
632

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

A=>?@B>CD ECB>=FC G?HJ>F=K>L?H M?F GNBJJLOKB>L?H

of Time Ordered Data Sequences

Michael Schaidnagel, Thomas Connolly

School of Computing

University of the West of Scotland

Email: B00260359@studentmail.uws.ac.uk

Thomas.Connolly@uws.ac.uk

Fritz Laux

Faculty of Computer Science

Reutlingen University

Email: fritz.laux@reutlingen-university.de

Abstract—The recent years and especially the Internet have
changed the ways in which data is stored. It is now common to
store data in the form of transactions, together with its creation
time-stamp. These transactions can often be attributed to logical
units, e.g., all transactions that belong to one customer. These
groups, we refer to them as data sequences, have a more complex
structure than tuple-based data. This makes it more difficult to
find discriminatory patterns for classification purposes. However,
the complex structure potentially enables us to track behaviour
and its change over the course of time. This is quite interesting,
especially in the e-commerce area, in which classification of a
sequence of customer actions is still a challenging task for data
miners. However, before standard algorithms such as Decision
Trees, Neural Nets, Naive Bayes or Bayesian Belief Networks
can be applied on sequential data, preparations are required in
order to capture the information stored within the sequences.
Therefore, this work presents a systematic approach on how
to reveal sequence patterns among data and how to construct
powerful features out of the primitive sequence attributes. This
is achieved by sequence aggregation and the incorporation of
time dimension into the feature construction step. The proposed
algorithm is described in detail and applied on a real-life data
set, which demonstrates the ability of the proposed algorithm to
boost the classification performance of well-known data mining
algorithms for binary classification tasks.

Index Terms—feature construction, sequential data, temporal
data mining

I. INTRODUCTION

This work extends our previous work in the field of feature

construction reported in [1]. It presents new feature construc-

tion techniques as well as new experimental results.

Significant amounts of data are being generated on a

daily basis, in almost every industry and scientific research

area. Advancements in computer science as well as computer

hardware enable us to store these data. The rate of growth

of data surpasses the capability of analysing all the stored

data. It is believed that less than 10 % of all data stored

is retrieved or analysed [2]. Particularly in the e-commerce

area it is common to log all user activities in an online

shop. Such data can be ordered by their timestamp and can

be allocated to data sequences of particular users. However,

the logged activities or actions are not stored in a form that

enables immediate data mining. Therefore, it is important to

pre-process the data before analyzing it (see also [3] [4]).

When data is only represented by primitive attributes and

there is no prior domain expert knowledge available, the pre-

processing task becomes challenging and creates the need

for automated techniques. At this point attribute selection

and/or feature construction techniques need to be applied.

Attribute selection can be defined as the task of selecting a

subset of attributes, which are able to perform at least as

good on a given data mining task as the original attributes

set. The original values of the data set are called attributes,

while the constructed data are called features. It is possible

that primitive attributes are not able to adequately describe

eventually existing relations among primitive attributes. Such

interrelations (or also called interactions [6]) can occur in a

data set if the relation between one attribute and the target

concept depends on another attribute (see also [7]).

A. Structure of the paper

The remainder of this section will provide a short intro-

duction into the related fields of Feature Construction and

Sequential Data Mining. It will also present the problem at

hand. Section II will provide a short overview about the related

research fields and briefly introduces well-known Feature

Construction techniques. Subsection II-C will highlight our

contribution to the particular research field of sequential data

classification. The characteristics of such data are described

in Section III. Our approach to sequential feature construction

will be described in detail in Section IV. This is followed by an

experimental analysis in Section V, in which we demonstrate

the ability of our proposed algorithm to boost classification

performance on a real-life data set. The paper then provides

some conclusion (Section VI) and future work (Section VII).

B. Feature Construction

Attribute selection alone can fail to find existing interaction

among data. Therefore, one goal for feature construction is

to find and highlight interactions. Feature construction can be

defined as the process of creating new compound properties

using functional expressions on the primitive attributes. There

are also the terms Attribute Construction (Han and Kamber

[3]) and Feature Extraction (Guyon et al. [9]) used in the

literature to denote this research area. Guyon et al. are more

focused on the Feature Selection task and uses the term Feature

633

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

PQRSTURVWX as a compound term to denote both Feature Con-

struction and Feature Selection tasks. This work will continue

to use the term Feature Construction. Feature Construction

is part of the data preparation step within the KDD process.

There are two groups of data preparation techniques: one

contains techniques that do not alter the space dimensionality

of the given data, such as signal enhancement, normalization

and standardization. The other group reduces or enlarges

the feature space. Examples for this group are non-linear

expansions, feature discretization [9]. Feature Construction

can fit into both groups, depending on the goals of the data

preparation step. Another goal of Feature Construction is to

reduce the data dimension by removing redundant or irrelevant

attributes [7]. This is done by constructing new features out

of several of the given attributes to help the mining process

[3]. In this case the constructed feature replaces the attributes

it was constructed from [7]. However, it is important to not

discard important information, which is necessary to describe

the target hypothesis. If done correctly, Feature Construction

is the key data preparation step to build classifiers that are able

to describe complex patterns. The positive impact of feature

construction was also shown in a comparative study focusing

on predictive accuracy [7]. Liu and Motoda define Feature

Construction as the process ’that discovers missing informa-

tion about the relationships between features and augments the

space of features by inferring or creating additional features’

[4]. This means that the original representation of data is

altered and the feature space is extended by the new features.

Usually, logical operators are used to combine features. A

simple example for a Feature Construction technique on a

two dimensional problem is the following: assume that A1

is the width and A2 is the length of a rectangle. This can be

transformed into a one-dimensional problem by creating the

feature F1 as area F1 = A1 ∗ A2 [4]. However, the success

of feature construction is dependent on the goal of the Data

Mining problem at hand. There is no use in calculating the area

as a feature; if the pattern (that can be used for discrimination

between the two given labels) is connected to the aspect ratio

of the rectangles. Shafti and Pérez distinguish between two

types of features construction techniques in terms of their

construction strategy:

• hypothesis-driven: create features based on a hypothesis

(which is expressed as a set of rules). These features are

then added to the original data set and are used for the

next iteration, in which a new hypothesis will be tested.

This process continues until a termination requirement is

satisfied.

• data-driven methods: create features based on prede-

termined functional expressions, which are applied on

combinations of primitive features of a data set. These

strategies are normally non-iterative and the new features

are evaluated by directly assessing the data.

The transformation of the feature space is a standard procedure

in Data Mining, since it may improve the recognition process

of classifiers. In general the transformation function is denoted

as y = F (x). It is used to transform an n-dimensional

original pattern x, that exists as a vector of the n-dimensional

pattern space, into an m-dimensional pattern y [10]. Finding

a good transformation function is very domain specific and

also depends on the available measurements [9]. After the

transformation, data objects are represented as feature vectors

in the expanded and augmented feature space. This effectively

pulls apart examples of the same class, so that it is easier

for the classifier to distinguish them [12]. However, Feature

Construction must be used with some precautions: if a new

classification problem is presented, it is not obvious, which

of the various data representations should be used. It is also

possible that none of the constructed features are able to

express the target concept sufficiently. This can be the case in

many real-life scenarios and it needs to be dealt with by using

domain-specific knowledge. Feature Construction techniques

are mostly based on a fixed set of basic operators. There

is no easy way to alter the existing constructor set. This

is also a disadvantage if the classification problem requires

a combination of several construction functions to find a

discriminatory form of data representation [11]. Some feature

construction techniques only use Boolean representations of

features, which cover only part of the potential relations

between data attributes. Markovitch and Rosenstein [11] also

points out that the basic Boolean operators such as AND and

OR are already inherently represented in the structure of a

decision tree.

C. Sequential Data Mining

Feature Construction prepares the data before the actual

mining is done. This can be difficult, if the data has a complex

structure, such as sequences. Therefore, this section briefly

introduces the rather young research field of Sequential Data

Mining. Due to the increasing ability to store complex data

sequences, it has become one of the most important and active

subfields of data mining research. Dong and Pei [19] define

it as special subfield of data mining for certain structured

data. The term structured data thereby refers to data that is

structured in an explicit way and comprises of a set of data

items. In terms of sequences this structure can include (partial)

orderings, temporal orderings, hierarchical structure as well as

network structures. A more formal description of the sequence

structure is also given in Section III. Other forms of structured

data, which are not in the scope of this work, are for example

tree data, graph data, time series data or also text data.

The complex data structure of sequences is what sets

Sequential Data Mining apart from standard Data Mining. Al-

though the structure makes it more difficult to mine sequential

data, there is also the reward to access information that can be

contained in the structure of a sequence. Bautista-Thompson

and Brito-Guevara [20] stress that the collective behaviour and

the hidden relations between such data, can contain decisive

information. Furthermore, they point out that the structure of

sequences can have a certain dynamics (such as stationary,

random, complex).

634

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

YZ [\]^] _` abcdb`e_\f g\e\ i_`_`jk Sequential Data Min-

ing was primarily applied in the field of bioinformatics on

genomic data and also, in the field of business intelligence

on transactional data (especially from the retailer industry).

Therefore, the following three tasks of Sequential Data Mining

have emerged:

• Clustering: This task is about the grouping of unlabelled

sequences into clusters. In general, this task is solved

by combining well-known clustering algorithms with an

appropriate distance function that is applied to sequences.

Therefore the special properties of sequences and their

structure need to be taken into account.

• Classification: This is most common task that includes

building a classifier that is able to distinguish between

two existing classes (labels). This is normally achieved by

combining standard classification methods in conjunction

with suitable feature construction techniques. The goal for

the classification can be to decide if a sequence belongs

to a certain class or if a sequence contains a subsequence

of interest and its position (especially interesting for com-

parison of genomic data). The presented work focuses on

the classification task.

• Hybrid: As the name suggests, this task is concerned with

both: the identification of sequences classes as well as the

characterization of the occurring sequential patterns [19].

2) Issues in Sequential Data Mining: Research in Sequen-

tial Data Mining usually revolves around so-called sequential

databases in order to find sequential patterns. Therefore,

sequential data mining research should consider the following

four technical issues:

• Concept formulation: creating new concepts that lead to

advances in the research field

• Design: creating novel techniques that are able to handle

large volumes of data with a large number of dimensions.

The techniques need to be able to handle the complex

data structure while being able to take advantage of the

underlying structure of the given sequential data.

• Optimizing cluster/classifying quality: modifying/altering

existing techniques to achieve a better accuracy. Quality

measurements in terms of classification are accuracy,

precision and recall. In terms of clustering inter-precision

or inter-cluster similarity are used.

• Optimizing pattern interestingness: this task aims to im-

prove techniques in terms of their usefulness for the user.

Measures include support, confidence, lift, novelty and

actionability. Xing et al. [21] state that in addition to

accurate quality results, the interpretability of sequence

classifiers is both important and difficult

This research work deals with all four issues and focuses

on the concept formulation as well as the design of a new

sequence classification algorithm.

D. Problem description

As discussed in previous sections, the KDD process and

Data Mining are about finding patterns in data. Initially these

data comprised of static feature vectors that did not change

over time [8]. The later years have brought more complex

objects that need to be stored. The latest development in

data collection and storage technologies allows companies

to keep extremely large quantities of data relating to their

daily activities [5]. This process introduced the temporal

dimension into the field of Data Mining and allowed the

storage of evolving (or dynamic) data over time. However, this

dimension is neglected by most of the researchers: ’In Data

Mining community, researchers pay little attention to time-

stamps in temporal behavior [. . .] during classification’ [14].

This is quite a sub-optimal situation since ’knowledge about

the behavior of objects is an integral part of understanding

complex relationships in real-world systems and applications’

[8]. Time is necessary to markup complex behaviour. Kriegel

argues that due to historical reasons (i.e., given their static data

during the 1980s) many researchers created their algorithms

only for static descriptions of objects and are therefore not

designed to input data with dynamic behavior. The inclusion

of dynamic properties of modern complex data models would

allow revealing the information hidden in their temporal aspect

and in addition to that, describe the relationship between

complex objects. The type of information that is visible in the

temporal dimension of a series of events is called sequential

pattern.

Most of the sequence analysis work (see also Section II) is

focused on finding frequent item sets, associate them with a

certain order and then predict what items are bought next in a

sequence. The research work described in this article is about

finding a technique that is able to take the time span between

a series of events into account and unveil hidden information

that can be used for classification purposes.

This work will present an algorithm that is able to find

discriminatory patterns in temporal based data and use them

for classification purposes. The algorithms suggested so far

have not been able to use the information hidden in sequential

and time ordered data. Such information can be captured by

creating sequence based features out of the original attributes

of the given data set. The time dimension is thereby used in

the construction step.

II. RELATED WORK

Earlier work in the field of feature construction was done

by Setiono and Liu [13]. They used a neuronal network to

construct features in an automatic way for continuous and

discrete data. Pagallo [15] proposed FRINGE, which builds a

decision tree based on the primitive attributes to find suitable

boolean combinations of attributes near the fringe of the

tree. The newly constructed features are then added to the

initial attributes set and the process is repeated until no

new features are created. Zupan and Bohanec [16] used a

neuronal net for attribute selection and applied the resulting

feature set on the well known C4.5 [17] induction algorithm.

Feature construction can also be used in conjunction with

linguistic fuzzy rule models. Garcı́a [18] et al. use previously

defined functions over the input variables in order to test if

635

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

Rtl resulting combination returns more information about the

classification than the single variables. This process can lead

to fuzzy rules of the following schema, which can include

functions in the antecedent:

IF x1 IS A1AND SUM(x1, x2) IS A3 THEN Y IS B

A3 and B represent fuzzy subset values that belong to the

function‘s domain. The used function SUM(x1, x2) is thereby

treated as a new variable. However, in order to deal with

increasing complexity of their genetic algorithm in the em-

pirical part, Garcı́a only used three functions (SUM(xi, xj),
PRODUCT (xi, xj), SUBSTRACT ABS(xi, xj)) to en-

large the feature space. Another approach to feature construc-

tion, which utilizes a genetic algorithm, is described by Alfred

[23]. Although, his approach is not using different functions to

create new combinations of features, it can create a big variety

of features since it is not limited to binary combination. That

means that it is able to combine more than two attributes at

a time. The genetic algorithm selects thereby the crossover

points for the feature sequences. Sia [24] proposes a ’Fixed-

Length Feature Construction with Substitution’ method called

FLFCWS. It constructs a set that consist of randomly com-

bined feature subsets. This allows initial features to be used

more than once for feature construction.

The next two subsections present the two most famous

Feature Construction techniques for sequential data in greater

detail.

A. MFE3/GA

Shafti [7] presents MFE3/GA (Multi-Feature Extraction

using GA), a method that uses a global search strategy

(i.e., finding the optimal solution) to reduce the original data

dimensions and find new non-algebraic representations of

features. Her primary focus is to find interactions between the

original attributes (such as the interaction of several cards in

a poker game that form a certain hand). MFE3/GA basically

searches through the initial space of attribute subsets to find

subset of interaction attributes as well as a function over each

of the found subsets. The suitable functions are then added

as new features to the original data set. The C4.5 learner

is then applied for the data mining process. So far only

nominal attributes are being processed, so that class labels and

binary/continuous attributes need to be normalized. A feature

is thereby a bit-string of length N , where each bit shows the

presence or absence of one of the N original attributes. Subsets

of these features are associated with a function defined over the

attributes in the subset. This allows a non-algebraic (operator-

free) representation of the original attributes. The output of the

associated functions fi for each subset Si = (xi1 , . . . , xim)
are basically the binary class labels. The labels are retrieved

from the training samples that match the subset. It can be

possible that both labels for one subset are occuring in the

training data. In this case a so called mixed-tuple label can

be associated with the subset (other labels are types pure and

unknown).

B. FeatureMine

Lesh, Zaki and Ogihara present FeatureMine [12] - another

well known feature construction technique for sequential data.

It combines two data mining paradigms: sequence mining

and classification algorithms. They understand sequences as

a series of events, e.g., AB → B → CD. There is also

a timestamp associated with each event. FeatureMine starts

by mining frequent and strong patterns within the sequences.

Frequency is defined by a threshold that is specified by the

user. Strong is defined as a confidence level that needs to be

over a user specific threshold. The found frequent sequence

patterns are pruned and selected using some heuristics. The

prevailing sequences lattices are stored in a matrix n ∗ m

database layout, whereby the rows n represents the sequences

and the columns m represent the prevailing sequence lattices.

The cells of the matrix contain and boolean indicator if a

sequence contains the corresponding sequence lattice. The

constructed features are associated with a class label and then

feed into the Naive Bayes classification algorithms.

C. Contribution

We propose an automated algorithm that is able to systemat-

ically construct and assess suitable new features based on data

sequences for binary classification tasks. It thereby is also able

to utilize the time dimension in a sequence of events in order

to access information, which can have a significant impact on

the discriminatory power of features. Thereby, the algorithm

transforms sequential data into tuple-based data in a way,

that allows standard algorithm such as Neuronal Networks,

Bayesian Belief Network, Decision Trees or Naive Bayes to

be applied on sequential data.

So far, feature construction techniques build new features by

combining columns of a data set (i.e., ’horizontally’). We also

apply these techniques with a larger variety of mathematical

operators. In addition to that, we are able to utilize the time

elapsed between data points. Our approach is novel, since we

include the vertical dimension of data, i.e., the rows of a

sequence, in order to create new features. This is achieved

by combining numeric values (or its probabilities in terms

of string attributes) of the corresponding occurrences. The

original values are aggregated during the feature construction

process. This allows to store sequence based information on

tuple level. As a result of that, the above mentioned standard

algorithms can be applied (not all are able to handle sequenced

data sets right away).

The proposed techniques are extending the given problem-

space and search for a combination of dimensions that allow to

separate the binary classes that need to be classified. It thereby

utilizes abstracted patterns that can occur in the data and is

able to validate the created combinations.

III. GENERAL CHARACTERISTICS OF SEQUENTIAL DATA

This work often refers to the term sequential data. Thereby,

we understand data, that can be ordered by time and can

be grouped to logical units (i.e., the sequence). A simple

example for that are sessions in an online shop. Customers

636

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

mopqP rs uUtlvT Wx zl{|lXUl }TRT
r t sid a1 a2 . . . ai slabel
r1 t1 sid1 a11 a21 . . . ai1 0

r2 t2 sid1 a12 a22 . . . ai2 0

r3 t3 sid1 a13 a23 . . . ai3 0

r4 t4 sid2 a14 a24 . . . ai4 1

r5 t5 sid2 a15 a25 . . . ai5 1

r6 t6 sid2 a16 a26 . . . ai6 1

. .

rm tm sidn a1m a2m . . . aim . . .

can view products and put them into their shopping basket.

Every action can be represented in a data set E as a row r

with several attributes ai ∈ E. Each row is provided with a

timestamp t. A row can be associated to a logical unit sid
(in our case the session id). There are n sequences sidn

in

a data set E. Each sequence sidn
consist of at least one row

r. The number of rows in a sequence equals to the length

of a sequence ls, so that 1 ≤ ls ≤ m. Table I depicts

the general schema of sequential data: It is important to

differentiate between the number of rows (or tuples) m of

a data set and the number of sequences n. Sequence sid1
, for

example, has a length ls of three and contains a matrix such

as sid1
=

a11 a21 . . . ai1
a12 a22 . . . ai2
a13 a23 . . . ai3

In order to use our proposed method, which is described in

detail in the following section, the user has also to annotate

the following columns on a data set:

• t: timestamp column that is used for temporal based

features. It is used to calculate the time elapsed between

the collected data points of a sequence.

• sid: sequence identifier column that is used for sequence

aggregation. It identifies events/objects that can be logi-

cally associated to one entity

• slabel: the proposed algorithm requires a binary column

as target value. This is needed in order to automatically

calculate the information gain of newly constructed fea-

tures. Every sequence must only have one label, i.e., a

customer in an online shop is either a returning customer

or not (it can not be both at the same time).

During the feature construction process, we will create a

feature table, which includes the sid, slabel and the created

features fp ∈ S. S is thereby defined as a set of constructed

features. Please refer to Table II, for a schema of such a table.

TABLE II: Schema of feature table

sid f1 f2 . . . fp slabel
sid1 f11 f21 . . . fp1 0

sid2 f12 f22 . . . fp2 1

.

sidn f1n f2n . . . fpn . . .

The data sequences are aggregated on a tuple-based level.

This enables the application of many standard classification

algorithms.

IV. FEATURE CONSTRUCTION FOR DATA SEQUENCES

Our goal is to extend and search the initial problem space

as much as possible. Problem space is thereby defined through

the primitive (original) attributes E, which are used to solve

a binary classification task. The accessible feature space ex-

pands, if more features are constructed. Albeit, this leads to

an increase in search time, it brings a higher chance to find

discriminatory features. In order to keep things as simple as

possible, we describe the algorithm in five different subsec-

tions, each describing a certain sort of features construction

technique. Please note that the initial attributes are, in a first

step, categorized in string and numeric attributes. Reason for

this is, that not all described functions are applicable on string

values. Note, that after each feature construction technique,

we normalize the newly generated features with min-max

normalization, depicted in (1). This provides an easy way

to compare values that are on different numerical scales or

different units of measure.

Normalized(ei) =
ei − Emin

Emax − Emin

, for Emax > Emin (1)

The first Subsection IV-A will show construction techniques

for both string and numeric attributes. The second Subsec-

tion IV-B describes construction techniques for string-only

attributes. After that we will focus in the third Subsection

IV-C on numeric-only construction techniques. Subsection

IV-D describes temporal based feature construction techniques.

This section is concluded by Subsection IV-E, which describes

feature construction based on sequence distribution.

A. Distinct occurrences based features

The general idea for this feature construction technique is

to analyze if different occurrences per sequence allows to

discriminate between the given labels. Basically, we aggregate

all sequences sidn
and count the distinct occurrences (so no

duplicates are counted) for each given string as well as for

each numeric attribute aim . The constructed features fp are

then collected in S, together with its corresponding sequence

identifier sid and the corresponding session label slabel. Please

note that the sequence identifier sid is unique in S (as opposed

to E). The corresponding pseudo-code is depicted in Fig. 1.

In order to assess the quality of the new constructed feature

fi, we calculate two measurements in order to assess the

quality. The first one is the average of all aggregated values

per label slabel ∈ {0, 1}. The normalized difference between

both averages is called split and is calculated as depicted in

(4).

avg0 = avg({fp ∈ S|slabel = 0}) (2)

avg1 = avg({fp ∈ S|slabel = 1}) (3)

splitfi =
|avg0−avg1|
avg0+avg1

(4)

The second measurement to assess the quality of the con-

structed features is the number of zero and NULL values for

each target label. This is a support measurement that denotes

if the achieved split value is based on many sequences or not.

637

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

~����� E // set of nominal and continuous attributes

slabel ∈ {0, 1} // binary label indication

Def: ai ∈ E // single attribute or a column in a data set

sid = (r1, r2, . . . , rm) // sequences of rows ri
S = ∅ // set of constructed features

for each ai ∈ E {
for each sid ∈ E {

fp := (|{ain}|, sid, slabel)
S := S ∪ fp
}

}
return S

Fig. 1: Pseudo-code feature construction based on distinct

occurences per label

So there could be the situation that a constructed feature has a

high split value, but might be useless since it cannot be used

very often due to large number of 0 values for the particular

features.

B. Concatenation based features

The purpose of this type of feature construction is to

highlight simpler interactions among data. We systematically

concatenate every string attribute in pairs of two and then

again, count the distinct value-pairs per sequence identifier.

Thereby, interactions such as, if a1 AND a2 have low value-

pair variety for label 0, but a high value-pair variety for label

1, are highlighted. Even for data sets with a high number

of different occurrences, this kind of feature construction

will highlight distinct occurrences between both labels. This

procedure is only applicable on string attributes. This approach

is similar to most common column combinations that is de-

scribed widely in the literature (e.g., [7], [16], [23]). However,

we once again use this technique on a different abstraction

layer since we aggregate via the sequence identifier sid. The

corresponding pseudo-code is depicted in Fig. 2.

The algorithm copies the input attribute list E for looping

purposes into a second variable E2. Right after the second

loop, it deletes the current attribute from the copied list

(E2 − a2i). Reason for this is to avoid the same features to

occur twice, due to symmetric properties. If, for example, we

combine column ai = X and aj = Y of a data set, we will

yield feature XY . This feature will have the same variability

per sequence as the vice versa feature Y X . The construction

of such features can be avoided by deleting the current feature

from the copied feature list E2.

C. Numeric operator based features

The basic idea of this feature construction technique is to

combine two numeric attributes with basic arithmetic operators

such as ’+’, ’-’, ’*’ or ’/’. Garcia [18] and Pagallo [15] for

instance are using similar techniques with fewer operators. In

addition to the repeated use of arithmetic operators we, once

again, use the sequence identifier attribute to aggregate the

constructed features for each sequence. Lets put this into an

Input: E // set of nominal attributes

slabel ∈ {0, 1} // binary label indication

Def: ai ∈ E // single attribute or a column in a data set

sid = (r1, r2, . . . , rm) // sequences of rows r

S = ∅ // set of constructed features

E2 = E // copy of E, used for looping

con() // concatenates two values

for each ai ∈ E {
//remove ai to avoid vice versa features

E2 := E2 − {ai}
for each aj ∈ E2 {

for each sid ∈ E {
fp = (|(con(ai, aj))|, sid, slabel)
S = S ∪ fp
}

}
}

return S

Fig. 2: Pseudo-code feature construction based on

concatenated string attributes

example: attributes ai and aj are combined with the multipli-

cation operator ’*’ for a sequence sid1
. The resulting feature

f = ai ∗aj is derived from the sequence sid1
=

ai1 aj1
ai2 aj2
ai3 aj3

The sequence consists of three data points. In the aggre-

gation phase, we sum up the multiplied attributes for all

sequences
∑

3
j=1fij . This process is repeated for all possi-

ble combinations of numeric attributes for all of the above

mentioned mathematical operators. The full pseudo-code is

depicted in Fig. 3. For this technique, we also avoid vice versa

features as described in previous Subsection IV-B.

D. Temporal axis based features

The general idea for this feature construction technique is to

use the time axis, which is given in each sequence by the time

indicator column t. This is applicable for both, numeric as well

as string attributes. However, for string attributes, there needs

to be some preparations done, which are explained further

down in this subsection. We continue here to describe the

process for numeric attributes. What the algorithm basically

does, is to multiply the time interval (e.g., days, hours,

minutes), between earliest data point and the current data

point with the numeric value of corresponding attribute, which

results in a weighting.

Table III shows this for two example sequences. We have

two attributes ai and aj for two sequences as well as the t

column. In order to calculate the temporal based feature for

attribute sequence sid = 1 in terms of attribute ai, we first have

to calculate the time between the earliest data point min(t)
with t ∈ sequence(sid) and each of the ’current’ data points t.

In Table III, this is depicted by the ∆time in days column.

The next step is to multiply the value of each ti in sid = 1 with

638

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

~����� E // set of primitive numeric attributes

slabel ∈ {0, 1} // single value label indication

Def: ai ∈ E // single attribute or a column in a data set

sid = (r1, r2, . . . , rm) // sequences of rows r

S = ∅ // set of constructed features

E2 = E // copy of E, used for looping

O // set of arithmetic operators

ls // length of a sequence sid
for each ai ∈ E {

//remove ai to avoid vice versa features

E2 := E2 − {ai}
for each aj ∈ E2 {

for each o ∈ O {
for each sid ∈ E {

fp = (
∑ls

i=1(ai o aj), sid, slabel)
S = S ∪ fp
}

}
}

}
return S

Fig. 3: Pseudo-code feature construction based on numeric

attributes

its corresponding delta time value: (ai1 ∗ 1, ai2 ∗ 11, . . . , ai4 ∗
24). The sum of this value is the new time based constructed

feature fp. This process is repeated for all sequences s and

for all numerical attributes E.

TABLE III: Example for creating temporal based features

sid t min(t)
per sid

∆time−
in days

ai aj slabel

1 01.01.2013 01.01.2013 1 ai1 aj1 0

1 10.01.2013 01.01.2013 11 ai2 aj2 0

1 15.01.2013 01.01.2013 16 ai3 aj3 0

1 23.01.2013 01.01.2013 24 ai4 aj4 0

2 24.01.2013 24.01.2013 1 ai5 aj5 1

2 28.01.2013 24.01.2013 5 ai6 aj6 1

2 30.01.2013 24.01.2013 7 ai7 aj7 1

However, there are two directions of including the time

for this feature construction technique. What we described

above puts a stronger emphasis on the recent history. It

is also possible to increase the weight of the past by us-

ing the (max date - current date) operator to calculate the

∆time in days column. An example of this is depicted in

Table IV. The complete pseudo code is depicted in Fig. 4.

The above mentioned techniques are applicable on numeric

attributes. For string attributes, it is possible to replace the

string by the posterior probability p(θ|x) (see also Hand [26],

pp. 117-118 and pp. 354-356). Thereby, θ represents the

probability of the parameters for a given evidence x. In our

example case, we have the distribution of our two labels as

parameters θ and occurrences of ai as evidence x.

Based on this the posterior probability can be calculated as

TABLE IV: Example for creating temporal based attributes

with a stronger emphasis on the distant past

sid t max(t)
per sid

∆time−
in days

ai aj slabel

1 01.01.2013 23.01.2013 24 ai1 aj1 0

1 10.01.2013 23.01.2013 14 ai2 aj2 0

1 15.01.2013 23.01.2013 9 ai3 aj3 0

1 23.01.2013 23.01.2013 1 ai4 aj4 0

2 24.01.2013 30.01.2013 7 ai5 aj5 1

2 28.01.2013 30.01.2013 3 ai6 aj6 1

2 30.01.2013 30.01.2013 1 ai7 aj7 1

Input: E // set of continuous/numeric attributes

t // time indicator column

slabel ∈ {0, 1} //binary label indication

Def: ai ∈ E // single attribute or a column in a data set

sid = (r1, r2, . . . , rm) // sequences of rows r

S = ∅ // set of constructed features

E2 = E // copy of E, used for looping

ls // length of a sequence sid
max() // returns max value of a set

for each ai ∈ E {
for each sid {

fp = (
∑ls

i=1((max
k=1,...,ls

(tk)− ti) ∗ ai), sid, slabel)

S = {S ∪ fp}
}
}

return S

Fig. 4: Pseudo-code feature construction of temporal based

attributes

depicted in (5)

p(slabel = 1|ai) =
p(ai|slabel=1)∗p(slabel=1))

p(ai)
(5)

In order to apply this for string based attributes, we can

construct new features f for string attributes as depicted in

(6)

fp =
ls
∑

i=1

(max
k=1,...,m

(tk)− ti) ∗ (p(slabel = 1|ai)) (6)

If there are occurrences in the data that have a great tendency

towards a particular label (i.e., having a high probability for

one label), we can make this pattern visible by multiplying

the posterior possibility with the temporal axis of the given

sequence.

However, if there are too many different occurrences, lets

say more than 1.000 different values per attribute, this tech-

nique could have problems dealing with very small proba-

bilities. So, it is recommended to take the logarithm of the

posterior probability for cases with high cardinality.

E. Sequence distribution based features

It is also possible that a discriminatory pattern evolves

around distributions of numeric values in the given sequences.

639

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

~����� E // set of continuous/numeric attributes

slabel ∈ {0, 1} // binary label indication

Def: ai ∈ E // single numeric attribute in a data set

sid = (r1, r2, . . . , rm) // sequences of rows r

S = ∅ // set of constructed features

E2 = E // copy of E, used for looping

O // set of arithmetic operators

for each ai ∈ E {
for each sid ∈ E {
fp = (STD DEV (sid), sid, slabel)
fp = fp ∪ (V AR(sid), sid, slabel)
fp = fp ∪ (AV G(sid), sid, slabel)
S = S ∪ fp
}

}
return S

Fig. 5: Pseudo-code feature construction based on sequence

distribution

Therefore, this feature construction technique is focusing on

patterns that are based on variability, standard deviation and

average. This construction techniques highlights patterns as

for example:

• one numeric value of a class is oscillating while the value

is stable for the other class

• the values for one class are more spread out than for the

other class

• the average value of an attribute per sequence of a certain

class is in general higher or lower, then of the other class

In principle, we calculate the above mentioned values for each

sequence of each numeric attribute in a data set. The full

pseudo-code is depicted in Fig. 5.

V. EXPERIMENTAL SETUP AND RESULTS

This section is divided into three subsection in which we

will first look at the technical framework we used during our

experiments. This is followed by a brief look at the data profile

and the corresponding classification task. The third subsection

will then compare and discuss the results of our experiments.

A. Technical Framework and Infrastructure

All implementations and experiments were carried out on

a Microsoft Windows Server 2008 R2 Enterprise Edition

(6.1.7601 Service Pack 1 Build 7601) with four Intel Xeon

CPUs E5320 (1.86 GHz, 1862 MHz). The available RAM

comprised of 20 GB installed physical memory and 62 GB

virtual memory (size of page file 42 GB). The widespread

freeware data mining software RapidMiner (version 5.2.008)

was used for the standard methods under comparison: Decision

Tree, Naive Bayes, Neuronal Network and Random Forrest

(for a closer description please also see Witten [25] pp. 191-

294, Han [3] pp. 291-337). The method Bayesian Belief

Network required the installation of the free RapidMiner

extension WEKA. We used the default parameters for all of

the above mentioned classification algorithms.

B. Data Profile

The data we used for our experiments was retrieved from

the DataMiningCup 2013. The training as well as the test data

set can be downloaded on the following site: http://www.data-

mining-cup.de/en/review/dmc-2013/. The given historical data

from an online shop consisting of session activities from

customers. The goal of the task is to classify sessions into

a buyer and a non-buyer class. The parameters of the train

data was predefined by the task of the DataMiningCup 2013

and are as follows:

• total number of rows: 429,013

• number of sessions: 50,000

• number of numeric attributes: 21

• number of string attributes: 2

The test data was also given by the DataMiningCup require-

ments, which had the following parameters:

• total number of rows: 45,068

• number of sessions: 5,111

• number of numeric attributes: 21

• number of string attributes: 2

Most of the given attributes are numeric. Please note that

there is no exact time column given. Therefore, we used a

artificial id column to map the temporal order of the various

sessions. We also used this column to calculate the temporal

based features described in Subsection IV-D.

C. Comparison of original attributes vs constructed features

sets

As a first step, we used the given primitive attributes to

solve the task. We used the accuracy measurement (7) due to

a similar label distribution (45 % to 55 %) and both labels are

associated with the same ’costs’ for misclassification.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

As it can be seen in Fig. 6, the Naive Bayes classification

algorithm was able to achieve better result than the base line

(the other algorithms defaulted and predicted label = 0 for all

sessions). The Bayesian Belief Networks are not applicable

for situations in which the same sid can occur several time

(therefore a accuracy rate of 0 %). In a next step, we used our

suggested feature construction algorithm in order to aggregate

the sessions and find useful features. During this process, a

grand total of 860 features were created:

• # of distinct occurrences based features: 19

• # of string concatenation based features: 2

• # of arithmetic based features: 760

• # of temporal axis based features: 20

• # of sequence distribution based features: 59

All constructed features were normalized with the min-max

normalization. They were, in a first series of experiments,

assessed by calculating the split value for each feature. The

640

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

�V�� 6: Accuracy rate comparison original data set with primitive attributes variations of constructed features.

�V�� 7: All constructed features ranked by their split value.

features were ranked by their split value, as it can be seen

in Fig. 7. The best feature achieve a split value of 0.843, the

lowest of 0.0003. In order to keep execution times low, we

chose only the top 32 constructed features from the ranked list

for our second run. Fig. 6 shows the impressive improvement

for the compared standard methods. Since the sid is unique

for the constructed features set, the Bayesian Belief Networks

are applicable.

However, focusing only on the split measurement for feature

selection is not enough. In a second range of experiments, we

only included those features, which achieved a minimum split

value of 0,70 and a had a minimum support value of 0,50. A

total number of 13 features met these criteria (10 operator

numeric and 3 sequence distribution based features). The

results for the best feature are shown in Fig. 6. It can be seen

that the smaller constructed feature space is able to perform

better or at least as good as the top 29 features only ranked by

split. This shows that complex problems with sequential data

can be simplified and solved by features construction. We can

also see that for this data set, operator numeric features turned

out to be the most benefiting ones. Reason for this is that

there were only two string attributes in the original data set as

well as the lack of a proper timeline (see also Section V-B).

This means that in this data set, the pattern to distinguish

between the two given labels is not that dependent on the

temporal dimension than in other data sets (e.g., [1]). This also

highlights the importance of the presented features selection

techniques. Without them, arbitrary and useless features would

have mislead the used classifiers.

VI. CONCLUSION

Data pre-processing and selection are important steps in the

data mining process. This can be challenging, if there is no

domain expert knowledge available. The algorithm proposed in

this work helps, not only to understand the patterns within the

data, but also, to simplify more complex data structures (such

as sequential data). This is achieved by various aggregation

and combination techniques that allow to increase the feature

space of a given data set and eventually, to highlight present

feature interactions. The feature construction algorithm can be

applied in conjunction with well known standard algorithms

and boosts classification performance in a big variety of fields

with similar specifications (such as the detection of credit

card fraud, network intrusions, bots in computer games). Its

systematic approach can also help domain experts to find

previously unknown interactions among data and therefore,

to get a better understanding of their domain.

VII. FUTURE WORK

Further ways for extending the features space could be to

implement more numerical features generated by logarithm,

exponential function or combinations of more than two at-

tributes. The algorithm itself could be optimized to assess

the quality of a candidate feature before actually calculating

641

I������������ ��	���� �� n
����� �� ��������, ��� 7 �� 3 � �, ���� ��1�, h�����������������	�����������������

2��4� � !"y#$%&' (y)*'&!#+� -*(.$+&/0 *50/#)%#//6/5' 8$'& 9:;9: < 888w$)#$)w!#%

VR� Another development direction could be to align the con-

structed features in a way, that would allow to classify data

without the help of one of the standard algorithms.

REFERENCES

[1] M. Schaidnagel and F. Laux, ”Feature construction for time ordered
data sequences,” in Proceedings of the Sixth International Conference on

Advances in Databases, Knowledge, and Data Applications, Chamonix,
April 20-24, 2014, pp. 1-6.

[2] W. Lee, ”A Data mining framework for constructing features and mod-
els for intrusion detection systems,” PhD thesis, Columbia University,
Graduate School of Arts and Sciences, 1999.

[3] J. Han and M. Kamber, Data mining: concepts and techniques 2. edition
pp. 48-97 second edition, San Francisco, Morgan Kaufmann, 2006.

[4] H. Liu and H. Motoda, Feature extraction, construction and selection: a

data mining perspective, Boston, Kluwe Academic Publisher, 1998.

[5] W. Lin, M. Orgun, and W.J. Graham, ”An overview of temporal data
mining,” in Proceedings of the 1st Australian data mining workshop,
Canberra, Australia, 2002, pp. 83-90.

[6] L. S. Shafti and E. Pérez, ”Constructive induction and genetic algorithms
for learning concepts with complex interaction,” in Proceedings of The

Genetic and Evolutionary Computation Conference, Washington, June
2005, pp. 1811-1818.

[7] L. S. Shafti and E. Pérez, ”Data reduction by genetic algorithms and non-
algebraic feature construction: a case study,” in Proceedings of: Eighth In-

ternational Conference on Hybrid Intelligent Systems, Barcelona, Septem-
ber 2008, pp. 573-578.

[8] H.P. Kriegel, K. M. Borgwardt, P. Krger, A. Pryakhin, M. Schubert, and
A. Zimek, ”Future trends in data mining,” in Data Mining and Knowledge

Discovery, vol. 15, no. 1, Springer, 2007, pp. 87-97.

[9] I. Guyon, S. Gunn, M. Nikravesh, and L. A. Zadeh, Feature extraction:

foundations and applications, Berlin, Springer, 2006.

[10] K. Cios, W. Pedrycz, R. W. Swiniarski, and L. A. Kurgan,Data mining:

a knowledge discovery approach, New York, Springer US, 2007.

[11] S. Markovitch and D. Rosenstein, ”Feature generation using general
constructor functions,” in Machine Learning, vol. 49, no. 1, Kluwer
Academic Publishers, 2002, pp. 59-98.

[12] N. Lesh, M. J. Zaki, and M. Ogihara, ”Scalable feature mining for
sequential data,” in IEEE Intell. Syst. No. 2, 2000, pp. 48-56.

[13] R. Setiono and H. Liu, ”Fragmentation problem and automated feature
construction,” in Proceedings of: 4th Conference on Data Mining and

Optimization (DMO), Langkawi, September 2012, pp. 53-58.

[14] Y. Yang, L. Cao, and L. Liu, ”Time-sensitive feature mining for temporal
sequence classification,” in Proceedings 11th Pacific Rim International

Conference, Wellington, December 2013, pp. 315326.

[15] G. Pagallo, ”Learning DNF by decision trees,” Machine Learning, pp.
71-99 Kluwer Academic Publishers, 1990.

[16] B. Zupan and M. Bohanec, ”Feature transformation by function decom-
position,” in Journal IEEE Intelligent Systems archive. Volume 13 Issue
2, March 1998, pp. 38-43.

[17] J.R. Quinlan, ”C4.5: programs for machine learning”. Morgan Kauf-
mann, 1993.

[18] D. Garcı́a, A. González, and R. Pérez, ”A two-step approach of feature
construction for a genetic learning algorithm,” in Proceedings of: IEEE

International Conference on Fuzzy Systems, Taipei, June 2011, pp. 1255-
1262.

[19] G. Dong and J. Pei, Sequence data mining, New York, Springer US,
2007.

[20] E. Bautista-Thompson and R. Brito-Guevara, ”Classification of data se-
quences by similarity analysis of recurrence plot patterns,” in Proceedings

of Seventh Mexican International Conference on Artificial Intelligence,
Tuxtla Gutirrez, Mexico, 2008.

[21] Z. Xing, J. Pei, and E. Keogh, ”A brief survey on sequence classifica-
tion,” in ACM SIGKDD Explorations Newsletter, No 1, 2010, pp. 40-48.

[22] D. Garcı́a, Antonio González, and R. Pérez, ”An iterative strategy
for feature construction on a fuzzy rule-based learning algorithm,” in
Proceedings of: 11th International Conference on Intelligent Systems

Design and Applications, Cordoba, November 2011, pp. 1235-1240.

[23] R. Alfred, ”DARA: data summarisation with feature construction,” in
Proceedings of: Second Asia International Conference on Modelling &

Simulation, Kuala Lumpur, May 2008, pp. 830-835.

[24] F. Sia and R. Alfred, ”Evolutionary-based feature construction with
substitution for data summarization using DARA,” in Proceedings of:

fourth Conference on Data Mining and Optimization (DMO), Langkawi,
September 2012, pp. 53-58.

[25] I. Witten and F. Eibe, Data mining : practical machine learning tools

and techniques 2. edition, San Francisco, Morgan Kaufmann, 2005, pp.
48-97.

[26] D. Hand, H. Mannila, and P. Smyth, Principles of Data Mining, MIT
Press, 2001.

