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Kurzfassung 

Die Dispositionssysteme dienen als unmittelbarer Bestandteil des Bahnbetriebs der 

Verminderung negativer Auswirkungen unvorhergesehener Ereignisse auf den Be-

triebsprozess. Aufgrund der zeitkritischen Entscheidungsfindung und der damit ver-

bundenen Komplexität der prozessintegrierten Disposition muss regelmäßig ein trag-

fähiger Kompromiss zwischen der oftmals durch die Rechentechnik determinierten 

Bearbeitungszeit einer Dispositionsaufgabe und der Qualität des Dispositionsergeb-

nisses gefunden werden. Dies trifft gleichermaßen für Software zur Simulation des 

Bahnbetriebes zu, um den Arbeitsaufwand betrieblicher Untersuchungen vertretbar 

zu gestalten. Dementsprechend ist es bei der Gestaltung von Disposition-Tools be-

sonders wichtig, einen ausgewogenen Ausgleich zwischen benötigter Rechenzeit 

und hinreichender Qualität des Ergebnisses zu finden. Mit dieser zentralen Zielstel-

lung wurde in dieser Dissertation ein Dispositionsoptimierungsalgorithmus entwickelt, 

welcher auf einem weit verbreiteten metaheuristischen Algorithmus, der Tabu-Suche, 

und der Integration in ein mehrstufiges Simulationsmodell basiert. Der verfolgte An-

satz basiert unmittelbar auf Erkenntnissen aus dem DFG-Projekt "Der Einfluss der 

Disposition auf den Zusammenhang zwischen Belastung und Betriebsqualität von 

Eisenbahnsystemen" und erweitert diese um ein universelles Mehrskalenmodell 

[Martin und Liang, 2014]. 

Das verwendete Mehrskalen-Simulationsmodell zeichnet sich durch eine kontinuierli-

che Skalierung aus, bei der Bahnbetriebsprozesse gleichzeitig auf mikroskopischer, 

mesoskopischer und makroskopischer Ebene simuliert werden. Für große Untersu-

chungsräume werden relevante Bereiche auf mikroskopischer Ebene betrachtet und 

die anderen Bereiche effizient auf mesoskopischen und makroskopischen Ebenen 

dargestellt. Darüber hinaus wurde eine Bewertungsmethode für das Mehrskalenmo-

dell entwickelt, um signifikante Werte verschiedener Infrastrukturelemente im Unter-

suchungsraum zu ermitteln. In Abhängigkeit von diesen signifikanten Werten kann 

das Simulationsmodell kontinuierlich zwischen drei Abstraktionsebenen migrieren, so 

dass die rechnerische Komplexität und die Genauigkeit der Simulationsergebnisse in 

diesem Modell gut ausgeglichen sind. 

Mit dem vorgeschlagenen Mehrskalen-Simulationsmodell kann die Reihenfolge der 

Zugbewegungen durch das einfachste Dispositionsprinzip (First Come First Serve) 
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oder eine vordefinierte Dispositionslösung bestimmt werden. „First Come First Ser-

ve“ wird eingesetzt, um grundlegende Dispositionslösungen zu generieren, während 

vordefinierte Dispositionslösungen genutzt werden, um optimierte Lösungen zu simu-

lieren und zu bewerten. Der vom Simulationsmodell unterstützte, auf der Tabu-Suche 

basierende Algorithmus zur Dispositionsoptimierung, ist in der Lage, die Basislösung 

durch eine Reihe von Dispositionsmaßnahmen iterativ zu optimieren, bis eine zufrie-

denstellende Lösung erreicht wird. Es konnte an einem Referenzbeispiel nachgewie-

sen werden, dass der entwickelte Algorithmus zur Dispositionsoptimierung eine sub-

optimale/optimale Lösung in einer begrenzten Zeit bereitstellen kann. 
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Abstract 

The dispatching system serves as an integral component of railway operation control 

and aims to eliminate the negative impacts of unforeseen events occurred during the 

operation process. On account of the time-critical decision-making and the associat-

ed complexity of the process-integrated dispatching, an acceptable compromise must 

be found regularly between the processing time of a dispatching task, which is often 

determined by the computer technology, and the dispatching solution quality. This 

applies equally to simulation software of railway operation, in order to make the work-

load of operational investigations acceptable. Accordingly, it is particularly important 

in the design of dispatching tools to find a good balance between required computa-

tion time and sufficient quality of results. With this central goal, a dispatching optimi-

zation algorithm was developed in this dissertation, which is based on a widely used 

metaheuristic algorithm – tabu search – and the integration in a multi-scale simula-

tion model. The approach is based directly on the findings from the DFG project “The 

influence of dispatching on the relationship between capacity and operation quality of 

railway systems” and expands these by a universal multi-scale model [Martin and 

Liang, 2017]. 

The multi-scale simulation model is characterized by continuously scaling, in which 

railway operation processes are simulated on microscopic, mesoscopic and macro-

scopic levels concurrently. For large investigation areas, the relevant areas are pre-

sented on microscopic level, while the others are presented on more efficient 

mesoscopic and macroscopic levels. Furthermore, an assessment method for the 

multi-scale model was developed to determine the significant values of different in-

frastructure elements in the investigation area. Depending on the significant values, 

the simulation model can migrate continuously between three abstraction levels, so 

that the computational complexity and the accuracy of simulation results are well-

balanced. 

With the proposed multi-scale simulation model, the sequence of train movements 

can be determined by the simplest dispatching principle (First Come First Serve) or a 

predefined dispatching solution. “First Come First Serve” is employed to generate 

basic dispatching solutions, while predefined dispatching solutions are used to simu-

late and evaluate optimized solutions. The simulation model-supported tabu search-
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based algorithm for dispatching optimization is able to optimize the basic solution by 

a series of dispatching measures iteratively until a satisfactory solution is obtained. It 

could be proved by means of a reference example that the developed algorithm for 

dispatching optimization can provide a suboptimal/optimal solution in a limited time. 
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1 Introduction 

A railway system is a complex system consisting of infrastructure, vehicle and opera-

tion components. With the assistance of a railway operation control system, railway 

traffic is managed according to an operation plan (usually named as schedule). In 

order to optimize the use of infrastructure network capacity and ensure railway ser-

vice quality, the operation plan has to be carefully prepared in advance. During the 

operation process, especially in railway networks with complex topology and high 

traffic flow, disturbances are likely to occur, which may result in severe deviations of 

train movements from the pre-designed operation plan. Once conflicts have occurred 

or potential conflicts between trains have been detected, suitable dispatching actions 

should be executed to minimize the negative impacts of the disturbances. 

Due to the inherent complexity of dispatching tasks, railway dispatching is nowadays 

still carried out in large part manually in real time, and the quality of the dispatching 

decisions highly depends on the experience of the dispatchers. In order to support 

dispatchers, some dispatching assistant tools have been developed or are being de-

veloped; such as a computer supported dispatching assistant KE/KL+ZLR, which 

was developed within the project Regler [Molo, 2017]. Dispatching tasks cover a wide 

field, such as train path and train priority sequence rescheduling, crew rescheduling 

and rolling stock circulation [Corman and Meng, 2013]. Based on the prior art the ex-

isting research has mainly attempted to solve a certain aspect of the problem, and a 

fully-automatic dispatching system is not yet realistic. The dispatching model devel-

oped in this dissertation aims to help dispatchers to optimize train paths and train 

priority sequences in case of disturbances during the operation process. 

In the development of dispatching models, two aspects need be considered: model-

ling of railway operation and the dispatching optimization algorithm. The former is 

indispensable to accurately assess the impact of disturbances, and the latter is em-

ployed to find solutions with minimal impact. Based on the previous research of the 

IEV (Institute of Railway and Transportation Engineering at Universität Stuttgart, in 

German: Institut für Eisenbahn- und Verkehrswesen der Universität Stuttgart), syn-

chronous simulation is employed to model railway operations. Simulation models can 

be classified into three types according to their levels of details of description: mi-

croscale, mesoscale and macroscale models. In order to balance accuracy and com-



Introduction 

 

20 Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 

 

putation complexity a multi-scale simulation model was developed in this dissertation. 

This type of model was firstly proposed in [Cui and Martin, 2011], in which simulation 

is concurrently carried out on microscopic, mesoscopic and macroscopic levels. The 

multi-scale model is applied to both generations of basic dispatching solutions and 

evaluation of optimized dispatching solutions. Dispatching optimization is a typical 

combinatorial optimization problem, and exhaustive search becomes impractical 

when there is a large set of possible dispatching solutions. To speed up the search, a 

widely used metaheuristic algorithm – tabu search – was adopted as the basis of the 

dispatching optimization algorithm. In this algorithm, the optimization of train paths 

and train priority sequences are solved as a whole. 

This dissertation addressed multi-scale simulation and dispatching optimization in 

railway operation, which shared the same fundamentals as the DFG project [Martin 

and Liang, 2017]. In the DFG project, a widely used heuristic algorithm – greedy al-

gorithm – was employed as the basis of the dispatching optimization algorithm. 

Based on new findings from this project, the dispatching optimization algorithm was 

accordingly modified and expanded, and a more powerful metaheuristic algorithm – 

tabu search – was chosen as the basis for the algorithm in this dissertation. Taking 

the advantage of the special memory structures of tabu search, the search scope of 

the optimization algorithm is broadened and the problem of trapping in local optimal 

is solved. Furthermore, within the framework of the DFG project, a method of system 

state classification was developed, and the influences of dispatching on capacity and 

operation quality were systematically evaluated. However, these two topics will not 

be covered in this dissertation. For more details it is referred to [Martin and Liang, 

2017]. The structure of this dissertation is organized as follows: 

⎻ Chapter 2 provides an overview of the railway operation control systems and 

the dispatching process in reality, along with an overview of railway operation 

modelling methods and dispatching optimization techniques in the existing re-

searches. 

⎻ The components and workflow of a synchronous simulation model on different 

description levels (microscopic, mesoscopic and macroscopic level) is elaborat-

ed in Chapter 3. In this model, train movements are implicitly regulated by the 

simplest dispatching principle – First Come First Serve. 
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⎻ An assessment method for the multi-scale model is developed in Chapter 4, 

which determines the significant value of each area in the entire investigated 

area, and accordingly decides the proper description level of each area. 

⎻ The multi-scale simulation model developed in Chapter 3 is modified and ex-

panded in Chapter 5, in order to integrate the function of priority sequence con-

trol into the model. In the multi-scale simulation model with priority sequence 

control train movements are explicitly regulated by a pre-given dispatched time-

table. 

⎻ In Chapter 6, a tabu search based dispatching optimization model is developed, 

and its performance is analyzed based on a series of test cases of a reference 

example. The main achievements in this dissertation and potential topics for fur-

ther research are summarized in Chapter 7.  
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2  Basics of Railway Operation Control and Dispatching 

The railway operation control system serves as a fundamental part of a railway sys-

tem, and it guides train movements on infrastructures in a safe and efficient manner 

to realize the operation plan. To eliminate the unforeseen disturbances during the 

operation process, the dispatching module is indispensable as an essential compo-

nent element of the railway operation control system. In order to design an automatic 

dispatching optimization system, it is necessary to have a basic understanding of 

railway operation control and dispatching. So in this chapter, an overview of the rail-

way operation control system and the dispatching process will be provided in Section 

2.1 and 2.2, and an overview on modelling methods of railway operation and dis-

patching optimization techniques will be given in Section 2.3 and Section 2.4, respec-

tively. 

2.1 Railway Operation Control 

Railway traffic control is an important module of railway operation control. On the sig-

nal-controlled railway lines in Germany two types of traffic control authorities are in 

service at present: traffic control with local operators (in German: Fahrdienstleiter) 

and centralized traffic control (CTC). 

2.1.1 Conventional Lines with Local Operators 

On conventional signal-controlled railway lines, railway traffic control is realized with 

the assistance of local interlocking towers nearby tracks (Figure 2-1). The interlocking 

machines located in interlocking towers operate all points and signals in their respec-

tive operational territories, and interlocking towers are staffed with local operators. 

There are two types of local operators (train director and leverman) and two types of 

interlocking towers (command tower and dependent tower) at the German system. 

Command interlocking towers are staffed with train directors (e.g. Interlocking Tower 

1 in Figure 2-1) and dependent towers with levermen (e.g. Interlocking Tower 2 in 

Figure 2-1). The train director is in full charge of issuing train movement authorities 

and communicating with dispatchers (i.e. running messages) and neighboring train 

directors (i.e. train messages). A leverman’s duties are to set points and signals for 

train movements in accordance with the command of train directors, and to be re-

sponsible for authorizing shunting movements. On lines with high traffic flow, local 
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operators are coordinated through dispatchers to avoid delays and congestions (e.g. 

Interlocking Tower 1, 2 and 3), while on lines with low traffic flow, the traffic is con-

trolled without dispatchers (e.g. Interlocking Tower 4). 

 

Figure 2-1: Traffic Control on Conventional Signal-controlled Lines (modified from [PT1, 2016]) 

2.1.2 CTC Lines 

For CTC systems, railway lines are equipped with an electronic interlocking system, 

which enable the operation control to be executed remotely by operators working in 

control centers (Figure 2-2). Theoretically local operators (levermen) are only neces-

sary for shunting tasks in large stations or junctions with complex topology and high 

traffic flow (e.g. the station on the left side in Figure 2-2). Furthermore, the conven-

tional railway traffic control system can be well integrated with the CTC system (e.g. 

the station on the right side in Figure 2-2).  
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Figure 2-2: Centralized Train Control (modified from [PT1, 2016]) 

More specifically, the traffic regulation in Germany consists of two levels as shown in 

Figure 2-3 [DB NETZ AG, 420.02]: the network operation control center (in German: 

Netzleitzentrale) and seven regional operation control centers (in German: Be-

triebszentrale). The former is staffed with network coordinators (in German: Netz-

koordinator), whose duty is to check and coordinate the necessary railway operations 

at the supra-regional and cross-border levels. The latter is staffed with regional dis-

patchers (in German: Bereichsdisponenten), traffic controllers (in German: Zugdispo-

nent or Zuglenker) and operators (in Germany, Fahrdienstleiter/ örtlich zuständiger 

Fdl). Regional dispatchers are responsible for monitoring all train movements in the 

entire region, while traffic controllers are responsible for solving train path conflicts in 

the subordinate regulating areas. Operators are full in charge of authorizing both train 

and shunting movements [Pachl, 2002]. 
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Figure 2-3: The Structure of German Railway Traffic Regulation 

For both traffic control systems, especially CTC characterized by a large control terri-

tory, the implementation of a computer-supported dispatching optimization tool can, 

on one hand, improve the operation quality and, on the other hand, increase the in-

frastructure exploration rate and avoid redundant infrastructure investments. 

2.2 General Process and Basic Methods of Railway Dispatching 

Computer-based dispatching systems are used to assist dispatchers to identify and 

solve conflicts during the operation process. In general, the dispatching process can 

be summarized into five steps as shown in Figure 2-4 (similar descriptions of dis-

patching process can be found in [Cui, 2010], [D’Ariano, 2008] and [Lüthi, et al., 

2007]). The train describer system equipped on conventional lines with local opera-

tors and CTC lines can support dispatchers in monitoring the current traffic situation. 

A train describer system can identify the current location of trains and occupation in-

formation of block sections, and show the information on the display on the panel of 

the operator or dispatcher [Pachl, 2002]. Based on the information provided by the 

train describer system, the current and the forecasted traffic situations can be dis-

played in the form of a traffic diagram in order to assist the dispatcher in identifying 

and solving conflicts. In the current practice, the traffic situation is mostly predicted in 

a relatively simple manner, such as the parallel-shift prediction method, in which de-

pending on the current position and delay of a train, the subsequent time-distance-

line of the train can be parallel-shifted to a later position. This may, however, result in 

unrealistic results. Traffic prediction on different levels of accuracy has been studied 

in a few works of research: in [D’Ariano, 2008], fixed running and dwell times are 
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used in the prediction module without consideration of actual traffic situations, while 

in [Kecman, 2014], the running time and dwell times are dynamically estimated by 

using the predetermined functional dependence of process time on actual delays. 

 

Figure 2-4: General Dispatching Process 

Once conflicts are identified, the conflict should be classified primarily. Six types of 

conflicts are defined in [Martin, 1995] as follows: 

⎻ Conflicts at track sections or routes 

⎻ Conflicts at scheduled stops 

⎻ Connection conflicts 

⎻ Timetable conflicts 

⎻ Dispatching conflicts 

⎻ Deadlock conflicts 

Conflicts at track sections or routes and scheduled stops belong to occupancy con-

flicts. This kind of conflict occurs when the requested infrastructure resources of a 

train are being occupied by another train, or if several trains request the same infra-

structure resources concurrently. The resolution of occupancy conflicts will be dis-

cussed in detail in Chapter 6. Connection conflicts refer to the risk of transferring not 

only passengers or goods but also staff, locomotives, cars and coaches from a de-

layed feeder train to its connected train. Timetable conflicts are caused by the devia-
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tion of train movement from the timetable, which may potentially result in conflicts 

with the other trains. Dispatching conflicts are a result of the inconsistency of the dis-

patching solutions from different levels or on the same level of the dispatching sys-

tem. Deadlock conflicts refer to the situation in which several trains are blocked by 

each other and none of them can move further. Deadlock avoidance has been stud-

ied in depth in [Pachl, 1993] [Pachl, 2011] [Cui, 2010]. The general handling proce-

dures for the six types of conflicts were discussed in [Martin, 1995].  

The basic methods of railway dispatching can be summarized into two categories: 

time-related dispatching and location-related dispatching [Martin, 1995]. Time-related 

dispatching is most commonly used to ensure the punctuality of trains. In the design 

of an operating schedule, recovery times should be added to the pure running time 

between scheduled stops and the dwell time at scheduled stops, to enable trains to 

compensate for minor delays during the operation process. There are two kinds of 

recovery time for running time [Pachl, 2002]: 

⎻ Regular recovery time, which is 3-7% of pure running time and used to com-

pensate the influence of regular train delays. 

⎻ Special recovery time, which is a fixed supplement to the pure running time of 

a concerned section, and is used to compensate for the influence of mainte-

nance or construction works on the concerned section. 

Once a train is delayed during the operation process, the train can shorten the run-

ning time or dwell time according to the location of the train at that time and pre-

defined recovery times. In addition, time-related dispatching includes not only short-

ening but also extension of running time and dwell time [Cui, 2010]. For instance, 

unscheduled waiting time may be designated to the train to be overtaken when per-

forming an overtaking task in a station. 

By location-related dispatching, a new train path consisting of a series of reference 

points will be designated to the dispatched train [Martin, 1995]. A reference point 

could be a station route, a track or a line section. Location-related dispatching in-

cludes overtaking, passing, replatforming, detours, shortening scheduled train paths 

and so on, and it may be necessary when an infrastructure element (e.g. signal, point 

or track) is disturbed (e.g. system failure) or unavailable (e.g. unscheduled mainte-

nance) or if the requested infrastructure resources are being occupied by other trains.  



Basics of Railway Operation Control and Dispatching 

 

28 Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 

 

Time-related and location-related dispatching can be used independently or be inte-

grated together to solve conflicts. For the resolution of a concrete conflict, the selec-

tion of a specific dispatching method or a combination of dispatching methods should 

depend on the location of the conflict and the surrounding traffic conditions. This will 

be elaborated in Chapter 6. 

2.3 Railway Operation Modelling 

As the basis of a dispatching assistant tool, special attention should be paid to the 

railway operation modelling in the design phase. Depending on the level of details of 

the description, the models can be classified into microscale, mesoscale and mac-

roscale models. The models also can be classified based on the implemented model-

ling methods. For the sake of clarity, the description level of the model is chosen as 

the main line of this section, and the dispatching optimization approach (i.e. combina-

tion of modelling method and optimization algorithm) will be explained in Section 2.4. 

Microscale simulation models have been widely used in practice, including examples 

such as the software RailSys (by Leibniz Universität Hannover and Rail Management 

Consultants) [RMCon, 2016], OpenTrack (by Eidgenössische Technische 

Hochschule Zürich) [OpenTrack, 2016] and LUKS (by VIA Consulting and Develop-

ment GmbH) [VIA-Con, 2016]. To simulate railway operation processes, two kinds of 

simulation models are available: synchronous (e.g. RailSys and OpenTrack) and 

asynchronous (e.g. LUKS). Synchronous models update all train movements simul-

taneously step by step, and asynchronous models update train movements succes-

sively in the timetable according to the priority of the trains [Siefer, 2008]. Restricted 

by the different processing techniques employed in these two kinds of models, dis-

patching strategies implemented in asynchronous models are more stringent com-

pared to those implemented in synchronous models (for more comparison of syn-

chronous and asynchronous simulation models it is referred to Section 2.4.2.1). 

Hence, it has been decided that synchronous models are preferable for the sake of 

this dissertation. 

For the design of simulation models, performance issues should be considered. With-

in a small study area, the railway operation processes can be simulated precisely 

with a microscopic model. Within a large study area, the computational complexity on 

the microscopic level is not yet acceptable, so a simulation model should be de-
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signed especially to reduce complexity. There are two main patterns to reduce the 

computational complexity: decomposition and abstraction. 

With decomposition patterns, a network is subdivided into several local areas. Local 

solutions are generated separately, and then these solutions are coordinated on a 

higher lever to obtain a globally feasible solution. The key point of decomposition is 

the coordination between the local solutions. In [Corman et al., 2010; Corman et al., 

2011a], a coordination theorem based on an alternative graph model is proposed as 

constraints on borders of local areas, and the algorithm is tested with examples from 

different numbers of local areas and with different levels of deviation. The test results 

show that a globally feasible solution can be difficult to obtain in case of large traffic 

prediction horizons and severe deviations occur when there are more than nine local 

areas. Therefore, the best way to coordinate a large number of local areas is still an 

open question. Due to this reason, an abstraction pattern will be used in this disserta-

tion. 

In the case of abstraction patterns, microscopic data are abstracted to the macro-

scopic level, and macroscale models are capable of covering a large study area. 

However, macroscale models abstract the whole study area in the same manner, 

and the simplification of significant subareas may lead to infeasible solutions on the 

microscopic level. Therefore a multi-scale model is proposed in this dissertation, 

which includes microscopic, mesoscopic, and macroscopic levels. The concept of a 

multi-scale model contains two aspects: different levels of details of both the infra-

structure and the operating program. The graph theory is a powerful method to model 

the infrastructure; it is based on an arbitrary location in a railway network defined as 

a node, and the connection between the two nodes are defined as a link [Radtke, 

2014]. In [Cui and Martin. 2011], on the macroscopic level, a node represents a sta-

tion or junction, and a link represents a line between the stations or junctions. On the 

mesoscopic level, a node represents a route node, and a link represents a track or 

track group. On the microscopic level, a node represents a point, crossing or signal, 

and a link represents a track or block section. Depending on the abstraction level of 

the infrastructure, the details of the operating program also vary. In [Kettner et al., 

2003], the dispatching algorithm and occupation dependencies are simulated pre-

cisely on the microscopic level, because running times and minimum headways can 

be calculated accurately; on the macroscopic level, running times are given for each 
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train group on a certain link, and the minimum headways are determined for each 

pair of train groups that run on the same link, both of which cannot be adjusted in 

real-time. In [Kecman et al., 2012], on the macroscopic level, the capacity of a station 

is assumed to be infinite, and the constraint on open tracks can be abstracted into 

three levels: trains on the same open track are separated with minimum headways, 

and their conflicts on this open track and conflicts of trains from different open tracks 

on merging or intersecting points are ignored; trains on the same open track are sep-

arated with a minimum headway, their conflicts on this open track are considered; 

and conflicts of trains from different open tracks on merging or intersecting points are 

ignored; all three of these aspects are considered. The constraints on the lowest ab-

straction level (the last case) are similar to that of the macroscopic model in [Cui, 

2010]. In [Kecman et al., 2012], the comprehensive evaluation shows the model with 

the constraints on the lowest abstraction level can capture train-reordering actions 

quite well, but the average knock-on delay calculated with this model varies greatly 

from the values calculated with the microscopic model. Macroscopic models may fail 

to detect certain conflicts depending on the abstraction level. 

In this dissertation, a multi-scale model characterized by continuous scaling will be 

developed. This type of model was first proposed in [Cui and Martin, 2011]. In this 

model, core regions whose accuracy is important with respect to rescheduling pro-

cesses will be described on a microscopic level, and the surrounding areas will be 

described on mesoscopic and macroscopic levels. The model can migrate continu-

ously between the different abstraction levels depending on the changing significant 

values of the nodes or links. An important indicator of a significant value is the prop-

agation scope of conflicts, which can be assessed with delay propagation models. 

Delay propagation in different scopes has been studied in a few research projects: 

delay propagation in stations was investigated in [Yuan, 2006], and delay propaga-

tion in large scopes was researched in [Goverde, 2010] and [Siefer and Radtke, 

2006]. Due to the time limitations of this research, and the complexity of the delay 

propagation algorithm, simplified methods will be employed to assess propagation 

scopes instead of accurate delay propagation models for practical use. With the mul-

ti-scale model solution, accuracy and computational complexity will be well balanced. 
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2.4 Dispatching Optimization of Railway Operation 

For the design of a dispatching optimization module, the dispatching objective should 

be clearly defined initially. Regardless of whether dispatchers or dispatching assis-

tant tools are being considered, a clearly defined dispatching objective is helpful to 

improve the quality of dispatching solutions. Several dispatching objectives used in 

recent research will be reviewed in Section 2.4.1. In order to optimize the operation 

process based on the defined dispatching objective, a suitable dispatching optimiza-

tion approach should be accordingly designed. A survey of the recent approaches on 

railway dispatching optimization will be presented in Section 2.4.2. 

2.4.1 Dispatching Objective 

In order to guide dispatchers, four dispatching objectives are defined in [DB NETZ 

AG, 420.0105] as follows:  

⎻ “quickest possible restoration of the regularity or control state in the operation 

process”; 

(„schnellstmögliche Wiederherstellung der Planmäßigkeit bzw. des Regelzu-

standes in der Betriebsdurchführung“) 

⎻ “ensuring the fluency of operation”; 

(„Gewährleistung der Flüssigkeit des Betriebes“) 

⎻ “improvement of the overall punctuality of all trains”; 

(„Verbesserung der Gesamtpünktlichkeit aller Züge“) 

⎻ “maximum utilization of the capacity of tracks and nodes”.  

(„maximale Auslastung der Kapazität von Strecken und Knoten“) 

The objectives in this guideline are general verbal expressions without quantitative 

indicators. Different dispatchers may have different understandings of the objectives 

in a certain situation, and it is difficult to ensure the fulfillment of the objectives in real-

time operation. Some researchers have attempted to define objective functions quan-

titatively, such as the adjusted total malus (the penalty value of train delays) in [IEV, 

2011; Cui et al., 2012], the punctuality and fluency of operation in [Martin, 1995; Cui, 

2010], and the total knock-on delay in [D'Ariano, 2008]. Additionally, under different 

dispatching conditions, the importance of objectives may differ. In [Martin, 1995] vis-
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cosity1 is introduced to evaluate dispatching conditions. Punctuality is the primary 

objective when viscosity is low, and fluency of operation is the primary objective 

when viscosity is high. In [Luethi et al., 2007], the maximization of productivity is the 

primary objective when small delays occur, and the maintenance of the circulation 

plan is the primary objective when a situation causing reduced availability of vehicle 

or infrastructure occurs. In [Larsen et al., 2013] minimization of the maximum knock-

on delay is chosen as the dispatching objective function. In this dissertation, a simpli-

fied form2 of the dispatching objective defined in [Martin, 1995] will be used.  

2.4.2 Dispatching Optimization Approach 

In general the dispatching optimization approaches can be classified into three types: 

simulative, analytical and heuristic approach according to [Martin, 2002] and [Cui, 

2010] (similar classification also can be found in [Corman and Meng, 2013]). 

2.4.2.1 Simulative Approach 

The simulative approach intends to simulate the operation process as in reality. 

Along with the progress of the simulation process, future traffic situations are predict-

ed iteratively. Once a conflict is detected, the integrated dispatching system will be 

trigged to solve the conflict. The conflict resolution mechanism depends on the pro-

cessing technique of the simulation model (synchronous or asynchronous). 

In the synchronous simulation model, all train movements are processed simultane-

ously and interact with each other immediately. The simulation process cannot be 

rolled back, and the system must have the ability to respond to all kinds of situations 

immediately [Siefer, 2008]. Therefore, the task of integrated dispatching systems is to 

imitate the dispatcher to make decisions in case of conflicts. This can be built based 

on rule-based dispatching. In the simplest manner, the First Come First Served 

                                            
1
 Viscosity: the total knock-on delay of all the conflicted trains divided by the number of infrastructure 

elements of the dispatching concerned network. 

2
 The timetables to be optimized in this dissertation do not include recovery times. For the ease of 

calculation, one part of the dispatching objective function related to recovery times is excluded (see 

Section 6.2). The calculation of objective function value is implemented as a separate module, so the 

objective function can be easily updated or replaced in further applications. This module does not af-

fect the design of the overall optimization algorithm. 
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(FCFS) dispatching principle can be implemented. In practice, some general dis-

patching rules have been established in [DB NETZ AG, 420.02], such as “if trains are 

equivalent, the faster trains always have priority over slower trains”. These rules have 

been more or less implemented in the existing simulation tools. For instance, in the 

software RailSys several dispatching measures are defined, which include overtaking, 

replatforming, dwell time extension and so on. A dispatching measure is triggered 

only if the anticipated delay caused by a conflict exceeds a pre-defined minimum 

lateness [RMCon, 2007]. The minimum lateness can be manually configured by us-

ers, and case specific configuration is necessary to improve the performance of the 

dispatching module [Marin et al., 2015]. At the end of the simulation, a conflict-free 

dispatched timetable will be derived. 

In the asynchronous simulation model, the trains are inserted in the time-distance 

diagram successively according to their priorities [Siefer, 2008]. A dispatching assis-

tant tool based on asynchronous simulation called ASDIS (Asynchronous Dispatch-

ing) was developed in the research project DisKon [Shaer et al., 2005]. In the ASDIS 

method, the trains are ranked based on their priorities. The highest-ranking group is 

inserted initially, and the trains of the same group (with the same priority) ought to be 

inserted simultaneously. After a group of trains is introduced, conflicts among the 

equal or higher-ranking trains will be identified and chronologically solved. In the pro-

cess of conflict resolution, knock-on conflicts are likely to occur, which also need to 

be added in the conflict list and resolved with the others. Partial priority is applied, 

which allows a lower-ranked train to take precedence over a higher-ranked train if the 

delay of the lower-ranked train exceeds a predefined threshold value [Jacobs, 2008]. 

When all conflicts are resolved, the next group of trains will be inserted. By repeating 

this process, a conflict-free dispatched timetable will be generated as the final result. 

Duo to the different processing techniques, the synchronous and asynchronous 

simulation approaches have their advantages and disadvantages. Because all train 

movements are simultaneously processed using the time-step method in synchro-

nous simulation, a deadlock problem may arise during the simulation process, espe-

cially on infrastructures with bidirectional operations. Deadlock avoidance algorithms 

should be additionally implemented to regulate train movement (see [Pachl, 2011] 

and [Cui, 2010]). This will increase the required computation time. However, owing to 

the simultaneity of the update of train movements, it is possible to implement more 
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flexible dispatching strategies in the model [Siefer, 2008]. On the contrary, for asyn-

chronous simulation models, the deadlock problem does not exist in general, but the 

implemented dispatching strategies are more stringent compared to its counterpart. 

To combine their advantages, the convergence of the synchronous and asynchro-

nous simulation models has emerged in the current research [Jacobs, 2008]. 

2.4.2.2 Analytical Approach 

With analytical approaches, train operations are mathematically formulated, and the 

objective function defines the dispatching strategy (see Section 2.4.1). Recently 

many mathematical models based on different modelling methods have been devel-

oped, such as linear programming (e.g. [Martin, 1995] and [Cui, 2010]), queuing the-

ory (e.g. [Marinov and Viegas, 2011]), and alternative graph model (e.g. [Corman et 

al., 2011b] and [D’Ariano and Pranzo, 2008]) and so on. For the details of each mod-

elling method it is referred to the aforementioned literatures, and for an overview of 

mathematical railway dispatching models it is referred to the literature reviews pre-

sented in [Alwadood et al., 2012] [Cacchiani et al., 2013] and [Corman and Meng, 

2013]. For analytical models, the most challenging task is to find the optimal solution. 

Due to the strict safety requirements of railway operation, quantities of constraint 

equations are necessary in an analytical model. Solving such kind of problem with 

exact methods (e.g. linear programming technique, column generation) is highly 

complex (even NP-hard (non-deterministic polynomial-time hard)) and time-

consuming. Therefore, quite a few of the recent studies have chosen a heuristic ap-

proach to solve this problem. 

2.4.2.3 Heuristic Approach 

The heuristic approach is employed to find an approximate solution when solving an 

optimization problem with exact methods is impractical or impossible. Through the 

heuristic approach, the solution quality and computational complexity can be well 

balanced. Examples of the heuristic approach include knowledge-based expert sys-

tems, tabu search, simulated annealing, genetic algorithms, swarm intelligence and 

so on. 

The knowledge-based expert system typically consists of two parts – knowledge 

base and rules engine. The domain knowledge is stored in the knowledge base, and 



Basics of Railway Operation Control and Dispatching 

 

Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 35 

 

formulated and organized within the rules engine, such as using the IF-THEN logic. 

When a specific situation occurs, the relevant knowledge is directly withdrawn from 

the knowledge base according to the pre-defined rules. A fuzzy knowledge-based 

railway dispatching support system is developed in [Fay, 2000]. The knowledge was 

acquired at the dispatching control center, and the Fuzzy Petri Net approach is used 

to establish the rule base. The algorithm is tested on an exemplary case of connec-

tion conflicts, and provides promising results. In the project RUDY (Regional Enter-

prise-spreading Dynamic Sampling of Timetable Information, Reservation and Opera-

tion in Public Transport) [Tritschler et al., 2005], an accident-management system for 

regional public transport is developed based on an expert system. When an accident 

or traffic jam occurred, the system is capable of suggesting possible detour routes 

based on the matched pre-recorded historical decisions. The quality of an expert sys-

tem highly relies on the quality and completeness of the acquired knowledge. 

The genetic algorithm is a typical population-based metaheuristic algorithm. In a ge-

netic algorithm, a population of individuals is evolved iteratively through selection, 

recombination and mutation in order to find a satisfactory solution. The population in 

each iteration is called a generation, and each individual refers to a candidate solu-

tion. In each generation, all candidate solutions are evaluated with a pre-defined ob-

jective function, and the best among them will be kept to parent new candidates by a 

crossover/mutation operator for the next generation. This process is executed itera-

tively until a termination specification is fulfilled (e.g. a fixed number of generations). 

The railway dispatching algorithm in [Fan, 2012] is developed based on genetic algo-

rithm. The solution is represented by the sequences of trains on infrastructure re-

sources. The initial population is randomly generated based on the sequences of 

trains derived from the FCFS principle. Total delay cost is chosen as the dispatching 

objective function. In each generation, pairs of the best solutions are selected to par-

ent new solutions by a two-point crossover operator. For instance, on a certain track 

section the sequence of trains is denoted by L1 for Solution 1 and L2 for Solution 2. 

Two points X and Y are randomly selected in these two lists, and the parts between 

X and Y in L1 and L2 will be swapped. Accordingly, two new offspring are generated. 

In the simple testing scenarios, optimal dispatching solutions are found using Fan’s 

algorithm. 
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Tabu search is a local search-based metaheuristic algorithm. Following the local 

search procedure, the immediate neighbors of the initial solution are enumerated and 

evaluated. A neighbor is then selected to replace the initial solution. This process is 

executed iteratively until certain terminate specification is fulfilled. In order to avoid 

being trapped in suboptimal regions, an adaptive memory structure is introduced in 

tabu search. After a solution is visited, it is marked as “tabu” and will be prohibited to 

be revisited in the next period of time. A macroscopic railway dispatching optimiza-

tion algorithm based on tabu search is developed in [Cui, 2010]. Total weighted trip 

time is the dispatching objective function, and changing of train sequences on open 

track sections are used as the basic move operations for tabu search. Both short 

term memory (intensification strategy) and long term memory (diversification strategy) 

are implemented. In [D’ Ariano, 2008] another approach is proposed. Tabu search is 

employed to optimize the paths of trains. After the paths of all trains are selected, the 

sequences of trains on infrastructure resources will be optimized by the Branch and 

Bound algorithm. These two processes are executed iteratively in sequence. Based 

on the previous IEV research, tabu search is preferred as the basis of the dispatching 

optimization algorithm developed in this dissertation (see Chapter 6).  
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3 Multi-scale Simulation Model 

To balance the computational complexity and accuracy of the simulation model, a 

multi-scale simulation model characterized by continuous scaling is developed in this 

chapter, in which simulation is concurrently carried out on microscopic, mesoscopic 

and macroscopic levels. In this model, the significant areas are simulated on a micro-

scopic level, and the other areas are simulated on more efficient mesoscopic and 

macroscopic level. The processing technique – synchronous simulation – is adopted 

in this dissertation. In [Cui, 2010] the framework of a synchronous model is devel-

oped, and, more significantly, Banker’s algorithm is employed to avoid deadlocks in 

the simulation process. In order to enable the multi-scale simulation model can trans-

form smoothly among different descripted levels, the developed microscopic, 

mesoscopic and macroscopic model followed CUI’s framework of the synchronous 

model, and the integrated Banker’s algorithm was also adopted. The microscopic 

simulation model will be elaborated in Section 3.1, and the mesoscopic and macro-

scopic simulation models will be elaborated in Section 3.2. The multi-scale simulation 

model to be described in this chapter was developed within the framework of the 

DFG project [Martin and Liang, 2017]. 

3.1 Microscopic Simulation Model 

In the modelling of railway systems, both the structural and the behavioral perspec-

tives should be considered. The structural perspective is concerned with the funda-

mental components constructing the simulation model (Section 3.1.1), and the be-

havioral perspective with the workflow of the simulation model, which reflects the in-

teraction mechanism between the components (Section 3.1.2). 

3.1.1 The Components of Synchronous Simulation 

The fundamental components of the synchronous simulation model include infra-

structure resources, simulation performers and simulation tasks, which, in reality, cor-

respond to infrastructure, trains and timetables of railway operation. 

3.1.1.1 Infrastructure Resources 

To depict a railway network mathematically, the link and node model established in 

[Radtke, 2014] was used, which has been proven to be a powerful tool to describe 

complex railway infrastructure networks in practice. A node is defined as an arbitrary 
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location in a railway network, and a link as a connection between two nodes. Nodes 

are differentiated into various types (signals, points, timing points etc.), and links 

store all relevant information (e.g. speed, gradient, radius etc.). The link and node 

model will not be elaborated herein, for further details it is referred to [Radtke, 2014; 

RMCon, 2007]. 

To prepare the input data for the simulation model, a given node and link mode de-

picted infrastructure network is decomposed into many individual infrastructure re-

sources according to the method developed in [Martin et al., 2012]. An infrastructure 

resource is defined as a basic structure, which is the maximum occupation unit al-

lowed to be occupied by only one train simultaneously on a microscopic level. Basic 

structures are requested, allocated and released as a basic unit in the simulation 

process. The boundaries of a basic structure could be block signals, signal clearing 

points or route clearing points3. The software PULEIV developed by IEV (Institut für 

Eisenbahn und Verkehrswesen der Universität Stuttgart) [Martin et al. 2008a; Martin 

et al. 2008d; Martin et al. 2008c] can be used to decompose an infrastructure net-

work automatically into its basic structures. An example of basic structures partition-

ing is shown in Figure 3-1. As it is seen in the figure, a turnout is depicted by the 

node and model with five nodes and the links between them. Because the bounda-

ries of the turnout (i.e. node 1, node 3 and node 5) are either signal clearing points or 

route clearing points, the turnout is divided into a basic structure directly. After the 

basic structure is established, the internal nodes (i.e. node 2 and node 4) will be re-

moved, and new edges will be created to replace the existing links. An edge is de-

fined as a connection between two boundaries of a basic structure. An edge can also 

be regarded as a combination of a series of links in the same direction. The attributes 

of a new edge including length, permissible speed, gradient and radius can be de-

duced from the included links. There are two categories of basic structures: junction-

type and non-junction-type basic structure. The basic structures, containing turnouts 

                                            
3
 In [Pachl, 2016] a block signal is defined as “a signal that governs train movements into a block sec-

tion”; a signal clearing point is defined as “the point at the end of the overlap a train must have cleared 

completely to release the block section in approach of the signal”; a route clearing point is defined as 

“A point that a train must have cleared completely before a locked route or sections of a locked route 

may be released”. 
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or crossings, belong to the junction-type (the basic structure marked in green in Fig-

ure 3-1), and the others, containing only tracks, belong to the non-junction-type (the 

basic structure marked in light red in Figure 3-1). 

 

Figure 3-1: An Example of Basic Structure Partitioning Algorithm (source: [Martin and Liang, 2017]) 

The prepared input data on edges and basic structures should include the following 

information:  

Edge Attributes 

⎻ Edge ID (an unique integer identifier) 

⎻ Starting node ID and end node ID 

⎻ Length [m] (sum of the lengths of the included links) 
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⎻ Permissible speed [km/h] (the lowest speed limit among the included links4) 

⎻ Gradient [‰] (positive for uphill and negative for downhill, weighted average 

radius of the included links) 

⎻ Radius [m] (weighted average radius of the included links) 

Basic Structure Attributes 

⎻ Basic structure ID (an unique integer identifier) 

⎻ IDs of the included edges (at least two edges, one in each direction) 

⎻ Whether, it is a free resource5 [true or false] 

After the edges and basic structures of an infrastructure network have been deter-

mined, the input data on block sections can be prepared. A block section is com-

prised of a series of edges in sequence, and the corresponding basic structures are 

also included as an attribute of the block section. Moreover, the automatic train pro-

tection (ATP) system of the block section should be designated. In practice, infor-

mation about movement authorities and speed limits is transmitted by ATP systems 

between track and train, in order to trigger automatic braking if valid limits (e.g. stop 

signals and speed limits) are violated. In the simulation model, the ATP system is 

used to control train movement, which will be elaborated in Section 3.1.2. There are 

two kinds of ATP systems:  

⎻ Intermittent ATP, 

⎻ Continuous ATP. 

In the intermittent ATP data is transmitted at discrete points located along the track. 

A simple form of the intermittent ATP system is implemented within this approach, 

which only takes the main signal and distant signal into consideration as the data 

transmission points. The block section equipped with the intermittent ATP is bounded 

by two main signals. In the case of continuous ATP the data is transmitted continu-

ously through cab signaling system, and block markers installed along the trackside 

                                            
4
 The permissible speed on an edge is conservatively calculated. Nevertheless, other calculation 

methods can also be applied. For instance, the weighted average speed limit of the included links is 

also an appropriate option. 

5
 A free resource is defined as a virtual resource extended from the investigated infrastructure network 

for the convenience of modelling, which any train is free to enter at any time (no need of movement 

authority). 
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are used to indicate the boundaries of the block sections. In the transition zone from 

the intermittent ATP (continuous ATP) to the continuous ATP (intermittent ATP), the 

boundaries of a block section could be a main signal and a block marker, with such a 

block section also belonging to the block section equipped with continuous ATP. As 

an example, block sections equipped with the two different ATP systems are shown 

in Figure 3-2. 

 

Figure 3-2: Example of Block Sections (modified from [Martin and Liang, 2017]) 

In the intermittent ATP system, the main signal only provides information about the 

block section behind the signal, and the distant signal gives the approach information 

for the next signal, as shown in Figure 3-3. The position of the distant signal influ-

ences the control of train movements (see Section 3.1.2). In the simulation model, 

the distant signal is not expressed as a concrete infrastructure node, but rather as 

the distance from itself to the entrance signal of the block section in which it is physi-

cally located (shown in bold type in Figure 3-3). On railway lines with short block sec-

tions where the distant signal and the entrance block signal are located at the same 

location (e.g. main signal 9 and distant signal D11 in Figure 3-3), the distant signal 

distance should be set to 0. 
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Figure 3-3: Calculation of Distant Signal Distance (modified from [Martin and Liang, 2017]) 

For the block section belonging to intermittent ATP, the block overlap is also mod-

elled as an attribute of the block section. An overlap consists of a series of basic 

structures (e.g. Overlap 1 and Overlap 2 in Figure 3-4), and is identified by the block 

section which the overlap belongs to operationally (e.g. Block 1 in Figure 3-4) and the 

block section where the overlap is physically located6 (e.g. Block 2 or Block 3 in Fig-

ure 3-4). Thus, depending on the path of a train (e.g. Train 1 runs towards Block 2 or 

Block 3 in Figure 3-4 ), the corresponding overlap could be chosen. Furthermore, on 

railway lines with block overlaps, the control length of a main signal includes the 

block section and the corresponding overlap (e.g. control length of signal 7 in Figure 

3-4), which means that the block section and the corresponding overlap should be 

requested as a whole in the simulation process, and that the train movement into the 

block section is only authorized when all basic structures in the control length are 

released. 

                                            
6
 In this approach, one overlap is considered for one running direction. In special cases that a block 

section has several overlaps in various lengths for different situation dependent speeds in a running 

direction, an additional identification attribute about train types should be introduced for the overlap, 

besides the two attributes about block sections as mentioned above.  
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Figure 3-4: Example of Overlaps 

The prepared data on block sections should include the following information: 

Block Section Attributes 

⎻ Block section ID (an unique integer identifier) 

⎻ IDs of the included edges and corresponding basic structures 

⎻ ATP system (intermittent or continuous) 

⎻ Distant signal distance (in case of intermittent ATP system) 

In case the block sections of an infrastructure network are given, train paths can be 

determined. A train path consists of a sequence of block sections that guide a train 

run through the infrastructure network. In particular, the first and last block sections in 

the sequence always contain exclusively free resources, where train movements start 

and terminate. Furthermore, although the trajectories of two train paths may be iden-

tical, the train paths may not be treated as the same if they are composed of different 

block sections. As an example two train paths are determined based on a given net-

work sketch in Figure 3-5, and train path 1 can be used by trains compatible with in-

termittent ATP system and train path 2 can be used by train compatible with continu-

ous ATP system. The prepared data on train paths should include the following in-

formation: 

Train Path Attributes 

⎻ Train path ID (an unique integer identifier) 

⎻ IDs of the included block sections 
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Figure 3-5: Example of Train Paths (modified from [Martin and Liang, 2017]) 

With edges, basic structures, block sections and train paths any given infrastructure 

network can be described in the simulation model, and the data will be loaded at the 

beginning of a simulation. 

3.1.1.2 Simulation Performers 

A simulation performer refers to a train in the simulation model. A train is defined as a 

locomotive or self-propelled vehicle, along with or coupled to one or more vehicles 

with the authority to operate on main tracks in accordance to rules specified for train 

movements [Pachl, 2002]. In this dissertation, only train movements are considered, 

and shunting movements are not taken into account. In the simulation workflow de-

scribed in Section 3.1.2, a train serves as a basic entity to request, occupy and re-

lease infrastructure resources (basic structures), and the requesters and occupiers of 

an infrastructure resource will be updated at a certain time interval according to the 

simulation logic. At the beginning of each simulation, the characteristics of the inves-

tigated trains should be loaded, which include the following attributes: 
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⎻ Train ID (an unique integer identifier) 

⎻ Train production type (passenger train or freight train) 

⎻ Maximum speed of the train [km/h] 

⎻ Mass of the traction unit [kg] 

⎻ Length of the traction unit [m] 

⎻ Mass of a vehicle [kg] 

⎻ Length of a vehicle [m] 

⎻ Number of vehicles 

⎻ Braking acceleration [m/s2] 

⎻ Compatible ATP system (intermittent or continuous) 

⎻ Parameters of the traction unit resistance 

⎻ Tractive effort - speed diagram [N – km/h] 

Based on these attributes of trains and the relevant attributes of the infrastructure, 

the train dynamics, especially the acceleration phase, can be described, which is 

fundamental for the estimation of the forward distance of a train in one time interval 

(see Appendix I). The fundamental equation of running dynamics is shown in Formu-

la (3-1) (see also [Wende, 2003]). 

𝐹𝑇𝑟(𝑣) − 𝐹𝑅(𝑣) = ρ · m · a𝑇𝑟 (3-1) 

Notation used: 

𝐹𝑇𝑟(𝑣): Tractive effort at wheel at a given velocity 𝑣 [N] 

𝐹𝑅(𝑣): Train resistance at a given velocity 𝑣 [N] 

ρ:  Coefficient of increase in mass [-] 

m:  Mass of the train [kg] 

a𝑇𝑟:  Acceleration rate [m/s2] 

The tractive effort at the wheel generates the power to accelerate the train, and is 

normally depicted by a tractive effort – speed diagram as shown in Figure 3-6. The 

tractive effort – speed diagram can be described with a set of hyperbolic or parabolic 

formulas and each of them is defined only for a certain speed interval (the detailed 

description can be found also in [ Brünger and Dahlhaus, 2014; Quaglietta, 2011]). 
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Figure 3-6: Tractive Effort – Speed Diagram 

Moreover, the tractive effort – speed diagram can also be described with a series of 

support points, where each support point refers to a concrete speed and the corre-

sponding tractive effort [RMCon, 2007]. The support points are arranged very closely, 

so the curve between two points can be approximated by a straight line. An example 

of the support points is shown in Table 3-1. 

From 𝑣 [km/h] From 𝐹𝑇𝑟 [N] To 𝑣 [km/h] To 𝐹𝑇𝑟 [N] 

0.000 98885 4.600 98875 

4.600 98875 9.200 98855 

… … … … 

96.000 21704 100.00 21386 

Table 3-1: Example of Support Points of Tractive Effort-Speed Diagram 

The second description method was implemented in this simulation model. As an 

example, the procedure to determine the tractive effort 𝐹𝑇𝑟(𝑣𝑘) at a given speed 𝑣𝑘 

is shown in Figure 3-6. Firstly, the two immediately adjacent support points 𝑣𝑘−1 and 

𝑣𝑘+1 should be determined, and the corresponding tractive efforts 𝐹𝑇𝑟(𝑣𝑘−1) and 
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𝐹𝑇𝑟(𝑣𝑘+1) can then be read. Next, the tractive effort 𝐹𝑇𝑟(𝑣𝑘) can be calculated us-

ing the linear interpolation method: 

𝐹𝑇𝑟(𝑣𝑘) =  𝐹𝑇𝑟(𝑣𝑘−1) ·
𝑣𝑘+1 − 𝑣𝑘

𝑣𝑘+1 − 𝑣𝑘−1
+ 𝐹𝑇𝑟(𝑣𝑘+1) ·

𝑣𝑘 − 𝑣𝑘−1

𝑣𝑘+1 − 𝑣𝑘−1
 (3-2) 

The train resistance at a given speed 𝐹𝑅(𝑣) includes traction unit resistance, vehicle 

resistance and line resistance. For a traction unit (including multiple units), the re-

sistance is normally calculated with the following formula [Brünger and Dahlhaus, 

2014]: 

𝐹𝑅𝑡(𝑣) = 𝑔 · 𝑚𝑇 · (𝑎0 + 𝑎1 · 𝑣) + 𝑎2 · 𝑣2 + 𝑎2𝑟 · 𝑣𝑟
2 (3-3) 

Notation used: 

𝐹𝑅𝑡(𝑣): Traction unit resistance at a given speed v [N] 

g:  Earth gravity constant 9.81 m/s2 

mT:  Mass of traction unit [kg] 

v:  Speed of the train [km/h] 

vr:  Relative speed between air and the train [km/h] (i.e. 10 km/h) 

𝑎0, 𝑎1, 𝑎2, 𝑎2r: Parameters of traction unit resistance 

The Formula (3-3) can also be transformed into a simplified form (3-4) [RMCon, 

2007], which was the form implemented in the simulation model. 

𝐹𝑅𝑡(𝑣) = 𝑎 + 𝑏 · 𝑣 + 𝑐 · (𝑣 + 𝑣𝑟)2 (3-4) 

Notation used: 

𝑎, 𝑏, 𝑐: Parameters of traction unit resistance 

Regarding vehicle resistance, the calculation methods for passenger trains and 

freight trains are different. For passenger trains, Sauthoff's formula is used [Sauthoff, 

1932]: 

𝐹𝑅𝑤𝑝 = (1.9 + 𝑐𝑏 · 𝑣) ·
𝑚𝑤 · 𝑔

1000
+ 0.047 · (𝑛𝑤 + 2.7) · 𝐴𝑓 · (𝑣 + 𝑣𝑟)2 (3-5) 

Notation used: 

𝐹𝑅𝑤𝑝:  Vehicle resistance for passenger trains [N] 

𝑐𝑏:  Coefficient for the number of axles (0.0025 for vehicles with 4 axles) 
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𝑚𝑤:  Mass of all vehicles [kg] (sum of the mass of each vehicle) 

𝑛𝑤:  Number of vehicles 

𝐴𝑓:  Cross-sectional area of the vehicles [m2] (assumed as 1.45) 

For freight trains, Strahl's formula [Strahl, 1913] is used to approximate the vehicle 

resistance: 

𝐹𝑅𝑤𝑓 =
𝑚𝑤 · 𝑔

1000
· (𝑐𝑎 + (0.007 + 𝑐𝑚) ·

(𝑣 + 𝑣𝑟)2

100
) (3-6) 

Notation used: 

𝐹𝑅𝑤𝑓:  Vehicle resistance for freight trains [N] 

𝑐𝑎:  Coefficient for axle adhesion (1.4 for roller bearings) 

𝑐𝑚:  Value for air resistance (0.04 for closed wagons) 

Line resistance is mainly caused by the gradient of lines7. The grade resistance of a 

train is approximately calculated by: 

𝐹𝑅𝑙𝑔 = 𝑚 · 𝑔 · 𝑛 · 1000 (3-7) 

Notation used: 

𝐹𝑅𝑙𝑔:  Grade resistance of a train [N] 

𝑚:  Mass of the whole train 

𝑛:  Gradient [‰] 

Eventually, the tractive effort and the resistances can be integrated into the Formula 

(3-1) to calculate the acceleration rate of a specific train: 

𝐹𝑇𝑟(𝑣𝑘) − 𝐹𝑅𝑡(𝑣) − 𝐹𝑅𝑤 − 𝐹𝑅𝑙𝑔 =  ρ · m · a𝑇𝑟  (3-8) 

                                            
7
 The curve resistance is relatively small, so it is left out in this approach. The detailed calculation 

method can be found in [Pachl, 2002; Brünger and Dahlhaus, 2014]. 
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The effort represented by the left-hand side of the Formula (3-8) cannot be fully uti-

lized by a train, because the rotating parts of the train will consume some of the effort. 

This phenomenon is described by the coefficient of increase in mass ρ. Furthermore, 

the coefficients for the traction unit and vehicle are different due to the different phys-

ical characteristics, from which the coefficient for the whole train can be derived: 

ρ =
(ρ𝑇 · 𝑚𝑇 + ρ𝑊 · 𝑚𝑊)

𝑚𝑇 + 𝑚𝑊
 (3-9) 

Notation used: 

ρ𝑇: Coefficient of increase in mass for a traction unit 

ρ𝑊: Coefficient of increase in mass for a vehicle 

To calculate deceleration rate, it is only necessary to replace the tractive effort with a 

braking force (Formula (3-10)). The quantity of braking force is negative, because the 

direction of braking force is opposite to the train running direction.  

𝐹𝐵𝑟 =  𝜌 · 𝑚 · 𝑎𝐵𝑟 (3-10) 

With  

𝑎𝐵𝑟: Braking acceleration rate [m/s2] 

In this section, the basics of train running dynamic are elaborated, which will be used 

to estimate the forward distance of a train in one time interval under the operational 

and infrastructure-related constraints elaborated in Appendix I. 

3.1.1.3 Simulation Tasks 

A simulation task describes the actions to be performed by a train during operation, 

and is derived from a pre-provided timetable. A given simulation task is always bound 

to a certain train, and all the movements of the train in the investigated area are de-

fined as one simulation task. A simulation task could include the following information: 

⎻ Available train paths for the included train 

⎻ Scheduled stops along each train path 

⎻ Scheduled departure time and dwell time at each stop 
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⎻ Specific scheduled stop for turnaround (only in case the train is scheduled to 

turn around at the stop) 

With regards to the departure times at scheduled stops, because the minimum run-

ning time is implemented in this approach, only the departure time at the initial stop in 

the investigated area or at the boundary of the investigated area is necessary. The 

departure times at the subsequent stops along the train path can be easily deduced. 

A simulation task has three states - created, running and terminated - in its entire 

lifecycle. At the beginning of a simulation, the simulation tasks will be loaded as the 

infrastructure resources and simulation performers. The state of each simulation task 

is initialized as “created” at this moment. During the simulation process, when the 

execution time exceeds the scheduled departure time of a train at the initial stop or 

the boundary of the investigated area, the state of the corresponding simulation task 

will be changed into “running”. Only the simulation tasks with the state of “running” 

are allowed to be performed in the simulation process. When the whole train has left 

the investigated area (the train is completely located on the free resource at the end 

of the train path), the state of the corresponding simulation task will be changed into 

“terminated”. The terminated simulation task will not be considered in the further sim-

ulation process. 

The infrastructure resources, simulation performers and simulation tasks serve as the 

structural basis of the simulation model, and they interact with each other during the 

simulation process. The interaction mechanism will be elaborated in Section 3.1.2. 

3.1.2 The Workflow of Synchronous Simulation 

The workflow of synchronous simulation developed in [Cui, 2010] is adopted in this 

dissertation, and is shown in Figure 3-7. In the workflow, a synchronous simulation is 

represented as a series of single processing steps triggered by a certain time interval, 

and three activities - request resources, allocate resources and proceed with simula-

tion tasks – are to be conducted in each step. A single processing step is executed 

iteratively at each time interval along with the increasing accumulated execution time. 

At the beginning of each single processing step, the terminate specification will be 

checked. If all simulation tasks are accomplished, the simulation process will be ter-

minated. In [Cui, 2010] several terminate specifications are enumerated, for instance, 

that a simulation process terminates if a predefined time period is exceeded. In this 
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approach only the aforementioned terminate specification is implemented. At the end 

of a simulation, important information recorded during the simulation process could 

be outputted as protocols, such as time-distance diagrams and blocking times for 

infrastructure basic structures, which are basic data for further result evaluation or 

optimization. 

 

Figure 3-7: The Workflow of Synchronous Simulation [Cui, 2010] 

3.1.2.1 Request Resources 

In a single processing step, the resources to be required in the current time interval 

should be determined. The resource requirement of a simulation task is dependent 

on the current ATP system, action, physical position and speed of the considered 

train.  

The current ATP system refers to the intermittent or continuous ATP system intro-

duced in Section 3.1.1.1. Regarding the action of a train, four actions including “Run”, 

“Pre-stop”, “Stop” and “Turnaround” are defined to support the modelling of train 

movements with different characteristics. For each simulation task, the action of the 

included train is initialized to “Run” at the beginning of a simulation. Only if the train 

has obtained a block section designated as a scheduled stop, can the action be 

changed into “Pre-stop”. At the moment the train is successfully stopped at the 

scheduled stop, the action should be changed into “Stop”, and the dwell time will start 
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to be counted. After the scheduled dwell time is fulfilled, the turnaround task may be 

executed if necessary, and the action will be changed into “Turnaround”; otherwise 

the action should be changed into “Run”. The “Turnaround” action implies the com-

pletion of a turnaround task, and that the corresponding train is ready for departure. It 

can be seen that only the trains with actions of “Run” and “Turnaround” have the 

chance to request new resources in one time interval. Moreover, the current position 

and speed of the train should also be considered to determine the resource require-

ment in the current time interval.  

Eventually, the situations in which the resource requirement is necessary are sum-

marized into 8 cases, and in the other cases, there is no need of resource require-

ments. Because these 8 cases are defined for resource requirement, a certain Case 

X will be named as Request-Case X in the following context. As shown in Figure 3-8, 

only the simulation tasks whose state is “Running” is allowed to be executed in the 

current time interval, and the 8 request-cases are divided into two groups according 

to the current ATP system of the involved trains. The two groups of request-cases will 

be elaborated separately in the following context. 

 

Figure 3-8: Process of Resource Requirement (source: [Martin and Liang, 2017]) 

For the first group of request-cases (Request-Case 1 to Request-Case 4), the in-

volved trains are regulated by intermittent ATP. In Request-Case 1, the train speed is 

not equal to zero, and action of the train is “Run”. The current position of train head is 
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located between the entrance signal of the last current block section8 and the dis-

tance signal for the next block section9 as shown in Figure 3-9. In the current time 

interval, the train head will pass the distance signal for the next block section. The 

forward distance of the train in the current time interval can be estimated by the 

method that has been described in Appendix I. The required resources include the 

basic structures covered in the next block section and the overlap, if the next block 

section still belongs to intermittent ATP system; otherwise only the basic structures 

covered in the next block section are included. In all 8 request-cases with resource 

requirements, the simulation model can automatically detect the ATP system used by 

the new required block section and decide whether overlaps should be included. 

Therefore, the issue of overlaps will not be particularly explained in the following con-

text. 

 

Figure 3-9: Resource Requirement – Request-Case 1 (source: [Martin and Liang, 2017]) 

In Request-Case 2, the train speed is not equal to zero, and the action of the train is 

“Run”. The current position of the train head is located between the distance signal 

                                            
8
 The block sections physically occupied by a train at a certain time instance are defined as the current 

block sections for the train, where the last section corresponds to train head location and the first to 

train rear location. For the train completely located in one block section, the first and last current block 

sections are the same. 

9
 The next block section or subsequent block sections in this approach are always counted from the 

last current block section. 



Multi-scale Simulation Model 

 

54 Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 

 

for the next block section and the rear signal of the last current block section, as 

shown in Figure 3-10. In the current time interval, the train head will pass the dis-

tance signal for the after-next block section. The basic structures covered in the after-

next block section are requested. In this request-case, the next block section must be 

absolutely occupied by the train, otherwise the train should decelerate in the current 

time interval and eventually stop before the rear signal of the last current block sec-

tion, which means the passage of the distant signal for the after-next block section 

cannot occur. The resources already occupied by the train will not be requested 

again in the resource requirement process. 

 

Figure 3-10: Resource Requirement – Request-Case 2 

In Request-Case 3, the train speed is equal to zero, and the action of the train is 

“Run”. It means that the train is performing an unscheduled stop or has just finished a 

scheduled stop in front of a main signal as shown in Figure 3-11. The required re-

sources are the basic structures covered in the next block section. 

 

Figure 3-11: Resource Requirement – Request-Case 3 

On lines with short block sections, the entrance signal of a block section and the dis-

tant signal for its next block section can exist at the same location. An example is 

shown in Figure 3-12: A train (Z1) is performing an unscheduled stop directly in front 

of the entrance signal of a block section (Block 1). Following the aforementioned re-

source requirement procedure for Request-Case 3, Z1 should request Block 1 in the 

current time interval. If the required resources are successfully allocated to Z1, the 

train head position should be updated depending on the estimated forward distance 

(marked in red in Figure 3-12). At the end of the current time interval, the train head 
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has fully passed the distant signal for Block 2. As a result, Block 2 will be omitted in 

the resource requirement process in the next time interval. 

 

Figure 3-12: Stopping Point Adjustment (I) 

In order to ensure the logical integrity, the stopping point of the train is adjusted. The 

new stopping point is not located directly in front of the signal, but maintains a certain 

distance from the signal as shown in Figure 3-13. The distance is calculated as the 

forward distance in one time interval when the concerned train reaccelerates after the 

unscheduled stop (marked in red in Figure 3-13). After the stopping point adjustment, 

the train head will pass the distant signal in the next time interval (marked in blue in 

Figure 3-13), and the resource requirement will certainly not be omitted. One time 

interval is taken as 1 second in this simulation model, and in most cases the maxi-

mum acceleration rate of a train is less than 1 m/s2. The position of the stopping point 

is moved less than 0.5 meters, and the influence of the adjustment is negligible. 

 

Figure 3-13: Stopping Point Adjustment (II) 

In Request-Case 4, the action of the train is “Turnaround”. A special feature of this 

request-case is that some basic structures beyond the train head in the last current 

block section may not yet be occupied by the train, which should also be included in 

the required resources besides the basic structures belonging to the next block sec-

tion as shown Figure 3-14.  
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Figure 3-14: Resource Requirement – Request-Case 4 

For the second group of request-cases (Request-Case 5 to Request-Case 8), the 

involved trains are regulated by continuous ATP. In Request-Case 5, the train speed 

is not equal to zero, and the action of the train is “Run”. Moreover, the estimated po-

sition of the train head at the end of the current time interval will not exceed the rear 

signal or block marker of the last current block section, or the ATP system of the next 

block section is not intermittent ATP. In Request-Case 5 only the resource require-

ment process in continuous ATP territory is considered, and the introduction of the 

additional constraint is intended to distinguish Request-Case 5 from Request-Case 6, 

which describes the resource requirement process in the transition zone between 

continuous ATP and intermittent ATP territory.  

In addition to the three constraints above, the nominal stopping point should pass a 

block marker in the current time interval as shown in Figure 3-15. The required re-

sources are the basic structures belonging to the block section behind the block 

marker. A nominal stopping point is different from a real stopping point (e.g. a stop 

signal), and a train does not have to stop before a nominal stopping point. If the spe-

cific data of a train (i.e. current position, speed and other train attributes) is provided, 

the braking curve of the train can be calculated (e.g. the curves marked in red in Fig-

ure 3-15). The endpoint of the braking curve is defined as the nominal stopping point.  

In order to determine the movement of the nominal stopping point, two braking 

curves should be calculated. As shown in Figure 3-15, the first braking curve is calcu-

lated based on the assumption that the train starts to brake at the beginning of the 

current time interval, while the second braking curve is calculated based on the as-

sumption that the train starts to brake at the end of the current time interval. If the 

nominal stopping point is moved from one block section to another block section in 
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the current time interval, new resource requirement is necessary to ensure safe train 

separation. 

 

Figure 3-15: Resource Requirement – Request-Case 5 (source: [Martin and Liang, 2017]) 

In Request-Case 6, the current train speed is not equal to zero, and the action of the 

train is “Run”. The train head will pass the rear signal of the last current block section, 

and the intermittent ATP system is used in the next block section. An example of the 

transition zone between the two ATP territories is demonstrated in Figure 3-16. If the 

train head will pass the distant signal for the after-next block section, the basic struc-

tures included in the after-next block section should be required. 

In Request-Case 7, the current train speed is equal to zero, and the action of the 

train is “Run”, which indicates that the train is performing an unscheduled stop or has 

just finished a scheduled stop in front of a block signal or block marker. The basic 

structures included in the next block section should be required in the current time 

interval. In Request-Case 8, the action of the train is “Turnaround”. The required re-

sources should include the basic structures beyond the train head in the last current 

block section and the basic structures in the next block section. In principle, the pro-

cesses of resource requirement in Request-Case 7 and Request-Case 3 are the 

same, and processes in Request-Case 8 and Request-Case 4 are the same.  
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Figure 3-16: Resource Requirement – Request-Case 6 

3.1.2.2 Allocate Resources 

Following the procedure described in the previous section, the required resources 

can be determined for each train. The trains with new resource requirements will be 

selected, and these resource-requester pairs will be checked in sequence until the 

last pair is checked. The process of resource allocation is illustrated in Figure 3-17. It 

can be seen that only if a resource-requester pair successfully passed the conflict-

free test and the deadlock-free test, can resource allocation be executed. In the con-

flict-free test, if one of the required resources10 is occupied by another train, the re-

source requirement will be ignored in the following deadlock-free test. Regarding the 

deadlock-free test, the deadlock avoidance algorithm which is originally developed in 

[Cui, 2010] is used. The algorithm is designed based on Banker’s algorithm, and is 

intended to avoid deadlocks in railway synchronous simulation. For more details of 

the algorithm, see Chapter 4 in [Cui, 2010]. 

After the resource allocation in the current single processing step is completed, all 

resource-requester pairs should be cleared. The lifecycle of the resource-requester 

                                            
10

 The basic structure belonging to free resource is a special case. According to the definition (see 

Section 3.1.1.1.), this kind of basic structure is always conflict-free, even though it has been occupied 

by the other trains. 
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pairs is only one time interval, because the resource requirement in the next time in-

terval likely varies. 

 

Figure 3-17: The Process of Resource Allocation (modified from [Cui, 2010]) 

3.1.2.3 Proceed with Simulation Tasks 

After all resource allocations have been processed, the simulation tasks with the 

state of “Running” will be executed in the current time interval. In a single processing 

step in one time interval, the information of the three components of the simulation 

model (i.e. infrastructure resources, simulation performers and simulation tasks) 

should be updated properly according to different conditions. Similar to the case 

classification in the process of resource requirement, the situations are also classified 

into different cases in the process of proceeding with simulation tasks (Figure 3-18). 

In order to distinguish with the request-cases, a certain Case X defined for proceed-

ing with simulation tasks is named as Proceed-Case X in the following context. De-

pending on the current characteristics of each simulation task, a matching proceed-
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case will be designated. The proceed-cases are also divided into two groups accord-

ing to the ATP systems, and they will be elaborated separately in the following con-

text. 

 

Figure 3-18: Process of Proceeding with Simulation Tasks (source: [Martin and Liang, 2017]) 

In the first group of proceed-cases (Proceed-Case 1 to Proceed-Case 8) the signal-

ing of the concerned train is intermittent ATP. In Proceed-Case 1, the action of the 

train is “Run” or “Pre-stop”, and the current speed of the train is not equal to zero. 

The train head is located between the entrance signal of the last current block sec-

tion and the distant signal for the next block section at the beginning of the current 

time interval, and it is expected to exceed the distant signal at the end of the current 

time interval (e.g. Train 1 in Figure 3-19). Two subcases are included in Proceed-

Case 1. In the first subcase the action of the train is “Run”, and the required re-

sources in the next block section are obtained (corresponding to Request-Case 1 of 

resource requirement). In case the maximum speed limit of the next block section is 

reduced, a brake application point for speed reduction (e.g. P2 in Figure 3-19) should 

be calculated and saved in the last current block section. In the second subcase the 

action of the train is “Pre-stop” or the required resources in the next block section are 

not obtained (corresponding to Request-Case 1 of resource requirement). A brake 

application point for stop (e.g. P1 in Figure 3-19) should be determined. 
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A brake application point in a block section equipped with the intermittent ATP sys-

tem is used to indicate a specific position for a train, from which the train should start 

to brake until the train stops in the block section or the head of the train passes the 

rear signal of the block section. After the train has stopped before or passed the rear 

signal, the braking application point in the block section will be removed. A brake ap-

plication point is only necessary when the maximum speed limit of the newly ob-

tained block section is reduced or the resource requirement was rejected. An exam-

ple is shown in Figure 3-19. If Train 1 (Z1) has obtained the next block section and 

reduction of maximum speed limit is identified, a brake application point should be 

determined for Z1. Based on the position of the entrance signal and the maximum 

speed limit of the next block section, a speed-distance curve for the braking section 

can be calculated for the train (dashed red line). Based on the current position and 

speed of the train, a speed-distance curve for the acceleration section and/or con-

stant movement can be calculated (green line). The intersection of these two curves 

is the brake application point for speed reduction (P2). If the required resources were 

rejected, the train should stop in front of the rear signal of the last current block sec-

tion. Correspondingly a new speed-distance curve for the braking section can be cal-

culated (red line) and another brake application point (P1) for stop can be determined. 
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Figure 3-19: Proceed with Simulation Tasks – Proceed-Case 1 (source: [Martin and Liang, 2017]) 

In both of the subcases, the forward distance of the train head should be re-

estimated, because the brake application point may influence the movement behav-

ior of the train in the current time interval. The train head position and the speed of 

the train will be updated in the current time interval. Depending on the new train posi-

tion, the resources behind the train rear will be released by the train (Figure 3-20). 

Additionally, if the new position of the train rear has exceeded the rear signal of the 

first current block section, the first current block section should be removed from the 

list of current block sections. 
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Figure 3-20: Update of Train Head Positon and Release Basic Structure and Block Section 

Furthermore, if the newly obtained block section is equipped with the continuous ATP 

system (Figure 3-21), the signaling system of the train should be switched to contin-

uous ATP, and the braking application point (P2) should be removed and a new fixed 

stopping point (P3) added in case of speed reduction. Once the nominal stopping 

point11 of the train exceeds the fixed stopping point for speed reduction, the train 

should start to brake until the train head enters the next block section.  

In addition, if the next block section is a scheduled stop, the action of the train should 

be changed into “Pre-stop”. For a train regulated by intermittent ATP, as long as the 

train obtained new infrastructure resources, it is necessary to check whether the sig-

naling system needs to be switched and whether the action of the train needs to be 

changed.  

                                            
11

 During the operation of a train run, based on the attributes of the train at a certain time instance, a 

braking curve can be calculated, and the end point of the braking curve is considered the nominal 

stopping point for this train at this moment. With the changes of train attributes (e.g. position and 

speed), the nominal stopping points change as well. In Section 3.1.2.1 the nominal stopping point is 

used to detect new resource requirement in the continuous ATP system. 
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Figure 3-21: Switching of ATP System – From Intermittent ATP to Continuous ATP (source: [Martin and 
Liang, 2017]) 

Similar to the brake application point for the intermittent ATP system, a stopping point 

for the continuous ATP system is introduced to support the regulation of train move-

ments in case of maximum speed limit reduction or scheduled or unscheduled stops. 

Generally, a stopping point is characterized by three attributes: source block section, 

target block section and the distance between the stopping point and the entrance 

block marker of the target block section.  

In case of maximum speed limit reduction (Figure 3-22), the source block section re-

fers to the one whose maximum speed limit is firstly reduced, and the target block 

section refers to the one where the stopping point is physically located. Due to the 

high speed limit on railway line with continuous ATP system, the braking distance 

may cover more than one block section, so both the source and target block sections 

are essential for the definition of a stopping point. Once the nominal stopping point of 

a train exceeded a given stopping point for speed reduction, the train should start to 

brake until the train head enters the source block section. After the train has entered 

the source block section at a safe speed (lower than the maximum speed limit of the 

block section), the stopping point for speed reduction should be removed.  
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Figure 3-22: Stopping Point for Maximum Speed Limit Reduction (source: [Martin and Liang, 2017]) 

In Proceed-Case 2 the action of the train is “Run” or “Pre-stop”, and the current 

speed of the train is not equal to zero. The train head is located between the distant 

signal for the next block section and the rear signal of the last current block section, 

and it is expected to exceed the distant signal for the after-next block section at the 

end of the current time interval (Figure 3-10). Proceed-Case 2 can be treated in the 

same way as Proceed-Case 1, the only caveat is that the after-next, instead of the 

next block section, is required in Request-Case 2 if the action of the train is “Run” 

(See Request-Case 2 of resource requirement). Accordingly, small details of the al-

gorithm are adjusted, but the procedures involved and the approach are the same. 

Moreover, the train head will exit the last current block section, so the next block sec-

tion should be added into the current block section list of the train. 

In Proceed-Case 3, the action of the train is “Run”, and the current speed of the train 

is equal to zero (corresponding to Request-Case 3 of resource requirement). If the 

requirement of the next block section is rejected, nothing is required to be done; oth-

erwise the following procedures should be executed: if the newly obtained block sec-

tion is a scheduled stop, the action of the train should be changed into “Pre-stop”; if 

the newly obtained block section is equipped with continuous ATP, the signaling sys-

tem of the train should also be switched; lastly, the current speed, train head position 

and current block sections for the train are to be updated and the basic structures 
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behind the rear of the train released, if necessary. These procedures have been dis-

cussed in detail, and they will be referred to hereinafter as common procedures. 

In Proceed-Case 4, the action of the train is “Turnaround” (corresponding to Request-

Case 4 of resource requirement). If the required resources are not obtained, do noth-

ing; otherwise the action of the train should be changed into “Run”, and the other 

procedures to be carried out are depending on the position of train head. Unlike 

scheduled or unscheduled stops, the relative positional relationship between the train 

head and the rear signal of the last current block section is irregular in case of turna-

round.  

If the next block section belongs to the intermittent ATP territory, there are three pos-

sible positions of the train head (Figure 3-23). If the train head will not exit the last 

current block section in the current time interval (Train 1), in addition to the common 

procedures, the maximum speed limit of the next block section should be checked. A 

brake application point is necessary in case of speed reduction. If the train head will 

exit the last current block section, but not exceed the distant signal for the after-next 

block section (Train 2), only the common procedures should be executed. In case the 

train head will exceed the distant signal for the after next block section (Train 3), the 

requirement of the after-next block section will be omitted in the next time interval if 

train head position moved forward as usual (similar to Request-Case 3 of resource 

requirement shown in Figure 3-12). Due to the irregularity of train head position, an 

adjustment of stopping point is not suitable in this case. To ensure logical integrity, a 

simple and effective solution is implemented: the train head position remains un-

changed, and the speed of the train is set to a relatively small value (e.g. 0.001 km/h) 

in the current time interval. In the next time interval, this proceed-case will be treated 

as Proceed-Case 2 of proceeding with simulation tasks. The involved train has, 

therefore, only been delayed for one second (one time interval), which is negligible.  
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Figure 3-23: Possible Positions of Train Head In Case of Turnaround 

If the next block section belongs to the continuous ATP territory, there are two possi-

ble positions of the train head: in the current time interval the train head position will 

exit the last current block section (similar to Train 2 in Figure 3-23) or will not exit the 

last current block section (similar to Train 1 in Figure 3-23). In both cases, the signal-

ing system of the train should be switched to continuous ATP, and the common pro-

cedures should be executed. Furthermore, in the second case, the necessity of stop-

ping point for speed reduction should be checked. 

In Proceed-Case 5, the action of the train is “Stop”. Nothing needs to be done during 

the dwell time. At the end of the dwell time, if a turnaround task is scheduled, accord-

ing to the current position of the train rear, the position of the train head must be re-

set. Depending on the new position of the train, the list of current block sections 

should be reset. Finally, the action of the train will be changed into “Turnaround”. In 

case of no turnaround task arrangement, it is only necessary to change the action of 

the train into “Run”. 

In Proceed-Case 6, Proceed-Case 7 and Proceed-Case 8, the action of the train is 

“Run” or “Pre-stop” and the current speed of the train is not equal to zero. In Pro-

ceed-Case 6, the train head position is located between the distant signal for the next 

block section and the rear signal of the last current block section, and it will not exit 

the last current block section (Train 1 in Figure 3-24). Besides the common proce-

dures, if the speed of the train becomes zero at the end of the current time interval, 

the following procedures should be executed: release the overlap of the last current 

block section; remove the brake application point in the last current block section; 

and, if the action of the train is “Pre-stop”, change the action into “Stop” and start 
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counting the dwell time. In Proceed-Case 7, the train head position is located be-

tween the entrance signal of the last current block section and the distant signal for 

the next block section, and it will not exceed the distant signal in the current time in-

terval (Train 2 in Figure 3-24). In Proceed-Case 8, the train head is located between 

the distant signal for the next block section and the rear signal of the last current 

block section, and it will exceed the rear signal but not the distant signal for the after 

next block section in the current time interval (Train 3 in Figure 3-24). In both of Pro-

ceed-Case 7 and Proceed-Case 8, only the common procedures should be executed. 

 

Figure 3-24: Proceed with Simulation Tasks – Proceed-Case 6, 7, 8 

In the second group of proceed-cases (Proceed-Case 9 to Proceed-Case 14) the 

signaling of the concerned train is continuous ATP. In Proceed-Case 9, the train 

speed is not equal to zero and the action of the train is “Run” or “Pre-stop”. In addi-

tion, the train head will not exit the last current block section or the next block section 

is still belonging to the continuous ATP territory. Proceed-Case 9 only involves the 

activities in continuous ATP territory. Depending on the position of the nominal stop-

ping point, two subcases can be elaborated. 

In the first subcase, the nominal stopping point of the train is expected to pass a 

block marker in the current time interval. If the block section beyond the block marker 

was requested (the action of the train must be “Run”) and has been successfully allo-

cated to the train (corresponding to Request-Case 5 of resource requirement illus-

trated in Figure 3-15), the following procedure should be executed in addition to the 

common procedures: a stopping point for speed reduction should be determined and 

the forward distance of the train head should be re-estimated if necessary (Figure 3-

22); the action of the train should be changed into “Pre-stop” if the newly obtained 

block section is a scheduled stop.  



Multi-scale Simulation Model 

 

Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 69 

 

If the resource requirement is rejected (the action of the train must be “Run”), a tem-

porary stopping point should be added in front of the entrance block marker of the 

requested block section (Figure 3-25). The source block section of a temporal stop-

ping point can be set to null, and target block section is the one immediately before 

the required block section. With the temporary stopping point, the forward distance of 

the train head in the current time interval will be re-estimated. The lifecycle of a tem-

porary stopping point is only one time interval, because in the next time interval the 

resource allocation may change. In case that a scheduled stop is to be performed, a 

new resource requirement is not allowed because the action of the involved train is 

“Pre-stop”. In principle, the movement behavior of the train is the same regardless of 

whether new resource requirement is not allowed or rejected. Thus, scheduled stops 

are treated as the same as unscheduled stops. By means of the temporary stopping 

points in a series of time intervals, the train will be decelerated step by step, and 

eventually stopped in the block section designated as the scheduled stop. 

 

Figure 3-25: Temporal Stopping Point in Continuous ATP Territory (source: [Martin and Liang, 2017]) 

If the resource requirement is rejected or the action of the train is “Pre-stop”, based 

on the re-estimated forward distance of the train, the common procedures can be 

executed. Moreover, if the speed of the train becomes zero at the end of the current 

time interval and the action of the train is “Pre-stop”, the action should be updated to 

“Stop”. 
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In the second subcase, the nominal stopping point of the train is not expected to pass 

a block marker in the current time interval. Therefore, there is absolutely no resource 

requirement, only the common procedures should be executed. 

In Proceed-Case 10, the action of the train is “Run” or “Pre-stop”, and the current 

speed of the train is not equal to zero. The train head will exit the last current block 

section, and the next block section belongs to intermittent ATP territory. Furthermore, 

the train head will pass the distant signal for the after next block section (correspond-

ing to Request-Case 6 of resource requirement as shown in Figure 3-16). Firstly, this 

proceed-case can be treated as the same as the first subcase of Proceed-Case 9 

and the same procedures should be carried out, since the signaling system of the 

train is still continuous ATP. The updated position of the train head is located on a 

new block section belonging to the intermittent ATP territory. Correspondingly, the 

signaling system of the train should be switched, and the train movement in the next 

time interval will be regulated by intermittent ATP system. As shown in Figure 3-26, if 

a stopping point for speed reduction (P2) or a temporal stopping point (P1) was cre-

ated in the current time interval, it should be replaced by a brake application point 

(P3 or P4). To estimate forward distance in one time interval, only brake application 

points are considered for trains under the mode of intermittent ATP system, and only 

stopping points are taken into account for trains under the mode of continuous ATP 

system. 
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Figure 3-26: Switching of ATP System – From Continuous ATP to Intermittent ATP 

From the examples shown in Figure 3-21 and Figure 3-26, it can be seen that the 

boundary conditions for switching the ATP system of a train from intermittent mode to 

continuous mode and from continuous mode to intermittent mode are defined differ-

ently in the simulation model. For a train under the mode of intermittent ATP, once 

the train has obtained a block section equipped with continuous ATP, the signaling 

system of the train must be switched in order to ensure the seamless connection of 

the two ATP systems. Before the train head has physically left the intermittent ATP 

territory, new resource requirements can occur in accordance with the resource re-

quirement principle of the continuous ATP system (Figure 3-27). If the signaling sys-

tem would not be switched until the train head leaves the intermittent ATP territory, 

the block section that ought to be requested (marked in Figure 3-27) would be omit-

ted, which would lead to a logic error of the simulation model.  
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Figure 3-27: Resource Requirement in Transition Zone between Intermittent and Continuous Territories 

For a train under the mode of continuous ATP, only if the train head has already 

physically entered a block section equipped with intermittent ATP can the signaling 

system of the train be switched. An example is shown in Figure 3-28, wherein a train 

decelerates in the current time interval because of speed reduction. If the signaling 

system of the train had been switched into intermittent ATP, on one hand, the stop-

ping point for speed reduction would not be detected, which would cause loss of con-

trol of train movement (the train would accelerate in the current time interval); on the 

other hand, the stopping point for speed reduction cannot be replaced by a brake 

application point, because brake application points are only allowed to be created in 

intermittent ATP territory. Therefore, in the design of simulation model with multiple 

signaling systems, special attention should be paid to switching signaling system in 

transition zones between different signaling system territories. 
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Figure 3-28: Train Speed Control in Transition Zone between Continuous and Intermittent Territories 

In Proceed-Case 11, the current speed of the train is equal to zero, and the action of 

the train is “Run” (corresponding to Request-Case 7 of resource requirement). If the 

requested resources are obtained, the common procedures are to be executed; oth-

erwise, nothing is to be done. In Proceed-Case 12, the action of the train is “Turna-

round” (corresponding to Request-Case 8 of resource requirement). In principle, the 

procedures involved in this proceed-case and Proceed-Case 4 of proceeding with 

simulation tasks are the same, special attention should be paid to the different man-

ners of switching signaling system as explained above. In Proceed-Case 13, the ac-

tion of the train is “Stop”. This proceed-case can be treated as the same as Proceed-

Case 5 of proceeding with simulation tasks. In Proceed-Case 14, the current speed 

of the train is not equal to zero and the action of the train is “Run” or “Pre-stop”. The 

train head will enter the next block section belonging to intermittent ATP territory, but 

not pass the distant signal for the after next block section (Figure 3-29). The common 

procedures should be carried out, and the signaling system of the train should be 

switched. 

 

Figure 3-29: Proceed with Simulation Tasks – Proceed-Case 14 
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3.2 Meso- and Macroscopic Simulation Model 

In order to ensure that the simulation can be concurrently carried out on the micro-

scopic, mesoscopic and macroscopic levels, the meso- and macroscopic simulation 

models also follow the same workflow of synchronous simulation used by the micro-

scopic model. In the meso- and macroscopic simulation models, the attributes of in-

frastructure resources, simulation performers and simulation tasks were simplified to 

different extents to improve the computational performance of the simulation model, 

and the procedures included in the workflow - request resources, allocate resources 

and proceed with simulation tasks - were also accordingly modified. In order to elabo-

rate the meso- and macroscopic model clearly, the hierarchy of infrastructure has to 

be defined primarily (Section 3.2.1). 

3.2.1 Infrastructure Hierarchy 

In general, the infrastructure classification used in this approach complies with the 

principle of macroscopic infrastructure modelling outlined in [Radtke, 2014]. Even 

through the principle is originally designed for macroscopic models, it is expanded to 

apply to multi-scale models in this approach. Three types of nodes are defined on the 

basis of their topological characteristics as follows: loop nodes, junction nodes and 

open track sections. Within a loop node two further categories are defined: loop track 

and loop non track. The classification diagram for infrastructure hierarchy is shown in 

Figure 3-30. As described in Section 3.1.1.1, basic structures are basic elements 

constituting an entire network. They are also basic elements in this infrastructure 

classification. A basic structure belongs only to one node (i.e. a loop node or a junc-

tion node or an open track section), and the corresponding node will be recorded as 

an attribute, called a node attribute, in the basic structure instance. A block section 

also has a node attribute, which is identical to the node attribute of the last basic 

structure located at the end of it. 
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Figure 3-30: Classification Diagram for Infrastructure Hierarchy (source: [Martin and Liang, 2017]) 

A loop node is defined as an operational site where a train can overtake or pass an-

other train by taking a different operational route within the operational site. If entry 

signals exist around a loop node, they are taken as boundaries of the loop node. 

Otherwise the first signal outside of the loop node is used as a boundary. Loop tracks 

are the tracks that can be designated as scheduled or unscheduled stops for trains in 

a loop node. The other components of the loop node (except loop tracks) are gener-

ally defined as loop non track. A junction node includes at least one junction-type re-

source, but it is impossible to arrange an overtaking or passing operation inside the 

junction node. Apart from loop nodes and junction nodes, the other parts of the net-

work are referred as open track sections. The virtual block section is a special type of 

open track section, which consists only of free resources. As an example, the differ-

ent types of nodes on a reference infrastructure network are shown in Figure 3-31. 

 

Figure 3-31: An Example of Different Infrastructure Nodes 
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3.2.2 Mesoscopic Simulation Model 

Due to the state of the art a universal accepted mesoscopic simulation model for 

railway operation does not exist, at present. The design of the mesoscopic simulation 

model varies, as well, in different application contexts. In the mesoscopic simulation 

model developed in [Marinov and Viegas, 2011], the investigated network is separat-

ed into interconnected components such as railway stations, open track sections be-

tween stations (double and single tracks), shunting yards and so on. The compo-

nents are modeled in a queuing system to evaluate the influences of freight train op-

erations in a railway network. The service pattern of a server is described by a con-

crete distribution obtained from actual data and statistical analysis. For instance, the 

running time on an open track section is set as a deterministic value with an addi-

tional random component. The mesoscopic model developed in [Fabris et al., 2014] 

is used to generate railway timetables. In this model, running time is calculated by 

solving train motion equations, which is similar to the microscopic model. The details 

of description of loop tracks and open track sections approximate microscopic level, 

while the interlocking areas at each side of station tracks are simplified to matrices of 

train routes and their compatibility. The same method is also used by [Corman et al., 

2009] to describe interlocking areas in his microscopic model, in which running times 

on block sections are given as deterministic values. The mesoscopic infrastructure 

model defined in [Radtke, 2014] refers to the mesoscopic open track sections and 

stations automatically generated based on a given macroscopic network. Open track 

sections are composed of standard block sections, and stations are modeled with 

individual station tracks and possible train routes. The mesoscopic infrastructure 

model standardized by [UIC, 2016] focuses on the description of open track sections 

between the operational points of the network. An operational point is defined as “any 

location for train service operations, where train services can begin and end or 

change route, and where passenger or freight services are provided” in [UIC, 2014]. 

For instance, stations and shunting yards belong to operational points. The opera-

tional points in a network are abstracted into points, while the details of open track 

sections between them are kept on an almost microscopic level (e.g. aggregation 

example shown in Figure 3-32). 
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Figure 3-32: Aggregation Example [UIC, 2016] 

The above-mentioned literature reveals that even though the levels of detail of the 

mesoscopic models differ, the methods of simplification employed are similar: 

⎻ Mostly constant running time is used instead of exact running time calculation 

⎻ Routes through area of loop non track (interlocking areas) can be simplified to 

different extents 

⎻ Due to the relatively simple topology of open track sections and loop tracks 

(stations tracks), their potential of further simplification on the mesoscopic lev-

el is limited.  

Following these common approaches, a comprehensive mesoscopic model charac-

terized by continuous scaling was developed in this dissertation. The mesoscopic 

model can achieve any level of detail through the stepwise simplification of the topol-

ogy of an infrastructure network. Importantly, the mesoscopic model does not contra-

dict but represents a good supplement to the standard published by UIC (Internation-

al Union of Railways). 

3.2.2.1 The Components and Workflow on Mesoscopic Level 

On a mesoscopic level, constant maximum average running time is implemented in-

stead of accurate running time calculations. So only one behavior section – constant 

movement – is considered in the estimation of forward distance covered in one time 

interval (acceleration section and braking section are excluded). The maximum al-

lowed speed of a train at a certain time instance is the minimum value between the 

maximum speed of the train and the maximum speeds of current block sections of 

the train (see Formula (I-11) in Appendix I). The expected forward distance of the 

head of a train can be simply calculated as: 
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𝑆 = 𝑣𝑚𝑎𝑥 · 𝑡 (3-11) 

Notation used: 

𝑆: Expected forward distance of the head of a train in the current time interval 

𝑣𝑚𝑎𝑥: Maximum allowed speed of a train at a certain time instant 

𝑡: Length of a time interval 

On the most detailed mesoscopic level, the infrastructure network topology is kept 

the same as on the microscopic level. On more abstracted mesoscopic levels, the 

topology could be simplified stepwise by the aggregation of basic structures to differ-

ent extents. The simplification procedure will be elaborated separately in Section 

3.2.2.2. One basic principle of the mesoscopic infrastructure model is that block sec-

tions will continue to be used in the workflow on the mesoscopic level. 

In the microscopic model, the distant signal and the relative position of nominal stop-

ping points and block markers are used to trigger new resource requirements. If new 

resource requirements are not obtained, the concerned trains should start braking 

timely and halt before stop signals accurately. However, owing to the employment of 

constant running time in the mesoscopic model, it is meaningless to continue to use 

the distant signal and the relative position of nominal stopping points and block 

markers as indicators of resource requirements. Therefore, two simple request-cases 

are summarized to detect new resource requirements in the mesoscopic model (un-

less noted otherwise, the case numbers used in this section refer to these two re-

quest- cases defined for the mesoscopic model):  

Request-Case 1: if the action of a train is “Run” and the train head is expected to ex-

ceed the rear signal or block marker of the last current block section, the basic struc-

tures included in the next block section will be requested (Figure 3-33). 

Request-Case 2: if the action of a train is “Turnaround”, the basic structures beyond 

the train head in the last current block section and the ones in the next block sections 

will be requested (the same as Request-Case 4 and Request-Case 8 of requesting 

resources in the microscopic model). 
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Figure 3-33: Request Resources – Request-Case 1 in Mesoscopic Model (source: [Martin and Liang, 2017]) 

In Figure 3-33, it can be seen that overlaps still exist on the most detailed mesoscop-

ic level, but they will not be requested together with their corresponding block sec-

tions. On more abstracted mesoscopic levels, overlaps may disappear on account of 

aggregation of basic structures, and therefore, it is convenient to implement a con-

sistent logic of resource requirement (without consideration of overlaps) in the whole 

mesoscopic model. With the above-mentioned simplifications, the processes of re-

questing resources in intermittent ATP and continuous ATP territory become identical, 

which can be described by Request-Case 1 and Request-Case 2 defined previously. 

Accordingly, the signaling system of trains is no longer considered in the mesoscopic 

model. 

No matter the resource requirement occurred in the micro-, or meso-, or macroscopic 

simulation model, all resource requirements should be processed in a centralized 

manner as described in Section 3.1.2.2.  

With regard to proceeding with simulation tasks, only the simulation tasks with the 

state of “Running” will be processed in the current time interval. Depending on the 

action and the position of a train, four proceed-cases are classified to cover all possi-

ble situations (unless noted otherwise, the case numbers used in this section refer to 

these four proceed-cases defined for the mesoscopic model). 

In Proceed-Case 1, the action of the train is “Run” or “Pre-stop” and the train head is 

expected to exit the last current block section in the current time interval. There are 

two subcases included in Proceed-Case 1. In the first subcase, the action of the train 
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is “Run” and requested resources are obtained (corresponding to Request-Case 1 of 

requesting resources). The common procedures12 should be executed, which include: 

⎻ The action of the train should be changed to “Pre-stop” if the new obtained 

block section is a scheduled stop; 

⎻ The train head position and current speed should be updated (in case of 

speed reduction the forward distance should be recalculated as shown in Fig-

ure 3-34);  

⎻ Update the list of current block sections for the train, and release the basic 

structures behind the new position of the train rear. 

 

Figure 3-34: Update Train Head Position in the Mesoscopic Model (I) (source: [Martin and Liang, 2017]) 

In the second subcase the next block section is not obtained, the train head will be 

updated to the position where the rear signal of the last current block section locates 

(Figure 3-35). Moreover, common procedures should be executed. When the action 

of the train is “Pre-stop”, it should be changed to “Stop” and counting of dwell time 

should be started. 

                                            
12

 The common procedures are also used in the process of proceeding with simulation tasks in the 

microscopic model. 
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Figure 3-35: Update Train Head Position in the Mesoscopic Model (II) 

In Proceed-Case 2, the action of the train is “Run” or “Pre-stop” and the train head 

position will not exceed the last current block section in the current time interval, in 

which case only the final two common procedures should be carried out.  

In Proceed-Case 3, the action of the train is “Turnaround” (corresponding to Request-

Case 2 of requesting resources). If the requested resources are not obtained, nothing 

is to be done; otherwise, the action of the train should be updated to “Run”, and the 

other procedures to be executed are dependent upon the expected position of the 

train head at the end of the current time interval: 

⎻ If expected position exceeds the last current block section, the same proce-

dures for the first subcase of Proceed-Case 1 will be executed, 

⎻ If the expected position is still within the last current block section, the same 

procedures for Proceed-Case 2 will be executed. 

In Proceed-Case 4, the action of the train is “Stop”, which is the same as Proceed-

Case 5 and Proceed-Case 13 of proceeding with simulation tasks in the microscopic 

model (for details see Section 3.1.2.3). 

3.2.2.2 Simplification of the Infrastructure Network Topology 

For the more abstracted mesoscale models, two or more adjacent basic structures 

will be combined into a larger mesoscale occupation unit. Because block sections will 

continue to be used on the mesoscopic level, aggregation of basic structures should 

not violate the division of block sections. This means only if none of the connection 
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node(s) between two adjacent basic structures is a main signal or block marker, the 

two basic structures are allowed to be aggregated. 

Basic structures are composed of edges, so the aggregation of two adjacent basic 

structures is realized through a combination of adjacent edges in the same direction. 

A schematic diagram of an infrastructure is shown in Figure 3-36 as an example: two 

basic structures (BS_L and BS_R) are to be aggregated, and one connection node 

(Node 5) exists in between. Each edge from BS_R is physically connected with two 

edges from BS_L (red dashed line in the subgraph “Basic Structure”). To maintain 

these connection relationships after aggregation, each edge from BS_R should be 

duplicated once (subgraph “Edge Duplication”). Thus, on both sides of Node 5, the 

amount of edges are the same, and eventually these edges can be combined into 

two pairs of new edges. 

 

Figure 3-36: Edge Duplication and Combination for Aggregation of Basic Structures 



Multi-scale Simulation Model 

 

Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 83 

 

It can be seen from the example above that edge duplication may have to be carried 

out as the preparation of basic structure aggregation. Generally speaking, supposing 

that there exist m pairs of edges in one basic structure (BS1) and n pairs of edges in 

another basic structure (BS2), using one connection node as their endpoints; each 

edge from BS1 should be duplicated (n-1) times, and each edge from BS2 should be 

duplicated (m-1) times; finally, these edges will be combined into (m*n) pairs of new 

edges. 

The length of a new edge is the sum of the lengths of the included edges, and the  

new permissible speed of the new edge is the average speed limit considering the 

proportionate length of the included edges. The new edges and basic structure will 

be renamed with new IDs. Accordingly, the included edges and corresponding basic 

structures of the involved block sections should also be updated. 

The throughput13 of a basic structure is one train only, but the throughput of a larger 

mesoscale occupation unit may vary under different operation situations. Thus, the 

aggregation accuracy of each possible throughput will be calculated, and the 

throughput with the highest aggregation accuracy will be chosen as the representa-

tive throughput of the larger mesoscale occupation unit. Thus each mesoscale occu-

pation unit has two important attributes: representative throughput and aggregation 

accuracy. The calculation method of these two attributes will be elaborated in Section 

4.2. 

3.2.3 Macroscopic Simulation Model 

Compared to microscopic and mesoscopic models, the macroscopic model is capa-

ble of covering a large investigated area with a huge amount of train movements due 

to its high level of abstraction. According to the infrastructure hierarchy defined in 

Section 3.2.1, an infrastructure network can be decomposed into three different types 

of nodes: loop node, junction node and open track section. On microscopic and 

mesoscopic levels, a node refers to a certain area composed of basic structures or 

occupation units and block sections. On the macroscopic level, a loop node or a junc-

tion node will be abstracted into a vertex, and an open track section will be abstract-

                                            
13

 The number of trains that can simultaneously occupy the mesoscale occupation unit is defined as its 

throughput. 
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ed into a link [Radtke, 2014] [Cui, 2010] [Cui and Martin, 2011]. To keep the termi-

nology consistent, the terms – loop node, junction node and open track section – will 

to be used continue in the macroscopic model, even though their manifestation (level 

of detail) has been changed.  

In the microscale and mesoscale model, trains are spatially separated by block sec-

tions. In the macroscale model, due to the lack of detailed information on block sec-

tions, trains have to be temporally separated.  

On open track sections, trains can be separated by minimum line headways. The 

detailed calculation method of minimum line headways can be found in [Pachl, 2014]. 

Similar to the macroscopic model developed in [Cui, 2010], two kinds of minimum line 

headways including arrive-arrive headway (denoted by AA) and depart-arrive head-

way (denoted by DA) are used herein (Figure 3-37). Arrive-arrive headway is used to 

separate two trains with successive movements that arrive sequentially onto the 

same open track section. Depart-arrive headway is used to separate two trains with 

opposite movement, which is the minimum time interval between the departure of the 

first train from and the arrival of the second train onto the same open track section 

(the names of headways are modified in order to better illustrate the macroscale 

model developed in this approach, and original definitions of headways (see [Pachl, 

2014]). 

Besides minimum line headways, the movement authority onto an open track section 

is also restricted by the throughput of the open track section. Similar to the through-

put of mesoscopic occupation unit, the maximum number of trains that can occupy a 

macroscopic node simultaneously (i.e. open track section, loop node and junction 

node) is also defined as its throughput. For a unidirectional open track section the 

throughput is the number of its included block sections. For a bidirectional open track 

section, the throughput for each direction should be defined with the same method. 

When the throughput of an open track section is consumed (the number of current 

occupiers is equal to the throughput), new request of the open track section cannot 

be allocated. 

On an open track section, overtaking is not possible, so the train sequence is regu-

lated based on the FIFO principle (first-in-first-out). 



Multi-scale Simulation Model 

 

Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 85 

 

 

Figure 3-37: Minimum Line Headway on Open Track Section T (modified from [PT1, 2016] and [Cui, 2010]) 

In loop nodes, conflicts between station routes are not modelled on the macroscopic 

level due to the high level of abstraction. The movement authority into a loop node is 

only restricted by the throughput of the loop node. As long as the throughput is not 

yet consumed, the request of the loop node can be directly authorized. In general, 

there are three methods to describe a loop node on the macroscopic level, and their 

levels of details are different. For the first description method, the throughput of a 

loop node is assumed to be infinite. For the second method, throughput will be de-

termined based on track groups in the macroscale model. A track group is defined as 

a set of loop tracks with identical inbound and outbound open track sections, and the 

throughput of the track group is the number of the included tracks. To deal with the 

request of a loop node from a certain train, only the throughput of the related track 

groups will be checked. For the third description method, the information on the in-

cluded loop tracks and the connection relationship between the loop tracks and open 

track sections are stored as shown in Figure 3-38. The throughput of a loop track is 

set to one. It can be seen that only in the last one the information of all loop tracks 

are maintained, which is important for dispatching tasks (see Chapter 6). In order to 

keep the consistency of the dispatching optimization algorithm on different descrip-
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tion levels, the third description method is used in this dissertation. Furthermore, in 

loop nodes, overtaking is allowed, so the train sequences are not restricted.  

 

Figure 3-38: An Exemplary Macroscopic Infrastructure Network 

Similar to loop nodes, the movement authority into a junction node is also restricted 

by throughput. However, in junction nodes the relative sequence of the trains coming 

from the same open track section is not allowed to be changed, because overtaking 

is not possible (e.g. Z1 and Z2 in Figure 3-39). Thus, the train sequence is also regu-

lated according to the FIFO principle in junction node. Because train sequences in 

loop nodes are not dispatching related variables in this model, the trains attempting 

to go into a loop node follows the FCFS (First Come First Serve) principle (e.g. Z1, 

Z2 and Z3 in Figure 3-39). 

 

Figure 3-39: Maintain Train Sequence Consistency in Junction Node 

As described above, trains are temporally separated on the macroscopic level, so 

only the departing/passing time on each macroscopic node is relevant. Compared to 
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the microscale and mesoscale models, in which the resource requirement is triggered 

by the position of a train, in the macroscale model the resource requirement is trig-

gered by time. Furthermore, the macroscale model cannot depict the position of a 

train as exactly as the microscale and mesoscale models, so in the macroscale mod-

el the current position of a train refers to its current macroscopic node. Accordingly, 

the detailed path of a train (see Section 3.1.1.1) is abstracted into a macro-path. The 

definition in [Cui, 2010] is used herein: a macro-path is a list of macroscopic nodes 

ordered based on the given timetable. In the simulation process, the position of a 

train will be updated from node to node along its macro-path. 

No matter which kind of macroscopic node the current position of a train is, the pre-

requisite of resource requirement is that the scheduled operation on the current node 

should be completed, which can be checked by: 

𝑇𝑛𝑜𝑤 ≥ 𝑇𝐵𝑖[𝑁]−1,𝑍𝑗
+ 𝑇𝐼𝑖[𝑁],𝑍𝑗

 (3-12) 

Notation used (the notations are the same or similar to those used in [Cui, 2010]): 

𝑖[𝑁]: Index of the macroscopic node N in the macro-path of a corresponding 

train 

𝑍𝑗:  Train 𝑍𝑗 

𝑇𝑛𝑜𝑤:  Current execution time in the simulation model 

𝑇𝐵𝑖[𝑁]−1,𝑍𝑗
: Departing/passing time for train 𝑍𝑗 in the (𝑖[𝑁] − 1)th node of its macro-

path 

𝑇𝐼𝑖[𝑁],𝑍𝑗
: Scheduled operation time for train 𝑍𝑗 in the (𝑖[𝑁])th node of its macro-

path 

The departing/passing time from the last node (𝑇𝐵𝑖[𝑁]−1,𝑍𝑗
) implies the arrival time 

onto the current node, and the scheduled operation time on the current node (𝑇𝐼𝑖[𝑁],𝑍𝑗
) 

includes both scheduled running time and scheduled dwell time. The operation time 

on each macroscopic node should be determined in advance with the assistance of 

the microscale model. If the constraint of operation time is not yet satisfied for a train 

at a certain time instance (𝑇𝑛𝑜𝑤), new resource requirement is not allowed. If the 
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scheduled operation is completed, other constraints may also have to be checked 

according to the current position of the train as follows. 

⎻ In loop nodes, the train is allowed to request the next resource, since no other 

constraints exist. 

⎻ In junction nodes or on open track sections, due to the FIFO principle, only if a 

train is the first occupier of the current macroscopic node will the next resource 

be requested; otherwise, new resource requirement is not allowed. 

In the process of resource allocation, a new resource requirement should also pass 

the conflict-free and deadlock-free tests. The conflict-free test concerns the con-

straints of headways and throughput. In case the requested resource is a loop node 

or junction node and the throughout is not yet consumed, the resource requirement 

can be directly labeled as conflict-free. In case the requested resource is an open 

track section, besides the constraint of throughput, the headway times also have to 

be respected. As described above, there are two kinds of headways (i.e. AA and DA), 

so, firstly, the running directions of the requester (denoted by 𝑍𝑗) and its immediately 

previous train (denoted by 𝑍𝑃𝑟𝑒𝑣) on the open track section (denoted by 𝑇) should be 

compared. For successive movements, the constraint of headway is: 

𝑇𝑛𝑜𝑤 ≥ 𝑇𝐵𝑖[𝑇]−1,𝑍𝑃𝑟𝑒𝑣
+ 𝐴𝐴𝑍𝑃𝑟𝑒𝑣,𝑍𝑗,𝑇 (3-13) 

For opposite movements, the constraint of headway is: 

𝑇𝑛𝑜𝑤 ≥ 𝑇𝐵𝑖[𝑇],𝑍𝑃𝑟𝑒𝑣
+ 𝐷𝐴𝑍𝑃𝑟𝑒𝑣,𝑍𝑗,𝑇 (3-14) 

 

Notation used: 

𝐷𝐴𝑍𝑃𝑟𝑒𝑣,𝑍𝑗,𝑇: Depart-arrive headway between the train 𝑍𝑗  and 𝑍𝑃𝑟𝑒𝑣  on open 

track section 𝑇 

𝐴𝐴𝑍𝑃𝑟𝑒𝑣,𝑍𝑗,𝑇: Arrive-arrive headway between the train 𝑍𝑗  and 𝑍𝑃𝑟𝑒𝑣  on open 

track section 𝑇 

Before a simulation starts, all departing/passing times should be set to positive infi-

nite. If Formula (3-13) is taken as an example: only after the train 𝑍𝑃𝑟𝑒𝑣 has physically 
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departed from the resource before T will 𝑇𝐵𝑖[𝑇]−1,𝑍𝑃𝑟𝑒𝑣
 be updated to the actual de-

parting/passing time. It is possible that T has been allocated to 𝑍𝑃𝑟𝑒𝑣 by dispatching 

even through 𝑍𝑃𝑟𝑒𝑣 has not physically departed from the resource before T. In this 

case, 𝑇𝐵𝑖[𝑇]−1,𝑍𝑃𝑟𝑒𝑣
 is still positive infinite, which results in that 𝑍𝑗 is not allowed to en-

ter T, so 𝑍𝑃𝑟𝑒𝑣 refers to the last occupier of T. 

The resource requirements having passed the conflict-free and deadlock-free tests 

will be allocated to the corresponding requesters. In the process of proceeding with 

simulation tasks, if a train obtains new resources in the current time interval, the fol-

lowing procedures should be carried out: 

⎻ Remove the train from the occupier list of the current node 

⎻ Add the train into the occupier list of the next node 

⎻ Record the departing/passing time on the current node 

⎻ Update the current position of the train to its next node 

If no resource requirement occurred or requested resources were not successfully 

allocated, do nothing 
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4 Assessment Method for the Multi-scale Model 

To balance the computational complexity and simulation accuracy, the multi-scale 

mode developed in Chapter 3 could be implemented when working with a large in-

vestigation area. This means that some infrastructure nodes within the investigation 

area are simulated on the microscopic level, while others are simulated on the 

mesoscopic and macroscopic levels. The appropriate description level of a specific 

infrastructure node is determined by its significance value. The infrastructure nodes 

with lower significance values will be abstracted and simulated on the mesoscopic or 

macroscopic level; those with higher significance values will be kept on the micro-

scopic level. In order to determine the significant value of each infrastructure, an as-

sessment method for the multi-scale model was developed within in the DFG project 

[Martin and Liang, 2017]. The significance value integrates two indicators: the rele-

vance to conflicts and the aggregation accuracy. The relevance to conflicts is posi-

tively while the aggregation accuracy is negatively correlated to the significance val-

ue. The relevance to conflicts should be on-line determined, while the aggregation 

accuracy should be off-line prepared in advance. The details of the assessment 

method will be elaborated in this chapter. 

4.1 Calculation method of Significance Value 

Relevance to conflicts can be determined by means of delay propagation models. 

Infrastructure nodes located in the propagation scopes of conflicts have a higher de-

gree of correlation than the ones outside the propagation scopes. Delay propagation 

in different scopes has been studied in some research projects: delay propagation in 

stations was investigated in [Yuan, 2006], and delay propagation in large scopes was 

researched in [Goverde, 2010] and [Siefer and Radtke, 2006]. For practical applica-

tions, a simplified method was developed based on the multi-scale simulation model 

to assess propagation scopes instead of accurate delay propagation models.  

When conflicts occur, or potential conflicts are detected at a certain instance in time, 

the traffic condition in the prediction period (e.g. the next hour) can be simulated with 

the simulation model14. In case of conflicts, the hindered train will get a knock-on de-

                                            
14

 The microscale or mesoscale model is recommended for traffic condition prediction, because these 

two models can describe the interactions between trains in detail. Due to the high level of abstraction 
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lay on a certain block section, and the delay will accompany the train on the further 

block sections along its path until the delay is eliminated by recovery times or by the 

termination of the train run. As shown in Figure 4-1, a train Z2 on the block section 

B0 was hindered by another train Z1 on the block section B1, and Z2 obtained a 

knock-on delay 𝑡𝑤2,0 of two minutes on B0. The knock-on delay resulted in delays of 

Z2 𝑡𝑑2,𝑖 on the further block sections along its path. The delay is recovered stepwise 

and totally eliminated on B4. In this example, the delay propagation scope covers the 

area from B0 to B4.  

 

Figure 4-1: An Example of Delay Propagation Scope (source: [Martin and Liang, 2017]) 

The delayed train Z2 may also hinder other trains on its further block section, which 

would result in knock-on delays of the affected trains. The delay will propagate along 

the paths of the affected trains and enlarge the delay propagation scope. The basic 

logic of delay propagation can be summarized as follows: the knock-on delay of a 

train leads to the delay of the train itself, and the delay of the train itself can lead to 

knock-on delays of other trains. 

From the basic logic of delay propagation, it can be seen that the overall delay prop-

agation scope is the union of the delay propagation scopes of the hindered trains. 

During the simulation process of the predicted traffic condition, once a train on a cer-

tain block section is hindered, the hindered train will then be traced on its further path 

until one of the following criteria is met: 

                                                                                                                                        

of the macroscale model, many conflicts are ignored (especially in the interlocking areas), so the mac-

roscale model is not recommended for this task. 
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⎻ The delay caused by the hindrance15 is eliminated 

⎻ The train run or the prediction period is terminated 

Before the elimination of delay and the termination of train run and the end of predic-

tion period, it is possible that another train further hinders the already-hindered train. 

In this case, the delay of the hindered train should be updated, whereupon the hin-

dered train will continue to be traced. The infrastructure nodes that a hindered train 

passes will be recorded during the tracing process, and output as the delay propaga-

tion scope for this hindered train at the end of the simulation. As stated above, the 

union of the delay propagation scopes of all hindered trains is the overall delay prop-

agation scope.  

The dispatching algorithm integrated in the simulation model has a direct influence 

on delay propagation, because dispatching actions are capable of changing the con-

flict relationship between trains during the simulation process. However, the descrip-

tion level of each infrastructure node (microscopic, mesoscopic and macroscopic lev-

el) should be established primarily according to the significance value, and then the 

dispatching optimization algorithm can be executed based on the multi-scale simula-

tion model (details of the dispatching optimization algorithm see Chapter 6). In other 

words, the final dispatching actions are unknown when the delay propagation scope 

needs to be estimated. In order to solve this contradiction, the dispatching principle 

FCFS (First Come First Served) is used to assist the estimation of delay propagation 

scope. This delay propagation can also be regarded as the upper bound of the delay 

propagation scope. 

Based on the delay propagation scope, the infrastructure nodes in the investigated 

area can be roughly divided into two groups: the nodes inside and the nodes outside 

the delay propagation scope. The nodes outside of the scope have higher priority to 

be aggregated than the nodes inside of the scope. In order to obtain more specific 

                                            
15

 The aim of determination of the delay propagation scope is to let the areas relevant to conflicts have 

a higher priority to be simulated more accurately, so that the influence of a knock-on delay on further 

conflicts can be more accurately assessed. The influence of a knock-on delay is an important indicator 

of the dispatching optimization algorithm to be described in Section 6.1.1. So only the delays caused 

by knock-on delays are considered. Moreover, initial and original delays are controlled variable for 

dispatching tasks, so they will not be taken into account herein. 
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ranking of the priorities, the nodes belonging to the same group need to be further 

sorted according to their aggregation accuracy. In each group, the node with higher 

aggregation accuracy will receive a higher aggregation priority. Because the knock-

on delay is an important output of the simulation model, which is used both by the 

dispatching optimization module (see Chapter 6), the aggregated accuracy is meas-

ured in terms of variation of total knock-on delay in this approach. 

The variation of total knock-on delay by aggregating an infrastructure node can be 

determined with controlled experiments. Generally speaking, the controlled experi-

ment separates search subjects into a controlled group and an experimental group. 

All variables are kept constant in the controlled group, while a certain investigated 

variable is changed in the experimental group. By comparing the experimental results 

of the two groups, the effects of varying the investigated variable can be quantified. 

To determine the aggregation accuracy, all infrastructure nodes are kept on the mi-

croscopic level in the controlled group, and only the investigated infrastructure node 

is abstracted onto the mesoscopic level. The timetable and stochastic deviations dur-

ing the operation process are kept the same for both infrastructure scenarios. For 

each infrastructure scenario, a series of operational simulations should be executed, 

and the average total knock-on delay can be calculated based on the simulation pro-

tocol. The absolute value of the difference between the average total knock-on de-

lays of the two scenarios is the aggregation accuracy of the investigated infrastruc-

ture node (Formula (4-1)). 

𝐴𝐶𝐶𝑁
𝑚𝑖𝑐𝑟𝑜→𝑚𝑒𝑠𝑜 = |∑ ∑ 𝑡𝑤𝑗,𝑖

𝐶𝐺 − ∑ ∑ 𝑡𝑤𝑗,𝑖
𝐸𝐺

𝑖=𝑍𝑗

𝑖=1

𝑛𝑔𝑒𝑠

𝑗=1

𝑖=𝑍𝑗

𝑖=1

𝑛𝑔𝑒𝑠

𝑗=1

| (4-1) 

Notation used: 

𝐴𝐶𝐶𝑁
𝑚𝑖𝑐𝑟𝑜→𝑚𝑒𝑠𝑜: Aggregation accuracy of infrastructure node N from the micro-

scopic level to the most detailed mesoscopic level 

𝑡𝑤𝑗,𝑖
𝐶𝐺, 𝑡𝑤𝑗,𝑖

𝐸𝐺: Knock-on delay of train 𝑗  on block section 𝑖  in the controlled 

group (CG) or experimental group (EG) 

𝑛𝑔𝑒𝑠:   Total number of trains 
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𝑧𝑗:   Amount of block sections along the path of train 𝑗 

Through the controlled experiment stated above, the aggregation accuracy of ab-

stracting any infrastructure node from the microscopic level to a concrete mesoscopic 

level can be precisely calculated. However, the mesoscopic level of the multi-scale 

model is characterized by continuous scaling, which results in a large amount of vari-

ants of the mesoscopic infrastructure network, if the investigated area is large. By 

combining any two adjacent occupation units (see Section 3.2.2.2) a new variant of 

the mesoscopic infrastructure network will be generated. Obviously, if the aggrega-

tion accuracy of the continuous scaling on the mesoscopic level is still evaluated with 

the controlled experiment, the computational effort will become unfeasible. Further-

more, the loss of accuracy caused by aggregation from the highly detailed 

mesoscopic level to a more abstracted mesoscopic level is limited compared to that 

caused by aggregation from microscopic level to the most detailed mesoscopic level. 

From the microscopic level to the most detailed mesoscopic level (see Section 

3.2.2.1), both train movement behavior and regulation of signaling systems are sim-

plified. From the most detailed mesoscopic level to a more abstracted mesoscopic 

level (see Section 3.2.2.2), the combination of adjacent occupation units mainly 

changes the releasing times of the involved occupation units. Therefore, it is decided 

that the controlled experiment only be used to calculate the aggregation accuracy of 

the infrastructure node abstracted from the microscopic level to the most detailed 

mesoscopic level, and a simpler and more computationally efficient method was de-

veloped to estimate the aggregation accuracy of the continuous scaling on the 

mesoscopic level, which will be elaborated separately in Section 4.2. As an important 

result of the method, the aggregation accuracy of combining two adjacent occupation 

units is returned (Formula (4-2)). 

𝐴𝐶𝐶𝑅𝑘+𝑅ℎ

𝑚𝑒𝑠𝑜 = |∆𝐸(𝑇𝑂𝑉𝐿𝑃,𝑅𝑘+𝑅ℎ)| (4-2) 

Notation used: 

𝐴𝐶𝐶𝑅𝑘,𝑅ℎ

𝑚𝑒𝑠𝑜: Aggregation accuracy of two occupation units 𝑅𝑘  and 𝑅ℎ 

on the mesoscopic level 
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∆𝐸(𝑇𝑂𝑉𝐿𝑃,𝑅𝑘+𝑅ℎ): The relative change of expected total overlapping time 

period caused by combination of 𝑅𝑘  and 𝑅ℎ  (details see 

Section 4.2) 

With regards to conflicts and the aggregation accuracy, the significance value of 

each infrastructure node (abstracted from the microscopic level to the most detailed 

mesoscopic level) and the significant value of a larger mesoscopic occupation unit 

composed of two other occupation units (abstracted from a certain mesoscopic level 

to a more abstracted mesoscopic level) can be calculated as follows: 

𝑆𝑉𝑁
𝑚𝑖𝑐𝑟𝑜→𝑚𝑒𝑠𝑜 = 𝜒{𝑙|𝑙∈𝑆𝑝}(𝑁) · 𝑀 − 𝐴𝐶𝐶𝑁

𝑚𝑖𝑐𝑟𝑜→𝑚𝑒𝑠𝑜 (4-3) 

𝑆𝑉𝑅𝑘+𝑅ℎ

𝑚𝑒𝑠𝑜 = 𝜒{𝑙|𝑙∈𝑆𝑝}(𝑁) · 𝑀 − 𝐴𝐶𝐶𝑅𝑘+𝑅ℎ

𝑚𝑒𝑠𝑜  (4-4) 

Notation Used: 

𝑆𝑉𝑁
𝑚𝑖𝑐𝑟𝑜→𝑚𝑒𝑠𝑜:  Significance value of an infrastructure node N to be abstracted 

from the microscopic level to the most detailed mesoscopic level 

𝑆𝑉𝑅𝑘,𝑅ℎ

𝑚𝑒𝑠𝑜: Significance value of a large mesoscopic occupation unit com-

posed of 𝑅𝑘 and 𝑅ℎ on the mesoscopic level 

𝜒{𝑙|𝑙∈𝑆𝑝}(𝑁): Indicator function, if the infrastructure node N belongs to the de-

lay propagation scope 𝑆𝑝 , it is equal to 1, otherwise 0. 

𝑀: A number that is at least larger than the maximum of the aggre-

gation accuracies 

Based on the significance values, the description levels of infrastructure nodes can 

be determined in two steps. In the first step, the infrastructure nodes are sorted ac-

cording to their significance values (Formula (4-3)). The optimal number of occupa-

tion units on each description level is limited by computational capacities, time con-

straints and other on-site factors. This is not within the scope of this dissertation, and 

it is acceptable to use assumed values for the explanation of the method. Depending 

on the optimal amount of occupation units on each description level and the ranking 

of the significance values of infrastructure nodes, the amount of infrastructure nodes 



Assessment Method for the Multi-scale Model 

 

96 Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 

 

kept on the microscopic, the most detailed mesoscopic and macroscopic levels can 

be determined (Figure 4-2). 

 

Figure 4-2: Determination of the Description Level of Each Infrastructure Node (I) (source: [Martin and 
Liang, 2017]) 

In the second step, by further aggregation of occupation units on the mesoscopic 

level, it may be possible to allow the less significant infrastructure nodes to be simu-

lated on the mesoscopic level instead of on the macroscopic level. The occupation 

units should be aggregated in sequence according to their significance values calcu-

lated with Formula (4-4). When no more infrastructure nodes are able to be trans-

formed from the macroscopic level to the microscopic level, the aggregation process 

stops. Eventually, the number of infrastructure nodes on each description level as 

well as the specific form of each infrastructure node (especially on the mesoscopic 

level) is obtained (Figure 4-3).  
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Figure 4-3: Determination of the Description Level of Each Infrastructure Node (II) (source: [Martin and 
Liang, 2017]) 

4.2 Further Aggregation on the Mesoscopic Level 

On the mesoscopic level, the basic structures or occupation units can be further ag-

gregated in order to let more infrastructure nodes be simulated on the mesoscopic 

level. Aggregation of basic structures may influence the conflicts between trains, 

since the blocking times of train runs on the concerned basic structures is changed. 

An example is shown in Figure 4-4: two basic structures are to be aggregated, and 

two train runs are arranged on them. Before aggregation, the conflict is presented as 

the overlapping of blocking times of different trains. After aggregation, due to the loss 

of partial releasing, the blocking time of Train Run 1 is correspondingly adjusted. De-

pending on the throughput of the new occupation unit, the conflict is accordingly en-

larged (throughput = 1) or ignored (throughput = 2).  
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Figure 4-4: Comparison of Overlapping of Blocking Times Before and After Aggregation (source: [Martin 
and Liang, 2017]) 

It can be seen that the relative change of conflicts – relative change of overlapping of 

blocking times - between train runs before and after aggregation is a good indicator 

to quantify the aggregation accuracy. The relative change of a conflict may conse-

quently propagate and influence the other train runs in the same manner as delay 

propagation. Delay propagation can be accurately estimated with the method de-

scribed in Section 4.1. However, the amount of aggregation possibilities is large even 

on a small infrastructure network, and the computational effort becomes unfeasible if 

the propagation is also taken into account. For practical applications, the relative 

change of conflict will be minimized from the source, and its further influences will be 

ignored. 

The blocking time of a train run on a certain occupation unit is described with two var-

iables: start blocking time and length of the blocking time. In case of hindrances (e.g. 

unscheduled stop before a red signal) the blocking time may be extended, and the 

average extension can be determined through a large amount of operational simula-

tions. The summation of the length of a scheduled blocking time and its average ex-

tension is the expected length of the actual blocking time, which is adopted to esti-
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mate overlapping times. In the following context, if not otherwise stated, the length of 

a blocking time refers to the expected length of the actual blocking time. Because of 

deviations in real operation, the actual start blocking time can be expressed as: 

𝑡𝑗,𝑖
𝑠𝑡𝑎𝑟𝑡,𝐼𝑠𝑡 = 𝑡𝑗,𝑖

𝑠𝑡𝑎𝑟𝑡,𝑆𝑜𝑙𝑙 + 𝑡𝑑𝑗,𝑖  (4-5) 

Notation used: 

𝑡𝑗,𝑖
𝑠𝑡𝑎𝑟𝑡,𝐼𝑠𝑡

: Actual start blocking time of train 𝑗 on occupation unit 𝑖 

𝑡𝑗,𝑖
𝑠𝑡𝑎𝑟𝑡,𝑆𝑜𝑙𝑙

: Scheduled start blocking time of train 𝑗 on occupation unit 𝑖 

𝑡𝑑𝑗,𝑖:  Delay of train 𝑗 on occupation unit 𝑖 

In general it can be assumed that 𝑡𝑑𝑗,𝑖  follows Erlang-K distribution. As a special 

case of Erlang-K distribution, negative exponential distribution was used. Thus, 

𝑡𝑗,𝑖
𝑠𝑡𝑎𝑟𝑡,𝐼𝑠𝑡

 follows the same probability distribution, because 𝑡𝑗,𝑖
𝑠𝑡𝑎𝑟𝑡,𝑆𝑜𝑙𝑙

 is a constant 

value fixed by schedule. 

For the sake of convenience in computerized processing, discrete time is used in-

stead of continuous time. Accordingly, the time-related variables including the start 

and end time of investigated time period, length of blocking time and start blocking 

time should be adjusted to become an integral multiple of the discrete interval. More-

over, the probability distribution of delay can be expressed with a frequency histo-

gram using the same time interval (e.g. the left subgraph in Figure 4-5).  

Depending on the various possible delays, the actual blocking time occurs at different 

time periods with certain probabilities. The right subgraph of Figure 4-5 shows an 

example: for a certain delay x (x ∈ {0, ∆t, 2∆t, 3∆t}) the start blocking time (x + ts) can 

be accordingly determined, and the time intervals within the length of blocking time 

from (x + ts) to (x + ts + 3∆t) will be blocked. The probability that blocking time oc-

curs at this time period is equal to the probability of the occurrence of the delay x. 

Because time is discretized, the probability of the occurrence of the delay x is defined 

as the probability that the delay belongs to the time interval [x, x+∆t). 
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Figure 4-5: Probability Distribution of Delay and Blocking Time (source: [Martin and Liang, 2017]) 

The probability distribution of blocking time can be transformed into the blocking 

probability of each time interval as shown in Figure 4-6, and the blocking probabilities 

of the time intervals outside of the range [ts, ts + 6∆t) should be set to zero in this ex-

ample. 

 

Figure 4-6: Blocking Probability of Each Time Interval (source: [Martin and Liang, 2017]) 
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Using the method above, the blocking probability of each time interval can be deter-

mined for each involved train run on an occupation unit. Thereby, the expected over-

lapping of blocking times between train runs in each time interval can be calculated, 

and the sum of these results is the expected total overlapping in the entire investigat-

ed time period, with which the relative changes of conflicts before and after aggrega-

tion can be simply calculated. Evidently, the key point is to calculate the expected 

overlapping in each time interval. To explain the calculation method clearly, a simple 

example is created in Figure 4-7: there are three train runs Z1, Z2 and Z3 on an oc-

cupation unit named R3, and the investigated time period is. from 𝑡0 to 𝑡𝑚. The block-

ing probability of each time interval for each train run is given in the second subgraph, 

and [𝑡2, 𝑡3) is chosen as a sample time interval. 

 

Figure 4-7: Calculation of Expected Overlapping Time Period on an Occupation Unit (source: [Martin and 
Liang, 2017]) 
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On this occupation unit, the conflicts can occur between every two trains or between 

these three trains. So, there are (𝐶3
2 + 𝐶3

3) possible conflict situations16. Furthermore, 

because R3 is composed of two basic structures (see Figure 4-4), the throughput17 of 

R3 is either 1 or 2.  

Take Z1 and Z2 as an example of the conflict situation occurred only between two 

trains, and the expected overlapping time period between them in the time interval 

[𝑡2, 𝑡3) can be calculated with the general Formula (4-6). 

𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3 ) = 𝑃𝑡2~𝑡3,𝑍1,𝑍2

𝑅3 · 𝑡𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3

 (4-6) 

Notation used: 

𝑃𝑡2~𝑡3,𝑍1,𝑍2
𝑅3 : Occurrence probability of the conflict situation between Z1 and 

Z2 on the occupation unit R3 in the time interval from 𝑡2 to 𝑡3 

𝑡𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3

: Total overlapping time period between Z1 and Z2  

𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3 ): Expected total overlapping time period between Z1 and Z2  

The occurrence probability of the corresponding conflict situation can be easily calcu-

lated based on the blocking probability of each time interval (e.g. second subgraph in 

Figure 4-7) as follows: 

𝑃𝑡2~𝑡3,𝑍1,𝑍2
𝑅3 = 𝑃𝑡2~𝑡3,𝑍1

𝑅3 · 𝑃𝑡2~𝑡3,𝑍2
𝑅3 · (1 − 𝑃𝑡2~𝑡3,𝑍3

𝑅3 ) (4-7) 

Where: 

𝑃𝑡2~𝑡3,𝑍𝑗
𝑅3 : Blocking probability of the time interval [𝑡2, 𝑡3) for 𝑍𝑗 on the occu-

pation unit R3 

                                            
16

 If n train runs exist on a certain occupation unit, the amount of possible conflict situations are 

(𝐶𝑛
2 + 𝐶𝑛

3 +··· +𝐶𝑛
𝑛). To calculate the overlapping time period in a certain time interval, all possible 

conflict situations should be considered. 

17
 In general, a larger occupation unit (designated as R3) is composed of another two occupation units 

(designated as R1 and R2). The throughputs of R1 and R2 are TPR1 and TPR2 respectively. The range 

of TPR3 is [1, TPR1+TPR2 ] 
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The total overlapping time period in the corresponding conflict situation changes as 

the throughput varies. In case the throughput is 1, the total overlapping time period 

between Z1 and Z2 is 

𝑡𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3 |𝑇𝑃𝑅3=1 = ∆𝑡 (4-8) 

In case the throughput is 2, the overlapping between these two trains will be ignored. 

𝑡𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3 |𝑇𝑃𝑅3=2 = 0 (4-9) 

The expected overlapping time between Z1 and Z2 can be calculated: 

𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3 )|𝑇𝑃𝑅3=1 = 𝑃𝑡2~𝑡3,𝑍1

𝑅3 · 𝑃𝑡2~𝑡3,𝑍2
𝑅3 · (1 − 𝑃𝑡2~𝑡3,𝑍3

𝑅3 ) · ∆𝑡 (4-10) 

𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3 )|𝑇𝑃𝑅3=2 = 𝑃𝑡2~𝑡3,𝑍1

𝑅3 · 𝑃𝑡2~𝑡3,𝑍2
𝑅3 · (1 − 𝑃𝑡2~𝑡3,𝑍3

𝑅3 ) · 0 (4-11) 

On the condition that conflicts occur between these three trains, the occurrence 

probability of this conflict situation is 

𝑃𝑡2~𝑡3,𝑍1,𝑍2,𝑍3
𝑅3 = 𝑃𝑡2~𝑡3,𝑍1

𝑅3 · 𝑃𝑡2~𝑡3,𝑍2
𝑅3 · 𝑃𝑡2~𝑡3,𝑍3

𝑅3  (4-12) 

In case the throughput is 1, the blocking times of every two of these three trains over-

lapped (there are 𝐶3
2 possibilities). So the total overlapping time period is 

𝑡𝑡2~𝑡3,𝑍1,𝑍2,𝑍3
𝑂𝑉𝐿𝑃,𝑅3 |𝑇𝑃𝑅3=1 = 𝐶3

2 · ∆𝑡 = 3 · ∆𝑡 (4-13) 

The throughput indicates the number of trains that can block an occupation unit with-

out conflict. So the overlapping time periods occurring between the trains belonging 

to the throughput can be ignored18. When the throughput is 2, the total overlapping 

time period should be adjusted as follows: 

𝑡𝑡2~𝑡3,𝑍1,𝑍2,𝑍3
𝑂𝑉𝐿𝑃,𝑅3 |𝑇𝑃𝑅3=2 = (𝐶3

2 − 𝐶2
2) · ∆𝑡 = 2 · ∆𝑡 (4-14) 

The expected overlapping times among Z1, Z2 and Z3 are: 

                                            

18
 Generally speaking, if 𝑛𝑐𝑓𝑙 trains are involved in a certain conflict situation and the throughput is 

𝑛𝑇𝑃, the number of overlapping is max {0,(𝐶𝑛𝑐𝑓𝑙
2 − 𝐶𝑛𝑇𝑃

2 )}. 𝑛𝑐𝑓𝑙 is always equal or larger than 2, so 

𝐶𝑛𝑐𝑓𝑙
2  is equal or larger than 1. However, 𝑛𝑇𝑃 can equal to 1. In this case 𝐶1

2 is equal to 0 by definition. 
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𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍2,𝑍3
𝑂𝑉𝐿𝑃,𝑅3 )|𝑇𝑃𝑅3=1 = 𝑃𝑡2~𝑡3,𝑍1

𝑅3 · 𝑃𝑡2~𝑡3,𝑍2
𝑅3 · 𝑃𝑡2~𝑡3,𝑍3

𝑅3 · 3 · ∆𝑡 (4-15) 

𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍2,𝑍3
𝑂𝑉𝐿𝑃,𝑅3 )|𝑇𝑃𝑅3=2 = 𝑃𝑡2~𝑡3,𝑍1

𝑅3 · 𝑃𝑡2~𝑡3,𝑍2
𝑅3 · 𝑃𝑡2~𝑡3,𝑍3

𝑅3 · 2 · ∆𝑡 (4-16) 

The expected total overlapping time period in the time interval [𝑡2, 𝑡3) is the sum of 

the results of all possible conflict situations. 

The expected total overlapping time period in the other time intervals can be calcu-

lated with the same process as elaborated above. Eventually, the expected total 

overlapping time period in the whole investigated time period can be calculated, 

which is the sum of the results of all time intervals. 

𝐸(𝑇𝑂𝑉𝐿𝑃,𝑅3)|𝑇𝑃𝑅3=1 𝑜𝑟 2 = 𝐸(𝑇𝑡0~𝑡1

𝑂𝑉𝐿𝑃,𝑅3)|𝑇𝑃𝑅3=1 𝑜𝑟 2 

(4-18) 

 +𝐸(𝑇𝑡1~𝑡2

𝑂𝑉𝐿𝑃,𝑅3)|𝑇𝑃𝑅3=1 𝑜𝑟 2 

 ⁞ 

 +𝐸(𝑇𝑡𝑚−1~𝑡𝑚

𝑂𝑉𝐿𝑃,𝑅3 )|𝑇𝑃𝑅3=1 𝑜𝑟 2 

To estimate the aggregation accuracy for the two adjacent occupation units R1 and 

R2, the expected total overlapping time periods on them before aggregation should 

be determined with the same process in advance. The only difference is that the 

throughputs of R1 and R2 are pre-given. The relative change of the expected total 

overlapping time period can be calculated as follows. 

 

 

𝐸(𝑇𝑡2~𝑡3

𝑂𝑉𝐿𝑃,𝑅3)|𝑇𝑃𝑅3=1 𝑜𝑟 2 = 𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3 )|𝑇𝑃𝑅3=1 𝑜𝑟 2 

(4-17) 

 +𝐸(𝑇𝑡2~𝑡3,𝑍2,𝑍3
𝑂𝑉𝐿𝑃,𝑅3 )|𝑇𝑃𝑅3=1 𝑜𝑟 2 

 +𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍3
𝑂𝑉𝐿𝑃,𝑅3 )|𝑇𝑃𝑅3=1 𝑜𝑟 2 

 +𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍2,𝑍3
𝑂𝑉𝐿𝑃,𝑅3 )|𝑇𝑃𝑅3=1 𝑜𝑟 2 
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∆𝐸(𝑇𝑂𝑉𝐿𝑃,𝑅3)|𝑇𝑃𝑅3=1 𝑜𝑟 2 = 𝐸(𝑇𝑂𝑉𝐿𝑃,𝑅1)|𝑇𝑃𝑅3=1 𝑜𝑟 2 

(4-19)  +𝐸(𝑇𝑂𝑉𝐿𝑃,𝑅2)|𝑇𝑃𝑅3=1 𝑜𝑟 2 

 −𝐸(𝑇𝑂𝑉𝐿𝑃,𝑅3)|𝑇𝑃𝑅3=1 𝑜𝑟 2 

By comparing the absolute values of the relative changes in case of the different 

throughputs, the lower absolute value will be chosen to indicate the aggregation ac-

curacy of R3, and the corresponding throughput will be used as the representative 

throughput of R3. 

The calculation procedure explained above can easily be generalized to estimate the 

aggregation accuracy of any larger occupation unit. The procedure can be summa-

rized into four steps in sequence: 

1) Calculate the expected overlapping time periods on two to-be-aggregated oc-

cupation units; 

2) Adjust the blocking times of the concerned trains on the larger aggregated oc-

cupation unit and recalculate the blocking probabilities of each time interval for 

the trains; 

3) Calculate the expected overlapping time period on the larger aggregated oc-

cupation unit; 

4) Calculate the relative change of overlapping time period before and after ag-

gregation, and determine the aggregation accuracy and representative 

throughput for the larger occupation unit. 

In the further up-scaling process, the occupation unit with higher aggregation accura-

cy (a lower relative change of expected overlapping time period) will receive a higher 

aggregation priority. 
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5 Multi-scale Simulation Model with Priority Sequence Control 

The multi-scale simulation model depicted in Chapter 3 adopts implicitly the First 

Come First Serve (FCFS) principle. The resource requirements of trains are attended 

in the order that they arrive, without other sequence control constraints. The train pri-

ority sequences on relevant infrastructure resources are unknown before the end of 

simulations. The Banker's algorithm is implemented for the purpose of deadlock 

avoidance. The simulation model is capable of generating deadlock-free timetables 

independently, which are used as the basic timetable in further dispatching optimiza-

tion processes. 

The basic timetable generated by the simulation model without train priority se-

quence control will be modified by the dispatching optimization module through a se-

ries of dispatching methods (see Chapter 6); as a result a dispatched timetable is 

generated, which is represented as train priority sequence lists on relevant infrastruc-

ture resources. In order to simulate dispatched timetables and provide necessary 

data for timetable characteristics evaluation in the optimization process, a simulation 

model with train priority sequence control was designed as part of the DFG project 

[Martin and Liang, 2017]. In this model, train runs are regulated explicitly by a pre-

given dispatched timetable. Because Banker's algorithm could change train paths 

and train priority sequences on infrastructure resources, it is not applied in the simu-

lation model with priority sequence control, in order to avoid the control contradictions. 

The interconnection between the simulation model and the dispatching optimization 

model is illustrated in Figure 5-1. The multi-scale simulation model with train priority 

sequence control developed in [Martin and Liang, 2017] will be described in this 

chapter, and the dispatching optimization algorithm will be described in Chapter 6. 

Essentially, the train priority sequence control and the dispatching optimization algo-

rithm on the macroscopic level follow the same principle as those on the microscopic 

and mesoscopic levels. Nevertheless, due to the high level of abstraction of the mac-

roscopic level, the infrastructure node – loop non track do not exist anymore on this 

level (for more details of the infrastructure hierarchy on the microscopic and 

mesoscopic level it is referred to Figure 3-30). Accordingly, the algorithms of train 

priority sequence control and dispatching optimization need to be fine-tuned on the 

macroscopic level. For instance, it is possible that knock-on delays occur on the area 
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of loop non track on the microscopic and mesoscopic levels, but not possible on the 

macroscopic level. Therefore, the algorithm details associated with loop non track 

should be removed on the macroscopic level. Because the same principle is applied, 

the algorithms of priority sequence control and dispatching optimization on the mac-

roscopic level can be easily derived from those on the microscopic and mesoscopic 

levels. To avoid content duplication, the algorithms of priority sequence control and 

dispatching optimization will be only discussed on the microscopic and mesoscopic 

levels in Chapter 5 and Chapter 6. 

 

Figure 5-1: Interconnection between Simulation Module and Dispatching Optimization Module 

5.1 Basics of Priority Sequence Control 

In principle, the workflow of the simulation model with priority sequence control is the 

same as the workflow of the simulation model without priority sequence control. 

Likewise the workflow includes three procedures in a single processing step at a time 

interval: request resources, allocate resources and proceed with simulation tasks. In 

each procedure, a new mechanism of priority sequence control is added. The infra-

structure hierarchy defined in Section 3.2.1 is used herein, and train priority se-

quence constraints are added onto the infrastructure nodes to meet dispatching-

specific requirements. Train priority sequence control is realized through an arrival 
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sequence list and a departure sequence list on each loop track and open track sec-

tion (except the open track section, only including virtual block sections). The two 

lists are initially identical. As a train occupies or releases a loop track or an open 

track section, the arrival list or departure list on it is updated. The details of the con-

trol mechanism in the three procedures will be separately elaborated in Section 5.2 

and 5.3. 

5.2 Priority Sequence Control in the Resource Requirement Procedure 

In the procedure of resource requirements, new resource requirements should be 

checked according to the priority sequence control constraints. To check a new re-

quirement of a train, two pieces of information are needed: the last physically occu-

pied block section by the train (named Block 1) and the required block section which 

is beyond Block 1 along the path of the train (named Block 2). The node attribute of 

Block 1 can be any of the following types: 

⎻ Open track section (virtual block sections not included) 

⎻ Open track section (virtual block sections included) 

⎻ Loop track 

⎻ Loop non track  

⎻ Junction 

The node corresponding to Block 1 is called the current node. If the current node is 

any of the last two types in the list above, the new resource requirement is certainly 

safe and the permission of the new resource requirement will be given directly. When 

a train physically arrives at a block section located in the area of loop non track or 

junction, it has already fulfilled the sequence control constraints on the subsequent 

open track section or loop track in advance. Otherwise, the train should stop on an 

open track section or loop track and wait until the entry permission of the subsequent 

open track section or loop track is given. An example of this situation is shown in 

Figure 5-2. Train 1 can enter the area of the loop non track, because the subsequent 

loop track has already been reserved for it. On the contrary, Train 2 is required to 

wait on the open track section, because the subsequent loop track is reserved for it in 

a stacked position. The case that the current node is a junction follows the same 

principle. 
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Figure 5-2: An Example of Unnecessary Priority Sequence Control 

If the node attribute of Block 1 is any of the first three types, the new requirement 

may violate existing constraints and should be proven, barring two exceptions. The 

first exception depends on the position of Block 2. Based on the included basic struc-

tures of Block 2, whether Block 2 is completely included in the current node can be 

determined. If Block 2 is completely included in the current node, the train will not 

leave the current node in the current time interval, which means that the new re-

source requirement has no influence on the priority sequence constraints, and can be 

permitted directly. The second exception depends on the type of the subsequent loop 

track or open track section. If the subsequent section is an open track containing only 

a virtual block section, the new resource requirement can be permitted directly. Open 

track sections containing only virtual block sections do not have the function of priori-

ty sequence control. An example of these two exceptions is shown in Figure 5-3. 

Train 1 will enter the virtual block section, and the new resource requirement will be 

permitted directly. Train 2 requires the next block section, but will not leave the cur-

rent open track section in the current time interval. Therefore, the new resource re-

quirement will also be permitted directly. 

 

Figure 5-3: An Example of Two Exceptions in the Priority Sequence Control (source: [Martin and Liang, 
2017]) 
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Except for the situations described above, the new resource requirement must be 

proven with the following steps: 

Step 1: Determine the subsequent node (i.e. loop track or open track section) based 

on the current node. 

Step 2: If the subsequent node is not reserved at the first position for the considered 

train in the arrival list, go directly to Step 6. Otherwise continue to the next 

step. 

Step 3: If the subsequent node is reserved at the first position for this train in the de-

parture list, go to Step 5. Otherwise continue to the next step. 

Step 4: If the running direction of the train that departs previously to this train in the 

departure list of the subsequent node is opposite to the running direction of 

this train, go to Step 6. Otherwise continue to Step 5. 

Step 5: Permit the new resource requirement. 

Step 6: Reject the new resource requirement 

The complete flow of train priority sequence control in the procedure of resource re-

quirement is shown in Figure 5-4. 
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Figure 5-4: The Complete Flow of Priority Sequence Control in Resource Requirement Procedure 

5.3 Priority Sequence Control in the Resource Allocation and Proceeding 

with Simulation Tasks 

In the procedure of resource allocation, the new resource requirement should pass 

the conflict-free test and the deadlock-free test in the simulation model without priori-

ty sequence control. However, the pre-given train priority sequence lists on each loop 

track and open track section in the simulation model with priority sequence control 

have already passed the deadlock-free test before simulation starts as described in 

Section 6.1.3. Therefore, the new resource requirement of a train only needs to be 

conflict-free, which means at the time point of occurrence of a new resource require-

ment, the required resources must not be occupied by the other trains. If a new re-

source requirement has passed the conflict-free test, the required resources will be 

directly allocated to the corresponding train.  

In the procedure of proceeding with simulation tasks, besides the simulation tasks 

described in Section 3.1.2.3, updating of priority sequence constraints (updating of 

arrival and departure lists on loop tracks and open track sections) is additionally im-

plemented. This task will be executed after the position of a train is updated in each 
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time interval. The updating of arrival lists depends on the new resource requirement, 

and the updating of departure lists depends on the released resources in one time 

interval. Thus, this task requires two pieces of information as inputs, and is corre-

spondingly divided into two subtasks:  

⎻ Updating of arrival lists  

Input: new resource requirements without consideration of overlap 

⎻ Updating of departure lists  

Input: released resources in one time interval  

Only requested resources other than overlap are considered for the updating of arri-

val lists. In most cases an overlap is occupied together with its corresponding block 

sections. However, in case of scheduled or unscheduled stops before a main signal 

of a block section, the corresponding overlap will be released after the train stops. 

The repeated changes of overlap occupation are not suitable for train priority se-

quence control, so only the new allocated resources, without overlaps, is considered. 

Furthermore, the new resource requirements used here are only the requirements 

generated by the resource requirement procedure that passed the conflict-free test 

and was successfully allocated, since only changes of resource occupation may in-

fluence arrival lists.  

For updating of arrival lists, the node attributes of the basic structures included in a 

new resource requirement without overlaps are collected. If any of the nodes is a 

loop track or an open track section, and the first position of its arrival list is reserved 

for the requester, the train will be removed from the arrival list. For updating of depar-

ture lists, the node attributes of the released basic structures will be collected. If any 

of nodes is a loop track or open track section, the train will be removed from its de-

parture list, except when the train is still occupying the node. 
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6 Domain-specific Dispatching Optimization Model  

The dispatching optimization model developed in this dissertation is used to adjust 

the train priority sequences on loop tracks and open track sections through a series 

of dispatching actions in order to find an optimal dispatched timetable. The dispatch-

ing optimization in railway operation is a typical combinatorial optimization, and for 

such problems exhaustive search is not feasible on large scale cases. A metaheuris-

tic algorithm is capable to balance the quality of solution and the computational com-

plexity. A widely used metaheuristic algorithm - tabu search - is preferred as the ba-

sis of the dispatching optimization model. Tabu search (TS) algorithm is a local 

search based metaheuristic algorithm firstly proposed by Glover in 1986 [Glover, 

1986]. Tabu search follows the neighborhood search procedure as local search, iter-

atively moving from an initial solution to a new neighbor solution in its neighborhood.  

The framework of the tabu search algorithm implemented in this approach is shown 

in Figure 6-1. The optimization process starts with an initial solution, which can be 

generated by the simulation model developed in Chapter 3. By solving of an inherent 

conflict in the initial solution, a new neighbor solution is accordingly generated. Be-

cause simulation of candidate solutions is a time-consuming task, only a subset of 

the neighborhood has the chance to be added in the candidate list. In this approach, 

both intensification and diversification elements are included in the candidate list, 

which will be elaborated in Section 6.1. After candidate list was constructed, the can-

didate will be simulated and evaluated with the pre-defined dispatching objective 

function (see Section 6.2). Under the constraint of tabu list (see Section 6.3), the best 

solution will be selected out and used to replace the initial solution. This procedure is 

performed iteratively until the terminate specification is fulfilled (see Section 6.3). The 

best solution among all historical results is chosen as the final solution. At the end of 

this chapter (Section 6.4), experiments on a reference example are conducted. 
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Figure 6-1: The Framework of the Implemented Tabu Search Algorithm 

6.1 Construction of the Candidate List 

To construct the candidate list, the knock-on delay in the initial solution will be ranked 

according to their priority primarily, and by resolving a selected knock-on delay by a 

series of dispatching actions such as passing, overtaking and replatforming a candi-

date solution will be generated. Within the scope of the DFG project [Martin and 

Liang, 2017] a greedy algorithm based dispatching optimization algorithm was devel-

oped. For the construction of the candidate set for the greedy algorithm, knock-on 

delays were also ranked to enable the important conflicts to be resolved primarily, 

and a comprehensive approach of train priority sequence adjustment (resolution of 
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knock-on delays) were developed in the project. Even though a different optimization 

algorithm (i.e. tabu search) was employed in this dissertation, the algorithm for calcu-

lating the priority of knock-on delays and the approach of train priority sequence ad-

justment apply equally here. They will be elaborated in Section 6.1.1 and 6.1.2 re-

spectively. The higher ranked knock-on delays are used to generate intensification 

elements and the left lower ranked knock-on delays are used to generate diversifica-

tion elements for the candidate list of the tabu search algorithm. The candidate list 

strategy will be described in detail in Section 6.1.4. Only feasible solutions are con-

sidered in the construction of the candidate list, so the solutions that cannot pass the 

deadlock-free test in Section 6.1.3 will be discarded directly. 

6.1.1 Priority Calculation for Knock-on Delays 

The algorithm for calculating the priority of knock-on delays consists of two criteria: 

weighted knock-on delay 𝑡�̂� and the influence of knock-on delay on further conflicts 

𝐼𝑛𝑓𝑡𝑤 . Both of the criteria are dispatching objective function oriented. Weighted 

knock-on delay reflects the direct contribution of a knock-on delay to the value of the 

objective function, and the influence of knock-on delay on further conflicts reflects the 

indirect contribution of a knock-on delay to the value of the objective function.  

In the calculation of priority for knock-on delays, knock-on delays are weighted in the 

same manner as they are weighted in the dispatching objective function19. The crite-

ria weighted knock-on delay is calculated with Formula (6-1).  

𝑡�̂�𝑗,𝑖 =
𝐶𝑗 + 𝑍𝑓𝑙

1 + 𝑍𝑓𝑙
 ·  𝑡𝑤𝑗,𝑖   (6-1) 

 

 

 

                                            
19

 As can be seen in Formula (6-1), the weight of knock-on delay is determined by two parameters - 

the constant for weighting knock-on delays 𝐶𝑗 and the viscosity of dispatching conditions 𝑍𝑓𝑙. These 

two parameters are also included in the dispatching objective function implemented in this approach. 

Therefore, the calculation methods of these two parameters will be explained in detail in Section 6.2 

along with the dispatching objective function (see Formula (6-10) and Formula (6-11)).  
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Notation used: 

𝑡�̂�𝑗,𝑖 Weighted knock-on delay of train j on block section i 

𝐶𝑗 Constant for weighting knock-on delays of train j 

𝑍𝑓𝑙 Viscosity of dispatching conditions 

𝑡𝑤𝑗,𝑖 Knock-on delay of train j on block section i 

Once a train experiences a knock-on delay on a certain block section, the delay will 

accompany the train on the further block sections along its path until the delay is 

eliminated either by recovery times or by the termination of the train run. As shown in 

Figure 6-2, a train Z2 on the block section B0 was hindered by another train Z1 on 

the block section B1, due to which Z2 obtained a knock-on delay 𝑡𝑤2,0 of two minutes 

on B0. The knock-on delay resulted in delays of Z2 𝑡𝑑2,𝑖 on the further block sections 

along its path. Because 𝑡𝑤2,0 is the only source of 𝑡𝑑2,𝑖, 𝑡𝑤2,0 is entirely responsible 

for 𝑡𝑑2,𝑖. In order to express more clearly, 𝑡𝑤2,0 is defined as the source knock-on de-

lay of a certain delay 𝑡𝑑2,𝑖.  

 

Figure 6-2: Relationship between Delay and Knock-on Delay of a Train (I) (source: [Martin and Liang, 
2017]) 

In case a delay is caused by more than one knock-on delay, the responsibility of 

each knock-on delay will be calculated. As shown in Figure 6-3, Z2 on block section 

B3 was hindered by another train, Z3, on block section B4, due to which Z2 experi-

enced a knock-on delay 𝑡𝑤2,3 of three minutes on B3. The knock-on delay 𝑡𝑤2,3 re-

sulted in the delay of Z2 on B3, B4 and B5 being increased to 5 minutes. In this situa-

tion, the delay 𝑡𝑑2,3 or 𝑡𝑑2,4 or 𝑡𝑑2,5 was caused by two sources 𝑡𝑤2,0 and 𝑡𝑤2,3, suc-

cessively. The responsibility for delay 𝑡𝑑2,3 or 𝑡𝑑2,4 or 𝑡𝑑2,5 will, therefore, be distrib-
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uted proportionally to 𝑡𝑤2,0 and 𝑡𝑤2,3. Delay 𝑡𝑤2,0 assumes 40% responsibility, and 

delay 𝑡𝑤2,3 assumes 60% responsibility. 

 

Figure 6-3: Relationship between Delay and Knock-on Delay of a Train (II) (source: [Martin and Liang, 
2017]) 

The procedure to describe the relationship between delays20 and knock-on delays of 

a train quantitatively is summarized into the following steps: 

Step 1: Calculate the knock-on delays of a train. It is supposed that there are 𝑛 

knock-on delays for the considered train. (𝑛 ≥ 1) 

Step 2: Select the 𝑖𝑡ℎ knock-on delay; enumerate the block sections from the one on 

which the knock-on delay occurred to the second to last block section along 

the path of the train. (𝑖 ∈ [1, 𝑛]) 

Step 3: For each enumerated block section, a delay instance will be generated if one 

does not previously exist. A delay instance is identified by two attributes: the 

delayed train and the block section.  

Step 4: Record the 𝑖𝑡ℎ knock-on delay in the source knock-on delay list of each enu-

merated block section. 

Step 5: If all knock-on delays of the train have been analyzed, proceed to Step 6, 

otherwise return to Step 2. 

                                            
20

 The delay discussed here includes only delays caused by knock-on delays in the investigation area. 

The original delay of a train at the initial station in the investigation area and the initial delay of a train 

at the boundary of the investigation area are not considered, since original delays and initial delays 

are controlled variable for dispatching tasks. 
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Step 6: Analyze each block section along the path of the train. If a delay instance is 

defined on a block section, the responsibility of each source knock-on delay 

will be calculated with Formula (6-2). 

𝑃𝑡𝑑𝑗,𝑘 , 𝑡𝑤𝑗,𝑖

𝑅𝑏 =  
 𝑡𝑤𝑗,𝑖

∑  𝑡𝑤𝑗,𝑏 · 𝜒{𝑙| 𝑡𝑤𝑗,𝑙∈𝑆𝑡𝑑𝑗,𝑘
𝑠𝑜𝑢𝑟𝑐𝑒}

𝑏=𝑛𝑗
𝑏𝑙𝑜𝑐𝑘

𝑏=1

 
(6-2) 

Notation used: 

𝑃𝑡𝑑𝑗,𝑘 , 𝑡𝑤𝑗,𝑖

𝑅𝑏 : Percentage of the responsibility of source knock-on delay  𝑡𝑤𝑗,𝑖 for delay 

𝑡𝑑𝑗,𝑘 

 𝑡𝑤𝑗,𝑖:  Knock-on delay of train 𝑗 on block section 𝑖 

𝑡𝑑𝑗,𝑘:  Delay of train 𝑗 on block section 𝑘 

𝜒{𝑙|𝑙∈𝑆𝑡𝑑𝑗,𝑘
}: Indicator function, if the knock-on delay of train 𝑗 on block section 𝑙  𝑡𝑤𝑗,𝑙 

is the source of the delay of train 𝑗 on block section  𝑡𝑑𝑗,𝑘, it is equal to 1; 

otherwise it is equal to 0. 

𝑛𝑗
𝑏𝑙𝑜𝑐𝑘

: Number of block sections along the path of train 𝑗 

𝑆𝑡𝑑𝑗,𝑘

𝑠𝑜𝑢𝑟𝑐𝑒: Set of source knock-on delays of delay 𝑡𝑑𝑗,𝑘 

With the procedure described above, the relationship between knock-on delays and 

delays for each train can be quantified. A delayed train may have conflicts with other 

trains, which results in the knock-on delays of the other trains. As shown in Figure 

6-4, three trains Z2, Z4 and Z5 stopped in a station. The trains will depart from the 

station in the sequence of Z2, Z5 and Z4. Because Z2 will arrive at B6 5 minutes late, 

the dwell time of Z4 has to be prolonged for 4 minutes. Successively Z5 hindered Z2 

additionally 1 minute. As a result Z4 experienced a knock-on delay of 5 minutes on 

B7. 
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Figure 6-4: The Delay of a Train Leads to a Knock-on Delay of another Train (source: [Martin and Liang, 
2017]) 

The percentage of responsibility of each delay for the resulting knock-on delay can 

be calculated with Formula (6-3):  𝑡𝑑2,6 assumes 80% (4 min / 5 min) responsibility 

and  𝑡𝑑5,6 assumes 20% (1min / 5 min) responsibility for  𝑡𝑤4,7. In order to express 

more clearly,  𝑡𝑑2,6 and  𝑡𝑑5,6 are defined as the source delay of  𝑡𝑤4,7. 

𝑃 𝑡𝑤𝑗,𝑖 , 𝑡𝑑𝑙,𝑘  
𝑅𝑏 =

𝑡ℎ𝑗,𝑖,𝑙,𝑘

𝑡ℎ𝑗,𝑖

 (6-3) 

Notation used: 

𝑃 𝑡𝑤𝑗,𝑖 , 𝑡𝑑𝑙,𝑘  
𝑅𝑏 : Percentage of responsibility of delay  𝑡𝑑𝑙,𝑘 for knock-on delay  𝑡𝑤𝑗,𝑖 

𝑡ℎ𝑗,𝑖,𝑙,𝑘
:  Time period during which train 𝑗 on block 𝑖 had been hindered by train 𝑙 

on block 𝑘 

𝑡ℎ𝑗,𝑖
:  Time period during which train 𝑗 on block 𝑖 had been hindered by the 

other trains 

It is difficult to deduce the time period during which Train 𝑗 on Block 𝑖 has been hin-

dered by Train 𝑙 on Block 𝑘 based upon the protocol of occupation times. Therefore, 

the time periods of hindrances are counted in the simulation process and outputted 

as a conflict relationship protocol at the end of the simulation process. Based on the 

protocol of conflict relationship, the source delays of each knock-on delay and the 
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respective time periods of hindrances will be determined and recorded. In other 

words, the resulting knock-on delays of each delay and the respective time periods of 

hindrances are obtained. In the case that a train is hindered by another punctual train, 

which means the source delay of the knock-on delay does not exist, a fake delay will 

be created, and the resulting knock-on delays of the fake delay and the respective 

time periods of hindrances will be also be recorded. A fake delay is defined as the 

delay of a punctual train that does not actually exist, and it is designed only to aid in 

the calculation of the percentage of responsibility of delays for knock-on delays. With 

Formula (6-3), the percentage of responsibility of all delays for their resulting knock-

on delays can be calculated.  

The relationship between the knock-on delay and the delay of a train, and the influ-

ence of the delay of a train on the knock-on delay of another train described above, 

reveals the basic logic of delay propagation: the knock-on delay of a train leads to the 

delay of the train itself, and the delay of the train can then further lead to a knock-on 

delay of another train. Following this basic logic a delay propagation diagram can be 

drawn for a simulated timetable. An example is shown in Figure 6-5. 

 

Figure 6-5: Delay Propagation Diagram (source: [Martin and Liang, 2017]) 

Through the delay propagation diagram, the influence of the knock-on delay  𝑡𝑤2,0 on 

further conflicts 𝐼𝑛𝑓𝑡𝑤2,0
 can be easily calculated with: 
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𝐼𝑛𝑓𝑡𝑤2,0
=  𝑃𝑡𝑑2,6,  𝑡𝑤2,0

𝑅𝑏  ·  𝑃 𝑡𝑤4,7 ,  𝑡𝑑2,6  
𝑅𝑏 ·  𝑡�̂�4,7 

                            + 𝑃𝑡𝑑2,6,  𝑡𝑤2,0

𝑅𝑏  ·  𝑃 𝑡𝑤4,7 ,  𝑡𝑑2,6  
𝑅𝑏 ·  𝐼𝑛𝑓𝑡𝑤4,7

 

(6-4) 

If 𝑡𝑤4,7 leads to other knock-on delays on the further path, 𝐼𝑛𝑓𝑡𝑤4,7
 will be calculated 

with the same method and substituted in Formula (6-4). Otherwise 𝐼𝑛𝑓𝑡𝑤4,7
 is equal to 

0. Knock-on delay is weighted in the same manner as in Formula (6-1). The determi-

nation of the influence of a knock-on delay on further conflicts is a recursive process, 

and the recurrence relation follows the same principle as Formula (6-4).  

After all knock-on delays are weighted and their influences on further conflicts are 

calculated, they should be normalized at first. 

𝑡�̂�𝑗,𝑖 ′ =  
𝑡�̂�𝑗,𝑖

′ − 𝑡�̂�𝑚𝑖𝑛

𝑡�̂�𝑚𝑎𝑥 − 𝑡�̂�𝑚𝑖𝑛

 (6-5) 

𝐼𝑛𝑓𝑡𝑤𝑗,𝑖
′ =

𝐼𝑛𝑓𝑡𝑤𝑗,𝑖
− 𝐼𝑛𝑓𝑚𝑖𝑛

𝐼𝑛𝑓𝑚𝑎𝑥 − 𝐼𝑛𝑓𝑚𝑖𝑛
 (6-6) 

Notation used: 

𝑡�̂�𝑗,𝑖 ′:  Normalized weighted knock-on delay of train 𝑗 on block section 𝑖 

𝑡�̂�𝑚𝑖𝑛: Minimum of the weighted knock-on delays 

𝑡�̂�𝑚𝑎𝑥: Maximum of the weighted knock-on delays 

𝐼𝑛𝑓𝑡𝑤𝑗,𝑖
′: Normalized influence of a knock-on delay 𝑡𝑤𝑗,𝑖 on further conflicts 

𝐼𝑛𝑓𝑡𝑤𝑗,𝑖
: Influence of a knock-on delay 𝑡𝑤𝑗,𝑖 on further conflicts 

𝐼𝑛𝑓𝑚𝑖𝑛: Minimum of the influences 

𝐼𝑛𝑓𝑚𝑎𝑥: Maximum of the conflicts 

The normalized weighted knock-on delay and their influences on further conflicts will 

be combined into a comprehensive priority indicator to judge the importance of each 

knock-on delay. The larger the value of the priority indicator of a knock-on delay is, 

the more importance the knock-on delay will be. In different application circumstanc-
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es, such as different system states, the relative importance of the weighted knock-on 

delay and the influence on further conflicts will vary as well. To that end, a variable 

representing the relative importance is introduced into the comprehensive priority 

indicator, which can be adjusted in order to achieve the best performance of the algo-

rithm in different types of application circumstance.  

𝑃𝑟𝑖𝑡𝑤𝑗,𝑖
= 𝐶𝑡𝑤 · 𝑡�̂�𝑗,𝑖′ + (1 − 𝐶𝑡𝑤) · 𝐼𝑛𝑓𝑡𝑤𝑗,𝑖

′ (6-7) 

Notation used: 

𝑃𝑟𝑖𝑡𝑤𝑗,𝑖
: Priority of knock-on delay 𝑡𝑤𝑗,𝑖 

𝐶𝑡𝑤:  Relative importance of weighted knock-on delay (𝐶𝑡𝑤 ∈ [0,1]) 

6.1.2 Train Priority Sequence Adjustment 

Once a knock-on delay is selected based on the priority rank determined in Section 

6.1.1, a series of suitable dispatching actions such as overtaking, passing and replat-

forming will be carried out to solve conflicts, depending on the characteristics of the 

knock-on delay. In this dissertation, only three dispatching actions (passing, overtak-

ing and replatforming) are implemented, and only the train priority sequences on loop 

tracks and open track sections are considered.  

Overtaking is intended to exchange the priority sequences between a train and its 

immediately previous train21 on an open track section or a loop track, with the two 

trains having successive movements. Passing is also intended to exchange the prior-

ity sequences of a train and its immediately previous train, but with the two trains 

having opposite movements. The move operation logics of overtaking and passing 

are the same, so overtaking and passing will be together referred as “overtaking” in 

the remainder of this report, and both of them are realized through the “swap” move 

operation. A swap move operation is carried out as follows:  

                                            
21

 The definition of immediately previous train in [Cui, 2010] is used herein: for an open track section T 

or a loop track LT with more than one train passing, if a train 𝑍𝑗 is not the first train passing T or LT, 

the immediately previous train 𝑍𝑝𝑟𝑒𝑣 of 𝑍𝑗 is the train passed T or LT before 𝑍𝑗, and there is no other 

train passing T or LT between 𝑍𝑝𝑟𝑒𝑣 and 𝑍𝑗. 
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On an open track section T or a loop track LT, the original indexes of priority22 of two 

trains 𝑍𝑗1 and 𝑍𝑗2 are 𝑃𝐼𝑗1,𝑇/𝐿𝑇 and 𝑃𝐼𝑗2,𝑇/𝐿𝑇 (𝑃𝐼𝑗1,𝑇/𝐿𝑇 > 𝑃𝐼𝑗2,𝑇/𝐿𝑇). The larger the index 

of priority of a train is, the earlier the train is scheduled to run through the corre-

sponding loop track or open track section. The indexes of the priority of the two trains 

on the T or LT will be exchanged by a swap move operation as shown in Figure 6-6, 

and the indexes of priority of the other trains on the T or LT will remain constant. It is 

not mandatory that 𝑍𝑗1 is the immediately previous train of 𝑍𝑗2. It can be seen that a 

swap move operation is characterized by three attributes: the overtaking train, its 

immediately previous train and the location where the swap move operation occurred 

(either an open track section or a loop track). 

 

Figure 6-6: An Example of a Swap Operation on a Loop Track (source: [Martin and Liang, 2017]) 

Replatforming is intended to change the position of a train from the original loop track 

to an alternative loop track, and it is realized by the move operation “insert”. An insert 

move operation is carried out as follows: 

                                            
22

 Index of priority refers to the indexes in both arrival list and departure list on a loop track or an open 

track section. 



Domain-specific Dispatching Optimization Model 

 

124 Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 

 

On the original loop track LT1, a train 𝑍𝑗1 will be removed from the arrival and depar-

ture list. Among the other trains on LT1, if 𝑃𝐼𝑗2,𝐿𝑇1 of a train 𝑍𝑗2 is greater than 𝑃𝐼𝑗1,𝐿𝑇1, 

it should be updated to (𝑃𝐼𝑗2,𝐿𝑇1 − 1). On the alternative loop track LT2, the new index 

of priority of 𝑍𝑗1 is 𝑃𝐼𝑗1,𝐿𝑇2. Among the pre-existing trains on LT2, if 𝑃𝐼𝑗3,𝐿𝑇2 of a train 

𝑍𝑗3 is greater or equal to 𝑃𝐼𝑗1,𝐿𝑇2, it should be updated to (𝑃𝐼𝑗3,𝐿𝑇2 + 1). After all index-

es of priority of the pre-existing trains have been updated, 𝑍𝑗1 will be inserted into the 

arrival and departure list according to 𝑃𝐼𝑗1,𝐿𝑇2. An example of insert move operation is 

shown in Figure 6-7. The insert move operation is also characterized by three attrib-

utes: the to-be-inserted train, the alternative loop track and the immediately previous 

train of the to-be-inserted train on the alternative loop track. In case the previous train 

does not exist on the alternative loop track, this attribute should be set as null. 

 

Figure 6-7: An Example of an Insert Operation (source: [Martin and Liang, 2017]) 

In order to solve a knock-on delay properly, a suitable dispatching action will be se-

lected depending on the circumstances of the knock-on delay. As described in Sec-

tion 6.1.1, a knock-on delay is identified by two attributes: the delayed train and the 
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block section. Firstly, the circumstances will be classified in to four categories de-

pending on the node attribute of the block section (i.e. location of the knock-on delay). 

The node attribute of the block section is the same as the node attribute of the last 

basic structure located at the end of the block, and includes four types: loop track, 

loop non track, junction and open track section. The four categories are defined as 

follows: 

⎻ Category I: the location of the knock-on delay is a loop track 

⎻ Category II: the location of the knock-on delay is a loop non track 

⎻ Category III: the location of the knock-on delay is a junction 

⎻ Category IV: the location of the knock-on delay is an open track section 

Each category can be divided into several subcategories depending on the charac-

teristics of the further path of the delayed train, and a proper dispatching action will 

be designated to each subcategory. In order to analyze the further path of the de-

layed train, a new concept, named macro path, is introduced. The macro path of the 

train is the sequence of infrastructure nodes along the train path. The further macro 

path of the delayed train is a partial macro path, which starts from the infrastructure 

node on which the train was delayed (the node attribute of the block section on which 

the corresponding knock-on delay occurred) to the last infrastructure node of the 

whole train path. In the following text, the four categories listed above will be ex-

plained individually, and the classification of subcategories for each category will be 

demonstrated in Figure 6-8, Figure 6-9 and Figure 6-10 respectively. 

For categories I and III, the next dispatching relevant infrastructure node in the fur-

ther macro path of the delayed train will be determined firstly. If the next dispatching 

relevant node is an open track section, the delayed train will be dispatched to over-

take the immediately previous train on the open track section. This case is classified 

as subcategory I-C or III-C. If the execution of overtaking action has failed, e.g. no 

previous train, the greedy algorithm will be informed and another knock-on delay will 

be selected to construct a candidate. If the overtaking action was executed success-

fully, the relative priority sequences between the immediately previous train and the 

delayed train on the other part of their common macro path should be analyzed and 

adjusted to ensure the consistency of the relative priority sequence of these two 

trains. Violation of priority sequence consistency incurs deadlock problems. The ad-
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justment method for keeping priority sequence consistent will be described at the end 

of this section. 

If the next dispatching relevant node is a loop track (in 𝐿𝑜𝑜𝑝𝑦) and the delayed train 

attempts to enter 𝐿𝑜𝑜𝑝𝑦 (the next block section of the train enters 𝐿𝑜𝑜𝑝𝑦), replatform-

ing will be executed. This case is classified as subcategory I-A or III-A. To carry out a 

replatforming action, the following five steps are necessary. Firstly, all possible alter-

native loop tracks for the delayed train will be selected. Secondly, the occupation 

time (the same as blocking time) of the delayed train on each alternative loop track 

will be estimated. Thirdly, the conflicts between the delayed train and the pre-existing 

trains will be quantified by counting the overlap between the estimated occupation 

time of the delayed train and the actual occupation times of the pre-existing trains on 

each alternative track. The alternative track with the minimum number of conflicts is 

taken as the optimal one for the replatforming action. Finally, the trains on the optimal 

alternative loop track (including the delayed train) will be sorted by their starts of oc-

cupation times; thereby the insert position of the delayed train in the arrival and de-

parture lists of the optimal alternative track can be determined. The replatforming ac-

tion can be executed through an insert operation as shown in Figure 6-7. After a re-

platforming action has been completed, the relative priority sequences between the 

delayed train and each pre-existing train on their common macro path (except the 

new loop track) could be analyzed and adjusted in order to ensure the priority se-

quence consistency. However, the involvement of all trains on the new loop track in 

the priority sequence adjustment could lead to excessive modification of the initial 

solution; consequently it may result in solution quality deterioration. Furthermore, the 

computational complexity of adjusting the priority sequence of all trains on a loop 

track could be extremely high. On one hand it is time consuming, and on the other 

hand there is a high possibility of generating an infeasible candidate solution. Thus, 

train priority consistency is not taken into account when a replatforming action is per-

formed. Only if the execution of the replatforming action failed, e.g. no alternative 

track, the delayed train will be dispatched to overtake its immediately previous train 

on the original loop track in 𝐿𝑜𝑜𝑝𝑦. 

If the next dispatching relevant infrastructure node is loop track (in 𝐿𝑜𝑜𝑝𝑦) and the 

delayed train does not attempt to enter 𝐿𝑜𝑜𝑝𝑦 at that moment (the next block section 
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of the train does not enter 𝐿𝑜𝑜𝑝𝑦), the delayed train will be dispatched to overtake the 

immediately previous train on the loop track. This case is classified as subcategory I-

B or III-B. Overtaking on a loop track is executed in the same manner as overtaking 

on an open track section. In the case of subcategory I-B or III-B, it is capable of 

providing replatforming possibility in 𝐿𝑜𝑜𝑝𝑦  for the delayed train. However, as de-

scribed above, the occupation times of the delayed train on the alternative loop 

tracks should be estimated in order to select an optimal alternative loop track and 

determine the insert position. The estimation is based on the assumption that the oc-

cupation times of the other trains remain constant, but changes of occupation times 

will occur as the consequence of dispatching actions. The farther away from 𝐿𝑜𝑜𝑝𝑦 

the delayed train is, the more difficult it is to estimate the occupation time accurately. 

So a conservative approach is taken in this approach: only if the next block section of 

the delayed train enters 𝐿𝑜𝑜𝑝𝑦, replatforming will be considered. 
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Figure 6-8: Classification of Subcategories for Category I and Category III of Conflict Circumstance (modi-
fied from [Martin and Liang, 2017]) 

For Category II, the delayed train is located on a loop non track in 𝐿𝑜𝑜𝑝𝑦1 , and could 

be approaching or leaving a certain loop track in 𝐿𝑜𝑜𝑝𝑦1. At first, these two cases will 

be distinguished: if the next loop track of the delayed train is located in 𝐿𝑜𝑜𝑝𝑦1, the 

train is approaching a loop track in 𝐿𝑜𝑜𝑝𝑦1; otherwise it is leaving. In case of ap-

proaching, the delayed train will be dispatched to overtake the immediately previous 

train on the loop track. This case is classified as subcategory II-A. Similar to the sub-

category I-B or III-B described previously, it is also capable of providing the possibility 

for replatforming in 𝐿𝑜𝑜𝑝𝑦1 for the delayed train in this case. However, the assump-

tion for occupation time estimation is likely inaccurate. The delayed train has already 

entered the loop at that moment (when the knock-on delay occurs) and the occupa-

tion times of the other trains in this loop could be regarded as the interaction results 

between the delayed train and the other trains. If the delayed train is replatformed, 



Domain-specific Dispatching Optimization Model 

 

Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 129 

 

the interactions of the trains will change. In consequence, the occupation times of the 

trains in the loop will change as well. It is difficult to ensure the accuracy of the esti-

mated occupation times of the delayed train and the corresponding conflicts on the 

alternative loop tracks. Therefore replatforming is not taken into account for the sub-

category II-A in this approach. In case the delayed train is leaving the loop (the next 

loop track is not located in 𝐿𝑜𝑜𝑝𝑦1), the classification of subcategories and designa-

tion of dispatching actions follow exactly the same procedure as that in Category I 

and Category III. 

 

Figure 6-9: Classification of Subcategories for Category II of Conflict Circumstance 

For Category IV, the delayed train is located on an open track section (𝑂𝑇𝑥). If the 

current block section of the delayed train (the block section on which the knock-on 

delay occurred) is not its last block section on 𝑂𝑇𝑥, it is indicated that the hindrance is 
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located on 𝑂𝑇𝑥. So, the delayed train will be dispatched to overtake its immediately 

previous train on 𝑂𝑇𝑥. On the contrary, if the current block section of the train is the 

last block section on 𝑂𝑇𝑥, the location of the hindrance is certainly beyond 𝑂𝑇𝑥. In this 

case, the next dispatching relevant infrastructure node is concerned with further clas-

sification of subcategories and designation of dispatching actions, which follows ex-

actly the same procedure as that in Category I and Category III. 

 

Figure 6-10: Classification of Subcategories for Category IV of Conflict Circumstance 

After a dispatching action (overtaking or replatforming) was chosen for a potential 

candidate solution, the corresponding move operation instance (swap or insert) will 

be recorded as the move operation attribute of the solution. It is possible that the 

same dispatching action is chosen for two different selected knock-on delays. For 

instance, a faster train (denoted by Z1) experienced a series of continuous unsched-
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uled stops on a certain open track section (denoted by OT) because of the hindrance 

of a previous slower train (denoted by Z2). Several different knock-on delays of Z1 on 

OT are detected, but the same dispatching action will be chosen – Z1 is dispatched 

to overtake Z2 on OT. The generated candidate solutions are definitely identical. In 

order to avoid generating repetitive solutions in one iteration, sensory memory is in-

troduced. The lifecycle of sensory memory is an iteration. It is used to gather the 

move operation attributes of the existing candidate solutions. When the dispatching 

action for a new candidate is chosen, it should be compared with the existing ones 

stored in the sensory memory. In case of duplication the new candidate should be 

discarded directly, and continue with the next candidate solution.  

Once the relative priority sequence between two trains on a certain loop track or 

open track section is changed successfully through a dispatching action (with con-

sideration of sensory memory), the new relative priority sequence on this loop track 

or open track section will dictate the relative priority sequence between these two 

trains throughout the rest of their common partial macro path to ensure the train pri-

ority sequence consistency of the newly generated candidate solution. The move op-

erations carried out on the rest of their macro paths can be interpreted as secondary 

move operations. So only the dispatching action rather than the secondary move op-

erations is taken as the move operation attribute of the candidate solution.  

It is supposed that a train 𝑍2 takes precedence over another train 𝑍1 on a certain 

OT/LT; the index of the OT/LT in the dispatching relevant macro path23 of 𝑍1 is 𝑝 (de-

noted to 𝑁𝑍1,𝑝
𝐷𝑖𝑠𝑝𝑜

), and the index of the OT/LT in the dispatching relevant macro path of 

𝑍2 is 𝑞 (denoted to 𝑁𝑍2,𝑞
𝐷𝑖𝑠𝑝𝑜

). The adjustment method for the case of 𝑍1 and 𝑍2 with 

successive movement and that for the case of 𝑍1 and 𝑍2 with opposite movement are 

different, and they are developed based on the method used in [Cui, 2010]. 

In case of 𝑍1 and 𝑍2 with successive movement, 𝑍1 should follow 𝑍2 in the forward 

and backward directions until the two end points of their common dispatching rele-

vant macro path. As shown in Figure 6-11, forward and backward searches are em-

ployed to locate the two end points of the common dispatching relevant macro path. 

                                            
23

 The dispatching relevant macro path of a train is the sequence of dispatching relevant nodes (loop 

tracks and open track sections) along its train path. 
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Forward search is taken as an example (backward search follows the same principle). 

Firstly, the next dispatching relevant nodes 𝑁𝑍1,𝑝+1
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞+1
𝐷𝑖𝑠𝑝𝑜

 are determined for 𝑍1 

and 𝑍2. There are three possibilities:  

⎻ 𝑁𝑍1,𝑝+1
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞+1
𝐷𝑖𝑠𝑝𝑜

 are not the same or they are the same 𝑂𝑇𝑥 composed of 

free resources. The end point in the forward direction is reached and the for-

ward search terminates.  

⎻ 𝑁𝑍1,𝑝+1
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞+1
𝐷𝑖𝑠𝑝𝑜

 are the same 𝐿𝑇𝑧 (in 𝐿𝑜𝑜𝑝𝑦). 𝑍1 and 𝑍2will be attempted to 

be replatformed in 𝐿𝑜𝑜𝑝𝑦. If one of them is replatformed successfully, the for-

ward search terminates; otherwise the priority sequence of 𝑍1 and 𝑍2 should 

be swapped on 𝐿𝑇𝑧, and the forward search continues. 

⎻ 𝑁𝑍1,𝑝+1
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞+1
𝐷𝑖𝑠𝑝𝑜

 are the same 𝑂𝑇𝑥  composed of non-free resources. The 

priority sequence of 𝑍1 and 𝑍2 should be swapped on 𝑂𝑇𝑥 , and the forward 

search continues. 
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Figure 6-11: Priority Sequence Adjustment for Two Trains with Successive Movement (Forward Search 
and Backward Search) and for Two Trains with Opposite Movement (Forward Search) (source: [Martin 
and Liang, 2017]) 

In case of 𝑍1 and 𝑍2 with opposite movement, the priority sequence adjustment in the 

forward direction follows the same principle of the forward search for two trains with 

successive movement. The forward direction particularly refers to the proceeding di-

rection of 𝑍2 (the overtaking train rather than the overtaken train). Because the run-

ning directions of these two trains are opposite, the method of determining the next 

dispatching relevant node for 𝑍1 should be adjusted as shown in Figure 6-12. 
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Figure 6-12: Priority Sequence Adjustment for Two Trains with Opposite Movement (Forward Search) 

For the backward search, it is not sufficient to guarantee the priority sequence con-

sistency of 𝑍1 and 𝑍2 only by the adjustment of their common dispatching relevant 

macro path. An example is shown in the subgraph a) of Figure 6-13: 𝑍2 overtook 𝑍1 

on an open track section OT1, and the next loop is found through the backward 

search. Following the principle in Figure 6-11, 𝑍1 will be replatformed (from LT2 to 

LT1) in this loop, and then the backward search terminates. However, the generated 

solution fell into a deadlock situation as shown in the subgraph b) of Figure 6-13: 

OT1 is reserved at the first position for 𝑍2 and at the stacked position for 𝑍1, which 

indicates that 𝑍1 should wait until 𝑍2 has completely passed through OT1;at the other 

end, 𝑍2 is waiting for 𝑍1 for the same reason. Obviously a circular wait situation oc-

curred in this case, which resulted in a deadlock solution. This kind of deadlock will 

not occur in reality, but is likely to occur in a simulation environment due to the incon-
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sistency of train priority sequences. It can be seen that it is necessary to extend the 

backward search beyond the end of the common dispatching relevant macro path. 

The terminate specification of the backward search for two trains with opposite 

movement are summarized into four indicators, if one of them is fulfilled, the back-

ward search will terminate. 

⎻ 𝑁𝑍1,𝑝+𝑚
𝐷𝑖𝑠𝑝𝑜

 is a loop track (or an open track section), and 𝑁𝑍2,𝑞−𝑚
𝐷𝑖𝑠𝑝𝑜

 is an open track 

section (or a loop track). 

⎻ 𝑁𝑍1,𝑝+𝑚
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞−𝑚
𝐷𝑖𝑠𝑝𝑜

 are loop tracks belonging to two different loops. 

⎻ 𝑁𝑍1,𝑝+𝑚
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞−𝑚
𝐷𝑖𝑠𝑝𝑜

 are two different open track sections. 

⎻ 𝑁𝑍1,𝑝+𝑚
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞−𝑚
𝐷𝑖𝑠𝑝𝑜

 are the same open track section composed of free re-

source. 

With the new terminate specification, the initial solution in Figure 6-13 is readjusted, 

the priority sequence of 𝑍1 and 𝑍2 is swapped in the backward direction until the two 

trains reach two different open track sections. The new generated solution is dead-

lock-free as shown in the subgraph c) of Figure 6-13. 
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Figure 6-13: Improper/Proper End of Backward Search for Two Trains with Opposite Movement (source: 
[Martin and Liang, 2017]) 

The procedure of priority sequence adjustment in the backward direction for two 

trains with opposite movement is shown in Figure 6-14. Similar to the backward 

search for two trains with successive movement, the next dispatching relevant nodes 

𝑁𝑍1,𝑝+1
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞−1
𝐷𝑖𝑠𝑝𝑜

 in the backward direction will be firstly determined for 𝑍1 and 𝑍2. If 

the terminate specification is fulfilled, the backward search terminates. Otherwise, the 

following possibilities exist: 

⎻ 𝑁𝑍1,𝑝+1
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞−1
𝐷𝑖𝑠𝑝𝑜

 are the same loop track (𝐿𝑇𝑧) or open track section (𝑂𝑇𝑥). 

The priority sequence between 𝑍1 and 𝑍2 will be swapped on 𝐿𝑇𝑧/𝑂𝑇𝑥. 

⎻ 𝑁𝑍1,𝑝+1
𝐷𝑖𝑠𝑝𝑜

 and 𝑁𝑍2,𝑞−1
𝐷𝑖𝑠𝑝𝑜

 are two different loop tracks belonging to the same loop. 

No action to be taken, backward search continues. 
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Figure 6-14: Priority Sequence Adjustment for Two Trains with Opposite Movement (Backward Search) 
(source: [Martin and Liang, 2017]) 

6.1.3 Deadlock-free Test 

The candidate solutions generated in Section 6.1.2 may be infeasible because of 

deadlock problems. Before the simulation of a candidate solution, a deadlock-free 

test will be executed to analyze the feasibility of the given candidate solution. A can-

didate solution that cannot pass the deadlock-free test will be abandoned. 

Deadlock detection is irrelevant to running time calculations, and only concerns the 

priority sequences on all loop tracks and open track sections. The given priority se-

quences will be analyzed following the process illustrated in Figure 6-15. In the first 

step, the macro paths of all trains, as well as the arrival and departure lists on all loop 

tracks and open track sections will be initialized, taking the initial position of a train as 

the first infrastructure node along its macro path. In the second step, the state of 

each train will be analyzed. Only if a train has already reached the last infrastructure 
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node along its macro path, which is definitely a free resource, is the train movement 

regarded as terminated; otherwise the train movement is active. If all trains can ter-

minate their movement eventually, the solution is denoted as deadlock-free. In case 

some trains have not yet terminated their movement, the positions of these active 

trains will be attempted to be updated in the third step. The position of a train will be 

updated to the next dispatching relevant node along its macro path in one step if the 

train priority sequence constraints are fulfilled. In the fourth step, it will be judged 

whether a circular wait situation has occurred (none of the active trains moved for-

ward in one step). If so, the solution is denoted as a deadlock; otherwise, the second 

step of this process will be repeated. This process (except initialization) will be iterat-

ed continuously until either a circular wait situation occurs or all train movements are 

terminated successfully. 

 

Figure 6-15: The Process of Deadlock-free Test 

To update the position of a train, the priority sequence constraints on relevant infra-

structure nodes should be obeyed. The logic of the priority sequence control has 

been clearly described in Chapter 5, which regulates the train movements on the ba-

sis of the applied signaling systems in the simulation model. However, the train 

movements in the deadlock-free test are only regulated by the priority sequence con-

straints in order to improve the computational efficiency of the algorithm. So the logic 

of the priority sequence control in Chapter 5 was expanded with additional con-

straints, and the new mechanism of priority sequence control is shown in Figure 6-16. 

In the following text the priority sequence control for deadlock-free test will be ex-

plained step by step. 
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Step 1: If the train is on its initial position along its macro path (a free resource24), the 

train movement is regulated by the priority sequence on the next loop track (LT) or 

open track section (OT). In this case, proceed directly to Step 4; otherwise continue 

to the following step. 

Step 2: Only if the current OT/LT is reserved at the first position for this train in the 

departure list, the train is allowed to leave the current OT/LT and request the next 

OT/LT. This constraint is additionally integrated due to the neglect of signaling sys-

tems. An example is shown in Figure 6-16: when signaling systems exist, Train 2 

cannot leave OT1 at that moment, since it cannot obtain the next block section occu-

pied by Train 1; without signaling systems, the sequence of leaving has to be re-

stricted by the departure list. If the train is allowed to leave the current node, continue 

to the next step; otherwise the position of the train should not be updated (train 

movement is not allowed). 

 

Figure 6-16: An Example of Additional Priority Sequence Constraints in Deadlock-free Test 

Step 3: In case that the next OT/LT of the train is a free resource, which is conclu-

sively the end of the macro path, the train movement will be directly permitted. A train 

movement includes three actions: firstly the train will be removed from the departure 

list of its current OT/LT if the current OT/LT is not a free resource; secondly, the train 

will be removed from the arrival list of the next OT/LT if the next OT/LT is not a free 

resource; finally, the current train position will be updated to the next OT/LT. On the 

                                            
24

 There is no priority sequence control on open track sections that consist of free resources. 
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contrary, if the next OT/LT is not free resource, the priority sequence constraints on 

the next OT/LT should be checked in the next step. 

Step 4: If the next OT/LT is not reserved at the first position for the train in the arrival 

list, the train movement is not allowed; otherwise proceed to the next step. 

Step 5: If the next OT/LT is reserved at the first position for the train in the departure 

list, the train movement will be allowed and the corresponding three actions will be 

carried out; otherwise proceed to the next step. 

Step 6: If the running direction of this train and its immediately previous train in the 

departure list is not the same, the train movement should not be allowed to avoid 

deadlock problems; otherwise proceed to the next step. 

Step 7: The difference between the lengths of departure and arrival list is the number 

of trains concurrently occupying an OT/LT at a certain movement, and the maximum 

capacity of an OT/LT is defined as the maximum number of trains that can concur-

rently occupy it. The maximum capacity constraint is also additionally integrated due 

to the neglect of signaling systems. As shown in Figure 6-16, Train 1 should not be 

allowed to enter OT2 at the current moment, since the capacity of OT2 is exhausted. 

So, if the number of existing trains on the next OT/LT does not exceed the maximum 

capacity, the train movement is allowed; otherwise the position of the train should not 

be updated (train movement is not allowed). 
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Figure 6-17: Stepwise Update of the Position of a Train (OT: Open Track, LT: Loop Track) 
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6.1.4 Candidate List Strategy 

In tabu search, the intensification strategy encourages the search to concentrate on 

good regions and good solution features, while the diversification strategy encour-

ages the search to exploring unvisited regions [Glover et al., 2007]. Both are equally 

important for achieving global optimization. However, the timing of switching between 

intensification and diversification search is often difficult to determine. In [Liu et al., 

2014], an adaptive search strategy is proposed to solve the travelling salesman prob-

lem. Both intensification and diversification elements are included in the candidate list, 

and their numbers are dynamically adjusted according to the changes of solution 

quality during the search process. With this adaptive search strategy, the intensifica-

tion and diversification searches are well-balanced. Therefore, the adaptive search 

strategy is adopted to construct the candidate list in this dissertation. 

Following LIU’s adaptive search strategy stated above, the candidate list of the im-

plemented tabu search algorithm consists of intensification elements and diversifica-

tion elements (Figure 6-18). The higher ranked knock-on delays will be selected in 

sequence based on their priorities to generate a certain amount of intensification el-

ements, while the left lower ranked knock-on delays will be randomly selected to 

generate a certain amount of diversification elements. The numbers of the two types 

of elements (denoted by 𝐿𝐼𝑛𝑡 and 𝐿𝐷𝑖𝑣 respectively) are initialized with the same start-

ing value (i.e. ½ candidate list length25). In the iterative process, the best solution 

found in the current iteration will be compared with the best solution found in the pre-

vious iteration. If the value of dispatching objective function is reduced in the current 

iteration, 𝐿𝐼𝑛𝑡 will be increased by one (𝐿𝐷𝑖𝑣 will be decreased by one); otherwise 𝐿𝐼𝑛𝑡 

will be decreased by one (𝐿𝐷𝑖𝑣 will be increased by one). In order to ensure that both 

types of elements are included in the candidate list, 𝐿𝐼𝑛𝑡 and 𝐿𝐷𝑖𝑣 should be always 

greater than or equal to one.  

                                            
25

 The maximum length of the candidate list should be set by the user before the dispatching optimiza-

tion algorithm starts. 
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Figure 6-18: Construction of the Candidate List with Intensification and Diversification Elements 

The advantage of this adaptive search strategy is very intuitive. When the solution 

quality is improved (value of dispatching objective function is reduced), it implies that 

an attractive region of the search space may be achieved. So it is meaningful to rein-

force intensification search by increasing the number of intensification elements. On 

the contrary, when the solution quality is deteriorated, it is more meaningful to ex-

plore the unvisited regions of the search space through the randomly selected diver-

sification elements. In addition, diversification elements can also help the optimiza-

tion algorithm escape from local optima. 

6.2 Evaluation of Candidate Solutions 

For the evaluation of candidate solutions, the dispatching objective functions in [Mar-

tin, 1995] are used. Two dispatching objective functions are defined: punctuality and 

fluency of operation. Under different dispatching conditions, the importance of objec-

tives differs. In [Martin, 1995], viscosity is introduced to evaluate dispatching condi-

tions. Viscosity is defined as the total knock-on delay of all the conflicted trains divid-

ed by the number of basic structures of the dispatched network. Punctuality is the 

primary objective when viscosity is small, and fluency of operation is the primary ob-

jective when viscosity is large. By introducing viscosity, these two objective functions 

are combined into a general objective function (Formula (6-8)). 
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∑ (
𝐶𝑗 + 𝑍𝑓𝑙

1 + 𝑍𝑓𝑙
· (∑ 𝑡𝑤𝑗,𝑖

𝑧𝑗

𝑖=1

) +
1

1 + 𝑍𝑓𝑙
· max{𝑡𝑃𝑒𝑖𝑛 𝑗 + 𝑡𝑃𝑢𝑟 𝑗 − ∑ 𝑡𝑅 𝑗,𝑖; 0

𝑧𝑗

𝑖=1

})

𝑛𝑔𝑒𝑠

𝑗=1

 

(6-8) 

⇒ 𝑀𝐼𝑁 

Notations used: 

𝑡𝑤𝑗,𝑖:  Knock-on delay of train 𝑗 on block section 𝑖 

𝑡𝑃𝑒𝑖𝑛 𝑗: Original delay of train 𝑗 

𝑡𝑃𝑢𝑟 𝑗:  Initial delay of train 𝑗 

𝑡𝑅 𝑗,𝑖:  Recovery time of train 𝑗 on block section 𝑖 

𝐶𝑗:  Constant for weighting knock-on delays of train 𝑗 

𝑛𝑔𝑒𝑠:  Total number of trains 

𝑧𝑗:  Amount of block sections along the path of train 𝑗 

𝑍𝑓𝑙:  Viscosity of a certain dispatching condition 

Timetables with stochastic deviations generated by the software PULEIV ([Martin et 

al. 2008a; Martin et al. 2008d; Martin et al. 2008c]) are going to be optimized in Sec-

tion 6.4, in which recovery times are not included. Therefore, the second part of the 

objective function – delay reduction 𝑚𝑎𝑥{… } - is constant, which do not have influ-

ence on the minimization of the value of dispatching objective function. So Formula 

(6-8) is simplified into the following form: 

∑ (
𝐶𝑗 + 𝑍𝑓𝑙

1 + 𝑍𝑓𝑙
· (∑ 𝑡𝑤𝑗,𝑖

𝑧𝑗

𝑖=1

)) ⇒ 𝑀𝐼𝑁

𝑛𝑔𝑒𝑠

𝑗=1

 (6-9) 

The actual occupation and releasing times of basic structures will be recorded and 

outputted as a protocol at the end of a simulation. The scheduled occupation and 

releasing times should be ready beforehand. By comparing the scheduled and actual 

data, the knock-on delays can be determined.  
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By definition the calculation method of viscosity is as follows: 

𝑍𝑓𝑙 =
∑ ∑ 𝑡𝑤𝑗,𝑖

𝑧𝑗
𝑖=1

𝑛𝑔𝑒𝑠

𝑗=1

𝑎𝐵𝑆
 (6-10) 

Notation used: 

𝑍𝑓𝑙: Viscosity of a certain dispatching condition 

𝑎𝐵𝑆: Amount of basic structures in the investigation area 

To determine the constant for weighting knock-on delay, two types of indicators are 

used in [Martin, 1995] and [Cui, 2010]: class-oriented and train oriented indicators. 

Class-oriented indicators include the type of trains, passing or stopping criteria and 

punctuality criteria. Based on these indicators, a constant for weighting knock-on de-

lays (denoted by 𝐶𝑐) will be calculated for a group of trains with common characteris-

tics. The train oriented indicator refers to the possibility of reduction of delay in further 

movement26, based on which another constant (denoted by 𝐶𝑡) will be calculated for 

each specific concerned train. For the detailed calculation method, please refer to 

[Martin, 1995] and [Cui, 2010]. By adding the constant 𝐶𝑗
𝑡 to the respective constant 

𝐶𝑘
𝑐, the final constant 𝐶𝑗 for weighting a knock-on delay for a train 𝑗 is obtained [Cui, 

2010]. 

𝐶𝑗 =  𝐶𝑘
𝑐 + 𝛼 · 𝐶𝑗

𝑡
 (6-11) 

The empirical constant value 𝛼 is used to normalize 𝐶𝑗 to keep 0 ≤ 𝐶𝑗 ≤ max(𝐶𝑘
𝑐). 

6.3 Tabu List and Terminate Specification 

The primary goal of a tabu list is to prevent the search process from being trapped in 

local optima. The move operation attributes in the recently visited solutions are rec-

orded in the tabu list and become tabu-active during their tabu tenures. If the move 

operation attribute of a candidate solution is tabu-active, it should be forbidden to be 

visited without regard to the aspiration criterion. 

                                            
26

 As stated above, recovery times are excluded in the timetables with stochastic deviations generated 

by the software PULEIV. Therefore, in the simulation experiments to be carried out in Section 6.4, the 

possibility of reduction of delay in further movement is equal to zero. 
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As stated in Section 6.1.2, two types of move operation (swap and insert) are utilized 

in this approach. Accordingly, two types of tabu list – tabu swap list and tabu insert 

list - are used simultaneously to record the tabu-active swap move operation and in-

sert move operation respectively. Furthermore, two types of tabu tenures are defined 

as follows, and can be set to different values. 

⎻ Tabu swap tenure: number of iterations during which a swap move operation 

is tabu-active 

⎻ Tabu insert tenure: number of iterations during which an insert move operation 

is tabu-active 

When tabu restrictions become unreasonable in some special cases, an aspiration 

criterion is necessary to revoke the move operation attribute’s tabu-active status. Two 

aspiration criteria in [Glover and Laguna, 1993] are implemented within this approach, 

which also have been widely used in other researches. 

⎻ Aspiration criterion 1: if the quality of a tabu-active candidate solution is better 

than the best solution found so far, revoke its tabu classification.  

⎻ Aspiration criterion 2: if the move operation attributes of all candidate solutions 

are tabu and aspiration criterion 1 is not fulfilled, select the best candidate so-

lution in the current iteration. 

The selection of the best neighbor in one iteration is restricted by both tabu lists and 

aspiration criteria, and the selection procedure is summarized in Figure 6-19. The 

best admissible candidate solution will be used to replace the initial solution. If the 

terminate specification is not fulfilled in the current iteration, then continue with the 

next iteration. 
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Figure 6-19: Selection of the Best Admissible Candidate for Tabu Search 

In this approach, total computation time is implemented as the termination criteria: 

after a certain computation time the optimization algorithm must terminate. The total 

computation time available for dispatching tasks should be dynamically set depend-

ing on on-line factors, such as the time span of prediction, the number of trains in-

volved in conflicts, the scope of delay propagation and the urgency of solving con-

flicts. For instance, the computation time for a conflict going to occur within the next 

ten minutes should be much shorter than that for a conflict within the next one hour. 

The proper computation time for each special case can be determined in advance 

based on historical operation data (e.g. through knowledge-based expert systems). 

For on-lines applications, the proper computation can be quickly set according to 

matching historical records. The determination of computation time will not be cov-

ered in this dissertation, and assumed values are used to test the approach. 
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6.4 Simulation Experiments 

The simulation experiments are carried out on a reference example. The sketch of 

the complete infrastructure network of the reference example is presented in the first 

subgraph of Figure 6-20. Through previous simulation experiments, it is found that 

conflicts between trains (especially merging and opposing conflicts between trains) 

mainly concentrated in the area between the stations AHX, BS, EN, LBC. Therefore, 

this area is chosen as the investigated area as shown in the first subgraph, and its 

simulation is carried out on the microscopic level. Accordingly, this area is zoomed in, 

and the microscopic subnetwork within this area is presented in the second subgraph 

of Figure 6-20. Based on the multi-scale concept, the other areas around the investi-

gated area should be simulated on the more efficient mesoscopic and macroscopic 

levels. However, the mesoscopic and macroscopic models have not been imple-

mented in the simulation software yet, so, dispatching optimizations are only carried 

out on the microscopic level in the investigated area in this dissertation. In principle, 

the mesoscopic and macroscopic models can also be successfully implemented in 

the simulation software, since they are essentially two simplified forms of the micro-

scopic model. 

The software PULEIV ([Martin et al. 2008a; Martin et al. 2008d; Martin et al. 2008c]) 

was used to generate timetables with stochastic deviations based on a basic operat-

ing program. The time interval of each generated timetable is 6 hours, which is com-

posed of three parts (2 hours each): preheating time, investigated time period and 

cool down time [Chu, 2014]. The investigated time period represents the rush hour in 

the investigated area (i.e. the reference example). Only the traffic situation in the in-

vestigated time period will be optimized in this example. 
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Figure 6-20: Infrastructure Network of the Reference Example 

The structure of the basic operating program is shown in Table 6-1. Three types of 

trains are defined: long distance passenger trains (FRZ), short distance passenger 

trains (NRZ) and freight trains (GV). Four running directions are included: from Sta-

tion AHX to LBC, from Station LBC to AHX, from Station EN to LBC and from Station 

LBC to EN. The recommended area of traffic flow (OLB) determined through capacity 

research is 15-22 Z/h (trains per hour), which can be interpreted as the optimal traffic 

load for this example (for the detailed calculation method of OLB it is referred to [Mar-

tin, 2014]). Several timetables within this range are randomly generated with PULEIV, 

and used to analyze the performance of the dispatching optimization algorithm. 
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Train Path Group Base Load Train Path Group Base Load 

FRZ/AHX-LBC 1.0 Z/h NRZ/AHX-LBC 2.0 Z/h 

FRZ/LBC-AHX 1.0 Z/h NRZ/EN-LBC 1.0 Z/h 

GV/LBC-EN with Stop 0.5 Z/h NRZ/LBC-AHX 2.0 Z/h 

GV/EN-LBC with Stop 0.5 Z/h NRZ/LBC-EN 1.0 Z/h 

Table 6-1: Basic Operating Program on the Reference Example 

Before the optimization process starts, the parameters of optimization algorithm 

should be setup (Table 6-2). The weights of knock-on delay for FRZ, NRZ and GV is 

calculated with the method developed in [Martin, 1995] and [Cui, 2010]. The detailed 

calculation procedure can be found at Section 5.1.3 in [Cui, 2010]. The parameters 

including tabu swap tenure, tabu insert tenure, candidate list length and relative im-

portance of weighted knock-on delay are set to a set of fixed empirical values. These 

parameters can be case-specifically optimized based on the historical operational 

data, and the optimal value of a parameter may vary under different system states. In 

[Martin and Liang, 2017] a system state classification method is developed based on 

the theory of capacity research of railway operation, which is intended to improve the 

performance of dispatching algorithms by providing of adjusting the settings of dis-

patching parameters in different system states. Optimization of dispatching parame-

ters will not be covered in this dissertation, for more details it is referred to [Martin 

and Liang, 2017]. For on-line dispatching, the dispatching time horizon is limited, 

such as the next 30 minutes, because train runs are likely to be disturbed in a long 

operations planning horizon [Jacobs, 2008]. In most cases, the identified conflicts 

have to be resolved in a short time. However, on one hand, timetables of 6 hours 

have to be simulated as a whole to create traffic conditions during the rush hour; on 

the other hand, the dispatching time horizon is 2 hours in this example. So a relative 

long maximum computation time (6 minutes) is chosen to show the effects of the 

model clearly. 
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Tabu Swap Tenure 3 
Weight of Knock-on delay 
for FRZ (Cj) 

1.80 

Tabu Insert Tenure 3 
Weight of Knock-on delay 
for NRZ (Cj) 

1.33 

Candidate List Length 5 
Weight of Knock-on delay 
for GV (Cj) 

0.83 

Terminate Specification 6 min 
Relative Importance of weighted 

Knock-on Delay (Ctw) 
0.7 

Table 6-2: Settings of the Basic Parameters for the Dispatching Optimization Algorithm 

The optimization model runs on a PC equipped with a processor Intel Core i5-4670 

(3.40GHz), 8G RAM and Windows 7 operating system. The performance of the dis-

patching optimization algorithm on two test cases is presented in Figure 6-21 and 

Figure 6-22, and more results are attached in Appendix II. In order to make the ex-

perimental results more intuitive and easier to be understood, besides total weighted 

knock-on delay, total unweighted knock-on delay is also presented in the figures. The 

dispatching optimization algorithm has produced promising results.  

⎻ Compared to the initial solution, the total weighted knock-on delay can be sig-

nificantly reduced. For instance, the total weighted knock-on delay is reduced 

by 27.4% in the Test Case 1 and by 24.7 % in the Test Case 2 as shown in 

Figure 6-21 and Figure 6-22. Theoretically, there is also the possibility that the 

initial solution generated based on FCFS principle already provides good re-

sults, and therefore the improvement in solution quality is limited. Because the 

FCFS dispatching principle is also an integral part of the dispatching optimiza-

tion module. So in either case, satisfactory results can be provided. 

⎻ With implementation of the adaptive search strategy, intensification and diver-

sification have been well balanced. Under the guidance of the intensification 

search strategy, the optimization algorithm is capable to find suboptimal or op-

timal solutions in a short time. For instance, for both Test Case 1 and Test 

Case 2, a suboptimal solution (i.e. Solution S1 and Solution S4 marked in Fig-

ure 6-21 and Figure 6-22) was found in less than 50 seconds. Moreover, once 

a good search direction is found, the intensification strategy can guide the op-

timization algorithm to improve solution quality very sharply (the trend are indi-

cated with purple dashed lines in Figure 6-21 and Figure 6-22). With the help 



Domain-specific Dispatching Optimization Model 

 

152 Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 

 

of the tabu list and diversification search strategy (i.e. randomly selected can-

didates), the search process is capable of escaping from local optima (see red 

dashed lines in Figure 6-21 and 6-22), and the search scope of the optimiza-

tion algorithm is broadened as well. With a broadened search scope, the pos-

sibility of finding a better solution is increased. For both Test Case 1 and Test 

Case 2, the best solutions (i.e. S3 and S7) are found after escaping from the 

local optimal solutions (i.e. S2 and S6). Compared to typical local search algo-

rithms (e.g. greedy algorithm), the advantage of a tabu search-based optimi-

zation algorithm is that it has a higher possibility to find a better solution in a 

limited time span. 

⎻ Last but not least, it can be seen that from the illustration of the eight test cas-

es: the relationship between total weighted knock-on delay and total un-

weighted knock-on delay could be approximated as positive correlation, and 

the difference between them is not significant, which means knock-on delays 

are weighted in a proper manner, without deteriorating knock-on delays of 

lower ranked trains severely. 

 

Figure 6-21: Dispatching Optimization Algorithm – Test Case 1 
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Figure 6-22: Dispatching Optimization Algorithm – Test Case 2 

In order to compare the experimental results comprehensively, the final results of all 

eight cases are summarized in Table 6-3. Because total weighted knock-on delay 

and total unweighted knock-on delay are approximately linearly correlated, only the 

data on total weighted knock-on delay is shown in Table 6-3. The eight test cases 

covered a relatively wide range of traffic load, which is ranging from 15.5 to 22 

Trains/Hour. Moreover, the qualities of the initial solutions also vary significantly (the 

total weighted knock-on delays range from 1486 to 12468). Even through the charac-

teristics of the test cases are very different; the dispatching optimization algorithm 

has successfully reduced the total weighted knock-on delays very significantly on all 

test cases. On average the total weighted knock-on delay is reduced by 48%. For the 

severely disturbed situations (i.e. Test Case 3 and Test Case 4), the reduction of to-

tal weighted knock-on delay even reached 70%. Through the above simulation ex-

periments, the effectiveness of the dispatching optimization algorithm developed in 

this approach has been proved to a large extent. 
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Total Weighted Knock-on Delay 

Initial Solution [-] Optimized Solution [-] Reduction [%] 

Test Case 1 4905 3560 -27.4 

Test Case 2 1936 1457 -24.7 

Test Case 3 12468 3097 -75.2 

Test Case 4 11194 2522 -77.5 

Test Case 5 1858 637 -65.7 

Test Case 6 2148 1277 -40.6 

Test Case 7 2694 1894 -29.7 

Test Case 8 1486 811 -45.4 

Table 6-3: Experimental Results of the Test Case 1 – Test Case 8  
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7 Summary and Further Research 

In order to support dispatchers solving disturbances that occur during the operation 

process, a domain-specific dispatching optimization algorithm integrated in a multi-

scale simulation model was developed in this dissertation. The whole workflow of the 

approach developed in this dissertation is illustrated in Figure 7-1. 

 

Figure 7-1: The Complete Workflow of the Approach 

The main achievements are summarized as follows: 

⎻ The multi-scale simulation model is characterized by continuous scaling, in 

which simulation is concurrently carried out on microscopic, mesoscopic and 

macroscopic levels (see Chapter 3). To enable the multi-scale simulation 
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model to transform smoothly among different description levels, the developed 

microscopic, mesoscopic and macroscopic model followed the same frame-

work of a synchronous approach. The concept of the multi-scale model con-

tains two aspects: different levels of details of both the fundamental compo-

nents constructing the simulation model and the interaction mechanism be-

tween the components. Furthermore, the simplest dispatching principle, First 

Come First Serve (FCFS), was implicitly implemented in the multi-scale model, 

and the model is capable of generating deadlock-free timetables independent-

ly, which are used as the basic timetable in further dispatching optimization 

processes. 

⎻ The appropriate description level of a specific area in the investigated area is 

determined by its significance value. Those areas with lower significance val-

ues are abstracted and simulated on the mesoscopic or macroscopic level; 

those with higher significance values are kept on the microscopic level. An as-

sessment method was developed for the calculation of significant values (see 

Chapter 4). Two indicators are considered in the significant value: the rele-

vance to conflicts and the aggregation accuracy. With the multi-scale model 

solution, computational complexity and accuracy of the simulation model are 

well-balanced. 

⎻ For the simulation of dispatched timetables and provision of necessary data 

for timetable characteristics evaluation in the optimization process, the multi-

scale simulation was modified, and the function of train priority sequence con-

trol was integrated (see Chapter 5). In this model, train runs are regulated ex-

plicitly by a pre-given dispatched timetable. This model is a relatively inde-

pendent module, which not only can be connected to the optimization model 

developed in this dissertation, but also can be integrated into other optimiza-

tion models. 

⎻ The dispatching optimization model was developed based on tabu search al-

gorithm, and the train priority sequences on loop tracks and open track sec-

tions adjusted through a series of dispatching actions in order to find an opti-

mal dispatched timetable (see Chapter 6). To construct candidate solutions, 

an adaptive search strategy was adopted, in which both intensification and di-

versification elements were included in the candidate list, and their numbers 
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dynamically adjusted according to the changes of solution quality. With this 

adaptive search strategy, the intensification and diversification searches are 

well-balanced.  

⎻ Knock-on delays were ranked according to their priorities to generate intensifi-

cation elements (see Chapter 6). The priority of a knock-on delay is composed 

of two indicators: weighted knock-on delay and the influence of knock-on de-

lay on further conflicts. To calculate the influence of knock-on delay on further 

conflicts, delay propagation was quantitatively modelled with the help of the 

simulation model. To resolve a selected knock-on delay, the suitable dispatch-

ing action was selected depending on its surrounding circumstances. Moreo-

ver, a train priority sequence adjustment method and a deadlock-free test 

were included in order to ensure that candidate solutions are deadlock-free. 

The performance of the dispatching optimization algorithm was analyzed on a series 

of test cases with different traffic loads, and promising results were produced. In fur-

ther researches, it would be meaningful to expand the multi-scale simulation model 

and the dispatching optimization model related to the following aspects: 

⎻ The multi-scale simulation model developed in this dissertation belongs to 

time-driven simulation. Event-driven simulation should be integrated to im-

prove the calculation efficiency of the simulation model. Accordingly, the work-

flow of the simulation model should be modified to better integrate these two 

types of simulation mechanisms. 

⎻ The performance of the dispatching optimization algorithm can be further im-

proved with the implementation of more reasonable dispatching rules and dy-

namic tabu list management. More reasonable dispatching rules could im-

prove the quality of the initial solution, and the dynamic tabu tenure could in-

crease the robustness of the tabu search algorithm. 

⎻ The potential disturbances, which may occur in the prediction time period, are 

not taken into account in the dispatching optimization process. The robustness 

of the dispatched timetable is questionable. Therefore, it is necessary to con-

sider these potential disturbances in the dispatching process, and the efficien-

cy and robustness of the dispatched timetable should be well balanced. 
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Railway dispatching is a comprehensive complex process. Besides the delay man-

agement discussed intensively in this dissertation, it also includes the related dis-

patching of train crews and rolling stocks. These specific constraints of railway opera-

tion should be modelled stepwise in simulation models. In future researches, not only 

the algorithm performance should be improved from the perspective of algorithm de-

sign, but also special attention should be paid to the latest technology development, 

in order to select out appropriate technologies and bring them into the field of railway 

operation and management. 
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Abbreviations 

AA Arrive-Arrive Headway 

ATP Automatic Train Protection 

BS Basic Structure 

CG Controlled Group 

CTC Centralized Traffic Control 

DA Depart-Arrive Headway 

EG Experimental Group 

FCFS First Come First Serve 

FIFO First In First Out 

FRZ Long Distance Passenger Train 

GV Freight Train 

LT Loop Track 

LNT Loop non Track 

NRZ Short Distance Passenger Train 

OP Operation Point 

OT Open Track Section 

TS Tabu Search 

UIC International Union of Railways 
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Symbols 

𝑎𝐵𝑆  Amount of basic structures in the investigation area 

𝑎0, 𝑎1, 𝑎2, 𝑎2𝑟  Parameters of traction unit resistance 

𝑎, 𝑏, 𝑐  Parameters of traction unit resistance 

𝑎𝐵𝑟 Braking acceleration rate [m/s2] 

𝑎𝑇𝑟  Acceleration rate [m/s2] 

𝐴𝑓  Cross-sectional area of the vehicles [m2] 

𝐴𝐴𝑍𝑃𝑟𝑒𝑣,𝑍𝑗,𝑇  Arrive-arrive headway between the train 𝑍𝑗 and 𝑍𝑃𝑟𝑒𝑣 on 

open track section 𝑇 

𝐴𝐶𝐶𝑅𝑘,𝑅ℎ

𝑚𝑒𝑠𝑜 Aggregation accuracy of two occupation units 𝑅𝑘 and 𝑅ℎ on 

the mesoscopic level 

𝐴𝐶𝐶𝑁
𝑚𝑖𝑐𝑟𝑜→𝑚𝑒𝑠𝑜  Aggregation accuracy of infrastructure node N from the mi-

croscopic level to the most detailed mesoscopic level 

𝑐𝑎 Coefficient for axle adhesion 

𝑐𝑏  Coefficient for the number of axles 

𝐶𝑗   Constant for weighting knock-on delays of train 𝑗 

𝐶𝑗
𝑡  Train-oriented indicator-based constant for train 𝑗 

𝑐𝑚  Value for air resistance 

𝐶𝑅𝐸𝐷 Value of possibility of reduction of delays 

𝐶𝑡𝑤  Relative importance of weighted knock-on delay 

𝐷𝐴𝑍𝑃𝑟𝑒𝑣,𝑍𝑗,𝑇  Depart-arrive headway between the train 𝑍𝑗 and 𝑍𝑃𝑟𝑒𝑣 on 

open track section 𝑇 

𝐸(𝑇𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3 )  Expected total overlapping time period between Z1 and Z2 

∆𝐸(𝑇𝑂𝑉𝐿𝑃,𝑅𝑘+𝑅ℎ) The relative change of expected total overlapping time peri-

od caused by combination of 𝑅𝑘 and 𝑅ℎ 
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𝐹𝑅𝑤𝑝  Vehicle resistance for passenger trains [N] 

𝐹𝑅(𝑣) Train resistance at a given velocity 𝑣 [N] 

𝐹𝑅𝑡(𝑣)  Traction unit resistance at a given speed v [N] 

𝐹𝑅𝑙𝑔 Grade resistance of a train [N] 

𝐹𝑇𝑟(𝑣) Tractive effort at wheel at a given velocity 𝑣 [N] 

𝑔  Earth gravity constant 9.81 m/s2 

𝑖[𝑁]  Index of the macroscopic node N in the macro-path of a cor-

responding train 

𝐼𝑛𝑓𝑡𝑤   Influence of knock-on delay on further conflicts 

𝐼𝑛𝑓𝑡𝑤𝑗,𝑖
 Influence of a knock-on delay 𝑡𝑤𝑗,𝑖 on further conflicts 

𝐼𝑛𝑓𝑡𝑤𝑗,𝑖
′ Normalized influence of a knock-on delay 𝑡𝑤𝑗,𝑖 on further 

conflicts 

𝐼𝑛𝑓𝑚𝑖𝑛 Minimum of the influences 

𝐼𝑛𝑓𝑚𝑎𝑥   Maximum of the conflicts 

𝑙𝑅𝑛 Length of the 𝑛𝑡ℎ section of the train path 

𝐿𝑅𝑒𝑠𝑡  Length of the rest of the train path 

𝑚  Mass of the train [kg] 

𝑚𝑇  Mass of traction unit [kg] 

𝑚𝑤 Mass of all vehicles [kg] 

𝑀  A number that is at least larger than the maximum of the ag-

gregation accuracies 

𝑛 Gradient [‰] or the length of the current block section list of 

the train 

𝑛𝑔𝑒𝑠 Total number of trains 

𝑛𝑗
𝑏𝑙𝑜𝑐𝑘  Number of block sections along the path of train 𝑗 
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𝑛𝑤  Number of vehicles 

𝑁𝑍1,𝑝
𝐷𝑖𝑠𝑝𝑜 , 𝑁𝑍2,𝑞

𝐷𝑖𝑠𝑝𝑜 Index of the OT/LT in the dispatching relevant macro path of 

𝑍1 or 𝑍2 

𝑁𝑍1,𝑝+1
𝐷𝑖𝑠𝑝𝑜 , 𝑁𝑍2,𝑞+1

𝐷𝑖𝑠𝑝𝑜  Next dispatching relevant nodes determined for 𝑍1 and 𝑍2 

𝑂𝑇𝑥 Open track section x 

𝜌  Coefficient of increase in mass [-] 

𝜌𝑇  Coefficient of increase in mass for a traction unit 

𝜌𝑊 Coefficient of increase in mass for a vehicle 

𝑃 𝑡𝑤𝑗,𝑖 , 𝑡𝑑𝑙,𝑘  
𝑅𝑏   Percentage of responsibility of delay  𝑡𝑑𝑙,𝑘 for knock-on delay 

 𝑡𝑤𝑗,𝑖 

𝑃𝑡𝑑𝑗,𝑘 , 𝑡𝑤𝑗,𝑖

𝑅𝑏   Percentage of the responsibility of source knock-on delay 

 𝑡𝑤𝑗,𝑖 for delay 𝑡𝑑𝑗,𝑘 

𝑃𝑡2~𝑡3,𝑍𝑗
𝑅3   Blocking probability of the time interval [𝑡2, 𝑡3] for 𝑍𝑗 on the 

occupation unit R3 

𝑃𝑡2~𝑡3,𝑍1,𝑍2
𝑅3   Occurrence probability of the conflict situation between Z1 

and Z2 on the occupation unit R3 in the time interval from 𝑡2 

to 𝑡3 

𝑃𝐼𝑍𝑗,𝑇/𝐿𝑇 Original index of priority of a train 𝑍𝑗 on T or LT 

𝑃𝑟𝑖𝑡𝑤𝑗,𝑖
  Priority of knock-on delay 𝑡𝑤𝑗,𝑖 

𝑆 Expected forward distance of the head of a train in the cur-

rent time interval 

∆𝑆 Distance between the current position of the train head and 

the brake application point 

𝑆𝑡𝑑𝑗,𝑘

𝑠𝑜𝑢𝑟𝑐𝑒 Set of source knock-on delays of delay 𝑡𝑑𝑗,𝑘 

𝑆𝑉𝑁
𝑚𝑖𝑐𝑟𝑜→𝑚𝑒𝑠𝑜 Significance value of an infrastructure node N to be ab-

stracted from the microscopic level to the most detailed 
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mesoscopic level 

𝑆𝑉𝑅𝑘,𝑅ℎ

𝑚𝑒𝑠𝑜  Significance value of a large mesoscopic occupation unit 

composed of 𝑅𝑘 and 𝑅ℎ on the mesoscopic level 

𝑡𝑡2~𝑡3,𝑍1,𝑍2
𝑂𝑉𝐿𝑃,𝑅3   Total overlapping time period between Z1 and Z2 

𝑡𝑑𝑗,𝑘  Delay of train 𝑗 on block section 𝑘 

𝑡ℎ𝑗,𝑖,𝑙,𝑘
 Time period during which train 𝑗 on block 𝑖 had been hin-

dered by train 𝑙 on block 𝑘 

𝑡ℎ𝑗,𝑖
 Time period during which train 𝑗 on block 𝑖 had been hin-

dered by the other trains 

𝑡𝑗,𝑖
𝑠𝑡𝑎𝑟𝑡,𝐼𝑠𝑡  Actual start blocking time of train 𝑗 on occupation unit 𝑖 

𝑡𝑗,𝑖
𝑠𝑡𝑎𝑟𝑡,𝑆𝑜𝑙𝑙  Scheduled start blocking time of train 𝑗 on occupation unit 𝑖 

𝑡𝑤𝑗,𝑖 Knock-on delay of train 𝑗 on block section 𝑖 

𝑡𝑤𝑗,𝑖
𝐶𝐺 , 𝑡𝑤𝑗,𝑖

𝐸𝐺  Knock-on delay of train 𝑗 on block section 𝑖 in the controlled 

group (CG) or experimental group (EG) 

𝑡�̂�𝑗,𝑖  Weighted knock-on delay of train j on block section i 

𝑡�̂�𝑗,𝑖 ′ Normalized weighted knock-on delay of train 𝑗 on block sec-

tion 𝑖 

𝑡�̂�𝑚𝑖𝑛 Minimum of the weighted knock-on delays 

𝑡�̂�𝑚𝑎𝑥 Maximum of the weighted knock-on delays 

𝑇𝑛𝑜𝑤  Current execution time in the simulation model 

𝑡𝑃𝑒𝑖𝑛 𝑗  Original delay of train 𝑗 

𝑡𝑃𝑢𝑟 𝑗 Initial delay of train 𝑗 

𝑡𝑅 𝑗,𝑖 Reserve time of train 𝑗 on block section 𝑖 

𝑇𝐵𝑖[𝑁]−1,𝑍𝑗
  Departing/passing time for train 𝑍𝑗 in the (𝑖[𝑁] − 1)th node of 

its macro-path 
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𝑇𝐼𝑖[𝑁],𝑍𝑗
  Scheduled operation time for train 𝑍𝑗 in the (𝑖[𝑁])th node of 

its macro-path 

𝑣𝑟  Relative speed between air and the train [km/h] 

𝑣𝑚𝑎𝑥  Maximum allowed speed for a train at a certain time instant 

𝑣𝑚𝑎𝑥,𝑇𝑟𝑎𝑖𝑛 Maximum speed of the train 

𝑣𝑚𝑎𝑥,𝐵𝑙𝑜𝑐𝑘 𝑖 Maximum speed of the current block section 𝑖 of the train 

𝑧𝑗 Amount of block sections along the path of train 𝑗 

𝑍𝑓𝑙 Viscosity of a certain dispatching condition 

𝑍𝑗  Train 𝑍𝑗 

𝑍𝑃𝑟𝑒𝑣 Immediately previous train 
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Appendix I: Estimation of Forward Distance on Microscopic Level 

The forward distances of train heads need to be estimated both for the detection of 

new resource requirement and the update of train positions in a time interval. The 

algorithm for estimating forward distance in one time interval on the microscopic level, 

which is to be described in this section, was developed within the scope of the DFG 

project [Martin and Liang, 2017]. 

The movement behavior of a train is restricted by the attributes of infrastructure and 

the train itself, along with operational constraints (e.g. brake application points and 

stopping points). Three behavior sections are considered in this dissertation: the ac-

celeration section, constant movement section and braking section. Furthermore, two 

basic methods are developed to assist the estimation of forward distance: the for-

ward distance estimated based on the acceleration section and/or constant move-

ment (abbreviation: ForwardDist_AccConst), and the forward distance estimated 

based on the braking section (abbreviation: ForwardDist_Brake).  

The method ForwardDist_AccConst is designed to calculate the forward distance of a 

train in one time interval, supposing that the train will accelerate in the current time 

interval and turn into constant movement if the maximum allowed speed is reached. 

Special attention must be given to the fact that the ForwardDist_AccConst method 

only provides intermediate results, which are used to roughly estimate the train head 

position at the end of each time interval. The results may have to be fine-tuned with 

consideration of the other constraints. In the ForwardDist_AccConst method, the 

maximum allowed speed should be determined primarily, which is the minimum value 

between the maximum speed of the train and the maximum speed limit of each cur-

rent block section. 

𝑣𝑚𝑎𝑥 = min  {𝑣𝑚𝑎𝑥,𝑇𝑟𝑎𝑖𝑛,  𝑣𝑚𝑎𝑥,𝐵𝑙𝑜𝑐𝑘 1,···, 𝑣𝑚𝑎𝑥,𝐵𝑙𝑜𝑐𝑘 𝑖 ,···, 𝑣𝑚𝑎𝑥,𝐵𝑙𝑜𝑐𝑘 𝑛 } (I-1) 

Notation used: 

𝑣𝑚𝑎𝑥:   maximum allowed speed for a train at a certain time instant 

𝑣𝑚𝑎𝑥,𝑇𝑟𝑎𝑖𝑛:  maximum speed of the train 

𝑣𝑚𝑎𝑥,𝐵𝑙𝑜𝑐𝑘 𝑖:  maximum speed of the current block section 𝑖 of the train 
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𝑛:   the length of the current block section list of the train 

The acceleration rate 𝑎𝑇𝑟 can be calculated based on the speed of the train at the 

beginning of the current time interval 𝑣0 with Formula (3-8), and the speed of the 

train at the end of the current time interval 𝑣𝑡 can be calculated with Newton formula: 

𝑣𝑡 = 𝑣0 + 𝑎𝑇𝑟 · 𝑡 · 3.6 (I-2) 

The length of a time interval 𝑡 is taken as one second, and in such a short time the 

acceleration rate can be assumed constant. The speed difference should be trans-

formed into km/h (1 m/s = 3.6 km/h). If 𝑣𝑡 is equal or smaller than 𝑣𝑚𝑎𝑥, it implies 

that the train can keep accelerating in the current time interval. The speed 𝑣𝑡 is the 

estimated speed at the end of the current time interval, and the forward distance in 

the current time interval 𝑆 can be calculated as: 

𝑆 =  
𝑣𝑡

2 − 𝑣0
2

2 · 𝑎𝑇𝑟 · 3.6
 (I-3) 

Furthermore, the forward distance is composed of two sections, as shown in Appen-

dix Figure 1. The train accelerates until 𝑣𝑚𝑎𝑥 is reached in the first section, and then 

runs at a constant speed of 𝑣𝑚𝑎𝑥 in the second section. The forward distance in the 

first section 𝑆1  can be calculated with Formula (I-3), and only 𝑣𝑡  needs to be re-

placed by 𝑣𝑚𝑎𝑥. 
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Appendix Figure 1: Forward Distance Estimation – Acceleration Section and Constant Movement 

The first section takes 𝑡1 second, and the second section takes 𝑡2 second. 

𝑡1 =
𝑣𝑚𝑎𝑥 − 𝑣0

𝑎𝑇𝑟 · 3.6
 (I-4) 

𝑡2 = 𝑡 − 𝑡1 (I-5) 

So the forward distance in the second section is 

𝑆2 = 𝑣𝑚𝑎𝑥 · 𝑡2 (I-6) 

Finally, the forward distance in the current time interval 𝑠 can be determined. 

𝑆 = 𝑆1 + 𝑆2 (I-7) 

In case of pure constant movement, because 𝑣0 is equal to 𝑣𝑚𝑎𝑥 , 𝑡1  and 𝑆1  are 

equal to zero. The forward distance 𝑆 is equal to 𝑆2. So the ForwardDist_AccConst 

method is a general approach to calculate the forward distance in case of accelera-

tion section AND-OR constant movement. 

The method ForwardDist_Brake is used to estimate the forward distance of a train in 

one time interval when the train only brakes. At first the braking acceleration rate 𝑎𝐵𝑟 

should be calculated with Formula (3-10). The speed of the train at the end of the 

time interval 𝑣𝑡 can be calculated: 
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𝑣𝑡 = 𝑣0 + 𝑎𝐵𝑟 · 𝑡 · 3.6 (I-8) 

If 𝑣𝑡 is equal to or greater than zero, it can be used as the train speed at the end of 

the current time interval; otherwise, 𝑣𝑡 should be set to zero (Appendix Figure 2). In 

both cases the forward distance can be calculated with Formula (I-9). 

𝑆 =  
𝑣𝑡

2 − 𝑣0
2

2 · 𝑎𝐵𝑟 · 3.6
 (I-9) 

 

Appendix Figure 2: Forward Distance Estimation – Braking Section 

The forward distance estimated with the basic methods described above may have to 

be fine-tuned when additional constraints exist (e.g. speed reduction on further path 

and scheduled or unscheduled stops). Due to the different speed control mecha-

nisms of intermittent and continuous ATP systems, their fine-tuning procedures will 

be elaborated separately in the following context. 

For a train under the mode of intermittent ATP system, if the current speed of the 

train is equal to zero, the forward distance and speed estimated with the method 

ForwardDist_AccConst can be directly considered as the final estimation results and 

further fine-tuning is not necessary. If the current speed is not equal to zero, the pro-

cedures to be carried out are dependent on the current position of the train head, of 

which exist two possibilities: before or beyond the distant signal for the next block 

section. 
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The distance between the distant signal for the next block section and the rear signal 

of the last current block section is great enough that the train cannot run through it in 

one time interval. Therefore, in case the current position of the train head is before 

the distant signal, only the constraints (i.e. maximum speed limit and brake applica-

tion point) on the current block sections should be considered. Furthermore, in this 

case the train head has not yet absolutely passed the brake application point located 

in the last current block section, since brake application points theoretically ought to 

be located between the distant signal for the next block section and the rear signal of 

the current block section. If the position of the train head will not exceed the brake 

application point27 located in the last current block section, the forward distance esti-

mated with the ForwardDist_AccConst method can be directly considered as the final 

result; otherwise the braking section should be taken into account, and the result 

should be correspondingly adjusted. 

In order to estimate the forward distance accurately, the movement behavior of the 

involved train in the current time interval should analyzed. Beyond the brake applica-

tion point only the braking section is involved, while before the brake application point 

the movement behavior can be composed of the constant movement (Appendix Fig-

ure 3) or acceleration sections (Appendix Figure 4), or a combination of them (Ap-

pendix Figure 5). These three cases will be explained separately due to their different 

calculation processes.  

In order to determine concretely that a situation belongs to a given case, firstly, the 

acceleration rate of the train 𝑎𝑇𝑟 should be calculated with Formula (3-8). If 𝑎𝑇𝑟 is 

equal to zero, it implies that the train runs at a constant speed before the application 

point (Appendix Figure 3). The distance between the current position of the train 

head and the brake application point is designated as ∆S. The time duration of the 

constant movement 𝑡1  is ∆𝑆/𝑣0 , and the time duration of braking section 𝑡2  is 

(𝑡 − 𝑡1). The train speed at the end of the first section 𝑣1 is equal to 𝑣0. The braking 

                                            
27

 The brake application point in a certain block section is expressed as the distance from the entrance 

signal of the block section to the brake application point. The default value of the distance is positive 

infinite. So, if no concrete brake application point exists in a certain block section, the involved train 

will never exceed the brake application point. 
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acceleration rate 𝑎𝐵𝑟  based on 𝑣1 can be calculated with Formula (3-10). The ad-

justed train speed at the end of the current time interval and the forward distance in 

the braking section are 

𝑣𝑡 = 𝑣1 + 𝑎𝐵𝑟 · 𝑡2 · 3.6 (I-10) 

𝑆2 =
𝑣𝑡

2 − 𝑣1
2

2 · 𝑎𝐵𝑟 · 3.6
 (I-11) 

 

and the adjusted forward distance of the train head in the current time interval is  

𝑆 = 𝑆1 + 𝑆2 = ∆𝑆 + 𝑆2 (I-12) 

 

Appendix Figure 3: Forward Distance Fine – Tuning – Intermittent ATP System (I) 

If the acceleration rate 𝑎𝑇𝑟 calculated based on 𝑣0 is not equal to zero, the expected 

speed of the train at the brake application point 𝑣1 can be derived from Formula (I-3): 

𝑣1 = √2 · 𝑎𝑇𝑟 · ∆𝑆 + 𝑣0
22
 (I-13) 



Appendix I: Estimate Forward Distance on Microscopic Level 

 

Metaheuristic-based Dispatching Optimization Integrated in Multi-scale Simulation Model 171 

 

If 𝑣1  is smaller than or equal to 𝑣𝑚𝑎𝑥  (see method ForwardDist_AccConst), the 

movement behavior of the train includes two sections: the acceleration section and 

the braking section. The time duration of each section is calculated as: 

𝑡1 =
𝑣1 − 𝑣0

2 · 𝑎𝑇𝑟 · 3.6
 (I-14) 

𝑡2 = 𝑡 − 𝑡1 (I-15) 

The train speed at the end of the current time interval and the forward distance in the 

braking section can be calculated with Formulas (I-10) and (I-11), and the adjusted 

forward distance in the current time interval can be determined with Formula (I-12). 

 

Appendix Figure 4: Forward Distance Fine – Tuning – Intermittent ATP System (II) 

If 𝑣1 is larger than 𝑣𝑚𝑎𝑥, it implies that the train speed will reach 𝑣𝑚𝑎𝑥 before the 

brake application point. Therefore, the movement behavior in the current time interval 

should include three sections: the acceleration section, the constant movement sec-

tion and the braking section (Appendix Figure 5). The time duration of the accelera-

tion section 𝑡1 and the corresponding forward distance 𝑆1 are 
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𝑡1 =
𝑣𝑚𝑎𝑥 − 𝑣0

𝑎𝑇𝑟 · 3.6
 (I-16) 

𝑆1 =
𝑣𝑚𝑎𝑥 − 𝑣0

2 · 𝑎𝑇𝑟 · 3.6
· 𝑡1 (I-17) 

The forward distance in the section of constant movement 𝑆2 is (∆𝑆 − 𝑆1), and the 

time duration 𝑡2  is (∆𝑆 − 𝑆1)/𝑣𝑚𝑎𝑥 . The time left for the braking section 𝑡3  is 

(𝑡 − 𝑡1 − 𝑡2). The train speed at the end of the current time interval 𝑣𝑡 and the for-

ward distance in the braking section 𝑆3 are 

𝑣𝑡 = 𝑣𝑚𝑎𝑥 + 𝑎𝐵𝑟 · 𝑡3 · 3.6 (I-18) 

𝑆3 =
𝑣𝑡

2 − 𝑣𝑚𝑎𝑥
2

2 · 𝑎𝐵𝑟 · 3.6
 (I-19) 

The adjusted forward distance in the current time interval can be obtained: 

𝑆 = 𝑆1 + 𝑆2 + 𝑆3 = ∆𝑆 + 𝑆3 (I-20) 

 

Appendix Figure 5: Forward Distance Fine – Tuning – Intermittent ATP System (III) 
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Under the condition that a train has to start braking from a certain position, there are 

three possible consequential situations as described above. No matter where the 

train is located and which ATP system the train is using, in principle the procedures 

of fine-tuning illustrated in Appendix Figure 3, Appendix Figure 4 and Appendix Fig-

ure 5 are generally applicable, and only minor details should be adjusted. Therefore, 

these procedures will be designated as standard fine-tuning procedures for brake 

application in the following text. 

In case the current position of the train head is beyond the distant signal for the next 

block section, it is possible that the current position of the train head has already ex-

ceeded the brake application point in the last current block section. If so, the forward 

distance in the current time interval and the train speed at the end of the current time 

interval can be determined with the ForwardDist_Brake method, and the results can 

be directly considered as the final estimation results. If the train head has not yet 

passed the brake application point, its expected position should be roughly calculated 

with the ForwardDist_AccConst method as usual.  

If the expected position of the train head exceeds the brake application point, the 

forward distance and the corresponding speed can be fine-tuned with the fine-tuning 

procedures for brake application; otherwise, the results calculated by the For-

wardDist_AccConst method can be directly considered as the final estimation results, 

in case the expected position of train head does not leave the last current block sec-

tion.  

Upon the condition that the expected position of train head enters the next block sec-

tion but does not pass the brake application point in the last current block section (no 

concrete brake application point exists), the roughly estimated forward distance may 

have to be recalculated, because the speed constraints on the next block section are 

involved. Only if the maximum speed limit of the next block section is reduced and 

the expected speed of the train is over the speed limit (Appendix Figure 6), should 

the forward distance be recalculated. 
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Appendix Figure 6: Recalculation of Forward Distance 

Because the train is going to enter the new block section, it should be checked that 

whether the train head passes the brake application point in the next block section. If 

so, the forward distance and speed should be further adjusted with the standard fine-

tuning procedures for brake application; otherwise the roughly estimated results can 

be directly considered. 

For a train under the mode of continuous ATP system, if the current speed of the 

train is equal to zero, the results estimated with the ForwardDist_AccConst method 

can be directly considered; otherwise, it is necessary to detect the existence of stop-

ping points within the nominal braking distance of the train, and the estimated for-

ward distance may have to be fine-tuned accordingly. 

Similar to resource requirement in continuous ATP territory, the nominal stopping 

point of a train is also used herein to detect stopping points (i.e. stopping points for 

speed reduction and temporal stopping points). The positions of the nominal stopping 

point at the beginning and at the end of the current time interval should be deter-

mined primarily as shown in Appendix Figure 7. It is assumed that the nominal stop-

ping point is shifted from Block A to Block B in the current time interval (Block A and 

Block B can be the same block section). There is likely more than one stopping point 

located in Block A and Block B, but only the stopping point nearest to the current po-

sition of train head needs to be taken into account. On one hand, the nearest stop-

ping point is the most urgent. On the other hand, the nominal stopping point has no 

chance to exceed the nearest stopping point before it is removed, so the further 
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stopping points cannot influence the movement behavior of the train in the current 

time interval. 

 

Appendix Figure 7: Forward Distance Fine-Tuning – Continuous ATP System 

In the condition that the nominal stopping point passes the nearest stopping point (P1) 

in the current time interval, it is implied that the train must start braking from a certain 

point. The optimal brake application point is the intersecting point (P2) between the 

originally expected speed-distance curve for the acceleration section and/or the con-

stant movement (green curve) and the braking curve deduced from the nearest stop-

ping point (red curve between P1 and P2). The distance between the current position 

of the train head and the optimal brake application point can be easily determined 

(∆S), with which the forward distance in the current time interval and the speed of the 

train at the end of the current time interval can be adjusted, following the standard 

fine-tuning procedures for brake application. In case the nominal stopping point does 

not pass any stopping point in the current time interval, the results estimated with the 

ForwardDist_AccConst method can be directly considered. 
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Appendix II: Performance of Dispatching Optimization Algorithm on 

Test Cases 
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Appendix Figure 8: Performance of Dispatching Optimization Algorithm on Test Case 3-8 
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