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Ich möchte diese Stelle nutzen um mich bei allen Personen zu bedanken,
die am gelingen meiner Arbeit beteiligt waren. Die vorliegende Arbeit wäre
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bracht haben danken. Ich hatte eine sehr schöne Zeit mit Euch und habe
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Chapter 1

Introduction

In the last decades the numerical simulation of physical phenomena has
permanently advanced into the development process in engineering. It is
used to give an a priori insight into the behaviour of components, thus
assisting the prototyping process. Furthermore an optimization for certain
goals can be conducted in advance of manufacturing. For various of today’s
engineering applications the knowledge of the behaviour of one independent
physical field is insu�cient. This is especially valid in the examination of
unsteady processes where a dynamic response of two or more components
is present. In the case of fluids interacting with structures this includes
components in wind energy plants as e.g. in Bazilevs et al. [3], aeronautics
as e.g. Liu et al. [42], or turbo machinery as e.g. in Du [17]. Another
recent field of application is medicine. The modelling of aneurysms as e.g.
in Razzaq et al. [48] or Bazilevs et al. [4] is rendered possible through
numerical simulation. For these kinds of applications the numerical field of
Fluid-Structure Interaction (FSI) has been established. Individual solvers
for fluid and structure problems, or monolithic approaches containing both,
have been developed that are capable of simulating the respective domain
with unsteady boundary conditions as a result of their counterpart. The
numerical simulation of FSI is an ongoing challenge and several research
groups are working on this topic.

1.1 Motivation

One of the main challenges in the field of FSI arises from the vast amount
of computational resources needed to carry out a coupled simulation. Con-
ducting a physically relevant simulation of a structure or fluid domain alone
is already a demanding task given the computing capacity available today.
In FSI the required resources grow even higher, thus more e↵ective solution
methods are necessary. Using sophisticated solvers is one way to approach
this, which has been and still is used. The sparsity of the resulting system
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2 CHAPTER 1. INTRODUCTION

matrices can be greatly exploited and fast nonlinear solvers additionally ac-
celerate the computation. Another idea is to exploit the structure of the FSI
problem itself. This can be achieved by di↵erent approaches. On the one
hand the FSI problem can be regarded as two individual problems on two
disjoint domains. These problems are coupled by their boundary conditions
but solved by individual solvers. On the other hand the FSI problem can
be stated as one continuous problem over the entire FSI domain and dis-
cretized by one grid covering the di↵erent physical fields. Thereby e�cient
pre-conditioners can be applied.

1.2 State of the Art

The latter approach described in the last section, which employs the contin-
uous problem, is called the monolithic approach. The two physical fields for
fluid and structure are virtually extended to the entire FSI domain and a
step function is introduced to determine which field is active in which area.
Due to the common discretization and globally applied solvers this approach
is numerically very robust. But, as a drawback, because of the common dis-
cretization and analytical description low flexibility in the choice of solution
algorithms and grids is given. The monolithic approach is the basis to the
implementations in the works of e.g. Dunne [18], Hron and Turek [34], Wal-
horn et al. [73], Heil [30], and Matthies and Steindorf [43].

The former approach described in the last section is called the partitioned
approach. The physical fields are restricted to their respective domains
and discretization as well as their solution is carried out individually. Only
the boundary conditions at the FSI interface are exchanged at every time
step. This approach remains highly adaptable as the fluid and the struc-
ture part can be solved by established solvers and the individual grids enable
discretizations fitted to the physical field. Due to its iterative nature this ap-
proach is numerically challenging. Under-relaxation of the values that cross
the FSI boundary is necessary to ensure convergence. As the partitioned ap-
proach su↵ers from stability issues and severe time step restrictions, a more
sophisticated approach, named the implicit partitioned approach, has been
developed. Built from the partitioned approach it inherits its flexibility but
gains more stability by several implicit coupling steps within a time step.
The implicit partitioned approach is the basis to the implementations in the
works of e.g. Sternel et al. [59], Schäfer et al. [55], van Brummelen et al.
[70], Sieber [58], Vierendeels et al. [71], and Gerstenberger and Wall [26].
As both approaches bring along their individual advantages and disadvan-
tages (see e.g. Degroote et al. [14] or Michler et al. [44]) the goal of this work
is specified by combining the advantages, while avoiding the drawbacks.
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1.3 Goal of this Work
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Figure 1.1: E↵ect of max. number of fluid V-cycles in each FSI iteration on
the overall CPU time of the coupled simulation

The main subject of this work is to create an approach, which is located
in between the monolithic and the implicit partitioned one. One method to
improve the convergence speed of iterative solvers is the use of a multigrid
method. Therefore the goal of this thesis is the implementation of a global
multigrid method in an FSI approach.
As low-frequency errors are reduced substantially faster on coarser grids
than on fine ones and solver iterations on coarser grids are per se faster,
multigrid methods have a noticeable influence on computing time. The
multigrid methods as introduced by Brandt in the early 1970’s [7] are up to
the present a popular choice in the solution of large sparse system. As they
imply linear run-time, they remain even by today’s standards a competitive
solver.
Using the implicit partitioned approach as the basis for the implementation,
the multigrid coupling algorithm is introduced, which is an enhancement
towards a monolithic approach while preserving the flexibility of two inde-
pendent codes. The geometric multigrid method is applied to the coupled
problem, and the solution procedure from the implicit partitioned approach
is used as a smoother, i.e. is executed on every grid level. By this close cou-
pling on multiple grids not only the error of the individual fields is reduced
by the multigrid method, but also the error that arises from the coupling
itself is directly a↵ected in the multigrid computation. In other words, a
great part of it is eliminated during coarse grid iterations, thus reducing
computation time.
This multigrid coupling approach introduces a possibility to exploit the ad-
vantages of multigrid computation to a FSI coupling framework. Further-
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more, due to the comparatively high number of exchanges within a time-step,
it combines the robustness of the monolithic approach with the flexibility
of the partitioned approach. Figure 1.1 shows a motivation for the use of
multigrid coupling. The average CPU time for one time step plotted over
the number of V-cycles in the fluid solver until coupling. The diagram repre-
sents the computations of an implicit partitioned coupling approach with a
multigrid fluid solver. As the maximum number of V-cycles per coupling it-
eration decreases, the CPU time also decreases, reaching its minimum value
at 1 V-cycle. The next member in the sequence of decreasing number of
V-cycles per FSI iteration is the multigrid coupling approach with multiple
FSI iterations per V-cycle.

As a second strategy for the acceleration of partitioned coupling approaches
the extrapolation of force is presented. Extrapolation techniques have shown
their influence on computing time in all kinds of numerical applications. In
this work the extrapolation is applied in between time steps in order to cre-
ate a more promising initial state for the following coupled simulation step.
The use of temporal interpolation to predict an initial condition for the com-
putations in a new time step in FSI include the works of Breuer and Münsch
[9, 10], Schäfer et al. [56], or Piperno [46]. All these approaches display their
distinct properties in the computation of the unknown, but have the variable
they are applied to in common. All of the above works use the displacement
as variable for the extrapolation. In this work the extrapolation is applied
to the velocity and pressure variables in the fluid domain or the resulting
force at the FSI interface, respectively. This is compared with applying the
same extrapolation functions to the displacement. A numerical test case is
performed to show the advantages that follow from the extrapolation of the
fluid variables.

The chapters below are organized as follows. The second chapter gives the
analytical description of the FSI coupling. The partial di↵erential equations
for the fluid and structure parts are defined on a moving domain while in-
corporating the coupling. In the third chapter the numerical methods used
in this work are introduced. Special attention is given to the discretization
on the moving fluid domain and the nonlinear multigrid method. In the
fourth chapter the multigrid coupling approach for FSI problems is intro-
duced. The theoretical considerations are described and the implementation
is validated by a series of test cases. In the fifth chapter the displacement
and force extrapolations are introduced to accelerate FSI computations. In
the sixth chapter the resulting methods of this work are applied to a nu-
merical benchmark in order to compare their performance. And finally, in
the seventh chapter concluding remarks and an outlook for further work is
given.



Chapter 2

Conservation Principles

In this chapter the coupled FSI system as used in this work is introduced.
First, the Arbitrary Lagrangian-Eulerian (ALE) approach, which defines the
framework used in this work, is introduced. Then, based on the framework
the Navier Stokes equation for incompressible Newtonian flow on moving
grids is defined. Next, the elasticity equation for structure computation
with the St. Venant Kirchho↵ material law is defined. Finally, the coupled
problem containing the FSI boundary conditions as implemented in this
work is stated.

2.1 Arbitrary Lagrangian Eulerian Formulation for
Fluid-Structure Interaction

In this section the ALE formulation is introduced. First the Lagrangian, Eu-
lerian and ALE frameworks are presented, then the conservation equations
in the ALE framework are derived directly from the Reynolds Transport
Theorem.
One of the first records on the ALE formulation was by Hirt, Amsden and
Cook [33], which was embedded in the finite di↵erence context. The theo-
retical framework for an ALE formulation for incompressible viscous flow in
a weighted residual context was first introduced by Hughes et al. [36].

The Lagrangian framework or material framework is described through a
coordinate system, that is attached to the underlying material. By its na-
ture this excludes continuous description of fluid problems of being examined
in a Lagrangian framework, as very large displacements of mass and swirls
cannot be mapped.
The Eulerian Framework or spatial framework is defined by a spatially con-
stant coordinate system. Fluid problems are usually solved in a Eulerian
framework, because large and nonlinear displacements can be treated eas-
ily. For a structure problem this framework is not the common choice, as

5



6 CHAPTER 2. CONSERVATION PRINCIPLES

additional convection terms arise from the material time derivative.
The ALE Framework is an approach to combine the advantages of both
of the aforementioned frameworks and give a unified description of coupled
problems. Especially in the case of FSI such a description cannot be avoided.
In the ALE formulation a third arbitrarily defined coordinate system is in-
troduced which can either be attached to the structure or to the fluid mesh
or any other description.
In FSI environments two main paths have been followed. On the one hand
there is the Interface Capturing method as in Dunne [18] or Hron [34]. In
this approach the ALE coordinate system coincides with the Eulerian coor-
dinate system. On the other hand there is the Interface Tracking method,
see Donea [16] or Sternel [59]. In this approach the coordinate system follows
the interface and for the structure domain coincides with the Lagrangian co-
ordinate system.
In the following the variables with respect to the Lagrangian framework are
denoted by X, Eulerian by x and ALE by �.

2.2 Fluid

In the following, the ALE formulation of the Navier-Stokes equation is
derived from the mass, momentum and rotational momentum conserva-
tion. The conservation equations are applied to a time dependent volume
V = V (t) with closed surface @V . The abbreviation |(.) indicates the frame-
work in which the derivative is applied. For details refer to Appendix A.

2.2.1 Conservation of Mass

Mass conservation states that within the computational domain no mass is
produced or lost. Consequentially, for density ⇢ and infinitesimal volume
dV and Area dA this states

d

dt

����
X

Z

V

⇢ dV = 0 . (2.1)

Applying the Reynolds transport theorem to (2.1), we obtain the mass con-
servation in Eulerian description (2.2). The right hand side consists of the
temporal variation of density integrated over the volume and the mass flux
through the boundary:

d

dt

����
X

Z

V

⇢ dV =
Z

V

@⇢

@t

����
x

dV +
Z

@V

⇢v n dA . (2.2)

The velocity in the second right hand side term is called the material velocity
in Eulerian framework. Applying the same theorem to an arbitrary volume
in the ALE framework yields

d

dt

����
�

Z

V

⇢ dV =
Z

V

@⇢

@t

����
x

dV +
Z

@V

⇢v

g

n dA (2.3)
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in which v

g is the velocity of the ALE referential domain. Substituting the
first term on the right hand side by the negative second term on the right
hand side of (2.2) results in

d

dt

����
�

Z

V

⇢ dV +
Z

@V

⇢(v � v

g) n dA = 0 . (2.4)

Applying equation (A.9) results in the mass conservation in the ALE frame-
work

@

@t

Z

V

⇢ dV +
Z

@V

⇢(v � v

g) n dA = 0 . (2.5)

This is a generalization of the Lagrangian and the Eulerian case. If � is set
to X, the ALE velocity is equal to the material velocity, thus the convective
term vanishes. If � is set to x, the ALE velocity vanishes, and the Eulerian
formulation is produced.

2.2.2 Space Conservation Law

Equation (2.5) always has to be fulfilled for a non-moving fluid in every time
step. Demirdzic [15] showed, that this is a nontrivial task. In order to check
this property the so called Space Conservation Law (SCL) or Geometric
Conservation Law as first stated by Thomas and Lombard [67] is introduced:

@

@t

Z

V

⇢ dV =
Z

@V

⇢v

g

n dA (2.6)

which is (2.5) in the case of v = 0. If the SCL is fulfilled, (2.5) reduces to
the same form as in the Eulerian case:

Z

@V

⇢v n dA = 0. (2.7)

From this follows that for the ALE description of the mass conservation it
is su�cient to satisfy the mass conservation in Eulerian description (2.7) if
the SCL is fulfilled.

2.2.3 Conservation of Momentum

The conservation of momentum originates directly from Newton’s second law
of motion. The equality of mass times acceleration and forces in Eulerian
description yields:

d

dt

����
X

Z

V

⇢v dV = F (2.8)

in which the net force F is split up into forces acting on the surface, or
stresses, and body forces

F =
Z

@V

�n dA +
Z

V

⇢f dV (2.9)
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with � the so called Cauchy stress tensor and f the vector of body forces.
Applying the same transformation as in section 2.2.1 to the left hand side
of 2.8 and substituting F as in equation (2.9) results in the ALE description
of momentum conservation

@

@t

Z

V

⇢v dV +
Z

@V

⇢(v � v

g)vn dA =
Z

@V

�n dA +
Z

V

⇢f dV (2.10)

2.2.4 Cauchy Stress Tensor

The conservation of angular momentum states, that the time derivative of
angular momentum is equal to the applied angular momentum arising from
surface and body forces. In Eulerian description this reads

d

dt

����
X

Z

V

x ⇥ ⇢v dV =
Z

V

x ⇥ ⇢f dV +
Z

@V

x ⇥ �n dA (2.11)

Using this and the Eulerian description of momentum conservation one can
conlude, that the stress tensor has to be symmetric � = �

T . Furthermore,
by the definition of viscosity (see Bird et al. [6]), it must be assumed that
� is linear dependent on the velocity gradient. Adding the absence of di-
vergence, which follows from equation (2.7), the Cauchy stress tensor for
incompressible Newtonian fluids results in

� = µ

f

⇣
rv + rv

T

⌘
� pI (2.12)

in which µ

f

represents the dynamic viscosity and I the unity matrix.

2.3 Structure

In the following the ALE formulation of the elasticity equation used in this
work is derived. Recalling, that the interface tracking method is used in
this work, the ALE coordinate system coincides with the Lagrangian on the
structure domain.

Since the ALE velocity equals the material velocity, the convection term
in equation (2.10) vanishes. Furthermore, Gauß’s divergence theorem is ap-
plied to the remaining surface integral and the volume integral is omitted.
Then, the momentum conservation in ALE formulation for the structure
states

⇢�̈ = r · � + ⇢f (2.13)

with f being the outer forces on the structure and ⇢ the structure density.
The second time derivative of � is denoted by �̈. In order to comply with
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common notation, the stress tensor is given in terms of the second Piola-
Kirchho↵ stress S

� = FS

T (2.14)

with F = @�

@X

being the deformation gradient. For the test cases in this
work the St. Venant Kirchho↵ material model for isotropic, hyper-elastic
materials is used, which is a simple extension to the linear elasticity theory.
It describes the stress as

S = �

s

tr(E)I + 2µ

s

E (2.15)

with �
s

and µ

s

as the Lamé constants and

E =
1

2

⇣
F

T

F � I

⌘
(2.16)

the Green-Lagrange strain for finite strains (nonlinear kinematics).

2.4 Coupled Problem in ALE Framework

In order to assemble the FSI system, the following notation needs to be in-
troduced. A subscript f refers to the fluid and a subscript s to the structure.
Let ⌦ be our computational FSI domain described in the ALE framework,
which has a disjoint partition into the structure domain ⌦

s

and the fluid
domain ⌦

f

with FSI boundary � = ⌦
s

\ ⌦
f

. Let the velocity and pressure
be well defined as well as the boundary conditions on the respective remain-
ing boundaries @⌦

f

\� and @⌦
s

\�. Then, for every control volume V ⇢ ⌦
f

the fluid part of the coupled problem can be stated as the Navier Stokes
equation for incompressible Newtonian fluids in the ALE framework

@

@t

Z

V

⇢

f

v dV +
Z

@V

⇢

f

(v � v

g)vn dA =
Z

@V

�n dA +
Z

V

⇢

f

f

f

dV in ⌦
f

(2.17)Z

@V

⇢

f

v n dA = 0 in ⌦
f

(2.18)

with the SCL
@

@t

Z

V

⇢

f

dV =
Z

@V

⇢

f

v

g

n dA in ⌦
f

(2.19)

and ⇢

f

the fluid density, n the outer normal vector, f

f

outer forces acting
on the fluid,

� = µ

f

(rv + rv

T ) � pI (2.20)

and µ

f

the dynamic viscosity.
As for the structure part, the elasticity equation with the St. Venant Kirch-
ho↵ material can be denoted as

r ·
⇣
FS

T

⌘
+ ⇢

s

f

s

= ⇢

s

�̈ in ⌦
s

(2.21)
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with f

s

the outer forces acting on the structure, ⇢
s

the structure density,

S = �

s

tr(E) I + 2µ

s

E in ⌦
s

(2.22)

�

s

, and µ

s

the Lamé constants,

E =
1

2

⇣
F

T

F � I

⌘
in ⌦

s

(2.23)

the Green-Lagrange strain, and

v = �̇ , in ⌦
s

(2.24)

the structure velocity. The Dirichlet-Neumann coupling at the FSI boundary
� is realized by

v|⌦f = v|⌦s and
1

det(F )
FSF

T

n|⌦s = �n|⌦f . (2.25)



Chapter 3

Numerical Foundations

This chapter gives a short overview over the numerical methods applied in
this work. Furthermore, the notation for the subsequent chapters is intro-
duced. For the sake of simplicity all numerical methods are shown for the
2D case, although the 3D case is implemented.
First the time discretization methods used in this work are introduced and
applied to the respective semidiscrete system. Next, the space discretization
for the structure and fluid part is introduced. The focus lies on the fluid
discretization on moving grids with regard to the ALE framework. Then
the grid movement techniques used in this work are introduced. Thereafter,
the solvers used in this work are introduced, with focus on the linear and
nonlinear multigrid method. Finally the extrapolation functions used in this
work are introduced.

3.1 Time Discretization

In this section a short overview of the employed time discretization schemes
is given. In order to preserve a coherent system, second order implicit
schemes are used on the fluid and structure domain, and the quantities
arising in the ALE description are discretized accordingly.

3.1.1 Newmark beta method

As the elasticity equation contains a second order time derivative, a suitable
method for this has to be found. The Newmark beta method is a widely
used time integration scheme in computational solid dynamics. It is first or
second order accurate depending on its parameters. Let

K̄(�) � M̄ �̈ = f̄ (3.1)

be the semi-discrete elasticity equation as resulting from section 3.2.1. The
Newmark beta scheme can be derived directly from the Taylor expansion of

11
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the displacement and velocity around time step n+1 (�
n+1 := �(x, (n + 1)�t)),

in which the linearized third time derivative ˙̈
�

n

⇡ �̈n+1��̈n

�t

is multiplied with
the parameters 6� and 2� for displacement and velocity respectively. The
resulting scheme then states

�

n+1 = �

n

+ �t�̇

n

+
�t

2

2
�̈

n

+ ��t

2 (�̈
n+1 � �̈

n

) (3.2)

and
�̇

n+1 = �̇

n

+ �t�̈

n

+ ��t (�̈
n+1 � �̈

n

) (3.3)

in which � and � are the Newmark parameters and �t is the time step.
Rearranging equations (3.2) and (3.3) and adding it to equation (3.1) yields
the first order system

0

B@
0
0

K̄(�
n+1)

1

CA+

0

B@
1 0 � 1

��t

2

0 1 � �

��t

�M̄ 0 0

1

CA

0

B@
�̈

n+1

�̇

n+1

�

n+1

1

CA (3.4)

=

0

BB@

� 1
��t

2�n

� 1
��t

�̇

n

+
⇣
1 � 1

2�

⌘
�̈

n

� �

��t

�

n

+
⇣
1 � �

�

⌘
�̇

n

+
⇣
1 � �

2�

⌘
�t�̈

n

f̄

1

CCA (3.5)

which can be rewritten as:

K(�) + C�̇+ M �̈ = f (3.6)

According to Hilber, Hughes and Taylor [32], a connection of � and � can
be established. In order to best possible reduce the coe�cients to the higher
order terms in the local truncation error while preserving stability, the New-
mark parameters have to satisfy

4� = (� + 0.5)2 (3.7)

This is better known as the Hilber-Hughes-Taylor-↵-method (HHT). Thus,
� is the only remaining degree of freedom. For more information on this
topic refer to the original paper or Wood [77].

3.1.2 Backward Di↵erentiation Formula

The Backward Di↵erentiation Formula (BDF) belongs to the family of linear
multistep methods. It is suitable for first order ordinary di↵erential equa-
tions and popular in solving sti↵ di↵erential equations. It is derived from
linear approximations of the gradient at unknown time �tn. Let

v̇ = f(v, p) (3.8)
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be the semi-discrete momentum conservation from section 3.2.2. The second
order approximation of the derivative, as used in this work by the fluid solver,
is constructed by

v̇

n

⇡ v

n

� v

n�1

�t

+
v

n

� 2v

n�1 + v

n�2

2�t

(3.9)

Thus, the resulting time integration scheme, the second order BDF (BDF
2), is

v

n

= 4/3v

n�1 � 1/3v

n�2 + 2/3�tf(v
n

, p

n

) (3.10)

This implicit integration scheme is second order accurate and A-stable. The
BDF 2 time stepping scheme is used for the time integration in the fluid
domain in this work.

3.2 Space Discretization

3.2.1 Finite Element Method

The Finite Element Method (FEM) is a widely used solution approach for
partial di↵erential equations (pdes). Its wide range of applicable orders of
discretization, as well as the possibility to use highly customized elements
has made it a widely used approach for structure problems.
Using the elasticity equation (2.21) with (2.22) the stress tensor and (2.23)
the strain tensor the FEM is used to describe the semi-discrete system as
implemented in the structure solver FEAP version 8.2 [65].
As there is no analytical solution to the elasticity equation, it is solved with
respect to so called test functions. To further constrain the solution, it is
set to consist of a linear combination of ansatz functions. With these sim-
plifications, the equation can be rewritten as a discrete algebraic equation.
For a detailed view of the discretization see the FEAP theory manual [64].

Weak Formulation Assuming certain di↵erentiability properties of �,
the first step is to formulate the elasticity equation in a weak sense. Intro-
ducing test functions �

j

, j 2 {1, . . . , N} with �

j

|�D = 0 on the Dirichlet
boundary.
Equation (2.21) is multiplied by �

j

and integrated over the structure domain.
Integration by parts is accomplished using Gauß’s divergence theorem. As
the test functions are set to be 0 at the Dirichlet boundary, the Dirichlet
boundary integral resulting from partial integration vanishes. Inserting the
von Neumann boundary condition into the equation results in

Z

⌦s

FS

Tr�
j

dV �
Z

�
��

j

n dS+
Z

⌦s

⇢

s

f

s

�

j

dV =
Z

⌦s

⇢

s

�̈�

j

dV , 8j 2 {1, . . . , N}
(3.11)
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Discretization The Galerkin method states, that the desired function (in
this case the displacement �) is discretized into a weighted sum of so called
ansatz functions

�(X, t) ⇡ �0(X, t) +
NX

i=1

�

i

(t)�
i

(X) (3.12)

while the ansatz function �0 fulfills the Dirichlet boundary condition and
the other �

i

are the same as the test functions in equation (3.11). In order
that this discretization is a valid representation of the displacement, the test
functions have to be a partition of unity. In this work first order polynomials
with finite support are used for test functions. Furthermore, the structure
domain is split into quadrilateral grid cells.

Integration The integrals are computed by Gaußian quadrature. It is
exact for polynomials up to an order of 2n � 1, in which n is the number
quadrature points used. The integration is carried out on the unit square,
thus for all elements a unique mapping to the unit square has to be defined.

The Discrete Elasticity Equation Applying this mapping and integrat-
ing results in the nonlinear semi-discrete system, which can now formally be
written as

K̄(�) � f̄ = M̄ �̈. (3.13)

K̄ is called the sti↵ness, f the load vector, M̄ the mass matrix, and � the
vector of displacements.
Note: For static and quasi-static problems, the acceleration term is omitted,
and therefore the former equation reduces to:

K̄(�) = f̄ (3.14)

For further description of this method refer to textbooks on FEM, for ex-
ample by Belytschko [5].

3.2.2 Finite Volume Method

Another member of the weighted residual family is the Finite Volume Method
(FVM). As well as the FEM it is constructed by separating the computa-
tional domain into finite subspaces, referred to as volumes. The FVM is
widely used in fluid mechanics as its resulting system matrix is comparably
sparse and (in contrast to e.g. FEM) and it is natively conservative. The
former attribute also contributes to a high parallel e�ciency and the latter
eliminates the need for special attention when conservation of mass is cru-
cial. This is the case for the incompressible Navier Stokes equation.
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Based on the Navier Stokes equation in the ALE framework (2.17), (2.18)
with Cauchy stress tensor (2.20) and the space conservation law (2.19), the
discretization as currently implemented in the fluid code FASTEST is de-
scribed by the FVM. For a more detailed view see Appendix B.

Integration As a first step in the discretization, a quadrature formula is
applied to the integrals in the momentum equation. The approximation of
the cell centered and cell face centered terms is carried out according to the
second order accurate midpoint rule.
The combined mass and grid flux ṁ

g in the convective term is assumed to
be known at the cell face centers. They arise from the pressure coupling in
the solution of the discrete mass conservation equation.

Interpolation Cell face values such as the velocity in the convective term
have to be interpolated as the values are computed and stored only on the
cell centers. For the convective term di↵erent interpolation techniques are
used (and mixed) as they involve di↵erent drawbacks and advantages.
The Upstream Di↵erencing Scheme (UDS) is a straightforward approach for
the interpolation and results in a numerically stable discretization, but due
to its second order error term introduces numerical di↵usion.
The Taylor Based Interpolation (TBI) scheme (MuLI in [39] or TSE in
[40])is an extension of the second order accurate Central Di↵erencing Scheme
(CDS). The CDS su↵ers from order reduction on non-Cartesian grids. Thus,
the TBI using more cell centers remains second order accurate on distorted
grids.
Being an extension of the CDS, the TBI inherits the bad habit of possi-
bly introducing oscillatory modes into the solution. Thus, Flux Blending
is used. This includes the use of the Deferred Correction to accelerate the
solution procedure.

Approximation of Gradients Gradients on the cell faces as arising in
the di↵usive term can be approximated easily on Cartesian grids. On dis-
torted grids a cell face centered local coordinate system has to be intro-
duced. The gradient is then calculated in the local coordinate system and
transformed back into the global system. This is referred to as DABT in
Lehnhäuser [39].
For cell centered gradients as arising in the pressure term another local, cell
centered coordinate system has to be introduced. The pressure gradient is
computed from the CDS approximation of pressure on the control volume
faces and transformed to the global system.
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The Discrete Momentum Conservation Equation Applying the time
integration (3.10) to the discrete system concludes the discretization. All
terms of the discrete momentum equation are dependent on the cell centered
values of v and p as well as the geometry information. Thus, the system
matrix can be assembled as:

• The implicit part of the convective mass and grid flux according to the
deferred correction.

• The implicit part of the di↵usive flux, which describes half of the main
flow through the according cell face.

The right hand side is assembled by:

• The explicit part of the convective mass and grid flux, which is the
TBI contribution without the CDS contribution under-relaxed by the
flux blending parameter.

• The explicit part of the di↵usive fluxes, including the remaining half
of the main flow plus cross di↵usion fluxes.

• The discretized pressure gradient multiplied with the corresponding
cell volume.

• Other discrete source terms evaluated at the cell center multiplied with
the corresponding cell volume that act as body forces.

The resulting system can now be written in a compact form as

a

P

v

P

+
X

C

a

C

v

C

= b

P

(3.15)

in which P indicates the cell center of the diagonal element, C 2 {E, W, N, S}
is the index of neighbouring cell centers, and a

C

= a

C

(v, p) as well as
b

C

= b

C

(v, p, f) are dependent on the velocity and pressure.

The Discrete Mass Conservation Equation The mass conservation
equation is used to solve for the pressure as the momentum equation solves
for the velocity. As the pressure term does not appear in the mass conser-
vation equation an iterative pressure correction scheme has to be employed.
Integrating equation (2.18) with the midpoint rule over a grid cell V

f

in the
fluid domain yields the sum of mass fluxes around every grid cell to be zero:

Z

@Vf

⇢

f

v n dA ⇡
X

c

ṁ

c

(3.16)

The index c 2 {e, w, n, s} represents the cell face. The interpolation which
leads to the mass flux is described in equation (3.24). If these mass fluxes
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are to be computed using the velocity resulting from the last momentum
equation solve v

k, with m

k

c

:= m

c

(vk), their sum will not fulfill the mass
conservation equation X

c

ṁ

k

c

6= 0 . (3.17)

Thus an artificial mass source is added to the system. The iteration counter
k is skipped in the discretization of the momentum equation, as all values
are associated with the same iteration. The aim of the pressure correction
scheme is to find a set of velocity and pressure vectors v

k+1
, p

k+1 which fulfill
the mass conservation equation:

X

c

ṁ

k+1
c

=
X

c

ṁ

0
c

+
X

c

ṁ

k

c

= 0 (3.18)

with ṁ

0
c

being the mass flux correction, v

0 and p

0 the velocity and pressure
correction, respectively.
Recalling the discrete momentum equation (3.15). Denoting the pressure
dependence of the right hand side explicitly yields:

a

P

v

k

P

+
X

C

a

C

v

k

C

= rp

k

P

�V

P

+ c(vk, f) (3.19)

with �V
P

the discrete cell volume of cell P .From this the velocity at step k

is obtained by:

v

k

P

=
1

a

P

 

�
X

C

a

C

v

k

C

+ rp

k

P

�V

P

a

P

+ c(vk, f)

!

(3.20)

Subtracting equation (3.20) for step k + 1 from (3.20) for step k results in a
description of the velocity correction:

v

0
P

= � 1

a

P

X

C

a

C

v

0
C

| {z }
⇡0

+rp

0
P

�V

P

a

P

. (3.21)

Note that, due to the fact that the grid displacement stays constant within
the pressure correction cycle, the grid flux in a

P

and a

C

cancels out at this
point. Thus the pressure correction for moving grids acts analogously to its
non-moving counterpart. Furthermore, c(.) is an explicit contribution to the
momentum equation, thus stays constant when switching from k to k + 1.
The under-braced part is set to zero following the Semi Implicit Method for
Pressure Linked Equations (SIMPLE) rule. This is a feasible simplification,
as it will tend to zero at convergence.
In order to describe the velocity at the cell face c, the “selective interpola-
tion” is used by which only the geometry variables are interpolated by TBI.
As the pressure is given on the grid cell centers and therefore their gradient
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at the cell face c can be derived directly from the pressure at P and C, the
velocity at the cell face is

v

0
c

= rp

0
c

✓
�V

c

a

P

◆TBI

(3.22)

Inserting the velocity correction in terms of pressure correction from the
latter equation into the mass conservation equation (3.18) results in the
pressure correction equation

X

c

⇢

f

rp

0
c

✓
�V

c

a

P

◆TBI

�A

c

| {z }
ṁ

0
c

+
X

c

⇢

f

v

k

c

�A

c| {z }
ṁ

k
c

= 0 . (3.23)

Due to the non-staggered grid approach used in this work, special care has
to be taken when discretizing the velocity v

k in the mass conservation equa-
tion. Due to the interpolation of cell centered gradients the pressure field
can decouple from the velocity field and decompose into 4 separate fields
(checkerboard distribution). According to Rhie and Chow [49] this is a
result from the 2�x discretization of the pressure field. To solve this prob-
lem they proposed to correct the old mass flux by an alternative pressure
discretization involving a 1�x di↵erence quotient, which results in:

ṁ

k

c

= ⇢

f

�A

c

 

v

k,TBI
c

+
✓
�V

c

a

P

rp

k

c

◆TBI

�
✓
�V

c

a

P

◆TBI

rp

k

c

!

(3.24)

By this remedy the 1�x pressure oscillation can be resolved and an alter-
nating pressure field can be avoided.
In order to reduce the number of bands in the resulting matrix (thus gaining
the possibility to use the same SIP solver as for the momentum equation),
the pressure correction gradient is separated from its non-orthogonal terms.
For a detailed description see Lehnhäuser [39], Rhie [49] , or Waclawczyk
[72].

drp

0
e

= (F
e

)�1

 
pE�pP
lE,P

0

!

(3.25)

Introducing this reduced gradient into the mass flux correction term of equa-
tion (3.18), the resulting discrete pressure correction equation then states:

X

c

⇢

f

drp

0
c

✓
�V

c

a

P

◆TBI

�A

c

(3.26)

= �
X

c

⇢

f

�A

c

 

v

k,TBI
c

+
✓
�V

c

a

P

rp

k

c

◆TBI

�
✓
�V

c

a

P

◆TBI

rp

k

c

!

After solving the above equation for p

0, the mass flux, velocity and pressure
field is updated:

ṁ

k+1
c

= ṁ

k

c

+ ⇢

f

drp

0
c

✓
�V

c

a

P

◆TBI

�A

c

(3.27)
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v

k+1
P

= v

k

P

+ rp

0
P

�V

P

a

P

(3.28)

p

k+1
P

= p

k

P

+ ⇡p

0
P

(3.29)

with ⇡ the underrelaxation factor for the pressure coupling.

Pn

Pn�1

en�1

en

@Ae,n

Figure 3.1: Volume swept over by cell face e from time step n � 1 to n

The Discrete Grid Flux The mass flux for the momentum equation is
assembled within the pressure correction equation. As shown above, the grid
flux does not influence the pressure correction, but arises in the convective
term of the momentum equation. To obtain the grid flux one must measure
the volume of a virtual cell bounded by a cell face at time step n � 1, the
same cell face at the current iteration and the linear interpolation of its
boundaries. The virtual cell for the east side shown as shaded region in
figure 3.1. The virtual cell is then triangulated and its volume is computed
and stored in @A

c

. The grid flux in time step n then denotes:

ġ

c

= ⇢

f

v

g

c

�A

c

= ⇢

f

✓
3@A

c,⇤ � @A

c,n�1

2�t

◆
(3.30)

in which the asterisk denotes the current deformation as in the current FSI
iteration. With the mass flux from equation (3.24) and its correction from
equation (3.27) the resulting flux for the momentum equation is

(ṁg

c

)k+1 = ṁ

k+1
c

� ġ

c

(3.31)

The Discrete Space Conservation Law According to Farhat [21] the
discrete Space Conservation Law (SCL) or discrete Geometric Conservation
Law is a necessary and su�cient condition to preserve the stability of a time
integration scheme on moving grids. The discrete SCL associated with the
BDF 2 discretized equation (2.19) as follows:

3�V
P,n

� 4�V
P,n�1 + �V

P,n�2 = 3
X

c

@A

c,n

�
X

c

@A

c,n�1 (3.32)

in which the discrete cell volumes �V
P,n

are triangulated according to Davies
[13] and the right hand side is discretized according to Guillard and Farhat
[27] with @A

c

as in figure 3.1.
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3.2.3 Grid Movement

As a block-structured fluid solver is used, the grid movement is split up into
three stages. First the block edges are computed, second the block faces are
moved accordingly, and third the inner grid points of the blocks are moved.
There are two possibilities for the edge movement. Either by linear inter-
polation of the two adjacent corners, or by a cubic spline approximation.
To determine the additional degrees of freedom of a cubic approximation in
between two points, the angles in between all edges intersecting at a corner
are to remain unaltered. In this work for all blocks in the fluid domain,
which are actually moved, the cubic approximation is used.
For the movement of block faces there are three possibilities. Linear in-
terpolation, TransFinite Interpolation (TFI), or elliptic movement. In the
following the principle operation of these methods is described. For details
on the implementaion see Pironkov [47].
In the linear interpolation the grid points in between the two opposing edges
are distributed along the convex combination of the respective edge points
while preserving the relative spacing of the original grid. With regard to
CPU time, this is the cheapest method, but restricted to very simple ge-
ometries. Also, due to the poor quality of the resulting grid, the overall
CPU time for the coupled problem can be even higher than for the other
methods.
The TFI is another algebraic approach. The grid points are distributed
along the linear combination of all four respective edge points by a bi-linear
interpolation. The relative spacing is again retained from the original grid.
This method is more expensive than the linear interpolation, but far more
robust and better grid quality can be expected. Thus, for most cases this is
the preferred method.
In the elliptic grid movement the face in question is mapped to a reference
domain and the points are distributed by solving the Poisson equation. The
distribution along the bordering edges is used as boundary conditions for
the resulting system. The discrete system is then solved by Gauß Seidel it-
erations. This is by far the most expensive movement method, but also the
most robust. Furthermore, as the solution of the Poisson equation implies
a higher order of di↵erentiability than the above mentioned methods, the
resulting distribution is smooth.
The need for the elliptic grid movement is easily shown with the help of

figure 3.2. In figure 3.2a one block of a grid with its original node distribu-
tion is shown. Figure 3.2b shows the lower part of the grid after applying
linear grid movement with zero displacement. Disregarding the poor grid
quality in the upper, coarser part, the concave edge cannot be handled by
this grid movement. It produces degenerate grid cells at the lower edge.
Figure 3.2c shows the lower part of the grid after applying zero displace-
ment TFI grid movement. The mesh quality throughout the block is widely
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(a) Original grid (b) Linear re-meshing

(c) Transfinite re-meshing (d) Elliptic re-meshing

Figure 3.2: Di↵erent gird displacement techniques applied to a zero dis-
placement case

preserved, but the accumulation of grid points at the right corner cannot
be mapped correctly. At the right hand side the grid cells are degenerated.
This is primarily due to the accumulation being weak at the upper part and
becoming stronger towards the lower edge. The last figure 3.2d shows the
lower part of the grid after zero displacement elliptic grid deformation was
applied. For this test case, the elliptic grid movement is the only method
able to re-mesh the grid without degenerating any grid cells.
The inner blocks are moved by the three dimensional extension of the face
movement method. As all three methods have their advantages and draw-
backs in terms of accuracy and computational cost, all three types of move-
ment are used in this work.
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3.3 Solvers

3.3.1 Applied Solvers

The discrete momentum equations are linearized by a fixed point iteration
in the fluid code. Given a function f of x, if the assumptions of the Ba-
nach fixed point theorem are fulfilled the iteration x

n+1 = f(x
n

) converges
at least linearly to a unique point x⇤. To solve the resulting linear system
as well as the pressure correction equation, the Strongly Implicit Proce-
dure (SIP) by Stone [61] is used. This employs an Incomplete Lower Upper
(ILU) factorization in which there are no additional diagonals filled in in
the system. This means the lower and upper matrix have a similar spar-
sity structure as the original matrix. The structure solver uses Newton’s
method for the nonlinear system. This again implies linear convergence if
the assumptions from the Banach fixed point theorem are met and under
certain circumstances even implies local quadratic convergence. The linear
system is solved by the Conjugate Gradient (CG) method. In this case this
can be seen as a direct solver, which at best and with ideal preconditioning
(e.g. by a multigrid solver as in Herzog and Sachs [31]) requires O(n) time
to solve a linear system of size n to machine accuracy. In the multigrid im-
plementation the Gauß-Seidel method is used as smoother. Its convergence
is assured if either the system matrix is symmetric and positive definite
or strictly or irreducibly diagonal dominant. It implies rather poor conver-
gence properties in comparison to today’s linear solvers, but it employs good
smoothing properties. On the coarsest grid a direct Lower Upper decom-
position (LU) is used. This solver requires a run time of O(n3) to solve a
linear system of size n, which is rather poor performance. Due to fact, that
this is only used on the coarsest grid, n is a small number (compared to the
original system) and its run time is inferior to the overall multigrid run time.

For more information on any of the above methods refer to any standard
numerical analysis textbook, Saad [51] or Stoer and Bulirsch [60].

3.3.2 Multigrid Method

Here, the basic idea of the geometric multigrid method, as used in this work
is described. The multigrid method can be used in its linear and nonlinear
form and implies a run time of O(n) for a (non)linear system of size n.
According to Ferziger [23] the number of fine grid iterations in multigrid is
independent on the number of grid points.
For basic iterative methods (Jacobi, Gauß Seidel, SOR, ILU, SIP, . . . ) the
rate of convergence is dependent on the spectral radius of its iteration ma-
trix, thus dependent on the eigenvalue with largest absolute value. Hack-
busch [28] has shown that for elliptic problems and many basic iterative
methods the largest eigenvalue is associated with a smooth eigenvector.
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Thus, these methods yield a fast reduction of high frequency errors, and
a poor performance for smooth errors.
The idea of multigrid method is to decompose the current system error e

n

in iteration n into modes of di↵erent frequency as for the Fourier transform.
Applying one of the above mentioned solvers, reduces the high frequency
errors while leaving the low frequency errors essentially untouched. In the
following this will be referred to as smoothing. Then the problem is formu-
lated on a coarser grid, and the intermediate solution is represented on that
grid. This process is called restriction. Due to the coarser resolution on this
grid, wavelengths which were of low frequency on the fine grid are now of
high frequency and can be reduced e↵ectively by smoothing. A representa-
tion of the coarse grid solution, or its correction towards the intermediate
solution, is found on the fine grid and set as the new solution iterate, or
added to the current solution iterate, respectively. This is called prolonga-
tion.
The multigrid algorithm in this work is described for consecutive coarser
grids, in which a grid with step size 2h consists of every second point (in ev-
ery dimension) of a grid with step size h. This is not a necessary restriction,
but coincides with the implementation in this work. The multigrid method
is the recursive application of the two grid method to consecutive coarser
grids. Thus, in the following only the two grid method is described.
In multigrid methods there are various ways to cycle through the di↵erent

Solve on grid size h 

Solve on grid size 
2h 

Solve on grid size 
4h 

Solve on grid size 
2h 

Solve on grid size h  

Restriction 
Prolongation 

Restriction Prolongation 

Figure 3.3: Schematic V-cycle

grid levels, the V-, F-, and W-cycle to name a few. This work focuses on the
implementation of the V-cycle, which consists of first unidirectional restrict-
ing and smoothing steps through all grids until the coarsest grid is reached.
Then one uses unidirectional prolongating and smoothing steps up to the
finest to complete one cycle. Figure 3.3 shows the course of one V-cycle.

Please note, that when referring to the multigrid method within this work
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the geometric multigrid method is meant. The algebraic multigrid method
is not subject of this work. For more information on this see Ruge and
Stüben [50], Schmid [57], or Trottenberg et al. [68].

Linear Multigrid

First, a few elements of the multigrid method and its course of events is
described using a linear version of the geometric multigrid method or Multi-
Level Adaptive Technique as introduced by Brandt [7]. For more information
on this see e.g. Wesseling [75].

Smoothing Property The multigrid method uses linear system solvers
for the smoothing iterations and the coarse grid solve. On the fine grids the
ability to e↵ectively smooth an error is more important than the absolute
error reduction. The smoothing property states that the solver reduces the
high frequency errors without amplifying the low frequency errors. Hack-
busch [28] verified the smoothing properties for basic linear solvers such as
Jacobi, Gauß Seidel, or SOR. He also stated that the smoothing property of
the Gauß Seidel method is superior to that of the Successive Over-relaxation
(SOR) although its error reduction is inferior. Wittum [76] showed the
smoothing property for the ILU linear solver.

Restriction & Prolongation As the multigrid method operates on sev-
eral grids an exchange routine must be defined. The restriction operator
from grid step size h to 2h is called I

2h
h

and its counterpart, the prolonga-
tion from 2h to h, I

h

2h. The order of interpolation is set according to the
order of the underlying pde. According to Hackbusch [28] the sum of orders
of restriction and prolongation has to be at least the order of the pde. As
the Navier Stokes as well as the elasticity equation are of second order, a
first order interpolation for restriction and prolongation is su�cient.

Correction Scheme The correction scheme or defect correction uses the
residual equation to assemble the coarse grid system. The scheme is briefly
introduced using a model problem. Let

A

h

x

h = b

h (3.33)

be a discrete representation of a set of linear pdes and x

h

⇤ the exact solution
to it. Smoothing on the fine grid results in an intermediate solution x

h

0 . The
fine grid residual is defined as

r

h = b

h � A

h

x

h

0 . (3.34)

With e

h = x

h

⇤ � x

h

0 being the current fine grid error, b

h = A

h

x

h

⇤ , and A

h a
linear operator, (3.34) can be rewritten as

A

h

e

h = r

h

. (3.35)
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This system looks similar to (3.33) but, as a result of the smoothing property,
the error e

h is smooth in contrast to the intermediate solution and therefore
can be restricted more e↵ectively. This resulting defect equation is now to be
solved on a coarser grid with step size 2h. Applying the restriction operator
I

2h
h

to the latter equation yields

A

2h
e

2h = r

2h
. (3.36)

After solving (3.36) its solution e

2h
⇤ is prolongated and added to the inter-

mediate fine grid solution as a correction

x

h = x

h

0 + I

h

2he
2h
⇤ . (3.37)

In order to eliminate the high frequency errors due to the interpolation the
fine grid system is smoothed once again.

Nonlinear Multigrid

Considering nonlinear problems the correction scheme cannot be used for
nonlinear problems as the equivalence between (3.34) and (3.35) only holds
for linear A

h. For these cases there are two main approaches to use the multi-
grid method. The first one consists of linearization via Newtons method (or
one of its derivatives) and solving the linear problem with the correction
scheme, the so called Newton Multigrid. The second one uses an extension
to the correction scheme which covers nonlinear problems as well, namely
the Full Approximation Scheme (FAS).

Newton Multigrid The Newton Multigrid is the straightforward ap-
proach to solve nonlinear problems with a linear solver. For definition and
applications see Brandt [7]. A disadvantage of this scheme is the absence of
the current iterate of the unknown on coarser meshes. Thus, an application
to local refinement as in Gauß [25] is not possible. Furthermore, although
Newton’s method implies quadratic convergence, this can only be achieved
using the optimal number of V-cycles. See Hackbusch [28] for details.

Full Approximation Scheme The FAS is the nonlinear system solver
used in this work. It was first introduced by Brandt [8]. A brief outline of
the approach is given here, for further details refer to Brandt [8], Briggs et
al. [11], Hackbusch [28], or Schäfer [54].
A nonlinear model problem with a nonlinear dependent right hand side
is used. This right hand side is chosen merely for simplification of the
notation in chapter 4, as dependent right hand sides appear in the boundary
conditions of a coupled FSI problem. Let

A

h(xh) = b

h(xh) (3.38)
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be a set of nonlinear pdes. Analog to the correction scheme, the system
is solved a few times on the fine level by an appropriate nonlinear solver,
resulting in x

h

0 , which is the solution to

r

h = b

h(xh

0) � A

h(xh

0). (3.39)

Due to the nonlinearity the full approximation of the current value x

h as
opposed to the error in the linear case has to be restricted. This gives the
Full Approximation Scheme its name. Subtracting (3.39) from (3.38) and
applying the restriction operator I

2h
h

yields

A

2h(x2h) = b

2h(x2h) �
⇣
b

2h(x2h
0 ) � A

2h(x2h
0 )
⌘

+ I

2h
h

r

h (3.40)

in which x

2h
0 = I

2h
h

x

h

0 is the restricted intermediate fine grid value. Solving
the latter equation yields x

2h
⇤ . As for the correction scheme, the intermediate

fine grid solution is corrected only by the prolongated coarse grid correction,
not the prolongated value. Therefore the restricted intermediate solution
is subtracted from the coarse grid solution and the resulting correction is
prolongated and added to the intermediate fine grid solution.

x

h = x

h

0 + I

h

2h

⇣
x

2h
⇤ � x

2h
0

⌘
(3.41)

Again, a few more fine grid solution steps are carried out to eliminate the
error introduced from interpolation.

If the underlying problem is linear, the FAS is equivalent to the correc-
tion scheme apart from numerical deficiencies. Figure 3.4 illustrates one
FAS V-cycle applied to a point load problem. Five Gauß-Seidel sweeps were
performed in between every two pictures.

3.4 Extrapolation

As polynomial extrapolation functions have been proven of value in this
field, see [9, 66, 10, 74], they are also used in this work. To demonstrate
the e↵ect of di↵erent orders of extrapolation, the Lagrangian polynomial
interpolation functions are implemented in this work. Given a discrete set
of data points (x

i

, y

i

), the respective polynomial of order n reads:

L(x) =
nX

i=0

y

i

l

i

(x) (3.42)

with

l

i

(x) =
nY

j=0
j 6=i

x � x

j

x

i

� x

j

. (3.43)
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These functions are used for both displacement and force extrapolation.
Higher order extrapolation suggest a higher order of accuracy, thus less iter-
ations to convergence, however, their implementation requires more memory
and computing time. Furthermore, at a certain point higher order extrapo-
lation begins to produce worse results, as the high order interpolation poly-
nomials produce highly oscillatory results outside the known interval.
The extrapolation is used in this context to produce a beneficial starting
point for the computations in every time step. Furthermore, by it’s simple
implementation it can be easily transferred to di↵erent variables.
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(a) Initial domain (b) 1st grid pre-smoothing

(c) 2nd grid pre-smoothing (d) 3rd grid pre-smoothing

(e) 4th grid pre-smoothing (f) 5th grid solving

(g) 4th grid post-smoothing (h) 3rd grid post-smoothing

(i) 2nd grid post-smoothing (j) 1st grid post-smoothing

Figure 3.4: Example of a 5 level FAS applied to a structure point load
problem showing all smoothing steps in the first V-cycle. Figures show
the domain with the corresponding discretization after application of the
operation in the caption.



Chapter 4

Application of Multigrid
Coupling to Fluid-Structure
Interaction

In this chapter the multigrid solver is applied to the coupled FSI problem.
Due to its nonlinear nature in the fluid as well as in the structure domain,
the problem has to be solved via the FAS.
In the following a short overview over possible coupling approaches is given,
in order to demonstrate that the multigrid coupling (MG CPL) can not
only be perceived as a solver applied to an existing approach, but also as a
coupling approach itself.
Next, the implicit partitioned coupling scheme is introduced, as this is the
basis for the implementation of the MG CPL. In order to provide for a
sensible comparison to the MG CPL, minor changes have been made to the
existing approach.
Then, the MG CPL is introduced, based on the theoretical considerations
for a nonlinear system solved on multiple grid levels. Even when using
the FAS on both individual domains, the MG CPL is distinguished from
the partitioned approach by the coarse grid treatment and especially the
boundary condition treatment.

4.1 Fluid-Structure Interaction Approaches

In classifying fluid-structure interaction approaches, first the question of
boundary realization has to be taken into account. There are two forms of
realization. On the one hand the immersed boundary method, which uses a
Eulerian framework for the fluid and a Lagrangian framework for the struc-
ture, linking the two domains at the interface by a Dirac delta function.
Its main advantage is the ability to handle arbitrary interface shapes and
topology changes of the interface. A drawback is that the interface has to

29
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Monolithic Approach 

Explicit Partitioned Approach 

Robustness 

Flexibility 

Implicit Partitioned Approach 

Implicit Partitioned Approach 
with Multigrid Coupling 

Solid 

Fluid Solid 

Fluid 

Fluid 

Solid 

Fluid/Solid 

Figure 4.1: Classification of FSI approaches

be tracked and resolved in every time step. Thus this realization is widely
used in combination with adaptive grid refinement.
On the other hand there is the boundary fitted method based on ALE. The
fluid, the structure and the interface are treated as described in chapter 2.
Due to the smooth and sharp boundary a high accuracy of the velocity and
pressure field can be generated at the boundary. As no topology changes are
expected and the applied fluid code can handle even more complex bound-
aries than necessary for this work, this realization is used.
Next, in order to subdivide the approaches, the closeness of the coupling has
to be quantified. The loosest coupling is the explicit partitioned approach.
Here, the fluid and structure parts are computed sequentially and boundary
values are exchanged once per time step. This approach lacks stability and
is usually subject to severe time step restrictions. As this approach induces
a rather small computational complexity it has been widely used in the his-
tory of FSI, e.g. the staggered solution procedure in Felippa and Park [22].
This approach also makes the use of highly developed fluid and structure
solvers possible, as only the boundary conditions have to be altered.
A direct generalization to the above approach is the implicit partitioned ap-
proach. Again, the fluid and structure parts are solved in sequence, but
coupling multiple times per time step. The individual parts are sequen-
tially solved until FSI convergence is reached. This results in an implicit
dependence of the fluid unknowns on the structure solution and vice versa.
As a result, larger time steps are applicable and this approach is numeri-
cally more stable, while preserving the interchangeability of the underlying
solvers. The drawback is the additional computation time for solving the
individual parts multiple times per time step. This approach is used by e.g.
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Le Tallec and Mouro [63], Bathe et al. [2], Schäfer [55], and in commercial
tools.
Another widely used approach is the monolithic approach. Here, the fluid
and structure parts are discretized into one single system of equations, which
is solved at once in every time step. This results in an even more stable ap-
proach, but a new coupled solver has to be developed and maintained. For
applications of this approach see e.g. Hübner et al. [35] or Hron and Turek
[34].
The multigrid coupling approach introduced in this work can be regarded as
a mixture of the implicit partitioned and the monolithic approach. It ex-
ploits the structure of the multigrid solver, i.e. the split between smoother
and inter-grid transfer, and results in one single multigrid solver for the cou-
pled problem using the implicit partitioned coupling approach as smoother.
Thus, the resulting approach is more robust than the implicit partitioned
coupling approach, but still preserves the interchangeability of the under-
lying solvers, presuming the (non)linear system solvers are editable. More-
over, the error introduced into the numerical procedure by the coupling is
also considered by the multigrid solver as the coupling is carried out on the
fine and coarse grids at every smoothing step. This results in a faster FSI
convergence compared to the implicit partitioned approach.
Figure 4.1 shows a graphical representation of the above approaches in the
context of robustness, flexibility, and the closeness of the individual solvers.

4.1.1 Implicit Partitioned Coupling

Time Step 

FSI Iteration 

Solid Fluid FSI 
convergence 

Figure 4.2: Course of events in an implicit partitioned coupling approach

The starting point for the implementation in this work is an implicit
partitioned coupling approach with a geometric multigrid fluid solver and
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Figure 4.3: Detail of implicit partitioned coupling approach

a conjugate gradient structure solver. The Fachgebiet Numerische Berech-
nungsverfahren at TU Darmstadt uses the ALE implementation within the
finite volume code FASTEST [20] as fluid solver, the finite element code
FEAP [65] as structure solver and the code coupling software MpCCI [24]
to handle the interface. Figure 4.2 shows a schematic view of the coupling
approach.
For a more detailed view, one time step of the native partitioned implicit
FSI implementation is depicted in figure 4.3. The ith iteration of the nth
time step can be described as follows:

• First the Navier Stokes equation is solved for velocity and pressure
(v)n

i

, (p)n
i

in the fluid domain using FASTEST.

• Using this solution the force on the FSI boundary (�)n
i

(n
f

)n
i

is derived
and sent to the structure solver FEAP via MpCCI.

• Implementing the force as boundary condition, the elasticity equation
is solved for the displacement (�)n

i

on the structure domain via FEAP.

• Then the structure solution, i.e. the displacement at the interface,
is send to FASTEST via MpCCI and is under-relaxed by a constant
factor ↵ to ensure convergence of the overall procedure.

• Finally, the grid in the fluid domain is recomputed based on the under-
relaxed displacement (�̄)n

i

, and the new grid velocity (vg)n
i+1is com-

puted.

An underrelaxation is introduced in order to stabilize the coupled procedure.
At FSI iteration i the displacement at the interface, which was calculated
by the structure solver is under-relaxed by a factor ↵:

�̄

n

i,f

= ↵�

n

i,f

+ (1 � ↵)�̄n

i�1,f (4.1)

This underrelaxation has to be considered when defining the FSI conver-
gence. In order to compare this implementation to the multigrid coupling,
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the FSI convergence criterion was improved. In earlier works of Heck [29]
and Yigit [78] convergence was reached if

P
N

k=1

����
⇣
�̄

n

i,f

⌘
k �

⇣
�̄

n

i�1,f

⌘
k

����

N

< ✏FSI (4.2)

was valid for the displacement in every spatial direction. N describes the
length of the vector of displacements. Substituting (4.1) into the latter
equation results in

|↵|
P

N

k=1

����
⇣
�

n

i,f

⌘
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⇣
�̄

n

i�1,f

⌘
k

����

N

< ✏FSI (4.3)

which results in a direct dependence of the convergence criterion, i.e. the
number of iterations needed to reach convergence, on the underrelaxation
factor. Thus, equation (4.3) omitting the |↵| is used to check for FSI con-
vergence in this work. Furthermore, overall convergence in one time step is
reached if the fluid and the structure solver have converged in addition to
FSI convergence.
The fluid and structure grids at the FSI interface are non-matching. Thus,
an interpolation method is employed. For the forces originating at the cell
face centers of the fluid grid and destined to the cell corners of the structure
grid the interpolation is based on overlapping area weighting. For details see
intersection algorithm in MpCCI [24]. For the displacement originating at
the cell corners of the structure grid and destined to the cell corners of the
fluid grid a distance weighted interpolation is used. This is called minimal
distance algorithm in MpCCI [24].
In every coupling step the fluid solver makes use of its multigrid solver, but
the exchange of forces and displacements is restricted to the finest grid level.
Also, the discrete space conservation law (3.32) is checked on the finest grid
in every FSI iteration.
According to Yigit [78] it is su�cient for this setup to consider the discrete
grid flux (3.30) in the momentum equation only on the finest grid level.
As the discrete momentum equation (3.15) accounts for the FAS framework,
but the discrete mass equation (3.24) does not, special care has to be taken
when restricting the mass and grid flux. The discrete grid flux (3.30) is cal-
culated before restriction and added to the mass flux. Then the momentum
equation can calculate its fine grid residual and carry on with the interpo-
lation. The grid flux is then subtracted from the combined flux in order to
build the residual for the mass conservation equation.

4.1.2 Multigrid Coupling

In the following the extensions and modifications to the implicit partitioned
coupling model to multigrid coupling is described. Special attention has
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been given to the boundary conditions in the setting of an FAS of a coupled
problem.

Preliminaries in FASTEST As a first step in the implementation the
MG CPL into FASTEST the structure of the main subroutines had to be
adapted. The new structure is as follows. The outer loop runs over the time
steps. The next loop runs over the grid levels in a V-cycle manner. Every
iteration of this loop starts and ends at the currently finest grid. The inner
loop controls the number of coupling steps used for smoothing. In every loop
the coupled problem is solved in the following order. First the problem on
the fluid domain is solved with boundary conditions from the last structure
solve or, on the coarse grid, from the fine grid. Then, after its boundary
conditions (forces) are updated, the structure problem is solved. After that
the underrelaxation is applied and the new fluid boundary conditions are
constructed. Figure 4.4 schematically shows the nested loops in the new
arrangement.

Loop over time steps!

Loop over grid levels!

Loop over coupling 
iterations!

Navier!
Stokes!

Boundary 
Force!

Coupling! Fluid Grid!

Figure 4.4: Adapted structure of the fluid code FASTEST in preparation of
multigrid coupling

The Discrete Momentum Equation Keeping in mind that in equation
(3.15) the factors a are dependant on v and � and the right hand side b

is dependant on v, p, and �, full representation of the FAS is appropriate.
Thus, the coarse grid (2h) representation of the discrete momentum equation
yields:
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with
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As the coe�cients a

2h
i

on the coarse grid are assembled analogously to their
fine grid counter pieces, it becomes clear that the discrete grid flux has to
be added to the mass flux for the coarse grid momentum equation. The
boundary conditions to the momentum equation at the FSI interface are
the first part of (2.25). Thus for the fluid velocity on coarse grids at the FSI
interface holds
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h
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⌘
. (4.6)

Note, that v in the momentum equation is defined by equation (A.6) in
Eulerian coordinates, thus in contrast to the ALE velocity existent at the
FSI boundary.

The Discrete Mass Conservation Equation In order to solve the
pressure correction equation, the mass flux must be taken into account.
Mass fluxes are restricted conservatively, i.e. the initial coarse grid mass
flux of a cell is the sum of all fine grid mass fluxes in the corresponding fine
grid cells. The coarse grid mass flux is then updated by velocity corrections,
which means equation (3.24) yields omitting the iteration number:
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Again, the mass conservation is examined in Eulerian formulation, thus the
boundary velocity is existent. Furthermore, the pressure gradient at the
interface equals 0. Its boundary condition at the FSI boundary then only
consists of the mass flux introduced by the moving structure:

ṁ
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. (4.8)

As the velocity at the interface changes at every coupling iteration, the
resulting boundary conditions for the fluxes have to be recalculated every
coupling iteration, too. Recalling the calculation of inner fluxes, equation
(4.7), the boundary fluxes are calculated accordingly as sum over the fine
grid fluxes added to a corrected coarse grid flux originating from the velocity
correction:
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The Space Conservation Law The SCL is checked on every grid level
separately, ensuring the stability of the time discretization scheme. The
discrete SCL on the coarse grid is the straightforward coarse grid represen-
tation of (3.32) as the displacement on the coarse grid is defined by the
coarse grid velocity as a correction to the fine displacement. The coarse grid
geometry information of the previous time steps is taken from the coarse
grid displacement of the according step. The coupled codes proceed to the
next time step at FSI convergence. This ensures the coarse grid displace-
ment to coincide with the fine grid displacements where applicable and thus
the correct use of the SCL.

The Discrete Grid Flux As the grid moves in every FSI iteration, The
change in the discrete grid flux has to be considered in every grid level. The
discrete grid flux is computed as in (3.30) based on the corrected coarse grid
velocities and added to the inner convective flux. At the FSI boundary the
coarse grid flux is not computed, because a Dirichlet boundary condition for
the velocity is present.

The Discrete Elasticity Equation The coarse grid system for the dis-
crete elasticity equation is again the FAS applied to equation (3.6). This
yields
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The outer forces on the right hand side are arguably independent of � and
thus a more compact form of the coarse grid equation can be found. With
a view to section 4.2.2 this form is more suitable to compare the actual
implementation to the underlying theory. The coarse grid von Neumann
boundary condition at the FSI interface is defined to be corresponding to
the coarse grid system:
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Convergence Criterion The choice for an appropriate convergence cri-
terion is nontrivial as convergence may only appear on the finest grid, but
due to the utilization of the coupled solution as a smoother, small changes in
between two fine grid solves are expected even when far from convergence.
Therefore, the summed change of displacements throughout an entire V-
cycle is taken into account when checking for convergence. The convergence
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criterion reads: P
N

k=1

���(�n

i

)k � ��̄n

i�1

�
k

���

N

< ✏FSI (4.13)

in which i indicates the number of V-cycle.
Figure 4.5 shows an overview of the overall MG CPL process. This can also
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Figure 4.5: Course of events in a multigrid coupling approach

be seen as a single multigrid implementation in each code running in simul-
taneous V-cycles. On every grid level the coupling procedure as described
in figure 4.3 is applied.

4.2 Multigrid Coupling Implementation

In this section the development of the implementation of the MG CPL algo-
rithm is described and tested one by one. The implementation is based on
the structure solver FEAP [65] version 8.2, the current version of the fluid
solver FASTEST [20], and the code coupling interface MpCCI [24] version
3.1.1. All computations in this section were executed on an Intel Core i7
2.93GHz.
The implementation and tests for the multigrid solver are only shown for
the structure part, as the multigrid implementation in FASTEST has been
tested and validated before, see e.g. Durst and Schäfer [19]. The MG CPL
implementation includes extensions to both FASTEST and FEAP. Thus,
the implementation is shown for both sides.
All structural multigrid implementations use five sweeps Gauß Seidel as
smoother. Successive overrelaxation and Jacobi were tested too, but worse
performance of the overall multigrid solver was observed, which is in agree-
ment to Hackbusch [28]. For the non-coupling test cases a LAPACK [1]
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direct solver was used on the coarsest grid. Using more Gauß Seidel sweeps
or more Newton iterations on the coarser levels that are not the coarsest
can accelerate convergence. The same is true for more Newton iterations on
the coarsest grid and especially valid for nonlinear test cases. For the sake
of simplicity and reliable comparison only one smoothing step (or Newton
iteration on the coarsest grid) per grid was used.

All test cases were computed with the MG CPL implementation as well
as the standard solvers or partitioned implicit solver respectively. The re-
sults of the di↵erent solvers on the structure sides varied by less than 0.01%
of the measured displacement, thus are not visible in the results given by
FEAP.

The standard FEAP convergence criterion, reduce the energy norm by a
factor of 10�16, is used. The solution of all methods coincides with the
solution of the standard FEAP conjugate gradient solver. The standard
FASTEST convergence criterion, the summarized residual to be less than
10�7, is applied. FSI convergence implies FEAP and FASTEST conver-
gence, too. The convergence factor is defined as the average energy norm
reduction in between two V-cycles.

4.2.1 Boundary Conditions

The first test cases were chosen to ensure the correct implementation of
boundary conditions as well as investigating the correctness and performance
of the geometric multigrid implementation in the structure code.

Consideration

In order to ensure the correct treatment of boundary conditions they have
to be applied before the restriction on the fine grid and afterwards on the
coarse grid. During prolongation attention has to be payed to von Neumann
boundary conditions to prevent the introduction of artificial interpolation
errors.

Implementation

In FEAP the successive coarser grids are created individually and a map-
ping in between them is constructed by the TIE command. It automatically
deletes nodes defined twice as long as their location coincides. In this pro-
cess the adjacencies of the coarse grid remain untouched, while the storage
for the coarse grid variables is unallocated. This allows the use of the pre-
existing boundary condition implementation of FEAP. This is organized as
follows. Dirichlet boundary conditions a↵ect the size of the tangent matrix
and residual vector. Thus, an additional mapping is needed in FEAP. For
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every grid point on a Dirichlet boundary one row and column in the tangent
and one entry in the residual is deleted. This compressed form has to be
taken into account in the interpolation and the application of boundary con-
ditions on coarse grids. As the interpolation is defined for the full system,
a mapping in between the compressed and decompressed form has to be
applied at all grid levels. Von Neumann boundary conditions are embedded
into the tangent and residual without altering their size.
Before prolongation the Dirichlet boundary points on the coarse grid are
overwritten with their interpolated fine grid values. If this step was skipped
the coarse grid correction on these points were nonzero and by interpolation
an additional error were introduced to the points in the vicinity.
Von Neumann boundary conditions on the fine grids are stored before re-
striction and restored during prolongation, as the same vector is used on
coarser grids, and thus is overwritten.

Testing

1 m

1 m

y

x

�y = 0.05
m

Figure 4.6: Initial conditions for
Dirichlet boundary condition test
case
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Figure 4.7: Initial conditions for
von Neumann boundary condi-
tion test case

The first test cases are employed to ensure the correct implementation
of the boundary conditions. For this purpose the results as well as the
performance of the multigrid code is observed. A linear elastic material as
well as linear strain-stress relationships are used in order to eliminate the
possibility of additional sources of error, as these test cases focus on the
correct implementation of boundary conditions.

Dirichlet Boundary Condition A first test case consists of a linear
elastic material with Lamé constants �

s

= 17.31 kg/ms2 and µ

s

= 11.54
kg/ms2. The domain is discretized by first order quadrangles. The number
of quadrangles reach from 64 to 262, 144. The initial domain is the unit
square ([0, 1] m⇥[0, 1] m) with a homogeneous Dirichlet boundary condition
at the bottom (y = 0) and a displacement of �y = 0.05 m in y direction
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Figure 4.9: x deformation for
von Neumann boundary condi-
tion test case

at the top (y = 1). Homogeneous von Neumann boundary conditions are
applied at the remaining sides. Figure 4.6 shows a schematic sketch of the
domain with its boundary conditions. As solvers a 2, 3, 4, and 5 level
multigrid solver as well as the standard FEAP conjugate gradient solvers
are used. The size of the displacement is 5% of the object size, therefore
su�ciently small for a linear material model to produce reliable results.
The deformation of the domain, the convergence factors of the multigrid
solvers, and CPU time are used as quantities for comparison. As a constant
displacement in y direction is applied, the displacement in x direction of
point A located at (0.0, 0.5) is monitored to observe the deformation.

Von Neumann Boundary Condition The second test case is used to
verify the correct implementation of the von Neumann boundary condi-
tion. Once again the unit square is used as the initial domain and the same
strain-stress relationship as well as material model as for the former case are
applied. Homogeneous Dirichlet boundary conditions at y = 0, a constant
force per length of �

y

:= �n

y

= 1.5 N/m in positive y direction along y = 1
and homogeneous von Neumann boundary conditions at the remaining sides
are applied. The load has been chosen to excite only su�ciently small dis-
placements. Therefore, the linear material model is suitable. Figure 4.7
shows a sketch of the initial domain and its applied loads. The domain is
discretized by 64 through 262, 144 quadrangles. Once again the multigrid
solvers with up to 5 grids as well as the standard FEAP solver are used for
comparison. The observed quantities are the CPU time, the convergence
factor for the multigrid solvers, and the x displacement of point A located
at (0.0, 0.5).

Figures 4.8 and 4.9 show the resulting domain for 8,192 degrees of free-
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# Degrees of Freedom x-Displ of A [10�2 m]
128 1.0887
512 1.0864

2,048 1.0858
8,192 1.0857

32,768 1.0857
131,072 1.0857
524,288 1.0857

Table 4.1: Displacement of point A = (0.0, 0.5) in the Dirichlet boundary
condition test case

# Degrees of Freedom x Displ of A [10�3 m]
128 9.5271
512 9.5360

2,048 9.5409
8,192 9.5434

32,768 9.5445
131,072 9.5449
524,288 9.5451

Table 4.2: Displacement of point A = (0.0, 0.5) in the von Neumann bound-
ary condition test case

dom. In tables 4.1 and 4.2 a detailed view of the deformation is given. The
Dirichlet as well as the Neumann test case approach the grid independent
solution. In figures 4.10 and 4.11 the CPU time of the di↵erent solvers is
plotted against the number of degrees of freedom from the di↵erent resolu-
tions in a log-log representation. The label iGrid represents the computation
with a multigrid solver with i grid levels. CG stands for the standard FEAP
solver. Figures 4.10 and 4.11 clearly indicate the exponential run-time of the
standard solver. The multigrid implementation shows the expected linear
performance if the maximum of available grid levels is used. Figures 4.12
and 4.13 show the convergence factors for the multigrid computations. The
convergence factors stay quite constant throughout the di↵erent resolutions,
which is an indication for the correct implementation of the multigrid solver.
All multigrid implementations need 6 to 7 V-cycles to reach the convergence
criterion independent of the resolutions. This is a necessary condition for
the linear performance of multigrid solvers.
Comparing figures 4.10 and 4.12 shows, that for example the 2 grid multi-
grid has a better convergence factor, but needs more CPU time than the
other implementations. This again is an indication that the 2 grid multigrid
needs much more CPU time per V-cycle, which can be explained by the
direct solve on the coarsest grid. By using only 2 grids the influence of the
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Figure 4.13: Convergence factors
for the multigrid solver on the
von Neumann boundary condi-
tion test case

direct solver on the computing time is visible.

Mixed Boundary Condition In order to test the implementations in
a more challenging environment, the next test case uses mixed boundary
conditions. This includes di↵erent boundary conditions in x and y direc-
tion as well as discontinuous boundary conditions along the edges. It is a
adaption of the test case from Parsons and Hall [45]. The initial domain is
a [0.0, 2.0] m ⇥ [0.0, 1.0] m rectangle. A linear elastic material with Lamé
constants �

s

= 17.31 kg/ms2 and µ

s

= 11.54 kg/ms2, as well as a linear
strain-stress relationship is used. At y = 0 a homogeneous Dirichlet bound-
ary condition for the y displacement and a homogeneous von Neumann con-
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Figure 4.14: Initial conditions
for the mixed boundary condition
test case
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dition for the x displacement is applied. At (1.0, 0.0) the x displacement is
fixed to zero. Furthermore, a point load of F

y

= 4 N in y direction is applied
at (1.0, 1.0). Figure 4.14 shows a sketch of the initial domain and boundary
conditions. The domain is discretized by 8 ⇥ 4 through 512 quadrangles.
For comparison the CPU time as well as the convergence factors for the
multigrid solvers, and the displacement of point B = (1.0, 1.0) are moni-
tored. This test case is well suited to validate the correct boundary treat-
ment because an edge with a Dirichlet boundary, an edge with a von Neu-
mann boundary and an edge with both boundary conditions can be found.

# Degrees of Freedom y Displ of B [10�1 m]
64 2.4195

256 2.9483
1,024 3.4820
4,096 4.0170

16,384 4.5523
65,536 5.0877

262,144 5.6231

Table 4.3: Displacement of point B = (1.0, 1.0) in the mixed boundary
condition test case

Figure 4.17 shows the convergence factors for the multigrid solvers. The
convergence factor is higher than for the last test cases, especially for lower
resolutions. As the resolution grows, the convergence factor falls below 0.01,
which is in the regime of the previous test cases. This can be explained by
the challenging boundary conditions.
Table 4.3 shows the displacement of the point B = (1.0, 1.0) with the applied
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Figure 4.17: Convergence factors
for the multigrid solver on the
mixed boundary test case

point load for di↵erent resolutions. The displacement does not converge to
a single solution as the actual solution would be non-physical. The good-
natured solutions in this test are due to the limitation of the linear elements
with a linear material model. Figure 4.15 shows the final domain for 16,384
degrees of freedom.
Figure 4.16 shows the CPU time of the di↵erent implementations. Again,
using the maximum number of grids available in multigrid computation
results in a linearly dependent computation time on the number of degrees
of freedom. The standard solver shows the anticipated exponential behavior.
In conclusion, the correct behaviour for the multigrid implementation can
be shown for di↵erent kinds of boundary conditions. The performance of
the multigrid shows the expected linear dependence, although for small and
mid-size problems the standard solver is superior concerning CPU time.
Further investigations of this test case can be found in Sachs et al. [52].

4.2.2 Full Approximation Scheme

Consideration

In the linear test cases the FAS is equivalent to the correction scheme. In
solving the nonlinear problems with FEAP, the implicit treatment of New-
ton’s method has to be take into account. This means during the assembly
of the system matrix from the individual elements, the elements produce di-
rectly the residual vector and the Jacobian. At no stage of the program the
nonlinear problem as in (3.38) is existent. Thus the FAS cannot be applied
directly to this problem.
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Implementation

In order to make use of the design of FEAP the FAS scheme has to be
built using FEAPs particular elements. On every grid the residual vector
R

h(�h) = f

h � K

h(�h) � C

h

�̇

h � M

h

�̈

h and the according tangent matrix
@R

h(�h)
@�

h are available. If the FAS approach as described in 3.3.2 would be
applied directly to the Newton iteration system supplied by FEAP

@R(�)

@�

�� = �R(�), (4.14)

then the coarse grid system would result in the following
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The underlined terms are explained below. The desired system is Newton’s
method applied to the coarse grid FAS equation of the discrete elasticity
equation. One Newton step of equation (4.10) yields
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Finally, when comparing equations (4.15) and (4.16), the equivalent parts
can be identified. Simple insertion shows that the left hand side of both
equations is equal and the right hand side is equal up to the underlined
parts of (4.15). To account for this inequality the FAS implementation in
FEAP is designed as follows.
First a few Gauß Seidel steps are computed as pre-smoothing. Then, the
intermediate fine grid solution is stored and the fine grid residual is com-
puted. Then the residual vector in Newton’s method is set up using the
actual build residual-subroutine from the FEAP call FORM. Note, that a
flag that should prevent calling multiple times FORM without solving in
between has to be reset. Then the residual vector, containing the boundary
conditions, is decompressed according to section 4.2.1.
The next step is the restriction of displacement, velocity, acceleration, and
the residual vector. The intermediate fine grid solutions are restricted by
injection and stored in order to compute the coarse grid correction. The
residual is restricted by linear interpolation. Here, the second underlined
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part of (4.15) is skipped. Another call of FORM on the coarse grid pro-
duces the coarse grid residual vector dependent on the interpolated fine grid
displacement, velocity, and acceleration. The interpolated fine grid residual
is added to the actual coarse grid residual and the sum is stored. Here, the
first underlined part of (4.15) is skipped.
To complete the coarse grid system, the Newton iteration is built on the
coarse grid using the standard FEAP functions. Then the stored residuals
are added to the right hand side.
Solving (or smoothing) the coarse grid system results in a displacement �2h

⇤ ,
velocity �̇2h

⇤ , and acceleration �̈

2h
⇤ . The correction to the previously stored

restricted fine grid solution is prolongated by linear interpolation and added
to the intermediate fine grid solution

�

h = �

h

0 + I

h

2h(�
2h
⇤ � I

2h
h

�

h

0). (4.17)

The velocity and acceleration are constructed analogously. The vector stor-
ing the coarse grid displacement and residual is then set to zero and post-
smoothing is conducted in the manner of pre-smoothing.

Testing
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Figure 4.18: Initial conditions for the CSM 1 test case
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A nonlinear test case is used to validate the FAS implementation, since
the FAS collapses to the regular correction scheme for linear cases. This
test case is Computational Structure Mechanics (CSM) 1 taken from Turek
and Hron [69]. The problem domain is a beam [0.0, 0.02] m ⇥ [0.0, 0.35] m
with a body load of 2 · 103 N/m2 applied in negative y direction. Figure
4.18 shows a sketch of the initial domain and applied loads. A homogeneous
Dirichlet condition in x and y direction is applied at x = 0 and homogeneous
von Neumann conditions are applied at the remaining sides. The structure
consists of an elastic, compressible material and the St. Venant Kirchho↵
material with Lamé constants �

s

= 8 ·106 kg/ms2 and µ

s

= 2 ·106 kg/ms2 as
well as nonlinear kinematics are applied. The domain is discretized by 2⇥36
through 128 ⇥ 2, 304 quadrangles. The test is calculated by the standard
FEAP solver as well as multigrid implementations with up to 5 grid levels.
Again, the CPU time for all implementations as well as the convergence fac-
tors for the multigrid implementations are compared. Also the deformation
is monitored by the displacement of point A = (0.01, 0.35) and compared
with the mesh independent solution.
Figure 4.19 shows the deformed domain for 2,304 degrees of freedom. Fig-

# Degrees of Freedom x Displ of A [10�3 m] y Displ of A [10�2 m]
144 -4.4881 -5.2327
576 -6.3168 -6.1996

2,304 -6.9691 -6.5103
9,216 -7.1550 -6.5967

36,864 -7.2056 -6.6202
147,456 -7.2195 -6.6267
589,824 -7.2235 -6.6286

independent -7.2251 -6.6294
Turek -7.187 -6.610
Heck -7.011 -6.516

Table 4.4: Displacement of point A = (0.01, 0.35) in the CSM 1 test case

ure 4.21 shows the convergence factors for the di↵erent multigrid approaches.
These are much higher than for the previous test cases. This is in agree-
ment with the fact that the correction scheme restricts the error, which is
always smooth compared to the actual value and therefore can be reduced
on coarse grids more e↵ectively. The FAS restricts the actual variables �,
�̇, and �̈. Due to the nonlinear problem, the FAS does not collapse to the
correction scheme as for the previous test cases. This phenomenon can also
be observed in the CPU time of the di↵erent solvers in figure 4.20. The run-
time of the multigrid solvers is linear dependent on the resolution similar as
for the linear test cases although its performance is inferior to the standard
solver.
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Figure 4.21: Convergence factor
for the multigrid solver on the
CSM 1 test case

In table 4.4 the displacement of point A is tabulated with the numbers of
degrees of freedom. The test case has a unique solution, which is better
approximated with increasing resolution. Thus, a grid independent solution
is computed by Richardson extrapolation. Also the solutions computed by
Turek and Hron [69] and Heck [29] are given for comparison. The grid inde-
pendent solution is 0.53% o↵ Tureks solution. The finest grid solution with
about half a million degrees of freedom is 0.02% o↵ the independent solution
and the next coarser solution with about 150k degrees of freedom is 0.07%
o↵. Even the next coarser solution with less than 37k degrees of freedom is
still only 0.27% o↵ the independent solution.
In conclusion, the FAS implementation in FEAP computes the correct dis-
placement for nonlinear problems. It needs the expected CPU time in linear
dependence on the degrees of freedom, although for the presented two dimen-
sional problem it is outperformed by the standard solver. Also the employed
grid shows good results, as the three finest discretizations show an error of
less than 1%.

4.2.3 Restriction & Prolongation

Consideration

As stated by Hackbusch [28] first order interpolation for restriction and
prolongation is su�cient since only second order pdes are present. In fore-
thought of the coupling, interpolation is implemented analog to FASTEST.
In the restriction of the displacements an injection is used. For the restric-
tion of residuals and prolongation of displacements a linear interpolation in
between neighboring points is applied.
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Implementation

As the FEM code uses node centered values and the coarse grid nodes are a
subset of the fine grid nodes, the displacement can be interpolated by simple
injection. This is realized automatically when using the TIE command.
The residual associated with a fine grid node which is does not correspond to
a coarse grid node must be split up between neighboring coarse grid nodes.
This is accomplished by linear interpolation.
During the initialization of a multigrid computation an interpolation ma-
trix is created. Since this is a sparse matrix, it is stored in the so called
Compressed Row Storage (CRS) format. Thus the restriction as well as the
prolongation achieves a run-time of O(degrees of freedom).

Testing
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Figure 4.22: Initial conditions for the 3D CSM 1 and the 3D CSM 3 test
case

In the next test case the implementation of the interpolation operators
is tested for three dimensional problems. This test case is a 3D adaption
of the CSM 1 test case used above. The computational domain is a 3D
beam [0.0, 0.35] m⇥ [0.0, 0.02] m⇥ [0.0, 0.02] m, which is discretized by first
order brick elements with enhanced formulation. A body force of 2 m/s2

in negative y direction is applied to the entire structure. The same ma-
terial, strain-stress relationship, and Lamé constants as in the latter test
case are used. Figure 4.22 shows a sketch of the initial domain and applied
loads of this test case. The domain is discretized into 2 ⇥ 36 ⇥ 2 through
16⇥ 288⇥ 16 linear brick elements. Once again, CPU time, displacement of
point A = (0.35, 0.01, 0.01), and the convergence factors are used for com-
parison. The test case is calculated by the 2 to 4 stage multigrid solvers and
the standard FEAP solver.

In figure 4.23 the di↵erent solver implementations are compared regard-
ing CPU time. The standard solver performs well for small discretizations,
but complies with its exponential scaling property as the number of grid
points rise. The 2 grid scheme performs better but still does not really show
the linear dependence. Regarding a multigrid solver using all available grid
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# Degrees of Freedom x Displ A [10�3 m] y Displ A [10�2 m]
432 -7.1504 -6.5890

3,456 -7.1860 -6.6086
27,648 -7.2079 -6.6203

221,184 -7.2178 -6.6256
independent -7.2260 -6.6300

Table 4.5: Displacement of point A = (0.35, 0.01, 0.01) in the 3D CSM 1
test case
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Figure 4.23: CPU time for the
multigrid and the standard solver
on the 3D CSM 1 test case
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Figure 4.24: Convergence factors
for the multigrid solver on the 3D
CSM 1 test case

levels, i.e. the maximum of coarser grid levels available for the current res-
olution, the linear dependence can be observed. Thus, the performance of
the multigrid implementation for a 3D test case is demonstrated.
Here, the great potential of multigrid solvers can be seen. As for 3 dimen-
sional test cases the coarsening of a problem reduces the number of unknowns
by a factor of around 8 instead of around 4 for 2D problems. Furthermore,
comparing the convergence factors in figure 4.24 to the two dimensional case
in table 4.21 improvement in the coarse grid correction can be seen.
Comparing the CPU times in figure 4.23 to the simple boundary condition
test cases above, the multigrid already outperforms the standard solver for
a discretization with less than 10,000 degrees of freedom. In figures 4.10 and
4.11 for the Dirichlet and von Neumann boundary condition test case this
phenomenon occurs beyond 100,000 degrees of freedom. Table 4.5 shows the
x and y displacement of point A for di↵erent discretizations and the mesh
independent solution from the Richardson extrapolation. The finest grid
solution is 0.11% o↵ the independent one. The second finest solution is still
0.25% o↵. And the third finest solution implies an error of 0.55%.
In conclusion, the fast superior performance of the multigrid implementa-
tion and it’s linear dependent run-time indicate the correct implementation
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of 3 the restriction and prolongation operator in 3 dimensions.
Note that the multigrid solvers are able to solve finer discretizations, whereas
the standard solver runs out of memory (4GB). Thus, the full potential of
the multigrid algorithm in comparison to the standard solver cannot even
be shown.

4.2.4 Transient Problems

Consideration

The unknown variable in the FAS now consists not only of �, but also
of �̇ and �̈. The transient variables velocity and acceleration have to be
restricted, prolongated and corrected according to the displacement. Also
the mass and damping matrix have to be treated by the FAS according to
the sti↵ness.

Implementation

Although the mass and damping part of equation (3.6) are linear, the FAS
implementation is used. This is done for implementation reasons, as the
mass, damping and sti↵ness are not stored explicitly, but the iteration ma-
trix for Newton’s method is computed directly. The implementation follows
the findings of the previous sections, as the theory derived there included
the transient case. The mass and damping matrix are restricted and prolon-
gated by linear interpolation. The velocity and acceleration are restricted
using injection and their correction is prolongated by linear interpolation.

Testing

The test case for transient solutions is the 3D adaption of CSM 3 from
Turek and Hron [69]. The initial domain is [0.0, 0.02] m ⇥ [0.0, 0.35] m ⇥
[0.0, 0.02] m, the Saint Venant Kirchho↵ material law as well as a nonlinear
kinematics is used. The material parameters are described by �

s

= 8 · 106

kg/ms2 and µ

s

= 2 · 106 kg/ms2. A body force of 2 · 103 N/m3 in nega-
tive y direction is applied to the entire structure. The material density is
⇢

s

= 1 · 10�3 kg/m3. The initial domain and loads is shown in figure 4.22.
The domain is discretized by a successively increasing number of 8 node
brick elements. For the test two seconds of physical time were calculated,
the second order Newmark beta method with standard parameters � = 0.25
and � = 0.5 is used for the time discretization.
Three di↵erent discretizations were used. A coarse grid with 2 ⇥ 36 ⇥ 2
elements, i.e. 432 degrees of freedom, a middle one with 4⇥72⇥4 elements,
i.e. 3,456 degrees of freedom and a fine one with 8 ⇥ 144 ⇥ 4 elements, i.e.
27,648 degrees of freedom. To be consistent with Turek and Hron’s paper
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Figure 4.25: Deformed state of the 3D CSM 3 test case (x displacement
shown)

three di↵erent time step sizes, �t = 0.02, 0.01, and 0.005 are used for com-
parison. All test cases were run with the multigrid implementation with
up to 4 levels as well as the standard FEAP solver. The mean as well as
maximum displacement of point A = (0.35, 0.01, 0.01) as well as the average
CPU time per time step are monitored.

On the basis of the finest discretization a modal analysis was carried

Grid x Disp. [10�2 m] (Freq. [1/s]) y Disp. [10�2 m] (Freq. [1/s])
coarse -1.44361 ± 1.44359 [1.08696] -6.36306 ± 6.51894 [1.11111]
middle -1.45056 ± 1.45054 [1.08696] -6.38658 ± 6.53242 [1.11111]

fine -1.45482 ± 1.45488 [1.08696] -6.40057 ± 6.54043 [1.11111]

Table 4.6: Displacements of point A = (0.35, 0.01, 0.01) for the 3D CSM 3
test case with �t = 0.02 s

Grid x Disp. [10�2 m] (Freq. [1/s]) y Disp. [10�2 m] (Freq. [1/s])
coarse -1.45558 ± 1.45572 [1.08696] -6.44451 ± 6.48449 [1.08696]
middle -1.46211 ± 1.46229 [1.0989] -6.45029 ± 6.51271 [1.08696]

fine -1.46676 ± 1.46694 [1.08696] -6.45673 ± 6.52727 [1.0989]

Table 4.7: Displacement of point A = (0.35, 0.01, 0.01) for the 3D CSM 3
test case with �t = 0.01 s

out. The first 3 Eigenfrequencies are at 1.07 Hz, 6.61 Hz, and 18.0 Hz. This
identifies the first three cycle lengths to be 0.93 s, 0.15 s, and 0.05̄ s.
Figure 4.25 shows the 3D CSM three domain at its maximal deformed state.
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Figure 4.26: Average CPU time
per time step for the multigrid
and standard solver on the 3D
CSM 3 test case for �t = 0.02 s
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Figure 4.27: Average CPU time
per time step for the multigrid
and standard solver on the 3D
CSM 3 test case for �t = 0.01 s
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Figure 4.28: Average CPU time per time step for the multigrid and standard
solver on the 3D CSM 3 test case for �t = 0.005 s

Tables 4.6, 4.7, and 4.8 show the displacement of point A for varying time
steps and resolutions. The grid independent solution was computed from
the computations with the smallest time step. Table 4.9 shows in addition
the solution of Turek and Hron [69] and Heck [29].
Looking at the displacement in x direction of the fine grid, one can see al-
though the actual values for the maximal displacement is only 0.72% o↵ the
independent solution, the time step is not suitable to display the correct
frequency. This results in a frequency which is 1.67% o↵ the independent
solution.
The fine grid solution for �t = 0.01 s results in an amplitude error in x

direction of 0.39%, an amplitude error of 0.52% in y direction, and a fre-
quency error of 0.55%. For the second finest grid these errors are 0.55% in
x, 0.83% in y, and 0.54% in frequency.
The finest time step of �t = 0.005 s and the fine grid result in an amplitude
error of 0.33% in x direction and 0.37% in y direction. The middle grid
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Grid x Disp. [10�2 m] (Freq. [1/s]) y Disp. [10�2 m] (Freq. [1/s])
coarse -1.45677 ± 1.45683 [1.0989] -6.46513 ± 6.46387 [1.0989]
middle -1.46458 ± 1.46462 [1.0929] -6.48513 ± 6.48387 [1.0929]

fine -1.46893 ± 1.46897 [1.0929] -6.49381 ± 6.49819 [1.0929]

Table 4.8: Displacement of point A = (0.35, 0.01, 0.01) for the 3D CSM 3
test case with �t = 0.005 s

Solution x Disp. [10�2 m] (Freq. [1/s]) y Disp. [10�2 m] (Freq. [1/s])
independent -1.4744 ± 1.4745 [1.0929] -6.5005 ± 6.5343 [1.0929]

Turek -1.4305 ± 1.4305 [1.0995] -6.3607 ± 6.5160 [1.0995]
Heck -1.421 ± 1.421 [1.098] -6.309 ± 6.161 [1.098]

Table 4.9: Displacement of point A = (0.35, 0.01, 0.01) for the 3D CSM 3
test case

results in an amplitude error of 0.51% in x direction and 0.67% in y. For
both grids the frequency error is below 0.01% and thus not visible in the
given results. The coarse grid results in an error of 1.20% in amplitude and
0.55% in frequency.
Figures 4.26, 4.27, and 4.28 show the average CPU time for one time step
for the multigrid solvers and the standard solver. All three time step show
similar results, and the multigrid implementations outruns the standard im-
plementation for increasing resolution. The similar behaviour of the multi-
grid solver to the standard solver when altering the time step size indicates
the correct implementation of the transient FAS.
As this test case serves as a basis for the FSI computations in chapter 6,
note that all resolutions on the finest time step show an error of less than
1.2% in tip displacement.

4.2.5 Coupling

Consideration

The MG CPL implementation is constructed by applying the FAS to an
implicit partitioned coupled problem as described in section 4.1.2. The pre-
and post-smoothing in the MG CPL implementation consist of an analog
to the implicit partitioned implementation. Solely the individual equation
solvers are modified. After pre-smoothing, the FAS coarse grid representa-
tion of the coupled system is solved. Then, the coarse grid correction (3.41)
is applied to velocity, pressure and displacement individually. Afterwards a
few post-smoothing steps are calculated similar to the pre-smoothing.
The discrete fine grid coupled system as outlined in section 4.1.2 containing
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all applied boundary conditions can be stated as:
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in which only the direct dependencies are denoted. Equation (4.18) consists
of the discrete momentum and pressure correction equation as well as the
grid deformation on the fluid domain and the fluid FSI boundary condition.
Equation (4.19) consists of the residual equation arising from the Newton it-
eration applied to the discrete momentum equation in the structure domain
as well as the structure FSI boundary condition. R

�

denotes the derivative
of R with respect to �.

The resulting FAS coarse grid equations for the coupling problem then read
as follows:
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From the theory of multigrid it follows that all boundary conditions have
to be applied to the fine grid problem before restriction and the coarse grid
representation of these boundary conditions has to be applied to the coarse
grid problem. In FSI problems the boundary conditions at the FSI interface
for both the fluid and the structure code is permanently changing. Hence,
special care has to be taken at the Dirichlet boundary, i.e. the velocity at
the interface acting on the fluid, as the influence of this boundary spreads
into the problem domain during prolongation.
One extra exchange iteration is introduced on the coarse grid, in order to
assemble the above system. It is carried out directly after restriction, its
purpose will become clear in the following.

Implementation in FEAP

The extension of the FEAP multigrid implementation to the MG CPL is
explained using equation (4.21). The left hand side is simply the tangent
matrix as for the non coupled case. The first item on the right hand side
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is dependent on the solution of the most recent coarse grid coupled solve.
Thus, in the first iteration it is set equal to the restricted fine grid solution.
The second item on the right hand side of (4.21) needs special attention.
The R

2h vector is dependent on the interpolated fine grid velocity as well as
the interpolated pressure. In the fluid code the velocity is interpolated and
the resulting shear force based on v

2h
0 = I

2h
h

v

h

0 is sent to the structure code.
This is done during the one extra coupling step. The initial coarse grid pres-
sure is set to zero, as the fluid solver only operates on the gradient and the
correction of the pressure (for more information see [41]). This numerical
simplification in the fluid code does not a↵ect the course of interaction. As
R

2h is linear in p and the starting point of p

2h in the first right hand side
term of (4.21) is set to p

2h
0 , it is possible to set p

2h
0 = I

2h
h

p

h

0 := 0 and let p

2h

be only the correction to the fine grid pressure. The displacement �2h
0 is set

to the interpolated fine grid displacement prior to any coarse grid exchange
as for the non coupled case.
The remaining third residual on the right hand side is also calculated as for
the non coupled case, originating from the last coupled fine grid solve.
Additionally, in the extra coupling step the interpolated fine grid displace-
ment is send to the fluid code as well.
Considering the memory consumption, as the coarse grid points are actually
stored as a subset of the fine grid points, extra memory has to be allocated
to store the doubly allocated arrays holding fine grid values which are not
supposed to be altered during the coarse grid solution.

Implementation in FASTEST

The extension of the implicit partitioned coupling to MG CPL of FASTEST
is explained with the help of equation (4.20). The left hand side and the first
item of the right hand side of (4.20) are dependent on v

2h and p

2h which

have to be equal to I

2h
h
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⌘
and I
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⌘
at convergence. Thus, the

coarse grid displacement must be treated as a correction to the fine grid
displacement. This is realized by setting the initial coarse grid displacement
to the interpolated fine grid displacement �2h

f

:= I

2h
h

�

h

f,0 and moving the
coarse grid accordingly prior to the first coarse grid FSI iteration. Simul-
taneously, using the extra exchange, the first coarse grid displacement �2h

s,0,
which is received from the structure, is stored in order that during all sub-
sequent coarse grid FSI iterations the grid is only moved by a correction to
the interpolated fine grid displacement. Thus, the actual displacement in
the following coarse grid FSI iterations results in

�

2h
f

:= �

2h
s

� �

2h
s,0 + I

2h
h

�

h

f,0. (4.22)

The second item on the right hand side of (4.20) as well as the system
matrix on the right hand side is built dependent on the interpolated fine



4.2. MULTIGRID COUPLING IMPLEMENTATION 57

grid velocity and pressure, prior to any exchange.
The last two items are calculated on the fine grid based on the last coupling
iteration prior to restriction.
The Dirichlet boundary conditions for the fluid velocity must be applied
again on the coarse grid directly after restriction, and dependent on the

interpolated fine grid displacement I

2h
h

�

h

f,0, as v

2h is set to I

2h
h

v

h

0

⇣
�

h

f,0

⌘
as

well in restriction. From this follows, that before prolongation the current
Dirichlet boundary condition, depending on the displacement from equation
(4.22), must be applied again in order to be consistent with the coarse grid
velocity correction.
The implementation of the Dirichlet boundary condition at the FSI interface
(2.25) is consistent with the underlying time integration scheme. Instead
of the velocity, the displacement �h is interpolated and transferred from
the structure and the boundary velocity in time step n is then computed
according to the BDF 2 as:

v

h

n

=
3�h

n

� 4�h

n�1 + �

h

n�2

2�t

(4.23)

in which � is taken at the cell centers, not the cell corners. In order for its
coarse grid counterpart (4.6) to be consistent with the time stepping scheme,
the coarse grid displacement has to be calculated as in (4.22) and again, �
at the cell center. Note, that �2h from previous time steps is stored at FSI
convergence, thus is consistent with the fine grid displacement. By injecting
the latter equation into the 2h version of (4.23) it can be shown, that the
choice of coarse grid displacement from corrected coarse grid velocity is valid.
The restriction of displacements is realized by simple injection, the residual
and the boundary flux for every coarse grid cell is restricted by summation
over the corresponding fine grid cells.
Note, that every iteration ends with a structure solve, thus the boundary
conditions for the fluid are usually calculated at the beginning. After the
last FSI iteration on the fine grid the velocity at the FSI interface has to be
calculated once again in order to have a complete set of feasible boundary
conditions.

Implementation in the MpCCI Interface

A unique grid to grid mapping has to be used when coupling on multiple non-
matching grids with one coupling tool. Therefore, for every grid used in the
computation a separate communicator has to be introduced into MpCCI.
The node and element numbering in MpCCI is di↵erent to the number-
ing in FASTEST and FEAP, as it has only knowledge about the interface
nodes / elements and its internal elements are situated at the FSI boundary,
therefore of lower dimension. Special care has to be taken in FEAP when
using MG CPL, as after the TIE command (eliminating nodes defined twice)
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coarse grid points are virtually non-existent, and thus a mapping between
the fine and coarse grid point has to be applied.

Testing
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Figure 4.29: Schematic sketch of the fluid and structure domain of FSI 1
test case
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Figure 4.30: Final state of the FSI 1 test case (fluid x velocity and structure
y displacement shown)

The next test case is employed to verify the coupled FAS implementation
in the MG CPL. For this purpose the FSI 1 test case from Turek and Hron
[69] is used. The test case consists of a solid object submerged in a channel
flow. The fluid properties are described by an incompressible Newtonian
fluid with a dynamic viscosity of µ

f

= 1 kg/ms and a parabolic inflow
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Figure 4.31: Final state of the FSI 1 test case (fluid pressure and structure
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with average inflow velocity v̄ = 0.2 m/s. This results in a Reynolds num-
ber of Re = 20, thus a laminar fluid state is considered. At the lower wall
(y = 0 m) and upper wall (y = 0.41 m) homogeneous Dirichlet boundary
conditions for the fluid are active. The outflow (x = 2.5 m) is characterized
by a homogeneous von Neumann boundary condition. The fluid domain
is initialized with zero velocity and pressure. The structure part consists
of the cylinder, which is rigid and the attached elastic bar. In the elastic
bar the St. Venant Kirchho↵ material law is used, with density ⇢ = 1 · 103

kg/m3, and Lamé constants �
s

= 8 · 106 kg/ms2 and µ

s

= 2 · 106 kg/ms2.
Furthermore nonlinear kinematics are applied. The boundary conditions of
the bar are homogeneous Dirichlet at the cylinder and von Neumann FSI
coupling conditions on the remaining sides.
The FSI interface corresponds to the entire surface of the structure. As the
cylinder is rigid, a homogeneous Dirichlet boundary condition is set there in
the fluid solver. As this is a two dimensional test case but the fluid solver
is written for three dimensions, the velocity in the direction of the third di-
mension is initialized with zero and skipped in the solution. In the structure
domain homogeneous Dirichlet conditions in the third dimension are set at
the boundaries.
In this test case the tip displacement of point A located initially at (0.2, 0.6)
as well as the drag and lift forces acting on the structure are observed. Ad-
ditionally, for the comparison of the performance of the MG CPL, the fluid
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Figure 4.32: Development of the fluid, structure and FSI residual on the
FSI 1 test case

fine grid iterations and the CPU time are monitored. The test case is com-
puted using two implementations, namely the implicit partitioned coupling
approach with a multigrid fluid solver and the standard FEAP solver and
the MG CPL approach with two grid levels. The test case is discretized
into three di↵erent grids for the fluid as well as the structure domain. The
fluid domain is discretized into 60,800, 234,200, and 972,800 volumes and
the structure domain into 144, 1,152, and 9,216 elements, respectively.

Solution x Disp. [10�5 m] y Disp. [10�4 m]
coarse 2.2994 6.9527
middle 2.2738 7.8346

fine 2.2691 8.0920
independent 2.2680 8.1981

Turek 2.27 8.29

Table 4.10: displacement of point A = (0.6, 0.2) in the FSI 1 test case

Solution Lift [N] y Drag [N]
coarse 0.80976 14.2907
middle 0.77752 14.2917

fine 0.76755 14.2874
independent 0.76309 14.2910

Turek 0.7638 14.295

Table 4.11: Drag and lift forces acting on the structure of the FSI 1 test
case

Figure 4.30 and 4.31 show the final state of the FSI 1 test case. Figure 4.30
shows the x component of the fluid velocity as well as the y component of
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Figure 4.33: Fluid fine grid iterations and overall CPU time for the implicit
partitioned coupling approach (SG) and MG CPL on the FSI 1 test case

the structure displacement. Figure 4.31 shows the fluid pressure distribu-
tion and the forces acting on the structure in y direction. Table 4.10 shows
the displacement for the di↵erent resolutions as well as the grid indepen-
dent solution of the Richardson extrapolation and the solution from Turek.
Compared to the independent solution the fine grid introduces a maximum
error of 1.29 % in the tip displacement and the middle grid 4.43 %. In table
4.11 the forces acting on the structure are summarized for the di↵erent dis-
cretizations. Compared to the independent solution, the fine discretization
introduces a maximum error of 0.58% and the middle grid of 1.89%.

According to Ferziger and Peric [23] a common error that can arise in im-
plementing a multigrid solver is the wrong treatment of the boundary con-
ditions. This is reflected in the fine grid solution being unable to converge
its residual below a certain point. Thus, a correct multigrid implementation
must be able to run to machine accuracy. This is a crucial requirement for
the MG CPL implementation. As the two separate solvers for fluid and
structure are coupled by boundary conditions and the value of these condi-
tions are changing on fine and coarse levels, a correct implementation has
to be ensured. Figure 4.32 shows the lapse of the residuals for the fluid
velocity, the pressure, the structure displacement and the coupled FSI prob-
lem. They all reach 10�16, which is machine accuracy for double precision
calculations. This shows the correct implementation of the FSI boundary
conditions in the MG CPL.

Figure 4.33 shows the number of fluid fine grid iterations and the overall
CPU time per time step for three di↵erent discretizations of the FSI 1 test
case plotted over the number of degrees of freedom. The MG CPL shows
almost a similar behaviour as the implicit partitioned approach concerning
fluid fine grid iterations and overall CPU time. This is due to weak interact-
ing nature of this test case. As the majority of computational e↵ort is used
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to solve the fluid problem, which is not accelerated by the MG CPL, the
advantage of the new FSI implementation is not visible. Instead, in both
cases the performance of the fluid solver is depicted.
Tests involving more interaction and thus showing the e↵ect of the MG CPL
are shown in chapter 6.



Chapter 5

Application of Extrapolation
to Fluid-Structure
Interaction

A second strategy to accelerate implicit partitioned FSI computations is the
prediction of the values in question by extrapolation. Extrapolation is a well
known technique to speed up many kinds of unsteady processes, as it can
provide a sophisticated initial guess to the underlying solver, ideally predict-
ing the current solution accurate to the truncation error of the underlying
interpolation scheme. In implicit partitioned FSI computations it is mainly
used in two areas. First, the prediction of a starting point for the current
FSI iteration by extrapolating the results of the last few iterations within a
time step or, second, the prediction of a starting point for the current time
step by extrapolating the converged FSI solutions over the last time steps.
The former include, among others, adaptive underrelaxation of Aitken type
as in Vierendeels et al. [71], Küttler [38, 37], Wall [74], Yigit [79], or Schäfer
et al. [56]. This also includes reduced order modeling as in Vierendeels
et al. [71], steepest descent methods, or vector extrapolation as in Küttler
[37, 38]. The second point of application includes polynomial extrapolation
as in e.g. Breuer and Münsch [9, 10] or Schäfer et al. [56], or prediction
based on numerical integration as in Piperno [46].
In the application to FSI of the above mentioned prediction methods atten-
tion has been limited only to the structure side, namely the extrapolation
of displacements. In this work the extrapolation is applied to the fluid vari-
ables pressure and velocity and a comparison to the structure extrapolation
is given.
In this chapter the first four Lagrangian interpolation functions as described
in section 3.4 are used. For a constant time step size and an arbitrary time
dependent variable �, with �n

i

is the value of � at iteration i and time step
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n, the considered polynomials are

0th order: �

n

1 = �

n�1
⇤ (5.1)

1st order: �

n

1 = 2�n�1
⇤ � �

n�2
⇤ (5.2)

2nd order: �

n

1 = 3�n�1
⇤ � 3�n�2

⇤ + �

n�3
⇤ (5.3)

3rd order: �

n

1 = 4�n�1
⇤ � 6�n�2

⇤ + 4�n�3
⇤ � �

n�4
⇤ . (5.4)

with � being either displacement, velocity, or pressure. The asterisk denotes
the converged solution at the end of a time step. A comparison of the dif-
ferent orders of extrapolation is given in section 6.2.2. Note that for higher
order extrapolation at the beginning of the coupled computation, the order
of extrapolation is decreased until a su�cient number of old time steps is
available.
In the following the application of polynomial extrapolation to FSI is de-
scribed, while using the acceleration for both structure and fluid variables.
First, the implementation of displacement extrapolation in the implicit par-
titioned FSI framework is described. Afterwards, the implementation of
force extrapolation is described.
The findings in this chapter result from joint work with Streitenberger [62].

5.1 Implementation of Displacement Extrapolation

The displacement extrapolation a↵ects the displacement exchange in the
coupled computation, i.e. the first part of equation (2.25). The velocity
boundary condition for the fluid sub-problem is then derived from the dis-
placement of the FSI boundary as described in section 4.2.5.
The structural displacement � on the FSI boundary is altered in the first
FSI iteration of every time step. Since the deformation of the fluid grid is
dependent on the FSI boundary deformation, the extrapolation is carried
out prior to the fluid grid deformation. Recalling the implicit partitioned
coupling in terms of figure 4.3, the course of this algorithm in time step
n is altered at the beginning of the time step. The resulting algorithm is
depicted in figure 5.1. In contrast to the implicit partitioned algorithm,
the fluid solution, derivation of force on the boundary, and solution of the
structure problem are skipped in first iteration of time step n. Instead, the
first structure solution (�)n1 is extrapolated by one of the equations (5.1) to
(5.4). In order to fully exploit the advantages of the extrapolation no under-
relaxation is applied to the extrapolated displacements in the first iteration,
as this would damp the introduced correction. The following iterations in
time step n are carried out according to the implicit partitioned coupling
scheme.
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Figure 5.1: Detail of implicit partitoned approach with displacement ex-
trapolation

5.2 Implementation of Force Extrapolation

The extrapolation of fluid variables is implemented to the better part sim-
ilar to the latter approach. Here, the extrapolation operates at the force
exchange of the FSI coupling.
When applying the extrapolation to the fluid variables, the choice falls on
restricting the extrapolation domain to the FSI boundary. In the case that
the fluid problem is solved to convergence in every FSI iteration, extrapo-
lating the values in the entire fluid domain would improve the starting point
for the next fluid iteration in addition to the FSI acceleration. However, it
would only accelerate one single fluid iteration, as the solution of the cou-
pling iteration would remain unchanged. This minor benefit is outweighed
by the additional computation and storage cost of extrapolating on a higher
dimensional domain. The case of running only for a constant number of
iterations in the fluid solver before coupling is covered in the work of Stre-
itenberger [62]. It is shown that this choice is inferior to extrapolating only
on the FSI boundary.
As the extrapolation domain is restrcited to the FSI boundary, the extrap-
olated value has to be reconsidered. Instead of extrapolating - and storing
- the three velocity components and the pressure, simply the force scting
on the boundary can be used. No alterations of the extrapolation functions
is needed, as the force is linear dependent on velocity components and the
pressure.
The algorithm force extrapolation in FSI can be described as a alteration of
the implicit partitioned approach described in figure 4.3. The first iteration
in every time step is depicted in figure 5.2. Here, the first FSI iteration
omits the fluid solution and the derivation of force on the FSI boundary. In
this case, the force (�)n1 (n

f

)n1 is extrapolated by one of the equations (5.1)
to (5.4). Once again no underrelaxation is applied in the first FSI iteration.
The resulting displacement from the structure solver is used unchanged in
the grid displacement routine. Again, the following iterations are identical
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Figure 5.2: Detail of implicit partitioned approach with force extrapolation

to the non-extrapolated case. Compared to the displacement extrapolation
this introduces an additional structure solve at the beginning of every time
step. However, the gain in accuracy outweighs this additional solve in terms
of CPU time needed for convergence.

Results and comparisons of the di↵erent extrapolation algorithms are shown
in section 6.2.2 and in Sachs et al. [53].



Chapter 6

Test Cases

In this chapter the acceleration approaches for FSI coupling described in the
last two chapters are applied to a set of test cases. Furthermore, a compar-
ison of all presented methods among each other, their interaction, and the
implicit partitioned coupling is conducted.
First the setup of the test cases is introduced, and an analysis for di↵er-
ent grids is performed for the fluid and structure domain individually. This
analysis is performed in order to assure that the grids used are the best
compromise about accuracy and e�ciency and that with even finer grids
no notable deviations of the solutions occur. This ensures a valid basis for
comparison. Then, a short study of the stability of the second order time
stepping scheme is carried out. In this study the handling of non-physical
pressure oscillation and sign switching around the structure domain in be-
tween time steps is analyzed. Then, the performance of the MG CPL ap-
proach as well as the extrapolation approaches in examined. And finally the
MG CPL implementation is compared to the implicit partitioned coupling
in terms of robustness against underrelaxation factors.

6.1 Preliminaries

6.1.1 Fluid-Structure Interaction Benchmark

A commonly used set of test cases for FSI is chosen to compare the di↵erent
approaches described above. This set was developed within the Forscher-
gruppe 493 of the Deutsche Forschungsgemeinschaft [69] and consists of a
purely numerical benchmark. A great advantage of this benchmark is the
modularity, as it consists of pure structure and fluid tests as well as coupled
tests, and comparability with many other researchers (e.g. contributions to
Bungartz and Schäfer [12]). As the investigation of the solvers on the indi-
vidual domains without any coupled computation is part of the benchmark,
the fluid and structure multigrid solvers as well as the used discretizations
and settings can be tested prior to the coupled computation.
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All parameters are set according to the paper of Turek and Hron [69]. The
problem domain consists of a channel flow around a rigid cylinder with an
elastic bar attached to it. The channel has the dimensions 2.5 ⇥ 0.41 m2,
with a slightly o↵ symmetric positioned cylinder at (0.2 m, 0.2 m), radius
0.05 m and a bar attached to the cylinder of size 0.35 ⇥ 0.02 m2.
The fluid and structure domain is equal to the domains used in section
4.2.5. Note, that the cylinder is rigid, thus not an active part of the struc-
ture domain. The boundary conditions for the fluid are: A parabolic inflow
profile

v

f

|Inlet = 1.5 v̄

✓
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y

m
(0.41 � y

m
), 0
◆
T

, (6.1)

with v̄ = 2 m/s at x = 0 m, a zero-gradient outlet condition at x = 2.5 m,
and homogeneous Dirichlet boundary condition on all other surfaces. This
includes the FSI boundary, which is the surface of the elastic beam. The
elastic structure is clamped at the cylinder and the von Neumann coupling
boundary condition is applied at the remaining sides. Initial conditions are
a fully developed flow field with periodic separation, which is computed in
the pure fluid test, and the undeformed structure without any additional
loading at rest.
The fluid is set to be incompressible and Newtonian with density ⇢ = 1 · 103

kg/m3 and dynamic viscosity µ

f

= 1 kg/ms. This leads to a Reynolds
number of Re = 200. The structure is characterized by the St. Venant
Kirchho↵ material model with density ⇢ = 1 · 103 kg/m3, and �

s

= 8 · 106

kg/ms2 and µ

s

= 2 · 106 kg/ms2 being the Lamé constants.
The expected behaviour of this setup is that the elastic bar starts oscillating
with growing amplitude. After overshooting the average amplitude and
reaching the maximum amplitude it will describe a periodic slope. For
the comparison with other researchers the lift and drag force on the entire
structure and the displacement of point A in figure 4.29 at the tip of the
structure is monitored. The comparison starts when the oscillation reaches
periodicity.

6.1.2 Fluid

In the first test case the fluid field is calculated with the structure remaining
rigid. A survey including three di↵erent grids is conducted. The fluid do-
main is discretized by three di↵erent grids containing 60,800, 243,200, and
972,800 control volumes. As this test case is to be computed in two dimen-
sions, but the employed fluid solver is written for three dimensional prob-
lems, a quasi two dimensional setup is achieved by setting periodic boundary
conditions in the third dimension in the fluid and structure solver. Further-
more, the grid distortion in the fluid solver in the third dimension is set to
0. This only accounts for the break o↵ error in the edge distortion of the
individual blocks (see cubic spline interpolation in Schäfer et al. [56]), as
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the received displacement is already zero in the third dimension. In order
to compare the results with other investigations, the number of control vol-
umes in two dimensions is crucial. These are 15,200, 60,800, and 243,200,
respectively, as there are four layers of control volumes in the third direction.
In preparation of the coupled computations, the quantity for comparison is
the drag and lift acting on the structure. As a precaution to additional error
the time step sizes for the fluid solver were chosen according to a Courant
Friedrichs Lewy (CFL) number of strictly below 1. This results in a time
step sizes of 3 · 10�4 s, 1 · 10�4 s, 5 · 10�5 s, for the coarse, middle, and fine
grid, respectively. Note, that the CFL number used here is a worst case
approximation of the actual CFL number. This means the velocity vector
entry with the largest absolute value as well as the smallest control volume
elongation is used to compute the CFL number.
The simulations are carried out with the fluid code FASTEST using TBI
discretization for the convective flux and the second order BDF for time
integration. As convergence a criterion the summed up residual to be below
1 · 10�7 is used.

Figure 6.1 shows the block structure of the discrete fluid domain. The

X

Y

Z

Figure 6.1: Block decomposition of the fluid domain for the FSI 3 test case

blocking has to satisfy di↵erent criteria. First, in order to provide for an
e�cient parallel implementation, all processors have to be equally loaded
concerning the number of control volumes. In this blocking the average
number of control volumes per processor divided by the maximum number
of control volumes per processor is 98.96% for up to 8 processors. Second, a
robust grid movement must be assured, as the grid is frequently moved in FSI
iterations. Therefore, the additional cuts for the decomposition above and
below the structure are perpendicular to the expected major grid movement.
And third, the communication in between processors has to be minimal. As
the fluid region is decomposed into only 19 blocks, this task can be easily
done by hand.
Table 6.1 shows the calculated forces acting on the structure in amplitude

and frequency for quantitative comparison and figure 6.2 shows the slope of
the drag and lift forces over time for qualitative comparison. In table 6.1 the
results of the three grid levels are shown as well as the solutions from Turek
and Hron [69] and Heck [29]. Figure 6.2 shows, that the middle and the fine



70 CHAPTER 6. TEST CASES

Grid Lift [N] (Freq. [1/s]) Drag [N] (Freq. [1/s])
coarse -10.443 ± 50.52 (8.1900) 431.18 ± 0.2578 (8.2102)
middle -16.448 ± 376.36 (4.3821) 437.41 ± 4.4215 (4.3802)
fine -10.170 ± 421.81 (4.4053) 438.47 ± 5.4695 (4.4248)
Turek -11.893 ± 437.81 (4.3956) 439.45 ± 5.6183 (4.3956)
Heck -5.61 ± 436.1 (4.43) 440.99 ± 5.12 (4.43)

Table 6.1: Drag and lift forces acting on the structure of the unsteady pure
fluid test case
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Figure 6.2: Drag and Lift of the coarse, middle, and fine grid for the unsteady
pure fluid test case

grid display the same path of emerging force, only the coarsest setup cannot
describe the forces correctly. Additionally the frequency of separation is
predicted to be almost twice as high as for the fine solution. Comparing the
absolute drag and lift values with the solution from Turek and Hron, the
fine grid introduces an error of 3.94 % in amplitude and 0.22 % in frequency.
The middle grid introduces an error of 12.65 % in amplitude and 0.31 % in
frequency.

6.1.3 Structure

In the second test case only the structure is observed. The cylinder remains
rigid and the elastic bar is modeled according to section 4.2.4. An analysis
for the structure part has been performed in section 4.2.4. Figure 6.3 shows
the displacements for the di↵erent grids.

6.1.4 Stability

One important aspect of the FSI test case is the stability of the time stepping
scheme. The course of events prescribes to first compute a fully developed
fluid flow with a rigid structure and then starting a FSI computation based
on the developed flow. Particularly at the beginning of the FSI computation
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Figure 6.3: x and y displacement of the coarse, middle, and fine grid for the
unsteady pure structure test case

Figure 6.4: Pressure distribution in the fluid domain after 3 and 4 time steps
respectively with Newmark � = 0.25, � = 0.5 on the FSI 3 test case

this can lead to severe instabilities. Using second order BDF and Newmarks
beta method with standard parameters for time discretization can result in
an unstable time stepping scheme. This becomes apparent in an alternating
pressure field above and below the moving structure. Figure 6.4 shows a
detailed view of the pressure distribution of the fluid field after three and
four time steps of coupled computation, starting from the fully developed
fluid field and the structure at rest.
The maximum and minimum pressure di↵ers by several orders and switch
sign in between time steps. Also the displacement is showing oscillations
which superimpose the physically reasonable displacement. This instability
can be shown to be independent of the time step size and discretization.
A remedy to this situation is the introduction of numerical dissipation (� >

0.25) into the Newmark scheme, while giving up its second order accuracy.
This stabilizes the system, hence reduces the initial error.
In order to compare the error reduction for di↵erent values of � and di↵erent
time step sizes an artificial error is inserted into the coupled system. The
error is introduced by starting the FSI computation with inconsistent time
step sizes. The FSI computation starts from a fully developed fluid flow and
structure at rest with time step sizes �t = 0.0003 s, 0.0015 s, and 0.0075 s,
while the second order BDF expects the same time step size for the last time
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steps stored in the fluid restart file. The actual fluid restart file is created
with a time step size of �t = 0.015 s, such that for all three time step sizes
the error in the time stepping scheme can be triggered.
To quantify the error, which is mainly visible in the non-physical pressure
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Figure 6.5: Detail of development of lift force for di↵erent Newmark param-
eters and �t = 0.0003 s on the FSI 3 test case

distribution, the lift force is monitored over the first time steps of a coupled
computation. The computation has been carried out on the coarsest of the
above mentioned grids for fluid domain as well as for the structure domain.
Furthermore the implicit partitioned coupling scheme has been used. The
error occurs independently of the spatial discretization and the underlying
coupling approach, thus the setup is valid for the following analysis.
Figures 6.5, 6.6, and 6.7 show the development of the lift force over time
for the time steps 0.0003 s, 0.0015 s, and 0.0075 s respectively. The same
physical time period of 0.015 s has been calculated with all time step sizes.
Figure 6.5 shows a detailed view of only 0.004 s. The Newmark parameter
� has been varied from 0.25, where no numerical dissipation is introduced,
to 0.5, which inserts the maximum dissipation.
In order to find the optimal value for �, a scalar representation of the error
has to be defined. The unphysical behaviour dominantly superimposes the
lift change in between time steps. Thus the variation of the lift over a
time period of 0.015 seconds minus the real variation over this time step
is considered. Comparing figures 6.5, 6.6, and 6.7 yields, that the error
amplitude significantly changes with di↵erent time step sizes. Also, the
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quantity in question is rather the error damping than the absolute value.
Thus, the variation di↵erence is scaled by the lift in the first time step. The
resulting relative variation di↵erence

V� =
1

N lift1

 
NX

n=0

|lift�,n+1 � lift�,n

|� |lift
N

� lift0|
!

(6.2)

is plotted for di↵erent time step sizes in figure 6.8. The � above stands for
the time step size and N is the number of time steps for this time step size.
Figure 6.8 shows a strong variance of the results from di↵erent time steps
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Figure 6.8: Relative variation of lift force for di↵erent time steps

and no trend for the time step size. A common behaviour throughout all
time steps is the decrease of variance towards larger values of �. Generally
it can be deduced from the results, that the largest improvement can be ac-
complished when shifting � from 0.25 to 0.3 or 0.35. Keeping in mind, that
adding numerical dissipation can alter the solution of the coupled computa-
tion, the � value should be chosen as small as possible, though according to
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these opposing requirements the computations in this work are carried out
with the best comprising value � = 0.3.

6.2 Performance
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Figure 6.9: Snapshot of the FSI 3 test case (fluid pressure and forces acting
on the structure shown)
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Figure 6.10: Snapshot of the FSI 3 test case (fluid x velocity and structure
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The third test case used in this work is the coupled FSI simulation called
FSI 3. The FSI 3 test case is used to compare the performance of the MG
CPL implementation as well as the extrapolation approach to the implicit
partitioned coupling approach. To compare the performance of the di↵er-
ent implementations, the average CPU time per time step is monitored. As
the CPU time is always subject to minor variations due to the operating
system, the most time consuming part of the coupling process, namely the
number of fluid fine grid iterations, is monitored as well. This also allows
for comparison in between iterations and CPU time, which in the case of
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MG CPL shows the cost of the extensive coupling.
As for convergence criteria, a relative change in lift of less than 1 · 10�5 is
assured with a FSI convergence criterion of summarized displacement at the
FSI boundary of less than 1 · 10�5. Furthermore the fluid convergence crite-
rion is the summed residual of less than 1 · 10�7 and the structure criterion,
a decay of 1 · 10�16 of the energy norm, is set as before. These criteria allow
the setup to calculate the values in question to a di↵erence of less than 0.01%
in between di↵erent solution approaches. Hence, the di↵erence in solutions
of di↵erent approaches is not monitored.
The computations were carried out on an Intel i7 CPU (2.93 MHz), while
using its 4 cores for a parallel fluid computation. The fluid computation is
parallelized by domain decomposition and the communication is handled by
OpenMPI.
Figures 6.9 and 6.10 show a snapshot of one time step during the FSI com-
putation. Figure 6.10 shows the stream-wise velocity in the fluid domain
and the velocity component perpendicular to the stream, which is the main
velocity component in the beam, in the structure. Figure 6.9 shows a de-
tailed view of the computational domain. The fluid domain is colored with
pressure distribution and the structure is colored with the loads acting on
the boundary. Tables 6.2 and 6.3 show the drag, lift and displacement

Grid Lift [N] (Freq. [1/s]) Drag [N] (Freq. [1/s])
coarse -1.09 ± 180.38 (8.00) 451.06 ± 5.80 (15.39)
middle 1.91 ± 174.06 (5.44) 457.65 ± 27.99 (11.11)
fine 2.72 ± 175.66 (5.50) 459.00 ± 29.00 (10.75)
Turek 2.22 ± 149.78 (5.3) 457.3 ± 22.66 (10.9)

Table 6.2: Drag and Lift forces acting on the structure in the FSI 3 test case

Grid x Disp. [10�3m] (Freq. [1/s]) y Disp. [10�3m] (Freq. [1/s])
coarse 1.67 ± 12.03 (8.00) -0.38 ± 0.32 (16.67)
middle 1.47 ± 34.26 (5.38) -2.85 ± 2.69 (10.87)
fine 1.45 ± 34.80 (5.47) -2.91 ± 2.74 (10.99)
Turek 1.48 ± 34.38 (5.3) -2.69 ± 2.53 (10.9)

Table 6.3: Displacement of point A = (0.6, 0.2) in the FSI 3 test case

of the FSI 3 test case for the three di↵erent discretizations for the fluid
and structure domain. Coarse, middle, and fine stand for the respective
discretizations of the fluid domain in section 6.1.2 and the structure dis-
cretization in section 6.1.3. The tables also show the results from Turek and
Hron for comparison.
The fine grid di↵ers from Turek and Hrons solution by maximum 17.34%
concerning force amplitude and 3.77% in frequency. Looking at the tip dis-
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placement, the fine grid brings along an error of 8.24% in amplitude and
3.21% in frequency. The middle grid results in an error of 15.77% in force
amplitude and 1.93% in frequency. For the displacement an error of 6.13%
in amplitude and 1.51% in frequency can be found comparing to Turek and
Hron. In comparison with the results of the pure fluid simulation in table
6.1, the fine and middle grid both show drastically less error in amplitude
and more error in frequency. Figures 6.11 and 6.12 show the tip displace-
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Figure 6.11: x and y tip displacement for the three di↵erent grids on the
FSI 3 test case with �t = 0.005 s, 0.002 s, and 0.001 s, respectively.
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Figure 6.12: Drag and lift force for the three di↵erent grids on the FSI 3
test case with �t = 0.005 s, 0.002 s, and 0.001 s, respectively.

ment and the forces acting on the structure over time. The computation
on the coarsest mesh is not able to display the correct tip movement as ex-
pected, neither in frequency nor in amplitude. It does, however, display the
correct amplitude of the lift.

6.2.1 Multigrid Coupling

One possibility to accelerate the implicit procedure is to incorporate the
coupling into the fluid solving instead of waiting for the fluid to converge
in every coupling step. When using this acceleration, coupling is applied
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after a constant number of fluid solves or the fluid residual reaching its
convergence criterion, depending on which is prior. This gradually changes
the fluid system, and therefore the coupled problem is solved while the fluid
is solved. This indeed results in more FSI iterations, but less overall CPU
time. Heck [29] has shown, that less V-cycles on the fluid system per FSI
iteration leads to faster convergence of the coupled problem. Thus, in order
to provide a basis for fair testing, the comparison in this chapter involves
only setups with at least one FSI iteration per fluid V-cycle.

Furthermore, the possibility of solving both the fluid and the structure
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Figure 6.13: Fluid fine grid iterations and overall CPU time for the implicit
partitioned coupling approach (SG) and MG CPL for the FSI 3 test case

problem on a single grid is not included in the comparison. To validate this
limitation a test run on the coarse grid with a time step of �t = 0.002 s
has been carried out. The pure single grid computation needs an average of
3409 fluid fine grid iterations, whereas the implementation using V-cycles for
the fluid and the standard FEAP conjugate gradient solver for the structure
needs 391.6, and the MG CPL needs 119.2 fluid fine grid iterations. Thus,
only the two latter competitive alternatives are included in the comparison.
Figure 6.13 shows the number of fluid fine grid iterations and the overall
CPU time per time step for three di↵erent discretizations of the FSI 3 test
case plotted over the summarized number of degrees of freedom. The implicit
partitioned (SG CPL) case implicates a two level multigrid fluid solver and
the standard conjugate gradient structure solver. The MG CPL implicates
a two level multigrid solver for the entire domain as described in chapter
4. The coarse, middle, and fine discretization from the last sections for the
fluid and structure are used for comparison. As the time step size cannot be
held constant over the di↵erent resolutions, the results for the smallest time
step size of every resolution are compared. The MG CPL clearly outruns
the implicit partitioned approach in terms of fluid fine grid iterations. This
e↵ect is due to the more frequent coupling. In terms of CPU time, the
MG CPL also outruns the partitioned case and the speed up even grows
with increasing degrees of freedom. Even more important, the MG CPL
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shows linear behaviour over the number of degrees of freedom. Hence, the
multigrid performance on the coupled FSI problem is shown.
A more detailed analysis and comparison of these solution approaches is
given in section 6.3.

6.2.2 Extrapolation

In this section the di↵erent extrapolation methods described in chapter 5
are applied to the FSI 3 test case. The objective is to compare the di↵erent
methods with respect to numerical e�ciency. All computations were car-
ried out with a fix FSI underrelaxation factor of 0.1 in order to ensure that
the acceleration originates only from the employed extrapolation approach.
From constant to third order polynomial extrapolation is used for the dis-
placement as well as for the force extrapolation. Constant displacement
extrapolation coincides with the partitioned implicit approach without any
force or displacement extrapolation, as the grid displacement originating
from the last time step is used as initial displacement. The comparison is
carried out on the middle and coarse fluid and structure grid and the FSI 3
setup with boundary conditions as described in section 6.1.2 and 6.1.3 are
used. In order to analyze the behaviour of the extrapolation when altering
the time step size, both grids were computed with three di↵erent time step
sizes. The coarse grid was computed with �t = 0.002 s, 0.005 s, and 0.01 s
and the middle grid with �t = 0.001 s, 0.002 s, and 0.004 s, respectively.

Figures 6.14, 6.15, and 6.16 show the average number of fluid fine grid iter-
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Figure 6.14: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.002 s for force and displacement extrapolation on
the coarse grid

ations and average CPU time for one time step in di↵erent implementations
of extrapolation for the coarse fluid and structure grid. The performance of
the extrapolation on the coarse grid is strongly dependent on the time step
size. For a time step size of 0.002 s the first order displacement extrapolation
accelerates the computation, but higher orders even slow the computation
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Figure 6.15: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.005 s for force and displacement extrapolation on
the coarse grid
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Figure 6.16: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.01 s for force and displacement extrapolation on
the coarse grid

down. In the case of force extrapolation, the highest acceleration of 1.47 in
CPU time compared to no extrapolation can be found for the constant poly-
nomial. Higher orders are inferior to the constant extrapolation, but still
faster than the displacement counterpart and faster than no extrapolation
at all, which coincides with constant displacement extrapolation.
For the coarse grid and the middle time step size of 0.005 s the displacement
extrapolation improves as the order of extrapolation rises. The force case
shows the same behaviour as for the smaller time step. Again the best im-
provement of 1.32 is achieved by constant force extrapolation. The higher
order force extrapolation performs worse as the order rises and is even slower
than the displacement extrapolation beyond second order. However, even
the third order force extrapolation performs better than no extrapolation at
at.
For the largest time step of 0.01 s the displacement extrapolation follows
the expected slope, but extrapolation orders higher than one have no signif-
icant influence. The gain of the force extrapolation increases as the order
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of extrapolation rises, resulting in the maximum acceleration of 1.63 for the
second order force extrapolation.

Figures 6.17, 6.18, and 6.19 show the average number of fine grid itera-
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Figure 6.17: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.001 s for force and displacement extrapolation on
the middle grid
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Figure 6.18: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.002 s for force and displacement extrapolation on
the middle grid

tions in the fluid solver as well as the average overall CPU time for di↵erent
extrapolation implementations and the middle fluid and structure grid. For
the middle grid and the smallest time step size of 0.001 s the acceleration
from the displacement extrapolation increases as the order of extrapolation
increases. But nevertheless, it is outperformed by the force extrapolation.
The maximum acceleration of the computation of 1.94 can be found for first
order force extrapolation.
The simulations with time step size 0.002 s show a similar behaviour as
for the �t = 0.001 case in displacement extrapolation, which means the
computations decreases as the order of extrapolation increases. The force
extrapolation shows increasing acceleration for rising orders and the maxi-
mum speed up of 2.09 is reached for third order force extrapolation. And
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Figure 6.19: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.004 s for force and displacement extrapolation on
the middle grid

again the force case outperforms the displacement case.
For the time step �t = 0.004 s and the middle grid the expected slope for
the displacement extrapolation is continued. The force extrapolation in this
case is superior as well and hardly dependent on the applied order and the
maximum speed up of 1.74 is reached at first order.
In conclusion, the use of extrapolation in between time steps in FSI cal-
culations has a significant e↵ect on the required overall computing time
for coupled simulations. This e↵ects even rises for larger time step sizes.
Furthermore, the force extrapolation has shown to be superior to the dis-
placement extrapolation throughout all time steps and resolutions, and the
higher order extrapolation is even more useful when applied to large time
steps. By linear extrapolation a maximum acceleration factor of 2.55 for the
fine grid can be predicted. Given the manageable mathematical complexity
and the negligible memory usage, the force extrapolation is a powerful tool
in speeding up partitioned coupling simulations.

6.2.3 Multigrid Coupling & Extrapolation

Since the extrapolation of forces and displacements has a significant in-
fluence on the CPU time of implicit partitioned coupling calculations, the
influence on the MG CPL is also investigated. In terms of implementation,
the coarse grid solution as well as all solution dependent parts of the coarse
grid elasticity and Navier Stokes equation are recomputed at every restric-
tion. Therefore, the implementation of force and displacement extrapolation
runs analogously to the implicit partitioned case. In this section the same
grids and time steps as in the last section are used.

Figures 6.20, 6.21, and 6.22 show the average number of fluid fine grid
iterations as well as the average CPU time for the coarsest fluid and struc-
ture grid and di↵erent extrapolation implementations. For the smallest time
step size of 0.002 s and the displacement extrapolation a qualitatively similar
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Figure 6.20: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.002 s for force and displacement extrapolation with
MG CPL on the coarse grid
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Figure 6.21: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.005 s for force and displacement extrapolation with
MG CPL on the coarse grid

characteristics as in section 6.2.2 can be found. Contrary to the findings in
the last section the force extrapolation shows a worse performance than the
non-extrapolated case independent of the order. The highest acceleration of
1.07 can be found for the first order displacement case.
The computations for time step size 0.005 s show a qualitatively similar be-
haviour as for the implicit partitioned case in figure 6.15. Again, the best
performance is shown for the third order displacement extrapolation, but
with no noticeable speed up it is not competitive to the implicit partitioned
case.
Comparing the results for the coarsest time step 0.01 s and the coarse grid,
the displacement extrapolation decelerates the computation with rising or-
der. For the force extrapolation no noticeable speed up can be found. The
di↵erent results in the CPU time are due to the variation of thread handling
in the operating system and only visible due to the small scale.
Figures 6.25, 6.24, and 6.23 show a comparison of di↵erent orders of inter-
polation in the MG CPL approach applied the middle fluid and structure
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Figure 6.22: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.01 s for force and displacement extrapolation with
MG CPL on the coarse grid
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Figure 6.23: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.001 s for force and displacement extrapolation with
MG CPL on the middle grid

grid and time steps 0.004 s, 0.002 s, and 0.001 s, respectively. The average
number of fine grid iterations and the average CPU time per time step are
shown.
For the time step size 0.001 s it can be seen, that higher order displacement
extrapolation slows the computations down, and even for the best perform-
ing case, which is first order force extrapolation, a speed up of only 1.02 can
be achieved.
The force extrapolation for time step 0.002 s is superior to the displacement
extrapolation ,which shows basically no e↵ect. However, the advantage of
the force extrapolation is still small enough to go down under the thread
scheduling in terms of CPU time.
For the largest time step size of 0.004 s the number of fine grid iterations as
well as the overall CPU time are so close to each other, that no conclusions
from the e↵ect of the extrapolation can be drawn.
Although the extrapolation achieves essential speed ups for the implicit par-
titioned case, this kind of behaviour cannot be observed for the MG CPL
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Figure 6.24: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.002 s for force and displacement extrapolation with
MG CPL on the middle grid

 269.5

 270

 270.5

 271

 271.5

 272

 272.5

 273

 273.5

 274

 0  1  2  3

F
lu

id
 f

in
e

 g
ri
d

 it
e

ra
tio

n
s

Order of Extrapolation

Force
Displ.

 541

 541.5

 542

 542.5

 543

 543.5

 544

 544.5

 545

 545.5

 0  1  2  3

C
P

U
 t

im
e

 [
s]

Order of Extrapolation

Force
Displ.

Figure 6.25: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.004 s for force and displacement extrapolation with
MG CPL on the middle grid

approach. For some cases the extrapolation even decelerates the computa-
tion. Also, the impact of the extrapolation on the CPU time of the MG
CPL calculations is considerably smaller than the impact in the implicit
partitioned case. The best result can be found for the coarse grid and the
smallest time step �t = 0.002 s with third order displacement extrapolation.
But even here a speed up of only 1.06 compared to the non extrapolated
case can be seen.

A possible explanation for this behaviour could be that the extrapolation
reduces the absolute value of the error in the coupled system, but simul-
taneously renders it less smooth. In this the advantage of the MG CPL,
e↵ectively reducing smooth error components, would become useless. This
supposition as well as the combination of MG CPL and extrapolation needs
further investigation in the future.
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6.3 Robustness

In this section the multigrid coupling implementation as described in chap-
ter 4 as well as the implicit partitioned coupling is applied to the FSI 3 test
case. The objective is to analyze the behaviour of the di↵erent approaches
regarding di↵erent discretizations, time step sizes and underrelaxation fac-
tors. For this purpose the number of fine grid fluid iterations as well as the
overall CPU time for one time step is compared. The computations were
performed using an implicit partitioned coupling approach with a two level
multigrid fluid solver and the standard conjugate gradient structure solver
on the one hand and a two level MG CPL solver as described in chapter 4 on
the other hand. All computations were carried out with the same number
of solver iterations on each grid on an Intel Core i7 (2.93 MHz). The coarse
grid was computed with the time step sizes �t = 0.002, 0.005, and 0.01, and
the middle and fine grid with �t = 0.001, 0.002, and 0.004.

Figures 6.26, 6.27, and 6.28 show the number of fluid fine grid iterations
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Figure 6.26: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.002 s for implicit partitioned coupling (SG) and
MG CPL on the coarse grid

and the overall CPU time for one time step using the implicit partitioned
approach and the MG CPL approach on the coarse grid. The computations
for di↵erent values of the FSI underrelaxation factor, which is multiplied
to the boundary displacement when transferring it to the fluid domain, are
shown. For the implicit partitioned approach underrelaxation of more than
0.1 leads to divergence and underrelaxation below 0.05 is always slower than
the results shown. This is also true for the MG CPL case with underrelax-
ation below 0.2, thus these cases are not considered in the comparison. For
a time step size of �t = 0.002 and the coarse grid the MG CPL clearly
outruns the implicit partitioned case in terms of fluid fine grid iterations for
an underrelaxation of 0.4 and above. A speed up of 3.61 can be measured
when comparing the implicit partitioned approach with an underrelaxation
of 0.1 and the MG CPL with an underrelaxation of 0.8. In terms of CPU
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Figure 6.27: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.005 s for implicit partitioned coupling (SG) and
MG CPL on the coarse grid
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Figure 6.28: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.01 s for implicit partitioned coupling (SG) and MG
CPL on the coarse grid

time, this advantage shrinks to a speed up of 1.18, but the MG CPL still
outperforms the partitioned approach.
When increasing the time step size the gap in the di↵erent approaches in-
creases. For the time step size of �t = 0.005 the MG CPL with an underre-
laxation of 0.2 and above outruns the best performing implicit partitioned
approach in terms of fluid fine grid iterations. The maximal speedup com-
pared to the implicit partitioned approach with underrelaxation 0.1 is 3.92
in terms of iterations and 1.30 in terms of CPU time. These speedups are
found at an underrelaxation of 0.6.
For a time step size of �t = 0.01 and the coarse grid, the MG CPL again
outperforms the partitioned approach by factors of 3.46 and 1.14 in fluid
fine grid iterations and CPU time, respectively. Here, the best performing
MG CPL underrelaxation factor is 0.4.

Figure 6.29 shows the average number of fluid fine grid iterations and
the CPU time for one time step for the middle grid and a time step size of
�t = 0.001 s. Again, the MG CPL outruns the partitioned approach for
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Figure 6.29: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.001 s for implicit partitioned coupling (SG) and
MG CPL on the middle grid
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Figure 6.30: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.002 s for implicit partitioned coupling (SG) and
MG CPL on the middle grid

underrelaxation factors above 0.4. The performance of the MG CPL shows a
dependence on the underrelaxation, but no distinct behaviour can be found.
The maximum speed up in terms of fluid fine grid iterations and CPU time
is 2.84 and 1.71, respectively and can be found at an underrelaxation factor
of 0.4.
Figure 6.30 shows the average number of fluid fine grid iterations and CPU
time for the time step size �t = 0.002 s. As expected the implicit partitioned
case needs slightly more iterations, thus more CPU time, as for �t = 0.001
s. The MG CPL case needs even less iterations and is even less sensitive
to the choice of the FSI underrelaxation factor compared to the 0.001 case.
The maximum speed up is 3.47 and 2.15 for fluid fine grid iterations and
CPU time respectively.
The gap in between fluid fine grid speed up and CPU time speed up narrows
when further increasing the time step size. Figure 6.31 shows the fluid fine
grid iterations and CPU times for the middle grid and the time step size of
�t = 0.004. Here the maximum speed up is 2.13 for fluid fine grid itera-
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Figure 6.31: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.004 s for implicit partitioned coupling (SG) and
MG CPL on the middle grid

tions and 1.28 for CPU time. The maximum speed up can be found at an
underrelaxation of 0.4, but the di↵erence in comparing with higher values is
negligible.

Figures 6.32, 6.33, and 6.34 show the fluid fine grid iterations and CPU
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Figure 6.32: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.001 s for implicit partitioned coupling (SG) and
MG CPL on the fine grid

time for the FSI 3 calculation on the fine grid with the time step sizes
0.001, 0.002, and 0.004, respectively. Compared to the middle grid the gap
between the partitioned approach and the MG CPL increases in terms of
CPU time. For a time step size of 0.001 and the finest grid, the MG CPL
outperforms the partitioned approach for any underrelaxation factor above
0.2. The maximum speed up of 1.92 and 9.10 in fluid fine grid iterations
and CPU time, respectively, can be found at an underrelaxation factor of
1.0. Thus, in contrast to the coarser grids considered above, the speed up
in CPU time is greater than the speed up in fine grid iterations.
Looking at the performance of the partitioned approach for the time step
size �t = 0.002 on the finest grid, the best achievable performance is no
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Figure 6.33: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.002 s for implicit partitioned coupling (SG) and
MG CPL on the fine grid
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Figure 6.34: Number of fluid fine grid iterations and overall CPU time for
one time step of �t = 0.004 s for implicit partitioned coupling (SG) and
MG CPL on the fine grid

longer at an underrelaxation of 0.1, but at 0.05. The MG CPL is hardly
dependent on the large time step, showing better stability features and the
best performance with an underrelaxation factor 1.0. The maximum speed
up when comparing the best results of the two approaches are 1.80 in fluid
fine grid iterations and 5.86 in CPU time. These are the factor by which
the MG CPL is faster than the implicit partitioned approach.
When comparing the approaches for the time step size of �t = 0.004, the
MG CPL shows a weak dependence on the underrelaxation factor, as the
best performance can be seen at an underrelaxation factor of 0.2. These
di↵erences are still negligible in comparison with the CPU time speed up.
For this setup the partitioned approach is even faster in terms of fluid fine
grid iterations, but looking at the overall CPU time maximum speed up of
2.10 for the MG CPL implementation can be found.

In conclusion, the MG CPL implementation shows a wider range of pos-
sible underrelaxation factors than the implicit partitioned approach and the
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run time is less dependent on it. Comparing the number of iterations and the
CPU time on the coarse and middle grid yields, that the MG CPL needs
in average more CPU time per fluid fine grid iteration than the implicit
partitioned approach. This originates from the high usage of the coupling
interface. The time consuming MpCCI coupling and the grid movement are
used extensively, therefore resulting in a higher CPU time. On the fine grid
this e↵ect is subordinate to the performance of the multigrid method.
Comparing the overall CPU time shows the great advantage of the MG CPL.
A maximum acceleration of 9.10 in terms of CPU time can be found for the
finest discretization and time step size 0.001, when comparing the implicit
partitioned approach with underrelaxation 0.1 with the MG CPL approach
with underrelaxation 1.0.
As the coupled solution procedure, which acts as smoothing, can be thought
of as a block Gauß Seidel method, setting the FSI underrelaxation factor
to values greater than 1.0 results in a block SOR method. Since the MG
CPL has shown a constant behaviour over a wide range of underrelaxation
factors and no sign of instability at no underrelaxation at all, the use of
overrelaxation is possible.
And finally, as the resolution becomes finer, the speed up in CPU time
catches up with the speed up in fluid fine grid iterations, and finally passes
it. This is an intended result, as it shows once again the superiority of the
multigrid method on large system.



Chapter 7

Conclusions and Outlook

In this work the multigrid coupling approach for FSI simulations has been
introduced, which is situated in between the implicit partitioned and the
monolithic one. Due to a close coupling as in the monolithic approach and
the modularity of the implicit approach the multigrid coupling approach
combines the advantages of the both.
The multigrid coupling approach is constructed by applying the nonlinear
multigrid method to the coupled FSI problem. By this construction the
implicit coupling algorithm of two independent codes is used as a smoother
for the multigrid method. The assembly of the coupled systems has been
carried out based on the coupled FSI system in ALE representation. A non-
linear geometric multigrid solver has been implemented into the structure
solver FEAP. Furthermore the coupling interface in FEAP as well as in the
fluid solver FASTEST has been enhanced to cope with multigrid coupling.
Furthermore the multigrid implementation in FASTEST has been adapted
to use the implicit partitioned coupling procedure as a smoother for the
nonlinear multigrid.
To ensure a valid basis for comparison a set of test cases from a well known
FSI benchmark were employed. Furthermore an analysis of the employed
discretizations in the fluid and structure domain was carried out individu-
ally. Finally the multigrid coupling approach as well as the most promising
implicit partitioned approach with only one V-cycle per FSI iteration were
applied to a steady-state and an unsteady test case with di↵erent spatial
discretizations and time step sizes.
It has been shown, that the multigrid coupling approach outperforms the
implicit partitioned approach in the number of fluid fine grid iterations as
well as CPU time for the overall coupled simulation. Speed ups up to 9.10
can be achieved, and even on the coarse grid, speed ups of up to 1.3 are
possible.
In comparison to the implicit partitioned approach the multigrid coupling
approach does not only solve the fluid and structure problem with a geomet-
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ric multigrid solver, but also reduces the error arising from the coupling on
the fine as well as coarse grids. Furthermore, as the multigrid coupling stabi-
lizes itself, a more e↵ective underrelaxation and even overrelaxation factors
can be used. In conclusion, it has been shown, that the multigrid coupling
outperforms the partitioned approach as expected and presents a promising
addition in between the partitioned and monolithic coupling approach.

As a second subject, the force extrapolation to accelerate unsteady coupled
FSI simulations has been introduced. In contrast to common extrapolation
methods used in FSI, here the forces acting on the structure domain are ex-
trapolated and not the displacements acting on the fluid domain. Therefore
an additional structure solve is carried out with the extrapolated values. In
the common extrapolation methods an entire coupling step is simulated by
the extrapolation. When using the force extrapolation only half of the step
is simulated and the other half is calculated, resulting in a more accurate
prediction of the simulation in the current time step.
For a comparison the force and displacement extrapolation based on the
same polynomial interpolation methods have been implemented into a par-
titioned coupling scheme. As interpolation polynomials the constant and
first through third order Lagrange interpolation are used.
Application to di↵erent discretizations and time steps of an unsteady bench-
mark test case have shown the superiority of the force extrapolation. Espe-
cially for large time steps the calculations using force extrapolation are even
for small orders considerably faster than the ones using any of the imple-
mented orders of the displacement case. Speed ups of up to 2.09 are possible
using the force extrapolation, whereas for the displacement case the highest
speed up is 1.73. These result are very promising, as they were achieved
by simple polynomial extrapolation and the force case is applicable to more
sophisticated extrapolation methods.

As for future prospects, the full potential of overrelaxation of the coupled
computation in multigrid coupling needs further investigation. Also, appli-
cations with a larger FSI interface and which require closer coupling will ben-
efit from the multigrid coupling. This approach can be actually transferred
to any multi-physical numerical simulation which requires strong coupling
in its solution algorithm. And finally, the combination of force extrapolation
with multigrid coupling would benefit from further investigation.



Appendix A

Arbitrary
Lagrangian-Eulerian
Framework

The definition of the mappings between the di↵erent frameworks are defined
as figure A.1 indicates. The relationship of the frameworks as well as their
derivatives is given in the following.

Figure A.1: Eulerian (⌦
x

), Lagrangian (⌦
X

) and ALE (⌦
�

) Framework with
the corresponding mappings ' : ⌦

X

! ⌦
x

, � : ⌦
�

! ⌦
x

, and  : ⌦
�

! ⌦
X

A.0.1 Lagrangian Framework

Due to the material fixed coordinate system in a Lagrangian framework
any time dependent control volume ⌦

X

(t) contains the same control mass
throughout transient computation. The derivatives with respect to time t

and space X state:
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Note that the notation (.)|
X

means keeping X fixed. For a scalar valued
function f defined in the Lagrangian framework the derivatives state:
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A.0.2 Eulerian Framework

The derivatives with respect to space and time in the Eulerian or spatial
framework state:

d

dX

x

����
X

=
d'(X, t)

dX

= r
X

' (A.5)
d

dt

x

����
X

=
d'(X, t)

dt

= v (A.6)

with r
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= @
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the gradient. For a scalar valued function defined in the
Eulerian framework, the derivatives with respect to space and time are given
as:
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The latter equation states the well known connection of Lagrangian and Eu-
lerian frameworks. The material time derivative equals the spatial derivative
plus a convection term.

A.0.3 Arbitrary Lagrangian Eulerian Framework

The crucial advantage of the ALE formulation is to be able to operate in
non-attached coordinate systems, which can be adjusted to the individual
needs. The drawback of this approach lies in more complicated expressions
for derivatives:

d

dt

x

����
�

=
d

dt

�(�, t)

����
�

=
@x

@t

(A.9)
d

dt

�

����
�

=
d

dt

 

�1(X, t)

����
X

=
@�

@t

(A.10)

d

dt

x

����
X

=
d

dt

'(X, t)

����
X

=
d

dt

�

⇣
 

�1(X, t), t
⌘����

X

(A.11)

=
@�

@t

+
d�

d 

�1

����
�

d 

�1

dt

�����
X

) dx

dt

(X, t)

����
X

=
@x

@t

(�, t) +
dx

d�

(�, t)

����
�

d�

dt

(X, t)

����
X .

(A.12)



95

The left hand side of (A.12) represents the material velocity and the first
term on the right hand side the grid velocity. Thus the remaining term
constitutes the material velocity with respect to the ALE framework.



Appendix B

Discretization of the
Momentum Equation in
FASTEST

In the following the discretization and interpolation for the momentum equa-
tion as implemented in FASTEST is given. Although the actual implemen-
tation was created in 3D, for the sake of simplicity only the 2D descritption
is given. Let V

f

be a grid cell in the fluid domain.

The Discrete Momentum Equation The discretization of the cell cen-
tered and cell face centered terms is carried out according to the second
order accurate midpoint rule. In the following the index c stands for one of
{w, e, s, n}.

Convective Term For the convective term, the boundary integral results
in Z

@Vf

⇢

f

(v � v

g)vn dA ⇡
X

c

ṁ

g

c

v

c

(B.1)

with ṁ

g

c

the discrete mass and grid flux from equations 3.24 and 3.30 and
v

c

the velocity at the center of cell face c. The mass and grid fluxes are
assumed to be known for the momentum equation, as they are computed at
the end of the pressure coupling process.

Di↵usive Term The di↵usive term is discretized into the sum of gradients
multiplied by the cell face area

Z

@Vf

µ

f

(rv + rv

T )n dA ⇡
X

c

µ

f

(rv

c

+ rv

T

c

)�A
c

(B.2)
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in which rv

c

describes the discretized velocity gradient at the cell face c

and �A
c

the outward normal vector to the cell face c with ||�A
c

|| equals the
area of the cell face.

Pressure Term As pressure is a scalar function, it can be posed as the
pressure gradient integrated over V

f

. Discretizing yields the gradient at the
center of cell P times the cell volume �V

P

.
Z

@Vf

pI dS =
Z

Vf

rp dV ⇡ rp

P

�V

P

(B.3)

in which the gradient is located at the cell face center, and �V
P

is the volume
of cell P .

External Forces External force terms are discretized as the force at the
cell center multiplied with the cell volume.

Z

Vf

⇢

f

f

f

dV ⇡ ⇢

f

f

f,P

�V

P

(B.4)

Interpolation Cell face values such as the velocity in the convective term
have to be interpolated as the values are computed and stored only on the
cell centers. For the convective term di↵erent interpolation techniques can
be used (and mixed) as they involve di↵erent drawbacks and advantages. In
the following the interpolation is shown for the e face. The other faces are
treated analogously.

P Ee

|{z}
xe�xP

xE�xPz }| {

Figure B.1: Calculation of CDS interpolation factor

Central Di↵erencing Scheme The straightforward attempt to obtain
the cell face value is a linear interpolation between the two neighbouring

cells. The interpolation parameter ↵
e

=
||xe�xP ||2
||xE�xP ||2

is derived directly from

the distance of points P and E from point e as shown in figure B.1.

v

CDS
e

= ↵

e

v

E

+ (1 � ↵

e

)v
P

. (B.5)

This results in the second order accurate Central Di↵erencing Scheme (CDS).
The drawbacks of this scheme are possibly oscillatory solutions due to the
second order and order reduction on non-Cartesian grids.
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Upstream Di↵erencing Scheme Another approach to obtain a cell face
value is to use the cell center value in direction opposite to the mass and
grid flux ṁ

g

e

.

v

UDS
e

=

(
v

E

, if ṁ

g

e

< 0
v

P

, else
(B.6)

This results in the Upstream Di↵erencing Scheme (UDS), which is first order
accurate. Application of this scheme results in a numerically more stable
system, but due to the second order derivative in its error term it introduces
numerical di↵usion into the system.

Taylor Based Interpolation To compensate for the order reduction of
the CDS scheme on non-Cartesian grids, Taylor Based Interpolation (TBI) is
introduced. This scheme is based on a first order Taylor series approximation
of the velocity at point P . The derivatives are approximated via coordinate
transformation from a local coordinate system:

v

TBI
e

= v

P

+ ⌧

e

(v
E

� v

P

) + ⌧

n

(v
N

� v

S

) (B.7)

in which the right hand side is an approximation to the transformation from
the local to the global coordinate system. For further details of this scheme
see Lehnhäuser [39]. This scheme remains second order accurate even on
non-Cartesian grids, but still can introduce oscillatory solutions.

Flux Blending In order to cope with the unphysical oscillations of the
CDS and TBI and at the same time diminish the numerical di↵usion intro-
duced by the UDS, a linear interpolation of both schemes is used.

v

e

= v

UDS
e

+ �(vCDS/TBI
e

� v

UDS
e

). (B.8)

This interpolation of fluxes is called flux blending and is controlled by the
coe�cient �. Using the first part of equation B.8 implicit (as part of the
entries in the resulting system matrix) and the rest explicit (in the right
hand side) is referred to as Deferred Correction. This reduces the number of
diagonals in the resulting system matrix, but achieves the accuracy of the
higher order scheme on convergence.

Cell Face Gradient In order to compute cell face gradients on non-
Cartesian grids, a local coordinate system with coordinates ⇠ has to be
introduced. The global coordinates are stored as functions x = x(⇠). The
global derivatives can be obtained by the inverse of the transformation gra-
dient @x(⇠)

@⇠

. Let F

e

be the discrete counterpart of @x(⇠)
@⇠

, defined on a virtual
cell around the center of face e (from P to E and from se to ne) as in Figure
B.2. Its inverse can be computed as:

F

�1
e

=
1

det(F
e

)
adj(F

e

)T (B.9)
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Figure B.2: Cell face centered local coordinate system

Then the di↵usive term on the east cell face is interpolated as:
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In which v

ne

is defined by vN+vNE
2 . The face normal vector �A

e

as shown
in Figure B.3 is defined by the two adjacent grid points.(F

e

)�1 is computed
using the cell centers of the neighbouring grid points N, NE, S, SE as well as
P and E. The implicit part of the di↵usive flux will contribute to the system
matrix as the explicit will to the right hand side. For a detailed analysis of

�AeP

E

e

Figure B.3: Vector normal to east cell face

this discretization refer to Lehnhäuser [39]. In his work this discretization
is called DABT.

Cell Center Gradient For the pressure gradient, which is located at the
cell center, a cell centered local coordinate system ⇠

P

is introduced (see
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Figure B.4: Cell centered local coordinate system

Figure B.4). Let F

P

be the discrete counterpart of @x(⇠P )
@⇠P

defined on the cell
P . Then the pressure gradient can be defined as the transformation of the
discrete gradient of CDS interpolated cell face values.
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Appendix C

Input Files

In this chapter exemplary input files for a pure structure simulation as well
as a coupled FSI simulation are given. Irrelevant entries are skipped.

C.1 3D CSM 3

Below the FEAP input file for the 3D CSM 3 test case is given. In this case
it is solved by a three grid multigrid solver.

feap * * icsm3-3level

0 0 0 3 3 8

!3D multigrid coupling (FSI3 Benchmark)

PRINt

PARAmeters ! Geometry information

x1 = 0.19

x2 = 0.21

y1 = 0.24899

y2 = 0.6

z1 = 0.0

z2 = 0.02

n = 2

MATErial,1

SOLId

FINIte ! Use nonlinear kinematics

ENHAnced ! Use enhanced Elements

ELAStic STVK 1.4d6 0.4 ! St. Venant-Kirchhoff E, Nu

DENSity MASS 1d3 ! Rho

BODY FORCe -2d3 0 0 ! Forces acting on structure
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EBOUndary

2 y1 1 1 1 ! Clamped at cylinder

3 z1 0 0 1 ! No movement in z-direction

3 z2 0 0 1 ! NO movement in z-direction

REGIon 1 ! Region for finest grid

BLOCk ! 8 node elements

CARTesian 4*n 72*n 4*n

BRICk 8

1 x1 y1 z1

2 x2 y1 z1

3 x2 y2 z1

4 x1 y2 z1

5 x1 y1 z2

6 x2 y1 z2

7 x2 y2 z2

8 x1 y2 z2

REGIon 2 ! Region for 2nd grid

BLOCk

CARTesian 2*n 36*n 2*n

BRICk 8

1 x1 y1 z1

...

REGIon 3 ! Region for coarse grid

BLOCk

CARTesian 1*n 18*n 1*n

BRICk 8

1 x1 y1 z1

...

end

TIE ! Delete all twice and three times defined nodes

batch

GAUSseidel INIT 5 ! Use 5 sweep Gauss Seidel solver

DEACtivate,,2 ! Deactivate 2nd region

DEACtivate,,1

ACTIvate,,2 ! Activate 2nd region
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MULTigrid BUILdmatrix 2 3 ! BUILdmatrix assmebles the matrix for

DEACtivate,,3 ! restriction & prolongation. It defines

ACTIvate,,1 ! the matrix in between the ’old’ active

MULTigrid BUILdmatrix 1 2 ! region and the last activated region.

DEACtivate,,2

TRANsient NEWMark ! Use Newmark beta scheme

DT,,0.005 ! Time step size

LOOP TIME 400 ! Loop over number of time steps

TIME ! Increment time

LOOP VCYCLe 200

PRINT

TANG ! Build Jacobian

FORM ! Build residual vector

SOLVE ! Solve the system

NOPRint

FORM ! Build residual for coarse grid RHS

MULTigrid RESTrict 2 1 ! Restrict RHS, disp, vel, acce

! When FEAP hits the convergence criterion it exits the most inner loop it

! is in. This is not supposed to happen on coarse grids.

LOOP NEWTon 1 ! Auxiliary loop

TANG ! Build Jacobian

FORM ! Build residual vector

MULTigrid SAVE 1 ! Put both of the above in the RHS

FORM ! Build residual vector

MULTigrid MAKE 1 ! Add RHS from fine grid to residual vector

SOLVe ! Solve system

NEXT NEWTon ! End loop

FORM ! Build residual vector for RHS

MULTigrid MAKE 1 ! Add RHS from fine grid to residual vector

MULTigrid RESTrict 3 2 ! as above ...

GAUSseidel DIREct ! Use LU decomp. solver

LOOP NEWTon 1

TANG

FORM

MULTigrid SAVE 2

FORM

MULTigird MAKE 2

SOLVe

NEXT NEWTon

GAUSseidel ITERative ! Use Gauss Seidel solver

MULTigrid PROLongate 2 3 ! Prolongate disp, vel, acce

LOOP NEWTon 1

TANG

FORM
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MULTigrid MAKE 1 ! Add the RHS from ’MULT SAVE 1’ to residual

SOLVe

NEXT NEWTon

MULT PROLongate 1 2

TANG

FORM

SOLVe

NEXT VCYCLe ! End loop V-cycle

DISP NODE (x1+x2)/2 y2 z1 ! Write displacmenet into output.

NEXT TIME ! End loop time

end

stop

C.2 3D FSI 3

C.2.1 FASTEST input file

Below the FASTEST input file for the 3D FSI 3 test case is given. In this
case it is solved by a two grid MG CPL implementation.

...

### lcalc

vel time ;[vel][turb|visles][temp][time]

;turb: use a RANS turbulence model

;visles: perform a Large Eddy Simulation

...

### grid levels

2 2 ;no. of coarse / fine grid

### grid level for tecplot output

2

...

### convergence criterion

1 ;1 --> sum of all residuals, 2 --> max. residual

### residuum limits

1.e-7 1.e+10

### interpolation method

tbi ;[cds|tbi]

### flux blending

1.0 0.0 0.0 0.0 0.0 0.0 ;1. Grid vel k eps temp zeta f

1.0 0.0 0.0 0.0 0.0 0.0 ;2. Grid

1.0 0.0 0.0 0.0 0.0 0.0 ;3. Grid

### underrelaxation

0.5 0.5 0.5 0.5 0.9 0.9 0.5 0.3 0.9 0.5 0.5 ;1. Grid u v w p k eps vis den t zeta f
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0.5 0.5 0.5 0.5 0.9 0.9 0.5 0.3 0.9 0.5 0.5 ;2. Grid

0.7 0.7 0.7 0.5 0.9 0.9 0.5 0.3 0.9 0.5 0.5 ;3. Grid

### sipsol

0.92 ;alfa

0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 ;sor: u v w p k eps t zeta f

2 2 2 10 1 1 1 1 1 ;nsw: u v w p k eps t zeta f

### multigrid cycle definition

20

2 14 2

### number of multigrid cycles

100 100

### time discretization

sofi ;discretization method [fofi|sofi|crni]

10000 0.002 ;no of timesteps,size of timestep

...

### fluid regions

t ;for each flow region: t - fluid, f - solid

### moving grids

y ;lmvgr

### fluid structure interaction

y y y y ;lfsi lfsiread lfsiwrite lfsisend

-3 ;extrapolation of forces: [0|1|2|3]-order, [-1] = none

2 12 2 ;max. number of outer iterations

2 ;coupling interface (0=none, 1=GRISSLi, 2=MpCCI)

1 ;interpolation scheme (0=NNB, 1=CONS)

0.6 0.0 ;underrel. parameter for structural distortions, aitken damping factor

1.e-5 1.e-5 1.e-5 ;fsi-residuum limit (x,y,z-direction)

-3 ;extrpolation of displacements: [1|2|3]-order, [-1] = none

1.e-4 ;convergence criterion for the TFSI

0.0 ;underrelaxation parameter for the TFSI

### grid distortions

y ;grid smoother [y/n]

12 1 ;number of blocks to be distorted; dist_norm

n ;use detailed grid distortion input matrix [y/n]

5 2 4 0 0 3 1 4 2 0.0 ;simple version [n]

6 2 4 1 0 3 0 4 2 0.0

7 2 0 1 4 4 3 1 2 0.0

8 2 0 1 4 4 3 1 2 0.0

9 2 1 1 4 4 3 0 2 0.0

10 2 1 1 4 4 3 0 2 0.0

13 2 3 1 4 4 8 3 2 0.5

11 2 0 1 4 4 8 1 2 0.5

15 2 1 1 4 4 8 0 2 0.5

14 2 3 1 4 4 0 3 2 0.0
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12 2 0 1 4 4 0 1 2 0.0

16 2 1 1 4 4 0 0 2 0.0

### high mem fast calculation

1 ;switch for fast calculation with higher mem usage

### mpcci input data

1 ;mycode

2 ;remoteCodeId

10 15 ;meshId from *.cci file

2 ;nQuantityIds

11 ;QuantityIds(1),localMeshIds(1)

12 ;QuantityIds(2),localMeshIds(2)

...

### draglift

y ;draglift calculation on/off

12 ;number of faces where draglift is to be calc.

2 3 4 5 5 6 6 7 8 9 10 13 ;blocknumbers of blocks w. draglift faces

4 4 3 3 5 3 2 6 6 1 1 2 ;

0.004 ;reference area for D,L coeff.

0.2 ;reference velocity (u_inf) for D,L coeff.

1.0e3 ;reference density for D,L coeff.

90 ;rotation angle in degrees

0 0 1 ;vector components nx,ny,nz that define rotation axis (s. wiki for examples)

...

### pressure reference point

t 0.0 2.5 0.0 t 0d0 ;[lcpref][xpref][ypref][zpref][lpfix][fpref]

; move[t/f] move where? fix[t/f] fix at?

; one line per fluid region(fr)

### static pressure exit boundary condition

f

C.2.2 FEAP input file

Below the corresponding FEAP input file to the 3D FSI 3 test case solved
by an two grid MG CPL implementation is given.

feap * * ifsi3

0 0 0 3 3 8

!3D multigrid coupling (3D FSI3 Testcase)

PRINt

PARAmeters ! Geometry information

x1 = 0.19
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x2 = 0.21

y1 = 0.24899

y2 = 0.6

z1 = 0.0

z2 = 0.02

MATErial,1

SOLId

FINIte ! Use nonlinear kinematics

ELAStic STVK 5.6e6 0.4 ! St. Venant-Kirchhoff E, Nu

DENSity DATA 1e3 ! Rho

EBOUndary ! Unset boundary conditions are v. Neumann type

2 y1 1 1 1 ! Clamped at cylinder

3 z1 0 0 1 ! No movement in z-direction

3 z2 0 0 1 ! No movement in z-direction

REGIon 1 ! Region for finest grid

BLOCk ! 8 node elements

CARTesian 8 144 8

BRICk 8

1 x1 y1 z1

2 x2 y1 z1

3 x2 y2 z1

4 x1 y2 z1

5 x1 y1 z2

6 x2 y1 z2

7 x2 y2 z2

8 x1 y2 z2

REGIon 2 ! Region for coarse grid

BLOCk

CARTesian 4 72 4

BRICk 8

1 x1 y1 z1

...

MPCCi ! MpCCI interface input

GRIDlevel 1 ! Finest grid first

MESHid 20 ! MpCCI mesh ID

PARTid 25 ! MpCCI partition ID
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NODEs ! Nodes lying on the interface

1 0 0 0 0

9 0 0 0 0

...

11745 0 0 0 0

ELEMents ! Interface elements (4 node elements)

1 0 9 18 1323 1314

2 0 18 27 1332 1323

...

2368 0 10440 10439 11744 11745

GRIDlevel 2 ! MpCCI input for coarse grid

MESHid 23 ! MpCCI mesh ID

PARTid 26 ! MpCCI partition ID

NODEs ! Nodes lying on the interface

11746 0 0 0 0 ! Actual numbering without ’TIE’ command

11750 0 0 0 0

...

13570 0 0 0 0

ELEMents ! Interface Elements

1 0 11750 11755 12120 12115 ! Element numbering starts at 1

2 0 11755 11760 12125 12120

...

end

TIE REGIon 1 2 ! Delete nodes in region 2

! rather than region 1.

batch

MPCCi INIT ! Initialize MpCCI interface

GAUSseidel INIT 5 ! Use 5 sweeps Gauss Seidel solver

TRANsient NEWMark 0.3 0.6 ! Newmark time stepping beta=0.3, gamma=0.6

RESTart restart ! Read restart file

DEACtivate,,1 ! Buildmatrix assembles the restrction &

ACTIvate,,1 ! prolongation matrix from the current

MULTigrid BUILdmatrix 1 2 ! active region to the last activated region

DEACtivate,,2 ! Starting computations on region 1

DT,,0.002 ! Time step size

LOOP TIME,10000 ! Loop over time

TIME ! Increment time step
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LOOP VCYCle 300 ! Loop over V-cycles

LOOP FSIIteration 2 ! FSI iterations presmoothing

RECV FORCE 1 ! Receive force from FASTEST on region 1

! When FEAP hits the convergence criterion it exits the most inner loop

! it is in. This is not supposed to happen, as convergence is handled

! by FASTEST. Thus the auxiliary loops.

LOOP NEWTon 1 ! Auxiliary loop

TANG ! Build Jacobian

FORM ! Build residual vector

SOLVe ! Solve the system

NEXT NEWTon

SEND DISPLacement 1 ! Send disp to FASTEST on region 1

NEXT FSIiteration ! End loop

FORM ! Build residual for coarse grid RHS

MULTigrid RESTrict 2 1 ! Restrict RHS, disp, vel, acce

! GAUSseidel DIREct ! Only used for steady simulations

LOOP NEWTon 1 ! Auxiliary loop

RECV FORCE 2 ! Receive force from FASTEST on region 2

FORM ! Build residual vector

MULTigrid SAVE 1 ! Put the residual in the RHS

NEXT NEWTon

SEND DISPLacement 2 ! Send disp to FASTEST on region 2

! The 6 lines above describe the additional exchange on coarse grids

! without solving

LOOP FSIiteration 12 ! Smoothing iterations on coarse grid

LOOP NEWTon 1 ! Auxiliary loop

TANG ! Build Jacobian

RECV FORCE 2 ! Receive force from FASTEST on region 2

FORM ! Build residual vector

MULTigrid MAKE 1 ! Add RHS from fine grid to residual

SOLVe ! Solve the system

NEXT NEWTon

SEND DISPLacement 2 ! Send disp to FASTEST on region 2

NEXT FSIiteration ! End loop

! GAUSseidel ITERative ! Only used for steady calculations

MULTigrid PROLongate 1 2 ! Prolongate disp, vel, acce

LOOP FSIiteration 2 ! FSI iterations postsmoothing

RECV FORCE 1 ! Receive force from FASTEST on region 1

LOOP NEWTon 1 ! Auxiliary loop

TANG ! Build Jacobian

FORM ! Build residual vector

SOLVe ! Solve system

NEXT NEWTon

SEND DISPLacement 1 ! Send disp to FASTEST on region 2
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NEXT FSIiteration ! End loop

NEXT VCYCle

DISPLacement NODE (x1+x2)/2 y2 (z1+z2)/2 ! Write displacement to output

SAVE restart ! Write restart file

NEXT TIME ! Next time step

MpCCi END ! Finalize MpCCI

end

stop

C.2.3 MpCCI input file

Below the corresponding MpCCI input file for the 3D FSI 3 test case and
the MG CPL implementation is given.

code fhp

id_string = "fhp";

mesh( no = 10);

force1( no = 11, loc = elem, dim = vector, type = flux );

displ1( no = 12, loc = node, dim = vector, type = field );

end

code feap

id_string = "feap";

mesh( no = 20);

force( no = 21, loc = node, dim = vector, type = flux );

displ( no = 22, loc = node, dim = vector, type = field );

end

quantities

feap.force = fhp.force1;

fhp.displ1 = feap.displ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%

% CONTROL-BLOCK %

%%%%%%%%%%%%%%%%%

%

% Uncomment this for an input to the mpcci visualizer showing forces

% and displacements on the interface

%
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%control

% tracefile( name = "test.ccv",

% close_after_writing = on, % default: off

% implicit_coupling_steps = on, % default: on

% trace_comm_values = on, % default: on

% trace_mesh_values = on, % default: off

% trace_mesh_change_values = off, % default: on

% format = hdf5 % default: hdf5

% );

%

%end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

contact

default_alg(

type = EE,

matching_criterion = intersection(

perform_tests = true,

rejection = 0.001,

scale_result = true,

max_projection_angle = 30,

max_projection_distance = -1.0

)

);

alg displacements(

type = PE,

matching_criterion = minimal_distance (

theta1 = 0.0,

theta2 = 1.0,

theta3 = 0.0,

rejection = 1.0e-3,

inside_only = false

)

);

alg forces(

type = EE,

matching_criterion = intersection (

perform_tests = true,

rejection = 0.001,

scale_result = true,

max_projection_angle = 30,

max_projection_distance = -1.0

)
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);

mesh_pair (FASTEST3D/50,FEAP/115) : displacements;

mesh_pair (FASTEST3D/10,FEAP/23) : forces;

mesh_pair (FASTEST3D/75,FEAP/100) : displacements;

mesh_pair (FASTEST3D/15,FEAP/20) : forces;

end

switches

output_level=0;

end

jobs

FASTEST3D = fhp (

pwd = "/path/to/fastest/project/directory",

exec = "unused",

nprocs = 4

);

FEAP = feap (

pwd = "/path/to/feap/project/directory",

exec = "unused",

nprocs = 1

);

end
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[23] J.H. Ferziger and M. Perić. Computational Methods for Fluid Dynam-
ics, volume 2. Springer Berlin, 1999.

[24] Fraunhofer Institute - Algorithms and Scientific Computing. MpCCI
3.0.6 Documentation, 2007.

[25] F. Gauß. Strategien zur adaptiven Gitterverfeinerung für
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mierung von Strömungsgebieten. PhD thesis, Techn. Univ. Darmstadt,
2003.
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interactions fluide-structure, pages 31–38, 2005.
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