
Sonderdrucke aus der Albert-Ludwigs-Universität Freiburg 
 
 
 
 
 
 
 
 
 

PETER THIEMANN 
 
 
LaToKi: A Language Toolkit for Bottom-Up 
Evaluation of Functional Programms 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Originalbeitrag erschienen in: 
Maurice Bruynooghe (Hrsg.): Programming language implementation and logic programming : 
4th international symposium ; proceedings. 
Berlin [u.a.]: Springer, 1992, S. 481 - 482 



LaToKi: A Language Toolkit for Bottom-Up
Evaluation of Functional Programs

Peter Thiemann

W . he Schickard Institut, Universitit Tiibingen, Sand 13, D-W7400 Tiibin.gen,
Germany

Abstract. LaToKi is a toolkit for experimentation with different implemen-
tations of recursion in strict functional programs. Its main emphasis is on the
bottom-up evaluation of structural recursive defined programs. We have de-
veloped a technique that allows the evaluation of a wide subclass of structural
recursive functions using a constant amount of control memory.

Introduction

The purpose of LaToKi is to provide an environment to compare different evaluation
strategies for strict functional programs. We felt that such a toolkit was needed when
we tried to compare the usual runtime stack implementation and its improvements
(elimination of tail recursion and tail recursion mod constructors) with our bottom-
up implementation for structural recursive functions.

Structural recursion arises naturally with inductively defined data types. Suppose
we have a finite set El of data constructors with arities. Let Tr, denote the set of all
ground terms over E.

Definition. A function f defined by f(xi,	 xn) = e is structural recursive
defined (srd) if there is a recursion argument Zr E TE and inside of e there is a case
distinction case Zr of o-i(z i . zk) : ei . . . on xf 's top symbol (e.g. ai) in such
a way that all recursive calls of f occur inside of some ei and the rth argument of
f in a recursive call is one of z 1 , . zk, i.e., an immediate subterm of Zr.

The definition (as well as the evaluation scheme described below) can be gener-
alized to mutual structural recursive functions and to functions with finite course-
of-value recursion. See [3} for more information.

2 Bottom-up Evaluation

Evaluation of srd functions is done with visits to the nodes of the recursion argument.
Visits are a well-known concept from evaluators for attribute grammars. A traversal
of the derivation tree of the underlying grammar is a sequence of visits to its nodes.
In our approach the recursion argument plays the role of the derivation tree. The tree
traversal is compiled to iterative code. It works by reversing the tree pointers (similar
to the Schorr-Waite garbage collection algorithm) and by saving a continuation
address in the tag field for the identification of the data constructor. The information
in the tag field can be recovered after the visit since it is implicit in the continuation
address. Thus the state of the traversal (the node which is just visited, what action



techniques.

nreverse elapsed time

	

length rec	 srd

	

1.1	 0.9 1.10

	

4.6	 3.8 4.50

append elapsed time user time
length rec	 srd rec srd

10
106

0.2
2.3

0.23
2.31

user time
rec srd

0.95
3.632000

1000

482

to perform next, the way back to the root of the tree) can be captured in two
registers and in some part of the recursion argument. The first approach to bottom-
up evaluation — an interpretative approach without continuation addresses — is
found in [1], a condensed description of our current technique is [4], more details
and an introduction are found in [2].

3 Structure of the system

LaToKi is written in Edinburgh SML. It consists of three parts. The first is a front
end covering syntax analysis and language dependent semantic analysis. Currently,
there is a front end for ModAs/6000 (developed from the language of [1]) and for
an experimental language whose only data type is tree. Front ends are planned for
a functional subset of SML and for a language based on order-sorted algebra.

The second part works on a common abstract syntax. It does language indepen-
dent analyses and compiles to the abstract iterative machine AIM (cf. [4]). Here, the
compiler examines each function definition and chooses the appropriate implemen-
tation strategy. We thank Jochen Spranger for its implementation.

The third part is a native code generator. Currently, we have a prototype code
generator for the RS/6000. An optimizing version of it is under development. We also
plan a version for SPARC processors. Recently, many groups are compiling functional
languages into C. This was not possible here, since we need explicit access to return
addresses for efficiency reasons.

4 Performance

Each of the implementation strategies mentioned above has its advantages. The
current code generator only implements bottom-up evaluation (srd) and the usual
runtime stack method (rec). In the table below we give some measurements for
sample code (without optimization and garbage collection). We have applied the
functions append and nreverse to lists of various lengths with both evaluation

References

1. Herbert Klaeren and Klaus Indermark. Efficient implementation of an algebraic specifi-
cation language. In M. Wirsing and 3. A. Bergstra, editors, Algebraic Methods: Theory,
Tools, and Applications, pages 69-90. Springer, 1987. LNCS 394.

2. Peter Thiemann. Efficient implementation of structural recursive programs. Technical
Report WSI-91-12, Universitat Tiibingen, 1991.

3. Peter Thiemann. Konzepte zur effizienten Implementierung strukturell rekursiver Pro-
gramme. Dissertation, Fakultãt fiir Informatik, Universitat Taingen, 1991.

4. Peter Thiemann. Optimizing structural recursion in functional programs. In Proceedings
International Conference on Computer Languages 1992, pages 76-85, April 1992.

This article was processed using the likTEX macro package with LLNCS style


	Thiemann_LaToKi.pdf
	Page 1
	Page 2


