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Abstract

A field of computational neuroscience develops mathematical models to describe neuronal
systems. The aim is to better understand the nervous system. Historically, the integrate-
and-fire model, developed by Lapique in 1907, was the first model describing a neuron. In
1952 Hodgkin and Huxley [8] described the so called Hodgkin-Huzley model in the article
“A Quantitative Description of Membrane Current and Its Application to Conduction and
Excitation in Nerve”. The Hodgkin-Huxley model is one of the most successful and widely-used
biological neuron models. Based on experimental data from the squid giant axon, Hodgkin
and Huxley developed their mathematical model as a four-dimensional system of first-order
ordinary differential equations. One of these equations characterizes the membrane potential
as a process in time, whereas the other three equations depict the opening and closing state
of sodium and potassium ion channels. The membrane potential is proportional to the sum
of ionic current flowing across the membrane and an externally applied current. For various
types of external input the membrane potential behaves differently. This thesis considers the
following three types of input:

(i) Rinzel and Miller [15] calculated an interval of amplitudes for a constant applied current,
where the membrane potential is repetitively spiking.

(ii) Aihara, Matsumoto and Tkegaya [1] said that dependent on the amplitude and the fre-
quency of a periodic applied current the membrane potential responds periodically.

(iii) Izhikevich [12] stated that brief pulses of positive and negative current with different
amplitudes and frequencies can lead to a periodic response of the membrane potential.

In chapter 1 the Hodgkin-Huxley model is introduced according to Izhikevich [12]. Besides
the definition of the model, several biological and physiological notes are made, and further
concepts are described by examples. Moreover, the numerical methods to solve the equations
of the Hodgkin-Huxley model are presented which were used for the computer simulations in
chapter 2 and chapter 3. In chapter 2 the statements for the three different inputs (i), (ii) and
(iii) will be verified, and periodic behavior for the inputs (ii) and (iii) will be investigated. In
chapter 3 the inputs are embedded in an Ornstein-Uhlenbeck process to see the influence of
noise on the results of chapter 2.



ii

ABSTRACT



Zusammenfassung

Ein Bereich der Computational Neuroscience beschiftigt sich mit der mathematischen Mo-
dellierung neuronaler Systeme. Das Ziel ist es, ein besseres Verstdndnis des Nervensystems
zu erhalten. Historisch gesehen ist das Integrate-and-Fire Modell, entwickelt von Lapique im
Jahre 1907, das erste Modell, das ein Neuron beschrieben hat. Im Jahre 1952 beschreiben
Hodgkin und Huxley [8] in ihrer Arbeit “A Quantitative Description of Membrane Current
and Its Application to Conduction and Excitation in Nerve” eines der erfolgreichsten und am
meisten genutzten biologischen Neuronenmodelle, das sogenannte Hodgkin-Huxley Modell. Auf
der Grundlage von Experimenten am Riesenaxon des Tintenfischs wurde das Hodgkin-Huxley
Modell als vierdimensionales System gewohnlicher Differentialgleichungen erster Ordnung ent-
wickelt. Eine dieser Gleichungen stellt das Membranpotential dar, wohingegen die restlichen
drei Gleichungen das Offnen und Schliefen der Natrium- und Kaliumionenkanile wiedergibt.
Dabei ist das Membranpotential proportional zur Summe der Ionenstréme und einem exter-
nen Strominput. Fiir verschiedene Typen von externem Input reagiert das Membranpotential
unterschiedlich. In dieser Arbeit beschéftigen wir uns mit den folgenden drei Typen von Input:

(i) Rinzel und Miller [15] berechneten numerisch, dass fiir einen konstanten Input ein In-
tervall von Amplituden existiert, fiir welches das Membranpotential mit einer gewissen
Frequenz wiederholend Aktionspotenziale erzeugt.

(ii) Aihara, Matsumoto und Ikegaya [1] beschreiben, dass abhéingig von der Amplitude und
der Frequenz eines periodischen Inputs das Membranpotential periodisch zum Input
erwidert.

(iii) Izhikevich [12] erklért, dass kurze Impulse von positivem, sowie negativem Strom mit
unterschiedlichen Amplituden und Frequenzen zu periodischem Verhalten des Membran-
potentials fiithren kann.

In Kapitel 1 wird eine Einfiihrung in das Hodgkin-Huxley Modell gegeben, analog zu Izhike-
vich [12]. Dabei werden neben der Definition des Modells einige Bemerkungen iiber den biolo-
gischen und physiologischen Hintergrund gegeben und weitere Begriffe anhand von Beispielen
eingefithrt. Aukerdem werden die numerischen Methoden angegeben, die zur Losung der Glei-
chungen des Hodgkin-Huxley Modells mit Computersimulationen in Kapitel 2 und Kapitel 3
verwendet werden. In Kapitel 2 werden die Aussagen iiber die drei verschiedenen Inputtypen
(1), (ii) und (iii) verifiziert. Auferdem werden die Periodizitéten in (ii) und (iii) genauer unter-
sucht. In Kapitel 3 werden die Inputtypen in einen Ornstein-Uhlenbeck Prozess eingebettet,
um den FEinfluss von Rauschen auf die Ergebnisse aus Kapitel 2 zu untersuchen.

iii



iv

ZUSAMMENFASSUNG



Contents

Abstract
Zusammenfassung

1 The Hodgkin-Huxley Model
1.1 Mathematical Description . . . . . ... ... ..
1.2 Implementation . . . . . . ... ... ... ....

2 Phenomena of the Hodgkin-Huxley Model
2.1 Constant Input . . . . ... ... ... ... ...
2.2 PeriodicInput. . . .. ... ... ... .. ....
23 1msPulselnput . ... ... ... ... .. ...

3 Hodgkin-Huxley Model with Stochastic Input
3.1 Stochastic Differential Equations . . . . .. . ..
3.2 Ornstein-Uhlenbeck Process Embedding . . . . .

3.2.1 Ornstein-Uhlenbeck Process for Constant Input . . . . . .. .. ... ..
3.2.2  Ornstein-Uhlenbeck Process for Periodic Input . . . . . . .. ... ...
3.2.3 Ornstein-Uhlenbeck Process for 1 ms Pulse Input . . . . . ... ... ..

A C Codes
A.1 Rating Constants and Hodgkin-Huxley Equations
A.2 Runge-Kutta Method for Constant Input . . . . .
A.3 Runge-Kutta Method for Periodic Input . . . . .
A.4 Runge-Kutta Method for 1 ms Pulse Input . . . .
A.5 Euler Method for Ornstein-Uhlenbeck Inputs . .

B R Codes
B.1 Ornstein-Uhlenbeck Process for Constant Input .
B.2 Ornstein-Uhlenbeck Process for Periodic Input .
B.3 Ornstein-Uhlenbeck Process for 1 ms Pulse Input

Bibliography

13
13
17
25

33
33
35
37
40
43

47
47
49
50
o1
53

57
o7
o7
58

61



vi

CONTENTS



List of Figures

1.1
1.2
1.3
14
1.5
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24

3.1

3.2

Rating Functions . . . . . . . . . ... 2
Steady-State (In)Activation Functions and Time Functions . . . . . . . . . . .. 5
Action Potential in the Hodgkin-Huxley Model . . . . . . ... ... ... ... 6
First Action Potential fora 1ms Pulse . . . . . . .. .. ... ... ... .... 7
Refractory Period for 1 ms Pulses . . . . . . . . ... ... ... ... ...... 8
Second Action Potential for a 1 ms Pulse with Amplitude a =6.41 . . . . . .. 8
First Spike for Constant Input Using (1.7) . . . . . .. .. ... ... ... ... 14
Beginning of Repetitive Firing for Constant Input Using (1.7) . . . . . . . . .. 14
Regular Behavior for Constant Input Using (1.7) . . . . . ... ... ... ... 15
End of Regular Behavior for Constant Input Using (1.7) . . . ... ... .. .. 15
First Spike for Constant Input Using (1.1) . . . . . . . .. ... ... ... ... 16
Beginning of Repetitive Firing for Constant Input Using (1.1) . . . . . . . . .. 16
End of Regular Behavior for Constant Input Using (1.1) . . . ... .. ... .. 17
Example for a Non-Periodic Solution . . . . . .. .. ... ... ... ... ... 18
Example for Periodicities with Ryp;o =1, Rppatn =1 . . . . . . . . . . . .. .. 20
Example for Periodicities with Rp;o =0, Rppatn =1 . . . . . . . . . . . .. ... 20
Ratios Ryp;, of the Sinusoidal Input . . . . . .. .. .. ... ... ... ..... 21
Ratios Ry,qn of the Sinusoidal Input . . . . . . . ... ... ... .. ... ... 22
Example for Periodicities with Rpio = 2/3, Rppatn = 1/3 . . . . . . . o . ... 23
Example for Periodicities with Rpjo = 2, Rppath =1 . . . . . . . . . . . .. ... 23
Example for Periodicities with Rp;o = 1/3, Ryt = 1/3 . . . . . . . .. .. .. 24
Minimum Interspikeintervals of the Sinusoidal Input . . . . . . .. .. ... .. 24
Periods of the Pulse Input . . . . . . . . ... ... ... ... ... ... . ... 25
Example for a Non-Periodic Solution . . . . . .. .. ... ... ... ... ... 26
Example for Periodicities with Py =1, Ppath =1 . . . . . . . . . . ... ... 27
Example for Periodicities with Py, =0, Ppath =1 . . . . . . . . .. . .. ... 27
Ratios Py, of the 1 ms Pulse Input . . . . . .. .. .. ... ... ... ..... 28
Example for Periodicities with Py, = 3/4, Ppgtn = 1/4 . . . . . . . . .. .. .. 29
Ratios Pain of the 1 ms Pulse Input . . . . . . . ... .. ... ... .. .... 30
Example for Periodicities with Pyjo = 1/3, Prath =1/3 . . . . . . . . ... .. 31
Example for a Membrane Potential with a Constant Input embedded in an

Ornstein-Uhlenbeck (0 =0.25, y=0.1) . . .. .. .. ... ... ... ..... 38
Example for a Membrane Potential with a Constant Input embedded in an

Ornstein-Uhlenbeck (0 =0.95,v=0.1) . ... ... .. ... ... ... .... 39

vii



viii

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

LIST OF FIGURES

Example for a Membrane Potential with a Constant Input embedded in an

Ornstein-Uhlenbeck (0 =0.05,v=0.9) . . .. ... ... ... ... ...... 39
Example for a Membrane Potential with a Sinusoidal Input embedded in an
Ornstein-Uhlenbeck (6 = 0.5,y =0.5) . . . ... ... ... ... ... .... 41
Example for a Membrane Potential with a Sinusoidal Input embedded in an
Ornstein-Uhlenbeck (0 = 0.75, v =0.25) . . . . . ... ... ... ... ..... 41
Example for a Membrane Potential with a Sinusoidal Input embedded in an
Ornstein-Uhlenbeck (o0 =0.05, v =0.25) . . . . . ... ... ... ... ..... 42
Example for a Membrane Potential with a Sinusoidal Input embedded in an
Ornstein-Uhlenbeck (0 =0.05, v =0.25) . . . . . .. .. ... ... ... .... 43
Example for a Membrane Potential with a 1 ms Pulse Input embedded in an
Ornstein-Uhlenbeck (o0 =0.05, v =0.75) . . . . .. . ... ... ... ..... 44
Example for a Membrane Potential with a 1 ms Pulse Input embedded in an
Ornstein-Uhlenbeck (o0 =0.75, vy =0.75) . . . . . . .. .. . ... ... .... 45

Example for a Membrane Potential with a 1 ms Pulse Input embedded in an
Ornstein-Uhlenbeck (0 =0.05,vy=0.9) . . ... ... ... ... ........ 45



List of Tables

1.1

3.1

3.2
3.3

Concentrations of Ions Inside and Outside the Cell . . . . . . . . .. ... ... 5

Relative Frequencies of Spiking for an Ornstein-Uhlenbeck Process with Con-

stant Input . . . . ... 38
Ratios of the Examined Sinusoidal Inputs . . . . . . .. ... .. ... ... .. 40
Ratios of the Examined 1 ms Pulse Inputs . . . . . . .. ... ... ... ... .. 44

X



LIST OF TABLES



Chapter 1

The Hodgkin-Huxley Model

This chapter is divided into two sections. The first section is a mathematical summary of the
Hodgkin-Huxley model based on Izhikevich’s book [12]. Izhikevich [12] is more modern than
the pioneering article [8] of Hodgkin and Huxley describing the conductances responsible for
the generation of action potentials in the squid giant axon. This section hardly touches on
the biological and physiological background. In the second section the methods used for the
numerical simulations are provided.

1.1 Mathematical Description

1.1 Definition: (i) The functions au,, am, an, B, Bm: R — Ry and £,: R — (0,1) defined
as

10—V i N
an(V) = { 100 (exp(*55-)-1) ' fv#10 , Brn (V) ::1exp( V),

% , else 8 80
25—V :
= ,ifV £25 _
am(V) = 10 (exp(#55-) 1) # ) Bm (V) == 4exp <V> ,
1 , else 18
7 -V 1
ap(V) = —exp|—|, V)= —g——
W)= e () A= sy
are called the rating functions.
(ii) Let
Ex =—12, En, =120, E; =106 (1.1)

be the equilibrium potentials, g = 36, gng = 120, g, = 0.3 be the mazimum conduc-
tances and C' = 1 be the membrane capacity. Further let

I: Ry - R, t—I(t) (1.2)

be a given input function. The Hodgkin-Huzley model consists of a four-dimensional
system of first-order ordinary differential equations

C’% = I(t)— ggn* - (V — Ex) — gnam®h - (V — Ena) — g1 - (V — Er) (1.3)
% = ap,(V)-(1—n)—=5u(V)n (1.4)
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S (V) (1= m) — fu(V) (15)
%’Z — an(V)-(1=h) = Bu(V)-h. (1.6)

The process (V(t))i>0 is called the membrane potential, the functions n(t), m(t) and
h(t) are called the gating variables.

(A) (B)

-100 -50 0 50 100 -100 -50 0 50 100

V (mV) V(mV)
Figure 1.1: Rating functions ay,, ap, ap (A) and By, Bm, Br in (B) for V € [—120,120].

1.2 Proposition: The rating functions ay,, @, @n, B, Bm, Br are analytic, i.e. the functions
are locally given by a convergent power series. Especially the rating functions are infinitely
differentiable (see [3], 2.3 Definition on page 34 and 2.5 Proposition on page 35).

Proof Let
f(z) = { spz=1 0 L2 #0

1 , else.

There is a neighborhood of 0, so that f can be expanded into a power series of z:

00 Zk
f(Z) = kZOBkk'a

where By, are the Bernoulli numbers (see [14], page 289). To proof that f is analytic, consider

1 exp(z)—1

g(z) = =
STE R
Also g can be expanded into a power series of z in a neighborhood of 0:
& k
z
9:) = 2

k=0
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Further, g is absolutely convergent for all z € R using d’Alembert’s ratio test (see [14], page
65):

zn+2
lim |22 i 2 —0 VzeR.
n—00 (TZH—I)! n—oco n + 2

o0
Now conclusion 1 in [14] on page 287 is used: Let p(z) = ) an 2" with a positive radius
n=0

of convergence. If p(0) = ag # 0, then % can be expanded into a power series of z in a
neighborhood of 0:

1 oo
— = by, 2".
p(2) Z%"
In this case p = g and % = f. Therefore f is analytic. Defining

10—V
10

25—V
and wo (V) = ,

w1 (V) . 10

which are analytic for all V' € R, it follows that the compositions (see [3], 2.4 Chain Rule on
page 34)

an = fowi and o, = fows

are analytic for all V € R and finally

is analytic for all V € R.
Bn is analytic for all V' € R, because the denominator exp(3016V) + 1 is analytic for all V' € R.
In the end §,, B and oy are analytic for all V' € R, because the exponential functions are

analytic for all V' € R. O

1.3 Remark: (i) The units for the membrane potential (mV), for the time (ms), for the
equilibrium potentials (mV), for the maximum conductances (mS/cm?), for the mem-
brane capacity (uF/cm?), and for the input function (1A /ecm?) are not always mentioned
in the thesis. With regard to the biological point of view, the units are of minor impor-
tance for the mathematical approach.

(ii) The functions of 1.1 Definition (i) were established by Alan L. Hodgkin and Andrew F.
Huxley, and were published in their pioneering article [8]. To this day these functions
have not been changed in further examinations besides shifting by the resting potential
Viest (V' +—= V 4+ Viest). Hodgkin and Huxley [8] named these functions the rating
constants, whereas in this thesis they are called the rating functions because they are
not constant. Since the rating functions correspond to the membrane potential shifted
by 65 mV, the resting potential is at V,.ss &~ 0. They describe the transition rates
between open and closed states of the channels, according to Izhikevich [12]. Hodgkin
and Huxley [8] determined that the squid axon carries three types of ionic currents:
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sodium (Na¥t) current, Ing = gnam>h-(V — Eng), with three activation gates and
one inactivation gate (the term m3h, where m and h are probabilities between 0 and 1
describing the state of Na™t activation and Na™ inactivation, respectively), potassium
(K*) current, I = ggn*- (V — Eg), with four activation gates (the term n*, where
n is a probability between 0 and 1 describing the state of K+ activation), and current
that Hodgkin and Huxley [8] named leakage current, I, = gr, - (V — Er), which consists
of mostly chloride (C1™) ions.

The values given in 1.1 Definition (ii) are the values according to Izhikevich [12]. Hodgkin
and Huxley [8] used different values for the equilibrium potentials:

Ex =—12, Ey, =115, FE; =10.613. (1.7)

Note that the maximum conductances chosen by Hodgkin and Huxley (see [8], table 3)
are still up to date in further examinations.

Throughout the thesis equations (1.4), (1.5) and (1.6) are used in the standard form

dn Noo(V) —n
" eV " 1.8
dt (V) (1.8)
dm Moo(V) —m
= e\ " 1.9
dt (V) (1.9)
dh heo(V) —h
_ = - 1.10
dt (V) (1.10)
where
1 O
Tn = s Moo=
1 Ay
Tm — 9 mOO — 9
1 L oy,
T = —_— 00 = .
g ap + B ap + B

Tny Tm, Th are called time functions (Hodgkin and Huxley [8] called them the time
constants) and neo, Moo, hoo are called the steady-state (in)activation functions (see
figure 1.2). Due to 1.2 Proposition the time functions and steady-state (in)activation
functions are analytic.

The equilibrium potentials can be calculated, and they are given by the Nernst equation

(see [12], equation (2.1)): BT ion]
Eion = ﬁ In ( [’LO’I’L],Ln ) s (111)

where [ion];, and [ion]e,: are concentrations of the ions inside and outside the cell
respectively, R = 8,315 mJ/Kmol is the universal gas constant, 7" is temperature in
Kelvin (K =273.164°C), F = 96,480 C/mol is Faraday’s constant and z is the valence
of the ion (z =1 for Na™, K* and z = —1 for CI7). The equilibrium potentials (1.1)
can be obtained by using the concentrations of the ions in table 1.1 for T'= 20 °C and
shifting the obtained Nernst equilibrium potentials by approximately 65 mV (see [12],
Chapter 2, exercise 1).



1.1. MATHEMATICAL DESCRIPTION 5

Inside (mM) Outside (mM)

Kt 430 20
Na*t 50 440
cl~ 65 560

Table 1.1: These are the concentrations of the ions inside and outside the cell which Izhikevich
used to obtain the equilibrium potentials by the Nernst equation (1.11) (see [12], Chapter 2,
exercise 1).

Another way to obtain the equilibrium potentials is by experimenting, and comparing the
results to real data. Hodgkin and Huxley [8] did that for En, and Fx. The equilibrium
potential Ep is the exact value chosen to make the total ionic current zero at the resting
potential V,..s+ = 0, i.e.

B, = —§K~n§0(0)-EK - gNa'mgo(O)'hOO(O) “ENg
gL '

This is By, = 10.5989 which is slightly different from the value of Hodgkin and Huxley
(Er =10.613 in (1.7) or see [8], table 3).

(A) (B)

1
8 —
0.8
6 —
0.6 \
Tn
_— Ty
4 o
0.4
0.2 2
0 0 -
T T T T T T T T
-50 0 50 100 -50 0 50 100
V (mV) Vv (mV)

Figure 1.2: Steady-state (in)activation functions ns, Moo, hoo (A) and time functions 7, 7,
1, (B) for V € [—60, 120].

1.4 Example: For the input function
I(t) =5 -1pp3(t) + 15 - Lpoay(t), t=>0,

a typical time course of an action potential in the Hodgkin-Huxley model can be observed in
figure 1.3 using the equilibrium potentials (1.1) (see [12], figure 2.15 using 0.5 ms pulses of
current). For ¢ = 13.38 the membrane potential V' (¢) has a relative maximum of 107.0419.
Such a relative maximum is named an action potential or spike.
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Membrane potential

Ena
— V()
100 time of action potential
att= 13.38
=
E 50
E. H
o4 —— N
Ex
T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
Time t (ms)
Gating variables
— n(t)
1 — m()
— h@)
0.5
0 =
T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
Time t (ms)
Conductances
30 — §Kn4(§)
< — Gum’(On()
S 20
1%}
E 10
0 =
T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
Time t (ms)
Currents
1125 —
— 750 — Ina(t
£ 375 — Ik(®) + Ina(t) +1L(D)
ER
-375
-750 —
T T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20
Time t (ms)
Input function
10
— 1)
Ng S
<
2
01— T T T T T T T T T T
0 2 4 6 8 10 12 14 16 18 20

Time t (ms)

Figure 1.3: Action potential in the Hodgkin-Huxley model
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1.5 Example: The Hodgkin-Huxley model was stimulated with 1 ms pulses of current. For

I(t) :a]l[l’g](t), tZO,

the threshold to generate a spike is @ = 6.41 when ¢t = 7.93 (see figure 1.4). The period
during which the Hodgkin-Huxley system cannot initiate another spike is called the absolute
refractory. Further, the period during which the Hodgkin-Huxley system is able to generate
an action potential - if the applied current is strong enough - is called the relative refractory.
To analyze these periods a second action potential was generated varying the latency for the
initialization of a second pulse. For these latencies the minimum pulse amplitude a, can be
calculated which is needed to evoke a second spike (see figure 1.5):

I(t) =641 -1 9(t) +ap- Ly, ¢, 1y(), t =0,

where t, > 7.93. For a, = 6.41 the time t,, = 22.02 is the minimum to induce a second spike at
t = 29.715. There is no second spike, if I(t) = 6.41 for ¢t € [1,2] U [22.01,23.01], although the
initialization times differ only by 0.01 (see figure 1.6). Here, the minimum time to initialize a
second action potential is 14.09 ms after the first spike for pulses with the same amplitude of
6.41.

(A) (B)

15 1 — Vi 120

(t) —

time of action potential
att=7.

100 4

80

60

(mV)
(mV)

40 H

-10 4 -20 4

Time t (ms) Time t (ms)

1 ms pulse input function with amplitude a = 6.40 uA/cm? 1 ms pulse input function with amplitude a = 6.41 pA/cm?

6 — 6 —

(uAcm?)
Alcm?)

Time t (ms) Time t (ms)

Figure 1.4: Generation of the first action potential for a 1 ms pulse initialized at time ¢t = 1
with amplitude @ = 6.40 (A) and a = 6.41 (B). In (B) a spike can be observed at time
t = 7.93, whereas in (A) no action potential is generated, although the input amplitudes
differ only by 0.01.
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© 20
100
18
80
16
60
s
£ 14
40
20 4 12
~20
T T T 8
0 7.93
Time t (ms) 6
1 ms pulse input function 4
10 & — 0
o« 8- 2
£
S 6
<
3 a4
2 04
04
T T T
0 7.93 b

Time t (ms)
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« Minimum pulse amplitude a,
to generate a 2nd spike

o
relative
refractory
Threshold a = 6.41
to generate a 1st spike
T T T T T
125 15 20 25 30 35

Time t, (ms)

Figure 1.5: Refractory period for 1 ms pulses with an amplitude for the first pulse of 6.41. The
second pulse is initiated at t = ¢, > 7.93 with amplitude a,. In the right figure the curve for the
minimum amplitudes to generate a second spike can be observed. The approximate absolute
refractory is for ¢, € (7.93,12.5] and the approximate relative refractory is for ¢, € (12.5, 00).

(B)

— vy
time of action potential
att=7.93 andt=29.715

Time t (ms)

1 ms pulse input function with amplitude a = 6.41 pA/cm2

— I(t): initialisation of the pulses
attime t; = 1and t, = 22.02

(A)
120 120
— V()
time of action potential
att=7.93
100 100
80 80
60 60
= =
£ £
40 40
20 20
0 \__//\\/ — 0
—20 | -20
T T T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 0
Time t (ms)
1 ms pulse input function with amplitude a = 6.41 wl\/cm2
6 — I(t: initialisation of the pulses 6
attime t; = 1 and t, = 22.01
T e RS
<
ERP ER
0 - 0 -
T T T T T T T T T T T
ot 5 10 15 20 % 25 30 35 40 45 ot
Time t (ms)

20 b 25 30 35 40 45

Time t (ms)

Figure 1.6: Generation of the second action potential for 1 ms pulses with amplitude a = 6.41.
The second pulse is initiated at ¢, = 22.01 (A) and ¢, = 22.02 (B). In (B) the second spike
can be observed at time ¢ = 29.715, whereas in (A) no second action potential is generated.
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1.2 Implementation

This section is a description of the implementations given in appendix A. During the work
on this thesis the code changed. At the beginning programming language R was used for the
implementation of the Hodgkin-Huxley equations. R is a free software environment for sta-
tistical computing and graphics (see http://www.r-project.org/). For numerical purposes
R is really slow. Therefore the simulations took a lot of time. Markus Tacke, a computer
expert of the University of Mainz, advised me to rewrite the code in programming language
C'. Indeed, the optimized C' code was more than 30 times faster than the code in R. In the C
code the calculated values are directly written into a .txt-file. After the simulations the text
files could be read and analyzed with R, e.g. to find the times when the membrane potential
(V(t))t>0 has an action potential:

spikeindex <- intersect(which(diff(sign(diff(V)))==-2)+1,which(V>75));
spiketimes <- spikeindex*s;

where V is the data of the simulated membrane potential and s is the step size of the numerical
method. Here, an action potential is defined as an amplitude over 75 mV.

First, the formulae of 1.1 Definition (i) were implemented (see A.1 lines 5-79). For the imple-
mentation of equations (1.3), (1.8), (1.9) and (1.10) see A.1 lines 81-100. Note that for some
of the simulations both choices of the equilibrium potentials (1.1), (1.7) are used (see lines 94
and 96 in A.1).

Second, the main part was implemented. Depending on what type of input function (1.2) is
used, the main part slightly differs. The simulations always start at time t9 = 0 ms. The
initial value problem can be specified as follows:

Y = f(t,y), ylto) = yo,

where

>3 3 <

and
I(t) — 36n*(V 4+ 12) — 120m3h(V — 120) — 0.3(V — 10.6)

B (Moo (V) = n) /7 (V)
flty) = (Moo (V) = m) /T (V) ’
(hoo(V)) = R)/0(V')

with initial conditions given as the steady state when the membrane potential is zero:

V(0) 0 0
RERONE 4/(5exp(1) — 1) | 0.3176769
vO =1, 0= 5/(8 exfff(g) —3) ~ 1 0.0529325 (1.12)
hoo (0) (Texp(3) +7)/(Texp(3) + 107) 0.5961208

For the following two propositions see [2], page 157. In the first proposition the note in 1.3
Remark (ii) is proved that n, m and h are probabilities between 0 and 1.

1.6 Proposition: Under the initial conditions (1.12), the solutions n(t), m(t), h(t) satisfy
for all ¢ > 0 the inequalities

0<n(t)<l, 0<m()<l, 0<h(t) <L (1.13)
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Proof Suppose n(t) =0 for ¢ > 0. Since n(0) > 0 and n is continuous (due to 1.2 Proposi-
tion), there must be a first such time . Then n(#) = 0 and n(t) > 0 for t € [0,1). It follows
that

dn - - - -

@ = au(V®)- (1= n®) = Bu(V(D) (D)
) >0,

= ap(V(t

~—

because ay, (V) > 0. Therefore n is strictly increasing in £. That means for t € (t—6,t+8)N(0, 1)
it follows that n(t) < n(f) = 0, a contradiction to n(t) > 0 for ¢ € [0,f). The proof for m(t)
and h(t) is equal.

Now suppose n(t) =1 for ¢ > 0. Since n(0) < 1 and n is continuous (due to 1.2 Proposition),

there must be a first such time ¢. Then n(¢) =1 and n(t) < 1 for t € [0,t). It follows that

%@ = an(V(®)- (1= n(D) — Bu(V(E) - n(f)

= —5n(V®) < 07

because 3, (V) > 0. Therefore n is strictly decreasing in ¢. That means for ¢ € (t—4,t+8)N(0,t)
it follows that n(t) > n(t) = 1, a contradiction to n(t) < 1 for ¢ € [0,f). The proof for m(t)
and h(t) is equal. O

1.7 Remark: Note that it follows by the definition of the steady state (in)activation functions
that
0<ne<1l, 0<me<1l, 0<hyx<l.

1.8 Proposition: Under the initial conditions (1.12), the solution V (t) satisfy for all t > 0
the inequality
—-12 < V(t) < 120,

as long as —6.78 < I(t) < 32.82.

Proof Suppose V(t) = —12 for ¢ > 0. Since V(0) = 0 and V is continuous (due to 1.2
Proposition), there must be a first such time . Then V(#) = —12 and V() > —12 for
t €[0,%). It follows by (1.3) and (1.13) that

av' - s 47 - 3(7\p(F s s

H(t) = I(t) —36n"(t)- (V(t) + 12) — 120m°(¢t)h(t) - (V(t) — 120) — 0.3 - (V' (t) — 10.6)
> I(t)+6.78.

If I(t) > —6.78, then %(f) > 0. Therefore V is strictly increasing in . That means for

te (t—45,t+6)N(0,1) it follows that V() < V(f) = —12, a contradiction to V (t) > —12 for
te[0,1).

Now suppose V(t) = 120 for ¢ > 0. Since V(0) = 0 and V' is continuous (due to 1.2 Propo-
sition), there must be a first such time ¢. Then V(¢) = 120 and V (¢) < 120 for ¢t € [0,7). It

follows by (1.3) and (1.13) that

%(t_) — I(B) — 360 () - (VD) + 12) — 120m3@)h(E) - (V(E) — 120) — 0.3+ (V(E) — 10.6)

< I() — 32.82.
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If I(t) < 32.82, then dV ~(t) < 0. Therefore V is strictly decreasing in #. That means for
te(t—46t+9)n(0, t_) 1t follows that V(¢) > V() = 120, a contradiction to V(¢) < 120 for

€1[0,1). O

Hodgkin and Huxley [8] solved their equations numerically by the method of Hartree (see [8],
page 523), and showed that the action potentials, threshold for generating action potentials
and refractory period compared to their recorded data approximately match. For the numer-
ical calculations in chapter 2 the classical forth-order Runge-Kutta method was used. The
assumption for f being a sufficiently differentiable function is satisfied by the input functions
used in chapter 2. The formulae of the classical Runge-Kutta method are as follows (see [6],
chapter XIV, section 76):

y(t+s):y(t)+%(k1+2.k2+2.k3+k4),

where
kio= f(ty(t),
Ry = f(tF Sou(0) + Sh),
ks = f(t+ 5ou(0) + k),
ko = f(t+sy(t)+s-ks).

Since the input in chapter 3 is stochastic, the assumption for f being a sufficiently differentiable
function is no longer satisfied. Therefore, the Euler method is used for the simulations. The
formula of the Euler method is as follows (see [6], chapter XIV, section 74):

y(t+s) =y(t) +s- f(t,yt)).

The accuracy of the classical Runge-Kutta method is better than the accuracy of the Euler
method (O(s*) and O(s), respectively, where s is the step size, see [6], chapter XIV, section
74 and 76). The step size for both methods was set to be s = 0.005.
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CHAPTER 1.

THE HODGKIN-HUXLEY MODEL



Chapter 2

Phenomena of the Hodgkin-Huxley
Model

Due to the choice of which type of input function I (1.2) is used, the reaction of the Hodgkin-
Huxley equations are different. In this chapter three diverse types are analyzed.

2.1 Constant Input

Abstract

Rinzel and Miller [15] calculated an interval (I3, I5) for a deterministic constant input I(t),
where the solution of the Hodgkin-Huxley equations is periodic. In [15] the equilibrium po-
tentials (1.7) were used. The intention of this section is to approve the results in [15]. In
addition, such an interval will be calculated using the equilibrium potentials (1.1).

Introduction and Method
The Hodgkin-Huxley equations were analyzed for a constant input
It)y=a, a>0,t>0. (2.1)
For the examinations three different levels for the amplitude a are needed:
(i) afs, the amplitude level to generate a first spike,
(ii) ayrs, the lowest amplitude level to generate regular spiking, and

(iii) ap,s, the highest amplitude level to generate a regular solution (later it is going to be
clear why the word “solution” is more appropriate than “spiking”).

Cole, Antosiewicz and Rabinowitz [2] calculated the value ars = 2.2302. Due to the so called
SEAC error (see [4]), this value was corrected to ays = 2.24097466. For numerical simulation
they used the classical Runge-Kutta method with a step size of s = 0.01. Compared to the
step size s = 0.005 for the simulations of A, the results should be more accurate. Rinzel and
Miller [15] and Hassard [7] analyzed that an input a € (a.s, aprs) = (6.2647,154.53) leads to
a regular solution. Rinzel and Miller [15] used a rth order difference schema with a truncation

error O((%)"), where r = 5 and N € {75,200, 300, 400, 600}.

13
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To verify these results the code in appendix A.1 and A.2 was used for the simulations. The
numerical simulation was done for time ¢ € [0, 100] (see A.2, line 11) to analyse a ;. Afterwards
the simulations were done for time ¢ € [0, 15000] for analyzing regular solutions of the Hodgkin-
Huxley equations in a neighborhood of aj.s = 6.2647 and ap,s = 154.53. The upper boundary
anrs plays a less significant role because of the unrealistically high magnitude of the input
value. The resulting interval should be slightly different because of the different numerical
methods and step sizes used in the simulations of A and the simulations of Rinzel and Miller
[15], Hassard [7]. The numerical simulations were done for both choices of the equilibrium
potentials (1.1) and (1.7).

Results
Results for Equilibrium Potentials (1.7)

For 0 < a < 2.23677297 no spikes could be observed in the simulations of A. Therefore
afs = 2.23677298, although the amplitudes differ only by 1078 (see figure 2.1). As mentioned
before, the value slightly differs from the result ay, = 2.24097466 in [4] because the simulation
of A has a higher accuracy.

Membrane potential for constant input Membrane potential for constant input
I(t) = 2.23677297 I(t) = 2.23677298
20 ’ . 80 ;
—— constant input I(t) = 2.23677297 —— constant input I(t) = 2.23677298

60 —
— 10
> _
£ 40
s L \ 20
0 -
T

-10 — -20 —
T T T T T T T T T T

0 20 40 60 80 100 0 20 40 60 80 100

V(t) (mV)

Time t (ms) Time t (ms)

Figure 2.1: Simulation of constant input (2.1) using equilibrium potentials (1.7): I(t) =
2.23677297 on the left and I(t) = 2.23677298 on the right.

Membrane potential for constant input Membrane potential for constant input
I(t) = 6.2603 I(t) = 6.2604
120 —— constant input I(t) = 6.2603 120 1 —— constant input I(t) = 6.2604
100 100
80 801
E 60 — E 60 —
2 40 £ 40
> >
20 20
o VWY o - v
20 T T T T T -0 T T T T T
3000 3200 3400 3600 3800 4000 14000 14200 14400 14600 14800 15000
Time t (ms) Time t (ms)

Figure 2.2: Simulation with constant input (2.1) using equilibrium potentials (1.7): different
time scales for values I(t) = 6.2603 on the left and I(¢) = 6.2604 on the right.
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Due to figure 2.2, my result of the simulation a;.; = 6.2604 marginally differs from the result
ays = 6.2647 of Rinzel and Miller [15]. It is observable that for I(¢) = 6.2603 the Hodgkin-
Huxley system stops spiking, whereas it seems that the system repetitively generates action
potentials for I(t) = 6.2604 differing the input only by 1073. The frequency of the action
potentials is approximately 50 Hz.

There are two reasons why it is not possible to calculate the highest amplitude level to generate
regular spiking. First, the level to declare whether the membrane potential has a spike or not
is arbitrary. Second, the higher the amplitude is in the interval (a5, aprs) = (6.2647,154.53),
the lower the spike amplitude is (see figure 2.3).

ial for input Membrane potential for constant input Membrane potential for constant input
I(t) = 20 I(t) = 60 I(t) = 100
120 4 —— constant input I(t) = 20 120 + —— constant input I(t) = 60 120 —— constant input I(t) = 100
100 | 100 | 100
80 80 80
2 o0 2 w0 L L g 60
S g S
40 40 40
20 ‘ ‘ ‘ ‘ 20 | 20

T T T T T T T T T T T T T T T T T T
1000 1100 1200 1300 1400 1500 1000 1100 1200 1300 1400 1500 1000 1100 1200 1300 1400 1500

Time t (ms) Time t (ms) Time t (ms)

Figure 2.3: Simulation with constant input (2.1) using equilibrium potentials (1.7): I(¢) = 20
on the left, I(¢) = 60 in the middle and I(¢) = 100 on the right.

It is possible to calculate ap,s, the highest amplitude level for which the membrane potential
is not constant (with an accuracy of 10~®). The simulations of A calculated aj,, = 154.82.
In figure 2.4 the membrane potential for a,s = 154.53 calculated by Hassard [7] can be seen.
The membrane potential still has a regular solution.

[ ial for input Membrane potential for constant input Membrane potential for constant input
I(t) = 154.53 I(t) = 154.54 I(t) = 154.82
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Figure 2.4: Simulation with constant input (2.1) using equilibrium potentials (1.7): I(t) =
154.53 on the left, I(t) = 154.54 in the middle and I(¢) = 154.82 on the right.

Taking everything into account, the following can be determined:
The distinctive feature that the Hodgkin-Huxley equations have a regular solution for a con-
stant input (2.1) in the interval (a5, aprs) can be maintained.



16 CHAPTER 2. PHENOMENA OF THE HODGKIN-HUXLEY MODEL

Results for Equilibrium Potentials (1.1)

The simulations of A calculated ays = 2.02775076 (see figure 2.5) to be the amplitude level
to generate a first spike. No action potentials could be observed for 0 < a < 2.02775075.

Membrane potential for constant input Membrane potential for constant input
I(t) = 2.02775075 I(t) = 2.02775076
20 . 80 — .
—— constant input I(t) = 2.02775075 —— constant input I(t) = 2.02775076
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Figure 2.5: Simulation of constant input (2.1) using equilibrium potentials (1.1): I(t) =
2.02775075 on the left and I(t) = 2.02775076 on the right. On the left no spike is generated,
whereas on the right an action potential can be observed.

Furthermore, for the lowest amplitude level to generate regular spiking a;.s = 5.2653 was
calculated (see figure 2.6). The frequency generating action potentials is approximately 49

Hz.

Membrane potential for constant input Membrane potential for constant input
I(t) = 5.2652 I(t) = 5.2653
120 1 —— constant input I(t) = 5.2652 120 ’ —— constant input I(t) = 5.2653
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Figure 2.6: Simulation with constant input (2.1) using equilibrium potentials (1.1): different
time scales for values I(¢) = 5.2652 on the left and I(¢) = 5.2653 on the right. On the left the
spike train stops, whereas on the right the train of action potentials is probably infinite.

It is visible in figure 2.7 for ap,s = 154.53 calculated by Hassard [7] that the membrane
potential still has a regular behavior and that ap,; = 163.64 was calculated for the highest

amplitude level to generate a regular solution.
Still, with Izhikevich’s equilibrium potentials (1.1) the results of Rinzel and Miller [15] could

be approved.
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p ial for input Membrane potential for constant input Membrane potential for constant input
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Figure 2.7: Simulation with constant input (2.1) using equilibrium potentials (1.7): I(t) =
154.53 on the left, I(t) = 160 in the middle and I(¢) = 163.64 on the right.

Comparing the calculated levels ays, ajs and aprs for the equilibrium potentials (1.1) and
(1.7), it is noticeable that ats and a;s for (1.1) are lower than ars and a;,s for (1.7), and apys
for (1.1) is higher than ap,s for (1.7).

2.2 Periodic Input

Abstract

In this section the phenomena described by Aihara, Matsumoto and Ikegaya [1] is explored.
Dependent on the amplitude of a deterministic periodic input there is an interval F' = (fa, f3)
of frequencies so that the input with frequency f € F' leads to a periodic solution of the
Hodgkin-Huxley equations. The aim of this section is to verify this statement with the sinu-
soidal input given in [5], and to analyze the resulting periodicities.

Introduction and Method

The Hodgkin-Huxley equations were analyzed by Fohlmeister, Adelman and Poppele [5] for a
periodic input
I(t) = In(1 +sin(27 fst)), t >0, (2.2)

with an amplitude Iy and a frequency fs in Hz (for implementation see A.3, lines 1-12). The
results showed that the sinusoidal input for 10 < Iy < 20 with frequency 50 < fs < 120 leads
to a so called phase-lock. Holden [9] described phase-lock as a ratio Rp;,, = M/N, where M
is the number of action potentials of the membrane potential V' occurring in N periods of
the input I. Even larger values up to Iy = 88 and f; = 200 were analyzed but again the
unrealistically high magnitudes make these values less interesting (see section 2.1). With the
knowledge of section 2.1 it is more interesting to analyze the Hodgkin-Huxley equations for
a sinusoidal input with smaller amplitudes. Amplitude levels or frequency levels for which
the Hodgkin-Huxley equations generate the first one-to-one phase-lock (i.e. Rp;, = 1) are not
provided in [5]. In [1] the Runge-Kutta-Gill method with double precision, in [5] a library
Runge-Kutta routine was used for numerical calculation.

The simulations were done with the code in A.1 and A.3. After simulations for ¢t € [0,200]
to get an overview, which values make sense, the range for the parameters was set to 1 <

In < 5 (A.3, lines 30-34) and 1 < f; < 150 (A.3, lines 35-39). For the simulations Iy was
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incremented by 0.1, fs was incremented by 1, and ¢ € [0,2500] (see A.3, line 24). Just the data
for ¢ € [500,2500] were analyzed because some phenomena at the beginning of the solution
occurred which seems to depend on the initial conditions (1.12). For ¢ > 500 the solution
was engaged. Besides Ry;, another ratio R4 = L/N is needed, where L is the number of
periods of the membrane potential V' occurring in N periods of the input I. If the membrane
potential is not periodic and accordingly not regular, Ry, is set to be 0 (e.g. see 2.8). The
ratio R,,q+n, makes it possible to see whether the periodicity of the input can be transfered to
the Hodgkin-Huxley equations or not.
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Figure 2.8: Simulation with sinusoidal input (2.2): Iy = 2.1 and f; = 125. For these values a
non-periodic membrane potential V' is generated. Therefore R,,q.:n = 0, whereas Ry;, = 0.172.

Unfortunately, it was not possible to extract periodic behavior of the membrane potential
data by calculation. I tried to work with discrete Fourier transformation and correlation but
the results were not satisfying. Therefore graphical devices were used to decide whether the
membrane potential is regular or not. Again this is dissatisfying because it is not possible to
define what is regular and what is not regular. But it is a possibility to extract approximate
values for the ratio R,,q:,. The six graphics at the bottom two rows in figure 2.8 and figure 2.9
are different types of graphical devices which makes it possible to talk about the periodicities
of the membrane potential:

(i) V-n plot: This is a projection from the four-dimensional space (V,n,m,h) onto the
V — n plane, where the flow is anticlockwise. A solid curve is a first indicator for
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(iii)

periodic behavior of the Hodgkin-Huxley equations. Note that there is a equilibrium at

1% 0 0
n () 0.3176769
m | = | mso(0) | = | 0.0529325
h hoo (0) 0.5961208
I 1(0) Iy

due to the initial conditions (1.12).

Superimpose of V' for all periods of I: Here, the membrane potential V' is divided,
appropriate to the period times of the input, in periods with distance 1000/ fs and these
periods are superimposed in one plot. Laying all periods on top of another resulting in
an image like one period of the membrane potential, then it is a sign for periodicity.

V-V plot at period times p;, i = 1,2,.... The period times p;, © = 1,2, ..., are the times
when the periods of the input function (2.2) start at the value Iy. The distance between
two successive period times is 1000/ fs, for f being the frequency of the input. In this
plot the membrane potential V' at two successive period times is plotted against each
other (V(p;) versus V(pi+1)). An indication for periodicity would be, if the graphic
shows solid points, e.g. just one point, if Rqn = 1, and two points, if Ry,qn = % and
SO on.

V-V plot at period max times t;, t = 1,2,.... Let t;, i = 1,2, ..., be the times ¢t when the
input function (2.2) has a local maximum of I(t) = 2-Iy. Again the distance between
two successive period max times is 1000/ fs, for fs being the frequency of the input.
In this plot the membrane potential V at two successive period max times is plotted
against each other (V' (¢;) versus V(¢;1+1)). The interpretation is the same as in (iii).

V-V plot at spike times s;, + = 1,2,...: Let s;, ¢ = 1,2, ..., denote the times ¢ when
the membrane potential V' (¢) spikes. As mentioned in section 1.2, a spike needs to have
an amplitude over 75, otherwise it is not declared as a spike. The choice of this level
is arbitrary. In this plot the membrane potential V' at two successive spike times is
plotted against each other (V' (s;) versus V(s;+1)). The graphics (iii) and (iv) are better
for analyzing periodicities because the times p; and t; are independent of the action
potentials.

Interspikeinterval: An interspikeinterval is the time between two successive action po-
tentials. This graphic is a simple plot of the successive occurring interspikeintervals as
points. If the graphic shows any patterns of points, the assumption can be made that
the membrane potential is periodic.

Another thing that was done was to calculate the f; local maxima of the membrane potential
and examine these maxima, if any patterns can be observed. This was sometimes helpful, too.
Throughout this section the equilibrium potentials (1.1) were used. The reason is that in [1]
a modified Hodgkin-Huxley model was used, and in [5] the input amplitudes Iy were to big
and it is not clear whether the original or a strongly adapted version of the Hodgkin-Huxley
model was used. Therefore it was not possible to compare my results to the results of [1] or

[5]-
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Membrane potential with ratios Ryo = 1 and R = 1
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Figure 2.9: Simulation with sinusoidal input (2.2): Iy = 3.5 and f; = 50. All analyzing
graphics let us assume that the solution is periodic with R,,qtn = 1 = Rpio-
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Figure 2.10: Simulation with sinusoidal input (2.2): Iy = 1.1 and f, = 15. It is visible that
no action potentials are generated. Therefore Rp;, = 0, whereas Rqn = 1.
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Results

For Iy =1 and Iy = 1.1, t > 500, no spikes could be observed for any frequency 1 < f, < 150.
But the membrane potential adopts the periodicity of the input function (2.2). In figure 2.10
all graphical devices let us assume this adoption. For the two amplitudes Iy = 1 and Iy = 1.1
the Hodgkin-Huxley equations behave periodically for all frequencies 1 < f; < 150. Here,
the big difference between Ry;, and R4 is that the biological ratio depends on the number
of spikes generated, but if Ry, = 0, it does not mean that the membrane potential is not
periodic. For example, in figure 2.10 the membrane potential is periodic with R,q:n = 1.
The biological ratio can also be misinterpreted to analyze periodicities when the membrane
potential is not periodic. Still, it is possible to calculate the biological ratio, but since there is
no periodicity, it is not meaningful. For example, in figure 2.8 the membrane potential is not
periodic (Rt = 0), even though Ry, = 0.172.

Roio = MIN

0
(0,1/5)

[1/5,1/3)

13

(1/3,1/2) Roio
1/2
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Figure 2.11: Ratios Rp;, of the sinusoidal input (2.2) for 1 < Iy < 5 and 1 < f, < 150.
(A) shows the 2-dimensional image graphic of the ratios and (B) shows the ratios in a 3-
dimensional wireframe graphic.
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Figure 2.11 shows the ratios Ry, of the simulations in a 2-dimensional image graphic (A) and
in a 3-dimensional wireframe graphic (B). Some of the ratios did not appear frequently and
not all solutions for the membrane potential show periodic behavior (see figure 2.8), therefore
these ratios were combined to an interval. I.e. in the interval (3/4,1) are mainly the ratios
4/5,7/8 and 9/10; in the interval (1, 2) are mainly the ratios 5/4, 3/2 and 5/3; in the intervals
(0,1/5), [1/5,1/3) and (1/3,1/2) there are no frequently appearing, specific ratios, and talk-
ing about R,,q, it will be in evidence that in these intervals the membrane potential is not
periodic. The red part in 2.11 shows that for small frequency ranges no action potentials are
generated. The lower the amplitude Iy, the higher the frequency fs necessary to generate a
first phase lock. It is visible in figure 2.11 that after the appearance of the first phase lock for
the membrane potential the fraction Rp;, decreases as the frequency fs increases, but remains
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a simple rational number over most of the frequency range.

Figure 2.12 shows the ratios Ry,q, of the simulations in a 2-dimensional image graphic (A)
and in a 3-dimensional wireframe graphic (B). If Ry;, = 0, then the periodicity of sinusoidal
input is almost always transfered to the membrane potential as in figure 2.10, and therefore
R,.0tn = 1. Only in ranges, where a phase-lock is changed over to Rp;, = 0, it can happen
that Ryan 7 1. If Ry € [1/2,1), it is observable that Ry,qn = 1 — Rpio (see figure 2.13). If
Ryio = 2, then Ry,qp = 1 (see figure 2.14). For Ry;, € (1,2) it is noticeable that almost always
Ryan € {1/3,1/2}. As mentioned before non periodic membrane potentials are generated for
the most part when Ry;, € (0,1/5) U [1/5,1/3) U (1/3,1/2). There is a band of non-periodic
behavior starting at Iy = 1.8 for high frequencies fs > 113 (see figure 2.8). An interesting
fact is that after this band of non-periodic behavior another phase-lock occurs starting at
Iy = 2.2 and high frequencies f; > 143 (see figure 2.15). Due to the small step size used for
the simulations, the irregular behavior is not based on the error of numerical calculation.
Figure 2.16 shows the minimum interspikeintervals of the simulations in a 2-dimensional im-
age graphic (A) and in a 3-dimensional wireframe graphic (B). If less than two spikes are
generated, the minimum interspikeinterval was set to be 0. It is observable that depending on
the magnitude of the input amplitude Iy, if the minimum interspikeinterval reaches a critical
value, then afterwards the minimum interspikeinterval raises. This critical value is the tran-
sition to the phase lock Ry, = 1/2.

Taking everything into account, the following can be determined:
The distinctive feature that the Hodgkin-Huxley equations have periodic solutions for a peri-
odic input (2.2) can be maintained for most of the amplitude and frequency range.
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Figure 2.12: Ratios R, of the sinusoidal input (2.2) for 1 < Iy < 5 and 1 < f; < 150.
(A) shows the 2-dimensional image graphic of the ratios and (B) shows the ratios in a 3-
dimensional wireframe graphic. Note that “N.P.” in the legend stands for “non periodic”.
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Membrane potential with ratios R = 2/3 and Ripay, = 1/3
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Figure 2.13: Simulation with sinusoidal input (2.2): Iy = 1.5 and f;

all graphical devices let us assume that Ry, = 2/3, whereas R,qn = 1/3.
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Figure 2.14: Simulation with sinusoidal input
graphical devices let us assume that Ry;, = 2,

whereas R,,qn = 1.

(2.2): Ip =4 and f; = 20. It is visible that all
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Figure 2.15: Simulation with sinusoidal input (2.2): Iy = 2.5 and fs = 150. It is visible that
all graphical devices let us assume that Ry, = 1/3 and Ryaen = 1/3.
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Figure 2.16: Minimum interspikeintervals of the sinusoidal input (2.2) for 1 < I < 5 and
1 < fs <150. (A) shows the 2-dimensional image graphic of the minimum interspikeinterval
and (B) shows the minimum interspikeinterval in a 3-dimensional wireframe graphic.



2.3. 1 MS PULSE INPUT 25

2.3 1 ms Pulse Input

Abstract

In the last section of this chapter the phenomena depicted by Izhikevich in [12] is analyzed.
Izhikevich [12] stated that depending on the input amplitude of brief pulses there are frequen-
cies f € F', F = (fa, f3), which lead to a periodic solution of the Hodgkin-Huxley equations.
Again the ambition is to confirm this statement, and to analyze the resulting periodicities as
it was done in section 2.2.

Introduction and Method

In [12] on page 5 Izhikevich described the behavior of the Hodgkin-Huxley equations for an
input of brief pulses. In this section a 1 ms pulse input
-1
I(t) =1g1,00) () Y _a 11[mwfﬁ’m%+1] (t mod 1000), ¢ >0, (2.3)
m=0
with amplitude a and frequency f in Hz was analyzed (for implementation see A.4, lines
1-24). I(t) = 0 for 0 < ¢t < 1 to avoid that the simulation starts with a pulse. Note that
the distance between the initialization times of the pulses is 1000/ f. Izhikevich [12] noted
that even negative amplitudes a can lead to spiking. It is not possible to compare my results
because in [12] no ranges for the amplitudes and frequencies are mentioned.
The simulations were done with the code in A.1 and A.4. The first simulations were done to
find out which ranges for the amplitudes are reasonable. The range for the amplitudes was
set to 5.5 < a <8 and —18.5 < a < —15.5 (A.4, lines 42-49), whereas the range of frequencies
1 < f < 150 is the same as in section 2.2 (A.4, lines 50-54). For the simulations a was
incremented by 0.1, f was incremented by 1, and ¢t € [0,2500] (see A.4, line 36). Again only
the data for ¢t € [500,2500] were analyzed to eliminate the behavior of the Hodgkin-Huxley
equations which is dependent on the initial conditions (1.12). For ¢ > 500 the solution was
engaged.

1 ms pulse input I(t) with amplitude a = 8 and frequency f = 50

8 - - - - - -

1(t) (warcm?)
IN
|

T T T T T
960 980 1000 1020 1040

Time t (ms)

Figure 2.17: 1 ms pulse input (2.2) for a = 8 and f = 50. It is visible that the distance between
the initialization of two successive pulses is 1000/ f = 20. The red lines are the period times
of the pulse input.

Two different ratios are defined as it was done in section 2.2: a biological ratio Py, = M /N,
where M is the number of action potentials occurring in N periods of the input I, and a
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mathematical ratio Pp,qp = L/N, where L is the number of periods occurring for N periods
of the input I. To make clear how a period for the input (2.3) is defined see figure 2.17. If
the membrane potential is not periodic and accordingly not regular, Py, is set to be 0 (e.g.
see 2.18).

Membrane potential with ratios Py, = 0.2125 and P = 0
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Figure 2.18: Simulation with 1 ms pulse input (2.2): a = 8 and f = 120. For these values a
non-periodic membrane potential is generated. Therefore P+, = 0, whereas Py;, = 0.2125.

The following four graphical devices make it possible to talk about the periodicities of the
membrane potential:

(i) V-n plot: See section 2.2.

(ii) V-V plot at initialization times p;, i = 1,2,...: The initialization times p;, i = 1,2, ...,
are the times when the pulses of the input function (2.3) start at the value a. In this
plot the membrane potential V' at two successive initialization times is plotted against
each other (V(p;) versus V(p;+1)). An indication for periodicity would be, if the graphic
shows solid points, e.g. just one point, if Py, = 1, and two points, if Pp,qn = % and
SO on.

(iii) V-V plot at spike times s;, i = 1,2, ...: See section 2.2.

(iv) Interspikeinterval: See section 2.2.

Throughout this section the equilibrium potentials (1.1) were used.
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Membrane potential with ratios Py, = 1 and Pryan = 1
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Figure 2.19: Simulation with 1 ms pulse input (2.2): a = —18 and f = 25. It is visible that
all graphical devices let us assume that Py, = 1 and Pyqn = 1.

Membrane potential with ratios Py, = 0 and Ppyan = 1
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Figure 2.20: Simulation with 1 ms pulse input (2.2): a = —16 and f = 10. It is visible that
all graphical devices let us assume that P, = 0, whereas Py,q1n = 1.
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Results

For a € {—15.6,—-15.5,5.5,5.6,5.7}, t > 500, no spikes could be observed for any frequency
1 < fs < 150. But like in section 2.2 the membrane potential adopts the frequency of the
input function (2.3) for all frequencies 1 < f; < 150. For amplitudes —15.5 < a < 5.5 the
membrane potential probably behaves equal. Again, the difference between Py, and Py,q4p i

observable in figure 2.20. It is visible that the membrane potential is periodic, even though
Pyip = 0.
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Figure 2.21: Ratios Py, of the 1 ms pulse input (2.3) for 5.5 < a <8 (A), =185 <a < —15.5
(C) and 1 < f < 150. (A) and (C) show the 2-dimensional image graphic of the ratios,
whereas (B) and (D) show the ratios in a 3-dimensional wireframe graphic.
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Figure 2.21 shows the ratios Py;, of the simulations in 2-dimensional image graphics (A), (C)
and in 3-dimensional wireframe graphics (B), (D). The choice of ratios and combination of
ratios to intervals is the same as in section 2.2, besides adding the interval (1/2,2/3), and
leaving out the interval (1,2) and the ratio 2 because these ratios did not occur. If a is
positive and bigger than a certain threshold, then the membrane potential starts for f = 1
in a one-to-one phase-lock. In figure 2.21 (A), (B) it is observable that above this threshold
the fraction Py;, decreases as the frequency f increases, but remains a simple rational number
over most of the frequency range. If figure 2.21 (C), (D) would be mirrored and deformed
for 5.5 < a < 7 leaving out the part for 7 < a < 8, then the resulting images would look like
figure 2.21 (C), (D). Therefore it is assumable that the behavior of the membrane potential
for negative pulses is similar to the behavior of the membrane potential for positive pulses.
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Figure 2.22: Simulation with 1 ms pulse input (2.2): a = 7.8 and f = 59. It is visible that all
graphical devices let us assume that Py;, = 3/4, whereas Pp,qp = 1/4.

Figure 2.23 shows the ratios P, of the simulations in 2-dimensional image graphics (A), (C)
and in 3-dimensional wireframe graphics (B), (D). As in section 2.2, if Py;, = 0, then almost
always the periodicity of the pulse input is transfered to the membrane potential as in figure
2.20, and therefore P4 = 1. Again it is observable that Paen = 1 — Py, if Pyip € [1/2,1)
(see figure 2.22). As seen in section 2.2, non periodic membrane potentials are generated for
the most part when Py, € (0,1/5) U [1/5,1/3) U (1/3,1/2) U (1/2,2/3) U (3/4,1). For a > 0
there is a band of non-periodic behavior starting at a = 7.1 for high frequencies f > 108 (see
figure 2.18). Again it is observable that after this band of non-periodic behavior another phase-
lock occurs starting at a = 7.3 and high frequencies fs > 139 (see figure 2.24). Compared
to section 2.2 there is a lot more non-periodic behavior. Due to the small step size used for
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the simulations, the irregular behavior is not based on the error of numerical calculation. The
reason is probably the smoothness of the input (2.3) compared to the smoothness of the input
(2.2). Maybe if the input is smoothed relative to the center of the pulse like a - exp(—%azzo),

the results look more like in section 2.2.
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Figure 2.23: Ratios P,,qp of the 1 ms pulse input (2.3) for 5.5 < a <8 (A), —18.5 < a < —15.5
(C) and 1 < f < 150. (A) and (C) show the 2-dimensional image graphic of the ratios,
whereas (B) and (D) show the ratios in a 3-dimensional wireframe graphic.
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Taking everything into account, the following can be determined:
The distinctive feature that the Hodgkin-Huxley equations have periodic solutions for a pulse
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input (2.3) can be maintained for the most part of the amplitude and frequency range. Inter-
estingly even for negative amplitudes it is possible to generate action potentials. But compared
to the positive amplitude, the negative amplitude has to be much stronger.

Membrane potential with ratios Py, = 1/3 and Ppam = 1/3
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Figure 2.24: Simulation with 1 ms pulse input (2.2): a = 7.6 and f = 150. It is visible that
all graphical devices let us assume that Py, = 1/3 and Pq = 1/3.
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Chapter 3

Hodgkin-Huxley Model with
Stochastic Input

3.1 Stochastic Differential Equations

This section is a short introduction without any proofs to stochastic differential equations as
part of the lecture “Stochastische Analysis” at the university of Mainz in 2011. For a similar
introduction see [13].

3.1 Definition: Let (2, .4, P) be a probability space, F' = (F;):>0 afiltration in A. (Q, A, [F, P)
is called a stochastic basis. A stochastic basis satisfies the usual hypotheses, if the following
conditions hold

(i) T is right continuous, i.e. for all ¢ > 0 holds

Fo=Fpr =) Fr

r>t
(ii) Fis P-full, i.e. N¥ C Fy, where N is the system of all subsets of P-null sets in A.

3.2 Definition: Let (2, A, F, P) be a stochastic basis, where F' = (F)>0 is a right continu-
ous filtration in A. A d-dimensional, F-adapted and P-almost continuous process X = (X;)¢>0
is called a (P,IF)-Brownian motion, if for all s <t

Ep(eiS"Xe=Xo) | £y = 2 (t=9) ¢, ¢ € R4
3.3 Problem: Given a r-dimensional (P,[F)-Brownian motion

(W)iz0
W = (Wi)izo = :
(W)is0

and measurable functions b;, o;;: [0, 00) x R? - R,1<i<d,1<j<r. Denote

b1<t, .%') Ull(t,x) . Ulr(t,l')
b(t7 :L') - ) U(tv 1‘) - )
bd(t, .I') 0d1 (t, x) “. Udr(t, 37)

33
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where a(t,z) = o(t,x)o (t,x) € R¥9. b(t,z) is called the drift coefficients, o(t,x) is called
the wvolatility and a(t, x) is called the diffusion matriz.

Find a R%valued, P-almost continuous process X = (Xt)t>0, which is a solution of the
stochastic differential equation

dX; = b(t, Xt) dt + O’(t, Xt>th, Xo=¢( (31)

with
ax? = b;(t, X,) dt + Zo'ij(taXt)th(j)7 l<i<d

=1

3.4 Remark: Let W = (W;);>0 be a r-dimensional Brownian motion with Wy = 0 and
¢ a R%valued random variable in (9, A/, P). Further let W and ¢ be P-independent with
p = L(¢|P). A filtration IF = (F})¢>0 can be developed by

Gi=0c(Q)Vo(W,: 0<r<t),t>0,
goo:\/gta
t

N ={N CQ: thereis a G € G with P(G) =0 and N C G},
Ft = O-(gtvN)atzoa
-A:foo:vft
t

Then [F satisfies the usual hypotheses and W is a IF-Brownian motion. Denote IF as FW<.

3.5 Definition: Let (Q, A, TF, P) be as in remark 3.4 with F = FW¢. A strong solution with
initial value ¢ for the stochastic differential equation (3.1) with respect to the Brownian motion
W and the initial value ( is every ' = FW:<_adapted process X = (Xt)t>0 with continuous
path, so that (i) and (ii) are satisfied:

i) forall1 <i<d, 1<j<r
(i) 1<

bi(s, X,)|ds, [ 0% (s, Xs)ds
ij

0 0

are local integrable.

(ii) except for P-indistinguishableness it holds

X —C—i—/b(s,XS)ds—i—/a(s,Xs)dWS.

0 0

3.6 Definition: The stochastic differential equation (3.1) for b and o as in 3.3 has the prop-
erty of strong uniqueness, if for all choices of (2, A, IF, P), W and ( as in remark 3.4 and for
all pairs of solutions X, X’ of the stochastic differential equation (3.1) the following holds:

Xo=C(=X)= X =X" except for P-indistinguishableness.
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3.7 Definition: For b and ¢ as in 3.3 write
d d r
2 2 2 2
P => bl ol =D oyl
i=1 i=1 j=1
and consider the following assumptions:

(i) Local Lipschitz (1): for all n € N there is a K = K, < 00, so that for all t > 0 and =,
x' € By, (0) the following holds:

’b(t,fl,’) - b(t,l’/)‘ + HO’(t, JI) - U(ta {L’/)H < Kn|17 - $/|.

(ii) Global Lipschitz (L): there is a K < oo, so that for all t > 0 and z, 2’ € R? the following
holds:
b(t, z) = b(t, 2')| + [lo(t, z) — o(t,2)|| < K|z —2|.

(iii) Linear growth (G): for all t > 0 and x € R? the following holds:

[b(t, 2)* + [lo(t )] < K2(1+ [a]?).

The following two theorems go back to It6.

3.8 Theorem: If b and o satisfy the local Lipschitz assumption (1), then the stochastic dif-
ferential equation (3.1) has the property of strong uniqueness.

3.9 Theorem: Let (2, A,F, P), W, { be as in remark 3.4 with E(|¢|?) < oo. If the global
Lipschitz assumption (L) and the linear growth assumption (G) holds, then the stochastic
differential equation (3.1) has a strong solution for the initial value ¢ and the following holds:
for all T < oo there is a C = C(T, K), so that E(]X;|?) < C(1+ E(|¢|?))e“t, 0 <t < T.

3.2 Ornstein-Uhlenbeck Process Embedding

Before the Ornstein-Uhlenbeck process is defined, Itd’s formula (see [13], section 3.3) has to
be mentioned.

3.10 Theorem: Let f: R — R be a function of class C? and let X = {X;, F: 0 <t < oo}
be a continuous semimartingale (see [13], 3.1 Definition). Then P-a.s.,

FO00) = 10 + [ recat+ [ rocas o+ [ rooann., 62
0 0 0

for 0 <t < o0.
Generally, the Ornstein-Uhlenbeck process is defined as follows (see [11], page 44):

3.11 Example: For b(t,z) = 0(n — ) and o(t,x) = o, p € R, 8 > 0, 0 > 0 the unique
solution of
dX; =0(p— X¢)dt + odWe, Xo=¢( (3.3)
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is called the Ornstein-Uhlenbeck process. This parametrization of the Ornstein-Uhlenbeck
process is common in finance modeling, where ¢ is interpreted as the volatility, u is the long-
run equilibrium value of the process, and 6 is the speed of reversion. With It6’s formula (3.2)
and choosing f(t,z) = ze’ the explicit solution of (3.3) can be obtained:

In fact,

filt,x) = 0f(t,x), folt,x) =", foult,z)=0.

Therefore,

t
X = X)) Y 0, X0) + / 0 X" ds + / P d X,
0

t
oy / 0% ds + / o (O(n — Xs)ds + odWy)

t
= g+eﬂ/ 95ds+a/e95dws

0
t

g C—'—M +O’/eode3,
0

from which follows via division with %t
t

X =p+(C—pe %+ a/e_e(t_s)dWS.
0

Now consider an embedding of the input in an Ornstein-Uhlenbeck process:

3.12 Example: Let S(-) be a T-periodic and piecewise continuous function, o > 0 and
~v > 0. Consider the Ornstein-Uhlenbeck process

with initial value xg. The Ornstein-Uhlenbeck process can be simulated using the transition
semigroup (Ps¢)o<s<t<oo of X:

t—s

2
Poy(z, ) =N [ze 9 4 / e "WyS(t —v)dy, g— (1 + e_%’(t_s)> (3.5)
g
0

(see [10], example 2.3).

3.13 Remark: Due to example 3.12, equation (1.3) of the Hodgkin-Huxley model has changed
as follows:

dVv
CE = X; — ggn*- (V = Ex) — gnam®h - (V — Ena) — g1 - (V — Ep), (3.6)

where (X¢);>0 is an Ornstein-Uhlenbeck process
dX; =~(I(t) — Xy)dt + odWy, t >0, (3.7)
and I(t) is one of the functions (2.1), (2.2) or (2.3).
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The simulations of the Ornstein-Uhlenbeck inputs (see B) were done with R, a free software
environment for statistical computing and graphics, and were saved in a .txt-file. After that
these files were imported during the simulations in C' (see A.5, lines 50-61, 69, 87 and 103). The
simulation of the membrane potential is pretty much the same as before, except for adding the
parameters v € {0.1,0.25,0.5,0.75,0.9} (see A.5, lines 26-32), o € {0.05,0.25,0.5,0.75,0.95}
(see A.5, lines 33-39) for the Ornstein-Uhlenbeck process and using the Euler method (see
A5, lines 86-101) instead of the classical Runge-Kutta method. Depending on which type of
input is used, some changes have to be made:

(i) For the constant input simulation lines 19-25, 48, 49, 104 have to be commented out and
instead of lines 58-60 and 78, 79, lines 53, 54 and 73, 74 have to be used, respectively.

(ii) For the periodic input simulation lines 55-57 and 75-77 have to be used instead of lines
58-60 and 78, 79, respectively.

(iii) For the pulse input simulation lines 58-60 and 78, 79 have to be used.
Due to stochastic input the following graphical devices were used:

(i) Gating variables: This is a simple plot of the simulated gating variables n(t), m(t) and
h(t).

(ii) V-n plot: See section 2.2.

(iii) V-h plot: This plot is the same as (ii) using the gating variable h(t) instead of n(t).
The gating variable m(t) was not used because the behavior of m(t) is similar to the
membrane potential V.

3.2.1 Ornstein-Uhlenbeck Process for Constant Input

For the constant input of section 2.1
I(t)y=a, a>0,t>0,

the integral in equation (3.5) can be calculated:

S

eIt —v)dy = a(l — e 7)),

O Y~—T

The simulation is fast because of the simple structure of the integral (for implementation
see B.1). The two amplitude levels af, = 2.02775076 and a;,s = 5.2653 calculated for the
equilibrium potentials (1.1) in chapter 2, section 2.1 were examined.

afs is the amplitude level to generate a first spike. Therefore 500 Ornstein-Uhlenbeck inputs
for each v € {0.1,0.25,0.5,0.75,0.9}, o € {0.05,0.25,0.5,0.75,0.95} were simulated, and it
was counted how many times the membrane potential had at least one spike (see table 3.1). If
o =0.95 and v € {0.1,0.25}, or 0 = 0.75 and v € 0.1 the behavior of generating at least one
action potential is maintained for over 90% of 500 simulations. The lower o and the higher
v, the more it seems like it is a coin flip decision whether at least one action potential is
generated or not.
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Y1 01 1025 05 | 075 | 09

0.05 0.552 | 0.536 | 0.518 | 0.56 | 0.562
0.25 0.532 | 0.49 | 0.516 | 0.528 | 0.538
0.5 0.712 | 0.622 | 0.514 | 0.534 | 0.524
0.75 0.952 | 0.832 | 0.676 | 0.504 | 0.526
0.95 0.982 | 0.968 | 0.794 | 0.626 | 0.506

Table 3.1: In this table the relative frequencies are given, if at least one spike is generated for
500 constant inputs embedded in an Ornstein-Uhlenbeck process.

Surprisingly even if the input is above the level ays = 2.02775076 no action potentials are gen-
erated. For example, this behavior is observable in figure 3.1, where the Ornstein-Uhlenbeck
process (X¢)¢>0 with parameters o = 0.95 and v = 0.1 is above the level ay, for approximately
t € (10,35).

ajrs was defined as the lowest amplitude level to generate regular spiking. It seems like, that
if 0 = 0.95 and v € {0.1,0.25} the behavior of generating action potentials is maintained.
The only difference is that the membrane potential does not have a fixed frequency, and as
long as the Ornstein-Uhlenbeck input is below the level a;.; = 5.2653 no action potentials are
generated (see figure 3.2).

Membrane potential
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Time t (ms)

Gating variables
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OU process X for constant input with amplitude a=2.027751, 6=0.25 and y=0.1
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Figure 3.1: Simulation of constant input (2.1) embedded in an Ornstein-Uhlenbeck process
with parameters o = 0.25 and v = 0.1. It is observable that even though the input is above
afs = 2.02775076, no action potentials are generated
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Figure 3.2: Simulation of constant input (2.1) embedded in an Ornstein-Uhlenbeck process

with parameters ¢ = 0.95 and v = 0.1.
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Figure 3.3: Simulation of constant input (2.1) embedded in an Ornstein-Uhlenbeck process

with parameters ¢ = 0.05 and v = 0.9.
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The opposite of this behavior can be observed for an Ornstein-Uhlenbeck input with param-
eters o = 0.05 and v € {0.75,0.9}. Perhaps due to the initial conditions (1.12), spikes are
generated just at the beginning of the simulation (see figure 3.3).

3.2.2 Ornstein-Uhlenbeck Process for Periodic Input

For the periodic input of section 2.2
I(t) = Ip(1 +sin(27 fot)), t>0,

the integral in equation (3.5) (see B.2, line 14) is calculated during the simulation (see B.2,
lines 26, 27). This makes it 4 times slower than the simulation of the Ornstein-Uhlenbeck
process for a constant input.

Different values for Ip and fs (see table 3.2) were examined, for which the deterministic
simulation shows a different behavior with regard to the ratios Rp;, and R,qh.

Ratios Parameter || j 95 | Iy=25 |Ih=25 |Ih=25 | Iy=25 | I =25
=15 | fi=50 | fe=T5 | fi=100 | fi=140 | f; =150
Mo 0 1 2/3 1/2 0.2464 | 1/3
Rmath 1 1 1/3 1/2 0 1/3
Ratios —orameter Ip=5 lp=5 Iy =5 Ip=5 In=>5
fi=5 | f,=20 |f=50 |f,=95 |f=12%
Rbio 0 2 1 2/3 1/2
Rinath 1 1 1 1/3 1/2

Table 3.2: Ratios of the examined sinusoidal inputs (see figure 2.11 and figure 2.12).

Just some interesting graphics are viewed in this section.

In figure 3.4 there is an Ornstein-Uhlenbeck input with parameters ¢ = 0.5, v = 0.5 that is
pretty similar to the embedded periodic input (2.2) with parameters Iy = 2.5 and f; = 50.
The resulting membrane potential maintains the spiking behavior compared to the membrane
potential simulated for the periodic input (2.2) with parameters Iy = 2.5, f; = 50. The only
thing varying is the amplitude of the spikes due to the stochastic input. This can be observed
in the V-n plot and the V-h plot. As a result, the behavior of a deterministic simulated
membrane potential can be maintained by choosing the right parameters for the Ornstein-
Uhlenbeck input.

In figure 3.5 there is an Ornstein-Uhlenbeck input with parameters ¢ = 0.75, v = 0.25. Due
to v = 0.25 the input is slower than the embedded periodic input (2.2) with parameters
Iy = 2.5 and f; = 15. Even though Rp;, = 0 for the membrane potential simulated for the
deterministic periodic input (2.2) with parameters Iy = 2.5, fs = 15, the resulting membrane
potential generates action potentials in an irregular manner. As a result, the stochastic input
choosing the right parameters for the Ornstein-Uhlenbeck process can lead to spiking, whereas
the appropriate deterministic, periodic input is not able to do so.
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Figure 3.4: Simulation of sinusoidal input (2.2) with parameters Iy = 2.5 and fs; = 50 embed-

ded in an Ornstei

n-Uhlenbeck process with parameters ¢ = 0.5 and v = 0.5.
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Figure 3.5: Simulation of sinusoidal input (2.2) with parameters Iy = 2.5 and f; = 15 embed-

ded in an Ornstei

n-Uhlenbeck process with parameters ¢ = 0.75 and v = 0.25.
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In figure 3.6 there is an Ornstein-Uhlenbeck input with parameters o = 0.05, v = 0.25 for
an embedded periodic input (2.2) with parameters Iy = 2.5 and fs = 75. Ry, = 2/3 for
the membrane potential simulated for the deterministic periodic input (2.2) with parameters
Iy = 2.5, fs = 75. Due to the high frequency fs = 75 and v = 0.25 the input is not
able to reach the amplitude of the embedded periodic input (2.2) with parameters Iy = 2.5
and fs; = 75. Therefore the resulting membrane potential for the Ornstein-Uhlenbeck input
behaves like the appropriate membrane potential for the deterministic periodic input (2.2)
with parameters approximately Iy = 1.5, fs = 75 (Rpjp = 1/2, see 2.11).
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Figure 3.6: Simulation of sinusoidal input (2.2) with parameters Iy = 2.5 and fs; = 75 embed-
ded in an Ornstein-Uhlenbeck process with parameters ¢ = 0.05 and v = 0.25.

In figure 3.7 there is an Ornstein-Uhlenbeck input with parameters ¢ = 0.5, v = 0.75 for an
embedded periodic input (2.2) with parameters Iy = 5 and f; = 5. Even though Rp;, = 0 for
the membrane potential simulated for the deterministic periodic input (2.2) with parameters
Iy = 5, fs = 5, the resulting membrane potential always generates a small spike train at
the local maxima of the deterministic input in an irregular manner. In section 2.2 no ratios
Ry, > 2 could be observed, but figure 3.7 shows that it is possible to create membrane
potentials with Rp;, > 2. As a result, the stochastic input choosing the right parameters for
the Ornstein-Uhlenbeck process can lead to high frequently spiking, whereas the appropriate
deterministic, periodic input is not able to do so.
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Figure 3.7: Simulation of sinusoidal input (2.2) with parameters Iy = 5 and fs = 5 embedded
in an Ornstein-Uhlenbeck process with parameters ¢ = 0.5 and v = 0.75.

3.2.3 Ornstein-Uhlenbeck Process for 1 ms Pulse Input

For the 1 ms pulse input of section 2.3

f—1
I(t) = 1,000 (t) Y a 1[m% o (t mod 1000), ¢ >0,
m=0

the integral in equation (3.5) can be calculated (see B.3, lines 21, 22 and 26, 27), but if f is
big a lot of cases have to queried (see B.3, lines 23-25):

, else.

t—s

1—e 7=s))if I(t) =
/ew’ﬂ(t—l/)dyz {g( ), A1)
0

This makes it 1.5 times slower than the simulation of the Ornstein-Uhlenbeck process for a
periodic input. Different values for a and f (see table 3.3) were examined, for which the
deterministic simulation shows a different behavior with regard to the ratios Py;, and Pp,qh.
Just some interesting graphics are viewed in this section.
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Ratios Parameter a=28 a=28 a=28 a=28 a=28
—925 | f=62 | f=100 | f=125 | f=150
Poio 1 2/3 1/2 0.124 1/3
Poath 1 1/3 1/2 0 1/3
Ration Parameter | 1o | 02 185 |a=-185 |a=—185
f=25 f =47 f=15 =125
Poio 1 0.6383 1/2 0
Poath 1 0 1/2 1

Table 3.3: Ratios of the examined 1 ms pulse inputs (see figure 2.21 and figure 2.23)

In figure 3.8 there is an Ornstein-Uhlenbeck input with parameters o = 0.05, v = 0.75 for an
embedded pulse input (2.3) with parameters a = 8 and f = 62. Py;, = 2/3 for the membrane
potential simulated for the deterministic pulse input (2.3) with parameters a = 8, f = 62.
The membrane potential maintains the behavior of the deterministic pulse input (Py;, = 2/3),
even though the Ornstein-Uhlenbeck input is not able to reach the amplitude a = 8 of the
embedded pulse input (2.3). As a result, the behavior of a deterministic simulated membrane
potential can be maintained choosing the right parameters for the Ornstein-Uhlenbeck input.
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Figure 3.8: Simulation of a 1 ms pulse input (2.3) with parameters a = 8 and fs = 62
embedded in an Ornstein-Uhlenbeck process with parameters o = 0.05 and v = 0.75.
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Figure 3.9: Simulation of a 1 ms pulse input (2.3) with parameters a = —18.5 and f; = 25

embedded in an Ornstein-Uhlenbeck process with parameters o = 0.75 and v = 0.75.
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Figure 3.10: Simulation of a 1 ms pulse input (2.3) with parameters a = —18.5 and f, = 47
embedded in an Ornstein-Uhlenbeck process with parameters o = 0.05 and v = 0.9.
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In figure 3.9 there is an Ornstein-Uhlenbeck input with parameters o = 0.75, v = 0.75 for
an embedded pulse input (2.3) with parameters a = —18.5 and f = 25. Due to o = 0.75
the membrane potential behaves irregular. Again, the amplitudes of the Ornstein-Uhlenbeck
input are lower than the amplitudes of the embedded pulse input (2.3), but leads to spiking.
In figure 3.10 there is an Ornstein-Uhlenbeck input with parameters o = 0.05, v = 0.9 for an
embedded pulse input (2.3) with parameters a = —18.5 and f = 47. The membrane potential
is irregular for the embedded pulse input (2.3) with parameters a = —18.5 and f = 47
(Pmatn = 0). Still the membrane potential for the Ornstein-Uhlenbeck input is irregular,
but leaving out the single gabs, where no action potentials are generated, it looks like that
for every two pulses of the Ornstein-Uhlenbeck input a spike is generated. This is again an
example for the profitableness embedding signals into an stochastic process.



Appendix A

C Codes

A.1 Rating Constants and Hodgkin-Huxley Equations

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <math.h>

4

5 // Implementation of the steady state (in)activation function in the HH model.
6 // Parameter:

7 // V. : Applied current (mV)
8 // Return:
9 // Steady state (in)activation function

10
11 double ninf (double V){

12 double an;

13 double bn;

14 if (v == 10){

15 an = 1/10;

16 }else{

17 an = 0.01%(10-V)/(exp((10-V)/10)-1);
18 }

19 bn = 0.125*%exp(-V/80);
20 return (an/(an+bn));

21 }

22

23 double minf (double V){

24 double am;

25 double bm;

26 if (v == 25){

27 am = 1;

28 }else{

29 am = 0.1%(25-V)/(exp((25-V)/10)-1);
30 }

31 bm = 4*xexp(-V/18);

32 return (am/(am+bm)) ;

33 }

34

35 double hinf (double V){

36 double ah;

37 double bh;

38 ah = 0.07*xexp(-V/20);

39 bh = 1/(1+exp ((30-V)/10));

47
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40 return(ah/(ah+bh));

41 }

42

43 // Implementation of the voltage—dependent time constant in the HH model.
44 // Parameter:

a5 /) V. : Applied current (mV)
46 // Return:

ar // Voltage—dependent time constant
48

19 double taun(double V){

50 double an;

51 double bn;

52 if(v == 10){

53 an = 1/10;

54 }else{

55 an = 0.01%(10-V)/(exp((10-V)/10)-1);
56 }

57 bn = 0.125*%exp(-V/80);

58 return (1/(an+bn));

59 }

60

61 double taum(double V){

62 double am;

63 double bm;

64 if (v == 25){

65 am = 1;

66 }else{

67 am = 0.1%(25-V)/(exp((25-V)/10)-1);
68 }

69 bm = 4*exp(-V/18);

70 return (1/(am+bm)) ;

71 }

72

73 double tauh (double V){

74 double ah;

75 double bh;

76 ah = 0.07*xexp(-V/20);

77 bh = 1/(1+exp((30-V)/10));

78 return (1/(ah+bh));

79 }

80
s1 // Implementation of the function "f(t,y)" for the classical Runge—Kutta method.
82 // Parameter:

83 // y0,yl,y2,y38 : Values of the dependent variables

sa // 1 : Ezternal injected current (mA / cm~2)

85 // *v,*xn,xm,*h : Return wvalues

86 // 1. entry —> FEvaluation of the membrane potential
87 // 2. entry —> FEwvaluation of the function n()

88 // 3. entry —> Ewvaluation of the function m()

80 // 4. entry —> FEwvaluation of the function h()

90

91 void f(double yO, double y1, double y2, double y3, double I,

92 double *v, double *n, double *m, double *h){

93 // Using the wvalues for the equilibrium potentials of Hodgkin and Huxley

94 // xv = 1 — 86+pow(yl,4)*(y0+12) — 120%pow(y2,3)* y3+(y0—115) — 0.3x(y0—10.613);
95 // Using the wvalues for the equilibrium potentials of Izhikevich

96 x*v = I - 36*xpow(yl,4)*x(y0+12) - 120*pow(y2,3)*y3*(y0-120) - 0.3*x(y0-10.6);
97 *n (ninf (y0)-y1)/taun(yo0);
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*m = (minf (y0)-y2)/taum(y0);
*h = (hinf (y0)-y3)/tauh(y0);
}
A.2 Runge-Kutta Method for Constant Input
// Implementation of the HH equations wusing the classical Runge—Kutta method.
// Return in .tzt:
// Matriz 1. column —> Membrane potential
// 2. column —> Function n()
// 3. column —> Function m()
// 4. column —> Function h()
main () {
// Setting parameters:
double v0 = 0; // Initialization of the membrane potential (mV)
double x_max = 100; // Final value of the independent variable (time)
double s = 0.005; // Step size between 0 and z_maz
int N = x_max/s; // Number of steps
struct HH{
double v, n, m, h;
} visl; // Initialization of the dependent wvariable
double amp[11]; // Initialization of the amplitude vector
int j;
for (j=0;j<11;j++){
amp[j] = 2.0277507 + j*0.00000001;
}
char text [25]; // A string to write in the file name
// Start of the simulations
int 1;
for (1=0; 1<11; 1++){
// Setting initial values:
double x = 0; // Simulation starts at time 0
V[I0].v = vO;
VI0]l.n = ninf (v0);
VI0]l.m = minf(v0);
V[0]l.h = hinf (v0);
// Writing the files
FILE *fp;
sprintf (text ,"C:/Amp=),.8fRinzel.txt", amp([l]);
fp = fopen(text,"w");
fprintf (fp,"%.10f %.10f %.10f %.10f\n", V[0].v,V[0].n,V[0].m,V[0].h);
// Evaluation loop for the classical Runge—Kutta method
int i=1;
while (i < N+2){
£f(Vv[0].v, V[0].n, V[O].m, V[O].h, amp[l],
&V[1].v, &V[1].n, &V[1].m, &V[1].h);
f(V[0].v+s/2%V[1].v, V[0].n+s/2%V[1].n, V[0] .m+s/2*V[1].m,
V[0].h+s/2*xV[1].h, amp[1l], &V[2].v, &V[2].n, &V[2].m, &V[2].h);
f(V[O].v+s/2%V[2].v, V[O].n+s/2*xV[2].n, V[O] .m+s/2%V[2].m,
V[0].h+s/2*%V[2] .h, amp[1l], &VI[3].v, &V[3].n, &V[3].m, &V[3].h);
f(V[O0].v+s*V[3].v, V[O].n+s*V[3].n, V[O0].m+s*V[3].m, V[O].h+s*V[3].h,

amp[1], &VI[4].v, &V[4].n, &V[4].m, &V[4].h);

V[0].v = V[0].v+s*x(V[1].v+2x(V[2].v+V[3].v)+V[4].v)/6;
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53 V[O]l.n = V[0].n+s*(V[1].n+2%(V[2].n+V[3].n)+V[4].n)/6;
54 V[O].m = V[0] . m+s*(V[1].m+2+%(V[2] .m+V[3].m)+V[4].m)/6;
55 VI0].h = V[O].h+s*(V[1].h+2*%(V[2].h+V[3].h)+V[4].h)/6;
56

57 x = round (x*1000)/1000+s;

58 fprintf (fp,"%.10f %.10f %.10f %.10f\n", V[0].v,V[0].n,V[0].m,V[0].h);
59 i++;

60 }

61 fclose(fp);

62 }

63 }

A.3 Runge-Kutta Method for Periodic Input

1 // Implementation of a sinusoidal input

2 // Parameter:

3 // t : Time (ms)

4 // a : Amplitude of the sinusoidal input (mV)
5 // fs : Frequency of the sinusoidal input (Hz)
6 //

7 // Return:

8 // Sinusoidal input at time t

9

10 double I(double t, double a, int fs){

11 return(a+a*xsin(M_PI*fs*0.002*xt));

12 }

13

14 // Implementation of the HH equations using the classical Runge—Kutta method.
15 // Return in .txt:

w6 // Matriz 1. column —> Membrane potential

/) 2. column —> Function n()

18 // 3. column ——> Function m()

1w // 4. column —> Function h()

20

21 main () {

22 // Setting parameters:

23 double v0 = 0; // Initialization of the membrane potential (mV)
24 double x_max = 2500; // Final value of the independent variable (time)
25 double s = 0.005; // Increment between 0 and z_maz

26 int N = x_max/s; // Number of steps

27 struct HH{

28 double v, n, m, h;

29 } visl; // Initialization of the dependent variable
30 double amp[38]; // Initialization of the amplitude vector
31 int j;

32 for (j=0;3<39;j++){

33 amp[j]l = 1.2 + j*0.1;

34 }

35 int fs[150]; // Initialization of the frequency wvector
36 int k;

37 for (k=0;k<150;k++){

38 fs[k] = 1+k;

39 }

40 char text [25]; // A string to write in the file name

41

42 // Start of the simulations

43 int 1,p;

44 for (1=0; 1<39; 1++){
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45 for (p=0;p<150;p++){
46 // Setting initial values:
47 double x = 0; // Simulation starts at time 0
48 V[O0].v = vO0;
49 V[0].n = ninf (v0);
50 V[0].m = minf (v0);
51 V[O].h = hinf (v0);
52
53 // Writing the files
54 FILE *xfp;
55 sprintf (text ,"C:/FAP_Amp=%.1f,Freq=%i.txt", amp[l],fs[pl);
56 fp = fopen(text,"w");
57 fprintf (fp,"%.10£f %.10f %.10f %.10£f\n", V[0].v,V[0].n,V[0].m,V[0].h);
58
59 // Evaluation loop for the classical Runge—Kutta method
60 int i=1;
61 while (i < N+2){
62 f(V[0].v, V[0].n, V[O].m, V[O].h,
63 I(x,amp[1],fs[pl), &V[1]l.v, &V[1].n, &V[1].m, &V[1].h);
64 f(V[0].v+s/2%V[1].v, V[O].n+s/2*xV[1].n, V[O].m+s/2*V[1].m,
65 V[O].h+s/2%V[1].h, I(x+s/2,amp[1l],£fs[pl), &V[2].v, &V[2].n,
66 &VI[2] .m, &VI[2].h);
67 f(V[0].v+s/2%V[2].v, V[O].n+s/2*xV[2].n, V[O].m+s/2%V[2].m,
68 V[0].h+s/2*%V[2].h, I(x+s/2,amp[1],fs[pl), &VI[3].v, &V[3].n,
69 &V[3].m, &VI[3].h);
70 f(V[O].v+s*V[3].v, V[O].n+s*V[3].n, V[O] .m+s*V[3].m,
71 V[O] .h+s*V[3].h, I(x+s,amp[1l],fs[pl), &V[4].v, &VI[4].n,
72 &V[4].m, &VI[4].h);
73
74 VI[0].v = V[O] .v+s*(V[1].v+2%x(V[2].v+V[3].v)+V[4].v)/6;
75 V[O0].n = V[0].n+s*(V[1].n+2%(V[2].n+V[3].n)+V[4].n)/6;
76 VI0].m = V[O] .m+s*(V[1] . m+2*(V[2] .m+V[3].m)+V[4].m)/6;
77 V[0].h = V[O].h+s*(V[1].h+2%(V[2].h+V[3].h)+V[4].h)/6;
78
79 x = round(x*1000)/1000+s;
80 fprintf (fp,"%.10f %.10f %.10f %.10f\n",V[0].v,V[0].n,V[0].m,V[O]
81 i++;
82 }
83 fclose(fp);
84 ¥
85 }
86 }

A.4 Runge-Kutta Method for 1 ms Pulse

1 // Implementation of a 1 ms pulse input
2 // Parameter:

3 // t : Time (ms)

4 // a : Amplitude of the pulse input (mV)
5 // f : Frequency of the pulse input (Hz)
5 //

7 // Return:

s // 1 ms pulse input at time t <= 3000

10 double I(double t, double amp, double £f){
11 int 1;

12 for (1=1;1<f+1;1++){

13 if (£>=(1000/f)*1 && t<=(1000/f)*1+1){

Input



52 APPENDIX A. C CODES

14 return (a) ;

15 }

16 if (t>=1000+(1000/f)*1 && t<=1000+(1000/£f)*1+1){
17 return(a);

18 ¥

19 if (t>=2000+(1000/f)*1 && t<=2000+(1000/£f)*1+1){
20 return(a);

21 }

22 }

23 return (0) ;

24 }

25

26 // Implementation of the HH equations wusing the classical Runge—Kutta method.
27 // Return in .tzt:

28 // Matriz 1. column —> Membrane potential
2 // 2. column —> Function n()

30 // 3. column —> Function m()

31 // 4. column —> Function h()

32

33 main () {
34 // Setting parameters:

35 double v0 = 0; // Initialization of the membrane potential (mV)
36 double x_max = 2500; // Final value of the independent wvariable (time)
37 double s = 0.005; // Increment between 0 and z_maz

38 int N = x_max/s; // Number of steps

39 struct HH{

40 double v, n, m, h;

41 } vIsl; // Initialization of the dependent wvariable
42 double amp [56]; // Imnitialization of the amplitude vector
43 int j;

44 for (j=0;j<21;j++){

45 amp[j] = 5.5 + j*0.1;

46 }

47 for (j=0;3j<35;j++){

48 amp[j+21] = -20 + j*0.1;

49 }

50 int f£s[150]; // Initialization of the frequency wvector
51 int k;

52 for (k=0;k<150;k++){

53 fs[k] = 1+k;

54 }

55 char text [25]; // A string to write in the file name

56

57 // Start of the simulations

58 int 1,p;

59 for (1=0; 1<56; 1++){

60 for (p=0;p<150;p++){

61 //Setting initial values:

62 double x = 0; // Simulation starts at time 0
63 V[O0].v = vO;

64 V[0].n = ninf(v0);

65 V[O0].m = minf (vO0);

66 V[O].h = hinf (v0);

67

68 // Writing the files

69 FILE *fp;

70 sprintf (text ,"C:/Amp=%.1f ,Freq=%ilz.txt", amp[1l],fs[pl);

71 fp = fopen(text,"w");
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53

.h);

72 fprintf (fp,"%.10f %.10f %.10f %.10£f\n", V[0].v,V[0].n,V[0].m,V[0].h);
73
74 // Ewvaluation loop for the classical Runge—Kutta method
75 int i=1;
76 while (i < N+2){
77 £(v[0o].v, V[0].n, V[O].m, V[O].h, I(x,amp[l],fs(pl),
78 &Vv[1].v, &V[1]l.n, &V[1]l.m, &VI[1].h);
79 f(V[0].v+s/2%V[1].v, V[O].n+s/2*xV[1].n, V[O].m+s/2%V[1].m,
80 V[0].h+s/2*%V[1].h, I(x+s/2,amp[1],fs[pl), &V[2].v, &V[2].n,
81 &VI[2] .m, &VI[2].h);
82 f(V[0].v+s/2%V[2].v, V[O].n+s/2*xV[2].n, V[O].m+s/2*V[2].m,
83 V[0].h+s/2*%V[2].h, I(x+s/2,amp[1],fs[pl), &VI[3].v, &V[3].n,
84 &V[3].m, &VI[3].h);
85 f(V[O].v+s*V[3].v, V[O].n+s*V[3].n, V[O] .m+s*V[3].m,
86 V[0].h+s*V[3].h, I(x+s,amp[1],fs[pl), &VI[4].v, &V[4].n,
87 &V[4].m, &VI[4].h);
88
89 VIO].v = V[0].v+s*(V[1].v+2*%(V[2].v+V[3].v)+V[4].v)/6;
90 V[0].n = V[O].n+s*(V[1].n+2%(V[2] .n+V[3].n)+V[4].n)/6;
91 V[0l .m = V[O] .m+s*(V[1] . m+2%(V[2] . m+V[3].m)+V[4].m)/6;
92 VI[O].h = V[0].h+s*(V[1].h+2%(V[2].h+V[3].h)+V[4].h)/6;
93
94 x = round(x*1000)/1000+s;
95 fprintf (fp,"%.10f %.10f %.10f %.10f\n",V[0].v,V[0].n,V[0].m,V[O]
96 i++;
97 }
98 fclose(fp);
99 }
100 }
101 }
A.5 Euler Method for Ornstein-Uhlenbeck Inputs
1 // Implementation of the Hodgkin—Huzley equation wusing the FEuler method
2 // Return in .txt:
3 // Matriz 1. column —> OU input
4 // 2. column —> membrane potential
5 // 3. column ——> function n()
6 // 4. column —> function m()
7 // 5. column —> function h()
8
9 main () {
10 // Setting parameters:
11 double v0 = 0; // Initialization of the membrane potential (mV)
12 double x_max = 2500; // Final value of the independent wvariable (time)
13 double s = 0.005; // Increment between 0 and x_maz
14 int N = x_max/s; // Number of steps
15 struct HH{
16 double v, n, m, h;
17 } vi2l; // Initialization of the dependent variable
18 double amp = 8; // Initialization of the amplitude
19 int f_s[6]; // Initialization of the frequency wvector
20 f_s[0] = 0;
21 f_s[1] = 25;
22 f_s[2] = 62;
23 f_s[3] = 100;
24 f_s[4] = 125;
25 f_s[5] = 150;
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26 double gamma[6]; // Initialization of the gamma vector

27 gamma [0] = O;

28 gamma [1] 0.1;

29 gamma [2] = 0.25;

30 gamma [3] = 0.5;

31 gamma [4] = 0.75;

32 gamma [5] = 0.9;

33 double sigmal[6]; // Initialization of the sigma wvalue

34 sigma[0] = 0;

35 sigma [1] 0.05;

36 sigma[2] = 0.25;

37 sigma[3] = 0.5;

38 sigma[4] = 0.75;

39 sigma[5] = 0.95;

40 char text [100]; // A string to write in the file name

41 char text1[100]; // A string to write in the file name

42

43 // Start of the simulations

44 int 1;

45 for (1=1; 1<6; 1++){ // Sigma loop

46 int p;

a7 for (p=1;p<6;p++){ // Gamma loop

48 int q;

49 for (q=1;q<6;q9++){ // Frequency loop

50 // read data of OU Input (Constant, Period or Pulse Input)
51 FILE *xdatei;

52 float test; // Parameter to write in the input
53 J/sprintf(textl ,"C:/0OU_const_amp=%.4f, sigma=%.0f , gamma=%.0f . tzt ",
54 // amp, sigma [1[*100,gamma[p]+100);

55 J//sprintf(textl ,"C:/

56 // OU_period _amp=%.1f,f s=%i,sigma=%.0f,gamma=%.0f. txt ",
57 // amp,f _s[q],sigma[l]x100,gamma[p]+100);

58 sprintf (textl,"C:/

59 OU_pulse_amp=%.1f,f_s=%i,sigma=%.0f,gamma=%.0f.txt",
60 amp ,f_s[ql,sigma[1]*100, gamma[p]*100);

61 datei = fopen(textl,"r");

62

63 // Setting initial values:

64 double x = 0; // Simulation starts at time 0
65 V[0].v = vO;

66 V[0].n = ninf(v0);

67 V[0].m = minf(v0);

68 V[0].h = hinf (v0);

69 fscanf (datei, "%f", &test);

70

71 // Writing the files (Constant, Period or Pulse Input)

72 FILE *fp;

73 J/sprintf(text ,"C:/Const/Amp=%.4f, sigma=%.0f ,gamma=%.0f . txt ",
74 // amp, sigma [l [*100,gamma[p[+100);

75 //sprintf(text ,"C:/Period/

76 // Amp=%.0f , f_s=%i , sigma="2%.0f , gamma=%.0f . tzt ",

77 // amp,f _s[q],sigma[l]*x100,9amma[p][*100);

78 sprintf (text ,"C:/Pulse/Amp=%.0f,f_s=Ji,sigma=%.0f,gamma=%.0f.txt",
79 amp ,f_s[ql,sigma[1]*100, gamma[p]*100);

80 fp = fopen(text,"w");

81 fprintf (fp,"%f %.10f 7%.10f %.10f %.10f\n",test,

82 Vv[0].v,V[0].n,V[0].m,V[O0].h);

83
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106

107 }

// Evaluation loop for the FEuler method
int i=1;
while (i < N+2){
fscanf (datei, "%f", &test);
f(v[o]l.v, V[0].n, V[0O].m, V[O].h, test,
&V[1l.v, &V[1].n, &V[1]l.m, &V[1].h);

VIO0].v = V[0].v+s*xV[1].v;
VIO]l.n = V[0].n+s*xV[1].n;
V[0].m = V[0].m+s*xV[1].m;
V[0].h = V[O].h+s*V[1].h;

x = round (x*1000)/1000+s;

fprintf (fp,"%f %.10f %.10f %.10f %.10f\n",
test,V[0].v,V[0].n,V[0].m,V[0].h);

i++;

}

fclose(£fp);

fclose (datei);
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Appendix B

R Codes

B.1 Ornstein-Uhlenbeck Process for Constant Input

### Setting parameters
set.seed (12345);

s <- 0.005;

x.max <- 100;

time <- seq(0,x.max,s);

### Parameters for OU process

amp <- 2.02775076;
gamma <- c¢(0.1,0.25,0.5,0.75,0.9);
sigma <- ¢(0.05,0.25,0.5,0.75,0.95);

### FExact simulation
X <- numeric(length(time));
X[1] <- amp;
for (k in 1:length(sigma)){
for (j in 1:length(gamma)){
for (i in 2:length(time)){

R RN

RN

Seed

Step size

End of time wvector
Time wvector

Amplitude of the constant
Speed of reversion
Volatility

input

Initialization of the OU process

X[i] <- rnorm(1, X[i-1]*exp(-gamma[jl*s)+amp*(1l-exp(-gammal[jl*s)),

sqrt (sigmal[k]~2/(2*gamma[jl)*(1-exp(-2*xgamma[jl*s))) )

}
### Save the data

write.table(round(X,6), file =

",sigma=",sigmal[k]*100,"

col.names=FALSE,
}
}

paste("C:/0U_const_amp=",amp,
,gamma=",gamma[j]*100,".txt",sep=""),

row.names=FALSE) ;

B.2 Ornstein-Uhlenbeck Process for Periodic Input

### Setting parameters
set.seed (12345);

s <- 0.005;

x.max <- 2500;

time <- seq(0,x.max,s);

##4# Parameters for OU process

i0 <- 2.5;
f_s <- ¢(15,50,75,100,140,150);
gamma <- c(0.1,0.25,0.5,0.75,0.9);

a
#

Seed
Step size

# End of time wvector

#

#
#
#

o7

Time vector

Amplitude of the periodic
Frequency of the periodic
Speed of reversion

input
input
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11 sigma <- ¢(0.05,0.25,0.5,0.75,0.95); # Volatility
12

13 #4444 Function for the integration

14 £2 <- function(x) return( exp(-g*x)*i0*(1+sin(pi*(£s*0.002)*x(t-x)))*g );
15

16 #44# FEract simulation

17 X <- numeric(length(time));

18 X[1] <- i0;

19 for (m in 1:length(f_s)){

20 fs <- f_s[m];

21 for (k in 1:length(sigma)){

22 for (j in 1:length(gamma)){

23 g <- gammal[j];

24 for (i in 2:length(time)){

25 t <- timel[i];

26 X[i] <- rnorm(1, X[i-1]l*exp(-g*s)+integrate(f2,lower=0,upper=s)$value,
27 sqrt(sigmal[k]~2/(2*g)*x(1-exp (-2xg*s))) )
28 }

29

30 ### Save the data

31 write.table(round(X,6), file = paste("C:/0U_period_amp=",i0,
32 ",f_s=",f_s[m],",sigma=",sigma[k]*100,

33 ",gamma=",gamma[j]*100,".txt",sep=""),

34 col.names=FALSE, row.names=FALSE);

35 ¥

36 ¥

37

B.3 Ornstein-Uhlenbeck Process for 1 ms Pulse Input

1 ### Setting parameters

2 set.seed (12345); # Seed

3 s <- 0.005; # Step size

4 x.max <- 2500; # End of time wvector

5 time <- seq(0,x.max,s); # Time wvector

6

7 ### Parameters for OU process

g amp <- 8; # Amplitude of the pulse input
9 f_s <- ¢(25,62,100,125,150); # Frequency of the pulse input
10 gamma <- ¢(0.1,0.25,0.5,0.75,0.9); # Speed of reversion

11 sigma <- ¢(0.05,0.25,0.5,0.75,0.95); # Volatility

12

13 ### Fzract simulation

14 X <- numeric(length(time));

15 for (m in 1:length(f_s)){

16 for (k in 1:length(sigma)){

17 for (j in 1:length(gamma)){

18 g <- gammal[j];

19 for (i in 2:length(time)){

20 t <- timel[i];

21 X[i] <- rnorm(1l, X[i-1]*exp(-gxs),

22 sqrt (sigma[k]~2/(2*g)*(1-exp(-2%g*s))));

23 if(e>1){

24 for (1 in 0:(f_s[m]l-1)){

25 if ((t£%%1000)>=((1000/f_s[m])*1) && (t%%1000)<=(1000/f_s[m])*1+1){
26 X[i] <- rnorm(1, X[i-1]l*exp(-g*s)+amp*(l-exp(-g*s)),

27 sqrt (sigma[k]~2/(2*g)*x(1-exp (-2xg*xs))) )

[V
o2}
—
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29
30
31
32
33
34
35
36
37
38
39

40 }

}
}
}

### Save the data

write.table(round(X,6), file = paste("C:/0U_pulse_amp=",amp,
",f_s=",f_s[m],",sigma=",sigmal[k]*100,
",gamma=",gamma[j]*100,".txt",sep=""),
col.names=FALSE, row.names=FALSE);

99
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