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Abstract

A field of computational neuroscience develops mathematical models to describe neuronal
systems. The aim is to better understand the nervous system. Historically, the integrate-
and-fire model, developed by Lapique in 1907, was the first model describing a neuron. In
1952 Hodgkin and Huxley [8] described the so called Hodgkin-Huxley model in the article
“A Quantitative Description of Membrane Current and Its Application to Conduction and
Excitation in Nerve”. The Hodgkin-Huxley model is one of the most successful and widely-used
biological neuron models. Based on experimental data from the squid giant axon, Hodgkin
and Huxley developed their mathematical model as a four-dimensional system of first-order
ordinary differential equations. One of these equations characterizes the membrane potential
as a process in time, whereas the other three equations depict the opening and closing state
of sodium and potassium ion channels. The membrane potential is proportional to the sum
of ionic current flowing across the membrane and an externally applied current. For various
types of external input the membrane potential behaves differently. This thesis considers the
following three types of input:

(i) Rinzel and Miller [15] calculated an interval of amplitudes for a constant applied current,
where the membrane potential is repetitively spiking.

(ii) Aihara, Matsumoto and Ikegaya [1] said that dependent on the amplitude and the fre-
quency of a periodic applied current the membrane potential responds periodically.

(iii) Izhikevich [12] stated that brief pulses of positive and negative current with different
amplitudes and frequencies can lead to a periodic response of the membrane potential.

In chapter 1 the Hodgkin-Huxley model is introduced according to Izhikevich [12]. Besides
the definition of the model, several biological and physiological notes are made, and further
concepts are described by examples. Moreover, the numerical methods to solve the equations
of the Hodgkin-Huxley model are presented which were used for the computer simulations in
chapter 2 and chapter 3. In chapter 2 the statements for the three different inputs (i), (ii) and
(iii) will be verified, and periodic behavior for the inputs (ii) and (iii) will be investigated. In
chapter 3 the inputs are embedded in an Ornstein-Uhlenbeck process to see the influence of
noise on the results of chapter 2.

i



ii ABSTRACT



Zusammenfassung

Ein Bereich der Computational Neuroscience beschäftigt sich mit der mathematischen Mo-
dellierung neuronaler Systeme. Das Ziel ist es, ein besseres Verständnis des Nervensystems
zu erhalten. Historisch gesehen ist das Integrate-and-Fire Modell, entwickelt von Lapique im
Jahre 1907, das erste Modell, das ein Neuron beschrieben hat. Im Jahre 1952 beschreiben
Hodgkin und Huxley [8] in ihrer Arbeit “A Quantitative Description of Membrane Current
and Its Application to Conduction and Excitation in Nerve” eines der erfolgreichsten und am
meisten genutzten biologischen Neuronenmodelle, das sogenannte Hodgkin-Huxley Modell. Auf
der Grundlage von Experimenten am Riesenaxon des Tintenfischs wurde das Hodgkin-Huxley
Modell als vierdimensionales System gewöhnlicher Differentialgleichungen erster Ordnung ent-
wickelt. Eine dieser Gleichungen stellt das Membranpotential dar, wohingegen die restlichen
drei Gleichungen das Öffnen und Schließen der Natrium- und Kaliumionenkanäle wiedergibt.
Dabei ist das Membranpotential proportional zur Summe der Ionenströme und einem exter-
nen Strominput. Für verschiedene Typen von externem Input reagiert das Membranpotential
unterschiedlich. In dieser Arbeit beschäftigen wir uns mit den folgenden drei Typen von Input:

(i) Rinzel und Miller [15] berechneten numerisch, dass für einen konstanten Input ein In-
tervall von Amplituden existiert, für welches das Membranpotential mit einer gewissen
Frequenz wiederholend Aktionspotenziale erzeugt.

(ii) Aihara, Matsumoto und Ikegaya [1] beschreiben, dass abhängig von der Amplitude und
der Frequenz eines periodischen Inputs das Membranpotential periodisch zum Input
erwidert.

(iii) Izhikevich [12] erklärt, dass kurze Impulse von positivem, sowie negativem Strom mit
unterschiedlichen Amplituden und Frequenzen zu periodischem Verhalten des Membran-
potentials führen kann.

In Kapitel 1 wird eine Einführung in das Hodgkin-Huxley Modell gegeben, analog zu Izhike-
vich [12]. Dabei werden neben der Definition des Modells einige Bemerkungen über den biolo-
gischen und physiologischen Hintergrund gegeben und weitere Begriffe anhand von Beispielen
eingeführt. Außerdem werden die numerischen Methoden angegeben, die zur Lösung der Glei-
chungen des Hodgkin-Huxley Modells mit Computersimulationen in Kapitel 2 und Kapitel 3
verwendet werden. In Kapitel 2 werden die Aussagen über die drei verschiedenen Inputtypen
(i), (ii) und (iii) verifiziert. Außerdem werden die Periodizitäten in (ii) und (iii) genauer unter-
sucht. In Kapitel 3 werden die Inputtypen in einen Ornstein-Uhlenbeck Prozess eingebettet,
um den Einfluss von Rauschen auf die Ergebnisse aus Kapitel 2 zu untersuchen.
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Chapter 1

The Hodgkin-Huxley Model

This chapter is divided into two sections. The first section is a mathematical summary of the
Hodgkin-Huxley model based on Izhikevich’s book [12]. Izhikevich [12] is more modern than
the pioneering article [8] of Hodgkin and Huxley describing the conductances responsible for
the generation of action potentials in the squid giant axon. This section hardly touches on
the biological and physiological background. In the second section the methods used for the
numerical simulations are provided.

1.1 Mathematical Description

1.1 Definition: (i) The functions αn, αm, αh, βn, βm : R→ R+ and βh : R→ (0, 1) defined
as

αn(V ) :=

{
10−V

100 (exp( 10−V
10 )−1)

, if V 6= 10

1
10 , else

, βn(V ) :=
1

8
exp

(
−V
80

)
,

αm(V ) :=

{
25−V

10 (exp( 25−V
10 )−1)

, if V 6= 25

1 , else
, βm(V ) := 4 exp

(
−V
18

)
,

αh(V ) :=
7

100
exp

(
−V
20

)
, βh(V ) :=

1

exp
(
30−V
10

)
+ 1

are called the rating functions.

(ii) Let
EK = −12, ENa = 120, EL = 10.6 (1.1)

be the equilibrium potentials, ḡK = 36, ḡNa = 120, ḡL = 0.3 be the maximum conduc-
tances and C = 1 be the membrane capacity. Further let

I : R+ → R, t 7→ I(t) (1.2)

be a given input function. The Hodgkin-Huxley model consists of a four-dimensional
system of first-order ordinary differential equations

C
dV

dt
= I(t)− ḡKn4 · (V − EK)− ḡNam3h · (V − ENa)− ḡL · (V − EL) (1.3)

dn

dt
= αn(V ) · (1− n)− βn(V ) ·n (1.4)

1
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dm

dt
= αm(V ) · (1−m)− βm(V ) ·m (1.5)

dh

dt
= αh(V ) · (1− h)− βh(V ) ·h. (1.6)

The process (V (t))t≥0 is called the membrane potential, the functions n(t), m(t) and
h(t) are called the gating variables.

(A)

V (mV)

αn

αm

αh

−100 −50 0 50 100

0

2

4

6

8

10

(B)

V (mV)

βn

βm

βh

−100 −50 0 50 100

0

1

2

3

4

5

Figure 1.1: Rating functions αn, αm, αh (A) and βn, βm, βh in (B) for V ∈ [−120, 120].

1.2 Proposition: The rating functions αn, αm, αh, βn, βm, βh are analytic, i.e. the functions
are locally given by a convergent power series. Especially the rating functions are infinitely
differentiable (see [3], 2.3 Definition on page 34 and 2.5 Proposition on page 35).

Proof Let

f(z) :=

{ z
exp(z)−1 , if z 6= 0

1 , else.

There is a neighborhood of 0, so that f can be expanded into a power series of z:

f(z) =

∞∑
k=0

Bk
zk

k!
,

where Bk are the Bernoulli numbers (see [14], page 289). To proof that f is analytic, consider

g(z) :=
1

f(z)
=

exp(z)− 1

z
.

Also g can be expanded into a power series of z in a neighborhood of 0:

g(z) =

∞∑
k=0

zk

(k + 1)!
.
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Further, g is absolutely convergent for all z ∈ R using d’Alembert’s ratio test (see [14], page
65):

lim
n→∞

∣∣∣∣∣∣
zn+2

(n+2)!

zn+1

(n+1)!

∣∣∣∣∣∣ = lim
n→∞

z

n+ 2
= 0 ∀z ∈ R.

Now conclusion 1 in [14] on page 287 is used: Let p(z) =
∞∑
n=0

an z
n with a positive radius

of convergence. If p(0) = a0 6= 0, then 1
p can be expanded into a power series of z in a

neighborhood of 0:

1

p(z)
=

∞∑
n=0

bn z
n.

In this case p = g and 1
p = f . Therefore f is analytic. Defining

ω1(V ) :=
10− V

10
and ω2(V ) :=

25− V
10

,

which are analytic for all V ∈ R, it follows that the compositions (see [3], 2.4 Chain Rule on
page 34)

α̃n = f ◦ ω1 and αm = f ◦ ω2

are analytic for all V ∈ R and finally

αn =
1

10
α̃n

is analytic for all V ∈ R.
βh is analytic for all V ∈ R, because the denominator exp(30−V10 ) + 1 is analytic for all V ∈ R.
In the end βn, βm and αh are analytic for all V ∈ R, because the exponential functions are
analytic for all V ∈ R. �

1.3 Remark: (i) The units for the membrane potential (mV), for the time (ms), for the
equilibrium potentials (mV), for the maximum conductances (mS/cm2), for the mem-
brane capacity (µF/cm2), and for the input function (µA/cm2) are not always mentioned
in the thesis. With regard to the biological point of view, the units are of minor impor-
tance for the mathematical approach.

(ii) The functions of 1.1 Definition (i) were established by Alan L. Hodgkin and Andrew F.
Huxley, and were published in their pioneering article [8]. To this day these functions
have not been changed in further examinations besides shifting by the resting potential
Vrest (V 7→ V + Vrest). Hodgkin and Huxley [8] named these functions the rating
constants, whereas in this thesis they are called the rating functions because they are
not constant. Since the rating functions correspond to the membrane potential shifted
by 65 mV, the resting potential is at Vrest ≈ 0. They describe the transition rates
between open and closed states of the channels, according to Izhikevich [12]. Hodgkin
and Huxley [8] determined that the squid axon carries three types of ionic currents:
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sodium (Na+) current, INa = ḡNam
3h · (V − ENa), with three activation gates and

one inactivation gate (the term m3h, where m and h are probabilities between 0 and 1
describing the state of Na+ activation and Na+ inactivation, respectively), potassium
(K+) current, IK = ḡKn

4 · (V − EK), with four activation gates (the term n4, where
n is a probability between 0 and 1 describing the state of K+ activation), and current
that Hodgkin and Huxley [8] named leakage current, IL = ḡL · (V −EL), which consists
of mostly chloride (Cl−) ions.

(iii) The values given in 1.1 Definition (ii) are the values according to Izhikevich [12]. Hodgkin
and Huxley [8] used different values for the equilibrium potentials:

EK = −12, ENa = 115, EL = 10.613. (1.7)

Note that the maximum conductances chosen by Hodgkin and Huxley (see [8], table 3)
are still up to date in further examinations.

(iv) Throughout the thesis equations (1.4), (1.5) and (1.6) are used in the standard form

dn

dt
=

n∞(V )− n
τn(V )

, (1.8)

dm

dt
=

m∞(V )−m
τm(V )

, (1.9)

dh

dt
=

h∞(V )− h
τh(V )

, (1.10)

where

τn =
1

αn + βn
, n∞ =

αn
αn + βn

,

τm =
1

αm + βm
, m∞ =

αm
αm + βm

,

τh =
1

αh + βh
, h∞ =

αh
αh + βh

.

τn, τm, τh are called time functions (Hodgkin and Huxley [8] called them the time
constants) and n∞, m∞, h∞ are called the steady-state (in)activation functions (see
figure 1.2). Due to 1.2 Proposition the time functions and steady-state (in)activation
functions are analytic.

(v) The equilibrium potentials can be calculated, and they are given by the Nernst equation
(see [12], equation (2.1)):

Eion =
RT

zF
ln

(
[ion]out
[ion]in

)
, (1.11)

where [ion]in and [ion]out are concentrations of the ions inside and outside the cell
respectively, R = 8, 315 mJ/Kmol is the universal gas constant, T is temperature in
Kelvin (K = 273.16 + ◦C), F = 96, 480 C/mol is Faraday’s constant and z is the valence
of the ion (z = 1 for Na+, K+ and z = −1 for Cl−). The equilibrium potentials (1.1)
can be obtained by using the concentrations of the ions in table 1.1 for T = 20 ◦C and
shifting the obtained Nernst equilibrium potentials by approximately 65 mV (see [12],
Chapter 2, exercise 1).
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Inside (mM) Outside (mM)

K+ 430 20
Na+ 50 440
Cl− 65 560

Table 1.1: These are the concentrations of the ions inside and outside the cell which Izhikevich
used to obtain the equilibrium potentials by the Nernst equation (1.11) (see [12], Chapter 2,
exercise 1).

Another way to obtain the equilibrium potentials is by experimenting, and comparing the
results to real data. Hodgkin and Huxley [8] did that for ENa and EK . The equilibrium
potential EL is the exact value chosen to make the total ionic current zero at the resting
potential Vrest = 0, i.e.

EL =
−ḡK ·n4∞(0) ·EK − ḡNa ·m3

∞(0) ·h∞(0) ·ENa
ḡL

.

This is EL = 10.5989 which is slightly different from the value of Hodgkin and Huxley
(EL = 10.613 in (1.7) or see [8], table 3).

(A)

V (mV)

n
∞

m
∞

h
∞

−50 0 50 100

0

0.2

0.4

0.6

0.8

1

(B)

V (mV)

τn

τm

τh

−50 0 50 100

0

2

4

6

8

Figure 1.2: Steady-state (in)activation functions n∞, m∞, h∞ (A) and time functions τn, τm,
τh (B) for V ∈ [−60, 120].

1.4 Example: For the input function

I(t) = 5 ·1[2,3](t) + 15 ·1[10,11](t), t ≥ 0,

a typical time course of an action potential in the Hodgkin-Huxley model can be observed in
figure 1.3 using the equilibrium potentials (1.1) (see [12], figure 2.15 using 0.5 ms pulses of
current). For t = 13.38 the membrane potential V (t) has a relative maximum of 107.0419.
Such a relative maximum is named an action potential or spike.
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Membrane potential

Time t (ms)

(m
V

)

0 2 4 6 8 10 12 14 16 18 20

EK

0

EL

50

100

ENa

V(t)

time of action potential
at t =  13.38

Gating variables

Time t (ms)

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1
n(t)
m(t)
h(t)

Conductances

Time t (ms)

(m
S

/c
m

2
)

0 2 4 6 8 10 12 14 16 18 20

0

10

20

30 gKn
4(t)

gNam
3(t)h(t)

Currents

Time t (ms)

(µ
A

/c
m

2
)

0 2 4 6 8 10 12 14 16 18 20

−750

−375

0

375

750

1125
IK(t)
INa(t)
IK(t) + INa(t) + IL(t)

Input function

Time t (ms)

(µ
A

/c
m

2
)

0 2 4 6 8 10 12 14 16 18 20

0

5

10
I(t)

Figure 1.3: Action potential in the Hodgkin-Huxley model
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1.5 Example: The Hodgkin-Huxley model was stimulated with 1 ms pulses of current. For

I(t) = a ·1[1,2](t), t ≥ 0,

the threshold to generate a spike is a = 6.41 when t = 7.93 (see figure 1.4). The period
during which the Hodgkin-Huxley system cannot initiate another spike is called the absolute
refractory. Further, the period during which the Hodgkin-Huxley system is able to generate
an action potential - if the applied current is strong enough - is called the relative refractory.
To analyze these periods a second action potential was generated varying the latency for the
initialization of a second pulse. For these latencies the minimum pulse amplitude ap can be
calculated which is needed to evoke a second spike (see figure 1.5):

I(t) = 6.41 ·1[1,2](t) + ap ·1[tp,tp+1](t), t ≥ 0,

where tp > 7.93. For ap = 6.41 the time tp = 22.02 is the minimum to induce a second spike at
t = 29.715. There is no second spike, if I(t) = 6.41 for t ∈ [1, 2] ∪ [22.01, 23.01], although the
initialization times differ only by 0.01 (see figure 1.6). Here, the minimum time to initialize a
second action potential is 14.09 ms after the first spike for pulses with the same amplitude of
6.41.
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Figure 1.4: Generation of the first action potential for a 1 ms pulse initialized at time t = 1
with amplitude a = 6.40 (A) and a = 6.41 (B). In (B) a spike can be observed at time
t = 7.93, whereas in (A) no action potential is generated, although the input amplitudes
differ only by 0.01.
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Figure 1.5: Refractory period for 1 ms pulses with an amplitude for the first pulse of 6.41. The
second pulse is initiated at t = tp > 7.93 with amplitude ap. In the right figure the curve for the
minimum amplitudes to generate a second spike can be observed. The approximate absolute
refractory is for tp ∈ (7.93, 12.5] and the approximate relative refractory is for tp ∈ (12.5,∞).
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Figure 1.6: Generation of the second action potential for 1 ms pulses with amplitude a = 6.41.
The second pulse is initiated at tp = 22.01 (A) and tp = 22.02 (B). In (B) the second spike
can be observed at time t = 29.715, whereas in (A) no second action potential is generated.
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1.2 Implementation

This section is a description of the implementations given in appendix A. During the work
on this thesis the code changed. At the beginning programming language R was used for the
implementation of the Hodgkin-Huxley equations. R is a free software environment for sta-
tistical computing and graphics (see http://www.r-project.org/). For numerical purposes
R is really slow. Therefore the simulations took a lot of time. Markus Tacke, a computer
expert of the University of Mainz, advised me to rewrite the code in programming language
C. Indeed, the optimized C code was more than 30 times faster than the code in R. In the C
code the calculated values are directly written into a .txt-file. After the simulations the text
files could be read and analyzed with R, e.g. to find the times when the membrane potential
(V (t))t≥0 has an action potential:

spikeindex <- intersect(which(diff(sign(diff(V)))==-2)+1,which(V>75));
spiketimes <- spikeindex*s;

where V is the data of the simulated membrane potential and s is the step size of the numerical
method. Here, an action potential is defined as an amplitude over 75 mV.
First, the formulae of 1.1 Definition (i) were implemented (see A.1 lines 5-79). For the imple-
mentation of equations (1.3), (1.8), (1.9) and (1.10) see A.1 lines 81-100. Note that for some
of the simulations both choices of the equilibrium potentials (1.1), (1.7) are used (see lines 94
and 96 in A.1).
Second, the main part was implemented. Depending on what type of input function (1.2) is
used, the main part slightly differs. The simulations always start at time t0 = 0 ms. The
initial value problem can be specified as follows:

y′ = f(t, y), y(t0) = y0,

where

y :=


V
n
m
h


and

f(t, y) :=


I(t)− 36n4(V + 12)− 120m3h(V − 120)− 0.3(V − 10.6)

(n∞(V )− n)/τn(V )
(m∞(V )−m)/τm(V )
(h∞(V )− h)/τh(V )

 ,

with initial conditions given as the steady state when the membrane potential is zero:

y(0) =


V (0)
n∞(0)
m∞(0)
h∞(0)

 =


0

4/(5 exp(1)− 1)
5/(8 exp(52)− 3)

(7 exp(3) + 7)/(7 exp(3) + 107)

 ≈


0
0.3176769
0.0529325
0.5961208

 . (1.12)

For the following two propositions see [2], page 157. In the first proposition the note in 1.3
Remark (ii) is proved that n, m and h are probabilities between 0 and 1.

1.6 Proposition: Under the initial conditions (1.12), the solutions n(t), m(t), h(t) satisfy
for all t ≥ 0 the inequalities

0 < n(t) < 1, 0 < m(t) < 1, 0 < h(t) < 1. (1.13)
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Proof Suppose n(t) = 0 for t > 0. Since n(0) > 0 and n is continuous (due to 1.2 Proposi-
tion), there must be a first such time t̃. Then n(t̃) = 0 and n(t) > 0 for t ∈ [0, t̃). It follows
that

dn

dt
(t̃) = αn(V (t̃)) · (1− n(t̃))− βn(V (t̃)) ·n(t̃)

= αn(V (t̃)) > 0,

because αn(V ) > 0. Therefore n is strictly increasing in t̃. That means for t ∈ (t̃−δ, t̃+δ)∩(0, t̃)
it follows that n(t) < n(t̃) = 0, a contradiction to n(t) > 0 for t ∈ [0, t̃). The proof for m(t)
and h(t) is equal.
Now suppose n(t) = 1 for t > 0. Since n(0) < 1 and n is continuous (due to 1.2 Proposition),
there must be a first such time t̄. Then n(t̄) = 1 and n(t) < 1 for t ∈ [0, t̄). It follows that

dn

dt
(t̄) = αn(V (t̄)) · (1− n(t̄))− βn(V (t̄)) ·n(t̄)

= −βn(V (t̄)) < 0,

because βn(V ) > 0. Therefore n is strictly decreasing in t̄. That means for t ∈ (t̄−δ, t̄+δ)∩(0, t̄)
it follows that n(t) > n(t̄) = 1, a contradiction to n(t) < 1 for t ∈ [0, t̄). The proof for m(t)
and h(t) is equal. �

1.7 Remark: Note that it follows by the definition of the steady state (in)activation functions
that

0 < n∞ < 1, 0 < m∞ < 1, 0 < h∞ < 1.

1.8 Proposition: Under the initial conditions (1.12), the solution V (t) satisfy for all t ≥ 0
the inequality

−12 < V (t) < 120,

as long as −6.78 < I(t) < 32.82.

Proof Suppose V (t) = −12 for t > 0. Since V (0) = 0 and V is continuous (due to 1.2
Proposition), there must be a first such time t̃. Then V (t̃) = −12 and V (t) > −12 for
t ∈ [0, t̃). It follows by (1.3) and (1.13) that

dV

dt
(t̃) = I(t̃)− 36n4(t̃) · (V (t̃) + 12)− 120m3(t̃)h(t̃) · (V (t̃)− 120)− 0.3 · (V (t̃)− 10.6)

> I(t̃) + 6.78.

If I(t) > −6.78, then dV
dt (t̃) > 0. Therefore V is strictly increasing in t̃. That means for

t ∈ (t̃− δ, t̃+ δ) ∩ (0, t̃) it follows that V (t) < V (t̃) = −12, a contradiction to V (t) > −12 for
t ∈ [0, t̃).
Now suppose V (t) = 120 for t > 0. Since V (0) = 0 and V is continuous (due to 1.2 Propo-
sition), there must be a first such time t̄. Then V (t̄) = 120 and V (t) < 120 for t ∈ [0, t̄). It
follows by (1.3) and (1.13) that

dV

dt
(t̄) = I(t̄)− 36n4(t̄) · (V (t̄) + 12)− 120m3(t̄)h(t̄) · (V (t̄)− 120)− 0.3 · (V (t̄)− 10.6)

< I(t̄)− 32.82.
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If I(t) < 32.82, then dV
dt (t̄) < 0. Therefore V is strictly decreasing in t̄. That means for

t ∈ (t̄ − δ, t̄ + δ) ∩ (0, t̄) it follows that V (t) > V (t̄) = 120, a contradiction to V (t) < 120 for
t ∈ [0, t̄). �

Hodgkin and Huxley [8] solved their equations numerically by the method of Hartree (see [8],
page 523), and showed that the action potentials, threshold for generating action potentials
and refractory period compared to their recorded data approximately match. For the numer-
ical calculations in chapter 2 the classical forth-order Runge-Kutta method was used. The
assumption for f being a sufficiently differentiable function is satisfied by the input functions
used in chapter 2. The formulae of the classical Runge-Kutta method are as follows (see [6],
chapter XIV, section 76):

y(t+ s) = y(t) +
s

6
(k1 + 2 · k2 + 2 · k3 + k4),

where

k1 = f(t, y(t)),

k2 = f(t+
s

2
, y(t) +

s

2
k1),

k3 = f(t+
s

2
, y(t) +

s

2
k2),

k4 = f(t+ s, y(t) + s · k3).

Since the input in chapter 3 is stochastic, the assumption for f being a sufficiently differentiable
function is no longer satisfied. Therefore, the Euler method is used for the simulations. The
formula of the Euler method is as follows (see [6], chapter XIV, section 74):

y(t+ s) = y(t) + s · f(t, y(t)).

The accuracy of the classical Runge-Kutta method is better than the accuracy of the Euler
method (O(s4) and O(s), respectively, where s is the step size, see [6], chapter XIV, section
74 and 76). The step size for both methods was set to be s = 0.005.
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Chapter 2

Phenomena of the Hodgkin-Huxley
Model

Due to the choice of which type of input function I (1.2) is used, the reaction of the Hodgkin-
Huxley equations are different. In this chapter three diverse types are analyzed.

2.1 Constant Input

Abstract

Rinzel and Miller [15] calculated an interval (I1, I2) for a deterministic constant input I(t),
where the solution of the Hodgkin-Huxley equations is periodic. In [15] the equilibrium po-
tentials (1.7) were used. The intention of this section is to approve the results in [15]. In
addition, such an interval will be calculated using the equilibrium potentials (1.1).

Introduction and Method

The Hodgkin-Huxley equations were analyzed for a constant input

I(t) ≡ a, a ≥ 0, t ≥ 0. (2.1)

For the examinations three different levels for the amplitude a are needed:

(i) afs, the amplitude level to generate a first spike,

(ii) alrs, the lowest amplitude level to generate regular spiking, and

(iii) ahrs, the highest amplitude level to generate a regular solution (later it is going to be
clear why the word “solution” is more appropriate than “spiking”).

Cole, Antosiewicz and Rabinowitz [2] calculated the value afs = 2.2302. Due to the so called
SEAC error (see [4]), this value was corrected to afs = 2.24097466. For numerical simulation
they used the classical Runge-Kutta method with a step size of s = 0.01. Compared to the
step size s = 0.005 for the simulations of A, the results should be more accurate. Rinzel and
Miller [15] and Hassard [7] analyzed that an input a ∈ (alrs, ahrs) = (6.2647, 154.53) leads to
a regular solution. Rinzel and Miller [15] used a rth order difference schema with a truncation
error O((2πN )r), where r = 5 and N ∈ {75, 200, 300, 400, 600}.

13
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To verify these results the code in appendix A.1 and A.2 was used for the simulations. The
numerical simulation was done for time t ∈ [0, 100] (see A.2, line 11) to analyse afs. Afterwards
the simulations were done for time t ∈ [0, 15000] for analyzing regular solutions of the Hodgkin-
Huxley equations in a neighborhood of alrs = 6.2647 and ahrs = 154.53. The upper boundary
ahrs plays a less significant role because of the unrealistically high magnitude of the input
value. The resulting interval should be slightly different because of the different numerical
methods and step sizes used in the simulations of A and the simulations of Rinzel and Miller
[15], Hassard [7]. The numerical simulations were done for both choices of the equilibrium
potentials (1.1) and (1.7).

Results

Results for Equilibrium Potentials (1.7)

For 0 ≤ a ≤ 2.23677297 no spikes could be observed in the simulations of A. Therefore
afs = 2.23677298, although the amplitudes differ only by 10−8 (see figure 2.1). As mentioned
before, the value slightly differs from the result afs = 2.24097466 in [4] because the simulation
of A has a higher accuracy.
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Figure 2.1: Simulation of constant input (2.1) using equilibrium potentials (1.7): I(t) =
2.23677297 on the left and I(t) = 2.23677298 on the right.
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Figure 2.2: Simulation with constant input (2.1) using equilibrium potentials (1.7): different
time scales for values I(t) = 6.2603 on the left and I(t) = 6.2604 on the right.
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Due to figure 2.2, my result of the simulation alrs = 6.2604 marginally differs from the result
alrs = 6.2647 of Rinzel and Miller [15]. It is observable that for I(t) = 6.2603 the Hodgkin-
Huxley system stops spiking, whereas it seems that the system repetitively generates action
potentials for I(t) = 6.2604 differing the input only by 10−3. The frequency of the action
potentials is approximately 50 Hz.
There are two reasons why it is not possible to calculate the highest amplitude level to generate
regular spiking. First, the level to declare whether the membrane potential has a spike or not
is arbitrary. Second, the higher the amplitude is in the interval (alrs, ahrs) = (6.2647, 154.53),
the lower the spike amplitude is (see figure 2.3).
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Figure 2.3: Simulation with constant input (2.1) using equilibrium potentials (1.7): I(t) = 20
on the left, I(t) = 60 in the middle and I(t) = 100 on the right.

It is possible to calculate ahrs, the highest amplitude level for which the membrane potential
is not constant (with an accuracy of 10−8). The simulations of A calculated ahrs = 154.82.
In figure 2.4 the membrane potential for ahrs = 154.53 calculated by Hassard [7] can be seen.
The membrane potential still has a regular solution.
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Figure 2.4: Simulation with constant input (2.1) using equilibrium potentials (1.7): I(t) =
154.53 on the left, I(t) = 154.54 in the middle and I(t) = 154.82 on the right.

Taking everything into account, the following can be determined:
The distinctive feature that the Hodgkin-Huxley equations have a regular solution for a con-
stant input (2.1) in the interval (alrs, ahrs) can be maintained.
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Results for Equilibrium Potentials (1.1)

The simulations of A calculated afs = 2.02775076 (see figure 2.5) to be the amplitude level
to generate a first spike. No action potentials could be observed for 0 ≤ a ≤ 2.02775075.
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Figure 2.5: Simulation of constant input (2.1) using equilibrium potentials (1.1): I(t) =
2.02775075 on the left and I(t) = 2.02775076 on the right. On the left no spike is generated,
whereas on the right an action potential can be observed.

Furthermore, for the lowest amplitude level to generate regular spiking alrs = 5.2653 was
calculated (see figure 2.6). The frequency generating action potentials is approximately 49
Hz.

Membrane potential for constant input 

 I(t) = 5.2652

Time t (ms)

V
(t

) 
(m

V
)

1000 1200 1400 1600 1800 2000

−20

0

20

40

60

80

100

120 constant input I(t) = 5.2652

Membrane potential for constant input 

 I(t) = 5.2653

Time t (ms)

V
(t

) 
(m

V
)

14000 14200 14400 14600 14800 15000

−20

0

20

40

60

80

100

120 constant input I(t) = 5.2653

Figure 2.6: Simulation with constant input (2.1) using equilibrium potentials (1.1): different
time scales for values I(t) = 5.2652 on the left and I(t) = 5.2653 on the right. On the left the
spike train stops, whereas on the right the train of action potentials is probably infinite.

It is visible in figure 2.7 for ahrs = 154.53 calculated by Hassard [7] that the membrane
potential still has a regular behavior and that ahrs = 163.64 was calculated for the highest
amplitude level to generate a regular solution.
Still, with Izhikevich’s equilibrium potentials (1.1) the results of Rinzel and Miller [15] could
be approved.
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Membrane potential for constant input 
 I(t) = 154.53

Time t (ms)

V
(t

) 
(m

V
)

14750 14800 14850 14900 14950 15000

15

20

25

30

Membrane potential for constant input 
 I(t) = 160

Time t (ms)

V
(t

) 
(m

V
)

14750 14800 14850 14900 14950 15000

15

20

25

30

Membrane potential for constant input 
 I(t) = 163.64

Time t (ms)

V
(t

) 
(m

V
)

14750 14800 14850 14900 14950 15000

22.598231

22.598232

Figure 2.7: Simulation with constant input (2.1) using equilibrium potentials (1.7): I(t) =
154.53 on the left, I(t) = 160 in the middle and I(t) = 163.64 on the right.

Comparing the calculated levels afs, alrs and ahrs for the equilibrium potentials (1.1) and
(1.7), it is noticeable that afs and alrs for (1.1) are lower than afs and alrs for (1.7), and ahrs
for (1.1) is higher than ahrs for (1.7).

2.2 Periodic Input

Abstract

In this section the phenomena described by Aihara, Matsumoto and Ikegaya [1] is explored.
Dependent on the amplitude of a deterministic periodic input there is an interval F = (fα, fβ)
of frequencies so that the input with frequency f ∈ F leads to a periodic solution of the
Hodgkin-Huxley equations. The aim of this section is to verify this statement with the sinu-
soidal input given in [5], and to analyze the resulting periodicities.

Introduction and Method

The Hodgkin-Huxley equations were analyzed by Fohlmeister, Adelman and Poppele [5] for a
periodic input

I(t) = I0(1 + sin(2π fs t)), t ≥ 0, (2.2)

with an amplitude I0 and a frequency fs in Hz (for implementation see A.3, lines 1-12). The
results showed that the sinusoidal input for 10 ≤ I0 ≤ 20 with frequency 50 ≤ fs ≤ 120 leads
to a so called phase-lock. Holden [9] described phase-lock as a ratio Rbio = M/N , where M
is the number of action potentials of the membrane potential V occurring in N periods of
the input I. Even larger values up to I0 = 88 and fs = 200 were analyzed but again the
unrealistically high magnitudes make these values less interesting (see section 2.1). With the
knowledge of section 2.1 it is more interesting to analyze the Hodgkin-Huxley equations for
a sinusoidal input with smaller amplitudes. Amplitude levels or frequency levels for which
the Hodgkin-Huxley equations generate the first one-to-one phase-lock (i.e. Rbio = 1) are not
provided in [5]. In [1] the Runge-Kutta-Gill method with double precision, in [5] a library
Runge-Kutta routine was used for numerical calculation.
The simulations were done with the code in A.1 and A.3. After simulations for t ∈ [0, 200]
to get an overview, which values make sense, the range for the parameters was set to 1 ≤
I0 ≤ 5 (A.3, lines 30-34) and 1 ≤ fs ≤ 150 (A.3, lines 35-39). For the simulations I0 was
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incremented by 0.1, fs was incremented by 1, and t ∈ [0, 2500] (see A.3, line 24). Just the data
for t ∈ [500, 2500] were analyzed because some phenomena at the beginning of the solution
occurred which seems to depend on the initial conditions (1.12). For t ≥ 500 the solution
was engaged. Besides Rbio another ratio Rmath = L/N is needed, where L is the number of
periods of the membrane potential V occurring in N periods of the input I. If the membrane
potential is not periodic and accordingly not regular, Rmath is set to be 0 (e.g. see 2.8). The
ratio Rmath makes it possible to see whether the periodicity of the input can be transfered to
the Hodgkin-Huxley equations or not.

Membrane potential with ratios Rbio = 0.172 and Rmath = 0
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Figure 2.8: Simulation with sinusoidal input (2.2): I0 = 2.1 and fs = 125. For these values a
non-periodic membrane potential V is generated. Therefore Rmath = 0, whereas Rbio = 0.172.

Unfortunately, it was not possible to extract periodic behavior of the membrane potential
data by calculation. I tried to work with discrete Fourier transformation and correlation but
the results were not satisfying. Therefore graphical devices were used to decide whether the
membrane potential is regular or not. Again this is dissatisfying because it is not possible to
define what is regular and what is not regular. But it is a possibility to extract approximate
values for the ratio Rmath. The six graphics at the bottom two rows in figure 2.8 and figure 2.9
are different types of graphical devices which makes it possible to talk about the periodicities
of the membrane potential:

(i) V -n plot : This is a projection from the four-dimensional space (V, n,m, h) onto the
V − n plane, where the flow is anticlockwise. A solid curve is a first indicator for
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periodic behavior of the Hodgkin-Huxley equations. Note that there is a equilibrium at
V
n
m
h
I

 =


0

n∞(0)
m∞(0)
h∞(0)
I(0)

 =


0

0.3176769
0.0529325
0.5961208

I0

 .

due to the initial conditions (1.12).

(ii) Superimpose of V for all periods of I: Here, the membrane potential V is divided,
appropriate to the period times of the input, in periods with distance 1000/fs and these
periods are superimposed in one plot. Laying all periods on top of another resulting in
an image like one period of the membrane potential, then it is a sign for periodicity.

(iii) V -V plot at period times pi, i = 1, 2, ...: The period times pi, i = 1, 2, ..., are the times
when the periods of the input function (2.2) start at the value I0. The distance between
two successive period times is 1000/fs, for fs being the frequency of the input. In this
plot the membrane potential V at two successive period times is plotted against each
other (V (pi) versus V (pi+1)). An indication for periodicity would be, if the graphic
shows solid points, e.g. just one point, if Rmath = 1, and two points, if Rmath = 1

2 and
so on.

(iv) V -V plot at period max times ti, i = 1, 2, ...: Let ti, i = 1, 2, ..., be the times t when the
input function (2.2) has a local maximum of I(t) = 2 · I0. Again the distance between
two successive period max times is 1000/fs, for fs being the frequency of the input.
In this plot the membrane potential V at two successive period max times is plotted
against each other (V (ti) versus V (ti+1)). The interpretation is the same as in (iii).

(v) V -V plot at spike times si, i = 1, 2, ...: Let si, i = 1, 2, ..., denote the times t when
the membrane potential V (t) spikes. As mentioned in section 1.2, a spike needs to have
an amplitude over 75, otherwise it is not declared as a spike. The choice of this level
is arbitrary. In this plot the membrane potential V at two successive spike times is
plotted against each other (V (si) versus V (si+1)). The graphics (iii) and (iv) are better
for analyzing periodicities because the times pi and ti are independent of the action
potentials.

(vi) Interspikeinterval : An interspikeinterval is the time between two successive action po-
tentials. This graphic is a simple plot of the successive occurring interspikeintervals as
points. If the graphic shows any patterns of points, the assumption can be made that
the membrane potential is periodic.

Another thing that was done was to calculate the fs local maxima of the membrane potential
and examine these maxima, if any patterns can be observed. This was sometimes helpful, too.
Throughout this section the equilibrium potentials (1.1) were used. The reason is that in [1]
a modified Hodgkin-Huxley model was used, and in [5] the input amplitudes I0 were to big
and it is not clear whether the original or a strongly adapted version of the Hodgkin-Huxley
model was used. Therefore it was not possible to compare my results to the results of [1] or
[5].
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Membrane potential with ratios Rbio = 1 and Rmath = 1
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Figure 2.9: Simulation with sinusoidal input (2.2): I0 = 3.5 and fs = 50. All analyzing
graphics let us assume that the solution is periodic with Rmath = 1 = Rbio.

Membrane potential with ratios Rbio = 0 and Rmath = 1
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Figure 2.10: Simulation with sinusoidal input (2.2): I0 = 1.1 and fs = 15. It is visible that
no action potentials are generated. Therefore Rbio = 0, whereas Rmath = 1.
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Results

For I0 = 1 and I0 = 1.1, t ≥ 500, no spikes could be observed for any frequency 1 ≤ fs ≤ 150.
But the membrane potential adopts the periodicity of the input function (2.2). In figure 2.10
all graphical devices let us assume this adoption. For the two amplitudes I0 = 1 and I0 = 1.1
the Hodgkin-Huxley equations behave periodically for all frequencies 1 ≤ fs ≤ 150. Here,
the big difference between Rbio and Rmath is that the biological ratio depends on the number
of spikes generated, but if Rbio = 0, it does not mean that the membrane potential is not
periodic. For example, in figure 2.10 the membrane potential is periodic with Rmath = 1.
The biological ratio can also be misinterpreted to analyze periodicities when the membrane
potential is not periodic. Still, it is possible to calculate the biological ratio, but since there is
no periodicity, it is not meaningful. For example, in figure 2.8 the membrane potential is not
periodic (Rmath = 0), even though Rbio = 0.172.

Rbio = M/N
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Figure 2.11: Ratios Rbio of the sinusoidal input (2.2) for 1 ≤ I0 ≤ 5 and 1 ≤ fs ≤ 150.
(A) shows the 2-dimensional image graphic of the ratios and (B) shows the ratios in a 3-
dimensional wireframe graphic.

Figure 2.11 shows the ratios Rbio of the simulations in a 2-dimensional image graphic (A) and
in a 3-dimensional wireframe graphic (B). Some of the ratios did not appear frequently and
not all solutions for the membrane potential show periodic behavior (see figure 2.8), therefore
these ratios were combined to an interval. I.e. in the interval (3/4, 1) are mainly the ratios
4/5, 7/8 and 9/10; in the interval (1, 2) are mainly the ratios 5/4, 3/2 and 5/3; in the intervals
(0, 1/5), [1/5, 1/3) and (1/3, 1/2) there are no frequently appearing, specific ratios, and talk-
ing about Rmath it will be in evidence that in these intervals the membrane potential is not
periodic. The red part in 2.11 shows that for small frequency ranges no action potentials are
generated. The lower the amplitude I0, the higher the frequency fs necessary to generate a
first phase lock. It is visible in figure 2.11 that after the appearance of the first phase lock for
the membrane potential the fraction Rbio decreases as the frequency fs increases, but remains
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a simple rational number over most of the frequency range.
Figure 2.12 shows the ratios Rmath of the simulations in a 2-dimensional image graphic (A)
and in a 3-dimensional wireframe graphic (B). If Rbio = 0, then the periodicity of sinusoidal
input is almost always transfered to the membrane potential as in figure 2.10, and therefore
Rmath = 1. Only in ranges, where a phase-lock is changed over to Rbio = 0, it can happen
that Rmath 6= 1. If Rbio ∈ [1/2, 1), it is observable that Rmath = 1− Rbio (see figure 2.13). If
Rbio = 2, then Rmath = 1 (see figure 2.14). For Rbio ∈ (1, 2) it is noticeable that almost always
Rmath ∈ {1/3, 1/2}. As mentioned before non periodic membrane potentials are generated for
the most part when Rbio ∈ (0, 1/5) ∪ [1/5, 1/3) ∪ (1/3, 1/2). There is a band of non-periodic
behavior starting at I0 = 1.8 for high frequencies fs ≥ 113 (see figure 2.8). An interesting
fact is that after this band of non-periodic behavior another phase-lock occurs starting at
I0 = 2.2 and high frequencies fs ≥ 143 (see figure 2.15). Due to the small step size used for
the simulations, the irregular behavior is not based on the error of numerical calculation.
Figure 2.16 shows the minimum interspikeintervals of the simulations in a 2-dimensional im-
age graphic (A) and in a 3-dimensional wireframe graphic (B). If less than two spikes are
generated, the minimum interspikeinterval was set to be 0. It is observable that depending on
the magnitude of the input amplitude I0, if the minimum interspikeinterval reaches a critical
value, then afterwards the minimum interspikeinterval raises. This critical value is the tran-
sition to the phase lock Rbio = 1/2.

Taking everything into account, the following can be determined:
The distinctive feature that the Hodgkin-Huxley equations have periodic solutions for a peri-
odic input (2.2) can be maintained for most of the amplitude and frequency range.

Rmath = L/N
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Figure 2.12: Ratios Rmath of the sinusoidal input (2.2) for 1 ≤ I0 ≤ 5 and 1 ≤ fs ≤ 150.
(A) shows the 2-dimensional image graphic of the ratios and (B) shows the ratios in a 3-
dimensional wireframe graphic. Note that “N.P.” in the legend stands for “non periodic”.
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Membrane potential with ratios Rbio = 2/3 and Rmath = 1/3
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Figure 2.13: Simulation with sinusoidal input (2.2): I0 = 1.5 and fs = 60. It is visible that
all graphical devices let us assume that Rbio = 2/3, whereas Rmath = 1/3.

Membrane potential with ratios Rbio = 2 and Rmath = 1
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Figure 2.14: Simulation with sinusoidal input (2.2): I0 = 4 and fs = 20. It is visible that all
graphical devices let us assume that Rbio = 2, whereas Rmath = 1.
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Membrane potential with ratios Rbio = 1/3 and Rmath = 1/3
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Time t (ms)

I(
t)

 (
µ

A
/c

m
2
)

500 1000 1500 2000 2500

0

1

2

3

4

5

V−n plot

V (mV)

n

0 20 40 60 80 100

0.4

0.5

0.6

0.7

Superimpose of V for all periods of I

Time (ms)

V
 (

m
V

)

0 2 4 6

0

20

40

60

80

100 pi

ti
si

V−V plot at period times pi i=1,2,...

V(pi)

V
(p

i+
1
)

−5 0 5 10

−5

0

5

10

V−V plot at period max times ti i=1,2,...

V(ti)

V
(t

i+
1
)

−8 −4 0 4

−8

−4

0

4

V−V plot at spike times si i=1,2,...

V(si)

V
(s

i+
1
)

105.94 106

105.94

106

Interspikeinterval

number of interspikeinterval

T
im

e
 (

m
s
)

0 10 20 30 40 50 60 70 80 90 100

19

19.5

20

20.5

21

Figure 2.15: Simulation with sinusoidal input (2.2): I0 = 2.5 and fs = 150. It is visible that
all graphical devices let us assume that Rbio = 1/3 and Rmath = 1/3.
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Figure 2.16: Minimum interspikeintervals of the sinusoidal input (2.2) for 1 ≤ I0 ≤ 5 and
1 ≤ fs ≤ 150. (A) shows the 2-dimensional image graphic of the minimum interspikeinterval
and (B) shows the minimum interspikeinterval in a 3-dimensional wireframe graphic.
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2.3 1 ms Pulse Input

Abstract

In the last section of this chapter the phenomena depicted by Izhikevich in [12] is analyzed.
Izhikevich [12] stated that depending on the input amplitude of brief pulses there are frequen-
cies f ∈ F , F = (fα, fβ), which lead to a periodic solution of the Hodgkin-Huxley equations.
Again the ambition is to confirm this statement, and to analyze the resulting periodicities as
it was done in section 2.2.

Introduction and Method

In [12] on page 5 Izhikevich described the behavior of the Hodgkin-Huxley equations for an
input of brief pulses. In this section a 1 ms pulse input

I(t) = 1(1,∞)(t)

f−1∑
m=0

a ·1[
m 1000

f
,m 1000

f
+1

](t mod 1000), t ≥ 0, (2.3)

with amplitude a and frequency f in Hz was analyzed (for implementation see A.4, lines
1-24). I(t) = 0 for 0 ≤ t ≤ 1 to avoid that the simulation starts with a pulse. Note that
the distance between the initialization times of the pulses is 1000/f . Izhikevich [12] noted
that even negative amplitudes a can lead to spiking. It is not possible to compare my results
because in [12] no ranges for the amplitudes and frequencies are mentioned.
The simulations were done with the code in A.1 and A.4. The first simulations were done to
find out which ranges for the amplitudes are reasonable. The range for the amplitudes was
set to 5.5 ≤ a ≤ 8 and −18.5 ≤ a ≤ −15.5 (A.4, lines 42-49), whereas the range of frequencies
1 ≤ f ≤ 150 is the same as in section 2.2 (A.4, lines 50-54). For the simulations a was
incremented by 0.1, f was incremented by 1, and t ∈ [0, 2500] (see A.4, line 36). Again only
the data for t ∈ [500, 2500] were analyzed to eliminate the behavior of the Hodgkin-Huxley
equations which is dependent on the initial conditions (1.12). For t ≥ 500 the solution was
engaged.

1 ms pulse input I(t) with amplitude a =  8  and frequency f =  50

Time t (ms)

I(
t)

 (
µA

/c
m

2 )

960 980 1000 1020 1040

0

2

4

6

8

Figure 2.17: 1 ms pulse input (2.2) for a = 8 and f = 50. It is visible that the distance between
the initialization of two successive pulses is 1000/f = 20. The red lines are the period times
of the pulse input.

Two different ratios are defined as it was done in section 2.2: a biological ratio Pbio = M/N ,
where M is the number of action potentials occurring in N periods of the input I, and a
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mathematical ratio Pmath = L/N , where L is the number of periods occurring for N periods
of the input I. To make clear how a period for the input (2.3) is defined see figure 2.17. If
the membrane potential is not periodic and accordingly not regular, Pmath is set to be 0 (e.g.
see 2.18).

Membrane potential with ratios Pbio = 0.2125 and Pmath = 0
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Figure 2.18: Simulation with 1 ms pulse input (2.2): a = 8 and f = 120. For these values a
non-periodic membrane potential is generated. Therefore Pmath = 0, whereas Pbio = 0.2125.

The following four graphical devices make it possible to talk about the periodicities of the
membrane potential:

(i) V -n plot : See section 2.2.

(ii) V -V plot at initialization times pi, i = 1, 2, ...: The initialization times pi, i = 1, 2, ...,
are the times when the pulses of the input function (2.3) start at the value a. In this
plot the membrane potential V at two successive initialization times is plotted against
each other (V (pi) versus V (pi+1)). An indication for periodicity would be, if the graphic
shows solid points, e.g. just one point, if Pmath = 1, and two points, if Pmath = 1

2 and
so on.

(iii) V -V plot at spike times si, i = 1, 2, ...: See section 2.2.

(iv) Interspikeinterval : See section 2.2.

Throughout this section the equilibrium potentials (1.1) were used.
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Membrane potential with ratios Pbio = 1 and Pmath = 1
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Figure 2.19: Simulation with 1 ms pulse input (2.2): a = −18 and f = 25. It is visible that
all graphical devices let us assume that Pbio = 1 and Pmath = 1.

Membrane potential with ratios Pbio = 0 and Pmath = 1
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Figure 2.20: Simulation with 1 ms pulse input (2.2): a = −16 and f = 10. It is visible that
all graphical devices let us assume that Pbio = 0, whereas Pmath = 1.
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Results

For a ∈ {−15.6,−15.5, 5.5, 5.6, 5.7}, t ≥ 500, no spikes could be observed for any frequency
1 ≤ fs ≤ 150. But like in section 2.2 the membrane potential adopts the frequency of the
input function (2.3) for all frequencies 1 ≤ fs ≤ 150. For amplitudes −15.5 < a < 5.5 the
membrane potential probably behaves equal. Again, the difference between Pbio and Pmath is
observable in figure 2.20. It is visible that the membrane potential is periodic, even though
Pbio = 0.
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Figure 2.21: Ratios Pbio of the 1 ms pulse input (2.3) for 5.5 ≤ a ≤ 8 (A), −18.5 ≤ a ≤ −15.5
(C) and 1 ≤ f ≤ 150. (A) and (C) show the 2-dimensional image graphic of the ratios,
whereas (B) and (D) show the ratios in a 3-dimensional wireframe graphic.
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Figure 2.21 shows the ratios Pbio of the simulations in 2-dimensional image graphics (A), (C)
and in 3-dimensional wireframe graphics (B), (D). The choice of ratios and combination of
ratios to intervals is the same as in section 2.2, besides adding the interval (1/2, 2/3), and
leaving out the interval (1, 2) and the ratio 2 because these ratios did not occur. If a is
positive and bigger than a certain threshold, then the membrane potential starts for f = 1
in a one-to-one phase-lock. In figure 2.21 (A), (B) it is observable that above this threshold
the fraction Pbio decreases as the frequency f increases, but remains a simple rational number
over most of the frequency range. If figure 2.21 (C), (D) would be mirrored and deformed
for 5.5 ≤ a ≤ 7 leaving out the part for 7 < a ≤ 8, then the resulting images would look like
figure 2.21 (C), (D). Therefore it is assumable that the behavior of the membrane potential
for negative pulses is similar to the behavior of the membrane potential for positive pulses.

Membrane potential with ratios Pbio = 3/4 and Pmath = 1/4

Time t (ms)

V
(t

) 
(m

V
)

500 1000 1500 2000 2500

0

20

40

60

80

100

1 ms pulse input I(t) for amplitude a = 7.8 and frequency f = 59

Time t (ms)

I(
t)

 (
µ

A
/c

m
2
)

500 1000 1500 2000 2500

0

2

4

6

8

V−n plot

V (mV)

n

0 20 40 60 80 100

0.3

0.5

0.7

V−V plot at initialization times pi i=1,2,...(red lines in input graphic)

V(pi)

V
(p

i+
1
)

−2.5 −2 −1.5 −1 −0.5 0

−2.5

−2

−1.5

−1

−0.5

0

V−V plot at spike times si i=1,2,...

V(si)

V
(s

i+
1
)

106.5 107 107.5 108

106.5

107

107.5

108

Interspikeinterval

number of interspikeinterval

T
im

e
 (

m
s
)

0 20 40 60 80

20

25

30

Figure 2.22: Simulation with 1 ms pulse input (2.2): a = 7.8 and f = 59. It is visible that all
graphical devices let us assume that Pbio = 3/4, whereas Pmath = 1/4.

Figure 2.23 shows the ratios Pmath of the simulations in 2-dimensional image graphics (A), (C)
and in 3-dimensional wireframe graphics (B), (D). As in section 2.2, if Pbio = 0, then almost
always the periodicity of the pulse input is transfered to the membrane potential as in figure
2.20, and therefore Pmath = 1. Again it is observable that Pmath = 1− Pbio, if Pbio ∈ [1/2, 1)
(see figure 2.22). As seen in section 2.2, non periodic membrane potentials are generated for
the most part when Pbio ∈ (0, 1/5) ∪ [1/5, 1/3) ∪ (1/3, 1/2) ∪ (1/2, 2/3) ∪ (3/4, 1). For a > 0
there is a band of non-periodic behavior starting at a = 7.1 for high frequencies f ≥ 108 (see
figure 2.18). Again it is observable that after this band of non-periodic behavior another phase-
lock occurs starting at a = 7.3 and high frequencies fs ≥ 139 (see figure 2.24). Compared
to section 2.2 there is a lot more non-periodic behavior. Due to the small step size used for
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the simulations, the irregular behavior is not based on the error of numerical calculation. The
reason is probably the smoothness of the input (2.3) compared to the smoothness of the input
(2.2). Maybe if the input is smoothed relative to the center of the pulse like a · exp(−1

2x
20),

the results look more like in section 2.2.
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Figure 2.23: Ratios Pmath of the 1 ms pulse input (2.3) for 5.5 ≤ a ≤ 8 (A),−18.5 ≤ a ≤ −15.5
(C) and 1 ≤ f ≤ 150. (A) and (C) show the 2-dimensional image graphic of the ratios,
whereas (B) and (D) show the ratios in a 3-dimensional wireframe graphic.

Taking everything into account, the following can be determined:
The distinctive feature that the Hodgkin-Huxley equations have periodic solutions for a pulse
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input (2.3) can be maintained for the most part of the amplitude and frequency range. Inter-
estingly even for negative amplitudes it is possible to generate action potentials. But compared
to the positive amplitude, the negative amplitude has to be much stronger.

Membrane potential with ratios Pbio = 1/3 and Pmath = 1/3
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Figure 2.24: Simulation with 1 ms pulse input (2.2): a = 7.6 and f = 150. It is visible that
all graphical devices let us assume that Pbio = 1/3 and Pmath = 1/3.
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Chapter 3

Hodgkin-Huxley Model with
Stochastic Input

3.1 Stochastic Differential Equations

This section is a short introduction without any proofs to stochastic differential equations as
part of the lecture “Stochastische Analysis” at the university of Mainz in 2011. For a similar
introduction see [13].

3.1 Definition: Let (Ω,A, P ) be a probability space, F = (Ft)t≥0 a filtration inA. (Ω,A,F, P )
is called a stochastic basis. A stochastic basis satisfies the usual hypotheses, if the following
conditions hold

(i) F is right continuous, i.e. for all t ≥ 0 holds

Ft = Ft+ =
⋂
r>t

Fr.

(ii) F is P-full, i.e. NP ⊂ F0, where NP is the system of all subsets of P -null sets in A.

3.2 Definition: Let (Ω,A,F, P ) be a stochastic basis, where F = (Ft)t≥0 is a right continu-
ous filtration in A. A d-dimensional, F-adapted and P -almost continuous processX = (Xt)t≥0
is called a (P ,F)-Brownian motion, if for all s < t

EP (ei ζ
T (Xt−Xs) | Fs) = e−

1
2
(t−s) |ζ|2 , ζ ∈ Rd.

3.3 Problem: Given a r-dimensional (P ,F)-Brownian motion

W = (Wt)t≥0 =

(W
(1)
t )t≥0
...

(W
(r)
t )t≥0


and measurable functions bi, σij : [0,∞)×Rd → R, 1 ≤ i ≤ d, 1 ≤ j ≤ r. Denote

b(t, x) =

b1(t, x)
...

bd(t, x)

 , σ(t, x) =

σ11(t, x) . . . σ1r(t, x)
...

...
σd1(t, x) . . . σdr(t, x)

 ,

33
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where a(t, x) = σ(t, x)σT (t, x) ∈ Rd×d. b(t, x) is called the drift coefficients, σ(t, x) is called
the volatility and a(t, x) is called the diffusion matrix.
Find a Rd-valued, P -almost continuous process X = (Xt)t≥0, which is a solution of the
stochastic differential equation

dXt = b(t,Xt) dt+ σ(t,Xt)dWt, X0 = ζ (3.1)

with

dX
(i)
t = bi(t,Xt) dt+

r∑
j=1

σij(t,Xt)dW
(j)
t , 1 ≤ i ≤ d.

3.4 Remark: Let W = (Wt)t≥0 be a r-dimensional Brownian motion with W0 = 0 and
ζ a Rd-valued random variable in (Ω,A′, P ). Further let W and ζ be P -independent with
µ := L(ζ|P ). A filtration F = (Ft)t≥0 can be developed by

Gt = σ(ζ) ∨ σ(Wr : 0 ≤ r ≤ t), t ≥ 0,

G∞ =
∨
t
Gt,

N = {N ⊂ Ω : there is a G ∈ G with P (G) = 0 and N ⊂ G},
Ft := σ(Gt,N ), t ≥ 0,

A := F∞ =
∨
t
Ft.

Then F satisfies the usual hypotheses and W is a F-Brownian motion. Denote F as FW,ζ .

3.5 Definition: Let (Ω,A,F, P ) be as in remark 3.4 with F = F
W,ζ . A strong solution with

initial value ζ for the stochastic differential equation (3.1) with respect to the Brownian motion
W and the initial value ζ is every F = F

W,ζ-adapted process X = (Xt)t≥0 with continuous
path, so that (i) and (ii) are satisfied:

(i) for all 1 ≤ i ≤ d, 1 ≤ j ≤ r

·∫
0

|bi(s,Xs)|ds,
·∫

0

σ2ij(s,Xs)ds

are local integrable.

(ii) except for P -indistinguishableness it holds

X = ζ +

·∫
0

b(s,Xs)ds+

·∫
0

σ(s,Xs)dWs.

3.6 Definition: The stochastic differential equation (3.1) for b and σ as in 3.3 has the prop-
erty of strong uniqueness, if for all choices of (Ω,A,F, P ), W and ζ as in remark 3.4 and for
all pairs of solutions X, X ′ of the stochastic differential equation (3.1) the following holds:

X0 = ζ = X ′0 =⇒ X = X ′ except for P -indistinguishableness.
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3.7 Definition: For b and σ as in 3.3 write

|b|2 =

d∑
i=1

|bi|2, ||σ||2 =

d∑
i=1

r∑
j=1

|σij |2

and consider the following assumptions:

(i) Local Lipschitz (l): for all n ∈ N there is a K = Kn < ∞, so that for all t ≥ 0 and x,
x′ ∈ ¯Bn(0) the following holds:

|b(t, x)− b(t, x′)|+ ||σ(t, x)− σ(t, x′)|| ≤ Kn|x− x′|.

(ii) Global Lipschitz (L): there is a K <∞, so that for all t ≥ 0 and x, x′ ∈ Rd the following
holds:

|b(t, x)− b(t, x′)|+ ||σ(t, x)− σ(t, x′)|| ≤ K|x− x′|.

(iii) Linear growth (G): for all t ≥ 0 and x ∈ Rd the following holds:

|b(t, x)|2 + ||σ(t, x)||2 ≤ K2(1 + |x|2).

The following two theorems go back to Itô.

3.8 Theorem: If b and σ satisfy the local Lipschitz assumption (l), then the stochastic dif-
ferential equation (3.1) has the property of strong uniqueness.

3.9 Theorem: Let (Ω,A,F, P ), W , ζ be as in remark 3.4 with E(|ζ|2) < ∞. If the global
Lipschitz assumption (L) and the linear growth assumption (G) holds, then the stochastic
differential equation (3.1) has a strong solution for the initial value ζ and the following holds:
for all T <∞ there is a C = C(T,K), so that E(|Xt|2) ≤ C(1 + E(|ζ|2))eCt, 0 ≤ t ≤ T .

3.2 Ornstein-Uhlenbeck Process Embedding

Before the Ornstein-Uhlenbeck process is defined, Itô’s formula (see [13], section 3.3) has to
be mentioned.

3.10 Theorem: Let f : R → R be a function of class C2 and let X = {Xt,Ft : 0 ≤ t < ∞}
be a continuous semimartingale (see [13], 3.1 Definition). Then P -a.s.,

f(Xt) = f(X0) +

t∫
0

f ′(Xs)dMs +

t∫
0

f ′(Xs)dBs +
1

2

t∫
0

f ′′(Xs)d〈M〉s, (3.2)

for 0 ≤ t <∞.

Generally, the Ornstein-Uhlenbeck process is defined as follows (see [11], page 44):

3.11 Example: For b(t, x) = θ(µ − x) and σ(t, x) ≡ σ, µ ∈ R, θ > 0, σ > 0 the unique
solution of

dXt = θ(µ−Xt) dt+ σdWt, X0 = ζ (3.3)
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is called the Ornstein-Uhlenbeck process. This parametrization of the Ornstein-Uhlenbeck
process is common in finance modeling, where σ is interpreted as the volatility, µ is the long-
run equilibrium value of the process, and θ is the speed of reversion. With Itô’s formula (3.2)
and choosing f(t, x) = xeθt the explicit solution of (3.3) can be obtained:
In fact,

ft(t, x) = θf(t, x), fx(t, x) = eθt, fxx(t, x) = 0.

Therefore,

Xte
θt = f(t,Xt)

(3.2)
= f(0, X0) +

t∫
0

θXse
θsds+

t∫
0

eθsdXs

(3.3)
= ζ +

t∫
0

θXse
θsds+

t∫
0

eθs(θ(µ−Xs)ds+ σdWs)

= ζ + θµ

t∫
0

eθsds+ σ

t∫
0

eθsdWs

= ζ + µ(eθt − 1) + σ

t∫
0

eθsdWs,

from which follows via division with eθt

Xt = µ+ (ζ − µ)e−θt + σ

t∫
0

e−θ(t−s)dWs.

Now consider an embedding of the input in an Ornstein-Uhlenbeck process:

3.12 Example: Let S( · ) be a T -periodic and piecewise continuous function, σ > 0 and
γ > 0. Consider the Ornstein-Uhlenbeck process

dXt = γ(S(t)−Xt) dt+ σdWt, t ≥ 0 (3.4)

with initial value x0. The Ornstein-Uhlenbeck process can be simulated using the transition
semigroup (Ps,t)0≤s<t≤∞ of X:

Ps,t(x, · ) = N

xe−γ(t−s) +

t−s∫
0

e−γνγS(t− ν)dν,
σ2

2γ

(
1 + e−2γ(t−s)

) (3.5)

(see [10], example 2.3).

3.13 Remark: Due to example 3.12, equation (1.3) of the Hodgkin-Huxley model has changed
as follows:

C
dV

dt
= Xt − ḡKn4 · (V − EK)− ḡNam3h · (V − ENa)− ḡL · (V − EL), (3.6)

where (Xt)t≥0 is an Ornstein-Uhlenbeck process

dXt = γ(I(t)−Xt) dt+ σdWt, t ≥ 0, (3.7)

and I(t) is one of the functions (2.1), (2.2) or (2.3).
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The simulations of the Ornstein-Uhlenbeck inputs (see B) were done with R, a free software
environment for statistical computing and graphics, and were saved in a .txt-file. After that
these files were imported during the simulations in C (see A.5, lines 50-61, 69, 87 and 103). The
simulation of the membrane potential is pretty much the same as before, except for adding the
parameters γ ∈ {0.1, 0.25, 0.5, 0.75, 0.9} (see A.5, lines 26-32), σ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}
(see A.5, lines 33-39) for the Ornstein-Uhlenbeck process and using the Euler method (see
A.5, lines 86-101) instead of the classical Runge-Kutta method. Depending on which type of
input is used, some changes have to be made:

(i) For the constant input simulation lines 19-25, 48, 49, 104 have to be commented out and
instead of lines 58-60 and 78, 79, lines 53, 54 and 73, 74 have to be used, respectively.

(ii) For the periodic input simulation lines 55-57 and 75-77 have to be used instead of lines
58-60 and 78, 79, respectively.

(iii) For the pulse input simulation lines 58-60 and 78, 79 have to be used.

Due to stochastic input the following graphical devices were used:

(i) Gating variables: This is a simple plot of the simulated gating variables n(t), m(t) and
h(t).

(ii) V -n plot : See section 2.2.

(iii) V -h plot : This plot is the same as (ii) using the gating variable h(t) instead of n(t).
The gating variable m(t) was not used because the behavior of m(t) is similar to the
membrane potential V .

3.2.1 Ornstein-Uhlenbeck Process for Constant Input

For the constant input of section 2.1

I(t) ≡ a, a ≥ 0, t ≥ 0,

the integral in equation (3.5) can be calculated:

t−s∫
0

e−γνγI(t− ν)dν = a(1− e−γ(t−s)).

The simulation is fast because of the simple structure of the integral (for implementation
see B.1). The two amplitude levels afs = 2.02775076 and alrs = 5.2653 calculated for the
equilibrium potentials (1.1) in chapter 2, section 2.1 were examined.
afs is the amplitude level to generate a first spike. Therefore 500 Ornstein-Uhlenbeck inputs
for each γ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}, σ ∈ {0.05, 0.25, 0.5, 0.75, 0.95} were simulated, and it
was counted how many times the membrane potential had at least one spike (see table 3.1). If
σ = 0.95 and γ ∈ {0.1, 0.25}, or σ = 0.75 and γ ∈ 0.1 the behavior of generating at least one
action potential is maintained for over 90% of 500 simulations. The lower σ and the higher
γ, the more it seems like it is a coin flip decision whether at least one action potential is
generated or not.
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HHH
HHHσ
γ 0.1 0.25 0.5 0.75 0.9

0.05 0.552 0.536 0.518 0.56 0.562
0.25 0.532 0.49 0.516 0.528 0.538
0.5 0.712 0.622 0.514 0.534 0.524
0.75 0.952 0.832 0.676 0.504 0.526
0.95 0.982 0.968 0.794 0.626 0.506

Table 3.1: In this table the relative frequencies are given, if at least one spike is generated for
500 constant inputs embedded in an Ornstein-Uhlenbeck process.

Surprisingly even if the input is above the level afs = 2.02775076 no action potentials are gen-
erated. For example, this behavior is observable in figure 3.1, where the Ornstein-Uhlenbeck
process (Xt)t≥0 with parameters σ = 0.95 and γ = 0.1 is above the level afs for approximately
t ∈ (10, 35).
alrs was defined as the lowest amplitude level to generate regular spiking. It seems like, that
if σ = 0.95 and γ ∈ {0.1, 0.25} the behavior of generating action potentials is maintained.
The only difference is that the membrane potential does not have a fixed frequency, and as
long as the Ornstein-Uhlenbeck input is below the level alrs = 5.2653 no action potentials are
generated (see figure 3.2).
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Figure 3.1: Simulation of constant input (2.1) embedded in an Ornstein-Uhlenbeck process
with parameters σ = 0.25 and γ = 0.1. It is observable that even though the input is above
afs = 2.02775076, no action potentials are generated
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Figure 3.2: Simulation of constant input (2.1) embedded in an Ornstein-Uhlenbeck process
with parameters σ = 0.95 and γ = 0.1.

Figure 3.3: Simulation of constant input (2.1) embedded in an Ornstein-Uhlenbeck process
with parameters σ = 0.05 and γ = 0.9.
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The opposite of this behavior can be observed for an Ornstein-Uhlenbeck input with param-
eters σ = 0.05 and γ ∈ {0.75, 0.9}. Perhaps due to the initial conditions (1.12), spikes are
generated just at the beginning of the simulation (see figure 3.3).

3.2.2 Ornstein-Uhlenbeck Process for Periodic Input

For the periodic input of section 2.2

I(t) = I0(1 + sin(2π fs t)), t ≥ 0,

the integral in equation (3.5) (see B.2, line 14) is calculated during the simulation (see B.2,
lines 26, 27). This makes it 4 times slower than the simulation of the Ornstein-Uhlenbeck
process for a constant input.
Different values for I0 and fs (see table 3.2) were examined, for which the deterministic
simulation shows a different behavior with regard to the ratios Rbio and Rmath.

XXXXXXXXXXXRatios
Parameter

I0 = 2.5
fs = 15

I0 = 2.5
fs = 50

I0 = 2.5
fs = 75

I0 = 2.5
fs = 100

I0 = 2.5
fs = 140

I0 = 2.5
fs = 150

Rbio 0 1 2/3 1/2 0.2464 1/3
Rmath 1 1 1/3 1/2 0 1/3

XXXXXXXXXXXRatios
Parameter

I0 = 5
fs = 5

I0 = 5
fs = 20

I0 = 5
fs = 50

I0 = 5
fs = 95

I0 = 5
fs = 125

Rbio 0 2 1 2/3 1/2
Rmath 1 1 1 1/3 1/2

Table 3.2: Ratios of the examined sinusoidal inputs (see figure 2.11 and figure 2.12).

Just some interesting graphics are viewed in this section.
In figure 3.4 there is an Ornstein-Uhlenbeck input with parameters σ = 0.5, γ = 0.5 that is
pretty similar to the embedded periodic input (2.2) with parameters I0 = 2.5 and fs = 50.
The resulting membrane potential maintains the spiking behavior compared to the membrane
potential simulated for the periodic input (2.2) with parameters I0 = 2.5, fs = 50. The only
thing varying is the amplitude of the spikes due to the stochastic input. This can be observed
in the V -n plot and the V -h plot. As a result, the behavior of a deterministic simulated
membrane potential can be maintained by choosing the right parameters for the Ornstein-
Uhlenbeck input.
In figure 3.5 there is an Ornstein-Uhlenbeck input with parameters σ = 0.75, γ = 0.25. Due
to γ = 0.25 the input is slower than the embedded periodic input (2.2) with parameters
I0 = 2.5 and fs = 15. Even though Rbio = 0 for the membrane potential simulated for the
deterministic periodic input (2.2) with parameters I0 = 2.5, fs = 15, the resulting membrane
potential generates action potentials in an irregular manner. As a result, the stochastic input
choosing the right parameters for the Ornstein-Uhlenbeck process can lead to spiking, whereas
the appropriate deterministic, periodic input is not able to do so.
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Figure 3.4: Simulation of sinusoidal input (2.2) with parameters I0 = 2.5 and fs = 50 embed-
ded in an Ornstein-Uhlenbeck process with parameters σ = 0.5 and γ = 0.5.

Figure 3.5: Simulation of sinusoidal input (2.2) with parameters I0 = 2.5 and fs = 15 embed-
ded in an Ornstein-Uhlenbeck process with parameters σ = 0.75 and γ = 0.25.
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In figure 3.6 there is an Ornstein-Uhlenbeck input with parameters σ = 0.05, γ = 0.25 for
an embedded periodic input (2.2) with parameters I0 = 2.5 and fs = 75. Rbio = 2/3 for
the membrane potential simulated for the deterministic periodic input (2.2) with parameters
I0 = 2.5, fs = 75. Due to the high frequency fs = 75 and γ = 0.25 the input is not
able to reach the amplitude of the embedded periodic input (2.2) with parameters I0 = 2.5
and fs = 75. Therefore the resulting membrane potential for the Ornstein-Uhlenbeck input
behaves like the appropriate membrane potential for the deterministic periodic input (2.2)
with parameters approximately I0 = 1.5, fs = 75 (Rbio = 1/2, see 2.11).

Figure 3.6: Simulation of sinusoidal input (2.2) with parameters I0 = 2.5 and fs = 75 embed-
ded in an Ornstein-Uhlenbeck process with parameters σ = 0.05 and γ = 0.25.

In figure 3.7 there is an Ornstein-Uhlenbeck input with parameters σ = 0.5, γ = 0.75 for an
embedded periodic input (2.2) with parameters I0 = 5 and fs = 5. Even though Rbio = 0 for
the membrane potential simulated for the deterministic periodic input (2.2) with parameters
I0 = 5, fs = 5, the resulting membrane potential always generates a small spike train at
the local maxima of the deterministic input in an irregular manner. In section 2.2 no ratios
Rbio > 2 could be observed, but figure 3.7 shows that it is possible to create membrane
potentials with Rbio > 2. As a result, the stochastic input choosing the right parameters for
the Ornstein-Uhlenbeck process can lead to high frequently spiking, whereas the appropriate
deterministic, periodic input is not able to do so.
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Figure 3.7: Simulation of sinusoidal input (2.2) with parameters I0 = 5 and fs = 5 embedded
in an Ornstein-Uhlenbeck process with parameters σ = 0.5 and γ = 0.75.

3.2.3 Ornstein-Uhlenbeck Process for 1 ms Pulse Input

For the 1 ms pulse input of section 2.3

I(t) = 1(1,∞)(t)

f−1∑
m=0

a ·1[
m 1000

f
,m 1000

f
+1

](t mod 1000), t ≥ 0,

the integral in equation (3.5) can be calculated (see B.3, lines 21, 22 and 26, 27), but if f is
big a lot of cases have to queried (see B.3, lines 23-25):

t−s∫
0

e−γνγI(t− ν)dν =

{
a(1− e−γ(t−s)), if I(t) = a,

0, else.

This makes it 1.5 times slower than the simulation of the Ornstein-Uhlenbeck process for a
periodic input. Different values for a and f (see table 3.3) were examined, for which the
deterministic simulation shows a different behavior with regard to the ratios Pbio and Pmath.
Just some interesting graphics are viewed in this section.



44 CHAPTER 3. HODGKIN-HUXLEY MODEL WITH STOCHASTIC INPUT

XXXXXXXXXXXRatios
Parameter

a = 8
f = 25

a = 8
f = 62

a = 8
f = 100

a = 8
f = 125

a = 8
f = 150

Pbio 1 2/3 1/2 0.124 1/3
Pmath 1 1/3 1/2 0 1/3

XXXXXXXXXXXRatios
Parameter

a = −18.5
f = 25

a = −18.5
f = 47

a = −18.5
f = 75

a = −18.5
f = 125

Pbio 1 0.6383 1/2 0
Pmath 1 0 1/2 1

Table 3.3: Ratios of the examined 1 ms pulse inputs (see figure 2.21 and figure 2.23)

In figure 3.8 there is an Ornstein-Uhlenbeck input with parameters σ = 0.05, γ = 0.75 for an
embedded pulse input (2.3) with parameters a = 8 and f = 62. Pbio = 2/3 for the membrane
potential simulated for the deterministic pulse input (2.3) with parameters a = 8, f = 62.
The membrane potential maintains the behavior of the deterministic pulse input (Pbio = 2/3),
even though the Ornstein-Uhlenbeck input is not able to reach the amplitude a = 8 of the
embedded pulse input (2.3). As a result, the behavior of a deterministic simulated membrane
potential can be maintained choosing the right parameters for the Ornstein-Uhlenbeck input.

Figure 3.8: Simulation of a 1 ms pulse input (2.3) with parameters a = 8 and fs = 62
embedded in an Ornstein-Uhlenbeck process with parameters σ = 0.05 and γ = 0.75.
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Figure 3.9: Simulation of a 1 ms pulse input (2.3) with parameters a = −18.5 and fs = 25
embedded in an Ornstein-Uhlenbeck process with parameters σ = 0.75 and γ = 0.75.

Figure 3.10: Simulation of a 1 ms pulse input (2.3) with parameters a = −18.5 and fs = 47
embedded in an Ornstein-Uhlenbeck process with parameters σ = 0.05 and γ = 0.9.
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In figure 3.9 there is an Ornstein-Uhlenbeck input with parameters σ = 0.75, γ = 0.75 for
an embedded pulse input (2.3) with parameters a = −18.5 and f = 25. Due to σ = 0.75
the membrane potential behaves irregular. Again, the amplitudes of the Ornstein-Uhlenbeck
input are lower than the amplitudes of the embedded pulse input (2.3), but leads to spiking.
In figure 3.10 there is an Ornstein-Uhlenbeck input with parameters σ = 0.05, γ = 0.9 for an
embedded pulse input (2.3) with parameters a = −18.5 and f = 47. The membrane potential
is irregular for the embedded pulse input (2.3) with parameters a = −18.5 and f = 47
(Pmath = 0). Still the membrane potential for the Ornstein-Uhlenbeck input is irregular,
but leaving out the single gabs, where no action potentials are generated, it looks like that
for every two pulses of the Ornstein-Uhlenbeck input a spike is generated. This is again an
example for the profitableness embedding signals into an stochastic process.



Appendix A

C Codes

A.1 Rating Constants and Hodgkin-Huxley Equations

1 # include <stdio.h>
2 # include <stdlib.h>
3 # include <math.h>
4

5 // Implementat ion o f t he s t eady s t a t e ( in ) a c t i v a t i o n f un c t i on in the HH model .
6 // Parameter :
7 // V : App l i ed cur r en t (mV)
8 // Return :
9 // Steady s t a t e ( in ) a c t i v a t i o n f un c t i on

10

11 double ninf(double V){
12 double an;
13 double bn;
14 i f (V == 10){
15 an = 1/10;
16 } else {
17 an = 0.01*(10 -V)/( exp((10-V)/10) -1);
18 }
19 bn = 0.125* exp(-V/80);
20 return(an/(an+bn));
21 }
22

23 double minf(double V){
24 double am;
25 double bm;
26 i f (V == 25){
27 am = 1;
28 } else {
29 am = 0.1*(25 -V)/( exp((25-V)/10) -1);
30 }
31 bm = 4*exp(-V/18);
32 return(am/(am+bm));
33 }
34

35 double hinf(double V){
36 double ah;
37 double bh;
38 ah = 0.07* exp(-V/20);
39 bh = 1/(1+ exp((30-V)/10));

47
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40 return(ah/(ah+bh));
41 }
42

43 // Implementat ion o f t he v o l t a g e−dependent t ime cons tan t in the HH model .
44 // Parameter :
45 // V : App l i ed cur r en t (mV)
46 // Return :
47 // Vol tage−dependent t ime cons tan t
48

49 double taun(double V){
50 double an;
51 double bn;
52 i f (V == 10){
53 an = 1/10;
54 } else {
55 an = 0.01*(10 -V)/( exp((10-V)/10) -1);
56 }
57 bn = 0.125* exp(-V/80);
58 return(1/(an+bn));
59 }
60

61 double taum(double V){
62 double am;
63 double bm;
64 i f (V == 25){
65 am = 1;
66 } else {
67 am = 0.1*(25 -V)/( exp((25-V)/10) -1);
68 }
69 bm = 4*exp(-V/18);
70 return(1/(am+bm));
71 }
72

73 double tauh(double V){
74 double ah;
75 double bh;
76 ah = 0.07* exp(-V/20);
77 bh = 1/(1+ exp((30-V)/10));
78 return(1/(ah+bh));
79 }
80

81 // Implementat ion o f t he f un c t i on " f ( t , y )" f o r t he c l a s s i c a l Runge−Kutta method .
82 // Parameter :
83 // y0 , y1 , y2 , y3 : Values o f t h e dependent v a r i a b l e s
84 // I : Ex t e rna l i n j e c t e d cur r en t (mA / cm^2)
85 // ∗v , ∗ n ,∗m,∗ h : Return v a l u e s
86 // 1 . en t ry −−> Eva lua t i on o f t he membrane p o t e n t i a l
87 // 2 . en t ry −−> Eva lua t i on o f t he f un c t i on n ( )
88 // 3 . en t ry −−> Eva lua t i on o f t he f un c t i on m()
89 // 4 . en t ry −−> Eva lua t i on o f t he f un c t i on h ( )
90

91 void f(double y0 , double y1, double y2 , double y3 , double I,
92 double *v, double *n, double *m, double *h){
93 // Using the v a l u e s f o r t he e q u i l i b r i um p o t e n t i a l s o f Hodgkin and Huxley
94 // ∗v = I − 36∗pow( y1 , 4 ) ∗ ( y0+12) − 120∗pow( y2 , 3 ) ∗ y3 ∗( y0−115) − 0 .3∗ ( y0 −10.613) ;
95 // Using the v a l u e s f o r t he e q u i l i b r i um p o t e n t i a l s o f I z h i k e v i c h
96 *v = I - 36*pow(y1 ,4)*( y0+12) - 120* pow(y2 ,3)*y3*(y0 -120) - 0.3*(y0 -10.6);
97 *n = (ninf(y0)-y1)/taun(y0);
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98 *m = (minf(y0)-y2)/taum(y0);
99 *h = (hinf(y0)-y3)/tauh(y0);

100 }

A.2 Runge-Kutta Method for Constant Input

1 // Implementat ion o f t he HH equa t i on s us ing the c l a s s i c a l Runge−Kutta method .
2 // Return in . t x t :
3 // Matrix : 1 . column −−> Membrane p o t e n t i a l
4 // 2 . column −−> Function n ( )
5 // 3 . column −−> Function m()
6 // 4 . column −−> Function h ( )
7

8 main(){
9 // S e t t i n g parameters :

10 double v0 = 0; // I n i t i a l i z a t i o n o f t he membrane p o t e n t i a l (mV)
11 double x_max = 100; // Fina l v a l u e o f t he independent v a r i a b l e ( t ime )
12 double s = 0.005; // Step s i z e between 0 and x_max
13 int N = x_max/s; // Number o f s t e p s
14 struct HH{
15 double v, n, m, h;
16 } V[5]; // I n i t i a l i z a t i o n o f t he dependent v a r i a b l e
17 double amp [11]; // I n i t i a l i z a t i o n o f t he amp l i tude v e c t o r
18 int j;
19 for (j=0;j<11;j++){
20 amp[j] = 2.0277507 + j*0.00000001;
21 }
22 char text [25]; // A s t r i n g to wr i t e in the f i l e name
23

24 // S t a r t o f t h e s imu l a t i o n s
25 int l;
26 for (l=0; l<11; l++){
27 // S e t t i n g i n i t i a l v a l u e s :
28 double x = 0; // S imu la t i on s t a r t s a t t ime 0
29 V[0].v = v0;
30 V[0].n = ninf(v0);
31 V[0].m = minf(v0);
32 V[0].h = hinf(v0);
33

34 // Writ ing the f i l e s
35 FILE *fp;
36 sprintf(text ,"C:/Amp =%.8 fRinzel.txt", amp[l]);
37 fp = fopen(text ,"w");
38 fprintf(fp ,"%.10f %.10f %.10f %.10f\n", V[0].v,V[0].n,V[0].m,V[0].h);
39

40 // Eva lua t i on l oop f o r the c l a s s i c a l Runge−Kutta method
41 int i=1;
42 while(i < N+2){
43 f(V[0].v, V[0].n, V[0].m, V[0].h, amp[l],
44 &V[1].v, &V[1].n, &V[1].m, &V[1].h);
45 f(V[0].v+s/2*V[1].v, V[0].n+s/2*V[1].n, V[0].m+s/2*V[1].m,
46 V[0].h+s/2*V[1].h, amp[l], &V[2].v, &V[2].n, &V[2].m, &V[2].h);
47 f(V[0].v+s/2*V[2].v, V[0].n+s/2*V[2].n, V[0].m+s/2*V[2].m,
48 V[0].h+s/2*V[2].h, amp[l], &V[3].v, &V[3].n, &V[3].m, &V[3].h);
49 f(V[0].v+s*V[3].v, V[0].n+s*V[3].n, V[0].m+s*V[3].m, V[0].h+s*V[3].h,
50 amp[l], &V[4].v, &V[4].n, &V[4].m, &V[4].h);
51

52 V[0].v = V[0].v+s*(V[1].v+2*(V[2].v+V[3].v)+V[4].v)/6;
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53 V[0].n = V[0].n+s*(V[1].n+2*(V[2].n+V[3].n)+V[4].n)/6;
54 V[0].m = V[0].m+s*(V[1].m+2*(V[2].m+V[3].m)+V[4].m)/6;
55 V[0].h = V[0].h+s*(V[1].h+2*(V[2].h+V[3].h)+V[4].h)/6;
56

57 x = round(x*1000)/1000+s;
58 fprintf(fp ,"%.10f %.10f %.10f %.10f\n", V[0].v,V[0].n,V[0].m,V[0].h);
59 i++;
60 }
61 fclose(fp);
62 }
63 }

A.3 Runge-Kutta Method for Periodic Input

1 // Implementat ion o f a s i n u s o i d a l i npu t
2 // Parameter :
3 // t : Time (ms)
4 // a : Ampli tude o f t he s i n u s o i d a l i npu t (mV)
5 // f s : Frequency o f t he s i n u s o i d a l i npu t (Hz)
6 //
7 // Return :
8 // S i nu s o i d a l i npu t a t t ime t
9

10 double I(double t, double a, int fs){
11 return(a+a*sin(M_PI*fs *0.002*t));
12 }
13

14 // Implementat ion o f t he HH equa t i on s us ing the c l a s s i c a l Runge−Kutta method .
15 // Return in . t x t :
16 // Matrix : 1 . column −−> Membrane p o t e n t i a l
17 // 2 . column −−> Function n ( )
18 // 3 . column −−> Function m()
19 // 4 . column −−> Function h ( )
20

21 main(){
22 // S e t t i n g parameters :
23 double v0 = 0; // I n i t i a l i z a t i o n o f t he membrane p o t e n t i a l (mV)
24 double x_max = 2500; // Fina l v a l u e o f t he independent v a r i a b l e ( t ime )
25 double s = 0.005; // Increment between 0 and x_max
26 int N = x_max/s; // Number o f s t e p s
27 struct HH{
28 double v, n, m, h;
29 } V[5]; // I n i t i a l i z a t i o n o f t he dependent v a r i a b l e
30 double amp [38]; // I n i t i a l i z a t i o n o f t he amp l i tude v e c t o r
31 int j;
32 for (j=0;j<39;j++){
33 amp[j] = 1.2 + j*0.1;
34 }
35 int fs [150]; // I n i t i a l i z a t i o n o f t he f r e quency v e c t o r
36 int k;
37 for (k=0;k <150;k++){
38 fs[k] = 1+k;
39 }
40 char text [25]; // A s t r i n g to wr i t e in the f i l e name
41

42 // S t a r t o f t h e s imu l a t i o n s
43 int l,p;
44 for (l=0; l<39; l++){
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45 for (p=0;p <150;p++){
46 // S e t t i n g i n i t i a l v a l u e s :
47 double x = 0; // S imu la t i on s t a r t s a t t ime 0
48 V[0].v = v0;
49 V[0].n = ninf(v0);
50 V[0].m = minf(v0);
51 V[0].h = hinf(v0);
52

53 // Writ ing the f i l e s
54 FILE *fp;
55 sprintf(text ,"C:/ FAP_Amp =%.1f,Freq=%i.txt", amp[l],fs[p]);
56 fp = fopen(text ,"w");
57 fprintf(fp ,"%.10f %.10f %.10f %.10f\n", V[0].v,V[0].n,V[0].m,V[0].h);
58

59 // Eva lua t i on l oop f o r the c l a s s i c a l Runge−Kutta method
60 int i=1;
61 while(i < N+2){
62 f(V[0].v, V[0].n, V[0].m, V[0].h,
63 I(x,amp[l],fs[p]), &V[1].v, &V[1].n, &V[1].m, &V[1].h);
64 f(V[0].v+s/2*V[1].v, V[0].n+s/2*V[1].n, V[0].m+s/2*V[1].m,
65 V[0].h+s/2*V[1].h, I(x+s/2,amp[l],fs[p]), &V[2].v, &V[2].n,
66 &V[2].m, &V[2].h);
67 f(V[0].v+s/2*V[2].v, V[0].n+s/2*V[2].n, V[0].m+s/2*V[2].m,
68 V[0].h+s/2*V[2].h, I(x+s/2,amp[l],fs[p]), &V[3].v, &V[3].n,
69 &V[3].m, &V[3].h);
70 f(V[0].v+s*V[3].v, V[0].n+s*V[3].n, V[0].m+s*V[3].m,
71 V[0].h+s*V[3].h, I(x+s,amp[l],fs[p]), &V[4].v, &V[4].n,
72 &V[4].m, &V[4].h);
73

74 V[0].v = V[0].v+s*(V[1].v+2*(V[2].v+V[3].v)+V[4].v)/6;
75 V[0].n = V[0].n+s*(V[1].n+2*(V[2].n+V[3].n)+V[4].n)/6;
76 V[0].m = V[0].m+s*(V[1].m+2*(V[2].m+V[3].m)+V[4].m)/6;
77 V[0].h = V[0].h+s*(V[1].h+2*(V[2].h+V[3].h)+V[4].h)/6;
78

79 x = round(x*1000)/1000+s;
80 fprintf(fp ,"%.10f %.10f %.10f %.10f\n",V[0].v,V[0].n,V[0].m,V[0].h);
81 i++;
82 }
83 fclose(fp);
84 }
85 }
86 }

A.4 Runge-Kutta Method for 1 ms Pulse Input

1 // Implementat ion o f a 1 ms pu l s e inpu t
2 // Parameter :
3 // t : Time (ms)
4 // a : Ampli tude o f t he pu l s e inpu t (mV)
5 // f : Frequency o f t he pu l s e inpu t (Hz)
6 //
7 // Return :
8 // 1 ms pu l s e inpu t a t t ime t <= 3000
9

10 double I(double t, double amp , double f){
11 int l;
12 for (l=1;l<f+1;l++){
13 i f (t >=(1000/f)*l && t <=(1000/f)*l+1){



52 APPENDIX A. C CODES

14 return(a);
15 }
16 i f (t >=1000+(1000/f)*l && t <=1000+(1000/f)*l+1){
17 return(a);
18 }
19 i f (t >=2000+(1000/f)*l && t <=2000+(1000/f)*l+1){
20 return(a);
21 }
22 }
23 return(0);
24 }
25

26 // Implementat ion o f t he HH equa t i on s us ing the c l a s s i c a l Runge−Kutta method .
27 // Return in . t x t :
28 // Matrix : 1 . column −−> Membrane p o t e n t i a l
29 // 2 . column −−> Function n ( )
30 // 3 . column −−> Function m()
31 // 4 . column −−> Function h ( )
32

33 main(){
34 // S e t t i n g parameters :
35 double v0 = 0; // I n i t i a l i z a t i o n o f t he membrane p o t e n t i a l (mV)
36 double x_max = 2500; // Fina l v a l u e o f t he independent v a r i a b l e ( t ime )
37 double s = 0.005; // Increment between 0 and x_max
38 int N = x_max/s; // Number o f s t e p s
39 struct HH{
40 double v, n, m, h;
41 } V[5]; // I n i t i a l i z a t i o n o f t he dependent v a r i a b l e
42 double amp [56]; // I n i t i a l i z a t i o n o f t he amp l i tude v e c t o r
43 int j;
44 for (j=0;j<21;j++){
45 amp[j] = 5.5 + j*0.1;
46 }
47 for (j=0;j<35;j++){
48 amp[j+21] = -20 + j*0.1;
49 }
50 int fs [150]; // I n i t i a l i z a t i o n o f t he f r e quency v e c t o r
51 int k;
52 for (k=0;k <150;k++){
53 fs[k] = 1+k;
54 }
55 char text [25]; // A s t r i n g to wr i t e in the f i l e name
56

57 // S t a r t o f t h e s imu l a t i o n s
58 int l,p;
59 for (l=0; l<56; l++){
60 for (p=0;p <150;p++){
61 // S e t t i n g i n i t i a l v a l u e s :
62 double x = 0; // S imu la t i on s t a r t s a t t ime 0
63 V[0].v = v0;
64 V[0].n = ninf(v0);
65 V[0].m = minf(v0);
66 V[0].h = hinf(v0);
67

68 // Writ ing the f i l e s
69 FILE *fp;
70 sprintf(text ,"C:/Amp =%.1f,Freq=%iIz.txt", amp[l],fs[p]);
71 fp = fopen(text ,"w");
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72 fprintf(fp ,"%.10f %.10f %.10f %.10f\n", V[0].v,V[0].n,V[0].m,V[0].h);
73

74 // Eva lua t i on l oop f o r the c l a s s i c a l Runge−Kutta method
75 int i=1;
76 while(i < N+2){
77 f(V[0].v, V[0].n, V[0].m, V[0].h, I(x,amp[l],fs[p]),
78 &V[1].v, &V[1].n, &V[1].m, &V[1].h);
79 f(V[0].v+s/2*V[1].v, V[0].n+s/2*V[1].n, V[0].m+s/2*V[1].m,
80 V[0].h+s/2*V[1].h, I(x+s/2,amp[l],fs[p]), &V[2].v, &V[2].n,
81 &V[2].m, &V[2].h);
82 f(V[0].v+s/2*V[2].v, V[0].n+s/2*V[2].n, V[0].m+s/2*V[2].m,
83 V[0].h+s/2*V[2].h, I(x+s/2,amp[l],fs[p]), &V[3].v, &V[3].n,
84 &V[3].m, &V[3].h);
85 f(V[0].v+s*V[3].v, V[0].n+s*V[3].n, V[0].m+s*V[3].m,
86 V[0].h+s*V[3].h, I(x+s,amp[l],fs[p]), &V[4].v, &V[4].n,
87 &V[4].m, &V[4].h);
88

89 V[0].v = V[0].v+s*(V[1].v+2*(V[2].v+V[3].v)+V[4].v)/6;
90 V[0].n = V[0].n+s*(V[1].n+2*(V[2].n+V[3].n)+V[4].n)/6;
91 V[0].m = V[0].m+s*(V[1].m+2*(V[2].m+V[3].m)+V[4].m)/6;
92 V[0].h = V[0].h+s*(V[1].h+2*(V[2].h+V[3].h)+V[4].h)/6;
93

94 x = round(x*1000)/1000+s;
95 fprintf(fp ,"%.10f %.10f %.10f %.10f\n",V[0].v,V[0].n,V[0].m,V[0].h);
96 i++;
97 }
98 fclose(fp);
99 }

100 }
101 }

A.5 Euler Method for Ornstein-Uhlenbeck Inputs

1 // Implementat ion o f t he Hodgkin−Huxley equa t i on us ing the Euler method
2 // Return in . t x t :
3 // Matrix : 1 . column −−> OU inpu t
4 // 2 . column −−> membrane p o t e n t i a l
5 // 3 . column −−> func t i on n ( )
6 // 4 . column −−> func t i on m()
7 // 5 . column −−> func t i on h ( )
8

9 main(){
10 // S e t t i n g parameters :
11 double v0 = 0; // I n i t i a l i z a t i o n o f t he membrane p o t e n t i a l (mV)
12 double x_max = 2500; // Fina l v a l u e o f t he independent v a r i a b l e ( t ime )
13 double s = 0.005; // Increment between 0 and x_max
14 int N = x_max/s; // Number o f s t e p s
15 struct HH{
16 double v, n, m, h;
17 } V[2]; // I n i t i a l i z a t i o n o f t he dependent v a r i a b l e
18 double amp = 8; // I n i t i a l i z a t i o n o f t he amp l i tude
19 int f_s [6]; // I n i t i a l i z a t i o n o f t he f r e quency v e c t o r
20 f_s [0] = 0;
21 f_s [1] = 25;
22 f_s [2] = 62;
23 f_s [3] = 100;
24 f_s [4] = 125;
25 f_s [5] = 150;
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26 double gamma [6]; // I n i t i a l i z a t i o n o f t he gamma ve c t o r
27 gamma [0] = 0;
28 gamma [1] = 0.1;
29 gamma [2] = 0.25;
30 gamma [3] = 0.5;
31 gamma [4] = 0.75;
32 gamma [5] = 0.9;
33 double sigma [6]; // I n i t i a l i z a t i o n o f t he sigma va l u e
34 sigma [0] = 0;
35 sigma [1] = 0.05;
36 sigma [2] = 0.25;
37 sigma [3] = 0.5;
38 sigma [4] = 0.75;
39 sigma [5] = 0.95;
40 char text [100]; // A s t r i n g to wr i t e in the f i l e name
41 char text1 [100]; // A s t r i n g to wr i t e in the f i l e name
42

43 // S t a r t o f t h e s imu l a t i o n s
44 int l;
45 for (l=1; l<6; l++){ // Sigma loop
46 int p;
47 for (p=1;p<6;p++){ // Gamma loop
48 int q;
49 for (q=1;q<6;q++){ // Frequency l oop
50 // read data o f OU Input ( Constant , Period or Pulse Input )
51 FILE *datei;
52 f loat test; // Parameter to w r i t e in the inpu t
53 // s p r i n t f ( t e x t 1 , "C:/OU_const_amp=%.4f , sigma=%.0f , gamma=%.0 f . t x t " ,
54 // amp , sigma [ l ] ∗100 ,gamma [ p ] ∗ 1 0 0 ) ;
55 // s p r i n t f ( t e x t 1 , "C:/
56 // OU_period_amp=%.1f , f_s=%i , sigma=%.0f , gamma=%.0 f . t x t " ,
57 // amp , f_s [ q ] , sigma [ l ] ∗100 ,gamma [ p ] ∗ 1 0 0 ) ;
58 sprintf(text1 ,"C:/
59 OU_pulse_amp =%.1f,f_s=%i,sigma =%.0f,gamma =%.0f.txt",
60 amp ,f_s[q],sigma[l]*100, gamma[p]*100);
61 datei = fopen(text1 ,"r");
62

63 // S e t t i n g i n i t i a l v a l u e s :
64 double x = 0; // S imu la t i on s t a r t s a t t ime 0
65 V[0].v = v0;
66 V[0].n = ninf(v0);
67 V[0].m = minf(v0);
68 V[0].h = hinf(v0);
69 fscanf(datei , "%f", &test);
70

71 // Writ ing the f i l e s ( Constant , Period or Pu lse Input )
72 FILE *fp;
73 // s p r i n t f ( t e x t , "C:/ Const /Amp=%.4f , sigma=%.0f , gamma=%.0 f . t x t " ,
74 // amp , sigma [ l ] ∗100 ,gamma [ p ] ∗ 1 0 0 ) ;
75 // s p r i n t f ( t e x t , "C:/ Period /
76 // Amp=%.0f , f_s=%i , sigma=%.0f , gamma=%.0 f . t x t " ,
77 // amp , f_s [ q ] , sigma [ l ] ∗100 ,gamma [ p ] ∗ 1 0 0 ) ;
78 sprintf(text ,"C:/ Pulse/Amp =%.0f,f_s=%i,sigma =%.0f,gamma =%.0f.txt",
79 amp ,f_s[q],sigma[l]*100, gamma[p]*100);
80 fp = fopen(text ,"w");
81 fprintf(fp ,"%f %.10f %.10f %.10f %.10f\n",test ,
82 V[0].v,V[0].n,V[0].m,V[0].h);
83
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84 // Eva lua t i on l oop f o r the Euler method
85 int i=1;
86 while(i < N+2){
87 fscanf(datei , "%f", &test);
88 f(V[0].v, V[0].n, V[0].m, V[0].h, test ,
89 &V[1].v, &V[1].n, &V[1].m, &V[1].h);
90

91 V[0].v = V[0].v+s*V[1].v;
92 V[0].n = V[0].n+s*V[1].n;
93 V[0].m = V[0].m+s*V[1].m;
94 V[0].h = V[0].h+s*V[1].h;
95

96 x = round(x*1000)/1000+s;
97 fprintf(fp ,"%f %.10f %.10f %.10f %.10f\n",
98 test ,V[0].v,V[0].n,V[0].m,V[0].h);
99

100 i++;
101 }
102 fclose(fp);
103 fclose(datei);
104 }
105 }
106 }
107 }
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Appendix B

R Codes

B.1 Ornstein-Uhlenbeck Process for Constant Input

1 ### Se t t i n g parameters
2 set.seed (12345); # Seed
3 s <- 0.005; # Step s i z e
4 x.max <- 100; # End o f t ime v e c t o r
5 time <- seq(0,x.max ,s); # Time v e c t o r
6

7 ### Parameters f o r OU proce s s
8 amp <- 2.02775076; # Amplitude o f t he cons t an t inpu t
9 gamma <- c(0.1 ,0.25 ,0.5 ,0.75 ,0.9); # Speed o f r e v e r s i o n

10 sigma <- c(0.05 ,0.25 ,0.5 ,0.75 ,0.95); # V o l a t i l i t y
11

12 ### Exact s imu l a t i on
13 X <- numeric(length(time )); # I n i t i a l i z a t i o n o f t he OU proce s s
14 X[1] <- amp;
15 for (k in 1: length(sigma )){
16 for (j in 1: length(gamma )){
17 for (i in 2: length(time )){
18 X[i] <- rnorm(1, X[i-1]* exp(-gamma[j]*s)+amp*(1-exp(-gamma[j]*s)),
19 sqrt(sigma[k]^2/(2* gamma[j])*(1 -exp(-2* gamma[j]*s))) )
20 }
21 ### Save the data
22 write.table(round(X,6), file = paste("C:/ OU_const_amp =",amp ,
23 ",sigma=",sigma[k]*100,", gamma=",gamma[j]*100 ,". txt",sep=""),
24 col.names=FALSE , row.names=FALSE );
25 }
26 }

B.2 Ornstein-Uhlenbeck Process for Periodic Input

1 ### Se t t i n g parameters
2 set.seed (12345); # Seed
3 s <- 0.005; # Step s i z e
4 x.max <- 2500; # End o f t ime v e c t o r
5 time <- seq(0,x.max ,s); # Time v e c t o r
6

7 ### Parameters f o r OU proce s s
8 i0 <- 2.5; # Amplitude o f t he p e r i o d i c inpu t
9 f_s <- c(15 ,50 ,75 ,100 ,140 ,150); # Frequency o f t he p e r i o d i c inpu t

10 gamma <- c(0.1 ,0.25 ,0.5 ,0.75 ,0.9); # Speed o f r e v e r s i o n

57
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11 sigma <- c(0.05 ,0.25 ,0.5 ,0.75 ,0.95); # V o l a t i l i t y
12

13 #### Function f o r the i n t e g r a t i o n
14 f2 <- function(x) return( exp(-g*x)*i0*(1+ sin(pi*(fs *0.002)*(t-x)))*g );
15

16 ### Exact s imu l a t i on
17 X <- numeric(length(time ));
18 X[1] <- i0;
19 for (m in 1: length(f_s)){
20 fs <- f_s[m];
21 for (k in 1: length(sigma )){
22 for (j in 1: length(gamma )){
23 g <- gamma[j];
24 for (i in 2: length(time )){
25 t <- time[i];
26 X[i] <- rnorm(1, X[i-1]* exp(-g*s)+ integrate(f2,lower=0,upper=s)$value ,
27 sqrt(sigma[k]^2/(2*g)*(1-exp(-2*g*s))) )
28 }
29

30 ### Save the data
31 write.table(round(X,6), file = paste("C:/ OU_period_amp =",i0 ,
32 ",f_s=",f_s[m],",sigma=",sigma[k]*100,
33 ",gamma=",gamma[j]*100 ,". txt",sep=""),
34 col.names=FALSE , row.names=FALSE );
35 }
36 }
37 }

B.3 Ornstein-Uhlenbeck Process for 1 ms Pulse Input

1 ### Se t t i n g parameters
2 set.seed (12345); # Seed
3 s <- 0.005; # Step s i z e
4 x.max <- 2500; # End o f t ime v e c t o r
5 time <- seq(0,x.max ,s); # Time v e c t o r
6

7 ### Parameters f o r OU proce s s
8 amp <- 8; # Amplitude o f t he pu l s e inpu t
9 f_s <- c(25 ,62 ,100 ,125 ,150); # Frequency o f t he pu l s e inpu t

10 gamma <- c(0.1 ,0.25 ,0.5 ,0.75 ,0.9); # Speed o f r e v e r s i o n
11 sigma <- c(0.05 ,0.25 ,0.5 ,0.75 ,0.95); # V o l a t i l i t y
12

13 ### Exact s imu l a t i on
14 X <- numeric(length(time ));
15 for (m in 1: length(f_s)){
16 for (k in 1: length(sigma )){
17 for (j in 1: length(gamma )){
18 g <- gamma[j];
19 for (i in 2: length(time )){
20 t <- time[i];
21 X[i] <- rnorm(1, X[i-1]* exp(-g*s),
22 sqrt(sigma[k]^2/(2*g)*(1-exp(-2*g*s))));
23 i f (t>1){
24 for (l in 0:( f_s[m] -1)){
25 i f ((t%%1000) >=((1000/ f_s[m])*l) && (t%%1000) <=(1000/ f_s[m])*l+1){
26 X[i] <- rnorm(1, X[i-1]* exp(-g*s)+amp*(1-exp(-g*s)),
27 sqrt(sigma[k]^2/(2*g)*(1-exp(-2*g*s))) )
28 }
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29 }
30 }
31 }
32

33 ### Save the data
34 write.table(round(X,6), file = paste("C:/ OU_pulse_amp =",amp ,
35 ",f_s=",f_s[m],",sigma=",sigma[k]*100,
36 ",gamma=",gamma[j]*100 ,". txt",sep=""),
37 col.names=FALSE , row.names=FALSE );
38 }
39 }
40 }
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