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Abstract

In this paper an analytical model for current-induced vortex core displacement is developed.

By using this simple model, one can solve the equations of motion analytically to determine the

effects of the adiabatic and non-adiabatic spin torque terms. The final displacement direction of

the vortex core due to the two torque terms mirrors their relative strengths. The resulting vortex

core displacement direction combined with the amplitude of the displacement is thus a measure

for both torque terms.
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For the development of novel applications such as magnetic solid-state storage devices [1],

a controlled manipulation of the magnetization is required. To achieve this, injection of spin-

polarized electrons is believed to be a viable alternative approach to conventional magnetic

fields as field-induced magnetization dynamics suffers from unfavourable scaling. As the

design rule of devices is decreased, the current density necessary in the striplines to generate

the switching fields goes up and eventually reaches levels where structural degradation sets

in. Spin-polarized currents on the other hand show a more favourable scaling as means of

manipulating the magnetization because for a constant current density the total current and

thus the power consumption goes down with decreasing features sizes.

Spin currents interact with the magnetization via the adiabatic and non-adiabatic spin-

torque as theoretically predicted [2, 3]. Experimentally for instance switching of spin valves

as well as in domain wall and vortex core (VC) motion were observed [4, 5]. To utilize

this effect, an in-depth understanding of the torque terms needs to be developed which has

previously been hampered by the difficulty of separating the spin-torque terms.

To determine in particular the non-adiabatic torque [6, 7] has proven to be difficult with

a wide range of values having been determined from measurements of domain wall motion

in wires [8–11]. The large variation and the strong assumptions and simplifications used in

the analysis to extract the torque terms show that a reliable determination of an absolute

value is not straight forward in the wire geometry.

A different geometry that has received much attention is the disc where the vortex state

is present. The displacement of the vortex core under injected current entails a number

of advantages compared to the study of domain wall displacement in wires, where edge

roughness and other edge defects can play a major role. The vortex core is always far away

from the disc edge (for reasonable excitations) and thus less influenced by defects located

at the edge.

In this paper, we use an analytical model to determine the displacement direction of a

vortex core under current injection. We study the vortex core motion in this simple model

and find that the final equilibrium displacement direction depends on the adiabatic and

non-adiabatic spin torque terms. In particular we show that this direction can be used to

determine the non-adiabaticity parameter, which is key to understanding the underlying

spin current transport [6, 7].

To analytically derive the final current-induced position of the vortex core, we start with
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the extended Landau-Lifshitz and Gilbert equation, where the third and fourth term are the

adiabatic and non-adiabatic spin torque terms [6, 7]:

~̇m = γ0 ~H × ~m+ α~m× ~̇m− [~u · ~∇]~m+ β ~m×
(
[~u · ~∇]~m

)
. (1)

Thiele derived an equation of motion for a spin texture, which has been employed to

describe domain wall motion and is commonly called a one-dimensional model [12]. It can

also be used to describe the displacement of a single vortex core with a fixed magnetization

profile and it has been extended by Thiaville to include the spin-torque terms from eq. 1 [6]:

~Fs( ~X) + ~G×
(
~u+

d ~X

dt

)
+ D̄ ·

(
β~u+ α

d ~X

dt

)
= 0, (2)

with the vortex core position ~X. Assuming an electron flow the in x-direction, ~u becomes:

~u = jPgµB/(2eMs)~ex with the spin polarization of the current P and the saturation mag-

netization Ms. The gyrovector ~G points out-of-plane in the direction of the vortex core and

equals ~G = pG~ez = p2πMsµ0t/γ~ez with p the direction of the vortex core (polarity ±1) and

the disk thickness t. The dissipation tensor D̄ is defined as:

D̄ = −Msµ0

γ

∫
dV

(
~∇ϑ~∇ϑ+ sin2(θ)~∇φ~∇φ

)
, (3)

with ϑ being the out-of-plane angle and φ the in-plane angle of the local magnetization. For

a rigid vortex centered in a disk with radius r, it can be numerically evaluated shown in

[13] and turns out to be a diagonal tensor with:

Dzz = 0, Dxx = Dyy = D ≈ −πMsµ0t

γ
ln (2.0r/δ) = −fG. (4)

The radius of the VC δ (about 10 nm in the permalloy structures usually used [14]), depends

on the exchange length and slightly on the thickness of the disk t [15]. Due to the logarithm

and since d À δ the factor f is not very sensitive to variations of the core profile, so that f

can be reliably calculated. In disks the potential is radially symmetric, resulting in a force

~Fs = −κ ~X that tries to push the vortex core back to the disk center. The stiffness κ is given

by the disk dimension and material parameters [16].

When current is injected, the vortex core will be displaced according to equation (2)

until the restoring force equals the spin torque. To determine the final displacement ~X
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under current injection, we look for solutions where d ~X
dt

= 0 and thus a steady state is

obtained. Equation (2) then simplifies to:

xV C~ex + yV C~ey = Gu/κ (fβ~ex + p~ey) . (5)

A similar calculation was done by Shibata et al. but without including non-adiabatic

contributions [17]. It becomes now obvious that the adiabatic spin-torque term is responsible

for a displacement perpendicular to the electron direction (yV C) while the non-adiabatic term

leads to a displacement in the direction of the electron flow (xV C). By measuring the angle

of displacement θ with respect to the electron direction, the non-adiabaticity parameter β

can therefore be directly evaluated:

tan(θ) = xV C/yV C = pfβ. (6)

For the sake of simplicity the calculation was done for harmonic potentials, but holds

for any potential, as long as it is radially symmetric. It is also important to note that

uncertainties in the current density, sample thickness, material parameters, etc. do not

affect the displacement direction, making this relationship very robust.

To directly evaluate this expression, one needs to know p and f. To set p, one can initialize

the vortex spin structure by applying a strong out-of-plane field to set the polarity of the

vortex core. What remains is to calculate f. To check if the analytical calculation described

above holds, we have carried out corresponding full micromagnetic simulations to determine

f numerically. We use the usual parameters for permalloy [11] to determine the factor f in

30 nm thick disks with varying diameter. The result is shown in the semi logarithmic plot in

Fig. 1. The predicted logarithmic dependence of the factor f on the disk diameter is very

well confirmed (Fig. 1) so that the relation above can be used to determine β if the two

spin torques are the governing torques and other torques, such as the Oersted field [13, 18]

play a minor role. This can be achieved for instance by using contacts with lower or similar

conductivity as the magnetic material.

In conclusion, we have used an analytical model for the vortex core dynamics to determine

the current-induced vortex core displacement direction. The direction is found to be a

directly dependent on the ratio of adiabatic and non-adiabatic torques. We have determined

the proportionality factor so that potentially measuring the displacement direction allows
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for the determination of the non-adiabaticity parameter.

Acknowledgments

We acknowledge support by the German Science Foundation (DFG SFB 767, KL 1811),

EU (RTN Spinswitch MRTN-CT-2006-035327, Stg MASPIC ERC-2007-Stg 208162, MAG-

WIRE FP7-ICT-2009-5 257707), the Swiss National Science Foundation and the Samsung

Advanced Institute of Technology.

[1] S. S. P. Parkin et al., Science 320, 190 (2008).

[2] L. Berger, J. Appl. Phys. 84, 1954 (1984).

[3] J. C. Slonczewski et al., J. Magn. Magn. Mat. 159, l1 (1996).

[4] A. Yamaguchi et al., Phys. Rev. Lett. 92, 77205 (2004).
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FIG. 1: (Color online) The factor f is plotted as a function of the disk diameter for 30 nm thick

disks. Red squares correspond to the numerical results and the blue line is a logarithmic fit.
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