
deposit_hagen
Publikationsserver der
Universitätsbibliothek

Mathematik
und
Informatik

Informatik-Berichte
251 – 05/1999

Bart Jacobs, Gary T. Leavens, Peter Müller,
Arnd Poetzsch-Heffter (Editors)

Formal Techniques for Java Programs

Proceedings, Lisbon, Portugal (June 14, 1999)

Formal Techniques for
Java Programs

Proceedings, Lisbon, Portugal
June 14, 1999

Bart Jacobs, Gary T. Leavens, Peter Müller, and
Arnd Poetzsch-Heffter (editors)

UB Hagen

rn 1111 rn 1
9907621 01

Copyright © 1999 each paper's copyright is held by its authors.

j

\)

Contents
·t C /;

\}) Ji
',.<~ ~.':
·.:.·J8<;1"i'> ..,;

~,::;;./~r

Preface .. 11

B. Jacobs, G. T. Leavens, P. Müller, A. Poetzsch-Heffter

A Formal Specification of the Java Bytecode Semantics using
the B method . 1
L. Gasset, J. L. Lanet

Towards a modular denotational semantics of Java 8
P. Cenciarelli

A Formal Approach to the Specification of Java Components 14
S. Cimato, P. Ciancarini

Formal Refinement and Proof of a Small Java Pro gram 22
T. Clark

Software Development with Object-Z, CSP and Java: A Pragmatic
Link from Formal Specifications to Programs . 29
C. Fischer

A case study in class library verification: J ava's vector dass 36
M. Huisman, B. Jacobs, J. van den Berg

Threads and Main Memory Semantics . 44
V. K otrajaras, S. Eisenbach

Checking Java programs via guarded commands 51
K. R. M. Leino, J. B. Saxe, R. Stata

A Logic of Recursive Objects ... 58
B. Reus

Exception Analysis for Java ... 65
K. Yi, B. Chang

11

Preface

This is the proceedings of the first workshop on Formal Techniques for Java
Programs, June 14, 1999, held in Lisbon, Portugal. The workshop is affili
ated with the 13th European Conference on Object-Oriented Programming,
ECOOP 99. Papers in the proceedings are included here based on the re
views of the workshop organizers. This proceedings will also be available
from

www.informatik.fernuni-hagen.de/import/pi5/publications.html

The objective of the workshop is to bring together people developing formal
techniques and tool support for Java. Formal techniques can help to analyze
programs, to precisely describe program behavior, and to verify program
properties. Applying such techniques to object-oriented programming is
especially interesting because:

1. The 00-paradigm forms the basis for the software component industry
with their need for certification techniques.

2. lt is widely used for distributed and network programming.

3. The potential for reuse in 00-programming carries over to reusing
specifications and proofs.

Java is an excellent target to bridge the gap between formal techniques and
practical program development. lt plays an important role in these areas
and is on the way to becoming ade facto standard because of its reasonably
clear and simple semantics.

Bart Jacobs
Gary T. Leavens
Peter Müller
Arnd Poetzsch-Heffter

iii

A Formal Specification of the Java Bytecode Semantics
using the B method

Ludovic Casset1

Phone: +33 (0)4.42.36.54.52
Ludovic.Casset@gemplus.com

Introduction

Jean Louis Lanet2

Phone: + 33.(0)4.42.36.64.22
Jean-Louis.Lanet@gemplus.com

The new platforms (i.e., Java Card, MultOS and Smart Card for Windows) allow
dynamic storage and the execution of downloaded executable content, which is based on a
virtual machine for portability across multiple smart card microcontrollers and for security
reasons. Due to the reduced amount ofressources, a specific Java has been specified for the
Java card industry, known as the Java Card 2.1 standard. The Java card specification
describes the smart card specific features of the virtual machine (i.e., Applet Firewall,
Shareable Interfaces, Installer. ..).

All those mechanisms prevent hostile applets to break the security of the smart card.
However the smart card security is based on the assumptions that the JCRE (Java Card
Runtirne Environment) is correctly irnplemented. The correctness of the Applet Firewall
which is an irnportant part of the JCRE is crucial. lt is the means to avoid an applet to
reference illegally another applet objects. In fact not only the Applet Firewall but also the
complete JCRE and the virtual machine must be correctly irnplemented. In order to prove
such a correctness we have to use formal methods to insure that the irnplantation is a valid
interpretation of the specification.

In the specification, it is not explicitly explain how and when the different controls are
done (i.e., type checking, control flow ...). A defensive virtual machine where all the checks
are performed at runtirne has too poor performances. Thus, the smart card industry proposes
an architectural design where the checks are performed off-card. The developpers have to
extract the static and the dynamic semantics. The static constraints are performed with an
off-the-shelf verifier and the on-card interpreter implements the dynamic semantics. If we
want to formally irnplement the interpreter we have to expect that the verifier has been
correctly implemented. W e propose hereafter a model based on the refinement technique
that avoid this potential incoherence.

After a brief presentation of related work, we present the bytecode subset used in our
model. Then, we define the state ofthe defensive virtual machine using the B method [Abr-

1 ESIL, Ecole Superieure d'Ingenieurs de Luminy, departement informatique, Luminy case 925 -
13288 Marseille cedex 09.

2 Gemplus Research Lab, Av du Pie de Bertagne, 13881 Gemenos cedex.

96]. An example of instruction refinements is provided. Then, we conclude with the
extension of our work.

Related Work

There has been much work on a formal treatment of Java and specifically at the Java
language level by [Nip-98], [Dro-97] and [Sym-97]. They define a formal semantics for a
subset of Java in order to prove the soundness of their type system. A closer work to our
approach has been done by [Qia-98]. Tue author consider a subset of the bytecode and its
work aims to prove the runtime type correctness from their static typing. Using its
specification he proposes a proof of a verifier that can be deducted from its virtual machine
specification.

Tue Kimera project [Sir-98] proposes a verifier implementation that has been carefully
designed and tested but not based on formal methods. An interesting work has been partially
done by [Coh-96] in order to formally implement a defensive virtual machine. lt is possible
to prove that this model is equivalent to an angressive interpreter plus a sound bytecode
verifier.

A new approach

Our approach is based on the Defensive Java Virtual Machine (DNM) split in order to
obtain in the one hand the bytecode verifier and in the other hand the interpreter. At the
abstract level, we define the DNM. By successive refinements, we extract the runtime
checks in order to de-synchronize verification and execution process. Then, we obtain
invariants representing the formal specification of the static checks. W e implement those
specifications with an on-the-shelf type inference algorithm.

The Freund and Mitchell subset

Freund and Mitchell introduce in [Fre-98] a bytecode subset. Instructions in this subset
are choosen to represent, at the control flow and data levels, most of the bytecode
instructions. W e use a small variant of this subset. Tue difference comes from the
specialization of instructions Istore and lload which load or store local variables of type
integer. In these instructions, one can find instructions allowing integer manipulations and
also instructions allowing object creations, initializations and uses. Informal specification of
these instructions is given below (Fig.1).

By describing operational and static semantics, Freund and Mitchell prove that this
subset is sufficient to study object initialization, flow and data-flow controls.

lnc adds one to the integer in top of stack.
Pop removes the top element of the stack.

lstore x removes the integer from the top of
stack and puts it into lacoal variable x.
Halt terminates program execution.

Init cr initializes the object of type cr on the
top of stack.

PushO pushes integer on stack.
If L jumps to L or to next instruction
according to the value ofthe integer L.
Iload x loads value from local variable x and
puts it on top of stack.
New cr allocates a new uninitialized object of
type cr on the top of stack.
Use cr performs an operation on a initialized
object of type cr.

Fig.1. Informal specification of the instruction subset.

Flow control and type correctness

Checking a program means insuring that all instructions are executed in a safe way. We
first begin with executing controls on flow and types. We assume we work on a subset of
Java types: integer, addri (unitialized object) and addr (initialized object). For such a work,
we define a state and its properties. A state is defined by:

• the pc, the program counter which value is included in method domain,
• the type stack, type of the element of the stack,
• the type frame containing types of local variables.

Tue expected properties ofthe program are:
• confinement: a program cannot access objects or part of the program out of its

workspace,
• stack access: no overflow or underflow during stack manipulation,
• initialisation: an object must be initialized once and only once. Tue access of an

uninitialized object is not allowed.
• type correctness: it is forbidden to convert an integer into a refärence; and no arithmic

is allowed on pointer.
Assuming such constraints guarantee the correct state. Then, we use transfert functions

related to each instruction to change to another correct state. Tue static semantics gives the
constraint set, as the operational semantics gives the transfert functions. W e define a
complete lattice with the three types described previously. To implement an algorithm
checking types, such as the one presented by Dwyer in [Dwy-95], we need such a lattice to
organize types and to have relations between them. This algorithm is implemented in the
off-card verifier.

The B model of the defensive machine

W e explain the model on a particular instruction, the instruction Inc. An informal
specification of this instruction can be: Inc add one to the integer in the top of the stack and
/et the rest of the stack unchanged. Clearly, the instruction, on flow level, increments the pc

to go to the next instruction. For type verification, it checks that the type on top of stack is
an integer.

Our abstract model represents the DNM: we perform checks on pc domain and on types
and then we execute the instruction (Fig.2)

ins_iload = SELECT (methode (apc) = iload)
THEN

IF (apc < size (methode) /\ top _stack < max _stack
/\ parametre(apc) e dom(typesJrames)
/\ typesJrames(parametre(apc))= INTEGERS)

THEN
apc := apc+ 1
II top_stack := top_stack+1

II types _stacks:=types _stacks<t { top _stack+ 1 HJNTEGERS}
END

END;

Fig.2. Instruction Iload in the DJVM machine.

Then, we refine until all checks appears in the invariant. Tue execution is done if the
variable unchecked set by the invariant is false.

After two refinements, it is possible to express the checks with the following invariant
(Fig.3).

\:/kd.((kd e dom(methode)) /\ methode(kd) =iload /\ unchecked = FALSE
~kd < size(methode) /\ SSTtop _stack(kd) < max_stack
/\ SSTtop _ stack(kd)=SSTtop _ stack(kd+ 1)-1
/\ SSTtypes(kd+ 1)(SSTtop _stack(kd+ 1))=INTEGERS

/\ SSTtypes(kd)<t { SSTtop _ stack(kd)+ 1 H INTEGERS} =SSTtypes(kd+ 1)
I\ parametre(kd) E dom(SSTtypes_frames(kd)) /\ parametre(kd):5.maxJrame
/\ parametre(kd)'?.O /\ SSTtypes Jrames(kd)(parametre(kd))= JNTEG ERS
/\ SSTtypes Jrames(kd)=SSTtypes Jrames(kd+ 1))

Fig.3. The invariantfor Iload after two refinements.

Then we obtain an offensive interpreter for the instruction Iload, i. e., we just verify that
previously the program passed successfully the verifier (see below).

ins_iload = SELECT(methode (apc) = iload /\ unchecked = FALSE)
THEN

apc := apc+ 1
II top_stack := top_stack+I

II types_stacks:=types_stacks<t{top_stack+IHINTEGERS)
END;

Fig.4. The operation for instruction Iload in the last rejinement.

With this approach, we bring to the fore that we split the original defensive machine. We
introduce another abstract machine to initialize the variable unchecked by performing static

checks on the bytecode. This rnachine is in fact the specification of our verifier. Tue last
refinernent of the defensive rnachine appears to be our offensive interpreter. W e have 489
Proof Obligations (PO). the project is entirely proved.

The fixed point calculus for type correctness

Cornputing the right type for a given pc is rather difficult because several paths can lead
to this pc in the tree of possible executions. So, as perforrning the verification, one must
checks that the type obtained is the right one and no error will occur during execution.

Tue rnethod we use is to cornpute a fixed point. lt rneans that, considering all paths
leading to a given pc, we search the type satisfying all of them. If the prograrn is correct,
such a type exists and is usable. Otherwise, checks raise an error.

To cornplete such a work, we introduce a lattice (Fig.5) over types used in the bytecode.
In our study, we have three different usable types: INTEGERS, Addri and Addr. To obtain a
cornplete lattice [Dwy-95], we add a top value TOP, a bottorn value J_, a partial-order ~ and
a binary operator Meet TI. We assume that TOP and J_ are non usable type.

TOP ------INTEGERS Addri

1 1

J_ Addr

1
J_

Fig.5. The complete lattice.

According to the partial-order over the lattice, we have the relations:
• J_ ~ INTEGERS ~ TOP,
• J_ ~ Addr ~ Addri ~ TOP.

With such a lattice, we can solve the flow equations:
Types[r] = J_

V n '* r, Types[n] = Il { ½ (Types[i]) 1 i E Preds(n)}

where r is the root node of the tree, Types gives the type of the node n, ~ is the transfert
function of the node i and Preds the set of all predecessors of node n. Tue transfert function
associated to each node fits with the instruction of the given node. In our study, we have ten
instructions and ten transfert functions.

Previous nodes leading
to node n.

Thenode n.

Transfert functions ~ related to
each previous node of n.

Fig.6. The representation of the flow equation problem.

We choose the algorithms presented by Dwyer [Dwy-95] because he proves that his
algorithms converge on the greatest fixed point. Tue complexity ofhis algorithm is O(h.N2)
where h is the height ofthe tree and N is the number ofnodes.

In the B model we present the specification of the flow equation for the fixed point
calculus. First, we introduce the Meet operator which, in fact represents the complete lattice
over types, the partial-order and the binary operator (Fig.7).

Meet e JTYPESxJTYPES ~ JTYPESA
'v'tt.(tt e JTYPES-=> 'v'tp.(tp eJTYPES -=>Meet(tt,tp)=Meet(tp,tt)))A
'v'tt.(tte JTYPES-=> Meet(tt,tt)=tt)A
Meet(addr,addri)=addri A Meet(addr,INTEGERS)=TOP AMeet(addr,TOP)=TOP A

Meet(addri,TOP)=TOP A Meet(addri,INTEGERS)=TOP /\ Meet(INTEGERS,TOP)=TOP

Fig.7. The Meet operator definition

Then, we specify the set Preds. This set is made of all predecessors of a given pc. In our
model, we add a new feature. For a given pc, we associate its predecessors and, for each
predecessor we associate the supposed type it attributes to the different variables in the stack
andin the frames through the transfert function (Fig.8).

Preds e l..size(methode) ~ (1..size(methode) B JTYPES)

Preds(ka+ 1)=Preds(ka+ 1)4 { kaH INTEGERS}

Fig.8. Definition and example of use of Preds.

Finally, we translate the flow equation as follow (Figure 9). For each pc, we add this
element to Preds as predecessors of pc+ J. W e associate to pc the type of pc+ 1 using this
path. Then, we compute a partial fixed point thanks to the set Preds by combining types
through the complete lattice.

'v'ii.(iiedom(Preds(ka+ 1)) /\ Preds(ka+ 1)*0 A

Preds(ka+ 1)(ii)*SSTtypes(ka+ 1)(SSTtop _ stack(ka+ 1))

-=>SSTtypes(ka+ 1)=SSTtypes(ka)4 { SSTtop _ stack(ka)

H Meet(SSTtypes(ka+ 1)(SSTtop _ stack(ka+ 1)),Preds(ka+ 1)(ii))})

Fig.9. The jlow equation in B

At the end of the program, type of variables for every pc is computed. If no unsuable
type remains, the program is correct for types point ofview. Otherwise, the verifier raises an
error.

Conclusions and Future Work

W e entirely proved the defensive machine model at the flow and type control level. W e
are modelizing the two different parts of the defensive machine, the verifier and the
interpreter. Tue work is already done for the flow control and we are integrating the type

control for the instruction subset and in particular the calculus of the fixed point as
presented. The integration of the fixed point calculus is proved at 90% and we are still
working on it to improve the model.

In the meantime, we use the results of A. Requet [Req-98] on the JavaCard 2.1
bytecode specification. With his work, we bring to the fore the static and the dynamic
semantics of each real instruction. Integrating all these studies, we complete our model to
present a defensive machine, a bytecode verifier and an interpreter, matching the JavaCard
2.1 standard.

References

[Abr-96] J. R. Abrial, The B Book. Assigning Programs to Meanings, Cambridge University
Press 1996.

[Coh-96] Cohen, Defensive Java Virtual Machine Specification
http ://www.cli.com/software/djvm

[Dro-97] S. Drossoppoulou, S. Eisenbach, Java is Type Safe - Probably.

[Dwy-95] M. Dwyer, Data Flow Analysis for verifying correctness properties of
concurrents programs, Phd thesis, University ofMassachusetts, Sept 95.

[Fre-98] S. N. Freund, J. C. Mitchell A type System for Object Initialization in the Java
Bytecode Language In. Proc. Conf. On Object-Oriented Programming, Systems,
Languages, and Applications, pages 310-328. ACM Press 1998.
http ://theory.standford.edu/-freunds.

[Qia-98] Z. Qian, Least Types for Memory Locations in Java Bytecode, Kestrel Institute,
Tech. Report, 1998.

[Nip-98] T. Nipkow, D. Oheimb, Javalight is Type-Safe - Definitely
25 th ACM symposium on Principle of Programming Languages, Jan-1998.

[Req-98] A. Requet, Specification Formelle en B d'un Convertisseur de Bytecode pour
Applets Javacard, Rapport de DEA, Universite de Nantes, Septembre 1998.

[Sir-98] E. G. Sirer, A. J. Gregory, B. N. Bershad, Kimera: A Java System Architecture.
Http ://kimera.cs.washington.edu/,1998

[Sym-97] D.Syme, Proving Java Type Soundness, Technical report, University of
Cambridge Computer Laboratory, 1997.

Towards a modular denotational semantics of
Java

Pietro Cenciarelli

Darmstadt Technical University, Department of Computer Science
Wilhelminenstrasse 7, D-64283, Darmstadt, Germany.

pietro©dvs1.informatik.tu-darmstadt.de

Abstract Applying modular techniques based on monads a denota
tional semantics of a Java-like programming language featuring concur
rent objects is sketched.

1 Introduction

In denotational semantics programs are given a mathematical interpretation in
domains with suitable computational structure. In [Mog91], E. Moggi proposed
a categorical semantics where the concrete structure of such domains is viewed
abstractly as the underlying functor of a strong monad T, where T X is the
domain of programs of type X. The formal system associated with this semantics,
the computational lambda calculus, features a type constructor T, an operator
valA : A-> TA lifting values to computations, and an operator letr to compose
programs of the form A -> TB, parametric in A, with programs of type A,
which live in the domain TA. By a suitable axiomatization, letr corresponds to
composition in the Kleisli category of T.

Because of the above abstraction, semantics can be approached modularly:
complex models of computation are engineered by combining simple monad con
structions, each providing the semantic structure to interpret a computational
feature: one monad for exceptions one for side-effects, and so forth.

The constructions of Moggi's modular approach are called monad construc
tors [Mog90a]. These are functions F mapping monads to monads and satisfying
certain naturality conditions. When such an F comes equipped with machinery
to lift operations defined for the monad T to operations for FT (see Section 2),
then we speak of semantic constructors [Mog90b,CM93,Cen95,Cen98].

We sketch the interpretation of a Java-like programming language featuring
concurrent objects. In Section 2 we define the building blocks of the proposed
model: the semantic constructors for side-effects, resumptions and continuations.
In Section 3 we show a few non-trivial semantic equations (notably method
invocation), referring to progressively more elaborate models. The use of monads
in presenting semantics allows us to introduce computational structure only
when needed, without ever rewriting semantic equations. In Section 4 we point to
further developments among which a possible link with the structural operational
semantics of Java proposed in [CKRW98].

2 Semantic constructors

We address categorical structure by using the computational lambda calculus as
metalanguage. Types of the metalanguage stand for objects in the category C. A
term of type T with free variables in a context X1 : T1, x2 : T2, ... Xn : Tn denotes
a morphism T1 x T2 x .. ·n _,, T (see [Mog91] for more detail). We omit indices
when undrestood.

Side-effects. The monad constructor :F for side-effects maps a monad T on a
cartesian closed category C to the monad:

FrA = (:FT)A = (T(A x S))5,

where S is some object in C interpreting states of computation. The operator
let Fr of Kleisli composition for Fr is defined as follows in terms of letr:

letpr x <==Min N[x] ~ .-\s. letr (a,s') <==(Ms) in N[a] s'.

Resumptions. Let C be a category with sums and initial algebras a: Fµp -> µp
for suitable covariant functors F : C _,, C. By a well-known result of Lambek
[Lam68], such an algebra is necessarily an isomorphism and therefore it can
be interpreted as "minimal" solution to the recursive domain equations X ~
FX. Algebmically complete categories, which are introduced in [Fre91], have the
required properties. We write µX. F[X] for µp, where F[X] is an expression
(with a free "type variable" X) describing a functor F.

Resumable computations are elements of the domain

GrA = (QT)A = µX. T(A + X).

Using the isomorphism a: T(A + GrA) _,, GrA, its inverse I and letr, one
can define an operation CA,B : (A _,, GrB) x (GrA _,, GrB) x GrA _,, GrB
of case analysis as follows:

C(j,g, M) ~ a(letr z <== 1 (M) in 1 (case z of inl(a) . j(a)
inr(u) .g(u))).

Intuitively, C applies letr to run "one step" of the resumable computation M
(viewed through I as an T computation) and then analyses the result z: if it
is value a, that is if the computation of M is completed, then it returns f(a),
otherwise it applies g to whatever of M is left to do, that is u. We may leave
the isomorphisms a and I implicit when understood.

Kleisli composition can be expressed in terms of C as follows:

letar x <==Min N ~t C(.,\x. N, .-\w. letr x <== w in N, M).

Let or : GrA x GrA -> GrA be an operator of nondeterministic choice
between two resumable computations (see below). The interleaved execution of
two programs can be expressed in this computational setting by means of the
following operation 11 : GrA x GrB -> Gr(A x B) of parallel composition:

MIIN ~' C(.\ a: A. let b ~ N in 7J(a, b), .\ w: RA. wllN, M) or
C(>- b: B. let a ~Min 1J(a, b), >- u: RB. MIiu, N).

Intuitively, MI IN is the computation which either executes one step of M
and puts what is left of it in parallel with N, or it executes one step of N and
puts what is left of it in parallel with M.

Continuations. The monad constructor H for continuations maps a monad T to

(HT)A = T(Res f(Res)A,

where Res is an object interpreting the type of final results. A computation
of type (HT)A takes a continuation in T(Res)A as input and returns a T
computation of a final result. In this setting, Kleisli composition is as follows:

let x ~Min N ~' .\ k. M(.\x. N[x] k).

Redefining operations. The semantic constructors defined above allow the rein
terpretation of cerain operations in the new computational setting (see [Cen98]
for a discussion). In particular, the constructors F and 9 lift operations
op : TA x TA -> TA respectively to (F op) : FrA x FrA -> FrA and
9op : GrA x GrA-> GrA as follows:

(F op) M N = .\ s. op (M s) (N s)
(9op) MN= a(op ,(M),(N)).

Nondeterministic choice between resumable computations, as required above,
can be obtained by applying 9 to a "union" operator UA : PA x PA -> PA,
where P is some power object construction.

A computation K : TA lifts to a computation HK : (HT)A with continua
tions as follows:

(HK) k = letr a ~Kin k(a).

For example, let TA be (F Id)A = (A x S) 5 , let 1 be the trivial domain {*},
and let updv : N -> Tl be the operator which assigns a number to a variable
v, that is: updv n s = (*, s[v >-> n]). Spelling out the reinterpretation of updv in
a continuation passing semantics, that is in the computational setting H(F Id),
we have:

(Hupdv)nks = k(*)s[v >-> n].

Noticing that the continuation of a statement expects a value (the only) in 1,
the assignment of n to v is the computation which, given a continuation k and
a state s, runs the rest ofthe program, that is k(*), in the new state s[v >-> n].

3 Interpretation

We shall first focus on the notion of state. At this stage, we assume that a dass is
interpreted as an object A equipped with pairs of operations upd A,i : A x X --+ A
for updating, and et A,i : A --+ X for reading, one such pair for each instance
variable i of type X. This interpretation may be described as a coalgebra of a
suitable functor. For example, a dass declaring a single instance variable may
be interpreted as a coalgebra of the functor FY = Y x x X, where the coalgebra
map yields the morphisms upd and et. Of course this example is oversimplified
since there is more to encapsulate in an object's state space than just its instance
variables. In Java, for example, there are structures for locking and unlocking
objects. Moreover, there are copies of instance variables stored in the working
memory of each thread, and which are as much part of the global state as are
the master copies.

Let Obj be a set of object identifiers, and let r be a map assigning to each
identifier o the object of C interpreting the class of o. We make use of the "de
pendent types" r(o) to define the object M of stores:

M ~ EO s;; Obj.llo E O.r(o).

We similarly obtain the object R ';;!EI~ Ide. I--+ Val of environments, where
Ide is the type of ("local") variable identifiers and Val is the type of storable
values, and define states to be:

S~RxM.

This roughly corresponds to the separation in Java of stack and heap.
Interpretation is described by translating the programming language into

the computational lambda calculus augmented with suitable operations, such as
upd, associated with a specific notion of computation. As advocated in [Mog91],
the translation, written [-], maps terms of type rJ to terms of type T[rJ], where
T is a strong monad:

[-] : Term (a) --+ T[a].

For sketching the interpretation of expressions, assignments and method calls,
it is enough to work with the monad TA= (F Id)A = (A x S) 5 :

[M + N] = let x sc [M] in (let y sc [N] in val(x + y))

[o.i = M] = let x sc [M] in UPD o.i(x)

where UPD o.i : X --+ Rl is the computation defined by

UPDa.i(x) ~ >.pµ. {(inl(*), (p,µ[o f--+ updr(o),i(µ(o),x)]))}.

Let T(o) = A, !et m be a method of a class interpreted by A, !et x : o-1 be
its parameter, and !et M[x] : 0-2 be its body. We write [o.m] for the morphism
[o-i]-> R[o-2], defined as: [o.m](a) = >.p, µ. [M](p[this ,_, µ(o)] [x ,_, a], µ).

[o.m(N)] = let a <= [N] in [o.m](a).

Models of a simple language with assignments to a global memory and an
explicit operator of parallel composition are obtained in a category C with the
structure described in Section 2 by composing the constructions F and Q, that
is by using the monad

RA= (Q(FP))A = µX. P((A + X) x S)s.

Because of the abstraction introduced in the interpretation by the use of let
and val, we don't have to rewrite the previous semantic equations. Moreover,
we can lift the operator UA to or A = Q(FUA) : RA x RA-> RA and interpret
parallel composition as shown above.

However, this is not what one needs to model a language like Java, where
parallel threads of computation are implicitely activated by the invocation of a
void method run. In fact, one cannot have

[o.run(); M] = [o.run()] II [M]

because this semantics would not be compositional with respect to the operator
";" of sequential composition. On the other hand, if ";" is to be taken seriously,
then [o.run(); M] = let x <= [run()] in [M], which is no parallel computation
at all.

A solution is to introduce continuations, which allow us to start a new thread,
while the current thread continues computation with whatever follows the invo
cation of run. Applying the constructor 1t of Section 2 to R, we obtain:

QA = (1-f.R)A = [µX. P((Ll + X) X Sl] [µX. P((Ll+X)xS)s]A,

where Ll is the domain of finite lists of *S, which is taken here as finite results.
This choice is consistent with the operational semantics of [CKRW98] where
a successfully terminating computation of n threads produces a sequence of n
asterisks. If exceptions are considered, the domain of results must be accordingly
enlarged. Now we can define the semantics of run:

[o.run]ak=k(*) II >.p,µ.[M](p[this >->µ(o)],µ)1:.

The semantics of method invocation is just as above, but we assign a special
morphism 1-> Ql to [o.run]: the current continuation k is given the expected
return value *, while the body M, which is passed the empty continuation f, is
run in parallel.

4 Conclusions

The sketch of semantics proposed above tries to lay the structure for interpreting
a small but meaningful subset of Java. To claim success for this attempt, many
basic language features, which are part of the traditional repertoire of denota
tional semantics, are still to be considered. Blocks and exceptions are striking
examples. What we believe is also to be achieved is a match with operational
semantics. A possible development in this direction is the adoption as notion
of state of the event spaces introduced in the SOS of [CKRW97] (also based on
interleaving). By replacing the simple upd and et of Section 3 with the event
space operations read, write, load, store, lock and unlock, suitably axiomatised
in [CKRW98], working memories and synchronization can be introduced in the
proposed model. This approach is currently under investigation.

References

[Cen95] P. Cenciarelli. Computational applications of calculi based on monads. PhD
thesis, Department of Computer Science, University of Edinburgh, 1995.
CST-127-96. Also available as ECS-LFCS-96-346.

[Cen98] P. Cenciarelli. An Algebraic View of Program Composition. In Armando
Haeberer, editor, Proceedings of 7th International Conference on Algebraic
Methodology and Software Technology (AMAST'98), 1998. LNCS 1548,
Springer.

[CKRW97] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. From Sequential to
Multi-Threaded Java: an Event-Based Operational Semantics. In Michael
Johnson, editor, Algebraic Methodology and Software Technology (proc. of
AMAST'91), pages 75-90, 1997. LNCS 1349, Springer.

[CKRW98] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An Event-Based Struc
tural Operational Semantics of Mu!ti-Threaded Java. In J. Alves-Foss, ed
itor, Formal Syntax and Semantics of Java, 1523 LNCS. Springer, 1998.

[CM93] P. Cenciarelli and E. Moggi. A syntactic approach to modularity in de
notational semantics. In Proceedings of 5th Biennial Meeting on Category
Theory and Computer Science. CTCS-5, 1993. CWI Tech. Report.

[Fre91] P. Freyd. Algebraically complete categories. In A. Carboni, M.C. Pedicchio,
and G. Rosolini, editors, Category Theory - Proc. of the Int'l Conf. held in
Corno, Italy, July 1990, volume 1488 of Lecture Notes in Mathematics, pages
95-104. Springer-Verlag, Berlin, 1991.

[Lam68] J. Lambek. A fixed point theorem for complete categories. Math. Zeitschr.,
103:151-161, 1968.

[Mog90a] E. Moggi. An abstract view of programming Janguages. Technical Report
ECS-LFCS-90-113, University of Edinburgh, Comp. Sei. Dept., 1990.

[Mog90b] E. Moggi. Modular approach to denotational semantics. Unpublished
manuscript, November 1990.

[Mog91] E. Moggi. Notions of computation and monads. Information and Compu
tation, 93(1), 1991.

A Formal Approach to the Specification of Java
Components

S. Cimato and P. Ciancarini

Dipartimento di Scienze dell'Informazione,
Universita di Bologna

Mura Anteo Zamboni 7,
I - 40127 Bologna, Italy

Abstract. The goal of our work is to provide a formal notation for the
specification and the verification of software components and a method
ology for the design of software architectures for Java-based applications.
We introduce an algebraic style of specification for modules written in
Java, and explore the use of such a notation for the definition of com
ponents to be successively employed in the building of concrete appli
cations. We also provide an architectural language which exploits the
components descriptions based on the previous approach and provides a
formal framework where it is possible to state and analyze system global
properties.

1 Background

We are working in the field of distributed software architecture investigating
formal methodologies for the specification and the design of distributed applica
tions and techniques for their analysis. Our research on Java has been conducted
towards the development of a methodology for the formal specification and ver
ification of Java components and architectures. At this aim, we have been de
veloping a formal framework for the design and the analysis of Java component
based applications which is based on an interface specification language for the
component descriptions and an architectural language to combine such compo
nents. Furthermore we provide a formal semantics for Java programs, considering
all the innovative features of the Java framework such that the resulting model
allows the dynamic analysis of Java applications; for this purpose we rely on a
"chemical" framework [BB92] which provides facilities for modeling concurrency
and distribution [Cim99a].

The motivation and the starting point of our research was the recognition that
while Java is becoming one of the most used programming languages, software
designers have few specific tools and techniques at their own disposal to formally
reason on the resulting system. Generic specification languages, such as Z or
UML, can be effectively exploited as well as architectural description languages,
such as Wright [All97] or Darwin [MDEK95], but the generality ofthe model does
not catch all the features of the underlying programming language (Java) and
the abstractions needed to make formal descriptions practical and effective. On

the other hand, practical approaches for component-based software development
based on Java such as JavaBeans [Sun96], or Oll other languages (VisualBasic
or Delphi), have a restricted application domaill alld offer frameworks for the
composition of software modules but suffer from the lack of a well-understood
formal foundatioll.

An open questioll to be answered is how practical developmellt call be illflu
enced by the application of formal developmellt methodologies and how much
the additional costs in terms of time and money produced by the formaliza
tion efforts are repayed by the resulting product. The benefits expected from
the application of formal methods are the removal of ambiguities in the design
and the capability offered to the designer for the analysis alld the verification of
properties of the desigll. The capability to reasoll about Java programs and to
state the correctness of the implementations with respect to their specification
is of increasillg importance especially for applications where safety is a criti
cal requirement, such as e-commerce or secure document illterchange. We need
lightweight notations and methodologies to reduce as much as possible the im
pact of the integration of the formalization in the software development process.
Among the maill advantages coming from the integration of a formal approach
in the software development process, we expect to:

enhance the reuse of both specifications alld code relying Oll the modularity
present in the Java programming language;
provide efficient and user-friendly tools to reason Oll alld verify program
properties;

Reuse as a goal of component based software development is also hampered
by the poor use of formal notations. Informal or under-specified software com
ponents force designers to look into implementatioll details to consider their
behavior and the side effects they entail Oll the whole system. We expect the
workshop to focus on the state of the art of the notations, techniques and tools
available for Java programming and to discuss how Java programmers can benefit
from a component oriented approach supported by a formal framework allowing
analysis of component and architectural properties.

2 A formal framework for Java components and
architectures

The descriptioll of a system as composition of reusable and reconfigurable com
ponents has a llumber of benefits, coming from the possibility for the specifier
to subdivide complex problems in smaller and easier solvable subproblems and
to reason separately on organizational and functional aspects of a system. The
architectural level of design deals with the high level organization of compu
tational elements and their interactions. Our notion of software architecture
is substantially based on the Shaw and Garlan's model [SG96]. which is more
suitable for a practical integration of architectural design within the software

development process. We recognize components and connectors as basic ele
ments of an architectural description. Configurations combining the instances of
those computational elements and defining their interaction, provide a complete
description of a system architecture.

Complex applications may be thought as collection of components interacting
via connectors, which collaborate to achieve a result. Once selected the architec
tural model we must also define a methodology guiding the design of components
and a formal framework making developers able to reason about the properties
both of the components and of the whole application. For this purpose we in
troduce (in the next section) a formal specification language which allows us to
specify each component by supplying both an algebraic description of its internal
state and a specification of the interface it provides to the external environment.
Behavioral specifications alone are insufficient to determine the kind of a system
being specified, since different kinds of systems can exhibit the same observable
behavior [Lam89]. The description of the functiona;l aspects of each operation
must be integrated with specific interface information describing how the oper
ation may be invoked, specifying for example for each function the number and
the types of its arguments [Win87].

3 Ljala: a specification language for Java components

The Larch Java interface language (Ljala for short), has been developed building
on the Larch approach to specification [GH93]. The peculiarity of Larch with
respect to other specification languages is the "two tiers" (or layers) approach
it uses. The kerne! tier, language-independent, is based on the Larch Shared
Language, an algebraic specification language which provides a mathematical
vocabulary defining the properties of useful abstractions like sets, stack or other.
The other tier, language dependent, is based on a behavior interface language
in which predicates on pre and post conditions describe the effect of the exe
cution of the operations on the state of a program module [GH93,Win87]. The
advantage of such an approach is that separating the specifications of abstrac
tions from the specifications of the state transformations, reuse and darity are
improved. The algebraic components can be easily included in different applica
tions, since they do not depend on the particular state or model of computation
or programming language. Having an interface specification language dose to
the target programming language makes the component designer able to reason
in terms of language dependent issues and eases the task of the implementor.

Since in Java classes are the basic unit of programming, in Ljala each specifi
cation module specifies the interface and the behaviour of a dass. The syntax of
a dass dedaration is much the same of a Java dass dedaration, consisting of a
dass header and a body. The header denotes the modifiers and the name of the
class. The body may contain an uses dause which defines the traits that are
used in the class providing the vocabulary to specify its behavior. An optional
invariant dause specifies a property that must be true for all objects of the
dass, restricting the space of the abstract values for that dass. Methods are

specified by providing a header which gives the interface in Java syntax and a
body which provides the behavior in terms of state changes. Each method body
is composed of a sequence of requires, modifies, ensures clauses which intro
duce the preconditions for the execution of the operation, the list of modifiable
objects and the postconditions which must hold after the operation, respectively.
We model Java concurrent features by providing each object model with a wait
ing set, where threads waiting for synchronization conditions to hold are added
and with a lock to support mutual exclusion. An additional when clause pro
vides the mechanism for checking synchronization conditions which must hold
when an operation is waiting to be scheduled.

3.1 Specification of components and connectors

According to [Nie95}, a software component is an "abstraction with plugs", i.e.,
a component encapsulates both data and independent behaviour with a well
defined way to interact with the external environment and the other compo
nents. In our notation, the abstraction contained in the component definition
is expressed by the algebraic part of the specification provided by the included
traits. Designers can enrich the component description, setting out the basic
functionalities and the desired properties. The interface specification expressed
by the Ljala module provides the description of the component behaviour in
terms of the allowed Operation.

To give an explicit specification of interactions between components, we con
sider connectors as first class entities in the design of the system. Even if con
nectors are not strictly necessary from a logical point of view (they could be
regarded as particular types of components), from a methodological point of
view, connectors match the abstractions which designers use to describe system
architectures. They correspond roughly to the lines connecting the computa
tional elements in the informal diagrams which usually provide the description
of a system; formalizing their role in the overall design and providing them with
a well defined semantics, support the understanding and the analysis of the be
havior of the system [Agh98,All97]. Connectors bridge the gap between the low
level control mechanism offered traditionally by the target programming lan
guage, in our case Java, and the high level coordination mechanism needed to
capture interaction patterns between autonomous objects.

Traits for a generic component and a generic connector respectively are given
in figure l. Basically, components and connectors are both active elements, each
owning a set of ports and roles, respectively. A port is an interface between each
component and its environment; a role is an interaction point among participat
ing components. Starting from the traits for a generic component (connector),
more specific descriptions of components can be derived by extension and/or
parameterization of generic theories, exploiting the usual mechanism for the in
clusion or instantiation of theories. The idea is to provide a hierarchy of theories
whose leaves are the components (connectors) descriptions tobe effectively used
for the specification of the system architecture.

component:trait
includes Set(iport, Set{iport}), Set(oport, Set{oport])

component tuple of inports: Set{iport}, outports: Set[oport}

connector:trait
includes Set(irole, Set{irole}),Set(orole, Set[orole])
connector tuple of inroles: Set{irole}, outroles: Set{orole}

Fig. 1. Traits for generic components and connectors

3.2 Configurations

To define the interrelationships between cornponents and to give a description
of the overall systern obtained assernbling its cornponents, we need a further
level of specification. We propose a Ljala Architectural Language, which can be
used to specify the structure of a software system in terms of the configurations
of interacting Ljala components. A configuration module lists the instance of
design elernents which form our system, the Ljala modules which are used for the
specification and the attachrnents between ports of the components and roles of
the connectors. The structure of a configuration rnodule is showed in figure 2.

system-name:coniiguration
component:

!ist of component instances
connector:

!ist of connector instances
attached:

!ist of connections among ports and roles
behaves:

activation rules
properties:

topological constraints

Fig. 2. Structure of a configuration module

The configuration rnodule has the task to define the topology of the system
being built. The component and connector parts of the rnodule serve to narne
the instance of the components and the connectors, respectively, used for the
description of the systern. For each type a trait must have been provided. The
attached part lists the connections among components and connectors. Each

component may be reused in the same system by defining multiple instantiations
and opportunely connecting their ports through the connectors constituting a
system. A number of behave clauses can be stated for each component in order
to specify its behaviour. Each clause is composed by a precondition on the state
of the component which acts as a trigger for the activation of the rule. If the
preconditions hold, the operations described in the remaining part of the rule
are enabled and can be executed by the object scheduler; each operation is then
performed according the specification provided in the behaviour module of the
component.

4 Verification

The use of Ljala notation in the specification phase simplifies considerably the
verification process since its syntax is strictly related to the target programming
language. Namely, Ljala interfaces specifications can be directly translated in
Java, making the bridging of the gap between specification and concrete imple
mentation an easier task for software developers.

Ljala specifications provide a formal model for components and applications
obtained as suitable composition of interacting components. We are interested in
verifying properties and invariants which are contained in the specifications and
which can be tested with respect to the theories resulting from the combination of
the traits describing the included components. At this aim, inspection and proof
of properties are possible by using the Larch Prover tool [GG91), an interactive
theorem prover designed for LSL modules. Detection of inconsistencies ensures
that the given specifications or the given combination of elements does not fulfill
the requested properties of violates the asserted invariants.

On the other hand we would like to be able to prove the correctness of the im
plementations with respect to the Ljala specifications. For this purpose we need
a formal model of the programming language which is provided us by the oper
ational semantics for Java described in [Cim99a]. The state of the Java Virtual
Machine executing the program is modeled by a tuple C, M, I' which describes
the set of valid class declarations loaded into runtime, the memory where values
can be retrieved and the current environment where bindings among variables
and values are stored, respectively. Execution of Java statements is modeled by
a set of transition rules which describe the modification of the state caused by
the performing of the operation. A Java class, which must be structured as
the given specification, is a consistent implementation of the specification if for
every operation, each method invocation occurred in a state S = <C, M, I' which
satisfies the assertions in the formula 1Pr causes a transition of the JVM in a
state S' which satisfies the assertion in 1/Jm /\ 1/Je:

f or every S s. t. S I= 'l/Jr, then S' != 'I/Jm /\ 'l/Je holds

where 'l/Jr,'l/Je, and 'l/Jm are pre, post and modifies conditions respectively ex
pressed in the Ljala specification. Intuitively a state S satisfies a formula 'lj; if,
after have substituted the current values in the state with the abstract values

they represent, the formula is still valid in the equational theory of the traits
included in the module. To relate the concrete values manipulated by the Java
program with the abstract values which are in the specification we must provide
an abstraction function [LG86,Lea91], which maps each value of the implemen
tation type to the abstract value of the corresponding sort. To state that the
formula 'l/; is satisfied in a state S, the formula 'l/;s, obtained after the replacing
of the variables contained in 'l/; with the abstract values corresponding to the
current values in state S, must be verified in the equational theory of the speci
fication. Let us denote with T the theory of all the traits used by the interface
specification module, then:

meaning that 'l/;s must be a logical consequence of the assertions in T, i.e.
'l/;s is true for every model of the axioms in T.

5 Conclusion

The decomposition of complex software systems in a collection of easy com
binable computational elements with well defined responsibilities has a num
ber of benefits in a reuse-oriented development process. In our approach, each
component specification integrates both the description of its interface and its
functional behavior supported by an algebraic model in which a more abstract
description can be given. Those descriptions may be used as the basis for the
analysis and as a guide for the designers which have to produce the implemen
tations of the components and to integrate the different parts of the system to
work together. Differently from other approaches based on very abstract nota
tions such as Z [AAG95], CSP [AG97,All97] or the n-calculus [MDEK95], Ljala
notation achieves an acceptable compromise between formality and practice, pro
viding at the same time both a formal framework where it is possible to reason
on the system properties, and an easy way to refine a specification into an imple
mentation. In effect, the overload on the development process due to the formal
ization effort has to be balanced by the benefits gained in terms of clearness of
the design and analysis capabilities offered to the designers. This is particularly
true for reusable software components, since the effort to write formal specifi
cations is largely repayed from having complete models which ease their reuse
in the building of new applications. On the other hand, Ljala can be used as an
"annotation" language [GMP90,LBR98] for Java classes providing a powerful
technique to add formal documentation to existing software. Documenting dass
libraries, frameworks and Application Programmer Interfaces (the JavaBeans
framework can be efficiently modeled in our notation [Sun96,Cim99b]), Ljala
formalism and, more in general behavioral interface languages, provides a way
to construct practical and effective formal specifications.

References

[AAG95] G. Abowd, R. Allen, and D. Garlan. Formalizing Style to Understand
Descriptions of Software Architecture. ACM Transactions on Software En
gineering and Methodology, 4(4):319-364, October 1995.

[AG97] R. Allen and D. Garlan. A Formal Basis for Architectural Connection. ACM

[Agh98]

[All97]

[BB92]

Transactions on Software Engineering and Methodology, 6(3):213-249, June
1997.
G. Agha. Compositional Development from Reusable Components Requires
Connectors for Managing both Protocols and Resources. In Workshop on
Compositional Software Architectures, January 1998.
R. J. Allen. A Formal Approach to Software Architecture. PhD thesis,
School of Computer Science, Carnegie-Mellon University, Pittsburgh, PA,
May 1997.
G. Berry and G. Boudol. The Chemical Abstract Machine. Theoretical
Computer Science, 96:217-248, 1992.

[Cim99a] S. Cimato. A Methodology for the Specification and Verification of Java
Components and Architectures. PhD thesis, Dept. of Computer Science,
University of Bologna, Italy, February 1999.

[Cim99b] S. Cimato. Specifying component-basedjava applications. In Proceedings of

[GG91]

[GH93]

Third International Conference on Formal Methods for Open Object-Based
Distributed Systems FMOODS'99, Florence, Italy, March 1999.
S. Garland and J. Guttag. A guide to LP, the Larch Prover. Technical
Report RR 82, Digital Equipment Corporation, Systems Research Center,
Palo Alto, CA, December 1991.
J. Guttag and J. Horning. Larch: Languages and Tools for Formal Specifi
cation. Springer-Verlag, Berlin, 1993.

[GMP90] D. Guaspari, C. Marceau, and W. Polak. Formal Verification of Ada
Programs. IEEE Transactions on Software Engineering, 16(9):1058-1075,
September 1990.

[Lam89] L. Lamport. A simple approach to specifying concurrent systems. Commu
nications of the ACM, 32(1):32-45, January 1989.

[LBR98] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML:

[Lea91]

[LG86]

A Behavioral Interface Specification Language for Java. Technical Report
TR-98-06a, Iowa State University, 1998.
G. T. Leavens. Modular Specification and Verification of Object Oriented
Programs. IEEE Software, 8(4):72-80, July 1991.
B. Liskov and J. Guttag. Abstraction and Specification in Program Devel
opment. MIT Press, Cambridge, MA, 1986.

[MDEK95] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying Distributed
Software Architectures. In W. Schafer and P. Botella, editors, Proc. 5th
European Software Engineering Conf. (ESEC 95), volume 989 of Lecture

[Nie95]

[SG96]

[Sun96]
(Win87]

Notes in Computer Science, Springer-Verlag, Berlin.
0. Nierstrasz. Component-Oriented Software Technology. In 0. Nierstrasz
and D. Tsichritzis, editors, Object Oriented Software Composition, pages
3-28. Prentice-Hall, December 1995.
M. Shaw and D. Garlan. Software Architecture. Perspectives on an Emerg
ing Discipline. Prentice-Hall, 1996.
Sun Microsystems Inc. Java Beans 1.0, October 1996.
J. Wing. Writing Larch Interface Language Specifications. ACM Transac
tions on Programming Languages and Systems, 9(1):1-24, January 1987.

Formal Refinement and Proof of a Small Java
Program

Tony Clark

Department of Computing, University of Bradford, UK, BD7 lDP
a.n.clark©scm.brad.ac.uk

Abstract. The main components of a formal technique for specifying,
refining and proving properties of object-oriented programs are pre
sented. The technique is based on a >.-notation whose semantics is given
using standard categorical constructs. An example of the formal devel
opment of a small Java program is presented.

1 Introduction

The aim of this work is to provide a rigorous framework for step-wise object
oriented software development which supports specification, refinement, proof
and implementation. The framework takes the form of a categorical semantics
of object-oriented system behaviour and a design language based on >.-notation.

This paper gives an overview of the main components of the framework using
a simple system requirements and producing a Java program. It is not possible to
give a full analysis of the approach in a paper of this length, the reader is directed
to work by the author in the area of 00 systems: [Cla96] [Cla94] [Cla97], [Cla98],
[Cla99a], [Cla99b] and [Cla99c] and related work: [Ken99], [Ken97], [Eva98],
[Eva99], [Bic97], [Lan98] and [Rui95] in formal methods for object-oriented de
velopment. The reader is directed to [Bar90), [Ehr91], [Gog75], [Gog89], [Gog90],
[Pie96] and [Ryd88] for related work using category theory in systems develop
ment.

2 Development Framework

An object state is <a, r, p> where a is the object's type, r is the object's identity
and p is a partial function mapping attribute names to values. A message is
<rs, Tt, v> where r8 is the identity of the source object, Tt is the identity of the
target object and v is a data value. Object-oriented system computation occurs
. f ·t· lt" f . " (J,O) m terms o state trans1 10ns resu mg rom message passmg: ... --+ .01 --+
E 2 --+ ... in which a set of object states E 1 receives a set of input messages I
producing a transition to states E 2 and output messages 0. Since the behaviour
of a system design may be non-deterministic it can be represented as a graph
whose nodes are labelled with sets of object states and whose edges are labelled

with pairs of sets of messages. This leads to a category Obj whose objects are
graphs and whose arrows are graph homomorphisms.

System construction is described by standard categorical constructions in
Obj. Given two behaviours 0 1 and 0 2 in Obj the product 0 1 x 0 2 exhibits
both 0 1 and 0 2 behaviour subject to structural consistency constraints. The co
product 0 1 + 0 2 exhibits either 0 1 or 0 2 behaviour. Equalizers, pull-backs and
push-outs can be used to express constraints such that two or more behaviours
are consistent. Computational category theory provides an algorithm for com
puting the behaviour of a system of inter-related components using limits.

Any behaviour O can be viewed as a category in which the objects are be
haviour states and arrows are sequences of message pairs. Category-hood fol
lows from: every object E has an identity arrow 0; and for every pair of arrows
f : E 1 -+ E2 and g : E 2 -+ E3 there is an arrow g o f : E 1 -+ E3 which is con
structed as f ++-g; and the associativity of o follows from the associativity of *·
A refinement R is expressed as adjoint functors R : 0 1 -+ 0 2 and U : 0 2 -+ 0 1 :

The diagram 1 states that performing a computa
tion in the source object is the same as translating
the source state, performing the computation in
the target object and then translating the target
state. Given any E 1 the refinement is sound if for
every f there exists a g and is complete if for every
g there is an f [Sab97].

Object-oriented designs are expressed using a >.-notation [Lan64] whose seman
tics is given by Obj. A behaviour is denoted by a functions M and is sup
plied with type, identity, attribute and message information: M(a)(r)(v)(I) =
LJ { (P;, 0;)} where P; are replacement behaviours and O; are corresponding

i=l,n
output messages. This approach is essentially the same as that of Actor Theory
[Agh86] [Agh91]. The basic model of message handling is asynchronous, how
ever syntactic sugar can be used to express synchronous message passing. The
following example shows how a behaviour function (left) which synchronously
sends a message e1 is translated to a behaviour function (right) which uses a
replacement wait:

letrec agent(o)(-r)(o-)(m) ==
case m of

p1-+

end

let p2 +- e1
in e2

letrec agent(o)(-r)(o-)(m) =
case m of

p1 -+ (agent(o)(-r)(o-) + wait, ei)
whererec wait(m) =

end

case m of
P2-+ e2
eise (wait, 0)

end

(1)

3 Development of a Java Program

The requirements for a library systern are defined. An initial object-oriented
design is constructed. A single refinement step is perforrned and verified. A simple
system property is established. The design is analysed prior to translating it to
an implementation in Java (appendix A).

Software to control a library is required. The library has readers who may
borrow copies of books. At any given time each reader has a number of books on
loan. New readers may join the library at any time. The library has a number
of copies of books. Each book has a unique title. A copy is either on the shelf in
the library or is being borrowed by a reader. Libraries operate a shares reader
ship policy whereby joining one library permits readers to borrow books at all
participating libraries.

A library system consists of a single object with a state (R, B) consisting of
readers Rand books B. Each reader is a pair (n, C) where n is a name and C
is a set of borrowed copies. Each book is a pair (n, i) where n is a name and i is
the nurnber of shelved copies. Initially we treat R and B as lookup tables. Let
T be a table with keys dom(T), lookup is T • k, extension is T[k H v]. Adding
table values is defined as follows (removing is sirnilarly defined):

T[k] = { T[k H T • k U { v }] when isSet(T • k)
EB v - T[k H T • k + v] when islnt(T • k)

Initial system behaviour can be decornposed into the success and failure modes.
The design operator + allows us to define these modes separately and then
combine them. Success rnode is defined as follows:

letrec libOk(a)(T)(R,B)(m) =
case m of

addReader(n)-+ (libOk(a)(T)(R[n >-+ 0), B), 0) when n (/. dom(R)
addBook(n)-+ (libOk(a)(T)(R, B[n >-+ O]), 0) when n (/. dom(B)
addCopy(n)-+ (libOk(a)(T)(R,B[n EB 1]), 0) when n E dom(B)
borrow(n1, n 2)-+ (libOk(a)(T)(R[n1 EB n2), B[n2 e 1]), 0)

when n1 E dom(R) & n2 E dom(B)
return(n1, n 2)-+ libOk(a)(T)(R[n1 e n2), B[n2 EB 1]), 0)

when n1 E dom(R) & n2 E dom(B)
else (libOk(a)(T)(R,B),0)

end

Given a state (R, B) in the source behaviour, a refinement acts as identity on
R and transforrns B = { n 1 H i 1 , ... , nk H ik} into a set of object identifiers
{,1, ... ,,k} and introduces new objects , 1 H (n1,i1), ... ,,k H (nk,ik) to the
systern state. A book behaviour is as follows:

letrec book(a)(T)(n,i)(m) =
case m of

<T', T, getName> -+ (book(a)(T)(n, i), { <T, T1
, n>})

borrow-+ (book(a)(T)(n,i-1),0) when i > 0
addCopy-+ (book(a)(T)(n, i + 1), 0)
eise (book(a)(T)(n, i), 0)

end

The successful library behaviour is modified to take account of book objects.
The initial design uses set membership to test for the existence of a book. This
must now be implemented as a private method of the library:

<T', T,fi,ndBook(0, n)> -+ (libOk(a)(T)(R, B), { <T, T1
, noBook>})

<T', T, findBook({ o} US, n1) > -+
let n2 +- <T, o, getName>
inif n1 = n2

then (libOk(a)(T)(R, B), { <T, T1
, book(o)>})

else (libOk(a)(T)(R, B), { <T', T, findBook(S, ni)>})

When a library receives an addBook message with a name n which does not
already exist then a new book object is created. We assume that ," is a new
object identifier and that ß is the type tag for books:

addBook(n)-+
let noBook +- <T, T,fi,ndBook(n)>
in (libOk(a)(T)(R, B U {T"}) x book(ß)(T")(n, 0), 0)

To verify the refinement step the following source state is used: {, H (R, B)}
where R is a set of readers and B is the set { n 1 H i 1, ... , nk H ik}. The
corresponding target state is {, H (R, T)} U O where T is the set of object
identifiers {,1 , .. -,,k} and O is the state {,1 H (n1,i1), ... ,,k H (nk,ik)}.
The refinement of addBook is sound and complete when the following diagram
commutes (see diagram 1):

addBook{n)
{7!--+(R,B)} ------

!
{ T >-+ (R, T)} u O -----

CoaddBook(n)

{T >-+ (R,B[n >-+ O])}

1
{T 1--t (R,TUT")}U

O[T" >-+ (n, O)]

(2)

A proof of 2 is by induction on the size of the set B and the length of the
computation c. Further refinement identifies a dass of behaviours for reader and
adds a private method findReader to the library.

The design language is given a formal semantics in terms of standard con
structions in Obj. A design language proof theory provides a framework for
establishing program properties. The proof theory views a behaviour function
as a mapping from input messages and states to output messages and states.
Proofs typically are by induction on the length of a messages stream. Since re
finement is formally defined, it is possible to show that properties are preserved
by refinement transformations.

Consider the following theorem. For any library (R, B), if b is a book bor
rowed by a reader then b E dom(B). The proof is by induction in the length of
the input message stream. The theorem holds for library (0, 0) and the empty

stream. Assume by induction that the theorem holds for library (R, B) and
messages ms. Now show by case analysis on m that the theorem holds for all
messages ms +t-[m]. We condude that the theorem holds.
Consider the behaviours book and reader. Both
provide a state component n which is used to in
dex into collections of behavioural instances using
the message getName. This indicates that there is
a common behaviour named and projection mor
phisms. In an implementation named will occur as
a super-dass of both book and reader.

named

/~
book reader

Consider a behaviour functor F 1 which acts on system states by projecting all
book objects to equivalent named objects by forgetting the copy count. Fi acts
as identity on all arrows except that findBook(O,n) is replaced by find(O,n),
book(b) is replaced by found(b) and noBook is replaced by notFound.
In order for F1 to be valid, it must be
sound and complete with respect to in
dexing into collections of books. There
fore, for any system state J;, the diagram
on the right must commute. Similarly, a
behaviour functor F2 is defined to project
states and calculations involving indexing
readers. This leads us to replace the be
haviours for findBook and findReader with
a single behaviour find.
The shared readership policy is expressed as a
pull-back S on a diagram showing two (or more)
libraries which project onto a behaviour cell con
taining their readers. The pull-back ensures that
both libraries have the same readers. There are a
number of implementation choices for the shared
readership policy whose behaviour is defined by S.
If the programming language supports shared data
between dass instances (such as static in Java)
then the R component of a library dass may be
shared.

References

[findBook(O, n)] +t-c
J; -------- J;

j
Fi (J;)[find(O, n)] +t-F

1
(c)Fi (J;)

cell

[Agh86] Agha, G.: Actors: A Model of Concurrent Computation in Distributed Sys
tems. MIT Press, 1986.

(Agh91] Agha, G.: The Structure and Semantics of Actor Languages. In proceedings
of REX School/Workshop on Foundations of Object-Oriented Languages, LNCS
489, Springer-Verlag, 1991.

[Bar90] Barr, M. & Wells, C.: Category Theory for Computing Science. Prentice Hall
International Series in Computer Science, 1990.

[Bic97] Bicarregui, J., Lano, K. & Maibaum, T.: Towards a Compositional Interpreta
tion of Object Diagrams. Technical Report, Department of Computing, Imperial
College, 1997.

[Cla94] Clark, A. N.: A Layered Object-Oriented Programming Language. GEC Jour
nal of Research, 11(3), The General Electric Company p.l.c., pp 173 - 180, 1994.

[Cla96] Clark, A. N.: Semantic Primitives for Object-Oriented Programming Lan
guages. PhD Thesis, QMW, University of London, 1996.

(Cla97] Clark, A. N. & Evans, A. S.: Semantic Foundations of the Unified Modelling
Language. In the proceedings of the First Workshop on Rigorous Object-Oriented
Methods: ROOM 1, Imperial College, June, 1997.

(Cla98] Clark, A. N.: Type Checking OCL Expressions. Technical Report, 1998.
(Cla99a] Clark, A. N.: A Semantics for Object-Oriented Systems. Presented at the

Third Northern Formal Methods Workshop. September 1998. To appear in BCS
FACS Electronic Workshops in Computing, 1999.

[Cla99b] Clark, A. N.: A Semantics for Object-Oriented Design Notations. Technical
report, submitted to the BCS FACS Journal, 1999.

(Cla99c] Clark, A. N.: A Semantic Framework for Object-Oriented Development. Tech
nical report, submitted to the L'Objet journal special issue on formal object
oriented development, 1999.

[Ehr91] Ehrich, H-D., Goguen, J. A. & Sernadas, A.: A Categorical Model of Objects as
Observed Processes. In the proceedings of REX School/Workshop on Foundations
of Object-Oriented Languages, LNCS 489, Springer-Verlag, 1991.

[Eva98] Evans, A. S.: Reasoning with UML Class Diagrams. In WIFT '98, IEEE Press,
1998.

[Eva99] Evans, A. S. & Lano, K. C.: Rigorous Development in UML. To appear in the
proceedings of the ETAPS '99, FASE Workshop, 1999.

(Gog75] Goguen, J.: Objects. Int. Journal of General Systems, 1(4):237-243, 1975.
[Gog89] Goguen, J.: A Categorical Manifesto. Technical Report PRG-72, Programming

Research Group, Oxford University, March 1989.
[Gog90] Goguen, J. A.: Sheaf Semantics for Concurrent Interacting Objects. Mathe

matical Structures in Computer Science, 1990.
(Ken99] Kent, S. & Gil J.: Visualising Action Contracts in Object-Oriented Modelling.

To appear in the IEE Software Journal, 1999.
(Ken97] Kent, S.: Constraint Diagrams: Visualising Invariants in Object-Oriented

Models. In the proceedings of OOPSLA 97, ACM Press, 1997.
(Lan64] Landin P.: The Next 700 Programming Languages. Communication of the

ACM, 9(3), 1966, pp 157 - 166.
[Lan98] Lano, K. & Bicarregui, J.: UML Refinement and Abstraction Transforma

tions. In the proceedings of the Second Workshop on Rigorous Object-Oriented
Methods: ROOM 2, Bradford, May, 1998.

(Pie96] Piessens F. & Steegmans E.: Categorical Semantics for Object-Oriented Data
Specifications. In Formal Methods and Object Technology, (eds.) Goldsack, S. J.
& Kent, S. J., Springer-Verlag, 1996, pp 302 - 316.

[Rui95] Ruiz-Delgado, A., Pitt, D. & Smythe, C.: A Review of Object-Oriented Ap
proaches in Formal Specification. The Computer Journal, 38(10), 1995.

(Ryd88] Rydeheard, D. E. & Burstall, R. M.: Computational Category Theory. Prentice
Hall International Series in Computer Science, 1988.

[Sab97] Sabry, A. & Wadler, P.: A Reflection on Call-by-Value. ACM Transactions on
Programming Languages and Systems, 19(5), pp 111 - 136,1997.

A Library Implementation in Java

Each independent behaviour is defined as a Java dass. The state components
of the behaviour are defined as fields and the message handlers are defined as
methods. Any common behaviour is defined using inheritance. The main fea
tures are: the dass Named defines the common behaviour for readers and books;
attribute readers in Library is dedared static so that libraries implement the
shared readership policy; dass Library defines a method find that is used to
index both readers and books.

cla111 Named {

pnvate String name;
publie NBJ11od(String namo) { thia.namo"' na.me;
public String getNueO { return name; }

ch.1a Book e:i::tenda Named {

pnvo:te int copies = O;
public Book(String nuo) { super(name);}
public void borrov()
(

i1' (copios > 0)

coph11 :: copi•a - 1;
elle throv nov Error("no copiea left"):

public void 11.ddCopyO { copies "' copiu + 1;

clan Reader extenda Named {
privo.te Vector copiea = ne11 VectorO:
public Roader(String na.me,Vector copiu)
(

1uper(na.me);
this.copiea • eopies;

public void borrov(String name) { eopies.addElement(na.me);
public void ret(String nue) { copiu.removeElement(name):

class Library {
private atatic Vector readera • nev VectorO;
private Vector book:s = nev VoctorO;
public void addRoador(String nuo) { re11.dora.addEle111.ont(nov Reader(nll.llle,nev Voctor())); }
public void addBook(String nue) { book1. addElHent (nev Book(nue)); }

public void addCopy (St ring bookNu.e)
{

}

Book book., (Book)find(b00JcNu.o,boolu1);
ifCbooJc !" null)

book. addCopy () i

el,e throv nev Error("cannot find book") i

private Nuod !ind(String na.me,Voctor tablo)
(

}

Nuod nruaod „ null i
for(int 1 = O; (nruaed == null) H (i < table.1izeO): i++) {

Na.med n = (Nued)tablo.elHentAt(i);
it'(n.getNamo() .equals(nue))

ßlUIIOd = Dj

return na.med;

public void borrov(String readorNu.o,String bookNuo)
{

)

Reader roador = (Reader)t'ind(readerNue,ro11.den):
Book book • (Book)find(bookNa.me,booJc1):
if((roader !:oi null) 1: (book !=- null)) {

reader. borrov(bookNue);
book.borrovO:

} ehe throv nev Error("illegal nue in borrov") i

public void rot(String roaderNu.e,String booJcNue)
{

)

)

Reader reador = (Roader)!ind(readerNue,readen) i
Book book = (Book)find(bookNue,book1):
if((roader !• null) 1: (book ! 11 null)) {

reader .ret (bookName);
book. addCopy O ;

} else throv nov Error("illegal name in ret") i

Software Development with Object-Z, CSP and Java: A
Pragmatic Link from Formal Specifications to Programs

C!emens Fischer

University of Oldenburg
Fachbereich Informatik

PO-Box 2503, 26111 Oldenburg, Germany
fischer@inforrnatik.uni-oldenburg.de

Abstract. Object-Z and CSP are high level specification languages which of
fer powerful formal support for the design of distributed, communicating sys
tems. Java is an ideal implementation language for such systems. But develop
ing provably correct Java implementations from these specifications is notori
ously difficult. To bridge this gap we suggest to use Jass, which extends Iava
with assertions, as an intermediate language. These assertions can be generated
automatically from Object-Z and CSP specifications. This does not guarantee a
provably correct implementation, but allows an easy way of testing and linking
error messages directly to the formal specification.

1 Introduction

Java is well suited for designing distributed systems which must meet high correctness
requirements. But applicable methods for building distributed high quality systems are
not widely accepted nor available.

A pragmatic approach for better software quality is Meyer's 'design-by-contract'
[Mey97]. Tue idea is to write predicates that specify properties of systems into the code
and to check these predicates during run time.

Predicates at the beginning of a method (preconditions) describe the properties that
a user of a method must obey. In return, the developer of the code guarantees some
property (postcondition) at method termination.

Missing design-by-contract support in Java is discussed in SUN's !ist as bug num
ber 4071460. At the time of writing this paper, it's voted second by Java develop
ers in the 'Request For Enhancements' -!ist. Tue Jass (Iava with assertions) compiler
[Jas99,Bar99] overcomes this problem. Jass programs are normal Java programs aug
mented with assertions placed in specific comments. Tue compiler translates these as
sertions to Java statements that check the predicate during run time.

Design-by-contract, however, is limited to specifying functional, sequential aspects
of systems. lt is not possible to capture dynamic aspects of communicating distributed
systems and it cannot be used to provide high-level interface specifications that not only
hide functional implementation details but also conceal architectural design decisions
or underlying network technology.

Therefore we suggest a new link from the high level formal specification language
CSP-OZ [Fis97] to Jass.

CSP-OZ is a combination of Object-Z [DRS95] and CSP [Ros97]. Object-Z is
strong at specifying the state space and methods of a class in a predicative way. This
matches nicely the predicates used in a design-by-contract approach. But Object-Z has
a powerful type system, schema calculus and a toolkit framework that go far beyond
the predicate language used in Jass or Eiffel. lt is, however, weak at describing dy
namic aspects of distributed communicating systems. This loophole can be filled with
the process algebra CSP, which comes with many operators and a mature theory of
communicating, distributed systems. CSP, on the other hand, has no high level concepts
for the specification of data.

The combination CSP-OZ [Fis97] takes the best of these two worlds. lt is a wide
range specification language for complex distributed systems like telecommunication,
satellite, or rail-road systems. CSP-OZ has powerful methods for building provably cor
rect systems: like transformation mies and data refinement [FH97] or model checking
support [FW99]. In principle, it is also possible to transform CSP-OZ specifications
into code. However, all these tasks require expertise in using formal methods and tools
and require often significant interaction. This problem holds for many formal methods
and limits the chance for industrial success stories.

The key idea we present here, is to generate Jass assertions from CSP-OZ specifi
cations. This task can be automated given a CSP-OZ specification with implementable
data types. An overview of this method can be found in Fig. 1. The three ellipses CSP-

Theorem Proving
I - \

Transformation , .,,~-T _ Simulation
\ 1

CSP-OZ .. ,

""'Assertions

Model Checking ~
C2'1.s: - -i - ,,.

/

Assertions I / Code
I ,,.

i - /
Code1 i,

- - ~ manuaUinteractive

__.,..automatic

\
fode ,i

Fig.1. Overview over the Jass-Method

OZ, Jass and Java represent the three design levels. An initial CSP-OZ specification can
be transformed using verified mies. These steps can be, but don 't have tobe, proven cor
rect using model checking or theorem proving. If the data types match Java data types,
method headers and assertions can be generated automatically. The implementation of
a method body has to be done by hand. The architectural information of a specification
can also be translated automatically if it meets predefined design patterns. Otherwise
the architecture has tobe translated manually, too.

Tue step from CSP-OZ to Jass does not guarantee the correctness in a mathematical
sense. But it combines the advantages of a fully formal specification of a distributed
system with the simplicity of a design-by-contract approach. Errors can be found earlier
during testing and any assertion violation can be linked directly to the part of the formal
specification it stems from, making error interpretation much easier.

Furthermore, it can be introduced step by step in an evolutionary fashion into the
software development process. As indicated in Fig. 1, not all parts of the system have
to be specified using CSP-OZ. Some part, safety critical for example, can be designed
using CSP-OZ, but other part of the code can be developed traditionally using design
by-contract (Jass) or pure Java.

Tue rest of this paper sketches the development of an Internet based game to discuss
this idea in more detail.

2 CSP-OZ

As case study, we use a distributed version of the game Tic-Tac-Toe where two players
can play via the Internet. Tue following class models the basic data aspects of the sys
tem. We start with a high level specification of the user interface without any details of
the underlying distributed implementation we are aiming at.

CSP-OZ specifications begin with introducing the basic types and constants. We
need symbols, positions and the board.

Symbol ::= cross I circle
Pos== {l, 2, 3} x {l, 2, 3}
Board == Pos -i+ Symbol

- TTToata------------------------
~State ____ _

b: Board
lp: Pos

lp E dom b V b = 0

[Init
b = 0

_ wzn ______________ _

L1(lp)
w!: Symbol

(:lj: 1.. 3 • V i: 1 .. 3 • b(i,j) = w!) V
(:lj: 1 .. 3 • V i: 1 .. 3 • b(j, i) = w!) V
(p(l, 1) = w! /\ p(2, 2) = w! /\ p(3, 3) = w!) V
(p(3, 1) = w! /\ p(2, 2) = w! /\ p(l, 3) = w!)

Tue class TTToata has three schemas: State specifies the state space of the object.
A board (b) and the last position used (lp) are stored. Tue invariant lp E dom b (dom
is the domain of the function b) guarantees that a symbol is on the position lp. The
initial schema Ini t specifies the initial states. Tue operation schema win outputs the
winner of the game. lt might change the value lp (L1 (lp)) and outputs the value w !. Tue
behaviour of win is specified by the predicate below the line: Tue symbol w ! wins if it
occupies a vertical, a horizontal or one of the diagonal rows. As lp is not restricted by
this predicate, any value that fulfils the invariant is possible for lp after executing win.

The class TTTData has actually more operation schemas - like move and upd -
which are omitted for Jack of space here.

TTTcame------------------------
-Interface Declaration omitted-
main = moveA --+ (updB --+ B D winA --+ WIN)
B = moveB --+ (updA --+ main D winB --+ WIN)
WIN = updA--+ skip 111 updB--+ skip
TTTData
enable_winA ~ prewin[cross/w!]
effecLwinA ~ win ...

The complete behaviour of the system is specified in the class TTTcame· It has the
methods move, win and upd, one for each player A and B. The CSP processes main, B
and WIN specify the possible traces of the system: A move of A is followed by an
update of B 's board or (D) A wins the game. When someone wins, the screen is updated
in any order (III) before termination (skip).

TTTcame inherits TTTData; the actual behaviour of the operations is specified
with the enable and effect schemas which correspond somehow with pre- and postcon
ditions.1 E.g. the method winA should only happen, if cross is the winner.

The next step is to develop TTTDisGame, the distributed version of the game.
It's overall structure can be found in Fig. 2. The two objects TTT(A) and TTT(B)
communicate over a socket to provide the same service for the players as the class
TTT Game· Note that the Fig. 2 has a precise semantics based on the CSP operators for
parallel composition and hiding.
CSP-OZ offers powerful tools to
prove formally, that TTTDisGame is moveA

indeed a refinement of TTTcame·
However, CSP-OZ can beneficially
just be used as a specification lan-
guage to document the different de-
sign steps.
Tue structure of TTTDisGame can
already be implemented using Java.
But some data refinement steps on
the class TTT, which are not shown
here, have to be done to yield imple-
mentable Java data types.

3 Jass

sendtoA

winA.updA
moveB

winB.updB

11T(A) TIT(B)

rec.fromB ,\·cmdroB rec.fromB

Socket

Fig. 2. The System TTTDisGame

We now sketch the Jass implementation of the class TTT. Light fonts stem from CSP
OZ assertion generation; the parts written with normal black font (two lines in the code
below) have tobe provided manually. Beside the class invariant and ensure and effect

1 Check [Fis97 ,Fis98] for the relations between enable/effect predicates and pre-/postconditions.

predicates which are well known from design-by-contract, Jass has a new trace assertion
(which is generated from the CSP part of a class) to check dynamic aspects of systems
during run time.2 Note that the history of the game (h) and the number of moves (n)
are stored in addition to the CSP-OZ specification above. To generate the assertions,
the developer must provide the mapping from CSP-OZ names to Java expressions. E. g.
sendtoA from TTTDisGame is mapped to S. sendto in the Jass code below.

public class TTT {
private byte b[]= new byte[3] [3];
private byte h [] = new byte [9] ;
private byte lx, ly, n, sym;
/"

0
·• invariant n <= 9 **/

/** trace main = moveA -> S.sendto ->

S.recfrom -> (A.upd -> main I A.win -> SKIP) **/

public TTT(byte s) {

sym = s;

/** ensure (forall x:{l .. 3) # forall y:(1 .. 3}#
b[zj [y]==O); n==O; **/

}

public void move(byte x, byte y, byte s) {
/** require b[x] [y]==O *''i

b[x) [y]=s; h[n]=x+3*y+9*s; n = n+l

/** ensure nochange **/

Jass offers further features, we have not presented here, that are used for the translation
from CSP-OZ or to improve the quality of the hand written code.

- Two keywords can be used in postconditions: The construct changeonly (x, y)
specifies that only variables x and y are changed by the method. lt corresponds
to the Ll(x, y) expression used for Object-Z methods. Tue keyword nochange is
equivalent to changeonly () .
Tue object old is a copy of the state before the method invocation. Thus old. x
refers to the old value of the variable x.

- Tue quantifiers forall and exists can be used for quantification over finite
sets or any finitely enumerable object.

- Interference checks help to avoid any unwanted writes on global variables in the
hand written code.

- Loop-invariants and variants and simple assertions placed anywhere in the code
improve the quality of the handwritten code.
A J avadoc service extends class-invariants, pre- and postconditions and trace asser
tion with html-tags and moves them into the right position such that they are used
by Javadoc for the documentation generation.

2 This feature is the only one described here, that's not yet implemented in the Jass compiler
(Bar99).

4 Limitations

Tue idea proposed here cannot be used for all Java developments. Systems with dy
namic communication structures do not fit within the static channels from CSP-OZ. If
only a limited number of new communication links is created some tricks can be used
to model these systems, but CSP-OZ is not well suited for this purpose. E. g. to design
a site where many Tic-Tac-Toe players can meet and play is hard in CSP-OZ. Similar
problems occur if an unbounded number of new objects can be created. But it is always
possible to use CSP-OZ for designing a high level interface specification of the core
game and refine it towards a distributed implementation and to wrap the result with
Java code that organises the dynamic socket creation, for example. This part would not
be covered by the formal specification.

Concerning the communication mechanism, CSP-OZ generated assertions only make
sense with fully synchronised threads. Uncontrolled concurrent writing on global ob
jects is hard to marry with the synchronous communication mechanism of CSP-OZ.
However, unsynchronised threads are not used much in safety critical systems anyway.

Errors in the transformation of the architectural information from CSP-OZ cannot
be recognised by the translation procedure at the moment. But such structural errors
should occur early during basic testing.

5 Future work

Tue ideas presented here would fit nicely into a UML framework. Or tobe more precise,
a UML extension with an Object-Z like predicate language and a precise formal seman
tics could replace CSP-OZ as the starting formalism to generate Jass assertions from.
This could help to establish a closer link between UML specifications and prograrnms.
Furthermore this might be a solution to overcome the limited ability of CSP-OZ to deal
with dynamic communication structures.

Tue difficulties to pul Formal Methods into practice are well known. A helpful strat
egy to bridge that gap is the education of students. If every computer science graduale
knows something about applicable Formal Methods chances are better that they use
them while developing industrial software. I believe that the work I presented here is
not only usable but also nice to teach. Z and CSP are well known formal methods that
are supported by very good books. They cover important aspects of formal methods.
Tue combination of both can be easily motivated during a course. Mixing this with Java
attracts students very much. Worked out material would help to spread such a course.

Tue intermediate language Jass had tobe implemented as an extra tool. Design by
contract could be supported much better if it is part of the official language specification.
Therefor we try to persuade SUN to integrale Jass-like concepts into the official Java
language.

References

[Bar99] D. Bartetzko. Parallelität und Vererbung beim 'Programmieren mit Vertrag'. Master's
thesis, University of Oldenburg, May 1999. in German.

[BHL +96] J. Bowen, C. A. R. Hoare, H. Langmaack,E.-R. Olderog, and A. P. Ravn. A ProCoS

[DRS95]

[FH97]

[Fis97]

[Fis98]

[FW99]

[Jas99]

[Mey97]
[Ros97]

II Project Final Report: ESPRIT Basic Research project 7071. Bulletin of the EATCS,
59:76-99, 1996.
R. Duke, G. Rose, and G. Smith. Object-Z: A specification language advocated for
the description of standards. Computer Standardsand Interfaces, 17:511-533, 1995.
C. Fischerand S. Hallerstede. Data-Refinement in CSP-OZ. Technical Report TRCF-
97-3, University ofO!denburg, June 1997.
C. Fischer. CSP-OZ: A combination of Object-Z and CSP. In H. Bowman and J. Der
rick, editors, Formal Methodsfor Open Object-Based Distributed Systems (FMOODS
'97), volume 2, pages 423-438. Chapman & Hall, 1997.
C. Fischer. How to combine Z with a process algebra. In J. Bowen, A. Fett, and
M. Hinchey, editors, ZUM'98 The Z Formal Specification Notation, volurne 1493 of
LNCS, pages 5-23. Springer, 1998.
C. Fischer and H. Wehrheim. Model-checking CSP-OZ specifications with FDR. In
Proceedings of lntegrated Formal Methods (IFM), 1999. to appear.
Jass: Java with assertions, May 1999.
http://semantik.informatik.uni-oldenburg.de/-jass.
B. Meyer. Object-Oriented Software Construction. ISE, 2. edition, 1997.
A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1997.

A Personal Background

Clemens Fischer holds a master in computer science and one in mathematics from the
University of Oldenburg. Since 1995 he works in the group of E.-R. Olderog. He par
ticipated in the projects CoCoN (Provably Correct Communication Networks) with the
Philips Research Laboratories Aachen, Germany, and UniForM (Universelle Entwick
lungsumgebung für Formale Methoden) with the University of Bremen and the Elpro
GmbH. During this time he developed the language CSP-OZ. Tue work presented here
will be part of his PhD thesis.

The group ofE.-R. Olderog has a strong background in formal methods for concur
rent and real time systems with expertise in transformational design, graphical speci
fication of real time requirements, specification and code generation of PLC programs
and related real time applications, model checking and application of formal methods
to telecommunication systems.

The work presented here is influenced by the language MIX developed in the Pro
CoS project (Provably Correct Systems) [BHL +96]. MIX provides a detailed set of
transformation rules to develop OCCAM implementations from CSP-OZ like specifi
cations in a pure transformational way.

A case study in dass library verification:
Java's vector dass

(Abstract)

MARIEKE HUISMAN, BART JACOBS, JOACHIM VAN DEN BERG

Computing Science Institute, University of Nijmegen
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

{marieke,bart,joachim}©cs.kun.nl

Abstract. This paper presents a verification of an invariant property for the Vector dass
from Java's standard library. The property says (essentially) that the actual size of a vector
is less than or equal to its capacity. This property is maintained by all methods of the
Vector dass, and it holds for all objects created by the constructors of the Vector dass.
The verification relies on two tools: the proof tool PVS is used for reasoning, and the LOOP
tool is used for an automatic translation of Java into PVS. This project shows the feasibility
of tool-assisted verification for non-trivial Java dasses.

1 Introduction

One of the reasons for the popularity of object-oriented programming is the possibility it offers for
reuse of code. Usually, the distribution of an object-oriented programming language comes together
with a collection of ready-to-use dasses, in a dass library. Typically, these dasses contain general
purpose code, which can be used in many applications. Before using such dasses, a programmer
usually wants to know how they behave and when their methods throw exceptions. One way to
do this, is to study the actual code, but since this is time-consuming and requires understanding
all particular ins and outs of the implementation, this is often not the most efficient way. Another
approach is to study the documentation provided. As long as the documentation is dear and
concise, this works well, but otherwise one still is forced to look at the actual code.

An alternative approach is to verify suitable properties of standard dasses, and add these to
the documentation. Examples of properties that can be verified are termination conditions (in
which cases will a method terminate normally, in which cases will it throw an exception), pre
post-condition relations and dass invariants. Once sufficiently many properties have been verified,
one only has to understand these properties, and there is no need anymore to study the actual
code, in order to be able to use the dass safely.

This paper describes a case study verification of one particular library dass, namely Vector,
which is in the standard distribution ofthe programming language Java [AG97,GJS96]. The Vector
dass basically consists of an array of objects, which is internally replaced by an array of different
size, according to needs1 . The choice for the Vector dass is in fact rather arbitrary: it serves
our purposes well because it involves a non-trivial amount of code (induding the code from its
surrounding dasses from the library), and gives rise to an interesting invariant. However, other
classes than Vector could have been verified. The investment of formal verification for library
dasses can be justified, because these classes are used extremely often. The result of such a
verification may be detection of errors, and also improvement of documentation. This particular
verification effort did not bring forward errors in the Vector dass-which would have been unlikely,
given how often it is used. However, it pointed out several places where the documentation could
be improved.

This verification project makes use of two tools: the PVS [ORR+96,0RSvH95] proof tool,
developed at SRI, and the LOOP [JvdBH+98,HHJT98] translation tool. The latter is a compiler

1 Arrays in Java have a fixed size; vectors are thus useful if it is not known in advance how many storage
positions are needed.

which translates Java classes into logical theories in the higher-order logic of PVS. Development
of this tool is part of the so-called LOOP project, for Logic of Object-Oriented Programming,
in which all three the authors are involved. Initially, this project aimed at reasoning about class
specifications (see [HHJT98]), but a new branch of this project concentrated on reasoning about
Java [JvdBH+98].

The LOOP tool translates Java classes into appropriate definitions in the language of PVS, by
computing a semantical value [s], for each (legal) Java expression s. lt also generates auxiliary
definitions and results. Of particular importance for this paper are invariance definitions, which are
generated for each class. Actual verification benefits from auxiliary results, which can be used for
automatic rewriting. The series of logical theories that is generated when the compiler is applied
to a series of Java classes, can be loaded into PVS. After type checking, the user can state the
properties (s)he would like to prove about these Java classes, and subsequently (try to) prove
them, using the full power of PVS.

The underlying Java semantics that is used in the automatic translation is based on so-called
coalgebras [JR97,Rei95,Jac96]. These are special functions, which are useful for describing state
based dynamical systems. In the theory of coalgebras there are standard notions of invariance
and bisimulation. Java classes are translated into coalgebras, acting on a single (global) memory
(type), consisting of an infinite series of cells for storing objects. The language constructs of Java,
like if-else, while, try-catch-finally, are represented in PVS, in what we call a semantic
prelude. lt is standardly loaded in the theories of translated Java classes. More information about
the underlying semantics of Java can be obtained from [HJ99].

Current work in the LOOP project is on optimising the translation from Java to PVS, on
designing efficient proof rules, and on extending the compiler to generate theories which are un
derstood by the proof tool Isabelle [Pau94].

The contribution of the work presented in this paper is two fold. First of all, it shows the
feasibility of tool-assisted verification of (standard library) classes in Java. The verification results
could be used to improve the dass documentation and make it exact, in contrast to informal
explanations in ordinary language. Secondly, it is an illustration of the use (and capabilities)
of the LOOP translation tool [JvdBH+98]. Although the translation does not cover all of Java
yet-threads are not incorporated at the moment-it already allows reasoning about real-life Java
programs. This is the first time, such a large verification has been clone within this project. An
important point, worth making explicit, is that this verification is not about programs written
is some clean, mathematically civilised, abstract programming language, but about actual Java
programs with all their messy details. We consider it a challenge to be able to handle such details.

There are relatively few references on formal verification for object-oriented languages. Specific
logics for reasoning about object-oriented programs are proposed in [Boe99,AL97,Lei98]. When it
comes to Java, one can distinguish between (1) reasoning about Java as a language, and (2) rea
soning about programs written in Java. In the first category there is work on, for example, safety
of the type system [Nv098,Sym97], or bytecode verification [Pus99]. But the present paper falls
in the second category. There is related work in [PHM99], but in its current state of development,
this does not cover abrupt termination (caused, for instance by exceptions). Being able to reason
also about abrupt termination (see also [HJ99]) is crucial for the verification in this paper.

This paper is organised as follows. Section 2 describes the interface of Java's Vector dass and
its surrounding classes in the Java library, and how these classes are translated. Then, Section 3
discusses the invariant. Due to space restrictions we cannot really go into the details of how it is
established in PVS. Finally, Section 4 gives some conclusions and possibilities for future work.

2 Java's Vector dass and its translation to PVS theories

Java's Vector class2 is part of the j ava. util package. lt can be found in the sources of the JDK
distribution. The dass as a whole is too big to describe here in detail. lt contains three fields,

2 We use version number 1.38, written by Lee Boynton and Jonathan Payne, under Sun Microsystems
copyright.

2

public class Vector implements Cloneable, java.io.Serializable {
// fields

}

protected Object elementData[];
protected int elementCount;
protected int capacityincrement;

// constructors
public Vector(int initialCapacity, int capacityincrement);
public Vector(int initialCapacity);
public Vector ();

// methods
public final synchronized void copyinto(Object anArray[]);
public final synchronized void trimToSize();
public final synchronized void ensureCapacity(int minCapacity);
private void ensureCapacityHelper(int minCapacity);
public final synchronized void setSize(int newSize);
public final int capacity();
public final int size();
public final boolean isEmpty();
pubb.c final synchronized Enumeration elements ();
public final boolean contains(Object elem);
public final int indexDf(Dbject elem);
public final synchronized int indexDf(Object elem, int index);
public final int lastindexDf(Object elem);
public final synchronized int lastindexOf(Object elem, int index);
public final synchronized Object elementAt(int index);
public final synchronized Object firstElement();
public final synchronized Object lastElement();
public final synchronized void setElementAt(Object obj, int index);
public final synchronized void removeElementAt(int index);
public final synchronized void insertElementAt(Object obj, int index);
public final synchronized void addElement(Object obj);
public final synchronized boolean removeElement(Object obj);
public final synchronized void removeAllElements();
public synchronized Object clone();
public final synchronized String toString();

Fig. 1. The interface of Java's Vector dass

3

three constructors, and twenty-five methods. Most of the method bodies consist of between five
and ten lines of code. The fields in dass Vector are: an array elementData of type 0bj ect in
which the elements of the vector are stored, an integer elementCount which holds the number of
elements in the vector, and an integer capaci tyincrement which indicates the amount by which
the vector will be incremented when its size (elementCount) becomes greater than its capacity
(length of elementData). If capacityincrement is greater than zero, every time the vector needs
to grow the capacity of the vector will be incremented by this amount, otherwise the capacity will
be doubled. These fields are all protected, so that they can only be accessed in (a subdass of)
Vector.

Space restrictions prevent us from describing the constructors and methods of the Vector dass
in detail. Therefore, we refer to standard documentation [AG97] for more information, and we will
only !ist the interface of the Vector dass, see Figure l. The names and types give an idea of what
these methods are supposed to do.

The following Java dasses are used in the Vector dass, in one way or another: Cloneable,
Arrayindex0ut0fBoundsException, InternalError, CloneNotSupportedException, Integer,
0bject, StringBuffer, String, System (all from the java.lang package) Enumeration and
NoSuchElementException (both from the java.util package), and Serializable (from the
java. io package). These additional dasses are relevant for the verification, since they also have
to be translated into PVS. They are intertwined via mutual recursion.

To keep the size of generated theories maintainable, in the surrounding dasses only the methods
that are actually needed, are translated by the LOOP tool. In this way, l0K of Java code, exduding
documentation, remains to be translated. The LOOP tool turns it into about 750K of PVS code3 .

Java's 0bject and System dasses have several native methods. A native method lets a pro
grammer use some already existing (non-Java) code, by invoking it from within Java. In the Vector
dass two native methods are used, namely clone from 0bject, and arraycopy from System. We
insert our own PVS code as translation of the method bodies of these native methods.

Mutually recursive dasses do not present a problem for our Java semantics-although PVS
does not have mutually recursive types. The reason is that objects are handled as references, and
not as values. Thus, an occurrence of a dass or interface type in Java is translated into a special
type of references in PVS. The latter does not contain objects, but references to objects, given as
natural numbers pointing to memory cells in which objects are stored4 •

The current version of our LOOP tool handles practically all5 of "sequential" Java, i.e. Java
without threads. But the possible use of vectors in a concurrent scenario is not relevant for the
translation and verification of the Vector dass. The synchronized keyword in the method dec
larations is simply ignored.

3 The invariant for dass Vector

After translation of the Vector dass (and all surrounding dasses), the generated theories are
loaded into PVS and the verification effort starts. As suggested by the documentation in the
Vector dass, a dass invariant should be: the number of elements in the array of a vector object
never exceeds its capacity. Let us call this property Vectorintegrity?. Our goal is to show that
Vectorintegrity? is indeed an invariant.

The precise formulation of what it means tobe an invariant for a particular Java dass depends
on the interface, i.e. on the types of the methods in the dass. Briefly, an invariant is a predicate

3 This may seem a formidable size multiplication, but it does not present problems in verification; it only
means that typechecking takes a long time. Reductions in size may still be possible by making more
efficient use of parametrisation in PVS code generation.

4 More precisely: the type of references, as defined in PVS and used for the translation of Java reference
types, consists of either the null reference, or a proper reference containing a location in memory, given
as objpos?, a run-time type for the object stored in this location, given as clname?, and possibly a
length (for array references), given as len?.

5 lt does not cover static initialisers, for example.

4

on a state space, which, once it holds in a state x, will continue to hold in successor states x' of
x, obtained by method invocations. In Java, a method may either hang (i.e. not terminate at all),
terminate normally, or terminate abruptly. In the first case, no successor state is produced, but
in the second and third cases of normal and abrupt termination one does have a successor state.
Abrupt termination in Java is caused by either an exception, a return, a break or a continue.
Standard Java compilers (from the JDK) enforce that a method in a Java class can only terminate
abruptly because of an exception; break, continue and return abnormalities are caught inside
method bodies, resulting in a normal return state.

Thus, Vector Integri ty? is an invariant of class Vector, if for each method m (Al al, ... , An
an) of Vector one has: if Vectorintegrity? holds for a state x, then for all appropriately typed
actual parameters al, ... , an,

1. if running m with these parameters in state x terminates normally, resulting in a successor
state x', then Vector Integri ty? holds in x';

2. if running m with these parameters in state x terminates abruptly (because of an exception)
with successor state x', then Vectorintegrity? holds in x'.

The second requirement is fairly strong. Often a class invariant expresses certain integrity
constraints on the instance variables of the class. When a method throws an exception, the second
requirement demands that this should be clone before any data is corrupted, so that the invariant
still holds in the resulting (abnormal) state. This ensures that if an exception is eventually caught,
the resulting (normal) state still satisfies the invariant.

We also show that Vectorintegrity? holds after invoking a constructor of the Vector class.
In fact, the Vectorintegrity? predicate does not simply consist of a formalisation of the

statement: "the integer field elementCount is less than or equal to the length of the object array
field elementData". lt should also incorporate trivial, but essential properties like: elementCount
is non-negative, and elementData is a non-null reference. Without such additional properties,
it cannot be shown that Vectorintegri ty? is maintained by all methods. We shall describe
all ingredients in words, not in PVS language. Some of the points are closely related to the
representation of references in our semantics of Java.

The predicate Vectorintegri ty? consists of the following eight points, the last of which is
most interesting.

1. The number of elements of a vector, stored in the integer field elementCount, is always positive;
2. The array field elementData in which the data elements are stored is a proper, non-null

reference;
3. This reference contains a length field;
4. The elements of the array elementData are stored in allocated memory;
5. The elements are stored at positions that are different from the position of the array itself.
6. The array elementData is an array of Ob j ect 's;
7. For each element in the array, if it is a non-null reference, then its (run-time) class is a subclass

of 0bject.
8. The number of elements of a vector, stored in elementCount, is less than the length of the

array elementData.

Notice that this predicate Vectorintegrity? does not say anything about the value of the
field capacityincrement. One would expect it tobe positive, but this is not needed, since the only
time capaci tyincrement is actually used (in the body of the method ensureCapaci tyHelper),
it is first tested whether its value is greater than zero. The documentation for this field states that
"if the capacity increment is 0, the capacity of the vector is doubled each time it needs to grow",
but a more precise statement would be "if the capacity increment is 0 or less, ... ".

Let us consider an example of how we show that Vectorintegrity? is preserved by all the
methods in class Vector. The following fragment from the Vector class describes the method
copyinto together with its documentation.

5

Method/ constructor invocation
Vector(initialCapacity,

capacityincrement)
Vector(initialCapacity)
VectorO
setSize(nei.Size)
contains(elem)
index0f(elem)
index0f(elem, index)

lastindexDf(elem)
lastindexDf(elem,index)

elementAt(index)
firstElement ()
lastElement 0
setElementAt(obj,index)
removeElementAt(obj,index)
insertElementAt(obj,index)
removeElement(obj)

Terminates normally if
initialCapacity 2: 0

initialCapacity 2: 0
always
nei.Size 2: 0
elementCount > 0 implies elem is non-null
elementCount > 0 implies elem is non-null
elem is non-null and index 2: 0, or
index 2: elementCount
elementCount > 0 implies elem is non-null
elem is non-null and index < elementData. length,
or index < 0
0::; index < elementCount
elementCount > 0
elementCount > 0
0::; index < elementCount
0::; index < elementCount
0::; index::; elementCount
elementCount > 0 implies obj is non-null

Fig. 2. An overview of the termination conditions for some methods in dass Vector.

f**
* Copies the components of this vector into the specified array.
* The array must be big enough to hold all the objects in this vector.

*
* ©param
* ©since
*I

anArray
JDK1.0

the array into i.hich the components get copied.

public final synchronized void copyinto(0bject anArray[]) {

}

int i = elementCount;
i.hile (i-- > 0) {

anArray[i] = elementData[i];
}

This method will throw an exception in each of the following cases.

The field elementCount is greater than zero, and the argument array anArray is a null refer
ence;
elementCount is greater than zero, anArray is a non-null reference, and its length is less than
elementCount;
elementCount is greater than zero, anArray is a non-null reference, its length is at least
elementCount, and there is an index i below elementCount such that the (run-time) dass of
elementData [i] is not assignment compatible with the (run-time) dass of anArray.

The first of these three cases produces a NullPointerException, the second case produces an
ArraylndexOutDfBoundsException, the third one an ArrayStoreException6. This last case is
subtle, and is not documented at all; it can easily be overlooked. But in all three cases, no data is
corrupted, and the predicate Vectorlntegrity? still holds in the resulting (abnormal) state.

6 See the explanation in [GJS96], Subsection 15.25.1, second paragraph on page 371. This exception occurs
for example during execution of the following (compilable) code fragment.

Vector v = nei. Vector();
v.addElement(nei. 0bject());
v.copyinto(nei. Integer[1]);

6

Many Vector methods always terminate normally. These are: trimToSize, ensureCapacity,
ensureCapacityHelper,capacity,size, isEmpty,elements,addElement,removeAllElements,
clone, toString. The conditions for normal termination of the remaining methods (exduding
copyinto, discussed above) and of all three constructors are summarised in Figure 2.

In all these cases of normal termination, the predicate Vectorintegrity? holds in the result
state, if it is assumed to hold in the original state (in which the method was invoked). The
same holds for the cases of abrupt termination (caused by an exception). Thus we condude that
Vectorintegrity? is indeed an invariant of Java's Vector dass. In this verification we greatly
benefited from the use of high-level Hoare logic proof rules, tailored for Java [HJ99].

The verification of the dass invariant shows that the Vector dass documentation often is
inprecise or even incomplete. We think that it could greatly benefit from extending it with some
more formal results, on the basis of verification. Naturally, these formal statements can never
replace the informal documentation, but it can help to dearify and disambiguate it. These formal
statements could be added at several places, giving rise to an 'annotated Java' language (similar
to JML [LBC99]).

4 Conclusions

We have presented an overview of a verification in PVS of an invariant property of the Vector
dass from Java's standard library, as a case study in dass library verification. The case study is
part of a wider project for reasoning about Java programs [JvdBH+98]. lt shows the feasibility of
verification of dasses in Java with the use of modern and powerful tools. Formal verification results
can be used to improve dass documentation, since it is exact, in contrast to informal explanations
in ordinary language. Adding formal verification results to dass documentation could result in an
'annotated Java'. A formalisation of such a language is a topic of further research. Other topics of
further research are the further development of high-level proof rules, which ease the verification
process, and of techniques for dealing with late binding in such a way that proofs can be re-used.

References

[AG97]

[AL97]

[Boe99]

[GJS96]
[HHJT98]

[HJ99]

[Jac96)

[JR97]

K. Arnold and J. Gosling. The Java Programming Language. Addison-Wesley, 2nd edition,
1997.
M. Abadi and K.R.M. Leino. A logic of object-oriented programs. In M. Bidoit and
M. Dauchet, editors, TAPSOFT'97: Theory and Practice of Software Development, volume
1214 of LNCS, pages 682-696. Springer-Verlag, 1997.
F.S. de Boer. A WP-calculus for 00. In W. Thomas, editor, Foundations of Software Science
and Computation Structures, number 1578 in LNCS, pages 135-149. Springer, Berlin, 1999.
J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-Wesley, 1996.
U. Hensel, M. Huisman, B. Jacobs, and H. Tews. Reasoning about classes in object-oriented
languages: Logical models and tools. In Proceedings of European Symposium on Programming
(ESOP), volume 1381 of LNCS, pages 105-121. Springer-Verlag, March 1998.
M. Huisman and B. Jacobs. Java program verification via a Hoare logic with abrupt termi
nation. Manuscript, 1999.
B. Jacobs. Objects and classes, co-algebraically. In B. Freitag, C.B. Jones, C. Lengauer,
and H.-J. Schek, editors, Object-Orientation with Parallelism and Persistence, pages 83-103.
Kluwer Acad. Pub!., 1996.
B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62:222-259, 1997.

[JvdBH+98] B. Jacobs, J. van den Berg, M. Huisman, M. van Berkum, U. Hensel, and H. Tews. Reason-

[LBC99]

ing about classes in Java (preliminary report). In Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 329-340. ACM Press, 1998.
G.T. Leavens, A.L. Baker, and C.Ruby. Preliminary design of JML: A behavioral interface
specification language for Java. Technical Report 98-06c, Iowa State University, Department
of Computer Science, January 1999.

7

[Lei98] K.R.M. Leino. Data groups: specifying the modification of extended state. In Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), pages 144-153. ACM Press,
1998.

[NvO98] T. Nipkow and D. von Oheimb. Java1;9ht is type-safe-definitely. In Principles of Programming
Languages (POPL), pages 161-170, 1998.

[ORR+96] S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining specification,
proof checking, and model checking. In R. Alur and T.A. Henzinger, editors, Computer
Aided Verification (CAV '96), volume 1102 of LNCS, pages 411-414, New Brunswick, NJ,
July/August 1996. Springer-Verlag.

[ORSvH95] S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-tolerant ar
chitectures: Prolegomena to the design of PVS. IEEE Transactions on Software Engineering,
21(2):107-125, February 1995.

[Pau94] L.C. Paulson. Isabelle - a generic theorem prover, volume 828 of LNCS. Springer-Verlag,
1994. With contributions by Tobias Nipkow.

[PHM99] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S.D. Swierstra,
editor, Programming Languages and Systems, LNCS, pages 162-176. Springer, Berlin, 1999.

[Pus99] C. Pusch. Proving the soundness of a Java bytecode verifier specification in Isabelle/HOL. In
\V.R. Claeveland, editor, Tools and Algorithms for the Construction and Analysis of Systems,
number 1579 in LNCS, pages 89-103. Springer, Berlin, 1999.

[Rei95] H. Reiche!. An approach to object semantics based on terminal co-algebras. Math. Struct. in
Comp. Sei., 5:129-152, 1995.

[Sym97] D. Syme. Proving Java type soundness. Technical Report 427, University of Cambridge
Computer Laboratory, 1997.

8

Threads and Main Memory Semantics

Vishnu Kotrajaras and Susan Eisenbach
Department of Computing, Imperial College

March 31, 1999

Abstract

In this paper we take the descriptions given in the Java Language Spec
ification [1] about the relationship between threads and the main memory
into a more formal notation. From the notation, we illustrate condi
tions that allow data inconsistency. We show data consistency holds in a
single-threaded environment. We then investigate the differences between
volatile declarations and synchronized statements. Volatile variables do
not maintain data consistency while synchronization provides it. We also
propose a synchronization structure which allows deterministic debugging
and reasoning.

1 Introduction

The Java Language Specification [I] defines how a thread's working memory
should interact with the main memory. lt is crucial that programmers under
stand those rules in order both to predict correctly the behaviour of concurrent
programs and to implement correct concurrent programs. Moreover, it is crucial
for implementors to follow those definitions in order to implement a correctly
behaved runtime system.

In this study, we examine descriptions given in chapter 17 of [l] and prove
properties regarding low level working-main memory behaviour. Our main ob
jective is to formalize those descriptions and to use the formalization to in
vestigate data consistency among threads and the main memory. We formally
introduce conditions which guarantees safe and efficient execution of concurrent
programs.

Related work: Drossopoulou and Eisenbach [2, 3, 4] formulated an opera
tional semantics of Java. However, their work did not include concurrent Java.
Börger and Schulte [5) used the Abstract State Machine to describe the be
haviour of Java threads in a pseudocode-like notation. Their thread-memory
description is a good implementation that corresponds to the thread-memory
rules. However, they did not formalize the thread-memory rules or study the
rules' properties. Coscia and Reggio [6, 7, 8] developed their own version of the
operational semantics for concurrent Java. Their work, like [5], focused mainly
on execution that synchronizes on every variable access, therefore ignoring the
working-main memory rules. [9, 10] transformed the thread-memory rules into
logic sentences and went on to use the transformed rules to present the oper
ational semantics for multi-threaded Java. However, the possible behaviour of
Java programs was not studied.

Our notations and formal rules that we used for proofs are listed in ap
pendix A.

2 Single-Threaded Environment

Definition 2.1 Data consistency is when a thread uses the latest assigned value.

Lemma 2.1 For a single-threaded Java environment, data consistency is al
ways guaranteed.

The proof is illustrated in appendix B.

3 Multi-Threaded Environment

In a multi-threaded environment, we need to take the main memory into ac
count.

Definition 3.1 Data consistency in a multi-threaded environment is when:

• The latest assigned value will always be used.

• The latest assigned value will always cause the latest write to the main
memory.

Hence there are two possible cases of data inconsistency.

Case 3.1 The use action uses an out of date value from the working memory.

Within this case there are three execution sequences which allow data in
consistency.

Subcase 3.1 A thread does not load a value before performing a use action.

Subcase 3.2 After the latest assign action by a thread to a variable, another
thread loads an old value of that variable before the fi,rst thread writes to the
main memory.

Subcase 3.3 After a thread reads a variable from the main memory but before it
carries out the corresponding load action, another thread assigns to that variable.
Since the load action gets a value from the read action, the assign action will be
lost.

Case 3.2 The most recent assign action is not the last action that writes to the
main memory. Same previous assign action is the last that updates the main
memory.

In order to achieve the correct value for using and updating, an execution
sequence must obey the two axioms below:

Axiom 3.1 If thread Ta assigns to a variable V and thread T1 later uses V,
there is only one way T1 is guaranteed to read the assigned value:

1. To writes the updated value into the main memory.

2. After the write action T0 finishes, T1 then attempts to read V from the
main memory bef ore actually using it.

Axiom 3.2 If thread To assigns to a variable V and thread T1 assigns to V
later on, data consistency is guaranteed only if the write action of T1 happens
after the write action of T0 .

The formal notation of execution sequences in this section is illustrated in
appendix C.

These correct execution sequences occur only by chance. However, the cre
ators of Java provide two mechanisms that they claim to enable programmers
to ensure data consistency:

• Synchronization

• Volatile declarations

4 Synchronization and Data Consistency

To prove that data consistency is always maintained in a multi-threaded envi
ronment, we need to show that the sequences that guarantee data consistency
always occur:

• axiom 3.1 always holds when one thread assigns to a variable and another
thread attempts to use that variable later.

• axiom 3.2 always holds when two or more threads attempt to assign to a
variable.

Lemma 4.1 Data consistency on a shared variable V is guaranteed when syn
chronization is performed on actions that access V.

The proof is illustrated in appendix D.

5 Volatile Declaration and Data Consistency

We examine whether volatile declaration guarantees that data consistency is
always maintained.

By attempting to prove that execution sequences that lead to data inconsis
tency can not possibly happen, we discovered, however, that volatile declaration
does not guarantee data consistency.

Lemma 5.1 Data consistency is guaranteed when a variable is declared volatile.

This lemma is shown to be false. The actual proof is in appendix E. The
fact that volatile does not provide data consistency as synchronization comes
as a surprise to us. A volatile declaration of a variable is used to force a thread
to reconcile the working copy of that variable with the master copy every time
it accesses that variable. Therefore we naturally expect data consistency to be
preserved, as seems tobe the case in section 8.3.1.4 of [l]. However, our proof
shows that the example in section 8.3.1.4 of [l] does not necessarily behave
correctly.

6 Rules for Data Consistency

We need to show that synchronization ensures data consistency. In order to
guarantee full data consistency, we add two new rules to the thread-memory
rules.

Let T0 and T1 be two different threads, V be a shared variable which both
threads have access to, L be a lock. We express possible concurrent execution
sequences by using a II symbol:

The new rules will be as follows:

Axiom 6.1 When two concurrent thr-eads T0 and T1 access the same variable
V, if a T0 assigns to V and T1 uses V, then data consistency is guar-anteed only
if the assign action of T0 and the use action of T1 ar-e synchr-onized on the same
lock.

Assign(T o, V) II U se(T1 , V) =}

Lock(T0 , 0) Unlock(To, 0) Lock(T1 , 0) Unlock(T1 , 0)

..:!+ Assign(To,V) ..:!+) II (..:!+ Use(T1 ,V) ..:!+) (1)

Axiom 6.2 When two concurrent thr-eads T0 and T1 assigns to the same vari
able V, then data consistency is guar-anteed only if the assign actions of T0 and
T1 ar-e synchr-onized on the same lock.

Assign(To, V) II Assign(T1 , V)=}

Lock(To, 0) Unlock(T0 , 0) Lock(T1 , 0) Unlock(T1 , 0)
..:!+ Assign(To, V) ..:!+) II (..:!+ Assign(T1 , V) ..:!+) (2)

6.1 Deterministic Efficient Synchronization

Consider threads TO and Tl with accesses on variable a:

Row TO Tl
1 Use a Assign a
2 Assign a Use a
3 Use a Assign a
4 Use a Use a
5 Use a Use a

In order to preserve data consistency, lock and unlock pairs have to be
inserted:

Row TO Tl
Lock a Lock a

1 Use a Assign a
Unlock a Unlock a
Lock a Lock a

2 Assign a Use a
Unlock a Unlock a
Lock a Lock a

3 Use a Assign a
Unlock a Unlock a
Lock a Lock a

4 Use a Use a
Unlock a Unlock a
Lock a Lock a

5 Use a Use a
Unlock a Unlock a

Although data consistency is guaranteed, there are some disadvantages:

• Synchronization overhead surely costs performance. In the above case,
the program can be slowed down dramatically because synchronization is
performed on every access.

• A concurrent program that behaves this way by allowing a variable to be
updated nondeterministically before use is very hard to debug and reason
about.

When programming for a thread, in order to produce a program which is
deterministic and simple to reason about, a use action should only read the value
assigned earlier by the same thread, unless that thread is specifically waiting for
a certain condition, which should be stated clearly in the program structure.

From the above example, the use actions of To in row 3,4, and 5 can use
different values nondeterministically due to T1 updating the value, but a pro
grammer will want all of them to use the same value assigned in row 2, unless
T0 calls a wait method.

In order to

• Reduce synchronization overhead.

• Create a program that can be debugged and reasoned about without too
complicated mechanisms.

• Maintain data consistency of shared variables.

The synchronization rules in section 6 will need to be updated by:

Axiom 6.3 A Deterministic and Efficient Synchronization (DES) by two or
more threads on a shared variable V is carried out by:

• Having each thread synchronized on the same lock over an assign action
(say, action "A ") and the following use actions of V.

• Jf there are no prior assign action to V, synchronization should start before
the first use action.

• Each use action under synchronization must at least take place before the
assign action that comes after "A ".

To put it simply, the above definition puts lock and unlock pair around an
assign and any folJowing use actions. The locking range must at least cover the
use action just before the next assign action. Note that the locking range can
cover more than one assign action.

The above execution wilJ become:

Row TO Tl
Lock a Lock a

1 Use a Assign a
Unlock a
Lock a

2 Assign a Use a
Unlock a
Lock a

3 Use a Assign a

4 Use a Use a

5 Use a Use a
Unlock a Unlock a

The formal DES rules are given in appendix F.

7 Conclusion and Future work

In this paper we formalized the semantics of threads and the main memory.
We formaJJy pointed out data inconsistency situations. Using the formalized
semantics rules, we were able to prove that a single-threaded environment pre
serves data consistency, the use of volatile declaration does not preserve data
consistency, unlike the use of synchronization Jacks. We also present formal
rules that guarantee data consistency of a concurrent program and make the
program easier for debugging and reasoning.

We hope what we found out about volatile declarations will be useful for
Java programmers and creators. We intend to use the derived data consistency
rules for our study in Java Semantics. The current project involves developing
a system that can check data consistency of Java programs.

8 About the Authors

Susan Eisenbach is Director of Studies in the Department of Computing at Im
perial ColJege. She was principal investigator of the Multimedia Network Appli
cation (BECALM) project funded by the UK Engineering and Physical Science
Research Council (EPSRC), where she worked on Janguage design for multi
media applications in large-scale distributed systems. She is co-investigator of

the EPSRC Systems Engineering project SLURP investigating Java semantics.
Susan Eisenbach was program chair of the OOPSLA'98 Workshop on Formal
Underpinnings of Java Semantics.

Vishnu Kotrajaras obtained his Master in Engineering at Imperial College,
London, in 1997. He is now a PhD student in the SLURP project in the De
partment of Computing at Imperial College.

References

[l] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification.
Addison Wesley, August 1996.

[2] Sophia Drossopoulou and Susan Eisenbach. Java is type safe -probably.
In 11 th European Conference on Object-Oriented Programming, February
1997. http://outoften.doc.ic.ac.uk/projects/slurp/papers.html.

[3] Sophia Drossopoulou and Susan Eisenbach. Is the java
type system sound? In Fourth International Workshop on
Foundations of Object-Oriented Languages, October 1997.
http://outoften.doc.ic.ac. uk/projects/ slurp /papers.html.

[4] Sophia Drossopoulou and Susan Eisenbach. Towards an opera-
tional semantics and proof of type soundness for java, April 1998.
http://outoften.doc.ic.ac.uk/projects/slurp/papers.html.

[5] Egon Börger and Wolfram Schulte. A programmer friendly modular defi
nition of the semantics of java. Universita di Pisa, Dipartimento di Infor
matica, I-56125 Pisa, Italy, boerger@di.unipi.it, Universität Ulm, Fakutät
für Informatik, D-89069 Ulm, Germany, wolfram@informatik.uni-ulm.de.

[6] Eva Coscia and Gianna Reggio. A proposal for an abstract semantics
of shared objects in multi-threaded java. Departimento di Informatica e
Scienze dell' Informazione, Universita di Genova, Via Dodecaneso, 35 -
Genova 16146 - Italy, http://www.disi.unige.it.

[7] Eva Coscia and Gianna Reggio. An operational semantics for java. Depar
timento di Informatica e Scienze dell' Informazione, Universita di Genova,
Via Dodecaneso, 35 - Genova 16146 - Italy, http://www.disi.unige.it.

[8] Eva Coscia and Gianna Reggio. A proposal for a semantics of a subset of
multi-threaded good java programs. Departimento di Informatica e Scienze
dell' Informazione, Universita di Genova, Via Dodecaneso, 35 - Genova
16146 - Italy, http://www.disi.unige.it.

[9] Peitro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirs
ing. From sequential to multi-threaded java: an event-based operational
semantics. In 6 th Conf. Algebraic Methodology and Software Technology ,
AMAST, 1997.

[10] Peitro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing.
An event-based structural operational semantics of multi-threaded java.
Formal Syntax and Semantics of Java, Springer, 1998.

Checking Java programs via guarded commands

K. Rustan M. Leino, James B. Saxe, and Raymie Stata
Compaq Systems Research Center
130 Lytton Ave., Palo Alto, CA 94301, U.S.A.
{rustan,saxe,stata}@pa.dec.com

21 May 1999

Abstract

This paper defines a simple guarded-command-like language and its semantics.
The language is used as an intermediate language in generating verification condi
tions for Java. The paper discusses why it is a good idea to generate verification
conditions via an intermediate language, rather than directly.

0 Introduction

0

lt is well-known that the later a software error is detected, the more expensive it is
to correct. The Extended Static Checker for Java (ESC/Java) is a tool for finding, by
static analysis, common programming errors normally not detected until run-time, if
ever [3]. ESC/Java takes as input a Java program, possibly including user annotations,
and produces as output a list of warnings of potential errors. lt does so by deriving a
veri.fication condition for each routine (method or constructor), passing these verification
conditions to an automatic theorem-prover, and post-processing the prover's output to
produce wamings from failed proofs.

Deriving verification conditions for a practical language, rather than for a toy lan
guage, can be complex. Furthermore, in designing a tool for automatic checking, one
faces trade-offs involving the frequency of spurious warnings, the frequency of missed
errors, the efficiency of the tool, and the effort required to annotate programs. To explore
and exploit these trade-offs flexibly, it must be easy to change the verification conditions
generated by the tool.

To manage the complexity and achieve flexibility, we chose to derive verification
conditions by first translating the source language into a simple intermediate guarded
command language, and then using the semantics of this guarded-command language to
produce verification conditions. In this paper, we describe our intermediate language,
give its semantics, and discuss how it is used in our tool.

1 Translation stages

Our translation from Java to verification conditions is broken into three stages. First, we
translate from Java to a sugared form of our guarded-command language that includes
high-level features such as iteration and method invocation. Second, we desugar the
sugared guarded commands into primitive guarded commands. Finally, we compute
verification conditions from these primitive guarded commands.

In the translation from Java into sugared guarded commands, we eliminate many
of the complexities found in Java, such as swi tch statements and expressions with
side effects. This part of the translation is bulky and tedious. We have designed the
sugared guarded-command language to make the translation easy to understand and to
implement. At the same time, this part of the translation is relatively stable. We find it
nice to separate this bulky but stable part of the translation process from other parts that
change during experimentation.

The desugaring into primitive guarded commands is where we need a lot of flexibil
ity. This is the principal stage of the translation where we make the kinds of trade-offs
mentioned in the introduction. In section 3, we give examples of how different desugar
ings, possibly chosen under user control, result in different kinds of checking.

The semantics of the primitive guarded-command language is quite simple. Indeed,
a naive set of equations for deriving verification conditions from primitive guarded com
mands fills less than half a page. However, by experimenting with different, but seman
tically equivalent, equations, we have achieved significant performance gains. Because
this stage of the translation begins with such a simple language, we have been able to
perform these experiments easily.

2 Primitive guarded-command language

Our primitive guarded-command language is a form of Dijkstra's guarded commands [2],
with several important distinguishing features: exceptions [O, 6], partial commands [8,
7], and going wrong (see, e.g., section 6.2 of [4]). (By including partial commands, we
no longer need the "guards" that originally gave the language its name.) The syntax of
commands in our guarded-command language is as follows:

cmd::=
variable= expr I skip I raise I assert expr I assume expr

1 var variable+ in cmd end I cmd ; cmd I cmd ! cmd I cmd D cmd

where an expr is an expression in untyped first-order predicate calculus extended with
labels. A Iabeled expression (label L : e) is semantically equivalent to the expression

2

e, but supplies the label L to the theorem-prover in order to facilitate the production of
user-sensible waming messages (see section 6 of [1], which describes an extended static
checker for Modula-3).

We model Java instance fields as maps from objects to values. Thus, we translate
the Java expression o. f into select(J, o), where the select function extracts from map
f the component indexed by o .

Unlike Dijkstra's guarded commands, our commands can terminate not only nor
mally, but also exceptionally and erroneously. We use exceptional termination to model
Java's exceptions and also Java's control-transfer statements break, continue, and
return. We use erroneous termination ("going wrong") to model violations of the
programming discipline that ESC/Java checks.

The semantics of our primitive guarded commands is given by their weakest liberal
preconditions. For any command C and predicates (on the post-state of C) N, X,
and W, the predicate wlp.C.(N, X, W) holds in exactly those initial states from which
each execution of C either terminates normally in a state satisfying N, terminates ex
ceptionally in a state satisfying X, or terminates erroneously in a state satisfying W (or
doesn't terminate at all, but all of our primitive commands do terminate). We define wlp
by the following equations:

_ N[v +- e]

- N
wlp.(v = e).(N, X, W)

wlp.skip.(N, X, W)
wlp.raise.(N, X, W)

wlp.(assert e).(N, X, W) _
wlp.(assume e).(N, X, W) -

wlp.(var v1 ... Vn in C end).(N, X, W) -
wlp.(CO; Cl).(N, X, W) -
wlp.(CO ! Cl).(N, X, W)

wlp.(CO O Cl).(N, X, W) -

- X
(e /\ N) v (--.e /\ W)
e =r- N

('v'v1 ... Vn :: wlp.C.(N, X, W))
wlp.CO.(wlp.Cl.(N, X, W), X, W)
wlp.CO.(N, wlp.Cl.(N, X, W), W)
wlp.CO.(N, X, W) /\ wlp.Cl.(N, X, W)

where in the equation for the var command, v1 ••• vn are distinct variables not occur
ring free in N , X , or W .

The verification condition for a routine r has the form

BP ==} wlp.C.(true, true,false)

where C is the translation of r and BP is the background predicate. The background
predicate is a set of axioms, derived in part from declarations in the user's program,
that encode various properties guaranteed by Java, such as properties of the type system
(see [5] for the background predicate of a simple object-oriented language).

3

3 Sugared guarded-command language

At the outset of our project, we considered it fairly obvious that trying to expand Java
directly into verification conditions would result in a software engineering disaster. In
troducing a desugaring stage was a less obvious design decision, but one that has tumed
out to be valuable in managing complexity and maximizing flexibility. In this section,
we give examples of constructs in our sugared language.

Checks. To achieve a flexible treatment of conditions such a null dereferences, we
use a command called check. For example, a Java statement v = o . f; on Iine 27
translates into the sugared commands

check Null, 27, o !=null;
v= select(J, o)

We have several choices in the desugaring of the check command. lf we want treat null
dereferences as errors, then we desugar the check command into

assert (label Null@27 : o != null)

ESC/Java lets users suppress null dereference wamings, either selectively or globally. lf
null dereference warnings are suppressed on line 27, then the check command desugars
into

assume o != null

Introducing this assumption (instead of, say, desugaring the check command into skip)
prevents ESC/Java from, for example, generating a warning on line 28 if that line con
tains the dereference o. g. (But there are other cases where we do desugar a check into
skip .)

ESC/Java enforces a programming discipline in which null dereferences are consid
ered tobe errors. lf we wanted to support a programming style in which the programmer
might intentionally dereference null and then handle the resulting Java exception, we
would desugar the check command into something like

(assume o == null ; . . . ; raise) D assume o != null

where the " ... " elides the commands that make the subsequent raise model the raising
of a new NullPointerException.

4

Loops. The translation of Java while, do, and for loops produces commands that
contain a sugared command of the form

loop { invariant J } C end

In contrast to exiting the loop when C can no longer be executed [8], control exits this
loop when C raises an exception. The usual way of defining wlp for loops involves a
strongest fixed point. We approximate this fixed point by considering only executions
that iterate at most once. That is, we desugar the loop command into

check Looplnvlnit, loc, J ;
C·

'
check LooplnvMaintained, loc, J;
assume false

where loc is the source code location of the Java loop statement. While this approx
imation is coarse, we have found that it still allows the checker to find many program
errors, even when J is the trivial invariant true (see section 9 of [1]). By translating
Java loops into commands that contain loop commands, we retain the :flexibility to try
different desugarings. For example, we could unroll a loop two or more times. Or, we
could produce a conservative desugaring of the form

check Looplnvlnit, loc, J; assumefalse
0
... ; assume J; C; check LooplnvMaintained, loc, J; assumefalse

where the " ... " assigns arbitrary values to the assignment targets of the loop. Lastly,
note that our translation retains the flexibility of strengthening any programmer-declared
invariant with any kind of inferred invariants, for which the literature offers numerous
techniques.

Calls. Our sugared language also contains a call command, whose desugaring de
pends on the specification of the routine being called. Roughly speaking, call r(eO, e l) ,
where routine r is allowed to modify x, desugars into a command of the form

var pO pl in
pO = eO ; p l = e l ; check ... preconditions . ..
var x0 in x0 = x ; modify x ; assume ... postconditions ... end ;

end

where modify x is a sugared command that desugars into

var x' in x = x' end

5

The actual desugaring of call is more complicated. For example, result values and
exceptions must be treated, and postconditions include both user-declared conditions
and conditions guaranteed by Java.

The modify command uses the nondeterminism inherent in the primitive var com
mand. In the desugaring of call (and also elsewhere in our translation), we use assume
commands to restrict that nondeterminism. (Our translation uses the nondeterminism
only of the var command, never of the D command. Whenever our translation gen
erates a D command, the enabling conditions of the subcommands are mutually exclu
sive.)

4 Conclusions

Generating verification conditions for a real-world language like Java is a significant
engineering challenge. Such languages provide many programmer conveniences that
make the derivation bulky and tedious. Also, finding the right derivation is as much an
art as a science, an art involving much trial-and-error. Thus, it is important to appro
priately separate concerns both to manage complexity and to maximize flexibility. In
building the ESC/Java verification condition generator, we have applied this principle in
decomposing the verification condition generation into a three-stage process that seems
to have served us well.

History and acknowledgements. ESC/Java was built by Cormac Flanagan, Mark Lil
libridge, Greg Nelson, and the authors. Greg Nelson first suggested verification condi
tion generation via guarded commands, almost a decade ago. Subsequently, this be
came the basis for the ESC/Modula-3 verification condition generator, written initially
by Damien Doligez and then mainly by Dave Detlefs.

References

[O] Flaviu Cristian. Correct and robust programs. IEEE Transactions on Software En
gineering, 10: 163-174, 1984.

6

[1] David L. Detlefs, K. Rustan M. Leino, Greg Nelson, and James B. Saxe. Ex
tended static checking. Research Report 159, Compaq Systems Research Cen
ter, 130 Lytton Ave., Palo Alto, CA 94301, December 1998. Available from
www.research.digital.com/SRC/publications/src-rr.html.

[2] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood Cliffs,
NJ, 1976.

[3] Extended Static Checking harne page, Compaq Systems Research Center. On the
WebAfwww.research.digital.com/SRC/esc/Esc.html.

[4] K. Rustan M. Leino. Toward Reliable Modular Programs. PhD thesis, Califor
nia Institute of Technology, Pasadena, CA 91125, January 1995. Technical Report
Caltech-CS-TR-95-03.

[5] K. Rustan M. Leino. Ecstatic: An object-oriented programming language with
an axiomatic semantics. In The Fourth International Workshop on Founda
tions of Object-Oriented Languages, January 1997. Proceedings available from
www.cs.williams.edu/"-'kim/F00L/F00L4.html.

[6] M. S. Manasse and C. G. Nelson. Correct compilation of control structures. Tech
nical report, AT &T Bell Laboratories, September 1984.

[7] Carroll Morgan. The specification statement. ACM Transactions on Programming
Languages and Systems, 10(3):403-419, July 1988.

[8] Greg Nelson. A generalization of Dijkstra's calculus. ACM Transactions on Pro
gramming Languages and Systems, 11(4):517-561, 1989.

A Logic of Recursive Objects

Bernhard Reus

Ludwig-Maximilians-Universität, Oettingenstr. 67, 80538 München, Germany,
reus@informatik.uni-muenchen.de

Phone: +49 89 2178 2178
Fax: +49 89 2178 2175

Abstract. A denotational semantics of an untyped functional object calculus
according to Abadi & Cardelli is endowed with a higher-order logic and some
proof principles in order to obtain a Iogic of (recursive) objects in the spirit of
the Logic of Computable Functions (LCF). Contrary to the work of Abadi &
Leino the logic also allows for recursive objects and specifications. In this paper
we focus on recursive interface specifications with invariants. This is extended to
an imperative object calculus that is appropriate for a sublanguage of sequential
Java. lt provides us with a denotational basis for the different axiomatic calculi
that have been suggested by several authors.

1 Introduction

Several functional and imperative object calculi have been proposed e.g. in (l]. Follow
ing the pioneering work of [10, 12], an axiomatic semantics for an imperative object
calculus with global state is suggested in (2]. However, it is restricted to non-recursive
objects and specifications. In (11, 17] different axiomatic calculi are presented, all based
on operational semantics or in (16] even purely axiomatically. (7] suggests a wp-calculus
with local state. Local state is also at the heart of the coalgebraic approach (9] where
classes are specified in the "style of algebraic datatypes", but coalgebraically, using
equational logic. Most of the above work deal with axiomatic semantics in terms of
quite complex calculi, sometimes overloaded with huge "background predicates", and
exclusively referring to operational semantics.

This paper is propagating a denotational view on objects and their properties. Just
like the Logic of Computational Function [13] allows one to reason about the denota
tions of functional programs instead of their syntactic representation (sometimes also
referred to as "Logic of Domains"), we suggest to take the same view on objects and
object calculi. A similar philosophy underlies [8] where an equational logic on positive
F< was used to reason about classes with self in a functional typed setting.

- Once having embedded a denotational semantics of an object calculus or OO
programming language in a higher-order logic, one can reason about denotations of
objects and prove their properties. This is more concise and conveys more intuition -
at least for a semanticist or domain-theorist - than long and complicated definitions of
Hoare-calcluli. Of course, it is highly diserable to have such calculi, but a denotational
model might help developing them and to prove correctness/(relative) completeness
w.r.t. to them.

2 Syntax

Let Var be the set of variables (typically y E Var) and Field and Meth the universe of
field and method labels, respectively. Throughout the paper we assume that I ~ Field

1

and J ~ Meth. The syntax of a simple functional object-calculus of Abadi & Cardelli
[I] reads as follows:

o ::= y 1 [f; = c;(y)bi iEI,mj = c;(y)bj jEJ] 1 o.f I o.m() 1 o.f := v I o.m ~ c;(y)b

The fi (i E I) denote field, the mj (j E J) method labels. Whenever we do not want
to distinguish we write mk (k E IU J). For fields f; = c;(y)bi it is assumed that bi does
not contain y otherwise it is a method. o.m ~ c;(y)b denotes method update. We write
I 0 and J 0 for the fields and methods of o, respectively.

3 Denotational Semantics

We follow the self-application semantics proposed by Abadi & Cardelli [l l[Chapter 8]
and [3] giving, however, an appropriate domain equation. For the sake of simplicity (to
avoid the numerous ..ls), domain equations are formulated in a category of predomains,
i.e. domains (cpos) not necessarily having a least element. They can be solved in the
corresponding category of lift-algebras over those predomains.

First consider the following definition of records:

Rec.cY ~ ELl;_.cL-+ Y

Fora record r and labe! l belonging to (the first projection of) r let r.l denote selection
and r[l t-t ...] record update (i.e. redefinition of r at l). The extension of a record r by
a new labe! l is written r l±J l. In the object calculus such an extension is not allowed,
but it is needed later for describing states as records.

Assume that we have a type of basic values V which includes the booleans and the
natural numbers.

0 ~V+ (ReCMethUFieldo _,_ 0)

[-] : Terms -+ Env -+ 0

The type of environments is defined as Env = Var-+ 0. In the semantics below we do
not cover the error cases when a method or field is called for an element in V.

['f· _ ()b iEI _ ()b. jEJ]] _ · (J J _ , . 0 [b] kEJUJ) l , - c; y i , mj - c; y J p - inr U , mk - AZ . . k p[yo-tz]

[o.mj()]p = [o]p.mj([o]p)

[o.f;]p = [o]p.f;([o]p)

[o.fi := v]p = [o]p[f; = .:\z: 0. [v]p[yo-tz])

[o.mj ~ c;(y)b]p = [o]p[mj = .:\z: 0. [b]p[yo-tz])

If not otherwise stated we consider only the calculus without method update.

4 The Logic

We assume that the universe of domains is embedded in a higher-order logic with the
solution of the domain equation for O as a datatype (can be e.g. easily established in
LCF [13, 15]).

2

4.1 Interface Specifications

Interface specifications are e.g. treated in [2, 11, 16, 17]. Regarding the separation of
method and field specifications we follow [2]. An interface specification for objects in
the typed world consists of a number of field and method names, their signatures (i.e.
types) and a specification of their behaviour. In our untyped setting for an object with
fields f; and methods mj this reduces to

where

Bk E p(O) -+ p(O) and Tk s;; 0 x O .

The Bk are predicate transformers that given the "meaning of the interface specifica
tion" P yield the specification of the corresponding field mk, if k E Field, and simply
P, if k E Meth. The latter ensures that P is indeed an object invariant. Recursion
comes into play because methods in the functional setting "return" the modified ob
ject (instead of changing it as in the imperative style) and moreover, as fields might
contain objects for which the interface specification is desired to hold again1 .

The Tk are the input/output specifications of the method. Fields can be considered
as "get"-methods with a fixed specification, i.e. T;(s, s') = (s' = s.f;).

What is a possibly recursive interface specification given in terms of (Bk, Tk)kEK and
what does it mean for an object to fulfill it? Below we usually abbreviate (Bk, Tk)kEK
by (B, T) and for the index set K s;; Field U Meth of (B, T) we write KB,T-

First, we define an operator P[B, T] : p(0) -+ p(0), induced by an interface
specification (B, T), as follows:

P[B, T](P)(s) = \:/k E KB,T- \:/s' E 0. Tk(s, s') * Bk(P)(s') (1)

The semantics of the interface specification (B, T) is simply the greatest fixpoint of
P[B, Tl, i.e.

Spec(B, T) = vP. P[B, T](P)

The fixpoint exists as P is monotone.
An object o is said to fulfill the interface specification vP. P[B, T](P), written

o l= vP. P[B, T](P), if, and only if, o is an element ofthe specification and Tj(o. o.mj())
holds for any j E J0 (observe that T;(o, o.f;) holds by definition for any i E Ia)- In
other words

o l= Spec(B,T) ~ Spec(B,T)(o) /\ \:/j E KB,TnMeth.Tj(o,o.mj())

Observe the separation of the method implementation part and the interface specifica
tion. As methods belong to objects (object based approach in contrast to the dass based
one) and the interface specification should be independent of any particular object, the
Tj method specifications can be used to abstract away from method implementations.
This is in accordance with the method specifications in [2, 16] and allows also for a
completely axiomatic treatment without any denotational or operational model at all
(cf. [16]).

1 Note that in the functional setting there is no difference between the identity as a method
and a field containing the object itself (aka a pointer to itself).

3

4.2 Reasoning Principles

In order to prove that an object fulfills an interface specification one needs an appro
priate proof rule. lt is suggested by the greatest fixpoint property of v P. P[B, T] (P):

o EI/\ I ~ P[B, T](I)
o E vP. P[B, T](P)

This is generally called "principle of coinduction". lt requires to establish an invari
ant I. Invariants are well-known from the verification of while-loops in the standard
imperative paradigm. Unfolding the precondition we obtain:

I(o) /\ \:/s E 0.I(s) =;, \:/k E KB,T-Vs' E 0.Tk(s,s') =;, Bk(I)(s')

which can be seen to be equivalent to

I(o) /\
(Vi E Field n KB,T- \:/s E 0. I(s) =;, B;(I)(s.f;)) /\
(\:/j E Meth n KB,T- Vs E 0. I(s) =;, (Vs'. T1(s, s') =;, B1(I)(s')))

4.3 Example

Consider the following object

o = [p = c;-(y)l, inc = c;-(y)y.p := y.p + l]

Note that the natural numbers are supposed to be contained in V. Now consider the
following interface specification

Bp(P)(v) = (v > 0)

Tinc(s, s') = (s'.p > s.p)

Note that Tp(s,s') = (s' = s.p) and Binc(P) = P by default.
In order to prove o E Spec(B, T) we have to single out an invariant I, here I(s) =

s.p > 0. Obviously I(o) holds so it remains to prove

which equals

Vs E 0. I(s) =;, Bp(I)(s.p) /\
Vs E 0. I(s) =;, Binc(I)(s) /\
\:/s E O.I(s) =;, (\:/s'.Tp(s,s') =;, Bp(I)(s')) /\
\:/s E 0. I(s) =;, (Vs'.11nc(s, s') =;, Binc(I)(s'))

\:/s E 0. (s.p > 0) =;, s.p > 0 /\
Vs E 0. I(s) =;, I(s) /\
\:/s E 0. (s.p > 0) =;, (\:/s'. (s' = s.p) =;, s' > 0) /\
\:/s E 0. (s.p > 0) =;, (\:/s'. (s'.p > s.p) =;, (s'.p > 0))

wchich is obviously true. Also Tinc(o, o.inc()) holds trivially.

4.4 Partiality

Whether a method must terminate or not can be specified by requiring for a T1(s, s')
that s' =/:- ..l or not. For cases where Tj(s, ..l) yields true, condition (1) gives rise to
the proof-obligation B1(P)(..i). So, to obtain a notion of partial correctness one better
defines B1 to contain ..l. In the same vein T1(_L, ..L) should always hold for partial
correctness.

4

4.5 Method Update

In case method update is allowed, one has to ensure that during an object's lifetime its
methods mj do, though subject to modifications, always fulfill Tj. This can be readily
done by the following requirement:

Vj E KB,T n Meth. Vo' E 0. (Tj(o, o') =:> \fj E KB,T n Meth. Tj(o', o'.mj()))

5 Imperative Object Calculus

In the imperative case fields have to be treated differently from methods as fields are
evaluated by an eager strategy. Therefore method and field update will be essentially
different, although the coding of fields and methods is done uniformly in the domain
equation. Syntax is enriched by an operator new I,J which creates a new object in the
store with fields I and methods J. lt is assumed, rather deliberately, that every field is
initialized with a pointer to itself and any method is the identity. Object creation can
then be derived from new, field update, and method update.

5.1 Denotational Semantics

R ~ V+Loc

St~ RecLoc(ReCMethuFielctCl)

Cl ~ (Loc x St) -'- (R x St)

Loc stands for locations, R for results, St for stores, and Cl for closures; -1 and
- 2 denote first and second projection of the cartesian product, respectively. Setting
Env = Var -+ Loc we get the following interpretation for terms of the imperative
object-calculus:

[-] : Terms-+ Env-+ St-+ R x St

[x]pa = (p(x),a)
[o.mj()]pa = (([o]pa)2.([o]pa)i).mj([o]pa)

[o.f;]pa = (([o]pa)2-([o]pa)i).f;([o]pa)
[o.fi := e]pa = let (v, a') = ([e]pa) in

(([o]pa')i, (([o]pa')2.([o]pa')i)[f; H >..s: Loc x St. (v, s)])
[o.mj <= c:;(y)bj]pa = (([o]pa)i, (([o]pa)2.([o]pa)i)[mj H >..t: Loc x St. [bj]p[y•-Hi]t2)

[new I,J]pa = (l, (a l±I l)[l H (I U J, (mk H >..s : Loc x St. (l, s))kEIUJ)]))

5.2 Specifications

The field and method specifications in the imperative case have the following types:
B; E p(R x St) -+ p(R x St) and Tj E p(St x R x St). The field invariants thus range
over a result (the content of the field) and the underlying state, whereas the method
specifications refer to input state, result, and output state. If [o] = (l, s) then what was
Tj(o, o.mj()) in the functional case becomes Tj(s, ((s.l.mj)(l, s))i, ((s.l.mj)(l, s))2).

5

6 Expectations and Conclusions

The presented logic is planned to be formalised analogously to the implementation of
LCF in a theorem prover [15]. In fact, a version of LCF itself might serve as a basis
or, alternatively, a more constructive version of domain theory like [18]. The relations
between operational, denotational and axiomatic semantics have to be established for
object calculi and OO-programming languages (like Java) in the way that is meanwhile
standard for functional languages or, at least, its archetypical representative PCF. lt
should be interesting to discuss with the authors of the different axiomatic settings, in
which respect their calculi can be understood denotationally.

For Java this means also that a denotational semantics has to be proposed that fits
e.g. with the ones suggested in [5, 6, 14]. By translating the classed based approach to
the object based one and switching from the untyped to the typed world one should
obtain a semantics and a logic for a kernel-sublanguage of Java in the style of this paper.
This is ongoing work. Interesting problems occur when "inheriting invariants". lt is also
ongoing research how the suggested Logic of Recursive Objects looks like when built
upon a denotational semantics using coalgebras. Thus, collaboration is desired also
with the coalgebraic object semantics community.

Acknowledgement

Thanks to Thomas Streicher for fruitful discussions on this subject and his motivating
interest in understanding object logics denotationally.

References

l. M. Abadi and L. Cardelli. A Theory of Objects. Springer Verlag, 1996.
2. M. Abadi and K.R.M. Leino. A logic of object-oriented programs. In Michel Bidoit

and Max Dauchet, editors, Theory and Practice of Software Development: Proceedings /
TAPS OFT '97, 7th International Joint Conference CAAP /FASE, volume 1214 of Lecture
Notes in Computer Science, pages 682-696. Springer-Verlag, 1997.

3. Martin Abadi, Luca Cardelli, and Ramesh Viswanathan. An interpretation of objects and
object types. In Principles of Programming Languages, pages 396-409, 1996.

4. Jim Alves-Foss, editor. Formal Syntax and Semantics of Java. Lect. Notes Comp. Sei.
Springer, Berlin, 199x. To appear.

5. Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing. From Sequen
tial to Multi-Threaded Java: An Event-Based Operational Semantics. In Michael Johnson,
editor, Proc. 6th Int. Conf. Algebraic Methodology and Software Technology, volume 1349
of Lect. Notes Camp. Sei., pages 75-90, Berlin, 1997. Springer.

6. Pietro Cenciarelli, Alexander Knapp, Bernhard Reus, and Martin Wirsing. An Event
Based Structural Operational Semantics of Multi-Threaded Java. In Alves-Foss [4]. To
appear.

7. F. S. de Boer. A wp-calculus for oo. In W. Thomas, editor, Foundations of Software
Science and Computations Structures, volume 1578 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

8. M. Hofmann and B. Pierce. Positive subtyping. Information and Computation,
126(1):186-197, 1996.

9. Bart Jacobs. Coalgebraic reasoning about classes in object-oriented languages. In Special
issue on the workshop Coalgebraic Methods in Computer Science (CMCS 1998), number 11
in Electr. Notes in Comp. Sei. Elsevier, 1998.

10. G.T. Leavens. Modular specification and verification of object-oriented programs. IEEE
Software, 8(4):72-80, 1991.

6

11. K. Rustan M. Leino. Ecstatic: An object-oriented programming language with an ax
iomatic semantics. Technical Report KRML 65-0, SRC, 1996.

12. B. Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
13. R. Milner. Implementation and application of Scott's logic of continuous functions. In

Conference on Proving Assertions About Programs, pages 1-6. SIGPLAN 1, 1972.
14. Tobias Nipkow and David von Oheimb. Machine-checking the Java Specification: Proving

Type-Saftey. In Alves-Foss [4]. To appear.
15. L.C. Paulson. Logic and Computation, volume 2 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1987.
16. A. Poetzsch-Heffter. Specification and verification of object-oriented programs. Technical

report, Technical University of Munich, 1997. Habilitation Thesis.
17. A. Poetzsch-Heffter and P. Möller. A logic for the verification of object-oriented programs.

In R. Berghammer and F. Simon, editors, Programming Languages and Fundamentals of
Programming, Lecture Notes in Computer Science. Springer-Verlag, 1997.

18. B. Reus. Formalizing synthetic domain theory - the basic definitions. Journal of Auto
mated Reasoning, 199x. To appear in the special volume on Formal Proof.

7

. -- ,,,.,.

Exception Analysis for Java

Kwangkeun Yi1 ,* and Byeong-Mo Chang2 ,**

1 kYang©cs.kaist.ac.kr
ROPAS* * *

Dept. of Computer Science
Korea Advanced Institute of Science & Technology

2 chang©cs.sookmyung.ac.kr
Dept. of Computer Science

Sookmyung Women's University

Abstract. Current JDK Java compiler relies too much on programmer's
specification for checking against uncaught exceptions of the input pro
gram. lt is not elaborate enough to remove programmer's unnecessary
handlers (when programmer's specifications are too many) nor suggest
to programmers for specialized handlings (when programmer's specifica
tions are too general).
We propose a static analysis of Java programs that estimates their excep
tion flows independently of the programmer's specifications. This anal
ysis is an extension of a dass analysis to Java's exception mechanism.
Its cost-effectiveness balance is suggested by sparsely analyzing the pro
gram at method-level (hence reducing the number of unknowns in the
flow equations).

1 Introduction

The current Java compiler relies on the programmer's specifications to check that
the input program will have no uncaught exceptions at run-time. The program
mers have to declare in a method definition any exception dass whose exceptions
may escape from its body.

The problem is that the current compiler is not elaborate enough to do
"better" than as specified by the programmers. lt cannot avoid programmer's
unnecessary handlers nor suggest to programmers for specialized handlings. lt
is foreseeable for careless (or inconfident) programmers to excessively declare
at every method that some exceptions can be uncaught. Then every use of the
method have tobe wrapped with handlers, whose installation at run-time would

* This work is supported by Creative Research Initiatives of the Korean Ministry of
Science and Technology.

** This work is partly supported by KISTEP project "Research on Basic and Applied
Technology for Information Systems Security" and STEPI project "Highspeed Com
puting 2G-12".

* * * Research On Program Analysis System (http://ropas .kaist. ac .kr), National Cre
ative Research Initiative Center.

P ::== c· program
C ::== class
A1 ::== method
e ::== id

c ext c { var x· M*} dass definition
m(x) = e [throws c*] method definition

variable
1 id : = e
1 new c
1 this
1 e ; e
1 if e then e else e

1

1

1

throw e
try e catch (c x e)
e.m(e)

id ::== X

1 id.x
C

m
X

assignment
new object
seif object
sequence
branch
exception raise
exception handle
method call
method parameter
field variable
dass name
method name
variable name

Fig. 1. Abstract Syntax of a Core of Java

be useless. Similarly, programmers can specify exceptions in too a broad sense.
Programmers can dedare that a method throws exceptions of the most general
dass Exception even if the actual exceptions are of much lower, specific dasses.
Then its handler cannot offer proper treatments specific to the exact dasses of
actual exceptions.

We propose a static analysis of Java programs that estimates their excep
tion flows independently of the programmer's specifications. This analysis is an
extension of a dass analysis1 to Java's exception mechanism. The dass analysis
estimates for each expression e1 at method call e1 .m(e2) the dasses S to which
the method m belongs. The dasses of uncaught exceptions from this call is then
the dasses of exceptions that can be raised and unhandled during the execution
of c.m's body for every dass c in S.

2 Language

For presentation brevity we consider an imaginary core of Java with its excep
tion constructs. Its abstract syntax is in Figure 1. A program is a sequence of
dass definitions. Class bodies consist of field variable dedarations and method
definitions. A method definition consists of the method name, its parameter, and
its body expression. Every expression's result is an object. Assignment expres
sion returns the object of its right hand side expression. Sequence expression
returns the object of the last expression in the sequence. A method call returns

1 You can consider our dass analysis a simplified version of DeFouw et. al's analysis[3].

the object from the method body. The try expression

try e0 catch (c x e1)

evaluates e0 first. If the expression returns a normal object then this object is
the result of the try expression. If an exception is raised from e0 and its dass
is covered by c then the handler expression e1 is evaluated with the exception
object bound to x. If the raised exception is not covered by dass c then the raised
exception continues to propagate back along the evaluation chain until it meets
another handler. Note that nested try expression can express multiple handlers
for a single expression e0 . The exception object e0 is raised by throw e0 .

We assume that (1) dass inheritance is explicitly expanded. That is, sub
dass's body has all the inheritted parts from its super-dasses. (2) For the
seif object's field varialbe x is always explicitly prefixed as this.x. Variable
x without the prefix is only for method parameter or handler variable x in
"try e catch (c x e) ." (3) all variables are distinct.

3 U ncaught Exception Analysis

We present our exception analysis in the set-constraint framework[4). Every ex
pression e of the program has two set constraints: Xe 2 se, Pe 2 se. The Xe is
for the object dasses that the expression e's normal object belongs to. The Pe is
for the exception dasses that the expression e's uncaught exception belongs to.
The meaning of a set constrainst X 2 se is intuitive: set X contains the set rep
resented by set expression se. Multiple constraints are conjunctions. We write
C for such conjunctive set of constraints. Collected constraints for a program
guarantee the existence of its least solution (model) because every operator is
monotonic (in terms of set-indusion) and each constraint's left-hand-side is a
single variable [4]. Our implementation computes the solution by the conven
tional iterative fixpoint method because our solution space is finite: exception
dasses in the program. Correctness proofs are clone by the fixpoint induction
over the continuous functions that are derived [1] from our constraint system.

In Section 3.1 we present a constraint system that analyzes uncaught ex
ceptions from every expression of the input program. Because exception-related
expressions are sparse in programs, generating constraints for every expression
is wasteful. The analysis cost-accuracy balance need to be addressed by enlarg
ing the analysis granularity. Hence in Section 3.2 we present a sparse constraint
system that analyzes uncaught exceptions at a !arger granularity than at ev
ery expression. Similar technique of enlarging constraint granularity has already
been successfuly used in ML [5)'s exception analysis [6]. Our analysis result is
the solution of this sparse constraints.

3.1 Exception Analysis at Expression-Level

Figure 2 has the rules to generate set constraints for the object dasses of every
expression. The subscript e of set variables Xe and Pe denotes the current ex-

pression to which the rule applies. The relation "C> e : C" is read "constraints C
are generated from expression e."

Consider the rule for method call:

[MethCall] C> ei : Ci C> e2 : C2
C> e1.m(e2): {Xx 2 Xe2 , Xe 2 Xc.mlc E Xe, ,method m(x) = em E c}

U{Pe 2 Pc.mlc E Xe,,method m(x) = em E c} UC1 UC2

The call expression will have the objects returned from the method m. This
method m (x) = em is the one defined inside the classes c E Xe, of e1 's objects.
Hence Xe 2 Xc.m, and similary, Pe 2 Pc.m for uncaught exceptions. (The sub
script c.m indicates the index for the body expression of class c's method m.)
The constraint Xx 2 Xe 2 is for parameter binding: object of e2 is passed to the
method parameter x.

Consider the rule for throw expression:

[Throw] t> e1 : C1
t> throw e1 : {Pe 2 Xe, U Pe,} U C1

lt throws exceptions e1 or, prior to throwing, it can have uncaught exceptions
from inside e1 too.

Consider the rule for try expression:

C> eo : Co C> e1 : C1
[Try] ---------------------

) . {Xe 2 Xe 0 UXe„Xx, 2 Pe0 n {c}}
C> try eo catch (c1 X1 e1 . -

U{Pe 2 (Pe 0 - { ci}) U Pe,} U Co U C1

Normal objects are either from e0 or from e1 (after handling), hence Xe 2 Xe 0 U Xe,.
Raised exceptions from e0 can be catched by x1 only when their classes are cov
ered by c1. After this catching, exceptions can also be raised during the handling
inside e1. Hence, Pe 2 (Pe 0 ...:... { ci}) U Pe,.

The operators ...:... and n are corresponding set-operations (set difference and
intersection) modulo class hierarchy. We can easily catch the meaning by the
following examples:

{c} ...:._ {c'} = l 0 if c = ~, or c is a subclass of c'
{ c} otherw1se
{c} if c = c' or c is a subclass of c'

{c} (l {c'} = {c'} if C
1 is a subclass of C

{} otherwise

3.2 Exception Analysis at Method-Level

In our new, sparse constraint system, only four groups of set variables are consid
ered: set variables for class' methods, field variables, try-expressions, and catch
variables. The number of unknowns is thus proportional only to the number of

methods, field variables, and try expressions, not to the total number of ex
pressions. For each method f, set variable Xi is for classes (including exception
classes) that are "available" at f, and Pf is for classes of uncaught exceptions
during the call to f. Similarly Xx for each field variable x. Every catch-variable
x of try expressions:

try e9 catch (c x e)

has also a separate set variable Xx which will has the classes of uncaught excep
tions from e9 • The try-expression e9 also has separate set variables X9 and P 9 ,

which are respectively for available and uncaught exception classes in e9 .

Figure 3 shows this new constraint system. The left-hand-side f in relation
f t> e : C indicates that the expression e is a sub-expression of method f (or
try-expression f).

Consider the rule for throw expression:

f t> e1 : C1
[Throw]m f t> throw e1 : {Pf 2 Xi n ExnClasses} U C1

The classes Pf of uncaught exceptions from method f are the exception classes
(X1 n ExnClasses) among the classes X1 available at f.

Consider the rule for try expression:

g t> e9 : C9 f t> e1 : C1
[Try]m ----------------

f t> try e9 catch (c1x1e1) :{Xx, :;2P9 n{ci}}UC9 UC1

The exceptions bound to the handler variable x1 are the uncaught exceptions
P 9 from e9 if the exception's classes are covered by c, hence Xx, 2 P 9 n {ci}.
Note that the constraints C1 from the try-expression e9 are derived under g.

The least model of the sparse constraints C, which are derived (t> pgm : C)
from an input program pgm is our analysis result. The solutions for Pm has the
exception classes whose exceptions might be thrown and uncaught during m's
execution.

3.3 Typeful Constraints for Improved Accuracy

The method-level analysis' accuracy can be improved using types. For example,
the constraint rule [MethCall]m for method call e1 .m(e2) can be sharpened using
m's type: c1 --+ c2:

f t> ei .m(e2) : {XCI 2CXc.m n { c2}, Xc.m 2 X1 n {ci}, Pt 2 Pc.mlc E X1, c.m: c1 --+ c2}
U 1 U 2

If j's body has a method call e1. m (e2), the classes x, of available objects in f
include the classes Xc.m of the objects available at the called method c.m only
if the classes are covered by m's return type. Similarly, method c.m receives
objects from current method f via the parameter passing only if their classes
are covered by m's parameter type.

4 Discussion

Though we cannot claim the cost-effectiveness of our sparse analysis (Section 3.2)
until its implementation 2 is tested with realistic Java programs, our experience
of similarly developing a sister analysis [6, 7] for ML programs makes us pos
itive about our design decision. Because exceptions are sparse objects in Java
programs our gross estimation at the method-level (e.g., the [Throw]m and the
[MethCall]m rules in Figure 3) would rarely be exposed in the analysis accuracy.
First, an exception to raise is usually constructed (by new expression) inside the
method that raises it. Second, method to call is usually explicit at the call-site.
Even for dynamic-binding cases the situation that methods are exception-raising
and also overridden in a dass hierarchy may not be frequent.

References

1. Patrick Cousot and Radhia Cousot. Compositional and inductive semantic defi
nitions in fixpoint, equational, constraint, closure-condition, rule-based and game
theoretic form. In Lecture Notes in Computer Science, volume 939, pages 293-308.
Springer-Verlag, proceedings of the 7th international conference on computer-aided
verification edition, 1995.

2. J. Dean, G. DeFouw, D. Grove, V. Litvinov, and C. Chambers. Vortex: An optimiz
ing compiler for object-oriented languages. OOPSLA '96 Conference Proceedings.

3. G. DeFouw, D. Grove, and C. Chambers, Fast interprocedural dass analysis, Pro
ceedings of 25th ACM SIGPLAN-SIGACT Symposium on Principles of Program
ming Languages pages 222-236, Januaray 1998.

4. N. Heintze, Set-based program analysis. Ph.D thesis, Carnegie Mellon University,
October 1992.

5. Robin Milner, Mads Tafte, Robert Harper, and David MacQueen. The Definition
of Standard ML {Revised}. MIT Press, 1997.

6. K wangkeun Yi and Sukyoung Ryu. Towards a cost-effective estimation of uncaught
exceptions in SML programs. In Lecture Notes in Computer Science, volume 1302,
pages 98-113. Springer-Verlag, proceedings of the 4th international static analysis
symposium edition, 1997.

7. Kwangkeun Yi and Sukyoung Ryu. SML/NJ Exception Analysis version 0.98.
http: //compiler .kaist. ac .kr/pub/exna/, December 1998.

2 We are currently implementing our analysis inside the Vortex compiler [2].

[New]

[This]

[FieldAss]

[ParamAss]

[Seq]

[Cond]

[FieldVar]

[Param]

[Throw]

[Try]

[MethCa!l]

[MethDef]

[ClassDef]

[Pro gram]

[>new c : { Xe 2 { c}}

c is the enclosing dass
l>this : { Xe 2 { C}}

1> e1 : C1

I> id.x := e1: {Xc.x 2 Xe, lc E X;d} U {Xe 2 X.,, Pe 2 P.,} U C1

1> e1 : C1

I> X : = e1 : { Xx 2 Xe,, Xe 2 Xe,, Pe 2 Pe,} U C1

I> e1 : C1 I> e2 : C2

I> e1 ;e2: {Xe 2 Xe2 , Pe 2 P„ U Pe 2 } U C1 U C2

I> eo : Co I> e1 : C1 I> e2 : C2

1> if eo then e1 else e2: {Xe 2 Xe, U Xe 2 , Pe 2 Pe 0 U Pe, U Pe2 } U Co U C1 U C2

1> id : C;d

l>x:0

1> throw e1 : {Pe 2 Xe, U Pe,} U C1

I> eo : Co I> e1 : C1

[> try eo catch Cc1 X1 e1) : {Xe 2 Xeo u Xe,, Xx, 2 Peo n {c}}

U{Pe 2 (Pe 0 ..:... { ci}) U P.,} U Co U C1

I> e1 : C1 I> e2 : C2

1> e1.mCe2): {X„ 2 X. 2 ,Xe 2 Xc.mlc E X.,,method m(x) = em E c}
U{Pe 2 Pc.mlc E Xe 1 ,method m(x) = em E c} UC1 UC2

I> em: C
l>method m(x) = em: {Xc.m 2 Xem, Pc.m 2 Pem} UC

I> m; : C; i = 1, · · · , n

l>class c = {var x1,···,Xk,m1,···,mn}:C1U···UCn

1> C; : C; i = 1, · · ·, n
[> C1, · · · , Cn : C1 LJ · · · U Cn

Fig. 2. Exception Analysis at Expression-Level

[New]m

[FieidAss]m

[ParamAss]m

[Cond]m

[FieldVar]m

[Param]m

[Throw]m

[Try]m

[MethDef]m

[CiassDef]m

[Program]m

f t> new c : { Xi 2 { c}} [This]m

[SeqJm

c is the enclosing dass

f t> this : {Xi 2 {c}}

f t> e1 : C1 f t> e2 : C2

f t> e1; e2 : C1 U C2

f t> eo : Co f t> e1 : C1 f !> e2 : C2

f t> if eo then e1 else e2 : Co U C1 U C2

f t> id : C1

f t> id.x : {X1 2 Xc.xlc E X1} U C1

f [> X : 0

f t> throw e1 : {Pt 2 Xi n ExnClasses} UC1

g t> e9 : C9 f t> e1 : C1

t> method m(x) = em : Cm

t> Mi : Ci i = 1, · · · , m
t>class c = {var X1···Xn M1···Mm} :C1U···UCm

t> C; : C; i = 1, · · ·, n

[> C1 • · · Cn : C1 U · · · U Cn

Fig. 3. Exception Analysis at Method-Level

