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Preface

The 12th Conference on the Theory of Quantum Computation, Communication, and Cryp-
tography was organized by the Université Pierre et Marie Curie and the Paris Centre for
Quantum Computing from the 14th to the 16th of June 2017. Quantum computation,
quantum communication, and quantum cryptography are subfields of quantum information
processing, an interdisciplinary field of information science and quantum mechanics. The
TQC conference series focuses on theoretical aspects of these subfields. The objective of the
conference is to bring together researchers so that they can interact with each other and
share problems and recent discoveries.

A list of the previous editions of TQC follows:

TQC 2016, Freie Universitat Berlin, Germany

TQC 2015, Université libre de Bruxelles, Belgium

TQC 2014, National University of Singapore, Singapore

TQC 2013, University of Guelph, Canada

TQC 2012, The University of Tokyo, Japan

TQC 2011, Universidad Complutense de Madrid, Spain

TQC 2010, University of Leeds, UK

TQC 2009, Institute for Quantum Computing, University of Waterloo, Canada

TQC 2008, University of Tokyo, Japan

TQC 2007, Nara Institute of Science and Technology, Nara, Japan

TQC 2006, NTT R&D Center, Atsugi, Kanagawa, Japan

The conference consisted of invited talks, contributed talks, and a poster session. Con-
tributed talks were solicited for two tracks: Conference Track and Workshop Track. The
accepted submissions to the Conference Track appear in these Proceedings, as well as a
selection of some that were accepted to the Workshop Track. The papers in these proceedings
are listed in their order of submission.

The invited talks were given by David Gosset (IBM), Stephen Jordan (National Institute
of Standards and Technology / University of Maryland), Stephen Piddock (University of
Bristol), and Barbara Terhal (Delft University of Technology).

The conference was possible thanks to generous donations from Microsoft, CryptoWorks21,
Paris Centre for Quantum Computing, Laboratoire d’Informatique de Paris 6, as well as
the Institute of Physics. I am indebted to the members of the Program Committee and all
subreviewers for their precious contribution in reviewing the submissions. I also wish to
thank the members of the Local Organizing Committee, especially Damian Markham, for
their considerable efforts in organizing the conference. I would like to thank Marc Herbstritt
and Michael Wagner (Dagstuhl Publishing) for their technical help. Finally, I would like to
thank the members of the Steering Committee for offering me this opportunity and for their
support, and I also thank all contributors and participants.

Mark M. Wilde
October 2017
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—— Abstract

The outcomes of local measurements made on entangled systems can be certified to be random
provided that the generated statistics violate a Bell inequality. This way of producing randomness
relies only on a minimal set of assumptions because it is independent of the internal functioning
of the devices generating the random outcomes. In this context it is crucial to understand

both qualitatively and quantitatively how the three fundamental quantities — entanglement, non-
locality and randomness — relate to each other. To explore these relationships, we consider
the case where repeated (non projective) measurements are made on the physical systems, each
measurement being made on the post-measurement state of the previous measurement. In this
work, we focus on the following questions: Given a single entangled system, how many nonlocal
correlations in a sequence can we obtain? And from this single entangled system, how many
certified random numbers is it possible to generate? In the standard scenario with a single
measurement in the sequence, it is possible to generate non-local correlations between two distant
observers only and the amount of random numbers is very limited. Here we show that we can
overcome these limitations and obtain any amount of certified random numbers from a single
entangled pair of qubit in a pure state by making sequences of measurements on it. Moreover,
the state can be arbitrarily weakly entangled. In addition, this certification is achieved by near-
maximal violation of a particular Bell inequality for each measurement in the sequence. We also
present numerical results giving insight on the resistance to imperfections and on the importance
of the strength of the measurements in our scheme.
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Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

Keywords and phrases Randomness certification, Nonlocality, Entanglement, Sequences of meas-
urements

Digital Object Identifier 10.4230/LIPIcs. TQC.2017.1

1 Introduction

Bell’s theorem [4] has shown that the predictions of quantum mechanics demonstrate non-
locality. That is, they cannot be described by a theory in which there are objective properties
of a system prior to measurement that satisfy the no-signalling principle (sometimes referred
to as “local realism"). Thus, if one requires the no-signaling principle to be satisfied at the
operational level then the outcomes of measurements demonstrating non-locality must be
unpredictable [4, 19, 15]. This unpredictability, or randomness, is not the result of ignorance
about the system preparation but is intrinsic to the theory.

Although the connection between quantum non-locality (via Bell’s theorem) and the
existence of intrinsic randomness is well known [4, 19, 5, 15] it was analyzed in a quantitative
way only recently [17, 7]. It was shown how to use non-locality (probability distributions
that violate a Bell inequality) to certify the unpredictability of the outcomes of certain
physical processes. This was termed device-independent randomness certification, because
the certification only relies on the statistical properties of the outcomes and not on how they
were produced. The development of information protocols exploiting this certified form of
randomness, such as device-independent randomness expansion [17, 7, 23] and amplification
protocols [8, 12], followed.

Entanglement is a necessary resource for quantum non-locality, which in turn is required
for randomness certification. It is thus crucial to understand qualitatively and quantitatively
how these three fundamental quantities relate to one another. In our work, we focus on asking
how many observers in a sequence can be nonlocally correlated and how much certifiable
randomness can be obtained from a single entangled state as a resource that is measured
repeatedly. An important step to answer this question was recently made in [22], in which it
was shown that nonlocality generated by a maximally entangled state can be shared between
any number of distant observers, however, at the cost of exponentially diminishing the
amount of nonlocality, as measured by the violation of the CHSH Bell inequality, between all
the observers. Here we answer a significantly more demanding question that such correlations
can be made arbitrarily close to extremal for each observer, a crucial property for randomness
certification. In this particular sense we show that the nonlocality does not need to be
diminished, as for each observer the generated correlations violate a particular Bell inequality
(almost) maximally.

For randomness certification, progress has been made for entangled states shared between
two parties, Alice (A) and Bob (B), in the standard scenario where each party makes a
single measurement on his share of the system and then discards it. An argument adapted
from Ref. [10] shows that either of the two parties, A or B can certify at most 2log,d bits
of randomness [2], where d is the dimension of the local Hilbert space the state lives in,
which in turn implies a bound of 4log,d bits when the two outputs are combined. This
demonstrates a fundamental limitation for device-independent randomness certification in
the standard scenario. The main goal of our work is to show that this limitation on the
amount of certifiable random bits from one quantum state can be lifted. To do this we will
consider the sequential scenario, where sequences of measurements can be applied to each
local system. Our main result is to prove that an unbounded amount of random bits can be
certified in this scenario.


http://dx.doi.org/10.4230/LIPIcs.TQC.2017.1
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Imagine the following situation where, contrary to the device-independent approach that
we follow in this article, one has perfect control over the functioning of the device generating
randomness. An entangled state initially prepared in the Pauli-Z basis, i.e., a 0, eigenstate
10)+]1)
: v2 o
measurement is perfectly random and the post-measurement state is now one of the two

|0) or |1), is measured in the Pauli-X, or o, basis |£) = The outcome of this
eigenstates of the Pauli-X basis |+). If the device now measures this new state in the original
Pauli-Z basis, the outcome of this new measurement is again random and one of the o,
eigenstates is obtained. A device alternating between measurements in those two orthogonal
basis thus allows one to obtain any amount of random bits from a single state as input.

Of course, this way of generating randomness can never be trusted, as one can always
design a classical device (with deterministic outcomes — a local model) that has the same
behavior as the device we described, i.e., their outputs are indistinguishable. To certify
randomness one needs the generation of non-local correlations, that can not be simulated
with classical resources. But is it nevertheless possible to use this idea of measuring a
state repeatedly, in a scheme exploiting non-locality, to obtain more random numbers
and beat the bounds on randomness certification? Clearly, certifying more randomness
by making sequences of measurements on the same state depends on whether one is able
to produce sequences of non-local correlations between distant observers, as otherwise no
additional randomness can be certified. One of the obstacles to this is that if local (projective)
measurements are used to generate the non-local correlations, the entanglement in the state
is destroyed. Then the post-measurement state is separable and thus cannot be further used
to generate nonlocality or to certify randomness. A challenge is therefore to come up with
measurements that do not destroy all the entanglement in the state but nevertheless generate
non-local correlations. With such measurements the post-measurement state will still be a

potential resource for the generation of more non-local correlations and certified randomness.

Bell tests with sequences of measurements have received less attention in the literature
than the standard ones with a single measurement round despite the novel features in this
scenario [13], as for example the phenomenon known as hidden nonlocality [18]. In our work
we show that they prove useful in the task of randomness certification, which also provides
another example [2] where general measurements can overcome limitations of projective
ones. More precisely, we describe a scheme where any number m of random bits are certified
using a sequence of n > m consecutive measurements on the same system. This work thus
shows that the bound of 4log,d random bits in the standard scenario can be overcome in
the sequential scenario, where it is impossible to establish any bound. The unbounded
randomness is certified by a near-maximal violation of a particular Bell inequality for each
measurement in the sequence. Moreover, for any finite amount of certified randomness, our
scheme has a finite (yet very small) noise robustness. Our results show that

This paper is an extended version of [9], where the main results are already included.

The rest of the paper is organized as follows. In section 2, we describe the sequential scenario
that allows for multiple measurements on the same state. In section 3, we generalize the
concept of guessing probabilities — that allow to certify upper bounds on the predictive power
of an adversary trying to guess the random numbers — to the sequential scenario and obtain
new results on their continuity properties. In section 4 we introduce the main ingredients we
will use in our scheme, in particular we introduce a family of measurements on two qubit
states that allow us to retain some entanglement in the post-measurement states. In section
5 we describe our scheme that allows for the generation of nonlocal correlations between any
number of distant observers and any amount of certified random numbers. In section 6 we
present numerical results on the relation between the amount of violation of the family of
inequalities introduced in [1] and the amount of randomness that can be certified from it. In
section 7 we obtain numerical results to understand the relation between the strength of the
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Sequential Bell test A=

: 8
°

& .

NE

. Standard Bell test
PAB B
o
Y1 Y2 Y3
P [OW L [<op
by by b3

Figure 1 The standard scenario, where parties A and B make a single quantum measurement
on their share of the state and discard it versus the sequential scenario where the second party B
makes multiple measurements on his share.

measurement and the amount of randomness that can be certified from it. We conclude in
section 8 with additional remarks and potential future work.

2 The sequential measurements scenario

Before presenting our results, let us introduce the scenario we work in. We carry over many
of the features from the standard scenario except now we allow party B to make multiple
measurements in a sequence on his share of the state. One can visualize this as in Fig. 1
where B is split up into several Bs, each one corresponding to a measurement made on the
state and labeled by B;, ¢ € {1,2,..,n}, where n is the total number of measurements made
in the sequence. Each B; makes one measurement and the post-measurement state is sent
to Bjt1. We organize the Bobs such that B; is doing his measurement before B; for i < j.
Thus in principle B; can receive the information about the inputs and outputs of previous
measurements B; for all ¢ < j.

3 Randomness certification: from the standard to the sequential
scenario

To quantify the randomness produced in the setup, we put the above scenario in the setting
of non-local guessing games (e.g. Refs. [1, 16, 11, 2]). Let us consider an additional adversary
Eve (F) who is in possession of a quantum system potentially correlated to the one of A
and B. The global state is denoted papgr. We assume that at each round of the experiment,
E is the one preparing the state papg and distributes pap = Trgpapg to A and B. This
state will be used to make the measurements in the sequence and the aim of E is to try to
guess B’s outcomes by using measurements on her share of the state papgp. The parties
A and B;s, having no knowledge about the state or the real measurements made on it,
see their respective devices as black boxes that receive some classical input z € {0,1} and
yi € {0,1}, y1,¥2,..,yn = ¥, respectively, and that generate a classical output a € {£1}
and b; € {#1}, (by,ba, .., b,) = b, respectively (see Fig. 1). They generate statistics from
multiple runs of the experiment to obtain the observed probability distribution P,ps with

—

elements pops(a, g|x, 7). This distribution Py lives inside the set of quantum correlations



F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban, P. Wittek, and A. Acin

Q,, obtained from measurements on quantum states in a sequence as we described. This set
is convex and thus can be described in terms of its extreme points, denoted Peyt, and any
P.is can be written as Pops = Z Qext Poxt, where > gext = 1 and every gext > 0.

ext

From studying the outcome statlstlcs only we can bound E’s predictive power by allowing
her to have complete knowledge of how Py, is decomposed into extreme points, i.e., she knows
the probability distribution gey; over extreme points P.y. This predictive power is quantified
via the device- independent guessing probability (DIGP) [1] where we fix the particular input
string 49,49, ..,90 = #° for which E has to guess the outputs b. The DIGP, denoted by
G(°, Pops), is then calculated as the optimal solution to the following optimization problem
[11, 16]:

-,

G(§O, Pobs) = nax Gext HlaXPext(bWO)
{Gext , Pext } oxt b
subject to:
Pext (B7°) Zpext a,blz, §°), Vo (1)
Pops = Z Gext Pext, Py € Q. (2)

ext

The operational meaning of this quantity is clear: Eve has a complete description of the
observed correlations in terms of extreme points. She then guesses the most probable
outcome for each extreme point. The standard scenario with a single measurement round

can also be represented in this formalism by simply considering that b = b and 7(© = y(©.

To quantify the amount of bits of randomness that is certified, we use the min entropy

H(i°, Poys) = —logy G(4°, Pops) which returns m bits of randomness if G(°, Pops) = 27 ™.

The amount of bits of randomness quantified in this way is the figure of merit in this work
and our goal is to obtain as many bits as possible from a single system.

We will now derive some general properties of the guessing probability (2) in the form
of theorems 3 and 4. Let us stress here that these results are not limited to the guessing
probability used in this work but are general properties of guessing probabilities. A more
detailed discussion and an introduction to the topic of guessing probabilities and their use in
randomness certification can be found in the appendices, as well as the proofs of the theorems
that we discuss here.

For a single measurement on each system (i.e. a sequence of n = 1 measurement), which
corresponds to the standard Bell scenario and Q@ = Q; the set of quantum correlations for a
single measurement on each subsystem we have that:

» Proposition 1. The function G(y°, P,ys) on the set of quantum distributions Q is continu-
ous in the interior of Q.

» Proposition 2. The function G(y°, P,ys) is continuous in any extremal point of Q.

The proofs of these two propositions are based mostly on general properties of concave
functions [20] and of concave roof extensions in particular [6], and can be found in section
B of the appendices. In other words the guessing probability for a single measurement is
continuous everywhere except possibly on some points that lie on the surface of the quantum
set but that are not extremal. An example of this can be obtained from the measurements
described in [17] for a state with arbitrarily little entanglement. The joint conditional
probability distribution (introduced below, see (6)) corresponding to those measurements
made on such a state has G(y°, Ppys) = 1/2 and is at the same time arbitrarily close to a
joint conditional probability distribution corresponding to measurements on a product state
with G(y°, Poys) = 1, i.e., a local point. The key is that this local point is not extremal, it

1:5
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lies somewhere on the surface of the local (and quantum) set but can be decomposed into
other extremal (local) points, i.e. is not a vertex of the local polytope. Discontinuities of
G(y°, Pops) can thus appear only at the boundary between extremal points and non-extremal
points lying on the surface of the set, and in the rest of the set it is continuous.
In general — and in particular in our work — the optimization problem (2) can be relaxed
to an optimization where instead of insisting on Pops = Y Gext Pext (2), one only imposes
ext

that the observed statistics Pops give a particular Bell inequality violation [17]. The optimal
solution to this new problem is an upper bound to the optimal solution of (2). Crucially,
this relaxation often gives non trivial bounds as shown in our case for example. From now
on, every time we refer to a guessing probability we refer to this relaxation of the problem to
a particular Bell inequality violation.

Now we consider a Bell expression I with its maximal value t,,,x on the quantum set
Q. We define the hyperplane H; to contain the elements of Q for which the value of I is
t < tmax and further we define the restriction G(y°, Pops): of G(y°, Pops) to the intersection
of Hy; with Q and let max G(y", Pops): be the maximum of the guessing probability on this
intersection. From Propositions (1) and (2) we can show that:

» Theorem 3. If the intersection of Hy,  with Q is a single (thus extremal) point, there
exists a t. < tyae Such that G(yo, Puis)t is a continuous function of t for t. <t < tpas

The proof of this theorem can be found in section C of the appendices. In the other case, if the
intersection of Hy
points of Q and therefore a discontinuity of G(y°, Pobs)t at tmax can not be ruled out by
theorem (3). In other words, if the violation of a particular Bell inequality I is achieved by a
unique quantum point (as for example the following (5)), the guessing probability close to

with @ has more than one point, it also contains a set of non-extremal

that point is continuous.

Until now, we have considered the continuity properties of the guessing probability in the
standard scenario with a single measurement in the sequence. Now we would like to extend
those results to the guessing probability in the sequential measurement scenario with n > 2
measurements being made on the subsystems. Remember that we split party B into many
B;, so that party B; makes the ith measurement on the system. The measurement setting
of B; is y; and its outcome b; (see Fig. 1). In our work, we will always take y; € {0,1}
and b; € {0,1}, but the following results can be generalized to any number of inputs and
outcomes (they may even be different for each measurement in the sequence).

Now consider the joint conditional probability distributions P _(a,b;|z, y1, ..., Yi, b1, ...,
bi—1) between A and each B;, that is the joint conditional probability distribution between A
and B; conditioned on what happened before the ith measurement, namely the input choices
Y1, .-, Yi—1 and the outcomes by, ..., b;_1 that were obtained before measurement . There are
n of those joint conditional probability distributions living in @ that can be obtained directly
from the whole probability distribution for the sequence Pobs(a5|xg’) living in Q,,. Now
suppose that we play, for each distribution P (a,b;|z, y1, ..., yi, b1, ..., bi—1), a Bell game I;
such that I;(P;(a, bi|z, Y1, -y Yis b1y oy bim1)) = t; < 2% where t®* is the maximum of I;
over the set Q.

» Theorem 4. Suppose that each joint conditional probability distribution Pl (a,b;|z,y1, ...,
Yis b1y .oy bi—1) between A and B; in the sequence is such that I;(P;(a, bi|T, Y1, ., Ui, b1, ooy
bi—1)) = t; and consider the limit where each t; — t*®. Suppose also that for each i,
Gi(y9, Py (a,bi|z,y1, .oy Yi, b1, ..., bi—1)) attains its smallest possible value at t; = t™%. Then
if the mazimal value t]**" of each I; is achieved in a unique quantum point in Q:

G(govpobs(aglxg)) — H Gl(y?a gbs(av bi|$,y1, s Yis blv ) bi—l)) (3)

i=1
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where G;(v?, Pi (a,bi|z,y1, ..., i, b1, ..., bi—1)) is the (non sequential) relaxed guessing prob-
ability (2) of an adversary F trying to guess outcome b; for input y? from the observed joint
probability distribution P _(a,b;|2,y1, ..., i, b1, ..., bi—1)). The proof of this theorem can be
found in appendices D and E. In other words, if each measurement in the sequence taken
separately — thus not seen as in a sequence — leads to correlations close enough to the unique
maximal violation of inequality I; between A and B; only, and if this maximal violation
corresponds to the minimal possible guessing probability for b;, then the guessing probability
for the whole sequence tends to the product of the individual guessing probabilities of the
outcomes b;.

Before presenting our results, it is worth explaining why the causal constraints imposed by
the sequential scenario make it stronger than standard Bell tests with one measurement in the
sequence. At first sight, one could be tempted to group all the measurements in the sequence
into a single box receiving an input string ¥, to output another string I;n, as in a standard
Bell test. However, in general a sequence of measurements can not be represented as a single
measurement. To understand this, note that in the sequential scenario the outcome b; can
depend only on variables produced in its past, namely the input choices y1,ys, ..., y; and the
outcomes by, bs, ..., b;_1 that were previously obtained. However, in the single measurement
scenario, the measurement box receives all inputs and produces all outputs at once. In
particular, outcome b; can now be a function of input choices y;~; and outcomes b;~; that are
produced in the future. That is, such a big box may violate the physical constraints coming
from the sequential arrangement and the assumption that signaling from the future to the
past is impossible. These additional causality constraints further limit Eve’s predictability
with respect to a standard Bell test and are responsible of the unbounded amount of certified
randomness.

4 Making non-destructive measurements on qubit states
Alice and Bob share the pure two-qubit state
[1(0)) = cos(6)]00) + sin(0)[11) (4)
that for all 6 €]0,7/2[ is entangled. In Ref. [1], a family of Bell inequalities was introduced:
Iy = B{Bo) + (AoBo) + (A1Bo) + (AoB1) — (A4By) (5)

where 8 = 2cos(20)/[1 + sin?(20)]*/2, (B,) = p(b = +1]y) — p(b = —1|y) and (A,B,) =
p(a = blaxy) — p(a # blay) for z, y € {0,1}. This family of inequalities has the following two
useful properties: first, its maximal quantum violation, I;"** = 2v/2,/1 + 32 /4, is obtained
by measuring the state (4) with measurements:

Ay =cospo, +sinpoy, By = 0.,

Ay =cospo, —sin oy, B =0y, (6)

where tan p = sin(26). Second, when maximally violated, the inequality certifies one bit of
local randomness on Bob’s side for his second measurement choice y° = 1: G(y° = 1, max) =
1/2 [1]. These observations are possible because the maximal violation is uniquely achieved
by the probability distribution Pa* that arises from the previously-described state and
measurements (4) and (6). Therefore, for the maximal violation, P2* = P. in (2) and the
guessing probability for input choice y° = 1 is equal to 1/2.

However, in general we may not get correlations that maximally violate our Bell inequality
but give a violation that is only close to maximal. In section 3 we have shown how to make

conclusions about the guessing probability for non-maximal violations. In particular, we
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showed that for any Bell inequality with a unique point of maximal violation, the guessing
probability is a continuous function of the value of the inequality close to the maximal
violation. This implies in the particular case we are studying that:

1
Iy — I = G =1,Pus) — 3 (7)

In section 6, we also provide a numerical upper bound on the guessing probability G(y° =

1, P,ys) by a concave function of the value of Iy.

Bell inequalities (5) are the first main ingredient in our sequential construction below.
The second one is the use of general, non-projective measurements. Indeed, if B; performs
a projective measurement on the shared entangled state, the resulting post-measurement
state, now shared between Alice and B-, is separable and thus useless for randomness
production. Consequently, one needs to consider non-projective measurements to retain
some entanglement in the system for the subsequent measurements. For this purpose, let
us introduce the following two-outcome quantum measurement (written in the formalism of
Kraus operators):

M1 (€) = cos {[£)+| + sin | F)F| (8)

corresponding to the two outcomes {+1}. This measurement 6,(§) = {M_THMH, MY M_y}
can be understood as a generalization of the projective measurement o,. It varies from being
projective (for £ = 0) to being non-interacting (for £ = 7/4). One can verify that measuring
an entangled state (4) for £ €]0,7/4] (non-projective measurement) the post-measurement
state still retains some entanglement, irrespectively of the outcome. Therefore, by tuning
the parameter £ we are able to vary the destruction of the entanglement of the state at
the gain of extracting information from it (cf. Ref. [22]): the closer to being a projective
measurement, the lower the entanglement in the post-measurement state, but the bigger the
violation of the initial Bell inequality.

5 A scheme for an unbounded amount of nonlocal correlations and
certified random numbers

We now combine the previous observations to demonstrate our main result. First, let us
recall that, as shown in [1], one can obtain one bit of randomness from any pure entangled
two qubit state, irrespective of the amount of entanglement in it. Moreover, one can verify
that approximately one random bit can be certified if the measurements are close to the
ones in Eq. (6) (in the sense that 6,(&) is close to a measurement of o, for By in Eq. (6))
since Iy is then close to I)*®* in Eq. (7). Second, the measurement in Eq. (8) is only close to
projective for ¢ close to zero and leaves entanglement in the post-measurement state between
Alice and Bob which is thus still useful for randomness certification. By repeated use of
these two properties we can certify the production of an unbounded amount of random bits
from a single pair of entangled qubits. We now formally describe this process in which Alice
makes a single measurement on her share of the state, whereas Bob makes a sequence of n
measurements on his.

Each B; chooses between measurements of o, and 6,(¢;) (8) for inputs y; = 0 and y; = 1,
respectively, with outcomes b; € {£1}. The parameter &; is fixed before the beginning of
the experiment. The initial entangled state shared between Alice and Bob, before B;’s
measurement, is [¢)() (6;)) (see Eq. (4) with 6 = ;). If the first non-projective measurement
of the operator ¢, (¢;) is made by B; on the initial state |(1)(6;)), the post-measurement
state is of the form

S (01, €1)) = U (601,61) @ VB (61,61)(c|00) + s]11)) 9)
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where ¢ = cos(0, (01,£1)) and s = sin(fy, (01,&1)) and the two unitaries, U} (6;,&;) and
V5 (61,€1), and angle 6y, (61,&;) €]0, /4] depend on the first outcome by and the angles 6,
and &;.

After his measurement, By applies the unitary (V )T, conditioned on his outcome by, on
the post-measurement state going to Bs. This allows By to use the same two measurements
6(&2) and o, independently of the outcome by since the unitary (Vgl) is canceled in (9). This
last procedure will be applied by each B; after his measurement, before sending the post-
measurement state to the next B;y;i. If the system passed through only the non-projective
measurements, the state received by B; can be one of 2/~! potential states, depending on
all of the previous B;’s (j < i) outcomes (one for each combination bioy = (b1,ba,..,b;—1) of
outcomes obtained by the previous B;, these can be computed before the beginning of the
experiment). Any of these states can be written as:

|¢g>_l>:U '@ 1p |cos(f;_)]00) +sin(f; )[11)], (10)

where the angles 9~ _, and the matrix Uz"l both depend on the outcomes l;z 1, on the
initial angle 6; and the angles &; of the previous B;’s with j < 7. In the notation, we will
always omit the dependence on the angles 6, and &, &, ..,¢; since these are fixed before
the beginning of the experiment. For each of these different potential states with angle

951_1, Alice adds two measurements to her input choices, where for k € {0, 1}, these are

measurements of the observables AZ’“I which are defined as
bio1 k o bi—1 t
Uy~ [eos(ug,_ )o=+ (=1)"sin(pg,_ Joz| (U ), (11)
where tan(p; ) =sin(26; ), depending on the specific state |wl§i) ) (10).
i i— i—1
We are now ready to describe how the scheme certifies randomness. The measurement
operator 6, (&;) can be made arbitrarily close to o, by choosing &; suﬁic1ently small This

brings the outcome statistics for measurements 6, (&;), o, on Bob’s side and A it A “~! on
Alice’s side on the state in Eq. (10), arbitrarily close to the statistics for the measurements in
Eq. (6) and a state of the form in Eq. (4), for § = 05, .- Therefore, the inequality Iggi_ for
Alice and B; as defined in (5) can be made arbitrarily close to its maximal violation. This in
turn guarantees that the guessing probability, G(y? = 1, Pys) can be made arbitrarily close

to 1/2. Note that this guessing probability does not only describe the instances when Alice

chooses the measurements Azi‘l. Since Eve does not know Alice’s measurement choices in
advance she cannot use a strategy that gives higher predictive power for the instances when
Alice chooses other measurements. Finally, by making G (y) = 1, P,) sufficiently close to
1/2 for each i (by choosing each &; sufficiently close to 0) the DIGP G(v9, 43, ..,4%, Pops) can,
by continuity, be made arbitrarily close to 27" (see theorem 4 of section 3.)

At the end, Bob can produce m random bits by a suitably chosen sequence 6,(&;),
1 € {1,2,..,n}, of n > m measurements. The certification only requires that each B;
occasionally chooses the projective measurement o, so that the whole statistics can be
obtained. Note that Bob can choose o, with probability 7; and 6,(&;) with probability
1 — ~; for v; as close to zero as he wants. Finally, note that the value of each inequality

Iy, Dbetween each B; and A can be made as close as wanted to the maximal value [37**

i—1 bi_1
Therefore, we can certify randomness for each measurement B; in the sequence at the expense

of increasing the number of measurements that Alice chooses from.

This protocol can also be used to certify any finite amount of randomness with some
small but strictly non-zero noise robustness. Indeed, assume the goal is to certify m random
bits. One can then run the protocol for m’ > m bits. By continuity, when adding a small but
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finite amount of noise the protocol will certify m random bits. Of course, the noise robustness
tends to zero with the number of certified random bits. However, we expect this to be the
case for any protocol. This conjecture is based on the following argument: each measurement
of a particle of finite dimension can produce only a finite amount of randomness. Thus, to
get unbounded randomness, an infinite number of measurements are needed. Moreover, a
measurement that is very close to non-interacting is unlikely to produce nonlocal correlations
and is thus useless to certify randomness. It therefore appears quite likely that, in the infinite
limit, any sequence of local measurements that are useful for randomness certification will
destroy all the entanglement in the state, so that the resulting noise resistance tends to zero.
We therefore expect that, while quantitative improvements over our protocol in terms of
noise robustness can be expected, from a qualitative point of view it goes as far as possible.

6 Numerical bounds on the amount of violation of the family of Bell
inequalities of [1] and the certified randomness

Let us now explain some numerical results that should provide some quantitative intuition
on the relation between the amount of violation of the family of inequalities (5) and the
amount of random bits certified by this violation. This allows one to evaluate how close the
value Iy of the inequalities (5) should be to the maximal one I§*** in order to certify close
to one perfect random bit from the statistics for one measurement n = 1.

Let us consider the following two-parameter class of Bell inequalities:
Io,p = B(Bo) + a({AoBo) + (A1Bo)) + (AgB1) — (A1B1) < B+ 20 (12)

where o > 1 and 8 > 0 such that a5 < 2. For @ = 1 the above class reproduces the family
of Bell inequalities (5) with 3 = 2cos(20)/[1 + sin?(20)]*/2. In [1] it was proved that the
maximal quantum value I35 for these inequalities is given by:

af =V ([ +a2)(4+p2). (13)

Now, we conjecture that the following inequality is satisfied by I,z:
s+ (2—ap)’B1)? < (1+a?)(d+57). (14)

We have numerically evaluated this inequality for various values of a and 8 by maximizing
its left-hand side over general one-qubit measurements A; = m; - ¢ and B; = 7; - ¢ with
My, it; € R? such that |7;| = |ii;| = 1 for i = 0, 1, and two-qubit pure entangled states that
can always be written as

[t)) = cost]|00) + sint|11) (15)

with ¢ € [0, 7/2] now being independent of 3. The obtained values were always smaller than
or equal to the right-hand side of (14). Notice that in the case of Bell scenarios with two
dichotomic measurements one can always optimize expression like the above one over qubit
measurements and states (see e.g. Ref. [1]).

From (14), it is easy to obtain an upper bound on the expectation value:

iy < VAT 2, g T o
V= 2—af B 2—af '

which, due to the fact that the right-hand side of the above is a concave function in I, g,

implies an upper bound on the guessing probability:

1 YU Lo
§+ Q(Z*OZB) :f(Ia ) (17)

G(yo = 17Pobs) S
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Figure 2 Our numerical upper bounds on the guessing probability in function of the violation of
Iy for 0 = %, 5, 7, where To=z = CHSH. One can see that these are tight both at the maximal
violation of the inequality and at its local bound.

In the particular case of maximal violation of the inequality I,s (12) — which saturates
inequality (14), this bound implies that the outcome of the first Bob’s measurement is
completely unpredictable, G(y° = 1, P,ps) = 1/2. Our numerical bound is thus tight at the
maximal quantum violation of the inequality, but also when I,g attains its classical value
2a + f3, for which G(y° = 1, Pops) = 1. In general, however, the bound (17) is not tight. Still,
it provides a good bound on the guessing probability in terms of the amount of violation of
I,p (12) and thus also of the family of inequalities Iy (5) we were using in our scheme.

For example, one can insert the maximal quantum value I)*®* (13) in (16) or in (17) and
get that (B1) = 0 or G(y° = 1, P,ys) = 3, which coincides with the certification of one perfect
local random bit for input yo = 1 on Bob’s side for the maximal violation of Iy. Since the
probability distribution of maximal violation is unique, the point is necessarily an extreme
point [1], so we can directly use the observed probability distribution Pys to bound the
eavesdropper’s predictive power (as an extreme point allows only for one decomposition:
itself).

Let us finally consider the case of a = 1 and 8 = 2cos(26)/[1 + sin?(20)]'/2, which
results in the Bell inequality (5) considered in the main text. Figure 3 presents the bound
(17) for three values of 6, in particular for § = 7/4 which corresponds to the CHSH Bell
inequality. This should provide one with an intuition of how close quantitatively to the
maximal violation I5*** the observed value Iy should be in order to get close to one perfect
local bit of randomness (G(y = 1, Pops) — 1/2) for a state with a given angle 6.

7 The amount of certified randomness as a function of the strength
of the measurement

We know already that the violation of a Bell inequality certifies the existence of randomness in
the outcomes of the measurements. The other way is also true, namely that if the solution of
the optimization problem (2) gives a solution G(y°, Pyys) < 1 then the observed behavior P,y
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is necessarily nonlocal. On a purely qualitative level, certified randomness in the outcomes is
equivalent to nonlocal correlations.

In this section we analyze with the help of numerical tools the dependency of the certified
randomness from the violation of the family of Bell inequalities (5) on the strength parameter
¢ of the measurements 6,,(§) = cos(2§)o, (8). For example, what is the maximal value of
the parameter £ —i.e. the minimal strength of the measurement —such that we can generate
nonlocal correlations (and thus randomness) from this measurement on an entangled state
of the form [¢(0)) (4)? Do less entangled states need stronger measurement to unveil their
nonlocal behavior?

To answer these questions, we have been using semi-definite programing (SDP) techniques
as explained in [3, 16] to obtain numerical upper bounds on the guessing probabilities
(2). One can find the computational details — presented in a pedagogical way — online
at https://github.com/peterwittek/ipython-notebooks/blob/master/Unbounded_randomness.
ipynb. Here we work in the standard scenario with only one measurement n = 1 in the
sequence. We used states of the form (4):

|1(0)) = cos(6)]00) + sin(9)[11) (18)
and measurements (6):

Ay =cospo, +sinpoy, By = 0.,

A; =cospo, — sin p oy, B = 6'30(5) = 008(26)01’7 (19)

where tan(u) = sin(260). These measurements correspond to the ones in our scheme for an
unbounded amount of randomness and where the second measurement y = 1 of B is the
tunable version 6,(§) = {MLMH, MilM_l} of Eq. (8):

M1(8) = cos §| )] + sin {[FNF, (20)

with £ € [0, §]. For example, if the parameter § = 0, the four (projective) measurements in
Eq. (19) on any quantum state |)(8)) with angle 6 (18) generates a behavior PY _ leading
to the maximal violation of the inequality Iy (5) for the same value of §. This implies that
extremal nonlocal correlations are generated and from the results of [1] we know that one
) = % — is produced. This corresponds to
the strongest (projective) version of the measurements. Now, as we increase the parameter

€ > 0 of B’s y = 1 measurement, 6,(§) gets weaker, the generated correlations cease to be
0

max

the measurement of B is so weak that we expect the generated correlations to become local.
This exact value might depend on the amount of entanglement 6 in the state. The bounds
obtained by SDP indicate that this dependency on the angle  of the maximal value £9_ is
relatively small. As we vary the angle 6, the minimal required strength of the measurement
to generate a nonlocal behavior P%  stays within a narrow interval: 9, € [0.519,0.576] for
0 €[5, 5]

We now present the results in the form of a graph (see Fig.3). A complete tables with
our results for the different states and bounds on the guessing probabilities can be found in
the appendices F.

As expected the amount of certified randomness for each state |¢)(6)) is one bit when the
measurement is projective (for £ = 0) as the correlations are the extremal ones described in [1]
regardless of the entanglement 6 in the state. As £ increases the lower bounds on the certified
randomness rapidly decreases, with a more rapid decrease for smaller 6. Interestingly, and up
to (high) numerical precision, for all values of 6 the bounds reach zero certified randomness
around the same value &,ax € [0.519,0.576]. This indicates, again up to numerical precision,

perfect random bit — equivalently G(y° = 1, P?

obs

extremal and less than one random bit is produced. At some point, at a particular value £
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Figure 3 Lower bounds on the amount of randomness certified from the quantum state (4) with
angles 0 =0, 35, 75, 5+ 1
projective for £ = 0 — which certifies the maximal amount of randomness — and is non interacting

as function of the strength of the measurement £&. The measurement is

with the system when £ = 7. It is intriguing to see that for the cases of 35 < 6 < 7 considered the

generated behavior become local in a small interval Emax € [0.519,0.576].

that all the generated PY_ become local — or stop generating randomness — around this
critical value.

In the end, we are interested primarily in the amount of certified randomness from bes
close to the maximal violation of Iy, corresponding to & — 0. There, the SDP solutions
indicate that the correlations resisting the best to the weakening of the measurement £ > 0
are the ones coming from the measurements made on the maximally entangled state. Indeed,
if the bounds are close to the actual values of certified randomness it is quite clear from the
numerical results that the more the state is entangled (§ — ) the better it resists. The
less entangled states (§ — 0) appear to generate exponentially less randomness when the
parameter £ increases, or equivalently when the correlations cease to be extremal. This tells
us that even though our scheme certifies an unbounded amount of randomness from states
|t)(0)) with any nonzero amount of entanglement, i.e. any 6 > 0, it is preferential from a
practical point of view to use the maximally entangled state as the initial state.

8 Conclusion

We have presented a scheme for certifying an unbounded amount of random bits from a
single pair of entangled qubits in the scenario where one of the qubits is subjected to a
sequence of measurements. The measurements do not completely destroy the entanglement

but map the state to another pure entangled two-qubit state (with reduced entanglement).

Our main result made use of the fact that every measurement in Bob’s sequence generated
an almost-maximally non-local output distribution (in the sense of violating some Bell
inequality almost maximally). In Ref. [22], a sequence of non-local correlations is obtained
from a single pair of qubits, showing that the nonlocality of a state can be shared between
many parties. While it also considers sequences of measurements, one can show that the
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correlations obtained in their work do not generate more certified randomness than the simple
standard single measurement scenario. Indeed, the maximum of randomness is achieved
when all but one measurements do not interact with the particle and their scheme is thus
optimal when coinciding with a single measurement one. In our work, we overcome this
limitation by producing (almost) extremal correlations for each measurement in the sequence,
which is a fundamental property of potential further use for many other device-independent
quantum information tasks (in particular for randomness certification). Our work is in many
respects a proof-of-principle result: First, it requires an exponentially increasing number
of measurements on Alice’s side, namely Y .| 2° = 2(2" — 1) measurement choices for n
measurements in the sequence. Second, the result is based on a continuity argument and
there is no control on the noise robustness. All these issues deserve further investigation.
Finally, it is worth exploring how to design device-independent randomness generation
protocols involving sequences of measurements. However, the sequential scenario is much
more demanding from an implementation point of view, because it requires quantum non-
demolition measurements. It is then unclear whether with present or near future technology
sequential protocols will provide a significant practical advantage over simpler protocols
based on standard Bell tests. However, the first experimental works observing non-local
correlations in the sequential scenario have recently been reported [21, 14]. In any case, the
main implications of our work are fundamental: It shows that a single pair of pure entangled
qubits is a potentially unbounded source of certifiable random bits when performing sequences
of measurements on it.

We have also provided numerical results that gives us an insight on the resistance to
imperfections of a potential protocol that implements our scheme. For a single measurement
in the sequence, we have given numerical bounds on how the certified randomness diminishes
as the generated correlations cease to be extremal. Second, we have also explored how the
certified randomness diminishes when the strength of the measurement is lowering. This
allows us to expect that any potential protocol trying to implement our scheme for a finite
amount of randomness starting from a single entangled system has an advantage using a
maximally entangled one. It is clear from our numerical results that this state offers the best
resistance to imperfections. So, while it is true that even arbitrarily little entangled states
are a source of unbounded certified randomness, more entanglement offers an advantage in
terms of resistance to imperfections.

It would also be interesting to explore whether an unbounded amount of randomness
can be obtained versus a post-quantum adversary E, only constrained by the no-signaling
condition, trying to guess the outcomes of the measurements. Or, on the contrary, is the
amount of certified randomness against no-signaling adversaries bounded also in the sequential
scenario? Our conjecture is that the amount of randomness that can be certified is limited in
this case. Indeed, the fact that the no-signaling set — consisting of all correlations constrained
only by the no-signaling conditions — does not have a continuous set of extremal points (it is
a polytope) makes it impossible to obtain a sequence of extremal probability distributions in
a sequence as the one that we could obtain in the quantum case. A different approach thus
needs to be taken. It is really the fact that the quantum set has curved boundaries made of
extremal quantum behaviors that allowed us to derive the results of this paper.

—— References

1 Antonio Acin, Serge Massar, and Stefano Pironio. Randomness versus nonlocality and
entanglement. Phys. Rev. Lett., 108:100402, Mar 2012. doi:10.1103/PhysRevLett.108.
100402.


http://dx.doi.org/10.1103/PhysRevLett.108.100402
http://dx.doi.org/10.1103/PhysRevLett.108.100402

F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban, P. Wittek, and A. Acin

10

11

12

13

14

15

16

17

18

19

20
21

Antonio Acin, Stefano Pironio, Tamdas Vértesi, and Peter Wittek. Optimal randomness
certification from one entangled bit. Phys. Rev. A, 93(4):040102, April 2016. doi:10.
1103/PhysRevA.93.040102.

Jean-Daniel Bancal, Lana Sheridan, and Valerio Scarani. More randomness from the same
data. New J. Phys., 16(3):033011, 2014. doi:10.1088/1367-2630/16/3/033011.

John S. Bell. On the Einstein Podolsky Rosen paradox. Physics, 1:195, 1964.

Nicolas Brunner, Daniel Cavalcanti, Stefano Pironio, Valerio Scarani, and Stephanie
Wehner. Bell nonlocality. Rev. Mod. Phys., 86:419-478, Apr 2014. doi:10.1103/
RevModPhys.86.419.

Orest Bucicovschi and Jiri Lebl. On the continuity and regularity of convex extensions. J.
Convez Anal., 20(4):1113-1126, 2013.

Roger Colbeck. Quantum and Relativistic Protocols for Secure Multi-Party Computation.
PhD thesis, University of Cambridge, 2006.

Roger Colbeck and Renato Renner. Free randomness can be amplified. Nat. Phys., 8(6):450—
454, May 2012. doi:10.1038/nphys2300.

Florian J. Curchod, Markus Johansson, Remigiusz Augusiak, Matty J. Hoban, Peter Wit-
tek, and Antonio Acin. Unbounded randomness certification using sequences of measure-
ments. Phys. Rev. A, 95(2), feb 2017. doi:10.1103/physreva.95.020102.

Giacomo Mauro D’Ariano, Paoloplacido Lo Presti, and Paolo Perinotti. Classical ran-
domness in quantum measurements. J. Phys. A: Math. Gen., 38(26):5979, 2005. doi:
10.1088/0305-4470/38/26/010.

Gonzalo de la Torre, Matty J. Hoban, Chirag Dhara, Giuseppe Prettico, and Anto-
nio Acin. Maximally nonlocal theories cannot be maximally random. Phys. Rev. Lett.,
114(16):160502, 2015. doi:10.1103/physrevlett.114.160502.

Rodrigo Gallego, Lluis Masanes, Gonzalo De La Torre, Chirag Dhara, Leandro Aolita,
and Antonio Acin. Full randomness from arbitrarily deterministic events. Nat. Commun.,
4:2654, 2013. doi:10.1038/ncomms3654.

Rodrigo Gallego, Lars Erik Wiirflinger, Rafael Chaves, Antonio Acin, and Miguel Navascués.
Nonlocality in sequential correlation scenarios. New J. Phys., 16(3):033037, 2014. doi:
10.1088/1367-2630/16/3/033037.

Meng-Jun Hu, Zhi-Yuan Zhou, Xiao-Min Hu, Chuan-Feng Li, Guang-Can Guo, and Yong-
Sheng Zhang. Experimental sharing of nonlocality among multiple observers with one

entangled pair via optimal weak measurements. arXiv:1609.01863, Sep 2016. arXiv:1609.

01863.

Lluis Masanes, Antonio Acin, and Nicolas Gisin. General properties of nonsignaling theories.
Phys. Rev. A, 73(1):012112, Jan 2006. doi:10.1103/physreva.73.012112.

Olmo Nieto-Silleras, Stefano Pironio, and Jonathan Silman. Using complete measure-
ment statistics for optimal device-independent randomness evaluation. New J. Phys.,
16(1):013035, 2014. doi:10.1088/1367-2630/16/1/013035.

Stefano Pironio, Antonio Acin, Serge Massar, Antoine Boyer de la Giroday, Dzmitry N.
Matsukevich, Peter Maunz, Steven Matthew Olmschenk, David Hayes, Le Luo, T. Andrew
Manning, and Christopher R. Monroe. Random numbers certified by bell’s theorem. Nature,
464(7291):1021-1024, 2010. doi:10.1038/nature09008.

Sandu Popescu. Bell’s inequalities and density matrices: Revealing “hidden” nonlocality.
Phys. Rev. Lett., 74(14):2619-2622, Apr 1995. doi:10.1103/physrevlett.74.2619.
Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom. Found. Phys.,
24(3):379-385, 1994. doi:10.1007/BF02058098.

Tyrrell Rockafellar. Convex Analysis. Princeton Press, 1970.

Matteo Schiavon, Luca Calderaro, Mirko Pittaluga, Giuseppe Vallone, and Paolo Villoresi.
Three-observer bell inequality violation on a two-qubit entangled state. Quantum Science
and Technology, 2(1):015010, mar 2017. doi:10.1088/2058-9565/aa62be.

1:15

TQC 2017


http://dx.doi.org/10.1103/PhysRevA.93.040102
http://dx.doi.org/10.1103/PhysRevA.93.040102
http://dx.doi.org/10.1088/1367-2630/16/3/033011
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1103/RevModPhys.86.419
http://dx.doi.org/10.1038/nphys2300
http://dx.doi.org/10.1103/physreva.95.020102
http://dx.doi.org/10.1088/0305-4470/38/26/010
http://dx.doi.org/10.1088/0305-4470/38/26/010
http://dx.doi.org/10.1103/physrevlett.114.160502
http://dx.doi.org/10.1038/ncomms3654
http://dx.doi.org/10.1088/1367-2630/16/3/033037
http://dx.doi.org/10.1088/1367-2630/16/3/033037
http://arxiv.org/abs/1609.01863
http://arxiv.org/abs/1609.01863
http://dx.doi.org/10.1103/physreva.73.012112
http://dx.doi.org/10.1088/1367-2630/16/1/013035
http://dx.doi.org/10.1038/nature09008
http://dx.doi.org/10.1103/physrevlett.74.2619
http://dx.doi.org/10.1007/BF02058098
http://dx.doi.org/10.1088/2058-9565/aa62be

1:16

Single Entangled System Is an Unbounded Source of Nonlocality and Randomness

22 Ralph Silva, Nicolas Gisin, Yelena Guryanova, and Sandu Popescu. Multiple observers can
share the nonlocality of half of an entangled pair by using optimal weak measurements.
Phys. Rev. Lett., 114(25):250401, 2015. doi:10.1103/physrevlett.114.250401.

23  Umesh Vazirani and Thomas Vidick. Certifiable quantum dice. Phil. Trans. R. Soc. A.,
370(1971):3432-3448, Jun 2012. doi:10.1098/rsta.2011.0336.

24 Peter Wittek. Algorithm 950: Ncpol2sdpa - sparse semidefinite programming relaxations for
polynomial optimization problems of noncommuting variables. ACM Trans. Math. Softw.,
41(3):21:1-21:12, 2015. doi:10.1145/2699464.

25 Makoto Yamashita, Katsuki Fujisawa, and Masakazu Kojima. Implementation and evalu-
ation of SDPA 6.0 (semidefinite programming algorithm 6.0). Optimization Methods and
Software, 18(4):491-505, 2003. doi:10.1080/1055678031000118482.

A  The guessing probability

We start our appendices with the following discussion, which is a summary of the work
done in deriving the device-independent guessing probability (DIGP) [17, 1, 16, 11]. A
conditional probability distribution that is the outcome distribution for some measurement
on a quantum state is called a quantum distribution. For example, a distribution P with
elements p(ablzy) is quantum if there exist at least one quantum state, i.e., a positive
semi-definite hermitian unit trace matrix p and at least one set of measurements, i.e., a set of
positive semi-definite hermitian matrices M, ,, My, satisfying > Mg, = >, M), = 1 such
that p(ablry) = Tr(My), ® My, - p). We will often abuse notation and refer to a distribution
by its elements p(ab|zy) when there is no confusion in doing so.

The set Q of quantum distributions is convex and a distribution in Q that cannot be
decomposed as a convex combination of other distributions is called extremal in Q. For
a non-extremal distribution P(ab|zy) there is in general more than one possible convex
decomposition.

A non-extremal distribution p(ablzy) with a convex decomposition p(ablzy) =
>\ @xpa(ablzy) can be constructed by sampling the different distributions py(ab|zy) with
probability ¢. In this case knowledge about the convex decomposition chosen changes the
ability of an eavesdropper to correctly guess the outcomes a and/or b.

Without knowledge of the decomposition, or for extremal distributions, the probability
of correctly guessing the outcome of measurement y° is max; p(b|y"), the probability of the
most likely outcome. With knowledge of the decomposition p(ablzy) = >, ¢xpa(ablzy), the
probability is larger or equal to max;, p(bly")

ZA: gx max py(bly’) > max XA: 0P (Bly”) = max p(bly"). (21)

For a given observed non-extremal distribution P,ps, it is possible that it was produced by an
agent Eve that has larger predictive power than an agent which only observes the outcomes.

We now want to consider the optimal probability for the agent Eve to correctly guess
an outcome b of measurement y° given a distribution p,ys(ablry) and control over its
decomposition in extremal points. If the set of quantum distributions is closed there exist one
or several optimal ways to decompose the given distribution that maximizes this probability.
If the set is not closed but open or semi-open, there may not exist a maximum and the
relevant quantity is instead the supremum value of Eves probability to correctly guess the
outcome. Since maxy p(b|y°) is a continuous function on the set of probability distributions
it follows that the supremum value of Y, ¢ max, px(bly") as a function of all possible
decompositions, indexed by A, on an open or semi-open set of distributions is the same as
the maximum value on the closure of the set. Therefore, in this case we can consider the
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closure of the set and express the probability as an optimization over the extremal points of
this closed set.

With this disclaimer, the maximal probability for the agent Eve to correctly guess
an outcome b of measurement y° given a distribution p,ys(ablzy) and control over the
decomposition is the DIGP G(y°, Pops)

G(°, Pops) = max Zq)\ m?xp)\(b|y0). (22)

gx;px(ablzy) X

where A is labelling the convex decompositions of pops(ablzy) in terms of extremal distributions
pa(ablzy). Note that if Q is not closed a given extremal point may not belong to the set but
only to its closure. For any open interval of Q the function G(y°, P,ps) is a concave function
[17]. Therefore this kind of maximization is called a concave roof construction.

The guessing probability can be approximated by a hierarchy of semidefinite programming
(SDP) relaxations [16, 3]. We used Ncpol2sdpa [24] to generate the relaxations for verifying
some of the analytical results. We relied on the arbitrary-precision variant of the SDPA
family of solvers [25] for obtaining important numerical values, and the solver Mosek?! in all
other cases.

B Continuity of the guessing probability in interior and extremal
points of O

The guessing probability as a function on the space of probability distributions is not every-
where continuous. An example of this is that the family of Bell-inequalities of Ref. [1] that
certifies one bit of randomness for measurements on a state with arbitrarily little entangle-
ment. The probability distribution corresponding to such a state and the measurements
in Eq. 6 has G(y°, Ppys) = 1/2 and is at the same time arbitrarily close to a distribution
corresponding to measurements on a product state with G(y°, Poys) = 1, i.e., a distribution
which can be prepared by a local deterministic procedure. There is thus a discontinuity where
the guessing probability jumps from 1/2 to 1. The key to understanding this discontinuity
is that the local deterministic distribution is not extremal while the quantum distribution
in the neighbouring point is extremal. As seen in Eq. 21, the guessing probability is given
by different functions depend ing on whether a distribution can be decomposed into other
distributions or not, i.e., if it is extremal or not. This means discontinuities can appear at
the boundary between extremal points and non-extremal points.

We will now show that discontinuities can only appear at such boundaries between
extremal and non-extremal points in the boundary 0Q of the quantum set Q. To do this we
use the property of the guessing probability described in Eq. 21, together with some general
properties of concave functions and in particular concave roof constructions.

We want to show that the following propositions are true:

» Proposition 5. The function G(y°, P,ys) on the set of quantum distributions Q is continu-
ous in the interior of Q.

» Proposition 6. The function G(y°, P,ys) is continuous in any extremal point of Q.

Proposition 1 is trivial. The guessing probability G(y°, Pops) is concave by definition and
any concave function is continuous on an open subset of its domain [20]. In particular this
means that G(y°, P,s) is continuous in the interior of Q. Note that if Q is open, i.e. has no
boundary, there can thus not exist any discontinuity.

! http://mosek.com/
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To address proposition 2 we consider the restriction G(y°, Pops)?2 of G(y°, Pops) to the
boundary 9Q of the quantum set. First we note that the function G(y°, Pops)?< by definition
is continuous on any open set of extremal points since max; p(bly) is a continuous function.
Next we observe that the boundary 0Q can be decomposed into a collection of open sets of
extremal points and a collection {S;} of closed connected possibly overlapping sets where
each set is the closure of a maximal open connected subset. A maximal open connected
subset M of the non-extremal points is an open set such that any other open connected set
of non-extremal points which contains M is M itself. Therefore, each set S; is the convex
hull of the set of extremal points in its closure.

Any closed set S; has a boundary 0.5; with the rest of 9Q which can be decomposed
in the same way into open sets of extremal points and closed connected sets S;; that are
closures of maximal open connected sets of non-extremal points. The boundary 0S;; of S;;
with the rest of 0.5; is in turn decomposable in the same way.

Continuing this successive decomposition of the boundary 9Q we will eventually reach
sets Sijk... that are one dimensional simplexes, or alternatively sets with only extremal points
in the boundary. On sets of these two types G(y°, Pops) is a continuous function. To see this
we introduce the following terminology, and use a theorem from Ref. [6].

A function for which all discontinuities are such that the function takes the higher value
at a closed set and the lower value at an open set is called upper semi-continuous.

The function G (yo, Pobs)s defined on a closed convex set S can be viewed as an extension
of G(y°, Pops)? to the interior of S. This extension is called the concave roof extension.

» Theorem 7. Let C be a compact set and K = co(C) be the convex hull of C. If F : C — R
is bounded, upper semi-continuous, and concave on C, then the concave roof extension
F: K — R of Fto K is upper semi-continuous [6].

The guessing probability is bounded and concave by definition. If the boundary of S
has only extremal points it follows that G(y°, Pops)?? is continuous in S and by theorem
7 G(yo, Pobs)s is upper semi-continuous on S. Moreover, since G(yo, Pobs)s is concave it
cannot have an upper semi-continuous discontinuity between the boundary and the interior.
If S is a one-dimensional simplex we can, if necessary, restrict the domain of the guessing
probability to a one dimensional subspace and make the same argument.

Next we consider discontinuities between S and an open set of extremal points.

» Lemma 8. Any discontinuity of G(y°, Pops) between a closed set and an open set of
extremal points is upper semi-continuous.

Proof. If the boundary point of the closed set is extremal the G(y°, P,ys) is continuous since
max; p(b|y?) is continuous. Next consider a non-extremal boundary point of the closed set.
G(y°, P,ps) in the non-extremal point is always greater or equal to max; P(bly°) by Eq. 21.
Thus any discontinuity is upper semi-continuous. |

If there is a discontinuity of G(y°, Pops) on the boundary of S it is, by lemma 8 , upper
semi-continuous and at a set of non-extremal points.

By repeated application of Theorem 7 and lemma 8 we can conclude that G(y°, Pops)?<
is upper semi-continuous on Q and that G(y°, Pops) is upper semi-continuous on Q. Since
G(y°, P,ys) is concave there cannot be an upper semi-continuous discontinuity between the
boundary 0Q and the interior of Q. Thus the only discontinuities are between non-extremal
points in closed subsets of 0Q and extremal points in open subsets of Q.



F. J. Curchod, M. Johansson, R. Augusiak, M. J. Hoban, P. Wittek, and A. Acin

C Bounds on the guessing probability as a function of a Bell
inequality: Continuity at a unique point of maximal violation

We have described the guessing probability as a function on set of quantum distributions,
but it is sometimes useful to consider it as a function of the violation of some given Bell
inequality I. A Bell expression is a linear function on the space of distributions and the set
of distributions for which it takes a given value t is a hyper-plane H;. The different values of
the Bell expression thus defines a family of parallel hyperplanes.

On each hyperplane H; we can consider the restriction G(y°, Pops)s of G(y°, Pops) to the
intersection of H; with Q and take its maximum max G(y°, Pops); on this intersection. This
maximum is the highest probability for Eve to guess the outcome of y° for any distribution
P € Q such that I(P) = t. The function max G(y", Pops)s can have a discontinuity at ¢ = ¢,
only if Hy_ intersects with a point in Q at which G(y°, Pops) is discontinuous.

Let us consider a Bell expression I and its maximal value t¢,,,, on Q. If the intersection
of Hy, . and Q is a single extremal point it follows from Propositions 1 and 2 that there is
a te # tmasr such that for the range t. <t < t,,q, for which max G(y°, Pops)¢ is a continuous
function of ¢.

If the intersection of H;, , and Q contains more than one extremal point it also contains
a set of non-extremal points of 9Q and G(y", Pops) could have a discontinuity between this
set and an open set of extremal points. This discontinuity could lead to a discontinuity of
the function max G(y°, Pops)t at tmaz-

D Guessing probability for a sequence

So far, we have discussed the continuity properties of the guessing probability in the standard
scenario, where one single measurement M|, is made on Alice’s side and M|, on Bob’s. The
goal of this section is to extend these properties to the case where sequential measurements
Mg, |2, and My, |, are performed by each party, where i labels the position of a particular
measurement in the sequence.

Let us consider a sequence of measurements (;) chosen by Bob and denote (£1,&a, . ..,&,)
= E The convex decomposition of the observed outcome distribution that gives Eve
optimal probability to correctly guess the sequence of outcomes gn of the measurements

(12,49, ...,4°) = i is a function of £&. The guessing probability G (i, Pos) is thus given by

G(Q?w PObS) = Z qu I%axpkg(bﬂy(l)) : pkg(b2|yga y?a bl) B 'pkg(bn‘y_ggn—l)' (23)
Aé n

where the extremal distributions pAg(bn|yn ...) and weights U, of the optimal convex

decomposition are functions of E as indicated by the index )‘5' Let us assume that a term
which appears in the convex combination is

DePAD1[Y) - - Pr BT D) (24)

Thus we assume that it corresponds to the most probable sequence of outcomes l;n for a
specific distribution indexed by >‘5'

Given that Eve has chosen the optimal convex decomposition for guessing the outcomes
of ¥ we consider her probability of correctly guessing the outcome of y2, for 1 < m <n
given a particular sequence of previous outcomes l;m_l. It is given by

>k rrl}axmg(bmlzjglgm—l)v (25)
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where k e is the probability that the distribution indexed by )\5 will be sampled given the
sequence of previous outcomes by, 1
DePA01[YY) - A (b1 T 1 bim—2)

_ . (26)
ZAg QAEpkg(bl |y?) . -pkg(bmfl |g?n—1bmf2)

kx

3

The probability in Eq. 25 is larger or equal to 1/d,,, where d,, is the number of possible
outputs b,,, but is lower or equal to G(32,, Pobs), the maximal probability that Eve could
guess the outcome of 0, correctly given that she had chosen an optimal strategy for this and
not the optimal strategy for guessing the outcomes of the sequence 70. Thus if G (32, Pobs)
is close to 1/d,, so is the expression in Eq. 25.

E Arbitrarily close to n random bits for n measurements

We want to prove that G(42, Pops) can be made arbitrarily close to 27" by making G(y2,, Pobs)
sufficiently close to 1/2 for each 1 < m < n.

The proof relies on the fact that if a convex combination of a collection of numbers z;
equals a, i.e., ), kjx; = a where ) k; = 1, and if x; > a for each 1, it follows that for every
i either k; =0 or z; = a.

From this follows that when G(y2,, Pops) is very close to 1/2 either max;,, p Ag(bmhﬁnl;m_l)
in Eq. 25 is very close to 1/2 or kAE is very close to zero for each /\{. To see this more clearly
we construct the following bound

kkg H;axpkﬂ(bmrgg@gm—l) S G(ygwpobs) - Z k)\’g H}}axpk’g(bm|g?ngm—l)
N#£N "

< Gy Povs) = 1/2(1 = kx,)

where we used maxy, par. (b |72, bm—1) > 1/2 for cach Xg and 3_y 4y ke = 1— k. It follows
é é
that

G (Y Pobs) = 1/2 2 ks [max pa (b |7,5r—1) — 1/2],
and given Eq. (26) this implies

G (Y Povs) = 1/2 2 a2 (01]0) - - 9A(bm—1[70 -1 Brn—2) Imax ps (b7 —1) — 1/2].

Thus for sufficiently small G(y2,, Pops) — 1/2 either maxy,, p,\g(bm\g%gm,l) —1/2 can be
made arbitrarily small, or the probability qupAg(bﬂy?) . .pkg(bm_l\g?n_ll?m_z) that the
distribution labelled by )\5 is sampled when 39, is measured is made arbitrarily small.

The argument can be made for any B,,. For By, it follows that either p>\€(b1|y?) is made
arbitrarily close to 1/2 or Dg is made arbitrarily close to 0. For Bs, it follows that either
p,\g(b2|y8y?b1) is made arbitrarily close to 1/2 or q,\gpAg(b1|y?) is made arbitrarily close to
zero. Given the second option and that pAg(bl |y9) is made arbitrarily close to 1/2 it is implied
that that ‘NG is made arbitrarily close to 0. If on the other hand p Ag_(bl |¥9) is not very close
to 1/2 it follows that Urg is made arbitrarily close to zero by the preceding argument.

By induction it is clear that either the term in Eq. 24 satisfies that pAg(b1|y?) ..
pAg(bn|gon gn_l) can be made arbitrarily close to 27" or alternatively PWRE made arbitrarily
small. Since the same is true for every Az in Eq. 23 it follows that G(7°, Pops) can be made
arbitrarily close to 27™.
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Note that the above argument can be straightforwardly extended to the case where the
number of outputs d; for each B; can be different from 2. Thus, in this case G(42, Pops) can
be made arbitrarily close to [/, d; ! by making G(y9,, Pops) sufficiently close to 1/d,, for
cach 1 <m <n.

F  Our programs to obtain lower bounds on the certified randomness

In this section of the appendices we give the tables of results for section 7. We remind
the reader that the computational details — exposed in a pedagogical way — of our results
can be found online at: https://github.com/peterwittek/ipython-notebooks/blob/master/
Unbounded_randomness.ipynb.
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Table 1 0 = 7, the maximally entangled

state. Table 2 § = %.

13 # random bits 3 f random bits
0.000 1.000 0.000 1.000
0.013 0.962 0.013 0.941
0.027 0.925 0.027 0.884
0.040 0.890 0.040 0.830
0.053 0.855 0.053 0.779
0.067 0.822 0.067 0.729
0.080 0.790 0.080 0.682
0.093 0.759 0.093 0.637
0.106 0.729 0.106 0.595
0.120 0.700 0.120 0.555
0.133 0.673 0.133 0.519
0.146 0.647 0.146 0.485
0.160 0.622 0.160 0.453
0.173 0.598 0.173 0.424
0.186 0.575 0.186 0.396
0.200 0.554 0.200 0.371
0.213 0.533 0.213 0.348
0.226 0.514 0.226 0.327
0.240 0.494 0.240 0.307
0.253 0.473 0.253 0.289
0.266 0.452 0.266 0.273
0.280 0.430 0.280 0.258
0.293 0.409 0.293 0.243
0.306 0.387 0.306 0.229
0.319 0.365 0.319 0.214
0.333 0.342 0.333 0.200
0.346 0.320 0.346 0.186
0.359 0.298 0.359 0.171
0.373 0.276 0.373 0.157
0.386 0.254 0.386 0.143
0.399 0.233 0.399 0.129
0.413 0.211 0.413 0.115
0.426 0.190 0.426 0.102
0.439 0.170 0.439 0.089
0.453 0.150 0.453 0.077
0.466 0.130 0.466 0.064
0.479 0.111 0.479 0.053
0.493 0.093 0.493 0.041
0.506 0.075 0.506 0.031
0.519 0.058 0.519 0.021
0.532 0.042 0.532 0.012
0.546 0.027 0.546 0.004
0.559 0.012 0.559 0.000
0.572 0.000 0.572 0.000
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Table 3 6 =

i
16"

£

f# random bits

0.000
0.013
0.027
0.040
0.053
0.067
0.080
0.093
0.106
0.120
0.133
0.146
0.160
0.173
0.186
0.200
0.213
0.226
0.240
0.253
0.266
0.280
0.293
0.306
0.319
0.333
0.346
0.359
0.373
0.386
0.399
0.413
0.426
0.439
0.453
0.466
0.479
0.493
0.506
0.519
0.532
0.546
0.559
0.572

1.000
0.896
0.800
0.714
0.641
0.577
0.521
0.473
0.429
0.391
0.356
0.325
0.297
0.271
0.248
0.227
0.207
0.190
0.174
0.159
0.146
0.134
0.122
0.112
0.103
0.095
0.087
0.078
0.070
0.062
0.055
0.047
0.040
0.034
0.027
0.021
0.016
0.011
0.007
0.003
0.000
0.000
0.000
0.000

Table 4 0 = 5.

13 # random bits
0.000 1.000
0.013 0.823
0.027 0.706
0.040 0.619
0.053 0.551
0.067 0.493
0.080 0.444
0.093 0.400
0.106 0.362
0.120 0.328
0.133 0.297
0.146 0.269
0.160 0.244
0.173 0.221
0.186 0.200
0.200 0.181
0.213 0.163
0.226 0.147
0.240 0.133
0.253 0.119
0.266 0.107
0.280 0.095
0.293 0.085
0.306 0.076
0.319 0.067
0.333 0.059
0.346 0.052
0.359 0.046
0.373 0.040
0.386 0.035
0.399 0.030
0.413 0.025
0.426 0.021
0.439 0.017
0.453 0.013
0.466 0.009
0.479 0.006
0.493 0.004
0.506 0.002
0.519 0.000
0.532 0.000
0.546 0.000
0.559 0.000
0.572 0.000
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—— Abstract

An important task in quantum physics is the estimation of local quantities for ground states of
local Hamiltonians. Recently, [Ambainis, CCC 2014] defined the complexity class pOMALleg] 4
motivated its study by showing that the physical task of estimating the expectation value of a
local observable against the ground state of a local Hamiltonian is P@MAle]
paper, we continue the study of P@MAI°8l ohtaining the following results.
The PAMALCEL completeness result of [Ambainis, CCC 2014] requires O(logn)-local observ-
ables and Hamiltonians. We show that simulating even a single qubit measurement on ground
log]—complctc7 resolving an open question of Ambainis.

-complete. In this

states of 5-local Hamiltonians is P@MA
We formalize the complexity theoretic study of estimating two-point correlation functions
against ground states, and show that this task is similarly POMAIE]_complete.

pQMAlleg] jg thought of as “slightly harder” than QMA. We justify this formally by exploiting
the hierarchical voting technique of [Beigel, Hemachandra, Wechsung, SCT 1989] to show
pQMAllog]  pp_ This improves the containment QMA C PP [Kitaev, Watrous, STOC 2000].
A central theme of this work is the subtlety involved in the study of oracle classes in which
the oracle solves a promise problem. In this vein, we identify a flaw in [Ambainis, CCC 2014]
regarding a PUSMAICel_hardness proof for estimating spectral gaps of local Hamiltonians. By
introducing a “query validation” technique, we build on [Ambainis, CCC 2014] to obtain
pUQMALles] hardness for estimating spectral gaps under polynomial-time Turing reductions.
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1 Introduction

The use of computational complexity theory to study the inherent difficulty of computational
problems has proven remarkably fruitful over the last decades. For example, the theory of
NP-completeness [8, 21, 17] has helped classify the worst-case complexity of hundreds of
computational problems which elude efficient classical algorithms. In the quantum setting,

* A full version of the paper is available at https://arxiv.org/abs/1606.05626.

T Part of this work was completed while SG was supported by a Government of Canada NSERC Banting
Postdoctoral Fellowship and the Simons Institute for the Theory of Computing at UC Berkeley. SG
acknowledges support from NSF grants CCF-1526189 and CCF-1617710.

¥ SG acknowledges support from NSF grants CCF-1526189 and CCF-1617710, an NSERC Banting
Postdoctoral Fellowship and a Simons Postdoctoral Fellow at the University of California, Berkeley.

© Sevag Gharibian and Justin Yirka;

oY licensed under Creative Commons License CC-BY
12th Conference on the Theory of Quantum Computation, Communication, and Cryptography (TQC 2017).
Editor: Mark M. Wilde; Article No. 2; pp. 2:1-2:17

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


http://dx.doi.org/10.4230/LIPIcs.TQC.2017.2
https://arxiv.org/abs/1606.05626
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2

The Complexity of Simulating Local Measurements on Quantum Systems

the study of a quantum analogue of NP, known as Quantum Merlin Arthur! (QMA), was
started in 1999 by the seminal “quantum Cook-Levin theorem” of Kitaev [19], which showed
that estimating the ground state energy of a given k-local Hamiltonian is QMA-complete for
k > 5. Here, a k-local Hamiltonian? H can be thought of as a quantum constraint satisfaction
system in which each quantum clause acts non-trivially on £ qubits. The “largest total weight
of satisfiable clauses” is given by the ground state energy of H, i.e. the smallest eigenvalue of
H. Physically, the ground state energy and its corresponding eigenvector, the ground state,
are motivated in that they represent the energy level and state of a given quantum system
at low temperature, respectively. For this reason, since Kitaev’s work [19], a number of
physically motivated problems have been shown complete for QMA (see, e.g., [5] and [14] for
surveys), a number of which focus on estimating ground state energies of local Hamiltonians.

In recent years, however, new directions in quantum complexity theory involving other
physical properties of local Hamiltonians have appeared. For example, Brown, Flammia
and Schuch [6] (also Shi and Zhang [25]) introduced a quantum analogue of #P, denoted
#BQP, and showed that computing the ground state degeneracy or density of states of local
Hamiltonians is #BQP-complete. Gharibian and Kempe [12] introduced cq-25, a quantum
generalization of 3%, and showed that determining the smallest subset of interaction terms
of a given local Hamiltonian which yields a frustrated ground space is cq-2a-complete (and
additionally, cq-3s-hard to approximate). Gharibian and Sikora [13] showed that determining
whether the ground space of a local Hamiltonian has an “energy barrier” is QCMA-complete,
where QCMA [2] is Merlin-Arthur (MA) with a classical proof and quantum prover. Finally,
and most relevant to this work, Ambainis [3] introduced P@AM°el which is the class of
decision problems decidable by a polynomial time Turing machine with logarithmically
many queries to a QMA oracle (i.e. a quantum analogue of pNPleel)  He showed that
pQMAllog] captures the complexity of a very natural physical problem: “Simulating” a local
measurement against the ground state of a local Hamiltonian (more formally, computing the
expectation value of a given local observable against the ground state).

It is worth noting here that, given a local Hamiltonian, often one is not necessarily
interested in a description of the entire ground state [14]. Rather, one may be interested in
local quantities such as the evaluation of a local observable or of a correlation function. This

makes PAMALE] 5 well-motivated complexity class, whose study we continue here.

Our results (summarized under three headings)

1. PQMA["’g]-completeness of estimating local quantities. We begin with the study of two

physically motivated problems. The first, APX-SIM, was formalized by Ambainis [3] (formal
definitions in Section 2): Given a k-local Hamiltonian H and an l-local observable A, estimate
the expectation value of the measurement A against the ground state of H, i.e. estimate
(A) := (Y| AY) for |) a ground state of H. The second problem, which we introduce here
and denote APX-2-CORR, is defined similarly to APX-SIM, except one is given observables
A and B, and asked to estimate the two-point correlation function (A ® B) — (A)(B).
Previously, Ambainis [3] showed that APX-SIM is PQMACELcomplete for O(logn)-local
Hamiltonians and O(logn)-local observables. From a physical standpoint, however, it is

L More accurately, QMA is Merlin-Arthur (MA) with a quantum proof and quantum verifier.
2 H € C?"*?" is a Hermitian matrix with a succinct description H = ZZ H;, where each local clause

H; € 2" *2" acts non-trivially on k qubits. Implicitly, if H; acts on a subset S; C [n] of qubits
non-trivially, then more accurately one writes H; ® I}, s, We write H = Zl H; for simplicity.
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typically desirable to have O(1)-local Hamiltonians and observables, and whether pQMA[log]_
hardness holds in this regime was left as an open question. We thus first ask: Is APX-SIM
still hard for an O(1)-local Hamiltonian and 1-local observables?

A priori, one might guess that simulating 1-local measurements might not be difficult —
for example, the ground state energy of a 1-local Hamiltonian can be estimated efficiently.
Yet, this intuition is incorrect: By embedding a 3-SAT instance ¢ into a 3-local Hamiltonian,
and using the ability to repeatedly locally measure observable Z against single qubits of the
ground state, we can extract a solution to ¢! Thus, the 1-local observable case is at least
NP-hard. Indeed, we show it is much harder, resolving Ambainis’s open question.

» Theorem 1.1. Given a 5-local Hamiltonian H on n qubits and a 1-local observable A,
estimating (A) (i.e. APX-SIM) is POMALEl_complete.

Thus, measuring just a single qubit of a local Hamiltonian H’s ground state with a fixed
single-qubit observable A (in our construction, A is independent of H) is harder than QMA
(assuming QMA # peMAllog] ' which is likely as otherwise co-QMA C QMA).

Using similar techniques, we also show APX-2-CORR is PQMA[IOg]—complete.

» Theorem 1.2. Given a 5-local Hamiltonian H on n qubits and a pair of 1-local observables
A and B, estimating (A ® B) — (A)(B) (i.e. APX-2-CORR) is P@MALE]_complete.

2. An upper bound on the power of POMAlCEl  Gipce POMALE] j5 thought of as “slightly
harder” than QMA (note QMA C IZ’QMAUOg])7 we next ask: How much harder than QMA
is PAMAlegl 2 Recall that QMA C PP [20, 26, 23] (note [26] actually shows the stronger
containment QMA C AoPP). Here, PP is the set of promise problems solvable in probabilistic

QMA[log]

polynomial time with unbounded error. Our next result shows that P is “not too

much harder” than QMA in the following rigorous sense.

» Theorem 1.3. PRMAllegl € pp.

3. Estimating spectral gaps and oracles for promise problems. A central theme in this
work is the subtlety involved in the study of oracle classes in which the oracle solves a
promise problem (such as PQMA[IOg]), as opposed to a decision problem (such as pNPllog]
where PNPllog] jg pQMAllog] oy copt with an NP oracle). As discussed in “Proof techniques and
discussions” below, the issue is that a P machine cannot in general determine if the query it
makes to a QMA oracle satisfies the promise gap of the oracle. For queries which violate
this promise, the oracle is allowed to give an arbitrary answer. We observe that this point
appears to have been missed in [3], rendering a claimed proof that determining the spectral
gap of a given O(logn)-local Hamiltonian H is pUQMALeg] hard incorrect. (PUQMA“Og} is
pQMAllog] except with a Unique QMA oracle. Unique QMA is roughly QMA with a unique
accepting quantum witness in the YES case.) Our last result both shows how to overcome
this difficulty (at the expense of obtaining a “slightly weaker” hardness claim involving a
Turing reduction, whereas [3] claimed hardness under a mapping reduction), and improves
the locality of H to O(1).

» Theorem 1.4. Given a 4-local Hamiltonian H, estimating its spectral gap (i.e. the problem
SPECTRAL-GAP) is pUQMALoe] 1 od under polynomial time Turing reductions.

Proof techniques and discussion

1. PAMAllegl_completeness for estimating local quantities. The proofs of our first two
pMAlloel ardness results (Theorem 1.1 and Theorem 1.2) are similar, so we focus on APX-
SIM here. Intuitively, our aim is simple: To design our local Hamiltonian H so that its
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ground state encodes a so-called history state3 [19] [) for a given POMAN8] instance, such

that measuring observable Z on the designated “output qubit” of |¢)) reveals the answer
of the computation. At a high level, this is achieved by combining a variant of Kitaev’s
circuit-to-Hamiltonian construction [19] (which forces the ground state to follow the P circuit)
with Ambainis’s “query Hamiltonian” [3] (which forces the ground state to encode correctly
answered queries to the QMA oracle). Making this rigorous requires developing a few ideas,
including: A careful analysis of Ambainis’s query Hamiltonian’s ground space when queries
violating the promise gap of the oracle are allowed (Lemma 3.1), a simple but useful corollary
(Cor. 2.3) of Kempe, Kitaev, and Regev’s Projection Lemma [18] (Corollary 2.3, showing
that any low energy state of H must be close to a valid history state), and application of
Kitaev’s unary encoding trick [19] to bring the locality of the Hamiltonian H down to O(1)
(Lemma 3.2).

Next, to show containment of APX-2-CORR in POMAI°8] (Theorem 1.2), a natural
approach would be to run Ambainis’s pQMAllog] protocol for APX-SIM independently for
each term (A ® B), (A), and (B). However, if a cheating prover does not send the same
ground state |¢) for each of these measurements, soundness of the protocol can be violated.
To circumvent this, we exploit a trick of Chailloux and Sattath [7] from the setting of QMA(2):
we observe that the correlation function requires only knowledge of the two-body reduced
density matrices { p;; } of [¢). Thus, a prover can send classical descriptions of the { p;; }
along with a “consistency proof” for the QMA-complete Consistency problem [22].

2. An upper bound on the power of P?MAIPE]  We now move to our third result, which is
perhaps the most technically involved. To show P@MAIEl € PP (Theorem 1.3), we exploit
the technique of hierarchical voting (used by Beigel, Hemachandra, and Wechsung [4] to
show PNPleel ¢ PP), in conjunction with the QMA strong amplification results of Marriott
and Watrous [23]. The intuition is best understood in the context of PNI°8l [4]. There,
the PP machine first attempts to guess the answers to each NP query by picking random
assignments to the SAT formula ¢; representing query 4, in the hope of guessing a satisfying
assignment for ¢;. Since such a guess can succeed only if ¢; is satisfiable, it can be seen that
the lexicographically largest string y* attainable by this process must be the correct query
string (i.e. string of query answers). The scheme then uses several rounds of “hierarchical
voting,” in which lexicographically smaller query strings reduce their probability of being
output to the point where y* is guaranteed to be the “most likely” query string output. While
the quantum variant of this scheme we develop is quite natural, its analysis is markedly more
involved than the classical setting due to both the bounded-error nature of QMA and the
possibility of “invalid queries” violating the QMA promise gap. (For example, it is no longer
necessarily true that the lexicographically largest obtainable y* is a “correct” query string.)

3. Estimating spectral gaps and oracles for promise problems. Finally, we discuss our
fourth result and the theme of “invalid queries”. Assume that all calls by the pQMAllog]
machine to the QMA oracle @ are for an instance (H,a,b) of the Local Hamiltonian Problem
(LH): Is the ground state energy of H at most a (YES case), or at least b (NO case), for
b—a > 1/poly(n)? Unfortunately, a P machine cannot in general tell whether the instance
(H,a,b) it feeds to @ satisfies the promise conditions of LH (i.e. the ground state energy

3 A history state can be seen as a quantum analogue of the “tableaus” which appear in the proof of the
Cook-Levin theorem, i.e. a history state encodes the history of a quantum computation. In contrast to
tableaus, however, the history encodes information in quantum superposition.
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may lie in the interval (a,b)). If the promise is violated, we call such a query invalid, and
in this case @ is allowed to either accept or reject. This raises the issue of how to ensure a
peMAllog] 1ohlem is well-defined. To do so, we stipulate
(see, e.g., Definition 3 of Goldreich [16]) that the P machine must output the same answer

YES instance (or NO instance) of a

regardless of how any invalid queries are answered by the oracle. As mentioned earlier, this
point appears to have been missed in [3], where all queries were assumed to satisfy the LH
promise. This results in the proofs of two key claims of [3] being incorrect. The first claim
was used in the proof of PAMAIE_completeness for APX-SIM (Claim 1 in [3]); we provide
a corrected statement and proof in Lemma 3.1 (which suffices for the P@MALSl hardness
results in [3] regarding APX-SIM to hold).

The error in the second claim (Claim 2 of [3]), wherein loe]l_hardness of determining
the spectral gap of a local Hamiltonian is shown, appears arguably more serious. The

puQma

construction of [3] requires a certain “query Hamiltonian” to have a spectral gap, which
indeed holds if the POMAI8l machine makes no invalid queries. However, if the machine
makes invalid queries, this gap can close, and it is not clear how one can recover pQMAllog]_
hardness under mapping reductions. To overcome this, we introduce a technique of “query
validation”: Given a query to the QMA oracle, we would like to determine if the query is
valid or “far” from valid. While it is not clear how a P machine alone can perform such
“query validation”, we show how to use a SPECTRAL GAP oracle to do so, allowing us
to eliminate “sufficiently invalid” queries. Combining this idea with Ambainis’s original
construction [3], we show Theorem 1.4, i.e. PYMALl hardness for SPECTRAL-GAP for
O(1)-local Hamiltonians. Since our “query validation” requires a polynomial number of calls
to the SPECTRAL-GAP oracle, this result requires a polynomial-time Turing reduction.
Whether this can be improved to a mapping reduction is left as an open question.

Significance. The problems studied here explore the line of research recently initiated by
Ambainis [3] on PQMA[IOg], and focus on central problems for local Hamiltonian systems. The
complexity theoretic study of such problems is appealing in that it addresses the original
motivation of celebrated physicist Richard Feynman in proposing quantum computers [10],
who was interested in avenues for simulating quantum systems. Indeed, hardness results, such
as Kitaev’s Cook-Levin theorem, rigorously justify Feynman’s intuition that such simulation
problems are “hard”. Our work (e.g. Theorem 1.1), in particular, strongly supports this view
by demonstrating that even some of the “simplest” and most natural simulation tasks, such
as measuring a single qubit (!) of a ground state, can be harder than QMA.

Our work on the complexity of estimating spectral gaps (Theorem 1.4) further highlights
another theme: The subtleties which must be carefully treated when studying oracle classes
for promise problems (such as P@MAM8l) " As quantum complexity theory commonly focuses
on such promise problems, we believe this theme would potentially be of interest to a broader
computer science audience.

Open questions. Although we resolve one of the open questions from [3], there are others
we leave open, along with some new ones. Do our results for APX-SIM and APX-2-
CORR hold for more restricted classes of Hamiltonians, such as 2-local Hamiltonians, local
Hamiltonians on a 2D lattice, or specific Hamiltonian models of interest (see e.g. [9, 24] for
QMA-completeness results for estimating ground state energies of the spin-1/2 Heisenberg
anti-ferromagnet)? Is SPECTRAL-GAP PYMALeel_qomplete or POMALE]_complete (recall
SPECTRAL-GAP ¢ PMAleel a1d [3] and our work together show PYMALElhardness)?
What is the relationship between PAMAlosl 5pq pUQMA[log] Finally, what is the complexity
of other physical tasks “beyond” estimating ground state energies?
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Organization. Section 2 gives notation, formal definitions, and a corollary of the Projection
Lemma. Section 3 shows various lemmas regarding Ambainis’s query Hamiltonian. Section 4
proves Theorem 1.1. As the proof of Theorem 1.2 uses techniques similar to Theorem 1.1, we
defer its proof to the full version of this article. Section 5 shows Theorem 1.3. Theorem 1.4
is given in Section 6. Full proofs of selected claims are deferred to the full version.

2 Preliminaries

Notation. For z € {0,1}", |z) € (C?)®™ denotes the computational basis state labeled by
x. Let X be a complex Euclidean space. Then, L (X) and D (X)) denote the sets of linear and
density operators acting on X, respectively. For subspace S C X, St denotes the orthogonal
complement of §. For Hermitian operator H, A(H) and A\(H |s) denote the smallest eigenvalue
of H and the smallest eigenvalue of H restricted to space S, respectively. The spectral
and trace norms are defined || A||, = max{||A|v)|, : [|[v)]|, = 1} and [|A]|,, := Tr VATA,
respectively, where := denotes a definition. We set [m] := {1,...,m}.

Definitions and lemmas. PP [15] is the set of decision problems for which there exists
a polynomial-time probabilistic Turing machine which accepts any YES instance with
probability > 1/2, and accepts any NO instance with probability < 1/2.

pOMALeg] * defined by Ambainis [3], is the set of decision problems decidable by a
polynomial-time deterministic Turing machine with the ability to query an oracle for a
QMA-complete problem (e.g. the 2-local Hamiltonian problem (2-LH) [18]) O(logn) times,
where n is the size of the input. 2-LH is defined as: Given a 2-local Hamiltonian H and
inverse polynomially separated thresholds a,b € R, decide whether A(H) < a (YES-instance)
or A(H) > b (NO-instance). Note that the P machine is allowed to make queries which
violate the promise gap of 2-LH, i.e. with A(H) € (a,b); in this case, the oracle can output
either YES or NO. The P machine is nevertheless required to output the same final answer
(i.e. accept or reject) regardless of how such “invalid” queries are answered [16].

For any P machine M making m queries to a QMA oracle, we use the following terminology
throughout this article. A wvalid (invalid) query satisfies (violates) the promise gap of the
QMA oracle. A correct query string y € {0,1}" encodes a sequence of correct answers to all
of the m queries. Note that for any invalid query of M, any answer is considered “correct”,
yielding the possible existence of multiple correct query strings. An incorrect query string is
one which contains at least one incorrect query answer.

We now recall the definition of APX-SIM.

» Definition 2.1 (APX-SIM(H, A, k,l,a,b,6) (Ambainis [3])). Given a k-local Hamiltonian
H, an I-local observable A, and real numbers a, b, and & such that a —b > n"¢ and § > n=,

for n the number of qubits H acts on and ¢, ¢’ > 0 some constants, decide:
If H has a ground state |¢) satisfying (4| A [¢) < a, output YES.
If for any |¢) satisfying (v| H [¢) < A(H) + 6, it holds that (| A |¢)) > b, output NO.

Next, we briefly review Kitaev’s circuit-to-Hamiltonian construction from the “quantum
Cook-Levin theorem” [19]. Given a quantum circuit U = Uy, --- Uy consisting of 1- and
2-qubit gates U; and acting on registers @ (proof register) and W (workspace register), this
construction maps U to a 5-local Hamiltonian H = Hi, + Hous + Hprop + Hstan. Here, we
use two key properties of Hin + Hprop + Hstab. First, the null space of Hin + Hprop + Hstab
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is spanned by history states, which for any |¢)) have form

L

nist) = > Ur--- UL [)g [0+ 0)yy [t (1)

t=0

where C' is a clock register keeping track of time [19]. Second, we use the following lower
bound? on the smallest non-zero eigenvalue of Hi, + Hprop + Hstab:

» Lemma 2.2 (Lemma 3 (Gharibian, Kempe [12])). The smallest non-zero eigenvalue of
A(Hiy + Hprop + Hstab) is at least m2A/(64L3) € QA/L3), for A € RT and L > 1.
construction.

A useful fact for complex unit vectors |v) and |w) is (see, e.g., Equation 1.33 of [11]):

o) ol = [w) (@], = 24/1 = [{wlw)[* < 2][v) = [w) ], - (2)

Next, let V' denote a QMA verification circuit acting on M proof qubits with completeness ¢
and soundness s. If one runs V on “proof” p = I /2™ then for a YES instance, V accepts with
probability > ¢/2M (since I/2™ can be viewed as “guessing” a correct proof with probability
> 1/2M), and in a NO instance, V accepts with probability < s (see, e.g., [23, 27]). The
class PQP is defined analogously to BQP, except in the YES case, the verifier accepts with
probability > 1/2, and in the NO case, the verifier accepts with probability < 1/2.

A corollary of the Projection Lemma. Finally, we give a simple but useful corollary of the
Projection Lemma of Kempe, Kitaev, Regev [18]. The Projection Lemma, along with the
proof of Corollary 2.3, are given in the full version.

» Corollary 2.3. Let H = Hy + Hs be the sum of two Hamiltonians operating on some
Hilbert space H = S + S*. The Hamiltonian H, is such that S is a zero eigenspace and
the eigenvectors in S* have eigenvalue at least J > 2| Hs|| . Let K := ||Hs|| . Then, for
any 6 > 0 and vector ) satisfying (Y| H [¢) < M(H) + 0, there exists a |¢') € S such that

2
2 K++/K2+6(J—2K)
W) 21(J_2K )

3 Ambainis’s Query Hamiltonian

We now show various results regarding Ambainis’s “query Hamiltonian” [3], which intuitively
aims to have its ground space contain correct answers to a sequence of QMA queries. Let U
be a POMAogl computation, and let H;yly‘l be the 2-local Hamiltonian corresponding to
the ¢th query made by U given that the answers to the previous ¢ — 1 queries are given by
Y1+ Yi—1- (Without loss of generality, we may assume H;,yly‘l = 0 by adding multiples
of the identity and rescaling.) The oracle query made at step ¢ corresponds to an input
(H;}?lmyi’l,e,?)e) to 2-LH, for ¢ > 0 a fixed inverse polynomial. Then, Ambainis’s [3]
O(log(n))-local query Hamiltonian H acts on X ® ), where X = (&;)®™ = (C?*)®™ and
Y = ®%,Y;, such that & is intended to encode the answer to query ¢ with ); encoding the

4 This bound is stated as Q(A/L?) in [12]; the constant 72 /64 can be derived from the analysis therein.
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ground state of the corresponding query Hamiltonian H ;yly’l Specifically,
m 1 iy
Ho= 3 T @il @ (260000, 5+ (1 @ 1)
i=1 Yisees¥i—1 j=1
= 241 1 Z 1 Yi—1° (3)
i=1 ~oYi—1

Recall from Section 2 that a sequence of query answers y = y1 -+ ym € { 0,1} is correct
if it corresponds to a possible execution of U. Since U can make queries to its QMA oracle
which violate the QMA promise gap, the set of correct y is generally not a singleton. However,
we henceforth assume without loss of generality that U makes at least one valid query (i.e.
which satisfies the QMA promise gap). For if not, then a P machine can solve such an
instance by simulating the peMAlleg] 1achine on all possible (polynomially many) query
strings y € {0,1}™. If U corresponds to a YES (NO) instance, then all query strings lead

to accept (reject), which the P machine can verify. We now prove the following about H.

» Lemma 3.1. Define for any x € {0,1}™ the space Hy,...x,, := Qiy |Ti) (25| @ Vi Then,
there exists a correct query string x € {0,1}™ such that the ground state of H lies in Ha, ..., -
Moreover, suppose this space has minimum eigenvalue \. Then, for any incorrect query
String Y1 - - - Ym, any state in Hy, .., has energy at least A +

4m .

As discussed in Section 1, Claim 1 of [3] proved a similar statement under the assumption
that the correct query string x is unique. In that setting, [3] showed the ground state of H
is in ‘H,, and that for all query strings y # x, the space H, has energy at least A + .
However, in general invalid queries must be allowed, and in this setting this claim no longer
holds — two distinct correct query strings can have eigenvalues which are arbitrarily close if
they contain queries violating the promise gap. The key observation we make here is that
even in the setting of non-unique x, a spectral gap between the ground space and all incorrect
query strings can be shown. The proof is deferred to the full version of this article.

The next lemma converts H from an O(logn)-local Hamiltonian to an O(1)-local one.
Its proof uses Kitaev’s unary encoding trick [19], and is given in the full version.

» Lemma 3.2. For any x € {0,1}", let & denote its unary encoding. Then, for any
POMALe] iyt U acting on n bits and making m > 1 queries to a QMA oracle, there exists
a mapping to a 4-local Hamiltonian H' acting on space (C2)®2m_1 ® Y such that there exists
a correct query string T = x1 - - - T, satisfying:

1. The ground state of H' lies in subspace |2){(2| @ V.

2. For any state ) in subspace |2'){(3'| ® ¥ where either &' is not a unary encoding of a
binary string x’ or &' is an incorrect query string, one has (| H' |¢) > A(H') +¢/4™, for
inverse polynomial €.

3. For all strings ' € {0,1}™, H' acts invariantly on subspace |&')(3'| @ Y.

4. The mapping can be computed in time polynomial in n (recall m € O(logn)).

4 Measuring 1-local observables

Proof of Theorem 1.1. Containment in P@MA1°8) wag shown for k,1 € O(logn) in [3]; we
show POMAL°el_hardness. Let U’ be an arbitrary P@MANE] circuit for instance II, such that
U’ acts on workspace register W and query result register (). Suppose U’ consists of L’ gates
and makes m = clog(n) queries, for ¢ € O(1) and n the input size. Without loss of generality,
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U’ can be simulated with a similar unitary U which treats Q as a proof register which it
does not alter at any point: Namely, U does not have access to a QMA oracle, but rather
reads bit (Q; whenever it desires the answer to the ith query. Thus, if a correct query string
Y1+ Ym corresponding to an execution of U’ on input z is provided in @Q as a “proof”, then
the output statistics of U’ and U are identical. We can also assume that () is encoded not in
binary, but in unary. Thus, @ consists of 2™ — 1 € poly(n) bits. For simplicity, however, in
our discussion we will speak of m-bit query strings y = y1 - - - ¥, in register Q.

Next, we map U to a 5-local Hamiltonian H; via a modification of the circuit-to-
Hamiltonian construction of Kitaev [19], such that Hy acts on registers W (workspace register),
Q (proof register), and C (clock register). Recall (Section 2) that Kitaev’s construction
outputs Hamiltonian terms Hiy + Hprop + Hstab + Hout- Set H1 = A(Hin + Hprop + Hstab)
for A to be set as needed. It is crucial that H,,; be omitted from H;, as we require our final
Hamiltonian H to enforce a certain structure on the ground space regardless of whether the
computation should accept or reject. The job of “checking the output” is instead delegated
to the observable A. Formally, H; has a non-trivial null space, which is its ground space,
consisting of history states |1nist) (Equation (1)) which simulate U on registers W and Q.
These history states correctly simulate U’ assuming that Q is initialized to a correct proof.

To thus enforce that @ is initialized to a correct proof, let Hy be our variant of Ambainis’s
query Hamiltonian from Lemma 3.2, such that Hy acts on registers @) and @’ (where for
clarity @ = (C?)®2"~! (recall m € O(logn)) and Q' = ) from Lemma 3.2). Hence, our final
Hamiltonian is H = H; + Hs, which is 5-local since H; is 5-local. Suppose without loss
of generality that U’s output qubit is W1, which is set to |0) until the final time step, in
which the correct output is copied to it. Then, set observable A = (I 4+ Z)/2 such that A
acts on qubit Wy. Set a =1—1/(L+ 1), and b =1 —1/2L for L the number of gates in
U. Fix n > max(||Hz|| ,1) (such an n can be efficiently computed by applying the triangle
inequality and summing the spectral norms of each term of Hy individually). Set A = L35y
for «v a monotonically increasing polynomial function of L to be set as needed. Finally, set
d = 1/A. This completes the construction.

Correctness. Suppose II is a YES instance. Then, by Lemma 3.2, the ground space of Hs
is the span of states of the form \fc)Q ® |¢>Q, where Z is a correct query string encoded in
unary. Fix an arbitrary such ground state [2), ® [¢),. Note that setting @ to & in this
manner causes U to accept with certainty. Consider the history state |¢pist) on registers W,
C, @, and Q' (Q and Q' together are the “proof register”, and the contents of )’ are not
accessed by U), which lies in the ground space of H;. Since U can read but does not alter
the contents of @, the history state has the tensor product form |1y, (2)) . ® [£) g ® [9) o/
for some |45 (%))yy o, 1€ the action of Hy on the history state is unaffected. We conclude
that [ (2))y o @ [2)g ® |$) g s in the ground space of H. Moreover, since U accepts &,
the expectation of this state against A is 1 — 1/(L + 1).

Conversely, suppose we have a NO instance II, and consider any |¢) satisfying (¢| H |¢) <
A(H) 4+ 6. By Lemma 2.2, the smallest non-zero eigenvalue of AH; is at least J =
72A/(64L3) = w2nvy/64. Recalling that § = 1/A, apply Corollary 2.3 to obtain that there
exists a valid history state [¢/) on W, C, @, and @’ such that |(¢[¢/)]* > 1 — O(y"2L~6),
which by Equation (2) implies

1) (8] — [9") (@ < VT (4)

for some constant ¢ > 0. By definition, such a history state |¢) simulates U given “quantum
proof” |¢), o in registers @ and @', ie. [¢') = 33, Up---Ui|0---0)yy [t [0) o By
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Equation (4) and the Hélder inequality, [Tr(H |y)(¢]) — Tr(H [} (V') < 5z ([ H [l ="
Thus, (/| H [¢/) < A(H) + (5 + 7).

We now analyze the structure of |¢>Q,Q" By Lemma 3.2, the ground space G of Hs is
contained in the span of states of the form [2), ® [¢') 5, where # is a correct query string
encoded in unary. Since the ground spaces of H; and Hs have non-empty intersection, i.e.
history states acting on “quantum proofs” from G (which lie in the null space of H; and
obtain energy A(Hz) against Hs), we know A\(H) = A(Hz). Thus, since Hy = 0,

(W[ Hz [9") < (W[ H[Y') < A(H2) + (6 +7). ()
Write [¢) = a|p1) + B|p2) for [¢1) € Span{ | 2), ® | ¢')q | correct query string = } and
|p2) € Span{ \i)Q@) |¢’>Q, | incorrect query string x} (|¢1), |¢2) normalized), «,f €

C, |04|2 + |ﬂ|2 = 1. Since any history state |¢'), for any amplitudes «, and unit vectors

|¢5), has form Zt,x azUp---Ur]0---0)yy [t) o |§C>Q |¢/m>Q’ =2, % |w1/'1ist(l.)>W,C |£'>Q |¢’2c>Q/
(i.e. for any fixed z, |:%>Q is not altered), and since Hs is block-diagonal with respect to
strings in @, by Equation (5) and Lemma 3.2 we have

AHz) + (647" > @/ Ha W) =|af® (¢1] Ha |¢1) + | 8] (d2| Ha|62)

o M) + 81 (M) + 7).

which implies |ﬁ|2 < 4™(6 + +')/e. Thus, defining |¢)") as the history state for “proof”
|61) .+ We have that || [1)(v] — [¢") ("] ||, is at most

Y

)01 = )46 e + 1161461 = fon) @l <~ +2 moty), (6)

€

which follows from the triangle inequality and the structure of the history state. Observe
now that increasing v by a polynomial factor decreases § + v’ by a polynomial factor. Thus,
set v as a large enough polynomial in L such that
c 4m(§ 4+~ 1

] +2 — < o1 (7)
Since U rejects any correct query string (with certainty) in the NO case, and since |¢")
is a valid history state whose @ register is a superposition over correct query strings (all
of which must lead to reject), we conclude that (¢¥”|A|¢"”) = 1. Moreover, we have
that | Tr(A |0) (0]) — Te(A ") )| < Al 0] — [") ("]}, < 2, where the first
inequality follows from Hélder’s inequality, and the second by Equations (6) and (7). We
conclude that (| A|¢) > 1 —1/(2L), completing the proof. <

5 PMAllee] js in PP

We now prove Theorem 1.3. Our approach is to develop a variant of the hierarchical voting
scheme used in the proof of PNY1°8l C PP [4] which uses the strong error reduction technique
of Marriott and Watrous [23]. We also require a more involved analysis than present in [4],
since QMA is a class of promise problems, not decision problems.

Proof of Theorem 1.3. Let II be a P machine which makes m = clogn queries to an oracle
for 2-LH, for ¢ € O(1) and n the input size. . Without loss of generality, we assume all queries
involve Hamiltonians on M qubits (M some fixed polynomial in n). Define ¢ := (M + 2)m.
We give a PQP computation simulating IT; since PQP = PP [27], this yields the claim. Let
V denote the verification circuit for 2-LH. The PQP computation is (intuition to follow):
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1. For i from 1 to m:
a. Prepare p = 1/2M € D ((C?)®M).
b. Run V on the ith query Hamiltonian H;}j“myi’l (see Equation (3)) and proof p, and
measure the output qubit in the standard basis. Set bit y; to the result.
2. Let y =y1 - - ym be the concatenation of bits set in Step 1(b).
3. For i from 1 to n® — 1:
a. If |y| < ¢, then with probability 1 — 279, set y = #, and with probability 279, leave y
unchanged.
4. If y = #, output a bit in { 0,1} uniformly at random. Else, run II on query string y and
output II’s answer.

Intuition. In Step 1, one tries to determine the correct answer to query i by guessing a

satisfying quantum proof for verifier V. Suppose for the moment that V has zero error, i.e.

has completeness 1 and soundness 0, and that II only makes valid queries. Then, if Step
1(b) returns y; = 1, one knows with certainty that the query answer should be 1. And, if the
correct answer to query 7 is 0, then Step 1(b) returns y; = 0 with certainty. Thus, analogous
to the classical case of an NP oracle (as done in [4]), it follows that the lexicographically
largest query string y* obtainable by this procedure must be the (unique) correct query
string (note that y* # 1™ necessarily®). Thus, ideally one wishes to obtain y*, simulate IT
on y*, and output the result. To this end, Step 3 ensures that among all values of y # #,
y* is more likely to occur than all other y # y* combined. We now make this intuition
rigorous (including in particular the general case where V is not zero-error and IT makes
invalid queries).

Correctness. To analyze correctness of our PQP computation, it will be helpful to refine
our partition of the set of query strings { 0,1} into three sets:
(Correct query strings) Let A C {0,1}™ denote the set of query strings which
correspond to correctly answering each of the m queries. Note we may have |A| > 1 if
invalid queries are made.
(Incorrect query strings) Let B C {0,1}™ \ A denote the set of query strings such
that for any y € B, all bits of y which encode an incorrect query answer are set to 0
(whereas the correct query answer would have been 1, i.e. we failed to “guess” a good
proof for this query in Step 1).
(Strongly incorrect query strings) Let C = {0,1}"\ (AU B) denote the set of query
strings such that for any y € C, at least one bit corresponding to an incorrect query
answer is set to 1 (whereas the correct query answer would have been 0). Such an error
can only arise due to the bounded-error of our QMA verifier in Step 1(b).

Let Y be a random variable corresponding to the query string y obtained at the end of
Step 3. To show correctness, we claim that it suffices to show that A :=Pr[Y € A] — Pr[Y €
BUC] > 0. To see this, let p1, p2, and p3 denote the probability that after Step 3, y = #,
y € A, and y € BUC, respectively. Then, p; +ps+ps = 1, and let po —p3 = A > 0. Suppose
now that the input to I is a YES instance. Then, our protocol outputs 1 with probability at
least &L + py = Wf_p?’ +p2 = % > L. If the input is a NO instance, the protocol outputs

5 Under the assumptions that V has zero error and II makes only valid queries, y* = 1™ can only be
obtained by this procedure if all queries are for YES instances of 2-LH. If, on the other hand, query i is
a NO query, then a correct proof cannot be guessed (since it does not exist), and so y; = 0 necessarily.
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1 with probability < &t + p3 = % < 5. We hence have a PQP computation, as desired.
We thus now show that A > 0.

To ease the presentation, we begin by making two assumptions (to be removed later):

1
5

(i) V is zero-error and (ii) IT makes only valid queries. In this case, assumption (i) implies
C = 0 (i.e. all incorrect query strings belong to B), and (ii) implies A is a singleton (i.e.
there is a unique correct query string y*). Thus, here A = Pr[Y € A] — Pr[Y € B].

To begin, note that for any y € {0,1}", we have

(n°=1)—|y|
Pr[Y = y] = Pr|y chosen in Step 2 ] - <2q> ; (8)

where |y| denotes the non-negative integer represented by string y. Let HW(x) denote the
Hamming weight of x € {0,1}™. Since each query corresponds to a verifier on M proof
qubits, we have for (the unique) y* € A that

Pr[y* chosen in Step 2 ] > 2~ MHWW") > g=Mm o

(recall from Section 2 that setting p = I/2M simulates “guessing” a correct proof with
probability at least 1/2*). It follows by Equations (8) and (9) that

1 (n°=1)—|y"| 1 1 ly™ =yl
A > (2(]) oMm Z <2q>

yeb

)" e (3]s (2) -] o

where the first inequality follows since Pr[y chosen in Step 2 | < 1, the second since y € B if
and only if |y| < |y*|, and the third since ¢ = (M + 2)m. Thus, A > 0 as desired.

Y

Removing assumption (i). We now remove the assumption that V is zero error. In this
case, A is still a singleton; let y* € A. We can now also have strongly incorrect query strings,
i.e. C # () necessarily. Assume without loss of generality that V acts on M proof qubits, and
by strong error reduction [23] has completeness ¢ := 1 — 27P(") and soundness s := 27P("),
for p a polynomial to be chosen as needed. Then, since V' can err, Equation (9) becomes

. ~ ¢ \HWD) mowyry _ LTV
Pr[y* chosen in Step 2| > (2—M) (1—5s) = 57 e 2P
1 m
> oMm (1 - 9w — 1) ’ (11)

where the equality follows by the definitions of ¢ and s, and the second inequality by applying
the Maclaurin series expansion of In(1 + ) for |z| < 1 and the fact that e’ > 1+ ¢ for all
t € R. Thus, the analysis of Equation (10) yields that

mwem—mwem><lynnl[y-l—m] (12)
—\ 29 2Mm 2m 20— 1]’
i.e. the additive error introduced when assumption (i) is dropped scales as ~ 27P. Crucially,
Equation (12) holds for all y € B even with assumption (i) dropped since the analysis of
Equation (10) used only the trivial bound Pr[y chosen in Step 2 ] <1 for any y € B.

Next, we upper bound the probability of obtaining y € C' in Step 2. For any fixed y € C,
suppose the first bit on which y and y* disagree is bit j. Then, bits j of y and y* must be
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1 and 0, respectively. This means 0 is the correct answer for query j. By the soundness
property of V', the probability of obtaining 1 on query j (and hence that of obtaining y in
Step 2) is at most 27P. Thus,

(n°-1) m
1 1 1 m 2
A> (= — 1= ——| - —. 13
- (2‘1> 2Mm { 2m 2p —1 2p (13)
We conclude that setting p to a sufficiently large fixed polynomial ensures A > 0, as desired.

Removing assumption (ii). We now remove the assumption that IT only makes valid queries,
which is the most involved step. Here, A is no longer necessarily a singleton. The naive
approach would be to let y* denote the lexicographically largest string in A, and attempt
to run a similar analysis as before. Unfortunately, this no longer necessarily works for the
following reason. For any invalid query i, we do not have strong bounds on the probability
that V' accepts in Step 1(b); in principle, this value can lie in the range (277,1 — 27P).
Thus, running the previous analysis with the lexicographically largest y* € A may cause
Equation (13) to yield a negative quantity. We hence require a more delicate analysis.
We begin by showing the following lower bound.

» Lemma 5.1. Define A’ :=Pr[Y € A] — Pr[Y € B]. Then,

(n°=1)
1 1 1 m
A> (= S [N .

Proof of Lemma 5.1. For any string y € {0,1}"™, let [, C {1,...,m} denote the indices
of all bits of y set by invalid queries. We call each such i € I, a divergence point. Let py ;
denote the probability that (invalid) query ¢ (defined given answers to queries 1 through
i — 1) outputs bit y;, i.e. p,; denotes the probability that at divergence point ¢, we go in the
direction of bit y;. We define the divergence probability of y € {0,1}" as p, = Ilic1, py i, i-e.
Dy is the probability of answering all invalid queries as y did.

The proof now proceeds by giving an iterative process, I'(¢), where 1 < i < | A| denotes the
iteration number. Each iteration defines a 3-tuple (y;_;, y;, By=) € {0,1}" x{0,1}" xP(B),
where P(X) denotes the power set of set X. Set A, := Pr[Y € {y,...,y;}] — Pr[Y €
By U+ U By:|, where it will be the case that { B, }llill is a partition of B. Thus, we have
Al > Af Al implying that a lower bound on AT Al suffices to prove our claim. We hence prove

via induction that for all 1 < i < |A|, A, > (2%)(#_1) 2,&m [1 — z}n — 2;711] . The definition

of process I'(i) is integrated into the induction proof below.

Base case (i=1). In this case y is undefined. Set y} to any string in A with divergence
probability at least

—|1,

*

P = HPy;,iZQ |1 :
le]yi‘

(14)

Such a string must exist, since at each divergence point ¢, at least one of the outcomes
in {0,1} occurs with probability at least 1/2. (Note: Queries are not being made to a
QMA oracle here, but to a QMA verifier V' with a maximally mixed proof as in Step 1(a).
Whereas in the former case the output of the oracle on an invalid query does not have to
consistently output a value with any particular probability, in the latter case, there is some
fixed probability p with which V outputs 1 each time it is run on a fixed proof.) Finally, define
By :={y € B||y| <|yi|} (recall |y| is the non-negative integer with binary encoding y).
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), and ko (k1) the
number of zeroes (ones) of yi arising from valid queries. Thus, k. + ko + k1 = m. Then,
Equation (11) becomes

.. ¢\ k1 o . 1\ 71\ m—k,
Py 2] 2 (57) " (- ni 2 (5w ) (5) (- 57)
1 m
QJMm <1 - P _ 1> ! (15)

where the second inequality follows from Equation (14), and the third since k. > 0 and
k1 4 k. < m. Thus, A] is lower bounded by the expression in Equation (12) via an analogous

Let k. denote the number of divergence points of yj (i.e. k. = |Iy;

%

analysis for yi and By:.

Inductive step. Assume the claim holds for 1 < ¢ — 1 < |A|. We show it holds for
1. Let y7 ; be the choice of y* in the previous iteration ¢ — 1 of our process. Define
Ay ={y € Ally|l > |y, | }. Partition Ay: into sets Sy, for k € [m], such that Sy is the
subset of strings in A,+ which agrees with y;_; on the first k — 1 bits, but disagrees on bit
k. Note that if Sy # (), then bit &k of yf_; is 0 and bit k of any string in S, is 1. For each
Sk # ), choose arbitrary representative z € Sk, and define bounded divergence probability
qi(k) == Htelzgkk Pzt Where ISP = {t € I, |t <k}. Note that ¢;(k) > 0 (since Sp # 0).

Else if S, =0, set ¢;(k) = 0. Let ¢f be the max such bounded divergence probability:

g = max ¢;(k) and kf = argmax g;(k). (16)
k€[m] ke[m]

Let y; be the lexicographically largest query string in Sy with divergence probability p; s.t.:

(17)

That such a y; € Sy- exists follows from an argument similar to Equation (14): By definition,
g; denotes the bounded divergence probability for all invalid queries up to and including
+ |
for all invalid queries of y after query k, the outcome which occurs with probability at least
1/2. Set By: :={y € B| ly;_i| <ly| <|y;|}. The following is proved in the full version.

query k7, and the term exponential in (— ’Iy;

) is obtained by greedily choosing,

» Lemma 5.2. For any y € By, Prly chosen in Step 2] < q;".

To continue with the inductive step, again consider k., kg, and k1, now corresponding to
ys. Then, an argument similar to Equation (15) says Pr[y? chosen in Step 2 ] is at least

<k*
k1 Is|—|17.1
c \ k1 ko % 1 mfk* . 1 ‘yl ul
(TM) (L—=9)"p; 2 <2M) (1— 2p_1>q1' <2)
a4 m
1-— 1
—2Mm< Qp_l)’ (18)

where the first inequality follows from Equation (17), and the second since |Iy; - ’I ikf < k..
Now, define (; := Pr[Y = y!] — Pr[Y € By:]. Applying the argument of Equation (10) yields

G > (2%)(" —b-lvil {Ql‘ffm (1 — 2,711) — 4 Xyen,. (2—1(,)|y I—yl] , where the first ¢} is due
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to Equation (18), and the second ¢ to Lemma 5.2. Thus, similar to Equation (12), ¢; >
(i)(n -b ngi*m {1 L m } > 0. Observing the recurrence that for all i, A} > Al +(;,

24 T om T op—1
unrolling this recurrence yields A} > A;, which by the base case yields the claim. |

We require one last lemma (proof in the full version).

» Lemma 5.3. Pr(Y € C) < 2.

Finally, combining Lemmas 5.1 and 5.3 yields that Pr[Y € A] — Pr[Y € B U] is lower
bounded by Pr[Y € A] — Pr[Y € B] - Pr[Y € C] > (2%)(”,1) e [1— b - m] - oo

25 -
sufficiently large fixed p, this quantity is strictly positive, yielding Theorem 1.3. |

6 Estimating spectral gaps
We now prove Theorem 1.4 on SPECTRAL-GAP. UQMA is defined in Appendix A.

» Definition 6.1 (SPECTRAL-GAP(H,¢) (Ambainis [3])). Given a Hamiltonian H and a
real number o > n~¢ for n the number of qubits H acts on and ¢ > 0 some constant, decide:
If Ao — A\ < a, output YES.
If Ao — A1 > 2a, output NO.
where Ay and \; denote the second and first smallest eigenvalues of H, respectively.

For clarity, if the ground space of H is degenerate, then we define its spectral gap as 0.

We now discuss Theorem 1.4. Previously, Ambainis [3] showed that SPECTRAL-GAP ¢
pQMA[log] g gave a claimed proof that SPECTRAL-GAP is pUQMAllog] pard for O(log)-
local Hamiltonians under mapping reductions. (PUQMAUOg} is defined as P@MAL8] except
with a UQMA oracle in place of a QMA oracle.) As discussed in Section 1, however, Ambainis’
proof of the latter result does not hold if the PUSMANE] 1hachine makes invalid queries (which
in general is the case). Here, we build on Ambainis’ approach [3] to show PYRMAL8] hardness
of SPECTRAL-GAP under Turing reductions even when invalid queries are allowed, and
we also improve the hardness to apply to O(1)-local Hamiltonians.

We begin by showing the following modified version of Lemma 3.2 tailored to UQMA. In
contrast to Lemma 3.2, the lemma below only proves the ezistence of a Hamiltonian H; it
does not give an efficient procedure for computing it. The proof is in the full version; roughly,
it replaces invalid queries with “dummy” NO queries to obtain the desired spectral gap. The
reason why the mapping is not efficient is that generally a polynomial-time machine alone
cannot identify such invalid queries.

» Lemma 6.2. For any x € {0,1}", let 2 denote its unary encoding. Then, for any

pURMALee] cireyst U acting on n bits and making m queries to a UQMA oracle, there exists

a 4-local Hamiltonian H acting on space ((C2)®2m_1 ® Y such that there exists a correct query

string x = x1 -+ - Ty Such that:

1. The unique ground state of H lies in subspace |£){%| ® ).

2. The spectral gap of H is at least (e — §)/4™ for inverse polynomial €,§ with € —§ >
1/poly(n).

3. For all strings ' € {0,1}™, H acts invariantly on subspace |2')(2'| @ V.

Proof sketch of Theorem 1.4. The key idea is to show how to use an oracle for SPECTRAL-
GAP polynomially many times to efficiently identify invalid queries, and hence efficiently
compute H in Lemma 6.2 given U. (It is these multiple uses of the oracle which yield
a Turing reduction, rather than a many-one reduction.) Roughly, this is done by using
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the SPECTRAL-GAP oracle in conjunction with binary search to estimate the spectral
gap of specific Hamiltonian terms in Ambainis’s original construction of [3]. Some care is
required here: The naive approach, which does not work, would be to apply this spectral gap

estimation technique to each 2-local Hamiltonian H;’“y’l

corresponding to each query
made by U. Rather, the terms we apply this technique to exploit the structure of Ambainis’s
construction. Finally, with H in hand, we apply Ambainis’s [3] original construction to

obtain the desired result. The full proof is given in the full version of this article. |
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A Additional definitions

» Definition 1.1 (Unique QMA (UQMA) (Aharonov et al. [1])). We say a promise problem
A = (Ayes, Ano) is in Unique QMA if and only if there exist polynomials p, ¢ and a polynomial-

time uniform family of quantum circuits { @, }, where Q,, takes as input a string « € ¥*

with |x| = n, a quantum proof |y) € (C?)®P(™) and ¢(n) ancilla qubits in state |0)

®a(m) guch

that:

C?)®P(") such that Q,, accepts

(Completeness) If € Ayes, then there exists a proof |y) € (
(C?)®P(") orthogonal to |y), Qn

(z,]y)) with probability at least 2/3, and for all |§) €
accepts (z,|g)) with probability at most 1/3.
(Soundness) If € Ao, then for all proofs |y) € (C*)®P(™) @, accepts (z,|y)) with
probability at most 1/3.
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1 Introduction

Not taking classified work within secret services into consideration [28], Ralph Merkle is
the first person to have asked — and solved — the question of secure communications over
insecure channels [24]. In his seminal (rejected!) 1974 project for a Computer Security course
at the University of California, Berkeley, he discovered that it is possible for two people
who want to communicate securely to establish a secret key by communicating over an
authenticated channel that provides no protection against eavesdropping. Merkle’s solution
to this conundrum offers quadratic security in the sense that if the legitimate parties —
codenamed Alice and Bob — are willing to expend an effort in the order of N, for some
security parameter N, they can establish a key that no eavesdropper — codenamed Eve —
can discover with better than vanishing probability without expending an effort in the order
of N2.

This quadratic security may seem unattractive compared to the potential exponential
security entailed by the subsequently discovered key establishment protocols of Diffie and
Hellman [16] and Rivest, Shamir and Adleman [26], to name a few. However, the security of
those currently ubiquitous cryptographic solutions will be compromised with the advent of
full-scale quantum computers, as discovered by Peter Shor more than two decades ago [27].
And even if a quantum computer is never built, no one has been able to prove their security
against classical attacks, nor that of quantum-resistant candidates based, for instance, on
short vectors in lattices. Furthermore, Merkle had already understood in 1974 that quadratic
security could be practical if the underlying one-way function (see below) can be computed
very quickly: if it takes one nanosecond to compute the function and legitimate users are
willing to spend one second each, a classical adversary who could only invert the function by
exhaustive search would require fifteen expected years to break Merkle’s original scheme.

The main interest of Merkle’s solution is that it offers provable security, at least in the
query model of computational complexity, a model closely related to the random oracle model.
In this model, we assume the existence of a black-boz function f: D — R from some domain
D to some range R, so that the only way to learn something about this function is to query
the value of f(z) on inputs # € D that can be chosen arbitrarily. The query complexity of
some problem given f is defined as the expected number of calls to f required to solve the
problem, using the best possible algorithm. In our case of interest, we shall consider random
black-box functions, meaning that for each x € D, the value of f(x) is chosen uniformly
at random within R, independently of the value of f(2') for any other 2’ € D. Provided
the size r of R is sufficiently large compared to the size d of D, such a random function is
automatically one-to-one, except with vanishing probability. The main characteristic of these
black-box random functions that is relevant to the proof of security of Merkle’s scheme is
that, given a randomly chosen point y in the image of f, the only (classical) approach to
finding an x so that f(x) = y is exhaustive search: we have to try x’s one after another until
a solution is found. Indeed, whenever we try some z’ and find that f(z’) # y, the only thing
we have learned is that this particular z’ is not a solution. Provided the function is indeed
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one-to-one, we expect to have to query the function d/2 times on average in order to find
the unique solution.

One may argue that black-box random functions do not exist in real life, but we can
replace them in practice with one-way functions — provided they exist! — which is what
Merkle meant by “one-way encryption” in his 1974 class assignment [24]. Thus, we can base
the security of Merkle’s scheme on the gemeric assumption that one-way functions exist,
which is unlikely to be broken by a quantum computer, rather than the assumption that
specific computational problems such as factorization or finding short vectors in lattices

are difficult, at least the first one of which is known not to hold on a quantum computer.

Can we do better than provable quadratic security in the query model? This question
remained open for 35 years, and was finally settled in the negative by Boaz Barak and
Mohammad Mahmoody-Ghidary [4], building on earlier work of Russell Impagliazzo and
Steven Rudich [19]: any protocol by which the legitimate parties can obtain a shared key
after O(N) expected queries to a black-box random function can be broken with O(N?)
expected queries to the same black box.

It was apparently noticed for the first time by one of us in 2005, and published a few years
later [15], that Merkle’s original 1974 scheme [24], as well as his better known subsequently
published puzzles [25], are broken by Grover’s algorithm [17] on a quantum computer. This
attack assumes that the eavesdropper can query the function in quantum superposition,
which is perhaps not reasonable if the function is provided as a physical classical black
box, but is completely reasonable if it is given by the publicly-available code of a one-way
function (as originally envisioned by Merkle). If the legitimate parties are also endowed with
a quantum computer, the same paper [15] gave an obvious fix, by which the legitimate parties
can establish a key after O(NN) quantum queries to the black-box function, but no quantum
eavesdropper can discover it with better than vanishing probability without querying the
function O(N 3/ %) times. That paper made the explicit conjecture that this was best possible
when quantum codemakers are facing quantum codebreakers in the game of provable security
in the random black-box model. The issue of protecting classical codemakers against quantum
codebreakers was not addressed in Ref. [15].

At the CRYPTO 2011 conference [13], several of us disproved the conjecture of Ref. [15]
with the introduction of a new quantum protocol that no quantum eavesdropper could break
without querying the black-box functions Q(N°/3) times.! We also offered the first protocol
provably capable of protecting classical codemakers against quantum codebreakers, although
O(N'3/12) queries in superposition sufficed for the quantum eavesdropper to obtain the
not-so-secret key. Unfortunately, our security proofs were worked out in the traditional
computational complexity worst-case scenario. In other words, it was only proved that any
quantum eavesdropper limited to o(N°/3) or o( N'3/12) queries, depending on whether the
legitimate parties are quantum or classical, would be likely to fail on at least one possible
instance of the protocol. This did not preclude that most instances of the protocol could
result in insecure keys against an eavesdropper who would work no harder than the legitimate
parties. Said otherwise, our CRYPTO 2011 result was of limited cryptographic significance.

In subsequent work [14], we claimed to have provided a proper average-case analysis of our
protocols, rendering them cryptographically meaningful, so that any quantum eavesdropper
has a vanishing probability of learning the key after only o(N°/3) or o(N7/6) queries 2, where
the probabilities are taken not only over the execution of the eavesdropping algorithm but

L The word “functions” is plural because the 2011 protocol required two black-box random functions.
2 For classical legitimate parties, the o( N3/12) of Ref. [13] had been improved to o(N7/®) in Ref. [14].
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also over the instance of the protocol run by the legitimate parties. We also extended our
results to two sequences of protocols based on the k-SUM problem (Definition 1 in Section 3),
where k£ > 2 is an integer parameter, in which the legitimate parties query the black-box
random functions O(kN) times. It was claimed that any quantum eavesdropper had a
vanishing probability of learning the key after o(IN %*‘ﬁ) or o(N 1+%+1) queries, against the
classical or the quantum protocol parametrized by k, respectively. Again, this was claimed
to hold not only in the cryptographically-challenged worst-case scenario, but also when the
probabilities are taken over the protocols being run by the legitimate parties.

Unfortunately, all our average-case analyses in Ref. [14] were incorrect! The case k = 2
can be fixed rather easily, hence the insufficiency of o(N®/3) queries for a quantum-against-
quantum protocol and of o(N 7/ 6) queries for a classical-against-quantum protocol in a
cryptographically significant setting can be derived from the incorrect arguments provided
in Ref. [14]. However, we also claimed in Ref. [14] that the case k > 2 could be proved in
ways “similar to” when k = 2. This was a mistake due to a fundamental difference in the
k-SUM problem whether & = 2 or k > 2. Whereas the 2-SUM problem is easily seen to be
random self-reducible, so that its hardness in worst case implies its hardness on average,
this does not seem to be the case for the k-SUM problem when k > 2. In particular, the
worst-case lower bound proved by Aleksandrs Belovs and Robert Spalek [8] on the difficulty
of solving the k-SUM problem on a quantum computer does not extend in any obvious way
to a lower bound on average. And without such an average lower bound, our results claimed
in Ref. [14] go up in smoke for k > 2. Furthermore, for a technical reason explained later,
even such an average lower bound would not suffice.

In this paper, we overcome all these problems and give a correct and cryptographically
meaningful ® security proof for all our protocols from Ref. [14]. Consequently, we prove that
for any € > 0 there is a classical protocol that allows the legitimate parties to establish a
common key after O(N) expected queries to black-box random functions, yet any quantum
eavesdropper will have a vanishing probability of learning their key after O(N1-5~¢) queries
to the same oracle. The vanishing probability is over the randomness in the actual run of
the protocol followed by that of the eavesdropper’s algorithm. If we allow the legitimate
parties to use quantum computers as well, their advantage over the quantum eavesdropper
becomes arbitrarily close to the quadratic advantage that classical legitimate parties enjoyed
over classical eavesdroppers in the seminal 1974 work of Ralph Merkle [24].

Our results require new tools in quantum query complexity, which are of independent
interest. In particular, we introduce techniques to lower-bound the quantum query complexity
of distinguishing between two probability distributions, which we use to extend the adversary
lower bound method in order to handle average-case complexity, but they could have other
uses in cryptography. This approach is necessary for the distributions of inputs considered
here because the associated decision problems become trivial on average, which prevents
us from applying the average-case method developed in Ref. [7]. Furthermore, we prove a
composition theorem for this new lower bound method, extending that of Ref. [13], which
was valid only to prove cryptographically irrelevant worst-case lower bounds 4. Using these

To be honest, it is not entirely cryptographically meaningful to restrict the analysis to the number of
calls to the black-box functions, taking no account of the computing time that may be required outside
those calls. However, if we also restrict the legitimate expected time to be in O(N), then our quantum
protocol with k& = 3 remains valid and provably resists any o(IN 7/ 4)-time quantum eavesdropping attack,
which was claimed in Ref [14], but with a fundamentally incorrect proof.

Some parts of the proofs are omitted in the present version. They can be found in the extended version
of this work [6].
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two tools, we prove that any quantum eavesdropper who does not make a prohibitive number
of calls to the black-box functions will fail to break a typical instance of the protocol, except
with vanishing probability.

This work fits in the general framework of “Cryptography in a quantum world” [12],
which addresses the question: “Is the fact that we live in a quantum world a blessing or
a curse for codemakers?”. It is a blessing if we allow quantum communication, thanks to
Quantum Key Establishment (aka Quantum Key Distribution — QKD) [10], at least if the
protocols can be implemented faithfully according to theory [29, 22]. On the other hand, it
is a curse if we continue to use the current cryptographic infrastructure, which pretends to
secure the Internet at the risk of falling prey to upcoming quantum computers. However, it is
mostly a draw in the realm of provable query complexity in the black-box model considered
in this paper since codemakers enjoy a quadratic (or arbitrarily close to being quadratic)
advantage over codebreakers in both an all-classical or an all-quantum world, at least in terms
of query complexity (but see footnote 4 again). Furthermore, the known proof that quadratic
security is best possible in an all-classical world [4] does not extend to the all-quantum world,
and hence the (unlikely) possibility remains that a more secure protocol could exist in our
quantum world.

The rest of the paper is organized as follows. Section 2 lists all the techniques and related
notations that are used throughout the paper. Section 3 recalls the classical and quantum
protocols from Refs [13, 14]. In Section 4, we introduce a new method to prove lower bounds
on the difficulty of distinguishing between two probability distributions, which we use to
study average-case quantum query complexity. This method extends the extensively studied
adversary method. We then apply this method to the k&-SUM problem in Section 5, which is
at the heart of our hardness result. Finally, in Section 6, we prove a composition theorem for
the new adversary method introduced in Section 4. This allows us to conclude that typical
runs of the protocols from Refs [13, 14] are indeed secure against quantum adversaries.

2 Preliminaries and Notation

At the heart of this work is a lower bound on the quantum query complexity of a generalisation
of the k-SUM problem. Many techniques have been given to prove such lower bounds in the
worst-case scenario, including the adversary method [2, 18, 21]. This method is based on the

spectral norm of a matrix, I', indexed in the rows and columns by inputs to the problem.

Roughly, each entry of the matrix I'[z,y] € R can be thought of as representing the hardness
of distinguishing inputs  and y. It is known that for Boolean functions, the (negative)
adversary bound is multiplicative under function composition [18]. For non-Boolean functions,
a general composition theorem fails to hold, as counterexamples can be found. Nevertheless,
it was shown in Ref. [13] that the adversary method is multiplicative under composition
with (non-Boolean) unstructured search problems.

In this paper, we extend the quantum adversary method to average-case complexity,
which is crucial for cryptographic applications, and we show that a similar composition
property holds for this measure. As for the adversary bound, this method is based on the
spectral norm of matrices, and involves probability distributions. Below, we summarize the
notation related to functions, algebra and probabilities, used throughout the paper.

We consider decision or search problems denoted F,G or H. These problems are on
abelian groups, which are denoted G, or G, when we want the order m of the group to
appear explicitly. The group operation is denoted “+4” and its inverse “—”. For a decision
problem F, the inputs in the language F are called positive and the inputs not in the language
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are negative. We compose our problems with an unstructured search problem to make them
harder. To do so, we need to add to the alphabet an element that does not belong to G. We
denote this element “x”.

Fix two problems F : A" — B and G : C — A for some n € N. Then, the com-
posed problem F o G" : C™ — B is defined by F o G"(x1,...x,) = F(G(z1),...,G(x,)) for
(1,...2,) € C™.

For any positive integer n we use [n] to denote the set of n elements {0,1,2,...,n — 1}.
We only make use of basic concepts of quantum computing: states, unitary operations and
measurements. These notions are used in Section 4, but even there, the calculations boil
down to basic linear algebra. The entries of an n x m matrix I' are denoted I'[z, y], where
r € [n] and y € [m]. For X C [n] and Y C [m], IXY is the restriction of I' to the rows and
columns in X and Y, respectively.

The direct sum of spaces, operators, matrices or vectors is denoted “@”. The inner
product of two states (or vectors in an Hilbert space) ¢ and ¢ is (1, ¢). For a matrix A, we
use || A|| for its spectral norm, that is, its largest singular value, and ||A|| for the Frobenius
norm, that is, the square root of the sum of the squares of the moduli of its elements. For two
matrices A and B, we denote A o B their entrywise (or Hadamard) product. We make use of
the two following matrices: the n x n identity matrix I,, and the n x n all-one matrix J,,.

We use P and Q for probability distributions over inputs to the problems. The support
of a distribution is the set of elements with non-zero probability. We sometimes identify
distributions with vectors. More precisely, if p, is the probability of x in PP, we can consider
the vector P given by the entries Plz] = p,. We use “X ~ P ” to denote that the random
variable X is sampled from P. In this case, it is the variable whose probability is given by
Pr[X = z] = p,. In the specific case of sampling an element z uniformly at random from a
set D, we use x €r D. We also use the indicator function 1,», whose value is 1 if = # y and
0 otherwise.

We sometimes consider sequences of probabilities, such as the accepting probability v,
of an algorithm (for a decision problem) as a function of the input size n. For simplicity,
we often omit the subscript n, in which case “ v ” should be understood as a function of n.
We call such a sequence v vanishing if v = o(1). If v decreases faster than the inverse of any
polynomial, we say that the event is negligible.

3 Provably Secure Key Establishment Protocols

With the exception of Merkle’s more famous “puzzles” [25], all key establishment protocols
based on black-box random functions (which Merkle called “one-way encryption”) begin in a
way that is essentially identical to Merkle’s original 1974 idea [24], with possible inessential
differences®. Given a black-box random function f : D — R from some domain D to some
range R, Alice chooses random elements z; €g D and she obtains y; = f(x;), which she
sends to Bob over an authenticated channel on which Eve can freely eavesdrop. This defines
the sets X of x;’s and Y of y;’s, of which X is private information kept by Alice whereas Y
becomes known to all parties, including Eve. Upon receiving this information, Bob’s first
task is to find one or several preimage(s) under f of any of the points sent by Alice.

The various schemes that were considered in Refs [24, 15, 13, 14] differ in how Bob

5 In Merkle’s original scheme, there is no asymmetry between Alice and Bob, as they both “guess at
keywords” and share and compare their one-way encryptions until they discover that they have guessed
at the same keyword. In all the protocols considered here, Alice goes first and Bob works from there.



A. Belovs, G. Brassard, P. Hgyer, M. Kaplan, S. Laplante, and L. Salvail

proceeds to find the preimage(s), how many such preimages he needs to find, and how he
informs Alice of which preimage(s) he has found. In Merkle’s original scheme [24], he needs
to find a single preimage. This is done by querying f on random points in its domain until
some z is found such that f(z) =y € Y. Afterwards, Bob sends y back to Alice, who can
find efficiently the corresponding x because it is among her set X, which she had kept. This
shared = becomes their secret key. The intuition behind the security of this scheme stems
from the freedom in Bob’s task to invert f on any element of Y, compared to how stringent
Eve’s is since she must invert it on the specific element that Bob had inverted by chance.

To be more precise, let N be a safety parameter, let the domain of f contain N? points
and its range be of size N°, which is large enough to ensure that f is one-to-one except with
vanishing probability. If Alice chooses N random points in the domain of f and Bob tries
random such points as well until he hits upon an x such that f(z) € Y, it is easy to see that
both Alice and Bob need query function f an expected number of N times. However, a
classical Eve requires an expected N?/2 queries, which gives a quadratic advantage to the
legitimate parties.

Unfortunately, inverting one specific point in the image of f with the help of a quantum
computer requires only %\/m = G N queries to f by way of Grover’s algorithm [17], which
is slightly fewer than the effort required by the legitimate parties. This is why Merkle’s

original scheme is totally broken against a quantum adversary, as first pointed out in Ref. [15].

In order to restore security, two main modifications to Merkle’s original scheme have been
considered, as we now proceed to describe.

3.1 \Variations on Merkle’s ldea

If we require Bob to find k distinct preimages among the N points sent by Alice, for
some k > 1, rather than a single one, he will only have to work roughly %k times as hard,
provided k <« N. The key shared by Alice and Bob could then be the concatenation of
those preimages in the order in which the corresponding images were sent by Alice in the
first step. But how can Bob tell Alice which preimages he was able to find in a way that
will force Eve to make much more queries than her? A first solution was proposed in
Ref. [13] for the case k = 2, but a much simpler one was given subsequently in Ref. [14] for
arbitrary k. The idea is to introduce a second black-box random function ¢ from the same
domain to some sufficiently large group G. If Bob finds preimages x;,, zi,, ..., z;, € X, with
1<iy <ig <.+ <ip < N,andsends w = t(z;,) + t(x4,) + - - - t(x;,) to Alice, she needs only
call black-box function ¢ on the N points she had kept in X in order to determine Bob’s k
preimages, provided the order of G was chosen sufficiently large to ensure the uniqueness of
the solution, except with vanishing probability. Taking the order to be N***1 is sufficient to

ensure this. Furthermore, she can do this efficiently, in terms of computing time, when k = 2.

Hence, Alice needs to query each of functions f and ¢ exactly N times, whereas Bob needs
to query function f an expected O(kN) times and function ¢ exactly k times.

How difficult is the cryptanalytic task for quantum Eve, who has seen the y’s sent from
Alice to Bob and the single w sent from Bob to Alice? We gave an explicit algorithm based
on quantum walks [23] in Hamming graphs in Ref. [14], which allows her to discover the
secret key after O(N1/2+k/(k+1)) calls to the black-box functions. In the same paper, we
claimed that a matching Q(N/2++/(k+1)) Jower bound holds for a typical instance of the
protocol, which is formally stated in Theorem 8 below, but the proof proposed in Ref. [14]
fails for £ > 2 in a way that cannot be repaired. The main purpose of the present paper is to
offer a correct proof of this theorem. It follows that for any fixed € > 0, there is a classical
key establishment protocol (taking k = |1/e]) that allows the legitimate parties to establish
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a shared key after O(IN) expected queries to black-box random functions f and ¢, yet any
quantum eavesdropper will have a vanishing probability of learning their key after O(N1-57¢)
queries to the same oracle. If we take account of computational complexity in addition to
query complexity, we must be content with k = 2, in which case the claim is much more
modest, but still the quantum codebreaker must work more than linearly harder than the
classical codemakers. Along the way, we need to develop in Section 4 new tools for the study
of average-case quantum query complexity, which had essentially remained virgin territory
despite its obvious importance, in particular but not only for cryptography.

The second modifications to Merkle’s original scheme that has been considered [15, 13, 14]
is to play a fair game in allowing the codemakers to use quantum computers as well. The first
benefit is that we can enlarge the domain of f to contain N? points. If Alice proceeds
exactly as before, Bob can use an extension of Grover’s algorithm known as BBHT [11] in
order to find random preimages of the N image points initially sent by Alice at the cost of
O(y/N3/N) = O(N) queries per preimage, provided k < N. This increase in the domain
size of f, and correspondingly of ¢, makes it significantly harder for a quantum eavesdropper
to solve the conundrum and discover the key shared by Alice and Bob. Indeed, we also prove
Theorem 9, stated below, to the effect that no cryptanalytic attack can succeed on a typical
instance of the protocol, except with vanishing probability, short of making Q(N 1+k/ (k+1))
queries to the black-box functions. Again, this theorem was claimed in Ref. [14] but its proof
was fundamentally flawed for & > 2. Taking k sufficiently large, this offers a quantum-against-
quantum security that is arbitrarily close to the quadratic security that the original scheme of
Merkle [24] offered in the classical-against-classical scenario. The second benefit to allowing
the codemakers to use quantum computers is that now a quantum Alice can be efficient in
terms of computation time, in addition to query complexity, even when k = 3. According to
Theorem 9, we get an Q(N7/4) security guarantee for a protocol that could become practical
once sufficiently powerful quantum computers start to seriously threaten the security of the
current Internet cryptographic infrastructure. This is the most secure proven solution ever
discovered to the conundrum of post-quantum cryptography [12] when all parties have equal
quantum computing capabilities, at least in the random oracle model, and its security is
reasonably close to that of Merkle’s provably optimal scheme in an all-classical world but
otherwise in the same model.

3.2 The k-SUM Problem

The security of the protocols that we study is based on the k-SUM problem, which consists in
searching for k elements among N in some abelian group G whose sum is a given value w € G.

» Definition 1 (k-SUM problem). Given an abelian group G, a function ¢ : D — G for some

domain D, a target w € G and N distinct elements x1,x2,...,xny € D, the problem is to find
k indices 1 < i1 < ig < --- < i < N such that w = Z?el t(x;;), provided a solution exists.

The decision version of k-SUM is to decide whether or not a solution exists.

It is crucial to understand that we are not interested in how much computation time would
be required to find a solution, if one exists. Rather, we want to minimize the number of calls
to function ¢ that will be required. Naturally, a quantum algorithm is allowed to query ¢ on
superpositions of elements of D.

When k = 1, this is simply the unstructured search problem, which consists in finding
i such that t(x;) = w, provided it exists. When k& = 2 and G is the group of bit strings of
a given length under bitwise exclusive-or, k-SUM takes the name of 2-XOR. In turn, when
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w = 0, 2-XOR becomes the search version of the Element Distinctness (ED) problem, which
consists in finding a collision in a given function if it is not one-to-one.

» Definition 2 (Element Distinctness (ED) problem). Given a function ¢ : D — R, the decision
element distinctness (ED) problem is to decide whether or not this function is one-to-one.

» Definition 3 (Search version of ED). Given a function ¢ : D — R, the search version of
the element distinctness problem (SED) is to find a pair of distinct z,2’ € D such that
t(z) = t(z'), provided such a pair exists.

Quantum lower bounds have been proved on all these problems [1, 8, etc.], but only
in the worst-case scenario, which is most frequently studied in the field of computational
and query complexity. For some of these problems, such as ED, SED, 2-XOR and 2-SUM, a
simple classical randomized reduction suffices for proving their difficulty on average from
their difficulty in the worst case even in the quantum setting, at least if we add the promise
that if there is a solution, then it is unique. However, this does not appear to be the case for
kE-SUM when k > 2. Our main mistake in Ref. [14] was to take such a reduction for granted
for arbitrary k after having nearly proved it in the case k = 2. “Nearly” because the proof
for k = 2 was flawed, albeit easy to repair. Not so for k > 2, however. In order to prove the
security of the key establishment protocols described above in a cryptographically meaningful
context, we need to prove the difficulty of £-SUM on average for arbitrary k, which requires
new quantum lower bound techniques. In fact, we need to prove the difficulty on average
of a composed version of k-SUM, defined below in Section 3.3, which does not follow by a
classical reasoning from the average difficulty of plain k-SUM. Therefore, we also have to
develop a new composition theorem that works on average as well.

The first quantum lower bound discovered among these problems was for the decision
element distinctness problem. Aaronson and Shi [1] proved that this problem requires Q(d?/3)
queries to t in the worst case, where d is the cardinality of domain D. There was a technical
condition in their original proof that required r > d2, where r is the cardinality of range R,
but that condition was subsequently lifted [3, 20]. Later, Belovs and Spalek [8] proved that
solving k-SUM requires Q(N*/(#+1D) queries to ¢ in the worst case, provided m > N¥, where
m is the order of group G and N is as in Definition 1.

Even though the technique used by Aaronson and Shi was adequate only to prove worst-
case lower bounds, it is elementary to conclude by a classical reasoning that the hardness
in worst-case of ED implies the same hardness on average for ED, SED and 2-XOR. But, as
we said already, a completely new technique, which we develop in Section 4, is required to
prove a matching hardness result for k.-SUM on average, which is stated as Theorem 15 in
Section 5.

However, even this is not sufficient to derive the security of the key establishment protocols
described above in a cryptographically meaningful manner. Indeed, the eavesdropper is
not faced with an instance of k-SUM, as specified in Definition 1. He learns the value of w
when Bob transmits it to Alice, and he has access to black-box function ¢, but he does not
know the x’s, which are kept secret by Alice. Instead, he learns the image of those x’s by
function f, which we called the y’s, when Alice sent them to Bob in the first step of the
protocol. In fact, he has to solve the more difficult Hidden k-SUM problem, which we now
proceed to describe.

3.3 Hidden and Composed k-SUM Problems

The hidden k-SUM problem, defined below, corresponds precisely to the task facing the
eavesdropper.
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» Definition 4 (Hidden k-SUM problem). Given two sets D and R, an abelian group G, two
functions f : D — Rand ¢ : D — G, N distinct elements y1,y2,...,yn € Im(f), and a target
w € G, the problem is to find k indices 1 < i; < is < --- < i < N and a preimage x;; under
f for each y;,, 1 < j <k, meaning that f(z;,) = y;,, such that w = 2521 t(xq;), provided a
solution exists. The decision version of hidden k-SUM is to decide if a solution exists.

In order to prove lower bounds on the quantum cryptanalytic task of breaking typical
instances of the protocols described in Section 3.1, we proceed in two steps. First we have to
prove the hardness of the hidden k-SUM problem on average. Then, we have to exhibit a
reduction that shows how to solve an average instance of the hidden k-SUM problem using
an adversary who thinks he is breaking a typical instance of the key establishment protocol.
To prove the hardness of the hidden k-SUM problem on average, it helps to consider a more
structured version of it, which is given by the composition of k-SUM with a search problem
called pPSEARCH, defined below.

» Definition 5 (pSEARCH problem). Let A be some set and x a symbol not in A. Consider
the set P of strings (ai, ..., as) in (AU {x})* with the promise that exactly one value is not x.
The problem pSEARCH, : P — A consists in finding this non-* value by making queries that
take i as input and return a;, 1 < < /.

An equivalent formulation of the k-SUM problem would consist in a target w in abelian
group G and a list (t1,¢2,...,tn) of elements of G. The problem is to find & indices
1 <4y <ig <--- <ir < N such that w=1¢;, +t;, +--- +t;,. We are charged for accessing
each t; given 4. This is equivalent to Definition 1 simply by taking ¢; = ¢(x;), but it is more
convenient since it allows us to consider the composition of k-SUM with N instances of
pSEARCH. Thus we define the Composed version of k-SUM as follows.

» Definition 6 (Composed k-SUM problem). Given a target w in abelian group G and N
instances of the pSEARCH, problem using G as set A, we want to solve the k-SUM problem
with ¢; being the only non-« element in the i*! instance of pPSEARCH,. Said otherwise, this
is the composition of k-SUM and pSEARCH, denoted k-SUM o pSEARCHéV.

The composed k-SUM problem (Definition 6) is similar to its hidden variant (Definition 4),
except that it is more structured, hence easier. Specifically, the x;’s that serve to define
t; = t(z;) in the hidden version, 1 <i < N, can be a priori any element of D, whereas they
are put in N “buckets” of size £ in the composed version. If we choose the size of D to be the
product of N and ¢, any algorithm capable of solving the hidden version can serve directly
to solve the composed version simply by taking no account of the additional information
provided by the buckets. Moreover, a random instance of the composed version can be
transformed into a random instance of the hidden version, essentially by mixing the buckets.
It follows that any lower bound on the composed problem translates directly into the same
lower bound on the hidden problem, mutatis mutandis.

In Sections 4 to 6, which are more technical, we give a lower bound on the composed
problem in a series of steps. First, we give a new general method to prove lower bounds for
the average-case quantum query complexity (Section 4). This method is closely related to the
technique given in Ref. [9], albeit with essential differences. Second, building on techniques
from Refs [8, 7], we show a lower bound on the average-case quantum query complexity of
k-SUM (Section 5). Third, we show a composition theorem for average-case quantum query
complexity, which allows us to conclude with Theorem 18 (Section 6).

When we apply this theorem with the parameters that correspond to the protocols
described in Section 3.1, we should take n = N, which is the number of images sent by
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Alice in the first step of any of these protocols and therefore also the number of buckets.
Furthermore, we should take the product of ¢, the size of the buckets, with n, the number of
buckets, to correspond to the size of the domain D used in the protocols.

Putting it all together, Theorem 18 gives us the following lower bound on the difficulty to
solve the hidden k-SUM problem if the domain D of functions f and ¢ contains d elements.

» Theorem 7. Any quantum algorithm that uses at most T queries to find a solution to the
hidden k-SUM problem with success probability at least vy > 0 on average over the uniform
distribution on positive instances requires

T Q(\/d/]\/'—_l Nk/<k+1>)

VN

2
provided m = w(Nk+ k+1 ) , where m is the order of the underlying abelian group.

3.4 The Security of Key Establishment

We proved (correctly!) in Ref. [14] that any eavesdropper who succeeds in obtaining the key
with non-vanishing success probability v in any of the protocols described in Section 3.1,
after making no more than T queries, on average over the runs of the protocol, can be used
to solve the hidden k-SUM problem with the same parameters. Therefore, using the fact
that d = N2 for the classical protocols and d = N3 for the quantum protocol, we can apply
Theorem 7 to conclude that the protocols are secure according to the following theorems.

» Theorem 8. Any quantum eavesdropping strategy that makes O(N%Jrk%l) queries to the
black-box functions against a typical run of the classical protocol using parameter k will fail
to recover the key, except with vanishing probability.

» Theorem 9. Any quantum eavesdropping strategy that makes O(NH_’VL“) queries to the
black-box functions against a typical run of the quantum protocol using parameter k will fail
to recover the key, except with vanishing probability.

Furthermore, we showed in Ref. [14] that these bounds are tight.

4 Average-Case Quantum Adversary Lower Bound Method

We generalize the adversary lower bound method to handle average-case complexity. A
similar bound from Ref. [9] already gives a lower bound technique on average-case query
complexity, but it cannot be applied directly here, as we explain below.

We use the following complexity measure, closely related to the adversary bound [2, 18].
We give a formulation tailored to the following problem. Given two distributions P and Q,
and an algorithm that attempts to distinguish between them, we consider the number of
queries this algorithm must make in order to succeed. The algorithm is given one input, and
accepts if it thinks the sample it is given comes from P and rejects otherwise. The measure
of success is given by the probabilities sp and sg, which are the probability of accepting
when the algorithm is given samples from P and Q, respectively.

» Definition 10. Let P and Q be two probability distributions on D, and p, and g, denote
probabilities of z and y in P and Q, respectively. Let sp,sg be real numbers in [0, 1]
(representing the acceptance probability on distributions P and Q, respectively). For a given
matrix I', define the adversary bound with respect to I', P, sp, Q, sg as

AdV(F;P,SP;Q,Sg)zQ(min 0pl0g — 7(sp. 30| ”).

1
Ty M
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Here, o denotes entrywise (or Hadamard) product, and || A|| denotes the spectral norm of A
(which is equal to its largest singular value). The vectors p[z] = \/p, and dg[y] = /gy are
unit vectors in R?; for j € [n], the |D| x |D| matrix A; is defined by A;[z,y] = 15,4y,; and

r(sp.50) = \/spsa +1/(1 - sp)(1 - sq). (2)

» Theorem 11. Assume A is a quantum algorithm that makes T queries to the input string
x = (x1,...,2,) € D, and then either accepts or rejects. Let P and Q be two probability
distributions on D. Let sp and sg be acceptance probability of A when x is sampled from P
and Q, respectively. Then,

T > Adv(I; P, sp; Q, s0),
for any |D| x |D| matriz T.

If P and Q have partial supports, then we may use a matrix I' whose rows are indexed
by elements in the support of P and columns by elements of the support of Q. In that case
we can extend the matrix I' by adding all-0 rows and columns. Notice that this does not
alter the value of Adv.

First let us consider why we need two distributions P, Q on the inputs (and why we
cannot use existing techniques such as Theorem 33 from Ref. [9] for decision problems,
where P = Q). The distribution we care about is the uniform distribution over the positive
instances. Under this distribution, the decision problem is of course trivial. Using this
distribution as both P and Q as in Ref. [9] would give a trivial bound.

Instead, Theorem 11 gives a lower bound on the query complexity of an algorithm that
attempts to distinguish between two distributions P and Q. Taking P as the uniform
distribution over positive instances, and Q as the uniform distribution over all instances
implies a lower bound for the search problem of finding k elements that sum to w with the
promise that the instance is positive, by the following argument. Assume an algorithm solves
the search problem with 7" queries with non-vanishing probability. Then we can transform
this algorithm into a distinguishing algorithm with one-sided error: if the algorithm outputs
a candidate solution aq,...,ax, make k additional queries and check that they sum to w.
If they do, accept, else reject. Then the acceptance probability on negative instances is 0.
Since most instances are negative, the acceptance probability on the uniform distribution is
close to 0. We are interested in the acceptance probability on the positive instances, as a
function of the number of queries T

We now proceed to the proof of Theorem 11. Our proof is closely related the proof of the
worst-case negative-weighted adversary bound from Ref. [18]. We follow a slightly simplified
version of the proof from Ref. [5]. As usual, we introduce a progress function, show that
initially, the progress function is large (Claim 12), at the end, it is small (Claim 13), and
that at each step, the decrease is bounded (Claim 14).

Proof of Theorem 11. Recall that a quantum query algorithm is given by the following
sequence of operations

U()—>Oz—>U1—>Ox—>U2—>--~—>UT,1—>Om—)UT,

where O, denotes the input oracle, and the U;s are arbitrary unitary transformations. The
operator Oy is defined by O,|a)|i) = |a + x;)|¢) which can be decomposed as

0, = é Os;, (3)
j=0
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where for b € Gy, Op: |a)|i) — |a+ b)|i). The addition in the first register is the group
operation of G,.
For an integer t between 0 and T', and = € D, let

Y = U,0,U; 10, - - - U1 0,Up|0). (4)

be the state of the algorithm on the input x after ¢ queries. We define the quantity called
the progress function as follows

WO = N pagy Tl yl (00, 50). )

x,ye€D

The proof is split into three parts: proving that W is large, and that both W) and
W® — WD are small. The proofs of the claims appear in the extended version of the

paper [6].
» Claim 12. W(© = §5T'6,.

» Claim 13. W) < (\/SPSQ + \/(1 —sp)(1 - s0) )||r||.

» Claim 14. [W® — WD | < 2max;cpy [T 0 A <

5 Average-Case Complexity of k-SUM

Recall the k-SUM problem on n elements in an abelian group G,,, where m is the order of the
group. Let w be a fixed element of G,,. An input z = (z1,...,2,) is called positive if there
exists a k-subset V = {t1,...,tx} C [n] such that x¢, + -+ x¢, = w in G,,. Otherwise, the
input is called negative.

Consider the following probability distribution P on positive inputs:

Select a k-subset U of [n] uniformly at random;

assign to U a uniformly random string in (G!f{ | whose sum is w;

choose the remaining elements uniformly at random.

» Theorem 15. Assume S is a quantum algorithm for the search problem k-SUM that makes
T queries and succeeds with probability v > 0 over inputs sampled from the distribution P.
Then,

r_ Q(nH/40),

14

provided that v = w(n_l/(kH)) and m = Q(nkh%rl) is again the order of the underlying

abelian group.

This theorem uses the following claim, whose proof appears in the extended version of
the paper [6].

» Claim 16. Let the distribution P be as above, and Q be the uniform distribution on all
the inputs. There exists a matriz T satisfying the following constraints:

6pPdg = n*/ 0,0 < (14 0(n= YD) )p B0 and |00 Ayl| = O(1)

in the notation of Theorem 11.
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Proof of Theorem 15. Let S be the algorithm of Theorem 15. We apply Theorem 11 to
the algorithm A defined as follows, using the constraints from Claim 16 to evaluate Adv.
First, A executes S on its input. Let {¢,...,tx} be the output of S. The algorithm A then
queries the elements xy,, ..., 2, . It accepts if x¢, + - - + x4, = w, and rejects otherwise.

The query complexity of A is T+k = T+O(1). The acceptance probability on distribution
P is sp = v. Also, since A always rejects a negative input,

1 /n
50 < xf:rg [the input z is positive] < — (k)’

the last inequality following from the union bound. Thus, we have the following estimate on
T(sp,s0):

1 /n v

= 1-— 1-— <= 1—=

T(sp,s0) \/SPSQ+\/( sp)(1—sg) < m<k>+ 5
and using the conditions on m and v, we obtain:

53000 — r(spusT]  mEY = (1-00)) (140 (n71/00) Juk 41

[T o Al o(1)
= Q(unk/(k+1)). <

6 Composition Theorem for the Average-Case Adversary Bound

We now prove the last remaining theorem needed to obtain the lower bound on the average
case complexity of k-SUMopSEARCH} (see Section 3.3). Recall that in this version, each input
variable 7; € G, is embedded into a “bucket”, that is, a sequence (71, ..., zy) € (G,, U{x})*
in which exactly one element is non-x. To apply our average-case adversary lower bound
method, we need to define the probability distributions and the matrix that appears in
Eq. 1 for the composed problem. Intuitively, this is done by tensoring the matrix of the
two problems that are composed, as well as the vectors that represent the probability
distributions. However, defining the matrix correctly to get a lower bound for the composed
problem requires a careful analysis.

We use the distributions Pg and Qf to pick inputs to the outer function F, and the
uniform distribution to place each element of the input independently in its bucket. Formally,
we write P = Pr ® U™, where Uy is the uniform distribution over [¢] and the distributions
are viewed as real-valued vectors indexed by elements of their supports. The definition of Q
is similar, starting from QF.

» Lemma 17. Let F: A® — B, pSEARCH, : P — A where P C (AU {x})? is the set of all
possible buckets, H=F o pSEARCH}, and P, Qf, P and Q defined as above. Then for any
real numbers sp, sg € [0,1] and matriz T'r, there exists a matriz Ty such that

Adv(Ty; P, sp; Q,50) > Adv(Tk; Pr, sp; O, s0) VI — 1.

» Theorem 18. Any algorithm that finds a solution to the search wversion of k-SUM o
pSEARCHY within T queries with probability v > 0 on average over the uniform distribution
on positive instances requires

T 0 (\/g_;1 nk/(k+1))

v

2
provided m = w (an k+1 ) .
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The rest of this section is devoted to the proof of Theorem 18. It follows closely the proof
of the composition theorem in Ref. [13], and in particular the adversary matrix for H we
use here has the same structure as the matrices considered in that paper. This allows us to
re-use some of the calculations from that paper (see Claims 20 and 21).

We use the following notation. Let X,Y € A™ denote inputs to F. Its components are
X; € A. The value I'r[X, Y] is a scalar. Notice that for the k-SUM problem, the rows of the
matrix defined in the previous section are only defined for positive inputs. In order to reuse
the norm calculations from the composition theorem in Ref. [13], we need to extend it to
all possible inputs. We do so by extending the matrix for k-SUM with rows of zeros. This
transformation does not change the norm of the matrix. Similarly, the vector sp. can be
extended with zeros to be defined for any input.

Proof of Lemma 17. The adversary matrix for the composed problem H is denoted I'y.

We consider blocks of 'y indexed by values X,Y, which we denote I‘f_(,’Y. (These £™ x £
blocks are a submatrix corresponding to all the inputs for which the input to F is X, in the
rows, and Y, in the columns.) As in Ref. [13], we define I'yy by blocks as follows:

—X;,Y;
Y =TeX Y- QT

i€[n]

where for a,b € A,
fa’b _ e —T¢|| -1, ifa=0
Jr =1 otherwise.

An optimal adversary matrix for pSEARCH can be obtained by taking J, — I, for all blocks
except the diagonal ones that are all zeroes. But if we were using it, a block Fﬂ(’y would be
zero whenever there is an i such that X; = ¥;. Using the matrix ', with modified diagonal
blocks, overcomes this issue.

From the distributions Pr and Qp, we define the vector dp,, = /Pp, that is, dp.[X] =

Pryp, [X] (similarly for dg.). Again, we can split dp, into blocks &%, .

With these definitions in hand, we can compute the terms that appear in Eq. 1 of
Definition 10. This is done in Claims 19, 20, and 21. When referring to Ref. [13], we use
Si=Jp—Tforalli(l<i<n).

» Claim 19. 6,Twdg = 65 Trdo,. - [|de — Lo||™.
» Claim 20. /13, claim on last line of page 409] |Tnll = [|ITe|| - [|[de — Le||™.

» Claim 21. [13, claim near the end of page 410] For a query i that corresponds to index q
in the bucket p, |Tn o Aill = [T o Apll - [[de — Le||" 71 - |(Je — Lp) 0 A, ]|

Claims 20 and 21 were proven in the arXiv extended version of Ref. [13]. Although the
claims in the original Crypto version of Ref. [13] consider specifically the Element Distinctness
problem, the paper mentions that an explicit description of the adversary matrix is not
needed (such a description was indeed unknown when this proof was given). For this reason,
these two claims apply to any outer function F, and in particular to k-SUM. Note that the
arXiv extended version of Ref. [13] contains the proofs for arbitrary outer functions. The
proof of Claim 19 appears in the extended version of the paper [6].

Using the fact that ||[Jp — Ip]| = € — 1 and ||(Je —Ip) 0o Ay|| = V£ —1 for any ¢, we
immediately get Lemma 17 by substituting the values obtained in Claims 19, 20 and 21 into
Definition 10. |
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Proof of Theorem 18. Using the values computed in Section 5 we get

S5 Teép, — ,s0)|IT
T Q( Pl FOPe 7(sp,s0)ll Fl\/m)

ITF o A

~ 0 (nk/(kﬂ)\/ﬁ (’; _ ;(Z) >>

Suppose that v is non-vanishing. Since m is chosen large enough to make % ( k) arbitrarily
small, we get

L _ (=Tt en). >

14

Acknowledgements. We are grateful to Kassem Kalach, with whom this work has initiated
many years ago. Part of this work was performed when GB visited AB, then at QuSoft in
Amsterdam.

—— References

1 S. Aaronson and Y. Shi. Quantum lower bounds for the collision and the element distinct-
ness problems. Journal of the ACM 51(4):595-605, 2004.

2 A. Ambainis. Quantum lower bounds by quantum arguments. Journal of Computer and
System Sciences 64:750-767, 2002.

3 A. Ambainis. Polynomial degree and lower bounds in quantum complexity: Collision and
element distinctness with small range. Theory of Computing 1(1):37-46, 2005.

4  B. Barak and M. Mahmoody-Ghidary. Merkle puzzles are optimal — An O(n?)-query attack
on any key exchange from a random oracle. In Advances in Cryptology — Proceedings of
Crypto 2009, pages 374-390, 2009.

5 A. Belovs. Applications of the Adversary Method in Quantum Query Algorithms. PhD
thesis, University of Latvia, 2014.

6  A. Belovs, G. Brassard, P. Hgyer, M. Kaplan, S. Laplante and L. Salvail. Provably secure
key establishment against quantum adversaries. Extended version available at http://
arxiv.org/abs/1704.08182.

7 A. Belovs and A. Rosmanis. On the power of non-adaptive learning graphs. Computational
Complezity 23(2):323-354, 2014.

8 A. Belovs and R. Spalek. Adversary lower bound for the k-sum problem. In Proceedings of
4th ACM Innovations in Theoretical Computer Science, pages 323-328, 2013.

9 A. Belovs. Variations on quantum adversary. http://arxiv.org/abs/1504.06943, April
2015.

10 C.H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin
tossing. In Proceedings of International Conference on Computers, Systems & Signal Pro-
cessing, Bangalore, pages 175-179, 1984. Republished in 30th Anniversary Commemorative
Issue of Theoretical Computer Science 560(Part 1):7-11, 2014.

11 M. Boyer, G. Brassard, P. Hgyer and A. Tapp. Tight bounds on quantum searching.
Fortschritte der Physik 46:493-505, 1998.

12 G. Brassard. Cryptography in a quantum world. In Proceedings of SOFSEM 2016: Theory
and Practice of Computer Science, pages 3-16, 2016.

13  G. Brassard, P. Hoyer, K. Kalach, M. Kaplan, S. Laplante and L. Salvail. Merkle puzzles in
a quantum world. In Advances in Cryptology — Proceedings of Crypto 2011, pages 391-410,
2011. Extended version available at http://arxiv.org/abs/1108.2316v1.


http://arxiv.org/abs/1704.08182
http://arxiv.org/abs/1704.08182
http://arxiv.org/abs/1504.06943
http://arxiv.org/abs/1108.2316v1

A. Belovs, G. Brassard, P. Hgyer, M. Kaplan, S. Laplante, and L. Salvail

14

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

G. Brassard, P. Hgyer, K. Kalach, M. Kaplan, S. Laplante and L. Salvail. Key establishment
a la Merkle in a quantum world. http://arxiv.org/abs/1108.2316v2, February 2015.
G. Brassard and L. Salvail. Quantum Merkle puzzles. Proceedings of Second International
Conference on Quantum, Nano, and Micro Technologies, pages 7679, 2008.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory 22(6):644-654, 1976.

L. K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Physical
Review Letters 79(2):325-328, 1997.

P. Hgyer, T. Lee and R. Spalek. Negative weights make adversaries stronger. In Proceedings

of 89th Annual ACM Symposium on Theory of Computing, pages 526-535, 2007. doi:10.

1145/1250790.1250867.

R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permuta-
tions. In Proceedings of 21st Annual ACM Symposium on Theory of Computing, pages
44-61, 1989.

S. Kutin. Quantum lower bound for the collision problem with small range. Theory of
Computing 1(1):29-36, 2005.

T. Lee, R. Mittal, B. W. Reichardt, R. Spalek and M. Szegedy. Quantum query complexity
of state conversion. In Proceedings of 52nd Annual IEEE Symposium on Foundations of
Computer Science, pages 344-353, 2011.

L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar and V. Makarov. Hacking com-
mercial quantum cryptography systems by tailored bright illumination. Nature Photonics
4(10):686-689, 2010.

F. Magniez, A. Nayak, J. Roland and M. Santha. Search via quantum walk. STAM Journal
on Computing 41(1):142-164, 2011.

R. Merkle. Publishing a new idea. http://www.merkle.com/1974/.

R. Merkle. Secure communications over insecure channels. Communications of the ACM
21(4):294-299, 1978.

R.L. Rivest, A. Shamir and L. Adleman. A method for obtaining digital signatures and
public-key cryptosystems. Commaunications of the ACM 21(2):120-126, 1978.

P.W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on
a quantum computer. SIAM Journal on Computing 26:1484-1509, 1997.

P. Wayner. British document outlines early encryption discovery.
http://www.nytimes.com/library/cyber/week/122497encrypt.html, New York Times
Technology Cybertimes column, 24 December 1997.

Y. Zhao, C.-H.F. Fung, B. Qi, C. Chen and H.-K. Lo. Quantum hacking: Experimental
demonstration of time-shift attack against practical quantum-key-distribution systems.
Physical Review A 78(4):042333, 2008.

3:17

TQC 2017


http://arxiv.org/abs/1108.2316v2
http://www.merkle.com/1974/
http://www.nytimes.com/library/cyber/week/122497encrypt.html




Quantum Coin Hedging, and a Counter Measure*

Maor Ganz! and Or Sattath?

1 The Hebrew University, Jerusalem, Israel
maor.ganz@mail.huji.ac.il

2 The Hebrew University, Jerusalem, Israel and MIT, Cambridge, USA
sattath@cs.huji.ac.il

—— Abstract

A quantum board game is a multi-round protocol between a single quantum player against the
quantum board. Molina and Watrous discovered quantum hedging. They gave an example for
perfect quantum hedging: a board game with winning probability < 1, such that the player can
win with certainty at least 1-out-of-2 quantum board games played in parallel. Here we show that
perfect quantum hedging occurs in a cryptographic protocol — quantum coin flipping. For this
reason, when cryptographic protocols are composed in parallel, hedging may introduce serious
challenges into their analysis.

We also show that hedging cannot occur when playing two-outcome board games in sequence.
This is done by showing a formula for the value of sequential two-outcome board games, which
depends only on the optimal value of a single board game; this formula applies in a more general
setting of possible target functions, in which hedging is only a special case.
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1 Introduction

Quantum board games

A quantum board game is a special type of an interactive quantum protocol. The protocol
involves two parties: the player and the board. The board implements the rules of the
game: in each round ¢ of the protocol, the board applies some quantum operation O; and
sends a quantum message to the player; then the player applies any quantum operation it
wants, and sends a quantum message back to the board. At the final round of the board
game, the board applies a two outcome measurement, which determines whether the player
won or lost. We assume that the player knows the rules of the board game (the length of
the messages, the operations O; and the two outcome measurement). The player has the
freedom to decide on his strategy — the protocol does not specify what the player should do
in each round; the only constraint posed on the player is that it must send a message of an
appropriate length, as expected by the board.!

* This work was supported by ERC Grant 030-8301.

Previous works which studied this setting did not introduce a specific term for it [22]. Other, related
notions are interactive proof system, that differ from quantum board games since the verifier and prover
receive an input, and from quantum games since usually we think of the players, Alice and Bob, as
having symmetric roles, whereas here, the player knows that the board only implements the rules of
the game, and uses its specified strategy.
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Perfect hedging

Molina and Watrous showed that hedging is possible in quantum board games [22]. Perfect
hedging is best explained by an example: there exists a quantum board game for which no
strategy can win with certainty, but it is possible for a player to guarantee winning 1-out-of-2
independent quantum board games, which are played in parallel. A formal definition of
hedging is given in Definition (3), but for now, one can think of that example. In a follow
up work, Arunachalam, Molina and Russo [6] analyzed a family of quantum board games,
and showed a necessary and sufficient condition so that the player can win with certainty
in at least 1-out-of-n board games. As discussed later, quantum hedging is known to be a
purely quantum phenomenon.

One example where Hedging becomes relevant is when reducing the error (soundness)
probability of quantum interactive proof protocols such as QIP(2): since the optimal strategy
for winning t-out-of-n parallel repetitions is not necessarily an independent strategy, only
Markov bound (and not the Chernoff bound) can be used to show soundness [14]. These
aspects resembles the behavior that occurs in the setting of Raz’s (classical) parallel repeti-
tion theorem [25]; the differences are that in the classical setting there are two players who
want to win all board games, whereas in our setting, there is a single player, who wants to
win at least t-out-of-n board games.

Coin flipping

Quantum coin flipping is a two player cryptographic protocol which simulates a balanced
coin flip. When Alice and Bob are honest, they both agree on the outcome, which is uniform
on {0,1}. Coin flipping comes in two flavors: Strong and weak. Perhaps the most intuitive
one is weak coin flipping, in which each side has an opposite desirable outcome: 0 implies that
Alice wins, and 1 implies that Bob wins. An important parameter is the optimal winning
probability for a cheating player against an honest player. In weak coin flipping we denote
them by P4 and Pg. We define P* = max {P4, Pg} — the maximum cheating probability
of both players. In a strong coin flipping, a cheating player might try to bias the result to
any outcome. We define P} to be the maximal winning probability of a cheating Alice who
tries to bias the result to 0, and P}, PS, PL are defined similarly. In strong coin flipping
P* = max {va P}, Py, Pé} that is P* bounds the possible bias to any of the outcomes, by
either a cheating Alice or a cheating Bob. In the classical settings, it is known that without
computational assumptions, in any coin flipping protocol (either weak or strong) at least
one of the players can guarantee winning with probability 1 (P* = 1) [12]. Under mild
computational assumption, coin flipping can be achieved classically [7]. All of the results
in the rest of this paper hold information theoretically, that is, without any computational
assumptions. Unconditionally secure (i.e. without computational assumptions) quantum
strong coin flipping protocols with large but still non-trivial P* < 0.9143 were first discovered
by [3]. Kitaev then proved that in strong coin flipping, every protocol must satisfy Py - Py >
%, hence P* > % ([16], see also [5]). Therefore, the hope to find protocols with arbitrarily
small cheating probability moved to weak coin flipping. Protocols were found with decreasing
P*([26, 4] showed strong coin flipping with P* = 2, [19] showed weak coin flipping with
P* = 0.692), until it was finally proved that there are families of weak coin flipping protocols
for which P* converges to 3 [20] (see also [2]). Following this, [9] showed how such protocol
can be adopted, in order to create (arbitrarily close to) optimal strong coin flipping (so that
P* can be made arbitrarily close to ?) Although this would not be relevant for our work,
analysis of coin flipping protocols was adapted, and later implemented, for experimental
setups [23, 24]. There is also a strong connection between coin-flipping and bit-commitment
protocols [26, 10], and to a lesser extent to oblivious transfer [8].
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Is it possible to hedge in quantum coin flips? In Section 2 we give an example for perfect
quantum hedging in the context of coin flipping. The result can be best explained in the
context of weak coin flipping (although, a similar statement can be proved for strong coin
flipping): there exists a weak coin flipping protocol where P* = COSQ(%) introduced by
Aharonov [1] yet a cheating Bob can guarantee winning in at least 1-out-of-2 board games
played in parallel.

Avoiding hedging through sequential repetition

Consider a cryptographic quantum protocol, which involves several uses of quantum two-
outcome board games. For example, the protocol may use several occurrences of quantum
coin flips played in parallel. As we have seen, the possibility of hedging makes it hard
to analyze the resulting protocol, by simply analyzing each of the board games in it. In
Section 3 we show that quantum hedging cannot happen when the two-outcome board
games are played in sequence, even if the players are computationally unbounded.

We give a more generalized formulation for sequential board games. Suppose the player’s
utility for the outcome vector a = (ay,...,a,) is given by some target function ¢(a), and
the players goal is to maximize E[t(a)] over all possible strategies. In Theorem 10 we show
that this maximal value is fully determined by the properties of each board game, and does
not require an analysis of the entire system, which is the case when playing in parallel.

The authors are not aware of previous precise mathematical formulation proofs of that
sort. It was recently brought to our attention the following intuitive discussion in [13, p. §],
and [17, p. 9] made for related models. The intuition for our proof is fairly simple and
arguably not very surprising: if it is possible to hedge n games, then by simulating the
board in the first game, and conditioning on some good event, allows the player to hedge
n — 1 games. But since hedging cannot occur in one game, we get a contradiction.

In Appendix B we give examples, in the classical setting, for board games and target
functions, such that the sequential value of the board games is larger than the parallel value
of the board games, and vice-versa.

Arunachalam, Molina and Russo [6] showed a different approach to avoid hedging: they
showed that hedging is impossible in a quantum single round board game played in parallel,
where the player has the possibility to force a restart of the board game.

2  Quantum coin flip hedging

In this section we will give an example for a coin flipping protocol, for which a cheater
cannot guarantee a win in one flip, but one of the players can force a win in 1-out-of-2 flips:

» Theorem 1. There exists a weak coin flipping protocol with P* < 1 s.t. by playing 2 coin
flips in parallel, Bob can guarantee winning in at least one of the flips.

We will first describe the weak coin flipping protocol and its properties, and then analyze
the hedging strategy of Bob. We conclude by explaining why Alice cannot hedge.

2.1 The coin flipping protocol

In this work, Aharonov’s coin flipping protocol [1] will play an important role.

4:3
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A quantum coin flipping protocol

Alice Bob
1
Prepares —(|00) + |11
pares —=(/00) + 1))
second qubit
Samples b €r {0, 1}.
sends b
If b =1, then apply H. If b =1, then apply H.
Measure in the standard basis Measure in the standard basis
Alice wins if the outcome is 0 Alice wins if the outcome is 0
Bob wins if the outcome is 1 Bob wins if the outcome is 1

» Theorem 2. The protocol above is a weak coin-flipping protocol with P* = P4 = Pg =

2w
cos” ¢

The proof is given in Appendix A. This protocol is not only a weak coin flipping with
P* = cos? T, but also a strong coin flipping protocol with the same value of P*. The
proof is essentlally the same. We state the result this way because it provides a natural
interpretation for statements such as “Bob wins in 1 out of 2 flips”. Of course, similar
statements can be made for strong coin flipping, but are omitted for the sake of readability.

2.2 Coin hedging is possible

Assume a cheating Bob plays two coin flips in parallel with an honest Alice (it does not
matter if he plays against the same person twice, or against two different players, since they
behave the same — because they are honest). We want to know the maximum probability for
a cheating Bob to win at least one coin flip. Surprisingly, this is equal to 1 in the protocol we
previously described. This is impossible if Bob were to play the two coin flips sequentially
(see Theorem 5).

We saw that for one coin flipping, P4 = Pp = cos?

flip independently, the best Bob can get is

g ~ 0.853. By cheating each coin

2
Pr (Bob wins at-least one game) =1 — (1 — Pg)*> =1 — (1 — cos? g) ~ 0.978.

We will now show Bob’s perfect hedging strategy (which is not independent), in which he
wins exactly one out of the two coin flips w.p. 1, which completes the proof of Theorem 2.
Alice’s initial state is

1
5 Z i1, 2)]t1,12) = Z|Oéz o), (1)

i1,i2€{0,1} =0
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where?
lag) = [@7) = 7(\00) 11)) = T(H =) ==+
) = [¥7F) = 7 (101) + [10))
1
Qa9 — + - —
|as) = \[(@) v7)) = \f(|0> 14))

(\<I>+>+|‘I’_>) = —=(=-0+[+1). (2)

\/5

Eq. (1) can be justified by a direct calculation, or by using the Choi-Jamiotkowski
isomorphism [11, 15], see also [27], and noting that the associated matrix for the Lh.s. and the
r.h.s. are equal (both are proportional to the identity matrix). Bob is given the right register
of the state above. Bob applies the unitary transformation U = }_, |%><az| where |vy9) =
|11), |y1) = |00), |y2) = |01),]v3) = |10), so that the overall state becomes % ZZ o lai)|ve),
and sends the right register back to Alice. Alice measures the right register in the standard
basis (of course, Bob could have done this just before sending the right register, if he is
restricted to sending classical information). The results of those measurements determines
the basis in which she measures the left register. This strategy guarantees that Bob wins
in exactly one coin flip: for example, if Alice measures the qubits |yo) = |11) then the left
register collapses to |ag) =| ®7) = % (| +=)+ | —+)), and since in this case Alice measures
both of the left register qubits in the Hadamard basis, Bob will win in exactly one out of
the two coin flips. The right-most expressions in Eq. (2) are presented in this form so that
it is easy to see the similar behavior in the 3 other cases.

One may wonder how strong the effect of hedging is. In particular, can Bob guarantee
fn out of n winnings, as long as f < P*? The answer is no: by playing three coin flipping
of this protocol, he cannot guarantee winning 2 = % - 3 with probability 1, even though
% < P*: we numerically calculated that Bob can only win with probability =~ 0.986 at least
2 out of 3 coin flips. This is still higher than the optimal independent cheating that achieves
a success probability of ~ 0.94.

Fortunately for Bob, Alice can not guarantee winning in l-out-of-2 played in parallel
using this weak coin flipping protocol. In fact, she cannot do any hedging. This is true,
essentially for the same reasons error reduction for QMA works in a simple manner (vis-a-vis
QIP(2)). The following argument uses the definitions from Section 3.1. Recall that from
Bob’s perspective, he is provided with a quantum state given from Alice, and he measures
it to determine whether he wins or loses. Therefore m(a;) = minyy,)(1;|M¢ |1);) (where
M;, is Bob’s measurement operator which determines whether he gets the outcome a; in
the ith game) which is equal to the smallest eigenvalue of M{ ; and m”“r(al Q) =
minyy (Y|ME ®--- @ M |¢) which is equal to the smallest elgenvalue of M! ®-- @M .
But since M ;L isa measurement operator, its eigenvalues are non-negative, and we conclude
that mP" (aq,...,a,) =m(ay) - ... -m(ay).

2 One may wonder whether the states |o;) are the Bell states (|®%) = % (J00y £]11)), |oF) =
% (|01) £1]10))), written in a non-standard local basis. This is not the case: for every Bell state |(2),

)
SW AP|Q) = £|Q). This is also true if a local basis change is applied to both qubits: for |2') = UQU|Q),
SWAP|Q'Y = £|Q'). Since |a2) = SWAP|as) # £|az), these vectors are not the Bell states written

in a non-standard local basis.
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3 How to circumvent hedging

Our solution to circumvent hedging is to play the board games in sequence, instead of in
parallel. We will prove in Section 3.1 that in the simple scenario, in which the goal is to win
at least 1-out-of-n sequential board games, hedging is not possible (i.e. the best cheating
strategy is to use the optimal cheating strategy in each board game independently). We will
generalize this in Section 3.2, where we will prove that the same result holds for every target
function. Throughout this section, we will consider only two-outcome board games (such
as coin flipping), but a generalization to any number of outcomes seems not too difficult to
achieve as well.

3.1 Playing sequentially circumvents 1-out-of-n hedging

Molina and Watrous [22] defined hedging as the following phenomenon.® Suppose G, G2
are two board games with multiple outcomes A;, As. For a; € A let m (a1) be the minimal
probability that can be achieved for the outcome a; in Gy, and similarly for m (ag). If
the board game G is not clear from the context, we may use m%2(as). Now suppose that
two board games are played in parallel, and the goal is to minimize the probability for
getting the outcome a; in the first board game and as in the second board game, which
is defined as m?" (a1, az2). Since the two strategies can be played independently, clearly,
mP (a1,a2) < m(ar)m(az). Parallel Hedging for two board games is the case where
this inequality is strict, that is m?" (aq,a2) < m (a1) m (az). Molina and Watrous gave an
example for perfect parallel hedging in which m?®" (ay, as) = 0 whereas m (a1) = m (a2) > 0.
This definition can be naturally generalized to more than two board games.

» Definition 3 (Parallel Hedging). Let Gy, ..., G, be n quantum board games with possible
outcomes Ay, ..., A,. Fora; € A;, let m (a;) be the minimal probability that can be achieved
for the outcome a; in G;. Similarly, let mP*" (aq,...,a,) be the minimal probability that
can be achieved for outcomes (ay, ..., a,) when playing these n board games in parallel. We
say that hedging is possible in 1-out-of-n board games if there exist aq,...,a, s.t.

n
mPY (ay,az,...,a,) < Hm(ai). (3)
i=1

If mP* (ay,a,...,a,) =0 and [[;—, m(a;) > 0, then it is called prefect hedging.

It is known that inequality (3) is actually an equality in the classical case for single round
board games [22, 18]. We do not know whether the equality holds for multi-round classical
board games. What happens when the board games are played in sequence?

» Definition 4. Given board games {G;},;, the protocol for playing the board games {G,}
in order is called sequential, assuming the player knows the result of G; before the start of
G41 (this can be achieved by adding a last round for each board game in which the board
returns the outcome).

Our next result shows that there is no sequential hedging for board games (with any number
of outcomes), and the cheater cannot do better than to cheat each board game independently;

3 Molina and Watrous restricted their definition to quantum board games with a single round of com-
munication (the board sends an initial quantum state to the player, the player sends back another
quantum state back to the board, and then the board applies a measurement to determine whether the
player wins).
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that is if {G;};_, are board games, then m**? (ay,...,a,) = m(a1) - ... - m(ay), where
m* (ay,...,a,) is defined similarly to mP*" (a4, ...,a,) for sequential board games. For
simplicity and clarity, we will consider only the case where all the board games are identical
and a; = a; = a for all 4, j, but the same proof will work for the general scenario as well
(one will just have to add indices indicating the board game for everything).

» Theorem 5. Let G be a board game, played sequentially n times, then m*¢? (a,...,a) =
m(a)-...-m(a) =m(a)" for every outcome a.

Proof. If the outcome of a single board game is a, then we say that the player lost that
board game. We denote by “failure” the event in which the player gets the outcome a in all
n games (i.e. loses all n rounds).

We define £* to be the probability to get the outcome a in the optimal strategy for one
board game. Let £,, be probability to get the outcome a over all the n-board games, in the
best independent strategy. It is easy to see that

. . #\T
" S’Eindepenrcrlgrﬁ strategies Pr (fallure | S) - (K ) (4)
Define similarly ¢/, to be the minimum losing probability over all (not necessarily independ-
ent) strategies, i.e. ¢, = mMilgesequential strategies LT (failure | S) . Clearly Vn € N, ¢, < ¢,
and ¢ = ¢1. Our goal is to show that ¥n € N, ¢/ = £,,. Assume towards a contradiction
that this is not the case. Then there exists a minimal n > 1 for which ¢/, < £,,.

(" RS ln > €, =€, 1 Pr(lost first round) > £, ; ¢*

where £, ; := Pr(failure | lost first round). The last inequality naturally holds because
Pr (lost first round) > £*, otherwise there exists a better strategy. Therefore,

() =l >,

The strategy in which the cheater Alice (the first player) plays with Rob (Alice’s imaginary
friend) the first board game, and conditioned on losing, plays with Bob (the second player)
the next rounds, has a losing probability £, ;.

Therefore

boo1 >y >4,
which contradicts the minimality of n. |

» Corollary 6. Suppose the goal of a player is to win at least 1-out-of-n board games played
sequentially. The optimal strategy is to play independently, by using the optimal cheating
strategy in each of the board games.

3.2 Playing sequentially circumvents any form of hedging

Let us consider a more general setting, in which the player’s goal is to maximize the expect-
ation of some target function; i.e., for a vector t = (t, € R),eq0,1)n, let
SVal (t) = max Z to-Pr(als)

S€Esequential strategies
ac{0,1}"

and similarly

PVal (t) = SGparalIlIellas)irategies E{gl}" ta Pr (a | S) ’
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In general there are no relations between the parallel and sequential values: in Ap-
pendix B we give a classical one round board game in which SVal (¢) > PVal (¢) and another
in which SVal (¢) < PVal(¢) .

» Definition 7. Given a two-outcome board game, let ¢; be the maximal probability of the
player to achieve the outcome i € {0,1}.

Note that always qo > 1 — ¢; and vice-versa. As we have seen before, the parallel value
of a two-outcome board game heavily depends on the details of the game. In contrast, the
sequential value is fully determined by g and ¢;.

In the following we will analyze the sequential value of the board game. For that we will
define the tree value function TVal, which as the following theorem shows, is equal to the
sequential value of the board game. For simplicity we will assume that for all i, G; = G,
but this can be easily extended for general {G;},__,.

» Definition 8. For a vector t = (t4)aeqo,1}» let ;- = top and t;” = t1p. The tree value with
parameters qq, g1 is defined as:

TVal (t) = max {qo TVal (t7) + (1 —qo) TVal (¢7) , ¢ TVal (¢7) + (1 — q1) TVal (¢7)},
and for ¢ € R, TVal(c) = c.

» Definition 9. Consider a quantum board game G played n times in sequence. A strategy
is said to be pure black box strategy if the strategy used in the i-th board game is fully
determined by the outcomes of the previous board games. For a set S of strategies for a
single board game G, an S-black-box strategy is a pure black-box strategy in which the
strategy at the i-th board game (conditioning on previous outcomes) is in S.

» Theorem 10. For every two-outcome board game (with parameters qo,q1), every n and
every t € R?", SVal (t) = TVal (t).

Furthermore, its value can be obtained by an {So, S1}-black-box strategy, where Sy (S1)
are any strategies that achieve outcomes 0 (1) with probability qo (q1).

So and S are greedy strategies that simply try to maximize the chance of achieving the
outcomes 0 and 1 respectively in the board game at hand. This theorem is in fact a gen-
eralization of Theorem 5 for 2-outcome board games: By choosing t, = 1 — 64,4 We get
that

SVal (t) = te - P S) = P S
& ( ) SEsequelg}ngstrategies Z e : (a | ) SEsequerfg‘?,letrategies Z r (a | )
a€e{0,1}" a#a’
= max 1—Pr(d |S)
Sé€sequential strategies
=1- min Pr(a'|S)=1-—m%(d). (5)

Séesequential strategies

By expanding the recursion, a simple inductive argument shows that for our choice of ¢,
TVal(t) =1—m(ay) ... -m(ay). (6)
By combining Theorem 10 and Eqs. (5) and (6), we reprove Theorem 5.

Proof of Theorem 10. First we show that SVal (¢) > TVal (¢), by explicitly constructing
an {Sp, S1}-black-box strategy with the value TVal (t). The strategy can be best explained
by defining a binary full tree with depth n. We fill the value of each node in the tree, from
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@) (@)1 (%) 1

@ © o O O O O O

Figure 1 TVal for t, = 1 — d4,011. The labels of the leaves represent all the possible outcomes
a of the values in the n = 3 board games, and the values on the right of each node are the TVal
of that node. Indeed t, = 1 for all a # 011. Note that m(0) = 1 — ¢ and m (1) = 1 — qo,
and for example TVal (01) = ¢o = 1 — m® (1), and TVal (0) = go + (1 —qo) go = 1 — m®2 (1) +
m (1) (1 —m (1)) = 1 — m (1) - m (1).

bottom to top. The leaves of the tree will have values t,. The values of a parent of two

children with values v, v~ will have the value:

max{qov" + (1 —qo)v ", q1v~ + (1 —q1) v}

It can be easily verified that the value of the root is TVal(t).

Consider the following strategy which applies Sy if gov + (1 —qo) v~ > qrv~ +
(1 —¢q1)v* and S; otherwise, and continues in the same fashion with respect to the left
child if the outcome is 0, and the right child if the outcome is 1. It can be proved by a
simple inductive argument that the expected value of this strategy is the value of the root
which is indeed TVal(¢). Clearly, this strategy is an {Sp, S1} black-box strategy.

Next we show that SVal (¢) < TVal(¢). This will be proven by induction on n — the
number of board games played. Clearly, for n = 1, the optimal strategy has the value
TVal(t). Let n be the minimal number, such that there exists some target ¢, for which
there is a strategy with value greater than TVal(¢) and denote the contradicting strategy
by S. We now introduce some notation. Let p’ = Pr(j in first game | using strategy 5),
p{ = Pr (i in the last n-1 games | j in the first game, using strategy S). Let 8™ be the set
of all strategies over n sequential board games.

_ X : . /
opt = max 22: t; Pr(i| using strategy S*)
ie2n

For j € {0,1}, let opt! = maxg/cgn—1 > icon—1 tji Pr (i | using strategy S”). Since the optim-
ization is over board games of length n — 1, by the induction hypothesis, opt® = TVal(t*),
and similarly opt' = TVal(t™). We know that

opt > qo - opt® + (1 — go) - opt" (7)
and similarly

opt > ¢y - opt" + (1 — q1) - opt’ (8)

4:9
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otherwise, opt = TVal(t). Assume WLOG that
q0 - opt’ + (1 — qo) - opt* > g1 - opt' + (1 — q1) - opt®

then we get that opt® (g0 — 1 + ¢1) > opt! (¢1 — 1 + go) hence opt® > opt! or (¢1 — 1+ qo) <
0, because gy > 1 — ¢q;. Since p? < g; we get that qo + ¢1 < 1 implies p° = qo and p' = ¢i.
We know that (for both the above cases)

opt =Yt p"p) + 70}
iean—1
Let us denote
=05 vt = > 7
ie2n—1 ican—1
hence opt = p®v? + plv! where p? < g;.
» Claim 11. v/ < opt/
Proof. The cheater can play himself (his honest self), according to his strategy, until he
gets j in the first board game and then continue to play the rest (n — 1) of the board games

against the real honest player. This is a valid strategy for n — 1 board games with value v7,
but since opt’ is an optimal such strategy, we get that v/ < opt?. |

Using the above claim,

opt = 0¥ + plot < pPopt® + plopt! = plopt? + (1 — po) opt!. 9)
By subtracting Eq. 9 from Eq. 7 we get that
0> opt’ (g0 — p°) +opt' (1 —qo — 1+ p") = (opt” —opt") (g0 — p°)

but either opt® > opt!, go > p° and we get 0 > 0 and contradiction, or p® = g hence again
we get 0 > 0 and contradiction. Altogether we now know that Eq. (7) is wrong, hence

opt = qo - opt” + (1—gqo)- opt! (10)

and by the hypothesis assumption we get that opt = TVal (¢). <

4 Open questions

Is there a formal connection between the setting discussed in the parallel repetition
Theorem (as was discussed in the introduction) and the setting that occurs in quantum
hedging?

How general is coin hedging? Does hedging (as in Definition 3) happen in every non-
trivial (e < %) coin flipping protocol? The same questions can be asked for perfect
hedging. We conjecture that the answer for these questions is positive.

In our example for coin hedging, we saw that the hedging player reduces the expected
number of wins: The cheater could guarantee that he will win one flip out of two, thus
getting an expectation 0.5 for winning, while the expectation of winning in independent
cheating is &~ 0.85. Does the expected ratio of wins in the perfect hedging of this protocol
scenario increase with n? In this protocol (or, perhaps, another coin flipping protocol),
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when flipping n coins in parallel and n — oo, can Bob guarantee winning ~ nP* coin
flipping out of n (Of course the expected number of parallel wins cannot be higher than
the expected number of independent wins (which is 3), as was proved formally in [21])?

This property cannot hold for every protocol. The reason is essentially that P* can
be artificially increased in a way which does not help the cheating player to achieve
perfect hedging. Consider some coin flipping protocol with P* = % (even though this
is impossible, for P* > % a simple adaptation of the following argument applies), then
a cheating Bob clearly cannot guarantee winning more than %n If we now alter the
protocol, such that in the last round of the protocol, with probability §, Alice asks Bob
what his outcome of the protocol was, and declares that as her outcome. This changes
P* to P¥ = % + %, but with probability 6™ these protocols coincide, and Bob cannot
guarantee more than %n wins, which is less than P*'n as required by the statement
above.

Can one define and show hedging for bit-commitment?

Acknowledgments. We thank Dorit Aharonov for the weak coin flipping protocol which
we used and other valuable discussions, and to the anonymous referees for their comments.
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A  Proof of Theorem 2

We will use the same method we use in other sections, which is based on semi-definite
programming (SDP). See, for example, [5]. We will follow the notations used in [2, 20]. We
will prove that the maximal cheating probability for both players is P* = P4 = Pg = cos> 3

If Alice is the cheater, a cheating strategy is described entirely by the one qubit state p

which she sends to Bob. Her winning probability is given by
1
Pr (Alice wins) = 3 Tr ((|0)0] 4 [+){(+]) p) -
Since

1 (@000 + D] )
e ST (((0)(0] + [4)(+]) p) = max e

= s (500001 + 14104 )

= COS2

7r
ga
the maximal cheating probability is Py = cos® Z.

Let us look at a cheating Bob (and an honest Alice). The initial density matrix is pg™ =
| ) (¢T| on Alice and the message registers A ® M. Then, Bob applies an operation to
the M qubit. Alice’s reduced density matrix cannot be changed due to Bob’s operation.

Hence our condition is Trpg pf*™ = pit = pgt = %I . Bob’s maximal cheating probability is
given by:
maximize Tr [(|1){(1] @ 0){0] + = ){~| @ [1)(1]) - p{*""] (11)

subject to  pfM =0
AM
P~ = “I)Jr ) ‘I’+‘
Tram pi™ = g
The maximization is justified because if the message qubit is 0, Alice measures her qubit
in the computational basis, and Bob wins if her outcome is 1; if the message qubit is 1, Alice

measures her qubit in the Hadamard basis, and Bob wins if her outcome is | —).
Solving this SDP gives

0.0732 0 0.1768 0

SAM 0 0.4268 0 —0.1768
1 0.1768 0 0.4268 0
0 —0.1768 0 0.0732

with a maximum value of ~ 0.8536.

It is possible to verify that indeed the value of the SDP is not only close, but is exactly
equal to cos2§ ~ 0.8536: One can see that Pg < cos? %, via Kitaev’s formalism to find
the Z matrix that bounds p (see [20, 2] for details). Alternatively, we can use the SDP

formulation of games as described in [22], which applies to the coin-flipping protocol (with

1
Bob as the player): the matrix Y = % ( 3 +1\/§ 143 > is dual-feasible, hence its trace

Tr[Y] =1 (24 v2) = cos® ¥ gives the correct bound.
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We now show an explicit strategy with winning probability cos? $» which shows that
Py > cos? 5> which completes the proof. Bob applies a —%’T rotation

3T giny 37 in & jus

U cos sin —=g sin 5 cos g
: 3T 3 s T

sin — =+ Ccos — 5 — cos sin ¢

us
8 8 8 8

0

on the M qubit, which transforms the state % (|00) +|11)) to:

IC) = % (10 (sin%|0> —COS%H)) F)® (Smgm +cos%|0>>>

= % ((singw) +C05g|1>> ® |0>> +

25 (G5 (i —cosB) 19— (cos T +smT) 1) o )

We simplify

1 1 1 V2 2
—(sinz—i-cosz):— 7(2—1—\/5):#:0053
V2 8 8 V2V2 2 8

) _ 2—2

and similarly, % (cos T —sinZ 5

— in T
3 3 = sin g. Hence,

I¢) = % ((singw) +cosg|1>) |0) — (Siﬂg|+> +C05g|_>> |1>) .

Bob measures the r.h.s. qubit in the computational basis, and sends the classical result to
Alice. His winning probability is thus cos? T. This completes the proof that P4 = Pg =

8
P* = cos? %.

B Relations between parallel and sequential board games

Here we show that the value of the sequential board games can be larger than the parallel
board games and vice-versa, depending on the target function, even in the classical setting.
Out standard example for a sequential superiority uses the target function: “must win
ezactly 1-out-of-2 board games”. This of course, gives the sequential run an advantage over
the parallel run, of knowing the outcomes of the previous board games. For that we define
a very simple one-round board game: the player chooses a bit b, which is sent to the board.

If b = 0, the player loses (with probability 1).

If b = 1, the player wins with probability %

» Lemma 12. In the above board game, SVal(t) > 3 > 1 = PVal(t).

Proof. The optimal winning probability in a single board game for an honest player is %
by always sending b = 1. Also note, that the player can force a loss with probability 1, by
sending b = 0. Assume that we are now playing two board games. If the board games are
played in sequence, then the optimal strategy will be to try and win the first board game
by sending b; = 1. With probability % he will win, then he can lose the second board game
by sending by = 0. If the player lost the first board game, he will try to win the second
board game by sending by = 1. Altogether, this strategy wins exactly once with probability
% + i = %, proving the first inequality.

Let us look at the four deterministic possibilities for the player when the two board
games are played in parallel. If he sends by = b; = 0, he then loses with probability 1. If he
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sends by # by , i.e. loses one of the board games and tries to win the other, then his winning
probability of exactly one board game is % If he sends by = b; = 1, i.e. trying to win
both, then his winning probability of exactly one board game is again % (because no matter
what the outcome of the first board game is, the second outcome must be different, and
this happens with probability %) Since every random strategy is a convex combination of
these deterministic strategies, every classical strategy will also have a winning probability of
at most %, which is inferior to the winning probability in the sequential setting. Naturally,
giving the player quantum powers, does not help him in this classical simple board game,

to achieve anything better. <

In the other direction, we give an example for a classical board game in which the parallel
setting, achieves better value than the classical one. Define a board game, in which the
board sends a bit a equally distributed, and then the player returns a bit b. If @ = 0, then
the player loses if b = 0, and if b = 1 then the player wins with probability p. If a = 1, then
the player wins if b = 0, and if b = 1 then the player loses with probability p. We think
of p to be of a parameter p < %. Our target function is the same as before — win ezactly
1-out-of-2 board games.

» Lemma 13. In the above board game, PVal(t) > 3 +2p (1 —p) > 1 + 1p = SVal(t).

Proof. In the parallel settings, the player gets the a1, as and only then sends by, bs, which
gives him the edge. If a; # as, his strategy is to send b; = 0,62 = 0 and he will win
exactly one board game out of the two. If a; = as then he will send by = by = 1 and
he will win exactly one of the board games with probability p (1 — p). Overall we see that
PVal(t) > 3 + 2p (1 —p). In the sequential setting, it does not matter what happened in
the first board game, as the second board game will determine the result (the outcome of
the second board game must be different than the first). With probability % the board will
send a good asg, resulting in the player winning with certainty exactly 1 out of the 2 board
games if they send b, = 0. With probability % the board will send a bad as, resulting in the
player winning with probability p exactly 1 out of the 2 board games if they send by = 1,
1

and doing so with probability 0 otherwise. In total we get that SVal(t) = 5 + %p. By taking

p < 3, we will get that P, < Py, (because then 5 +2p(1—p) > 5 + 3p). <

par

In the quantum setting, we already saw that parallel can achieve better value, in our coin
flipping example in section 2. We conclude that there is no general connection between the
value of the parallel setting and the sequential setting. In parallel, you know the rest of the
questions before giving an answer to question 1, while in sequence you know the outcomes
of all previous games before you have to give an answer. Either one might be beneficial,
depending on the situation.
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—— Abstract

We consider the problem of a particular kind of quantum correlation that arises in some two-party
games. In these games, one player is presented with a question they must answer, yielding an
outcome of either “win” or “lose”. Molina and Watrous [30] studied such a game that exhibited
a perfect form of hedging, where the risk of losing a first game can completely offset the corres-
ponding risk for a second game. This is a non-classical quantum phenomenon, and establishes
the impossibility of performing strong error-reduction for quantum interactive proof systems by
parallel repetition, unlike for classical interactive proof systems. We take a step in this article
towards a better understanding of the hedging phenomenon by giving a complete characterization
of when perfect hedging is possible for a natural generalization of the game in [30]. Exploring
in a different direction the subject of quantum hedging, and motivated by implementation con-
cerns regarding loss-tolerance, we also consider a variation of the protocol where the player who
receives the question can choose to restart the game rather than return an answer. We show that
in this setting there is no possible hedging for any game played with state spaces corresponding
to finite-dimensional complex Euclidean spaces.
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1 Overview and motivation

The interactions we study consist of parallel repetitions of a game played between players
Alice and Bob, also referred to as the verifier and prover respectively. The setting of the
game is:

1. Alice prepares a question, and sends this question to Bob.

2. Bob generates an answer, and sends it back to Alice.

3. Alice evaluates this answer and decides if Bob wins or loses.
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It is assumed that Bob has complete knowledge of Alice’s specification, including both the
method used to determine Alice’s question and the criteria that she uses to determine whether
Bob has won or lost the game.

Molina and Watrous [30] consider a specific instance of this setting where Alice sends
half of a 2-qubit Bell state % |00) + % |11) to Bob. Bob replies with a qubit and Alice
evaluates Bob’s answer by measuring his qubit and the second half of the Bell state against
the state cos(7/8)|00) +sin(w/8) |11). A victory for Bob corresponds to the outcome of Alice
measurement corresponding to cos(m/8)|00) + sin(w/8) [11). When Alice and Bob play two
repetitions of this game in parallel, the results in [30] show that there exists a strategy for Bob
that guarantees he wins at least one of the two repetitions with probability 1. However, when
the game is played once, the probability that Bob wins is at most cos(7/8)% ~ 0.8536. Playing
two repetitions in parallel leads then to a hedging phenomenon, where if Bob wants to decrease
his chance of losing both repetitions, he can do so by not playing each game independently
and optimally. This hedging is also perfect, in the sense that Bob can completely offset the
risk of losing both games.

This is a completely quantum phenomenon, with no classical counterpart. Indeed, when
classical information is considered, and for any game that fits the setting we study, it is
immediate to show that when Bob wants to win at least k& out of n parallel repetitions, it
is optimal for him to play independently (however, this is not the case when considering
multiple provers [18, 16, 34, 24, 8]). This establishes the non-triviality of the set of outcome
distributions that are possible to obtain from parallel repetition of the games that we
study, when compared to the classical case. In particular, it immediately illustrates that the
technique of parallel repetition cannot be used to trivially achieve strong error reduction for the
complexity class QIP(2), a class studied for example in [35, 42, 25, 23]. The quantum hedging
phenomenon is also an example where the quantum version of a game produces outcomes
unachievable by its classical counterpart. Most famously considered by Bell [6], this type of
violation has been observed in a number of game-like frameworks [13, 29, 32, 14, 9, 36, 15].

It is natural then to ask how general is the hedging phenomenon, both qualitatively and
quantitatively. A complete understanding of this question would allow us to characterize the
outcome distributions that can arise from Alice and Bob playing n parallel repetitions of a
prover-verifier game in our setting. Consequently, it could lead to a protocol for achieving
error reduction via parallel repetition for QIP(2) simpler than the one currently known [25].
The techniques used to achieve such an understanding could conceivably also extend to
the analysis of prover-verifier games involving further rounds of communication, and more
generally to other kinds of multi-party quantum interactions. This would lead to results
for the corresponding complexity classes (and likely also for their classical parallels) about
error reduction by parallel repetition. Taking a step towards such a complete understanding,
we consider in Section 3 a 2-parameter generalization of the game in [30], and characterize
when Bob can guarantee that he wins at least 1 out of n parallel repetitions, for every
n. We also give optimal strategies for Bob to win at least 1 out of n parallel repetitions,
both when perfect hedging is possible and not possible. We believe these findings are a
valuable stepping stone towards a more complete understanding of hedging behaviors for
fully arbitrary initial states, fully arbitrary quantum measurements, and k-out-of-n settings,
as well as highly non-trivial from a mathematical point of view. The formulas that we obtain
also open the door for connections between the hedging phenomenon and recent work [5]
involving generalizations of the PBR game [33], as we will discuss further in Section 5.

Exploring in a different direction the subject of quantum hedging, it also seems natural
to consider the possibility of implementing a game that exhibits quantum hedging using
existing quantum information processing devices. One possible choice would be to use
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optical quantum devices, but the immediate concern arises [38] of how to account for the
fact that photon losses will often occur, leading to a communication error between Alice
and Bob. Even if one chose another implementation method where communication is more

reliable, one would still need to consider the general fact that communication errors can occur.

More generally, the consideration of implementation inaccuracies is a standard direction
in which to extend results concerning quantum information protocols — see for example
recent work regarding loss-tolerant protocols for quantum coin-flipping [2] and QKD, [39] and
noise-tolerant protocols for quantum money [31], quantum coin-flipping [44] and quantum
randomness amplification [7].

Along this direction, we consider a loss-tolerant formalism in Section 4, and prove that
under our formalism quantum hedging is not possible. To model communication errors,
we assume that Alice cannot distinguish a communication error from Bob choosing not
to return an answer. Therefore, our formalism simply allows for the possibility that Bob
chooses not to return an answer, in which case the game is repeated. Bob choosing in our
formalism a random whether to return an answer or not would correspond to a genuine
disruption of communication, while Bob strategizing about when to return an answer would
correspond to Bob using communication errors as an excuse to avoid a losing outcome. Our
particular choice of framework can also be seen as adding postselection to two-round quantum
prover-verifier interactions. This addition of post-selection has been previously considered in
the case of single-party quantum computation [1, 37, 43, 28], but not to our knowledge in
the context of quantum prover-verifier interactions.

The techniques used to obtain our results in Section 4 are inspired by the techniques in
[17], which studies a particular case of quantum cloning. The connection between quantum
cloning and semidefinite programming was observed in [4], and has been used to obtain
results regarding quantum cloning (see the review in [10]). However, this is the first time to
our knowledge that this connection with semidefinite programming acts as a bridge to apply
ideas about optimal quantum cloning to the context of fully general two-round quantum
prover-verifier interactions.

Both of our results leave room for further progress. In particular, one can consider
hedging in a wider context than the setting in Section 3, and consider formalisms that model
communication errors in a different way than in Section 4. We give some suggestions in
Section 5 concerning corresponding choices for further exploration.

2 Notation

We will denote the set of binary strings with length n as {0,1}™. These strings will be
indexed from 0 to n — 1. Therefore, we will denote the n successive binary symbols or bits in
a € {0,1}" as ag,...an—1. Ar,Vr, and @ r refer to the logical AND, OR, and XOR of the
bits of r € {0,1}™, respectively, while |r| refers to its Hamming weight.

Vector spaces associated with a quantum system are defined as complex Euclidean spaces.
We denote these spaces by the capital script letters X', ), and Z. The dual * of a vector x
in a complex Euclidean vector space X will be the linear functional (i.e. the map X — C)
that maps y to (z,y). For a d-dimensional complex Euclidean space, we will often fix a
standard computational basis and, using bra-ket notation, address its elements and their
duals as {|0),...,|d—1)} and {{0],...,{d — 1|}, respectively. The encoding of the label
inside a bra or a ket will often be done in binary for ease of explanation.

The complex vector space of linear operators of the form A : X — ) is denoted by
L(X,Y). We write A € L(X) as a shorthand for A : X — X. The adjoint X* of an operator
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X € L(X) is the operator such that for all u,v € X, (u, Xv) = (X*u,v). An operator
H € L(X) is Hermitian if H = H*. We write Herm(X') to denote the set of all Hermitian
operators. The inner product (A, B) = Tr(AB) between two operators A, B € Herm(X) is
real and satisfies (A, B) = (B, A). If an operator P € Herm(X'), and all eigenvalues of P
are non-negative, then we call P positive semidefinite, and refer to all such operators as
P € Pos(X). For a Hermitian operator H, ||H|| denotes the operator norm of H, that is,
the largest absolute value of an eigenvalue. If for an operator p € Pos(X) it is the case that
Tr(p) = 1, then p is said to be a density operator, and is referred to as p € D(X). We adopt
the convention of writing Zx as opposed to Z to indicate that the identity is acting on the
space X when convenient to do so. We will define the vec : L(X,)) — X ® Y mapping to be
the one that takes yz* to z ® y, for x and y elements of the standard/computational basis
of X and Y. This can be seen as flattening a matrix into a vector. For any two operators
A,B € L(X,)Y), it will hold that (A, B) = (vec (4),vec (B)).

We also consider linear mappings of the form ® : L(X) — L(Y). The space of all
such mappings is denoted as T(X,)Y). For each ® € T (X,)), a unique adjoint mapping
o* € T (Y, X) is defined by the property that (Y, ®(X)) = (&*(Y), X) for all X € L(X)
Y € L(Y). Throughout this work, we define quantum states by the set of density operators
p € D(X), with X a complex Euclidean space. Associated with the space X one may
consider a register denoted X in which the state p is contained. We consider measurements
of a register X as being described by a set of positive semidefinite operators {P, : a € X}
indexed by a finite non-empty set ¥ of measurement outcomes which satisfies the constraint
> wes Pa = Ix. By performing a measurement on X in state p, the outcome a € ¥ results
with probability (P,, p). These measurements are known as POVMs. We can also consider
quantum states stored across n registers (X, Xa, -+, X,). We can describe the joint state of
those registers by a density operator 0 € D(X; ® -+ - ® X,,).

A linear mapping ® : L(X') — L(Y) is said to be completely positive if ® ® Tz is a map
that preserves positive semidefiniteness for every complex Euclidean space Z and ® is said
to be trace-preserving if Tr(®(X)) = Tr(X) for all X € L(X). We define a quantum channel
as a linear mapping ® : L(X) — L()) that is completely positive and trace preserving. A
channel transforms some state p stored in register X into the state ®(p) of another register Y.
The set of all channels between such two registers is denoted by C(X,Y), and is a compact
and convex set. Note that the channel corresponding to an unitary operator U is the one
that maps a quantum state o to UcU*.

For spaces X and ), one may define the Choi representation of an operator ® € T(X,)))
as J(®@) =32, ;@ (|9) (j]) ® |i) (j|, where J : T(X,Y) — L(Y ® X), and i and j iterate over
the computational basis for X'. Note that the mapping J is linear, bijective, and multiplicative
with respect to the tensor product. The Choi representation has a number of more complex
properties, three of which will be useful to us:

» Lemma 1.

1. The mapping ® is completely positive if and only if J(P) € Pos(Y @ X).
2. The mapping ® is trace preserving if and only if Try(J(®)) = T

3. ®(Z) =Trx [J(®) (Iy ® Z7)]

We refer the reader to [41] for the proof of Lemma 1 and further details on the notation.

3 Hedging to win 1 out of n parallel repetitions of a game

Let G denote the following game:
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Alice prepares the 2-qubit state p, = uqul € D(X ® Z) in registers (X, Z) where

Ue = a]00) + /1 —0a?|11) e X ® Z, (1)

for o € (0,1]. Alice sends register X to Bob.

2. Bob applies a channel ® € C(X,)) to the contents of X. This results in a state
o € D(Y ® Z), contained in registers (Y,Z). Register Y is sent back to Alice.

3. Alice performs a measurement on the state o. This measurement is {FPpg, P1 g} for
6 € [0,2m), with

Py =vgvy, Pog=1— Py,

vg = cos(6) |00) + sin() [11) e Y @ Z. (2)
An outcome of “0” or “1” denotes a losing or winning outcome for Bob, respectively.

One can imagine repeating the game G n times in parallel. This is denoted as G", and

illustrated in Figure 1. In this setting, Alice prepares n states pi.q,...,Pn,o in registers
((le Zl)) Y (Xn, Zn)) Where

Pla EDXI® Z1),...,pna € DX, ® Z,). (3)
Alice sends the registers (X1,...,X,) to Bob and he applies his quantum channel,
P, eC(M1®@ X, 1@ Q@ Vn). (4)

The resulting states are sent back to Alice and she performs a series of n projective measure-
ments with respect to the operators Fp g, P1 9. These give n outcomes of either 0 or 1, loss or
win. Since Bob’s actions are not required to respect the independence of the measurements,
they may cause correlations between the n measurement outcomes.

Indeed, in [30], Molina and Watrous analyzed G™ for n = 2 where o = 1/4/2 and 0 = 7/8,
and found that Bob wins one out of the two games with certainty if he applies a specific
correlated strategy. If on the other hand, Bob treated each repetition independently, it would
not be guaranteed that Bob would win at least one of the games.

We consider G" for any n > 1 and ask for what values of « and € is it true that Bob can
make sure to win with certainty at least one out of the n games in G™. Let p,, o,0(®,) € [0,1]
be the probability that Bob loses all n outcomes of G™ using the strategy defined by ®,,.
This is given by:

Pra,0(Pn) = <P§?§L7 (Pn ®71z,0--02,) <® Pm) > : (5)
=1

Let mp a9 € [0,1] be ming, pna,0(®n). We refer to a quantum channel ®,, that minimizes
Mp,a,0 &S an optimal strategy. That is, equal to the minimum probability with which Bob loses
each game over all choices of quantum channels ®,, of the form in (4). If m, o9 evaluates to
0, then there exists a ®,, that ensures Bob wins at least one game.

The quantity my, ¢ is expressible as the optimal value of a semidefinite program. Let
Qo,a,0 € Pos(Y; ® &;) be defined as

Qo,0,0 = Ly, ®V,.) (Poye) , (6)

where the mapping ¥, : L(Z) — L(&X) is defined by J(¥,_ ) = pa (the entry-wise complex
conjugate of p,). This makes Qg o9 a function of both Py ¢ and pq,.
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C D ZQ ()
P2, {Paz}
— N
C D Zl lﬁ
Pl,a {Pal}
— —

Figure 1 The parallel repetition G" of n copies of a game G of the type we study.

It follows from Lemma 1 of [30] that @ is positive semidefinite, and that for any channel
¢ : L(X) — L(Y), we have (Pyg, (2 ®Z) (pi,a)) = (Qo,, J(®)). This can be proved by
considering the case where p; , corresponds to a rank-1 operator that transforms a state of
the computational basis into another one, and then using the linearity properties of the inner
product (see Appendix A.1 for more details of this derivation). Putting this together with
facts 1 and 2 about the Choi representation in Lemma 1, and the bijective property of the
J(-) map, we obtain that the following primal and dual pair gives a semidefinite program to
compute My, o.9:

Mnp,qa,0: Primal problem

s . n
minimize: < 07a,9,X>

subject to:  Try, ..oy, (X) = Zx,0--0x,, (7)
X eEPosV X ®-Q@V, ®@X,).

Mp, 90 Dual problem

maximize: Tr(Y)
subject to: 7 (Zy, ..y, @Y) 1" < Q?Z,e’ (8)
Y e Herm(X) ® - - @ &y).

where 7 is a unitary permutation operator defined by the action
TP O QYUnRT1 @ RTp) =Y QT @ DYy @ Ty

forally; € Y1, ,yn € Vp and 1 € A1, ,x, € X,. Note that strong duality holds for
the above semidefinite program, by choosing the primal and dual feasible solutions (X,Y)
for the application of Slater’s theorem as a scalar multiple of the identity. The derivation to
obtain this semidefinite program is similar to that in [30], and previously in [22] and [21].
We point the reader to [3] for MATLAB code that solves SDPs (7) and (8), using the CVX
convex optimization package [20].
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Figure 2 72 o and 62, as a function of tan~! <
«

We present now for fixed n and « the range of 6 which characterizes the measurements for
which Bob can make sure he wins at least 1 parallel repetition in G™. That is, it characterizes
when is Bob able to perform perfect hedging. Furthermore, we present strategies that give
Bob an optimal probability to win at least 1 out of n games, both when Bob is able to
perform perfect hedging and when he is not.

» Theorem 2. Let
-1 1 1/n
0,0 = tan 12/ =1) ],
Q@
1 1
=1
Yn,a = tan < po i 1 (21/”_1>> )

where the trigonometric domain is restricted to [0,7/2]. If and only if Alice’s rank-1 projective
measurement { Py, P1} is parametrized by 0 € [0p, o, VYn.a), then there exists a strategy for Bob
to perform perfect hedging.

(9)

We see then that the angle 7/8 used for € in [30] corresponds to the lower bound

0, 4 Iz = /8 from Theorem 2, but also that perfect hedging can be attained for this setting

up to v, 2 = 37w /8. Note that as the number of games n increases, the size of this range
T2

increases. Moreover, for any choice of 6 in (0,7/2), there is an n large enough for perfect
hedging to be possible. As one can see in our plot of 8, , and 7, o, the cases where perfect
hedging are posssible are symmetric with respect to the case where the initial state and
the desired final state are the same (i.e., # = tan~'(v/1 — a2/a)). Note also that the size
of the range where perfect hedging is possible is minimized for § = 0 and 6 = 7/2, which
correspond to a standard basis measurement done by Alice.

The proof of Theorem 2 follows immediately from Lemma 5 and Lemma 6, stated below.

Theorem 2 results in the following corollary:

» Corollary 3. For a fized n, perfect hedging occurs for the largest range of 8 angles when
Alice initially prepares a maximally entangled state (that is, when o = %)

The proof for the corollary follows from directly maximizing v, o — 05, over all o, by
taking derivatives with respect to .. The corollary tells us then that the maximally entangled
represents an extremal case in our quantum hedging context. One might be able to use this
when trying to generalize our results, as we will further discuss in Section 5.
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In the following lemmas, we define an optimal choice for Bob of the channel ® that he
applies to the input he receives from Alice:

» Lemma 4. Let n > 2 be a positive integer, let o € (0,1], let 0y, o and vy o be angles defined
as in Theorem 2, and let

Ao= Y (DY) (e

re{0,1}n

Vr+or (10)
En= Y, (-1 r) (rl,
re{0,1}m™
be unitary operators that Bob applies as his strategy in G™. Then it holds that
Prasn. (An) =0=DPnan, . (En). (11)

This shows the existence of strategies {A,,,=,} for Bob at {6, a,Vn.«} that achieve a
value of 0 for the SDP (7). The next lemma proves that for all points within these two
bounds there exists such a strategy as well. Note that A,, and =Z,, do not depend on «. Also,
note that when n = 2, Bob’s unitary As on the two qubits that he receives is

1 0 0 0
0 -1 0 0

A=1g o 21 o | (12)
0 0 0 -1

which gives us the same strategy as in [30]. The proof of the lemma follows from observing
that the final state after Bob applies A,/ Z,, has zero overlap with the state corresponding
to Bob losing all the repetitions. The details of the derivation are included in Appendix A.2.

» Lemma 5. In the scenario where the projective measurements are parametrized by 0 €
[On.as Yn,al for On.o and Yo o defined as in Theorem 2, Bob can apply the strategy corresponding
to the following unitary operator to achieve perfect hedging for 1 out of n games:

n—1
(=00 O = I+ 3 D () e ) (7, a13)
i=1 re{0,1}"
|r|=1

where for a fized choice of |r| =i, the corresponding k, are (’:) complex numbers with the
following properties

80,00 +iy/1 = 85 o, for |(7)/2] values of 7,
80,0, — iy /1 =85 o, for | (%) /2] values of r,
—1 for the remaining values of v when (7;) is

odd and tan(0) > (/% —1,

o
1 for the remaining values of r when (?) is odd

and tan(f) < (/L — 1,

a2

where Sg.on s a real number € [—1,1] whose existence we guarantee in the proof of this
lemma.
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Since Bob has complete knowledge of the game, for any 6 € [0, ., Vn.o] Bob can apply the
strategy corresponding to the angle 0 selected by Alice. It is clear that the optimal strategy
for Bob is not unique, since our definition does not uniquely specify which coefficients k,
correspond to which values of r. This lemma is derived by performing a computation (similar
to the one for Lemma 4) that computes the overlap between the resulting state after Bob

applies the strategy we describe and the state corresponding to Bob losing all n repetitions.

Then, we consider the cases sp o, = —1 and sg ., = 1 and obtain through continuity
arguments that there must be a value of sg o, in the [—1,1] range that results in perfect
hedging. The details of the corresponding derivation are included in Appendix A.3.

We have thus far considered the case when perfect hedging is possible. The following result
deals with characterizing the scenario when perfect hedging is not possible, and provides a
corresponding strategy for Bob to play optimally.

» Lemma 6. Forn > 2 and for 6 € [0,0,,.0) U (Yn,a, 7/2] perfect hedging cannot occur, and
the strategies A, and =, mentioned in Lemma 4 are respective optimal strategies for Bob.

The proof of this lemma is obtained by using SDP complementary slackness [40] to obtain
a candidate solution for the dual SDP (8) with the same objective value as the chance of
achieving 1-out-of-n hedging for A,,/=,. Then, one can use a direct sum decomposition of

the matrices involved in the SDP constraint to prove the feasibility of this candidate solution.

The details of the corresponding calculations are available in Appendix A.4. Note that the
strategy Bob adopts is independent of the parameter 6, implying that when perfect hedging
is not possible the strategy is optimal regardless of the projective measurements chosen by
Alice.

It can also be observed from Lemma 5 and Lemma 6 that a unitary (and in fact, a
diagonal in the computational basis) strategy is always sufficient for Bob to win at least
once with optimal probability. Note that it intuitively makes sense that Bob’s strategy is a
diagonal unitary, since switching a |0) to a |1) or vice-versa on his side will produce a state
with no overlap with the target state cos()|00) + sin(f)|11).

4 (Lack of) Hedging in a Loss-Tolerant Prover-Verifier Model

We consider a variation of the prover-verifier setting where Bob has the choice to not respond

to Alice, in order to model communication errors, as described in Section 1. If Bob chooses

not to respond, and therefore Alice does not receive an answer, the game is repeated again,

and this goes on until an answer is returned by Bob. Bob might want to do this whenever

using his complete knowledge of the game, he can predict that an answer will result in Alice

obtaining a negative outcome in her measurement. Indeed, to see how this variation can

change the result of an interaction, consider the following game where Bob is always forced

to return an answer:

1. Alice prepares the maximally entangled state % |00) + % |11) and sends the second
qubit to Bob.

2. Bob responds by sending a qubit to Alice.

3. Alice ignores Bob’s answer, and measures the qubit she kept with respect to the projective
measurement { Py, P; }, where Py = |1) (1| and P, = |0) (0]

It is clear that the maximum probability for Bob to win the game is 50%. This follows
from the fact that the actions of Bob cannot alter the reduced state that Alice holds, and
the outcome of the interaction depends only on this state. However, the situation changes
drastically when Bob is allowed to return no answer in the second step. In that case, Bob

5:9
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can choose to perform a measurement using the computational basis on the qubit he receives.
If the measurement results in the outcome |0), corresponding to Pj, he will return an answer,
and otherwise he will not, and force a restart. The entanglement between the qubit that
Alice keeps and the one that Bob receives guarantees then that the outcome will always be
the successful one.

It seems clear then that giving Bob the choice to abort the protocol can have significant
changes on what optimal behaviors for Bob are like. This motivates the consideration of
whether any form of quantum hedging (perfect or not) is still possible in the “repetition
after communication error' setting for an arbitrary two-message quantum-verifier interaction
(described by an arbitrary finite-dimensional inital quantum state p prepared by Alice and
an arbitrary finite-dimensional POVM {P;} used to determine the interaction’s outcome.)
We ask in this context then whether it will be optimal for Bob to play each interaction
independently when trying to optimize his chance of winning at least k& out of n parallel
interactions.

To answer this question, we will assume in our analysis that Bob always has a nonzero
chance of winning a single interaction. If this were not the case, the question of whether
or not hedging occurs would be uninteresting. This is because in this case, the optimal
probability for Bob to win k out of n parallel repetitions would always be zero. To see why,
assume to the contrary that Bob can manage to win k£ > 0 out of n > 1 repetitions with
non-zero probability. Then, whenever Bob plays a single game with Alice, he could simulate
the input for n — 1 additional interactions, and since the possibility that he wins k > 0 of the
n games is greater than zero, and the situation is symmetrical, the possibility that he wins
the single “real” game is greater than zero as well, which contradicts our starting premise.

Furthermore, we need to specify how does the “repetition after communication error"
aspect of the framework interacts with the “repeating n interactions in parallel" aspect of the
framework. For simplicity, we will make in our model the assumption that whenever Alice
does not receive an answer to one out of n parallel interactions, she will restart all of the n
parallel interactions.

To start our analysis, we consider an intermediate setting where we allow Bob to not give
an answer, and Alice does not repeat the interaction when she doesn’t obtain an answer, and
instead counts that as a loss for Bob. This means that Bob can return a state with trace less
than one. Using the properties of the Choi representation, and following the same analysis as
in [30] and Section 3, the optimal probability for Bob of achieving outcome a is the value of

Primal problem

maximize: (Qq, X)
subject to:  Try(X) < Zy, (14)
X € Pos (Y ® X),

where @, is defined as in (6), starting from an arbitrary POVM {P;} and a state p. Without
loss of generality, we assume that Bob wants to achieve quantum hedging with respect to
outcome a, and group all other outcomes into a single outcome corresponding to Q1_g.
Now we take into account the fact that the interaction is repeated whenever an answer is
not received. To do this, it is enough to divide the objective function, which corresponds to
the probability of obtaining outcome a, by the probability that an answer is returned. This is
because we can ignore previous rounds of the interaction, since the repeated rounds occur in
series, and Alice acts independently between them. Indeed, the way in which previous rounds
would be taken into account would be with an additional input for Bob, corresponding to his
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memory after the previous rounds of the protocol. But the fact that there is no computational
restriction on Bob and no hidden information means that for any possible value of that input,
Bob could just simulate the previous rounds to generate it, so the additional memory input
is not needed, and we can ignore previous rounds.

Note that the division by the probability that Bob returns an answer would not be
possible if Bob just chose not to return an answer. However, that strategy can just be ignored
as a non-optimal one, since we are assuming Bob can win with non-zero probability.

The probability that an answer is returned is the trace of the state after Bob returns
an answer, which is a linear function of the variable X in SDP (14). In particular, the
probability is given by (E, X), where

=Y 0= Y G 0 %) (7) .

= (L) @ ¥,) Iygz = Iy ® Trz(p),

and the last step uses the third fact in Lemma 1. Note that since ), Q; = FE, Q. < E.

This tells us then how to modify the SDP (14) that describes Bob’s optimal probability
of obtaining outcome a in a way that takes into account our loss-tolerant framework. In
particular, we have that the equivalent of SDP (14) is now given by

Primal problem

(Qa, X)

maximize: -———

(B, X)
subject to:  Try(X) < Ty,
X ePos(Y@X),(E,X)#0.

(16)

We use now an analysis inspired by the one in [10] to obtain a more explicit form for
the value of this SDP. First, notice that scaling a solution X by a nonzero constant will
not change the value of the objective function. Since the partial trace operation preserves
positive semidefiniteness, we can then get rid of the Try(X) < Ty constraint:

Primal problem

oo Qe X)
maximize: ———

(B, X) (17)
subject to: X € Pos (Y ®@ X),(E,X) #0.

At this point, we can assume that X corresponds to a rank-one operator. To see why,
consider an X that corresponds to a sum of two solutions, X; and Xs. Then, the value of
the objective function will be

<Qa7X1> + <QaaX2> < max (<Qa;X1> <Qa7X2>)
<E’X1>+<E3X2> N <E7X1> ’ <E’X2> )

(18)

where the inequality follows from the fact that all values on the left-hand side are positive.
We obtain the problem

Primal problem
T*Qux
x*Ex (19)
subject to: €Y Q@ X, x*FEx # 0.

maximize:
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Note now that we can assume without loss of generality that an optimal solution x is
contained within the support of E. In this domain the Moore-Penrose pseudo-inverse of F,

E7, acts as a bijection. Therefore, we replace x by (E+)1/2:v in the objective function, and
obtain
Primal problem
o .r*(E+)l/2Qa(E+)l/2$
maximize:
T (20)

subject to: x €Y ® X,z L ker(E),

which has the value ||[(E+)Y2Q,(E*1)'/?||. We denote this as ||A]|.

When Bob wants to be successful in at least k out of n parallel interactions, with Alice
acting independently, one just needs to replace @, by the sum of tensor products of Q;’s
corresponding to at least k& outcomes equal to a. Remembering that the sum of all the @Q); is
equal to F, the same analysis that we performed for a single repetition gives us an optimal
probability of ||Ak |, with Ak, given by :

(21)

k—1
H(\/E-‘r)(@n <E®n _ Zﬂ-t (Q?fa_t ® Q?t)> ( /E+)®n
t=0

where 7;(x) is the sum of all (7

As an aside, note that one can assume that p corresponds to a pure state 1. This is
because given a protocol where Alice initially prepares a mixed state, we can easily modify it
so that Alice prepares a purification of that state instead, and just ignores the extra qubits
when performing the final measurement. Using this, we observe an interesting fact about this
model, which is that at least when one restricts Bob to perform a rank-one measurement,

) unique permutations of x.

the optimal success probability for Bob does not depend on the Schmidt coefficients of .
This is proved by letting the initial state that Alice holds be given by >, \/pia; ® b;, and
the state corresponding to Bob’s projection by >, \/gic; ® d;. Using algebraic manipulations
we obtain that the optimal probability of winning for Bob in a single parallel repetition is

H Z Vajab; did;braiar” @ cjep
i,5,k,0

: (22)

with no dependence on the p;.

This suggests that the example we gave at the beginning of this section might capture
all the additional power Bob has in this model. In particular, it suggests that an optimal
strategy for Bob might always consist of performing an orthogonal measurement on the
qubits he is given, and then refusing to give an answer except when he obtains the “best”
outcome.

As for our main subject of concern (quantum hedging), it turns out that in the model
we just described quantum hedging is not possible. One can interpret this as saying that
Bob is already so powerful in one single repetition (since he can choose not to return an
answer) than the power to entangle several answers does not add anything in comparison.
More precisely, we have the following theorem:

» Theorem 7. Consider a two-message prover-verifier interaction characterized by an
arbitrary initial state p and an arbitrary POVM {P;}, both on a finite number of qubits.
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Then, under the loss-tolerant setting described in this section, it is optimal for Bob to
play independently in order to maximize his chance of winning at least k out of n parallel
interactions.

The statement of the theorem results from a straightforward spectral analysis of the Ay
operator by induction on n and then k. The details of the corresponding computation are
included in Appendix A.5.

5 Discussion

We have analyzed generalizations of a specific prover-verifier interaction where the verifier
can use a quantum hedging strategy to win at least one of n parallel repetitions with a higher
probability than what would have been possible playing each game independently. This
interesting phenomenon was originally described in [30], where the authors illustrated an
explicit example of perfect hedging when two repetitions of the game were carried out. It
was previously unknown how the perfect hedging phenomenon generalizes to the case when
n repetitions of the game are performed. We resolved this question for a generalization of
the game in [30], and provided strategies for Bob that allow him to achieve perfect hedging
whenever it is possible.

We also analyzed a variant of this setting where Bob is not obligated to return an answer
to Alice. In a practical sense, Bob’s refusal to respond to Alice can be viewed in terms of
an experimental setup where the lack of a response could correspond to a communication
error [38]. This consideration led to a different semidefinite program that characterized the
interaction between Alice and Bob. We then used this SDP (16) to ask whether or not Bob
still had the ability to take advantage of hedging behavior, with a negative answer.

While we have considered this hedging behavior in a number of settings, there are still
many questions remaining. As mentioned, we have characterized the conditions that allow
Bob to win 1 out of n repetitions in a framework that generalizes the game in [30]. However,
it still remains open to determine the conditions under which Bob can always win at least
k out of n repetitions for some k£ > 1. It would be interesting to determine the threshold
of k for which perfect hedging occurs, and to also provide a characterization in regards to
the strategy that Bob uses to achieve this result. Running numerical instances for higher
values of k and n using a simple formulation in CVX [20] quickly becomes computationally
infeasible, as can be observed from the software we have provided in [3]. It is possible that
this code could be optimized to consider further cases, leading to conjectures regarding the
behavior for arbitrary k& and n that could be then proved analytically. Based on our current

numerical evidence, it is possible that Bob cannot perfectly hedge more than k& = n/2 games.

Note also that when k& < n/2 one can design a strategy for the goal of winning k out of
n repetitions by dividing the n parallel repetitions into several smaller groups, and then
using the strategies described in this paper in order to always win at least one repetition
in each group. It is left as an open question (whose solution we believe to be a significant
task) whether the range of parameters in which the resulting strategy always wins k out of n
repetitions is the optimal one. Motivated by our results in Corollary 3, one could also look
into the subject of reducibility between different games in our framework, asking for example
whether there is a procedure with an intuitive operational description that transforms a game
with an arbitrary shared initial state between Alice and Bob to one where the initial shared
state is now maximally entangled, while the possibilities of achieving k-out-of-n hedging
remains the same.
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It is also worth noting that the problem of conclusive state exclusion, which was recently
considered in [5], seems to be connected to the interaction we have analyzed in this work. In
this problem, Alice prepares a mixed state from a given distribution and sends it to Bob, and
for Bob to win, he has to accurately discard at least one of the possible options. In [5] the
PBR game, originally formulated in [33], was analyzed in terms of an semidefinite program
using the conclusive state exclusion framework. Some of the formulas we obtain in Section 3
are similar to the ones [5] derive in their analysis of the PBR game, specifically equations
(9) and (10). Looking at the SDPs involved in their work and in ours, it seems clear that
the similarity arises from the fact that diagonal unitaries happen to be optimal for hedging.
The fact that they are optimal means that the optimization problem we examine in SDP
(7) is equivalent to that of optimizing along complex vectors where each entry of the vector
is a unit. Then, to establish the connection with the PBR setting, one would establish an
equivalence between these types of vectors and highly symmetrical projective measurements
like those obtained as optimal solutions in the corresponding PBR state exclusion setting.
However, in a setting with initial states outside the «|00) 4+ v/1 — o2 |11) family we consider
in Section 3, there is no reason why the optimal channel for winning 1 out of n parallel
interactions should correspond to a diagonal unitary. It remains then to see whether any
similar connections can be established between such a setting and a state exclusion setting. It
seems plausible that further work clarifying these connections could be used to apply existing
results concerning the conclusive state exclusion framework to the hedging framework, and
vice versa.

One could also further consider the setting in which protocol errors are considered. Here,
we have assumed that Bob can delay returning an answer for as many iterations of the
protocol as he desires. An obvious follow-up question then is to determine whether an
advantage from hedging behavior is possible when this is not the case. One might restrain
Bob to behaviors where on average he will return an answer within a fixed number of
iterations, or introduce constraints be of the form “After X iterations, Bob’s probability of
having return an answer must be at least equal to Y”. A special case of those constraints
that might be particularly interesting is when Bob is required to return an answer within
a fixed number of iterations. We could also modify the way in which the “repeating after
failure" and “repeating in parallel" frameworks interact. In particular, we could have Alice
repeat only a subset of interactions if answers corresponding to the other interactions have
been obtained from Bob.

Note that when trying to analyze more general models (in both the ideal and loss-tolerant
cases) along the lines described in this section, it might be fruitful to look into whether it is
possible to again use ideas from the quantum cloning literature, as we did here in Section 4.
It is possible as well that progress can be made using representation theory tools to simplify
or avoid the analysis of semidefinite programs, as done for example in [19, 11, 12, 27].
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A Mathematical derivations

A.1 Verification of procedure to group the starting state and the final
measurement into a single variable

Consider first the case where we have a matrix A € L(X ® Z) that corresponds to a rank-1
operator that transforms a state of the computational basis into another one. Let it be equal
to |a)(c| ® |b){d|, with |a)(c| € L(X), |b)(d| € L(Z). The channel ¥4 : L(Z) — L(X) such
that J(W,4) = A is then the one that maps |b)(d| € L(Z) to |a)(c| € L(X), and everything
else in the computational basis for L(Z) to 0.

Consider now an operator M € L ()Y ® Z), and a channel ® : L(X) — L(Y). We want to
verify that

(M, (2®I)(A) = (ZT©Va) (M), J(®)). (23)

To do so, consider a computational basis decomposition M =3, .\ m; j k() (j| @ [k) (1],
with [2)(j] € L(}), |k){l| € L(Z). Then, the left hand side of (23) is equal to

< Y migaald) (] @ k)1, 2(la)(c]) © |b><dl> = <Z mi,j,b,d|i><j|7¢)(|a><c)>a

i,9,k,1 .3

and the right hand side of (23) is equal to

<Zmi7j,b7d|i> (] @ |a)(cl, J(<I>)>

.3

- <Zmi,j,b,d|i><j|,q)(a><c|)> ,

<(I®‘1/A) > migaralid (il ® k) 7J(‘1>)>

.9,k

so (23) holds.

(23) does extend by linearity to any choice of A € L(X ® Z). Indeed, assume that it
holds for A, B € L(X ® Z), and consider a linear combination Ay A + AgB, with A4, Ag € C.
Then, the left hand side of (23) will be given by

(M,(®@T)(AaA+ ApB)) = Aa (M, (®®T) (A)) + Ap (M, (® ® T) (B))
=M ((Z@Wa) (M), J(®)) + Ap (Z® Vp) (M), ] (D))
=AM (Z@Va)(M)+Ap(T®@¥g)(M),J(D)).

We want to prove then that
M (Z@W4) (M) +Ap (Z@TUp) (M) = (Z® U, a4rs5) (M).

To do so, we use the third property of the Choi representation introduced in Lemma 1,
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and express Aa (Z® W) (M) + A (Z® Vp) (M) as

A Trygz (J(Tny)y @ Va)(Trgz @ MT)) +

A Trygz (J(Zy) © V) (Zxgz @ MT))
=Trygz (A (Tuiy) © Ya) + AJ (Tuy) © Up)) (Txgz @ MT))
=Trygz ((J(Zuy)) ® AaA+ J(Tuy)) ® AB) (Txez @ M7))
=Tryez ((/(Try)) ® (Aad +AgB)) (Txez @ MT))
=(Z®¥Yr,a+2r5B) (M).

A.2 Derivation for Lemma 4

Proof. Given that n parallel repetitions of the game are considered, our claim states that
Bob will win at least one out of the n repetitions if he adopts A,, as his strategy when
the projective measurement made by Alice corresponds to the parameter 6,, ,. A similar
argument also holds for Z,, at the corresponding angle v, . We prove this explicitly for
the strategy A, , and the other case follows using the same argument. The proof of this
lemma uses a technique of conditioning where we consider the resulting state conditioned
on Bob obtaining a losing outcome in the first projective measurement of Alice, and the
corresponding probability for such an outcome. Then, we generalize this procedure to the
rest of the parallel repetitions. To conclude the proof, we set the probability of the “all-losing
state" at the end to zero, which allows us to solve for 6 in the final equation.
First, let us define the pure states:

vg = cos() |00) + sin() |11), sg = |01),

. (24)
wy = sin(0) [00) — cos(9) |11), t9 =]10),

where we recall from Section 3 that vg € Y ® Z is the state which corresponds to the winning
projective measurement outcome, and wy, Sg, and tg € Y ® Z are the states that correspond
to the losing projective measurement. Essentially, Bob is trying then to transform the state
prepared by Alice to something as close as possible to vy, while restricted to operating on
one half on the state.

Let A,, be the operator defined as

Au= D (DY, (25)

re{0,1}m

A, be the similar operator

A=Y DT (26)

re{0,1}n
and define the vector &, as
n—1 9
= Y, @al = (1-0?)" faiai). (27)
a€{0,1}m i=0

We run now through the parallel repetition of n copies of the game. Since the initial shared
state is u®™ = (a |00) + v1 — a2 |11>)®n, the state after Bob applies his channel (acting on
his qubits for all of the n parallel repetitions) is

fg = (A ® IZ1®~--®ZW,) Kn (28)
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We shall condition now on Bob losing the first out of n parallel repetitions. It should be
noted that since Alice starts with the entangled state u®™ and Bob performs a unitary
diagonal operation, the states sy and ty in (24) do not contribute to the losing projective
measurement outcome. Once we condition on Bob losing the first game, the resulting state
is then a normalization of

fi,e = (wpwj ®T) foy
=wp ® asin(d) (A,_, ® Iz,¢.-02,) Kn-1

+wy®@V1—a?cos(f) (A1 ®Zz,8.-92,) Fn-1, (29)

with the associated probability being (f, 5)*f4.o-

Generalizing this to Bob losing all n games, one can observe that the —1’s for the cos(6)
term in wy cancel the negative terms from the (—1)697' term in A,,, as happens to make
the last line of (29) have a positive coefficient. Taking into account the negative term from
(=D in Ay, (29) generalizes then to:

o = (we)®" (a” sin(0)™ 4+ n(a™ 'v1 - a?)sin(0)" *cos(f) + . ..
+n(a(l — a®) "= D72) cos(6)" ' sin(6) — (1 - o®)"/? cos(e)”) (30)
— (wg)®" ((a sin(6) + v/1 — a2 cos(6))" — 2(1 — a2)™/2 cos(e)n) . (31)

In order for Bob to ensure he wins at least 1 out of the n games with certainty, we require

that ‘ = 0, which implies:

o0
(asin(6) + /1 — a2 cos(0))" — 2(1 — a?)™/2 cos(6)™ = 0. (32)

This implies that for the angle 6,, o, = tan™" (1 / é -1 (21/" — 1) ), the strategy corres-
ponding to A,, gives us a perfect hedging strategy. Following the same procedure, using the
strategy corresponding to =,, yields the similar condition that:

(asin(f) + V1 — a2 cos(h))™ — 2a™ sin(9)" = 0, (33)

giving us as a solution 7, o = tan~? ( L1 ( 1 )) <

[e3

A.3 Derivation for Lemma 5

Proof. As in the previous proof, to win at least 1 out of n games, Bob needs to avoid the
outcome corresponding to the state (sin(6)]00) — cos(6)[11))®" (other states for the losing
outcome can be ignored since Bob’s strategy corresponds to a diagonal matrix). Let us now
define a matrix

D= Z (=D sin(0)" 1" cos(0)!)r) (r|, (34)

re{0,1}n

such that (sin(#) |00) — cos(6)|11))®™ = vec (D). For convenience, we denote A = tan(f),
and rewrite D as

D = cos(0)" Z (*1)‘T‘>\nflr‘|7"><7"|- (35)

re{0,1}n
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We also introduce an operator

F= Y (1—a®)l2an Il ), (36)

re{0,1}n

such that u®™ = vec (F), where u,, is again the pure state o |00) + /1 — a2 |11) shared by
Alice and Bob at the beginning of a single repetition of the protocol.

From our construction the unitary U that Bob applies in Lemma 5 to his portion of the
entangled state u®™ is

OO - 4SS S (1 ) . (37)
i= 176\5-?:1;"

The state that Alice holds before measurement is then (U ® Zz,  )Ju®™. We analyze how
successful the application of this channel would be to avoid (sin(#) |00) —cos(6) |11))®™. Upon
explicit computation of the formula (vec (D), (U ® Zz, , )vec(F')), and using repeatedly the
fact that vec (V) = (V ®Z)vec (Z), we obtain (vec (D), vec (UF)), which is equal to (D,UF)
by the properties of the vec operator, resulting in the following expression:

(D,UF) = Tr (-1 N0 {0+ (1= a2)" (-1 417y (1

+ z_: Z (71)nkr(1 o a2)i/2an7i/\n7i ‘,’,> <T|)

i=1 re{0,1}"
|r|=1

(\/ —1> 17)(1"|

+Z > k(,/ 1) A" )

i=1 re{0,1}"
Ir|=i

— ( )'rl ?’L’I\r )\TL|077, 07L| _

N A”—<\/: ) +Z{z:}k (ﬁ)x
Ir|=i

n n—1
1 )

=1 re{0,1}"
-1
1
where A\, = A - ( 2—1) .
«

|r|=i
1
Note that for the range of # we are considering, it holds that 21/ —1 < X,

— 21/n _
Note as well that from our choice of k,, for all ¢ we have that Im (Zre{O,l}" kr)\zi> =0,

|r|=1
and therefore the imaginary part of (38) is equal to 0. It then suffices to prove that for
any choice of A\, and n, there exists an sgq,n, € [—1,1] such that, when plugged into the
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definition of k, in the statement of Lemma 5 we have

n—1
A =1+ > Re(k)Ar " =0. (39)
i=1 re{0,1}"
|r|=1
Now, as the left hand side of (39) is an affine function of sg  , Wwith a positive linear
coefficient, to prove the existence of such an sg , n, it suffices to prove that the left hand side
of (39)) <0 when sg o, = —1, and that the left hand side of (39) > 0 when sg o, = 1.

We look first into the case when s = —1. Then, when 1 < )\, < T 7 it holds that:

20n 1
n—1 n—1
A =1+ > Re(k) A =0 —1-) (nii)xg—i
i=1re{0,1}" i=1
ri=i o |
:2)\2—)\3—1—; <n_i>)\g"
=2\ — (14 X)", (40)
1

which is < 0 whenever \, < . When 2Y/" — 1 < A, < 1, that the left hans side

- 2l/n 1
of (39) < 0 follows from two simple facts. First, the fact that A7 < 1,s0 A» —1 < 0. Second,

the fact that for each ) .01y~ Re (k) A"~ term, > refo,13n Re (k) < —(7;) +1<0.

|r|=i |r|=i

We look now into the case when s = 1. Then, when 21/m _ 1 < )\, < 1 it holds that:

n—1 n—1

. n .

A1 n—i _ \n _ n—i

n + E E Re (k) AL AL -1+ E <n B Z) AL
i=1 re{0,1}" i=1

|r|=i

n—1
=242 +14 ) (nii)Agi

i=1
=24 (14X)", (41)
1
which is > 0 whenever A\, > 2" — 1. When 1 < )\, < STV that the left hand side of

(39) > 0 follows from two simple facts. First, the fact that A7 > 1. Second, the fact that for
each " (0,13 Re(ky )AL~ term, it is the case that Y ,c(0,13» Re(ky) > (7) — 1. <

7
Ir|=i |r|=1

A.4 Derivation for Lemma 6

Proof. We will consider here the case where 6 < 8, . The other case proceeds similarly.
Remember first that we characterized the chance of achieve 1-out-of-n hedging by the
following SDP program in Section 3:

5:21

TQC 2017



5:22

Quantum Hedging in Two-Round Prover-Verifier Interactions

Mp,a,9: Primal problem

minimize: < 32)9,X>
subject to:  Try,g...ey, (X) =Tx, 201, (42)
X ePosV X1 Q- @V QX,).

Mnp,a,0: Dual problem

maximize: Tr(Y)
subject to: 7 (Zy,g..gy, @Y )71 < Q?Zﬁ, (43)
Y € Herm(X) @ - - @ X,).

Then, to prove that perfect hedging is not possible when 6 < 6, ., we prove the feasibility
in the dual SDP (43) of an operator Y with positive objective value. This operator is obtained
from applying complementary slackness conditions to the primal solution corresponding to
A,,. Therefore, it has value for the dual equal to the value in the primal SDP (42) for the
solution corresponding to A,,. By weak duality, its feasibility proves then the optimality of
A, when 6 < 6, .

To prove the feasibility of Y, we will express Q?Zﬁ — 7 (Zy, @y, ®Y) 7" as a direct
sum of smaller matrices. This reduces the question about feasibility of Y to a question about
the positive-semidefiniteness of these smaller matrices. Each of these smaller matrices will
have all proper leading principal minors be positive semi-definite, so by Sylvester’s criterion
it will suffice to check that their determinant is non-negative. We will then obtain a closed
formula for these determinants, and prove that they are indeed non-negative.

We will first consider the case with a =1/ \/5, and then give an overview of the small
changes involved in adapting the proof to other values of .. To simplify our argument, we
will incur in a bit of notation abuse in this section, and omit the permutation operators in the
definition of the dual SDP (43) that remind us that matrices at the sides of a < inequality
must have their entries reordered to make the spaces on which they are defined be in the
same order at both sides of the inequality.

A.4.1 Study of Q?T/\/ﬁe

Q0,00 € Pos(X ® Y) is given by |1/J(1)> <wé| + W%) <1/18} + |wg> <¢S’|, where the ’¢6> are
defined as

|¥§) = asin(6) |00) — /1 — a?cos(6) |11),
|45) = al01), (44)
[v5) = V1—a210).

This follows from considering the definition of P ¢ given in Section 3, and observing that the

operator ¥, satisfying J(¥, ) = uqu}, (with uo = a|00) + /1 — a?|11) the initial state
shared between Alice and Bob) maps a state o € D (Z) to («|0)(0]++v/'1 — «?|1)(1])o(|0)(0]+
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V1 —a2|1)(1]). We can then write ?irll/ﬁ,@ as
?,711/\/5,9 = (;) ((sin(G) |00) — cos(8) |11))(sin(#) (00| — cos(9) (11])
+(01)(01] + |10><10|)®n (45)

n n—1
= (;) Z |a> ‘b> <C| <d| H (6Ci71*di6aixci5bi7di
=0

a,b,c,de{0,1}

+ a; b:0c;.d; (5%1,61. (—sin(f) cos(0)) + da;.c;0a; 1 (;08(9)2

+ 6u, 00,0 sin(0)2))

n n—1
= (3) X e X W@ (uanbo-adnt
1=0

a,ce{0,1}" b,de{0,1}»
Sa; b:0c;.d; (5%17@ (—sin(@) cos(0)) + da;.c;0a; 1 cos(&)2

N S sin(9)2)) . (46)

The key insight to go ahead with the proof is to notice that this matrix can be written as
a direct sum of 3™ smaller matrices. Indeed, observe that (45) can be equivalently written as

) 1 sin(6) |00) — cos(8) |11), if w; =0
27 Z ® |¢w1><1/1w7 , where |1/)w1> = |01>7 ifw; =1
we{0,1,2} i=0 |10), if w; =2

(47)

Then, the coefficient for each |a)(c| ® |b)(d| term in the summation in (46) will receive
contribution from at most one of the elements in (47). This element will be the one with

2 if (a;, b)) = (1,0)

Since this only depends on |ab), all elements on the same row of Q®"

0,1/v2,0
same term in (47). As each row of Qgg”l’ V3.0 has at least one non-zero term, (47) implies then

Qn
0,1/v2,0

come from the

a decomposition @) into a direct sum of smaller matrices, each of them with rank 1.

We can then identify each of these matrices by the corresponding choice of w in (47).

n

We will do so by writing them as ?1/\@ e(w). We denote the number of Os, 1s and 2s in

w by no(w), ni(w) and ne(w), respectively. Also, note that there will be 3™ matrices in

our decomposition, with the dimension of Q?’f V3 ,(w) being given by 2m0(w) - Also, note

that the number of matrices of size 2* is given by (7)2"~*. This corresponds to choosing on
which k positions w; = 0, and what is the value of w; for the other ones.

It will be convenient later to have a formula for the restriction to the diagonal of
Q?);L/ﬁﬁ (w). Using the description in (47), we have that it is given by

(5) X stww) )t ]S (18)

w' €M, C{0,1}"
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My ={0,1}
where M, is given by the cartesian product XZ:Ol M,,, with ¢ M; = {0} ,
M, = {1}
g(0,0) = sin?(0)
— o2 T
g(2,1) =1

Note that by definition of M,,, it is not necessary to define g(w;, w;}) for values of (w;,wy)
not included in our definition of g.

A.4.2 Study of our candidate for Y in the o = 1/\/§ case

We define now our candidate solution Y for the dual problem, given by

1 1 on 1 on
Y =—¢ ((\/5 sin(6) |0) (0] + ﬁcos(e) [1) <1|) -2 (\/5 cos(f) |1) (1|> ) . (49)

n/2
1
where € is a value > 0 given by 3 (2 cos(0)™ — (cos() +sin(f))™). Note that the

definition of Hn’l /v implies that this value is positive indeed for 6 < Qn’l N2 We can then
write Y as

1\"/?

= sin(0)™~ 12l cos(8)!*l  for a # 1™
Z Ao |@) (a] , where A\, = 2"/2 (50)
a€{0,1}n € <2) cos(0)" fora=1"

Note that its trace (i.e., its value for the dual program) is given by

n/2
— (;) 6((sin(9) + cos(6))" — 2008(0)"), (51)
which will again be positive for 6 <0, , I3 by definition of 6, , N2

This Y has been obtained from the strategy A,, in Lemma 4, and its feasibility proves the
optimality of A,, for 6 < 0,1 I3 This is an example of complementary slackness behavior,
and follows from an observation [40] that given a feasible solution X to the primal SDP (42),
Try1®..4®yn(Qg§,Z79X) is an operator with the same objective value for the dual SDP (43).
Furthermore, Try, g...gy, (QE?Z’@X ) satisfies the feasibility constraints of the dual if and
only if X represents an optimal solution to the primal. Therefore, after we experimentally
observed that A,, seemed to be optimal for § < 6,, , to obtain our proposed Y we computed
the corresponding value of Try, g...gy, (Q?’f v ,X). X is given in this computation by the
primal solution that represents the channel for the unitary in A,,,

X= Y i) (jj| (-1 DD, (52)

i,j€{0,1}n

A.4.3 Feasibility of Y in the a = 1/+/2 case

We want to prove that Y is feasible - that is to say, Q?’f/ﬁ 0 —Y®Z > 0. Since Y is diagonal,

Rn

01/vE0 corresponds to a direct sum decomposition of Y.

the direct sum decomposition of @
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Since positive semidefiniteness is preserved by the direct sum operator, it is then enough to
prove that each of the S, = ((?Tf/f ,(w) — (Y ® I)(w) matrices are positive semidefinite,

where (Y ® Z)(w) denotes Y ® Z restricted to the rows/columns of QO a0 assigned to

Qn
0,1/V2, 9( w)-
Consider first the largest of these matrices. This will be So», with size 2”. Using (47),

we have that it is given by

n—1

Son = (;)” Z laa) (cc| (H (5%,1,@ - —sin(6) cos(6)+

a,ce{0,1}" =0
Sasei0a;.1€08(0)% + 0a, ¢, 0a, 0 5111(9)2) - Z"Aa).

For example, for n = 2, Syp is given by

sin(0)* — 4 oo —sin(#)3 cos(6) —sin(#)3 cos(6) sin(#)? cos(6)?
1 [ —sin(0)? cos() sin(f)* cos(6)? — 4\ sin(#)? cos(6)? —sin(#) cos(6)3
4 | —sin(6)3 cos(0) sin(6)? cos(0)? sin()? cos(0)? — 4\19  —sin(f) cos(9)3

sin(6)? cos()? — sin(#) cos(6)3 —sin(#) cos(6)3 cos(0)t — 4Aq;

Consider now that since QO vz >0, and for a # 1™, A\, < 0, the first 2™ — 1 principal
minors of So» are > 0. By Sylvester’s criterion, to prove that Sg» > 0, it suffices then to
prove that det(Spn) > 0. Note that det(Spn) is a polynomial in e. This polynomial has all
the coefficients below the one for ¢2"~! equal to 0. This is because Q?’ll/ﬁ ,(0") has rank 1 -
therefore, each minor of it with at least two rows will have determinant eqﬁal to zero. Using
this, and going through the determinant formula, we see that det(Sp») is given by

" A
2" —1(_1)2" -1 2 2la| gi 1 (g)2(n—lal) b
€ (-1) E (2) cos(0)“1 sin () I I -

ac{0,1}" be{0,1}"
b#a
2" 2" Aa
o R GV [ B (53)
ac{0,1}n
1 n
(2) cos(0)?1%l sin(9)2(n~lal) N
_2n-1 a
=€ €— Z SWE H - (54)
ac{0,1}n ac{0,1}
. 1 n/2 1 n/2 A
=" et Z <2) cos(8)1% sin(g)n 1l — 2 <2) cos(0)" H ?a (55)
ac{0,1}n ae{0,1}m
" >\a .
Since all of the )\, /e except the one for 1™ are negative, we have that ¢* ! H — is
a€{0,1}" €
negative whenever € > 0. Therefore,
det(S()'rL70'rt) Z 0 <~ (56)
1 n/2 1 n/2
€+ Z (2) cos(0)1% sin()" el — 2 (2) cos(0)" <0 — (57)

ac{0,1}"

n/2
e< (;) (2(cos(0))™ — (cos(8) +sin(6))") , (58)
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which is true by definition of e. We have then that our proposed feasible solution Y
produces a positive-semidefinite So». To verify the feasibility of Y, it remains to prove the
positive-semidefiniteness of the rest of the S,,.

To do so, consider an arbitrary S,,, w € {0,1,2}"™ — {0}, with a corresponding M,,, as
defined in (48). Note that M, is the set of indices such that \; appears in the diagonal
of Sy, and that that each \; appears in the diagonal of S,, at most once, as we can see
from the expression in (48). If 1™ ¢ M,,, then S, is trivially positive-semidefinite, since it is
obtained by adding a positive-semidefinite diagonal matrix Y (w) to a positive-semidefinite

6@71’ 3 e(w). Otherwise, our appeal to Sylvester’s criterion from the 0™ case applies
again, and it is enough to prove that det(S,,) > 0. Also, since Q?’f/ﬁ 0
argument that det(S,,) is a polynomial of minimum degree |M,,| — 1 applies again.

Then, using (48), we have that det(S,,) is given by

g (7 A (oo (1) 3= s
<CGHMw 6)( (2> dezM: Aafe ) (59)

Using the recursive definition of M, in (48), and realizing that 1* € M,, implies that
ny(w) = 0, we have that

g(w,d) 1\"/? . 1o (w 1 nz(w)
W = (2> (sin() + cos(#))mo ™) (cos(ﬂ)) . (60)

matrix @

(w) has rank 1, our

de M.,

Now, we have that

< sin(f) 4 cos(f) <= < tan(d) + 1 (61)

b
cos(0)?
= tan(f)? < tan(d) <= 0 <7/4 (62)

cos(6)

Since we are looking at the range 0 <6, ,, 5 < /4, and ng(w) + nz(w) = n, we have that

n2(w)
cosl(@> < (sin(f) 4 cos(0))™. (63)

(sin(0) + cOs(g))no(w) <

Therefore, since ny(w) < n,

" w n/2
@ 2 gL}?Z@ (2(cos(8))" — (cos(6) + sin(6))") (64

deM,,

We see then that any e that makes det(Sp») non-negative will make the determinant of the
other S,, non-negative as well.

A.4.4 Generalization to o # 1//2

For o # 1/4/2, the changes necessary to make the proof work are limited to arithmetic
adjustments. Q?Z,e will now be given by

n—1
Z |a)<c| ® Z |b><d| H (6111'71*171'561‘:1*611‘6@1'701' (5!11‘,1(1 - a2) + 6ai,0a2)
=0

a,ce{0,1}" b,de{0,1}"
+0a;.b;0c;.d (5%1,01. - —a sin(@)ﬂcos(@) + da;.0:00;,1(1 — a2) COS(0)2

4 B0, 000, 00 sm(o)2)). (65)
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Note that its direct sum decomposition is not affected, since the choice of which terms of

?Zﬁ appear on each term does not depend on a.

Similarly, Y is given now by

Z Aala){(al, where A\, =

ac{0,1}"

{—e(a sin(9))" 1ol (V1 — a2 cos(9))|a| for a £ 1"
e(V1- a2)n cos(0)" fora=1"
)

and € = 2 (\/ 1—a2cos(d )n — (V1 —a?cos(f) + asin(h))". (66)

As for the feasibility of Y, we have then that det(S,,) is given by

w. d)a2m—1d) (1 — g2)ldl
o Mu|—1 ( H >\:> (6_ Z g(w, d) )\d/e(l ) )7 (67)

cEM,, deM,,

again non-negative whenever

2(n—ldl) (1 — o2)ldl
Ad/e

¢ < Z g(w,d)a

deM,,

5 (m)n COS(9)2”0(w)7n B Z g(w,d)oﬂ(nfld\)(l — a2)‘d‘ . (68)

deM,, ‘)\d‘/e

Note that we have now that using the recursive definition of M,, in (48),

2(n—ldl) (1 — o2)ldl

g(w,d)a
2 [Adl/€

de M.,

5 na(w)

To prove that (68) holds we will need an argument slightly more involved than the
corresponding one for the a = % case. First, we consider that for no(w) = n, the right
hand side of (68) is equal to €, by definition of e. Then, we prove that the right hand side
of (68) increases as we decrement ng(w), and increase ng(w) = n — no(w) in parallel. This
is because the positive term in the right hand side increases with each decrease of ng(w),
and it does so by a larger factor than the one by which the negative term decreases. More
rigorously, consider the expression

b - L V1-—a? (69)

cos(0)?  (asin(f) + v1 — a2 cos(d)) cos(d)

First, note that

k>0 < \/@(}05(6’)2 < (a sin(0) + V1 —a? 005(9)) cos(0) (70)

< cos(d) sin(f) 4 cos(d) (71)

o
<7
RV

— 0< sin(0), (72)

Q
T V1l—0a?

which is always true when 0 < 6 < 7/2, which is always the case within the trigonometric
domain that we consider. Then, if we denote the right hand side of (68) by 7, (), we have
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the recursive relation

n—ngo(w)
1 V1—a?

r =r ——— 4+ k(asin(8) + V1 — a2 cos()) o) [ X— —
no(w) nu(w)+1cos(9)2 ( ( ) ( )) COS(Q)
We can see indeed that this defines an increasing sequence as we decrease ng(w), since the
second summand is positive, and the first summand multiplies the previous value of r by an
amount greater than one. We have then successfully proved that (68) holds in the « # %
case. |

A.5 Derivation for Theorem 7

Proof. For didactic purposes, we show our derivation along the line of thought used by us
when obtaining it. Therefore, we first consider simple proofs for two particular cases, and
then finish with a general proof.

A.5.1 Absence of hedging for the protocol in [30]

It is easy to establish that in a generalization of the example in [30] , the hedging behavior
disappears if Bob can avoid returning an answer. This generalization considers the set of
protocols where the initial quantum state shared between Alice and Bob is a pure state 1
such that Try (Yv*) = Zz/dim(Z). It suffices to prove it for one of such states, as the other
ones can be obtained from it by Bob applying a unitary. We prove it then for

(G (73)

_Lze.@)e,
Cdim(x) &

with e; being the computational basis for X', and corresponding to the case dim(&X’) = dim(Z).

The reason no hedging behavior is possible is because in this situation, it is always
possible for Bob to make sure he obtains the desired outcome. To see this, notice that the
operator that we apply to get Q, from P, is the identity divided by dim(X). Similarly,
E = Iygy/dim(X). Therefore, (ET)Y/2Q,(E1)/? = P,. As this is a projector into a
non-empty space (from the assumption that Bob has a nonzero probability of obtaining the
desired outcome), the norm of this operator is 1.

A.5.2 Absence of hedging in the classical case

We look now at the behavior when a game is repeated twice in parallel, and the information
exchanged between Alice and Bob is classical. This is reflected in the operators p and P, we
consider in our model being diagonal matrices. As p is a diagonal matrix, then ¥, maps
diagonal matrices to diagonal matrices, so E and the @), are diagonal too. Then, if we denote
by Q(E) the matrix that has a one in a position whenever the corresponding entry of E is
nonzero, and a zero otherwise, we have that

[A1,2

| = HQ(E) ®QE) - ((E+)1/2 ® (E+)1/2) Q10 ® Q1) ((E+)1/2 ® (E+)1/2) H

Now, whenever Q(E) has a zero entry, (E1)Y/2Q_,(ET)Y/? has a zero entry as well in
that position, as Q1_, < E. We define now Ag(X) as the minimum entry of a diagonal
matrix X, restricted to the positions where E has a nonzero entry. We have then that the
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value of the game when Bob is trying to win one out of two parallel repetitions is given by:

1= (Qa @ Qi) (BN @ (BD)2) (Qa© Qi)

5 (74)
—1- g ((E+)1/2Q1,Q(E+)1/2) .

Since we have that
O(E) = (B)2B(B) 2
= (EN)Y2(Qa + Qu-a)(ET)/? (75)
_ (E+)1/2Q1—a(E+)1/2 + (E+)1/2QG(E+)1/2
we have then that
A ((B9)2Qu-aED2) =1 (B9 2Qu(E") | (76)
S0

L ((B)2Qua(9)12) = |(E)12Qu(E") 2. (7

Therefore, there is no hedging in this case. Our argument applies similarly to the case
where Bob is trying to win k& out of n repetitions.

A.5.3 Absence of hedging in the general case

We begin by defining the following operators:
A= A= (BY)V2Q,(EX)/2, B = (E)2E(E")2. (78)

Note that [Qq, (ET)E] =0, as (ET)E is equal to the identity on the support of E and zero
outside it, and Q, < F, so ETEQ, = Q,ETE = Q,. We have then that [A, B] =0, so A
and B are simultaneously diagonalizable. This means that any tensor products of A, B, and
T of the same dimension are simultaneously diagonalizable as well.

We consider first the case where k = 1 and n = 2, and then use a proof by induction
to take care of larger n and k. Using the operators A and B, we can use the fact that

Qi_q = F — Q, to write HALQ in terms of A and B as

HA®B+B®A—A®AH < HA®I+I®A—A®AH — 2| A|| - || A2, (79)

where the inequality follows from the fact that 0 < B < Z. The equality follows from
considering a basis where A is diagonal, and using the fact that since @, < E, 0 < A < T,
so all the eigenvalues of A are at most 1.

We have then that ||[A; 2] =1 — (1 — ||A]|)?, since the fact that Bob can just choose to
play independently implies ||A; 2] > 1 — (1 — ||A]|)2. Therefore, we obtain that playing each
game independently is an optimal behavior.

In the general case where Bob is trying to win k out of n games, we can again express
Qi-q 38 E — @, and thus reduce Ay, to a sum of tensor products of A and B.

Consider first the case where k£ = 1. Then observe that we can write

AMp=Mn 1@B-A)+B*" '@A<A, 10T -A)+I°"'xA (80)
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Using as basis the n*" tensor product of a basis where A is diagonal, we obtain by induction
on n that ||A1,|| = 1—(1—||A|])"™. This is because for diagonal positive semidefinite matrices
J<Zand K, we have |J(Z - K)+Z K| =|J|(1-|K|)+|K]-

Note as well that if x is a largest eigenvalue eigenvector of A, a maximum-eigenvalue
eigenvector of Ay, is given by z®". Using this fact, we obtain a proof for the case with
k > 1. To do this, observe that

A =M1 @(B—A) + A1 A< A1 @ (T —A) + Apm1 1 @A (81)

Then, using again as basis the n'" tensor product of a basis where A is diagonal, we obtain
by induction that Ay | =150 () Al*(1 — |A[)"~*, and that for all choices of k and
n, a maximum-eigenvalue eigenvector of Ay ,, is given by z®", for z a largest eigenvector of A.
This is because for diagonal positive semidefinite matrices J, K, H, where J and H share a
largest eigenvector, and ||J|| < | H||, we have ||J(Z—K)+ H- K| = |J||(1 = | K|) + | H ||| K-

We obtain then that in this setting, no quantum advantage can be obtained by correlating
Bob’s strategy between parallel repetitions. <
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—— Abstract

Triangle finding (deciding if a graph contains a triangle or not) is a central problem in quantum
query complexity. The quantum communication complexity of this problem, where the edges of
the graph are distributed among the players, was considered recently by Ivanyos et al. in the two-
party setting. In this paper we consider its k-party quantum communication complexity with k£ >
3. Our main result is a O(m7/?)-qubit protocol, for any constant number of players k, deciding
with high probability if a graph with m edges contains a triangle or not. Our approach makes
connections between the multiparty quantum communication complexity of triangle finding and
the quantum query complexity of graph collision, a well-studied problem in quantum query
complexity.
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1 Introduction

1.1 Triangle finding

A triangle in an undirected graph G = (V, E) is a set of three vertices v1, v2, and v3 such that
{v1,v2}, {v1,v3}, and {vy,v3} are edges. The problem of deciding whether a given graph
contains a triangle or not is called triangle finding, and has been the subject of thorough
investigations in the past years in both the classical and quantum settings.

In the classical setting, several new applications of this problem have been discovered
recently. In particular, Vassilevska Williams and Williams [20] showed in 2010 a surprising
reduction from Boolean matrix multiplication to triangle finding. Several works followed
(e.g., [17, 21]), which have now placed triangle finding as a central problem in the recent
theory of fine-grained complexity.

In the quantum setting, triangle finding has played a prominent role in the development
of quantum query algorithms. For query algorithms solving graph-theoretic problems like
triangle finding, information about the set of edges F can be obtained only by queries
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to an oracle representing the adjacency matrix of the input graph: given two vertices u
and v of G, the oracle outputs one if {u,v} € E and zero if {u,v} € E (in the quantum
setting the queries can naturally be done in superposition). The trivial upper bound on
the quantum query complexity of triangle finding is O(ns/ 2), where n denotes the number
of vertices of the graph, by Grover search. A series of works spreading over more than a
decade [4, 7, 10, 12, 14, 16] successively improved this bound to O(n®/*) by using more
advanced techniques like quantum walks, learning graphs, variable costs quantum search and
quantum nested walks. On the other hand, the best known lower bound on the quantum
query complexity of triangle finding is the trivial Q(n). Understanding whether the O(n®/*)
upper bound is tight or not is now the main open problem concerning the quantum query
complexity of triangle finding in dense graphs. Several quantum query algorithms for triangle
finding over sparse graphs have been constructed as well [6, 7, 8, 13].

1.2 Communication complexity of triangle finding

In this paper we consider triangle finding not in the quantum query complexity model, but in
the quantum communication complexity model. As usual when considering graph-theoretic
problems in the communication complexity setting, we assume that the edges of the graphs
are distributed among the players (in this paper we consider the most general case where the
subsets of edges owned by the players can overlap). In the two-party case, for instance, the
first player Alice receives a set of edges F4 C E and the second player Bob receives a set of
edges Ep C E such that E4 U Eg = E (the intersection of these two sets is not necessarily
empty). The players must decide if the whole graph contains a triangle or not. We will use
TFﬁym to denote this distributed version of triangle finding, where k represents the number
of players, n = |V| and m is an upper bound on |E|.

The problem TF? . has been studied by Ivanyos et al. [9] and is well understood: its
bounded-error quantum communication complexity is ©(n). Indeed, it is easy to see that
in the two-party setting triangle finding reduces to the computation of the disjointness!
function DISJ,, with n/ = n?. The upper bound then follows from the O(v/n’)-qubit protocol
by Aaronson and Ambainis for disjointness [1]. The lower bound follows by combining the
observation that conversely disjointness can be reduced to triangle finding with the Q(v/n/)-
qubit lower bound on the quantum communication complexity of disjointness [19]. More
generally, for possibly sparse graphs, the bounded-error quantum communication complexity
of TFi’m is ©(y/m). Note that the classical bounded-error communication complexity of this
problem is ©(m): the upper bound follows from the trivial protocol where Alice sends all her
input to Bob and the lower bound follows from lower bounds on the classical communication
complexity of disjointness [11, 18].

,n

1.3 Our contributions

In this paper, we consider the three-party quantum communication complexity of triangle
finding, i.e., the problem TFiym where the edges of the graph are distributed among three
players (Alice, Bob and Charlie). In the classical bounded-error communication complexity
setting, the communication complexity of this problem is again ©(m), since it is not easier
than the two-party case (we can consider that one player has no edge as input). To our
knowledge the quantum communication complexity of this problem has never been studied
before the present work.

! The disjointness function DISJ, in the two-party setting is the following problem: Alice has a subset
x C{1,...,n'}, Bob has a subset y C {1,...,n'}, and they want to decide if z Ny # 0.
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Note that the communication complexity of TFfL’m for any constant k > 3 is equal (up
to possible constant factors) to the communication complexity of TFfl’m, which further
motivates the study of the latter problem. Indeed, the former problem is again obviously not
easier than the latter problem and, conversely, since a triangle consists of three edges, in the
k-party case we can apply a protocol for the three-party case independently for each triple of
players (the number of such triples is constant if k is constant) in order to decide whether
the whole graph has a triangle or not.

Our main result is the following upper bound.?
is O(m7/12).

» Theorem 1. The bounded-error quantum communication complexity of TF'Z,m

Let us briefly explain the main ideas that lead to the construction of our quantum protocol
showing Theorem 1. The main part of the protocol consists of procedures simulating the
quantum query algorithm for graph collision by Magniez, Santha, and Szegedy [16]. Indeed, for
the dense case (i.e., m ~ n?), it is fairly easy to see that a simple combination of a procedure
implementing Grover search and another procedure simulating (in the communication
complexity setting) the O(n?/3)-query algorithm for graph collision by Magniez, Santha, and
Szegedy [16] gives the claimed O(n"/6) upper bound. For sparse graphs, a first observation
is that a quantum query algorithm for graph collision exploiting the sparsity of the given
graph would help us to design an efficient quantum communication protocol for three-party
triangle finding. However, whether graph collision can be solved with O(n?/3~¢) queries for
some constant ¢ > 0 even for m = n*/3 (i.e., even when the graph is significantly sparse) is
a long-standing open problem. To overcome this difficulty we consider a variant of graph
collision, design a quantum algorithm for it based on quantum walks, and then show how to
implement this algorithm efficiently in our setting of communication complexity (exploiting
the property that each player has complete knowledge of part of the edges). We also divide the
set of vertices of the graph into two sets: the set of vertices with degree smaller than n°® and
the set of vertices with degree larger than n®, where s is a parameter. This classification helps
us, via Ambainis’ variable costs quantum search technique [3], to reduce the communication
cost needed to simulate the quantum algorithm for the variant of graph collision.

Next, we investigate whether the upper bound of Theorem 1 is tight. The trivial lower
bound on the bounded-error quantum communication complexity of TF?L)m is Q(y/m), since
the three-party case is not easier than the two-party case. We first consider the dense case
and observe that proving any better lower bound would require a breakthrough:

» Proposition 2. If the bounded-error quantum communication complexity of TFi,nz is

Q(n'te) for some constant € > 0, then the quantum query complezity of graph collision is
Q(n1/2+6)'

Proposition 2 indeed shows that proving any nontrivial lower bound on the quantum
communication complexity of triangle finding would give a nontrivial lower bound on the
quantum query complexity of graph collision (proving such a lower bound is a long-standing
open problem in quantum query complexity). We then consider the sparse case. Theorem
1 implies that, for any value of m, any improvement over O(m” 12) for the quantum
communication complexity of TFiym would imply an improvement over O(n"/%) for TFimz
(since we can apply Theorem 1 with n = /m). We also show the following sparse version of
Proposition 2:

2 In Theorem 1 and through the paper, the notation O(-) removes the polylog(n) factors.
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» Proposition 3. If the bounded-error quantum communication complexity of TFi’m 18
Q(m* 7€) for some m (seen as a function of n) and some constant € > 0, then the quantum
query complexity of graph collision is Q(n'/?%9) for some § > 0.

Proposition 3 shows that giving a lower bound of the form Q(m?*/7+€) for some value m < n?,
and in particular showing that the bounds of Theorem 1 are optimal for some value of m,
would also lead to a significant breakthrough. Note nevertheless that there is a gap between
the best lower bound Q(y/m) on the bounded-error quantum communication complexity of
TFi’m and the quantity Q(m?*/7) from Proposition 3. It thus still remains possible that in
the sparse regime the trivial lower bound Q(y/m) can be improved without any impact on
the quantum query complexity of graph collision.

2 Preliminaries

2.1 Quantum communication complexity

Let Ay,..., A be k finite sets. Consider k players and assume that for each ¢ € {1,...,k} the
i-th player receives as input an element a; € A;. In the model of communication complexity,
first introduced in the classical two-party setting by Yao [22], the players want to compute a
function f: Ay x --- Ax — {0,1} by running a protocol such that, at the end of the protocol,
each player outputs f(aq,...,ax), and they want to minimize the communication they need to
compute the function f. In the quantum communication model, introduced by Yao [23], the
players are allowed to communicate with qubits. More precisely, the quantum communication
complexity of a quantum protocol P is the maximum (over all inputs) number of qubits
that P sends. The bounded-error quantum communication complexity of f is the minimum
communication complexity of any quantum protocol that computes f with probability (over
the random coins used by the protocol) at least 2/3.

2.2 Quantum query complexity of graph problems

For any finite set S and any r € {1,...,|S|} we denote X(S5,r) the set of all subsets of r
elements of S.

Let G = (V, E) be an undirected and unweighted graph, where V' denotes the set of
vertices and F denotes the set of edges. In the quantum query complexity setting, we only
access the set of edges E through a quantum unitary operation O¢g defined as follows. For
any pair {u,v} € X(V,2), any bit b € {0,1}, and any binary string z € {0, 1}*, the operation
O¢ maps the basis state |[{u,v})|b)|z) to the state

Hu,ohlb@ 1)]z) i {u,v} € E,
{u, v})[b)]2) if {u,v} ¢ E,

where @ denotes the bit parity. Consider a quantum algorithm that computes some property

Ocl (. v}) 1)) = {

of G. We say that the algorithm uses k queries if the operation Og, which is given as an
oracle, is called k times by the algorithm.

We describe below two quantum query algorithms that we will use to construct our
quantum protocol for 'I'F;‘SLm in the communication complexity setting.

2.2.1 Quantum search with variable costs

Let X be a finite set of size N. Let fg: X — {0,1} be a Boolean function depending on
the input graph G. Assume that, for each x € X, there exists a checking procedure P* that
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computes fg(x) using t, queries to O with high probability. The goal is to find an element
x € X such that fg(z) =1 if such an element exists. When we use Grover search, this task

can be solved with O(\/]V X tmaz) queries with high probability, where t,,q, = max;cx t;.

Ambainis [3] proposed a more general quantum algorithm, which solves with high probability
this task using

o > e
rzeX

queries. In this paper, we call this algorithm Ambainis’ variable costs search.

2.2.2 Quantum walk over Johnson graphs

Let S be a finite set and r be an integer such that 1 < r <|S|. Let fg: X(S,r) — {0,1}
be a Boolean function depending on a graph G. We say that a set A € X(S,r) is marked
if fa(A) = 1. Consider the task whose goal is to find a marked set, if such a set exists,
or report that there is no marked set. Ambainis [2] developed the quantum walk search
approach, which solves this task using a quantum walk over a Johnson graph.

Let us first define Johnson graphs.

» Definition 4. Let X be a finite set and k € {1,...,|X|}. A Johnson graph J(X,k) is an
undirected graph with vertex set X'(X, k) where two vertices R, R € X(X, k) are adjacent if
and only if [RNR'| =k — 1.

The state of a quantum walk over a Johnson graph J(.5,r) corresponds to a vertex of the
Johnson graph (i.e., to a set in X'(5,r)). The key idea of the quantum walk search approach

is that each state A of the walk has a data structure D(A), which in general depends on G.

There are three costs of the walk to consider:
Set up cost S: The worst case number of queries to Og needed to construct D(A) for
AeXx(S,r).
Update cost U: The worst case number of queries to Og needed to update D(A) to D(A’)
when one step of the quantum walk is performed (i.e., a state A of the walk moves to A’
for some A’ € X(S,r) such that |[ANA'| =r—1).
Checking cost C: The worst case number of queries to Og needed to check if the current
set A is marked by using D(A) (i.e., checking whether fg(A4) =1).
Let € > 0 be the fraction of marked sets. The quantum walk search approach finds a marked
set if such a set exists with quantum query complexity

O(s+\2(ﬁxu+c)>,

with high probability (see [2, 15]).

2.3 Graph collision

Graph collision is a variant of collision problems such as element distinctness or two-to-one
collision. In the quantum query complexity setting this problem is defined as follows. Given
a known graph G = (V, E) with |V| = n and an oracle f: V' — {0,1}, the graph collision
problem asks whether there exists an edge {a,b} € E such that f(a) = f(b) = 1. The best
known upper bound on the quantum query complexity of graph collision, obtained in [16]
using quantum walks, is O(n?/3). No lower bound better than the trivial Q(y/n) is known.

6:5
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In this paper, we consider the following three-party distributed version of graph collision,
which is parametrized by two disjoint vertex sets Va4, Vg such that V4| = |Vg| =n:

Three-Party Graph Collision, GC%AJ}B
Alice’s input: Boolean function f4 : V4 — {0,1}
Bob’s input: Boolean function f5: Vg — {0,1}
Charlie’s input: set of edges £ between V4 and Vp
Output: GC3), 1, (fa,f5,€) = Vi jyee fa(D)fB()

This problem can be solved using O(n?/3) qubits of communication by implementing,
using standard techniques (see, e.g., [5]) to convert a query algorithm into a quantum protocol,
the quantum query algorithm mentioned above since Charlie knows completely the set of
edges £ of the corresponding graph.

3 Upper Bound

In this section we show a quantum protocol for TFfl,m that has O(m"/12)-qubit communication
complexity, which proves Theorem 1.

Let G = (V, E), with E distributed among Alice, Bob and Charlie, be the input of TFi’m.
Let E4 be the edges owned by Alice, Eg be the edges owned by Bob and E¢ be the edges
owned by Charlie. We will write V' = {v1,...,v,}. Let s be a parameter, to be chosen later,
such that 0 < s < 1.

3.1 Reduction to finding triangles in tripartite graphs

Observe that triangles with three edges in F4 (or three edges in Ep, or three edges in E¢)
can be found without communication. Detecting if G contains a triangle with two edges in the
same set (e.g., two edges in F4 and one edge in Eg) can be done easily with O(y/m)-qubit
of communication, by a straightforward reduction to the two-party case and then using the
two-party protocol from [9] described in the introduction. The hard case is detecting the
existence of a triangle with one edge in Ey4, one edge in Fp and one edge in E-. We show
below how to reduce this problem to triangle finding in some tripartite graph.

Consider the following tripartite graph G’'. The set of vertices of G is the union of the
three sets T = {vl,...,vl}, J={v?, ... 02}, and K = {v?,...,v3}. The set of edges of G’
is E4UEB UEq, where £4, Eg and E¢ are constructed from E as follows:

Put edges {v},v?} and {v},v?} to €4 if and only if {vs,v;} € E4.

Put edges {vl, v} and {v},v3} to €p if and only if {vs, v} € Ep.

Put edges {vZ,v3} and {vZ,v3} to & if and only if {vs,v,} € Ec.

Observe that, without communicating with each other, Alice, Bob and Charlie can
construct the tripartite graph G’ in the following sense: Alice can create £4, Bob can
create £, and Charlie can create Ec.

Note that G contains a triangle if and only if G contains a triangle with one edge in F 4,
one edge in Ep and one edge in F¢. For instance, if the graph G contains a triangle consisting
of three vertices v, vp, v, in V such that Alice has the edge {vs,vp} € E4, Bob has the edge
{Vq,v.} € Ep, and Charlie has the edge {v, v.} € E¢, then the tripartite graph G’ contains
the triangle with three edges {vl,vZ} € Ea, {vl,v3} € Ep and {v?,v3} € Ec.

a
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3.2 Protocol for dense graphs

The dense case is easy to deal with: we can simply combine Grover search (implemented in
a distributed setting) with the protocol for graph collision mentioned in Section 2.3. This
gives a quantum protocol with communication complexity O(y/n x n?/3) = O(n"/%). For
later reference we state this upper bound as follows.

» Proposition 5. The bounded-error quantum communication complexity of TFi,nz is
O(n/9).
3.3 Classifying the vertices of G’

For any vertex v in G', let us denote the degree of v by d,. For any v € I, let us denote the

set of neighbors in J of v by N%(v), and denote the set of neighbors in K of v by Nk (v).

For any v € J, let us denote the set of neighbors in I of v by N7 (v), and denote the set of
neighbors in K of v by Nj.(v). For any v € K, let us denote the set of neighbors in I of v by
N[ (v), and denote the set of neighbors in .J of v by NX(v). Alice, Bob, and Charlie classify
all vertices in I into two sets:

It ={v e I INj(v)| = n* or [Njc(v)| = n°},
IF=1\1I

all vertices in J into two sets:

Jn ={v € J|IN] (v)] = n* or [N (v)] = n°},
S =J\ g,

all vertices in K into two sets:

K;={ve K||NF()|>n®or |[NF@)|>n*},
K} =K\ K;.

We will say that a vertex v of G s s-high if v € I} U J; U K}, and say it is s-low if
velfUJP UK.

The classification of I can be done with O(%) bits of communication as follows. Since
Alice holds the set of edges £4 between I and J, Alice knows, with no communication,
the set {v € I | [N1(v)] > n®}. Then Alice sends this set to both Bob and Charlie with
O(l%“) = O(%) bits of communication. Since Bob holds the set of edges £ between I
and K, Bob knows, with no communication, the set {v € I | |[N%(v)| > n®}, and then sends
this set to both Alice and Charlie with O(li—f‘) = O(2) bits of communication. Thus they
obtain the sets I; and I} with O(%)—bit communication. Similarly, they can obtain the
classifications of J and K using O(%) bits of communication.

3.4 Finding a triangle with a low vertex

The following proposition is the main technical contribution of this paper.

» Proposition 6. The existence of a triangle of G containing at least one s-low vertexr can
be checked in O(y/mn®/®) qubits of communication.

Proof. Let us consider, without loss of generality, the case where Alice, Bob, and Charlie
check if G' has a triangle with an s-low vertex in I7. In this case, Alice simulates Ambainis’

6:7
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variable costs search over I. The goal is to find one vertex (in I) of a triangle of G'. For
each ¢ € I the checking procedure Pt of the search decides if there exists an edge {j,k} € &
such that {i,j, k} is a triangle of G'. The checking procedure P? can be simulated as follows.

Let us fix ¢ € I7. Let g be a parameter to be chosen later such that 0 < ¢ <
1. Alice and Bob define two bijective functions: g¢%: {1,...,|N1(i)|} — NZL(i), and
g {INJ@)| + 1, INL@)| + [NL(i)|} — NL(i), respectively. Then Alice and Bob
send |[N1(i)| and [Nk (i)| to Charlie. After receiving the two values |[N1(i)| and |Nk (i),
Charlie simulates the following quantum walk search A}, in order to check if there ex-
ists an edge in - that forms a triangle of G with i. The walk Al searches for a set
R € X({L,..,INYG)| + INLG)I}, [(IN; ()] + INL())7]) = X({L,....d:}, [d?]) which con-
tains two indices z € {1,...,|N1(i)|} and y € {|NL(i) +1,...,|NL(i) + |[N)(i)|} such that
{i, g (x), g5(y)} is a triangle of G'. When the set of marked sets is not empty, the fraction
of marked sets is

e = (NSO + INE@) ™) = 2 (&),

The data structure D(R) stores {(z,¢%(x)) |z € RN{1,...,|NL(@)|}} and {(y,95(v)) | y €
ROA{INI@)|+1,...,INLG@)| + |NL(i)[}}. In order to construct this data structure D(R) of
the initial state of the walk, Charlie asks Alice to send the vertex g’y (r) to him if » < [N1(i)],
and asks Bob to send the vertex g&(r) to him if r > |N£(i)|, for each » € R. More precisely,
for any r € R, Alice and Bob perform the following unitary operators ng , OgiB to the basis
state |r}|0), respectively, where |0) consisting of [logn] qubits. For any r € R, the unitary
operator O, maps the basis state [r)|0) to the state

[ INlga@) i< NG,
OgiA|7’>|0> = { |7">‘0§‘ ifr> |N§(Z)|

For any r € R, the unitary operator O,; maps the basis state |r}]0) to the state

Oy

o { IMlgs) i > NSO
”m‘{vw> if r < |N1(3)].

Thus the setup communication cost of this walk is S¢ = O(|R|) = O(d?) qubits. The update
communication cost is Ue = O(1) qubits, and the checking communication cost is C¢ = 0.
Thus Charlie can simulate, with high probability, the quantum walk search A%,V with

9, (sc + /1) (|R|1/2 x Ue + cc)) = O(d? + d =%, (1)

qubits of communication. Setting ¢ = % gives the upper bound O(df/ 3).

For each i € I7, Alice, Bob and Charlie can thus implement P with O(d?/g) qubits of
communication. Alice can therefore simulate Ambainis’ variable costs search with

@)

> ()

icly

qubits of communication. To analyze this upper bound, we divide the set of s-low vertices
I} into subsets [}, = {i € I} | 2r—1 < d; < 2P}, for p = 1,...,[logn®]. Note that
[I7,| = O(5%), for each p = 1,..., [logn?|. The quantum communication complexity of
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the quantum protocol is thus

[slogn]
O [>a”| = Ofy > e
i€l \ p=1
~ [slogn] m
= 0 Z 2p_1(2p>4/3
p=1

— 0 (\/[slogﬂ x m(zslogn)1/3>
()
= O (vmn®),

as claimed. |

3.5 Putting everything together

Checking if G’ contains a triangle can be divided into four problems:

1. Checking if G’ contains a triangle with one vertex in I, another vertex in J, and the
other vertex in K.

2. Checking if G’ contains a triangle with one vertex in I, another vertex in J;, and the
other vertex in K.

3. Checking if G contains a triangle with one vertex in I, another vertex in J, and the
other vertex in K.

4. Checking if G contains a triangle with one vertex in I i, another vertex in Jj, the other
vertex in Kj.

Cases 1, 2 and 3 can be solved with O(y/mn®/%) qubits of communication, from Proposition
6. For case 4 (checking if G’ contains a triangle with three s-high vertices), Alice, Bob, and
Charlie directly use Proposition 5. Since I;; = O(7%), J; = O(7%), and Kj; = O(7%), Case 4
can be solved with O ((%)7/6) qubits of communication.

Thus the total communication cost of the quantum protocol for TFiym is

7/6
YR 1/2,.s/6 ,
O(ns—&-m n +n75/6>,

which is optimized by taking s such that n® = m!/2, giving the final quantum communication
complexity of O(m7/12).

4 Lower Bounds

In this section we give the proofs of Propositions 2 and 3. Let us denote by Qgc(n) the
quantum query complexity of graph collision, when parametrized by graphs with n vertices.

Proof of Proposition 2. From the construction of the protocol giving the bound of Proposi-
tion 5, it follows that there exists a quantum protocol which computes, with high probability,
TFimg with O(y/n x Qgc(n)) qubits of communication. Thus, an Q(n'*€) lower bound on
the bounded quantum communication complexity of TFf’wg for some constant € > 0 implies
an Q(nl/ 2+¢) lower bound on the quantum query complexity of graph collision. <
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Proof of Proposition 3. Let s be a parameter such that 0 < s < 1. From Section 3.5 and
the construction of the protocol giving the bound of Proposition 5, it follows that there exists
a quantum communication protocol which computes Tthm with bounded-error quantum
communication complexity

O (Zz +m'2n/0 4 1/ % X QGc(m/ns)) .

Suppose an Q(m4/ 7+¢) lower bound on the bounded-error quantum communication complexity
of TF;im for some constant € > 0. Setting n® = m3/7+6¢ gives the upper bound

0 (m4/7+e 1om2/ T3 QGC(m4/7766)) '

2/7+4e
This implies the claimed lower bound Q(n%/77=5¢) on the quantum query complexity of graph
collision. <
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