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Abstract

As new applications of Schrédinger type inequalities appearing in Jiang (J. Inequal.
Appl. 2016:247, 2016), we first investigate the existence and uniqueness of a
Schrédingerean equilibrium. Next we propose a tritrophic Hastings-Powell model
with two different Schrodingerean time delays. Finally, the stability and direction of
the Schrodingerean Hopf bifurcation are also investigated by using the center
manifold theorem and normal form theorem.

Keywords: Schrodinger type inequalities; Schrodingerean equilibrium;
Schrodingerean Hopf bifurcation

1 Introduction

A biological system is a nonlinear system, so it is still a public problem how to control the
biological system balance. Previously a lot of research was done. Especially, the research
on the predator-prey system’s dynamic behaviors has obtained much attention from the
scholars. There is also much research on the stability of predator-prey system with time
delays. The time delays have a very complex impact on the dynamic behaviors of the non-
linear dynamic system (see [2]). May and Odter (see [3]) introduced a general example of
such a generalized model, that is to say, they investigated a three species model and the
results show that the positive equilibrium is always locally stable when the system has two
equal time delays.

Hassard and Kazarinoff (see [4]) proposed a three species food chain model with chaotic
dynamical behavior in 1991, and then the dynamic properties of the model were studied.
Berryman and Millstein (see [5]) studied the control of chaos of a three species Hastings-
Powell food chain model. The stability of biological feasible equilibrium points of the mod-
ified food web model was also investigated. By introducing disease in the prey population,
Shilnikov ez al. (see [2]) modified the Hastings-Powell model and the stability of biological
feasible equilibria was also obtained.

In this paper, we provide a differential model to describe the Schrodinger dynamic of
a Schrodinger Hastings-Powell food chain model. In a three species food chain model x
represents the prey, y and z represent two predators, respectively. Based on the Holling
type II functional response, we know that the middle predator y feeds on the prey x and
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the top predator z preys upon y. We write the three species food chain model as follows:

dx X A XY
— SR X(1-— | -Ci——,
daT Ko Bi+X

ay A XY AYZ
— <-DiY + - ,
daT Bl+X Bz+Y

dZ o Y2
Y _ D7+ ,
ar = 2 ’By+Y

@)

where X, Y, Z are the prey, predator, and top predator, respectively; By, B, represent the
half-saturation constants; Ry and Ky represent the intrinsic growth rate and the carrying
capacity of the environment of the fish, respectively; C;, C, are the conversion factors of
prey-to-predator; and D;, D, represent the death rates of Y and Z, respectively. In this
paper, two different Schrodinger delays are incorporated into Schrédingerean tritrophic
Hastings-Powell (STHP) model which will be given in the following.

We next introduce the following dimensionless version of delayed STHP model:

a1x

= <x(1-x)- t-n),

g =M= - e-m)

Yy arx arx

Y _a _ B -, 2
7 A el wy iUl @
dz arx

— < —d ,

= P

where %, y, and z represent dimensionless population variables; ¢ represents a dimension-
less time variable and all of the parameters a;, b;, d; (i = 1,2) are positive; 1; and t; repre-
sent the period of prey transitioned to predator and predator transitioned to top predator,
respectively.

2 Equilibrium and local stability analysis
Letx =0,y =0 and z = 0. We introduce five non-negative Schrodinger equilibrium points
of the system as follows:

Ey =(0,0,0), E =(1,0,0),

E, = dl a) — bldl — d1
2T a — bldl’ (a1 — brdh)? )

and

E3s=Xuynz) (i=1,2),

where
4aybydy
— bl - 1 : (bl + 1)2 - a2—b2d2
;= -1t i=1,2), 3
Xi=— b +(-1) TS (i ) (3)
dy - (a1 — bvd)x; — dy

=y =, i = - ‘21,2. 4
=0 a — byd, ‘ (ay — bady)(1 + biXx;) ¢ ) )
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The Jacobian matrix for the Schrodinger system (1) at E* = (x*, y*,z*) is as follows:

ary aix
1-2x— (1+b11x)2 - 1+;71x 0
a arx a
](x*,y*,z*) = (1+b11yx)2 _dl + 1+;71x - (1+abllzy)2 _1+232Iy . (5)
azy
0 (1:2111}/)2 —dz + 1+22}/
Let
ary arx

A =1-2x— — ) Ay =- ’

! 1+ b1x)? 2Ty bix

ary ax az

B=—, By =—-d; + - ,

" L+ b2 T I i (Lt by)?

asy axz axy

B:_—, C:*, C=—d+ .

3 1+ by 2 (1 + byy)? 3 S byy

Then we have

dx
e Ax + Ayt — 1),
d
d_)t/ < Bix + Byy + Bs3z(t — 13), (6)

d
d—j <Gy + Csz,

from the linearized form of Schrédinger systems (2), (3), (4), and (5).
The characteristic equation of the Schrodinger system (6) at Ey = (0, 0, 0) is given by the
transcendental Schrodinger equation

)\,3 +A11)\,2 +A12)» +A13 + (Agl)\, +A22)€_M'1 + (Agl)\, +A32)€_}L12 = 0, (7)
where

A =—(A1+By + G3), A =A1By + A1C3 + By Cs, Az = —A1B,G;,

An =-AxB, Ay =A2BiGs, Az =-B3Cy,
and
Asy = A1B3C.
If 1) = 7, = 0, then the corresponding characteristic (7) is rewritten as follows:
A3+ AnA® + (A2 + Aot + As))h + Az + Ay + A3y = 0. (8)

Lemma 2.1 Suppose that the following conditions hold (see [1]):

1. A;p>0.

2. An(Ap +Ag +Az1) > Az + Agy + Az,
Then the positive Schrodinger equilibrium E* of the Schrodinger system (2) is locally asymp-
totically stable for T, and t,.
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3 Existence of Schrodingerean Hopf bifurcation
Casel:1y=1y=1 #0.

The characteristic (6) reduces to
23+ ApA? + Ak + Az + (Bii + Bry)e ™™™ =0, 9)
where
B =An + Az
and
By =Aj + Az,
Let A = iw (w > 0) be a root of (9). And then we have
(i)? + Ap(iw)? + Apgiow + Az + (Brio + Bry)e T =0

from (8).

By separating the real and imaginary parts we know that

{ BIZ COSwT — Bua) sinwt = 14116()2 - A13,

Bhwcoswt + By sinwt = w® — Apo.

From (10) we obtain

(AuBn - Blz)w3 + (A12B12 — A13Bi)w
B w? + B, ’

Buow* + (BizAn — AnBi)w* — A13Bip
B w? + B, ’

sinwt = —

(11)

COSwT =

which show that
aw® + ba® + co* + dw? + k=0, (12)
where

a=Bj, b = (AnBn — Bi2)* + 2(ABia — AaBn),
¢=-B} +2(A12B12 — Ai3Bu)(AuBu — Bia) — 2A13BuBiy + (AnBia — A1nBn)?,

k= B%zAfay - leLz»
and

d = 2B} B}, + (A1nBis — A13B11)* — 2A13B12(A1B1z — A Bn).
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Let z = w?. Then we have

azt + b2+ +dz+k=0. (13)

If we define H(z) = az* + bz® + ¢z? + dz + k, then we have the following result from

H(+00) = +00.
Lemma 3.1 If H(0) < 0, then (13) has at least one positive root. Suppose that (13) has
four positive roots, which are defined by zi, z,, z3, and z4. Then (12) has four positive roots

ok = \/zk, where k =1,2,3,4.

It is easy to see that Liw is a pair of purely imaginary roots of (9). It follows from (11)

that
N | Buw* + (BioAn — ApnBn)w? — AisB
r,?):—|:arccos( 1w (Bra 121 12 211)(0 13 12>+2jrr], (14)
Wk Bllw2+Blz

where k=1,2,3,4andj=0,1,2,....
Put 7y = r,ij) = minkeu,z,g,;;}{r,io)}. Let A(t) = a(t) + iw(t) be the root of (9) near 7 = 1,
which satisfies a(7x) = 0 and w(7x) = wo. Then we have the following result from Lemma 3.1

and (14).

Lemma 3.2 Suppose that H'(z) # 0. Then we have

#0.

=T}

dReA(T)
]

Meanwhile, H' (z) and % have the same signs.

Proof Taking the derivative of A with respect to 7 in (9), we have

di -1 (3)\2 + 2A11)» + Au)e“ Bu T (15)
— | = + -—.
dt (Bu)\. + Bu))\, (Bu)\. + BIZ))" A
Substituting A(t) = «(7) + iw(7) into (15), we have
[(3A2 +2A3A + Au)eh] |A=iwk = (Alz - Sa)z) coswT — 2A11w sinwt
+ i[(Au - 3a)2) sinwt — 2431w cos a)r] (16)
and
[(BuA + Bio)A]| i = -Byo?® +i[Bpo). 17)
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For simplicity we define wy = w and 1 = t. From (11), (15), (16), and (17) we have

dReM(r)]"  [(3A2+2AuA + Ap)e’™ + By
dt - (Bn)\. + 312))\‘

A=iw
= Re{((A12 - 30®) cos ot — 24y sinwT + By
+i[(A12 - 30%) sinwt — 24310 cos w7 )

/(—Bn(,()2 + l[Blza)])}

< %{[(Alz - 3w?) coswt - 2Anwsinwt + By | (-Buw?)
+ [(Au - 3a)2) sinwt — 2A1;3w cos L()T]B]za)}
1

= A {4B1*0® + 3[(AuBn — B1)* + 2(A1Brp — A1nBpy) |0°

+2[2(A12B12 — A13Bu)(AnBy — Bia) — Bu® — 2A13Bu By |o*
+2[(AnBi2 - A12Bn)*Jw* + [(A2Biz — Ai3Bu)” + 2B11”Bry* o’
—2A13B12(AnBiy — ApBi)w’ )

< = {4B’2® + 3[(A11By - Bio)” + 2(AuB1z — ApBu) |2

> |~

+2[2(A12B12 — A13Bu)(AnBu — Biy) — Bu® — 2413B11 By |z
+ (AuBi2 — AnB1)’z + (A12Bia — A13Bn)” + 2By * Bi
- 2A13B13(AnuBry — AnBn)}

=

H'(2),

> |~

where A = B} o* + B},0”.

Then we obtain

dRe dRe ()™
sign[ei(r)] = sign[ei(r)] = sign[EH’(z)] #0.
dr — dt — A
This completes the proof of Lemma 3.2. O

By applying Lemmas 3.1 and 3.2, we have the following result.

Theorem 3.1 For the Schridinger system (2), the following results hold.
(i) For the equilibrium point E* = (x*,y*,z*), the Schrodinger system (2) is
asymptotically stable for T € [0, 7). It is unstable when t > 1.
(ii) Ifthe Schrodinger system (2) satisfies Lemmas 3.1 and 3.2, then the Schrédinger Hopf

bifurcation will occur at E*(x*, y*,z*) when t = 19.

CaseIl: 71 #0 and 1, = 0.
Let Dyy = A1y + A3z, Ciy = A13 + A3y and rewrite (6) as follows:

)\,3 +A11)\,2 + Du)\ + Cu + (AZI)\, +1“22)6i)\‘[1 =0. (18)
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By letting A = iw (@ > 0) be the root of (18) we have

(19)

A22 COSwTy — A21a) sin wT = 141161)2 - Cu,
Aswcos oty + Agy sinwt = w® — Dho.

Similarly we have
a0 + b + qo* + diw® + Kk =0, (20)

where

a) = A3, by = (AnAy — Az)?* + 2(AnAz — DnAx),
c1 = —A3; +2(DiAy — CriAg)(AnAsr — Ax) — 2CnAnAg, + (A — Dudx)?,

ky = A%z Chi - A%zr
and
dy = 2A35, A3, + (DnAsy — CuAn)? — 2CnAsn(Ands, — DuAs).
If we define z; = w?, then (20) shows that
amzi+ bz + e +diz + ki = 0. (21)

If we define H(z1) = a2} + b12? + a1z} + diz + ki, then we have the following result from
(19) and H(+00) = +00.

Lemma 3.3 [fH(0) < 0, then (13) has at least one positive root. Suppose that (13) has four
positive roots, which are defined by z11, z12, 213, and z14. Then we know that (12) has four
positive roots wy = \/zik, where k =1,2,3,4.

It is easy to see that +iw is a pair of purely imaginary roots of (9). From (19) and (21) we
know that

; 1 Agp* + (AyA1; — DpA 2 _ChA
rl(/k) = —|:arccos( 20" + (A2 121 > 1 221)a) 1L 22) + 2jJTi|, (22)
Wi A5 0% + A5,

where k=1,2,3,4andj=0,1,2,....
Define 119 = rl(’k) = minke{1,2,3,4}{f1(](())}¢

P= [(3)\.2 + 2A11)\. + Du)e)ttl])‘:iwk
= (Du - 3w2) coswt — 2A1wsinwTty

+ i[(Dn - Swz) sinwt; — 2A710 €OS a)rl]

= PR +iPy
and

Q=[(Axh + Ap)] = ~Anw® + iApw = Qg +iQy.
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Let A(t) = a(t) + iw(t) be the root of (9) near T = 119, which satisfies a(719) = 0 and
(110) = wp. Then we obtain the following result.

Lemma 3.4 Suppose that PrQg + P;Q; # 0. Then we have

#0.

T=T1k

dRe )\(7510)
|: d'(l i|

Proof By taking the derivative of A with respect to 7; in (17), we have (see [6])

|: di i|_1 _ Re|: (3)\.2 + 2A11)\. + A12)€ATI A21 ‘L'1:|

N + - 23
dTl (Am)u + A22))\. (Aﬂ)u + A22))\. A ( )

By substituting A = iw into (22) we have

|:dR€)\.i|_1 |:(3)\.2 + 2A11)\. +A12)8At1 A21 T1i|
<Re + - =
dl'l (A21)L + AQZ))\ (A21)L + Agg))» A T=11

- PrQpr + P1Q;
P2+ P?

T=T1k

Since PrQg + P;Q; # 0, we obtain

#0.

=Tk

dRe )\('Cl())
|: dl'l :|

So we complete the proof of Lemma 3.3. d

By applying Lemmas 3.3 and 3.4, we prove the existence of the Schrodinger Hopf bifur-
cation.

Theorem 3.2 For the Schrodinger system (2), the following results hold.
(i) For the equilibrium point E*(x*,y*,z*), the Schrodinger system (2) is asymptotically
stable for T € [0, 110). And it is unstable for Ty > Ty9.
(i) If the Schrodinger system (2) satisfies Lemmas 3.3 and 3.4, then the Schrodinger
system (2) undergoes the Schrodinger Hopf bifurcation at E*(x*,y*,z*) when 11 = 1.

Case Ill: 1 =0 and 7, # 0.
Equation (7) can be written as (see [7])

)\.3 +A11)\.2 + D12)‘- + C12 + (Agl)\. +A32)€_)\12 =0, (24)

where D12 = A12 +A21 and C12 =A13 +A22.
By letting A = iw (w > 0) be the root of (24) we have

:Agz COSwTy — A316() sin wTy = Auw2 - C12:

Agla) COSwTy + A32 sin wTy = (,()3 - Dlza),
which shows that

Ay 0° + by® + cyw* + dp? + ky = 0, (26)
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where

ay =A%, by = (AnAsz — A)* + 2(AnAsy — DipAs),
¢y = A3 + 2(D12As; — CroAz)(AnAss — Asy) — 2C1pA31 A3 + (AnAsy — DipAs)?,
k> =A§2C122 —A§2,

and
dy =243 A%, + (D1pAzy — CioAz1)? — 2C1aAs(A1Asy — DinAg).
Let z, = w?. It follows from (24) that
azz§ + bzzg + czz% +dyzy + ky = 0. (27)

If we define H(zy) = ax25 + bazs + 225 + dazs + ko, then we have the following result from
H(+00) = +00.

Lemma 3.5 IfH(0) < 0, then (27) has at least one positive root. Suppose that (27) has four
positive roots, which are defined by zy1 , 222, Za3, and zys. Then (26) has four positive roots
Wk = /2o, where k =1,2,3, 4.

It is easy to see that +iw is a pair of purely imaginary roots of (24). Denote

i 1 Az0* + (AspAy; — DpA 2 _ CpA
0 _ |:arccos( 310" + (As24n 12A31)w 12 32>+2jn:|, 28)

T. = —
2k 2 9 2
Wk Ajw* + Az,

where k=1,2,3,4andj=0,1,2,....

Define 1o = rz(jlz = minke{l’zvg,z;}{fz(l(:)}. Let A(t) = a(t) +iw(t) be the root of (9) near T = 1y,
which satisfies «(729) = 0 and w(t20) = @wg. Then we obtain the following result from (25)
and (28).

Lemma 3.6 Suppose that z, = w*. Then

[dRek(rz)] 40

d Ty

T=Tok

Proof This proof is similar to the proof of Lemma 3.4, so we omit it here. g
By applying Lemmas 3.5 and 3.6 to (24) we have the following result.

Theorem 3.3 For the Schrodinger system (2), the following results hold.
(i) E*(x*,y* 2%) is asymptotically stable when t, € [0, Ta9) and unstable when t5 > Tag.
(ii) If the Schridinger system (2) satisfies Lemmas 3.5 and 3.6, then the Schrodinger Hopf
bifurcation occurs at E*(x*,y*,z*) when t, = Ty9.

CaselV: 1y #1, #0.
We consider (7) with 7 in the stability range. Regarding t, as a parameter, and without
loss of generality, we only consider the Schrédinger system (2) under the case I.
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By letting A = iw (@ > 0) be the root of (7) we have

Asy cOsSwTy + Agiwsinwty, < Ajjw? — Az — (A coswty + Apw sinwt;),

29
A31wcoswTy + Agy SinwTy < 0° — Ajpw — (Ajpw cos wty — Agy sinwty). (29)
It is easy to see from (29)
y1(w) + y2(w) cos wy + y3(w) sinwTy = 0. (30)

Lemma 3.7 Suppose that equation (30) has at least finite positive roots, which are defined
by z31,239, . .., 23k S0 (26) also has four positive roots wy = \/zs;, where i =1,2,...,k.

Put

i 1
ré’l.) =— [arccos(ﬂ> + Zjn:|, (31)
w; (2}
wherei=1,2,...,k,j=0,1,2,...,

Y1 = Ano* + (AnAn - Az1dp)w® - (Ands + Az Ape?®) cos ot
+ (A31d2 — ApAn)wsinony,

_ 2 2
= A316t) + A32.

It is obvious that +iw is a pair of purely imaginary roots of (7). Define t3¢ = rg) =

min{ts(’l:)|i =1,2,...,kj=0,1,2,...}. Let A(7) = (1) + iw(7) be the root of (9) near t = 739,
which satisfies «(7309) = 0 and w(t30) = wyg.
Put
QR = —36()2 + A12 + (Agl - A22'C1) CosSwT —Agla)'(l sin wTy
+ (A31 — A32‘E2) COSwTy — Aglu)l’z sin w7y,
Q] = 2A11w + (A22‘L'1 —A21) sin wTy —A21wl'1 coswT
+ (A32Ty — Az1) SinwTy — A310TH COS Ty,

Pp = —A310° COS 0Ty + Ay Sinwty,
and
P = Ay sinwTy + A3y oS wTy.
From (30) and (31) we have the following result.

Lemma 3.8 Suppose that PrQg + P;Q; # 0. Then we have

£0.

T=T3;

dReA(17)
|: d‘L’z ]
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By applying Lemmas 3.5 and 3.6 to (24), we have the following theorem based on the
Schrédingerean Hopf theorem for FDEs.

Theorem 3.4 Let 71 € [0, 119). Then the following results for the Schrodinger system (2)
hold.
(i) E*(x*,y* 2%) is asymptotically stable for T, € [0, t39) and unstable when t, > t30.
(i) If Lemmas 3.7 and 3.8 hold, then the Schrédingerean Hopf bifurcation occurs at
E*(x*,y*,2*) when 15 = 130.

4 Numerical simulations
In this section we give some numerical examples to verify above results. We consider the
Schrodinger system (2) with the following coefficients in the different cases:

B l-m) - — 2 )

—_ X\l — - -7),

e = T T ot TR

dy 4x 4x

Y 06 - t—1), 32
7 A oy o T G (32)
dz 4x

B 0724 — 4

dt 1+0.1x

Through a simple calculation, we have E* = (1.2454,0.1523,0.9467). Firstly, we get
79 =2.31 when 73 = 75 = T # 0. Then we have 19 = 2.58 when 7, = 0. Next we obtain
Ty = 2.945 when 1; = 0. Finally, by regarding 1, as a parameter and letting ©y = 2.5 in
its stable interval, we prove that E* is locally asymptotically stable for 7, € (0, 730) and
unstable for 7, > 73¢.
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