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Abstract The Berlin Fat Mouse Inbred (BFMI) line har-

bors a major recessive gene defect on chromosome 3

(jobes1) leading to juvenile obesity and metabolic syn-

drome. The present study aimed at the identification of

metabolites that might be linked to recessively acting genes

in the obesity locus. Firstly, serum metabolites were ana-

lyzed between obese BFMI and lean B6 and BFMI 9 B6 F1

mice to identify metabolites that are different. In a second

step, a metabolite–protein network analysis was performed

linking metabolites typical for BFMI mice with genes of the

jobes1 region. The levels of 22 diacyl-phosphatidylcholines

(PC aa), two lyso-PC and three carnitines were found to be

significantly lower in obese mice compared with lean mice,

while serine, glycine, arginine and hydroxysphingomyelin

were higher for the same comparison. The network analysis

identified PC aa C42:1 as functionally linked with the genes

Ccna2 and Trpc3 via the enzymes choline kinase alpha and

phospholipase A2 group 1B (PLA2G1B), respectively.

Gene expression analysis revealed elevated Ccna2 expres-

sion in adipose tissue of BFMI mice. Furthermore, unique

mutations were found in the Ccna2 promoter of BFMI mice

which are located in binding sites for transcription factors or

micro RNAs and could cause differential Ccna2 mRNA

levels between BFMI and B6 mice. Increased expression of

Ccna2 was consistent with higher mitotic activity of adi-

pose tissue in BFMI mice. Therefore, we suggest a higher

demand for PC necessary for adipose tissue growth and

remodeling. This study highlights the relationship between

metabolite profiles and the underlying genetics of obesity in

the BFMI line.
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1 Introduction

Obesity results from a sedentary lifestyle with malnutrition

and low physical activity and is a risk factor for the

development of the metabolic syndrome. The increasing

number of obese humans correlates with the incidence of

diabetes mellitus and coronary heart diseases (Kopelman

2000). Therefore, biomarkers for the diagnosis of meta-

bolic dysfunctions would be desirable to initiate prevention

or therapeutic programs early in life. A new approach for

biomarker identification is the metabolomics (Shaham

et al. 2008; Shah et al. 2010; Wang-Sattler et al. 2012).

As an emerging technology, metabolic profiling com-

prises the identification and quantification of molecules

with a small molecular weight in biological fluids (Nich-

olson et al. 1999). Metabolites are influenced by factors

such as age, sex and diet but also diseases such as diabetes

(Williams et al. 2005; Lutz et al. 2006; Kim et al. 2011;

Mittelstrass et al. 2011; Yu et al. 2012; Wang-Sattler et al.

2012). In mice, studies suggested metabolic profiling to be

a surrogate for detecting dietary-induced insulin resistance

or diabetes (Shearer et al. 2008). For example, previously,

N-acetyl-L-leucine was identified as a potential biomarker

for diabetes (Tsutsui et al. 2011). In humans, metabolic

profiling was used to find alteration of plasma lipids to

differentiate between healthy and diabetic subjects (Wang

et al. 2005). In addition, three lyso-phosphatidylcholines

(lysoPC) were reported as potential biomarkers for over-

weight in humans (Kim et al. 2010). Some studies asso-

ciated metabolomics and transcriptomics to uncover the

relationship between metabolites and gene expressions in

different species (Askenazi et al. 2003; Bono et al. 2003;

Urbanczyk-Wochniak et al. 2003; Hirai et al. 2004). Albeit

several epidemiological studies and genome-wide associ-

ation studies have repeatedly demonstrated that the

development of obesity also depends on the genetic pre-

dispositions (Stunkard et al. 1986; Allison et al. 1996;

Barsh et al. 2000; Speliotes et al. 2010), most metabolomic

studies have not considered the underlying genetics.

Genetically well-defined mouse inbred models for obesity

can contribute to identify metabolic markers for obesity and

to link them to genetic determinants. We examined the

Berlin Fat Mouse Inbred (BFMI) line which develops juve-

nile obesity (Wagener et al. 2006). Young BFMI mice are

hyperphagic and develop the metabolic syndrome with

impaired insulin sensitivity which was more pronounced on

a high fat diet (HFD), and high serum triglyceride levels

(Meyer et al. 2009; Hantschel et al. 2011). A region on

chromosome 3, named jObes1, showed strong recessive

gene effects on the obesity phenotype in a linkage study in

the cross BFMI 9 C57BL/6NCrl (B6) (Neuschl et al. 2010).

The aim of the present study was the identification of

candidate genes which are responsible for metabolite

profiles associated with obesity in the obese BFMI mouse

model. We have analyzed metabolites in BFMI mice in

comparison with lean B6 mice and the F1 offspring of the

cross BFMI 9 B6 which are lean as well due to the

recessive jobes1 effect. A metabolite–protein network

analysis was performed connecting significantly differen-

tially regulated metabolites with candidate genes for

obesity of the jObes1 region on mouse chromosome 3.

2 Materials and methods

2.1 Animals and diets

In this study we used the lines BFMI860/Hber (BFMI) and

C57BL/6NCrl (B6) and F1 individuals generated by

crossing BFMI and B6 mice. A detailed description of the

breeding history of the BFMI line is outlined in Wagener

et al. (2006). In brief, the BFMI line was generated from

the outbred population Berlin Fat Mouse (BFM). Founders

of BFM mice were originally purchased from pet shops and

subsequently selected first for low protein content, second

for low body mass and high fat content and then for high

fatness for 58 generations before inbreeding. As no control

line of the selection experiment exists, we used B6 mice of

the substrain C57BL6/NCrl as lean controls (Charles River

Laboratories, Sulzfeld, Germany) which were also used to

map genetic loci affecting obesity in the cross BFMI 9 B6

(Neuschl et al. 2010). Mice were reproduced in our animal

facility at the Humboldt-Universität zu Berlin. Mice were

kept at room temperature (22–24 �C) with a light dark

cycle of 12 h. After weaning at the age of 3 weeks, 4–5

mice of each line (BFMI, B6 and F1) and of each sex were

randomly chosen and placed on either a standard mainte-

nance diet (SMD) containing 12.8 MJ/kg metabolizable

energy with 9 % of its energy from fat, 33 % from protein

content and 58 % from carbohydrates (V1534-000 ssniff

R/M-H, ssniff Spezialdiäten GmbH, Soest, Germany) or a

HFD containing 19.1 MJ/kg metabolizable energy with

45 % of its energy from fat, 24 % from protein content and

31 % from carbohydrates (S8074-E010 ssniff EF R/M,

ssniff Spezialdiäten GmbH, Soest, Germany). The standard

diet derived its fat from soy oil, whereas the high-fat diet

derived its fat from coconut oil and suet. The animals had

ad libitum access to diets and water. All animal treatments

were in accordance to the German Animal Welfare Leg-

islation (approval no. G0152/04, T0149/04).

2.2 Body weight, body composition, blood collection

and the measurement of serum parameters

At the age of 10 weeks body weight and body fat mass

were determined by a quantitative magnetic resonance
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analysis using the EchoMRI whole body composition

analyzer (Echo Medical Systems, Houston, Texas, USA)

(Taicher et al. 2003; Tinsley et al. 2004). The recorded fat

mass represented the total fat mass in the body.

After a fasting period of 2 h and anesthesia with iso-

fluran, 10 weeks old mice were sacrificed and reproductive

adipose tissue, liver, brain, pancreas and blood was col-

lected. Serum was recovered by centrifugation for 15 min

at 6009g. Serum and tissues were stored at -80 �C until

analysis.

Serum triglycerides were determined using the Fluitest

TG (Analyticon Biotechnologies AG, Lichtenfels, Ger-

many). Serum non-esterifies free fatty acids (NEFAs) were

measured using the NEFA-HR(2) kit (Wako Chemicals

GmbH, Neuss, Germany).

2.3 Measurement of metabolites

For the measurement of metabolites a 10 ll volume of

serum samples was used. The Hamilton Star robotics

(Bonaduz, Switzerland) was used for liquid handling of

samples. A total of 163 metabolite molecules including 41

acylcarnitines, 14 amino acids, one sugar, 92 glycero-

phospholipids and 15 sphingolipids were measured (Table

S1) using the AbsoluteIDQTM p150 Kit following the

manufacturer’s instructions (BIOCRATES Life Sciences

AG, Innsbruck, Austria) on the ion trap mass spectrometry

API 4000 Q TRAP LC/MS/MS System (Applied Biosys-

tems Deutschland GmbH, Darmstadt, Germany). The

AbsoluteIDQTM p150 kit has been described in detail

previously (Illig et al. 2010; Römisch-Margl et al. 2011).

Analytics were calculated in lmol concentrations using the

MetIQ software which was integrated in the Abso-

luteIDQTM kit. To control the quality of metabolites, the

coefficients of variation (CV) were calculated using the

reference samples for each metabolite and 43 metabolites

with CV higher than 0.2 were excluded and 120 metabo-

lites were remained for further analysis (Mittelstrass et al.

2011; Wang-Sattler et al. 2012).

2.4 Statistics

2.4.1 ANOVA of phenotypes and metabolites

Phenotypic data were analyzed by performing the analysis

of variance (ANOVA) to assess the effect of lines using the

SAS version 9.1.3 (SAS Institute Inc., Cary, NC, USA).

Multiple pairwise comparisons were Bonferroni-corrected.

Gene expression data analysis was performed using a two

tailed student’s t-test (GraphPad Prism 5 Software, San

Diego, CA/USA). Differences were considered statistically

significant at p \ 0.05.

The remaining 120 out of 163 metabolites were log-

transformed to remove skewness. In a first analysis the

effects of sex, diet, and line on metabolite levels of BFMI,

B6, and F1 mice were assessed by ANOVA. To further test

the recessive allele effect associated with obesity in BFMI

mice, B6 and F1 mice were combined to one group which

was compared with BFMI mice in a second analysis. B6

and F1 mice were both lean and did not differ in fat

deposition.

Metabolites differing significantly between BFMI mice

and the group of B6 and F1 mice, that showed the expected

recessive allele effect, were selected for further analyses.

2.5 Random forest, stepwise selection methods

and candidate metabolite selection

To select candidate metabolites that are linked to genetic

differences between obese and lean mice, we applied two

more methods, the non-parametric random forest (Breiman

2001) and the parametric stepwise selection, which asses-

sed the metabolites as a group. The supervised classifica-

tion method random forest was used to select metabolites

of importance among the 31 highest ranking variables

between the two groups of obese and lean mice. Those 31

metabolites showed most impact on obesity in the internal

permutation test of random forest. Furthermore, selected

metabolites were used for a stepwise selection method on

the logistic regression model. Here, metabolites were used

which showed both significantly different concentrations

between the two compared groups in the logistic regression

and which were also selected using random forest. Those

metabolites were added and dropped from the model one

by one. Akaike’s Information Criterion (AIC) was used to

evaluate the performance of the subsets of metabolites used

in the models. The model with minimal AIC was finally

chosen and metabolites left in this model were potential

independent metabolites that best distinguish lean from

obese mice. Correlated metabolites with less separation

power were dropped. The area under the receiver-operat-

ing-characteristic curves (ROC) was used to evaluate the

models and a likelihood ratio test was used to compare the

models. Calculations were performed under the R statisti-

cal environment (R Core Team 2013).

2.5.1 Network analysis

Metabolite–protein interactions from the Human Metabo-

lome Database (HMDB) (Wishart et al. 2009) and protein–

protein interactions in the Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING) (Jensen et al. 2009)

were used to construct a network containing relationships

between metabolites, enzymes and obesity-related genes

(He et al. 2012; Xu et al. 2013). The candidate metabolites
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were assigned to the HMDB IDs using the metaP-Server

(Kastenmuller et al. 2011). Their associated enzymes were

derived according to the annotations provided by HMDB.

We chose six obesity candidate genes of the jObes1 region

on chromosome 3 to connect metabolites through the

associated enzymes. In the search for links, we allowed an

intermediate protein through STRING and optimization by

eliminating edges with a STRING score below 0.7 and

undirected paths. The sub-networks were connected by the

shortest path from metabolites to obesity candidate genes.

2.6 Gene expression analysis and sequencing

Gene expression analyses were performed with SMD-fed

male mice of BFMI, B6 and F1 (n = 5–9 per group). Total

RNA was isolated from liver, brain and pancreas using the

nucleic acid and protein purification kit (Machery-Nagel,

Düren, Germany) following the suppliers protocol, and

from reproductive adipose tissue by acid guanidinium

thiocyanate–phenol–chloroform extraction. Genomic DNA

was removed using the Turbo DNA-freeTM Kit (Applied

Biosystems, Foster City CA/USA; Ambion, Austin TX/

USA). 1 lg RNA was reverse-transcribed into cDNA using

AccuScript� High Fidelity Transcriptase and oligo-dT

primers according to the manufacturer’s instructions

(Stratagene Europe, Agilent Technologies, Waldbronn,

Germany). Primers for quantitative real-time PCR were

designed using Primer3 software (http://frodo.wi.mit.edu/)

and are given in Table S4. Primers were checked with a

20 ll control PCR contained 50 ng cDNA, 10 lM of each

primer pair and 1 Unit FIRE-Pol� DNA Polymerase (Solis

BioDyne, Tartu, Estonia) with a three step PCR standard

program. Fragment length of PCR products were checked

on an agarose gel. Quantitative real-time PCR was per-

formed in a total reaction volume of 10 ll containing

MasterMix Plus for SYBR� Assay (Eurogentec, Cologne,

Germany), 10 ng cDNA and 10 lM of the gene specific

primers. Triplicates were measured on ViiaTM 7 Real-Time

PCR System (Applied Biosystems, Darmstadt, Germany).

Gene expression was calculated as relative quantity (RQ)

using the DDCt method (Livak and Schmittgen 2001). As

endogenous controls, Rps25 and b-Actin were chosen and

gene expression was calculated relative to the group of B6

and F1 mice, normalized to a value of 1.

The coding region and 420 bp upstream of the first exon

of Ccna2 were sequenced using cDNA and genomic DNA

of BFMI and B6 mice, respectively. Genomic DNA was

extracted from spleen using phenol and chloroform in a

standard procedure. Sequencing primers were designed

with DNASTAR software (DNASTAR Inc., Madison,

USA) and are given in Table S4. PCR products, amplified

using standard methods, were cut from a 2.0 % agarose gel

and purified using GeneJETTM Gel Extraction Kit

(Fermentas, St. Leon-Rot, Germany). The sequence reac-

tions in both directions were performed with BigDye�

Terminator v1.1 Ready Reaction Cycle Sequencing Kit and

an ABI PRISM� 310 Genetic Analyser (Applied Biosys-

tems, Darmstadt, Germany) following manufacturers

instruction. Sequences were assembled and analyzed using

the DNASTAR software (DNASTAR Inc., Madison,

USA). The chromosome position of found variations and

reference alleles are based on Ensembl release 67—May

2012, Mouse (NCBIM37). Transcription factor binding

sites were determined with the web tool CONSITE (San-

delin et al. 2004) using human and mouse transcription

factor model matrices and a scoring threshold of 80 %. The

30 UTR of the Ccna2 reference transcript (NM_009828)

was scanned for binding sites of known mouse miRNAs

using the web program PITA (Kertesz et al. 2007) with

standard parameters. Resulting energetic scores estimate

the free binding energy in the seed region of the miRNA–

mRNA duplex and thus the binding strength of the miRNA

to the given 30UTR site. Only scores equal or below -10

were considered as these are likely to be functional in

endogenous miRNA expression levels (Kertesz et al.

2007). Expression data of transcription factors were taken

from the arrays GeneAtlas MOE430 and GNF1M via the

web tool BioGPS (http://biogps.org). MicroRNA expres-

sion data were obtained from the Gene Expression Atlas

(http://www.ebi.ac.uk/gxa/).

3 Results and discussion

3.1 Phenotypic and metabolic characteristics of BFMI,

B6 and F1 mice

Ten weeks old BFMI males on standard maintenance diet

(SMD) had a 4.1 and 4.6 and females a 3.0 and 2.2 times

higher body fat content compared to male and female B6

and F1 mice (p \ 0.001) respectively (Table 1). Feeding a

high-fat diet (HFD), all mice gained additional fat mass.

Due to the recessive jObes1 effect in BFMI mice leading to

obesity (Neuschl et al. 2010) BFMI males showed 3.1- and

2.2-fold and females 3.0- and 2.8-fold higher body fat

content at 10 weeks compared with its B6 and F1 coun-

terparts (p \ 0.001), respectively (Table 1). In addition,

serum concentrations of NEFAs were about 1.4 times

elevated (p \ 0.01) in both sexes of BFMI mice fed an

SMD compared with lean F1 and B6 mice. The differences

were lower in HFD-fed mice with only 1.05 and 1.25 times

increased NEFAs in BFMI males and females, respec-

tively. In accordance to the recessive jObes1 effect, F1 and

B6 males showed no statistical difference in their body fat

content and NEFA serum levels, neither on SMD nor on

HFD (Table 1). In contrast, serum triglyceride levels of
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BFMI mice were about two times as high as in B6 mice on

both diets and both sexes (p \ 0.001), but they showed no

difference to lean F1 animals which had also high triglyc-

eride serum levels.

For the determination of metabolite profiles, metabolites

were first compared between the high-fatness selected

obese BFMI line with lean B6 and BFMI 9 B6 F1 mice in

both sexes and on two diets. Out of 163 targeted metabo-

lites 120 were above the detection limit and passed the

quality control and, therefore, were used in this study; 14

metabolites differed between BFMI and B6 or between

BFMI and F1 mice (Table S2). B6 and F1 mice did not

differ in their metabolite concentrations indicating that the

recessive genetic defect of BFMI mice is mainly respon-

sible for metabolic differences when comparing lean and

BFMI mice. Although sex differences in the metabolic

profile had been reported in humans (Lutz et al. 2006;

Mittelstrass et al. 2011), ANOVA provided evidence that

the sex had no effect in this study. Furthermore, also the

diet had almost no effect, except for diacyl-phosphati-

dylcholine (PC aa) C42:2 which was affected by diet, but

not by line (Table S2). Therefore, the metabolite PC aa

C42:2 as well as the factors sex and diet were not con-

sidered in subsequent analyses. As the focus of this study

was on differences in metabolite concentrations due to

genetic variations between obese BFMI and lean B6 and F1

mice, all BFMI mice of the SMD and HFD groups were

combined to one group of obese mice whereas all B6 and

F1 mice were combined to a group of lean mice. This is

consistent with our expectation of the recessive mode of

action of the obesity effect of the BFMI line leading to

juvenile obesity. Due to the increase of group sizes further

18 metabolites were identified to be different between

obese BFMI and the lean mice in addition to the 13

metabolites that differed between BFMI and either B6 or

F1 mice (Table 2). Overall, BFMI mice had a reduction in

12 serum PC aa, 10 PC ae, 2 lysoPC, 3 acylcarnitines and

increased levels of 3 amino acids and 1 sphingomyeline

when comparing to lean mice. Because these 31 metabo-

lites differed between obese BFMI and lean B6 and F1

mice, we suggest that at least one gene of the genomic

chromosome 3 region, responsible for obesity in BFMI

mice, accounts for the amount of at least one metabolite in

serum of the mice.

Most metabolites that differed between obese and lean

mice belonged to the group of glycerophospholipids that

were all significantly lower in BFMI mice (p \ 0.05). The

glycerophospholipid PC aa C42:1 showed highest signifi-

cance (p = 0.005). The amino acids serine, glycine and

arginine and one hydroxyshingomyelin C22:1 (SM (OH)

C22:1) were higher in BFMI mice.

3.2 Selection of candidate metabolites

Using the 31 metabolites that were found to be significantly

different between lean and obese mice, the random forest

analysis identified the acylcarnitine C14, the amino acid

serine and PC aa C42:1 with high confidential ROC curve

AUC-scores of 0.752, 0.711 and 0.725, respectively, as

those metabolites that were mainly affected by the genetic

background and explained best the genetic differences

between lean and obese mice. Serum serine level was

increased in the obese line compared with lean mice, while

the amount of acylcarnitine C14 and PC aa C42:1 was

reduced in BFMI mice. To find the obesity candidate genes

which might be involved in the regulation of metabolites,

the selected candidate metabolites were connected to

obesity candidate genes of the chromosome 3 jObes1

region by a network analyses. Out of the three significant

metabolites, only PC aa C42:1 showed a functional link to

the obesity candidate genes of the jObes1 locus. In detail,

PC aa C42:1 showed a connection to the genes encoding

Table 1 Phenotypic characteristics of BFMI, B6, and BFMI 9 B6 F1 mice

Trait BFMI B6 F1 ANOVA effects of

Males Females Males Females Males Females Line Sex Diet

SMD HFD SMD HFD SMD HFD SMD HFD SMD HFD SMD HFD

BW 38.3 48.5 27.3 38.6 26.5 25.7 21.5 22.8 28.4 36.2 25 25.4 \0.001 \0.001 \0.001

(g) (1.6) (3.8) (1.5) (6.5) (1.2) (1.4) (0.7) (2.4) (0.8) (2.3) (1) (0.7)

FAT 23.89 31.91 20.79 38.53 5.87 10.35 6.87 12.65 5.14 14.31 9.42 13.63 \0.001 n.s. \0.001

(%) (3.49) (1.51) (4.15) (3.88) (2.119) (4.24) (2.37) (5.71) (2.25) (3.27) (1.22) (4.27)

TG 190.3 151.5 103.1 127.7 102.4 68.9 59.2 69.8 169.5 131.7 148.4 73.2 \0.001 \0.001 0.017

(mg/dl) 41.2 35.6 28 74 34.9 28.8 21 11.7 43.2 27.3 22 16.9

NEFA 1 1 0.8 1 0.7 0.8 0.7 0.7 0.7 0.8 0.8 0.8 0.001 n.s. n.s.

(mmol/l) 0.1 0.1 0.2 0.3 0.1 0.1 0.2 0.1 0.1 0.1 0.2 0.1

Values represent means and standard deviations in parentheses. ANOVA results were considered as statistically significant at p \ 0.05
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Table 2 Metabolites that differ significantly between obese BFMI and the group of lean B6 and F1 mice

Metabolite short name Metabolite biochemical name BFMI B6 ? F1 ANOVA effect of line

PC aa C34:1 Phosphatidylcholine diacyl C34:1 213.02 ± 124.9 313.65 ± 188.48 0.042

PC aa C36:3 Phosphatidylcholine diacyl C36:3 136.34 ± 55.02 181.21 ± 73.58 0.017

PC aa C36:4 Phosphatidylcholine diacyl C36:4 169.75 ± 47.87 202.41 ± 68.46 0.049

PC aa C38:4 Phosphatidylcholine diacyl C38:4 135.81 ± 66.55 181.75 ± 86.61 0.045

PC aa C38:5 Phosphatidylcholine diacyl C38:5 66.1 ± 42.79 98 ± 54.63 0.016

PC aa C40:2 Phosphatidylcholine diacyl C40:2 0.48 ± 0.16 0.59 ± 0.2 0.014

PC aa C40:3 Phosphatidylcholine diacyl C40:3 0.78 ± 0.45 1 ± 0.47 0.033

PC aa C40:4 Phosphatidylcholine diacyl C40:4 3.31 ± 1.71 4.52 ± 2.28 0.028

PC aa C40:5 Phosphatidylcholine diacyl C40:5 14.83 ± 13.34 23.34 ± 16.81 0.05

PC aa C42:1 Phosphatidylcholine diacyl C42:1 0.15 ± 0.04 0.17 ± 0.04 0.005

PC aa C42:5 Phosphatidylcholine diacyl C42:5 0.34 ± 0.12 0.4 ± 0.1 0.02

PC aa C42:6 Phosphatidylcholine diacyl C42:6 0.83 ± 0.23 1 ± 0.3 0.02

PC ae C36:0 Phosphatidylcholine acyl-alkyl C36:0 0.92 ± 0.55 1.18 ± 0.59 0.048

PC ae C38:1 Phosphatidylcholine acyl-alkyl C38:1 2.35 ± 1.87 3.62 ± 2.49 0.05

PC ae C38:3 Phosphatidylcholine acyl-alkyl C38:3 3.51 ± 2.18 4.86 ± 2.7 0.049

PC ae C40:4 Phosphatidylcholine acyl-alkyl C40:4 3.19 ± 1.36 4 ± 1.57 0.036

PC ae C40:5 Phosphatidylcholine acyl-alkyl C40:5 2.2 ± 1.33 2.94 ± 1.52 0.036

PC ae C42:0 Phosphatidylcholine acyl-alkyl C42:0 1.03 ± 0.3 1.29 ± 0.45 0.017

PC ae C42:1 Phosphatidylcholine acyl-alkyl C42:1 0.72 ± 0.18 0.92 ± 0.35 0.008

PC ae C42:2 Phosphatidylcholine acyl-alkyl C42:2 0.83 ± 0.53 1.17 ± 0.7 0.046

PC ae C44:3 Phosphatidylcholine acyl-alkyl C44:3 0.13 ± 0.03 0.16 ± 0.04 0.006

PC ae C44:4 Phosphatidylcholine acyl-alkyl C44:4 0.16 ± 0.07 0.18 ± 0.05 0.015

lysoPC a C16:1 lysoPhosphatidylcholine acyl C16:1 10.5 ± 3.68 12.69 ± 3.92 0.049

lysoPC a C18:1 lysoPhosphatidylcholine acyl C18:1 90.23 ± 58.24 121.75 ± 62.9 0.048

Ser Serine 108.43 ± 47.37 81.63 ± 31.65 0.009

Gly Glycine 232.3 ± 59.7 194.3 ± 59.9 0.025

Arg Arginine 152.8 ± 38.5 132.2 ± 39.2 0.031

C14 Tetradecanoylcarnitine 0.08 ± 0.02 0.1 ± 0.05 0.003

C14:1 Tetradecanoylcarnitine 0.12 ± 0.03 0.14 ± 0.03 0.003

C18:1 Octadecanoylcarnitine 0.15 ± 0.05 0.21 ± 0.09 0.002

SM (OH) C22:1 Hydroxysphingomyelin C22:1 4.19 ± 2.75 3.16 ± 1.56 0.04

Values are shown as means ± standard deviations. Differences were considered statistically significant at p \ 0.05

Fig. 1 Effects of the metabolite PC aa C42:1. a Serum concentration

of the metabolite PC aa C42:1 in BFMI and the combined group of B6

and F1 mice are given in mean ± standard error. b Network

composed of PC aa C42:1, the interacting enzymes CHKA and

PLA2G1B and the underlying genes Ccna2 and Trpc3. CHKA choline

kinase a; PLA2G1B phospholipase A2 group 1B; Ccna2 cyclin A2

and Trpc3 transient receptor potential cation channel subfamily C,

member 3
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for cyclin A2 (Ccna2) and the transient receptor potential

cation channel subfamily C, member 3 (Trpc3) (Fig. 1) of

the jObes1 locus. The interaction is given via the enzymes

choline kinase alpha (CHKA) and PLA2G1B, respectively.

3.3 Obesity candidate gene characterization

To characterize the potential impact of the obesity candidate

genes on the lower PC aa C42:1 serum metabolite level in

BFMI mice, gene expression analyses of the network genes

Ccna2, Chka, Pla2g1b and Trpc3 were performed. Although

weakly expressed, the obesity candidate gene Ccna2 was

2.3-times up-regulated in BFMI compared with B6 and F1

mice in the reproductive adipose tissue (Fig. 2). However,

the adipogenic mRNA amount of Chka encoding the inter-

acting enzyme did not differ between BFMI and B6 mice. In

the liver, only Chka was found to be expressed, whereas

Ccna2 mRNA was not detected. The hepatic Chka expres-

sion did not differ between groups. Pla2g1b and Trpc3 were

expressed neither in the reproductive adipose tissue nor in

the liver, but could be detected in the pancreatic and brain

tissue, respectively. However, as only Ccna2 and Chka were

expressed in adipose tissue which is one of the main sites for

metabolite metabolism, only Ccna2 seems to be the obesity

gene which contributes to reduced serum phosphatidylcho-

line concentrations in BFMI mice.

To further characterize the different expressions of

Ccna2 between BFMI and B6 mice, comparative

sequencing of the promoter and coding regions was per-

formed. Overall, 29 mutations were found when comparing

the sequences, thereof 24 SNPs and five InDels. One

deletion in the promoter region, two SNPs in the 50

untranslated region (UTR), one coding SNP in exon 1, one

SNP and three InDels in the 30UTR were unique to the

BFMI line compared with the reference sequence of B6

and the SNP database (Welcome Trust Sanger Institute,

http://www.sanger.ac.uk/cgi-bin/modelorgs/mousegenomes/

snps.pl) (Table 3). The two SNPs in the protein coding

region were synonymous. The in silico analysis of the

detected variants revealed seven SNPs and one InDel in the

sequenced 420 bp promoter region as well as two SNPs in

the 50-UTR/exon1 region that are predicted to gain or lose

transcription factor binding sites or modify the binding

capacity in BFMI mice compared with B6 (Table 3).

Furthermore, seven SNPs and two insertions create new

micro RNA recognition sites and one SNP, one deletion

and the two insertions lead to the loss of micro RNA

binding sites in the 30 UTR (Table 3). Since some tran-

scription factors and micro RNAs occur in the adipose

tissue (Table S3), both variations in the promoter and the 30

UTR could affect the amount of Ccna2 transcripts in the

adipose tissue.

Fig. 2 Gene expression of

candidate genes of the network

analysis in obese BFMI and lean

B6 and F1 mice. a PCR

products of Rps25, Chka,

Ccna2, Trpc3 and Pla2g1b in

reproductive adipose, liver,

brain and pancreas tissue of

BFMI mice. b Relative mRNA

expression level of Chka in

reproductive adipose tissue

(n = 5–9). c Relative mRNA

expression level of Ccna2 in

reproductive adipose tissue

(n = 5–9). Bar graphs are given

as mean values plus standard

deviation. Bar graphs with

different letters are significantly

different at p \ 0.05
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3.4 Metabolite pathways and the biological context

Generally, PCs account for 50 % of eukaryotic membrane

phospholipids (van Meer et al. 2008) and are essential for

coating lipid droplet surfaces (Krahmer et al. 2011). Fur-

ther, PCs stimulate adipocyte differentiation and increase

triglyceride levels of 3T3-L1 and preadipocytes (Zhang

et al. 2009). Apart from structural functions of PCs in

membranes, they serve as substrates for the synthesis of

diacylglycerides and subsequent triglycerides and free fatty

acids in the liver. In the BFMI line lowered levels of

several serum PCs and higher triglyceride and free fatty

acid synthesis compared with lean mice also indicate the

important role of PCs in fat metabolism. Therefore, PC

emerged as most interesting metabolite in connection with

obesity, but a direct link between the specified PC aa C42:1

and obesity has not been found in the literature now.

Within the metabolite–protein network the interaction of

PC aa 42:1 with the obesity candidate genes Ccna2 and

Trpc3 was given via the enzymes CHKA and PLA2G1B,

respectively. However, only Ccna2 and Chka were

expressed in adipose tissue which is one of the main sites

for metabolite metabolism. Thus, Ccna2 seemed to be the

obesity gene which contributed to lower serum PC con-

centrations in BFMI mice. The functional role of the

pathway including the enzyme CHKA and PC aa C42:1

became evident as CHKA catalyzes the initial phosphory-

lation step of choline within PC synthesis via the cytidine

diphosphocholine pathway (Kent 2005). CCNA2 in turn is

a cyclin family member, which is well known to regulate

mitotic cell division by associating to cyclin dependent

protein kinases (Johnson and Walker 1999). A gene dis-

ruption resulted in embryonic lethality (Murphy et al.

1997) demonstrating its essential regulatory role. An ele-

vated expression of Ccna2 in the reproductive adipose

tissue of BFMI mice likely leads to increased mitotic

activity of adipocytes. While there was no indication for an

increased adipocyte number in BFMI mice (Wagener et al.

2010), the size of adipocytes was increased to compensate

the higher lipid storage and an ongoing turnover of adi-

pocytes can be assumed. This assumption is in line with

human studies reporting on more newly generated adipo-

cytes in obese adults than in lean adults, despite constant

adipocyte numbers (Spalding et al. 2008).

An increased adipocyte turnover in BFMI mice required

PCs as an essential membrane component. PC aa C42:1

seemed to be one of the major membrane PCs that may be

regulated by Ccna2 in the obese line. The demand for high

PC amounts for membrane production was jointly

responsible for lower available serum PCs in BFMI mice,

in particular as cytidinediphosphocholine pathway seemed

to be normal which was indicated by unchanged Chka

expression between obese and lean mice.

Since no hepatic Ccna2 expression could be detected in

BFMI and B6 mice, we suggest a tissue-specific expression

pattern which goes along with the specific increase of

adipocyte production in obese subjects. The genetic mod-

ifications in the promoter region of Ccna2 cause new or

lost putative transcription factor binding sites in the BFMI

line and might be responsible for differential regulation of

expression between lean and obese mice. Furthermore, an

increase in mRNA stability due to the comprehensive

variations in the 30 untranslated region cannot be excluded

and could lead to increased translation ending in a higher

CCNA2 protein availability within the adipose tissue of

BFMI mice. Since several binding sites of transcription

factors and miRNAs that occur in adipose tissues are

modified, the transcriptional or translational regulation of

the alternative Ccna2 haplotype in BFMI is likely.

The second pathway branch linked Trpc3 with PC aa

C42:1 via PLA2G1B. Trpc3 as a member of the transient

receptor potential superfamily encodes for cation channels.

Cations such as calcium are required for PLA2G1B action

which is secreted by the pancreas into the intestinal lumen

to digest dietary fatty acids (Carey et al. 1983). Since no

gene expression of Trpc3 was observed either in the

reproductive adipose tissue or in the liver between BFMI

and B6 mice, we assumed that this pathway is not involved

in the regulation of PC aa C42:1.

4 Concluding remarks

In the present study, serum metabolites of genetically obese

BFMI and lean mice were compared. Secondly, signifi-

cantly different metabolites were linked with underlying

obesity candidate genes revealing PC aa C42:1 as being

influenced by the genetic background for obesity in BFMI

mice. Ccna2 and Trpc3 were selected as candidate genes

affecting PC aa C42:1 serum levels via the enzymes CHKA

and PLA2G1B. To uncover the biological context of the

specified PC aa C42:1 and respective genes, expression

analysis and comparative sequencing were performed in

BFMI and lean mice. Unique mutations in the Ccna2

promoter of obese mice were identified which are located

either in transcription factor or micro RNA binding sites.

These genetic modifications are postulated to affect Ccna2

gene expression in adipose tissue likely leading to higher

mitotic activity of adipocytes. In conclusion, adipose tissue

growth and remodeling are increased in obese mice and

cause a higher demand of specific PCs.
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