TABLE OF CONTENTS

Description Contents List of figures List of table's	Page no. iii vi xiii
 Chapter 1 Introduction and Motivation 1.1 Introduction 1.2 Viscoelastic Materials 1.3 3M467 and 3M468 Viscoelastic adhesive 1.4 Role of Damping Materials 1.5 Evolution of Passive Damping Technology 1.6 Finite Element Analysis for thin Damped Sandwich Beams 1.7 Motivation 1.8 Applications of the Viscoelastic Materials Core 	1 2 3 5 6 8
 Chapter 2 Literature Review 2.1 Introduction 2.2 Viscoelastic Materials used for Damping 2.3 Constrained Layer Damping 2.4 Emergence of the Constraining Layer: Kerwin's Model 2.5 Engineering Design of Passive Damping Treatments 2.6 Finite Element Models of Sandwich 2.7 Complex Behavior of Viscoelastic 	13 13 14 15 16 18
Chapter 3 Theory of Composite Cantilever Beam With Viscoelastic Material Properties 3.1 Introduction 3.2 Introduction to the Cantilever Beams 3.3 First Method Euler Bernoulli beam theory 3.4 Second Method Finite element analysis (ANSYS 14) 3.5 Third Method Passive Viscoelastic constrained layer damping (MATLAB) 3.6 Fourth method experimental involves half-power bandwidth method	19 19 20 21 22 27
Chapter 4 Results and Discussions for the Effect of Viscoelastic Material on Modal Frequency for Undamped and Damped Cantilever Beam that predicted by ANSYS14 and Euler-Bernoull BeamTheory for the Three Materials Cantilever Beam 4.1 Introduction 4.2 Undamped Cantilever Beam 4.2.1 Euler-Bernoulli Beam Theory 4.2.2 Finite Element Models 4.3 Damped Sandwich Cantilever Beam 4.3.1 Introduction to Sandwich Model 4.3.2 Damped Aluminum Cantilever Beam	43 43 49 67 67 69

 4.3.3 Damped Steel and Cast Iron Cantilever Beam 4.4 Comparison between the Damping for the three Sandwich Cantilever Beam (Aluminum, Steel and Cast iron) with Viscoelastic Materials core type 3M468 	80 97
4.5 Conclusion	100
Chapter 5 Results and Discussions for the Loss Factors that predicted by MATLAB (R2011a) and Experimental Lab for three materials cantilever beam	
5.1 Introduction	101
5.2 Calculation of System Loss Factor by using MATLAB (R2011a)	102
5.2.1 Effect of Frequency on the System Loss Factor	102
5.2.2 Method to Find the Transition Region for Aluminum Damped Cantilever Beam	103
5.2.3 Method to Find the Transition Region for Cast Iron and Steel amped Cantilever Beam	108
5.3 Comparison between the Loss factor for sandwich cantilever beam	113
with viscoelastic material core type 3M468 and for the three materials	
5.4 Effect of Frequency on the System Loss Factor for Variable Sandwich	116
Cantilever Beam Thick	
5.5 Effect of Viscoelastic Layer Thickness on the System Loss Factor for	116
Aluminum Cantilever Beam	
5.6 Effect of Constraining Layer Thickness and Elastic Modulus on the	117
System Loss Factor for Different Materials	
5.7 Effect of Host Beam Materials on the System Loss Factor	118
5.8 Effect of Frequency on the System Damping Ratio for Aluminum	120
Cantilever Beam	
5.9 Experimental Methods for Calculation the System Loss Factor for	123
Damped Cantilever Beam by using Frequency Domain Methods	
and for the Three Materials Aluminum, Steel and Cast iron	400
5.9.1 Undamped Aluminum Cantilever Beam Loss Factor	123 124
5.9.2 Measurement of Loss Factor for Damped Aluminum Cantilever Beam with two types of viscoelastic materials core 3M467 and	124
3M468 by Using the half power bandwidth method	
5.9.3 Experimental and Theoretical Correlation of Loss Factor for	129
Sandwich Aluminum Cantilever Beam with Two Types of VEM Core	125
(3M467and 3M468)	
5.9.4 Experimental Measurement of Loss Factor for Cantilever Beam	133
(Cast Iron and Steel) with VEM Core Type 3M468 by using	100
Frequency Domain Method	
5.9.5 Experimental and Theoretical Correlation for Cast Iron and Steel	138
Sandwich Cantilever Beam with Viscoelastic Materials Core 3M468	
5.9.6 Comparison between the Loss factor for damped cantilever beam	139
with viscoelastic materials core type 3M468 and for the three	
materials by using half-power bandwidth method	
5.10 Conculation	145

Chapter 6 Summary and Conclusions 6.1 Summary and Conclusions	
6.2 Scope for Future Work	146 150
Chapter 7 References	151
Appendixes	
Appendix A: MATLAB Programs	158
Appendix B: Modal Analysis Response by ANSYS14	170
Appendix C: Loss Factor Predictions by MATLAB	184
Appendix D: : Modal Analysis Response by Expermental Lab Test	187