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1 Introduction

We meet graphs in different ways in real life without notice. Graphs describe the connect-
edness of systems; typically, they model transport or communication systems, electrical
networks, etc. It is not difficult to imagine that having a graph with very good connective
properties could be useful in many communication problems, for instance the design of
telephone networks [26], parallel computers, and neural networks. It is possible to con-
struct a special type of highly connected and yet very sparse graphs using bipartite graphs
as building blocks, see [2].

Another example is addressing schemes for computer networks. In any modern com-
puter, data is perpetually moving throughout the system. To route this data efficiently
is an important task. A natural course to pursue is to represent a computer network as a
graph and provide each vertex of this graph with an address. Perhaps less obvious is that
these addresses could be made to reflect the distances between the vertices in the graph.
If this were the case, then a parcel of data could be optimally routed around a network
simply by examining local information at each step. When a parcel reaches a vertex, it
needs only to compare the addresses of its neighbors with the address of its destination
and move to the neighbor closest to its target. There are graphs which naturally have
this addressing property, see [2].

In this work, we focus the attention on graph coloring. Graph coloring has an extensive
history and theory. A classical example is map coloring problem, where countries sharing
a common frontier must be given different colors on the map, the question is how many
colors does the cartographer need?

There are different ways to color a graph: namely vertex coloring, edge coloring, total
coloring, list coloring, etc.

There are more combinatorial applications of graphs in real problems. For example
interpretation of edge coloring in timetabling. From a practical point of view, bipartite
graphs form a model of interaction between two different types of objects, be they sets and
their elements, jobs and workers, or telephone changes and cities. The desire to model such
interaction is extremely common and many recreational and much more serious problems
can be phrased in terms of problems on bipartite graphs.

The concept of defining set has been firstly studied in block designs, see [31] and latin
squares, under the name critical sets. Mahmoodian introduced the concept of a defining
set for a x(G@)-coloring of a graph G, [23]. Morril and Pritikin [27] extended this to
k-coloring of a graph G, where k > x(G).

A defining set of a given set, say A, gives information about A which are enough to
determine A uniquely. The concepts of critical sets in latin squares, and defining sets of
graph colorings, have applications in cryptography [11]. Another useful aspect is that few
information rather than the graph completely has to be stored in memory.

As in the case of block designs, finding defining sets seems to be difficult problem,
and there is not a general conclusion. Hence we confine us here to some special types of
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graphs like bipartite graphs, complete graphs, etc.
In this work, four new concepts of defining sets are introduced:

e Defining sets for perfect (maximum) matchings
e Defining sets for independent sets
e Defining sets for edge colorings

e Defining set for maximal (maximum) clique

Furthermore some algorithms to find and construct the defining sets are introduced.
A review on some known kinds of defining sets in graph theory is also incorporated.
In chapter 2 the basic definitions and some relevant notations used in this work are
inroduced.

chapter 3 discusses the maximum and perfect matchings and a new concept for a
defining set for perfect matching.

Different kinds of graph colorings and their applications are the subject of chapter
4.

Chapter 5 deals with defining sets in graph coloring. New results are discussed
along with already existing research results. An algorithm is introduced, which
enables to determine a defining set of a graph coloring.

In chapter 6, cliques are discussed. An algorithm for the determination of cliques
using their defining sets. Several examples are included.



2 FUNDAMENTAL CONCEPTS 6

2 Fundamental concepts

In this chapter we introduce the basic definitions and some relevant notations which
we shall use throughout this work.

Definition 2.1 A graph G is a triple consisting of a vertex set V(G), an edge set
E(G), and a relation that associates with each edge, e. g. uv € E(G), two vertices,
u,v € V(G), ( not necessarily distinct ) called its endpoints. A graph is finite if its
vertez set and edge set are finite. The size of V(G) is denoted by n(G) and of E(G)
by e(G). The null graph is the graph whose vertex set and edge set are empty.

Definition 2.2 The complement G of a simple graph G is the simple graph with
verter set V(G) defined by wv € E(G) if and only if uv ¢ E(G).

Definition 2.3 A loop is an edge whose endpoints are equal. Multiple edges are
having the same pair of endpoints. A stmple graph is a graph having no loops or
multiple edges.

Definition 2.4 When u and v are endpoints of an edge, i.e. € = uv,e € E(G),
they are adjacent and neighbors.

Definition 2.5 If vertez v is an endpoint of edge e, then v and e are incident.
The degree of vertez v (in a loopless graph) is the number of incident edges and us
denoted by dg(v).

Definition 2.6 The mazimum degree of graph G is denoted by A(G), the minimum
degree by 6(G), and G is regular if A(G) = 0(G). It is k-regular if every vertez
wm G has degree k.

Definition 2.7 Let G be a loopless graph with verter set V(G) = {v1,...,v,} and
edge set E(G) = {e1,...,em}. The adjacency matriz of G, written A(G), is
the n-by-m matriz in which entry a;; is the number of edges in G with endpoints
{vi,v;}. The incidence matrix M(G) is the n-by-m matriz in which entry m;;
is 1 if v; is an endpoint of e; otherwise is 0.

Definition 2.8 A clique in a graph is a set of pairwise adjacent vertices. An
independent set or stable set in a graph is a set of pairwise nonadjacent vertices.

Definition 2.9 The clique number of a graph G, written w(G) us the mazimum
size of a clique in G. The independence number, wriiten a(G), of a graph is the
mazimum size of an independent set of vertices.
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Definition 2.10 The clique cover number 0(G) of a graph G is the minimum
number of cliques in G needed to cover G.

Definition 2.11 A walk of length n in a graph G is a finite non-null sequence
W = vpeiv1€20s . . . ea0y, whose terms are alternately vertices and edges, such that,
for

1 < i < n, the ends of e; are v;_y and v;. W is called a path if vertices and edges
in W are distinct and is denoted by P,. A closed path of length n, i.e. vg = vy, 18
called cyele and denoted by C,. A cycle C,, is odd or even as n is odd or even.
The length of shortest cycle in G is called girth.

Definition 2.12 A subgraph of a graph G is a graph H such that V(H) C V(G)
and E(H) C E(G) and the assignment of endpoints to edges in H is the same as in
G. We then write H C G and say that "G contains H”.

Definition 2.13 An induced subgraph, G[U], is a subgraph of G whose vertex
set is U C V(G) and two vertices are adjacent in G[U] if and only if these vertices
are adjacent in G.

Definition 2.14 A spanning subgraph of G is subgraph with vertez set V(G). A
spanning tree is a spanning subgraph which is a tree. Analogously one can define
a spanning cycle.

Definition 2.15 A graph G is connected if each pair of vertices in G belongs to
a path; otherwise G is disconnected.

Definition 2.16 A separating set or vertex cut of graph G is a set S C V(G)
such that G — S has more than one component. The connectivity of G, written
(G, is the minimum size of vertex set S such that G — S is k-connected if its
connectivity is aat least k.

Definition 2.17 In a connected graph, the length of shortest path between two ver-
tices u and v is called distance between u and v and is denoted by d(u,v).

Definition 2.18 A Hamiltonian graph is a graph with a spanning cycle, also
called a Hamiltonian cycle.

Definition 2.19 A graph with no cycle is acyclic. A forest is an acyclic graph.
A tree is a connected acyclic graph. A leaf (or pendant vertex) is a vertexr of
degree 1. A star is a tree consisting of one vertex adjacent to all the others.
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Definition 2.20 The graph obtained by taking the union of graphs G and H with
disjoint vertex sets is the join or sum, written G+H, i.e. V(G+H) = V(G)UV (H)
and all vertices in V(G) are joined to V(H).

Definition 2.21 A graph is said to be planar if it can be drawn in the plane so
that its edges intersect only at their ends.

Definition 2.22 A graph G is called k-partite graph if its vertez set V(G) can be
partitioned into k sets Vi, ..., Vi independent sets. G is called complete k-partite
graph if every vertex in V; is adjacent to all the other vertices in Vj,j # 4. If
|Vi| = ni,i € 1,..., k then G is denoted by Kn,,..n,-

If |Vi| = |V;| for alli,j € 1,...,k, then G is called a balanced complete r-partite
graph.

Definition 2.23 A graph G is bipartite if V(G) can be partitioned into two subsets
Vi and Vs such that every edge has one end in Vi and the other end in Vy. G is
complete bipartite if each vertez of V1 is joined to each vertez of Vo. We call a graph
m by n bipartite if |Vi| = m and |Va| = n, and a graph is a balanced bipartite graph
when |V1| = |Val.

Definition 2.24 A complete graph is a simple graph whose vertices are pairwise
adjacent; the complete graph with n vertices is denoted by K,. A complete bipar-
tite graph is simple bipartite graph such that two vertices are adjacent if and only
if they are in different partite sets. It is denoted be Ky, when the partite sets have
size m and n.

Definition 2.25 An isomorphism from a simple graph G to a simple graph H
is a bijection (one-to-one function) f : V(G) — V(H) such that wv € E(G) if and
only if f(u)f(v) € E(H). We say "G is isomorphic to H”, written G ~ H, if
there is an isomorphism from G to H.

Definition 2.26 The vertez chromatic number of a graph G is the minimum
number of colors required to color the vertices of G so that no two adjacent vertices
have the same color. It is denoted by x(G).

Definition 2.27 Let A = {A;, Ay, ..., Ay} be a collection of subsets of a set Y. A
system of distinct representatives (SDR) for A is a set of distinct elements
ay,Qs,...,0, Y such that a; € A;.

Here we consider (simple) graphs which are finite, undirected, with no loops or
multiple edges. Let G be a graph, we denote its vertex set, edge set, maximum- and
minimum degree of its vertices by V(G), E(G), A(G) and ¢(G) respectively.
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3 Maximum matching

Definition 3.1 A matching in a graph G is a set of edges with no shared end-
points. The vertices incident to the edges of a matching M are saturated by M;
the others are unsaturated (we say M-saturated and M -unsaturated).

Definition 3.2 A mazximal matching in a graph is a matching that cannot be
enlarged by adding an edge. A mazimum matching is a matching of mazimum
size among all matchings in the graph.

A matching M is maximal if every edge not in M is incident to an edge already
in M. From definitions we observe that every maximum matching is a maximal
matching, but the converse need not hold.

Example 1 The smallest graph having a mazimal matching that is not a mazimum
matching is Py. If we take the middle edge, then we can add no other, i. e. the
middle edge is a mazimal matching, but the two end edges form a larger matching
which is mazimum matching.

It S

Many discrete problems can be formulated as problems about maximum matchings.
Consider, for example, probably the most famous:

A set of boys each knows several girls, is it possible for the boys each to marry a
girl that he knows?

This situation has a natural representation as the bipartite graph with bipartition
(Vi,Va), where V; is the set of boys, V5 the set of girls and an edge between a boy
and a girl represents that they know one another. The marriage problem is then
the problem: does a maximum matching of G have |V;| edges?

Definition 3.3 We call the set of adjacent vertices in graph G to a vertezv € V(G),
the neighborhood of v and denote it by N(v). Analogously for a subset of vertices
S C V(G) we denote the set of all vertices of G which are adjacent to at least on
verter in S by N(S).
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Theorem 3.1 ( Hall’s Theorem) Let G be a bipartite graph with bipartition (Vi, Va).
Then G has a matching of Vy into Vs if and only if [N(A)| > |A| for every A C V.

The above theorem is often called Hall’s condition.

Putting this theorem into the language of boys and girls we obtain an answer to the
marriage problem:

Theorem 3.2 It is possible to marry a group of n boys each to a girl that he knows
if and only if every subset of k boys communally know at least k girls, for each

k= Lo i

Corollary 3.3 FEvery bipartite graph G has a mazimum matching which covers all
the vertices of mazimum degree.

One interesting type of maximum matchings is perfect matching.

3.1 Perfect matching

Definition 3.4 A perfect matching of a graph G is a matching which covers every
vertez of G.

Example 2 In the following figure we can see the examples for mazimum and per-
fect matchings:

(@) (b)

(a) A mazimum matching; (b) a perfect matching
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Remark 3.1 The necessary conditions for a connected graph G to have a perfect
matching are:

1) |V(G)| = 2

2) |E@G)| 2 k

The well known Assignment Problem is formulated as follows:

There are n workers and n jobs. The ability of worker 4 to carry out job j is w(ij).
What is the optimal assignment of workers to jobs, that is the permutation m € Sy,
which maximizes 37 (w(im(7))?

Unfortunately, in practice, the assignment with maximum weight is a satisfactory
solution. There are always hidden factors which cannot be entered into basic model.
Rather than simply finding the assignment with the maximum weight, it might be

better to find the k best assignments to give some choice.

We can rephrase the problem as a problem on bipartite graph. Let G = Ky have
bipartition (Vi, V3), Vi the set of workers and V5 the set of jobs, and let each edge e €
E(G) be given a weight w(e). The weight of a matching M is w(M) = Yeem w(e).
A matching with maximum weight is called an optimal matching. The problem
now is to find k distinct perfect matchings M, . .., My such that w(M;) > w(Ms) >
... > w(My) > w(M) for every perfect matchings M ¢ {M, ..., My}. We call this
problem the k Best Perfect Matchings Problem.

Hall’s theorem has many consequences, here we consider some of them for graphs
with perfect matching in following section.

Corollary 3.4 A bipartite graph G with bipartition (V1,Vz) has a perfect matching
if and only if |Vi| = |Va| and |[N(A)| > |A]| for each A C Vi.

Corollary 3.5 (Kinig) Every reqular bipartite graph has a perfect matching.

In this part we study the perfect matchings of some special graphs, the trees.

For trees we have the following results.
Theorem 3.6 Every forest has at most one perfect matching.

Proof :

Induction by the number k of edges of G.

k = 0. The forest consists of no edge and has no perfect matching.

Introduction step k + 1. Let the forest G has k + 1 edges, k > 0.

Then G has at least two leaves ( vertices of degree 1 ). Let e be an edge which ends
in a leaf @ and a vertex b.
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=) (7~

Assume that @ has two different perfect matchings M; and M. Due to definition
both matching have to contain e, i.e. they have to saturate all vertices of the forest
G' = G\ {a,b} otherwise they would not be perfect.

By induction hypothesis G’ has at most one perfect matching. Hence
M, UE(G") = M, UE(G").

The matchings M; and M, coincide on G" and both contains e. Hence M) = Ms, a
contradiction to our assumption.

Corollary 3.7 Every tree has at most one perfect matching.

Example 3 Py, has 1 perfect matchings and Py, has no one.

Theorem 3.8 Euvery cycle has at most two perfect matchings.

Proof :

By removing one edge from a cycle we get a tree which according to Corollary 3.7
has at most one perfect matching. Now if this tree has a perfect matching, then
by adding the removed edge we have also a perfect matching in the cycle and by
considering the edges which were not in matching we get another perfect matching.
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Definition 3.5 For a subset of vertices S of a graph G we denote by cg(S) the
number of components of G — S which have an odd number of vertices (odd compo-
nents).

Theorem 3.9 ( Tutte’s theorem) A nontrivial graph G has a perfect matching iff
for every proper subset S of V(G), |S| > ca(S).

Corollary 3.10 T has perfect matching iff for all v € V(T') the number of odd
components of G\ v is ezactly 1.

In the following there are some necessary conditions for trees having a perfect match-
ing:

1. T should have 2n vertices.

2. T should contain no star, i.e. if T has two or more leaves with one endpoint in
common then T has no perfect matching.

3.2 Defining Set of Perfect Matchings

Suppose that instead of knowing the complete set of a perfect matching M, just
a subset D of M is specified, the question is; can we obtain M from D? In the
following we introduce a new concept which gives answer to this question.

Definition 3.6 A defining set, D, of a perfect (respectively mazimal) matching M
of a graph G is a subset of E(G) which can be estended to M uniquely.

It means with help of set D we can determine a unique perfect (respectively maxi-
mal) matching M which contains D as a subset.

Definition 3.7 A defining set of a perfect (respectively mazimal) matching M of a
graph G, with minimum cardinality is called minimum defining set and its cardinalty
is denoted by d,(M) (respectively dp,(M)).

To illustrate the previous definitions, we consider the following example;
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Example 4 Consider the perfect matching M shown in Ezample 2;

uﬂ
Us

U, Uy

U,
U

We claim that the set D = {ujus} is a defining set for this perfect matching. To
construct the unique perfect matching which contains {uius}, we check all edges with
one endpoints of degree one. It is clear that such edges, here usug and urug have to
belong to the perfect matching. Now only choice for having a matching which covers
all vertices of thid graph, is uzus. This matching is perfect. D has minimum car-
dinality, i.e. we need at least one edge to determine this perfect matching uniquely,
hence d,(M) =1

From previous Section 3.1 it is easy to see:

Corollary 3.11
dp(F) =dp(T) =0,

1 fn=2%
d"(c")‘{o ifn=2k+1

where F is a forest, T is a tree and C, is a cycle.

Remark 3.2 It is easy to observe that for a graph G with dg(v) > k for all vertices
in G, then dy(G) (resp. dm(G)) > k.

Example 5 In the following there two perfect matchings M and M' of graph G are
shown.
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Here we have |D(M)| = |D(M')| = 1, i.e. we can determine the perfect matching
M when only one of its vertez is given, although the perfect matchings M and M’
have two edges in common. Hence It is not always true that |D| > | N; M;|, where
M; is a perfect matching in G.

As we will see later there is a very close relationship between edge coloring of a
graph and the class of its maximal matchings. In fact the edge color class is nothing
else than class of maximal (and in some case perfect) matchings.
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4 Graph coloring

We mentioned earlier that graphs model connectivity. Here, the viewpoint is that
graphs model ”incompatibility”. For example, in a university we want to assign
time slots for final examinations so that two courses with common students have
different slots. The number of slots needed is the chromatic number of the graph
in which two courses are adjacent if they have common student. There are many
variations of graph coloring. In this chapter we introduce some of them.

4.1 Vertex coloring

Definition 4.1 A k-vertez coloring of a graph G is an assignment of k colors,
1,2,...,k, to the vertices of G; the vertices of one color form a color class.

A k-coloring is proper if adjacent vertices have different colors. A graph is k-
colorable if it has a proper k-coloring. The chromatic number x(G) is the least
k such that G is k-colorable; if x(G) =k, G s said to be k-chromatic.

Remark 4.1 In a proper coloring, each color class is an independent set, so G is k-
colorable if and only if V(G) is the union of k independent sets. Thus "k-colorable”
and "k-partite” have the same meaning.

Definition 4.2 A k-coloring (Vi,Va, ..., Vi) of G is said to be canonical if V; is
a mazimal independent set of G, Vs, is a mazimal independent set of G — Vi, V3 is
a mazimal independent set of G — (V41 U V3), and so on.

Remark 4.2 If graph G is k-colorable, then there exists a canonical k-coloring of

G

The chromatic number is the most famous graphical invariant; its fame being mainly
due to the Four Color Conjecture, which asserts that all planar graphs are 4-
colorable. This has been most challenging problem of combinatorics for over a
century and has contributed more to the development of the field than any other
single problem. Although today chromatic number and graph coloring attract at-
tention for several other reason too, many of which arise from applied mathematical
fields such as operations research, as well from problems of practical interest.

A Storage Problem

A company manufactures n chemicals Cy, Cy, ..., C,. Certain pairs of these chemi-
cals are incompatible and would cause explosions if brought into contact with each
other. As a precautionary measure the company wishes to partition its warehouse
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into compartments, and store incompatible chemicals in different compartments.
What is the least number of compartments into which the warehouse should be
partitioned?

We obtain a graph G on the vertex set {vi,vs,...,v,} by joining two vertices v;
and v; if and only if the chemicals C; and C; are incompatible. Now we must assign
labels to the vertices so that the endpoints of each edge receive different labels.
Since we are only interested in partitioning the vertices, and the labels have no
numerical value, it is convenient to call them colors. It is now easy to see that the
least number of compartments into which the warehouse should be partitioned is
equal to the chromatic number of G.

The chromatic number of a graph is the least number of independent sets into which
its vertex set can be partitioned, Because every independent set is a subset of a max-
imal independent set, it suffices to determine all the maximal independent sets. A
method for listing all the independent sets is given in [7]. By implementing this
algorithm, one can obtain the list of all maximal independent sets of . By repeat-
edly using this method for finding maximal independent sets, one can determine all
canonical colorings of G. The least number of colors used in such a coloring is then
the chromatic number of G.

Definition 4.3 A coloring of a graph is called complete if every pair of color
classes contains an adjacent pair of vertices.

This definition corresponds to the complete graph K, which consists of n vertices,
every pair of distinct vertices being adjacent. In fact, if G is a graph with a complete
n-coloring we immediately obtain a corresponding isomorphism ¢ from G to K.
Conversely, given a isomorphism from a graph G onto K, a complete n-coloring of
G is found by taking the color classes of vertices in G' to be the pre-images of the
vertices of K.

Proposition 4.1 A graph G has a complete n-coloring if and only if K, is an
isomorphism image of G.

Due to definitions of bipartite graphs it is easy to observe that:
Remark 4.3 A simple graph is 2-colorable if and only if it is bipartite.

Example 6 According to Remark 4.8 Cs and the Peterson graph have chromatic
number at least 3, i.e. they are not bipartite, so we need at least 3 colors. Since they
are 3-colorable, as shown below, they have chromatic number ezactly 3.
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4

AV,
X

Figure 1: A vertex coloring for Cj A vertex coloring for Peterson graph

Proposition 4.2 For every graph G, x(G) > w(G) and x(G) > g

Proof :

The first bound holds because we need distinct colors for vertices of a clique. The
second bound holds because each color class is an independent set and thus has at
most (@) vertices.

Proposition 4.3 Every k-chromatic graph has at least k vertices of degree at least
k—1.

Algorithm 4.1 (Greedy Coloring [84])

The greedy coloring relative to a vertex ordering vi,...,v, of V(Q) is obtained by
coloring vertices in the order vy,..., vy, assigning to v; the smallest-indexed color
not already used on its lower-indezed neighbors.

Proposition 4.4 x(G) < A(G) +1.

Theorem 4.5 (Brooks’ Theorem) If G is a connected graph other than a complete
graph or an odd cycle, then x(G) < A(G).

Definition 4.4 The cartesian product of simple graphs G and H is the simple graph
G x H with vertez set V(G) x V(H), in which (u,v) is adjacent to (u',v") if and
only if either u = u' and vv' € BE(H) or v ="" and uu' € E(G).
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In other words, it is a graph which contains |V (H)| ”horizontal” copies of G' and
|V (H)| ”vertical” copies of H. A horizontal copy and vertical copy have exactly one
vertex in common. By the vertex (7, ) in G x H, we mean the vertex in intersection
of the i-th copy of G and the j-th copy of H.

Example 7 The m-by-n grid is the cartesian product of Py, and P,.

And for the n- cube Q,, an n-reqular simple graph with 2" vertices and n2" edges,
holds:

Qn = Qn—l x Ky

K, o

0,=K, x C;
C,

Proposition 4.6 (Vizing, Aberth) x(G x H) = maz {x(G), x(H)}.

4.1.1 Color-critical graphs

Definition 4.5 A graph G is k-color-critical ( or just critical ) if x(H) < x(G) =
k for every proper subgraph H of G.

k-critical graphs for small k

Properly coloring a graph needs at least two colors if and only if the graph has an
edge. Thus K is the only 2-critical graph (similarly, K is the only 1-critical graph).
Since 2-colorable is the same as bipartite, the characterization of bipartite graphs,
Theorem 4.21, implies that the 3-critical graphs are the odd cycles.

We can test 2-colorability of a graph G by computing distances from a vertex = (in
each component).

Let Vi = {u € V(G) : d(u, ) is even}, and let Vo = {u € V(G) : d(u,z) is odd}.
The graph G is bipartite if and only if (3, V3) is a bipartition, meaning that G[Vi],
and G[V;] are independent sets.
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No good characterization of 4-critical graphs or test for 3-colorability is known.

Brook’s theorem implies that the complete graphs and odd cycles are the only
k — l-regular k-critical graphs. Gallai (1963) strengthened this by proving that in
the subgraph of a k-critical graph induced by vertices of degree £ — 1, is a clique or
an odd cycle.

The study of A-critical graphs can be considered as one of approaches to improve
Brook’s theorem. Brook’s theorem states that x(G) < A(G) whenever 3 < w(G) <
A(G). Bordin and Kostochka (1997) conjectured that w(G) < A(G) implies x(G) <
A(G) if A > 9. Reed (1999) proved that this is true when A(G) > 10", Reed
(1998) also conjectured that the chromatic number is bounded by average of the
trivial upper and lower bounds; that is, x(G) < [M(—H

Beutelspacher and Hering have shown that there are only 13 A-critical graph on
2A — 1 vertices with A > 3 and proved for these graphs 4 < A < 8.

In the following section we consider a type of graphs with the property that their
chromatic number is equal with their maximum size of a clique.

4.2 Perfect graphs

A graph with high chromatic number is difficult to deal with. One may become
interested in graphs whose trivial lower bound of w(G) colors always suffices to
color their vertices.

Clearly, a(G) < 6(G) since a stable set S can have at most one vertex in each clique
of the partition. Similarly, w(G) < x(G).

Definition 4.6 Graph G is called a-perfect if
a(GU)) =0(GU)) forall U CV(G)

Definition 4.7 Graph G is called x-perfect, or simply perfect, if
X(GU)) =w(GW)) forall HCV(G)

Example 8 If G is a bipartite graph, then «(G) = 0(G). Thus, a bipartite graph
is a-perfect. A bipartite graph is also x-perfect because if it has an edge, then

x(G) =2 =w(G),

and if G has no edges, then

x(G) =1 =w(G).

Example 9 If G consists of an odd cycle of length 2k + 1 > 3 without chords L
then G is not a-perfect because a(G) =k and 0(G) = k+ 1. (A minimum partition

' An edge joining two non-consecutive vertices of a cycle.
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of G consists of k 2-cliques and one 1-clique.) Moreover, G is not x-perfect because
X(G) =3 and w(G) = 2.

Remark 4.4 Let G(V1),...,G(v,),n € N be the connected componenets of a graph
G. Then :

(i) a(G) = a(G(V1)) + OZ(G(Vn))
(i) 0(G) = 0(G(V1)) + ...+ 0(G(Va))
(ii1) x(G) = mazx(G( z))
(iv) w(G) = mazw(G(V;))

Theorem 4.7 A graph G is a-perfect if, and only if, its complementary graph G is
x-perfect.

Proof :
clearly,
a(G(U)) = w(G)),

9(G(U)) = x(G(U)), for all U C V(G) ’ .
Thus, a(G(U)) = (G (U)) is equivallent to w(G(U)) = x(G(U))

Corollary 4.8 If either G or its complementary graph G contains an odd cycle of
length > 3 without chords, then G is neither a-perfect nor x-perfect.

Proof :

Let A be the vertex set of such a cycle of G. Then, from Example 9
a(G(A)) # 0(G(A)), w(G(A)) # x(G(A)). Thus, G is neither a-perfect nor
x-perfect. If the coplementary graph G contains such a cycle, then it is neither -
perfect nor x-perfect, and, from Theorem 4.7, G is neither a-perfect nor x-perfect.

This result and study of various classes of graphs ( Berge (1963),(1967),(1969))
suggest the following conjecture:

The strong perfect graph conjecture (SPGC)

For a graph G, the following conditions are equivalent:

(1) G is a-perfect,

(2) G is x-perfect,

(3) Every odd cycle of length > 3 of G or G contains a chord.
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It was showen above that (1) = (3),(2) = (3). If (3) = (1),then(3) = (2). If
(3) = (2),then(3) = (1). This conjecture is still unproved.

Lovasz proved (1971) the equivalence of (1) and (2), which is remarked as ” Perfect
Graph Theorem”. Thus, from this point on we only need to speak of ”perfect
graphs”.

Meyniel proved (1975) the SPGC for some certain classes of graphs:

Theorem 4.9 (Meyniel)
Every graph, whose odd cycles are of length > 5 contains at least two chords, is
x-perfect.

Theorem 4.10 Let G be a connented graph with cut set A that is a clique, and
G(V; U A) is x-perfect for all connected component G(V;),1 < i < n,n € N of
G(V(G) — A). Then G is x-perfect.

Proof :

It suffices to show that w(G) = x(G).

If w(G) = k, then there exists a k-clique in at least one graph, G(V;UA),i € 1,...,n.
For all other V;, j # i, we have x(G(V; U A)) = w(G(V;UA)) < k.

Thus, G is k-colorable and

k=w(G) < X(G) < k.

Hence, w(G) = x(G).

4.3 Comparability graphs

Definition 4.8 A graph G = (V,E) is called a comparability graph if it is
possible to direct its edges so that the resulting graph D(G) = (V(G),D(E))
satisfies:

(i) (u,v) € D(E), (v,w) € D(E) = (u,w) € D(E) (transitivity)

(ii) (u,v) € D(E) = (v,u) € D(E) (anti-symmetry).

Each subgraph of a comparability graph is a comparability graph.
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Example 10 The following graph G is a comparability graph, because there is di-
rection D which satisfies the condition of above definition.

Example 11 Let (M, <) be an ordered set. Consider graph G whose vertices are
the elements of M and two vertices x,y are adjacent iff the corresponding elements
of M are related, i.e. x <y ory < x. Then graph G is a comparabiliyt graph.

Theorem 4.11 Every comparability graph us perfect.

Proof :

It suffices to show that if G = (V(G), D(G)) is the graph of an order relation, then
X(G) = w(@).

Let t(v) denote the length of the longest path from v plus one, v € V(G). Since
G has no cycle, t(v) < oo for all v € V(G). If k = maz{t(v)|lv € V(G)}, then
there exists a k-clique. There exist no (k + 1)-cliques (because this clique would
contain a path passing through all its vertices, and the longest path contains only
k vertices). Thus w(G) = k.

Consider & colors denoted by 1,2,...,k and color each vertex v with color t(v).
Two adjacent vertices cannot have the same color, because if there is an arc
directed from v to w, then ¢(v) > t(w). Thus x(G) < k.

Since x(G) > w(G) = k, we have x(GQ) =k = w(G).

4.4 Triangulated graphs

Definition 4.9 A graph G is called triangulated (or chordal) if each of its cycle
of at least length 4 has a chord.
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Example 12 The graph in following pictuer is triangulated.

Remark 4.5 A subgraph of a triangulated graph is also a triangulated graph.
Example 13 A tree is a triangulated graph.
Example 14 A complete graph is a triangulated graph.

Theorem 4.12 If G is a triangulated connected graph, then G is complete or each
minimal vertez cut set of G is a clique.

Proof :
Let G be triangulated and not complete. Let A be a minimal cut set of G. Remov-
ing A creats several connected componenets G(V1),...,G(V,). Each vertex a € A

is joined to each of these componenets. ( otherwise, A — {a} would be a cut set of
G, which contradicts the minimality of A.)

Let uy, us be two vertices in A. There exists a (u1, uz)-path Wy = uy,vi 1, ..., 01, us,
where wy1,...,v1p € V1.

Assume that W is a path of this type with minimum length. There also exists a
Uy, Ug-path Wo = ug, v, . .., Vo g, U1, Where  wy1,...,024 € Va.

Assume W, is a path of this type with minimum length.

The cycle Wy + Wy = 41,011, ..., V1p, U2, V2,1, - - -, V2,4, 41 has no chords of the fol-

lowing type:

= (ulavl,i)a 1 7/: 1

- (v15,v14), tFI— 1} because of minimality of W,

= (71'21 Ul,i)» i ?é p

- (v1,v25) because W, and W, are two distinct connected componnents of
Gv_a
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- (ug,v94), 1#1

- (vo4,v24), t#J— 1} because of minimality of W,

- (u1,v24), 1#4q

Since the graph G is triangulated, cycle Wi + Wa, which has a length of at least 4,

possesses a chord. This chord must necessarily be (u1, uz).
Thus, any two vertices of A are adjacent, and A is a clique.

Theorem 4.13 Every triangulated graph is perfect.
Proof :

Introduction by the number % of vertices of G.

If k£ < 3. Then x(G) = w(G).

Introduction step k£ + 1. Let without lose of generality G' be connected and not
complete.

By Theorem 4.12 G has a minimal cut set A C V(G), which is a clique.

Let G(V4),...,G(V,) be the connected components of G(V(G) — A), then by
induction hypothesis the subgraphs G(V1 U A),...,G(V, U A) are x-perfect. Hence
by Theorem 4.10 G' is x-perfect too.

4.5 Interval graphs

Definition 4.10 Consider a family A = (A}, As, ..., An) of intervals on a line.
The representative graph of A is defined to be a graph G, in which each vertez a;
corresponds to an interval A;, and with two vertices joined together if, and only if,
the two corresponding intervals intersect. Such a graph is also called an interval
graph.

Example 15 Consider the intervals:
B, = [-1;1], B, = [0.5;0.8], B3 = [-0.33;0.6],
By = [0.25;0.4] and Bs = [-0.2;0.2], the corresponding interval graph is given in
the following picture.
Vi

\E) V3
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Remark 4.6 A subgraph of an interval graph is also an interval graph.
Theorem 4.14 Ewvery interval graph is triangulated.

Proof :

Suppose that there is a cycle C' = vy, vs, ..., 0p, v1, p > 3 without chords. Let A; be
the interval corresponding to vertex v; and A; = [z, v, z;, v € R, where z; < y;.
Since (vi—1,v;) € E(G) for i = 2,...,p and (vi—s,v;) &€ E(G) for i = 3,...,p
(because C has no chord), we have A;_jNA; #@ fori=2,...,p and A; oNA; =@
fOF 4228 s

It follows: 71 < 2 <Y1 < T3 < Yo < Ty < Y3 < ... < Tp < Yp—1 < Yp. Therefore
A, cannot overlap with A; (y1 < x,), which contradicts that (vp,v1) is an edge of G.

Remark 4.7 The converse of this theorem is not true. Graph G in following figure
is triangulated, but we shall show that G is not an interval graph.

Clearly, the intervals Ay, Ao, Az are pairwise disjoint and maybe placed in this order
on the line. Then interval As that intersects intervals Ay and Az must also intersect
interval Ay, which contradicts that vertices vy and vs are non-adjacent.

Corollary 4.15 Ewvery interval graph is perfect.

Proof :
The proof follows immediately from Theorems 4.13 and 4.14
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Lemma 4.16 If G is an interval graph, then its complementary graph G is a com-
parability graph.

Proof :

If graph G = (V, E) represents a family of intervals A, two vertices = and y are
adjacent in G if and only if their corresponding intervals of A are disjoint.

Direct edge (z,y) from z to y if the corresponding interval to y is to the right of
the corresponding interval to z on the line. This produces a graph (V, D(E)) such
that: (z,y) € D(E) — (y,z) € D(E),

(z,y) € D(E), (v, 2) € D(E) = (v, 2) € D(E).
Thus, G is a comparability graph.

4.6 Edge coloring

In previous section we introduced the application of vertex coloring in scheduling of
final examinations of a university. Edge coloring problems arise when the object
being scheduled are pairs of underlying elements.

Example 16 Edge coloring of Kap.

In a league with 2n teams, we want to schedule games so that each pair of teams
plays a game, but each team plays at most once a week. We can represent this
problem by complete graph Ko, in which the teams are the vertices Since each team
must play 2n — 1 others, the season lasts at least 2n — 1 weeks. The games of each
week must form a matching. We can schedule the season in 2n— 1 weeks if and only
if we can partition E(Kz,) into 2n — 1 matchings. Since Kon_1 is 2n — 1-regular,
these must be perfect matchings.

Definition 4.11 A k-edge-coloring of G is an assignment of k colors, 1,2,. .., k;
to the edges of G; the edges of one color form a color class. A k-edge-coloring
is proper if adjacent edges have different colors; that is, if each color class is a
matching. A graph is k-edge-colorable if it has a proper k-edge-coloring. The
edge-chromatic number x'(G) is the least k such that G is k-edge-colorable.
Another name for xX'(G) is chromatic indez.

The chromatic index of a graph is the least number of matchings , in fact maximal
matching, into which its edge set can be partitioned. Because every matching is a
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subset of a maximal matching, it suffices to determine all the maximal matching in
a graph in order to find an edge coloring for it.

It is clear that the edges sharing a vertex in a graph need different colors, hence we
have the following remark.

Remark 4.8 \/(G) > A(G).

Theorem 4.17 (i)The chromatic index of cycle Cy, is given by

2, if n is even

X' (Cn) :{ 3, ifn is odd

(ii) The chromatic indez of the complete graph K, is given by

. [ m—=1, ifniseven
X(K")_{ n, if n is odd

4.6.1 Line graphs and edge coloring

Many questions about vertices have natural analogous for edges. Independent sets
have no adjacent vertices; matchings have no ”adjacent” edges . Vertex coloring
partition vertices into independent sets; we can instead partition edges into match-
ings. These pairs of problems are related via line graphs. Coloring edges so that
each color class is a matching amounts to proper vertex coloring of the line graph.

Definition 4.12 The line graph of G, written L(G), is the simple graph whose
vertices are the edges of G, with ef € E(L(Q)) when e and f have common endpoint
m G.

Example 17 In the following, a graph G and its line graph L(G) are shown.:
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Remark 4.9 We have observed that always X' (G) > A(G). The upper bound
X'(G) < 2A(G) — 1 also follows easily. Color the edges in some order, always
assigning the current edge the least-indexed color different from those already ap-
pearing on edges incident to it. Since no edge is incident to more than 2(A(G) — 1)
other edges, this never uses more than 2A(G) — 1 colors. The procedure is precisely
greedy coloring for vertices of L(G).

X'(G) = x(L(G)) < A(L(G)) +1 < 2A(G) - 1

Vizing and Gupta independently proved that A(G) + 1 colors suffice when G is
simple.

Theorem 4.18 (Vizing, Gupta) If G is a simple graph, then x'(G) < A(G) + 1.

Definition 4.13 A simple graph G is Class 1 if X'(G) = A(G). It is Class 2 if
X(G)=A(G) + 1.

Theorem 4.19 (Shanon) If G is a graph, then X'(G) < 3A(G).

It is easy to observe that:

Remark 4.10
L(C,) = Ca
L(Kl,n) = Kn,

Theorem 4.20 Let G be a graph and L(G) the line graph of G. Then for each edge
coloring of G with k € N colors, there is a corresponding k-verter coloring of L(G)
and vice versa.

Proof :
This theorem follows directly from definition of line graph.

4.6.2 Bipartite graphs and edge coloring

We have seen that the use of graphs to model relations between two disjoint sets
has many important applications. These are the graphs whose vertex sets can be
partitioned into two independent sets; bipartite graphs.

Another application of such graphs is in the timetabling in a school. In a school,
there are m teachers Xy, X, ..., X,» and n classes Y1, Ys, ..., Y,. Given that teacher
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X; is required to teach class Y; for p;; hours, the problem is to schedule a complete
timetable in the minimum possible number of hours. This problem can be again
transferred into a graph. Consider a bipartite graph G, with bipartition (V;,V5)
where Vi = {x1,T2,...,2n} and Vo = {y1,¥2,...,Ya} and vertices z; and y; are
joined by p;; edges. Now, in any one hour, each teacher can teach at most one
class, and each class can be taught by at most one teacher, this is our assumption.
Thus a teaching schedule for one hour corresponds to a matching in the graph
and, conversely, each matching corresponds to a possible assignment of teachers to
classes for one hour. The problem, therefore, is to partition the edges of G into
as few matching as possible or, equivalently, to properly color the edges of G with
as few colors as possible. Since G is bipartite, by Theorem 4.26 we know that
Y'(G) = A(G). Hence, if no teacher teaches for more than p hours, and if no class
is taught for more than p hours, the teaching requirements can be scheduled in a
p-hour timetable. Furthermore, there is a good algorithm for constructing such a
timetable, see [7].

In the following there are some characterizations of bipartite graphs. We begin with
one of the most widely used, which was obtained by Kénig (1916).

Theorem 4.21 (Konig) A graph G is bipartite if and only if G has no cycle of odd
length.

Property 4.22 A connected bipartite graph has a unique bipartition.

Property 4.23 A bipartite graph, without isolated vertices, which has t connected
components has 2'=1 bipartitions.

Corollary 4.24 A connected graph G is bipartite if and only if for every vertex v
there is no edge zy with d(v,z) = d(v,y).

Corollary 4.25 For k > 0, every k-regular bipartite graph has a perfect matching.

As we have mentioned x/'(G) > A(G) for every graph G, but for bipartite graphs
the above corollary improve the upper bound of Remark 4.9, achieving the trivial
lower bound. Furthermore, there is a good algorithm to produce a proper A(G)-
edge-coloring in a bipartite graph G, which is presented in proof of Konig Coloring
Theorem.

Theorem 4.26 (Kinig’s Coloring Theorem) For any bipartite graph G, X'(G) =
A(Q).
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Proof :

Corollary 4.25 states that every regular bipartite graph H has a perfect matching.
By induction on A(H), this yields a proper A(H)-edge-coloring. It therefor suffices
to show that for every bipartite graph G with maximum degree k, there is a
k-regular bipartite H containing G.

To construct such a graph, first add vertices to smaller partite set of G, if necessary,
to equalize the sizes. If the resulting G’ is not regular, then each partite set has a
vertex with degree less than k. Add an edge with these two vertices as endpoints.
Continue adding edges until the graph becomes k-regular; the resulting graph is H.

Remark 4.11 For a regular bipartite graph G, proper edge-coloring with A(G) col-
ors is equivalent to decomposition into perfect matchings.

Trees and forests, union of disjoint trees, are two special classes of bipartite graphs.
They are certainly bipartite, since they contain no cycles of either parity. There are
many characterizations of trees, in the following theorem, we give only two of them.

Proposition 4.27 The following statements are equivalent for a graph G:
(1) G is a tree,

(2) each pair of vertices is joined by a unique path,

(3) G is connected and |V(G)| = |E(G)| +1

Theorem 4.28 The product Gi x Gy of two disjoint simple graphs is bipartite if
and only if both Gy and G, are bipartite.

Theorem 4.29 K,,, ~ K,, x K,

4.7 Total Coloring

Another kind of graph coloring is total coloring, before introducing this type of
coloring we study the total graphs and their properties.

4.7.1 Total graphs

Definition 4.14 The total graph Gr of a graph G is the graph with V(Gy) =
V(G) U V(L(G)), L(G) is the line graph of G, and two vertices u,v € V(Gr) are
adjacent if and only if:
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(i) w and v are two adjacent vertices in G or,
(i) w and v are two adjacent edges in G or,
(#11) u a vertex ,and v an edge in G are incident.

In the following an algorithm is given to find the total graph of an arbitrary graph

G.

Algorithm 4.2

Input: A graph G with V(G) = {v1,...,vnq)} and E(G) = {e1, ..., eqq)}-
Output: The total graph of G.

(1) Put V(Gr) = V(G),

(2) Fori=1,...,e(G) do:

Is e; = v;1V50, then expand V(Gr) to a vertex v,g)+i

and E(Gr) to the edges vn(q)+ivii and vy)4iviz-

(8) Fori=1,...,e(G) —1do:

For j=i+1,...,e(G) do:

If ¢; and e; are adjacent then expand E(Gr) to an edge vp(G)+iVn(G)+-

Definition 4.15 The vertez vy)41 in above algorithm step (2), which is added to
V(Gr), is called with edge e; corresponding vertes.

Example 18 In the following figure, a graph G and its total graph G are shown.
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The Properties of Total Graphs

In this part we consider the parameters a(Gr),8(Gr), x(Gr) and w(Gr) of a graph
G.

Definition 4.16 Let Gy be the total graph of G. Then for every v € V(G) we
define

Np(v) = { weV(Gr)—V(G)| the corresponding edge with
u of G isincident with v }.

Theorem 4.30 Let G be the total graph of graph G. Then,
a) If A(G) =1, then w(Gr) = 3.
b) If A(G) # 1, then w(Gr) = A(G) + 1.

Proof :
a) Without lose of generality we can assume that G is connected. Since A(G) =1,
G is the complete graph K,. Therefore Gy = K3 and w(G) = 3.
b) At first we show: (*) There is a clique C' C V(Gr) with |C] = A(G) + 1.
Let v € V(G), consider C(v) = v U Ny(v). Then G(C(v)) is complete, therefore
C(v) is a clique.
Clearly,
D, |C(v)| = A(G) + 1.

If v be a vertex in G with dg(v) = A(G), then the set C(v) satisfies (*).

Suppose there is a maximal clique C C V(Gr) with |[C| > A(G) + 1.
|CNV(G)|=0,ie CcCV(Gr)—V(G).

It means the vertices in C should be corresponding with edges of G, which pairwise
have common end point.

Let E. C E(G) be the set of these edges and V. C V(G) be the set of vertices,
which are the end points of edges of E,. |V.| has more than one element v € V(G),
otherwise C'U {v} is a clique, which is a contradiction to maximality of C.

Theorem 4.31 For total graph Gr of graph G, 0(Gr) < n(G).

Proof :
Let V(G) = {v1,---, v }-
Forall i€ {l,...,n(Q)}, C(v;) = {vi} UNp(v;) isa clique of Gr.
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Every vertex u € V(Gy) is in at least one set, C(v;),i € {1,...,n(G)}.

The following sets construct a clique decomposition of G

C(v),C(vz) — C(v1),C(v3) — (C(v1) U C(vg)),-.-,Clun@) — (C(v1) U ... U
C(vnG)-1)). Hence, 6(Gr) < n(G).

Corollary 4.32 For graph G, o(Gr) < n(G).

Proof :
Since a(Gyr) < 0(Gr) , it follows from Theorem 4.31 a(Gr) < n(G).

Theorem 4.33 Let Gy be the total graph of G, then x(Gr) < 2A(G) + 1.

Proof :

(1) for all v € V(G), da,(v) = 2da(v), because E(Gr) — E(G) possesses dg(v)
edges which are incident to v.

(2) Let e = uw € E(G). For vertex v € V(Gr) — V(G) corresponding with e we
have

dGT(’U) = (dg(u) — 1) + (d(;(w) = 1) +2= dg(u) e d(,'(w)

From (1) and (2) implies dg,(v) < 2A(G) for all v € V(Gr). Since
x(Gr) < A(G) + 1, it follows that x(Gr) < 2A(G) + 1.

Corollary 4.34 For every graph G,
a) If A(G) =1, then x(Gr) = 3.
b) If A(G) # 1, then A(G) +1 < x(Gr) < 2A(G) +1.

Proof :
Since w(Gr) < x(Gr), it follows from Theorems 4.30 and 4.33.

Remark 4.12 Let G be a graph and U; C V(G) an arbitrary subset. Then there is
a set Uy C V(GT) with G[Ul]'r = G[Ug]
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Theorem 4.35 Let G be a graph with w(G) > 4. Then the total graph of G is not
perfect.

Proof :

Let U be a clique of G with 4 vertices. According to Theorem 4.30 we have
w(G[U))r = 4 for the subgraph G[U]. We will see later that x"(G[U]) = x(G[U])r,
hence by Theorem 4.38 x(G[U])r = 5. Therefore G[U]r is as subgraph of G not
perfect and so Gr is not perfect.

Corollary 4.36 The total graph of a perfect graph is not in general perfect.

Proof :
It follows directly from Theorem 4.35, because for example every complete graph
is triangulated and therefore perfect.

For a graph G with w(G) < 4 there is no general statement for its perfectness. This
we show with help of examples:

(i) Let w(G) = 2.

Without lose of generality suppose G is connected. There are two cases:

1) G is a tree.
We will see later that total graphs of trees are perfect.
2)(i) G has a cycle of length > 4 like following example:

By theorems we have x(Gr) = 4, and by Theorem 4.30 w(Gr) = 3. Therefore Gp
is not perfect.

(ii) Let w(G) = 3
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Consider the complete graph G = K3 and its total graph (K3)r in the following
figure (V(G) = {v1, v, v3}).

Hence Theorem 4.7 implies that (K3)r is perfect.
consider the following graph H with w(H) = 3.
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The subgraph G[{uy, us, us, us}]r from Hp by (i) case 2) is not perfect. Therefore
Hryp is also not perfect.

4.7.2 The total coloring conjecture

Definition 4.17 A k-total-coloring of G is an assignment of k colors, 1,2,...,k,
to the elements (vertices and edges) of G; the elements of one color form a color
class. A k-total-coloring is proper if adjacent or incident elements have different
colors. A graph is k-total-colorable if it has a proper k-total-coloring. The total-
chromatic number x"(G) is the least k such that G is k-total-colorable.

Theorem 4.37 For every graph G,  X"(G) > 1+ A(G).
Proof :

let v € V(GQ) and dg(v) = A(G). Since v and all incident adges should have
different colors, the theorem is true.

Example 19 In the following there is total coloring of graph G with 6 colors. We
will see in next theorems that 6 is the total chromatic number of G.

Behzad and independtly from him Vizing had following conjecture, which is not yet
completely proved.

Total Coloring Conjecture (TCC)

For every graph G we have  x"(G) < A(G) + 2

In next sections different classes of graphs are represented, for which this conjecture
is true or their total chromatic number is determined.
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4.7.3 total coloring of some graphs

Theorem 4.38 (Behzad, Chartrand, Cooper)

n n odd
n+1 n even

) () = {
(i1) X" (Kmun) = maz{m,n} + 1+ épmn,
where 8y, =1 if m = n and 0, = 0 otherwise.

Corollary 4.39 For every graph G with n vertices,

" cinon odd
x'(G) = { n+1 n even

Proof :
Every graph G with n vertices is a subgraph of K,,. Therefore x"(G) < x"(K,).

Theorem 4.40 (Rosenfeld)
If G is a balanced complete r-partite graph, then
X"(G) < A(G) +2.

Theorem 4.41 (Bermond)
If G is balanced complete r-partite graph with n(G)/r = n, then

"G) = A(G)+1, if (r=2) or (r (even and n odd)
X Tl AG)+1, if (r odd or (r even, # 2 and n even)

Theorem 4.42 (Yap)
For every complete r-partite graph G,
X"(G) < A(G) +2.

Theorem 4.43 Let G be a r-partite graph and Vi, ..., V, the correspondig partition
sets. If

A(G) = n(G) — min|V;|, then

X"(G) £ A(G) +2.
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Proof : H be the complete r-partite graph with V(H) = V(G) and the same
partitions Vi,...,V,. G is a subgraph of H and we have A(G) = A(G). Hence
from the above theorem:

X"(G) < x"(H) < A(H) +2=A(G) +2

Theorem 4.44 (Chew, Yap)
For every complete r-partite graph G of odd order,
X"(G) = A(G) +1

Theorem 4.45 (Kostachka)
For every graph G with A(G) < 5,
X'(G) < A(G) +2.

Theorem 4.46 (Cleves,Jacobson)
Let G be a n-cycle. Then

3 n=0 mod 3
" i
X'(G)= { 4 otherwise

Theorem 4.47 (Bollobas, Harris)
Let G be a graph with high A(G), then X"(G) < ¢A(G), where c is a constant with
11/6 < c< 2.

Theorem 4.48 (Borodin)

Let G be planar graph, then:

(i) X'G) < A(G) +2 for A(G) & {6,7,8},
(i) X"G) < A(G) + 3 for A(G) € {6,7,8},
(iii) X"G) = A(G) + 1 for A(G) > 14.

Theorem 4.49 (Zhang, Zhang, Wang)
If G is an exterior-planar graph with A(G) > 3, then
X"(G) = AG) + 1.

Theorem 4.50 (Zhang, Zhang, Wang)
If G is a (n(G) — 3)-regular graph of odd order. Then
Y'(G) < AG) +2.
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Theorem 4.51 (Zhang, Zhang, Wang)
If G is a graph with ezactly one vertez v , dg(v) = n(G) — 1, then
X' (G) = AG) + 1.

Theorem 4.52 (Yap, Wang, Zhang)
For every graph G with A(G) > n(G) — 4,
X"(G) < A(G) +2.

There are also some upper bound for for total chromatic number of arbitrary graph:

Theorem 4.53 (Hind)
For every graph G,

a) X"(G) < A(G) +2[\/A(G)]
b) X"(G) < A(G) +2[{/x(G)]

Theorem 4.54 (Hind)

For every graph G,

X'(G) < A(G) +2[ 3G +1

McDiarmid and Reed shows that for n — oo the number of graphs with n vertices
and total chromatic number x"(G) > A(G) + 1 is ”very small” and the number of
graphs with x”(G) > A(G) + 2 is "very very small”.

Total Coloring of Trees

As we know trees are triangulated. Here at first we determine the total chromatic
number of trees.

Theorem 4.55 The total graph Gr of tree G is triangulated.

Proof :

Suppose G has a cycle W of length [ > 4 without chords.

Let V(G) = {v1,...,v,}. Considel the sets

C('Ui) = {'UZ} U NT('Ui),i = 1, w45 g e

{0,1} and also C(v;) N C(v;) N C(vi) = O for pairwise dinstinct 4, j,k € {1,...,n}.
The sets C(v;),i = 1,...,n are cliques. Therefore W' can contain at most two ver-
tices of each of them.

Construct a cycle W* from W:

For all i € {1,...,n} with |Np(v;) N V(W)| = 2,i.e. Np(v;) N V(W) = {uir, uin},
replace the edge u;u;» in W with the sequence u;v;, vi, vittio.

For all vertices v € V(W*) N (V(Gr) — V(G)), the adjacent vertices with u in W*



4 GRAPH COLORING 41

are in V(G).

Construct a cycle W** from W*:

For all vertices u € V(W*) n (V(Gr) — V(G)), where v;u and wv;, 4,j €
{1,...,n},i # j are incident edges with u in W*, replace the sequence v;u, u, uv; in
W* with edge v;v;, which is with u corresponding edge in G.

Now we have V(G) N V(W**) = V(W*), it means W** is a cycle of G which is a
contradiction to the hypothesis that G is a tree.

Corollary 4.56 The total graph of a tree is perfect.

Proof :
Since every triangulate graph is perfect and according to theorem 4.55 the total
graph of a tree is triangulate.

Remark 4.13 The converse of theorem 4.55 is not in general true, i.e. not for all
triangulated graph H, there ezists a tree G with Gp = H. The total graph G of
any arbitrary graph G must have at least n(G) vertices with even degree, because for
all v € V(G),dg,(v) = 2dg(v). The triangulated graph H in following figure dose
not satisfies this condition.

Theorem 4.57 Let G be a tree, then:
a) If A(G) =1, then X"(G) = 3.
b) If A(G) # 1, then X"(G) = A(G) +1
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Proof :
Since x"(G) = x(G) and Gy is perfect, by theorem 4.30 we have a) and b).

It is almost easy to find a total coloring of a tree, because it has no cycle.

Algorithm 4.3

Input: A tree with V(G) = {v1, ..., } and E(G) = {e1, ..., eec) }-
Output:A map f: V(G)U E(G) — N.

(1) define f(vq) := 1.

Put S := {v},

T :=0.

(2) For j=1,...,e(G) do:

If e; ¢ T and incident with a vertex v € 5

then define

f(e;) := min {k € N|k # f(v) and k # f(e) for all with v incident e € T'}
and put 7' := T U {e;}.

(3) For i =2,...,n(G) do:

If v; ¢ S and incident with an edge e € T,

then define

f(v;) == min {k € N|k # f(e) and k # f(v) for all with v incident v € T'}
and put S := S U {v;}.

(4) If S = V(G), then stop.

Otherwise go to (2).

Theorem 4.58 The map [ defined by algorithm 4.3 is a total coloring of tree G
with x"(G) colors.

Proof :

By definition the map f in algorithm 4.3 step (1) and (2) is a total coloring.

For the coloring of an edge in step (2), there are maximum A(G) restrictions.
Therefore f(e) < A(G) + 1 for all e € E(G).

For the coloring of a vertex in step (3), there are exactly two restrictions. Therefore
f(v) <3 for all v € V(G). Hence according to theorem 4.58 the theorem is true.

Example 20 Consider the tree G with V(G) = {vi,...,v2} , E(G) =
{e1,...,en}. Here we find a total coloring f : V(G) U E(G) = {1,... 3@}
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We apply the algorithm 4.3
(1) f(v) =1

(2) f(ve) =2

fles) =3

f(€9) =4

(8) f(vg) =2

f(ve) :=2

f(vr) :==3

(2) f(e1) ==

f(es) = 3

f(es) =g

(8) f(ve) :=2

f(’l)s) =3

f(’Ug) sz ]

(2) flex) :==3

f(ew) =2

(3) f(vs) =1
(Uw)(

iy
&
~
£
< II
I|

w

e
[NV ) ” ot
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And by theorem 4.58 we have: x"(G) =5

4.8 List coloring

List coloring is a more general version of vertex coloring problem. We still pick a
single color for each vertex, but the set of colors available at each vertex may be
restricted. This type of restrictions have many uses in timetabling.

Definition 4.18 For each vertez v in a graph G, let L(v) denote a list of colors
available at v. A list coloring is a proper coloring f such that f(v) € L(v) for
all v. A graph is list k-colorable if every assignment of k-element lists to the
vertices permits a proper list coloring. The list chromatic number x — I(G) is
the minimum k such that G is list k-colorable.

Since the lists could be identical, x;(G) > x(G). If the lists have size at least
1 + A(G), then coloring the vertices in succession leaves available color at each
vertex. This argument is analogous to the greedy coloring algorithm and proves
that x; < 1+ A(G).

Analogously we can define list k-edge-coloring for a graph.

Definition 4.19 For each edge e in a graph G, let L.(e) denote a list of colors
available at e. A list edge-coloring is a proper coloring f such that f(e) € Le(e)
for all e. A graph is list k-edge-colorable if every assignment of k-element lists to
the edges permits a proper list edge-coloring. The list chromatic index x' — I(G)
is the minimum k such that G is list k-edge-colorable.

Theorem 4.59 (Galvin) Let G be a bipartite graph. Then provided each edge re-
ceives a list of A(G) colors there is a proper edge coloring which respects the lists.

Theorem 4.60 (Bordin, Kostochka, Woodall) Let G be a bipartite graph, and for
each edge e € E(G) let |Le(e)| = maz{d(z),d(y)} where x and y are the endpoints
of e. Then G has an Le-list edge coloring.

Rather than placing lists on the edges, what if we place lists of allowed colors on
the vertices? Consider the following problem.

Let G be bipartite graph with bipartition (V;, V5) and for each vertex u € V(G) let
L(U) be a set of colors assigned to u. Can G have a proper edge-coloring in which
each edge e , with endpoints = and y, receives a color which lies in L(z) N L(y)?
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If we interpret such a coloring as a timetable in our usual way, with V; as the set of
classes and V5 as the set of teachers, then such a coloring corresponds to a timetable
in which the list L(u) corresponds to the set of hours in which the class or teacher
is available.

The Theorem 4.60 gives the following result which is an answer to the above question
in some special case.

Theorem 4.61 If |L(z) N L(y)| > maz{d(z),d(y)} for every pair of adjacent ver-
tices © and y then the required coloring exists.

4.9 Unique coloring

4.9.1 Uniquely vertex colorable graphs

Definition 4.20 A graph G is called uniquely k-vertex-colorable, or simply

uniquely k-colorable, if any two proper k-coloring of G induce the same partition

of V(QG).

Definition 4.21 A graph G with at least k+1 vertices is called critically uniquely
colorable if it is uniquely k-colorable but no proper subgraph of it is so.

Theorem 4.62 For all k > 2 and g > 3 there is a uniquely k-colorable graph whose
girth % is at least g.

If G is uniquely k-colorable and its girth is at least g > k then its minimal uniquely
k-colorable subgraph ( which must be critically uniquely k-colorable ) must have at

least g vertices.

Corollary 4.63 For every k > 3 and n there is a critically uniquely k-colorable
graph with at least n vertices.

Proposition 4.64 If a graph G is uniquely k-colorable, then in any k-coloring of
G, every vertez v of G is adjacent with at least one vertex of every color different
from that assigned to v.

Corollary 4.65 If G is uniquely k-colorable, then §(G) > k — 1

In the following there is a necessary condition for a graph to be uniquely k-colorable:

2The length of shortest cycle of G.
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Theorem 4.66 For any k-coloring of a uniquely k-colorable graph G, the subgraph
induced the union of any two color classes is connected.

The converse of Theorem 4.66 holds in case k = x(G) = 1 or 2. That is, any 1-
colorable graph is uniquely colorable, as in any connected 2-colorable graph. How-
ever the converse of Theorem 4.66 does not hold in general. This can be seen
from following figure , which pictures a 3-chromatic graph admitting the distinct
3-colorings {1,2},{3,4}, {5,6} and {1,6},{2,3},{4,5}. Each of these coloring has
the property that the subgraph induced by the union of any two color classes is
connected.

Theorem 4.67 (Harary, Hedetniemi and Robinson) For all n > 3, there is a
uniquely n-colorable graph which contains no subgraph isomorphic to K,

For n = 3 the graph in the following figure, a uniquely 3-colorable graph having no
triangles, illustrates the theorem.

Theorem 4.68 Every uniquely k-colorable graph is (k — 1)-connected.
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There are also some theorems presented by Bollobas which are based on lower
bounds of minimum degree of G, for a uniquely k-colorable graph.

Theorem 4.69 Let G be a k-colorable (k > 2) graph of order n such that
3(G) > ((3k — 5)/(3k — 2))n.
Then G is uniquely colorable.

Theorem 4.70 Let G be a graph of order n — k having a k-coloring (k > 2) satis-
fying the following conditions:

any subgraph induced by the union of any two color classes of k-coloring is con-
nected. If

8(G) > (1= (1/(k=1))n

then G is uniquely colorable.

The proof of the following theorem can be found in [33] and [30].

Theorem 4.71 If G is uniquely vertez colorable graph, then
IB(G)] = (x(G) - DIV(G)- (¥5).
Moreover, this bound is best possible.

All uniquely vertex colorable graphs constructed with minimum numbers of edges
given in Theorem 4.71 contain a K} as a subgraph, where k = x(G). This is the
motivation of Shaoji conjecture.

Conjecture )
If G is uniquely vertex colorable graph with size |E(G)| = (x(G)—1)|V(G)|— (X(;‘)),
then G contains a K}, as a subgraph, where k = x(G).

For each k, Daneshgar [13] has constructed uniquely vertex colorable graph, such
that x(G) = k and |E(G)| = (x(G) — D|V(G)|- ("(2(")) +1, which contains no Kj.

4.9.2 Uniquely edge colorable graphs

Definition 4.22 A graph G is called uniquely k-edge-colorable if any two proper
k-edge-coloring of G induce the same partition of E(G).

Theorem 4.72 (Greenwell, Kronk) Every uniquely 3-edge-colorable 3-regular graph
is Hamiltonian.

It is not difficult to observe that every uniquely edge colorable , simple bipartite
graph G with edges colored with colors 1,2,..., A(G) has the property that each
2-colored subgraph is connected , i.e. is a path or an even cycle. Using this property
it is not difficult to characterize uniquely colorable, simple bipartite graphs.
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Proposition 4.73 A simple bipartite graph is uniquely edge colorable if and only if
it is either a path, an even cycle or a star.

The following important theorem was conjectured by R. J. Wilson in 1967 and
proved by A. G. Thomason in 1978. The proof can be found in [6].

Theorem 4.74 For k > 4, the only uniquely k-edge colorable graphs are the stars,
Kl,k-

4.9.3 Uniquely total colorable graphs

Definition 4.23 A graph G is called uniquely total colorable if V(G) U E(G) can
be partitioned into X"(G) color classes in ezactly one way.

For example, cycle of size n, n = 0 (mod 3), empty graph, and paths are uniquely
total colorable. Some other classes of graphs have been examined, and several
results have been obtained by S. Akbari, M. Behzad, H. Hajiabolhasan and E. S.
Mahmoodian, [?] which confirm the following conjecture.

Conjecture
Aside from the cycles of order n, n = 0 (mod 3), empty graph, and paths there is
no graph which is uniquely total colorable.

The following theorem can be found in [1],

Theorem 4.75 If a graph G # K, is uniquely total colorable, then X" (G) = A(G)+
1.

4.10 Connection between different kind of graph colorings

One can observe from the definition that it is not so easy to give a proper total
coloring for arbitrary graph G. In this section we introduce some algorithms which
simplify it, i.e. by using other type of coloring.

4.10.1 Total coloring through vertex coloring

Theorem 4.76 Let G be a graph and G the total graph of G. Then for each total
coloring of G with k € N colors, there is a corresponding k-vertez coloring of Gr
and vice versa.
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Proof :

(i) Let f: V(G)U E(G) — {1,...,k} be a total coloring of G with k colors. Then
by definition:

f(u) # f(v) for adjacent vertices u,v € V(G),

f(v) # f(e) for incident vertex v € V(@) and edge e € E(G),

f(e) # f(h) for adjacent edges e, h € E(G).

We define g : V(Gr) — N as follows:

g(v) == f(v) for v € V(G)

g(v) := f(e) for v € V(Gr) — V(G), where e is the v corresponding edge with v of
G.

We have g(u) # g(v) for adjacent vertices u,v € V(Gr) and g(V(Gr)) C {1,...,k}.
Therefore g is a k-vertx coloring of Gp.

(i) Let g : V(Gr) — {1,...,k} be a vertex coloring of Gr. i.e. g(u) # g(v) for
adjacent vertices u,v € V(Gr).

We define f: V(G) U E(G) — N as follows:

f() := g(v) for v € V(G)

f(e) := g(v) for e € E(G), where v is the e corresponding vertex of Gr.

f satisfies the conditions (*) and f(V(G) U E(G)) C {1,...,k}. Therfore f is a
total coloring of G with & colors.

Corollary 4.77 For a graph G and its total graph G :
X"(G) = x(Gr).

Proof :

Let f be a total coloring of G with x”(G) colors. Then by Theorem 4.76, there is a
X" (G))-vertex coloring of Gp. Hence x"(G) > x(Gr).

Let g be a x(Gr)-vertex coloring of Gp. Then there is total coloring of G with
x(Gr) colors. Hence x"(G) < x(Gr).

So one can

(i) use the knowledge of properties of a total graph to determine the total chromatic
number of its corresponding graph.

(ii) use the vertex coloring algorithms for total graph coloring.

An algorithm for vertex coloring is described by Christofides . This is an implicit
enumeration method.
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Algorithm 4.4

Input: A graph G with V(G) = {vy,..., ) }-

Output: A vertex coloring g : V(G) — {1,...,x(G)}.

Suppose that the vertices are orderd in some way and are renumbered so that v;
is the ith vertex in this ordering. An initial feasible coloring can be obtained as
follows:

(i) Color w; with color 1.

(ii) Color each remaining vertices sequentially so that a vertex v; is colored with the
lowest-numbered color that is feasible (i.e. which has not been used so far to color
any vertices adjacent to v;).

Let ¢ be the number of colors required by the above coloring. If a coloring using
g — 1 colors exists, then all vertices colored with ¢ must be recolored with j < g.
If v, is the first vertex in the vertex ordering which has been colored ¢, and since
(from (ii) above) it has been so colored because it could not be colored with any
of colors j < ¢, this vertex can only be recolored with j < ¢ if at least one of its
adjacent vertices is also recolored. Thus, a backtracking step from v; can be taken
as follows.

Of these vertices vy, ..., v,—; which are adjacent to v, find the last one in the vertex
ordering (i.e. the one with the largest index) and let this be v;. If vy is colored with
jk, recolor z; with the lowest-numbered feasible alternative color ji, jj. > Jj-

If j4 < q continue by recoloring sequentially all the vertices vg41 to v, using method
(ii) above, and provided that color ¢ is not needed. If this is possible a new better
coloring using less than ¢ colors has been found, otherwise if a vertex is encountered
which requires color g, then backtracking can again take place from such a vertex.
If ji = ¢, or no alternative feasible color j; exists, then backtracking can take place
immediately from vertex vg. The algorithm terminates when backtracking reaches
vertex v;.

The following observations can help to speed up the above implicit enumeration
procedure.

(a) Whatever the vertex ordering, the feasible colors j for vertex v; are j < ¢
(provided i < ¢). This is apparent since only ¢ — 1 vertices precede v; in the vertex
ordering and hence colors j > i will never be needed. Thus for vertex v; the only
feasible color is 1, for vetex v, the feasible colors are 1 and 2 (unless v, is adjacent
to vy in which case only color 2 is feasible) etc.

(b) From (a) it is apparent that it would be computationally beneficial to order the
vertices in such way so that the first p (say) vertices form the largest clique of G.
This would imply that each vertex v; (1 < i < p) has only one feasible color, i.e.
color 4, and the algorithm can stop earlier when backtracking reaches vertex v,.

A total coloring of a graph G can be obtained in the way that, at first we find a
vertex coloring of its total graph Gp by Algorithm 4.4 and then as in part(ii) of
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Theorem 4.76 determine the corresponding total coloring of G

Remark 4.14 If the chromatic number of a graph G is known, then the Algorithm
4.4 can be stopped when q = x(G).

Example 21 For the following graph G with V(G) = {vy,...,vs} and
E(G) = {ei,...,er}, we find the total coloring f : V(G) UE((G) = {1,....X"(G)}.

The graph G satisfies the conditions of Theorem 4.51, therefore X"(G) = 5.

We construct the total graph G of G according to Algorithm 4.2,i.c.
V(Gr) = {vi,...,v12} and for 6 < i < 12, w; is corresponding verter with
& '€ E(G)
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Now we apply the Algorithm 4.4 on the graph Gr:

(1) k=0

(2) g(v1) =1
g(ve) :=2
g(vs) :=3
g(vg) :==3
g(vs) :=2
g(ve) :==1
g(vr) =3
g(vg) :==4
g(vg) 1= 4
!](’Uw) =H
g(viy) =2
!]('012) = 6
(3) q:=6

(4) t:=12

(5) k=11
(6) g(vi1) :=6
(2) g(vi) :== 2
(3)q:=6
(4)1 =11

(5) k=10
(6) g(vio) =6
(2) !1(1111) =2
g(vi2) :==5
(3)q:=6

(4) t =10

(5) k:=9

(6) g(ve) :==5
(2) 9(”10) =4
g(vi2) =5
f(vw) =3

(8) q:=

According to above remark and Corollary 4.77, the algorithm can be stopped hier.

The following figure shows a total coloring of G, which is delivered from vertex
coloring of Gr, as mentioned in Theorem 4.76.
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4.10.2 Total coloring through edge coloring

Another possibilty to determine a total colring of a graph is, doing that through
edge coloring which is much easier. In this section we develope an algorithm which
can be applied for total coloring a graph through edge coloring.

By the way of proof of Theorem 4.49 presented by Zhang, Zhang and Wang we
can apply an edge coloring algorithm to find a total coloring of a graph G (with in
general more than x”(G) colors).

Algorithm 4.5

Input: A graph G.

Output: A map f: V(G)U E(G) - N

(1) Let u ¢ V(G).

Construct function f : V(G)U E(G) — N,

put E(H) = E(G) U {uwv|v € V(G)}.

(2) Find an edge coloring of H with x'(H), h: E(H) — {1,..., X' (H)}.
(3) Define f : V(G)U E(G) — N as follows:

f(v) := h(uw) for v € V(G) C V(H),

f(e) := h(e) for e € E(G) C E(H).

Theorem 4.78 The function f : V(G) U E(G) — N obtained in Algorithm 4.5 is
a total coloring of graph G with n(G) or n(G) + 1 colors.
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Proof :

(i) Since h is an edge coloring f(e) # f(e') for adjacent edges e,¢' € E(G).

All edges uv,v € V(G) are adjacent in H, therefore f(v) # f(v') for all vertices
v,v' € V(G).

Since for all v € V(G) the edge wv in H is incident with all with v incident edges
e € BE(G), f(v) # f(e) for v € V(G) and all with v incident edges e € E(G).

(ii) We know x'(H) € {A(H), A(H) + 1}. But we have A(H) = n(G). Hence
maz{f(z)|z € V(G)U E(G)} € {n(G),n(G) +1}.

Corollary 4.79 Let G be a graph with A(G) = n(G) — 1, then X"(G) < A(G) +2.

Proof :
From above theorem follows x"(G) < n(G) + 1.
Since A(G) = n(G) — 1, we have X"(G) < A(G) + 2.

Example 22 Consider the following graph G. Here we find a total coloring of G
by applying the Algorithm 4.5.

G

Construct the graph H according to Algorithm 4.5 and color ils edges with
X'(H) colors. The following figure shows a 4-cdge coloring of H, and we know
X'(H) > A(H), therefore X' (H) = 4.
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The total coloring of G obtained by Algorithm 4.5 step (3) is shown in following
figure

Since the graph G satisfies the conditions of Theorem 4.52, we have x"(G) =4 and
G is colored with x"(G) colors.

4.10.3 Edge coloring through vertex coloring

As we mentioned earlier for every edge coloring of a graph G there is a vertex coloring
of L(G) and vice versa. So we can complete the connections between different kind
of graph colorings. To find an edge coloring of a graph G we determine a vertex
coloring of the line graph of G, L(G), by known algorithm, e.g. Algorithm 4.4.
Then this vertex coloring of L(G) is the correspondent coloring to an edge coloring
of G.

Algorithm 4.6 Input: A graph G.

Output: A map f: B(G) - N

(1) put V(H) = E(G)

Findavertezcoloringo fHwithx'(H) colors, h: V(H) = {1,..., X' (H)}.
(3) Define f : E(G) — N as follows:

f(e) := h(uv) for e = wv € E(G) = V(H).
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5 Defining sets in graph colorings

5.1 Defining set in vertex coloring of graphs
Definition 5.1 In a given graph G, a set of vertices D, with an assignment of

colors is said to be a defining set of the vertex coloring of G, if there exists a
unique extension of the colors D, to a x(G)-coloring of the vertices of G.

Definition 5.2 A defining set with minimum cardinality is called minimum defin-
ing set (of vertex coloring) and its cardinality is denoted by d,(G).

To emphasize the previous definitions, we consider the following example;

Example 23 Consider the path of length n, P,, a vertex coloring for P, is given
in the following figure.

®

The defining set of this coloring contains only one vertez, the circled one. With
having the color of this single vertez we can give the color classes of Py, at first we
find the mazimal independent set which contains this vertex, this is one color class,
say Vi, then because of the fact x(P,) = 2, Vo = V(P,) — Vi is the second desired
color class. So we could uniquely determine the color classes of P, with knowing the
color of only one of its vertex. This means dy(P,) =1

Proposition 5.1 The minimum defining set of vertex coloring of K, has cardi-
nality 1.

On the defining set of vertex coloring, the following results are obtained. Proofs
may be found in [24].

Theorem 5.2 For any graph G we have,

dy(G) 2 |[V(G)| — L5
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Corollary 5.3 For an odd cycle of order 2n + 1, we have

d1l(C2n+l) =2n+1.
Theorem 5.4 If G is the cartesian product of Ky by Conyy then, dy(G) =n +1

Theorem 5.5 For any graph G with x(G) < n, we have

dy(G x K,) > |[V(G)|(n — 1) — 2|E(G)|.
If in theorem 5.5 we let G = K, we obtain;

Corollary 5.6

dy (K x K,) > m(n —m) forn>m.
The following theorem shows that equality is possible in the above corollary.

Theorem 5.7 If n > m?, then

dy(Kpm X K,)) = m(n—m).

Theorem 5.8 For n > 6 we have,

dy(Crm x Kp) = m(n — 3).

5.1.1 Independent sets

Definition 5.3 A subset I of V is called an independent set of G if no two vertices
of I are adjacent in G. An independent set I is mazimum if G has no independent
set I' with |I'| > |I|. And I is maximal when there is no other independent set
that contains I.



5 DEFINING SETS IN GRAPH COLORINGS 58

In this work we consider the maximal independent sets.

Examples of maximal independent sets are shown in the following figures:

5.1.2 Defining sets of maximal independent sets

Similar to defining set of vertex coloring one can define the defining set of a maximal
(maximum) independent set of a graph.

Definition 5.4 A mazimal independent set in a graph is an independent set which
cannot be enlarged by adding any vertex.

Definition 5.5 D C V(Q) is called a defining set of a mazimal independent set
I, if for every mazimal independent set I' with D C I' it follows I = I".

Definition 5.6 A defining set with minimum cardinality is called minimum defin-
ing set ( of a mazimal independent set ) and its cardinality is denoted by d;(I).

Remark 5.1
&i(B,) = 1.
d;(C,)= 1.

Proof :
The maximal independent set of a path P, is the set of vertices, in which from every
two adjacent two vertices in P,, exactly one is included.
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The circled vertices construct a maximal independent set in P, (here n is even). To
determine this maximal independent set uniquely, we need only one vertex.

We have the same construction for a maximal independent set in cycle, hence here
the minimum defining set have also only one vertex.

Remark 5.2 Consider the bipartite graphs K, », here we have only two mazimal
independent sets, the vertices in upper layer or in lower layer, hence di(Kwn) = 1.

The chromatic number of a graph is the least number of independent sets into which
its vertex set can be partitioned. Because every independent set is a subset of a
maximal independent set, it suffices to determine all the maximal independent sets
in a graph in order to find a vertex coloring for it.

Moreover we can obtain the following:

Theorem 5.9 Let D; be a minimum defining set of mazimal independent set
I;, j=1,...,k of a graph G, with x(G) = k, so that V(G) = U,V (Iy).

The union of Dj,j =1,...,k is a defining set of a vertez coloring of G and
dy(G) < Ty, dil1;) — ming; di(I)-

Proof :

Without lose of generality we can rearrange the indices of these sets such that
|Di| < |Dy| < ... < |Dg-y| < |Dg|. Now we determine maximal independent sets
I,,...I;_; with help of its minimal defining sets.

Now consider A = V(G) — Uj<g-1V (I;). we claim that A is a maximal independent
set with defining set Dy. For, by the assumption I;,j = 1,...,k is a partition of
V(G), this implies that I, = V(G) — Ui<k—1V (I;), hence Iy = A. This partition
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gives us a vertex coloring of G, and for this partition we used Y ;<;_; [D;|. But
dy(G) is minimum number which determines the x-coloring of G, hence d,(G) <
ZI]- dz(I]) - rniandi(Ij).

By considering the above theorem we can construct an algorithm, which gives a
coloring of a graph with help of minimal defining sets of its maximal independent
sets.

Algorithm 5.1 Input: A class of minimal defining sets Dy, ..., Dy in graph G of
mazimal independent sets I, ..., Iy such that V(G) = U, V(I;)

Output: A vertez coloring of G

(1) Choose the D; with mazimum cardinality,

(2) Determine the correspondent mazimal independent set I; with help of its defining
set Dj,

(3) Ifj <k go to (1),

(4) else put I, = V(G) - Ujgk—lv(-[j)

(5) Stop, I, ..., Iy are the color classes of a k-coloring of G.

5.2 Defining set in edge coloring of graphs
Definition 5.7 In a given graph G a set of edges D, with an assignment of colors

is said to be an edge defining set, or simply defining set, of edge coloring of G, if
there ezists a unique extension for the colors of D, to a x'(G)-edge-coloring of G.

Definition 5.8 A defining set with minimum cardinality is called a minimum
defining set (of edge coloring) and its cardinality is denoted by d.(G).

To illustrate the previous definitions, we consider the following example;

Example 24 In the following figure an edge coloring of Ps is given:
We are interested in finding a set of edges with color assignment which can be

@ 2 1 2 1 2

@
A

®

®
o

|

extended to this edge coloring of Ps. The defining set of this edge coloring contains
only one edge, whose color is circled. With having the color of this single edge we can
give the color classes of Ps, at first we find the mazimal matching which contains
this edge, this is one color class, say E, then because of the fact H(B) =2; @
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means we have only two mazimal matchings, hence Ey = E(P,) — Ey is the second
desired edge color class. So we could uniquely determine the edge color classes of Ps
with knowing the color of only one of its edge. This means d.(Ps) = 1

The following results are obtained from the definition of the edge defining set:

Remark 5.3 1. For any graph G the set E(G) is obviously a defining set of any
edge coloring of G. So d.(G) ezists and d.(G) > 0. In fact, d.(G) = 0 if and
only if either G = Ky (we do not consider the null graph) or G has no edges.

2. A minimum defining set of an edge coloring of a graph G is not necessarily
unique.

3. de(G) 2 X'(G) -1

4. Let e = uv be an edge of G with edge degree d, i.c. the degree of e in line
graph L(G) is d = deggu + deggv — 2. If d < X'(G) — 1, then e is necessarily
a member of any edge defining set of G. For, let e be such an edge and not in
the defining set, say D,., assume e has not colored yet and the other edges in
G have been colored. Since d < x'(G) — 1, we can color this edge at least in to
ways, which is a contradiction to defenition of defining set.

Problem: Is it true that, if G' be an arbitrary subgraph of G = d.(G") < d.(G) ?

The answer is no.
The following exzample shows that, in general, d.(G') < d.(G) when G' is a subgraph
of G, is not true; even if X'(G) = xX'(G").

In above figure the set of edges with circled color number in graph G and G' are
defining sets for G and respectively G'. So 3 = d.(G) < d.(G') = 5, although G' is
a subgraph of G and X'(G) = X'(G") = 3.
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The following definition and theorem due to Mahdian and Mahmoodian are very
useful in some of our results.

Definition 5.9 A graph G, with v vertices has the property M(2), if for any list
of colors Sy, Sa,+++,Sy ( Si is a list of colors available at vertez ), with |S;| > 2;
having a proper vertez coloring for G implies that there exists also a different proper
vertez coloring for G.

Theorem 5.10 A graph has the property M(2) if and only if every block of which
is either a cycle, a complete graph, or a complete bipartite graph.

Theorem 5.11
de(Pn) = 1’
de(CZn) =1,
de(Cons1) =n+1

Proof :
Consider the paths of length n, P,, we have X'(P,) = 2,

Ifn=2k=a=2andifn=2k+1=a=1.
Here we have the same argument as in Ezample 24. It means if we have the color
of only one edge of P, then we can extend it to this edge coloring of P, uniquely.

Now consider the even cycles Ca,, we have X'(Can) = 2. It is casy to observe that
d,(Con) = 1. In the following figure, the edge with circled color number is an edge
defining set for Cs.

But for odd cycles it is different,
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X' (Cant1) = 3.

We claim that from every two adjacent edges in Cony1, one must be included in any
defining set. For, assume that two adjacent edges have not been colored yet, and the
other edges have been colored. The set of colors available at each of these edge is of
size 2. By exchanging these colors we obtain two different edge colorings for Copy1.
Hence, de(Conyy) =n+1

Theorem 5.12 For every simple graph G we have

4. > |B(G)| - Sy ()
e — X (G)—1

Proof :
As we mentioned earlier every edge coloring of a graph G is a vertex coloring of its
line graph L(G). By using Theorem 5.2 and considering that |V(L(G))| = |E(G)|,

and the fact that |E(L(G))| = Tiev(a) gdﬂ(")) for line graphs, the assertion follows.
In the following there are some results for edge defining set of trees:

L X(T) = AD),

2. A(T)=1then T is K, and x'(T) =1 and d. = 0,

3. A(T) =2 then T is P, and X'(T) =2 and d. = 1,

4. A(T) =n and |V(T)| = n+1 then T is star Ky ,, and X'(T) = n and d, = n—1

Theorem 5.13 Let T be a tree with A(T) =3, |[V(T)| =n+12> 4 and T contains
only one vertez of degree 3 then d. =n — 2.

Proof :
It is clear that X'(T) = 3, and T is K13+ P,_4 as shown in following figure:

c/'#"4'
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We have |E(T)| = n, now we claim that among the edges of T at least n—2 of them
must belong to any edge defining set. For, assume that 3 of the edges have not been
colored yet, and other edges have been colored. Because of the form of our tree at
least two of these edges have edge degree 1 and the set of colors availabe at each of
these edges has size 2. By Theorem 5.10 we obtain two different edge coloring for
T. Therefore d(T) > n — 2. In the above figure the set of edges marked bold forms
a defining set, this gives the equality.

do(T)'= [241].

Example 25

We have in general X'(Kmna) = maz{m,n}, in the following an edge coloring for
Ky 5 is given:

X’(Kg'g) =3 and dg(Kg};;) =2

Theorem 5.14 Forn > m,
do(Kmpn) = m(n —m)

Proof :

As we mentioned earlier, x(G) = X'(G), where Gy, is the line graph of G. And we
have also L(Kpp) =~ Ky X K.

Hence by applying the Theorem 5.6 we obtain:

do(Kmp) = do(Km X Kp) > m(n —m) forn>m

Theorem 5.15 If n > m? then
de(Km,n) = du(Km X Kn) = Tﬂ(’ll = m)



5 DEFINING SETS IN GRAPH COLORINGS 65

Proof :
With the same argumentation as in previous theorem and applying Theorem 5.7,
the statement will be obtained.

Theorem 5.16 The size of minimum edeg defining set of Ky x C, is

de(Ka x Cp) = [5]

Proof :
Let G = Ky x Cy, in the following an edge coloring of G is gwen:

K;xC, 2 3 3 3 d b

ifn=2%k={a=c=1b=2,d=3}andifn=2k+1={a=c=2,b= 1,d=3}
¥ (KexiCy) =3:

Consider the paths Py which have one edge in upper copy of Cy, one edge in lower
copy of Cy, and the other edge is a copy of Ky. We claim that from every two
consecutive paths with this construction, two edges of one of them must be included
in any defining set. For, assume that Py = v1v20304 and Py = ujusuauy be two
such paths which have not been colored yet and the other edges have been colored.
Because of the form of these paths uy = v1 and uz = vy. Now it is not difficult to
see that the sets of availabe colors at each of the edges of P1 and Py have the size 2,
and by Theorem 5.10 we obtain two different edge colorings for G.t Since Ky x C,,
has [%] such paths, therefore de(IKz X C,) = [3]. To show the equality, we giwe a
edge defining set of size [%] in following picture (for odd n).
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K, xC, 2 o) 3 o) 3 ®

Figure 2: A defining set for K, x C,

Similar to Theorem 5.9 for mazimal independent sets, we can formulate the following
theorem;

Theorem 5.17 Let D; be a minimum defining set of mazimal matching M;, j =
1,...,k of a graph G, with X'(G) = k, so that E(G) = Un; E(M;). The union of
Dj,j=1,...,k is a defining set of an edge coloring of G and

de(G) < T py; A My) — minag; din (M;).

Proof :
Similar to the proof of Theorem 5.9.

Here we can introduce a similar algorithm to find an edge coloring of G with help
of defining sets of mazimal matching.

Algorithm 5.2 Input: A class of minimal defining sets Dy, ..., Dy in graph G of
mazimal matchings My, ..., My such that E(G) = UnV (M)

Output: An edge coloring of G

(1) Choose the D; with mazimum cardinality,

(2) Determine the correspondent mazimal matching M; with help of its defining set
Di;

(8) If i < k go to (1),

(4) else put Mk = E(G) = Uisk—lE(Mi)

(5) Stop, My, ..., My are the color classes of a k-edge-coloring of G.

Theorem 5.18 Every edge-coloring of Kon—1 can be extended to an edge-coloring
f07‘ Kgn.
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Proof :

We consider an arbitrary edge coloring of Kon—1 we have X'(kyn—1) = 2n — 1 and
da(v) =2n—2 Vv € E(Ky,—1). Hence for each i, 1<1i<2n—1, there is one
color of the given 2n — 1 colors which is not allocated to the edge with the end point
v;. Now we claim that these colors are distant. For, assume for example color 1 in
vertices u and v is not allocated, then the number of all not allocated colors in other
vertices is 2n — 3 and the total number of such colors is 2n — 2. It means there 1s
a color, for example, color 2n — 1 which is allocated to an edge for any end point.
Therefore we have 2",; L edges with 2n — 1 colors, which is not possible, because the
number of vertices is odd. Now we consider graph Ko, 1 + {von} which is Ky, and
color each edge va,v; with missing color at v;, this gives an edge coloring for Ko,.

Theorem 5.19 Every edge defining set for Ko,y is an edge defining set for Kop,
as well.

Proof :  Let D be an edge defining set for Ka,—1. By definition of D we can
extend it uniquely to an edge coloring of Kon—1. Now by previous theorem we can
extend this edge coloring to an edge coloring of Ko, uniquly. This means D is a
defining set for Ks,, too.

Definition 5.10 A wheel of length n, denoted by W, is a graph obtained from
C,, by adding a new verter and edges joining it to all the vertices of the cycle.

Ezample 26 Consider Kj. It is obvious that d.(Ks) = 2, then by Theorem 5.19
we have d.(K4) = 2, too.
In the following picture the minimum edge defining set of K3 and Ky are given:

Proof :
By applying Theorem 5.19 and previous example the assertion follows.
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Theorem 5.20 d.(W,) =2n—3 forn > 3, for alln > 3.

Proof : It can be easily seen that X' (W,) = n, for all n. As it is earlier pointed out, if
e = uv be an edge with degree d = degcu + deggv — 2 in G and d < X'(G) — 1, then e is
necessarily a member of any edge defining set of G. Now consider the line graph of Wy, it
contains the subgraph C,, and each line on Cy, has degree less than X'(G), then every edge
on C, must belong to any defining set and there are n such edges. Now we claim that
among n remaining edges of W, at least n — 3 edges must belong to any edge defining set
of W,. For, assume that four of these edges have not been colored yet, and the other edges
of Wy, have been colored. These 4 edges constitute a complete graph Ky in line graph of
W,. And the set of colors available at each of its vertices are of size 2 each. By Theorem
5.10 we obtain two different edge colorings for Wy,. Therefore d(Wy,x') > 2n—3. To
show the equality, we give an edge defining set of size 2n — 3 in the following figure.

Figure 3: A minimum edge defining set for W,

Remark 5.4 Forn=3, Ws=K,, and X'(K4) =3, in this case d(W3) = 2.

Here we study the relation between critical sets for latin squares and defining set of edge
coloring of complete bipartite graphs.
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5.2.1 Latin squares

Latin squares arise in Eulers “thirty-siz officers” problem. The concept of arranging
numbers that satisfy certain properties into arrays is ages old. Well-known ezamples of
this practice include group tables, matrices and Magic Squares. In 1779, Euler posed
a recreational problem, involving the arrangement of 36 particular military officers into
6 x 6 array. the officers were chosen from siz distinct regiments with precisely siz officers
selected from each. Further, the set of siz officers from each regiment represented siz
distinct ranks from a given set of siz ranks. For each officer, Euler used Latin letters to
represent the officer’s regiment and Greek letters for the officer’s rank. Eulers problem was
to arrange these 36 officers into a 6 x 6 array so that each row and column contained one
officer from each regiment, each of different rank. This type of array was hence referred to
as a Graeco-Latin square. Euler found a solution for the equivalent problem on 16 officers
( four each from four different regiments and four distinct ranks ) and conjectured that
the problem of the 36 officers was impossible to solve.

In Eulers problem, both Latin and Greek letters were used in the array. An array contain-
ing just the latin letters was often referred to at the time as an

Eulerian square. This array is now more commonly known as a Latin square.

Definition 5.11 A Latin square of order n is an n X n array or mairiz with entries
taken from the set {1,...,n}, with the property that each entry occurs eractly once in
each row and column.

For convenience, a Latin square will sometimes be represented as a set of ordered triples
(i,7; k), this is read to mean that element k occurs in cell (i, 5) of the Latin square.

Definition 5.12 For m < n, a Latin rectangle of order m X n, is an m X n array with
entries chosen from {1,...,n}, having the property that each entry occurs ezactly once in
each row and at most once in each column.

Definition 5.18 For m < n, a back circulant latin rectangle of order m x n, is an
m X n array with entries chosen from {1,...,n}, having the property that each entry in
the position (i,7) =i+j—1 (modn).

Definition 5.14 Let L be a Latin square of order n. If n — s rows of L can be deleted,
andn—s columns of L can be deleted to leave s* elements of L which form a Latin square
S of order s then S is Latin subsquare, or simply subsquare of L.

Definition 5.15 A partial Latin square P of order n is an n X n array with entries
chosen from a set N of size n, such that each element of N occurs at most once in each
row and column.



5 DEFINING SETS IN GRAPH COLORINGS 70

Definition 5.16 A partial Latin square P of order n, is said to be uniquely com-
pletable (or P has (UC)) if for given set of possible entries, N, there is one and only
one Latin square , L, of order n which has element k in position (i, j) for each (i, j; k) € P.

It is sometimes said that P completes uniquely to L.

Definition 5.17 A critical set in a Latin square L is a partial square which has a unique
completion to L and all proper subsets of the partial Latin square complete to at least two
distinct latin squares. Formally, a critical set, in a Latin square L of order n is a set
C={(,j;k) |ij€{l,...,n} and k € N} such that,

1. L is the only Latin square of order n which has element k in position (i, j),
for each (i,7;k) € C;
2. no proper subset of C' satisfies 1.
Ezample 27 Consider Cg, the back circulant latin square of order 6, and let:

Es = {(0,0;0), (0,1;1),(0,2;2), (1,0; 1), (1,1;2),(2,0;2), (4,5 3), (5,4; 3), (5,5;4) }.
The set Eg is a critical set in Cs. The latin square Cs and the critical set Eg are as follows.

4

T W N = O
O O W N
— O Ol W N
N = OO e W
W N = O Ot
=W N = OOt

* X ¥ N = O
¥ K ¥ ¥ DN
T I R R N )
ETREE T CHEE I
W ¥ ¥ ¥ * *
B~ W ¥ ¥ * *

Colbourn, Colbourn and Stinson [10] make the observation that the although the recog-
nition of critical sets in ”special cases” (where the unique completion of the partial latin
square is relatively easy to verify) is "straightforward”, it is "not the case in general”.
They prove that ”deciding whether a partial latin square has more than one completion”
is NP- complete, even if one completion is given as part of the problem description.
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Lemma 5.21 (Curran and van Rees [12]) The set
En={(i,j;i+5)i=0,...,2—1andj=0,...,2 —~1—i}U
{G,g;3+9)i=82+1,...,n—1 and j = (% —i)(modn),...,n — 1}

of cardinality 'fl—i, is a critical set in the back circulant latin square of even order n.

The set in Ezample 27 is just such a critical set in the back circulant latin square of order
6.

Curran and van Rees actually showed that a certain partial latin square which is isotopic
to E, is a critical set in C, for n even.

Definition 5.18 Two latin squares L and M (both of order n) are said to be isotopic
if there exists an ordered triple (¢,1,x) of one-to-one mappings such that map the rows,
columns and entries, respectively, of L onto M.

Then M = {(r¢,c;ex)|(r,c;€) € L}.
That is, two latin squares are isotopic if one can be transformed into the other by rear-
ranging rows, rearranging columns and renaming entries.

Definition 5.19 The two latin squares are said to be isomorphic if the one-to-one
mappings ¢,1, and x are equal.

One interesting application of critical sets of latin squares is in secret sharing schemes;

In information based systems, the integrity of the information is commonly provided for
by requiring that certain operations can be carried out only by one or more participants
who have access rights. Access is gained through a secure key , password or token, and
governed by a secure management scheme. Shared security systems are used in financial
institutions, in communication networks, in computing systems serving educational insti-
tutions and distribution environments. However, the best known ezamples of applications
of shared security systems are in the military: for instance, in activating a nuclear weapon,
several senior officers must concur before the necessary password can be reconstructed. A
secret sharing scheme is a method whereby n pieces of information called shares or shad-
ows are assigned to a secret key K. The shares have the property that certain authorized
groups of shares can be used to reconstruct the secret key. The secret cannot be recon-
structed from an unauthorized group of shares. The problem of finding critical sets with
minimum cardinality in latin squares is the similar concept of finding defining set for edge
coloring of some special graphs.

Remark 5.5 It is easy to check that an m x n latin rectangle , m < n, is equivalent to
a vertex coloring of the graph K, X K,.
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As we mentioned earlier:

L(Kmp) ~ Kn x Ky, hence the concept of critical sets in latin squares is the same as
minimum defining set for edge coloring of Kpn. Now by using the results in [25] we
obtain the following results:

Remark 5.6 If n > m?, then

de(Kpnn) = m(n —m)

Theorem 5.22 Let L be an m x n back circulant latin rectangle, where 2m < n. Then
2

L contains a critical set of size m(n —m) + L('"—ZILJ, which is the smallest critical set for

such a latin rectangle.

Corollary 5.23 Consider bipartite graph K, », where 2m < n. Then Ky, has a mini-
mum defining edge set of size m(n —m) + [ﬁ’"—zlﬁj, for a corresponding edge coloring of
Km,n~

5.3 Defining set in total coloring of graphs
Definition 5.20 In a given graph G, a set of element (vertices and edges) D, with an

assignment of colors is said to be a defining set of the total coloring of G, if there exists
a unique extension of the colors Dy to a X"(G)-coloring of the elements of G.

Definition 5.21 A defining set with minimum cardinality is called minimum total
defining set and its cardinality is denoted by dy(G).

To emphasize the previous definitions, we consider the following example;

Exzample 28 Consider the cycle Cs, x"(Cs) = 3. In following picture left there is a
total coloring of Cs and in the right side the elements marked bold give a minimum total
defining set for Cg
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On the defining sets of total coloring, the following results are obtained. Proofs may be

found in [4].

Theorem 5.24

(i) di(Cp) =2 if n =0 (mod 3)

(i) di(Cy) = [2—%"—'] ifn=2 (mod 3)

(iti) dy(Cn) = [ + 1 if n=1 (mod 3)

Theorem 5.25 Every total defining set for the graph Ky,, n € N, is a total defining set
for graph Ko, 11 as well.

Theorem 5.26 Forn > 6, d,(W,) = 3n—4.
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6 Cliques

A concept which is opposite of that of mazimal (mazimum) independent set is that of
mazimal (mazimum) clique.

Definition 6.1 A subset C' of V is called a clique of G if every two vertices of C' are
adjacent in G. A clique C is mazimum if G has no clique C' with |C'| > |C|. And C is
mazximal when there is no other clique that contains C.

In contrast to a mazimal (mazimum) independent set for which no two vertices are ad-
jacent, the set of vertices of a clique are all adjacent to each other. It is quite obvious,
that the mazimal (mazimum) independent set of a graph G corresponds to a mazimal
(mazimum) clique of the graph G and vice versa, where G is the graph complementary of
G.

Remark 6.1 The mazimal (mazimum) independent sets of complete graph, K, which is
a clique has only one vertex and

di(K,) =1

6.1 Defining sets of cliques

It is obvious that every graph G contains at least one mazimal (mazimum) clique.

Definition 6.2 A subset D of vertices of a mazimal (mazimum) clique C' of G, is called
a defining set if for all cliques L with D C L, then L = C.

Definition 6.3 A defining set with minimum cardinality is called minimum defining
set and its cardinality is denoted by d.(G).

6.2 General examples

In the following some examples are given to illustrate the perevious definitions and help
us to have an idea for behaviours of mazimal (mazimum) cliques. :

Exzample 29
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Here the cliques K| and K, are mazimal and at the same time they are mazimum cliques.
The defining sets of K; and Ky have only one vertez each, say a and b. So
d(G,c) =1.

Example 30

N\

For inside mazimum cliques, "abed” we have
d(G,c) =1, because only the verter d determines it.
for mazimal clique "efg” we need also only one vertex to determine it.

c

Example 31

p &

Here we have d(G,c¢) = 2.
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Ezample 32

AN

Here for inside mazimal (mazimum) cliques, e.g. “aeb”, 7age” we need only one vertex to
determine them and for “abe” we need all of its vertices. So d(G,c) = 1.

Example 33

Here we have d(Ky,c) = 0.

Exzample 34
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The defining set of the mazimal clique "abe” has only one vertex a and the defining set
of all other mazimal (mazimum) cliques has two vertices. Hence d(G,c) = 1.

Exzample 35

Here we have d(G,c) = 1.

Ezxzample 36

Here we need only one vertex to determine each mazimum clique K4, and for the mazimal
clique “abc” we need all its vertices.

d(G,c) =1
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Example 37

d(G,c) =1

Example 38

78
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The mazimal (mazimum) clique in the middle has one vertez in common with any other
mazimal cliques, so its defining set has three elements. For all other mazimal (mazimum)
Ky in G we need only one of vertex for defining set and so d(G,c) = 1.

6.3 Examples of Ramsey Graphs

In the following we consider some Ramsey graphs:

A (k,1)-Ramsey graph on r(k,1) — 1 vertices is a graph that contains neither a clique of k
vertices nor an independent set of | vertices, where r(k,1) is the smallest integer such that
every graph on r(k,l) vertices contains either a clique of k vertices or an independent set
of | vertices.

For example it is easy to see that

r(1,1) =7k, 1) =1,72,0) =1l and r(k,2) = k

By definition of 7(k,1), for any k > 2 and | > 2, there exists a r(k,1)- Ramsey graph.

Example 39
Consider the (3, 3)-Ramsey graph which is Cs:

Here the mazimal cliques are edges, therefore every mazimal clique has two vertices in its
defining set and d(r(3,3),c¢) = 2.

Exzample 40
Consider r(3,4)-Ramsey graph:
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Here the mazimal cliques are, like in previous ezample, edges and therefore

d(G,c) = 2.

Exzample 41
In ramsey graph of v(3,5):

d(G,c) = 2.

Example 42

In r(4,4)-Ramsey graph the mazimal (mazimum) cliques are triangles, and because every
Cs has at least one vertex in common with another mazimal (mazimum) clique, the defin-
ing set of each clique has two vertices:

d(G,c) =2.

Remark 6.2 By observation of these examples we obtain that if a mazimal (mazimum)
clique has at least one vertex which is not in common with the others, then d(G,c) = 1.

6.4 Finding a maximal (maximum) clique by its defining set

The problem of generating all mazimal (mazimum) cliques ( mazimal (mazimum) inde-
pendent sets ) of a given graph is fundemental in graph theory and is also one of the most
important in terms of the application of graph theory. Here, we present an algorithm to
find a certain mazimal (mazimum) clique ( mazimal (mazimum) independent set ) with
help of its defining set.
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The following algorithm can find the mazimal (mazimum) independent set given by its
defining set D, in the way that we find the mazimal (mazimum) clique C' in G, whose
defining set is D. Then C' is the mazimal (mazimum) independent set in G.

In the following algorithm the set of all neighbours of a vertez vy is denoted by A(vy), i.e.
the adjacency set which is defined:
A(vg) = {u € V(GQ)|uvy € E(G)}

Algorithm 6.1
Input: A graph G and a subset D = {v} C V(G).
Output: A mazimal clique C, whose defining set is D.
Step 1: Find the adjacency set of vy, i.e. A(vg),
Step 2: Put K := A(vy),
Step 3: In this step we give label to vertices in K, which is defined as follows:
for allu € K, 1(u) :=# of disconnected vertices to u in K — {u}
Step 4: If l(u) = 0 for all u € K, then STOP
Step 5: Remove the vertez v € K with mazimum label from K. Go to 8.

The induced subgraph of G on K U D ,C, is the desired mazimal clique. It is a clique
because by our algorithm all vertices in K are adjacent to all vertices in D and by definition
of defining set, C is the unique mazimal clique determined by D.

Theorem 6.1 Let D be a defining set of mazimal clique C' consists of vertices. Then in
step labeling of Algorithm 6.1, K contains no vertez u € C with mazimum label.

Proof : Here |D| =1, D = {uv}. It is clear that vy is on no other clique, by definition
of defining set. Therefore A(vy) contains only the vertices, which are on the desired
mazimal clique or the vertices which are not connected together and not to all vertices on
the mazimal clique. Hence the mazimum label comes from them.

For the case that |D| > 1 we use the following algorithm.:

Algorithm 6.2

Input: A graph G and a subset D C V(G).

Output: A mazimal cliqgue C, whose defining set is D.
Step 1: Find the the vertex vy € D with minimum degree,
Step 2: Put K := A(vy) — D,

Step 3: If K = (), then STOP
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Step 4: Check the adjacency between all vertices u € A(vg) and v € D — {wo}, if
w ¢ B(G), then K := K — {u},

Step 5: (labeling)

forallu € K, 1(u):=# of disconnected vertices to u in K — {u}

Step 6: If I(u) = 0 for allu € K, then STOP

Step 7: Remove the verter v € K with mazimum label from K. Go to 5.

By the same argumentation as in Algorithm 6.1 the induced subgraph of G on K U D 1s
the desired mazimal clique.

Exzample 43
Consider the following graph G and the defining set D = {ve}. We apply the Algorithm
6.1 to find the mazimal clique, whose defining set is D:

11

14

Step 1: A(vg) = {va, v4, V5, V14, V15 }
Step 2: K = A(vs)

Step 3:

l('l)z) = 2,
l(’U4) = 2,
l(’U5) = 2,
l(vls) =3,
l(UM) = 3;

Step 4: l(u) # 0 for some u € K = Continue,
Step 5: K := K — {v13} = {va,v4, U5, v14},
Step 3:

l(’l)g) = 1,

l(vg) =1,
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l(’Us) = 1,

l(vig) =3,

Step 5: K = K — {v1a} = {va,v4,05},

Step 3z l(’UQ) = l('U4) = l(US) - 0:

Step 4: STOP

G tuawaws o) 18 the desired mazimal clique with defining set {vs}.

Example 44
The graph G and the subset D = {vs,vs} are given. Find the mazimal clique with
defining set D.

Here we apply the Algorithm 6.2:

Step 1: vy := Vg,

Step 2: K := {vy,v3, V4, Vs, Vg, U7, Vg, V14, V15 } - {V2, s}
={U1,U37U4,U6, U7,U8,U14,U15}

Step 8: K # () = Continue,

Step 4: vvs € BE(G) = K := K — {v7}

Vg5 & E(G) = K:=K- {Ug}

K = {Ul, V3, V4, Vg, V14, 1)15}

Step 5:

l(Ul) =
U(vs)

2
1
l('l)4) 1

([T
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l(’UG) =i2
l(’U14) =4
l(’l)15) = 4

Step 6: l(u) # 0 for some u € K = Continue,
Step % K=K - {’Uls} = {’Ul,'l)g,’l)4, ’1)6,1)14},

Step 5:

l(’l)l) =,
1(1)3) =0
l(U4) =l
l(vg) =1
l(’Ul4) =3

Step 6: 1(u) # 0 for some u € K = Continue,

Step 7: K := K — {via} = {v1,v3, 04,06},

Step 5: 1(vy) = I(vs) = l(vg) = l(vs) =0,

Step 6: STOP

G|{w1,02,08,08,0506)) 15 the desired mazimal clique with defining set {v2, vs}.
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