upper right is blue)

Figure 3.2.: A FUNCTIONALLOGO program defining and using a function

Requirements: To compose stand-alone languages, such as COMPLETELOGO and FUNC-
TIONAL, a language developer needs to compose their syntax and semantics. For the sake of
reusability, the language developer likely wants to reuse the existing implementations of the
constituent languages for implementing the composite language.

3.2.2. Composing Languages with Interactions
When composing languages, the language developer has to compose their syntax and seman-

tics in a correct way so that expressions have a well-defined meaning in the composed language.
In case the languages’ syntax or semantics are not orthogonal to each other, the languages cannot
be composed straightforward. This is because there can be syntactic and semantic interactions,
as we will discuss in the following.

3.2.2.1. Syntactic Interactions
For composing the syntax of constituent languages, the syntax of each embedded language

must be integrated into the composite language in a consistent way. But when the syntax of one
language is incompatible with the syntax of another language, there is a syntactic conflict. Such
conflicting languages cannot be composed straight ahead.

Example Scenario: For example, consider composing two non-orthogonal languages: FUNC-
TIONAL with another language STRUCTURAL that allows defining data types. Say the two
languages have been developed independently, but accidentally both languages use the keyword
define. While FUNCTIONAL uses define to define new behavioral abstractions, STRUCTURAL

uses define to define new structural abstractions.
Further, consider the program in Listing 3.5 that uses the ambiguous keyword define in 1 and

4 with two different intentions. There is a syntactic conflict, since those two languages’ sets of
keywords are not disjoint. Because of their conflicting syntax, it is not clear to which semantics
the keyword define refers to—does the end user in line 1 (or resp. line 4) want to define a function
or define a data type?

39

3. Desirable Properties for Language Embeddings

�
1 define(name:"tuple") { x = Integer ; y = Integer ; }
2 def t1 = init (name:"tuple",x:3,y :5);
3 ...
4 define(name:"tupleSquare") { tuple −>
5 return init (name:"tuple",x:(tuple .x * tuple .x),y :(tuple .y * tuple .y));
6 }
7 ...
� �

Listing 3.5: A program that uses the ambiguous keyword define

Requirements: To support composing languages, it is desirable that an implementation ap-
proach can detect, resolve, and prevent syntactic conflicts in language compositions. In case
of a conflict, e.g. when two languages define the same keyword, it is not clear which language
implementation is responsible for evaluating the keyword. There need to be a mechanism that
helps developers to declare a resolution of such syntactic interactions.

3.2.2.2. Semantic Interactions

When composing sublanguages, their semantics need to be composed correctly, so that ex-
pressions in the composed language always have a well-defined meaning. When non-orthogonal
semantics of sublanguages are composed, the evaluation of a language construct in one lan-
guage may affect evaluating a language’s construct in another language. In this case, we speak
of a semantic interaction between the constituent languages. When composing non-orthogonal
sublanguages, it is not trivial to create a composed language from existing implementations
[KL05, KL07b], since interactions between the constituent languages can be unintended. If an
interaction is unintended this can lead to unintended composition semantics, in that case, we
speak of a semantic conflict.

Example Scenario: For example, consider composing the three languages: FUNCTIONAL,
STRUCTURAL, and CONSOLE. FUNCTIONAL and STRUCTURAL both come with an environ-
ment. In the environment of FUNCTIONAL, names are bound to lambda expressions, and in the
environment of STRUCTURAL, names are bound to data types. In CONSOLE, there is an expres-
sion writeln id that takes the identifier of an object and prints out a string representation of that
object.

In a composition of the three languages, language end users can use functional and struc-
tural abstractions to define abstract data types (ADT), where a set of functions is defined on
data types. When composing the language implementations, it must be possible that the im-
plementation of one language in the composition can access the environment of other language
implementations.

Note that, in such a composition, there are semantic interactions, e.g. in the implementa-
tion of writeln. E.g., consider the dependency that for implementing writeln, the CONSOLE lan-
guage must access the environment of FUNCTIONAL and STRUCTURAL languages in order to
read their objects. When a language developer identifies a dependency between constituent lan-

40

3.3. Enabling Open Composition Mechanisms

guages, the developer may need to extend the language implementations (e.g. FUNCTIONAL

and STRUCTURAL in order to access their environments).
Further, there can be semantic conflicts, e.g. when a program defines a function and a type with

the same name and an abstract data type definition uses that name, because it becomes unclear
to what the name refers to. E.g., consider the following example conflict. There is an ADT list
with elements and a function sort that takes a list and returns a list with sorted elements. In a
different part of the application, there is a data type sort to model a partition of sets of elements
into different classes. When the program uses the expression writeln "sort", it is unclear whether
the identifier "sort" refers to the sort function or to the sort type definition.

When a language developer identifies such a semantic conflict between the two constituent
languages FUNCTIONAL and STRUCTURAL in their composition specification, the developer
cannot reuse stand-alone implementations of the two languages straight-ahead. The conflicting
constituent languages FUNCTIONAL and STRUCTURAL can still be composed by tailoring a
well-defined composition of their implementations. E.g., the composite language can have the
special semantics that the identifiers of all composed language must be unique. Note that such a
composition must enforce unique names in all constituent languages. The composition prevents
the conflict, since it is no longer possible to define a function and a data type with the same
name.

Requirements: For composing languages with semantic interactions, language embedding ap-
proaches should allow intended interactions and prevent unintended ones. For conflict cases,
approaches should allow detecting, preventing or resolving semantic conflicts that can lead to
incorrect compositions with unintended execution semantics. When a composition implemen-
tation needs to enforce constraints in the constituent languages, often the composition needs to
adapt the constituent language implementations.

In general, one cannot assume that language implementations that have been designed and
implemented in isolation are designed with compositions in mind. When two languages are
composed, there always can be subtle side effects in parts of the semantics that lead to unin-
tended interactions. Despite this, developers can extend the implementations of all independent
languages by specializing them for such a composition. Each extension needs to provide an
explicit interface that allows defining how existing implementations can interact with it. When
extending the constituent language implementations for a composition, each constituent lan-
guage should control what parts of its context it exposes to other languages and what parts of
the context of other languages it takes into account for its own semantics [KL05].

3.3. Enabling Open Composition Mechanisms
For one particular composition scenario, often its constituent languages can be composed

in a pre-defined way. To facilitate implementing certain scenarios, a language implementation
approach should support a declarative composition of languages.

For each scenario and types of interactions, there are special requirements and assumptions
by a mechanism about the kind of languages it can compose and interactions it can handle. Only

41

3. Desirable Properties for Language Embeddings

when all requirements and assumptions by a mechanism are met in a composition scenario, lan-
guage developers can use the mechanism for composing the languages. Since the set of possible
scenarios is open, there can be special requirements and assumptions in new composition sce-
narios. Therefore, developers should be allowed to define new composition mechanisms. Since
there is a cost associated with defining a new mechanism, the existing composition mechanisms
should be extensible in order to foster reusing common parts in the composition logic.

The following sections motivate language-composition mechanisms that help controlling syn-
tactic interactions in Section 3.3.1, and semantics interactions in Section 3.3.2.

3.3.1. Open Mechanisms for Handling Syntactic Interactions
Composition mechanisms that allow controlling syntactic interactions can be classified ac-

cording to how conflicts are handled. There are those composition mechanisms that enforce
that composition must be conflict free, discussed in Section 3.3.1.1. Further, there are the com-
position mechanisms that resolve conflicts in a certain way, namely by renaming conflicting
keywords discussed in Section 3.3.1.2, and by prioritizing expression types of the languages in
a composition discussed in Section 3.3.1.3.

3.3.1.1. Generic Mechanism for Conflict-Free Compositions
When independent languages are composed, a language implementation approach should pre-

vent syntactic conflicts [BV04, KL07b].

Example Scenario: For example, let us compare two of the aforementioned composition sce-
narios. When composing SIMPLELOGO and FUNCTIONAL, the composition FUNCTIONAL-
LOGO is syntactically correct because the two languages have disjoint sets of keywords. In
contrast, when composing FUNCTIONAL and STRUCTURAL, there is the syntactic conflict be-
cause both languages use the keyword define.

Requirements: To support safe compositions of independent languages, there should be a
composition mechanism that automatically detects syntactic conflicts and provides feedback
to the language developer. E.g., when trying to compose FUNCTIONAL and STRUCTURAL,
the mechanism should report the conflicting keyword define. To allow language developers
composing various languages in conflict-free compositions, the composition mechanism should
be generic, i.e. the composition logic to detect conflicts should not be specific to particular
languages.

For cases in which there are special requirements on a language composition, the generic
composition mechanism should be open for extensions. When a language developer composes
several language, the developer may decide to restrict the lexical regions in which certain key-
words can be used. E.g., when a developer composes FUNCTIONAL and COMPLETELOGO, the
developer declares that it is forbidden to use the COMPLETELOGO keywords in a function body.
Preventing using COMPLETELOGO keywords in functions can be interesting, because these key-
words produce side effects and make functions impure. If a program uses a lexically restricted
keyword in a wrong lexical region, we refer to this as a context-sensitive syntax conflict. To
prevent context-sensitive syntax conflicts, the language developer must have the possibility to

42

3.3. Enabling Open Composition Mechanisms

specialize generic composition logic for handle those conflicts by taking into account the key-
words’ contexts and the constituent languages.

3.3.1.2. Supporting Keyword Renaming
When languages with syntactic conflicts are composed, a language implementation approach

can resolve such conflicts by adjusting parts of the syntax for a composition, e.g. by overriding
one of the conflicting expression types [Cor06].

Example Scenario: For example, for a meaningful composition of FUNCTIONAL and STRUC-
TURAL, the language developer can rename the define keywords. The developer can declare to
rename the conflicting keywords into defun for FUNCTIONAL and make for STRUCTURAL, so
that using these renamed keywords in programs is unambiguous.

Requirements: To support composing languages with syntactic conflicts, there should be a
composition mechanism that enables the language developer to declaratively resolve the inter-
actions by changing the conflicting parts in the syntax. When adjusting parts of the syntax, one
has to keep in mind that the composite language may not be backward compatible to the old
syntax. Existing programs are liekly to be no more working, until their expression’s keywords
also have been renamed to the new syntax.

3.3.1.3. Supporting Priority-Based Conflict Resolution
Often, language extensions are implemented independently from each other, still the language

developers can plan for composing extensions with the base. Composing several extensions to
the same base language is easier than composing stand-alone languages, because the extensions
can rely on the same base-language theorems. When extensions have a common base, even
when there are interactions, conflicts are less frequent. Therefore in such compositions, often it
is sufficient to resolve conflicts using a priority.

Example Scenario: For illustration, assume that UCBLOGO, CONCISELOGO, and EXTEND-
EDLOGO are developed as independent extensions. But in contrast to incrementally adding each
extension into a chain to create COMPLETELOGO, as proposed in Section 3.1.1, assume that
each extension directly extends SIMPLELOGO and we do not want to build additional incre-
mental extensions to those extensions. In this case, it would be more economically to compose
COMPLETELOGO from the three extensions CONCISELOGO, UCBLOGO, and EXTENDED-
LOGO, so that we can use e.g. loop abstractions and shortcuts together in DSL programs, as
shown in Listing 3.6. In such a composition, language developers likely want to reuse the exist-
ing implementations of these extensions.

Requirements: When there are multiple extensions to a shared base language, a language
implementation approach should support composing the implementations of those extensions
[KL07b, EH07a]. In contrast to composing stand-alone languages, interactions between ex-
tensions and their base language are easy to resolve. For example, the expression types of base
language are available in all extensions of SIMPLELOGO, e.g. forward is available in UCBLOGO,
CONCISELOGO, and EXTENDEDLOGO. In conflict-free stand-alone languages, such common

43

3. Desirable Properties for Language Embeddings

�
1 turtle (name:"Square", color:red) {
2 repeat (4) {
3 fd 50
4 rt 90
5 }
6 }
7 ...
� �
Listing 3.6: An excerpt of a COMPLETELOGO program that uses the shortcuts of CONCISE-

LOGO and the repeat-loop construct of UCBLOGO

keywords are disallowed for a conflict-free composition, since keyword semantics would not
be well-defined. In contrast, because the extensions have a common base, sharing the common
keywords of the base language is not a conflict, since the interaction can be resolved.

A possible resolution to compose languages that have syntactic interactions is to prioritize
the constituent languages, which always uses the keyword semantics of the language with the
highest priority. Another approach is to declare an individual priority for each expression type.
By ordering the expression types, they become unambiguous again.

3.3.2. Open Mechanisms for Handling Semantic Interactions

When semantics are non-orthogonal, it is not straight-forward for a language developer to
compose constituent languages. Therefore, it is desirable to have composition mechanisms that
support the developer in scenarios by providing common logic for handling particular kinds of
semantic interactions.

Semantic interactions can be generic or specific. To illustrate these two, this section motivates
two important examples for such semantic interactions. In Section 3.3.2.1, the first example –
cross-cutting composition – is a kind of semantic interaction that is useful for combining various
languages, and therefore this asks for a general mechanism to be provided by the DSL approach,
which is independent of the particular language to be composed. The second example in Sec-
tion 3.3.2.2 resolves a composition conflict between two particular languages, and therefore this
asks for a specific solution, which works only for those particular two languages. For composi-
tions of semantically interacting languages, a DSL approach should allow developers to provide
both generic and specific composition mechanisms.

3.3.2.1. Generic Mechanism for Crosscutting Composition of DSLs

Existing language embedding approaches focus on composition scenarios where the use of
abstractions from one domain does not affect the evaluation of abstractions from another do-
main. We refer to such non-interacting compositions as black-box compositions, since they
compose languages using black-box abstractions. The problem with black-box compositions is
that, when multiple DSLs with crosscutting concerns are composed, programs exhibit scattering
and tangling symptoms, as elaborated below.

44

3.3. Enabling Open Composition Mechanisms

Example Scenario: Consider a black-box composition scenario in which language semantics
to be composed are orthogonal to each other. We show that if only black-box composition
is supported, programs that span over several domains might exhibit scattering and tangling
symptoms if the domain semantics are crosscutting.

The Logo extension, called TRACINGLOGO, allows recording the trace of turtles, which en-
ables end users to debug Logo programs. The extension provides an operation trace() that prints
out the most relevant information about the current turtle, encompassing its name, its x/y posi-
tion on the canvas, and its color. Further, the extension provides another operation show str to
write a string to the console.�
1 define(name:"polygon") { length, edges −>
2 # show "begin of evaluation of function ’polygon’"
3 # trace()
4

5 # i = 0;
6 repeat (edges) {
7 # show "begin of "+i+"−th iteration of repeat"
8 # trace()
9

10 # show "forward "+length
11 forward length
12 # trace()
13

14 # show "right "+360/edges
15 right (360/edges)
16 # trace()
17

18 # show "end of "+i+"−th iteration of repeat"
19 # trace()
20 }
21

22 # show "end of evaluation of function ’polygon’"
23 # trace()
24 }
25

26 turtle (name:"Octagon",color:green) {
27 # show "begin of evaluation of turtle ’Octagon’"
28 # trace()
29

30 polygon 8, 25
31

32 # show "begin of evaluation of turtle ’Octagon’"
33 # trace()
34 }
� �

Listing 3.7: A program with a tracing concern

The code presented in Listing 3.7 records the trace of the program that is shown in Listing 3.8.
Although the tracing concern is implemented using the domain-specific keywords, the concern
is not localized at a single region in the code. As indicated by the lines highlighted with "#", the

45

3. Desirable Properties for Language Embeddings

tracing logic is scattered over the function and turtle abstraction, and tangled with the functional
concern drawing the octagon.�
1 begin of evaluation of turtle ’Octagon’
2 Octagon: x=0, y=0, orientation=0, color=green, ...
3 before applying function ’polygon’
4 begin of evaluation of function ’polygon’
5 Octagon: x=0, y=0, orientation=0, color=green, ...
6 begin of 1−th iteration of repeat
7 Octagon: x=0, y=0, orientation=0, color=green, ...
8 forward 25
9 Octagon: x=0, y=25, orientation=0, color=green, ...

10 right 45
11 Octagon: x=0, y=25, orientation=45, color=green, ...
12 end of 1−th iteration of repeat
13 ...
14 begin of 8−th iteration of repeat
15 ...
16 end of 8−th iteration of repeat
17 end of evaluation of function ’polygon’
18 Octagon: x=0, y=0, orientation=0, color=green, ...
19 Octagon: x=0, y=0, orientation=0, color=green, ...
20 after applying function ’polygon’
21 end of evaluation of turtle ’Octagon’
22 Octagon: x=0, y=0, orientation=0, color=green, ...
� �

Listing 3.8: An excerpt of a program trace

Requirements:
The scattering and tangling symptoms are not restricted to the above DSL, but also other DSLs

suffer from these problems. Examples are workflow languages [CM04] (e.g., BPEL [AAB+07]),
query languages [Alm] (e.g., SQL [DD89]), grammar specifications [RMHP06, RMH+06]
(e.g., BNF or SDF2 [Vis97b]), and languages for modeling finite state machines [Zha06]. Al-
though scattering and tangling is a general problem in DSLs, there is little research on aspect-
oriented programming for DSLs.

To modularize crosscutting concerns in DSL programs, a language implementation approach
needs to support compositions of DSLs in which the use of abstractions from one domain inter-
acts the evaluation of abstractions from another domain. In such a language composition, the
evaluation of expressions in one language (i.e. its evaluation protocol) is not longer a black box
for the other languages. Therefore, we refer to such a composition scenario as a crosscutting
composition.

For example, consider a crosscutting composition of the above DSLs by adding aspect-oriented
concepts to Logo in a dialect called AO4LOGO. Listing 3.9 shows an aspect-oriented version of
the program. The AO program implements the same functional concern and tracing concern
as in Listing 3.7. But, the AO program does not suffer from scattering and tangling, since the
code that implements the tracing concern is localized between lines 1–13, and is not mixed

46

3.3. Enabling Open Composition Mechanisms

with the function concern between lines 15–24. Such a DSL with aspect-oriented concepts is
called a domain-specific aspect language (DSAL). We will elaborate on the details of the DSAL
programs in Chapter 7 and Section 10.3.2.2.

To enable such crosscutting compositions of DSLs, this requires a composition mechanism
that allows declaratively specifying where and how languages may interact. To allow language
developers reusing composition logic that is common for a composition of various dependent
languages, the composition mechanism should be generic. Still, for cases in which there are
special requirements, the generic mechanism should be configurable for a particular scenario
which involves several semantically non-orthogonal languages.�
1 aspect(name:"TracingAspect") {
2 before (papply()) { show "begin of evaluation of function ’$name’"; trace(); }
3 after (papply()) { show "end of evaluation of function ’$name’"; trace(); }
4

5 before (prepeat()) { show "begin of $iteration−th iteration of repeat "; trace (); }
6 after (prepeat()) { show "end of $iteration−th iteration of repeat "; trace (); }
7

8 before (pmotion()) { show "$command $args"; }
9 after (pmotion()) { trace (); }

10

11 before (pturtle ()) { show "begin of evaluation of turtle ’$name’"; trace(); }
12 after (pturtle ()) { show "end of evaluation of turtle ’$name’"; trace(); }
13 }
14

15 define(name:"polygon") { length, edges −>
16 repeat (edges) {
17 forward length
18 right (360/edges)
19 }
20 }
21

22 turtle (name:"Octagon",color:green) {
23 apply("polygon")(8,25)
24 }
� �

Listing 3.9: A program with a tracing aspect

3.3.2.2. Supporting Composition Conflict Resolution

When composing multiple semantically interacting languages, there can be composition con-
flicts that are complicated to resolve [KL07b, HBA08]. In general, since such composition
conflicts must take into account the semantics of the application context, the system cannot
automatically resolve such conflicts [Kni07].

Example Scenario: Consider composing languages with aspects not only from one domain
but from various domains. For example, there are aspects for tracing/logging, security, caching,
and persistence. It is a well-known fact [DFS02, SP06, KL07b, HBA08] that realization of

47

3. Desirable Properties for Language Embeddings

these crosscutting concerns has conflicts, such as security can interfere with logging, caching
can interfere with persistence, and so forth.

Requirements: For composing semantically interacting languages, a language implementation
approach needs to detect such composition conflicts. Since the system cannot resolve composi-
tion conflicts automatically, the provided composition mechanisms should be open and config-
urable by end users i.e. the application developers.

3.4. Support for Concrete Syntax
Since most language embedding approaches are restricted to comply with the concrete syntax

of the host language, they often do not allow defining adequate syntactic abstractions [BV04,
Tra08]. This missing support for arbitrary concrete syntax for language embeddings is one of
the biggest obstacles for their adoption [KLP+08, MHS05].

There are numerous problems that hinder concrete syntax in language embeddings. First,
in embedding approaches that do not support concrete syntax, the end users are required to
encode program expressions in abstract syntax themselves, which is tedious and which could
be avoided if there is a mechanism that automatically maps programs in concrete syntax to
abstract syntax. Second, an embedded language generally cannot define or refine a keyword that
already is defined in the host language. Hence, embeddings cannot define a new domain-specific
semantics for existing host syntax. Third, tokens that use special characters, such as brackets,
operator symbols, and Unicode symbols, cannot be freely used in embedded expressions. Often
the special characters cannot be used for defining identifiers. Finally, while most host languages
have only support for overriding prefix/infix operators or defining new prefix/infix operators,
overriding and defining complex operators is not supported by host languages. In particular
mixfix operators [Mos80, DN09]—a mixed form of prefix, infix, and suffix—are mostly not
supported.

In the following, we will elaborate scenarios that require a support for concrete syntax.

3.4.1. Converting Concrete to Abstract Syntax
When the concrete syntax of a language is not directly supported in the host language, for

embedding expressions of an arbitrary language, an embedding approach should allow encoding
the concrete syntax of this language in abstract syntax [Fow05].

According to [Kam98, ALSU07], the abstract syntax of a language consists of two sets: ab-
stract syntax types and abstract syntax operators. The type set is defined as T = {τ1, ..., τm}.
The operator set Θ consists of operators Θ = {σ1, ..., σn}, whereby each operator σi is a map-
ping σi : τi1 × ...× τij → τk with a unique signature.

To represent basic expressions, the language developer needs to support an abstract syntax
encoding for each kind of expression. Each kind of expression e : τk begins with its operator
followed by its sub-expressions e1 : τi1 , ..., ej : τij whose types match the operator’s signature:
e = σi(e1, ..., ej).

The next paragraphs present an example of a formal encoding in abstract syntax and discuss
what embedding approaches must support for such an encoding. Since an encoding in abstract

48

3.4. Support for Concrete Syntax

syntax is verbose, it is desirable that end users do not need to encode their program in an abstract
syntax themselves.

Example Scenario: For example, consider the following specification for the abstract syntax
of SIMPLELOGO, which requires that the embedding approach supports the encoding of: (1) ev-
ery kind of expression in abstract syntax, (2) sequences of sub-expressions, and (3) an entire
program.

First, to represent SIMPLELOGO expressions, the language developer needs to define its ab-
stract syntax types and operators. SIMPLELOGO has the types Integer, Color, String, Command,
Turtle ∈ TSimpleLogo. SIMPLELOGO has the color operators {black, ..., red} ∈ C ⊆ ΘSimpleLogo,
where ∀c ∈ C.c : ∅ → Color. It has the move operators {forward, backward, right, left}
∈ M ⊆ ΘSimpleLogo, where ∀m ∈ M.m : Integer → Command. It has the abstraction op-
erator turtle ∈ ΘSimpleLogo, where turtle : String × Integer × CodeBlock→ Turtle. E.g, a basic
expression is forward(50).

Second, for compositionality of expressions, the encoding needs to support composition op-
erators on expressions. E.g., the developer can define a family Φ of sequence operators of
which each seqτep ,τeq ∈ Φ composes two sub-expressions ep and eq, which will be evaluated
one after the other, whereby seqτep ,τeq : τep × τeq → τeq . For example, we can compose the
sub-expressions e1 and e2 with e = seqτe1 ,τe2 (e1, e2), whereby τe = τe2 .

Third, for encoding an entire program, the encoding needs to support conveniently writing
sequences of expressions.

For convenience, the encoding defines short form for composing expressions into sequences,
namely the semi-colon infix operator, which allows omitting seq keyword and the type indices.
With the semicolon operator, one can write the sequence seq(e1, e2) as e1; e2. In addition,
the encoding defines another short form for chaining using a recursive sequence of sequences,
e.g. e = seq(e1, seq(e2, seq(..., seq(en−1, en)))) as e = e1; e2; ...; en−1; en. Such a chained
sequence is again an expression that has the type of the last expression of its sequence.

To encode nested expressions, the encoding defines a code block as a recursive sequence of
expressions plus a context that contains static information (e.g. links to the enclosing code block)
and dynamic information (e.g. variable bindings). In the encoding, one can write a code block
using curly brackets, e.g., {e1;e2;...;en−1;en}. A code block again is an expression that has the
type CodeBlock.

Finally, the encoding wraps all program expressions into a code block. For example, con-
sider Listing 3.10 that encodes the SIMPLELOGO example program in abstract syntax that was
presented in Figure 3.1 (p. 31).

Requirements: To support abstract syntax for arbitrary embedded languages whose concrete
syntax is specified as a context-free grammar (CFG), there must be two generic mappings. The
first mapping needs to map concrete syntax of the embedding to abstract syntax. The second
mapping needs to map abstract syntax to the host language syntax to make it executable.

For the first mapping, it is desirable that the mapping from concrete to abstract syntax is
generic. That means it must not be specific to a concrete language embedding, but the trans-

49

3. Desirable Properties for Language Embeddings

�
1 {
2 turtle ("Square",red,{
3 forward(50);
4 right (90);
5 forward(50);
6 right (90);
7 forward(50);
8 right (90);
9 forward(50);

10 right (90);
11 }
12)
13 }
� �

Listing 3.10: The abstract syntax representation of the program from Figure 3.1a

formation should be customizable for any language embedding. For this, the generic mapping
is parameterized by the concrete syntax for language embedding, which consists of grammar
productions of its CFG. The parameterized mapping then allows converting end user programs
given in concrete syntax to an equivalent representation in abstract syntax. Even when end user
must not read code in an abstract syntax, the encoding in the abstract syntax should be close the
concrete syntax, so that one can revert the mappings for expressions in executable form to their
abstract syntax and then to their concrete syntax, e.g. when we need to debug the program.

3.4.2. Supporting Prefix, Infix, Suffix, and Mixfix Operators
Most host languages used for embeddings have only restricted support for defining domain-

specific operators [BV04, MHS05, Tra08]. Often it is only possible to override prefix and infix
operators that are pre-defined in the host language. Still, it is desirable to support operators at
every position, whether it is prefix, infix, suffix, or mixfix.

Example Scenario: Consider providing prefix, infix, and suffix operators on functions in
FUNCTIONALLOGO and a mixfix operator used in an existing DSL:

Prefix: For example, one can define a prefix operator “not(pred)” that negates a predicate
function expression pred.

Infix: Another example is to provide an infix operator to compose two functions “f com-
pose g” to build a composite function h, where f : X → Y , g : Y → Z, h : X → Z,
such that h(x) = f(g(x)), ∀x ∈ X .

Suffix: An example for a suffix operator is “(k)prime”, which can be used to refer to the deriva-
tive of a function k.

Mixfix: Mixfix operators [Mos80, DN09] have multiple operands whose positions are mixed
with the keywords of the operator. Note that mixfix operators are of particular interest,
because they are often used to define domain-specific abstraction operators. An example

50

3.4. Support for Concrete Syntax

for such an operator is the SELECT-statement in SQL [DD89]:
“SELECT c FROM t WHERE p”, where c is a selection of columns, t is a selection of
tables, and p is a predicate on the rows of the tables.

Requirements: More and more languages, allow the programmer to override pre-defined op-
erators that use special characters, such as, +, -, *, /, !, «, such as Groovy. Some languages even
allow arbitrary user-defined operators that are prefix, suffix, and infix. But, most languages used
for embedding do not support the definition of mixfix operators. Thus, it would be desirable to
have also support for mixfix operators.

Another challenge in many host languages, such as Java, Groovy, Scala, Haskell, is that Uni-
code cannot be used freely, e.g. it is disallowed by the host language parser to use Unicode
in mixfix operators. Consider encoding the above operators in Unicode, such that “not(pred)”
becomes “¬pred”, “f compose g” becomes “f ◦ g”, “(k)prime” becomes “k′”. For mixfix, con-

sider defining a series “
∑

[1 ≤ k ≤ N] a(k)” that denotes the sum
N∑
k=1

a(k) over the finite

sequence a. For more concrete syntax, it is desirable to support Unicode for DSLs [Sim95,
MJ98, DN09]—ideally, at any place of a context-free grammar.

3.4.3. Supporting Overriding Host Language Keywords
It is desirable to freely use arbitrary keywords, operators, and delimiters in DSLs [BV04,

BdGV06, FC09].

Example Scenario: Consider an embedding with DSL expressions that use the reserved key-
words of the host language:

Textual keywords: It is desirable to allow defining new conditional expression types, such as
“if (...) then {...} else {...}”, even in case “if” is a reserved keyword in the host language
and the existing conditional does not support the keyword “then”, like in Java, Scala, or
Groovy.

Delimiter keywords: It is desirable to allow defining user-defined delimiters, such as using
curly brackets to define sets “{1,3,5}”, even in case curly brackets are used in the host
language to delimit code blocks.

Requirements: In general, the host language’s parser disallows using keywords in embedded
DSL expressions that are also reserved keywords in the host language. The problem is that most
host language parsers disallow the reserved keywords to be used as identifiers. To still allow
using such keywords in DSL expression types, it is required to transform DSL expressions that
use those keywords into legal host language expressions.

Another challenge in many host languages is that delimiter keywords (such as, brackets) can-
not be overridden. Often defining new delimiters or Unicode delimiters is also disallowed by the
host language parser.

51

3. Desirable Properties for Language Embeddings

3.4.4. Supporting Partial Definition of Concrete Syntax
There are special embedding approaches [BV04, Tra08, KM09, RGN10] that support concrete

syntax for DSLs by using meta-programming (cf. Section 2.3.3). They use meta-programming
to create meta-programs that rewrite DSL programs in concrete syntax to host syntax. For this,
the meta-program parses the program’s expressions in concrete syntax, it creates an AST, and it
rewrites the AST to equivalent expressions in the host language’s syntax.

The problem with using meta-programming for embedding is that parsing requires the lan-
guage developer to specify the complete syntax of an embedding. Specifically, the developer
has to specify the complete DSL syntax, the complete host language, and how expression types
of the two languages are integrated. However, defining a full-fledged concrete syntax for a
language using a formalisms can be very expensive [vdBvDK+96, Moo01, MHS05]. Provid-
ing a complete syntax definition for a large language is a tedious and error-prone task that can
take several person months [vdBvDK+96, vdBSV97, Moo01]. The large costs for the concrete
syntax are a competitive disadvantage of these embedding approaches compared to traditional
embedding approaches [Hud96, HORM08] that do not need to specify concrete syntax.

Example Scenario: To illustrate the overhead of requiring the presence of a complete syntax
definition, reconsider the syntax of FUNCTIONALLOGO. Because Logo is a simple language,
in many host languages even without using meta-programming, Logo can be embedded with an
abstract syntax that is very close to the domain. Compared to traditional language implementa-
tion approaches, the advantage of the embedding approach is that the language developer does
not have to define a formal syntax at all.

Consider that we would like to provide more concrete syntax for an embedding of functional
composition. Instead of using the abstract syntax compose(...) from Section 3.4.2, we would like
to use the ◦ Unicode operator. Because, in many host languages, such Unicode infix operators
are not supported, we need to rewrite the expression in concrete syntax to host syntax (e.g., we
can rewrite expressions like “f ◦ g” into a corresponding encoding in abstract syntax such as
“compose(f ,g)’). But in current approaches, as soon as the concrete syntax of just one expression
type is incompatible with the host syntax, for using meta-programming, the developer has to
define the complete syntax of the embedding. Requiring the complete syntax increases the initial
costs for embedding the DSL. Thus, language developers must provide the complete syntax, they
must pay most of the costs for having a concrete syntax for the formalization of expression types
that do not have a compromised syntax.

Requirements: In particular, for language embedding approaches, it is desirable to minimize
the costs for concrete syntax. To better control the costs of having a concrete syntax, it would
be interesting if language developers must not define the complete concrete syntax, but only for
expression types where the concrete syntax is incompatible with the host syntax and that need to
be rewritten. Further, it would be interesting if the developers did not have to define a complete
concrete syntax before developing the semantics, but if instead they could add concrete syntax
incrementally at the granularity of single expression types. When there is support for partial
syntax, then developers can start with implementing an embedding with abstract syntax. The

52

3.5. Enabling Pluggable Scoping

developers can deliver a full-functional language prototype with abstract syntax in a shorter
time, and they can add concrete syntax later on. The benefit is that end users can already use the
embedding with abstract syntax.

Later on, the developers still can add concrete syntax, step-by-step, for each expression type.
Note that when embedded languages, such as SIMPLELOGO, in many cases, some expression
types encoded in abstract syntax just happen to have exactly their concrete syntax. Only for a
few expression types, the concrete syntax cannot be met. For these expressions, it is not always
necessary to formalize the concrete syntax, since the syntax is already adequate. Therefore, it is
beneficial if the developers do not have to define the complete concrete syntax. It is cheaper, if
they only need to formalize the concrete syntax in cases where the abstract syntax is not adequate
and needs to be replaced by concrete syntax.

3.5. Enabling Pluggable Scoping
In programming languages, a scope is a region in a program in which identifier are defined and

bound to a value. A scoping scheme defines how such a binding of identifier propagates through
the program. There are several dimensions with respect to how bindings are propagated [Tan09]:
(1) call stack propagation: whether a binding propagates through the call stack or not, (2) de-
layed evaluation propagation: whether it propagates into nested abstraction operators or not,
and (3) activation: whether it is active in a certain time frame or not.

When embedding a language, in traditional embedding approaches, the host language controls
the scoping of language constructs. However, there are several cases in which the language
developer needs to control the scoping of the language constructs [LLMS00, Tan09]. Therefore,
in the following, we discuss scenarios that require controlling the scope of embedded language
constructs.

3.5.1. Supporting Dynamic Scoping

Language embedding approaches inherit the semantics of their host language. Thus, they in-
herit the scoping rules of their host to resolve identifiers in expressions, which is a fixed scoping
strategy for most host languages.

The two major scoping schemes in programming languages are lexical scoping (also known as
static scoping) and dynamic scoping. While host languages with lexical scoping allow lexically-
scoped language embeddings, dynamic scoping is not available to them and vice versa. Often
supporting lexical scoping is sufficient for an embedding approach, but this is only because most
of today’s programming languages use lexically scoping.

However, there is a need to freely select the scoping strategy for an embedded language. For
example, there are languages that use dynamically-scoped variables in lexically-scoped func-
tions [LLMS00]. When we want to embed such a language with special scoping requirements,
host languages that only support one closed scoping scheme cannot be used for the embedding.
For such situations, language developers need to embed scoping schemes into a host language
that are different from its native scoping scheme.

53

3. Desirable Properties for Language Embeddings

Example Scenario: Consider embedding a dynamically-scoped Logo dialect into a lexically
scope host language. In a lexically-scoped host language, local variables are only bound within
the enclosing lexical scope. That means, a local variable is only visible inside the body of an
abstraction operator, but it cannot be accessed from outside.

With lexical scoping, when we define a variable inside an abstraction operator, the variable
binding is only available inside this abstraction operator, but it is undefined or bound to other
values in abstraction operators that are not enclosed. In contrast, with dynamic scoping, as indi-
cated in Listing 3.11, it is possible that one abstraction operator defines a variable (e.g. as length
in line 2) that other abstraction operators can bind to another value, even if those abstraction
operators are not lexically enclosed (e.g. as in the body of the other turtle in line 9).

For example, with dynamic scoping, the variable length (line 4) has value 100, since line 9
overrides the variable binding in line 2 before calling the function. In contrast, with lexical
scoping, the variable length (line 4) would still have the value 50, since the variable binding is
resolved over the lexically-enclosing context that binds length in line 2. For dynamic scoping, it
is necessary to persist the corresponding binding (of variable to its value) defined in an abstrac-
tion operator into a global context, so that the binding is available after the control flow of such
a nested structure has been exited.

�
1 turtle (name:"Teacher", color:red) {
2 length=50
3 define(name:"complexShape") {
4 fd length; rt 120; fd length; rt 120; fd length; rt 120;
5 }
6 }
7

8 turtle (name:"Pupil", color :red) {
9 length=100

10 apply("complexShape")()
11 }
� �

Listing 3.11: Using a dynamically-scoped variable

Requirements: When a language embedding requires dynamic scoping, normally language
developers select a dynamically scoped host language to embed it. Restricting the selection of
possible host languages based on their scoping rules is problematic, since this restriction would
disallow most host languages that are lexically-scoped to be used for the embedding. Further,
when the embedded language needs both dynamically and lexically scoping, such as required
in [LLMS00], host languages and embedding approaches that only support one closed scoping
scheme can no longer be used. Therefore, as motivated above for Logo, it would be interesting
to allow embedding dynamic scoping into host languages with lexical scoping.

54

3.5. Enabling Pluggable Scoping

3.5.2. Supporting Implicit References
There are languages that have implicit references [KM06] which are special references that

are not user-defined but that are implicitly available in a certain context.
Frequently, GPLs provide special keywords for such implicit references that point to values

that depend on the context the keyword is used in. Most prominently in OO languages, there are
implicit references that are used to refer to objects in the current lexical context. For example,
Java defines the keywords this to refer to the enclosing object and super to refer to its super
class. Similarly, aspect-oriented languages define implicit references, too, such as AspectJ [Asp]
defines the keyword thisJoinPoint that can be used in advice to refer to the current join point.
Those primitive identifiers are special in that the host language defines a closed scheme how to
resolve them.

Example Scenario: Such implicit references can also be defined by domain-specific languages.
For example, consider an extension to FUNCTIONALLOGO that provides a special keyword
thisTurtle that defines an implicit reference that points to the enclosing turtle. The keyword
thisTurtle allows access to the turtle properties name and color. In Listing 3.12 in line 10, the
expression “thisTurtle.name” prints out its name by accessing the turtle’s name property via the
thisTurtle keyword. In contrast, in line 14, Turtle2 prints out its color blue. The code in line 14
relies on the fact that every non-locally defined identifier will implicitly be resolved via thisTurtle,
i.e. color is equivalent to thisTurtle.color.�
1 define(name:"print") { str −>
2 // code that prints the "str" parameter
3 }
4

5 define(name:"colorToStr") { color −>
6 // returns name of the color
7 }
8

9 turtle (name:"Turtle1",color:red) {
10 apply("print ")(thisTurtle.name)
11 }
12

13 turtle (name:"Turtle2",color:blue) {
14 apply("print ")(apply("colorToStr")(color))
15 }
� �

Listing 3.12: A FUNCTIONALLOGO program using the special name thisTurtle

Requirements: To enable an implicit reference, the language first needs to establish a special
binding from the keyword name to the corresponding value in the enclosing scope. Second, the
language needs to resolve implicit references in a special way—different from explicitly defined
identifiers, such as variables or functions. Therefore, it is desirable to support embedding a
special resolution scheme for implicit references. When the embedding of a resolution scheme is

55

3. Desirable Properties for Language Embeddings

flexible enough, it can resolve references by taking into account the lexical or even the dynamic
context the reference is used in.

3.5.3. Supporting Activation of Language Constructs
There are examples in which a language explicitly wants to control the activation [Tan09]

of a certain language construct, such as dynamic extensions to classes and objects with as-
pects [PGA01] and layers [CH05]. With activation, one can explicitly control whether a certain
language construct propagates or not, such as, the developer can declare that the extensions in
an aspect or a layer are only effective in a certain region in the program.

In particular, activation is used in dynamic aspect-oriented programming [PGA01] to con-
trol the activation scope in which an aspect is effective. In dynamic AOP, a program can dy-
namically deploy/undeploy aspects to/from the running system, e.g., this allows activating or
deactivating features those code crosscut several modules. There is good support for dynamic
AOP for general-purpose programming languages, such as Smalltalk [Hir01, Hir09] or Java
[PGA01, Bon03, BHMO04], But, unfortunately, dynamic AOP is not available for most DSLs.
Today, dynamic AOP support must be enabled by invasively changing the code of the DSL exe-
cution infrastructure [CM04]. What is needed is a systematic language implementation approach
that helps developing a dynamic AOP solution for an arbitrary DSL.

Example Scenario: Consider an evolution scenario that extends AO4LOGO with support for
dynamic AOP, called LOGODYNAMICAOP. Listing 3.13 shows a dynamic tracing aspect. It im-
plements the tracing concern similar to Listing 3.9, but the dynamic tracing aspect (Listing 3.13,
lines 3–5) is not immediately active after it has been defined. This is because the aspect Dy-
namicTracingAspect is defined with the parameter deployed:false. Therefore, when the polygon
function is applied the first time in line 12, the evaluation of the function is not traced. Next in
line 13, calling the method deploy activates the dynamic tracing aspect13. In contrast when the
function is applied the second time, in line 14, the activated aspect traces the evaluation of the
polygon function.

Requirements:
Note that there is the special requirement to optimize dynamic AO systems [HM04]. There

can be a large overhead when executing programs with dynamic aspects. To achieve an accept-
able performance with dynamic aspects, there need to be special optimizations that remove the
overhead of aspects.

3.6. Enabling Pluggable Analyses
Traditional language implementation approaches support analyses, such as syntax checks, de-

tecting redundant expressions, domain analysis and so forth. When it is possible to inspect the
code of a program, this often called intensional analysis [COST04, ALY09]. Intensional analy-
sis allows automatic reasoning on the program syntax and semantics. Normally, a parser makes a

13The code calls the method deploy on the reference dta that points to the aspect that was assigned in Listing 3.13
line 3.

56

3.6. Enabling Pluggable Analyses

�
1 DynamicAspect dta;
2

3 dta = aspect(name:"DynamicTracingAspect",deployed:false) {
4 ... // Same aspect definition as shown in Listing 3.9 .
5 }
6

7 define(name:"polygon") { length, edges −> ...
8 ... // Same function definition as shown in Listing 3.9 .
9 }

10

11 turtle (name:"Octagon",color:green) {
12 polygon 8, 25 //evaluated without tracing
13 dta.deploy()
14 polygon 8, 25 //evaluated with tracing
15 }
� �

Listing 3.13: A program with a tracing aspect

syntactic representation of a program available in form of an abstract syntax tree (AST). Travers-
ing the AST nodes allows performing syntactic analyses that analyze the syntactic structure of
a program. By storing information in AST nodes or by rewriting the AST nodes into another
intermediary representation, it is possible to perform semantic analyses. Further, non-embedded
compiler and interpreter approaches allow combining several modular analyses.

Language embedding approaches are said to not support sophisticated analyses for
DSLs [MHS05]. This is because traditional embedding approaches do neither have a special
parser nor is the AST of the host language available, the traditional approaches do not support
such syntactic analyses. Although there are special embedding approaches that use exceptional
features of their corresponding host language (such as meta-programming) to gain access to an
AST representation, implementing an analysis with these approaches is rather complex. There-
fore, the literature does not recommend to use current embedding approaches when domain-
specific analysis or verification is needed [MHS05].

This is unfortunate, because syntactic analyses are an added value for their languages. They
support the end users to automate analyses that would be tedious to check for humans. Although
there are some embedding approaches that allow small syntactic analyses, these approaches only
support analysis of languages with a closed syntax. Once a language developer has defined such
an analysis, end users can apply it to analyze their programs. But, there are several limitations
with evolving languages and when composing analyses.

To allow language embeddings to be used for scenarios where analysis is needed, it would be
desirable to support extensible and composable syntactic and semantic analyses.

3.6.1. Syntactic Analyses

We would like to support syntactic analyses that enable reasoning over programs by analyzing
their syntactic representation.

57

3. Desirable Properties for Language Embeddings

Example Scenario: Consider an analysis that checks that DSL code follows coding conven-
tions [PK08] to ensure a good readability of source code. Tools for analyzing source code for
coding conventions are widely available for general-purpose languages. Such analysis would be
also desirable for DSLs, but often not supported by embedding approaches.

As an example coding convention, consider a domain-specific naming-convention that re-
quires function names to be lower case. In an embedding, violations of such rules cannot be
detected by the (generic) host language parser or compiler that is not aware of domain-specific
properties.

Another example is checking that a certain threshold in a source code metric is not exceeded.
Consider a convention in FUNCTIONALLOGO that a function body should not contain more than
say 10 commands. Detecting such a metric helps to improve code quality through cleaner code
[Mar08], that is better understandable and maintainable.

Requirements: When the syntax of a language evolves, the language developers must likely
update all analysis implementations. Therefore, a language developer should be able to extend
existing implementations of analyses instead of re-implementing them. Often multiple analyses
need to be used in concert. Hence there should be support for implementing syntactic analyses
in a modular way and for building compositions of multiple analyses.

3.6.2. Semantic Analyses
Before executing a program, often it is interesting to determine important properties of the

program that abstract over concrete executions of the program. For determining properties of
programs, traditional language approaches use semantic analyses that evaluate a program under
abstract semantics [MHS05, HORM08, Par10], without actually executing the program under
its default execution semantics. Such an alternative program evaluation is interesting because
it enables abstract interpretation [CC77, Cou96]. Abstract interpretation is a well-established
technique that is available for general-purpose languages to check programs for certain semantic
properties and to use the retrieved information to find errors in a program, to improve the pro-
gram’s compilation and evaluation. Yet, for most DSLs, no tools for abstract interpretation are
available.

There are various use cases for abstract interpretation of domain-specific programs. To iden-
tify possible bottlenecks in DSL programs, it is interesting to calculate runtime costs of DSL
programs [WGM09], in particular, to support later optimization decisions. To help end users
identifying errors in their DSL programs, there are semantic analyses that perform type check-
ing, and there are other semantic analyses that verify domain-specific constraints. A language
embedding approach should enable such analyses.

Example Scenario: Often in a domain, there is a semantic contract for a language that de-
fines what a meaningful program is. Such a contract consists of a set of domain-specific con-
straints [SK97, GBNT01] that every program must comply with. The violation of such a con-
straint is considered to be a semantic error.

58

3.7. Enabling Pluggable Transformations

Consider a semantic contract for FUNCTIONALLOGO with a domain-specific constraint that
requires that parameters to the Logo commands must be positive integer values. The program
in Listing 3.14 has a semantic error that needs to be detected. There is an error because the
parameter to the function application in line 10 will have a negative value that will be passed to
the forward command in line 4, which violates the above constraint.�
1 define(name:"hexagon") { length −>
2 turtle (name:"hexagon",color:red) {
3 repeat (6) {
4 forward length
5 right 60
6 }
7 }
8 }
9 i = 100

10 apply("hexagon")(50−i)
� �
Listing 3.14: A program with a semantic error

Requirements: To identify semantics errors in DSL programs, a language implementation
approach should support abstract interpretations of domain-specific programs. Abstract inter-
pretations can check DSL programs for possible violations of domain-specific constraints to
ensure their correctness [vDKV00, CHR+03, PP08]. For determining whether a DSL program
is meaningful, a pluggable semantic analysis can be used to analyze the program.

Such an analysis is based on an abstraction function that evaluates a program under abstract
semantics. This function needs to check whether the program meets all constraints defined in
the semantic contract of its language. For the above example, to determine whether there is a
semantic error in the program, instead of execution the program, an analysis only needs to take
into account that the values of the input parameters to the commands are not negative. Such
semantic checks are particularly desirable because semantic errors can be hard to find in DSL
programs, as they often require precise knowledge of the domain.

Often not only one semantic analysis is needed to ensure that a DSL program is correct,
therefore a language embedding approach should enable composing several analyses.

3.7. Enabling Pluggable Transformations
A program transformation is a process that allows constructing a program by mapping it from

one program representation to another [PS83]. A transformation allows transforming a program
written for a certain language into another version of the program that is written in the same or
in another language.

We can distinguish two types of transformations: static and dynamic transformations. Static
transformations transform programs by taking only into account information from the static
structure of a program. In contrast, dynamic transformations also take into account the runtime

59

3. Desirable Properties for Language Embeddings

information, and thus they can be context-specific. In the following, we elaborate on the need
for such transformations.

3.7.1. Static Transformations
We can classify static transformations into two classes: syntactic transformations that trans-

form only the syntactic representation of a program and semantic transformations that change
the evaluation of a program. We discuss a scenario for both classes.

3.7.1.1. Syntactic Transformations
Often when language end users write down expressions, they find themselves in typing re-

dundant information that is clear from the context. One solution is to define syntactic sugar that
allow language end users to express their intents more concisely. When language developers do
not want to include a syntactic abstraction into the language itself, there is the possibility to add
support for syntactic sugar to the language by defining a transformation that desugars a syntactic
abstraction.

Example Scenario: Consider adding sugar for function applications to FUNCTIONALLOGO.
Most Logo dialects use explicit keywords for defining functional abstractions and explicit key-
words for applying a function. E.g., FUNCTIONALLOGO uses the keyword apply. Once a user
has defined a function with a unique symbolic name, it is clear that this symbolic name refers to
a function. Despite this, when applying a function, the user always has to use the keyword apply
to call the function. For the users, it would be interesting to apply a function with a syntax like
for primitive commands, because this would enable calling functions like commands.

Consider the program shown in Listing 3.15, which uses such syntactic sugar for functional
applications as an extension to FUNCTIONALLOGO. Instead of having to use the keyword apply
when using the function "hexagon", in line 3.15, the program uses the function’s symbolic name
that was associated to its lambda expression to call the function directly.�
1 define(name:"hexagon") { length −>
2 ...
3 }
4

5 turtle (...) {
6 hexagon 50 //need to be transformed to apply("hexagon")(50)
7 }
� �

Listing 3.15: A program using a static transformation for function applications

Requirements: For enabling such syntactic sugar, it would be interesting if language develop-
ers could implement static transformations that transform expressions whereby enriching them
with additional information that is available from the context.

For example, for the concise function application in FUNCTIONALLOGO, the developer can
extend FUNCTIONALLOGO with a static transformation that desugars expressions. The trans-

60

3.7. Enabling Pluggable Transformations

formation rewrites a command expression with a function name (e.g., hexagon 50) to an equiv-
alent function application expression by adding the keyword apply to the expression (e.g., ap-
ply("hexagon")(50)). Since the name of the function has been associated with a lambda expres-
sion, it can be syntactically replaced by the corresponding value of the lambda expression that
is then applied with the subsequent parameters (here 50).

In general, there can be two kinds of transformations, namely exo-transformations that have
a different input and output language, and endo-transformations that have the same input and
output language. For example, the above transformation is an exo-transformation, since a pro-
gram with an extended syntax (e.g. with the keyword hexagon) is transformed to a program with
a limited syntax (e.g. FUNCTIONALLOGO without hexagon). It depends on the purpose of the
transformation, what the right domain (source) and co-domain (target) of a transformation is.

3.7.1.2. Semantic Transformations
There are static transformations that do not only change the syntax, but which can also change

the execution semantics of the expressions of a program. While this potentially may give a
program a different meaning, in most cases, it is a desirable characteristic of a transformation
that the transformation preserves semantic invariants for the program after the transformation.
Such a semantic invariant is a part of the semantic contract of a language, and programs of the
language assume all invariants to be always be true. In case all transformation rules guarantee
that the transformed version of the program will still satisfy its initial specification, we speak of
a correctness-preserving transformation [PS83].

Example Scenario: An example for a correctness-preserving semantic transformation is a
domain-specific optimization that transforms DSL programs to improve their execution time.
Although most DSLs do not have hard performance requirements [EFDM03, CM07], in cer-
tain domains, the performance of DSL programs is important [EFDM03, MHS05], e.g. SQL
[DD89]. To meet special performance requirements, a language embedding approach should
support optimizations [Hud98, BKHV03, HORM08].

Consider providing an optimized Logo dialect that combines FUNCTIONAL with CONCUR-
RENTLOGO and is called OPTIMIZINGLOGO. This dialect optimizes applications of functional
abstractions by exploiting parallelization. Whenever a function that satisfies certain properties14

is applied in a turtle abstraction, the function application can often be optimized by delegating
the task to another turtle, which will evaluate the function in parallel and let the delegating turtle
continue executing the rest of its commands. This optimization enables turtles to delegate parts
of their work and let multiple turtles paint figures collaboratively.

When optimizing a DSL program, the meaning of the program should not change. Therefore,
optimizations can be implemented as transformations that are conservative extensions of the lan-
guage execution semantics. Such a transformation must guarantee that non-optimized programs
are transformed to optimized programs that have a behavior that produce equivalent outputs in
less time. For example, in case of the above optimization, FUNCTIONALLOGO programs are
14The function must not have any data flow dependencies, all it parameters must be known and there is no dependency

on the function result. Note that this property holds for most FUNCTIONALLOGO functions.

61

3. Desirable Properties for Language Embeddings

transformed to parallel corresponding versions that draw the same figures. Consequently when
implementing a transformation that optimizes DSL programs, no new syntax should be added
to the language and only the internal execution semantics need to be refined to optimize them.
From the perspective of language semantics, this optimization needs to evaluate a sequential
FUNCTIONALLOGO program as if it was programmed concurrently.

Requirements: In particular, such a domain-specific optimization is interesting because a
correctness-preserving transformation does not change the syntax or observable semantics of the
result. Therefore, such a transformation is transparent to the end users, and it does not impose
any additional programming efforts for them. In the above example, the optimizing transfor-
mation is particularly interesting, since children can use the language without explicitly dealing
with special abstractions for parallelization (e.g, threads). Still, the optimization transforms the
program for them such that it executes in parallel.

In general, also for semantic transformations, there can be exo-transformations and endo-
transformations. For example, the above transformation is an endo-transformation, because the
domain and co-domain (source and target) are equal.

3.7.2. Dynamic Transformations
A dynamic transformation allows the transformation of expressions in a program depending

on their evaluation context. In other words, a subset of their transformation rules dependent on
the program context i.e. the state of the program’s objects. There are also context-dependent
transformations that have rules that are either only applicable in a certain context, or where the
transformation itself is parameterized by the context.

Example Scenario: An example of a dynamic transformation of a DSL is an extension that
adds an adaptive optimization strategy, i.e. an optimization whose decisions depend on the exe-
cution state of the program to be optimized.

Consider optimizing FUNCTIONALLOGO programs for execution on a central controller that
transmit drawing commands to a remote fleet of physical plotting robots (of a certain limited
number). Unfortunately, straight-forward optimizations like OPTIMIZINGLOGO would not be
adequate for this scenario. Recall that OPTIMIZINGLOGO always parallelizes a function appli-
cation into a separate thread. It assumes that it is always worth optimizing a function applica-
tion and that there are an unlimited number of resources available. Yet, likely there is only a
limited amount of physical turtle robots available. The problem is that OPTIMIZINGLOGO is
non-adaptive and its decisions do not take into account context information. Therefore, it makes
too conservative assumptions about what should be optimized.

As a solution to this problem is the concept of adaptive optimizations [AFG+00] that opti-
mizes programs depending on their runtime context.

Consider a version of Logo with support for adaptive optimizations, which we call ADAP-
TIVEOPTIMIZINGLOGO. For each function application, ADAPTIVEOPTIMIZINGLOGO decides
whether it is worth to optimize the function call, e.g. to paint the function’s commands in parallel.
For this, it could take into account dynamic context information, such as the estimated amount

62

3.8. Review of the Support for the Desirable Properties in Related Work

of work to draw the function, or whether there is an idle robot currently available in the fleet. In
contrast to the non-adaptive optimization in OPTIMIZINGLOGO, ADAPTIVEOPTIMIZINGLOGO

only optimizes a functional application if it is considered worth doing so and if enough resources
are available at that time.

Requirements: Because there are large initial costs when using existing language approaches
to implement an adaptive optimization system for a language, these systems are often only avail-
able for languages that have high performance requirements. Most adaptive optimization sys-
tems are for general-purpose languages, where a virtual machine analyses programs for fre-
quently called subroutines and lets a just-in-time compiler optimize those routines to speed up
the execution. Only a limited set of high performance DSLs make use of adaptive optimizations,
such as SQL [DD89], which uses adaptive optimization to optimize queries. Today, adaptive op-
timizing DSLs are implemented as individual solutions, but to the best of the author’s knowledge
there is no general approach that facilitates implementing adaptive optimizations for DSLs.

In general, also for dynamic transformations, there can be exo-transformations and endo-
transformations. What is particularly interesting about the ADAPTIVEOPTIMIZINGLOGO trans-
formation is that it is an endo-transformation that can be performed on a program while it is
executing. For this it is necessary that the domain and co-domain (source and target) are equal,
and that transformation results remain causally connected to the source program. That means it
must transform the running program, which is only possible if there is the runtime that is uni-
form and causally connected with the code that is processed by the transformation. To the best of
the author knowledge, there are only approaches that support such transformations for general-
purpose languages, but not for DSLs. Still, such endo-transformations would be interesting for
adaptive optimizations of DSLs, what is missing is a DSL approach that enables support for
endo-transformations.

3.8. Review of the Support for the Desirable Properties in
Related Work

In previous work [Din10], the author of this thesis has published an extensive review of the
support for the above desirable properties by the related work on embedding approaches. The
review explains details of the relevant mechanisms that target the properties in existing embed-
ding approaches. It identifies open issues and limitations of current techniques. To overcome
the current shortcoming of embedded approaches, the review proposes a road map for the re-
search on embedded domain-specific languages, whereby it draws conclusions from studying
the available support for the desirable properties in related work on DSLs and GPLs.

Table 3.1 presents the detailed result of validating the support for the desirable properties that
related work proposes. For the top most desirable properties (gray lines), for each sub-property,
the detailed results are aggregated, such that, the best support that is available for all scenarios
is taken into account. Whereby, when one or more scenarios are not supported at all, the support
is only partial.

63

3. Desirable Properties for Language Embeddings

Table 3.1.: Review of supported properties by related embedding approaches

Desirable Property (I: par-
tial support,G: important limi-
tations, : full support)

Pu
re

E
m

be
d.

[H
ud

96
]

Ta
gl

es
s

E
m

be
d.

[C
K

S0
9]

U
ne

m
be

dd
in

g
[A

LY
09

]
Ja

rg
on

s
[P

es
01

]
E

D
SL

G
ro

ov
y

[K
G

07
]

E
D

SL
R

ub
y

[T
FH

09
]

Tw
is

te
R

[A
O

10
]

π
Pa

tte
rn

L
an

g.
[K

M
09

]
H

el
ve

tia
[R

G
N

10
]

St
ag

ed
In

te
rp

r.
[C

O
ST

04
]

E
xt

.M
et

a-
Pr

og
.[

SC
K

04
]

C
on

ve
rg

e
[T

ra
08

]
Fl

ue
nt

[E
va

03
,F

ow
05

]
E

M
F2

JD
T

[G
ar

08
]

Sc
al

a
E

D
SL

[O
SV

07
]

Po
ly

m
or

ph
ic

[H
O

R
M

08
]

E
m

be
d.

G
en

.[
K

am
98

]
E

m
be

d.
C

om
pi

le
r[

E
FD

M
03

]
R

ub
y

G
en

.[
C

M
07

]
M

et
aB

or
g

[B
V

04
]

T
X

L
[C

or
06

]

3.1. Extensibility I I I I G G G G I I I I I I I I I I I I I
3.1.1. New Keywords G G I G I I I G G G G G
3.1.2. Semantic Extensions I I I I G G G G I I I I I I I I I
3.1.2.1. Conservative Extensions I G G G G I I G G G I I
3.1.2.2. Semantic Adaptations G G G G I I
3.2. Composability of Languages I I I I I I G I I I I
3.2.1. Languages without Interactions G G
3.2.2. Languages with Interactions I I I I I I G
3.2.2.1. Syntactic Interactions G G I I I G G
3.2.2.2. Semantic Interactions I I I G
3.3. Composition Mechanisms I I I I I I I I I I I I I
3.3.1. Syntactic Interactions G G I I I I I I I G G I I
3.3.1.1. Conflict-Free Compositions G G G I G G G G G
3.3.1.2. Resolving with Renaming G G G G G G G G G
3.3.1.3. Resolving with Priorities G G G G G G
3.3.2. Semantic Interactions I I I I
3.3.2.1. Crosscutting Composition G G I
3.3.2.2. Resolving Composition Conflicts I G
3.4. Concrete Syntax I
3.4.1 Concrete-to-Abstract I I G
3.4.2 Mixfix Operators I I I I I I I I I I I G G I I I
3.4.3. Overriding Host Keywords
3.4.4. Partial Syntax
3.5. Pluggable Scoping I I I I I
3.5.1. Dynamic Scoping I I I
3.5.2. Implicit References
3.5.3. Activation of Constructs I I I I
3.6. Pluggable Analyses I G G I I I I G I I G G
3.6.1. Syntactic Analyses I G G I I I I G I I
3.6.2. Semantic Analyses I G G I I I I G I I G G
3.7. Pluggable Transformations I I I I I I I I I
3.7.1. Static Transformations I I I G G I I G G
3.7.1.1. Syntactic Transformations I I I G G I I G G
3.7.1.2. Semantic Transformations I I I G G I G G
3.7.2. Dynamic Transformations I

64

3.9. Summary

The identified properties are currently only supported by non-embedding-based approaches,
there is a need for a new language embedding approach that systematically supports these prop-
erties. Particularly, the following issues need to be addressed:

• For a better composability of languages, there should be support for composition of inter-
acting embedded languages.

• While existing composition mechanisms in the host language can be used, there is a need
for extensible composition mechanisms.

• When requiring arbitrary concrete syntax, it is desirable to reduce the costs for defining
the concrete syntax.

• There should be support for pluggable scoping.

• There should be support for composing analyses and transformations.

3.9. Summary
In this chapter, a set of desirable properties for language embedding approaches have been

proposed. The selection of these properties has been motivated by related work and concrete
scenarios have been presented. The review results clearly indicate the current limitations of
the language embedding approaches, which miss important support for properties that are often
supported by non-embedded approaches. Unfortunately, because of the lack of this support, the
adoption of embedding approaches is currently limited.

This thesis claims that a language embedding approach only facilitates the language develop-
ers with their tasks in an adequate way, when it supports all these properties for developing and
evolving languages. The identified open issues and questions regarding language embedding
approaches will be addressed in the remainder of this thesis.

65

Part II.

Core Architecture for Reflective
Embedding

67

4. The Reflective Embedding Approach

As outlined in the previous chapters, since languages and their implementations are continuously
evolving, language developers require an incremental and precise facility for language evolution.
Therefore, this chapter presents the concept of reflective embedding that embeds languages with
a meta-level into a reflective host language. The meta level helps language developers to keep
language implementations open for later evolutions.

In the reflective embedding approach, a language developer follows the structure of a disci-
plined architecture — the Reflective Embedding Architecture (REA for short). The architecture
prescribes how to structure the embedded library into four levels with well-defined responsibil-
ities. When language developers embed languages, REA’s structure gives them guidelines how
to embed a language, which helps them to systematically design and implement their languages
in an open way.

In contrast to traditional embedding approaches [Hud96] where embeddings are created using
black-box abstraction mechanisms, REA builds upon the reflective language features the host
provides. Because a language developer homogeneously embeds a language as a library, the
reflection feature is inherited from the host to the embedded language. Hence, developers can
use the reflective features inside the language implementation and programs of the embedded
language.

Using reflection inside a language implementation enables embedding a language that can
analyze and adapt its semantics, which is encoded in its embedded library. Because the archi-
tecture’s levels decouple parts in the implementation of a language, it is possible to extend, to
adapt, or to replace levels of a language implementation for evolution.

Note that the reflective embedding approach makes only few assumptions about the host lan-
guage. The host language needs to be an object-oriented programming language that provides
certain language features, namely first-class code blocks1 and meta-objects [KRB91]. The archi-
tecture builds on objects with classes, interfaces, and single inheritance. The architecture uses
code blocks for encoding abstraction operators that allow grouping compound expressions. The
architecture uses meta-objects for reasoning about and adapting objects. This exact set of lan-
guage features is necessary to allow a uniform description of the architecture, not for technical

1A code block was defined in Section 3.4.1 (p. 48) as a piece of code. A first-class code block is a code block of
which one can obtain a reference that can be passed around as a value. These code blocks are like all objects
associated with a meta-object that executes the code block, i.e. evaluating an expression in a code block creates a
call that is reflected by its meta-object.

69

4. The Reflective Embedding Approach

reasons. While this feature selection allows describing the architecture for a broad set of various
host languages2.

What is special in REA is that languages are embedded as a set of objects and that every lan-
guage has a meta-level. Because REA embeds languages as objects in a reflective host language,
one can reflect on languages and their constructs as first-class objects by using the meta level
without changing their base levels.

Parts of this chapter have been published in the following papers:

• Tom Dinkelaker, Michael Eichberg, and Mira Mezini. An Architecture for Composing
Embedded Domain-Specific Languages. In Proceedings of the 9th ACM International
Conference on Aspect-Oriented Software Development (AOSD), 2010.

• Tom Dinkelaker, Martin Monperrus, and Mira Mezini. Supporting Variability with Late
Semantic Adaptations of Domain-Specific Modeling Languages. In Proceedings of the
1st International Workshop on Composition: Objects, Aspects, Components, Services and
Product Lines, at the International Conference on Aspect-Oriented Software Develop-
ment, 2010.

• Tom Dinkelaker, Christian Wende, and Henrik Lochmann. Implementing and Compos-
ing MDSD-Typical DSLs. Technical Report, TUD-CS-2009-0156, Technische Univer-
sität Darmstadt, Germany, October, 2009.

The remainder of the chapter elaborates the concept of the reflective embedding approach in
Section 4.1, and its implementation in Section 5.

2Although the thesis commits to code blocks and meta-objects, these features can be easily replaced by alternative
ones with an equivalent expressiveness. Prototypes [US87] can be used instead of classes. Delegation [Ste87]
can replace inheritance. Code blocks can be replaced by closures [AS96]. Closures can replace objects [Dic92].
In most cases, meta-objects can be replaced by another reflection mechanisms, which sometimes support only
a limited form of reflection, such as interceptors, wrappers, and aspects [KLM+97]. When replacing one of
the required features in the architecture with another one, there would be a slightly different description of the
architecture that the author expects to be more language specific and more low-level. Committing to the above
selection of language features enables convenient and modular embeddings of languages that are well encapsu-
lated.

70

4.1. The Reflective Embedding Architecture

4.1. The Reflective Embedding Architecture

Language Interface
Level

Language Façade
Level

Language Model
Level

Language Meta Level

Reflective Host Language

Embedded
Program

adapts syntax-to
semantic bindinganalyzes meta-data adapts evaluation protocol

adapts

complies with
abstract syntax

execting on...

complies with
concrete syntax

implements
implements

eval.protocol

adapts

dynamic relationstatic relation

executes
eval. protocol

...binding
syntax-to-
semantics

Re
fle

ct
ive

 L
an

gu
ag

e E
m

be
dd

in
g

(L
an

gu
ag

e I
m

pl
em

en
ta

tio
n)

Figure 4.1.: The levels of the reflective embedding architecture

Figure 4.1 presents a high-level overview of the reflective embedding architecture (REA for
short). As illustrated, the architecture is built on top of the reflective host language. A language
implementation consists of four levels of which each has a particular responsibility:

(1) the language interface level: defines the abstract syntax of the language as a set of ex-
pression types, which constitutes the language’s syntax definition. Note that the abstract
syntax should not be confused with an abstract syntax tree3, which is only one possible
representation of abstract syntax. Although syntax can be concrete, since in the second
part of this thesis every embedded language has an abstract syntax, we will refer to it as
the syntax for short.

(2) the language façade level: binds expression types of the syntax to semantics, which con-
stitutes the so-called syntax-to-semantics binding of the language. This binding describes
how a syntactic construct creates and manipulates its corresponding semantic first-class
representations that are encoded in the next level.

(3) the language model level: defines a first-class representation for each language construct
of the embedded language, which defines the structure and behavior of the construct’s

3We use the term abstract syntax in the sense of [Kam98, ALSU07, Fow05] to reflect that embeddings do not have
a concrete syntax but that they reuse the host syntax to encode their expressions. Note that a language’s abstract
syntax is related to its abstract syntax tree representation, but it is not the same—in fact all possible representa-
tions of a program—whether the same program is represented by a concrete textual syntax, by a concrete syntax
tree, or by an abstract syntax tree—they all can be mapped to the same abstract syntax representation.

71

4. The Reflective Embedding Approach

default execution semantics4. Finally, there is a resulting set of inter-connected classes in
the language model, which constitute the language’s evaluation protocol.

(4) the language meta level: through which language developers can reify language con-
structs and provide alternative semantics for them. The meta level provides a meta-
interface, which is called the language’s meta-protocol. Through this interface, developers
and users can reflect on the first-class representations in the language model in order to
analyze and adapt them.

Since the architecture follows Hudak’s language embedding principle [Hud96], the initial in-
vestment for implementing a language is low. Language developers do not have to implement
a special parser and compiler for the embedded language because the embedded language’s
abstract syntax and its semantics are directly encoded in the reflective host language. The ar-
chitecture organizes a language implementation into the four levels, whereby in each level the
developer provides a part of the language implementation. Because developers can later extend
and replace a level or a part of it, a language implementation remains extensible throughout its
lifecycle.

The development process of a language is as follows. To implement an executable language, a
language developer implements each of the four levels of the reflective embedding architecture.
The instantiation of the architecture serves as a default evaluator for programs that are written by
a language end user. Finally, the language developer can compile the evaluator’s library using
the host compiler and then ship its binary to the end user. Nonetheless, the shipped language
remains extensible in the user domain.

4.1.1. Levels of the Architecture
The remainder of this section elaborates on the steps that are necessary to instantiate the levels

of the architecture. Each level implements a part of a particular language. For each level, this
section provides a general recipe how to instantiate this level. Further, this section exemplifies
how each level is instantiated, by implementing an evaluator for the SIMPLELOGO language
from Section 3 (p. 29). Figure 4.2 gives an overview of the levels for SIMPLELOGO. This section
will explain this levels step by step in the following subsections.

4.1.1.1. Language Interface Level
The language interface level defines the abstract syntax in form of a so-called language in-

terface that defines possible types of expressions of the embedded language. In the following,

4 Note that while often there is a direct relation between an expression type and a language construct, these two
concepts are not the same. While often there is a particular expression type at the syntax level to define or use
its language construct at the semantic level, there is no requirement for an one-to-one relation. First, not every
expression must related to one distinct language construct, e.g. delimiters and comments must not be represented
as the semantic level. Second, one expression type can be mapped to many language constructs, e.g. a constraint
expression. Third, a set of nested expression types may be needed to create only one language construct, e.g. a
class definition is made of various sub-expressions. Despite there is a distinction in syntactical and semantic
representations, generally, a keywords is causally connected to its language construct.

72

4.1. The Reflective Embedding Architecture

moveForward(n:Float)
moveBackward(n:Float)
turnRight(a:Float)
turnLeft(a:Float)
…

name:String
x:Float
y:Float
orientation:Float
penColor:Integer
...

Turtle

Language Interface Level Language Façade Level Language Model Level

<<singleton>>
Canvas

Meta Level Default-
MetaObject

*

1

black():Integer
…
white():Integer

forward(n:Integer)
backward(n:Integer)
right(a:Integer)
left(a:Integer)

turtle(name:String,color:Integer,body:Closure)

<<interface>>
ISimpleLogo

black():Integer
…
white():Integer

forward(n:Integer)
backward(n:Integer)
right(a:Integer)
left(a:Integer)

turtle(name:String,color:Integer,body:Closure)

thisTurtle:Turtle

SimpleLogo

<<meta-object link>>

*

1

<<meta-object link>><<meta-object link>>

<<Code>>
Calls the method moveForward
on thisTurtle to bind the
keyword forward to its semantics

<<Code>>
Draws the turtle’s
path on the canvas

<<Code>>
Creates new Turtle with name and
color, uses this for the syntax-to-
semantics binding to bind
keywords in the closure, and then
calls the closure.

Figure 4.2.: Levels of the architecture for SIMPLELOGO

we discuss the details of the development process for defining the abstract syntax of an arbitrary
language, whereby we exemplify the process for the Logo dialect SIMPLELOGO.

For each possible expression type in the embedded language, the developer defines a method
with an unique signature in the language interface. The method name constitutes a keyword in
the language, the types of parameters define the categories of the sub-expressions the expression
is composed of, and the return type of the method defines the category of expression. Together,
the methods define all possible expression types that are available in the embedded language.

The approach distinguishes three classes of expression types: (I) literal expressions, (II) op-
erations, and (III) abstraction operators. The class of the expression type determines the format
of the method to be defined, as described below:

(I) a method for each literal: Literals encode terminal expressions.

For each literal, there is an accessor method that has the literal’s keyword name, it takes
no parameters, and it returns a value of a certain type. Often the value returned by such a
literal method is a constant, but there are also literals that have a value that depends on the
context the expression is used in (such as keywords like this cf. Section 3.5.2, p. 55).

For example, Figure 4.2 shows the language interface of SIMPLELOGO, called ISimple-
Logo. For every literal that represents a color in SIMPLELOGO, ISimpleLogo defines an
accessor method. Each method is parameterless, it has the corresponding name of the
color, and it returns an integer encoding its RBG representation. ISimpleLogo defines the
methods black(), blue(), red(), green(), yellow(), and white(), that all return a value of type
Integer.

73

4. The Reflective Embedding Approach

(II) a method for each operation: Operations encode non-terminal expressions that are linked
to their sub-expressions, i.e. the operands.

For each operation, there is a method that has the name of the operation’s keyword and
that takes a parameter for each operand. Each parameter type uses a type to hold the
corresponding sub-expression. The number of the parameters corresponds to the arity of
the operation. Note that the order and the types of parameters in the method’ signature
must match the operands of the expression type.

For example, as shown in Figure 4.2, the language interface ISimpleLogo defines the do-
main-specific operation methods forward and backward for moving the turtle. As both
operations are unary, their methods take an integer parameter indicating the relative dis-
tance in units to move. Further, the interface defines the methods right and left with one
integer parameter for turning the turtle in the corresponding direction for the number of
degrees provided by the parameter.

(III) a special method for each abstraction operator: Abstraction operators5 are special
non-terminals for defining structural or behavioral abstractions, such as turtle.

Technically, abstraction operators seems similar to operations, since both a non-terminal
expression types. But in contrast to an operation, an abstraction operator can establish a
new lexical or dynamic scope for its nested sub-expressions.

For each abstraction operator, there is a method that has the keyword name of the operator
and that takes a set of parameters. Like above, the method can have parameters of any
types and order. What is special with such an abstraction operator is that at least one pa-
rameter has the type CodeBlock6. This code block parameter will contain sub-expressions
that are nested inside the abstraction operator.

For example, as shown in Figure 4.2, for the domain-specific abstraction operator turtle in
SIMPLELOGO, the language interface ISimpleLogo defines the method turtle, of which the
first parameter is the turtle’s name as a string, of which the second parameter is its initial
pen color as an integer, and of which the last parameter is a sequence of commands in
form of a code block.

Besides defining the abstract syntax of a language embedding, the language interface may de-
fine a contract in form of pre-conditions, post-conditions, and invariants. Language developers
can derive this contract from an informal or formal language specification. It depends on the
power of the host language, whether language designers can provide the contract only as com-
ments, or if it is possible for them to express the contract in the interface definition, on whose
implementations the language enforces this contract.

5At times, abstraction operators also called nested elements or control structures.
6The first-class value of a code block has the type CodeBlock.

74

4.1. The Reflective Embedding Architecture

4.1.1.2. Language Façade Level
The language façade level defines a façade class that binds the language’s syntax to concrete

semantics. This syntax-to-semantics binding allows preparing a DSL program for evaluation by
transforming the program’s textual representation into a first-class representation in the language
model.

For implementing a concrete language façade, the language developer follows the specifica-
tion of the language. The responsibility of façade implementation is to bind a language’s syntax
to semantics by implementing its language interface. For each expression type declared by a
method in the language interface, the façade implements a method with the corresponding sig-
nature. The code in each method’s implementation does not directly evaluate expressions, but it
connects the syntactic representation of the corresponding expression type to the language model
in which concrete semantics are encoded. In other words, each method implementation binds
the expression type to its corresponding concrete semantics. After all methods of the façade
class have been implemented, instances of this class can be used as an evaluator for programs
of the corresponding language.

Besides its public interface, the façade can define private members for internal handling and
context information. It defines private methods for internal handling, e.g., for resolving names
and references. It defines private fields that refer to objects in the language model. These fields
are used to store the first-class representation of programs under evaluation and their context.
More specifically, with fields, developers can constitute an evaluation context with static refer-
ences to the program structure, a heap, a stack, as well as special scoping strategies for variable
look up and binding.

When it comes to implementing a keyword method, there are two fundamental modes for
evaluation that define when to evaluate an expression: immediate or delayed evaluation. When
evaluating in immediate mode, the method implementation has the immediate side effect to eval-
uate the expression and to return its result, or to change the program’s runtime context. When
evaluating in delayed mode, the method implementation prepares the expression for evaluation
by appending its first-class representation to a language model instance from which the ex-
pression can be evaluated later on. Depending on the required language semantics, a language
developer selects the right evaluation mode for each expression type, enabling opportunities for
later resolutions and optimizations.

For example, Figure 4.2 shows the language façade class SimpleLogo that implements SIM-
PLELOGO. By implementing all methods declared in the language interface of ISimpleLogo, the
façade class establishes a syntax-to-semantics binding for every expression type in the language.
In SimpleLogo, all expression types use the immediate evaluation mode. As an instance for an
abstraction operator, Figure 4.2 sketches the pseudo code for the turtle keyword method imple-
mentation. The turtle method defines a new turtle with the name and initial pen color from the
parameters. Next, the method immediately evaluates the commands that are provided in the body
code-block parameter, which moves the turtle on the canvas. The implementations of the literal
methods for the colors immediately return the constant values of the RGB representation of the
colors. The implementations of the operation methods immediately move the enclosing turtle

75

4. The Reflective Embedding Approach

on the canvas. As Figure 4.2 indicates by the pseudo code e.g. for the forward keyword method
implementation, the method implementations use the language model classes, which binds the
keywords to concrete execution semantics. The method implementations for forward and back-
ward produce the side effect to move the turtle relative to its current position on the canvas for
the distance given by the input parameter. The method implementations of the left and right op-
erations change the orientation of the turtle relative to its current orientation for a given number
of degrees. After implementing the SimpleLogo façade, instances of this class can be used as an
evaluator for SIMPLELOGO programs.

The above SIMPLELOGO implementation only uses immediate evaluation, but delayed eval-
uation is also conceivable for this scenario. As an example for a delayed evaluation mode
in SIMPLELOGO, consider two keywords plan and do. The plan keyword is a special ab-
straction operator that takes a sequence of other operations in a parameter. It does not eval-
uate the operations immediately, but places them in a queue. For example, the expressions
“plan { right 90; forward 50 }” plans to turn the turtle 90 degrees to the right and then move it for-
ward for 50 steps. The operation do executes all operations that are stored in the queue. For
example, the program “plan {...}; plan {...}; do;” defines two groups of planned commands. Both
groups of commands will not be evaluated until the program uses the do operation. The de-
layed evaluation mode enables delaying the evaluation of commands inside the plan abstraction
operator.

4.1.1.3. Language Model Level
The language model level encodes the detailed semantics for evaluating the expressions of a

language. This level enables language developers to decompose a language into a set of domain
types of which each encodes a part of the language’s domain and semantics.

At the beginning, the developer analyzes the language domain for its semantics, whereby
identifying the domain’s underlying language constructs. It is a strategic question how the
language developer should model a particular language construct as a first-class citizen in the
language model. The answer to this question can partially sketched depending on whether the
language construct defines structure or behavior, as elaborate below.

A structural expression type describes a part of the program structure, e.g. the structural
abstraction operator turtle. When there is a structural expression type at the syntax level, the
language developer usually models a new language constructs in form of a domain type. To
model a construct, a language designer or developer identifies necessary properties that store
properties of the language construct and possible operations. To implement the construct in the
host language, a language developer implements the language construct using a class defining
appropriate members for the construct.

A behavioral expression type describes an action, e.g. commands such as forward and behav-
ioral abstraction operator repeat. When there is a behavioral expression type at the syntax level,
usually the language developer models it as a domain operation as part of some domain type.

After identifying all language constructs and implementing the complete language model, the
latter serves as the evaluation protocol of the language. In this evaluation protocol, all domain

76

4.1. The Reflective Embedding Architecture

types, their attributes and methods contribute to define the complete execution semantics for the
language. Note that breaking down the evaluation of language constructs into little pieces and
steps make them later extensible at the meta level.

For example, Figure 4.2 shows an excerpt the language model of SIMPLELOGO containing
abstractions of the Logo domain. Note that for a domain-specific language, such as Logo, when
speaking about its language model, in the following, we will refer to the language model as
the domain model. Further, we refer to a classes in the domain model as a domain type with
corresponding domain properties and domain operations. There is a singleton domain type
Canvas to which one can add Turtle objects using the domain operation add, and on which one
can paint using several primitive drawing operations, such as drawLine. According to the domain
semantics, the Turtle domain type has the attributes for its name, its x and y position on the canvas,
its orientation, and its current penColor. Further, the class provides domain operations for moving
the turtle, such as moveForward, moveBackward, turnRight, turnLeft. The implementations of
these operations encode the execution semantics for painting the path of the Turtle on the Canvas
object. For example, as indicated by the pseudo code for method moveForward, moveForward
will draw the turtle’s path drawing a line on the Canvas object from the current position of the
Turtle object and in the direction of its current orientation.

For understanding the default semantics of such a language implementation, it is important
to understand how the language façade and its model are connected. Besides binding syntax to
semantics, the language façade class hides the complexity of the detailed evaluation protocol in
the language model. The bodies of the language façade methods contain constructor calls that
create instances of domain types and calls to semantic operations on these types. For example,
the keyword method turtle calls the constructor of Turtle to create an instance — a first-class
representation for thisTurtle, and then, the keyword method forward calls the operation moveFor-
ward of this Turtle to move it.

In general, for any language that has computable semantics, a language developer can encode
such a language model that respects its language’s specification. For language embeddings, of-
ten the language specification is provided merely as an informal definition. For example, for
SIMPLELOGO, only an informal definition is available. However, it is also possible to use a
formal specification of a language’s semantics. Examples for existing formalisms are opera-
tional semantics [Plo81], denotational semantics [SS71, Ten76], or communicating sequential
processes (CSP) [Hoa78]. Independently of the selected specification, a language developer
must provide appropriate semantics classes in the language model. When using a formalism, a
language developer must provide appropriate classes whose semantics encode the theorems and
proofs of the language in the corresponding formalism. Note that although it is possible to use
such a formalism as the basis of the language specification, REA does not require the language
developer to do so.

4.1.1.4. Language Meta Level

When instantiating a language with traditional language implementation approaches, the re-
sulting language implementation has one fixed language syntax and semantics. In those ap-

77

4. The Reflective Embedding Approach

proaches, whenever the requirements for the language syntax or semantics change, the language
developers have to invasively change the code of the language implementation.

In contrast to traditional approaches, the reflective embedding architecture provides a lan-
guage meta level that allows developer to adapt a particular language implementation or a set
of language implementations, as indicated by the dashed arrows in Figure 4.1. The meta level
enables modular gray-box extensions of language façades and their language model levels—
without invasively requiring developers to change the code of these levels. For a given language
implementation, a meta level can analyze the meta-data defined by language interfaces, it can
adapt an existing syntax-to-semantic binding, and it can adapt parts of the evaluation protocol.
Since the meta level opens up language implementations in the user domain, language devel-
opers and even educated end users can tailor a given language implementation using a custom
meta level extension to their domains. Moreover, the meta level allows adapting parts of user
programs and of the host language, e.g. if an embedding requires instrumentation.

For instance, in the context of SIMPLELOGO, consider adding enforcement logic for domain
constraints to an existing implementation of the language. The benefit of supporting several eval-
uation strategies is that the language can be adapted without changing the code of the language
implementation.

The elements of the interface, the façade, and the model levels are connected to meta-objects
in the meta level. In the architecture, each object has a meta-object link to its meta-object that
takes care of its execution. By default, every object is associated with the so-called default meta-
object, which executes objects under standard OO semantics. For example, Figure 4.2 shows that
initially every class of the language implementation is associated with the default meta-object
MetaObject that is concerned with its execution. For adapting an object, one can associate the
object with a specialized meta-object that executes the object under different semantics.

For example, Figure 4.3 illustrates that there is a special meta-object ConstraintCheckingMeta-
Object for the domain type Turtle, e.g. which checks that a turtle never moves out of its canvas.
To enforce such a constraint on Turtle objects, the developer simply updates the corresponding
meta-object link that is highlighted in bold. When evaluating a program using the language
implementation with the special meta-object, the execution of the program is changed, because
the meta-object adapts the evaluation protocol such that constraints are checked.

Most importantly, the meta-objects enable opening up the implementations of objects residing
in the other levels of a language implementation in the reflective embedding architecture. The
meta-object enable modular adaptations that enable cooperatively defining parts of the seman-
tics. While one party of the language developers may define the reusable language semantics for
the party of customers (i.e. end users), there may be a third-party of language developers who
adapt those semantics using specialized meta-objects. This third-party can either provide se-
mantic adaptations that are transparent for end users, or it can provide a meta-interface with
adjustable parameters for the end user and use these parameters inside the implementation.
With the meta-objects, an end user can deploy the final language semantics in their problem
domain—either by installing a transparent adaptation, or by adjusting parameters through the
meta-interface.

78

4.1. The Reflective Embedding Architecture

moveForward(n:Float)
moveBackward(n:Float)
turnRight(a:Float)
turnLeft(a:Float)
…

name:String
x:Float
y:Float
orientation:Float
penColor:Integer
...

Turtle

Language Interface Level Language Façade Level Language Model Level

<<singleton>>
Canvas

Meta Level Default-
MetaObject

*

1

black():Integer
…
white():Integer

forward(n:Integer)
backward(n:Integer)
right(a:Integer)
left(a:Integer)

turtle(name:String,color:Integer,body:Closure)

<<interface>>
ISimpleLogo

black():Integer
…
white():Integer

forward(n:Integer)
backward(n:Integer)
right(a:Integer)
left(a:Integer)

turtle(name:String,color:Integer,body:Closure)

SimpleLogo

<<meta-object link>>

*

1
<<meta-object link>><<meta-object link>>

Constraint-
Checking-
MetaObject

Figure 4.3.: The architecture for SIMPLELOGO with alternative semantics

It is central for the architecture that one can use meta-objects to extend language façade
classes. When a façade has a special meta-object, it is actually a façade with a meta-level.
A façade with a meta-level is called a meta-façade. Having support for meta-façades is interest-
ing because meta-façades enable implementing global strategies and context-dependent strate-
gies [BV04, Cor06] for languages. Concrete use cases of meta-façades will be elaborated later
on. In particular, Section 4.2.3.3 (p. 109) presents how meta-façades can be used to implement
global analyses and transformations for composing languages.

To recapitulate, another way to understand the role of meta-objects for adapting a language is
that these objects implement a meta-protocol for those languages, i.e. an meta-interface for the
end user to adapt the language. From the perspective of existing work on meta-object protocols,
how REA uses meta-objects can be seen as proving specialized meta-objects that implement sub-
protocols [KRB91] of a meta-object protocol. But by using meta-objects for adapting language
implementation, a sub-protocol’s contribution is the knowledge that is cast in its meta-interface
and the guarantees it provides to apply specific adaptations in a certain domain. In the following,
we will discuss the practical advantages of having meta-protocols for languages using various
examples in order to evaluate the applicability of meta-protocols to various fields of language
research.

4.1.2. Program Evaluation
To evaluate a program, a syntactic representation of the program’s expressions is executed,

which results in side effects and finally computes the output of the program.
In the basic architecture, end users encode programs in abstract syntax. For example, consider

that an end user encodes the example SIMPLELOGO program shown in Listing 4.1 with abstract
syntax (cf. Section 3.4.1 for the encoding). To write a new program in the embedded language,

79

4. The Reflective Embedding Approach

the end user embeds the program’s expressions into a code block inside a host language program.
In the reflective embedding architecture, a code block’s context contains static and dynamic
information, as demanded in Section 3.4.1 (p. 48). The static information encompasses lexically
enclosing code blocks. The dynamic information encompasses a façade-object link and a meta-
object link for this block as well as variable bindings. Because the expressions are part of a code
block that is connected to a special meta-object, they become first-class and can be evaluated as
discussed in the following.�
1 {
2 turtle ("Square",red, {
3 forward(50);
4 right (90);
5 forward(50);
6 right (90);
7 forward(50);
8 right (90);
9 forward(50);

10 right (90);
11 })
12 }
� �

Listing 4.1: The abstract syntax of the program from Figure 3.1a (cf. Section 3.4.1)

In the next paragraphs, we discuss the general steps for evaluating a program—these are:
compilation, setup, and expression evaluation. For each step, we elaborate on its details and
exemplify it by stepping through the above example SIMPLELOGO program.

Given a default façade, a default model, and the default meta level, these three parts together
provide the default execution semantics (default semantics for short) that can be used to evaluate
programs. The default semantics of a language is based on: (a) a default syntax-to-semantic
binding, which is given by the default language façade, (b) a default evaluation protocol, which
is given by the default language model, and (c) the default language meta level, which is the host
language default meta-object. Unless special semantics are selected by language developers, the
default meta level implicitly executes with the default semantics. That means it executes the
objects in all other levels using its default meta-objects.

In the compilation step, there are two phases: compilation of the language and compilation
of the program. First, the language developer compiles the embedded language into a binary,
whereby the host compiler validates that language façade implements all methods that the lan-
guage interface declares. Second, the end user compiles the embedded program to a binary.
When compiling, the host compiler inserts indirections that take care of the reification of first-
class code blocks, field accesses, and method calls. In a strongly-typed language, the compiler
checks that the program only uses expressions that are defined in the language interface. Note
that this compilation step is optional. The step can be completely omitted in case the host lan-
guage is an interpreted language.

80

4.1. The Reflective Embedding Architecture

The setup step creates an instance of the language façade. The newly created instance of the
language façade is initialized with an empty interpreter environment, i.e., no expression of the
program has been loaded yet. Then, the setup step prepares the context of the program code
block. First, the setup step associates the façade as the evaluator of the code block, such that
the created façade instance serves as an evaluator for executing the program. Second, the setup
step uses the default meta-object, or optionally it associates a special meta-object with the code
block. These two entities provide a dynamic context for evaluating the code block. To uniformly
bind syntax-to-semantics for all expressions in the program, it is the responsibility of the façade
to propagate itself to the context of all nested code blocks in the program. Further, for uniform
execution semantics, the façade propagates the selected meta-object to all nested code blocks
and to all domain objects it creates.

The expression-evaluation step evaluates the program code block with all contained expres-
sions. The most important participants in this step are the program code block, the (default)
meta-object of code blocks, the language façade, and its model. In a nutshell, when evalu-
ating a program’s code block, for each expression encountered in the block, the code block’s
meta-object produces a method call and dispatches this call to the code block’s language façade.
This façade then passes the call through the different levels in the architecture, which yields a
computation of the expression.

By default, expressions are evaluated in the sequential order in which they are defined. Before
evaluating an expression itself, all of its sub-expressions are evaluated from left to right, whereby
the evaluation of each sub-expression produces another method call.

When evaluating an expression or sub-expression (e.g., forward 50) and producing a method
call via the block’s meta-object, the call uses the name of the expression’s abstract syntax oper-
ator (e.g., forward), and the evaluated sub-expressions are passed to the call as parameters (e.g.,
50). Next, the block’s meta-object dispatches the method call to the most-specific method imple-
mentation of the language façade, which binds concrete semantics to the expression. Executing
the method implementation evaluates the expression, which produces possible side effects and
possibly returns a computation, as we will elaborate in an example below. For each expression,
the method call can return nothing (when it has only a side effect on the language model), it can
return a primitive value with the evaluation result, or it can return a reference to an object of the
language model.

The aggregated method calls that result from evaluating all expressions, their side effects and
computations accomplish the evaluation of the complete program.

For example, evaluating the SIMPLELOGO program in Listing 4.1 paints a red square on the
canvas. In the figure, there are three method calls with three different semantics. First, the figure
illustrates ordinary method calls using solid lines. Second, when evaluating a code block, there
is a special method call «evaluate» to its first class value, which the figure illustrates using a
dotted line. Third, when encountering an expression inside the code block, the block’s meta-
object produces a method call and dispatches this, which the figure illustrates using a dashed
line. Step-by-step, we will explain the evaluation of the program in the following.

81

4. The Reflective Embedding Approach

:SimpleLogo

Square:Turtle3.2: <<evaluate>>

3.2.1: forward(50)
3.2.2: right(90)
3.2.3: forward(50)
3.2.4: right(90)
3.2.5: forward(50)
3.2.6: right(90)
3.2.7: forward(50)
3.2.8: right(90)

3.1: create("Square",0xFF0000,body)
3.2.1.1: moveForward(50)
3.2.2.1: turnRight(90)
3.2.3.1: moveForward(50)
3.2.4.1: turnRight(90)
3.2.5.1: moveForward(50)
3.2.6.1: turnRight(90)
3.2.7.1: moveForward(50)
3.2.8.1: turnRight(90)

body:CodeBlock

program:CodeBlock

3.0: turtle("Square",0xFF0000,body)

1.0: <<evaluate>> call evaluating a code block
ordinary method call

2.0: red()

call produced from an expression

Figure 4.4.: Evaluation of the SIMPLELOGO program from Listing 4.1

First, the step 1.0 in Figure 4.4 evaluates the program code block in Listing 4.1 (p. 80), lines 1–
12. In this case, the program uses the concrete semantics provided by an instance of the language
façade SimpleLogo and the default meta-object. Because of using the default meta-object for
evaluating the code block that wraps the program, it uniformly delegates all method calls that it
produces to the SimpleLogo façade.

In Listing 4.1, line 2 creates a new turtle abstraction (turtle(n,c) {body}) with three sub-expressions
(n, c, body) that are evaluated before the enclosing expression.

The first sub-expression (n) evaluates to a primitive string value, namely “Square”.
The second sub-expression (c) uses the domain-specific literal red, which produces a polymor-

phic method call (step 2.0 in Figure 4.4) to method “red” with no parameters. To evaluate the
second sub-expression, the program code block’s meta-object produces a call to method red and
dispatches this call to the SimpleLogo façade, which returns as its result the RBG representation
of the color red as an integer, namely “0xFF0000”.

The third sub-expression (body) defines the nested code block from lines 2 to 11. It creates a
code block containing the command sequence that is not yet evaluated, and it returns the first-
class value of the created code block.

Then for the turtle expression, the block’s meta-object produces a call (step 3.0) to method
“turtle” with the three evaluated sub-expressions as the parameters. The block’s method object
dispatches the method call to the language façade instance of SimpleLogo executing the turtle
abstraction operator implementation. First, the abstraction operator creates a new Turtle instance
(step 3.1) from the language model at position (x=0,y=0) with name “Square” and the pen color
red. Second, it propagates the language façade and the meta-object to the code block. Third, it
evaluates the code block (step 3.2) containing the sequence of commands. Because the nested
code block is associated with the meta-object and the façade instance, it uses them to evaluate
its nested expressions.

82

4.1. The Reflective Embedding Architecture

When evaluating the nested code block, the expression forward 50 in line 3 has the sub-
expression 50 that evaluates to the primitive value 50. When encountering the forward expres-
sion, the nested block’s meta-object produces a call (step 3.2.1) to method “forward” passing to
it the value 50 as a parameter. Next, the meta-object dispatches the call to the façade instance
of which the forward operation implementation moves the Turtle instance through a method call
Turtle.moveForward(50) (step 3.2.1.1). Similarly, line 4 uses the expression right 90 that produces
a call (step 3.2.2) to method “right” with the parameter 50. The nested block’s meta-object dis-
patches the call to the implementation of the right operation that manipulates the orientation of
the Turtle instance using another method call Turtle.turnRight(90) (step 3.2.2.1). The other forward
and right expressions in the nested code block are evaluated analogously to the above expressions
(steps from 3.2.3/3.2.3.1 up to 3.2.8/3.2.8.1).

83

4. The Reflective Embedding Approach

4.2. Key Mechanisms for Language Evolution
To support language evolution, the reflective embedding architecture provides three key mech-

anisms: (1) language polymorphism, which enables defining different versions of semantics for
a given language, (2) semantic adaptations, which enables partially tailoring a given language
semantics, and (3) language combiners, which enables composing languages. Language devel-
opers can use these mechanisms to augment language embeddings for upcoming evolutions.

In the following, we discuss the conceptual details of the three key mechanisms.

4.2.1. Language Polymorphism
When developing a language for several stack holders, there are situations in which programs

that comply with a given syntax need to be executed under different semantics. Before it is
possible to evaluate a program in a given syntax, the syntax must be bound to alternative seman-
tics. When evaluating a program under such different semantics, the evaluation process treats
a possible concrete semantics as a black-box. This black-box must comply with the language
interface, but it is free to realize various execution semantics internally.

A key property of the reflective embedding approach is the strict separation between a lan-
guage specification and its implementation. For a given language, the specification prescribes
the syntax and semantics of its keywords, but often it does not prescribe the concrete implemen-
tation of the keywords and the possible evaluation strategies of which different are conceivable.
For a given language, a program is always developed with respect to the language specification,
but it are not tied to any particular language implementation. This is because the architecture has
a language interface that abstracts from possible façades that implement it. The interface’s ab-
straction establishes a loose coupling between a program and possible evaluators of its language,
and therefore, it enables support for exchanging the evaluator (i.e. language polymorphism).

To achieve this loose coupling, it is central that code blocks have a special meta-object and
a link to a façade instance that realizes a dynamic syntax-to-semantic binding. Because a code
block’s meta-object evaluates every expression—inside the block, given in abstract syntax—
into a method call—with a signature corresponding to the abstract syntax—and because the
meta-object delegates this call to the currently selected façade instance, the dynamic method
dispatch takes care of retrieving the right semantics—by executing the façade’s method with the
corresponding signature. Because a code block’s meta-object dispatches the method calls on a
possible inheritance hierarchy of language façades, always the most specific keyword method
implementation in one of the façade classes in the hierarchy is executed. By inheriting keyword
methods, language polymorphism enables building hierarchical extensions.

To allow program execution under different semantics, language polymorphism allows ab-
stracting over semantics of a given language interface that has various implementations. To
provide alternative language semantics for evaluating programs, a language developer reim-
plements the default execution semantics with alternative execution semantics by providing an
alternative language implementation of the language interface. To set up new alternative se-
mantics for evaluating a program, it is sufficient to instantiate a different façade and to register
this façade with its code block’s meta-object. Through the dynamic method dispatch of the

84

4.2. Key Mechanisms for Language Evolution

language polymorphism mechanism, the so established dynamic syntax-to-semantic binding—a
key property of the architecture—enables multiple interpretations with the semantics executing
on the corresponding façade instance.

The following two section elaborate on the detailed aspects of hierarchical extensions and
abstracting over semantics that are enabled through language polymorphism.

4.2.1.1. Hierarchical Extensions
In the reflective embedding architecture, the syntax and semantics of a language embedding

is statically extensible. Language polymorphism allows inheriting a base language’s syntax,
which is inspired by grammar inheritance [AMH90, KRV08, Par08], but in addition, it allows
inheriting the base language’s semantics.

Given a base language to be extended, language developers can provide new version of the
language with syntax and semantics that extend the base language, whereby reusing parts of the
base implementation. They incrementally extend the language syntax and semantics whereby
inheriting the base’s language interface, its language façade, and its language model.

…
setPenColor(c:Integer)
...

...

ExtendedTurtle

Language Interface Level Language Façade Level Language Model Level

...
forward(n:Integer)
...

<<interface>>
ISimpleLogo

...
forward(n:Integer)
...

SimpleLogo

home()
clearscreen()
showturtle()
hideturtle()
setpencolor(c:Integer)
penup()
pendown()

<<interface>>
IExtendedLogo

turtle(name:String,color:Integer,body:Closure)
home()
clearscreen()
showturtle()
hideturtle()
setpencolor(c:Integer)
penup()
pendown()

ExtendedLogo

...

Turtle
SIMPLELOGO

<<provides>>

<<provides>>

SIMPLELOGO
EXTENDEDLOGO

<<delegates>>

<<delegates>>

Figure 4.5.: A language extension to SIMPLELOGO

As an example, reconsider the scenario from Section 3.1.1 (p. 31) that adds the EXTENDED-
LOGO keywords to SIMPLELOGO. To add the new keywords, the language developer must
define only the new parts for their syntax and their semantics, as shown in Figure 4.5. To define
new syntax, the language developer needs to extend the base language interface with IExtended-
Logo that declares new keyword methods for the additional expression types, namely setpen-
color, home, clearscreen, penup, pendown, hideturtle, and showturtle. To define new semantics,
the developer implements the methods of this interface in the class ExtendedLogo—a subclass
of SimpleLogo. For instance, the class ExtendedLogo implements the setpencolor method. To ex-

85

4. The Reflective Embedding Approach

tend the evaluation protocol, when new language constructs are introduced, the language model
needs to be extended. For instance, to implement the side effect of evaluating the keyword set-
pencolor, we need access to the pen color of the Turtle objects. Therefore, the developer creates
a subclass ExtendedTurtle that extends the base class Turtle and that provides a setter setPenColor
for adjusting the pen color. A consequence of extending the Turtle class is that we also have to
override the turtle keyword in ExtendedLogo, so that the overridden keyword method instantiates
this subclass instead of base class Turtle.

Note that, because of the indirection that the code block’s meta-object separates a program
from the façade that evaluates it, the developer can select a façade instance with the right syntax
and semantics for his or her requirements. This façade can be one of several possible extensions
from an inheritance chain of language extensions.

While subclasses of an extension are allowed to extend and override existing syntax and se-
mantics, there is an important guarantee. As long as an extension is conservative (cf. Sec-
tion 3.1.2.1, p. 34), object-oriented polymorphism enables a controlled extension of the execu-
tion semantics for existing programs. When using such a conservative extension to evaluate
a program that has been written for the base language, the extension evaluates the program
whereby it obtains equivalent results as if the base language would have been used for evalua-
tion. That means, in this case, the code block’s meta-object implementing a default OO dispatch
preserves backward compatibility for base programs.

4.2.1.2. Abstracting over Semantics
In the reflective embedding architecture, one can customize the evaluation of programs us-

ing object-oriented composition to enable a new syntax-to-semantics binding for a language at
runtime. Given a language interface with its default semantics, a language developer can pro-
vide alternative semantics by implementing the language interface with an alternative language
façade and model.

To bind the syntax to its execution semantics for a program, one sets up an instance of the
façades as the code block’s meta-object of this particular program. Abstracting over semantics
of a program is inspired by the idea of recursively folding over HOAS proposed by Carette et
al. [CKS09], and pluggable semantics proposed by Hofer et al.[HORM08]. Nonetheless, REA
extends these two existing concepts with runtime pluggability.

Support for abstracting over semantics and pluggability are crucial properties in REA, since
REA’s other mechanisms are based on top of these properties. In particular, these two properties
enable analyses and transformations in REA.

4.2.1.2.1. Analyses
Abstracting over semantics supports implementing analyses. For example, Figure 4.6 presents

two different façades for EXTENDEDLOGO that both implement its language interface IExtended-
Logo. The first façade is implementing the default execution semantics of EXTENDEDLOGO.

The second façade reimplements the complete language interface IExtendedLogo in the façade
class ExpressionCounterExtendedLogo, i.e., it binds the syntax to a totally different semantics—a
so-called analyzer façade that implements an analysis as an abstract interpretation that counts

86

4.2. Key Mechanisms for Language Evolution

Language Interface Level

Language Façade Level Language Model Level
...
forward(n:Integer)
…

<<interface>>
IExtendedLogo

Turtle

...
forward(n:Integer)
…

ExpressionCounterExtendedLogo

<<Code>>
Increases expression-
Counter by one

ExtendedLogo

expressionCounter:Integer

Metric

Language Façade Level Language Model Level

Figure 4.6.: Two different semantics for EXTENDEDLOGO

expressions. Instead of drawing the turtle on a canvas, ExpressionCounterExtendedLogo imple-
ments the alternative semantics for every keyword method declared in the IExtendedLogo inter-
face. In the abstract-interpretation implementation, every method implementation increases an
expressionCounter value. Note that, as Figure 4.6 indicates, for its abstract interpretation, the
ExpressionCounterExtendedLogo uses a different language model—the domain of the metric for
expression counting, which is modeled as the class Metric that holds the expressionCounter as
an Integer. Note that Section 10.6.1 (p. 247) presents the implementation details of the above
analyzer façade.

Abstracting over semantics support is not limited to local analyses that analyze expressions in
isolation to each other, like expression counting. It is also possible to implement analyses with
global strategies that abstract over the concrete expression types, similar to global strategies
and that can take into account context information in source-transformation systems [BV04,
Cor06]. To implement a global analysis, the developer needs to implement an analyzer façade
with a meta-level—a meta-façade (cf. Section 4.1.1.4). Such an analyzer is therefore called a
meta-analyzer. such a meta-analyzer comes with a special meta-object that implement a pattern
matching on method calls and an a generic strategy how to analyze these calls.

There are several example use cases of meta-analyzers. In particular, meta-analyzers enables
to analyze method calls from DSL programs from different languages, e.g. to detect ambiguous
expressions in a language composition, as it will be discussed later on in Section 4.2.3.2

4.2.1.2.2. Transformations

Default execution and analyzes are not the only use cases for abstracting over semantics, lan-
guage polymorphisms also enables transformations. Technically, transformations are similar to
analyses, except that the domain is not an abstract domain model but a concrete target language
model. The target language model is subsequently used to execute the transformed program.

87

4. The Reflective Embedding Approach

For a given transformation, embedded DSL programs are encoded in the source language. The
transformations have at the following levels in REA. It has a special façade that implements the
language interface of the source language and they have a special language model—the target
language model. When using the transformation to evaluate the program under the transfor-
mation semantics, the evaluation creates another representation of the evaluated program in the
target model. The transformed target model can then be pretty printed into a string representation
or itself be executed.

In REA, transformations support both exo-transformations and endo-transformations. REA
support implementing exo-transformations as embedded compilers. In particular, Sec-
tion 10.3.2.2.2 (p. 229) implements an embedded compiler for standard SQL.

Further, REA supports implementing endo-transformations with special transformer façade
that defines a meta-level. Such a transformer is called a meta-transformer. A meta-transformer
has a special meta-object that adapts method calls on the transformer façade, and it dispatches
the adapted method calls back to the façade. What is special about endo-transformations is that
they enable the transforming programs that are running.

A meta-transformer allows implementing strategies for a transformation. Similar to global
strategies in analyses, meta-transformers enable global transformation strategies to be imple-
mented that abstract over concrete expression types to be transformed. Further, a meta-transformer
can take into account context information for the transformation results. There are several exam-
ple uses cases of meta-transformers in REA. Specifically, meta-transformers enables to adapting
method calls from DSL programs, e.g. to define a resolution strategy that disambiguates expres-
sions in a language composition, as it will be discussed later on in Section 4.2.3.2.

4.2.1.3. Program Evaluation under Alternative Semantics
To calculate the average time to draw commands in a program, we can evaluate the same pro-

gram twice on both façades. When using the ExpressionCounterExtendedLogo façade to evaluate
the program presented in Listing 4.2, the façade performs an abstract interpretation that counts
25 sub-expressions7 for the program.

With OO composition, language polymorphism enables a dynamic syntax-to-semantic bind-
ing because of the three important consequences explained below.

First, a façade does not have to implement a fixed syntax-to-semantics binding itself. For
example, a façade can hold references to other façades and delegate method calls to these façades
to obtain a syntax-to-semantic binding from them. This allows implementing modular façades
using a set of collaborating classes.

Second, it is even possible to make the choice of the concrete façade for a language at runtime,
e.g. when the right façade depends on the available runtime infrastructure.

Third, multiple sophisticated alternative semantics are conceivable for one particular lan-
guage. With such multiple semantics, we process the same program several times, each time

7The program in Listing 4.2 has 25 sub-expressions: 1× turtle, 1× red, 9× forward, 9× right, 1×penup,
1× left, 1×pendown, 1×black, and 1× setpencolor.

88

4.2. Key Mechanisms for Language Evolution

�
1 {
2 turtle ("A_red_and_a_black_square",red,{
3 forward(50); right(90); forward(50); right(90); forward(50); right(90); forward(50); right(90);
4 penup();
5 right (90); forward(100); left (90); // goto (x=100,y=0)
6 pendown();
7 setpencolor(black)
8 forward(50); right(90); forward(50); right(90); forward(50); right(90); forward(50); right(90);
9 })

10 }
� �
Listing 4.2: A program using the EXTENDEDLOGO language extension

using another façade. In such a processing chain, it is possible to first analyze a program
(e.g. testing a property), and then, to only execute it depending on the result of the analysis
(e.g. only if a required property is fulfilled by the program).

In the context of this thesis, the resulting dynamic syntax-to-semantic binding is used to im-
plement versatile semantics for embedded languages. The architecture’s support for abstracting
over semantics is used to enable language compositions as well as various analyses and transfor-
mations that allow analyzing, or respectively transforming, the representation of a program un-
der evaluation. To illustrate support for program analyses, Section 10.6.1 (p. 247) shows how to
check coding conventions in DSL code, and Section 10.6.2 (p. 254) demonstrates how to check
semantic invariants for DSL programs. To illustrate how abstracting over semantics enables
transformations, Section 10.7 (p. 258) demonstrates optimizing embedded programs.

4.2.2. Meta-Level Extensions: Semantic Adaptations using the Meta Level

The architecture supports meta-level extensions, which enables gray-box extensions of exist-
ing language implementations – without changing their code. A meta-level extension is a set
of meta-objects that extends a language implementation. A meta-level extension is necessary,
when a language end user has a special requirement on an existing language, but it is not possible
to adapt the code of the language implementation. In these situations, gray-box extensions can
adapt internals without changing the code, and therefore, they can better address scenarios, in
which there are multiple conflicting requirements on one language implementation, than exten-
sions with language polymorphism. Gray-box extensions are necessary when a new requirement
invalidates parts of the language specification and its implementation. If only one user has this
requirement, it may be too much effort to maintain a separate language extension. To cope with
language evolutions of single users, in the reflective embedding architecture, a language devel-
oper can adapt parts of a language’s semantics in the user-domain. We refer to such adaptation
as a semantic adaptation. To adapt the semantics of a language embedding, the reflective em-
bedding architecture allows adapting the internals of a language implementation by using the
host language’s meta-object protocol. Note that if there is an educated user that knows how to
use the host language’s meta-object protocol, even this user can semantically adapt a language.

89

4. The Reflective Embedding Approach

<<impl>>

<<impl>>
<<instance of>>

<<meta-object link>>

<<meta-object link>>

Figure 4.7.: The meta level for language implementations

For adaptations, the developer or the user often do not need to know the implementation details
of the adapted language but only its interfaces.

The presence of the meta level in the architecture is fundamental to allow semantic adapta-
tions. The language semantics are first-class because the semantics of the language constructs
are reified in meta-objects as indicated by the abstract example in Figure 4.7. In a language im-
plementation, every class (such as DomainClass) is associated with such a meta-object (such as
x), which initially is the default meta-object of any new instance of this domain class. A meta-
object dispatches the method calls received by a domain object to a concrete implementation of
its corresponding operation. The links meta-object and/or impl can be changed at runtime, which
is the key to allow dynamic semantic adaptations. The setup of the links to the meta-object
and its links to the operations determine the final semantics of a language construct, because
the meta-objects are responsible for handling the evaluation of each language construct. For
each language construct, its final semantics is defined by dispatching each method call in the
evaluation process via meta-object links and over the operation link to the right implementation
of the domain class operation. Initially the links of the default meta-object refer to the default
implementation of the corresponding domain operation as defined e.g. in the language model.
E.g., to adapt a language’s semantics, a language designer can exchange the links to alternative
meta-objects or to alternative operation implementations.

To semantically adapt a given language with its default semantics defined in an existing im-
plementation, a language developer who knows the user’s domain provides special meta-objects
that adapt the execution of its façade and model. Specifically, the language developer provides
specialized method implementations that encode an alternative semantics for the façade and
model. The new meta-objects dispatch to specialized method implementations that provide an
alternative semantics for the language implementation. E.g., by using reflection to change the
classes of the language implementation, one can replace parts of the evaluation protocol, which
effectively adapts the language semantics.

For example, Section 3.1.2.2 (p. 35) has mentioned that when growing Logo with support for
concurrency, the language implementation additionally has to guarantee that there must be no
collisions between physical turtles controlled by a Logo program. A meta level extension enables
a modular enforcement of such constraints using a specialized meta-object, similarly to the class
ConstraintCheckingMetaObject as indicated in Figure 4.2. In this scenario, the special meta-object
changes the method dispatch of the language implementation to realize an alternative semantics
that guarantees absence of collisions. Instead of directly dispatching a method call to a method

90

4.2. Key Mechanisms for Language Evolution

that moves the turtle, the special meta-object dispatches every call to an operation that moves
the turtle to an alternative method implementation that first checks for possible collisions and
prevents them before actually moving the turtle. Later, Section 10.1.2.2 (p. 215) elaborates the
implementation of this semantic adaptation scenario in detail.

Semantic adaptations allow reusing the existing language implementation while adapting the
evaluation of programs with alternative meta-objects. When encountering keywords in the pro-
gram, the keyword-method calls and calls inside the language model are then handled differ-
ently. With a meta-level extension, the alternative meta-object can dispatch calls inside the lan-
guage implementation to alternative method implementations that may encode different seman-
tics. Therefore, existing language implementations can be extended without changing existing
classes, even though no façade or model is exchanged, this still results in an adapted evaluation
of the program.

It can be complicated to extend a language’s semantics at the meta level, since the developer
needs to select what parts of the language to extend. Therefore, language developers require
means to express where meta-level extensions should be effective. To meet this demand, in
Section 4.2.2.1, the architecture provides semantic adaptation scopes to let a language developer
selectively control adaptations on any object in the architecture. Section 4.2.2.2 discusses what
extensions points in the architecture a language developer can extend with these scopes.

4.2.2.1. Semantic Adaptation Scopes
When adapting objects’ fields and methods at the meta level, the language developer needs to

control what parts of object are adapted by a meta-level extension. To control adaptations, the
architecture proposes to precisely scope semantic adaptations along three kinds of dimensions:

1. locality of adaptations (Section 4.2.2.1.1),

2. atomicity of adaptations (Section 4.2.2.1.2), and

3. time of adaptations (Section 4.2.2.1.3).

These dimensions help the different stake holders of a language to collaboratively provide
parts of the semantics. First, they guide the language developer who designs a language where
it is possible to plan for extensions. Second, they guide the language developer who implements
the language how to build an implementation that is open for extensions. Third, they guide the
language developer who customizes the language for the end users, or the end user himself, how
parts of the language implementation can be extended.

4.2.2.1.1. Dimension: Locality of Adaptations The first dimension along which language
semantic adaptations are classified is the locality of adaptations. For example, the semantics of
method dispatch can be extended in certain scopes. This dimension is discrete and has 2 values:

D1.a) global semantic adaptation (class wide) and

D1.b) local semantic adaptation (instance local).

91

4. The Reflective Embedding Approach

A global semantic adaptation affects the semantics of a certain language construct in general.
For example, consider embedding an OO language by modeling OO language constructs such a
classes, objects, methods, and fields. In such an OO language embedding, in the language model,
there would be a type to model methods, say Method, and this type would have an operation, say
dispatchCall(...), that encodes method dispatch semantics. Semantic adaptations that override
that method allow adapting the method dispatch semantics for every method call from a single
dispatch semantics to a multi-dispatch semantics. For a multi-dispatch semantics, it is necessary
to takes into account the types of all method parameters for finding the most specific method
implementation. Thus, for every call to method dispatchCall(...), the adaptation can execute
another method instead, say dispatchCallWithMultiDispatch(...). Because, such a global semantic
adaptation changes the semantics of all instances of a type, it scopes the adaptation of a language
construct’s semantics over all programs.

On the contrary, a local semantic adaptation affects only one particular usage of a language
construct. For the previous example, since multi-dispatch semantics do not only take into ac-
count the receiver type but also the parameter types to find the right method implementation at
runtime, it poses an overhead on every method call. Therefore, it can be advantageous to ap-
ply the semantics adaptation of the method dispatch mechanism only to the methods of those
classes for which multi-dispatch is advantageous (e.g., classes that implement the visitor pattern
[GHJV95]). Local semantic adaptations allow precisely controlling the scope of the effects of a
semantics adaptation on parts of the language model.

Scoping adaptations can be used to precisely control the semantic adaptations in other pro-
gramming paradigms. In aspect-oriented programming, either semantics of all aspects can be
adapted or the semantics of only one specific aspect instance can be adapted. In a similar way
for a domain-specific language, a language construct that represents a domain concept can be
adapted.

To recapitulate, with global and local semantic adaptations, either the semantics of the ab-
straction is adapted in general or it is only adapted for one use of this abstraction.

To scope the locality of an adaptation, the architecture either adjusts the meta-objects of types
or objects. Consider the abstract example in Figure 4.8 that shows how the two kinds of variabil-
ity with regard to the locality dimension – domain type versus domain object – are supported in
the architecture, as elaborated for each case below.

The upper part shows the effects of semantic adaptations whose scope is an entire domain
type; the lower part corresponds to an adaptation that is specifically scoped for a particular
domain object, thus, only domain objects are shown there. Both parts show the relation between
domain types and domain objects to their corresponding semantics (encapsulated in a meta-
object) before and after the adaptation.

In the upper left quadrant, the domain type A is bound to the default semantics represented
by the meta-object x. Every new domain object that is created, e.g., a, runs under the default
semantics. The semantic adaptation defines new semantics for domain type A. In the upper right
quadrant, a new meta-object y is defined to represent the new semantics and A is associated with

92

4.2. Key Mechanisms for Language Evolution

A:Class

x:MetaObject

a:A

<<default>> New instances have
default semantics

A:Class

x:MetaObject y:MetaObject

b:A

New instances have
adapted semantics

(D
1.

a)
 G

lo
ba

l
se

m
an

tic
 a

da
pt

at
io

n

before semantic adaptation after semantic adaptation

c:A

x:MetaObject

d:A

Both objects have
been instantiated with
the same semantics

c:A

x:MetaObject z:MetaObject

d:A

Only b has adapted
semantics

(D
1.

b)
 L

oc
al

se
m

an
tic

 a
da

pt
at

io
n

Figure 4.8.: Dimension 1 – locality of adaptations

it. Any domain object created subsequently runs under the new semantics: the domain object
b is created after the adaptation, hence, it is linked to the new meta-object y. Objects that were
created before the semantic adaptation continue to run under the previous semantics, e.g., a is
still linked to the meta-object x.

In the lower left quadrant, the domain objects c and d are created with the same semantics.
The object-level semantic adaptation depicted here modifies the semantics of d only. The lower
right quadrant shows the domain objects, meta-objects, and their relations after the semantic
adaptation has taken place. While c keeps the former semantics, d uses the new semantics
represented by meta-object z.

As a concrete example for using the scope of variability in the Logo domain, consider adapting
the execution semantics for an optimization in the same way for every turtle in a program, in
contrast to, adapting only the execution semantics of one particular turtle in an individual way.
With a global semantic adaptation, it is possible to adapt the execution semantics of all turtles
in a program for using a standard optimization. Conversely with a local semantic adaptation,
we can restrict an adaptation to a single instance. This allows a selective optimization for an
individual turtle. A selective optimization only affects the drawing operations of a particular
turtle, while all other turtles execute with the standard optimization semantics.

93

4. The Reflective Embedding Approach

4.2.2.1.2. Dimension: Atomicity of Adaptations The second dimension of semantic adap-
tations is the atomicity of adaptations that are made. The size of these adaptations ranges from
parts of the semantics of a language construct to its complete semantics:

D2.a) domain-operation level: exchanges only one operation or field of a certain type

...

D2.b) module level: exchanges all operations or fields of a certain type

Indeed changing one part of a language’s semantics often requires also changing another part
of the semantics, When several parts need to be adapted, these multiple “elementary” semantic
adaptations must be packed as one unit of adaptation. For example, when adapting the method
dispatch in an OO language, often the field dispatch must be adapted as well. In the case of
adapting the language model of the OO language, we must not only adapt the implementation
of Method.dispatchCall, but also the dispatch logic for fields, say by overriding the methods
Field.dispatchRead and Field.dispatchWrite. To gain altered semantics that are consistent, it is
important that multiple of such adaptations are applied at once.

To enable adaptations with a different atomicity, the architecture applies one meta-object that
contains one or several adaptations as one unit. Consider the abstract example in Figure 4.9,
which depicts how adaptations at different levels of atomicity are supported in the architecture.
The upper part shows the most fine-grained semantic adaptation at the level of an atomic domain
operation. Unlike Figure 4.8, the meta-objects are represented along with the domain operations.
Doing so, we can highlight that the adaptation can separately impact a particular operation. In
the upper left quadrant, the object a is attached to meta-object x; in the upper right quadrant,
the same object is attached to a new meta-object y, which is the result of cloning x and binding
foo to a new implementation, called fooImpl2. This way, the whole default semantics gets reused
except the re-bound domain operation(s).

In general, it is likely that a semantic adaptation affects several places in the default imple-
mentation of the semantics. Obviously, it is preferable to apply the adaptations together as a unit
of semantic adaptation. In contrast to the atomic adaptation at the level of a single domain opera-
tion, in this case the changes have to be packed into a bigger variability unit. This abstract unit is
depicted as the gray rectangle in the lower left part of Figure 4.9. When an adaptation happens,
all changes of this adaptation unit are performed in concert. The impacted domain objects are
then bound to a new meta-object, which is the result of mixing the previous meta-object and the
semantic adaptation unit. In Figure 4.9, after the adaptation, the domain object b is attached to
the meta-object z, which binds both foo and bar to new implementations.

As a concrete example for using the atomicity of adaptations in the Logo domain, consider
adapting the execution semantics for several keywords at once. When we want to prevent that the
pen color can be changed, we must adapt the semantics of only one operation—the setpencolor

94

4.2. Key Mechanisms for Language Evolution

a:A

foo()
bar()

x:MetaObject barImpl:Operation

fooImpl1:Operation

(D
2.

a)
 D

om
ai

n-
op

er
at

io
n

le
ve

l before semantic adaptation after semantic adaptation

(D
2.

b)
 M

od
ul

e
le

ve
l

fooImpl2:Operation

a:A

foo()
bar()

y:MetaObject barImpl:Operation

fooImpl1:Operation

fooImpl2:Operation

a:A

foo()
bar()

x:MetaObject
fooImpl2:Operation

fooImpl1:Operation

barImpl1:Operation

a:A

foo()
bar()

z:MetaObject

barImpl2:Operation

fooImpl2:Operation

fooImpl1:Operation

barImpl1:Operation

barImpl2:Operation

semantic module

...

Figure 4.9.: Dimension 2 – atomicity of adaptations

operation. We can replace the operation that implements the semantics of this keyword with
an empty implementation. Conversely, when we want to prevent collisions between turtles,
we need to adapt the semantics of all drawing operation. By applying adaptations to multiple
domain operations in one atomic step, we can ensure that a pre-condition is checked for all
drawing operations before these operations are actually executed.

4.2.2.1.3. Dimension: Time of Adaptations The third dimension characterizes the relation
between the point in time in which the semantic adaptations happen and the point in time when
DSL programs are executed:

D3.a) pre-execution semantic adaptation, and

D3.b) context-dependent semantic adaptation.

In most cases, the right semantics for a program execution can be determined beforehand and
stays fixed for a complete program run. But sometimes, the selection of the right semantics
depends on the execution state of a DSL program, i.e., a change in the DSL program context
triggers a semantic adaptation.

To enable different times of adaptation, the architecture distinguishes when meta-objects are
replaced. Consider the following two abstract examples of execution traces that illustrate the

95

4. The Reflective Embedding Approach

--- Loading Interpreter
+++ Adaptation
+++ Adaptation
%%% Program Execution
%%%
%%%
%%%
%%% End of Execution

--- Loading Interpreter
%%% Program Execution
%%%
+++ Adaptation
%%%
+++ Adaptation
%%%
%%% End of Execution

Figure 4.10.: Dimension 3 – time of adaptations

two possible points in time when adaptations may take place. Figure 4.10 shows the difference
in the execution traces of a pre-execution adaptation and a context-dependent adaptation. In both
traces, the first step is to load the DSL program of which the corresponding trace is prefixed by
“– – –”. Then, two kinds of execution steps can occur: semantic adaptation (“+ + +”) and normal
DSL execution (“% % %”).

The left-hand side of Figure 4.10 schematically depicts a pre-execution semantic adaptation:
the semantics of the DSL changes before any domain object is created, or any call to a domain
operation has occurred. Note that multiple adaptations can be applied as indicated. Then, the
DSL program is evaluated until completion. In this case, the adaptation is independent of the
DSL execution.

The right-hand side of Figure 4.10 depicts an execution of a context-dependent semantic adap-
tation. Unlike the previous trace, the adaptation happens during DSL execution, depending on
the concrete values of domain objects. This is symbolized by the interlacing of several regular
domain operation execution and semantic adaptation steps. Such context-dependent adaptations
enable semantic self-adaptation of DSL programs.

As a concrete example for using the context-dependent semantic adaptation in the Logo do-
main, consider adapting the execution semantics for the domain operations at different times.
When we know that using a static optimization strategy is always beneficial, we can apply a
semantic adaptation for the optimization before executing a Logo program. Conversely, there
are optimizations for which it cannot be decided whether the optimization is beneficial, because
it depends on the application context whether there will be an improvement when using this op-
timization. In such cases, the architecture allows using a context-dependent semantic adaptation
to apply the optimization at runtime when we know that this condition is met.

Context-dependent semantic adaptations deserve a closer discussion. Therefore, Section 6
(p. 135) motivates using context-dependent adaptations to enable self-adaptive [Hor01] in DSLs,
and demonstrates more concrete use cases and that elaborates their implementation. Fur-
thermore, other applications of context-dependent adaptations are conceivable, such as for
implementing runtime checking/verification [CR06] and dynamic activation of language con-
structs [PGA01, CH05, Tan09].

96

4.2. Key Mechanisms for Language Evolution

4.2.2.2. Extensions Points of the Architecture

After we have discussed how dimensions allow controlling adaptations by restricting their
effect to particular regions, this section gives an overview of the flexibility of the meta level
that enables late adaptations in the reflective embedding architecture. The meta level enables
flexible semantic adaptations, however the line of reasoning is not that every possible semantic
extension of a language should be implemented using late adaptation. Often, it is sufficient to
extend a language with polymorphism, which is preferred. Rather, the argumentation line is that
late adaptation should be used whenever polymorphism does not facilitate a certain extension
scenario. To understand how late adaptation are applied, we first discuss the general process,
and second we discuss what parts of a language late adaptations can change.

There is a general process for how developers collaborate for adapting language implementa-
tions in the user domain. One the one hand, to control what is adaptable, the language developer
who provides a language implementation exposes various extension points that can be adapted.
On the other hand, to control what to adapt, the language developer who wants to customize a
language implementation for the end user can specialize the language at these extension points.

There are various kinds of adaptations and possible applications that are supported by the
meta level. Central to the meta level is that the structure and execution behavior of a language
implementations that resides inside the architectural levels are reflected as first-class entities via
the meta-objects, and therefore these first-class entities can be adapted. Since the meta-objects
expose the structure of classes in the language implementation, one can add structural elements
to classes or change existing elements, i.e., one can add fields and methods to those classes.
Since those meta-objects also expose the behavior of the classes in the language implementation,
developers can adapt the execution of these classes, and therefore the language implementation.

By intercepting method calls and field accesses on those classes, developers can manipulate
calls to methods and accesses to fields. For every method call, the meta-object can manipulate
the receiver, the method name, and its parameters, to provide alternative execution semantics.
For every field access, the meta-object can manipulate the receiver, the field name and value to
be stored or to returned. Changing a method call or field access results in different computations
and therefore alternative language semantics.

For instance, to adapt SIMPLELOGO to enforce a domain-specific constraint, a special meta-
object of the Turtle class can reify every call to the move operations, such as the moveForward
operation; and before executing such a call, it can intercept the call and check whether there will
be a collision and prevent it.

To understand what adaptations are possible in general, it is important to understand the con-
sequence of meta-objects adapting a particular level in the architecture. At each level of the
architecture, the extension points allow adapting different parts of a language implementation,
which is determined by what extension points are exposed by the corresponding level. As we
will elaborate in the following paragraphs, (1) at the interface, one can adapt the abstract syntax
of a language, (2) at the façade, one can adapt its syntax-to-semantic binding, and (3) at the
model level, one can adapt its evaluation protocol.

97

4. The Reflective Embedding Approach

(1) Language Interface Level: Each language interface defines an extension point for a lan-
guage’s abstract syntax and its expression types. With a special meta level for the interface level,
a language developer can adapt groups of languages. The meta-objects can quantify over calls to
several façades, and they can selectively adapt those façades that implement a certain interface
or that define certain expression types. Semantic adaptations at the interface level are similar to
extending the language interface using language polymorphism, but such adaptations are more
flexible, since the meta-level extension must not be part of one inheritance chain of the adapted
languages.

While language polymorphism extends only one language, adaptation with such a meta level
makes it possible to add/remove a particular expression types to a group of languages, e.g., by
adding new keyword methods to all façades that implement a given interface, or respectively by
removing existing keyword methods from them.

For example, we can use this to adapt the syntax of the extensions MATHLOGO and MATH-
BUSINESSRULESDSL from Section 3.2.1 (p. 37) that both define common mathematical key-
words of a language interface IMathLanguage (e.g., the domain operations sum, sin, define, and
apply). To simplify the syntax of these two language extensions, the developer can remove key-
words from them that are too complex for, or not required by, the end user (such as, the keywords
sum and sin) . To do so, a language developer defines a new meta-object that intercepts keyword
method calls and does not proceed a call if a certain condition is not met, such as the condition
that an object implements a certain interface (such as IMathLanguage) or such as that the call
has a certain signature (such as, in sum(List<int>) or int sin(int)). For realizing the above exam-
ple, the developer defines the meta-object with the condition that the call is not proceeded if
the call’s signature has the method name sin or sum. Thus, effectively the meta-object hides the
corresponding methods (e.g., sin and sum) from all façades, but allows all other keywords (e.g.,
define and apply). With respect to the adaptation scope, this example adaptation has a global
locality (D1.a) since it changes all façade instances of type IMathLanguage, its atomicity is at the
module-level (D2.b) since it removes two methods, and its time of adaptation is pre-execution
(D3.a).

While language polymorphism allows extending a language statically, a semantic adaptation
makes it even possible to change the abstract syntax at runtime, similar to extensible grammars
(cf. Section 2.3.2, p. 25). Developers can define strategies that extend a language’s abstract syn-
tax depending on the keywords the language defines. This is interesting, if developers want to
apply an adaptation but they do not know the specific syntax of the language to be adapted.
For example, consider adding a new expression type depending on the availability of another
expression type. The developer can implement an adaptation that adds a new expression type,
say cos, but only if the language defines the expression type sin. Note that this adaptation can be
independent from the concrete semantics of the sin expression type. Yet, the semantics of the cos
expression type can be derived from the concrete semantics of sin, e.g. cos(α) = sin(90◦ − α).
This way, the adaptation can be applied to different languages, no matter how they implement
sin. To adapt the available abstract syntax of a particular language implementation at runtime, a
language developer adjusts the meta-object link of the façade classes to point to a special meta-

98

4.2. Key Mechanisms for Language Evolution

object that adds a corresponding method to the façade for the expression type. With respect to
the scope of this adaptation, the locality is global (D1.a) since it changes all façade instances of
type IMathLanguage, the locality is operation-level (D2.a) since add only one method, and the
time is context-dependent (D3.b) since cos is only available when sin is present.

While a hierarchical language extension is specific for a base language, a semantic adapta-
tion can be generic for a group of languages implemented on top of the reflective embedding
architecture. For example, we adapt a language’s abstract syntax with a generic strategy that
enables case-insensitive syntax in an otherwise case-sensitive embedding in the host language.
To make the abstract syntax case insensitive, a language developer can use a special meta-object
that intercepts every method call to some façade and changes the method dispatch semantics to
ignore the case in method names, when looking up the most concrete method implementation
that binds the syntax to semantics. With respect to the adaptation scope, the locality is global
(D1.a), the locality is module-level (D2.b) since all expression types become case insensitive,
and the time is context-dependent (D3.b) since the strategy depends on what expression types
are provided by the adapted façades.

The use of the meta level enables a greater flexibility than what is available in embeddings
without a meta-level. In traditional embeddings, the abstract syntax of an embedded language is
fixed and cannot be changed. In contrast, in the reflective embedding architecture, the abstract
syntax can be extended at any time.

(2) Language Façade Level: Each language façade defines an extension point for the syntax-
to-semantic binding of each expression type. Therefore, at the meta level, a language developer
can adapt the syntax-to-semantics binding of particular façade instances. Semantic adaptations
at the façade level are similar to façade extensions using language polymorphism, but such
adaptations are more fine-granular (i.e., per expression type) and can be more generic (i.e., for
several base languages).

While inheriting from a façade establishes a new complete syntax-to-semantic binding, adapt-
ing a façade allows more fine-granular changes to the syntax-to-semantic binding at the gran-
ularity of expression types. Developers can use this flexibility to adapt the syntax-to-semantic
binding of an expression type to use another evaluation mode, e.g. changing it from immediate
to delayed. For example, we can redefine the syntax-to-semantic binding of the turtle expression
to delay the keyword’s evaluation such that it executes drawing commands in a separate thread,
as motivated in Section 3.1.2.1 (p. 34). The meta-object of the façade can intercept calls to the
abstraction operator method turtle and proceeds the call in a new thread. With respect to the
scope of this adaptation, the locality is global (D1.a), the locality is operation-level (D2.a), and
the time is pre-execution (D3.a).

While inheriting from a façade establishes a complete syntax-to-semantic binding for all ex-
pression types of one particular language, a semantic adaptation to a façade allows selectively
changing the syntax-to-semantic binding of only one expression type, or defining a generic strat-
egy that changes the syntax-to-semantic binding of expression types that do not need to be from
the same language. For example, a generic strategy can extend the syntax-to-semantic binding

99

4. The Reflective Embedding Approach

of FUNCTIONAL to allow short function applications, as motivated in Section 3.7.1.1 (p. 60).
When a program calls a function directly (e.g., via the expression “square(50)” in abstract syn-
tax) without using the apply keyword, then in FUNCTIONAL, by default, there is no syntax-to-
semantic binding defined for this expression type in the façade class (e.g. there is no keyword
method square(Integer)). However, the meta-object can intercept the method call to the façade
(e.g., square(50)), and next, the meta-object can reuse the syntax-to-semantic binding of the ap-
ply keyword to evaluate the expression (e.g., apply("square")(50)). Since the meta-object makes
only the assumption that the apply keyword needs to be present, the same meta-object can be
used to adapt not only the stand-alone language FUNCTIONAL, but also any other language that
implement this keyword method, such as the FUNCTIONALLOGO extension. With respect to
the scope of this adaptation, the locality is global (D1.a), the locality is rather operation-level
(D2.a) since only the syntax-to-semantic binding of the apply keyword is extended, and the time
is pre-execution (D3.a).

(3) Language Model Level: When extending its model at the meta level, this adapts the lan-
guage’s evaluation protocol. Semantic adaptations at the model level are similar to model exten-
sions using language polymorphism, but such adaptations are more modular and flexible.

While a model extension enables extending single domain types, a semantic adaptation in a
model supports a modular adaptation to multiple parts of the evaluation protocol. For example,
in the context of SIMPLELOGO, developers can adapt its language model to enforce domain
constraints. Such adaptation dynamically analyzes the sequence of calls to the operations on
the first-class representation of a Turtle in the language model, and prevents the execution of the
operation if a constraint would be violated, as motivated in Section 3.1.2.2 (p. 35). To enforce
the aforementioned constraint, a language developer defines a special meta-object that adapts the
Turtle class by overriding its methods, such that a constraint is validated to prevent collisions. The
benefit of the adaptation is that the meta-object encapsulates the logic to enforce the constraint,
which is therefore not scattered across several methods and classes.

With respect to the scope of this adaptation, the locality is global (D1.a), since the constraint
is checked on all Turtle objects, the locality is module-level (D2.b), since all move operations of
the turtle are checked, and the time is pre-execution (D3.a).

While extending a model established only a new closed version of the evaluation protocol, a
semantic adaptation in a model can adapt the evaluation of expressions at runtime. For example,
we can use this to adapt the evaluation protocol to realize dynamic aspects, e.g. as motivated for
SIMPLELOGO in Section 3.3.2.1 (p. 44). A language developer installs a special meta-object that
reifies join points when executing AO4LOGO programs. Only when aspects are deployed and
a certain pointcut matches at the current join point, this meta-object executes the correspond-
ing advice, e.g. it executes an aspect that implements the tracing concern. With respect to the
scope of this adaptation, the locality is global (D1.a), since aspects are deployed globally for all
types, the locality is module-level (D2.b), since all domain operations are traced, and the time
is context-dependent (D3.b), since undeployed aspects do affect the execution of method in the
model.

100

4.2. Key Mechanisms for Language Evolution

4.2.2.3. Program Evaluation under Adapted Semantics

When evaluating a program under the default semantics, the default meta-objects execute
the language implementation, still they do not play a significant role, since they execute the
objects in the language implementation with standard OO dispatch. In contrast, when evaluating
a program with special meta-objects, these meta-objects change the execution of the language
implementation, resulting in an execution with adapted semantics.

At a first glance, semantic adaptations with method objects seems similar to abstracting over
semantics with language polymorphism, since both result in alternative program executions.
But, semantic adaptations are not restricted to black-box extensions, since they can extend lan-
guage implementations with new keywords, adapt keywords, and remove existing keywords.
Semantic adaptations use meta-objects for gray-box extensions. Semantic adaptations are not
restricted to hierarchical extensions. They can extend existing language interfaces, and override
existing fields and methods. For the above reasons, semantic adaptations allow a more flexible
late binding of syntax-to-semantics than language polymorphism.

To set up a program for execution under alternative semantics, therefore, there are only minor
adaptations necessary for the three steps of the standard evaluation process from Section 4.1.2
(p. 79).

In the compilation step, nothing needs to be changed. Nonetheless note that after compiling
the default language implementation, the language developers can compile the special meta-
objects separately from the code of the default implementation.

In the setup step, there is a simple modification: not only the code block’s façade is set up,
but in addition, the alternative semantics is enabled by associating special meta-objects with the
classes of the language façade and its model.

In the expression-evaluation step, there are no changes necessary and the semantic adaptations
are applied completely transparent from the viewpoint of the user. The special meta-objects
are in place and adapt the evaluation of the program running on top the unchanged language
implementation. The special meta-objects can adapt the semantics of every language construct
by dispatching method calls to alternative method implementations or fields.

For example, we can use a meta-level extension to adapt the execution semantics of SIMPLE-
LOGO. Consider evaluating SIMPLELOGO with the ConstraintCheckingMetaObject from Fig-
ure 4.2. When a program uses the keyword forward, the corresponding keyword method calls the
operation moveForward on the domain type Turtle. Instead of directly executing the operation, the
ConstraintCheckingMetaObject intercepts the call and possibly executes an alternative semantics
instead. Its alternative semantics first checks a set of pre-conditions, and if all pre-conditions are
met, it proceeds with executing the original semantics, otherwise it reports an error. This way,
the meta-object allows extending the evaluation protocol of SIMPLELOGO without changing the
language’s implementation.

From the perspective of the execution semantics, when executing a program under an adapted
semantics using a special meta-level, the meta-objects partially contribute to the evaluation of
programs, i.e. they determine the final semantics. When embedding a language into a reflective

101

4. The Reflective Embedding Approach

host language with a MOP, its meta-objects enable a more flexible embeddings, since programs
become first class, they can be inspected and manipulated.

4.2.3. Extensible Languages Combiners
The reflective embedding architecture enables language composition with so-called language

combiners. Composing languages enables evaluating programs that mix expressions of over-
lapping domains. The language developer selects an appropriate language combiner based on
a composition specification8 for these languages. Given a set of language implementations,
language developers can use a combiner to compose the syntax and semantics defined in the
languages. For example, reconsider composing FUNCTIONAL and COMPLETELOGO to execute
FUNCTIONALLOGO programs, such as the one presented in Figure 3.2 (p. 39), which mixes
expressions of the FUNCTIONAL and COMPLETELOGO domains (e.g., the keywords apply of
FUNCTIONAL and forward of COMPLETELOGO).

Language combiners are a mechanism that enables language developers to conveniently com-
pose languages that have been developed independently. By using an combiner, they can reuse
several modular language implementation, thus they save time for implementing the composi-
tion by relying on the composition logic that the combiner provides. When language developers
want to realize a language composition of several stand-alone languages, such as FUNCTION-
AL and COMPLETELOGO, they likely want to reuse existing implementations of the constituent
languages for the composite language. When using an appropriate combiner to compose several
languages, in many cases, the implementations of the constituent languages do not need to be
changed at all. The developers do not need to manipulate the code of their interfaces, façades,
models, but they can extend them when necessary or desirable.

The reflective embedding architecture comes with a set of pre-defined generic language com-
biners for composing languages in certain composition scenarios. A composition scenario is
defined for a particular set of assumptions on the languages to compose (e.g. all languages must
be conflict-free). The language combiners are generic in the sense that they can compose any
set of language embeddings as long as these languages meet their assumptions. For composing
particular languages, the language developer is responsible for selecting an appropriate language
combiner that provides the right composition semantics to meet the requirements of the compo-
sition specification.

Figure 4.11 presents the pre-defined language combiners of the reflective embedding architec-
ture:

Independent combiners: Section 4.2.3.1 discusses the BlackBoxCombiner for composing in-
dependent languages that do not have syntactic or semantic conflicts

8A composition specification can be an informal or formal definition that defines how to compose the syntax and
semantics of several languages. This thesis assumes an informal specification. In contrast, Kojarski et al. propose
to use formal specification in form of denotational semantics [KL05, KL07b].

102

4.2. Key Mechanisms for Language Evolution

<<meta-facade>>
LanguageCombiner

MetaObject

<<meta-facade>>
LinearizingCombiner

<<meta-facade>>
BlackBoxCombiner

<<meta-facade>>
CustomCombiner

<<meta-facade>>
CrossCuttingCombiner

Assumes that the composed
languages have no syntactic
and no semantic conflicts

Assumes that the composed
languages are extensions to
the same base language

Assumes that the composed
languages have no syntactic
and but that they have
semantic interactions that are
defined by aspects. Has custom assumptions...

<<meta-facade>>
ExtendedCustomCombiner

Has custom assumptions...

Independent Combiners Dependent Combiners Custom Combiners

Figure 4.11.: Overview of the language combiners

Dependent combiners: Section 4.2.3.2 discusses the LinearizingCombiner for composing de-
pendent languages with interacting syntax and the CrossCuttingCombiner for composing
languages with interacting semantics.

Custom combiners: In general, the set of possible scenarios for language compositions is
not limited. Therefore, when no appropriate combiner is available, a language developer
needs to implement new custom combiners, as discussed in Section 4.2.3.3.

4.2.3.1. Composing Independent Languages

The architecture provides the generic BlackBoxCombiner for composing stand-alone languages
that have been implemented independently and that do not conflict. We call compositions of
conflict-free languages black-box compositions because the combiner only takes into account
the interfaces of the language to be composed, it treats the language implementations as black-
boxes, and it composes the languages without intervening with the internals of the individual
evaluation protocols. The BlackBoxCombiner composes several language implementations so
that if one of the constituent languages defines an expression type, this expression type will
be available in the language composition. The BlackBoxCombiner does not define a syntax and
semantics itself. Instead, the combiner exploits the power of the meta-object protocol for com-
posing the constituent languages’ syntax-to-semantic bindings defined in their façades. For a
meaningful composition, the BlackBoxCombiner requires that the constituent languages must not
have syntactic or semantic conflicts. While the combiner detects presence of syntactic conflicts,
and it enforces the absence of such conflicts in compositions, it is the responsibility of language
developers to consult the composition specification of the languages to eliminate all doubts about
possible semantics conflicts.

103

4. The Reflective Embedding Approach

For example, reconsider composing the languages FUNCTIONAL and COMPLETELOGO. Since
the two languages do not have syntactic and semantic conflicts, a language developer can use
the BlackBoxCombiner to combine their constituent language implementations without changing
their code.

Composition Protocol: Internally, a combiner implements a language composition protocol.
In the reflective embedding architecture, this protocol uses OO composition and the meta-object
protocol of the host language as the means for language composition. Language combiners take
advantage of the levels in the reflective embedding architecture that implicitly expose points
where to compose languages. At the language interface level, the combiner analyses the lan-
guages’ interfaces to determine the syntax of the constituent languages to be composed. At the
language façade level, it extracts the syntax-to-semantics bindings from the languages’ façades.
At the language model level, it accesses the evaluation protocols that are defined in the lan-
guages’ models. At the language meta level, the combiner integrates the languages’ syntax,
syntax-to-semantics bindings, and evaluation protocols with its well-defined composition se-
mantics.

Technically, a language combiner is a meta-façade. Further, because a combiner has access
to the meta-level, its meta-façade can gain control over the meta-objects of the languages to
be composed. Having access to the languages’ meta levels enables the combiner to process
meta-data of the constituent languages and to adapt their evaluation protocol to a composition.
A combiner is a meta-analyzer that use the meta level to analyze the meta data defined in the
language implementations of the constituent languages.

Having access to the meta level, a combiner can use meta-objects to integrate the syntax
and the semantics for the language composition by combining the syntax-to-semantic bindings
defined in their façades. Specifically, a combiner is a meta-transformer that intercepts, delegates,
and adapts keyword method calls to integrate the evaluation protocols of the languages.

For integrating the evaluation protocols of several languages, when evaluating a program that
mixes expression of several languages resulting in keyword method calls, the combiner needs to
handle all possible keyword method calls. Each call represents the evaluation of one expression,
which may result in further method calls inside one of the language models. Therefore, the
combiner needs to handle all method calls inside the language models.

To adjust the evaluation of a keyword-method call in a composition, the combiner uses re-
flection to intercept, delegate, and adapt the method call for this keyword. For example, the
BlackBoxCombiner intercepts every keyword method call received by the combiner. It analyzes
the intercepted call to find the corresponding façade. The BlackBoxCombiner does not transform
the call, but it only delegates the call the corresponding façade, which will evaluate the keyword
and return a result, which is passed through the BlackBoxCombiner, which returns then finally
returns the computation of the language composition.

Specifically, the BlackBoxCombiner uses OO composition and the meta-object protocol to
compose the languages. Instead of defining keyword methods itself, the BlackBoxCombiner
façade references the language façades of the constituent languages to be composed. Being

104

4.2. Key Mechanisms for Language Evolution

a meta-object allows the BlackBoxCombiner to intercept method calls to keyword methods and
delegate these calls to other façades—the façades of the constituent language. The combiner
defines a composition protocol that derives a combined syntax-to-semantic binding for the lan-
guage composition. This combined syntax-to-semantic binding is then used to bind expressions
in the composite language to a well-defined evaluation semantics.

Note that when composing several languages, we always must ensure that the constituent
languages are syntactically and semantically independent as explained below.

When composing several languages, the BlackBoxCombiner validates that the constituent lan-
guages are syntactically independent9. By validating, the BlackBoxCombiner can assume that it
can evaluate each expression type in isolation Knowing that expressions of the composed lan-
guages are both syntactically and syntactically independent, for each expression type in a black-
box composition, there is always one particular well-defined method that binds the expression’s
syntax to its semantic.

Before using the BlackBoxCombiner to compose two syntactically independent languages, the
language developer is required to validate that the constituent languages are also semantically
independent10; hence, the BlackBoxCombiner can assume that it can evaluate each expression
type in isolation.Knowing that expressions of the composed languages are both syntactically
and semantically independent, for each expression type in a black-box composition, there is
always one particular well-defined evaluation semantics.

In detail, to determine a composed semantics for an expression type, the BlackBoxCombi-
ner uses the introspective capabilities of the meta level to analyze the language façades of the
languages to be composed in order to determine what expression types they define. For each
expression type found in one of the façades, the combiner reuses its syntax-to-semantic binding
from the façade of the corresponding constituent language for the composite language. Because
the combiner enforces that expression types of constituent languages are disjoint, the combiner
can derive a well-defined evaluation semantics for each expression type. Otherwise, if more than
one façade define the same expression type, this is a syntax conflict and the combiner raises an
exception. The fact that each expression type belongs only to exactly one language allows the
combiner to always find the right semantics for an expression type. This is always defined by
the corresponding façade that defines the method with a matching signature for that expression
type.

9Conceptually, the constituent languages are said to be syntactically independent if the set of their grammars’ pro-
ductions are disjoint (cf. Section 3.2, p. 37). In the implementation, the constituent languages’ implementations
are said to be independent if their language interfaces and façade classes do not have methods with the same
signature.

10Conceptually, the constituent languages are said to be semantically independent if the language composition spec-
ification does not specify a semantic dependency (cf. Section 3.2, p. 37). In the implementation, the constituent
languages’ implementations are said to be independent if their classes do not have dependencies in their interfaces
(and semantic contracts).

105

4. The Reflective Embedding Approach

Program Evaluation with Composed Syntax and Semantics: The steps to evaluate a pro-
gram that mixes keywords of several languages are slightly different than the steps for a program
with only one language.

In the compilation step, it is worth mentioning that the host compiler allows separate compi-
lation of the program, every constituent language, and the combiner.

In the setup step, to compose the languages, a developer creates a new instance of the Black-
BoxCombiner passing to it instances of the all language façades. Figure 4.12 indicates how the
BlackBoxCombiner instance is connected to the façades of the constituent languages for the exam-
ple composition of FUNCTIONAL and COMPLETELOGO. Then, the BlackBoxCombiner instance
is set up as the façade for the program code block.

Language Interface Level Language Façade Level Language Model Level

Meta Level

apply(…)
...

Functional

forward(…)
...

CompleteLogo

CodeBlock

apply(…)
...

<<interface>>
IFuntional

Turtle

forward(…)
...

<<interface>>
ICompleteLogo

:Functional

:CompleteLogo

BlackBoxCombiner

functionalLogo:BlackBoxCombiner

...

...

Figure 4.12.: Composing two languages with the BlackBoxCombiner

In the evaluation step, when encountering expressions in a program that originate from differ-
ent languages, the BlackBoxCombiner determines the right evaluation semantics for each expres-
sion type. Figure 4.13 illustrates keyword dispatch in the composition protocol of the BlackBox-
Combiner. Depending on the type of an expression, the combiner selects the keyword method
from one of the language façades with the corresponding signature for that expression type, and
uses this binding to evaluate the expression.

106

4.2. Key Mechanisms for Language Evolution

:BBCombiner

f:Functional c:CompleteLogoprogram:
CodeBlock

<<create>>(f,c)

apply(…) apply(…)

forward(…)
<<evalaute>>

forward(…)

The code block
of the function that
uses the forward
keyword inside its
body.

call evaluating a code block
ordinary method call

call produced from an expression

Figure 4.13.: Keyword dispatch with the BlackBoxCombiner

4.2.3.2. Composing Dependent Languages

The architecture comes with pre-defined combiners for composing dependent languages. In
the following, we discuss compositions of dependent languages and how combiners can handle
syntactic and semantics interactions between them.

To achieve compositions of the semantics of dependent languages, dependent combiners adapt
language components using their meta-level in order to adapt their syntax in language façades
and evaluation protocols in their models. It is crucial that dependent combiners have the pos-
sibility to adapt every method call inside the evaluation protocol of each language, instead of
evaluating a computation directly. On the one hand, the dependent combiner can intercept the
evaluation protocol of the influencing language, e.g. to extract information from it. On the other
hand, it can adapt the evaluation protocol of the influenced language to provide alternative se-
mantics, e.g. to inject information into it. This way the dependent combiner can integrate the
first-class objects of the dependent languages by manipulating their structure and behavior.

4.2.3.2.1. Syntactic Interactions There is a LinearizingCombiner that automatically resolves
syntactic interactions between languages. It assumes that there is a partial order defined on all
languages to be composed. The composition protocol of the LinearizingCombiner works similarly
to the BlackBoxCombiner, but does not enforce disjoint sets of expression types between the
languages.

For example, reconsider Section 3.3.1.3 (p. 43) that motivated composing COMPLETELOGO

from the independent extensions UCBLOGO, CONCISELOGO, and EXTENDEDLOGO. Recall
that there are syntactic conflicts. When mixin composing the language’s keywords, the combiner
uses façades instances of the extensions. Because all extensions inherit the base language key-
words, there is a common ancestor problem (also known as the diamond problem). Because of
this problem, the BlackBoxCombiner cannot decide on which of the extensions to execute the in-

107

4. The Reflective Embedding Approach

herited keywords of the base language. To compose such independent extensions, the developer
needs to use the LinearizingCombiner instead.

When an expression is encountered with a certain expression type, and when this expression
type is declared by several languages (i.e. they declare the same expression signature for the
corresponding keyword and sub-expressions), the LinearizingCombiner can resolve the syntactic
interaction between the languages in case of such independent extensions. The reason is that
this is a special case: all languages extend the same base class, thus there is no syntactic differ-
ence between the inherited methods that conflict each other. To resolve the syntactic ambiguity
for such an expression, the LinearizingCombiner always uses the syntax-to-semantic binding that
is defined by the language façade with the highest order. Consequently, the combiner can dis-
ambiguate the inherited expressions, by defining a linearized mixin-like composition for the
languages.

In general, when programs use expression types from different dependent languages, a de-
pendent combiner needs to compose the languages’ syntax such that interactions are possible,
whereby preventing, detecting, and resolving conflicts. To detect and resolve syntactic interac-
tions, language combiners can intercept and adapt keyword method calls from the program using
the meta level. Instead of dispatching the keyword-method call directly, the language combiner
can forward a keyword-method call to an alternative method implementation.

Note that the concrete dispatch logic for preventing, detecting and resolving syntactic inter-
actions of expressions depends on the concrete syntactic composition scheme. Several schemes
are conceivable and can be implemented on top of the architecture.

4.2.3.2.2. Semantic Interactions The reflective embedding architecture supports composi-
tion of dependent languages with semantics interactions, called dependent compositions. When
composing dependent languages, their evaluation protocols have dependencies. That means,
there are expressions for which the evaluation process cannot be computed in isolation. That
means, for such an expression belonging to one of the constituent languages, the evaluation can
depend on the evaluation of an expression in another language.

For example, Section 3.3.2.1 (p. 44) motivates composing COMPLETELOGO with a DSL to
modularly implement tracing in the AO Logo dialect, called AO4LOGO. Recall that there is a
semantic interaction, because the pointcut-and-advice in AO4LOGO must intercept join points
in COMPLETELOGO, evaluate pointcuts, and may need to execute tracing logic at those points.
In REA, the CrossCuttingCombiner enables such compositions of dependent languages.

In a nutshell, the CrossCuttingCombiner implements an invasive composition protocol for de-
pendent languages with crosscutting semantic interactions. To compose several dependent lan-
guage, a language developer instantiates the combiner passing to it instances of the dependent
language façades. Further, the developer needs to declare the points where the dependent lan-
guages have interactions in their evaluation protocols, which exposes a first-class representation
of the evaluation context of the language to other participants. For the composition, internally,
the combiner exploits the flexibility of the meta level for analyzing, intercepting, and interact-
ing with the evaluation protocol of each language that participate in a crosscutting composition.

108

4.2. Key Mechanisms for Language Evolution

While CrossCuttingCombiner can compose the evaluation protocols at any point in the execution
of a participating language, each language embedding remains well encapsulated. Adaptation
are only effective for one particular composition scenario, the language implementations remain
intact. Because the crosscutting composition protocol only temporarily adapts the evaluation
protocols at those points that explicitly have been declared for interactions.

In [DMB09, DEM10], the author of this thesis has published the implementation details of the
CCCombiner. The CCCombiner is an integral part of the Pluggable and OPen Aspect Run-Time
(POPART for short). Since the CrossCuttingCombiner is a central contribution of this thesis, Sec-
tion 7 (p. 157) will summarize how to use POPART for crosscutting composition and its relevant
implementation details. More interested readers are referred to [DMB09, DEM10].

4.2.3.3. Composing Languages with Custom Combiners
Since the pre-defined combiners only support concrete language composition scenarios, al-

ternative combiners can be implemented as custom combiners. In the following, we give an
overview of possible schemes to implement in a custom combiner.

When none of the pre-defined language combiners provides an appropriate composition proto-
col, a language developer can provide a new language combiner. Even when existing combiners
are inadequate, a language developer may refine an existing combiner to enable new schemes for
language compositions in the architecture. Alternatively, combiners can be implemented from
scratch.

4.2.3.3.1. Extending the Open Crosscutting Combiner In [DMB09], the author of this
thesis proposes a concept for an aspect-oriented (AO) language with an integrated meta-level,
which is called a meta-aspect protocol (MAP).

The definition of the MAP is leant against the definition of the meta-object protocols [KRB91],
a meta-aspect protocol is an interface to the aspect language that gives users the ability to in-
crementally modify behavior and implementation of aspect-oriented abstractions.

To allow adaptations, the MAP makes use of the open implementation principle for AO lan-
guages. At the implementation level, an open implementation is a special module that developers
design with a primary interface and a meta-interface. While end users access the primary in-
terface in order to use the module as an ordinary module, the meta-interface provides special
primitives to adapt the modules internal implementation strategies.

A MAP opens up the aspect language semantics for dynamic user adaptations. When using
the meta-aspect protocol, the same set of aspects can be interpreted under different semantics.
Analogous to MOPs, this flexibility is enabled by reifying important parts of the AO language
semantics as first-class entities available.

Figure 4.14 shows the overall architecture of an aspect runtime with a meta-aspect protocol.
The MAP is built on top of the MOP. Such meta-protocols provide two kinds of interfaces to
programs, a primary interface and a meta-interface. In a MOP, OO programs use the primary
interface to define objects, and OO programs the meta-interface to adapt the semantics of objects,
e.g. the method dispatch. Similarly, the MAP provides such a primary interface and a meta-
interface for the aspect language.

109

4. The Reflective Embedding Approach

Figure 4.14.: Architecture of the meta-aspect protocol

The CCCombiner defines the primary interface. It embeds the default semantics of AO con-
cepts, by reflective embedding, which will be elaborated in Section 7.3 (p. 160). AO programs
can use the default semantics, nonetheless programs can extend the provided AO concepts.

For enabling semantic adaptations, there is a second interface to the CCCombiner and its lan-
guage model. This meta-interface allows access to the embedded AO concepts of the CCCombi-
ner. Language developers can use the meta-interface for semantic adaptations to customize the
embedding of AO concepts for specific domains. Because AO concepts are embedded in REA,
their first-class nature allows extension of the embedded types and their operations that reflect
the semantics of aspects.

To enable well-defined adaptations of AO semantics, the CCCombiner defines variation points
in the evaluation protocol for aspects. There are three main variation points that have been se-
lected to allow semantic variations found in the literature. To enable variation of AO semantics,
language developers can extend the AO concepts by refining the AO embedding. First, the de-
velopers can extend language façade of the CCCombiner e.g. to define new pointcut designators,
as it will be elaborated in Section 7.4. Second, they can specialize the AO evaluation protocol
by extending the types and overriding their methods in AO language model, which allows e.g. to
enable debugging and optimizations for AO concepts, as it was elaborated in [DMB09]. Third,
they can refine the management concern in the CCCombiner e.g. to adapt the composition seman-
tics for aspect to resolve semantic composition conflicts between aspects, as it will be elaborated
in Section 10.3.2.3 (p. 235).

By extending these variation points, language developer can implement domain-specific as-
pect languages (DSALs). A domain-specific aspect language is a special DSL that makes use
of AO concepts for separation of crosscutting concerns in (DSL) programs. For implementing
DSALs, a developer can reuse and specialize the AO concepts for particular a domain, whereby
the developer can reuse the common AO semantics. As it will be elaborated in Section 10.3.2
(p. 227) and evaluated in Section 11.1.2 (p. 271), this significantly reduces the implementation
effort.

110

4.2. Key Mechanisms for Language Evolution

4.2.3.3.2. Implementing a new Custom Combiner
For example, recall from Section 3.3.2.1 (p. 44) that when composing FUNCTIONAL and

STRUCTURAL, there can be syntactic and semantic conflicts that need to be detected and re-
solved for a meaningful composition.

There is a syntactic conflict, because both languages define keyword define. Still a composi-
tion of the two syntactically conflicting languages is possible by defining a custom combiner that
renames keywords extending the syntax-to-semantic binding in the composition. The combiner
rebinds the define keyword method implementation in FUNCTIONAL to bind to the new keyword
defun, and it rebinds the define keyword method implementation in STRUCTURAL to bind to a
new keyword make, such that programs that use the renamed keywords can be executed without
conflicts.

There is also a semantic interaction because both languages define a direct application for
functions or respectively for data types. For functions, when using a function name, such as
funName(...), this will call the function funName. For abstract data types, when using a data type
name, such as typeName(...), this will instantiate a new value of typeName. But, when there
is a function and a data type with the same name, it is not clear what semantics for the direct
application should be used. For example, when there is a function myName as well as a type
myName, it is not clear what myName(...) means: a function application or a type instantiation?
Still, a meaningful composition of the two semantically conflicting languages is possible by
defining a custom combiner that enforces that function names and names of abstract data types
must be unique.

To compose several languages with semantic interactions or conflicts, a language developer
only has to implement a new combiner class that implements a custom composition protocol that
composes the syntax and semantics of all constituent languages.

This custom composition protocol needs to integrate the evaluation of expressions of the
composed languages to work in concert, by following the corresponding defined composition
semantics. To combine the languages’ syntax-to-semantics bindings, its composition protocol
composes the languages’ keyword methods defined in the language façades. To combine the
languages’ computations, its composition protocol composes the languages’ evaluation proto-
cols defined in the language-model classes. The detailed logic that need to be provided for the
composition protocol of a custom combiner can depend on a concrete composition scenario,
its assumptions, its domain semantics and on possible generic composition schemes of which
several schemes are conceivable and can be implemented on top of the architecture.

111

4. The Reflective Embedding Approach

4.3. Summary
In this chapter, we have discussed a new architecture for embedding languages. The architec-

ture enables open implementations of languages for which a new syntax and semantics can be
provided. The architecture organizes language implementations into four levels: the language
interface level, the language façade level, the language model level, and the language meta level.
These levels enable decoupling parts of the language implementation and allow those parts to be
adapted.

To recapitulate, the key mechanisms that facilitate language evolution are:

Language Polymorphism: Language polymorphism enables hierarchical extensions. Ab-
stracting over several possible evaluations is possible since the reflective embedding ar-
chitecture strictly separates a language specification from possible implementations.

While language polymorphism enables safe extensions to existing language implemen-
tation and programs, polymorphism on languages provides subtyping guarantees for the
languages, as long as implementations respect inherited contracts.

Semantic Adaptation Scopes: The reflective embedding architecture uses meta-objects to
partly adapt the semantics of a language implementation along different dimensions. Se-
mantic adaptation provides more flexibility for reusing existing language implementations
for end users with special requirements, but the downside of the increased flexibility is the
absence of special guarantees.

So far, the principle support has been presented, but particularly semantic adaptation of
languages deserves a more detailed discussion. Therefore, this thesis dedicates Chapter 6
elaborating on how the reflective embedding architecture supports non-trivial semantic
adaptations of languages.

Language Combiner: Language combiners support composing languages in different con-
crete scenarios. While the combiners build on the flexibility of the architecture to com-
pose languages, the combiners are abstractions for language composition. Combiners
provide special guarantees for the composition scenarios in which they are employed. For
the combiners, the presence of the meta level is fundamental to compose constituent lan-
guages independent from their concrete implementation. Analyzing part of the syntax and
semantics in language implementations is only possible because all languages are avail-
able as first-class objects. Composing languages by integrating their abstract syntax, their
syntax-to-semantic bindings, and their evaluation protocols is only possible because the
combiners are meta-objects that can adapt every method call between objects within a
language implementation.

So far, the principle support for composition has been presented, but particularly the composi-
tion of dependent languages deserves a more detailed discussion. Therefore, this thesis dedicates

112

4.3. Summary

Chapter 7 for elaborating how the reflective embedding architecture supports non-trivial compo-
sitions of dependent languages.

Further, it remains to be shown how the key mechanisms can be implemented. Therefore,
the next section presents an implementation of the reflective embedding architecture and the key
mechanisms for a concrete host language.

However, it remains to be shown that the language embedding approach indeed allows imple-
menting complex languages and that the approach enables language evolution. Particularly, the
following issues need to be addressed:

• What language features in host languages help language developers to grow embeddings
with new language constructs?

• Is it possible to embed more sophisticated kinds of language constructs?

• How good does the reflective embedding architecture support the desirable properties for
language evolution that have been identified in Section 3? In particular, how can we extend
and compose several languages?

The following chapters address these issues.

113

5. Implementation in Groovy

This chapter elaborates how to instantiate the reflective embedding architecture in Groovy. The
author has selected the Groovy programming language as the host language because it provides
a good realization of host language features that the reflective embedding architecture requires.
The first section introduces the required features from Groovy. The second section elaborates
on how one can instantiate the architecture’s levels in Groovy. The third section elaborates on
the techniques to enables Groovy for the execution of embedded programs. The last section
describes the implementation details of the key mechanisms of the architecture.

5.1. Groovy in a Nutshell
Groovy [Gro, KG07] is a pure object-oriented scripting language that seamlessly integrates

with Java [GJSB00] and that compiles to Java bytecode. The syntax is close to Java and one
can call Groovy code from Java and vice versa without converting passed objects. Besides a
meta-object protocol, Groovy provides attractive language features, such as class reloading and
closures as first-class entities. Groovy is particularly well suited for language embedding due
to its support for its flexible syntax, its support for closures, and its meta-object protocol. In the
following, we present these features.

Flexible Syntax. Groovy syntax is flexible, because Groovy often allows encoding the same
expression in various syntactic forms.

Groovy supports so-called command expressions1 that enable omitting unnecessary delimiters
in programs like brackets clear from the context. When calling a method, one can omit the
brackets. For example, to call method “def println(String str)”, one can write “println "test"” instead
of “println("test")”. Command expressions support named parameters that enable the definition
of methods with optional parameters or that make it possible to call the same method with a
different set of actual parameters. E.g. “turtle(name:"John", color:blue)” is a call to a method
named turtle with the two parameters name and color and the values "John" and the number that
represent the color blue. When such method calls are evaluated, Groovy stores the parameters
in a Map and passes the map to the method. The corresponding method definition needs to be
“def turtle(Map params){...}”.

Groovy supports overriding infix operators for arbitrary classes. E.g., to override the logical
operator “&”, a class must define the method and, or respectively for operator “|” the method or.

1Codehaus.org Homepage: Command Expression based DSL: http://docs.codehaus.org/display/
GroovyJSR/GEP+3+-+Command+Expression+based+DSL

115

http://docs.codehaus.org/display/GroovyJSR/GEP+3+-+Command+Expression+based+DSL
http://docs.codehaus.org/display/GroovyJSR/GEP+3+-+Command+Expression+based+DSL

5. Implementation in Groovy

In Groovy, there is syntactic sugar for accessing a property of a class via its getter and setter.
E.g., when a class C defines the accessors getX and setX but does not declare a public field, one
can directly access x on an instance c. Using the expression “c.x” will call the getter returning
its value. Using the expression “c.x = a” will call the setter changing its value.

The syntactic flexibility in Groovy, often facilitates defining a language embedding with an
abstract syntax that is close to corresponding established domain syntax, because the expressions
can omit unnecessary delimiters and other parts in their encoding.

Closures.To realize first-class code blocks, the instantiation of the reflective embedding archi-
tecture uses Groovy closures.

In Groovy, a closure is an object that represents a piece of code. Closures can be used as
methods that take parameters and return values. E.g. “{x -> x*x}” defines a closure that takes
a parameter x and returns its square value. Since closures are objects, one can assign them to
a corresponding variable—e.g. “Closure sq = {x -> x*x}”—and pass around the reference to the
object. To execute a closure, one calls it as if it were a method, e.g., sq(2).

If the last parameter of a method is a closure—e.g., “def turtle(Map map,Closure c){...}”—then
one can define the closure inline and do not need to pass it as a parameter inside the round
bracket of the method call; e.g. to call turtle one can write “turtle(name:"John",color:blue){ fd 50;
... }” (which is equivalent to “turtle([name:"John",color:blue],{ fd 50; ... })”.

In Groovy, a closure does not completely close over its lexical context, but its binding can be
changed. Within a closure’s body the variable this refers to the enclosing object—the so-called
owner (e.g., to access fields of the enclosing object). Additionally, each closure has a delegate
object to which the closure delegates all calls that it cannot answer itself. By default the delegate
object is the owner. In the previous example the call to println would be delegated to the closure’s
enclosing object; i.e. its owner.

The possibility to define and call closures in multiple ways and the support for named pa-
rameters facilitates a syntax for abstraction operators that is close to corresponding established
domain syntax.

Meta-Object Protocol.To enable more flexibility for language embeddings, the instantiation of
the architecture uses Groovy’s meta-object protocol.

As shown in the lower half of Figure 5.1, every value is an instance of the class Object which
implements the interface GroovyObject. The meta-level is shown in the upper half of Figure 5.1.
Method calls and field accesses on an object are handled by a corresponding meta-object, which
is an instance of MetaClassImpl that implements the interface MetaObjectProtocol. The latter
declares meta-methods used for interpreting an object’s behavior, e.g., invokeMethod, getProper-
ty, setProperty, etc.

When a base-level method is called on an object, the meta-method invokeMethod is called
on the object’s meta-object. The default implementation of invokeMethod in MetaClassImpl dis-
patches the base-level method call to the most specific implementation defined in the object’s

116

5.1. Groovy in a Nutshell

invokeMethod(…)
...

<<meta-object>>
MetaClassImpl

metaClass :
MetaClassImpl

...

Object

*
1

<<meta-object link>>

invokeMethod(…)
...

<<meta-object>>
ClosureMetaClass

owner : Object
delegate : Object
...

Closure

invokeMethod(…)
...

<<interface>>
MetaObject-
Protocol

getMetaClass()
setMetaClass(...)
...

<<interface>>
GroovyObject

Figure 5.1.: The meta-object protocol of groovy

class or in one of its super classes. In a similar way, the meta-methods getProperty and setPro-
perty dispatch field accesses to the most specific instance field2.

The user can specialize MetaClassImpl and override specific meta-methods. Every class has a
link to its default meta-object. When a class is instantiated, the default meta-object is used for the
created instance. One can change the default meta-object defined for a class in the registry, thus
changing the semantics of all objects of that class. Alternatively, one can change the meta-object
of a single object by calling the method setMetaClass on it.

For convenience, the Groovy MOP allows defining application-level meta-objects. In Groovy,
every object can be a meta-object—the meta-object of itself. To allow an object acting as
the meta-object of itself, its class can implement the special methods setProperty, getProperty,
invokeMethod, missingMethod and missingProperty. The first three have the same semantics as the
methods with the same signature in the default meta-object. In case the class implements those
methods, the default meta-object will use these more specific implementations instead of its de-
fault implementation, but only for instances of this corresponding class. The last two methods
missingMethod and missingProperty have special semantics. The default meta-object calls these
methods, whenever an undefined method is called, or respective an undefined field is accessed.

In Groovy, closures require specific meta-objects. For instance, Groovy provides a special
meta-class ClosureMetaClass for closures, which are instances of the class Closure. Closures
encapsulate their own evaluation context, which consists of bindings from the lexical context,
i.e. instance variables of their creating object (owner) and local variables. Hence, closures cannot
use the default MetaClassImpl, which would dispatch method calls and field/variable accesses
to this—the closure itself that does not define them. The special ClosureMetaClass dispatches
method calls as well as field/variable accesses inside the closure to its context. Moreover, every
closure can have a delegate object. If the latter is not null, method calls and field/variable
accesses are dispatched to it. This allows manipulating the evaluation context of a closure after
the closure is created. In Groovy, every closure has a field resolveStrategy that allows adapting

2If an accessed field is not present, by convention, the groovy MOP tries to find a corresponding getter or setter
method.

117

5. Implementation in Groovy

how the MOP resolves variable inside the closure. There are four relevant strategies: (1) the
default OWNER_FIRST: prefers binding variables from the closure’s owner context and only
looks up unbound variables in the delegate context, (2) DELEGATE_FIRST: prefers the delegate
context over the owner, (3) OWNER_ONLY: only looks up variable bindings in the owner context,
and (4) DELEGATE_ONLY: looks up only in delegate context. The delegates and those strategies
are crucial for enabling closures that do not completely close over the lexical context. The
instantiation of the architecture uses in particular delegates as well as strategies to realize the
dynamic syntax-to-semantics binding mechanism.

The ClosureMetaClass implements the closure-delegate mechanism and will be used for real-
izing the keyword method dispatch.

5.2. Reflective Embedding in Groovy
This section describes the instantiation of the levels of the reflective embedding architecture

in Groovy. When instantiating the reflective embedding architecture in a concrete host language,
one must select available host language constructs to implement the conceptual elements of the
abstract architecture. Moreover, it is important to fine-tune the abstract development process for
the host language. To exemplify the concrete process, we discuss embedding Logo in Groovy.
Along the discussion, we highlight what parts of the process have been fine-tuned for Groovy.

5.2.1. Language Interface Level
In Groovy, the language interface can be defined as an interface class with one keyword

method for expression type, like described in the abstract process from Section 4.1.1.1 (p. 72),
but there are minor deviations compared to the abstract process. Those derivations help to im-
prove the syntax of the resulting embedding in Groovy, as elaborated below:

(I) a getter method for each literal: In Groovy, literals are defined slightly different to the
abstract process. Literal keyword methods are defined using a getter method that uses the
literal’s keyword name (in camel case) prefixed by “get”.

For example, Listing 5.1 shows the Groovy code that defines the language interface ISim-
pleLogo of SIMPLELOGO. In lines 3–8, ISimpleLogo defines a getter method for each color
literal with the corresponding color name. All getters return the integer representation of
their color.

With the help of Groovy’s syntactic flexibility, a program can directly use a literal key-
word to read/write from the property (e.g., red) and the MOP will call the corresponding
accessor.

(II) a method for each operation: In Groovy, operations are defined exactly the same way as
in the abstract process. Recall that these methods use the operations’ keywords and take
as many parameters as their operation’s arity.

For example, in lines 11–14, ISimpleLogo declares the operations, e.g. forward.

118

5.2. Reflective Embedding in Groovy

Note that, in Groovy, we also can fine tune for defining operations with two options.
There is the possibility to define operation methods with a variable length of parameters
and methods with optional parameters. This can help to reduce the number of methods
that developers need to declare.

(III) a special method for each abstraction operator: In Groovy, abstraction operators de-
fine their parameters slightly different. For a better syntax, it is recommended that an
abstraction operator takes two parameters, a HashMap as its first parameter, and a Closure
as the last parameter. The map stores the abstraction operators’ named parameters, and
the Closure represents the abstraction operator’s body.

For example, in line 17, ISimpleLogo declares the abstraction operator turtle that takes the
two HashMap and Closure parameters and in this case returns nothing.

�
1 interface ISimpleLogo {
2 /* Literals */
3 int getBlack();
4 int getBlue();
5 int getRed();
6 int getGreen();
7 int getYellow();
8 int getWhite();
9

10 /* Operation */
11 void forward(int n);
12 void backward(int n);
13 void right (int n);
14 void left (int n);
15

16 /* Abstraction Operators */
17 void turtle (HashMap params, Closure turtleBody);
18 }
� �

Listing 5.1: Language interface of SIMPLELOGO

It is a strategic decision how to encode a concrete method signature for an abstraction operator.
In the most cases, one can obtain a good abstract syntax with the HashMap/Closure combination.
This is because Groovy’s command expressions allow us to fine-tune the resulting abstract syn-
tax to be close to concrete syntax. Thanks to named parameters, developers can encode mixfix
operators (cf. Section 3.4.2, p. 50), in a more or less acceptable notation. Thanks to passing
closures outside bracket, developers can nicely encode abstraction operators.

Note that, the presence of the language interface level in the architecture is desirable from
a design perspective, but there is no obligation for such an interface to be present in Groovy.
In case the language interface is present, the Groovy compiler enforces that the language im-
plementation conforms to this syntax definition. Still, the language developer can decide to
completely omit the interface, thanks to Groovy’s weak typing facilities.

119

5. Implementation in Groovy

5.2.2. Language Façade Level
At the language façade level, the language developer3 implements the language interface as

a façade class4 that also extends the Interpreter class. An excerpt of the implementation of the
Interpreter class is shown in Listing 5.2. By default, the body delegate is the façade itself (line 2).
This ensures that the closure-delegate mechanism uniformly dispatches occurrences of domain-
specific keywords in the bodies of abstraction operators to the same façade instance.�
1 public abstract class Interpreter {
2 protected Object bodyDelegate = this;
3 ...
4 }
� �

Listing 5.2: Excerpt of the Interpreter class

For example, to provide a language façade for SIMPLELOGO, the class SimpleLogoInterpre-
ter extends Interpreter and implements the ISimpleLogo interface. The class is responsible for
storing an evaluation context and implementing all keyword methods, as elaborated in the next
two paragraphs.

For the evaluation context, the class holds references to a Canvas object (line 6) and a Turtle
object (line 3), which are instances of the language model classes. To provide execution se-
mantics, the SimpleLogoInterpreter follows an immediate evaluation mode, which immediately
computes expressions. In lines 5–9, its constructor creates the canvas as an instance of class
TurtleGraphicsWindow from the language model and stores this instance as one of the attributes
of the interpreter, which constitutes the global context.

For keywords, the class provides method implementations, as exemplified below for the three
types. For each literal method that retrieves a color shown in lines 12–17, the method returns
the integer value of the corresponding RBG-representation given by its Color class from the
language model. In case of the operation methods shown in lines 20–23, they simply call the
corresponding method for that command on the turtle instance passing to it the parameters5. In
case of the abstraction operator method shown in lines 26–31, the turtle abstraction operator
instantiates a new instance of the class Turtle from the language model, sets the bodyDelegate as
the delegate of the closure parameter that contains a sequence of commands, and calls the closure
to evaluate the command sequence. Setting the bodyDelegate is important so that keywords used
inside the closure are uniformly handled by the same façade instance.

3Note that, the language designer who designs the language interface, and the language developer who implements
it, they must not be the same person.

4Normally, the facade class is a Groovy class, but it also can be a Java class. When using a Java class, there are some
restrictions w.r.t. Groovy MOP. To leverage the maximum flexibility of the reflective embedding architecture, it
is recommended to implement every class in Groovy.

5Since the language model classes expect Double parameters to their domain operations, Groovy auto-boxes and
converts the values from int to Double

120

5.2. Reflective Embedding in Groovy

�
1 public class SimpleLogoInterpreter extends Interpreter implements ISimpleLogo {
2 protected TurtleGraphicsWindow canvas;
3 protected Turtle turtle ;
4

5 public SimpleLogoInterpreter() {
6 canvas = new TurtleGraphicsWindow();
7 canvas.setTitle ("Logo EDSL (based on JavaLogo)");
8 canvas.show(); //Display the window
9 }

10

11 /* Literals */
12 public int getBlack() { return Color.BLACK.value; }
13 public int getBlue() { return Color.BLUE.value; }
14 public int getRed() { return Color.RED.value; }
15 public int getGreen() { return Color.GREEN.value; }
16 public int getYellow() { return Color.YELLOW.value; }
17 public int getWhite() { return Color.WHITE.value; }
18

19 /* Operations */
20 public void forward(int n) { turtle .moveForward(n); }
21 public void backward(int n) { turtle .moveBackward(n); }
22 public void right (int a) { turtle .turnRight(a); }
23 public void left (int a) { turtle . turnLeft (a); }
24

25 /* Abstraction Operators */
26 void turtle (HashMap params, Closure turtleBody) {
27 turtle = new Turtle(params.name,java.awt.Color.BLACK);
28 canvas.add(turtle);
29 turtleBody.delegate = super.bodyDelegate;
30 turtleBody. call ();
31 }
32 }
� �

Listing 5.3: Language façade of SIMPLELOGO

5.2.3. Language Model Level
At the language model level, in Groovy, the language designer implements the internals of the

language semantics using ordinary Groovy classes6. The classes define fields and methods, and
their implementations encode the details of the language semantics, i.e. the language’s theorems
encoded in Groovy code. Note that often, language developers do not have to implement a
complete model from scratch, since the model can use existing code from libraries that are in
Groovy or Java bytecode.

For SIMPLELOGO, Figure 5.2 shows an excerpt of the language model of SIMPLELOGO The
classes in the language model implement the semantics of the Logo domain. We have already
discussed the general semantics of the model in Section 4.1.1.3 (p. 76). What is special in
Groovy is that the implementation of the language model uses more specific host language types
and that it can reuse existing code from Groovy or Java libraries. On the one hand, to encode

6Alternatively, Java classes can be used, but when using Java classes these cannot be adapted by the Groovy MOP
without restrictions. Therefore, for language implementation in Java, REA’s meta-level is not available.

121

5. Implementation in Groovy

org.javalogojavax.swing

moveForward(n:Double)
moveBackward(n:Double)
turnRight(a:Double)
turnLeft(a:Double)
...

name:String
x:Double
y:Double
orientation:Double
penColor:Color
...

Turtle

drawLine(x1,y1,x2,y2:Double)
add(turtle:Turtle)
...

...

<<singleton>>
Canvas

JFrame JComponent

javax.awt

Color

Figure 5.2.: The language model of SIMPLELOGO

parts of the internals of the language, the model implementation uses the available libraries of
the host language, such as the primitive Java type int, the Groovy Closure class, and the Java
AWT class Color. On the other hand, for drawing turtles, the model implementation reuses the
classes from an existing Java-based implementation of Logo, e.g. the JavaLogo project [Jav02]
that provides a Swing-based [ELW98] graphical user interface (GUI).

5.2.4. Language Meta Level
At the language meta-level, Groovy allows using default or adapted semantics for a language,

as elaborated below.
For default semantics, the default Groovy meta-object MetaClassImpl is used to execute the

language implementation. In this case, the meta-level does not change the language implemen-
tation, hence technically this makes the presence of a special meta-level optional. Since there
are no special meta-objects, instances of the MetaClassImpl meta-object executes the language
implementation with the standard OOP semantics. Consequently, neither the abstract syntax in
language interface, nor the syntax-to-semantic binding in the façade, nor the evaluation protocol
in the model are executing under changed semantics.

For adapted semantics, a language developer can extend the Groovy MOP to open up a lan-
guage implementation at the language meta-level. For every class in the language implemen-
tation, the Groovy MOP can add new keyword methods or override existing ones by adapting
the method dispatch for these classes, or one can introduce new fields for literals. Adapting
the fields and methods of the language implementation classes is possible, because the Groovy
MOP intercepts every method call, or respectively field access, as mentioned in Section 5.1.

To adapt a given language, a language developer needs to implement a special meta-object by
subclassing the MetaClassImpl class7. A subclass overrides the invokeMethod of the super class to
adapt the method dispatch, or respectively the getProperty and setProperty method to adapt field

7Since the MetaClassImpl class in Groovy is actually a Java class, the developer has the choice to implement the
meta-object in Java or Groovy.

122

5.3. Program Evaluation in Groovy

accesses. To apply an adaptation, the developer select the meta-object to execute the classes of
the language implementation to adapt.

There are several strategic decisions to make for the developer what to adapt with a meta-
object. The meta-objects can be rather generic for several classes in the language implementa-
tion, or they can be specialized for single classes or objects, such as only the façade or a single
language model class. Discussing the means that help developers make their decisions deserves
a more detailed discussion, therefore, Section 5.4.2 addresses this issue.

5.3. Program Evaluation in Groovy
This section discusses how programs are represented and evaluated in the reflective embed-

ding architecture.
To encode program expressions in abstract syntax, each kind of expression type follows a

specific Groovy encoding, which will call methods of the façade, such as shown for the program
in Listing 5.4. The encoding represents a literal expression as a field access, e.g. for the literal
red, it reads the corresponding field in line 2, which will call the getter getRed(). Further, it
represents an operation expression as a method call in prefix notation with its sub-expressions
as the parameters, e.g. for forward, in line 3, its call the method forward(). Finally, it represents
abstraction operator as a method call also in prefix notation, where sub-expressions are named
parameters in a map and where nested sub-expressions are wrapped in a closure (e.g. cf. turtle
in lines 2–6). Note that the Groovy encoding is close to the domain syntax, since the encoding
allows omitting brackets and nicely passing closure parameters.

To associate a program code block with a concrete façade, the encoding wraps the whole
program in a closure (logoProgram in Listing 5.4 line 1), and it sets the closure’s delegate to
an instance of façade class SimpleLogoInterpreter of the language (line 8). Recall that setting
the delegate field of a closure dynamically establishes a syntax-to-semantic binding in Groovy.
Next, we call the closure, i.e., we execute the SIMPLELOGO program (line 9). This execution
runs in two steps: (a) create and initialize a turtle object, which is an instance of the class Turtle,
and (b) execute the commands in the turtle body.�
1 Closure logoProgram = {
2 turtle (name:"Square", color:red) {
3 forward 50
4 right 90
5 ... /* Implementation is continued as in Figure 3.1 (a) lines 4–10 */
6 }
7 }
8 logoProgram.delegate = new SimpleLogoInterpreter();
9 logoProgram();
� �

Listing 5.4: Associating a DSL program to its interpreter

Now, if during the execution of the logoProgram closure a call to a DSL keyword is encoun-
tered (here turtle) the call is dispatched to the DSL program closure’s delegate; i.e. the corre-
sponding façade instance of SimpleLogoInterpreter. The declaration at line 2 in Listing 5.4 is

123

5. Implementation in Groovy

actually a call to turtle(HashMap params, Closure turtleBody) on the logoProgram closure8 and
hence forwarded to its delegate—the façade instance. Thereby, paramHashMap contains the tur-
tle’s name, and turtleBody is a closure containing the body of the turtle declaration (lines 2–6,
Listing 5.4).

The execution of that call creates a Turtle object (line 27, Listing 5.3) and calls the closure
turtleBody (line 30, Listing 5.3) after setting its delegate to bodyDelegate (line 29 in Listing 5.3)
of the super class (cf. Figure 5.2, line 2), which refers to the façade instance itself by default.

The execution of turtleBody immediately evaluates the sequence of commands in the body.
Thereby, every DSL keyword within the body gets dispatched to bodyDelegate, i.e., to the Simple-
LogoInterpreter instance. For instance, the forward declaration in line 3 in Listing 5.4 yields a call
to method forward(...) on the façade instance. It is fundamental that in Groovy the façade sets
the delegate of the closures of its abstraction operators (Listing 5.3, lines 29) to the designated
bodyDelegate of its super class Interpreter. Recall that in the Interpreter class (cf. Listing 5.2)
the body delegate refers to the façade itself (line 2). Because abstraction operators use the body-
Delegate for their enclosing closures as the closure delegate, this ensures that occurrences of
domain-specific keywords are uniformly dispatched to the same façade instance.

5.4. Key Mechanisms in Groovy
For a particular host language, the architecture’s key mechanisms can be distinguished whether

they can be reused from existing mechanisms in host language or whether a mechanism must
be implemented on top of existing host language mechanisms. Depending on the quality of the
language constructs and internal mechanisms in a host language, only some of the language
mechanisms from the host language can be used for realizing the key mechanism for language
embeddings. When none of the existing mechanisms in the host language are adequate for a
certain evolution, a language developer can eventually embed a new mechanism or extend an
existing mechanism.

In Groovy, we could reuse language mechanisms for implementing language polymorphism
and the meta-object protocol for evolutions of embeddings. This is because languages are em-
bedded into the host language as a library, thus embeddings are homogeneous and do not break
existing host-language constructs and tools. For enabling language polymorphism, class inher-
itance and OO method dispatch in the host language can be leveraged for the language em-
bedding. Section 4.2.1 (p. 84) shows that inheritance can be used to enable extensibility for
embeddings. For enabling the dynamic syntax-to-semantics binding, Section 5.4.1 shows that
object composition allows customizing language semantics by replacing a façade with another
one. Further, reflection provides a systematic support for non-invasive adaptations of language
implementations, discussed in Section 4.2.2 (p. 89).

In Groovy, existing language mechanisms, such as runtime mixins and categories [KG07],
do not provide adequate support for language composition, since these do not detect or prevent
conflicts and do not provide any guarantees. Therefore, the reflective embedding architecture

8Due to Groovy’s command expressions and closures.

124

5.4. Key Mechanisms in Groovy

allows embedding a new language-composition mechanism on top of Groovy’s meta-object pro-
tocol. Fundamental for embedding new mechanisms is that the Groovy MOP enables analysis
and adaptation to define a meta-level for language embeddings. Because in REA, languages are
first-class, their syntax and semantics can be analyzed via introspection and adapted via inter-
cession. Because program expressions are represented as first-class objects and because every
step in the evaluation of an expression constitutes a method call, the structural representation
and the evaluation protocol of expressions can be adapted. For composability, the meta-level
enables defining generic logic for composing languages, discussed in Section 4.2.3 (p. 102). Be-
cause in REA experts can provide sophisticated mechanisms on top of the host, users can reuse
and customize these mechanisms as first-class objects, which opens up language development
to non-expert programmers.

5.4.1. Language Polymorphism
The language polymorphism mechanism leverages the Groovy inheritance for black-box ex-

tensions of languages.
To add new keywords to an existing language embedding, a language developer can grow a

language by extending the base language’s interface class, its façade class, and its model classes.
By inheriting from these classes, existing functionality is reused. For an extension, the developer
must only specify and implement the domain semantics of new keywords.

Consider implementing EXTENDEDLOGO that adds more drawing commands to SIMPLE-
LOGO, such as, setpencolor and clearscreen. Listing 5.5 shows the language interface and imple-
mentation of EXTENDEDLOGO. In line 1, the language interface of the new dialect IExtended-
Logo extends the existing base language’s interface ISimpleLogo, hence it inherits all declared
methods from its super interface (e.g., forward). In a similar way, the language façade Extended-
LogoInterpreter extends the base language’s façade class SimpleLogoInterpreter. On the one hand,
the language façade inherits all implemented methods from SimpleLogoInterpreter façade. On
the other hand, the ExtendedLogoInterpreter add implementations for the methods declared in
IExtendedLogo. At this point, we only show the implementation of two of these methods, namely
clearscreen (line 12) and setPencolor (line 14). Note that in this scenario, we did not have to ex-
tend the language model classes, since the façade class can reuse the model classes as they are
provided.

Figure 5.6 demonstrates how to use an instance of ExtendedLogoInterpreter (line 1) for evalu-
ating a program that still assumes an old version of the language (lines 3–8) and another program
in the extended language (lines 12–19).

5.4.2. Meta-Level Extensions
Semantic adaptations leverages the Groovy meta-objects for adapting a given language se-

mantics. In contrast to language polymorphism, the meta-objects enable white-box extensions
that are extensions that interfere with the internal implementation strategies of the language.

Consider implementing the support for collision detection for CONCURRENTLOGO, as dis-
cussed in Section 3.1.2.2 (p. 35). With white-box extensibility, developers can elegantly encode
interpretation concerns those code crosscut throughout the embedding by using the Groovy

125

5. Implementation in Groovy

�
1 interface IExtendedLogo extends ISimpleLogo {
2 void home();
3 void clearscreen();
4 void showturtle ();
5 void hideturtle ();
6 void setpencolor(int c);
7 void penup();
8 void pendown();
9 }

10

11 class ExtendedLogoInterpreter extends SimpleLogo implements IExtendedLogo {
12 void clearscreen() { canvas.clearScreen(); }
13 ...
14 void setpencolor(int c) { turtle .setPenColor(c); }
15 }
� �

Listing 5.5: Implementation of the EXTENDEDLOGO dialect

�
1 ISimpleLogo evaluator = new ExtendedLogoInterpreter();
2

3 Closure programInOldLanguageVersions = {
4 turtle {name:"Square",color:red) {
5 forward 50; right 90;
6 ...
7 }
8 }
9 programInOldLanguageVersions.delegate = evaluator;

10 programInOldLanguageVersions();
11

12 Closure programWithShortcutNames = {
13 turtle {name:"Square",color:red) {
14 clearscreen();
15 forward 50; right 90;
16 setpencolor green;
17 ...
18 }
19 }
20 programWithShortcutNames.delegate = evaluator;
21 programWithShortcutNames();
� �

Listing 5.6: Using the extended set of commands from EXTENDEDLOGO

MOP, such as collision detection. Specifically, for collusion detection, a developer needs to
implement a special meta-object that prevents collisions by intercepting façade and model-level
method calls when Turtle objects painting concurrently. In the remainder, this section sketches
the collision detection implementation.

Figure 5.7 shows a special meta-object class for Turtle objects. This meta-object class adapts
the Turtle class’s move operations (e.g., forward) to detect and prevent collision between multiple
turtles. To intercept calls to all move operations, the class implements the method invokeMethod

126

5.4. Key Mechanisms in Groovy

that the Groovy MOP will execute for each call on a Turtle object. As indicated in line 7, the
meta-object only adapts method calls to the move operations moveForward and moveBackward.
Before executing these move operations, the invokeMethod detects and prevents the collision
(lines 7–9). Finally, when there is no (more a) collision, the call is proceeded by the super class
of the meta-object (line11).�
1 class CollusionPreventingTurtleMetaClass extends MetaClassImpl {
2 CollusionPreventingTurtleMetaClass(Class theClass, ...) { super(theClass);... }
3

4 Object invokeMethod(sender, object, methodName, arguments, ...) {
5 assert (object instanceof Turtle);
6

7 if (methodName.equals("moveForward") || methodName.equals("moveBackward")) {
8 // code that detects and prevents collisions ...
9 }

10

11 return super.invokeMethod(sender, object, methodName, arguments, ...);
12 }
13 }
� �

Listing 5.7: Excerpt of a specialized meta-object class that prevents collisions

To use the semantic adaptation, a developer or user simply needs to sets up all specialized
meta-objects as the meta-objects of relevant classes in the language model. As shown Listing 5.8
in line 3, by changing the metaClass field of the Turtle class, the program associates the new
CollisionPreventingTurtleMetaClass meta-object with the Turtle class.

When the program closure is evaluated in Listing 5.8 line 12, the evaluation of the program
closure will create new Turtle objects that are all associated with new instances of Collision-
PreventingTurtleMetaClass. Therefore, all calls to this domain object will be intercepted by the
meta-object and collisions can be prevented.�
1 ICompleteLogo evaluator = new ConcurrentLogo();
2

3 Turtle .metaClass = new CollusionPreventingTurtleMetaClass(Turtle.class, ...);
4

5 Closure multiTurtleProgram = {
6 turtle {name:"T1",color:red) { ... }
7 turtle {name:"T2",color:green) { ... }
8 turtle {name:"T3",color:blue) { ... }
9 ...

10 }
11 multiTurtleProgram.delegate = evaluator;
12 multiTurtleProgram();
� �

Listing 5.8: Semantic adaptation of SIMPLELOGO with the Groovy MOP

127

5. Implementation in Groovy

With respect to the adaptation scope, this example adaptation has a global locality (D1.a) since
it changes the behaviors of all Turtle instances, its atomicity is at the module-level (D2.b) since
it intercepts all methods that move a Turtle, and its time of adaptation is pre-execution (D3.a).
Later on, the collision detection implementation will be further elaborated in Section 10.1.2.2
(p. 215).

5.4.3. Extensible Languages Combiners
To compose languages, language developers can use one of the language combiners from

Section 4.2.3 (p. 102). The following paragraphs show how these combiners are implemented in
Groovy.

5.4.3.1. Composing Independent Languages
The architecture supports composing independent language embeddings by composing their

dynamic syntax-to-semantic bindings using the Groovy MOP.
In Groovy, the composition logic for independent languages with black-box composition is

implemented in the meta-façade BlackBoxCombiner shown in Listing 5.9. The BlackBoxCombiner
extends the LanguageCombiner class (cf. Figure 4.11, p. 103) and is a meta-object because it im-
plements MetaClassImpl. It references independent façades to which it dispatches uses of the
expressions (i.e., domain-specific keyword method calls). The constructor checks that there
is no syntactic conflict between the composed façades, using Java reflection [AGH05, FF04].
Further, to make the combiner responsible for evaluating the expressions that are nested in ab-
straction operators, the constructor sets the combiner as the bodyDelegate of all façades. The
keyword dispatch is implemented by overriding GroovyObject’s invokeMethod (lines 10–17) that
the Groovy MOP will invoke for every keyword method call. The invokeMethod searches for the
corresponding façades that implements the keyword method by using reflection (lines 11–13),
it enforces the call to be unambiguous9 (line 15), and it delegates the method call to the façade
that implements the keyword method (line 16).

For example, consider composing COMPLETELOGO and FUNCTIONAL into the composite
language FUNCTIONALLOGO, as it has been proposed in Section 3.2.1 (p. 37). We have already
discussed the conceptual aspects of how to compose the two independent language. There-
fore, this section only presents the Groovy implementation of FUNCTIONAL. Then, this section
demonstrates how the developer can use the BlackBoxCombiner to compose the latter with the
embedding of COMPLETELOGO.

Listing 5.10 presents the embedding of FUNCTIONAL with the language interface IFunctional
(lines 1–4) and its façade (lines 6–19). In line 7, there is the definedFunctions map from Strings to
Closures. The define abstraction operator method (lines 9–12) creates a new function by binding
the function name (from the named parameter params.name) to its body closure via the map.
The apply operation method (lines 14–17) retrieves the closure from a defined function from the
map. Note that this façade does not require a special language model, since functions can be

9Although the BlackBoxCombiner’s constructor checks that signatures are unique over all façades, it must en-
force the condition again, since new keyword methods can be added at runtime using the meta-level.

128

5.4. Key Mechanisms in Groovy

�
1 class BlackBoxCombiner extends LanguageCombiner
2 implement MetaClassImpl {
3 Set<Interpreter> facades;
4 ...
5 BlackBoxCombiner(Interpreter... facades) {
6 // 1) uses Java introspection to validate that each signature in the facades is unique, and
7 // 2) sets itself as the bodyDelegate of all facades
8 }
9 ...

10 Object invokeMethod(sender, receiver, mName, args, ...) {
11 Set<Interpreter> respondingFacades = facades.findAll { interp −>
12 interp .metaClass.respondsTo(interp,mName)
13 };
14 if (respondingFacades.empty()) throw new MissingMethodException("Keyword $mName undefined.");
15 if (respondingFacades.size() > 1) throw new SyntaxConflictException("Keyword conflict $mName.");
16 return respondingFacades.first().invokeMethod(sender, receiver, mName, args, ...);
17 }
18 }
� �

Listing 5.9: The BlackBoxCombiner class

readily mapped to Groovy closures. With an instance of this façade, developers can evaluate
FUNCTIONAL programs.

�
1 interface implements IFunctional {
2 void define(HashMap params, Closure body);
3 Closure apply(String name);
4 }
5

6 class Functional extends Interpreter implements IFunctional {
7 HashMap<String,Closure> definedFunctions = new HashMap<String,Closure>();
8

9 void define(HashMap params, Closure body) {
10 definedFunctions.put(params.name,body);
11 body.delegate = bodyDelegate;
12 }
13

14 Closure apply(String name) {
15 if (! definedFunctions.containsKey(name)) throw new UndefinedFunctionException("’$name’ undefined");
16 return definedFunctions.get(name)
17 }
18 ...
19 }
� �

Listing 5.10: Excerpt of the implementation of FUNCTIONAL

Listing 5.11 demonstrates using the use of the BlackBoxCombiner. First, in line 17, the setup
step instantiates the façades for all language embeddings used in the program. Then, in the same
line, the setup step creates a BlackBoxCombiner and pass to it the façades. In the last step, we set

129

5. Implementation in Groovy

the BlackBoxCombiner as the program closure’s delegate (line 17) before executing the program
(i.e., before calling the respective closure in line 18).�
1 Closure program = {
2 define(name:"square") { length −>
3 repeat (4) {
4 forward length
5 right 90
6 }
7 }
8

9 turtle (name:"TwoSquares", color:red) {
10 setpencolor blue
11 apply("square")(50)
12 right 180
13 setpencolor green
14 apply("square")(100)
15 }
16 }
17 program.delegate = new BlackBoxCombiner(new CompleteLogo(),new Functional());
18 program.call ();
� �
Listing 5.11: Evaluating the FUNCTIONALLOGO example from Figure 5.10 with a composed

interpreter

5.4.3.2. Composing Dependent Languages
Developers can compose dependent language embeddings using dependent combiners, as dis-

cussed in Section 4.2.3.2 (p. 107). At this point, this section only sketches the Groovy imple-
mentation of the simplest dependent combiner—the LinearizingCombiner. Implementations of
other dependent combiners and custom combiners are presented later on.

Listing 5.12 presents the implementation of the LinearizingCombiner. Its implementation is
similar to the BlackBoxCombiner, but there are important differences. First, in this combiner,
the constructor (lines 4–7) does not enforce the signatures of keywords method to be unique.
Second, its implementation invokeMethod (lines 9–16) does not throw an exception when more
than one keyword method is found by for the same signature. Instead, in line 15, the combiner
simply invokes the first method found (with the highest priority) and ignores the rest. These two
derivations are necessary to allow composing dependent languages resolving syntactic conflicts
taking into account the order in which the language are composed.

5.5. Summary
This chapter has presented a proof-of-concept for the reflective embedding architecture by

providing a reference implementation for the core architecture in the Groovy programming lan-
guage. The same architecture can be implemented in other languages.

In the context of this thesis, the core architecture was also implemented in the Ruby language.
The are minor differences between the two instantiations. Since Ruby does not use interfaces, the

130

5.5. Summary

�
1 class LinearizingCombiner extends LanguageCombiner {
2 List< Interpreter> facades;
3 ...
4 LinearizingCombiner(Interpreter ... facades) {
5 // 1) does not enforce unambiguous keywords
6 // 2) sets itself as the bodyDelegate of all facades
7 }
8 ...
9 Object invokeMethod(sender, receiver, mName, args, ...) {

10 Set<Interpreter> respondingFacades = facades.findAll { interp −>
11 interp .metaClass.respondsTo(interp,mName)
12 };
13 if (respondingFacades.empty()) throw new MissingMethodException("Keyword $mName undefined.");
14

15 return respondingFacades.first().invokeMethod(sender, receiver, mName, args, ...);
16 }
17 }
� �

Listing 5.12: The LinearizingCombiner class

language interface levels is not present in Ruby. Further, since Ruby does not provide an explicit
meta-object protocol and a closure-delegate mechanism, for Ruby, slightly different techniques
needed to be used. Still, the central architecture’s key mechanisms could be implemented in
Ruby. Describing the details of the Ruby implementation is out of the scope of this thesis.
Therefore, the interested reader is referred to the following report:

• Tom Dinkelaker, Christian Wende, and Henrik Lochmann. Implementing and Com-
posing MDSD-Typical DSLs. TUD-CS-2009-0156, Technische Universität Darmstadt,
Germany, October, 2009.

However, it remains to be shown that the language-embedding approach indeed allows imple-
menting sophisticated languages and that the approach enables language evolution. In particular,
the following issues need to be addressed:

• What particular host language features help language developers to grow embeddings with
new specific language constructs? In particular, it is interesting to explore the opportuni-
ties that the flexibility provides through using the reflective features of the host language.

• Is it possible to embed more sophisticated kinds of language constructs, such as, data
types or aspects?

• How can the core architecture be extended to support composition?

• In the core architecture, only embedding with an abstract syntax could be provided. How
can concrete syntax be enabled for embedded languages?

To address these issues, in the following sections, we will present several extensions to the core
architecture that provide solutions for the mentioned problems.

131

Part III.

Extensions to the Core Architecture

133

6. Reflective Domain-Specific Languages

The previous chapters have presented the reflective embedding architecture’s core with its sys-
tematic support for late semantic adaptations. So far, the architecture’s flexibility is only avail-
able for language developers, but not for end users. Unfortunately, language developers cannot
always anticipate the requirements in the end users. Therefore, this section motivates the need
for reflective DSLs that are special DSL that have open semantics. It elaborates this by means
of an example that needs to adapt the language semantics in a user domain. To enable semantic
adaptations in the user domain, this chapter describes how language developers can implement
a reflective DSL on top of a reflective embedding in REA. It uses evaluations the resulting im-
plementation by discussing required qualities for reflective languages, as Maes proposes them
in [Mae87]. Further, it validates the use of reflective DSL by means of a case study.

Let analyze what variability is present in today’s language and why its important. Recently,
variability in language implementations is handled by extensible language approaches [MHS05],
such as extensible interpreters and compilers, like JastAdd [HM03, EH07b]. With extensible
interpreters/compilers, an expert can handle variation at compile-time of the language infras-
tructure, but these approaches fail to allow language end users to adapt the languages they want
to use.

The requirement of supporting language adaptation by end users is addressed by applying
the open implementation principle [Kic96, KLL+97] to programming languages. An open im-
plementation is a special module that developers design with a primary interface and a meta-
interface to the module. The primary interface is simply an ordinary interface to the module that
end user programs access to interact with the module. Further, the meta-interface allows end
user programs to control the module’s implementation strategy. When programs can control a
module’s implementation strategy, clients themselves can adapt modules to a specific context,
which gains advantage over traditional closed modules.

From the beginning, the open implementation principle has been used in language implemen-
tations. There are many existing open language implementations for object-oriented program-
ming languages—the meta-object protocols (MOPs) [KRB91]. However, the open implementa-
tion principle is interesting for other programming languages, e.g. that are not general-purpose
or are not object-oriented.

Domain-specific languages are another class of languages that could benefit from having sup-
port for adaptations. The semantics of a given DSL is subject to: (1) evolutions of the language,
e.g. [ZGL05], when a new version of the language semantics becomes available; (2) language
optimizations without changing the semantics, e.g. [She04, SCK04]; and (3) dis-consensus on
the right language semantics, e.g. UML state charts [OMG04], for which various semantics need

135

6. Reflective Domain-Specific Languages

to be supported in one language implementation. So far, this issue has only been little explored
by means of extensible DSL compilers and interpreters [vDKV00]. Mernik stated [MHS05] that
“building DSLs [...] in an extensible way” is an open problem.

Established extensibility mechanisms from general-purpose languages are frequently requested
for DSLs [MHS05], examples are aspects [RMWG09] and reflection [CHBB09]. Still, there are
only a few DSLs that use aspects to improve their extensibility, such as workflow languages like
BPEL [CM04, Cha08], or grammar-specification languages [SLS03, RMWG09]. Reflection is
more general than aspects and would be also interesting for DSLs. Counsellet al. state that “a
reflective DSL for analyzing code is long overdue” [CHBB09]. Moreover, it would be interest-
ing if a DSL program would be allowed to reason about its own domain. What is missing is a
general concept for deriving DSLs with reflective features.

This chapter argues that by following the open implementation principle in a DSL implemen-
tation, a language developer can use to design an adaptable DSL that supports late semantic
adaptations. Late semantic adaptations means, by order of importance:

1. There are different people that define (part of) the semantics. The DSL architect defines
early the default semantics of the DSL. Later on, the DSL user may lately adapt the default
semantics in an application-specific manner.

2. The semantic adaptation occurs after the DSL architect has released the default DSL im-
plementation.

3. There are semantic adaptations that cannot be done by configuring a DSL interpreter or
compiler. For example, they cannot be implemented by static adaptation of the semantics,
when these adaptations depend on the execution context of a particular DSL program.
Such late adaptations are similar to late binding of methods in OO programming, where
late also expresses a dependency to the execution context.

To qualitatively validate the flexibility the reflective embedding architecture provides for DSL
development, this chapter presents a study that discusses how to enable a wide range of late
semantic adaptations of DSLs. This chapter shows indeed that DSLs can be implemented with
a plan for growth by using two important methods from programming language research. First,
inspired by reflective languages, the first idea is to grow a DSL into a reflective DSL, so that
users can implement programs that reason about their semantics. Second, inspired by meta-
object protocols, the concept embeds a DSL as an open implementation in order to provide a
meta-interface to the user for adapting the DSL semantics. What is an particularly interesting
property of the resulting DSL embeddings is that a DSL embedded into a reflective host language
easily becomes itself an reflective language—a reflective DSL. With reflection for DSLs, the
distinction between the role of the language developer and the end user is blurred.

The task to implement an open reflective DSL is not fundamentally different from open im-
plementations and reflective languages. For a reflective DSL, a language developer needs to
expose the internal structure of DSL to the user. For an open DSL, on the one hand, a language

136

6.1. Late Variability in Domain-Specific Language Semantics

developer includes extensions points into an open DSL implementation, at which later on a user
can provide extensions. On the other hand, the user can apply such extensions the open DSL im-
plementation to customize it for special needs. By implementing DSL as open implementations,
both—the language developer and the end user—collaboratively develop the final semantics of
the language. While extension points are very powerful tool for users, language developers can
easily implement extension points on top of REA.
Note that parts of this chapter have been published in the following paper:

• Tom Dinkelaker, Martin Monperrus, and Mira Mezini. Supporting Variability with Late
Semantic Adaptations of Domain-Specific Modeling Languages. In Proceedings of the
1st International Workshop on Composition: Objects, Aspects, Components, Services and
Product Lines, at the International Conference on Aspect-Oriented Software Develop-
ment, 2010.

The remainder of this chapter is structured as follows. Section 6.1 discusses the need for support-
ing late variability in language semantics by means of an example, which is used as the running
example throughout the chapter. Section 6.2 discusses the implementation of a DSL with default
semantics. Section 6.3 discusses how to grow any DSL into a reflective DSL. Finally, Section 6.4
demonstrates the support for semantic adaptations in the architecture.

6.1. Late Variability in Domain-Specific Language Semantics
This section elaborates the need for open implementations of DSLs.

6.1.1. The FsmDSL Running Example
As a running example, this chapter introduce FSMDSL—a DSL for defining finite state ma-

chines (FSM). State machines can be defined with the following keywords:

• fsm name {fsmDefinitionBody}: defines a new state machine. The keyword is fol-
lowed by a name for the state machine and a block with one or more state definitions (in
fsmDefinitionBody).

• state name {stateDefinitionBody}: defines a new state. After the keyword, there
is a corresponding name and a block that defines actions and transitions to other states
(in stateDefinitionBody). Inside the body of the definition of a state, the following
elements can be defined: (a) a set of variables using the keyword def. (b) a set of un-
conditional actions that will be executed either once when the automaton enters the state
(keyword on entry) or once when the automaton leaves the state (keyword on exit); and (c)
a set of transitions is defined to other state using the keyword when.

• on entry {action}: defines an action with a block of code that will be executed when
entering into this state. Each state may have zero or one on entry action.

• on exit {action}: This keyword pair defines an action with a block of code that will be
executed when leaving this state. Each state may have zero or one on exit action.

137

6. Reflective Domain-Specific Languages

• when eventName {transitionAction}: defines a transition from this state to another
state. For each transition, there is an event name that guards the transition action. In
the transition action, the state normally enters the next state, e.g. by executing enter
nextState. When the state machine receives an event with the corresponding name de-
fined by a transition, the state machines leaves the current state and enters the next state
of the transition.

For illustration, consider the FSMDSL program in Listing 6.1, which implements a travel
package booking process that combines booking several positions like a hotel, a flight, and a
rental car. The goal of this listing is to give the intuition of how a FSMDSL program looks like,
and to support the definitions and arguments that help us to state the problem. In Listing 6.1, the
keyword fsm (line 1 defines a new state machine with the name TravelPackage that models two
steps in a workflow. The first step is modeled as the state BookingFlight that is defined using the
keyword state (line 2), and the second step of the workflow is model as the state BookingHotel
(line 28).

In Listing 6.1, the action to be performed on entrance of the BookingFlight state is a call to a
flight booking Web service. In the default semantics of this FSMDSL, events are handled syn-
chronously. When receiving the acknowledgment from the Web service some_flight_webservice
modeled by the event done in state BookingFlight, the FSM enters the BookingHotel state via the
corresponding transition for this event (lines 10–12). Only when an error event is received, the
corresponding transition action replaces the targetService through another synchronous service
another_flight_webservice that has the same service interface, and then, the action repeats the
failed step by reentering it.

6.1.2. Semantic Variability in FsmDSL
A DSL implementation is said to support application-level semantic adaptations, if it allows

the semantics of domain types and objects to be modified from within a DSL program in an
application-specific way.

For illustration, similarly to [HB04], consider that the default Web service for booking flights
can fail. Let us also assume that the only other partner available is another_flight_webservice1,
which works asynchronously. However, the default semantics of the FSMDSL only handles
synchronous Web services. In this case, this alternative partner cannot be integrated into the
synchronous state machine, because the default semantics does not support mapping the event
of an asynchronous message reception to a synchronous input event of a state.

The problem is solved if the semantics of the FSMDSL could be changed within the FSM
program, more precisely by the logic responsible for the recovery transition of the BookingFlight
state.

When Listing 6.1 uses an open implementation of FSMDSL that supports semantic adapta-
tions, the TravelPackage program is able (cf. Listing 6.1, lines 15-25): (1) to handle the error

1For the sake of brevity, the code that selects the alternative partner from a Web service registry is omitted.

138

6.1. Late Variability in Domain-Specific Language Semantics

�
1 fsm ’TravelPackage’ {
2 state ’BookingFlight’ {
3 def targetService = "some_flight_webservice"
4

5 on entry {
6 ... // call to "book" operation on targetService
7 }
8

9 // nominal mode
10 when ’done’ {
11 enter ’BookingHotel’
12 }
13

14 // error recovery mode
15 when ’error’ {
16 // change the target Web service another_flight_webservice works asynchronously
17 targetService = "another_flight_webservice"
18

19 // redefine here event handling semantics to handle asynchronous events
20 // and adopt the new semantics for this state
21 [...]
22

23 // ... and stay in the current state
24 enter ’BookingFlight’
25 } // end when
26 } // end state
27

28 state ’BookingHotel’,{
29 on entry { ... }
30 }
31 }
� �

Listing 6.1: Adaptive business process

event in the BookingFlight state, (2) to replace the failing partner2, and (3) to adapt itself to the
new Web service by changing the event reception semantics of the state BookingFlight in order
to listen to asynchronous events (i.e., the asynchronous reception of the response message).

Such self-adaptive programs enable autonomous computing [Hor01] where the program con-
figures, heals, optimizes, or protects itself to a well-defined adaptation goal without human
interference into the running system. Meta-level architectures and reflective systems have been
proposed since a long time to be employed for self-adaptation [MC02, HB04]. Still, there is
little research on enabling self-adaptive programming for DSLs that lead to proposing solutions
for individual DSLs. To leverage the same flexibility for other DSLs, it requires a systematic
method for DSL implementation with support for self-adaptive programming.

Note that the adaptation of the FSMDSL semantics happens dynamically while the DSL pro-
gram is running and depends on the execution context of the DSL program – in this case, the

2It is assumed that the alternative partner Web service has the same interface, i.e., the same message types are
exchanged. The format of a message is independent from the Web service binding [CNW01] that selects a
synchronous or asynchronous style for message interaction.

139

6. Reflective Domain-Specific Languages

occurrence of the event error. Furthermore, the adaptation is fine-grained: only the semantics of
one program part is affected; it is now possible to recover from the error in state BookingFlight,
but the default synchronous semantics of other states is not modified.

Existing approaches to implementing DSLs do not support application-level semantic adap-
tations, in the way illustrated above, where the application basically redefines specific parts of
the language semantics. In existing approaches changing the semantics at runtime is only pos-
sible if the semantic adaptation had already been envisioned at design time in the original DSL
implementation.

However, it is not possible to envision every possible semantic adaptation a priori at design-
time. Even if it was possible, the resulting explicit support for adaptations would bloat the
implementation of the default semantics with additional attributes and conditional logic. Such
an one-size-fit-all solution hampers the design of the default semantics which is used by most of
the DSL programs. Last but not least, the DSL semantics could not be causally connected to the
application state (i.e., dependent on the application state).

6.2. Implementing the Primary Interface of the FsmDSL
To create an open language implementation, a language developer simply embeds the lan-

guage on top of REA, as it was described in Section 5. The default language implementation
acts as the primary interface of the open language implementation through which programs
interact with default syntax and semantics (cf. explanation of the primary interface and meta-
interface in Section 4.2.3.3, p. 109). In the following, this section elaborates the embedding
the primary interface of FSMDSL in REA, as a running example for demonstrating the concept
throughout this chapter.

handleEvent(…)
…

State

fire(...)
...

Transition

fsm (…)
state (…)
when (…)
enter (…)
…
execute (…)

StateMachineDSL

*

next

receiveEvents(...)
...

Fsm

*

doIt()
...

Actions
on_entry

current on_selection

on_exit

Figure 6.1.: Language model of the state machine DSL

Consider embedding and the implementation of the default semantics for the FSMDSL for
state machines.

Figure 6.1 depicts the design of this DSL. The domain model consists of classes Fsm, State,
Transition, Actions. The Fsm class maintains a set of states, refers to a current state and imple-

140

6.3. Growing a DSL into a Reflective DSL

ments some default semantics of state machines, e.g., the method receiveEvents(...) defines the
dispatch mechanism of events received by a state machine. State instances maintain a set of
outgoing transitions and may have an on_entry action and implement the state semantics. For
instance, the method handleEvent(...) defines the state event handling mechanism. A Transition
points to the next state. The fire(...) method is called whenever a transition is selected. The class
Action encapsulates a set of domain-specific actions; the semantics of an action execution is en-
coded in the doIt method. Finally, the language façade is implemented in class StateMachineDSL.
There is a method for each keyword in the DSL. When called, these methods instantiate domain
objects.

Listing 6.2 shows an excerpt of an embedded DSL program for state machines. The DSL
program is contained in the closure dslPackage (line 2–11) which is configured in line 12 to have
an instance of StateMachineDSL as its evaluator façade and whose evaluation starts at line 13.

Line 13 triggers the evaluation of the DSL program. This will load the state machine definition
(lines 3–7), which creates the domain objects in the language model that represent the textual
definition, and then the program executes a sequence of events (line 10). Next, the program
sends a sequence of events in a method call to a domain object (resp. myFsm and execute), given
in a specific execution context ({’ok’,’error’,...}). The reception of each event triggers a cascade
of method calls on the domain objects that were created when loading the state machine, which
internally selects a transition and updates the current state of the machine.

�
1 // this closure contains the DSL program
2 def dslPackage = { // the DSL program
3 fsm ’myFsm’, {
4 state ’S1’, { ... }
5 ...
6 state ’SX’, { ... }
7 }
8

9 // executes the FsmDSL program when by sending the event list
10 myFsm.execute({’ok’,’error ’,...})
11 }
12 dslPackage.delegate = new de.tud.statemachine.StateMachineDSL() // default facade for state machines
13 dslPackage(); // evaluates the closure
� �

Listing 6.2: State machine embedded in Groovy

6.3. Growing a DSL into a Reflective DSL
This section explains how to grow an embedded DSL embedding into a reflective DSL. It

explains the language developers perspective. First, in Section 6.3.1, we discuss the concept of
reflective DSLs. After this, in Section 6.3.2, we discuss the implementation of reflective DSLs.

141

6. Reflective Domain-Specific Languages

6.3.1. Reflective DSLs
Inspired by reflective general-purpose languages [Smi82, FW84, Mae87], this thesis defines a

reflective domain-specific language as a DSL that allows a DSL program to reason about itself.
In a reflective DSL, a DSL program can change its internal structure and behavior, whereby its
first-class representations stays causally connected to its domain.

After the language developer has embedded a DSL in REA, REA implicitly makes a meta-
level available for semantic adaptation by the language developer. The meta-level builds upon
the general-purpose abstractions of the general-purpose host language. Therefore, end-user pro-
grams cannot conveniently access the meta-level using domain-specific abstractions, but only
with general-purpose abstractions.

To bring semantic adaptations closer to the domain, this section presents how a language de-
veloper can grow any embedded DSL in REA into a reflective DSL. The development process
for a reflective DSL starts from a non-reflective embedded DSL and is as follows. On the one
hand, the developer adds support for reification [FW84] of domain-specific concepts into the
DSL. On the other hand, the developer adds support for reflection [FW84]—both introspection
and intercession—into the DSL. While this section presents the language developer’s perspec-
tive of designing a reflection DSL, the next section will elaborate on how end users can use
reflective DSLs.

To grow a DSL into a reflective DSL, the language developer needs to enable structural and
behavioral reflection for selected language constructs of the DSL. As illustrated in Figure 6.2, to
enable reflection, the developer needs to extend the DSL with reflective extension. The extension
provides reflective language constructs for the domain, which are defined in an optional reflective
interface, which acts as a meta interface to the language implementation (cf. explanation of the
meta-interface in Section 4.2.3.3, p. 109). The end user of the reflective DSL can use this meta-
interface for implementing strategies into their program.

DS
L

Mo
de

l

La
ng

.
In

te
rfa

ce

DS
L

Fa
ca

de

Domain

reasons about

causal connection

Re
fle

ct
ive

 D
SL

 P
ro

gr
am

DSL Meta-Level

Reflective Host Language

Re
fle

ct
ive

In
te

rfa
ce

Re
fle

ct
ive

Ex
te

ns
io

n

R
E
A

interacts

re
fle

cti
ve

 re
fer

en
ce

s

changes made over
the meta-interface
immediately become
effective

Figure 6.2.: Reflective DSL architecture

142

6.3. Growing a DSL into a Reflective DSL

A reflective program uses reflective constructs in order to reason about its own structure and
behavior. To enable structural reflection, the developer needs to turn a DSL implementation into
a system that is about its domain structure. The system needs to allow answering questions
about its structure, i.e. it can inspect and manipulate the structure and state of its domain objects.
For making semantic adaptation effective, the system’s domain objects need to be causally con-
nected [Mae87] to their domain. To enable behavioral reflection, the developer needs to enable
a DSL implementation that allows reasoning about its domain behavior. The system needs to
allow answering questions about its behavior, i.e. it can inspect the events of its domain objects.
The system needs to allow manipulating the behavior that results from reactions to the states and
events in the domain objects.

The remainder of this section elaborates how a language developer can grow an arbitrary DSL
into an reflective DSL. Section 6.3.2.1 and Section 6.3.2.2 demonstrates with a concrete example
that, when embedding a language into a reflective host language, it is easy to obtain a reflective
version of the language with only little changes made to its implementation. Section 6.3.3 argues
that this is easy, because the reflective embedding architecture fulfills the requirements of the
reflective system architecture by Maes [Mae87]. Moreover, Section 6.3.4 argues that once having
obtained an reflective DSL after Maes’s architecture, a language developer can further specialize
by evolving into a more declarative one.

6.3.2. Implementation of Reflective DSLs
To extend a DSL with reflection, the language developer provides access to the language in-

ternals. They define special language constructs called reflective references that are implicit
references (cf. Section 3.5.2, p. 55) to meta-level entities. A program can use a reflective refer-
ence to access the meta-level for structural and behavioral reflection.

6.3.2.1. Structural Reflection

To enable structural reflection, the language developer needs to extend the DSL to allow
accessing the structural program representation.

Consider extending the FSMDSL to expose the most important language constructs inside a
state machine, such as its states and the state machine itself. To expose the enclosing state, the
language developer only needs to sightly extend the language façade with an reflective refer-
ence thisState that retrieves the instance of the enclosing state’s domain-object representation
from the language model. Listing 6.3 presents the ReflectiveStateMachineDSL that extends State-
MachineDSL. The sub-class exposes the enclosing state of the state machine by providing the
getter getThisState() (line 14) that returns the first-class representation from the DSL language
models. To expose the state machine with the reflective reference thisFsm, a corresponding get-
ter getThisFsm() (line 16) returns the representation of the whole state machine. To access the
states and the machine via their names, it is possible to expose the first-class representation via
their name identifiers by overriding the meta-method propertyMissing (19–22) that the Groovy
MOP will invoke, whenever using an identifier that is not explicitly defined as a variable. The
overridden meta-method either returns (1) the state machine if the pretended property’s name

143

6. Reflective Domain-Specific Languages

identifier is equal to the name of the state machine, in line 20, (2) it tries to look up the state with
the corresponding name and returns this if defined, in line 22, or (3) it returns null otherwise.

�
1 class StateMachineDSL extends Interpreter {
2 Fsm currentStateMachine;
3 Fsm fsm(...) { ... }
4 State state (...) { ... }
5 void when(...) { ... }
6 void enter (...) { ... }
7 void on_entry (...) { ... }
8 void on_exit (...) { ... }
9 ...

10 }
11

12 // the reflective extension for state machines
13 class ReflectiveStateMachineDSL extends StateMachineDSL {
14 State getThisState() { return currentStateMachine.getCurrentState(); } // exposes the enclosing state
15

16 Fsm getThisFsm() { return currentStateMachine; } //exposes the enclosing state machine
17

18 // resolves reflective references when using fsm/state names outside the DSL program
19 public Object propertyMissing(String name) {
20 if (name.equals(currentStateMachine.getName())) { return currentStateMachine; }
21 else { return currentStateMachine.getState(name); }
22 }
23 }
� �

Listing 6.3: Reflective extension of the default interpreter for structural reflection

To evaluate a reflective program, such as the one in Listing 6.4, the user only has to set up
the extended façade ReflectiveStateMachineDSL as the program’s closure delegate line 24. The
program can use different forms of structural reflection, as explained by the following examples.

First, a reflective program can access the DSL programs structures inside entry and exit ac-
tions. For example, inside an action, the program can use the reflective reference thisState (line 5
in Listing 6.4) to obtain a reference to the enclosing state’s State object and prints out its string
representation. Note that, such obtained State objects and Fsm objects depend on the enclos-
ing lexical context in which the reflective reference occurs. Similarly, the reflective reference
thisFsm (line 5) returns a first-class representation of the enclosing state machine (e.g. “my-
ReflectiveMachine”).

Second, a reflective program can also access the structural representation of a state machine
from outside the machine’s definition block. Specifically, the program can directly access parts
of the machine’s structural representation via the identifiers defined inside the machine. For
example, line 12 uses a state machine’s identifier ReflectiveMachine to obtain a reference to
the first-class representation of the state machine and prints out a string representation of it.
Similarly, line 13 uses a state’s identifier S1 to obtain a reference to a first-class representation

144

6.3. Growing a DSL into a Reflective DSL

�
1 def dslPackage = {
2 // the DSL program
3 fsm ’myReflectiveMachine’, {
4 state ’S1’, {
5 on_entry { println "entering "+thisState+" in "+thisFsm; } // introspection via reflective reference
6 }
7 ...
8 state ’Sx’, { ... }
9 }

10

11 // Introspection by identifier name (resolved via propertyMissing)
12 println "My state machine: "+myReflectiveMachine.toString(); // introspects a state machine by name
13 println " It ’ s state ’S1’ has the following transitions : "+S1.transitions ; // introspects a state by name
14 ...
15 ...
16 // Intercession
17 State errState = new State("ErrorState"); // creates a new first −class DSL construct
18 myReflectiveMachine.addState(errState); //intercedes a state machine by name
19 myReflectiveMachine.states.values().each { State s −>
20 s.addTransition(new Transition(s,errState ," error "));
21 }
22 ...
23 }
24 dslPackage.delegate = new ReflectiveStateMachineDSL();
25 dslPackage();
� �

Listing 6.4: A program using structural reflection

of the corresponding state. The program can access a domain object’s attributes, such as line 13
accesses the transitions of S1 and print them out as a list.

Third, a reflective program can manipulate the structure of the program using intercession.
For example, lines 17–18 create a new state ErrorState and add it to the above state machine.
Further, lines 19–21 add a transition from every defined state to the ErrorState, when receiving
an error event. Note that in contrast to a non-reflective version of this program, the benefit of the
reflective version is that the error state can be added in a modular way.

With the Groovy MOP, structural reflection can also change the structure of existing classes
and objects. Specifically, the user can add fields or methods. To adapt a domain type or object,
the user retrieves the meta-object of it. To get the meta-object of the domain type, the developer
uses Groovy’s metaClass property, e.g. State.metaClass. To get the meta-object of a domain ob-
ject, the developer accesses metaClass property of the domain object, e.g. “S1.metaClass”. For
example, the program can add a new field to an individual State object, e.g. to S1, with the fol-
lowing code “S1.metaClass.counter = 0;”. After such a structural intercession, the program can
access the introduced field like an ordinary field, e.g., “S1.counter++” increases the introduced
counter field.

145

6. Reflective Domain-Specific Languages

6.3.2.2. Behavioral Reflection
To enable behavioral reflection, the developer uses the Groovy MOP features to intercede with

embedded DSL semantics. The support for behavioral reflection relies on the available support
for structural reflection to conveniently access the first-class representations of DSL constructs.
Since in Groovy closures are first-class objects, indeed, there is no difference between manipu-
lating fields and methods.

To adapt a program with behavioral reflection, the end users access the meta-object of a DSL
construct to manipulate its domain operations. With closures, users can provide an alternative
implementations for a domain operation, and with the Groovy MOP, they can replace this domain
operation by the alternative one. The reuse of functionality for behavioral reflection from the
host language is interesting, in particular, because implementing behavioral reflection for a new
language from scratch is expected to be difficult [Mae87].

To adapt a domain method, the user retrieves the meta-object of its domain type or domain
object. In the meta-object of a type or an object, for each domain operation (e.g., handleEvent),
there is property with the name of the domain operation that holds a link to a closure, which is
initially is its default implementation. Next, the user can adapt the operation by assigning the
link to another closure (e.g., “State.metaClass.handleEvent = {...}”).

Consider adapting a FSMDSL program to count how often an event was received by an in-
dividual state, such as in the program in Listing 6.5. Line 9 adds a counter to the State domain
object with name S1. Lines 12–16 replace the domain-operation link to handleEvent of this state
to refer to a closure that prints out a logging statement and increases the counter. Note that,
inside the closure of an alternative implementation of a domain operation, to invoke a method
on the enclosing object, in Groovy, the developer needs to use the keyword delegate, which has
a similar meaning as the this3 keyword has in a method body of the class.

6.3.3. On the Design Properties of Reflective DSLs
To review the concept of reflective DSLs, the following paragraphs compare the resulting de-

sign properties of the obtained DSL to the properties that Maes proposes in her seminal paper.
In [Mae87], Maes discusses several important design properties of reflective architectures. The
following discussion reviews how a reflective DSL implemented on top of the reflective embed-
ding architecture meets these design properties. In particular, the discussion emphasizes how
these properties for the embedded language are inherited from its reflective host language.

(1) disciplined split between object-level and meta-level: Maes argues that the language
design should connect every object to a meta-object, but objects and meta-objects should not be
confused.

In reflective embedding, thanks to the MOP, every class in the language implementation has
a meta-object, including the language façade and every class in its model. Because REA uses
different types at the meta-level and the other levels, there is a clear split between the object

3The developer cannot use the keyword this in the body of the closure of an alternative implementation, since this
refers to the enclosing object, which in this case, the enclosing script that adapts the domain operation, not the
class or the object to be adapted.

146

6.3. Growing a DSL into a Reflective DSL

�
1 def dslPackage = {
2 // the DSL program
3 fsm ’myReflectiveMachine’, {
4 state ’S1’, { ... }
5 ...
6 }
7 ...
8 // intercede structure
9 S1.metaClass.counter = 0;

10

11 // intercede behavior
12 S1.metaClass.handleEvent = { String event −>
13 Transition t = delegate.transitions .get(event);
14 println "HANDLE EVENT: receives "+event+" no.${++(S1.counter)} and takes transition "+t;
15 return t ;
16 }
17 ...
18 }
19 dslPackage.delegate = new ReflectiveStateMachineDSL();
20 dslPackage();
� �

Listing 6.5: A program using behavioral reflection

level and the meta level in the implementation between a classes that extend Object and classes
that extend MetaObjectImpl.

Note that the reflective embedding architecture is generalizes the proposal of Meas to whole
languages. In REA, there is a first-class object of the language itself in form of the language
façade, the language itself as a whole can be manipulated not only objects. But, there are also
limits, since Groovy is subject to conflating levels. Recall, in Groovy, every class may override
one of its meta-methods, such as methodMissing. When an object overrides a meta-method,
it actually implements meta-level activities at the base level, in fact this conflates the levels.
Although conflating levels can be very convenient, in case the user/developer does not carefully
implement a meta-method, there is the danger of infinite regression—an endless loop between
the base and the meta-level logic.

(2) uniform representation: Maes argues that the design needs to be represented in a uniform
way.

In the reflective embedding architecture, all reflective concepts are represented as objects.
On the one hand, every GPL construct is represented as an object in Groovy, such as classes,

closures.
In the other hand, every domain-specific language construct is represented through an object

in REA. In the above example, these are Fsm objects, State objects, and Transition objects. Since
the architecture follows a homogeneous approach to embed a reflective language, the resulting
reflective system, i.e. the homogeneous embedding has no technological disruptions with the
host language, its reflective architecture, and its tools, which makes the resulting language im-

147

6. Reflective Domain-Specific Languages

plementation uniform. For supporting reflective DSLs, it is crucial that REA does not commit
to a special set of language constructs.

Additionally, REA provides also uniform high-level reflective abstractions for language com-
ponents, which are not present in most other reflective languages. In particular, the architecture
also represents languages as a set of objects, such as the language façade instance and the ob-
jects of the language model. REA mechanisms introspect and intercede these objects, such as
language combiners compose language components, and there is support for analyses and trans-
formations (cf. Section 10).

(3) complete representation: Maes argues that the meta level should contain the complete
information about the base level.

In the reflective embedding architecture, this is not completely the case, but there are only
minor limitations due to restrictions of the Groovy MOP. From the language model of a reflective
embedding, everything is accessible as an object. Still, there are a few minor restrictions, since
the current version of the Groovy MOP does not provide all conceivable features, i.e. Groovy
does not reify basic blocks.

Specifically, REA currently does not support reflective methods [DDLM07]. Despite every
Groovy closure is represented as an object with a corresponding meta-object, it is not possible
to access the AST inside a closure at runtime.

Despite this, note that later on Section 10.6 will demonstrate how to obtain access to the
program’s AST. The language developer can implement an analysis to obtain an AST-like rep-
resentation of DSL constructs used inside a closure, that are reified as a sequence of method
calls using an analyzer façade. Moreover, in a reflective embedded DSL, it depends on the
studiousness of the language developer to expose all information about the domain in an ade-
quate way. For example, the FSMDSL reflective DSL favors simplicity over complete reflection,
specifically it does not completely reify events as first-class objects, but it maps them to String
objects.

(4) consistent self-representation: Maes further demands the design to use a consistent self-
representation, i.e. the representation whose elements represents themselves. In other words,
she argues that a system should implement itself with its own means, which is why reflective
systems are often implemented as meta-circular interpreters [SS78]. For example, meta-level
objects encode the semantics of base-level objects, meta-level procedures encode base-level
procedures, and meta-level rules encode base-level rules.

In contrast to this, in the REA everything is represented with OO abstractions. More specif-
ically, DSL constructs are not implemented in the DSL itself. For example, the above example
represents a state machine using objects, but it does not represent a state machine through a kind
of meta state machine. Although this is not true self-representation, the representation is still
consistent. Since everything can be represented as an object and those object are represented
with objects, everything is indirectly represented via self-represented objects.

Another perspective on that is that homogeneous embedded DSLs can be thought of as being
quasi meta-circular, because of two reasons. First, when homogeneously embedding a DSL into

148

6.3. Growing a DSL into a Reflective DSL

a host language, by default, the DSL inherits the computational power of the host language. Sec-
ond, when embedding a DSL into a meta-circular host language as a library, the embedded DSL
does not destroy the meta-circular property of the host language. Because the host language is
still a subset of a homogeneous embedded DSL, a meta-circular implementation of the host lan-
guage together with the embedded library is a meta-circular implementation for the embedding.
Consequently, the embedding inherits the meta-circular property from its host language. Despite
this property of the reflective embedding architecture, unfortunately its current instantiation in
Groovy is not meta-circular, since Groovy is not implemented as a meta-circular compiler.

However, one can argue that self-representation make little sense for most DSLs. A problem
with self-representation of a DSL is that when one needs a Turing complete language to imple-
ment the DSL, this requires the DSL itself to be Turing complete. With Turing complete DSLs,
one could realize self-representations through a meta-circular implementation. For instance, tex
is Turing complete [Tay92], therefore one can use tex to implement tex. But, there are two
reasons why self-representation is often not possible for many DSLs. First, declarative DSLs
that are not Turing complete disallow implementing themselves, e.g. HTML cannot be used to
implement HTML (without using JavaScript [Fla02]). Second, even if it would be possible to
implement, still it can be expected to cost too much effort to do so, e.g. one can implement
the BPEL workflow language [AAB+07] in itself, but BPEL abstractions are only adequate for
programming-in-the-large. Instead, low-level implementations would be needed to implement
BPEL’s execution semantics in an efficient way. Consequently, self-representation cannot be
considered as a good design goal for reflective DSLs in general.

(5) run-time modification: Maes argues that the representation should allow run-time modifi-
cation.

In the reflective embedding architecture, thanks to the fact that the Groovy MOP supports
runtime modification, reflective programs can modify every class or individual object during the
execution of programs. Developers can add both fields and methods, and they can adapt existing
fields and methods.

6.3.4. Evolving from Procedural to Declarative Reflection
Maes distinguishes reflective systems with respect to the abstraction level of the reflective

language that is used to reason about the system and to manipulate it. There is procedural and
declarative reflection.

A system supports procedural reflection, when the system itself exposes its own interpreta-
tion-process. In other words, there is a procedural representation of the system that is visible to
the user and that can be changed by its own means. For procedural reflection, often the reflective
language is implemented as a meta-circular interpreter, thus the system uses the same language
to implement its reflective language, which is also available to the user for implementing reflec-
tive programs. An advantage of this approach is that, for language developers, implementing
a meta-circular interpreter is an easy way to fulfill causal connection [Mae87]. But, often the
resulting reflective language is a rather low-level language with disturbing details [KRB91]. A
problem with such a low-level language is that it may not provide an efficient notation for users.

149

6. Reflective Domain-Specific Languages

In contrast, if a system supports declarative reflection, then the users do not have direct ac-
cess to the complete procedural representation of the system. They can only use declarative
statements to change the system internals. In such systems, the user rather declares constraints
to describe what the system must fulfill but not how. The declarative notation tends to be more
safe and efficient for users, since the declarative notation restricts possible user inputs in a con-
trolled way. Further, the system’s restricted reflection capabilities often allow to implement its
execution in a more efficient way; because of the restrictions optimizations become conceivable.
However, for the language developer, it is more complicated to implement such a language.

In sum, there are advantages and disadvantages of both styles of reflection, and Maes mentions
examples of reflective systems that can be classified between the two extremes, because they
incorporate both procedural and declarative parts. According to Maes this suggests that the
distinction is rather a continuum.

What is special in the reflective embedding architecture is that language embeddings are al-
lowed to slide on this continuum, as illustrated in Figure 6.3. For example, initially, a reflective
language embedding starts as a procedural reflection (index 1), but later on, a language developer
can specialize a language interface and its implementation by adding more declarative language
constructs on top of the low-level reflection mechanisms. As indicated in the figure, they can
provide more safety guarantees by restricting the available power of the reflective system (index
2). Further later on, those declarative language constructs may allow optimizing the language
implementation (index 3).

Figure 6.3.: Continuum of procedural and declarative reflection

As an example for evolving a reflective DSL to be more declarative, consider introduc-
ing a declarative abstraction that consistently adds transitions to all existing states of a ma-
chine. Specifically, the language developer can implement such a declarative abstraction by
defining a new keyword method drain. With drain, users can consistently add transitions from
all states to one particular state. For example, with the snippet “drain(fsm:thisFsm,to:Error-
State,when:"error")”, the user adds a transition from every state in thisFsm to the ErrorState,
whereby each transition is guarded by a label that requires the error event. Using the declar-
ative drain keyword is safer than using the rather low-level reflection mechanism. When the user
adds each transition using the low-level structural reflection mechanisms, the user could acci-
dentally forget to change one of the states. With a more declarative reflection mechanism like
in the above example, the provided abstractions help end users to apply reflective adaptations.

150

6.4. Case Study: Using Semantic Adaptation Scopes to Adapt an Open DSL Implementation

They can use reflection without taking care of adaptation details, thus their reflective program
likely become less prone to errors.

From the above discussion, one can conclude that the reflective embedding architecture sup-
ports continuous evolution of reflection from a general-purpose reflective DSL to more a spe-
cialized and declarative DSL that abstracts from details of reflective programming.

6.4. Case Study: Using Semantic Adaptation Scopes to Adapt
an Open DSL Implementation

This section presents how an end user can customize an open DSL implementation in their
programs. On the one hand, the user can reason on programs. By using the DSL’s reflection
mechanism, the user can introspect with program. On the other hand, the user can reason on
the language semantics. By using the (generic) meta-interface, the user can intercede with the
semantics of the open DSL implementation. To demonstrate applications of introspection and
intercession, this section first presents semantic adaptations for the FSMDSL, in Section 6.4.1.
Then, after this, Section 6.4.2 to Section 6.4.4 demonstrate how to apply these semantic adapta-
tions to the open DSL implementation, in a controlled way, by using with the three dimensions
of the reflective embedding architecture (cf. Section 4.2.2, p. 89).

6.4.1. Possible Semantic Adaptations for the FsmDSL
The UML specification [OMG04] discusses several semantic adaptations for state machines.

This section considers two of them.

Synchronous vs. asynchronous event handling: Listing 6.6 shows two possible imple-
mentations of State’s domain operation handleEvent. The first implementation is the default one
and encodes synchronous event handling; the second implementation supports asynchronous
event handling.�
1 // default : synchronous event handling
2 def handleEvent(Event event) { delegate.fsm.currentState = delegate.transitionSelection(event). fire (); }
3

4 // alternative : asynchronous event handling
5 def handleEvent(Event event) {
6 if (delegate.queue.isEmpty) { delegate.fsm.currentState = delegate.transitionSelection(event).fire (); }
7 else { delegate.fsm.queue.add(event); }
8 }
� �

Listing 6.6: Two implementations of handleEvent

Deterministic vs. random transition selections: A given state of a state machine can have
several transitions matching a given event, i.e. the FSMDSL is non-deterministic. In this case, a
state machine implementation has to provide a transition selection policy. In REA, the seman-
tics of transition selection is encoded in the transitionSelection method of the domain class State.

151

6. Reflective Domain-Specific Languages

Listing 6.7 shows two possible implementations of transitionSelection. The default implementa-
tion of the transition selection policy is a deterministic one. It returns the first element of the
collection of matched transitions. The alternative implementation selects a random item in the
collection of matched transitions for a fairer load-balancing.�
1 // default semantics: deterministic transition selection
2 def transitionSelection (Event event) { return delegate.transitions . findAll (event). first ; }
3

4 // alternative semantics: random transition selection
5 def transitionSelection (Event event) { return delegate.transitions . findAll (event).getRandom(); }
� �

Listing 6.7: Two implementations of transitionSelection

The following sub-sections will discuss scenarios of using REA to apply alternative semantics
for event handling and transition selection thereby varying the kind of adaptation along the three
dimensions discussed previously.

6.4.2. Dimension: Locality of Adaptations
Listing 6.8 and Listing 6.9 show the implementation of the locality of adaptations dimen-

sion (D1) presented in Section 4.2.2.1.1 (p. 91).�
1 // this closure contains the DSL package (DSL program + adaptations)
2 def dslPackage = {
3 // the DSL program
4 fsm ’myFsm’, {
5 state ’S1’, { ... }
6 ...
7 state ’SX’, { ... }
8 }
9

10 // adaptation of the default semantics of the domain class State by replacing the implementation of
11 // the transitionSelection method of the default meta−object associated with the State class
12 State.metaClass.transitionSelection = { event −>
13 return delegate.transitions . findAll (event). last
14 }
15

16 // executing the DSL program
17 myFsm.execute({’ok’,’error ’,...})
18 }
19 dslPackage.delegate = new ReflectiveStateMachineDSL()
20 dslPackage()
� �

Listing 6.8: Domain type semantic adaptation

Listing 6.8 illustrates domain type semantic adaptation (D1.a). The module dslPackage (lines 2–
18)—a Groovy closure—consists of three parts: (1) The declaration of a DSL program (lines 4–
8), (2) a piece of meta-program that tailors the semantics of the DSL (lines 12–14), and (3) a

152

6.4. Case Study: Using Semantic Adaptation Scopes to Adapt an Open DSL Implementation

piece of code that starts the execution of the DSL program (line 20). Parts (1) and (3) have
been explained in Section 6.2. Most importantly, the adaptation part (2) changes the transitionS-
election method of the default state meta-object in line 12 to an alternative implementation—the
closure in lines 12–14. As explained earlier, all instances of class State are affected by this kind
of adaptation and will execute with the tailored transition selection semantics.

Listing 6.9 shows an example of semantic adaptation performed at the level of a single domain
object (D1.b). The only difference to Listing 6.8 is in Listing 6.9, lines 11–13. While for domain
type adaptation the program changes the meta-object of State, for domain object adaptation the
program changes the meta-object of the domain object that represents the state S1. Only state
S1 has the new implementation of the transitionSelection method.�
1 def dslPackage = {
2 // the DSL program
3 fsm ’myFsm’, {
4 state ’S1’, { ... }
5 ...
6 state ’Sx’, { ... }
7 }
8

9 // adaptation the default semantics of **only instance S1** by replacing the implementation
10 // of the transitionSelection method S1 and Sx do not have the same transitionSelection semantics
11 myFsm.S1.metaClass.transitionSelection = { event −>
12 return delegate.transitions . findAll (event). last
13 }
14

15 myFsm.execute({’ok’,’error ’,...}) // executing the DSL program
16 }
17 dslPackage.delegate = new ReflectiveStateMachineDSL()
18 dslPackage()
� �

Listing 6.9: Domain object semantic adaptation

6.4.3. Dimension: Atomicity of Adaptations
Listing 6.10 and Listing 6.11 illustrate the atomicity of adaptation semantic dimension (D2),

presented in section Section 4.2.2.1.2 (p. 94). On the one extreme in this dimension, semantic
adaptation affects a single domain method (D2.a); on the other extreme, the semantic adaptation
may imply the construction of a completely new meta-object (D2.b).

Listing 6.10 is an excerpt of Listing 6.8. It focuses on the adaptation in line 6. The only
element that is changed is a domain method of a domain class.

On the contrary, Listing 6.11 shows the creation of a semantic module and its use for tailoring
the semantics of a domain class. Similarly to using classes to represent domain types, one can
use a new subclass for modularizing alternative semantics for a domain type. In the example,
lines 4–7 define such a subclass called TailoredState. Subclassing a domain type to create a new
meta-object allows leveraging two key Groovy features used in Listing 6.11:

153

6. Reflective Domain-Specific Languages

�
1 fsm ’myFsm’, {
2 ...
3 }
4

5 // The developer tailors only transition selection part of the semantics of States
6 State.metaClass.transitionSelection = { event −> return delegate.transitions. findAll (event). last ; }
7

8 myFsm.execute({’ok’,’error ’,...}) // executing the DSL program
� �
Listing 6.10: Method-level adaptation

1. The possibility to attach new semantics in form of an alternative meta-object4 to an exist-
ing domain class, using Groovy’s meta-class registry mechanism (line 11).

2. Groovy automatically creates a meta-object for each new class that is instantiated (line 11).

A meta-object for the new subclass is automatically created and stored in the class variable
TailoredState.metaClass. In Listing 6.11 line 11, the adaptation part registers this meta-object
also for the State class. As a consequence, the domain operation implementations of Tailored-
State will be used for State objects.�
1 ...
2 // To package atomic adaptations into one unit ,
3 // the developer uses a sub−class that modularizes the semantic adaptation for its super class
4 class TailoredState extends State {
5 def transitionSelection (event) { /* cf . variation point transitionSelection */ }
6 def handleEvent(event) { /* cf . variation point handleEvent */ }
7 }
8

9 // Next, the developer can tailor the semantics of State in one unit
10 // for both event handling and transition selection
11 InvokerHelper.metaRegistry.setMetaClass(State, TailoredState.metaClass)
12

13 myFsm.execute({’ok’,’error’ ,...}) // executing the DSL program
� �
Listing 6.11: Semantic module adaptation

6.4.4. Dimension: Time of Adaptations
Listing 6.12 demonstrates using scoping adaptation with the time of adaptation dimension (D3),

presented in Section 4.2.2.1.3 (p. 95).
Pre-execution adaptation (D3.a) is used to set up the desired semantics for a DSL program

before running it. Pre-execution adaptation allows us to reuse a DSL program; in the running

4To preserve compatibility with existing clients, the new meta-object must obey the same object interface as the
obeyed by the old meta-object.

154

6.5. Summary

example, a developer can reuse the program that has been implemented for synchronous Web
services to interact with an asynchronous Web services. Assume that in the running example
the language developer knows in advance that the synchronous some_flight_webservice has be-
come unavailable (e.g. the service has been permanently retired) and we would like to replace
it with another_flight_webservice which employs asynchronous interaction. In order to adapt the
semantics with pre-execution adaptation, first, the DSL program is declared in lines 3–9. Next,
specific semantics are selected in lines 11–13 for the program that was declared above. Finally,
line 15 executes the program under the selected semantics; the semantics does not change while
the program is running.

�
1 def dslPackage = {
2 // declaration of the DSL program
3 fsm ’TravelPackage’, {
4 state ’BookingFlight ’, {
5 on_entry { ... /* synchronous call to some_flight_webservice */ }
6 when ’done’ { enter ’BookingHotel’ }
7 }
8 state ’BookingHotel’, { on_entry { ... } }
9 }

10

11 // pre−execution adaptation
12 TravelPackage.BookingFlight.targetService = "another_webservice"
13 TravelPackage.BookingFlight.metaClass.handleEvent = { event −> /* asynchronous implementation */ }
14

15 TravelPackage.execute({’ok’,’ error ’,...}) // executing the DSL program
16 }
17 dslPackage.delegate = new ReflectiveStateMachineDSL()
18 dslPackage()
� �

Listing 6.12: Pre-execution adaptation

In contrast, context-dependent adaptation (D3.b) allows programs to reflectively adapt their
semantics at runtime. In this case, the semantic adaptation code becomes part of the code of the
DSL program. Consider the DSL program in Listing 6.13 that implements the running example
from Listing 6.1. The adaptation logic is situated in lines 11–17. At runtime, only when DSL
execution reaches the lines 11–17, the program executes the adaptation logic, which adapts the
language semantics to asynchronous event handling.

6.5. Summary
This chapter has presented a study on how to implement reflective DSLs that support seman-

tic adaptations that may be application-specific and may occur as late as during the execution of
DSL programs. The proposal of a concept of reflective DSL leverages two important concepts
from general-purpose programming languages in the context of domain-specific languages—
reflection [Smi82, FW84, Mae87] and meta-objects [KRB91]. Also, the study elaborated on an

155

6. Reflective Domain-Specific Languages

�
1 def dslPackage = {
2 // declaration of the DSL program
3 fsm ’TravelPackage’, {
4 state ’BookingFlight ’, {
5 on_entry { /* synchronous call to flight_webservice */ }
6

7 // nominal mode
8 when ’done’, { enter ’BookingHotel’ }
9

10 // error recovery mode
11 when ’error ’, {
12 targetService = "another_flight_webservice"; // changes to an asynchronous Web service
13 delegate.metaClass.handleEvent = { event −> // change the FsmDSL’s internal event handling too
14 /* asynchronous implementation */
15 }
16 enter ’BookingFlight’ // re−enter current state
17 } // end when
18 } // end state
19

20 state ’BookingHotel’, { on_entry { ... } }
21 }
22

23 TravelPackage.execute({’ok’,’ error ’,’ done ’,...}) // executing the DSL program
24 }
25 dslPackage.delegate = new ReflectiveStateMachineDSL()
26 dslPackage()
� �

Listing 6.13: Context-dependent adaptation

instantiation of an open and reflective DSL implementation in the Groovy programming lan-
guage.

The results of the study allow concluding that the presented techniques in this chapter leverage
a similar flexibility for DSLs as provided by reflection mechanisms and MOPs for GPLs. An
interesting point raised in the chapter’s discussion about continuously evolution from procedural
to declarative reflection is how can a language developer build special reflective abstractions on
top of existing low-level reflective mechanisms. To address this point, the following chapter will
elaborate how to enables more declarative means for adaptation, namely aspects as a partial
reflective mechanism for a safe adaptation of DSL programs.

156

7. Crosscutting Composition of Embedded
Domain-Specific Languages

Various DSALs have been proposed for different domains, such as coordination [Lop97], secu-
rity [FS99], transactions [FD06], or grammars [SLS03, RMWG09]. These DSALs are imple-
mented using pre-processors and hence inherit their limitations especially with respect to com-
posability. Generic approaches to implementing (domain-specific) aspect languages [MKD03,
LN04, UMT04, TN05, ACH+06, HJZ07, GV07, KL07a, AET08, HBA08, HHJ+08, HHJZ09]
do not support the composition of aspects from one domain into a DSL from another domain
[DMM09].

As a result, (domain-specific) aspect-oriented concepts for base DSLs are implemented
from scratch for every new domain and combinations thereof. E.g., AO4BPEL [CM06] pro-
vides aspect-oriented (AO) support for composing crosscutting concerns (e.g., security) into
BPEL [AAB+07], and SQXML AOP [Alm] implements support for modular composition of
crosscutting concerns into SQL.

To address this problem, this chapter presents how to compose several DSLs with interacting
semantics. As Section 3.3.2.1 (p. 44) argues, if only black-box composition of EDSLs is sup-
ported, programs that use several EDSLs may exhibit scattering and tangling symptoms if the
domain semantics are crosscutting. To address this issue, in REA, it is possible to embedding
DSLs together with aspect-oriented concepts on top of the host’s MOP. When aspects are em-
bedded together with DSLs, the AO concepts enable crosscutting parts of the programs of one
or several domains.

With aspects, end users can write more modular programs that have a better maintainability
and understandability. In addition to that introducing AO concepts tames the MOP. Using aspects
instead of the MOP to compose DSL programs takes advantage of the fact that restricting the
power of the MOP provides more guarantees [LK03, KL04]. To enables such invasive but
safe composition, this section shows that with such embedded aspect-oriented concepts, REA
supports crosscutting composition of EDSLs.

157

7. Crosscutting Composition of Embedded Domain-Specific Languages

Parts of this chapter have been published in the following chapters:

• Tom Dinkelaker, Michael Eichberg, and Mira Mezini. An Architecture for Composing
Embedded Domain-Specific Languages. In Proceedings of the 9th ACM International
Conference on Aspect-Oriented Software Development (AOSD), 2010.

The remainder of this chapter is organized as follows. Sec. 7.1 presents the example scenario
that we use throughout the chapter to discuss the implementation of EDSLs. Sec. 7.2 discusses
the scattering and tangling program in EDSLs. Sec. 7.3 discusses crosscutting composition.

7.1. Running Example: ProcessDSL—A Workflow Language
This section uses a simple workflow language [WfM] – called PROCESSDSL – for illustra-

tion purposes. PROCESSDSL is inspired by real-world DSLs for orchestrating Web Services
[AAB+07, DJKN07]. PROCESSDSL provides the following domain-specific abstractions to
define processes:

process: to define workflows.
task: to define a task as part of a workflow.
registry: to access the registry of Web services.
notify: to notify the process stakeholders.

Listing 7.1 demonstrates the use of PROCESSDSL to select a credit among a set of offers. The
EasyCreditProcess consists of two sequential tasks: (1) getOffers and (2) selectOffer. The first
task (lines 4–11) starts with searching for all banking services in the registry. After that, each
banking service is inquired to get the current interest rate. The second task (lines 13–18) selects
the cheapest offer and requests the credit. At the end, notify (line 17) sends a message with the
credit details to all stakeholders.�
1 process(name:"EasyCreditProcess") {
2 def offers = [:];
3

4 task (name:"getOffers") {
5 def services = registry. find ("Banking");
6 services.each { bank −>
7 def request = bank.createRateRequest(10000,"USD");
8 def response = bank.call("getRate", request);
9 offers [bank] = response;

10 }
11 }
12

13 task (name:"selectOffer") {
14 def selectedBank = ... // bank with the cheapest offer
15 def request = selectedBank.createBorrowRequest(10000,"USD");
16 def response = selectedBank.call("borrow", request);
17 notify "Credit from ${selectedBank.name}: $response";
18 }
19 }
� �

Listing 7.1: An example PROCESSDSL program

158

7.2. Embedding ProcessDSL

7.1.1. Example Scenario for Crosscutting in DSLs
To motivate the need for cross-cutting composition, let us assume that we also want to support

the confidential exchange of messages. One approach is to extend PROCESSDSL and to define
a new DSL - SECUREPROCESSDSL which adds the following domain-specific abstractions:

encrypt: for encrypting messages.

decrypt: for decrypting encrypted messages.

me: to access the identity that started the process.

SECUREPROCESSDSLcan easily be implemented by inheriting and refining PROCESSDSL.
A class SecureProcessDSL implements the additional methods encrypt, decrypt, and getMe. The
methods encrypt and decrypt are implemented using a cryptographic library and the getMe will
return an object implementing the interface Identity that declares two getter methods getPublicKey
and getPrivateKey. In a secure interaction, the concepts of process and service act on behalf of
identities from the security domain. Process acts on behalf of the identity that started the process,
and each service will hold the identity of its service provider. To connect the concepts of the two
domains, the domain classes from the workflow domain Process and ServiceProxy implement
the interface Identity that represent the corresponding identity.

However, inheriting the base language and only adding security primitives to it—this is naïve
approach because the security related code written using the extended SECUREPROCESSDSL is
scattered and tangled. As shown in Listing 7.1 in lines 8–10 and 18–20 (highlighted using “#”),
the code for the security concern is not localized.

The remainder of this section discusses how tangling and scattering of DSL code can be ad-
dressed by supporting more invasive compositions of DSLs. The semantics of the composition
of the process and security DSLs can be expressed by the following rule: “When the process
DSL is composed with the security DSL, the interpretation of the former changes to ensure that
external service calls are secured.” Rather than having the programmer specify the interleav-
ing of the abstractions from different DSLs as part of the program, the reflective embedding
architecture provides dedicated composition operators that specify the interleaving at the level
of DSL interpretations. These operators make use of aspect-oriented concepts, therefore they
are called crosscutting combiners.

7.2. Embedding ProcessDSL
This section presents the implementation of an example embedding, in which programs suffer

from scattering and tangling issues. While the discussion uses the domain of workflow languages
in this section, these problems are not exclusive this domain, but the same problems also have
been found in various domain, as mentioned in the previous section.

Consider Listing 7.2 that presents the implementation of PROCESSDSL in the façade class
ProcessInterpreter. The ProcessInterpreter extends the Interpreter class and defines a getter method

159

7. Crosscutting Composition of Embedded Domain-Specific Languages

�
1 process(name:"SecureEasyCreditProcess") {
2 def offers = [:];
3

4 task (name:"getOffers") {
5 def services = registry. find ("Banking");
6 services.each { bank −>
7 def request = bank.createRateRequest(10000,"USD");
8 # def enc_request = encrypt(request,RSA,bank.publicKey);
9 # def enc_response = bank.call("getRate", [enc_request]);

10 # def response = decrypt(enc_response,RSA,me.privateKey);
11 offers [bank] = response;
12 }
13 }
14

15 task (name:"selectOffer") {
16 def selectedBank = ... // get cheapest bank from offers
17 def request = selectedBank.createBorrowRequest(10000,"USD");
18 # def enc_request = encrypt(request,RSA,selectedBank.publicKey);
19 # def enc_response = selectedBank.call("borrow", [enc_request]);
20 # def response = decrypt(enc_response,RSA,me.privateKey);
21 notify "Credit from ${selectedBank.name}: $response";
22 }
23 }
� �

Figure 7.1.: Example program with tangled security concern

Registry getRegistry(){. . . } for the literal registry, the method void notify(String){...} for the corre-
sponding domain operation notify, the method void process(HashMap, Closure){...} for the domain
abstraction operator process, and void task(HashMap, Closure){...} for the operator task. To ex-
ecute a PROCESSDSL program, as with every embedded DSL in REA, the program’s closure
must use ProcessInterpreter as its delegate.

7.3. Crosscutting Composition
Reconsider the problem of crosscutting composition in DSLs, which was discussed in Sec-

tion 3.3.2.1 (p. 44), let’s review the SECUREPROCESSDSL program in Listing 7.1. One can
observe that the code for the security concern in lines 8–10 and 18–20 (highlighted using “#”) is
not localized. While SECUREPROCESSDSL was defined as an extension of PROCESSDSL, the
same scattering problem also arises when using black-box composition to compose PROCESS-
DSL with an independently defined security DSL.

The problem is that the composition of the process and security DSLs is not black-box. The
composition semantics can be expressed by the following rule: “When the process DSL is com-
posed with the security DSL, the interpretation of the former changes to ensure that external
service calls are secured.” In other words, the interpretation of both languages crosscut each
other.

To address the problem, in REA, the developer can use the CCCombiner that makes use aspect-
oriented concepts to support more invasive compositions of EDSL interpretations. For crosscut-

160

7.3. Crosscutting Composition

�
1 public class ProcessInterpreter extends Interpreter {
2 protected Process thisProcess = null;
3

4 public Registry getRegistry() {
5 return Registry.getInstance();
6 }
7

8 public void notify (String str) {
9 String msg = "Notification (PID=$thisProcess.id)"+str ;

10 // ... send out an email to stakeholders
11 }
12

13 public void process(HashMap params, Closure processBody) {
14 thisProcess = new Process(params);
15 processBody.delegate = super.bodyDelegate;
16 processBody.call();
17 thisProcess.execute();
18 }
19

20 public void task(HashMap params, Closure taskBody) {
21 taskBody.delegate = super.bodyDelegate;
22 thisProcess.addTask(params, taskBody);
23 }
24 }
� �

Listing 7.2: Implementation of PROCESSDSL

ting composition, domain-specific join point models and domain-specific pointcut languages
play an important role.

Domain-specific join points denote points in the interpretation of an EDSL exposed for inva-
sive composition; the set of these join points constitutes a domain-specific join point model (DS-
JPM). Domain-specific pointcuts select points in the interpretation of the EDSLs (i.e., points
in DS-JPM) where invasive composition should take place; they are expressions of a domain-
specific pointcut language (DS-PCL). Finally, advice operators before, around, after, and proceed
are used to determine the order in which the invasive composition of the EDSLs should happen.

For illustration, consider a DS-JPM for PROCESSDSL consisting of four kinds of join points:
(1) process execution join points occur when a process is executed; their context includes the
process name and the task list. (2) task execution join points occur when a task is executed; their
context includes the task name and its activities. (3) service selection join points occur when the
registry is consulted to select services; their context includes the selection pattern and the set of
selected services. (4) service call join points occur when a remote call to a Web service is done
as part of process; their context includes the service name and the call’s SOAP document. The
DS-PCL for PROCESSDSL provides – among others – the pointcut designators: process_exe-
cution, task_execution, service_call, and service_selection.

Listing 7.3 shows the SecureEasyCreditProcess program (cf. Listing 7.1) rewritten using cross-
cutting composition of PROCESSDSL and security DSL. The program as a whole implements
the same semantics as before, but this time the security concern (lines 3–9) and the workflow

161

7. Crosscutting Composition of Embedded Domain-Specific Languages

specification (line 12) are no longer tangled. Instead, AO abstractions are used to compose the
two DSL programs. The aspect in lines 3–9 defines how PROCESSDSL programs are made se-
cure. Basically, calls to external services are encrypted before being sent and are decrypted after
receiving the response. The pointcut (line 4) matches against corresponding domain-specific
join points and is written in PROCESSDSL’s domain-specific pointcut language (DS-PCL) and
selects all external service_calls in PROCESSDSL programs. The security related functionality
is expressed using the security DSL.

�
1 // Definition of EDSL programs (any order)
2 Closure ca = {
3 aspect(name:"Confidentiality") {
4 around(service_call(".*") & if_pcd { external }) {
5 request = encrypt(request,RSA,thisJoinPoint.service.publicKey);
6 response = proceed();
7 return decrypt(response,RSA,thisJoinPoint.process.privateKey);
8 }
9 }

10 }
11 Closure ecp = {
12 process(name:"EasyCreditProcess") { /* code from Listing 7.1 */ }
13 }
14

15 // Runtime setup
16 def pI = new ProcessInterpreter();
17 def secI = new SecurityInterpreter ();
18 def ppI = new ProcessPointcutInterpreter();
19 def ccc = new CCCombiner([pI, secI, ppI],[ca,ecp]); | cf . Figure 7.3
20

21 // Execution of EDSL programs
22 ca(); // deploying the aspect | cf . Figure 7.3
23 ecp(); // executing the process with aspects | cf . Figure 7.5/7.6
� �

Listing 7.3: Using crosscutting composition

In lines 16 to 18, the EDSL interpreters – including the interpreter for process pointcuts – are
instantiated. After that, all interpreters and the DSAL programs are passed to the newly created
CCCombiner. As in case of the BlackBoxCombiner, the CCCombiner also sets itself as the body-
Delegate of the interpreters (pI,secI,ppI). Further, the CCCombiner sets itself as the delegate of
the closures (ca,ecp) wrapping the DSL programs. Next, the closure ca is called which deploys
the aspect; i.e., external service calls are now intercepted and the around advice is executed.
This finishes the setup of the runtime environment. Finally, the ecp closure is called to executed
the (secured) workflow.

In general, the order in which EDSL programs are executed is important. For example, if
the ecp closure is called before the ca closure, then no en-/decryption takes place. Though the
aspect’s closure is registered with the CCCombiner, the aspect is not yet deployed. Hence, the

162

7.4. Homogeneous Embedding of Aspect-Oriented Concepts

Interpreter

aspect(...)
before(…)
after(…)
around(…)
proceed(…)
declareJoinPoint(…)
invokeMethod(…)

CCCombiner

Interpreter

ProcessPointcutInterpreter

setMetaClass(…)
process_execution(…)
task_execution(...)
service_selection(…)
service_call(…)

DSL

Pointcut DSL

DSL

if_pcd(…)
…

PointcutInterpreter

task(...)
...

ProcessInterpreter

encrypt(...)
...

SecurityInterpreter

Extension

Framework Support for
Crosscutting Composition

Quantifes over the join points
of the DS-JPM of ProcessDSL

meta-object meta-object

meta-object

Figure 7.2.: Crosscutting composition of EDSLs

program first has to call the closures of the aspects, before the program executes the “main”
program – unless developer wants to deploy aspects dynamically.

7.4. Homogeneous Embedding of Aspect-Oriented Concepts
The reflective embedding architecture embeds AO abstractions in the same way as any DSL

abstractions. As all concepts are homogeneously embedded, semantic interactions between em-
bedded DSL compositions can be defined, whereby reusing the existing embedded DSL compo-
nents. For this, developers use POPART/REA’s CCCombiner that implements crosscutting com-
position and which has been presented in Section 4.2.3.3 (p. 109). For a crosscutting composition
of EDSL, instances of this class are the object delegates of all closures that use abstractions from
invasively composed EDSLs.

The CCCombiner (center of Figure 7.2) refers to interpreters of EDSLs to be invasively com-
posed (ProcessInterpreter and SecurityInterpreter in Figure 7.2), and to a DS-PCL interpreter1

(ProcessPointcutInterpreter in Figure 7.2). These interpreters are passed to it at instantiation time
(cf. line 19 in Listing 7.3).

PointcutInterpreter implements a general-purpose pointcut language supporting composition
operators “&” and “|”; and higher-order pointcuts if_pcd, not, cflow, similar to AspectJ [Asp]
pointcut designators. DS-PCLs are implemented in subclasses of PointcutInterpreter. For in-
stance, ProcessPointcutInterpreter referred to by the CCCombiner in Figure 7.2, an excerpt of
which is shown in Listing 7.4, extends PointcutInterpreter with methods for PROCESSDSL-specific
pointcut expressions (lines 24 to 27 in Listing 7.4).

1The combiner in Figure 7.2 references a single pointcut language interpreter, but in general it may
reference a BlackBoxCombiner that composes more than one pointcut language.

163

7. Crosscutting Composition of Embedded Domain-Specific Languages

�
1 class ProcessPointcutInterpreter extends PointcutInterpreter {
2

3 void setMetaClass(CCCombiner ccc) {
4 super.setMetaClass(ccc);
5 ccc.declareJoinPoint("ServiceProxy","call ",
6 { appContext, jpBody −>
7 HashMap jpContext = [:];
8 jpContext["service"] = appContext.receiver;
9 jpContext["operation"] = appContext.args[0];

10 jpContext["request"] = appContext.args[1];
11 jpContext["external "] = appContext.receiver.isExternal ();
12 jpContext["process "] = ccc.thisProcess; // pret.−call
13 jpContext["proceedClosure"] = jpBody;
14 def jp = new ServiceCallJP(jpContext);
15 jpContext["thisJoinPoint "] = jp ;
16 return jp ;
17 }
18);
19 ccc.declareJoinPoint("Process","execute") {...}
20 ccc.declareJoinPoint("Task","execute") {...}
21 ccc.declareJoinPoint("Registry "," find ") {...}
22 }
23

24 Pointcut process_execution(String nameRegExp) {...}
25 Pointcut task_execution(String nameRegExp) {...}
26 Pointcut service_selection(String category) {...}
27 Pointcut service_call(String operationRegExp) {...}
28 }
� �

Listing 7.4: Excerpt of ProcessPointcutInterpreter

Behind a PointcutInterpreter there are classes that model join points and pointcuts. Join points
are modeled as objects that keep information about the type and context of an execution point.
For example, the JPM for PROCESSDSL is modeled by classes ProcessExecJP, TaskExecJP,
ServiceSelectJP, and ServiceCallJP. Pointcuts are objects that implement a filter method, which
given a join point object as a parameter returns true, respectively false, when the join point
matches, respectively does not match the pointcut. The result of evaluating the pointcut expres-
sion “service_call(".*") & if_pcd{external}” by a ProcessPointcutInterpreter is a graph of Pointcut
objects.

As already mentioned, a CCCombiner is attached as the delegate to closures enclosing code
that use invasively composed EDSLs. For instance, ccc is set to be the delegate of all closures
in Listing 7.3 (line 2, 11). A CCCombiner-delegate dispatches all process-specific and security-
specific abstractions for interpretation to the respective interpreters. Yet, the latter pass the
control back to the CCCombiner every time the body of a domain-specific abstraction operator is
entered, since the CCCombiner is uniformly set to be the delegate for all such bodies. Pointcut
expressions are dispatched to the PointcutInterpreter, which returns pointcut object graphs. Fi-
nally, keywords such as aspect, around, proceed, etc. are interpreted by the CCCombiner itself.

164

7.4. Homogeneous Embedding of Aspect-Oriented Concepts

Aspects are modeled as containers of pointcut-to-advice pairs; advice bodies are modeled by
closures.�
1 class CCCombiner extends Interpreter {
2

3 List<Aspect> aspects = [];
4 ...
5 void aspect(HashMap params, Closure aspectBody) {...}
6 void before(Pointcut pc, Closure advice) {...}
7 void around(Pointcut pc, Closure advice) {...}
8 void after(Pointcut pc, Closure advice) {...}
9 Object proceed() {...}

10

11 Map<Pattern,Closure> patternToReifier = [:];
12

13 void declareJoinPoint(String className,
14 String methodName, Closure jpReifier) {
15 // Associate className and methodName
16 // pattern with jpReifier.
17 // Association is stored in patternToReifier.
18 }
19

20 Object invokeMethod(sender, receiver, mName, args, ...) {
21 // Basically, the join point is reified and all
22 // pointcuts are evaluated. If a pointcut matches,
23 // then the associated advice is executed.
24 // (cf. Figure 7.6 for details.)
25 }
26 }
� �

Listing 7.5: The CCCombiner class

�
1 public class SomeInterpreter extends Interpreter {
2 ...
3 public void setMetaClass(MetaClass mc){
4 super.setMetaClass(mc);
5 /* Concrete interpreters are responsible for
6 setting the meta-object of all their domain classes:
7 for(domainClass : Class) {
8 domainClass.setMetaClass(mc);
9 }

10 */
11 }
12 }
� �

Listing 7.6: Implementation of setMetaClass

Now, the question remains to be answered how join point objects come to being. Reflective
embedding plays a key role in reifying DS-JPMs. To enable the CCCombiner to reify join points

165

7. Crosscutting Composition of Embedded Domain-Specific Languages

it is no longer sufficient to just set it as the object delegate as just outlined. Additionally, it
is imperative that the CCCombiner is also set as the meta-object of all domain classes of all
composed interpreters. To set itself as the meta-object of all domain classes, the CCCombiner
calls the method setMetaClass on the facade class of each EDSL; the class which implements the
Interpreter interface. This method has then the responsibility to call setMetaClass on all domain
classes (cf. Listing 7.6).

After that the CCCombiner is the meta-object of the EDSL interpreters it composes and can
intercepts every method call to them. This enables the CCCombiner to reify join points, which
are made known to it by calling declareJoinPoint. This method takes three parameters and returns
a join point object. The first two parameters define a pattern for the signature of an interpreter
method whose calls are join points. The third parameter is a so-called reification closure2 – a
closure responsible for reifying the corresponding join point (creating the corresponding join
point object and filling in its context). The association of join point patterns to their reification
closure is stored in a map (Listing 7.5, line 11). Since a pointcut language interpreter is imple-
mented w.r.t. a specific DS-JPM, it is its responsibility to call declareJoinPoint with appropriate
parameters. CCCombiner is oblivious of any DS-JPM.

For illustration, consider how a DS-JPM is defined for PROCESSDSL. The inherited method
setMetaClass is overridden in ProcessPointcutInterpreter in Listing 7.4 (lines 3 to 22), to make the
process-specific JPM known to ccc (lines 5–21). For instance, the code in lines 5–17 declares
an invocation of ServiceProxy.call during a process interpretation as a join point and shows its
reification closure3. This closure will be executed whenever a join point of this type occurs (i.e.,
the corresponding call is intercepted by ccc). In lines 7–13, the closure stores the application
context, which it receives as its first parameter appContext, into the jpContext HashMap4. The
“proceedClosure” entry in that map stores the second parameter of the reification closure (jp-
Body), itself a closure encapsulating the intercepted method call. Finally, the reification closure
creates a join point instance of type ServiceCallJP (line 14) and returns it.

So far, the section presented how to declare a DS-JPM. In the following, to execute programs
under impact crosscutting concern, in REA, the embedding of AO concepts creates join points at
runtime. When the interpreters to compose execute under the control of a CCCombiner, whenever
a point in their execution is reached it is dispatched to the enclosing CCCombiner by calling
invokeMethod(sender, receiver, methodName, args, . . .) on the latter. As a result, the matching
patterns are looked up, the reifier closure is retrieved and called. Next, the reified join point
is matched against all pointcuts of all defined aspects and advice is eventually executed, hence
dynamically composing aspects. We will elaborate on this composition in the next sub-section.

2For brevity in source code, the subsequent text uses the acronym reifier.
3Last parameter to the declareJoinPoint call in line 5 is the closure that follows the parenthesis in lines 6–17).
4Note that, the thisProcess property (line 12) is a pretended property of the CCCombiner that is actually pro-

vided by ProcessInterpreter, and the access to this property is delegated to the latter via the MOP.

166

7.4. Homogeneous Embedding of Aspect-Oriented Concepts

7.4.1. Crosscutting Composition at Work
To illustrate crosscutting composition support Figure 7.3 “emulates” the execution of the code

of Listing 7.3, starting with line 16.

ccc:
CCCombiner

1.0: create ([pI,secI,ppI],[ca,ecp])

pI:ProcessInterpreter

ppI:ProcessPointcutInterpreter

secI:SecurityInterpreter
1.3: setMetaClass(ccc)

1.2: setMetaClass(ccc)

1.1: setMetaClass(ccc)

1.3.1: declareJoinPoint(class:String,method:String,jpReifier:Closure)

ecp:Closure

ca:Closure 1.4: setDelegate (ccc)

1.5: setDelegate (ccc)

Figure 7.3.: Setup of the CCCombiner

To set up the CCCombiner, the interpreters for the PROCESSDSL, the security EDSL, and
the DS-PCL are passed to the CCCombiner when it is created. Additionally, the EDSL pro-
grams’ closures (ca,ecp) are also passed to the CCCombiner (line 19 in Listing 7.3, step 1.0 in
Figure 7.3). As the result, ccc becomes the meta-object of all three interpreters (steps 1.1, 1.2,
and 1.3 in Figure 7.3). As a sub-step of setting ccc to be the meta-object of the process pointcut
interpreter (ppI), the corresponding DS-JPM is declared by calls to ccc.declareJoinPoint (line 5
in Listing 7.4; step 1.3.1 in Figure 7.3). Moreover, ccc is set as the delegate of the closures ca
and ecp (steps 1.4 and 1.5 in Figure 7.3)5.

5After creation of the CCCombiner, new closures can be added using its addClosure method.

ccc:CCCombiner

ppI:ProcessPointcutInterpreter

a:Aspect
2.1: create(params:Map)

2.2:setDelegate(ccc)
2.3: call()

2.3.1: invokeMethod("service_call", «Context: regEx: String»)
2.3.2: invokeMethod("if_pcd", «Context: ifBody:Closure»)
2.3.3: invokeMethod("&", «Context: sc_pcd, if_pcd»)
2.3.4: invokeMethod("around", «Context: and_pcd, advBody:Closure»)

calls using the MOP
standard method call

sc_pcd:PointCut

if_pcd:PointCut

and_pcd:PointCut

2.3.1.1.1 create(«Context: regEx: String»)

2.3.2.1.1 create(«Context: ifBody:Closure»)

2.3.3.1.1 create(«Context: service_call_pcd, if_pcd»)

2.3.4.2: addAdvice(and_pcd,advBody)

advBody:Closure
2.3.4.1: setDelegate(ccc)

2.3.1.1: "service_call"(«Context: regEx: String»)
2.3.2.1: "if_pcd"(«Context: ifBody:Closure»)
2.3.3.1: "&"(«Context: service_call_pcd, if_pcd»)

asBody:Closure ca:Closure
 2.0: "aspect"(params:Map,asBody:Closure)

call()

Figure 7.4.: Evaluation of the ca closure and aspect registration

167

7. Crosscutting Composition of Embedded Domain-Specific Languages

Next, in line 22 Listing 7.3, the aspect is initialized by calling the closure containing its def-
inition. When encountering the keyword aspect in line 3 of Listing 7.3, the MOP maps it to a
call to the enclosing delegate, ccc. This triggers the creation of aspect a (step 2.1 in Figure 7.4)
and the evaluation of its body – a Groovy closure whose execution is triggered in step 2.3 after
its delegate is previously set to ccc in step 2.2.

In the process of performing step 2.3, pointcut expressions encountered during the evalua-
tion of the pointcut in line 4 of Listing 7.3 are mapped to corresponding denotations (Pointcut
objects) in steps 2.3.1, 2.3.2, and 2.3.3 as shown in Figure 7.4. This happens in two stages.
First, for each domain-specific pointcut expression in the program code the Groovy MOP trig-
gers invokeMethod on ccc, the delegate of the aspect closure (steps 2.3.1, 2.3.2, 2.3.3). The latter
dispatches the pointcut expressions at hand to corresponding methods of the pointcut language
interpreter (steps 2.3.1.1, 2.3.2.1, 2.3.3.1). At the end of step 2.3.3.1.1, a graph of pointcut
objects, and_pcd, is created; together with the advice body created as the result of steps 2.3.4
and 2.3.4.16. In Figure 7.3 it is added to the list of pointcut-advice pairs of the aspect a. This
completes the set up of the interpretation infrastructure for the Confidentiality aspect.

3: "process"(params,processBody:Closure)
3.0: "process"(params,processBody:Closure)

3.3.1.1:"task"(params,taskBody)
3.3.1: "task"(params,taskBody)

processBody:Closure
3.2: setDelegate(ccc)

3.3: call()

thisProcess:Process 3.1: create(params)
3.3.1.1.2: addTask(params,taskBody)
3.4: execute()

taskBody:Closure

3.3.0: create(params)

3.3.1.1.1.: setDelegate(ccc)

ccc:CCCombiner

pI:ProcessInterpreter

ecp:Closure

call()

Figure 7.5.: Evaluation of the ecp closure

Setting up the runtime for interpreting the process definition part of the program is similar.
This is triggered when the keyword process is encountered in line 12 of Listing 7.3. This set
up is represented by the steps 3.0 and 3.1 that are elaborated in Figure 7.5. When the process
is initialized denotations for all process-specific abstractions in program code, such as process
(Figure 7.5, steps 3, 3.2, 3.3) and task (step 3.3.0, steps 3.3.1, 3.3.1.1, 3.3.1.1.1, 3.3.1.1.2), are
created and related in an object graph. Again, ccc is set to be the delegate of both the process

6These steps are triggered when interpreting the keyword around.

168

7.5. Summary

(step 3.2) and task bodies (step 3.3.1.1.1). This is important to ensure that the execution of
the process semantics is intercepted by ccc such that join points are reified as they occur and
matching aspects are composed at runtime.

5:1.1: get("request"):request

ccc:CCCombiner a:Aspect

service_call_pcd:PointCut

if_pcd:PointCut

and_pcd:PointCut

advBody:Closure

0: "call" (op:String, request:Request)

jpReifier : Closure
2: call

1: selectJPReifier(class:String,method:String):Closure("jpReifier")

jpContext:Map

2.1: create
2.2: "expose context (receiver,...)"

jp:ServiceCallJP

2.3: create (jpContext)

3: receiveBefore(jp):List<Closure>
4:receiveAround(jp):List<Closure>(advBody)

6: receiveAfter(jp):List<Closure> 4.1: match(jp)

4.1.1: match(jp)

4.1.2: match(jp)
ifBody:Closure

4.1.2.1: call()

4.1.2.1.1: "external"

5: call

5.1: "request"
5.2: "RSA" // dispatch to SecureDSL
5.3: "thisJoinPoint" // in jpContext
5.4 "encrypt" // dispatch to SecureDSL
5.5 ..

bank:ServiceProxy

call("getRate", request); // continuation of step 3.4.X in Fig. 4

Figure 7.6.: Dynamic crosscutting composition of EDSL semantics

Runtime crosscutting composition of EDSL semantics is illustrated in Figure 7.6. The figure
shows a snapshot of executing the EasyCreditProcess taken at the point of executing a getRate
call on the bank object, which is of the type ServiceProxy. The call keyword is delegated for
interpretation to the process interpreter and hence intercepted by ccc, the meta-object of the
interpreter. This is where the interactions shown in Figure 7.6 start.

In step 1 (Figure 7.6), ccc checks whether the intercepted call to method ServiceProxy.call is
a declared join point and retrieves the corresponding reification closure which it subsequently
calls (step 2). Consequently, a join point object, jp, is created and its context is set in steps 2.1,
2.2, and 2.3. In steps 3, 4, and 6 all defined aspects, in this case aspect a, are “asked” whether
they match the join point at hand with before, around, and after semantics respectively. In the
given scenario - interpretation of bank.call - the current join point is an external service call
that is matched by the pointcut of confidentiality aspect’s around advice (line 4 in Listing 7.3).
Matching the pointcut is depicted by step 4.1 and its subordinate steps, the pointcut objects in the
pointcut-advice associations of a are matched against the intercepted join point. When a pointcut
matches the body of the corresponding advice (advBody) is returned and called subsequently
(step 5)7. In the process of executing the advice body closure, abstractions from both EDSLs are
dispatched for evaluation to ccc which delegates to the appropriate interpreters.

7.5. Summary
This chapter presented how the reflective embedding architecture supports crosscutting com-

position of DSLs. The approach was to embed domain-specific aspect language on top of meta-
object protocols and aspect-oriented concepts as the underlying technologies. Crosscutting com-

7In general, it is possible that multiple pointcuts match and, hence, a list of advice bodies, which are closures, is
returned.

169

7. Crosscutting Composition of Embedded Domain-Specific Languages

position enables better modularity of programs that use several EDSLs whose domain semantics
are crosscutting.

To recapitulate, the key mechanisms that facilitate crosscutting compositions are:

Crosscutting combiner: The reflective architecture can build abstraction on top of the meta-
object protocol to realize aspects. Compared to using a MOP for adaptation, the aspect-oriented
abstractions provide additional guarantees for the composition of embedded objects.

Domain-specific join points: The embedding of aspect-oriented concepts provides spe-
cial means for domain-specific join points, as these were requested by [RMH+06, CNF+08,
RMWG09]. Domain-specific join point models and domain-specific pointcut languages define
an abstraction layer over the interpretation of embedded DSLs to compose.

With respect to crosscutting composition, there are several issues that remains to be be shown:

• This section has presented a crosscutting composition of two DSL, but how can multiple
languages be integrated? Such as, a DSL and a GPL, or a more than two DSL. Therefore,
Section 10.3.2.2 (p. 228) presents how to use this chapter’s techniques to compose several
language with different domains-specific join point models.

• When multiple languages are integrated, there can be composition conflicts. Therefore,
Section 10.3.2.3 (p. 235) present a general mechanism to detect and resolve static compo-
sition conflicts between several aspect-oriented languages.

• Performance measurements are discussed in Section 11.3.2 (p. 276).

Note that this chapter has summarized how to use POPART for crosscutting composition and its
most important implementation details. However, POPART support not only crosscutting com-
position of domain-specific languages, its open implementation of the POPART aspect language
can be used as a language workbench for general-purpose aspect languages as well. Due to
space restrictions, the description of the AO language workbench is out of the scope of this
thesis. Therefore, the more interested readers are referred to [DMB09, DEM10].

170

8. Incremental Concrete Syntax for
Embedded Languages

The previous chapters have presented various applications of reflective embedding for open
DSL, aspect languages, and compositions thereof. However, since in those language embed-
dings, program expressions have an abstract syntax encoding in host language, they all suffer
from the missing support for concrete syntax. Therefore, to address the missing support for
concrete syntax, this chapter presents an extension to the reflective embedding architecture that
enables support for concrete syntax in EDSLs implemented on top of the architecture.

The problem of missing support for concrete syntax is common in homogeneous embedding
approaches [Hud96, Fow05, Gar08, HORM08]. While on the one hand, embedded DSLs enable
an easy integration into their host language, there is the downside that each homogeneous EDSL
commits to one particular host language. Therefore, it is not possible to integrate embedded DSL
programs into other languages than the host language. Thus, when the same DSL is desired in
several GPLs, language developers have to repetitively embed the DSL as a homogeneous EDSL
in each GPL, resulting in duplicated investment costs. These issues are the major obstacles for
the adoption of embedded DSL approaches [MHS05, Tra08].

At the cost of dropping homogeneity, heterogeneous embedding approaches address the prob-
lems of how to enable the DSL to use the domain’s established notation / syntax and how to
integrate DSL code with existing code and enable interactions. Concrete syntax is enabled
by a specialized tool—in general some kind of pre-processor. It has to first rewrites code
in concrete DSL syntax to an executable code in some GPL. After that, the compiler of the
GPL compiles the code as usual. A well-known example of a heterogeneous embedded DSL
is SQLJ [ME00] which enables the embedding of SQL code into Java code. While the ex-
ample of embedded SQL uses a special pre-processor, there are generic heterogeneous embed-
ding approaches that help language developers to implement pre-processors and code genera-
tors [Kam98, EFDM03, BV04, SCK04, COST04].

When we need both concrete syntax and integrability into different languages, there are trade-
offs of homogeneous and heterogeneous approaches. The main advantage of heterogeneous em-
bedded DSLs is that they support the domain’s established syntax (called concrete syntax in the
following). This is particularly important as comparative studies [KLP+08] have revealed that
missing support for concrete syntax significantly lowers the end user’s productivity in writing
DSL code. The main obstacles of heterogeneous embedded DSLs are threefold. First, to sup-
port another host-language, the pre-processor typically has to be re-implemented from scratch.
Second, pre-processors are known to be hard to compose. This makes it practically impossible

171

8. Incremental Concrete Syntax for Embedded Languages

to use multiple embedded DSLs in parallel. Third, the implementation of a DSL requires a for-
malization of its complete syntax, which is a significant effort. The problems of heterogeneous
embedded DSLs are partially solved by homogeneous embedded DSLs since they are developed
in the host language. In the latter case the EDSL’s implementation is just a library. Hence, a
specification of the syntax and corresponding tools is not required. This helps to significantly
reduce the necessary effort. Additionally, using multiple DSLs in the same program is as simple
as using multiple libraries. But, by having to reuse the syntax of the host language, the DSL’s
concrete syntax is typically not close to the concrete syntax of the domain [BV04, Tra08]. This
severely hampers the comprehensibility of such DSLs as previously discussed.

To provide concrete syntax for DSL programs—without suffering from some of the main
problems of traditional heterogeneous embedded DSLs—several approaches were proposed that
use meta-programming [BV04, Tra08, KM09, RGN10]. These approaches generally suffer from
the following issues. First, language developers still have to provide the complete formal syntax
for each embedded DSL [BV04, Tra08, RGN10]. Second, if more than one host language is
supported [BV04], the grammar of the complete syntax must be available. This specification
has to be in the format used by the approach, which is generally not the case. Third, most ap-
proaches [Tra08, KM09, RGN10] support only one particular host language, which hinders the
reusability of EDSL implementations. Overall, the effort necessary to develop an EDSL using
these approaches is significantly higher than the effort to develop a homogeneous embedded
DSL.

To address these issues, this chapter presents a generic pre-processor approach to implement
embedded DSLs (EDSLs) that combine the advantages of heterogeneous embedded DSLs with
homogeneous embedded DSLs and which does avoid the respective disadvantages. I.e., the
pre-processor approach facilitates the development of EDSLs that provide concrete syntax, but
avoids that the developer always has to specify the complete grammar of the EDSL and / or the
host language. Using the pre-processor approach the effort to implement an EDSL with concrete
syntax is practically identical to the effort necessary to develop a homogeneous embedded DSL
for the respective domain. Furthermore, the pre-processor approach is generic in the sense that
it enables concrete syntax for any reflectively embedded DSL, it is host language independent,
and it can be used to embed DSLs in various host languages.

The fundamental idea is that a language developer starts with the implementation of a homo-
geneous embedded DSL and then—step by step—adds meta-information regarding the concrete
syntax of the domain to the DSL implementation. By using so-called island grammars the de-
veloper only needs to specify those parts of the grammar of the host language that are relevant
w.r.t. the EDSL implementation. Furthermore, only those parts of the EDSL’s syntax need to be
specified that are not compatible with the syntax of the host language.

Island grammars [Moo01] support parsing programs even if only a subset of the productions
of the complete formal syntax of the language is specified. In general, an island grammar only
completely formalizes the language constructs of interest (the islands). To match the remainder
(the water), liberal productions are specified. These liberal productions, called water rules, rec-
ognize characters from expression types that are not recognized by the islands. When composing

172

8.1. Concrete Syntax for Homogeneous Embedded DSLs

island grammars of multiple languages, programs can be parsed that mix expressions from those
languages in unexpected ways [SCD03]. Traditionally, island grammars are used in reverse-
engineering, because for legacy languages often no formal grammar is available. In contrast, the
motivation to use island grammars in this thesis is to avoid that language developers always have
to formalize the complete grammar of the embedded DSL and the host languages. Compared to
the traditional use of island grammars in the context of reverse-engineering—where the goal is to
avoid the formalization of an out-dated language—we employ them to reduce the development
costs for a new language.

Parts of this chapter have been published in the following chapters:

• Tom Dinkelaker, Michael Eichberg, and Mira Mezini. Incremental Concrete Syntax
for Embedded Languages. In Proceedings of the 26th ACM Symposium on Applied
Computing—Technical Track on Programming Languages (PL at SAC), 2011 (to appear).

The remainder of this chapter is organized as follows. Section 8.1 discusses the concept and
Section 8.2 the implementation.

8.1. Concrete Syntax for Homogeneous Embedded DSLs
This section first discusses an example implementation of a homogeneous embedded DSL.

Then, it will elaborate how to provide concrete syntax. After that, the inner workings of the ap-
proach are presented before the section concludes the presentation of the approach by discussing
how to support further host languages.

The running example to demonstrate the approach is the embedding of SQL in the Groovy
GPL. The goal is to enable writing programs like the one shown in Listing 8.1. The select
statement (line 2 in Listing 8.1) is defined using SQL while the rest of the program is written
in Groovy; both languages are seamlessly integrated. The program uses SQL’s concrete syntax
(cf. Listing 8.2) and prints out a list of peoples’ names and ages from the result of an embedded
SQL statement.�
1 println "Registered people:"
2 List<Map> result = SELECT Name,Age FROM People
3 result .each{ Map row −> println "Name: ${row.Name} Age:${row.Age}"; }
� �

Listing 8.1: An embedded SQL program in Groovy

8.1.1. Defining a Homogeneous EDSL
Language Interface: As in other approaches, a new homogeneous EDSL is implemented by

a set of classes in the host language. These classes have to follow a small set of conventions to
enable the integration with the approach.

173

8. Incremental Concrete Syntax for Embedded Languages

�
1 Statement→ Query
2 Query → "SELECT" Columns "FROM" Tables

3 Columns→ Id "," Columns

4 Columns→ Id
5 Tables→ Id "," Tables

6 Tables→ Id
� �
Listing 8.2: The ideal grammar of TINYSQL

To embed a DSL the following developer implements an EDSL as usual in REA. To allow
finding the interface in the classpath, the only additionally task is that the language interface
must extend the DSL marker interface.

Listing 8.3 shows the interface for the homogeneous EDSL TINYSQL. The interface only
defines a single method to execute select statements.�
1 interface ITinySQL extends DSL {
2 List<Map> selectFrom(String[] columns, String[] tables);
3 }
� �

Listing 8.3: The language interface of TINYSQL with compromised syntax

At this step, the developer cannot take the concrete syntax into account. Given the constraints
of the host language, the syntax of the homogeneous EDSL cannot be optimal in most cases. In
the following, the term contaminated syntax refers to the syntax that is provided by the homo-
geneous EDSL.

Defining the Semantics: To implement the execution semantics of an EDSL, a language
developer implements the EDSL’s language interface. Since the focus of this chapter is to discuss
support for concrete syntax, it only sketches the implementation of the execution semantics for
EDSLs.

Listing 8.4 presents an excerpt of the class TinySQLInterpreter that implements the semantics
of TINYSQL. An EDSL class extends the Interpreter class and implements the EDSL’s language
interface. The Interpreter class primarily defines the method to evaluate EDSL programs. Addi-
tionally, methods are defined to extract productions from EDSLs and to compose the EDSL with
other EDSLs. For TINYSQL, the class implements ITinySQL. It has an attribute to hold an SQL
connection and implements the selectForm method. The method first checks that all arguments
are correct then it constructs an SQL statement and uses Groovy SQL1 to execute the statement
using a JDBC connection. The method rows in line 7 finally returns a result set as a List that
contains Map objects as rows.

8.1.2. Enabling Concrete Syntax for EDSLs
This section elaborates on how language developers can add support for concrete syntax for

their homogeneous embedded DSLs.
1Groovy SQL: http://docs.codehaus.org/display/GROOVY/Tutorial+6+-+Groovy+SQL.

174

http://docs.codehaus.org/display/GROOVY/Tutorial+6+-+Groovy+SQL

8.1. Concrete Syntax for Homogeneous Embedded DSLs

�
1 class TinySQLInterpreter extends Interpreter implements ITinySQL {
2 private groovy.sql.Sql connection = newInstance("jdbc:...");
3 ...
4 List<Map> selectForm(String[] columns, String[] tables) {
5 ... // check arguments to be correct
6 String query = "SELECT " + Util.implode(",", columns) + " FROM " + Util.implode(",", tables);
7 return sqlConnection.rows(query);
8 }
9 }
� �

Listing 8.4: The implementation of TINYSQL (semantics)

Incremental Definition of Concrete Syntax: To incrementally define concrete syntax for
embedded DSLs, the language developer adds annotations to their EDSL implementation classes.
The annotation @DSLMethod is used to define the concrete syntax for every method that defines
an expression type. The annotation has the element production that defines the right-hand side of
the production rule for this method. The production rule is obtained as a string and defines the
categories in the production rule.

In the string, the categories are delimited by the whitespace escape character, which is the
underscore. Whereby, one underscore denotes a required whitespace (!), and two underscores
denote an optional whitespace (?). Terminal categories simply use their ASCII representation.
Non-terminal categories are defined by argument placeholders, which are prefixed by the pa-
rameter escape character (by default, "p") followed by the index of the argument in which the
non-terminal will be passed to the method.�
1 interface ITinySQL extends DSL {
2 @DSLMethod(production="SELECT__p0__FROM__p1")
3 List<Map> selectFrom(String[] columns, String[] tables);
4 }
� �

Listing 8.5: The language interface of TINYSQL with concrete syntax

For example, Figure 8.5 shows the definition of the TINYSQL interface that defines con-
crete syntax. The annotation in line 2 defines a production (Statement → "SELECT" ?

String[] ? "FROM" ? String[]) with four relevant categories on the right-hand side: "SE-

LECT", String[]”, "FROM", and String[]. By convention, the left-hand side category of the
production is Statement which is expected to be one of the host language’s categories and
which identifies the places where the DSL’s expression can be embedded (cf. line 2 and 3 in
Listing 8.8).

Quotation: Given that the approach builds upon homogeneous EDSLs, the user generally
does not have to quote DSL expressions. However, there are cases where a language devel-
oper may require controlling the integration between between an EDSL and a host language.

175

8. Incremental Concrete Syntax for Embedded Languages

One common reason is to precisely define the scope of an EDSL expression. For example, in
Listing 8.6, in line 2, the EDSL expression is quoted using #sql{...}2.�
1 println "Registered people:"
2 Map[] result = #sql{SELECT Name,Age FROM People}
3 result .each{ Map row −> println "Name: ${row.Name} Age:${row.Age}"; }
� �

Listing 8.6: An embedded SQL program in Groovy

In TIGERSEYE, quotations are only necessary in case of EDSL keywords that could be mis-
interpret or in case a language developer wants to restrict the scope of identifiers. Quotations are
directly supported and do not require special support. It is sufficient to define another @DSL-
Method annotation that defines a production regarding the quotation (cf. Listing 8.7 line 3).�
1 interface ITinySQLWithQuotation extends ITinySQL {
2

3 @DSLMethod(production="#sql{__p0__}")
4 Map[] quoteSqlStmt(List<Map> map);
5 }
� �

Listing 8.7: The interface of TINYSQL with quotation

8.1.3. Compiling DSL Programs
Figure 8.1 gives an overview of the compilation process that transforms programs in concrete

syntax into host syntax. This process is explained in the subsequent paragraphs.

concrete
AST

DSL File

Config

get
meta-
data

com-
pose

Combined
Grammar parse

Forest of
ASTs

...

Binary
Host File

compiler
host

lauch

save
file

pretty
print

compromised
AST

Trans-
formation(s)

trans-
form

filter

1. 2.a)
2.c)

2.d)

File1_sql_dsl.groovy:
…selectFrom(…,…)

3. 4.

5.b)7.

6.

8.

9.

File2.groovy:

@EDSL({sql,expr})
…SELECT……

File2.groovy:
…selectFrom…(…oplus(…)…,…)

File1.sql.dsl:
…SELECT…FROM…

File2.class

File1_sql_dsl.class

EDSL Imple-
mentation(s)

Host (Island)
Grammar

EDSL
Grammar(s)

2.b)

5.a)

Figure 8.1.: Overview of the compilation process

Starting the Compilation Process: The compilation process starts (Step 1), when the DSL
end user saves a file in the IDE that contains expressions in concrete DSL syntax. To specify the
EDSLs used in a source file, there are two options for end users. First, users can use a special

2#sql{...} is not a valid statement in the host language. When a language end user uses a quotation, the end user
explicitly escapes from the host language and opens up a scope in which SQL expressions can be used.

176

8.1. Concrete Syntax for Homogeneous Embedded DSLs

file extension, where the last suffix of the file is dsl. E.g., the file extension of file1.sql.dsl uses
sql to specify that the TINYSQL DSL is used. Second, users can add an annotation @EDSL to
their code to specify the languages used in the respective code. The elements of the @EDSL
annotation determine the concrete EDSLs. E.g., the annotation @EDSL(sql,expr) specifies that
the sql and expr DSLs are used.

Extracting Grammars using Reflection: For every EDSL, the pre-processor looks up the
EDSL interface (Step 2 a) from the configuration. Next (Step 2 b), the pre-processor uses intro-
spection [Mae87] to look up all declared methods in the EDSL’s interface. From the interface
annotation, the pre-processor looks up the host language of the EDSL and loads the host gram-
mar (Step 2 c). From meta-data provided in the method signatures and their annotations, the
pre-processor extracts the EDSL grammar (Step 2 d).

Creating a Combined Grammar: Next (Step 3), the pre-processor tries to create the com-
posite grammar by combining the host grammar with the grammars of all specified EDSLs.
Before combining the grammars, the grammars are checked for possible conflicts. Currently,
the concept makes use of union grammars [Cor06] to build the union of all productions de-
fined for the host language and all EDSLs. For example, the combined grammar for parsing
TINYSQL embedded in Groovy contains all productions defined in Listing 8.2 and Listing 8.8.
As long as two EDSLs do not define two productions that have exactly the same terminals and
non-terminals the pre-processor can distinguish them and will call the correct method of the
homogeneous embedded DSL.

Parsing into Forest of ASTs: When parsing (Step 4) the source code, the Earley parser
creates a forest of all possible ASTs of the DSL program using the combined grammar. In the
forest, every AST node is associated with the list of characters from the input stream and the
corresponding production that has recognized the characters. Note that this forest contains only
valid ASTs, but due to ambiguities – in particular in the presence of island grammars – there are
several possible ASTs under which the DSL file can be recognized by the parser.

Selecting one AST in Concrete Syntax: The pre-processor uses disambiguation filter-
ing [vdBSVV02] to select the AST with the well-defined execution semantics. Therefore, the
pre-processor filters the forest of ASTs (Step 5) and select only one from it (Step 5 b). To find
the right AST, pre-processor takes both the syntactic and the semantics information into account
that is defined in the EDSL interface.

The filtering always prefers AST nodes associated with detailed productions over AST node
with water productions. Further, the pre-processor performs semantic checks to eliminate ASTs
from the forest that are invalid. For every sub-expression passed to another expression, the filter
determines the corresponding production and method in the EDSL interface via introspection
(Step 5 a). This allows the filter to take into account the return type of the method that defines
the semantic type of the computation returned by this sub-expression.

Transforming the AST to Host Syntax: In the transformation step (Step 6), the pre-processor
uses all transformations in the order they have been selected by the end user. The transformation
rewrites every AST expression in concrete syntax into its contaminated syntax.

177

8. Incremental Concrete Syntax for Embedded Languages

Pretty Printing, Host Compilation, and Launching: After the AST has been transformed
to the host language syntax (Step 7), the AST is pretty printed into a file that only contains valid
host language expressions. The pre-processor uses the unchanged host compiler to compile this
file to binary form (Step 8) and launches the binary (Step 9).

8.1.4. Enabling a new Host Language
To support a new host language, a language developer has to specify the parts of the host

language’s syntax that are relevant when embedding DSLs. This set contains the most important
productions that are needed to syntactically recognize boundaries of basic program structures in
the host language. This will include: its syntax layout (white spaces and delimiters), identifiers,
type definitions, brackets, variable declarations, method calls, object instantiations, block struc-
tures, and so forth. These productions are required to support embedding DSL expressions into
programs written in the host language.

To ease the definition of production rules, there are special non-terminals. As discussed pre-
viously, there are special categories: , ? and ! . Additionally, Id is for identifiers that match
the regular expression [A-Za-z0-9_+]. Further, for partial grammar definitions, developers can
use the water rule $water$ that matches arbitrary characters but only when no other production
matches.

For defining BNF-like custom productions, there is an API. Language developers use this API
to add new production rules.

For example, in case of Groovy, the developer uses the above Java API to define the produc-
tions listed in Listing 8.8. The grammar uses the water rule in line 19 to avoid having to define
the complete grammar of Groovy. This allows parsing statements of the host language and of
the EDSL that have not been formalized.

Compared to approaches with a complete syntax definition, the integration of the host lan-
guage provides less guarantees, because many expression will be parsed using the water rule.
However, the language developer can always specify more productions or the complete host
grammar if desired. Conversely, the partial grammar requires far less productions to be formal-
ized and is sufficiently precise for most practicable purposes. When developing a new embedded
DSL in a host language, the developer imports the partial grammar for the EDSL.

In addition to specifying parts of the host grammar the developer needs to provide three trans-
formations to process ASTs of arbitrary EDSLs: The first transformation rewrites every AST
node with concrete syntax to an equivalent AST node in contaminated syntax. The second trans-
formation adds bootstrap logic into the AST that will evaluate the DSL statements. The third
transformation pretty prints the AST into host language code.

All transformations are Java classes that implement the interface ASTTransformation, they im-
plement a special visitor pattern [GHJV95] in which the method for visiting AST nodes has
access to a context object that allows access to context information. Each transformation has a
set of assurances and requirements on the AST under transformation. Before a transformation is
applied, all its requirements are checked for by reading the meta-data that is attached to the AST.
A transformation can add, change, and remove AST nodes and the meta-data attached to these

178

8.2. Implementation of the Generic Pre-Processor for Incremental Concrete Syntax

�
1 SGroovy → Program
2 Program→ Statements
3 Statements→ Statement ? Statements

4 Statements→ Statement
5 Name→ Id ? "." ? Name

6 Name→ Id
7 Type→ rType
8 Type→ pType
9 pType→ Name

10 Arguments→ Arguments ? "," ? Type

11 Arguments→ Type
12 Application→ "(" ? Arguments ? ")"
13 Application→ "(" ? ")"
14 MethodCall→ Name ? Application

15 pType→MethodCall
16 ConstructorCall→ "new" Name ? Application

17 pType→ ConstructorCall
18 Statement→ { ? Statements ? Statements }
19 Statement→ $water$
� �

Listing 8.8: Island grammar for Groovy

nodes. After a transformation is complete, the transformation stores its assurances by adding
meta-data to the AST. Requirements and assurances allow the plug-in to validate the chain of
transformations as defined in its configuration.

8.2. Implementation of the Generic Pre-Processor for
Incremental Concrete Syntax

The proposed approach was implemented as an Eclipse plug-in called TIGERSEYE3. The
generic pre-processor is a project builder that can be integrated with every project’s build pro-
cess. In the following, we give a brief overview of TIGERSEYE.

The developed pre-processor is host language independent. As a proof of concept, TIGERS-
EYE supports two host languages: Groovy and Java. The only requirement of TIGERSEYE is
that the host language compiles to the Java Virtual Machine and that it is possible to extract
meta-data from an EDSL implementation, e.g., provided by means of annotations. These re-
quirements are met by most modern languages, such as C#, Scala, Smalltalk.

Using the current version of TIGERSEYE, language developers can develop embedded DSLs
(EDSLs) using Groovy or Java. Using Java reflection [AGH05, FF04], TIGERSEYE introspects
EDSLs to extract the EDSL’s meta-data, such as information about the production rules and the
transformations. The extracted partial grammar is made accessible as a set of first-class objects.
When a program uses several EDSLs, the pre-processor first composes the EDSLs’ grammars
and meta-data.

3A tiger’s eye is a gemstone in which one mineral is embedded into another mineral. The plug-in’s source code will
be made available after the review process.

179

8. Incremental Concrete Syntax for Embedded Languages

Currently, if multiple EDSLs are used, TIGERSEYE always creates the union of grammars
of the composed languages. This produces a conflict if two or more of the EDSLs define the
same production. Therefore, the current pre-processor implementation only supports conflict-
free compositions. However, given that the composed languages can generally share the same
keywords—without generating a conflict—the current implementation suffices for most imple-
mentations. During the evaluation of TIGERSEYE, conflicts were a non-issue.

The parser implementation uses the Earley algorithm [Ear70] which can handle all types of
CFGs. Instead of generating a parser from a BNF, the pre-processor’s parser directly uses the
grammar supplied by the language developer for the EDSL and the host language. An important
advantage is that the generic parser makes the grammar available as a first-class object during
the transformation process. This enables the pre-processor to extend and compose grammars of
the host language and of the embedded DSLs.

The implementation of the Earley algorithm adds support for island grammars [Moo01] as
outlined next. The standard Earley algorithm has three steps that are continuously repeated for
every character, namely 1) scan, 2) predict, and 3) complete. To support island grammars, the
scan step was extended. The new scan step first tries to accept the next character using the
explicitly defined productions. Only if no production accepts the next character, the water rule
recognizes this character as water. Each parse step is stored as an item in a so-called Earley set
in the parser’s chart, in which each item is associated with the character recognized in the step.
After parsing, the chart provides all information for the full forest of ASTs.

To represent ASTs and to implement term rewriting, TIGERSEYE uses ATerms [vdBK07].
ATerms unify several term formats, optimize storage through maximal subterm sharing, and
allow language-neutral exchange. To implement custom transformations – as extensions of the
pre-processor – the language developer also has to use ATerms. The transformation steps are:
1) the pre-processor translates the Earley chart to ATerms, 2) then the pre-processor uses the
ATerms’ pattern matching facilities to perform transformations on the ASTs, after that 3) the
pre-processor uses the ATerms ASTs to generate the host language code.

8.3. Summary
This chapter has presented an extension to the core architecture that by using island grammars

significantly reduces the effort necessary to enable concrete syntax for embedded DSLs. Com-
pared to related work, the main advantage is that only parts of a DSL’s concrete syntax need to
be specified.

This has three main implications: First, it is only necessary to specify a DSL’s concrete syntax
for those parts where the host language’s concrete syntax does match the domain syntax. As the
evaluation will show in Section 10.4.4 (p. 240), this reduces the effort necessary for specifying
the DSL’s grammar. Second, the approach supports to incrementally define a DSL’s concrete
syntax which helps to reduce the initial effort necessary when developing an EDSL. Third, the
implementation of an embedded DSL can be – up to a very large degree – host language in-
dependent. This facilitates reuse of EDSL implementations; in particular, if the host language
compiles to a bytecode representation such as Java or CIL bytecode.

180

Part IV.

Evaluation

181

9. Related Work

This section compares related embedding approaches. Because REA is a homogeneous embed-
ding approach, Section 9.1 discusses homogeneous approaches first. In general, heterogeneous
ones use different techniques, which are more related to non-embedded DSL approaches than
to homogeneous EDSL approaches. Still, since TIGERSEYE/REA makes use of heterogeneous
concepts, similarities to these approaches are discussed in Section 9.2.

9.1. Homogeneous Embedding
Homogeneous embedding approaches inherit most of their host language’s features, since the

embedding and its programs are seamlessly integrated with the host language, and it can use
the host features freely. As a consequence, when there is a special interest in reusing certain
host language features for the embedding, this strongly influences the choice of the embedding
approach.

The literature proposes to use various host languages that make use of different features,
namely (a) pure functional languages, (b) dynamic languages, (c) multi-stage languages, and (d)
strongly-typed object-oriented languages. If there are no hard requirements for certain language
features to be available in an embedded DSL, language developers have the free choice and
likely prefer to use an embedding approach that integrated best with their application libraries
they already use. Still, in many cases, the choice of the host language features is prevalent and
can even outweigh complexity and the drawbacks of a special embedding approach. Therefore,
this section first highlights special host features and particular problems addressed by them, and
finally compares the approaches to REA.

9.1.1. Functional Languages
In pure-functional host languages, there are several approaches that use different techniques

and encoding styles. Still, the differences of those functional approaches are not important for
a comparison with REA. Therefore, first, each approach is explained, only the individual issues
of a particular approach are discussed in place, and then, all pure-functional approaches are
compared together with REA.

Pure Embedding: Hudak [Hud96, Hud98] uses the pure functional host language Haskell
for embedding DSLs, which he calls pure embedding. A language developer defines domain-
specific constructs of domain types using algebraic data types and domain operations using
higher-order functions on these types. The major advantage of pure embedding is that language
developers can rely on functional composition. To execute embedded programs, DSL programs
recursively evaluate their embedded expressions returning a typed computation. For each com-

183

9. Related Work

putation, its value is tagged with the corresponding domain type. Polymorphic functions use
pattern matching on these types, therefore, functions only accept well-defined expressions. To
evolve languages, developers can compose languages from modularly implemented constructs
by composing monads [Mog89, Wad90, Ste94, LHJ95], if the used algebraic types are compat-
ible. Hudak demonstrates that with his approach, developers can implement small languages,
such as a mathematical language for calculations on regions. Further, Hudak implements com-
mon features found in mainstream programming languages, such as state and error handling.

Tagless Embedding: Carette et al. [CKS09] propose a pure embedding approach that ad-
dresses several problems of Hudak’s pure embeddings, which they call tagless embedding. They
use functional composition to build typed, embedded DSLs in the OCaml language. In contrast
to using data types to tag expressions, they encode expression in higher-order abstract syntax
(HOAS) [PE88] that uses only lambda expressions to encode expressions. In contrast to Hu-
dak, HOAS expressions are not tagged with type constructors. HOAS enables a homogeneous
embedding of tagless program expression. To encode execution semantics, they implement re-
cursive fold over the HOAS. Further, the authors discuss the transferability of their results in
other typed functional host languages, such as Haskell and MetaOCaml.

The main advantage of this approach is that they represent typed expressions in the embedded
language as typed expressions in the host languages, i.e. using the same types makes the type
system uniform. Because of having a uniform type-system between the embedding and program,
the host compiler can type-check and better optimize embedded programs than the other pure
embedding approaches. A key property is that the resulting type-preserving interpretations have
the guarantee that compiled programs execute without type failures. Different to Hudak, they
use functors to bind expressions in a program to their semantics. Using functors allows them
to parametrize a program with several evaluators, this allows programs to abstract over seman-
tics, i.e. they can use different evaluators to interpret one and the same program representation
under various semantics. In tagless embedding, abstracting over semantics enables analysis for
program, which they demonstrate by implementing an expression counter analysis.

Unembedding: Atkey et al. [ALY09] address the problem that it is awkward to analyze and
manipulate embedded DSL expressions encoded in HOAS. To solve this problem, they trans-
form the HOAS of embedded expressions to de Bruijn terms—a special encoding. They call this
transformation unembedding. In previous work, Atkey proofed that HOAS encodings can be iso-
morphically mapped to de Bruijn encodings and back [Atk09]. The advantage of de Bruijn en-
coding over HOAS is that language developers can implement analyses more conveniently. Do-
main types in embedding are defined using generalized abstract data types (GADTs) in Haskell.
They demonstrate the applicability of their approach by presenting several small embeddings,
such as untyped and typed lambda calculus, pattern matching, Boolean values, and numbers.
They demonstrate a simple analysis that counts expressions in a program, and transformations
between HOAS and de Bruijn terms, but domain-specific analyses and transformations are out
of scope. Further, they show that their approach can enable mobile code and nested relational
calculus, which permits nested queries in query languages. The downside of using GADTs is

184

9.1. Homogeneous Embedding

that embeddings may suffer from exhaustive pattern matching [CKS09]. Further, they iden-
tify several problems and limitations with the current Haskell type system, which cannot proof
type soundness in certain situations that lead to so-called exotic types. They address some of
these problems, e.g. with type casts, which unfortunately pose an additional effort on language
developers.

Comparison with REA: In general, the pure embedding approaches provide a good support
for for black-box extensibility. Unfortunately, pure embedding mostly demonstrates extension
by re-implementing general-purpose language constructs (e.g. lambda abstractions) that are al-
ready available in their host, from which it is hard to draw conclusions about their applicability
for DSLs. Still, pure embeddings have the benefit that they support type-safe embeddings, and
therefore, they provide implicit safety guarantees. In contrast, in REA, since the Groovy com-
piler does not require the developer to use types and the signatures of method calls are not type
checked, there is no implicit guarantee. For every additional guarantee, a language developer
needs to implement a special analysis, e.g. like the keyword analyzer that checks that a program
is syntactically correct. Because with pure embedding developers can create languages from
closed black-box components, these components cannot be opened up and adapted by other lan-
guage components. Since pure embeddings have no meta-level, pure embeddings do not support
semantic adaptations like REA.

Further, they support composability of independent languages, but they do not address com-
posing languages that have syntactic or semantic interactions. They use functional abstractions,
therefore the language components are strongly encapsulated, which disallows composing em-
beddings with interactions.

None of the pure embedding supports concrete syntax or adapting their host language’s scop-
ing strategies. Atkey implements a more complicated general-purpose analysis, but in contrast
to REA, domain-specific analyses are also out of scope. Only Atkey supports transformation,
such as transforming HOAS to de Bruijn encodings and back, but none of the pure embedding
approaches addresses domain-specific transformations like REA.

A rather practicable limitation is that these pure embedding approaches assume the developer
to be a domain expert as well as an expert in functional languages, requiring knowledge e.g. in
advanced type systems, monads, and higher-order functions. Their assumptions heavily restrict
the pool of people available as language developers, since only few developers in industry have
both skills. In sum, because of these reasons and combinations of thereof, so far, there are a
few applications outside the academic community. In contrast, REA only requires the language
developer to know OO programming.

To allow the same flexibility in functional host languages like REA supports, it is likely that a
pure functional host languages would need special extensions to open up functions, e.g. to realize
aspects. But opening up black-box functions can be expected to destroy the pureness of the host
language [HO07], which puts into perspective the advantages of the pure embedding approach.
In pure functional languages, a key limitation is that polymorphic functions are restricted to one
compilation unit, e.g. a developer can only overload a function signature within one compilation

185

9. Related Work

unit. It is not possible to adapt abstractions that are encapsulated in functions. All possible
adaptations of a function have to be anticipated in the function’s parameters, when the function’s
signature is defined. If an adaptation has not been anticipated, a function signature or its case for
pattern matching cannot be extended later on. To adapt the syntax of a pure embedding encoded
in a module signature (or type class), it is required to open up the module’s signature. To adapt
the semantics encoded in module (or type class instance), it is required to exchange the method
bodies in module implementations. To adapt the models, with GADTs, the developer would
need to extend GADTs to allow constructors to have new return types, or the developer needs
to inspect and manipulate universal types. There are several promising techniques in functional
languages that could be interesting to use to enable adaptable pure embeddings, such as first-
class modules [MS02], adapting pattern matching on function signatures [LH06] e.g. from first-
fit to best-fit, and open type classes [LH06]. Incorporating reflective features into pure functional
languages has been studied, but it has been reported that it is unclear whether these feature can
preserve pureness and type-safety [WKD04].

9.1.2. Dynamic Languages
There is a long tradition to embed domain-specific languages in dynamic languages. This

section gives an overview of embedding with dynamic host languages.

Jargons: Embedding domain-specific languages has been a well-known technique in languages
of untyped functional languages, such as Scheme from the LISP family. In [Pes01], Peschanski
refers to such an embedded language as a jargon. A jargon is implemented in Scheme using its
macro system. Embedded programs are represented as S-expression in abstract syntax. To define
the abstract syntax, the language developer uses a meta-language, which is itself implemented
as a jargon—a meta-jargon. For each defined expression type, the jargon defines a macro of
which the name defines a keyword and the macro parameters its sub-expressions. To define
semantics, the macro body produces Scheme code. A code sequence is implemented using a
so-called schemedef, which plays a similar role as a code block. To evolve jargons, hierarchical
composition of jargons is supported by one jargon explicitly importing other jargons. Other
forms of compositions are not discussed. The advantage of jargons is that there is no requirement
for type annotations and no restriction by a type system. The disadvantage is that program
executions can result in runtime errors.

In comparison to REA, using a macro system in jargons is technically quite different from
using the MOP in REA. Schemedefs code blocks play a similar role for encoding abstraction
operators in jargons like closures in REA. Jargons have an import mechanism that allows adding
keywords to individual languages, similar to single inheritance in REA. However, jargons do not
consider conservative extensions. Despite this, similarly to REA, jargons have a meta-level—
the meta-jargon. But their meta-level is only for defining a meta-circular syntax, thus developers
cannot use it for semantic adaptations. Unlike REA, jargons have no special mechanisms for
evolution, such as REA’s support for late binding of syntax to semantics, abstract over semantics,
and semantic adaptations. In sum, unlike REA, jargons do not support sophisticated forms of
language evolution.

186

9.1. Homogeneous Embedding

Ad-hoc Embedding in Ruby: Ruby [Rub, TFH09] is a fully object-oriented scripting language
that frequently uses embedded DSLs in its frameworks. Ruby allows modularly defining em-
bedded DSLs in classes. Embedded programs are Ruby scripts in abstract syntax. Language
developers define the abstract syntax for expression types in a class’s method signatures and the
corresponding method implementations define the semantics. There are numerous demonstra-
tions of practicable embedded DSLs. For example, Ruby uses a family of embedded DSLs in
its popular Ruby on Rails Web framework. To evolve embedded languages in Ruby, Ruby can
re-open the class definition of a embedded language implementation. When re-opening classes,
developers can add methods for new abstract syntax and semantics even at runtime, or they can
rename individual existing methods to override them with a new method. There is little research
for composing independently developed languages in Ruby, although it has special features for
composition, such as runtime mixins, and features for invasive adaptations via reflection.

In comparison to REA, for Ruby, there are only example embeddings to guide developers,
but there is no disciplined architecture like in REA. In Ruby, DSLs are rather implemented as
ad-hoc embedding, which makes embedding in Ruby rather a craft than a discipline. Still, em-
bedded DSLs in Ruby support a similar extensibility as REA. Similarly to REA, in Ruby, there
is no restriction by a type system, and developers can re-open classes at runtime, which allows
unanticipated extensions like in REA. With re-opening classes, Ruby allows to dynamically add
keywords similar to REA that uses the MOP for this. However, when using Ruby’s reflective
features, this internally manipulates the program’s AST at runtime, which allows individual
syntactic and semantic adaptations of embedded DSLs in Ruby. When adding or renaming a
method, this adds or renames the method in the AST and adaptation’s changes are immediately
visible to others. Unfortunately, Ruby’s reflective features do no adequately support multiple
adaptations, since new adaptations always override previous adaptations. In case, there are mul-
tiple adaptation to the same AST elements, then this constitutes an interaction, or it may even be
a semantics conflict. Ruby allows isolated reflective adaptation, but Ruby has no mechanism to
handle interactions and conflicts between several adaptations, therefore overriding adaptations
can lead to erroneously adapted embeddings. In contrast to REA, in Ruby, there are no con-
cepts like language combiners, no support for concrete syntax, scoping strategies, analyses or
transformations.

TwisteR: Achenbach et al. [AO10] present an embedding approach for embedding aspect lan-
guages into Ruby, called TwisteR. TwisteR focuses only on implementing dynamic analyses us-
ing dynamic aspects, but unlike REA, TwisteR is no embedding approach for DSLs in general.
They use this thesis’s concept of a meta-aspect protocol that was presented in Section 4.2.3.3
(p. 109) and [DMB09]. They embed special scoping strategies for aspects that have been pro-
posed by Tanter [Tan08, Tan09] to control the binding and activation of aspect for dynamic
analyses. Further, they apply a special technique to intercept execution at the basic block level,
which is similar to the concept of sub-method reflection [DDLM07], but has been developed in-
dependently. On top of these techniques they implement special abstractions for dynamic anal-
ysis. The advantage is that end users can easily embed dynamic analysis for debugging aspects,

187

9. Related Work

similar to [DMB09], and it enables explorative testing with non-deterministic input data. Al-
though TwisteR aspects enable individual analyses and transformations of embedded programs,
composing analyses and transformations is not supported, since TwisteR has no mechanism to
handle interactions and conflicts. In contrast to REA, in Groovy, there are no concepts like
language combiners, no support for concrete syntax, or scoping strategies.

Ad-hoc Embedding in Groovy: Groovy [Gro, KG07] supports embedding through two special
concepts for building heterogeneous and homogeneous embeddings.

Groovy supports implementing extensible EDSLs using so-called builders. Builders do sup-
port creating objects as well as implementing heterogeneous embedded compilers similar to
Kamin’s approach [Kam98]. A Groovy builder must extend a special library class and add
methods to it in order to define DSL syntax and semantics. Builders can be extended with single
inheritance. There are no special means to compose several builders.

Further, Groovy supports another concept, called a category, that are special classes that de-
fines static methods that are dynamically mixed into existing classes. Categories mixed in meth-
ods are often used to enable little DSLs. Mixing several categories at a time allows simple
compositions of DSLs. However, the language compositions resulting from mixed categories
provide no guarantees for correctness.

Similar to Ruby, embedding in Groovy is rather ad-hoc and it does not follow a well-defined
discipline as REA. Due to using the same host, ad-hoc Groovy embedding could be as pow-
erful as REA, but Groovy’s ad-hoc embeddings are only limited because they do not exhibit
an architecture that can exploit the Groovy features completely like REA. Unlike in REA, ad-
hoc embeddings in Groovy provides no guarantees for language developers. They can compose
only embedded libraries in a dynamic language without special analysis or transformation. The
Groovy compiler only validates a part of the embedding or embedded programs, in particular the
Groovy compiler does not validate correctness of method bodies. Therefore, it is not possible to
check whether an EDSL program invokes only well-defined methods of an embedding and that
the method body does not contain calls to missing methods. With REA’s support for abstracting
over semantics, there is support for analyses that validate the correctness of a program or a com-
position, whereby the analyses can analyze the keywords used in closures and method bodies.
Further, with categories, it is not possible to compose several categories that define the same key-
words, whereby detecting and handling the resulting interactions and conflicts. Since categories
are based on static methods, they cannot be inherited. Thus, there is no support for language
polymorphism. Similar to REA’s BlackBoxCombiner that analyzes EDSLs for conflicts. Groovy
lacks concepts like language combiners, support for concrete syntax, and scoping strategies. In
Groovy, developers can use meta-programming to write AST analyses or transformations for
compile-time. However, runtime analysis and transformation are not addressed.

Embedding in π: The π language [KM09] is a special host language that provides dedicated
features to change the syntax and semantics at runtime. In particularly, interesting is that π pro-
grams can have any syntax of a CFG. The language developers defines DSL expression types in
special modules called patterns. Each pattern recognizes a piece of the concrete syntax and gives

188

9.1. Homogeneous Embedding

it a meaning—an interpretation in the π language. The π interpreter processes DSL program line
by line. When encountering expressions in a line, there must be always exactly one matching
pattern for that expression type. Patterns can be redefined and they are lexically scoped, thus π
always uses the closest enclosing pattern definition to interpret an encountered expression.

In comparison, π is more syntactically more declarative than REA in that it provides a special
syntactic constructs to define concrete syntax. Similar to using annotations in TIGERSEYE/REA,
the syntactic and semantic extensibility built into π makes it particularly natural to evolve em-
beddings. But in contrast to TIGERSEYE/REA, developers do not have to use verbose standard
Java/Groovy annotations to define a concrete syntax. In π, developers can compose expression
types at the level of patterns. But, there is no special module concept at the level of languages,
therefore several embedded DSLs can only be composed by copying their sources into one π
file. Programs are also not modularly defined. Unfortunately, π’s exceptional language features
do not allow adopting the approach to other host languages. The dynamic features of π also
required that programs are executed with an interpreter, π cannot be compiled to bytecode like
REA. Further, in contrast to REA, in π, there are no concepts for scoping strategies, analyses or
transformations.

Helvetia: Renggli et al. embedded DSLs into Smalltalk [RGN10]. Their approach, called
Helvetia, addresses the problem of providing support for concrete syntax and improving tool
support. End users can encode DSL programs either in Smalltalk syntax. To embed a language
without special syntax, the language developer directly defines a set of Smalltalk classes those
methods and fields define expression types in abstract syntax. To embed a language with a spe-
cial syntax, the language developer implements a parser in Smalltalk using a parser combinator
library. To define execution semantics for special syntax, the developer uses an embedded DSL
to implement transformation rules on AST nodes. After parsing a DSL program, its expressions
represented in AST nodes are transformed to ordinary Smalltalk code and then compiled by the
host compiler. The advantage of Helvetia is that it supports certain interesting evolution scenar-
ios. Developers can extend a language by attaching additional parser components to an existing
parser using combinators. They can define several parsers that can be used in parallel. Another
benefit of choosing the Smalltalk platform is that Helvetia integrates well with the Smalltalk
tools that developers can extend for syntax highlighting of their DSLs. Helvetia’s homogeneous
integration with Smalltalk allows the debugger to trace transformed code back to its textual rep-
resentation in concrete DSL syntax. Unfortunately, Helvetia relies on the exceptional features
of Smalltalk, e.g. that a compiler component is accessible at runtime. As a consequence, the
approach cannot be adopted for other host languages that do not provide these features.

In comparison, Helvetia has a similar extensibility like REA, but Helvetia has a different ar-
chitecture and it uses different technologies. Similar to REA, Helvetia supports implementing
language components, called language boxes [RDN10]. Helvetia supports concrete syntax as
parsing expression grammars that are composed using a parser combinator library. Similarly, as
parser combinators are first-class objects, in REA, BNF and the Earley parser are both homo-
geneously embedded in Java, new parsers can be created and manipulated as object at runtime.

189

9. Related Work

But, Helvetia does not support the full subset of CFGs like REA. Syntactic ambiguities are re-
solved by implicit priorities, which can leads to erroneous compositions that remain undetected
by the developers. However, Helvetia uses transformation rules similar to source-transformation
languages, but it transforms a DSL program at load time and not at compile-time. Helvetia
transforms every program once. After a program is transformed, it cannot be transformed again.
In contrast, TIGERSEYE/REA’s pre-processing transforms program in concrete to abstract syn-
tax before compile-time. However, still, when a program is transformed to abstract syntax, the
abstract syntax of the program can be adapted using the meta-level, which enables runtime evo-
lution e.g. for dynamic aspects. Helvetia supports scoping transformation rules e.g. on particular
AST nodes or a particular context, which restricts the rule’s application. However, the scoping
mechanism does not allow assigning one and the same program to different semantics, therefore,
it is not possible to abstract over semantics, like REA’s first-class code blocks enable a dynamic
syntax-to-semantic binding that can be changed at runtime. Similar to REA, Helvetia allows
adapting programs of embedded languages, in particularly Helvetia uses reflection to adapt host
language expressions. However, reflection is currently only used to adapt end user programs.
Reflection does not adapt language implementations, like REA. Further, in contrast to REA,
Helvetia does not support scoping strategies.

9.1.3. Staging/Meta Programming Languages

(Multi-)Stage Languages: A (multi-)stage host language [SBP99, COST04] has a small set
of special language constructs for constructing AST nodes within programs, combining them,
and generating executable code from ASTs, whereby often a static type system guarantees that
all programs they generate are correct. In (multi-)stage host languages, developers can imple-
ment languages embeddings using meta-programming in a homogeneous way, i.e. programs that
generate other programs in the same language. Staging-based embedding approaches address
the problem of the interpretative overhead for embedded languages that is removed by gener-
ating code. There are several embedding approaches that use different host languages. Czar-
necki et al. [COST04] compare staging in MetaOCaml, TemplateHaskell, and template meta-
programming in C++. The difference between these host languages and the approaches are not
relevant for a comparison to REA.

To embed a DSL, a language developer embeds AST nodes for each DSL expression as a data
type for the DSL. Embeddings are structured in one or several stages. Each stage can rewrite,
optimize, or compile expressions by introspecting AST nodes of the previous stage and reflecting
changes to the next stage. For constructing part of the AST of a DSL program, (multi-)stage
languages use a quasi-quotation mechanism. Quasi-quotation provides a quotation operator
with which developers can embed expressions of the object language into the meta-language.
For example, in TemplateHaskell, one can quote a Haskell expression in Oxford brackets [|..|]
that reifies a corresponding AST representation of it. For combining expressions of different
stages, often there is a special anti-quotation operator to escape inside a quoted expression.
Finally, for execution, there is a splicing operator that reflects an AST back to code, i.e. it
generates executable code. When using the splicing operator for program with quoted DSL

190

9.1. Homogeneous Embedding

expressions, from the quoted DSL expressions the stages generate plain host language code.
Because staging allows compiling programs from the object language to the meta-language,
there is no interpretative overhead.

In comparison, staging has a different focus than REA. Staging approaches target expert pro-
grammers and end users with special skills. It uses special host language features, and cannot
be integrated with a host language that does not support quasi-quotation. Staging-based embed-
ding have a very different architecture and use very different techniques than REA. The biggest
advantage of staging is that, after compilation, there are no library calls to an embedded li-
brary, since the stages generate code (inline) at compile-time [COST04, Tra08]. In contrast, in
REA, because Groovy autoboxes every primitive value and every method call is an reflective
method call, there is a significant overhead on the execution, which only can partially be re-
move by the standard optimizations of the Java VM. Another advantage of typed multi-staged
embeddings is that the host’s type system can guarantee that (more or less) all generated code is
well-typed [COST04]. In contrast, in REA, the Groovy host compiler does not perform enough
type checks to ensure meaningful code. For each additional guarantee, REA needs an implemen-
tation of an new embedded analysis. Further, the quoting mechanism eases to mix expressions
in the meta-language and the object language, which makes it relatively simple for language
developer to switch stages. However, the stages have a fixed order, which cannot be changed.

However, staging supports only a subset of the evolution features. So far, only very simple
forms of language constructs have been embedded that do not allow drawing conclusions about
the applicability of staging approaches to DSLs. Staging-based DSLs are confined to their host
languages syntax and semantics. The embedded AST of a DSL is hard to extend, since one
cannot add a new AST node without redefining the AST’s data type. In contrast to most ho-
mogeneous EDSL approaches, developers need to implement a front-end or respective an AST
for the DSL, which puts the saving of this embedding approach into perspective. In contrast
to REA, the AST of different DSLs cannot be combined, because the data types in the host
language they use are not composable. Concrete DSL syntax is not supported, the abstract syn-
tax in staging-based DSL has a large syntactic noise for end users. For template C++, there is
the largest syntactic noise. In contrast to REA, staging does not address embedding scoping
strategies. Domain-specific analyses are only supported as transformations, but implementing
analyses as transformations is rather awkward. It is not possible to add new information to AST
nodes, unlike to TIGERSEYE/REA where ATerms allow adding semantic information to the
AST nodes. TemplateHaskell supports intentional analysis that allows to inspect code of other
stages, but they do not use this to extend a stage by another stage. Transformation is natural for
staging-based approaches, but they only support transformations to their host languages not to
other target languages. Endo-transformation are not supported, since every stage creates a new
representation of the program.

Extensional Meta-Programming: Seefried et al. [SCK04] address problems of both staging-
based and heterogeneous embedding approaches. For homogeneous staging-based embeddings,
they address the problem that with staging the language developer has to implement a compiler

191

9. Related Work

front-end for the embedded language, i.e. the developer has to encode the AST nodes for an
embedded language (cf. [COST04, SBP99]). For heterogeneous embeddings, which are dis-
cussed later on in this chapter, they address the problem that the developer has to embed a new
compiler back-end (cf. [Kam98, EFDM03]). To address these problems, they propose to use
compile-time meta-programming for implementing embedded compilers in TemplateHaskell,
which they call extensional meta-programming. An important detail is that they do not need to
implement an AST in an abstract data type. Meta-programming enables them to embed opti-
mizations in a homogeneous way, such as unboxing arithmetic expressions, aggressive inlining,
and algebraic transformations. Because DSL programs are directly encoded as host expres-
sions, no special front- or back-end need to be implemented. To validate their approach, they
have re-implemented Elliott et al.’s Pan language [EFDM03], as a homogeneous embedding.
They compare the performance of their implementation with and without optimizations, and
to Elliott’s heterogeneous Pan language embedding. Their optimization is implemented with
extension meta-programming perform significant better than the embedding without optimiza-
tions. But, their measurements show that the original heterogeneous implementation of Pan still
outperforms their optimized implementation.

In comparison, extensional meta-programming does not need to implement an AST, since
expressions are represented in abstract syntax, similar to REA. New expression can be easily
added. Extensional meta-programming can exploit TemplateHaskell for more type checks, sim-
ilar to REA exploiting type checks in Groovy. Unfortunately, TemplateHaskell has no com-
plete guarantee that every generated program is type safe, since type checking of template
code is restricted for technical reasons. With respect to its support for evolution, extensional
meta-programming has similar problems like staging-based approaches. Composition of differ-
ent meta-programs is currently not addressed, but functional composition would enables non-
interacting compositions. Because extensional meta-programming uses functions to encode
domain abstractions, for the same reasons like with pure embedding approaches, extensional
meta-programming does not support interacting or conflicting compositions. There is no sup-
port for concrete syntax or pluggable scoping, since the approach is completely confined to its
host language’s syntax and semantics. Analysis is only possible through transformation. While
they address transformations at the expression level for implementing optimization of individual
expression, global analyses and transformations are out of their scope.

Converge: Tratt [Tra08] also uses a compile-time meta-programming approach that has support
for concrete syntax in the Converge programming language, which is a special host language for
embedding. It is different from the other staging-based approaches in that language developers
describe the syntax of the embedded language in a BNF-like DSL, they generate a parser from
this, and they specify transformation rules to rewrite AST nodes to Converge code. A Converge
program can use a quotation operator to embed DSL code in concrete syntax into a so-called
DSL block, which will reify a corresponding AST representation that is then rewritten by the
rewrite rules, which reflects the AST nodes to executable code.

192

9.1. Homogeneous Embedding

In comparison, in Converge, language end users can write the program in any concrete DSL
syntax in CFGs. Similar to TIGERSEYE/REA, Tratt uses Earley parsers. However, the Con-
verge approach is limited with respect to extensibility, whenever adding a new expression into
an existing language, the Earley parser needs to be re-generated. In REA, since BNF and the
Earley parser are both homogeneously embedded in Java, no code need to be generated. Fur-
ther, in TIGERSEYE/REA, the generic pre-processor does not rely on exclusive host language
features. Since only uses TIGERSEYE/REA features that are available in most OO languages, its
techniques can be transferred to other host languages. In Converge, transformation happens at
compile-time, and therefore, the DSL code can be expected to execute rather fast, while TIGERS-
EYE/REA has a runtime overhead. In Converge, there are no guarantees that the generated code
is type-safe, and there is no support to analyze and transform code, like in REA.

9.1.4. Typed Object-Oriented Languages
The following object-oriented host languages allow modular and type-safe embeddings.

Fluent Interfaces: Evans [Eva03] and Fowler [Fow05] propose to embed DSLs into main-
stream programming languages used in industry, such as Java. In Java, language end users can
encode embedded programs in abstract syntax as ordinary Java programs that call the API of an
embedded library. This API is structured in a special way, which Evans and Fowler call a fluent
interface. The classes of the library define expression types in the embedded language using
Java constructs. Literals are encoded as constants, domain-specific operations are encoded with
method calls. For creating complex expressions, method calls can be chained together, where
the return parameter of a method in the fluent interface represents the syntactic category of the
next possible expression. He proposed to refer to such an embedded DSL as an internal DSL
since the embedded DSL is implemented as a library, which contrasts it from external DSLs that
are implemented with pre-processors or other external tools.

In comparison, fluent interfaces require no special host language features, similar to REA
where often special host features can be replaced with more common host features. However,
with less powerful features used in the usual hosts for fluent interfaces, it is hard to design the ab-
stract syntax close to the domain, mostly because the Java syntax and semantics are not flexible
enough to omit type annotations and delimiters. Fluent interfaces do not support sophisticated
embeddings with concrete syntax, scoping, analysis or transformation.

DSL2JDT: Garcia [Gar08] addresses the problem to reduce the effort to implement an embedded
DSL as a fluent interface using generative techniques. A language developer models the syntax
of an embedded DSL as a tree-based model in Eclipse EMF [SBP+09], and from that model, a
generator generates the Java code for a fluent interface API, called EMF2JDT.

In comparison, the major advantage of DSL2JDT is that a generator takes over the task to
encode abstract syntax in a fluent interface from the language developer. In REA, language
developers have to encode the language interface, façade, and model classes on their own. In
DSL2JDT, developers can combine their generator with another generator for model constraints,
this enables generating constraint checks for embedded expressions. Further, standard tools ser-

193

9. Related Work

vices, such as code completion and debugging can be reused. The disadvantage of DSL2JDT is
that language evolution is difficult. Once the embedded DSL is generated, in case there is lan-
guage syntax evolves, a language developer must update the model, re-generate, and compile the
whole language implementation again. Unlike REA, DSL2JDT does not support composition
of DSLs. Because, DSL2JDT is confined to Java, it does not support embedding special scoping
strategies, analyses, or transformations.

Embedding in Scala: Dubochet [Dub06] and Odersky et al. [OSV07] experimented with
embedded DSLs in Scala [Sca] – a statically typed language that combines features of object-
oriented and functional languages. Currently, extending embedded DSLs and composing inde-
pendently developed embedded DSLs is not addressed by both authors. They have rather focused
on demonstrating small examples of embedded DSLs, but they do not propose a disciplined ap-
proach for embedding, like REA. Language evolution, concrete syntax, scoping, analysis and
transformation remain out of their scope.

Polymorphic Embedding: Hofer et al. [HORM08] propose an disciplined DSL embedding
approach for Scala. To enable multiple interpretations of programs, they apply Carette’s tech-
nique [CKS09] in the context of Scala, which they call pluggable semantics. DSL programs
are encoded in abstract syntax. To define the syntax of a language, this is encoded into a set
of method signatures of classes or traits. To define the semantics, a developer defines code in
the method implementations. To evolve a language, a developer can use a trait that adds new
expression types to the embedding. Hofer et al. also address the composition of independently
developed languages. While composition independent languages are discussed, they do not ad-
dress composition of languages that have interactions in the syntax and semantics. Composition
of semantics is based on monadic composition of computations. In [HO10], Hofer et al. have
adopted the idea of [ALY09] to use different forms of encodings to allow developers to sim-
pler express new analyses and transformations, but none of the encoding is both extensible and
composable. Unfortunately, since they do not address implicit isomorphic conversion from one
encoding to another like [ALY09], developers can no more freely choose the best encoding after
they have committed to one particular encoding.

In comparison to REA, embedding in Scala equally well supports adding syntax and seman-
tics. For enabling conservative extensions, the type checker can check polymorphic extensions
for possible syntax conflicts, which is only possible at composition-time in REA. Embedding
in Scala is statically type-checked, but also in Scala, the generic type checker does not provide
implicit domain-specific guarantees to prevent semantic conflicts or side-effects. Traits allow
plugging in different evaluations at compile-time, which allows abstracting over semantics like
REA. But in contrast to REA, polymorphic embedding does not support plugging in new se-
mantics at runtime. In polymorphic embedding, traits allow composition semantics similar to
using the linearizing combiner in REA. However, composition between two interacting DSLs
can be incorrect, since the linearization implicit handles homonymous member names, which is
good for implementing OO applications but counter-productive for embedding. Since syntactic
conflicts are implicitly resolved using a pre-defined linearization order, the Scala compiler does

194

9.2. Heterogeneous Embedding

not notify the language developer possible conflicts, which can result in erroneous composi-
tions. In contrast in REA, such conflicts are detected by the BlackBoxCombiner and CCCombiner
and reported before evaluating the program. In contrast to REA, polymorphic embeddings are
confined by their host language’s syntax, semantics, and scoping mechanism. It is not possi-
ble to provide meta-level extensions or to override the semantics of host language keywords.
Hofer et al. [HORM08, HO10] support either extensible or composable analyses depending on
the used program encoding. They demonstrate simple analyses, such as expression counting,
but domain analysis like in REA is out of scope. They support external visitors to composable
analysis of independent languages, but they explicitly exclude composing analyses of languages
that have interactions. In contrast, in REA, all analyses are extensible and composable, because
combiners enable handling interactions. In polymorphic embedding, only exo-transformations
are supported, but it is not possible to transform a running program with an endo-transformation
like in REA.

9.2. Heterogeneous Embedding
Heterogeneous embedding approaches are interesting since they try to address the weaknesses

of homogeneous embedding approaches by being inspired from traditional non-embedding-
based language implementation approaches. Heterogeneous embedding approaches can also
be distinguished w.r.t. what kind of host language is used to implement the embedding. First,
there is the embedded compiler approach that embeds a DSL compiler/generator into a general-
purpose language that generates code in the same or another GPL. Second, there is are ap-
proaches that embed DSLs in source translation languages What is common for both classes
is that often the host and the target language are different, therefore they do not allow reusing
the host language features within the embedding—embedding can only use the target language
features. Moreover, even if they generate code in the same language that implements the em-
bedding, they do not have a uniform compile- and runtime between the host and the embedded
language, therefore they cannot uniformly exchange objects between those host and embedded
programs, like REA.

9.2.1. Embedded Compilers
Embedded compilers have similar qualities compared to REA but differences depend on em-

ployed techniques and therefore are discussed individually.

Embedding Source Code Generators: In [Kam98], Kamin proposes to embed languages
as program-generating languages1, which basically are embedded generators, for which DSL
programs are actually specifications for generating programs in another language. In such an
embedding, the embedded language and the host language are heterogeneous, they may have
different syntax, the may even have different semantics, and both languages are processed by
different infrastructure (i.e. compiler or interpreter). In such an embedding, a program of the
embedded language uses the host language to rewrite its expressions into a target language.

1The view on program-generating languages is similar to meta-languages, where a program in one language gener-
ates a program in another language (cf. Section 2.3.3, p. 25).

195

9. Related Work

Kamin uses ML as a host language and generates code in C++, which is the target language. To
define new syntax, the language developer defines a new expression type as a new function in
ML. To define semantics for an expression, the corresponding function generates and returns a
code fragment in form of a string. To transform a program into its executable form, the fragments
of all programs expressions are concatenated and then compiled by the target language compiler.
Kamin demonstrates that his technique can be used to implement various embedded program
generators, such as FPIC a small language for drawing pictures, a parser generator that is
combined from smaller parsing components, i.e. parser combinators, and a parser generator for
the LL(1) sub-class of context-free grammars. The advantage of Kamin’s technique is that the
execution is less bound to a specific target language, as the code of the generator can be changed
to produce code in a different target language. The generated code in the target language, does
not suffer from interpretative overhead like homogeneous approaches.

Compared to REA and the other homogeneous approaches that reuse their host’s features and
compiler, for embedded generators, there is the disadvantage that language developers have high
implementation efforts, because they have to implement a new back-end in form of an embed-
ded generator. Moreover, heterogeneous embedded languages cannot reuse the host language
features in the generated code (e.g. the host compiler’s optimizations like partial evaluation),
but developers have to re-implement these features if a host language features is also required
in the embedding but not available in the target language. Unlike TIGERSEYE/REA, the pro-
gram syntax of embedded DSL can only have an abstract syntax. Further, for Kamin, scoping
and analyses are out of scope. Embedded generators support exo-transformations but not endo-
transformations.

Embedding Compilers: Elliot et al. [EFdM00, EFDM03] extend Kamin technique by em-
bedding an optimizing compiler in that compiles Haskell to Haskell and that uses algebraic
manipulation, which substitutes expressions by more optimal but semantically equivalent ex-
pressions. They address the problem that homogeneous embedded DSLs suffer from interpre-
tative overhead. They first tried to speed up homogeneous embedded DSLs by adding custom
optimizations using user-defined rewrite rules, which currently only special host compilers en-
able, such as the Glasgow Haskell Compiler2. Still, they made the experience that they could not
remove this interpretative overhead. When they combined multiple of such rewrite rules, they
experienced too complex interactions between the rewrite rules that could not be controlled. To
solve the problems, they represent program expressions in abstract syntax as algebraic types
and statically optimize expressions when these are constructed. For optimizing an expression,
they use a smart constructor for this expression that pattern match on its sub-expressions to
detect opportunities for optimizations, so that an optimized expression is created. They ap-
ply optimization techniques inspired from traditional non-embedding-based approaches, such
as constant folding, if-floating, and static expression type specific rewrites for domain-specific
optimizations. Finally, an embedded compiler rewrites the optimized expressions to the target
language. To demonstrate, the advantages of using algebraic types in embedded compilers, they

2The Glasgow Haskell Compiler Homepage: http://www.haskell.org/ghc/.

196

http://www.haskell.org/ghc/

9.2. Heterogeneous Embedding

address an efficiency problem with a first embedded compiler version that repetitively rewrites
common sub-expressions in a program. To avoid repetitive rewrites, they perform common sub-
expressions elimination (CSE) that identifies common sub-expressions in a program, shares them
between the expressions, and rewrites them only once. They demonstrate their application of
their technique by implementing the Pan language, a small language for image synthesis and
manipulation. The major advantage is that the language developer can evolve an embedded
compiler into an optimizing compiler with only a few changes made to its code. Further, they
claim far better performance of programs and more efficient program generation due to CSE.
Unfortunately, they do not proof this claim by evaluating the actual performance speed up with
measurements.

Rule-based Generators: Cuadrado et al. [CM07] use Ruby to embed DSLs that are rule-based
generators for model-driven development, called RubyTL. DSL programs are models from which
the embedding – a Ruby class – generates code, e.g. Java code. Because only a few classes need
to be implemented, Ruby TL is a light approach to implement an ad-hoc generator.

In comparison to REA, although not discussed in their paper, conceptually, RubyTL would
support extensibility, since rules and generators are embedded as classes, which developer could
subclass. Unlike REA, embedded compilers do not use meta-levels. The embedded compiler
approaches can support several embedded DSLs in parallel, but unlike REA, this does not enable
programs that can mix DSL keywords. The embedded compiler approaches do not support con-
crete syntax, scoping strategies, domain-specific analyses and transformation, with the exception
of the one and only transformation to the target language.

9.2.2. Source Transformation Languages
The source transformation languages approaches have very similar properties, and therefore,

after discussing the each of them in isolation, this section compares them together to REA.

MetaBorg/Stratego: MetaBorg [BV04] is an embedding approach that uses a source transfor-
mation language that can rewrite a heterogeneous embedded DSL to any GPL. It is the most
mature approach for heterogeneously embedding DSLs with a concrete syntax [Tra08]. DSL
programs are encoded in arbitrary context-free syntax. MetaBorg uses Stratego/XT as a host
language, which is a DSL for generating language infrastructure consisting of lexical patterns
and rewrite rules as part of a Stratego module. To define syntax, a language developer specifies
a set of lexical patterns that recognize expressions of a CFG in a program. To define seman-
tics, the developer specifies a set of rewrite rules. The rules can rewrite expression types into
AST nodes. They can analyze or transform nodes and finally rewrite AST node into to another
language. For evaluation of programs, given the syntax of a embedded and a host language,
MetaBorg generates a corresponding pre-processor for parsing and transforming EDSL pro-
grams. The pre-processing logic in the pre-processor generated from the rules parses rewrite
the successively annotate AST nodes, and finally applies an AST transformation that generates
code in the target language. For extensibility in MetaBorg, every language definition module
can extend other modules by importing their syntax rewrite rules. They demonstrate their ap-

197

9. Related Work

proach by implementing a DSL – called SWUL – for creating Swing applications. Programs in
SWUL syntax have a more concrete encoding than using Java to create Swing UIs. Additionally,
they provide an embedding of Java in Java that allows generating Java programs, and another
embedding of XML in Java for generating XML documents.

The advantages of using MetaBorg to implement DSL are manifold, since MetaBorg is a
very mature tool. Years of investments have equipped Stratego with many useful features,
for defining lexical patterns, importing grammars, priorities, quoting and unquoting, rewriting
strategies, generic traversals, and advanced disambiguation with disambiguation filters. These
features allow defining modular and composable syntax and semantics. MetaBorg/Stratego sup-
ports context-free grammars (CFG) through so-called scannerless GLR parsers (SGLR parsers)
[Vis97a]. Such a SGLR parser creates a forest of ASTs that first contains all valid syntactical
ambiguities of a program’s parse. Later on, MetaBorg uses disambiguation filters [vdBSVV02]
to remove ambiguities based on declarative disambiguation rules. In MetaBorg, embeddings are
independent of the target language. Unfortunately, the fact that MetaBorg is not integrated with
the target language disallows safe embeddings, since the generated parsers and pre-processors
output code that may contain errors, which eventually later on the target language compiler can
detect, but such errors are hard to trace back. Further, MetaBorg is inconvenient for incremental
language evolution, since whenever a language definition changes, its complete infrastructure
must be regenerated, which is disruptive.

TXL: TXL [CHHP91, Cor06] is another heterogeneous embedding approach that uses a source
transformation language that is similar to Stratego in MetaBorg, however the TXL language
provides a slightly different set of features. To define new concrete DSL syntax, a language
developer specifies the grammar with BNF-like syntax rules (productions), which recognize ex-
pressions and create an AST representation. To define new semantics, the developer can encode
transformation rules whose parameters accept nodes from the AST. TXL uses these rules to
rewrite AST nodes to the target language. Furthermore, TXL allows defining functions that tra-
verse the AST to extract information from it and which developer can call in their rewrite rules.
To transform a DSL program, TXL parses it into an AST representation and uses the transfor-
mation rule the rewrite it into an executable form in the target language. Cordy demonstrates
the applicability of TXL by implementing several language, such as a heterogeneous embedding
of SQL in the Cobol [oD65] programming language, and a little generator that transform XML
to C++ code. TXL has many advantages but important limitations. TXL’s transformation rules
enable both declarative and modular language definitions. In particular, rules and functional
abstractions are important, since in TXL developers can precisely restrict the scope of rules
and functions. They can build hierarchies of rules that have sub-rules, whereby rules can pass
parameters to their sub-rules. In TXL, grammars are implicitly free of ambiguity, since every
production is prioritized by the order the productions in a grammar are defined. Unfortunately,
TXL does not support a composable subset of CFGs, and therefore it does not fully support
composition.

198

9.3. Non-Embedding Approaches

Comparison with REA: In comparison, MetaBorg and TXL are very mature approaches that
allow embedding large DSLs with several hundred of expression types. Although MetaBorg
and TXL are heterogeneous approaches, REA/TIGERSEYE makes use of similar concepts and
mechanisms. The module concepts of Stratego and TXL play a similar role like the façade class
in REA. Implementing a rewrite rule in MetaBorg or TXL is similar to implementing a method
in one of REA’s façades. Implementing a global strategy in MetaBorg or global scoped function
in TXL is similar to implementing a meta-method (e.g. invokeMethod) in a meta-façade in REA
that uses a generic strategy for providing the evaluation semantics. However, implementing a
global strategy in a meta-façade is more complex than implementing in a declarative language
Despite this REA’s advantage is polymorphism, MetaBorg and TXL do not provide late binding
semantics for extensions, and therefore they do not support conservative extensions.

w.r.t. the concrete syntax, only MetaBorg/Stratego supports CFGs like REA, but TXL only
supports the not composable subset of LL(*). Similarly to REA, Stratego and TXL support
island grammars [Moo01], but MetaBorg and TXL do not use them for partial definition of
grammars for EDSLs like in TIGERSEYE/REA. It would be interesting to investigate using is-
land grammars for embedding in these approaches.

Like TIGERSEYE/REA approach, both MetaBorg and TXL are host-language independent,
but supporting new host languages is more complicated than with TIGERSEYE/REA. To support
a new host language, Stratego/XT and TXL require a complete grammar definition of the target
language. However, many grammars are not available in Stratego or TXL. As we will discuss
later on in Section 10.4.4 (p. 240), for example, to support Groovy in Stratego or TXL, the com-
plete Groovy grammar would have to be (re-)written in a SDF or TXL specification that encodes
approximately 9503 BNF-like productions. To enable parsing Java and Groovy less with em-
bedded DSL syntax in REA, the developer only needs to specify 19 productions for Java and
respectively for Groovy.

In contrast to REA, MetaBorg and TXL support sophisticated analyses and transformations.
In MetaBorg, Stratego support global analysis that traverse the whole AST. In MetaBorg and
TXL, language developers can use analyses to implement scoping, however, the language de-
velopers must themselves implement symbol and lockup tables, which is unlike reusing the
first-class environments embedded in REA. Similarly to REA, transformation can be statically
plugged by importing the rules into the corresponding module, but dynamic transformations are
not supported by MetaBorg and TXL.

9.3. Non-Embedding Approaches
Despite non-embedded DSL approaches are complimentary to the research on language em-

bedding, this section gives an overview of non-embedded DSL approaches and points out im-
portant relations.

Non-embedded DSL approaches have a different focus and use different techniques than em-
bedding DSL approaches. Usually, non-embedded approaches provide special concepts and

3This estimation is based on a detailed analysis of the Groovy ANTLR grammar.

199

9. Related Work

techniques to realize productive-strength DSL implementations, but these approaches require
that the language developer is an expert who knows the approaches’ complicated concepts and
techniques. These approaches a rather steep learning curve, and they have high initial develop-
ment costs [KLP+08]. In contrast, most embedded approaches make use only standard language
features and target at non-compiler-expert language developers who want to implement rather
small languages with low initial costs.

Despite the differences between embedded and non-embedded approaches, it is in particular
interesting what concepts from non-embedded approaches could improve existing embedding
approaches. Therefore, the remainder of this section gives links to concepts that could be inter-
esting for future investigations, but that have been out of the scope of this thesis.

9.3.1. Extensibility
Non-embedded approaches have a broad variety of mechanisms for extensibility that could

compliment the extensibility mechanisms in embedded DSL approaches.

Language Implementation Approaches: In particular interesting is the research on extensi-
bility mechanisms for language implementation.

There is a myriad of language implementation approaches with a closed set of extensibility
mechanisms. There are special language implementation approaches that provide special sup-
port for syntactic and semantic extensions, which are discussed in the following.

For syntactic extensions, grammar inheritance [AMH90, KRV08], importing gram-
mars [BV04], overriding grammars [Par08], and transformation rules [Cor06] is in the same
vein as REA’s language polymorphism. Generally, the extensibility mechanisms in meta-
languages are more mature ans specialize for language implementation than the extensibility
mechanisms borrowed from the host in REA. However, import/inheritance mechanisms in meta
languages do not provide established concepts like late binding. In contrast, in REA every in-
herited syntax need to be fully in conformance with the base syntax, which provides sub-type
guarantees for languages.

For semantic extensions, there are special language implementation approaches that allow
extensions to a closed set of language mechanisms. Most works focus on extending OO mech-
anisms. Meta-object protocols [KRB91] enables experimenting with OO semantics, but com-
bining several extensions with meta-objects for one object is hard. In [HBA10], Havinga et al.
present a model for composable composition operators that allow experimenting with inheri-
tance mechanisms. In [AKMP10], Axelsen et al. present a meta-protocol for packages and class
inheritance that is inspired by the meta-aspect protocol of REA. Compared to these approaches,
they only consider extensions to a closed set of mechanisms in one individual languages. In
contrast, REA is open and allows embedding various new language mechanisms with a flexible
strategy, such as scoping strategies and meta-aspects.

Reflective Architectures: Various reflective systems have been proposed, which build upon
different reflective concepts. Their implementations have subtle differences, but these are not
important for a comparison.

200

9.3. Non-Embedding Approaches

An extensive overview of the different architectures and techniques they use is given in [Tan04].
Smith have proposed procedural reflection [Smi82] in 3-LISP, which is implemented as an con-
tinuation passing interpreter. In [RS84], Smith et al. proposes reflective procedures, which
allow executing code from one level to execute at a higher level, which is more “meta”. Fried-
man et al. [FW84] propose the concept of a reifier. With reifiers, one can gain access to the
state of the interpreter by making a meta-level entity available at a base-level, which they call
reification. Conversely, one can manipulate values and pass them back to the interpreter, which
they call reflection. Maes [Mae87] proposes a uniform architecture for reflective OO languages.
She propose the concept of a meta-object that interprets the semantics of base-level objects. Fer-
ber [Fer89] has adopted Maes concepts for class-based OO languages. Central to those reflective
languages is that there is an interpretation level that executes the base language concepts, and
that for this level, there is a meta-level that allows gaining explicit access to what is interpreted
below. There may be additional levels that interpret the meta-levels. Theoretically, there can be
an infinite of tower such meta-levels [WF88].

In comparison, in REA as shown in Section 4.1.1.4 (p. 77), every language implementation
implicitly follows REA’s structure with a meta-level and causally connected entities in the lan-
guage model. It is trivial to reify a first-class representation, since one can obtain a reference to
an instance of the language model. It is also trivial to reflect changes made to a first-class repre-
sentation back, since such changes directly manipulate the first-class representation. Similarly to
many other dedicated reflective architecture, there are no special optimizations. A few reflective
architectures have special optimizations, such as Reflex [Tan06] that optimizes composition of
aspects and CLOS [KRB91] for which compilers can remove indirections due to meta-objects.

Semantic Adaptations in Languages: Non-embedding approaches support semantic adap-
tations for individual languages, which are GPLs or extensions to GPLs.

Adaptable programming languages allow adapting language constructs and mechanisms. They
have a closed built-in indirections in their infrastructures or program code, still developers can
configure these indirections from the outside to adapt them. Adaptable languages have differ-
ences in what language constructs developers can adapt and how. For syntax adaptations, For
semantic adaptations, developers can adapt the language infrastructure to change the evaluation
process. There are various realizations, discussed in the following.

Adaptable grammars enable developers to adjust the parser for new expression types. How-
ever, adapting the syntax does not address adapting semantics.

Today most reflective languages are individual solutions that extend non-adaptable and non-
reflective language with reflective constructs. Only a few languages are built with support for
reflection from the beginning. Because of the high investment necessary, most reflection mech-
anisms are only built in general-purpose languages (e.g., procedural, logic-based, and OO lan-
guages) and for general-purpose language constructs (e.g., procedures or objects). However,
there is a lack of generic approaches for implementing reflection into DSLs.

Kiczales et al. [KRB91] proposes using meta-object protocols (MOPs) that each provides an
abstract meta-interface to end users allowing them adapt the semantics of object-oriented lan-

201

9. Related Work

guage constructs. Adapting the semantics of domain-specific constructs is out of scope. Relying
on the semantic flexibility that MOPs enable for object-oriented language, REA enables a similar
flexibility for adapting the semantics of DSLs.

Bracha et al. [BU04] propose a mirror-based design for reflective OO languages that decouples
reified language constructs from their implementation. In comparison, in REA, it would be
possible to follow a mirror-based design for an embedded DSL. However, the Groovy MOP
does not follow this design. If a language developer would follow the mirror design pattern in
a non-mirror-based reflective language, the developer does not yield the advantages of mirror-
based design. After all, what would be left are the addition complexity and implementation costs
of mirrors. Therefore, REA does not use mirrors in Groovy.

Meta-object protocols can be distinguished with respect to when adaptations to objects are
allowed: at runtime or compile-time. The next two paragraph elaborate on representatives of
these two categories.

There are several languages with a runtime MOP, which allow adapting language semantics
during the execution of programs. CLOS [KRB91] is a MOP for LISP, SchemeTalk [VR09] for
Scheme, Joose4 for JavaScript, Moose5 for Perl, Groovy [KG07], and dynalang6 is a generic
MOP for dynamic programming languages on the JVM. In comparison, while the above lan-
guages are general-purpose languages, REA focuses on providing semantic adaptations of DSLs.
Still adapting DSL semantics in REA is in the same vein as adapting GPL and OO semantics in
MOPs. Like them, REA is inspired by the use of the open implementation principle in MOPs.
The meta-protocols and reflection mechanism allow runtime adaptations like runtime MOPs. In
contrast to the MOPs for these languages that have been implemented from scratch, in REA,
developers do not implement a MOP from scratch—instead they embed a domain-specific meta-
protocol on top of the MOP of the host language.

Further, there are compile-time MOPs that limit semantic adaptations to be applied before
runtime, which leverages compile-time optimizations. Compile-time MOPs have been imple-
mented as extensions for main-stream languages: there is OpenC++ [CM94] for C++; and there
are OpenJava [TCKI00] and Reflex [Tan04] for Java. Compile-time MOPs allow special opti-
mizations that remove parts of the costs of MOPs. They may even virtually eliminate all costs
of indirections at compile-time, when no adaptation is required and those indirections are not
required. In comparison, REA does not limit adaptation to compile-time only, the compiler of
the host language is not aware of the MOP and optimizes indirections only with standard op-
timizations. Still in REA, developers can use familiar mechanisms for optimizations, such as
partial evaluation. In REA, performance issues are addressed like [KRB91] proposes: to imple-
ment sub-protocols that take care of optimizations in the runtime MOP. REA implements such
a sub-protocol by optimizing the execution of aspects.

4The Joose homepage: http://code.google.com/p/joose-js/.
5The Moose homepage: http://www.iinteractive.com/moose/.
6The dynalang.org homepage: http://dynalang.sourceforge.net/index.html

202

http://code.google.com/p/joose-js/
http://www.iinteractive.com/moose/
http://dynalang.sourceforge.net/index.html

9.3. Non-Embedding Approaches

9.3.2. Composability of Languages
Many language approaches only support implementations of isolated languages, hence they

do not support language composition. There are a few language implementation approaches that
propose special composition mechanisms for language composition. Language composition has
been most prominently discussed in the context of syntax composition. While the theory of
syntax composition is mature, there is a lack of good theories and mechanisms for semantic
composition. This thesis does not even attempt to give a complete overview of syntactic and
semantic composition. Rather, to suggest all possible paths of research, it highlights the most
important composition scenarios already available in various non-embedded approaches.

It is common to use some form of an import and inheritance mechanism in heterogeneous
approaches that use special frameworks, meta-languages, or generators for composing lan-
guages [AMH90, HM03, KRV08, Par08]. Single inheritance (and single imports) support only
language extensibility, but it is inadequate for language composition. Only approaches that sup-
port either multiple imports or multiple inheritance are adequate for language composition.

In comparison to REA, language inheritance and imports hierarchically decompose a lan-
guage into sub-modules, but to compose languages there always need a common top-level mod-
ule to compose the languages into explicitly one. Therefore, when composing languages with
a meta-language, the developer must enumerate all possible points where expressions can flow
from one language module to another module.

In contrast to this explicit composition, although REA also supports hierarchically decompo-
sition, it inclines composing languages as equal peers. REA is closer related to union grammars
and agile grammars [Cor06] that use implicit rules, make assumptions and use conventions when
composing languages, and provide composition operators for composing grammars. In addition
to grammar composition, REA provides semantic composition operators.

In addition to the related work discussed so far, there are only a few more classes of language
approaches that support semantic composition, which are discussed in the remaining paragraphs
of this section.

Attribute grammars [Knu68] have been found good for composing semantics [HM03]. More-
over, there are source code and bytecode weavers [Aßm03].

In model-driven engineering (MDE), languages are encoded as models. When models have
interactions, they need to be composed by model and meta-model weaving [Dav03]. There
is no fundamental difference between MDE and DSLs in REA, except that most model use
visual languages and that REA focuses on composing textual languages. When composing two
interacting models, similar composition mechanisms as they are used in REA need to be used.

In generative programming [CE00], developers use templates to implement language com-
ponents, which can parameterized by other templates. Although developers can compose lan-
guages, all possible interactions must be explicitly defined by each language component before-
hand.

In virtual machines (cf. Section 2.3.1, p. 25), in particular interesting is that developers can de-
compose single technical components of one language into several dimensions [SHH09]. VMs
need a decomposition that does not only decompose the primary functionality for evaluation,

203

9. Related Work

but also they also need to compose secondary technical concerns, such as memory management.
As VMs need to decompose all aspects of their functionality, support for multi-dimensional
separation of concerns becomes interesting.

The finding of the approaches above and the open task to embed such mechanisms are a
valuable source of ideas for future work.

9.3.3. Enabling Open Composition Mechanisms
This section compares POPART/REA to related language composition mechanisms.

Embedding of Crosscutting Composition: Reflection and MOPs have been used to imple-
ment AOP technology by adapting the semantics of objects. This approach has been followed by
Sullivan [Sul01], AspectS [Hir01, Hir03], Lorenz and Kojarski [LK03, KL04], Composition Fil-
ters [BA01, BA04], Tanter [Tan04], AspectLua [CBF05], Aquarium [Wam08], and GroovyAOP
[KG08]. Embedding AOP on top MOPs is in the same vein as embedding AO concepts in
REA. However none of the other MOP-based solutions comes with a well-designed meta-aspect
protocol that complements the MOP with a meta-interface that allows programmers to adapt
the semantics of aspects. Moreover, adapting the semantics of aspect composition both at the
application-level and at run-time has not been in the focus.

Kojarski and Lorenz [LK03, KL04] analyze the relation of reflection and AOP, they argue
that AOP is a first-class computational reflection mechanism and therefore is at the same level
as reflection. In comparison, REA/POPART uses its MAP as a first-class mechanism like a MOP.

Furthermore, other crosscutting concepts have been embedded into host languages.
In object-oriented programming, Havinga et al. [HBA08] have embedded object-oriented

composition operators into a language called Coop. The composition operators enable exten-
sibility and composability for objects. Developers can extend composition operators to embed
new inheritance mechanisms for objects, which is not in the focus of REA. Unfortunately, Coop
excludes meta-level extensions. In contrast, instead of providing extensibility and composability
for objects, REA’s language combiner focus on extending and composing languages as objects.
Still, Coop is similar to REA with respect to embedding AO composition. Unfortunately, in
Coop, aspects for DSLs are out of scope.

In context-oriented programming (COP), e.g. ContextL embed layers into CLOS, ContextS
into Smalltalk, ContextR into Ruby [AHH+09]. These works are in the same vein as embedding
aspects, and in addition embedded layers have a good support for handling interactions [CD08],
similar to handling interactions in REA/POPART.

In sum, on the one hand, embedding the above paradigm-specific mechanisms into REA
would be interesting. On the other hand, it would be interesting to equip those paradigms a
meta-level like the one in REA.

Aspect-Oriented Programming: To review the support for crosscutting composition, this
section explores related work from AOP, which is complimentary to embedding AO concepts in
POPART/REA.

204

9.3. Non-Embedding Approaches

Most prominently, in existing AO languages, there are variations how they handle interac-
tions and what base language they support, whether it is general-purpose or domain-specific, as
elaborated below.

Support for Composition Conflict Resolution:
There are numerous general-purpose aspect languages that allow handling interactions, which

have been surveyed by Kniesel [Kni07]. Aspect interactions occur between general-purpose
aspects that advise the same program. On the one hand, an interaction can be direct, i.e. it
directly manifests on the same advised part, e.g. two aspect advise the same join point resulting
in a semantic conflict. On the other hand, an interaction can be indirect, i.e. it influences another
part, e.g. one aspect advises the data flow in a way that interferes with another aspect. Existing
aspect languages provide a closed set mechanisms for handling aspect interactions of which the
only most important are mentioned at this point.

The advice order mechanism provide resolution logic for aspect interactions, that change
the composition semantics of aspects. Several approaches have been proposed, such as logical
meta-programming [BMDV02], special composition modules that allow to specify logic to or-
der advice [SVJ03], as well as providing rules to explicitly order, include, and exclude advice
[Tan04, Tan06].

In particular interesting are two extensions that have been proposed for AspectJ.
Assaf et al. [AN08] proposes DynamicAspectJ, an extension to AspectJ that allows dynamic

weaving and scheduling of aspects. In DynamicAspectJ, it is possible that the aspect developer
reflects on part the aspect context. Advice can reflect on the aspects’ context, e.g. at a shared
join point, it is possible to reflect on the co-advising pointcut-and-advice. By using the following
expression thisJoinPoint.context.applicablePAs, a POPART aspect’s advice can reify a list of all co-
advising pointcut-and-advice and manipulate the list for example to exclude a certain advice.

These approaches support to a certain degree the customization of aspect interaction seman-
tics, however, conflict resolution is not the only semantic variation in aspect languages. More-
over there are two major problems with the above approaches. First, the advice ordering strate-
gies cannot dynamically be changed based on dynamic context. Second, there is a technology
break between the way aspects are specified and how conflicts are resolved. On the contrary,
POPART allows to specify aspects and their resolution logic – as well as other semantic variations
– in the same language by either using the primary interface or the meta-interface. Moreover, the
MAP allows the user to define a resolution strategy for context-dependent aspect interactions.

To conclude and in comparison, the open mechanism for handling aspect interactions in
REA/POPART has been inspired by related work. Moreover, REA introduces custom on-line
techniques using its meta-aspect protocol, which developers can use to extend language seman-
tics with domain-specific strategies for handling interactions.

Support for Extensible AO Semantics: Extensible aspect-oriented language infrastructures
[SVJ03, Tan04, ACH+06, Tan06, KL07b] allow semantics to be adapted when building a special
compiler or a special runtime.

205

9. Related Work

The abc compiler has been used for defining new kinds of pointcuts [ACH+06] as extensions
of AspectJ.

The Aspect SandBox (ASB) supports prototyping alternative AOP semantics and implementa-
tion techniques [MKD03], e.g., new kinds of pointcut designators and alternative weaving tech-
niques. However, providing new concepts and semantics results in excessive changes throughout
the interpreter, e.g., when a new type of join point is added [UMT04]. This is because ASB does
not provide clear interfaces for controlling the underlying implementation strategy. There is no
meta-interface available to programmers for tailoring AO semantics at the application level. In
contrast to the extensible AO solutions above, POPART allows the adaptation of semantics at
run-time by providing a meta-interface that can be extended using well-known object-oriented
techniques.

Marot et al. [MW10] propose OARTA a declarative extension to the abc weaver that allows
dynamic weaving and scheduling of aspects. OARTA extends the AspectJ language syntax so
that a developer can name a pointcut, a so called named pointcut, which allows referring to
it later on. It is possible that aspects weave on other aspects, which allows advising aspect-
oriented concepts, such as creation of aspect instances, named pointcuts, and execution of in-
dividual advice. OARTA allows implementing similar functionality to what is possible with
POPART’s meta-aspects. However, the two approaches are very different in their concepts
and techniques used. OARTA is implemented as an invasive extension of a static weaver.
To weave on aspects, OARTA circumvents protective restrictions in the weaver. In contrast,
in POPART/REA, aspects and meta-aspects are first-class objects that are homogeneously em-
bedded into the host language. In OARTA, there are no means to analyze aspects or debug
them. Unlike in POPART/REA, syntax extensions for specific domains are not addressed. Un-
like POPART/REA support composing aspects, OARTA does not allow weaving into DSLs, since
it uses the abc compiler with its AspectJ-like join point model.

Reflex [Tan04, Tan06], JAMI [HBA08], MetaSpin [BMN+06], and FIAL [BMH+07] are
aspect-oriented runtimes that employ aspect-oriented meta-models that are open for alternative
AO semantics at build-time. In their meta-models, interfaces for AO abstractions are provided
that can be extended, e.g., with new pointcut designators or composition strategies. The four
approaches differ in their objectives and implementation techniques which are, however, not rel-
evant for a comparison to POPART. In general, they do not support changing the AO semantics
at run-time.

Further, Tanter [Tan10] proposes to support execution-levels for aspects. Execution-levels
address the problem of infinite regression when aspects have erroneous pointcuts that confuse
the base- and the meta-level. He extends aspects with the concept of execution-levels following
the meta-helix architecture by Chiba et al. [CKL96]. The execution levels help keeping track
of base-level actions. The levels help not confuse base actions with actions inserted by aspects,
which are at one higher level. Having information about the execution level allows restricting
the visibility of action by allowing one execution level to reason only about the lower execution.
Restricting the visibility of actions prevents that confused levels lead to infinite regressions by

206

9.3. Non-Embedding Approaches

aspect advising the aspects at the same level. Embedding execution levels for aspect will be
address by future work.

MetaBorg has been used to enable syntactic extensions for Reflex, in an approach called
ReflexBorg [TT08]. ReflexBorg allows designing syntactic extensions to Reflex in order to im-
plement DSALs with a concrete syntax. MetaBorg rewrite DSAL aspects in concrete syntax to
Reflex syntax. But, in contrast to REA, since Reflex supports only weaving on Java with an
AspectJ-like JPM, thus composing aspects into DSLs is not supported.

MetaAspectJ [ZHS04] is a macro extension to AspectJ, which allows meta-programming on
aspects. MetaAspectJ support syntactic extensions to AspectJ. But, every generated aspect is
an AspectJ aspect and must use the AspectJ semantics. Unlike in REA, dynamic aspects and
weaving on DSLs is not supported.

To conclude and in comparison, the variation points in the design-space of AO languages
found in related work have inspired the semantic variations of REA/POPART.

Support for Composition Conflict Resolution for DSALs: There are special aspect lan-
guages that support special conflict resolution when composing domain-specific aspect lan-
guages.

PluggableAOP [KL05] addresses the problem of integrating a (general-purpose) base lan-
guage with a set of third-party aspect extensions that define component-based aspect mech-
anisms targeted for different domains and that are composed in order to provide a mechanism
addressing multiple domains. They implement an interpreter-based weaver that allows to plug in
aspect languages as language components. All language components are composed by whereby
the plug-ins are chained in a pipe-and-filter architecture, which composes the language compo-
nents constructs with wrapping semantics. However, they state that wrapping semantics cannot
handle composition, where the aspect mechanism must reason about the interaction of all com-
ponents. In comparison, pluggable AOP only composes a general-purpose aspect language with
one DSAL. The authors themselves state that their mechanisms cannot handle complex compo-
sitions. In complex compositions, the composition mechanism must reason about all composed
languages in order to compose them correctly. However, in the pipes-and-filters architecture
of PluggableAOP, one weaving interpreter can only reason about subsequent interpreters in the
pipe. In POPART, the meta-aspect protocol controls the complete evaluation of all composed
aspect languages. Thanks to the abstract aspect composition process, there is a variation point in
the MAP, at which developers can provide logic that can reason about interactions of any aspect
regardless of what language the aspect originates from.

AweSome [KL07b] provides a similar plug-in architecture like PluggableAOP, but it follows
a compiler-based approach. To compose multiple aspect languages, they propose to use an
abstract weaving process that can control the weaving order at the level of pointcut-and-advice.
They present a prototype implementation based on the abc extensible aspect compiler for static
weaving. In comparison to POPART, the abstract weaving process has inspired the abstract
aspect composition process in POPART’s MAP. In addition, POPART supports runtime aspect
composition and dynamic re-ordering of advice. Further, with AweSome, it is not possible to

207

9. Related Work

plug-in further aspect language after the weaver has been compiled and delivered to the end user.
Consequently, the set of composed languages is closed. In contrast, POPART allows language
developers to provide plug-ins and domain-specific scheduling strategies in the user domain.

9.3.4. Support for Concrete Syntax
The related work on concrete syntax in non-embedded approaches is complementary and

interesting for the future work. Traditional built compilers and interpreters (cf. Section 2.1, p. 16)
support concrete syntax well, but their heterogeneous nature, which hampers composition as
desired in this thesis. Still, there are special non-embedding approaches that support composing
concrete syntax, which are mentioned for the sake of completeness.

Language Workbenches: There are language workbenches. They prescribe a detailed and
closed process on how to exactly implement a language’s model and how to compose. First,
SAFARI [CDF+06] is a meta-tooling framework for generating language-specific IDEs in
Eclipse. Second, IMP [CFSJ07] is another meta-tooling framework for Eclipse. Third, ANTLR-
Works [BP08] is a development environment for the ANTLR parser generator, which focuses
on providing tool support for ANTLR grammars. Forth, Spoofax [KKV09, KV10] generates
IDE tools from language specified in the Stratego programming language. In comparison, lan-
guage workbenches have a different focus than REA/TIGERSEYE, since they target at experts.
TIGERSEYE allows to easily reuse existing models and APIs in the language implementation,
such as Java libraries or existing EMF models, as demonstrated in [DWL09]. Language work-
benches have a strong focus on tool support for end users, which is out of the scope of this
thesis.

Generic Syntax Representations: Embedding requires a program representation that can be
easily changed, extended, and composed. For the program representations that today’s language
infrastructures use, this is often not the case. Specifically, e.g. because ASTs are generated, or
because the bytecode representation cannot be extended without extending the back-end. Still,
there some representations that have some of these three properties that enable a comparable
compositionality like in REA.

First, there are special syntactic encodings of program expressions: attribute gram-
mars [Knu68], S-expressions, and church encodings [Chu40, PE88].

Second, there are ATerms – an extensible and composable AST representation where every
term (AST node) has an open set of annotations to add new annotations to existing terms. With
such annotation, different compiler phases can incrementally contribute to the AST. ATerms
have means for pattern matching and term rewriting, which TIGERSEYE/REA uses to implement
extensible and composable source code transformations.

In comparison, in REA, when encoding every expression as a method call in its abstract syntax
using a prefix notation, or when mapping concrete syntax to this encoding, it is in the same vein
as using the prefix notation of S-expressions. Using an encoding similar to S-expressions gives
confidence that arbitrary expressions can be encoded. However, there are practical differences.
In contrast, REA’s program representation is rather bloated, and there is a rather large overhead

208

9.3. Non-Embedding Approaches

since every expression is processed as a reflective method call. Therefore, future work will
study also alternative representations in order to find ways how to optimize the current program
representation.

9.3.5. Enabling Pluggable Scoping
There is extensive research in non-embedded-based approaches, which is complementary to

the embedding of scoping. The literature on scoping mechanism for interpreters and compiler is
complimentary to REA.

W.r.t. pluggable scoping in interpreters, there are interpreters with first-class environments
for scoping language constructs, with which REA is in the same vein. First, in [IJF92, LF93],
Friedman et al. adapt the scoping strategy of an interpreter using an interpreter that adapts the
variable look up using reflection. Second, REA is in the same vein as scoping in [AS96], which
structures like REA environments a map that is inter-connected with other environments. Third,
Tanter [Tan09] uses first-class scoping strategies to adapt the scope of language constructs, such
as variable bindings, aspects (similar to [PGA01, PAG03, AO10]) and layers (similar to [CH05,
HCH08, Tan08, CH05, HPSA10]). Forth, REA’s dynamic scoping and activation of aspects
in DSLs are in the same vein as dynamically scoped aspects in interpreters for DSLs, such as
AO4BPEL [CM04, Cha08].

For scoping in compilers, there is the compiler construction system Eli [KW91], which sys-
tematic supports implementing pluggable scoping as a separated compiler phase.

Such non-embedding-based implementations of scoping differs mostly in that the scoping
implementation is completely controlled by the creator of the language, but developers cannot
adapt the scoping strategies in the user domain. Whenever changing the scoping strategy, the
creator has to recompile the language infrastructure, which makes user-extensions impracticable.

9.3.6. Enabling Pluggable Analyses
This thesis does not even attempt to summarize the literature on analyses in non-embedded ap-

proaches, which is complementary. Their literature can be distinguished on what representation
the analysis performed, namely models, source code, ASTs, and bytecode.

Models: First, there are analyses of models, which allows sophisticated analyses at a high level
of abstraction. There are numerous representations, such as finite state machine models, petri
nets, graph-based models, and domain-specific models. Further, there are various approaches on
model checking, simulation, and verification. In some approaches, one can plug multiple analy-
sis in parallel, but it is complicated to compose multiple analyses. This work is complimentary
to REA, this thesis refers the interested reader to look at one of the surveys [JM09].

Source Code: Second, source code analysis processes programs at their textual representation
only. Simple lexical analyses can be implemented at the source code level, regular expressions
are the best example of such analysis. However, source code is almost always not the right ab-
straction level for analyses. In particular, source code analyses does not cover semantic analyses,
therefore AST analyses are often the preferred choice.

209

9. Related Work

Abstract Syntax Trees: Third, traditionally program analysis is implemented by analyzing the
AST of a program. Most prominently, the visitor pattern is used to compose several analysis of
an AST. ASTs are a very good representation for analyses. But in many language architectures,
the AST is only accessible at compile time, therefore it is not possible to implement dynamic
analyses.

In contrast, AST-based interpreters [Rub] expose the AST so that developer can use inspection
capabilities to embed dynamic analyses. Similarly, REA supports inspecting the abstract syntax
at runtime, because the evaluation of each expression is mapped to a reflective method call.

Bytecode: Forth, there is a large body of work on bytecode analyses, such as for bytecode
verification and security. It is a relatively good representation for many analyses, and bytecode
allows portable analysis between different languages and platforms. However, for high-level
analyses, the bytecode representation is often too low-level. In bytecode, most of the control
structures have been removed and it is hard to retrieve them back from the bytecode.

9.3.7. Enabling Pluggable Transformations
The work on transformations in non-embedded approaches is complimentary to embedding.

Nonetheless, non-embedding approaches have a different focus than transformations for in em-
beddings. Non-embedding approaches often facilitate transformations that embedding approaches
often can reuse from their host compiler, such as inlining optimizations or β-reduction. While
embedding compile-time optimizations, such as inlining, has been studied by Seefried [SCK04],
adopting dynamic optimization techniques as just-in-time compilers [AFG+00] use them, have
been out of scope.

Despite the different focus, there are two interesting issues. First, whether in the approach,
the source and target language/models are causally connected. Second, whether the approach
allows interactions between transformations. These two issues are discussed in the following.

Causally Connected Source and Target: Most non-embedded approaches support transfor-
mations, but often the source and the target language or model are not causally connected.

In model-driven engineering, REA is in the same vein as executable models and causally
connected models, such as models-at-runtime [NB09].

In compiler approaches, a similar mechanism is debugging and structure preserving compila-
tion [BHMO04].

Interactions: There are only a few transformation approaches that support modular transfor-
mations that allow interactions.

In model-driven engineering, there is ongoing work to enable rule-based transformations
(e.g. QVT) and to control interaction between rules. In particular interesting are rule-based
transformation approaches in which rules compose with function composition semantics i.e. con-
fluence [Vis05]. In such systems, the order of a transformation not relevant.

In compiler approaches, it is in particular interesting how JastAdd [HM03] combines trans-
formations on the AST. JastAdd uses aspects to add attributes to an attribute grammar, whereby
attributes are lazily calculated and automatically scheduled on demand.

210

10. Case Studies: Review of the Support for
the Desirable Properties

This section qualitatively evaluates REA’s support for language evolution by means of several
case studies. Indeed REA suites implementing extensions, compositions, interactions, and re-
flections on language embeddings. For the integration of DSLs into current software, it is impor-
tant that REA’s concepts can be supported by other host languages. Because REA makes little
assumptions about the language developer’s skills and available host language features, REA’s
concepts can be applied by most developers and its techniques can be adopted with little changes
in other host languages.

For reviewing the quality of the techniques that this thesis proposes, this section studies how
good REA’s core and its extension addresses the desirable properties from Section 3. For each
property, the review demonstrates that REA supports the desirable property by implementing its
scenarios. To determine the quality of the support, the review investigates the general support
for the property by the current concepts and draws conclusions.

10.1. Extensibility
This section shows how the REA supports all of the proposed evolution scenarios.

10.1.1. Adding New Keywords
To recapitulate, in Section 3.1.1 (p. 31), we have motivated adding keywords to existing lan-

guages. In Section 4.2.1 (p. 84), we already have discussed the principle support for one lan-
guage extension using language polymorphism. Still, it remains to be shown how good language
polymorphism supports multiple incremental extensions.

Therefore, in this section, we review the support for multiple language extensions. The sec-
tion first presents the implementations of several extensions. Then, the support for continuous
language evolution is discussed, whereby we identify limitations of hierarchical decomposition
using inheritance. This section shows that when using single inheritance to evolve languages,
inheritance suffers from the same limitations for language inheritance as it does for ordinary
class inheritance.

Example Scenarios: Consider extending SIMPLELOGO with the three example extensions
EXTENDEDLOGO, CONCISELOGO, and UCBLOGO that have been proposed in Section 3.1.1
(p. 31). Although the three extensions are admittedly similar and each extension requires the
same techniques to be implemented, still, we present the implementation of multiple extensions
to demonstrate the limitations of language polymorphism for continuous language evolution.

211

10. Case Studies: Review of the Support for the Desirable Properties

As Section 5.4.1 (p. 125) has already discussed the extension for EXTENDEDLOGO, in List-
ing 5.5, this section only sketches the two other extensions.

As the second example extension, consider implementing CONCISELOGO, which adds short-
cut commands such as fd, bd, rt, and lt. Listing 10.1 shows the language interface and implemen-
tation of CONCISELOGO that defines such shortcut commands. The interface IConciseLogo de-
clares additional keyword methods with shortcuts names. Each of these shortcut keyword meth-
ods has an identical signature like its verbose versions, except its shortened method name, as
sketched by Listing 10.1 lines 9–11. The façade class implements the shortcut methods, so that
every shortcut command (e.g. fd, line 9–11) calls its corresponding verbose command (e.g. for-
ward, line 10), as described in the following mapping: fd→forward, bd→backward, rt→right, and
lt→left.�
1 interface IConciseLogo extends ISimpleLogo {
2 void fd(int n);
3 void bd(int n);
4 void rt (int a);
5 void lt (int a);
6 }
7

8 class ConciseLogoInterpreter extends SimpleLogoInterpreter implements IConciseLogo {
9 void fd(int n) {

10 forward(n);
11 }
12 ...
13 }
� �

Listing 10.1: Implementation of shortcut commands in CONCISELOGO

As the third example extension, consider implementing a subset of UCBLOGO that adds the
repeat abstraction operator. Listing 10.2 shows an excerpt of the language interface and imple-
mentation of UCBLOGO. The IUCBLogo interface (lines 1–4) declares a repeat method (line 2)
that takes the number of iterations as the first and a closure as the second parameter. Since there
is only one parameter to the abstraction operator in addition to the closure, the developer does
not need to use a HashMap for the parameters, but the developer can use a primitive parameter.
Because the last parameter is a closure, repeat expressions can pass their command sequence
in the closure parameter outside the brackets, such as repeat(i){...}. The language façade UCB-
LogoInterpreter (lines 6–14) implements IUCBLogo with the declared repeat method (lines 7–12).
Inside the implementation of repeat, as for all abstraction operators, we must take care that key-
words that are nested inside the abstraction operator’s body are dispatched correctly, by setting
the delegate of the closure body to the bodyDelegate. Next, the implementation of repeat calls
the body for n times.

Review: Language polymorphism enables the reuse and incremental extensions in the different
levels in the architecture. At the language interface level, language developers can reuse the

212

10.1. Extensibility

�
1 interface IUCBLogo extends ISimpleLogo {
2 void repeat(int n, Closure body);
3 ...
4 }
5

6 class UCBLogoInterpreter extends SimpleLogoInterpreter implements IUCBLogo {
7 void repeat(int n, Closure body) {
8 body.delegate = super.bodyDelegate;
9 for (int i=0; i < n; i++) {

10 body.call ();
11 }
12 }
13 ...
14 }
� �

Listing 10.2: Implementation of the repeat command in UCBLOGO

interface of the base language, whereby they reuse parts of the abstract syntax definition, similar
to what is supported by grammar inheritance [AMH90, KRV08, Par08]. But in contrast to only
inheriting the syntax, additionally, the language polymorphism allows also reusing the execution
semantics. At the language façade level, developers can reuse the method implementations of
the base language’s façade class, whereby the reuse parts of the syntax-to-semantics binding of
the base language keywords. At the language model level, developers can inherit classes of the
language model, whereby they reuse parts of the evaluation protocol of the base language.

With language polymorphism, REA supports late binding of syntax to its semantics. For late
bound semantics, the meta-object can override the binding for one or several keywords, façades,
and languages. Hence, REA fosters the reuse of language implementations for extensions, since
parts of the language implementation can be refined selectively.

Further, the late binding enables safe extensions for which the language interface guaran-
tees backward compatibility with old language versions as long as all semantic invariants are
met. With the language polymorphism mechanisms and late binding of syntax and semantics,
REA has full support for extensibility for new keywords and conservative extensions (adding
keywords, conservative extensions:).

Further, with its meta-level, REA supports late semantic adaptations in the user domain (late
semantic extensions:).

10.1.2. Semantic Extensions
10.1.2.1. Conservative Semantic Extensions

In Section 3.1.2.1 (p. 34), we have discussed the need for conservative semantic extensions of
a language. Therefore, this section reviews how language polymorphism enables conservative
semantic extensions by overriding existing keywords at the façade level and domain operations
at the model level.

Example Scenario: To exemplify REA’s support for conservative semantic extensions, we dis-
cuss implementing CONCURRENTLOGO proposed in Section 3.1.2.1 (p. 34). To provide support

213

10. Case Studies: Review of the Support for the Desirable Properties

for concurrency, a language developer must associate turtle abstractions with threads that execute
their commands. For this, COMPLETELOGO needs to refine several keywords.

Because CONCURRENTLOGO is a conservative semantic extension, it must not extend the
ICompleteLogo language interface and preserves compatibility. The language developer only
needs to extend the façade by overriding methods. Overriding an existing method binds the
given syntax to new extended semantics. For example, in the case of CONCURRENTLOGO, the
CONCURRENTLOGO extensions rebind part of the COMPLETELOGO keywords to a concurrent
execution semantics. Still, the new façade implements the original ICompleteLogo language
interface.

The subclass ConcurrentLogoInterpreter in Figure 10.3 adds two fields, namely turtles (line 2),
which stores a list of all turtles, and threadToTurtle (line 3) that stores a mapping, which maps a
thread to the turtle that the thread is executing.

Further, the subclass overrides several keyword methods. It overrides the method turtle (lines 5–
14) to associate turtles with a thread that executes their commands, adds the turtle to the turtles
list, and then sets the delegate of the turtleBody. However, the method does not directly call the
turtleBody as in the super class. Instead, it wraps the turtleBody closure into a Thread (line 10).
Next, it associates the thread with the turtle, by storing this information into the threadToTurtle
map. To avoid that one turtle overpaints the drawing of another turtle with a different color,
before starting the thread, the method checks that all currently running turtles have the same
paint color, otherwise the current thread will wait until all turtles with a different pen color have
finished painting. Finally, the method starts the thread (line 13), which will call the closure.
Moreover, the subclass overrides all other drawing commands (e.g., forward), such that every
command paints with the right turtle, when the command is executed in a thread, as exemplified
in the overridden version of forward (lines 16–20).

Review: We first review the support for one conservative extension in the example scenario and
then its general support for this property.

In the example scenario, we discuss what part(s) of a language implementation the devel-
oper needs to extend for a conservative extension. To implement a conservative extension, it is
sufficient to inherit the base language façade and selectively override the relevant keyword meth-
ods. For backward compatibility, it is important that developers must not extend the language
interface and that not all keywords need to be redefined. For example, CONCURRENTLOGO

only overrides the keywords turtle and forward, and therefore it is a conservative extension and
preserves backward compatibility.

To review the general support for conservative semantics extensions, we elaborate which parts
of the architecture can be extended. Since a conservative extension aims to preserve the existing
syntax of the language, unsurprisingly, the language interface level does not need to change.
Only the façade and model level are subject to extensions.

The language façade level is central for implementing conservative extensions. The previous
section has already discussed its role that fosters the reuse parts of an embedding implementa-
tion. While language polymorphism enables reusing parts of the syntax-to-semantics binding

214

10.1. Extensibility

�
1 class ConcurrentLogoInterpreter extends CompleteLogoInterpreter implements ICompleteLogo {
2 List<Turtle> turtles ;
3 Map<Thread,Turtle> threadToTurtle = new HashMap<Thread,Turtle>();
4 ...
5 void turtle (HashMap params, Closure turtleBody) {
6 turtle = new Turtle(name, new Color(color));
7 turtles .add(turtle);
8 turtleBody.delegate = super.bodyDelegate;
9 ...

10 Thread closureInThread = new Thread(turtleBody as Runnable);
11 threadToTurtle.put(turtle ,closureInThread);
12 ... // check that currently running turtles have the same paint color , otherwise wait
13 closureInThread.start ();
14 }
15

16 void forward(int n) {
17 Thread thread = Thread.currentThread();
18 Turtle perThreadTurtle = threadToTurtle.get(thread);
19 perThreadTurtle.moveForward(n);
20 }
21 ...
22 }
� �
Listing 10.3: Implementation of concurrent drawing for multiple turtles in CONCURRENTLOGO

from the base implementation, inheritance also allows overriding parts of this binding. For ex-
ample, the above conservative extension reuses parts of the base façade implementation, but for
concurrent drawing, all move command methods need to be overridden. This way, the devel-
oper adapts the syntax-to-semantics binding of these keywords to bind to concurrent execution
semantics. Still, when overriding methods, the extension must not violate the base façade class’s
semantic pre-, post-conditions, and invariants.

In contrast to façades, sometimes the language model level does not need to be modified for
conservative semantic extensions at all.

10.1.2.2. Semantic Adaptations
Section 3.1.2.2 (p. 35) motivated the need for semantic adaptation of languages. To cope with

changing requirements in the user domain, a developer can implement a semantic adaptation for
individual users at the meta-level.

Example Scenario: Reconsider implementing the support for collision detecting for CON-
CURRENTLOGO with the CollisionPreventingTurtleMetaClass that was already sketched in Sec-
tion 5.4.2 (p. 125).

Listing 10.4 elaborates the implementation of a special meta-object for the Turtle class. The
class CollisionPreventingTurtleMetaClass overrides invokeMethod in order to intercept all method
calls to Turtle objects. The meta-object only changes the calls to the moveForward and the move-
Backward method (line 17). When one of these two methods is called, the meta-object checks for
possible collisions (line 20) by calling a helper method (line 10) that returns true if executing the

215

10. Case Studies: Review of the Support for the Desirable Properties

commands would result in a collision. In case of a possible collision, the meta-object delays1 the
execution of the move operation to prevent the collision (line 21). Otherwise, the meta-object
proceeds the call (line 24) to its super class (the default meta-object) that immediately executes
the call.�
1 class CollisionPreventingTurtleMetaClass extends MetaClassImpl {
2

3 IConcurrentLogo interpreter;
4

5 CollisionPreventingTurtleMetaClass(Class theClass, IConcurrentLogo interpreter) {
6 super(theClass);
7 this . interpreter = interpreter ;
8 }
9

10 boolean isTurtleFacingACollision(Turtle turtle , List<Turtle> otherTurtles) { ... }
11

12 Object invokeMethod(Class sender, Object object, String methodName, Object[] originalArguments, ...) {
13 assert (object instanceof Turtle);
14 Turtle turtle = (Turtle)object ;
15 Object result ;
16 synchronized (interpreter) {
17 if (methodName.equals("moveForward") || methodName.equals("moveBackward")) {
18 List<Turtle> turtles = new LinkedList<Turtle>(interpreter . getTurtles ());
19 turtles .remove(turtle);
20 while (isTurtleFacingACollision (turtle , turtles)) {
21 Thread.currentThread().sleep(100);... // preventing a collision by waiting at the current position
22 }
23 }
24 result = super.invokeMethod(sender, object, methodName, originalArguments, ...);
25 }
26 return result ;
27 }
28 }
� �

Listing 10.4: Excerpt of the meta-level extension for collision detection

Review: To implement the semantic adaptation, a developer only needs to implement a special
meta-object that adapts the semantics of the default implementation of CONCURRENTLOGO.
Indeed, the developer does not have to modify the code of the default language implementation,
neither the façade nor the model has to be changed. Because the domain type Turtle defines the
methods moveForward and moveBackward as two implicit extension points inside the language
model, the developer who adapts the language can override the methods. These extensions points
open up the language implementation providing a well-defined interface. Using the extension
mechanism, language developers can later provide new variations. The language developers
deliver the resulting open implementation of the language to the end user domain.

1The turtle is set into a waiting position, i.e., it puts its pen up, it could additionally step aside, and waits until the
turtles passing by are out of its way, then it would steps back to the old position and continue drawing.

216

10.1. Extensibility

Note that the developer who provides the extensions and the developer who sets up the exten-
sion can be expected to be different people. The first developer who implements the meta-level
extension needs to have a good understanding of the Groovy MOP and needs to know the lan-
guage implementation details. This role can be either a language developer in the user domain
or an end user with advanced skills. The second developer who set up the meta-level extension
only needs to know how to replace meta-objects. Again, this can be either a language developer
or an end user. To enable the new meta-object for executing a program under alternative seman-
tics, the second developer simply needs to set up the meta-level extension before evaluating the
program.

To review the general support for semantic adaptations, we elaborate what parts of the archi-
tecture can be adapted by meta-level extensions. To cope with changing requirements in the user
domain, the language developers of the default language implementation needs to built-in the
implicit extension points into the language implementation. Only if in the language implemen-
tation a corresponding method or respectively field has been declared, it can be extended at the
meta-level.

The developer can adapt all parts in the base architecture. Specifically, the developer can use
meta-object to adapt all levels—the interface level, the façade level, and the model level. The
base levels do not need to be invasively modified for a late semantic adaptation. Only new code
for the meta-level needs to be provided in order to realize a late semantic adaptation.

The support for late semantic adaptation is similar to late semantic adaptation in other software
systems. The meta-level extensions support planned reuse [Bos00], i.e., the extension points
have been explicitly decided by the providing language developer. When the methods and fields
in the levels of the architecture have not been designed with possible extensions in mind, it might
be possible that the adapting developer cannot provide the right code for a concrete semantic
adaptation.

Meta-level extensions enable a great flexibility for language developers and end users, but
one can argue that meta-level extensions are too dangerous to be used by end users. Since ev-
ery class, method, and field in a language implementation can be adapted, a meta-level extension
may also corrupt the existing language semantics resulting in incorrect semantics. Unfortunately,
in Groovy, there is no special mechanism available that helps with enforcing that meta-level ex-
tension must respect possible semantic invariants. Therefore, REA needs to address the problem
of missing guarantees for semantic adaptations.

To address the problem of missing guarantees for semantic adaptations, this thesis argues that
one can provide generic and specific abstractions for semantic adaptations. First, a language
developer can provide pre-defined meta-objects that encompass extension points themselves.
Other language developers can extend these meta-objects, whereby they rely on the abstractions
built into these meta-objects. Effectively, in this case the language developers who extend pre-
defined meta-objects, are implementing a sub-protocol [KRB91] of the meta-protocol. Such
a sub-protocol provides a specific abstraction on what a developer can adapt with this sub-
protocol. Second, a language developer can use aspects instead of meta-objects to adapt the
base levels in the architecture. In this case, the generic abstractions built into pointcut and

217

10. Case Studies: Review of the Support for the Desirable Properties

advice languages restrict what can be modified by language developers and users, which limits
adaptation to well-defined join points. Third, a language developer can provide end users with
a DSL for implementing high-level semantic adaptations with a domain syntax. The DSL’s
syntax and abstractions provide a domain guarantees for meta-level adaptations. When providing
such abstractions on top of the architecture, there a well-defined guarantees. Those guarantees
tame the meta-objects in the architecture, so that semantic adaptations cannot lead to incorrect
program semantics.

While meta-level extensions provide great flexibility, there is an important limitation: there
may be only one meta-level extension for a particular language instance at a time. For example,
we could implement the validation of the domain-specific constraint in a meta-object in a mod-
ular way. However, in real scenarios, there could be multiple constraints to be validated for the
same language and its domain objects. For example, we do not only want to prevent collision but
we would like to prevent turtle robots doing overtime or running out of energy. When multiple
of such constraints need to be enforced on the same language constructs and on the same domain
object, their enforcement logic needs to be combined. But because the meta-link can point only
to one meta-object, only one meta-object (or resp. enforcement point) is allowed to be used for
one object at a time. Unfortunately in this setting, it is hard to implement one meta-object in a
modular way, because the enforcement logic of all constraints is tangled with each other. There
is a need for a more composable mechanism.

To overcome the issue that meta-objects are not modular, in REA, it is possible to use aspect-
oriented programming for semantic adaptations. Since REA is homogeneous and causally con-
nected, a language developer can deploy an aspect on a language interface, façade, or model
class, in the same way, as an user can deploy an aspect on an application-level class. Instead
of implementing a tangled meta-object, in REA, the developer can implement multiple modu-
lar aspects that perform the enforcement. To enforce a constraint, each aspect defines a set of
pointcut-and-advice. The pointcut matches the relevant enforcement points at which the aspect
adds the advice, which contains the enforcement logic. While each constraint is localized in
a separate aspect module, REA composes all aspects with the base level at runtime, whereby
aspects at the language level have the full support of dynamic deployment and scoping of as-
pects, as well as full quantification capabilities including control-flow sensitive predicates and
if-pointcuts.

10.2. Composability of Languages
REA supports compositionality of languages because they consist of a set of first-class objects

and there are language combiners that can reason about those first-class objects in order to
compose them, whereby preventing, detecting, and resolving interactions between those objects.

10.2.1. Composing Languages without Interactions

To recapitulate, in Section 3.2.1 (p. 37), we have motivated composing languages without in-
teractions. We already have discussed the principle support for composition of independent lan-

218

10.2. Composability of Languages

guages using the BlackBoxCombiner and its implementation in Section 4.2.3 (p. 102). Therefore,
this section only sketches composing multiple independent languages.

Example Scenario: For the review, reconsider composing COMPLETELOGO and FUNCTION-
AL into the composite language FUNCTIONALLOGO, as it has been already discussed in Sec-
tion 5.4.3.1 (p. 128).

Review: When languages do not have interactions in the specifications, such as COMPLETE-
LOGO and FUNCTIONAL, the BlackBoxCombiner can be used to compose the two languages,
without requiring language developers to provide additional code for the language composition.
Each language component remains encapsulated (without interactions:), which is advanta-
geous. On the one hand, the BlackBoxCombiner fosters the reuse. On the other hand, the lan-
guage developer is supported when composing the languages, which is because unnoticed syntax
conflicts are automatically detected. This encapsulation is a limited control for interactions.

10.2.2. Composing Languages with Interactions
10.2.2.1. Syntactic Interactions

In Section 3.2.2.1 (p. 39), we have motivated composing languages with syntactic interactions.
When languages have syntactic interactions, the language developer should be supported by
automatically detecting and handling those interactions. Therefore, this section reviews the
BlackBoxCombiner’s support for dealing with syntax conflicts.

Example Scenario: Consider the program in Listing 10.5 that tries to compose the two syntac-
tically conflicting languages FUNCTIONAL and STRUCTURAL, which both declare the ambigu-
ous keyword define. But, when a developer tries to compose the two conflicting languages in
line 2, the BlackBoxCombiner raises an exception that states the signatures of conflicting keyword
methods.�
1 def structural = new Structural (); def functional = new Functional();
2 def combinedLanguage = new BlackBoxCombiner(functional,structural); //raises an exception
3 ...
4

5 Closure program = {
6 ...; define (...); ...
7 }
8 program.delegate = combinedLanguage;
9 program.call ();
� �
Listing 10.5: A program excerpt that tries to compose FUNCTIONAL and STRUCTURAL with

the BlackBoxCombiner

Review: The BlackBoxCombiner can automatically detect and handle syntactic conflicts between
constituent languages in the a composition. Possible syntactic conflicts are detected and handled

219

10. Case Studies: Review of the Support for the Desirable Properties

at composition time, when the developer tries to compose the languages, thus conflicts are de-
tected before evaluating the program closure. For example, in Listing 10.5 (p. 219), the syntactic
conflict is detected in line 2 before even reaching the program closure in lines 5–7). Hence,
developers are patronized from ambiguous language compositions if they disregard syntax con-
flicts while composing languages (syntactic interactions:).

To detect the syntax conflict, before executing the program closure, it is crucial that the Black-
BoxCombiner can use the meta-level of the languages to detect the conflicts. Specifically, the
BlackBoxCombiner uses introspection to check whether the set of method signatures from all
façade objects passed to the BlackBoxCombiner’s constructor are disjoint. Since conflicting sig-
natures between language façades are reported, developers can easily find the syntax conflicts in
their corresponding language interfaces and façades implementations.

Still, there are two limitations. First, the BlackBoxCombiner assumes that syntactic conflicts
cannot be resolved and always raises an error, which ensures safe compositions, but it does not
support resolving syntactic conflicts. Second, unfortunately, syntactic conflicts are not detected
and reported at compile-time.

10.2.2.2. Semantic Interactions

In Section 3.2.2.2 (p. 40), we have motivated composing languages with semantic interac-
tions. For such compositions, one needs a combiner that is more liberal than the BlackBoxCom-
biner, therefore, the language developer can use e.g., the LinearizingCombiner (cf. Section 4.2.3.2,
p. 107) that does not prevent interactions between languages. When composing language with
this combiner, on the one hand, the language developer needs to extend the languages that are
influenced by the interaction. On the other hand, each language implementation should stay
encapsulated. Therefore, this section reviews the LinearizingCombiner’s support for dealing with
semantic interactions, dependencies and conflicts.

Example Scenario: Consider implementing the composition of FUNCTIONAL, STRUCTUR-
AL, and CONSOLE that provides the operation writeln to print out string representations of either
functions or data types, but for this, writeln has to look up in the correct environment, as argued
in Section 3.2.2.2 (p. 40). First, we discuss the implementation of CONSOLE. After that, we
discuss how to compose this implementation with other language implementations.

Listing 10.6 presents the language façade of Console whose functionality depends on having
access to the environments of the two other languages FUNCTIONAL and STRUCTURAL. To
allow the Console accessing their environments, one has to pass references to their façade to
one of the constructors of Console in lines 5–7 that store references to those façades. To expose
access to the environments, the developer has extended both façades with a getter for retrieving
the environment via the method getEnvironment(), which is declared by the extended interfaces
IFunctionalEnv and respectively IStructuralEnv. In lines 9–17, the implementation of the writeln
operation looks up the object in one of the environments using the name identifier and prints its
string representation. Note that the code uses Groovy’s “?”-operator to safely navigate when null
values are present.

220

10.3. Enabling Open Composition Mechanisms

�
1 class Console extends Interpreter {
2 IFunctionalEnv functional ;
3 IStructuralEnv structural ;
4

5 public Console(IFunctionalEnv functional, IStructuralEnv structural) { ... }
6 public Console(IFunctionalEnv functional) { ... }
7 public Console(IStructuralEnv structural) { ... }
8

9 public void writeln (String name) {
10 if (functional ?.getEnvironment()?.get(name) != null) {
11 println "FUNCTION: "+functional.getEnvironment().get(name).toString();
12 } else if (structural ?.getEnvironment()?.get(name) != null) {
13 println "TYPE: "+structural.getEnvironment().get(name).toString();
14 } else {
15 println "UNKNOWN OBJECT $name";
16 }
17 }
18 }
� �
Listing 10.6: The implementation of the CONSOLE façade that depends on FUNCTIONAL and

STRUCTURAL

Next, consider implementing the compositions of FUNCTIONAL with CONSOLE and STRUC-
TURAL with CONSOLE. Listing 10.7 shows how the LinearizingCombiner can be used to compose
the two combinations of the languages. When evaluating the two program fragments (lines 5–8
and lines 16–19) , LinearizingCombiner does not prevent possible interactions. Therefore, the
lines 7 and 18 in Listing 10.7 can print out the objects from the two composed languages as the
syntax conflict is resolved in both cases.

Review: The LinearizingCombiner enables dependent compositions by allowing possible interac-
tions between the languages. The language developers can extend the façades of the constituent
languages to allow them to interact with each other. Although meta-object make adaptation
possible, each language component remains weakly-encapsulated (semantic interactions:).

So far, there are still limitations with handling semantic conflicts in compositions using the
LinearizingCombiner. Although, each interaction reflects in the interfaces of the façades, in gen-
eral, there can be data flow between façades. When passing an object from one language to
another, there can be subtle semantic interactions that do not reflect on the interface level and
that are hard to detect. While the LinearizingCombiner prioritizes the expression types of lan-
guages to prevent syntactic conflicts, it does not prevent any semantic conflicts. Thus, they still
need to be checked by the developer.

10.3. Enabling Open Composition Mechanisms
In REA, extending existing composition mechanisms is possible, since language combiners

are first-class objects that can be extended and compose with each other using OO composition.
When there are special requirements and assumptions in a composition scenario, language devel-
opers can easily define new language combiners in REA. They can extend existing composition

221

10. Case Studies: Review of the Support for the Desirable Properties

�
1 DSL functional = new Functional();
2 DSL console = new Console(functional)
3 DSL functionalConsole = new LinearizingCombiner(functional,console);
4

5 Closure program = {
6 define(name:"sort") { list −> ... }
7 writeln("sort "); // prints "FUNCTION: name ’sort’ parameters: 1 ..."
8 }
9 program.delegate = functionalConsole;

10 program.call ();
11 ...
12 DSL structural = new Structural ();
13 console = new Console(structural)
14 DSL structuralConsole = new LinearizingCombiner(structural,console);
15

16 program = {
17 define(name:"sort"){ ... }
18 writeln("sort "); // prints "TYPE: name ’sort’ slots : kind=String ..."
19 }
20 cl2 .delegate = structuralConsole;
21 cl2 . call ();
� �

Listing 10.7: Two programs using the LinearizingCombiner for a dependent composition

mechanisms and reuse common parts of the composition logic. Fortunately, the costs associated
with defining a new mechanism are rather low compared to implementing a new composition
mechanism from scratch. We discuss handling different conflict cases, for each of these, an open
composition mechanism is provided in the following.

10.3.1. Open Mechanisms for Handling Syntactic Interactions
When the syntax of constituent languages is non-orthogonal in a composition, the language

developer can extend existing combiners for handling the syntactic interactions. In the fol-
lowing, we review how far existing combiners can be extended w.r.t. guaranteeing absence of
syntactic conflicts (in Section 10.3.1.1), by resolving them by renaming conflicting keywords
(Section 10.3.1.2), and by defining priorities between languages (in Section 10.3.1.3).

10.3.1.1. Generic Mechanism for Conflict-Free Compositions

Section 3.3.1.1 (p. 42) has motivated to prevent syntactic conflicts when independent lan-
guages are composed. Section 10.2.1 has reviewed the support of the BlackBoxCombiner to
allow composing independent languages, such as SIMPLELOGO and FUNCTIONAL. In con-
trast, Section 10.2.2.1 has reviewed the support of the BlackBoxCombiner to prevent erroneous
composition of syntactically conflicting languages, such as FUNCTIONAL and STRUCTURAL. It
remains to be shown how the BlackBoxCombiner can be used to prevent special syntactic conflicts
that are specific to a certain composition scenario, such as context-sensitive syntax conflicts.

Example Scenario: Reconsider composing FUNCTIONAL and COMPLETELOGO such that it
is forbidden to use the COMPLETELOGO keywords that have side effects in a function body, as

222

10.3. Enabling Open Composition Mechanisms

motivated in Section 3.3.1.1 (p. 42). Listing 10.8 shows a program that has an context-sensitive
syntax error, since in the “square” function’s body in line 10, the forward keyword is used.

�
1 define(name:"dble") { length −>
2 return length * 2; // okay to define a function without Logo keywords
3 }
4

5 turtle (name:"Triangle", color :red) {
6 fd 100; rt 120; fd 100; rt 120; fd 100; rt 120; // okay to use Logo keywords outside of functions
7 }
8

9 define(name:"square") { length −>
10 ...; forward length; // context−sensitive syntax error (Logo keywords not allowed in functions)
11 }
� �

Listing 10.8: A program excerpt with a context-specific syntax conflict

To detect and handle such context-sensitive syntax conflicts, a language developer needs to
specialize BlackBoxCombiner so that it prevents those conflicts in a certain lexical region. List-
ing 10.9 presents a custom combiner that prevents using COMPLETELOGO keywords in func-
tions by refining the define keyword in lines 6–10. The combiner’s define method forwards to the
original define method of the Functional façade in order to store the function in the environment.
In addition, in line 8, it changes the delegate (i.e., the bodyDelegate) for the function body by
wrapping it into a transformation2 that filters out the keywords defined in ICompleteLogo. Fur-
ther, in line 10, it adapts the resolveStrategy of the function body to Closure.DELEGATE_ONLY,
so that the closure resolves contained keywords only over the filtered delegate, and not over its
owner3.

Review: By inheriting from the BlackBoxCombiner, it is easy for developers to implement the
custom combiner to prevent context-sensitive syntax conflicts. Because the custom combiner
inherits from BlackBoxCombiner, the subclass reuses the common composition logic, which fos-
ters reuse. In addition, the subclass prevents context-sensitive syntactic conflicts only by refining
the implementation of those abstraction operations for which nested expression types need to be
restricted (e.g., in the above scenario, only for one abstraction operator method).

2The KeywordFilterTransformation constructor takes two parameters. The first parameter is a façade object to be
filtered. The second parameter specifies a set of language interfaces that each defines a set of method signatures
to be filtered out. At runtime, the KeywordFilterTransformation intercepts every method call. In case the
intercepted method’s signature is contained in one of the specified interfaces, the transformation does not forward
to the call to the wrapped façade. Otherwise, the keyword method call is simply proceeded to the wrapped façade.
Details of how to implement transformations are elaborated in Section 10.7

3When setting up the resolveStrategy to Closure.DELEGATE_ONLY, this has the effect that keywords in the
functions are not resolved over the closure’s owner, which may be allowed to use COMPLETELOGO keywords.

223

10. Case Studies: Review of the Support for the Desirable Properties

�
1 public class MyContextSensitiveCombiner extends BlackBoxCombiner {
2 IFunctional functional ; ...
3 public MyContextSensitiveCombiner(IFunctional functional, ISimpleLogo logo) {
4 super(functional,logo); this . functional = functional ; ... }
5

6 public void define(HashMap params, Closure body) {
7 functional .define(params, body);
8 body.delegate = new KeywordFilterTransformation(body.delegate, [ICompleteLogo]);
9 body.resolveStrategy = Closure.DELEGATE_ONLY;

10 }
11 }
� �

Listing 10.9: A custom combiner that filters the Logo keywords inside function bodies

In case of a function body being evaluated that contains an error, the keyword method will not
be found in the function closure’s delegate because it is filtered out via the KeywordFilterTrans-
formation.

Note that the custom combiner is limited to compose the two languages. For other context-
sensitive syntax conflicts and different languages, in REA, the developer has the possibility to
implement custom combiners.

In general, it can be considered a design error to use the BlackBoxCombiner for interacting
languages, which indeed are not black-box. Still, semantic interactions that originate from er-
roneous design of language components are not detected and prevented by the BlackBoxCom-
biner. Therefore, one could argue that it is disadvantageous that, unlike functional embedding
approaches, the BlackBoxCombiner does not give any automatic semantic guarantees that compo-
sition are semantically conflict-free, since theoretically language components could have side-
effects.

However, this thesis argues that, in REA, language developers can easily manage semantic
interactions between the language components because of several reasons. First, every semantic
interaction is well reflected in classes that implement the language, thus language developers can
easily detect interaction in the source code by following the import of the classes of language
components, which is supported by IDE tools, such as iSpace4 for Eclipse. Second, to prevent
conflicts, not only language components but any interacting component should always respect
interfaces and its semantic contracts of other components. Third, in POPART/REA, if there are
special semantic interactions, these can still be controlled using aspects at the language-level.
For example, an aspect could track and prevent values from one language component to flow
into another language component. For this, a data flow aspect [MK03] could be deployed on
the language façade that taints every object returned by a keyword method with a tag for the
corresponding language. When calling keyword methods, another aspect could check that only
objects that hold the tag of the same language are allowed as parameters to keyword methods.
Therefore, also semantic conflict can be prevented (conflict-free:).

4The iSpace Homepage: http://ispace.stribor.de/

224

http://ispace.stribor.de/

10.3. Enabling Open Composition Mechanisms

10.3.1.2. Supporting Keyword Renaming
Section 10.2.2.1 has reviewed the BlackBoxCombiner’s support for dealing with syntax con-

flicts, such as the conflicting keyword define between FUNCTIONAL and STRUCTURAL. How-
ever, as motivated by Section 3.3.1.2 (p. 43), one can resolve syntactic conflicts by renaming the
keywords in the constituent languages.

Example Scenario: Consider defining a custom combiner that renames the define keyword in
FUNCTIONAL to defun and in STRUCTURAL to make. Listing 10.10 presents the implementation
of a custom combiner that the language developer who wants to compose the two languages
must provide. The combiner MyRenamingCombiner inherits from LanguageCombiner that allows
combining conflicting languages. Further, the combiner defines a restricted constructor that
only accepts composing two language façade objects that implement IFunctional and respectively
IStructural. Note that since combiner is also a façade class, it can define new keyword methods.
Therefore, to rename the keywords, the combiner defines two new keyword methods. First, it
defines the method defun—calls to this method will be forwarded to Functional.define. Second, it
defines the method make—conversely, calls to this method will be forwarded to Structural.define.
Third, it overrides the method define so that using the old define keyword will result in an error.
Consequently, the custom combiner extends the syntax-to-semantic binding of LanguageCom-
biner with the renamed keywords.�
1 public class MyRenamingCombiner extends LanguageCombiner {
2 IFunctional functional ; IStructural structural ;
3

4 public MyRenamingCombiner(IFunctional functional, IStructural structural) {
5 super(functional, structural); this . functional = functional ; this . structural = structural ;
6 }
7 public void defun(HashMap params, Closure body) { functional.define(params, body); }
8 public void make(HashMap params, Closure body) { structural.define(params, body); }
9 public void define(HashMap params, Closure body) { throw new Exception("Invalid keyword. Use define/make."); }

10 }
� �
Listing 10.10: A custom combiner that renames the conflicting keywords of FUNCTIONAL and

STRUCTURAL

Listing 10.11 shows a modified program version (of the erroneous program in Listing 3.5).
Instead of define, it uses the renamed keywords defun of FUNCTIONAL and make of STRUCTUR-
AL. The program defines a new data type tuple that has two Integer slots. It defines a function
tupleSquare that maps a tuple to another tuple with the square values of its components. Since
the program uses the renamed keywords, there is no syntax conflict in the program, because the
conflicting define is never used.

Review: With the help of inheriting from the LanguageCombiner, it is easy for the developer to
implement the custom combiner. The implementation of the MyRenamingCombiner is straight-
forward. It inherits all meta-methods that define the default keyword method dispatch from its

225

10. Case Studies: Review of the Support for the Desirable Properties

�
1 def structural = new Structural (); def functional = new Functional();
2 def combinedLanguage = new MyRenamingCombiner(functional,structural);
3

4 Closure program = {
5 make(name:"tuple") { x = Integer; y = Integer ; }
6 def t1 = init (name:"tuple",x:3,y :5);
7

8 defun(name:"tupleSquare") { tuple −>
9 return init (name:"tuple",x:(tuple .x * tuple .x),y :(tuple .y * tuple .y));

10 }
11 return apply("tupleSquare")(t1);
12 }
13 program.delegate = combinedLanguage;
14 println program.call (); // will print tuple [x:9,y:25]
� �

Listing 10.11: Program using the renamed keywords of FUNCTIONAL and STRUCTURAL

super class. Consequently, the developer does not have to implement special meta-methods for
the MOP himself/herself.

With such custom combiners, syntactic conflicts can successfully be resolved for a pre-defined
set of languages. However, one could criticize that these custom combiners have the limitation
that they are only for a specific set of languages. To address this problem, this thesis argues
that generic strategies can be embedded to resolve syntactic conflicts. First, REA would allow
implementing a generic renaming combiner that allows rule-based definition of renaming of
keyword methods of arbitrary languages. In this case, this combiner redefines the meta-methods
(e.g., invokeMethod, getProperty and setProperty) to intercept any method call and field access. It
would have to check for possible renaming, and possibly manipulate the signature of a keyword
method call before forwarding it to the right façade. Second, POPART/REA would allow deploy-
ing aspects on the language façades. These language-level aspects can introduce new keyword
methods as well as intercept and manipulate keyword method calls. When multiple aspects are
defined, their interaction can be controlled such that aspect-oriented extensions are applied in
the right order. Because REA is uniform the embedded mechanisms can be used to detect and
prevent interactions (syntactic interactions:).

10.3.1.3. Supporting Priority-Based Conflict Resolution
As motivated in Section 3.3.1.3 (p. 43), since the language extensions can rely on the same

base language theorems, often it is sufficient to resolve conflicts using a priority. Therefore, this
section reviews the support of the LinearizingCombiner (cf. 5.4.3.2) to resolve syntactic conflicts
by prioritizing expression types of extensions.

Example Scenario: Reconsider composing CONCISELOGO, UCBLOGO, and EXTENDED-
LOGO extension of SIMPLELOGO, by composing the independent extensions using the Linearizing-
Combiner. One can compose the implementations of ConciseLogo, UCBLogo, and ExtendedLogo.
Because all three extensions inherits from the same base language, there is a diamond inheritance
problem (e.g. all three façades define the keyword turtle). Still, with the LinearizingCombiner, one

226

10.3. Enabling Open Composition Mechanisms

can compose the extensions. All that a language developer needs to do is to pass all instances of
the language extensions’ facçades to the LinearizingCombiner’s constructor as demonstrated by
Listing 10.12 in line 8. Since the LinearizingCombiner prioritizes the façades in the order they are
passed to the constructor, the LinearizingCombiner will delegate keywords to the ExtendedLogo
façade first, which resolves the conflicts, e.g. the keyword turtle is evaluated only by the first
façade.�
1 Closure program = {
2 turtle (name:"squareComplete", color:red) {
3 setpencolor(green);
4 repeat (4) {
5 fd 50
6 rt 90
7 } } }
8 program.delegate = new LinearizingCombiner(new ExtendedLogo(), new ConciseLogo(), new UCBLogo());
9 program.call ();
� �
Listing 10.12: Implementation of composing the independent extensions to execute a

COMPLETELOGO program

Review: With the LinearizingCombiner, in the above example, a language developer can consol-
idate multiple extensions without changing existing code, but developers can use this combiner
only in simple scenarios, since there are certain limitations, which are explained next.

The combiner assumes that all expression types of a language have the same priority as ex-
pression types of other languages. Therefore, the combiner does not allow to prioritize single
expression types individually. To address this limitation, one can always implement a more
generic combiner that resolves keyword conflicts by using individual priorities per expression
type is conceivable (linearization/priorities:).

10.3.2. Open Mechanisms for Handling Semantic Interactions
10.3.2.1. Specific Mechanism for Controlling Semantic Interactions

When the semantics of constituent languages have conflicts, the language developer can ex-
tend combiners for handling those semantic interactions correctly.

Example Scenario: Consider preventing conflicts for the composition of FUNCTIONAL, STRUC-
TURAL, and CONSOLE, such that identifiers in the composed language are always unique.

Listing 10.13 presents a custom combiner that extends of the LinearizingCombiner. Like the
custom combiner presented in Section 10.3.1.2, this combiner resolves syntactic conflicts. Be-
fore adding a new function, in line 14, the defun method ensures that there is no data type defined
with the same. Similarly, before adding a new data type, in line 21, the make method prevents
name clashes with functions. Line 25 prevents using the old keyword define.

Review: In case of the above composition scenario, the presented solution resolves the inter-
action with little effort, still it is undesirable for two reasons. First, the enforcement logic is

227

10. Case Studies: Review of the Support for the Desirable Properties

�
1 public class MySemanticAdaptationCombiner extends LinearizingCombiner {
2 IFunctional functional ;
3 IStructural structural ;
4

5 public MySemanticAdaptationCombiner(IFunctional functional, IStructural structural, DSL console) {
6 super(functional, structural ,console);
7 this . functional = functional ;
8 this . structural = structural ;
9 }

10

11 public void defun(HashMap params, Closure body) {
12 if (structural .getEnvironment().get(params.name) != null)
13 throw new SemanticConflictException("Function name is not unique ’$params.name’.")
14

15 functional .define(params, body);
16 }
17

18 public void make(HashMap params, Closure body) {
19 if (functional .getEnvironment().get(params.name) != null)
20 throw new SemanticConflictException("Data type name is not unique ’$params.name’.")
21

22 structural .define(params, body);
23 }
24

25 public void define(HashMap params, Closure body) { throw new Exception("Invalid keyword. Use define/make."); }
26 ...
27 }
� �

Listing 10.13: Excerpt of a custom combiner that enforces identifiers to be unique

scattered in the methods of the custom combiner. Second, it is unclear how to prevent or han-
dle complex and more general cases of semantic interactions. Third, defining a new custom
combiner for every new conflicting semantic composition is not a scalable solution, when there
are more that one semantic conflict to handle the combiner implementation can be expected to
become scattered and tangled. Although semantic conflict resolution is fully supported when
using custom combiners, implementing a resolving combiner lead to high effort.

10.3.2.2. Generic Mechanism for Crosscutting Composition of DSLs
To separate crosscutting concerns in overlapping domains, REA’s means for domain-specific

join points allows creating semantic interacting compositions of languages, based on the AO
concepts presented in Section 7. When multiple domains crosscut each other, REA allows defin-
ing multiple join point models for the composed aspect language.

To enable aspects for a DSL, the developer needs to implement the DSL base language with a
domain-specific aspect language (DSAL), which consists of three building blocks: (a) a domain-
specific join point model (DS-JPM), (b) a domain-specific pointcut language (DS-PCL), and (c)
a domain-specific advice language (DS-AdvL) [DMM09].

10.3.2.2.1. A Domain-Specific Join Point Model for Ao4Logo Consider growing SIMPLE-
LOGO into its aspect-oriented version AO4LOGO, whereby the language developer can com-

228

10.3. Enabling Open Composition Mechanisms

pletely reuse the non-AO version for the extended language. To implement a DSAL for SIM-
PLELOGO, the developer incrementally implements the three DS-JPM, DS-PCL, and DS-AdvL
building blocks by taking into account SIMPLELOGO’s domain semantics.

For the DS-JPM, the developer defines the following subclasses of JoinPoint. ForwardJoin-
Point and BackwardJoinPoint both hold a reference to thisTurtle. They have an attribute steps to
store the steps to move. LeftJoinPoint and RightJoinPoint also hold a reference to thisTurtle and
have an attribute degrees. The four join points are contained in a package which encapsulates in
DS-JPM.

For the DS-PCL, the language developer defines a modular language façade that has a set
of pointcut designators as its language model. To implement the language model, the devel-
oper defines the pointcut designators classes TurtleMovingForwardPCD, TurtleMovingBackward-
PCD, TurtleTurningLeftPCD, and TurtleTurningRightPCD, which are subclasses of PointcutDesig-
nator. Further each class defines three operations for defining range patterns to select specific
join points. The first constructor does not have any parameters, it creates a designator instance
that will match any instance of the corresponding joint point type, e.g., left(a), where a can be any
positive integer. The second has one value parameter that creates an instance that only matches
JP of the corresponding type if the parameter to the command matches the exact value, e.g.,
left(50). To implement the DS-PCL, the developer defines a façade LogoPointcutLanguage class.
The façade class defines corresponding operation keywords of which each creates an instance
of the pointcut designator, namely pforward, pbackward, pleft, and pright. For each pointcut des-
ignator keyword, there are three overloaded methods for passing the different range patterns to
its constructor. Further, the façade class defines the more abstract designator keywords, such
as pmotion, by composing the atomic designator classes. Further, in line 4, the LogoPointcut-
Language declares the join point model for SIMPLELOGO.

For the advice language, the developer can use any other embedded DSL of REA. In the
example scenario, the developer implements a special tracing DSL for Logo, which is presented
in Listing 10.15. The developer implements the ITracingDSL language interface in the façade
class TracingLogoDSL, which implements the keyword methods show nand trace for Logo.

To compose the modular language components, the developer uses the CCCombiner, as shown
in Listing 10.16 that implements the AO program from Listing 3.9 (p. 47). In line 2, the program
creates an instance of the LogoPointcutLanguage façade. Next in line 3, the program creates an
instance of the LogoPointcutLanguage façade. To setup the composition, the façades are passed
to the constructor of the CCCombiner. Internally, the CCCombiner invokes the LogoPointcut-
Language to declare the DS-JPM, which opens up the encapsulated SIMPLELOGO language
component to expose its join points. After the setup, to define the tracing aspect, line 16 eval-
uates the aspect program (lines 7–14). Finally, to trace the program, line 29 evaluates the DSL
program (lines 19–27) with the aspect.

10.3.2.2.2. Multiple Join Point Models To demonstrate that POPART/REA supports multiple
join point model at a time, consider embedding an aspect-oriented TINYSQL dialect into an

229

10. Case Studies: Review of the Support for the Desirable Properties

�
1 class LogoPointcutLanguage extends Interpreter implements LogoPointcutLanguage {
2 void setMetaClass(MetaClass mc) {
3 super.setMetaClass(mc); //mc is an instance of CCCombiner
4 mc.declareJoinPoint(SimpleLogoInterpreter.class, "forward", TurtleForwardJPInstrumentation.class);
5 ...
6 }
7

8 Pointcut pforward() { return new TurtleMovingForwardPCD(); }
9 Pointcut pforward(int steps) { return new TurtleMovingForwardPCD(steps); }

10 Pointcut pforward(int minSteps, int maxSteps) {
11 return new TurtleMovingForwardPCD(minSteps, maxSteps);
12 }
13 Pointcut pbackward() {...}
14 Pointcut pleft () {...}
15 Pointcut pright () {...}
16 Pointcut pmotion() { return new OrPCD(new TurtleMovingForwardPCD(),
17 new TurtleMovingBackwardPCD(), new TurtleTurningLeftPCD(), new TurtleTurningRightPCD());
18 }
19 }
� �

Listing 10.14: Excerpt of the pointcut language implementation of AO4LOGO

�
1 interface ITracingDSL {
2 void show(String message);
3 void trace ();
4 }
5

6 class TracingLogoDSL extends Interpreter implements ITracingDSL {
7 ...
8 void show(String message) { println message; }
9 void trace() {

10 // the concrete facade class assumes to be used in a composition with Logo exposing
11 println bodyDelegate.thisTurtle. toString ();
12 }
13 }
� �

Listing 10.15: Excerpt of the advice language implementation of AO4LOGO

OO language, called AO4SQL. For example, in this dialect, the entity bean in Listing 10.175

defines a business object with bean-managed persistence with embedded TINYSQL statements,
comparable to Hibernate6 or J2EE [JBC02].

For the embedded TINYSQL dialect in Groovy, there are two JPM—one for Groovy and one
for TINYSQL. For Groovy, there are method_execution and method_call. For TINYSQL, the
prototype defines defines a new join point model in POPART/REA with the following domain-

5For the sake of a clearer presentation, the example code in Listing 10.17 uses concrete syntax, although the current
prototype uses abstract syntax, but the current prototype could be easily extended.

6The Hibernate Homepage: http://www.hibernate.org/.

230

http://www.hibernate.org/

10.3. Enabling Open Composition Mechanisms

�
1 // set up
2 def dspcl = new LogoPointcutInterpreter();
3 def dsadvl = new SimpleLogoInterpreter();
4 def ccc = new CCCombiner([dsadvl,dspcl]);
5

6 // evaluate aspect program
7 def aoDSLProgram = {
8 aspect(name:"TracingAspect") {
9 ...

10 before (pmotion()) { show "$command $args"; }
11 after (pforward() | pbackward() | pleft () | pright () |) { trace (); }
12 ...
13 }
14 }
15 aoDSLProgram.delegate = ccc;
16 aoDSLProgram();
17

18 // evaluate DSL program (with tracing aspect)
19 def logoDSLProgram = {
20 define(name:"polygon") { length, edges −> (
21 ...
22 }
23

24 turtle (name:"Octagon",color:green) {
25 apply("polygon")(8,25)
26 }
27 }
28 logoDSLProgram.delegate = ccc;
29 logoDSLProgram();
� �

Listing 10.16: Using the CCCombiner to compose the language components of AO4LOGO

specific join points (DS-JPs) that cast on executions of the corresponding TINYSQL statements:
(1) SelectJoinPoint, (2) InsertJoinPoint, (3) RemoveJoinPoint, and (4) UpdateJoinPoint.

Further, there is a declarative domain-specific advice language, which defines corresponding
pointcut designators that match only their corresponding kinds of TINYSQL statements: (1) pS-
ELECT, (2) pINSERT, (3) pREMOVE, and (4) pUPDATE. Similar to other domain-specific advice
languages, the designator has corresponding parameters to select only DS-JPs, e.g., that access
certain columns. Further, there is the pFROM designator that matches only queries for a par-
ticular table. For example, consider the pointcut “pSELECT("Forename") & pFROM("Persons")”
that uses the designators and parameters to quantify over TINYSQL queries, and select only the
executions of queries like:
SELECT "Forename", "Lastname" FROM "Persons"
but not
SELECT "Lastname", "Age" FROM "Persons".

As an example runtime schema evolution, consider changing the schema of the "Person" table.
For example, the database administrator executes a data definition language (DDL) query, such

231

10. Case Studies: Review of the Support for the Desirable Properties

�
1 class PersonBean {
2 PersonKey personKey;
3 String forename;
4 String lastname;
5 int age;
6

7 PersonBean(PersonKey personKey, String forename, String lastname, int age) { ... }
8 PersonBean(Object... params) { ... }
9

10 void ormCreate() {
11 INSERT INTO Persons ("PrimaryKey","Forename","Lastname","Age")
12 VALUES (primaryKey,forename,lastname,age)
13 }
14

15 void ormRemove() { DELETE FROM ... }
16

17 PersonBean ormFindByPrimaryKey(PersonKey pkey){
18 return new PersonBean(
19 SELECT "p.PrimaryKey", "p.Forename", "p.Lastname", "p.Age" FROM "Persons" p
20);
21 }
22 ...
23 }
� �

Listing 10.17: An entity bean with bean managed persistence

as “ALTER TABLE "Persons" ADD "Job"...”. After the DDL query, the entity bean implementation
is not longer valid.

Without AOP support for TINYSQL, the developer of the entity bean would have to invasively
change the entity bean implementation. For example, to manage the additional field in the table,
the developer has to add a new String job field to the PersonBean class, a getter and a setter. In
addition, the developer has to change the code of all embedded TINYSQL queries.

To support schema evolution, in the context of this thesis an aspect-oriented version of
TINYSQL was implemented, called AO4SQL. With AO4SQL, there is support for aspect-
oriented programming for embedded TINYSQL/Groovy, the developer can implement an aspect
that updates the PersonBean definition without having to change the code of the bean implemen-
tation.

Listing 10.18 presents example code aspect for TINYSQL/Groovy. In the aspect, line 4 adds
the PersonBean.job field, and line 7 adds the getter for the field. To adapt the bean managed per-
sistence implementation, the TINYSQL advice in lines 10–14 adapts the TINYSQL statements
that are embedded into the PersonBean class. The advice reifies the query at a select-from join
point (line 11). It changes the list of select columns query.selectList in the reified query (line 12),
by adding a new column selection for the column “Person.job”. And finally, the advice proceeds
the execution of the SQL query (line 13).

232

10.3. Enabling Open Composition Mechanisms

�
1 aspect(name:"BeanAOPTest"){
2

3 // inter−type declaration that adds a field "Person.job" (with default value " jobless ")
4 introduce_field(is_type(PersonBean), "job", "jobless")
5

6 // inter−type declaration that adds a getter for "Person.job"
7 introduce_method(is_type(PersonBean), "getJob") { return job; }
8 ...
9 // pointcut−and−advice

10 around(pSELECT() & pFROM("Persons")){ //pointcut matches all SELECT queries
11 Query query = thisJoinPoint.query;
12 query.selectList .add(Col("job "));
13 return proceed();
14 }
15 }
� �

Listing 10.18: An AO4SQL aspect that changes an entity bean and its TINYSQL queries

In REA, a special runtime aspect weaver for TINYSQL was implemented. To implement
AO4SQL, several language components were implemented. There is a base language component
for TINYSQL, and there are several language components for the aspect languages.

For the base language component, to allow weaving of aspects into TINYSQL, it was not
possible to use the default homogeneous embedding of TINYSQL that was presented in Sec-
tion 8 (p. 171). Instead an alternative implementation of TINYSQL was embedded as an embed-
ded compiler, which follows Kamin’s style of embedding [Kam98], and that generates standard
SQL code [DD89] in concrete syntax at runtime. The implementation of the TINYSQL-to-SQL
generator consists of a language façade that implements the TINYSQL language interface. The
embedded compilers language model implements an AST for standard SQL, containing expres-
sion types for select-, insert-, update-, and delete queries.

When evaluating an embedded TINYSQL program, the embedded compiler first creates an
AST from the embedded program. After the program was completely evaluated, the complete
AST is pretty printed in standard SQL code. Next, the embedded compiler executes the gener-
ated standard SQL code using a JDBC connection to the corresponding database management
system.

To support aspect weaving on TINYSQL, for the aspect language, a DS-JPM, DS-PCL, and
DS-AdvL was implemented. The join point model captures points in the generation of the SQL
code inside the embedded compiler. e.g. SelectJoinPoint object cast on the generation of a select-
statement in the generator. Part of the generators context, e.g. the selected columns and tables
and the where expressions of the select-query are reified from the generator’s context and can be
altered by aspects. The pointcut is implemented as a language façade with pointcut designators
that match those join points in the generator. The advice language makes the context at the
join point available, e.g., such as query.selectList (in Listing 10.18 line 12) exposes a first-class
representation of the selected column in a select query.

233

10. Case Studies: Review of the Support for the Desirable Properties

10.3.2.2.3. Review of Crosscutting Composition In REA, the composition architecture
fully supports crosscutting composition with pointcut-and-advice semantics similar to AspectJ.
Moreover, the implementation of the CCCombiner is agnostic of the embedded DSLs to be com-
posed. The combiner is parameterized by the embedded DSLs to compose; crosscutting com-
biners in addition are parameterized by a set of pointcut languages and advice languages, which
are embedded DSLs.

Effectively, the CCCombiner enables a gray-box composition model for well encapsulated
embedded DSL with crosscutting semantics. Domain-specific join point models and domain-
specific pointcut languages define an abstraction layer over the interpretation of embedded DSLs
to compose. Hence, only the relevant points for the crosscutting composition are exposed. Still,
the CCCombiner enables invasive composition of the embedded DSL’s evaluation protocols. For
this, the CCCombiner exploits the MOP-based interception of method calls inside embedded
DSL implementation, join points can be reified from any method call inside an embedded DSL
interpreter that constitutes a composition point. Each join point’s context can refer to any object
of an embedded DSL program and to the internal state of embedded DSL interpreters. Point-
cut expressions can even mix sub-expressions from different domains because the CCCombiner
composes all pointcut languages that are passed to its constructors.

As a result, embedded DSLs that participate in a composition are defined independent of each
other, while at the same time being composable even in an invasive way.

To validate that complex domain-specific aspect languages can be implemented with
POPART/REA, in the context of this thesis, the existing domain-specific aspect language Cool
[Lop97] has been designed and re-implemented on top of MAP.

In the context of this thesis, the following domain-specific aspect languages (DSALs) have
been implemented as prototypes:

(a) Cool DSAL: The Cool DSAL [LK97], which weaves coordination concerns into OO pro-
gram

(b) Caching DSAL: The caching DSAL [HBA08], which caches values of certain fields when
reading them from their objects.

(c) Zip DSAL: A DSAL that allows compressing string parameters in method calls, which al-
lows compressing all strings before they are written into a file, and it allows decompressing
strings when reading from a file.

234

10.3. Enabling Open Composition Mechanisms

For the following DSL base languages to be advised by aspects, the corresponding DSALs
was implemented without needing to change the CCCombiner:

(i) Ao4Logo: homogeneous embedding

(ii) AOP for ProcessDSL: homogeneous embedding

(iii) Ao4Sql: heterogeneous embedding

Because POPART/REA supports multiple join point models, the join point models of TINYSQL
and Groovy are integrated without restriction. Aspect may define pointcuts that quantify over the
join point of different languages, e.g., the pointcut “pSELECT() & cflow(method_execution("orm.*"))”
would only match the embedded SQL statements inside bean-managed persistence methods.

For all aspect-oriented languages that have been implemented in the context of this thesis,
the default AO semantics of the CCCombiner could be reused for all crosscutting compositions
without changing its code (crosscutting:).

10.3.2.3. Supporting Composition Conflict Resolution
As discussed in Section 3.3.2.2 (p. 47), when multiple aspect languages are composed there

can be composition conflicts.
In [DMB09], a generic mechanism for resolving aspect interactions is presented for POPART.

While the section presents how the language developer can use the generic AO mechanism to
resolve aspect interactions, it is out of the scope to repeat the implementation details of the
aspect interaction resolution mechanism itself. The interested reader is referred to [DMB09].

Meta-aspects allow defining aspect interaction resolution strategies that can be either application-
specific or domain-specific. Technically, there is the OrderedMetaAspectManager which allow
language developers to define a domain-specific pointcut-and-advice comparator that resolves
interactions between several DSALs by ordering advice (or resp. deleting some advice). How-
ever, it is a little inconvenient to implement as pointcut-and-advice comparator, for every new
DSAL composition. Therefore, this section presents a generic extension for the CCCombiner
that can resolve any static co-advising interaction between DSALs.

Example Scenario: To validate co-advising interactions in REA, this thesis uses POPART/REA
to compose the following DSALs with each other and analyze their interactions:

(a) Cool DSAL

(b) Caching DSAL

(c) Zip DSAL

To compose the three DSAL into a language called COCAZIP, developers simply can use
REA generic InductiveWrappingCCCombinerComparator, while they do not need to change the

235

10. Case Studies: Review of the Support for the Desirable Properties

implementation of the CCCombiner. This comparator orders the advice in the order in which
their façades are passed to the constructor of the CCCombiner. Listing 10.19 presents the imple-
mentation of the InductiveWrappingCCCombinerComparator (lines 2–9), how it is set up (line 18),
and how it is used to evaluate aspect-oriented program that mixes keyword from the 3 DSALs
(lines 25–31). To compose the DSALs and resolve their composition conflicts, it is crucial that in
line 18 the façades of the 3 DSLs are passed in the right order to the CCCombiner’s constructor.�
1 // The domain−specific extension needed for the composition of the 3 DSALs
2 class InductiveWrappingCCCombinerComparator<...> extends ApplicationSpecificComparator<...> {
3 public int compare(T to1, T to2) {
4 // determines the ordering by accessing the CCCombiner
5 // when before advice: advice of first facade (e.g ., Cool) come before others (e.g ., caching)
6 // when around advice: first (e.g ., Cool) wraps around the others (e.g ., caching wraps compression)
7 // when after advice: last facade (e.g ., caching) come before others (e.g ., Cool)
8 }
9 }

10 AspectManager.defaultComparator = new InductiveWrappingCCCombinerComparator<...>();
11

12 // set up
13 def coolDSL = new CoolDSL(isPerClass);
14 def cachingDSL = new CachingDSL(isPerClass);
15 def zipDSL = new ZipDSL();
16

17 // the order in which the developer passes the DSAL facades to the CCCombiner defines their advice ordering
18 def coolcachingzip = new CCCombiner(coolDSL, cachingDSL, zipDSL);
19

20 Closure cocazip = { String className, HashMap aspectBody −>
21 return coolcachingzip.aspect([name:className], body) };
22 }
23

24 // the composed DSAL program
25 cocazip("DBFile") {
26 selfex { write }; mutex { read; write } // two pieces of advice from Cool DSAL
27

28 memoize "read", { invalidated_by_calling "write" } // an advice from Caching DSAL
29

30 compress_args "write"; decompress_result "read" //two pieces of advice from Compression DSAL
31 }
� �

Listing 10.19: Handling composition conflicts by defining a static order on DSALs

Review: To validate the support for handling interactions, the DSALs on POPART/REA were
tested with a test suite for concurrently executing test cases, which is supported by Grobo
Utils7—an extension to JUnit8. First, each DSAL was tested in isolation. For each example
proposed in the thesis of Lopes [Lop97], a test was implemented for the embedded Cool DSAL.
Second, POPART/REA was tested with respect to the tests that have been proposed in related

7The GroboUtils Homepage: http://groboutils.sourceforge.net/
8The JUnit Homepage: http://www.junit.org/.

236

http://groboutils.sourceforge.net/
http://www.junit.org/

10.4. Support for Concrete Syntax

work [HBA08]. Third, additional tests have been implemented for the Zip DSAL for compres-
sion and its interactions with the Caching DSAL. These tests give a high confidence that the
aspect interactions/conflicts are resolved correctly (composition-conflict resolution:).

10.4. Support for Concrete Syntax
In TIGERSEYE/REA, concrete syntax can be rewritten only because the AST of an embedded

language is reified, transformed, and reflected back at compile time. In most cases, the devel-
oper often does not have to specify the complete formal syntax, but TIGERSEYE automatically
extracts the necessary information from the embedded objects.

10.4.1. Converting Concrete to Abstract Syntax
Section 8.2 (p. 179) has already elaborated how the TIGERSEYE generic pre-processor can

map arbitrary concrete syntax to concrete syntax in the host languages, therefore the remainder
of this section only reviews this support.

Review: A developer only needs to add some annotations in order to enable mapping concrete
to abstract syntax, the mapping itself is automatic. For making this automatic conversion pos-
sible, the generic architecture of TIGERSEYE is crucial. For the conversion of concrete syntax
to abstract syntax, it is important that all steps in the conversion or transformation process are
generic. In the TIGERSEYE, all transformation steps make no special assumptions about the
language to be composed. Further, the generic pre-processor transformation logic is parame-
terized by their meta-data: the annotations. Since none of the steps in this process make any
assumption about particular languages, one can enable arbitrary languages and their programs
on top of TIGERSEYE.

Further, to support multiple languages, in the transformation process, it is crucial that every
intermediary representation is composable and the representation builds on the previous steps.
Further, the pre-processor uses a composable representation in each step, which is elaborated
next.

First, composing meta-data for a syntactic transformation is simple, since the pre-processor
uses context-free grammars consisting of BNF-rules that are a composable. The pre-processor
extracts BNF-rules from the annotations defined by language components and converts them to
first-class objects of the embedded BNF dialect, which allows composition of these syntax rules.

Second, the pre-processor parses a program into a generic and composable AST represen-
tation. It is important that this AST representation does not use a closed set of types for the
AST nodes, but that a new kind of AST node can be introduced as an annotation of an AST
node, which make the AST extensible and independent of the concrete languages. Therefore,
technically the pre-processor uses untyped ATerms [vdBK07] to implement the AST, which
are a well-established representation widely used in source code analysis and transformation
tools [vdBK07, BV04].

Third, the AST transformation that rewrites the AST elements to host language syntax must be
composable. An important detail is that the pre-processor does not have to perform any semantic
transformations that depend on a concrete embedded language. The transformation process must

237

10. Case Studies: Review of the Support for the Desirable Properties

only know how to transform an AST node to a method call in the host language, which is rather
a simple lexical transformation than a semantic transformation. Since there are various lexical
transformation steps that are necessary, it is important to correctly compose them. Therefore,
the pre-processor ensures the correct ordering of each lexical transformation steps by taking into
account the pre- and post-condition of each lexical transformation.

Fourth, it is crucial that method calls in the host language are composable. In Groovy, encod-
ing compositional method calls is simple for all kinds of compositionality of expression types.
For terminal expressions, the encoding uses parameterless method calls or properties respec-
tively. For non-terminal expressions, one can put a method call into the parameters of another
method call for its sub-expressions. For nested expressions in a body, the encoding nests method
calls in a Groovy closure of which the delegate is set to an instance of the corresponding façade
class. For compositionality of all three expression types, arbitrary method calls can be put in a
sequence. In Java, encoding compositional method calls is similar to Groovy, except for nested
expressions in a body. Nested expressions are encoded so that the method call always is calling
the method in abstract syntax directly on an instance of the corresponding façade class.

With the above support for an intermediary representation that supports compositionality of
expressions, there are no practicable restrictions for Groovy and Java, TIGERSEYE supports a
generic transformation that transform concrete to abstract syntax. The generic transformation is
extensible, i.e. subclasses of façades can add new keywords with concrete syntax. The generic
transformation is composable, i.e. the concrete syntax of several languages can be composed into
one combined syntax. The generic transformation is automatic integrated into the compilation
process of embedded program. With these characteristics, there is full support for concrete-to-
abstract syntax transformation (concrete-to-abstract syntax:).

10.4.2. Supporting Prefix, Infix, Suffix, and Mixfix Operators
To incrementally add support, using TIGERSEYE/REA, the language developer can add an-

notations for concrete syntax as described in Section 8.1.2 (p. 174) directly to the existing source
code of an existing language interface or façade class with abstract syntax, or the developer can
subclass the façade class and add annotations in the incremental extension.

Example Scenario: Consider implementing the prefix, infix, suffix, and the mixfix opera-
tors from Section 3.4.2 (p. 50). Listing 10.20 presents three classes that incrementally add more
concrete syntax to a small example language with the four kinds of operators. First, the class
AbstractOperators (lines 1–6) implements the operator in abstract syntax. Second, Concrete-
Operators (lines 8–17) extends the first class to define annotations for concrete syntax. Third,
UnicodeOperators (lines 19–28) incrementally extends the second class to give the part of the
operators with concrete syntax a Unicode syntax.

Review: To validate the support for prefix operators, in the context of this thesis, various em-
beddings with concrete syntax have been embedded into TIGERSEYE, such as sets with the
Unicode operators ∪ and ∩, an extended BNF-dialect with support for regular expressions, and
many other small examples.

238

10.4. Support for Concrete Syntax

�
1 class AbstractOperators extends Interpreter {
2 boolean not(boolean pred) {...} // textual syntax for prefix operator is already okay
3 Closure compose(Closure f, Closure g) {...}
4 Formula prime(Formula k) {...}
5 void selectFromWhere(String[] columns, String[] tables, WhereClause preds) { ... }
6 }
7

8 class ConcreteOperators extends AbstractOperators {
9 @DSLMethod(production="p0_compose_p1")

10 Closure compose(Closure f, Closure g) {...}
11

12 @DSLMethod(production="(p0)prime")
13 Formula prime(Formula k) {...}
14

15 @DSLMethod(prettyName = "SELECT__p0__FROM__p1__WHERE__p2")
16 void selectFromWhere(String[] columns, String[] tables, WhereClause preds) { ... }
17 }
18

19 class UnicodeOperators extends ConcreteOperators {
20 @DSLMethod(production="¬p0")
21 boolean not(boolean pred) {...} // Unicode syntax must be declared
22

23 @DSLMethod(production="p0__◦__p1")
24 Closure compose(Closure f, Closure g) {...}
25

26 @DSLMethod(production="p0′")
27 Formula prime(Formula k) {...}
28 }
� �

Listing 10.20: An incremental extensions to FUNCTIONAL for concrete syntax

In the aforementioned examples, the abstract syntax always could be replaced by concrete
syntax (*-fix operations:).

10.4.3. Supporting Overriding Host Language Keywords
With TIGERSEYE/REA, it is possible to override host language keywords, in a similar way as

concrete syntax is defined.

Example Scenario: Consider implementing the following two small DSLs that define expres-
sion types that override reserved keywords in the host language.

Listing 10.21 presents the ConditionalDSL class that overrides Groovy’s if keyword. However,
it overrides the keyword only when the DSL program uses the then and else keywords, which al-
lows mixing DSL code and Groovy code, and use different semantics in parallel without special
quotations, as long as the syntax-to-semantic binding is context-free.

Listing 10.22 presents the SetDSL class that overrides the curly bracket delimiters of Groovy.
The annotation in line 4 defines concrete syntax for the asSet method, whereby the production
can use the reserved Groovy delimiter keywords “{” and “}”. For example, using the curly
brackets in line 16 does not define a Groovy closure, but the curly brackets are syntactic sugar
that define new sets.

239

10. Case Studies: Review of the Support for the Desirable Properties

�
1 @DSL(whitespaceEscape=" ")
2 class ConditionalDSL implements Interpreter {
3 @DSLMethod(production="if (p0) then { p1 } else { p2 }")
4 boolean ifThenElse(boolean check, Closure thenBlock, Closure elseBlock) {
5 if (check) { thenBlock.call (); } else { elseBlock.call (); }
6 return check;
7 }
8 }
� �

Listing 10.21: Overriding the host language keyword if

�
1 @DSL(whitespaceEscape=" ")
2 class SetDSL implements Interpreter {
3 ...
4 @DSLMethod(production="{ p0 }")
5 Set asSet(MyList a) {
6 return new HashSet(Arrays.asList(a.toArray()));
7 }
8

9 @DSLMethod(production="p0 , p1")
10 private MyList multiElementedList(String head, MyList tail) {
11 return new MyList(head, tail);
12 }
13 }
14 ...
15 // DSL file using the support for sets
16 Set M = {"a", "b", "c "};
� �

Listing 10.22: Overriding the curly brackets delimiter of Groovy

Review: TIGERSEYE’s support for concrete syntax does not make a difference between re-
served keywords and other literals, since the transformation is independent of the host language.
It simply overrides keywords in the concrete syntax of the embedded DSL to method calls in
the host language. Note that reserved keywords are only overridden if they exactly match the
declared production. Further, note that after transforming the reserved keyword to a method call,
REA’s meta-level and POPART’s aspects could even advise the keyword.

To validate, overriding host language keywords, test cases where written that in particular test
whether different nested structures are rewritten correctly (overriding host keywords:).

10.4.4. Supporting Partial Definition of Concrete Syntax

Example Scenario: Consider embedding TINYSQL into Java and Groovy. With TIGERSEYE,
as elaborated in Chapter 8, only part of the Java and Groovy syntax needed to be specified.

Review: In TIGERSEYE/REA, Table 10.1 shows that the integration of the EDSLs with new
host languages also requires only negligible effort. For Java and Groovy, in both cases, it was
sufficient to specify only 19 productions. As elaborated in Section 8.1.4 (p. 178), to allow parsing

240

10.5. Enabling Pluggable Scoping

the host languages with island grammars, TIGERSEYE had to define only the most important
productions that recognize the host languages’ basic syntactic structure.

Table 10.1.: Number of grammar rules that need to be specified for the concrete syntax
EDSL Complete Island Savings

Grammar Grammar
TINYSQL 6 1 83 %
BNF 9 9 0 %
State Machines 10 2 80 %
Simple Logo 11 1 91 %

Table 10.2.: Number of grammar rules that need to be specified to enable the integration with
the host language

Host Complete Island Savings
Language Grammar Grammar
Java 1700 19 98.9 %
Groovy 950 19 98.0 %

Furthermore, as Table 10.2 shows, the effort that is necessary to support concrete syntax for a
homogeneous embedded EDSL that can be used across different host languages, is reduced. In
case of the four discussed DSLs, no additional effort was necessary to directly support concrete
syntax for the discussed DSLs when we embedded them also in Java (they were first embed-
ded into Groovy). This, however, requires that we can reuse the same DSL interpreter for the
new target host languages and that support for the target languages is readily available in the
TIGERSEYE pre-processor. If this is the case, it is in general only necessary to adapt the EDSL’s
grammar to the new host language grammar. Due to using island grammars and the syntactical
similarities between Groovy and Java, no adaptation was necessary (partial syntax:).

10.5. Enabling Pluggable Scoping
Section 3.5 (p. 53) has motivated several scenarios that require controlling scoping in em-

bedded languages. Therefore, this section presents how language developers can embed new
scoping schemes on top of REA. In REA, the native host language concepts can be replaced by
first-class concepts that are embedded. In particular, name bindings can be embedded as first-
class environments, which are in the same vein as [AS96]. In REA, various scoping strategies
for language constructs are possible, since language constructs are first-class and their scope
can be embedding restrictions in the part of the evaluation protocol that executes the language
construct.

10.5.1. Supporting Dynamic Scoping
Section 3.5.1 (p. 53) has discussed the problem that embedding approaches have not yet shown

how to embed different scoping schemes. One important reason for this open issue is that most
host languages only support one closed scoping scheme that cannot be changed.

241

10. Case Studies: Review of the Support for the Desirable Properties

Although Groovy is also a lexically-scoped host language, the fact that in Groovy closures
do not completely close over their lexical context (cf. Section 5.1) allows embedding various
scoping schemes. Therefore, the language developer can embed a dynamically scoped language
into Groovy. For dynamic scoping, the language developer embeds a new scoping scheme for
variables, so that they are bound to a global context, not to the lexical enclosing context.

Example Scenario: Consider embedding dynamically scoped Logo into Groovy. To imple-
ment dynamic scoping (or other schemes) for various embedded languages, language devel-
opers can extend or compose the ENVIRONMENT language presented below. ENVIRONMENT

provides an interpreter environment (after [AS96]) to bind names to values via two operations
let(name,value) and get(name). The keyword let binds the name to the value in the current
environment, and the keyword get retrieves the value for name either directly from the current
environment or from a possible enclosing environment (i.e., enclosing abstraction operators).

Listing 10.23 presents the implementation of an environment interpreter in REA. It shows the
IEnvironment interface (lines 1–4) and an excerpt of its implementation the EnvironmentInterpreter
façade (lines 6–24). Note that the façade has an adjustable scoping Strategy that can be either
LEXICAL_SCOPING or DYNAMIC_SCOPING (line 7) that the developer or user can change. Most
importantly, the façade holds a map from Strings to Object values (line 8), into which one can
bind a name to a value using method let (line 10), and from which one can retrieve a value
using method get (lines 12–17). Whenever the get method cannot find a value in the current
environment, it tries to retrieve the value from an enclosing environment via method getFromEn-
closingEnvironment (lines 21). The getFromEnclosingEnvironment methods looks up the special
key “##enclosingEnv##” whose value is another environment. The methods getEnvironmentBody-
Delegate (line 22) and getEnvironmentBodyResolveStrategy (line 23) are necessary to create new
environments for abstraction operators.

Consider implementing the dynamic scoping example in Listing 10.24, which is motivated
from Section 3.5.1 (p. 53), and which overrides the variable binding from line 3 in line 10. To
execute the example code, all the developer has to do is to instantiate a new EnvironmentInter-
preter (line 15), select the dynamic scoping strategy for it (line 16), pass it to some combiner
(line 17) to compose it with other languages, and use the combiner to evaluate programs.

When evaluating the program with dynamic scoping, it is crucial that the methods let and get
always operate on the enclosed environment, which is in case of dynamic scoping the global
environment. Dynamic scoping is the simpler scoping strategy to implement, since there is no
special propagation of bindings, and every binding is available from the global environment.

In contrast, the language developer can switch to lexical scoping, e.g., by replacing the selec-
tion the strategy in Listing 10.24 line 16 when evaluating the program with lexical scoping.

Review: To review the support of scoping, we discuss several important issues with respect to
design, implementation, as well as issues related to performance and usability.

First, the design of the pluggable scoping mechanism is modular, extensible, and composable.
It was successfully implemented on top of existing host language mechanisms as a language

242

10.5. Enabling Pluggable Scoping

�
1 interface IEnvironment {
2 void let (String name, Object value);
3 Object get(String name);
4 }
5

6 class EnvironmentInterpreter extends Interpreter implements IEnvironment {
7 int scopingStrategy = LEXICAL_SCOPING; // alternative: DYNAMIC_SCOPING
8 HashMap<String,Object> environment = new HashMap<String,Object>();
9

10 void let (String name, Object value) { environment.put(name, value); }
11

12 Object get(String name) {
13 if (environment.containsKey(name)) {
14 return environment.get(name);
15 else {
16 return getFromEnclosingEnvironment(name) {
17 }
18 }
19 ...
20 HashMap<String,Object> getEnvironment() { return environment; }
21 public Object getFromEnclosingEnvironment(String name) { ... }
22 protected IEnvironment getEnvironmentBodyDelegate(Closure body) { ... }
23 protected IEnvironment getEnvironmentBodyResolveStrategy(Closure body) { ... }
24 }
� �

Listing 10.23: Implementation of pluggable scoping EnvironmentInterpreter

�
1 Closure program = {
2 turtle (name:"Teacher", color:red) {
3 let (" length ",50);
4 define(name:"complexShape") {
5 fd get("length "); rt 120; fd get("length "); rt 120; fd get("length "); rt 120;
6 }
7 }
8

9 turtle (name:"Pupil", color :red) {
10 let (" length",100);
11 apply("complexShape")();
12 }
13 }
14

15 def env = new EnvironmentInterpreter();
16 env.scopingStrategy = EnvironmentInterpreter.DYNAMIC_SCOPING;
17 program.delegate = new LinearizingCombiner(env, new Functional(), new CompleteLogo());
� �
Listing 10.24: Example from Listing 3.11 defining a dynamically-scoped variable using let and

get

façade. It is configurable, because the developer can select between dynamic and lexical scoping.
To extend the scoping strategy, a language developer can extend EnvironmentInterpreter.

243

10. Case Studies: Review of the Support for the Desirable Properties

With the embedding of pluggable scoping into Groovy, one can enable a different scoping
scheme by adjusting the scopingStrategy property of the EnvironmentInterpreter. Figure 10.1
shows the differences for the environments with lexical and dynamic scoping. With lexical
scoping, shown on the left hand side, for each closure, there is a dedicated environment that is
linked to enclosing environments. The indices (right of the box) indicate at what regions in the
code the corresponding bindings are effective. Note that in contrast to let, which defines a local
binding, the keyword define establishes a global binding, therefore, the function is defined in the
top-level environment. Conversely as shown on the right hand side, with dynamic scoping, there
is only one global environment. The indices in this case indicate at which line a new version of
the global environment is established.

##enclosingEnv##
complexShape <closure>

(S1) Lexical Scoping

##enclosingEnv##

(S2) Dynamic Scoping

##enclosingEnv##
lenght 50

##enclosingEnv##
lenght 100

(global)

(Teacher body
lines 1-6)

##enclosingEnv## (complexSquare body
lines 3-5)

(Pupil turtle body
lines 8-11)

##enclosingEnv##
lenght 50

(initial)

(after line 3)

##enclosingEnv##
lenght 50
complexShape <closure>

(after lines 3-5)

##enclosingEnv##
lenght 100
complexShape <closure>

(after line 9)

Figure 10.1.: Lexical scoping vs. dynamic scoping

With reflective embedding new schemes can be implemented for embeddings simply by ex-
tending the EnvironmentInterpreter. When such a specialize EnvironmentInterpreter provides dif-
ferent keywords for different kinds of (variable) bindings, such as the keyword slet for static
binding, dlet for dynamic binding, various scoping schemes are possible in one program.

Second, the implementation of the architecture’s scoping mechanism was tested under isola-
tion and in compositions with other languages.

Third, the performance is far from being optimal, because every binding is dynamically re-
solved at runtime. Developers can use the current implementation prototyping new scoping
mechanism. Yet, implementing efficient scoping schemes are not addressed. Since the scoping
mechanism is embedded as a library and the Groovy compiler is not aware of this, it cannot
optimize the embedded bindings. Currently, there are no special optimizations, and the em-
bedded scoping mechanisms do not pass special information about bindings to the compiler. It
would be interesting to apply well-known techniques of non-embedding-based approaches for
optimization. For example, it is well-known that in case of lexical scoping, there is the possibil-
ity to statically resolve bindings, because every binding is known at compile time by taking into
account the lexical context. But, it is out of the scope of this thesis.

244

10.5. Enabling Pluggable Scoping

Fourth, the usability of the scoping mechanism has two limitations. First, end users are re-
quired to use the keywords let and get to access variables with a special scoping. This makes
writing variable expressions for end users more verbose. Note that, later on in Section 10.7, this
chapter discusses how the keywords let and get can be omitted by using a simple transforma-
tion and the Groovy MOP. Second, there is no way to enforce that end user actually use these
keywords for dynamic scoping. Specifically, when an end user uses the Groovy keyword def to
define a local variable, the so defined variable is lexically scoped according to Groovy semantics.
The Groovy MOP does not intercept access to local variables, therefore, so far it is impossible
to override the scoping of local Groovy variables.

Finally, embeddings are not scope-safe [Stu09]. By default, in Groovy, variables and methods
in closures can be captured and escape scopes unintended. There are only little means for restrict
scoping; one can adjust the default resolveStrategy (which is OWNER_FIRST, cf. Section 5.1,
p. 118) of closures to DELEGATE_ONLY in order to restrict possible bindings of variables and
methods to an environmental interpreter, or respectively select OWNER_ONLY to restrict possible
bindings to the lexical scope.

In sum, although the current pluggable scoping mechanism is limited for general scoping
strategies, it fully supports embedding an alien dynamic scoping strategy into a lexically scope
host languages. In addition, the current embedding of scoping is extensible by users who can
easily adapt scoping when they have special needs (dynamic-scoping:).

10.5.2. Supporting Implicit References
In REA, language developers can easily define new implicit references in façades using ordi-

nary literal keyword methods and compose these references into existing languages.

Example Scenario: Consider implementing the implicit reference thisTurtle as motivated in
Section 3.5.2 (p. 55). Listing 10.25 presents the implementation of the implicit reference as part
of the façade LogoImplicitReference that depends on an evaluation context of a CompleteLogo
façade passed to its constructor. The façade implements the literal keyword method getThisTurtle
(line 4) that returns a first-class representation of the enclosing turtle abstraction operator. This
method retrieves the enclosing turtle from the evaluation context of the CompleteLogo façade via
method getTurtle, through which its language model is accessible. To directly access properties
of thisTurtle, such as color instead of writing thisTurtle.color, the LogoImplicitReference façade
define other getters with the corresponding names prefixed by get. Thanks to the convention
that when Groovy encounters an unknown property, when evaluating programs, Groovy will
automatically call the corresponding getter methods, which enables implicit references.

Consider implementing the example program from Listing 3.12. Listing 10.26 only has to
instantiate the LogoImplicitReference and compose it with the other façade to enable the implicit
reference in COMPLETELOGO.

Review: As demonstrated, language developers can enable implicit references without much ef-
fort. Note that the literal keyword methods that implement implicit references can contain com-
plicated resolution logic. With such logic, it is possible to implement sophisticate resolutions of

245

10. Case Studies: Review of the Support for the Desirable Properties

�
1 class LogoImplicitReference extends Interpreter {
2 CompleteLogo logo;
3 public LogoImplicitReference(CompleteLogo logo) { this.logo = logo; }
4 public Turtle getThisTurtle () { return logo.getTurtle (); }
5 public Color getColor() { getThisTurtle (). getPenColor(); }
6 ...
7 }
� �

Listing 10.25: Excerpt of the implementation of EnvironmentInterpreter

�
1 Closure program = {
2 define(name:"print") { str −> ... }
3 define(name:"colorToStr") { color −> ... }
4 turtle (name:"Turtle1",color:red) {
5 apply("print ")(thisTurtle.name)
6 }
7 turtle (name:"Turtle2",color:blue) {
8 apply("print ")(apply("colorToStr")(color))
9 }

10 }
11 CompleteLogo logo = new CompleteLogo(); LogoImplicitReference lir = new LogoImplicitReference(logo);
12 Functional functional = new Functional(); program.delegate = new LinearizingCombiner(lir,functional,logo);
13 program.call ();
� �

Listing 10.26: A Logo program using the implicit reference thisTurtle

implicit references (implicit references:), e.g., from the enclosing interpreter environments, or
dependent on the dynamic runtime context.

10.5.3. Supporting Activation of Language Constructs
Reconsider the schema evolution example from Section 10.3.2.2.2 (p. 229), where the bean

managed persistence logic was updated with a static aspect. Although the code of the appli-
cation must no more be manipulated. It is still inconvenient that the developer has to stop
the application, add the aspect, and restart the application together with the aspect, which up-
dated the bean implementation. Unfortunately, stopping the application for installing the aspect
causes a downtime the bean’s business application, which result may result in various loss of
business values, such as loosing business opportunities during the downtime of the business ap-
plication’s services, loosing clients’ trust in the availability, and risking service-level agreement
penalties [CDM09].

Example Scenario: Therefore, consider implementing runtime schema evolution with dy-
namic AOP. Runtime schema evolution is enabled through adapting the entity bean at runtime
using a dynamic AO4SQL aspect. Listing 10.27 presents the implementation of a dynamic as-
pect. The dynamic aspect implements the same adaptation as the static aspects, but it is not
initially deployed when starting the application, since the AO programs declares this via the de-

246

10.6. Enabling Pluggable Analyses

ployed:false parameter in line 3. All what is necessary to adapt the bean at runtime is to deploy
the aspect in line 11, which immediately adapts the running application without downtime.�
1 // implements dynamic AO4SQL aspect
2 DynamicAsepct myAo4SqlAspect =
3 aspect(name:"BeanAOPTest",deployed:false){
4 // the code from
5 ...
6 introduce_field (...)
7 introduce_method(...) { ... }
8 around(pSELECT()...){ ... }
9 }

10 ...
11 myAo4SqlAspect.deploy(); //dynamically deploy aspect (adapt the bean class and embedded SQL)
12 ...
13 PersonBean person = PersonBean.ormFindByPrimaryKey(new PersonKey(1));
14 assert "musician".equals(person1b.getJob()); //access to introduced field
� �

Listing 10.27: An AO4SQL aspect that changes an entity bean and its TINYSQL queries

Review: Although TINYSQL is a very limited subset of SQL, dynamic aspect-oriented pro-
gramming for SQL becomes conceivable. For the implementation of dynamic scoping for
AO4SQL aspects, it was not necessary to change the implementation of the CCCombiner in
POPART/REA (activation:).

10.6. Enabling Pluggable Analyses
Section 3.6 (p. 56) has motivated to use language embeddings for scenarios where syntac-

tic and semantic analysis is needed, as it is supported by traditional non-embedding-based ap-
proaches. Therefore, this section discusses embedding pluggable analyses on top of the archi-
tecture. Developers can implement rich domain analyses that perform composable pluggable
syntactic analyses on DSLs, which Section 10.6.1 elaborates, as well as composable pluggable
semantic analyses, which Section 10.6.2 elaborates.

10.6.1. Syntactic Analyses
For a syntactic analysis, it is crucial that the meta-objects of code blocks create method calls

for every encountered expression. This enables interpretation of program expressions under
abstract semantics.

Each syntactic analysis consists of an analyzer façade that implements a syntax-to-semantics
binding for each expression type in the language to analyze to its abstract semantics. Further, it
consists of an alternative language model that implements the abstract domain of the analysis.
Optionally, it may consist of a meta-level that allows implementing generic analyses that adapt
themselves to the context in which they are used.

Once a syntactic analyzer is implemented, its language façade can be used to evaluate pro-
grams consisting of expressions in abstract syntax. Evaluating a program with the façade of

247

10. Case Studies: Review of the Support for the Desirable Properties

the syntactic analyzer is similar to traversing an AST. However, instead of visiting AST nodes,
the analyzer façade receives a sequence of method calls for each expression. By analyzing the
method calls resulting from the evaluation of the program closure, the analyzer calculates the
result of the analysis.

The remainder of this section demonstrates how this architecture’s model allows implement-
ing flexible syntactic analysis.

Example Scenario: Reconsider implementing a syntactic analysis that checks that abstrac-
tion operators in FUNCTIONALLOGO contain not more than 10 expressions, as motivated in
Section 3.6.1 (p. 57). For this analysis, a language developer needs to implement several parts.
First, there is an expression counting part that performs a modular abstract interpretation that
counts the number of expression contained inside a closure. Second, there is a checking part
that performs a modular abstract interpretation that checks that the abstraction operator has not
more than 10 expressions. The second part of the analysis uses the first part to determine the
number of expressions. Note that the task of implementing the syntactic analysis is complicated
by the fact that this analysis must be performed for a composite language, hence it is desirable
to also implement the analysis for its constituent languages in a modular way. We present the
implementation of these two parts of the analysis in the next two paragraphs.

Example Scenario – Expression Counter Analysis: To implement the first analysis, the
developer implements an analyzer façade to count expressions for each constituent language.
Listing 10.28 and Listing 10.29 presents the implementation of the analysis. There are two an-
alyzer façades, namely ExpressionCounterCompleteLogo and ExpressionCounterFunctional. Both
façades hold an expressionCount property (Listing 10.28, line 8 and Listing 10.29 line 3), which
initially is 0. They implement their corresponding language interfaces, namely ExpressioCounter-
CompleteLogo implements abstract semantics for ICompleteLogo and ExpressionCounterFunctional
implements IFunctional. Note that there is no need to define a special language model for this
analysis, because the abstraction domain can readily be mapped to the domain of Integers. For
each expression type defined in the language interfaces, both façades provide a keyword method
implementation that increases expressionCount (e.g., Listing 10.28 in lines 12, 14, 17, and List-
ing 10.29 line 6 and 12), so that when the expression type is used in a program the total number
of expressions is increased. In addition to this, for each abstraction operator, the implementa-
tion calls the body in order to count its nested elements (e.g., cf. turtle in Listing 10.28 line 19
and define in Listing 10.29 line 8). The result of an analysis is accessible through the interface
IExpressionCounter (cf. Listing 10.28) that each of the analyzers implements.

Next, to count expressions for both constituent languages, the developer has to combine the
two modular analyzers. For this, the developer implements a custom combiner that composes
the analyzer and their results. All the developer has to do is to implement the class Expression-
CounterCombiner that is shown in Listing 10.30 that extends LinearizingCombiner. Note that the
subclass can completely reuse the implementation of its super class, therefore no MOP specific
code needs to be implemented. The developer only needs to implement the IExpressionCounter

248

10.6. Enabling Pluggable Analyses

�
1 interface IExpressionCounter extends DSL {
2 int getExpressionCounter();
3 void reset ();
4 }
5

6 class ExpressionCounterCompleteLogo extends Interpreter
7 implements ICompleteLogo, IExpressionCounter {
8 protected int expressionCount = 0;
9 public int getExpressionCounter() { return expressionCount; }

10 public void reset() { expressionCount = 0; }
11

12 public int getBlack() { expressionCount++; return 0; }
13 ...
14 public void forward(int n) { expressionCount++; }
15 ...
16 public void turtle (HashMap params, Closure body) {
17 expressionCount++;
18 body.delegate = bodyDelegate;
19 body.call ();
20 }
21 ...
22 }
� �

Listing 10.28: Implementation of expression counting for COMPLETELOGO

�
1 public class ExpressionCounterFunctionalLogo extends Interpreter
2 implements IFunctionalLogo,IExpressionCounter {
3 protected int expressionCount = 0;
4 ...
5 public void define(HashMap params, Closure body) {
6 expressionCount++; ...
7 body.delegate = bodyDelegate;
8 body.call ();
9 }

10

11 public Closure app(String name) {
12 expressionCount++; ...
13 return { return null }; // must return an empty closure to avoid double counting
14 }
15 }
� �

Listing 10.29: Implementation of expression counting for FUNCTIONAL

(cf. Listing 10.28), so that the reset method resets all analyzers (line 10), and so that the getEx-
pressionCounter combines the results of all analyzers (lines 4–8).

To recapitulate, the developer can implement the expression counting part of the analysis
as a separate reusable analysis. Note that the analysis remains extensible through language
polymorphism. Further, other analyses can use this analysis to perform a subordinate analysis
in one of their steps, such as the checking parts done in the coding convention scenario as
demonstrated in the following.

249

10. Case Studies: Review of the Support for the Desirable Properties

�
1 public class ExpressionCounterCombiner extends LinearizingCombiner implements IExpressionCounter {
2 public ExpressionCounterCombiner(IExpressionCounter... dslDefinitions) { super(dslDefinitions); }
3

4 public int getExpressionCounter() {
5 return dslDefinitions . inject (0) { int partSum, IExpressionCounter ec −>
6 return partSum + ec.getExpressionCounter()
7 };
8 }
9

10 public void reset() { dslDefinitions .each { IExpressionCounter ec −> ec.reset() }; }
11 }
� �

Listing 10.30: A custom combiner for combining the expression counting analyses

Example Scenario – Clean Code Analysis: To implement the checking part, the developer
implements another analyzer that depends on the checking parts. Note that there are two design
choices that can be made for implementing the second part. First, the language developers can
implement this analysis as a partial analysis, since for the analysis only abstraction operators
need to be analyzed. Second, by reusing an existing analysis, part of the implementation can be
reused from existing analyses. Due to the above two design choices, there is less implementation
effort, as demonstrated below.

When implementing several partial analyses for a language, language developers can define
once an empty analyzer that completely implements the language interface, and let partial ana-
lyzers extended the empty analyzer. For example, for COMPLETELOGO, a language developer
can implement the empty analyzer AbstractInterpretationCompleteLogo. This analyzer façade
implements the ICompleteLogo interface with empty keyword methods9. This class has to be im-
plemented only once, and language developers can inherit from the class and inherit its methods
for convenience.

Listing 10.31 presents the implementation of CleanCodeAnalysisCompleteLogo that enforces
that a maximum of 10 expressions in each abstraction operator. To reuse the existing expression
counter analysis, the constructor takes an instance of the corresponding analyzer (exprCounter-
Analyzer10 in lines 2–5). The class inherits from a class AbstractInterpretationCompleteLogo, so
that it does not have to implement the complete language interface. The subclass defines a par-
tial analysis by overriding part of the keyword methods. For checking the coding convention
in COMPLETELOGO, the subclass only has to override the methods for the abstraction opera-
tors turtle and repeat. To enforce a maximum number of nested expressions, these two methods
use the method performSubordinateStepExpressionCounting (cf. lines 21–28), from which the
both methods retrieve the number of nested expressions in the variable exprCnt. Whenever ex-
prCnt exceeds the threshold of 10 expressions, the keyword methods raise an exception (lines 10

9To analyze expressions inside abstraction operators, their keyword methods are not completely empty, but they call
their body.

10At this point, the exprCounterAnalyzer does not commit to a specific language interface. This allows developers
to later combine it with other expression counter.

250

10.6. Enabling Pluggable Analyses

and 17). Finally, the methods propagate the analysis to nested expressions by calling their super
methods that then call the abstraction operators body (lines 11 and 18).

The logic that reuses the expression counting analysis is contained in method performSubordinate-
StepExpressionCounting (lines 21–28). To count nested sub-expressions, this method performs
the following steps. In line 22, it clones the body parameter. Note that it is crucial that a clone
of the closure is created, so that the original delegate of the body is not altered. In line 23, it
resets the counter of the exprCounterAnalyzer. In lines 24–27, this method uses the exprCoun-
terAnalyzer to evaluate the clone of body parameter under the corresponding abstract semantics.
Note that it is crucial, in line 25, that the resolveStrategy of the clone is set to DELEGATE_FIRST
(cf. Section 5.1, p. 118), which changes the dispatch priorities of the closure’s meta-object to
dispatch keyword method calls first to the delegate and then to the owner. This is necessary in
order to define the right semantics for the keyword methods in this step, because setting the right
resolveStrategy enforces that the subordinate analyzer (i.e., the expression counter analyzer) has
a higher priority than the enclosing analyzer (i.e., this) for this step.

�
1 public class CleanCodeAnalysisCompleteLogo extends AbstractInterpretationCompleteLogo {
2 private DSL exprCounterAnalyzer;
3 public CleanCodeAnalysisCompleteLogo(DSL exprCounterAnalyzer) {
4 this .exprCounterAnalyzer = exprCounterAnalyzer;
5 }
6

7 public void turtle (HashMap params, Closure body) {
8 def exprCnt = performExpressionCounting(body);
9 if (DEBUG) println "turtle $params.name: "+exprCnt;

10 if (exprCnt > 10) throw new AnalysisException("Too much expressions in turtle ’$params.name’.");
11 super.turtle (params, body);
12 }
13

14 public void repeat(int n, Closure body) {
15 def exprCnt = performExpressionCounting(body);
16 if (DEBUG) println "repeat: "+exprCnt;
17 if (exprCnt > 10) throw new AnalysisException("Too much expressions in repeat.");
18 super.repeat(n, body);
19 }
20 ...
21 protected int performExpressionCounting(Closure originalBody) {
22 Closure body = originalBody.clone();
23 exprCounter.reset();
24 body.delegate = exprCounterAnalyzer;
25 body.resolveStrategy = Closure.DELEGATE_FIRST;
26 body.call ();
27 return exprCounterAnalyzer.getExpressionCounter();
28 }
29 }
� �

Listing 10.31: Implementation of coding convention analyzer for COMPLETELOGO

251

10. Case Studies: Review of the Support for the Desirable Properties

Listing 10.32 presents the implementation of the coding convention checker for FUNCTION-
AL. Similarly, it only has to override the define (lines 5–9).

Note that, because the two modular coding convention checkers for COMPLETELOGO and
FUNCTIONAL do not have dependencies, the language developers do not have to define a special
combiner for this analysis. CleanCodeAnalysisCompleteLogo and CleanCodeAnalysisFunctional
can be composed using the LinearizingCombiner.�
1 public class CleanCodeAnalysisFunctional extends Interpreter implement IFunctional {
2 ...
3 protected int performExpressionCounting(Closure originalBody) { ... }
4

5 public void define(HashMap params, Closure body) {
6 def exprCnt = performExpressionCounting(body);
7 if (exprCnt > 10) throw new AnalysisException("Too much expressions in function ’$params.name’.");
8 super.define(params.name,body);
9 }

10 ...
11 }
� �

Listing 10.32: Implementation of coding convention checking analyzer for FUNCTIONAL

To apply the coding convention analysis, a developer only needs to compose the above mod-
ular analyses. Listing 10.33 demonstrates how to apply the complete analysis to a program.
In lines 13–14, the setup step uses the ExpressionCounterCombiner to compose instance of
ExpressionCounterCompleteLogo and ExpressionCounterFunctional into one composite analyzer
that can be used for counting expressions. Next, the setup step uses the LinearizingCombiner
to compose instances of CleanCodeAnalysisCompleteLogo and CleanCodeAnalysisFunctional to
which it passes a reference to the composite analyzer for expression counting. This composi-
tion of analyzers is used as the delegate for evaluating the program under abstract semantics.
When evaluating the program in Listing 10.33, the analyzer reports an violation of the coding
convention by function dblsquare (lines 6–8).

Review: To partially answer the question raised by related work whether embedding approaches
allow syntactic analyses [MHS05] and composable analyses [HORM08], the above demonstra-
tion shows that modular, extensible, and composable syntactic analyses can be implemented
using REA and its support for composition. To review the current support, this section puts in
relation what REA provides for embedded languages, what is already available in non-embedded
approaches.

To investigate the general support, several more syntactic analyses have been implemented on
top of the architecture:

Provided Keywords Analysis: A syntactic analysis that analyzes the language interface of
an arbitrary reflective embedding for the keywords the language defines. Internally, this
analysis uses Java reflection [AGH05, FF04] to introspect defined keywords.

252

10.6. Enabling Pluggable Analyses

�
1 Closure program = {
2 turtle (name:"ThreeSquares",color:green) {
3 define(name:"square") {
4 fd 50; rt 90; fd 50; rt 90; fd 50; rt 90; fd 50; rt 90;
5 }
6 define(name:"dblsquare") {
7 fd 50; rt 90; fd 50; rt 90; fd 50; rt 90; fd 50; rt 90; rt 45; fd 50; rt 90; ...
8 }
9 apply("square")();

10 apply("dblsquare")();
11 }
12 }
13 IExpressionCounter exprCntr = new ExpressionCounterCombiner(
14 new ExpressionCounterCompleteLogo(),new ExpressionCounterFunctional());
15 program.delegate = new LinearizingCombiner(
16 new CleanCodeAnalysisCompleteLogo(exprCntr),new CleanCodeAnalysisFunctional(exprCntr));
17 program.call (); // will raise an exception
� �

Listing 10.33: Applying the coding convention analysis

Used Keywords Analysis: A syntactic analysis that analyzes an arbitrary DSL program for
the keywords that the program uses. Internally, this analysis defines an analyzer as a
meta-façade that implements MOP methods, such as methodMissing, in order to look up
keywords.

Syntax Checker: A syntactic analysis that checks whether the abstract syntax of a DSL pro-
gram is syntactically correct for a certain language or language composition. Internally,
this analysis uses the provided keywords analysis to determine all available keywords.
Then, it checks with the used keywords analysis whether all keyword used in the program
are defined. Note that, the syntax checker provides more guarantees for programs than
the default Groovy parser. The default Groovy parser cannot detect such errors, since it
accepts every expression type in abstract syntax, which constitutes a legal method call.

To review pluggable syntactic analyses, one can investigate their support for possible evolu-
tions and compare it to relate work, such as (1) extending analyses, (2) binding time, (3) com-
posing analyses, and (4) generalizations of analyses:

(1) Extending Analyses: Obviously one can conclude from extensibility of façades reviewed
in Section 10.1 that analyzers are extensible. Developing polymorphic analyzers is possible,
since every expression type in abstract syntax yields a method call that the language polymor-
phism mechanism dispatches. Instead of dispatching to one closed analyzer façade, language
polymorphism dispatches these method calls to the most concrete analyzer. The architecture’s
analysis model is based on polymorphic method calls—a key property that leverages the flex-
ibility for (syntactic) analyses. Since each expression type casts on one specific signature, the
meta-objects of a program’s closures can create method call from them. Since each expres-

253

10. Case Studies: Review of the Support for the Desirable Properties

sion is dynamically dispatched as a method call, polymorphism provides type guarantees when
extending analyzers by more specific ones.

(2) Binding Time: In REA, developers can plug analyses to their programs at any time. Be-
cause dispatch only takes into account an expression’s signature, but not the type of the analyzer
that receives the call, developers can dynamically plug various syntactic analyses on the same
program representation. The use of a dynamic language is crucial to enable dynamically plug-
gable analyses. The architecture’s program representation based on abstract syntax and dynamic
syntax-to-semantic binding leads to this loose coupling.

(3) Composing Analyses: Developers can compose several independent analyses (e.g., where
each of them analyzes one of several independent languages). Second, because method calls
can be delegated to combiners, several syntactic analyses can by combined from modular anal-
yses. The language developer can compose analyzer façades like composing the default façades
with execution semantics. While it is problematic to add new expression types into an AST,
in the reflective architecture new expression types can be mixed in easily using the language
combiners.

However, it remains unclear so far, how several analyses decompose at their fix points, as it is
usual in non-embedded approaches. Although it is possible to extend existing combiners, it is not
a feasible solution for developers to implement a custom combiner with complex composition
logic for each new combination of analyses.

(4) generalizations of analyses: Although the analysis model is similar to traversing an AST,
since method calls in the architecture’s analysis model are intercepted by the meta-level, this
leverages more flexibility for syntactic analyses. While ASTs are generally bound to specific
languages, thanks to the presence of the meta-level in the architecture, generic analyses can be
implemented that can analyze several languages. For example, a generic analyzer can count
expression for arbitrary embedded languages, which basically implements methodMissing and
propertyMissing and increases the counter, whenever the MOP intercepts an arbitrary keyword
method call and executes one of these methods. By implementing such a generic analyzer with
a meta-level, one can intercept method calls to the façade using the MOP. Instead of executing
concrete methods to calculate the analysis, the MOP can answer the calls directly via a meta-
interpretation, or it can dispatch the calls to other methods.

While the above results are very encouraging, it remains unclear whether REA supports im-
plementing complicated context-specific syntax analyses and backward analyses, which is a
possible direction of future work (syntactic analyses:G).

10.6.2. Semantic Analyses
Section 3.6.2 (p. 58) has motivated evaluating programs under abstract semantics in order to

determine semantic properties of programs. Therefore, this section elaborates how to implement
semantic analyses as language façades that calculate semantic properties. To semantically ana-
lyze programs of a language, a language developer can define new alternative semantics from its
expression types to any abstract domain.

254

10.6. Enabling Pluggable Analyses

Example Scenario: Reconsider validating a semantic contract for FUNCTIONALLOGO pro-
grams by checking a domain-specific constraint that requires that a Logo program (e.g., List-
ing 3.14) may use only positive integer values as parameters to Logo’s move commands, as
motivated in Section 3.6.2. To calculate this semantic analysis, one does not have to actually
execute the program, but one can perform an abstract interpretation that analyzes several facets
of the program. Whereby developers can implement the analysis of each independent facet in
isolation and compose those partial analyses later on.

There are several facets that are relevant for this analysis: (1) it needs to execute the semantics
of variables with the scoping strategy, (2) it needs to calculate arithmetics (e.g., mathematical
operations like “+” and “-”) to determine the runtime values of variables used as parameters,
(3) it needs to analyze functions, and (4) it needs to check each move command for semantic
constraints. While certain facets of the semantic analyses are rather concrete others are rather
abstract.

For the analysis, the first three facets are concrete without abstract semantics. Because it
has to calculate the results of arithmetic operations of integers and variables, the analysis needs
to calculate the scope and value of the used variables. Indeed, this section demonstrates that
one can reuse concrete semantics for implementing part of the analysis, namely to analyze the
semantics of variables and to calculate arithmetics. Further, it shows that one only needs to newly
implement the part of the analysis that provides abstract semantics for checking the constraint
as demonstrated below.

First, a developer can completely reuse the dynamically-scoped variable semantics from Sec-
tion 10.5.1. For this facet of the analysis, the developer can reuse the implementation of Environ-
mentInterpreter with DYNAMIC_SCOPING.

Second, thanks to homogeneous embedding in Groovy, the developer can reuse the host lan-
guage mathematical operations for determining the values resulting from arithmetic calculations
in FUNCTIONALLOGO. For this facet, the developer does not need to implement a special
façade.

Third, the developer can reuse the concrete semantics of FUNCTIONAL to analyze functions.
For this facet, the developer can reuse the implementation of Functional from Listing 5.10.

Forth, the developer needs to implement an analyzer with abstract semantics for checking the
constraint. Consider implementing an abstract interpretation that raises an exception, whenever
a negative value is passed to one of the move commands. For this, the developer implements
the class PositiveValueAnalysisCompleteLogo inherits the empty abstract semantics from its super
class AbstractInterpretationCompleteLogo (cf. Section 10.6.1). To check the constraint, the class
only overrides the move operation. The overridden implementations only throw an exception in
case the corresponding parameter has a negative value, otherwise move commands are just ig-
nored. This analyzer abstracts over the concrete integer values processed by the move operations
and only interprets negative values as errors.

Finally, the developer composes the four independent facet of this semantics analysis. Whereby
technically, there is no difference between the composing concrete and abstract domains. As
long as their domains are conflict free, the developer can use one of the existing language com-

255

10. Case Studies: Review of the Support for the Desirable Properties

�
1 class PositiveValueAnalysisCompleteLogo extends AbstractInterpretationCompleteLogo {
2 public void forward(int n) { if (n < 0) throw new AnalysisException("n=$n to fd is negative."); }
3 public void backward(int n) { if (n < 0) throw new AnalysisException("n=$n to bd is negative."); }
4 public void right (int a) { if (a < 0) throw new AnalysisException("a=$a to rt is negative ."); }
5 public void left (int a) { if (a < 0) throw new AnalysisException("a=$a to lt is negative ."); }
6 }
� �

Listing 10.34: Semantic analysis for COMPLETELOGO (abstract semantics)

biners to compose the facets of the semantic analysis. Consider Listing 10.35 that compose the
analyzers to semantically analyze a program. First, in lines 13–16, the program composes a
composite semantic analyzer from instances of the above partial analyzers that analyze only
their facet. When evaluating the EDSL program (lines 1–12), the composite semantic analyzer
successfully detects the semantic error in line 11.�
1 Closure program = {
2 define(name:"hexagon") { length −>
3 turtle (name:"hexagon",color:red) {
4 repeat (6) {
5 forward length
6 right 60
7 }
8 }
9 }

10 i = 100
11 apply("hexagon")(50−i) //it detects the semantic error in this line
12 }
13 EnvironmentInterpreter env = new EnvironmentInterpreter();
14 env.scopingStrategy = EnvironmentInterpreter.DYNAMIC_SCOPING;
15 program.delegate = new LinearizingCombiner(
16 new PositiveValueAnalysisCompleteLogo(), env, new Functional());
17 program.call (); // will raise an exception
� �

Listing 10.35: Applying the semantic analysis for Listing 3.14

Review: In the architecture, semantic analyses have the same qualities w.r.t. extensibility and
composability as syntactic analyses. In the above scenario, the developer could reuse existing
semantics and implement new facets of semantics as separate modules.

To investigate the general support, several more semantic analyses have been implemented on
top of REA:

Position Tracker Analysis: A semantic analysis for FUNCTIONALLOGO that calculates the
position of a turtle after executing all COMPLETELOGO commands inside a function body.
The abstract domain is the 2D vector space. Internally, without drawing on a canvas, the
position tracker calculates the relative position after each drawing command in the func-
tion’s body. The result of this analysis is a relative position to the current position, and

256

10.6. Enabling Pluggable Analyses

Figure 10.2.: Illustration of the position tracker analysis

a relative rotation to the current orientation. With the information of this analysis, the
drawing of a function can be skipped. For example, Figure 10.2 illustrates the calcula-
tions of the position tracker analysis for an example. Initially, the turtle is at position (x =
−4000, y = 5000) and has an orientation of α = 135◦. It calls a function with the fol-
lowing commands: fd 2828;lt 90;fd 2828;rt 90;fd 2828;lt 90;fd 2828;lt 90;fd 2828;rt 10;fd 2828;.
In Figure 10.2, index a presents the turtle at its initial position, index b shows the turtle at
the final position after drawing the function, index c shows the relative path of the turtle
to skip the function application. To skip painting the function, the turtle must execute the
commands: (i) forward 0: to goto relative position y = 0, (ii) left 90; forward 8485; right
90: to goto relative position x = 8485, and (iii) right 180: to turn to relative orientation
α = −180◦ ≡ 180◦.

Time Estimation Analysis: A semantic analysis for FUNCTIONALLOGO estimates the amount
of time to draw a complete turtle program or only a function with a sequence of com-
mands. The abstract domain is the absolute time unit in ticks. Internally, for each FUNC-
TIONALLOGO command, the analysis assumes a constant number of time units to draw it.
The time estimation integrates over the complete program, without drawing, and sums up
the estimates time per command. The result of this analysis can be used to estimate the
cost to draw a function or FUNCTIONALLOGO program.

The above analyzes demonstrate the feasibility of implementing simple semantic analyses for
DSLs. For the COMPLETELOGO keywords, implementing a complete semantic analysis is not a
problem, since the analyzer can map expressions straight-forward to the abstract domain. Even,
repeat expressions are no big problem. Since the number of iterations in COMPLETELOGO’s
repeat is constant and not based on a dynamic condition, the analyzer can easily map them to the
abstract domain. However, for the FUNCTIONAL semantics, the above analysis implementation
is not a complete and sound abstract interpretation, since the current implementation disregards
recursive function calls. Loops and recursion are a general problem for such analyses that is
extensively discussed in the literature [CC77, Cou96]. In the presence of loops and recursion,
generally, analyses need to use fix points to abstract over loops and recursive calls. Still, im-

257

10. Case Studies: Review of the Support for the Desirable Properties

plementing sophisticated abstract interpretations with fix points, it is out of the scope of this
thesis.

While the above results are very encouraging, it remains unclear whether REA supports imple-
menting complicated semantic analyses that are composed at fix points and backward analyses,
which needs to be addressed in future work (semantic analyses:G).

10.7. Enabling Pluggable Transformations
With language polymorphism and transformer façades, language developers can define cus-

tom transformations, as these have been motivated in Section 3.7 (p. 59). Similarly to an analyzer
façade, the transformer first generates objects of a language model from expressions of a pro-
gram. Then, it analyzes these objects, and finally transforms the model to an output model or to
target code. Compared to most other transformation approaches, what is special with transfor-
mation in REA is that original expressions and transformed expressions are first-class method
calls in the host language. It is this property that all expressions are polymorphic method calls
that enables extending and composing transformations with the REA’s mechanisms.

In REA, language developers can embed transformations as first-class objects. What is special
in REA, it that it supports both exo- and endo-transformations (cf. Section 3.7, p. 88). There-
fore the developer has the choice whether to endo-transform on the causally connected program
representation or to exo-transform the program to another target language with a textual repre-
sentation that is not causally connected.

In the following, this section demonstrates how language developers can implement both static
and dynamic pluggable transformations.

10.7.1. Support for Static Transformations
As discussed in Section 3.7.1 (p. 60), static transformations can either take into account syn-

tactic or semantics information of the program.

10.7.1.1. Syntactic Transformations
REA supports transforming expressions in abstract syntax, which are represented as method

calls, by transforming these method calls to alternative method calls that represent different
expressions in abstract syntax.

Example Scenario: Reconsider implementing the desugarizing transformation from Sec-
tion 3.6.2 (p. 58) that replaces user-defined command expressions in FUNCTIONALLOGO by a
corresponding function applications, such as the expression “hexagon 50” is mapped to a func-
tion call apply("hexagon")(50).

Consider implementing this transformation by adding a meta-level extension to FUNCTION-
AL. Since the transformation for shortcut applications of functions is not only relevant for FUNC-
TIONALLOGO, but generally interesting for FUNCTIONAL, one can modify the Functional façade
with an inline meta-level, which turns the class Functional into a transformer/meta-façade and
completes the excerpt of its implementation from Listing 5.10. To transform user-defined com-
mand expressions to function calls, the meta-façade intercepts every usage of a user-defined
command expression and transforms it to a function application. To intercept user-defined

258

10.7. Enabling Pluggable Transformations

command expressions that cast on method calls to the meta-façade, the meta-façade overrides
methodMissing (lines 8–14). Since the façade cannot define concrete methods for each user-
defined command expression, it uses the methodMissing method to reify every method call to a
pretended method. It analyzes the reified information of such a call in order to determine the
abstract syntax of the user-defined command expression of which this call was created from.
It uses the methodName to look up the corresponding function (line 9). If a function with a
corresponding name is defined, methodMissing applies this function using the reified parameter
as parameter to the function (line 10) and returns its result. If no function is defined, method-
Missing calls its super method, which by default will raise an exception that an undefined method
is called.�
1 class Functional extends Interpreter implements IFunctional {
2 HashMap<String,Closure> definedFunctions = new HashMap<String,Closure>();
3

4 void define(HashMap params, Closure body) { ... /* code from Listing 5.10 */ }
5

6 Closure apply(String name) { ... /* code from Listing 5.10 */ }
7

8 Object methodMissing(String methodName, Object args) {
9 if (definedFunctions.get(methodName) != null) {

10 return apply(methodName).call(*args);
11 } else {
12 return super.methodMissing(methodName, args);
13 }
14 }
15 }
� �

Listing 10.36: Completed implementation of FUNCTIONAL from Listing 5.10

To evaluate programs, the meta-façade with the transformation is set up in the same way as
a normal façade. When evaluating a program and encountering user-defined command expres-
sions, such as hexagon 50 from Listing 5.10, the code block’s meta-object produces a method
call for the user-defined command to the meta-façade. Then, the methodMissing will loop back
the transformed version of the method call to itself, e.g., it calls apply("hexagon"), that returns a
closure. The subsequent evaluation then applies the returned closure with the parameters from
the original call, e.g., 50.

Review: To generally review the support for static transformations, it is important to investigate
a potential transformation w.r.t. (1) what language it transforms to, (2) whether it abstracts over
concrete expression types, (3) the locality where programs are transformed, and (4) how trans-
formations can rewrite expression types. In the following, this section elaborates each point.

First, the architecture distinguishes a transformer w.r.t. what target language it transforms ex-
pressions to. When a transformation is an exo-transformation from one language to a completely
different language, a developer needs to implement a completely new façade class and language
model for the transformer. Conversely, when the transformation is an endo-transformation, then

259

10. Case Studies: Review of the Support for the Desirable Properties

the transformer can be implemented as an extension to an existing language façade, which reuses
part of the language model.

Second, the architecture distinguishes a transformer w.r.t. if it can abstract over concrete ex-
pression types. When it only transforms one concrete expression type, the developer needs to
provide a concrete keyword method implementation for this expression type’s signature in the
transformer façade. When it transforms several expression types in a similar way, the developer
needs to implement a meta-method or meta-object to realize a meta-transformer façade. Either,
one of the inline meta-methods can be overridden, such as invokeMethod or methodMissing, or a
separate meta-object with a corresponding implementation can be implemented for the façade
or a domain type in its model.

Third, the architecture distinguished local and global transformations. Local transformations
need to rewrite one concrete expression into another concrete expression (like a rewrite/trans-
formation rule). Therefore, the developer can implement a local transformation as a concrete
method in the transformer façade, whereby the transformer can ignore the enclosing lexical
context of the expression. This method receives an original expression’s method call and ma-
nipulates it to a corresponding transformed call. Conversely, global transformations need to
quantify over multiple expression types and rewrite them according to a certain strategy (like
traversal functions [Cor06] or strategies [Vis97b]). Therefore, the developer needs to imple-
ment a keyword method that takes into account its context, which can either be extracted from
the internal state of transformer or inspected from the stack. Global transformations on several
expression types are enabled, when a transformer façade implements a meta-method, such as
methodMissing() or invokeMethod(). To allow abstracting over expression types in abstract syn-
tax, these meta-methods allows intercepting several calls to the keyword methods in abstract
syntax.

Fourth, in REA, every expression type in abstract syntax can be transformed via the method
call it produces. A meta-transformer façade receives this method call and produces another
method call, which again represents an arbitrary expression in abstract syntax. In the transfor-
mation, the meta-transformer uses reflection to transform method calls on the façade or inside
its model. Using introspection, it can analyze the embedded source and the target languages.
Using intercession, it can manipulate the call method name and parameter and receiver. Finally,
the possibly repetitively manipulated expressions can be reflected back into the system.

If syntactic transformation in REA are feasible, still, the developer can use TIGERSEYE/REA
pre-processor to transform it in an appropriate form (syntactic transformations:).

10.7.1.2. Semantic Transformations

REA supports transforming a program’s semantics by manipulating the receivers and param-
eters of method calls.

Example Scenario: Reconsider implementing OPTIMIZINGLOGO that optimizes applications
of functional abstractions by transforming them such that these expressions are executed in paral-
lel. Since this transformation does not transform to another language, it is an endo-transformation.

260

10.7. Enabling Pluggable Transformations

To implement OPTIMIZINGLOGO, a language developer needs to implement a new paral-
lelizing transformation that transforms function applications. Listing 10.37 presents an excerpt
of the OptimizingLogo class that implements this transformation. This endo-transformer executes
FUNCTIONALLOGO code and transforms the code for optimization. For optimization, the trans-
former needs to specialize the semantics of functions, so that functions are optimized. Therefore,
in line 1, the OptimizingLogo class inherits from ConcurrentLogo in order to reuse the semantics of
CONCURRENTLOGO for implementing ICompleteLogo, and in addition, it reimplements IFunc-
tional in order to specialize the semantics of its FUNCTIONAL part.

To parallelize the semantics of functions, first and foremost, the OptimizingLogo façade over-
rides the method apply (Listing 10.37, lines 3–41) to transform function applications. To trans-
form a function application, there are several tasks to accomplish in order to replace a direct
function application by a parallelized one. The transformation looks up the called function
(line 5) and clones this (line 6). It looks up the first-class representation for turtle of the cur-
rent thread (tTurtle in line 9). It wraps the original function into a closure (wrappedFunction in
lines 12–39) that will parallelize the call.

The wrapped closure (Listing 10.37, lines 12–39) transforms a wrapped function application
as follows. It delegates the tasks of executing the function from the original turtle (i.e., tTurtle)
that calls the function to a new turtle that is called delegateTurtle (cf. lines 22–30). Internally, it
uses the position tracking analysis to calculate the relative position the original turtle would have
after itself would paint the function. It also stores the old position of the original turtle (line 18).
It creates the delegateTurtle, which will go to the original turtle’s old position (lines 13–16), and
which then will call the function for the original turtle. Knowing that the delegate will take care
of calling the function, the original turtle can skip the function call by moving to the relative
position obtained by the position tracking analysis (lines 32–36). Finally, instead of returning
the function itself, the apply method returns the wrapped closure that will parallelize the function
application when the optimize function is applied (line 40).

When evaluating a program that is written with only one turtle, the OptimizingLogo can par-
allelize and therefore speed up its execution. For example, Listing 10.38 shows an example
program that only defines one turtle (lines 3–12), and therefore it would be executed, e.g., by
ConcurrentLogo in only one thread. In contrast, when using OptimizingLogo to evaluate the same
program, the transforming façade parallelizes the program to speed it up.

Figure 10.3 compares the sequential to the parallel execution of the same program. While
the left figure illustrates an execution with ConcurrentLogo with only one turtle (“IceFlower”),
the right side illustrates executing the same program with OptimizingLogo, which create four
additional turtles (“Opt#polygonX”) that paint the blossoms of the flower in parallel.

Note that in this example optimization, there are several assumptions that hold for the sce-
nario of controlling a fleet of physical turtle robots, as motivated in Section 10.7.2. First, in
the example scenario, there are fixed time constants11 to execute a certain move operation of a

11In the simulation of optimizing the move operation of physical turtles, forward and backward take 2 time units
per steps to move, and left and right take 1 time unit per degree.

261

10. Case Studies: Review of the Support for the Desirable Properties

�
1 class OptimizingLogo extends ConcurrentLogo implements ICompleteLogo, IFunctional {
2 ...
3 public Closure apply(String name) {
4 if (! definedFunctions.containsKey(name)) throw ...
5 Closure function = definedFunctions.get(name);
6 def functionForWrapper = function.clone();
7 ...
8 Thread thread = Thread.currentThread();
9 Turtle tTurtle = threadToTurtle.get(thread);

10

11 // calculating position after drawing the turtle
12 Closure wrappedFunction = { Object... args −>
13 def positionTracker = new PositionTrackingLogo(); // calculate position after drawing the function
14 functionForWrapper.delegate = positionTracker;
15 functionForWrapper.resolveStrategy = Closure.DELEGATE_ONLY;
16 functionForWrapper(*args); // position tracking (the *−operator resolves args as parameters of the call)
17

18 int oldX = tTurtle . position .x; int oldY = ...; int oldAngular = ...;
19

20 // create new concurrent turtle that draws the function
21 def delegateTurtle = super.turtle (name:("Opt#"+(tTurtle.name+(count++))),
22 color :(tTurtle .penColor.value)) {
23 penup(); // set up delegate turtle to current position of original turtle
24 fd oldY; // (i) bring delegate turtle in y position of original turtle
25 rt 90; fd oldX; lt 90; // (ii) bring delegate turtle in x position of original turtle
26 rt oldAngular; // (iii) bring delegate turtle in orientation of original turtle
27 pendown();
28

29 functionForWrapper.call(*args); // (the *−operator resolves args as parameters of the call)
30 }
31

32 penup() // set up original turtle to relative position after painting the function
33 fd positionTracker .deltaY // (i) bring delegate turtle in new y position
34 rt 90; fd positionTracker .deltaX; lt 90 // (ii) bring delegate turtle in new x position
35 rt positionTracker .deltaAngular // (iii) bring delegate turtle in new orientation
36 pendown()
37

38 return delegateTurtle;
39 }
40 return wrappedFunction;
41 }
42 ...
43 }
� �

Listing 10.37: Excerpt of the OPTIMIZINGLOGO transformer façade

turtle that is controlled by the program. The execution of the entire program is finished, after all
remote turtle robots have finished their drawings. Second, it assumes that there is no data flow
or side effects between functions. Scheduling and isolating multiple threads of execution is a
complicated problem that is out of the scope of this thesis.

Review: Thanks to the flexibility that a transformer façade has access to the first-class repre-
sentations of the program expressions, it can transform the program. The example optimization

262

10.7. Enabling Pluggable Transformations

�
1 Closure singleTurtleProgram = {
2 define(name:"polygon") { int length, int edges −> ... }
3 turtle (name:"IceFlower",color:blue+green) {
4 edges = 4; length = 50; angle = (int)(360 / edges);
5 halfAngle = (int)(angle / 2); halfLength = (int)(length / 2);
6 right 45;
7 repeat (edges) {
8 forward length; left (90−halfAngle); forward halfLength; //paint peduncle
9 left (90−halfAngle); polygon(halfLength,edges); right(90−halfAngle); //adjust for blossom

10 backward halfLength; right(90−halfAngle); right angle;
11 }
12 }
13 }
14 singleTurtleProgram.delegate = new OptimizingLogo();
15 singleTurtleProgram.call ();
� �

Listing 10.38: Using OptimizingLogo to optimize a program with only one turtle

(a) Sequential execution with
ConcurrentLogo

(b) Parallel execution with Op-
timizingLogo

Figure 10.3.: Comparison of sequential and parallel execution of Listing 10.38

implemented is a very simple one, but more sophisticated transformations are conceivable. De-
spite this, there are practicable limitations. Although only static information is accessed, in
REA, transformations must be actually performed at runtime. Performing a static transforma-
tion at runtime is rather awkward, since there are costs that are associated with the optimization
itself that may slow down the execution. From the perspective of the cost of the transformation,
it is disadvantageous that the static transformation is performed dynamically. Still, the concrete
example scenario the runtime overhead is no problem, since the bottleneck to be optimized is
greater than this overhead.

To review the support for parallelization in OPTIMIZINGLOGO, execution times of List-
ing 10.38 with and without parallelization were measured. Figure 10.4 illustrates how Optimi-
zingLogo delegates the function applications of the “IceFlower” turtle to its delegate turtles. The
first line illustrates the program execution by a single turtle, as the program would be painted
without transformation. The second line illustrates the paint operation by the original turtle,
which delegates painting the blossoms to its delegate turtles. The third line illustrates the paint

263

10. Case Studies: Review of the Support for the Desirable Properties

Figure 10.4.: Parallelization through delegating function calls to delegate turtles

operations by all delegate turtles. In numbers in the lower right corner of the boxes indicate the
time that was measured for each snapshot. For this experiment, there is a measured speed up of
Sp = T1

Tp
= 1.586, which was calculated from the sequential execution time T1 = 5.263 (right

most figure in upper line) and the parallel execution time Tp = 3.318 (right most figure in lower
line).

REA does not target for high-performance optimizations, but for maximum flexibility. Still, if
high-performance optimizations are required by a language, the language developer can imple-
ment a transformer façade that transforms first-class expression and finally generates the trans-
formed code. The developer then can compile the generated code using the Groovy compiler or
another compiler, depending on the target language. In this case, the costs of the transformation
must not be paid at runtime. For example, in REA, there is a generator that embeds a first-class
representation of SQL expressions in Groovy and generates SQL queries. A language developer
could extend this generator to write transformations on SQL queries.

Despite this, in the end, it is expected that the current implementation of REA in Groovy is
not suitable for high-performance optimizations, in particularly, because there is a large exe-
cution overhead due to indirections of the Groovy MOP (e.g., for every method call, for auto-
boxing primitive values, and for arithmetic operations). In case, there are hard performance
requirements, it would be recommended to re-instantiate REA in a compiled language where
the compiler can remove the MOP indirections, such as CLOS.

While the above results are very encouraging, it remains unclear whether REA supports tradi-
tional semantic transformations, as they are supported by compilers. Usually such transforma-
tions need access to the basic-block level, such as loop unrolling. In the current implementation
of REA in Groovy, reflecting on the basic-block level is currently not addressed, and therefore,
it needs to be addressed in future work (static transformations:G).

264

10.7. Enabling Pluggable Transformations

10.7.2. Support for Dynamic Transformations

Section 3.7.2 (p. 62) has motivated dynamic adaptive optimizations for DSLs. Therefore, con-
sider implementing such adaptive optimizations using a dynamic transformation of which the
optimization decision depends on the runtime context.

Example Scenario: Reconsider implementing the dynamic transformation AdaptiveOptimizing-
Logo motivated in Section 3.7.2 (p. 62) that takes into account whether it is worth optimizing
function applications. Listing 10.39 shows an excerpt of the implementation of this transfor-
mation. It overrides the apply keyword method to wrap function applications into a closure
(lines 6–19). Before optimizing a function application, in line 7, the wrapping closure estimates
the cost (i.e., baseCost) for drawing the wrapped function. This cost estimation needs to take
into account the function’s dynamic arguments, which are obtained from the parameters to the
wrapped closure args. Next, in line 8, it calculates the potential initialization costs (i.e., initCost)
to bring a delegate turtle from position (x = 0, y = 0) to the position of the original turtle. After
estimating the costs, in line 10, there is the optimization decision that depends on the dynamic
condition, since the actual costs depend on the current position of the turtle and the parameters to
the function call. The transformation only optimizes the program, when the condition is met that
the potential saving (of the costs to draw the function) exceeds the costs for starting a potential
new turtle. After the decision, in case the decision was to optimize the corresponding function
application, the optimizer calls the apply of the super class OptimizingLogo. Otherwise, it calls
the non-optimized function.

�
1 class AdaptiveOptimizingLogo extends OptimizingLogo {
2 ...
3 Closure apply(String name) {
4 Closure function = functionNamesToClosure.get(name).clone();
5

6 Closure wrappedFunction = { Object... args −>
7 int baseCosts = ... // estimate time to draw function with time estimation analyses (cf . Section 10.6.2)
8 int initCosts = ... // calculate time for a delegate turtle to goto (x,y) position
9

10 if (baseCosts > initCosts) {
11 // returning the optimized function
12 Closure optimizedFunction = super.apply(name).clone();
13 return optimizedFunction.call (*args);
14 } else {
15 // returning the non−optimized function
16 return function . call (*args);
17 }
18 }
19 return wrappedFunction;
20 }
21 }
� �

Listing 10.39: Excerpt of the AdaptiveOptimizingLogo transformer façade

265

10. Case Studies: Review of the Support for the Desirable Properties

Review: Thanks to the flexibility that one can dynamically transform the first-class representa-
tions of program expressions at runtime, an adaptive optimization could be implemented using
an endo-transformation that transform a program while it executes. Indeed, the above optimiza-
tion implements an on-line feedback system [AFG+00].

Note that there can be also costs associated with having such a feedback system at runtime.
Still in this scenario, the computation costs of the adaptive optimization’s on-line feedback sys-
tem [AFG+00] that calculates the optimization decision takes far less time to compute, compared
to performing the move operations of the turtles.

While the computing time for an analysis performed at runtime is such as that it assumes that
there are always enough resources. In contrast, parallelizing the physical moves can lead to a
speed up in magnitudes, depending on the concrete program and number of available robots.

For example, to determine the execution times, one can perform an abstract interpretation
or measure sample executions at runtime. Both analyses come with certain costs – either for
executing the abstract interpretation or the overhead of collecting samples at runtime. Further,
there are costs due to the transformation of the program. With an adaptive optimization, it is
important to make sure that the costs of the feedback system and performing the optimization
do not actually exceed the potential savings.

While dynamic transformations are technically supported in REA, when programs use such
transformations, it poses a constant overhead for their execution. Currently, REA does not ad-
dress partial evaluation and optimization of dynamic analyses. Optimizing dynamic analyses is
required for acceptable performance of programs. It therefore needs to be addressed in future
work (dynamic transformations:G).

10.8. Review Result
Table 10.3 presents a detailed results of this review and compares it to related work. The right

most column shows the marks of REA’s support for the desirable properties. The results are
presented in comparison with the qualities by related embedding approaches at the left-hand
side. REA has support fully support for the properties, except the mentioned limitations with
implementing analysis and transformation.

266

10.8. Review Result

Table 10.3.: Comparison with related embedding approaches

Desirable Property (I: par-
tial support,G: important limi-
tations, : full support)

Pu
re

E
m

be
d.

[H
ud

96
]

Ta
gl

es
s

E
m

be
d.

[C
K

S0
9]

U
ne

m
be

dd
in

g
[A

LY
09

]
Ja

rg
on

s
[P

es
01

]
E

D
SL

G
ro

ov
y

[K
G

07
]

E
D

SL
R

ub
y

[T
FH

09
]

Tw
is

te
R

[A
O

10
]

π
Pa

tte
rn

L
an

g.
[K

M
09

]
H

el
ve

tia
[R

G
N

10
]

St
ag

ed
In

te
rp

r.
[C

O
ST

04
]

E
xt

.M
et

a-
Pr

og
.[

SC
K

04
]

C
on

ve
rg

e
[T

ra
08

]
Fl

ue
nt

[E
va

03
,F

ow
05

]
E

M
F2

JD
T

[G
ar

08
]

Sc
al

a
E

D
SL

[O
SV

07
]

Po
ly

m
or

ph
ic

[H
O

R
M

08
]

E
m

be
d.

G
en

.[
K

am
98

]
E

m
be

d.
C

om
pi

le
r[

E
FD

M
03

]
R

ub
y

G
en

.[
C

M
07

]
M

et
aB

or
g

[B
V

04
]

T
X

L
[C

or
06

]
R

efl
ec

tiv
e

E
m

be
d.

(R
E

A
)

3.1. Extensibility I I I I G G G G I I I I I I I I I I I I I
3.1.1. New Keywords G G I G I I I G G G G G
3.1.2. Semantic Extensions I I I I G G G G I I I I I I I I I
3.1.2.1. Conservative Extensions I G G G G I I G G G I I
3.1.2.2. Semantic Adaptations G G G G I I
3.2. Composability of Languages I I I I I I G I I I I
3.2.1. Languages without Interactions G G
3.2.2. Languages with Interactions I I I I I I G
3.2.2.1. Syntactic Interactions G G I I I G G
3.2.2.2. Semantic Interactions I I I G
3.3. Composition Mechanisms I I I I I I I I I I I I I
3.3.1. Syntactic Interactions G G I I I I I I I G G I I
3.3.1.1. Conflict-Free Compositions G G G I G G G G G
3.3.1.2. Resolving with Renaming G G G G G G G G G
3.3.1.3. Resolving with Priorities G G G G G G
3.3.2. Semantic Interactions I I I I
3.3.2.1. Crosscutting Composition G G I
3.3.2.2. Resolving Composition Conflicts I G
3.4. Concrete Syntax I
3.4.1 Concrete-to-Abstract I I G
3.4.2 Mixfix Operators I I I I I I I I I I I G G I I I
3.4.3. Overriding Host Keywords
3.4.4. Partial Syntax
3.5. Pluggable Scoping I I I I I
3.5.1. Dynamic Scoping I I I
3.5.2. Implicit References
3.5.3. Activation of Constructs I I I I
3.6. Pluggable Analyses I G G I I I I G I I G G G
3.6.1. Syntactic Analyses I G G I I I I G I I G
3.6.2. Semantic Analyses I G G I I I I G I I G G G
3.7. Pluggable Transformations I I I I I I I I I G
3.7.1. Static Transformations I I I G G I I G G G
3.7.1.1. Syntactic Transformations I I I G G I I G G
3.7.1.2. Semantic Transformations I I I G G I G G G
3.7.2. Dynamic Transformations I G

267

10. Case Studies: Review of the Support for the Desirable Properties

10.9. Summary
This section has evaluated the quality of the support for language evolution of the reflective

embedding architecture. REA has an excellent support for five of the seven desirable properties:

1. REA supports extensibility.

2. REA supports composability.

3. When existing extensibility or composability mechanisms are inadequate, REA allows to
define new appropriate mechanisms on top of existing open composition mechanisms.

4. With the generic TIGERSEYE pre-processor, REA supports also incrementally and par-
tially defined concrete syntax for embedded DSLs.

5. REA supports pluggable scoping to allow different scoping than the host language.

6. Although REA support modular, composable, and pluggable analyses for different lan-
guages, it remains to be shown whether REA supports composition of analyses with fix
point semantics.

7. There is support for pluggable transformations, but it remains to be shown how traditional
compiler analyses can be implemented and how the runtime overhead of dynamic analyses
can be improved.

With the above support for the desirable properties, REA is readily equipped for language evo-
lution.

268

11. Costs of Reflective Embedding

This chapter measures the costs of reflective embedding and compares them with the costs of
related work.

Benchmarks for GPLs are broadly available for comparing mainstream languages, such as
the SPECjvm2008 benchmark1 for Java. Unfortunately, there are no sophisticated benchmarks
for DSLs [KLP+08]. Even for standard DSLs that are broadly used in industry, such as the
BPEL workflow language [AAB+07], there are currently no benchmarks available. Having
a benchmark for DSLs would be interesting, because it would allow comparing the costs of
different DSL approaches.

An open source benchmark for DSLs: To address the lack of a DSL benchmark, in the
context of this thesis, an open source benchmark was implemented that compares different
DSL technologies. The thesis uses this benchmark to compare related DSL implementation
approaches—also approaches that are not based on embedded DSLs. The basic idea of the
open source benchmark is to implement the same DSL with different technologies and then to
compare the qualities of these resulting DSL implementations.

To compare the costs of the different DSL technologies, the benchmark’s experiment is always
to implement the same DSL2 with different technologies. Instead of comparing only embedded
DSL approaches, the benchmark compares also to traditional DSL approaches that are popular
and/or often mentioned in related work. Each selected approach is a representative of a certain
category of technologies for DSL implementation in related work. The benchmark compares the
following categories of DSL approaches:

(1) parser generators: Bison/C [LMB92], ANTLR/Java [Par93];

(2) extensible DSLs: MontiCore/Java [KRV08];

(3) embedded DSLs: DSL2JDT/Java (homogeneous) [Gar08]; MetaBorg/Stratego (heteroge-
neous) [BV04]; REA/Groovy (homogeneous); TIGERSEYE/Groovy (hybrid)

(4) commercials-of-the-shelves: Apache SCXML3.

1SPECjvm2008: http://www.spec.org/jvm2008/.
2As a starting point, the benchmark uses the DSL for specifying state machines (FSMDSL) from Section 6.2. Note

that, for the measurements, it can be expected non-significant which particular DSL is selected for comparison.
But for a fair benchmark, various types of DSLs with different complexities would need to be selected.

3Apache SCXML executes a state machine definition in abstract XML syntax. More information can be found on
the Internet. The Apache SCXML Homepage: http://commons.apache.org/scxml/.

269

http://www.spec.org/jvm2008/
http://commons.apache.org/scxml/

11. Costs of Reflective Embedding

To compare the qualities of the resulting DSL implementations, the benchmark compares
various metrics:

(a) size of hand written code for DSL implementation in effective lines of code (eLOC),

(b) size of generated code for DSL implementation in eLOC,

(c) execution time of the same DSL program under various problem sizes,

(d) memory usage of the DSL program under various problem sizes,

(e) correctness of expected output,

(f) syntactic noise in DSL programs, which is visible for end users.

It is out of the scope to present all details of the benchmark results. Only the most important
results are presented here. The complete report with all benchmark results can be downloaded
from: http://www.stg.tu-darmstadt.de/research/ao4dsls.

The benchmark compares the implementation costs of the various technologies by imple-
menting FSMDSL with them, by measuring the above metrics for each of the different imple-
mentations, and finally by comparing their metrics, which is similar to the approach taken in
Kosar et al. [KLP+08]. Similar to Kosar et al., the benchmark of this thesis measures the eLOC
metric to compare implementation costs and execution times. Like them, we also compare the
implementations of the same DSL with different technologies, but Kosar et al. use another DSL
for the specification of feature models. Unfortunately, Kosar et al.’s benchmark is neither open
source nor available for download. In contrast, the benchmark proposed in this thesis allows
other researchers to validate and reproduce results more easily.

Note that in all experiments presented in this chapter, the benchmark uses same problem
setting and problem size to compare the different technologies. All quantitative benchmark
measurements were executed on an Intel Pentium 4, with 2.99 GHz, and 4GB RAM, Debian
Linux, kernel version 2.6.2. Further, note that the benchmark is not completely fair for REA,
because it compares REA to technologies that do not have the same flexibility for language
evolution, partial definition of concrete syntax, and so on like they are supported by REA. Still,
the benchmark results can be used as a rough estimation of the implementation and runtime
costs.

11.1. Implementation Costs of Reflective Embedding
This section evaluates the costs for implementing DSLs, for compiling and for executing DSL

programs.

11.1.1. Implementation Costs of Domain-Specific Languages
The discussion about the implementation costs for embedding DSLs distinguishes costs for

syntax (Section 11.1.1.1) and semantics (Section 11.1.1.2).

270

http://www.stg.tu-darmstadt.de/research/ao4dsls

11.1. Implementation Costs of Reflective Embedding

11.1.1.1. Domain-Specific Syntax

This section compares the costs for DSL syntax. Table 11.1 shows the syntactic qualities and
compares the support for partial syntax. It compares this thesis’ approaches both with compro-
mised syntax (REA) and with concrete syntax (TIGERSEYE) to related work. The support for
partial syntax and the syntactic qualities determines syntactic costs of the corresponding embed-
ding approach. Only, when partial syntax is supported, the cost of implementing the grammar is
significantly reduced, as it was shown in Section 10.4.4.

Specifically, Table 11.1 compares the other embedding approaches with TIGERSEYE (from
left to right) w.r.t.: (1) what host languages are supported out of the box, (2) if the approach is
host language independent, and, if so, (3) if the grammar of the complete host language has to be
available. Further, (4) it compares the “embedding style” and (5) if the approach supports “con-
crete syntax”, (6) whether a complete specification of the DSL’s grammar is required. Finally,
(7) it compares the class of languages supported by the approach. It classifies the TIGERSEYE

approach as a hybrid embedding approach. Since TIGERSEYE is a heterogeneous but well-
integrated pre-processor for homogeneous embedded DSLs. For the table one can see that cur-
rently TIGERSEYE is the only approach that reduces the costs for concrete syntax by employing
special techniques like island grammars.

To sum up, the TIGERSEYE/REA approach reduces the costs of EDSLs with concrete syntax
by building upon partial syntax definitions and its advantage is that it leaves it up to the devel-
opers to decide when they want to incrementally add concrete syntax. Although, the Stratego
language and TXL have principle support for island grammars, they currently do not use island
grammars to reduce the costs for embedding.

11.1.1.2. Domain-Specific Semantics

Table 11.2 gives a rough estimation of the implementation effort with the different DSL ap-
proaches. The table compares the eLOC of the FSMDSL implementations with the different
technologies. The benchmark counts lines of user-defined and generated code.

W.r.t. comparing the implementation effort, only SCXML—the commercial-of-the-shelves
approach—has less eLOC than the embedding in REA. Naturally for a COTS-based approach,
virtually no code has to be implemented for a DSL that comes from the shelves. It is not sur-
prising that re-using a DSL is cheaper than implementing it. For SCXML, only a thin wrapper
needed to be implemented in order to integrate the SCXML implementation into the benchmark.
REA was the second cheapest approach in term of eLOC. Only a few line more were added to
enable concrete syntax for FSMDSL. For the embedded approaches, no code had to be gener-
ated. All other DSL technologies required more eLOC. Fortunately, the DSL specifications in
their meta-language are very concise, still a vast amount of code is generated from it. Note that
the benchmark does not compare different EDSL approaches.

11.1.2. Implementation Costs of Domain-Specific Aspect Languages
To quantitatively evaluate the implementation cots of aspect languages, in the context of this

thesis the Cool domain-specific aspect languages was implemented. Cool was a demonstrator

271

11. Costs of Reflective Embedding

Table 11.1.: Comparison language embeddings’ support for concrete syntax
Host Language Embedding

Embedding Approach Su
pp

or
te

d
H

os
t

L
an

gu
ag

es
(1

)

H
os

t
L

an
gu

ag
e

In
de

pe
nd

en
t(

2)
G

ra
m

m
ar

Si
ze

fo
r

H
os

t
L

an
gu

ag
e

(3
)

E
m

be
dd

in
g

St
yl

e
(4

)

C
on

cr
et

e
Sy

nt
ax

(5
)

G
ra

m
m

ar
Si

ze
fo

r
E

m
be

dd
in

g
(6

)

Su
pp

or
te

d
L

an
gu

ag
es

(7
)

Pure Embedding
[Hud96], [ALY09] Haskell homogeneous no
[CKS09] OCaml, Haskell homogeneous no
Dynamic Languages
Jargons [Pes01] Scheme homogeneous no
[TFH09] Ruby homogeneous no
[KG07] Groovy homogeneous no
TwisteR [AO10] Ruby homogeneous no
(Multi-)Staging
[COST04] MetaOCaml homogeneous no
[COST04] TemplateHaskell homogeneous no
[SCK04] TemplateHaskell homogeneous no
Typed OO
[Eva03], [Fow05] Java homogeneous no
DSL2JDT [Gar08] Java homogeneous no
Polym. [HORM08] Scala homogeneous no
REA Groovy, Ruby homogeneous no

Dynamic Languages
π [KM09] π homogeneous yes complete CFG
Helvetia [RGN10] Smalltalk homogeneous yes complete PEG
Staging/Meta-Progr.
Converge [Tra08] Converge homogeneous yes complete CFG
Source Trans.
MetaBorg/Stratego [BV04] Java, C, C++, ... X complete heterogeneous yes complete CFG
TXL [Cor06] C++, C#, Java, ... X complete heterogeneous yes complete LL(*)
TIGERSEYE/REA Java, Groovy, ... X partial hybrid yes partial CFG

Table 11.2.: Comparison of FSMDSL implementation costs

Approach Bison ANTL MontiCore DSL2JDT Stratego SCXML REA TigersEye
Style Parser Parser Ext. Homogen. Heterogen. COTS Homogen. Heterogen.

Generator Generator Compiler EDSL EDSL Reflect. EDSL Reflect. EDSL
User-defined 353 226 190 206 226 112 136 142
Generated 2642 1443 3816 1210 1443 0 0 0

for AOP since the beginning, it is a well-established DSALs [KL07b, HBA08] to implement in
order to evaluate an extensible AO implementation approach.

Table 11.3 compares the support of the Cool features that Lopes proposes [Lop97] in different
AO implementation approaches. Unfortunately, the original Cool implementation [Lop97] as
parts of the AspectJ source code weaver v0.1 is no longer available, which is why the results are
in brackets. Unfortunately, AweSome [KL07b] is not available for download. JAMI [HBA08]

272

11.2. Compilation Costs of Reflective Embedding

is the only Cool implementation available for comparison. Compared to JAMI, POPART’s Cool
implementation is more complete.

Table 11.3.: Comparison of the support for the Cool DSAL features

Framework Impl. Apporach per obj/class self-/mutex condition var guard
Cool/D [Lop97] Pre-Processor () () () () ()

AweSome Ext. Compiler () () () ()
JAMI Interpreter I

Popart/REA Embedding

Table 11.4 compares the eLOCs of the DSALs that have been implemented, only user-written
code is compared. For the Cool DSAL implementation, compared to REA, JAMI has less eLOC,
but the Cool/JAMI is not comparable to the Cool/POPART, since it implements only one out of
the five Cool features completely. For the Caching DSAL, JAMI and REA are comparable,
because JAMI and REA completely implement it. To implement the Caching DSAL, REA
requires significant less code than JAMI (36.0 % less eLOCs). For the Zip DSAL, there is only
an implementation in REA with 192 eLOCs.

Table 11.4.: Comparison of DSAL implementation costs

DSAL JAMI 0.3 POPART/REA
COOL (532) 1083
Caching 491 314
Zip (N/A) 192

11.2. Compilation Costs of Reflective Embedding
The following section measures the costs for compiling DSL programs and compares compi-

lation time to traditional and related embedding approaches.
The experiment compares the compilation time of a DSL programs for the same DSL imple-

mented with the different technologies. The benchmark uses a state machine DSL specification
that was implemented then implemented with each corresponding technology. The experiment
uses a generated input file which contains a large state machine and input events with 10 differ-
ent input sizes (1 to 10 chunks, with the maximum of approx. 1500 eLOCs). The same state
machine was executed with different implementations of the DSLs and the times for executing
the same state machine program were measured. Finally, the experiment compares execution
times between the different technologies.

The benchmark results in Figure 11.1 shows that bison+flex (+), AntLR (2), Monticore (4),
and SCXML (◦) have low compilation times. Heterogeneous embedding with MetaBorg/S-
tratego () has a good compilation time. In contrast to this, homogeneous embeddings with

273

11. Costs of Reflective Embedding

100

1000

10000

100000

1000000

10000000

1 2 3 4 5 6 7 8 9 10

Bison+Flex

ANTLR

Monticore

DSL2JDT

Stratego/XT

SCXML

REA

TigersEye

problem size in chunks
[10 chunks = 1500 eLOC]

co
m
pi
la
tio

n
tim

e
[m

s]

Figure 11.1.: Benchmark results for DSL program compilation time

DSL2JDT (×) or REA (unfilled 3) have moderate compilation times. Only TIGERSEYE (filled
3) has a bad compilation performance.

For TIGERSEYE, the compilation time quickly increases with the size of the DSL program,
and therefore it is currently not appropriate for DSL programs with large files. The low com-
pilation performance is due to using the Earley algorithm for parsing, which has its worst case
complexity of O(n3) [Ear70], since there are many ambiguities introduces by the island rules.
Despite the disadvantageous results for TIGERSEYE, note that the parser’s performance has not
yet been optimized, which was out of scope. Currently, parsing and transforming DSL programs
increases exponentially with the DSL program file size. While processing 500 effective lines of
code (eLOC) takes approx. 10 seconds, TIGERSEYE needs 43 minutes to rewrite 1500 eLOC.
Therefore, it is only practicable if developers use TIGERSEYE for DSL programs with small
files.

11.3. Runtime Costs of Reflective Embedding
The following section measures costs for implementing DSLs and aspect languages and com-

pares them to traditional and related embedding approaches.

11.3.1. Runtime Costs of Domain-Specific Languages
Although providing productive qualities for EDSLs is outside the scope of this thesis, it is

interesting to reveal the runtime costs of the current prototype. Therefore, an experiment was
conducted that compares the performance of REA to related work.

The experiment compares the execution times of a large DSL program for the same DSL
implemented with the different technologies. The benchmark provides a state machine DSL
specification that was implemented then implemented with each corresponding technology. The
experiment uses a generated input file which contains a large state machine and input events
with 5 different input sizes (chunks between 0 to 500 eLOCs). The same state machine was
executed with different implementations of the DSLs and the times for executing the same state

274

11.3. Runtime Costs of Reflective Embedding

machine program were measured. Finally, the experiment compares execution times between
the different technologies.

When using a declarative language (e.g., a DSL) an input file with 500 eLOCs can be con-
sidered a rather large DSL program. Still, the benchmark’s input size is very small, since there
are many DSL e.g. HTML that use large input files. Therefore, with the current benchmark
version, one cannot draw general conclusion about DSL performance. Despite this, these results
represents a rough estimation.

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10

Bison+Flex

ANTLR

Monticore

DSL2JDT

Stratego/XT

SCXML

REA

TigersEye

problem size in chunks
[10 chunks = 1500 eLOC]

ex
ec
ut
io
n
tim

e
[m

s]

Figure 11.2.: Benchmark results for DSL program execution time

The measurements presented in Figure 11.2 indicate that most DSL technologies have good
execution times for FSMDSL programs. The parser generator approaches perform the best, but
they are not easily extensible. Bison (+) is the fastest, followed by AntLR (2). Although one
can expect a large overhead due to XML parsing in SCXML (◦), it performs good. MontiCore
(4) allows some extensions but it still performs moderate.

The heterogeneous embedded approach MetaBorg/Stratego () had a good performance. In
contrast, the homogeneous embedded approaches that systematically support both extensions
and composition are slower than the other DSL approaches. This is in same line as the bench-
mark results in [KLP+08]. DSL2JDT (×) is faster than both REA (unfilled 3) and TIGERSEYE

(filled 3). Although REA and and TIGERSEYE are only a little slower than DSL2JDT, they
are much more flexible than DSL2JDT. Due to the overhead of parsing and rewriting concrete
syntax with the Earley parser, the same state machine DSL program executes far more slower
than in REA with abstract syntax.

For REA and TIGERSEYE, despite the presence of the meta-level, they execute embedded
DSL programs with a similar moderate performance lie the extensible DSL approach Monticore.
Despite the indirections due to the meta-object, REA executes embedded DSL programs with
a similar performance as the DSL2JDT approach that embeds a fluent interface in Java, but
DSL2JDT does not address extensibility and composability.

275

11. Costs of Reflective Embedding

11.3.2. Runtime Costs of Aspect Languages
This section reports on experiments about the runtime penalty of reflective embedding. For an

estimation of the runtime cost, this thesis compares the performance of tangled implementations
with an experiment that implemented the same program with and without crosscutting compo-
sition and compared the execution time. Currently, the CCCombiner exploits partial evaluation
of static parts in pointcuts (cf. [HH04, Tan04]), i.e., POPART only reifies join point contexts and
evaluate the dynamic parts of pointcuts when aspects define pointcuts that potentially match a
given join point. The observed overhead is up to 3 times. In sum, AO language embeddings
in POPART/REA the flexibility comes at a price due to the indirections used in the meta-aspect
protocol.

A comprehensive treatment of performance issues of reflective embedding remains to be done
in future work. It is a complicate task particularly for two reasons.

First, there are no fair standard benchmarks available for aspect languages [HM04]. There are
benchmarks that evaluate the runtime costs of general-purpose aspect languages [HM04], but no
benchmarks are available for domain-specific aspect languages. Designing a fair benchmark for
DSALs was not in the scope of this thesis.

Second, for determining the runtime costs an embedding approach, it is not clear what costs
are due to the host language and due to the embedding. The above performance measurements
are primarily determined by the performance of the Groovy MOP implementation, only part
of the overhead is due to reification of join points and to advice composition. Note that the
Groovy MOP was designed for convenience and flexibility, not optimized for performance. In
Groovy, the Groovy MOP as well as boxing and unboxing of primitive values has a large over-
head on application execution [KG08]. Although Groovy code is compiled to Java bytecode,
which is subject to aggressive dynamic runtime optimization in the JVM, the compiler inserts
many indirections into bytecode to allow the flexibility of the MOP. In Groovy, method calls
are reflective calls for which up to several hundreds of ordinary Java methods calls have to be
executed. Groovy’s caching facilities for reflective method calls effectively reduce the number
of necessary method calls, but there is a large remaining overhead even with caching. Further,
Groovy has a large footprint on the call stack, because when Groovy makes a method call this
leads to between 9 and 13 more activations of Java stack frames that remain on the stack until
the Groovy method returns.

276

Part V.

Conclusion

277

12. Conclusion

12.1. Summary of Results
The objective of this thesis was to address problems of existing embedding approaches for

domain-specific languages (DSLs). While existing approaches have a limited support for ex-
tensibility and composability of embedded languages, they do not address embedding of many
well-established language concepts that are supported by traditional non-embedded language
implementation approaches. An investigation conducted on related work on embedded domain-
specific languages showed that each of the existing approaches supports only a subset of the
traditionally supported language concepts. In particular, even the most advanced embedding ap-
proaches lack support for (1) concrete syntax, (2) crosscutting composition, and (3) fine-grained
compositions. Therefore, they do not adequately support sophisticated language compositions
that have interactions in the syntax and semantics of constituent parts of the language.

To address these problems, this thesis has presented the reflective embedding architecture
(REA)—a novel language embedding approach that equips embedded languages with a meta-
level architecture. The approach consolidates two well-established ideas in language research,
namely embedded domain-specific languages and meta-object protocols. Hudak’s idea was to
embed a language into another language as a library. Kiczales et al.’s idea [KRB91] was to pro-
vide meta protocols that open up a language implementation. The reflective embedding archi-
tecture contributes to both ideas by combining them into a uniform architecture for embedding
and composing various language concepts.

Language developers can use the uniform architecture to reuse existing languages and to
embed new language concepts, such as functions, state machines, and aspects. A language
is embedded as component that remains encapsulated and that has a well-defined interface. The
reflective embedding architecture supports language evolution in various forms:

Extensibility: The architecture supports extensibility through language polymorphism, which
enables late binding for syntax and semantics. When required, developers can open up
(white-/gray-box) language components to tailor them for their domains. Whereby, a lan-
guage implementation is opened up revealing only the necessary implementation details.

Compositionality: It supports composition of languages that have interactions in their syn-
tax and semantics. The architecture provides means for language composition in form of
so-called language combiners that are first-class objects for composing languages. When
required, developers can extend the available set of combiners to support special compo-
sitions.

279

12. Conclusion

Pluggable Scoping: There is support for scoping language constructs with various strategies
on several levels. First, at the expression level, one can scope expression types to the lex-
ical or dynamic context. Second, at the module-level, one can dynamically scope aspects.
Third, at the language level, one can scope language semantics to individual programs
using language polymorphism.

Pluggable Analyses: The architecture can analyze languages and programs under different
semantics. In particular, it supports abstract interpretations to analyze programs before
they are executed. Additionally, it supports dynamic analyses. Modular abstract interpre-
tations of different languages can be composed.

Pluggable Transformations: The approach supports for two kinds of transformations. First,
it supports exo-transformations from one language into another language, whereby the
program in the source language is used as a specification for generated program in the
target language. Second, it supports endo-transformations within one causally connected
runtime model of a language, even when this model is currently under execution. Such
transformation that is executed online enables dynamic adaptive optimizations.

Further, the applications of this thesis’s techniques contribute new concepts and generalizes
existing concepts in different areas of programming language research.

Reflective Languages: The reflective embedding architecture allows growing an embedded
domain-specific language into a reflective DSL enables DSL programs that reason about
their own structure and behavior, as proposed by Maes [Mae87] for general-purpose lan-
guages.

Meta Protocols: The approach applies the concept of meta-protocols and open implementa-
tions by Kiczales et al. in the context of domain-specific languages. In the reflective
embedding architecture, every embedded language can provide a dedicated interface to
its programs through which an end user program can adapt the implementation strategy
of a language for special needs. In the context of this thesis, meta-protocols have been
validated for DSLs [DMM10] and for aspect-oriented programming languages [DMB09].
The concepts presented in Section 4.2.3.3 and in [DMB09] are now adopted by two other
groups of researchers: First, Achenbach et al. [AO10] have implemented a meta-aspect
protocol in other aspect-oriented programming language. They have adopted the MAP
for implementing an open aspect-oriented language with a meta-level for Ruby, which
architecture is inspired by POPART. Second, Axelsen et al. [AKMP10] have designed a
meta-protocol for class extensions whose design is inspired by the design of POPART’s
meta-aspect protocol, which allows type-safe extensions to classes.

Domain-Specific Aspect Language: Because all concepts proposed in the thesis are em-
bedded in a uniform way as first-class objects, developer can use embedded concepts in

280

12.2. Concluding Discussion

concert with new embeddings. In particular, it is possible to integrate DSL constructs
with aspects. This allows implementing domain-specific aspect languages in a reusable
way, which is in the same vein as extensible aspect languages, but the reflective embed-
ding architecture allows extensions that are not possible with existing extensible aspect
languages. In particular, it allows composing multiple domain-specific aspect languages
that have interactions or composition conflicts, whereby defining a reusable aspect con-
flict resolution strategy as a successor to the concepts that have been proposed by Kosar
et al. [KL07b] and Havinga et al. [HBA08].

The concepts of this thesis have been qualitatively evaluated by using them to implement
various language concepts. To quantitatively evaluate the concepts, several experiments have
been conducted that indicate that the implementation effort to implement individual language
components is comparable to the effort in language approaches. This thesis proposes to use
open source benchmarks to compare the qualities of the DSL implementations. Preliminary
benchmark measurements of the implementation with reflective embedding indicate a moder-
ate overhead compared to the implementation with traditional and related approaches. Special
optimizations were studied particularly for aspect languages. Only with partial evaluation of
pointcuts, the meta-aspect protocol could achieve a moderate execution overhead for object-
oriented program. There is a high confidence that the performance can be further improved by
using additional optimization techniques from related work. It would be possible to exploit more
concepts from traditional approaches. Alternatively, the reflective embedding architecture could
be instantiated in a host language, such as CLOS, that optimizes indirections of meta-objects.

The code of POPART, TIGERSEYE, and the DSL benchmark can be downloaded from:
http://www.stg.tu-darmstadt.de/research/ao4dsls.

12.2. Concluding Discussion
This thesis concludes with a discussion about the dialectics in the philosophies of program-

ming languages. The last decades has led to a continuously quest about what the best language
constructs are that a language should provide for its users. Different paradigms try to give an
answer to this question, such as pure functional languages advocate taming side-effects, concur-
rent languages tame parallel threads of execution, object-oriented programming try to model the
world with set of discrete inter-connected objects, and event-based programming try to model
the world’s objects as more or less independent and decoupled actors.

Thus, in common, there is a broad disagreement of what the right language construct and
paradigm is. Naturally is no general answer to the question as the answer depends at least on the
concrete application and problem domain. Still, asking this question is an important driver for
language research.

Often the criticisms of existing language constructs and their paradigms led to an initiative for
a new language. Whereby, the language evolutions established by such initiatives can be under-
stood as dialectic movements in the sense of Hegel [HNP30]. For example, aspects in aspect-
oriented programming raises object-oriented modules to a new more sophisticated level of OO

281

http://www.stg.tu-darmstadt.de/research/ao4dsls

12. Conclusion

programming. First, often such an initiative accepts the existing language concepts and con-
structs, e.g., aspects accept modules as an important means for separation (“das Abstrakte und
Verständige”, i.e., the abstract reasoning). Second, they criticize those concepts and constructs
for their contradictions, e.g., by encapsulating functional concerns, modules scatter and tangle
crosscutting concerns like non-functional concerns (“Dialektische oder Negativ-Vernünftige”,
i.e., the dialectic negative-reasoning). Third, they speculate for new language constructs to
improve the state-of-the-art, e.g., aspects negate strong encapsulation of modules, to encapsu-
late the crosscutting concerns (“das Spekulative and Positiv-Vernünftige”, i.e., the speculative
positive-reasoning or the negation of negation).

Such movements for new languages or new versions of languages often came along with the
implementation of a new language from scratch. However, as it was criticized in the introduc-
tion of this thesis that implementation from scratch contradicts with the economics of language
developers, therefore there is a need for language implementation approaches that can cope with
various language evolution scenarios.

In the last years, the merger of object-oriented languages and functional languages in the Scala
language [OSV07] has created a tremendous interest within the ranks and files of programmers
from various paradigms. This merger alone has created a significant impact on the collaboration
of programmers from various paradigms. Still today, most languages and their paradigms remain
isolated from each other, and it is not possible to easily merge their syntax and semantics. This
is not possible for a specific reason: because most existing language architectures are not do not
have access to a meta-level and therefore cannot use it to reason about languages and manipulate
them. Only heterogeneous language implementation approaches have meta-levels, but they only
support evolution at compile time and disallow runtime evolution.

Consider what it would be like to have language architectures embedded into today’s lan-
guages. In such architectures, language researchers and developers could contribute to a com-
mon asset of language constructs and paradigms, which could co-exist in the same environment.
Whereby the language end user is empowered to choose the best construct in need without
changing the host language. The reflective embedding architecture can be thought of a first step
into this direction. Complementing this vision would allow a new style of developing program-
ming languages, which can be called dialectic programming. In dialectic programming, there is
no commitment to a language construct with mechanic semantics or to a particular paradigm, but
developers are in the full control of the semantics of every language concept. What is new is that
developers can analyze existing constructs (the abstract reasoning), they can criticize or break
with existing constructs that do not fit their needs (the negation), and they can adapt constructs
to speculate for new alternative semantics in these constructs to reach their goals (negation of
negation).

282

12.3. Future Work

12.3. Future Work
The following challenges are possible directions of future work.

DSL Implementation: Currently it is unclear whether TIGERSEYE/REA scales for implement-
ing large DSLs with thousands of productions. Therefore, it would be interesting to conduct a
case study that implements a large DSL.

Currently the input size of a DSL program is limited by the maximum file size of a Java class
(64KB). To avoid this limitation, it would be interesting to allow splitting up a DSL file into
several parts of DSL modules.

Static Guarantees: As usual for dynamic approaches, there is a trade-off between adaptability
and statically checked correctness. REA supports a maximal adaptability, but therefore it mostly
lacks special static guarantees.

DSL programmers who override parts of the default DSL semantics might violate contracts
and responsibilities that are implicit in the DSL design. In particular, future work will investigate
using aspects for design-by-contract for languages. The principle idea is to deploy an aspect on
the language façade to enforce that extending languages do not violate any contracts.

Future work will also explore explicit contracts that can be checked at runtime to ensure the
semantic consistency of adaptations.

Benchmarking: It would be desirable to exploit standard optimizations for Groovy, such as
those discussed in [KG08], as soon as they become available for newer versions of Groovy. The
JIT optimization could further reduce the overhead for execution, but the Groovy JIT is only
available for an older version1 of Groovy that is incompatible to the Groovy version used in this
thesis.

It would be interesting to use a DSL for which there is a standard benchmark and compare to
other implementation technology. Currently the input size of the open source benchmark is too
small to allow general conclusions. It would be also interesting to benchmark different kinds of
DSLs, which different grammar sizes, semantic complexity, and possibilities for optimizations.

Aspect Languages: With respect to possible applications of the meta-aspect protocol, future
work needs to explore the ability of the MAP to support further AO language features.

With respect to the performance of the meta-aspect protocol, still new special concepts for
meta-aspect protocol need to be invented to minimize their overhead. This thesis has imple-
mented certain optimistic optimizations similar to those proposed for MOPs [KRB91, Sul01].

Performance: It has been shown that partial evaluation of pointcut designators and structural
designators helps to reduce the overhead of the MAP. While when no aspects are present, the
performance is at a moderate level and slows down the performance of domain-specific and
object-oriented applications at a factor of less than three, there is a large overhead when aspects
and meta-aspects are present.

1In [KG08], the Groovy JIT eliminates the overhead of boxing and unboxing as well as special optimizations have
been implemented for aspects. However, the GIT is only available for the Groovy version 1.6-beta2 snapshot, but
the reflective embedding architecture uses specific feature of the Groovy MOP in version 1.7.x.

283

12. Conclusion

Currently, the meta-aspect protocol currently does not perform enough optimizations to elimi-
nate the complete overhead when composing aspects into programs. Although the POPART code
is subject to adaptive optimization provided by the just-in-time compiler of the Java VM due to
the tight integration of Groovy into Java, a large run-time overhead has been measured for the
Groovy-specific features especially for the Groovy MOP.

Although the above optimizations are interesting from a research perspective and for inte-
grating with the current Java bytecode platform, but they would introduce additional complex-
ity which could interfere with existing infrastructure, such as garbage collectors, in an unpre-
dictable way. Further, when there are hard performance requirements, it would be more inter-
esting to reimplement the complete meta-aspect protocol on another host language that system-
atically supports removing indirections at compile time, such as CLOS.

Special Extensions: It would also be interesting to investigate special optimization techniques
for aspects. It would be interesting to further investigate whether the compile-time optimizations
using partial reflection [Tan04] could be used for this. It could be interesting to investigate on-
demand weaving techniques [Hir03] to transform the base system at runtime in such as way that
still meta-aspects can be involved, whereby analyzing the aspects at runtime in order to identify
what indirections are actually needed by aspects, and removing indirections of the meta-aspect
protocol if they are currently not needed.

284

Bibliography

[AAB+07] Assaf Arkin, Sid Askary, Ben Bloch, et al. Web Services Business Process
Execution Language 2.0, OASIS Standard. Technical report, Organization for
the Advancement of Structured Information Standards (OASIS), April 2007.

[ACH+06] P. Avgustinov, A.S. Christensen, L. Hendren, S. Kuzins, J. Lhotak, O. Lhotak,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. ABC: An Extensible
AspectJ Compiler. Transactions on Aspect-Oriented Software Development,
3880:293, 2006.

[ADDH10] Toheed Aslam, Jesse Doherty, Anton Dubrau, and Laurie Hendren. AspectMat-
lab: an Aspect-Oriented Scientific Programming Language. In Proceedings of
AOSD’10 [JS10], 2010.

[AET08] Pavel Avgustinov, Torbjörn Ekman, and Julian Tibble. Modularity First: A Case
for Mixing AOP and Attribute Grammars. In Proceedings of AOSD’08 [D’H08],
pages 25–35, 2008.

[AFG+00] M. Arnold, S. Fink, D. Grove, M. Hind, and P.F. Sweeney. Adaptive Optimiza-
tion in the Jalapeño JVM. In Proceedings of OOPSLA’00 [OOP00], 2000.

[AGH05] K. Arnold, J. Gosling, and D. Holmes. The Java (TM) Programming Language.
Addison-Wesley Professional, 2005.

[AHH+09] Malte Appeltauer, Robert Hirschfeld, Michael Haupt, Jens Lincke, and Michael
Perscheid. A Comparison of Context-Oriented Programming Languages. In
International Workshop on Context-Oriented Programming. In conjunction with
the 23rd European Conference on Object-Oriented Programming (ECOOP’09),
COP ’09, pages 6:1–6:6, New York, NY, USA, 2009. ACM.

[AKMP10] Eyvind W. Axelsen, Stein Krogdahl, and Birger Møller-Pedersen. Controlling
Dynamic Module Composition through an Extensible Meta-Level API. In Pro-
ceedings of the 6th Dynamic Languages Symposium (DLS’10), pages 81–96,
New York, NY, USA, 2010. ACM.

[Aks03] Mehmet Aksit, editor. Proceedings of the 2nd ACM International Conference
on Aspect-Oriented Software Development (AOSD’03), Boston, Massachusetts,
USA, 2003. ACM Press, New York, NY, USA.

285

Bibliography

[Alm] D. Almear. SQL AOP becomes SQXML AOP. http://almaer.com/
blog/sql-aop-becomes-sqxml-aop.

[ALSU07] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers: Principles, Techniques
and Tools (2nd Edition). Addison-Wesley, 2007.

[ALY09] Robert Atkey, Sam Lindley, and Jeremy Yallop. Unembedding Domain-Specific
Languages. In Proceedings of the 2nd ACM SIGPLAN Symposium on Haskell
(Haskell’09), pages 37–48, New York, NY, USA, 2009. ACM.

[AMH90] Mehmet Akşit, Rene Mostert, and Boudewijn Haverkort. Compiler Generation
based on Grammar Inheritance, 1990.

[AN08] Ali Assaf and Jacques Noyé. Dynamic AspectJ. In Proceedings of the 2008 Dy-
namic Languages Symposium, DLS’08, pages 8:1–8:12, New York, NY, USA,
2008. ACM.

[AO10] Michael Achenbach and Klaus Ostermann. A meta-aspect protocol for develop-
ing dynamic analyses. In Howard Barringer, Ylies Falcone, Bernd Finkbeiner,
Klaus Havelund, Insup Lee, Gordon Pace, Grigore Rosu, Oleg Sokolsky, and
Nikolai Tillmann, editors, Runtime Verification, volume 6418 of Lecture Notes
in Computer Science, pages 153–167. Springer Berlin / Heidelberg, 2010.

[AS96] H. Abelson and G.J. Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, Mass., 1996.

[Asp] AspectJ Home Page. http://www.eclipse.org/aspectj/.

[Aßm03] U. Aßmann. Invasive Software Composition. Springer-Verlag, New York, 2003.

[Atk09] Robert Atkey. Syntax for Free: Representing Syntax with Binding Using Para-
metricity. In Pierre-Louis Curien, editor, Typed Lambda Calculi and Appli-
cations, volume 5608 of Lecture Notes in Computer Science, pages 35–49.
Springer Berlin / Heidelberg, 2009.

[BA01] L. Bergmans and M. Aksit. Composing Crosscutting Concerns using Composi-
tion Filters. Communications of the ACM, 44(10):51–57, 2001.

[BA04] L. Bergmans and M. Aksit. Principles and Design Rationale of Composition
Filters. Aspect-Oriented Software Development, pages 63–95, 2004.

[BC90] Gilad Bracha and William Cook. Mixin-based inheritance. In Proceedings of
the European Conference on Object-Oriented Programming and Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA/ECOOP’90), pages 303–311, New York, NY, USA,
1990. ACM.

286

http://almaer.com/blog/sql-aop-becomes-sqxml-aop
http://almaer.com/blog/sql-aop-becomes-sqxml-aop
http://www.eclipse.org/aspectj/

Bibliography

[BdGV06] Martin Bravenboer, Rene de Groot, and Eelco Visser. MetaBorg in Action: Ex-
amples of Domain-Specific Language Embedding and Assimilation Using Strat-
ego/XT. In Ralf Lämmel, João Saraiva, and Joost Visser, editors, Generative and
Transformational Techniques in Software Engineering, volume 4143 of Lecture
Notes in Computer Science, pages 297–311. Springer Berlin / Heidelberg, 2006.

[BHMO04] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual Machine Support
for Dynamic Join Points. In Proceedings of AOSD’04 [Lie04], pages 83–92,
2004.

[BI82] A.H. Borning and D.H.H. Ingalls. Multiple Inheritance in Smalltalk-80. In
Proceedings of the National Conference on Artificial Intelligence, pages 234–
237, 1982.

[BKHV03] O.S. Bagge, K.T. Kalleberg, M. Haveraaen, and E. Visser. Design of the Code-
Boost Transformation System for Domain-Specific Optimisation of C++ Pro-
grams. In Third International Workshop on Source Code Analysis and Manipu-
lation (SCAM 2003), pages 65–75, 2003.

[BMDV02] J. Brichau, K. Mens, and K. De Volder. Building Composable Aspect-Specific
Languages with Logic Metaprogramming. In GPCE, pages 110–127, 2002.

[BMH+07] Christoph Bockisch, Mira Mezini, Wilke Havinga, Lodewijk Bergmans, and
Kris Gybels. Reference Model Implementation. Technical Report AOSD-
Europe-TUD-8, Technische Universität Darmstadt, 2007.

[BMN+06] Johan Brichau, Mira Mezini, Jacques Noyé, Wilke Havinga, Lodewijk
Bergmans, Vaidas Gasiunas, Christoph Bockisch, Johan Fabry, and Theo
D’Hondt. An Initial Metamodel for Aspect-Oriented Programming Languages.
http://www.aosd-europe.net/deliverables/d39.pdf, 2006.

[Bon03] J. Bonér. AspectWerkz - Dynamic AOP for Java. http://codehaus.org/
~jboner/papers/aosd2004_aspectwerkz.pdf, 2003.

[Bos00] J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a
Product-Line Approach. Addison-Wesley Professional, 2000.

[BP01] Jonthan Bachrach and Keith Playford. The Java Syntactic Extender (JSE). SIG-
PLAN Not., 36(11):31–42, 2001.

[BP08] J. Bovet and T. Parr. ANTLRWorks: an ANTLR Grammar Development Envi-
ronment. Software: Practice and Experience, 38(12):1305–1332, 2008.

[BU04] Gilad Bracha and David Ungar. Mirrors: Design Principles for Meta-
Level Facilities of Object-Oriented Programming Languages. SIGPLAN Not.,
39(10):331–344, 2004.

287

http://www.aosd-europe.net/deliverables/d39.pdf
http://codehaus.org/~jboner/papers/aosd2004_aspectwerkz.pdf
http://codehaus.org/~jboner/papers/aosd2004_aspectwerkz.pdf

Bibliography

[BV04] Martin Bravenboer and Eelco Visser. Concrete Syntax for Objects: Domain-
Specific Language Embedding and Assimilation without Restrictions. In Pro-
ceedings of OOPSLA’04 [VS04], pages 365–383, 2004.

[CBF05] N. Cacho, T. Batista, and F. Fernandes. AspectLua-A Dynamic AOP Approach.
Journal of Universal Computer Society, 11(7):1177–1197, 2005.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Symposium on
Principles of Programming Languages (POPL), pages 238–252, New York, NY,
USA, 1977. ACM.

[CCR10] William R. Cook, Siobhán Clarke, and Martin C. Rinard, editors. Proceed-
ings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA’10), Reno/Tahoe,
Nevada, USA, 2010. ACM Press, New York, NY, USA.

[CD08] Pascal Costanza and Theo D’Hondt. Feature Descriptions for Context-oriented
Programming. In 2nd International Workshop on Dynamic Software Product
Lines (DSPL’08), 2008.

[CDF+06] Philippe Charles, Julian Dolby, Robert M. Fuhrer, Stanley M. Sutton, Jr.,
and Mandana Vaziri. SAFARI: A Meta-Tooling Framework for Generating
Language-Specific IDE’s. In Proceedings of OOPSLA’06 [TC06], pages 722–
723, 2006.

[CDM09] A. Charfi, T. Dinkelaker, and M. Mezini. A Plug-in Architecture for Self-
Adaptive Web Service Compositions. In Proceedings of the 2009 IEEE In-
ternational Conference on Web Services, pages 35–42. IEEE Computer Society,
2009.

[CE00] K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods, Tools,
and Applications. ACM Press, New York, NY, USA, 2000.

[CFSJ07] P. Charles, R.M. Fuhrer, and S.M. Sutton Jr. IMP: A Meta-Tooling Plat-
form for Creating Language-Specific IDEs in Eclipse. In Proceedings of the
22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE’07), pages 485–488, New York, NY, USA, 2007. ACM.

[CH05] Pascal Costanza and Robert Hirschfeld. Language Constructs for Context-
Oriented Programming: An Overview of ContextL. In Proceedings of the Dy-
namic languages Symposium (DLS’05), pages 1–10, New York, NY, USA, 2005.
ACM.

288

Bibliography

[Cha08] Anis Charfi. Aspect-Oriented Workflow Management: Concepts, Languages,
Applications. PhD thesis, Technische Universität Darmstadt, Germany, 2008.

[CHBB09] Steve Counsell, Tracy Hall, David Bowes, and Sue Black. Program Slice Met-
rics and Their Potential Role in DSL Design. In Proceedings of Workshop on
Knowledge Industry Survival Strategy Initiative (KISS’09), 2009.

[CHHP91] James R. Cordy, Charles D. Halpern-Hamu, and Eric Promislow. TXL: A
Rapid Prototyping System for Programming Language Dialects. Computer Lan-
guages, 16(1):97 – 107, 1991.

[CHR+03] C. Consel, H. Hamdi, L. Réveillère, L. Singaravelu, H. Yu, and C. Pu. Spidle: a
DSL Approach to Specifying Streaming Applications. Generative Programming
and Component Engineering, 2830:1–17, 2003.

[Chu40] A. Church. A Formulation of the Simple Theory of Types. J. of Symbolic Logic,
5(2):56–68, 1940.

[CJ03] Ron Crocker and Guy L. Steele Jr., editors. Proceedings of the 18th Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’03), Anaheim, CA, USA, 2003. ACM Press, New
York, NY, USA.

[CKL96] Shigeru Chiba, Gregor Kiczales, and John Lamping. Avoiding Confusion in
Metacircularity: The Meta-Helix. In Kokichi Futatsugi and Satoshi Matsuoka,
editors, Object Technologies for Advanced Software, volume 1049 of Lecture
Notes in Computer Science, pages 157–172. Springer Berlin / Heidelberg, 1996.

[CKS09] J. Carette, O. Kiselyov, and C. Shan. Finally Tagless, Partially Evaluated: Tag-
less Staged Interpreters for Simpler Typed Languages. Journal of Functional
Programming, 19(05):509–543, 2009.

[Cle07] T. Cleenewerck. Modularizing Language Constructs: A Reflective Approach.
PhD thesis, Vrije Universiteit Brussel, Belgium, 2007.

[CM94] S. Chiba and T. Masuda. A Reflective Language OpenC++ and its Application
to Distributed Computing. Computer Software, 11(3):33–48, 1994.

[CM04] Anis Charfi and Mira Mezini. Aspect-Oriented Web Service Composition with
AO4BPEL. In European Conference on Web Services, 2004.

[CM06] A. Charfi and M. Mezini. Aspect-Oriented Workflow Languages. Lecture Notes
in Computer Science, 4275:183, 2006.

[CM07] Jesús Sánchez Cuadrado and Jesús García Molina. Building Domain-Specific
Languages for Model-Driven Development. IEEE Softw., 24(5):48–55, 2007.

289

Bibliography

[CNF+08] Thomas Cleenewerck, Jacques Noyé, Johan Fabry, Anne-Françoise Lemeur, and
Éric Tanter. Summary of the Third Workshop on Domain-Specific Aspect Lan-
guages. In Proceedings of the 2008 Workshop on Domain-Specific Aspect Lan-
guages (DSAL’08), pages 1–5, 2008.

[CNW01] F. Curbera, W. Nagy, and S. Weerawarana. Web Services: Why and How. In
Workshop on Object-Oriented Web Services, 2001.

[Coi87] Pierre Cointe. Metaclasses are First Class: The ObjVlisp Model. SIGPLAN
Not., 22(12):156–162, 1987.

[Cor06] James R. Cordy. The TXL Source Transformation Language. Science of Com-
puter Programming, 61(3):190 – 210, 2006. Special Issue on The Fourth Work-
shop on Language Descriptions, Tools, and Applications (LDTA ’04).

[COST04] Krzysztof Czarnecki, John T. O’Donnell, Jörg Striegnitz, and Walid Taha. DSL
Implementation in MetaOCaml, Template Haskell, and C++. In Christian
Lengauer, Don Batory, Charles Consel, and Martin Odersky, editors, Domain-
Specific Program Generation, volume 3016 of Lecture Notes in Computer Sci-
ence, pages 51–72. Springer Berlin / Heidelberg, 2004.

[Cou96] Patrick Cousot. Abstract Interpretation. ACM Comput. Surv., 28(2):324–328,
1996.

[CR06] Lori A. Clarke and David S. Rosenblum. A Historical Perspective on Runtime
Assertion Checking in Software Development. SIGSOFT Softw. Eng. Notes,
31(3):25–37, 2006.

[Dav03] James Davis. GME: the Generic Modeling Environment. In Companion of the
18th annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications (OOPSLA’03 [CJ03]), pages 82–83, New
York, NY, USA, 2003. ACM.

[dB00] Hans de Bruin. A Grey-Box Approach to Component Composition.
In Krzysztof Czarnecki and Ulrich Eisenecker, editors, Generative and
Component-Based Software Engineering, volume 1799 of Lecture Notes in
Computer Science, pages 195–209. Springer Berlin / Heidelberg, 2000.

[DD89] C.J. Date and H. Darwen. A Guide to the SQL Standard. Addison-Wesley New
York, 1989.

[DDLM07] Marcus Denker, Stéphane Ducasse, Andrian Lienhard, and Philippe Marschall.
Sub-Method Reflection. Special Issue TOOLS Europe 2007, 6(9), 2007.

290

Bibliography

[DDMW00] M. D’Hondt, W. De Meuter, and R. Wuyts. Using Reflective Logic Program-
ming to describe Domain Knowledge as an Aspect. Generative and Component-
Based Software Engineering, 1799:16–23, 2000.

[DEM10] Tom Dinkelaker, Michael Eichberg, and Mira Mezini. An Architecture
for Composing Embedded Domain-Specific Languages. In Proceedings of
AOSD’10 [JS10], pages 49–60, 2010.

[DFS02] Rï£¡mi Douence, Pascal Fradet, and Mario Sï£¡dholt. A Framework for the
Detection and Resolution of Aspect Interactions. In Don Batory, Charles Consel,
and Walid Taha, editors, Generative Programming and Component Engineering,
volume 2487 of Lecture Notes in Computer Science, pages 173–188. Springer
Berlin / Heidelberg, 2002.

[D’H08] Theo D’Hondt, editor. Proceedings of the 7th ACM International Conference on
Aspect-Oriented Software Development (AOSD’08), Brussels, Belgium, 2008.
ACM Press, New York, NY, USA.

[Dic92] K. Dickey. Scheming with Objects. AI Expert, 7(10):24–33, 1992.

[Din10] Tom Dinkelaker. Review of the Support for Modular Language Implementa-
tion with Embedding Approaches. Technical Report TUD-CS-2010-2396, De-
partment of Computer Science, Technische Universitaet Darmstadt, Germany,
November 2010.

[DJKN07] Tom Dinkelaker, Alisdair Johnstone, Yuecel Karabulut, and Ike Nassi. Secure
Scripting Based Composite Application Development: Framework, Architec-
ture, and Implementation. In Proceedings of the International Conference on
Collaborative Computing: Networking, Applications and Worksharing (Collab-
orateCom 2007), pages 85–94. IEEE, 2007.

[DMB09] Tom Dinkelaker, Mira Mezini, and Christoph Bockisch. The Art of the Meta-
Aspect Protocol. In Proceedings of AOSD’08 [D’H08], pages 51–62, New York,
NY, USA, 2009. ACM.

[DMM09] T. Dinkelaker, M. Monperrus, and M. Mezini. Untangling Cross-Cutting Con-
cerns in Domain-Specific Languages with Domain-Specific Join Points. In Pro-
ceedings of the 4th Workshop on Domain-Specific Aspect Languages (DSAL),
pages 1–6, New York, NY, USA, 2009. ACM.

[DMM10] Tom Dinkelaker, Martin Monperrus, and Mira Mezini. Supporting variability
with late semantic adaptations of domain-specific modeling languages. CEUR-
WS.org, 564, 2010.

291

Bibliography

[DN09] N.A. Danielsson and U. Norell. Parsing Mixfix Operators. In Proceedings of
the 20th International Symposium on the Implementation and Application of
Functional Languages (IFL’08). Springer Berlin / Heidelberg, 2009.

[Dub06] G. Dubochet. On Embedding Domain-Specific Languages with User-friendly
Syntax. In ECOOP Workshop on Domain-Specific Program Development, 2006.

[DWL09] Tom Dinkelaker, Christian Wende, and Henrik Lochmann. Implementing and
Composing MDSD-Typical DSLs. Technical Report TUD-CS-2009-0156, De-
partment of Computer Science, Technische Universitaet Darmstadt, Germany,
October 2009.

[Ear70] J. Earley. An Efficient Context-Free Parsing Algorithm. Communications of the
ACM, 13(2):94–102, 1970.

[EFdM00] Conal Elliott, Sigbjørn Finne, and Oege de Moor. Compiling embedded lan-
guages. In Walid Taha, editor, Semantics, Applications, and Implementation
of Program Generation, volume 1924 of Lecture Notes in Computer Science,
pages 9–26. Springer Berlin / Heidelberg, 2000.

[EFDM03] C. Elliott, S. Finne, and O. De Moor. Compiling Embedded Languages. Journal
of Functional Programming, 13(03):455–481, 2003.

[EH07a] Torbjörn Ekman and Görel Hedin. The JastAdd Extensible Java Compiler. In
Proceedings of OOPSLA’07 [GBLJ07], pages 1–18, 2007.

[EH07b] Torbjörn Ekman and Görel Hedin. The JastAdd System – Modular Extensi-
ble Compiler Construction. Science of Computer Programming, 69(1-3):14–26,
2007. Special Issue on Experimental Software and Toolkits.

[ELW98] R. Eckstein, M. Loy, and D. Wood. Java Swing. O’Reilly & Associates, Inc.
Sebastopol, CA, USA, 1998.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity In the Heart of Soft-
ware. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[EVI05] Jacky Estublier, German Vega, and Anca Daniela Ionita. Composing Domain-
Specific Languages for Wide-scope Software Engineering Applications. In Pro-
ceedings of MODELS/UML, 2005.

[FC09] Jose Falcon and William Cook. GEL: A Generic Extensible Language. In
Walid Taha, editor, Domain-Specific Languages, volume 5658 of Lecture Notes
in Computer Science, pages 58–77. Springer Berlin / Heidelberg, 2009.

[FD06] J. Fabry and T. D’Hondt. KALA: Kernel Aspect Language for Advanced Trans-
actions. In Symposium on Applied Computing, 2006.

292

Bibliography

[Fel90] M. Felleisen. On the Expressive Power of Programming Languages. 3rd Euro-
pean Symposium on Programming (ESOP’90), 432:134–151, 1990.

[Fer89] J. Ferber. Computational Reflection in Class Based Object-Oriented Languages.
In Proceedings of OOPSLA’89 [Mey89], pages 317–326, 1989.

[FF00] R.E. Filman and D.P. Friedman. Aspect-oriented programming is quantification
and obliviousness. In Workshop on Advanced separation of Concerns, 2000.

[FF04] Ira R. Forman and Nate Forman. Java Reflection in Action (In Action series).
Manning Publications Co., Greenwich, CT, USA, 2004.

[Fla02] David Flanagan. JavaScript: The Definitive Guide, 4th Edition. O’Reilly &
Associates, Inc., Sebastopol, CA, USA, 2002.

[For04] B. Ford. Parsing Expression Grammars: A Recognition-Based Syntactic Foun-
dation. ACM SIGPLAN Notices, 39(1):122, 2004.

[Fow05] M. Fowler. Language Workbenches: The Killer-App for Domain
Specific Languages. http://www.martinfowler.com/articles/
languageWorkbench.html, 2005.

[FP06] Steve Freeman and Nat Pryce. Evolving an Embedded Domain-Specific Lan-
guage in Java. In Companion to the 21st ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’06 [TC06]), pages 855–865, New York, NY, USA, 2006. ACM.

[FPB+70] W. Feurzeig, S. Papert, M. Bloom, R. Grant, and C. Solomon. Programming-
Languages as a Conceptual Framework for Teaching Mathematics. SIGCUE
Outlook, 4(2):13–17, 1970.

[FS99] P. Fradet and M. Südholt. An Aspect Language for Robust Programming. LNCS,
1743:291–292, 1999.

[FW84] Daniel P. Friedman and Mitchell Wand. Reification: Reflection without Meta-
physics. In Proceedings of the 1984 ACM Symposium on LISP and Functional
Programming, LFP’84, pages 348–355, New York, NY, USA, 1984. ACM.

[Gar08] Miguel Garcia. Automating the Embedding of Domain Specific Lan-
guages in Eclipse JDT. http://www.eclipse.org/articles/
Article-AutomatingDSLEmbeddings/, July 2008.

[GBLJ07] Richard P. Gabriel, David F. Bacon, Cristina Videira Lopes, and Guy L. Steele
Jr., editors. Proceedings of the 22nd Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’07), Montreal, Quebec, Canada, 2007. ACM Press, New York, NY, USA.

293

http://www. martinfowler. com/articles/languageWorkbench. html
http://www. martinfowler. com/articles/languageWorkbench. html
http://www.eclipse.org/articles/Article-AutomatingDSLEmbeddings/
http://www.eclipse.org/articles/Article-AutomatingDSLEmbeddings/

Bibliography

[GBNT01] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling Crosscutting Constraints in
Domain-Specific Modeling. Communications of the ACM, 44(10):87–93, 2001.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional, 1995.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification
(Second Edition). Addison-Wesley Longman Publishing Co., Inc., 2000.

[Glu91] Robert Glueck. Towards Multiple Self-Application. In Proceedings of the ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Ma-
nipulation (PEPM ’91), pages 309–320, New York, NY, USA, 1991. ACM.

[Gro] The Groovy Home Page. http://groovy.codehaus.org/.

[GV07] Iris Groher and Markus Voelter. XWeave: Models and Aspects in Concert. In
Proceedings of the 10th International Workshop on Aspect-Oriented Modeling
(AOM ’07), pages 35–40, New York, NY, USA, 2007. ACM.

[GWDD06] Kris Gybels, Roel Wuyts, Stéphane Ducasse, and Maja D’Hondt. Inter-
Language Reflection: A Conceptual Model and its Implementation. Computer
Languages, Systems & Structures, 32(2-3):109–124, 2006.

[HB04] Rachid Hamadi and Boualem Benatallah. Recovery Nets: Towards Self-
Adaptive Workflow Systems. In Xiaofang Zhou, Stanley Su, Mike P. Papa-
zoglou, Maria E. Orlowska, and Keith G. Jeffery, editors, Web Information Sys-
tems (WISE’04), volume 3306 of Lecture Notes in Computer Science, pages
439–453. Springer Berlin / Heidelberg, 2004.

[HBA08] W. Havinga, L. Bergmans, and M. Aksit. Prototyping and Composing Aspect
Languages using an Aspect Interpreter Framework. In ECOOP, pages 180–206,
2008.

[HBA10] Wilke Havinga, Lodewijk Bergmans, and Mehmet Aksit. A Model for Com-
posable Composition Operators: Expressing Object and Aspect Compositions
with First-Class Operators. In Proceedings of AOSD’10 [JS10], pages 145–156,
2010.

[HCH08] Robert Hirschfeld, Pascal Costanza, and Michael Haupt. An Introduction to
Context-Oriented Programming with ContextS. In Ralf Lämmel, Joost Visser,
and João Saraiva, editors, Generative and Transformational Techniques in Soft-
ware Engineering II, volume 5235 of Lecture Notes in Computer Science, pages
396–407. Springer Berlin / Heidelberg, 2008.

294

http://groovy.codehaus.org/

Bibliography

[HH04] Erik Hilsdale and Jim Hugunin. Advice Weaving in AspectJ. In Proceedings of
AOSD’04 [Lie04], pages 26–35, New York, NY, USA, 2004. ACM.

[HHJ+08] J. Henriksson, F. Heidenreich, J. Johannes, S. Zschaler, and U. Aßmann. Ex-
tending Grammars and Metamodels for Reuse: the Reuseware Approach. IET
Software, 2(3):165–184, 2008.

[HHJZ09] Florian Heidenreich, Jakob Henriksson, Jendrik Johannes, and Steffen Zschaler.
On Language-Independent Model Modularisation. LNCS, 5560:39–82, 2009.

[HHKR89] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The Syntax Definition
Formalism SDF—Reference Manual. SIGPLAN Not., 24(11):43–75, 1989.

[Hir01] R. Hirschfeld. AspectS: AOP with Squeak. In Workshop on Advanced Separa-
tion of Concerns in OO Systems, 2001.

[Hir03] R. Hirschfeld. AspectS: Aspect-Oriented Programming with Squeak. In Netob-
jectdays (NODe), pages 216–232, 2003.

[Hir09] Robert Hirschfeld. AspectS - Aspect-Oriented Programming with Squeak. In
Mehmet Aksit, Mira Mezini, and Rainer Unland, editors, Objects, Components,
Architectures, Services, and Applications for a Networked World, volume 2591
of Lecture Notes in Computer Science, pages 216–232. Springer Berlin / Hei-
delberg, 2009.

[HJZ07] F. Heidenreich, J. Johannes, and S. Zschaler. Aspect Orientation for Your Lan-
guage of Choice. In Workshop on Aspect-Oriented Modeling (at MoDELS),
2007.

[HM03] G. Hedin and E. Magnusson. JastAdd - An Aspect-Oriented Compiler Con-
struction System. Science of Computer Programming, 47(1):37–58, 2003.

[HM04] M. Haupt and M. Mezini. Micro-Measurements for Dynamic Aspect-Oriented
Systems. In M. Weske and P. Liggesmeyer, editor, Net.ObjectDays, volume
3263 of LNCS, 2004.

[HNP30] G.W.F. Hegel, F. Nicolin, and O. Pöggeler. Enzyklopädie der philosophischen
Wissenschaften im Grundrisse. Meiner Verlag (1991), 1830.

[HO07] C. Hofer and K. Ostermann. On the Relation of Aspects and Monads. In Work-
shop on Foundations of Aspect-Oriented Languages, pages 27–33, 2007.

[HO10] Christian Hofer and Klaus Ostermann. Modular Domain-Specific Language
Components in Scala. In Proceedings of the International Conference Genera-
tive Programming and Component Engineering (GPCE). ACM, 2010.

295

Bibliography

[Hoa78] CAR Hoare. Communicating Sequential Processes. Communications of the
ACM, 21(8):677, 1978.

[Hor01] P. Horn. Autonomic Computing: IBMï£¡s Perspective on the State of Informa-
tion Technology. IBM TJ Watson Labs, NY, 15th October, 2001.

[HORM08] C. Hofer, K. Ostermann, T. Rendel, and A. Moors. Polymorphic Embedding of
DSLs. In Generative Programming and Component Engineering (GPCE’08),
pages 137–148. ACM New York, NY, USA, 2008.

[HPSA10] Robert Hirschfeld, Michael Perscheid, Christian Schubert, and Malte Ap-
peltauer. Dynamic Contract Layers. In Proceedings of the 2010 ACM Sympo-
sium on Applied Computing (SAC’10), pages 2169–2175, New York, NY, USA,
2010. ACM.

[Hud96] P. Hudak. Building Domain-Specific Embedded Languages. ACM Computing
Surveys, 28(4es):196–196, 1996.

[Hud98] Paul Hudak. Modular Domain Specific Languages and Tools. In P. Devanbu
and J. Poulin, editors, Proceedings: Fifth International Conference on Software
Reuse, pages 134–142. IEEE Computer Society Press, 1998.

[IJF92] John Wiseman Simmons II, Stanley Jefferson, and Daniel P. Friedman. Lan-
guage Extension via First-class Interpreters. http://citeseerx.ist.
psu.edu/viewdoc/summary?doi=10.1.1.49.1396, 1992.

[Jav02] The JavaLogo Homepage. http://sourceforge.net/projects/javalogo/, April 2002.

[JBC02] Eric Jendrock, Jennifer Ball, and Debbie Carson. The J2EE Tutorial. Addison-
Wesley Longman, Amsterdam, 2002.

[JM09] Ranjit Jhala and Rupak Majumdar. Software Model Checking. ACM Comput.
Surv., 41(4):1–54, 2009.

[JS10] Jean-Marc Jézéquel and Mario Südholt, editors. Proceedings of the 9th ACM In-
ternational Conference on Aspect-Oriented Software Development (AOSD’10).
ACM Press, New York, NY, USA, 2010.

[Kam98] S.N. Kamin. Research on Domain-Specific Embedded Languages and Program
Generators. Electronic Notes in Theoretical Computer Science, 14:149–168,
1998.

[KAR+93] G. Kiczales, J. M. Ashley, L. Rodriguez, A. Vahdat, and D.G. Bobrow. Metaob-
ject Protocols: Why we want them and what else they can do. Object-Oriented
Programming: The CLOS Perspective, pages 101–118, 1993.

296

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1396
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.1396

Bibliography

[KG07] D. König and A. Glover. Groovy in Action. Manning, 2007.

[KG08] C. Kaewkasi and J.R. Gurd. Groovy AOP: A Dynamic AOP System for a
JVM-based Language. In Workshop on Software Engineering Properties of Lan-
guages and Aspect Technologies, 2008.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An Overview of AspectJ. In ECOOP, volume 2072 of LNCS, pages 327–353,
2001.

[Kic96] G. Kiczales. Beyond the Black Box: Open Implementation. IEEE Software,
13(1):8–11, 1996.

[KKV09] Lennart C. L. Kats, Karl Trygve Kalleberg, and Eelco Visser. Domain-Specific
Languages for Composable Editor Plugins. In T. Ekman and J. Vinju, editors,
Proceedings of the 9th Workshop on Language Descriptions, Tools, and Appli-
cations (LDTA’09), Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers, March 2009.

[KL04] S. Kojarski and D.H. Lorenz. AOP as a First Class Reflective Mechanism. In
Proceedings of OOPSLA’04 [VS04], pages 216–217, 2004.

[KL05] S. Kojarski and D.H. Lorenz. Pluggable AOP: Designing Aspect Mechanisms
for Third-Party Composition. In Proceedings of the 20th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, pages 247–263. ACM, 2005.

[KL07a] S. Kojarski and D.H. Lorenz. Awesome: An Aspect Co-Weaving System for
Composing Multiple Aspect-Oriented Extensions. In Proceedings of OOP-
SLA’07 [GBLJ07], pages 515–534, 2007.

[KL07b] Sergei Kojarski and David H. Lorenz. AweSome: an Aspect Co-Weaving Sys-
tem for Composing Multiple Aspect-Oriented Extensions. In Proceedings of
OOPSLA’07 [GBLJ07], pages 515–534, 2007.

[KLL+97] Gregor Kiczales, John Lamping, Christina Videira Lopes, Chris Maeda, Anurag
Mendhekar, and Gail Murphy. Open Implementation Design Guidelines. In
Proceedings of the 19th International Conference on Software Engineering,
ICSE’97, pages 481–490, New York, NY, USA, 1997. ACM.

[KLM+97] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier, and
J. Irwin. Aspect-Oriented Programming. In ECOOP, pages 220–242, 1997.

[KLP+08] T. Kosar, M. López, E. Pablo, P.A. Barrientos, and M. Mernik. A Preliminary
Study on Various Implementation Approaches of Domain-Specific Language.
Information and Software Technology, 50(5):390–405, 2008.

297

Bibliography

[KM06] Roman Knöll and Mira Mezini. Pegasus: First Steps toward a Naturalistic Pro-
gramming Language. In Companion to the 21st ACM SIGPLAN Symposium on
Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA’06 [TC06]), pages 542–559, New York, NY, USA, 2006. ACM.

[KM09] R. Knöll and M. Mezini. π: a Pattern Language. ACM SIGPLAN Notices,
44(10):503–522, 2009.

[Kni07] G. Kniesel. Detection and Resolution of Weaving Interactions. TAOSD: Depen-
dencies and Interactions with Aspects, LNCS, 2007. Special Issue on Aspect
Dependencies and Interactions, edited by R. Chitchyan.

[Knu68] D.E. Knuth. Semantics of Context-Free Languages. Theory of Computing Sys-
tems, 2(2):127–145, 1968.

[KRB91] Gregor Kiczales, Jim d. Rivières, and Daniel G. Bobrow. The Art of the Metaob-
ject Protocol. MIT Press, Cambridge, MA, 1991.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: Modular De-
velopment of Textual Domain Specific Languages. Objects, Components, Mod-
els and Patterns, 11:297–315, 2008. 10.1007/978-3-540-69824-1_17.

[KV10] Lennart C. L. Kats and Eelco Visser. The Spoofax Language Workbench. Rules
for Declarative Specification of Languages and IDEs. In Proceedings of OOP-
SLA’10 [CCR10], 2010.

[KW91] U. Kastens and W. M. Waite. An Abstract Data Type for Name Analysis. Acta
Informatica, 28:539–558, 1991.

[Lan66] P. J. Landin. The Next 700 Programming Languages. Commun. ACM, 9(3):157–
166, 1966.

[LF93] Shinn-Der Lee and Daniel P. Friedman. Quasi-Static Scoping: Sharing Vari-
able Bindings across Multiple Lexical Scopes. In Proceedings of the 20th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL’93), pages 479–492, New York, NY, USA, 1993. ACM.

[LH06] Andres Löh and Ralf Hinze. Open Data Types and Open Functions. In Pro-
ceedings of the 8th ACM SIGPLAN International Conference on Principles and
Practice of Declarative Programming (PPDP’06), pages 133–144, New York,
NY, USA, 2006. ACM.

[LHJ95] Sheng Liang, Paul Hudak, and Mark Jones. Monad Transformers and Mod-
ular Interpreters. In POPL ’95: Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 333–343,
New York, NY, USA, 1995. ACM.

298

Bibliography

[Lie04] Karl Lieberherr, editor. Proceedings of the 3rd ACM International Confer-
ence on Aspect-Oriented Software Development (AOSD’04), Lancaster, UK,
Mar 2004. ACM Press, New York, NY, USA.

[LK97] C. Lopes and G. Kiczales. D: A Language Framework for Distributed Program-
ming. Technical report, Northeastern University, Boston, MA, USA, 1997.

[LK03] D.H. Lorenz and S. Kojarski. Reflective Mechanisms in AOP Languages. Tech-
nical report, Northeastern, 2003.

[LLMS00] Jeffrey R. Lewis, John Launchbury, Erik Meijer, and Mark B. Shields. Implicit
Parameters: Dynamic Scoping with Static Types. In Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL’00), pages 108–118, New York, NY, USA, 2000. ACM.

[LM00] Daan Leijen and Erik Meijer. Domain Specific Embedded Compilers. Pro-
ceedings of the 2nd Conference on Conference on Domain-Specific Languages
(DSL’99), 35(1):109–122, 2000.

[LMB92] John Levine, Tony Mason, and Doug Brown. Lex & Yacc. O’Reilly, 1992. 2nd
edition.

[LN04] C.V. Lopes and T.C. Ngo. The Aspect-Oriented Markup Language and its Sup-
port of Aspect Plugins. Technical report, ISR Technical Report UCI-ISR-04-8,
University of California, Irvine, 2004.

[Lop97] Cristina Lopes. D: A Language Framework For Distributed Programming. PhD
thesis, College of Computer Science of Northeastern University, 1997.

[LY99] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Addison-Wesley,
Boston, 1999.

[Mae87] P. Maes. Computational Reflection. PhD thesis, Vrije Universiteit Brussel, 1987.

[Mae88] P. Maes. Computational reflection. The Knowledge Engineering Review,
3(01):1–19, 1988.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2008.

[MC02] Finbar McGurren and Damien Conroy. X-Adapt: An Architecture for Dynamic
Systems. In Finbar McGurren and Damien Conroy, 2002.

[ME00] J. Melton and A. Eisenberg. Understanding SQL and Java together: a Guide to
SQLJ, JDBC, and related Technologies. Morgan Kaufmann, 2000.

299

Bibliography

[Mey88] B. Meyer. Harnessing Multiple Inheritance. Journal of Object-Oriented Pro-
gramming, 1(4):48–51, 1988.

[Mey89] Norman K. Meyrowitz, editor. Proceedings of the th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA’89), SIGPLAN Notices 24(10), New Orleans, Louisiana,
1989. ACM Press, New York, NY, USA.

[MHS05] M. Mernik, J. Heering, and A.M. Sloane. When and How to Develop Domain-
Specific Languages. ACM Computing Surveys (CSUR), 37(4):316–344, 2005.

[MJ98] W.S. Miles and L. Johnson. Implementing Generalized Operator Overloading.
Software-Practice and Experience, 28(6):593–610, 1998.

[MK03] H. Masuhara and K. Kawauchi. Dataflow Pointcut in Aspect-Oriented Program-
ming. Asian Symposium on Programming Languages and Systems, 2003.

[MKD03] H. Masuhara, G. Kiczales, and C. Dutchyn. A Compilation and Optimization
Model for Aspect-Oriented Programs. In Görel Hedin, editor, Compiler Con-
struction, volume 2622 of Lecture Notes in Computer Science, pages 46–60.
Springer Berlin / Heidelberg, 2003.

[MLAZ00] Marjan Mernik, Mitja Lenic, Enis Avdicausevic, and Viljem Zumer. Compil-
er/Interpreter Generator System LISA. Hawaii International Conference on
System Sciences, 8:8059, 2000.

[MMP89] O. L. Madsen and B. Moller-Pedersen. Virtual Classes: A Powerful Mechanism
in Object-Oriented Programming. In Proceedings of OOPSLA’89 [Mey89], New
York, NY, USA, 1989. ACM.

[Mog89] E. Moggi. Computational Lambda-Calculus and Monads. In Proceedings of the
Fourth Annual Symposium on Logic in Computer Science, pages 14–23, Piscat-
away, NJ, USA, 1989. IEEE Press.

[Moo01] L. Moonen. Generating Robust Parsers using Island Grammars. In Proceedings
of the 8th Working Conference on Reverse Engineering, pages 13–22. IEEE
Computer Society, October 2001.

[Mos80] Peter Mosses. A Constructive Approach to Compiler Correctness. In Jaco
de Bakker and Jan van Leeuwen, editors, Automata, Languages and Pro-
gramming, volume 85 of Lecture Notes in Computer Science, pages 449–469.
Springer Berlin / Heidelberg, 1980.

[MS02] SL Peyton Jones MB Shields. First Class Modules for Haskell. In 9th Interna-
tional Conference on Foundations of Object-Oriented Languages (FOOL’02),
pages 28–40, Jan 2002.

300

Bibliography

[MW10] Antoine Marot and Roel Wuyts. Composing Aspects with Aspects. In Proceed-
ings of AOSD’10 [JS10], pages 157–168, 2010.

[NB09] Robert France Nelly Bencomo, Gordon Blair, editor. 1st International Workshop
on Models at Run-Time, 2009.

[NCM03] N. Nystrom, M.R. Clarkson, and A.C. Myers. Polyglot: An Extensible Com-
piler Framework for Java. In Proceedings of the 12th International Conference
on Compiler Construction, pages 138–152, Berlin, Heidelberg, 2003. Springer-
Verlag.

[New73] William M. Newman. An Informal Graphics System based on the LOGO Lan-
guage. In AFIPS ’73: Proceedings of the June 4-8, 1973, national computer
conference and exposition, pages 651–655, New York, NY, USA, 1973. ACM.

[oD65] Department of Defense. COBOL Edition 1965. Technical Report Formnr. 0-
795-689, US-Government Printing Office, 1965.

[OMG04] OMG. UML 2.0 Superstructure. Technical report, Object Management Group,
2004.

[OOP00] Proceedings of the th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA’00), SIGPLAN
Notices 35(10), Minneapolis, Minnesota, USA, 2000. ACM Press, New York,
NY, USA.

[OSV07] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala. Artima
Press, Mountain View, CA, 2007.

[PAG03] Andrei Popovici, Gustavo Alonso, and Thomas Gross. Just-In-Time Aspects:
Efficient Dynamic Weaving for Java. In Proceedings of AOSD’03 [Aks03],
pages 100–109, New York, NY, USA, 2003. ACM.

[Par72] D.L. Parnas. On the Criteria to be used in Decomposing Systems into Modules.
Communications of the ACM, 15(12):1058, 1972.

[Par93] T.J. Parr. Obtaining Practical Variants of LL (k) and LR (k) for k> 1 by Splitting
the Atomic k-Tuple. PhD thesis, Purdue University, 1993.

[Par08] T. Parr. The Reuse of Grammars with Embedded Semantic Actions. In Proceed-
ings of the 16th IEEE Conference on Program Comprehension (ICPC 2008),
pages 5–10, 2008.

[Par10] T. Parr. Language Implementation Patterns: Create Your Own Domain-Specific
and General Programming Languages. The Pragmatic Bookshelf, 2010.

301

Bibliography

[PE88] F. Pfenning and C. Elliot. Higher-Order Abstract Syntax. SIGPLAN Not.,
23(7):199–208, 1988.

[Pes01] F. Peschanski. Jargons: Experimenting Composable Domain-Specific Lan-
guages. In Workshop on Scheme and Functional Programming, Firenze, Italy,
2001.

[PGA01] A. Popovici, T. Gross, and G. Alonso. Dynamic Homogenous AOP with
PROSE. Technical report, Department of Computer Science, ETH Zürich,
Zürich, Switzerland, March 2001.

[PK08] V. Pieterse and D. Kourie. Reflections on Coding Standards in Tertiary Com-
puter Science Education. South African Computer Journal, 41:29–37, 2008.

[Plo81] G.D. Plotkin. A Structural Approach to Operational Semantics. Technical Re-
port DAIMI FN-19, Computer Science Department, Aarhus University, Aarhus,
Denmark, 1981.

[PP08] M. Pfeiffer and J. Pichler. A Comparison of Tool Support for Textual Domain-
Specific Languages. In Proceedings of the 8th Workshop on Domain-Specific
Modeling, pages 1–7, New York, NY, USA, 2008. ACM.

[Pre97] Christian Prehofer. Feature-Oriented Programming: A Fresh Look at Objects.
In Mehmet Aksit and Satoshi Matsuoka, editors, ECOOP’97 Object-Oriented
Programming, volume 1241 of Lecture Notes in Computer Science, pages 419–
443. Springer Berlin / Heidelberg, 1997.

[PS83] H. Partsch and R. Steinbrüggen. Program Transformation Systems. ACM Com-
put. Surv., 15(3):199–236, 1983.

[RDN10] Lukas Renggli, Marcus Denker, and Oscar Nierstrasz. Language Boxes. In
Mark van den Brand, Dragan Gasevic, and Jeff Gray, editors, Software Lan-
guage Engineering, volume 5969 of Lecture Notes in Computer Science, pages
274–293. Springer Berlin / Heidelberg, 2010.

[Res90] M. Resnick. MultiLogo: A Study of Children and Concurrent Programming.
Interactive learning environments, 1(3):153–170, 1990.

[RGN10] L. Renggli, T. Gîrba, and O. Nierstrasz. Embedding Languages without Break-
ing Tools. ECOOP, 6183:380–404, 2010.

[RMH+06] D. Rebernak, M. Mernik, P.R. Henriques, D. da Cruz, and M.J.V. Pereira. Spec-
ifying Languages using Aspect-Oriented Approach: AspectLISA. In 28th In-
ternational Conference on Information Technology Interfaces, pages 695–700,
2006.

302

Bibliography

[RMHP06] D. Rebernak, M. Mernik, P.R. Henriques, and M.J.V. Pereira. AspectLISA: an
Aspect-Oriented Compiler Construction System based on Attribute Grammars.
Electronic Notes in Theoretical Computer Science, 164(2):37–53, 2006.

[RMWG09] D. Rebernak, M. Mernik, H. Wu, and J. Gray. Domain-Specific Aspect Lan-
guages for Modularising Crosscutting Concerns in Grammars. Software, IET,
3(3):184–200, june 2009.

[RS84] Jim des Rivières and Brian Cantwell Smith. The Implementation of Procedu-
rally Reflective Languages. In Proceedings of the 1984 ACM Symposium on
LISP and Functional Programming (LFP’84), pages 331–347, New York, NY,
USA, 1984. ACM.

[Rub] Ruby Programming Language. http://www.ruby-lang.org/.

[SBP99] Tim Sheard, Zine-el-abidine Benaissa, and Emir Pasalic. DSL Implementation
using Staging and Monads. In PLAN ’99: Proceedings of the 2nd conference on
Domain-specific languages, pages 81–94, New York, NY, USA, 1999. ACM.

[SBP+09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, Ed Merks, Rochard C.
Gronback, and Mike Milinkovich. EMF: Eclipse Modeling Framework. The
Eclipse Series. Addison-Wesley, Upper Saddle River, NJ, 2nd edition, 2009.

[Sca] The Scala Programming Language. http://www.scala-lang.org/
index.html.

[SCD03] Nikita Synytskyy, James R. Cordy, and Thomas R. Dean. Robust Multilingual
Parsing using Island Grammars. In Proc. of Conference of the Centre for Ad-
vanced Studies on Collaborative Research, pages 266–278. IBM Press, 2003.

[SCK04] Sean Seefried, Manuel Chakravarty, and Gabriele Keller. Optimising Embed-
ded DSLs Using Template Haskell. Generative Programming and Component
Engineering, 3286:201–211, 2004.

[SDNB03] Nathanael Schärli, Stéphane Ducasse, Oscar Nierstrasz, and Andrew Black.
Traits: Composable units of behaviour. In ECOOP 2003 – Object-Oriented
Programming, volume 2743 of Lecture Notes in Computer Science, pages 327–
339. Springer Berlin / Heidelberg, 2003.

[She04] Tim Sheard. Languages of the Future. SIGPLAN Not., 39(12):119–132, 2004.

[SHH09] Hans Schippers, Michael Haupt, and Robert Hirschfeld. An Implementation
Substrate for Languages Composing Modularized Crosscutting Concerns. In
Proceedings of the 2009 ACM symposium on Applied Computing (SAC’09),
pages 1944–1951, New York, NY, USA, 2009. ACM.

303

http://www.ruby-lang.org/
http://www.scala-lang.org/index.html
http://www.scala-lang.org/index.html

Bibliography

[Sim95] Charles Simonyi. The Death of Computer Languages, The Birth of Intentional
Programming. Technical Report MSR-TR-95-52, Microsoft Research, Red-
mond, WA, USA, September 1995.

[SK97] J. Sztipanovits and G. Karsai. Model-integrated computing. Computer,
30(4):110–111, 1997.

[SLS03] Macneil Shonle, Karl Lieberherr, and Ankit Shah. XAspects: An Extensi-
ble System for Domain Specific Aspect Languages. In Proceedings of OOP-
SLA’03 [CJ03], pages 28–37, 2003.

[Smi82] B.C. Smith. Reflection and Semantics in a Procedural Language. Technical
Report 272, Massachusetts Institute of Technology, Laboratory for Computer
Science, Cambridge, Massachusetts, USA, 1982.

[Smi84] Brian Cantwell Smith. Reflection and Semantics in LISP. In Proceedings of
the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
languages (POPL’84), pages 23–35, New York, NY, USA, 1984. ACM.

[SN05] J.E. Smith and R. Nair. Virtual Machines: Versatile Platforms for Systems and
Processes. Morgan Kaufmann Pub, 2005.

[SP06] P. Shaker and D. Peters. Design-level detection of interactions in aspect-oriented
systems. In Aspects, Dependencies and Interactions Workshop at ECOOP 2006,
2006.

[SS71] D. Scott and C. Strachey. Toward a Mathematical Semantics for Computer Lan-
guages. In Proceedings of the Symposium on Computers and Automata, vol-
ume 21, page 19. Polytechnic Press of the Polytechnic Institute of Brooklyn,
Wiley-Interscience, New York, 1971.

[SS78] G. Steele and G. Sussman. The Revised Report an SCHEME, a Dialect of
IJSI. Technical Report Memo AIM-452, M.I.T. Artificial Intelligence Imbo-
ratory, 1978.

[SS98] Gerald Jay Sussman and Guy L. Steele. Scheme: A Interpreter for Extended
Lambda Calculus. Higher-Order and Symbolic Computation, 11:405–439,
1998.

[Ste87] Lynn Andrea Stein. Delegation is Inheritance. In Proceedings of the Interna-
tional Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA’87), pages 138–146, New York, NY, USA, 1987. ACM.

[Ste94] Guy L. Steele. Building Interpreters by Composing Monads. In Proceedings
of the Symposium on Principles of Programming Languages, pages 472–492.
ACM New York, NY, USA, 1994.

304

Bibliography

[Ste99] G.L. Steele. Growing a Language. Higher-Order and Symbolic Computation,
12(3):221–236, 1999.

[Stu09] Aaron Stump. Directly Reflective Meta-Programming. Higher-Order and Sym-
bolic Computation, 22:115–144, 2009.

[Sul01] G.T. Sullivan. Aspect-Oriented Programming using Reflection and Metaobject
Protocols. Communications of the ACM, 44(10):95–97, 2001.

[SVJ03] Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JAsCo: An Aspect-
Oriented Approach tailored for Component based Software Development. In
Proceedings of AOSD’03 [Aks03], pages 21–29, 2003.

[Tan04] É. Tanter. From Metaobject Protocols to Versatile Kernels for Aspect-Oriented
Programming. PhD thesis, Université de Nantes, France, 2004.

[Tan06] E. Tanter. Aspects of Composition in the Reflex AOP Kernel. LNCS, 4089:98,
2006.

[Tan08] Éric Tanter. Expressive Scoping of Dynamically-Deployed Aspects. In Pro-
ceedings of AOSD’08 [D’H08], pages 168–179, 2008.

[Tan09] Éric Tanter. Beyond Static and Dynamic Scope. SIGPLAN Not., 44(12):3–14,
2009.

[Tan10] Éric Tanter. Execution Levels for Aspect-Oriented Programming. In Proceed-
ings of AOSD’10 [JS10], pages 37–48, 2010.

[Tay92] P. Taylor. The Future of TEX. Proceedings of the Conference EuroTEX, 92:235–
254, 1992.

[TC06] Peri L. Tarr and William R. Cook, editors. Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA’06), Portland, Oregon, USA, 2006. ACM Press,
New York, NY, USA.

[TCKI00] M. Tatsubori, S. Chiba, M.O. Killijian, and K. Itano. OpenJava: A Class-Based
Macro System for Java. Reflection and Software Engineering, 1826, 2000.

[Ten76] RD Tennent. The Denotational Semantics of Programming Languages. Com-
munications of the ACM, 19(8):453, 1976.

[TFH09] Dave Thomas, Chad Fowler, and Andy Hunt. Programming Ruby 1.9: The
Pragmatic Programmers’ Guide. Pragmatic Bookshelf, 2009.

305

Bibliography

[TN05] Éric Tanter and Jacques Noyé. A Versatile Kernel for Multi-language AOP.
Generative Programming and Component Engineering, 3676:173–188, 2005.

[Tra08] Laurence Tratt. Domain Specific Language Implementation via Compile-Time
Meta-Programming. ACM Trans. Program. Lang. Syst., 30(6):1–40, 2008.

[TT08] R. Toledo and E. Tanter. A Lightweight and Extensible AspectJ Implementation.
Journal of Universal Computer Science, 14(21):3517–3533, 2008.

[UMT04] N. Ubayashi, H. Masuhara, and T. Tamai. An AOP Implementation Framework
for Extending Join Point Models. In ECOOP Workshop on Reflection, AOP and
Meta-Data for Software Evolution, 2004.

[US87] David Ungar and Randall B. Smith. Self: The Power of Simplicity. SIGPLAN
Not., 22(12):227–242, 1987.

[vdBK07] M.G.J. van den Brand and P. Klint. ATerms for Manipulation and Exchange of
Structured Data: It’s all about Sharing. Information and Software Technology,
49(1):55–64, 2007.

[vdBSV97] M. van den Brand, M. Sellink, and C. Verhoef. Obtaining a Cobol Grammar
from Legacy Code for Reengineering Purposes. Proceedings of the Second In-
ternational Workshop on Theory and Practice of Algebraic Specifications, 1997.

[vdBSVV02] Mark van den Brand, Jeroen Scheerder, Jurgen Vinju, and Eelco Visser. Disam-
biguation Filters for Scannerless Generalized LR Parsers. In R. Horspool, edi-
tor, Compiler Construction, volume 2304 of Lecture Notes in Computer Science,
pages 21–44. Springer Berlin / Heidelberg, 2002. 10.1007/3-540-45937-5_12.

[vdBvDK+96] M. van den Brand, A. van Deursen, P. Klint, S. Klusener, and E. van Der Meulen.
Industrial Applications of ASF+SDF. Proceedings of the 5th International
Conference on Algebraic Methodology and Software Technology (AMAST’96),
1101:9–18, 1996.

[vDKV00] A. van Deursen, P. Klint, and J. Visser. Domain-Specific Languages: An anno-
tated Bibliography. ACM SIGPLAN Notices, 35(6):26–36, 2000.

[vG00] J. van Gurp. Variability in Software Systems: The Key to Software Reuse. PhD
thesis, Dept. of Software Engineering & Computer Science, Blekinge Institute
of Technology, Karlskrona, Sweden, 2000.

[VGBS01] Jilles Van Gurp, Jan Bosch, and Mikael Svahnberg. On the Notion of Variability
in Software Product Lines. In Proceedings of the Working IEEE/IFIP Confer-
ence on Software Architecture (WICSA’01), page 45, Washington, DC, USA,
2001. IEEE Computer Society.

306

Bibliography

[Vis97a] E. Visser. Scannerless Generalized-LR Parsing. Technical Report P9707, Uni-
versity of Amsterdam, The Netherlands, 1997.

[Vis97b] E. Visser. Syntax Definition for Language Prototyping. PhD thesis, Universiteit
van Amsterdam, The Netherlands, 1997.

[Vis97c] Eelco Visser. A Family of Syntax Definition Formalisms. Technical Report
P9706, Programming Research Group, 1997.

[Vis05] E. Visser. A Survey of Strategies in Rule-Based Program Transformation Sys-
tems. Journal of Symbolic Computation, 40(1):831–873, 2005.

[Vis08] E. Visser. WebDSL: A Case Study in Domain-Specific Language Engineer-
ing. Generative and Transformational Techniques in Software Engineering II,
5235:291–373, 2008.

[VR09] T. Verwaest and L. Renggli. Safe Reflection through Polymorphism. In Proceed-
ings of the first International Workshop on Context-Aware Software Technology
and Applications, pages 21–24. ACM, 2009.

[VS04] John M. Vlissides and Douglas C. Schmidt, editors. Proceedings of the 19th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA’04), Vancouver, BC, Canada, 2004.
ACM Press, New York, NY, USA.

[VWBGK08] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. Silver: an
Extensible Attribute Grammar System. Electron. Notes Theor. Comput. Sci.,
203(2):103–116, 2008.

[VWBH06] E. Van Wyk, D. Bodin, and P. Huntington. Adding Syntax and Static Analysis to
Libraries via Extensible Compilers and Language Extensions. In 2nd Interna-
tional Workshop on Library-Centric Software Design (LCSD’06), page 35, New
York, NY, USA, 2006. ACM.

[Wad90] Philip Wadler. Comprehending Monads. In Proceedings of the 1990 ACM con-
ference on LISP and functional programming (LFP’90), pages 61–78, 1990.

[Wam08] Dean Wampler. Aquarium: AOP in Ruby. In Proceedings of AOSD’04 [Lie04],
2008.

[WF88] Mitchell Wand and Daniel P. Friedman. The Mystery of the Tower Revealed: A
Nonreflective Description of the Reflective Tower. LISP and Symbolic Compu-
tation, 1:11–38, 1988.

[WfM] The Workflow Management Coalition. http://www.wfmc.org/.

307

http://www. wfmc. org/

Bibliography

[WGM09] Hui Wu, Jeff Gray, and Marjan Mernik. Unit Testing for Domain-Specific Lan-
guages. Domain-Specific Languages, 5658:125–147, 2009.

[WKBS07] Eric Van Wyk, Lijesh Krishnan, Derek Bodin, and August Schwerdfeger. At-
tribute Grammar-Based Language Extensions for Java. ECOOP 2007–Object-
Oriented Programming, 4609:575–599, 2007.

[WKD04] M. Wand, G. Kiczales, and C. Dutchyn. A Semantics for Advice and Dynamic
Join Points in Aspect-Oriented Programming. Transactions on Programming
Languages and Systems, 26(5), 2004.

[ZGL05] Jing Zhang, Jeff Gray, and Yuehua Lin. Metamodel-Driven Model Interpreter
Evolution. In Proceedings of the Domain-Specific Modeling Workshop, 2005.

[Zha06] G. Zhang. Towards Aspect-Oriented State Machines. In Asian Workshop on
Aspect-Oriented Software Development (AOAsia’06), 2006.

[ZHS04] David Zook, Shan Shan Huang, and Yannis Smaragdakis. Generating aspectj
programs with meta-aspectj. In Gabor Karsai and Eelco Visser, editors, Gener-
ative Programming and Component Engineering, volume 3286 of Lecture Notes
in Computer Science, pages 583–605. Springer Berlin / Heidelberg, 2004.

308

Scientific Career

Since Jun 2005
Technische Universität Darmstadt, Germany
Research Assistant in the Software Technology Group of Prof. Mira Mezini

Apr 2007 – Sep 2007
SAP Research, Palo Alto, CA, USA
Internship Abroad

Mar 2005
Technische Universität Darmstadt, Germany
Diploma in Computer Science

Sep 2002 – Mar 2003
University of Birmingham, England
Study Abroad in Computer Science

Aug 1998 – Mar 2005
Technische Universität Darmstadt, Germany
Studies in Computer Science

309

	Introduction
	Context of this Thesis
	Problem Statement
	Thesis
	State-of-the-Art in Language Embedding Approaches
	Core Architecture for Reflective Embedding
	Extensions to the Core Architecture
	Evaluation

	Summary of Contributions
	Organization of the Thesis

	State of the Art
	State of the Art in Language Implementation Approaches
	Domain-Specific Languages
	Embedded Domain-Specific Languages
	Open Issues in Existing Embedding Approaches
	Lack of Support for Concrete Syntax
	Lack of Support for Crosscutting Composition for DSLs
	Lack of Support for Fine-Grained Composition

	Architectures for Language Implementation
	Front-End/Back-End Architectures
	Extensible Compilers
	Meta-Level Architectures
	Reflective Architectures
	Meta-Object Protocols

	Desirable Properties for Language Embeddings
	Extensibility
	Adding New Keywords
	Semantic Extensions
	Conservative Semantic Extensions
	Semantic Adaptations

	Composability of Languages
	Composing Languages without Interactions
	Composing Languages with Interactions
	Syntactic Interactions
	Semantic Interactions

	Enabling Open Composition Mechanisms
	Open Mechanisms for Handling Syntactic Interactions
	Generic Mechanism for Conflict-Free Compositions
	Supporting Keyword Renaming
	Supporting Priority-Based Conflict Resolution

	Open Mechanisms for Handling Semantic Interactions
	Generic Mechanism for Crosscutting Composition of DSLs
	Supporting Composition Conflict Resolution

	Support for Concrete Syntax
	Converting Concrete to Abstract Syntax
	Supporting Prefix, Infix, Suffix, and Mixfix Operators
	Supporting Overriding Host Language Keywords
	Supporting Partial Definition of Concrete Syntax

	Enabling Pluggable Scoping
	Supporting Dynamic Scoping
	Supporting Implicit References
	Supporting Activation of Language Constructs

	Enabling Pluggable Analyses
	Syntactic Analyses
	Semantic Analyses

	Enabling Pluggable Transformations
	Static Transformations
	Syntactic Transformations
	Semantic Transformations

	Dynamic Transformations

	Review of the Support for the Desirable Properties in Related Work
	Summary

	Core Architecture for Reflective Embedding
	The Reflective Embedding Approach
	The Reflective Embedding Architecture
	Levels of the Architecture
	Language Interface Level
	Language Façade Level
	Language Model Level
	Language Meta Level

	Program Evaluation

	Key Mechanisms for Language Evolution
	Language Polymorphism
	Hierarchical Extensions
	Abstracting over Semantics
	Program Evaluation under Alternative Semantics

	Meta-Level Extensions: Semantic Adaptations using the Meta Level
	Semantic Adaptation Scopes
	Extensions Points of the Architecture
	Program Evaluation under Adapted Semantics

	Extensible Languages Combiners
	Composing Independent Languages
	Composing Dependent Languages
	Composing Languages with Custom Combiners

	Summary

	Implementation in Groovy
	Groovy in a Nutshell
	Reflective Embedding in Groovy
	Language Interface Level
	Language Façade Level
	Language Model Level
	Language Meta Level

	Program Evaluation in Groovy
	Key Mechanisms in Groovy
	Language Polymorphism
	Meta-Level Extensions
	Extensible Languages Combiners
	Composing Independent Languages
	Composing Dependent Languages

	Summary

	Extensions to the Core Architecture
	Reflective Domain-Specific Languages
	Late Variability in Domain-Specific Language Semantics
	The FsmDSL Running Example
	Semantic Variability in FsmDSL

	Implementing the Primary Interface of the FsmDSL
	Growing a DSL into a Reflective DSL
	Reflective DSLs
	Implementation of Reflective DSLs
	Structural Reflection
	Behavioral Reflection

	On the Design Properties of Reflective DSLs
	Evolving from Procedural to Declarative Reflection

	Case Study: Using Semantic Adaptation Scopes to Adapt an Open DSL Implementation
	Possible Semantic Adaptations for the FsmDSL
	Dimension: Locality of Adaptations
	Dimension: Atomicity of Adaptations
	Dimension: Time of Adaptations

	Summary

	Crosscutting Composition of Embedded Domain-Specific Languages
	Running Example: ProcessDSL—A Workflow Language
	Example Scenario for Crosscutting in DSLs

	Embedding ProcessDSL
	Crosscutting Composition
	Homogeneous Embedding of Aspect-Oriented Concepts
	Crosscutting Composition at Work

	Summary

	Incremental Concrete Syntax for Embedded Languages
	Concrete Syntax for Homogeneous Embedded DSLs
	Defining a Homogeneous EDSL
	Enabling Concrete Syntax for EDSLs
	Compiling DSL Programs
	Enabling a new Host Language

	Implementation of the Generic Pre-Processor for Incremental Concrete Syntax
	Summary

	Evaluation
	Related Work
	Homogeneous Embedding
	Functional Languages
	Dynamic Languages
	Staging/Meta Programming Languages
	Typed Object-Oriented Languages

	Heterogeneous Embedding
	Embedded Compilers
	Source Transformation Languages

	Non-Embedding Approaches
	Extensibility
	Composability of Languages
	Enabling Open Composition Mechanisms
	Support for Concrete Syntax
	Enabling Pluggable Scoping
	Enabling Pluggable Analyses
	Enabling Pluggable Transformations

	Case Studies: Review of the Support for the Desirable Properties
	Extensibility
	Adding New Keywords
	Semantic Extensions
	Conservative Semantic Extensions
	Semantic Adaptations

	Composability of Languages
	Composing Languages without Interactions
	Composing Languages with Interactions
	Syntactic Interactions
	Semantic Interactions

	Enabling Open Composition Mechanisms
	Open Mechanisms for Handling Syntactic Interactions
	Generic Mechanism for Conflict-Free Compositions
	Supporting Keyword Renaming
	Supporting Priority-Based Conflict Resolution

	Open Mechanisms for Handling Semantic Interactions
	Specific Mechanism for Controlling Semantic Interactions
	Generic Mechanism for Crosscutting Composition of DSLs
	Supporting Composition Conflict Resolution

	Support for Concrete Syntax
	Converting Concrete to Abstract Syntax
	Supporting Prefix, Infix, Suffix, and Mixfix Operators
	Supporting Overriding Host Language Keywords
	Supporting Partial Definition of Concrete Syntax

	Enabling Pluggable Scoping
	Supporting Dynamic Scoping
	Supporting Implicit References
	Supporting Activation of Language Constructs

	Enabling Pluggable Analyses
	Syntactic Analyses
	Semantic Analyses

	Enabling Pluggable Transformations
	Support for Static Transformations
	Syntactic Transformations
	Semantic Transformations

	Support for Dynamic Transformations

	Review Result
	Summary

	Costs of Reflective Embedding
	Implementation Costs of Reflective Embedding
	Implementation Costs of Domain-Specific Languages
	Domain-Specific Syntax
	Domain-Specific Semantics

	Implementation Costs of Domain-Specific Aspect Languages

	Compilation Costs of Reflective Embedding
	Runtime Costs of Reflective Embedding
	Runtime Costs of Domain-Specific Languages
	Runtime Costs of Aspect Languages

	Conclusion
	Conclusion
	Summary of Results
	Concluding Discussion
	Future Work

