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Abstract

In recent years, we have witnessed the evolution from a “Web of Documents” to a
highly-interlinked “Web of Data”, in which so-far human-consumable information
is given a well defined machine-processable meaning. Driven by the wide adoption
of Semantic Web technologies and in particular the so-called RDF data model,
data from various domains and in multiple languages is becoming more and more
interconnected. This facilitates the emergence of semantic knowledge bases such
as DBpedia, YAGO, Microsoft’s Satori, and Google’s Knowledge Vault. However,
querying such semantic knowledge bases, which have often a high degree of diversity
in the structure and vocabulary, poses new challenges for query languages and their
respective implementations. Despite considerable work that has been done in this
area, recent work has proven that important properties in RDF data exist which
cannot be captured by current RDF query languages including SPARQL 1.1 and its
extensions.
In order to exploit the real potential of such data, RDF query languages need (1) to
capture all variants inherent to the triple-based model of RDF and (2) to allow one
to query RDF data along with its ontology and schema and (3) to enable querying
path-based connections between arbitrary resources. Given the graph-like structure
of highly-interconnected knowledge bases, we found expressive navigational queries
to be well-suited to capture the aforementioned requirements, since they provide
valuable information about the interlinking between arbitrary things. With this in
mind, we propose two RDF query languages, namely RDFPath and TriAL-QL,
which we believe constitute the first major contribution of this dissertation. Both
languages aim at retrieving information by means of navigational queries and are
meant to complement standardized languages like SPARQL. RDFPath is an intu-
itive navigational query language that enables one to traverse the graph structure of
RDF along with its schema description. Its path-based semantics makes it possible
to output complete paths, i.e. all resources traversed along a path. TriAL-QL
is an SQL-like language built upon the Triple Algebra with Recursion (TriAL*).
In contrast to many other approaches TriAL* is a compositional algebra, where
the output is again RDF data. We further introduce E-TriAL*, an extension of
TriAL* that adds more recursive expressions and supports provenance to describe
the origin of a triple. In order to preserve the compatibility with other RDF manage-
ment systems, both languages support the mapping of their results to RDF triples
by using an ontology.
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While the constant growth of semantically-annotated data and an increasing interest
in cross-domain knowledge bases, justifies such expressive, navigational querying
languages, it raises also the need for novel approaches that enable their evaluation
for large data sizes. Therefore, we investigate next how to evaluate RDFPath
and TriAL-QL queries against web-scale RDF data, which leads to the second
major contribution of this dissertation. We investigate the application of Hadoop,
the de-facto standard platform for processing Big Data, to distribute the workload
associated with the evaluation of our languages on a cluster of machines. Apart from
the widely deployed infrastructures, we see the main advantages of the Hadoop
ecosystem in its continuous development which is reflected by novel frameworks
and layers that are added continuously. Furthermore, we benefit, as we will also
demonstrate in our work, from the concept of a common data storage by means of
HDFS (also called data lake) that can be accessed by all applications built on top
of Hadoop.
Our first implementation is the RDFPath MapReduce Processor, which is con-
ceived for data-intensive and complex analytical RDFPath queries. It implements
an efficient path serialization for HDFS, in addition to that two merge-join strategies
for MapReduce are proposed to further optimize the overall query performance and
scalability. MapReduce is highly scalable and reliable but due to its batch-oriented
workflow and high latencies it is not well suited for rather selective queries evaluated
against a small subset of the data. In such cases, one might expect more interactive
query response times, thus in the order of seconds. We therefore continue our work
with the TriAL-QL Engine and the RDFPath Engine which take advantage of
the current momentum in in-memory SQL-on-Hadoop solutions. Both engines are
implemented on top of Impala, a massive parallel SQL query engine and Spark, a
fast general-execution framework for large-scale data processing while sharing one
unified data store in HDFS. We investigate for all of our systems various execution
algorithms, multiple data storage strategies and provide optimizations for the most
important query patterns. A comprehensive evaluation examines the performance
and scaling properties of our engines with respect to different execution strategies
and in comparison to other competitive RDF management systems.
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Zusammenfassung
In den letzten Jahren konnten wir die Entwicklung vom einem “Internet der Do-
kumente” hin zu einem hochgradig vernetzten “Internet der Daten” erleben. Dabei
werden Informationen, die bisher nur von Menschen konsumiert werden konnten, mit
ihrer semantischen und maschinenverarbeitbaren Bedeutungen verknüpft. Der zu-
nehmende Einsatz von Semantic Web Technologien, hierzu zählt insbesondere das
sogenannte RDF-Modell, ermöglichen dabei eine immer engere Verknüpfung von
Daten aus verschiedenen Domänen und in unterschiedlichen Sprachen. Dies können
wir insbesondere in semantischen Wissensdatenbanken wie DBpedia, YAGO, Mi-
crosoft’s Satori und Google’s Knowledge Vault beobachten, die zunehmend an Be-
deutung gewinnen. Allerdings stellt die Abfrage semantischer Wissensdatenbanken
aufgrund der verschiedenartigen Strukturen und des unterschiedlichen Vokabulars in
den Daten erhebliche Herausforderungen an Abfragesprachen und deren Implemen-
tierungen. Trotz bedeutender Fortschritte in diesem Bereich haben daher kürzlich
publizierte Arbeiten gezeigt, dass RDF Daten wichtige Informationen modellieren
können, die mit aktuellen RDF Abfragesprache, wie SPARQL 1.1 und seinen Erwei-
terungen, nicht abgefragt werden können.
Um das Potential solcher Daten besser ausnutzen zu können, müssen RDF Abfrage-
sprachen (1) alle Varianten, die dem Tripel-basierten Modell von RDF inhärent sind,
abfragen können sowie (2) es erlauben, RDF Daten zusammen mit ihrer Ontologie
und ihrem Schema gemeinsam in einer Anfrage auszuwerten und (3) es ermöglichen,
pfadbasierte Verbindungen zwischen beliebigen Ressourcen anzufragen. Angesichts
der graphbasierten Struktur solcher dicht vernetzten Wissensdatenbanken sehen wir
ausdrucksfähige Pfadanfragen als gut geeignet an, um diesen Anforderungen ge-
recht zu werden, da sie wertvolle Informationen zur Verlinkung der Daten liefern
können. Vor diesem Hintergrund stellen wir zwei RDF Abfragesprachen, RDFPath
und TriAL-QL, vor, welche den ersten wesentlichen Beitrag dieser Dissertation
darstellen. Beide Sprachen zielen darauf ab, Informationen unter Verwendung von
Pfadanfrage zu extrahieren und sind dazu gedacht, existierende Sprachen wie SPAR-
QL dahingehend zu ergänzen. RDFPath ist eine intuitive Pfadanfragesprache, die
es ermöglicht, die graphbasierte Struktur von RDF zusammen mit Schema Infor-
mationen abzufragen. Die pfadbasierte Semantik von RDFPath unterstützt dabei
die Ausgabe vollständiger Pfade, das heißt es werden alle Ressourcen entlang ei-
nes Pfades mit ausgegeben. TriAL-QL ist eine SQL-ähnliche Sprache, die auf der
Triple Algebra with Recursion (TriAL*) beruht. Im Unterschied zu vielen anderen
Ansätzen ist (TriAL*) eine kompositionelle Algebra, das heißt das Ausgabefor-
mat entspricht der Eingabe und ist ein RDF Graph. Darüber hinaus führen wir
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E-TriAL* ein, eine Erweiterung von TriAL*. Diese ermöglicht zusätzliche rekur-
sive Ausdrücke und bietet die Möglichkeit, die Herkunft von Tripeln (Provenance)
zu beschreiben. Um die Kompatibilität mit anderen RDF Management Systemen
aufrechtzuerhalten, unterstützen beide Ansätze die Abbildung ihrer Ergebnisse in
RDF Tripels, wobei eine eigene Ontologie verwendet wird.
Die konstante Zunahme an semantisch annotierten Daten aus unterschiedlichen Do-
mänen und das ansteigende Interesse an deren Verknüpfung rechtfertigt solche aus-
drucksstarken Abfragekonstrukte. Zugleich begründet sie auch die Notwendigkeit
für neue Ansätze, welche es ermöglichen, solche Abfragesprachen auf großen Daten-
sätzen auszuwerten. Daher lag im Folgenden unser Interesse darauf, wie RDFPath
und TriAL-QL Anfragen auf web-scale RDF Daten ausgewertet werden können. Im
zweiten wesentlichen Beitrag dieser Dissertation untersuchen wir deshalb die Ver-
wendung von Hadoop, die de-facto Standard Plattform für Big Data, um die Berech-
nungen, die mit der Evaluation von unseren Sprachen einhergehen, auf einem Cluster
an Maschinen zu verteilen. Über die reine Verbreitung solcher Infrastrukturen hin-
aus sehen wir die Hauptvorteile des Hadoop Ökosystems in dessen kontinuierlicher
Weiterentwicklung, welche durch zahlreiche neue Frameworks, die in das Ökosystem
eingepflegt werden, begleitet wird. Weiterhin profitieren wir von dem Konzept eines
gemeinsamen Datenspeichers im HDFS (auch als data lake bezeichnet), auf welchen
von allen Applikationen zugegriffen werden kann, die auf Grundlage von Hadoop
implementiert sind. Auch dies werden wir mit unserer Arbeit demonstrieren.
Unsere erste Implementierung ist der RDFPath MapReduce Processor, wel-
cher für daten-intensive und komplexe RDFPath Anfrage konzipiert ist. Er enthält
eine effiziente Pfad-Serialisierung in HDFS und zusätzlich zwei Merge-Join Strate-
gien für MapReduce, welche die Performance und Skalierbarkeit unseres Ansatzes
weiter optimieren. MapReduce ist hochskalierbar und zuverlässig, allerdings auf-
grund seiner Batch-basierten Arbeitsweise und hoher Latenz nicht geeignet für se-
lektive Anfragen, die nur eine kleine Untermenge der Daten anfragen. In solchen
Szenarien erwarten wir interaktive Antwortzeiten in der Größenordnung von Sekun-
den. Wir führen daher als nächstes die TriAL-QL Engine und die RDFPath
Engine ein, welche die aktuelle Dynamik in der Entwicklung von Hauptspeicher-
basierten SQL-on-Hadoop Lösungen ausnutzen. Beide Systeme verwenden sowohl
Impala, ein massives paralleles SQL Anfrage System, als auch Spark, ein vielfältig
einsetzbares cluster-gestütztes Framework, das für die Verarbeitung großer Daten-
mengen ausgelegt ist. Zur Datenspeicherung wird auf ein gemeinsames Datenschema
im HDFS zugegriffen. Für die beiden letzten Systeme werden zudem unterschied-
liche Evaluationsstrategien, verschiedene Konzepte zur Partitionierung der Daten
sowie Optimierungen für die wichtigsten Anfragemuster vorgestellt. Umfangreiche
Experimente untersuchen die Performance und Skalierbarkeit unserer Systeme im
Hinblick auf die zahlreichen implementierten Strategien und insbesondere auch im
Vergleich zu kompetitiven RDF Management Systemen.
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1. Introduction

Contents
1.1. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . 16

In the past decade, we have witnessed theWorld Wide Web becoming the first source
of knowledge in all areas of life. This web of interconnected HTML documents aims
at presenting content to humans [KBM08]. The recent evolution from a web of
documents to a web of data and things reflects the vision of a unified knowledge base,
in which human-readable information is given a well defined machine-processable
meaning [BHL01]. This concept goes back to an article of Tim Berners-Lee, one
of the inventors of the World Wide Web. He envisaged a new web called Semantic
Web [BHL01], where each thing in the world, whether a person, a movie, a location
or any other concept can be identified by a unique name called Internationalized
Resource Identifier (IRI). Knowledge representation is then what one obtains after
describing the relationships between arbitrary things in the world, identified by their
IRIs. For example, consider the concept “Five Weeks in a Balloon” appearing in
some web page. Whereas for human readers interested in adventure novels, it might
be obvious that this is the title of a book from Jules Verne, a machine programmed to
extrapolate the semantics in texts might interpret it as advertisement for a vacation.
An annotation with its IRI gives this term a machine-processable unique meaning,
which can be then used to provide, for instance, more accurate meta-data.

Such knowledge can be created by means of the Resource Description Framework
(RDF) [MMM14], the W3C standard for modeling Semantic Web data. The under-
lying building blocks of RDF are triples (s,p,o) that can be interpreted as statements
with the meaning “a subject s has the predicate p with the object o”. For example,
we could model the beforehand mentioned book of Jules Verne with the following
set of triples:

1 @base : <http :// example . org / onto logy /books/>;
2 <FiveWeeksBallon> type <Novel >.
3 <FiveWeeksBallon> t i t l e " Five Weeks in a Bal loon " .
4 <FiveWeeksBallon> author <JulesVerne> .
5 <JulesVerne> type <Person> .
6 <JulesVerne> name " Ju l e s Verne " .
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Chapter 1 Introduction

However, the real benefits of using RDF in comparison to other semi-structured
data models, e.g. csv, rely not solely on the ability to annotate arbitrary things with
their machine-processable meaning, but also in the usage of ontologies and schema
descriptions from, e.g. Schema.org. They facilitate the integration of various cross-
domain sources of information resulting in large, interconnected knowledge bases,
such as DBpedia [BLK+09], YAGO [HSBW13], Microsoft’s Satori, and Google’s
Knowledge Vault [DGH+14].
Related work done in the context of life science and drug discovery demonstrate
the potential of such cross-domain knowledge bases [ABE+09b, CDJ+10, WDS+12,
CKK+13]. Biological and chemical RDF data is used in that field to “generate un-
derstanding about the way small molecules affect biological systems” [WDS+12]. A
major challenge is hereby the search for relationships and paths that go across differ-
ent datasets, where complete paths explaining the interconnection between arbitrary
things become indispensable [WDS+12]. Further examples include the integration
of social network data [Mik04, Mik07] or open government data [SOBL+12, SO13].
Navigational queries are therefore among the most natural questions for such types
of data, as they are equipped with features to explore the graph-like structure of
the data along with its ontology in order to provide valuable information about the
interlinking of resources [EAL+15, PBA+16].
Moreover, recent work [LRV13, AGP14, RSV15] has shown that important proper-
ties exist in RDF data which cannot be captured by current RDF query languages
such as SPARQL 1.1 and its derivatives. This includes also SPARQL Property
Paths, the navigational component of the W3C standard query languages for RDF
in its latest specification. One of the fundamental issues related to these languages
is the fact that they are rooted in traditional graph databases, where the so-called
Regular Path Queries (RPQs) [CMW87, CM90, CDLV03] are used as navigational
primitives to traverse the graphical structure. Although the RDF model is very
similar to underlying models of graph databases, it exhibits some crucial differences
which hamper the applicability of languages based on RPQs. In a standard graph
model, an edge label comes from a finite alphabet and cannot appear as a node,
i.e. strictly distinct identifiers are used for nodes and edges. On the contrary, in
RDF a subject or object resource (node in graph model) is allowed to be reused
again at the place of a predicate (edge in graph model). In this way, two RDF
triples such as (s1, p1, o1) and (p1, s2, p2) are valid triples in a RDF data manage-
ment system but cannot be modeled correctly in a traditional graph databases.
Consequently, languages based on RPQs also cannot navigate through such con-
structs. One may argue that this is not a dominant pattern in most published RDF
data, which is truly the case. However, it is fundamental for ontologies and schema
descriptions, which constitute the real benefit of the Semantic Web by making it
possible to interlink various application fields in one knowledge base.
This is the motivation for the first part of this dissertation, in which we propose
two expressive, navigational RDF query languages namely RDFPath [PSHL11,
PSHL12] and TriAL-QL [PSL15a, PSL15b, PSL17]. Both languages cover several
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querying features, that have been identified as crucial for the Semantic Web. On
the one hand, RDFPath features a fully path-based semantics that allow one to
output the complete path which was traversed by a navigational expression. On
the other hand TriAL-QL is a SQL-like language based on the Triple Algebra with
Recursion (TriAL*) proposed in [LRV13]. In contrast to many other approaches
TriAL* is a compositional algebra and hence closed, i.e. the output is again a set
of triples rather than graphs or bindings. Further, with E-TriAL* we introduce an
extension of TriAL*, which features more expressive recursions and a mechanism
to deal with provenance, i.e. it allows one to track the origin of triples as a part of
the query language.

The amount of available RDF data increases continuously due to the wide adoption
of Semantic Web technologies in many diverse application fields ranging from the
description of gene attributes in biology to the annotation of sports events. As a
result, processing the workload associated with querying has become a challenging
task in terms of computational costs [DGH+14]. Expressive querying features are
therefore just one side of the coin. The ability to evaluate them against web-scale
RDF data is the other. We distinguish between three groups of RDF management
systems, which differ in how large the RDF data is that can be processed: (1)
centralized systems, (2) specialized distributed systems, and (3) distributed systems
built on top of existing Big-Data frameworks.

Centralized systems operate on top of a single powerful machine, often equipped
with specialized hardware components to enhance the performance. Common ex-
amples for such systems are Sesame [BKH02], Virtuoso [EM10], Jena [CDD+04],
RDF-3X [NW10] and 3store [HG03]. In case of an increased amount of RDF data,
resources such as processing power, main memory or hard disks can be improved.
This strategy is known as scale-up. Although very powerful, such systems are limited
in their scalability and are known to not be very cost efficient at larger scales.

In case of specialized distributed systems the workload parallelization is imple-
mented as part of the RDF management system rather than relying on an underly-
ing distributed framework such as Hadoop [Whi15]. Interesting approaches include
Virtuoso Cluster [BEP14], TriAD [GSMT14], Dream [HRN+15], 4store [HLS09],
YARS2 [HUHD07] and Clustered TDB [Owe09]. Some of these are extensions of
centralized systems, e.g. RDF-3X [HAR11, GHS14] or Jena [Owe09], which have to
be independently installed on each machine in the cluster. Scaling in such systems
is achieved by adding further machines, which is denoted as scale-out strategy. The
main drawbacks of these systems are (1) the need for a dedicated infrastructure that
has to be maintained solely for the purpose of querying RDF, and (2) the fact that
the initial graph partitioning used for spreading data across machines is often done
in a centralized way, being the bottleneck for large-scale RDF data [LL13].

The last group of RDF management systems is the one built on top of existing
Big Data frameworks, such as MapReduce [DG04] or SQL-on-Hadoop [TSJ+09,
KBB+15, AXL+15] solutions. In recent years, the Hadoop ecosystem has become
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Chapter 1 Introduction

the de-facto standard for processing Big Data. Large infrastructures are deployed in
research or industry and supported by major Cloud providers such as Amazon Elastic
Compute Cloud (EC2). Due to its robustness, reliability and scalability while being
able to run on heterogeneous commodity hardware, Hadoop gained lot of attention
in manifold application fields. Consequently, there have also been many different
Semantic Web tasks implemented on top of Hadoop ranging from the evaluation
of SPARQL queries [HAR11, HMM+11, SPZL11, SPNL14, SPSL16] to large-scale
OWL reasoning [UKM+12].
However, to the best of our knowledge, not much work has been done on us-
ing Hadoop for the evaluation of expressive, navigational RDF query languages
as RDFPath and TriAL-QL. At most, SPARQL 1.1 Property Paths are sup-
ported via Virtuoso Cluster as being the only available distributed RDF manage-
ment system that runs on a cluster of machines [BEP14]. Implementations of RDF
query languages having a higher expressiveness than Property Paths can only be
found in centralized systems, such as in extensions of Sesame and Jena, which
lack the support for querying web-scale RDF data. Moreover, distributed RDF
management systems on Hadoop are so far able to evaluate SPARQL 1.0 queries.
This means that there is no support for expressive navigational queries that al-
low one to query RDF data together with its ontology while providing meaningful
results [HAR11, HMM+11, SPZL11, SPNL14, SPSL16].
This gap is the motivation for the second part of this dissertation in which we
believe the major contributions of our work have been made. With the goal of pro-
cessing expressive navigational queries of both languages, RDFPath and Trial-QL,
on web-scale RDF data, we investigated the usage of Hadoop-based solutions for
distributing the workload on a cluster of machines. The main reasons why we have
chosen Hadoop were, first of all its rich ecosystem of frameworks that are continu-
ously evolved and adapted to novel concepts for distributed computing. Secondly,
there exists already widely deployed infrastructures as explained above. Thirdly, we
believe in the concept of using HDFS as a shared data pool, that can be accessed by
various Semantic Web applications without the need for data duplications or move-
ment. That way, we encourage the usage of our languages and implementations
as supplementary tools, for e.g. preprocessing the data where an Hadoop-based
SPARQL engine like Sempala [SPNL14] or S2RDF [SPSL16] can use our results
again as its input.
We started with a purely MapReduce-based evaluation of RDFPath queries which
lead to the development of our RDFPath MapReduce Processor. Our proto-
type demonstrates that it is very well suited for data-intensive or complex analytical
tasks [PSHL11, PSHL12] with good scalability properties. To further improve its
performance, we designed an optimized join strategy which turned out to also be
applicable in other scenarios. However, in case of more selective queries which are
evaluated against a small subset of the data, we expected to get an answer in inter-
active time, i.e in the order of seconds to a few minutes. We realized this was difficult
to achieve with MapReduce because this paradigm is not intended to fulfill those
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requirements. Therefore, we investigate in a further step if it is possible to achieve
this using the current trend in SQL-on-Hadoop solutions and designed TriAL-
QL Engine and RDFPath Engine, two distributed query processors with sup-
port for both, data-intensive, analytical tasks but also interactive querying. In the
core, both, Impala [KBB+15], a massive parallel SQL query engine on Hadoop and
Spark [AXL+15], a fast general execution framework for large-scale data processing
are used while sharing one unified data store in HDFS [PSL15a, PSL15b, PSL17].
These challenges give rise to many interesting problems with multiple interpretations
that are worth being investigated. In this dissertation we will mainly focus on
answering the following questions, which also reflect the structure of this work:

1. How has the Semantic Web evolved in recent years? What are the represen-
tative datasets and benchmarks on which we may base our experiments and
which reflect the recent challenges and opportunities?

2. Which languages can be used to query RDF and what are their navigational
primitives? Where do we see the need for more expressive querying features?

3. How have we designed RDFPath, an intuitive yet expressive navigational
RDF query language equipped with functionalities to traverse both the RDF
data together with its ontology?

4. How can we adopt Triple Algebra with Recursion (TriAL*) to fulfill our re-
quirements as the core of a navigational query language? What is a user-
friendly syntax for the algebraic notation of TriAL*? How can we enrich the
results by incorporating provenance?

5. How can we obtain compatibility with other RDF management systems and
languages, which in turn allow us to introduce both of our languages as com-
plementary approaches to existing solutions?

6. How to evaluate our languages against web-scale RDF data and support both
(1) ETL-like, data-intensive tasks and (2) interactive querying in cases of
queries with a high selectivity? What are suitable algorithms for the eval-
uation of recursive patterns and how can they be further optimized?

7. What are the performance and scaling properties of our implementations with
respect to different evaluation strategies and in comparison to other competi-
tive RDF management systems?

1.1. Contributions

The main contributions of this dissertation can be summarized as follows. We
design two navigational RDF query languages, namely RDFPath and TriAL-QL
which aim at retrieving meaningful information from highly diverse, interconnected
knowledge graphs.

7
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• RDFPath stands out with a fully path-based semantics and allows one to
evaluate queries while fully exposing the paths along with the answer, i.e. it
includes all resources along a path, rather than just confirming the existence
of a connection between two resources.

• TriAL-QL is a SQL-like language based upon Triple Algebra with Recur-
sion (TriAL*) [LRV13], an expressive compositional algebra for RDF that
subsumes most previous languages.

• We further introduce E-TriAL*, an extension of TriAL* that includes
more recursive expressions and supports the tracking of provenance for newly-
derived triples.

• Both languages allow to output RDF triples which encode their computed
paths by means of an ontology. This in turn facilitates their usage as com-
plementary languages in the stack of established Semantic Web languages and
tools, where they could be used for, e.g. preprocessing certain interconnections.

To evaluate queries of both languages on web-scale RDF data, we develop three
query engines on top of Apache Hadoop with HDFS as a common data-pool.

• The RDFPath MapReduce Processor translates RDFPath queries to a
sequence of MapReduce jobs using an efficient path serialization provided by
our implemented data store on top of HDFS. With regard to the optimiza-
tions two kinds of merge joins are presented, which improve the overall query
performance and scalability.

• Our TriAL-QL Engine is implemented on top of both Impala and Spark
while sharing one unified data store in HDFS.

• Our RDFPath Engine is also implemented on top of both in-memory frame-
works and shares one unified data store in HDFS.

• For both engines we investigate multiple algorithms for the evaluation of recur-
sive expressions and propose execution strategies, which specify how translated
queries are composed and when intermediate results need to be materialized.
Further optimizations include algorithms for special patterns, e.g. the connec-
tivity between two given resources.

• We present different data storage strategies, which make use of Parquet, an
efficient columnar storage format, for data partitioning.

• A comprehensive evaluation assesses the performance and scaling properties
of our engines and their various execution strategies in comparison to other
competitive RDF management systems.

Together, the query languages and the implemented query engines constitute the
major contribution of this work. The following paragraph contains a more detailed
view on our contributions. It includes all relevant publications, provides the most
complete picture of our work, and answers the main research questions raised at the
end of the introduction.

8



1.1 Contributions

Contributions & Published Work. The growing adoption of Semantic Web tech-
nologies in various application fields promotes that new sources of information are
interconnected to a large knowledge base. Therefore, Semantic Web data exhibits a
high degree of diversity in its structure, demanding a redefinition of the requirements
of modern RDF management systems and suitable query languages [AHOD14]. One
crucial point in developing such systems and languages is therefore the usage of
proper benchmarks with representative datasets to base our tests and experiments
on, that capture this recent evolution. In [PSHT13] we discuss the issues of current
RDF benchmarks and specify properties for a representative dataset that reflects
the new challenges and opportunities of the Semantic Web. We bring together these
properties into LastBench, a proposal for a benchmark on real-world social data
from Last.fm.
[PSHT13] Martin Przyjaciel-Zablocki, Alexander Schätzle, Thomas Hornung, and

Io Taxidou. Towards a SPARQL 1.1 Feature Benchmark on Real-World
Social Network Data. In Proc. of the ESWC2013 Workshops: First In-
ternational Workshop on Benchmarking RDF Systems (BeRSys), Mont-
pellier, France, CEUR Workshop Proceedings 981, 2013.

Navigational queries are among the most important query types for interconnected
and semantically-annotated data, as they provide valuable information about the
interlinking of resources and are equipped with features to explore the underlying
graph-like structure. However, most RDF languages including SPARQL 1.1 Prop-
erty Paths have some inherent limitations, due to their rooting in traditional graph
databases. They fail to cover all variants inherent to the triple-based model of RDF,
which is particularly problematic when RDF data needs to be queried along with its
ontology. Furthermore, the problem of reachability, if at all addressed, is often seen
as an existential question, i.e. it answers whether there exists a connection between
certain resources. Only limited work has been done on providing more meaningful
results, e.g. that include complete paths with all traversed resources or on describ-
ing the origin of the result by means of provenance. We have therefore introduced
in [PSHL11, PSHL12] RDFPath, an intuitive yet expressive, navigational query
language for RDF which addresses some of these needs. It is equipped with func-
tionalities to traverse paths of arbitrary length, allowing navigation through both
RDF data and its ontology. The distinctive feature of RDFPath is its path-based
semantics defined over an extension of RDF which we called RDFp. This allows us
to provide complete paths to appear in the results of a query rather than just pairs
of nodes or variable bindings.
Another aspect that emerges from the wide usage of Semantic Web technologies is
related to the amount of RDF data created in various domains. In recent years we
have observed, that the available RDF data has grown to the point where it is cru-
cial to distribute the workload associated with querying the data to a cluster of ma-
chines [HAR11]. Along with RDFPath, we describe therefore in [PSHL11, PSHL12]
our RDFPath MapReduce Processor which aims at the evaluation of RDF-
Path queries on web-scale RDF data. Queries are hereby automatically translated
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to a sequence MapReduce jobs and executed on a cluster of machines. It uses our
RDFp Store, a storage schema built on top of Hadoop for paths which features
its own serializable format for efficient comparison and retrieval of paths. To the
best of our knowledge, RDFPath MapReduce Processor was the first naviga-
tional RDF query language implemented using MapReduce. Furthermore, in order
to improve the overall performance and scalability our RDFPath MapReduce
Processor, which is based on Reduce-Side joins, we have published in [PSS+13]
two optimized join techniques, called Map-Side Merge joins. Both join techniques
are computed completely in the map phase and support a cascaded execution while
utilizing the reduce phase just for sorting. Bloom filters are used to remove dangling
intermediate results. A comprehensive set of experiments confirms its applicabil-
ity for the evaluation of RDFPath queries and also as a general-purpose join in
MapReduce.

[PSHL11] Martin Przyjaciel-Zablocki, Alexander Schätzle, Thomas Hornung, and
Georg Lausen. RDFPath: Path Query Processing on Large RDF Graphs
with MapReduce. In Proc. of the Workshop on High-Performance Com-
puting for the Semantic Web (HPCSW), Heraklion, Greece, volume 736
of CEUR Workshop Proceedings, 2011.

[PSHL12] Martin Przyjaciel-Zablocki, Alexander Schätzle, Thomas Hornung, and
Georg Lausen. RDFPath: Path Query Processing on Large RDF Graphs
with MapReduce. In The Semantic Web: ESWC 2011 Workshops, Re-
vised Selected Papers, vol. 7117 of LNCS, pages 50–64. Springer Berlin
Heidelberg, 2012.

[PSS+13] Martin Przyjaciel-Zablocki, Alexander Schätzle, Eduard Skaley, Thomas
Hornung, and Georg Lausen. Map-Side Merge Joins for Scalable SPARQL
BGP Processing. In Proc. of the IEEE 5th International Conference on
Cloud Computing Technology and Science (CloudCom), Bristol, UK,
volume 1, pages 631–638, 2013.

We continue the work on expressive, navigational query languages and their dis-
tributed query engines in [PSL15a, PSL15b, PSL17]. First of all, we introduce
TriAL-QL an SQL-like language for querying RDF. However, rather then spec-
ifying a new language from scratch, we decided to base it on an existent alge-
bra called Triple Algebra with Recursion (TriAL*) which was originally proposed
in [LRV13]. TriAL* is one of the most expressive algebras for RDF. This language
subsumes almost all previously introduced RDF query languages, while adding novel
features that are not expressible in most other languages based on the standard
graph model [LRV13]. TriAL* is a closed language, where its basic idea is to work
directly with triples rather than transforming the data into another representation.
However, in practical scenarios we identified several shortcomings which hamper its
usage. First of all, its algebraic notation is, similar to the relational algebra, not eas-
ily writable. Secondly, it is missing important recursive expressions that would allow
one to bound the number of recursions. Thirdly, due to the implicit projection to
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triples, there is an inherent lose of information that diminishes the interpretability of
the results. In order to overcome all these issues, we initially propose the Extended
Triple Algebra with Recursion, or in short E-TriAL* that is equipped with more
recursion capabilities and supports provenance to track the origin of triples. As
a next step, we introduce a writable syntax called TriAL* Query Language
(TriAL-QL), which is an easy to write and understand representation of TriAL*.
Whereas our previous work on RDFPath focuses on rather data-intensive, analytical
tasks on web-scale RDF data, with the implementation of TriAL-QL we target a
wider range of queries. For ETL-like workloads, which are typically processed of-
fline, runtimes in the order of minutes to hour are acceptable. However, in cases
of more selective queries requiring only a small subset of the data, getting results
in interactive time, i.e. in the order of seconds to few minutes is desirable. As our
experiments demonstrate, MapReduce is not well-suited for such scenarios, since
its batch-oriented workflow materializes all intermediate results to disk which im-
plies costly I/O operations. With the decreasing prices of main memory in recent
years, one can observe the emergence of novel in-memory data processing systems
for Hadoop such as Stinger for Hive, Impala, Spark, Presto and Phoenix which start
to pave the way for scalable and interactive querying on large-scale data. Following
this trend, we introduce in [PSL15b, PSL17] our TriAL-QL Engine, implemented
on top of both, Impala, a massive parallel SQL query engine on Hadoop and Spark,
a fast general execution framework for large-scale data processing, while sharing one
unified data store in HDFS. For storing data, we propose two data storing strategies
that make use of Parquet, an efficient columnar storage format. We use Vertical
Partitioning and an adapted version of the Extended Vertical Partitioning strategy
for storing input graphs. We propose multiple evaluation strategies for recursive
expressions in TriAL-QL Engine. To that end, we make use of the well-studied
problem of calculating the transitive closure (TC). We use two approaches as a
starting point, namely the semi-naive and smart TC algorithms, and adapt them
to perform well in our processing frameworks. Furthermore, we also investigate dif-
ferent execution strategies, which specify how translated SQL queries are composed
for their execution and when intermediate results need to be materialized to disk.
These and other aspects will be assessed by means of experiments on generated
social networks with up to 1.8 billion triples. A follow-up work, which was not yet
published at the point of writing this dissertation, investigates also the application
of those strategies for RDFPath. Nevertheless, we have included the description of
our RDFPath Engine and its experimental results into this dissertation.

[PSL15a] Martin Przyjaciel-Zablocki, Alexander Schätzle, and Adrian Lange.
TriAL-QL: Distributed Processing of Navigational Queries.
In Proc. of the 9th Alberto Mendelzon International Workshop on Foun-
dations of Data Management (AMW), Lima, Peru, volume 1378 of
CEUR Workshop Proceedings, 2015.
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[PSL15b] Martin Przyjaciel-Zablocki, Alexander Schätzle, and Georg Lausen.
TriAL-QL: Distributed Processing of Navigational Queries.
In Proc. of the 18th International Workshop on Web and Databases
(WebDB 15), Melbourne, Australia, pages 48–54, 2015.

[PSL17] Martin Przyjaciel-Zablocki, Alexander Schätzle, and Georg Lausen.
Querying Semantic Knowledge Bases with SQL-on-Hadoop.
In Proc. of the 4th ACM SIGMOD Workshop on Algorithms and Sys-
tems for MapReduce and Beyond, BeyondMR@SIGMOD 2017,
Chicago, IL, USA, pages 4:1–4:10, 2017.

In addition to the work discussed in this thesis, the author has also contributed to
a series of other publications related to RDF querying on Hadoop. This work is
part of the Ph.D. thesis of Alexander Schätzle [Sch16] and therefore is not discussed
in this thesis. Nevertheless, we provide a brief summary to complete the picture
and give an intuition of how it is related to the work discussed in this thesis. Most
notably, in [PSH+12, SPD+12, SPHL14] we present the Map-Side Index Nested
Loop (MAPSIN) join for MapReduce. It uses the indexing capabilities of HBase, a
distributed NoSQL data store, to improve query performance of selective queries.
Similar to our Map-Side Merge join [PSS+13], it is processed completely in the map
phase to reduce costly data shuffling. Besides the development of query engines for
our expressive, navigational query languages, we contributed also to a distributed
engine for SPARQL, the W3C standard languages for querying RDF. PigSPARQL
[SPHL11, SPL11, SPHL13] is our first work in that field. It is a processor for
SPARQL 1.0 which translates an input query into an equivalent Pig Latin program,
which is then compiled into a series of MapReduce jobs by Pig.
Again however the batch-oriented workflow of MapReduce prevents interactive query-
ing times. Consequently, we investigate the applicability of novel in-memory data
processing systems also for the evaluation of SPARQL queries. In [SPNL14], we
present Sempala, a distributed SPARQL processor which translates queries into
the SQL dialect of Impala. A so-called Unified Property Table is proposed, which
exploits the columnar storage layout of Parquet, and is highly optimized for star-
shaped queries. A comprehensive evaluation in [SPNL14] demonstrates the per-
formance improvements by an order of magnitude on average compared to other
SPARQL-on-MapReduce approaches. Due to the graph-like nature of RDF, we
next investigate the suitability of a graph-parallel framework for processing SPARQL
queries. S2X (SPARQL on Spark with GraphX) is a SPARQL engine built upon
the GraphX API, a graph-parallel abstraction layer for Spark. In [SPBL15], we
define a mapping from RDF to the property graph model of GraphX and propose
an adopted algorithm from [FNR+13] to express the task of graph pattern matching
in SPARQL 1.0 within the vertex-centric programming model of GraphX. Our ex-
periments show acceptable results in comparison to MapReduce-based approaches,
although the scaling with larger data sizes are much worse. Furthermore, we con-
clude that graph-parallel frameworks are not suitable for querying RDF as they
are rather intended to perform iterative graph algorithms like PageRank. These
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results pushed us towards the decision of not to investigate the implementation of
RDFPath and TriAL-QL on top of a graph-parallel framework but rather to
data-parallel frameworks such as Impala and Spark which have good performance
for our use cases

This is confirmed with our work in [SPSL15, SPSL16], where we describe S2RDF
(SPARQL on Spark for RDF), a SPARQL query engine on top of SPARK. We
propose a novel relational partitioning schema for RDF called ExtVP (Extended
Vertical Partitioning) that is an extension of the well-known Vertical Partitioning
(VP) schema introduced in [AMMH07]. In order to reduce the data overhead in
VP, we choose as an optimization strategy the so-called selectivity threshold, which
ensures that only beneficial partitions are stored. An extensive evaluation with
other state-of-the-art SPARQL processors for Hadoop demonstrates the superior
performance of S2RDF on very diverse query workloads. Due to these promising,
we investigate the application of ExtVP also for our RDFPath Engine.

[SPHL11] Alexander Schätzle, Martin Przyjaciel-Zablocki, Thomas Hornung, and
Georg Lausen. PigSPARQL: Übersetzung von SPARQL nach Pig Latin.
In Datenbanksysteme für Business, Technologie und Web (BTW),
vol. P-180 of LNI, pages 65–84, Kaiserslautern, Germany, 2011.

[SPL11] Alexander Schätzle, Martin Przyjaciel-Zablocki, and Georg Lausen.
PigSPARQL: Mapping SPARQL to Pig Latin. In Proc. of the 3rd Inter-
national Workshop on Semantic Web Information Management (SWIM),
Athens, Greece, SWIM’11, pages 4:1–4:8, 2011.

[SPHL13] Alexander Schätzle, Martin Przyjaciel-Zablocki, Thomas Hornung, and
Georg Lausen. PigSPARQL: A SPARQL Query Processing Baseline for
Big Data. In Proc. of the ISWC 2013 Posters & Demos Track, volume
1035 of CEUR Workshop Proceedings, pages 241–244, 2013.

[PSH+12] Martin Przyjaciel-Zablocki, Alexander Schätzle, Thomas Hornung,
Christopher Dorner, and Georg Lausen. Cascading Map-Side Joins over
HBase for Scalable Join Processing - Technical Report.
Computing Research Repository (CoRR), arXiv:1206.6293, 2012.

[SPD+12] Alexander Schätzle, Martin Przyjaciel-Zablocki, Christopher Dorner,
Thomas Hornung, and Georg Lausen. Cascading Map-Side Joins over
HBase for Scalable Join Processing. In Proc. of the Joint Workshop
on Scalable and High-Performance Semantic Web Systems (SSWS +
HPCSW), Boston, USA, vol. 943 of CEUR Workshop Proceedings, pages
59–74, 2012.

[SPHL14] Alexander Schätzle, Martin Przyjaciel-Zablocki, Thomas Hornung, and
Georg Lausen. Large-Scale RDF Processing with MapReduce.
In Large Scale and Big Data - Processing and Management, pages 151–
182. Auerbach Publications, 2014.
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[SPNL14] Alexander Schätzle, Martin Przyjaciel-Zablocki, Antony Neu, and Georg
Lausen. Sempala: Interactive SPARQL Query Processing on Hadoop.
In The Semantic Web: ISWC 2014 - 13th International Semantic Web
Conference, vol. 8796 of LNCS, pages 164–179, Riva del Garda, Italy,
2014.

[SPBL15] Alexander Schätzle, Martin Przyjaciel-Zablocki, Thorsten Berberich, and
Georg Lausen. S2X: Graph-Parallel Querying of RDF with GraphX.
In Biomedical Data Management and Graph Online Querying, VLDB
2015 Workshops Big-O(Q) and DMAH, Revised Selected Papers, vol. 9579
of LNCS, pages 155–168. Springer International Publishing, 2015.

[SPSL15] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg
Lausen. S2RDF: RDF Querying with SPARQL on Spark - Tech. Report.
Computing Research Repository (CoRR), arXiv:1512.07021, 2015.

[SPSL16] Alexander Schätzle, Martin Przyjaciel-Zablocki, Simon Skilevic, and Georg
Lausen. S2RDF: RDF Querying with SPARQL on Spark.
In Proc. of the VLDB Endowment (PVLDB), 9(10): 804–815, 2016.

The big picture of implemented RDF management systems is shown in Figure 1.1,
where we illustrate the intended usage and respective technology upon which each
system is based.
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Figure 1.1.: Overview of RDF management systems and contributions. RDFPath
MapReduce Processor, Merge Join, RDFPath Engine, TriAL-QL En-
gine are part of this dissertation whereas PigSPARQL, Mapsin, Sempala,
S2x, and S2rdf are presented in the dissertation of Alexander Schätzle [Sch16].
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Furthermore, in addition to topics related to RDF querying on Hadoop, the authors
have also published and contributed to a series of publications related to Music
Recommender Systems, which are not relevant for this dissertation and are therefore
not discussed in this thesis. The work done in this area has only a few intersections
with this dissertation, which we want to shortly explain. First, in [PHS+14] we
develop a Music Recommender Management System called MuSe, whose back-end
is built on top of the Hadoop ecosystem, and allows one to distribute the workload
of computing recommendations on a cluster of machines. Similar to our work on
querying RDF data, we use Spark to generate user-specific recommendations in real-
time and store a copy of the data which had to reside in main-memory as Parquet files
in HDFS. Furthermore, within the works in [FHZ+13, ZHP+14, HZF+13] we target
mostly the so-called cold-start problem of recommender systems. This problem
describes a scenario where a new user or a new item is entered into the system and
there is not enough knowledge about them to produce accurate recommendations.
Aiming at mitigating this problem, we attempt to enrich data about songs and
their artists by means of semantic knowledge bases. Corresponding interfaces are
incorporated in MuSe, but have not been used yet for music recommendations.
[PHS+14] Martin Przyjaciel-Zablocki, Thomas Hornung, Alexander Schätzle, Sven

Gauß, Io Taxidou, and Georg Lausen. MUSE: A Music Recommenda-
tion Management System. In Proc. of the 15th International Society for
Music Information Retrieval Conference (ISMIR 2014), Taipei, Taiwan,
2014.

[ZHP+14] Cai-Nicolas Ziegler, Thomas Hornung, Martin Przyjaciel-Zablocki, Sven
Gauß, Georg Lausen. Music Recommenders Based on Hybrid Techniques
and Serendipity. In Journal on Web Intelligence and Agent Systems
(WIAS), 12(3): 235–248, 2014

[FHZ+13] Simon Franz, Thomas Hornung, Cai-Nicolas Ziegler, Martin Przyjaciel-
Zablocki, Alexander Schätzle, Georg Lausen. On Weighted Hybrid Track
Recommendations In Proc. of the 13th International Conference on Web
Engineering (ICWE 2013), Aalborg, Denmark, 2013.

[HZF+13] Thomas Hornung, Cai-Nicolas Ziegler, Simon Franz, Martin Przyjaciel-
Zablocki, Alexander Schätzle, Georg Lausen. Evaluating Hybrid Music
Recommender Systems In Proc. of the 12th IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence (WI 2013), Atlanta, USA, 2013.

Open-Source Code. All the implementations discussed in this dissertation have
been open-sourced and are available for download. In addition to the project website
hosted by the University of Freiburg, we have published our code on GitHub to
facilitate the contribution of other researchers and the continuation of work in this
field.

http://github.com/martinpz
http://dbis.informatik.uni-freiburg.de/forschung/projekte/DiPoS

15

http://github.com/martinpz
http://dbis.informatik.uni-freiburg.de/forschung/projekte/DiPoS


Chapter 1 Introduction

1.2. Thesis Outline

The remainder of this dissertation consists of three parts. Part II. provides some
foundation on benchmarking RDF data management systems.

• Chapter 2 discusses desirable features of benchmarks and representative
datasets required to develop modern RDF management systems. Further-
more, it presents LastBench, a benchmark proposal on real-world social
data gathered from Last.fm.

Part III. of this dissertation focuses on the theoretical foundations and properties
of RDFPath and TriAL-QL. This part is divided into three chapters:

• Chapter 3 introduces navigational primitives used in graph query languages
and provides a comprehensive comparison of RDF query languages.

• Chapter 4 starts with a definition of RDFp, a flexible yet simple extension of
RDF to represent paths in RDF graphs. After that, the syntax and semantics
of RDFPath are introduced, which is a navigational query language for RDF
that provides complete paths in the result.

• Chapter 5 introduces our second language called TriAL-QL which is based
on Triple Algebra with Recursion (TriAL*). We present our extension E-
TriAL* which supports provenance to track the origin of triples and is equipped
with more recursion capabilities.

Part IV. focuses on algorithmic and technical aspects of our implemented query
engines for RDFPath and TriAL-QL. This part is divided into three chapters:

• Chapter 6 presents our RDFPath MapReduce Processor, with the goal
to evaluate RDFPath queries on web-scale RDF data. Section 6.5 introduces
Map Side Merge joins as an optimization strategy.

• The first half of Chapter 7 presents our TriAL-QL engine (7.2) imple-
mented on top of two in-memory data processing frameworks, Impala and
Spark. We discuss the data storage layout, multiple evaluation strategies and
propose optimizations for most important patterns. Their impact on the per-
formance is investigated with experiments.

• The second half of Chapter 7 introduces our RDFPath engine (7.4). We
describe an improved data storage layout, adapt evaluation algorithms from
TriAL-QL, and present various execution strategies. Again, their impact on
the performance is investigated by some individual experiments.

• Chapter 8 presents a comprehensive evaluation in which our engines are
compared with other competitive RDF management systems in terms of per-
formance and scalability.

Finally, the last Part V. summarizes in Chapter 9 this dissertation and outlines
directions for future research.
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Benchmarks for the Semantic Web
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In recent years, we observe a steady growth of semantically-annotated data pub-
lished in new domains. However, it is not only the size of data which poses new
challenges, but rather the data’s structure. Many new application fields arise where
the data forms a highly-diverse knowledge graph with a rich taxonomy1. This leads
to a high degree of diversity in the structure of real RDF data which in turn de-
mands a rethinking of requirements for modern RDF management systems and
their respective query languages [AHOD14]. One crucial point in developing such
systems and their query languages are therefore proper benchmarks with represen-
tative datasets upon which to base our tests and experiments which capture this
recent trend. While several proposals exist for how to model RDF benchmarks in a
rather structured way, they are mostly derived from how we benchmark relational
databases geared towards testing basic querying features like offered by SPARQL
1.0 [GPH05, SHLP08, SHM+09, SHLP09, BS09]. There has been limited work done
on benchmarks with more realistic RDF data that capture the Semantic Web as it
evolved in recent years [MLAN11, DKSU11].

Furthermore, we can see that it is not merely RDF that pushed the applicability of
Semantic Web. The emergence of comprehensive ontologies and taxonomies models
knowledge more and more accurately and enable to interconnect different sources
of information, which provide the real benefits of semantically-annotated data. Uti-
lizing such enriched structures is becoming indispensable in modern RDF data-
management systems. However, this requires more sophisticated querying features
than offered by current RDF query languages like SPARQL 1.1 and are therefore
mostly neglected in RDF benchmarks [PSHT13, EAL+15].

1https://datahub.io/organization
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With this in mind, this chapter will start with an overview of the most commonly-
used RDF benchmarks and investigate their applicability for the languages and
implementations discussed in this dissertation. In that sense, desirable features of
a benchmark are introduced, which we consider to be relevant for this work. As we
will see, none of the existent benchmark candidates would have met our criteria,
and thus we decided to combine them into LastBench, a benchmark proposal on
real-world social data from Last.fm. This will form the main contribution of this
chapter, in which these three aspects hitherto discussed will be presented.
We start with the challenges that come along with real-world data and propose new
strategies for obtaining realistic datasets by the use of sampling strategies known
from analyzing online social networks. The algorithms’ implementation is discussed
in view of an efficient sampling of large-scale datasets from the web. For that, a
distributed architecture was developed, which enables us to parallelize the sampling
process. To that end, an algorithm for scaling real-world datasets is presented, which
utilizes properties of our sampling strategies in order to produce more accurate
subsets of the data. A short discussion on the latest state of LastBench concludes
this chapter, where we will argue why the work on this benchmark has not been
continued.
The main parts of this chapter were published in [PSHT13], where we proposed
our initial draft of LastBench. The algorithms and specifications seen on the
following pages are in a much more concrete form than shown in [PSHT13] but
are conceptually the same. Here, however, the distributed implementation which is
available for download2, is presented for the first time.
We can summarize the contributions of this chapter as follows:

• First, we summarize in Section 2.1 seven features of a benchmark, which we
consider to be relevant for the languages and implementations shown in this
dissertation. We will then provide an overview of related benchmarks for RDF,
where we explain why none of these solutions fit our needs.

• LastBench, our proposal for a real-world social benchmark for RDF man-
agement systems is presented in Section 2.2, where we start with a discussion
on Last.fm and the data in which we are interested. Section 2.2.1 introduces
our algorithms for sampling online social networks.

• A distributed architecture which implements our suggested strategies for sam-
pling online social networks is described in Section 2.3.

• Section 2.3.1 explains how we leverage some properties inherent to our sam-
pling strategies in order to down-scale LastBench data such that smaller
datasets preserve their social network properties.

• A preliminary analysis of a sampled social graph from Last.fm investigates its
social network properties and complements the proposal of LastBench in its
latest state.

2http://github.com/martinpz
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2.1. Benchmarks and their Characteristics

Social networks like Facebook, Twitter, Last.fm etc. dramatically change the way
how people interact, collaborate and share information, turning the web into an
highly interactive and personalized interlinked “Web of Data”. According to this
perspective, one can also interpret a social network graph as structured semantic
data interlinking people and objects that can also be represented in RDF. This is also
underpinned by the already-underway effort of adding RDF to Facebook’s Graph
API [WT13]. On the other hand, there is a lack of real-world RDF benchmark data
in general, and social network data in particular [DKSU11, VMS12]. Most of the ex-
isting RDF benchmarks like BSBM [BS09], LUBM [GPH05] or SP2Bench [SHLP08,
SHM+09, SHLP09] use artificial data generated according to observed frequency
distributions of a specific domain. While this approach enables the easy scaling of
the size, generated datasets have little in common with real RDF data. They often
resemble relational database benchmarks [MLAN11] with a high level of structured-
ness [DKSU11] and lack structural properites, e.g. correlations between users, which
are a crucial aspect of social networks but are hard to discover [PBE12].
We recall that the main goal of this dissertation is to, (1) specify expressive, nav-
igational query languages for RDF that are able to derive likely up-to-now hidden
pieces of information within the data and (2) investigate strategies how to distribute
the query processing in order to handle web-scale RDF data. With that and the
evolution of semantically annotated data in mind, we will continue with an overview
of desirable features for a benchmark which would help us in developing and testing
our approaches.

• Social Graphs: Social networks have fundamentally changed our perception
of the web and the way we interact with it. At the same time we have wit-
nessed the vision of the Semantic Web picking up the pace. From a general
perspective, the inherently complex, intertwined structure of a social network
contains a flood of semantic information about users, objects and their re-
lations. On the other hand, social graph structures are hardly covered by
current state-of-the-art RDF benchmarks. Synthetic RDF generators in this
area do not model all properties of a social network, especially structural cor-
relations, e.g. friendship relationships which are correlated with the place of
residence, and they are either neglected or underrepresented. The S3G2 data
generator [PBE12] for structure-correlated social graphs that is used for the
Social Network Intelligence Benchmark (SIB) [PBE12] focuses on exactly this
aspect. It generates arbitrarily large social graphs with a predefined set of
structural correlations. However, the authors emphasize that their generator
cannot produce “realistic” social network data as these networks are expected
to have many more (yet unknown) correlations.

• Realness of Data: The obvious solution to represent all relevant correlation
might be simply the usage of real data rather than generated. The DBpe-
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dia SPARQL benchmark (DBPSB) [MLAN11] which is based on data dumps
from Wikipedia is one of the few benchmarks that uses real data. However,
compared to the size and dynamics of social graphs, it is considered to be
rather small and also limited in growth. In addition, although it is truly
collaboratively-created content, it lacks social interaction between users and
their correlations as mentioned earlier. Another problem related to DBPSB
resides in its inherent scalability issues, which we will outline next in more
detail.

• Scalability: Scaling a real-world dataset, i.e. selecting an appropriate method
for creating smaller (scale-down) and larger (scale-up) datasets out of the
original one is a difficult problem. The authors in [MLAN11] propose two
strategies to scale-down DBpedia. The first one is based on selecting the
desired fraction of the dataset randomly. The second strategy is based on
sampling that takes the actual class distribution into account, where the re-
sulting fraction is closer to the full DBpedia graph with respect to the in-
and out-degree and distinct nodes. For a scale-up of DBpedia, that is, cre-
ating datasets of multiple size of the original graph, the full dataset is dupli-
cated and the namespaces are changed. However, both adding and removing
triples to the end results in information loss as either some likely-important
edges are removed or some non-representative ones are added. This is par-
ticularly problematic for benchmarking distributed systems, as it hampers
comprehensive conclusions about the scalability of such systems with respect
to the data size. Most benchmarks are therefore based on synthetic-data
generators, that aim to mimic distributions and correlations observed in real
data [GPH05, SHLP08, SHM+09, SHLP09, BS09]. Such generators have the
strength to produce datasets of arbitrary size while keeping their distributions
and correlations. This simplifies a fair comparison of various systems and en-
ables more comprehensive conclusions about the scalability of systems with
respect to the data size.

• Structuredness: The authors in [DKSU11] studied the characteristics of
datasets used in RDF benchmarks, where they revealed that synthetic datasets
have very little in common with real RDF data [DKSU11]. They reason that
this is based on the so-called level of structuredness, whereby highly struc-
tured, relational-like data like LUBM is considered to have a high level of
structuredness. Here it is the case, that for each type of an instance almost
the same properties are given. A low level of structuredness is common in
rather unstructured data sources like Wikipedia/DBpedia which can be bet-
ter represented as RDF data rather than in a relational database. Here we can
observe that, even for instances of the same type, the actual properties which
are present are often non-overlapping. Due to such crucial differences in the
underlying structure, the level of structuredness plays a central role for data
representation and optimizations, and affects also how we need to query the
data, since me might need more sophisticated querying features in datasets
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Figure 2.1.: Linking Open Data cloud diagram 20141

with a low structuredness. This allow us to capture more fuzzy-querying fea-
tures in order to retrieve desired information. Unfortunately, the data sets
used in RDF benchmarks including LUBM [GPH05], SP2Bench [SHM+09], and
BSBM [BS09] show a high level of structuredness in comparison to, e.g. DB-
pedia.

• Diversity: According to [DKSU11], a high diversity is attributed to datasets
which have instances with various levels of structuredness ranging from low to
high. The more common but less analytical interpretation is based on the key
idea of the Semantic Web, where the usage of distinct IRIs enables interlinking
across various domains and application fields. Hereby, a high diversity is ob-
tained if a graph exhibits a heterogeneous structure, where probably multiple
graphs from different domains are brought together by the use of Semantic
Web principles. The largest example for highly-diverse data is the so-called
LOD cloud3 illustrated in Figure 2.1 which follows the Linked Data prin-
ciples [BHB09], a collection of best practices for publishing and connecting
semantic data on the web.

• Supported Querying Features: With the emergence of diverse RDF datasets
which interconnect various domains by means of ontologies and taxonomies,
complex and comprehensive knowledge graphs are created. Such knowledge
graphs are revealed to be the real benefits of Semantic Web technologies,
as they may contain even until-now hidden pieces of information emerged
from a semantic interconnection of multiple data sources. However, retriev-
ing such knowledge requires more sophisticated querying features than of-
fered by e.g. SPARQL 1.1 and is therefore mostly neglected in RDF bench-
marks [PSHT13, EAL+15]. As a result, the ability to test such complex query-

3Max Schmachtenberg, Christian Bizer, Anja Jentzsch and Richard Cyganiak.
http://lod-cloud.net/
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ing capabilities is becoming more and more indispensable for the development
of modern RDF data management systems. It is therefore crucial to (1) pro-
vide representative datasets that also contain more complex structural proper-
ties and ontologies, which allow (2) the performing of experiments with more
sophisticated querying features that use for instance topological information
described by ontologies.

• Representative Queries: The authors in [MLAN11] suggested the use of
query logs in order to derive relevant templates for queries. However, it is
an open question what representative queries actually are and how to define
them. Experiments on more meaningful queries which exploit the real ben-
efits of Semantic Web technologies go far beyond the capabilities of queries
which are derived automatically from collected query logs, as they exhibit
mostly rather simple querying expressions [MLAN11]. For this, experts with
knowledge about the data are needed to express queries in order to test cer-
tain aspects. On the other hand, it is always questionable how representative
and common such artificial queries might be in practice, since they are always
geared towards a predefined use case.

To the best of our knowledge, there was – at the point of starting on this work –
not one ready-to-use RDF benchmark available, which combined all those features
in one concept. We will continue with a short overview on RDF benchmarks where
we describe their relevance for this dissertation and characterize them in accordance
with our desired features.

LUBM. While being originally developed to benchmark reasoning capabilities on
RDF data, Lehigh University Benchmark (LUBM) [GPH05] evolved to become one
of the most-used test suites for the performance of join evaluation strategies in
distributed environments and single machine approaches. Its wide use originates
from a scalable data generator and a set of predefined queries that break down into
the computation of joins, without demanding more expressive operators. Conse-
quently, it comes along with a rather structured and more relational dataset that
does not capture any sophisticated navigational querying features but is well-suited
for comparing the performance of join evaluation strategies. Due to its wide accep-
tance, which facilitates a better comparability to related work, we will use LUBM
in order to investigate the performance of our map-side merge joins introduced in
Section 6.5.3.

WatDiV. The Waterloo SPARQL Diversity Test Suite (WatDiv) [AHOD14] was
developed particularly in light of highly diverse, heterogeneous RDF datasets dis-
cussed earlier. It proposes a data and query generator with queries that have a
higher diversity resulting in much more varied workloads. For this, varying query
shapes are used which test RDF management systems covering a much wider range
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of problems. However, the initial WatDiv does not contain long-chained, naviga-
tional queries. We have therefore contributed in designing an additional WatDiv
use case called Incremental Linear Testing [SPSL16], which is part of the Ph.D dis-
sertation of Alexander Schätzle [Sch16] and is therefore not discussed here. The
queries were meanwhile added as an extension to the official set of tests4. Due to
their long-chained shapes they are well-suited as the basis for our experiments in
Section 8, where we compare the performance of our implementations with competi-
tors. Nonetheless, WatDiV does not model social interactions between users; it is
built around an e-commerce scenario and lacks the support for certain correlations
common in social networks for which we need another benchmark.

LastBench. With our Social Last.fm Benchmark (LastBench) [PSHT13], we
propose a real-world social network benchmark based on data gathered from Last.fm.
The main idea is to model realistic data that captures the diversity of Semantic Web
by providing resolvable links to various datasets while allowing to scale the dataset.
The data itself enables the expression of comprehensive navigational querying pat-
terns which still remain easy to understand, due to the well-known nature of the
music-listening scenario. Moreover, by considering the complex structure of real in-
teraction in social networks, we grasp various probably-unknown correlations which
pose interesting challenges for RDF management systems and their query languages
which were at the time of developing this proposal neglected by most of the existing
benchmarks. The proposal of LastBench will be discussed in Section 2.2, where we
mainly focus on how to obtain and scale the dataset. However, LastBench won’t be
used in this dissertation but its principles are nonetheless worth discussing as they
were taken up by more recent approaches [EAL+15, AHOD14].

LDBC Social Network Benchmark (SNB). The LDBC Social Network Bench-
mark (SNB) [EAL+15, PBA+16] is designed to test various graph data management
systems ranging from graph databases to RDF stores. Its main idea is to mimic
operations of real social networks by providing both, (1) a suitable dataset gen-
erator that creates social network data with most common entities (e.g. person,
posts, tags, cities,...) and (2) three different workloads that pose a wide range of
interesting querying challenges. SNB is the follow-up work of Social Intelligence
Benchmark (SIB) [PBE12] which came out of an EU project5 and gained a lot of
attention from both industry and academia. Due to its suitability for most exam-
ples and experiments required in the context of this dissertation, the adoption of
industrial use-cases and the fast development under the head of the Linked Data
benchmark (LDBC) Council6 we decided to base some of our experiments on SNB.

4http://dsg.uwaterloo.ca/watdiv/#tests
5http://cordis.europa.eu/project/rcn/105871_en.html
6http://www.ldbcouncil.org/
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Others. The SPARQL Performance Benchmark (SP2Bench) [SHLP08, SHM+09,
SHLP09] is built upon a data generator that creates data publications based on
observed characteristics from DBLP. Its main idea relies on rather challenging, com-
plex SPARQL queries; this is why it was also referred to as the gold-standard for
benchmarking RDF management systems. However, the proposed queries are using
only SPARQL 1.0 features and there is no way to express meaningful long-chained
queries. The principles of the DBPedia SPARQL Benchmarks [MLAN11] were al-
ready mentioned multiple times. It features a real-world dataset based onWikipedia,
enhanced with ontologies and links to other data sources. However, scaling the
dataset proved to be problematic, which limits the meaningfulness of experiments
on distributed systems. The representativeness of automatically-generated queries
is at least questionable since it contains mostly basic querying features. The Berlin
SPARQL Benchmark (BSBM) [BS09] in its second versions features only SPARQL
1.0 features. More complex queries that support grouping, aggregations and sub-
queries were introduced with the third version, whereby its e-commerce scenario is
also impeding the construction of long-chained queries which are crucial for experi-
ments of navigational querying features.

Table 2.1 shows an overview of the most-used RDF benchmarks with regard to our
desired features. Please note, that this table is not intended to provide a comprehen-
sive comparison of all relevant RDF benchmarks with their distinguishing feature.
It is just meant to illustrate a briefly classification of the most-used benchmarks.

Table 2.1.: Overview of benchmarks using our features: † supports only basic graph
pattern, ‡ supports grouping, aggregates and sub-queries
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LUBM 2005 × high low × X X SP 1.0 † 43 32 Universities
SP2Bench 2008 × high low × X X SP 1.0 8 22 Publications
BSBM v2 2009 × high low × X X SP 1.0 8 51 E-Commerce
BSBM v3 2011 × high low × X X SP 1.1 ‡ 8 51 E-Commerce
DBPSB 2011 X low high × × × SP 1.0 $ 239 1200 Wikipedia
SIB 2012 × mid mid X X X SP 1.1 14 53 Social Network
WatDiv 2014 × mid mid × X X SP 1.1 – – E-Commerce
SNB 2015 × mid mid X X X SP 1.1 13 35 Social Network
SPB 2015 × mid mid × X X SP 1.1 – – Publishing
FEASIBLE 2015 X low high × × × SP 1.1 – – Customizable

LastBench 2013 X mid mid X X – – – – Social Network
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All in all, we can conclude that choosing a proper benchmarks is crucial for the
development of a modern RDF management system. There is a wide variety of
possible features, which might be relevant, dependent upon the intended use cases.
In each case, compromises become inevitable since a one-size-fits-all solution does
not exist which captures all kinds of desirable features, so it is in general advisable to
use more than one benchmark. With LastBench, we propose an RDF benchmark
that intends to fulfill most of the aforementioned features which we believe to be
important for the query languages and systems presented within this dissertation.

2.2. Designing a Benchmark from Social Network
Data

Social networks contain manifold semantic information about users, objects and
their interactions. In order to capture such data and its inherent correlations as
closely as possible, we need to overcome the conceptual shortcomings of synthetic
data generators. For this, we proposed a benchmark that does not only mimic
observed structural correlations but consists completely of real-world data gathered
from social networks. However, a benchmark that uses data from social networks
imposes multiple challenges that need to be considered. First of all, there are legal
issues with data that can be used to reveal the true identity of a user. For this,
an anonymization strategy need to be applied which ensures that no inferences
from data about real persons can be drawn. Furthermore, large social platforms
like Facebook make a profit from the knowledge contained in their data and often
prohibit the usage of it at larger scales. Fortunately, with Last.fm we found a
social network where its data (1) fulfills most previously mentioned features that
we consider to be important for our work and (2) does not impose extensive legal
restrictions on its usage.

Last.fm is a social music network with a community formed around the idea of
sharing individual music listening behavior. It has a continuously-growing user-base
with diverse information about millions of artists, events, tracks and users including
billions of relations between all of them. Standardized identifiers in music collections
and links to other commonly-used data sources like Wikipedia facilitate the inter-
linking with other domains which in turn provides more flexibility in composing a
benchmark dataset. The collected data exhibits – which is of particular importance
– characteristics of a social network which we will investigate in Section 2.3.2. From
a legal aspect, the Last.fm Terms of Service (TOS)7 allow the non-commercial usage
of their data which is provided via a rich public API8. By making use of ontologies
from the music domain and a mapping to an intuitive taxonomy, we can further
enhance the knowledge-representation of our benchmark dataset. This in turn en-

7http://www.last.fm/api/tos, 2014
8http://www.last.fm/api
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ables the support for more sophisticated querying features that for instance require
reasoning capabilities to retrieve certain information. An inherent complex graph
structure combined with many unknown correlations inside the data poses new chal-
lenges regarding query evaluation and enables more realistic, less predictable and
therefore more meaningful experiments. These new features were neglected or not
considered at all by most RDF benchmarks.
We will continue with a short overview of the Last.fm data that we use as a basis for
LastBench. Afterwards we will introduce our data sampling strategies which aim
for mainly two aspects: (1) being representative with regard to the whole dataset
and (2) providing good coverage with many relations and entities of Last.fm. We
will present our developed LastBench Crawler. This is followed by explaining
our scaling strategy, which keeps the characteristics of the dataset by utilizing some
properties of our sampling strategies. Lastly, we show a preliminary analysis of the
underlying social graph of Last.fm followed by a discussion on the latest state of
LastBench.

Last.fm Data for LastBench. Last.fm is an online music service with myriad
relations between users, artists, tracks, etc. that constitute a highly-connected graph
with a large variety of correlations. Figure 2.2 shows an outline of relevant entities
and their relations, which we will consider for the benchmark dataset. As an example
of properties, we added two classes, namely user and track in Figure 2.2.
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Figure 2.2.: Overview of relevant Last.fm classes and relations for LastBench
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From this rather relational view on the data, we have to move towards a meaningful
RDF dataset. For this, we have to introduce a mapping which reuses, where possi-
ble, existing taxonomies and ontologies such as the FOAF-Ontology9. Nonetheless,
in order to enable testing of more comprehensive querying features that also cap-
ture reasoning and arbitrary recursions, it is also necessary to introduce also a few
extensions. The work done so far focuses on data sampling strategies, which we will
introduce in the next section. An exemplary RDF graph, which illustrates how a
user and track could be represented is shown in the following snippet:

1 @prefix r d f : <ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#> .
2 @prefix r d f s : <ht tp : //www.w3 . org /2000/01/ rdf−schema#> .
3 @prefix xsd : <ht tp : //www.w3 . org /2001/XMLSchema#> .
4 @prefix f o a f : <ht tp : //xmlns . com/ f o a f /0.1/> .
5 @prefix l b : <ht tp : // db i s . in fo rmat i k . uni−f r e i b u r g . de/ l a s t b ench/> .
6

7 lb:Bob a foa f :Pe r son , l b :Us e r ;
8 f o a f : a g e " 30 " ;
9 l b : l ovedTrack lb : t r a ck1 , l b : t r a ck2 , l b : t r a ck3 , l b : t r a c k 4 .

10

11 l b : t r a c k 1 a lb :Track ;
12 l b : a r t i s t l b : a r t i s t 1 ;
13 lb : topFan lb:Bob , l b :A l i c e , lb :Ted .

2.2.1. Sampling Strategies for Last.fm (and other OSNs)

Next, we will discuss how to obtain a representative dataset from Last.fm with all
of the entities, relations and properties presented earlier. As there is no complete
data dump available for download, we rely on the official Last.fm API for data
collection. With a developer key, we had access to all of the desired information.
However, collecting data from the web is a non-trivial task especially where original
characteristics and correlations need to be preserved [LF06]. In the context of online
social networks (OSNs), the so-called graph sampling techniques are used to obtain a
representative subset from a larger graph. They are well-studied in recent years and
are used, for instance, in the analysis of Facebook, where representative subsets were
crucial to derive trustworthy results [LF06, YLW10, GKBM10, CMF+11, GKBM11].
These approaches can also be adopted for sampling our benchmark dataset from
Last.fm [GBKM11].
There are mainly two types of strategies for graph sampling. The first considers
nodes that are iteratively randomly chosen. With a certain size, the sampled graph
will converge in such a way that it exhibits representative characteristics of the orig-
inal graph. However, in order to achieve a uniform selection of nodes, knowledge
about the range of values, e.g. IDs, is required. Furthermore, it cannot be guaran-
teed that the resulting graph is connected, which hampers meaningful experiments

9http://www.foaf-project.org/
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where data size needs to be varied and one large connected graph component is a
desirable feature [LF06]. For the second strategy, nodes are chosen by traversing
the graph structure. A commonly used approach is the well-known Breadth-First-
Search (BFS). But sampling OSNs with BFS introduces biases in terms of degree
distribution and clustering coefficient [KMT10, YLW10] as it tends to visit nodes
of high degree to the detriment of nodes with lower degree [GKBM10]. As we
want our sampled graph to provide an as accurate as possible picture of the whole
graph, including its correlations and representative characteristics, more sophisti-
cated strategies need to be considered. The Re-Weighted Random Walk (RWRW)
and Metropolis-Hasting Random Walk (MHRW) are two strategies based on a ran-
dom traversal of the graph structure that are shown to produce accurate samples
of large OSNs in recent studies [GKBM10, GBKM11, CMF+11, GKBM11]. For the
remainder of this chapter, we will use the term “walk” to refer to “traversing the
graph structure” by one of both strategies.
The authors in [GBKM11] proposed to use Re-Weighted Random Walk (RWRW) for
crawling Last.fm. Using this strategy one is able to correct the bias towards high
degree nodes, but this correction is done afterwards [GKBM10] in a post-processing
step. Thus, we choose to use Metropolis-Hasting Random Walk (MHRW) proposed
in [GKBM10, CMF+11, GKBM11], which corrects the bias directly during the walk
by adapting transition probabilities at the cost of losing some efficiency compared
to RWRW. This has mainly two advantages for us. First, it is easier to distribute
the workload over a cluster of machines since the data will already be non-biased
once it is crawled and there is no need for a centralized processing step afterwards.
Secondly, as data grows incrementally, we can stop and resume the whole crawling
step and have at each time a ready-to-use dataset that is not biased.
The basic strategy of MHRW (cf. Algorithm 2.2.1) is a random walk that starts at
an initial node v, where the next node w is selected randomly out of all neighbors
of v. Let assume p to be a randomly generated number such that 0 ≤ p ≤ 1 and the
degree of a node i is denoted by di. The randomly chosen neighbor w is visited next,
iff it holds that p ≤ dv

dw
. Otherwise this step is repeated again by selecting a new

random node out of all neighbors of v. According to this, nodes with a higher degree
have a lower probability to be selected than nodes with a lower degree, which in turn
corrects the bias. The end of a walk needs to determined by a convergence criteria
as introduced in [GBKM11], which basically recognize if a random walk is already
representative enough for the sampled social network. Generally, such criteria are
based on some measurable characteristics which are applied on the data collected so
far on a walk. If the measured characteristics do not changes any more with further
steps or are less then a specified threshold, a walk is considered to be convergent
and can be ended. A detailed description can be found in [GBKM11].
Another important aspect that we need to consider is the so-called burn-in. It
denotes a set of nodes from the beginning of each walk, which need to be discarded
in order to avoid the dependency from the initially-chosen seed node. The actual
number of nodes that need to be discarded can be either determined afterwards by
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using the same approach as done for determining the convergence or just estimated
with a few experiments.

Algorithm 2.2.1 : Extended MHRW
input : v, initial seed node,

Emhrw, set of relevant edges for MHRW,
E2hw, set of relevant edges for 2-HW

output : all visited or seen nodes their relations and properties
1 while convergend criteria not satisfied do
2 w ← getRandomNeighbor(v, Emhrw) ; // following edges ∈ Emhrw
3 p← random(0, 1) ; // random rational number, where 0 ≤ p ≤ 1
4 if p ≤ dv

dw
then

5 v ← w;
6 i← randomInt(0, 2) ; // random integer, where 0 ≤ i ≤ 2
7 if i > 0 then
8 2hw(v, E2hw, i);
9 end

10 end
11 end

One of the main reasons for using Last.fm is that it not only describes a social graph
with users, but it contains also manifold other entities with further relations. We
refer to such a graph also as a so-called multi-graph. The basic MHRWs or RWRWs
cannot sufficiently capture such multi-graphs and are therefore not able to consider
this information satisfactorily. For this, we need to introduce some algorithmic
modifications and extensions. The authors in [GBKM11] suggested a two-stage
approach where in the first step individual RWRWs are applied on each relation
that interconnects users, namely friends, groups, events and neighbors. Afterwards,
all sampled datasets are grouped together. Their experiments have shown promising
results. However, as we are not only interested in interconnections between users
but also for further relations and entities as shown in Figure 2.2, we need a more
sophisticated approach. For this, we modified the MHRW to work on sets of relations
and introduced an extension for MHRW called 2-Hop-Walk (2-HW). The main idea
behind our MHRW extension is the ability to traverse graphs using a set of relevant
relations as basis. So we gain the flexibility to run each MHRW on a different set of
relations if desired. With this we are able to capture all kinds of multi-graphs. The
basic goal behind 2-HW is, for each node visited by MHRW, to increase the number
of links to other entities, so that we obtain a more diverse connected graph. For
example, if we traverse mainly the social network of users with the MHRW, we can
collect more information about the neighborhood of each user, e.g. favorite tracks
or visited concerts. Here we might obtain intersections with other users who liked
the same or similar tracks or had visited the same concert in another year. This
in turn increases the probability of creating more connections within the sampled
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data. It also increases the density of sampled graphs while consequently reducing
the overall diameter. Algorithm 2.2.1 shows the modified MHRW approach and
Algorithm 2.2.2 its 2-HW extension. Note that, to improve readability of both
algorithms, we illustrated solely the traversing aspects and left out any data-storing
operations. A more technical view will be discussed in Section 2.3.

Algorithm 2.2.2 : 2hw(): extension for MHRW
input : v, initial seed node,

E2hw, set of relevant edges for 2-HW,
i, recursion steps for 2-HW

output : all visited or seen nodes their relations and properties
1 if i > 0 then
2 R← getAllNeighbor(v, E2hw);
3 for r ∈ R do
4 2hw(r, E2hw, i− 1);
5 end
6 end

Example 2.1. Assume an iteration of MHRW which collects at first all proper-
ties of the currently-visited node v, e.g. for a user its userID, name, age, country
and so on (cf. Figure 2.2). A 2-HW traverses then the desired neighborhood of v,
where either all relations or just a relevant set of relations can be specified by the
parameter E2hw. Here, we could consider for example the relations visitedEvents,
lovedTracks, or groups. The actual depth of the recursively traversed neighbor-
hood is determined by a randomly generated value between 0 (skip neighborhood)
and 2 (grasp the whole 2-hop neighborhood). Once we reach for example the set
of visited events by following visitedEvents, 2-HW also retrieves, in the case of
a recursive depth > 0, for each event e.g. the artists who performed or other users
who participated. These randomly-generated numbers reduces, on the one hand, the
overall structuredness, but on the other hand the averaged costs of executing 2-HW,
since a depth of 2 can be rather costly in cases where many relations are considered.
Once the 2-HW is completed, MHRW choses a neighbors of v to be visited next,
while again considering either all relations or just those which are defined by the
parameter Emhrw. For instance this might be friends and neighbors or in cases
of multi-graphs even lovedTracks. The sets of relations can be specified for each
initialization of a new walk individually. This way, we bring in enough flexibility
to traverse the graph we are interested in, but also create a network which exhibits
desirable features.

32



2.3 A Distributed Crawler for Last.fm

2.3. A Distributed Crawler for Last.fm

The first component that was required for the LastBench benchmark was a dis-
tributed crawler which implements the previously introduced sampling algorithms.
We will refer to this component as LastBench Crawler, or just crawler in the
following pages. For Last.fm, we could base our code on available JAVA-bindings10

that simplified the communication with the Last.fm API11. However, they needed
to be extended and adapted to comply with our algorithms. Our design goals for
the crawler can be summarized as follows:

Scaling: The final dataset targets several hundred million to a billion entries.
The technologies, storage schema and algorithms should consider this scale, as
operations on data are becoming more expensive the larger the datasets get.

Parallelization: It is required to be able to run multiple walks in parallel on dif-
ferent machines while utilizing data collected by all individual parallel walks
in real-time.

Fault-Tolerance: A walk should be resumable, if it is interrupted or it crashes.
Failures might also appear while walking, e.g. blocked IP, corrupted data from
Last.fm, etc. . Resuming an interrupted walk should always be possible with-
out leading to strangling or corrupted data.

Performance: As we want to collect data as quickly as possible, performance and
efficiency are of the utmost importance. The most expensive operations are
Last.fm API calls. The longer we collect data, the more likely it will be that
a walk reaches a node that has been already visited in the past. In such cases,
no Last.fm API calls should be made at all. Furthermore, the more data is
stored, the more expensive certain operations on the data will become, which
makes it even more important to choose them carefully.

Figure 2.3 shows an overview of our architecture of which the implementation is
available for download. A more detailed view on the tasks of each component is
described in Table 2.2.

A centralized storage system that uses a dedicated infrastructure enables the par-
allelization of crawling processes by allowing instances to be run independently on
arbitrary machines. Each instance will then communicate with the same storage sys-
tem, which – due to its distributed architecture – is able to handle a high throughput
of requests. To increase the efficiency of collecting data, the whole implementation
is meant to start independent walks in parallel on multiple machines. For each new
walk, as suggested by the authors in [GBKM11], a new random seed user is chosen
by, e.g. crawling recent activities on the Last.fm Website, where the independence
of a node is ensured by considering the discussed burn-in.
10https://github.com/jkovacs/lastfm-java
11http://www.last.fm/api
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Figure 2.3.: Architecture of LastBench Crawler

In order to next present our approach for scaling the final LastBench benchmark
dataset, we need to explain a few more technical details on how a walk is represented
in the storage system (cf. Walks database in Figure 2.3). Table 2.3 shows the schema
of a walk and its steps. We can see that each new walk gets an ID assigned, which
is increased incrementally. In addition, the ID of the seed node, the chosen strategy
and the current status is saved. Each instance of a crawler is then responsible for
exactly one walk ID, where in each iteration, and thus visit of a new node, a new
step is created. The status field ensures that stopped or interrupted walks can be
resumed without introducing any corrupted information. For that, the last step
which was inserted for a walk is restarted completely as it might not be processed
completely. For that reason but also to increase the overall efficiency, the Storage
Interfaces checks that there are no duplicate entries inserted, in cases where for
instance a step crashed before it was finished or an entry was already processed in
the past. Lastly, the final LastBench benchmark dataset is composed of a union
of all finished, and thus convergent, walks.

2.3.1. Scaling LastBench Data.

One of the main challenges in using real-world data is the scaling of datasets, that is
removing or adding some data in order to obtain a certain size. This is of particular
interest in the area of distributed systems, where it is essential to investigate the
scaling properties of RDF data management systems and their languages with regard
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Table 2.2.: Description of LastBench Crawler components

Component Description

Web
Access

The actual crawling part, thus retrieving the data from Last.fm is con-
tained in this component. Data is crawled by using the public API of
Last.fm by means of an extended version the Last.fm API Bindings. As
an example, the parsing of the website Last.fm is required in order to
retrieve initial seed nodes.

Crawler The crawler implements our modified extended MHRW algorithm with
its 2-HW extension and convergence criteria as introduced in [GBKM11].
This defines the strategy how the Last.fm graph is sampled. Before
continuing with a new node, i.e. using the Web Access component, it is
checked whether the desired node has already been visited and is stored
in the database. Revisiting nodes on a walk is allowed and important,
but equally important is ensuring that doing so does not induce any
additional Last.fm requests.

Storage
Interface

There are two main data stores, to which access is managed by this
interface. The Data Store contains all entities, relations and attributes
collected by the walks. To this end, each entity is stored just once. The
Walks Store contains meta-data about ongoing and completed walks.
More information about how walks are represented will be discussed in
the following section.

Queue
Interface

It represents the queue of ongoing walks by individual FIFO list of nodes
that have to be visited next. This is required, for instance, if a list of
neighbors needs to be iteratively processed.

Controller It keeps information about the status of ongoing and completed walks.
Additionally, it provides information required to resume previously
stopped or interrupted walks.

Executor It starts, stops and resumes walks, controlled by the Web Frontend.

Status It monitors ongoing walks and pushes information to the Controller
Interface, e.g. failures, status updates, processed or dropped items, ...

Web
Frontend

It provides information about ongoing walks, e.g., current progress, num-
ber of newly inserted and already present entities, number of request,
failures and the performance of all components.

to varying data-sizes. Here, an error-prone scaling of the dataset might have a high
impact on the evaluation complexity if, for instance, the majority of relevant nodes
are removed accidentally. This yields less trustworthy results, which in turn hampers
the usage of more meaningful real-world datasets for such experiments. Up-scaling a
dataset means that some new data has to be added, which was not part of the original
dataset. No matter how good the estimations for correlations and distributions
are, we are not guaranteed to have full knowledge about all characteristics of the
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Table 2.3.: Data schema for walks and the steps a walk is composed of

Attribute Description

w
al
ks

walkID Identifier of a walk, increments for each new one
startNode ID of seed node
strategy Crawling strategy of walk, e.g. BFS, MHRW, 2-Hop & parameters
status 0: initialized, 1: paused, 2: finished, 3: failed

st
ep

s

walkID Reference to the walkID in walks
walkStepID Identifies a step of a walk, increments with each new step
visitedNode ID of the currently reached node
startTS Timestamp, when this step starts
endTS Timestamp, when the step ends
status 0: initialized, 1: paused, 2: finished, 3: failed

dataset. That is, with additionally-generated information we will most likely change
the properties of the original dataset by, e.g. missing some important connections for
new entities. As a result, we decided against an up-scaling strategy for LastBench
and focus on a proper down-scaling strategy, which – if the collected data is large
enough and accommodates future growth – fits most use cases.
For that, we utilize two important properties, which are inherent to the representa-
tion and processing of a walk. For the first property, since for each walk it is ensured
that (1) its burn-in was accounted for, i.e. its dependency from the initial seed node
were removed and, (2) only finished walks were considered, i.e. the convergence cri-
teria were always fulfilled, we can assume each individual walk to be representative
of Last.fm. To the second property, a walk is always independent from all others,
which is inherent to our implemented sampling strategies, since a crawling instance
is, at each point in time, responsible for exactly one walk. That is why it is not
necessary to consider all walks to get a representative dataset of Last.fm; even one
walk would be enough. Conveniently, for down-scaling the LastBench dataset, we
can utilize this property by reducing the total number of walks in the final dataset.
More details are introduced with Algorithm 2.3.1, which is a deterministic version
of our approach that composes for the same scale-down always the same subset of
the original data. To obtain finer-grained subsets, in a last step where the specified
down-scale cannot be achieved by a composition of complete walks, single steps are
added until the desired size is reached.

2.3.2. A Preliminary Analysis on LastBench Data.

In a preliminary analysis of our data, we were interested in the underlying social net-
work of Last.fm and its typical characteristics [WS98]. For that, we obtained a small
sample dataset with 1.7 million users with close to 13.6 million friendship relation-
ships using a Breadth-First Search (BFS) strategy since the previously-introduced
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Algorithm 2.3.1 : Down-scaling LastBench dataset
input : St, desired size of the down-scaled dataset in triples,

W , ordered list with all walks
output : R, down-scaled dataset

1 R← ∅;
2 Rtmp ← ∅;
3 Sr ← 0;

// Adds complete walks while Sr < St;
4 while (Sr < St && W.hasNext()) do
5 Rtmp ← W.getNextWalk();
6 if Sr + |Rtmp| < St then
7 R← R ∪Rtmp;
8 else

// Adds single steps of a walk while Sr < St;
9 while (Sr < St && Rtmp.hasNext()) do

10 R← R ∪Rtmp.getNextStep();
11 end
12 end
13 end

crawling strategies were not available at the point of performing this analysis. Al-
though BFS introduces a bias in terms of degree distribution and cluster coefficient
[KMT10, YLW10], the results were sufficient to make a few preliminary conclusions
about the data. First of all, we investigated the degree distribution which is cru-
cial in order to characterize a network as a social network. The degree of a node
is defined by the number of links incident to a node. In Figure 2.4 (a) the degree
distribution is skewed with the majority of nodes having a low degree while very few
nodes have significantly higher degree. This is a typical behavior of social networks.
The clustering coefficient is another important characteristic of social graphs and
represents the tendency of nodes to form tight clusters with its neighbors. This
metric is defined as the number of links that exist between a node’s neighbors di-
vided by the maximum possible links that could exist among a node’s neighbors.
The clustering coefficient in a social network is higher than in other types of net-
works [NP03]. Figure 2.4 (b) depicts the average clustering coefficient with regard
to degree. We can observe that low degree nodes demonstrate a higher clustering
coefficient which means that there is a significant clustering among them. On the
other hand, as the number of neighbors increases, the clustering coefficient drops.
These results are consistent with previous research on social networks [MMG+07].
Furthermore, short paths in the network indicate that nodes are reachable through
a small number of hops. The average path length of the network is 4.2 and is
even shorter than the expected famous “six degrees of separation” of Milgram’s
experiment [Mil67, WS98]. This surprisingly low average path length is influenced
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Figure 2.4.: (a) Degree distribution (left), (b) Avg. cc-degree distribution (right)

by the bias of BFS towards the high degree nodes which tend to reduce distances
in the network. Another characteristic of social networks is the largest shortest
path, the so-called diameter. The network has a diameter of 8 which again is low
in comparison with other social networks [MMG+07] which is also probably due to
the bias introduced by the crawling technique. The aforementioned skewed degree
distribution, high clustering coefficient, and short path lengths are typical social
network properties and indicate that our Last.fm data has small world characteristics
and typical scale-free properties of a social network [WS98].

Overall, we can summarize that the measured metrics for the underlying social
network of Last.fm, although obtained with BFS and not our extended MHRW
strategy, already exhibit typical characteristics of a social network which was one of
the requirements for our benchmark as stated in Section 2.1.

2.4. Discussion

With the evolution from a “Web of Documents” to a personalized and interlinked
“Web of Data”, social networks are becoming an important source of semantically
annotated data. Nonetheless, they are hardly covered by existing RDF benchmarks.
With LastBench, we have proposed a benchmark based on real-world data gath-
ered from the social music network Last.fm. It is worth noting that, although
introduced solely for Last.fm, all of our proposed algorithms are also adoptable to
work on other social networks, e.g. Twitter or Facebook. Overall, we can summarize
the work which was done so far as follows:

• With Last.fm we found a rapidly growing real-world data basis for our bench-
mark, which enables us to obtain hundreds of millions to billions of triples.
It contains many interesting entities, relations, and properties with a social
network structure.

• In order to obtain a representative dataset, we proposed a modified version of
MHRW and extended it with our 2-HW strategy.
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2.4 Discussion

• We introduced our distributed LastBench Crawler that implemented MHRW
and 2-HW in order to sample data from Last.fm.

• We suggested a novel strategy for down-scaling the LastBench dataset that
utilizes some properties of our sampling strategies to create representative
sub-sets.

• A preliminary analysis confirmed typical social network properties for a small
data sample.

Recalling our requirements for a benchmark introduced in Section 2.1 on page 21,
we can conclude that – even though in a early stage – LastBench satisfies already
five out of seven features, that we considered to be important for the development of
a modern RDF data management system (cf. summarize in Table 2.1 on page 26).
Nonetheless, there is still some work left in order to complete LastBench. The
remaining tasks can be summarized as follows:

1. Obtaining larger datasets by a long-term execution of LastBench Crawler
2. Specification of schema and mapping into RDF(S)
3. Incorporation of varying levels of structuredness based on [DKSU11]
4. Implementation of the proposed algorithm for down-scaling datasets
5. Designing multiple workloads with query templates and parameters

Although LastBench proved to be a promising way towards a scalable real-word
social benchmark, we decided not to continue the work on the remaining tasks.
This is due to mainly two reasons: driven by a large EU project12 the LDBC Social
Network Benchmark (SNB) [EAL+15] gained a lot of attention from both indus-
try and researchers as a follow-up work of Social Network Intelligence Benchmark
(SIB) [PBE12]. Under the head of Linked Data Benchmark Council (LDBC), it
benefits from a fast development and many real-world use cases that were gathered.
Secondly, the development of a benchmark was never at the core of this dissertation,
but appeared to be – due to the lack of proper benchmarks in the past – necessary
to support our research goals: the specification of expressive, navigational query
languages and the development of distributed systems that are able to process those
languages on web-scale RDF data. Due to its suitability for most of our examples
and experiments required in the context of this dissertation, we decided to use the
SNB dataset rather than continuing the work on LastBench. As shown in Ta-
ble 2.1, it covers most of our desirable features except that it uses a state-of-the-art
data generator rather than real-world data. However, the authors had a special focus
on including distributions and correlations similar to those expected in a real social
network such as Facebook. Moreover, it also contains some sort of real data from
DBPedia, which is used as property dictionaries which ensures that the attributes
are realistic and correlated [PBA+16].

12http://cordis.europa.eu/project/rcn/105871_en.html
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Over the past decade, considerable work has been done on languages which allow
the querying of semi-structured data such as RDF, ranging from the adoption of
classical graph database approaches to highly expressive extensions of SPARQL. In
this chapter, we provide some foundations of basic navigational constructs used in
diverse query languages and provide an overview of the most-relevant (navigational)
RDF languages. We will sum up this chapter with a comparison of representative
languages using a set of features, that has been widely recognized as being crucial
for (navigational) queries on RDF data which in turn motivates the need for both
of our languages, RDFPath (Chapter 4) and TriAL-QL (Chapter 5).
We can summarize the contribution of this chapter as follows:

1. Section 3.1 gives a short, example-driven introduction to some basic naviga-
tional primitives and its terminology.

2. Section 3.2 presents an overview of languages that have been used to query
RDF data. It starts with a discussion of languages for (semi)-structured data
and their deviations, which are often used as a basis for navigational expres-
sions. After that, the RDF-specific languages are discussed followed by exten-
sions for SPARQL which add more expressive navigational constructs.

3. Lastly, Section 3.3 concludes this chapter with a comprehensive comparison
of RDF query languages based on a set of querying features that have been
widely recognized as crucial for the Semantic Web.
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3.1. Foundations of Graph Query Languages

Most query languages for RDF have their roots in traditional graph databases,
where so-called regular expressions [Kle51] are used as navigational primitives to
traverse the graph structure. We will therefore start with introducing their basic
concepts and terms. A brief example-driven description serves the intended purpose
sufficiently. More formal specifications can be looked up in the given citations.

Definition 3.1 (Graph Database). A graph database G over a finite alphabet
Σ is defined as G = (V,E), where

• V is a finite set of nodes,
• E ⊆ V ×Σ×V is the set of edges. An edge in G is then a triple (vi, a, vj) ∈ E

interpreted as an a-labeled edge from vi to vj in G.

Figure 3.1 shows an exemplary graph G, which will be used in the following.
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Figure 3.1.: Graph describing friendship relations between people

Regular Path Queries (RPQs) [CMW87, CM90, CDLV03] ask for pairs of nodes
connected by a path of arbitrary length specified by means of so-called regular ex-
pressions [Kle51]. They allow the composition of patterns by describing permitted
sequences of elements [MW95]. The basic operations include the grouping by paren-
theses, a Boolean “or” (|) , and quantifiers (?, ∗, +, {n}, {min,max}) to specify
how often an element is allowed to occur. This language provides the fundamental
basis for most navigational constructs in RDF query languages. More formally, as-
sume a graph G = (V,E), where V is a set of nodes and E is a set of edges. A RPQ
has then the form Q(x, y) = x

L−→ y, where:
• L is a regular language over some fixed finite alphabet Σ specified by a regular

expression.
• The result of a query Q on graph G is then the set of all pairs of nodes (vi, vj)

in G such that
1. there exists a path π in G starting with vi and ending with vj,
2. the label of π is a word from L [CMW87, CM90, CDLV03, LRV13].
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An exemplary query that determines all pairs of users in a graph who are connected
by a sequence of knows edges is described by

Q(x, y) = x
knows+
−→ y

Evaluated on the graph G in Figure 3.1, we obtain the following pairs of users:

{(Bob, Alice), (Alice, Ted), (Bob, Ted)}

Two-way Regular Path Queries (2RPQs) [CM90, CDLV00, CDLV03] extend
RPQs by adding an inverse operation (−) that allows to traverse edges “backwards”.
With that, one can extend the above example to consider the edge knows in both
directions (forward and backward). Consider for that the following 2RPQ query:

Q(x, y) = x
(knows+ | knows−)−→ y

Evaluated on the graph G in Figure 3.1, we obtain twice as many pairs, since knows
is interpreted to be bidirectional in this case:

{(Bob, Alice), (Alice, Ted), (Bob, Ted)
(Alice, Bob), (Ted, Alice), (Ted, Bob)}

Conjunctive Regular Path Queries (Conjunctive RPQ, or CRPQs) [CM90] com-
bine Conjunctive Queries (CQs) (cf. [Cod70, CM77] for more details) with RPQs,
such that one can express conjunctions of RPQs (.. ∧ ..) with existentially quanti-
fied variables (e.g. ∃x). A exemplary query can now ask for users which are, for
instance, connected by a path of knows edges and by a path of friend edges. The
corresponding query is specified by:

Q(x, y) = (x knows+
−→ y) ∧ (x friend+

−→ y)

Evaluated on the graph G in Figure 3.1 we obtain, due to the restriction that pairs
of users must be connected by both paths, just one pair:

{(Bob, Alice)}

A further natural extension are then Conjunctive Two-way Regular Path Queries
(C2RPQs) including the inverse operation.

XML Path Language (XPath) [CD+99, BBC+03] is a W3C standardized language
designed to query the tree structure of an XML document. With that scope it is
certainly different to the querying constructs introduced so far. However, its rich
yet intuitive navigational abilities cover many interesting features that include, for
instance, different directions to navigate, diverse node tests, and branching. Due
to this, the XPath-like syntax was picked up by various languages on other data
models or serve as inspiration to design navigational querying constructs.
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Nested (Regular) Path Queries (NPQ) [BFL09, ZLFB10, PAG10, BPR12] add
existential tests to 2RPQs by means of nested expressions specified within square
brackets and borrow the notation of branching from XPath. This way, they enable
the expression of constraints within regular expressions that need to be satisfied
along the path. More formally, a NPQ n is built from the following expressions:

n := ε | a | a+ | a− | a∗ | (n/n) | (n|n) | [n]

An exemplary query may ask for users connected by a sequence of knows edges,
where each visited user along the path has to satisfy a constraint. Consider, for
instance, the case where we want to ensure for each visited user the edge country
exists:

Q(x, y) = x
(knows[country])+

−→ y

Evaluated on the graph G in Figure 3.1, we obtain just one pair of users, since there
exists only one connection between users which satisfies the constraint of having an
edge country:

{(Alice, Ted)}

3.2. Languages for Querying RDF

In the following, we provide a grouping of query languages which we want to in-
troduce briefly1. Please note that, due to the high variety of query languages and
many diverse properties they exhibit, groups are not necessarily distinct and there-
fore there may exist further possibilities of classifying them.

Querying (Semi)-Structured Data. Various languages deal with data represented
as a graph, or so-called graph databases. Since RDF data can also be seen as a graph,
these languages can be also used to query RDF data. Among them G [CMW87],
its extensions G+ [CMW88] and GraphLog [CM89] are the most influential pro-
posals that support recursive patterns on graphs by utilizing Regular Path Queries
(RPQ) [CMW87, CM90, CDLV03]. Due to this, navigational query patterns can be
expressed, where the length of paths does not need to be known in advance, and
thus can be of arbitrary length. This is useful in cases where we are interested in
the transitive closure of a graph or the connectivity between arbitrary nodes. Es-
sentially, query writing in those languages is based on specifying a graph pattern
with annotated nodes and edges which are then again matched against the graph
database.

1The basic concepts of RDF have been introduced in Chapter 1. A more formal description of
RDF is not required at this point but can be looked up in Section 4.2 on page 58.
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The idea of using RPQ has been also adopted for semi-structured data [Bun97,
Abi97], i.e. incomplete data with an irregular structure. Substantial work has been
done with Lorel [AQM+97] and UnQL [BDHS96, BFS00], two languages built upon
the so-called object exchange model (OEM) [PGW95] for modeling data. StruQL
[FFLS97] is a language which claims to have a higher level of expressiveness than
its former competitors, as it introduces a few enhancements to OEM regarding the
support of schema but only UnQL supports the creation of new graphs as output.
However, both the graph data model and the OEM for semi-structured data exhibit
some inherent drawbacks which hamper their applicability for querying RDF data
in practice. First of all, they use distinct identifiers for nodes (objects and subjects
in RDF) and edges (property in RDF), where for instance the two RDF triples
(s1, p1, o1) and (p1, s1, p2) cannot be modeled correctly. Next, they are restricted to
so-called simple paths, which do not exhibit cycles. Furthermore, RPQs do not allow
the expression of constraints within their regular expressions, e.g. a filter inside the
recursive pattern.

Navigational & Rule-based RDF Languages. Rule-based languages describe an-
other relevant class of query languages for RDF. Triple [SD01, SD02, DSB+05] is a
query, inference and transformation language derived from F-Logic [KL89], where
triples are represented as F-logic expressions [HBEV04]. Those expressions can also
query the schema of RDF, and thus its ontology, and apply transformations on RDF
data. N3Logic (N3) [BCK+08, BLC11] is an extension to the RDF model but is not
meant to be a classical query language. Nonetheless, its rules can be used for query-
ing, as they allow the composition of nested graphs and have support for variables.
The main idea behind that approach is to have the same language for representing
data and adding some sort of logic that describes further knowledge about the data
like provenance, for instance. One of the first purely path-based language for RDF is
Versa [OO02, OO03], which is inspired by XPath [CD+99, BBC+03]. It is based on
an XPath-like syntax to traverse the XML serialization of RDF. The actual path is
specified by a list of resources, where the result is a set of selected resources. Those
resources can be further processed by externally-definable functions [FLB+06].

SQL-like RDF Languages. SQL-like languages for querying RDF include RDF
Query Language (RQL) [KAC+02, KMA+03, KMA+04], its extension Sesame RDF
Query Language (SeRQL) [BK03] and the two predecessors of SPARQL, namely
SquishQL [MSR02] and RDF Data Query Language (RDQL) [MSR02, Sea04]. Com-
mon to RQL and SeRQL is their support for RDF with schema information [KBM08].
However, in comparison to more recent approaches [BFL09, PAG10, LRV13, AE14],
they are rather restricted in this respect due to a strict separation between data (de-
scription of resources), schema (classification of resources) and meta-schema (meta-
classification). In addition, certain preconditions on the data need to be satisfied,
e.g. a property requires to have both domain and range clearly defined and cycles in
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the hierarchical schema data are forbidden [FLB+06]. Both languages support vari-
ables on nodes and edges of the RDF graph. SquishQL introduced the concept of a
conjunctive triple-pattern with variables in arbitrary positions, which correspond ba-
sically to Conjunctive Regular Path Queries (Conjunctive RPQ, or CRPQs) [CM90].
A select clause identifies the variables whose binding are returned as result. Both
features were also present in a further derivative of SquishQL called RDQL. It is
meant to provide a simple “low-level language” [Sea04] for RDF, but for that reason
there is no support for querying schema information. The authors suggest this as a
possible feature of an implementation rather than a query language. The concept
of triple-pattern and variable bindings used in SquishQL and RDQL formed for the
basis of their successor SPARQL [PS08].

SPARQL. SPARQL is the W3C recommended declarative query language for RDF
[MMM14]. A SPARQL query defines a graph pattern P that is matched against
an RDF graph G. This is done by replacing the variables in P with elements of
G such that the resulting graph is contained in G (pattern matching). The most
basic construct in a SPARQL query is a triple pattern, i.e. an RDF triple where
subject, predicate and object can be variables, e.g. (?s p ?o). If there exists a
mapping between the triple pattern and a subgraph of the RDF graph, the variables
of the triple-pattern are bound to the respective values of the subgraph. A set of
triple patterns concatenated by AND (.) is then called a basic graph pattern (BGP).
The result of a BGP is defined to be the intersection of all subsets defined by the
corresponding triple patterns and can be computed by joining the results of all triple
patterns on their shared variables. In the case of multiple possible mappings, sets
of variable bindings are created. We refer to them as a bag of solution mappings.
For a detailed definition of the SPARQL syntax we refer the interested reader to the
official W3C Recommendation [PS08]. A formal definition of the SPARQL semantics
can also be found in [PAG09]. The recent SPARQL 1.1 [HSP13] recommendation
introduces further important operators including sub-queries, aggregates and most
notably Property Paths which will be discussed next.

SPARQL Property Paths. SPARQL Property Paths [HSP13] are the navigational
component of SPARQL 1.1 and correspond in its essence to Conjunctive Regular
Path Queries (C2RPQs) [CM90]. Multiple property paths are then conjuncted by
means of variables in the aforementioned triple-pattern. To understand the short-
comings with regard to the evaluation of Property Paths, we need to introduce some
basic terminology of the semantics of SPARQL as proposed in [PAG09]. Let the set
T of RDF terms be defined as (I ∪B∪L), thus a union of all IRIs (I), blank nodes
(B) and literals (L). Variables in SPARQL query are denoted by V and represent an
infinity and disjoint set from T . For simplicity, we will skip the complete semantics
of SPARQL and assume a query result to be determined by a so-called multi-set of
partial functions µ : V → T , mapping variables to RDF terms with respect to the
function µ. Note that, in accordance to this definition, the result is composed of
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assigned variables only. However, the basic notation of a Property Path pattern is
defined as (T ∪ V) × path × (T ∪ V), where path is composed from the following
property path expressions:

path := i | ∧path | !(i1 ... in) | (path / path) | (path | path) | path∗ | path+ | path?

We can see that variables are allowed to be at the beginning or the end of a Prop-
erty Path pattern but there exists no expression that would provide access to the
complete path connecting both. At best, a pattern can be divided into separate
parts and joined by means of an intermediate variable. However, this yields more
complex queries and is not applicable to patterns involving the Kleene star operator
(e.g. path∗ | path+ ), where the size of the path is not known in advance. The same
implications apply for most other RDF languages, where the predicate is replaced by
a regular expression (i.e. a RPQ) to describe a navigational pattern but no concept
of a path variable exists. This includes also more expressive extensions of SPARQL
like, for instance, RPL [BFL09, ZLFB10] and nSPARQL [PAG10, BPR12] which we
will discuss in the following paragraph. They are both restricted to determine the
existence of a certain path in a graph, and thus output its start and end point but
do not provide a mechanism to retrieve further information about the path.

Extending SPARQL. Although having emerged as the standard query language
for RDF in its first specification, SPARQL 1.0 provided just limited support for
navigational querying. Solely paths of fixed length were expressible by means of
conjunctive triple-patterns. This fact motivated several extensions of SPARQL,
which address the need for more expressive navigational querying that include also
paths of arbitrary length. The first considerable proposals are SPARQLeR [KJ07]
and SPARQ2L [AMS07]. Both introduce a so-called path variable in a graph pattern
to represent matched paths and use filter operations on that variable to constrain
valid paths. Using a path variable allows access to all individual elements such that
complete paths become retrievable. This is a valuable and important functionality,
since it allows to discover paths of arbitrary length and output them. One drawback
that both languages have in common is their inconvenient and inconsistent syntax.
The only way how to describe a desired path pattern is by means of filter functions
and so-called meta-properties. A filter function takes the path variable and a reg-
ular expression as parameters, where only those paths are permitted which satisfy
the regular expression. A meta-property is used to restrict individual resources on
the path and has the structure of a triple-pattern but with a different semantics.
Both languages are only briefly introduced, with a focus on their prototype imple-
mentations. SPARQLeR suffers from a lack formally-defined syntax and semantics,
thus one has to guess how certain expressions are evaluated and what is express-
ible. Further, due the use of regular expressions (i.e. RPQ) they exhibit just limited
support for querying RDF data along with is schema information. Moreover, both
languages support only simple paths, which means that a resources is allowed to
appear at most once on a path, which further limits their applicability. Nonetheless,
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SPARQLeR and SPARQ2L highlighted the need to discover and output complete
paths of arbitrary length in RDF graphs and proposed two novel solutions that aim
at mitigating the shortcomings of SPARQL 1.0 in that respect. The Corese Search
Engine [CDF04] can also be seen as an extension of SPARQL. It supports inference
rules to capture a fragment of RDFS and enables limited navigational querying. But
only paths of fixed length are supported.

More recent extensions of SPARQL include nSPARQL [PAG10, BPR12], RPL [BFL09,
ZLFB10] PSPARQL [ABE09a], its extension cpSPARQL [AE14], and as last SPARQL
with Recursions (RecSPARQL) [RSV15]. The main idea behind nSPARQL are
so-called nested regular expressions (NREs) (or nested path queries (NPQ)) which
combine regular expressions with nested existential tests, an inverse operator, and
the notation of branching, borrowed from XPath [CD+99, BBC+03]. With that,
structural properties can be queried that cannot be captured by paths alone, which
enables the posing of many interesting and natural queries. One example are chains
of users, connected by a friendship relationship, where additionally along this chain
each person has to live in the same country.

The main difference to conjunctive regular path queries (CRPQs) [CM90] is hereby,
that the length of this chain of users can be of arbitrary length, whereas the number
of conjunctions in CRPQ is always fixed [BPR12]. To illustrate that, we consider
how to simulate the previous query in CRPQ. This can only be done by conjunctions
of successively extended paths, where for each user a variable is required in order to
check for the existence of information about a country. One drawback of nSPARQL
is its definition on binary relations, which again hampers meaningful path-based
results as offered by SPARQLeR and SPARQ2L, for instance. On the other hand,
their syntax and semantics is well defined and a detailed analysis of their evaluation
complexity is provided. PSPARQL is an approach that picks up both points: more
meaningful results and a well defined syntax and semantics. It extends SPARQL by
regular expressions and, importantly, supports variables inside them. This way, one
can retrieve individual intermediate elements of the path rather than being restricted
to the first and last resource. With cpSPARQL, the authors proposed a further ex-
tension of their work by adding constraints to their regular expressions. RPL is
another navigational query language that combines NPQs with direction modifiers
and negation. The main motivation is an easy integration into RDF languages like
SPARQL. Due to the common underlying concept of NPQs, the language is quite
similar to nSPARQL with regard to its syntax and expressiveness. However, lan-
guages based on NPQs have some inherent restriction due to their origins from graph
databases. In fact, there are crucial differences between RDF and the classical graph
models which become more conspicuous with the increased complexity of schema
data in RDF. In a classical graph model, it is for instance not possible to model
the same resource in predicate (edge) and subject/object (node) position without
losing its uniqueness [LRV13, AGP14]. This clear distinction between nodes and
edge labels is inherent to most query languages where its navigational component is
based on regular expressions. A general purpose recursion for SPARQL 1.1 was pro-
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posed in [RSV15], called SPARQL with Recursions (RecSPARQL). Its basic idea is
to mimic recursions in SQL by means of a recursive operator but, analogous to SQL,
it is not meant to be used for navigational patterns due its cumbersome syntax for
such queries. Extended CRPQs (ECRPQs) [BLLW12] describe a substantially dif-
ferent way of how to provide more expressiveness in navigational queries. Variables
are introduced which permit comparisons of paths. While this is out of reach for
languages based on NPQs [BLLW12], they in turn support complex branching pat-
terns which are inexpressible with ECRPQs. However, ECRPQs are not meant to
be an RDF querying language on its own, but rather a new building block for more
expressive languages and further investigation on expressiveness and complexity in
evaluation.

More Expressive RDF Languages. In recent work, it has been recognized that
there exist further important properties in RDF data, which cannot be captured
by the languages introduced so far [LRV13, AGP14, RSV15]. A few examples have
been discussed in the previous paragraph and more will be shown in Chapter 5. As
a result, the Triple Algebra with Recursion (TriAL*) [LRV13] and Triple Query
Language (TriQ) [AGP14] have been proposed which have shown to subsume pre-
vious RDF querying approaches such as property paths and languages using NPQs.
Both languages add more expressive navigational capabilities than is supported by
NPQs and can be evaluated in combined (low-degree) polynomial time. TriQ is
defined as a general Datalog extension that captures SPARQL queries enriched with
the OWL 2 QL profile, whereas TriAL* is a closed language that works directly
with triples including recursion over triple joins. The descent of TriAL* from rela-
tional algebra and its inherent compositionality led us to the decision to base some
of our work, presented in Chapter 5, on TriAL* rather than on TriQ. A detailed
introduction to TriAL* will follow in the respective chapter.

3.3. A Feature-based Comparison of RDF Query
Languages

Next, we compare the features of the most-influential query languages which have
been recognized to be important for querying semi-structured data in numerous sci-
entific studies [Abi97, MKA+02, PAL+02, HBEV04, AGH04, AG05, AG08, KBM08,
Woo12]. Since most of the querying features are self-explanatory by their name, we
moved their explanation to Appendix A (page 219). There, an overview of all
querying features is listed, including a short explanation, their source of origin, and
changes which were required to avoid ambiguities. The first inspiration for the set
of features used for our comparison goes back to [Abi97] where path patterns have
already been highlighted as a crucial feature. From the work in [AGH04, AG05] we
adopt (1) seven features, (2) three out of seven graph database query languages,
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which proved to be the most expressive ones in [Alk08] and, (3) six RDF query
languages2. In [HBEV04, KBM08], the authors compared RDF languages using 12
distinct features from which we considered nine to be relevant for our work. Their
investigated query languages where actually the same as in [AGH04, AG05]. To
these we added further languages which we have discussed in this section, namely
SPARQL 1.1 (Property Paths), nSPARQL, RPL, TriQ, TriAL and compared them
to both of our languages, RDFPath and TriAL-QL which will be proposed in
Chapters 4 and 5, respectively. Furthermore, we added also additional features for
comparison including Querying Topology, Output Paths, Closure, and Sorting. All
querying features are categorized in four groups based on the sort of task they solve.
The resulting comparison is shown in Table 3.1. We can see a high diversity in sup-
ported querying features, where the differences are becoming fewer the more recent
a proposed language is. Not surprisingly, those languages which we categorized as
“more expressive RDF languages” are at the forefront in terms of performance. We
can further see that, as described earlier, languages based on NPQs are denoted
as having only partial support for querying the topology of a graph, and thus its
schema and data at once. Only TriQ, TriAL, RecSPARQL and TriAL-QL claim
to capture all querying constructs inherent to the triple based model of RDF, and
provide a smooth integration of querying schema and data. Both of our languages,
RDFPath and TriAL-QL exhibit a high coverage, where RDFPath stands out
with – in the case of RDF languages – rarely-integrated analytical querying fea-
tures and the ability to output paths. TriAL-QL, however, strongly benefits from
TriAL as its underlying algebra which we extended by means of provenance which
provides us with the partial-supporting of output paths. Overall, we can conclude
that there does not exists a one-size-fits-all language. Each one has its strengths
and weaknesses, which provides space for new concepts and further improvements.
For a further comparison of RDF query languages we refer to [HBEV04, AG05,
FLB+06]. A detailed introduction that uses sample data and exemplary queries is
provided in [BBFS05]. A comprehensive study on graph database models, which
provides foundations of graph query languages used in this section, can be found
in [AG08], and in a less extensive but more recent survey [Woo12]. To the best of
our knowledge, this is the first study that covers such a wide range of RDF query
languages ranging from classic graph database query approaches such as G+ to
highly expressive SPARQL extension as proposed with RecSPARQL.

2Due to the lack of further information or any publications, we could not consider RxPath in our
work.
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Table 3.1.: A comparison of querying features of languages for RDF, where “×”
indicates no support, “◦” partial support, and “•” full support. The table is
inspired by numerous previous studies such as [Abi97, PAL+02, HBEV04, AGH04,
AG05, AG08, KBM08]
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4.1. Motivation

The advent of rich knowledge bases comes along with a high degree of diversity in
the vocabulary used, for instance, in different domains but also fundamental struc-
tural differences across various interconnected data sources. Navigational queries
are among the most important query types for such semantically-annotated data
as they provide valuable information about the interlinking of resources and are
equipped with features to explore the underlying structure. In particular queries
that allow us to (1) traverse paths of arbitrary length, (2) involve tests on data
values and (3) browse the topology of a graph have been recognized as crucial for
querying [PAG10, LRV13, AGP14, RSV15].
In Chapter 3, several languages with navigational capabilities that address some
of these needs have been discussed. Most of the previous work in this area has
its roots either in traditional graph databases [CMW87, CM90, CDLV03] or is in-
spired by XPath [CD+99, BBC+03]. As a consequence, the problem of reachability,
if addressed at all, is often seen as an existential question that answers whether
there exists a connection between two resources or not. That is also the case for
nSPARQL [PAG10, BPR12] and PSPARQL [ABE09a, AE14], two languages which
are based on nested path queries (NPQ)) (cf. Section 3.1 page 44) thus combine
regular expressions with nested existential tests. NPQs are also used as naviga-
tional primitives for RDFPath, but in contrast to nSPARQL and PSPARQL, which
are extensions of SPARQL, RDFPath is a self-contained language enabling a much
more intuitive syntax for path-shaped queries. Furthermore, its fully path-based
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semantics outputs complete paths, i.e. all resources traversed along a path. There
has been only limited work done on languages that offer expressive navigational
querying capabilities for RDF and in addition a granular view of what the actual
path between two resources looks like. SPARQLeR [KJ07] and SPARQ2L [AMS07]
support the extraction of complete paths but offer only basic navigational query-
ing features based on regular path queries (RPQs). Additionally, they either lack a
formally-defined syntax and semantics [KJ07] or have an inconvenient syntax, where
paths need to be described by filter constraints [AMS07].

RDFPath is an intuitive yet expressive navigational query language for RDF de-
signed to fit this gap. Equipped with functionalities to traverse paths of arbitrary
length and the ability to apply tests on data values which are not part of the main
path, it already captures some aforementioned properties that have become highly
relevant for querying RDF. However, one of the main goals behind RDFPath is to
provide more meaningful results that include complete paths between two connected
resources. Such paths describe the detailed trace, i.e. they refer to each traversed
resource along the path. To do so, RDFPath uses expressions that work natively
over paths, rather than transforming the data into, e.g., pairs of nodes. This way,
not just each individual intermediate step in RDFPath gets a set of paths as input
and produces a set of paths as output, but also the final result is supposed to be
a set of paths. However, we understand RDFPath as a supplementary language
that should be integrable into existing workflows and environments which use di-
verse languages and tools developed for the Semantic Web. For that, we need to
ensure the compatibility with RDF, its standardized data model. We will therefore
introduce in RDFPath a mapping from resulting paths back to RDF triples which
preserves the information about traversed resources, while making them available
for post processing with another RDF management system.

Another important feature captured by RDFPath is some sort of reasoning, where
we allow the querying of RDF data along with its ontology and schema. This is of
particular interest in cases where we want to utilize the topology of a graph [PAG10,
RSV15] or to track provenance [MC13]. In contrast to graph database models, an
edge label in RDF (property) may also serve as a source or destination of another
edge. RDFPath supports the traversal of many variants inherent to the triple-based
model including property-subject relationships and allow the combination of RDF
data with its schema in a smooth way.

Furthermore, there is limited support for aggregations in RDFPath. Even through
a rather restricted usage, they provide meaningful numbers that can be used to
reason about computed paths in order to provide a better understanding of the
results. To the best of our knowledge, RDFPath is the first RDF querying language
that combines all hitherto mentioned features in one unified concept and provides
an intuitive yet expressive language.

Most of the results from this Chapter were published in [PSHL11] and in [PSHL12].
Some of the results, such as the semantics of RDFPath, that were missing in these
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publications are presented here for the first time. Overall, we can summarize the
contributions of this chapter as follows:

1. In Section 4.2, after some preliminaries on RDF we propose RDFp, a flexi-
ble yet simple extension of RDF to represent paths in RDF graphs. RDFp
supports so-called path statements which are composed of traversed resources.
This representation of paths forms the basis for RDFPath.

2. RDFPath, along with its most important expressions, is introduced in Sec-
tion 4.3. Hereby, we will identify important patterns covered by RDFPath
expressions and illustrate their usage in a running example. To this end, a
complete RDFPath syntax is provided which contains not only navigational
expressions, but also constraints and result modifiers.

3. The formal semantics of RDFPath, where RDFp is used as a basis, is presented
in Section 4.4. A few formalized notations, algorithms for newly introduced
operators, and a discussion on the properties of RDFPath complement this
section.

4. We close up this Chapter with Section 4.6, where we discuss a mapping from
RDFp results into RDF triples followed by Section 4.7 which points out some
limitations of RDFPath and motivates the follow-up work with TriAL-QL.
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4.2. A Data Model for Paths

In this section we will first recall the definition of RDF as introduced in [MMM14]
and discuss some shortcomings that hamper important querying features when using
RDF to represent intermediate results. Afterwards, we will introduce our new data
model, RDFp, as an extension of RDF to overcome these issues.

4.2.1. Preliminaries

The RDF data model expresses information about arbitrary resources by the use of
so-called RDF statements with the triple-based structure:

<subject> <predicate> <object>

This way, every single piece of information about a resource is modeled as a triple
(s,p,o), that can be interpreted as “a subject s has the predicate p with the object
(value) o”. More complex relationships are composed by sets of triples and are called
RDF Graphs. More formally, assume I,B,L to be pairwise disjoint, countably
infinite sets of international resource identifiers (IRIs), blank nodes and literals,
respectively. Then, an RDF triple t is defined as:

t = (s, p, o) ∈ (I ∪ B)× I × (I ∪ B ∪ L)

A set G of triples is called RDF Graph. From a graph database perspective, a triple
(Bob, knows, Alice) can be also depicted as two nodes Bob and Alice connected by
the edge knows:

Bob Alice
 knows 

An RDF graph with multiple triples, e.g., {(Bob, knows, Alice), (Alice, knows, Ted)}
that share a common resource (in this case Alice) can be illustrated as a connected
graph:

Bob Alice Ted
knows knows

Shortcomings of RDF Serializations. The data model of RDF uses statements
with a ternary structure to describe the relation between two resources. More com-
plex relationships that involve multiple resources have to be modeled by additional
statements. With Notation 3 (N3) [BLC11], there exists a W3C team submission,
for a superset of RDF with support for more complex relationships. Most notably for
us are two shorthands. Firstly, there exists a shorthand for subjects with multiple
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properties, e.g., several statements that refer to the same subject. As an example,
we can consider the RDF graph consisting of the two triples (Alice, knows, Bob)
and (Alice, age, 21 ), which would be abbreviated by using a semicolon. Secondly,
there exists a shorthand for subjects and properties having multiple objects (also
known as multi-value properties). An exemplary RDF graph for this case is {(Alice,
knows, Bob), (Alice, knows, Ted)}, where a comma is used to merge both triples.
The N3 document containing both shortened statements will be then:

<Alice> <knows> <Bob>, <Ted>;
<age> 21.

Unfortunately, there is no support for path-based structures modeled by, e.g., {(Bob,
knows, Alice), (Alice, knows, Ted)}. This is also the case for all other common serial-
ization formats for RDF including Turtle, N-Triples and RDF/XML (see [MMM14]
for a comparison). Consequently, it is not possible to represent paths that have a
length of more than one in a compact way, using, e.g. just one single statement.
Given that RDF is intended to be just an abstract data model one may argue that
this does not play a role. After all, RDF is (1) usually transformed into another
representation after loading and (2) the information can be simply derived by query-
ing the data. However, in this chapter we will show that introducing a lightweight
concept of paths – directly into RDF – forms a basis that facilitates much more
meaningful results of navigational RDF query languages, while at the same time
simplifying querying.

4.2.2. Representing Paths

RDFp is our extension of RDF that introduces the concept of paths in order to tackle
the aforementioned shortcomings of RDF and current navigational query languages.
Conceptually, it can also be seen as a new form of serialization format for RDF
that includes additional features. The basic idea behind RDFp is to define an RDF
statement that summarizes multiple ternary statements which model a path-based
structure into one composed statement. The general structure of such a composed
statement, that expresses the (path-based) relationships between n resources is a
n-ary tuple as follows:

<resource_1> <resource_2> <resource_3> ... <resource_n>

Definition 4.1 (RDFp Path). Let I,B,L be pairwise disjoint, countably infinite
sets of international resource identifiers (IRIs), blank nodes and literals, respectively.
An RDFp path statement (or short path) of length n is an n-ary tuple p formally
defined as:

p = (r1, r2, r3, ..., rn) ∈ (I ∪ B)× (I ∪ B)...(I ∪ B)︸ ︷︷ ︸
r1, ..., rn−1

× (I ∪ B ∪ L)︸ ︷︷ ︸
rn
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Definition 4.2 (RDFp graph). A set of RDFp paths p is then called an RDFp
graph P .

Definition 4.3 (RDFp entailment). Each RDF triple t of an RDF graph G, is
also a valid path p of an RDFp graph P . Hence, it is true that G ⊆ P and all RDF
graphs are also RDFp graphs.

Example 4.1. Consider two triples (Bob, knows, Alice) and (Alice, knows, Ted)
that can be also interpreted as two RDFp paths with length three. Following
Definition 4.1, we can combine both triples and represent them as a new RDFp
path (Bob, knows, Alice, knows, Ted) of length five.

Example 4.2. Next, we are considering a small RDF graph G containing also
topological information about the predicate knows.

{(Bob, knows, Alice), (Alice, knows, Ted), (Ted, age, 32),
(knows, type, friendship)}

An RDFp graph P with exemplary compositions from G might contain the following
RDFp paths:

{(Bob, knows, Alice, knows, Ted),
(Bob, knows, Alice, knows, Ted, age, 27),

(Bob, knows, type, friendship),
(Alice, knows, type, friendship),

(Bob, knows, Alice, knows, type, friendship)}

Note that, since G ⊆ P all original triples from G are also interpreted as paths and
could be included in P .

RDFp paths provide a lightweight and rather general concept for arbitrary paths
in RDF graphs that also covers highly-relevant property-subject relationships. As
shown in Example 4.2, properties may also appear as a source or destination (subject
and object, respectively) of another edge. Those relations cannot be expressed using
a standard graph model as intermediate representation. However with RDFp, as
we have seen in this section, there are no such restrictions and an IRI may appear
at any place and in any order within a RDFp statement, as is the case for RDF.
Due to this generality we drop, for its graphical interpretation, the commonly used
approach of illustrating predicates as labeled edges. Instead we follow a notation
from [PAG10, LRV13] and depict each RDF term as a node. In case of our previous
Example 4.1, we illustrate the RDFp path (Bob, knows, Alice, knows, Ted) as:

Bob Alice Ted

knows knows
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4.3. RDFPath Syntax

RDFPath is a fully path-based language using RDFp as an underlying data model.
Accordingly, all RDFPath expressions are defined on paths and not pairs of nodes,
which is a crucial difference to many previous approaches. A schematic overview
of the input and output specification is illustrated in Figure 4.1. We can see that
there is no need to transform the graph into another representation. The input for
an RDFPath query is RDFp (or RDF), and both intermediate results and the final
output are represented as RDFp. More precisely, each RDFPath expressions takes
paths as input and returns paths as output, thus it is a closed language with respect
to the RDFp data model. This allows expressions to be easily composed and as a
result it simplifies query writing. Furthermore, since we understand RDFPath as a
complementary to existing RDF query languages, e.g. SPARQL, we need to ensure
the compatibility of RDFPath results with other RDF management systems. We
will therefore introduce (near the end of the chapter) a mapping from RDFp to the
triple-based RDF model.

Bob Alice
 knows 

RDFPath 

Processor

RDF RDFRDF

RDF

RDF

RDF

RDFp

RDF

RDFp

RDF

RDF RDFp

RDFPath Query

RDFp

Input Output

Figure 4.1.: Input/Output specification for RDFPath queries

The querying expressions that will be introduced next combine various features from
graph databases languages like RPQs [CMW87, CM90, CDLV03] and NREs [PAG10,
BPR12] and most notably from the XML language XPath [CD+99, BBC+03]. Fur-
ther elements are derived from relational languages and adopted to work on paths.
All in all, we will have a simple yet expressive language for querying RDF Graphs
with an underlying path-based data model that provides us many querying capa-
bilities. Figure 4.2 shows an example through which we will illustrate the usage
of RDFPath expressions in this section. It describes the relationship between four
persons including some additional demographic information. Next, we will start
introducing the main syntactical expressions of RDFPath and demonstrate their
usage on exemplary queries.

Namespaces. When using the full RDF triple notation, each IRI has to be writ-
ten out completely, which results in very long queries that are hard to write and
read. The RDF Primer [MMM14] proposes, analogously to XML, a shorthand
that simplifies both serialization of RDF and query writing by introducing so-
called namespaces. A complete IRI can be shortened by substituting its names-
pace with an abbreviation (prefix). For example, if we want to abbreviate the
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type

friendship

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Bob Alice Ted

knows knows

Changing context: 

type

age

countrycountry

31

DE

CH

Robin

friend

type

Figure 4.2.: RDF example describing friendship relations between four people,
where same resources are connected by a dotted line

resource http://dbpedia.org/resource/Marco_Polo we can define a prefix dbp
for the namespace http://dbpedia.org/resource/ and write dbp:Marco_Polo as
a shorthand. We adopt this concept for RDFPath and allow the defining of arbitrary
namespaces, analogous to SPARQL [PS08], by preceding a query as follows:

1 @pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns\#>;
2 @pref ix dbp : <http :// dbpedia . org / r e sou r c e />;
3 @pref ix f o a f : <http :// xmlns . com/ f o a f /0.1/ >;

Context. An RDFPath query starts with a specification of the initial context
[CD+99]. This will be the first node of a path or, in other words, the starting
node. As an example, to indicate that all of our paths should start with, e.g. Bob,
we specify this resource by its IRI at the beginning of a query. There are also queries
where we do not want to make any restrictions on the context, thus allowing paths
to start at all resources in the graph. This can be expressed by using a so-called
wildcard selection denoted by the symbol "∗" instead of a fixed IRI. A middle way
between both options is to define the context as a set R of resources {r1, ..., rn}
enabling multiple starting nodes. After that, we specify the path we want to follow
which is separated by the symbol ":" from the context specification. The basic no-
tation of a context ctx is then defined as ctx ∈ {i, ∗, I ′} where i ∈ I, I ′ ⊆ I and
I is the countably infinite set of international resource identifiers (IRIs). Assuming
an arbitrary RDFPath pattern "/rp", a query with context definition is written as
follows:

ctx : /rp

The followed exemplary queries illustrate the usage of all three cases whereby the
friendship is expressed by the predicate knows. Query (1) asks for friends of Bob,
(2) for friends of any resources (i.e., everything) and (3) for friends of Bob or Alice:

62



4.3 RDFPath Syntax

1 Bob : / knows
2 ∗ : / knows
3 {Bob , A l i c e } : / knows

Traversing steps. The most crucial expression in RDFPath that forms also the
main building block for each query is the traversing operator which allows us to
navigate through the graph structure. Analogous to Regular Path Queries (RPQs)
[CMW87] and XPath [CD+99], its shape can be illustrated as follows using a filled
square to indicate the initial context:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

...

As shown in the example queries above, the property (edge) we want to follow first,
is specified directly after the context. We refer to this as a basic traversing step.
More complex patterns are possible by combining multiple traversing steps, each
separated by the symbol "/" and indicating a further edge to follow next. Again,
we are allowed to use wild card selections (denoted by "∗") which simply select all
properties (outgoing edges) or define sets R composed of multiple resources r1, ..., rn
analogous to the context definition. If we consider for instance our running example,
we are now able to ask also for the Friends-of-a-Friend. To do so, we need to traverse
the graph structure by following the knows property successively (1). We can also
ask for any resources that are reachable from Bob within three traversing steps (2) or
apply sets (3), similar to the context definition. All three query types are exemplary
illustrated as follows:

1 Bob : / knows /knows
2 Bob :/∗ /∗ /∗
3 Bob :/{ knows , f r i e nd } /{knows , f r i e nd } /knows

More formally, assume a single traversing step t to be defined as t ∈ {i, ∗, I ′} where
i ∈ I, I ′ ⊆ I and I is the countably infinite set of international resource identifiers
(IRIs). An RDFPath pattern rp that combines n single traversing steps is then
defined as rp = t1 / t2 /.../ tn, with n ≥ 1. Furthermore, as a shorthand to avoid
repetitive pattern rp we can replace similar subsequent patterns rpi / rpi / ... by
rpi(m), with m indicating the number of repetitions for rpi. This way, we can
shorten the three exemplary queries above as follows:

1 Bob : / knows (2 )
2 Bob : /∗ ( 3 )
3 Bob :/{ knows , f r i e nd }(2) /knows
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So far, a traversing step provides capabilities to browse RDF as a graph-like structure
with a fixed distinction between edges and nodes. However, as discussed earlier an
edge label in RDF (predicate) does not come from a finite alphabet and may also
appear as a source or destination (subject and object, respectively) of another edge.
Consequently, to capture also this pattern, we need to introduce a further traversing
step that breaks the distinction of edges and nodes in order to also cover such kinds
of navigational movements. Basically, we need a traversing step which leads not
to the object, but to the property itself, thus allowing the initialization of further
traversing steps which start from the predicate. The corresponding shape can be
illustrated as follows:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

We express this new traversing step by the symbol "\". An exemplary query that
illustrates its usage by querying the topology of a graph is the following:

1 Bob : / knows \knows / type

Considering our running example (Figure 4.2), the upper query would match the
following path:

type

friendship

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Bob Alice

knows knows

Changing context: 

For the remaining notations in this chapter, we will need to distinguish multiple
times between both traversing steps. To sum them up, for two RDFPath expressions
rpi, rpj we write

• rpi / rpj for querying the graph graph-structure of RDF, by means of object-
subject relationships in RDF,

• rpi \ rpj for querying the topology of a graph (thus its schema or ontology)
by means of predicate-subject relationships in RDF.

Recursions. Reachability problems, like the question whether a path exists be-
tween two given resources, has been widely recognized as an important feature for
querying RDF Graphs [PAG10, LRV13, AGP14, RSV15]. The shape of such a query
exhibits the following pattern:
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Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

...

Essentially, we adopt the concept of recursion as suggested in [PAG10] but in con-
trast, we are working on paths, thus arbitrary n-ary relations (cf. Section 4.2) rather
than binary relations. The basic notation of a recursive RDFPath pattern rp, which
in turn can be composed of multiple traversing steps, supports the following expres-
sions:

rp(∗) | rp(+) | rp(min,max) | rp(min, ∗) | rp(∗,max)

where,

• * represents zero or more matches,

• + represents one or more matches,

• min, max represent at least min and at most max matches.

We next consider again our running example from Fig. 4.2 and demonstrate the
usage of recursion on the following three queries:

1 Bob : / knows (∗ )
2 Bob : / knows (∗ , 3 )

In (1) we determine all those users, that are reachable by following the knows pred-
icate an arbitrary number of times and start at Bob. To restrict the search to a
certain depth m, and thus compute just the so-called m-hop neighborhood of Bob
we write "(∗,m)" instead of "∗" as shown in (2)

Furthermore, if we use the second traversing operator "\", which refers not to the
object but to the property itself, along with recursion, we are now able to capture
the followed connectivity pattern:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

...

These patterns are of particular interest in cases where we want to query, e.g., the
topology of a graph [PAG10, RSV15] or to track provenance [MC13]. Usually, such
information is described by an underlying ontology which encoded knowledge by
means of property-subject relationships, e.g. subclass relations.

65



Chapter 4 RDFPath

Branching. Due to the high diversity in RDF vocabulary it is often hard to
write queries that match exactly what we want. Even within one graph we might
need to consider different patterns to capture what we are interested in. This be-
comes even more important if we want to e.g., query merged RDF graphs from
different domains. Introducing the concept of alternative patterns as known from
XPath [CD+99, BBC+03] enables us to capture the diversity of RDF and provide
much more flexibility in query writing. In RDFPath, we refer to this concept by the
term branching. We can illustrate its general shape as follows, where two alternative
branches are invoked:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

...

...

...

...

...

...

Syntactically, two alternative branches rp1 and rp2 are separated by the symbol ||
and grouped in parentheses. A branch might not only contain individual traversing
steps but also more complex constructs including recursion and filters. In our run-
ning example, we want to express two alternative patterns that start from Bob but
again share a common property that determines the age afterwards. This can be
expressed by a nested-branching expression as follows:

1 Bob : / ( / knows /knows | | / f r i e nd / f r i e nd ) /age

Filters. Checking for data values along a path is one of the main distinctive features
between traditional path languages for traversing graph edges (e.g RPQs, CRPQs,
C2RPQs [CMW87, CM90, CDLV00, CDLV03]) and more advanced approaches such
as (NREs) [PAG10]. RDFPath comes along with an expressive set of filter constructs
that were recognized as important querying features for RDF [PAG10, LRV13] al-
lowing, for example, the performing of tests on the topology along a main path.
Likewise in XPath [CD+99], square brackets "[ ]" are used to indicate a Boolean
filter expression, where the last resources of each path reached by the RDFPath
pattern is tested. The basic notation of a filter filter that constraints the paths
reached by an RDFPath pattern rp is then:

rp[filter]

where filter supports the following expressions

rp | (filter && filter) | (filter || filter) | ? value | ? f(value) | f() | (rp ? rp)

and ? ∈ {=, >,<, ! =} [CD+99, HSP13] denote to equality and inequality tests that
compare data values with a number or text and evaluate to true or false, f() are
unary tests for, e.g., testing the data type [BCF+02] of the data values, and logical
"&&" and "||" operators combine multiple nested filter expression.
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Next, we will categorize supported filters expressions in three categories and explain
them more detailed.

1. Basic filters: The first type of filter corresponds to the upper description
and is applied directly on the last resource of a path that is reached with the
prior traversing step. We can compare this resource with a value or perform a
unary test on it. This allows us, for instance, to test whether we have reached
a certain resource on our path. An exemplary RDFPath query that illustrates
the usage of a basic filter in order to check if there is a path between Bob and
Ted that follows the property knows is specified as:

1 Bob : / knows /knows[=Ted ]

The corresponding filter is expressed as [=Ted] and refers to the last resources
of our path after following the property knows twice. The actual test can be
illustrated as follows:

. . . =Ted?

2. Nested filters: Nested subexpressions allow the application of filters on data
values which are not part of the traversed path. To do so, traversing steps are
used to define so-called sub-paths, which branch from the current path. Their
syntactical rules resemble previous definitions and thus they might be nested,
contain recursions, or again further filters. For a traversed sub-path, again only
the last resources reached by the RDFPath pattern are taken into account for
the filter expression. Applicable filter conditions stay the same, thus both
arithmetic and unary functions are supported. More formally, assuming rp1,
rp2, and rp3 to be RDFPath patterns, nested filters are then constructed as
follows:

rp1[filter1]],
rp1[rp2 [filter2]],
rp1[rp2 [rp3 [filter3]]], ...

where,
• rp1 specifies the main path in which we are interested (output path),
• rp2, rp3 are sub-paths, which branches from the main path and are solely

used for the evaluation of filter expressions,
• filter1 is the outer filter that restricts valid paths for the main path

specified by rp1.
• filter2 and filter4 are inner filters that restricts valid paths for the sub-

paths specified by rp2 and rp3, respectively.
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The corresponding pattern shape which is traversed by nested filter expression
will be illustrated with dotted lines, whereas the node from which the filter
is applied is drawn in black, and the resource on the path that is used for
comparison is highlighted in blue (gray):

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

...

...

...

...

...

...

Bob Alice Ted

knows knows

test

...

... test
(a) (b)

An exemplary query (cf. Figure 4.3 (a)) that asks if the age of a user is above
21 by means of a nested filter is written as:

1 Bob : / knows /knows [ / age > 21 ]

3. Complex nested filters: In addition, arithmetic functions can also be ap-
plied on two sub-paths. Such a construct is important if we want to ensure
that multiple resources which are not traversed on the main path fulfill certain
criteria or have a common property. However, a sub-path might not select just
one single resource that can be easily compared with another one. Here, we
need to handle two sets of resources rather than two single data values. We
assume a test to be true if there is at least one pair of resources from both sets
that fulfills the filter. Formally we write:

rp1[rp2 ? rp3]

where,
• rp1 specifies the main path we are interested in,
• rp2 and rp3 are sub-paths, which branch from the main path and define

sets of reached resources,
• ? ∈ {=, >,<, ! =} is an arithmetic function that compares two sets of

resources defined by sub-paths with each other. It evaluates to true if
there exists at least one pair of resources that satisfies the test.

The corresponding pattern shape can be illustrated as follows, where a test is
applied on two resources reached by different sub-paths.

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

...

...

...

...

...

...

Bob Alice Ted

knows knows

test

...

... test
(a) (b)

Figure 4.3 illustrates complex nested filters on our running example using the fol-
lowing RDFPath query:

1 Bob : / knows [ / country = /knows / country ]
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The query (cf. Figure 4.3 (b)) compares the country of a user to the country of a
friend. It is important to note that such sub-paths are solely used to evaluate filter
expression and are not included in the resulting RDFp paths.

Bob Alice Ted

knows knows

. . .

Bob

Alice DE

knows

CH

country

country

Ted 32

age

Alice

Ted DE

knows
country

CH

country

CH=DE?

. . .

> 21?

(a) (b)

Figure 4.3.: (a) Nested filter and (b) Complex nested filter in RDFPath

Aggregate Functions. Beyond navigational capabilities and various data value
tests, there is also limited support for aggregation functions in RDFPath. However,
in contrast to relational algebra, their usage is strongly restricted since it breaks the
closeness of RDFPath, and thus does not provide paths as output but instead single
values. As a result, they are merely applicable as the last expression of an RDFPath
query as a so-called result-modifier. Nonetheless it is an interesting feature since it
provides some valuable information that can be used, for instance, to also reason
about computed paths. To understand the concept of aggregations in RDFPath, we
have to recall that a result of an RDFPath query is a set of RDFp path with variable
length and probably even diverse data types. This semi-structured, non-columnar
format prevents us from applying aggregation functions on various positions like
in relational algebra. Indeed, we have to restrict aggregations to work solely on
the last resources of a path. Which is, if we recall how a set of RDFp statements
is composed, the only possible position for literals. In other words, when using
aggregate functions, an RDFPath query works more like a path-based selector for
values that we want to aggregate. From this set of selected values only those values
are considered which are compatible with the specified aggregate functions. Non-
compatibles values, e.g. strings when computing an average numerical value, are
discarded. Syntactically, if we assume rp is the last pattern of an RDFPath query
and we have an aggregate function result() we write:

rp .result()

A complete list of supported functions can be found in Table 4.2. Two exemplary
RDFPath queries that ask (1) for the number of Friends-of-Friend of Bob, which are
reachable by following the property knows an arbitrary number of times and (2) for
their average age are illustrated in the following:

1 Bob : / knows ( ∗ ) . count ( )
2 Bob : / knows (∗ ) /age . avg ( )
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Chapter 4 RDFPath

The complete syntax of RDFPath is summarized in two tables. Table 4.1 describes
the navigational expressions and Table 4.2 the filter conditions and result modifiers.

Table 4.1.: Syntax of RDFPath expressions

RDFPath Syntax Description

query := 〈ctx〉 : 〈path〉 . 〈result〉 RDFPath query with optional result modifier
ctx := iri | {I} | ∗ Context specification by IRI, set of IRIs or wildcard
path := /rp Traversing step for querying the graph structure

| \rp Traversing step for querying the topology
rp := iri IRI representing path of length one
| (∗) Wildcard matching all IRIs
| {I} Set of IRIs
| (rp) Grouping of path expressions
| ∧rp Inverse path expression
| rp path Iterative traversing step
| (path || path) Two alternative traversing steps
| rp ?(path) Optional traversing step with zero or one match
| rp(∗) Recursive traversing with zero or more matches
| rp(+) Recursive traversing with one or more matches
| rp(n,m) Recursive traversing with n to m matches
| rp(n, ∗) Recursive traversing with at least n matches
| rp(∗,m) Recursive traversing with at most m matches
| rp[ filter ] Filter restrict valid paths based on node tests

Table 4.2.: Syntax of filters and result-modifiers in RDFPath

RDFPath Syntax Description

filter := path Check for existence of matching IRIs or whole paths
| filter && filter Combines different tests by using a logical operator
| filter || filter Combines different tests by using a logical operator
| ? value Equality and inequality tests with ? ∈ {=, >,<, ! =}
| ? f(value) Test using predefined functions, e.g. prefix(http)
| f() Unary test using predefined functions, e.g. isInt()
| path ? path Checks if there is one pair from both sets s.t. ? is fulfilled

result := count() Counts results
| sum() Aggregates results & sums up numerical literals
| min() Aggregates results & determines min. numerical literal
| max() Aggregates results & determines max. numerical literal
| avg() Aggregates results & computes average numerical literal
| triple() Projects first, second and last IRI of path to a triple
| project(list int) Projects n-ary paths to m-ary paths, where n ≥ m
| limit(int) Limits the number of results by val
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4.4 RDFPath Semantics

4.4. RDFPath Semantics

To define the semantics of RDFPath, we are taking our previously-introduced data
model RDFp as a basis, on which we introduce all necessary algebraic operators.
For a navigational query, the most crucial point is the traversing operator that allows
us to query the graph structure. Traversing the graph structure can be intuitively
computed by composing two individual RDFp paths (in this simple case triples) like
(Bob, knows, Alice) and (Alice, knows, Ted) into a new path (Bob, knows, Alice,
knows, Ted). In order to define this traversing operator more formally, we first need
to introduce a few formalizations. After that, we will introduce our semantics of
RDFPath. We conclude this section with algorithms for evaluating the most crucial
operations defined in the semantics.

Definition 4.4 (Mapping Paths to Elements). Assume p = (a1, a2, ..., an) to
be an arbitrary RDFp path. To select individual elements of a path p we introduce
the mapping functions πi(p), that retrieves the i-th element, such that πi(p) = ai.
In addition, the first element of a path p is denoted by first(p), the last one by
last(p) and the property of a path is assumed to be (in accordance to RDF triples)
the second element, hence we can write:

π1(p) = first(p) = a1

πn(p) = last(p) = an

π2(p) = prop(p) = a2

πi(p) = ai

Definition 4.5 (Mapping Paths to Values). Let P be an RDFp Graph and
p ∈ P . In order to determine the length of a path p, we define the function length(p),
such that for a path p = (a1, a2, ..., an), length(p) = n. Furthermore, using this
definition we can now compute the minimal and maximal length of all paths p ∈ P
and obtain the number of paths in P as follows1:

min(P) = min{ length(pi) : pi ∈ P }
max(P) = max{ length(pi) : pi ∈ P }
count(P) = |P|

1Note that the notion of min() and max() in Definition 4.5 is not related to the aggregation
functions which are applied as a result-modifier as shown in Table 4.2. Instead, they introduce
some basic formalisms required for subsequent definitions.
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Example 4.3. Consider an RDFp Graph P = {p1, p2, p3} with

p1 : (Bob, knows, Alice),
p2 : (Bob, knows, Alice, knows, Ted),

p3 : (Bob, knows, Alice, knows, Ted, age, 31)

Applying our newly introduced functions on P and some exemplary paths p ∈ P we
obtain the followed elements and values:

first(p1) = Bob count(P) = 3 length(p2) = 5
last(p3) = 31 min(P) = 3
π6(p3) = age max(P) = 7

Definition 4.6 (Projection). Analogous to relational algebra where projection
is used to remove columns, we introduce projection in RDFPath to eliminate, e.g.
the i-th element from all paths. Given P to be an RDFp graph, the projection is
applied on each path p ∈ P and formally defined as:

πi1,i2,... ,ij(P) = {(πi1(p), πi2(p), ..., πij(p)) | p ∈ P}

Please note, that for πm(p) with m > length(p) where the m-th element certainly
does not exist, no element is added to the path by this operation.

Definition 4.7 (Sub-paths). Analogous to projection, we define a function that
shortens a path p ∈ P by a fixed number of elements, which are removed from the
end. We denoted it by δk(p) for individual paths and by δk(P) if we apply this
function on a set of paths respectively if we remove the last k elements, formally
defined as:

δk(p) = (π1(p), π2(p), ..., πlength(p)−k(p))
δk(P) = {δk(p) | p ∈ P}

In the case of a path pi ∈ P with length(pi) ≤ k, the path pi is discarded after
applying δk(P).

Definition 4.8 (Path Composition). Let p = (a1, a2, ..., an) and q = (b1, b2, ..., bm)
be two arbitrary RDFp paths. Two RDFp paths p, q are called compatible iff it
holds that last(p) = first(q), thus an and b1 refer to the same IRI. The composition
(. ◦ .) between two compatible paths p and q is then defined as:

p ◦ q = (a1, a2, ..., an) ◦ (b1, b2, ..., bm) = (a1, a2, ..., an−1, b1, b2, ..., bm)

Note that an is dropped by the composition since it is equal to b1 and would simply
induce redundant elements.
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Example 4.4. Consider an RDFp Graph P = {p1, p2, p3} with

p1 : (Ted, country, DE),
p2 : (Bob, knows, Alice, knows, Ted),

p3 : (Bob, knows, Alice, knows, Ted, age, 31)

Applying our newly introduced functions on P and some exemplary paths p ∈ P we
obtain the followed RDFp paths:

π1,3(P) = {(Ted, DE), (Bob, Alice), (Bob, Alice)}
π1,5(P) = {(Ted), (Bob, Ted), (Bob, Ted)}
π5,6,7(P) = {(Ted), (Ted, age, 31)}
δ2(P) = {(Ted), (Bob, knows, Alice), (Bob, knows, Alice, knows, Ted)}
δ1(p2) = (Bob, knows, Alice, knows)
δ3(p1) = ∅
p2 ◦ p1 = (Bob, knows, Alice, knows, Ted, country, DE)
p3 ◦ p1 = ∅

With this notation, we can next introduce the complete formal semantics for RDFPath.
For clarity of the presentation, we split the definitions into multiple parts. We start
with all basic expressions, including traversing expressions for querying the graph
structure of the form /rp. After that, we continue with all traversing expressions
for querying the topology of the graph with the form \rp. In the last step, we define
the evaluation of filter expressions in RDFPath and conclude with a table which
provides a mapping between syntax and semantics.

Let a, b be RDF terms, A, B be sets of RDF terms {a1, ..., an} and {b1, ..., bn} with
n,m ∈ N, respectively. The evaluation of an RDFPath expression rp over an RDFp
graph D, denoted as JrpKD is defined recursively as:

Ja : /rpKD := {p | p ∈ JrpKD ∧ first(p) = a} ,
JA : /rpKD := {p | p ∈ JrpKD ∧ first(p) ∈ A} ,
J∗ : /rpKD := {p | p ∈ JrpKD} ,

JbKD := {p ∈ D | prop(p) = b} ,
JBKD := {p ∈ D | prop(p) ∈ B} ,
J∗KD := {p ∈ D} ,
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Jrp1/rp2KD := {p1 ◦ p2 | p1 ∈ Jrp1KD ∧ p2 ∈ Jrp2KD ∧ last(p1) = first(p2)} ,
J∧bKD := {(o, p, s) | (s, p, o) ∈ D ∧ p = b} ,

J(rp)KD := (JrpKD),
J(rp1 || rp2)KD := Jrp1KD ∪ Jrp2KD,
Jrp1 ?(/rp2)KD := {p1 ◦ p2 | p1 ∈ Jrp1KD ∧ p2 ∈ Jrp2KD ∧ last(p1) = first(p2)}

∪ {p1 | p1 ∈ Jrp1KD ∧ ∀ p2 ∈ Jrp2KD : last(p1) 6= first(p2)} ,
J(/rp)∗KD := ∅ ∪ JrpKD ∪ Jrp/rpKD ∪ Jrp/rp/rpKD ∪ ...,

J(/rp)+KD := JrpKD ∪ Jrp/rpKD ∪ Jrp/rp/rpKD ∪ ...,

J(/rp)n,mKD :=
m⋃
i=n

Jrp/.../rp︸ ︷︷ ︸
i

KD,

J(/rp)n,∗KD :=
∞⋃
i=n

Jrp/.../rp︸ ︷︷ ︸
i

KD,

J(/rp)∗,mKD := ∅ ∪
m⋃
i=1

Jrp/.../rp︸ ︷︷ ︸
i

KD,

Jrp [filter] KD := {p ∈ JrpKD ∧ CJcondKpD}

The evaluation of an RDFPath filter over an RDFp graph D for a path p is
denoted as CJfilterKpD and defines a boolean function which evaluates true iff the
path p satisfies the test expressed in filter. Let ? be an arithmetic function such
that ? ∈ {=, >,<, ! =} and x is an RDF term. The semantics of CJfilterKpD are
then defined as:

CJfilter1 && filter2KpD := CJfilter1KpD ∧ CJfilter2KpD,
CJfilter1 || filter2KpD := CJfilter1KpD ∨ CJfilter2KpD,

CJ/rpKpD := ∃q ∈ J/rpKD : first(q) = last(p),
CJ/rp [filter] KpD := ∃q ∈ J/rpKD : first(q) = last(p) ∧ CJfilterKqD,

CJ? xKpD := last(p) ? x,

CJ? f(x)KpD := EvalFunction(f,p,x,?),

CJf()KpD := EvalFunction(f,p),

CJrp1 ? rp2KpD := ∃p1, p2 : p1 ∈ Jrp1KD ∧ p2 ∈ Jrp2KD
∧ last(p) = first(p1) ∧ last(p) = first(p2)
∧ last(p1) ? last(p2)

The RDFPath expressions for querying the topology of the graph (\rp), denoted by
JrpKD, are defined analogous to the aforementioned semantics. Unchanged expres-
sions are omitted in the following.
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Ja : \rpKD := {p | p ∈ JrpKD ∧ first(p) = a} ,
JA : \rpKD := {p | p ∈ JrpKD ∧ first(p) ∈ A} ,
J∗ : \rpKD := {p | p ∈ JrpKD} ,

Jrp1 \rp2KD := {δ1(p1) ◦ p2 | p1 ∈ Jrp1KD ∧ p2 ∈ Jrp2KD ∧ last(p1) = first(p2)} ,
Jrp1 ?(\rp2)KD := {δ1(p1) ◦ p2 | p1 ∈ Jrp1KD ∧ p2 ∈ Jrp2KD ∧ last(p1) = first(p2)}

∪ {δ1(p1) | p1 ∈ Jrp1KD ∧ ∀ p2 ∈ Jrp2KD : last(p1) 6= first(p2)} ,
J(\rp)∗KD := ∅ ∪ JrpKD ∪ Jrp\rpKD ∪ Jrp\rp\rpKD ∪ ...,

J(\rp)+KD := JrpKD ∪ Jrp\rpKD ∪ Jrp\rp\rpKD ∪ ...,

J(\rp)n,mKD :=
m⋃
i=n

Jrp\...\rp︸ ︷︷ ︸
i

KD,

J(\rp)n,∗KD :=
∞⋃
i=n

Jrp\...\rp︸ ︷︷ ︸
i

KD,

J(\rp)∗,mKD := ∅ ∪
m⋃
i=1

Jrp\...\rp︸ ︷︷ ︸
i

KD

To sum up, Table 4.3 provides an overview on how syntactical RDFPath expressions
for querying the graph structure are defined by their algebraic notation using the
previously-defined semantics. Syntactical expressions for querying the topology are
mapped analogously, and are therefore omitted.

Definition 4.9 (Graph Composition). The most crucial operation in the se-
mantics is the traversing step, computed by the expression Jrp1/rp2KD. An intuitive
evaluation strategy that describes this operator more precisely is shown in Algo-
rithm 4.4.1. Let P1 and P2 be two RDFp graphs, i.e. sets of paths. Analogous to a
join in relational algebra [Cod70, Lau05], we apply the traversing operator on sets
of paths (denoted by (. on .) ) by computing the Cartesian product between P1 and
P2 while applying the composition on each individual pair of paths.
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Table 4.3.: Mapping between RDFPath syntax and semantics for expressions
traversing the graph structure and applying filters. Syntactical expressions for
querying the topology are mapped analogously. In case of the aggregate functions
expressed by result-modifiers, they are introduced only in an example-driven man-
ner. An algebraic notation of them is not shown in this work.

RDFPath Syntax RDFPath Semantics

query := 〈ctx〉 : 〈path〉 . 〈result〉 JrpKD
ctx := iri Ja : /rpKD

| {I} JA : /rpKD
| ∗ J∗ : /rpKD

rp := iri JaKD
| {I} JAKD
| (∗) J∗KD
| (rp) J(rp)KD
| ∧rp J∧rpKD
| rp1/rp2 Jrp1/rp2KD
| (rp1 || rp2) J(rp1 || rp2)KD
| /rp1 ?(rp2) Jrp1?(/rp2)KD
| /rp(∗) J(/rp)∗KD
| /rp(+) J(/rp)+KD
| /rp(n,m) J(/rp)n,mKD
| /rp(n, ∗) J(/rp)n,∗KD
| /rp(∗,m) J(/rp)∗,mKD
| rp[ filter ] Jrp [filter] KD

filter := rp CJrpKpD
| filter && filter CJfilter1 && filter2K

p
D

| filter || filter CJfilter1 || filter2K
p
D

| ? x CJ? xKpD, where ? ∈ {=, >,<, ! =}
| ? f(x) CJ? f(x)KpD
| f() CJf()KpD
| path ? path CJrp1 ? rp2K

p
D

Furthermore we define, analogously to the traversing step, the optional traversing
step, computed by the expression Jrp1?/rp2KD. Let P1 and P2 be two RDFp graphs,
i.e. sets of paths. We denote the optional traversal of two sets P1 and P2 by . An
algorithmic description of this operator is shown in Algorithm 4.4.2.
We captured paths with arbitrary lengths by introducing different types of recursion.
The basic operator was expressed by J(/rp)∗KD and described a recursive travers-
ing with zero or more matches. Assume again two sets of paths P1 and P2. An
algorithmic description of this operation that describes the evaluation and its ter-
mination conditions is denoted by (P1 on P2)∗ and shown in Algorithm 4.4.3. We
will refer to this algorithm once more in Chapter 7, where we discuss its properties
and implementation for a subsequent work presented later on in Chapter 5.
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Algorithm 4.4.1 : Traversing steps with sets of paths (on)
input : Two sets of paths P1,P2
output : Set of paths Pres after applying P1 on P2

1 Pres ← ∅
2 foreach pi ∈ P1 do
3 foreach qj ∈ P2 do
4 if last(pi) = first(qj) then
5 Pres ← Pres ∪ (pi ◦ qj)
6 end
7 end
8 end

Algorithm 4.4.2 : Optional traversing steps with sets of paths ( )
input : Two sets of paths P1,P2
output : Set of paths Pres after applying P1 P2

1 Pres ← ∅
2 foreach pi ∈ P1 do
3 foreach qj ∈ P2 do
4 if last(pi) = first(qj) then
5 Pres ← Pres ∪ (pi ◦ qj)
6 Ptmp ← Ptmp ∪ pi
7 end
8 end
9 end

10 Pres ← Pres ∪ (P1 − Ptmp)

Algorithm 4.4.3 : Recursive traversing steps on sets of paths (on)∗
input : Two sets of paths P1,P2
output : Set of paths Pres after applying (P1 on P2)∗

1 i← 0, ∆P 0 ← P1
2 while ∆P i 6= ∅ do
3 i← i+ 1
4 tmp = ∆P i−1 on P2
5 ∆P i = tmp− (∆P 0 ∪ ... ∪∆P i−1)
6 end
7 return Pres = ∆P 0 ∪ ... ∪∆P i
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4.5. Properties of RDFPath

4.5.1. Termination of Recursive Expressions

One crucial aspect we haven’t discussed yet but which is indispensable in the case
of recursive expressions is how to guarantee their termination. For instance, con-
sider Algorithm 4.4.3 line 4 where we join all compatible paths without any further
restrictions on them. Since triples in RDF may also describe a cyclic structure as,
e.g., (Bob, knows, Alice), (Alice, knows, Ted), (Ted, knows, Bob) does, infinite
loops with repetitive sub-paths can occur. In order to ensure that our algorithm
terminates at some point, we need at first to introduce a concept that prohibits
infinite loops which, in turn, can then be used to ensures that after a finite number
of iterations no more new paths are derived, and thus that at some point ∆P i 6= ∅.
Accordingly, we start in the section with introducing a new notation of cycles in
RDF graphs. After that, we will show how this notation guarantees the termination
of recursive expression.
In graph databases, a cycle is determined by the occurrence of two equal nodes on a
path. Applying this concept on RDFp would mean that we prohibit resources from
appearing multiple times along a path. However, a resource in RDFp that appeared
once, e.g. "knows", should be allowed to appear multiple times, regardless of whether
it is used in the subject, predicate, or object position. A resources appearing more
than once on a path then do not necessarily indicate a cycle in RDF. This makes
well-known cycle definitions not applicable for RDFPath. We therefore next define
a new notion of cycles for RDFPath that prevents infinite loops and comes along
with many fewer restrictions than are used in graph databases.

Definition 4.10 (Cycles in RDFPath). Assume p = (a1, a2, ..., an) is an RDFp
path. We call then a path p cycle-free if for any two subsequent resources ai, ai+1
and aj, aj+1 in p it holds that:

ai = aj ⇒ ai+1 6= aj+1, 0 < i < j ≤ n

According to this definition, we allow on the one hand the usage of repetitive prop-
erties like "knows", which are meant to be important for navigating the graph
structure. On the other hand, we prohibit repetitive patterns in the form of two
subsequent resources ai, ai+1 from appearing for a second time on a path, in the same
order. To keep this conditions in RDFPath, it is sufficient to check whether there
exists a cycle or not each time two RDFp paths p1, p2 are composed (denoted by
p1 ◦ p2). An naive algorithm that checks if Definition 4.10 holds for the composition
of two arbitrary RDFp paths p1, p2 is shown in Algorithm 4.5.1.
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Algorithm 4.5.1 : Checks cycles in p1 ◦ p2, for two RDFp paths p1, p2
input : Two RDFp paths p1, p2
output : True iff there is a cycle in p1 ◦ p2, else false

1 cycle← false,
2 i← 1, j ← 1,
3 while (cycle = false ∧ i < length(p1)) do
4 while (cycle = false ∧ j < length(p2)) do
5 if (πi(p1) = πj(p2) ∧ πi+1(p1) = πj+1(p2)) then
6 cycle← true
7 end
8 j ← j + 1
9 end

10 i← i+ 1
11 end
12 return cycle

Example 4.5. Consider the following RDF Graph R with cycles and two types
of friendships and the RDFPath query that asks for all friends of Bob which are
reachable by traversing knows or friend arbitrary times:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Bob Alice Ted

knows knows

Changing context: 

friend friend

1 Bob : / ( knows | f r i e nd )∗

Applying the query on R, while permitting only cycle-free paths, we obtain the
following five RDFp paths as result.

p1 : (Bob, knows, Alice),
p2 : (Bob, knows, Alice, knows, Ted),
p3 : (Bob, knows, Alice, friend, Bob),

p4 : (Bob, knows, Alice, knows, Ted, friend, Alice),
p5 : (Bob, knows, Alice, knows, Ted, friend, Alice, friend, Bob)

We can see, for instance, that in path p4 the resource Alice is allowed to appear
multiple times on the path, since there exist two distinct properties (knows, Alice)
and (friend, Alice) which lead to Alice but do not violate Definition 4.10. For the
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remainder of this dissertation, we assume all RDFPath results to be cycle-free, thus
the composition of two RDFp paths is only applicable if the resulting path does
not contain any cycles in accordance to Definition 4.10.
Further, we need to note that by implying all paths are cycle-free, we might also
exclude paths that are relevant for some use cases. One example are queries with a
fixed number of traversing steps which we demonstrate next.

Example 4.6. Consider the RDF Graph R shown in the above Example 4.5 and
the following query, which has a fixed number of traversing steps.

1 ∗ : / knows / f r i e nd /knows

In RDFPath, we would exclude the following paths since they violate our cycle-free
property.

p1 : (Bob, knows, Alice, friend, Bob, knows, Alice),
p2 : (Alice, knows, T ed, friend, Alice, knows, T ed),
p3 : (Ted, friend, Alice, knows, Ted, friend, Alice)

There might exist cases in which one is interested in those discarded paths as well,
although they exhibit cycles. However, for these types of queries where at first,
cycles do not play a role and secondly, they have a fixed number of traversing steps,
one can use SPARQL Basic Graph Pattern (not Property Paths) instead which
enable the retrieval of all matchings in such cases.

To continue our discussion on the termination of RDFPath queries, we next show
how concept of cycle-free paths ensure an upper bound for the path length.

Definition 4.11 (Maximum Path Length). In accordance with Definition 4.8
where we introduced the composition between two paths, we have for two RDF
triples p = (a1, a2, a3) and q = (b1, b2, b3):

p ◦ q = (a1, a2, a3) ◦ (b1, b2, b3) = (a1, a2, b1, b2, b3)

iff it holds that last(p) = first(q), thus a3 and b1 refer to the same IRI. Accordingly,
a newly composed path obtained by p ◦ q contains from each of both triples p and
q at least two subsequent resources. Since a path in RDFPath has to be cycle-free,
and thus two subsequent resources are not allowed to appear more than once in a
path, we can conclude that a triple t ∈ G can contribute also at most once to an
RDFp path p = (a1, a2, ..., an) obtained by an RDFPath query evaluated on G. As a
result, the maximal possible length of an RDFPath path corresponds to the number
of triples in G, denoted by |G|.

Since each traversing step in RDFPath increases the length of a path, and there
exists an upper bound for the length of a path which is determined by the number
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of triples in the input graph, we conclude that after a finite number of iterations all
possible paths are derived. This in turn guarantees the termination of recursions in
RDFPath, which requires that an iterations does not derive any new paths.

4.5.2. Upper Bound for Paths in RDFPath

We have illustrated the usefulness of working with paths in multiple examples but
omitted discussing the drawbacks up to now. One crucial aspect is clearly the
evaluation problem, which can become rather expensive in cases of non-selective
queries. However it is not only the maximum length of a path, as discussed in
the previous section, which has a significant impact on the total result size, but
rather the number of paths which is derivable by an RDFPath query. To investigate
this aspect in more detail, we first illustrate the impact of path-based results in a
small example. After that, we provide an estimation for a general upper bound of
derivable results by an RDFPath query.
A commonly used example to investigate critical cases in graph databases is a so-
called clique or known as complete graph. That is a fully-connected graph, which
demonstrates in our small example a social network with four users, where each
person knows everybody.

Example 4.7. Consider the following fully-connected RDF Graph R and an RDF-
Path query that asks for all friends of Bob which are reachable by following the knows
property arbitrary times.

type

friendship

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Bob Alice Ted

knows knows

Changing context: 

type

age

country
country

31

DE

CH

Robin

friend

type

Bob Alice

TedRobin

Bob Alice

Robin Ted
knows

1 Bob : / knows (∗ )

Applying the query on R we obtain the following set of RDFp paths as result.

{ (Bob, knows, Alice),
(Bob, knows, Ted),

(Bob, knows, Robin),
(Bob, knows, Alice, knows, Ted),

(Bob, knows, Alice, knows, Robin),
(Bob, knows, Alice, knows, Bob),

(Bob, knows, Robin, knows, Alice),
(Bob, knows, Robin, knows, Ted),
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(Bob, knows, Robin, knows, Bob),
(Bob, knows, Ted, knows, Alice),
(Bob, knows, Ted, knows, Robin),
(Bob, knows, Ted, knows, Bob),

(Bob, knows, Alice, knows, Ted, knows, Robin),
(Bob, knows, Alice, knows, Ted, knows, Bob),

(Bob, knows, Alice, knows, Robin, knows, Ted),
(Bob, knows, Alice, knows, Robin, knows, Bob),
(Bob, knows, Ted, knows, Alice, knows, Robin),
(Bob, knows, Ted, knows, Alice, knows, Bob),

(Bob, knows, Ted, knows, Robin, knows, Alice),
(Bob, knows, Ted, knows, Robin, knows, Bob),

(Bob, knows, Robin, knows, Alice, knows, Ted),
(Bob, knows, Robin, knows, Alice, knows, Bob),
(Bob, knows, Robin, knows, Ted, knows, Alice),
(Bob, knows, Robin, knows, Ted, knows, Bob) }

We can clearly see, that although cycles are forbidden and we have a clique of just
four resources with one edge, we obtain a sizable amount of resulting paths with a
total number of 24 for this query. This blow up affects not only the final but also
all intermediate results.
Next we want to estimate a general upper bound for the number of paths that can
be derived by an RDFPath query evaluated against an RDF graph G. Consider
then the following RDFPath query which computes all possible paths between all
resources in an RDF graph G.

1 ∗ : / ∗ (∗ )

Let the size of an RDF graph G be determined by the number of triples it contains,
denoted by |G| = n. We start with the trivial case which is the amount of derivable
paths with length one. Since paths of length one are the triples themselves, we
can note that there exists n derivable paths of length n. To estimate the number
of derivable paths of length two, we recall Definition 4.9, where we introduced the
composition of two RDFp Graphs, denoted by (. on .). By computing the Cartesian
product between G with itself, thus G on G, we obtain at most n · n = n2 paths.
More precisely, we can assume at most n · (n−1) paths, since a triple can contribute
according to our cycle-free property at most once to a path. We can carry on that
way and add for each increase of the path length one further Cartesian product to
the previous result, i.e. G on G on G for paths of length three and so on. Since the
longest possible path in RDFPath is of length n, we need at most n − 1 Cartesian
products. Consequently, we can estimate for each path length the following number
of paths:
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Path Length Number of Derivable Paths
1 : n
2 : n · (n− 1)
3 : n · (n− 1) · (n− 2)
4 : n · (n− 1) · (n− 2) · (n− 3)

...

n − 2 : n · (n− 1) · (n− 2) · (n− 3) ... (n− (n− 3))
n − 1 : n · (n− 1) · (n− 2) · (n− 3) ... (n− (n− 3)) · (n− (n− 2))

n : n · (n− 1) · (n− 2) · (n− 3) ... (n− (n− 3)) · (n− (n− 2)) · (n− (n− 1))

Considering the longest path of length n we can state that:

(n)︸︷︷︸
n

· (n− 1)︸ ︷︷ ︸
n−1

· (n− 2)︸ ︷︷ ︸
n−2

· (n− 3)︸ ︷︷ ︸
n−3

... (n− (n− 3))︸ ︷︷ ︸
3

· (n− (n− 2))︸ ︷︷ ︸
2

· (n− (n− 1))︸ ︷︷ ︸
1︸ ︷︷ ︸

n!

We can see that there exists at most n! paths of length n. Further, we can also
observe that the number of derivable paths of length n− 1 can be then determined
by dividing the number of paths of length n by n− (n− 1), which is then:

n · (n− 1) · (n− 2) · (n− 3) ... (n− (n− 2)) · (n− (n− 1))
n− (n− 1) = n!

n− (n− 1) (4.1)

According to that, we can rewrite the above estimated number of paths for each
path length as follows:
Path Length Number of Derivable Paths

n : n!
n− (n− 0)! = n!

0! = n!

n − 1 : n!
n− (n− 1)! = n!

1! = n!

n − 2 : n!
n− (n− 2)! = n!

(n− (n− 1)) · (n− (n− 2))

...

3 : n!
(n− 3)! = (n− 3)! · (n− 2) · (n− 1) · n

(n− 3)! = n · (n− 1) · (n− 2)

2 : n!
(n− 2)! = (n− 2)! · (n− 1) · n

(n− 2)! = n · (n− 1)

1 : n!
(n− 1)! = (n− 1)! · n

(n− 1)! = n

From this representation we can conclude that, for each path length i, the number
of derivable paths in RDFPath is determined by

n!
(n− i)! (4.2)
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With this equation we can finally summarize all individual numbers of paths ob-
tained for each path length resulting in:

n∑
i=1

(
n!

(n− i)!

)
(4.3)

We can now conclude that the upper bound for paths that can be obtained by an
RDFPath query evaluated against an RDF graph G with n triples can be estimated
by

n∑
i=1

(
n!

(n−i)!

)
. One exemplary RDF graph, for which that upper bound can be

actually reached has the following structure:

type

friendship

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Bob Alice Ted

knows knows

Changing context: 

type

age

country
country

31

DE

CH

Robin

friend

type

Bob Alice

TedRobin

Bob Alice

Robin TedBob

p1

pn

...

It describes just one resource connected by n distinct predicates p1, ..., pn.
In Chapter 8, we will compare the performance of our implemented RDFPath
Engine with competitive RDF management systems and also existential query lan-
guages. We will demonstrate that, in practice and with more realistic RDF graphs
and queries, the amount of derived paths and consequently their impact on query
evaluation, is significantly smaller than discussed in this section.
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4.6. Mapping RDFp to RDF

In this chapter we introduced RDFPath, an expressive navigational query languages
that uses RDFp as an underlying data model. We have seen that having paths rather
than triples or pairs of nodes enable more meaningful results for, e.g. reachability
queries. We achieved this by means of RDFp, which was used as the data model
for the input and output of each RDFPath expression. However, if we recall our
initial goal for RDFPath, which was to become a part of the ecosystem of RDF data
management tools, we need our results to be compatible with other Semantic Web
languages and tools. Since we cannot assume to have the support of RDFp, it is
crucial to investigate how to again produce triple-based RDF graphs out of RDFp
paths but without losing valuable information about the traversed path. That way,
we facilitate the integration of RDFPath into existing workflows and environments,
where for instance, RDFPath can be used to preprocess complex paths once in
advance, and SPARQL is used afterwards to query interactively precomputed RDF
data that contains paths. This problem has been also investigated for SPARQLeR
in [KJ07], an SPARQL extension with support for regular path queries. SPARQLeR
allows to output a matched path as a concatenated list of resources or alternatively
in a triple-based representation encoded with new RDFS vocabulary. We propose
as next two solutions for a mapping that ensures on the one hand the compatibility
to other RDF data management systems, and preserves on the other hand the
information about traversed resources.

Quadruples for Representing Paths. One common approach to enhance the syn-
tax and semantics of RDF are so-called quadruples which extend the ternary struc-
ture of RDF by a fourth element. The general form is an 4-ary tuple

<subject> <property> <object> <context>,

which expresses that for a quadruple (s,p,o,c) “a subject s has the property p with
the object (value) o under the context c”. As this is a rather small addition on top
of RDF, it is easy to implement it in existing Semantic Web tools [CBHS05]. Mean-
while, most RDF management systems support such a structure. But in most cases,
the fourth element is used to handle multiple RDF graphs and is thus introduced
as a unique identifier to differentiate between graphs. We can now adopt this idea
for RDFPath. However, rather than adding an identifier to a triple that refers to
a graph, we use the fourth element to inject the complete information about the
original path in a compact representation that does not violate the 4-ary structure
of quadruples but preserves all its information. The context c is then seen as a de-
scription for a triple (s,p,o) that contains information about the resources of which
a path is composed. Next, we will investigate how to define such a mapping more
formally.

85



Chapter 4 RDFPath

Definition 4.12 (RDF graph with Quadruples). Analogous to an RDF graph
as defined in Chapter 4.2, assume I,B,L to be pairwise disjoint, countably infinite
sets of international resource identifiers (IRIs), blank nodes and literals, respec-
tively. Then an RDF graph Q with quadruple (N-Quads) is defined as a set of RDF
quadruples, such that:

Q ⊆ (I ∪ B)× I × (I ∪ B ∪ L)× (I ∪ B ∪ L),

where q ∈ Q is a single quadruple (s,p,o,c). However, in order to model paths as a
fourth element, rather then referring to it as a graph label, we abused the original
notation by also allowing literals in the fourth position. We denote such graphs as
RDFQ graphs in the following.

Definition 4.13 (Mapping to Quadruples). Given an RDFp graph D, we
define the RDFPath result modifier quad() as a mapping function that produces the
following RDFQ graph Q as result:

Q := {(s, p, o, c) | t ∈ D
∧ s = first(t)
∧ p = prop(t)
∧ o = last(t)
∧ c = t.toString()}

The function toString() returns for a path t ∈ D a string concatenation of all
resources traversed in t, where the symbol "/" is used as seperator. Its basic idea is
similar to the list operator introduced in SPARQLeR [AMS07].

Example 4.8. Consider as an example the followed RDFp graph D, that is
mapped into the corresponding RDFQ graph Q by applying the mapping function
quad() on D.

D =


(Bob, knows, Alice, knows, Ted),
(Bob, knows, Robin, friend, Ted),
(Alice, knows, Ted, country, DE),

(Alice, country, DE)



Q =



 

D.quad()

(Bob, knows, Ted, "Bob/knows/Alice/knows/Ted"),
(Bob, knows, Ted, "Bob/knows/Robin/friend/Ted"),
(Alice, knows, DE, "Alice/knows/Ted/country/DE"),

(Alice, country, DE, "Alice/country/DE")
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One drawback of this approach is the loss of semantics in mapping to a text-based
literal. On the one hand, we obtain a human-readable explanation for a path, but
on the other, as we compose everything into a string, it is not machine-readable
any more thus cannot be processed automatically in another step or system. A
further problem might arise due to semantic conflicts with RDF data management
systems with regard to interpreting the fourth element correctly. If such systems do
not provide enough flexibility, the context element might be simply interpreted as
the name for a graph rather than an explanation for its origin. To cope with this
issue, we next propose a more advanced approach which preserves the information
contained in a path while remaining in the triple-based RDF model.

An Ontology to Represent Paths. In order to preserve information in terms of
machine-readability and enhance the compatibility with other RDF management
systems, we need to find a representation that allows the encoding of all the in-
formation contained in RDFp paths using RDF triples. In [AMS07], the authors
propose to use RDF Schema [BG14] for that. Thus, instead of mapping the path
into a concatenated string as suggested previously, we can utilize an ontology to
model the structure of RDFp paths. However, for this we need first to introduce
a small ontology that captures the knowledge represented in RDFp paths. For an
RDFp graph P , with p ∈ P we have to model the following information:

• All individual resources a path p is composed of are retrieved by
π1(p), π2(p), π3(p), ..., πlength(p)(p)

• First element of a path, defined by first(p)
• Last element of a path, defined by last(p)
• Length of a path, defined by length(p)

Without implying any further restrictions on the data representation, RDF Schema
is sufficient to model this information. We refer to [BG14] for a detailed introduction
into RDF Schema specification. Figure 4.4 shows the complete ontology for RDFp
in Notation 3 [BLC11]. Its visualization is illustrated in Figure 4.5. The ontology
represents instances of RDFp paths with the newly introduced class rdfp:Path,
which is defined as a subclass of RDF Sequence Container (rdf:Seq). This in turn
contains an ordered bag of resources in order to model all individual resources of
which a path is composed. The remaining information is captured by addition
properties, namely rdfp:first, rdfp:last and rdfp:length.

Definition 4.14 (Mapping to RDF Schema Triples). Let D denote an RDFp
graph. Algorithm 4.6.1 defines the decomposition of an RDFp path t ∈ D into a
set of RDF triples (named mapToRdfs()) using the previously-introduced ontology.
We define then the result modifier rdfs() as a mapping function that produces the
following RDF graph R as result:

R := {(s, p, o) | t ∈ D ∧ (s, p, o) ∈ mapToRdfs(t)}
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1 @prefix r d f : <ht tp : //www.w3 . org /1999/02/22− rdf−syntax−ns#> .
2 @prefix r d f p : <ht tp : // db i s . in f o rmat i k . uni−f r e i b u r g . de/ rd f pa th#> .
3 @prefix r d f s : <ht tp : //www.w3 . org /2000/01/ rdf−schema#> .
4 @prefix xsd : <ht tp : //www.w3 . org /2001/XMLSchema#> .
5

6 rdfp:Path rd f s : subC la s sO f rd f : S eq ;
7 r d f s : l a b e l "RDFp path " ;
8 rdfs:comment " Class o f RDFp paths " .
9

10 rd fp : f i r s t a rd f :P rope r ty ;
11 rdfs:comment " F i r s t r e s ou r c e o f path " ;
12 rd f s :domain rdfp:Path ;
13 r d f s : r a n g e rd f s :Re sou r c e .
14

15 rdfp: last a rd f :P rope r ty ;
16 rdfs:comment " Last r e s ou r c e o f path " ;
17 rd f s :domain rdfp:Path ;
18 r d f s : r a n g e rd f s :Re sou r c e .
19

20 rdfp:length a rd f :P rope r ty ;
21 rdfs:comment "Number o f r e s ou r c e s in path " ;
22 rd f s :domain rdfp:Path ;
23 r d f s : r a n g e x s d : i n t e g e r .

Figure 4.4.: Ontology for representing RDFp paths in N3 [BLC11]
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rdf:Seq rdfp:Path

rdfs:Class
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Figure 4.5.: RDF Schema Ontology for representing RDFp paths

One can easily see that modeling further information derived from, e.g., the actual
query that was used to obtain the path, requires just minor extensions to the ontol-
ogy. However, as the main intuition behind this section is to illustrate the general
feasibility of mapping RDFp to RDF, we keep the ontology small and simple rather
then extending it with all possible properties.
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Algorithm 4.6.1 : mapToRdfs(): mappping a single RDFp path to RDF Schema
input : An RDFp path p = (a1, ..., an)
output : Set of RDF triples R

1 R ← ∅
2 pathname = "_:path" + hash(p)
3 R ← (first(p), pathname, last(p))
4 R ← R∪ (pathname, a, rdfp:Path)
5 foreach ai ∈ p do
6 R ← R∪ (pathname, "rdf:_" + i, ai)
7 end
8 R ← R∪ (pathname, rdfp:first, f irst(p))
9 ∪ (pathname, rdfp:last, last(p))

10 ∪ (pathname, rdfp:length, length(p))

Example 4.9. Consider as an example the following RDFp graph D, that is
mapped into the corresponding RDF Schema graph R by applying the mapping
rdfs() on D.

D =
{

(Bob, knows, Alice, knows, Ted)
}

Q =



 

D.rdfs()

(Bob, _:path1960, T ed),
(_:path1960, a, rdfp:Path),
(_:path1960, rdf :_1, Bob),

(_:path1960, rdf :_2, knows),
(_:path1960, rdf :_3, Alice),
(_:path1960, rdf :_4, knows),

(_:path1960, rdf :_5, T ed),
(_:path1960, rdfp:first, Bob),
(_:path1960, rdfp:last, Ted),
(_:path1960, rdfp:length, 5)



In the resulting RDF graph of the above example, we can observe that our mapping
introduces redundant information about the first and last node of a path, which
can be derived from the structured path as well. We could also define a lite version
of the mapping that does not imply such redundancy. However, having clearly
named properties provides multiple advantages. First of all, having properties with
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a predefined meaning is valuable if we want to reason more about the results. In
addition it simplifies subsequent query writing with other RDF languages. Secondly,
it reduces the complexity of evaluation, for e.g., SPARQL, since we can benefit from
the resulting star-shaped query patterns, which can be highly optimized as shown
for SPARQL in [SPNL14].

4.7. Discussion

With RDFPath, we have introduced an expressive navigational querying language
for RDF which, in contrast to many other approaches, provides access to the full
path between two resources, rather than working on pairs of nodes as is often done by
traditional existential semantics. We have illustrated the usefulness of such results
via manifold examples, and discussed the problem of evaluation that can become
rather costly for non-selective queries. This might make our approach unattractive
for certain practical purposes, where we need to guarantee a low degree of complexity
with regard to query evaluation. However, an expressive yet intuitive RDF query
language that produces such comprehensiveness results is exactly what we were
aiming for with RDFPath, despite its complexity in evaluation. By design, we did
not apply any kind of widely accepted restrictions on RDFPath, such as implicit
projections on fixed variables or binary relations on recursion which are meant to
reduce complexity at the cost of either expressiveness or simplicity in querying.
Furthermore, if we understand querying with RDFPath more as some sort of ana-
lytical or offline ETL-like processing that is executed on large portions of the graph,
we are willing to accept also long running queries. For such use cases, the map-
pings from RDFp to RDF is of particular importance. It produces RDF graphs
that include all information derived by our navigational queries but in such a way
that it can be processed by any other RDF Data Management System. Accord-
ingly, we understand RDFPath as a complementary language in the rich ecosystem
of languages and technologies developed for the Semantic Web. We will come back
to the idea of using RDFPath in offline ETL-like scenarios in Chapter 6, where we
will propose a MapReduce-based engine for RDFPath and investigate optimized join
techniques for such kinds of workloads. Moreover, in a subsequent work shown in
Chapter 7.4, we will investigate the usage of RDFPath also in interactive querying
scenarios. Thereby we will demonstrate that an implementation of RDFPath on
SQL-On-Hadoop solutions exhibits, despite its path-based semantics, better perfor-
mance for linear-shaped queries than various competitors.
With TriAL-QL, we will discuss in the next chapter a follow-up work which has
a stronger focus on a low degree of complexity in evaluation rather than obtaining
comprehensive path-based results. This work will reuse the concept of RDFp as we
have introduced it in the context of RDFPath, to produce results with an explanation
on how the triples were derived.
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5.1. Motivation

Due to the underlying graphical data model of RDF, graph databases and par-
ticularly their respective graph query languages have been commonly used as a
basis for the specification of new RDF querying languages [AGH04, AG05, AG08,
ABE09a, PAG10]. However, although the standard model of graph databases and
the triple-based model of RDF are very similar, there is a crucial difference be-
tween both. In RDF, an edge label (predicate) does not come from a finite al-
phabet like in directed edge-labeled graphs and may also appear as a source or
destination (subject and object, respectively) of another edge. {(s, p, o), (p, s, o′)} for
instance, is not a valid edge-labeled graph [LRV13] but a allowed in RDF. Conse-
quently, RDF query languages based on typical graph query languages like regular
path queries (RPQs) and nested regular expressions (NREs) are not capable of cer-
tain constructs and lack important querying features, e.g. reasoning over predicates
within a query [Ang12, AGP14]. Accordingly, most existing RDF query languages
fail to cover all the varieties inherent to its triple-based model, including SPARQL
1.1 and its derivatives [HSP13, RSV15]. As a result, the development of more ex-
pressive, navigational RDF languages is of general interest and has lead to a wide
range of proposals ranging from application-specific concepts to expressive graph
data processing languages [ABE09a, PAG10, PSHL11, PSHL12, LRV13, AGP14,
PSL15a, PSL15b, HSP13, RSV15, PSL17].
With RDFPath in Chapter 4, we have proposed an expressive navigational query lan-
guage, which has its roots in nested regular expressions. Nonetheless, it is equipped
with functionalities which allow us to capture many aforementioned querying fea-
tures. This includes especially some sort of reasoning over predicates, by providing
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the necessary operators to query RDF data along with its ontology. However, there
exists still further properties in RDF data which need more expressive query lan-
guages that are not related to the graph database model [LRV13, AGP14].
To the best of our knowledge, there are only two RDF query languages that enable
expressive navigational capabilities with full support of reasoning and can be eval-
uated in combined (low-degree) polynomial time, namely Triple Query Language
Lite (TriQ-Lite) [AGP14] and Triple Algebra with Recursion (TriAL*) [LRV13].
TriQ-Lite is defined as a general Datalog extension that captures SPARQL queries
enriched with the OWL 2 QL profile, whereas TriAL* is a closed language that
works directly with triples including recursion over triple joins. While the steady
growth of Semantic Web data, with its high degree of diversity in both structure
and vocabulary, justifies particularly expressive RDF query languages, it also raises
the need for solutions that scale with the data size. With that discordant goal of
having an expressive query language that can be evaluated on web-scale data, we
found TriAL* to have a higher applicability and better met our requirements. This
is mainly due to the following reasons: TriAL* and its closeness to relational al-
gebra captures the recent trend in scalable, interactive SQL-on-Hadoop solutions,
better meeting our requirements regarding a scalable solution that works also on
larger graphs. We will discuss this aspect in more detail, when we introduce our dis-
tributed implementation for TriAL* in Chapter 7. Another advantageous property
of TriAL* in comparison to TriQ-Lite is its inherent compositionality, which sim-
plifies querying since we can intuitively split complex problems into multiple nested
expressions.
With TriAL* [LRV13] we benefit from an expressive algebra which subsumes many
previous approaches, while adding novel features that are not expressible in most
other languages based on the standard graph model. However, while TriAL* is a
neat approach to query complex expressions in RDF, its algebraic notation is inap-
propriate for writing queries in practice. Thus, first of all we propose a new syntax
called TriAL* Query Language (TriAL-QL), which is an easy to write and
grasp representation of TriAL*. It preservers its compositional algebraic structure
by representing each algebra operation with a SQL-like statement. This way, even
complex navigational queries become easily expressible. Moreover, it allows us to
implement a few handy tools, which prove to be useful in SQL and have an respec-
tive equivalent in TriAL-QL, such as storing graphs for later usage. We further
introduce the Extended Triple Algebra with Recursion, or short E-TriAL*, which
aims to mitigate some shortcomings of TriAL* which were hampering its usage
in practical scenarios. We adopt the idea of provenance for TriAL*, which allows
us to track the origin of triples and provide more meaningful results. To do so, we
extend the concept of triples to quadruples where a fourth element is introduced in
order to compose provenance while query writing.
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Most of the results of this Chapter were published in [PSL17, PSL15a] and in [PSL15b],
where it was honored with the Best Paper Runner-Up Award sponsored by Google1.
Some of the results, such as provenance for TriAL* which were not presented in
these publications, were discussed in conferences [CV15, SS15, SDI15] with the au-
thors of TriAL* [LRV13] and are shown here for the first time in a written form.
Overall, we can summarize the contributions of this chapter as follows:

1. In Section 5.2, we introduce the basic notation of Triple Algebra with Recur-
sion (in short TriAL*) following the formalisms presented in [LRV13, Vrg14].
We will present a formal definition of all TriAL* operators and supplement
them with examples.

2. Our extension of TriAL* (named in short E-TriAL*) is discussed in Sec-
tion 5.3. It describes the concept of provenance, which allows us to gain some
sort of insight into how triples are derived while querying.

3. The syntax of TriAL* Query Language (TriAL-QL) with its mapping
to corresponding TriAL expressions is introduced in Section 5.4. We will
illustrate its usage on two important patterns using exemplary queries.

4. We conclude this Chapter with Section 5.5, where we summarize the advan-
tages but also the limitations of TriAL-QL and refer to its technical im-
plementation in Chapter 7, where evaluation strategies and optimizations are
discussed.

1http://dbweb.enst.fr/events/webdb2015/
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5.2. Triple Algebra with Recursion

The Triple Algebra with Recursion (short TriAL*) [LRV13, Vrg14] is an expres-
sive RDF query language based on relational algebra. In contrast to most other
approaches it is a closed and hence compositional RDF language, where the output
is a set of triples rather than graphs, mappings or RDFp paths. The result is again
a typical RDF graph, as it is done in SPARQL via the construct operator [HSP13],
which can be processed by any other RDF query engine. Furthermore TriAL*
enables to write queries that are not expressible using languages based on the stan-
dard graph model (e.g. Regular Path Queries [CMW87, CM90, CDLV03] and Nested
Regular Expressions [PAG10, BPR12]), where edge labels come from a predefined
alphabet and cannot appear as subject or objects in another triple [AG08].

Data Representation. The core idea of TriAL* is to work directly on triples
rather than transforming the RDF model into another representation. This way not
only the input but also each intermediate and final result is always a set of triples.
Accordingly, we can define the underlying data model for TriAL* similarly to an
RDF graph.

Definition 5.1 (Triplestore). Assume I to be a pairwise disjoint, countably
infinite set of international resource identifiers (IRIs), B the set of blank nodes,
and L the set of literals. We refer to the underlying data model of TriAL* as a
triplestore defined as a ternary relation

E ⊆ (I × I × I),

where t ∈ E is a triple (s, p, o). For clarity of presentation, we follow the original
notation from [LRV13] and do not consider literals and blank nodes in RDF graphs,
thus focusing again on ground RDF graphs [PAG10].

Triple Joins. TriAL* takes the relational algebra as its basis, but implies certain
restrictions to guarantee the closure property with regard to triples. As in each
navigational query language, the most crucial expression is the traversing of the
graph-structure. Intuitively, if we want to traverse two triples like (Bob, knows,
Alice) and (Alice, knows, Ted), we need to find a concept how to represent a com-
position of both. In RDFPath, we could use an RDFp path, which would result in
the followed representation:

(Bob, knows, Alice, knows, Ted)

However, the most important property of TriAL* is its closeness with regard to
triples. It is therefore essential to stick to ternary relations. A valid result might be
for instance a new triple that describes just the transitivity between both persons
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and leaves out all intermediate resources, such as:

(Bob, knows, Ted)

The authors in [LRV13] proposed a so-called triple join for that purpose, which is
meant to compose two ternary relations but keep only three positions in the results.
To indicate which of six total possible resources to keep, six identifier are introduced,
namely s1, p1, o1 and s2, p2, o2 referring to the positions of the left and right triple,
respectively.

Definition 5.2 (Triple join). More formally, let E1 and E2 be two triplestores
representing sets of triples, and I is a pairwise disjoint, countably infinite set of
international resource identifiers (IRIs). Formally, a triple join (denoted by ./)
between E1 and E2 is defined in accordance to [LRV13] as:

E1
i,j,k
./
θ,η

E2,

where,
• i, j, k ∈ {s1, p1, o1, s2, p2, o2} indicate the implicit projection on three fields to

keep the operation closed with s1 referring to the subject of E1, o2 referring
to the object of E2, etc.,

• θ represents the join conditions, i.e., comparisons of elements in {s1, p1, o1, s2, p2, o2}
among each other or with resources i ∈ I that evaluate to true or false,

• η is a set of conditions using arithmetic functions over elements in {s1, p1, o1, s2, p2, o2}
and data values that evaluate to true or false, i.e., typically filters conditions.

The result of E1
i,j,k
./
θ,η

E2 is then a ternary triplestore E3, where (ri, rj, rk) ∈ E3 iff

• ri, rj, rk ∈ {s1, p1, o1, s2, p2, o2},
• t1 = (s1, p1, o1) ∈ E1 and t2 = (s2, p2, o2) ∈ E2,
• each condition in θ and η holds w.r.t. t1 and t2.

Example 5.1. To illustrate the basic principles of a triple join, consider the fol-
lowing triplestore E,

E = {(Bob, knows, Alice), (Alice, knows, Ted), (Ted, knows, Robin)}

and the exemplary triple join expression:

E
s1,p1,o2
./

o1=s2
E

Consider for instance the triples (Bob, knows, Alice) ∈ E on the left hand side and
(Bob, knows, Ted) ∈ E on the right hand side. The implicit projection s1, p1, o2
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refers to the subject and predicate from the left triple and the object from the
right triple. The output is then (Bob, knows, Ted), iff it holds that o1 = s2, thus
Alice = Alice in case of the currently considered triples. The final result produced
by the above triple join is the following triplestore:

{(Bob, knows, Ted), (Alice, knows, Robin)}

The flexibility of the triple join in TriAL allows us to compose two triples in any
possible way. The most notable combinations allow us to query, for instance, the
topology of a graph with predicate-subject relationships. These are not expressible
in languages based on the traditional graph model where, e.g., {(s, p, o), (p, s, o′)}
is not a valid graph [LRV13]. In order to illustrate the full strength of this algebra
and show some examples that highlight those aspects, we need to introduce the
remaining expressions from TriAL* as originally introduced in [LRV13].

Triple Algebra. Following the notation in [LRV13, Vrg14], we define next the
remaining expressions of the Triple Algebra (in short TriAL), where each expression
is closed, thus is producing again a triplestore as result. Let us denote in the following
each relation name in a triplestore as a TriAL expression.

Definition 5.3 (Selection). Let E be a triplestore, with t = (s, p, o) ∈ E and
θ, η as defined before for the triple join. Then, the selection operator in TriAL
σθ,η(E) is defined as:

σθ,η(E) := {(ri, rj, rk) | ri, rj, rk ∈ {s, p, o}
∧ t = (s, p, o) ∈ E
∧ θ, η holds w.r.t. t }

Definition 5.4 (Union). Let assume E1 and E2 are two triplestores. Analogous
to relational algebra, we define then the union operation in TriAL E1 ∪ E2 as:

E1 ∪ E2 := {t | t ∈ E1 ∨ t ∈ E2}

Definition 5.5 (Difference). Let assume E1 and E2 are two triplestores. Anal-
ogous to relational algebra, we define the difference in TriAL E1 − E2 as:

E1 − E2 := {t | t ∈ E1 ∧ t /∈ E2}
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Definition 5.6 (Intersection). Given two triplestores E1 and E2, we can define
the intersection (E1∩E2) in TriAL in accordance to [LRV13, Vrg14] and analogous
to relational algebra as follows:

E1 ∩ E2 := E1
s1,p1,o1
./

s1=s2, p1=p2, o1=o2
E2

As shown, the intersection of two triplestores can be easily defined with a join
between both triplestores.

Example 5.2. Consider the following two triplestores E1 and E2 with:

E1 = {(Bob, knows, Alice), (Alice, knows, Ted), (Ted, knows, Robin)}
E2 = {(Bob, knows, Alice), (Alice, knows, Ted), (Ted, age, 32)}

Applying previously introduced TriAL operations on E1 and E2 we obtain the
following results:

σs=Ted(E1) = {(Ted, knows, Robin), (Ted, age, 32)}
E1 ∪ E2 = {(Bob, knows, Alice), (Alice, knows, Ted),

(Ted, knows, Robin), (Ted, age, 32)}
E1 − E2 = {(Ted, knows, Robin)}
E1 ∩ E2 = {(Bob, knows, Alice), (Alice, knows, Ted)}

Recursions. Up to now, only queries of fixed length could be expressed with
TriAL. However, in order to capture also different variates of the reachability prob-
lem we need functionalities to express paths of arbitrary length, which is know to
not be expressible in relational algebra. As this is a crucial aspect of navigational
querying languages for RDF, the authors in [LRV13] added recursion to TriAL.
We refer to this as Triple Algebra with Recursion (TriAL*) in the following.
Recursion is added by applying the Kleene closure on any triple join. However,
in contrast to binary relations, a join in TriAL is not necessarily associative. We
need to choose three elements among {s1, p1, o1, s2, p2, o2}, where two elements come
from a triplestore and one element will come from the other one, which means that
this operation is actually asymmetric. Therefore, recursion is added by means of
two operations, a left and a right Kleene closure.

Definition 5.7 (Left and Right Kleene Closure). We denote the right Kleene
closure as (e ./i,j,kθ,η )∗ and the left Kleene closure as (./i,j,kθ,η e)∗, where e is a TriAL*
expression. Formally, they are defined in [LRV13] as:

(e ./)∗ := ∅ ∪ e ∪ e ./ e ∪ ( e ./ e ) ./ e ∪ (( e ./ e ) ./ e) ./ e ∪ ...,
(./ e)∗ := ∅ ∪ e ∪ e ./ e ∪ e ./ ( e ./ e ) ∪ e ./ (e ./ ( e ./ e )) ∪ ...
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TriAL* captures a few interesting properties, that are not expressible by most
other RDF querying languages. To illustrate them, we will consider in the following
the exemplary RDF graph in Figure 5.1 that describes different kinds of relations be-
tween people and includes a small topology. This graph is adopted from a transport
service example introduced in [PAG10, LRV13], but applied on the social network
domain.

Example 5.3. The first reachability problem we are looking at asks for pairs of
users (x, y) connected by a path which exhibits a linear shape as shown in the
following:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

x ... y

To express this pattern, without considering any further conditions, we need solely
object-subject joins. Thus, we could model this query easily as a problem in a graph
database. The corresponding TriAL* for an triplestore E is then:

(E s1, p2, o2
./

o1=s2
)∗

If we assume E to be the RDF graph shown in Figure 5.1, we obtain for the above
TriAL* expression the following triples as a result:

{(Robin, knows, Alice), (Robin, coworker, Ted), (Robin, country, CH),
(Robin, country, DE), (Robin, age, 31),

(Bob, coworker, Ted), (Bob, country, CH),
(Bob, age, 31), (Bob, country, DE),

(Alice, age, 31), (Alice, country, DE),
(friend, type, relationship)}

Note that, in accordance to Definition 5.7, also all original triples from E are included
in the result. However, for clarity of presentation, we left them out and presented
only newly derived triples.
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relationship

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Bob Alice Ted

knows coworker

Changing context: 

type

age

country
country

31

DE

CH

Robin

friend

type

type

friendship

Bob Alice Ted

knows knows

type

age

country
country

31

DE

CH

Robin

friend

type

friendship

type

acquaintance

type

Figure 5.1.: RDF example describing a different kind of relations between people.

Example 5.4. For the second example, we investigate a query type that involves
reasoning capabilities, allowing us to query RDF data along with its ontology by
the use of property-subject joins. Again, we ask for pairs of nodes (x, y) connected
by a path, but this time the corresponding pattern exhibits the following shape:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

x

y

...

Due do its triple-based model, there is conceptually no difference between object-
subject and property-subject joins in TriAL*. However, in graph databases, this
would be not easily expressible and would imply at least a more complex graph
representation. In TriAL*, we express such a shape, evaluated over a triplestore
E as follows:

(E s1, p2, o2
./

p1=s2
)∗

If we evaluate this expression on the exemplary RDF graph in Figure 5.1, we obtain
the following triplestore as a result. Note that we are again showing newly-derived
triples and leave out all original triples from E although they are part of the result.

{(Robin, type, friendship),
(Bob, type, relationship),

(Alice, type, acquaintance)}

Example 5.5. For the last TriAL* example, we investigate a pattern that ex-
hibits some structural properties that cannot be expressed in any query language
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based on Regular Path Queries [CMW87] or Nested Regular Expressions [PAG10,
BPR12] as shown in [LRV13]. We ask for pairs of nodes (x, y) such that there is a
connection of the same type from x to y. More specifically, if we consider our current
example, we ask for pairs of users that are connected from x to y using the same
type of relation z, e.g. a friendship relation. For this, we combine both previous
pattern shapes into one, resulting in the following shape:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

x

z

...

...

x ... y

... y

...

...
......

Such queries are highly relevant, for instance if we want to query the topology of a
graph [PAG10, RSV15] or to track provenance [MC13]. In TriAL*, we can capture
such a structure for a triplestore E with two nested recursive expressions as follows:

E1 = (E ./ s1, o2, o1
p1=s2 )∗

E2 = (E1 ./
s1, p1, o2
o1=s2, p1=p2)∗

The inner expression E1 computes the transitive closure of the properties from E. In
other words, if we consider again our running example, we derive triples that describe
connections between pairs of users by the use of topological information about their
friendship relationships. In the first step, we derive for, e.g., Robin and Bob the triple
(Robin, friendship, Bob) and in a subsequent round (Robin, relationship, Bob).
All those newly derived triples are added to the initial triplestore E, such that the
expression E2 is evaluated on both the triples: from the initial triplestore and newly
derived ones. For E2, again the transitive closure based on the TriAL* expression
is computed, but we consider only those pairs of users x, y that are connected with
the same type of friendship relation. The evaluation of the TriAL* expressions
shown above on the triplestore in Figure 5.1 produces the following results:

E1 = E ∪


(Robin, friendship, Bob),

(Robin, relationship, Bob),
(Bob, relationship, Alice),
(Alice, acquaintance, Ted)


E2 = E1 ∪ { (Robin, relationship, Alice) }

We can see, that the pair “Robin,Alice” belongs to the final results, since we derived
the triples (Robin, relationship, Bob) and (Bob, relationship, Alice). However,
the pair “Robin, Ted” is not becoming part of the results, as there is no relation
between Robin and Ted that uses the same type of relationship.
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5.2.1. Additional Recursion Capabilities

So far, we have discussed the right (e ./i,j,kθ,η )∗ and left (./i,j,kθ,η e)∗ Kleene closure.
These expressions denote the complete transitive closure, and thus are evaluated
recursively until no new triples are derived. However, in practice it is not neces-
sarily needed to compute always the complete transitive closure. In many cases,
the majority of results is obtained within the first recursive steps and we observe
a so-called long tail, where just a few results are added in the remaining rounds.
Quite often, we have also some sort of knowledge about the data or its ontology
that would enable us to formulate queries in a more efficient way by, e.g., restricting
recursion up to a certain depth. Consider for instance the reachability of users in
a social network. In such cases, it might be sufficient to consider only those pairs
of users, which can be reached by a path with length of at most, e.g., four. Such a
functionality becomes even more crucial against the background of processing RDF
data at web-scale, where restrictions on the recursion depth become essential for
evaluating. In RDFPath (cf. Chapter 4), we have already introduced such kind of
expressions by means of different recursive traversing steps inspired by XPath. Next,
we will make use of these definitions in order to extend TriAL* in that respect.
We will therefore replace the Kleene Star with scalars to imply a limitation on the
recursion depth.

Definition 5.8 (Shorthand for Iterative Triple Joins). More formally, let us
assume e is a TriAL* expression and n ≥ 1. We denote the expressions (e ./)n and
(./ e)n as two short forms in E-TriAL* which subsume n subsequent similar triple
joins over e. We define them recursively as:

(e ./)1 := e ./ e (./ e)1 := e ./ e

(e ./)n := (e ./)n−1 ./ e, n ≥ 2 (./ e)n := e ./ (./ e)n−1, n ≥ 2

Example 5.6. Consider a triplestore E describing the RDF graph illustrated in
Figure 5.2. We can see here a linear friendship relation between five people. Apply-
ing our newly introduced shorthand for iterative triple joins on the triple join used
in Example 5.3, we obtain the following results:

(E s1, p1, o2
./

o1=s2
)1 = { (Robin, knows, Alice), (Bob, knows, Ted),

(Alice, knows ,Dave) }
(E s1, p1, o2

./
o1=s2

)2 = { (Robin, knows, Ted), (Bob, knows, Dave) }

(E s1, p1, o2
./

o1=s2
)3 = { (Robin, knows, Dave) }

(E s1, p1, o2
./

o1=s2
)4 = { ∅ }
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Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Bob Alice Ted

knows

Changing context: 

Robin

knows

type

friendship

Bob Alice Ted

knows knows

type

age

country
country

31

DE

CH

Robin

friend

type

Dave

knowsknows

Figure 5.2.: RDF example describing friendship relations between five people.

Definition 5.9 (Limited Left and Right Kleene Closure). Assume e is a
TriAL* expression and n, m (n,m ≥ 1) refer to the minimal and maximal re-
cursion depth, respectively. We extend the supported recursions by the following
expressions:

(e ./)∗ | (e ./)+ | (e ./)(n,m) | (e ./)(n,∗) | (e ./)(∗,m)

(./ e)∗ | (./ e)+ | (./ e)(n,m) | (./ e)(n,∗) | (./ e)(∗,m)

where,

(e ./)+ := ∅ ∪ e ./ e ∪ (e ./ e) ./ e ∪ ((e ./ e) ./ e) ./ e ∪ ...
(e ./)(n,m) := ∅ ∪ (e ./)n ∪ (e ./)n ./ e ∪ ... ∪ (e ./)m

(e ./)(n,∗) := ∅ ∪ (e ./)n ∪ (e ./)n ./ e ∪ ((e ./)n ./ e) ./ e ∪ ...

(e ./)(∗,m) := ∅ ∪ e ∪ e ./ e ∪ (e ./ e) ./ e ∪ ... ∪ (e ./)m

The corresponding expressions for the right Kleene closure follow the same principles
and can be therefore defined analogous.

Example 5.7. Consider as a triplestore E again the RDF graph shown in Fig-
ure 5.2. To illustrate the usage of the newly defined recursions, we demonstrate the
evaluation for two of them on E.

(E s1, p1, o2
./

o1=s2
)+ =



(Robin, knows, Alice),
(Robin, knows, Ted),

(Robin, knows, Dave),
(Bob, knows, Ted),

(Bob, knows, Dave),
(Alice, knows, Dave)



(E s1, p1, o2
./

o1=s2
)2,3 =


(Robin, knows, Ted),

(Robin, knows, Dave),
(Bob, knows, Dave)
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5.3. Provenance for TriAL

TriAL* is an expressive algebra with respect to how RDF graphs can be traversed,
as it allows us to query all variants inherent to the triple-based model of RDF
recursively. However, expressive querying features are just one side of the coin, and
meaningful results are the other. In TriAL* we need to stick to a triple-based
representation, thus results are constrained to RDF triples. This appear convenient
to derive new triples that describe, e.g. the transitive closure, and provide existential
answers such as whether a path exists between two resources. Unfortunately, all
information about intermediate resources which were traversed in order to derive
a new triple are lost in this case. However, with the discussion on RDFPath we
have seen how valuable such information can be. Path-based results which contain
all the resources that were traversed along a path provide detailed insights into
the actual structure of the graph and are therefore considered to be important
in many application fields. Examples include, for instance, querying proteins in
biology, where results which explain how proteins are interconnected to diseases
are much more meaningful than those results which just state that there exists a
connection [ABE+09b, CDJ+10]. The same applies for other domains, such as social
networks or governmental data, where it is often crucial to understand how “things”
are connected and what data pieces or sources were used to obtain a result.
A widely-used concept to describe the origin of a piece of data is called data
provenance [BKT01, GKT07, CCT09, KG12, MBC13, GM13]. There exist many
differently-grained provenance models in diverse application fields which allow to
trace data through all transformations and exchanges. Considerable work as been
done, for instance, with the so-called why-provenance for relational algebra intro-
duced in [BKT01]. The basic idea is to trace all tuples which contributed somehow
to an output record. What was missing in that idea with regard to TriAL*, is a
more detailed description on how the traced tuples contributed actually to the out-
put record, e.g. their order. More relevant for us is therefore the subsequent work
on the how-provenance, which traces not only the tuples which contributed to an
output record but also how they have been combined in order to derive the output
record from the input data. The how-provenance is based on so-called provenance
semirings [GKT07], an algebraic structure used by different kinds of provenance
models [KG12]. A detailed study which illustrates these different notations can be
found in [CCT09]. The provenance which we will introduce in this section can be
also seen as a form of how-provenance but adopted to RDF, where the notation of
annotated relations in semirings is extended to triples and only one description for
each output record is allowed.
Another related concept to our work has been proposed by the World Wide Web
Consortium (W3C). They defined a general concept of provenance in its PROV spec-
ification as “information that describe the people, institutions, entities, and activities
involved in producing a piece of data or a thing” [MBC13, GM13]. Adopted to our
scenario, where we want to track the provenance of triples, we can say that we trace
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each step of transformation that was applied on the input data to obtain the re-
sult. However, using the W3C PROV specification [GM13] to describe provenance
in TriAL* would blow up our data model since the PROV specification implies
to model provenance by interactions of agents, entities and activities. Instead, we
need just a lightweight solutions that does not require extensive changes to TriAL*
similar to the algebraic structure of provenance semirings.
We will introduce as next a particularly flexible provenance model to overcome the
implicit loss of information inherent to the triple-based structure of TriAL*. It
shares some beforehand mentioned ideas but allows us to track only those informa-
tion, we are interested in. For clarity of the presentation, we will refer to TriAL*
extended with provenance as Extended Triple Algebra with Recursion, or short E-
TriAL*.

Data Representation. The basic idea of our provenance concept is to extend the
triple-based data model of TriAL* by injecting one fourth element into the notation
of a triple which will be then used to keep track of traversed resources. With the
notation of RDFp in Section 4.2 (page 58), we have already proposed a solution
which enables us to describe such traversed resources by means of paths. We simplify
this notation for E-TriAL* in such a way, that the provenance of each individual
RDF triple will be stored along the respective triple as a concatenated string.

Definition 5.10 (Triplestore with Provenance). More formally, assume I to
be a pairwise disjoint, countably infinite set of international resource identifiers
(IRIs), B the set of blank nodes and L the set of literals. Furthermore, to represent
the provenance let R denote a set of words over IRIs, i.e. R = I∗. The underlying
data model of E-TriAL* is then a so-called quadstore defined as the following
quaternary relation:

E ⊆ (I × I × I ×R),

where t ∈ E is a quadruple (s, p, o, r).

Triple Algebra with Provenance. In TriAL*, a triple join describes the compo-
sition between two ternary relations, where only three out of six positions are kept
in the results. For E-TriAL*, we extend this notation to eight positions, denoted
by (s1, p1, o1, r1) and (s2, p2, o2, r2), referring to the left and right quadruple, respec-
tively. The new elements r1 and r2 are then words [Har78, AHV95] representing
the provenance of the respective triple. The composition of provenance elements is
hereby becoming part of the query expression itself. This means, that in contrast to
most other approaches [CCT09, KG12, GM13], we do not rely on predefined rules
which derive the provenance of a triple automatically from the query expression and
the data. Instead, we allow a query writer to describe for each TriAL* expression
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how to compose a representative provenance element. Such an approach might ap-
pear cumbersome at first glance, however, it proves to be a valuable and expressive
mechanism that gives us lot of freedom in expressing exactly that provenance we are
interested in and, e.g. leaving out information that might be redundant for a par-
ticular use case. In general, given two quadruples (s1, p1, o1, r1) and (s2, p2, o2, r2), a
provenance element is composed as a word φ where

φ ∈ {s1, p1, o1, r1, s2, p2, o2, r2, ε}8.

We can see, that φ is a concatenation of eight words2 in {s1, p1, o1, r1, s2, p2, o2, r2, ε}.
Shorter words are constructed by means of the empty word ε. In order to distinguish
IRIs, a blank is inserted between each word, i.e. between each IRI, as illustrated in
the following example. Note, that it is allowed to choose from all positions from
both quadruples in an arbitrary way, including repetitions. This gives us the desired
flexibility to track only those information we are interested in and simply ignore non-
informative resources.

Example 5.8. Consider two quadruples:

q1 : (Robin, knows, Alice, Robin knows Bob)
q2 : (Alice, knows ,Dave, Alice knows Ted)

where, (s1, p1, o1, r1) and (s2, p2, o2, r2) refer to q1 and q2, respectively. For an ex-
emplary φ, φ = r1 p1 r2 we obtain after replacing the three positions with their
respective words the following new word as provenance:

Robin knows Bob︸ ︷︷ ︸
r1

knows︸ ︷︷ ︸
p1

Alice knows Ted︸ ︷︷ ︸
r2

We continue this section with a formal description on how the individual expression
in TriAL* need to be adapted in order to become compatible with our provenance
model. For that, we start with introducing a modified selection operator that enables
to perform some basic modifications on the provenance element. That might be,
for instance, an initial step where provenance is added for the first time, thus the
mapping of triples into quadruples.

2Conceptually, there is no reason for restricting the number of composed words to eight, however
having such an upper bound is beneficial for the complexity of evaluation.
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Definition 5.11 (Selection with Provenance). Let E be a quadruple store and
θ, η as defined before. φ is a word which describes the provenance we are interested
in. The selection operator in E-TriAL* φ

σθ,η(E) is then defined as:

φ
σθ,η(E) := { (ai, aj, ak, φ) | ai, aj, ak ∈ {s, p, o}

∧ φ ∈ {s, p, o, r, ε}4

∧ t = (s, p, o, r) ∈ E
∧ θ, η holds w.r.t. s, p, o}

Definition 5.12 (Triple Join with Provenance). Let assume E1 and E2 to be
two quadruple stores representing sets of quadruples. Formally, a triple join with
provenance (denoted again by ./) between E1 and E2 is defined as:

E1
i,j,k | φ
./
θ,η

E2,

where,
• i, j, k ∈ {s1, p1, o1, s2, p2, o2},
• θ, η as defined before,
• φ ∈ {s1, p1, o1, r1, s2, p2, o2, r2, ε}8

The result of E1
i,j,k | φ
./
θ,η

E2 is then a quadruple store E3, where (ai, aj, ak, φ) ∈ E3

iff:
• ai, aj, ak ∈ {s1, p1, o1, s2, p2, o2},
• t1 = (s1, p1, o1, r1) ∈ E1 and t2 = (s2, p2, o2, r2) ∈ E2,
• each condition from θ and η holds w.r.t. s1, p1, o1 and s2, p2, o2.

The remaining operators of E-TriAL, namely union, difference and intersection,
can be also equipped with the concept of provenance. Their definitions follow the
same principles as shown above. We will therefore skip their formal description as
it would not provide any new insights for the reader.
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Example 5.9. Consider E describing the RDF graph in Figure 5.2 (page 99).
The following E-TriAL* expression illustrates an initial step, where provenance is
added to E by using the selection operator introduced in Definition 5.11.

E0 = s p o
σ (E)

In that example, with φ = s p o the complete triple is specified as provenance. We
therefore obtain for E0:

{ (Robin, knows, Bob, Robin knows Bob),
(Bob, knows, Alice, Bob knows Alice),
(Alice, knows, Ted, Alice knows Ted),
(Ted, knows, Dave, Ted knows Dave) }

In a next step, we extend the transitive query used in Example 5.3 (page 98) that
asks for pairs of users (x, y) connected by a path which exhibits a linear shape. Now,
we are not only interested in the existence of pairs of users (x, y), but we want to
exploit provenance to obtain information on the actual resources that were traversed
on the path that connects both. For this, assume the following query:

E1 =
(
E0

s1,p1,o2 | r1 r2
./

o1=s2

)∗
This expression uses φ = r1 r2 which means that the provenance of a newly derived
triple is composed out of the provenance of both joined triples. The final result E1
is then as follows:

E0 ∪
{ (Robin, knows, Alice, Robin knows Bob Bob knows Alice),

(Bob, knows, Ted, Bob knows Alice Alice knows Ted),
(Alice, knows, Dave, Alice knows Ted Ted knows Dave),

(Robin, knows, Ted, Robin knows Bob Bob knows Alice Alice knows Ted),
(Bob, knows, Dave, Bob knows Alice Alice knows Ted Ted knows Dave) }

The above examples illustrates how to use provenance in E-TriAL* to keep track
of all triples which were used in order to derive a triple. We can notice that certain
information, e.g. the resources which were part of the join condition appear multiple
times. In case we want a more compact representation of provenance for that par-
ticular query, i.e without duplicate resources, we can modify the initial expression
where provenances is added to E which we show in the next example.
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Example 5.10. Consider E that describes again the RDF graph in Figure 5.2.
The following E-TriAL* expressions adds in a first step provenance to E, where
due to φ = s only the subject s is specified as provenance. The second expression
which computes E1 is the same as in the above example:

E0 = s
σ(E)

E1 =
(
E0

s1,p1,o2 | r1 r2
./

o1=s2

)∗
We obtain for E0 as an intermediate result:

{ (Robin, knows, Bob, Robin),
(Bob, knows, Alice, Bob),

(Alice, knows, Ted, Alice),
(Ted, knows, Dave, Ted) }

The output E1 is then:

E0 ∪ { (Robin, knows, Alice, Robin Bob),
(Bob, knows, Ted, Bob Alice),

(Alice, knows, Dave, Alice Ted,
(Robin, knows, Ted, Robin Bob Alice),

(Bob, knows, Dave, Bob Alice Ted),
(Robin, knows, Dave, Robin Bob Alice Ted) }

We can see that each provenance entry in E1 contains, due to the recursively derived
provenance, all traversed users except the last one. In order to obtain a more
complete provenance description that include also the last user, we can complement
this example with a last simple selection operation applied at the end:

E2 = r o
σ (E1)

The above selection operation uses φ = r o to extend the provenance word r by
adding the word o to the provenance. The final output E2 is then:

{ (Robin, knows, Bob, Robin Bob),
(Bob, knows, Alice, Bob Alice),
(Alice, knows, Ted, Alice Ted),
(Ted, knows, Dave, Ted Dave),

(Robin, knows, Alice, Robin Bob Alice),
(Bob, knows, Ted, Bob Alice Ted),

(Alice, knows, Dave, Alice Ted Dave,
(Robin, knows, Ted, Robin Bob Alice Ted),
(Bob, knows, Dave, Bob Alice Ted Dave),

(Robin, knows, Dave, Robin Bob Alice Ted Dave) }
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These examples highlighted some benefits of our flexible provenance model that en-
ables to track exactly those information as provenance that one is interested in. We
have seen that, on the one hand, it is possible to produce a granular description that
contains all resources that were traversed in order to derive a triple. On the other
hand, in cases where, a more compact view might be more helpful, one can select
just a small fragment of all traversed resourced to become part of the provenance.
That way, for instance, redundant information are left out and only those pieces of
information are collected that describe the provenance one is interested in.

Termination of Kleene Closure. Recursive expressions in TriAL* involve the
Kleene star as introduced in Definition 5.7. The authors in [LRV13, Vrg14] have
shown that the semantics of these expression is the standard least-fixpoint seman-
tics [AHV95] which can be evaluated with iterative algorithms. An recursive ex-
pression terminates then if a new iteration does not derive any new triples, i.e. all
derived triples have been already discovered in previous iterations. With respect
to E-TriAL*, we need to note that the quadruple representation which is used to
keep track of provenance does not have an impact on that. The actual termination
condition for recursive TriAL* expressions uses again only the triple, i.e. s, p, o, as
input. The fourth provenance element is not taken into account. More information
on the evaluation of recursive expressions will be discussed in Section 7.2, where we
present algorithms and technical details of our TriAL-QL Engine.

5.3.1. Mapping Provenance to RDF

With provenance in E-TriAL*, we have introduced a valuable extensions that en-
ables us to trace the origin of a triple. That way, we derive triples together with their
description, which provides much more meaningful results that include, for instance,
all resources which have been traversed along a path. However, if we recall that E-
TriAL*s intention is to be part for the ecosystem of RDF management tools, where
the results have to stay compatible with other Semantic Web languages, we need to
find a way to transform the quadruple representation again into RDF triples. For
that, we can benefit from the work which we have done for RDFPath in mapping
RDFp to RDF. In Chapter 4.6 (page 85), we have introduced two mapping strate-
gies. In case of the first one, we used again a quadruple representation, where the
fourth element is a string concatenation of all resources. Since this does not solve
our issue, we jump directly to the second mapping strategy where we introduced
an ontology to represent paths as proposed by [KJ07]. That way, we were able to
describe paths using RDF triples. The proposed definitions and algorithms in Sec-
tion 4.6 can be – with just a few minor changes – directly applied on E-TriAL*
results providing us the desired triple-based RDF representation. The changes in-
clude only three new properties to represent the subject, predicate and object of each
triple.
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Example 5.11. Consider as an example the following E-TriAL* result E, that is
mapped into the corresponding triple-based representation Q by applying a slightly-
adapted mapping function rdfs() from Definition 4.14 (page 87) on E.

E =
{

(Bob, knows, Ted, Bob knows Alice knows Ted)
}

Q =



 

E.rdfs()

(Bob, _:p1, T ed),
(_:p1, a, rdfp:Path),

(_:p1, rdfp:subject, Bob),
(_:p1, rdfp:property, knows),

(_:p1, rdfp:object, Ted),
(_:p1, rdf :_1, Bob),

(_:p1, rdf :_2, knows),
(_:p1, rdf :_3, Alice),
(_:p1, rdf :_4, knows),

(_:p1, rdf :_5, T ed),
(_:p1, rdfp:length, 5)
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5.4. TriAL Query Language

While TriAL* is a neat and expressive approach for querying RDF, its algebraic
notation is inappropriate for practical usage, where we need a more compact and
writable language. Thus, we propose the TriAL* Query Language (TriAL-
QL) that keeps the compositional structure of TriAL* by representing each algebra
operation with a SQL-like statement. This way, even complex navigational queries
are easy to grasp and write and, in addition, also all extensions introduced in Sec-
tion 5.3 are supported. The basic idea is to flatten the algebraic expressions of
TriAL* to a sequence of interrelated statements. A complete grammar can be
found in Appendix C (page 225). Table 5.1 shows the algebra of TriAL* and E-
TriAL* with the corresponding syntax in TriAL-QL. Each algebra operation is
represented by exactly one SQL-like statement.

Table 5.1.: TriAL-QL Algebra & Syntax, where E, E1 and E2 correspond to a
triplestore and i, j, k, φ, θ, η as previously defined.

Algebra Syntax (TriAL-QL)

T
ri
A
L
*

σθ,η(E) SELECT i, j, k FROM E FILTER θ, η

E1 ./
i,j,k
θ,η E2 SELECT i, j, k FROM E1 JOIN E2 ON θ FILTER η

E1 ∪ E2 E1 UNION E2

E1 − E2 E1 MINUS E2

E1 ∩ E2 E1 INTERSECT E2

(E ./i,j,kθ,η )∗ SELECT i, j, k FROM E ON θ FILTER η USING right

(./i,j,kθ,η E)∗ SELECT i, j, k FROM E ON θ FILTER η USING left

E
-T
ri
A
L
*

σφθ,η(E) SELECT i, j, k WITH φ FROM E FILTER θ, η

E1 ./
i,j,k | φ
θ,η E2

SELECT i, j, k WITH φ FROM E1 JOIN E2
ON θ FILTER η

(E ./
i,j,k | φ
θ,η )∗

SELECT i, j, k WITH φ FROM E
ON θ FILTER η USING right

(./i,j,k | φθ,η E)∗
SELECT i, j, k WITH φ FROM E
ON θ FILTER η USING left

(E ./
i,j,k | φ
θ,η )n,m

SELECT i, j, k WITH φ FROM E
ON θ FILTER η USING right(n,m)

(./i,j,k | φθ,η E)n,m
SELECT i, j, k WITH φ FROM E
ON θ FILTER η USING left(n,m)
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We can see that the syntax TriAL-QL stays close to its TriAL* and E-TriAL*
expression illustrating the strength of a compositional language where the result of
the first statement can be used as input for the second. This makes TriAL-QL easy
to write, understand and modify. A further advantage is its extensibility, where new
operators that extend the capabilities of our language can be added smoothly with
new keywords. We will show this with operations that enable storing and retrieving
of final but also intermediate results. Such features are well known from languages
equipped with data manipulation as SQL. For TriAL-QL, we will introduce just a
few basic expressions that allow us the reuse of results and gives more control over
provenance in quadruple stores.

Data Manipulation. First, we extend the syntax of TriAL-QL with a STORE
operation that enables us to materialize results E of an E-TriAL* expression e as
a new relation in a quadruple store. This way, not only the output but also interme-
diate results can be stored for later processing, if desired. One further aspect which
need to be considered is provenance. To facilitate dealing with it, we added an
optional keyword PROVENANCE to TriAL-QL, which indicates whether prove-
nance is kept or dropped while storing results. The syntactical rules are defined as
follows:

STORE (PROVENANCE) E AS identifier

The corresponding counterpart of storing results is deleting them again. For this,
a drop command is added, where one has the choice of removing the complete
quadruple store or just its provenance using the following syntax:

DROP (PROVENANCE) identifier

Furthermore, an additional keyword, RDFS, is required to indicate the mapping of
provenance into RDF triples. The corresponding expression for storing provenance
as RDF is then:

STORE (RDFS) E AS identifier

Example 5.12. For an introductory example we consider again the reachability
query from Example 5.3 (98), where we asked for pairs of users (x, y) connected by
a path which exhibits linear shape visualized as follows:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

x ... y
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A query in TriAL-QL that captures such a pattern together with its algebraic
representation in TriAL* is then:

E1 = (E ./ s1, p1, o2
o1=s2 )∗

 

E1 = SELECT s1, p1, o2 FROM E ON o1 = s2 USING right

Example 5.13. Next, we take the pattern from Example 5.5 (page 99) that asks
for pairs of nodes (x, y) such that a connection exists from x to y where only one
type of connection is allowed on the whole path. The type is again a recursive query
which derives its property from the use of e.g. RDFS rules.

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

x

z

...

...

x ... y

... y

...

...
......

A query in TriAL-QL that captures such a pattern together with its algebraic
representation in TriAL* is then:

E1 = (E ./ s1, o2, o1
p1=s2 )∗

E2 = (E1 ./
s1, p1, o2
o1=s2, p1=p2)∗

 

E1 = SELECT s1, o2, o1 FROM E ON p1 = s2 USING right

E2 = SELECT s1, p1, o2 FROM E1 ON o1 = s2, p1 = p2 USING right

The result is then a set of triples (x, z, y), such that
• there exists a connection from x to y, where
• each intermediate predicate has, for instance, the same superclass z.

Example 5.14. Next, let us consider the case where we are interested in prove-
nance. More precisely, we want to keep information about the original property
that connected two resources on the path between x and y. In the above queries,
this property is replaced recursively in accordance with the expression e1. This
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was required for the way e2 is determining connections, since it needs to access
recursively-derived properties. Moreover, as the original properties between x and
y might have been different (otherwise we would not need nesting at this point), we
additionally want to preserve the complete list of (original) properties between two
resources. To do so, we can modify the expressions from the previous Example 5.13
as follows:

E0 = σp(E)
E1 = (E0 ./

s1,o2,o1 | r1
p1=s2 )∗

E2 = (E1 ./
s1,p1,o2 | r1 r2
o1=s2, p1=p2 )∗

 

E0 = SELECT s, p, o WITH p FROM E

E1 = SELECT s1, o2, o1 WITH r1 FROM E0 ON p1 = s2 USING right

E2 = SELECT s1, p1, o2 WITH r1 r2 FROM E1 ON o1 = s2, p1 = p2

USING right

With E0, we can see how provenance is added by the use of a selection operator,
where just the current property (φ = p) is specified as provenance. The subsequent
expression which computes E1 does not extend the provenance entry, but simply
propagates it to all newly derived triples (φ = r1). The outer expression for E2,
which defines the actual traversal between two resources x and y creates for each new
recursive step a new provenance entry by composing the previous ones (φ = r1 r2).
The resulting provenance is then a description of all properties that have been
traversed in order to derive a triple.

Example 5.15. We can further increase the informativeness of the provenance
in the above example and add each individual triple to the provenance which con-
tributes in deriving a new triple. For that, we modify the expression as follows:

E0 = σs p o(E)
E1 = (E0 ./

s1,o2,o1 | r1 r2
p1=s2 )∗

E2 = (E1 ./
s1,p1,o2 | r1 r2
o1=s2, p1=p2 )∗

 

E0 = SELECT s, p, o WITH s p o FROM E

E1 = SELECT s1, o2, o1 WITH r1 r2 FROM E0 ON p1 = s2 USING right

E2 = SELECT s1, p1, o2 WITH r1 r2 FROM E1 ON o1 = s2, p1 = p2

USING right
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In comparison to the previous example, the provenance entry for E0 contains now
not only the property but the complete triple (φ = s p o). Furthermore, also each
recursive step in the inner expression E1 is now tracing its provenance, where each
contributing triple is added completely to the provenance (φ = r1 r2). The final
provenance in E2 is then a description of all triples that have been used in order to
derive a triple, including those which where traversed by E1.

5.5. Limitations of TriAL-QL

The high expressiveness complemented with a good evaluation complexity of E-
TriAL* comes with a few more shortcomings, which we haven’t discussed yet but
that might hamper its practical usage. One crucial limitation of E-TriAL* is at
the same time its most important property, the triple-based model. Having just
three positions to work with is a substantial restriction for query writing, leading
to complex nested queries in cases where more variables are required to express
a desired pattern. This is especially present when multiple tests on data values
are involved. For instance, consider a simple query that asks for pairs of users,
which worked at the same department in the same year. Both constraints have to
be expressed in separate expressions which then again need to be combined with a
further expression. But in the end, this is mainly a syntactical hurdle which does not
affect the expressiveness and hence, by using union, minus and intersection, even
complex pattern can be captured as was shown in [LRV13]. Certainly, we could
also think of a higher level language than TriAL-QL, which would aim to facilitate
querying by having greater capabilities of expressing complex pattern in a short
form. However, such a language has to be designed carefully in order to capture
on one side the expressiveness of TriAL* while on the other side not inducing any
extensions that would increase the complexity in evaluation. With TriAL-QL, we
have chosen to design a language which stays close to the triple algebra. Accordingly,
we could easily see that both properties remain preserved but unfortunately there
are no short forms for these sort of multiple tests on data values.

Apart from that, it is also the relatedness of E-TriAL* to relational algebra itself
which can be seen as a grave weakness. A relational view on data has, in contrast to
a graph based one, some inherent implication of how certain pattern are expressed.
If we consider for instance long-chained navigational queries with distinct traversing
steps, each step needs to be described by an individual triple join. Whereas more
graph-based languages like RDFPath provide querying capabilities geared towards
a compact and intuitive way of expressing such patterns. However, this is solely a
syntactical issue, since we could argue again with a more high level language on top
of E-TriAL*.

Nonetheless, as we will see in Chapters 7, the advantages of having a language which
is close to relational algebra outweighs its drawbacks with regard to implementation
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and optimization. For that, we highly benefit from well-studied algorithms and
widely adapted techniques in the area of relational databases.
With RDFPath and TriAL-QL we have seen two orthogonal approaches capturing
navigational queries. Both are equipped with expressive querying features, which
cannot be expressed in most other RDF querying languages so far. Both exhibit
also some fundamental issues that might hamper its practical usage for certain use
cases. This provides the basis for further research questions which might investi-
gate intersections between intuitive querying with meaningful results as shown in
RDFPath and efficient yet simple algebra operations as introduced with E-TriAL*
which benefit from their closeness to relational algebra. However, in the remaining
chapters we will focus on the crucial point of this dissertation, the distributed pro-
cessing of such expressive, navigational query languages, where we utilize a cluster
environment to process them against RDF graphs at web-scale.
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6.1. Motivation

With the emergence of semantic knowledge bases in diverse areas which include, for
instance, biology, chemistry or the annotation of sports events, we can observe a
steady growth of semantically-annotated data at a scale where querying the data
becomes a challenging task. Consequently, distributed execution frameworks have
been investigated for various query processing task that enable the work on web-
scale RDF data. Recent examples include distributed SPARQL engines [HAR11,
HMM+11, SPZL11] or OWL reasoning at large-scale [UKM+12]. With that in mind,
we consider in particular the evaluation of complex, navigational RDFPath queries
to be a data-intensive task that require solutions which allow the scale with the
data size [HAR11]. Consequently, processing RDFPath queries against large RDF
graphs can be also seen as an exhausting “Big Data” task.
In recent years, it has been widely recognized that the Hadoop ecosystem has be-
come indispensable for many “Big Data” applications. System architectures for
processing large amounts of data typically follow a layered approach: the front tier
is responsible for answering simple queries in real-time as low latencies are essential.
More complex analyses are performed offline in batches and results are pushed to the
front tier in intervals (cf. e.g. [SKS13]). Typical representatives of such long-running
queries are also navigational “friend-of-friend” RDFPath queries, if computed for all
users in parallel. Due to its inherent high degree of parallelism and good scalability,
MapReduce [DG08] is one of the predominant frameworks used for dealing with such
large data. Although it might not be the most efficient solution wrt. node utiliza-
tion, it gracefully handles load-balancing on top of commodity hardware, especially
when it comes to rapidly-growing datasets where its built-in fault tolerance becomes
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another advantage. Thus, it is a natural candidate for processing our long-running
RDFPath queries. This concept fits well with our initial motivation behind RDF-
Path to complement the existing ecosystem of tools and languages developed for
the Semantic Web. RDFPath queries are then seen as a preprocessing task, where
resulting RDFp paths are mapped again into a valid RDF graph as introduced
in Section 4.6, such that they can serve as input for other RDF management sys-
tems. Moreover, if we consider HDFS as a common data pool that is shared across
various Semantic Web applications, other systems are able to directly access the re-
sulting RDF graph from our RDFPath MapReduce Processor. Hadoop-based
SPARQL engine like Sempala [SPNL14] or S2RDF [SPSL15, SPSL16] can then
be used as a low latency interface, where data does not even need to be duplicated
or moved in order to be further processed.

Following this line of research, we proceed to investigate evaluation strategies for
RDFPath queries with MapReduce on large RDF graphs in this section. After
an initial introduction to Hadoop and the overall architecture of our RDFPath
MapReduce Processor, we will start first with the underlying storage schema
for RDFp graphs, named RDFp Store. RDFp Store is essentially our own
serializable format for RDFp paths stored in HDFS. It integrates multiple opti-
mizations such as binary competitors and dictionary encoding and provides efficient
access to all individual resources of RDFp paths.

In addition, partitioning strategies which are applied in an initial preprocessing
step reduce the overall amount of data that needs to be retrieved. Individual op-
erations are explained by means of our RDFPath semantics, where we include a
mapping from technical operations to the corresponding algebra expression. Af-
ter that, we will continue with a strong focus on the actual join strategy used to
compute traversing steps. Hereby, we will start with the commonly-used reduce-
side join technique, followed by a short overview of alternative approaches. After
identifying a promising candidate for improving the join performance of RDFPath
queries, we introduce the concept of our Map-Side-Merge join. In order to provide
more comprehensive comparisons and allow for some sort of comparison with other
approaches, we base the experiments on SPARQL basic graph pattern (BGP). Al-
though it does not provide the same expressiveness regarding navigational queries,
it allows us to compare the crucial part of the evaluation, the actual join processing.
Both RDFPath and SPARQL queries essentially break down into a sequence of joins.
We can therefore assume that an improvement of BGPs evaluation performance in
comparison to other techniques implies also an improvement in the evaluation of
RDFPath queries. This is underpinned by the fact, that an RDFPath query of fixed
length, thus without recursion, can be expressed as a BGP. To that end, we will
present a distributed (n-way) sort-merge join on top of MapReduce, where the join
is computed completely in the map phase. It addresses the problem of cascaded
executions by using the reduce phase of MapReduce to assure that the “left-hand”
side of the join is sorted wrt. the join attribute(s). Our data model assures that
the “right-hand” side of the join is always presorted on the required attributes. For

120



6.1 Motivation

the reduction of intermediate results, bloom filters [Blo70, GWCL06] are used to
remove dangling tuples. A comparison of other MapReduce-based join techniques
showed that our approach exhibits a performance benefit of 15% to 48% on average
in LUBM [GPH05], a benchmark which is used to compare the execution times of
SPARQL BGP engines.
To the best of our knowledge, as of 2010 our RDFPath MapReduce Processor
was the first navigational RDF query language implemented on top of MapReduce.
Most of the results from this Chapter were published in [PSHL11] and in [PSHL12].
The map-side merge join optimization, which in contrast to related work [YDHJ07,
HB10] does not require changes to the underlying MapReduce code, was published
in [PSS+13], as a general join technique for MapReduce. We can summarize the
contributions of this chapter as follows:

• We provide an implementation for RDFPath that is based on MapReduce. The
overall architecture of our RDFPath MapReduce Processor consists of
three modules discussed in Section 6.2.

• In Section 6.3, we introduce RDFp Store, a data storage schema for RDFp
paths. It comes with its own serializable format for efficient comparison and re-
trieval of RDFp resources and a partitioning strategy that reduces the amount
of data that needs to be read from disk.

• The translation of RDFPath queries into MapReduce operations is discussed
in Section 6.4, where we focus especially on join processing techniques.

• Two Map-Side merge joins, a 2-way and n-way sort-merge join, will be pre-
sented as an optimization for RDFPath in Section 6.5. Both joins are com-
puted completely in the map phase and support a cascaded execution while
using the reduce phase only for sorting. Further, bloom filters improve the
overall performance by removing dangling intermediate results. Comprehen-
sive experiments confirm in Section 6.5.4 the good performance of our join
technique in comparison with other MapReduce joins and systems.
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6.2. Distributed MapReduce Processor for RDFPath

We implemented a processor for RDFPath queries on Apache Hadoop1, which is a
collection of many open-source frameworks for distributed storage and processing
on a cluster of machines. Before discussing the architecture of our implementation,
we will give a briefly introduction into the two core Hadoop technologies HDFS and
MapReduce.

Hadoop Distributed File System. The Hadoop Distributed File System (HDFS)
is a distributed file system which follows conceptually the Google File System (GFS)
introduced in [GGL03]. As one of the core components of Hadoop, it provides a dis-
tributed, fault-tolerant and common data-pool for the Hadoop ecosystem. Its basic
idea is to split data into blocks, with a typical block size between 64 and 512 MB.
Each block is then replicated across multiple machines, typically three. However,
the replication is not only meant for fault-tolerance but has also a significant impact
on the performance. This is due to one of the key concept for data processing on
Hadoop, the usage of data locality. Instead of moving data to a calculation that
probably runs on another machine, it is rather the calculation itself which is moved
to the data by means of programming paradigms like MapReduce. Having multi-
ple replications distributed across several machines increases the chances that data
does not need to be moved but instead, can be locally processed. The architecture of
HDFS is organized as a master/slave model. The master is the so-called namenode
which stores metadata for all files and knows the locations of all blocks. The slaves,
which are called datanodes, are then used to store the blocks of data.

MapReduce. The MapReduce programming model [DG08] enables scalable, fault
tolerant and massively parallel computations on a cluster of machines. The essential
idea is to provide a simple programming abstraction, where the task of parallelization
is handled automatically. Developers express their algorithms in this model by
specifying so-called map() and reduce() functions which are executed on the data
in parallel. The underlying system makes use of data locality and avoids transfers
of large datasets through the network if possible.
A conceptual view on the workflow of MapReduce is shown in Figure 6.1, where we
can see that a single MapReduce iteration consists of a staged map and a reduce
phase separated by a so-called Shuffle & Sort phase.
The main concept is that for each input record, which is usually represented as a
key-value pair, a map() function gets invoked. Generally, this function is meant
to apply filtering and extraction tasks on the input record. The output is then a
list of key-value pairs derived from the input record. In the followed intermediate
Shuffle & Sort phase, all intermediate key-value pairs are sorted in accordance to

1http://hadoop.apache.org/
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Figure 6.1.: MapReduce Dataflow

their key. This operation can be also understood as a Group By (key) operation in
SQL, where all key-value pairs that share a key are assigned to the same so-called
partition.
Next, a reduce() function gets invoked for each distinct key and thus individual
partition, where the key and a list of all respective values is the input. This pro-
cessing step closes one MapReduce iteration, by producing again a list of key-value
pairs. In cases where a certain task needs to be expressed by multiple subsequent
MapReduce iterations, the output of the reduce() functions is used again as input
for the subsequent map(). The signatures of map() and reduce() functions can be
therefore summarized as follows:

map(): (inKey, inValue) -> list(outKey, tmpValue)
reduce(): (outKey, list(tmpValue)) -> list(outValue)

For a more detailed introduction into MapReduce we recommend [LD10, Whi15].

RDFPath Architecture. We can continue with an overview of complete archi-
tecture which is shown in Figure 6.2. The MapReduce-based implementation of
RDFPath is mainly composed of three components: RDFp Store, RDFPath Loader,
and RDFPath Processor.

• RDFp Store: The basis for evaluating RDFPath queries with MapReduce is
a distributed storage for RDFp graphs. With HDFS there exists a distributed
and scalable file system that allows us to build the RDFp Store on top of it.
Main design goals were not only the overall reduction of data size that needs
to be processed during query execution but also a unified representation that
does not restrict the expressiveness and flexibility of RDFp. For a path-based
language, which traverses the graphs by following predicates, usually just a
small fraction of the data needs to be considered at once. With this in mind,
we included a partitioning schema, dictionary encoding and further compres-
sion techniques using our own serializable data structures that capture the full
strength of RDFp while enabling further optimization strategies. A detailed
introduction is presented in Section 6.3.
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Figure 6.2.: RDFPath System Architecture

• RDFPath Loader: Loading new graphs in RDFp Store requires multiple
tasks that need to be applied on the data once in advance. In a first step, the
RDF(p) Parser translates RDFp graphs and diverse RDF serializations into
a unified RDFp representation. After that, the (optional) Dictionary Encoder
is used to create encoded RDFp graphs, where text-based IRIs are replaced
by short numerical values. In a last step, our internal data structure based on
a partitioning schema and compressed containers (so-called SequenceFiles) is
created and stored in HDFS using MapReduce.

• RDFPath Processor: The core component of our implementation is the
RDFPath Processor which (1) parses RDFPath queries, (2) translates them
into their algebraic representation, and (3) creates a MapReduce plan that
computes the corresponding expressions. The final MapReduce plan is then
(iteratively) executed, where the results are stored again in HDFS as RDFp
paths in SequenceFiles. Section 6.4 provides detailed insights on how the most
crucial operations are expressed in the MapReduce model.
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6.3. RDFp Store

RDFp was introduced in Section 4.2 as a flexible yet lightweight data model to
represent paths in RDF graphs. It forms the basis for RDFPath (cf. Section 4.4),
an expressive navigational language for RDF geared towards more meaningful, path-
based results. In order to process next RDFPath queries with MapReduce, we first
need to find a proper data representation for RDFp graphs in the Hadoop ecosystem
which meets our requirements. First of all, data needs to be stored in a distributed
way. Secondly, not only whole RDFp paths but also individual resources need
to be accessible efficiently and allow for some sort of optimization. And lastly,
intermediate but also final results should share the same unified representation,
thus each iteration produces at any time a valid RDFp graph.
With the Hadoop Distributed File System (HDFS), distributed storage exists which
can be used by any Hadoop application. It is well-known for its scalability and
applicability for large data sets while providing enough flexibility to develop new
data structures on top of it. This provides a simple yet elegant way to integrate our
own application-specific data structures by means of so-called containers, which are
automatically maintained in HDFS.
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Figure 6.3 illustrates an overview on how RDFp is represented in the Hadoop ecosys-
tem. We can see that all the data resides in HDFS, but in a structured format,
which we will introduce bottom-up in the following. We will start with a few tech-
nical low-level optimization, for instance the design of a single RDFp resource and
its tight integration into HDFS, and proceed then with more high-level aspects like
partitioning and compressing strategies that were built on top.

Modeling RDFp in Hadoop. Following the notation in Section 4.2, the basic ele-
ment of an RDFp path is a resource r representing an RDF term with r ∈ (I∪B∪L).
Such a resource is modeled by its own class named ResourceWritable which is
shown in Figure 6.5. We can see that it implements the WritableComparable inter-
face of Hadoop, a precondition if we want to (1) serialize (store and retrieve) objects
in HDFS and (2) compare them with each other. Further, there are a few handy
functions added to enable support for, e.g. different encoding strategies and data
types. With a binary comparator, resources can be sorted in according to their nat-
ural order using their binary representation and thus there is no need to materialize
resources in certain cases. This will be of particular interest for MapReduce, where
we benefit strongly from fast comparison that avoids materializing objects.

RDFpWritable

- path:                      Map<ResourceWritable>

- isPath:                          BooleanWritable

+ appendResource(ResourceWritable):   RDFpWritable

+ compose(RDFpWritable):              RDFpWritable

+ composeIfCompatible(RDFpWritable):  RDFpWritable

+ composeTopology(RDFpWritable):      RDFpWritable

+ applyFilter(Filter):                RDFpWritable

+ getFirstResource():             ResourceWritable

+ getLastResource():              ResourceWritable

+ getPropertyResource():          ResourceWritable

+ getResource(Interger):          ResourceWritable

+ getElements():             Map<ResourceWritable>

+ getLength():                                 int

+ getCopy():                          RDFpWritable

+ getProjection(List):                RDFpWritable

+ getSubpath(int):                    RDFpWritable

+ getQuad():                          RDFpWritable

+ getRDFS():                     Map<RDFpWritable>

+ isPath():                                boolean

+ hasCycle(RDFpWritable):                  boolean

+ hasCycle(ResourceWritable):              boolean

+ readFields(DataInput):                      void

+ write(DataOutput):                          void

ResourceWritable

- resource:                       Text

- isEncoded:           BooleanWritable

- encoderType:                    Text

- literal:             BooleanWritable

- literalType:                    Text

+ getValue():                     Text

+ compareTo(ResourceWritable):     int

+ equals(ResourceWritable):    boolean

+ getCopy():          ResourceWirtable

+ isEncoded():         BooleanWritable

+ getEncoder():                   Text

+ isLiteral():                 boolean

+ getLiteralType():               Text

+ readFields(DataInput):          void

+ write(DataOutput):              void

<<interface>>

WritableComparable

org.apache.hadoop.io

+ compareTo(WritableComparable)

+ readFields(DataInput) 

+ write(DataOutput)

<<interface>>

Writable

org.apache.hadoop.io

+ readFields(DataInput) 

+ write(DataOutput)

Figure 6.4.: Class diagram of RDFpWritable

The general structure of the entire RDFp path is a n-ary tuple p = (r1, r2, r3, ..., rn)
composed of n resources ri, with ri ∈ (I ∪B∪L). In RDFp Store this is modeled
by the class RDFpWritable which is meant to compose multiple ResourceWritable
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classes as shown in Figure 6.3. A more detailed description is shown in Figure 6.4,
where we can see that it implements again the Writable interface of Hadoop and is
composed solely out of serializable objects. But in addition, in order to optimize the
execution performance, most crucial functionalities were added to this class to work
directly on the data. Referring to the terminology introduced in Section 4.4 (page
71), we present in Table 6.1 a mapping of implemented functions to our RDFPath
semantics.

RDFpWritable

- path:                      Map<ResourceWritable>

- isPath:                          BooleanWritable

+ appendResource(ResourceWritable):   RDFpWritable

+ compose(RDFpWritable):              RDFpWritable

+ composeIfCompatible(RDFpWritable):  RDFpWritable

+ composeTopology(RDFpWritable):      RDFpWritable

+ applyFilter(Filter):                RDFpWritable

+ getFirstResource():             ResourceWritable

+ getLastResource():              ResourceWritable

+ getPropertyResource():          ResourceWritable

+ getResource(Interger):          ResourceWritable

+ getElements():             Map<ResourceWritable>

+ getLength():                                 int

+ getCopy():                          RDFpWritable

+ getProjection(List):                RDFpWritable

+ getSubpath(int):                    RDFpWritable

+ getQuad():                          RDFpWritable

+ getRDFS():                     Map<RDFpWritable>

+ isPath():                                boolean

+ hasCycle(RDFpWritable):                  boolean

+ hasCycle(ResourceWritable):              boolean

+ readFields(DataInput):                      void

+ write(DataOutput):                          void

ResourceWritable

- resource:                       Text

- isEncoded:           BooleanWritable

- encoderType:                    Text

- literal:             BooleanWritable

- literalType:                    Text

+ getValue():                     Text

+ compareTo(ResourceWritable):     int

+ equals(ResourceWritable):    boolean

+ getCopy():          ResourceWirtable

+ isEncoded():         BooleanWritable

+ getEncoder():                   Text

+ isLiteral():                 boolean

+ getLiteralType():               Text

+ readFields(DataInput):          void

+ write(DataOutput):              void
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Figure 6.5.: Class diagram of ResourceWritable

Table 6.1.: Mapping of functions to RDFPath semantics, with this.path being
the current path and reference refers to the formal definition.

Function RDFPath Semantics Reference

composeIfCompatible(RDFpWritable nPath) this.path ◦ nPath.path Def. 4.8, p. 72
composeTopology(RDFpWritable nPath) δ1(this.path ◦ nPath.path) Def. 4.7, p. 72
getFirstResource() π1(this.path) Def. 4.4, p. 71
getLastResource() πn(this.path) Def. 4.4, p. 71
getPropertyResource() π2(this.path) Def. 4.4, p. 71
getResource(i) πi(this.path) Def. 4.4, p. 71
getLength(i) length(this.path) Def. 4.5, p. 71
getProjection(list l) πlist l(this.path) Def. 4.6, p. 72
getSubpath(i) δi(this.path) Def. 4.7, p. 72
getQuad() this.path .quad() Def. 4.13, p. 86
getRDFS() mapToRdfs(this.path) Alg. 4.6.1, p. 89
hasCycle(RDFpWritable nPath) cylce(this.path, nPath.path) Alg. 4.5.1, p. 79

An RDFp graph P is a set of RDFp paths p, such that p ∈ P . In RDFp Store,
such a set of RDFpWritable paths are serialized in a container called SequenceFile,
which is also the base data structure for different types of files like ArrayFile or
MapFile. These files not only contain data but might also have indexes or even
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bloom-filter integrated. In order to be used as input and output format in MapRe-
duce, a proper RecordReader and RecordWriter need to be provided which enable
reading and writing of records, in our case objects of type RDFpWritable. We de-
cided to use a basic SequenceFile, without any indexes as it is supposed to be the
fastest file format for sequential reading and writing. Unlike a B-tree, for example, a
SequenceFile does not support seeking a specific key or modifying entries. However
it is optimized for a high write-and-read throughput of objects and for this task it is
a suitable choice that implements the aforementioned mentioned Writable interface.
Moreover, it supports three storage strategies which can further improve the overall
performance, specified in the SequenceFileHeader as illustrated in Figure 6.3. The
following strategies were supported in the used version of Hadoop [Whi15]:

• Uncompressed: RDFpWritable objects are stored as illustrated in Figure 6.3,
where the value is used to represent RDFpWritable

• Record-compressed: RDFpWritable objects are first compressed and then
stored, where each value entry that keeps a RDFpWritable is compressed in-
dividually

• Block-compressed: RDFpWritable objects are first collected in blocks of
configurable size and then compressed as a set.

To that end, we decided to use record-compressed SequenceFiles as they proved
to provide a good tradeoff between compression and performance. For dictionary
encoding, which we will introduce next, the actual storing strategy does not show
a significant impact on data sizes but comes along with a higher computational
effort. As a result, only uncompressed SequenceFiles were used for experiments
with dictionary encoding.

Dictionary Encoding. A commonly-used optimization to reduce the overall size
of data that needs to be managed is based on creating a dictionary in order to
encode and decode individual words. Long text-based values are then replaced
with a shorter representation. There is a wide range of approaches and technolo-
gies that can be used for that purpose [EGK95, UKOvH09, CMK+14, MWV+15].
However, as it was not a main focus of our work but just intended as a proof-of-
concept experiment for MapReduce, we stuck to technologies that can be easily
integrated into the Hadoop ecosystem. With this in mind, we decided to use Berke-
ley DB [OBS99, Ora16], an embedded key-value database library which is available
in a Java Edition and does not require a dedicated infrastructure running in parallel
to Hadoop. It can therefore be easily used within the MapReduce environment,
where database files are simply shared via HDFS. A schematic overview is shown in
Figure 6.6. There are two so-called data stores which maintain two read-optimized
dictionaries. The first one is used to store the mapping of words to encoded values.
This is required, since we want to keep the encoded values as small as possible and
are therefore using auto-increasing integers. The second data store is used in order
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to decode the translated values back into their initial text-based form. Both dic-
tionaries are created while loading the data into RDFp Store. For performance
issues, both dictionaries are first replicated to each machine by changing the Hadoop
replication factor to the number of machines available in the Hadoop Cluster. Next,
a local copy of the decoding dictionary is created on each machine using the data
replicated through HDFS. As those dictionaries are solely meant to decode values,
transaction control and locking were disabled and the data store is configured for
read-only access. With each RDFPath query that is evaluated over the data using
dictionaries, a mechanism is triggered that checks whether the local copies are still
up to date and replaces them if required.
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Figure 6.6.: Using Berkeley DB for dictionary encoding with MapReduce

In a subsequent work, we also investigated the usability of Cassandra [Hew10] and
HBase [Geo11] for storing the dictionaries in a dedicated infrastructure running in
parallel to Hadoop MapReduce. However, with an overall performance in orders of a
few ten thousand record reads per second on a cluster with ten machines, both were
by orders of magnitude not fast enough for decoding long-chained RDFp paths at
web-scale, where each resource causes a new operation. This observation is in line
with other research on benchmarking NoSQL systems, as they are optimized for low
latency rather than high throughput in general [CST+10, Cat10]. In comparison,
using Berkeley DB we achieved a read performance of almost one million records
per second on each machine [OB06].

Partitioning Strategies. Typically, RDF stores represent RDF datasets using some
sort of partitioning and indexing strategies in order to improve the performance of
evaluation. In our case, we basically need to consider two aspects for our lay-
out. First, even though RDFPath supports diverse patterns, including querying
the topology, for a navigational query language we tend to follow predicates more
frequently than other patterns, as they appear closer to the natural interpretation
of graphs. Second, the fact that the data needs to be distributed on a cluster of
machines hampers the use of indexes. As a result, we use for the initial RDF dataset
a representation that is similar to a so-called triple table, but partitioned by pred-
icates. This principle – also known as vertical partitioning [AMMH07] – forms the
ground base for our data layout and is often in use by RDF triplestores with DBMS
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back-end. In Figure 6.7, we can see how vertical partitioning is applied on our run-
ning example. For partitions which exhibit a certain size – as is often the case for
partitions storing the commonly used predicate type – more than one SequenceFile
is created. Please note that vertical partitioning is only applied once to the initial
RDFp graph while loading the graph into our RDFp Store. Due to the fact that
intermediate RDFp paths do not have a clear predicate, vertical partitioning is not
applicable anymore.
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6.4. RDFPath MapReduce Processor

The translation of RDFPath queries follows a standard approach illustrated exem-
plary in Figure 6.8. The query asks for the Friends-of-Friend of Bob which are
above 21 years old. In a first step, the RDFPath query k1 gets parsed and its
abstract syntax tree k2 is generated by means of the EBNF grammar presented
in Appendix B (p. 223). Next the abstract syntax tree is translated into an al-
gebraic representation k3 using the RDFPath semantics discussed in Section 4.4.
Hereby we can see that for our query, we need to access the RDFPath Store three
times, where just two partitions are used in the end. Before continuing with the
next translation step, we apply some widely-used optimization strategies discussed
in [HH07, SSB+08, SML10]. In the current example, the so-called filter-pushing ap-
proach is applicable. Rather than loading the complete partition for the predicate
age and filtering afterwards, we can move the filter operation directly to the data
access operation in the RDFPath Store. Note that, as we are encoding only text-
based values, an efficient numerical comparison remains feasible. In cases where we
have a filter on a text-value, we first need to use the dictionary in order to translate
the corresponding value(s) into its encoded numerical value. The algebra is then
evaluated bottom-up, where for each algebra operation a corresponding MapReduce
job is added to the MapReduce execution plan k4 .
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LeftJoin

knows = LOAD 'rdf/knows' USING rdfLoader() AS (s,o);          

age   = LOAD 'rdf/age' USING rdfLoader() AS (s,o);

f1    = FILTER knows BY o == 'Peter';

t1    = FOREACH f1 GENERATE s AS person;

t2    = FOREACH age GENERATE s AS person,o AS age;

j1    = JOIN t1 BY person, t2 BY person;

BGP1  = FOREACH j1 GENERATE t1::person AS person, 

                            t2::age AS age;

F     = FILTER BGP1 BY age >= 18;                     

mbox  = LOAD 'rdf/mbox' USING rdf() AS (s,o);         

BGP2  = FOREACH mbox GENERATE s AS person,o AS mb;

lj    = JOIN F BY person LEFT OUTER, BGP2 BY person;   

LJ    = FOREACH lj GENERATE F::person AS person,

                            F::age AS age, BGP2::mb AS mb;

STORE LJ INTO 'output' USING resultWriter();
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Figure 6.8.: Translating an RDFPath query into MapReduce
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6.4.1. Mapping to MapReduce

Up to now, we have seen the overall architecture behind RDFPath, discussed how
RDFp paths are represented in the RDFp Store and presented the translation
process of an RDFPath query into MapReduce jobs. Next we will address the
most important part, which is the evaluation strategy that we use with MapReduce.
In Figure 6.8 step k3 , we have seen that the computation of traversing steps in
RDFPath, which are clearly the most important operations, essentially breaks down
to the evaluation of a series of joins. Indeed, processing joins proves to be at the
core of evaluating such data-intensive tasks, on which we will focus next.
Generally we can state that processing joins on large datasets is, even with MapRe-
duce, a challenging and costly task [BPE+10, LLC+11]. One has to consider many
parameters. For instance, a proper data partitioning and distribution strategy, which
have a significant impact on the overall performance while having at the same time
just two simple functions – map() and reduce() – and a staged workflow avail-
able to express a join. In order to understand the problem setting more precisely,
we introduce some general terminology in the following. Given two datasets with
RDFp paths L and R stored in HDFS, split into blocks and spread across a cluster
of machines, if we want to join both datasets on their join keys L.k and R.k (k can
be assumed a partial data entry extracted from an RDFp path), we have to ensure
that a subset of L with the join-key k1 is brought together with the corresponding
subset of R, such that all records with L.k1 = R.k1 can be processed on the same
machine as a partial result of the whole join between L and R. Unfortunately, this is
rarely the case in MapReduce. Data blocks are distributed and replicated randomly
across all machines in the cluster. Thus, if we want to join arbitrary datasets on ar-
bitrary keys, data needs to be shuffled over the network or alternatively appropriate
pre-partition and replication strategies need to be developed.

Reduce-Side Joins. The simplest but most versatile join technique in MapReduce
is called a Reduce-Side Join [LD10, Whi15, LLC+11]. Some literature refer to it
as Repartition Join [BPE+10] as the basic idea is based on reading both datasets
completely and repartition them according to the join key. An initial preprocessing
step like pre-partitioning can increase the efficiency but is not required. The basic
idea is based on map() functions which emit extracted join keys together with a
dataset ID (i.e. L or R) as a composite intermediate key. The record itself (an
RDFp path) is emitted as the corresponding intermediate value. The shuffle phase
groups the key-value pairs according to the intermediate join key such that all values
with the same join key are sent to the same reducer, i.e. to the same machine.
An appropriate sorting comparator makes sure that records from dataset L occur
previous to records from dataset R or vice versa. Accordingly, reduce() functions
get a sorted list of values as input, which have the join key in common. And that
is exactly what is required to process a join in the reduce phase. The first part
of the list has to be held in memory whereas the second one is processed as a
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stream of data for joining both. The main drawback of this approach is that both
datasets are completely transferred over the network regardless of the join output.
This is especially inefficient for selective queries and consumes a lot of network
bandwidth. Furthermore, we have to hold one of both datasets in memory while the
other one is streamed. In some cases this may exceed the capacities of individual
machines [BPE+10], particularity if the data appears to be skewed. Nonetheless, we
based our first prototype of RDFPath on Reduce-Side joins, due to their inherent
flexibility and the absence of additional pre-computation costs which would have
been required by more efficient join algorithms like Map-Side joins, discussed later.
Next, in order provide more technical insights on the actual implementation, we
present a few details of our adapted Reduce-Side join, which is used to compute
traversing steps in RDFPath. We start with the map() function, which reads RDFp
paths stored in RDFp Store (cf. Figure 6.3). Its pseudo-code is shown in Algo-
rithm 6.4.1, where we can see that it basically follows the previously mentioned
Reduce-Side join strategy. For each RDFp path pi, a composite key with two en-
tries (ri, idi) is extracted. Both the composite key (ri, idi) and the corresponding
path pi are then emitted as key-value intermediate results. The first entry ri contains
the actual join key which is used as an identifier for partitions in the subsequent
shuffle and sort phase. It ensures that all records which share this key ri end up in
the same partition pi and are forwarded within a sorted list to the same reducer.
However, the default partitioner which is used to assign keys to partitions does not
support a composite key structure. For that, a new partitioner needs to be provided,
which enables MapReduce to understand the composite key structure and partition
the records according to the desired value. In this case, the partitioner needs to
consider simply the first entry r of the composite key and ignore the second compo-
nent. Furthermore, in order to improve the overall performance a small optimization
can be applied here. The binary comparator, which was mentioned in Figure 6.4,
can be adopted to avoid materializing the composite key for comparisons which are
required for sorting and partitioning in the shuffle and sort phase of MapReduce.
The order of records within each partition, or more precisely the order within indi-
vidual lists which are passed as input to reducers, needs then to be sorted on the
second entry of our composite key, the id. Recall that with this information we
distinguish between both datasets we want to join. Thus, to avoid unnecessary I/O
we need to ensure reading the input data for each reducer just once. Actually, this
can be achieved by sorting all RDFp paths, which were emitted with id = 0, ahead
of all those which were emitted with id = 1. To do so, again a small modification of
a class is required, which specifies the MapReduce workflow. With a new so-called
grouping comparator, we can supplement MapReduce such that composite keys are
supported, where just the second element id is considered and the previously used
join key r is ignored. Again, also here we can enhance the overall performance of
comparisons by providing a binary comparator which avoids materializing composite
keys.
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Algorithm 6.4.1 : map() function of reduce-side join
input : NullWritable key, RDFpWritable path
output : list (RDFpPairWritable, RDFpWritable)

1 ResourceWritable r ← ∅ // identifier for partitioner
2 int id← 0 // identifier for grouping comperator
3 RDFpPairWritable pair ← ∅ // composition of both identifiers
4 if path.isLeftJoinSet() then
5 r ← path.getLast()
6 id← 0
7 else
8 r ← path.getFirst()
9 id← 1

10 end
11 rid← (id, r)
12 emit (pair, path)

Algorithm 6.4.2 : reduce() function of reduce-side join
input : RDFpPairWritable pair, list(RDFpWritable) P
output : NullWritable, RDFpWritable

1 P // sorted list of all RDFpWritables that share a key
2 L ← ∅ // set of RDFpWritables (paths of left join set)
3 foreach p1 ∈ P do

// paths from the left join set are ahead of others
4 if p1.isLeftJoinSet() then
5 L ← L ∪ p1
6 else

// only paths from right join set appear from now in P
7 foreach p2 ∈ L do
8 pnew ← p2.composeIfCompatible(p1)
9 emit (null, pnew)

10 end
11 end
12 end

Algorithm 6.4.2 shows the pseudo-code for the reduce() function, which is called
for each individual join key r, where all entries that share a join key are grouped in
the same ordered list. As it is ensured that all values with the dataset id = 0 (right
hand side of join) are sorted ahead of values with dataset id = 1 (left hand side of
join) the whole list needs to be streamed once through the reducer. Therefore we
first store all right-hand side values of the join in main memory (line 5), and compute
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then for each further record from the left-hand side the respective join (line 8) and
emit the result in form of a newly composed RDFp path.

Example 6.1. To illustrate a reduce-side join in RDFPath, we consider once more
the running example from Figure 6.7 (page 130), which models the friendship be-
tween four persons including some demographic information. We will refer to this
RDF Graph as R. The following RDFPath query asks for all friends of Bob which
are reachable by traversing knows or friend an arbitrary number of times. After
that, with a subsquent traversing step that includes a filter constraint we determine
their country and ensure that we consider only those friends in germany.

1 Bob : / ( knows | f r i e nd )∗ / country [=DE]

Applying the exemplary query on RDF Graph R and assuming that we already
processed the query so far that just the last traversal is left to evaluate, the following
join needs to be computed:


(Bob, knows, Robin)
(Bob, knows, Alice)

(Bob, knows, Alice, knows, Ted)


reduce−side

./
join

 (Alice, country, CH)
(Ted, country, DE)


In a first step, the map() function is applied on each RDFp path from both input
datasets, where we obtain the following intermediate results2. The composite key
for each RDFp path is composed of the respective join key, in this case the names
of friends, together with a dataset id, that is used to distinguish the left and the
right hand side of the join.

p1 : (Bob, knows, Robin) map()
 ((Robin, 0), p1)

p2 : (Bob, knows, Alice) map()
 ((Alice, 0), p2)

p3 : (Bob, knows, Alice, knows, Ted) map()
 ((Ted, 0), p3)

q1 : (Alice, country, CH) map()
 ((Alice, 1), q1)

q2 : (Ted, country, DE) map()
 ((Ted, 1), q2)

Next in the shuffle and sort phase, data is partitioned in accordance with the first
part of the composite key, thus on names of friends. This way, we bring together
people and their country as both pieces of information will end up in the same par-
tition. Within a partition, the second part of the composite key is used to maintain

2Please note, that (Alice, country, CH) will be actually filtered out much earlier, directly after
reading it for the first time. Yet, for clarity of presentation we kept it.
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an order, where the list of friends appears ahead of their country information. The
first part has to be kept in main memory. After that, a join is applied between all
values from the first part which is held in memory and with each value from the
second part of the list. In the continued example shown next, we can observe that
in total three partitions were created, one for each individual friend. The partition
for Robin and Alice provides no results, since we do not have sufficient information
for Robin, and those for Alice do not satisfy our constraint country = DE. At the
end, just one result is emitted, as in our example Ted is the only person who had
the desired country information. The resulting RDFp path is then a composition
of the friends of a friend chain that starts with Bob and their respective country.

Robin :
{

(Bob, knows, Robin)
} reduce() ∅

Alice :
 (Bob, knows, Alice),

(Alice, country, CH)

 reduce() ∅

Ted :
 (Bob, knows, Alice, knows, Ted),

(Ted, country, DE)

 reduce() 

(Bob, knows, Alice, knows, Ted, country , DE)

To wrap up, we have seen that computing an RDFPath query essentially breaks
down into the evaluation of joins, where each individual traversal step is expressed
by a reduce-side join. The development of more efficient joins is therefore a funda-
mental cornerstone for improving the overall evaluation performance of RDFPath
queries. Conveniently, this is also the case for the W3c recommended RDF query
language SPARQL, where the processing of so-called basic graph patterns, which
are at the core of SPARQL, also breaks down to the evaluation of joins. This in-
tersection enables a much more comprehensive comparisons due to manifold join
optimization and evaluation strategies available for SPARQL on top of Hadoop. We
will continue introducing further join techniques which aim to improve the perfor-
mance of RDFPath queries. However, for evaluation purposes we will come back to
SPARQL’s basic graph pattern, which allows us to provide more comparisons with
other related work.
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Further Join Techniques. In addition to these widely used Reduce-side Joins,
there are several other join techniques focusing on certain join types like Theta-
Joins [OR11] or optimizing existing join techniques for particular application fields
[AU11]. In [YDHJ07] the authors proposed a modified MapReduce workflow by
adding a merge phase after the reduce phase, whereas the authors in [JTC11] propose
a join phase in between the map and reduce phase. Both approaches attempt to
improve the support for joins in MapReduce but require profound modification to
the MapReduce framework. There are also further join techniques that exploit
the idea behind Semi-Joins to reduce the amount of data transferred through the
network. Unfortunately these approaches require an additional MapReduce phase
to identify unnecessary records [HB10, BPE+10]. Jens Dittrich et al. proposed
in [DQRJ+10] a new index and join technique called Trojan Indexes and Trojan Join
that do not require modifications to the MapReduce framework. These techniques
avoid shuffling data during the join execution at the cost of a preprocessing stage
containing a co-partitioning and index-building step at load time.

Broadcast Join. Another group of joins is based on getting rid of the shuffle and
reduce phase to avoid transferring both datasets over the network. This kind of join
technique is called a Map-Side Join since the actual join processing takes place in
the map phase [Whi15]. The most common one is the Broadcast Join [BPE+10]
or Memory-Backed Join [LD10] respectively. This join can be applied if one of the
two datasets, let us assume R, is small enough to be transferred to each machine in
advance. This can be achieved either by copying R to the Distributed Cache or by
increasing the HDFS replication factor of R [Whi15].
For joining L with R the map phase becomes initialized with L as input such that
each Mapper gets a subset of L assigned. Each Mapper needs to retrieve R and
create a main-memory hash table [BPE+10]. Accordingly the actual join can be
processed as a relational hash join without transferring L through the network, as
each mapper can compute a partial join for his subset of L independently.
Although it can be stated that Broadcast Joins are an efficient way for joining larger
datasets with smaller ones, this approach is only applicable if there is information
available about the dataset sizes in advance, such that it can be ensured that the
smaller dataset fits into main-memory. Furthermore it increases the starting costs
for the MapReduce job as the smaller dataset have to be redistributed before each
join execution if no caches or sufficient high replication factors are used.

Map-Side Join. A further join technique that belongs to the group of Map-Side
Joins we will optimize in the next section is called a Map-Side Merge Join [LD10,
LLC+11]. However, such a join cannot be applied on arbitrary datasets. A prepro-
cessing step is necessary to fulfill several requirements: First of all, the datasets have
to be sorted according to the join key. Next, both have to be equally partitioned,
such that a partial merge join can be applied on two sorted partitions independently.
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This sounds very strict and at least costly to achieve with MapReduce and HDFS.
Indeed, the output of a MapReduce job (including shuffle and reduce phase) matches
exactly those requirements [Whi15]. Accordingly, a slightly-modified so-called iden-
tity mapper and reducer is sufficient to produce the desired results. If different join
keys are required, this preprocessing step has to be repeated for each additional join
key such that we have a pre-sorted and pre-partitioned data replica for each individ-
ual join key stored in HDFS. Finally, the map phase can process an efficient merge
join between pre-sorted partitions independently on a cluster of machines. Shuffling
data is reduced, but with the constraint that only one sequential join is possible.
For a sequence of joins, the shuffle and sort phase is needed again to preprocess
intermediate results of previously computed joins.
Summarized, Map-Side Merge Joins are more efficient but less flexible than Reduce-
Side-Joins as they require a time and space-consuming preprocessing step for each
join key and thus are not applicable in general for a sequence of joins. In the next
section, we will focus on this aspect by providing an optimized Map-Side Merge Join
technique, which enables us to compute subsequent joins while reducing the overall
amount of data that needs to be pre-processed for each join.
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To further improve the performance and scalability of our RDFPath MapReduce
Processor on web-scale RDF data, we proceed to investigate the efficient evalua-
tion of joins with MapReduce. Since both the computation of RDFPath queries and
SPARQL BGPs essentially translates to the evaluation of joins on the operator level,
we base this section on SPARQL basic graph patterns (BGPs) which enables us to
provide more comprehensive comparisons with other commonly-used approaches.
Processing joins is an area which has been extensively studied by the database com-
munity in the past [Gra93], where merge joins have emerged as a widely-adopted
solution used in many databases. It would also be promising to investigate their ap-
plicability in a distributed environment based on MapReduce. However, this poses
multiple challenges. First of all, merge joins are only applicable on datasets which
are sorted in accordance with the join key. Although not problematic in the case
of just one join, where a preprocessing step can sort the data in accordance to all
possible join keys, computing a sequence of cascaded merge join is a non-trivial task.
One has to consider that, in order to apply a subsequent merge join, all intermedi-
ate results (“left-hand” side of the join) need to be resorted again, which typically
involves an additional and costly MapReduce phase.
To overcome these issues, we will present a distributed (n-way) sort-merge join on
top of MapReduce, where the join is computed completely in the map phase. It ad-
dresses the problem of cascaded executions by using the reduce phase of MapReduce
to assure that the “left-hand” side of the join is sorted wrt. the join attribute(s).
Our data model assures that the “right-hand” side of the join is always pre-sorted
by the required attributes. For the reduction of intermediate results, bloom fil-
ters [Blo70, GWCL06] are used to remove dangling tuples. A comparison of our
approach to other MapReduce-based join techniques showed that our approach ex-
hibits a performance benefit of 15% to 48% on average over all LUBM [GPH05]
queries.
The remainder of this section is structured as follows: We start with a conceptual
overview of our approach in Section 6.5. Section 6.5.1 introduces the data store lay-
out for our merge join implementation and the actual join algorithms are discussed
afterwards in Section 6.5.3. Section 6.5.4 reports the results of our experimental
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comparison by means of different SPARQL BGP implementations, which provide
more comprehensive comparisons than one would get by a comparison that is based
on RDFPath queries.

Our Approach in a Nutshell. In order to perform a join between two datasets
L and R with MapReduce, i.e. L on R, we need to ensure that the subsets of L
and R with the same join key values can be processed on the same machine. The
approach which we present in this section is an adaptation of the classical sort-merge
join, a well known technique in database systems. Our goal is to perform the join
completely in the map phase which reduces network I/O. The key idea is to first
sort datasets L and R by the join key such that identifying equal values in both
datasets can be done using interleaved linear scans. Consequently, the first thing we
have to guarantee is that L and R are always sorted by join key and also that the
join output has to be sorted according to the join key of the next join iteration in a
sequence of joins. Furthermore, for an efficient parallel execution in a cluster of N
machines we have to divide the join task into N independent subtasks where each
subtask can be processed by exactly one machine. Therefore, we split both (sorted)
datasets in N non-overlapping subsets of continuous key ranges such that

L =
⋃

1≤i≤N
Li and, R =

⋃
1≤i≤N

Ri

If we use the same key ranges for both datasets (cf. Figure 6.9), it holds that

L on R =
⋃

1≤i≤N
Li on Ri

Our data preprocessing and store layout is described in detail in Section 6.5.1.
Driven by this data partitioning, the map phase can process an efficient parallel
merge join between pre-sorted dataset splits. We use the reduce phase only to
guarantee that the join output fulfills the preconditions for the next iteration, i.e. it
must be sorted according to the next join key and be split into N subsets such that
key ranges match with the next join partition. Furthermore, we use dynamic bloom
filters to discard dangling tuples in intermediate join results, i.e. tuples where the
bloom filter guarantees that they will not find a join partner in the next iteration
and hence do not contribute to the final query result.

6.5.1. RDF Data Store Layout

Since the input datasets have to be sorted by join key to apply a merge join and
basic graph patterns operate on a single input RDF graph, it is reasonable to per-
form a data preprocessing that reduces the sorting effort during query execution.
Furthermore, it is a common practice to partition the RDF graph into smaller sub-
sets such that triple pattern matching can be done more efficiently [AMMH07]. In
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L1

L2

...

LN

[a..c)

[c..e)

[x..z]

 sorted by join key 

R1

R2

...
RN

[a..c)

[c..e)

[x..z]

 sorted by join key 

L1      R1

L2      R2

LN      RN

...

Figure 6.9.: Distributed merge join as a union of N independent subtasks

this section we describe our data store layout for RDF that (1) partitions the data
to efficiently support the most common triple pattern types and (2) ensures that we
only have to sort the output of the previous join while the second input is always
pre-sorted.
Based on the ideas in [AMMH07] we split the data using a vertical partitioning
schema where all triples with the same predicate are stored in the same first level
partition. We call such a partition a P-partition. Similar to [HMM+11], we comple-
ment these partitioning schema by also looking at the objects such that all triples
with the same predicate and object are also stored in the same second level partition,
denoted as PO-partition (cf. Figure 6.10). That is, for every triple (s p o), there ex-
ists a tuple (s o) in P-partition p and an entry (s) in PO-partition p|o. The original
RDF graph and all partitions (P and PO) are stored in the distributed filesystem
(HDFS). Technically, they are stored using the SequenceFile format of Hadoop
that allows comparisons on the byte level. We do not consider the combination
of predicate and subject since this would result in many small partitions which is
undesired in a MapReduce framework.

 

 z rdf:type b
x rdf:type c
y rdf:type a
w rdf:type c
u rdf:type a
t rdf:type b 
z ub:name  m
t ub:name  n
p ub:name  m
q ub:name  n

...

z  b
x  c
... 

rdf:type

ub:name

P-partitions

 
z  
t  

rdf:type | bS          P          O
S     O S  

y  
u  

rdf:type | a

S

PO-partitionsoriginal RDF graph

 
z
p  

S  
t
q  

S

z  b
x  c
y  a
w  c
u  a
t  b 

rdf:type

S     O

t  b
u  a
w  c
x  c
y  a
z  b

S     O

u  a
y  a
t  b
z  b
x  c
w  c

S     O

so
rt 

by
 su

bj
ec

t

so
rt 

by
 o

bj
ec

t

key 
ranges

subject
sampling

object
sampling

key 
ranges

object
sampling

subject
sampling

S     O

---

---

S     O
---

S     O
---

---

---

ba
la

nc
ed

un
ba

la
nc

ed

ba
la

nc
ed

un
ba

la
nc

ed

---
...
---

S     O
---

---
...
---

...

---
...

..

ub:name | m ub:name | n

..z  m
t  n
... 

S     O

.
. .
.

Figure 6.10.: General store layout with P and PO-partitions

To reduce the sorting effort during query execution we perform a pre-sorting of the
input dataset and the partitions by all possible attributes, i.e. the overall input
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dataset (RDF graph) is sorted and stored three times by subject, predicate and
object, respectively. P-partitions are sorted and stored twice, once by subject and
once by object. PO-partitions can be sorted only by subject.

As already mentioned in Section 6.5, we have to split every sorted partition into N
non-overlapping subsets of continuous key ranges. This is achieved during the initial
sorting of the partition by assigning continuous and non-overlapping key ranges to
the N reducers. The key ranges are derived by a sampling of the partition values,
i.e. a representative sample of the values is extracted and key ranges are assigned
such that there is a uniform and ordered distribution of partition values to the
resulting N subsets. To get a uniform distribution, the sample is taken from the
subject values if the partition is sorted by subject or from the object values if it is
sorted by object.

This layout works fine for joins between triple patterns where the join variable
is on the same position, e.g. subject-subject joins (cf. first two triple patterns in
Figure 6.14 on page 145). For these joins, both sides must be sorted by the same at-
tribute (e.g. by subject) and therefore they also have the same key ranges. However,
when it comes to mixed join variable positions, e.g. the rather common subject-
object join (cf. last two triple patterns in Figure 6.14 on page 145), both sides must
be sorted by different attributes (one side by subject, the other side by object) and
hence the key ranges of both sides will not match in general. But if the key ranges do
not match, the join result is not guaranteed to be complete. To overcome this prob-
lem, we use two different samplings when sorting a partition. For example, when
sorting a P-partition by subject, we do not only pick a sample of the subject values
but also a sample of the object values and derive two different key ranges from these
samples. We then split the sorted partition in two ways according to subject key
ranges and object key ranges, respectively. Hence, a P-partition is actually stored
four times in our store layout (cf. Figure 6.11 for P-partition rdf:type). To reduce the
storage overhead introduced by this layout, we compress every partition using the
snappy compression library3 that is already shipped with Hadoop such that the final
stored size is actually smaller than the original uncompressed input (cf. Table 6.2
in Section 6.5.4).

A drawback of this approach is that data distribution can be skewed in general
when key ranges are not derived from the sort attribute (e.g. key ranges derived
from object sampling while sorting by subject). For joins on the same variable
position, e.g. subject-subject joins, this is not a problem as we can use the key
ranges that give a uniform distribution for both sides. But in cases of mixed join
variable positions, one side will be equally balanced (where the sampling fits to the
sorting) while the other side can be more or less unbalanced. This is best illustrated
by an example. Consider the BGP (a b ?x . ?x c d) with two triple patterns that
translates to an object-subject join on variable ?x. Consequently, for the first triple
pattern we use the P-partition b sorted by object (and filtered by subject a) and for

3https://code.google.com/p/snappy/
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Figure 6.11.: Detailed view of sorting and key ranges for P-partition rdf:type

the second pattern we use the PO-partition c|d sorted by subject. But in addition,
both sides must have the same key ranges and hence use the same sampling. In this
case, we could either use key ranges derived by object or subject sampling for both
sides. The former gives a uniform distribution for the partition of the first triple
pattern but a potentially skewed one for the second pattern and vice versa.
Handling skewed data in parallel joins has already been researched (e.g. [XKZC08]).
Our solution follows a greedy approach, i.e. we always use the sampling that is
optimal for the larger of both sides. Though this is not an optimal solution in
theory, our experiments confirm that it works fine in practice for most queries.
Nonetheless, this is a crucial point for future optimizations of our approach.

6.5.2. Dynamic Bloom Filter Optimization

A bloom filter [Blo70] is a space-efficient data structure used to check whether a given
element is contained in a set. It consists of a bit vector of size m and k different
uniform hash functions that map an element to one of the m bit-vector positions.
The filter is constructed by applying the hash functions to each element of the set and
setting all corresponding positions to 1. To check whether an element is contained
in the set, all k hash functions are applied. This is illustrated in Figure 6.12 for
m = 15 and k = 3. If any of these positions are 0, the element is definitely not in
the set, i.e. there are no false negatives. However, false positives can occur, i.e. a
positive membership test does not guarantee that an element is really contained due
to possible collisions of the hash functions.
We use bloom filters to remove dangling intermediate results, i.e. results that do
not contribute to the final query result. To this end, we build up a bloom filter for
each of the N subsets of a partition during the initial sorting (cf. Figure 6.13) and
store them on every machine in the cluster by setting the number of replications
to N . We can then access these filters locally during join execution to discard
those intermediate results where the filter guarantees that they will not find a join

143



Chapter 6 RDF Processing with MapReduce
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Figure 6.12.: Bloom filter membership test (is x included in the set {a, b, c})

partner in the partition of the next join iteration. This is done in the map function
for every intermediate join output. The efficiency of this approach strongly relies on
the false positive probability but for static bloom filters this can only be estimated
if the number of elements to be inserted is known a-priori, so that the bloom filter
size can be determined in advance. For that reason, we use dynamic bloom filters
[GWCL06] which are essentially a collection of standard bloom filters that increase
dynamically with the number of inserted elements while guaranteeing a pre-defined
false positive probability.
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Figure 6.13.: Initial sorting (object) and bloom filter creation for P-parition rdf:type

6.5.3. Map-Side Merge Join with MapReduce

After the initial data store generation, the actual BGP query processing can be
devided into three subtasks: (1) First, we have to select the input partitions of the
data store that match the triple patterns of the BGP. (2) The results for every triple
pattern are iteratively joined in the map phase. (3) If there is more than one join
iteration the join output has to be post-processed in the reduce phase, i.e. it must
be sorted and split into N subsets.

We start with a briefly repetition of the SPARQL terminology, which we use to
describe our strategies and algorithms. A SPARQL query defines a graph pattern
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P that is matched against an RDF graph G. This is done by replacing the variables
in P with elements of G such that the resulting graph is contained in G (pattern
matching). The most basic construct in a SPARQL query is a triple pattern, i.e. an
RDF triple where subject, predicate and object can be variables, e.g. (?s p ?o). That
is, a triple pattern selects a subset of an RDF graph that matches the bound values
in the pattern. A set of triple patterns concatenated by AND (.) is then called
a basic graph pattern (BGP) as illustrated in Figure 6.14. The query asks for all
articles published in 2011 that are cited by at least one article. The result of a BGP
is defined to be the intersection of all subsets defined by the corresponding triple
patterns and can be computed by joining the results of all triple patterns on their
shared variables, in this case ?article1.

Article1 Alex

Martin Article2

authorauthor

"PigSPARQL"

"2011"
"RDFPath"

"2011"

author

year

title

author

cite

title

year

SPARQL BGP query

SELECT *
WHERE { 
  ?article1 title ?title .
  ?article1 year  "2011" .
  ?article2 cite  ?article1 
}

Figure 6.14.: Example RDF graph and SPARQL BGP query

More formally, let V be the infinite set of query variables and T be the set of valid
RDF terms.

Definition 6.1 (Solution Mapping). A (solution) mapping µ is a partial func-
tion µ : V → T . We call µ(?v) the variable binding of µ for ?v. Abusing notation,
for a triple pattern p we call µ(p) the triple that is obtained by substituting the
variables in p according to µ. The domain of µ, dom(µ), is the subset of V where µ
is defined.

Definition 6.2 (Compatible Mappings). Two mappings µ1, µ2 are compatible,
µ1 ∼ µ2, iff for every variable ?v ∈ dom(µ1)∩dom(µ2) it holds that µ1(?v) = µ2(?v).
It follows that mappings with disjoint domains are always compatible and the set-
union (merge) of µ1 and µ2, µ1 ∪ µ2, is also a mapping.

Definition 6.3 (Joins). The answer to a triple pattern p for an RDF graph G is
a list of mappings Ω = {µ | µ(p) ∈ G} without a given order. The join of two lists
of mappings, Ω on Ω′, is defined as the merge of the compatible mappings in Ω and
Ω′, Ω on Ω′ = {(µ1 ∪ µ2) | µ1 ∈ Ω, µ2 ∈ Ω′, µ1 ∼ µ2}.

For the following discussion, we consider the example SPARQL BGP from Fig-
ure 6.14 which consists of three triple patterns p1, p2, p3:

(?art1 title ?title . ?art1 year 2011 . ?art2 cite ?art1)
Let Ω1,Ω2,Ω3 denote the mappings for p1, p2, p3, respectively. The query result is
then defined as Ω1 on Ω2 on Ω3. Furthermore, we use the notation Ω1

i to refer to the
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i-th subset of Ω1 defined by key ranges, i.e. Ω1
i and Ω2

i have the same key range for
the join key. It follows that Ω1 on Ω2 = ⋃

1≤i≤N(Ω1
i on Ω2

i ). In our example, the join
key is ?article1 for all triple patterns.

Input Selection. For every triple pattern in a BGP we have to (1) identify the cor-
responding partition, (2) select the appropriate sorting and (3) choose the matching
key ranges. The partition selection is derived from the bounded values in a triple
pattern. With regard to the above SPARQL example, we would choose P-partitions
title and cite for p1, p3, respectively, and PO-partition year|2011 for p2. The entries
of these partitions directly correspond to Ω1,Ω2,Ω3. If there is no partition that
directly matches the given pattern, e.g. if the subject is bound, we choose the most
appropriate partition and apply a filter in the map phase before feeding the data to
the map function. The sorting of the selected partitions is defined by the position of
the join variable, i.e. partitions for p1 and p2 must be sorted by subject whereas the
partition for p3 must be sorted by object. The selection of the matching key ranges
has already been outlined in Section 6.5.1. For the first join between Ω1 and Ω2 the
choice is clear as it is a subject-subject join, hence we can use key ranges derived by
subject sampling which means that both sides are equally balanced. However, the
second join between the result of (Ω1 on Ω2) and Ω3 is a subject-object join where
we have to decide whether we use key ranges derived by subject or object sampling.
Without loss of generality, we assume |(Ω1 on Ω2)| < |Ω3|. Thus, we choose key
ranges derived by object sampling such that the partition splits for p3 are equally
balanced.

2-Way Merge Join. After the input selection, the query result is computed by
a sequence of cascaded 2-way merge joins as illustrated in Figure 6.15. The input
partitions (recall that the entries correspond to the solution mappings for the triple
patterns) are pre-sorted by the join key and split into N subsets with matching
key ranges, e.g. Ω1 = ⋃

1≤i≤N Ω1
i . Within the map phase, every machine in the

cluster computes the partial join between two subsets with matching key ranges,
i.e. (Ω1

i on Ω2
i ).

Due to the locality principle of MapReduce, one subset is always read locally. How-
ever, we cannot guarantee that both subsets with the same key range are stored
on the same machine as data placement is done by the distributed filesystem where
we store the partitions (for Hadoop this is HDFS). In general, the larger subset is
chosen to be processed locally whereas the smaller subset has to be transferred over
the network at the beginning of the map phase. This is automatically handled by
Hadoop. Thus, in every join iteration only the smaller subset (which is typically the
output of the previous join iteration) is transferred, in contrast to reduce-side joins
where typically both sides must be transferred. However, it is a topic of our future
developments to improve the co-locality of matching key ranges such that both sides
can be read locally.
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The merge-join algorithm for the map function is illustrated in Algorithm 6.5.1. On
every machine the map function is invoked with a composite key consisting of the
current join key and the join key of the next iteration, if any. The value is also a
composite value consisting of the corresponding subsets of solution mappings (these
are essentially the entries of the input partitions) and the bloom filter of the next
join partition. Regarding our example, the map invocation for the i-th mapper in
the first iteration would be:

map({?article1, ?article1}, {Ω1
i ,Ω2

i , bloom(Ω3
i )})

The current join key is article1 and this is also the join key of the next iteration.
The map function computes Ω1

i on Ω2
i and discards those mappings where the bloom

filter membership test fails, i.e. for every merge of compatible mappings it is checked
whether the value of the next join key is contained in the bloom filter of the next
join partition. If this test fails, it is guaranteed that there is no join partner in the
next iteration and the mapping can be discarded.

Ω1 
1 Ω2 

1 ΩN 1... Ω2 
2 ΩN 2...

Map 1

Ω1 
2

Ω1 
1 Ω1 

2

Map 2

Ω2 
1 Ω2 

2

Map N

ΩN 1 ΩN 2

...

Join

bloom:  Ω1 3 bloom:  Ω2 3 bloom:  ΩN 3

Sorting
Reduce phase

(Ω1   Ω2)1 (Ω1   Ω2)2 (Ω1   Ω2)N
Ω2 

3 ΩN 3...Ω1 
3

Join

Map 1 Map 2 Map N...

...

Figure 6.15.: Cascaded 2-way map-side merge join

For a cascaded join sequence we use the reduce phase to sort the join output, Ω1 on
Ω2, according to the join key of the next iteration and to split it into N subsets
such that the key ranges match with the key ranges of the next join partition,
Ω1 on Ω2 = ⋃

1≤i≤N(Ω1 on Ω2)i (cf. lower half of Figure 6.15). In our example, we
would use the same key ranges that are used for the input partition matching p3.
Therefore, we also store the key ranges of a partition such that we can reuse them
for intermediate join results. As the sorting and assignment of values to reducers
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Algorithm 6.5.1 : 2-way merge join - map(key, value)
input : key = {k′, k′′}, value = {Ωi,Ω′i, bloom(Ω′′i )}

// k′ is the current join key, k′′ is the join key of the next join
// Ωi and Ω′i are sorted by join key and have the same key range
// bloom(Ω′′i ) is the bloom filter of the next join subset Ω′′i

output : Ωi on Ω′i
1 l← 1, r ← 1
2 while l ≤ |Ωi| and r ≤ |Ω′i| do
3 µ1 ← Ωi[l], µ2 ← Ω′i[r]
4 if µ1(k′) = µ2(k′) then // µ1 ∼ µ2
5 r′ ← r // temporary pointer to iterate over all compatible µ2 ∈ Ω′i
6 while µ1 ∼ µ2 do
7 // emit merge of µ1, µ2 if it passes the bloom filter
8 // membership test for the next join key k′′
9 if (µ1 ∪ µ2)(k′′) ∈ bloom(Ω′′i ) then emit{(µ1 ∪ µ2)(k′′), (µ1 ∪ µ2)}

10 r′ ← r′ + 1, µ2 ← Ω′i[r′]
11 end
12 l← l + 1
13 else µ1 � µ2
14 if µ1(k′) < µ2(k′) then l← l + 1 else r ← r + 1
15 end
16 end

(partitioning) is done when shuffling data from mappers to reducers, the reduce
function is only an identity function that just stores its input to HDFS. In the
following join iteration, the i-th mapper then computes (Ω1 on Ω2)i on Ω3

i and so on.

N-Way Merge Join. If the join key is the same in a sequence of n 2-way merge
joins, we can also compute the result with a single n-way merge join, thus saving n−1
MapReduce iterations. In our example, the join key for both 2-way join iterations
is ?article1, so we could also use a single 3-way join instead. The basic principle
is the same as for the 2-way join but instead of two subsets each machine joins n
subsets in a single map phase, i.e. (Ω1

i on · · · on Ωn
i ). Just like for the 2-way join, it

cannot be guaranteed that all n subsets with the same key range are stored on the
same machine, hence the missing subsets must be transferred to the corresponding
machine at the beginning of the map phase. Input partition selection and also post-
processing in the reduce phase is the same as for the 2-way join. The 2-way merge
join algorithm in Algorithm 6.5.1 can be easily extended for n-way merge joins using
n interleaved linear scans instead of two. However, a disadvantage of the n-way join
compared to a sequence of 2-way joins is that we do not benefit from bloom filters
for intermediate results. Hence, we can only apply bloom filters on the results of
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the n-way join (if another join iteration follows). Yet, our experiments demonstrate
that, in general, the saving of MapReduce iterations has a greater impact on query
performance than discarding dangling intermediate results.

6.5.4. Experiments

The experiments were performed on a cluster of ten machines using the Hadoop dis-
tribution of Cloudera in version 4.2.14. We used the well-known Lehigh University
Benchmark (LUBM) [GPH05] and generated datasets from 500 up to 3000 uni-
versities where we pre-computed the transitive closure using the WebPIE inference
engine for Hadoop [UKM+12]. This benchmark is a well-suited choice when consid-
ering join processing in a Semantic Web scenario since the queries of the benchmark
can easily be formulated as SPARQL basic graph patterns. The store generation
runtimes and dataset sizes are listed in Table 6.2. We can observe that the actual
store size is even smaller than the size of the original RDF graph. This is achieved
by replacing prefixes and applying snappy compression which reduced the original
dataset size by up to 92%.

Table 6.2.: Generating RDF data store

LUBM 500 1000 1500 2000 2500 3000

triples (million) 105 210 315 420 525 630
input size (GB) 17.0 34.1 51.3 68.5 85.7 102.9
overall store size (GB) 13.6 27.3 41.0 54.8 68.6 82.3
store generation (minutes) 68 111 154 193 241 279

We compared our merge join approach with three systems based on MapReduce.
With (1) PigSPARQL [SPL11, SPHL13], there exists a reduce-side join based SPARQL
1.0 engine built on top of Apache Pig. The crucial point for this choice was the
comparable reduce-side join implementation of Pig [GNC+09] to RDFPath, which
resembles the performance of RDFPath in comparison to other join techniques. To
that end, we consider this as a baseline competitor, which we want to improve as
discussed earlier. (1) HadoopRDF [HMM+11] is an advanced SPARQL engine that
splits the original RDF graph according to predicates and objects and utilizes a
cost-based query execution plan for reduce-side joins. (2) MAPSIN [SPZD+12] is a
map-side index nested loop join implementation based on HBase. It processes joins
within the map phase and exploits n-way joins by a sophisticated storage schema
that significantly reduces the amount of HBase lookups.
Figure 6.16 illustrates the scaling properties of our merge join approach. We can
observe a linear scaling of query runtimes where tripling the dataset size does not

4The detailed cluster description is shown in Chapter 8 on page 195
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even take twice the time for most queries. A comparison of execution times (wall
time) to other approaches is summarized in Table 6.3. MAPSIN lacks the support
for LUBM queries 2, 9 and 10 whereas HadoopRDF runs out of storage space while
creating its internal storage schema for datasets larger than LUBM 20005. We
considered a time-out of one hour, denoted by T, if a query fails to complete in
time.

Queries 6 and 14 are simple and require no join at all. Nevertheless, our approach
outperforms the other systems significantly as the whole processing is done locally
on all cluster machines without any reduce phase. One may expect MAPSIN to be
the fastest for such queries, since a single table lookup could provide the final result.
However, such a request would push the result to only one machine violating the
scaling properties. Therefore, MAPSIN processes such single pattern queries by a
distributed table scan which is executed on each machine preserving scalability.

Queries 1, 3, 5 and 13 contain only one join. Our approach processes these queries
within a single map phase as no additional processing for a subsequent join is re-
quired. Overall, the merge join performs best for these kind of queries.

Query 2 is rather complex (compared to other LUBM queries) as it exhibits a trian-
gular pattern structure. Moreover, it contains a costly and unselective subject-object
and object-subject join that points out a weakness of our approach. As both join
partitions must use the same key ranges, one of the input partitions is fairly un-
balanced (cf. Section 6.5.1) which increases the costs for join processing. Thus, it
is a point of future work to develop more sophisticated sampling strategies for key
ranges to improve data distribution for such cases.

Queries 7, 8 and 9 demonstrate the base case where several joins have to be processed
sequentially. For these queries, the reduce phase is required to sort the join output
according to the join key of the next iteration, whereas bloom filters are used to
remove dangling intermediate results. For queries 7 and 8 we can observe a quite
competitive performance of our approach compared to both reduce-side join based
systems. Indeed, such selective queries are the core of MAPSIN, where it benefits
from its index structure accessing only those triples that are relevant for the query
answer. Nonetheless, query runtimes of MAPSIN are close to the runtimes of the
merge join approach.

Query 4 is a star pattern query which makes it a good candidate for n-way joins.
Figure 6.17 illustrates a comparison between 2-way and n-way execution for Merge
Join, MAPSIN and PigSPARQL as these systems support n-way joins. In all cases,
n-way joins clearly outperform a sequential execution of 2-way joins, while the benefit
for our merge join approach is less than for the others. Reducing the amount of
MapReduce cycles comes at the cost of more data that has to be processed at once.
As we cannot guarantee that all n matching subsets reside on the same machine,

5We contacted the authors since neither a documentation nor an “out-of-the-box" running system
was available, unfortunately we didn’t get any support.
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Figure 6.16.: Runtimes for all LUBM queries (Merge Join).

more data has to be accessed remotely. This is underpinned by Figure 6.18 that
shows the amount of data accessed locally and retrieved remotely within a map-side
merge join. However, the difference is much less than expected. Processing query 4
with one 5-way merge join compared with several 2-way merge joins increases the
amount of data retrieved remotely by only 32% while decreasing the amount of data
accessed locally by 34%. This can be explained due to the fact that data is stored
with a replication factor of three which increases the chances that matching subsets
reside on the same machine. Except for n-way joins, the amount of data accessed
locally within a merge join is always higher than the amount of data retrieved
remotely, which is an expected behavior since we choose the larger dataset to be
processed locally. Nevertheless, since data locality is a crucial point for distributed
systems, improving these values, e.g. by a refinement of the data placement strategy
wrt. matching subsets, is a worthwhile point for future optimizations.
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Figure 6.18.: Comparison of local and remote data access within a map-side merge
join.

The average performance benefit of our Merge Join compared to the other systems
is between 15% and 48%. In order to compare the performance of the different
systems we computed for each query the relative difference of execution time to the
respective best case. Then, for each system the average of these relative differences
over all queries is computed, whereas missing measure points are replaced with a
weak penalty value. The penalty is based on the average of all systems that perform
worse than the best execution time. Finally, we computed the relative performance
distance of other systems to our approach (cf. “relative perf.” in Table 6.3). For
example, if we refer to LUBM 1000, we can derive that PigSPARQL (72%) is in
comparison with Merge Join (100%) on average 28% slower.
Overall, the experiments showed that our map-side merge join approach exhibits
in most cases competitive runtimes with a performance benefit of 15% to 48% on
average over all queries. It works best for single join queries but also performs well
for sequences of joins. However, unselective subject-object or object-subject joins
turned out to be a weak point, especially if one join input side is fairly unbalanced.
But even for those queries, the differences to the fastest query execution times are
still acceptable while showing an excellent scaling behavior at all time. Moreover,
our store layout enables retrieving pattern queries even faster than the index-based
query execution of MAPSIN. Taken into account that improving data locality by
adopting more suitable data placement strategies for Hadoop and preventing unbal-
anced partitions by more sophisticated partitioning strategies will further improve
query execution times, we can conclude that map-side merge joins are well suited
for processing different kinds of join patterns with MapReduce.
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6.5.5. Related Work

In terms of mere query performance, RDF-3X [NW08] has established itself as the
state-of-the-art “benchmark” engine for single place machines. However, its per-
formance has been shown to degrade for queries with unbound objects and low
selectivity factors [HMM+11]. Furthermore, with the ever increasing amount of
available RDF data, single machine solutions for query processing become more and
more challenging [HAR11]. Thus, a number of systems that focus on distributed ex-
ecution of SPARQL queries have been proposed in recent years (e.g. [Erl12, HLS09,
HUHD07]). Since each of these implementations require some dedicated infras-
tructure and management, there are no synergy effects by reusing already-deployed
frameworks. Our research is driven by the idea of reusing existing infrastructures
for “Big Data” scenarios. Consequently, we have ensured that no changes to the
underlying Hadoop framework are required to run implementation. This way, exist-
ing Hadoop clusters or cloud services (e.g. Amazon EC2) can be used without any
changes.

The efficient computation of joins is the main driver for the performance of SPARQL
BGP evaluation, and thus we have focused on join processing in MapReduce in
this paper. This topic has already been studied considering various aspects and
application fields [AU11, JTC11, LLC+11, OR11, YDHJ07]. In [OR11] the authors
discussed how to process arbitrary joins (θ joins) using MapReduce, whereas [AU11]
focuses on optimizing n-way joins. θ joins are not required for the evaluation of
SPARQL BGPs, and they are not supported by our solution. The execution of n-
way joins is a generalization of our 2-way join, where instead of two all n pre-sorted
input partitions are processed in a single map phase. Map-Reduce-Merge [YDHJ07]
describes a modified MapReduce workflow by adding a merge phase after the reduce
phase, whereas Map-Join-Reduce [JTC11] proposes a join phase in between the
map and reduce phase. Both techniques attempt to improve the support for joins
in MapReduce but require profound modifications to the MapReduce framework.
In [DQRJ+10] the authors present non-invasive index and join techniques for SQL
processing in MapReduce that also reduce the amount of shuffled data at the cost
of an additional co-partitioning and indexing phase at load time. However, the
schema and workload is assumed to be known in advance which is typically feasible
for relational data but does not hold for RDF in general. HadoopDB [ABPA+09]
is a hybrid of MapReduce and DBMS where MapReduce is the communication
layer above multiple single node DBMS. The authors in [HAR11] adopt this hybrid
approach for the Semantic Web using RDF-3X. Initially, they partition the graph on
a single machine in a loading phase. We also initially store the dataset wrt. different
sort orders but we employ the MapReduce framework to partition the dataset at
loading time. Common to both approaches is that data has to be reloaded in case
of updates, while we do not require the installation of additonal engines at each
cluster node. HadoopRDF [HMM+11] is a MapReduce based RDF system that
stores data directly in HDFS and does also not require any changes to the Hadoop
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framework. It is able to re-balance automatically when the cluster size changes but
join processing is also done in the reduce phase. As already mentioned, our join
processing is done in the map phase and additionally we reduce the amount of data
sent over the network by pro-actively filtering dangling tuples using bloom filters.

6.5.6. Conclusion

In the area of “Big Data” applications, MapReduce has become a state-of-the-art
technology for large-scale data processing. On the other hand, the advent of the Se-
mantic Web promotes the growing adoption of RDF and its query languages, raising
attention for distributed query processing in current research. As both RDFPath
traversing steps and SPARQL basic graph patterns, translating to the computation
of joins on the operator level, we based this section on a basic graph pattern, which
enables providing more comprehensive comparisons with other commonly used ap-
proaches. Generally speaking, efficient distributed join techniques for RDF are of
particular interest for all kinds of query languages. The fixed ternary structure of
RDF makes it a well-suited candidate for sort-merge joins as presorting the data
is affordable. In this section we presented an adaptation of sort-merge joins with
MapReduce which supports both 2-way and n-way joins. The actual join com-
putation is completely done in the map phase, complemented by bloom filters to
discard dangling intermediate results, while the reduce phase is used to post-process
the join output for subsequent join iterations. Our experiments with the LUBM
bechmark demonstrated an average performance benefit between 15% and 48% of
our approach compared to other MapReduce-based systems while scaling smoothly
with the dataset size. We can conclude that applying Map-Side Merge Joins for
navigational queries proves to be a promising approach, though further research on
improving the particularly interesting subsequent join iterations is inevitable. For
future work, there are multiple refinements that one can consider. First of all, the
data placement strategy to further optimize data locality, but also new techniques
to handle skewed data in parallel joins are of particular interest.
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While the steady growth of semantically-annotated data, with its high degree of
diversity in both structure and vocabulary, justifies expressive RDF query languages
such as TriAL-QL and RDFPath, it also raises the need for systems that cover
a wide range of querying features and scale with the data size. In Chapter 6,
we have introduced our RDFPath MapReduce Processor, which has already
demonstrated very good scalability and is shown to be well suited for data-intensive
or complex analytical tasks. Such ETL-like workloads are typically processed offline,
with expected runtimes being in the order of minutes to hours. However, in the case
of more selective queries requiring only a small subset of the data, we expect for
both of our languages to get an answer in interactive time, i.e in the order of seconds
to a few minutes. MapReduce is not intended to fulfill those requirements. The
major bottlenecks which hamper its usage are hereby very I/O-heavy, disk-based
operations between map and reduce phases as illustrated with a typical MapReduce
workflow, where an iteration corresponds to a map or reduce phase:

Disk Iteration 1 Disk Iteration 2 Disk . . .

Read Write Read Write

Disk/RAM Iteration 1 Iteration 2 . . .

Read Write Read Write

RAM RAM

Furthermore, each iteration is a strictly staged process which means that the next
iteration cannot be started before the previous one finishes writing its result to
disk. Though considerable research has been done in this area (cf. Chapter 6.5),
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for instance, our optimized Map-Side Merge Joins, the obtained runtimes were far
from what one considers to be interactive time raising the need for new distributed
execution frameworks.
With the continuously-decreasing prices of main memory in recent years, we can
observe the emergence of novel in-memory data processing systems for Hadoop
such as Stinger for Hive, Impala, Spark, Presto, and Phoenix which start to pave the
way for scalable and interactive querying on large-scale data. What they all have
in common is that they store their data in HDFS, but not using MapReduce as the
underlying processing framework. Yet only initial input data is in HDFS, whereas
intermediate results are shared in main memory with a workflow as illustrated here:

. . .

Read Write Read Write

. . .

Read Write Read Write

Disk Iteration 1 Disk Iteration 2 Disk

. . . . . . . . . . . . . . .
Disk/RAM RAM RAMIteration 1 Iteration 2

In cases where there is not sufficient main memory available to process a certain
operation, thus, the input data does not fit into main memory or the intermediate
result is still too large, streaming from and spilling to disk can be used in most of
these systems. Despite being a costly operation, this fall-back strategy maintains
the compatibility with data-intensive tasks, enabling these novel systems to capture
a wide range of workloads, ranging from exploratory ad-hoc style queries to ETL-
like workloads, which were previously the strength of MapReduce. Further, most
of the systems break down with a strictly-staged execution flow allowing to provide
first results much faster, without the need to wait till the last ones are computed.
Following this trend, we introduce in this chapter the TriAL-QL Engine and
the RDFPath Engine, two distributed query processors with support for both
data-intensive, analytical tasks but also interactive querying. Each of them is im-
plemented on top of Impala, a massive parallel SQL query engine on Hadoop and
Spark, a fast general execution framework for large-scale data processing, while shar-
ing one unified data store in HDFS. The results of both engines are then accessible
to other RDF management systems built on top of Hadoop which make use of the
common RDF data pool in HDFS. Beyond the engineering work of developing such
systems, we designed multiple evaluation strategies and optimizations for, e.g. recur-
sive traversals and query pattern that ask for the connectivity between resources in
the graph, which will be introduced in the following sections. Furthermore, different
approaches for composing (nested) queries are also investigated where, for instance,
materializing some intermediate results is used to improve the overall performance.
All those aspects will be examined with experiments on generated social networks
with up to 1.8 billion triples. A comprehensive comparison with other competitors
will follow in Chapter 8, where a set of predefined benchmark queries is used to
study mainly performance aspects.
Most of the results from this Chapter were published in [PSL15a] and in [PSL15b].
Some of the contributions, especially the RDFPath Engine, are not yet published
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at the point of writing this chapter and are therefore presented here for the first
time. Overall, we can summarize the contributions of this chapter as follows:

• After a short introduction into Impala, Parquet and Spark in Section 7.1,
we propose in Section 7.2 the distributed TriAL-QL Engine based on a
hybrid infrastructure that uses Impala and Spark as its underlying execution
framework.

• We discuss the data storage layout designed on Parquet and its usage as a
unified data pool for Spark and Impala in Section 7.2.1. The translation
of TriAL-QL into a sequence of SQL queries is explained in Section 7.2.2.
We will provide two algorithms that are used for the evaluation of recursive
expressions. At the end of this chapter, an optimization for the connectivity
pattern is proposed. Section 7.2.3 explains how translated TriAL-QL queries
are executed and discusses further optimization strategies with regard to query
composition and the materialization of intermediate results.

• The performance of our implemented evaluation strategies is investigated by
some experiments in Section 7.3.

• The RDFPath Engine, which is also built on top of both, Impala and Spark
while using a shared data store is introduced in Section 7.4.

• Section 7.4.1 proposes two implemented data partitioning strategies, namely
the Vertical Partitioning and an adopted version of the Extended Vertical
Partitioning. We will show how those strategies can be efficiently used to
reduce the input size of a query. The main algorithms for the evaluation of
RDFPath expressions, which are described in Section 7.4.2, will be based on
those presented for the TriAL-QL Engine. Multiple execution strategies
that investigate the composition of queries in more detail are presented in
Section 7.4.3.

• We conclude the work on RDFPath Engine with some experiments that in-
vestigate the properties of the proposed partitioning approaches and execution
strategies in Section 7.5.
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7.1. Foundations

Impala & Parquet. Impala [KBB+15] is an open-source MPP (Massively Parallel
Processing) SQL query engine for Hadoop inspired by Google Dremel [MGL+10]
and developed by Cloudera. It is seamlessly integrated into the Hadoop ecosystem,
i.e. it can run queries directly on data stored in HDFS without requiring any data
movement or transformation. Moreover, it is designed from the ground up to be
compatible with Apache Hive [TSJ+09], the standard SQL warehouse for Hadoop.
For this purpose, it also uses the Hive Metastore to store table definitions etc. so
that Impala can query tables created with Hive and vice versa. The main difference
to Hive is that Impala does not use MapReduce as the underlying execution layer
but instead deploys its own distributed query engine. The architecture of Impala
and its integration into Hadoop is illustrated in Fig. 7.1, with our execution engine
for TriAL-QL being an application on top of it. The Impala daemon is collocated
with every HDFS DataNode such that data can be accessed locally. One arbitrary
node acts as the coordinator for a given query, distributes the workload among all
nodes and receives the partial results to construct the final output.
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Figure 7.1.: Impala architecture and integration into the Hadoop stack

Parquet [Apa] is a general purpose columnar storage format for Hadoop inspired by
Google Protocol Buffers [MGL+10] and primarily developed by Twitter and Cloud-
era. Though not developed solely for Impala, it is the storage format of choice
regarding performance and efficiency for Impala. A big advantage of a columnar
format compared to a row-oriented format is that all values of a column are stored
consecutively on disk allowing better compression and encoding as all data in a
column is of the same type. Parquet comes with built-in support for bit packing,
run-length, and dictionary encoding as well as compression algorithms like snappy.
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Spark. Spark [ZCD+12a] is a general-purpose in-memory cluster computing frame-
work for managing diverse big data tasks in one comprehensive solutions. It supports
writing applications in several languages including Java, Scale, Python or R and is
equipped with a rich stack of high-level tools. Most important to note are Spark
SQL for structured data processing, MLlib for machine learning, GraphX for graph
processing, and Spark Streaming. With such a high variety of tools it is meant
to bridge the gaps between using individual systems for different big data tasks in
one single framework, where data can be seamlessly exchanged between different
kind of tasks (e.g. from querying with SQL to machine learning algorithms) without
data movement or duplication. An overview of SPARK with TriAL-QL being an
application on top of it is illustrated in Fig. 7.2.
Its central data structure is the Resilient Distributed Dataset (RDD) [ZCD+12b]
which is a fault-tolerant collection of elements that can be operated on in parallel.
Spark attempts to keep an RDD in main-memory and partitions it across all ma-
chines in the cluster. However, in cases where data does not fit in memory, Spark’s
operators allow spilling data to the disk. Conceptually, Spark adopts a data-parallel
computation model that builds upon a record-centric view of data, similar toMapRe-
duce and Apache Tez. A job is modeled as a directed acyclic graph (DAG) of tasks
where each task runs on a horizontal partition of the data.
Spark SQL [AXL+15] is the relational interface to deal with structured data. Tables
are represented by so-called DataFrames which are based on RDDs and also kept
in main-memory. A DataFrame essentially models a distributed collection of rows
that share the same schema. The built-in query optimizer called Catalyst, combined
with dictionary and run-length encoding, facilitates the fast execution of relational
operators.
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7.2. Distributed Execution Engine for TRIAL-QL

The TriAL-QL Engine is a distributed processor of our previously-discussed
TriAL-QL query language with support for all querying expressions that has been
introduced in Chapter 5. It is built on top of Hadoop, where we make use of the
current momentum on scalable SQL-on-Hadoop frameworks. An essential advan-
tage of such frameworks is the possibility to use of SQL as an adequate intermediate
layer. This is particularly beneficial for processing query languages such as TriAL-
QL which are based on relational algebra, due to an intuitive mapping between
both. Furthermore, we can (1) benefit from an inter-compatibility between different
SQL-on-Hadoop solutions, (2) be independent from future Hadoop changes, and
(3) take advantage of the continuously optimized Hadoop stack. However, besides
the differences in syntax and expressiveness of the supported SQL dialect, there are
crucial differences in how the respective SQL-on-Hadoop solutions process a given
SQL query, revealing different characteristics for various query types. In line with
this, we examine the applicability of a scalable processor for TriAL-QL on top of
Hadoop using Impala, Spark and Hive and compare its properties. Therefore, we
implemented our engine for TriAL-QL with support for all three systems. Please
note that, although not included in the latest TriAL-QL Engine, we also con-
sider Hive in the followed discussion and experiments1. The architecture of our
implementation can be conceptually structured into three main components:

• RDF Store: The basis for distributed querying is an efficient yet unified data
pool which is supported by all three of our systems: Spark, Hive and Impala.
It maintains input RDF data and in the case of a disk-based execution also
intermediate results and the final results of queries, which can be (if specified
within a query) reused as input in a later query. A discussion on different RDF
data storage strategies and the data layout our engine is based on is given in
Section 7.2.1.

• Query Compiler: A Query Compiler composes all components required to
translates a given TriAL-QL query into the respective SQL dialect of the
desired SQL-on-Hadoop system. Furthermore, it is also the place where cer-
tain query optimizations are applied. Most notable are two interesting query
patterns, for which we describe optimized evaluation strategies, namely (1) the
recursions captured by the left and right Kleene Closure of TriAL* and (2)
the connectivity between two resources. Section 7.2.2 introduces both patterns
and provides algorithms for evaluating them efficiently.

• Query Processor: The actual execution of SQL queries is done by the Query
Processor, where multiple execution strategies are suggested which differ, for

1The support for Hive was dropped for the final version of TriAL-QL Engine. However,
using SQL as intermediate language along with Parquet files stored in HDFS, which are fully
compatible with Hive, allowed us to execute compiled SQL queries on Hive which formed the
basis for a few experiments shown later.
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instance, in how queries are composed and when intermediate results become
materialized to disk. Another important task that this component is taking
care of are termination conditions. Based on which algorithms are chosen
by the Query Compiler, different termination constraints need to be checked.
Further, due to the differences in the support of recursions in the respec-
tive SQL-on-Hadoop systems, an individual query processor exists for each
supported system. Section 7.2.3 describes all execution strategies and briefly
introduced the differences in the respective termination conditions.

The actual architecture of our TriAL-QL Engine, illustrated in Figure 7.3, reveals
a much more granular view on all three components, including the technical inte-
gration with Impala, Spark, and HDFS. Nonetheless, for simplicity we will continue
to distinguish between the three previously-mentioned components, which will be
discussed in more detail in the following.

7.2.1. RDF Store

Typically, RDF triplestores with DBMS back-ends represent an RDF dataset in a
so-called triples table with three columns, containing one row for each RDF state-
ment, i.e. triples(sub, pred, obj). Query evaluation then essentially boils down to
a series of self-joins on this table. Therefore, it is often accompanied by several
indexes over some or all (six) triple permutations, e.g. based on B+-trees, for query
speedup. However, these kinds of indexes are not suitable and hard to maintain in a
distributed-computing environment like Hadoop. In [AMMH07] the authors propose
a vertical partitioned schema having a two-column table for every RDF predicate,
e.g. knows(sub, obj), enabling more efficient pruning strategies. Otherwise, having a
separate table for every predicate is not a well-suited schema for joins on predicates.
This may not be common in SPARQL but it is a natural join pattern in TriAL*,
e.g. for reasoning.
Another typical approach is the use of so-called property tables where all predicates
(or properties) that tend to be used together are stored in one table, e.g. all predi-
cates used to describe a person. In general, it has the schema propTable(sub, pred1,
..., predn) where the columns (predicates) are either determined by a clustering al-
gorithm or by the class of the subject. This reduces the number of subject-subject
self-joins for star-shaped query patterns. Although such patterns can also occur
in TriAL*, it is not the dominant pattern in navigational queries. Furthermore,
TriAL* is a closed language that allows us to derive new triples to be added to the
triplestore which would result in update operations on one or more property tables,
an operation that is currently not supported by any of the investigated systems (Im-
pala, Spark, Hive) due to the fact that the underlying distributed filesystem (HDFS)
is append-only.
In our use case, we basically need to consider two aspects in our table layout: (1)
the fact that the data is distributed on a cluster of machines hampering the use of
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Figure 7.3.: Overview of TriAL-QL Engine architecture

indexes, and (2) the flexibility imposed by TriAL* to dynamically add new triples
and perform joins on all possible pattern combinations (i.e. also predicate-predicate
joins). With this in mind, we use a triples table internally partitioned by predi-
cates, triplespred(sub, obj), to represent an RDF dataset and use the name of the
dataset as the name of the triplestore (table). Tables are stored using Parquet2, an
efficient columnar storage format for Hadoop with built-in support for compression

2http://parquet.apache.org/
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(snappy), run-length, and dictionary encoding3. This table layout is supported by
all three systems, hence we can use the very same table for all of them, demonstrat-
ing the benefit of a unified data storage. Partition pruning is applied transparently
whenever possible by all systems, i.e. unnecessary partitions are filtered out auto-
matically, and table statistics (e.g. partition sizes) are used to optimize the query
plans, e.g. improving join order. Thus, we combine the full flexibility of a triples
table with the efficiency enhancement of vertical partitioning, while having just a sin-
gle unified data storage without the need for expensive data exchange or conversion
from one system to another. These strategies are also applied to the intermediate
and final results of TriAL-QL queries, which in turn facilitates the composition-
ality of expressions and provides a simple interoperability with, e.g., Hadoop-based
SPARQL engines that can use Parquet as input [SPNL14]. Further, to improve the
data distribution of particularly small vertical partitions which would be stored in a
single file, which in turn might lead to queries executed on a single node, the internal
Parquet file size is adapted with regard to the underlying RDF data size.

7.2.2. Query Compiler

This section discusses the process of compiling a TriAL-QL query to a sequence
of SQL queries. For that, we will first start with a short overview of the complete
translation process, followed by a detailed look into the actual evaluation algorithm
used for certain query pattern. The last aspect will form the main part of this
section, where we mostly focus on two interesting query patterns: (1) recursions
expressed by the left and right Kleene Closure of TriAL* and (2) the connectivity
between two resources of arbitrary length.

In short, the Query Compiler parses in a first step the TriAL-QL query to generate
an abstract syntax tree out of it using the grammar discussed in Section 5.4 and
shown in Appendix C. The corresponding TriAL-QL parser uses ANTLR4. Next,
the resulting syntax tree is translated to an algebra tree by means of the Algebra
Compiler as illustrated in Figure 7.3. Next, a few basic optimizations such as filter
push-down are applied. Finally, the algebraic tree representation is forwarded to the
SQL Compiler which produces either Impala or Spark SQL queries together with an
execution plan. This plan particularly focuses on cases where recursive expression
need to be evaluated since, at the time of working on the system, there was no
support for recursion in the SQL dialect of both frameworks. An example of this
process is shown in Figure 7.4, with a (simplified) outline of an Impala SQL query
which computes the first TriAL-QL expression j1 required for this exemplary
query.

3We also performed some experiments with others storage formats including RCFile, Avro and
SequenceFile. However, Parquet exhibits the overall best performance for our type of queries.

4http://www.antlr.org/
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Algebra Compiler

Algebra Optimizer

HiveQL Translator

Hive

TriAL‐QL Query

MapReduce

Syntax Tree

Algebra Tree

Algebra Tree

HiveQL Query

            foaf = SELECT S1 P2 O2 FROM sib
                   ON O1=S2 AND P1=P2 AND P1='foaf:knows'
                   USING left(2);
           likes = SELECT S1 P2 O2 FROM foaf JOIN sib 
                   ON O1=S2 AND P2='sib:like';
recommendedItems = likes MINUS sib;
STORE recommendedItems AS result;

INSERT INTO foaf
SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 
FROM sib A JOIN sib B 
ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows' 
...

Parser

Algebra Compiler

Algebra Optimizer

Pig Latin Translator

Pig

TriAL‐QL Query

MapReduce

Syntax Tree

Algebra Tree

Algebra Tree

Pig Latin Program

SELECT * WHERE { ?person knows Peter . ?person age ?age
         OPTIONAL { ?person mbox ?mb } FILTER (?age >= 18)}

LeftJoin

knows = LOAD 'rdf/knows' USING rdfLoader() AS (s,o);          
age   = LOAD 'rdf/age' USING rdfLoader() AS (s,o);
f1    = FILTER knows BY o == 'Peter';
t1    = FOREACH f1 GENERATE s AS person;
t2    = FOREACH age GENERATE s AS person,o AS age;
j1    = JOIN t1 BY person, t2 BY person;
BGP1  = FOREACH j1 GENERATE t1::person AS person, 
                            t2::age AS age;
F     = FILTER BGP1 BY age >= 18;                     
mbox  = LOAD 'rdf/mbox' USING rdf() AS (s,o);         
BGP2  = FOREACH mbox GENERATE s AS person,o AS mb;
lj    = JOIN F BY person LEFT OUTER, BGP2 BY person;   
LJ    = FOREACH lj GENERATE F::person AS person,
                            F::age AS age, BGP2::mb AS mb;
STORE LJ INTO 'output' USING resultWriter();

BGP
?person mbox ?mb

BGP
 ?person knows Peter .

 ?person age ?age 

Filter

?age >= 18

1

1

2

2

3

3

4

4

1

2

3

1

2 3

1

INSERT INTO foaf
WITH foaf1 AS (SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 
            FROM sib A JOIN sib B 
               ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows'),
     foaf2 AS (SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 
               FROM foaf1 A JOIN sib B 
               ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows')
SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 
FROM foaf1 A JOIN sib B 
ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows' ...

INSERT INTO foaf
SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 
FROM ( SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 
       FROM sib A JOIN sib B 
       ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows' ) A
JOIN sib B ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows' ...

Figure 7.4.: Translation from TriAL-QL to Impala SQL

Evaluation of Kleene Closure. One of the most challenging expressions of TriAL*
is the right (e ./i,j,kθ,η )∗ and left (./i,j,kθ,η e)∗ Kleene closure, which allows the expres-
sion of paths of arbitrary length. Its computation requires a continuous sequence of
iterations until all reachable instances are retrieved. Since, Impala, Hive and Spark
do not support any kind of recursion, such an expression cannot be translated into
a single SQL statement but needs to be broken down into several smaller queries
that are executed subsequently. Therefore, an additional mechanism is needed that
(1) initiates each of these iterations and (2) determines the progress and decides
whether it terminates. For Impala and Hive, the intermediate result of each iter-
ation has to be materialized on disk and used as input for the next iteration as
there is no support to preserve those intermediate tables in memory across multiple
SQL queries. However, Spark supports the caching of tables in memory, such that
a subsequent iteration can read intermediate results from main memory.
For the actual processing, we need to define an efficient algorithm which evaluates
the recursive expressions in TriAL*. Indeed, we can reduce such an expression
to the problem of calculating the transitive closure (TC), which is a well-studied
research field [CCH91, FGL+15, Ioa86]. There is an ongoing debate whether the
so-called semi-naive or smart TC algorithm is superior in distributed environments
like MapReduce [ABC+11, SKHS12]. However, there has not been much work yet
on investigating the trade-offs using novel in-memory SQL-on-Hadoop solutions. We
believe that, for our scenario, a semi-naive evaluation [CCH91] is the better choice
as it distributes the workload over more rounds and produce less derivations on
graphs with cycles [AU12]. In contrast, a smart TC algorithm based on a non-
linear (recursive-doubling) execution [Ioa86] uses a logarithmic, rather than linear,
number of rounds but with much higher costs (with regard to the data volume)
per round [AU12]. Thus, using the semi-naive evaluation leads to more but less-
expensive joins. This in turn increases the chances that the join processing can be
done in main-memory without spilling to disk.
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Our first algorithm for computing the right Kleene closure (E ./i,j,kθ,η )∗ based on
semi-naive evaluation is depicted in Algorithm 7.2.1.

Algorithm 7.2.1 : Semi-naive evaluation of right Kleene closure
input : triplestore E

1 i← 0, ∆P 0 ← E
2 while ∆P i 6= ∅ do
3 i← i+ 1
4 tmp = ∆P i−1 ./i,j,kθ,η E // paths of length i+ 1
5 ∆P i = tmp−

(
∆P 0 ∪ ... ∪∆P i−1) // remove previously discoverd paths

6 end
7 return P = ∆P 0 ∪ ... ∪∆P i

The left Kleene closure is defined analogously. E denotes the input triplestore
(table) and ∆P i contains those triples which were newly derived in the i-th iteration
where the shortest path between them has length i+ 1. Any triple produced by the
join in line 4 with a shortest path of length < i + 1 has already been discovered in
previous iterations and is removed with the set operation in line 5. The final result,
P , is the union of all previous iterations, P = ∪

∀i
(∆P i).

In addition, this approach can be further improved by exploiting some properties
of partitioned tables in Impala and Hive. Instead of creating a new table for each
∆P i, it is far more effective to use a single table Piter(sub, pred, obj) partitioned
by iteration number iter and only add a new partition to that table. This way,
the amount of required operations can be further reduced since the results of all
union operations used in line 5 and line 7 can be retrieved by partition pruning
without any computational effort. At the time when we performed our experiments,
the support of Spark for partitions was in a rather early stage, not allowing us to
adapt this strategy as efficiently as for Impala and Hive. Thus for Spark we need
to introduce two tables: one for newly-derived triples (∆P i), and a second one
that keeps the result of (∆P 0 ∪ ... ∪∆P i−1). The algorithm terminates if round i
does not derive any new triples, i.e. all the derived triples are already contained in
(∆P 0 ∪ ... ∪∆P i−1) or (∆P i−1 on E) is empty. This step is realized by an additional
SQL query that counts the number of triples in ∆P i.
To close, we recall the example introduced in Section 5.2 with the TriAL* expres-
sion (E ./ s1, p1, o2

o1=s2 )∗. For this example, the translation into Impala SQL generates
for each iteration (Algorithm 7.2.1, line 4 + 5) the following two queries:

INSERT OVERWRITE tmp

SELECT DISTINCT t1.s, t1.p, t2.o
FROM P t1 JOIN E t2 ON t1.o = t2.s
WHERE t1.iter = i− 1;
INSERT INTO P PARTITION (iter)
SELECT s, p, o, i AS iter

FROM tmp LEFT ANTI JOIN P USING (s, p, o);
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Our second algorithm for computing the right Kleene closure (E ./i,j,kθ,η )∗ based on
smart TC evaluation [AU12] is depicted in Algorithm 7.2.2. The left Kleene closure
is defined analogously.

Algorithm 7.2.2 : Smart evaluation of right Kleene closure
input : triplestore E

1 i← 0
2 P 0 ← E

3 Q0 = E ./i,j,kθ,η E

4 Q0 = Q0 − P 0

5 while Qi 6= 0 do
6 i = i+ 1
7 P i = Qi−1 ./i,j,kθ,η P i−1 // paths of length between 2i−1 and 2i − 1
8 P i = P i ∪ P i−1 // all paths of length up to 2i − 1
9 Qi = Qi−1 ./i,j,kθ,η Qi−1 // all paths of length 2i

10 Qi = Qi − P i // remove previously derived triples
11 end
12 return P i

Essentially, we can see that in each iteration the computation of new triples is
broken down into two parts. The first part computes P i (line 7), which discovers
paths whose length is between 2i−1 and 2i − 1. P i is then merged with P i−1 and
contains now all triples, which have been derived so far, i.e. have a max length of
2i − 1. In the next step Qi (line 9) is computed which retrieves only those paths
whose length is exactly 2i. In order to ensure that we are considering only shortest
paths, all previously-derived triples contained in P i−1 are removed from Qi in line
10. Now, we can use Qi to determine if the smart algorithm can terminate. This
is the case if Qi is empty, thus no new paths of length 2i have been discovered in
round i. The final result is then the latest P i.

It would also have been possible not to break the computation into two parts, and
to retrieve all paths of length 2i−1 to 2i in one step. However, in that case, we would
not be able to determine already in round i, whether all retrievable triples have been
derived. For that, a further costly round i+1 would have been required, which seeks
for paths of length 2i+1.

Evaluation of Connectivity Patterns. A further challenging query type that we
identified to be relevant for many application fields is the connectivity between
two given resources, thus the existential question whether there exists a path that
connects both, written as:

σ
s=<startNode>, o=<endNode>

(
(E ./i,j,kθ,η )∗

)
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Like the aforementioned Kleene closure expression, its computation involves a con-
tinuous sequence of iterations, and thus it cannot be translated into a single SQL
statement. A naive compositional evaluation with the previous algorithm would
derive a huge amount of redundant triples that need to be discarded afterwards.
However, instead of retrieving all connections between both resources, we solely
need to check for the existence of at least one path connecting them. The corre-
sponding algorithm is depicted in Algorithm 7.2.3.

Again, we use the semi-naive evaluation, but this time we start with two initial
tables (∆P 0

l and ∆P 0
r ), which contain only those triples that start and end with the

given resources, respectively. The algorithms then alternately derive new triples for
∆P i

l and ∆P i
r . In other words, we perform a breadth-first search that starts from

both ends. As in the previous case, we can exploit Impalas partitioning strategy by
creating two tables, Pliter(sub, pred, obj) and Priter(sub, pred, obj), partitioned by
iteration number to reduce the computational effort. Finally, the existence of a path
of length i is checked by joining the two tables for ∆P i

l and ∆P i
r , where just the

number of results is needed (denoted by res). The algorithm terminates, if either a
connection is found, thus res 6= 0, or both ∆P i

l and ∆P i
r are empty. In this case, we

computed the reachability starting from both ends without finding an intersection.

The remaining E-TriAL expressions (cf. Section 5.2 and Table 5.1) can be realized
using their equivalent clauses in the SQL dialect of Impala. The only exception is
the minus operator (e1 − e2), for which we need to use a so-called left anti join as
there is currently no support for set operations in Impala.

Algorithm 7.2.3 : Semi-naive evaluation of connectivity pattern
input : triplestore E, resource startNode, resource endNode

1 i← 0
2 ∆P 0

l ← σs = startNode(E), ∆P 0
r ← σo = endNode(E)

3 res = count
(
∆P di/2e

l ./i,j,kθ,η ∆P di/2e
r

)
4 while

(
∆P di/2e

l 6= ∅ & ∆P di/2e
r 6= ∅

)
& (res = 0) do

5 i← i+ 1
6 if (i mod 2) = 1 then
7 tmpl = ∆P d(i−1)/2e

l ./i,j,kθ,η E // joins from startNode

8 ∆P di/2e
l = tmpl −

(
∆P 0

l ∪ ... ∪∆P d(i−1)/2e
l

)
9 else

10 tmpr = E ./i,j,kθ,η ∆P d(i−1)/2e
r // joins from endNode

11 ∆P di/2e
r = tmpr −

(
∆P 0

r ∪ ... ∪∆P d(i−1)/2e
r

)
12 end
13 res = count

(
∆P di/2e

l ./i,j,kθ,η ∆P di/2e
r

)
14 end
15 return res
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7.2.3. Query Processor

The role of this component is to execute the translated SQL on Impala and Spark
respectively. For that, multiple execution strategies are available which will be in-
troduced in this section. Furthermore, in cases of recursive expression a Query
Processor also has to check for the termination conditions (line 2 in Algorithm 7.2.1
and line 4 in Algorithm 7.2.3). The underlying idea behind the condition in Algo-
rithm 7.2.1 is that, if round i does not derive any new triples, i.e. all the derived
triples are already contained in (∆P 0 ∪ ... ∪∆P i−1) or (∆P i−1 on E) is empty, then
all possible triples were already discovered in previous rounds. This step is realized
by an additional SQL query that counts the triples in ∆P i. In case of SPARK,
the Query Processor is able to retrieve this information directly by accessing the
corresponding data structures and get the size of ∆P i. The basic idea behind the
termination condition of Algorithm 7.2.3 is based on the same principle but needs
further restriction. Namely, we need to check for both sides (∆P i

l and ∆P i
r) that

they do not derive any new triples, i.e. we computed the transitive closure starting
from both ends without finding an intersection. Alternatively, if res 6= 0 we know
that a connection is found.

Materialized and Composite Execution. As described previously, each TriAL
expression is mapped to one or more SQL queries. In a sequence of queries, q0 . . . qi,
where qi uses the output of qi−1 as input, we can exploit the fact that SQL itself
is also a closed and compositional language. Instead of executing i isolated queries
sequentially (referred to as materialized execution), we can combine them into
a single composite query (referred to as composite execution). This is especially
interesting for Impala to avoid materializing the output of q0 . . . qi−1 to HDFS to
serve as input for the next query. Unfortunately, we cannot use this strategy for
recursive TriAL expressions as Impala currently does not support recursion. In
Spark, we have the choice whether to materialize the result of a query in HDFS
or not as Spark supports the caching of tables in main-memory. Moreover, we can
even use a composite execution for recursive TriAL expressions by utilizing the
fact that Spark supports the writing of SQL queries within a Scala or Java program.
For Hive (on MapReduce), it does not make a difference between both strategies as
intermediate results are anyway materialized in HDFS.

However, composition is not always superior to a sequential execution mainly for
two reasons: (1) Composition complicates the query plan and may lead to incorrect
cardinality estimations in a sequence of joins and thus suboptimal execution plans.
(2) We observed that a sequence of small queries reduces the overall main-memory
usage compared to one large composed query. This in turn decreases the probability
that the system needs to spill to disk which would slows down the join processing
substantially.
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7.3. Experiments on TriAL-QL Engine

The experiments were performed on a small cluster with ten machines using the
Hadoop distribution Cloudera CDH 5.3.2 with Impala 2.1.2, Spark 1.2.0 and Hive
0.13.15. There is no existing benchmark that would highlight the strengths of
TriAL*, and thus we introduce a set of representative use cases with different char-
acteristics that enable us to demonstrate the expressiveness of TriAL-QL with its
scalability costs on large RDF graphs. The actual queries are inspired by typical
graph analytical questions and recommendations on social networks. We use the
state of the art Social Network Benchmark (SNB) data generator6 to generate syn-
thetic social networks of up to 1.8 billion triples (edges) with a power-law structure
which also has been used in the SIGMOD 2014 programming contest7. The load
times and store sizes are listed in Table 7.1. We examine both execution strategies
introduced in Sect. 7.2.3 (materialized and composite) for Impala and Spark and
compare them with an execution on Hive using MapReduce. All results are listed in
Table 7.2. Each query was executed five times, and the corresponding coefficients
of variation cv (ratio between standard deviation and mean) are also given. The
total runtimes in seconds include both computing statistics and writing the result
to Parquet tables on disk.

Table 7.1.: Load times and store sizes

Scaling Factor 1 3 10 30

Triples (in M) 59.5 176.4 594.7 1,799
Original RDF size 4.1 GB 12.3 GB 41.4 GB 126 GB
Triples Table size 0.6 GB 1.7 GB 6.2 GB 19 GB
Loading in RDF Store 32.4 s 90.4 s 299.3 s 893.1 s
Computing statistics 4.2 s 6.8 s 16.1 s 42.6 s
Parquet file size 8 MB 8 MB 16 MB 32 MB

5More information on the cluster description can be found in Chapter 8 on page 195
6http://ldbcouncil.org/developer/snb
7http://www.cs.albany.edu/~sigmod14contest/
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Use Case 1: Socialized Recommendations. In the first experiment we ask for the
posts of a user’s friends that he has not liked yet, computed for all users in parallel.
For the sake of brevity, we omit the TriAL* expression for knows, posts and likes,
where each is retrieved by an additional join on the input table snb. However, they
are included in the execution times. The corresponding TriAL* expressions are
defined as follows:

friendsPosts = knows ./ s1, fposts, o2
o1=s2 posts

likedFriendsPosts = friendsPosts ./ s1, fposts, o2
s1=s2, o1=o2 likes

postSuggestions = friendsPosts− likedFriendsPosts

The query contains no recursion and could also be expressed with SPARQL, but
it illustrates the strength of composition where an expression processes the results
of previous ones. In total it consists of five joins and a set operation that process
large portions of the underlying RDF graph. The execution times and result size in
triples are shown in Table 7.2. We can see that the composite execution with Impala
performs best (2x faster than materialized on average) while scaling almost linearly
with increasing data size. Storing the intermediate tables using the materialized
strategy was not advantageous in this case and on average two times slower. Spark
is competitive for smaller data sizes but gets significantly slower for larger ones.
Hive is an order of magnitude slower than Impala but still scales out smoothly with
larger data sizes. In summary, for rather data-intensive but not-too-complex queries
as used for this use case, Impala performs best while Hive exhibits slightly better
scaling properties.
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Figure 7.5.: Mean runtimes in seconds for Use Case 1 (left) & Use Case 2 (right)
on a log-log scale.

172



7.3 Experiments on TriAL-QL Engine

Use Case 2: Reachability. This experiment defines a reachability query that can-
not be answered by just traversing the graph with regular expressions, but which
instead needs reasoning capabilities. We consider two arbitrary persons to be reach-
able if we can derive a path between them where (1) each intermediate pair of
persons works together in the same company, and (2) all persons along the path
share the same spoken language. The structure of this query exhibits a pattern of
the following shape:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

x

z

...

...

x ... y

... y

...

...
......

The corresponding TriAL* expressions are as follows:

worksAt = snb ./ s1, worksAt, o2
o1=s2, p1=sn:workAt, p2=sn:hasOrga snb

sameWork = worksAt ./ s1, worksWith, s2
o1=o2, s1!=s2 worksAt

sameLang = snb ./ s1, o1, s2
o1=o2, s1!=s2, p1=p2, p1=sn:speaks snb

colleagues = sameLang ./ s1, p1, o1
s1=s2, o1=o2 sameWork k1

reach =
(
colleagues ./ s1, p1, o2

p1=p2, o1=s2

)∗ k2
We split the analysis of the execution times in Table 7.2 into two parts: In k1 we
summarize all non-recursive expressions including colleagues and in k2 we investi-
gate the computation of the transitive closure expressed by reach.
For k1 we can see that the Impala runtimes again scale almost linearly with in-
creasing data sizes. But this time, materialized execution is superior to composite
for larger datasets. We explain this behavior with a better execution plan of Im-
pala due to statistics computed for intermediate tables. The costs for computing
statistics are included in Table 7.2 (cf. column statistics). For k2 again Impala
outperforms Spark, although it was heavily spilling to disk during query execution
(starting from SF 10). Moreover, Spark runs out of memory on larger datasets (in-
dicated by MEM). This might result from the two table approach required for Spark
(cf. Sect. 7.2.2) compared to the partitioned table approach used for Impala. As
a consequence, Spark needs more memory and requires additional computational
effort. Again, Hive was significantly slower than Impala and Spark but exhibits a
better scaling capability for larger datasets. Looking more carefully, we can observe
that the performance benefit of Impala is mainly attributed to the more efficient
determination of newly derived triples (∆P i) rather than join computation. We
discuss this in more detail at the end of this section, where we compare Impala with
Spark.
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Use Case 3: Connectivity. The last experiment asks for the existence of a path
between two given people by following the friendship relationship. We choose 50
people randomly and compute their connectivity based on the following TriAL*
expressions:

knows = snb ./ s1, knows, s2
o1=s2, p1=sn:knows, p2=sn:hasPers snb

k3
path = σ

s=person_1, o=person_2

((
knows ./ s1, p1, o2

o1=s2

)∗) k4
Note that k3 knows is only computed once and stored as a new relation (table)
in the triplestore and is used to compute k4 path over and over again, bridging
the gap between ETL-like workloads and explorative ad-hoc style queries. The
execution times for both parts using Impala and Spark are shown in Table 7.2. Hive
was not considered in this experiment since MapReduce start-up costs are already
higher than desired runtimes for this query type. However, it will be interesting
to investigate novel derivations of Hive (Hive on Tez, Hive on Spark) that aim to
replace MapReduce with a more interactive execution framework for future work.
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Figure 7.6.: Mean runtimes (in s) for Use Case 3: (left) total mean, (right) by path
distance for SF 30

The mean runtime for computing the connectivity between two randomly chosen
persons with Impala was only 2.3 seconds on a dataset with 1.8 billion triples while
scaling smoothly with the data size (cf. Figure 7.6). For Spark it is 6.4 seconds
which is still competitive. The average distance between two persons was 2.8 for the
smallest dataset and increased up to 3.2 for the largest one. Table 7.2 also lists the
runtimes by distance (denoted by k5 ). Considering distances of at most 2, we get
runtimes of < 1 second and a maximum runtime of 37 seconds for a distance of 7.
This is also illustrated in the right plot of Figure 7.6 where both Impala and Spark
exhibit the same exponential scaling behavior.
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Comparison of Impala and Spark. In summary, the overall performance of our
TriAL-QL Engine using Impala was continuously better than for Spark. However,
a more granular view on the actual costs for the respective operations reveals some
additional interesting properties which highlight some strengths and weaknesses of
both. Figure 7.7 illustrates the percentage of the total runtime of the respective
operations for Use Case 2 (see Algorithm 7.2.1 in Sect. 7.2.2). Here we can see that
computing ∆P i, i.e. determine the newly derived triples in iteration i, dominates
the total execution time of Spark, whereas this task is very efficient in Impala due to
the partitioned table approach which is not applicable in Spark 1.2.0. However, if we
consider the actual join processing costs (tmp = ∆P i−1 ./i,j,kθ,η E), the performance
of Spark is even faster than Impala. Thus, a better support for partitioned tables
in future Spark versions might reveal other performance characteristics.
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Figure 7.7.: Runtimes by task (in %) for Use Case 2

Another aspect is the superlinear increase in time required to compute k2 reach
starting from SF 10, which is mainly attributed to the actual join processing (tmp).
Spark runs out of memory and fails while Impala starts to spill heavily to disk but
is able to complete the job. This demonstrates that Impala is currently more robust
when it comes to memory bottlenecks and thus the need for on-disk joins. Overall,
at the time of our experiments, Impala is more suited for our kind of workload.
Nonetheless, Spark has tremendous momentum and its unique features can be of
great advantage for further developments, e.g. the ability to seamlessly combine SQL
with arbitrary Spark programs.
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7.4. Distributed Execution Engine for RDFPath

We continue our work on distributed RDF engines for navigational queries again
with RDFPath. We revised our RDFPath MapReduce Processor from Sec-
tion 6 and rebuilt it on top of Impala and Spark using SQL as an intermediate lan-
guage. We refer to this new execution engine as RDFPath Engine throughout the
dissertation. After obtaining very good experimental results with our TriAL-QL
Engine, it emerged clearly that it would be much more beneficial to use the code
base of TriAL-QL Engine rather than the one of RDFPath MapReduce Pro-
cessor as a starting point. Many algorithms, which have proven to perform well for
the evaluation of TriAL-QL, were with a few minor changes adoptable to evaluate
RDFPath queries as well. With that in mind, we will discuss a few adopted algo-
rithms from Section 7.2 together with new approaches such as our Extended Vertical
Partitioning (ExtVP) introduced in [SPSL16]8, which shows promising properties
for the evaluation of SPARQL queries.

The remainder of this section is structured as follows: After providing an overview
of our implementation and presenting some details on the architecture, we continue
in Section 7.4.1 with a discussion on the storage schema. Section 7.4.3 explains
the process of translating an RDFPath query into SQL and provides an algorithm
for evaluation. After that, Section 7.4.3 presents multiple strategies for the execu-
tion of translated SQL queries, followed in Section 7.5 by some experiments which
investigate the properties of our engine.

System Overview. Our RDFPath Engine follows conceptually the previously
discussed TriAL-QL Engine and can therefore be structured the same way, in
three main components:

• RDFp Store: The basis for distributed querying is our common data pool
with support for Spark and Impala. Each input graph is stored using the Ver-
tical Partitioning (VP), as well as the Extended Vertical Partitioning (ExtVP)
strategy. In order to represent RDFp an additional storage layer is included,
which maps the paths into the columnar format of Parquet. A discussion of
different RDF data-storage strategies and optimizations is presented in Sec-
tion 7.4.1.

• Query Compiler: All tasks which are involved in translating an RDFPath
query into the respective SQL dialect of the desired SQL-on-Hadoop system
are composed in our Query Compiler. Section 7.4.2 will provide some details
of what the actual translation process looks like and present an evaluation
strategy for traversing paths.

8Please note, that ExtVP is part of the dissertation of Alexander Schätzle and is therefore only
briefly noted in this work
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• Query Processor: The final execution of SQL queries is done by the Query
Processor. Section 7.4.3 will discuss multiple execution strategies which differ
in how queries are composed and when intermediate results become materi-
alized to disk. Further, due to the differences in the support of recursions in
the respective SQL-on-Hadoop systems, individual Query Processors exist for
Impala and Spark.

A more detailed view of the architecture of our RDFPath Engine is illustrated
in Figure 7.8. Due to the common roots with TriAL-QL Engine, we moved
unchanged components to the background (in gray) and highlight new ones. For
clarity of presentation, we will stick to the three previously-mentioned components
in the following sections.

7.4.1. RDFp Data Layout

RDFp was introduced in Section 4.2 as a flexible data model to represent paths in
RDF graphs. It formed the basis for RDFPath by enabling more meaningful, path-
based results. Accordingly, to evaluate RDFPath queries on in-memory frameworks,
we need at first to define a proper data representation of RDFp in the stack of SQL-
on-Hadoop solutions which meets our requirements. First of all, the data needs to
be efficiently queryable with SQL, which is the key requirement if we want to use
SQL as an intermediate language. However, in contrast to our RDFPath MapRe-
duce Processor, we do not want to implement our own low-level serialization
but rather benefit from existing data stores and their optimizations. Secondly, we
again need to handle the tradeoff of maintaining complete RDFp paths efficiently,
but keeping individual resources still accessible. Lastly, as we want our engine to
use multiple in-memory frameworks but without multiplying the data, we need so-
lutions that facilitate the usage of one common data representation. With Parquet
stored in the Hadoop Distributed File System (HDFS), we have already introduced
(in Section 7.2.1) a highly-compatible distributed storage that is also favored by
most SQL-on-Hadoop engines. It has demonstrated very good properties for query-
ing web-scale RDF with TriAL-QL, which leads us to the decision to investigate
its usage for storing RDFp. We first start with an introduction of how we map
RDFp to the columnar storage format of Parquet. We will then continue with op-
timizations built on top of our storage schema including Vertical Partitioning and
Extended Vertical Partitioning.

Modeling RDFp in Parquet. Following the notation in Section 4.2, where we in-
troduced RDFp, the basic element of each RDFp path is composed of a resource
ri representing an RDF term with ri ∈ (I ∪ B ∪ L). The general structure of
the entire RDFp path is then an n-ary tuple p = (r1, r2, r3, ..., rn) composed of
n resources ri. In the case of RDF triplestores, we represented RDF datasets in
a triples table with three columns, containing one row for each RDF statement,
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Figure 7.8.: Overview of RDFPath Engine architecture

i.e. triples(sub, pred, obj). We will next investigate how to refine this concept such
that each row represents one RDFp path. The main issue is related to the flexibility
of RDFPath, which enables us to retrieve paths of different length by using, e.g. re-
cursion or branches. Without an implicit projection to a fixed number of resources
as we have seen, for instance, with TriAL-QL where each operators produces again
a triple-based data, we cannot simply create a fixed-length columnar mapping of
RDFp paths to Parquet. We illustrate this in the following short example.
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Example 7.1. For example, consider an RDFp Graph P = {p1, p2, p3} which we
want to model in Parquet.

p1 : (Ted, country, DE),
p2 : (Bob, knows, Alice, knows, Ted),

p3 : (Bob, knows, Alice, knows, Ted, age, 31)

A straight-forward mapping of these paths into a columnar format would result in
the following table:

r1 r2 r3 r4 r5 r6 r7

Ted country DE – – – –
Bob knows Alice knows Ted – –
Bob knows Alice knows Ted age 31

The result of this mapping are three rows with a different number of columns. The
main drawback in this representation is that we are not able to apply a join directly
on this representation, for which one needs to specify a join column, e.g. r7. That
violates our first requirement, which is the ability to express navigational traversing
steps as SQL.

We have considered three solutions to overcome this issue, which we will briefly
discuss in the following.

• Object-based RDFp: Analogous to our RDFPath MapReduce Pro-
cessor, we can implement once more an optimized RDFp object including a
serialization format and store it binary as a row in the columnar storage format
of Parquet. However, this would imply new join operators in the respective
SQL-on-Hadoop solutions. Moreover, we would also lose many important fea-
tures of Parquet, such as filter push-down. There exists related projects from
which we could benefit, such as Avro, a commonly used serialization platform
which is interoperable across multiple languages and systems and is supported
by Spark and Impala. Nonetheless, the effort of implementing new opera-
tors and not benefiting from a highly-compatible and continuously-optimized
system-composition are strong arguments against this approach.

• Nested RDFp: Parquet supports nested columns (also known as complex
types), which allow us to represent multiple data values in a single column
position. This is exactly what is needed to overcome the issue shown in the
example above. However, at the point of working on that, the support of Spark
and Impala for nested columns was in an early stage, hampering its use.

• Placeholder Padding for RDFp: One further approach is to balance the
differences in length of each row by filling up empty columns with placeholders,
in our case NULL values. Relevant resources, thus possible join candidates,
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then need to be moved to the last columns in each row. This method implies a
few additional costs, for example, in the final output, where placeholders need
to be removed again. However, in contrast to row-oriented storage schema,
the columnar format of Parquet is well designed for wide tables that contain
hundreds of columns, where only a few of them are accessed by a query. More-
over, NULL values are not stored explicitly in Parquet, thus sparsity causes
just little to no storage overhead.

Finally, the Placeholder Padding strategy proved to provide a good tradeoff until
the support for nested data structures in Impala and Spark improves. Therefore,
we decided to use it for storing RDFp in Parquet. The following table illustrates
the structure of a table after applying Placeholder Padding on the data from Exam-
ple 7.1.

r1 r2 r3 r4 r5 r6 r7

Ted – – – – country DE
Bob knows Alice – – knows Ted
Bob knows Alice knows Ted age 31

We can see that possible join candidates were moved to the end of each row, enabling
the application of joins directly on this representation. Since each join implies a new
table with adjusted placeholders, there is also no need to modify a table with its
placeholders.

Optimized storage schema. Input graphs become preprocessed during the ini-
tial loading, where the Vertical Partitioned (VP) schema proposed in [AMMH07]
is applied on the data. As a result, we obtain a two-column table for every RDF
predicate, e.g. knows(sub, obj). This enables more efficient pruning strategies since
following a certain predicate is a dominant pattern for a navigational query lan-
guage. In [SPSL16], we have introduced an extension of this well known strategy
called Extended Vertical Partitioning (ExtVP), which aims at further reducing the
input size of each join. The basic idea is to avoid so-called dangling tuples in join
input tables, i.e. tuples which do not find a join partner and become discarded by
a join operation. This can be achieved by applying semi-joins between all com-
binations of vertical partitions (predicates). The results are new input tables for
each combination of predicates, which include only those tuples which would con-
tribute to the respective join. We refer to these input tables as ExtVP tables, each
describing one pairs of predicates, e.g.

knowsknows/age(sub, obj)
ageage/knows(sub, obj)

For instance, in the case of the ExtVP table knowsknows/age, we store a subset
of knows tuples with users for which an age is provided. Consider the following
RDFPath query that traverses the predicate knows followed by age:
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1 Bob : / knows /knows /age

In that example, one can use the smaller ExtVP table knowsknows/age rather than
the VP table knows as input. This simplified example assumes only subject-object
joins occur during query execution. However, further possible combinations exist
that need to be considered for RDFPath. We continue with a more formal definition
based on the notation introduced in [SPSL16], where we define ExtVP on RDF.
ExtVP on RDFp is defined analogously and is left out for clarity of presentation.

Definition 7.1 (Vertical Partitioning). Let G denote an RDF graph. A vertical
partitioning schema over G, written as V P [G], is then defined as:

V Pp1 [G] = {(s, o) | (s, p, o) ∈ G ∧ p = p1}

Definition 7.2 (Extended Vertical Partitioning [SPSL16]). Let P = {p |
∃s, o : (s, p, o) ∈ G} denote the set of all predicates in an RDF graph G. An extended
vertical partitioning schema over G, written as ExtV P [G], is defined as:

ExtV POS
p1|p2

[G] = {(s, o) | (s, o) ∈ V Pp1 [G] ∧ ∃(s′, o′) ∈ V Pp2 [G] : o = s′}
≡ V Pp1 [G]no=s V Pp2 [G]

ExtV POS[G] = {ExtV POS
p1|p2

[G] | p1, p2 ∈ P}

ExtV P PS
p1|p2

[G] = {(s, o) | (s, o) ∈ V Pp1 [G] ∧ ∃(s′, o′) ∈ V Pp2 [G] : p1 = s′}
≡ V Pp1 [G]np1=s V Pp2 [G]

ExtV P PS[G] = {ExtV P PS
p1|p2

[G] | p1, p2 ∈ P}

ExtV P [G] = {ExtV POS[G], ExtV P PS[G]}

Note that, in [SPSL16] we focused on the evaluation of SPARQL queries, which
requires different join combinations in the case of RDFPath queries. Not required
partitions, such as ExtV P SS[G], are therefore discarded but new ones, such as
ExtV P PS[G], additionally, are added. ExtV P PS[G] describes hereby predicate-
subjects joins which form the basis for querying RDF data along with its ontology.

182



7.4 Distributed Execution Engine for RDFPath

a

friendship

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Bob Alice Ted

Changing context: 

type

age

country
country

31

DE

CH

Robin

type

knowsknowsknows

Figure 7.9.: RDF example describing different kinds of relations between people.

Example 7.2. Consider the graph G illustrated in Figure 7.9. Applying Defini-
tion 7.2 on G, we obtain the following ExtVP partitions:

ExtV POS
knows|knows[G] = { (Bob, knows, Alice) }

ExtV POS
knows|country[G] = { (Bob, knows, Alice), (Alice, knows, Ted) }

ExtV POS
knows|age[G] = { (Alice, knows, Ted) }

ExtV POS
age|knows[G] = ∅

ExtV P PS
knows|type[G] = { (Bob, knows, Alice), (Bob, knows, Robin) }

ExtV P PS
knows|a[G] = { (Alice, knows, Ted) }

ExtV P PS
country|type[G] = ∅

...

The remaining combinations of predicates which haven’t been shown provide empty
sets for our exemplary graph G and are therefore left out.

In practice, only beneficial ExtVP partitions need to be kept. These are the par-
titions which are significantly smaller in comparison to the respective vertical par-
tition. In order to identify them, we compute, analogous to [SPSL16], the benefit
of an ExtVP partition in comparison to its VP partitions. We denote this value as
selectivity factor SF .

Definition 7.3 (Selectivity Factor). Assume ExtV Pp1|p2 and V Pp1 to be two
tables partitions in accordance to Definition 7.2. We define the selectivity factor SF
of ExtV Pp1|p2 as its relative size in comparison to V Pp1 :

SF (ExtV Pp1|p2) = |ExtV Pp1|p2|
|V Pp1|

Following this definition, an ExtVP table with SF ~ 1 has almost the same number
of triples as its vertical partition. Storing it is not beneficial, since on the one hand
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it does not reduce the query input size significantly. On the other hand, it imposes
a large (and redundant) overhead as the VP partition is simply duplicated. Thus, it
makes sense to specify a threshold for the selectivity factor, where only those ExtVP
partitions are kept, which are below that value. In addition, also information about
completely empty ExtVP partitions are stored for query optimization. This includes
also predicates which only lead to literals. For instance, empty RDFPath results are
identified without actually executing the respective query.

7.4.2. Query Compiler

The translation of an RDFPath query to a sequence of SQL queries follows a stan-
dard approach illustrated in Figure 7.10. The Query Compiler parses as a first step
the RDFPath query k1 to generate an abstract syntax tree k2 out of it using the
grammar discussed in Chapter 4 and shown in Appendix B. Next, the resulting syn-
tax tree is translated to an algebra tree k3 by means of the Algebra Compiler. The
example further illustrates the aforementioned optimization by using two ExtVP
partitions (ExtV POS

knows|knows[G] and ExtV POS
knows|age[G]) rather than vertical parti-

tions. Moreover, for ExtV POS
knows|knows[G] and V Page[G] the filter push-down feature

of Parquet is utilized, which ensures that only those rows are read which satisfy the
filter constraint, e.g. Bob as a first resource and an age above 21. Lastly, the alge-
braic tree representation is forwarded to the SQL Compiler which produces either
Impala or Spark SQL queries together with an execution plan. Those queries are
then given to the Query Processor, which executes them in a last step on Impala
and Spark respectively.

RDFPath Parser

Algebra Compiler

Algebra Optimizer

SQL Compiler

Query Processor

RDFPath Query

Spark / Impala

Syntax Tree

Algebra Tree

Algebra Tree

SQL Queries + Plan

 Bob :/knows /knows [/age > 21]

 Select *

 FROM ExVP_knows|knows AS t1, ExVP_knows|age AS t2
 ...

Parser

Algebra Compiler

Algebra Optimizer

Pig Latin Translator

Pig

TriAL-QL Query

MapReduce

Syntax Tree

Algebra Tree

Algebra Tree

Pig Latin Program

SELECT * WHERE { ?person knows Peter . ?person age ?age

         OPTIONAL { ?person mbox ?mb } FILTER (?age >= 18)}

LeftJoin

knows = LOAD 'rdf/knows' USING rdfLoader() AS (s,o);          

age   = LOAD 'rdf/age' USING rdfLoader() AS (s,o);

f1    = FILTER knows BY o == 'Peter';

t1    = FOREACH f1 GENERATE s AS person;

t2    = FOREACH age GENERATE s AS person,o AS age;

j1    = JOIN t1 BY person, t2 BY person;

BGP1  = FOREACH j1 GENERATE t1::person AS person, 

                            t2::age AS age;

F     = FILTER BGP1 BY age >= 18;                     

mbox  = LOAD 'rdf/mbox' USING rdf() AS (s,o);         

BGP2  = FOREACH mbox GENERATE s AS person,o AS mb;

lj    = JOIN F BY person LEFT OUTER, BGP2 BY person;   

LJ    = FOREACH lj GENERATE F::person AS person,

                            F::age AS age, BGP2::mb AS mb;

STORE LJ INTO 'output' USING resultWriter();

BGP
?person mbox ?mb

RDFp Store.getPattern()
 Bob knows ? .

 ?person age ?age 

Filter

?age >= 18

1

1

2

2

3

3

4

4

1

2 3
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INSERT INTO foaf

WITH foaf1 AS (SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 

            FROM sib A JOIN sib B 

               ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows'),

     foaf2 AS (SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 

               FROM foaf1 A JOIN sib B 

               ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows')

SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 

FROM foaf1 A JOIN sib B 

ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows' ...

INSERT INTO foaf

SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 

FROM ( SELECT DISTINCT A.s AS s, B.p AS p, B.o AS o 

       FROM sib A JOIN sib B 

       ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows' ) A

JOIN sib B ON A.o=B.s AND A.p=B.p AND A.p='foaf:knows' ...

Join

ExtVP knows | knows

first() = Bob

ExtVP knows | age

-

VP age

last() > 21

Filter

age > 21

Join

3

4

Figure 7.10.: Translating an RDFPath query into SQL queries
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Evaluation of Recursive Expressions. Recursions are one of the most challenging
expressions in RDFPath. Their evaluation is based on a slightly-adapted version of
the semi-naive algorithm introduced in Section 7.2.2 for TriAL-QL. First, we recall
the definition of a path composition from Section 4.4, where the semantics of RDF-
Path were introduced. We noted in Definition 4.8 (page 72) that two RDFp paths
p, q are composed if they are compatible thus iff it holds that last(p) = first(q). We
denoted this operation by the symbol (. ◦ .), where the result is again a composed
RDFp path which conforms to our RDFPath semantics. Using this notation, we
present our semi-naive evaluation strategy for recursive-patterns in Algorithm 7.4.1.
Although introduced for recursive expressions, we used this algorithm for each RDF-
Path expression that represents a traversal step. The next section will introduces a
few execution strategies for this algorithm.

Algorithm 7.4.1 : Adapted Semi-naive evaluation of RDFPath recursion
input : RDFp graph E

1 i← 0,
2 ∆P 0 ← E
3 while ∆P i 6= ∅ do
4 i← i + 1 // Recursion until no paths derivable
5 foreach pi ∈ ∆P i−1 do
6 foreach qj ∈ E do
7 if last(pi) = first(qj) then
8 ∆P i ← ∆P i ∪ (pi ◦ qj) // Join between two RDFp graphs
9 end

10 end
11 end
12 end
13 return P = ∆P 0 ∪ ... ∪ ∆P i // Composition based on recursive expression

7.4.3. Query Processor

The evaluation of RDFPath queries that contain recursion involves an iterative
process, where the number of required steps is not known in advance. Since neither
Impala nor Spark natively support recursions in their SQL dialect, such expressions
cannot be translated into single SQL statements but need to be broken down into
several smaller queries that are executed subsequently. Each single SQL statement
corresponds hereby to one iteration of the while loop (line 3) of the previously-shown
Algorithm 7.4.1. For our TriAL Engine, we have already distinguished between
a materialized and compositional execution. We will revise both strategies with
respect to RDFPath and introduce a few optimizations that will be examined with
experiments in Section 7.5.
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(1/4) Compositional Execution (CE). According to this strategy, a (non-recursive)
expression in RDFPath is translated to one composed SQL query. Such a query can
then be analyzed further by the optimizer of the respective SQL engine, i.e. Impala
or Spark. However, in the case of long-chained or complex compositions, this ap-
proach might cause data to become spilled to disk during query evaluation. That
happens if the size of intermediate results is underestimated by the optimizer and
therefore a disadvantageous join strategy is chosen. In general, it is better to chose
a disk-based join in advance rather than using an in-memory join which runs out of
main-memory during its execution and needs then to spill data to disk. Hence, this
strategy is well-suited for rather selective queries that are executed against a small
subset of the RDFp graph. That way we can ensure that all joins are computed
in-memory, which prevents costly disk operations and allow the SQL engine to make
use of its optimizer. We can illustrate this strategy as shown in the following, where
an RDFPath query is translated into four SQL statements, denoted by S1, S2, S3, S4,
and evaluated in one composed SQL query.

S1 S2 S3 S4RP

1 composed SQL query

RDFPath Query Compositional Execution (CE)

S1 S2 S3 SnRP

n individual SQL queries

Staged Execution (SE)

...

RDFPath Query

S1 S2 S3 S6RP

Staged ExecutionRDFPath Query

S7 S8
...

CE CE

1 2 3 αRP

RDFPath Query

...

 CE CE

1 β...

Staged Execution (SE)

1 2 α...

CE

1 composed 
SQL query

n individual 
SQL queries

1 composed 
SQL query

1 composed 
SQL query 

1 composed 
SQL query

n composed 
SQL queries

1 composed 
SQL query

1 2 3 α... 1 β... 1 β......

(2/4) Staged Execution (SE). This strategy is the first choice for queries which
involve recursions, since it enables the iterative execution of single SQL statements
till the desired termination condition, e.g. no new paths are derived any more, is
fulfilled. However, it can also be applied on non-recursive RDFPath expressions
that are composable in one query. In this case, non-recursive fragments also be-
come split into single SQL statements and executed subsequently. This only makes
sense when we know in advance that the amount of intermediate results might grow
exponentially at some point. Further, we can differ between a materialized or non-
materialized variant of a staged execution depending on the underlying SQL engine
we use. For Impala, the intermediate result of each iteration has to be materialized
on disk and read again as input for the next iteration as there is no support for
preserving those intermediate tables in main-memory across multiple SQL queries.
Spark supports the storage of intermediate results from individual SQL statements
in main-memory, making them available for further processing. Thus, a subsequent
SQL statement does not need to read the results from a previous SQL statement
again from disk. Consequently, we can summarize that a staged execution strategy
is the first choice for recursive patterns and is, in addition, well-suited to data-
intensive, ETL-like queries that need to process large quantities of the input graph.
We illustrate this strategy in the following, where an RDFPath query is translated
into n SQL statements, evaluated individually:
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S1 S2 S3 S4RP

1 composed SQL query

RDFPath Query Compositional Execution (CE)

S1 S2 S3 SnRP

n individual SQL queries

Staged Execution (SE)

...

RDFPath Query

S1 S2 S3 S6RP

Staged ExecutionRDFPath Query

S7 S8
...

CE CE

1 2 3 αRP

RDFPath Query

...

 CE CE

1 β...

Staged Execution (SE)

1 2 α...

CE

1 composed 
SQL query

n individual 
SQL queries

1 composed 
SQL query

1 composed 
SQL query 

1 composed 
SQL query

n composed 
SQL queries

1 composed 
SQL query

1 2 3 α... 1 β... 1 β......

(3/4) Hybrid Execution (HE). A hybrid execution combines the staged and com-
positional execution. In practice, one can assume RDFPath queries to be composed
out of recursive and non-recursive fragments. For those queries, the staged execution
would have been used so far. However, for selective queries, where we expect to get
results in interactive time, it would be unfavorable to use a staged execution since
it is (1) geared towards data-intensive tasks by means of disk-based operations and
(2) uses more conservative query optimizations. To minimize the negative impact
of a staged execution for selective queries, we use the hybrid execution which dis-
tinguishes between different fragments and executes recursive ones using the staged
execution and non-recursive ones using the compositional strategy. As a result,
for selective queries, the recursive fragment is still executed as a staged execution,
but any non-recursive fragments are executed using the beneficial compositional ex-
ecution. We can illustrate this strategy as shown in the following where, at the
beginning and at the end, compositional executions are applied and in the middle a
staged execution is applied.

S1 S2 S3 S4RP

1 composed SQL query

RDFPath Query Compositional Execution (CE)

S1 S2 S3 SnRP

n individual SQL queries

Staged Execution (SE)

...

RDFPath Query

S1 S2 S3 S6RP

Staged ExecutionRDFPath Query

S7 S8
...

CE CE

1 2 3 αRP

RDFPath Query

...

 CE CE

1 β...

Staged Execution (SE)

1 2 α...

CE

1 composed 
SQL query

n individual 
SQL queries

1 composed 
SQL query

1 composed 
SQL query 

1 composed 
SQL query

n composed 
SQL queries

1 composed 
SQL query

1 2 3 α... 1 β... 1 β......

(4/4) Hybrid α-β-Execution (HE+). As a further step towards a more flexible
approach, we next introduce a generalization of our hybrid execution. The main idea
behind this extension is a mechanism that allows the specification of the maximum
amount of SQL statements which can be composed in one SQL query. Therefore
we introduce two parameters that needs to be provided for this strategy, namely
α and β. The first parameter, α, is a numeric value that specifies the number of
statements allowed to be composed within a compositional execution. The second
value β specifies the number of statements allowed to be composed within a staged
execution. However, composing SQL statements from recursive fragments comes
along with some problems, as previously discussed. Since the number of required
joins is not known in advance, a β value higher than one might result in an overesti-
mation, i.e. we are executing recursion more often than it would have been required.
Nonetheless, in accordance with Algorithm 7.4.1, we obtain still, even in the case of
an overestimation, the correct results; only the last ∆P is will be then empty. Fol-
lowing this notation, our previously-introduced hybrid execution can be seen as a
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special case of HE+, denoted by Hybrid ∗-1-Execution. We can read this as follows:
an unlimited (α = ∗) amount of SQL statements from non-recursive fragments is
allowed to be composed into one query, but in the case of recursive fragments, each
statement has to be executed individually (no composition) one by one (β = 1).
We illustrate this strategy in the following, where at most α SQL statements are
composed into one SQL query and at most β SQL statements are composed for
recursions using staged execution.

S1 S2 S3 S4RP

1 composed SQL query

RDFPath Query Compositional Execution (CE)

S1 S2 S3 SnRP

n individual SQL queries

Staged Execution (SE)

...

RDFPath Query

S1 S2 S3 S6RP

Staged ExecutionRDFPath Query

S7 S8
...

CE CE

1 2 3 αRP

RDFPath Query

...

 CE CE

1 β...

Staged Execution (SE)

1 2 α...

CE

1 composed 
SQL query

n individual 
SQL queries

1 composed 
SQL query

1 composed 
SQL query 

1 composed 
SQL query

n composed 
SQL queries

1 composed 
SQL query

1 2 3 α... 1 β... 1 β......
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7.5. Experiments on RDFPath Engine

We evaluated the RDFPath Engine with three different execution strategies (Com-
positional, Staged and Hybrid α-β-Execution), two data storage layouts (VP and
ExtVP), and two in-memory processing frameworks (Impala and Spark)9. Analo-
gous to Section 7.3, where we performed experiments with the Trial-QL Engine,
we again used the Social Network Benchmark (SNB) data generator10 to generate a
synthetic social network of up to 1.8 billion triples (edges). The corresponding store
sizes for four scaling factors (SF 1, SF 3, SF 10, SF 30) and three storing strategies
are listed in Table 7.3.

Table 7.3.: SNB data with #triples and store sizes for different storage strategies

Original VP ExtVP
Triples Size Triples Size Triples Size

SF 1 59.5 M 4.1 GB 59.5 M 0.6 GB 82.3 M 1.7 GB
SF 3 176.4 M 12.3 GB 176.4 M 1.8 GB 243.8 M 5.2 GB
SF 10 594.7 M 41.4 GB 594.7 M 6.4 GB 825.2 M 19.3 GB
SF 30 1,799.4 M 125.5 GB 1,799.4 M 20.1 GB 1,458.7 M 30.5 GB

We have designed four representative use cases for the RDFPath Engine. Their
different characteristics enable us to highlight some crucial features of RDFPath
and demonstrate the performance and scalability of the implemented evaluation
and storage strategies. Even though they are based upon the use cases introduced
for TriAL-QL from Section 7.3, they exhibit, due to the different nature of both
languages, significant differences. We therefore focus in this section on investigat-
ing the properties of the RDFPath Engine rather than providing a comparison
with other systems. Only use case 4 will include execution times for TriAL-QL
Engine. A comprehensive comparison with competitors is presented at the end of
this dissertation in Chapter 8.

Use Case 1: Socialized Recommendations. The first use case asks for users
which like similar topics as a given chosen user. For that, we start with a fixed user
and follow the edges knows and person to determine a users friends. In a next step,
a nested filter is used to find only those friends, which like at least one post of the
initially random user. The structure of this query exhibits a pattern of the following
shape:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

...

...

...

...

...

...

Bob Alice Ted

knows knows

test

...

... test
(a) (b)

creator

u

knows person likes post

9The cluster configuration can be found in Chapter 8 on page 195
10http://ldbcouncil.org/developer/snb
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The corresponding RDFPath query is as follows:

1 %user% :/ knows / person [ / l i k e s / post [ / c r e a t o r=%user %]]

We evaluated this query for 50 randomly chosen users. The mean runtimes are
listed in Table 7.4. Figure 7.11 plots the mean runtimes in relation to the data
size (scaling factors) on a log-log scale. The first result is that the compositional
execution on Impala using ExtVP data layout shows overall the best performance.
In comparison to the staged execution on Impala, we can further see that the larger
the data, the smaller the difference between runtimes becomes. A better scaling
behavior of staged executions on Impala in comparison to the compositional one
is actually in line with our expectations, due to lower memory consumption and
the usage of statistics computed for intermediate results. Furthermore, we can see
that Impala (illustrated with continuous lines) performed faster than Spark in all
cases (illustrated with dashed lines). Lastly, we shall discuss the impact of the data
layout on the performance. In this regard, using ExtVP in comparison to VP lead to
better runtimes in all experiments. In fact, using ExtVP does not cause additional
costs for query evaluation, while smaller ExtVP partitions used as input reduce the
overall workload. The measured performance benefit was, for all experiments, on
average 21%. However, the initial loading phase of the graph (which has to be done
just once in advance) is more costly and the size of the internal data store is due to
data duplication 4 times larger (cf. Table 7.3.)
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Use Case 1
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Use Case 2
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Use Case 3

Impala (Comp. VP) Impala (Comp. ExtVP) Impala (Staged VP) Impala (Staged ExtVP)
Impala (Hybrid VP) Impala (Hybrid ExtVP) Spark (Comp. VP) Spark (Comp. ExtVP)
Spark (Staged VP) Spark (Staged ExtVP) Spark (Hybrid VP) Spark (Hybrid ExtVP)

Figure 7.11.: Mean runtimes in relation to scaling factors on log-log scale. Dashed
lines are SPARK, continuous lines Impala; circles mark VP, triangles mark ExtVP;
red color stands for Compositional execution, blue for Staged, black for Hybrid
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Use Case 2: Reachability. The second use case investigates the evaluation of
recursive expressions. For that, we designed a query which traverses replies of posts
recursively, where each creator of a post has to work in the same organization.
The organization is a randomly-chosen resource, which is tested by a nested filter
expression in each recursive step by means of three joins. The structure of this query
exhibits a pattern of the following shape:

Bob Alice Ted

knows knows

Bob

knows knows

type

friendship

Alice Ted

-1-2-3

Changing context: 

...

...

...

...

...

...

...

Bob Alice Ted

knows knows

test

...

... test
(a) (b)

creator

u ?

knows person likes post

...

...

...
...

reply

...

...

...

creator

workAt

organization z

replyreply

The corresponding RDFPath query is as follows:

1 ∗ : / r ep ly [ / c r e a t o r /workAt / o r gan i s a t i on=%organ i z a t i on%] (∗ )

This unbounded query (it starts its evaluation for all nodes in the graph) follows
the predicate repliesOf, which is one of the most-used predicates in the graph.
Analogous to use case 1, we have chosen 50 random organizations used within the
nested filter expression. The mean runtimes are listed in Table 7.4. Due to the
recursion, a compositional execution strategy was not applicable. We therefore
compare in Figure 7.11 the Hybrid α-β execution strategy (black-colored lines) with
the staged one (blue colored lines). In order to capture the nested filter with a
compositional subquery, we set α = 3, and β = 3 for the hybrid strategy. Developing
an algorithm which estimates best values for α and β from the structure of the
query is part of future work. As a first result, we can see in Figure 7.11 that the
hybrid execution outperformed the compositional one with Impala and Spark. The
runtimes of Impala were again faster than those for Spark. The best execution
strategy (Impala, Hybrid, ExtVP) required, on the smallest dataset, an average of
9.3 seconds and, on the largest dataset, 33.6 seconds, computing almost one million
paths. In comparison, the slowest execution times obtained by the combination
(Spark, Staged, VP) on SF 30 added up to 33 minutes. Using ExtVP instead of VP
improved the execution time to only 22 minutes.

Use Case 3: Navigating Branches. The third use case covers the evaluation of
a large variety of RDFPath expressions, including branches with nesting, traversing
steps specifying a set of predicates and bounded recursion. The RDFPath query
which we designed for that use case retrieves various information related to a given
post and exhibits the following shape:
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p: random post
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The corresponding RDFPath query is as follows:

1 %post% :/ c r e a t o r /( / i n t e r e s t [=%tag%] | |
2 /knows /person / i n t e r e s t [=%tag%])
3 | | /{ language , date , ip }
4 | | / l o c a t i o n /partOf (1 , 2 )

It is a more complex but selective query involving many joins which we evaluated
on 50 randomly-chosen posts and tags. The mean runtimes are listed in Table 7.4.
Overall, we observed comparable results as discussed for the first use case. Fig-
ure 7.11 demonstrates once more the dominance of using Impala and ExtVP for
the compositional execution of RDFPath queries. For the smallest data size (SF
1), we achieved runtimes below one second and for the largest dataset that contains
about 1.8 billion triples, the evaluation finished in only 4.4 seconds. For Spark with
compositional execution we can see a better performance than Impalas staged ex-
ecution, for smaller data sizes. However, this reverses for larger data sets, due to
better scaling behavior of Impalas staged execution.

Use Case 4: Connectivity. The last experiment asks for the paths between two
given resources, which is a typical pattern in querying, e.g. social networks or biolog-
ical information. Note that, in the case of RDFPath, we are not only verifying the
existence of a connection but derive multiple paths containing all resources that were
traversed to obtain a connection between two nodes. The following RDFPath query
asks for the paths between two given users by following friendship relationships.

1 %user1% :/ knows (∗ ) /knows [=%user2%]

The mean runtimes for 50 randomly-chosen pairs of users are listed for RDFPath
Engine and Trial-QL Engine in Table 7.4. We plotted the execution in relation
to the data size (scaling factor) on a log-scale scale in Figure 7.12, where Trial-
QL is illustrated with a brown color and RDFPath with blue and red. This plot
demonstrates the possible negative impact of a path-based semantic in comparison
to an existential one. The scaling behavior of all Trial-QL executions (brown
colored) is described by a rather linearly-growing curve, due to the fixed number of
results for each pair. In contrast, we can see for all RDFPath executions, although
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Figure 7.12.: Mean runtimes in relation to scaling factors on log-log scale. Dashed
lines are SPARK, continuous lines Impala; TriAL-Engine executions are brown-
colored, blue and red are used for RDFPath Engine

they exhibit a competitive performance, a much worse scaling behavior which is an
expected result for this sort of query. Nonetheless we obtained, with the RDFPath
Engine using compositional execution on Impala, mean runtimes of 1.9 seconds
on SF 1 and 8.9 seconds on SF 30. In the case of Trial-QL (compositional on
Impala) the runtimes where slightly better, i.e. 1.4 seconds on SF 1 and 2.9 on
SF 30. However, as we will discuss in a more comprehensive comparison presented
in Chapter 8, not many cases exist in which the RDFPath Engine outperforms
Trial-QL Engine.

Summary. The four presented use cases have shown that for evaluating RDFPath
queries the combination of using Impala with compositional execution and ExtVP
data model turns out to perform best. However, that this does not necessarily need
to be the case for all sorts of queries was indicated by having a look at the respective
scaling behavior of the execution strategies. The staged execution revealed to scale
much better while increasing the data size, which means that for, e.g. more data
intensive queries or longer paths, there might exist reversal points where a staged
execution is more beneficial.
The more interesting and also somewhat surprising findings of the experiments per-
formed with RDFPath Engine are the obtained runtimes. With regard to the
theoretical upper bound for the amount of derivable paths by RDFPath, which we
discussed in Section 4.5.2 (page 81), we achieved across all experiments excellent
runtimes. Even on a social network dataset with almost 1.8 billion triples, we ob-
tained for all our use cases interactive query runtimes, i.e. on the order of seconds.
These results will also be confirmed in the next chapter, where we used a benchmark
for comparing the performance of our implementations against various competitors.
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Table 7.4.: Mean runtimes (in ms) for Use Cases 1 – 4

Configuration SF 1 SF 3 SF 10 SF 30

U
se

C
as
e
1

Impala Comp. VP 1499 1795 3243 7278
Impala Comp. ExtVP 1122 1256 2304 5048
Impala Staged VP 5477 5953 7947 12890
Impala Staged ExtVP 5077 5362 6707 9567
Spark Comp. VP 9177 14605 39580 57465
Spark Comp. ExtVP 7421 10820 27328 51077
Spark Staged VP 15458 22535 47936 94307
Spark Staged ExtVP 14555 17773 35700 77404
Results 81 16 61 64

U
se

C
as
e
2

Impala Hybrid VP 10389 11270 24186 51389
Impala Hybrid ExtVP 9327 10257 17964 33596
Impala Staged VP 36510 70272 206270 935980
Impala Staged ExtVP 35666 69842 194581 856772
Spark Hybrid VP 33553 50378 122090 222836
Spark Hybrid ExtVP 25359 32018 59385 151426
Spark Staged VP 68451 115909 592743 1983742
Spark Staged ExtVP 55203 84233 317586 1357169
Results 26124 85324 309253 994337

U
se

C
as
e
3

Impala Comp. VP 1327 1564 2892 5887
Impala Comp. ExtVP 972 1207 2255 4424
Impala Staged VP 7599 8081 9771 13758
Impala Staged ExtVP 7208 7380 9073 12523
Spark Comp. VP 3781 6010 15813 36378
Spark Comp. ExtVP 2753 4121 8683 19054
Spark Staged VP 18708 20698 32586 50723
Spark Staged ExtVP 16243 18149 25393 41118
Results 44 9 24 12

U
se

C
as
e
4

R
D
FP

at
h Impala Comp. ExtVP 1868 2483 3814 8883

Impala Staged ExtVP 3347 4224 5885 11532
Spark Staged ExtVP 6589 11827 28215 63276
Spark Comp. ExtVP 7861 14893 37908 104146
Results 24 43 30 51

Tr
iA

L-
Q
L Impala Comp. VP 1391 1865 1939 2857

Impala Staged VP 6515 7794 8345 9057
Spark Staged VP 3885 4454 4950 7422
Spark Comp. VP 3021 3436 3620 4845
Distance 2,9 3,1 3,0 3,2
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The evaluation in this chapter sums ups the work presented in this dissertation by
providing a comprehensive performance overview with various competitive query
engines. Most of the experiments were performed on a small cluster with ten ma-
chines, each equipped with a six core Xeon E5-2420 CPU, 2×2 TB disks and 32
GB of main memory. We used the Hadoop distribution of Cloudera CDH 5.7.0 with
Impala 2.5.0 and Spark 1.6.2. The machines were connected via Gigabit network.
This is actually a rather low-end configuration as Cloudera recommends 256 GB
RAM and 12 disks or more for Impala nodes in a production cluster. Both the
Impala daemon and Spark executor were using 24 GB of main memory, broadcast
joins were disabled, and the Parquet filter push-down optimization were enabled.
For competitors executed on a single machine we used a workstation equipped with
a Intel Xeon E5-2640 CPU with six cores, twelve threads, 192 GB main memory
and 2×1 TB disks.
We based our experiments on theWaterloo SPARQL Diversity Test Suite [AHOD14]
(WatDiv), which provides a test environment for RDF data management systems
with more diverse workloads than other benchmarks. We generated datasets from
ten million to a billion RDF triples using the WatDiv data generator with scaling
factors 100, 1000, and 10000. Since we focus in this dissertation on path-based
queries, we used the Incremental Linear Testing use case which focus on path-
shaped patterns. It consists of three query types (IL-1, IL-2, IL-3) which are bound
by user, retailer or unbounded, respectively. Each query starts with a length of 5
(IL-1-5) and becomes incrementally increased up to 8 (IL-1-8).
We compare the TriAL-QL Engine from Chapter 7.2 and RDFPath Engine
introduced in Chapter 7.5 with six competitive RDF Management systems and
one graph database. Since the original WatDiv queries are written in SPARQL,
we translated them in the languages supported by the respective system. We
adapted the queries with care and listed them all in Appendix D. As two repre-
sentative SPARQL-query-processors that use MapReduce we chose Shard [RS11]
and PigSPARQL [SPL11]. Shard is written directly in MapReduce, where each
triple pattern is mapped to exactly one reduce-side-side-join, comparable to our
RDFPath MapReduce Processor. Data is stored in HDFS, where triples are
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grouped by their subjects and put together in one line. PigSPARQL is a SPARQL
query processor which, instead of a direct mapping, translates into Pig Latin as
an intermediate layer between MapReduce. Data is stored vertically-partitioned
in HDFS. With H2RDF+ [PKT+13], we have one representative SPARQL engine
built on top of a NoSQL store. H2RDF+ uses HBase to store triples sorted by row
keys in six different triple permutations. Based on the selectivity of a triple pattern,
queries are either executed on a single node or distributed using MapReduce. Two
representative SPARQL engines that utilize in-memory processing frameworks are
Sempala [SPNL14] and S2RDF [SPSL16]. Sempala is built on top of Impala. Its
RDF data layout is highly optimized for star-shaped queries and enables interactive
querying times on large RDF graphs. S2RDF is a fast SPARQL-on-Hadoop engine
built on top of Spark SQL. It stores its data using Extended Vertical Partitioning
(ExtVP), which efficiently minimizes the query input size regardless of the query
pattern shape and diameter. Virtuoso Open Source Edition v7.1.1 [EM10] repre-
sents a state-of-the-art centralized RDF data management system using a relational
database to store data. It supports SPARQL 1.1, OWL reasoning, and benefits
from indexes and a two-level compression strategy optimized for RDF. As a last
competitor we chose the graph database system Neo4j [NT16]. Neo4j, of which
we used version 3.0.6, is one of the most prominent native graph-databases run-
ning on a single-machine [VWA+15]. Data representation is based on the Labeled
Property Graph model, which consists of entities (nodes) and relationships (labeled
edges). A connection between two entities is then represented by a directed and
named relationship. While loading the WatDiv data into Neo4j, we modeled an
RDF triple (s, p, o) of entities s and o connected by a relationship p. Here it was
crucial to ensure that two identical IRIs (only subjects and objects) refer to the
same node in the property graph. We skipped literals, since they are not required
for the Incremental Linear Testing use case, although they could have been easily
represented by so-called attributes. Further, we translated the WatDiV queries into
Cypher, Neo4j’s graph query language, which is a declarative, pattern-matching
language comparable to regular path queries. The translated queries are shown in
Appendix D.4 (page 238).

Discussion on Store Sizes. The store sizes for all three generated datasets are
listed in Table 8.1. We can see that the store sizes of both our engines are signifi-
cantly smaller than the size of the original RDF graph. This is achieved by Parquets
built-in support for run-length and dictionary encoding in combination with snappy
compression that perform great for storing RDF in a column-oriented format. Only
in the case of the RDFPath with ExtVP can we observe a higher graph size. How-
ever, here we need to recall that ExtVP adds, in accordance with Definition 7.2
(page 182), three additional partitions, namely ExtV POS

p1|p2
[G], ExtV POS[G], and

ExtV P PS
p1|p2

[G]. That factor is also represented in the total sizes, which are about
four times larger in comparison to RDFPath with VP. The largest store sizes are
created by Neo4j’s Labeled Property Graph model, which was also reflected in its
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loading times. Loading the smallest dataset took 12 hours and the largest one ten
days. The main workload was therefore the insertion of nodes and the updating of
their indexes.

Table 8.1.: WatDiv load times and HDFS sizes

SF100 SF1000 SF10000

tu
pl
es

original 10.91 M 109.2 M 1091.5 M
TriAL-QL VP 10.91 M 109.2 M 1091.5 M
RDFPath VP 10.91 M 109.2 M 1091.5 M
RDFPath ExtVP 34.32 M 462.5 M 2453.0 M
S2RDF VP 10.91 M 109.2 M 1091.5 M
S2RDF ExtVP 119.94 M 1197.9 M 11967 M
Neo4j Graph 9.58 M 95.99 M 959.4 M

H
D
F
S
si
ze

original 507 MB 5.3 GB 54.9 GB
TriAL-QL VP 103 MB 1.2 GB 13.2 GB
RDFPath VP 103 MB 1.2 GB 13.2 GB
RDFPath ExtVP 475 MB 4.8 GB 42.4 GB
S2RDF VP 82 MB 0.6 GB 6.6 GB
S2RDF ExtVP 914 MB 6.2 GB 63.7 GB
H2RDF+ 517 MB 5.2 GB 57.0 GB
Sempala 249 MB 3.5 GB 40.4 GB
PigSPARQL 871 MB 8.9 GB 92.5 GB
SHARD 981 MB 9.9 GB 100 GB
Neo4j Graph 4425 MB 50.9 GB 536.7 GB

The first query type (IL-1) describes a path-shaped pattern which starts at a ran-
dom users and subsequently follows various edges. Two of them are friendOf and
follows, which are commonly-used predicates, together representing about 70% of
the graph. A comparison between the runtimes of all systems on three data sizes
for IL-1 queries is shown in Table 8.2 (page 204). The second query type (IL-2) has
the same structure as the first one but starts at a random retailer and again subse-
quently follows various edges. All IL-2 query runtimes are listed in Table 8.3 (page
205). The last query type (IL-3) also exhibits a path-shaped pattern, however, in
an unbounded query. That means the evaluation starts from all nodes in the graph
and produces a large amount of intermediate results, which puts a heavy load on all
compared systems. The respective runtimes for IL-3 queries are shown in Table 8.4
(page 206). All three tables are shown at the end of this chapter.

Performance of RDFPath and TriAL-QL. Figure 8.1 illustrates the runtime dif-
ferences between all benchmarked systems in a log-scaled bar chart. The first result
is that our RDFPath Engine executed on Impala and using the ExtVP data model
outperforms all competitors. Since both of our engines which use VP instead of
ExtVP are slower, we can attribute their lead to the usage of the ExtVP data
model. Indeed, by using the corresponding ExtVP partitions, the input size for
the two predicates friendOf and follows was reduced to 1/3 of the respective VP
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Figure 8.1.: Comparison of mean runtimes on a log scale .
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partitions used by RDFPath (Impala, VP) and TriAL-QL (Impala, VP). We have
also performed some experiments with TriAL-QL and ExtVP with very promising
results. However, TriAL-QL enables joins over all three variables (all variants inher-
ent to the triple-based model) and in addition allows to modify s, p, o in an arbitrary
way. As a result, the cost-benefit ratio was not satisfying, since many additional
partitions were required to be precomputed and stored. Nonetheless, incorporating
ExtVP tables into our TriAL-QL Engine remains part of our future work.
Regarding individual runtimes, we want to emphasize that for IL-3 on SF 10000,
which produces more than 25 billion results, RDFPath required less than 10 minutes
and TriAL-QL only 23 minutes to finish. In comparison, the slowest execution,
which was PigSPARQL on MapReduce, lasts for more than 11 hours and the best
competitor, S2RDF, required about 34 minutes to compute its results. Both single-
machine engines, Neo4j and Virtuoso, were not able evaluate this query on the
largest dataset using a time constraint of 24 hours. The other range of execution
times is also worth noting. For IL-1 and IL-2, the runtimes for RDFPath are below
one second on SF 100, which contains 11 million triples. The runtimes of TriAL-QL
were, with 1.2 seconds for both query types, only marginally slower. On SF 10000,
which is a graph with over one billion triples, RDFPath finished its execution in 3.8
seconds for Il-2 and 6.2 seconds for Il-1. TriAL-QL was again only slightly slower
and required 7.5 seconds for IL-2 and 7.8 seconds for IL-1.

Existential Semantics in Distributed Frameworks. One would assume that the
advantageous of an existential semantics, as used with TriAL-QL, lead to much
better performance characteristics than the path-based semantics introduced for
RDFPath. After all, the expected smaller amount of results confront with storing
possibly manifold long paths. However, the results for the first two query types (IL-1
and IL-2) are in the order of ten thousand, where the impact of fewer and smaller
intermediate results, in comparison to the paths of RDFPath, does not affect the
runtimes. Moreover, we have observed that the costs of ensuring distinct results are
in many cases significantly higher than their benefits. In fact, the DISTINCT oper-
ation is particularly costly in distributed frameworks such as Impala and SPARK,
since it requires the repartitioning of data across all machines. A few additional ex-
periments confirmed that queries exist for which allowing duplicates in TriAL-QL,
i.e. removing all DISTINCT operations, improved the overall execution times. For
the data-intensive query IL-3 with billions of results, we see that the execution times
for RDFPath (Impala, ExtVP), RDFPath (Impala, VP), and TriAL-QL (Impala,
VP) are much closer. Still, RDFPath with ExtVP performs best, but if we compare
the execution times of RDFPath (Impala, VP) with TriAL-QL (Impala, VP), we
can see that TriAL-QL performs faster. In such cases, with intermediate results in
order of hundreds of millions to billions, the lower amount of intermediate results
compensates the costs of the distinct operations. We can further expect that TriAL-
QL along with ExtVP, which is part of potential future work, would perform better
than RDFPath for that case.
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Spark vs. Impala. Next, we can see that our engines perform significantly better
using Impala rather than Spark, which is in line with our previous experimental
observations in Section 7.3 and Section 7.5. This fact can be more easily grasped
by observing Figure 8.2, which plots the mean runtimes of all systems in relation
to the scaling factor using a log-log scale. All five Spark-based engines (including
the competitors’) are highlighted with dashed lines making it easier to group them
together. Their deviation with regard to runtimes and scaling behavior is rather
low, which is particularly true for the data-intensive IL-3 queries. One reason for
the better performance of Impala are our proposed algorithms and storage strategies
that are closely related to relational algebra, which in turn is the core component of
Impala. Moreover, Impala is a pure SQL-engine, whereas Spark is a general-purpose
execution framework with support for many other querying interfaces. Overall we
can conclude, that the synergy effects of using Impala together the proposed evalu-
ation and storage strategies are a good fit for the examined queries. Nonetheless, as
highlighted in Section 7.3 both, Impala and Spark, have their strengths and weak-
nesses while being continuously improved. Future Spark versions might therefore
reveal other performance characteristics.
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Figure 8.2.: Mean runtimes in relation to scaling factors on log-log scale.

Impact of Evaluation Strategies and Optimizations. To emphasize that these
good runtimes are not only derived from the underlying frameworks but are the result
of well-designed evaluation strategies and optimizations for path-shaped patterns,
we next compare all RDF management systems which use the same underlying
technology, i.e. Impala, Spark and Parquet. That are four systems (RDFPath,
TriAL-QL, S2RDF, and Sempala) in different configurations, making up a total of
nine systems. In Figure 8.1, the first nine systems (from top to down) correspond to
exactly these systems. We divided them for the following analysis into two groups,
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for which we calculate the ratio between mean runtimes.

Group 1 : TriAL-QL (Impala VP), (Spark VP)
RDFPath (Impala ExtVP), (Impala VP), (Spark ExtVP), (Spark VP)

Group 2 : S2RDF (Spark ExtVP), (Spark VP)
Sempala (Impala)

First, we averaged the execution times for all systems within a group by query type
and data size. As a result we obtained in total 18 averaged runtimes (for each
group, each query type, each data size). We then computed the ratios between
both groups, where in 8 out of 9 cases group one proved to be faster than group
two. In a final step, we computed the mean ratio for all query types and data sizes.
We determined as a result that group one was on average 2.3 times faster than
group two. This factor supports the benefit of the proposed evaluation strategies
and optimizations for path-shaped patterns. At the same time we also need to
limit these results with regard to transferability to other query types. We used a
benchmark that focuses on path-shaped patterns for which our engines in group one
were explicitly designed. By comparison, systems in group two are developed to
cope with all kinds of patterns. Using a benchmark that also contains other types
of pattern, for instance star- or snowflakes-shaped, we expect the systems in group
two to perform significantly better than ours.

We can further observe that the performance benefit of using ExtVP in comparison
to VP with RDFPath is significantly lower as it is the case for S2RDF. We can
contribute this to mainly two reasons. First of all, the use of well-designed evaluation
strategies reduces already the overall amount of intermediate results substantially.
As a result, the reduced input size of ExtVP executions in comparison to VP does
not have such a strong impact on the performance as it has for S2RDF. Secondly, we
are not using all possibility ExtVP partitions since many of them are not useful for
path-shaped queries. Particularly the partition ExtV POS

p1|p2
[G] (cf. Definition 7.2 on

182) which we left out might have an additional positive effect on the performance
of RDFPath with ExtVP1.

Comparison with MapReduce Engines. Next we have a closer look at both
MapReduce engines (Shard and PigSPARQL), which are clearly outperformed by
all other systems. This is actually not a surprising result due to the batch-oriented
workflow of MapReduce and the usage of disk-based operations. On the positive side
we can note that all queries were executable even on the largest datasets, whereas
single-machine approaches such es Neo4j and Virtuoso failed on the heavy-load query
(IL-3). Due to their disk-based operators, we expect that these systems work also
on much larger datasets, whereas our approaches based on in-memory frameworks

1Preliminary experiments have shown only a small performance improvement in using an addi-
tional ExtV POS

p1|p2
[G] partition that does not justify its high storage costs.
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Figure 8.3.: Mean runtimes in relation to increasing path length (SF 10000).

are expected to fail once they run out of main memory. There is also support for
disk-based operations in Impala and Spark, which are significantly slower than their
respective in-memory version but at least ensure the execution without running
out of memory. However, this has to be specified in advance while compiling a
query. During query execution, there is only support to perform so-called spilling
to disk, which massively decreases the overall performance and is only applicable
in cases where just a relatively small amount of data needs to be moved to disk.
Furthermore, the results for the MapReduce-based engines confirmed our decision
to omit the RDFPath MapReduce Processor introduced in Chapter 6 in these
experiments, which allows us to put a stronger focus on in-memory frameworks.

Impact of Path Length. Figure 8.3 demonstrates the impact path length has on
the runtimes by plotting the path length on the x-axis. Please note, that only the
y-axis is scaled logarithmically. For queries with a fixed start node (IL-1 and IL-2),
for our engines we can observe a linear increase of the runtime with respect to path
length. In the case of the unbounded IL-3 queries, we can observe an exponential
growth of the runtimes with respect to the path length. However, this is an expected
result for such queries, due to the massive amount of produced results which are,
e.g. over 25 billion for the largest data size.

Comparison with Neo4j and Virtuoso. Both single machine frameworks, Neo4j
and Virtuoso, once more confirmed our arguments used to motivate a distributed
engine. Their performance was, up to a certain point, quite competitive. Virtuoso
performed better on IL-1 and IL-2, for instance, than systems using Spark. Also
the performance of Neo4j was competitive for selective queries on the smallest data
size. However, even if equipped with the same amount of main memory as the
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total available for machines in the cluster together, the performance decreases for
data-intensive tasks, and the execution fails at some point. Beyond the benefits of
distributing the workload on a cluster of machines, we also have to note that Neo4j
is not designed for the kind of workload which comes along with querying RDF. In
fact, its strength is in its almost-immediate response for short and precise queries
on the graph structure, for instance, rather than data-intensive subgraph-matching
tasks, which produce thousands of results.

8.1. Summary

Overall, the evaluation clearly demonstrates that distributed frameworks such as Im-
pala and Spark, combined with proper evaluation strategies and good data storage,
provide an excellent basis for both of our navigational query languages, RDFPath
and TriAL-QL. In their best respective configurations, TriAL-QL Engine and
RDFPath Engine outperformed all evaluated competitors. A more fine-grained
look at the results revealed that the combination of Impala with the ExtVP data
model produces the best results. For selective queries, both engines exhibit runtimes
in the order of a few seconds, and in the best case even less than one second. On
data-intensive queries, which produced more than 25 billion results, we obtained
runtimes in the range of 10 to 25 minutes. In that sense, we can conclude that
both of our RDF management systems proposed in this dissertation, RDFPath
Engine and TriAL-QL Engine, are a significant step towards processing naviga-
tional query languages on web-scale RDF data using Hadoop, with support for both
interactive querying and data-intensive workload.
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Table 8.2.: Mean runtimes (in ms) for WatDiv Incremental Linear Testing 1 (IL-1)

Query Engine Query: IL-1-5 IL-1-6 IL-1-7 IL-1-8 Mean

SF
10
0

TriAL-QL Impala, VP 1112 1232 1241 1363 1237
TriAL-QL Spark, VP 2429 2815 3028 3126 2849
RDFPath Impala, ExtVP 719 811 881 971 846
RDFPath Impala, VP 1094 1137 1221 1345 1199
RDFPath Spark, ExtVP 2129 2457 2683 2696 2491
RDFPath Spark, VP 2096 2361 2700 2872 2507
S2RDF Spark, ExtVP 845 1058 1067 1240 1052
S2RDF Spark, VP 751 1268 1337 1354 1178
Neo4j Graph DB 969 2457 2666 11877 4492
Sempala Impala 3643 3753 3844 3919 3790
PigSPARQL MapReduce 128666 153755 178091 205638 166537
H2RDF+ HBase 23498 27949 36826 28524 29199
SHARD MapReduce 118494 136505 154412 173364 145694
# Results 10459 15706 15706 1883 10939

SF
10

00

TriAL-QL Impala, VP 1920 2182 2363 2493 2240
TriAL-QL Spark, VP 7877 10892 11348 12427 10636
RDFPath Impala, ExtVP 1234 1384 1588 1698 1476
RDFPath Impala, VP 1751 2065 2238 2424 2119
RDFPath Spark, ExtVP 5922 5988 7245 7434 6647
RDFPath Spark, VP 8016 9374 9853 10915 9540
S2RDF Spark, ExtVP 3324 3282 3698 4270 3643
S2RDF Spark, VP 9231 11098 12892 12399 11405
Neo4j Graph DB 8718 12311 10938 116822 37197
Sempala Impala 29321 29684 29595 29696 29574
PigSPARQL MapReduce 132130 163757 181044 205225 170539
H2RDF+ HBase 25351 48957 78117 71448 55968
SHARD MapReduce 167910 189782 217487 244575 204938
# Results 14131 21127 21127 2423 14702

SF
10

00
0

TriAL-QL Impala, VP 7201 7477 8261 8585 7881
TriAL-QL Spark, VP 38498 60383 64995 63663 56885
RDFPath Impala, ExtVP 5201 6427 6703 6603 6233
RDFPath Impala, VP 6601 7778 8336 8396 7778
RDFPath Spark, ExtVP 27654 38872 44537 43586 38662
RDFPath Spark, VP 39171 61299 63801 64674 57236
S2RDF Spark, ExtVP 14224 22257 25752 25327 21890
S2RDF Spark, VP 62158 109017 86189 91332 87174
Neo4j Graph DB 57467 65452 72120 2046517 560389
Sempala Impala 128486 131304 152730 152169 141172
PigSPARQL MapReduce 209594 270757 293241 321021 273653
H2RDF+ HBase 76284 105794 131672 164583 119583
SHARD MapReduce 792204 925542 1064010 1195541 994324
Virtuoso RDFStore, cold 46998 77903 74664 82471 70509
Virtuoso RDFStore, mean 10529 16796 13159 17320 14451
# Results 12314 18627 18627 6094 13915
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Table 8.3.: Mean runtimes (in ms) for WatDiv Incremental Linear Testing 2 (IL-2)

Query Engine Query: IL-2-5 IL-2-6 IL-2-7 IL-2-8 Mean

SF
10
0

TriAL-QL Impala, VP 1026 1254 1306 1299 1221
TriAL-QL Spark, VP 3154 3441 3605 3894 3523
RDFPath Impala, ExtVP 698 794 946 1005 861
RDFPath Impala, VP 1131 1214 1156 1217 1180
RDFPath Spark, ExtVP 2637 3272 3382 3199 3123
RDFPath Spark, VP 2799 3234 3408 3386 3207
S2RDF Spark, ExtVP 1324 1038 1386 1209 1239
S2RDF Spark, VP 1812 1953 2229 2412 2101
Neo4j Graph DB 964 3369 3964 13092 5347
Sempala Impala 2164 2257 2290 2450 2290
PigSPARQL MapReduce 167104 209958 230734 254635 215608
H2RDF+ HBase 23463 33042 44801 34200 33877
SHARD MapReduce 117176 130308 148463 170810 141689
# Results 15404 17241 1018 792 8614

SF
10

00

TriAL-QL Impala, VP 2066 2345 2388 2428 2307
TriAL-QL Spark, VP 13963 15847 15683 16921 15603
RDFPath Impala, ExtVP 1273 1584 1646 1710 1553
RDFPath Impala, VP 2046 2304 2364 2442 2289
RDFPath Spark, ExtVP 8517 10038 9673 10633 9715
RDFPath Spark, VP 11692 13231 13976 13988 13222
S2RDF Spark, ExtVP 7592 5796 5980 6510 6470
S2RDF Spark, VP 16985 18646 19115 20524 18818
Neo4j Graph DB 5539 7573 8227 121077 35604
Sempala Impala 19357 19388 19496 19867 19527
PigSPARQL MapReduce 198302 252621 269446 301519 255472
H2RDF+ HBase 25090 49745 50514 73750 49775
SHARD MapReduce 167761 196993 223118 252725 210149
# Results 11890 13377 735 499 6625

SF
10

00
0

TriAL-QL Impala, VP 6260 7835 7823 8253 7543
TriAL-QL Spark, VP 74215 87070 86889 93391 85391
RDFPath Impala, ExtVP 3069 4157 4059 4060 3836
RDFPath Impala, VP 6607 7888 7992 8636 7781
RDFPath Spark, ExtVP 56227 82729 79801 86858 76404
RDFPath Spark, VP 71330 88126 85734 89632 83705
S2RDF Spark, ExtVP 39006 34200 35439 35296 35985
S2RDF Spark, VP 143105 160157 162595 152724 154645
Neo4j Graph DB 83276 91341 90199 2296593 640352
Sempala Impala 61843 63501 64487 76717 66637
PigSPARQL MapReduce 258307 313681 340580 365995 319641
H2RDF+ HBase 77567 108780 139282 161913 121886
SHARD MapReduce 837829 992373 1131621 1278385 1060052
Virtuoso RDFStore, cold 74014 167892 78311 81350 100392
Virtuoso RDFStore, mean 9470 19314 10775 10870 12607
# Results 14121 15919 1893 806 8185
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Table 8.4.: Mean runtimes (in ms) for WatDiv Incremental Linear Testing 3 (IL-3)

Query Engine Query: IL-3-5 IL-3-6 IL-3-7 IL-3-8 Mean

SF
10

0

TriAL-QL Impala, VP 1564 1399 1763 3176 1976
TriAL-QL Spark, VP 5682 14326 19492 26237 16434
RDFPath Impala, ExtVP 1624 1257 1528 2346 1689
RDFPath Impala, VP 1644 1469 1780 3194 2022
RDFPath Spark, ExtVP 6417 10201 14426 21133 13044
RDFPath Spark, VP 5541 13822 19468 25850 16170
S2RDF Spark, ExtVP 3991 5511 3295 43231 14007
S2RDF Spark, VP 3327 14907 4449 47561 17561
Neo4j Graph DB 151507 625905 63528 883935 431219
Sempala Impala 19214 26118 11818 111690 42210
PigSPARQL MapReduce 164752 218817 236235 345529 241333
H2RDF+ HBase 40956 70453 92907 F 68105
SHARD MapReduce 205248 312420 325451 1048829 472987
# Results 31 M 35 M 5 M 157 M 57 M

SF
10

00

TriAL-QL Impala, VP 10967 8892 12135 29545 15385
TriAL-QL Spark, VP 18382 37486 61932 69029 46707
RDFPath Impala, ExtVP 10645 12045 14448 26873 16003
RDFPath Impala, VP 11589 9289 13080 29989 15987
RDFPath Spark, ExtVP 10384 35848 50594 58494 38830
RDFPath Spark, VP 13837 38622 63074 66740 45568
S2RDF Spark, ExtVP 20999 43078 24060 135839 55994
S2RDF Spark, VP 28120 41716 35812 146945 63148
Neo4j Graph DB 1787000 6499543 738273 F 3008272
Sempala Impala 155298 194758 93424 878232 330428
PigSPARQL MapReduce 362172 571965 622899 1924061 870274
H2RDF+ HBase 121396 183752 225669 F 176939
SHARD MapReduce 1323657 2423349 F F 1873503
# Results 365 M 410 M 58 M 1894 M 682 M

SF
10

00
0

TriAL-QL Impala, VP 104454 130703 156315 1336902 432094
TriAL-QL Spark, VP 75166 317200 736273 2057158 796449
RDFPath Impala, ExtVP 194929 172707 190345 575868 283462
RDFPath Impala, VP 127500 164865 193638 1995604 620402
RDFPath Spark, ExtVP 60852 276829 564839 1986184 722176
RDFPath Spark, VP 76758 318651 711897 2029205 784128
S2RDF Spark, ExtVP 44629 87437 190863 2068372 597825
S2RDF Spark, VP 83119 364865 172136 2144944 691266
Neo4j Graph DB F F F F N/A
Sempala Impala 493016 595152 365868 5649620 1775914
PigSPARQL MapReduce 1847039 3353907 4876005 40140420 12554343
H2RDF+ HBase 240339 451390 F F 345865
SHARD MapReduce 11995677 23164293 F F 17579985
Virtuoso RDFStore, cold F F F F N/A
Virtuoso RDFStore, mean F F F F N/A
# Results 3431 M 3874 M 890 M 25179 M 8343 M
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We finish this dissertation with a discussion of TriAL-QL and RDFPath that wraps
up both languages and their implementations. We continue in Section 9.2 with a
summary of the most important contributions that we have presented in the previous
chapters. We are guided through the summaries by providing answers to slightly-
rephrased versions of the questions we raised in the introductory chapter (page 3).
After that, we will proceed with the conclusions and provide an outlook on possible
future work.

9.1. Wrapping up TriAL-QL and RDFPath

In this dissertation we first studied how to express navigational querying-features
that were missing so far in widely-used languages like SPARQL and its variations.
Secondly, we investigated their implementation on distributed frameworks to facil-
itate their evaluation against web-scale RDF data. Next, we conclude our experi-
ence with both languages and their respective implementations by weighing their
strengths and weaknesses.
RDFPath is a purely-navigational query language that features an intuitive syntax,
allows the querying of RDF data along with its ontology, and supports aggregations.
Its key feature is its path-based semantics that provide, in contrast to most other
approaches, all complete paths that have been traversed by an RDFPath expression.
TriAL-QL is a SQL-like language with some procedural concepts. Its closed algebra
enables the querying of all variants inherent to the triple-based structure of RDF in
a natural way. By adding the concept of provenance, we address one of the main
drawbacks of the original algebra (TriAL∗). In this way, we allow the explanation
of the origin of a triple by means of RDFp paths. However, there is a crucial
difference between both approaches which we would like emphasize here. The results
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in RDFPath are meant to contain all paths expressed by an RDFPath query. TriAL-
QL, in contrast, uses an existential semantics where a triple can occur at most once
in the result. The provenance path does not affect the number of results obtained
by TriAL-QL, but instead adds an additional fourth element that describes only one
possible path which can be used to derive this one triple. More paths might exist,
but we do not consider them. Overall, we believe that for use cases in the area
of life science and drug discovery, as noted in the introduction of this dissertation,
RDFPath is much more valuable. Providing a granular view on all connections
between, e.g. genes and certain diseases, increases the chances of discovering new
insights. On the other hand, due to the large volume of the data, one could also
argue that a more compact view of the connections is more important as a starting
point for further investigations. Overall, we see TriAL-QL due to its triple-based
nature more suited for ETL-like scenarios, where data is preprocessed for a certain
task. RDFPath, however, due to its very good performance result and meaningful
results is well suited for interactive and more explorative querying tasks. Both query
languages have their strong and weak points depending on the respective use case.
Their unique features, along with the ability to emit their results again as RDF
triples (which encode paths by means of an ontology), complement well-established
RDF query languages.

The RDFPath MapReduce Processor is a distributed execution engine for
RDFPath built on top of MapReduce. It has shown very good scaling properties
and enabled the processing of web-scale RDF data. However, its executions times
are in the order of minutes to hours, which was not satisfying for rather selective
queries and motivated a successive work. The RDFPath Engine is a hybrid en-
gine that supports the evaluation of RDFPath queries on both Spark and Impala,
while using one common data store. We investigated various evaluation, execution,
and storage strategies for that engine which in the end provide very good execution
times and scaling properties. The same applies for the TriAL-QL Engine. Both
engines demonstrate a superior performance in comparison with six competitive
RDF management systems and one graph database. With the development of both
engines, we have recognized that despite their different semantics, the evaluation,
execution, and storage strategies were – with a few minor adoptions and restric-
tions – mostly compatible. We have further observed that an existential semantics
does not necessarily lead to better performance characteristics in a distributed pro-
cessing framework. The costs involved in ensuring distinct results in distributed
environments are significantly higher than on single machines since in most cases
they require the data to be repartitioned across the machines. Consequently, simply
keeping all paths, as done by the RDFPath Engine, was the more beneficial strat-
egy in most of our experiments. However, we must note that the number of duplicate
triples in the intermediate results was rather low. As a result, only a few triples
were removed by this costly operation, which in turn means that the gain of it was
rather low. Thus, we can expect in cases where an extensive amount of duplicates
were removed, that the TriAL-QL Engine is more beneficial. To sum up, both
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query engines have shown a comparable performance and confirmed the suitability
of the presented strategies and used technologies for the evaluation of RDFPath and
TriAL-QL queries. The decision of which to use can therefore be done by the query
language and its features rather than its implementation. Moreover, the concept of
a shared data pool in HDFS that can be accessed by all applications implemented on
top of Hadoop simplifies testing both our languages and enables the post-processing
of their results in, e.g. another Hadoop-based SPARQL engine.

9.2. Summary

TheWorld Wide Web has become the first source of knowledge in all areas of our life.
In recent years, we could observe how this traditional web of documents is evolving
into a web of data and things, in which human-readable information is given a well de-
finedmachine-processable meaning [BHL01]. This so-called Semantic Web facilitates
unified knowledge bases that allow us to interconnect data from various domains and
in multiple languages. The opportunities which are seen in such rich knowledges
bases are manifold where particularly cross-domain knowledge is gaining a lot of at-
tention recently. One interesting research field in that context is life science, where
biological RDF data is already used to determine, for instance, whether proteins are
located in the cell nucleus or any subpart [ABE+09b, CDJ+10, WDS+12, CKK+13].
Interconnecting such information in a further step with, e.g. RDF data about in-
dustrial pollution might lead to new insights about its impact on certain diseases.
Further examples include the combination of social network data with governmen-
tal information, which are also more and more available in a semantically-annotated
format.

Making it possible to retrieve relevant information from such knowledge bases is
therefore a crucial task for query languages. However, for that we need expressive
querying features, where navigational queries are among the most important query
patterns that we need to consider. Moreover, if we consider the aforementioned
example of biological data, we not only need expressive queries but also meaningful
and human-understandable results that explain in detail how things are connected.
Yet, there exist important properties in RDF data which cannot be captured by
current RDF query languages including SPARQL 1.1 and its derivations. This
is the first important problem that we addressed in this dissertation by studying
expressive, navigational query languages for RDF that capture these issues. For
that, we had to investigate the following problems.

1. How to fill the gap of current query languages which hampers the
querying of RDF data together with its schema and ontology?
We introduced the syntax and semantics of two navigational query languages
for RDF, namely RDFPath and TriAL-QL, that address the issues from two
different perspectives. RDFPath is a fully path-based language that introduces
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expressions which allow the traversal of RDF data along with its schema and
ontology, and which supports aggregations. TriAL-QL is based on Triple Al-
gebra with Recursion which was particularly designed to capture all variants
inherent in the triple-based model. We used that algebra as a basis and ex-
tended it with further expressions that allow us, e.g. to express a larger variety
of recursions. Lastly, to make this algebra usable in practice, we designed an
SQL-like syntax for it.

2. How to provide more meaningful results which contain all resources
traversed on a path?
From the beginning RDFPath was designed with the goal of providing more
meaningful results. Its path-based semantics provide, in comparison with
widely-used existential semantics, the complete path between nodes, rather
than just one pair of nodes that confirms its existence. TriAL-QL is a good
example for such an existential semantics. In order to provide more meaning-
ful results, we introduced the concept of provenance for TriAL-QL, which
enhances each derived triple with a fourth element that describes its source of
origin. For this we reused the RDFp data model, where the composition of
the actual provenance path is specified as part of the query.

3. How to stay compatible with the ecosystem of languages and tech-
nologies developed for the Semantic Web so far but nonetheless pre-
serve the knowledge represented in paths?
Having paths in results solved the second issue but in turn hampers the com-
patibility with other RDF management systems, as they mostly require triple-
based RDF graphs as input. We therefore introduced two mappings which
enable the mapping of paths to RDF by means of an ontology or in the
case of quadruples a string concatenation. Both approaches are applicable
for RDFPath and TriAL-QL and enable the post-processing of their results
with another RDF language, such as SPARQL.

While the constant growth of semantically-annotated data occurring in many ap-
plication domains justifies the above-mentioned querying features, it also raises the
need for novel approaches that enable their evaluation on large data sizes. This
brings us to the second important problem that we addressed in this work, where
we investigated how to evaluate both our languages against web-scale RDF data.
There is a lack of RDF management systems that are able to query web-scale RDF
in general, and expressive navigational query languages in particular. To the best
of our knowledge, our work presented in this dissertation describes the first dis-
tributed RDF management system, that allows us to query using such expressive
query languages against web-scale RDF data. Within the scope of this work, we
had to investigate the following issues:

4. What is a suitable processing framework on which we should build
our system to evaluate complex, navigational expressions against
web-scale data? At the beginning of working on this thesis, MapReduce
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was the dominant processing framework, and thus it was also our starting
point. We developed at first the RDFPath MapReduce Processor im-
plemented directly in MapReduce. To improve the overall performance and
scalability, we have prosed two Map-Side Merge joins as an optimization strat-
egy. Both joins are computed completely in the map phase and support a
cascaded execution by utilizing the reduce phase just for sorting. MapReduce
has proven to be a good choice for data-intensive tasks. We see it therefore
as a module in a Semantic Web workflow, where its task is to preprocess
complex navigational queries. These are in turn queried with another RDF
management system that supports more interactive querying response times.
With the continuously-decreasing prices of main memory in recent years, we
can observe the emergence of novel in-memory data processing systems, which
start to pave the way for scalable and interactive querying on large-scale data.
Following this trend, we have introduced the TriAL-QL Engine and RDF-
Path Engine implemented on top of both Impala, a massive parallel SQL
query engine on Hadoop, and Spark, a fast general execution framework for
large-scale data processing, while sharing one unified data store in HDFS.
Their support for SQL, which we used as an intermediate language, facilitated
the development of such hybrid systems. Both in-memory data processing
systems not only exhibit good performance and scalability but allow for both
data-intensive tasks and interactive querying. Our experiments have shown
that for complex navigational querying, Impala is currently the best choice on
Hadoop.

5. How to provide a good compatibility with other RDF management
systems and support the development of workflows composed of mul-
tiple Semantic Web tools and languages?
Hadoop, with its large surrounding ecosystem, has become the most prominent
and de-facto industry standard for Big Data processing, with many infrastruc-
tures deployed in research, industry, or in the cloud. The key concept is to
apply the principle of HDFS also on the Semantic Web, thus having just one
shared data pool that can be accessed by various applications without the need
for data duplication or movement. There have already been multiple tools de-
veloped for the Semantic Web that make use of HDFS. Examples include the
SPARQL engines and OWL Reasoner. The interoperability between them,
which is facilitated by using one common data pool, is in our opinion one
of the most promising approaches for developing an ecosystem of compatible
Semantic Web tools.

6. How can we improve the query performances by means of better
RDF storage layouts?
For the RDFPath MapReduce Processor, we have developed our own
RDFp Store for storing paths, which uses an optimized serializable format
for efficient comparison and retrieval of paths. With the change to in-memory
data processing systems, where we used SQL as an intermediate layer, we
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also had to design a proper data layout that can be accessed efficiently by
Impala and Spark. For that we chose Parquet, an efficient columnar storage
format, for which we adapted multiple storage strategies. We used Vertical
Partitioning and the Extended Vertical Partitioning strategy for storing input
graphs, and designed a storage schema for efficient intermediate results that
are required for recursive expressions.

7. How to evaluate crucial expression in our languages more efficiently
by means of evaluation strategies? And how to optimize the most
important querying pattern?
We propose multiple evaluation strategies for recursive expressions in TriAL-
QL Engine and RDFPath Engine. We make use of the well-studied prob-
lem of calculating the transitive closure (TC). We used two approaches as a
starting point, namely the semi-naive and smart TC algorithms, and adopted
them to perform well in our processing frameworks. Furthermore, we also
investigated different execution strategies, which specify how translated SQL
queries are composed for their execution and when intermediate results need
to be materialized to disk. Further optimized algorithms were proposed for
the connectivity pattern, which asks for the connection between two given
resources.

8. How do our engines perform in comparison to competitive RDF
management systems for path-based query pattern?
Apart from experiments that compared the individual algorithms and storage
strategies implemented for each respective query engine, we have conducted
a comprehensive comparison with other systems. We compared the TriAL-
QL Engine and RDFPath Engine with six competitive RDF Management
systems and one graph database using the Incremental Linear Testing use cases
of the WatDiV benchmark. The evaluation clearly demonstrated that Impala,
combined with a proper evaluation strategies and efficient data storage layout,
outperforms all competitive systems.
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9.3. Conclusion

To conclude this dissertation, we want to discuss whether the proposed languages
and their implementations are appropriate solutions for the challenges which we
discussed for the Semantic Web and discuss their compatibility with the existing
stack of languages and tools. RDFPath and TriAL-QL are two expressive, navi-
gational languages which enable the querying of RDF data along with its schema
and ontology. Their expressive querying features and the ability to return complete
paths are widely needed in practice. We consider them therefore as supplementary
languages that cover cases which are yet not expressible in the W3C standard query
language SPARQL. We hope that our good results encourage and motivate the fur-
ther development of a standardized approach as with SPARQL, similar to previous
research work in that area which lead to the specification of Property Paths, the
navigational component in SPARQL 1.1. In the meantime, we can argue that the
support of triple-based results in RDFPath TriAL-QL easily allow for an integra-
tion with other RDF management systems, where both of our languages may serve
as a preprocessing step.

The RDFPath MapReduce Processor, RDFPath Engine and TriAL-QL
Engine have demonstrated that the Hadoop ecosystem provides suitable solutions
for processing navigational queries against web-scale RDF data. The RDFPath
MapReduce Processor, with its good scaling properties and robustness that
are derived from the batch-oriented workflow of MapReduce and its disk-based op-
erators, is a good choice for offline, ETL-like use cases that need to process large
volumes of RDF data. However, in cases where we need interactive response times,
and thus in the order of seconds to a few minutes, the novel in-memory data process-
ing frameworks are clearly the better choice. With the RDFPath Engine and the
TriAL-QL Engine we developed two comprehensive RDF management systems
that facilitate the querying of complex navigational expressions in their respective
languages against web-scale RDF data. We demonstrated that important query-
ing tasks such as recursions or the connectivity between nodes can be efficiently
computed. Both engines have their strengths and weaknesses but have compara-
ble performance due to similar evaluation and storage strategies. Selective queries
exhibit query response times in the order of seconds on datasets with more than
one billion triples. More data-intensive use-cases that produces, e.g. over 25 billion
results finished in the order of tens of minutes. Yet one of the main benefits we see
in the usage of the Hadoop ecosystem is the concept of a common data pool that is
shared across various RDF management engines, developed on top of Hadoop. This
key concept further constitutes a compatible ecosystem for processing RDF data
where we see our engines as complementary tools that can then be embedded in a
workflow for, e.g. preprocessing more complex paths.
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9.4. Outlook

This dissertation studied two navigational query languages for RDF and their im-
plementation on distributed frameworks. While many issues are already resolved,
there are still several questions which remain open, with many possible directions
for future work. We would like to briefly describe a few of them:

Theoretical Study. We studied RDFPath and TriAL-QL from a rather practical
perspective. Even though our experiments demonstrated very good properties
of our engines, what needs to be done next is a more theoretical analysis of
the evaluation complexity of both languages.

Additional Querying Features. The querying features which we proposed with RDF-
Path and TriAL-QL in this work already allowed us to extract many im-
portant properties in RDF, which are not expressible in SPARQL 1.1 and its
derivations. However, there are of course many other features that might be
relevant for querying Semantic Web data, such as more sophisticated aggre-
gations. Indeed, RDFPath already supports aggregation functions which are
applied on the last element of each path. This approach can be further general-
ized, and in addition adapted for TriAL-QL. The next steps for TriAL-QL
are more abstract syntax expressions which reduce, for instance, the number
of statements that need to be written in order to describe recursive patterns.

Novel Hadoop Components. One main advantage of the Hadoop ecosystem is its
continuous development which is reflected by novel frameworks and layers that
are consistently added. One new addition from which we expect many benefits
for our query engines is Apache Kudu1, a new storage layer for Hadoop. It is
a distributed table-based storage, designed to scale easily with tens of CPU
cores and takes advantage of solid state drives.

Optimized Evaluation and Storage Strategies. We have already explored various
evaluation, execution and storage strategies and investigated their properties
in our query engines. Thereby we have seen that, even small algorithmic
adjustments, such as avoiding the – in distributed environment rather costly –
SQL DISTINCT expression can have a huge impact on the query performance.
Consequently, there is still lot of work that needs to be done in order to provide
a better understand of the cost-benefit ratio of various algorithms and data
structures in the area of distributed processing frameworks.

1https://kudu.apache.org/
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A. Dictionary for Language Features

This appendix explains the features used for comparing RDF query languages in
Section 3.3, Table 3.1 on page 53. The features are inspired by numerous previous
studies such as [Abi97, PAL+02, HBEV04, AGH04, AG05, AG08, KBM08].

Namespaces. Namespaces are an essential part of any web-based query language,
since they allow us to distinguish between multiple sources or versions of RDF
data. This way, one can query for instance all values using a certain namespace
or a namespace with a certain pattern. Moreover, they allow for a shorter
representation of resources, by abbreviating long prefixes which in turn enable
smaller queries [HBEV04, KBM08].

Constraints. Constraints reflect the ability to express restrictions on the RDF data
that are used, for instance, in filter expressions [Abi97].

Language. A query language identifies the language used in the RDF data from
literals by interpreting the XML attribute xml:lang automatically. More
modern languages like SPARQL allow us to simulate this feature by simply
utilizing the triple-based encoding of a language, where querying a specific
language becomes part of the query pattern itself [HBEV04].

Lexical & value space. With the support of XML Schema, RDF supports typed
literals such as numbers and dates by means of their lexical representation. In
the case of the lexical space, there is just a text-based interpretation, where
for instance 08 and 8 are considered to be not equal. Only the value space en-
ables a mapping into their numeric representation allowing for more expressive
comparisons of numbers.

Graph pattern. Such patterns were originally introduced as path expressions in pat-
terns in 1997 as part of the first features which were considered to be crucial
for querying semi-structured data [Abi97]. They describe the simplest use of
path expression by concatenating attribute names, which typically correspond
to traversing a graph. The authors in [Abi97] already differentiate between
two interpretations of the traversed paths: (1) the set of objects at the end of
a path and (2) the paths themselves. In later comparisons between languages,
such pattern were denoted by Path [AGH04, HBEV04] and Graph pattern to
avoid ambiguities.

Adjacent resources. One of the most basic questions of a navigational query lan-
guage is to determine all resources which are adjacent to a given resource,

219



Chapter A Dictionary for Language Features

i.e all its neighbors. If not only outgoing but also incoming predicates need to
be considered, this becomes problematic since the underlying language needs
to support some sort of a union operator to combine both directions [AGH04].

Adjacent predicates. Analogous to the previous definition one can also ask for all
predicates related to a certain resource. Again, one might be interested in
resources at either the subject or object [AGH04] position, thus outgoing or
incoming predicates.

Fixed-length path. Determining all paths of a predefined, fixed length between two
given resources is the first more comprehensive navigational query feature.
This feature can be expressed by a union of all possible path patterns (with
all directions) by means of a graph pattern [AGH04].

Path variable. For more complex querying so-called path variables becomes useful
for a convenient handling of paths. The idea is that, in contrast to basic
variables which refer to atomic resources, a path variable denotes a path as a
whole, composed of probably multiple resources [BMY00].

Inverse Path. In order to traverse not only outgoing, but also incoming predicates
(edges), we need an operation which enables us to express backward subject-
object relations. This is generally achieved by so-called inverse traversals.

Non-simple path. A non-simple path allows the multiple-occurrence of the same
edge or node. With respect to RDF, arbitrary resources are allowed to be
traversed multiple times, regardless of whether they appear in the subject,
predicate or object position [BMY00]. However, this flexibility comes along
with the problem of cycles which might appear on the path, which demand
some sort of mechanism to handle them.

Recursion (Regular Expression). Recursions are the basic building block of cap-
turing paths of arbitrary length on relationships with a transitive nature, like
for instance friends of a friend relationships. The Kleene star allows the fol-
lowing of a certain pattern, which is neither nested nor contains any filter, an
arbitrary number of times, until the transitive closure is computed with regard
to the query. Further, we can differentiate between (1) data recursions, where
we consider explicit triples and follow the only edges (predicates) as know from
traditional graph databases and, (2) schema recursions, where e.g. the transi-
tivity of subClassOf relations need to be handled, where we need to express
recursions over the predicate as well. With this query feature we refer solely
to data recursions. Schema recursions will be covered by the query feature
entailment (reasoning) introduced later [HBEV04].

Constrained regular expression. Constrained regular expressions add the ability
to apply filters on regular expressions, such that the recursively traversed
pattern needs to satisfy further constraints on its way. This includes not only
constraints on the traversed resources themselves but might also consider,
e.g. the neighborhood of a resource [AE14].

220



Dictionary for Language Features

Optional pattern. As semi-structured data is meant to represent incomplete and
irregular data, and thus exhibits a high degree of diversity in its structure, it
is crucial to be able to deal with such incomplete information. For that, an
optional pattern enables us to add certain information if present and leaves
them out otherwise [HBEV04].

Entailment (Reasoning). With RDF Schema [BG14] and more comprehensive lan-
guages, e.g. OWL [Bec09], manifold information can be added to RDF data
which are not explicitly stated but which need to be inferred using entailment
rules. We refer to them also as topological information about RDF data, or an
ontology. There are different approaches for how to infer desired information
from the data. First of all, one can implement a so-called reasoner which (1)
precomputes the transitive closure of the full dataset or (2) utilizes the query
to compute just the desired fragment of the transitive closure during query
evaluation or (3) by query rewriting. However, in cases where it is not desired
to use all available resources, like for instance in large knowledge graphs, it is
more elegant to equip the language itself with reasoning capabilities rather than
relying on an automatic reasoner. Therefore, expressions have to be added to
the query language which capture also entailment rules [HBEV04, KBM08].

Querying Topology. As we have noted for Entailment (Reasoning), there exist mul-
tiple approaches for how to handle data together with its ontology, which are
diverse in their expressiveness. In particular, approaches which are based on
the traditional graph model and NREs suffer from the fact that there is a
crucial differences between RDF and the classical graph models. For instance,
in RDF, it is possible to model the same resource in predicate (edge) and sub-
ject/object (node) position [LRV13, AGP14], which is generally not possible
in the graph model. We therefore introduce the term Querying Topology to
refer to those query languages, which (1) take this difference into account and
capture all querying facilities inherent to the triple-based model of RDF, and
(2) provide a smooth integration of querying schema and data in a combined
fashion.

Output Paths. As noted in [Abi97], one can differentiate between two interpreta-
tion of traversed paths: (1) the set of objects at the end (and beginning) of
a path and (2) the paths themselves. It has a significant impact on evalua-
tion complexity which of the two is chosen, since computing complete paths
is known to be a rather costly task. This is why most languages follow an ex-
istential approach that emits pairs of nodes rather than complete paths. This
query feature refers therefore to those languages which are able to provide not
only the first and the last resource of traversed, non-simple paths, but include
all intermediate resources [PSHL12].

Degree of resource. The degree of a resources is a scalar value determined by the
number of adjacent edges introduced earlier, which in general requires support
for aggregation functions [AGH04, HBEV04, AG05].
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Distance between resources. The distance between two resources is defined by
the number of intermediate resources traversed along the path. Here, one can
differentiate between counting only those resources which are either in subject
or object position or alternatively, include also resources in predicate position.
The result is again a scalar value [AGH04, HBEV04, AG05, PSHL12].

Shortest Path. Computing shortest paths is a well-studied problem in graph theory
and also highly relevant for querying RDF data [GH05]. This feature refers
to the ability of computing at least one shortest path between two predefined
resources. Hereby it is required that the answer matches our prior definition
of a path result, i.e. that it includes all traversed resources [PSHL12]. One can
differ between two kind of supported query pattern: the aforementioned short-
est paths correspond to the so-called single-source-single-destination shortest
paths (SSSP) problem. A more difficult task is the so-called All-Pair shortest
path (APSP) problem, where for all pairs of resources their respective shortest-
path is computed. In conjunction with constrained regular expressions, the
permitted shortest paths can be further restricted by the use of constraints.

Union. This querying feature corresponds to the basic algebraic operation in rela-
tional algebra, where two sets are merged into one [HBEV04].

Difference. This querying feature corresponds to the basic algebraic operation in
relational algebra, where one set is subtracted from the other one [HBEV04].

Aggregation. With aggregations, a set of resources or literals can be reduced to a
scalar value. For this a function is applied to the results which, for instance,
counts the number of elements[HBEV04, KBM08, PSHL12].

Collections & Containers. A container (open group) and collection (closed group)
in RDF is used to represent a group of resources, where for instance rdf:Seq
specifies a collection with a human-readable numerical order [MMM14]. A lan-
guage is considered to support this feature if it allows the retrieval of either in-
dividual or all elements of these containers and collections [HBEV04, KBM08].

Closure Property. The closure property is satisfied if the result of an operation
produces again elements of the same data model. Thus, if the input for a query
is RDF data, the result must also be RDF data. [Cod70, HBEV04, LRV13]

Sorting. Sorting specifies the capability of a language to sort the result in accor-
dance with a lexical or value-space order [HBEV04].
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In this appendix, we show the complete grammar of RDFPath in g4 notation as
used for the parser.

query

query : ctx ’:’ path+ (’.’)? ( result )?;
ctx : iri | ’*’ | setIRI;

path

path : travop rp (’(’recexpr’)’)?;
travop : ’/’ | ’\\’ ;
rp : normalp | branchp;
normalp : edge (’[’ filter ’]’)?;
edge : iri | ’(*)’ | setIRI;
branchp : ’(’ path+ (branchop path+)* ’)’;
branchop : ’||’;

recexpr

recexpr : repeat | recursion;
recursion : intvaluetxt ’,’ intvaluetxt;
repeat : intvalue;

filter

filter : normalf | compf | nestedf | cnestedf;
nestedf : path+ nestedfexpr;
nestedfexpr : normalf || compf;
compf : normalf (logop normalf)+ ;
cnestedf : path+ cnestedop path+;
cnestedop : op;
normalf : valuef | funcvaluef | funcf ;
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valuef : op value;
funcvaluef : op funcvalue;
funcf : func;

op : ’=’ | ’>’ | ’<’ | ’!=’ | ’>=’ | ’<=’ ;
value : textvalue;
funcvalue : textvalue ’(’ textvalue ’)’;
func : textvalue ’()’;
logop : ’&&’ | ’||’;

result

result : ’project(’ setINT ’)’ | ’nodes()’ | ’count()’ | ’avg()’
| ’sum()’ | ’max()’ | ’min()’ | ’triple()’
| ’limit(’ intvalue ’)’;

iri

iri : textvalue;
setIRI : ’{’ iri ( ’,’ iri)* ’}’;
setINT : intvalue (’,’ intvalue)*;
intvaluetxt : intvalue | ’*’ | ’+’;
intvalue : INT;

Tokens

INT : [0-9]+ ;
textvalue : TEXTVALUE | intvalue;
TEXTVALUE : LEGALCHAR+;
LEGALCHAR : ~( ’/’ | ’\\’ | ’*’ | ’(’ | ’)’ | ’[’ | ’]’ | ’.’ | ’=’ |

’|’ | ’&’ | ’>’ | ’<’ | ’!’ | ’{’ | ’}’ | ’,’);
Whitespace : (’\t’ | ’\r’ | ’\n’ ) -> skip;
Comment : (’-#’) ~( ’\r’ | ’\n’ )* -> skip;
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In this appendix, we show the complete grammar of TriAL-QL in both a textual
and a visual notation. Please note that rule names which start with a capital are
tokenizer rules and those with a lower-case character at the beginning are parsing
rules. Rules are sorted hierarchically, and thus at first parser rules are described,
where higher-level rules are listed before the lower-level ones.

parse

parse : block+ EOF ;

Identifier Equals Select selection

With selectionProvenance

FromIdentifier

Filter

equationList On

filterExpr

JoinIdentifier

EOFblock

block

block : (selectBlock | selectRecursionBlock | selectJoinBlock
| operatorBlock | storeBlock | dropBlock) Semikolon;

Identifier Equals Select selection

With selectionProvenance

FromIdentifier

Filter

equationList On

filterExpr

JoinIdentifier

selectBlock

selectRecursionBlock

selectJoinBlock

operatorBlock

storeBlock

dropBlock

Semikolon
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selectBlock

selectBlock : Identifier Equals Select selection (With selectionProvenance)?
From Identifier (Filter filterExpr)?;

Identifier Equals Select selection

With selectionProvenance

FromIdentifier
FilterfilterExpr

selectRecursionBlock

selectRecursionBlock : Identifier Equals Select selection
(With selectionProvenance)?
From Identifier On equationList (Filter filterExpr)?
Using recursionType (kleeneDepth)?;

Identifier Equals Select selection

With selectionProvenance

FromIdentifier
Filter

Using

equationList On
filterExpr

recursionType kleeneDepth

selectJoinBlock

selectJoinBlock : Identifier Equals Select selection
(With selectionProvenance)?
From Identifier Join Identifier (On equationList)? (Filter filterExpr)?;

Identifier Equals Select selection

With selectionProvenance

FromIdentifier

Filter

equationList On

filterExpr

JoinIdentifier
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operatorBlock

operatorBlock : Identifier Equals Identifier (Union | Minus | Intersect)
Identifier (With selectionProvenance)?;

Identifier Equals Minus

Union

Intersect

Identifier

WithselectionProvenance

Identifier

storeBlock

storeBlock : Store Provenance? Identifier As Identifier;

Store As IdentifierIdentifier

Identifier Equals Select selection

With selectionProvenance

FromIdentifier

Filter

equationList On

filterExpr

JoinIdentifier

Provenance

dropBlock

dropBlock : Drop Provenance? Identifier;

Drop Identifier

Identifier Equals Select selection

With selectionProvenance

FromIdentifier

Filter

equationList On

filterExpr

JoinIdentifier

Provenance

equationList

equationList : equation (Comma equation)*;

equation

Comma

Identifier Equals Select selection

With selectionProvenance

FromIdentifier

Filter

equationList On

filterExpr

JoinIdentifier
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equation

equation : term equationOperator term;

equationOperator

equationOperator : Equals | NEquals | GTEquals
| LTEquals | GT | LT;

term

term : Pos | literal;

literal

literal : Bool
| Int
| String;

selection

selection : Pos Comma Pos Comma Pos;

selectionProvenance

selectionProvenance : (Pos | ’r1’ | ’r2’) (Comma (Pos | ’r1’ | ’r2’))*;

recursionType

recursionType : Left | Right;

kleeneDepth

kleeneDepth : OBracket (PositiveInt | Star| Plus)
(Comma (PositiveInt | Star))? CBracket;

filterExpr

filterExpr : filterExprAnd (Or filterExprAnd)*;
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filterExprAnd

filterExprAnd : equation (And equation)*;

Tokens

Select : ’SELECT’;
From : ’FROM’;
Join : ’JOIN’;
On : ’ON’;
Store : ’STORE’;
Provenance : ’PROVENANCE’;
As : ’AS’;
Using : ’USING’;
Left : ’left’;
Right : ’right’;
And : ’AND’;
Or : ’OR’;
Drop : ’DROP’;
Union : ’UNION’;
Minus : ’MINUS’;
Intersect : ’INTERSECT’;
Filter : ’FILTER’;
With : ’WITH’;
Load : ’LOAD’;
Cache : ’CACHE’;
Star : ’*’;
Plus : ’+’;

Pos : (’s’ | ’p’ | ’o’) [1-2];

Equals : ’=’;
NEquals : ’!=’;
GTEquals : ’>=’;
LTEquals : ’<=’;
GT : ’>’;
LT : ’<’;
Apostrophe : ’\’’;
Quote : ’"’;
Semikolon : ’;’;
OBracket : ’[’;
CBracket : ’]’;
Comma : ’,’;
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Bool : ’true’ | ’false’;

Identifier : (’a’..’z’ | ’A’..’Z’)(’a’..’z’ | ’A’..’Z’ | ’_’ | Digit)*;

String : (’"’ (~(’"’ | ’\\’) | ’\\’ .)* ’"’
| ’\’’ (~(’\’’ | ’\\’) | ’\\’ .)* ’\’’);

PositiveInt : [1-9] Digit*;

Int : PositiveInt | ’0’;

fragment Digit : [0-9];

Comment : (’--’ | ’#’) ~( ’\r’ | ’\n’ )* -> skip;

Whitespace : [ \t\r\n] -> skip;
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D. WatDiv Incremental Linear
Testing Queries

D.1. SPARQL Queries

Terms enclosed within % are placeholders that get instantiated dynamically by the
WatDiv query generator based on the #mapping command.

D.1.1. Incremental User-Bound Queries (Type 1)

#mapping v0 wsdbm:User uniform

IL-1-5: SELECT ?v1 ?v2 ?v3 ?v4 ?v5 WHERE {
%v0% wsdbm:follows ?v1 .
?v1 wsdbm:likes ?v2 .
?v2 rev:hasReview ?v3 .
?v3 rev:reviewer ?v4 .
?v4 wsdbm:friendOf ?v5 . }

IL-1-6: SELECT ?v1 ?v2 ?v3 ?v4 ?v5 ?v6 WHERE {
%v0% wsdbm:follows ?v1 .
?v1 wsdbm:likes ?v2 .
?v2 rev:hasReview ?v3 .
?v3 rev:reviewer ?v4 .
?v4 wsdbm:friendOf ?v5 .
?v5 wsdbm:makesPurchase ?v6 . }

IL-1-7: SELECT ?v1 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 WHERE {
%v0% wsdbm:follows ?v1 .
?v1 wsdbm:likes ?v2 .
?v2 rev:hasReview ?v3 .
?v3 rev:reviewer ?v4 .
?v4 wsdbm:friendOf ?v5 .
?v5 wsdbm:makesPurchase ?v6 .
?v6 wsdbm:purchaseFor ?v7 . }

IL-1-8: SELECT ?v1 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 WHERE {
%v0% wsdbm:follows ?v1 .
?v1 wsdbm:likes ?v2 .
?v2 rev:hasReview ?v3 .
?v3 rev:reviewer ?v4 .
?v4 wsdbm:friendOf ?v5 .
?v5 wsdbm:makesPurchase ?v6 .
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?v6 wsdbm:purchaseFor ?v7 .
?v7 sorg:author ?v8 . }

D.1.2. Incremental Retailer-Bound Queries (Type 2)

#mapping v0 wsdbm:Retailer uniform

IL-2-5: SELECT ?v1 ?v2 ?v3 ?v4 ?v5 WHERE {
%v0% gr:offers ?v1 .
?v1 gr:includes ?v2 .
?v2 sorg:director ?v3 .
?v3 wsdbm:friendOf ?v4 .
?v4 wsdbm:friendOf ?v5 . }

IL-2-6: SELECT ?v1 ?v2 ?v3 ?v4 ?v5 ?v6 WHERE {
%v0% gr:offers ?v1 .
?v1 gr:includes ?v2 .
?v2 sorg:director ?v3 .
?v3 wsdbm:friendOf ?v4 .
?v4 wsdbm:friendOf ?v5 .
?v5 wsdbm:likes ?v6 . }

IL-2-7: SELECT ?v1 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 WHERE {
%v0% gr:offers ?v1 .
?v1 gr:includes ?v2 .
?v2 sorg:director ?v3 .
?v3 wsdbm:friendOf ?v4 .
?v4 wsdbm:friendOf ?v5 .
?v5 wsdbm:likes ?v6 .
?v6 sorg:editor ?v7 . }

IL-2-8: SELECT ?v1 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 WHERE {
%v0% gr:offers ?v1 .
?v1 gr:includes ?v2 .
?v2 sorg:director ?v3 .
?v3 wsdbm:friendOf ?v4 .
?v4 wsdbm:friendOf ?v5 .
?v5 wsdbm:likes ?v6 .
?v6 sorg:editor ?v7 .
?v7 wsdbm:makesPurchase ?v8 . }

D.1.3. Incremental Unbound Queries (Type 3)

IL-3-5: SELECT ?v0 ?v1 ?v2 ?v3 ?v4 ?v5 WHERE {
?v0 gr:offers ?v1 .
?v1 gr:includes ?v2 .
?v2 rev:hasReview ?v3 .
?v3 rev:reviewer ?v4 .
?v4 wsdbm:friendOf ?v5 . }

IL-3-6: SELECT ?v0 ?v1 ?v2 ?v3 ?v4 ?v5 ?v6 WHERE {
?v0 gr:offers ?v1 .
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?v1 gr:includes ?v2 .
?v2 rev:hasReview ?v3 .
?v3 rev:reviewer ?v4 .
?v4 wsdbm:friendOf ?v5 .
?v5 wsdbm:likes ?v6 . }

IL-3-7: SELECT ?v0 ?v1 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 WHERE {
?v0 gr:offers ?v1 .
?v1 gr:includes ?v2 .
?v2 rev:hasReview ?v3 .
?v3 rev:reviewer ?v4 .
?v4 wsdbm:friendOf ?v5 .
?v5 wsdbm:likes ?v6 .
?v6 sorg:author ?v7 . }

IL-3-8: SELECT ?v0 ?v1 ?v2 ?v3 ?v4 ?v5 ?v6 ?v7 ?v8 WHERE {
?v0 gr:offers ?v1 .
?v1 gr:includes ?v2 .
?v2 rev:hasReview ?v3 .
?v3 rev:reviewer ?v4 .
?v4 wsdbm:friendOf ?v5 .
?v5 wsdbm:likes ?v6 .
?v6 sorg:author ?v7 .
?v7 wsdbm:follows ?v8 . }

D.2. RDFPath Queries

D.2.1. Incremental User-Bound Queries (Type 1)

IL-1-5: %User% :/wsdbm:follows
/wsdbm:likes
/rev:hasReview
/rev:reviewer
/wsdbm:friendOf
.project(1,3,5,7,9,11)

IL-1-6: %User% :/wsdbm:follows
/wsdbm:likes
/rev:hasReview
/rev:reviewer
/wsdbm:friendOf
/wsdbm:makesPurchase
.project(1,3,5,7,9,11,13)

IL-1-7: %User% :/wsdbm:follows
/wsdbm:likes
/rev:hasReview
/rev:reviewer
/wsdbm:friendOf
/wsdbm:makesPurchase
/wsdbm:purchaseFor
.project(1,3,5,7,9,11,13,15)
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IL-1-8: %User% :/wsdbm:follows
/wsdbm:likes
/rev:hasReview
/rev:reviewer
/wsdbm:friendOf
/wsdbm:makesPurchase
/wsdbm:purchaseFor
/sorg:author
.project(1,3,5,7,9,11,13,15,17)

D.2.2. Incremental Retailer-Bound Queries (Type 2)

IL-2-5: %Retailer% :/gr:offers
/gr:includes
/sorg:director
/wsdbm:friendOf
/wsdbm:friendOf
.project(1,3,5,7,9,11)

IL-2-6: %Retailer% :/gr:offers
/gr:includes
/sorg:director
/wsdbm:friendOf
/wsdbm:friendOf
/wsdbm:likes
.project(1,3,5,7,9,11,13)

IL-2-7: %Retailer% :/gr:offers
/gr:includes
/sorg:director
/wsdbm:friendOf
/wsdbm:friendOf
/wsdbm:likes
/sorg:editor
.project(1,3,5,7,9,11,13,15)

IL-2-8: %Retailer% :/gr:offers
/gr:includes
/sorg:director
/wsdbm:friendOf
/wsdbm:friendOf
/wsdbm:likes
/sorg:editor
/wsdbm:makesPurchase
.project(1,3,5,7,9,11,13,15,17)

D.2.3. Incremental Unbound Queries (Type 3)

IL-3-5: * :/gr:offers
/gr:includes
/rev:hasReview
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/rev:reviewer
/wsdbm:friendOf
.project(1,3,5,7,9)

IL-3-6: * :/gr:offers
/gr:includes
/rev:hasReview
/rev:reviewer
/wsdbm:friendOf
/wsdbm:likes
.project(1,3,5,7,9,11)

IL-3-7: * :/gr:offers
/gr:includes
/rev:hasReview
/rev:reviewer
/wsdbm:friendOf
/wsdbm:likes
/sorg:author
.project(1,3,5,7,9,11,13)

IL-3-8: * :/gr:offers
/gr:includes
/rev:hasReview
/rev:reviewer
/wsdbm:friendOf
/wsdbm:likes
/sorg:author
/wsdbm:follows
.project(1,3,5,7,9,11,13,15)

D.3. TriAL-QL Queries

D.3.1. Incremental User-Bound Queries (Type 1)

IL-1-5: t1 = SELECT s1, p1, o2 FROM watdiv JOIN watdiv ON o1=s2
FILTER s1 = %User% AND p1 = ’wsdbm:follows’ AND p2 = ’wsdbm:likes’ ;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:hasReview’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:reviewer’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

IL-1-6: t1 = SELECT s1, p1, o2 FROM watdiv JOIN watdiv ON o1=s2
FILTER s1 = %User% AND p1 = ’wsdbm:follows’ AND p2 = ’wsdbm:likes’ ;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:hasReview’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:reviewer’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;
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t5 = SELECT s1, p1, o2 FROM t4 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:makesPurchase’;

IL-1-7: t1 = SELECT s1, p1, o2 FROM watdiv JOIN watdiv ON o1=s2
FILTER s1 = %User% AND p1 = ’wsdbm:follows’ AND p2 = ’wsdbm:likes’ ;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:hasReview’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:reviewer’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t5 = SELECT s1, p1, o2 FROM t4 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:makesPurchase’;

t6 = SELECT s1, p1, o2 FROM t5 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:purchaseFor’;

IL-1-8: t1 = SELECT s1, p1, o2 FROM watdiv JOIN watdiv ON o1=s2
FILTER s1 = %User% AND p1 = ’wsdbm:follows’ AND p2 = ’wsdbm:likes’ ;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:hasReview’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:reviewer’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t5 = SELECT s1, p1, o2 FROM t4 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:makesPurchase’;

t6 = SELECT s1, p1, o2 FROM t5 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:purchaseFor’;

t7 = SELECT s1, p1, o2 FROM t6 JOIN watdiv ON o1=s2
FILTER p2 = ’sorg:author’;

D.3.2. Incremental Retailer-Bound Queries (Type 2)

IL-2-5: t1 = SELECT s1, p1, o2 FROM watdiv100 JOIN watdiv ON o1=s2
FILTER s1 = %Retailer% AND p1 = ’gr:offers’ AND p2 = ’gr:includes’ ;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’sorg:director’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv1 ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

IL-2-6: t1 = SELECT s1, p1, o2 FROM watdiv100 JOIN watdiv ON o1=s2
FILTER s1 = %Retailer% AND p1 = ’gr:offers’ AND p2 = ’gr:includes’ ;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’sorg:director’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv1 ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t5 = SELECT s1, p1, o2 FROM t4 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:likes’;
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IL-2-7: t1 = SELECT s1, p1, o2 FROM watdiv100 JOIN watdiv ON o1=s2
FILTER s1 = %Retailer% AND p1 = ’gr:offers’ AND p2 = ’gr:includes’ ;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’sorg:director’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv1 ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t5 = SELECT s1, p1, o2 FROM t4 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:likes’;

t6 = SELECT s1, p1, o2 FROM t5 JOIN watdiv ON o1=s2
FILTER p2 = ’sorg:editor’;

IL-2-8: t1 = SELECT s1, p1, o2 FROM watdiv100 JOIN watdiv ON o1=s2
FILTER s1 = %Retailer% AND p1 = ’gr:offers’ AND p2 = ’gr:includes’ ;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’sorg:director’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv1 ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t5 = SELECT s1, p1, o2 FROM t4 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:likes’;

t6 = SELECT s1, p1, o2 FROM t5 JOIN watdiv ON o1=s2
FILTER p2 = ’sorg:editor’;

t7 = SELECT s1, p1, o2 FROM t6 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:makesPurchase’;

D.3.3. Incremental Unbound Queries (Type 3)
IL-3-5: t0 = SELECT s1, p1, o1 FROM watdiv

FILTER p1 = ’gr:offers’;
t1 = SELECT s1, p1, o2 FROM t0 JOIN watdiv ON o1=s2

FILTER p2 = ’gr:includes’;
t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2

FILTER p2 = ’rev:hasReview’;
t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv ON o1=s2

FILTER p2 = ’rev:reviewer’;
t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2

FILTER p2 = ’wsdbm:friendOf’;

IL-3-6: t0 = SELECT s1, p1, o1 FROM watdiv
FILTER p1 = ’gr:offers’;

t1 = SELECT s1, p1, o2 FROM t0 JOIN watdiv ON o1=s2
FILTER p2 = ’gr:includes’;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:hasReview’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:reviewer’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t5 = SELECT s1, p1, o2 FROM t4 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:likes’;
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IL-3-7: t0 = SELECT s1, p1, o1 FROM watdiv
FILTER p1 = ’gr:offers’;

t1 = SELECT s1, p1, o2 FROM t0 JOIN watdiv ON o1=s2
FILTER p2 = ’gr:includes’;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:hasReview’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:reviewer’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t5 = SELECT s1, p1, o2 FROM t4 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:likes’;

t6 = SELECT s1, p1, o2 FROM t5 JOIN watdiv ON o1=s2
FILTER p2 = ’sorg:author’;

IL-3-8: t0 = SELECT s1, p1, o1 FROM watdiv
FILTER p1 = ’gr:offers’;

t1 = SELECT s1, p1, o2 FROM t0 JOIN watdiv ON o1=s2
FILTER p2 = ’gr:includes’;

t2 = SELECT s1, p1, o2 FROM t1 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:hasReview’;

t3 = SELECT s1, p1, o2 FROM t2 JOIN watdiv ON o1=s2
FILTER p2 = ’rev:reviewer’;

t4 = SELECT s1, p1, o2 FROM t3 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:friendOf’;

t5 = SELECT s1, p1, o2 FROM t4 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:likes’;

t6 = SELECT s1, p1, o2 FROM t5 JOIN watdiv ON o1=s2
FILTER p2 = ’sorg:author’;

t7 = SELECT s1, p1, o2 FROM t6 JOIN watdiv ON o1=s2
FILTER p2 = ’wsdbm:follows’;

D.4. Neo4j Cypher Queries

D.4.1. Incremental User-Bound Queries (Type 1)

IL-1-5: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)

WHERE s1.node = %User%
AND p1.node = ’wsdbm-follows’
AND p2.node = ’wsdbm-likes’
AND p3.node = ’rev-hasReview’
AND p4.node = ’rev-reviewer’
AND p5.node = ’wsdbm-friendOf’

RETURN count(r);

IL-1-6: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)-[p6]->(o6)

WHERE s1.node = %User%
AND p1.node = ’wsdbm-follows’
AND p2.node = ’wsdbm-likes’
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AND p3.node = ’rev-hasReview’
AND p4.node = ’rev-reviewer’
AND p5.node = ’wsdbm-friendOf’
AND p6.node = ’wsdbm-makesPurchase’

RETURN count(r);

IL-1-7: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)-[p6]->(o6)-[p7]->(o7)

WHERE s1.node = %User%
AND p1.node = ’wsdbm-follows’
AND p2.node = ’wsdbm-likes’
AND p3.node = ’rev-hasReview’
AND p4.node = ’rev-reviewer’
AND p5.node = ’wsdbm-friendOf’
AND p6.node = ’wsdbm-makesPurchase’
AND p7.node = ’wsdbm-purchaseFor’

RETURN count(r);

IL-1-8: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)-[p6]->(o6)-[p7]->(o7)-[p8]->(o8)

WHERE s1.node = %User%
AND p1.node = ’wsdbm-follows’
AND p2.node=’wsdbm-likes’
AND p3.node=’rev-hasReview’
AND p4.node=’rev-reviewer’
AND p5.node=’wsdbm-friendOf’
AND p6.node=’wsdbm-makesPurchase’
AND p7.node=’wsdbm-purchaseFor’
AND p8.node=’sorg-author’

RETURN count(r);

D.4.2. Incremental Retailer-Bound Queries (Type 2)

IL-2-5: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)

WHERE s1.node = %Retailer%
AND p1.node = ’gr-offers’
AND p2.node = ’gr-includes’
AND p3.node = ’sorg-director’
AND p4.node = ’wsdbm-friendOf’
AND p5.node = ’wsdbm-friendOf’

RETURN count(r);

IL-2-6: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)-[p6]->(o6)

WHERE s1.node = %Retailer%
AND p1.node = ’gr-offers’
AND p2.node = ’gr-includes’
AND p3.node = ’sorg-director’
AND p4.node = ’wsdbm-friendOf’
AND p5.node = ’wsdbm-friendOf’
AND p6.node = ’wsdbm-likes’

RETURN count(r);
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IL-2-7: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)-[p6]->(o6)-[p7]->(o7)

WHERE s1.node = %Retailer% ’
AND p1.node = ’gr-offers’
AND p2.node = ’gr-includes’
AND p3.node = ’sorg-director’
AND p4.node = ’wsdbm-friendOf’
AND p5.node = ’wsdbm-friendOf’
AND p6.node = ’wsdbm-likes’
AND p7.node = ’sorg-editor’

RETURN count(r);

IL-2-8: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)-[p6]->(o6)-[p7]->(o7)-[p8]->(o8)

WHERE s1.node = %Retailer%
AND p1.node = ’gr-offers’
AND p2.node = ’gr-includes’
AND p3.node = ’sorg-director’
AND p4.node = ’wsdbm-friendOf’
AND p5.node = ’wsdbm-friendOf’
AND p6.node = ’wsdbm-likes’
AND p7.node = ’sorg-editor’
AND p8.node = ’wsdbm-makesPurchase’

RETURN count(r)

D.4.3. Incremental Unbound Queries (Type 3)

IL-3-5: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)

WHERE p1.node = ’gr-offers’
AND p2.node = ’gr-includes’
AND p3.node = ’rev-hasReview’
AND p4.node = ’rev-reviewer’
AND p5.node = ’wsdbm-friendOf’

RETURN count(r);

IL-3-6: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)-[p6]->(o6)

WHERE p1.node = ’gr-offers’
AND p2.node = ’gr-includes’
AND p3.node = ’rev-hasReview’
AND p4.node = ’rev-reviewer’
AND p5.node = ’wsdbm-friendOf’
AND p6.node = ’wsdbm-likes’

RETURN count(r);

IL-3-7: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)-[p6]->(o6)-[p7]->(o7)

WHERE p1.node = ’gr-offers’
AND p2.node = ’gr-includes’
AND p3.node = ’rev-hasReview’
AND p4.node = ’rev-reviewer’
AND p5.node = ’wsdbm-friendOf’
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AND p6.node = ’wsdbm-likes’
AND p7.node = ’sorg-author’

RETURN count(r);

IL-3-8: MATCH r = (s1)-[p1]->(o1)-[p2]->(o2)-[p3]->(o3)-[p4]->(o4)
-[p5]->(o5)-[p6]->(o6)-[p7]->(o7)-[p8]->(o8)

WHERE p1.node = ’gr-offers’
AND p2.node = ’gr-includes’
AND p3.node = ’rev-hasReview’
AND p4.node = ’rev-reviewer’
AND p5.node = ’wsdbm-friendOf’
AND p6.node = ’wsdbm-likes’
AND p7.node = ’sorg-author’
AND p8.node = ’wsdbm-follows’

RETURN count(r)
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