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CHAPTER 1

Introduction

The Standard Model of elementary particle physics, encompassing our current knowl-
edge of known particles and their interactions, is still very successful. After being com-
pleted with the discovery of the Higgs boson at the experiments at the Large Hadron
Collider (LHC), the LHC continues to test and confirm Standard Model predictions
in many processes, as has been done in previous experiments over the years. One no-
table deviation from this pattern are the flavour anomalies, occurring and persisting
throughout different experiments in flavour-violating decays of B and K mesons.
Despite the great successes of the Standard Model and its many confirmations of its

predictions at collider experiments, many conceptual puzzles and cosmological ques-
tions are still left unanswered. The most pressing shortcoming is the lack of an ex-
planation of dark matter. Dark matter is required to understand many astrophysics
experiments and essential in cosmological predictions. Furthermore there is no expla-
nation why there is matter at all, since the amount of CP violation, the difference of
the behavior of particles and anti-particles, is not large enough and the electro-weak
phase transition is not strong enough.
There are also conceptual issues hinting at the incompleteness of our understanding

of fundamental particle physics. Since the incompleteness discussed above requires an
extension of the Standard Model at higher energy scales, in the form of new particles,
it is still unclear how the mass of the Higgs particle is stabilised against the quantum
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1. Introduction

corrections due to the new particles. This is the so called hierarchy problem. Further-
more, there is no understanding of the large hierarchy among flavour-conserving and
flavour-violating Yukawa couplings, which is referred to as the flavour puzzle. Note
that these are not consistency problems of the Standard Model, which in itself is a self-
consistent theory up to very high energies. Another conceptual hint is the quantisation
of the electric charges. While in the Standard Model the values of the electric charges
are fixed by experiment and theoretically constrained by the cancellation of the chiral
anomalies, they might also be remnants of a larger symmetry unifying the Standard
Model interactions to one.

Of the above mentioned problems, only the hierarchy problem is associated with
a vague energy scale in the region of TeV. This means that we would expect to find
deviations from our predictions when reaching this energy scale in collisions. Since
this scale is within the reach of the LHC many people had high hopes that the large
increase of centre of mass energy at the LHC would lead to the discovery of a new
zoo of unknown particles. Nonetheless no unexpected fundamental particles could be
found so far.

In general, there are two ways to detect new particles: Direct production, followed
by the detection of a characteristic signature of their subsequent decay or indirect
measurement of the effects though quantum corrections due to the new particles in
precision observables. Since for the direct production the available energy in the col-
lision is the most important factor, the biggest step in the discovery potential was
made when the LHC increased the centre of mass energy by an order of magnitude
in comparison with the Tevatron. For the second strategy the processes considered
happen at low energy and the potential for discovery lies in pushing the precision in
both experiment and theory to the point where small effects due to heavy unknown
particles become apparent. In this aspect the near future will be an exciting time as
the Belle II experiment for precision measurements will have its first physics run in
2018 and will continue taking data throughout the 2020s.

Already in the past indirect effects of particles appeared long before their existence
was confirmed by direct production at a collider. The most famous example is the
prediction of the third generation by Kobayashi and Maskawa [54] to explain CP-
violation. Another example is the prediction of the charm quark by Glashow, Iliopoulos
and Maiani[41] which plays an important role in explaining the smallness of flavour
changing neutral currents, measured at the time. In both cases there were tensions in
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experimental results which probed energy scales above the energy of the experiment.
But the models proposed by [54] and [41] included additional heavier particles that
could, through quantum corrections, solve the tensions. Thus it seems natural to
assume that also in the future we will first see hints of new particles via their virtual
contributions, through quantum corrections.
Important processes to look out for are rare decays and neutral meson mixing. We

understand quantum field theory in terms of perturbation theory, expressing theory
predictions as series of smaller and smaller quantum corrections. In rare decays and
meson mixing, the leading contribution of the Standard Model is already at one loop
level. This makes the decays rare compared to processes that are possible at tree level,
hence implying the possibility that a new contribution is comparatively large, if it
occurs at lower order. Nonetheless there is the caveat that this approach requires a
lot of effort to precisely predict and measure these rare decays. As this strategy has
proven to be successful in the past we choose this path and investigate rare decays in
this thesis.
The required precision comes with the need of going to higher orders in perturbation

series, which makes the calculation of theory predictions much more complex. The
calculation of additional terms in the perturbation series is organised in the calculation
of amplitude represented by Feynman diagrams. The number of the diagrams rises
quickly with the expansion order, yet the steps of the calculation of each diagram
are similar. With the bigger scope of the calculation comes therefore the need for
automation. To this end we implemented a Mathematica package, encompassing all the
steps necessary for the calculation, hence providing the possibility to perform similar
calculations very quickly.
There is also the question of how to proceed conceptually. As we are faced with the

fact that the Standard Model is both working very well and has obvious shortcomings
that still need to be addressed, the strategy of our research can be motivated threefold:

1. trying to solve the grand problems themselves by extending the symmetry or
particle content of the Standard Model in an ultra violet complete way,

2. improving the precision of the Standard Model prediction in the hope of detecting
small deviations,

3. trying to understand the possible effects of additional particles at an experimen-
tally accessible scale.
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1. Introduction

The distinction between the first and the last point is that with the first approach
complete models are introduced trying to solve multiple of the above mentioned is-
sues at once. Since the Standard Model problems, with the exception of the hierarchy
problem, do not come with a clear scale to tell us how massive the particles associated
with a solution might be, many complete models at high scales have little testable pre-
dictions. In most cases, the natural scales related to a larger symmetry encompassing
all Standard Model gauge groups are by far larger than the reach of any experiment
existing or conceivable in the near future. Furthermore a lot of the rich structure at
the high scales gets lost when calculating potential effects on physical processes within
reach of experiments. Testing minimal extensions however can tell us where to look
for possibly detectable unknown particles. This is the strategy of point 3, which we
follow in this thesis. The minimal extensions can be seen as building blocks that have
to embedded in the complete theory tackling more of the problems.

There is still one remark to be made, since there are two ways to approach this
problem. The first is a model independent approach using effective field theories. This
technique, in which all possible extended interactions of Standard Model particles are
investigated, has the advantage that general, model independent statements can be
made, but the drawback that it is hard to associate deviations from the Standard
Model predictions to specific models. The second strategy is to use simple benchmark
models, which constitute a specific minimal extension of the Standard Model. This
allows for statements about certain aspects of the theory. For example the Higgs sec-
tor, implementing the spontaneous symmetry breaking, or the possibility of additional
gauge interactions, which would come with a new gauge boson. This is the approach
followed in this thesis.

Since the Higgs sector became experimentally accessible most recently and might
still hold the possibility for surprises, we investigate the Two-Higgs-Doublet model as a
benchmark model. In this model the particle content of the Standard Model is extended
by adding one additional scalar doublet, while the gauge group is left untouched. This
is a feature can occur as a low energy limit of several ultra violet complete extensions
of the Standard Model. For this reason, investigating the Two Higgs Doublet Model
gives us the possibility to gain information about a range of different models.

We are specifically looking for tan β enhanced contributions to b → sγ in the Two
Higgs Doublet Model of type II. They arise both through the Yukawa couplings of
the b quark and the τ and through Higgs couplings. b→ sγ is a well studied process.
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The current Standard Model prediction [65] includes next-to-next-to-leading-order cor-
rections from quantum-chromo-dynamics (QCD) [66]. More importantly in the Two-
Higgs-Doublet Model the same precision is available [45]. Due to the above mentioned
precision in the matching, the perturbative error due to the unknown higher order
corrections is estimated to be ±3% [67]. There is another ±3% error due to the inter-
polation in mc in the calculation of the interference of the operators Q1,2 and Q7 [29].
This makes the branching ratio B̄ → Xsγ to the source of the strongest bound on the
charged Higgs mass MH± > 570− 800GeV [67] in the region of intermediate and large
tan β. On the experimental side there have been several measurements of the CP- and
isospin-averaged B̄ → Xsγ branching ratio at CLEO [21], BaBar [61, 6, 60, 59] and
Belle [2, 62, 1]. By averaging over all measurements the current experimental value [5]

Bexpsγ = (3.32± 0.15)× 10−4 for E0 = 1.6 GeV (1.1)

is obtained. E0 is the cut on the photon energy.
The precise experimental value, the phenomenological importance and the low per-

turbative uncertainty make it worthwhile to investigate the tan β enhanced effects. A
priori they are expected to be of the order of electro-weak corrections, i.e. percent level
corrections. In the regions of large tan β, i.e. tan β ∈ [50, 60], the Yukawa coupling
of the b quark is O(1), which implies the possibility of larger corrections. There are
also corrections proportional to tan β due to Higgs couplings. Since the couplings of
the proposed additional physical Higgs bosons in the Two Higgs Doublet Model are
experimentally hard to constrain, this type of contributions can also be of O(1).

Outline

We will start with presenting the Standard Model in Section 1.1 and the Two-Higgs-
Doublet model in Section 2. In Section 2.2 we will remark on the renormalisation of
the Two-Higgs-Doublet model.
We will investigate the tan β-enhanced correction to the rare decay b→ sγ in Chapter

3. To this end we will first briefly introduce the effective theory used for this purpose
in Section 3.1. Then the status of the Standard Model prediction and the experiment
will be briefly reviewed in Section 3.2. In Section 3.3 we will first review the status of
the theory predictions, then introduce the newly calculated contributions from leptonic
subloops in Section 3.3.2. The contributions form quark subloops and the contribution
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1. Introduction

due to Higgs self-couplings will be presented in Section 3.3.4.

The calculations were performed in an automatised approach with the newly de-
veloped Mathematica package Medusa, which will be introduced in Chapter 4. Here
we will first present the general structure and then proceed to review some of the
technical aspects of the calculation. The final part of the chapter briefly reviews the
implementation of the package. In Chapter 5 we will conclude.

1.1. The Standard Model of elementary particle physics

In this section we will review the parts of the Standard Model relevant to the discussion
in Chapters 2 and 3. A complete introduction can be found in many textbooks for
instance [14]. The focus will be on the Higgs sector, since the extension of the Higgs
sector with a second doublet will investigated in this thesis. The full Lagrangian can
be split into distinct sectors governing certain the interaction and kinematics of the
respective particles

LSM = Lgauge + Lf + LH + LYuk. (1.2)

In the gauge sector Lgauge the kinematics and the interactions of the gauge bosons are
defined. The fermionic sector Lf entails the kinematic terms of the fermions as well
as their gauge interactions. The sectors that are most important for this thesis are
firstly the Higgs sector LH, which is defined in Equation 1.3 below. It entails the self-
coupling of the Higgs-boson and governs the spontaneous symmetry breaking [36, 47],
which explains the masses of the weak gauge bosons. Secondly the Yukawa sector LYuk,
which is defined in Equation 1.8 below. The Yukawa sector describes the coupling of
the fermions to the Higgs boson and is responsible for both the fermion masses as well
as flavour violation.

Experimentally we observe that the gauge bosons mediating the weak interaction are
massive. To explain this observation the Higgs mechanism [36, 47] has been introduced,
which implements a spontaneous breaking of the electro-weak symmetry SU(2)×U(1)Y
to the U(1)EW of quantum-electrodynamics. It is defined in the Higgs sector of the
Standard Model Lagrangian in Equation (1.2)

LH = (Dµφ)†(Dµφ)− V (φ) (1.3)
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1.1. The Standard Model of elementary particle physics

with
V (φ) = λ

4
(
φ†φ

)2
− µ2φ†φ. (1.4)

The field φ is a SU(2) doublet

φ =
φ+

φ0

 (1.5)

with Hypercharge Y = 1. The potential is chosen such that the neutral component of
the doublet φ acquires a non zero vacuum expectation value

〈φ〉 =
 0

v√
2

 (1.6)

with v = 246GeV. After spontaneous symmetry breaking one physical scalar field
remains, the Higgs field h. The other scalar degrees of freedom, the Goldstone fields
G+ andG0, provide the longitudinal degrees of freedom of the weak gauge bosons, which
acquire a mass from the kinetic term of the Higgs field. The doublet is parametrised
by these fields as

φ(x) =
 G+(x)

v√
2 + h(x) + iG0(x)

 (1.7)

The fermion masses are due to the vacuum expectation value of the Higgs field as
well. The coupling of the Higgs field to fermions is given by the Yukawa sector of the
Lagrangian

LSMYuk = −
3∑

j,k=1

[
ydjkQ̄jφdRk + ỹujkQ̄jφ̃uRk + yejkL̄jφeRk + h.c.

]
(1.8)

where φ̃ = iσ2φ
∗ is the charge conjugated Higgs doublet.

The Yukawa coupling matrix elements have a priori arbitrary values. When diagonal-
ising the coupling matrix by a biunitary transformation, flavour changing interactions
are introduced in the coupling of the W boson.

In Chapter 3 we will investigate the flavour changing process b→ sγ. In the Standard
Model this process is mediated by the W boson. The interactions of the W boson
are defined in the electro-weak part [73, 80, 40] of the gauge Lagrangian Lgauge =
LEW +LQCD. We will only need the interactions of the W and present the Lagrangian
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1. Introduction

for the mass eigenstates W± after spontaneous symmetry breaking

LW = g2√
2

3∑
i, j=1

[
Vijū

L
i γ

µdLjW
+
µ + V ∗ij d̄

L
i γ

µuLjW
−
µ

]
. (1.9)

where the CKM matrix [54] is

VCKM =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (1.10)

To express the hierarchy of the CKM matrix elements it is convenient to use the
Wolfenstein parametrisation [82]. The CKM matrix is then given by

VCKM =


1− λ2

2 λ Aλ3(ρ− iη)
−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4). (1.11)

The Wolfenstein parameter λ = 0.22506± 0.00050 [72] is seen as an expansion param-
eter. In Section 3.3.4 we will expand in this parameter to second order to reduce the
number of diagrams. Effectively this removes the first generation from the calculation,
as the CKM matrix element connecting the b quark with the first generation is sup-
pressed by λ3. It also simplifies the renormalisation of the CKM matrix discussed in
Section 2.2.
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CHAPTER 2

The Two-Higgs-Doublet model

The Two-Higgs-Doublet model (2HDM) is one of the simplest extensions of the SM. The
model we will present here has to be seen as a stepping stone in a bottom up approach,
since it neither solves any of the aforementioned conceptual problems of the SM nor
answers the questions, concerning for example dark matter and matter antimatter
asymmetry. The model is mainly of interest due to it being an extension to the Higgs
sector, which, regarding experimental confirmation, is the most recently probed element
of the SM. Thus it might be possible to measure deviations of the Standard Model
prediction in the experimental programme of LHC, which emphasises determining the
nature of the Higgs-sector, by measuring Higgs couplings and properties. From this
point of view the 2HDM is studied as a benchmark model for extended Higgs sectors
and thought of as an effective theory at intermediate energy scales, describing the low
energy limit of an ultraviolet-complete extension of the Standard Model. One of the
most straightforward of these models is the Minimal Supersymmetric Standard Model
(MSSM), which might result in an intermediate 2HDM of type II if the additional
Higgs-bosons are lighter than the other supersymmetric partners.
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2. The Two-Higgs-Doublet model

2.1. The CP-conserving Two-Higgs-Doublet of type II

To fix the notation we will give a brief introduction to the 2HDM. In a generic 2HDM
the only new field added is one additional Higgs doublet

L2HDM = LSMgauge + LSMf + (Dµφ2)† (Dµφ2) + (Dµφ1)† (Dµφ1) + V + L2HDM
Yuk . (2.1)

The gauge and fermionic parts of the Standard Model Lagrangian LSMgauge and LSMf are
unchanged. The potential term V will be defined it in Equation (2.5) below. The
Yukawa sector is given by

L2HDM
Yuk = −

3∑
j,k=1

[
yujkQ̄jφ̃1uRk + ydjkQ̄jφ1dRk

ỹujkQ̄jφ̃2uRk + ỹdjkQ̄jφ2dRk + h.c.
] (2.2)

This extension of the Yukawa sector bears a problem, as it introduces flavour chang-
ing neutral currents at tree level. In the standard model the couplings of the Higgs
boson are diagonal in the mass eigenbasis of the fermionic fields, hence implying the
absence of flavour changing neutral Higgs couplings. In the 2HDM this is not possible,
as we briefly explain in the following. If we for the sake of this argument assume that
only one of the scalar fields, e.g. φ1, gets a vacuum expectation value, going to the
mass eigenbasis for the fermions means diagonalizing the coupling matrix to this scalar
field φ1. As the entries of the two coupling matrices are in general just free parameters,
the second coupling matrix will not be diagonal in this basis. In general these induce
flavour-changing neutral-Higgs couplings at tree level and the high precision in flavour
experiments tightly constrains these couplings. While the strength of this constraint
varies, some of the off-diagonal elements are constrained to be smaller than 10−6.[28]
Hence one promotes the absence of flavour-changing neutral couplings to a feature of
the model and implements it via a symmetry.

In the 2HDM of type II we will investigate in this thesis, a Z2 symmetry is introduced
for the fields such that

φ2 →− φ2 φ1 → φ1

uR,k →− uR,k dR,k → dR,k.
(2.3)

This ensures that φ2 and φ1 interact only with the up-type quarks and down-type
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2.1. The CP-conserving Two-Higgs-Doublet of type II

quarks respectively, as the Yukawa sector takes the form

L2HDM-II
Yuk = −

3∑
j,k=1

[
ydjkQ̄jφ1dRk + ỹujkQ̄jφ̃2uRk + h.c.

]
. (2.4)

Diagonalizing the Yukawa matrix to go to the mass basis, then leaves no additional
non-diagonal couplings, since ydjk can be diagonalised by rotations of the down-type
quarks and φ̃ujk by rotations of the up-type quarks.

We now come back to discuss the structure of the potential, given by

V =m2
11φ
†
1φ1 +m2

22φ
†
2φ2 −

(
m2

12φ
†
1φ2 + h.c.

)
+ 1

2λ1
(
φ†1φ1

)2
+ 1

2λ2
(
φ†2φ2

)2
+ 1

2λ3
(
φ†2φ2

) (
φ†1φ1

)
+ 1

2λ4
(
φ†2φ1

) (
φ†1φ2

)
+
[1
2λ5

(
φ†1φ2

)2
+ h.c.

]
.

(2.5)

Note that them12 term is a soft breaking term of the Z2 symmetry. A priori both Higgs
doublets φ1 and φ2 might acquire a vacuum expectation value (vev), giving masses to
the respective quarks. It is more convenient, however, to transform into the so called
Higgs basis, in which the complete vacuum expectation value appears in one of the
doublets. This can be done by a rotation in field spaceΦ

Φ′

 =
 cos β sin β
− sin β cos β

φ1

φ2

 (2.6)

where β is defined by
tan β ≡ v2

v1
(2.7)

with
v2 ≡ v2

1 + v2
2 = 4M2

W

g2 = (246GeV )2. (2.8)

Regarding the electroweak symmetry breaking, we have a situation analogous to
the SM, as all the vacuum expectation value is concentrated in one doublet while the
other acquires no vev. This means that in the doublet Φ the charged field becomes
the longitudinal degree of freedom of the W± as the pseudo Goldstone boson and the
pseudoscalar field is absorbed as the longitudinal degree of freedom of the Z. This
leaves us with two neutral scalars h and H, one pseudoscalar A0 and the charged
component of Φ′ H± as physical scalar fields.
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2. The Two-Higgs-Doublet model

After the rotation in Equation (2.6) it is still possible for the two neutral CP-even
Higgs-bosons to mix, as they have the same quantum numbers. The angle diagonalizing
this mass matrix is called α. In this thesis we imply that the lighter of the two neutral
scalars h is the observed SM-like Higgs-boson. Following [7] we choose

v, Mh0 , tan β, β − α, m12, MH , MA, MH± (2.9)

as independent parameters of the model.

As the exclusion limits for searches of additional scalars become more stringent with
better collider data, implying larger masses [67, 37, 4] and the also constraints from
measurements of the Higgs couplings get stronger [7], two physically interesting limits
arise. The first is reached by letting the masses of the heavy scalars MH± ,MH and
MA go to infinity. This is called the decoupling limit and has been studied in [42]. As
cos(β − α) = O( v2

M2
A

)→ 0, also the Higgs-couplings is affected. If constraints from the
h couplings and unitarity bounds are taken into account, as done in [7], one realizes
that not all free parameters of the model can be chosen freely. Instead the model is
pushed towards the alignment limit, which is characterised by cβ−α = 0.

In Section 3.3.4 we consider contributions from triple scalar couplings. When ex-
pressing the triple scalar couplings in the parameters listed in Equation (2.9), we
encounter a tan β enhancement of the couplings. Two important triple Higgs coupling
that exhibit this tan β enhancement are given as

CH0H+H− =
cβ−αM

2
H0s

2
β + 2cβ−αM2

H±s2
β −m2

12s
2
βsβ−α +m2

12sβ−α

3M2
h0s

2
β

(2.10)

−
tan β

(
2cβ−αm2

12 −M2
H0s

2
βsβ−α

)
3M2

h0s
2
β

− m2
12sβ−α tan2 β

3M2
h0

−
M2

H0sβ−α
3M2

h0 tan β ,

Ch0H+H− =
cβ−αm

2
12s

2
β − cβ−αm2

12 +M2
h0s

2
βsβ−α + 2M2

H±s2
βsβ−α

3M2
h0s

2
β

(2.11)

−
tan β

(
cβ−αM

2
h0s

2
β + 2m2

12sβ−α
)

3M2
h0s

2
β

+ cβ−αm
2
12 tan2 β

3M2
h0

+ cβ−α
3 tan β .

Following [7] we normalised the couplings by the Standard Model triple Higgs coupling
Ch0h0h0 . However, the tan β dependence is only an artefact of the chosen parameter ba-
sis. When expressing the triple scalar couplings by the couplings in the Higgs potential
λi instead of the masses of the physical Higgs bosons the powers of tan β are not ex-
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2.1. The CP-conserving Two-Higgs-Doublet of type II

plicitly visible, as has been discussed in [63]. Performing the calculation in the λi basis
is however not feasible. The important lesson from investigating the parameter space
from the vantage point of different parametrisations is, that not all parameter choices
in the mass basis lead to a physically meaningful prediction. It is therefore crucial
to check the unitarity constraints when inserting values for the Higgs masses and the
couplings, as the couplings get very large for randomly chosen values. We implement
this by checking that λi < 4 for i ∈ 1, 5, which is the most straight forward way of
implementing the check. The unitarity constraints have been used in [7] to constrain
possible triple Higgs couplings and in [53], where a lower bound on the second lightest
Higgs boson is derived from the unitarity requirement. The couplings λi are related to
the set of free parameters given in Equation (2.9) as

λ1 =
c2
β−αM

2
H0 +M2

h0s
2
β−α

v2

−
2cβ−α(M2

h0 −M
2
H0)sβ−αtβ

v2 +
(c2
β−αM

2
h0 +M2

H0s
2
β−α)t2β

v2 −
m2

12t
3
β

s2
βv

2

λ2 =
c2
β−αM

2
H0 +M2

h0s
2
β−α

v2 +
c2
β−αM

2
h0 +M2

H0s
2
β−α

t2βv
2

−
m2

12 − 2cβ−αM2
h0s

2
βsβ−α + 2cβ−αM2

H0s
2
βsβ−α

s2
βtβv

2

λ3 =−
(c2
β−α − s2

β−α)M2
h0 − 2M2

H± +M2
H0(s2

β−α − c2
β−α)

v2

+
cβ−α(M2

h0 −M
2
H0)sβ−α

tβv2 −
(m2

12 + cβ−αM
2
h0s

2
βsβ−α − cβ−αM2

H0s
2
βsβ−α)tβ

s2
βv

2

λ4 =
M2

A0 − 2M2
H±

v2 + m2
12tβ
s2
βv

2

λ5 =−
M2

A0

v2 + m2
12tβ
s2
βv

2 .

(2.12)
It will turn out in 3.3.4 that the contribution is linked to the quark contribution,
since cancellation of ultraviolet divergences is only achieved when adding all tan2 β

enhanced terms. They also provide a well defined subset of the contributions due to
the Higgs sector. Which ultimately provides the opportunity of studying the effect of
large couplings to b → sγ. In light of Equation (2.12) a remark is in order about the
tan2 β terms in Equation (2.12). Due to the unitarity requirement of λ5, m12 is pushed
to small values in the region of large tan β. Also λ5 and m12 can be easily interchanged,
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2. The Two-Higgs-Doublet model

unlike λ1 − λ4 and the masses of the Higgs bosons which are intricately linked. Thus
the tan2 β enhancement does not necessarily equal a large coupling.

2.2. Renormalisation of the Two-Higgs-Doublet model

In this section we will proceed to evaluate the required counterterms for the calcula-
tions that will be presented in Sections 3.3.2 and 3.3.4. For the calculation of the tan β
enhanced two-loop corrections to b → sγ only counterterms exhibiting this enhance-
ment are needed, since the leading order amplitude is tan β independent. The masses
of the light quarks are set to zero mu = md = ms = mc = 0, while mb is considered to
be small. For the field and mass renormalisation the on-shell scheme was used. All self
energies contributing to the renormalisation of the CKM matrix have to be evaluated
for an equal value of the squared momentum [38]. We chose p2 = 0 in the following
derivation of the counterterms.
The complete list of required counterterms includes the LSZ factors (field renor-

malisation constants) for the b quark δZL, os
d,bb and δZR, os

d,bb , the counterterms for the
CKM matrix elements δV p2=0

tb and δV p2=0
ts , and the mass counterterms δmos

b , δM
os
t and

δM2 os
H± . Their derivation and the results will be summarised in the following.
We do not include a tadpole counterterm to make sure we get gauge independent

counterterms. While tadpole renormalisation does not automatically lead to gauge
dependent counterterms, as has recently been shown for the 2HDM [56, 33], it is not
required to obtain UV finite matrix elements. Tadpole renormalisation does, however,
imply counterterms for vertices that are not included in the Lagrangian. One example
is H± → W±γ, a subprocess of b → sγ . H± → W±γ is a loop induced process and
thus yields a finite result when adding all the contributions. This statement crucially
depends on the inclusion of the tadpoles. As there are no counterterms required,
including tadpole renormalisation has to produce a completely new counterterm for
the process. This has been investigated in [56] as well. To avoid such complications
we did not include tadpole renormalisation.
The tadpoles appearing in the calculations include b quark and τ contributions and

Higgs boson tadpoles proportional to the triple Higgs couplings. The top quark tad-
poles however are not contributing to the tan2 β term. Due to the leading order being
independent of tan β, the counterterm has to contain tan2 β, limits the number of dia-
grams we have to consider. All counterterms are calculated in the on-shell scheme and
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2.2. Renormalisation of the Two-Higgs-Doublet model

A0, H0

b

b b

u, c, t

b b

H−

H0

A0, H0, H
±

b b

Figure 2.1.: Diagrams evaluated for the bottom-quark field and mb renormalisation.

we follow [31] in the derivation.
In terms of field renormalisation we include solely the necessary LSZ factors δZR, os

b,ii .
Mixing b− s self-energy contributions on external lines will be included as part of the
proper amplitude, instead of including a field renormalisation matrix. The introduc-
tion of a renormalisation matrix simply redistributes parts of the mixing self-energy
contributions into the vertex counterterm and is thus not required.
Since we consider the s quark to be massless, it cannot contribute to tan2 β. Thus

the only counterterms required are for the b quark and can be derived as

δZR, os
d,bb = −R̃eΣd,R

bb

(
m2
b

)
−m2

b

∂

∂p2 R̃e
[
Σd,R
bb

(
p2
)

+ Σd,L
bb

(
p2
)

+ 2Σd,S
bb

(
p2
)] ∣∣∣

p2=m2
b

,

δZL, os
d,bb = −R̃eΣd,L

bb

(
m2
b

)
−m2

b

∂

∂p2 R̃e
[
Σd,R
bb

(
p2
)

+ Σd,L
bb

(
p2
)

+ 2Σd,S
bb

(
p2
)] ∣∣∣

p2=m2
b

.

(2.13)
R̃e denotes taking the real part of the loop integrals of the self energies but not of
CKM elements that might appear.
As off diagonal self energies will be needed for the CKM renormalisation, we define

the generic self energies as

fj fi

p
= Γfij(p) =

iδij(/p−mi) + i
[
/pω−Σf,L

ij

(
p2
)

+ /pω+Σf,R
ij

(
p2
)

+ (mf,iω− +mf,jω+) Σf,S
ij

(
p2
)]
.

(2.14)
The ω± = 1

2(1± γ5) denote the chiral projection operators.
All diagrams contributing to the b mass counterterm δmb to order tan2 β are shown
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2. The Two-Higgs-Doublet model

in Figure 2.1. The self-coupling tadpole only contributes when looking at the yb tan β
term, where one tan β is due to the triple Higgs coupling. In the matching calcula-
tion that will be presented in Section 3.3.4 an asymptotic expansion in small external
momenta and masses mb and mτ is performed. To get consistent analytical result the
same expansion is performed in the derivation of the counterterms. Details can be
found in Section 4.3.

As a result we get

δZL, os
d,bb =e

2m2
b tan2 βe−γε(4π)ε
128π2M2

W s
2
W

2
ε

+ 1− ln
(
M2

A0

µ2

)

− c2
β−α ln

(
M2

h0

µ2

)
− s2

β−α ln
(
M2

H0

µ2

)

+ 1
6ε
(

3c2
β−α ln2

(
M2

h0

µ2

)
− 3c2

β−α ln
(
M2

h0

µ2

)

+ 3 ln2
(
M2

A0

µ2

)
− 3 ln

(
M2

A0

µ2

)

+ 3s2
β−α ln2

(
M2

H0

µ2

)
− 3s2

β−α ln
(
M2

H0

µ2

)
+ π2 + 3

),

(2.15)

δZR, os
d,bb =e

2m2
b tan2 βe−γε(4π)ε
128π2M2

W s
2
W

4
ε
− ln

(
M2

A0

µ2

)
− 2 ln

(
M2

H±

µ2

)
+ 2

+ 2M2
t VtbV

∗
tb

(M2
H± −M2

t )2

(
M2

t ln
(
M2

H±

M2
t

)
−M2

H± +M2
t

)

− c2
β−α ln

(
M2

h0

µ2

)
− s2

β−α ln
(
M2

H0

µ2

)

+ ε

6(M2
H± −M2

t )2

[
6M2

t VtbV
∗
tb

(
−M2

t ln2
(
M2

H±

µ2

)
+ 3

(
M2

t −M2
H±

)
+
(
2M2

H± +M2
t

)
ln
(
M2

H±

µ2

)
+M2

t ln2
(
M2

t

µ2

)
− 3M2

t ln
(
M2

t

µ2

))

+
(
M2

H± −M2
t

)2
(

3c2
β−α ln2

(
M2

h0

µ2

)
− 3c2

β−α ln
(
M2

h0

µ2

)

+ 3 ln2
(
M2

A0

µ2

)
− 3 ln

(
M2

A0

µ2

)
+ 3s2

β−α ln2
(
M2

H0

µ2

)

− 3s2
β−α ln

(
M2

H0

µ2

)
+ 6 ln2

(
M2

H±

µ2

)
− 6 ln

(
M2

H±

µ2

)
+ 2π2 + 6

)].

(2.16)
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2.2. Renormalisation of the Two-Higgs-Doublet model

The CKM renormalisation of [31, 32] leads to gauge dependent physical amplitudes,
as has been shown in [38]. The counterterm for the CKM matrix elements is derived
from the anti-Hermitian part of quark self energies, see Equation (2.17) below. The key
point is that in [31, 32] all self energies used to derive the counterterms for the CKM
matrix are evaluated on-shell. This is the cause of the gauge dependent amplitudes.
To avoid gauge dependent amplitudes, the authors of [38] propose instead to evaluate
all self energies at p2 = 0. With this choice the counterterms can be extracted from

V 0
ij + δV p2=0

ij =
(
δik + 1

2δZ
AH†
u, ik

)
V 0
kn

(
δnj + 1

2δZ
AH
d, nj

)
(2.17)

where
δZf,AH

ij = 1
2
(
δZL, p2=0

f, ij − δZL, p2=0 †
f, ij

)
(2.18)

are the anti-Hermitian parts of the field renormalisation constants δZij and V 0 denotes
the bare CKM matrix. All self energies are consistently evaluated at p2 = 0, yielding

δZL, p2=0
f, ii =− R̃eΣf,L

ii (0)−m2
f,i

∂

∂p2 R̃e
[
Σf,R
ii

(
p2
)

+ Σf,L
ii

(
p2
)

+ 2Σf,S
ii

(
p2
)] ∣∣∣

p2=0

δZL, p2=0
f, ij = 2

m2
f,i −m2

f,j

R̃e
[
m2
f,jΣ

f,L
ij (0) +mf,imf,jΣf,R

ij (0)

+
(
m2
f,i +m2

f,j

)
Σf,S
ij (0)

]
, i 6= j

(2.19)
Only diagrams containing a H± have to be considered, i.e. the diagram in the middle
in Figure 2.1 for the respective external and arbitrary internal quarks. This results in
the tan2 β dependent terms of the CKM counterterms

δVts =e
2m2

b tan2 βVtsVtbV
∗
tb

256π2M2
W s

2
W

(
2 log

(
M2

H±

µ2

)
+ 2γE − 1− 2 log(4π)− 2

ε

)
,

δVtb =e
2m2

b tan2 βVtb (VtbV ∗tb − 1)
256π2M2

W s
2
W

(
2 log

(
M2

H±

µ2

)
+ 2γE − 1− 2 log(4π)− 2

ε

)
.

(2.20)

When we consider an expansion in the Wolfenstein parameter λ, which is used to
parametrise the hierarchy in the CKM matrix, δVtb vanishes due to VtbV ∗tb = 1 +O(λ4).
Hence only δVts contributes.
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2. The Two-Higgs-Doublet model

The counterterms for the quark masses are derived as

δmos
f,i = mf,i

2 R̃e
(
Σf,L
ii

(
m2
f,i

)
+ Σf,R

ii

(
m2
f,i

)
+ 2Σf,S

ii

(
m2
f,i

))
. (2.21)

The result for δmos
b is given by

δmos
b =e

2mb tan2 βe−γε(4π)ε
128π2M2

W s
2
W

3m2
b

ε
+ m2

b (−2M2
t VtbV

∗
tb + 3M2

H± − 3M2
t )

2(M2
H± −M2

t )

+ m2
12 tan β

M2
h0M

2
H0ε

(
c2
β−αM

2
H0 +M2

h0s
2
β−α

) (
3c2
β−αM

2
h0 +M2

A0 + 3M2
H0s

2
β−α + 2M2

H±

)
+ 1
M2

h0M
2
H0ε

[
−M2

A0M
2
h0M

2
H0 −M

2
h0M

2
H0

(
3M2

H0s
2
β−α + 2M2

H±

)
+ c2

β−α

(
− 2M6

h0s
2
β−α +M4

h0M
2
H0

(
2s2

β−α − 3
)

+ 2M2
h0M

4
H0s

2
β−α − 2M6

H0s
2
β−α

)]

+ m2
b

(M2
H± −M2

t )2

M4
t VtbV

∗
tb ln

(
M2

H±

M2
t

)
− 3c2

β−αM
4
H± ln

(
M2

h0

µ2

)

+ 6c2
β−αM

2
H±M2

t ln
(
M2

h0

µ2

)
− 3c2

β−αM
4
t ln

(
M2

h0

µ2

)

− 2M2
H±M2

t ln
(
M2

A0

M2
H±

)
+M4

H± ln
(
M2

A0

M2
H±

)

+M4
t ln

(
M2

A0

M2
H±

)
− 3M4

H±s2
β−α ln

(
M2

H0

µ2

)

+ 6M2
H±M2

t s
2
β−α ln

(
M2

H0

µ2

)
− 3M4

t s
2
β−α ln

(
M2

H0

µ2

)
− m2

12 tan β
M2

h0M
2
H0

[ (
c2
β−αM

2
H0 +M2

h0s
2
β−α

) (
3c2
β−αM

2
h0 ln

(
M2

h0

µ2

)
+M2

A0 ln
(
M2

A0

µ2

)

+ 3M2
H0s

2
β−α ln

(
M2

H0

µ2

)
+ 2M2

H± ln
(
M2

H±

µ2

))]

+ m2
12 tan β

M2
h0M

2
H0

(
c2
β−αM

2
H0 +M2

h0s
2
β−α

) (
3c2
β−αM

2
h0 +M2

A0 + 3M2
H0s

2
β−α + 2M2

H±

)
+ 1
M2

h0M
2
H0

[
− 2c2

β−αM
2
h0M

4
H0s

2
β−α ln

(
M2

H0

µ2

)
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+ c2
β−αM

4
h0 ln

(
M2

h0

µ2

)(
2M2

h0s
2
β−α +M2

H0

(
3− 2s2

β−α

))
+ 2c2

β−αM
6
H0s

2
β−α ln

(
M2

H0

µ2

)
+M2

A0M
2
h0M

2
H0 ln

(
M2

A0

µ2

)
(2.22)

+ 2M2
h0M

2
H0M

2
H± ln

(
M2

H±

µ2

)
+ 3M2

h0M
4
H0s

2
β−α ln

(
M2

H0

µ2

) ]

+ c2
β−α

(
−

2M4
h0s

2
β−α

M2
H0

−
2M4

H0s
2
β−α

M2
h0

+M2
h0

(
2s2

β−α − 3
)

+ 2M2
H0s

2
β−α

)

−M2
A0 − 3M2

H0s
2
β−α − 2M2

H±



For the on-shell renormalisation of the t quark δM os
t the hierarchy of scales is differ-

ent. The external momentum p2 = M2
t has to be considered large in comparison with

the b quark mass. The appropriate expansion is therefore a threshold expansion. For
the on-shell counterterm we obtain

δM os
t = e2Mtm

2
b tan2 βVtbV

∗
tb

128π2M2
W s

2
W

(1
ε
− γE + 2 + ln(4π)− ln

(
M2

H±

µ2
0

)

− M2
H±

M2
t

+
(

2M
2
H±

M2
t

− M4
H±

M4
t

− 1
)

ln
(

1− M2
t

M2
H±

))
.

(2.23)

The last counterterm required is δM2 os
H± . As in the t quark case, the momentum is

considered to be large. The counterterm is extracted from

δM2 os
H± = ReΣH± (

M2
H±

)
. (2.24)

There are two types of contributions. First the contributions due to fermionic subloops.
Here the case is the same as in the t quark renormalisation and an expansion in small
mb is applied. This ensures that the logarithms in mb are of the same form as in the
two-loop result. The relevant diagrams for the fermionic contributions can be found in
Figure 2.2. The second contribution is due to Higgs loops, where the tan β originates
in the Higgs couplings. In this contribution all particles in the loop have masses of the
same scale. Therefore no expansion has been used for these diagrams. The relevant
diagrams are shown in Figure 2.3. We used FormCalc [43] in combination with Package-
X [71] to analytically check our results and LoopTools [43] for a numerical crosscheck
of our FormCalc to Package-X interface.
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2. The Two-Higgs-Doublet model

ντ

τ

H− H− H−H−

b

t

(a) (b)

Figure 2.2.: Feynman diagrams contributing to the fermionic contributions of the
charged Higgs mass counterterm (δM2

H±)osτ and (δM2
H±)osb .

We will lists the final τ and b-quark contributions separately and therefore also write
δM2

H+ = (δM2
H+)osτ + (δM2

H+)osb + (δM2
H+)osH for the contributions to the counterterm.

The Higgs contribution (δM2
H+)osH encompasses the tan2 β terms due to Higgs couplings,

which will also be important in the b quark result. The contributions to the counterterm
are given by

(δM2
H±)osτ = e2M2

H±m2
τ tan2 β

32π2M2
W s

2
W

(
1
ε
− log

(
M2

H±

µ2

)
− γE + 2 + log(4π)

)
, (2.25)

(δM2
H±)osb =− 3e2m2

b tan2 βVtbV
∗
tb

32π2M2
H±M2

W s
2
W

[ (2
ε
− 2γE + 3

)
M4

H±x−M4
H±

(
x2 + 2

)
ln(x)

+M4
H±(x− 1)2 ln(1− x) + 2M4

H±x ln(4π)− 2M4
H±x ln

(
M2

H±

) ]
− 3e2m2

bM
2
H± tan2 β

32π2M2
W s

2
W

(
−1
ε

+ ln
(
M2

H±

)
+ γE − 2− ln(4π)

)
.

(2.26)

As mentioned above the H contribution does not allow for an expansion. The con-
tributing diagrams are shown in Figure 2.3. Thus we present the counterterm in terms
of the Passarino-Veltman integrals [70]

(δM2
H±)osH = e2 tan2 β

128M2
h0M

2
H0M

2
Wπ

2s2
W


− 2

[
2c2
β−αm

2
12M

2
h0 + 2m2

12M
2
H0s

2
β−α

− cβ−α
(
M2

h0 −M
2
H0

) (
M2

A0 +M2
H±

)
sβ−α

]
A0
(
M2

A0

)
m2

12
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h0, H0, A0, H
+

h0, H0, A0, H
+

h0, H0, A0

h0, H0

H+ H+ H+ H+ H+

H+

H+

Figure 2.3.: Feynman diagrams contributing to the Higgs contribution of the charged
Higgs mass counterterm (δM2

H±)osH . The tan β enhancement originates from
the Higgs couplings.

− cβ−α
[
3c2
β−α

(
−2M4

h0 +
(
M2

H0 − 2M2
H±

)
M2

h0 + 2M2
H0M

2
H±

)
sβ−αm

2
12

+ 6c3
β−αM

2
h0m

4
12 +M2

h0sβ−α
((

11− 5s2
β−α

)
M2

H0 + 2M2
h0s

2
β−α

)
m2

12

− 2cβ−α
(
m4

12

(
3s2

β−αM
2
h0 +M2

h0 − 6M2
H0s

2
β−α

)
−M4

h0M
2
H0

)
]
A0
(
M2

h0

)
− sβ−α

[
6c2
β−α

(
2M2

h0 −M
2
H0

)
sβ−αm

4
12 + c3

β−αM
2
H0

(
5M2

h0 − 2M2
H0

)
m2

12

+ cβ−α

(
6M2

H0

(
M2

H0 +M2
H±

)
s2
β−α

−M2
h0

((
3s2

β−α + 11
)
M2

H0 + 6M2
H±s2

β−α

))
m2

12 (2.27)

+ 2M2
H0sβ−α

((
3s2

β−α − 1
)
m4

12 +M2
h0M

2
H0

) ]
A0
(
M2

H0

)
− 2

[ (
4m4

12M
2
h0 −M

4
h0M

2
H0

)
c2
β−α + 4m2

12

(
M2

H0 −M
2
h0

)
M2

H±sβ−αcβ−α

+M2
H0

(
4m4

12 −M2
h0M

2
H0

)
s2
β−α

]
A0
(
M2

H±

)
+ 2M2

h0M
2
H0

[(
4s2

β−αm
4
12 + c2

β−αM
4
h0

+ 2cβ−α
(
3M2

h0 + 2M2
H±

)
sβ−αm

2
12

)
B0
(
M2

H± ,M2
h0 ,M

2
H±

)
+
[
4c2
β−αm

4
12 − 2cβ−α

(
3M2

H0 + 2M2
H±

)
sβ−αm

2
12
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+M4
H0s

2
β−α

]
B0
(
M2

H± ,M2
H0 ,M

2
H±

) ],
which are defined as

A0(m2) = µ2ε

iπ
D
2 rΓ

∫ dDq
q2 −m2 , (2.28)

B0(p2,m2
0,m

2
1) = µ2ε

iπ
D
2 rΓ

∫ dDq
[q2 −m2

0][(q + p)2 −m2
1] . (2.29)

The analytic result has been evaluated with Package-X [71].
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CHAPTER 3

tanβ enhanced corrections to b → sγ in the Two-Higgs-Doublet
Model of type II

The new matching calculation of the tan β enhanced contributions in the 2HDM will
be presented in this chapter. The starting point is an introduction to effective field
theory and the matching procedure for b → sγ. Next we will review previous works
on b → sγ starting with the standard model result. Here we will also present our
first check of Medusa. The matching calculation of the next-to-leading order QCD
contributions for b → sγ in the Standard Model, in which we found agreement with
[12]. In Section 3.3 we will start investigating the 2HDMi, concentrating on the tan β
enhanced contributions yet missing in the prediction of the branching ratio of B̄ →
Xsγ. As they are expected to be of the order of electroweak corrections, they become
important only when the larger QCD corrections are already known. This is the case
and we will start with reviewing previous works in the 2HDM. Next, the calculation of
the tan β enhanced terms to b→ sγ will be presented, starting with the τ contributions.
The restriction to τ subloops simplifies the calculation and provides a gauge invariant
subset of the complete tan β enhanced contribution. Based on this calculation we will
remark on the treatment of γ5. In the last section, the b quark contributions will be
discussed.
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3. tanβ enhanced corrections to b → sγ in the Two-Higgs-Doublet Model of type II

3.1. Introduction to effective field theory

3.1.1. A question of scales

Our understanding of physics relies on a chain of theories each valid for the description
of a certain scale, i.e. energy region. We get a consistent picture of nature since the
theories interlink and we can investigate limits in the border region to get redundant
descriptions. To understand the properties of macroscopic objects, classical physics is
a good approximation and we do not need to know about the position and interactions
of each atom. Going to smaller and smaller length scales, i.e. higher energies, we first
see the effects of quantum mechanics, for example in the energy levels of the atoms.
The next link we encounter, when sufficient energy to create particle antiparticle pairs
is available, is quantum field theory. Within quantum field theory the chain continues
and is formalised in the concept of effective field theory.
When considering a physical problem at a certain scale it is enough to consider only

the active degrees of freedom at that scale. This is possible since the effects of more
massive particles are suppressed. An interesting case is when a process is forbidden at
tree level in a low energy theory, which means that it will stand out as a rare event. If
we want to keep only the active degrees of freedom in our theory, we can include these
effects as new small interactions within the context of an effective field theory.
The first example of this was Fermi’s theory of β decay. In quantum-electro-dynamics

(QED) and quantum-chromo-dynamics (QCD), which govern the behaviour of quarks
and electrons at energies below the electro-weak scale, there is no interaction that
changes the flavour, i.e. the type of quark or lepton. Thus neither provides an ex-
planation for the β-decay, d → ue−ν̄e. Fermi thus introduced a new interaction to
the Lagrangian to include this effect. Note that historically the theory was built from
baryons and leptons. As we want to be able to describe the process in the full the-
ory, the standard model, constituting of quarks and leptons, we will present the four
fermion interaction on quark level.

Leff = −4GF√
2
Vud (ūγµdL) (ēγµνeL) (3.1)

Here the Fermi constant GF is just a free parameter of the theory. The interaction in
Equation (3.1) respects the symmetries of QED and QCD but is non-renormalisable,
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3.1. Introduction to effective field theory

since the coupling constant GF has a negative mass dimension. To get the decay rate,
the matrix element has to be calculated. For the process d → ue−ν̄e there is only the
single vertex diagram with the operator above inserted. The tree level matrix element
is given by

Meff = 4GF√
2
Vud (ūγµdL) (ēγµνeL) (3.2)

As we understand today the β decay is mediated by a W boson with a much larger
mass than the quarks and electrons involved. The part of the Standard Model respon-
sible for the decay is

LW = g2√
2
Vijūiγ

µω−djW
−
µ + g2√

2
l̄iγ

µω−νiW
+
µ + h.c., (3.3)

which yields
MSM = g2

2
2 Vud

1
p2 −M2

W

(ūγµdL) (ēγµνeL) (3.4)

for the matrix element of the decay. Here p is much smaller than MW and we can
neglect it, hence obtaining

MSM = g2
2

2M2
W

Vud (ūγµdL) (ēγµνeL) . (3.5)

As the links of a chain overlap, so do the regions of viability of the effective theory
and the standard model. Hence they have to yield the same result for predictions of
measurable processes in this region, i.e. their results have to match. This matching is
used to fix the coupling GF of the effective theory, which is obtained by requiring the
result in Equation 3.2 and Equation 3.4 are equal, yielding 4GF√

2 = g2
2

2M2
W
.

This is one example of a matching calculation. In general the couplings in the
effective theory, like GF in this example, are called Wilson coefficients. They contain
all the information of the high scale in the problem. In the example above, these are the
SU(2) coupling g2 and the massMW of the heavy degrees of freedom. The light degrees
of freedom, i.e. the quark and lepton fields, are contained in the effective theory. They
are part of the so called operator in the effective theory. This separation of scales is one
of the advantages of treating problems within an effective field theory. In this case for
example to get the actual decay rate we would have to calculate the matrix element of
the quark current. The quarks are part of the nucleus and therefore strongly coupled,
which means perturbation theory in small couplings breaks down. However in the
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3. tanβ enhanced corrections to b → sγ in the Two-Higgs-Doublet Model of type II

matching calculation perturbation theory is still viable since the matching is performed
at the high scale where the strong coupling αs is small enough. The separation of scales
also prevents the appearance of large logarithms in the coefficient at the matching scale.
When we are done with the matching at the high scale renormalisation group equations
can be used to resum the large logarithms and evaluate the Wilson coefficient at the low
scale. This improves the convergence of the perturbation series and thus the precision
of our prediction.
The general approach can be summarised as follows. When investigating any low en-

ergy process in an effective field theory, first the order of the expansion of the high scale
is fixed. This will constrain the mass dimension of the operators introduced into the
Lagrangian. We then have to include all operators of up to this order, that respect the
symmetries of the effective theory, with individual Wilson coefficients. Then there are
two options. First the Wilson coefficients can be fixed from experiment. This approach
is taken when considering the standard model as an effective theory and introducing
higher dimensional operators to parametrize certain tensions in measurements. In the
second approach, that we adapt, the Wilson coefficient is calculated in the matching
with a proposed full theory.

3.1.2. Matching for b → sγ

For the Lagrangian of the effective theory and the matching of b → sγ we follow the
conventions of [12]. The Lagrangian is given by

Leff =LQCD×QED (u, d, s, c, b, e, µ, τ)

+ 4GF√
2

[V ∗usVub (Cc
1Q

u
1 + Cc

2Q
u
2) + V ∗csVcb (Cc

1Q
c
1 + Cc

2Q
c
2)]

+ 4GF√
2

10∑
i=3

[
(V ∗usVub + V ∗csVcb)Cc

i + V ∗tsVtbC
t
i

]
Qi

(3.6)

The kinetic terms of the light quarks and leptons and their QED and QCD interactions
are contained in LQCD×QED. The operator basis Qi is given by

Qu
1 = (s̄LγµT auL) (ūLγµT abL)

Qu
2 = (s̄LγµuL) (ūLγµbL)

Qc
1 = (s̄LγµT acL) (c̄LγµT abL)
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3.1. Introduction to effective field theory

Qc
2 = (s̄LγµcL) (c̄LγµbL)

Q3 = (s̄LγµbL)
∑
q

(q̄γµq)

Q4 = (s̄LγµT abL)
∑
q

(q̄γµT aq)

Q5 = (s̄Lγµ1γµ2γµ3bL)
∑
q

(q̄γµ1γµ2γµ3q) (3.7)

Q6 = (s̄Lγµ1γµ2γµ3T
abL)

∑
q

(q̄γµ1γµ2γµ3T aq)

Q7 = e

g2mb (s̄LσµνbR)Fµν

Q8 = 1
g
mb (s̄LσµνT abR)Ga

µν

Q9 = e2

g2 (s̄LγµbL)
∑
l

(
l̄γµl

)
Q10 = e2

g2 (s̄LγµbL)
∑
l

(
l̄γµγ5l

)
.

For the sake of the discussion of the next-to-leading-order QCD corrections to the
matching, we will also need one of the equation of motion vanishing operators

Q35 = ie

g2

[
s̄L
←−
/DσµνbLFµν − Fµν s̄Lσµν /DbL

]
+Q7. (3.8)

The operators are normalised such that in the perturbative expansion of the Wilson
coefficients

CQ
i =

n∑
i=0

(
g2

(4π)2

)n
C
Q(n)
i (3.9)

the order of the expansion corresponds with the loop order. This is why the oper-
ators that get their first contributions through an electroweak one-loop process are
normalised by g−2. In the expansion in the strong coupling in Equation (3.9) the sec-
ond order terms have first been derived in [12] for the standard model while in the
2HDM they can be found in [15, 25, 24, 11]. The third order contributions, i.e. the
next-to-next-to-leading-order QCD contributions, are also known and first presented
in [66] in the standard model and in [45] for the 2HDM.

As the massless gluons are also part of the effective theory, their effects have to be
taken into account on both sides of the matching. This leads to the need of renormal-
isation on the effective theory side. The Wilson coefficients, as the couplings of the
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3. tanβ enhanced corrections to b → sγ in the Two-Higgs-Doublet Model of type II

theory, are renormalised multiplicatively

Ci = ZijCj. (3.10)

Note that Z is a matrix that can mix the coefficients through renormalisation.
We however are looking at the tan β enhanced contributions in the Two-Higgs-

Doublet Model of type II. This simplifies the situation, as to this order the operators
above do not mix. It is therefore sufficient to calculate the Wilson coefficient CQ(1)

7 to
get a prediction, as it is the only operator contributing to b→ sγ at leading order.
In the above notation the contributions we consider here are contributions to CQ(1)

i ,
which can be written as

C
Q(1)
7 = C

Q(1,0)
7 + C

Q(1,τ)
7 + C

Q(1,b)
7 . (3.11)

We opted not to factorise the couplings, like for the QCD contribution in Equation
(3.9), to make the tan β dependence in the final result explicit. The contribution
C
Q(1,τ)
7 ∝ y2

τ

(4π)2 gets all tan β enhancement from the Yukawa coupling, yi = tanβmi
v

. The
coefficient CQ(1,b)

7 ∝ tan2 β receives contributions purely due to the b quark Yukawa
coupling as well as mixed contributions, where the tan β terms in the Higgs couplings
provides one power of tan β.
There are different possibilities to do the matching. The Wilson coefficient has only

a dependence on the parameters of the high scale, it cannot depend on the kinematics
chosen for the matching. The two notable possibilities are off-shell matching, as done
in [12] and in Section 3.2 to check their results, and on-shell matching, as we will use
for the matching of CQ(1,i)

7 in Sections 3.3.2 and 3.3.4. This dictates the basis of Dirac
structures used to describe the matrix elements, as we will see in Equation (3.12) and
Equation (3.13).
The advantage of the off-shell basis is that no on-shell integrals have to be evalu-

ated, thus making the calculation in the full theory less cumbersome. As a trade off
the operator basis in the effective theory has to be extended by equation of motion
vanishing operators. These operators do not contribute on-shell but describe the off-
shell structure in the effective theory. As for higher loop calculations the additional
complications by considering on-shell integrals outweigh the added complications in
the matching this has been chosen references [12, 66, 45].
For our calculation, presented in Sections 3.3.2 and 3.3.4, we chose on-shell matching
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3.1. Introduction to effective field theory

however. Since it is possible to expand in small external momenta, the most compli-
cated two-loop integral is a vacuum integral, independent of the external momenta.
Through the asymptotic expansion [76] a small number of one-loop on-shell integrals
are introduced. As the s quark is considered massless most of them have to be eval-
uated at k2 = 0. A full list of required one-loop integrals, that have been solved in
D dimensions, can be found in Section 4.4.1. In testing our approach was helpful as
the full theory result is an on-shell amplitude and thus a physically meaningful object.
Thus the cancellation of all divergences has to happen in the full theory result already.
For the calculation of the Wilson coefficient in the matching this is not required as
IR divergences can cancel by appearing both on the full theory side and the effective
theory side of the matching equation.

Let us first review the off-shell basis. Again, we follow the notation of [12] to define
the basis elements as

Sj =
(
γµ/p/k, γµ (p · k) , γµp2, γµk

2, /pkµ, /ppµ,

/kpµ, /kkµ, mb/kγµ, mbγµ/k, mb/pγµ, mbγµ/p, M
2
Wγµ

)
j
.

(3.12)

Here p denotes the incoming b-quark momentum and k is the outgoing photon momen-
tum. This basis is used to express both the result of the full theory and the effective
theory off-shell Green’s functions. We will elaborate in Section 3.2, where we confirmed
the results of the unrenormalised off-shell Green’s functions given in [12].

In the on-shell case, equations of motions can be used to reduce the number of basis
elements. The resulting basis is defined as

Uj =
(
m2
bγµ,mbpµ

)
. (3.13)

We used this basis in the calculations presented in Sections 3.3.2 and 3.3.4.

Regardless of the basis, the matching is always between renormalised objects. For
us this only means that the full theory result has to be renormalised as there are no
corrections of the effective theory side to the order we investigate.
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3. tanβ enhanced corrections to b → sγ in the Two-Higgs-Doublet Model of type II

Figure 3.1.: Two-loop diagrams calculated in the check with [12]. The black dots are the
points the external photon has to be attached. The loopy line represents
the gluon, while the wavy line is the W.

3.2. Status of the SM predictions and first checks of
Medusa

Due to the importance of b→ sγ a lot of work went into the standard model prediction.
A summary can be found in [65], where the authors present the current Standard Model
prediction

BSMsγ = (3.36± 0.23)× 10−4 for E0 = 1.6 GeV. (3.14)

where E0 is the cut on the photon energy. The prediction includes the calculation
of the matching up to next-to-next-to-leading order in the QCD corrections [66] and
next-to-leading order in the EW corrections [39]. In the mixing NNLO corrections [29]
are available as well.
On the experimental side there have been several measurements of the CP- and

isospin-averaged B̄ → Xsγ branching ratio at CLEO [21], BaBar [61, 6, 60, 59] and
Belle [2, 62, 1]. An average of these measurements has been provided by the Heavy
Flavour Averaging Group [5], and reads

Bexpsγ = (3.32± 0.15)× 10−4 for E0 = 1.6 GeV. (3.15)

Because of the agreement between the prediction and measured value, investigating
effects from the Two-Higgs-Doublet Model will result in a stringent lower bound on the
mass of the charged Higgs boson.
As a first check of the Mathematica package Medusa, see Section 4, we calculated the
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next-to-leading-order QCD matching corrections in the Standard Model and confirmed
the result of [12], in which the two-loop result for the off-shell unrenormalised Green’s
function is presented explicitly. This provides the opportunity to directly check the
result of the loop calculation, which makes an ideal first check of our method and
implementation. The contributing diagrams are shown in Figure 3.1. We follow the
notation of [12] and expressed the two-loop contributions G(2) to the off-shell Green’s
function as

G(2) = i
4GF√

2
eg2ω+

(4π)4 N
(2)
ε

(V ∗usVub + V ∗csVcb)
13∑
j=1

h
(2)
j Sj + V ∗tsVtb

13∑
j=1

f
(2)
j (x)Sj

 . (3.16)

The Sj denote the elements of the off-shell basis defined in Equation (3.12), while e
and g stand for the QED and QCD coupling respectively. N (2)

ε is defined as

N (2)
ε = 1− 2εκ+ ε2

(
π2

6 + 2κ2
)
, (3.17)

with κ = γE − ln(4π) + ln(M2
W/µ

2
0).

The matching on Q7 does not require calculating all coefficients hi and fi, since
most of the Dirac structures describe only the off-shell structure and thus match on
equation-of-motion-vanishing operators. When expressing the matrix element on the
effective theory side by the off-shell basis in Equation (3.12) it becomes apparent that
only the coefficients h2 and h10 are required to fix Cc

7. They get contributions from
only two operators

h2 = −4Ac35 h10 = Ac7 + Ac35, (3.18)

where A stand for the renormalised coefficients, i.e.

Ac7 = ZψZ
−2
g

[
Zm

∑
i

Cc
iZi7 + (Zm − 1)

∑
i

Cc
iZi(35)

]
. (3.19)

We determined the two-loop coefficients hi and fi to be

h
(2)
2 = −272

81ε −
3740
243 , h

(2)
8 = − 128

81ε2 −
1088
243ε −

314
729 −

128π2

243 ,

h
(2)
10 = 20

9ε + 92
27 ,

f
(2)
2 (x) = 1

ε

[
8x(−45x3 − 34x2 + 53x− 10)

9(x− 1)5 ln x+ 4(x4 + 641x3 − 501x2 + 83x− 8)
27(x− 1)4

]
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+8x(7x3 − 69x2 + 61x− 14)
9(x− 1)4 Li2(1− 1

x
)

+4x(45x3 + 34x2 − 53x+ 10)
3(x− 1)5 ln2 x

+4(−6x5 − 4497x4 + 2622x3 + 811x2 − 638x+ 88)
81(x− 1)5 ln x

+2(−719x4 + 35822x3 − 35073x2 + 11492x− 1802)
243(x− 1)4 ,

f
(2)
8 (x) = 1

ε

4(243x4 + 486x3 − 419x2 + 130x− 8)
81(x− 1)5 ln x (3.20)

+2(−185x4 − 3313x3 + 369x2 + 905x− 368)
243(x− 1)4


+4(32x4 + 283x3 − 135x2 − 70x+ 64)

81(x− 1)4 Li2
(

1− 1
x

)

+2(−243x4 − 486x3 + 419x2 − 130x+ 8)
27(x− 1)5 ln2 x

+2(370x5 + 7933x4 − 1370x3 − 683x2 + 238x− 8)
243(x− 1)5 ln x

+2(−3301x4 − 20714x3 + 4182x2 + 202x+ 191)
729(x− 1)4 ,

f
(2)
10 (x) = 1

ε

[
2x(36x2 + x− 10)

9(x− 1)4 ln x+ 11x3 − 169x2 + 132x− 28
9(x− 1)3

]

+2x(−15x3 + 8x2 − 21x+ 10)
9(x− 1)4 Li2

(
1− 1

x

)
+ x(−36x2 − x+ 10)

3(x− 1)4 ln2 x

+−22x4 + 396x3 − 377x2 + 142x− 16
9(x− 1)4 ln x

+31x3 − 1071x2 + 630x− 112
54(x− 1)3 .

Our results are in agreement with those of [12, Eq. (65)]. Note that the diagrams
relevant here, shown in Figure 3.1, lead to two-loop integrals with one massless prop-
agator, due to the gluon. In this case our solution of the tensorial two-loop vacuum
integral in Equation (4.32) does not contain any expansion. This fact enables us to
analytically check the result.
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Figure 3.2.: The one-loop diagrams that constitute the leading order contribution to
b→ sγ.

3.3. b → sγ in the Two-Higgs-Doublet Model

This section is devoted to the discussion of the tan2 β enhanced contribution to b→ sγ.
We will first review the current status of the theory prediction and its uncertainty. We
then move on to presenting our result splitting it in two sections. In Section 3.3.2
we analyse the τ contributions, which we will use to investigate the dependence on
the treatment of γ5 in Section 3.3.3. In Section 3.3.4 we investigate the contribution
coming from the b quark.

3.3.1. Status

The leading order contribution to b → sγ are the one-loop contributions shown in
Figure 3.2. The result is given by

C
c(1,0)
7 = 23

36 ,

C
t(1,0)
7 = xW (7− 5xW − 8x2

W )
24(xW − 1)3 + x2

W (−2 + 3xW ) ln xW
4(xW − 1)4
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+xH
±(3− 5xH±)

12(xH± − 1)2 + xH±(−2 + 3xt)
6(xH± − 1)3 ln xH±

+xH
±(7− 5xH± − 8x2

H±)
72 tan2 β(xH± − 1)3 + x2

H±(−2 + 3xH±)
12 tan2 β(xH± − 1)4 ln xH± ,

where xi = M2
t

M2
i
. The light quark part Cc

7 does not receive any contribution from
diagrams with the charged Higgs-boson, since we neglect their masses mu = mc = 0.
An important feature of this result in light of the following discussion is that the tan β
dependence has the form (tan β)−2. This means that in the interesting case of large
tan β the prediction is to a very good approximation independent of tan β, since the
tan β independent term dominates the prediction. Since the H± contributions only
enhance the prediction, this fact allows for a tan β independent lower bound on the
charged Higgs mass, obtained by taking the limit tan β → ∞. In the Two-Higgs-
Doublet Model the QCD corrections in the matching are known to next-to-next-to-
leading order [45]. Due to this high precision this process is the source of the strongest
bound on the charged Higgs mass MH± > 570− 800GeV [67], for intermediate to large
tan β < 60. In this region the bound is tan β independent in good approximation. For
even larger values of tan β, bounds from B → τν are stronger [4]. Our goal is to lift
the tan β independence of the prediction by considering the tan2 β enhanced terms due
to the Yukawa couplings of the τ and the b quark and large Higgs self-couplings.

3.3.2. m2
τ tan2 β contributions to b → sγ in the 2HDM

The first contributions we calculated are characterised by τ -loops and yield a result
proportional to m2

τ tan2 β. The leading order result in Equation (3.21) does not have a
tan2 β term, since the tan β from the b quark Yukawa coupling and the cot β from the t
quark Yukawa coupling cancel. When analysing the diagrams containing a τ sub-loop
and contribute to the leading tan2 β term, there are two classes to be considered. In
the first class the sub-loop mixes H− and W−, hence avoiding the cot β of the t quark
Yukawa coupling, while introducing one tan β through the τ Yukawa coupling. In the
second class, both tan2 β originate from the τ Yukawa coupling. This simplifies the
calculation, since the τ sub-loop required to generate the m2

τ leaves us with only the
34 diagrams shown in Figure 3.3.
Diagrams with mixing self-energies on external lines, i.e. diagrams 6− 15 in Figure

3.3, are taken into account as proper diagrams, as discussed in [63]. Even though
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they are not one-particle irreducible diagrams, their contribution does not go into the
LSZ factor. The reason is that the propagator to cut is not on-shell, due to the mass
difference of the mixing quarks. Thus it does not contribute to the one-particle pole of
the propagator and does not have to be resummed into the Dyson series.

It is also possible to entirely omit self-energy diagrams for the extraction of the
Wilson coefficient C(1,τ)

7 if the amplitude is projected on the correct Dirac structure.
For on-shell matching this is

mbpµs̄L(k2, 0) · bR(p,mb) (3.21)

where p is the incoming momentum of the b quark. However, we chose to keep the
self-energy diagrams, as the cancellation of contributions that do not match on Q7

provides an important cross-check. This amounts to checking the Ward identity for
the amplitude.

The restriction to τ contributions also simplifies the renormalisation. For the one-
loop contribution the only tan β dependence drops off as tan−2 β and is a numerically
irrelevant correction to the dominant constant term in the interesting region of large
tan β, see Equation (3.21). Therefore to contribute to the tan2 β term, the counterterm
itself has to be proportional to tan2 β. The only counterterm that fulfils this restriction
is the mass counterterm to the charged Higgs boson mass (δMH±)osτ given in Equation
(2.25), which receives the m2

τ tan2 β dependence through the Yukawa coupling in a
τ − ντ loop.

This calculation provided the second test of our package Medusa, that will be pre-
sented in Section 4, where technical details of the calculation, as the solution of the
two-loop integral and asymptotic expansion, will be addressed.

Due to the differences in scales of Mi ∈ MH± ,MW ,Mt and the external momenta
p ∼ k ∼ mb �Mi, with p denoting the incoming momentum of the b quark and k being
the outgoing momentum of the photon, we can expand in small external momenta.
It suffices to consider the leading order term of this expansion, since the expansion
parameter m̄b(MW )2/M2

W = 0.0012 is very small. The effects of higher order corrections
would be matched on dimension 8 operators, which are insignificant for b→ sγ. Thus
the integrals to be considered are vacuum two-loop integrals for which a closed formula
is given in Section 4.4. While we neglect the masses of the lighter u, d, s and c quarks,
there is still the question of how to treat the particles that have a mass of the scale of
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Figure 3.3.: All diagrams contributing to m2
τ tan2 β. The leading order has no tan β,

since tan β from the bottom Yukawa and cot β from the top Yukawa can-
cels. There are two classes of diagrams involving tan β. Firstly, the cot β
associated with the top Yukawa coupling can be replaced by the insertion
of a subloop mixing the H± to W± or G±. This gives one tan β from the
bottom Yukawa-coupling and one from the τ Yukawa-coupling. Secondly,
one can just introduce two new powers of tan β by τ -Yukawa couplings to
the H±.
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the external momenta: mb andmτ . To check our method, we performed this calculation
in two ways.
First we set all instances of mτ in loops to zero. Doing so produces infrared (IR)

divergences in single diagrams, which we regularised dimensionally. A meaningful result
for the physical on-shell matrix element needs to be free of any divergences. In our
calculation all IR and ultraviolet (UV) divergences of single diagrams cancel in the
sum, which constitutes a strong check for our result.1

The second calculation has been done without setting mτ = 0. Since mτ ∼ mb ∼ p

is of the same small scale as the momenta in which we expand, factors of mτ have to be
taken into account in the expansion as well. If the expansion is performed naively by
Taylor expansion of the propagators, new IR divergences are introduced, which can be
avoided by the utilisation of the asymptotic expansion with the large mass procedure
[77]. An introduction of the basic idea and our implementation will follow in Section
4.3.
Since we get the tan β from one bottom- and one τ -Yukawa-coupling, which come

with the respective masses, and we need one spinflip of the τ , the leading order in
the masses is mbm

2
τ . For matching on Q7 we also need one power of the incoming

momentum. Thus we have to expand to fourth order. As we will elaborate in Section
4.3, the naive Taylor expansion introduces infrared divergences. In the asymptotic
expansion this spurious IR divergence is compensated by considering the different limits
in all possible regions of integration space. This cancels the dimensionally regularised
IR divergence and reintroduces the logarithmic dependence on mτ . Hence utilizing the
asymptotic expansion has the effect that what appeared as a dimensionally regularised
IR divergence in the first method now appears as lnm2

τ . In this approach an IR
divergence of the final result would consist of a logarithmic divergence when setting
the small masses and momenta to zero. As before the final result has to be free of all
infrared divergences. That is, all logarithms of mτ that appear in intermediate steps
drop out in the sum. Both the massless result and the asymptotically expanded result
yield the same value for the Wilson coefficient.
One issue that surfaced in the calculation is the dependence of the result on the

treatment of γ5. This will be more thoroughly discussed in Section 3.3.3, where we will
present the different schemes, including our results obtained in their application. The

1A priori the result could have IR divergences for mτ → 0 which match onto corresponding divergent
terms in the effective theory, represented by b̄− s− τ̄ − τ operators. We have checked that these
operators have either zero coefficients or zero matrix elements.
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conclusion of this discussion is that for this calculation it is justified to use anticom-
muting γ5 for all traces with even number of γ5. For traces with exactly one γ5 the four
dimensional trace condition is inserted, see Equation (3.30). The case of three γ5 does
not occur since one coupling in the fermionic triangle is always the vector coupling to
the Photon.
As a further check, We also verified the consistency with the Ward identity. For this

check we used the on-shell conditions only for the external quarks and allowed for the
Photon to be off-shell. Replacing the polarisation vector with the Photon momentum
yields zero for the amplitude, confirming the Ward identity. This provides also a strong
check for the finite parts of the result.
The calculation was performed in a generic ’t Hooft gauge. Thus we could as a

final check confirm independence of the final result on the gauge parameter ξW . We
performed the matching on-shell, expressing both the effective theory matrix element
and the full theory matrix element in the on-shell basis defined in Equation (3.13). For
the τ contributions to the Wilson coefficient C7 we get

C
(1,τ)
7 = GFm

2
τ tan2 β

16
√

2π2

(
xt

3 (1− xt)2 −
x2
t (3− 7xt + xw + 3xtxw) ln xt

3 (1− xt)3 (xt − xw)

+xt (−2 + 2xt + 3x2
t ) ln2 xt

3 (1− xt)4 + xtxw ln xw
(xt − xw) (1− xw)

)
,

(3.22)

where xi = M2
i

M2
H±

.
This result shows two interesting properties. First of all its magnitude compared to

the leading order is surprisingly small. The largest effect can be achieved by choosing
a low mass for the charged Higgs boson just above the current exclusion bounds,
MH± = 600GeV, and large tan β = 60. The ratio of the tan2 β enhanced contribution
compared to the leading order is

C
(1,τ)
7

C1,0
7

= 5.2 · 10−4 (3.23)

This implies that when the Yukawa couplings are pushed to the unitarity limit, which
is approximated by yb ∼ yτ ∼ 2 and corresponds to tan β ∼ 120, its relative importance
is still sub-percent, C

(1,τ)
7
C1,0

7
= 0.0025.

When estimating the size of the contributions from the couplings and the (16π2)−1

suppression factor from the additional loop the result was expected to be much larger.
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MW = 80.385± 0.015GeV [72]
GF = 1.1663787(6)× 10−5GeV−2 [72]

Mh0 = 125.1± 0.2GeV [72]
mτ = 1776.86± 0.12MeV [72]

Vts = 0.04± 0.0027 [72]
Vtb = 1.021± 0.032 [72]

m̄b(MW ) = 2.8767± 0.0096GeV [46, 23]

Table 3.1.: List of the values of the Standard Model parameters inserted.

Considering the three diagrams of Figure 3.4, the ratio of the couplings summarised in
c, which also includes the suppression factors (16π2)−1 of the two-loop and the one-loop
diagrams is given by

ca
cb

=yτ
yt

α

8πs2
W

=
mτ t

2
β

Mt

α

8πs2
W

= 0.05,

ca
cc

= yτyb
16π2 =

mτmbt
2
β

16π2v2 = 0.0038,
(3.24)

for tan β = 60. When considering single diagrams this estimation turns out to be
accurate and there are contributions in the percent level. However due, to cancellations,
we remain with the very small result above.
It should be noted that the diagrams with mixing self-energy on external lines are

up to 6 orders of magnitude larger than the final result. This is due to the cancellation
of the mb dependence due to the b quark propagator. If the analytical cancellation of
these contributions is spoiled the remaining contribution has numerically large effects.
With an incorrect treatment of γ5, for example, the cancellation is spoiled, leading to
% level corrections of the one-loop prediction.
The other interesting property of the result is that the Barr-Zee type diagrams, that

have the triangle subloop, are contributing less significantly than the diagrams with
self-energy subloops.

3.3.3. Treatment of γ5

In this section we give an overview of the problem of γ5 in dimensional regularisation
and present some of the proposed prescriptions to handle it. We used several schemes
proposed in the literature to evaluate the leptonic contributions presented in Section
3.3.2.
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Figure 3.4.: Example diagrams from two- and one-loop level to discuss the relative
importance of their contribution.

For the open fermion chain we use anticommuting γ5, which always yields the same
result as using the ’t Hooft Veltman [48] scheme with the inclusion of proper finite
counter terms, as has been shown in [79].

For the closed fermion loops we checked several prescriptions. The main difference
is the anti-commutation relations of γ5. In the anticommuting schemes

{γµ, γ5} = 0 (3.25)

is used in D dimensions. With this definition an inconsistency arises, since it can be
shown that all traces containing an odd number of γ5 vanish. The necessary steps,
following [26], can best be shown for the case of two γ matrices. The step-by-step
derivation is given by

D trγ5γµγν =trγ5γµγνγλγ
λ

=trγλγ5γµγνγλ

=− trγ5γ
λγµγνγλ

=− 2g λ
µ trγ5γνγλ + 2g λ

ν trγ5γµγλ −D trγ5γµγν

=− 2trγ5 {γµ, γν}+ (4−D)trγ5γµγν

=(4−D)trγ5γµγν .

(3.26)

First cyclicity of the trace is used. In the second step the anticommutation relation
defined in Equation (3.25) is applied. Next the γµ have to be anticommuted back to
the starting order. In the last step we used trγ5 = 0, which can be proved analogously
to Equation (3.26). This implies (2 − D)trγ5γµγν = 0. Since a result obtained in
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3.3. b→ sγ in the Two-Higgs-Doublet Model

dimensional regularisation has to be a meromorphic function in D, a stepwise definition
of the trace for D = 2 and D 6= 2 is not possible and trγ5γµγν = 0 must hold for all D.

Using the same steps, namely cyclicity of the trace, anticommutivity of γ5 and the
anticommutation relations of the γµ, one can analogously show (4−D)trγ5γµγνγλγκ =
0. Requiring that the result of the trace is meromorphic implies trγ5γµγνγλγκ = 0 for
all D, which is inconsistent with the 4-dimensional result in Equation (3.30). To fix
this inconsistency one has to drop one of the properties used. One choice is to drop
the cyclicity property of the trace [55]. This results in the need to clarify how to read
fermion traces.

In [48] ’t Hooft and Veltman proposed to change the anticommutation relations of
γ5, resulting in a scheme which has been proven to be consistent by Breitenlohner and
Maison [16]. In this treatment, γ5 is defined as an inherently 4-dimensional object

γ5 = i

4!ε
µνκλγµγνγκγλ, (3.27)

where ε is the 4-dimensional Levi-Civita Tensor.

For the commutation relations this means that γ5 anticommutes only in 4-dimensions
and commutes with the (D − 4)-dimensional part of γµ

{γ̃µ, γ5} =0,

[γ̂µ, γ5] =0.
(3.28)

Here and in the following, T̂ denotes (D − 4)-dimensional tensors while T̃ denotes
4-dimensional tensors. Tensors T = T̂ + T̃ without any marks are considered to be D-
dimensional. Since ε and γ5 only exist in 4-dimension the ˜ is implied. One important
property to note is that the 4-dimensional tensors can be seen as projectors on the
physical dimensions.

gµν g̃
ν
λ =g̃µλ

gµν ĝ
ν
λ =ĝµλ

(3.29)

For traces with γ5 the 4-dimensional result is retained

trγ5γµγνγλγκ = 4iεµνλκ. (3.30)
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The downside of the solution in Equation (3.28) of the inconsistency problem is that
it violates Ward identities [16]. This can be fixed by introducing an appropriate finite
renormalisation [26]. The QCD contributions to this finite renormalisation are consid-
ered up to three loops in [58], while in [17] contributions due to Higgs bosons in a Two
Higgs Doublet Model are considered.
It is instructive to explicitly consider the form of the counterterms for the finite renor-

malisation. For the example of the non-singlet axial current, following the notation of
[58], is given by

J5a
µ (x) = ψ̄(x)γµγ5t

aψ(x). (3.31)

The renormalised axial vector current is given by

(J5a
µ )R = Zns

5 (a)Zns
MS(a)(J5a

µ )B, (3.32)

where Zns
MS encompasses the normal field renormalisation and Z5 is the new countert-

erm. The subscripts B and R denote the currents of bare fields and renormalised fields
respectively. The counterterm is fixed by the renormalisation condition

Zns
5 RMS

〈
ψ̄J5a

µ (0)ψ
〉

= RMS

〈
ψ̄Jaµ(0)ψ

〉
γ5. (3.33)

The form of this possible counterterm should be kept in mind in the following.
After reviewing the basic ideas, we will look specifically at widely used schemes,

remarking on their differences and presenting the results obtained for the calculation
at hand.

Naive Dimensional Regularisation

Naive Dimensional Regularisation (NDR) implies using anticommuting γ5 inD-dimensions,
see Equation (3.25). While this is not a consistent scheme, it is sufficient for a lot of
circumstances, namely those with even number of γ5 in the traces. As pointed out in
[52] truly anomalous cases have to be considered separately in 4-dimensions.
Note that the Tracer [51] implementation of NDR still uses the non zero trace of γ5

in Equation (3.30). For the τ contributions to b→ sγ presented in Section 3.3.2, this
yields a finite and gauge parameter independent result that respects the Ward identity.
Even though this is not a consistent treatment, the fact that it yields a sensible result
can be understood when considering the traces that appear in the calculation. In
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3.3. b→ sγ in the Two-Higgs-Doublet Model

the triangle subloop one of the vertices is always a vector current. This means the
maximum number of γ5 in one trace is two. As has been pointed out in [79], it is
always possible to use anticommuting γ5 for traces with an even number of γ5. It
is actually advisable to do so, since in the ’t Hooft Veltman scheme, even for these
cases, spuriously anomalous terms are created, which have to be removed by finite
renormalisation. In [79] it is shown that using anticommuting γ5 from the beginning
yields the same result as in the ’t Hooft Veltman scheme including the correct finite
renormalisation. The remaining traces have just one γ5, meaning they can be solved
by Equation (3.30) without using anticommutation relations.

Naive ’t Hooft-Veltman scheme

In the ’t Hooft Veltman prescription for γ5, the remaining issue is the definition of the
vector and axial vector current. With the naive ’t Hooft-Veltman scheme we denote
the scheme that implements the usual 4-dimensional currents, i.e. ψ̄γµψ and ψ̄γµγ5ψ as
the d dimensional currents. This is inconsistent since in the derivation of the Feynman
rules for the axial vector current from the Lagrangian anticommutation relations are
used to bring them in their usual form. It is instructive to look at an explicit example,
following [52]. The leptonic part of the SM Lagrangian is given by

Ll = l̄Riγ
µ (∂µ + ig′Bµ) lR + L̄liγµ

(
∂µ + i

g′

2 Bµ − ig
τa
2 Wµa

)
Ll, (3.34)

where L denotes the left-handed SU(2) doublet and lR the right-handed SU(2) singlet

lR = ω+l, Ll =
ν
l


L

= ω−

ν
l

 . (3.35)

The right- and left-handed projectors are given by

ω+ = 1
2 (1 + γ5) , ω− = 1

2 (1− γ5) . (3.36)

Thus when reading off the Feynman rules we obtain

ψ̄ω+γµω−ψ = ψ̄γµω−ψ + 1
2 ψ̄ {γµ, γ5}ω−ψ, (3.37)

which is just the standard left-handed current only if the anticommutator is set to zero.
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In our calculation, all schemes based on the ’t Hooft-Veltman prescription for γ5 yield
similar results. Therefore, we will jointly evaluate them in the end of this section.

The chirally improved ’t Hooft-Veltman scheme

In [52] the chirally improved ’t Hooft-Veltman scheme is defined as using the ’t Hooft
Veltman prescription given in Equation (3.28) in combination with consistent currents.
When inserting the anticommutator of the ’t Hooft-Veltman prescription, see Equation
(3.28), {γµ, γ5} = 2γ̂µγ5 we get

ψ̄ω+γµω−ψ = ψ̄γµω−ψ + ψ̄γ̂µγ5ω−ψ = ψ̄γ̃µω−ψ. (3.38)

Since the Lagrangian is consistently defined using chiral fields, this amounts to re-
placing both the axial vector as well as the vector current by the currents projected
on the 4-dimensional subspace. This scheme has also been used in [20], where no
closed Fermion loops appear. The authors also checked the NDR scheme for which
they get the same results, consistent with the opening statement that for open fermion
chains NDR and ’t Hooft-Veltman yield the same results when including the finite
renormalisation.

By considering the kinetic term one can also easily see the need for finite renormal-
isation, since there too the vector current is replaced by the 4-dimensional one.

iψ̄γ̂µ∂
µψ = iψ̄γµ∂

µψ − iψ̄γ̃µ∂µψ (3.39)

This points out a problem. When using 4-dimensional fermion propagators, dimen-
sional regularisation does no longer work for fermion loops. Thus in order to regularize
fermion loops dimensionally, the D-dimensional propagator has to be used and the
(D− 4)-dimensional term has to be included in the Lagrangian as an evanescent oper-
ator, vanishing in 4-dimensions. If this operator occurs in a divergent subgraph it will
contribute to the finite result. The problem is that the (D − 4)-dimensional operator
is not of order ε but a tensor of rank D − 4 = −2ε. To be properly considered as
a counterterm a perturbative treatment has to be possible. This means, while this
scheme works in practice, it cannot be seen as the last word as it too has conceptual
issues.
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Larin scheme

Another widely used scheme is the Larin scheme first applied in [58]. In this scheme
the γ5 definition of Equation (3.27) of ’t Hooft and Veltman is used. Rather than an
independent scheme for γ5 it might be more fitting to refer to it as a technique to solve
the traces, since the main idea is to replace all γ5 by the following prescriptions for the
axial vector and pseudoscalar currents

J5
µ =1

2 ψ̄ (γµγ5 − γ5γµ) = i

3!εµν1ν2ν3ψ̄γν1γν2γν3ψ,

J5 =ψ̄γ5ψ = i

4!εν1ν2ν3ν4ψ̄γ
ν1γν2γν3γν4ψ.

(3.40)

Note that the symmetrisation in the axial vector current amounts to using the 4-
dimensional current when seen in the ’t Hooft-Veltman notation

J5
µ = 1

2 ψ̄ (γµγ5 + γ̃µγ5 − γ̂µγ5) = ψ̄γ̃µγ5ψ. (3.41)

The benefit of replacing the γ5 is mostly that the trace can be solved using standard
methods without the need to implement 4 and (D−4)-dimensional objects. Instead the
ε-tensors are regarded as projectors onto the 4-dimensional subspace to be evaluated
after the loop integrals and their divergences have been taken care of. Note that in
contrast to the chirally-improved ’t Hooft-Veltman scheme, the vector currents are not
touched.
In our test of different prescriptions, the usage of the replacement rules in Equation

(3.40) and a ’t Hooft Veltman prescription with the symmetrised axial vector current
yielded the same result. It should also be stressed that the pure Larin scheme has
therefore the same need for finite renormalisation than the ’t Hooft Veltman schemes.
The Larin replacement rules, i.e. Equation (3.40), are also used in hybrid schemes,

where traces of even numbers of γ5 are treated naively. The replacement rule in Equa-
tion (3.40) is then only inserted for the last γ5, as in [83]. Note that in their treatment
it is crucial to consistently choose the same reading point for all diagrams that appear.
As shown in [9] there is an ambiguity when choosing different reading points. Since
it is not obvious which reading point choice leads to the correct result, this scheme is
dangerous. Effectively they choose to keep anticommutivity and the trace condition in
Equation (3.30) and choose instead to give up the cyclicity of the trace, which causes
the reading point ambiguity.
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In the evaluation of the τ contributions the hybrid Larin scheme yielded the same
result as the hybrid NDR scheme. This is due to the fact that the most complicated
traces with odd number of γ5 only involve exactly one γ5. For these traces the two
schemes give the same result, since the difference of replacing theD-dimensional current
with the 4-dimensional current is (D − 4)-dimensional. As the trace results in an ε-
tensor, a projector on the 4-dimensional subspace,

trγµγνγκγλγ5 − trγµγνγκγ̃λγ5 = trγµγνγκγ̂λγ5 = 4iεµνκρĝρλ = 0 (3.42)

the difference between the schemes is zero.

Evaluation of the ’t Hooft-Veltman schemes

Next we will discuss the pure ’t Hooft-Veltman schemes, that never use anticommuting
γ5: naive, chirally improved ’t Hooft-Veltman and Larin. For the purpose of this
discussion it is implied to use the replacement rules defined in Equation (3.40) for all
appearing γ5 when we say Larin scheme. The Ward identity for the external Photon
was not satisfied, regardless of the definition of the current in the Feynman rules. This
is equivalent to saying that the result does not match on the operator Q7 of Equation
(3.8), since the Ward identity holds in the EFT. To understand this mismatch it is
helpful to track the contributions of single diagrams. When setting the contributions
of single diagrams to zero we found that the mismatch of all other diagrams vanishes
if the H− −G−-bubbles shown in Figure 3.5 are set to zero.

While it is true that without proper finite renormalisation the Ward identities can
be violated in the ’t Hooft Veltman schemes it is unclear that this is the case here.
In [58, 17] counterterms for the axial current are introduced. They are of the form
shown in Equation (3.32). These however cannot help us here since in this calculation
we are only interested in the terms ∝ m2

τ tan2 β, which cannot be produced in a one-
loop correction to a quark current. This issue can be investigated at one-loop level
in H− → t̄b. The important property to look at is the independence of the gauge
parameter ξ in ’t Hooft gauge of the H± −G± and H± −W± mixing diagrams.

When investigating the gauge dependence of the diagrams shown in Figure 3.6, the
only remaining gauge dependence originates from the non-zero anticommutator in the
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’t Hooft-Veltman scheme:

Aξ = e3 tan βV ∗tbm2
τ

96
√

2M3
Wπ

2sW

(
3m2

τ −M2
H±

) 1
p2 −M2

W ξW
(mbū · ω− · v −mtū · ω+ · v) (3.43)

Following [79], where the difference of ’t Hooft-Veltman scheme and anticommuting γ5

is explicitly investigated for bubbles, we also tried to introduce a mixing counterterm
for HG.

δZHG = −e
2m2

τ (M2
H± − 3m2

τ ) tan β
96M2

Wπ
2S2

W

(3.44)

While it is obviously possible to get rid of the gauge dependence at one-loop, since the
problematic term is solely produced by the HG mixing diagram, the same counterterm
does not fix the mismatch in the two-loop case. This is not surprising since the HG
bubble appears as a subloop in other diagrams as well, see Figure 3.3.
To construct all necessary counterterms in the ’t Hooft-Veltman scheme a more

systematic investigation of the sub processes and their Slavnov Taylor identities would
be required. Since the hybrid Larin and the hybrid NDR scheme yield consistent
results, that respect the Ward identity, are finite and gauge parameter independent,
all results given in this thesis are derived in these schemes.

3.3.4. The tan2 β enhanced quark contributions to b → sγ in the
2HDM

A more important part of the tan2 β enhanced contributions is due to the Yukawa cou-
pling of the bottom quark. We split the contribution in two parts CKM suppressed and
unsuppressed. As we are dealing with small corrections to the leading order already,
additional CKM suppression renders the contributions numerically insignificant. Thus
we will consider only the unsuppressed contributions. The contribution has two parts.
First the part proportional to y2

b , i.e. both powers of tan β originate in the Yukawa
coupling of the b quark. The 167 diagrams belonging to this part are presented in
Appendix A. Compared to the leptonic case there are more classes of diagrams, since
the restriction to closed fermionic subloops is lifted. This has the notable consequence
that diagrams with triple scalar couplings from the Higgs-potential can occur. As
mentioned in Section 2.1 the triple Higgs coupling can also be tan β enhanced in our
parametrisation. The 410 diagrams corresponding to this case can be found in Ap-
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pendix B.
It is not possible to split the self-coupling contributions from the pure Yukawa con-

tributions, as the separate parts are not finite on their own. Due to the possible 1/ε2

pole in single diagrams both the pure Yukawa contribution and the contribution due
to triple Higgs couplings produce a non-trivial 1/ε term containing logarithms. This
term only cancels when adding both parts. It should be reiterated, that the tan β en-
hancement in the triple Higgs couplings is possibly an artefact of the parametrisation
of the Two Higgs Doublet Model by masses and tan β. We covered this in more detail
in Section 2.1. However, once we choose the set of parameters we have to consider all
tan β contributions in a consistent way. It is also not obvious whether this problem can
be avoided by choosing a different set of parameters, since the parametrisation with λi
is only concise in the interaction basis. Once we consider the mass eigenstates of the
Higgs bosons we automatically get a non-trivial dependence of the masses to λi.
Another new class of contributions are the one-loop self-energy contributions, see

Figure A.3. As stated in Section 2.2 the mixing self-energies are taken as proper
diagrams with a factor of 1. For the b quark non-mixing self-energy wave function
renormalisation has to be introduced. The counterterm has been derived in Section
2.2 and is given in is given in Equation (2.16) and Equation (2.15). The integrals
relevant for this class are one-loop tadpole integrals, since the momentum dependence
is eliminated by asymptotic expansion.
Furthermore diagrams with two self-energy contributions appear. They are depicted

in Figure A.4. They are considered as proper diagrams as well. The non-mixing self-
energy contributions are considered by including diagonal field renormalisation.
In comparison with the τ contributions also additional counterterms have to be

considered. These are the counterterm for the b quark mass δmb, see Equation (2.22),
t quark mass δMt, given in Equation (2.23), and the CKM matrix elements δVtb and
δVts, see Equation (2.20), are required. For their derivation we refer to Section 2.2. The
counterterm for the charged Higgs mass δMH± gets additional contributions due to b-t
loops, which are given in Equation (2.26), and contributions due to Higgs couplings .
As a result of the discussion presented in Section 3.3.3 anticommuting γ5 is used.

This is possible, since there is no new class of diagram with a more complicated fermion
trace then in the τ calculation. Again the maximum number of γ5 in any given trace
is two, which occurs precisely in the pseudoscalar pseudoscalar vector trace of the
loop induced vertex of H−H−γ and H−G−γ in diagrams 34-37 of Figure A.1 and the
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3. tanβ enhanced corrections to b → sγ in the Two-Higgs-Doublet Model of type II

pseudoscalar axial-vector vector trace of the loop induced vertex H−W−γ in diagrams
42-45 of Figure A.1.
While all divergences cancel, we do not get a gauge invariant result. The interesting

property of the gauge invariance check, done via checking the Ward identity, is, that
it does not hold for the correctly cancelling UV poles either. This suggests that the
origin is of conceptual nature.
We performed the calculation keeping mb as a small mass in the asymptotic expan-

sion. Thus the IR behaviour is expressed in logarithms of mb. Like in the τ case all
the logarithms of mb drop out when adding all diagrams. This implies, that we do
not have to consider additional loop induced contributions on the effective theory side.
The cancellation of IR divergences is also a check for the result.
As the contributions due to triple Higgs couplings and the yb contributions cannot be

split, the result cannot be given in a concise form as Equation (3.22). This is in part due
to the expansion in the solution of the two-loop integral in Equation (4.32), which now
becomes relevant as it is evaluated for three different scales. For the numeric evaluation
the expansion order was varied around 10, i.e. keeping terms up to (m2/(M2

1 +M2
2 ))10,

to ensure it has no large effect on the result. It is also important to insert viable values
for the parameters of the Two Higgs Doublet Model. As we discussed in Section 2.1
they are not unconstrained and can easily be chosen in a way to render the theory
non-perturbative or non-unitary. We therefore check the unitarity constrains, given
by requiring λi < 4. It is more convenient to check the constraints for the couplings
defined in the potential defined in Equation (2.5), as the chosen parameters tan β,
β − α, MH± , MA0 , MH0 and m12 obscure the unitarity property. The λi are related
to the parameters we chose for the Two Higgs Doublet model by Equation (2.12). For
each set of the Two Higgs Doublet Model parameters, tan β, β − α, MH± , MA0 , MH0

and m12 we insert here, this check has been performed.
The numerical result for tan β = 60, β − α = π/2, MH± = 600GeV, MA0 = 601GeV,

MH0 = 643GeV and m12 = 83GeV is

C
(1,b)
7

C
(1,0)
7

= 82.7 (3.45)

The correction to the Wilson coefficients C(1,b)
7 includes all couplings from the two-

loop contribution and is defined in Equation (3.11). The result is unrealistically large,
pointing towards a spoiled cancellation of contributions. We saw in Section 3.3.2 that
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3.3. b→ sγ in the Two-Higgs-Doublet Model

numerically the first six digits of the contributions of single self-energy diagrams cancel.
In Section 3.3.2 we observed non-cancellation before the treatment of γ5 was investi-
gated more thoroughly. As we consistently applied anticommuting γ5, which provided
a finite, gauge invariant in the τ case, and with the contribution due to fermion chains
being analogous to the τ contribution, this cannot be the case here. The finiteness of
the result also restricts possible solutions like adding new diagrams or counterterms.
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CHAPTER 4

The Mathematica package Medusa for two loop calculations in
flavour physics

In this chapter, we will give a quick overview of the Mathematica package Medusa
developed for the calculation presented in Chapter 3. The package is designed to
calculate two-loop contributions to processes in flavour physics. This includes rare
decays and contributions to Meson mixing. In flavour physics the typical problem is
to calculate cross sections and decay rates of hadronic processes that are mediated
by heavy gauge bosons. This creates a natural separation of scales. The scale of the
hadronic process O(ΛQCD) or O(mb) and the scale of the bosons mediating the process
O(MW ). Possible new physics contributions are also considered to be of the high
scale in the context of this thesis. This characteristic physical situation gives us the
opportunity to simplify the calculation, as it enables us to expand in the ratio of the
two scales. This is not only true for the masses themselves but also for the momenta
of the external particles. In a light meson like the Pion the order of magnitude of
the momentum of the constituent quarks is given by O(ΛQCD). For heavy mesons like
the B meson the characteristic energy scale of the momenta is O(mb). As both are
much smaller than MW the expansion in mb/MW converges quickly and the first order
is already a good approximation. On the technical side the expansion simplifies the
calculation as the loop integrals that have to be solved are reduced to vacuum integrals.
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In Medusa this simplification is crucial, since at the heart of Medusa is only one two
loop integral, which will be presented in Section 4.4.

Medusa encompasses an implementation of all steps for the calculation of two-loop
amplitudes. The goal is to facilitate the calculation of possible enhanced two-loop
effects in a wide range of new physics models. As for one-loop processes FeynArts [44]
and FormCalc [43] are widely used to make predictions, the FeynArts interface gives
the possibility to reuse the same model files. The calculation can be carried out in an
fully automated fashion or semi automatic, allowing for more user control. Furthermore
Mathematica as a front-end offers a powerful set of functions to work with the result
and customize the calculation to the specific problem at hand in a convenient way. The
results are produced fully D-dimensional and can therefore also be expanded to higher
orders in ε if required.

While Medusa can be used to calculate SM contributions, many of which are already
known to high precision, i.e. [65, 13, 18, 19], the main application will be to calculate
contributions due to heavy unobserved particles in the loops. The two-loop contribu-
tions due to new particles can in some cases even be the leading contribution. For
example in the Barr Zee [8] diagrams in the neutrino magnetic moments. They appear
in Two Higgs Doublet models with flavour changing neutral Higgs couplings. The basic
idea is that a small Yukawa coupling to leptons can be avoided by replacing it by a
quark Yukawa coupling. This is possible by introducing a second loop, which mixes
the Higgs with the flavour changing coupling to a Goldstone boson or a gauge boson.
The large hierarchy of the Yukawa couplings then compensates for the additional loop
suppression The enhancement of Barr Zee diagrams opens a gateway of studying new
physics in fermionic eletromagnetic dipole moments, which have been investigated in
Two Higgs Doublet Models for example in [3, 27, 50].

Medusa can also be used to study the internal dynamics of models. Since in flavour
physics all external particles are Standard Model particles, the leading effect of the
Higgs-selfcouplings enters at two-loop. We encountered this in the calculation presented
in Section 3.3.4, as the Higgs-selfcouplings enter the problem due to their spurious tan β
dependence. Bounds on the couplings in the Higgs potential of the Two Higgs Doublet
Model are constrained mainly by unitarity bounds and perturbativity bounds [7]. A
notable exception of course are the couplings of the light Standard Model like Higgs,
which are directly constrained by experiment and are pushed towards the Standard
Model value. As the perturbativity bounds allow for sizeable couplings their effects
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4. The Mathematica package Medusa for two loop calculations in flavour physics

could be investigated through their contribution to two-loop processes. The Higgs-
selfcouplings and the Barr-Zee diagrams provide additional incentive to study precisely
the two-loop contribution. Medusa has been designed to facilitated these studies.
We presented the ground work, like the derivation of the tensorial two-loop vacuum

integral, for the package Medusa in [81]. We will first outline the general structure and
then emphasise some of the important extensions of the functionality since [81].

4.1. Overview of the structures and used packages

The generation of the Feynman amplitudes is done in FeynArts [44]. The fermion
traces are evaluated with Tracer [51], which can handle both the anticommuting and
’t Hooft-Veltman scheme [48, 16] for γ5. Still, there is one caveat when using the
’t Hooft-Veltman scheme or any scheme besides anticommuting γ5 and FeynArts in
combination, which will be elaborated on in Section 4.2. The implementation of the
open fermion chains uses anticommuting γ5, which is always sufficient as discussed in
Section 3.3.3. It is also possible to influence this simplification by defining custom rules
to arrive at the desired basis for the Dirac structure.
A larger addition is the implementation of the large mass expansion of [76], while

in [81] only naive expansion was possible. We will elaborate on the technique and
implementation in Section 4.3 below. Since we consider processes in flavour physics in
the context of heavy new physics, it is always justified to expand in small momenta,
as they are of the order of the mass of Mesons or leptons.
After the expansion is complete the most complicated loop integral remaining is a

tensorial two-loop vacuum integral with some powers of propagators raised due to the
expansion. At this point there are two options to proceed. The standard method is to
first use projection to get rid of the tensor structure and proceed using integration-by-
parts identities to reduce it down to the scalar vacuum master-integral with all powers
of propagators equal to one [30]. For this special case however it is also possible to
use directly a closed formula for the tensorial two-loop integral with arbitrary powers
of propagators, that will be shown in Section 4.4 and has first been derived in [68].
We generalised the solution to arbitrary indices in [81]. While the reduction procedure
is scalable and can be used for higher loop orders as well, we restrict ourselves to
this special case and can therefore use our knowledge of the closed solution shown
in Equation (4.32). The restriction to this special case allows us to have all steps
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4.1. Overview of the structures and used packages

implemented in Mathematica, while keeping the memory requirement manageable.
This was encountered when comparing the closed solution in Equation (4.32) with

the solution of the scalar integral in [30]. The latter solution is given in terms of the
master-integral with all powers of propagators equal to one. To solve a generic two-
loop integral integration-by-parts identities are used recursively to express it in terms
of the two-loop and possible one-loop master-integrals. For our naive implementation
of the recursion relations given in [30] this check was only possible with manageable
resource requirement in Mathematica for integrals where the sum of the powers was
smaller than ten. The result is also fully D dimensional and can therefore be expanded
to higher powers in ε, which are required for the computation of higher loop orders.
Another advantage of the tensorial master-integral is that there is no need to project

out the tensor structure. The inclusion of the tensor structure in fact does not make
the derivation of the solution in Equation (4.32). This is made possible by the use of
symbolically symmetrised products of metric tensors and four-vectors. As can be seen
in Equation (4.32) they are naturally produced by the solution of the loop integral. If
one expresses them explicitly by metric tensors and four-vectors the number of terms
grows factorialy with the rank of the tensors, (2g − 1)!!(1 + 2g)p where g denotes the
number of metrics, p the number of four-vectors in the product and (a)b = Γ(a+b)/Γ(a)
denotes the Pochhammer symbol. Using the symmetry property however it is possible
to avoid the factorial growth of terms. For the simplification of the Lorentz structure
rules are defined to simplify the symbolic representations of the symmetrised products.
Examples will be discussed in Section 4.5. This also is a necessary requirement for
doing this calculation in Mathematica.
The two-loop integral, see Equation (4.32), and some of the one-loop integrals in

D dimensions, see Section 4.4.1, are expressed in terms of hypergeometric functions,
which are then expanded in ε by using HypExp [49]. In the implementation at first
only the divergent parts are expressed explicitly and the finite parts are expressed as
the functions TL, to make intermediate results more compact. This will be examined
in more detail in Section 4.5. Thus it is possible to handle the divergent part first and
insert the finite parts after adding all diagrams to make use of cancellations without
generating large expressions in intermediate steps.
We close this overview with a comment on considering higher loop orders with this

method. The core of the package Medusa is the closed solution of the tensorial two-loop
vacuum integral, which is not known on three loop order. While there is a conjecture
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4. The Mathematica package Medusa for two loop calculations in flavour physics

[69] that the necessary manipulations of the contour integral used in the derivation of
Equation (4.32) might also be applicable to the three loop integral, we did not consider
it further. Due to the increase in the number of diagrams the implementation in
Mathematica would be tedious and could be tackled with a FORM [57] back-end, which
can more easily deal with larger expressions. In closing this discussion it should be
pointed out that the two-loop order is distinguished since the parametrically enhanced
contributions we were considering in Section 3 first appear at two-loop. This is also true
for Barr-Zee diagrams [8] discussed above. We are unaware of enhanced contribution
at three-loop level that could be of the same order of magnitude of the one-loop results.
Thus for phenomenological applications the three-loop calculations are less relevant.

4.2. The treatment of γ5 in FeynArts

One issue that has to kept in mind when using the ’t Hooft-Veltman prescription for
γ5 in conjunction with FeynArts is the usage of flipping rules, which will be introduced
in the following. In the following we will start with an explicit example of the incon-
sistency in the evaluation of fermion traces that arises. Afterwards we will elaborate
what causes the issue and how it can be solved.

The issue is relevant in the calculation of the τ contributions to the tan2 β enhanced
corrections presented in Section 3.3.2. Two of the diagrams relevant for this discus-
sion are shown in Figure 4.1. Both include the same fermionic subloop yet FeynArts
constructs two different fermion traces. The reason is the application of the so called
"flipping rules". This feature of FeynArts allows for an unambiguous construction
of fermion traces containing Majorana fermions [34, 44]. However the algorithm to
construct the fermion traces uses the flipping rules in general. Thus it also affects the
diagrams in Figure 4.1. In the diagram on the left in Figure 4.1 the trace is constructed
to be

tr
[(
/q1 + /q2

)(
− ie√

2sW
γµω−

)(
mτ + /q2

) iemτ tan β√
2MW sW

ω−

]
, (4.1)

while in the diagram on the right the flipping rules are applied yielding

tr
[(
− /q1 − /q2

) iemτ tan β√
2MW sW

ω−
(
mτ − /q2

) ie√
2sW

γµω+

]
(4.2)
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b(1)

b(4)

γ(3)

u, c, t(5)

H−(9)

ντ (7)

τ(8) W−(6)

s(2)

b(1)

γ(3)

s(2)

s(4)

W−(9)H−(6)

u, c, t(5)

τ(8)

ντ (7)

Figure 4.1.: Sample diagrams for which FeynArts produces an amplitude inconsistent
with the ’t Hooft-Veltman prescription for γ5. Alongside the particles we
also denote the internal field numbers in brackets. Note that the trace of
the fermion subloop is the same. Due to the different field numbers of the
external H and W, flipping rules are applied for the diagram on the right.

The right- and left-handed projectors are given by

ω+ = 1
2 (1 + γ5) , ω− = 1

2 (1− γ5) . (4.3)

When evaluating the trace in Equation (4.1) only the term proportional to mτ con-
tributes, since traces over odd numbers of gamma matrices vanish. Thus the projection
operators are next to each other and no commutation relations have to be used. This
means that there can be no dependence on the γ5 treatment, as the evaluation is triv-
ial. In the flipped case this is no longer the case, since γ5 was anticommuted in the
flipping rules. If the ’t Hooft-Veltman scheme is applied in the calculation and the flip
is reversed using a different prescription for γ5 an error of order ε is introduced. After
introducing the algorithm that is used by FeynArts and explaining the crucial step that
causes the error, a replacement rule, defined in Equation (4.11), will be introduced to
fix the error.
FeynArts is designed to be applicable to a wide range of models. To this end it can

also handle Majorana fermions. This is achieved by the usage of flipping rules [34,
44] Instead of constructing fermion traces and open chains following the direction of
fermion number flow backwards, which is inconsistent when fermion number violating

57



4. The Mathematica package Medusa for two loop calculations in flavour physics

Majorana fermions are involved, FeynArts internally chooses a direction of fermion
flow and uses the flipping rules for couplings when the chosen direction is going against
the fermion number flow. This can be a problem, since in the implementation of the
flipping rules anticommuting γ5 is used. The usage of flipping rules is the general
prescription to construct traces and is applied in cases where no Majorana fermions
appear as well. It should be pointed out that in the most common usage of FeynArts, in
conjunction with FormCalc [43] to calculate one-loop diagrams, this is unproblematic,
as anticommuting γ5 is used consistently in both construction and evaluation of the
fermion traces.

The flipping rules are derived in [34] and amount to a charge conjugation of the
coupling.

Γflip = CΓTC† (4.4)

Where Γi = 1, iγ5, γµγ5, γµ, σµν are the elementary Dirac structures that need to be
considered. Using the properties of the charge conjugation matrix

C† = C−1, CT = −C (4.5)

the result is expressed in [34] in terms of

CΓTi C−1 = ηiΓi (4.6)

with

ηi =

1 for Γi = 1, iγ5, γµγ5,

−1 for Γi = γµ, σµν .
(4.7)

It is easy to see that for γµγ5 anticommuting γ5 was used, i.e.

(γµγ5)flip = C (γµγ5)T C−1 = CγT5 γ
T
µC
−1 = γ5Cγ

T
µC
−1 = −γ5γµ. (4.8)

If we want to express the result of (γµγ5)flip in Equation (4.8) in terms of the basic
structures Γi, like in Equation (4.7), one has to anticommute once. In [34] this step
is implemented with anticommuting γ5. Since the SM and the 2HDM are defined in
terms of chiral fields, the axial vector coupling in Equation (4.8) does not appear in
the generic model files FeynArts uses. The chiral basis is Γχi : 1, ω±, γµω±. Therefore
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the implemented chiral flipping rule in the default generic model file of FeynArts is

γµω±
flip→ −γµω∓. (4.9)

Where we followed the notation of [34] to denote the chiral projectors as ω± = 1
2 (1± γ5).

The issue cannot be solved with replacing the flipping rule with ω±γµ, were no an-
ticommuting γ5 was used, as this structure is not part of the chiral basis Γχi used to
describe generic couplings. When the flipping rule produces different structures not
represented in the basis they are not replaced when creating the amplitude, leaving a
generic placeholder in the expression. If on the other hand new structures are intro-
duced in the generic coupling, i.e. ω±γµ, they will be inserted in every occurrence of
the generic coupling. This creates additional terms for all insertions of the coupling
instead of just fixing the flipped couplings. Note that this problem cannot be solved
by using the chirally improved ’t Hooft-Veltman scheme, presented in Section 3.3.3, as
the projectors change sign and are therefore not mapped on themselves either, see

ω∓γµω±
flip→ −ω±γµω∓. (4.10)

The solution we chose when utilizing the ’t Hooft-Veltman scheme is to tag the
terms generated using this rule, which can easily be done in the generic model file.
Next the Dirac structure of the coupling is replaced by the structure obtained without
anticommuting. The explicit replacement rule is given by

− γµω∓ → −ω±γµ. (4.11)

4.3. Asymptotic expansion in small momenta

Since we are interested in new physics contributions in flavour physics, there is always
a clear separation of scales. There is the low scale of the masses and momenta of
external Standard Model particles and the high scale of the masses of new physics
particles. Hence for the considered cases an expansion in k2

i

M2
NP

, m2

M2
NP

the ratio of these
scales is always possible. This significantly simplifies the problem as the loop-integrals
to be computed reduce to a single integral, which is presented in Equation (4.32).
For this section we follow [76], since they give a very thorough introduction to the

topic. Here we briefly review the basic ideas using one diagram of the calculation
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presented in Figure 3.3.2 as an example. At the end of this section we will remark also
on the implementation and the role of asymptotic expansion in the package.
The example diagram of Figure 4.2 leads, when for simplicity disregarding the nu-

merator to

A =
∫∫

dDq1d
Dq2I =

∫∫ dDq1d
Dq2

(q1 + k1)2 −M2
t

1
(q1 + k2)2 −M2

H±

1
q2

1 −M2
W

1
(q1 + q2)2

1
q2

2 −m2
τ

1
(q2 + k2)2 −m2

τ

.

(4.12)

The naive approach is to apply the Taylor expansion

T nx f(x) =
n∑
j=0
T (n)
x f(x) =

n∑
j=0

1
j!
djf(x)
dxj

∣∣∣∣
x=0

xj (4.13)

to the integrand. Here x stands for one of the small momenta or masses. In the
following T is understood as an operator acting on all terms to the right. In the
integral above the small scale is represented by the external momenta and the τ mass.
Thus the expansion is given by

A =
∫∫

dDq1d
Dq2T nmτ ,p,kI (4.14)

where the Taylor operator of multiple variables is simplified with

T nx,y =
n∑
j=0
T (j)
x T n−jy =

n∑
j=0
T jx T (n−j)

y (4.15)

The expansion parameter is the small external momentum or mass divided by one
of the large masses k2

i /M
2
large, m2/M2

large. While propagators with large masses Mi

are regular as ki goes to zero a problem arises when expanding the last two terms in
Equation (4.12), as there is no large mass present to regularize the propagators when
the small scales are set to zero. Instead one has to assume that the external momentum
is small compared to the only other scale in this propagator, the loop momentum. This
however is not true for all values of the infinite integration domain. If the naive Taylor
expansion is used anyway new infrared divergences are introduced. Note that in this
diagram this situation cannot be avoided by rerouting the flow of external momenta.
The solution of this problem of the naive expansion is the asymptotic expansion with
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b

t

s

H−

W−

ντ

τ

τ

γ

Figure 4.2.: Example diagram to consider the basics of asymptotic expansion. The
hierarchy of scales is given by m2

τ ∼ m2
b ∼ p2 �M2

W < M2
t < M2

H± .1

the large mass procedure in described in [76].
The basic idea is that the integration domain is split into regions. For the discussion

at hand it is sufficient to split the integration domain in two. The value of the cut off
Λ is dictated by the structure of the integrand. The term yielding the contribution of
the naive Taylor expansion is the region in which the loop momentum is considered
to be large. In Equation (4.16) this will be the first term. For the above example in
Equation (4.12) Λ has to be chosen such that q1, q2 > Λ ∼ ki ∼ mτ . For this example
the only other contributing limit is defined by q2 ∼ ki < Λ < q1 ∼ Mi, yielding the
second term in Equation (4.16). In the generic two-loop case there are other limits to
consider, i.e. q1 < Λ < q2 ∼ Mi and q1 ∼ q2 < Λ < Mi. In the example at hand these
limits will result in scaleless integrals, which vanish in dimensional regularisation. In
the specified regions

A =
∫
|q1|>Λ

dDq1

∫
|q2|>Λ

dDq2Tki,mτ I +
∫
dDq1

∫
|q2|<Λ

dDq2Tki,mτ ,q2I (4.16)

it is justified to perform the appropriate expansions.
Instead of evaluating the integrals with the cutoff Λ, the integration domain for each

integral is now extended over all loop momenta again. This means that in Equation
(4.16) we drop the restrictions of the integration domains and get

A =
∫
dDq1

∫
dDq2Tki,mτ I +

∫
dDq1

∫
dDq2Tki,mτ ,q2I. (4.17)

1Like many of the Feynman diagrams in this thesis this has been created with the help of [10]
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This is a non-trivial step and in [76] there is only one basic example where this is
presented step by step, since as they state it is very difficult to give rigorous proofs
that the extension of the integration domain is possible. A plausibility argument is
that the integrals we obtain in this procedure are regulated by a cut-off. The method
of regularisation however is a choice and the regularisation parameter has to vanish in
physically meaningful results. If we disregard that the integrals resulted from splitting
the domain, the freedom of choice of the regularisation method gives a hint as to why it
is possible to apply dimensional regulation for the integrals of the expanded integrands.
While it is instructive to look at the regions explicitly, for a systematic generation

of all needed terms in the expansion the expansion by subgraphs will be presented
as a general prescription. The implementation in Medusa closely follows the way the
procedure is presented here. A subgraph consists of a subset of the propagators. A
propagator is called a heavy line if the mass of the propagator is considered to be large
compared to the external momenta. To systematically include all possible contributions
we have to identify the so called asymptotically irreducible (AI) subgraphs. A subgraph
is AI if:

1. it contains all the heavy lines

2. it is one particle irreducible with respect to the light lines

The task then is to find all AI subgraphs and expand them in the small masses and all
momenta that are external to the respective subgraph.
Constructing all AI subgraphs will ensure that all relevant regions are taken into

account. When constructing the subgraphs one loop is always cut open, rendering the
respective loop momentum an external momentum with respect to the subgraph. It is
therefore considered small and expanded. This case corresponds to the second term in
Equation (4.16), where the region of small loop momentum is considered.
To illustrate these steps we turn back to our example given in Equation (4.12). The

identified AI subgraphs are also shown in Figure 4.3. Certainly the whole diagram
satisfies the AI condition. The other subgraphs can be found by removing light lines
from the graph. Due to the second condition there are three possibilities. Remove
both of the τ propagators, since by removing only one the result would not be 1PI with
respect to the remaining τ line and therefore violate the second condition. Secondly
the ντ propagator can be removed. This gives us the two subgraphs in the middle of
Figure 4.3. The last AI subgraph comprises the heavy lines only.
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Figure 4.3.: Possible AI subgraphs of Figure 4.2. We follow the convention to denote
heavy lines by a double line.

Now that we identified the subgraphs we need to expand them in the appropriate
parameters. As stated above this means all small masses and all momenta external to
the subgraph. For the first subgraph we retrieve the naive Taylor expansion.

Iγ1 =
∫∫

dDq1d
Dq2Tk1,k2,mτ

1
(q1 + k1)2 −M2

t

1
(q1 + k2)2 −M2

H±

1
q2

1 −M2
W

1
(q1 + q2)2

1
q2

2 −m2
τ

1
(q2 + k2)2 −m2

τ

(4.18)

For the second subgraph in Figure 4.3, the loop momentum q2 is considered to be
external, since it is flowing through the subgraph. Thus it is included in the expansion.
This will result in genuine two-loop integrals that can be solved with Equation (4.32).
One finds

Iγ2 =
∫
dDq2

1
q2

2 −m2
τ

1
(q2 + k2)2 −m2

τ∫
dDq1Tk1,k2,mτ ,q2

1
(q1 + k1)2 −M2

t

1
(q1 + k2)2 −M2

H±

1
q2

1 −M2
W

1
(q1 + q2)2 .

(4.19)

This will leave us with the product of two one loop integrals, a massive tadpole and a
B0-function. These are the two non-zero contributions we mentioned earlier.
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For the third subgraph the roles of the light lines are reversed.

Iγ3 =
∫
dDq2

1
q2

2∫
dDq1Tk1,k2,mτ ,q2

1
(q1 + k1)2 −M2

t

1
(q1 + k2)2 −M2

H±

1
q2

1 −M2
W

1
(q2 − q1)2 −m2

τ

1
(q2 − q1 + k2)2 −m2

τ

(4.20)

Note that we changed the flow of loop momenta, since effectively only one loop mo-
mentum has to flow out of this subgraph, as it is topologically the same as the previous
one. Although in this diagram we could have circumvented this from the beginning by
choosing the loop momenta such that only the massive propagators carry both loop
momenta, in general this is a required step. This will lead to a massless tadpole integral
for q2 and thus vanishes.

In the fourth subgraph only the massive lines are expanded and both loop momenta
are external, since the diagram is not a closed loop itself. We get

Iγ4 =
∫ dDq1

q2
1

∫ dDq2

q2
2 −m2

τ

1
(q2 + k2)2 −m2

τ

Tk1,k2,mτ ,q1,q2

1
(q1 − q2 + k1)2 −M2

t

1
(q1 − q2 + k2)2 −M2

H±

1
(q1 − q2)2 −M2

W

.

(4.21)

The expansion will leave us with a prefactor of large masses multiplied with a massless
tadpole and a B0-function. Thus this subgraph also vanishes in this example. Note
that we shifted q1 → q1 − q2 to make the massless tadpole obvious.

The last two vanishing contributions exemplify that in general the loop momenta
might have to be shifted, which is important to note in the implementation of the
algorithm. If the masses in the diagram are different, there could have been one
additional subgraph. To arrive at this case the top quark is replaced by a up quark
or charm quark. If mu or mc are not set to zero to start with, but taken into account
in the expansion, the additional subgraph would include the leptonic subloop and the
two remaining massive lines, excluding only the light quark propagator.

The implementation in Medusa follows the algorithm presented here step by step very
closely. With exp [78] there is also an older more general implementation in Fortran
with interfaces to FORM. First the set of propagators is split into heavy propagators,
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which are included in the expansion of all subgraphs, and light propagators. Then
the light propagators are categorised by the loop momenta passing through, i.e. only
q1, only q2 or q1 + q2. The subgraphs are then constructed by removing one of the
categories from the graph. Due to the second condition for AI subgraphs, only a
complete category can be removed to create a subgraph.

The only subgraph that might not be covered yet contains no closed loops and
constitutes of only heavy lines. In the example considered above this case is represented
by the diagram on the right in Figure 4.3. Thus in the end we check whether the
subgraph containing only heavy lines is already covered in the previous construction
or has to be added. This amounts to removing all three categories from the diagram.
Note that if propagators from all three categories are present and we take out two
categories, the resulting graph cannot be 1PI with respect to the light lines, since there
cannot be a closed loop. Therefore with this procedure all combinations have been
accounted for. The loop momentum that needs to be expanded is always the loop
momentum defining the category removed from the subgraph or both in the case of
the purely massive subgraph.

Finally we want to comment on the role of the asymptotic expansion in matching
calculations, for example the one presented in Section 3. As has been stated in Section
3.1.1, the matching comprises of one calculation of the amplitude in the full theory,
containing the heavy degrees of freedom, which has to be equal to the result of the
calculation in the effective theory, where all heavy scales have been integrated out. This
equation is used to solve for the Wilson coefficient of the effective theory, encompassing
all information of the heavy scale.

The extra terms generated by the large mass procedure, compared to the naive Taylor
expansion, describe the physics of the low energy scale, for example the mτ -dependence
of the B0-function in Iγ2 in Equation (4.19). The latter gives rise to logarithms of mτ .
They cannot be part of the Wilson coefficient in the end, as it is a function purely of
the heavy masses. Therefore contributions from the small scale either have to cancel
when adding up all the diagrams of the full theory or the same dependence on the small
scale has to appear on the side of the effective theory describing the low scale physics.
The latter would be the case if there are loop diagrams on the side of the effective
theory. In the calculation of Section 3.3.2, from which the example diagram Figure
4.2 is extracted, a cancellation of all contributions from the light degrees of freedom
occurs, since the four fermion operators cannot mix into Q7 at the considered order.
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The difference between asymptotic expansion and the naive Taylor expansion is in
this context the treatment of infrared divergences. In the naive Taylor expansions,
when the small masses are set to zero new infrared divergences can arise, which are
then regularised dimensionally. When using the asymptotic expansion for the same
process there will be logarithmic divergence when considering the limit of the small
mass approaching zero. This has been investigated in detail for the calculation pre-
sented in Section 3.3.2. In both pictures the infrared divergence has to cancel either in
the matrix element of the full theory itself or in the matching if there is a equal contri-
bution on the effective theory side. The advantage of using the asymptotic expansion
is that it allows a clear distinction of infrared and ultraviolet and therefore enables us
to understand the origin of the contributions. It also increases the applicability of the
package and allows quick checks for one-loop processes.

4.4. The loop Integrals

In this section we will present the loop integrals used. We start with some brief
remarks about the one-loop case, as we recalculated several integrals in D dimensions,
and subsequently present the solution of the tensorial two-loop vacuum integral with
three masses. We close the section by presenting the checks used to verify the solutions.

4.4.1. One-loop integrals in D dimensions

Among the diagrams at two-loop level there will be some containing products of two
one-loop integrals. Due to the asymptotic expansion in small momenta they will be
reduced to simple tadpole diagrams. The asymptotic expansion however produces also
one-loop diagrams with one or two external momenta. They have to be evaluated to
first order in ε, as the other integral in the product can be divergent, resulting in a
finite term where the ε−1 term and the ε1 term in the expansion cancel.
For all diagrams needed in the calculations presented in Section 3 we opted to eval-

uate the tensorial one-loop integrals fully in D dimensions. The solutions will be listed
below. The only exception is the B0(k2,m0,m1) function with three different scales, for
which only the first order in ε has been implemented. When evaluating the amplitude
on-shell, several different cases have to be considered. Whenever possible we compared
our results with [75, 76] and found agreement.
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The integrals will be listed in the following. First, some notation has to be intro-
duced. Symmetric products of metric tensors and four vectors of different powers will
be expressed as (gλpn){µ1...µ2λ+n}, i.e.

(gp2){µνκλ} = gµνpκpλ + gµκpνpλ + gµλpνpκ + gκνpµpλ + gκλpµpν + gλνpµpκ. (4.22)

The Beta function is expressed as B(a, b) = Γ(a)Γ(b)
Γ(a+b) . Finally the Pochhammer symbol

(a)b is defined as (a)b = Γ(a+b)
Γ(a) .

Br
ab(k, k2,m0,m1) =

∫
dDq

∏r
i=1 q

µi

(q2 −m2
0)a ((q + k)2 −m2

1)b
(4.23)

Br
ab(k, k2, 0, 0) = iπ

D
2

Γ(a)Γ(b)

[ r2 ]∑
λ=0

(−1)r+a+b−λ2−λ(−k2)−a−b+λ+D
2

(gλkr−2λ){µ1...µr}Γ
(
a+ b− λ− D

2

)
B(−b+ λ+ D

2 ,−a+ r − λ+ D

2 )

(4.24)

Br
ab(k, k2, 0,m1) = iπ

D
2

Γ(b)

[ r2 ]∑
λ=0

(−1)r+a+b−λ2−λ(m2
1)−a−b+λ+D

2

(gλkr−2λ){µ1...µr}Γ
(
a+ b− λ− D

2

)
Γ(−a+ r − λ+ D

2 )
Γ(r − λ+ D

2 )

2F1(a, a+ b− D

2 − λ, r − λ+ D

2 ,
k2

m2
1
)

(4.25)

Br
ab(k, 0, 0,m1) = iπ

D
2

Γ(b)

[ r2 ]∑
λ=0

(−1)r+a+b−λ2−λ(m2
1)−a−b+λ+D

2

(gλkr−2λ){µ1...µr}Γ
(
a+ b− λ− D

2

)
Γ(−a+ r − λ+ D

2 )
Γ(r − λ+ D

2 )

(4.26)
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Br
ab(k, 0,m1,m1) = iπ

D
2

Γ(b)

[ r2 ]∑
λ=0

(−1)r+a+b−λ2−λ(m2
1)−a−b+λ+D

2

(gλkr−2λ){µ1...µr}Γ
(
a+ b− λ− D

2

)
Γ(b+ r − 2λ)

Γ(a+ b+ r − 2λ)

(4.27)

Br
ab(k, 0,m0,m1) = iπ

D
2

Γ(a)Γ(b)

[ r2 ]∑
λ=0

(−1)r+a+b−λ2−λ(m2
1)−a−b+λ+D

2

(gλkr−2λ){µ1...µr}Γ
(
a+ b− λ− D

2

)
Γ(a)Γ(−a+ D

2 + r − λ)
Γ
(
D
2 + r − λ

)
2F1

(
a, a+ b− D

2 − λ, 1 + a− D

2 − r + λ,
m2

0
m2

1

)

+
(
m2

0
m2

1

)−a+D
2 +r−λ Γ (b+ r − 2λ) Γ

(
a− D

2 − r + λ
)

Γ
(
a+ b− D

2 − λ
)

2F1

(
b+ r − 2λ, D2 + r − λ, 1− a+ D

2 + r − λ, m
2
0

m2
1

)

(4.28)

The tadpole integral is given as

∫
dDq

∏r
i=1 q

µi

(q2 −m2)a = iπ
D
2 (−1)a

(d+ r − 2)!!Γ(a)

(
−D2 −

r

2 + 1
)
r
2

(
g
r
2
){µ1...µr}

(
m2
)−a+ r

2 +D
2 Γ

(
a− r

2 −
D

2

) (4.29)

completing the list of one-loop integrals implemented in D dimensions.

4.4.2. The tensorial two-loop vacuum integral with three masses

The most complicated integral implemented in Medusa is the tensorial two-loop vac-
uum integral with three different masses. A solution based on tensor reduction and
subsequent reduction to master-integrals by integration-by-parts identities was first
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m

M1

M2

k−→

p−→

Figure 4.4.: The topology of the two-loop vacuum integral. In the solution the powers
of the three propagators can be raised to arbitrary powers.

obtained in [30]. In the following we will present the solution implemented in Medusa,
which is a closed form solution for arbitrary tensor orders and powers of the denomi-
nators. The topology is shown in Figure 4.4. The generic tensorial two-loop vacuum
integral is defined by

T ν1...νs;µ1...µr
αβγ (m,M1,M2) =µ

4εe2γEε

[iπD
2 ]2

∫∫
dDk dDp

pν1 · · · pνs · kµ1 · · · kµr
(m2 − k2)γ · (M2

1 − p2)α ·

1
(M2

2 − (p+ k)2)β .
(4.30)

A closed form solution has first been obtained in [68]. The solution is expressed in
terms of a set of functions h, introduced to simplify the result and its evaluation. They
are defined in Equation (4.33) and were first evaluated using a reduction approach.
We later extended the solution to arbitrary powers, α, β and γ, of the propagators in
[81]. Note that integrals with additional propagators of different masses can always be
simplified to the form of Equation (4.30) by partial fractioning. The form in Equation
(4.30) is therefore the most general case that needs to be considered.
The Lorentz structure of the result is expressed in terms of

Gν1...νsµ1...µr
λ =

∑
{ρ1...ρ2λ}∩{ρ2λ+1...ρs}={1...s}

(
gλ
){νρ1 ...νρ2λ}

(
g
r+s

2 −λ
){νρ2λ+1 ...νρsµ1...µr} . (4.31)
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The indices ν1, . . . , νs are divided into all possible subsets of length λ. The sum goes
over all subsets of {1, 2 . . . s} and defines the possible values of ρi. (gn)µ1...µ2n is the
symmetric sum of products of n metric tensors. The functions h and TIR will be defined
in Equation (4.33) and Equation (4.34) respectively. The solution of the integral reads
[81]

T ν1...νs;µ1...µr
αβγ (m,M1,M2) =

e2γEε(−1) s−r
2

Γ(α)Γ(β)

[ s2 ]∑
λ=0

Gν1...νsµ1...µr
λ

(1
2

) r+s
2
[
T s,r,λαβγ,IR (m,M1,M2)

+
κ∑
k=0

(1− γ − k)k
k!

(
m2
)k Γ

(
−4 + α + β + γ − r+s

2 + k + 2ε
)

(
2− γ + r+s

2 − λ− k − ε
)
γ+k

h
4−α−β−γ+ r+s

2 −k
−3+β+γ+ s−r

2 −λ+k,−3+α+γ− s+r
2 +λ+k (M2,M1)

]
, (4.32)

where h contains the hypergeometric function and is defined as

hpk n (Mi,Mj) := µ4ε
∫ 1

0
dxxk+ε(1− x)n+ε

(
x
(
M2

i −M2
j

)
+M2

j

)p−2ε

=
(
M2

j

)p (M2
j

µ2

)−2ε

B(1 + k + ε, 1 + n+ ε)

2F1

(
−p+ 2ε, 1 + k + ε, 2 + k + n+ 2ε, 1− M2

i

M2
j

)
. (4.33)

B denotes the Beta function B(x, y) = Γ(x)Γ(y)/Γ(x + y) The function TIR contains
possible infrared poles and is given by

T s,r,λαβγ,IR (m,M1,M2) =

(−1)r−λ+γ

Γ(γ)
Γ(−2 + α + β − λ+ ε)

Γ
(
2 + r+s

2 − λ− ε
) πµ4ε

sin(πε)

L−2− r+s
2 +λ+κ∑

k=0

(−1)k
k!

(3 + r + s

2 − λ− γ + k − ε)γ−1
(
m2
)2+ r+s

2 −λ−γ+k−ε

−1+α+k∑
i=0

(
−1 + α + k

i

)
(−1)i

(3− α− β + λ− ε)β+i+s−2λ

∂−1+β+s−2λ+k+i

∂ (M2
2 )−1+β+s−2λ+k+i

(M2
1 )2−α+s−λ+i−ε − (M2

2 )2−α+s−λ+i−ε

M2
1 −M2

2
(4.34)
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In the derivation of Equation (4.32) an expansion in m2

(M1+M2)2 was performed. In
the above formula the expansion order has been denoted with κ. Note that this is a
regular expansion in the sense that it does not introduce new dimensionally regulated
singularities. It is also converging rather fast, while extending the expansion order to
high values, i.e. ≥ 10, is feasible on a regular desktop.
As has been already mentioned in Section 4.1, T and TIR are not functions accessible

to the user in the implementation of Medusa. Instead the total result is split in the finite
part, represented by TLFin, and the divergent part, which is automatically inserted.
This gives the opportunity to raise the expansion order after the calculation is otherwise
complete to achieve the desired precision. While obviously it would be preferable to
have the result without any expansions, due to this setup the expansion is of no issue
in practical calculations. To facilitate this Medusa builds a database of solved and
simplified instances of the loop integral.
One special case is if one mass is zero m = 0. This leads to a simplified result

T ν1...νs;µ1...µr
αβγ (0,M1,M2) =

(iπD
2 )2

Γ(α)Γ(β)

[ s2 ]∑
λ=0

2−
r+2

2 (−1) r2 + 3
2 sGν1...νs;µ1...µr

λ

(
M2

1

)4+ r+s
2 −α−β−L−2ε

Γ(2− ε+ r+s
2 − λ− L)Γ(−4 + 2ε− r+s

2 + α + β + L)
Γ(2− ε+ r+s

2 − λ)

B(−2 + ε− r − s
2 − λ+ β + L,−2 + ε− r + s

2 + λ+ α + L)

2F1

− 2 + ε− r − s
2 − λ+ β + L,−4 + 2ε− r + s

2 + α + β + L,

− 4 + 2ε− r + α + β + 2L, 1− M2
2

M2
1

.

(4.35)

Especially the solution for the case m = 0, M1 = M2 is in agreement with [22].

4.4.3. Checks

Since no reduction with integration-by-parts (IBP) relations has been performed, they
are a useful tool to crosscheck the result. They give us relations between different
tensor orders and indices of the integral, which we used as consistency checks of the
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solution. We used the following two relations for crosschecks

0 =
∫∫

dDq1d
Dq2

∂

∂qµ1

∏s
i=1 q

σi
1 q

µ
1

(q2
1 −m2

1)a
1

((q1 + q2)2 −m2
2)b

∏r
j=1 q

ρj
2

(q2
2 −m2

3)c

=(D + s)Is,r(a, b, c)− 2aIs+2,r(a+ 1, b, c)

− 2b (Is+2,r(a, b+ 1, c) + Is+1,r+1(a, b+ 1, c)) ,

(4.36)

0 =
∫∫

dDq1d
Dq2

∂

∂qµ2

∏s
i=1 q

σi
1

(q2
1 −m2

1)a
1

((q1 + q2)2 −m2
2)b

∏r
j=1 q

ρj
2 q

µ
2

(q2
2 −m2

3)c

=(D + r)Is,r(a, b, c)− 2cIs,r+2(a, b, c+ 1)

− 2b (Is,r+2(a, b+ 1, c) + Is+1,r+1(a, b+ 1, c)) .

(4.37)

Where I is given by

Is,r(a, b, c) =
∫∫

dDq1d
Dq2

∏s
i=1 q

σi
1

(q2
1 −m2

1)a
1

((q1 + q2)2 −m2
2)b

∏r
j=1 q

ρj
2

(q2
2 −m2

3)c . (4.38)

The addition of 1 and 2 to the qi tensor rank, s and r, means that the contracted µ
appear with the respective loop momentum of the category s and r.
These relations allow for a fully analytic consistency check of our solution. We

implemented an automatic check of all index combinations used in the calculations,
presented in this thesis, and obtained agreement. We also numerically compared to
the result of [30] for low powers of propagators and tensor ranks. Note that the IBP
relations always relate Is,r(a, b, c) with integrals of increased tensor order and powers
of the propagators. Comparing the starting point numerically and consistently rising
to arbitrary orders by the IBP recurrence relation, poses a strong check of the result
and implementation of the integral.
In fact we also applied similar IBP checks to all solutions of one loop integrals we

implemented.

4.5. Functions and structures of Medusa

In this section we will take a closer look at the implementation of the Mathematica
package Medusa. We will shortly present the two ways to use it for calculations: fully
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automatic and semi automatic. The necessary steps for a calculation with Medusa
only change slightly for different cases, which is why we implemented an optimised, via
options customizable function to handle one diagram or a list of diagrams. In some
cases however one might be interested to see and manipulate intermediate expressions,
which is why all functions for specific tasks are also made accessible. Where adequate
we will give complete lists of conceptually linked structures as quick references.

Fully automatic calculation of amplitudes

The outline of the steps has been already given in Section 4.1. Now we will discuss the
implementation and the options it offers.

ComputeAmplitudes[OutputDir,Name,Range,ExpansionOrder,

OSrules,MassHierarchy,Amplitude]

Since at two loop the number of diagrams can reachO(1000), the parameters OutputDir
and Name have been introduced. This gives the possibility to structure the output by
contributions. For simple calculations one can set the OutputDir to False which will re-
turn the results directly as Mathematica output. Range is a list of the diagram numbers
to calculate and allows to split a calculation into several parts, for example when naive
parallelisation is used. The ExpansionOrder = {a, b} is supposed to be a list where the
first integer a dictates the order of the asymptotic expansion in small momenta, while
the second integer b is the order to which the integrals of Section 4.4 are expanded. The
required order in the expansion in small momenta is small in the applications to be con-
sidered with the package. The recommended expansion order for the integral depends
on the masses in question. Tested values reach up to 20. It is important to correctly
take into account possible small masses, that are of the scale of the external momen-
tum, in the asymptotic expansion. This is done by specifying the MassHierarchy, i.e.
MassHierarchy = {{0,mb},MW ,Mt,MH±}, which categorises the masses into small,
list of masses in the first element, i.e. mb, and large MW ,Mt,MH± , whose hierarchy is
dictated by their order in the subsequent elements. The hierarchy will be automatically
used to evaluate the expansion in the two-loop solution accordingly. The OSrules, i.e.
OSrules = {Scalp[FourMomentum[Outgoing, 1], FourMomentum[Outgoing, 1]] → 0},
are used if a process is to be evaluated on-shell and are expected to be a list of rules
replacing scalar products of external momenta. The Amplitude has to be given in
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FeynArts notation. It is important to keep this in mind when performing custom
manipulations on the amplitude beforehand.

There are a wide range of options falling into two categories: functional and diag-
nostic. First we will briefly review the functional options to influence the flow of the
calculation.

The most important one is OptionsDir(file name), which can be set either to a
directory containing the files FCRules.m and hooks.m or to a list of the explicit file
names in the order given here.

FCRules can contain custom rules to change the handling of open fermion chains. A
default set of rules is defined based on anticommuting γ5, which just sorts the chains
to reduce the number of terms. Often there is the need to customize these rules. As
discussed in Section 3.1.2 different basis can be chosen for matching calculations. This
applies to the choice of on-shell and off-shell basis discussed in Section 3.1.2 as well
as different basis for other processes. As the desired basis varies from calculation to
calculation the definition of the basis via Mathematica replacement rules, has to be
user defined.

In hooks.m functions can be defined that give the possibility to include user defined
code during the calculation. The first is PreProd, that can be used to modify the
parts of the amplitude before the calculation. The second one, hook1, is called right
before the asymptotic expansion, i.e. right before the first non-trivial task. It takes two
arguments. The first is the global factor of the diagram containing all the couplings.
The second is a sum containing the rest. At this point of the calculation the structure
of the amplitude has been simplified from the original FeynArts formatting. Most im-
portantly all the factors are extracted out of the trace and fermion chain, which makes
it the ideal point to select the desired contributions. For example we selected only the
tan2 β enhanced terms in the calculation detailed in Section 3.3.2. This corresponds to
the definition

hook1[GlobalFactor_, MainTerm_] := {GlobalFactor, TB2Coefficient[MainTerm, TB2]}.

This reduces the number of terms and can lead to a considerable speed up. The
last function HookFunkEnd is called after ComputeAmplitudes is finished and can be
used to simplify the output. It receives the final result of ComputeAmplitudes as
first argument, the specified output directory as second argument and the number of
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the considered diagram as third argument. It can be useful to split the result into
contributions on this level, producing different output files for each.

UseHypExp (Boolean) and UseHypExpLib(Boolean) control whether HypExp
and its built in database is used. While it is strongly suggested to use HypExp, there
exists also a considerably slower reduction based method to evaluate the hypergeomet-
ric functions in Equation (4.32). By default HypExp starts to build a library of known
functions, which can speed up the calculation noticeably, thus this too is recommended.
Medusa comes with a modification of HypExp replacing the functions controlling the
library to extend the range of possible parameters, which by default cannot surpass
single digit numbers. This means that when using this feature an old library created
without the modification will not be compatible. As the modification does not touch
the functionality and just extends the reach of the library it can be consistently used
whenever using HypExp for other applications.

UseTLFin (Boolean) determines whether to directly insert the full result of two
loop integrals or to keep the final part as the Head TLFin. Also this is strongly rec-
ommended as cancellations mostly happens when adding all diagrams, which makes it
more efficient to first add and then simplify.

AutoOptimizeMomenta (Boolean) has been introduced, since the momentum
flow of the FeynArts amplitudes is most of the times not optimal. When set to True
ComputeAmplitudes tries to minimize the number of propagators with external mo-
mentum dependence to preemptively simplify the asymptotic expansion and minimize
the number of terms. As there are no negative effects and it speeds up the calculation
this too is recommended.
Finally the options for the asymptotic expansion: UseLargeMassExpansion (Boolean)

can be set to False when a naive expansion is sufficient. NoExpansion (Boolean) can-
not be used on two-loop, since Medusa can only handle vacuum integrals. On one-loop
it should be considered experimental, as not all one-loop integrals are implemented as
of now. Furthermore there are specialised programs and packages to handle one-loop
calculations [64, 74, 43], which will be faster. We used this mainly for crosschecks with
the mentioned programs when calculating the counterterms.
Next we review the diagnostic options.
RunLog (Boolean or file name) specifies if an where to write a log during runtime.

The content of the log are both the tasks last completed and key parameters of the
calculation. These are: time expired for the specified step, memory required, maximum
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4. The Mathematica package Medusa for two loop calculations in flavour physics

memory used and the leaf count of the intermediate expression.
ReapIntermediate (Boolean) can be used to get a list of intermediate results at

key points of the calculation, i.e. in between the important steps.
TagAsExpContributions (Boolean) controls whether the extra terms due to the

asymptotic expansion, as compared to the naive expansion, should be tagged.
To use the maximum potential of a Mathematica implementation care has been taken

to make sure user defined objects are not touched, while making sure that automated
steps are robust. When investigating the γ5 dependence of the amplitude, see Section
3.3.3, for example this idea was very helpful. The order of steps in ComputeAmplitudes
is to solve traces in the before the asymptotic expansion to make use of simplifications
early on. To test many schemes with one result however it is much more useful to return
the result with the traces unevaluated. This is easily possible by introducing a custom
Head for the trace, while making sure the loop momenta are explicitly separated, i.e.
the object replaced consists only of γ-matrices. The implemented automatic calculation
then just ignores the custom Head. Since everything is built to handle open Lorentz
indices, the missing trace leads to no errors and can be treated, by hand in a number
of schemes, after the rest of the calculation is taken care of automatically.
Next we will shortly review the structures that will constitute the result.
For the Lorentz structure we kept mostly to the FeynArts notation, with the notable

exception of the symbolically symmetrised products. As stated in Section 4.1 they are
crucial to the handling of tensorial integrals. All structures are summarised in Table
4.1.
Global contraction rules are defined only for the symmetric products, as they are

introduced in the expression in a controlled way through the solution of the loop
integrals. As both the Lorentz structure and the solution of the integral can include
a number of terms, it is very inefficient to expand the product to contract all indices.
Thus the Lorentz structure of the prefactor is contracted directly with the symmetric
product of metrics that constitutes the tensorial part of the solution of the loop integral,
while the rest is factored out.
The functions LorentzContract, MetricElim and LCTElim are used to contract all

Lorentz structures or metrics and ε tensors respectively. We did not include global
rules for the elementary structures for metric, four-vector and Levi-Civita tensor, as
they often can’t be further simplified. This is the case when they are contracted with
a tensor integral or in the fermion chain for example/ Choosing when to contract, by
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4.5. Functions and structures of Medusa

gµν Metric[µ,ν]
pµ FourVector[p,µ](

gλ
){µ1,µ2,...,µ2λ}

SymbSymMetric[µ1,. . . ,µ2λ]
ρ1!ρ2!

(
gλpρ1

1 p
ρ2
2

){µ1,...,µ2λ+ρ1+ρ2} SymbSymProd[µ1,. . . ,µ2λ+ρ1+ρ2 ][λ,{{ρ1, p1}, {ρ2, p2}}]
εαβµν LCT[{α, β, µ, ν}]
p · k Scalp[p,k]
ĝµν H[Metric[µ, ν]]
g̃µν T[Metric[µ, ν]]

LorentzContract Contract all indices
MetricElim Contract metrics only

LCTElim Contract Levi-Civita Tensors only

Table 4.1.: The basic Lorentz structures and functions to manipulate them. The ε
tensor is considered 4-dimensional, as is g̃. ĝ is the metric in (D − 4)-
dimensions. All other objects are defined in D-dimensions.

calling the above function, therefore speeds up the calculation, as the rules are only
applied when needed.
It should also be pointed out that the metrics of the subspaces are viewed as projec-

tors onto the respective subspace. Thus we do not create (D − 4) and 4-dimensional
scalar products in the loop integration. They are simplified only when contracting with
other metrics or when resulting in zero, when projectors on two different subspaces are
contracted. Following Tracer g̃ = g − ĝ is used in the fully automatic calculation, but
g̃ can be handled also explicitly.
As pointed out before, another important structure in the output is TLFin, denoting

the finite part of a two-loop integral. They can be inserted explicitly via InsertTLFin.
It is best used after adding different diagrams to keep the terms small in intermediate
steps and use cancellation between diagrams in one simplification step.

Functions for single tasks

If more control over the calculation is required, it can also be carried out step by step.
To properly set up certain global variables InitializeFreeFire is the first step. Next
the amplitude has to be translated in Medusa notation via GetFeynAmp. This splits
it into parts: IntegralPart,FactorPart, TracePart and FermionChain. The parts are
accessed via GetParts to then manipulate with the appropriate functions. For the
trace and fermion chain these are the respective prepare functions, listed in Table 4.2.

77



4. The Mathematica package Medusa for two loop calculations in flavour physics

MatrixTrace Trace of γ kept in FeynArts notation
TraceHead Placeholder for unevaluated Trace
TraceList List of definitions of TraceHead

FermionChain Open chain of γ kept in FeynArts notation
FermionChainHead Placeholder for unevaluated open chain

ChainList List of definitions of FermionChainHead
PrepareFermionChain Splits kinematic variables and couplings off the chain

InsertSimpFermionChain Custom rules can be defined to match a wanted operator base
PrepareTrace Splits kinematic variables and couplings off the chain

InsertTraceSol Handling of γ5 can be controlled by options

Table 4.2.: Overview over the basic Dirac-structures and the functions to manipulate
them.

The introduced Placeholders can then be solved or simplified right away with the Insert
functions or after the other steps.
The next step is the asymptotic expansion via AsExp. The result is still given in terms

of propagators SerProp. To collect all propagators to loop integrals GlueLoopInts is
used. At this point the loop integrals are represented with LoopInt and Loop2Int.
The solutions of the loop integrals are inserted via SolveLoopIntegrals. The last
step is the expansion in ε which is done with εExp.
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CHAPTER 5

Conclusion

In this thesis we presented the calculation of the tan β leading contributions to the
inclusive radiative B decay B̄ → Xsγ in the Two Higgs Doublet Model of type II.
To this end we calculated the two-loop corrections to the Wilson coefficients due to
Barr-Zee type diagrams containing b− t quark and τ − ντ subloops.
The leptonic result turned out to be unexpectedly small due to cancellations between

the leading diagrams. An upper bound on the relative size of the two-loop contributions
due to τ subloops is only C

(1,τ)
7

C
(1,0)
7

= 5.2 · 10−4. This in turn means that the tan β
independent bound on the charged Higgs mass from [67] is proven to be valid for all
values of tan β.
We investigated the tan β enhanced quark contributions to b → sγ and found that

they are inseparable from the contributions due to Higgs self-couplings. Once a set
of minimal parameters for the model is chosen both types contribute to the tan β
enhanced term and do not yield finite results if they are considered separately. We
also found that it is crucial to include the charged Higgs contributions to the CKM
renormalisation. Thus we considered the leading tan β contributions to the counterterm
of the CKM matrix elements, which acquire tan β enhanced contributions due to the
flavour changing self-energies containing H±. We obtain a finite but gauge variant
result, hinting at a conceptual problem with the mixing self-energy contributions.
For the sake of these calculations the new Mathematica package Medusa has been
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5. Conclusion

developed, that can be used for applications in flavour physics. This includes matching
calculations for rare decays, as has been presented in this thesis, as well as the calcu-
lation of contributions to neutral meson mixing. With the presented calculations in
the Two Higgs Doublet Model and the Standard Model we showed the viability of our
method and implementation. The package Medusa provides a fully automatic imple-
mentation of two-loop calculations and is primarily aimed to enable fast calculation of
two-loop contributions in a variety of models. It is being applied presently to calculate
Higgs self energies at two loop in the MSSM [35].
Since in the near future the experimental landscape gets expanded by Belle II, the

new package comes at an opportune time, as high precision predictions are required to
make the most of the increased precision of the experiment.
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APPENDIX A

Feynman diagrams of the yb induced tanβ enhanced terms in
b → sγ

In this appendix the relevant Feynman diagrams for the discussion of the y2
b contribu-

tion in Section 3.3.4 are depicted. The diagrams are split into the triangle diagrams,
the class with one external mixing self energy and the class with two external self ener-
gies. Non mixing external self energy contributions are considered by renormalisation
of the fields. As explained in Section 2.2 the mixing self energies are considered as
proper diagrams.
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A. Feynman diagrams of the yb induced tanβ enhanced terms in b → sγ
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Figure A.1.: First part of the diagrams contributing to the leading y2
b terms.
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Figure A.2.: Second part of the diagrams contributing to the leading y2
b terms.
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A. Feynman diagrams of the yb induced tanβ enhanced terms in b → sγ
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Figure A.3.: Third part of the diagrams contributing to the leading y2
b terms.
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Figure A.4.: Fourth part of the diagrams contributing to the leading y2
b terms. Here

contributions containing one external mixing self-energy are depicted.
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A. Feynman diagrams of the yb induced tanβ enhanced terms in b → sγ
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Figure A.5.: Third part of the diagrams contributing to the leading y2
b terms. Here

contributions containing one external mixing self-energy are depicted.
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Figure A.6.: Fourth part of the diagrams contributing to the leading y2
b terms. Here

all diagrams with two self-energy insertions are presented.
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APPENDIX B

Feynman diagrams of the Higgs-coupling induced tanβ enhanced
terms in b → sγ

In this appendix the relevant Feynman diagrams for the discussion of the contribution
due to Higgs couplings in Section 3.3.4 are depicted. The diagrams are split into the
triangle diagrams, the class with one external mixing self energy and the class with two
external self energies. Non mixing external self energy contributions are considered by
renormalisation of the fields. As explained in Section 2.2 the mixing self energies are
considered as proper diagrams.
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Figure B.1.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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B. Feynman diagrams of the Higgs-coupling induced tanβ enhanced terms in
b → sγ
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Figure B.2.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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Figure B.3.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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B. Feynman diagrams of the Higgs-coupling induced tanβ enhanced terms in
b → sγ
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Figure B.4.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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Figure B.5.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.

93



B. Feynman diagrams of the Higgs-coupling induced tanβ enhanced terms in
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Figure B.6.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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Figure B.7.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.

95



B. Feynman diagrams of the Higgs-coupling induced tanβ enhanced terms in
b → sγ
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Figure B.8.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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Figure B.9.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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B. Feynman diagrams of the Higgs-coupling induced tanβ enhanced terms in
b → sγ
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Figure B.10.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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Figure B.11.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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B. Feynman diagrams of the Higgs-coupling induced tanβ enhanced terms in
b → sγ
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Figure B.12.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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Figure B.13.: The diagrams depicted here constitute the contribution to the leading
tan β term, where at least one of the tan β originates from a triple Higgs
coupling.
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