Contents

Preface — V

Introduction: Statistical Computing Algorithms as a Subject of Adaptive Control — 1

Part I: Evaluation of Integrals

1	Fundamentals of the Monte Carlo Method to Evaluate Definite
	Integrals — 9
1.1	Problem setup — 9
1.2	Essence of the Monte Carlo method — 10
1.3	Sampling of a scalar random variable — 11
1.3.1	The inverse function method — 11
1.3.2	The superposition method — 14
1.3.3	The rejection method — 15
1.4	Sampling of a vector random variable — 16
1.5	Elementary Monte Carlo method and its properties — 18
1.6	Methods of variance reduction — 20
1.6.1	Importance sampling — 20
1.6.2	Control variate sampling — 21
1.6.3	Advantages and relations between the methods of importance sampling
	and control variate sampling — 21
1.6.4	Symmetrisation of the integrand — 22
1.6.5	Group sampling — 23
1.6.6	Estimating with a faster rate of convergence 24
1.7	Conclusion — 25
2	Sequential Monte Carlo Method and Adaptive Integration 27
2.1	Sequential Monte Carlo method — 27
2.1.1	Basic relations — 27
2.1.2	Mean square convergence — 29
2.1.3	Almost sure convergence — 36
2.1.4	Error estimation — 39
2.2	Adaptive methods of integration — 41
2.2.1	Elementary adaptive method of one-dimensional integration — 42
2.2.2	Adaptive method of importance sampling — 44
2.2.3	Adaptive method of control variate sampling — 46

- 2.2.4 Generalised adaptive methods of importance sampling and control variate sampling 47
- 2.2.5 On time and memory consumption 47
- 2.2.6 Regression-based adaptive methods 49
- 2.2.7 Note on notation 56
- 2.3 Conclusion 57

3 Methods of Adaptive Integration Based on Piecewise Approximation ---- 59

- 3.1 Piecewise approximations over subdomains 59
- 3.1.1 Piecewise approximations and their orders 59
- 3.1.2 Approximations for particular classes of functions 60
- 3.1.3 Partition moments and estimates for the variances $D_k 62$
- 3.1.4 Generalised adaptive methods 63
- 3.2 Elementary one-dimensional method 65
- 3.2.1 Control variate sampling ---- 66
- 3.2.2 Importance sampling 67
- 3.2.3 Conclusions and remarks 69
- 3.3 Sequential bisection 70
- 3.3.1 Description of the bisection technique 70
- 3.3.2 Control variate sampling ---- 72
- 3.3.3 Importance sampling 76
- 3.3.4 Time consumption of the bisection method 78
- 3.4 Sequential method of stratified sampling 79
- 3.5 Deterministic construction of partitions 80
- 3.6 Conclusion 82

4 Methods of Adaptive Integration Based on Global Approximation — 83

- 4.1 Global approximations ---- 83
- 4.1.1 Approximations by orthonormalised functions: Basic relations 84
- 4.1.2 Conditions for algorithm convergence 86
- 4.2 Adaptive integration over the class $S_p 92$
- 4.2.1 Haar system of functions and univariate classes of functions $S_p 92$
- 4.2.2 Adaptive integration over the class S_p : One-dimensional case 93
- 4.2.3 Expansion into parts of differing dimensionalities: Multidimensional classes *S*_p ---- **95**
- 4.2.4 Adaptive integration over the class S_p : Multidimensional case 97
- 4.3 Adaptive integration over the class E_s^{α} 103
- 4.3.1 The classes of functions E_s^{α} 104
- 4.3.2 Adaptive integration with the use of trigonometric
 - approximations 104
- 4.4 Conclusion 108

5	Numerical Experiments — 111
5.1	Test problems setup — 111
5.1.1	The first problem — 111
5.1.2	The second problem — 112
5.2	Results of experiments — 113
5.2.1	The first test problem — 113
5.2.2	The second test problem — 121
6	Adaptive Importance Sampling Method Based on Piecewise Constant
	Approximation — 123
6.1	Introduction — 123
6.2	Investigation of efficiency of the adaptive importance sampling
	method — 123
6.2.1	Adaptive and sequential importance sampling schemes — 123
6.2.2	Comparison of adaptive and sequential schemes — 126
6.2.3	Numerical experiments — 128
6.2.4	Conclusion — 131
6.3	Adaptive importance sampling method in the case where the number of
	bisection steps is limited — 132
6.3. 1	The adaptive scheme for one-dimensional improper integrals — 132
6.3.2	The adaptive scheme for the case where the number of bisection steps is
	limited — 134
6.3.3	Peculiarities and capabilities of the adaptive importance sampling
	scheme in the case where the number of bisection steps is fixed — 135
6.3.4	Numerical experiments — 136
6.3.5	Conclusion — 140
6.4	Solution of a problem of navigation by distances to pin-point targets with
	the use of the adaptive importance sampling method —— 141
6.4.1	Problem setup —— 141
6.4.2	Application of the adaptive importance sampling method to calculating
	the optimal estimator of the object position 143
6.4.3	A numerical experiment — 145

6.4.4 Conclusion — 148

Part II: Solution of Integral Equations

7	Semi-Statistical Method of Solving Integral Equations Numerically — 151
7.1	Introduction — 151
7.2	Basic relations — 152
7.3	Recurrent inversion formulas — 154
7.4	Non-degeneracy of the matrix of the semi-statistical method — 155

- 7.5 Convergence of the method 161
- 7.6 Adaptive capabilities of the algorithm 163
- 7.7 Qualitative considerations on the relation between the semi-statistical method and the variational ones ---- 165
- 7.8 Application of the method to integral equations with a singularity ----- 165
- 7.8.1 Description of the method and peculiarities of its application 165
- 7.8.2 Recurrent inversion formulas 168
- 7.8.3 Error analysis 168
- 7.8.4 Adaptive capabilities of the algorithm 171

8 Problem of Vibration Conductivity ----- 173

- 8.1 Boundary value problem of vibration conductivity 173
- 8.2 Integral equations of vibration conductivity 174
- 8.3 Regularisation of the equations 180
- 8.4 An integral equation with enhanced asymptotic properties at small $\beta 184$
- 8.5 Numerical solution of vibration conductivity problems 187
- 8.5.1 Solution of the test problem 187
- 8.5.2 Analysis of the influence of the sphere distortion and the external stress character on the results of the numerical solution ----- 190
- 9 Problem on Ideal-Fluid Flow Around an Airfoil 193
- 9.1 Introduction 193
- 9.2 Setup of the problem on flow around an airfoil 193
- 9.3 Analytic description of the airfoil contour 195
- 9.4 Computational algorithm and optimisation 198
- 9.5 Results of numerical computation 199
- 9.5.1 Computation of the velocity around an airfoil 199
- 9.5.2 Analysis of the density adaptation efficiency 201
- 9.5.3 Computations on test cascades 205
- 9.6 Conclusions ---- 207
- 9.7 A modified semi-statistical method 208
- 9.7.1 Computational scheme ---- 209
- 9.7.2 Ways to estimate the variance in the computing process 210
- 9.7.3 Recommendations and remarks to the scheme of the modified semi-statistical method 211
- 9.7.4 Numerical experiment for a prolate airfoil 211

10 First Basic Problem of Elasticity Theory — 215

10.1 Potentials and integral equations of the first basic problem of elasticity theory ---- 215

- 10.1.1 The force and pseudo-force tensors 215
- 10.1.2 Integral equations of the first basic problem 217
- 10.2 Solution of some spatial problems of elasticity theory using the method of potentials 218
- 10.2.1 Solution of the first basic problem for a series of centrally symmetric spatial regions 219
- 10.2.2 Solution of the first basic problem for a sphere 220
- 10.2.3 Solution of the first basic problem for an unbounded medium with a spherical cavity 220
- 10.2.4 Solution of the first basic problem for a hollow sphere 221
- 10.3 Solution of integral equations of elasticity theory using the semi-statistical method 223
- 10.4 Formulas for the optimal density 225
- 10.5 Results of numerical experiments 227

11 Second Basic Problem of Elasticity Theory — 231

- 11.1 Fundamental solutions of the first and second kind 231
- 11.2 Boussinesq potentials 234
- 11.3 Weyl tensor 235
- 11.4 Weyl force tensors 237
- 11.5 Arbitrary Lyapunov surface 238
- 12 Projectional and Statistical Method of Solving Integral Equations Numerically ----- 241
- 12.1 Basic relations ---- 241
- 12.2 Recurrent inversion formulas 244
- 12.3 Non-degeneracy of the matrix of the method 246
- 12.4 Convergence of the method 250
- 12.5 Advantages of the method and its adaptive capabilities 253
- 12.6 Peculiarities of the numerical implementation 255
- 12.7 Another computing technique: Averaging of approximate solutions 257
- 12.8 Numerical experiments 259
- 12.8.1 The test problem 259
- 12.8.2 The problem on steady-state forced small transverse vibration of a pinned string caused by a harmonic force 264

Afterword — 271

Bibliography ---- 273

Index — 277