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Methods for statistical analyses generally rely upon complete rectangular data sets. When the

data are incomplete due to, e.g. nonresponse in surveys, the researcher must choose between three

alternatives:

1. The analysis rests on the complete cases only: This is almost always the worst option. In,

e.g. market research, missing values occur more often among younger respondents. Because

relevant behavior such as media consumption or past purchases often correlates with age, a

complete case analysis provides the researcher with misleading answers.

2. The missing data are imputed (i.e., filled in) by the application of an ad-hoc method: Ad-hoc

methods range from filling in mean values to applying nearest neighbor techniques. Whereas

filling in mean values performs poorly, nearest neighbor approaches bear the advantage of

imputing plausible values and work well in some applications. Yet, ad-hoc approaches gen-

erally suffer from two limitations: they do not apply to complex missing data patterns, and

they distort statistical inference, such as t-tests, on the completed data sets.

3. The missing data are imputed by the application of a method that is based on an explicit model:

Such model-based methods can cope with the broadest range of missing data problems.

However, they depend on a considerable set of assumptions and are susceptible to their

violations.

This dissertation proposes the two new methods midastouch and Miles that build on ideas

by Cleveland & Devlin (1988) and Siddique & Belin (2008). Both these methods combine model-

based imputation with nearest neighbor techniques. Compared to default model-based imputation,

these methods are as broadly applicable but require fewer assumptions and thus hopefully appeal to

practitioners. In this text, the proposed methods’ theoretical derivations in the multiple imputation

framework (Rubin, 1987) precede their performance assessments using both artificial data and a

natural TV consumption data set from the GfK SE company. In highly nonlinear data, we observe

Miles outperform alternative methods and thus recommend its use in applications.

Keywords: Multiple Imputation, Predictive Mean Matching, Sequential Regressions, Local

Regression, Distance-Aided Donor Selection
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Chapter 1

Introduction

No institute of science and technology can

guarantee discoveries or inventions, and

we cannot plan or command a work of

genius at will. But do we give sufficient

thought to the nurture of the young

investigator, to providing the right

atmosphere and conditions of work and

full opportunity for development? It is

these things that foster invention and

discovery.

J.R.D. Tata

1.1 Scope

As in other areas of statistics, in data imputation, there are two types of methods, some ad hoc

and some model based (Schafer, 1997, p. 1)1. Among the more sophisticated ad hoc methods

is the random hot-deck in adjustment cells (David et al., 1986, p. 30), which will be introduced

in more detail in section 2.5.1. A major advantage of this and other hot-deck procedures is that

the imputed values are drawn from the empirical distribution of the observed values and are thus

plausible (Andridge & Little, 2010, p. 2). The main disadvantage of ad hoc methods is that the

underlying assumptions are typically implicit. In contrast, model-based methods explicitly reveal

the assumptions that they require. One such model-based method is multiple imputation (Rubin,

1987), which is broadly considered to be ‘simple, elegant and powerful’ (van Buuren, 2012, p.

xix). Multiple imputation is the theoretical framework for the contributions of this dissertation.

However, explicit assumptions are not necessarily more likely to hold in real data. The three most

relevant assumptions required for default, i.e., fully parametric, multiple imputation to enable

consistent estimation of the parameters of interest are2:

1. Missing at random3: The response rates must not vary systematically after conditioning on

1Calibration weighting is another example. Iterative proportional fitting can be considered an ad hoc method
(Deming & Stephan, 1940), and the generalized regression estimator can be considered a model-based method
(Cassel et al., 1976).

2This list of three is based on my own experience. Nevertheless, there may be applications in which, e.g., the
assumption of independent observations is more doubted than the missing at random assumption.

3Missing at random and distinctness are collectively required for ignorability (see section 2.3 and Schafer (1997,
p. 10)).
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the observed data, e.g., within adjustment cells, and thus must not depend on the unobserved

data (van Buuren, 2012, p. 7).

2. Distribution of the data: In fully parametric multiple imputation, the imputed values

are drawn from assumed well-defined distributions, such as the normal distribution (Schafer,

1997, p. 181).

3. Congeniality (Meng, 1994): The imputation model, which is used to predict the missing

values of the incomplete variable, must nest all relevant analysis models4.

The scope of the dissertation is about relaxing the distributional and the congeniality assumptions

to make multiple imputation more attractive to practitioners.

1.2 Outline

Chapters 2 and 4 introduce the theoretical prerequisites for the new ideas in this dissertation.

Chapter 2 places emphasis on multiple imputation (Rubin, 1987), and chapter 4 places emphasis

on local regression proposed by Cleveland (1979) and Cleveland & Devlin (1988).

Chapter 3 addresses the required distributional assumption about the data. Predictive mean

matching (PMM: Rubin (1986, p. 92), Little (1988, p. 291)), which combines model-based predic-

tions with hot-deck imputations, fully relaxes this assumption. However, PMM is shown to bias

multiple imputation variance estimates. Different versions of PMM are introduced, and the new

midastouch algorithm, which is based on the ideas of Siddique & Belin (2008), is proposed. A

simulation study on multivariate normal data reveals a considerable advantage of midastouch over

the PMM implementations in the major statistical software packages.

Chapter 5 introduces the new Miles algorithm. Because it builds on midastouch from chapter 3,

Miles does not require distributional assumptions. The congeniality assumption, however, cannot

be literally relaxed. Rather, Miles fits an imputation model that reflects the major relations, linear

or not, between the incomplete variable and its predictors. Analysis models about these major

relations are approximately nested in, i.e., congenial to, the (global) imputation model resulting

from the local regressions that are employed by Miles. A simulation study on artificial data shows

that the approximately congenial Miles can even be superior to fully congenial alternatives.

In the final chapter 6, the newly proposed algorithms are challenged in a simulation study

involving real data from the GfK SE company. The evaluations are based on a broad set of

analysis models frequently used in market research. Both midastouch and Miles perform as well

as the established PMM algorithm.

1.3 Contributions

The missing at random assumption

Violating the missing at random assumption can result in seriously biased estimates of the param-

eters of interest (Enders, 2011, p. 14). However, the practitioner has no indicator for the degree of

violation in any specific application (van Buuren, 2012, p. 31). The very special nature of the real

data set used in chapter 6 permits a test for the missing at random assumption, which is presented

in section 6.2.4. In this setup, the missing at random assumption does not hold. Although this

result cannot be generalized, the data set can be used to study the effect of a natural assumption

violation in future research.
4or the data generating process (Xie & Meng, 2014, p. 14)
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The distributional assumption

Real data generally do not fit theoretical distributions well. PMM relaxes the distributional as-

sumption. Section 3.2 shows that this relaxation comes at the cost of biasing variance estimates

toward zero. While retaining the robust properties of PMM, the newly proposed midastouch also

does not bias variance estimates, as shown in section 3.5.3. Furthermore, when imputing complex

missing patterns, midastouch, in contrast to PMM, does not suffer from convergence issues (section

6.3.3).

The congeniality assumption

In slightly nonlinear data, midastouch, although strictly speaking uncongenial, is capable of cap-

turing the structure of the data well, and applying Miles does not offer any additional benefit

(section 6.4). In the highly nonlinear data of section 5.5.2, Miles performs better than alternative

approximately congenial algorithms and almost as good as the best congenial algorithm, which is

the just-another-variable algorithm (von Hippel, 2009) that employs PMM.

Summary

The missing at random assumption remains a serious burden for the imputer, and the contribution

of this dissertation to overcome this burden is admittedly quite small.

The newly proposed midastouch algorithm fully relaxes the distributional assumption and can

also address some congeniality issues, such as in chapter 6, where it is applied to moderately

nonlinear data. As an additional benefit, the newly proposed Miles works well even in highly

nonlinear data, while being only slightly impaired in perfectly linear data (chapter 5).

In contrast to their competitors random forest imputation (Doove et al., 2014) and PMM,

neither Miles nor midastouch suffer from variance underestimation. Furthermore, in contrast to

the just-another-variable algorithm and again PMM, neither midastouch nor Miles suffer from

convergence issues when applied to complex missing data patterns. Moreover, in contrast to the

just-another-variable algorithm, Miles does not cause any consistency issues.

From a practitioner’s perspective, both midastouch and Miles offer considerable robustness

compared to the existing alternatives and should be chosen over these alternatives unless there is a

specific reason not to do so. Now, is midastouch better than Miles or vice versa? Miles is superior

to midastouch because it can also handle highly nonlinear data. However, Miles is considerably

slower than midastouch. Our advice is to use midastouch if time is a concern and Miles otherwise.
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assistance regarding the TV data set in chapter 6; Markus Herrmann for supplying me with the

technical infrastructure; Jessica Deuschel, Teodora Vrabcheva, and Erik Hirschfeld for their help

with SAS; and Anette Wolfrath, Volker Bosch and Raimund Wildner for supporting my part-time

work model.

Most importantly, I would like to thank my wife Veronique. Without her love and support,

none of this would have been possible.

4



Chapter 2

Multiple Imputation

A capacity, and taste, for reading, gives

access to whatever has already been

discovered by others. It is the key, or one

of the keys, to the already solved

problems. And not only so. It gives a

relish, and facility, for successfully

pursuing the [yet] unsolved ones.

Abraham Lincoln

2.1 Introduction

Statistical analysis with missing data is no longer a niche problem thanks to the tireless work

of, among others, Stef van Buuren and Trivellore Raghunathan, who have not only enhanced the

original ideas of Rubin (1978) but also made them accessible to a broad audience through easy to

read textbooks (van Buuren (2012), Raghunathan (2015)) and easy to use software (van Buuren

& Groothuis-Oudshoorn (2011), Raghunathan et al. (2002)). Although it is customary to include

such a theory chapter in a dissertation (e.g., Siddique (2005), Koller-Meinfelder (2009)), I have,

in light of the recent advances, seriously considered dropping this chapter. The only reason for

including this chapter is for you, the reader. Therefore, this is not a chapter on general concepts

of missing data; rather, it shall filter the parts of the theory that are vital for understanding the

new ideas that are presented in the subsequent chapters. In this way, I hope to save the reader

some time from looking topics up elsewhere and particularly translating different notations.

2.2 The imputer’s model and the analyst’s model

Statistical analysis is about learning from data. One key element is to apply sensible assumptions.

In the most assumption-free setting, each observation arises from a unique data generating process,

and all these processes may be fundamentally different; therefore, it may be completely misleading

to link their realizations to any sort of conclusion. Nothing can be learned in this assumption-free

setting. Researchers apply assumptions by modeling data. A linear regression model implicitly

assumes that the parameters apply to all observations or that the mean effect of an increase of one

predictor on the outcome has at least some meaning. Such a model further restricts the relation
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between the predictors and the outcome to be linear in the parameters rather than being arbitrary1.

In the imputation literature, the model that is to be applied to the data, disregarding its com-

pleteness, is called the analysis model. The analysis model is derived from the research question.

The purpose of performing imputation is to enable the application of the analysis models of inter-

est, despite facing incomplete data. By filling the holes in the data set, imputation even relieves

the need to adapt the analysis models to the incomplete data situation.

As will be shown in the next section, imputation uses predictive modeling. As long as the

imputation model is not more restrictive than the analysis model (Schafer, 1997, p. 141) and the

ignorability assumption, which is also described in the next section, is met, the incompleteness

does not bias the conclusion of the analysis model2. If many different estimands are of interest,

i.e., many different analysis models are to be applied to one imputed data set, then the imputation

model must be very inclusive at the cost of low efficiency3. The term inclusive is used throughout

this dissertation to describe an imputation model that enables at least approximately unbiased

estimation of a large number of parameters on the imputed data set and thus in a broader sense

than in Collins et al. (2001).

2.3 Parametric multiple imputation

A thorough treatment of multiple imputation and its underlying assumptions is already provided

in Rubin (1987) and discussed in detail in Schafer (1997). This section consists of a less general

example that will be revisited in the next chapter.

Let the data of interest be n independent realizations of a normal random vector pQ, Y, Zq with
length p. Throughout this dissertation, Q with length p´2 denotes one or more predictors in both

the imputation model and the analysis model. Y denotes the variable with missing values and

thus the response variable in the imputation model, and Z denotes the response variable in the

analysis model. The matrix of independent pZ,Qq realizations Xh with dimensions n ˆ p is fully

observed and is defined to include a leading constant column. The realization r of the random

vector R takes the value 1 for all nobs observed values of yh and 0 for all nmis “ n ´ nobs missing

values of yh. The imputation model is the linear model

yh “ Xhβ ` v with v „ Np0, σ2
vInq, (2.1)

where β denotes a vector of parameters of length p. In fully parametric multiple imputation, the

steps of algorithm 1 are repeated M ě 2 times to correctly reflect the uncertainty of the parameter

estimates of the imputation model.

The key assumption required for this procedure is that the missing values are not governed by

a different regime than the observed values. This assumption means that the imputation model in

equation (2.1) is not misspecified even though it does not involve r, or, more formally, that r and v

must be independent. This requirement is known as the missing at random (MAR) assumption4.

A stricter version is the missing completely at random (MCAR) assumption, which implies that r

and y must be independent. If r and v are somehow related, then the response mechanism is said

to be missing not at random (MNAR). Similar relations can be defined for the data generating

process, resulting in the terms missing always at random (MAAR) and missing always completely

1The list of necessary assumptions for the linear regression model is even much longer (Greene, 2008, p. 44).
2An unusual exception to this rule is superefficiency (Rubin, 1996, p. 481).
3In these cases it may be beneficial to use different imputation models, e.g., one for each analysis model.
4Strictly speaking, missing at random and an additional, rather minor, assumption, called distinctness (Schafer,

1997, p. 11), are required for the response mechanism to be ignorable.
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Algorithm 1 Parametric multiple imputation for a single normal incomplete variable yh and a
set of complete linear predictors Xh (Little & Rubin (2002, p. 216), Greenberg (2013, p. 116)).
The steps are named according to Tanner & Wong (1987, p. 531) although this algorithm is not
iterative.

1. The posterior step to draw the parameters: First, draw from the observed data posterior
distribution of the residual variance, which is prpσ̃2

v | yi, Xiq “ Γ´1tnobs{2, pyi ´ Xiβ̂q1 pyi ´
Xiβ̂q{2u (Greene, 2008, p. 996). Then, draw from the observed data posterior distribution

of the intercept and slope parameters, which is prpβ̃ | yi, Xi, σ̃
2
vq “ Nptβ̂, σ̃2

vpX 1
iXiq´1u. yi

and Xi refer to the fully observed subset of the data, and β̂ denotes the maximum likelihood
parameter estimate (Greene, 2008, p. 483).

2. The imputation step to draw the missing values conditional on the parameters: Draw nmis

times independently from the imputation model, i.e., ỹj „ NpXj β̃, σ̃
2
vq with j “ 1, . . . , nmis.

at random (MACAR) (Rubin (1976), Mealli & Rubin (2015)). The work in this dissertation does

not involve MNAR. Useful practical implications of the MAR assumption are derived in van Buuren

(2012, p. 34).

The analysis model shall now be applied to each imputed data set. Suppose that the estimand

is the mean of Y . The M different maximum likelihood estimates pμ̂m“1
y , . . . , μ̂m“M

y q can be

combined using Rubin’s rules (Rubin, 1987, p. 76) by μ̂y “ M´1
řM

m“1 μ̂
m
y . The variance is given

by

T “ varpμ̂yq “ M´1pn ´ 1q´1
Mÿ

m“1

tvarpymh quloooooooooooooooooomoooooooooooooooooon
W

`p1 ` M´1q pM ´ 1q´1
Mÿ

m“1

pμ̂m
y ´ μ̂yq2loooooooooooooooomoooooooooooooooon

B

(2.2)

Equation (2.2) involves an analysis of variance (ANOVA) type thinking (Rinne, 2008, p. 650). The

within variance W is the variance as in a completely observed data set, and the between variance B

reflects the uncertainty that is involved in estimating the imputation model parameters β and σ2
v .

If the imputation model had no parameters to estimate, e.g., yh “ 2zh, then the between variance

would be zero. However, note that such restrictive imputation models typically do not nest any

relevant analysis models and thus bias their conclusions (see section 2.2). The quantity T´0.5μ̂y

is tpμ, 1, ιq distributed (Rinne, 2008, p. 326) with degrees of freedom (Barnard & Rubin, 1999, p.

949)

ι “
«

pM ´ 1q´1

ˆ
1 ` M

M ` 1

W

B

˙´2

` n ` 2

npn ´ 1q
T

W

ff´1

.

Rubin (1987, p. 118) calls imputations that yield approximately valid inferences for the parameters

of interest proper. The detailed requirements are presented in (Schafer, 1997, p. 145).

2.4 Missing data patterns

The example in the previous section consists of only one incomplete variable. In real data applica-

tions, two or more variables are generally incomplete. We distinguish three different cases, which

are also shown in figure 2.1.

1. Monotone pattern and multivariate two patterns. An appropriate algorithm proceeds as

follows. Imputations are drawn from the imputation model, such as the one in equation 2.1

for the first incomplete variable conditional on all fully observed variables. The imputations

for the second variable are drawn conditional on all fully observed variables and the first
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Figure 2.1: Relevant missing patterns for this text (Little & Rubin, 2002, p. 5)).

imputed variable, and so on. The last variable in the data set is imputed conditional on all

variables but itself (van Buuren, 2012, p. 104). The multivariate two patterns are a special

case of the monotone pattern and will be revisited in chapter 5.

2. Swiss cheese (Andridge, 2011, p. 67) a.k.a. general pattern. An appropriate algorithm

starts with a simple random hot-deck, i.e., with drawing randomly from the observed values

within each variable (van Buuren & Groothuis-Oudshoorn, 2011, p. 18), and iterates over the

variables. There are two differences to the algorithm for the monotone pattern: conditioning

is always on all other variables, and the algorithm does not stop when the end of the data

set is reached. Rather, the algorithm iterates over all variables in the data set as often as

required to reach convergence for the parameters of the analysis model. Kennickell (1991)

was the first to apply this sequential regression algorithm, which is akin to Gibbs sampling

and often referred to as fully conditional specification or chained equations (van Buuren &

Groothuis-Oudshoorn, 2011). For a thorough treatment, see Raghunathan et al. (2001) and

Liu et al. (2013). The Swiss cheese pattern will be revisited in chapter 6.

3. File matching pattern. In the file matching pattern, the complete cases maximum likelihood

estimate of the parameter of interest is unobtainable. The typical example is a correlation co-

efficient of two variables that are never jointly observed. Although the file matching pattern,

which is also known as data fusion, is very relevant in market research, it is not covered in

this dissertation. For a thorough treatment, see Raessler (2002) and D’Orazio et al. (2006).

2.5 Alternatives to fully parametric algorithms

2.5.1 Hot-deck imputation

As shown in algorithm 1, in fully parametric imputation, the values are drawn from well-described

distributions, which hardly fit empirical distributions. A simple solution is to impute observed

values from the same variable, i.e., to provide the ‘recipients’ values from the ‘donors’. The

obvious advantage of these hot-deck procedures is that the imputed values are plausible and do

not, e.g., fall outside the range. The simple random hot-deck has already been introduced above.

Valid descriptive statistics can be obtained from a simple random hot-deck imputation if there is

only one variable and the response mechanism is completely at random. However, unless nobs is

very large, confidence intervals are excessively short because the between variance component B
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of equation (2.2) is ignored. The simple random hot-deck omits the posterior step (Siddique, 2005,

p. 17).

A natural extension of the simple random hot-deck evolves from the presence of categorical

predictors. The simple random hot-deck can then be performed within each cell, which is similar

to fitting an ANOVA model containing all interactions (Lillard et al., 1982, p. 15). The imputed

value can be regarded as the cell mean plus the residual of the randomly selected donor.

2.5.2 The approximate Bayesian bootstrap

Bayesian bootstrap imputation resolves the inference issue of simple random hot-deck. The abso-

lute frequencies of the observed values serve as the parameters of a Dirichlet distribution (Rinne,

2008, p. 350). The underlying assumption is that the variable is categorical with as many cate-

gories as there are unique values. Draws from this distribution define the parameters of multinomial

distributions (Rinne, 2008, p. 277). Draws from the multinomial distributions in turn yield the

multiple imputations. Rubin & Schenker (1986, p. 368) provide the details.

The approximate Bayesian bootstrap imputation can be regarded as a computational shortcut

of the Bayesian bootstrap imputation. In the posterior step, a bootstrap sample from the donors

is drawn (Efron, 1979), and the imputations are simply drawn from this bootstrap sample (Rubin

& Schenker, 1986, p. 368). This implicit modeling procedure propagates the uncertainty of the

estimated parameters involved. However, Kim (2002) shows that the confidence intervals are still

too small because, just like the maximum likelihood estimator, the bootstrap estimator ignores

the correction for the appropriate number of degrees of freedom (Davison & Hinkley, 1997, p. 22).

Therefore, for finite nobs, the total parameter variance is still slightly underestimated. Parzen et al.

(2005) show that multiplying the total variance estimator for the mean presented in equation (2.2)

by the following factor φ eliminates this bias

φpnobs, nmis,Mq “
n2

nobs
` nmis

M

´
n´1
nobs

´ n
n2
obs

¯
n2

nobs
` nmis

M

´
n´1
nobs

´ n
n2
obs

¯
´ n¨nmis

nobs

´
3
n ` 1

nobs

¯ ě 1. (2.3)

Some criticism regarding this correction factor has been presented by Demirtas et al. (2007).

2.5.3 Predictive mean matching (PMM)

In contrast to the approximate Bayesian bootstrap, in PMM (Rubin, 1986, p. 92), only the

imputation step of algorithm 1 is modified. The first implementation of PMM for general missing

data problems by Little (1988) is still widely used (e.g., van Buuren & Groothuis-Oudshoorn

(2011), Royston & White (2011)5) and is thus the key reference (see algorithm 2).

Algorithm 2 The original PMM algorithm proposed by Little (1988, p. 292).

1. Calculate the predictive mean for the nobs observed elements of yh as ŷi “ Xiβ̂.

2. Calculate the predictive mean for the nmis missing elements of yh as ˆ̃yj “ Xj β̃.

3. Match each element of ˆ̃yj to its corresponding closest element of ŷi.

4. Impute the observed yi of the closest matches.

5Both implementations deviate from the original algorithm in that they make a random draw from the closest
k ą 1 donors in the last step.
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Compared to fully parametric imputation, PMM is more robust to model misspecifications

(Schenker & Taylor, 1996, p. 429), namely, nonlinear associations, heteroscedastic residuals, and

deviations from normality (Morris et al., 2014, p. 4). Nonetheless, the quality of PMM imputations

largely depends on the availability of nearby donors; truncation of the data limits the validity of

the method (Koller-Meinfelder, 2009, p. 38).

While retaining the benefits of the simple random hot-deck in cells discussed above, PMM has

additional desirable properties. The most obvious such property is a more flexible imputation

model, which neither requires the continuous predictors to be divided into arbitrary categories nor

needs all interactions to be considered. Because the matching is not affected by variables that are

not predictive, PMM can also be considered more parsimonious (David et al., 1986, p. 31).

2.5.4 Distance-aided donor selection

For the posterior step of the distance-aided donor selection algorithm proposed by Siddique (2005)

and Siddique & Belin (2008), which Siddique & Harel (2009) later called MIDAS, bootstrapping is

employed as originally proposed by Heitjan & Little (1991, p. 18). Maximum likelihood estimation

of the linear regression imputation model parameters onM independent bootstrap samples replaces

the draws from the posterior distribution (Little & Rubin, 2002, p. 216). The unique feature of

the MIDAS algorithm is that it reuses the donors’ bootstrap frequencies for the imputation step.

For recipient j, donor i is drawn from the full donor pool with probability

wi,j “ fpω, ˆ̃yi, ˆ̃yj , κq “ ωi
ˆ̃ϕ´κ
i,j {

nobsÿ
i“1

pωi
ˆ̃ϕ´κ
i,j q, (2.4)

where ωi denotes the bootstrap frequency of donor i, ˆ̃ϕi,j denotes the scalar absolute distance

between the predictive means of donor i and recipient j based on β̃, and κ is a closeness parameter

that adjusts the importance of the distance. For κ “ 0, the procedure is equivalent to the ap-

proximate Bayesian bootstrap; for κ Ñ 8, the procedure becomes equivalent to nearest-neighbor

matching, as in algorithm 2.

2.5.5 Random forest imputation

The choice of any model is a bias-variance trade-off. If the analysis model is known, then all

parameters that are not of interest may be biased by the imputation model without any additional

harm. However, if the analysis model is unknown, then it is the imputer’s job to find an impu-

tation model that neither restricts the key relations in the data nor suffers from low efficiency.

Incorporating, for instance, interactions in parametric imputation models becomes inefficient very

quickly because the number of parameters to estimate increases quadratically with the number of

variables.

Doove et al. (2014) suggest using random forest imputation to implicitly include non-linear

relations. They show that their algorithm preserves interactions that are not explicitly contained

in the imputation model quite well and substantially better than posterior-step linear regression

models with imputation-step PMM. This improvement, however, comes at the cost of biasing the

linear effects of regression analysis models (Doove et al., 2014, p. 101).

For their implementation Doove et al. (2014) use the R::mice framework for sequential re-

gressions (van Buuren & Groothuis-Oudshoorn, 2011) and the R::randomForest package (Liaw &

Wiener, 2002), which consists of fitting classification and regression trees. A thorough theoretical

treatment thereof is provided in James et al. (2013, p. 303) and the implementation is presented
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Algorithm 3 The random forest imputation algorithm by Doove et al. (2014, p. 103).

1. Draw ntree bootstrap samples from the donors.

2. Draw ntree random samples of size pp ´ 1q{3 from the p ´ 1 predictor variables.

3. Fit ntree trees by recursive partitioning without pruning˚. Each leaf of each tree constitutes
a subset of the donors.

4. Put the recipients down the trees to see in which leaves they fall.

5. Combine all leaves including the same recipient over all trees to one donor pool Dj for each
recipient j.

6. For each recipient j make a random draw from Dj and impute the value of the drawn donor.

˚The term pruning encompasses different algorithms that reduce the complexity of the tree to
avoid overfitting.

in algorithm 3.

2.5.6 Others

There are a few other algorithms that promise to address nonlinear data. Similar to random forest

imputation, the latent-class based algorithm by Akande et al. (2016) forms groups of donors and

recipients such that the imputations are obtained by simply drawing donors from the same group.

The R::Hmisc::aregImpute algorithm by Harrell (2015) (R Core Team, 2016), which is based on

the theoretical work by Breiman & Friedman (1985), results in predictions of transformed yh and

employs PMM in the imputation step. Neither of the two algorithms is within the scope of the

next chapters.
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Chapter 3

Toward

Multiple-Imputation-Proper

Predictive Mean Matching

It is by intuition that we discover and by

logic we prove.

Henri Poincaré

3.1 Introduction

Combining multiple imputation with predictive mean matching (PMM) promises to provide a

robust imputation procedure that will yield valid inferences, thus making it highly appealing to

practitioners (Heitjan & Little, 1991, p. 19). Consequently, such a combination is not only a

feature but also often the default mode of imputation algorithms in all major statistical software

programs (Morris et al., 2014, p. 3). Despite its preeminence in practice, skepticism regarding

this combination of techniques dominates the literature. Little & Rubin (2002, p. 69) state the

following about PMM

... properties of estimates derived from such matching procedures remain largely

unexplored.

Koller-Meinfelder (2009, p. 32) notes that

The difficult part about Predictive Mean Matching is to utilize its robust properties

within the Multiple Imputation framework in a way that Rubin’s combination rules

still yield unbiased variance estimates.

Moreover, Morris et al. (2014, p. 5) recently warned in the same context

... there is thus no guarantee that Rubin’s rules will be appropriate for inference.

The contrast between the theoretical uncertainty concerning the validity of this combined approach

and its popularity in applications motivated the work presented in this chapter. The next section

elaborates one major deviation of multiple imputation PMM algorithms from the theory of multiple

imputation, which is one of the key contributions of this dissertation. The new insight sheds a
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different light on well-known tuning parameters for PMM, which are presented in section 3.3. A

new and more proper algorithm is proposed in section 3.4, whose empirical superiority regarding

the coverages of frequentist confidence intervals is demonstrated via a simulation study in section

3.5. The insights of this chapter are published as a working paper (Gaffert et al., 2016), and citing

it is spared throughout.

3.2 Why predictive mean matching is not multiple imputa-

tion proper

Using PMM for the multiple imputation of data sets causes the between variance of the parameter

estimates of interest to suffer from attenuation bias.

To illustrate this situation, consider an analysis of variance example with ψ “ 1, . . . ,Ψ different

predictor cells. Suppose that the incomplete variable Y in cell ψ is normally distributed with mean

μψ and variance σ2
ψ. Furthermore, suppose that each of the Ψ cells contains a sufficient number of

donors, say, five or more. Now, without loss of generality, let us examine at the recipients in the first

cell. Parametric multiple imputation draws M ě 2 times σ̃2
1 , then μ̃1 | σ̃2

1 , and then ỹψ“1 | pμ̃1, σ̃
2
1q,

which is efficient. A nonparametric alternative is an approximate Bayesian bootstrap imputation

in cell ψ “ 1 that proceeds as follows. It draws M ě 2 times a bootstrap sample from the

donors in the cell and draws values to impute from this bootstrap sample. The key element that

these two proper procedures have in common is that the distribution from which the imputed

values are drawn varies over the multiple imputations. In the parametric case the parameters of

the underlying normal distributions vary, and in the nonparametric case, the composition of the

empirical distribution varies.

fully parametric PMM ABB imputation

Posterior step Draw pβ̃, σ̃2
vq from the imputation model yh “

β0 ` β1x1 ` β2x2 ` β3x1x2 ` v, with het-
eroscedastic residuals, i.e., varpv | ψ “ 1q “
σ2
v,1, . . ., varpv | ψ “ 4q “ σ2

v,4.

Within each of the Ψ “
4 cells draw a bootstrap
sample of the nobs,1, . . .,
nobs,4 donors

Imputation step Draw from the
normal imputa-
tion model: ỹj |
pβ̃, σ̃2

v , x1, x2q

As within each cell the pre-
dicted means ˆ̃yψ are identi-
cal, algorithm 2 draws nmis,ψ

values from nobs,ψ, i.e., a
simple random hot-deck im-
putation within the cell

Within each cell, draw
nmis,ψ values from the
bootstrapped nobs,ψ, i.e.,
a simple random hot-
deck imputation within
the bootstrapped cell

Table 3.1: The algorithms of proper fully parametric imputation, proper approximate Bayesian
bootstrap (ABB) imputation, and PMM are compared. The underlying data situation involves
two binary predictors px1, x2q, one incomplete variable yh, and normal noise v. The two predictors
form Ψ “ 4 cells: ψpx1 “ 0, x2 “ 0q “ 1, . . . , ψpx1 “ 1, x2 “ 1q “ 4. Ignorability is assumed.
In the imputation step, PMM is very similar to ABB imputation, but it ignores the bootstrap.
Because ABB imputation is approximately proper, PMM must attenuate the between imputation
variance.

PMM proceeds in a considerably different manner. The recipients and the donors in cell ψ “ 1

end up having exactly the same predicted mean1. Choosing the nearest neighbor ultimately consists

of making a random draw from the donors in cell ψ “ 1. This may be valid once, but the procedure

is the same for all m “ 1, . . . ,M imputations. It thereby mimics the simple random hot-deck of

1This is only true if type-2 matching is applied, which slightly differs from algorithm 2. Section 3.3 presents the
details.
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section 2.5.1, which is known to underestimate the between variance component because it partly

omits the posterior step. Table 3.1 schematically presents this reasoning.

It appears to be surprising that although PMM contains a draw from the estimated distribution

of the intercept and slope parameters β (see algorithm 2), the parameter uncertainty does not

propagate. In this regard, the above example is deceptive. Therefore, consider another example.

For simplicity, suppose that there are two normal orthogonal predictors x1, x2. Now, the definition

of the relevant donors is less clear than in the previous example, where it appeared obvious that all

donors of ψ “ 1 are suitable. The job of the β is simply to define the relevant ‘cell’. Drawing β̃ is

an important task, because the cell definition is not certain and must thus vary over the multiple

imputations. Figure 3.1 displays the effect of varying β coefficients on the cell definition.

Figure 3.1: The plots show 100 random draws from a bivariate normal distribution with zero
correlation. The shading indicates distances in the predictive means to one recipient P0px1 “
1, x2 “ 1q. Different draws from the estimated distribution of the β parameters can alter the
definition of the cell from which the donor is drawn. Considering distances, not frequencies, the
cell is a circle in the left plot, a long ellipse in the middle plot and a wide ellipse in the right plot.

However, PMM then goes wrong. The cells are defined, i.e., we have conditioned on β̃, and all

PMM does is make a random draw from the cell or even take the nearest one. It thereby ignores

parameter uncertainty to a large extent. To be precise, the β̃ define the mean of the cell; however,

the uncertainty in estimating the residual variance parameter σ2
v from the imputation model in

equation (2.1) remains unconsidered. In any given cell, we observe a distribution of units in a

sample, which suffers from sampling error. Thus, what is needed is some type of approximate

Bayesian bootstrap imputation algorithm after conditioning on the β̃ parameters.

3.3 Existing ideas to make predictive mean matching proper

PMM has recently been under suspicion for underestimating the between variance component of

equation (2.2). Van Buuren (2012, p. 71) and Morris et al. (2014, p. 7) criticize the selection

of the nearest neighbor of algorithm 2. Selecting the nearest neighbor is a special case of general

k-nearest-neighbor selection (Heitjan & Little, 1991, p. 16), which is typically applied in current

statistical software programs (see table A.1). An adaptive procedure for choosing the optimal

k exists (Schenker & Taylor, 1996, p. 442), but software implementations of this procedure are

lacking. The attenuation bias argument is that k “ 1 leads to selecting the same donor repeatedly

across imputations. The insight of section 3.2 is that once the cell is defined, the bootstrap
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frequencies are necessary to correctly reflect the between variance. The nearest neighbor selection

function, however, is unable to fully capture the variance of bootstrap frequencies varpωiq. If the

nearest donor receives a bootstrap frequency that is larger than zero, then it will be selected. The

exact value of the bootstrap frequency is irrelevant. It is easily found that varpωiq ě vartIpωiqu,
where I is a function that indicates whether ωi is larger than zero. Therefore, the nearest neighbor

selection is not compatible with the necessary bootstrap step. This finding underpins the criticism

by van Buuren (2012) and Morris et al. (2014).

In addition to the nearest neighbor selection, van Buuren (2012, p. 71) and Morris et al. (2014,

p. 7) criticize the very popular match type 2 (see table A.1). In the discussion of match types,

three different types can be distinguished. Type 1 refers to the matching of ŷi to ˆ̃yj , as in algorithm

2. By contrast, type 2 refers to the matching of ˆ̃yi to ˆ̃yj (Heitjan & Little, 1991, p. 19). Type 3

refers to a procedure in which two sets of parameters, denoted by tpβ̃1, σ̃
2
v,1q, pβ̃2, σ̃

2
v,2qu, are drawn

from the posterior distribution, one for the donors and one for the recipients, and ˆ̃yi | pβ̃1, σ̃
2
v,1q is

then matched to ˆ̃yj | pβ̃2, σ̃
2
v,2q (Royston & White, 2011; Harrell, 2015). The criticism relates to the

one predictor case, where type-2 matching linked with k “ 1 causes the M multiple imputations

to be identical and therefore, prevents the uncertainty associated with parameter estimation from

being propagated; again, this is an attenuation bias argument.

The insight from section 3.2 reveals that the M multiple imputations are identical only because

the algorithm lacks the necessary bootstrapping. The parametric imputation step as in algorithm

1 is conditioned on one set of parameters drawn in the posterior step, as in the case of type 2.

Other match types alter the cell definition and are an engineering trick that treat the symptom,

which occurs in the special case of one predictor, but do not cure the disease of effectively omitting

the posterior step. Consequently, the discussion on match types is dispensable, and the use of

type-2 matching should be advocated for.

3.4 The proposed algorithm

Revisiting the MIDAS algorithm

In contrast to algorithm 2 and all other PMM implementations (see table A.1), the MIDAS algo-

rithm proposed by Siddique & Belin (2008), which has been introduced in section 2.5.4, explicitly

combines the two steps that are required based on the insights of section 3.2. The parameters β̃

and κ define the cell. The larger κ is, the smaller is the cell. The uncertainty involved in estimating

β is correctly considered, and κ is not an estimate. However, because the within cell distribution

has sampling error, equation (2.4) involves the bootstrap frequencies. The MIDAS algorithm is

thus a major improvement in terms of multiple imputation theory, although its inventors have not

been aware of this fact (Juned Siddique, personal communication 2016; Thomas R. Belin, written

communication 2017). The proposed algorithm 4 largely builds on MIDAS. Nevertheless, other

PMM algorithms could easily be adjusted to deploy the bootstrap frequencies in the imputation

step.

Making predictions for recipients and donors

The magnitude of the error, which is caused by partly omitting the posterior step, depends on

the magnitude of the between variance that is in turn inversely proportional to the number of

available donors. Consequently, the MIDAS algorithm will be particularly beneficial when nobs

is small. In small samples, however, the influence of a single data point on the model parameter

estimates can be considerable. Because model estimation implies minimizing the distance from the
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Algorithm 4 This touched-up version of the MIDAS algorithm is named midastouch, which is
also the name of our published R package (R Core Team, 2016). Appendix A.4 provides the source
code.

1. Obtain bootstrap frequencies ωi for the donors to introduce the between variance.

2. Draw β̃ from a weighted least-squares regression (Greene, 2008, p. 169) with the weights ωi

and calculate the according coefficient of determination ˆ̃R2.

3. Calculate the elements of the nmis ˆ nobs distance matrix using the leave-one-out principle
as follows: ˆ̃ϕi,j “ |pxi ´ xjqβ̃´i|. Here, xi denotes the row vector of Xi for the ith donor, xj

denotes the row vector of Xj for the jth recipient, and β̃´i denotes the weighted least-squares
parameter vector from the donor sample without the ith row.

4. Calculate the closeness parameter as follows:

ˆ̃κp ˆ̃R2q “
!
50 ˆ̃R2{

´
1 ` ε ´ ˆ̃R2

¯)3{8
, (3.1)

where ε is a very small positive scalar number used to ensure real results for ˆ̃R2 “ 1.

5. Insert ωi, ˆ̃ϕi,j , and ˆ̃κ from above into equation (2.4) and draw the donors.

6. Repeat the above steps M ě 2 times, apply Rubin’s rules, and multiply the total variances
of the means from equation (2.2) by the correction from equation (2.3). Substitute nobs with
neff from equation (3.2), and thus, n with neff ` nmis.

model to the donor data, the model is, by construction, closer to the donors than to the recipients,

particularly for small nobs, i.e., residuals systematically differ between donors and recipients. For

the proof, see appendix A.2. Consequently, the expectation of the residual variance added to the

recipients is too small. Although this implementation is still the most common, Gelman & Hill

(2011) and Meinfelder & Schnapp (2015) estimate the parameters on the full set of observations

by using previously imputed values for yj . These algorithms make in-sample predictions for both

the donors and the recipients. By contrast, the proposed algorithm 4 makes only out-of-sample

predictions by estimating the β parameters with the leave-one-out principle.

A flexible closeness parameter

The closeness parameter κ in equation (2.4) determines the influence of the imputation model, i.e.,

of the conditionality on Xh, on the donor selection. In contrast to Siddique & Belin (2008), who

advocate for a fixed value, we argue that κ should reflect the goodness of fit of the imputation

model such that Bκ{BR2 ą 0. In other words, the probability of drawing a distant donor should

decrease as the imputation model quality increases, as in equation (3.1). Its functional form is

the inverse of the form of the sales response to advertising function presented by Little (1970, p.

B472). Siddique & Belin (2008, p. 88) state that reasonable values for κ lie within the range

r0, 10s, and they found in a simulation study that in a setting with R2 “ 0.29, the ideal value for

κ is 3 (Siddique & Belin, 2008, p. 98). Equation (3.1) reflects these findings as follows:

κpR2 “ 0q “ 0, κpR2 “ 0.9q « 10, κpR2 “ 0.29q « 3

Fixing the attenuation bias of the approximate Bayesian bootstrap imputation

Because equation (2.4) generalizes the approximate Bayesian bootstrap imputation, it also suffers

from the underestimation of the total variance for finite nobs (Kim, 2002). Applying the correction
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factor φ from equation (2.3) appears to be the most obvious solution. It applies directly to the k-

nearest-neighbor distance function2 if conducted on the bootstrapped donor sample. The available

donors for each recipient, however, are no longer nobs, but rather k, which causes a slight adjustment

in equation (2.3): nobs must be substituted by k, and n must be substituted by k ` nmis. After

conditioning on the bootstrap frequencies, all donors have the same probability of being drawn.

This is different for the MIDAS algorithm and for algorithm 4, because the drawing probabilities

depend on the distance to the recipient. Therefore, we propose replacing nobs in equation (2.3) with

a measure of the effective donor sample size for each recipient nj,eff (Kish, 1965, p. 427), which

is expressed as follows: nj,eff “ n2
j,obs{ ř

i pwi,j{ωiq2 (Bosch, 2005, p. 5). wi,j and ωi denote the

drawing probabilities from equation (2.4) and the bootstrap frequencies, respectively. Averaging

over all recipients and the M imputed data sets yields

neff “ 1

Mnmis

Mÿ
m“1

nmisÿ
j“1

»
–nobsÿ

i“1

#
ˆ̃ϕ´ˆ̃κm
i,j,m{

nobsÿ
i“1

pωi,m
ˆ̃ϕ´ˆ̃κm
i,j,mq

+2
fi
fl

´1

(3.2)

Variance correction factors for parameters other than the mean do not yet exist; for linear regression

parameters, Wu (1986, p. 1280) offers a starting point.

3.5 Simulation study

3.5.1 Simulation settings

A simulation study is conducted to assess the magnitudes of both the identified shortcomings of

the existing PMM algorithms and the proposed improvements. To provide a complete picture,

algorithm 4 is challenged by the multiple imputation PMM algorithms implemented in all major

statistical software programs, as listed by Morris et al. (2014, p. 3)3. Furthermore, two benchmark

algorithms are compared: a fully parametric algorithm that utilizes the additional information

of a normal likelihood and a fully improper PMM algorithm that treats the maximum likelihood

parameter estimates as if they were the true parameters.

For simplicity, we use the multivariate normal setting presented in section 2.3 and set all off-

diagonal elements of the correlation matrix equal to each other. To address the various challenges

encountered in real-world applications, we apply a full factorial design that considers the following

four binary factors: we distinguish ‘missing always completely at random’ from ‘missing always

at random’ and define the latter as prpR “ 0q “ Φ rp1{4q tZ ` Np0, 3qus, where Φ denotes the

normal cumulative distribution function (Rinne, 2008, p. 298); we consider p ´ 1 “ 1 covariate,

i.e., just pY, Zq versus p ´ 1 “ 8 covariates, i.e., pY, Zq and Q with length 7; we consider R2 “ 0

versus R2 “ 0.75; and we consider nobs “ 10 versus nobs “ 200. Furthermore, we fix M “ 25,

nmis “ 100, all marginal means equal to zero, and all marginal variances equal to one, and we

perform nsim “ 250 Monte Carlo simulations for each combination.

3.5.2 Simulation results

We focus on the estimates of both the mean of Y , denoted by μ̂, and the regression coefficient of

Y in the linear regression model of Z on a constant, Y and Q, denoted by β̂1, and thereby cover

the more challenging case of missing values in regression predictors (von Hippel, 2007, p. 102).

2k-nearest-neighbor selection means that the drawing probability for the k nearest donors is k´1, and zero for
all others.

3with the exception of Solas for technical reasons.
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950� confidence interval coverages
nobs “ 10 nobs “ 200

Ref. Software Predictive mean matching command μ̂ β̂1 μ̂ β̂1

Proposed algorithm (algorithm 4)
1 R::midastouch mice.impute.midastouch 936 961 945 955
2 with correction factor φ 973 ´ 972 ´
3 R::midastouch mice.impute.midastouch(kappa=3) 931 961 946 945
4 with correction factor φ 960 ´ 978 ´
Predictive mean matching software listed by Morris et al. (2014, p. 3)
5 R::mice mice.impute.pmm 605 899 941 959
6 R::Hmisc aregImpute 515 872 936 959
7 R::BaBooN BBPMM 686 781 937 958
8 R::mi .pmm 573 664 908 913
9 SAS::proc mi regpmm 487 841 928 943
10 SAS::MIDAS MIDAS 899 967 937 954
11 SPSS multiple imputation

/impute scalemodel=PMM 640 659 907 911
12 Stata mi impute pmm 616 652 907 911
13 Stata ice, match 443 727 935 958

Benchmark algorithms
14 R::mice fully parametric: mice.impute.norm 962 959 946 958
15 R Fully ignoring between-variance PMM 382 468 877 912

Table 3.2: Simulation results. Ref.: reference; 1-8, 14, 15: R Core Team (2016); 5, 14: van Buuren
& Groothuis-Oudshoorn (2011) version 2.22; 6: Harrell (2015); 7: Meinfelder & Schnapp (2015); 8:
Gelman & Hill (2011) version 1.0; 9, 10: SAS Institute Inc. (2015); 10: Siddique & Harel (2009);
11: IBM Corp. (2015); 12, 13: StataCorp. (2015); 13: Royston & White (2011). The results show
coverages only, because all algorithms deploy the appropriate linear regression imputation model
and differences in, e.g., biases are not to be expected.

Utilizing the multiple imputation variance estimator we construct 950� frequentist confidence

intervals (see section 2.3 and Rubin (1987, p. 21)). For each simulation run, we note whether this

confidence interval covers the true parameter value. We present the key results in table 3.2 and the

details in appendix A.5. For each cell in table 3.2, we average the coverages over 2p4´1qnsim “ 2000

simulation runs.

The most striking result is that the MIDAS algorithm outperforms all PMM algorithms imple-

mented in the major statistical software programs4. The algorithm’s advantage is particularly large

when the uncertainty associated with the imputation model parameter estimation is considerable,

i.e., when the number of donors is small, and it diminishes as the number of donors increases. This

result strongly supports the findings of section 3.2.

3.5.3 The proposed algorithm

The results, particularly those for the small donor sample size nobs “ 10, indicate that our proposed

modification of the MIDAS algorithm leads to a considerable improvement. This improvement

appears to be true for all means introduced in section 3.4. More specifically, table 3.2 demonstrates

that an improvement is achieved for the out-of-sample predictions for the donors, which can be

observed by comparing row 10 to row 3; for the modified closeness parameter from equation (3.1),

which can be observed by comparing row 3 to row 1; and for the application of the correction

4Morris et al. (2014, p. 12) show that PMM algorithms perform best when large k and type-1 matching are
employed as in R::mice and SAS::proc mi (see table A.1). However, the results of these two tuned algorithms are
not convincing.
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factor φ from equations (2.3) and (3.2), which can be seen by comparing rows 1 and 3 to rows

2 and 4. It is striking that the coverages of the proposed algorithm do not fall below 950� and

become closer to the ideal value of 950� when nobs increases5.

3.6 Conclusion and future work

The key finding of this chapter is that all but one PMM implementation systematically attenuate

the between variance. In model terms, these implementations do not propagate the uncertainty

involved in estimating σ2
v ; in algorithmic terms, they do not use the bootstrap frequencies in the

imputation step. In this sense, the MIDAS algorithm proposed by Siddique & Belin (2008) is the

exception.

The simulation study results reveal that the attenuation bias can be severe for small sample

sizes. Averaging over all PMM implementations except MIDAS provides a coverage for the mean

estimate of below 600� when nobs is small. This bias can be fully avoided by applying the proposed

midastouch algorithm.

A natural extension is to deploy other distance metrics than the one described in equation

(2.4). The k-nearest-neighbor metric appears to be appropriate if the neighbors are drawn from

the bootstrap sample and k ą 1. A large k requires unequal drawing probabilities to avoid

distortions of the distributions. Some reasoning is provided in appendix A.3. Alternative distance

metrics have already been discussed in Siddique (2005, p. 130).

Reusing the bootstrap frequencies in the imputation step has a theoretical shortcoming. Within

the cells, the sum of the bootstrap frequencies is not necessarily equal to the number of donors,

which causes a deterioration of the bootstrap properties (Efron, 1979, p. 3). The obvious alterna-

tive is to draw another bootstrap sample within the cell, which in turn presumably overestimates

the between imputation variance. Nevertheless, the overestimation is then, again presumably, the

part of the variance of σ2
v that is caused by β and that is known to be negligible in most cases

(Greenberg, 2013, p. 57). More research is required to resolve these conflicts.

5The adjustment thus appears to be slightly too large for small samples. However, unlike adjustments that are
too small, adjustments that are too large are still in line with default statistical inference as in Rinne (2008, p. 505).
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Chapter 4

Local Regression

Look closer and you’ll see something

extraordinary, mystifying, something real

and true.

Zelda Fitzgerald

4.1 Introduction

Predictive mean matching (PMM) and the newly introduced midastouch are nonparametric al-

gorithms that substitute the parametric imputation step (Little & Rubin, 2002, p. 201). This

substitution is beneficial if the distributions of the incomplete variables conditional on the imputa-

tion models cannot be well described. Although there are many cases in which sensible univariate

transformations enable parametric imputation (Schafer, 1997, p. 147), PMM has become very

popular, primarily because it is a one-fits-all algorithm without the need for manual interventions.

In applications, nonlinear relations are likely to matter. Sensible modeling is capable of solving

this issue. However, it is manual, has some arbitrary elements, and takes a considerable amount

of time. This chapter introduces local regression, which is capable of automatically detecting the

nonlinear relations in the data. The next chapter combines the one-fits-all modeling algorithm local

regression (posterior step) and the one-fits-all midastouch (imputation step) to one new imputation

algorithm with the name Miles.

This chapter starts with the fundamentals of local regression (section 4.2). Section 4.3 addresses

the statistician’s choices when performing local regression modeling. Section 4.4 contributes an-

other perspective to regression analysis, which we hope facilitates an intuitive understanding. All

the details of our rather simple implementation of local regression are presented with the help

of the data set from Brinkman (1981) as an example in section 4.5. The chapter concludes with

discussing potential future improvements in section 4.6.

4.2 Notation

Local regression dates back to Cleveland (1979), although some very early work is related (for an

overview, see Cleveland & Loader (1996, p. 15)). The primary use of local regression is to smooth

scatterplots (Cleveland, 1979, p. 830). A local regression model is represented by

Y “ f pXq ` v with v „ i.i.d., (4.1)
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where Y denotes the response variable and X a set of predictor variables (Loader, 1999, p. 15).

Anticipating its use in the next chapter, local regression is notated in equation (4.1) analogous

to the imputation model in equation (2.1). At the global level no assumptions about f pXq are

required, i.e., the local regression model does not restrict the relation between X and Y globally.

In other words, local regression fits any pX,Y q relation. At the local level, i.e., within a smoothing

window H0 around a certain point x0, f pXq is a polynomial of order π. Observations outside the

smoothing window are excluded from estimating f pXq (Loader, 1999, p. 16). Local regression

can be regarded as a Taylor series expansion (Loader (1999, p. 37), Bronstein et al. (2013, p.

455)). Consequently, the error equals the remainder of the series (Bronstein et al., 2013, p. 484).

Asymptotically, as the smoothing window becomes smaller, local regression provides a perfect fit.

The only assumption required is that the first π derivatives of the underlying functional relation

exist locally. The following section presents the key fine-tuning options for the algorithm according

to Cleveland & Loader (1996, p. 19).

4.3 Local regression modeling

4.3.1 Weight function

In general, observations are weighted in the minimization (Cleveland & Loader (1996, p. 11),

Greene (2008, p.169)). The tricube function proposed by Cleveland (1979, p. 831) is by far the

most popular weight function in the context of local regression (see, e.g., Cleveland & Loader

(1996, p. 20)). The weights d are calculated by

δ0,i “ |
´
x0̊ ´ xi̊

¯
| with i P H0 (4.2a)

d0,i “
„
1 ´

!
δ0,i{max

i
pδ0,iq

)3
j3

` ε. (4.2b)

Dividing Xh by the respective interquartile ranges (Rinne, 2008, p. 45) provides the rescaled X˚
h

that are used to calculate the distances in equation (4.2a) (Cleveland & Devlin, 1988, p. 597).

The weights d0 for observations outside the neighborhood H0 of x0 are zero. The smallest weight

for an observation within H0 is ε ą 0.

4.3.2 Polynomial degree and bandwidth

Both the size of the neighborhood, also known as bandwidth (Cleveland & Loader, 1996, p. 21),

and the degree of the polynomial that is fitted locally represent bias variance trade-offs. A small

neighborhood and a high-order polynomial reduce bias but increase variance and vice versa. Poly-

nomial orders discussed in the literature range from local constant fitting to local cubic fitting

(Cleveland & Loader, 1996, p. 25). Cleveland & Loader (1996, p. 18) suggest polynomial mixing

as averaging the coefficients from two subsequent polynomial fits, such as linear and quadratic,

and remark that this procedure is equivalent to ridge regression (Rinne, 2008, p. 639) with a

ridge penalty on the quadratic terms only. The bandwidth is generally estimated from the data

and defined by the number of observations, the so-called nearest-neighbor bandwidth (Cleveland

& Loader, 1996, p. 22), rather than by a fixed width.

We choose mixing a linear fit and a constant fit to prevent an exploding number of parameters.

The number of coefficients in the linear fit is p with p ´ 1 denoting the number of predictors; in

the quadratic fit, it is already ppp ` 1q{2; and in the cubic fit, it is ppp2 ` 3p ` 2q{6. In a data

set with 25 variables the quadratic fit estimates 325 parameters and the cubic fit estimates 2925
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parameters at the local level. Presumably, in the vast majority of applications this large number

of parameters causes issues with the number of degrees of freedom.

To find the optimal nearest-neighbor bandwidth and the optimal mixing degree, we minimize

cross-validation prediction mean squared errors (PMSE) as suggested in Loader (1999, p. 30). A

precise description of the optimization is presented in section 4.5.

4.4 An alternative approach to regression: the influence

vectors l

In the neighborhood of x0 local regression with polynomial mixing is simply a weighted ridge

regression. The least squares minimization yields

β̂ridge “ `
X 1

iC
´1Xi ` Λ

˘´1
X 1

iC
´1yi (4.3a)

with C´1 “

»
——–

d0,1 0

. . .

0 d0,nobs

fi
ffiffifl . (4.3b)

A property of least squares estimators is that the predictions are always a linear combination

of the observed values. This property is extensively used to derive the statistical properties of local

regression (Cleveland et al., 1988, p. 95). More formally, the prediction can be written as (Greene,

2008, p. 25)

ŷpx0q “ x1
0β̂H0

“ l1H0
yH0

, (4.4)

where the subscript H0 refers to the subset of observations in the neighborhood of x0 and is

dropped in the following for convenience. The influence vector l determines the linear combination

and never depends on yi. Using equations (4.4) and (4.3a) along with the rules for transposing

products (Greene, 2008, p. 949), the following equation is obtained:

l “ C´1Xi

`
X 1

iC
´1Xi ` Λ

˘´1
x0. (4.5)

Rao & Singh (1997, p. 59) show that equation (4.5) results from the following minimization

problem1

min
l

“pl ´ dq1Cpl ´ dq ` pX 1
il ´ x0q1Λ´1pX 1

il ´ x0q‰
. (4.6)

Equation (4.6) shows that local regression essentially attempts to find a new weight vector,

which is called the influence vector l, that is supposed to be as close to the distance weights d as

possible (first addend) while ensuring that the influence weighted center of the observations in the

neighborhood falls on x0 (second addend). Large ridge penalties Λ reduce the importance of the

second addend and result in a prediction that is dominated by the distance weights d.

1Their solution is slightly more complex because it contains another additive term. However, if Xi has full
column rank and a leading constant column and C is defined as in equation (4.3b), then this additive term is
exactly zero. For the proof, see section B.1.
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4.5 Example

4.5.1 A well known data set

To present a detailed picture of how we implement the algorithm, we continue Cleveland’s tradition

(Cleveland & Devlin (1988, p. 604), and many more) and use the NOx data set presented by

Brinkman (1981), which is about an experiment with ethanol rather than gasoline to study the

effects on the nitrogen oxide emission of an engine. The data set consists of n “ 88 observations

and p “ 3 variables, namely, the outcome NOx and two experimentally controlled factors, the

compression ratio C and the equivalence ratio E.

Figure 4.1: The NOx data set by Brinkman (1981) with the optimal local regression fit (q “ 7, λ “ 0,

dashed line) and the local regression fit from the grid optimization (q “ 5, λ “ 0.2, solid line).

Figure 4.1 displays NOx against E. The dimension of C is shown by the symbols of the data

points, because C only takes five different values. The solid gray line is the local regression fit in

our implementation, which explains R̂2 “ 91% of the variation of NOx (Rinne, 2008, p. 90). The

two highlighted and randomly selected example points are the first and the last points in the data

set: P1pNOx, C, Eq “ p3.741, 12, 0.907q and P88 “ p1.9, 18, 0.655q.

4.5.2 Optimization of the bandwidth and the polynomial mixing degree

Before calculating multivariate distances (see equation (4.2a)), the variables need to be rescaled.

The interquartile ranges are IQRC “ 7.5 and IQRE “ 0.36. Before rescaling the variances are
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varpCq “ 15.46 and varpEq “ 0.04, and after rescaling, the variances are varpC˚q “ 0.32 and

varpE˚q “ 0.39.

Optimization of the bandwidth and optimization of the mixing degree involve one scalar pa-

rameter each. The parameter governing the bandwidth is the number of observations within

the neighborhood q, and the parameter governing polynomial mixing is the ridge scalar λ in the

weighted ridge regression equation (4.3) with

Λ “ λ

»
————–

0 0

ζx2,2y
. . .

0 ζxp,py

fi
ffiffiffiffifl with X 1

iC
´1Xi “

»
——–

ζx1,1y ¨ ¨ ¨ ζx1,py
...

. . .
...

ζxp,1y ¨ ¨ ¨ ζxp,py

fi
ffiffifl . (4.7)

As shown in equation (4.7), λ ą 0 increases all elements of the main diagonal of the X 1
iC

´1Xi

matrix except the one that corresponds to the constant in the model (van Buuren & Groothuis-

Oudshoorn, 2011). A value of λ “ 0.1 means that 10% are added to the main diagonal. The

algorithm first draws a simple random sample of 50 from the data and builds a grid for the

optimization. For each grid cell and each of the 50 data points an out-of-sample prediction is

made, resulting in 900 ridge regression estimations.

q “ 5 q “ 21 q “ 38 q “ 54 q “ 71 q “ 87

λ PMSE λ PMSE λ PMSE λ PMSE λ PMSE λ PMSE

0.2 0.1201 0.1 0.2237 0.05 0.4506 0.05 0.6565 0.05 0.8387 0.05 1.0400

0.4 0.1206 0.2 0.2312 0.1 0.4927 0.1 0.7200 0.1 0.9189 0.1 1.1103

0.8 0.1209 0.4 0.2354 0.2 0.5190 0.2 0.7604 0.2 0.9718 0.2 1.1601

Table 4.1: Choosing the optimal q and the optimal λ

Table 4.1 shows that the prediction mean squared error (PMSE, Loader (1999, p. 30)) is

minimal for Pminpq, λq “ p5, 0.2q2.

4.5.3 Neighborhood definition and minimization

The model specification is now set. The algorithm continues by calculating the distances δ and

the weights d according to equation (4.2). For this purpose the R::RANN library is used (R Core

Team (2016), Arya et al. (2015)).

For the points P1 and P88, figure 4.2 shows that closer neighbors receive larger weights than

do more remote neighbors.

The key advantage of polynomial mixing and least squares is that the minimization can be

conducted analytically as described in equation (4.3) and that a large number of predictors can

be digested. Thus, solving the n “ 88 minimization problems takes less than 5ms on a single core

of an intel i7 5600U. The relatively large regularization parameter λ “ 0.2 causes the influence

vectors l for the points P1 and P88 to equal the rescaled weights d up to 10´2 (see section 4.4).

That is, the local regression fit is dominated by the d weighted constant. This makes intuitive

sense because with q “ 5, the number of estimated parameters used for prediction shall be as small

as possible. Figure 4.3 shows the regression lines for P1 and P88, which are almost horizontal.

2A full grid optimization yields a minimum PMSE of 0.0494 at Pminpq, λq “ p7, 0q and an R̂2 “ 96% (see figure
4.1). Although the values of λ in the grid optimization appear to be too large in this example, they might be suitable
in more realistic scenarios with a large number of predictors.
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Figure 4.2: The two predictors C and E of Brinkman (1981) with highlighted P1 and P88 and their
respective q “ 5 neighborhoods.

Their intersections with the vertical lines, which indicate the E values of the two points, mark the

predicted NOx.

Figure 4.3: Regression lines for P1 and P88

4.6 Potential improvements

Our implementation of local regression that is described in section 4.5 is rather simple. Extensions

have already been developed in different directions. Cleveland & Loader (1996, p. 31) suggest
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choosing both q and λ locally rather than globally. Cleveland (1979, p. 829) has already argued to

substitute least squares optimization. Whereas he suggests an outlier-robust alternative, Loader

(1999, p. 59) describes how maximum likelihood procedures can be localized to better model, e.g.,

categorical responses.

If x0 falls outside the domain of its neighborhood, e.g., if all of x0’s q nearest neighbors are left

of x0 itself, regression switches from interpolation to extrapolation, which causes some elements

of l to be negative. Consequently, the prediction suffers from large uncertainty. One approach to

address this issue might be to prevent extrapolation with existing algorithms (for an overview, see

Rao & Singh (1997)), whereas another approach might be to search a surrounding neighborhood

rather than only a close neighborhood H0.

The grid optimization suggested in section 4.5.2 needs improvement. The grid is arbitrary and

potentially far too imprecise in the crucial regions. Further research is needed here. One idea is to

use closed-form solutions to find the optimal λ (Rinne, 2008, p. 640) conditional on the numerical

optimization of q alone3.

3Note that these closed-form solutions depend on the ordinary least squares estimates, which do not exist in the
likely case of p ą q.
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Chapter 5

Multiple Imputation via Local

Regression: The Miles algorithm

Our knowledge can only be finite, while

our ignorance must necessarily be infinite.

Karl Raimund Popper

5.1 Introduction

This chapter combines the posterior step one-fits-all local regression algorithm, which is introduced

in chapter 4, and the imputation step one-fits-all midastouch algorithm, which is introduced in

chapter 3, to the multiple imputation via local regression (Miles) algorithm, which is a key con-

tribution of this dissertation1. Miles is not assumption free, but it resolves two major limitations

of the fully parametric approach, which is presented in section 2.3. In the posterior step it does

not heavily restrict the relation between the incomplete variable and its predictors; it does, e.g.,

not assume a linear relation as in equation (2.1). In the imputation step, it does not require a

distributional assumption for the data; it does not, e.g., require yh | Xh to be normally distributed

as in equation (2.1). The next section presents the Miles algorithm.

It is tempting to believe that Miles is beneficial only if the analysis model is unknown to the

imputer. If the imputer is aware of the analysis model, an according, later called educated, imputa-

tion model appears to be the best option, and an overly inclusive imputation model, such as Miles,

appears to be unnecessarily inefficient (see section 2.2). However, when imputing transformed vari-

ables, the according imputation model procedures yield biased and inconsistent estimates in the

relevant case of missing at random (MAR), as will be presented in section 5.3. Section 5.4 provides

an overview of the possible approaches, which are compared in a simulation study in section 5.5.

The ideas of this chapter are published in Gaffert et al. (2016); thus, this paper is not cited in the

following text.

5.2 The proposed algorithm

Miles is the combination of the local regression algorithm from chapter 4 and the midastouch

1Aerts et al. (2002) proposed local models for multiple imputation. Their approach, however, relies upon Kernel
smoothing and lacks the advantages of local regression (Hastie & Loader, 1993) and predictive mean matching
(PMM). De Jong (2012, p. 43) first sketches some ideas of a local-regression based multiple imputation algorithm.
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Algorithm 5 The Miles algorithm.

1. Run a Bayesian bootstrap (Rubin, 1981) and conduct all subsequent steps on the bootstrap
sample.

2. For each observation, i.e., both donors and recipients, make a local regression prediction as
described in chapter 4.

3. Obtain the imputations by drawing donors with probabilities given by equation (2.4) from
within the recipients’ neighborhoods.

4. Repeat the steps above for iterating over all variables and multiple imputations (van Buuren,
2012, p. 110).

algorithm from chapter 3. Miles is presented in algorithm 5, and the corresponding source code is

given in appendix C (R Core Team, 2016). Because midastouch requires bootstrap frequencies, it

appears to be natural to introduce between variance by bootstrapping the donors (the replication

step in von Hippel (2007, p. 84)), i.e., to estimate the local regressions onM ě 2 bootstrap samples.

Rubin (1981, p. 132) shows that limiting the bootstrap frequencies to integers is inefficient and

proposed the Bayesian bootstrap, which reaches the same degree of precision as Efron (1979)’s

bootstrap faster. Otherwise, the properties are equivalent, except for very small samples2. That

is why Miles employs the Bayesian bootstrap. The noninteger bootstrap frequencies from the

Bayesian bootstrap ωBB simply substitute ωi in equation (2.4); thus, the midastouch algorithm

naturally incorporates the Bayesian bootstrap.

Another specialty of Miles is that once the neighborhood is selected, both the modeling and the

imputation step are conducted in the neighborhood. Thus, only donors within the neighborhood

have positive selection probabilities according to equation (2.4). Donors outside the neighborhood

have zero probability, although they may be closer in terms of the predicted mean. This property

makes the algorithm truly local.

5.3 Imputing transformed variables

Using the definitions of section 2.3 and relaxing the distributional assumptions for Z, suppose that

the analysis model has the following form:

Z “ γ0 ` γQQ ` γY Y ` u `
ÿ
t

γtgt pQ, Y q,

with u denoting independent normal noise and gt denoting the tth nonlinear transformation term.

If g “ 0, parametric multiple imputation as presented in algorithm 1 is proper. For more complex

g, there are two types of imputation algorithms. Algorithms that explicitly consider the analysis

model are referred to as educated, and the others are referred to as ignorant. An educated imputa-

tion algorithm is referred to as omniscient if the analysis model exactly depicts the data generating

process.

There are two educated approaches to address complex g; the passive-imputation algorithm

(PI) by van Buuren & Groothuis-Oudshoorn (1999, p. 13) and the just-another-variable algorithm

(JAV) by von Hippel (2009, p. 271). To introduce both algorithms, suppose that g pQ, Y q “ Y 2.

The sample data set then consists of four columns pzh, qh, yh, y2hq, where the first two are fully

observed and the latter two have missing values for exactly the same observations. Recall the

2Rubin (1981, p. 131) shows that the variance of the mean estimator differs by the factor n{pn ´ 1q.

28



multivariate two patterns of section 2.4. The passive-imputation algorithm proceeds as algorithm

1, but it also includes the squared term in the regression model for yh. After the imputation of

yj , it simply computes the squares. This is why, von Hippel (2009, p. 272) names this approach

‘impute (the linear terms), then transform’. The just-another-variable algorithm imputes yj as

does the passive-imputation algorithm. However, rather than calculating the square from the

imputed values, it repeats the imputation procedure for y2j and thereby treats the transformation

as if it were just another variable. Logical inconsistencies between yj and its transformations g are

a natural consequence of this procedure, which can be an essential disadvantage as noted by van

Buuren (2012, p. 132). If the response mechanism is completely at random (MCAR), then the

just-another-variable algorithm enables consistent estimation of the parameters of interest whereas

the passive-imputation algorithm does not. For the missing at random mechanism, which is by

far the most relevant in applications, neither of the two approaches provides consistent estimates

(Seaman et al., 2012, p. 7)3.

5.4 Educated versus ignorant imputers

Both the PI algorithm and the JAV algorithm require the imputer to know the analysis model.

This appears to be a doable requirement, because all the imputer needs to do is talk to the

analyst. However, in many applications, talking to the analyst is a tricky task. Consider public

use files, where one imputer at the agency provides the file but where hundreds of analysts run

highly sophisticated models driven by theories from their fields (Rubin, 1996, p. 473). Some

very talented imputers might actually be capable of performing this job. However, there is no

doubt that this takes substantial time and effort. Now, recall that if the missing data pattern

is not missing completely at random, neither of the two educated approaches provides consistent

parameter estimates; therefore, what is the reward for all this work?

Doove et al. (2014) present random forest imputation, which is introduced in section 2.5.5, as

an ignorant algorithm and show that it preserves ignored interaction effects well. Local regression,

which serves as the posterior step for Miles, consistently captures a broad class of functional

relations (see section 4.2). Both algorithms, random forest imputation and Miles, appear to be

very inclusive (see section 2.2) and thus well suited to preserve the relevant relations in the data.

Ignorant approaches generally require MAR, not MCAR, and do not cause inconsistencies as the

JAV algorithm.

5.5 Simulation study

5.5.1 Simulation setup

Using a simulation study, the relative and absolute performances of the proposed Miles algorithm

are assessed. The major distinction is between ignorant approaches that take the linear terms as an

input only and omniscient approaches that utilize the linear terms and the relevant transformations

from the analysis model, which is equivalent to the data generating process in this setting. The

ignorant approaches are random forest imputation by Doove et al. (2014), the version of predictive

mean matching (PMM) in van Buuren (2012, p. 68), which is recommended by Morris et al.

(2014), and the proposed Miles; the omniscient approaches are the PI algorithm and the JAV

algorithm. The omniscient approaches also utilize PMM in the imputation step to achieve better

comparability with the ignorant approaches.

3Vink & van Buuren (2013) propose a third educated solution for the special case of a squared term.
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Table 5.1: Simulation results

Ignorant approaches Omniscient approaches
Miles PMM RF PI˚˚ JAV˚˚

Linear only˚ ř
t γtgt pQ, Y q “ 0

γ0 “ 0 151 p930q 143 p944q 175 p928q 142 p939q 143 p945q
γQ “ 1 152 p938q 146 p953q 175 p925q 146 p948q 146 p950q
γY “ 1 152 p908q 139 p910q 175 p806q 141 p901q 140 p904q

Square
ř

t γtgt pQ, Y q “ γY 2Y
2

γ0 “ 0 177 p945q 199 p907q 168 p898q 351 p305q 145 p955q
γQ “ 1 209 p931q 224 p947q 198 p953q 407 p951q 174 p954q
γY “ 1 202 p952q 225 p919q 190 p937q 418 p952q 164 p929q
γY 2 “ 1 279 p930q 285 p846q 269 p819q 563 p175q 233 p907q

Interaction
ř

t γtgt pQ, Y q “ γQY QY
γ0 “ 0 265 p939q 324 p962q 250 p934q 338 p914q 195 p919q
γQ “ 1 267 p941q 332 p939q 252 p941q 334 p946q 205 p884q
γY “ 1 262 p808q 308 p717q 244 p789q 331 p872q 195 p944q
γQY “ 1 263 p791q 321 p537q 248 p720q 334 p230q 188 p875q

Cube
ř

t γtgt pQ, Y q “ γY 3Y
3

γ0 “ 0 206 p949q 225 p957q 224 p957q 483 p949q 218 p922q
γQ “ 1 192 p941q 206 p951q 210 p952q 438 p835q 211 p926q
γY “ 0 123 p963q 134 p924q 132 p954q 275 p629q 134 p917q
γY 3 “ 1 421 p964q 441 p951q 445 p907q 1007 p938q 457 p935q

Average 221 p922q 243 p891q 224 p895q 308 p801q 197 p924q

Table 5.2: The table presents relative root mean squared errors (rRMSE) ˆ100. A value of 100
means that the RMSE of the respective parameter estimate in the imputed data set is as large
as the RMSE of this parameter before deletion. Coverages of 950� intervals are given in in
parentheses. Abbreviations are: Multiple imputation via local regression (Miles); Predictive mean
matching (PMM); Random forest imputation (RF); Passive imputation (PI); Just another variable
(JAV). ˚When g “ 0, PMM, PI, and JAV are identical algorithms. ˚˚The results for JAV and
PI in Gaffert et al. (2016) are misleading due to an error in the implementation and are corrected
here. As a consequence, in Gaffert et al. (2016) JAV looks worse and PI looks better than it really
is. The PI results here are based on 50 Gibbs sampler iterations (see section 2.4).

pQ, Y q follow a standard normal distribution with a ρ “ 0.2 correlation (Rinne, 2008, p. 201).

The missingness is always at random and defined by prpR “ 0q “ Φ rp1{4qtQ ` Np0, 3qus. We fix

M “ 10, nmis “ 90, and nobs as low as 60 to obtain a substantial degree of estimation uncertainty

of the imputation model parameters. Throughout the different analysis models, the coefficient of

determination is maintained at approximately R2 “ 2{3 (Rinne, 2008, p. 79), and for each model,

nsim “ 1000 Monte Carlo simulation runs are performed.

5.5.2 Simulation results

Table 5.1 shows the results for all parameters of interest and all introduced imputation methods in

two dimensions. The relative root mean squared error (Rinne, 2008, p. 17), abbreviated as rRMSE,

is defined as the ratio of the RMSE of the imputed data sets divided by the RMSE before deletion.

Small values indicate good quality. The rRMSE is a quality indicator in descriptive statistics. To

obtain a quality indicator in inferential statistics, we construct 950� confidence intervals as in

section 3.5. Good quality is indicated by coverage values of approximately 950�.

Overall, the JAV algorithm performs the best. Miles keeps up with JAV in terms of coverages,

but it adds approximately 12% rRMSE due to ignoring the analysis model and thereby, for this
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simulation study, the data generating process. Random forest imputation performs as well as

Miles in terms of RMSE, but it performs significantly worse in terms of coverages. Ignorant

PMM and PI are clearly outperformed. JAV is the only procedure that does not ensure consistent

imputation, i.e., the imputed values do not obey the transformation rules. With the focus on

preserving interaction effects, Doove et al. (2014) introduce random forest imputation, which is,

in this regard, slightly superior to Miles but clearly inferior to JAV.

5.6 Conclusion and future work

In this chapter, local regression and midastouch are combined to form the multiple imputation

via local regression algorithm Miles. It is an inclusive algorithm in the sense that it attempts to

capture the true nature of the data rather than preserve a predefined, e.g. linear, relation (see

section 2.2).

In many practical applications, it appears to be advantageous to use an inclusive imputation

algorithm. When the analysis model is unknown to the imputer, the best that the imputer can

do is to preserve the major structure of the data, i.e., apply an inclusive imputation algorithm.

If there are many analysis models and no one imputation model can include all parameters of

interest, again, the best that the imputer can do is to apply an inclusive algorithm4.

This chapter presents another less obvious scenario for inclusive algorithms: there is only one

perfectly known analysis model that involves nonlinear relations5. Finding a suitable imputation

model can turn out to be a serious burden for an imputer. After having established the model,

the imputer can apply one of the two educated algorithms: the PI algorithm by van Buuren

& Groothuis-Oudshoorn (1999) or the JAV algorithm by von Hippel (2009). The simulation

results for PI are disastrous; JAV, while performing the best, has the disadvantage of inconsistent

imputations. In the context of just one perfectly known analysis model, the inclusive imputation

algorithms are referred to as ignorant because they are not provided with the analysis model.

Consequently, ignorant algorithms, such as the proposed Miles, are much easier to deploy than

educated ones because there is no need to worry about the functional relation for the imputer.

Furthermore, because all transformations required for the analysis model are calculated on the

imputed data set, inconsistencies cannot arise. These practical considerations may even outweigh

the 12% rRMSE advantage of JAV over Miles.

JAV’s advantage over Miles is particularly large in the case of the interaction. Thus, research

is needed to improve Miles’s capability to capture interaction effects.

In general, the performance of the omniscient approaches is disappointing. All information to

conduct a sensible imputation is available to them in the simulation study, even the true data

generating process. With this valuable information, PI performs considerably worse than the three

ignorant algorithms, and JAV can only slightly outperform Miles. This result clearly indicates a

lack of suitable educated algorithms.

4or specify more than one imputation model.
5An inclusive algorithm clearly cannot be beneficial if the analysis model is both known and perfectly linear.

This case is also shown in table 5.1.
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Chapter 6

Real Data Simulation Study

So, please, oh please, we beg, we pray, go

throw your TV set away.

Roald Dahl

6.1 Introduction

In the preceding chapters 3 and 5, simulations on artificial data were used to assess the properties

of the newly proposed algorithms midastouch and Miles, respectively. Although such simulations

foster the understanding of the underlying mechanics, the ultimate goal of imputation algorithms

is to enable real-world statistical analyses on real-world incomplete data. Using a data set from the

GfK SE company, this chapter investigates the algorithms’ performance when applied in practice

by answering the following research questions:

1. midastouch: The simulation results of chapter 3 show that for multivariate normal data the

algorithm is superior to default predictive mean matching (PMM) when the number of donors

is small, and does not differ from default PMM when the number of donors is large. The

hypothesis is that the latter also holds in a real data set with nonlinear relations as indicated

by Siddique & Belin (2008, p. 96).

2. Miles: The dependency structure within a real data set is usually not linear. Miles has

been developed to capture the true structure of a data set without the need to specifying it

explicitly in the imputation model. The hypothesis is that Miles performs best, because it

approximates all kinds of nonlinear relations (see section 4.2).

Commonly applied analysis models for assessing the quality of imputation procedures are means

and regression coefficients (Morris et al., 2014, p. 7). The results for analysis models that are

specifically relevant in market research are also included, namely contingency tables, cluster analy-

sis, and variances. As in section 5.5, relative root mean squared errors and coverages of confidence

intervals are employed as the key performance indicators in descriptive and inferential statistics,

respectively.

There are three approaches for assessing the quality of an imputation algorithm using real

data. The most obvious approach is to take one data set with missing values and perform the

imputation (Siddique & Belin, 2008, p. 90). The reader can learn about applying the algorithm,

and plausibility checks can be conducted. However, because the values are missing, there is no way
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to compare the imputed data to any truth. The second approach involves a large data set that is

completely observed. Subsamples of this data set are drawn in a simulation study setup, and the

missing values are created artificially (Andridge & Little, 2010, p. 17). The set of validation tools

for this simulation approach is considerably larger. The biases and coverages of the parameters

of analysis models can be evaluated. To overcome the drawback of a fully artificial response

mechanism, Heitjan & Little (1991, p. 24) employ the complete cases of a data set with missing

values rather than a fully observed data set as a third approach. In addition, they establish a model

for the response indicator and use the parameter estimates to create a nearly natural missing data

pattern. Their approach is very similar to the one followed in this chapter.

The next section provides the details about the data set. To ensure readability, most of the

descriptive figures and tables are presented in appendices D.1 and D.2. Section 6.3 introduces the

simulation setup and the analysis models. The simulation results are presented in section 6.4 and

appendix D.6 before section 6.5 concludes.

6.2 The data

The GfK SE company owns household panel data in Germany. Once a year, the panelists are asked

to complete a survey on their media consumption. In this chapter, the focus is on TV consumption,

which is also part of the survey. Because not every panelist completes the survey, there are missing

values in the variables about TV consumption. Imputation algorithms are used to enable statistical

analyses of the media survey data. The survey data are introduced in section 6.2.2. In the panel

households, TV consumption is also measured passively. Special smart phone devices record the

sound of the TV sets in the household and transmit the audio files to a server, where they are

matched to a TV program database. The technically measured data are introduced in section 6.2.1.

The purpose of the survey is to learn about media consumption behavior in general; the purpose of

the passive measurement is to learn about exposures to specific advertisements. Although it would

be possible, the two data sets have not yet been combined. Aggregating the passively measured

TV consumption data to the survey format required a substantial amount of effort as shown in

section 6.2.3.

The key idea now is to define the panelists with passive measurement in place as the population

of interest. Some of these panelists choose not to answer the questionnaire. In this setting, let Yh

denote the aggregated passively measured TV consumption data, which are completely observed.

Let Y ˚
h denote the incomplete survey TV consumption data, which are presumably more prone

to measurement error than Yh. Thus, normally, there is only Y ˚
h , and imputation is required to

address its missing values. Due to the considerable extra effort, however, and only for the year

2014, there is also the complete Yh. In other words, the TV consumption is known for those who

have not answered the TV consumption questions. This special data set allows us to learn about

the response mechanism. Section 6.2.4 presents a test for the missing at random assumption.

These insights can perhaps help improve the imputation for Y ˚
h in the usual application, when Yh

is unavailable.

The data situation is very similar to the one in David et al. (1986). In their application, Y ˚
h is

income from the Current Population Survey, which also suffers from nonresponse and is generally

imputed. Their complete Yh is from the Internal Revenue Service and was also available for one

period only. David et al. (1986) compare different imputation methods by validating the imputed

Y ˚
h using Yh.

33



6.2.1 The passively measured data set

In the participating households, TV consumption is measured by sound recording. Audio records

are matched with a database. A successful matching requires any audio record of one channel to

last at least eight seconds. The database consists of the eleven most important TV channels in

Germany, which are listed in table D.1 in the appendix. Other audio records are not used. The

recording devices send an ‘I’m alive’ message at least every five minutes to distinguish between

no relevant TV consumption and a broken measurement device. Panelists are required to log on

and log off the measurement device before and after watching TV to indicate who is watching.

An automated post-processing step assigns the most probable person or persons to a TV event

if the panelist identification has not occurred. One TV event is defined by the starting date and

time, the ending date and time, the channel, one panelist identification, one measurement device

identification, and one household identification. When multiple people enjoy the same TV program,

the same event will occur more than once with different panelist identifications. Switching channels

creates a new event. In the time between 1 a.m. and 6 a.m., the measurement is unreliable because

technical maintenance and data transmission are conducted.

6.2.2 The survey data set

We use data from the 2014 media survey, which was conducted in May 2014. The survey consists

of questions about TV consumption, print media consumption, and Internet usage. There are four

types of TV-related questions; three of them, however, are specific to the survey and not contained

in the passive measurement. These questions are the following:

• One question on the duration of overall daily TV consumption and one on pay TV. Both

exceed the scope of passive measurement’s 11 channels.

• One question on different TV genres. There is no database that matches genres to viewing

times, thus, this information is not provided by the passive measurement.

The only questionnaire information that can be appropriately rebuilt from the passive mea-

surement data is the following:

At what time of day do you usually watch the following TV channel on an ordinary

1. weekday?

2. Saturday?

3. Sunday?

The answers to each of the three types of days are provided in the rectangular structure of

table 6.1.

Non-TV-related questions are discarded. Because the questionnaire is sent out to panelists,

some basic claims data are available. A description thereof is provided in table D.2 in the appendix.

6.2.3 Fitting the passively measured data into the survey data format

The goal is to aggregate the TV event data into the structure of the survey data as in table 6.1.

To conduct the aggregation, a few decisions must be made.

• We use the data one year prior to the survey, which means records from May, 1st 2013

through April, 30th 2014. This approach assumes that the respondents when asked for their

TV consumption rather refer to the past than to the future.
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time of day ARD ZDF ... VIVA another channel

06 a.m. - 09 a.m.
Ü Ü

...
Ü Ü

09 a.m. - 10 a.m.
Ü Ü

...
Ü Ü

10 a.m. - 11 a.m.
Ü Ü

...
Ü Ü

11 a.m. - 12 p.m.
Ü Ü

...
Ü Ü

12 p.m. - 01 p.m.
Ü Ü

...
Ü Ü

01 p.m. - 02 p.m.
Ü Ü

...
Ü Ü

02 p.m. - 03 p.m.
Ü Ü

...
Ü Ü

03 p.m. - 04 p.m.
Ü Ü

...
Ü Ü

04 p.m. - 05 p.m.
Ü Ü

...
Ü Ü

05 p.m. - 06 p.m.
Ü Ü

...
Ü Ü

06 p.m. - 07 p.m.
Ü Ü

...
Ü Ü

07 p.m. - 08 p.m.
Ü Ü

...
Ü Ü

08 p.m. - 09 p.m.
Ü Ü

...
Ü Ü

09 p.m. - 10 p.m.
Ü Ü

...
Ü Ü

10 p.m. - 11 p.m.
Ü Ü

...
Ü Ü

11 p.m. - 12 a.m.
Ü Ü

...
Ü Ü

12 a.m. - 01 a.m.
Ü Ü

...
Ü Ü

01 a.m. - 06 a.m.
Ü Ü

...
Ü Ü

Table 6.1: Question on TV consumption in the media survey

• Panelists with no TV event at all in the one year period are excluded from the sample; so

are panelists with less than 120 days of passively measured data.

• The survey questions ask for the behavior on an ordinary day. This is why public holidays

are excluded.

Note that this data set is not used to infer to any larger population of interest in the real world,

which is why the most convenient subset is selected. Now, for each person, each time slot of

interest, and each channel, the aggregation proceeds as follows.

1. Count the number of suchlike timeslots with an active measurement device for that household.

2. Count the number of suchlike timeslots in which a TV event was measured for the particular

channel and for the particular person.

3. Divide the result from 2. by the result from 1.. If the ratio is at least 5%, the answer is yes,

else the answer is no (see table 6.1).

Passively measured TV consumption data are available for 11916 persons living in 6136 house-

holds. Among them, 7935 persons living in 4992 households have completed the survey, and 3981

persons living in 2302 households have not. Based on the respondents only, it is possible to check

how well the passively measured data match the survey data. Although both data sets should

reflect the same truth in the sense that there is only one true TV consumption behavior of a

particular person at a particular time, nobody would expect the two data sets to be exactly alike.

The column labeled accuracy in table D.1 in the appendix contains the percentage of time slot

cells equal to the survey data (Flach, 2012, p. 54) and ranges between 71% and 99%. In table

D.1 in the appendix, the channels are sorted in descending order by their overall reaches in the

data. Notably, the accuracy appears to be sorted in ascending order. In fact, Pearson’s correlation

(Rinne, 2008, p. 76) between the overall reach and the accuracy is ρ “ ´0.99. As the values of

Cohen (1960)’s κC indicate this large correlation hardly implies that watching smaller TV stations

can be better recalled but are rather an artifact of the accuracy measure.
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6.2.4 Testing the missing at random assumption

In general applications, the assumption about missingness at random cannot be tested (van Buuren,

2012, p. 31). The joint density prpX,Y ˚, Rq can be factored into prpR | Y ˚, XqprpY ˚ | XqprpXq,
and if the missing at random assumption holds, it can even be factored into prpR | XqprpY ˚ |
XqprpXq. A test for missing at random can thus be constructed by testing the null hypothesis

that prpR | Y ˚, Xq “ prpR | Xq. Because Y ˚
h is not completely observed, conducting this test is

not feasible. In our very special TV data set, we can test the null hypothesis that prpR | Y,Xq “
prpR | Xq, instead.

The response pattern in the survey data is created by not answering the survey at all and can

thus be fully described by a single response vector. Using logit models (Greene, 2008, p. 774),

both the MCAR and the MAR assumptions can be tested directly on the data (Little & Rubin,

2002, p. 16). Likelihood ratio tests for omitted variables are conducted as described in Greene

(2008, p. 788). For convenience the categorical variables in table D.2 in the appendix are assumed

to be continuous.

Table 6.2 shows that both assumptions can be rejected on any common significance level.

The response mechanism is clearly not MCAR. Only eight fully observed covariates lead to a

considerable R̂2
MAR “ 17.6%. Although the test rejects the MAR assumption, too, the model does

not improve much by adding the 560 columns of Y as predictors. The AIC (Rinne, 2008, p. 635)

reflects this observation. It is larger for the larger model (AICMAR “ 13588, AICMNAR “ 13872),

which indicates that the MAR model should be chosen over the MNAR model. If the relation

between Y and R | X had been large, the likelihood ratio test and the AIC would not give

contradictory answers. Thus, we conclude that the MAR assumption is not justified, however, the

magnitude of the resulting bias is likely to be small.

null hy-
pothesis

covariates in the logit models Nagelkerke
(1991) R̂2

χ2 degrees of
freedom

p value

MCAR H0 : No covariates 0% 1612 8 ă 0.0001
H1 : the basic claims data (table D.2) 17, 6%

MAR H0 : the basic claims data 17, 6% 836 560 ă 0.0001
H1 : the basic claims data plus the TV
consumption data (table 6.1)

25.8%

Table 6.2: Likelihood ratio tests for the MCAR and the MAR assumption. Under the null hypoth-
esis for the MCAR test prpRq “ prpR | Xq holds, and under the null hypothesis for the MAR test
prpR | Xq “ prpR | Y,Xq holds.

There are other technical approaches to test the MAR assumption when using Yh rather than

Y ˚
h . Factoring prpX,Y,Rq differently results in testing the null hypothesis that prpY | X,Rq “

prpY | Xq. Alternatively, similar to David et al. (1986, p. 37), Yh | r “ 0 can be imputed under the

MAR assumption yielding Ỹh | r “ 0. Testing the null hypothesis that the moments of Ỹ | R “ 0

equal those of Y | R “ 0 is effectively a test for MAR. Because all Yhs are binary, the test involves

the proportions only. Certainly, the test presented in table 6.2 is the easiest to conduct because r

is a vector, whereas Yh is a matrix with 561 columns, and because it does not involve imputations

at all.
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6.3 The simulation setup

6.3.1 Missingness

The data set consists of the eight basic claims variables (see table D.2 in the appendix) and 561

columns with passively measured TV consumption data in the binary survey format (see table

6.1). Note that 561 is simply the product of 11 channels, 3 types of days, and 17 time slots. The

1 a.m. to 6 a.m. slot is discarded due to known measurement errors.

A total of 3981 of 11916 respondents in the data set lack the survey data, which equals 33.4%.

The basic claims data are always treated as fully observed, and the TV consumption data are

always treated as incomplete. Two different response mechanisms are introduced: missing always

completely at random (MACAR) and missing always at random (MAAR), where the attribute

‘always’ indicates that the data generating process rather than one specific sample follows the

respective mechanism (Mealli & Rubin, 2015, p. 998). The data set allows a definition of the

response mechanisms that is close to a natural one. By defining the model of the response mecha-

nism, MA(C)AR can be assured. The parameters governing the process need not be set but can be

estimated from the data as in Heitjan & Little (1991, p. 24). Table D.3 in the appendix provides

the respective parameters. The predicted probabilities from this model are used for the simulation

study. They range between 0.1523 and 0.9314. The missing values across the TV consumption

variables are set independently conditional on the predicted probabilities, which creates a Swiss

cheese missing pattern (see section 2.4).

6.3.2 The analysis models

Exclusion and aggregation

For simplicity and for reducing the computation time, the analysis models use the binary variables

(see table 6.1) from the channel Pro 7 on Sunday only. Furthermore, a variable called VOX is

constructed as the sum of all time slots and day types of the channel VOX. Pro 7 and VOX are

the largest two channels with an accuracy value in table D.1 in the appendix that is larger than

85%. The data set for imputation thus includes eight basic claims variables (see table D.2 in the

appendix), 17 binary incomplete variables and one continuous incomplete variable.

Univariate statistics

Because all the data related to Pro 7 are binary, the mean is sufficient to fully describe the dis-

tribution. The focus for Pro 7 is on Sunday night from 8 p.m. to 9 p.m. with a mean value of

μP8 “ 0.43. The aggregate VOX is described by the mean μVOX “ 7.56 and the logarithm of the vari-

ance ln tvarpVOXqu “ 4.36, which is assumed to be normally distributed (Koller-Meinfelder (2009,

p. 53), Schafer (1997, p. 145)). Figures D.1 and D.2 in the appendix display the distributions.

Bivariate statistics

In market research, the most popular descriptive statistic is a contingency table. To show coverages

in the evaluation section, the cell values are transformed to parameters of a multinomial regression

model (Greene, 2008, p. 843), which are normally distributed (Greene, 2008, p. 785). The three

contingency tables used for quality assessment are presented in table D.4 in the appendix and

reveal that persons in larger households tend to watch more TV, particularly on Sunday night.
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Multivariate regression models and nonlinearities

The focus of the simulation study with artificial data in chapter 5 was on linear regression models

(Greene, 2008, p. 148). In a very similar setup, the imputation procedures are now challenged

with real data. The dependent variable is internet (see table D.2 in the appendix). Table D.5 in

the appendix presents the details. The positive coefficients indicate that media affinity dominates

potential substitution between TV and online usage.

Cluster analysis

Clustering, which is focused on finding homogeneous groups, is one key analysis in market research

and commonly used for, e.g., differentiating communication strategies (Punj & Stewart, 1983, p.

135). We conduct a k-means clustering (Rinne, 2008, p. 696) with two clusters on the imputed

Sunday time slot data of the Pro 7 channel. The analysis of interest is the cluster means of the

fully observed variable kids18 and the imputed aggregate VOX . The learning from the data is

that persons living in households with minors tend to watch more TV. The details are presented

in table D.6 in the appendix, where the t value relates to the null hypothesis that the respective

means of the two clusters are equal (Rinne, 2008, p. 528).

6.3.3 Imputation algorithms

As in chapter 5, we make the distinction between the educated and the ignorant imputer. The

educated approaches take the transformations required for the regression models in section 6.3.2

into account. Due to its poor performance in chapter 5, passive imputation (PI) is excluded from

further investigation. Just-another-variable PMM is the remaining educated approach. As in

chapter 5 the ignorant approaches consist of PMM, random forest imputation and Miles. To also

conclude chapter 3 the midastouch algorithm is implemented as an ignorant and as an educated

just-another-variable (JAV) approach. All algorithms run within R::mice (R Core Team (2016),

van Buuren & Groothuis-Oudshoorn (2011)).

In contrast to the previous simulation studies the missing pattern is now nonmonotone (see

section 2.4). Thus, the algorithms must loop over the incomplete variables multiple times (van

Buuren, 2012, p. 102). Thereby, it must at least be ensured that the autocorrelation is low enough

for the algorithm to become independent from the arbitrary starting values (Schafer, 1997, p. 106).

To assess a reasonable number of iterations, five different samples of size n “ 600 are drawn from

the N “ 11916 population, and each of the two response mechanisms described in table D.3 in

the appendix is applied. Then, we run each of the six imputation algorithms in single imputation

mode and iterate over the variables 300 times. For each of the 31 parameters of interest, the first

nonsignificant lag of the autocorrelation function is computed using a significance level of α “ 10%

(Schafer (1997, p. 121), Rinne (2008, p. 400)). Table 6.3 reports the maximum of each analysis

and the five data sets.

The educated approaches suffer from extremely high autocorrelation; their maximum first cor-

related lag is ą 100. The likely reason is that the variables P8 and VOX are highly correlated

with their considered transformations (van Buuren, 2012, p. 113). At the N “ 11916 level, linear

regression models for the transformations with all other variables as predictors yield coefficients of

determination R̂2 of 0.9 for the interaction, 0.99 for the squared term, and 0.98 for the cubed term.

As a benchmark, the maximum R̂2 in the data set without the nonlinear terms is 0.65, which is for

the 9 p.m. to 10 p.m. dummy for the Pro 7 channel. Because such high correlations are not un-

usual for typical transformations, convergence is a severe shortcoming of the just-another-variable
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Analysis models ignorant
PMM midastouch RF Miles

Missing Always CAR AR CAR AR CAR AR CAR AR

univariate statistics 12 4 5 3 4 2 5 4
bivariate statistics 29 7 5 4 5 4 5 4
regression coefficients 16 6 6 8 4 4 5 4
cluster means 45 3 4 3 4 3 6 2
number of iterations 88 14 8 10

Table 6.3: First uncorrelated lag as a measure for autocorrelation

algorithm as already indicated by van Buuren (2012, p. 130). The slow convergence increases the

required computation time drastically and thus forces us to exclude the educated algorithms from

our simulation study.

Table 6.3 shows that ignorant PMM occasionally suffers from high autocorrelation, too. First

investigations have revealed that some parameters of interest vary hardly or even not at all over

many successive iterations of PMM imputation. This convergence issue is a new discovery to the

best of our knowledge (Koller-Meinfelder, 2009, p. 73). To ensure stable results, the number of

iterations is set to twice the maximum value of the last correlated lag. Some more insights on

convergence are provided in appendix D.5.

6.3.4 Further settings

The sample size is set to nobs ` nmis “ n “ 400 ` 200 “ 600, which is approximately 5% of the

population size. Thus, the convenient sampling with replacement formulas still apply (Cochran,

1977, p. 25). Furthermore, as in section 5.5, the number of multiple imputations is fixed at

M “ 10, and the number of Monte Carlo simulation runs is fixed at nsims “ 1000.

6.3.5 Evaluation criteria

The estimands are introduced in section 6.3.2. As in section 5.5 the descriptive criterion is relative

root mean squared error (Rinne, 2008, p. 17), abbreviated as rRMSE. The inferential criterion is

coverages of 950� confidence intervals as in section 3.5. We use 1000 bootstrap samples of each

imputed data set to assess the within variance of the parameters of interest (Davison & Hinkley,

1997, p. 22).

6.4 The simulation results

Tables D.7, D.8 and D.9 in the appendix present the results; a short summary is displayed in table

6.4. The upper part of table 6.4 shows the root mean squared errors relative to the situation before

deletion. A value of 100 means that there is no increase in the root mean squared error due to

the incompleteness of the data set; a value of 200 means that the root mean squared error has

doubled. The lower part of table 6.4 shows the coverages of 950� frequentist confidence intervals.

The ideal value is 950, and values below 900 are considered undesirable (van Buuren, 2012, p. 47).

All algorithms cope equally well with the MACAR mechanism and with the MAAR mecha-

nism. This result is somewhat surprising because the MAR response mechanism (see table D.3 in

the appendix) depends on nonlinear transformations of age and hhsize, which also significantly

influence, e.g., P8 and VOX (p values ă 0.0001 for N “ 11916) after conditioning on the (linear)
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Parameter ignorant
PMM midastouch RF Miles

Missing Always CAR AR CAR AR CAR AR CAR AR
prelative root mean squared errorq ˆ 100

univariate statistics 117 118 118 117 156 160 119 119
bivariate statistics 114 115 113 113 140 146 118 119
regression coefficients 99 100 100 100 99 99 98 97
cluster means 92 94 92 93 129 132 101 102

coverage of 950� confidence interval
univariate statistics 947 943 949 949 835 821 943 935
bivariate statistics 955 954 957 958 882 873 944 945
regression coefficients 970 966 969 966 970 967 972 968
cluster means 980 974 980 976 844 837 954 954

Table 6.4: Summary of the simulation results. Best in MAAR is underlined.

imputation model. Formally, this is a missing not at random mechanism. In applications, it is

common that the researcher does not take the time to model each incomplete variable with care.

Instead, as in our setup, imputation methods are employed that are somewhat robust to model

misspecification, which appears to work satisfactorily in our example.

For some analysis model parameters, the relative root mean squared errors are below the the-

oretical threshold of 100, indicating that analyzing the imputed data set is more efficient than

analyzing the data set before deletion. The only theoretical explanation is that the imputation

model imposes meaningful restrictions, also known as superefficiency (Rubin, 1996, p. 481). The

nonparametric nature of the imputation models makes it impossible to derive the implied restric-

tions1. However, it is most likely that the imputation models restrict some parameters to zero.

As shown in appendix D.4, all analysis model parameters are significantly different from zero at

the N “ 11916 level. Thus, how can wrong restrictions increase efficiency? Consider the following

argument: Some parameters are tiny in magnitude and barely significant even in the large data set.

On a small sample (n “ 600) imposing a zero restriction on them, which is strictly speaking wrong

but not completely incorrect, may have a ridge effect, i.e., it introduces a slight bias but potentially

reduces even more variance. For some empirical evidence consider the regression analysis model

and specifically the coefficient for VOX3 in table D.7 in the appendix. For the MACAR mechanism

the root mean squared error after ignorant PMM imputation is 91% of the root mean squared error

before deletion. If the restriction on the cubed term causes this increase in efficiency, then this

increase must not be present in an imputed data set that results from an unrestricted imputation

model. To see this, the same nsim “ 1000 incomplete data sets are imputed again with PMM. Yet,

this time the imputation model comprises the cubed term in a just-another-variable fashion, i.e.,

it does not impose any restrictions on the cubed term2. The resulting root mean squared error is

121% of the root mean squared error before deletion, i.e., the analysis on the imputed data set is

now less efficient than the analysis on the data set before deletion, which suits our prediction.

Because the number of donors is large, an advantage for midastouch over PMM cannot be

expected. The simulation results based on multivariate normal data from chapter 3 reveal that

midastouch and PMM do not differ if the number of donors is large. Table 6.4 clearly supports

this finding and thus hypothesis 1.

Miles reaches approximately the same performance as PMM and midastouch. Hypothesis

1The finite number of donors probably limits the ability of, e.g., local regression to fit any functional form.
However, it is difficult to state to what degree a global interaction effect can be well reflected.

2Because the cubed term is highly correlated 200 Gibbs sampler iterations are required for convergence.

40



2 is thus falsified. However, Miles clearly outperforms random forest imputation. The better

performance comes at the expense of longer runtimes: compared to random forest imputation,

Miles takes twelve times longer. Nevertheless, as already noted by Cleveland et al. (1988, p.

91), the local regression algorithm is embarrassingly parallel because the algorithm can be run

independently on each data point.

6.5 Conclusion and future work

The simulation study in this chapter is based on a large TV consumption data set from the GfK

SE company. All parameters of the simulation setup are chosen to be as realistic as possible. The

parameters of the response mechanism are estimated from the data, the share of missing values

is taken from the data, respondents and nonrespondents are included in the analyses, and the

analysis models evaluated are the most relevant in the market research industry. Nevertheless, it

is only one data set.

This chapter is the first in this dissertation to address a Swiss cheese missing pattern and

thus to require Gibbs sampling (see section 2.4). Convergence diagnostics reveal an issue of PMM

that is not yet understood. PMM causes analysis model parameters to vary hardly over many

iterations. The simulation results appear not heavily affected. However, this is a serious issue for

applications. Another issue is found for the JAV algorithm. Because the nonlinear transformations

are prone to be highly correlated with the linear terms, JAV is suspected to generally suffer from

high autocorrelation (van Buuren, 2012, pp. 113, 130). Consequently, the JAV procedures are

excluded from the simulation study of this chapter. A potential solution for this issue is to relax

the mutual dependence in the algorithm and treat the linear terms and their transformations as a

monotone pattern (van Buuren, 2012, p. 211).

The newly proposed midastouch algorithm performs equally well as the established PMM. This

result is in line with the findings of chapter 3. Because midastouch is superior to PMM for small

data sets, reaches the same performance for larger data sets, and does not suffer from convergence

issues, we argue to generally choose midastouch over PMM.

In this data set, the nonlinearities are not large enough to overtax the simple linear model

combined with PMM or midastouch. This is why the newly proposed Miles does not provide any

additional benefit in this application and performs only as good as PMM and midastouch. Random

forest imputation, however, is clearly inferior to all competitors.

The special nature of the TV data set, which is intensively used in this chapter, allows learning

about the typically untestable MAR assumption. The results in section 6.2.4 indicate that assuming

MAR is much better than assuming MCAR, but perhaps not quite enough. The null hypothesis

MAR can be rejected on any common significance level in favor of the alternative MNAR. A natural

extension for future research is to base the simulation study on the observed MNAR mechanism

to determine how severely the results are affected.

41



Appendices

42



Appendix A

Appendix to Chapter 3

A.1 Overview of existing PMM implementations

match types k-nearest-neighbor parameter predictions of

Ref. available specify by default specify by uncertainty donors recipients

1-4 2 - nobs - ABB o.o.s. o.o.s.

5 1 - 5 donors“# parametric i.s. o.o.s.

6 1, 2, 3 pmmtype“# 3 kclosest“# bootstrap i.s. o.o.s.

7 2 - 1 - BB i.s. i.s.

8 2 - 1 - parametric i.s. i.s.

9 1 - 5 - parametric i.s. o.o.s.

10 2 - nobs - ABB i.s. o.o.s.

11 2 - 1 - parametric i.s. o.o.s.

12 2 - 1 knn(#) parametric i.s. o.o.s.

13 1, 2, 3 matchtype“# 3 matchpool(#) parametric i.s. o.o.s.

Table A.1: Characteristics of existing PMM software implementations (Morris et al., 2014, p.

3). The references (Ref.) refer to table 3.2. Abbreviations are: approximate Bayesian bootstrap

(ABB), Bayesian bootstrap (BB), in sample (i.s.), and out of sample (o.o.s).

A.2 Rationale for leave-one-out modeling

Consider the univariate case, in which both the donors and the recipients are drawn from the same

population. The imputation model is simply the mean of Y in the donor sample, denoted by μ̂obs.

The mean squared deviation of the donors from the model is

V̂don “ n´1
obs

nobsÿ
i“1

pyi ´ μ̂obsq2.

Introducing the true mean by adding 0 “ μ ´ μ yields (Cochran, 1977, p. 26)

V̂don “ n´1
obs

nobsÿ
i“1

tpyi ´ μq ´ pμ̂obs ´ μqu2

“ n´1
obs

#
nobsÿ
i“1

pyi ´ μq2
+

´ pμ̂obs ´ μq2.
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Analogously, the mean squared deviation of the recipients from the model is

V̂rec “ n´1
mis

nmisÿ
j“1

tpyj ´ μq ´ pμ̂obs ´ μqu2

“ n´1
mis

#
nmisÿ
j“1

pyj ´ μq2
+

` μ̂obspμ̂obs ´ 2μ̂misq ´ μpμ ´ 2μ̂misq,

where μ̂mis denotes the unobserved mean estimate of the recipient sample. Taking the difference

and utilizing the homoscedasticity assumption, we obtain

V̂don ´ V̂rec “ n´1
obs

#
nobsÿ
i“1

pyi ´ μq2
+

´ n´1
mis

#
nmisÿ
j“1

pyj ´ μq2
+

` 2pμ̂obs ´ μ̂misqpμ ´ μ̂obsq

EpV̂don ´ V̂recq “ 2Etpμ̂obs ´ μ̂misqpμ ´ μ̂obsqu.

For a large recipient sample, μ̂mis “ Epμ̂misq “ μ holds, and thus, the following also holds:

EpV̂don ´ V̂recq “ ´2Epμ ´ μ̂obsq2 ď 0.

In other words, as long as the model, which is based on the donor sample (Rubin, 1987, p. 167),

differs randomly from the true population model, the expected value of the residual variance for

the donors is smaller than that for the recipients. This difference decreases as nobs Ñ 8.

A.3 Another look at choosing k for k-nearest-neighbors

We add to the discussion of choosing an optimal k by focusing on the point estimate of the variance

of Y . If the domains of the donors and recipients are similar, a large k will increase the probability

that recipients closer to the bounds will obtain their values from donors closer to the center. The

variance of Y inevitably decreases, and thus, the estimate of the variance of Y on the imputed

data is biased downwards for larger k.

To see this, suppose that the predictive mean � obeys the bounds r´0.5, 0.5s and that the

distribution of the donors is discrete and equidistant within this range such that �obs “ t´0.5 `
pΩ ´ 1q{pnobs ´ 1qu, with Ω “ p1, . . . , nobsq. Further suppose that the recipients are distributed in

the exact same way such that �obs “ �mis. We define n “ nobs “ nmis and, for simplicity, allow it

to be uneven only. We also assume that the predictive mean � is the characteristic of interest. This

may be the case in a multivariate setting in which the fully observed variables perfectly determine

the variable with missing values.

�mis is imputed using �obs, leading to �imp. We wish to learn about the point estimate for the

variance of �imp as a function of the relative size of the neighborhood from which random selection

is performed for a single recipient. We define this relative size, excluding the exact nearest neighbor,

as ς “ pΩ ´ 1q{pn ´ 1q. We decompose the variance of �imp into a between-variance component

and a within-variance component, Θpςq “ Ξpςq `Υpςq, where Ξ denotes the interrecipient variance

and Υ denotes the intrarecipient variance. It follows that if the exact nearest neighbor is chosen,

the interrecipient variance of �imp will equal the variance of �mis,

Θpς “ 0q “ Ξpς “ 0q “ varp�misq. (A.1)

For larger ς, the intrarecipient variance increases according to the variance formula for the discrete
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uniform distribution as follows (Rinne, 2008, p. 372):

Υpςq “ ´ΔΥpςq “ ς2{12 ` ς{t6pn ´ 1qu.

The interrecipient variance is equivalent to the variance of the expectations. The expectation of a

uniform distribution is the mean of its bounds. Because the range of � is limited on both sides,

the interrecipient variance decreases with increasing ς. More specifically, we see that for the left

side, i.e., �i
mis ă 0,

E
�
�i

imp | ς,�i
mis ă pς ´ 1q{2( “ pς ´ 1q{2. (A.2)

We assume that the mean of � is known to be zero. We can then write, based on the left-hand

side,

varp�misq ´ Ξpςq “ ΔΞpςq “ 2n´1
pn´1q{2ÿ

i“1

“p�i
misq2 ´ tEp�i

impqu2‰
. (A.3)

We now focus solely on the part of the left-hand side for which �i
mis ă pς ´ 1q{2 holds. We may

ignore the rest because all corresponding elements of the sum in equation (A.3) are zero. Then,

using the assumption of equidistance and equation (A.2), we obtain

ΔΞpςq “ 2n´1
pn´1qς{2ÿ

i“1

#ˆ
ς ´ 1

2

˙2

´ pς ´ 1qi
n ´ 1

` i2

pn ´ 1q2 ´
ˆ
ς ´ 1

2

˙2
+
. (A.4)

The last term in equation (A.4) is equal to the last term in (A.3) and cancels out. Some rewriting

reveals a series that allows further simplification (Bronstein et al., 2013, p. 20):

ΔΞpςq “ 2n´1

$&
%p1 ´ ςq{pn ´ 1q

pn´1qς{2ÿ
i“1

piq ` pn ´ 1q´2
pn´1qς{2ÿ

i“1

`
i2

˘,.
-.

Further algebra leads to the third-order polynomial

ΔΞpςq “ ςtςpn ´ 1q ` 2ut2ςpn ´ 1q ´ 3n ` 2u{t´12npn ´ 1qu.

Adding ΔΥpςq results in

ΔΘpςq “ ςpς ´ 1qtςpn ´ 1q ` 2u{p6nq,
which has two obvious roots: one at ς “ 0, as already seen from equation (A.1), and one at ς “ 1,

where Ξ “ 0. The third root does not exist given the limits on n and ς. The first derivative is

BΔΘpςq{Bς “ t3ς2pn ´ 1q ´ 2ςpn ´ 3q ´ 2u{p6nq.

For n Ñ 8, ΔΘpςq has a minimum at Pminpς “ 2{3,ΔΘ “ ´2{81q and a falling inflection point

at Pinflpς “ 1{3,ΔΘ “ ´1{81q. We conclude that the point estimate for the variance of �imp is

biased downwards for all ς except ς “ 0 and ς “ 1.

A.4 R-Code for midastouch

mice.impute.midastouch <- function(y, ry, x, ridge = 1e-05, midas.kappa = NULL, outout = NULL,
neff = NULL, debug = NULL, ...) {

#+ auxiliaries +#
if(!is.null(debug)){midastouch.inputlist <- list(y = y, ry = ry, x = x, omega = NULL)}
sminx <- .Machine$double.eps^(1/4)
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#+ ensure data format +#
x <- data.matrix(x)
storage.mode(x) <- "numeric"
X <- cbind(1, x)
y <- as.numeric(y)

#+ get data dimensions +#
nobs <- sum(ry) ; nmis <- sum(!ry) ; n <- length(ry)
obsind <- which(ry) ; misind <- which(!ry)
m <- ncol(X)
yobs <- y[obsind]
Xobs <- X[obsind,,drop=FALSE]
Xmis <- X[misind,,drop=FALSE]

#+ P-Step +#
##++++ bootstrap
omega <- bootfunc.plain(nobs)
if(!is.null(debug)){

midastouch.inputlist$omega <- omega
assign(x = "midastouch.inputlist",value = midastouch.inputlist,envir = get(debug))

}

##++++ beta estimation
CX <- omega * Xobs
XCX <- crossprod(Xobs,CX)
if(ridge > 0){ diag(XCX) <- diag(XCX) * (1+c(0,rep(ridge,m-1))) }

#= check if any diagonal element is exactly zero ===========#
diag0 <- which(diag(XCX) == 0) #==#
if(length(diag0)>0){diag(XCX)[diag0] <- max(sminx,ridge)} #==#
#============================================================#

Xy <- crossprod(CX,yobs)
beta <- solve(XCX,Xy)
yhat.obs <- c(Xobs %*% beta)

##++++ kappa estimation
if(is.null(midas.kappa)){

mean.y <- crossprod(yobs,omega)/nobs
eps <- yobs - yhat.obs
r2 <- 1 - c(crossprod(omega, eps^2) / crossprod(omega,(yobs - mean.y)^2))
##slight deviation from the paper to ensure real results
## paper: a tiny delta is added to the denominator
## R Code: min function is used, note that this correction gets active for r2>.999 only
midas.kappa <- min((50*r2 / (1-r2))^(3/8),100)
##if r2 cannot be determined (eg zero variance in yhat), use 3 as suggested by Siddique/Belin
if(is.na(midas.kappa)){midas.kappa <- 3}

}

#+ I-Step +#
if(is.null(outout)){ outout <- ifelse(nobs>250,FALSE,TRUE) }
if(outout){

##++++ P-step if out of sample predictions for donors
## estimate one model per donor by leave-one-out
XXarray_pre <- t(t(apply(X = Xobs,MARGIN = 1,FUN = tcrossprod)) * omega)
ridgeind <- c(1:(m-1))*(m+1)+1
if(ridge > 0){

XXarray_pre[ridgeind,] <- XXarray_pre[ridgeind,] * (1+ridge)
}
XXarray <- c(XCX) - XXarray_pre

#= check if any diagonal element is exactly zero =======================#
diag0 <- which(XXarray[ridgeind,] == 0) #==#
if(length(diag0) > 0){XXarray[ridgeind,][diag0] <- max(sminx,ridge)} #==#
#=======================================================================#

Xyarray <- c(Xy) - t(Xobs * yobs * omega)
BETAarray <- apply(rbind(XXarray,Xyarray),2,function(x,m){
solve(a = matrix(head(x,m^2),m),b = tail(x,m))},m=m)

YHATdon <- rowSums(Xobs * t(BETAarray))
## each recipient has nobs different yhats
YHATrec <- Xmis %*% BETAarray
##++++ distance calculations
dist.mat <- YHATdon - t(YHATrec)

}else{
yhat.mis <- c(Xmis %*% beta)
dist.mat <- yhat.obs - matrix(data = yhat.mis,nrow = nobs,ncol = nmis,byrow = TRUE)

}

##++++ convert distances to drawing probs // ensure real results
delta.mat <- 1/((abs(dist.mat))^midas.kappa)
delta.mat <- minmax(delta.mat)
probs <- delta.mat * omega
csums <- minmax(colSums(probs,na.rm = TRUE))
probs <- t(t(probs)/csums)
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#+ calculate neff +#
if(!is.null(neff)){

if(!exists("midastouch.neff",envir = get(neff))){
assign(x = "midastouch.neff",value = list(),envir = get(neff))}
midastouch.neff <- get("midastouch.neff",envir = get(neff))
midastouch.neff[[length(midastouch.neff)+1]] <- mean(1/rowSums((t(delta.mat)/csums)^2))
assign(x = "midastouch.neff",value = midastouch.neff,envir = get(neff))

}

#+ return result +#
index <- apply(probs,2,sample,x = nobs,size = 1, replace = FALSE)
yimp <- y[obsind][index]
return(yimp)

}

bootfunc.plain <- function(n){
random <- sample(n,replace = TRUE)
weights <- as.numeric(table(factor(random,levels = c(1:n))))
return(weights)

}

minmax <- function(x,domin=TRUE,domax=TRUE){
maxx <- sqrt(.Machine$double.xmax)
minx <- sqrt(.Machine$double.eps)
if(domin){ x <- pmin(x,maxx) }
if(domax){ x <- pmax(x,minx) }
return(x)

}

A.5 Detailed simulation results

The concept of multiple imputation relies on the propagation of the uncertainty associated with

the estimation of the parameters of the imputation model. Thus, to check whether multiple

imputation PMM algorithms perform multiple imputation properly, those parameters should be

uncertain. Because the degree of uncertainty primarily depends on the donor sample size nobs,

we present the detailed simulation results, split by nobs, in tables A.2 and A.3. Each cell in these

tables contains a 950� frequentist confidence interval coverage averaged over 2p4´2qnsim “ 1000

simulation runs.

It it worth noting that the proposed midastouch algorithm does not fall below 950� in any of

the splits.

Match types and k-nearest-neighbors

With one predictor only, i.e., for p ´ 1 “ 1, some algorithms perform as poorly as the deliberately

poor benchmark that does not propagate parameter uncertainty at all. All of these algorithms,

presented in rows 8, 11, and 12 in table A.2 and table A.3, rely on both type-2 matching and

k “ 1-nearest-neighbor imputation. The observed attenuation bias for these algorithms buttresses

the criticism offered by van Buuren (2012). Although the MIDAS algorithm also involves type-2

matching, it outperforms the poor benchmark.

In appendix A.3 we argue that the point estimate for the variance of Y is biased downwards

for large values of k. For the simulation runs with nobs “ 10, the mean point estimates for the

variance of Y are 0.846 and 0.729 for all PMM implementations in the software listed by Morris

et al. (2014, p. 3) for k “ 1 and k ą 1, respectively. This difference is highly significant. Both

estimates are well below the true variance of 1 because the relatively small number of donors causes

the domain of Xh to be smaller for the donors than for the recipients. This is a case of truncation.

For the runs with nobs “ 200, the differences diminish because k is small relative to the number

of donors; the mean point estimates are 0.996 and 0.992. For the proposed algorithm, the mean

point estimates for the variance of Y are 0.821 and 1 for nobs “ 10 and nobs “ 200, respectively.
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950� confidence interval coverages

Coefficient of

Response mechanism Number of covariates determination Overall

MACAR MAAR p ´ 1 “ 1 p ´ 1 “ 8 R2 “ 0 R2 “ 0.75

Ref. μ̂ β̂1 μ̂ β̂1 μ̂ β̂1 μ̂ β̂1 μ̂ β̂1 μ̂ β̂1 μ̂ β̂1

Proposed algorithm (algorithm 4)

1 967 960 905 962 948 958 924 964 976 962 896 960 936 961

2 991 ´ 955 ´ 972 ´ 974 ´ 988 ´ 958 ´ 973 ´
3 968 959 894 963 951 961 911 961 970 950 892 972 931 961

4 985 ´ 934 ´ 963 ´ 956 ´ 990 ´ 929 ´ 960 ´
Predictive mean matching software listed by Morris et al. (2014, p. 3)

5 732 910 477 887 598 836 611 961 700 950 509 847 605 899

6 587 900 442 844 464 776 565 968 564 934 465 810 515 872

7 771 794 600 768 658 650 714 912 764 831 607 731 686 781

8 704 685 442 642 396 351 750 976 583 639 564 688 573 664

9 616 840 358 841 436 724 539 957 557 855 418 827 487 841

10 960 971 838 963 873 953 925 981 954 957 844 977 899 967

11 718 675 561 643 396 352 883 966 604 631 675 687 640 659

12 704 667 528 637 396 351 836 953 583 624 650 680 616 652

13 579 731 309 723 446 500 440 954 575 978 312 476 443 727

Benchmark algorithms

14 964 956 960 961 970 946 954 971 962 948 962 969 962 959

15 479 469 285 466 396 351 367 585 313 438 451 498 382 468

Table A.2: Coverages for nobs “ 10 split by the three remaining binary factors. The references

(Ref.) refer to table 3.2. Abbreviations are: missing always (completely) at random (MA(C)AR).
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950� confidence interval coverages

Coefficient of

Response mechanism Number of covariates determination Overall

MACAR MAAR p ´ 1 “ 1 p ´ 1 “ 8 R2 “ 0 R2 “ 0.75

Ref. μ̂ β̂1 μ̂ β̂1 μ̂ β̂1 μ̂ β̂1 μ̂ β̂1 μ̂ β̂1 μ̂ β̂1

Proposed algorithm (algorithm 4)

1 948 960 942 950 942 954 948 956 953 959 936 951 945 955

2 974 ´ 969 ´ 966 ´ 977 ´ 960 ´ 983 ´ 972 ´
3 952 949 940 942 948 934 944 956 957 933 935 957 946 945

4 982 ´ 973 ´ 975 ´ 980 ´ 987 ´ 968 ´ 978 ´
Predictive mean matching software listed by Morris et al. (2014, p. 3)

5 947 965 934 952 936 961 945 956 942 959 940 958 941 959

6 939 967 932 950 921 961 950 956 930 960 942 957 936 959

7 940 966 933 949 933 959 940 956 939 962 934 953 937 958

8 908 929 907 897 874 866 942 960 895 902 920 924 908 913

9 931 953 925 932 918 933 938 952 927 935 929 950 928 943

10 939 959 934 949 930 952 943 956 940 946 933 962 937 954

11 907 927 906 895 874 866 939 956 892 901 921 921 907 911

12 908 927 906 895 874 866 940 956 893 902 921 920 907 911

13 943 966 926 950 932 959 937 957 936 960 933 956 935 958

Benchmark algorithms

14 950 966 942 949 945 959 947 956 951 957 942 958 946 958

15 886 927 868 896 875 866 879 957 843 903 911 920 877 912

Table A.3: Coverages for nobs “ 200 split by the three remaining binary factors. The references

(Ref.) refer to table 3.2. Abbreviations are: missing always (completely) at random (MA(C)AR).

49



Appendix B

Appendix to Chapter 4

B.1 Proof related to section 4.4

Solving equation (4.6) leads Rao & Singh (1997, p. 59) to the following result

l “ C´1Xi

`
X 1

iC
´1Xi ` Λ

˘´1
x0 `

!
d ´ C´1Xi

`
X 1

iC
´1Xi ` Λ

˘´1
X 1

id
)
. (B.1)

In contrast to equation (4.5) equation (B.1) comprises the term in the curly braces, which is zero

if

d “ C´1Xi

`
X 1

iC
´1Xi ` Λ

˘´1
X 1

id (B.2)

is true. Assuming Xi has full column rank, we can multiply both sides from the left as follows

!`
X 1

iC
´1Xi

˘´1
X 1

i

)
d “ `

X 1
iC

´1Xi ` Λ
˘´1

X 1
id.

Switching the sides of the equation and multiplying again from the left gives

X 1
id “ X 1

id ` Λ
`
X 1

iC
´1Xi

˘´1
X 1

id.

With C defined as in equation (4.3b) we can write

0 “ Λ
!`

X 1
iC

´1Xi

˘´1
X 1

iC
´1p1, 1, . . . , 1q1

)
. (B.3)

Note that the term in the curly braces in equation (B.3) is equivalent to the weighted least squares

estimator with a constant response. The corresponding minimization problem is given by

min
βconst
WLS

“tp1, 1, . . . , 1q1 ´ Xiβ
const
WLSu1tp1, 1, . . . , 1q1 ´ Xiβ

const
WLSu‰

. (B.4)

Assuming Xi has a leading constant column, the solution for equation (B.4) is

βconst
WLS “ p1, 0, . . . , 0q1. (B.5)

To see that, we can just plug it in the regression equation

p1, 1, . . . , 1q1 “ p1, 1, . . . , 1q1 ` X´1p0, 0, . . . , 0q1,
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where X´1 denotes the Xi matrix without the constant. In this solution the residual sum of

squares, weighted or unweighted, is zero. Because weighted regression minimizes the sum of squared

residuals, (B.5) must be a solution; it does not get smaller than zero. The assumption of full column

rank for Xi means that there is no linear combination of all X´1 that equals the constant. In other

words, there is no other solution to the problem in equation (B.4) than equation (B.5). For equation

(B.3) to be true, we require the diagonal matrix Λ to be zero at its first element, as described in

section 4.3.2.

We have shown that the weighted ridge regression is equivalent to the minimization problem

in Rao & Singh (1997). This proof comes down to showing that equation (B.2) holds. It does

under the following assumptions, Xi must have full column rank and a leading constant column,

C must be defined as in equation (4.3b) and the diagonal ridge penalty matrix must not penalize

the intercept parameter as in equation (4.7).

51



Appendix C

Appendix to Chapter 5

C.1 R Code for Miles

mice.impute.li <- function(y, ry, x, boot = TRUE, kgran = 6, rgran = 3, rescale = 1, midastouch=TRUE,...) {

#data preparation --------------------
#++ ensure data format ----------
x <- data.matrix(x)
storage.mode(x) <- "numeric"
y <- as.numeric(y)
#++ get data dimensions ----------
n <- length(y)
donind <- which(ry) ; ndon <- length(donind)
recind <- which(!ry); nrec <- length(recind)
if(ndon==1){return(rep(y[donind],(n-1)))}
#++ remove cols with zero variance ----------
remcons.ind <- removecons(X = x)
X <- x[,remcons.ind,drop=FALSE]

#Bayesian bootstrap weights donors and recipients --------------------
if(boot){bw <- bootfunc(n)}else{bw <- NULL}

#rescale x --------------------
if(rescale>0){

if(rescale == 2 && ncol(X)>1){ #double robust
Xr <- cbind(1,X)
if(!is.null(bw)){

Xrbw <- Xr * bw
}else{

Xrbw <- Xr
}
beta <- abs(c(solve(crossprod(Xrbw,Xr),crossprod(Xrbw,ry),tol = 0)))[-1]
mbeta <- max(beta) ; mbeta <- ifelse(test = mbeta == 0,yes = 1,no = mbeta)
resc.factors <- beta / mbeta
X <- t(t(X)*resc.factors)

}else{ #iqr rescaling
iqrvec <- rescale.quartiles(X = X,weight = bw)
X <- t(t(X)/iqrvec)

}
}

#optimization over k and ridge --------------------
#++ select possible solutions ----------
kvec <- kopt(ndon = ndon,kgran = kgran)
rmat <- ropt(kvec = kvec,rgran = rgran,ncolX = ncol(X))
nk <- length(kvec) ; nr <- ncol(rmat)
#++ if only one solution is feasible no optimization necessary ----------
if((nk*nr) == 1){

noopt <- TRUE
k <- kvec
r <- rmat

}else{
noopt <- FALSE
maxk <- kvec[length(kvec)]
#+ draw a donorsample to measure the fit [faster than using all donors] +#
sampledonind_ <- sort(sample(x = c(1:ndon),size = sampledon(ndon = ndon),replace = FALSE))
sampledonind <- donind[sampledonind_]
nsdon <- length(sampledonind)
#++ build modeltable for k = max(kvec) ----------
mto <- modeltable(Xdon_full = X[donind,],Xdon_sample = cbind(sampledonind_,X[sampledonind,]),k = maxk)
mto <- mt.idconvert(mt = mto,donind = donind,recind = recind,k = maxk,ndon = nsdon,nrec = 0)
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#++ loop over possible k’s ----------
yhato <- array(dim = c(nsdon,nk,nr))
for(kind in c(1:nk)){

kloop <- kvec[kind]
#++ reduce modeltable and adjust weights ----------
if(kind<nk){

mti <- rep(c(rep(TRUE,kloop),rep(FALSE,(maxk-kloop))),nsdon)
mtk <- mto[mti,]
mtk[,4] <- adjust.weights(id = mtk[,1],dist = mtk[,3],k = kloop)

}else{ mtk <- mto }
#++ create a lookup table for each ID ----------
ipmk <- ipm.create(id = mtk[,1],k = kloop)
#++ consider bootstrap weights ----------
if(boot){mtk[,4] <- mtk[,4] * bw[mtk[,2]]}
#++ loop over possible r’s ----------
for(rind in c(1:nr)){

#+ calculate yhat +#
yhato[,kind,rind] <- (yhat.calc(X = X,y = y,mt = mtk,ipm = ipmk,r = rmat[kind,rind]))[sampledonind]

}
}
#++ choose the k and r that fit best ----------
fits <- apply(yhato - y[sampledonind],c(2,3),crossprod)
optinds <- which(fits == min(fits),arr.ind = TRUE)
optindex <- which.max(optinds[,1]) #if unsure, take the maximum k
k_optind <- optinds[optindex,1]
r_optind <- optinds[optindex,2]
k <- kvec[k_optind]
r <- rmat[k_optind,r_optind]

}
cat(paste0("\nOptimal k is ",k,", optimal r is ",r,".\n"))
if(k>=ndon){k <- ndon - 1}

#model table (donor selection + design weights) --------------------
#++ NN if k == 1 ----------
if(k == 1){recmodel <- FALSE}
#++ generate ----------
mt <- modeltable(Xdon_full = X[donind,,drop=FALSE],Xrec = X[recind,,drop=FALSE],k = k)
#++ map back to real overall indices and sort ----------
mt <- mt.idconvert(mt = mt,donind = donind,recind = recind,k = k,ndon = ndon,nrec = nrec)
#++ create a lookup table for each ID ----------
ipm <- ipm.create(id = mt[,1],k = k)
#++ utilize predictions from the optimization for speedup ----------
if(!noopt){ipm.small <- ipm[-sampledonind,]}else{ipm.small <- ipm}
#++ consider bootstrap weights ----------
if(boot){mt[,4] <- mt[,4] * bw[mt[,2]]}

#model and midastouch --------------------
#++ NN if k == 1 ----------
if(k == 1){

matchind <- mt[,2][recind]
cat("\nk == 1, NN applied instead of li - be aware that MI does not work with NN\n")

}else{
#calculate yhat ----------
yhat <- yhat.calc(X = X,y = y,mt = mt,ipm = ipm.small,r = r)
#utilize predictions from the optimization ----------
if(!noopt){yhat[sampledonind] <- yhato[,k_optind,r_optind]}
#match to NN in yhat (PMM step) ----------
if(!midastouch){
matchind <- NNindex(yhat = yhat,mt = mt,ipm = ipm,k = k,donind = donind,recind = recind)

} else {
matchind <- midasindex(y = y,yhat = yhat,mt = mt,ipm = ipm,
k = k,donind = donind,recind = recind,bw = bw) }

}
yimp <- y[matchind]

#return --------------------
return(yimp)

}

bootfunc <- function(n){
random <- runif(n = n - 1)
sorted <- c(0,sort(random),1)
weights <- diff(sorted) * n
return(weights)

}

modeltable <- function(Xdon_full,Xrec=NULL,Xdon_sample=NULL,k){
if(!is.null(Xdon_sample)){

#Donors from Donors k optimization --------------------
donids <- Xdon_sample[,1]
#++ initialize ----------
ndon <- nrow(Xdon_sample)
M <- matrix(nrow = ndon * (k+1),ncol = 5)
colnames(M) <- c("ID","modelid","dist","maxdist","w")
M[,1] <- rep(donids,each=k+1)
#++ RANN distance calculation for the donors ----------
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RANNobj <- nn2(data = Xdon_full,query = Xdon_sample[,-1],k = k + 1)
#++ write to M ----------
M[,2] <- c(t(RANNobj$nn.idx))
M[,3] <- c(t(RANNobj$nn.dists))
#++ kick out self matches --> finally: nrow(MD) == ndon_r x k ----------
selfpos <- M[,1] == M[,2]
M <- M[!selfpos,]
#++ add maxdist ----------
M[,4] <- rep(x = M[c(1:ndon)*k,3],each = k)

}else{
#Donors from Donors --------------------
#++ initialize ----------
ndon <- nrow(Xdon_full)
MDD <- matrix(nrow = ndon * (k+1),ncol = 5)
c1ndon <- c(1:ndon)
colnames(MDD) <- c("ID","modelid","dist","maxdist","w")
MDD[,1] <- dvec <- rep(c1ndon,each=k+1)
#++ RANN distance calculation for the donors ----------
RANNobj <- nn2(data = Xdon_full,k = k + 1)
#++ write to MDD ----------
MDD[,2] <- c(t(RANNobj$nn.idx))
MDD[,3] <- c(t(RANNobj$nn.dists))
#++ kick out self matches ----------
selfpos <- MDD[,1] == MDD[,2]
if(sum(selfpos)<ndon){

selfpos[((c1ndon-1) * (k+1) + 1)[setdiff(x = c1ndon,dvec[selfpos])]] <- TRUE
}
MDD <- MDD[!selfpos,,drop=FALSE]
#++ add maxdist ----------
MDD[,4] <- rep(x = MDD[c(1:ndon)*k,3],each = k)

#Recipients from Donors --------------------
#++ initialize ----------
nrec <- nrow(Xrec)
MRD <- matrix(nrow = nrec * k,ncol = 5)
colnames(MRD) <- c("ID","modelid","dist","maxdist","w")
MRD[,1] <- rep(x = c(1:nrec),each = k)
#++ RANN distance calculation recipients from donors ----------
RANNobj <- nn2(data = Xdon_full,query = Xrec,k = k)
#++ write to MRD ----------
MRD[,2] <- c(t(RANNobj$nn.idx))
MRD[,3] <- c(t(RANNobj$nn.dists))
#++ add maxdist ----------
MRD[,4] <- rep(x = MRD[c(1:nrec)*k,3],each = k)

#Combine --------------------
M <- rbind(MDD,MRD)

}

#Calculate design weights by tricube distance --------------------
M[(M[,4] == 0),4] <- 1
M[,5] <- (1-(M[,3]/M[,4])^3)^3 + .01

#reduce to the necessary and return --------------------
M <- M[,c(1,2,3,5)]
return(M)

}

yhat.calc <- function(X,y,mt,ipm,r){
yhat <- vector(mode = "numeric",length = nrow(X))
mid <- mt[,2]
w0 <- mt[,4]
for(i in c(1:nrow(ipm))){

indexmt <- c(ipm[i,2]:ipm[i,3])
indexi <- ipm[i,1]
midindex <- mid[indexmt]
yi <- y[midindex]
if(.Call("bycol_all_equal_double2",matrix(data = yi,ncol = 1))){

yhat[indexi] <- yi[1]
}else{

di <- w0[indexmt]
Xi = X[midindex,,drop=FALSE]
remcons <- removecons(X = Xi)
nc <- length(remcons)
if(nc == 0){

yhat[indexi] <- weighted.mean(x = yi,w = di)
}else{

Xi = cbind(1,Xi[,remcons,drop=FALSE])
tvec <- c(1,X[indexi,remcons])
l <- c(1,rep((1+r),nc))
a = .Call("Xt_D_Xv2",Xi,di,l)
b = crossprod(x = Xi,y = di*yi)
beta <- solve(a = a,b = b,tol = 0)
yhat[indexi] <- crossprod(tvec,beta)

}
}
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}
return(yhat)

}

midasindex <- function(y,yhat,mt,ipm,k,donind,recind,bw){
c1nrec <- c(1:length(recind))
yhat.k <- cbind(1,yhat[donind])
y.k <- y[donind]
beta.k <- try(solve(crossprod(yhat.k),crossprod(yhat.k,y.k),tol=0),silent = TRUE)
if(class(beta.k) != "try-error"){

r2.k <- vx(yhat.k %*% beta.k) / vx(y.k)
kappa <- (50 * r2.k / (1.001 - r2.k))^(3/8)

}else{
kappa <- 0

}
index.r <- c(apply(ipm[recind,],1,function(x){c(x[2]:x[3])}))
index.d <- mt[index.r,2]
d <- abs(rep(yhat[recind],each=k) - yhat[index.d])
d <- d / mean(d)
dk <- 1/d^k
if(!is.null(bw)){

wdk <- minmax(dk * bw[index.d])
wdk[is.nan(wdk)] <- 0

}else{ wdk <- minmax(dk) }
draw <- do.call(c,lapply(split(wdk,rep(c1nrec,each=k)),sample,x=k,size=1,replace=FALSE))
ydonind <- index.d[k*(c1nrec-1) + draw]
return(ydonind)

}

rescale.quartiles <- function(X,weight) {
iqrvec <- apply(X = X,2,wiqr,w=weight)
iqrvec[iqrvec == 0] <- 1
return(iqrvec)

}

wiqr <- function(x,w=NULL){
ox <- order(x)
if(!is.null(w)){

ssw <- cumsum(w[ox])
limits <- c(.25,.75)*ssw[length(ssw)]
index <- pmax(findInterval(limits,ssw),1)
index <- index + (ssw[index+1] -limits < limits - ssw[index])

} else {
index <- round(c(.25,.75) * length(x))

}
return(diff(x[ox][index]))

}

vx <- function(x){xstd <- x-mean(x);return(c(crossprod(xstd)/(length(x)-1)))}

removecons = function(X){
if(ncol(X) == 1){

index <- 1
}else{

colranges <- !(.Call("bycol_all_equal_double2",X))
ivl0 <- which(colranges)
if(length(ivl0) == 0){ index <- 1
}else{ index <- ivl0 }

}
return(index)

}

mt.idconvert <- function(mt,donind,recind,k,ndon,nrec){
don_r <- c(rep(TRUE,ndon*k),rep(FALSE,nrec*k))
id <- mt[,1]
id[don_r] <- donind[id[don_r]]
id[!don_r] <- recind[id[!don_r]]
modelid <- mt[,2]
modelid <- donind[modelid]
mt[,1] <- id
mt[,2] <- modelid
mt <- mt[order(mt[,1]),]
return(mt)

}

ipm.create <- function(id,k){
length.unique.id <- length(id)/k
ind.pos.mat <- matrix(nrow = length.unique.id,ncol = 3) ; colnames(ind.pos.mat) <- c("id","start","stop")
ind.pos.mat[,3] <- aux <- c(1:length.unique.id) * k
ind.pos.mat[,2] <- c(1,aux[-length.unique.id]+1)
ind.pos.mat[,1] <- id[ind.pos.mat[,2]]
return(ind.pos.mat)

}

adjust.weights <- function(id,dist,k){
indk <- c(1:(length(id)/k)) * k
maxdist <- rep(dist[indk],each=k)
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maxdist[maxdist == 0] <- 1
w <- (1-(dist/maxdist)^3)^3 + .01
return(w)

}

kopt <- function(ndon,kgran){
if(ndon <= 6){

k <- ndon-1
}else{

if((ndon-6)<kgran){ k <- c(5:(ndon-1))
}else{ k <- c(round(5 + (0:(kgran-2))*(ndon-6)/(kgran-1)),ndon-1) }

}
return(k)

}

ropt <- function(kvec,rgran,ncolX){
rfac <- matrix(2^c(0:(rgran-1)),nrow = length(kvec),ncol = rgran,byrow=TRUE)
rulez <- matrix(c(10,30,max(2*ncolX,100),Inf,.2,.1,.05,.025),ncol=2)
starts <- rulez[,2][(findInterval(x = kvec,vec = rulez[,1]) + 1)]
r <- starts * rfac
return(r)

}

sampledon <- function(ndon){
rulez <- matrix(c(50,500,2000,Inf,ndon,50,.1*ndon,200),ncol=2)
sdon <- rulez[,2][findInterval(ndon,rulez[,1]) + 1]
return(sdon)

}

C.2 C Code for Miles

Markus Lilienthal wrote this C code based on my R Code for speeding up the Miles algorithm.

#include <R.h>
#include <Rinternals.h>
#include <Rdefines.h>
#include <Rmath.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

SEXP Xt_D_X (SEXP X, SEXP d1, SEXP d2, SEXP ind1, SEXP ind2){
//computes t(X)%*%diag(d1)%*%X+diag(d2) for rows ind1 and cols ind2 (C numbering with 0 as first index)

double *p_X, *p_d1, *p_d2, *p_res;
int *p_ind1, *p_ind2;

/*pointers to data arrays*/
p_X = NUMERIC_POINTER(X);
p_d1 = NUMERIC_POINTER(d1);
p_d2 = NUMERIC_POINTER(d2);
p_ind1 = INTEGER_POINTER(ind1);
p_ind2 = INTEGER_POINTER(ind2);

/*get matrix dimensions of X*/
SEXP X_dim = getAttrib(X,R_DimSymbol);
int *p_X_dim = INTEGER_POINTER(X_dim);

/*get length of ind1 and ind2*/
int ind1_length, ind2_length;
ind1_length = length(ind1);
ind2_length = length(ind2);

/*allocate result object*/
SEXP res = PROTECT(allocMatrix(REALSXP,ind2_length,ind2_length));
p_res = NUMERIC_POINTER(res);

/*multiplication*/
int i,j,k;
int ind_res = 0;
int aux_ind1, aux_ind2;
double res_i;
for (i=0; i<ind2_length; i++){ //column i of result

aux_ind2 = p_X_dim[0]*p_ind2[i];
for (j=0; j<ind2_length; j++){ //row j of result

res_i = 0;
aux_ind1 = p_X_dim[0]*p_ind2[j];
for (k=0; k<ind1_length; k++){

res_i += p_X[p_ind1[k]+aux_ind1] * p_X[p_ind1[k]+aux_ind2] * p_d1[k];
}
p_res[ind_res] = i==j ? res_i+p_d2[i] : res_i;
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ind_res++;
}

}

UNPROTECT(1);
return(res);

}

SEXP Xt_D_Xv2 (SEXP X, SEXP d1, SEXP d2){
//computes t(X)%*%diag(d1)%*%X+diag(d2)

double *p_X, *p_d1, *p_d2, *p_res;

/*pointers to data arrays*/
p_X = NUMERIC_POINTER(X);
p_d1 = NUMERIC_POINTER(d1);
p_d2 = NUMERIC_POINTER(d2);

/*get matrix dimensions of X*/
SEXP X_dim = getAttrib(X,R_DimSymbol);
int *p_X_dim = INTEGER_POINTER(X_dim);

/*allocate result object*/
SEXP res = PROTECT(allocMatrix(REALSXP,p_X_dim[1],p_X_dim[1]));
p_res = NUMERIC_POINTER(res);

/*multiplication*/
int i,j,k;
int ind_res = 0;
int aux_ind1, aux_ind2;
double res_i;
for (i=0; i<p_X_dim[1]; i++){ //column i of result

for (j=0; j<p_X_dim[1]; j++){ //row j of result
res_i = 0;
aux_ind1 = p_X_dim[0]*j;
aux_ind2 = p_X_dim[0]*i;
for (k=0; k<p_X_dim[0]; k++){

res_i += p_X[aux_ind1] * p_X[aux_ind2] * p_d1[k];
aux_ind1++;
aux_ind2++;

}
p_res[ind_res] = i==j ? res_i*p_d2[i] : res_i;
ind_res++;

}

}

UNPROTECT(1);
return(res);

}

SEXP bycol_all_equal_double2(SEXP x){
double *p_x;
int *p_res;
int i,j,col;
int *p_dim;

p_x = NUMERIC_POINTER(x);
p_dim = INTEGER_POINTER(getAttrib(x,R_DimSymbol));

SEXP res = PROTECT(allocVector(LGLSXP,p_dim[1]));
p_res = LOGICAL_POINTER(res);

for (col=0;col<p_dim[1];col++){
p_res[col] = 1;
if (ISNAN(p_x[p_dim[0]*col])){

j = p_dim[0]*col+1;
while (ISNAN(p_x[j]) && j<p_dim[0]*(col+1)) j++;
for(i=j;i<p_dim[0]*(col+1) && p_res[col]==1;i++){

if (!ISNAN(p_x[i]) && p_x[i]!=p_x[j]) p_res[col] = 0;
}

}
else{

for(i=p_dim[0]*col+1;i<p_dim[0]*(col+1) && p_res[col]==1;i++){
if (!ISNAN(p_x[i]) && p_x[i]!=p_x[p_dim[0]*col]) p_res[col] = 0;

}
}

}

UNPROTECT(1);
return(res);

}
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Appendix D

Appendix to Chapter 6

D.1 Passively measured TV consumption data

Figure D.1: TV consumption on an ordinary day by time of the day and channel
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Figure D.2: Population boxplot (Rinne, 2008, p. 49) and beeswarm plot (Eklund, 2016) of a 2.5%

simple random sample.

D.2 Descriptive statistics
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ARD 1952 www.ard.de 30% 36% 41% 71% 0.25 no

ZDF 1963 www.zdf.de 30% 33% 36% 73% 0.25 no

RTL 1984 www.rtl.de 25% 27% 35% 75% 0.22 no

SAT 1 1984 www.sat1.de 19% 20% 21% 82% 0.22 no

Pro 7 1989 www.prosieben.de 12% 15% 19% 86% 0.25 yes

VOX 1993 www.vox.de 13% 14% 17% 86% 0.17 yes

Kabel 1 1992 www.kabeleins.de 11% 12% 15% 87% 0.15 no

RTL 2 1993 www.rtl2.de 10% 12% 15% 88% 0.10 no

Super RTL 1995 www.superrtl.de 4% 5% 6% 95% 0.21 no

Tele 5 2002 www.tele5.de 3% 3% 3% 97% 0.17 no

VIVA 1993 www.viva.tv 1% 1% 1% 99% 0.06 no

Table D.1: Passively measured data on the TV channels

59

www.ard.de
www.zdf.de
www.rtl.de
www.sat1.de
www.prosieben.de
www.vox.de
www.kabeleins.de
www.rtl2.de
www.superrtl.de
www.tele5.de
www.viva.tv


variable statistics description

categorical counts shares

total panelists with passive TV

11916 100% measurement in place

female gender

female 5987 50% code: 1

male 5929 50% code: 0

employ employment type

fulltime 4434 37% code: 1

halftime or student 2545 21% code: 0.5

parttime 348 3% code: 0.2

not employed 4589 39% code: 0

continuous Mean Median Min Max

age age in years on April, 30th 2013

50 52 14 99

citysize home town population count

35 281 1 2200 average of classes {1000
hhsize number of persons in household

2.59 2 1 8

kids6 number of kids aged 6 or

0.13 0 0 3 younger in household

kids18 number of kids aged 18 or

0.50 0 0 6 younger in household

internet average number of days with

4.89 7 0 7 Internet usage per week

Table D.2: Basic claims data
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D.3 Modeling the response mechanism

MACAR MAAR

covariate exp
´
β̂

¯
z value exp

´
β̂

¯
z value

intercept 1.9932 35.5137 0.6792 ´1.1104

female - - 1.1371 2.9203

employ - - 0.7520 ´4.7139

age - - 1.0815 8.0142

citysize - - 0.9999 ´2.7551

hhsize - - 0.5646 ´4.9363

kids6 - - 1.1801 2.9827

kids18 - - 1.2295 5.0186

internet - - 1.0262 3.0280

age2 - - 0.9996 ´5.2049

hhsize2 - - 1.0398 3.3061

age ˆ hhsize - - 0.9954 ´3.1992

Table D.3: Parameters estimates for the response mechanism (N “ 11916). These estimates are

used to delete observations within the simulation study, thereby mimicking natural nonresponse.

The estimate for the intercept in the MACAR case of approximately 2 means that it is twice as

likely to be observed than to be missing.

D.4 ‘Population’ results for the analysis models

The N “ 11916 data set is a sample of a larger population of TV consumers in Germany. The

statistical inference conducted on this data set refers to this larger population. Nevertheless, for

the simulation study the same data set is declared the population. Therefore, rather than n, N

denotes the number of observations.

table 1: householdsize (hh) ą 2 versus Pro 7 Sunday 8to9pm (P8)

table cells hh ď 2 & P8 “ 0 hh ą 2 & P8 “ 0 hh ď 2 & P8 “ 1 hh ą 2 & P8 “ 1

frequencies 4493 2276 2505 2642

exp
´
β̂mlogit

¯
1 0.5066 0.5575 0.5880

table 2: householdsize (hh) ą 2 versus VOX ą 3

table cells hh ď 2 & VOX ď 3 hh ą 2 & VOX ď 3 hh ď 2 & VOX ą 3 hh ą 2 & VOX ą 3

frequencies 3295 2127 3703 2791

exp
´
β̂mlogit

¯
1 0.6455 1.1238 0.8470

table 3: Pro 7 Sunday 8to9pm (P8) versus VOX ą 3

table cells P8 “ 0 & VOX ď 3 P8 “ 1 & VOX ď 3 P8 “ 0 & VOX ą 3 P8 “ 1 & VOX ą 3

frequencies 4259 1163 2510 3984

exp
´
β̂mlogit

¯
1 0.2731 0.5893 0.9354

Table D.4: Contingency tables (N “ 11916).
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Model Parameter β̂ t value

Linear Intercept 7.503162 90.0992

age ´0.053390 ´37.7711

Pro 7 Sunday 8to9pm (P8) 0.160513 3.2308

Square Intercept 7.520440 94.8994

age ´0.054274 ´39.8622

VOX 0.024037 3.4557

VOX 2 ´0.000629 ´2.7476

Interaction Intercept 7.812346 77.7167

age ´0.059054 ´33.7441

Pro 7 Sunday 8to9pm (P8) ´0.620408 ´4.1095

age ˆ Pro 7 Sunday 8to9pm (P8) 0.016220 5.4770

Cube Intercept 7.531351 96.2085

age ´0.054289 ´39.8800

VOX 0.016516 3.6630

VOX 3 ´0.000012 ´2.7894

Table D.5: Regression models (N “ 11916).

Variable name Mean in cluster 1 Mean in cluster 2 t value

kids18 0.4152 0.6363 13.18

VOX 4.4499 12.6131 50.05

number of cases 8067 3849 -

Table D.6: Clustering (N “ 11916).

D.5 Convergence plots

In section 6.3.3 two key findings regarding convergence issues are presented: Due to the high

correlations of the variables with their transformations, convergence is extremely slow for educated

algorithms; and (ignorant) PMM sometimes shows very odd convergence behavior. In fact, over

many iterations there is no variance of analysis model parameter estimates at all.

In this appendix section, one sample of size 600 is drawn from the population and the response

mechanism is MCAR. The estimand is μP8. Instead of conducting the default simple random

hot-deck imputation to get the algorithm started, the missing values are initially filled with the

column minimum values. Then, for a single imputation with each of the six imputation algorithms,

500 Gibbs sampler iterations are conducted. The evolution of the parameter estimates over the

iterations is presented in figure D.3. The respective sample autocorrelation functions are presented

in figure D.4. Finally, figure D.5 focuses on the ignorant PMM algorithm.
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Figure D.3: Convergence plots for the parameter μP8 in one n “ 600 sample. The dashed line

marks the value of μP8 in the population. To better see the dependence on the starting values, the

missing values are initially imputed by the column minimum values, which is zero for the variable

P8. For the educated procedures the 500 iterations are clearly insuffient to get even close to the

true value. Ignorant PMM shows very odd behavior beyond the 200th iteration for no obvious

reason. The other three ignorant procedures do not show any trend.
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Figure D.4: Plots of the autocorrelation function of the series in figure D.3 with α “ 5% confidence

intervals. The educated algorithms have a long memory, which is probably caused by the high

correlations between the incomplete variables and their transformations. Ignorant PMM seems to

have a very long memory, too. The other three ignorant procedures have essentially no memory

at all. I.e., employing them to sample from the posterior distribution of μP8 is extremly efficient.

Figure D.5: Plots of the autocorrelation function of the series in figure D.3 for the ignorant PMM

algorithm. The left plot shows the autocorrelation function based on the entire series with 500

iterations. The right plot is based on the same series, but only on its first 200 data points, i.e.,

before the odd behavior occurs. The extreme autocorrelation is clearly driven by the odd behavior.

However, even disregarding this issue, the values of the autocorrelation function of PMM are much

larger than those of the other ignorant algorithms in figure D.4
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D.6 Detailed simulation results

Parameter PMM midastouch RF Miles

Missing Always CAR AR CAR AR CAR AR CAR AR

univariate statistics

average 118 118 158 119

μP8 111 110 111 109 146 147 114 112

μVOX 120 122 120 120 186 194 120 122

ln tvarpVOXqu 121 122 122 123 135 139 122 123

bivariate statistics

average 115 113 143 118

table 1 hh ą 2 & P8 “ 0 102 103 101 103 102 102 101 101

hh ď 2 & P8 “ 1 107 107 106 105 126 135 107 107

hh ą 2 & P8 “ 1 106 104 106 104 124 121 107 105

table 2 hh ą 2 & VOX ď 3 104 107 104 105 100 97 102 99

hh ď 2 & VOX ą 3 115 120 115 116 167 187 116 117

hh ą 2 & VOX ą 3 111 112 110 111 157 161 111 112

table 3 P8 “ 1 & VOX ď 3 130 132 128 129 190 200 150 162

P8 “ 0 & VOX ą 3 135 137 130 134 144 159 146 146

P8 “ 1 & VOX ą 3 115 115 116 114 154 149 121 119

regression coefficients

average 100 100 99 98

Linear Intercept 100 98 101 98 98 98 99 99

age 100 98 100 98 99 99 99 99

P8 103 105 103 105 96 97 99 101

Square Intercept 104 99 104 99 101 98 102 99

age 101 99 101 99 100 100 100 100

VOX 100 104 100 104 101 100 97 95

VOX2 90 95 92 97 101 100 94 92

Inter- Intercept 99 103 100 103 99 100 98 99

action age 99 102 100 102 100 100 99 99

P8 95 100 96 100 94 95 95 93

age ˆ P8 94 97 95 98 92 92 94 92

Cube Intercept 104 100 104 99 101 99 102 99

age 101 99 101 99 100 100 100 100

VOX 105 108 104 107 101 100 99 98

VOX3 91 96 93 98 103 102 95 93

cluster means

average 93 93 130 101

kids18 μkids18 |cluster1 89 92 89 91 107 105 95 93

μkids18 |cluster2 92 90 93 91 97 101 96 98

VOX μVOX |cluster1 92 96 91 95 134 147 94 97

μVOX |cluster2 93 97 95 95 177 176 120 120

Table D.7: Simulation results: prelative root mean squared errorq ˆ 100
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Parameter PMM midastouch RF Miles

Missing Always CAR AR CAR AR CAR AR CAR AR

univariate statistics

average 0 0 ´2 ´1

μP8 0 0 0 0 2 2 ´1 0

μVOX 0 0 0 ´1 ´7 ´7 ´1 ´1

ln tvarpVOXqu 0 0 0 0 ´1 ´1 0 ´1

bivariate statistics

average ´1 0 6 ´1

table 1 hh ą 2 & P8 “ 0 ´1 ´2 ´1 ´2 0 ´2 ´2 ´2

hh ď 2 & P8 “ 1 0 ´2 1 ´1 ´6 ´10 1 ´2

hh ą 2 & P8 “ 1 1 0 2 0 ´4 ´6 3 0

table 2 hh ą 2 & VOX ď 3 ´4 ´8 ´2 ´6 ´1 2 ´1 ´4

hh ď 2 & VOX ą 3 13 20 5 11 ´109 ´128 ´7 ´4

hh ą 2 & VOX ą 3 ´2 ´1 1 2 73 76 5 9

table 3 P8 “ 1 & VOX ď 3 ´7 ´8 ´6 ´8 ´17 ´18 ´12 ´13

P8 “ 0 & VOX ą 3 ´12 ´12 ´11 ´10 14 19 ´18 ´16

P8 “ 1 & VOX ą 3 5 ´1 14 8 112 106 29 24

regression coefficients

average ´7 ´6 ´4 ´7

Linear Intercept 0 0 0 0 0 0 0 0

age 0 0 0 0 0 0 0 0

P8 ´3 ´8 ´4 ´8 ´3 ´7 ´1 ´4

Square Intercept 0 0 0 0 0 0 0 0

age 0 0 0 0 0 0 0 0

VOX ´23 ´26 ´20 ´23 ´10 ´15 ´22 ´25

VOX2 ´32 ´33 ´29 ´29 ´13 ´14 ´28 ´29

Inter- Intercept 0 0 0 0 0 0 0 0

action age 1 0 1 0 0 ´1 0 0

P8 7 1 6 1 0 ´8 2 ´3

age ˆ P8 5 ´1 4 ´1 ´1 ´9 1 ´4

Cube Intercept 0 0 0 0 0 0 0 0

age 0 0 0 0 0 0 0 0

VOX ´18 ´21 ´15 ´18 ´8 ´13 ´19 ´22

VOX3 ´31 ´29 ´27 ´25 ´11 ´10 ´26 ´25

cluster means*

average ´2 ´2 ´7 ´2

kids18 μkids18 |cluster1 ´4 ´3 ´4 ´3 ´7 ´7 ´5 ´4

μkids18 |cluster2 1 2 1 2 4 5 3 3

VOX μVOX |cluster1 0 ´1 ´1 ´1 ´10 ´11 1 0

μVOX |cluster2 ´4 ´5 ´4 ´5 ´15 ´15 ´8 ´9

Table D.8: Simulation results: bias relative to the population parameter (in %): 100 ¨ třpγ̂ ´
γqu{pnsims ¨ γq.
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Parameter PMM midastouch RF Miles

Missing Always CAR AR CAR AR CAR AR CAR AR

univariate statistics

average 945 949 828 939

μP8 948 949 950 958 852 856 944 949

μVOX 954 942 951 944 740 707 945 930

ln tvarpVOXqu 938 939 945 946 913 901 940 927

bivariate statistics

average 954 957 878 944

table 1 hh ą 2 & P8 “ 0 962 971 965 972 972 972 966 971

hh ď 2 & P8 “ 1 963 963 964 967 910 902 963 967

hh ą 2 & P8 “ 1 957 965 957 968 915 914 955 968

table 2 hh ą 2 & VOX ď 3 967 967 969 967 968 967 972 972

hh ď 2 & VOX ą 3 967 956 963 962 821 795 966 961

hh ą 2 & VOX ą 3 956 964 959 963 843 826 958 958

table 3 P8 “ 1 & VOX ď 3 925 919 933 930 725 700 873 845

P8 “ 0 & VOX ą 3 944 930 953 940 926 910 903 917

P8 “ 1 & VOX ą 3 952 947 946 950 860 869 936 944

regression coefficients

average 968 968 968 970

Linear Intercept 951 953 957 956 960 960 958 956

age 956 958 956 956 960 960 959 957

P8 965 963 962 955 971 979 974 968

Square Intercept 957 960 956 964 955 963 959 965

age 960 952 958 951 961 953 962 952

VOX 985 985 985 985 987 982 986 983

VOX2 992 990 990 993 984 986 987 987

Inter- Intercept 962 953 964 954 965 960 967 961

action age 958 951 957 948 953 946 957 947

P8 985 971 987 972 987 968 989 973

age ˆ P8 984 972 984 973 984 975 984 984

Cube Intercept 958 962 955 961 956 962 961 963

age 959 952 959 951 961 952 961 952

VOX 982 984 983 983 983 984 991 985

VOX3 990 989 987 991 979 977 987 986

cluster means*

average 976 978 841 954

kids18 μkids18 |cluster1 980 976 982 978 941 930 970 969

μkids18 |cluster2 984 986 986 989 974 973 981 982

VOX μVOX |cluster1 988 979 989 981 876 849 987 979

μVOX |cluster2 966 953 963 957 587 595 876 884

Table D.9: Simulation results: coverage of 950� confidence intervals. *It is uncertain, whether

the clustering fulfills the conditions of Yang & Kim (2016, p. 246), and therefore whether Rubin’s

combining rules are appropriate.
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