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Zusammenfassung Die vorliegende Arbeit widmet sich der Untersuchung von optimalem
Transport einer einzelnen Anregung in Netzwerken von vier bis acht Rydberg-Atomen mittels
Dipol-Dipol-Wechselwirkung. Die Anregung soll hierbei zwischen zwei festgelegten Atomen,
die als Eingang und Ausgang bezeichnet werden, mit möglichst hoher Effizienz in möglichst
kurzer Zeit übertragen werden. Durch experimentell realisierbare Bedingungen motiviert
legen wir zunächst besonderes Augenmerk auf Netzwerke, deren einzelne Atome sich auf
Punkten eines zweidimensionalen Gitters befinden. Wir beginnen mit einer Analyse aller Kon-
figurationsmöglichkeiten einer gewählten Gitterform, welche durch einfaches Ausprobieren
zugänglich sind. Da wir für diesen Fall keine Übertragungseffizienzen von exakt 100% finden,
betrachten wir als nächstes den allgemeineren Fall, in welchem die Atome auf beliebige Posi-
tionen im zweidimensionalen Raum (d.h. ohne Beschränkung auf bestimmte Gitterpunkte)
platziert werden können. Hier finden wir eine diskrete, endliche Menge an „perfekten“ Konfigu-
rationen, d.h. solche, welche Effizienzen von 100% innerhalb kurzer Zeit ermöglichen.
Es stellt sich dadurch die Frage, warum unsere numerische Optimierung zwar eine diskrete
Menge einzelner perfekter Konfigurationen, jedoch keine kontinuierlichen, parametrisierten
Familien solcher Konfigurationen liefert. Um dies zu klären, leiten wir eine einfache Formel zur
Berechnung der Dimension des Lösungsraums für unsere Fragestellung her. Diese sagt für zwei
Dimensionen, d.h. bei Platzierung der Atome im zweidimensionalen Raum, die beobachtete,
diskrete Lösungsmenge und für drei Dimensionen eine von uns durch die Analyse der die
infinitesimale Nachbarschaft einer perfekten Konfiguration beschreibenden Hesse-Matrix
bestätigte Anzahl an freien Parametern voraus.

Abstract In this thesis, we investigate perfect transfer of an excitation in networks of 4 to 8
Rydberg atoms via dipole-dipole interaction. We demand that the excitation is transferred
between a given pair of an input and an output site with the highest possible efficiency and as
fast as possible. Existing experiments motivate a restriction to networks with atoms located on
a two-dimensional lattice. We start with an analysis of all possible configurations on lattice
sizes accessible with our computational power. In this framework, we do not find any configura-
tions that exhibit 100% transport efficiency. In a second step, we therefore remove the lattice
condition and allow the atoms to be placed continuously in two-dimensional space. Indeed, a
discrete and finite set of "perfect" configurations, i.e. ones which provide 100% efficiency on
short timescales, is found.
As a consequence of this, we ask the question why our numerical optimization results in a set of
single perfect configurations, but not in continuous, parameterized families of such configura-
tions. To tackle this problem, we derive a simple formula which predicts the dimension of the
space of solutions in our problem. It states that for two dimensions, i.e. if we place the atoms in
two-dimensional space, only a discrete set of solutions exists, whereas it yields a certain number
of free parameters in three dimensions. These predictions are reproduced with an analysis of
the Hessian that describes the infinitesimal neighborhood of a perfect configuration.
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Introduction

Science has been successful in describing a variety of transport processes observed in systems
of particles, e.g. diffusion of molecules through a cell membrane, where classical statistical
mechanics can be used to obtain an effective, averaged description of the net particle flow. In
some situations, only quantum mechanics can provide satisfactory explanations of the under-
lying dynamics, like the existence of Bloch states in lattices, where the probability of finding
an electron is spread over a large region in the crystal. The former only relies on the existence
of a concentration gradient, but is not able to describe effects of interference possibly arising
for quantum mechanical particles or excitations, while the latter only allows for an analytic
solution due to the periodicity of the lattice potential. Interestingly, unordered networks of
particles exist in nature that feature transport properties which can neither be understood by
classical physics, nor by the known analytic solutions of simple quantum mechanical problems.
A remarkable example of this is the ability of green sulfur bacteria to transfer an excitation
created by an incoming photon from a so-called 'antenna complex’ protein to their 'reaction
center’, where the excitation is converted to chemical energy. To make this possible, the excita-
tion has to be transported very quickly, otherwise the energy is dissipated into the environment
and lost for the chemical reaction. This is done by a pigment-protein complex called the Fenna-
Matthews-Olsen complex [1]. Inside this complex, a disordered network of bacteriochlorophyll-a
molecules is embedded loosely into the overall protein structure. Transport of excitations in this
network happens with remarkably high efficiency[2] and understanding the behaviour of this
network more precisely might enable us to find new ways of thinking about transport of energy,
particles and therefore also information. Two of the most prominent possible applications are
quantum computing and photovoltaics. Both of them are investigated intensely all over the
world, the former to revolutionize our way of performing computations in parallel, the latter to
possibly raise the currently available efficiency of solar energy devices, which is indispensable
to abolish nonrenewable energy sources and slow down climate change.
Many scientists have engaged in finding an explanation for this phenomenon and a broad
range of approaches was created, from models close to experimental data [3], to very abstract
descriptions of transport processes in general [4]. These coexisting models tend to disagree in
basic assumptions. One example is the question whether a coherent superposition of states is
responsible for the high transfer probabilities or whether the ambient noise enhances trans-
port. In 2007, evidence in favour of a coherent transport mechanism inside the FMO complex
has been found [5]. Coherence seems to persist in these networks for longer timescales than
expected, although thermal noise at ambient temperatures and coupling of the individual
two-level systems inside the complex to the surrounding structure should in principle suppress
coherent state transfer. Should we find a way to mimic this robustness, this would bring us much

5



Contents

closer to the aforementioned applications. Unfortunately, the modelling of the complicated
dynamics inside the complex remains difficult.
Therefore, we have to think of systems that preserve the essential characteristics of the networks
implemented in nature, but which at the same time are simple enough to allow for a success-
ful analysis. Rydberg atoms, which exhibit one electron in a highly excited state, are a way of
controlling networks of two-level systems interacting via electric dipole-dipole interactions
in reality and investigate their behaviour, e.g. under introduction of an additional excitation
into the system [6]. In this thesis, we model purely coherent transfer of one single excitation
entering a 2D network of Rydberg atoms. We are especially interested in configurations that
provide fast and highly efficient excitation transport from a given input to a given output site.
The thesis will be structured in the following way:

• Chapter 1: A description of the underlying model and the definition of a measure for
transfer efficiency is given.

• Chapter 2: We fix the position of atoms on a discrete, two-dimensional lattice. This is
motivated by existing experimental setups [7]. Allowing between 4 and 8 atoms on the
lattice, we identify configurations exhibiting transport efficiencies up to 99.99%, but we
do not reach unity.

• Chapter 3: As an extension, we remove the condition imposed in chapter 2 and sample
continuously distributed configurations of 4 to 7 atoms in the unit disk, to which we
apply methods of numerical optimization. The resulting sets of optimal configurations
are discrete (meaning every configuration is isolated in space), feature perfect transfer
efficiency and the minimal transfer time is shortened for every additional site in the
network, up to a factor of 30 times faster than a Rabi oscillation between the two most
distant sites only.

• Chapter 4: We show that our results are consistent with earlier work in the field and
use the criteria and ideas from these sources to derive a simple criterion which allows
us to understand why only discrete sets of configurations appear in two dimensions.
Additionally, it enables us to predict a number of free parameters that one can vary for
perfect configurations in three dimensions without decreasing the efficiency.

• Chapter 5: An approximation of the efficiency function around perfect configurations
up to second order results in a Hessian matrix. By evaluating the number of its zero
eigenvalues, we confirm our predictions of chapter 4.
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Chapter 1

Model and Definition of Transfer Efficiency

1.1 Model

The networks we are interested in consist of at least 4 sites which we use to model the individual
Rydberg atoms, where the atoms with the largest distance to each other are fixed in position
and called the input (in) and output (out) site, respectively. All remaining atoms lie in between
these two and can either be put on a square lattice or continuously distributed in the unit disk
with the line from in to out defining the diameter. In both cases, we use the scale invariance
of the problem and set the distance of in to out to a fixed value of 2. Therefore, increasing the
lattice size approximates the continuous case to a better and better degree.
We assume pure electric dipole-dipole interaction between the atoms and set their absolute
potential (on-site) energies to zero, using the fact that a constant energy shift on the diagonal
elements of the Hamiltonian does not influence the dynamics of the system. We model the
Rydberg atoms with one outer electron excited to a Rydberg state with a high principal quantum
number n. It can be in a lower or upper Rydberg state denoted by |S〉 ≡

∣∣nS1/2,1/2

〉
and

|P 〉 ≡
∣∣nP3/2,3/2

〉
, respectively. S andP refer to orbital angular momentum l = 0 and l = 1

of the excited electron and the half integers in subscript are the quantum numbers of total
angular momentum j and its projection onto the z-axismj . In the case of rubidium atoms for
example,n = 46 is an adequate choice [8].
We only look at the situation where one single excitation is in the system. The state of the
system at time t is then written as |ψ(t)〉 and for the excitation fully localized at site i, this will
be denoted by |i〉, where |in〉 = |1〉 and |out〉 = |k〉 for a number of atoms k. As an example
we can write the initial state, where the excitation is fully localized at site in, as

|ψ(0)〉 = |1〉 = |P 〉1 ⊗ |S〉2 ⊗ · · · ⊗ |S〉k.

The entirety of all states |i〉, i ∈ 1, ..., k forms a basis of the single-excitation Hilbert spaceH.
The coupling strengths between atom i and j, which as Rydberg atoms are electric dipoles with
orientation chosen to be along the laboratory's z-axis, are given by

V (~rij) =
α

r3ij
· (3 cos2(θ)− 1), (1.1)

whereα is a constant depending on the dipole moments between the states |S〉 and |P 〉. θ is
the angle between the laboratory's z-axis and the vector ~rij connecting site i and j. rij is its
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Chapter 1. Model and Definition of Transfer Efficiency

absolute value [8]. In our case, since a reduction to a two-dimensional setting is performed,
θ = π/2 for all cases, given the laboratory's z-axis is perpendicular to the plane in which
positions can be varied. It remains a dependence on r−3, where the proportionality factor can
be ignored by rescaling energies, including ~ = 1. Since a constant factor is not influencing the
dynamics, we can also ignore the minus sign and obtain a very simple expression for the entries
of the Hamiltonian

Hij =

Vij =
1

r3ij
i 6= j

0 i = j

(1.2)

Kinetic energy due to atomic motion does not appear because we fix the atoms at their positions.
The Hamiltonian is symmetric and has real entries, so we know the eigenvectors will form an
orthogonal basis inH.

1.2 Transfer Efficiency

Our ultimate goal is to search for configurations that exhibit very high transport efficiency.
Different ways of assessing this efficiency are at our disposal as explained in [9]. One can
either examine the maximum probability of the excitation being localized at the output site
at any given point in an arbitrarily chosen time interval, or its time average over the latter,
where a unitary time-evolution of the state vectors in the single excitation Hilbert space is
used. There exists an additional possibility that does not rely on pure states but instead uses
a Markovian master equation and Lindblad terms to model a 'sink’ at the output site, but we
will not pursue this approach for reasons of simplicity. Given that we are looking for completely
perfect transport, the maximum probability measure seems to be the most reasonable option.
The mean value for long times can not exceed 50% which is just the case of in and out exchanging
the excitation without any intermediate sites.
As an additional condition to unit efficiency, we demand transfer times t < T , where T is a
certain fraction of the periodTRabi = π/(2V1k) of a Rabi oscillation between in and out, which
are coupled byV1k = 1/8. The intermediate sites can not only drastically enhance or suppress
transport in general but also speed it up by a large factor. The purpose of our chosen benchmark
time is therefore to prefer configurations that reach high transport efficiencies in a time smaller
thanTRabi. We vary the allowed value ofT depending on the situation, always minimizing it as
far as possible. We then find for the probabilityP(T ) of the excitation to be localized at site out
at any time smaller thanT

P(T ) = max
t∈(0,T )

|〈k|ψ(t)〉|2 = max
t∈(0,T )

∣∣〈k| e−iHt |1〉
∣∣2 , (1.3)

where we used the time evolution operator for the time-independent Hamiltonian. Taking
advantage of the fact that we know the eigenvectors ofH form an orthogonal basis, we can
calculate and normalize it to {|vi〉}. This allows us to explicitly evaluate the matrix exponential
and insert the spectral decomposition ofH in Eq.(1.3):

P(T ) = max
t∈(0,T )

∣∣∣∣∣∑
j

e−iEjt 〈k|vj〉 〈vj|1〉

∣∣∣∣∣
2

. (1.4)
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Chapter 1. Model and Definition of Transfer Efficiency

This quantity has been assessed numerically for all configurations in this thesis. Note that, due
to the fact that all matrix elements ofH are real numbers, the transfer efficiency is symmetric
under exchange of the input and output site:

〈k| e−iHt |1〉∗ = 〈1| (e−iHt)† |k〉∗ = 〈1| eiHt |k〉∗ = 〈1| e−iH∗t |k〉 = 〈1| e−iHt |k〉 (1.5)

The important assumption in our model, namely that Rydberg atoms are fixed to well controlled
positions, may not be easily implementable in experiments. Optical lattices, where laser light
creates periodic potentials in which neutral atoms can be trapped, are one way to solve this
issue. This technology has succeeded not only in creating large, two-dimensional arrays where
Rydberg atoms can be fixed in space, but also in creating potential wells that are sufficiently
narrow so that we can neglect the atoms’ motion due to the uncertainty relation, which is
explained in detail in [7].
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Chapter 2

Optimal Transfer on 2D Lattices

In general, the transfer efficiency defined by Eq. (1.4) sensitively depends on the atomic positions
[10]. In this chapter, we will search optimal configurations of atoms on a two-dimensional lattice
which maximizeP . For this purpose, we chooseN ×N lattices with oddN , where in and out
lie in the center of opposing edges.

2.1 Range of Calculations

The transfer efficiencies P(T ), see Eq.(1.4), for all configurations of at least four and up to
8 atoms on lattices of size N = 5 or larger have been calculated for the benchmark times
T = TRabi/10 andT = TRabi/5. Given the fixed positions of in and out, a number of atoms k
and a lattice withN2 positions, this results in

(
N2−2
k−2

)
possibilities for configurations. For our

values of k andN , this number grows rapidly in size as both of them are increased, so in terms
of computational power a surprisingly limited set of combinations of the two parameters could
be considered. Intuitively, one could argue that a further optimization of these calculations
could be possible by focusing the search on configurations with certain symmetry properties,
thus enabling us to examine larger grids in the same computation time. In this case though, we
would have to justify why symmetry should be a preferred feature for candidate configurations.
We will be addressing this at a later point based on the results for all possibilities on small
lattices.
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Chapter 2. Optimal Transfer on 2D Lattices

2.2 Results

We gathered the efficiencies of the best performing configurations for each case in Table 2.1
(T = TRabi/10) and 2.2 (T = TRabi/5). The corresponding times for which maximal efficiency
is reached are presented in the appendix under 5.11 and 5.12.

N×N 4 5 6 7 8

5x5 0.33440 0.88839 0.86716 0.91202 0.95321
7x7 0.91544 0.85755 0.94245 0.95528 0.97692
9x9 0.74015 0.94833 0.94457
11x11 0.77268 0.94821 0.97508
13x13 0.92139 0.93763

Table 2.1: Maximal efficienciesP(T ) for lattice sizesN
between 5 and 13 with 4− 8 atoms, whereT = 0.1 · TRabi

N×N 4 5 6 7 8

5x5 0.78572 0.98073 0.87671 0.96177 0.95321
7x7 0.91544 0.99709 0.99488 0.99730 0.99393
9x9 0.86775 0.99668 0.99651
11x11 0.85326 0.99954 0.99993
13x13 0.92139 0.99709

Table 2.2: Maximal efficienciesP(T ) for lattice sizesN
between 5 and 13 with 4− 8 atoms, whereT = 0.2 · TRabi

We can see that for t < TRabi/10, the maximal efficiencies gather mostly around 95%

and do not reach more than 97.7%. With a few exceptions, there exists a general trend for them
to rise as the number of atoms on a fixed lattice size is increased.
Although 3 out of 5 lattice sizes for configurations with k = 4 atoms do not display very
efficient possibilities, surprisingly the 7× 7 and 13× 13 lattices do. Figure 2.2 shows both of
them as (almost) one dimensional, symmetric arrangements with (nearly) equidistant atoms.
In general, the increase in T results in a drastic improvement of transport, where in all of
the cases of 5 or more atoms on a 7× 7 or larger grid, unity is reached within less than 1%
deviation.
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Chapter 2. Optimal Transfer on 2D Lattices
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Figure 2.1: Optimal configurations of 4 atoms on the 7× 7 (a) and 13× 13 (b) lattice. Both
configurations are optimal for both benchmark timesT = 0.1 · TRabi andT = 0.2 · TRabi

As the best performing configurations for 5, 6 and 7 atoms demonstrate below, see Figs. 2.2-2.4,
spatial symmetry is not a necessary condition for optimal transport. It is therefore a priori not
reasonable to restrict the search only to symmetric configurations.
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Figure 2.2: Optimal configurations of 5 atoms on the 11× 11 lattice forT = 0.1 · TRabi (a) and
T = 0.2 · TRabi (b)
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Chapter 2. Optimal Transfer on 2D Lattices
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Figure 2.3: Optimal configurations of 6 atoms on the 11× 11 lattice forT = 0.1 · TRabi (a) and
T = 0.2 · TRabi (b)
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Figure 2.4: Optimal configurations of 7 atoms on the 7× 7 lattice forT = 0.1 · TRabi (a) and
T = 0.2 · TRabi (b)

Obviously, these observations can only give us a first hint about the nature of the perfect
transfer we are searching for. Nevertheless, they already provide candidates that reach almost
perfect transfer with less than one percent deviation from unity, which might well lie inside
experimental error margins anyway, while reducing the transfer time by a factor of five, and
even by a factor of ten if one is willing to decrease the efficiency to 97.5%.
Apart from that, however, the method applied does not provide any further insight, since
the calculations on discrete lattices becomes difficult too quickly. We will therefore vary our
approach in the next chapter and allow the atoms to be placed at arbitrary positions inside the
unit disk.
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Chapter 3

Perfect Transfer in Arbitrary 2D Networks

From previous work, it is known that certain configurations reach perfect transfer (P = 1) in
three dimensions [10, 11]. In this chapter, we check whether perfect and fast transfer (where
T � TRabi) is possible in two dimensions, if the atoms are allowed to be placed at arbitrary
positions, and present an overview of the set of optimal configurations achievable for a number
of atoms between 4 and 7.

3.1 Numerical Optimization Algorithm

The results have been obtained by

• sampling configurations with a pseudo-random number generator

• improving these with the help of a simple genetic algorithm [9]

• further optimizing the obtained configurations with a simplex method [12]

This combination of algorithms proved to be the most effective one, since for inefficient
sample configurations, the simplex method is slightly less convergent than for the ones near
100% efficiency. The genetic algorithm applies random variations to the coordinates of all
intermediate sites, where the magnitude of variation decreases the closer the efficiency is to
unity. The changes are saved if any improvement is obtained and the procedure is iterated. In
contrast, the simplex method is an analytical optimization algorithm where only the initial
parameters are chosen randomly. Combining these two provides a good tool to quickly find
configurations that exhibit efficiencies very close to one. In the whole process, only realizations
with pairwise atomic distances of d ≥ 0.1 have been accepted, what resulted in an upper
bound for the interaction between each pair of atoms. It has been shown that sites lying very
close to each other prevent spreading of states in the network and the minimal distance is
implemented to avoid such a detrimental effect, which has been called pair localization in [8].
For the continuous setting, a minimum efficiency ofPmin = 1− 10−13 was demanded in all
cases except for 4 atoms, where probabilities fromPmin,4 = 1− 10−6 upward were allowed.
This is explained in further detail below and is due the fact that only for k = 4 the overall
structure does not change significantly fromPmin,4 on. For higher numbers of atoms though,
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Chapter 3. Perfect Transfer in Arbitrary 2D Networks

the distribution of positions continues to decrease with higher thresholds, so it was desirable
to make the condition as strict as possible and to focus on regularities that persist. In the
appendix, we present corresponding graphs where we chosePmin,4 for k ≥ 5 instead, and
show that the resulting difference is indeed remarkable.
The maximal allowed transfer time was set to T = 0.5 · TRabi for k = 4. For all following
searches, we determined the fastest configuration of the previous atom number and used its
transfer time to set a new upper limit. This way, we restrict ourselves to configurations where
the additional atom actually improves the speed of transport.

3.2 Perfect Configurations: Overview

In Fig. 3.1 we plotted all found configurations of 4 atoms exhibiting perfect excitation transfer.
We can see 4·27 + 2· 5=118 points corresponding to 59 pairs of intermediate sites. As we have
checked, all of them are either symmetric with respect to the origin or with respect to the y-axis.
As an example, we show in Fig. 3.2 the two fastest ones among all the configurations shown in
Fig. 3.1. Both are symmetric with respect to the origin. Moreover, they are mirror-symmetric
counterparts of each other and therefore (due to the symmetry ofH under exchange of in and
out, see 1.2) exhibit exactly the same transfer time. If we count symmetric counterparts (such as
the ones shown in 3.2) as only one configuration, we arrive at 27+5=32 different configurations,
shown in Fig. 3.1. 5 of them are located on the y-axis, and are symmetric with respect to the
origin and both axes.

-1 1

-1

1

in out

Figure 3.1: Set of perfect configurations with 4 atoms, whereT < 0.5 · TRabi. The input and
output atom are fixed at positions (-1,0) and (1,0), each dot inside the disk represents one atom
of a perfect configuration.
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Chapter 3. Perfect Transfer in Arbitrary 2D Networks
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t = 0.268 · TRabi

Figure 3.2: The two possible arrangements of the fastest optimal configuration with 4 atoms.
Both of them are symmetric to the origin and exhibit the same transfer time.

For k = 5 atoms, we found, both, symmetric and asymmetric configurations with efficiency
P = 1. Fig. 3.3 shows the ensemble pictures for asymmetric and symmetric configura-
tions separately. The fastest transfer time observed with k = 4, see 3.2, was used to set
T = 0.268 · TRabi. In the symmetric case (b) it is not surprising to find a high density of atoms
along the y-axis, since it is required for any configuration of an uneven number of atoms that is
symmetric to have one atom on it. The consequence of this is more interesting. Because there
is always one atom with x-coordinate zero, a 'forbidden’ zone appears for |x| . 0.24. This is
likely due to the pair localization effects we mentioned above. Since a suppression of transport
takes place if the other two atoms are too close to the one located in the center, we do not see
these configurations in our analysis. We count 14 sites in one quadrant (not including the sites
along the y-axis). All of these configurations are symmetric with respect to the y-axis, so we can
say there exist 14 distinct symmetric configurations, each of which exhibits one counterpart
obtained by mirroring with respect to the x-axis.
In contrast, Fig. 3.3 (a) only shows 9 sites in one quadrant. This leads to 36 sites altogether and
therefore with 3 intermediate atoms to 12 arrangements, if we assume that none of them share
the same site. Since no symmetry exists in these cases (the symmetry of the ensemble only
appears because we can mirror the asymmetric configurations about the x- and y-axis, creating
a symmetric image out of the 4 possibilities for each asymmetric configuration) we end up with
12/4=3 different configurations. We show the two slower ones in 3.4, whereas the fastest one is
presented in 3.7. In total, we found a set of 17 new configurations that actually perform better
than 4 atom networks, which is again a surprisingly small number.
The graphics in Fig. 3.3 share an important feature: The vicinity of in and out is not populated: A
minimal distance to the intermediate sites of at least 25% compared to their own separation is
always observed. This result is consistent with the observations in [13], where the concepts of
centrosymmetry and the dominant doublet presented in section 4.1 have been used to explain
the phenomenon.
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Chapter 3. Perfect Transfer in Arbitrary 2D Networks
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Figure 3.3: Ensembles of asymmetric (a) and symmetric (b) optimal configurations with 5 atoms
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Figure 3.4: Two of the three distinct optimal configurations appearing in 3.3 (a). The third one,
shown in 3.7, is the fastest asymmetric configuration we found for k = 5.

For 6 atoms, we again see the empty regions near in and out with radii comparable to the ones
in Fig. 3.3 (and incidentally also Fig. 3.1) as well as approximately 60 configurations (where
we applied similar arguments to the ones above). As a close inspection of the ensembles
represented in Fig. 3.5 (a) and (b) reveals, they are not completely symmetric anymore, which
indicates that some configurations have not been found. Fig. 3.5 was generated with the data
obtained from 1700 runs of the optimization algorithm, and more runs would be needed to
find all configurations (including all their symmetric counterparts).
Nevertheless, our data clearly indicates that the configurations of interest form a discrete set in
the case of k = 6 also.
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Figure 3.5: Ensembles of asymmetric (a) and symmetric (b) optimal configurations with 6 sites
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Figure 3.6: Ensembles of asymmetric (a) and symmetric (b) optimal configurations with 7 atoms

For k = 7, we observe the same features in Fig. 3.6 as we did for 6 atoms. The radial minimal
distance of all intermediate sites to in and out is clearly visible, especially in the asymmetric
ensemble picture. The number of distinct configurations has increased to approximately 90
(where again, not all of them might have been found by our algorithm with 1700 runs), meaning
we get more and more options to enhance transport compared to smaller atom numbers.
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Chapter 3. Perfect Transfer in Arbitrary 2D Networks

3.3 Individual Examples for Fastest Transfer

In Fig. 3.2 and 3.7 to 3.9, the fastest asymmetric and the fastest symmetric configuration for
the respective number of atoms is displayed. While all of them exhibit perfect state transfer,
the symmetric configurations provide faster transport in each case. As explained above, their
values are the transfer times used as benchmark for the overview pictures with larger numbers
of atoms. Naturally, one would wonder whether there is a general dependence of transfer time
on the presence of symmetry in a configuration.
To make more general statements about this, one would have to perform a thorough analysis
of types by accepting each configuration type only once. In our procedure used to generate
the above ensembles, we allowed configurations to enter a sample as many times as they
occur by chance. To avoid this, one would have to apply a certain criterion for which kind of
configuration is equal to another one and take into account the possible symmetries and
permutations of atoms when deciding whether a particular set of atoms has already been
observed. With the dataset obtained in such a fashion, a differentiation between symmetric
and asymmetric configurations could then lead to an observable difference in transfer time
properties. Unfortunately, we did not have enough time to tackle this interesting question
appropriately.
All coordinates of the configurations displayed in Fig. 3.2, 3.7, 3.8 and 3.9 have been listed in
appendix C.
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Figure 3.7: The fastest asymmetric (a) and symmetric (b) optimal configuration with 5 atoms
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Figure 3.8: The fastest optimal asymmetric (a) and symmetric (b) configuration with 6 atoms
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Figure 3.9: The fastest asymmetric (a) and symmetric (b) optimal configuration with 7 atoms
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Chapter 4

Conditions for Perfect Transfer

In the previous chapter, we found sets of configurations that provide perfect state transfer. Since
we set an upper limit for the allowed transfer time, the sets were finite and, due to our restriction
of improvement with each additional atom, quite small.
After this phenomenological approach, we want to understand the results analytically by deriv-
ing necessary and sufficient conditions for perfect state transfer. We then move on to compare
the number of independent conditions we can find with the number of parameters that are
available for a configuration in d dimensions and a network of k atoms.

4.1 Centrosymmetry and Dominant doublet

In previous work, the combination of two specific design principles has been associated with
highly efficient and fast state transfer [13, 14]. The first one is the so-called centrosymmetry. A
Hamiltonian is called centrosymmetric if it commutes with the permutation operator P̂ that is
represented by the exchange matrix J = δi,k−j+1, so

HJ = JH ⇒ Hi,j = Hi, k−j+1 = Hk−i+1,j , (4.1)

J2 = 1 ⇒ H = J H J−1 ⇒Hi,j = Hk−i+1,k−j+1 . (4.2)

which means the Hamiltonian is symmetric about the antidiagonal in addition to being a
symmetric matrix.
The second design principle is the dominant tunneling doublet or simply dominant doublet. Since
centrosymmetric Hamiltonians commute with J, they can be cast into a block diagonal form in
the eigenbasis of J with the blocksH+ andH− associated with eigenvalues±1 of J .

H =

[
H+ 0

0 H−

]
. (4.3)

H has eigenstates
∣∣±̃〉 belonging solely to the respective one of these two matrices. J , in turn,

has eigenvectors which are symmetric or antisymmetric to the exchange of in and out, e.g.
|±〉 = (1/

√
2)(|in〉 ± |out〉). If the overlaps fulfill the condition∣∣〈±̃∣∣±〉∣∣2 > α ≈ 1, (4.4)
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Chapter 4. Conditions for Perfect Transfer

then |±〉 is said to be a dominant doublet for the Hamiltonian. In [13, 14] it is shown that in
general, a dominant doublet exists if the coupling of in and out to the intermediate sites is small
compared to the coupling between the latter. The transfer efficiency for Hamiltonians with
both centrosymmetry and a dominant doublet as a property is on average drastically increased
compared to randomly sampled Hamiltonians. Nevertheless, configurations that exhibit both
properties are not necessarily highly efficient in every case. To actually guarantee that the
transfer efficiency reaches unity for a given configuration, additional conditions have to be met.

4.2 Necessary and Sufficient Conditions for Unit Efficiency

We start from the derivations made in [9], where necessary conditions for perfect transfer in
the range of the used model have been found.
Starting from Eq.(1.4), the triangle inequality as well as the Cauchy-Schwarz inequality are
applied:

P =

∣∣∣∣∣∑
j

e−iEjt 〈k|vj〉 〈vj|1〉

∣∣∣∣∣
2

≤

(∑
j

|〈k|vj〉 〈vj|1〉|

)2

≤
∑
i

| 〈k|vi〉 |2︸ ︷︷ ︸
1

∑
l

| 〈k|vl〉 |2︸ ︷︷ ︸
1

= 1, (4.5)

Of course, the interesting case is equality, which can be reached by demanding

| 〈1|vj〉 |2 = | 〈k|vj〉 |2 j = 1, . . . , k (4.6)

for the Cauchy-Schwarz inequality. In addition, if all phases acquired by each term in Eq.(4.5)
during the time evolution are equal to an arbitrary phase φ modulo 2π at some time t, we
achieve equality for the triangle estimate, too:

arg(e−iEjt 〈k|vj〉 〈vj|1〉) = φ j = 1, . . . , k (4.7)

One can show that centrosymmetry is sufficient to guarantee Eq.(4.6): Centrosymmetric Hamil-
tonians commute with J , so they share a set of eigenvectors with the permutation operator. J
only has eigenvalues±1, and since it exchanges in and out, the first and last coefficient of each
vector has to be of equal absolute value, which is exactly what Eq.(4.6) states. In general though,
there might also exist Hamiltonians that fulfill the conditions without being centrosymmetric.
Therefore we have to identify the exact number of independent equations we obtain from
Eq.(4.6) and Eq.(4.7). In principle, both of them yield k equations, but these numbers are re-
duced:

• The eigenvectors ofH as well as the excitation position vectors form an orthonormal
basis. This implies 〈1|1〉 = 〈k|k〉 = 1 and

∑k
i=1 |vi〉 〈vi| = 1, which results in

k∑
i=1

|〈1|vi〉|2 =
k∑

i=1

|〈k|vi〉|2 = 1. (4.8)
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• All diagonal elements ofH in the position basis are equal, in our case zero. If we express
the Hamiltonian in spectral formH =

∑k
i=1Ei |vi〉 〈vi| and represent it in the position

basis, it must be true that 〈1|H |1〉 = 〈k|H |k〉, leading to

k∑
i=1

Ei |〈1|vi〉|2 =
k∑

i=1

Ei |〈k|vi〉|2 = 0. (4.9)

These two equations reduce the number of conditions we have to fulfill to k − 2, which means
if k − 2 eigenvectors have the property (4.6), then Eq.(4.8) and Eq,(4.9) guarantee that the
remaining two also have it.
The additional constraints on the relative phases give us an additional set of k − 1 equations.
The phase of one of the terms in Eq.(4.7) is an arbitrary choice, the remaining ones to have be
equal to it modulo 2π.
In total, we find

c = k − 2 + k − 1 = 2k − 3 (4.10)

conditions that the eigenvectors and eigenvalues ofH have to meet, in order for the system
to provide perfect transfer at some t ≤ T . This enables us to compare the number of free
parameters in our setting with the number of conditions.
An ensemble of k sites has the site in and out fixed, leaving k − 2 intermediate atoms to move.
They have d coordinates in d dimensions, which results in d · (k − 2) independent choices for
the spatial setup. We do not fix the point in time at which a configuration has to transfer the
excitation with unit efficiency, so time is an additional degree of freedom we have to consider.
The number of free parameters is therefore f = d · (k − 2) + 1 and the difference of interest,
s = f − c becomes

s = f − c = d · (k − 2) + 1− 2k + 3 = (d− 2) · (k − 2). (4.11)

First of all, this formula results in negative values of s for all k ≥ 3 if d = 1, meaning configura-
tions that exhibit perfect transfer do not exist in one dimension. However, we found examples
of configurations that reach efficiencies as high as 99.897% for k = 4 andT = 0.5 · TRabi. In
fact, increasing the number of atoms further approaches the maximal efficiencies one can find
to 1, but, as expected, no configurations have been found that yield perfect transferP = 1.
In the case of higher dimensions, we obtain s = 0 for d = 2 and s = k − 2 for d = 3. The
number s can be interpreted as the dimension of a manifold in the space of all possible con-
figurations at all possible times, on which the configurations providing optimal state transfer
have to lie. For s = 0, the set of configurations is therefore discrete, though it does not have
to be finite. This is consistent with the findings in chapter 3. In three dimensions, however,
the manifold will be of dimension s ≥ 1 for one or more intermediate sites, meaning there
exist possibilities to change the configuration of the intermediate atoms by an infinitesimal
amount without lowering the efficiency (although optimal transfer might then be obtained at
a different point in time).
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4.3 Generalized Centrosymmetry

In the previous section 4.1, we showed that centrosymmetry is sufficient to guarantee equal
overlaps for eigenvectors with in and out. It is obvious that configurations which are spatially
symmetric in the sense discussed in chapter 3 lead to a Hamiltonian that commutes with J ,
therefore their appearance in our calculations is not surprising. In contrast, we also found
configurations that are not centrosymmetric and still fulfilled the necessary conditions.
This is why we will present a more general form of the Hamiltonian. We then show that Hamil-
tonians of this form are guaranteed to meet the condition of equal overlaps (4.6).
To find this form, let us diagonalize the (k − 2)× (k − 2) submatrixHC in the center ofH :

E = U †C HC UC = diag(ε2, . . . , εk−1), (4.12)

whereUC is the matrix containing the eigenvectorsHC in its columns.
Next, we form the tensor product

U = 1⊗ UC ⊗ 1 =



1 0 . . . . . . 0

0
...

... UC
...

... 0

0 . . . . . . 0 1


, (4.13)

which we can use to calculate the transform of the entire Hamiltonian via

HT = U † H U. (4.14)

Finally, we will show that if the result of this transformation is of the form

HT =



0 a2 a3 . . . ak−1
1
8

a2 ε2 ±a2
a3 ε3 ±a3

... . . . ...
ak−1 εk−1 ±ak−1

1
8
±a2 ±a3 . . . ±ak−1 0


(4.15)

then each eigenvector of this Hamiltonian has equal overlap with |in〉 and |out〉. The± signs
have to be understood as independent from each other for each index.
We explicitly write the time-independent Schrödinger equation:

HT |vi〉 =



0 a2 a3 . . . ak−1
1
8

a2 ε2 ±a2
a3 ε3 ±a3

... . . . ...
ak−1 εk−1 ±ak−1

1
8
±a2 ±a3 . . . ±ak−1 0





vi,1
vi,2

...

...
vi,k−1
vi,k


= Ei



vi,1
vi,2

...

...
vi,k−1
vi,k


∀i.(4.16)
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Note that the direct comparison of the first and last entry in the eigenvectors as overlap with
|in〉 and |out〉 in the new basis is only possible becauseU leaves the positions of in and out
unchanged, so the overlaps of the Hamiltonian in this basis are the same as the ones in the basis
of site excitations {|i〉}. Because of the particular form forH we requested, 3 different kinds
of equations can be extracted from Eq.(4.16) for a fixed i (which will be omitted for reasons of
readability):

1

8
vk +

k−1∑
j=2

aj vj = E v1, (4.17)

aj (v1 ± vk) + εj vj = E vj, j = {2, 3, ..., k − 1}, (4.18)

1

8
v1 +

k−1∑
j=2

±aj vj = E vk. (4.19)

We can also write Eq.(4.18) as

vj =
aj(v1 ± vk)

E − εj
, j = {2, 3, ..., k − 1}, (4.18*)

and insert this expression in Eq.(4.17) and (4.19):

1

8
vk +

k−1∑
j=2

a2j
(v1 ± vk)

E − εj
= E v1, (4.17*)

1

8
v1 +

k−1∑
j=2

±a2j
(v1 ± vk)

E − εj
= E vk. (4.19*)

By separating the sums and ordering the equations for vk and v1 we obtain two very similar
equations (we set a2j

v1 ± vk
E − εj

=: bj for simplicity):

v1 =
1
8

+
∑k−1

j=2 ±bj
E −

∑k−1
j=2 bj

vk =: A vk, (4.17**)

v1 =
E −

∑k−1
j=2 bj

1
8

+
∑k−1

j=2 ±bj
vk = A−1 vk, (4.19**)

⇒ vk = A2 vk. (4.20)

The fractionA has to be of modulus 1, so we conclude

v1 = ±vk, (4.21)

which is what we wanted to show.
In order to guarantee thatHT is of the required form, we only need to fulfill (k − 2) conditions,
namely pairwise equal modulus for the entries in the first row and the last column, respec-
tively. This agrees with our arguments in section 4.2, according to which equal overlap of all
eigenvectors with in and out can be reached with (k − 2) conditions.
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Chapter 5

Hessian Matrix Analysis

In this chapter, we want to confirm our conclusions of chapter 4.2 (concerning the dimension
of the set of configurations giving rise to perfect transfer) by investigating the infinitesimal
neighborhood of a perfect configuration.
For this purpose, we look at the configurations as vectors in a d · (k − 2) + 1 dimensional
vector space, that contain the positions of all intermediate atoms and the time coordinate
t (remember that the positions of in and out are fixed, so we can reduce the problem to the
subspace where their coordinates do not appear):

~x = (~r2, . . . , ~rk−1, t). (5.1)

From the results of chapter 4, we expect that the set of optimal configurations is a manifold
(with dimension s = 0 for d = 2 and s = k − 2 for d = 3) contained inside this space. If we
assume that~x0 is an optimal configuration, then a Taylor series expansion ofP(~x) around such
a maximum can be written as

P(~x) = 1 +∇P>︸ ︷︷ ︸
≈0

(~x− ~x0) +
1

2
(~x− ~x0)> MH (~x− ~x0) +O((~x− ~x0)3), (5.2)

⇒ ∆P(~x) = P(~x)− P(~x0) ≈
1

2
(~x− ~x0)> MH (~x− ~x0), (5.3)

where ~x0 is optimal the configuration, ~x a configuration nearby and MH the Hessian ma-
trix containing the second partial derivatives evaluated at ~x0. The derivatives are calculated
approximatively with the difference quotient. As a notation, we use

P(xi±,xj±) := P(x1, . . . , xi ±∆x, . . . , xj ±∆x, . . . , t), (5.4)

where thexi runs over all spatial coordinates and time. For i 6= j the difference quotient is

∂2P
∂xi∂xj

≈
P(xi+, xj+) + P(xi−, xj−) − P(xi−, xj+) − P(xi+, xj−)

4 (∆x)2
, (5.5)

whereas for i = j, we calculate

∂2P
(∂xi)2

≈ P(x1, . . . , xi + ∆x, . . . , t) + P(x1, . . . , xi −∆x, . . . , t)− 2 P(~x0)

(∆x)2
. (5.6)
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The change in transfer probability should always be negative for the two-dimensional case
(only isolated maxima should appear), so the matrix is expected to be negative definite which
is easily verified by calculating the eigenvalues and checking whether all of them are negative
and distinctly nonzero. In three dimensions, however, apart from only negative eigenvalues,
we expect (k − 2) of them to be zero, such that we can move the configuration along the
(k − 2)-dimensional manifold without decreasing the transfer efficiency.

5.1 2D Configurations

From a numerical point of view, we have to be careful when choosing the stepsize ∆x. If it is too
large, the approximation is not sufficiently accurate, but if it is very small, computational errors
add up and distort the actual values of the function of interest. To analyze this, we inspected the
dependence of the smallest eigenvalue on the stepsize for several configurations and obtained
a plot where a plateau is visible. We judge the center of this plateau to be a good choice, since
the eigenvalue is stable in this region. An example, which belongs to configuration no. 2 in
Table 5.1 is shown in Fig. 5.1.

10-7 10-6 10-5 10-4 10-3

-0.50

-0.45

-0.40

-0.35

-0.30

Figure 5.1: The dependence of the smallest eigenvalue of example configura-
tion no. 2 in Table 5.1 on the chosen stepsize ∆x in numerical differentiation.
We chose ∆x =5× 10−5 for the 2D calculations.

Tables 5.1 to 5.5 show the largest and the four smallest eigenvalues for two-dimensional
configurations of 4 to 8 atoms with four randomly chosen examples of optimal configurations
each. The values cover almost in all cases between 4 and 5 orders of magnitude, which is
indicating a complicated potential surface of the functionP , even near the maxima. As we
expected, the eigenvalues are always strictly smaller than zero.
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Example No. Largest EV 4 Smallest Eigenvalues

1 -5737.14 -157.301 -32.170 -1.391 -0.167
2 -4652.23 -567.858 -21.026 -0.434 -0.267
3 -5501.19 -805.894 -24.957 -3.832 -0.067
4 -1052.41 -118.326 -28.332 -3.563 -0.852

Table 5.1: Examples of eigenvalues for a Hessian belonging to perfect
configurations of 4 atoms in 2D

Example No. Largest EV 4 Smallest Eigenvalues

1 -3251.25 -13.123 -4.497 -1.289 -0.043
2 -1272.10 -20.716 -8.745 -3.181 -0.332
3 -1507.30 -131.32 -3.591 -1.762 -0.048
4 -2623.32 -8.914 -6.620 -0.933 -0.562

Table 5.2: Examples of eigenvalues for a Hessian belonging to perfect
configurations of 5 atoms in 2D

In table 5.2 to 5.5 one can see that in general, all eigenvalues remain strictly smaller
than zero, but the magnitude of the smallest one is decreasing with growing number of atoms
k. This is compatible with the observation of a larger number of perfect configurations for
higher k in chapter 3, as a smaller decrease in probability near a maximum makes it possible
for other maxima to lie closer.

Example No. Largest EV 4 Smallest Eigenvalues

1 -419.543 -0.2546 -0.1328 -0.0225 -0.0061
2 -345.607 -2.4117 -0.8169 -0.1799 -0.0455
3 -652.031 -0.9770 -0.1656 -0.0109 -0.0010
4 -1079.09 -1.1598 -0.2381 -0.0703 -0.0174

Table 5.3: Examples of eigenvalues for a Hessian belonging to perfect
configurations of 6 atoms in 2D

Example No. Largest EV 4 Smallest Eigenvalues

1 -485.244 -1.6070 -0.9128 -0.0665 -0.0130
2 -275.907 -1.8624 -0.9849 -0.6988 -0.0039
3 -584.077 -0.5286 -0.3694 -0.0923 -0.0065
4 -614.527 -1.44876 -0.0945 -0.0179 -0.0083

Table 5.4: Examples of eigenvalues for a Hessian belonging to perfect
configurations of 7 atoms in 2D
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Example No. Largest EV 4 Smallest Eigenvalues

1 -351.396 -1.2627 -0.3528 -0.2258 -0.00681
2 -1798.71 -0.5381 -0.0532 -0.0144 -0.00013
3 -916.419 -0.5931 -0.2558 -0.0307 -0.00570
4 -439.275 -0.7705 -0.3247 -0.0505 -0.01316

Table 5.5: Examples of eigenvalues for a Hessian belonging to perfect
configurations of 8 atoms in 2D

5.2 3D Configurations

Following the considerations for two dimensions, we move on to analyzing some 3D examples
in detail, again for a number of atoms ranging from 4 to 8. In the corresponding tables 5.6
to 5.10, we have omitted the largest eigenvalue, since it behaves in a similar way as for two
dimensions. To check whether there actually are k − 2 eigenvalues equal to zero, we look at
the smallest k ones. For k = 4 we expect 4− 2 = 2 eigenvalues to be zero. In Table 5.6 one can
indeed identify two values that are at least three orders of magnitude smaller than the others,
but similar compared to each other (at most a factor of 10 difference). In the tables for higher k
we also find the expected k − 2 eigenvalues that are very close to zero and sometimes positive.
The occurence of positive values (marked in bold font) is actually a sign that we reached zero in
the range of our precision. To visualize this, we also plotted the dependence of the smallest
eigenvalue of configuration no. 1 in Table 5.6 on the chosen stepsize in Fig. 5.2. One can see that
the sign of this value actually changes its sign depending on ∆x, meaning that the error made
due to our choice of finite stepsize is in the range of 10−5.

Ex. No. 4 Smallest Eigenvalues

1 -3.581 -0.210 -2.2·10−5 -1.2·10−5

2 -1.392 -0.178 -2.5·10−4 -1.4·10−4

3 -3.208 -1.983 -3.4·10−5 -1.6·10−5

4 -3.137 -2.111 -3.2·10−5 -1.9·10−5

Table 5.6: Examples of eigenvalues for a Hessian
belonging to perfect configurations of 4 atoms in 3D

Ex. No. 5 Smallest Eigenvalues

1 -1.903 -1.060 -3.1·10−5 -1.4·10−5 -1.2·10−6

2 -1.162 -0.463 -2.5·10−4 -7.4·10−5 -1.6·10−5

3 -1.622 -2.047 -3.0·10−5 -1.95·10−5 -7.9·10−6

4 -0.041 -0.026 -1.4·10−4 -2.0·10−5 -1.3·10−5

Table 5.7: Examples of eigenvalues for a Hessian belonging to
perfect configurations of 5 atoms in 3D
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Ex. No. 6 Smallest Eigenvalues

1 -0.149 -0.102 -4.05·10−5 -2.9·10−5 -2.0·10−5 -1.5·10−5

2 -1.142 -0.556 -3.1·10−5 -2.1·10−5 -1.3·10−5 -1.2·10−5

3 -0.920 -0.577 -1.7·10−5 5.4·10−6 -4.7·10−6 8.8·10−7

4 -0.876 -0.692 1.9·10−5 1.0·10−5 -9.8·10−6 -3.0·10−6

Table 5.8: Examples of eigenvalues for a Hessian belonging to perfect
configurations of 6 atoms in 3D

5.×10-7 1.×10-6 5.×10-6 1.×10-5 5.×10-5 1.×10-4

-0.0012
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-0.0008

-0.0006

-0.0004

-0.0002

0.0000

Figure 5.2: The dependence of the smallest eigenvalue of example configuration no. 1
in Table 5.6 on the chosen stepsize ∆x in numerical differentiation. We chose ∆x =10−5 for
the 3D calculations.

Ex. No. 7 Smallest Eigenvalues

1 -0.160 -0.099 -4.8·10−5 -4.0·10−5 -3.1·10−5 -2.3·10−5 -2.0·10−5

2 -0.198 -0.082 -4.7·10−5 -4.0·10−5 -3.2·10−5 -2.2·10−5 -1.0·10−5

3 -0.180 -0.033 -2.7·10−5 -1.7·10−5 8.7·10−6 -7.0·10−6 -3.3·10−6

4 -0.040 -0.005 3.5·10−5 2.1·10−5 1.6·10−5 -1.0·10−5 -9.1·10−6

Table 5.9: Examples of eigenvalues for a Hessian belonging to perfect configurations
of 7 atoms in 3D
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Chapter 5. Hessian Matrix Analysis

Ex. No. 8 Smallest Eigenvalues

1 -0.60 -0.32 -5.3·10−5 -4.5·10−5 -3.5·10−5 -3.1·10−5 -3.0·10−5 -1.8·10−5

2 -0.30 -0.01 -4.6·10−5 -2.4·10−5 -2.2·10−5 -1.2·10−5 1.1·10−5 -6.1·10−6

3 -0.09 -0.01 -5.7·10−5 -4.5·10−5 -3.6·10−5 -3.1·10−5 -3.0·10−5 -1.6·10−5

4 -0.38 -0.01 -1.5·10−5 1.5·10−5 1.3·10−5 9.6·10−6 6.5·10−6 -2.4·10−6

Table 5.10: Examples of eigenvalues for a Hessian belonging to perfect configurations of 8 atoms
in 3D

To numerical accuracy, the existence of k − 2 eigenvalues equal to zero has been con-
firmed. Together with the results of section 5.1, we have therefore verified our predictions. As
a different method of verification, perturbation theory up to second order would provide a
means to calculateMH exactly (i.e. without relying on finite differences).
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Conclusion and Outlook

We investigated transfer of single excitations mediated by dipole-dipole interaction in un-
ordered networks of Rydberg-atoms. We focused on finding and characterizing configurations
of atoms that were able to transfer the excitation from one end of the network to the other with
perfect efficiency. Motivated by the experimental constraints of discrete distances between
Rydberg atoms in a two-dimensional optical array, we checked all possible configurations for a
chosen lattice geometry that were attainable in a reasonable amount of time. The best candi-
dates we found in this approach reached over 99% transfer efficiency in under 1/5 of the Rabi
oscillation period, which is surprising, given their simple setup. To gain further insight in the
distribution of highly efficient configurations in two dimensions, we sampled continuously
in the R2 unit disk and optimized the transport efficiencies to practically unity. For a number
of sites from k = 4 to k = 7, we found discrete sets of configurations exhibiting increasingly
smaller transfer times. In an attempt to understand this result analytically, we relied on earlier
work in the field, where necessary and sufficient conditions for perfect state transfer had been
derived. We compared the number of these conditions with the number of variable param-
eters in our problem. This allowed us to predict the dimension s for the manifold of perfect
configurations one can find in the d · (k − 2) + 1-dimensional space of configurations, where
d is the dimension of the Euclidean space the Rydberg atoms are placed in. For d = 2, we
obtained s = 0, which is consistent with the observed discrete set of solutions. The prediction
ford = 3 wass = k−2. Finally, we were able to confirm these considerations by evaluating the
behaviour of the transfer efficiency in an infinitesimal neighborhood around several optimal
configurations: The Hessian matrix of a Taylor approximation up to second order contained the
expected k − 2 eigenvalues equal to zero in the three dimensional case, while all eigenvalues
were distinctly negative in two dimensions.
In our opinion, our findings give rise to at least three open questions left for future work. First
of all, it would be interesting to further characterize the manifolds of perfect configurations
in three dimensions. Secondly, we found signs that symmetric configurations in general pro-
vide faster transport than asymmetric ones for an equal number of sites involved, but we did
not have enough time to perform the necessary analysis. The last open point comes from an
especially surprising result, which we were not able to understand so far: In two dimensions, a
large number of configurations reach transport efficienciesP ≥ 1− 10−6, which is already
very close to unity, but most of them did not appear in our sets withP ≥ 1− 10−13. We are
convinced that the answers to the presented problems could contribute to understanding our
findings even better.
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Appendix

A: Ensembles of optimized configurations withP ≥ 1 - 10−6

Comparing these ensembles with the ones for quasi-perfect transfer (P ≥ 1− 10−13),
see Fig. 3.1, 3.3, 3.5 and 3.6, we see a much larger number of configurations. In other words, the
functionP(~x) exhibits many local maxima with 1− 10−6 ≤ P ≤ 1− 10−13.
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T = 0.268 · TRabi

Figure 5.3: Asymmetric (a) and symmetric (b) configurations with 5 atoms
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Figure 5.4: Asymmetric (a) and symmetric (b) configurations with 6 atoms

33



-1 1

-1

1

in out
-1 1

-1

1

in out

(a) (b)
T = 0.071 · TRabi

Figure 5.5: Asymmetric (a) and symmetric (b) configurations with 7 atoms

B: Transfer Times of the Best Configurations on Lattices

N×N 4 5 6 7 8

5 0.093 0.090 0.033 0.100 0.097
7 0.065 0.064 0.089 0.082 0.095
9 0.096 0.095 0.089
11 0.090 0.094 0.092
13 0.070 0.090

Table 5.11: Transfer times for efficiencies in 2.1

N×N 4 5 6 7 8

5x5 0.200 0.200 0.194 0.200 0.097
7x7 0.065 0.189 0.188 0.191 0.196
9x9 0.200 0.200 0.188
11x11 0.128 0.196 0.185
13x13 0.070 0.189

Table 5.12: Transfer times for efficiencies in 2.2
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C: Coordinates of the Fastest Continuous Configurations withP ≥ 1 - 10−13

The input and output atom corresponding to number 1 and k are always located at positions
S1(-1,0) andSk(1,0).

k=4

Atom no. x y

2 -0.109945 0.400635
3 0.109945 -0.400635

Coordinates of configuration 3.2

k=5 / asymmetric

Atom no. x y

2 0.087902 -0.072491
3 0.448099 -0.739210
4 -0.342488 -0.527398

Coordinates of configuration 3.7(a)

k=5 / symmetric

Atom no. x y

2 0 0.030097
3 0.424101 0.481339
4 -0.424101 0.481339

Coordinates of configuration 3.7(b)

k=6 / asymmetric

Atom no. x y

2 -0.549726 -0.286648
3 -0.160786 -0.239383
4 0.214369 -0.388046
5 0.607648 -0.362172

Coordinates of configuration 3.8(a)

k=6 / symmetric

Atom no. x y

2 0.461219 -0.259108
3 -0.461219 0.259108
4 0.166140 0.082400
5 -0.166140 -0.082400

Coordinates of configuration 3.8(b)

k=7 / asymmetric

Atom no. x y

2 -0.534041 -0.255531
3 0.093079 0.142185
4 -0.165364 -0.216863
5 0.474138 -0.075842
6 0.081314 -0.170088

Coordinates of configuration 3.9(a)

k=7 / symmetric

Atom no. x y

2 0.161490 -0.168353
3 0.494887 0.024776
4 0 0.245163
5 -0.494887 0.024775
6 -0.161489 -0.168353

Coordinates of configuration 3.9(b)
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