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Methods for statistical analyses generally rely upon complete rectangular data sets. When the
data are incomplete due to, e.g. nonresponse in surveys, the researcher must choose between three

alternatives:

1. The analysis rests on the complete cases only: This is almost always the worst option. In,
e.g. market research, missing values occur more often among younger respondents. Because
relevant behavior such as media consumption or past purchases often correlates with age, a

complete case analysis provides the researcher with misleading answers.

2. The missing data are imputed (i.e., filled in) by the application of an ad-hoc method: Ad-hoc
methods range from filling in mean values to applying nearest neighbor techniques. Whereas
filling in mean values performs poorly, nearest neighbor approaches bear the advantage of
imputing plausible values and work well in some applications. Yet, ad-hoc approaches gen-
erally suffer from two limitations: they do not apply to complex missing data patterns, and

they distort statistical inference, such as t-tests, on the completed data sets.

3. The missing data are imputed by the application of a method that is based on an explicit model:
Such model-based methods can cope with the broadest range of missing data problems.
However, they depend on a considerable set of assumptions and are susceptible to their

violations.

This dissertation proposes the two new methods midastouch and Miles that build on ideas
by Cleveland & Devlin (1988) and Siddique & Belin (2008). Both these methods combine model-
based imputation with nearest neighbor techniques. Compared to default model-based imputation,
these methods are as broadly applicable but require fewer assumptions and thus hopefully appeal to
practitioners. In this text, the proposed methods’ theoretical derivations in the multiple imputation
framework (Rubin, 1987) precede their performance assessments using both artificial data and a
natural TV consumption data set from the GfK SE company. In highly nonlinear data, we observe

Miles outperform alternative methods and thus recommend its use in applications.

Keywords: Multiple Imputation, Predictive Mean Matching, Sequential Regressions, Local

Regression, Distance-Aided Donor Selection
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Chapter 1

Introduction

No institute of science and technology can
guarantee discoveries or inventions, and
we cannot plan or command a work of
genius at will. But do we give sufficient
thought to the nurture of the young
investigator, to providing the right
atmosphere and conditions of work and
full opportunity for development? It is
these things that foster invention and

discovery.

J.R.D. Tata

1.1 Scope

As in other areas of statistics, in data imputation, there are two types of methods, some ad hoc
and some model based (Schafer, 1997, p. 1)!. Among the more sophisticated ad hoc methods
is the random hot-deck in adjustment cells (David et al., 1986, p. 30), which will be introduced
in more detail in section 2.5.1. A major advantage of this and other hot-deck procedures is that
the imputed values are drawn from the empirical distribution of the observed values and are thus
plausible (Andridge & Little, 2010, p. 2). The main disadvantage of ad hoc methods is that the
underlying assumptions are typically implicit. In contrast, model-based methods explicitly reveal
the assumptions that they require. One such model-based method is multiple imputation (Rubin,
1987), which is broadly considered to be ‘simple, elegant and powerful’ (van Buuren, 2012, p.
xix). Multiple imputation is the theoretical framework for the contributions of this dissertation.
However, explicit assumptions are not necessarily more likely to hold in real data. The three most
relevant assumptions required for default, i.e., fully parametric, multiple imputation to enable

consistent estimation of the parameters of interest are?:

1. Missing at random?: The response rates must not vary systematically after conditioning on

LCalibration weighting is another example. Iterative proportional fitting can be considered an ad hoc method
(Deming & Stephan, 1940), and the generalized regression estimator can be considered a model-based method
(Cassel et al., 1976).

2This list of three is based on my own experience. Nevertheless, there may be applications in which, e.g., the
assumption of independent observations is more doubted than the missing at random assumption.

3Missing at random and distinctness are collectively required for ignorability (see section 2.3 and Schafer (1997,

p- 10)).



the observed data, e.g., within adjustment cells, and thus must not depend on the unobserved
data (van Buuren, 2012, p. 7).

2. Distribution of the data: In fully parametric multiple imputation, the imputed values
are drawn from assumed well-defined distributions, such as the normal distribution (Schafer,
1997, p. 181).

3. Congeniality (Meng, 1994): The imputation model, which is used to predict the missing

values of the incomplete variable, must nest all relevant analysis models?.

The scope of the dissertation is about relaxing the distributional and the congeniality assumptions

to make multiple imputation more attractive to practitioners.

1.2 Outline

Chapters 2 and 4 introduce the theoretical prerequisites for the new ideas in this dissertation.
Chapter 2 places emphasis on multiple imputation (Rubin, 1987), and chapter 4 places emphasis
on local regression proposed by Cleveland (1979) and Cleveland & Devlin (1988).

Chapter 3 addresses the required distributional assumption about the data. Predictive mean
matching (PMM: Rubin (1986, p. 92), Little (1988, p. 291)), which combines model-based predic-
tions with hot-deck imputations, fully relaxes this assumption. However, PMM is shown to bias
multiple imputation variance estimates. Different versions of PMM are introduced, and the new
midastouch algorithm, which is based on the ideas of Siddique & Belin (2008), is proposed. A
simulation study on multivariate normal data reveals a considerable advantage of midastouch over
the PMM implementations in the major statistical software packages.

Chapter 5 introduces the new Miles algorithm. Because it builds on midastouch from chapter 3,
Miles does not require distributional assumptions. The congeniality assumption, however, cannot
be literally relaxed. Rather, Miles fits an imputation model that reflects the major relations, linear
or not, between the incomplete variable and its predictors. Analysis models about these major
relations are approximately nested in, i.e., congenial to, the (global) imputation model resulting
from the local regressions that are employed by Miles. A simulation study on artificial data shows
that the approximately congenial Miles can even be superior to fully congenial alternatives.

In the final chapter 6, the newly proposed algorithms are challenged in a simulation study
involving real data from the GfK SE company. The evaluations are based on a broad set of
analysis models frequently used in market research. Both midastouch and Miles perform as well
as the established PMM algorithm.

1.3 Contributions

The missing at random assumption

Violating the missing at random assumption can result in seriously biased estimates of the param-
eters of interest (Enders, 2011, p. 14). However, the practitioner has no indicator for the degree of
violation in any specific application (van Buuren, 2012, p. 31). The very special nature of the real
data set used in chapter 6 permits a test for the missing at random assumption, which is presented
in section 6.2.4. In this setup, the missing at random assumption does not hold. Although this
result cannot be generalized, the data set can be used to study the effect of a natural assumption

violation in future research.

4or the data generating process (Xie & Meng, 2014, p. 14)



The distributional assumption

Real data generally do not fit theoretical distributions well. PMM relaxes the distributional as-
sumption. Section 3.2 shows that this relaxation comes at the cost of biasing variance estimates
toward zero. While retaining the robust properties of PMM, the newly proposed midastouch also
does not bias variance estimates, as shown in section 3.5.3. Furthermore, when imputing complex
missing patterns, midastouch, in contrast to PMM, does not suffer from convergence issues (section
6.3.3).

The congeniality assumption

In slightly nonlinear data, midastouch, although strictly speaking uncongenial, is capable of cap-
turing the structure of the data well, and applying Miles does not offer any additional benefit
(section 6.4). In the highly nonlinear data of section 5.5.2, Miles performs better than alternative
approximately congenial algorithms and almost as good as the best congenial algorithm, which is

the just-another-variable algorithm (von Hippel, 2009) that employs PMM.

Summary

The missing at random assumption remains a serious burden for the imputer, and the contribution
of this dissertation to overcome this burden is admittedly quite small.

The newly proposed midastouch algorithm fully relaxes the distributional assumption and can
also address some congeniality issues, such as in chapter 6, where it is applied to moderately
nonlinear data. As an additional benefit, the newly proposed Miles works well even in highly
nonlinear data, while being only slightly impaired in perfectly linear data (chapter 5).

In contrast to their competitors random forest imputation (Doove et al., 2014) and PMM,
neither Miles nor midastouch suffer from variance underestimation. Furthermore, in contrast to
the just-another-variable algorithm and again PMM, neither midastouch nor Miles suffer from
convergence issues when applied to complex missing data patterns. Moreover, in contrast to the
just-another-variable algorithm, Miles does not cause any consistency issues.

From a practitioner’s perspective, both midastouch and Miles offer considerable robustness
compared to the existing alternatives and should be chosen over these alternatives unless there is a
specific reason not to do so. Now, is midastouch better than Miles or vice versa? Miles is superior
to midastouch because it can also handle highly nonlinear data. However, Miles is considerably

slower than midastouch. Our advice is to use midastouch if time is a concern and Miles otherwise.
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Chapter 2

Multiple Imputation

A capacity, and taste, for reading, gives
access to whatever has already been
discovered by others. It is the key, or one
of the keys, to the already solved
problems. And not only so. It gives a
relish, and facility, for successfully

pursuing the [yet] unsolved ones.

Abraham Lincoln

2.1 Introduction

Statistical analysis with missing data is no longer a niche problem thanks to the tireless work
of, among others, Stef van Buuren and Trivellore Raghunathan, who have not only enhanced the
original ideas of Rubin (1978) but also made them accessible to a broad audience through easy to
read textbooks (van Buuren (2012), Raghunathan (2015)) and easy to use software (van Buuren
& Groothuis-Oudshoorn (2011), Raghunathan et al. (2002)). Although it is customary to include
such a theory chapter in a dissertation (e.g., Siddique (2005), Koller-Meinfelder (2009)), I have,
in light of the recent advances, seriously considered dropping this chapter. The only reason for
including this chapter is for you, the reader. Therefore, this is not a chapter on general concepts
of missing data; rather, it shall filter the parts of the theory that are vital for understanding the
new ideas that are presented in the subsequent chapters. In this way, I hope to save the reader

some time from looking topics up elsewhere and particularly translating different notations.

2.2 The imputer’s model and the analyst’s model

Statistical analysis is about learning from data. One key element is to apply sensible assumptions.
In the most assumption-free setting, each observation arises from a unique data generating process,
and all these processes may be fundamentally different; therefore, it may be completely misleading
to link their realizations to any sort of conclusion. Nothing can be learned in this assumption-free
setting. Researchers apply assumptions by modeling data. A linear regression model implicitly
assumes that the parameters apply to all observations or that the mean effect of an increase of one

predictor on the outcome has at least some meaning. Such a model further restricts the relation



between the predictors and the outcome to be linear in the parameters rather than being arbitrary?.

In the imputation literature, the model that is to be applied to the data, disregarding its com-
pleteness, is called the analysis model. The analysis model is derived from the research question.
The purpose of performing imputation is to enable the application of the analysis models of inter-
est, despite facing incomplete data. By filling the holes in the data set, imputation even relieves
the need to adapt the analysis models to the incomplete data situation.

As will be shown in the next section, imputation uses predictive modeling. As long as the
imputation model is not more restrictive than the analysis model (Schafer, 1997, p. 141) and the
ignorability assumption, which is also described in the next section, is met, the incompleteness
does not bias the conclusion of the analysis model?. If many different estimands are of interest,
i.e., many different analysis models are to be applied to one imputed data set, then the imputation
model must be very inclusive at the cost of low efficiency®. The term inclusive is used throughout
this dissertation to describe an imputation model that enables at least approximately unbiased
estimation of a large number of parameters on the imputed data set and thus in a broader sense
than in Collins et al. (2001).

2.3 Parametric multiple imputation

A thorough treatment of multiple imputation and its underlying assumptions is already provided
in Rubin (1987) and discussed in detail in Schafer (1997). This section consists of a less general
example that will be revisited in the next chapter.

Let the data of interest be n independent realizations of a normal random vector (Q,Y, Z) with
length p. Throughout this dissertation, ¢ with length p —2 denotes one or more predictors in both
the imputation model and the analysis model. Y denotes the variable with missing values and
thus the response variable in the imputation model, and Z denotes the response variable in the
analysis model. The matrix of independent (Z, Q) realizations X, with dimensions n x p is fully
observed and is defined to include a leading constant column. The realization r of the random
vector R takes the value 1 for all n,,s observed values of y, and 0 for all n,,;s = n — nyps missing

values of y,. The imputation model is the linear model
yn = XpB+v  with v~ N(0,021,), (2.1)

where [ denotes a vector of parameters of length p. In fully parametric multiple imputation, the
steps of algorithm 1 are repeated M > 2 times to correctly reflect the uncertainty of the parameter
estimates of the imputation model.

The key assumption required for this procedure is that the missing values are not governed by
a different regime than the observed values. This assumption means that the imputation model in
equation (2.1) is not misspecified even though it does not involve r, or, more formally, that » and v
must be independent. This requirement is known as the missing at random (MAR) assumption®.
A stricter version is the missing completely at random (MCAR) assumption, which implies that r
and y must be independent. If » and v are somehow related, then the response mechanism is said
to be missing not at random (MNAR). Similar relations can be defined for the data generating

process, resulting in the terms missing always at random (MAAR) and missing always completely

IThe list of necessary assumptions for the linear regression model is even much longer (Greene, 2008, p. 44).

2An unusual exception to this rule is superefficiency (Rubin, 1996, p. 481).

3In these cases it may be beneficial to use different imputation models, e.g., one for each analysis model.

4Strictly speaking, missing at random and an additional, rather minor, assumption, called distinctness (Schafer,
1997, p. 11), are required for the response mechanism to be ignorable.



Algorithm 1 Parametric multiple imputation for a single normal incomplete variable y, and a
set of complete linear predictors X, (Little & Rubin (2002, p. 216), Greenberg (2013, p. 116)).
The steps are named according to Tanner & Wong (1987, p. 531) although this algorithm is not
iterative.

1. The posterior step to draw the parameters: First, draw from the observed data posterior
distribution of the residual variance, which is pr(62 | ys, X;) = I Ynops/2, (ys — XiB) (i —
XlB)/Q} (Greene, 2008, p. 996). Then, draw from the observed data posterior distribution
of the intercept and slope parameters, which is pr(8 | yi, X;,52) = Ny{B,62(X;X;)"'}. v
and X, refer to the fully observed subset of the data, and B denotes the maximum likelihood
parameter estimate (Greene, 2008, p. 483).

2. The imputation step to draw the missing values conditional on tlze parameters: Draw n,;s
times independently from the imputation model, i.e., §; ~ N(X;3,62) with j = 1,..., Nns.

at random (MACAR) (Rubin (1976), Mealli & Rubin (2015)). The work in this dissertation does
not involve MNAR. Useful practical implications of the MAR assumption are derived in van Buuren
(2012, p. 34).

The analysis model shall now be applied to each imputed data set. Suppose that the estimand
is the mean of Y. The M different maximum likelihood estimates (a'=,..., a=") can be
combined using Rubin’s rules (Rubin, 1987, p. 76) by ji, = M ! fo:l fiy'- The variance is given
by

M M
T = var(jn,) = M~ — 17" 3 foar(yi)} +(1+ MY (M =D Y (07— ) (22)
w B

Equation (2.2) involves an analysis of variance (ANOVA) type thinking (Rinne, 2008, p. 650). The
within variance W is the variance as in a completely observed data set, and the between variance B
reflects the uncertainty that is involved in estimating the imputation model parameters 3 and o2.
If the imputation model had no parameters to estimate, e.g., y, = 225, then the between variance
would be zero. However, note that such restrictive imputation models typically do not nest any
relevant analysis models and thus bias their conclusions (see section 2.2). The quantity 7%/,
is t(p, 1,¢) distributed (Rinne, 2008, p. 326) with degrees of freedom (Barnard & Rubin, 1999, p.
949)

M W\ n+2 T
-y (1T S
L= =) <+M+1B> a1 W

Rubin (1987, p. 118) calls imputations that yield approximately valid inferences for the parameters
of interest proper. The detailed requirements are presented in (Schafer, 1997, p. 145).

2.4 Missing data patterns

The example in the previous section consists of only one incomplete variable. In real data applica-
tions, two or more variables are generally incomplete. We distinguish three different cases, which

are also shown in figure 2.1.

1. Monotone pattern and multivariate two patterns. An appropriate algorithm proceeds as
follows. Imputations are drawn from the imputation model, such as the one in equation 2.1
for the first incomplete variable conditional on all fully observed variables. The imputations

for the second variable are drawn conditional on all fully observed variables and the first
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Figure 2.1: Relevant missing patterns for this text (Little & Rubin, 2002, p. 5)).

imputed variable, and so on. The last variable in the data set is imputed conditional on all
variables but itself (van Buuren, 2012, p. 104). The multivariate two patterns are a special

case of the monotone pattern and will be revisited in chapter 5.

2. Swiss cheese (Andridge, 2011, p. 67) a.k.a. general pattern. An appropriate algorithm
starts with a simple random hot-deck, i.e., with drawing randomly from the observed values
within each variable (van Buuren & Groothuis-Oudshoorn, 2011, p. 18), and iterates over the
variables. There are two differences to the algorithm for the monotone pattern: conditioning
is always on all other variables, and the algorithm does not stop when the end of the data
set is reached. Rather, the algorithm iterates over all variables in the data set as often as
required to reach convergence for the parameters of the analysis model. Kennickell (1991)
was the first to apply this sequential regression algorithm, which is akin to Gibbs sampling
and often referred to as fully conditional specification or chained equations (van Buuren &
Groothuis-Oudshoorn, 2011). For a thorough treatment, see Raghunathan et al. (2001) and
Liu et al. (2013). The Swiss cheese pattern will be revisited in chapter 6.

3. File matching pattern. In the file matching pattern, the complete cases maximum likelihood
estimate of the parameter of interest is unobtainable. The typical example is a correlation co-
efficient of two variables that are never jointly observed. Although the file matching pattern,
which is also known as data fusion, is very relevant in market research, it is not covered in
this dissertation. For a thorough treatment, see Raessler (2002) and D’Orazio et al. (2006).

2.5 Alternatives to fully parametric algorithms

2.5.1 Hot-deck imputation

As shown in algorithm 1, in fully parametric imputation, the values are drawn from well-described
distributions, which hardly fit empirical distributions. A simple solution is to impute observed
values from the same variable, i.e., to provide the ‘recipients’ values from the ‘donors’. The
obvious advantage of these hot-deck procedures is that the imputed values are plausible and do
not, e.g., fall outside the range. The simple random hot-deck has already been introduced above.
Valid descriptive statistics can be obtained from a simple random hot-deck imputation if there is
only one variable and the response mechanism is completely at random. However, unless ngps is

very large, confidence intervals are excessively short because the between variance component B



of equation (2.2) is ignored. The simple random hot-deck omits the posterior step (Siddique, 2005,
p. 17).

A natural extension of the simple random hot-deck evolves from the presence of categorical
predictors. The simple random hot-deck can then be performed within each cell, which is similar
to fitting an ANOVA model containing all interactions (Lillard et al., 1982, p. 15). The imputed

value can be regarded as the cell mean plus the residual of the randomly selected donor.

2.5.2 The approximate Bayesian bootstrap

Bayesian bootstrap imputation resolves the inference issue of simple random hot-deck. The abso-
lute frequencies of the observed values serve as the parameters of a Dirichlet distribution (Rinne,
2008, p. 350). The underlying assumption is that the variable is categorical with as many cate-
gories as there are unique values. Draws from this distribution define the parameters of multinomial
distributions (Rinne, 2008, p. 277). Draws from the multinomial distributions in turn yield the
multiple imputations. Rubin & Schenker (1986, p. 368) provide the details.

The approximate Bayesian bootstrap imputation can be regarded as a computational shortcut
of the Bayesian bootstrap imputation. In the posterior step, a bootstrap sample from the donors
is drawn (Efron, 1979), and the imputations are simply drawn from this bootstrap sample (Rubin
& Schenker, 1986, p. 368). This implicit modeling procedure propagates the uncertainty of the
estimated parameters involved. However, Kim (2002) shows that the confidence intervals are still
too small because, just like the maximum likelihood estimator, the bootstrap estimator ignores
the correction for the appropriate number of degrees of freedom (Davison & Hinkley, 1997, p. 22).
Therefore, for finite n,s, the total parameter variance is still slightly underestimated. Parzen et al.
(2005) show that multiplying the total variance estimator for the mean presented in equation (2.2)

by the following factor ¢ eliminates this bias

2
n MNomi n—1 n
+ Bmis ( — 7 )
Nobs M Nobs n2,
¢(n0bsanmis7M) = > 1. (23)
n2 + Tmis n—1 _ n _ M Mmis [ 3 + 1
Nobs M\ nobs n? Tobs no ' ngps

obs

Some criticism regarding this correction factor has been presented by Demirtas et al. (2007).

2.5.3 Predictive mean matching (PMM)

In contrast to the approximate Bayesian bootstrap, in PMM (Rubin, 1986, p. 92), only the
imputation step of algorithm 1 is modified. The first implementation of PMM for general missing
data problems by Little (1988) is still widely used (e.g., van Buuren & Groothuis-Oudshoorn
(2011), Royston & White (2011)®) and is thus the key reference (see algorithm 2).

Algorithm 2 The original PMM algorithm proposed by Little (1988, p. 292).

1. Calculate the predictive mean for the n.,s observed elements of y;, as ; = XiB .

2. Calculate the predictive mean for the n,,;s missing elements of y; as ﬁj = X; 8.

w

. Match each element of gjj to its corresponding closest element of ;.

o

. Impute the observed y; of the closest matches.

5Both implementations deviate from the original algorithm in that they make a random draw from the closest
k > 1 donors in the last step.



Compared to fully parametric imputation, PMM is more robust to model misspecifications
(Schenker & Taylor, 1996, p. 429), namely, nonlinear associations, heteroscedastic residuals, and
deviations from normality (Morris et al., 2014, p. 4). Nonetheless, the quality of PMM imputations
largely depends on the availability of nearby donors; truncation of the data limits the validity of
the method (Koller-Meinfelder, 2009, p. 38).

While retaining the benefits of the simple random hot-deck in cells discussed above, PMM has
additional desirable properties. The most obvious such property is a more flexible imputation
model, which neither requires the continuous predictors to be divided into arbitrary categories nor
needs all interactions to be considered. Because the matching is not affected by variables that are

not predictive, PMM can also be considered more parsimonious (David et al., 1986, p. 31).

2.5.4 Distance-aided donor selection

For the posterior step of the distance-aided donor selection algorithm proposed by Siddique (2005)
and Siddique & Belin (2008), which Siddique & Harel (2009) later called MIDAS, bootstrapping is
employed as originally proposed by Heitjan & Little (1991, p. 18). Maximum likelihood estimation
of the linear regression imputation model parameters on M independent bootstrap samples replaces
the draws from the posterior distribution (Little & Rubin, 2002, p. 216). The unique feature of
the MIDAS algorithm is that it reuses the donors’ bootstrap frequencies for the imputation step.

For recipient j, donor 7 is drawn from the full donor pool with probability

Nobs

wij = Fw, i U5, k) = widif/ Y (Wi f), (2.4)
i=1

where w; denotes the bootstrap frequency of donor i, QZ” denotes the scalar absolute distance
between the predictive means of donor ¢ and recipient 5 based on B , and k is a closeness parameter
that adjusts the importance of the distance. For x = 0, the procedure is equivalent to the ap-
proximate Bayesian bootstrap; for k — o0, the procedure becomes equivalent to nearest-neighbor

matching, as in algorithm 2.

2.5.5 Random forest imputation

The choice of any model is a bias-variance trade-off. If the analysis model is known, then all
parameters that are not of interest may be biased by the imputation model without any additional
harm. However, if the analysis model is unknown, then it is the imputer’s job to find an impu-
tation model that neither restricts the key relations in the data nor suffers from low efficiency.
Incorporating, for instance, interactions in parametric imputation models becomes inefficient very
quickly because the number of parameters to estimate increases quadratically with the number of
variables.

Doove et al. (2014) suggest using random forest imputation to implicitly include non-linear
relations. They show that their algorithm preserves interactions that are not explicitly contained
in the imputation model quite well and substantially better than posterior-step linear regression
models with imputation-step PMM. This improvement, however, comes at the cost of biasing the
linear effects of regression analysis models (Doove et al., 2014, p. 101).

For their implementation Doove et al. (2014) use the R::mice framework for sequential re-
gressions (van Buuren & Groothuis-Oudshoorn, 2011) and the R: : randomForest package (Liaw &
Wiener, 2002), which consists of fitting classification and regression trees. A thorough theoretical

treatment thereof is provided in James et al. (2013, p. 303) and the implementation is presented
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Algorithm 3 The random forest imputation algorithm by Doove et al. (2014, p. 103).

1.
2.
3.

6.

Draw ny.c. bootstrap samples from the donors.
Draw ny.ee random samples of size (p — 1)/3 from the p — 1 predictor variables.

Fit nyree trees by recursive partitioning without pruning®. Each leaf of each tree constitutes
a subset of the donors.

Put the recipients down the trees to see in which leaves they fall.

Combine all leaves including the same recipient over all trees to one donor pool D; for each
recipient j.

For each recipient j make a random draw from D; and impute the value of the drawn donor.

*The term pruning encompasses different algorithms that reduce the complexity of the tree to
avoid overfitting.

in algorithm 3.

2.5.6 Others

There are a few other algorithms that promise to address nonlinear data. Similar to random forest

imputation, the latent-class based algorithm by Akande et al. (2016) forms groups of donors and

recipients such that the imputations are obtained by simply drawing donors from the same group.
The R: :Hmisc: :aregImpute algorithm by Harrell (2015) (R Core Team, 2016), which is based on

the theoretical work by Breiman & Friedman (1985), results in predictions of transformed y; and

employs PMM in the imputation step. Neither of the two algorithms is within the scope of the

next chapters.
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Chapter 3

Toward
Multiple-Imputation-Proper
Predictive Mean Matching

It is by intuition that we discover and by

logic we prove.

Henri Poincaré

3.1 Introduction

Combining multiple imputation with predictive mean matching (PMM) promises to provide a
robust imputation procedure that will yield valid inferences, thus making it highly appealing to
practitioners (Heitjan & Little, 1991, p. 19). Consequently, such a combination is not only a
feature but also often the default mode of imputation algorithms in all major statistical software
programs (Morris et al., 2014, p. 3). Despite its preeminence in practice, skepticism regarding
this combination of techniques dominates the literature. Little & Rubin (2002, p. 69) state the
following about PMM

. properties of estimates derived from such matching procedures remain largely

unexplored.
Koller-Meinfelder (2009, p. 32) notes that

The difficult part about Predictive Mean Matching is to utilize its robust properties
within the Multiple Imputation framework in a way that Rubin’s combination rules

still yield unbiased variance estimates.
Moreover, Morris et al. (2014, p. 5) recently warned in the same context
... there is thus no guarantee that Rubin’s rules will be appropriate for inference.

The contrast between the theoretical uncertainty concerning the validity of this combined approach
and its popularity in applications motivated the work presented in this chapter. The next section
elaborates one major deviation of multiple imputation PMM algorithms from the theory of multiple

imputation, which is one of the key contributions of this dissertation. The new insight sheds a
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different light on well-known tuning parameters for PMM, which are presented in section 3.3. A
new and more proper algorithm is proposed in section 3.4, whose empirical superiority regarding
the coverages of frequentist confidence intervals is demonstrated via a simulation study in section
3.5. The insights of this chapter are published as a working paper (Gaffert et al., 2016), and citing
it is spared throughout.

3.2 Why predictive mean matching is not multiple imputa-
tion proper

Using PMM for the multiple imputation of data sets causes the between variance of the parameter
estimates of interest to suffer from attenuation bias.

To illustrate this situation, consider an analysis of variance example with ¢» = 1,..., U different
predictor cells. Suppose that the incomplete variable Y in cell ¥ is normally distributed with mean
iy and variance Ui. Furthermore, suppose that each of the ¥ cells contains a sufficient number of
donors, say, five or more. Now, without loss of generality, let us examine at the recipients in the first
cell. Parametric multiple imputation draws M > 2 times 67, then ji; | 67, and then §y—1 | (fi1,5%),
which is efficient. A nonparametric alternative is an approximate Bayesian bootstrap imputation
in cell 9 = 1 that proceeds as follows. It draws M > 2 times a bootstrap sample from the
donors in the cell and draws values to impute from this bootstrap sample. The key element that
these two proper procedures have in common is that the distribution from which the imputed
values are drawn varies over the multiple imputations. In the parametric case the parameters of
the underlying normal distributions vary, and in the nonparametric case, the composition of the

empirical distribution varies.

I fully parametric I PMM I ABB imputation
Posterior step Draw (3,52) from the imputation model y;, = Within each of the U =
Bo + Pix1 + Poxe + B3xixe + v, with het- 4 cells draw a bootstrap
eroscedastic residuals, i.e., var(v | ¥ = 1) = sample of the nops 1, - .-,
o0y, -nvar(v| Y =4) =a2,. Nobs,4 donors
Imputation step | Draw from the | As within each cell the pre- | Within each cell, draw
normal imputa- | dicted means gjw are identi- | N5, values from the
tion model: §; | | cal, algorithm 2 draws Nmisay | bootstrapped nNops .y, i.€.,
(3,62, x1, x9) values from mnops., i€, a | a simple random hot-
simple random hot-deck im- | deck imputation within
putation within the cell the bootstrapped cell

Table 3.1: The algorithms of proper fully parametric imputation, proper approximate Bayesian
bootstrap (ABB) imputation, and PMM are compared. The underlying data situation involves
two binary predictors (z1, z2), one incomplete variable y,, and normal noise v. The two predictors
form U = 4 cells: ¢(x; = 0,20 =0) = 1,...,9(x; = 1,29 = 1) = 4. Ignorability is assumed.
In the imputation step, PMM is very similar to ABB imputation, but it ignores the bootstrap.
Because ABB imputation is approximately proper, PMM must attenuate the between imputation
variance.

PMM proceeds in a considerably different manner. The recipients and the donors in cell ¥ = 1
end up having exactly the same predicted mean'. Choosing the nearest neighbor ultimately consists
of making a random draw from the donors in cell ¢» = 1. This may be valid once, but the procedure

is the same for all m = 1,..., M imputations. It thereby mimics the simple random hot-deck of

IThis is only true if type-2 matching is applied, which slightly differs from algorithm 2. Section 3.3 presents the
details.
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section 2.5.1, which is known to underestimate the between variance component because it partly
omits the posterior step. Table 3.1 schematically presents this reasoning.

It appears to be surprising that although PMM contains a draw from the estimated distribution
of the intercept and slope parameters 3 (see algorithm 2), the parameter uncertainty does not
propagate. In this regard, the above example is deceptive. Therefore, consider another example.
For simplicity, suppose that there are two normal orthogonal predictors x1, x3. Now, the definition
of the relevant donors is less clear than in the previous example, where it appeared obvious that all
donors of 1) = 1 are suitable. The job of the 3 is simply to define the relevant ‘cell’. Drawing 3 is
an important task, because the cell definition is not certain and must thus vary over the multiple

imputations. Figure 3.1 displays the effect of varying 8 coefficients on the cell definition.
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Figure 3.1: The plots show 100 random draws from a bivariate normal distribution with zero
correlation. The shading indicates distances in the predictive means to one recipient Py(z; =
1,29 = 1). Different draws from the estimated distribution of the § parameters can alter the
definition of the cell from which the donor is drawn. Considering distances, not frequencies, the
cell is a circle in the left plot, a long ellipse in the middle plot and a wide ellipse in the right plot.

However, PMM then goes wrong. The cells are defined, i.e., we have conditioned on 3, and all
PMM does is make a random draw from the cell or even take the nearest one. It thereby ignores
parameter uncertainty to a large extent. To be precise, the B define the mean of the cell; however,
the uncertainty in estimating the residual variance parameter o2 from the imputation model in
equation (2.1) remains unconsidered. In any given cell, we observe a distribution of units in a
sample, which suffers from sampling error. Thus, what is needed is some type of approximate

Bayesian bootstrap imputation algorithm after conditioning on the B parameters.

3.3 Existing ideas to make predictive mean matching proper

PMM has recently been under suspicion for underestimating the between variance component of
equation (2.2). Van Buuren (2012, p. 71) and Morris et al. (2014, p. 7) criticize the selection
of the nearest neighbor of algorithm 2. Selecting the nearest neighbor is a special case of general
k-nearest-neighbor selection (Heitjan & Little, 1991, p. 16), which is typically applied in current
statistical software programs (see table A.1). An adaptive procedure for choosing the optimal
k exists (Schenker & Taylor, 1996, p. 442), but software implementations of this procedure are
lacking. The attenuation bias argument is that k = 1 leads to selecting the same donor repeatedly

across imputations. The insight of section 3.2 is that once the cell is defined, the bootstrap
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frequencies are necessary to correctly reflect the between variance. The nearest neighbor selection
function, however, is unable to fully capture the variance of bootstrap frequencies var(w;). If the
nearest donor receives a bootstrap frequency that is larger than zero, then it will be selected. The
exact value of the bootstrap frequency is irrelevant. It is easily found that var(w;) = var{l(w;)},
where [ is a function that indicates whether w; is larger than zero. Therefore, the nearest neighbor
selection is not compatible with the necessary bootstrap step. This finding underpins the criticism
by van Buuren (2012) and Morris et al. (2014).

In addition to the nearest neighbor selection, van Buuren (2012, p. 71) and Morris et al. (2014,
p. 7) criticize the very popular match type 2 (see table A.1). In the discussion of match types,
three different types can be distinguished. Type 1 refers to the matching of ¢; to ﬁj, as in algorithm
2. By contrast, type 2 refers to the matching of §; to gjj (Heitjan & Little, 1991, p. 19). Type 3
refers to a procedure in which two sets of parameters, denoted by {(f1, a21)s (B2, G2 5)}, are drawn
from the posterior distribution, one for the donors and one for the recipients, and ; | (Bl, &12,,1) is
then matched to g; | (Ba, 2 5) (Royston & White, 2011; Harrell, 2015). The criticism relates to the
one predictor case, where type-2 matching linked with k = 1 causes the M multiple imputations
to be identical and therefore, prevents the uncertainty associated with parameter estimation from
being propagated; again, this is an attenuation bias argument.

The insight from section 3.2 reveals that the M multiple imputations are identical only because
the algorithm lacks the necessary bootstrapping. The parametric imputation step as in algorithm
1 is conditioned on one set of parameters drawn in the posterior step, as in the case of type 2.
Other match types alter the cell definition and are an engineering trick that treat the symptom,
which occurs in the special case of one predictor, but do not cure the disease of effectively omitting
the posterior step. Consequently, the discussion on match types is dispensable, and the use of

type-2 matching should be advocated for.

3.4 The proposed algorithm

Revisiting the MIDAS algorithm

In contrast to algorithm 2 and all other PMM implementations (see table A.1), the MIDAS algo-
rithm proposed by Siddique & Belin (2008), which has been introduced in section 2.5.4, explicitly
combines the two steps that are required based on the insights of section 3.2. The parameters B
and « define the cell. The larger x is, the smaller is the cell. The uncertainty involved in estimating
[ is correctly considered, and k is not an estimate. However, because the within cell distribution
has sampling error, equation (2.4) involves the bootstrap frequencies. The MIDAS algorithm is
thus a major improvement in terms of multiple imputation theory, although its inventors have not
been aware of this fact (Juned Siddique, personal communication 2016; Thomas R. Belin, written
communication 2017). The proposed algorithm 4 largely builds on MIDAS. Nevertheless, other
PMM algorithms could easily be adjusted to deploy the bootstrap frequencies in the imputation
step.

Making predictions for recipients and donors

The magnitude of the error, which is caused by partly omitting the posterior step, depends on
the magnitude of the between variance that is in turn inversely proportional to the number of
available donors. Consequently, the MIDAS algorithm will be particularly beneficial when 7,
is small. In small samples, however, the influence of a single data point on the model parameter

estimates can be considerable. Because model estimation implies minimizing the distance from the
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Algorithm 4 This touched-up version of the MIDAS algorithm is named midastouch, which is
also the name of our published R package (R Core Team, 2016). Appendix A.4 provides the source
code.

1. Obtain bootstrap frequencies w; for the donors to introduce the between variance.

2. Draw B from a weighted least-squares regression (Greene, 2008, p. 169) with the weights w;

and calculate the according coefficient of determination R2.

3. Calculate the elements of thNe Numis X Nops distance matrix using the leave-one-out principle
as follows: ¢; ; = |(x; — x;)5_;|. Here, z; denotes the row vector of X; for the ith donor, x;

denotes the row vector of X for the jth recipient, and B_; denotes the weighted least-squares
parameter vector from the donor sample without the ith row.

4. Calculate the closeness parameter as follows:
. 2 2 2 3/8
F(R?) = {5032/ (1 e 32)} , (3.1)

where € is a very small positive scalar number used to ensure real results for R? = 1.
5. Insert wy, gzi’j, and & from above into equation (2.4) and draw the donors.

6. Repeat the above steps M > 2 times, apply Rubin’s rules, and multiply the total variances
of the means from equation (2.2) by the correction from equation (2.3). Substitute nqps with
neg from equation (3.2), and thus, n with neg + Nmis.

model to the donor data, the model is, by construction, closer to the donors than to the recipients,
particularly for small ns, i.e., residuals systematically differ between donors and recipients. For
the proof, see appendix A.2. Consequently, the expectation of the residual variance added to the
recipients is too small. Although this implementation is still the most common, Gelman & Hill
(2011) and Meinfelder & Schnapp (2015) estimate the parameters on the full set of observations
by using previously imputed values for y;. These algorithms make in-sample predictions for both
the donors and the recipients. By contrast, the proposed algorithm 4 makes only out-of-sample

predictions by estimating the § parameters with the leave-one-out principle.

A flexible closeness parameter

The closeness parameter x in equation (2.4) determines the influence of the imputation model, i.e.,
of the conditionality on X}, on the donor selection. In contrast to Siddique & Belin (2008), who
advocate for a fixed value, we argue that x should reflect the goodness of fit of the imputation
model such that dx/0R? > 0. In other words, the probability of drawing a distant donor should
decrease as the imputation model quality increases, as in equation (3.1). Its functional form is
the inverse of the form of the sales response to advertising function presented by Little (1970, p.
B472). Siddique & Belin (2008, p. 88) state that reasonable values for x lie within the range
[0,10], and they found in a simulation study that in a setting with R? = 0.29, the ideal value for
k is 3 (Siddique & Belin, 2008, p. 98). Equation (3.1) reflects these findings as follows:

K(R*=0)=0, k(R?=0.9)~10, x(R*=029)~3

Fixing the attenuation bias of the approximate Bayesian bootstrap imputation

Because equation (2.4) generalizes the approximate Bayesian bootstrap imputation, it also suffers

from the underestimation of the total variance for finite nys (Kim, 2002). Applying the correction
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factor ¢ from equation (2.3) appears to be the most obvious solution. It applies directly to the k-
nearest-neighbor distance function? if conducted on the bootstrapped donor sample. The available
donors for each recipient, however, are no longer n,ps, but rather k, which causes a slight adjustment
in equation (2.3): n.s must be substituted by k, and n must be substituted by k + 7,,,;5. After
conditioning on the bootstrap frequencies, all donors have the same probability of being drawn.
This is different for the MIDAS algorithm and for algorithm 4, because the drawing probabilities
depend on the distance to the recipient. Therefore, we propose replacing nps in equation (2.3) with
a measure of the effective donor sample size for each recipient n; .5 (Kish, 1965, p. 427), which
is expressed as follows: nj . = niobs/zi (wivj/wi)Z (Bosch, 2005, p. 5). w;; and w; denote the
drawing probabilities from equation (2.4) and the bootstrap frequencies, respectively. Averaging

over all recipients and the M imputed data sets yields

-1

1 M nmis | nobs Nobs 2
ey = T— 2 0 | ey Z wimBrim) (3.2)
anS

m=1 j=1 | i=1

Variance correction factors for parameters other than the mean do not yet exist; for linear regression

parameters, Wu (1986, p. 1280) offers a starting point.

3.5 Simulation study

3.5.1 Simulation settings

A simulation study is conducted to assess the magnitudes of both the identified shortcomings of
the existing PMM algorithms and the proposed improvements. To provide a complete picture,
algorithm 4 is challenged by the multiple imputation PMM algorithms implemented in all major
statistical software programs, as listed by Morris et al. (2014, p. 3)3. Furthermore, two benchmark
algorithms are compared: a fully parametric algorithm that utilizes the additional information
of a normal likelihood and a fully improper PMM algorithm that treats the maximum likelihood
parameter estimates as if they were the true parameters.

For simplicity, we use the multivariate normal setting presented in section 2.3 and set all off-
diagonal elements of the correlation matrix equal to each other. To address the various challenges
encountered in real-world applications, we apply a full factorial design that considers the following
four binary factors: we distinguish ‘missing always completely at random’ from ‘missing always
at random’ and define the latter as pr(R = 0) = ®[(1/4){Z + N(0,3)}], where ® denotes the
normal cumulative distribution function (Rinne, 2008, p. 298); we consider p — 1 = 1 covariate,
i.e., just (Y, Z) versus p — 1 = 8 covariates, i.e., (Y, Z) and Q with length 7; we consider R? = 0
versus R? = 0.75; and we consider ngps = 10 versus ngps = 200. Furthermore, we fix M = 25,
nmis = 100, all marginal means equal to zero, and all marginal variances equal to one, and we

perform ng;,, = 250 Monte Carlo simulations for each combination.

3.5.2 Simulation results

We focus on the estimates of both the mean of Y, denoted by /i, and the regression coefficient of
Y in the linear regression model of Z on a constant, Y and @, denoted by Bl, and thereby cover

the more challenging case of missing values in regression predictors (von Hippel, 2007, p. 102).

2k-nearest-neighbor selection means that the drawing probability for the k nearest donors is k~!, and zero for
all others.
3with the exception of Solas for technical reasons.
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950%o confidence interval coverages

Nobs = 10 Nobs = 200

Ref.  Software Predictive mean matching command i By ‘ i By
Proposed algorithm (algorithm 4)
1 R::midastouch ~mice.impute.midastouch 936 961 | 945 955
2 with correction factor ¢ 973  — | 972 —
3 R::midastouch mice.impute.midastouch(kappa=3) 931 961 | 946 945
4 with correction factor ¢ 960 — | 978 -
Predictive mean matching software listed by Morris et al. (2014, p. 3)
5 R::mice mice.impute.pmm 605 899 | 941 939
6 R::Hmisc aregImpute 515 872 | 936 959
7 R::BaBooN BBPMM 686 781 | 937 958
8 R::mi . pmm 573 664 | 908 913
9 SAS::proc mi  regpmm 487 841 | 928 943
10 SAS::MIDAS  MIDAS 899 967 | 937 954
11 SPSS multiple imputation

/impute scalemodel=PMM 640 659 | 907 911
12 Stata mi impute pmm 616 652 | 907 911
13 Stata ice, match 443 727 | 935 958
Benchmark algorithms
14 R::mice fully parametric: mice.impute.norm 962 959 | 946 958
15 R Fully ignoring between-variance PMM | 382 468 | 877 912

Table 3.2: Simulation results. Ref.: reference; 1-8, 14, 15: R Core Team (2016); 5, 14: van Buuren
& Groothuis-Oudshoorn (2011) version 2.22; 6: Harrell (2015); 7: Meinfelder & Schnapp (2015); 8:
Gelman & Hill (2011) version 1.0; 9, 10: SAS Institute Inc. (2015); 10: Siddique & Harel (2009);
11: IBM Corp. (2015); 12, 13: StataCorp. (2015); 13: Royston & White (2011). The results show
coverages only, because all algorithms deploy the appropriate linear regression imputation model
and differences in, e.g., biases are not to be expected.

Utilizing the multiple imputation variance estimator we construct 950%o frequentist confidence
intervals (see section 2.3 and Rubin (1987, p. 21)). For each simulation run, we note whether this
confidence interval covers the true parameter value. We present the key results in table 3.2 and the
details in appendix A.5. For each cell in table 3.2, we average the coverages over 2(4=Dp i = 2000
simulation runs.

The most striking result is that the MIDAS algorithm outperforms all PMM algorithms imple-
mented in the major statistical software programs?. The algorithm’s advantage is particularly large
when the uncertainty associated with the imputation model parameter estimation is considerable,
i.e., when the number of donors is small, and it diminishes as the number of donors increases. This

result strongly supports the findings of section 3.2.

3.5.3 The proposed algorithm

The results, particularly those for the small donor sample size n,,s = 10, indicate that our proposed
modification of the MIDAS algorithm leads to a considerable improvement. This improvement
appears to be true for all means introduced in section 3.4. More specifically, table 3.2 demonstrates
that an improvement is achieved for the out-of-sample predictions for the donors, which can be
observed by comparing row 10 to row 3; for the modified closeness parameter from equation (3.1),

which can be observed by comparing row 3 to row 1; and for the application of the correction

4Morris et al. (2014, p. 12) show that PMM algorithms perform best when large k and type-1 matching are
employed as in R::mice and SAS::proc mi (see table A.1). However, the results of these two tuned algorithms are
not convincing.
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factor ¢ from equations (2.3) and (3.2), which can be seen by comparing rows 1 and 3 to rows
2 and 4. It is striking that the coverages of the proposed algorithm do not fall below 950%¢ and

become closer to the ideal value of 950%0 when nps increases®.

3.6 Conclusion and future work

The key finding of this chapter is that all but one PMM implementation systematically attenuate
the between variance. In model terms, these implementations do not propagate the uncertainty
involved in estimating ¢2; in algorithmic terms, they do not use the bootstrap frequencies in the
imputation step. In this sense, the MIDAS algorithm proposed by Siddique & Belin (2008) is the
exception.

The simulation study results reveal that the attenuation bias can be severe for small sample
sizes. Averaging over all PMM implementations except MIDAS provides a coverage for the mean
estimate of below 600%0 when n,ps is small. This bias can be fully avoided by applying the proposed
midastouch algorithm.

A natural extension is to deploy other distance metrics than the one described in equation
(2.4). The k-nearest-neighbor metric appears to be appropriate if the neighbors are drawn from
the bootstrap sample and k£ > 1. A large k requires unequal drawing probabilities to avoid
distortions of the distributions. Some reasoning is provided in appendix A.3. Alternative distance
metrics have already been discussed in Siddique (2005, p. 130).

Reusing the bootstrap frequencies in the imputation step has a theoretical shortcoming. Within
the cells, the sum of the bootstrap frequencies is not necessarily equal to the number of donors,
which causes a deterioration of the bootstrap properties (Efron, 1979, p. 3). The obvious alterna-
tive is to draw another bootstrap sample within the cell, which in turn presumably overestimates
the between imputation variance. Nevertheless, the overestimation is then, again presumably, the
part of the variance of o2 that is caused by 3 and that is known to be negligible in most cases

(Greenberg, 2013, p. 57). More research is required to resolve these conflicts.

5The adjustment thus appears to be slightly too large for small samples. However, unlike adjustments that are
too small, adjustments that are too large are still in line with default statistical inference as in Rinne (2008, p. 505).
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Chapter 4

Local Regression

Look closer and you’ll see something
extraordinary, mystifying, something real

and true.

Zelda Fitzgerald

4.1 Introduction

Predictive mean matching (PMM) and the newly introduced midastouch are nonparametric al-
gorithms that substitute the parametric imputation step (Little & Rubin, 2002, p. 201). This
substitution is beneficial if the distributions of the incomplete variables conditional on the imputa-
tion models cannot be well described. Although there are many cases in which sensible univariate
transformations enable parametric imputation (Schafer, 1997, p. 147), PMM has become very
popular, primarily because it is a one-fits-all algorithm without the need for manual interventions.

In applications, nonlinear relations are likely to matter. Sensible modeling is capable of solving
this issue. However, it is manual, has some arbitrary elements, and takes a considerable amount
of time. This chapter introduces local regression, which is capable of automatically detecting the
nonlinear relations in the data. The next chapter combines the one-fits-all modeling algorithm local
regression (posterior step) and the one-fits-all midastouch (imputation step) to one new imputation
algorithm with the name Miles.

This chapter starts with the fundamentals of local regression (section 4.2). Section 4.3 addresses
the statistician’s choices when performing local regression modeling. Section 4.4 contributes an-
other perspective to regression analysis, which we hope facilitates an intuitive understanding. All
the details of our rather simple implementation of local regression are presented with the help
of the data set from Brinkman (1981) as an example in section 4.5. The chapter concludes with

discussing potential future improvements in section 4.6.

4.2 Notation

Local regression dates back to Cleveland (1979), although some very early work is related (for an
overview, see Cleveland & Loader (1996, p. 15)). The primary use of local regression is to smooth
scatterplots (Cleveland, 1979, p. 830). A local regression model is represented by

Y=f(X)+v with v~ id.d., (4.1)

20



where Y denotes the response variable and X a set of predictor variables (Loader, 1999, p. 15).
Anticipating its use in the next chapter, local regression is notated in equation (4.1) analogous
to the imputation model in equation (2.1). At the global level no assumptions about f (X) are
required, i.e., the local regression model does not restrict the relation between X and Y globally.
In other words, local regression fits any (X,Y") relation. At the local level, i.e., within a smoothing
window Hj around a certain point zy, f (X) is a polynomial of order m. Observations outside the
smoothing window are excluded from estimating f (X) (Loader, 1999, p. 16). Local regression
can be regarded as a Taylor series expansion (Loader (1999, p. 37), Bronstein et al. (2013, p.
455)). Consequently, the error equals the remainder of the series (Bronstein et al., 2013, p. 484).
Asymptotically, as the smoothing window becomes smaller, local regression provides a perfect fit.
The only assumption required is that the first 7 derivatives of the underlying functional relation
exist locally. The following section presents the key fine-tuning options for the algorithm according
to Cleveland & Loader (1996, p. 19).

4.3 Local regression modeling

4.3.1 Weight function

In general, observations are weighted in the minimization (Cleveland & Loader (1996, p. 11),
Greene (2008, p.169)). The tricube function proposed by Cleveland (1979, p. 831) is by far the
most popular weight function in the context of local regression (see, e.g., Cleveland & Loader
(1996, p. 20)). The weights d are calculated by

b0,

| (xg —x;) | with i€ Hp (4.22)

3
do,;

i [1 - {50,i/m§tX(5o,i)}3] +e (4.2b)

Dividing X} by the respective interquartile ranges (Rinne, 2008, p. 45) provides the rescaled X}
that are used to calculate the distances in equation (4.2a) (Cleveland & Devlin, 1988, p. 597).
The weights dy for observations outside the neighborhood Hj of xy are zero. The smallest weight

for an observation within Hy is € > 0.

4.3.2 Polynomial degree and bandwidth

Both the size of the neighborhood, also known as bandwidth (Cleveland & Loader, 1996, p. 21),
and the degree of the polynomial that is fitted locally represent bias variance trade-offs. A small
neighborhood and a high-order polynomial reduce bias but increase variance and vice versa. Poly-
nomial orders discussed in the literature range from local constant fitting to local cubic fitting
(Cleveland & Loader, 1996, p. 25). Cleveland & Loader (1996, p. 18) suggest polynomial mixing
as averaging the coefficients from two subsequent polynomial fits, such as linear and quadratic,
and remark that this procedure is equivalent to ridge regression (Rinne, 2008, p. 639) with a
ridge penalty on the quadratic terms only. The bandwidth is generally estimated from the data
and defined by the number of observations, the so-called nearest-neighbor bandwidth (Cleveland
& Loader, 1996, p. 22), rather than by a fixed width.

We choose mixing a linear fit and a constant fit to prevent an exploding number of parameters.
The number of coefficients in the linear fit is p with p — 1 denoting the number of predictors; in
the quadratic fit, it is already p(p + 1)/2; and in the cubic fit, it is p(p? + 3p + 2)/6. In a data
set with 25 variables the quadratic fit estimates 325 parameters and the cubic fit estimates 2925
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parameters at the local level. Presumably, in the vast majority of applications this large number
of parameters causes issues with the number of degrees of freedom.

To find the optimal nearest-neighbor bandwidth and the optimal mixing degree, we minimize
cross-validation prediction mean squared errors (PMSE) as suggested in Loader (1999, p. 30). A

precise description of the optimization is presented in section 4.5.

4.4 An alternative approach to regression: the influence

vectors [

In the neighborhood of xy local regression with polynomial mixing is simply a weighted ridge

regression. The least squares minimization yields

Bridge = (XQCﬂXz'JrA)_lX{O*lyi (4.3a)
do1 0

with  C™' = : (4.3b)
0 o,y

A property of least squares estimators is that the predictions are always a linear combination
of the observed values. This property is extensively used to derive the statistical properties of local
regression (Cleveland et al., 1988, p. 95). More formally, the prediction can be written as (Greene,
2008, p. 25)

U(zg) = x/QBHo = Uy, YHo, (4.4)
where the subscript Hy refers to the subset of observations in the neighborhood of zy and is
dropped in the following for convenience. The influence vector | determines the linear combination
and never depends on y;. Using equations (4.4) and (4.3a) along with the rules for transposing
products (Greene, 2008, p. 949), the following equation is obtained:

= C X, (X[C7' X, + A) .

(4.5)

Rao & Singh (1997, p. 59) show that equation (4.5) results from the following minimization
problem’

min [(1—d)C(l—d) + (X[l — z0) A (X1 — zg)]. (4.6)

Equation (4.6) shows that local regression essentially attempts to find a new weight vector,
which is called the influence vector [, that is supposed to be as close to the distance weights d as
possible (first addend) while ensuring that the influence weighted center of the observations in the
neighborhood falls on xy (second addend). Large ridge penalties A reduce the importance of the

second addend and result in a prediction that is dominated by the distance weights d.

ITheir solution is slightly more complex because it contains another additive term. However, if X; has full
column rank and a leading constant column and C' is defined as in equation (4.3b), then this additive term is
exactly zero. For the proof, see section B.1.
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4.5 Example

4.5.1 A well known data set

To present a detailed picture of how we implement the algorithm, we continue Cleveland’s tradition
(Cleveland & Devlin (1988, p. 604), and many more) and use the NO, data set presented by
Brinkman (1981), which is about an experiment with ethanol rather than gasoline to study the
effects on the nitrogen oxide emission of an engine. The data set consists of n = 88 observations
and p = 3 variables, namely, the outcome NO, and two experimentally controlled factors, the

compression ratio C and the equivalence ratio E.
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Figure 4.1: The NO, data set by Brinkman (1981) with the optimal local regression fit (¢ = 7,\ = 0,
dashed line) and the local regression fit from the grid optimization (¢ = 5, A = 0.2, solid line).

Figure 4.1 displays NOy against E. The dimension of C is shown by the symbols of the data
points, because C only takes five different values. The solid gray line is the local regression fit in
our implementation, which explains R2? = 91% of the variation of NO, (Rinne, 2008, p. 90). The
two highlighted and randomly selected example points are the first and the last points in the data
set: P;(NOx,C,E) = (3.741,12,0.907) and Psg = (1.9, 18,0.655).

4.5.2 Optimization of the bandwidth and the polynomial mixing degree

Before calculating multivariate distances (see equation (4.2a)), the variables need to be rescaled.

The interquartile ranges are IQR; = 7.5 and IQRg = 0.36. Before rescaling the variances are
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var(C) = 15.46 and var(E) = 0.04, and after rescaling, the variances are var(C*) = 0.32 and
var(E*) = 0.39.

Optimization of the bandwidth and optimization of the mixing degree involve one scalar pa-
rameter each. The parameter governing the bandwidth is the number of observations within
the neighborhood ¢, and the parameter governing polynomial mixing is the ridge scalar A in the

weighted ridge regression equation (4.3) with

0 0
Cany o Cap
C2,2) .

A=) . with  X/O7'X; = oo . (4.7)
' oy Sow

0 Cpop) :
As shown in equation (4.7), A > 0 increases all elements of the main diagonal of the X/C~1X;
matrix except the one that corresponds to the constant in the model (van Buuren & Groothuis-
Oudshoorn, 2011). A value of A = 0.1 means that 10% are added to the main diagonal. The
algorithm first draws a simple random sample of 50 from the data and builds a grid for the
optimization. For each grid cell and each of the 50 data points an out-of-sample prediction is

made, resulting in 900 ridge regression estimations.

q=>5 q=21 q =38 q=>54 q="T1 q =87
A | PMSE | A | PMSE A PMSE A PMSE A PMSE A PMSE
0.2 | 0.1201 | 0.1 | 0.2237 | 0.05 | 0.4506 | 0.05 | 0.6565 | 0.05 | 0.8387 | 0.05 | 1.0400
0.4 | 0.1206 | 0.2 | 0.2312 | 0.1 | 0.4927 | 0.1 | 0.7200 | 0.1 | 0.9189 | 0.1 | 1.1103
0.8 | 0.1209 | 0.4 | 0.2354 | 0.2 | 0.5190 | 0.2 | 0.7604 | 0.2 | 0.9718 | 0.2 | 1.1601

Table 4.1: Choosing the optimal ¢ and the optimal A

Table 4.1 shows that the prediction mean squared error (PMSE, Loader (1999, p. 30)) is
minimal for P, (q, \) = (5,0.2)2.

4.5.3 Neighborhood definition and minimization

The model specification is now set. The algorithm continues by calculating the distances § and
the weights d according to equation (4.2). For this purpose the R: :RANN library is used (R Core
Team (2016), Arya et al. (2015)).

For the points P; and Pgg, figure 4.2 shows that closer neighbors receive larger weights than
do more remote neighbors.

The key advantage of polynomial mixing and least squares is that the minimization can be
conducted analytically as described in equation (4.3) and that a large number of predictors can
be digested. Thus, solving the n = 88 minimization problems takes less than 5ms on a single core
of an intel i7 5600U. The relatively large regularization parameter A = 0.2 causes the influence
vectors [ for the points P; and Psg to equal the rescaled weights d up to 1072 (see section 4.4).
That is, the local regression fit is dominated by the d weighted constant. This makes intuitive
sense because with ¢ = 5, the number of estimated parameters used for prediction shall be as small

as possible. Figure 4.3 shows the regression lines for P, and Pgg, which are almost horizontal.

2A full grid optimization yields a minimum PMSE of 0.0494 at Py, (q, A) = (7,0) and an R2 = 96% (see figure
4.1). Although the values of X in the grid optimization appear to be too large in this example, they might be suitable
in more realistic scenarios with a large number of predictors.
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Figure 4.2: The two predictors C and E of Brinkman (1981) with highlighted P; and Pgg and their
respective ¢ = 5 neighborhoods.

Their intersections with the vertical lines, which indicate the E values of the two points, mark the
predicted NOy.
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Figure 4.3: Regression lines for P; and Pgg

4.6 Potential improvements

Our implementation of local regression that is described in section 4.5 is rather simple. Extensions

have already been developed in different directions. Cleveland & Loader (1996, p. 31) suggest
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choosing both ¢ and A locally rather than globally. Cleveland (1979, p. 829) has already argued to
substitute least squares optimization. Whereas he suggests an outlier-robust alternative, Loader
(1999, p. 59) describes how maximum likelihood procedures can be localized to better model, e.g.,
categorical responses.

If 2y falls outside the domain of its neighborhood, e.g., if all of xy’s ¢ nearest neighbors are left
of xg itself, regression switches from interpolation to extrapolation, which causes some elements
of [ to be negative. Consequently, the prediction suffers from large uncertainty. One approach to
address this issue might be to prevent extrapolation with existing algorithms (for an overview, see
Rao & Singh (1997)), whereas another approach might be to search a surrounding neighborhood
rather than only a close neighborhood Hy.

The grid optimization suggested in section 4.5.2 needs improvement. The grid is arbitrary and
potentially far too imprecise in the crucial regions. Further research is needed here. One idea is to
use closed-form solutions to find the optimal A (Rinne, 2008, p. 640) conditional on the numerical

optimization of ¢ alone?.

3Note that these closed-form solutions depend on the ordinary least squares estimates, which do not exist in the
likely case of p > gq.
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Chapter 5

Multiple Imputation via Local

Regression: The Miles algorithm

Our knowledge can only be finite, while

our ignorance must necessarily be infinite.

Karl Raimund Popper

5.1 Introduction

This chapter combines the posterior step one-fits-all local regression algorithm, which is introduced
in chapter 4, and the imputation step one-fits-all midastouch algorithm, which is introduced in
chapter 3, to the multiple imputation via local regression (Miles) algorithm, which is a key con-
tribution of this dissertation!. Miles is not assumption free, but it resolves two major limitations
of the fully parametric approach, which is presented in section 2.3. In the posterior step it does
not heavily restrict the relation between the incomplete variable and its predictors; it does, e.g.,
not assume a linear relation as in equation (2.1). In the imputation step, it does not require a
distributional assumption for the data; it does not, e.g., require y,, | X to be normally distributed
as in equation (2.1). The next section presents the Miles algorithm.

It is tempting to believe that Miles is beneficial only if the analysis model is unknown to the
imputer. If the imputer is aware of the analysis model, an according, later called educated, imputa-
tion model appears to be the best option, and an overly inclusive imputation model, such as Miles,
appears to be unnecessarily inefficient (see section 2.2). However, when imputing transformed vari-
ables, the according imputation model procedures yield biased and inconsistent estimates in the
relevant case of missing at random (MAR), as will be presented in section 5.3. Section 5.4 provides
an overview of the possible approaches, which are compared in a simulation study in section 5.5.
The ideas of this chapter are published in Gaffert et al. (2016); thus, this paper is not cited in the

following text.

5.2 The proposed algorithm

Miles is the combination of the local regression algorithm from chapter 4 and the midastouch

L Aerts et al. (2002) proposed local models for multiple imputation. Their approach, however, relies upon Kernel
smoothing and lacks the advantages of local regression (Hastie & Loader, 1993) and predictive mean matching
(PMM). De Jong (2012, p. 43) first sketches some ideas of a local-regression based multiple imputation algorithm.
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Algorithm 5 The Miles algorithm.

1. Run a Bayesian bootstrap (Rubin, 1981) and conduct all subsequent steps on the bootstrap
sample.

2. For each observation, i.e., both donors and recipients, make a local regression prediction as
described in chapter 4.

3. Obtain the imputations by drawing donors with probabilities given by equation (2.4) from
within the recipients’ neighborhoods.

4. Repeat the steps above for iterating over all variables and multiple imputations (van Buuren,
2012, p. 110).

algorithm from chapter 3. Miles is presented in algorithm 5, and the corresponding source code is
given in appendix C (R Core Team, 2016). Because midastouch requires bootstrap frequencies, it
appears to be natural to introduce between variance by bootstrapping the donors (the replication
step in von Hippel (2007, p. 84)), i.e., to estimate the local regressions on M > 2 bootstrap samples.
Rubin (1981, p. 132) shows that limiting the bootstrap frequencies to integers is inefficient and
proposed the Bayesian bootstrap, which reaches the same degree of precision as Efron (1979)’s
bootstrap faster. Otherwise, the properties are equivalent, except for very small samples?. That
is why Miles employs the Bayesian bootstrap. The noninteger bootstrap frequencies from the
Bayesian bootstrap wpp simply substitute w; in equation (2.4); thus, the midastouch algorithm
naturally incorporates the Bayesian bootstrap.

Another specialty of Miles is that once the neighborhood is selected, both the modeling and the
imputation step are conducted in the neighborhood. Thus, only donors within the neighborhood
have positive selection probabilities according to equation (2.4). Donors outside the neighborhood
have zero probability, although they may be closer in terms of the predicted mean. This property

makes the algorithm truly local.

5.3 Imputing transformed variables

Using the definitions of section 2.3 and relaxing the distributional assumptions for Z, suppose that

the analysis model has the following form:
Z=%+7Q+wY +u+ > 70 (QY),
t

with u denoting independent normal noise and g; denoting the ¢th nonlinear transformation term.
If g = 0, parametric multiple imputation as presented in algorithm 1 is proper. For more complex
g, there are two types of imputation algorithms. Algorithms that explicitly consider the analysis
model are referred to as educated, and the others are referred to as ignorant. An educated imputa-
tion algorithm is referred to as omniscient if the analysis model exactly depicts the data generating
process.

There are two educated approaches to address complex g; the passive-imputation algorithm
(PI) by van Buuren & Groothuis-Oudshoorn (1999, p. 13) and the just-another-variable algorithm
(JAV) by von Hippel (2009, p. 271). To introduce both algorithms, suppose that ¢ (Q,Y) = Y2
The sample data set then consists of four columns (zp,qn, yn,y;), where the first two are fully

observed and the latter two have missing values for exactly the same observations. Recall the

2Rubin (1981, p. 131) shows that the variance of the mean estimator differs by the factor n/(n — 1).
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multivariate two patterns of section 2.4. The passive-imputation algorithm proceeds as algorithm
1, but it also includes the squared term in the regression model for y,. After the imputation of
yj, it simply computes the squares. This is why, von Hippel (2009, p. 272) names this approach
‘impute (the linear terms), then transform’. The just-another-variable algorithm imputes y; as
does the passive-imputation algorithm. However, rather than calculating the square from the
imputed values, it repeats the imputation procedure for yj2 and thereby treats the transformation
as if it were just another variable. Logical inconsistencies between y; and its transformations g are
a natural consequence of this procedure, which can be an essential disadvantage as noted by van
Buuren (2012, p. 132). If the response mechanism is completely at random (MCAR), then the
just-another-variable algorithm enables consistent estimation of the parameters of interest whereas
the passive-imputation algorithm does not. For the missing at random mechanism, which is by
far the most relevant in applications, neither of the two approaches provides consistent estimates
(Seaman et al., 2012, p. 7)3.

5.4 Educated versus ignorant imputers

Both the PI algorithm and the JAV algorithm require the imputer to know the analysis model.
This appears to be a doable requirement, because all the imputer needs to do is talk to the
analyst. However, in many applications, talking to the analyst is a tricky task. Consider public
use files, where one imputer at the agency provides the file but where hundreds of analysts run
highly sophisticated models driven by theories from their fields (Rubin, 1996, p. 473). Some
very talented imputers might actually be capable of performing this job. However, there is no
doubt that this takes substantial time and effort. Now, recall that if the missing data pattern
is not missing completely at random, neither of the two educated approaches provides consistent
parameter estimates; therefore, what is the reward for all this work?

Doove et al. (2014) present random forest imputation, which is introduced in section 2.5.5, as
an ignorant algorithm and show that it preserves ignored interaction effects well. Local regression,
which serves as the posterior step for Miles, consistently captures a broad class of functional
relations (see section 4.2). Both algorithms, random forest imputation and Miles, appear to be
very inclusive (see section 2.2) and thus well suited to preserve the relevant relations in the data.
Ignorant approaches generally require MAR, not MCAR, and do not cause inconsistencies as the
JAV algorithm.

5.5 Simulation study

5.5.1 Simulation setup

Using a simulation study, the relative and absolute performances of the proposed Miles algorithm
are assessed. The major distinction is between ignorant approaches that take the linear terms as an
input only and omniscient approaches that utilize the linear terms and the relevant transformations
from the analysis model, which is equivalent to the data generating process in this setting. The
ignorant approaches are random forest imputation by Doove et al. (2014), the version of predictive
mean matching (PMM) in van Buuren (2012, p. 68), which is recommended by Morris et al.
(2014), and the proposed Miles; the omniscient approaches are the PI algorithm and the JAV
algorithm. The omniscient approaches also utilize PMM in the imputation step to achieve better

comparability with the ignorant approaches.

3Vink & van Buuren (2013) propose a third educated solution for the special case of a squared term.
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Table 5.1: Simulation results

Ignorant approaches Omniscient approaches
Miles PMM RF PI** JAV**

Linear only* D9 (QY) =

Y =0 151 (930) 143 (944) 175 (928) | 142 (939) 143 (945)

Yo =1 152 (938) 146 (953) 175 (925) | 146  (948) 146 (950)

yy =1 152 (908) 139 (910) 175 (806) | 141  (901) 140 (904)
Square Y9 (Q.Y) = 7y2Y?

Y =0 177 (945) 199 (907) 168 (898) | 351  (305) 145 (955)

Yo =1 209 (931) 224 (947) 198 (953) | 407 (951) 174 (954)

vy =1 202 (952) 225 (919) 190 (937) | 418 (952) 164 (929)

Y2 =1 279 (930) 285 (846) 269 (819) | 563  (175) 233 (907)
Interaction Dt (Q.Y) = vov QY

Y% =0 265 (939) 324 (962) 250 (934) | 338 (914) 195 (919)

Yo =1 267 (941) 332 (939) 252 (941) | 334 (946) 205 (884)

vy =1 262 (808) 308 (717) 244 (789) | 331 (872) 195 (944)

Yoy =1 263 (791) 321 (537) 248 (720) | 334 (230) 188 (875)
Cube 279 (Q.Y) = vy3Y?

Y =0 206 (949) 225 (957) 224 (957) | 483  (949) 218 (922)

70 =1 192 (941) 206 (951) 210 (952) | 438 (835) 211 (926)

vy =0 123 (963) 134 (924) 132 (954) | 275 (629) 134 (917)

Yys =1 421 (964) 441 (951) 445 (907) | 1007 (938) 457 (935)
Average 221 (922) 243 (891) 224 (895) \ 308  (801) 197 (924)

Table 5.2: The table presents relative root mean squared errors (rRMSE) x100. A value of 100
means that the RMSE of the respective parameter estimate in the imputed data set is as large
as the RMSE of this parameter before deletion. Coverages of 950%¢ intervals are given in in
parentheses. Abbreviations are: Multiple imputation via local regression (Miles); Predictive mean
matching (PMM); Random forest imputation (RF); Passive imputation (PI); Just another variable
(JAV). *When g = 0, PMM, PI, and JAV are identical algorithms. **The results for JAV and
PI in Gaffert et al. (2016) are misleading due to an error in the implementation and are corrected
here. As a consequence, in Gaffert et al. (2016) JAV looks worse and PI looks better than it really
is. The PI results here are based on 50 Gibbs sampler iterations (see section 2.4).

(Q,Y) follow a standard normal distribution with a p = 0.2 correlation (Rinne, 2008, p. 201).
The missingness is always at random and defined by pr(R = 0) = ® [(1/4){Q + N(0,3)}]. We fix
M = 10, nys = 90, and ngyps as low as 60 to obtain a substantial degree of estimation uncertainty
of the imputation model parameters. Throughout the different analysis models, the coefficient of
determination is maintained at approximately R? = 2/3 (Rinne, 2008, p. 79), and for each model,

ngim = 1000 Monte Carlo simulation runs are performed.

5.5.2 Simulation results

Table 5.1 shows the results for all parameters of interest and all introduced imputation methods in
two dimensions. The relative root mean squared error (Rinne, 2008, p. 17), abbreviated as rRMSE,
is defined as the ratio of the RMSE of the imputed data sets divided by the RMSE before deletion.
Small values indicate good quality. The rRMSE is a quality indicator in descriptive statistics. To
obtain a quality indicator in inferential statistics, we construct 950%o confidence intervals as in
section 3.5. Good quality is indicated by coverage values of approximately 950%o.

Overall, the JAV algorithm performs the best. Miles keeps up with JAV in terms of coverages,
but it adds approximately 12% rRMSE due to ignoring the analysis model and thereby, for this
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simulation study, the data generating process. Random forest imputation performs as well as
Miles in terms of RMSE, but it performs significantly worse in terms of coverages. Ignorant
PMM and PI are clearly outperformed. JAV is the only procedure that does not ensure consistent
imputation, i.e., the imputed values do not obey the transformation rules. With the focus on
preserving interaction effects, Doove et al. (2014) introduce random forest imputation, which is,

in this regard, slightly superior to Miles but clearly inferior to JAV.

5.6 Conclusion and future work

In this chapter, local regression and midastouch are combined to form the multiple imputation
via local regression algorithm Miles. It is an inclusive algorithm in the sense that it attempts to
capture the true nature of the data rather than preserve a predefined, e.g. linear, relation (see
section 2.2).

In many practical applications, it appears to be advantageous to use an inclusive imputation
algorithm. When the analysis model is unknown to the imputer, the best that the imputer can
do is to preserve the major structure of the data, i.e., apply an inclusive imputation algorithm.
If there are many analysis models and no one imputation model can include all parameters of
interest, again, the best that the imputer can do is to apply an inclusive algorithm?.

This chapter presents another less obvious scenario for inclusive algorithms: there is only one
perfectly known analysis model that involves nonlinear relations®. Finding a suitable imputation
model can turn out to be a serious burden for an imputer. After having established the model,
the imputer can apply one of the two educated algorithms: the PI algorithm by van Buuren
& Groothuis-Oudshoorn (1999) or the JAV algorithm by von Hippel (2009). The simulation
results for PI are disastrous; JAV, while performing the best, has the disadvantage of inconsistent
imputations. In the context of just one perfectly known analysis model, the inclusive imputation
algorithms are referred to as ignorant because they are not provided with the analysis model.
Consequently, ignorant algorithms, such as the proposed Miles, are much easier to deploy than
educated ones because there is no need to worry about the functional relation for the imputer.
Furthermore, because all transformations required for the analysis model are calculated on the
imputed data set, inconsistencies cannot arise. These practical considerations may even outweigh
the 12% rRMSE advantage of JAV over Miles.

JAV’s advantage over Miles is particularly large in the case of the interaction. Thus, research
is needed to improve Miles’s capability to capture interaction effects.

In general, the performance of the omniscient approaches is disappointing. All information to
conduct a sensible imputation is available to them in the simulation study, even the true data
generating process. With this valuable information, PI performs considerably worse than the three
ignorant algorithms, and JAV can only slightly outperform Miles. This result clearly indicates a

lack of suitable educated algorithms.

4or specify more than one imputation model.

5An inclusive algorithm clearly cannot be beneficial if the analysis model is both known and perfectly linear.
This case is also shown in table 5.1.
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Chapter 6

Real Data Simulation Study

So, please, oh please, we beg, we pray, go

throw your TV set away.

Roald Dahl

6.1 Introduction

In the preceding chapters 3 and 5, simulations on artificial data were used to assess the properties
of the newly proposed algorithms midastouch and Miles, respectively. Although such simulations
foster the understanding of the underlying mechanics, the ultimate goal of imputation algorithms
is to enable real-world statistical analyses on real-world incomplete data. Using a data set from the
GfK SE company, this chapter investigates the algorithms’ performance when applied in practice

by answering the following research questions:

1. midastouch: The simulation results of chapter 3 show that for multivariate normal data the
algorithm is superior to default predictive mean matching (PMM) when the number of donors
is small, and does not differ from default PMM when the number of donors is large. The
hypothesis is that the latter also holds in a real data set with nonlinear relations as indicated
by Siddique & Belin (2008, p. 96).

2. Miles: The dependency structure within a real data set is usually not linear. Miles has
been developed to capture the true structure of a data set without the need to specifying it
explicitly in the imputation model. The hypothesis is that Miles performs best, because it

approximates all kinds of nonlinear relations (see section 4.2).

Commonly applied analysis models for assessing the quality of imputation procedures are means
and regression coefficients (Morris et al., 2014, p. 7). The results for analysis models that are
specifically relevant in market research are also included, namely contingency tables, cluster analy-
sis, and variances. As in section 5.5, relative root mean squared errors and coverages of confidence
intervals are employed as the key performance indicators in descriptive and inferential statistics,
respectively.

There are three approaches for assessing the quality of an imputation algorithm using real
data. The most obvious approach is to take one data set with missing values and perform the
imputation (Siddique & Belin, 2008, p. 90). The reader can learn about applying the algorithm,

and plausibility checks can be conducted. However, because the values are missing, there is no way
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to compare the imputed data to any truth. The second approach involves a large data set that is
completely observed. Subsamples of this data set are drawn in a simulation study setup, and the
missing values are created artificially (Andridge & Little, 2010, p. 17). The set of validation tools
for this simulation approach is considerably larger. The biases and coverages of the parameters
of analysis models can be evaluated. To overcome the drawback of a fully artificial response
mechanism, Heitjan & Little (1991, p. 24) employ the complete cases of a data set with missing
values rather than a fully observed data set as a third approach. In addition, they establish a model
for the response indicator and use the parameter estimates to create a nearly natural missing data
pattern. Their approach is very similar to the one followed in this chapter.

The next section provides the details about the data set. To ensure readability, most of the
descriptive figures and tables are presented in appendices D.1 and D.2. Section 6.3 introduces the
simulation setup and the analysis models. The simulation results are presented in section 6.4 and

appendix D.6 before section 6.5 concludes.

6.2 The data

The GfK SE company owns household panel data in Germany. Once a year, the panelists are asked
to complete a survey on their media consumption. In this chapter, the focus is on TV consumption,
which is also part of the survey. Because not every panelist completes the survey, there are missing
values in the variables about TV consumption. Imputation algorithms are used to enable statistical
analyses of the media survey data. The survey data are introduced in section 6.2.2. In the panel
households, TV consumption is also measured passively. Special smart phone devices record the
sound of the TV sets in the household and transmit the audio files to a server, where they are
matched to a TV program database. The technically measured data are introduced in section 6.2.1.
The purpose of the survey is to learn about media consumption behavior in general; the purpose of
the passive measurement is to learn about exposures to specific advertisements. Although it would
be possible, the two data sets have not yet been combined. Aggregating the passively measured
TV consumption data to the survey format required a substantial amount of effort as shown in
section 6.2.3.

The key idea now is to define the panelists with passive measurement in place as the population
of interest. Some of these panelists choose not to answer the questionnaire. In this setting, let Y},
denote the aggregated passively measured TV consumption data, which are completely observed.
Let Y;* denote the incomplete survey TV consumption data, which are presumably more prone
to measurement error than Y. Thus, normally, there is only Y;*, and imputation is required to
address its missing values. Due to the considerable extra effort, however, and only for the year
2014, there is also the complete Y;. In other words, the TV consumption is known for those who
have not answered the TV consumption questions. This special data set allows us to learn about
the response mechanism. Section 6.2.4 presents a test for the missing at random assumption.
These insights can perhaps help improve the imputation for ¥,* in the usual application, when Y},
is unavailable.

The data situation is very similar to the one in David et al. (1986). In their application, Y,* is
income from the Current Population Survey, which also suffers from nonresponse and is generally
imputed. Their complete Y} is from the Internal Revenue Service and was also available for one
period only. David et al. (1986) compare different imputation methods by validating the imputed
Y,* using Y},.
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6.2.1 The passively measured data set

In the participating households, TV consumption is measured by sound recording. Audio records
are matched with a database. A successful matching requires any audio record of one channel to
last at least eight seconds. The database consists of the eleven most important TV channels in
Germany, which are listed in table D.1 in the appendix. Other audio records are not used. The
recording devices send an ‘I'm alive’ message at least every five minutes to distinguish between
no relevant TV consumption and a broken measurement device. Panelists are required to log on
and log off the measurement device before and after watching TV to indicate who is watching.
An automated post-processing step assigns the most probable person or persons to a TV event
if the panelist identification has not occurred. One TV event is defined by the starting date and
time, the ending date and time, the channel, one panelist identification, one measurement device
identification, and one household identification. When multiple people enjoy the same TV program,
the same event will occur more than once with different panelist identifications. Switching channels
creates a new event. In the time between 1 a.m. and 6 a.m., the measurement is unreliable because

technical maintenance and data transmission are conducted.

6.2.2 The survey data set

We use data from the 2014 media survey, which was conducted in May 2014. The survey consists
of questions about TV consumption, print media consumption, and Internet usage. There are four
types of TV-related questions; three of them, however, are specific to the survey and not contained

in the passive measurement. These questions are the following:

e One question on the duration of overall daily TV consumption and one on pay TV. Both

exceed the scope of passive measurement’s 11 channels.

e One question on different TV genres. There is no database that matches genres to viewing

times, thus, this information is not provided by the passive measurement.

The only questionnaire information that can be appropriately rebuilt from the passive mea-

surement data is the following:

At what time of day do you usually watch the following TV channel on an ordinary

1. weekday?
2. Saturday?
3. Sunday?

The answers to each of the three types of days are provided in the rectangular structure of
table 6.1.
Non-TV-related questions are discarded. Because the questionnaire is sent out to panelists,

some basic claims data are available. A description thereof is provided in table D.2 in the appendix.

6.2.3 Fitting the passively measured data into the survey data format

The goal is to aggregate the TV event data into the structure of the survey data as in table 6.1.

To conduct the aggregation, a few decisions must be made.

e We use the data one year prior to the survey, which means records from May, 1st 2013
through April, 30th 2014. This approach assumes that the respondents when asked for their

TV consumption rather refer to the past than to the future.
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time of day ‘ARD ZDF ... VIVA another channel

06 a.m. - 09 a.m.
09 a.m. - 10 a.m.
10 a.m. - 11 a.m.
11 am. - 12 p.m.
12 p.m. - 01 p.m.
01 p.m. - 02 p.m.
02 p.m. - 03 p.m.
03 p.m. - 04 p.m.
04 p.m. - 05 p.m.
05 p.m. - 06 p.m.
06 p.m. - 07 p.m.
07 pm. - 08 p.m.
08 pm. - 09 p.m.
09 p.m. - 10 p.m.
10 p.m. - 11 p.m.
11 p.m. - 12 a.m.
12 am. - 01 a.m.
01 a.m. - 06 a.m.

I
I
I
I

Table 6.1: Question on TV consumption in the media survey

e Panelists with no TV event at all in the one year period are excluded from the sample; so

are panelists with less than 120 days of passively measured data.

e The survey questions ask for the behavior on an ordinary day. This is why public holidays

are excluded.

Note that this data set is not used to infer to any larger population of interest in the real world,
which is why the most convenient subset is selected. Now, for each person, each time slot of

interest, and each channel, the aggregation proceeds as follows.
1. Count the number of suchlike timeslots with an active measurement device for that household.

2. Count the number of suchlike timeslots in which a TV event was measured for the particular

channel and for the particular person.

3. Divide the result from 2. by the result from 1.. If the ratio is at least 5%, the answer is yes,

else the answer is no (see table 6.1).

Passively measured TV consumption data are available for 11916 persons living in 6136 house-
holds. Among them, 7935 persons living in 4992 households have completed the survey, and 3981
persons living in 2302 households have not. Based on the respondents only, it is possible to check
how well the passively measured data match the survey data. Although both data sets should
reflect the same truth in the sense that there is only one true TV consumption behavior of a
particular person at a particular time, nobody would expect the two data sets to be exactly alike.
The column labeled accuracy in table D.1 in the appendix contains the percentage of time slot
cells equal to the survey data (Flach, 2012, p. 54) and ranges between 71% and 99%. In table
D.1 in the appendix, the channels are sorted in descending order by their overall reaches in the
data. Notably, the accuracy appears to be sorted in ascending order. In fact, Pearson’s correlation
(Rinne, 2008, p. 76) between the overall reach and the accuracy is p = —0.99. As the values of
Cohen (1960)’s k¢ indicate this large correlation hardly implies that watching smaller TV stations

can be better recalled but are rather an artifact of the accuracy measure.
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6.2.4 Testing the missing at random assumption

In general applications, the assumption about missingness at random cannot be tested (van Buuren,
2012, p. 31). The joint density pr(X,Y™*, R) can be factored into pr(R | Y*, X)pr(Y* | X)pr(X),
and if the missing at random assumption holds, it can even be factored into pr(R | X)pr(Y™* |
X)pr(X).
that pr(R | Y*,X) = pr(R | X). Because Y;* is not completely observed, conducting this test is

A test for missing at random can thus be constructed by testing the null hypothesis

not feasible. In our very special TV data set, we can test the null hypothesis that pr(R | Y, X) =
pr(R | X), instead.

The response pattern in the survey data is created by not answering the survey at all and can
thus be fully described by a single response vector. Using logit models (Greene, 2008, p. 774),
both the MCAR and the MAR assumptions can be tested directly on the data (Little & Rubin,
2002, p. 16). Likelihood ratio tests for omitted variables are conducted as described in Greene
(2008, p. 788). For convenience the categorical variables in table D.2 in the appendix are assumed
to be continuous.

Table 6.2 shows that both assumptions can be rejected on any common significance level.
The response mechanism is clearly not MCAR. Only eight fully observed covariates lead to a
considerable R?M ap = 17.6%. Although the test rejects the MAR assumption, too, the model does
not improve much by adding the 560 columns of Y as predictors. The AIC (Rinne, 2008, p. 635)
reflects this observation. It is larger for the larger model (AICar = 13588, AIC yynyar = 13872),
which indicates that the MAR model should be chosen over the MNAR model. If the relation
between Y and R | X had been large, the likelihood ratio test and the AIC would not give
contradictory answers. Thus, we conclude that the MAR assumption is not justified, however, the

magnitude of the resulting bias is likely to be small.

null hy- | covariates in the logit models Nagelkerke | 2 degrees of | p value

pothesis (1991) R2 freedom

MCAR | HO: No covariates 0% | 1612 | 8 < 0.0001
H1: the basic claims data (table D.2) 17,6%

MAR HO: the basic claims data 17,6% | 836 560 < 0.0001
H1: the basic claims data plus the TV 25.8%
consumption data (table 6.1)

Table 6.2: Likelihood ratio tests for the MCAR and the MAR assumption. Under the null hypoth-
esis for the MCAR test pr(R) = pr(R | X) holds, and under the null hypothesis for the MAR test
pr(R| X) =pr(R|Y,X) holds.

There are other technical approaches to test the MAR assumption when using Y}, rather than
Y,*. Factoring pr(X,Y, R) differently results in testing the null hypothesis that pr(Y | X, R) =
pr(Y | X). Alternatively, similar to David et al. (1986, p. 37), Y}, | 7 = 0 can be imputed under the
MAR assumption yielding Ys | r = 0. Testing the null hypothesis that the moments of Y |R=0
equal those of Y | R = 0 is effectively a test for MAR. Because all Y,s are binary, the test involves
the proportions only. Certainly, the test presented in table 6.2 is the easiest to conduct because r
is a vector, whereas Y}, is a matrix with 561 columns, and because it does not involve imputations
at all.
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6.3 The simulation setup

6.3.1 Missingness

The data set consists of the eight basic claims variables (see table D.2 in the appendix) and 561
columns with passively measured TV consumption data in the binary survey format (see table
6.1). Note that 561 is simply the product of 11 channels, 3 types of days, and 17 time slots. The
1 a.m. to 6 a.m. slot is discarded due to known measurement errors.

A total of 3981 of 11916 respondents in the data set lack the survey data, which equals 33.4%.
The basic claims data are always treated as fully observed, and the TV consumption data are
always treated as incomplete. Two different response mechanisms are introduced: missing always
completely at random (MACAR) and missing always at random (MAAR), where the attribute
‘always’ indicates that the data generating process rather than one specific sample follows the
respective mechanism (Mealli & Rubin, 2015, p. 998). The data set allows a definition of the
response mechanisms that is close to a natural one. By defining the model of the response mecha-
nism, MA(C)AR can be assured. The parameters governing the process need not be set but can be
estimated from the data as in Heitjan & Little (1991, p. 24). Table D.3 in the appendix provides
the respective parameters. The predicted probabilities from this model are used for the simulation
study. They range between 0.1523 and 0.9314. The missing values across the TV consumption
variables are set independently conditional on the predicted probabilities, which creates a Swiss

cheese missing pattern (see section 2.4).

6.3.2 The analysis models
Exclusion and aggregation

For simplicity and for reducing the computation time, the analysis models use the binary variables
(see table 6.1) from the channel Pro 7 on Sunday only. Furthermore, a variable called VOX is
constructed as the sum of all time slots and day types of the channel VOX. Pro 7 and VOX are
the largest two channels with an accuracy value in table D.1 in the appendix that is larger than
85%. The data set for imputation thus includes eight basic claims variables (see table D.2 in the

appendix), 17 binary incomplete variables and one continuous incomplete variable.

Univariate statistics

Because all the data related to Pro 7 are binary, the mean is sufficient to fully describe the dis-
tribution. The focus for Pro 7 is on Sunday night from 8 p.m. to 9 p.m. with a mean value of
ppg = 0.43. The aggregate VOX is described by the mean pygx = 7.56 and the logarithm of the vari-
ance In {var(V0X)} = 4.36, which is assumed to be normally distributed (Koller-Meinfelder (2009,
p. 53), Schafer (1997, p. 145)). Figures D.1 and D.2 in the appendix display the distributions.

Bivariate statistics

In market research, the most popular descriptive statistic is a contingency table. To show coverages
in the evaluation section, the cell values are transformed to parameters of a multinomial regression
model (Greene, 2008, p. 843), which are normally distributed (Greene, 2008, p. 785). The three
contingency tables used for quality assessment are presented in table D.4 in the appendix and

reveal that persons in larger households tend to watch more TV, particularly on Sunday night.
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Multivariate regression models and nonlinearities

The focus of the simulation study with artificial data in chapter 5 was on linear regression models
(Greene, 2008, p. 148). In a very similar setup, the imputation procedures are now challenged
with real data. The dependent variable is internet (see table D.2 in the appendix). Table D.5 in
the appendix presents the details. The positive coefficients indicate that media affinity dominates

potential substitution between TV and online usage.

Cluster analysis

Clustering, which is focused on finding homogeneous groups, is one key analysis in market research
and commonly used for, e.g., differentiating communication strategies (Punj & Stewart, 1983, p.
135). We conduct a k-means clustering (Rinne, 2008, p. 696) with two clusters on the imputed
Sunday time slot data of the Pro 7 channel. The analysis of interest is the cluster means of the
fully observed variable kids18 and the imputed aggregate VOX . The learning from the data is
that persons living in households with minors tend to watch more TV. The details are presented
in table D.6 in the appendix, where the ¢ value relates to the null hypothesis that the respective
means of the two clusters are equal (Rinne, 2008, p. 528).

6.3.3 Imputation algorithms

As in chapter 5, we make the distinction between the educated and the ignorant imputer. The
educated approaches take the transformations required for the regression models in section 6.3.2
into account. Due to its poor performance in chapter 5, passive imputation (PI) is excluded from
further investigation. Just-another-variable PMM is the remaining educated approach. As in
chapter 5 the ignorant approaches consist of PMM, random forest imputation and Miles. To also
conclude chapter 3 the midastouch algorithm is implemented as an ignorant and as an educated
just-another-variable (JAV) approach. All algorithms run within R: :mice (R Core Team (2016),
van Buuren & Groothuis-Oudshoorn (2011)).

In contrast to the previous simulation studies the missing pattern is now nonmonotone (see
section 2.4). Thus, the algorithms must loop over the incomplete variables multiple times (van
Buuren, 2012, p. 102). Thereby, it must at least be ensured that the autocorrelation is low enough
for the algorithm to become independent from the arbitrary starting values (Schafer, 1997, p. 106).
To assess a reasonable number of iterations, five different samples of size n = 600 are drawn from
the N = 11916 population, and each of the two response mechanisms described in table D.3 in
the appendix is applied. Then, we run each of the six imputation algorithms in single imputation
mode and iterate over the variables 300 times. For each of the 31 parameters of interest, the first
nonsignificant lag of the autocorrelation function is computed using a significance level of o = 10%
(Schafer (1997, p. 121), Rinne (2008, p. 400)). Table 6.3 reports the maximum of each analysis
and the five data sets.

The educated approaches suffer from extremely high autocorrelation; their maximum first cor-
related lag is > 100. The likely reason is that the variables P8 and VOX are highly correlated
with their considered transformations (van Buuren, 2012, p. 113). At the N = 11916 level, linear
regression models for the transformations with all other variables as predictors yield coefficients of
determination R2 of 0.9 for the interaction, 0.99 for the squared term, and 0.98 for the cubed term.
As a benchmark, the maximum R? in the data set without the nonlinear terms is 0.65, which is for
the 9 p.m. to 10 p.m. dummy for the Pro 7 channel. Because such high correlations are not un-

usual for typical transformations, convergence is a severe shortcoming of the just-another-variable
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Analysis models ignorant
PMM midastouch RF Miles

Missing Always CAR AR CAR AR ‘ CAR AR CAR AR
univariate statistics 12 4 5 3 4 2 5 4
bivariate statistics 29 7 5 4 5 4 5 4
regression coeflicients 16 6 6 8 4 4 5 4
cluster means 45 3 4 3 4 3 6 2
number of iterations 88 14 8 10

Table 6.3: First uncorrelated lag as a measure for autocorrelation

algorithm as already indicated by van Buuren (2012, p. 130). The slow convergence increases the
required computation time drastically and thus forces us to exclude the educated algorithms from
our simulation study.

Table 6.3 shows that ignorant PMM occasionally suffers from high autocorrelation, too. First
investigations have revealed that some parameters of interest vary hardly or even not at all over
many successive iterations of PMM imputation. This convergence issue is a new discovery to the
best of our knowledge (Koller-Meinfelder, 2009, p. 73). To ensure stable results, the number of
iterations is set to twice the maximum value of the last correlated lag. Some more insights on

convergence are provided in appendix D.5.

6.3.4 Further settings

The sample size is set t0 nops + Nynis = n = 400 + 200 = 600, which is approximately 5% of the
population size. Thus, the convenient sampling with replacement formulas still apply (Cochran,
1977, p. 25). Furthermore, as in section 5.5, the number of multiple imputations is fixed at

M = 10, and the number of Monte Carlo simulation runs is fixed at ngj,s = 1000.

6.3.5 Evaluation criteria

The estimands are introduced in section 6.3.2. As in section 5.5 the descriptive criterion is relative
root mean squared error (Rinne, 2008, p. 17), abbreviated as rRMSE. The inferential criterion is
coverages of 950%o confidence intervals as in section 3.5. We use 1000 bootstrap samples of each
imputed data set to assess the within variance of the parameters of interest (Davison & Hinkley,
1997, p. 22).

6.4 The simulation results

Tables D.7, D.8 and D.9 in the appendix present the results; a short summary is displayed in table
6.4. The upper part of table 6.4 shows the root mean squared errors relative to the situation before
deletion. A value of 100 means that there is no increase in the root mean squared error due to
the incompleteness of the data set; a value of 200 means that the root mean squared error has
doubled. The lower part of table 6.4 shows the coverages of 950%o frequentist confidence intervals.
The ideal value is 950, and values below 900 are considered undesirable (van Buuren, 2012, p. 47).

All algorithms cope equally well with the MACAR mechanism and with the MAAR mecha-
nism. This result is somewhat surprising because the MAR response mechanism (see table D.3 in
the appendix) depends on nonlinear transformations of age and hhsize, which also significantly
influence, e.g., P8 and VOX (p values < 0.0001 for N = 11916) after conditioning on the (linear)
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Parameter ignorant
PMM midastouch RF Miles
Missing Always CAR AR ‘ CAR AR ‘ CAR AR ‘ CAR AR
(relative root mean squared error) x 100
univariate statistics 117 118 118 117 156 160 119 119
bivariate statistics 114 115 113 113 140 146 118 119
regression coefficients 99 100 100 100 99 99 98 97
cluster means 92 94 92 93 129 132 101 102
coverage of 950%. confidence interval

univariate statistics 947 943 949 949 835 821 943 935
bivariate statistics 955 954 957 958 882 873 944 945
regression coefficients 970 966 969 966 970 967 972 968
cluster means 980 974 980 976 844 837 954 954

Table 6.4: Summary of the simulation results. Best in MAAR is underlined.

imputation model. Formally, this is a missing not at random mechanism. In applications, it is
common that the researcher does not take the time to model each incomplete variable with care.
Instead, as in our setup, imputation methods are employed that are somewhat robust to model
misspecification, which appears to work satisfactorily in our example.

For some analysis model parameters, the relative root mean squared errors are below the the-
oretical threshold of 100, indicating that analyzing the imputed data set is more efficient than
analyzing the data set before deletion. The only theoretical explanation is that the imputation
model imposes meaningful restrictions, also known as superefficiency (Rubin, 1996, p. 481). The
nonparametric nature of the imputation models makes it impossible to derive the implied restric-

L. However, it is most likely that the imputation models restrict some parameters to zero.

tions
As shown in appendix D.4, all analysis model parameters are significantly different from zero at
the N = 11916 level. Thus, how can wrong restrictions increase efficiency? Consider the following
argument: Some parameters are tiny in magnitude and barely significant even in the large data set.
On a small sample (n = 600) imposing a zero restriction on them, which is strictly speaking wrong
but not completely incorrect, may have a ridge effect, i.e., it introduces a slight bias but potentially
reduces even more variance. For some empirical evidence consider the regression analysis model
and specifically the coefficient for VOX? in table D.7 in the appendix. For the MACAR mechanism
the root mean squared error after ignorant PMM imputation is 91% of the root mean squared error
before deletion. If the restriction on the cubed term causes this increase in efficiency, then this
increase must not be present in an imputed data set that results from an unrestricted imputation
model. To see this, the same ng;,, = 1000 incomplete data sets are imputed again with PMM. Yet,
this time the imputation model comprises the cubed term in a just-another-variable fashion, i.e.,
it does not impose any restrictions on the cubed term?. The resulting root mean squared error is
121% of the root mean squared error before deletion, i.e., the analysis on the imputed data set is
now less efficient than the analysis on the data set before deletion, which suits our prediction.

Because the number of donors is large, an advantage for midastouch over PMM cannot be
expected. The simulation results based on multivariate normal data from chapter 3 reveal that
midastouch and PMM do not differ if the number of donors is large. Table 6.4 clearly supports
this finding and thus hypothesis 1.

Miles reaches approximately the same performance as PMM and midastouch. Hypothesis

IThe finite number of donors probably limits the ability of, e.g., local regression to fit any functional form.
However, it is difficult to state to what degree a global interaction effect can be well reflected.
?Because the cubed term is highly correlated 200 Gibbs sampler iterations are required for convergence.
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2 is thus falsified. However, Miles clearly outperforms random forest imputation. The better
performance comes at the expense of longer runtimes: compared to random forest imputation,
Miles takes twelve times longer. Nevertheless, as already noted by Cleveland et al. (1988, p.
91), the local regression algorithm is embarrassingly parallel because the algorithm can be run

independently on each data point.

6.5 Conclusion and future work

The simulation study in this chapter is based on a large TV consumption data set from the GfK
SE company. All parameters of the simulation setup are chosen to be as realistic as possible. The
parameters of the response mechanism are estimated from the data, the share of missing values
is taken from the data, respondents and nonrespondents are included in the analyses, and the
analysis models evaluated are the most relevant in the market research industry. Nevertheless, it
is only one data set.

This chapter is the first in this dissertation to address a Swiss cheese missing pattern and
thus to require Gibbs sampling (see section 2.4). Convergence diagnostics reveal an issue of PMM
that is not yet understood. PMM causes analysis model parameters to vary hardly over many
iterations. The simulation results appear not heavily affected. However, this is a serious issue for
applications. Another issue is found for the JAV algorithm. Because the nonlinear transformations
are prone to be highly correlated with the linear terms, JAV is suspected to generally suffer from
high autocorrelation (van Buuren, 2012, pp. 113, 130). Consequently, the JAV procedures are
excluded from the simulation study of this chapter. A potential solution for this issue is to relax
the mutual dependence in the algorithm and treat the linear terms and their transformations as a
monotone pattern (van Buuren, 2012, p. 211).

The newly proposed midastouch algorithm performs equally well as the established PMM. This
result is in line with the findings of chapter 3. Because midastouch is superior to PMM for small
data sets, reaches the same performance for larger data sets, and does not suffer from convergence
issues, we argue to generally choose midastouch over PMM.

In this data set, the nonlinearities are not large enough to overtax the simple linear model
combined with PMM or midastouch. This is why the newly proposed Miles does not provide any
additional benefit in this application and performs only as good as PMM and midastouch. Random
forest imputation, however, is clearly inferior to all competitors.

The special nature of the TV data set, which is intensively used in this chapter, allows learning
about the typically untestable MAR assumption. The results in section 6.2.4 indicate that assuming
MAR is much better than assuming MCAR, but perhaps not quite enough. The null hypothesis
MAR can be rejected on any common significance level in favor of the alternative MNAR. A natural
extension for future research is to base the simulation study on the observed MNAR mechanism

to determine how severely the results are affected.
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Appendix A

Appendix to Chapter 3

A.1 Overview of existing PMM implementations

match types k-nearest-neighbor parameter predictions of
Ref. | available specify by ‘ default specify by ‘ uncertainty | donors recipients
1-4 2 - Nobs - ABB 0.0.8. 0.0.8.
5 1 - 5 donors=# parametric i.s. 0.0.8.
6 1,2,3 pomtype=# 3 kclosest=# bootstrap i.s. 0.0.8.
7 2 - 1 - BB is. is.
8 2 - 1 - parametric i.s. i.s.
9 1 - 5 - parametric i.s. 0.0.8.
10 2 - Nobs - ABB i.s. 0.0.8.
11 2 - 1 - parametric i.s. 0.0.8.
12 2 - 1 knn (#) parametric i.s. 0.0.8.
13 1,23 matchtype=# 3 matchpool (#) | parametric i.s. 0.0.8.

Table A.1: Characteristics of existing PMM software implementations (Morris et al., 2014, p.
3). The references (Ref.) refer to table 3.2. Abbreviations are: approximate Bayesian bootstrap

(ABB), Bayesian bootstrap (BB), in sample (i.s.), and out of sample (0.0.8).

A.2 Rationale for leave-one-out modeling

Consider the univariate case, in which both the donors and the recipients are drawn from the same
population. The imputation model is simply the mean of Y in the donor sample, denoted by fiyps.
The mean squared deviation of the donors from the model is
Nobs
Vdon = n;bls Z (yz - ﬂobs)Z-
i=1

Introducing the true mean by adding 0 = 1 — p yields (Cochran, 1977, p. 26)

Nobs

Vion = 1y > {Wi = 1) = (frobs — 1)}
=1
Nobs
= ng, { i - M)Q} — (flobs — 11)°.
=1
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Analogously, the mean squared deviation of the recipients from the model is

Viee = npie D3 {5 — 1) = (frobs — 1)}
j=1
= n:rés { Z (yj - N)Q} + flobs (ﬂobs - 2ﬂmi5) - ,LL(N - QﬂmiS)a
j=1

where [i,,;s denotes the unobserved mean estimate of the recipient sample. Taking the difference

and utilizing the homoscedasticity assumption, we obtain

Mobs Nmis
Vdon - erec = n;bls { Z (yl - M)Q} - n’?n},s { Z (y] - M)2} + 2(,aobs - ﬂmzs)(u - ﬂobs)
i=1 j=1

E(Vdon - Vrec) = QE{(,[LObs — ﬂng)(’u — ﬂobs)}-
For a large recipient sample, fipis = F(fimis) = p holds, and thus, the following also holds:
E(Viaon — Vree) = —2E (i — fiobs)” < 0.

In other words, as long as the model, which is based on the donor sample (Rubin, 1987, p. 167),
differs randomly from the true population model, the expected value of the residual variance for

the donors is smaller than that for the recipients. This difference decreases as ngps — 0.

A.3 Another look at choosing k for k-nearest-neighbors

We add to the discussion of choosing an optimal k by focusing on the point estimate of the variance
of Y. If the domains of the donors and recipients are similar, a large k will increase the probability
that recipients closer to the bounds will obtain their values from donors closer to the center. The
variance of Y inevitably decreases, and thus, the estimate of the variance of Y on the imputed
data is biased downwards for larger k.

To see this, suppose that the predictive mean w obeys the bounds [—0.5,0.5] and that the
distribution of the donors is discrete and equidistant within this range such that wyps = {—0.5 +
(2 —1)/(nops — 1)}, with Q = (1,...,nps). Further suppose that the recipients are distributed in
the exact same way such that wyps = @Wyis. We define n = ngps = nmis and, for simplicity, allow it
to be uneven only. We also assume that the predictive mean tw is the characteristic of interest. This
may be the case in a multivariate setting in which the fully observed variables perfectly determine
the variable with missing values.

Wmis 15 imputed using wops, leading to w;y,,,. We wish to learn about the point estimate for the
variance of w;,;, as a function of the relative size of the neighborhood from which random selection
is performed for a single recipient. We define this relative size, excluding the exact nearest neighbor,
as ¢ = (2 —1)/(n —1). We decompose the variance of w;,,, into a between-variance component
and a within-variance component, O(s) = Z(s) + T(s), where E denotes the interrecipient variance
and T denotes the intrarecipient variance. It follows that if the exact nearest neighbor is chosen,

the interrecipient variance of w;,,, will equal the variance of @p,;s,
O(c=0) =Z(s =0) = var(wmis)- (A.1)

For larger ¢, the intrarecipient variance increases according to the variance formula for the discrete
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uniform distribution as follows (Rinne, 2008, p. 372):
T(o) = —AYT(s) = */12 + ¢/{6(n — 1)}.

The interrecipient variance is equivalent to the variance of the expectations. The expectation of a
uniform distribution is the mean of its bounds. Because the range of w is limited on both sides,
the interrecipient variance decreases with increasing ¢. More specifically, we see that for the left

side, i.e., @' .. <0,

mis

E{@p | 6 pis < (s —1)/2} = (¢ —1)/2. (A2)
We assume that the mean of w is known to be zero. We can then write, based on the left-hand
side,
(n—1)/2
var(@pmis) —E(s) = AZ() = 207" Y [(@his)” = {B (@)} (A3)
i=1

We now focus solely on the part of the left-hand side for which w@? ;. < (¢ —1)/2 holds. We may

ignore the rest because all corresponding elements of the sum in equation (A.3) are zero. Then,

using the assumption of equidistance and equation (A.2), we obtain

AS(0) = 2071 ("_i)gp{(il)g R (<;1>2}. (A4

i=1

The last term in equation (A.4) is equal to the last term in (A.3) and cancels out. Some rewriting

reveals a series that allows further simplification (Bronstein et al., 2013, p. 20):

(n—1)g/2 (n—1)c/2
AZQ) =20{ (1-9)/(n—-1) Y @)+m-1)"2 > (2
1=1 i=1

Further algebra leads to the third-order polynomial
AZ(G) =c{s(n—1) +2}{2¢(n — 1) — 3n + 2} /{—12n(n — 1)}.
Adding AY () results in
AB() = s(s — D){s(n — 1) +2}/(6n),

which has two obvious roots: one at ¢ = 0, as already seen from equation (A.1), and one at ¢ = 1,

where Z = 0. The third root does not exist given the limits on n and ¢. The first derivative is
0AO(s)/0s = {3¢*(n — 1) — 25(n — 3) — 2}/(6n).

For n — o0, AG(¢) has a minimum at P, (s = 2/3, A0 = —2/81) and a falling inflection point
at Pi,a(s = 1/3, A0 = —1/81). We conclude that the point estimate for the variance of @iy, is

biased downwards for all ¢ except ¢ = 0 and ¢ = 1.

A.4 R-Code for midastouch

mice.impute.midastouch <- function(y, ry, x, ridge = le-05, midas.kappa = NULL, outout = NULL,
neff = NULL, debug = NULL, ...) {

#+ auxiliaries +#

if ('is.null(debug)){midastouch.inputlist <- list(y =y, ry = ry, x = x, omega = NULL)}
sminx <- .Machine$double.eps”(1/4)
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#+ ensure data format +#

x <- data.matrix(x)
storage.mode(x) <- "numeric"
X <- cbind(1, x)

y <- as.numeric(y)

#+ get data dimensions +#

nobs <- sum(ry) ; nmis <- sum('ry) ; n <- length(ry)
obsind <- which(ry) ; misind <- which(!ry)

m <- ncol(X)

yobs <- y[obsind]

Xobs <- X[obsind, ,drop=FALSE]

Xmis <- X[misind,,drop=FALSE]

#+ P-Step +#
##++++ bootstrap
omega <- bootfunc.plain(nobs)
if (!is.null(debug)){
midastouch.inputlist$omega <- omega
assign(x = "midastouch.inputlist",value = midastouch.inputlist,envir = get(debug))

}

##++++ beta estimation

CX <- omega * Xobs

XCX <- crossprod(Xobs,CX)

if (ridge > 0){ diag(XCX) <- diag(XCX) * (1+c(0,rep(ridge,m-1))) }

#= check if any diagonal element is exactly zero #
diag0 <- which(diag(XCX) == 0) #==#
if (length(diag0)>0){diag(XCX) [diag0] <- max(sminx,ridge)} #==

Xy <- crossprod(CX,yobs)
beta <- solve(XCX,Xy)
yhat.obs <- c(Xobs %*% beta)

##++++ kappa estimation
if (is.null(midas.kappa)){
mean.y <- crossprod(yobs,omega)/nobs
eps <- yobs - yhat.obs
r2 <- 1 - c(crossprod(omega, eps~2) / crossprod(omega, (yobs - mean.y)"2))
##slight deviation from the paper to ensure real results
## paper: a tiny delta is added to the denominator
## R Code: min function is used, note that this correction gets active for r2>.999 only
midas.kappa <- min((50*r2 / (1-r2))"(3/8),100)
##if r2 cannot be determined (eg zero variance in yhat), use 3 as suggested by Siddique/Belin
if (is.na(midas.kappa)){midas.kappa <- 3}
}

#+ I-Step +#
if (is.null(outout)){ outout <- ifelse(nobs>250,FALSE,TRUE) }
if (outout){
##++++ P-step if out of sample predictions for donors
## estimate one model per donor by leave-one-out
XXarray_pre <- t(t(apply(X = Xobs,MARGIN = 1,FUN = tcrossprod)) * omega)
ridgeind <- c(1:(m-1))*(m+1)+1
if (ridge > 0){
XXarray_prel[ridgeind,] <- XXarray_prelridgeind,] * (1+ridge)

}

XXarray <- c(XCX) - XXarray_pre

#= check if any diagonal element is exactly zero #
diag0 <- which(XXarrayl[ridgeind,] == 0) #==#

if (length(diag0) > 0){XXarrayl[ridgeind,][diag0] <- max(sminx,ridge)} #==;

Xyarray <- c(Xy) - t(Xobs * yobs * omega)
BETAarray <- apply(rbind(XXarray,Xyarray),2,function(x,m){
solve(a = matrix(head(x,m"2),m),b = tail(x,m))},m=m)
YHATdon <- rowSums(Xobs * t(BETAarray))
## each recipient has nobs different yhats
YHATrec <- Xmis %*J BETAarray
##++++ distance calculations
dist.mat <- YHATdon - t(YHATrec)
Yelse{
yhat.mis <- c(Xmis %*% beta)
dist.mat <- yhat.obs - matrix(data = yhat.mis,nrow = nobs,ncol = nmis,byrow = TRUE)

}

##++++ convert distances to drawing probs // ensure real results
delta.mat <- 1/((abs(dist.mat)) midas.kappa)

delta.mat <- minmax(delta.mat)

probs <- delta.mat * omega

csums <- minmax(colSums(probs,na.rm = TRUE))

probs <- t(t(probs)/csums)
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#+ calculate neff +#
if (!is.null(neff)){
if (lexists("midastouch.neff",envir = get(neff))){
assign(x = "midastouch.neff",value = list(),envir = get(neff))}
midastouch.neff <- get("midastouch.neff",envir = get(neff))
midastouch.neff[[length(midastouch.neff)+1]] <- mean(1/rowSums((t(delta.mat)/csums)"2))
assign(x = "midastouch.neff",value = midastouch.neff,envir = get(neff))

}

#+ return result +#

index <- apply(probs,2,sample,x = nobs,size = 1, replace = FALSE)
yimp <- y[obsind] [index]

return(yimp)

}

bootfunc.plain <- function(n){
random <- sample(n,replace = TRUE)
weights <- as.numeric(table(factor(random,levels = c(1:n))))
return(weights)

}

minmax <- function(x,domin=TRUE,domax=TRUE){
maxx <- sqrt(.Machine$double.xmax)
minx <- sqrt(.Machine$double.eps)

if (domin){ x <- pmin(x,maxx) }
if (domax){ x <- pmax(x,minx) }
return(x)

}

A.5 Detailed simulation results

The concept of multiple imputation relies on the propagation of the uncertainty associated with
the estimation of the parameters of the imputation model. Thus, to check whether multiple
imputation PMM algorithms perform multiple imputation properly, those parameters should be
uncertain. Because the degree of uncertainty primarily depends on the donor sample size nps,
we present the detailed simulation results, split by nps, in tables A.2 and A.3. Each cell in these
tables contains a 950%o frequentist confidence interval coverage averaged over 2(4=2)p . =1000
simulation runs.

It it worth noting that the proposed midastouch algorithm does not fall below 950% in any of
the splits.

Match types and k-nearest-neighbors

With one predictor only, i.e., for p — 1 = 1, some algorithms perform as poorly as the deliberately
poor benchmark that does not propagate parameter uncertainty at all. All of these algorithms,
presented in rows 8, 11, and 12 in table A.2 and table A.3, rely on both type-2 matching and
k = 1l-nearest-neighbor imputation. The observed attenuation bias for these algorithms buttresses
the criticism offered by van Buuren (2012). Although the MIDAS algorithm also involves type-2
matching, it outperforms the poor benchmark.

In appendix A.3 we argue that the point estimate for the variance of Y is biased downwards
for large values of k. For the simulation runs with n.s = 10, the mean point estimates for the
variance of Y are 0.846 and 0.729 for all PMM implementations in the software listed by Morris
et al. (2014, p. 3) for k = 1 and k > 1, respectively. This difference is highly significant. Both
estimates are well below the true variance of 1 because the relatively small number of donors causes
the domain of X}, to be smaller for the donors than for the recipients. This is a case of truncation.
For the runs with n.,s = 200, the differences diminish because k is small relative to the number
of donors; the mean point estimates are 0.996 and 0.992. For the proposed algorithm, the mean

point estimates for the variance of Y are 0.821 and 1 for n.,s = 10 and nps = 200, respectively.

47



950%0 confidence interval coverages
Coefficient of

Response mechanism  Number of covariates determination Overall

MACAR MAAR p—-1=1 p—-1=8 R?’=0 R?’=0.75
Reft. o B p Bl Bl a Bl Bl Bl B

Proposed algorithm (algorithm 4)
1 967 960 905 962 | 948 958 | 924 964 | 976 962 | 896 960 | 936 961

2 91 - 955 - | 972 — |94 — |98 — |98 — |973 —
3 968 959 894 963 | 951 961 | 911 961 | 970 950 | 892 972 | 931 961
4 985 — 934 - |93 — |96 — [990 - |929 — |960 —

Predictive mean matching software listed by Morris et al. (2014, p. 3)
5 732 910 477 887 | 598 836 | 611 961 | 700 950 | 509 847 | 605 899
6 587 900 442 844 | 464 776 | 565 968 | 564 934 | 465 810 | 515 872
7 771 794 600 768 | 658 650 | 714 912 | 764 831 | 607 731 | 686 781
8 704 685 442 642 | 396 351 | 750 976 | 583 639 | 564 688 | H73 664
9 616 840 358 841 | 436 724 | 539 957 | 557 855 | 418 827 | 487 841
10 960 971 838 963 | 873 953 | 925 981 | 954 957 | 844 977 | 899 967
11 718 675 561 643 | 396 352 | 883 966 | 604 631 | 675 687 | 640 659
12 704 667 528 637 | 396 351 | 836 953 | 583 624 | 650 680 | 616 652
13 579 731 309 723 | 446 500 | 440 954 | 575 978 | 312 476 | 443 727

Benchmark algorithms
14 964 956 960 961 | 970 946 | 954 971 | 962 948 | 962 969 | 962 959
15 479 469 285 466 | 396 351 | 367 585 | 313 438 | 451 498 | 382 468

Table A.2: Coverages for n.,s = 10 split by the three remaining binary factors. The references
(Ref.) refer to table 3.2. Abbreviations are: missing always (completely) at random (MA(C)AR).
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950%0 confidence interval coverages
Coefficient of
Response mechanism  Number of covariates determination Overall
MACAR MAAR p—-1=1 p—-1=8 R?’=0 R?’=0.75
Ref. o B o B ‘ Lo B ‘ i B ‘ i B ‘ Lo B ‘ g B
Proposed algorithm (algorithm 4)
1 948 960 942 950 | 942 954 | 948 956 | 953 959 | 936 951 | 945 955

2 974 - 969 — | 966 — | 977 — |960 — |983 — |972 —
3 952 949 940 942 | 948 934 | 944 956 | 957 933 | 935 957 | 946 945
4 982 - 9713 - | 9% — | 980 — | 987 — |968 — | 978 —

Predictive mean matching software listed by Morris et al. (2014, p. 3)
5 947 965 934 952 | 936 961 | 945 956 | 942 959 | 940 958 | 941 959
6 939 967 932 950 | 921 961 | 950 956 | 930 960 | 942 957 | 936 959
7 940 966 933 949 | 933 959 | 940 956 | 939 962 | 934 953 | 937 958
8 908 929 907 897 | 874 866 | 942 960 | 895 902 | 920 924 | 908 913
9 931 953 925 932 | 918 933 | 938 952 | 927 935 | 929 950 | 928 943
10 939 959 934 949 | 930 952 | 943 956 | 940 946 | 933 962 | 937 954
11 907 927 906 895 | 874 866 | 939 956 | 892 901 | 921 921 | 907 911
12 908 927 906 895 | 874 866 | 940 956 | 893 902 | 921 920 | 907 911
13 943 966 926 950 | 932 959 | 937 957 | 936 960 | 933 956 | 935 958

Benchmark algorithms
14 950 966 942 949 | 945 959 | 947 956 | 951 957 | 942 958 | 946 958
15 886 927 868 896 | 875 866 | 879 957 | 843 903 | 911 920 | 877 912

Table A.3: Coverages for no,s = 200 split by the three remaining binary factors. The references
(Ref.) refer to table 3.2. Abbreviations are: missing always (completely) at random (MA(C)AR).
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Appendix B

Appendix to Chapter 4

B.1 Proof related to section 4.4
Solving equation (4.6) leads Rao & Singh (1997, p. 59) to the following result

= C X, (X101 X+ A) g + {d —CIX (X0 X 4+ A) X;d} . (B.1)
In contrast to equation (4.5) equation (B.1) comprises the term in the curly braces, which is zero
if

d=C7'X, (X[CT' X, + A) ' Xld (B.2)
is true. Assuming X; has full column rank, we can multiply both sides from the left as follows
{(xicx) ™ xi}d = (xjC7' X+ A) 7 XJd.

Switching the sides of the equation and multiplying again from the left gives

id.

Xld = Xld+ A (X071 X,) " X!
With C defined as in equation (4.3b) we can write
1 =1 1 -1 ’
O:A{(XZC X)) xjc (1,1,...,1)}. (B.3)

Note that the term in the curly braces in equation (B.3) is equivalent to the weighted least squares

estimator with a constant response. The corresponding minimization problem is given by

BILIELIL [{(1? 1. 1)/ - Xlﬁlc/[t}?/%}/{(la oo, 1)/ - Xl/BIC/I?"rIL/g; ] . (B4)
WLS

Assuming X; has a leading constant column, the solution for equation (B.4) is
consl = (1,0,...,0)". (B.5)
To see that, we can just plug it in the regression equation

(1,1,...,1) =(1,1,...,1) + X_41(0,0,...,0),
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where X_; denotes the X; matrix without the constant. In this solution the residual sum of
squares, weighted or unweighted, is zero. Because weighted regression minimizes the sum of squared
residuals, (B.5) must be a solution; it does not get smaller than zero. The assumption of full column
rank for X; means that there is no linear combination of all X_; that equals the constant. In other
words, there is no other solution to the problem in equation (B.4) than equation (B.5). For equation
(B.3) to be true, we require the diagonal matrix A to be zero at its first element, as described in
section 4.3.2.

We have shown that the weighted ridge regression is equivalent to the minimization problem
in Rao & Singh (1997). This proof comes down to showing that equation (B.2) holds. It does
under the following assumptions, X; must have full column rank and a leading constant column,
C' must be defined as in equation (4.3b) and the diagonal ridge penalty matrix must not penalize

the intercept parameter as in equation (4.7).
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Appendix C

Appendix to Chapter 5

C.1 R Code for Miles

mice.impute.li <- function(y, ry, x, boot = TRUE, kgran = 6, rgran = 3, rescale = 1, midastouch=TRUE,...) {

#data preparation
#++ ensure data format ----------

x <- data.matrix(x)

storage.mode(x) <- "numeric"

y <- as.numeric(y)

#++ get data dimensions -------—---

n <- length(y)

donind <- which(ry) ; ndon <- length(donind)
recind <- which(!ry); nrec <- length(recind)
if (ndon==1) {return(rep(y[donind], (n-1)))}

#++ remove cols with zero variance ----------
remcons.ind <- removecons(X = x)

X <- x[,remcons.ind,drop=FALSE]

#Bayesian bootstrap weights donors and recipients
if (boot){bw <- bootfunc(n)}telse{bw <- NULL}

#rescale x
if (rescale>0){
if (rescale == 2 && ncol(X)>1){ #double robust
Xr <- cbind(1,X)
if (tis.null (bw)){
Xrbw <- Xr * bw

Yelseq{
Xrbw <- Xr
}
beta <- abs(c(solve(crossprod(Xrbw,Xr),crossprod(Xrbw,ry),tol = 0)))[-1]
mbeta <- max(beta) ; mbeta <- ifelse(test = mbeta == O,yes = 1,no = mbeta)

resc.factors <- beta / mbeta
X <- t(t(X)*resc.factors)
Yelse{ #igr rescaling
igrvec <- rescale.quartiles(X = X,weight = bw)
X <- t(t(X)/iqrvec)
}
}

#optimization over k and ridge
#++ select possible solutions ----------
kvec <- kopt(ndon = ndon,kgran = kgran)
rmat <- ropt(kvec = kvec,rgran = rgran,ncolX = ncol(X))
nk <- length(kvec) ; nr <- ncol(rmat)
#++ if only one solution is feasible no optimization necessary ----------
if ((nk*nr) == 1){
noopt <- TRUE

k <- kvec
r <- rmat
Yelse{

noopt <- FALSE

maxk <- kvec[length(kvec)]

#+ draw a donorsample to measure the fit [faster than using all donors] +#

sampledonind_ <- sort(sample(x = c(1:ndon),size = sampledon(ndon = ndon),replace = FALSE))
sampledonind <- donind[sampledonind_]

nsdon <- length(sampledonind)

#++ build modeltable for k = max(kvec) ----------

mto <- modeltable(Xdon_full = X[donind,],Xdon_sample = cbind(sampledonind_,X[sampledonind,]),k = maxk)
mto <- mt.idconvert(mt = mto,donind = donind,recind = recind,k = maxk,ndon = nsdon,nrec = 0)
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#++ loop over possible k’s -—-——---—-
yhato <- array(dim = c(nsdon,nk,nr))
for(kind in c(1:nk)){
kloop <- kvec[kind]
#++ reduce modeltable and adjust weights ----------
if (kind<nk){
mti <- rep(c(rep(TRUE,kloop) ,rep(FALSE, (maxk-kloop))) ,nsdon)
mtk <- mto[mti,]
mtk[,4] <- adjust.weights(id = mtk[,1],dist = mtk[,3],k = kloop)
Yelse{ mtk <- mto }
#++ create a lookup table for each ID ----—-—----
ipmk <- ipm.create(id = mtk[,1],k = kloop)
#++ consider bootstrap weights ---------—-
if (boot) {mtk[,4] <- mtk[,4] * bw[mtk[,2]1}
#++ loop over possible r’s ----------
for(rind in c(1l:nr)){
#+ calculate yhat +#
yhato[,kind,rind] <- (yhat.calc(X = X,y = y,mt = mtk,ipm = ipmk,r = rmat[kind,rind])) [sampledonind]
}
}
#++ choose the k and r that fit best --———-———-
fits <- apply(yhato - y[sampledonind],c(2,3),crossprod)
optinds <- which(fits == min(fits),arr.ind = TRUE)
optindex <- which.max(optinds[,1]) #if unsure, take the maximum k
k_optind <- optinds[optindex,1]
r_optind <- optinds[optindex,2]
k <- kvec[k_optind]
r <- rmat[k_optind,r_optind]
}
cat(pasteO("\nOptimal k is ",k,", optimal r is ",r,".\n"))
if (k>=ndon){k <- ndon - 1}

#model table (donor selection + design weights)
#++ NN if k == 1 ———-—————-

if(k == 1){recmodel <- FALSE}

#++ generate ----------

mt <- modeltable(Xdon_full = X[donind,,drop=FALSE],Xrec = X[recind,,drop=FALSE],k = k)
#++ map back to real overall indices and sort ----------

mt <- mt.idconvert(mt = mt,donind = donind,recind = recind,k = k,ndon = ndon,nrec = nrec)
#++ create a lookup table for each ID -----—-—----

ipm <- ipm.create(id = mt[,1],k = k)

#++ utilize predictions from the optimization for speedup ----------

if ('noopt){ipm.small <- ipm[-sampledonind,]}else{ipm.small <- ipm}

#++ consider bootstrap weights ----------

if (boot){mt[,4] <- mt[,4] * bw[mt[,2]]1}

#model and midastouch

#++ NN if k == 1 —————————-
if(k == 1){

matchind <- mt[,2] [recind]

cat("\nk == 1, NN applied instead of 1i - be aware that MI does not work with NN\n")
Yelse{

#calculate yhat ----—------
yhat <- yhat.calc(X = X,y = y,mt = mt,ipm = ipm.small,r = r)
#utilize predictions from the optimization ----------
if (!noopt){yhat [sampledonind] <- yhato[,k_optind,r_optind]}
#match to NN in yhat (PMM step) ----------
if (!midastouch){
matchind <- NNindex(yhat = yhat,mt = mt,ipm = ipm,k = k,donind = donind,recind = recind)
} else {
matchind <- midasindex(y = y,yhat = yhat,mt = mt,ipm = ipm,
k = k,donind = donind,recind = recind,bw = bw) }

}

yimp <- y[matchind]

#return
return(yimp)

}

bootfunc <- function(n){
random <- runif(n =n - 1)
sorted <- c(0,sort(random),1)
weights <- diff(sorted) * n
return(weights)

}

modeltable <- function(Xdon_full,Xrec=NULL,Xdon_sample=NULL,k){
if ('is.null(Xdon_sample)){

#Donors from Donors k optimization
donids <- Xdon_samplel[,1]

#++ initialize ----——----

ndon <- nrow(Xdon_sample)

M <- matrix(arow = ndon * (k+1),ncol = 5)

colnames (M) <- c("ID","modelid","dist","maxdist","w")
M[,1] <- rep(donids,each=k+1)

#++ RANN distance calculation for the donors ----------
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RANNobj <- nn2(data = Xdon_full,query = Xdon_sample[,-1],k = k + 1)

#++ write to M —————————-

M[,2] <- c(t(RANNobj$nn.idx))

M[,3] <- c(t(RANNobj$nn.dists))

#++ kick out self matches --> finally: nrow(MD) == ndon_r x k —----------
selfpos <- M[,1] == M[,2]

M <- M[!selfpos,]

#++ add maxdist ----------

M[,4] <- rep(x = M[c(1l:ndon)*k,3],each = k)

Yelse{
#Donors from Donors
#++ initialize ----------
ndon <- nrow(Xdon_full)
MDD <- matrix(nrow = ndon * (k+1),ncol
cindon <- c(1:ndon)
colnames (MDD) <- c("ID","modelid","dist","maxdist","w")
MDD[,1] <- dvec <- rep(clndon,each=k+1)
#++ RANN distance calculation for the donors ----------
RANNobj <- nn2(data = Xdon_full,k = k + 1)
#++ write to MDD ---—-------
MDD[,2] <- c(t(RANNobj$nn.idx))
MDD[,3] <- c(t(RANNobj$nn.dists))
#++ kick out self matches ----------
selfpos <- MDD[,1] == MDD[,2]
if (sum(selfpos)<ndon){
selfpos[((cindon-1) * (k+1) + 1) [setdiff(x = clndon,dvec[selfpos])]] <- TRUE

5)

MDD <- MDD[!selfpos, ,drop=FALSE]
#++ add maxdist ----------
MDD[,4] <- rep(x = MDD[c(1:ndon)*k,3],each = k)

#Recipients from Donors
#++ initialize -----—-----

nrec <- nrow(Xrec)

MRD <- matrix(nrow = nrec * k,ncol = 5)

colnames (MRD) <- c("ID","modelid","dist","maxdist","w")

MRD[,1] <- rep(x = c(l:nrec),each = k)

#++ RANN distance calculation recipients from donors ----------
RANNobj <- nn2(data = Xdon_full,query = Xrec,k = k)

#++ write to MRD ----------

MRD[,2] <- c(t(RANNobj$nn.idx))

MRD[,3] <- c(t(RANNobj$nn.dists))

#++ add maxdist ----------

MRD[,4] <- rep(x = MRD[c(1:nrec)*k,3],each = k)

#Combine
M <- rbind (MDD,MRD)
}

#Calculate design weights by tricube distance
ML(M[,4] == 0),4] <- 1
M[,5] <- (1-(M[,31/M[,41)°3)"3 + .01

#reduce to the necessary and return
M <- M[,c(1,2,3,5)]

return (M)
}
yhat.calc <- function(X,y,mt,ipm,r){
yhat <- vector(mode = "numeric",length = nrow(X))
mid <- mt[,2]
w0 <- mt[,4]

for(i in c(1:nrow(ipm))){

indexmt <- c(ipm[i,2]:ipm[i,3])

indexi <- ipm[i,1]

midindex <- mid[indexmt]

yi <- y[midindex]

if (.Call("bycol_all_equal_double2",matrix(data = yi,ncol = 1))){
yhat [indexi] <- yi[1]

Yelse{
di <- wO[indexmt]
Xi = X[midindex, ,drop=FALSE]
remcons <- removecons(X = Xi)
nc <- length(remcons)

if(nc == 0){
yhat [indexi] <- weighted.mean(x = yi,w = di)
Yelse{

Xi = cbind(1,Xi[,remcons,drop=FALSE])
tvec <- c(1,X[indexi,remcons])

1 <- c(1,rep((1+r),nc))

a = .Call("Xt_D_Xv2",Xi,di,1)

b = crossprod(x = Xi,y = di*yi)

beta <- solve(a = a,b = b,tol = 0)
yhat [indexi] <- crossprod(tvec,beta)
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}
return(yhat)
}

midasindex <- function(y,yhat,mt,ipm,k,donind,recind,bw){
clnrec <- c(1:length(recind))
yhat.k <- cbind(1,yhat[donind])
y.k <- y[donind]
beta.k <- try(solve(crossprod(yhat.k),crossprod(yhat.k,y.k),tol=0),silent = TRUE)
if (class(beta.k) != "try-error"){
r2.k <- vx(yhat.k %*% beta.k) / vx(y.k)
kappa <- (50 * r2.k / (1.001 - r2.k))"(3/8)
Yelseq{
kappa <- 0

index.r <- c(apply(ipm[recind,],1,function(x){c(x[2]:x[31)}))
index.d <- mt[index.r,2]
d <- abs(rep(yhat[recind],each=k) - yhat[index.d])
d <- d / mean(d)
dk <- 1/d°k
if (1is.null(bw)){
wdk <- minmax(dk * bw[index.d])
wdk [is.nan(wdk)] <- 0
Yelse{ wdk <- minmax(dk) }
draw <- do.call(c,lapply(split(wdk,rep(cinrec,each=k)),sample,x=k,size=1,replace=FALSE))
ydonind <- index.d[k*(cinrec-1) + draw]
return(ydonind)

}

rescale.quartiles <- function(X,weight) {
igrvec <- apply(X = X,2,wiqr,w=weight)
igrvec[iqrvec == 0] <- 1
return(iqrvec)

}

wiqr <- function(x,w=NULL){
ox <- order(x)
if (1is.null(w)){
ssw <- cumsum(w[ox])
limits <- c(.25,.75)*ssw[length(ssw)]
index <- pmax(findInterval(limits,ssw),1)
index <- index + (sswlindex+1] -limits < limits - ssw[index])
} else {
index <- round(c(.25,.75) * length(x))
¥
return(diff (x[ox] [index]))
}

vx <- function(x){xstd <- x-mean(x);return(c(crossprod(xstd)/(length(x)-1)))}

removecons = function(X){

if (ncol(X) == 1){
index <- 1

Yelse{
colranges <- !(.Call("bycol_all_equal_double2",X))
iv10 <- which(colranges)
if (length(iv10) == 0){ index <- 1
Yelse{ index <- iv10 }

¥

return(index)

}

mt.idconvert <- function(mt,donind,recind,k,ndon,nrec){
don_r <- c(rep(TRUE,ndon*k) ,rep(FALSE,nrec*k))
id <- mt[,1]
id[don_r] <- donind[id[don_r]]
id[!don_r] <- recind[id[!don_r]]
modelid <- mt[,2]
modelid <- donind[modelid]
mt[,1] <- id
mt[,2] <- modelid
mt <- mt[order(mt[,1]),]
return(mt)

}

ipm.create <- function(id,k){
length.unique.id <- length(id)/k
ind.pos.mat <- matrix(nrow = length.unique.id,ncol = 3) ; colnames(ind.pos.mat) <- c("id","start","stop")
ind.pos.mat[,3] <- aux <- c(l:length.unique.id) * k
ind.pos.mat[,2] <- c(1,aux[-length.unique.id]+1)
ind.pos.mat[,1] <- id[ind.pos.mat[,2]]
return(ind.pos.mat)

¥
adjust.weights <- function(id,dist,k){

indk <- c(1:(length(id)/k)) * k
maxdist <- rep(dist[indk],each=k)
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maxdist [maxdist == 0] <- 1
w <- (1-(dist/maxdist)~3)"3 + .01
return(w)

}

kopt <- function(ndon,kgran){
if (ndon <= 6){
k <- ndon-1
Yelse{
if ((ndon-6)<kgran){ k <- c(5:(ndon-1))
Yelse{ k <- c(round(5 + (0:(kgran-2))*(ndon-6)/(kgran-1)),ndon-1) }
}
return (k)

}

ropt <- function(kvec,rgran,ncolX){
rfac <- matrix(2°c(0:(rgran-1)) ,nrow = length(kvec),ncol = rgran,byrow=TRUE)
rulez <- matrix(c(10,30,max(2*ncolX,100),Inf,.2,.1,.05,.025),ncol=2)
starts <- rulez[,2] [(findInterval(x = kvec,vec = rulez[,1]) + 1)]
r <- starts * rfac
return(r)

}

sampledon <- function(ndon){
rulez <- matrix(c(50,500,2000,Inf,ndon,50,.1*ndon,200),ncol=2)
sdon <- rulez[,2] [findInterval(ndon,rulez[,1]) + 1]
return(sdon)

}

C.2 C Code for Miles

Markus Lilienthal wrote this C code based on my R Code for speeding up the Miles algorithm.

#include <R.h>

#include <Rinternals.h>
#include <Rdefines.h>
#include <Rmath.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

SEXP Xt_D_X (SEXP X, SEXP d1, SEXP d2, SEXP indl, SEXP ind2){
//computes t(X)%*%diag(dl)%*%X+diag(d2) for rows indl and cols ind2 (C numbering with O as first index)

double *p_X, *p_dl, *p_d2, *p_res;
int *p_indl, *p_ind2;

/*pointers to data arrays*/
p-X = NUMERIC_POINTER(X) ;
p_di NUMERIC_POINTER(d1);
p_d2 NUMERIC_POINTER(d2);
p_ind1l = INTEGER_POINTER(ind1);
p_ind2 = INTEGER_POINTER(ind2);

/*get matrix dimensions of X*/
SEXP X_dim = getAttrib(X,R_DimSymbol);
int *p_X_dim = INTEGER_POINTER(X_dim);

/*get length of indl and ind2*/
int ind1_length, ind2_length;
ind1_length = length(indl);
ind2_length = length(ind2);

/*allocate result object*/
SEXP res = PROTECT(allocMatrix (REALSXP,ind2_length,ind2_length));
p_res = NUMERIC_POINTER(res);

/*multiplication*/
int i,3,k;
int ind_res = 0O;
int aux_indl, aux_ind2;
double res_i;
for (i=0; i<ind2_length; i++){ //column i of result
aux_ind2 = p_X_dim[0]*p_ind2[i];
for (j=0; j<ind2_length; j++){ //row j of result
res_i = 0;
aux_indl = p_X_dim[0]*p_ind2[j];
for (k=0; k<indl_length; k++){
res_i += p_X[p_indl[k]+aux_ind1] * p_X[p_ind1[k]+aux_ind2] * p_di[k];
}

p_resl[ind_res] = i==j ? res_i+p_d2[i] : res_i;
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ind_res++;
}
}

UNPROTECT (1) ;
return(res);

}

SEXP Xt_D_Xv2 (SEXP X, SEXP d1, SEXP d2){
//computes t(X)%*%diag(d1)%*%X+diag(d2)

double *p_X, *p_dl, *p_d2, *p_res;

/*pointers to data arrays*/

p-X = NUMERIC_POINTER(X) ;
p_di NUMERIC_POINTER(d1);
p_d2 NUMERIC_POINTER(d2);

/*get matrix dimensions of Xx*/
SEXP X_dim = getAttrib(X,R_DimSymbol);
int *p_X_dim = INTEGER_POINTER(X_dim);

/*allocate result object*/
SEXP res = PROTECT(allocMatrix(REALSXP,p_X_dim[1],p_X_dim[1]));
p_res = NUMERIC_POINTER(res);

/*multiplicationx/
int 1i,j,k;
int ind_res = 0;
int aux_indl, aux_ind2;
double res_i;
for (i=0; i<p_X_dim[1]; i++){ //column i of result
for (j=0; j<p_X_dim[1]; j++){ //row j of result
res_i = 0;
aux_indl = p_X_dim[0]*j;
aux_ind2 = p_X_dim[0]*i;
for (k=0; k<p_X_dim[0]; k++){
res_i += p_X[aux_ind1] * p_X[aux_ind2] * p_di[k];
aux_indl++;
aux_ind2++;
}
p_res[ind_res] = i==j 7 res_i*p_d2[i] : res_i;
ind_res++;

}

UNPROTECT (1) ;
return(res);

}

SEXP bycol_all_equal_double2(SEXP x){
double *p_x;
int *p_res;
int i,j,col;
int *p_dim;

p_x NUMERIC_POINTER(x) ;
p_dim = INTEGER_POINTER(getAttrib(x,R_DimSymbol));

SEXP res = PROTECT(allocVector (LGLSXP,p_dim[1]));
p_res = LOGICAL_POINTER(res);

for (col=0;col<p_dim[1];col++){
p_res[coll = 1;
if (ISNAN(p_x[p_dim[0]*coll)){
j = p_dim[0]*col+1;
while (ISNAN(p_x[j]) && j<p_dim[0]*(col+1)) j++;
for(i=j;i<p_dim[0]*(col+1l) && p_res[coll==1;i++){
if (!ISNAN(p_x[il) && p_x[il!=p_x[jl) p_res[coll = 0;
}
}
else{
for(i=p_dim[0]*col+1;i<p_dim[0]*(col+1l) && p_res[coll==1;i++){
if ('ISNAN(p_x[il) && p_x[il!=p_x[p_dim[0]*col]l) p_res[col]l = 0;
}
}
}

UNPROTECT (1) ;
return(res);
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Appendix D

Appendix to Chapter 6

D.1 Passively measured TV consumption data
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Figure D.1: TV consumption on an ordinary day by time of the day and channel
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Figure D.2: Population boxplot (Rinne, 2008, p. 49) and beeswarm plot (Eklund, 2016) of a 2.5%

simple random sample.

D.2 Descriptive statistics

o =
average reaches 2 5 X
&0 . e
é of time slots on S T 5" g o
g weekdays, ? c? < |3 %
?g 8 Saturdays, and 5 = SR
channel 2 % URL Sundays z 8 g é) %
ARD 1952 www.ard.de 30% 36% 41% | 1% 0.25 | no
ZDF 1963 www.zdf.de 30% 33% 36% | 3% 0.25 | no
RTL 1984 www.rtl.de 25% 2% 35% | 5% 0.22 | no
SAT 1 1984 www.satl.de 19% 20% 21% | 82% 0.22 | no
Pro 7 1989 www.prosieben.de | 12% 15% 19% | 8%  0.25 | yes
VOX 1993  www.vox.de 13% 14% 17% | 86% 0.17 | yes
Kabel 1 1992 www.kabeleins.de | 11% 12% 15% | 8% 0.15 no
RTL 2 1993  www.rtl2.de 10% 12% 15% | 8% 0.10 | no
Super RTL 1995 www.superrtl.de 4% 5% 6% | 95% 0.21 | no
Tele 5 2002 www.teleb.de 3% 3% 3% 97%  0.17 no
VIVA 1993 www.viva.tv 1% 1% 1% 99%  0.06 no

Table D.1: Passively measured data on the TV channels
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www.ard.de
www.zdf.de
www.rtl.de
www.sat1.de
www.prosieben.de
www.vox.de
www.kabeleins.de
www.rtl2.de
www.superrtl.de
www.tele5.de
www.viva.tv

variable statistics description
categorical counts shares
total panelists with passive TV
11916 100% measurement in place
female gender
female 5987 50% code: 1
male 5929 50% code: 0
employ employment type
fulltime 4434 37% code: 1
halftime or student 2545 21% code: 0.5
parttime 348 3% code: 0.2
not employed 4589 39% code: 0
continuous Mean Median Min Max
age age in years on April, 30th 2013
50 52 14 99
citysize home town population count
35 281 12200 average of classes /1000
hhsize number of persons in household
2.59 2 1 8
kids6 number of kids aged 6 or
0.13 0 0 3 younger in household
kids18 number of kids aged 18 or
0.50 0 0 6 younger in household
internet average number of days with
4.89 7 0 7 Internet usage per week

Table D.2: Basic claims data

60



D.3 Modeling the response mechanism

MACAR MAAR
covariate exrp (3) z value exp (B) z value
intercept 1.9932  35.5137 0.6792 —1.1104
female - - 1.1371 2.9203
employ - - 0.7520 —4.7139
age - - 1.0815 8.0142
citysize - - 0.9999 —2.7551
hhsize - - 0.5646 —4.9363
kids6 - - 1.1801 2.9827
kids18 - - 1.2295 5.0186
internet - - 1.0262 3.0280
age? - - 0.9996 —5.2049
hhsize? - - 1.0398 3.3061
age X hhsize - - 0.9954 —3.1992

Table D.3: Parameters estimates for the response mechanism (N = 11916). These estimates are

used to delete observations within the simulation study, thereby mimicking natural nonresponse.

The estimate for the intercept in the MACAR case of approximately 2 means that it is twice as

likely to be observed than to be missing.

D4

‘Population’ results for the analysis models

The N = 11916 data set is a sample of a larger population of TV consumers in Germany. The

statistical inference conducted on this data set refers to this larger population. Nevertheless, for

the simulation study the same data set is declared the population. Therefore, rather than n, N

denotes the number of observations.

table 1:

householdsize (hh) > 2 versus Pro_7_Sunday_8to9pm (P8)

table cells

hh <2 & P8 =0 hh >2 & P8 =0 hh <2 & P8 =1 hh >2 & P8 =1

frequencies 4493 2276 2505 2642

exp (Bmlogit) 1 0.5066 0.5575 0.5880
table 2: householdsize (hh) > 2 versus VOX > 3

table cells | hh <2 & V0OX <3 hh>2&V0X<3 hh<2&VOX>3 hh>2&V0OX>3

frequencies 3295 2127 3703 2791

exp <Bmzogit) 1 0.6455 1.1238 0.8470
table 3: Pro_7_Sunday_8to9pm (P8) versus VOX > 3

table cells P8=0&VOX<3 P8=1&VOX<3 P8=0&VOX>3 P8=1&V0OX >3

frequencies 4259 1163 2510 3984

exp (Bmlogit) 1 0.2731 0.5893 0.9354

Table D.4: Contingency tables (N = 11916).
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Model Parameter B t value
Linear Intercept 7.503162 90.0992
age —0.053390 —37.7711
Pro_7_Sunday_8to9pm (P8) 0.160513 3.2308
Square Intercept 7.520440 94.8994
age —0.054274 —39.8622
VOX 0.024037 3.4557
VOX 2 —0.000629  —2.7476
Interaction | Intercept 7.812346 77.7167
age —0.059054 —33.7441
Pro_7_Sunday_8to9pm (P8) —0.620408  —4.1095
age x Pro_7_Sunday_8to9pm (P8) 0.016220 5.4770
Cube Intercept 7.531351 96.2085
age —0.054289  —39.8800
VOX 0.016516 3.6630
vox 3 —0.000012  —2.7894
Table D.5: Regression models (N = 11916).
Variable name Mean in cluster 1  Mean in cluster 2 ¢ value
kids18 0.4152 0.6363 13.18
VOX 4.4499 12.6131 50.05
number of cases 8067 3849 -

Table D.6: Clustering (N = 11916).

D.5 Convergence plots

In section 6.3.3 two key findings regarding convergence issues are presented: Due to the high
correlations of the variables with their transformations, convergence is extremely slow for educated
algorithms; and (ignorant) PMM sometimes shows very odd convergence behavior. In fact, over
many iterations there is no variance of analysis model parameter estimates at all.

In this appendix section, one sample of size 600 is drawn from the population and the response
mechanism is MCAR. The estimand is pupg. Instead of conducting the default simple random
hot-deck imputation to get the algorithm started, the missing values are initially filled with the
column minimum values. Then, for a single imputation with each of the six imputation algorithms,
500 Gibbs sampler iterations are conducted. The evolution of the parameter estimates over the
iterations is presented in figure D.3. The respective sample autocorrelation functions are presented

in figure D.4. Finally, figure D.5 focuses on the ignorant PMM algorithm.
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Figure D.3: Convergence plots for the parameter ppg in one n = 600 sample. The dashed line
marks the value of upg in the population. To better see the dependence on the starting values, the
missing values are initially imputed by the column minimum values, which is zero for the variable
P8. For the educated procedures the 500 iterations are clearly insuffient to get even close to the
true value. Ignorant PMM shows very odd behavior beyond the 200th iteration for no obvious

reason. The other three ignorant procedures do not show any trend.
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Figure D.4: Plots of the autocorrelation function of the series in figure D.3 with a = 5% confidence
intervals. The educated algorithms have a long memory, which is probably caused by the high
correlations between the incomplete variables and their transformations. Ignorant PMM seems to
have a very long memory, too. The other three ignorant procedures have essentially no memory

at all. L.e., employing them to sample from the posterior distribution of ppg is extremly efficient.
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Figure D.5: Plots of the autocorrelation function of the series in figure D.3 for the ignorant PMM
algorithm. The left plot shows the autocorrelation function based on the entire series with 500
iterations. The right plot is based on the same series, but only on its first 200 data points, i.e.,
before the odd behavior occurs. The extreme autocorrelation is clearly driven by the odd behavior.
However, even disregarding this issue, the values of the autocorrelation function of PMM are much

larger than those of the other ignorant algorithms in figure D.4
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D.6

Detailed simulation results
Parameter PMM midastouch RF Miles
Missing Always | CAR AR | CAR AR | CAR AR | CAR AR
univariate statistics
average 118 118 158 119
Lips 111 110 111 109 146 147 114 112
[Lvox 120 122 120 120 186 194 120 122
In {var(V0oX)} 121 122 122 123 135 139 122 123
bivariate statistics
average 115 113 143 118
tablel hh >2 & P8 =0 102 103 101 103 102 102 101 101
hh <2 & P8 =1 107 107 106 105 126 135 107 107
hh >2 & P8 =1 106 104 106 104 124 121 107 105
table 2 hh > 2 & VOX < 3 104 107 104 105 100 97 102 99
hh <2 & VOX > 3 115 120 115 116 167 187 116 117
hh > 2 & VOX > 3 111 112 110 111 157 161 111 112
table3 P8 =1& VOX <3 130 132 128 129 190 200 150 162
P8 =0 & VOX > 3 135 137 130 134 144 159 146 146
P8 =1& VOX >3 115 115 116 114 154 149 121 119
regression coefficients
average 100 100 99 98
Linear  Intercept 100 98 101 98 98 98 99 99
age 100 98 100 98 99 99 99 99
P8 103 105 103 105 96 97 99 101
Square Intercept 104 99 104 99 101 98 102 99
age 101 99 101 99 100 100 100 100
VOox 100 104 100 104 101 100 97 95
Vox?2 90 95 92 97 101 100 94 92
Inter- Intercept 99 103 100 103 99 100 98 99
action  age 99 102 100 102 100 100 99 99
P8 95 100 96 100 94 95 95 93
age x P8 94 97 95 98 92 92 94 92
Cube Intercept 104 100 104 99 101 99 102 99
age 101 99 101 99 100 100 100 100
VOox 105 108 104 107 101 100 99 98
vox? 91 96 93 98 103 102 95 93
cluster means
average 93 93 130 101
kids18  fiyigs1s |clusterl 89 92 89 91 107 105 95 93
Hxiasis |cluster2 92 90 93 91 97 101 9% 98
VOX fvox |clusterl 92 96 91 95 134 147 94 97
fyox |cluster2 93 97 95 95 177 176 120 120

Table D.7: Simulation results: (relative root mean squared error) x 100
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Parameter PMM midastouch RF Miles
Missing Always CAR AR | CAR AR | CAR AR | CAR AR
univariate statistics
average 0 —2 -1
Lipg 0 0 2 2 -1 0
[vox 0 —1 -7 -7 -1 —1
In {var(VOX)} 0 0 -1 -1 0 -1
bivariate statistics
average -1 6 -1
table 1 hh >2 & P8 =0 -1 -2 -1 -2 0 -2 -2 =2
hh <2 & P8 =1 0 -2 1 -1 -6 —10 1 —2
hh > 2 & P8 =1 1 0 2 0 —4 —6 3 0
table 2 hh >2 & VOX <3 —4 -8 —2 —6 -1 2 -1 —4
hh <2 & VOX > 3 13 20 5 11 | —109 —128 -7 -4
hh > 2 & VOX > 3 -2 -1 1 2 73 76 5 9
table3 P8 =1& VOX <3 -7 =8 -6 -8 —-17  -18| —-12 —-13
P8 =0& VOX >3 —-12 —12 —11  —10 14 19 —18 —16
P8 =1& VOX > 3 5 -1 14 8 112 106 29 24
regression coeflicients
average -7 —6 —4 -7
Linear  Intercept 0 0 0 0 0 0 0 0
age 0 0 0 0 0 0 0 0
P8 -3 -8 -4 -8 -3 -7 -1 —4
Square  Intercept 0 0 0 0 0 0 0 0
age 0 0 0 0 0 0 0 0
VOX —-23 —26 | —20 —23 -10 —=15| —-22 =25
V0x? -32 -33| -29 -29| —-13 14| -28 -—29
Inter- Intercept 0 0 0 0 0 0 0 0
action  age 1 0 1 0 0 —1 0 0
P8 7 1 6 1 0 -8 2 =3
age x P8 ) —1 4 -1 -1 -9 1 —4
Cube Intercept 0 0 0 0 0 0 0 0
age 0 0 0 0 0 0 0 0
VOX —-18 =21 —15 =18 -8 —13 —-19 =22
vox? -31 -29| -27 -25| —-11 —10| -26 —25
cluster means*
average —2 -2 -7 -2
kids18  [ixigsis |clusterl -4 =3 —4 =3 -7 —7 -5 4
lxigsis |cluster2 1 2 1 2 4 5 3 3
VOX fyox |clusterl 0 -1 -1 -1 —-10 —11 1 0
Lvox |cluster2 —4 =5 —4 =5 —-15 —15 -8 =9

Table D.8: Simulation results: bias relative to the population parameter (in %): 100 - {>(¥ —
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Parameter PMM midastouch RF Miles
Missing Always CAR AR | CAR AR | CAR AR | CAR AR

univariate statistics

average 945 949 828 939
Lipg 948 949 950 958 852 856 944 949
[vox 954 942 951 944 740 707 945 930
In{var(VoX)} 938 939 945 946 913 901 940 927

bivariate statistics
average 954 957 878 944
tablel hh >2& P8 =0 962 971 965 972 972 972 966 971
hh <2 & P8 =1 963 963 964 967 910 902 963 967
hh > 2 & P8 =1 957 965 957 968 915 914 955 968
table 2 hh > 2 & VOX < 3 967 967 969 967 968 967 972 972
hh <2 & VOX > 3 967 956 963 962 821 795 966 961
hh > 2 & VOX > 3 956 964 959 963 843 826 958 958
table3 P8 =1& VOX <3 925 919 933 930 725 700 873 845
P8 =0 & VOX >3 944 930 953 940 926 910 903 917
P8 =1& VOX > 3 952 947 946 950 860 869 936 944

regression coefficients

average 968 968 968 970
Linear  Intercept 951 953 957 956 960 960 958 956
age 956 958 956 956 960 960 959 957
P8 965 963 962 955 971 979 974 968
Square Intercept 957 960 956 964 955 963 959 965
age 960 952 958 951 961 953 962 952
VOX 985 985 985 985 987 982 986 983
vox? 992 990 990 993 984 986 987 987
Inter- Intercept 962 953 964 954 965 960 967 961
action  age 958 951 957 948 953 946 957 947
P8 985 971 987 972 987 968 989 973
age x P8 984 972 984 973 984 975 984 984
Cube Intercept 958 962 955 961 956 962 961 963
age 959 952 959 951 961 952 961 952
VOX 982 984 983 983 983 984 991 985
vox? 990 989 987 991 979 977 987 986
cluster means*
average 976 978 841 954
kids18  [iyigsis |clusterl 980 976 982 978 941 930 970 969
lxigsis |cluster2 984 986 986 989 974 973 981 982
VOX yox |clusterl 988 979 989 981 876 849 987 979
fvox |cluster2 966 953 963 957 587 595 876 884

Table D.9: Simulation results: coverage of 950%¢ confidence intervals. *It is uncertain, whether
the clustering fulfills the conditions of Yang & Kim (2016, p. 246), and therefore whether Rubin’s

combining rules are appropriate.
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