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Abstract Theory of mind refers to the ability to reason explicitly about unobservable mental
content of others, such as beliefs, goals, and intentions. People often use this ability to
understand the behavior of others as well as to predict future behavior. People even take
this ability a step further, and use higher-order theory of mind by reasoning about the way
others make use of theory of mind and in turn attribute mental states to different agents.
One of the possible explanations for the emergence of the cognitively demanding ability of
higher-order theory of mind suggests that it is needed to deal with mixed-motive situations.
Such mixed-motive situations involve partially overlapping goals, so that both cooperation
and competition play a role. In this paper, we consider a particular mixed-motive situation
known as Colored Trails, in which computational agents negotiate using alternating offers
with incomplete information about the preferences of their trading partner. In this setting, we
determine to what extent higher-order theory of mind is beneficial to computational agents.
Our results show limited effectiveness of first-order theory of mind, while second-order
theory of mind turns out to benefit agents greatly by allowing them to reason about the way
they can communicate their interests. Additionally, we let human participants negotiate with
computational agents of different orders of theory of mind. These experiments show that
people spontaneously make use of second-order theory of mind in negotiations when their
trading partner is capable of second-order theory of mind as well.
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1 Introduction

In social settings, people often make predictions of the behavior of others by making use of
their theory of mind [57]; they reason about unobservable mental content such as beliefs,
desires, and intentions of others. Without this theory of mind, an individual is limited to
reasoning only about behavior, such as in the sentence “Mary is looking in the drawer”.
Such individuals are said to have a zero-order theory of mind. First-order theory of mind
allows agents to reason about unobservable mental content of others as well, and understand
sentence like “Mary is looking in the drawer because she believes that there is chocolate
in the drawer”. People are also capable of taking this theory of mind ability a step further,
and reason about way others are using theory of mind. Using second-order theory of mind,
people understand sentences such as “Alice believes that Bob knows that Carol is throwing
him a surprise party”, and reason about the way Alice is reasoning about Bob’s knowledge.

Behavioral experiments have demonstrated the human ability to make use of higher-order
(i.e. at least second-order) theory of mind, both through tasks that require explicit reasoning
about second-order belief attributions [1,3,48,56,74], as well as through strategic games
[18,26,34,38,47,60,77]. According to the social brain hypothesis [21], the emergence of
this higher-order theory of mind ability can be explained by an increased complexity of
social life. However, different hypotheses point to different aspects of social life that would
favor the emergence of higher-order theory of mind.

According to the Machiavellian intelligence hypothesis [7,73], the emergence of social
cognition, which includes theory of mind, can be explained through a competitive advan-
tage. According to this theory, higher-order theory of mind allows an individual to deceive
and manipulate others more effectively. Our earlier research using agent-based models has
confirmed that there are indeed competitive settings in which individuals benefit from the
use of higher-order theory of mind [13]. However other agent-based models have shown that
theory of mind is not always needed to deceive others. Rather, seemingly deceptive behavior
may be a result of associative learning [19,39,54] or factors such as stress [67] rather than
reasoning about the minds of others.

The Vygotskian intelligence hypothesis [49,72] suggests that the emergence of theory of
mind can be explained through social cooperation rather than competition. The Vygotskian
intelligence hypothesis would explain both the human capacity for theory of mind and the
capacity to engage in altruistic cooperative action [6,29,65]. Our results from agent-based
simulations in a communication game show that higher-order theory of mind can indeed help
to reach a cooperative solution more quickly [14]. However, computational models have
shown that many forms of cooperation can also emerge through simple mechanisms, without
need for a cognitively demanding ability such as theory of mind [12,51,66].

Finally, a third hypothesis that specifically concerns higher-order theory of mind states
that higher orders of theory of mind may be needed for mixed-motive interactions [71].
Such mixed-motive interactions involve both cooperative and competitive elements,1 such
as in negotiations [71]. Mixed-motive interactions can be understood as the task of sharing
a pie [61]. Individuals cooperate to find ways to enlarge the pie they are sharing, while
they also compete to obtain as large a share of the pie as possible for themselves. Theory
of mind allows individuals to reason explicitly about the goals and beliefs of others. This
ability may be crucial for an individual to balance cooperative and competitive goals in order

1 Note that mixed-motive interactions are different from risk/benefit trade-offs such as the Stag Hunt. In
risk/benefit trade-off games, players prefer the same payoff-dominant outcome (hunting stag in the Stag
Hunt), while players in a mixed-motive situation have different preferences concerning the outcome of the
game.
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to successfully negotiate a larger pie to share, which includes a larger piece of pie for the
individual himself.

In this paper, we investigate whether theory of mind allows agents to achieve better
outcomes in mixed-motive interactions. Our earlier research into the effectiveness of higher-
order theory of mind shows that in repeated one-shot interactions in the negotiation game
Colored Trails, agents that made use of first-order and second-order theory of mind managed
to negotiate a larger piece of pie for themselves than agents of a lower order of theory of
mind, while no additional advantage for even higher orders of theory of mind was found [16].

In the current paper, we extend the agent model of [16] and investigate more realistic
mixed-motive settings in which individuals engage in multiple rounds of negotiation. Using
agent-based computational models, we simulate agents that alternate in making offers until
an agreement is reached. We study mixed-motive situations through the influential Colored
Trails setting, introduced by Grosz et al. [15,28,45,70],2 which provides a useful test-bed to
study how different aspects of mixed-motive settings change the interactions among agents.
By comparing the performance of agents of different orders of theory of mind over a variety
of different game boards, we then determine to what extent higher orders of theory of mind
allow agents to make better offers. Next, we let human participants negotiate with these
computational agents to show that participants indeed take advantage of the benefits of
higher-order theory of mind reasoning, even when playing against computational agents.

The remainder of this paper is structured as follows. In Sect. 2, we provide an overview
of literature related to the current work. In Sect. 3, we describe our version of the Colored
Trails game in detail. Section 4 describes how this game is played by agents, and how theory
of mind shapes the decisions of agents. The details concerning these theory of mind agents
are presented in the form of a complete formal model in Sect. 5.

By simulating negotiations among computational agents, we determine to what extent
higher orders of theory of mind provide agents with an advantage over trading partners
without such abilities. The results of these simulation experiments, in which theory of mind
agents of various orders of theory of mind negotiate among each other, are presented in
Sect. 6. In Sect. 7, we add humans to the loop by letting human participants play against our
computational theory of mind agents. In that section, we show that participants are capable
of spontaneous use of second-order theory of mind when negotiating with a computational
agent. Finally, Sect. 8 provides discussion and gives directions for future research.

2 Related work

In the literature, there are several approaches to bounded rationality and recursive modeling
of the behavior of others that are related to the theory of mind agents we present in this
study in different ways (see also Table 1). In behavioral economics, recursive modeling of
the behavior of others can be modeled through iterated best-response models such as level-n
theory [2,4,10,50,64], cognitive hierarchies [8], quantal response equilibria [46], and noisy
introspection models [33]. In these models, an agent’s level of sophistication is measured
by the maximum number of steps of iterated reasoning the agent is capable of considering.
Camerer et al. [8] find that over a range of non-repeated single-shot games such as the p-
beauty contest and the traveler’s dilemma, participants typically use few reasoning steps. On
average, participants use an estimated 1.5 steps of iterated reasoning, which suggests that
participants limit themselves to first-order theory of mind reasoning. In a meta-analysis of

2 Also see http://coloredtrails.atlassian.net/wiki/display/coloredtrailshome/.
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Table 1 Related research has focused mostly on single-shot interactions and on single games

Paper Setting Player interaction Scenario variety

Devaine et al. [18] Competitive Single-shot Single game

Cooperative Single-shot Single game

Ficici and Pfeffer [24] Mixed-motive Single-shot Randomized games

Franke and Galleazzi [27] Randomized Single-shot Randomized games

Peled et al. [53] Mixed-motive 3 rounds 2 games

Pynadath et al. [59] Mixed-motive Arbitrary length Single game

Wright and Leyton-Brown [75] Competitive Single-shot

Yoshida et al. [76] Cooperative 10–20 actions Single game

In contrast, the current work involves a mixed-motive setting in which we consider arbitrary length player
interaction across an extensive number of randomized games

these types of games, Wright and Leyton-Brown [75] find evidence of participant behavior
that is consistent with higher-order theory of mind reasoning. However, few players were
found to be well-described as higher-level agents.

In the iterated reasoning models described above, a level-n agent assumes that all other
agents are exactly one level of sophistication lower than himself, or that the distribution of
lower level agents can be describedwith a fixed probability distribution. However, in repeated
game settings, such assumptions can be detrimental to an agent [40]. The theory of mind
agents we describe in the rest of this article are more similar to dynamic models of theory
of mind, such as experience weighted attraction learning [9], recursive opponent modeling
[30,32], interactive POMDPs [31], and game theory ofmind [76]. In these approaches, agents
adjust their level of recursive reasoning in reaction to the behavior of others. An agent of
level k can consider others as being agents of any level up to and including level k − 1. Such
an agent does not observe the level of sophistication of others directly, but forms beliefs
concerning the level of sophistication of others based on observed behavior.

These dynamic models of theory of mind reasoning show that over repeated trials, human
participants can successfully increase their level of theory of mind reasoning. For example,
Doshi et al. [20] use adjusted interactive POMDPs to model human behavior in repeated
competitive single-shot games. They find that although humans generally reason at low
levels of theory of mind, participants exhibit higher levels of reasoning in simpler settings.
Yoshida et al. [76] evaluate the behavior of human participants in a sequential game variation
on the cooperative Stag Hunt game. Using game theory of mind, they find evidence that
participants make use of higher-order theory of mind reasoning.

Our work focuses on mixed-motive settings that involve both cooperative and competitive
elements, such as in negotiations. As a result, our work is related to research into automated
agents in negotiation applications [23,26,41,43–45,53,62]. In particular, several studies have
previously investigated recursive reasoning in the Colored Trails setting under incomplete
information about the preferences of other players.

For example, Ficici and Pfeffer [24] present a model for recursive reasoning in repeated
single-shot negotiations in Colored Trails and use this model to determine to what extent
human participants reason about other players in the game. They find that human participants
engage in theory of mind reasoning, but that more complexmodels yield diminishing returns.
Peled et al. [53] construct an agent model for revelation games, in which players can decide to
truthfully reveal their goals before engaging in two rounds of negotiation. Peled et al. fit their
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SIGAL agent model to participant data on two game boards and show that the SIGAL agent
could outperform both human participants and equilibrium strategy models in negotiations
with participants.

In the current work, we investigate a more open-ended type of bargaining in which agents
negotiate until either an agreement is reached or one of the agentswithdraws fromnegotiation.
This setting allows agents to observe more of the behavior of their trading partner, which
may reduce the benefit of reasoning about the mental content of others. Indeed, Pynadath
et al. [59] show this effect in a simple negotiation setting. Pynadath et al. model theory
of mind reasoning in a simple type of open-ended bargaining in Sigma (�), an integrated
computational model of intelligent behavior that is grounded in a cognitive architecture [42],
and find that the ability to make use of theory of mind is only marginally beneficial. In this
paper, we investigate a much more complex negotiation setting in which no agent encounters
the exact same negotiation game twice. In this setting, we show that the use of higher-order
theory of mind can still be beneficial.

In addition, we take the role of learning into account for agents that are unable to use
theory of mind reasoning. In previous work, the most basic agent typically assumes that the
behavior of others is either fixed or can be modeled as noise. In contrast, our zero-order
theory of mind agents make use of an associative learning technique [19,39], and continue to
adjust their actions based on the behavior of others, but without any mental state modeling.
By observing the behavior of higher-order theory of mind agents, a zero-order agent may
therefore learn to behave as if he were a more sophisticated agent. Our agent model therefore
explicitly takes the role of learning into account as an alternative to higher-order theory of
mind reasoning.

The goal of our work is to identify settings in which there is an evolutionary incentive
to reason using higher orders of theory of mind which could explain the emergence of
human-like theory of mind abilities. However, althoughwemodel human-like theory of mind
abilities, our goal is not to replicate actual human social behavior in the same way as agent-
based simulation tools such as PsychSim [58] or to predict human theory of mind inferences
like inBayesian Theory ofMind [5]. Instead,we explicitly compare simple learning strategies
that rely solely on modeling the behavior of others with more complex strategies that include
theory of mind to determine the extent of their effectiveness. In this sense, our work also
differs from formal methods such as (dynamic) epistemic logic [22,68] and epistemic game
theory [35–37,52,55], which are used to study recursive reasoning about the knowledge
of others from a prescriptive perspective. In contrast, our theory of mind agents typically
construct an incorrect model of the beliefs of others. We determine to what extent reasoning
at increasingly higher orders of theory ofmind remains effective, even under these conditions.

The evolutionary advantage of higher-order theory of mind has recently received more
attention. For example, Franke and Galeazzi [27] compare the evolutionary success of level-
n agents in repeated randomly generated single-shot games. They find that level-n agents
of increasingly higher levels continue to obtain an advantage over level-(n − 1) agents.
Interestingly, their results also show that populations that only contain high-level reasoners
can sometimes be invaded by level-0 agents. This means that under certain circumstances,
populations that contain both low-level and high-level agents can be evolutionarily stable.

Recently, Devaine et al. [18] investigated the effectiveness of higher-order theory of mind
using a model of meta-Bayesian agents that is closely related to our agent model. Using
replicator dynamics, Devaine et al. determine whether Bayesian agents of a lower order of
theory of mind can survive when faced with more sophisticated agents in both a competitive
setting and a cooperative setting. In the competitive hide-and-seek setting, their Bayesian
theory of mind agents benefit from the ability to make use of increasingly higher orders
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of theory of mind. In this setting, only agents using the highest order of theory of mind
survive in the population. In a cooperative setting, on the other hand, reasoning at higher
orders of theory of mind is not always beneficial. Devaine et al. find that in the battle of the
sexes setting, the population reaches an evolutionarily stable state when two-thirds of the
population consist of second-order theory of mind agents while the remaining one-third of
the population consists of first-order theory of mind agents.

In contrast to previous models that investigate the evolutionary advantage of higher-order
theory of mind in relatively simple repeated single-shot games, we consider an open-ended
negotiation setting in which agents negotiate an agreement over multiple rounds of offers.
To ensure that our results are generalizable, each new negotiation is played on a game board
that agents have never encountered before. By comparing the performance of theory of mind
agents and agents that rely on simpler learning techniques, we aim to determine towhat extent
higher-order theory of mind reasoning allows agents to obtain better outcomes in mixed-
motive situations such as negotiations. Through negotiations between human participants
and computational agents, we also investigate to what extent participants take advantage of
the benefits of higher-order theory of mind reasoning.

3 Colored Trails

To determine to what extent reasoning at higher orders of theory of mind results in better
outcomes in mixed-motive situations, we compare performance of computational agents that
negotiate in the setting of Colored Trails. Colored Trails is a board game designed as a
research test-bed for investigating decision-making in groups of people and computer agents
[28,45,70]. As a prototypical multi-issue bargaining situation, the Colored Trails setting
can capture a wide variety of negotiation aspects. For example, many of the domains in
the GENIUS framework [44] can be directly implemented as a Colored Trails setting. Our
specific setting is similar to the one we used previously to test the effectiveness of higher-
order theory of mind in single-shot negotiations [16]. The game is played by two players on
a square board consisting of 25 tiles that are randomly assigned one of five possible colors,
such as the board in Fig. 1. At the start of the game, each player receives a set of four colored
chips, selected randomly from the same five possible colors as those on the board. Each
player is initially located on the center tile of the board, indicted with the letter S in Fig. 1a.
Players can move to a tile adjacent to their current location by handing in a chip of the same
color as the destination tile. Figure 1b shows an example of one of the 524 possible Colored
Trails boards as well as a possible path across the board. A player following the path from
location A to the white tile marked B would have to hand in one black chip, one gray chip,
and one white chip.

Each player is also assigned a goal location, which is randomly drawn from the board tiles
that are at least three steps away from the initial location (striped tiles in Fig. 1a). The goal
of each player is to approach the goal as closely as possible. To reach that goal, players are
allowed to trade chips among each other. This trading of chips in the Colored Trails setting
represents a multi-issue bargaining situation, in which every color represents a different issue
or task to overcome. Different paths from the initial location to the goal location on the board
represent different ways of achieving the same goal, while each chip represents the means to
complete a task or resolve an issue. In our specific Colored Trails setting, for example, each
player always has at least three possible paths from the starting location to the goal location.
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Fig. 1 The Colored Trails game is played on a 5 by 5 board. a Each player starts at the central tile S and
receives a goal location drawn randomly from the striped tiles. b To follow the path from location A to location
B, a player needs to hand in one black, one gray, and one white chip

In Colored Trails, players are scored based on their success in reaching their goal location.
For each step a player takes towards his or her goal, the player receives 100 points. Any player
that succeeds in reaching their goal receives an additional 500 points. Finally, any chip that
has not been used to move around the board is worth an additional 50 points to its owner.
This scoring ensures that players have the highest incentive to reach their goal location, but
that they are also motivated to compete over control of unused chips.

Although players are scored based on how closely they approach their own goal, Colored
Trails is not a strictly competitive game. Since a player may need a different set of chips to
achieve his goal than his trading partner, there may be an opportunity for a cooperative trade,
which allows both players to obtain a higher score. That is, although the score of a player
is not influenced by how closely his trading partner reaches his or her goal location, players
may still benefit from taking into account the goal of their trading partner. However, agents
in our Colored Trails setup do not know the goal location of their trading partner from the
start. In addition, each negotiation game is played on a new game board, which is randomly
selected from one of the 524 possible game boards, with new initial sets of chips and a new
goal location. This means that players are very unlikely to see a given game setting more
than once.

Trading among players takes the form of a sequence of alternating offers. The initiator
makes an initial offer for a redistribution of chips. His trading partner then decides whether
or not to accept this offer. If the offer is accepted, the proposed distribution of chips becomes
final, the players move as close to their respective goal locations as possible, and the game
ends. Alternatively, the trading partner may decide to withdraw from negotiations, which
makes the initial distribution final. Finally, the trading partner may also decide to continue
the game by rejecting the offer, and make his own offer for a redistribution of chips.

There are no restrictions on the offers that players can make. For example, a player is
allowed to repeat an offer that has been previously rejected by his trading partner, or make
an offer that he has previously rejected himself. In addition, our setting does not include a
negotiation deadline. Instead, to prevent negotiations from taking an unbounded number of
rounds to resolve, both players pay a 1 point penalty for each round of play. That is, when
negotiations end after a total of five offers have been made, the final score of each player
is reduced by five points. Note that this penalty is meant only to deter negotiations that last
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indefinitely. As a result, this cost of negotiation has intentionally been kept low compared to
the possible gains of negotiation.

In this paper, we investigate to what extent higher orders of theory of mind allow computa-
tional agents to make better offers. Based on our previous results in the one-shot variation of
Colored Trails [16], we expect that theory of mind will provide agents with significant advan-
tages over agents that are more limited in their theory of mind abilities. More specifically, we
expect agents that are capable of a higher orders of theory of mind to be able to manipulate
the beliefs of their trading partner in order to achieve higher individual scores than agents
that are more limited in their theory of mind abilities. Additionally, we also expect that the
presence of higher-order theory of mind agents in the negotiation has a positive effect on
social welfare, as measured by the sum of the scores of the two negotiating agents. These
expectations are captured by hypotheses H1 and H2.

Hypothesis H1: First-order theory of mind agents obtain a higher score than zero-order
theory of mind agents, while second-order theory of mind agents obtain a higher score
than first-order theory of mind agents.
Hypothesis H2: Social welfare, measured as the sum of the scores over the two agents,
increases when the theory of mind abilities of either agent increases.

In Sect. 4, we describe the way computational agents play Colored Trails, and how the ability
to reason about the goals of others influences the choices agentsmake. The formal description
of these agents can be found in Sect. 5.

4 Theory of mind in Colored Trails

In this section, we describe the way theory of mind agents play Colored Trails. In our agent
model, an agent achieves theory of mind by taking the perspective of his trading partner, and
determining what his own decision would be if the agent had been in the position faced by his
trading partner. Using the implicit assumption that his trading partner’s thought process can
be accurately modeled by his own thought process, the agent then predicts that his trading
partner will make the same decision the agent would havemade if the roles had been reversed.

In the remainder of this section, we describe how this process of perspective-taking results
in different behavior for agents of different orders of theory of mind playing Colored Trails.
The formal description of these theory of mind agents is presented in Sect. 5. We will use
the shorthand ToMk agent to indicate an agent that has the ability to use theory of mind up
to and including the k-th order, but not beyond.

4.1 Zero-order theory of mind agent

The zero-order theory of mind (ToM0) agent can model the behavior of his trading partner,
but the ToM0 agent is unable to attribute mental content to others. In particular, the ToM0

agent is unable to represent that his trading partner wants to reach a certain goal location,
and that the behavior of the trading partner is consistent with that desire. A ToM0 agent
is essentially fixated on his own piece of pie, and does not consider the piece of pie of
other agents at all. Instead, the ToM0 agent constructs zero-order beliefs about the likelihood
that his trading partner will accept a certain offer. The ToM0 agent bases these zero-order
beliefs on observations of the behavior of the trading partner. For example, through repeated
interaction, the ToM0 agent will learn that offers that assign many chips to the trading partner
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Fig. 2 Example of a negotiation setting in Colored Trails, in which agent j offers to trade the black chip
owned by agent i against the gray chip owned by agent j . Agent i wants to move from the central square to
his goal location G. With his initial set of chips, agent i can move two tiles towards his goal location, as shown
by the black path

and few to the ToM0 agent are more likely to be accepted, while offers that assign few chips
to the trading partner and many to the ToM0 agent himself are more likely to be rejected.

Using these zero-order beliefs, the ToM0 agent can form an expectation about how his
score will change if he were to make a particular offer, and select the offer that he assigns
the highest expected value. This allows the ToM0 agent to play the Colored Trails setting
without attributing mental content to others. That is, although the zero-order beliefs of the
ToM0 agent will eventually reflect that his trading partner has a desire for owning chips, the
ToM0 agent does not explicitly represent such a desire.

The ToM0 agent engages purely in positional bargaining [25], by only reasoning about
specific offers that he believes his trading partner will accept, and that he is willing to accept
himself. Because the ToM0 agent has no theory of mind, he is unable to represent that his
trading partner has interests that underlie the offers that his trading partner is willing to accept.

Example 0 Consider the example depicted in Fig. 2, and suppose agent i in this setting is
a ToM0 agent with goal location G. With his initial set of chips, agent i can take two steps
towards his goal. This leaves agent i with two unused gray chips and one step away from his
goal location. To reach his goal location, agent i needs one white chip, of which agent j has
three.

A ToM0 agent reasons only about the behavior of his trading partner and is unable to
consider that his trading partner has goals or desires. In his very first game, a ToM0 agent
has no experience on which to base his prediction of his trading partner’s behavior. Such an
agent will offer the distribution of chips that would yield him the highest score, that is, he
would ask to be given all chips. A ToM0 agent quickly learns that asking for chips without
offering anything in return is never successful.

By repeatedly playing the Colored Trails game across different game boards, a ToM0

agent will come to learn that the more chips he offers his trading partner, the more likely it
is that the offer will be accepted. For example, ToM0 agent i could offer to exchange one of
his gray chips for two white chips. This would allow agent i to reach goal location G with
two spare chips. Alternatively, if ToM0 agent i believes that the additional 100 points for
two spare chips is not worth the risk of the offer being rejected, the ToM0 agent may offer to
exchange two gray chips for one white chip instead.

Figure 2 shows that agent j makes an offer to exchange his gray chip for the black chip
owned by agent i . When a ToM0 agent i receives this offer, he updates his beliefs concerning
what offers agent j will accept in this particular game. Specifically, agent i lowers his beliefs
that his trading partner will accept any offer that does not assign at least three white chips
and one black chip to agent j . In subsequent rounds, ToM0 agent i is therefore more likely
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to make offers that assign his black chip to agent j than offers that assign gray chips to agent
j .

4.2 First-order theory of mind agent

In addition to his zero-order beliefs, a first-order theory of mind (ToM1) agent considers the
possibility that his trading partner has beliefs and goals as well, which determine whether or
not his trading partner will accept an offer. A ToM1 agent therefore realizes that in order to
get a large piece of pie for himself, it is essential to enlarge the pie as a whole. The ToM1

agent is able to consider the game from the perspective of his trading partner, and decide
what his action would be if he were in the position of that player.

Since each player wants to increase his own score through negotiation, each player reveals
information about his goal location whenever hemakes an offer. Although a ToM1 agent does
not know the goal location of his trading partner, the agent can learn the goal location of his
trading partner through the offers he receives. In Example 1, we discuss this process in more
detail.

Although the ToM1 agent is able to consider his trading partner as a ToM0 agent, the
ToM1 agent does not know the extent of the theory of mind abilities of his trading partner
with certainty. Through repeated interactions, the ToM1 agent may learn that his first-order
beliefs fail to accurately model the behavior of his trading partner. If this happens, the ToM1

agent may choose to play as if he were a ToM0 agent.

Example 1 Consider the negotiation board shown in Fig. 2 and suppose agent i is a ToM1

agent with goal location G. Using his first-order theory of mind, a ToM1 agent can take the
perspective of his trading partner to determine whether agent j would accept a given offer O .
However, since agents only know their own goal location, agent i starts every game knowing
only that his trading partner’s goal location is three or four steps away from the center of the
board.

To determine whether an offer O is likely to be accepted, ToM1 agent i determines how
the score of his trading partner would change by accepting offer O . Figure 3 shows this

Fig. 3 If agent i is a ToM1 agent, he reasons about the goal location of his trading partner. When agent i
considers making an offer, he also considers how accepting that offer will change the score of agent j . Panels
a and b show this change in score of agent j for two possible offers and for each possible goal location of
agent j . In this case, agent i believes that his trading partner will only prefer offer (a) over offer (b) when his
goal location is at the far bottom right of the board
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Fig. 4 Whenever a ToM1 agent receives an offer from his trading partner, he updates his beliefs concerning
his goal location. For each possible goal location, this figure shows how the score of agent j would change
if agent i were to accept the offer. Since agent j would not make an offer that would decrease his own score,
agent i concludes that the goal location of agent j is among those locations with a positive number

process for two possible offers. In Fig. 3a, agent i offers to exchange two of his gray chips
against one white chip of agent j . In Fig. 3b, agent i offers to exchange two of his gray chips
and his black chip for two white chips. Note that in both these situations, agent i can reach
his goal location with no chips to spare. Although agent i has no preference for either one
of these offers, agent i knows that the same may not be true for agent j . For each possible
goal location of agent j , Fig. 3 shows how the score of agent j changes by accepting either
one of these offers. For example, if the goal location of agent j is the bottom left square,
offer Fig. 3a would increase his score by 50 points, while offer Fig. 3b would increase the
score of agent j by 200 points. Without additional information about the goal location of his
trading partner, agent i concludes that agent j is more likely to accept offer Fig. 3b than he
is to accept offer Fig. 3a, since Fig. 3 shows that this would typically yield agent j a higher
score.

By placing himself in the position of his trading partner, a ToM1 agent can also interpret
the offers he receives. Figure 4 shows an example in which agent j offers to trade the black
chip owned by agent i against the gray chip owned by agent j . For each possible goal location,
the figure shows how accepting this offer would change agent j’s score. By placing himself
in the position of agent j , agent i believes that agent j’s goal location is one of the locations
with a positive number. After all, for other locations, agent i would not have made the offer
shown in Fig. 4. Furthermore, agent i considers it unlikely that the goal location of agent j
is one of the locations that show a low number. For these locations, agent i reasons that he
himself would have made a different offer.

4.3 Higher orders of theory of mind agent

Agents that are able to use orders of theory of mind beyond the first order consider the
possibility that other agents take into account that others have beliefs and goals as well.
A higher-order theory of mind agent reasons about the way his offers influence what his
trading partner believes about his goal location. Such an agent may choose to select the
offer that provides his trading partner with as much information as possible about his goal
location. This way, a ToM2 agent can inform his trading partner that he prefers a small piece
of cherry pie over a large piece of chocolate pie, so that his trading partner can take this into
consideration when making an offer. That is, higher orders of theory of mind allow agents to
communicate their interest to their trading partner through the offers they make, and engage
in interest-based negotiation [25].
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Fig. 5 A ToM2 agent i takes into account that his trading partner does not know his goal location. Panels a
and b show two possible offers that agent i could make, along with how this would the score of agent i for
each possible goal location. Agent i can use this information to determine how his offers could change the
beliefs of agent j concerning the goal of agent i

Higher orders of theory of mind also allow agents to manipulate the beliefs of trading
partners of a lower order of theory of mind. For example, a higher-order theory of mind
agent may construct an offer that gives his trading partner an incorrect impression of his
goal location. Such an agent may exaggerate the value of the chips he already possesses and
downplay the value of other chips in order to get a better deal. Whether a higher-order theory
of mind agent decides to reveal his true goal location or attempt to manipulate the beliefs
of his trading partner depends on what the agent believes to result in the highest score for
himself.

As with the ToM1 agent, a higher-order theory of mind agent does not know the extent of
the theory of mind abilities of his trading partner. Instead, a ToMk agent has k +1 hypotheses
about the future behavior of his trading partner. While playing the Colored Trails game, the
ToMk agent continuously updates his beliefs concerning which of these hypotheses best fits
the actual behavior of the trading partner. The details of this belief update procedure are
described in Sect. 5.4.

Example 2 Consider the situation shown in Fig. 2 and suppose that agent i is a ToM2 agent
with goal location G. Using his second-order theory of mind, a ToM2 agent believes that his
trading partner may try to find our the goal location of agent i by interpreting the offers he
makes.

While deciding what offer to make, a ToM2 agent also takes into account how his offer
influences his trading partner’s beliefs concerning his goal location. Figure 5 shows two
offers that ToM2 agent i could make. For both these offers, the figure shows how accepting
the offer would change the score of agent i for each possible goal location. Agent i knows
that a ToM1 trading partner can use this to obtain information about the goal location of agent
i . For example, the offer shown in Fig. 5a excludes five locations as possible goal locations
for agent i . This information would help a ToM1 agent j to construct offers that are mutually
beneficial. In contrast, the offer shown in Fig. 5b only excludes two locations, which would
leave agent j with little information about the goal location of agent i .
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5 Mathematical model of theory of mind

In the previous section, we presented the intuition behind agents negotiating in a Colored
Trails setting using theory of mind. In this section, we discuss the implementation of com-
putational agents that play according to this intuition. The agents described in this section
is inspired by the theory of mind agents we used in [13] to investigate the effectiveness of
theory of mind in competitive settings. This model is extended to allow for generalization
over different stage games, and to allow for sequential games.

In our representation, a Colored Trails game is a tuple CT = 〈N ,D, L , π i
t , π

j
t , D0〉,

where:

– N = {i, j} is the set of agents;
– D is the set of possible distributions of chips;
– L is the set of possible goal locations;
– π i

t , π
j

t : L × D → R are the score functions for agents i and j respectively, such that
π i

t (l, D) denotes the score of agent i at round t when his goal location is l ∈ L and the
chips are distributed according to distribution D ∈ D; and

– D0 ∈ D is the initial distribution of chips.

In addition, each agent i knows his own goal location li from the start of the game, while
agent i does not know the goal location l j of trading partner j . In the setting we describe,
we therefore assume that each agent knows the set of possible offers D, but has incomplete
information about the preferences of his trading partner.

In our representation of the Colored Trails game, we focus on the negotiation aspect and
ignore the task of finding routes between locations. This is reflected in the score functions π i

t

and π
j

t , which specify the maximum score agents i and j can achieve given some distribution
of chips. This means that we assume that agents make no mistakes in finding routes between
locations and that agents do not consider the possibility that their trading partner would make
any mistake in finding these routes. Note that these assumptions do not imply that the agents
have common knowledge about any aspect of the game. Rather, we assume that our theory
of mind agents have no beliefs that contradict a common knowledge about such aspects of
the game.

Over the course of the game, agents alternate in making offers, which results in a sequence
of offers {O0, O1, . . . }. After the initial offer O0 has been made, the agent who received the
last offer Ot decides whether to accept the offer Ot , withdraw from negotiations, or make
an offer Ot+1 of his own. In the model description below, we will show formulas from the
point of view of agent i . Formulas from the point of view of trading partner j are analogous.

In the following subsections, we describe in detail how theory of mind agents play the
Colored Trails game. Sections 5.1, 5.2, and 5.3 describe the decision-making process of a
ToM0 agent, a ToM1 agent, and a ToMk agent (k ≥ 2), respectively. Section 5.4 outlines how
agents learn within the context of a single game, while Sect. 5.5 describes how agents learn
across different games. For notational convenience, we will omit variables from functions if
they can be derived from the context.

5.1 Model of zero-order theory of mind

The ToM0 agent described in Sect. 4.1 does not form explicit beliefs about the mental content
of others. Instead, the ToM0 agent constructs zero-order beliefs b(0) : D → [0, 1] about the
likelihood b(0)(O) that a certain offer O will be accepted by his trading partner. Using these
zero-order beliefs, the ToM0 agent can estimate the value of continuing negotiations by
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making an offer O . That is, the expected value the ToM0 agent assigns to making offer O is

EV 0
i (O, li , b(0)) = b(0)(O) · π i

t (li , O) +
(
1 − b(0)(O)

)
· π i

t (li , D0). (1)

If the ToM0 agent were to choose to continue negotiation, he would therefore randomly select
an offer Ot ∈ D that he assigns the highest expected value. That is, he selects O∗

t such that

O∗
t := arg max

O∈D EV 0
i (O, li , b(0)). (2)

However, making a counteroffer is not the only option available to the ToM0 agent. After the
initial offer of a game, an agent can also accept the previous offer Ot−1 made by his trading
partner. Finally, an agent may also decide to withdraw from negotiations, in which case the
initial distribution becomes final.

The ToM0 agent rationally decides which of the three options outlined above he will take.
That is, the ToM0 agent selects the option that he believes will yield him the highest score,
as described in the ToM0 response function:

ToM0i (Ot−1, li , b(0)) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O∗
t if EV (0)

i (O∗
t , li , b(0)) > π i

t−1(li , D0) and

EV (0)
i (O∗

t ; li , b(0)) > π i
t−1(li , Ot−1)

accept if π i
t−1(li , Ot−1) > π i

t−1(li , D0) and

π i
t−1(li , Ot−1) ≥ EV (0)

i (O∗
t , li , b(0))

withdraw otherwise.

(3)

Equation (3) shows that if the ToM0 agent i believes that offer O∗
t , which he assigns the

highest expected value, will yield him a higher score than either withdrawing or accepting
the offer Ot−1, the agent will reject offer Ot−1 and make counteroffer O∗

t . Alternatively, if
the agent believes that offer O∗

t does not satisfy these conditions, but accepting the offer Ot−1

would give him a higher score than withdrawing, the ToM0 agent accepts the offer Ot−1. In
all other cases, the ToM0 agent withdraws from negotiation.

Note that although the ToM0 agent observes the entire sequence of offers {O0, O1, . . . },
the agent does not explicitly use the entire sequence of offers to make a decision. Instead,
the ToM0 agent decides purely on the basis of his zero-order beliefs b(0), which describe his
beliefs about the future behavior of the trading partner.

5.2 Model of first-order theory of mind

The use of first-order theory of mind allows a ToM1 agent to put himself in the position of his
trading partner to consider an offer from the perspective of his trading partner. To do so, the
ToM1 forms first-order beliefs b(1) : D → [0, 1] that represent what the zero-order beliefs
of the ToM1 agent would have been if he had been in the position of his trading partner.
The ToM1 agent can then attribute these beliefs to his trading partner to obtain a prediction
of future behavior. That is, the ToM1 agent considers the possibility that his trading partner
believes that the probability of the ToM1 agent accepting a given offer O ∈ D is b(1)(O).

A ToM1 agent uses his first-order beliefs to predict his trading partner’s behavior as using
the ToM0 response function described in Eq. (3). Given the goal location l j of his trading
partner, the ToM1 agent calculates the expected value of making offer O ∈ D as
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EV (1)
i (l j , O, li , b(1))

=

⎧
⎪⎨
⎪⎩

π i
t (li , D0) if ToM0 j (O, l j , b(1)) = withdraw,

π i
t (li , O) if ToM0 j (O, l j , b(1)) = accept,

max
{
π i

t+1

(
li , Ô(1)

t

)
, π i

t+1

(
li , D0

)}
otherwise,

(4)

where
Ô(1)

t = ToM0 j (O, l j , b(1)) (5)

is the offer that the ToM1 agent expects his trading partner to make in response to receiving
offer O .

Equation (4) shows that the ToM1 agent looks further ahead into the negotiation process
than the ToM0 agent. The ToM0 agent only forms beliefs about whether or not his trading
partnerwill accept anoffer, theToM1 agent can alsomake aprediction aboutwhat counteroffer
his trading partner could make, and whether the ToM1 agent himself would accept this
counteroffer. Since the game is sequential, this results in the ToM1 agent looking one step
further ahead into the negotiation process.

The sequential nature of the game also means that a player may change his beliefs after
receiving an offer Ot−1, but before deciding whether or not to make a counteroffer Ot . In
our agent model, the ToM1 agent takes this belief update, which will be described in detail
in Sect. 5.4, into account. When deciding on whether to make offer O ∈ D, the ToM1 agent
determines howmaking this offer O would change his zero-order beliefs if he had been in the
position of his trading partner, and makes further calculations using the adjusted first-order
beliefs U (b(1), O) (see Eq. (12)).

Since agents do not know the goal location l j of their trading partner from the start, a
ToM1 agent cannot calculate Eq. (4) directly. Instead, the ToM1 agent forms beliefs about the
goal location of his trading partner in the form of a probability distribution p(1) : L → [0, 1],
so that the ToM1 agent believes that the likelihood of his trading partner having goal location
l ∈ L is p(1)(l).

Although the ToM1 agent is capable of using theory of mind, the ToM1 agent considers
the possibility that his first-order beliefs b(1) may not accurately predict the behavior of his
trading partner. In this case, the ToM1 agent may decide to rely on his zero-order beliefs b(0)

instead. To model the ToM1 agent’s uncertainty concerning the appropriateness of the use
of first-order theory of mind, the ToM1 agent has a confidence variable c1 ∈ [0, 1], which
indicates how much confidence the ToM1 agent places in the predictions of first-order theory
of mind.When deciding on the expected value of making an offer O , the ToM1 agents weighs
the predictions of first-order and zero-order theory of mind accordingly. In summary, a ToM1

agent i calculates the expected value of making a given offer O ∈ D through

EV (1)
i (O, li , b(0), b(1), p(1), c1) = (1 − c1) · EV (0)

i

(
O, li , b(0)

)

+ c1 ·
∑
l∈L

p(1)(l) · EV (1)
i

(
l, O, li , U (b(1), O)

)
. (6)

Given these values, the ToM1 agent randomly selects an offer O∗
t ∈ D that maximizes his

expected value as a suitable counteroffer. Similar to the way the ToM0 agent decides, the
ToM1 agent decides to accept, withdraw, or make a counteroffer based on what he expects
will yield him the highest score.
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ToM1i

(
Ot−1, li , b(0), p(1), b(1)

)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O∗
t if EV (1)

i (O∗
t ) > π i

t−1(li , D0) and

EV (1)
i (O∗

t ) > π i
t−1(li , Ot−1)

accept if π i
t−1(li , Ot−1) > π i

t−1(li , D0) and

π i
t−1(li , Ot−1) ≥ EV (1)

i (O∗
t )

withdraw otherwise.

(7)

First-order theory of mind benefits the ToM1 agent in two ways. Firstly, theory of mind
allows the agent to gain information about the goal location of his trading partner through
the offers he receives. He does so by determining how consistent a possible goal location is
with the offer his trading partner has made (see Sect. 5.4). Secondly, the ToM1 agent takes
into account that making an offer O changes the beliefs and behavior of his trading partner.
This may allow the ToM1 agent to make an offer Ot that he expects his trading partner to
reject, with the intention of causing his trading partner to make an offer Ot+1 that the ToM1

agent is willing to accept.

5.3 Model of higher-order theory of mind

Agents that are able to use orders of theory of mind beyond the first can use this ability to
attempt to manipulate the beliefs of lower orders of theory of mind to obtain an advantage.
For example, a second-order theory of mind agent can use his understanding of first-order
theory of mind agents to create an offer that signals his goal location to the trading partner
as clearly as possible. Alternatively, the ToM2 agent can adjust his offer to give his trading
partner false information about his goal location.

Each additional order of theory of mind allows an agent to consider an additional model
of opponent behavior. These models are constructed analogously to first-order theory of
mind, and include additional beliefs b(k), location beliefs p(k), and a confidence ck in kth-
order theory of mind. Based on the application of kth-order theory of mind, the ToMk agent
formulates the expected value of making an offer O ∈ D, given that his trading partner has
goal location l, as

EV (k)
i (l, O)

=

⎧⎪⎨
⎪⎩

π i
t−1(li , D0) if ToM(k−1) j (O) = withdraw,

π i
t (li , O) if ToM(k−1) j (O) = accept,

max
{
π i

t+1

(
li , Ô(2)

t

)
, π i

t+1(li , D0)
}
otherwise,

(8)

where
Ô(2)

t = ToM1 j (O, l j , b(1)) (9)

is the offer that the ToM2 agent expects his trading partner to make in response to receiving
offer O .

These expected values are then combined with the expected values of lower orders of
theory of mind according to

EV (k)
i (O) = (1 − ck) · EV (k−1)

i (O) + ck ·
∑
l∈L

p(k)(l) · EV (k)
i (l, O)). (10)
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This yields the kth-order theory of mind response function

ToMki (Ot−1) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

O∗
t if EV (k)

i (O∗
t ) > π i

t−1(li , D0) and

EV (k)
i (O∗

t ) > π i
t−1(li , Ot−1)

accept if π i
t−1(li , Ot−1) > π i

t−1(li , D0) and

π i
t−1(li , Ot−1) ≥ EV (k)

i (O∗
t )

withdraw otherwise.

(11)

5.4 Learning from observations

Agents form beliefs about the likelihood that their trading partner will accept a given offer.
During negotiation, agents update these beliefs based on the offers their trading partner
makes. Note that whether or not an agent will accept an offer depends on the specific game
board, the distribution of chips, the agent’s goal location, and the history of offers made
during the negotiation process. However, since our Colored Trails setting spans 524 possible
game boards in addition to possible distributions of initial sets of chips and goal locations, it
is not feasible for a ToM0 agent to form meaningful beliefs that are specific for each possible
game setting, let alone for each possible history of offers. In this section, we therefore present
a way in which ToM0 agents can still generalize the behavior of their trading partner using a
simple learning heuristic.

An agent’s zero-order belief b(0) specifies that the agent believes that the probability that
his trading partner will accept a given offer O ∈ D is b(0)(O). Whenever he receives an offer
Ot−1 from his trading partner, the ToM0 agent updates his beliefs to reflect that he considers
it less likely that his trading partner would accept certain offers. More precisely, the ToM0

agent decreases his belief that his trading partner will accept an offer O when offer O assigns
more chips of some color c to the agent himself than offer Ot−1 does. For example, suppose
that the trading partner makes an offer Ot−1 that assigns 4 blue chips to agent i . Agent i then
decreases his belief that the trading partner will accept any offer that assigns 5 or more blue
chips to agent i himself.

The belief update as a result of receiving an offer Ot−1 from the trading partner is repre-
sented by U (b(0), Ot−1), which is defined as

U (b(0), Ot−1)(O) = (1 − λ)m · b(0)(O), (12)

where m is the number of colors for which the offer O assigns fewer chips to the trading
partner than the offer Ot−1, and λ ∈ [0, 1] is an agent-specific learning speed.

A similar update takes place when the trading partner rejects an offer made by agent i .
When the offer Ot made by agent i is rejected, the agent updates his beliefs to reflect that he
believes it to be less likely that his trading partner will accept an offer O that assigns at least
as many chips of a given color c to the agent as offer Ot does. The belief update as a result
of receiving an offer Ot−1 from the trading partner is represented by U (b(0), Ot−1), which
is defined as

U R(b(0), Ot )(O) = (1 − λ)m′ · b(0)(O), (13)

where m′ is the number of colors for which the offer O assigns at least as many chips to
agent i as the offer Ot , and λ ∈ [0, 1] is an agent-specific learning speed.

Agents that make use of theory of mind also update their beliefs concerning the goal
location of their trading partner in response to receiving an offer Ot−1 from their trading
partner. By putting himself in the position of his trading partner, a ToMk agent believes it to
be impossible that his trading partner has a goal location l ∈ L for which π

j
t−1(l, Ot−1) ≤
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Fig. 6 Example of a Colored Trails game in which agent j offers to trade his gray chip against the black
chip of agent i . Using first-order theory of mind, agent i calculates in what way accepting this offer will affect
the score of agent j , for each possible goal location. The higher the increase in score, the more likely agent i
considers the location to be the goal location of agent j

π
j

t−2(l, D0). For otherwise, this would mean that the trading partner has made an offer that
would yield him a lower score than withdrawing from negotiation. For other locations l ∈ L ,
the agent adjusts his beliefs based on the expected increase in the score of the trading partner
if the offer Ot−1 would be accepted. That is, after observing the offer Ot−1 from his trading
partner, the ToMk agent updates his location beliefs p(k) so that

p(k)(l) :=
⎧⎨
⎩
0 if π

j
t−1(l, Ot−1) ≤ π

j
t−2(l, D0)

β · p(k)(l) · 1+EV (k−1)
i (Ot−1)

1+maxO∈D EV (k−1)
i (O)

otherwise,
(14)

where β is a normalizing constant. This update increases the beliefs assigned to locations
for which the offer Ot−1 made by the trading partner receives a high expected value. These
are offers that are closer to the offer that the ToMk agent would have made himself if he had
been a ToMk−1 agent in the position of his trading partner.

Example 3 Figure 6 shows an example of the process of updating location beliefs for a ToM1

agent. In this example, agent j offers to trade the black chip owned by agent i against the
gray chip owned by agent j . Agent i interprets this offer by calculating the change in score
for agent j if agent i were to accept the offer, for each possible goal location of agent j . In
Fig. 6, these changes in scores are shown on the corresponding locations. For example, if
the goal location of agent j is the tile in the bottom right corner, the score of agent j would
increase by 600 points if agent i were to accept the offer.

Since making an offer decreases the score of each agent by 1 point, agent i only makes
offers that would increase his own score. By putting himself in the position of his trading
partner, agent i therefore believes that agent j also only makes offers that increase the score
of agent j . Agent i considers it impossible for any location with zero or negative score to
be the goal location of his trading partner. That is, when agent i receives offer O , for each
possible location l ∈ L with π

j
t−1(l, O) ≤ π

j
t−2(l, D0), agent i sets p(1)(l) = 0.

For the remaining locations l, agent i determines what offer O ′ he would have made
himself, and compares how this relates to the offer O that his trading partner actually made.
For example, if the goal location of agent j is the bottom left tile, accepting the offer of agent
j would only increase his score by 50. However, for this goal location, agent j could have
made a better offer. If agent j would have offered to exchange a white chip for the black
chip of agent i , he could have increased the score of agent j by 150. As a result, agent i
believes that it is unlikely that the goal location of agent j is the bottom left tile. On the other
hand, agent i considers it very likely that the goal location of his trading partner is one of
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the locations with a number higher than 500, such as the bottom right tile. If agent i were to
accept the offer made by agent j , agent j would be able to reach any of these locations.

At the same time as updating his location beliefs, the ToMk agent also updates his confi-
dence in kth-order theory of mind ck to reflect how well the agent feels the kth-order theory
of mind model fits the behavior of his trading partner. This is achieved through

ck := (1 − λ) · ck + λ ·
∑
l∈L

p(k)(l) · 1 + EV (k)
i (Ot−1)

1 + maxO∈D EV (k)
i (O)

. (15)

Using this update, the agent therefore assigns a higher confidence to orders of theory of
mind that assign a high expected value to the offer Ot−1 made by the agent’s trading partner
compared to the offer that the agent would have selected himself is he had been a ToMk−1

agent in the position of his trading partner. Unlike the way location beliefs are updated,
confidences are updated using adaptive expectations. This is because agents may change the
order of theory of mind at which they reason over the course of a negotiation, while they are
unable to change their goal location.

Many of the belief updates described in this section make use of learning speed parameter
λ. The agent’s learning speed is a fixed parameter that represents the degree to which the
agent adjusts his beliefs in response to behavior of his trading partner. In addition to the order
of theory of mind at which an agent is reasoning, an agent’s learning speed λ also influences
his negotiation strategy. For example, a ToM0 agent with a high learning speed believes that
his trading partner is unwilling to accept any offers other than the one the trading partner
makes himself. Such a ToM0 agent is less likely to make a counteroffer and more likely to
withdraw from negotiations or accept the offer of his trading partner. On the other hand, a
ToM0 agent with learning speed λ = 0 does not adjust his behavior at all. Instead, such an
agent will keep making the same offer until a successful trade is made.

Following [13], theory of mind agents do not attempt to model the learning speed λ of
other agents. Instead, an agent makes use of his own learning speed when updating the beliefs
he assigns to his trading partner. As a result, the beliefs that a theory of mind agent attributes
to his trading partner are generally incorrect, unless both agents have the same learning speed.

5.5 Learning across games

Theory of mind allows agents to view the game from the perspective of their trading partner.
This provides theory of mind agents with a way to generalize the behavior of the trading
partner across the 524 possible game boards (ignoring initial sets of chips). However, ToM0

agents do not have the ability to reason about the goals of the other. Instead, ToM0 agents
reason only about the behavior of their trading partner. In this section, we discuss how a
ToM0 agent can generalize the behavior of the trading partner across different games without
the use of theory of mind. Note that learning discussed in this section determines how the
ToM0 agent constructs his zero-order beliefs at the start of a negotiation. Over the course of
a negotiation, agents perform additional belief updates as described in Sect. 5.4.

In our setting, the ToM0 agent generalizes across games by classifying offers by the
number of chips that are transferred from the agent to his trading partner, and the number of
chips that are transferred from the trading partner to the agent himself. This allows agents
to distinguish, for example, between an offer that trades one red chip for one blue chip and
an offer that trades two red chips for two blue chips. However, across different games, the
agent does not distinguish between an offer that trades one red chip for one blue chip and
an offer that trades one green chip for one yellow chip. Since agents in our setting own an
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initial set of four chips, this generalization causes the ToM0 agent to distinguish 25 classes of
offers. Nevertheless, a separate pilot study indicated that this simple heuristic allowed agents
to make mutually beneficial offers after a short learning period.

At the start of each game, the agent’s zero-order beliefs b(0)(O) about the probability that
the trading partner will accept a given offer O ∈ D is set to the observed frequency with
which offers that transfer the same number of chips from the agent to the trading partner
and the same number of chips from the trading partner to the agent have been accepted by
the trading partner in the past. For example, if a ToM0 agent has made 250 offers in which
two chips were transferred to the trading partner and one chip to the agent, of which 220
have been accepted by the trading partner, the ToM0 agent assigns a probability of 88% that
his trading partner will accept an offer to trade two green chips owned by the agent against
one red chip owned by the trading partner at the start of the game. Over the course of the
negotiation process, this belief can still change, as described in Sect. 5.4.

6 Simulation results

We performed simulations where the theory of mind agents described in Sect. 5 played
the Colored Trails setting described in Sect. 3. Pairs of agents played repeated negotiation
games, where each individual game is played on a different board with different sets of initial
chips and different goal locations. Through the simulations, agents of different orders of
theory of mind are confronted with trading partners with varying preferences and negotiation
strategies. In each new game, agents started by reasoning at the highest order of theory of
mind available to them. For example, a ToM2 agent always started the game by taking into
account the beliefs his trading partner might have about his own beliefs.

To ensure that all agents had an incentive to negotiate to increase their score, games in
which some agent could reach his goal location with the initial set of chips without trading
were excluded from analysis. Additionally, the first 200 games were considered to be a setup
phase for the zero-order beliefs of agents, which were initialized at 1. That is, at the start of
a simulation, an agent believes that any offer will be accepted. During the first 200 games,
agents may learn, for example, that an “offer” that consists of requesting the trading partner’s
full set of chips is unlikely to be accepted. Similarly, higher-order theory of mind agents learn
that their trading partner knows that such offers are unlikely to be accepted. The results from
these 200 training games were not included in analysis.3

The figures in this section show the average change in score as a result of negotiation,
which is calculated as the average difference between an agent’s final score after negotiation
ended and his initial score at the start of negotiation. Although agents never accept an offer
that decrease their score, negative scores are possible when agents take many rounds. In
these cases, the cost of negotiation can outweigh the benefits of a mutually beneficial trade.
Negotiation scores were averaged over 10 runs of 1,000 consecutive Colored Trails games,
each on a different game board. Although negotiations could take infinitely long in theory,
games that continued for more than 100 rounds of offers were considered to be unsuccessful.
In this case, the initial situation became final, and both agents incurred the cost of 100 rounds
of play. In our model, agents were unable to reason about this limit, and negotiated as if this
limit did not exist. With one exception (see Sect. 6.1), the average length of a negotiation
was at most 15 rounds. The limit of 100 rounds of play therefore did not influence the length
of the negotiation in general.

3 Increasing the length of the training phase did not alter our results.

123



270 Auton Agent Multi-Agent Syst (2017) 31:250–287

Although the agents alternate in making offers, so that both agents make offers to their
trading partner, previous research into negotiation suggests that the opening bid of a nego-
tiation can serve as an anchor for the entire negotiation process, making the first bid of a
game especially influential [61,63,69]. Because of this, we differentiate between results for
initiators, who make the first offer in every game, and responders.

In the following subsections, we separate results for the competitive and cooperative
aspects of negotiation in Colored Trails. In Sect. 6.1, we present the individual performance
of agents, which shows how well agents compete. Section 6.2 focuses on the cooperative
element of negotiation, and describes the effect of theory of mind on the combined score
of the agents in the Colored Trails setting. We conclude each of these sections with a short
summary of the results.

6.1 Individual performance results

In this section, we describe the individual performance of theory of mind agents when negoti-
ating in Colored Trails. By comparing how large a piece of pie the agents involved in Colored
Trails end up with, we can determine how theory of mind influences the competitive abili-
ties of agents. Throughout this section, we present graphs that show the scores of agents of
various orders of theory of mind. The standard error of these agent scores was never higher
than 9.12. As a result, a difference in score of at least 24 points is significant at α = 0.01.

Figure 7 shows the average negotiation scores of a ToM0 initiator and a ToM0 responder
negotiating with each other, as a function of the learning speeds of the two agents. In these
figures, a lighter color indicates a higher score. As a visual aid, the plane of zero performance
appears as a semi-transparent plane in these figures. Figure 7 shows that even though ToM0

agents are unable to reason explicitly about the goals and desires of their trading partner,
they are often able to increase their score through negotiation. The ToM0 agents only fail to
reach a positive negotiation score when both agents have learning speed λ = 0. An agent
with zero learning speed does not adjust his behavior in response to his trading partner, but
repeats the same offer until his trading partner makes an acceptable offer. That is, an agent

Fig. 7 Average negotiation score of a ToMi initiator (a) and a ToM j responder (b) negotiating with each other
as a function of their respective learning speeds
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Fig. 8 Average negotiation score of a ToMi initiator (a) and a ToM j responder (b) negotiating with each other
as a function of their respective learning speeds

with zero learning speed expects his trading partner to adjust to his position, while the agent
is unwilling to offer any alternatives himself. When both ToM0 agents follow this strategy
and neither is willing to accept the initial offer of their trading partner, they will be unable to
reach an agreement and only carry the burden of a failed negotiation.

Despite the fact thatToM0 agentswith a lower learning speed tend to engage in negotiations
that take more turns, the results in Fig. 7 also show that for ToM0 agents, negotiation score
increases as their own learning speed decreases, unless the trading partner has learning speed
λ = 0. This means that there is an evolutionary pressure on ToM0 agents to decrease their
learning speed, and adjust the offers theymake as slowly as possible. However, this eventually
results in the worst possible outcome in which negotiation fails.

Negotiation failure does not occurwhen aToM0 initiator negotiateswith aToM1 responder.
Figure 8 shows that for every combination of learning speeds of the ToM0 initiator and the
ToM1 responder, both agents receive a positive score on average. However, the evolutionary
pressure to reduce learning speed still exists for the ToM0 initiator. A ToM0 initiator receives
the largest piece of pie when his learning speed is λ = 0, in which case he leaves only a small
piece of pie for the ToM1 responder. This means that although the presence of the ToM1

responder prevents negotiation failure, the ToM0 initiator benefits most.
Figure 9 shows a similar pattern when the roles are reversed, so that a ToM1 initiator and

a ToM0 responder play Colored Trails. The ToM0 responder performs best when his learning
speed is zero, while the ToM1 initiator prefers a higher learning speed. This allows the agents
to negotiate successfully, with the ToM0 responder receiving the most benefit. The presence
of a ToM1 agent yields a larger pie for the negotiating agents to share, but it is the ToM0

agent that receives the largest piece.
Figure 9 also shows that when the ToM1 initiator has a learning speed λ ≤ 0.4, the score of

both agents is zero. In these cases, the ToM1 initiator withdraws from negotiation instead of
making an initial offer. The reason for this is that the ToM1 agent attributes his own learning
speed to his trading partner. A ToM1 agent with zero learning speed predicts that his trading
partner will keep repeating the same offer until the ToM1 agent makes an acceptable offer.
This causes the ToM1 agent to believe that the likelihood of finding a mutually beneficial
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Fig. 9 Average negotiation score of a ToMi initiator (a) and a ToM j responder (b) negotiating with each other
as a function of their respective learning speeds

Fig. 10 Average negotiation score of a ToMi initiator (a) and a ToM j responder (b) negotiating with each
other as a function of their respective learning speeds

trade is not worth the cost of negotiating. As a result, a ToM1 initiator with learning speed
λ = 0 withdraws from negotiation before making the initial offer.

Figure 10 shows the negotiation scores of a ToM1 initiator and a ToM1 responder negoti-
ating in Colored Trails. The figures show symmetry around the line of equal learning speeds
that indicates that the ToM1 agent with the lower learning speed generally receives the largest
piece of the pie. A ToM1 agent with a higher learning speed attributes this learning speed
to his trading partner and expects that his offers will influence the behavior of his trading
partner more strongly. This also leads a ToM1 agent to believe that his trading partner is
quick to conclude that a negotiation will be unsuccessful. To prevent his trading partner from
withdrawing from negotiations, the ToM1 agent makes offers that he believes to be more
beneficial for his trading partner at the expense of his own score. This puts evolutionary
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Fig. 11 Average negotiation score of a ToMi initiator (a) and a ToM j responder (b) negotiating with each
other as a function of their respective learning speeds

Fig. 12 Average negotiation score of a ToMi initiator (a) and a ToM j responder (b) negotiating with each
other as a function of their respective learning speeds

pressure on ToM1 agents to lower their learning speed. However, since ToM1 agents perform
poorly when their learning speed falls below λ = 0.2, the evolutionary pressure on ToM1

agents is to have learning speeds close to λ = 0.2.
When aToM2 agent negotiateswith aToM0 agent, the results are visually indistinguishable

from the situation in which a ToM1 agent negotiates with a ToM0 agent. That is, when playing
against a ToM0 agent, the ability tomake use of second-order theory of mind does not provide
an agent with benefits additional to the use of first-order theory of mind. Note, however, that
the ability tomake use of second-order theory ofmind is likely to require additional resources.

Figures 11, 12 show the performance of ToM1 agents and ToM2 agents that negotiate with
each other. The graphs show that the ToM2 agent typically has a higher score than his ToM1
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Fig. 13 Average negotiation score of a ToMi initiator (a) and a ToM j responder (b) negotiating with each
other as a function of their respective learning speeds

trading partner, irrespective of the roles and learning speeds of the agents. That is, the ToM2

agent is highly effective in obtaining a larger piece of the pie than his trading partner.
Note that since agents use theory of mind by attributing their own beliefs to their trading

partner, a theory of mind agent only has an accurate model of his trading partner’s mental
content when their learning speeds are the same. For a ToM1 agent, Figs. 8 and 9 indeed
show a high score along the line of equal learning speeds. Interestingly, however, the same is
not true for the ToM2 agents. Figures 11 and 12 show that there is no increased score for the
ToM2 agent along the line of equal learning speeds. That is, a ToM2 agent benefits from the
ability to attribute first-order theory of mind to his trading partner, even if the agent’s model
of his trading partner’s beliefs is inaccurate.

The negotiation scores of two ToM2 agents negotiating with each other are shown in
Fig. 13. Interestingly, the performance of the ToM2 initiator in Fig. 13a is quite similar to the
performance of the ToM2 responder shown in Fig. 13b. Whereas results from lower orders
of theory of mind show many opportunities to divide the pie in one large piece and one small
piece, ToM2 agents generally divide the pie in two pieces that are similar in size. As a result,
the graphs in Fig. 13 show little variation in color. Nevertheless, ToM2 agents that have a
positive learning speed that is close to zero tend to do slightly better than ToM2 agents that
have a different learning speed.

In our agent model, a theory of mind agent always starts a negotiation by reasoning at the
highest order of theory of mind available to him. However, an agent may choose to play as
if he were an agent of a lower order of theory of mind. This decision is based on the agent’s
confidence ck in the use of kth-order theory of mind. Analysis of our simulation runs shows
that agents typically lose confidence in the use of theory of mind in the beginning of the
negotiation. A theory of mind agent believes that the behavior of his trading partner depends
on his goal location. However, agents do not know the goal location of their trading partners
at the start of a negotiation. As a result, a theory of mind agent loses confidence in the use
of theory of mind. Over the course of negotiation, however, the agent obtains information
about his trading partner’s goal location and regains confidence in the use of theory of mind.
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In summary, the results in this section show that the ability to make use of theory of
mind can help individuals to negotiate better, although they do not show the same pattern as
found for competitive games [13] as predicted by hypothesis H1 in Sect. 3. Even though the
presence of ToM1 agents prevent negotiation failure in our simulations, the ToM1 agent does
not have a direct competitive advantage over a ToM0 agent. Instead, the ToM1 agent suffers
the cost for achieving a cooperative solution, which leaves the ToM0 agent with the larger
piece of pie.

The ToM2 agent, on the other hand, does outperform the ToM1 agent as expected by
hypothesis H1. Our results show that the ToM2 agent can negotiate successfully with a ToM1

trading partner, resulting in a pie that includes a large piece for the ToM2 agent. When two
ToM2 agents negotiate with each other, the resulting pie is divided into pieces of a fairly
similar size. In the next subsection, we take a closer look at the cooperative abilities of these
theory of mind agents.

6.2 Social welfare results

In the previous section, we compared the individual competitive performance of agents of
various orders of theory of mind negotiating in Colored Trails. In this section, we show how
theory of mind affects the cooperative ability of agents, by looking at the social welfare that
theory of mind agents achieve through negotiation, where social welfare is measured by the
sum of the scores of the initiator and the responder. Figure 14 shows the increase in social
welfare for different combinations of theory of mind initiators and responders.

Figure 14a shows that ToM0 agents can cooperate surprisingly well. In the best-case
scenario, both the ToM0 initiator and the ToM0 responder have a learning speed of around
λ = 0.2. In this case, negotiators obtain an average social welfare of over 400 points in 4.4
turns of negotiation. However, due to the competitive element of Colored Trails described
in Sect. 6.1, cooperation among ToM0 agents is not stable. The ToM0 agents experience an
evolutionary pressure towards zero learning speed, which can eventually lead to negotiation
failure.

Although Sect. 6.1 shows that the presence of a ToM1 agent can ensure that negotiation
failure does not occur, Fig. 14 shows that this does not imply a higher social welfare. Fig-
ure 14b, c do not show an improvement over the performance of ToM0 agents shown in
Fig. 14a.

Figure 14d shows thatwhen twoToM1 agents playColoredTrails together, they achieve the
highest social welfare when both agents have a learning speed as high as possible. However,
the competitive element in Colored Trails puts an evolutionary pressure on ToM1 agents to
lower their learning speed to a value of λ = 0.2. Although this does not lead to a breakdown
of negotiation like in the case of ToM0 agents, social welfare suffers from the lower learning
speed of ToM1 agents. The individual desire of ToM1 agents to obtain as large a piece of pie
as possible results in a smaller pie to share.

Although the increase in social welfare depends greatly on the learning speed of ToM0

agents and ToM1 agents, Fig. 14e, f show that the learning speed of a ToM2 agent has little
effect on social welfare when a ToM2 agent and a ToM1 agent negotiate in Colored Trails.
Instead, how negotiation affects social welfare in these cases is determined mostly by the
learning speed of the ToM1 agent.

When two ToM2 agents negotiate, the highest social welfare is achieved when both agents
have a low but positive learning speed, as shown in Fig. 15. Note that this learning speed
also yields them the highest score individually. That is, when two ToM2 agents negotiate, the
learning speed that would yield an agent the largest piece of pie is also the learning speed
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Fig. 14 Average combined negotiation score of theory ofmind agents playingColoredTrails. a ToM0 initiator,
ToM0 responder. b ToM0 initiator, ToM1 responder. c ToM1 initiator, ToM0 responder. d ToM1 initiator, ToM1
responder. e ToM1 initiator, ToM2 responder. f ToM2 initiator, ToM1 responder
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Fig. 15 Average combined negotiation score of two ToM2 agents playing Colored Trails

that would yield the largest pie to share. However, note that the highest social welfare that the
ToM2 agents achieve is not as high as the highest socialwelfare achieved byToM0 agents. This
decrease in social welfare is partially caused by an increase in negotiation length. Especially
at the start of a negotiation, a ToM2 agent makes offers that he expects to be rejected by his
trading partner. Rather, the ToM2 agent expects that making the offer results in a counteroffer
from the trading partner that the ToM2 agent is willing to accept.

In summary, contrary to hypothesis H2 formulated in Sect. 3, our simulation results do
not provide any evidence to support that theory of mind directly increases social welfare.
However, we find that theory of mind can help to stabilize negotiation. While ToM0 agents
have the potential to negotiate a high social welfare, natural selectionwould favor those ToM0

agents that increase their individual score at the expense of social welfare. These ToM0 agents
therefore face a social dilemma similar to the prisoner’s dilemma, which leads ToM0 agents
to a situation in which negotiation breaks down.

A ToM1 agent is able to avoid complete breakdown of negotiation by following a strategy
that also takes the goals of the trading partner into account. However, ToM1 agents face a
similar social dilemma in which the individual desire to obtain as large a piece of pie as
possible leads to a smaller pie to share. Interestingly, ToM2 agents do not face the same
social dilemma. When a ToM2 agent negotiates with a ToM1 or ToM2 trading partner, the
individual goal to obtain as large a piece of pie as possible leads to a pie for which the total
size is as large as possible as well. In this sense, higher-order theory of mind can benefit
social welfare in negotiation settings such as Colored Trails.

7 Human participant experiments

In the previous sections, we showed how the use of higher orders of theory of mind can
help to stabilize negotiation using simulations with computational agents. Since humans are
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known to engage in higher-order theory of mind reasoning, participants may take advantage
of the benefits of higher-order theory of mind reasoning when negotiating with others. In this
section, we test this prediction in experiments with human participants.4

Note that these experiments are not meant to fit the model of computational theory of
mind agents to participant data. Rather, by letting participants play against computational
agents, we aim to determine to what extent participants make use of theory of mind in these
negotiation games. Since our theory of mind agents estimate the level of sophistication of
their trading partner, we can use these computational agents to determine to what extent
participant behavior is consistent with higher-order theory of mind reasoning. Specifically,
by observing the actions of a participant, a ToM3 agent determines whether it is more likely
that the participant is using zero-order, first-order, or second-order theory of mind reasoning.
In addition, by varying the level of sophistication of the computational agent, we can show
whether participants adjust their level of theory of mind reasoning in response to the behavior
of their trading partner.

The remainder of this section is divided as follows. Section 7.1 describes the details of
the experimental setup. The results of this analysis are presented in Sect. 7.2.

7.1 Experimental setup

7.1.1 Participants

Twenty-seven students (10 female) of the University of Groningen participated in this study.
All participants were informed that after the conclusion of the study, the three participants
with the highest score in the negotiation game would receivee15,e10, ande5, respectively.
Each participant gave informed consent prior to admission into the study.

7.1.2 Materials

Human participants played a simplified variation of the computational agent simulation
experiment of Sect. 6. Instead of the 1,200 negotiations that computational agents played,
participants played 24 different negotiation games, each on a different game board. To further
simplify the setting for human participants, the 1 point penalty per round of negotiation was
removed. Instead, each game was restricted to six rounds of negotiation. That is, once six
offers had been made in the same negotiation game, players could no longer choose to make
a counteroffer, and were forced to either accept the offer of their trading partner or withdraw
from negotiation.

To ensure that these games would allow us to distinguish between different orders of
theory of mind reasoning of participants, games were selected for this experiment according
to the following conditions:

– The participant’s goal could be reached with the eight chips in the game;
– Simulations with computational agents predicted different outcomes for trading partners

of different orders of theory of mind; and
– Simulations with computational agents predicted that the game would last at least two

turns and at most six turns.

These 24gameswere divided into three blocks of eight games each.Eachblockwas associated
with a level of theory of mind reasoning of the computational trading partner so that each

4 The experiment was set up and performed by Eveline Broers.
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participant played eight negotiation games with a ToM0 trading partner, a ToM1 trading
partner, and a ToM2 trading partner each.

7.1.3 Design and procedure

Because colors played a significant role in the Colored Trails games, participants were
tested on colorblindness before the start of the experiment. All participants passed this col-
orblindness test.5 The Colored Trails experiment consisted of a familiarization phase and
an experimental phase. At the start of the familiarization phase, participants were asked to
imagine themselves as an attorney for a major corporation. In this function, they would be
involved in a number of negotiations with different clients. Participants were told that their
trading partner was Alex, a computer player that would always react on their offer as quickly
as possible in a way it believed would maximize its own score. To ensure understanding of
the Colored Trails game, participants answered a few questions about the rules, scoring, and
movements on the game board. Participants answered these questions correctly.

In the experimental phase, participants played three blocks of eight games each. In each
block, the participant negotiated with either a ToM0, a ToM1, or a ToM2 agent. The order in
which participants encountered these different trading partners was counterbalanced across
participants. Although participants were informed that they would face different clients, they
were not told that level of reasoning of the trading partner would change over the course of the
experiment. At the start of the experiment, it was randomly decidedwhether the participant or
the computational agent would make the initial offer of the first game. In subsequent games,
participant and agent alternated in the role of initiator.

Participants were allowed 60 seconds to decide on their next action. During each round,
the remaining decision time was presented to participants by means of a countdown timer.
If a participant had not made a decision within 60 seconds, the game continued without an
offer being made, and the computational agent took its turn.

The zero-order beliefs of theory of mind agents were initialized by playing 200 randomly
generated Colored Trails games against a computational ToM0 agent. At the start of each
game, the agent’s beliefs were reset to this initial state. This generic initial state of the
computational agent’s beliefs allowed us to compare the performance of participants more
easily.Additionally, theory ofmind agents started every game reasoning at the highest order of
theory ofmind available to them.Thismeans that although computational agents learned from
a participant’s offers within a single game and adjusted their behavior accordingly, agents
did not exhibit any learning across games. As a result, agents were prevented from adapting
to specific participants, and every participant faced the same agent in every scenario. This
is consistent with our cover story, in which participants were told that they would negotiate
with different clients.

After the Colored Trails games, participants answered a short questionnaire about the
perceived difficulty of the task, the behavior of their trading partner, and the participant’s
reasoning strategies. In addition, participants took a test for their interpersonal reactivity
index [11].

5 Before the start of the Colored Trails experiments, participants also played several Marble Drop games
[47]. Participant performance on these Marble Drop games was not correlated with their performance on the
Colored Trails games.
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Fig. 16 Increase in score as a result of negotiation in the Colored Trails game for both the human participant
and the computational trading partner, when negotiating with a ToM0 agent (red circles), a ToM1 agent
(green triangle), and a ToM2 agent (blue square). The solid line indicates Pareto optimal outcomes. Dashed
lines indicate the score participants and computational agents would achieve if they were to withdraw from
negotiation in every game (Color figure online)

7.2 Results

Figure 16 shows the outcomes of the Colored Trails game. For each participant, the figure
shows the increase in score as a result of negotiation in the Colored Trails game of both
the participant and the computational trading partner, when playing against a ToM0 agent
(red circles), a ToM1 agent (green triangles), and a ToM2 agent (blue squares). Dashed lines
indicate the zero performance line, which is the score that a player would have received
if every game of the block had ended with withdrawal from negotiation. A score below or
to the left of the dashed line indicates that a player has decreased his score as a result of
negotiation. As Fig. 16 shows, only once a participant received a negative score in one of the
blocks. Computational agents never accepted an offer that would have reduced their score.

The solid line in Fig. 16 shows the boundary of Pareto efficient outcomes. This boundary
shows those outcomes for which neither the participant nor the computational agent could
have received a higher score without a decrease in the score of the other player. Note that
since chips aremore valuable to a player who can use them tomove closer to his goal location,
the Pareto boundary shows some discontinuities. The distance of a data point to the Pareto
boundary gives an impression of howwell participants and computational agents played Col-
ored Trails. Figure 16 shows that participants and computational agents generally negotiated
mutually beneficial solutions, while neither player systematically exploited the other. Addi-
tionally, on average, the blue squares in Fig. 16 are closer to the Pareto boundary, while green
triangles are farther away. This suggests that when participants negotiate with ToM2 agents,
they tend to negotiate better outcomes, while negotiations between participants and ToM1

agents are typically less successful. The experimental data show that when negotiating with
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Fig. 17 Estimated similarity of participant offers to the offers of a ToM0 agent (red circles), a ToM1 agent
(green triangles), and a ToM2 agent (blue squares) in each of the three blocks, as diagnosed by a ToM3 agent.
Brackets indicate one standard error (Color figure online)

ToM0 agents, participant scores are 60 points higher than agent scores (W = 430, p < 0.01).
However, when pairedwith aToM1 agent, participants score 50 points lower than their trading
partner (W = 165, p < 0.02). Interestingly, the scores of ToM2 agents are not significantly
different to that of their human trading partners (W = 292.5, ns).

Our theory of mind agents allow us to estimate to what extent participants make use of the-
ory of mind while playing Colored Trails. We use a ToM3 ‘spectator’ agent that observes the
offers of a participant and adjusts his confidences ck in kth-order theory of mind accordingly.
These confidences ck give insight in whether the behavior of participants is more indicative
of zero-order, first-order, or second-order theory of mind reasoning.

For each of the three blocks, Fig. 17 shows how similar participant offers were to offers of
ToM0, ToM1, and ToM2 agents, as judged by the ToM3 spectator agent. Red circles indicate
the average similarity of participant offers to zero-order theory of mind reasoning, green
triangles indicate the similarity to first-order theory of mind reasoning, and blue squares
show the similarity to second-order theory ofmind reasoning. Interestingly, Fig. 17 shows that
participant offers are more similar to first-order and second-order theory of mind reasoning
than they are to zero-order theory of mind reasoning.

Figure 17 also shows that the similarity ratings of participant offers vary depending on
the order of theory of mind of the computer trading partner. Although similarity ratings for
zero-order and first-order theory of mind reasoning show no variation across different levels
of sophistication of the trading partner (X2

(2) = 0.52, ns, and X2
(2) = 2.67, ns, respectively),

participant offers were significantly more similar to second-order theory of mind reasoning
when they were facing a ToM2 trading partner (X2

(2) = 24.89, p < 0.001).
In addition to the theory of mind level of the computational agent, the identity of the

initiator influenced negotiation outcomes in our setting. The opening bid of a negotiation
can serve as an anchor for the entire negotiation process [61,69], making the first offer
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particularly influential in the negotiation process. In our experiment, both the participant and
the computational agent ended up with an extra 15 points on average after negotiation when
the computational agent made the initial offer rather than when the human participant was
the first to propose a trade. The only exception to this rule was that participants negotiating
with a ToM2 agent ended up with a higher score when they made the initial offer themselves.
This effect can be explained by the way agents of different orders of theory of mind construct
their offers. Both ToM0 and ToM1 agents make offers that they believe will be accepted by
their trading partner. In contrast, ToM2 agents tend to make offers to change the beliefs and
the behavior of their trading partner. As a result, initial offers made by ToM0 and ToM1

agents are typically more favorable to their trading partner than those made by ToM2 agents.
Similarly, when participants reasoned more like ToM2 agents, their initial offers were more
favorable to themselves than to their trading partner.

In conclusion, our experiments show that human participants make offers that are more
consistent with second-order theory of mind reasoning when their trading partner is capable
of second-order theory of mind as well. Interestingly, while participants knew that they
would negotiate with a number of different trading partners, they were unaware that these
trading partners differed in their theory of mind abilities. That is, the behavior of higher-order
theory of mind agents apparently encouraged participants to make use of higher-order theory
of mind as well within a few rounds of play. The results of these experiments with human
participants confirm that computational agents can benefit from the use of higher-order theory
of mind reasoning. More importantly, these results show that human participants can also
take advantage of these benefits.

8 Discussion and conclusion

We have investigated the claim that the human ability for higher-order theory of mind may
have arisen because of the existence ofmixed-motive settings inwhich the use of higher-order
theory of mind presents individuals with an evolutionary advantage [71]. For that purpose,
we have simulated interactions between computational agents to show how higher orders of
theory ofmind can help in obtaining better outcomes in negotiation. In an experiment inwhich
human participants interact with these computational agents, we have also shown that humans
indeed take advantage of the benefits of higher-order theory ofmind reasoning in negotiations.

We investigated a particular mixed-motive setting known as Colored Trails [28,45,70],
which serves as a prototypical multi-issue bargaining situation in which a wide variety of
negotiation scenarios can be modeled. In this setting, we let agents of various orders of
theory of mind alternate in offering a redistribution of chips under incomplete information
about the preferences of their trading partner. In our agent model, a computational agent
makes use of theory of mind by taking the position of his trading partner and calculating
what his own actions would have been in that position. This approach differs from models
of belief hierarchies (e.g., see [35–37]), in which a first-order theory of mind agent defines
a probability distribution over all possible zero-order beliefs of his trading partner. Belief
hierarchies provide a more general model of theory of mind abilities, but they also assume
that a first-order theory of mind agent has an accurate model of any zero-order theory of mind
agent. Our approach shows that agents can benefit from the use of higher-order theory of
mind, even if they do not have such an accurate model. That is, the ability of theory of mind
can emerge even if it does not provide a completely accurate model of the mental content of
others.
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We found that under the right conditions, agents without any theory of mind abilities could
successfully negotiate a mutually beneficial trade in Colored Trails. However, these agents
experience an evolutionary pressure to increase their own score at the expense of their trading
partner. Through natural selection, this eventually leads to a situation in which all negotiation
fails. For zero-order theory of mind agents, negotiation in Colored Trails is similar to the
prisoner’s dilemma, where the competitive aspect of getting as much of the pie as possible
overshadows the cooperative aspect of negotiation to the point where there no longer is any
pie to share.

By reasoning explicitly about the goals of the trading partner, first-order theory of mind
agents prevent a complete breakdown in negotiation. However, while there are purely com-
petitive settings in which first-order theory of mind agents outperform zero-order theory of
mind agents [13,18,75], we find that the same is not true in our mixed-motive setting. The
reason for this difference is that in strictly competitive situations, an agent that increases his
own score does so by decreasing the score of his opponent. In a mixed-motive situation, an
agent that increases his own score may increase the score of his trading partner as well. In
Colored Trails, the first-order theory of mind agent increases his own score by preventing
negotiation failure. However, this increases the score of a zero-order theory of mind trading
partner even more. As a result, the zero-order theory of mind agent obtains a larger piece of
the pie. Still, from the perspective of the first-order theory of mind agent, obtaining a small
piece of pie is preferable to obtaining no pie at all. In future work, it would be interesting
to determine whether the same holds in games with a different balance of cooperation and
competition, such as in revelation games [53].

Although first-order theory of mind has a limited effectiveness in the negotiation setting
we describe (cf. [59]), second-order theory of mind benefits agents greatly. When a second-
order theory of mind agent negotiates with another agent capable of theory of mind, the
second-order theory of mind agent typically receives the larger share of the pie. Additionally,
neither agent has an incentive to deviate from the outcome that maximizes total pie size. That
is, second-order theory of mind provides agents with a strategy that balances cooperative
and competitive goals to the point where agents that succeed in negotiating the largest total
pie possible could not have received a larger piece of pie for themselves by changing their
behavior. Interestingly, this cooperative solution is achieved purely through calculated self-
ishness. Second-order theory of mind agents behave cooperatively, not because they have an
innate sense of fairness or because they derive utility from the score of their trading partner,
but because they believe that it will result in a better outcome for themselves.

Our agent simulation results show that in mixed-motive settings such as negotiations,
agents can benefit from the use of higher-order theory of mind. In our experiments with
human participants, negotiations with ToM2 agents indeed resulted in outcomes that were
closer to the Pareto optimal boundary. In addition, both players ended up with a higher
score on average when the theory of mind agent made the initial offer than when the human
participant made the opening bid.

Surprisingly, negotiating with a ToM2 agent apparently encouraged participants to make
use of second-order theory of mind as well. Moreover, participants adjusted their behavior
relatively quickly. In the literature, experiments with adults typically show that individuals
reason at low orders of theory ofmind, and are slow to adjust to an opponent that reasons using
theory of mind [8,34,38,75]. However, in our Colored Trails setting, participants exhibited
second-order theory of mind within a few games. These results suggest that theory of mind
agents can encourage the use of higher-order theory of mind in human participants and may
play a useful role in training people to negotiate better outcomes.
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