
Inter-Model Consistency Checking and
Restoration with Triple Graph Grammars

DEM FACHBERE ICH ELEKTROTECHNIK UND INFORMAT IONSTECHNIK

DER TECHNISCHEN UNIVERS ITÄT DARMSTADT

ZUR ERLANGUNG DES AKADEMISCHEN GRADES

E INES DOKTOR- INGENIEURS (DR . - ING .)

GENEHMIGTE D I S SERTAT ION

VON

ERHAN LEBLEB IC I

GEBOREN AM

3 1 . MA I 1 9 8 8 IN I STANBUL , TÜRKE I

ERSTGUTACHTER : PROF. DR . ANDY SCHÜRR

ZWE ITGUTACHTER : PROF. DR . BERNHARD WESTFECHTEL

TAG DER E INRE ICHUNG : 3 0 . 0 1 . 2 0 1 8

TAG DER D I SPUTAT ION : 0 4 . 0 5 . 2 0 1 8

DARMSTADT 20 1 8

The work of Erhan Leblebici was supported by the Graduate School of Excellence
Computational Engineering (CE) at the Technische Universität Darmstadt.

The GraTraM project presented in this thesis was funded by the German Federal
Ministry of Education and Research, funding code 01|S12054, in the context of the
Software Campus (www.softwarecampus.de).

Leblebici, Erhan
Inter-Model Consistency Checking and Restoration with Triple Graph Grammars
Darmstadt, Technische Universität Darmstadt
Year of publication at TUprints: 2018
Disputation date: May 4, 2018

Published under CC BY-SA 4.0 International
https://creativecommons.org/licenses/

www.softwarecampus.de
https://creativecommons.org/licenses/

DECLARAT ION OF AUTHORSH IP

I warrant that the thesis presented here is my original work and that I have not
received outside assistance. All references and other sources that I used have been
appropriately acknowledged in the work. I further declare that the work has not
been submitted anywhere else for the purpose of academic examination, either in
its original or similar form.

I hereby grant the Real-Time Systems Lab the right to publish, reproduce and
distribute my work.

Darmstadt, 30.01.2018

Erhan Leblebici

Simplicity is a great virtue but it requires hard work to achieve it and education to
appreciate it. And to make matters worse: complexity sells better.

Edsger Wybe Dĳkstra

ACKNOWLEDGMENTS

I wish to thank

Prof. Dr. Andy Schürr for his supervisionwhich has alwaysmademe feel lucky
in both personal and technical ways,

Prof. Dr. Bernhard Westfechtel for kindly accepting to serve the PhD thesis com-
mittee and for his valuable comments on an earlier version of this document,

Dr. Anthony Anjorin,Dr. Gergely Varró, and Lars Fritsche formany fruitful hours
of co-desinging, co-developing, and co-authoring,

all those who shared my PhD highs and lows at the university canteen in
Darmstadt or during my time-constrained but intense visits in Istanbul,

finally yet foremost, my parents Mehmet and Nursen Leblebici and my brother
İhsan Metin Leblebici for their continuous and unconditional support, no mat-
ter the distance and no matter the circumstance.

You all made this work possible.

Darmstadt, 2018

ABSTRACT

Software development is a complex task. The success of a software project highly
relies on the involvement of domain experts in the development process. In re-
cent years, therefore, the field of software engineering has been striving to elevate
the level of abstraction towards domain-specific concepts (instead of the computa-
tion-oriented nature of classical programming languages). Model-Driven Engineer-
ing (MDE), a novel software development methodology, lies at the heart of these
efforts. In MDE, a model represents an abstraction of a system with one specific
goal inmind.Hence, theMDE strategy does not only dealwith abstractions but also
advocates the co-existence of relatedmodels capturing different aspects of the same
system.While this supports separation of concerns, consistencymanagement between
relatedmodels becomes a crucial challenge asmodels are changed throughout their
life cycle. Two basic building blocks of consistency management are (i) consistency
checking to indicate whether or to what extent two related models are consistent
and (ii) consistency restoration to suitably handle discrepancies between models.
To address consistency management tasks in a formally-founded manner, bidi-

rectional transformations (BX) have been established as a research area. Among the
diverse BX approaches, Triple Graph Grammars (TGGs) represent a prominent tech-
nique with various implementations and industrial applications. In this setting,
models are formalized as graphs and consistency is described as a grammar con-
structing two consistent models together with a correspondence model. Consis-
tency management tools are then automatically derived from this description.
Current TGG approaches (and in fact also BX approaches in general) focus on

consistency scenarioswhere only onemodel ismaintained by human intelligence at
the same time and the other one is automatically updated by consistency restoration.
Consistency management between two concurrently developed models, however,
is not sufficiently supported as practical solutions for consistency checking are
essentially missing. Strategies for consistency restoration, furthermore, range from
heuristics to auxiliary model analyses which constitute the most complex and least
understood part of TGGs. Despite sharing the same basic goal and the same formal
foundation, it is difficult to exchange ideas amongst the different TGG approaches.
In this thesis, therefore, we first establish consistency checking as a novel use

case of TGGs. We identify search space problems in consistency checking and over-
come them by combining TGGs with linear optimization techniques. Second, we
propose a novel consistency restoration procedure that exploits incremental pattern
matching techniques to address the intermediate steps of consistency restoration
in a simplified manner. Furthermore, we present a TGG tool that implements our
formal results and experimentally evaluate its scalability in real-world consistency
scenarios. Finally, we report on an industrial project from the mechanical engi-
neering domain where we applied this tool for maintaining consistency between
computer-aided design and mechatronic simulation models.

ZUSAMMENFASSUNG

Softwareentwicklung ist eine komplexe Aufgabe. Der Erfolg eines Softwarepro-
jektes ist in hohem Maße auf die Beteiligung der Domänenexperten im Entwick-
lungsprozess angewiesen. Das Gebiet Softwaretechnik strebt daher höhere Ab-
straktionsstufen mit Fokus auf domänenspezifische Konzepte an (anstatt der auf
Rechnen orientierten Natur der klassischen Programmiersprachen). Model-Driven
Engineering (MDE), eineneueSoftwareentwicklungsmethodik, liegt imMittelpunkt
dieser Bestrebungen. In MDE stellt ein Modell eine Abstraktion eines Systems mit
einem spezifischen Ziel dar. Folglich beschäftigt sich MDE nicht nur mit Abstrak-
tionen, sondern befürwortet auch die Koexistenz verwandterModelle, die dasselbe
System beschreiben. Während dies die Trennung der Zuständigkeiten unterstützt,
wird Konsistenzverwaltung zwischen verwandten Modellen eine wichtige Heraus-
forderung, da Modelle sich im Laufe ihres Lebenszyklus ändern. Zwei Grund-
bausteine der Konsistenzverwaltung sind (i) Konsistenzprüfung, um zu bestimmen,
ob oder inwiefern zwei verwandteModelle konsistent sindund (ii)Konsistenzwieder-
herstellung, um Diskrepanzen zwischen den Modellen zu beseitigen.
UmKonsistenzverwaltungmit formalenMitteln anzugehenwurden bidirektionale

Transformationen (BX) als ein Forschungsfeld etabliert. Unter den BX-Ansätzen
stellen Tripel-Graph-Grammatiken (TGGen) eine prominente Technik mit verschiede-
nen Implementierungen und industriellen Anwendungen dar. Dabei werden Mo-
delle als Graphen undKonsistenzbeziehungen als eineGrammatik beschrieben, die
zwei konsistenteModellemit einemKorrespondenzmodell aufbaut.Werkzeuge zur
Konsistenzverwaltung werden aus dieser Beschreibung generiert.
Existierende TGG-Ansätze (sowie BX-Ansätze generell) setzen weitgehend vor-

aus, dass gleichzeitig nur das eine Modell durch menschliche Intelligenz gepflegt
und das andere durch Konsistenzwiederherstellung automatisch aktualisiert wird.
Das Problem der Konsistenzerhaltung zwischen zwei konkurrierend gepflegten
Modellen bleibt dagegen offen, da praktische Lösungen zur Konsistenzprüfung
fehlen. Des Weiteren reichen die Strategien zur Konsistenzwiederherstellung von
Heuristiken bis hin zu zusätzlichen Modellanalysen, die den unübersichtlichsten
Teil der TGGen bilden. Das erschwert auch den Ideenaustausch zwischen unter-
schiedlichen TGG-Ansätzen, obwohl diese dieselben Ziele und Grundlagen haben.
In dieser Thesis wird erstens Konsistenzprüfung als ein neuer Anwendungsfall

der TGGen eingeführt. Suchraumprobleme in Konsistenzprüfung werden identi-
fiziert und durch lineare Optimierungstechniken bewältigt. Zweitens wird eine neue
Prozedur zur Konsistenzwiederherstellung vorgestellt, die von Techniken zur inkre-
mentellen Graphmustersuche Gebrauch macht, um Konsistenzwiederherstellung zu
vereinfachen. Des Weiteren wird ein TGG-Werkzeug vorgestellt, das die formalen
Ergebnisse umsetzt und dessen Skalierbarkeit mit realen Beispielen evaluiert wird.
Zum Abschluss wird über ein Industrie-Projekt aus der Maschinenbau-Domäne
berichtet, indemdiesesWerkzeugzurKonsistenzerhaltungzwischenModellenvon
rechnergestütztem Konstruieren und mechatronischer Simulation benutzt wurde.

CONTENTS

1 Overview and Motivation 1
1.1 Co-existing Models and Bidirectional Transformations (BX) 2
1.2 Challenges of BX in an MDE context . 5
1.3 Stakeholders and Requirements . 10
1.4 Contributions and the Structure of the Thesis 11

2 Fundamentals and Running Example 15
2.1 Graphs and Triple Graphs . 17
2.2 Triple Graph Grammars (TGGs) . 25
2.3 An Extended Consistency Specification for the Running Example 30
2.4 Summary, Open Issues, and Existing Extensions to TGGs 35

3 Consistency Checking with TGGs 39
3.1 Examples of Consistency Checking . 40
3.2 Consistency Rules . 43
3.3 Wrong Choices of Consistency Rule Applications 51
3.4 Integer Linear Programming (ILP) Techniques 54
3.5 Consistency Checking with TGGs and ILP 56
3.6 Related Work . 75
3.7 Summary and Future Work . 80

4 Consistency Restoration with TGGs 83
4.1 Examples of Consistency Restoration . 85
4.2 Forward Rules . 91
4.3 Wrong Choices of Forward Rule Applications 98
4.4 Application Conditions . 100
4.5 Marking-Complete Forward Rules . 102
4.6 A Consistency Restoration Procedure . 106
4.7 Related Work . 118
4.8 Summary and Future Work . 123

5 Tool Support, Experimental Evaluation, and Practical Application 125
5.1 The Meta-Tool eMoflon . 125
5.2 Experimental Evaluation of Consistency Checking 128
5.3 Experimental Evaluation of Consistency Restoration 136
5.4 The GraTraM Project . 142
5.5 Summary and Future Work . 148

6 Conclusion 151

B IBL IOGRAPHY 155

ACRONYMS

API Application Programming Interface
BX Bidirectional Transformations
CAD Computer-Aided Design
EMF Eclipse Modeling Framework
HTML Hypertext Markup Language
ILP Integer Linear Programming
MDA Model-Driven Architecture
MDE Model-Driven Engineering
MOF Meta-Object Facility
NAC Negative Application Condition
OCL Object Constraint Language
OMG Object Management Group
PIM Platform-Independent Model
PSM Platform-Specific Model
QVT-R Query/View/Transformation - Relations
TGG Triple Graph Grammar
UML Unified Modeling Language
XMI XML Metadata Interchange
XML Extensible Markup Language

xii

1
OVERV IEW AND MOT IVAT ION

Since the appearance of first computers in the 1930s, the rapid increase in computing
power of hardware has made it imaginable to tackle more and more complex tasks
with computers. The difficulty of writing useful software meeting the complex
requirements, however, has always been the limiting factor in exploiting computers.
In the 1960s, even the term software crisis [111] was coined at the intergovernmental
level referring to software products that are of low quality, inefficient, not meeting
the requirements, or undelivered, and referring to software development processes
that run over time and over budget. To this end, the then practically unknown
field of software engineering has been established to apply systematic engineering
methods to the development of software. Today, software engineering has a strong
impact on our daily life as computers are employed in almost every context, be it a
workstation, an industrial process, a medical treatment, a means of transportation,
or a consumer good.
The essence of software engineering is the division between hardware and soft-

ware by introducing appropriate abstractions to deal with the increasing complexity.
High-level programming languages provide a means for this abstraction where hu-
man-readable source code is compiled to or interpreted as executablemachine code.
Although such languages have made a significant contribution to the technological
progress in the last decades, they still have a computation-oriented focus. Hence,
the achieved level of abstraction is still not sufficient to incorporate non-developer
domain experts (in general users of a software product) into the development pro-
cess. Indeed, recent chaos reports [29] on information technology projects identify
user involvement as the key factor for success and lack of user input as currently
the most challenging problem.
There are educational measures to bridge the gap between domain experts and

software engineers including, e.g., integrating a specific field as secondary sub-
ject into computer science courses (or vice versa), and even inherently combined
courses such as business informatics or bioinformatics.While such interdisciplinary
education can provide qualified workforce for the interface between software and
its application domain, there is still a need for technological change (with regard
to tools, languages, and formalisms) to facilitate software development with do-
main experts. With this in mind, the field of software engineering has been striving
to elevate the level of abstraction towards domain-specific concepts rather than
computational details in recent years. The software development methodology
Model-Driven Engineering (MDE) lies at the heart of these efforts.
In an MDE context, a model is considered as an abstraction of a system built for a

specific goal in mind and provides information only related to this goal [20, 23, 90].

2 1 Overview and Motivation

The most prominent and standardized set of guidelines for how to structure and
organize models in MDE has been established by the Object Management Group
(OMG)under the nameofModel-DrivenArchitecture (MDA) [110]. TheMDAstrategy
comes along with a set of standards enjoying broad acceptance such asMeta-Object
Facility (MOF) [107] to definedomain-specificmodeling languages,UnifiedModeling
Language (UML) [141] to create object-oriented design models, and XML Metadata
Interchange (XMI) [149] to persist and exchange models in a common format.

1.1 Co-existing Models and Bidirectional Transformations (BX)

Defining a model as intended for a specific goal, the MDA strategy strongly ad-
vocates separation of concerns via co-existing models for a system instead of cap-
turing the whole system as one global model. Depending on the abstraction level
of models, MDA distinguishes between the two basic concepts of Platform-Indepen-
dent Models (PIM) and Platform-Specific Models (PSM). While the term platform here
might be associated with different abstraction levels such as hardware architecture,
operating system, or programming language, PIMs and PSMs of a system remain
in all cases relative to each other in the following sense: PIMs abstract from tech-
nological details of the platform and represent business logic of the system while
PSMs stipulate how to realize the system in the respective platform. Hence, PIMs
are rather expected to integrate domain experts with less software engineering
knowledge into the development process while PSMs are executable artifacts (or
should directly lead to executable artifacts). Therefore, the MDE vision is not only
concerned with introducing higher abstraction levels but also suggests to regard
everything as a model consequently, e.g., even source code written in a programming
language that exists longer than the MDE vision itself is a model.
Figure 1.1 shows an excerpt of different PIMs andPSMs that can be involved in the

development of a software system. The models cover overall three different goals,
namely documentation, implementation, and testing of the system. At the highest
abstraction level, i.e., at the level of PIMs, there exists a documentation model that
abstracts from the format of the documentation. Similarly, an object-oriented design
in UML as well as a test suite model abstract from the programming language
used for implementation and testing, respectively. Considering the level of code
as platform in our concrete case, the models at the PSM level represent details
concerning the choice of the programming language for each individual goal. At
the documentation side, for example, the Hypertext Markup Language (HTML)
is chosen to be the language of documentation artifacts, and the HTML model
(basically a PSM) organizes the documentation data in the form of HTML elements
(called HTML tags). Analogously, assuming Java as the programming language of
the project, the Java model in the middle captures the object-oriented design with
Java language features and possibly limitations in mind (the same applies to the
Java model for testing at bottom right).

Co-existence of differentmodels representing the same system facilitates amodu-
lar development process but requires appropriate consistencymanagement asmodels
are due to change during their life cycles. In its most broad interpretation with re-
gard to the goals of this thesis, consistency of two models refers to a state where no

1.1 Co-existing Models and Bidirectional Transformations (BX) 3

Documentation
Model

Object‐oriented
Design in UML Test Suite Model

HTML
Model

Java Model
(Impl.)

Java Model
(Tests)

PIMs

PSMs

Documentation Implementation Testing

Figure 1.1: Exemplary PIMs and PSMs in a software engineering project

contradiction exists between the models. In other words, consistent models agree
on the information they are meant to represent in common. Consistency becomes
a relevant challenge especially in large software projects when different domains
are involved with their own models, and models are developed concurrently by
their owners. In general, consistencymust be addressed vertically between different
abstraction levels, e.g., between a PIM and a PSM from the same domain, as well as
horizontally, e.g., between two PIMs or between two PSMs from different domains.
The bidirectional arrows in Figure 1.1 represent the choice ofmodel pairs between

whicha tool-supported consistencymanagement isdesired for the concrete scenario
(the black-filled arrow will be further investigated in detail as running example
throughout the thesis). The vertical arrows indicate that two models of different
abstraction levels (but sharing the same goal) must conform to each other in all
cases while horizontal arrows represent a consistency management strategy that
considers implementation as the central point of consistency, i.e., documentation as
well as test models must be kept consistent to implementation models. It should be
mentioned that some of the horizontal arrows in Fig. 1.1 can be realized indirectly in
practice, e.g., horizontal consistency at the PSM level can be induced via horizontal
consistency at the PIM level (or vice versa) together with vertical consistency. The
choice of arrows that must be realized as a distinct component or induced by other
arrows is case-specific and depends usually on the internal structures of models or
the selected development process.
The MDA specification already exhibits awareness of consistency challenges in

MDE from the very beginning and proposes to applymodel transformations, i.e., pro-
ducing an output model from a given input model in an automated way, to keep
related models consistent. Model transformations thus play a central role in MDA
and systematic development of model transformations has been actively investi-
gated with various approaches differing in their supported features, capabilities,
and scopes (cf., e.g., [13, 34, 132] for classifications and comparisons of different
approaches). If models are intended for specific goals and maintained by different
stakeholders, moreover, model transformations are not one-way streets but must
be bidirectional, i.e., executable in either direction. In line with this observation, a
cross-disciplinary research community named bidirectional transformations (BX) [35]
has been established whose research interests include (but are not limited to) con-

4 1 Overview and Motivation

sistency tasks in MDE. Providing appropriate BX formalisms, languages, and tools
has been the centre of BX-related research in recent years.
The MDA specification indeed introduces the BX language Query View Transfor-

mation - Relations (QVT-R) [120]. Unlike the aforementionedMDA standards such as
MOF, UML, and XMI, however, QVT-R has not gained a broad acceptance and im-
plementations are scarce [134]. Arguably, describing and maintaining consistency
between two models is one of the most complex tasks in the MDE vision and the
level of formalization and preciseness in the QVT-R specification does not meet
the requirements of this complexity. Recently, ambiguities in the standard and the
resulting conformance issues of the respective tool support for QVT-R have been
stressed in [146]. The observations from the investigated case studies reveal that
BX development with QVT-R turns out to be a trial-and-error process when cop-
ing with these problems. Consequently, developers might end up with complex
solutions while BX research generally strives to allow for compact and readable
solutions as compared to, e.g., a manual implementation.
Nevertheless, a lot of formal work to address BX in an MDE context has been

done in the field of graph grammars. In this setting, the content of a model is
formalized as a graph, and computations on a model (e.g., analyses, manipu-
lations, or consistency management) are captured as graph grammar rules. Espe-
cially Triple Graph Grammars (TGGs) [128], a particular dialect of graph gram-
mars dedicated to BX, have been successfully used in several industrial MDE
projects [5, 21, 56, 67, 126], and present a prominent alternative to QVT-R with
various implementations [46, 71, 83, 86, 96]. The ancestors of TGGs are pair gram-
mars [119] whose central idea is twofold: (i) provide a pair of grammars that build
up together consistent pairs of source and target models, and (ii) automatically de-
rive consistency tools from this specification. Refining this idea, TGGs introduce
a third grammar that builds up a third graph representing the correspondence links
between consistent pairs.
In the universe of BX languages, TGGs belong, similar to QVT-R, to declarative

approaches where the BX specification only describes what consistency means (for
the particular BX scenario) but not how it is maintained. Both approaches, however,
particularly differ in the way of describing consistency. A QVT-R specification, on
the one hand, consists of relations in the form of logical predicates and consistency
of twomodels means the satisfaction of these predicates. A TGG, on the other hand,
is a graph grammar constructing consistent models and consistency is defined as
membership to the language induced by the grammar. Both approaches, there-
fore, are commonly distinguished as relation-based and grammar-basedwithin the
BX landscape. A further representative group of BX languages is given by those
based on bidirectional programming as proposed in, e.g., [69, 87, 153]. In this setting,
consistency maintenance is programmed in one direction and the corresponding
program in the reverse direction is automatically induced. Bidirectional program-
ming languages offer more fine-grained control over consistency maintenance as
compared to declarative approaches but provide less abstraction for the necessary
computations thereof. Bidirectional programming, furthermore, generally tends to
be more restrictive with regard to the supported class of consistency scenarios (e.g.,
primarily supporting one-to-one mappings betweenmodels such that the program

1.2 Challenges of BX in an MDE context 5

can be reversed unambiguously). TGGs, on the contrary, allow for specifying and
maintaining consistency in a flexible manner as we shall demonstrate with our
examples throughout the thesis.

1.2 Challenges of BX in an MDE context

The question of how to deal with consistency between related models is strongly
coupled with how the models are created andmaintained. Current BX approaches,
in particular TGG approaches, focus on the case where always one of the models
is maintained by human intelligence at the same time and deriving the other one
is only routine work (and the goal of BX is to automate this routine work). Such a
scenario is depicted in Figure 1.2 where Model A and Model B refer to two related
models (e.g., two models at the ends of any bidirectional arrow in Figure 1.1).
The rectangles with gearwheels in the middle represent individual runs with a
BX tool (the dashed gray arrows indicate the input and the output for each run).
The v.X suffixes at each model indicate its version (e.g., v.1 for the first version).
Incrementing the version of a model is either the result of a transformation or is
done by human intelligence. The latter case is depicted via black arrowswith a stick
person. Finally, white filling of models indicates that they are created by human
intelligence while gray-filled ones are automatically derived via BX.

Model A
v.1

Model B
v.1

Model B
v.2

Model A
v.2

Model A
v.3

Model B
v.3

Figure 1.2: Consistency management as addressed by current BX approaches in MDE

In Figure 1.2, the first version of Model A is created by human intelligence as a
first step and is transformed to the first version ofModel B. After changingModel B
to its secondversion (again byhuman intelligence), the secondversion ofModelA is
derived via a transformation in the reverse direction. Analogously, further changes
are done on one of the models, and the other one is derived. In most of the BX
approaches, after changing a model with human intelligence, the derivation of the
other one is done as an incremental update, i.e., the previous version of the derived
model is taken into consideration and only changes are propagated incrementally
instead of an entire transformation from scratch. BX tools generally keep auxiliary
data for the consistency history (e.g., traces between models) to calculate what is to
be done for updating a model according to the changes on the other side.

6 1 Overview and Motivation

In a scenario as depicted in Figure 1.2, there is an assumption that does not
necessarily hold in many real-world consistency tasks: Only one of the models is
available at the beginning and the first version of the other one is to be automatically
derived. Further transformations by propagating changes in one of the models to
the other rely on this initial transformation as the starting point. This requires
working in a BX-supported environment and applying BX from the very beginning
starting with one model. Applying BX, however, can be a decision taken in an
intermediate phase of the development process where both models are existent
and have already reached an advanced state.
Differentmodels indeed belong to different stakeholders and concurrent develop-

ments speed up the development process. Figure 1.3, therefore, depicts the vision
of a more general consistency management support eliminating these assumptions
and defining the goals of this thesis. This time, the starting point of consistency
management allows twoalready existingmodelswhich are concurrently developed.
In the initial start, consistency management takes both models as input (indicated
as v.1) and derives their updated versions (v.2) yielding a consistent state. Further
runs of change propagation from one model to the other (as previously shown in
Figure 1.2) are again possible upon the results of this initial start (e.g., changing
Model A to its v.3 and deriving v.3 of Model B).

Model A
v.1

Model B
v.1

Model B
v.2

Model A
v.2

Model A
v.3

Model B
v.3

Model B
v.4

Model A
v.4

Figure 1.3: Consistency management with two existing models as the starting point

In the following, we explore in more detail (on the level of model elements) what
intermediate steps are to be taken into account to realize a BX vision as depicted
in Figure 1.3 (these intermediate steps shall define the individual subtasks we
address throughout the thesis). For this purpose, an excerpt of the consistency
between Java and UML models (the black-filled bidirectional arrow in Figure 1.1)
serves as our running example. In particular,we focus on Java andUMLclasseswith
their methods. Bothmodels represent a system from an object-oriented viewwhere
classes define a template for runtime objects. In fact, there exist UML tools [140]
providing their own mechanisms for consistency with Java code but they operate,
in line with the BX conception in Figure 1.2 starting with one model. Consistency

1.2 Challenges of BX in an MDE context 7

management for concurrently developed models, however, are not addressed by
these custom-tailored BX solutions either.
In Figure 1.4, an exemplary pair of Java (left) and UML (right) models is depicted

both representing a class List. The Java model has two remove methods, one with
a parameter of type Object and the other one with a parameter of type int. The
UML model has only one remove method (with a parameter of type Object) and,
additionally, another method named add (again with a parameter of type Object).
Note that these models represent v.1 on both sides when transferred to our BX
conception in Figure 1.3.

List

+ remove(o: Object): boolean
+ add(o: Object): boolean

public class List {

public boolean remove(Object o){...}

public Object remove (int i){...}

}

Figure 1.4: An exemplary pair of Java (left) and UML (right) models

There are obvious inconsistencies between the twomodels in Figure 1.4. The Java
model has an additional removemethodwhichmight have been introduced by Java
programmers as a result of their experience. Furthermore, the Java model misses
the add method as compared to the UML model, i.e., a feature planned on the
higher abstraction level has not been reflected in the code level yet. Nevertheless,
the models have also consistent parts, e.g., they agree on a List class and a remove
method with an Object parameter. In order to tackle consistency issues in such
a case, there are two basic steps that must be supported by a fully-fledged BX
approach: (i) consistency must be checked between the two models to detect which
parts of the models already correspond to each other (and which parts violate
consistency), and subsequently, (ii) consistency must be restored depending on the
decisions of stakeholders, e.g., by applying model transformations that propagate
or simply delete inconsistent parts.
Consistency checking and restoration between concurrently developed models

are illustrated in Figure 1.5 based on this exemplary model pair. In addition to
the models, the bidirectional dashed arrows in the middle indicate correspondences
between model elements. New correspondences and model elements created in
individual steps are depicted green with an additional «new» markup.
In a first step in Figure 1.5, consistency checking is performed and the corre-

spondences between conforming elements are created, i.e., between the List classes
and their remove methods with Object parameter (we omit the correspondence
arrows on the parameter level to avoid diagram clutter). As a consequence, the
remaining elements can be regarded as violating consistency and must be handled
to restore consistency. One of the possibilities would be to delete these elements
and to reduce the models to their consistent parts which, however, is a very strict
and unsatisfactory solution. In Figure 1.5, a strategy is chosen that transforms the

8 1 Overview and Motivation

List

+ remove(o: Object): boolean
+ add(o: Object): boolean

public class List {

public boolean remove(Object o){...}

public Object remove (int i){...}

}

List

+ remove(o: Object): boolean
+ remove(i: int): Object
+ add(o: Object): boolean

public class List {

public boolean remove(Object o){...}

public Object remove (int i){...}

}

List

+ remove(o: Object): boolean
+ remove(i: int): Object
+ add(o: Object): boolean

public class List {

public boolean remove(Object o){...}

public Object remove (int i){...}

public boolean add(Object o){...}

}

Consistency checking

Consistency restoration
(Java to UML)

<<new>>

<<new>>

<<new>>
<<new>>

<<new>>

<<new>>

Consistency restoration
(UML to Java)

Figure 1.5: Consistency checking and restoration on the exemplary model pair

remaining Java elements to the UML model and vice versa. Note that, from a con-
sistency restoration point of view, we consider the remaining elements as additions
to the consistent portions of themodels (detected in the initial consistency checking
run) and propagate these additions to the other side. In the final state, both models
are consistent and contain all three methods. This state of the models represents
their v.2 when transferred to the BX conception in Figure 1.3.
Our understanding of consistency restoration, moreover, is not only limited to

the remaining elements after a consistency checking run. We also handle user
changes on the models in the same manner whereas user changes possibly do not
only involve additions but also deletions. In Figure 1.6, a further run of consistency

1.2 Challenges of BX in an MDE context 9

restoration is demonstrated starting with the consistent state from Figure 1.5. This
time, the user deletes one of the removemethods and adds a sizemethod in the Java
model. The propagation of these changes with consistency restoration accordingly
deletes the corresponding remove method in the UML model (the deleted method
and the correspondence are grayed-out). Furthermore, a size method is created in
the UML model (together with its correspondence).

List

+ remove(o: Object): boolean
+ remove(i: int): Object
+ add(o: Object): boolean

public class List {

public boolean remove(Object o){...}

public Object remove (int i){...}

public boolean add(Object o){...}

public int size(){...}

}

Consistency restoration
(Java to UML)

List

+ remove(o: Object): boolean
+ remove(i: int): Object
+ add(o: Object): boolean
+ size(): int

public class List {

public boolean remove(Object o){...}

public Object remove (int i){...}

public boolean add(Object o){...}

public int size(){...}

}

<<new>>

<<new>>

Figure 1.6: A further consistency restoration run upon user changes

To sum up, this thesis represents the following two building blocks for consis-
tency management in MDE:

• Given two concurrently developedmodels (possiblywithout any prior consis-
tency management support until the models reach an advanced state), a con-
sistency checking run indicates which parts of the models are in conformance
and which parts require action for consistency restoration. Furthermore, cor-
respondences are created representing the relationships between individual
elements of the two models.

• Given two consistent models (together with correspondences), a consistency
restoration run propagates additions and/or deletions in one of the models to
the other. Correspondences are updated in the process as well.

10 1 Overview and Motivation

1.3 Stakeholders and Requirements

Throughout this thesis, consistency checking and restoration in an MDE context
are discussed and formal as well as practical results based on TGGs are proposed.
After having illustrated the targeted BX vision in an abstract manner (Figure 1.3)
and via small concrete examples (Figure 1.5 and 1.6), we are now ready to identify
stakeholders in BX and their requirements.
In Figure 1.7, the functional requirements are summarized via main use cases

of different stakeholders. We distinguish between the following three different
environments (and three groups of stakeholders):

• Consistency tool, usedbymodel owners to check and restore consistencybetween
their related models

• Meta-tool, i.e., a tool for building (consistency) tools, used by consistency tool
developers

• BX approach, used by meta-tool developers (e.g., BX researchers), providing the
foundations for the meta-tool.

BX Approach

Meta-Tool

Consistency Tool

Check consistency
between models

Restore consistency
between models

Model Owner
Develop

consistency tool

Consistency Tool
Developer

Develop meta-
tool

Meta-Tool Developer

Figure 1.7: Stakeholders and their functional requirements in a BX landscape

Obviously, model owners are clients of consistency tool developers while con-
sistency tool developers are clients of meta-tool developers. Although we consider
three different environments with clear boundaries here, some of the stakeholder
roles can possibly belong to the same person, e.g., when model owners develop a
consistency tool for their own needs, or when meta-tool developers provide indi-
vidual consistency tools using their own techniques. In all cases, solid theoretical
foundations and available tool support for BX are important for all stakeholders,
and define the goals of BX-related research as well as this thesis.
Besides the functional requirements, we demand the following non-functional

requirements that are crucial for a scientific underpinning of a BX approach:

• Scalability: We have a pragmatic scalability demand from a tooling point of
view and define it as the capability of dealing with industry-sized and re-

1.4 Contributions and the Structure of the Thesis 11

al-world scenarios of consistency checking and restoration. In this regard,
the proposed (and implemented) procedures for consistency checking and
restorationmust consumeacceptable runtimewith typical hardware resources.

• Formal properties:A consistency checking and restoration approachmust guar-
antee correctness. This means that, given a consistency specification and two
models (that are not necessarily consistent), the outcomemust be a consistent
pair of models. While guaranteeing this for all kinds of consistency require-
ments cannot be feasible in general (e.g., due to scalability issues), the lim-
itations and compromises for scalability must be defined clearly. Moreover,
it must be possible to examine at specification time, whether a correct result
can be guaranteed for a given consistency specification.

• Expressiveness: Consistency checking and restoration in BX relies on a con-
sistency description written in the respective BX language. Hence, the BX
language must be expressive enough to describe consistency for exactly those
model pairs that are meant to be consistent. Otherwise, consistency tool de-
velopersmust resort to hand-crafted pre- and post-processing ofmodels to re-
duce the complexity of BX. This, however, distributes the focus of consistency
tools over different components and reduces the scope of formal guarantees.

• Usability: The ease of use of a BX meta-tool must be provided in at least two
different aspects: First, appropriate language editors must facilitate produc-
tivity when specifying consistency with a BX language. Second, execution
of consistency checking and restoration based on a consistency specification
must be possiblewith little effort (e.g., via included librarieswith entry points
or graphical user interface). Ease of execution has also an arguable impact on
the usability of consistency tools developed with the meta-tool.

• Validation: The provided BX theory and tool support for consistency checking
and restoration must be used and validated in different application scenarios.
On the one hand, academic “toy examples” that are compact but exhibit
non-trivial consistency challenges must be used to validate capabilities of a
BX approach. On the other hand, this must be complemented via real-world
and industrial case studies where involved models as well as consistency
specifications are larger.

1.4 Contributions and the Structure of the Thesis

This thesis is mainly concerned with consistency checking and restoration based
on TGGs and its respective tool support. We first discuss TGGs as a set of grammar
rules that build up consistent pairs of models together with correspondences. The
concrete contributions based on this formalism are:

• Contribution I:We formalize consistency checking with TGGs. We first oper-
ationalize TGG rules for consistency checking, i.e., consistency checking rules
are derived that do not build up models but take existing ones as input and
detect their consistent parts. Subsequently,we identify challengeswith regard

12 1 Overview and Motivation

to search space involved in using these rules to detect consistent parts, and in-
corporate optimization techniques into TGGs to tackle these challenges. Finally,
we exploit these optimization techniques (i) to define sufficient and necessary
conditions for consistency between two models and, in case of inconsistency,
(ii) to detect the largest consistent portions of models.

• Contribution II:We formalize consistency restorationwith TGGs that can op-
erate upon consistency checking results.Analogously to consistency checking,
we operationalize TGG rules to consistency restoration rules that take one of
the models as input and update the other one consistently. We again identify
and clear search space problems (resulting from wrong choices of rules that can
lead consistency restoration to a dead end before consistency is restored). We
discuss sufficient conditions (i) to avoiddead ends at rule application time and
(ii) to state clearly under which circumstances a correct result of consistency
restoration can be guaranteed.

• Contribution III: We consider the realization of consistency checking and
restoration from a tool architecture point of view and provide procedures
that operate with the aforementioned operational rules. Having a formalism
based on graphs and graph patterns in case of TGGs, we propose to use
incremental pattern matching techniques in these procedures. An incremental
pattern matcher maintains and reports patterns in a host graph where our
procedures are solely reactions to these reports. This yields a noticeable sim-
plification for a newgeneration of TGG tools as additional analyses at runtime
are outsourced to calculate necessary steps when checking and restoring con-
sistency. Furthermore, this enables TGGs to profit directly from current and
future progress in the scalability of incremental pattern matchers.

• Contribution IV: We present a meta-tool whose implementation is based on
the formal results and tool architecture from the first three contributions.
Besides investigating our running example, we report on another industrial
consistency project in the context of computer-aided engineering where our
meta-tool is used to develop a tool for consistency checking and restoration
between technical drawings and their respective mechatronic simulations.
We furthermore conduct experiments on different consistency scenarios to
evaluate the scalability of our approach, and provide tool comparisons in
some cases where solutions with other tools are available.

Table 1.1 relates these contributions to the functional and non-functional require-
ments. It can be observed that the contributions I-III are mainly foundational and
address developing a meta-tool with formal properties in the first place. This is
complemented with the provided meta-tool based on the results and its evalua-
tion (contribution IV) allowing users to develop their own consistency tools with
a validated and usable approach. In all of the contributions, consistency checking
and/or restoration are of the uttermost importance. Finally, expressiveness of TGGs
is out-of-scope for this thesis and is a current research topic with open questions
concerning new language constructs and their operationalization.

1.4 Contributions and the Structure of the Thesis 13

Functional Requirements Non-functional Requirements

Check
Cons.

Restore
Cons.

Develop
Cons.
Tool

Develop
Meta-tool Scalability Formal

Properties Expr. Usability Validation

Contr. I X X X
Contr. II X X X
Contr. III X X X X X
Contr. IV X X X X X

Abbreviations: Contr. = Contribution | Cons. = Consistency | Expr. = Expressiveness

Table 1.1: Relation between contributions and requirements

Having so far introduced and motivated our BX vision consisting of consistency
checking and restoration, the rest of the thesis is organized as follows:

• The following Section 2 provides the necessary formal background for TGGs
to understand the subsequent sections. Furthermore, our running example
is introduced focusing on the consistency between Java code and UML class
diagrams.

The subsequent two sections form our formal contributions:

• Section 3 represents our consistency checking approach where we combine
TGGs with linear optimization techniques. Our main formal results are Theo-
rem1andTheorem2 stating a sufficient conditionor a sufficient andnecessary
condition, respectively, to conclude consistency of two models.

• Section 4 represents our consistency restoration approach where we this time
combine TGGs with incremental pattern matching techniques. Our main for-
mal results are givenbyAlgorithm2,whichprovides a consistency restoration
procedure, and its formal guarantees including termination and correctness
stated in Theorem 3 and Theorem 4, respectively.

Both Section 3 and Section 4, furthermore, conclude with their own discussions
of related work. Our practical contributions are discussed subsequently:

• Section 5 represents our meta-tool implementing the formal results, reports
on an industrial project where we have applied TGGs for consistency man-
agement in the computer-aided engineering domain, and, finally, provides
an experimental and quantitative evaluation of our meta-tool.

Section 6, finally, concludes the thesis and discusses future work.

2
FUNDAMENTALS AND RUNNING EXAMPLE

This section introduces foundational aspects which are necessary to understand
how models are structurally organized and discusses what consistency means in a
graphgrammar-basedBXapproach.We strive to impart intuitionswith examples as
well as formalizations to a sufficient extent. In our formal statements, we highly use
the category theoretical foundations of graphgrammars (inparticular as introduced
in [42]) and make our own adoptions and simplifications to capture all what we
need on the way of formalizing consistency of models.
Before delving into the formal part of our fundamentals, it is important to under-

stand what MDE (and in particular the MDA strategy) prescribes from a technical
point of view to structure models. While models are the centre of attention in an
MDE context, the structure of a model is defined by ameta-model. The prefix “meta”
here (in analogy to its previous usage in meta-tool) is used for self-referencing of
a term and thus leads us to the notion of a model for models in this concrete case.
A meta-model basically resorts to basics of object-oriented analysis and defines
concepts with their allowed relations to construct a valid model.
Considering our running example, a Java meta-model should adapt the Java

language specification [75] to the technical space of MDE and define concepts
such as classes, methods, parameters, and their relationships (e.g., classes can have
methods and methods can have parameters). Analogously, a UML meta-model
should do the same for UMLmodels. In this thesis, we get our inspiration from the
MDE tool MoDisco [25] for the Java meta-model and from the OMG standard [141]
for the UMLmeta-model.We also introduce a correspondencemetamodel between
these two as our ultimate goal is to deal with consistency of two models together
with their correspondences. Figure 2.1 depicts excerpts from the Java (left) and
UML (right) meta-model connected by a correspondence meta-model (middle).
In the Java andUMLmeta-model in Figure 2.1,we only focus on classifiers (which

can either be classes or interfaces) and their methods with parameters. While all of
these concepts have a name property represented by a string value, parameters (in
Java as well as in UML) additionally have a pos property represented by an integer
value indicating the position of a parameter in the parameter list of the containing
method. For brevity, we omit the typing information of methods and parameters.
Concepts such as packages or class fields, furthermore, are omitted as well. The cor-
respondencemeta-model in themiddle, moreover, maps the concepts from the Java
and UML meta-model (C2C for classifier-to-classifier, M2M for method-to-method,
and P2P for parameter-to-parameter correspondences).
While the Java and UML meta-model seem identical on the depicted concepts,

they differ in representing inheritance relations between classifiers: In the Java

16 2 Fundamentals and Running Example

JClassifier

JInterface

JClass

JNamedElement

name: String

JMethod

JParameter

method 0..*

parameter 0..*

superInterface 0..*

superClass 0..1

UMLClassifier

UMLInterface

UMLClass

UMLNamedElement

name: String

UMLMethod

method 0..*

parameter 0..*

UMLParameter

general 0..*

contract 0..*

P2P

M2M

C2C

pos: int pos: int

Figure 2.1: Excerpts from the Java metamodel (left), the UML metamodel (right), and the
correspondence metamodel (middle)

meta-model, a classmay have atmost one super class (note the superClass reference
with 0..1 multiplicity) while classes as well as interfaces may have an arbitrary
number of super interfaces (note the superInterface reference with 0..* multiplicity).
This reflects the restrictions in Java with respect to multiple inheritance (inheriting
frommultiple classes is not allowed). TheUMLmetamodel, on the contrary, ismore
relaxed regarding inheritance relations and allows arbitrarily many inheritance
relations between classifiers (be it a class or an interface) via the general reference
with 0..* multiplicity. A second kind of inheritance relation from a class to an
interface is represented by the contract reference (again with 0..* multiplicity).
In general, meta-models focus on defining concepts formodels but not how these

concepts are encoded in an actual representation of models. As already shown in
Figure 1.4 and 1.5, Java models are encoded in the textual Java syntax while UML
models have a visual notation. This is referred to as concrete syntaxwhile the entirety
of concepts defined in a meta-model describes an abstract syntax (which “abstracts”
from the concrete representation). Abstract syntax, moreover, is generally visual-
ized in the well-known notation of object diagrams [141]. As from now on, we
normalize most of the future figures using abstract syntax when depicting models
(and go back to the concrete syntax in certain cases where this increases the read-
ability of illustrations). Figure 2.2 depicts an excerpt of the consistent model pair in
Figure 1.5 and their correspondences in the abstract syntax. The Java model (left),
the UML model (right) as well as the correspondence model (middle) instantiate
the respective meta-models in Figure 2.1.
In the rest of this section, we formalize triples of (meta-)models as triples of

graphs and subsequently define consistency as a grammar over such triples. We
first focus on rather simple examples and then extend our consistency specification.
Finally, we summarize this section and discuss open issues as well as possible
extensions for future with regard to the consistency specification.

2.1 Graphs and Triple Graphs 17

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"
pos = 0

: JMethod

name = "remove"

: JParameter

name = "i"
pos = 0

method

method parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"
pos = 0

method

:P2P

: UMLMethod

name = "remove"

: UMLParameter

name = "i"
pos = 0

:M2M

:M2M

:P2P

:C2C

method
parameter

parameter

Figure 2.2: A triple of Java model (left), UML model (right), and correspondence model
(middle) conforming to the triple of meta-models in Figure 2.1

2.1 Graphs and Triple Graphs

The following definitions and statements are adopted from the category theoretical
foundations of graph grammars [42]. To formalize (triples of) models and their
consistency, we shall start with defining the most basic mathematical structure that
comprises “objects” and “mappings” (morphisms) between them, namely a category.

Definition 1 (Category). [42]
A category C � (ObC, MorC, ◦) consists of:

• a class ObC of objects

• for each pair of objects X, Y ∈ ObC, a set MorC(X, Y) of morphisms,
where each m ∈ MorC(X, Y) is denoted as m : X → Y

• for all objects X, Y, Z ∈ ObC, a composition operation
◦ : MorC(Y, Z) ×MorC(X, Y) → MorC(X, Z)

such that the following properties are fulfilled:

1. Associativity.
For all objects X, Y, Z, W ∈ ObC, and all morphisms f : X → Y, g : Y →
Z, h : Z→W , it holds that (h ◦ g) ◦ f � h ◦ (g ◦ f)

2. Identity.
For all objects X, Y ∈ ObC and morphisms f : X → Y, there exists
a morphism idX : X → X and a morphism idY : Y → Y such that
f ◦ idX � f and idY ◦ f � f .

Hence, a category is an abstract representation of “structured things” and their
morphisms that serve as mappings. This applies independently of the concrete
structure of the objects and forms a means for using and stating mathematical
results for different kinds of objects in a common way.

18 2 Fundamentals and Running Example

Throughout this thesis, the category Sets whose objects are sets and whose
morphisms are total functions will be the most basic category that shapes the
underlying structure for further categories. When considering sets as categorical
objects, the probablymost noticeable difference to the usual definition of sets is how
functions are defined (cf. Example 2 in [118]): In a categorical setting, the output
set of a function is not defined by its range (i.e., not by the elements that are a value
for some elements in the input set). Instead, a function is a mapping from an input
set to an output set (and the range of the function does not necessarily cover all
elements in the output set).

Definition 2 (Sets).
Sets � (ObSets, MorSets, ◦) is defined as:

• a class ObSets of finite sets

• total functions MorSets

• for all sets X, Y, Z ∈ ObSets, the function composition operation
◦ : MorSets(Y, Z) ×MorSets(X, Y) → MorSets(X, Z).

Fact 1 (The category Sets).
Sets forms a category where the associativity property is induced by the asso-
ciativity of function composition, and identities are the identity functions.

As the definition of a category (Definition 1) and its instantiation (Definition 2)
might imply, categories focus on morphisms and their properties rather than on
objects. We shall exploit this “mapping-oriented” flavor of categories in at least
two critical ways in this thesis: First, if our goal is to set two models in relation
for consistency purposes, relations can be captured via morphisms. As exemplified
in Figure 2.1 on the meta-model level and in Figure 2.2 on the model level, corre-
spondence structures set the other two structures in relation in our case. Second,
existence or absence of morphisms allows us to draw conclusions about the consis-
tency of models (indicating what actions to take when dealing with consistency).
Furthermore, the following types of morphisms are of special interest:

Definition 3 (Monomorphism, Epimorphism, Isomorphism). [42]
Given a category C,

1. A morphism m : Y → Z ∈ MorC is called a monomorphism, if for all
morphisms f , g : X → Y ∈ MorC, it holds that m ◦ f � m ◦ g implies
f � g

2. A morphism e : X → Y ∈ MorC is called an epimorphism, if for all
morphisms f , g : Y → Z ∈ MorC, it holds that f ◦ e � g ◦ e implies f � g

3. A morphism i : X → Y ∈ MorC is called an isomorphism if there exists a
morphism i−1 : Y → X such that i ◦ i−1 � idY and i−1 ◦ i � idX .

2.1 Graphs and Triple Graphs 19

Example 1. An intuition in Sets already suffices in this thesis to understand
these special types of morphisms. In Sets, injective functions are monomor-
phisms. As an injective function m maps all elements in its input set distinctly
to the elements of the output set, m ◦ f � m ◦ g can only hold if f � g. Further-
more, surjective functions are epimorphisms. As a surjective function e covers
all elements in the output set, f ◦ e � g ◦ e can only hold if f � g. Bĳective
functions, finally, are isomorphisms.

Remark 1. In Sets, bĳective functions are those functions which are injective
and surjective. Hence, a morphism which is a monomorphism as well as an
epimorphism is an isomorphism. This, however, does not necessarily hold in
the most general setting of the category theory as i−1 might not exist for a
morphism i in a category (cf. Remark 2.14 in [42]). Hence, we do not state in
Definition 3 isomorphism as being monomorphism and epimorphism at the
same time. As our structures shall entirely be derived from Sets throughout
this thesis, nevertheless, this intuition is indeed valid for our purposes.

Inour context, graphs are the fundamental structures representing (meta-)models.
A graph is typically defined as a quadruple (E, V , s, t) consisting of

• a set E of edges,

• a set V of vertices,

• a function s : E→ V assigning each edge a source vertex,

• a function t : E→ V assigning each edge a target vertex.

While this is themost common definition of a graph that can be found in the liter-
ature, an alternative definition is to define graphs as functors. A functor is basically
a mapping between two categories remaining compatible with compositions and
identities. Functors allow us to build new (and, roughly spoken, more complex) cat-
egories from existing ones, e.g., graphs from sets and triple graphs from graphs. To
capture all relevant structures in a unified manner, we use functors consequently
from the very beginning (starting with the definition of a graph) and exemplify
them for the reader who is not familiar with this concept.

Definition 4 (Functor). [42]
Let C and D be two categories. A functor F : C→ D is given by two mappings
FOb : ObC → ObD and FMor : MorC(X, Y) → MorD(FOb(X), FOb(Y)) with
X, Y ∈ ObC, such that the following properties are fulfilled:

1. For all morphisms f : X → Y and g : Y → Z ∈ MorC, it holds that
FMor(g ◦ f) � FMor(g) ◦ FMor(f)

2. For each object X ∈ ObC, it holds that FMor(idX) � idFOb(X).

20 2 Fundamentals and Running Example

Example 2. The classical definition of a graph, i.e., the quadruple (E, V , s, t)
mentioned above, states nothing but two sets and two total functions in the
same direction between these sets. Such a structure can be constructed as a
functor which maps a “small” category O1 ⇒ O2, i.e., a category consisting of
the two objects O1 and O2 and two morphisms from O1 to O2, to the category
Sets. The result of this mapping consists of two sets and two functions in the
same direction exemplified in Figure 2.3 using a Java model. At the top, the
small category O1 ⇒ O2 is depicted, and at the bottom two sets (E and V)
with two functions (s, t : E→ V). The functor (represented with bold and gray
arrows) maps O1 and O2 to E and V , respectively, while the two morphisms
O1 ⇒ O2 are mapped to the two functions s and t. Though not depicted
explicitly, the functor furthermore maps the id morphisms idO1 and idO2 to the
id functions idE and idV , respectively, fulfilling thus the two conditions stated
over morphisms in Definition 4.
The set E consists of two elements, namely the method and parameter edges,

where the set V consists of three elements representing a class List, a method
remove, and a parameter o. The function s (represented with dashed arrows)
assigns the class List to themethod edge and themethod remove to the parameter
edge as their sources. Furthermore, the function t (represented with dotted
arrows) assigns the method remove to the method edge and the parameter o to
the parameter edge as their targets.

O1 O2

method

parameter

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"
pos = 0

E

V

s

t

Figure 2.3: A graph considered as a functor from O1 ⇒ O2 to Sets

To sum up, a functor (O1 ⇒ O2)→ Sets captures all what a quadruple (E, V , s, t)
with the required properties stated before intends to describe for defining a graph.

While a functor is one single mapping between two categories (that leads to,
e.g., one single graph as depicted in Figure 2.3), all functors together with their

2.1 Graphs and Triple Graphs 21

compatiblemorphisms yield a functor category. This leads us to the categoryGraphs
and subsequently TripleGraphs.

Definition 5 (Functor Category). [42]

F(X) F(Y)

G(X) G(Y)

F(f)

G(f)

αX αY

Given two functors F, G : C → D, a natural transformation
α : F ⇒ G is a family of morphisms α � (αX)X∈ObC with
αX : F(X) → G(X) ∈ MorD, such that for all morphisms
f : X → Y ∈ MorC the diagram to the right commutes, i.e.,
αY ◦ F(f) � G(f) ◦ αX .

A functor category [C,D] is given by all functors F : C → D as the objects
and by the natural transformations as the morphisms. Composition of two
natural transformations α : F ⇒ G and β : G ⇒ H is the componentwise
composition in D, i.e., β ◦ α � (βX ◦ αX)X∈ObC . Identities are identical natural
transformations given by componentwise identities in D.

Definition 6 (The Category Graphs).
The category Graphs of graphs is the functor category [O1 ⇒ O2,Sets]. Given
a graph G, the sets G(E) and G(V) are referred to as edges and vertices of G,
respectively. We refer to the union set G(E) ∪G(V) as elements of G, denoted as
elements(G).

Example 3. Each of the Java, UML, and correspondence meta-models in Fig-
ure 2.1 and models in Figure 2.2 represents an individual graph. The concepts
(e.g., JClass and JMethod) and their references (e.g., the method reference) in
the meta-models as well as their instantiations in the models represent vertices
and edges, respectively. Note that we further on use the visualization in these
figures (referred to as abstract syntax at the beginning of this section) to rep-
resent graphs and do not explicitly depict the small category O1 ⇒ O2 or its
mappings induced by the functor (which we have done once in Figure 2.3 to
understand functors).
Additionally, Figure 2.4 shows two exemplarymorphisms α and β inGraphs,

depicted via dashed arrows between their respectively mapped graphs. Both
α and β are natural transformations, i.e., a family of morphisms in Sets (in
particular a pair of morphisms in Sets as the small category O1 ⇒ O2 consists
of two objects). Considering the individual components of α and β according
to Definition 5, αO1 and βO1 refer to those parts of morphisms that map edges
while αO2 and βO2 map vertices. Most importantly, a morphism in Graphs
commutes with the s and t functions of the individual graphs. For example,
when αO1 (or βO1) maps an edge of a graph to an edge of another graph,
the source and target vertices of these edges are also mapped accordingly
by αO2 (or βO2). Note that this is inherently required in Definition 5 which
states that natural transformations commute with the morphisms in the “host”
category (Sets in the case ofGraphs). Furthermore, the composition of natural

22 2 Fundamentals and Running Example

transformations as stated in Definition 5 can be exemplified by β ◦ α which is
given by the componentwise compositions βO1 ◦ αO1 and βO2 ◦ αO2 .
Finally, α and β are monomorphisms as they map vertices and edges injec-

tivelywhile β, being surjective at the same time, is additionally an isomorphism.

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"
pos = 0

method

parameter

: JClass

name = "List"

: JMethod

name = "remove"

method

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"
pos = 0

method

parameter

α β

Figure 2.4: Two morphisms in Graphs

Remark 2. For brevity, we restrict our formalization to graphs with vertices
and edges but without attributes (which are actually used on the meta-model
and model level in Figure 2.1 and 2.2, respectively) and vertex type inheritance
(used on the meta-model level in Figure 2.1). Although we implicitly use at-
tributes and inheritance in our examples, formalizations reduced to vertices
and edges suffice to represent the contributions of this thesis with respect to
consistency checking and restoration (and help us to avoid notational inflation).
The formalization, nevertheless, can compatibly be extended to attributed graphs
with vertex type inheritance by constructing new kinds of categories which still
retain all desired properties. We refer the interested reader to [42] for the re-
spective extensions in the general theory of graph grammars, and to [8, 92] for
attribute handling dedicated to the case of TGGs.While there is no doubt on the
solid formal foundation of these extensions, an interesting discussion that also
merits mentioning here is that of “the awkwardness of attributes” [124] as ma-
nipulating attributes requires different techniques than manipulating vertices
and edges. To this end, there have been recent efforts to come up with more
lightweight approaches to integrating attributes into graph grammars [73].

Analogously to graphs, triple graphs are also constructed as functors whichmap a
small category S← C→ T toGraphs (the letters S, C, and T indicating the source,
correspondence, and target domain, respectively).

Definition 7 (The Category TripleGraphs).
The category TripleGraphs of triple graphs is the functor category [S← C →
T,Graphs]. Given a triple graph G, the graphs G(OS), G(OC), G(OT) are re-
ferred to as the source graph, the correspondence graph, and the target graph of G,
respectively. G is denoted by GS ← GC → GT where GX � G(X), X ∈ {S, C, T}.

2.1 Graphs and Triple Graphs 23

Example 4. The triple of meta-models in Figure 2.1 and the triple of models
in Figure 2.2 are exemplary triple graphs where the individual components
(Java, UML, and correspondences) represent single graphs. The connections
from correspondences to the other two graphs are captured as morphisms in
Graphs as Definition 7 implies.We further on depict thesemorphisms via solid
(and horizontal) lines with open arrows.

In Figure 2.5, moreover, a morphism (in fact, a monomorphism) α in Triple-
Graphs is depicted via vertical dashed arrows. Basically, α is a natural transfor-
mation consisting of threemorphisms αS, αC, and αT inGraphs (represented in
Figure 2.5 by the arrows placed at the left, middle, and right part, respectively).
Most importantly, as a result of Definition 5 and as is the case in Figure 2.5,
αS, αC, and αT commute with the morphisms from the correspondence graphs
to the source and target graphs of the respective triple graphs. That is, for
each correspondence mapped by αC, its source and target vertex are mapped
accordingly by αS and αT , respectively.

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"
pos = 0

method

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"
pos = 0

method

:P2P

:M2M

:C2C

parameter

: JClass

: JMethodmethod

: UMLClass

: UMLMethod method:M2M

:C2C

α

Figure 2.5: A morphism in TripleGraphs

While meta-models and models are graphs, meta-models are in fact “distin-
guished” graphs that represent typing information for their instantiating models.
This also applies analogously to triples. For consistency checking and restoration
purposes, we only deal with triples of models whose types conform to a given
triple of meta-models (e.g., the one in Figure 2.1 for our running example). Typing,
moreover, is captured as a morphism, commonly referred to as a type morphism.
Intuitively, a type morphism maps vertices and edges in models to vertices and
edges in meta-models and induces this way a typing information.
In a categorical setting, typing can be captured via slice categories, i.e., a “slice”

of a category that solely consists of objects that have a type morphism to a dis-
tinguished object and morphisms that are compatible with these type morphisms.
In our concrete case, triple graphs representing Java and UML models with corre-
spondences (i.e., triples of models typed over the triple of meta-models given in
Figure 2.1) form a “slice” of TripleGraphs.

24 2 Fundamentals and Running Example

Definition 8 (Slice Category). [42]
Let C be a category and X an object in C. The slice category CX is defined as
follows:

F(X) F(Y)

G(X) G(Y)

F(f)

G(f)

αX αY

X

A Bm

f g

1. ObCX � { f : A→ X | f ∈ MorC}

2. MorCX (f : A→ X, g : B → X) � {m : A→ B | g ◦m �

f } (i.e., the diagram to the right commutes for each
m ∈ MorcCX)

3. composition operation ◦ as defined in C

4. id f :A→X � idA ∈ MorC.

Example 5. Althoughwe ultimately deal with a slice of TripleGraphs through-
out this thesis, we first exemplify objects andmorphisms from a slice ofGraphs
to impart an intuition for Definiton 8.
At the top of Figure 2.6, an excerpt from the Java meta-model is given which

is now considered to be a distinguished graph and thus represents the object
X in Definition 8. Note that, as already stated in Remark 2, we provide our
formalization without vertex type inheritance on the meta-model level. Hence,
the inheritance hierarchy shown in Figure 2.1 is now “flattened” from a formal
point of view and represented this way in our excerpt in Figure 2.6 (e.g., JClass
has now a direct edge to JMethodwhich was initially inherited from JClassifier
in Figure 2.1).
At the bottom of Figure 2.6, two graphs and a morphism are given which

actually repeat Figure 2.4. In addition to Figure 2.4, the vertices and edges
in both graphs are now mapped to the distinguished graph by the type mor-
phisms (depicted via vertical and grayed out arrows). In all cases, the type
morphisms commute with the morphism between these graphs (horizontal
dashed arrows) and induce typing information for the individual vertices and
edges. The entirety of such graphs (for which the type morphisms are given)
and their morphisms (which commute with the type morphisms) forms a slice
ofGraphs. In the case of Figure 2.6, this slice represents models typed over the
Java meta-model (and excludes all other graphs representing other models).

Example 5 discusses a slice of Graphs that leads us to the notion of typed graphs.
This rather serves as an introductory example to understand slice categories. As
mentioned before, we deal with a slice of TripleGraphs in our context. Hence,
although exemplified, we skip the definition of typed graphs and apply the concept
of slice categories directly to TripleGraphs in the following definition. Lifting
Example 5 to triples is left to the reader as exercise.

Definition 9 (Typed Triple Graph).
Let TG be a distinguished triple graph, referred to as type triple graph. The
category of triple graphs typed over TG is the slice category TripleGraphsTG.

2.2 Triple Graph Grammars (TGGs) 25

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"
pos = 0

method

parameter

: JClass

name = "List"

: JMethod

name = "remove"

method

JClass JMethod
JParameter

method

pos: int

parameter

name : String name : String
name : String

Figure 2.6: A distinguished graph (top) and two graphs together with a morphism from a
slice of Graphs derived via this distinguished graph (bottom)

Example 6. The triple of meta-models in Figure 2.1 is the type triple graph TG
for our running example, and the triple of models in Figure 2.2 represents a
triple graph typed over TG. We further on use the visual notation of Figure 2.2
and do not explicitly depict TG or type morphisms when discussing triple
graphs typed over TG. Type information, nevertheless, is explicitly given via
the labels on the vertices and edges (e.g., :JClass for a vertex which is mapped
to the JClass vertex in the Java meta-model).

Remark 3. In our definitions and statements from now on, we assume a type
triple graph TG is always given (and thus do not require it explicitly). In the
absence of an explicit TG symbol, the term triple graph refers to a triple graph
typed over TG, and TripleGraphs denotes the slice category TripleGraphsTG.

2.2 Triple Graph Grammars (TGGs)

The term grammar has its roots in linguistics where it refers to a set of rules that
describe how to construct validwords, phrases, and sentences in a natural language.
In the 1950s, formal grammars have been introduced (e.g., [30, 31]) as an approach
to studying the structure of a language. It then came as no surprise that formal
grammars became highly relevant for “computational” linguistics, e.g., describing
what is syntactically possible in a programming language by using string grammars.
In the 1970s, graph grammars have followed evolving into a community with dedi-
cated scientific events [33] as graphs are (just like strings) ubiquitous in computer

26 2 Fundamentals and Running Example

science to represent data. Around that time, pair grammars [119] have shown that
grammars are also useful to describe consistency between two structures.
The main idea of a pair grammar is to provide a set of rule pairs where each

rule pair constructs the two structures simultaneously. Though only illustrated
on string-to-graph translators, possible use cases include graph-to-string, string--
to-string, and graph-to-graph translators. This is the source of inspiration for TGGs,
introduced in the 1990s in [128], where pairs are lifted to triples by introducing
correspondences in the middle. All in all, a TGG describes how triple graphs are
constructed.
If a grammar is a set of rules, our first step is to definewhat is a rule in the context

of TGGs.A rule describes howa triple graph canbe extended to another triple graph
by creating new vertices and edges on the individual graphs of the triple. Although
it might seem to be a severe limitation at a first glance that the rules can only create
something but never delete (which is generally allowed in graph grammars), it
should be noted that our goal is not to capture all possible modifications to triple
graphs but only to describewhich triple graphs are consistent. Indeed, a consistency
restorer derived from a TGG is able to handle creations as well as deletions when
propagating changes as we shall see later (though the consistency description itself
is only constructive).

Definition 10 (Rule).
A TGG rule, short rule, is a monomorphism r : L → R in TripleGraphs. The
triple graphs L and R are referred to as the left-hand side and the right-hand side,
respectively, of r.

Example 7. Figure 2.7 depicts a set of rules that construct triple graphs repre-
senting Java and UML models together with their correspondences.
As a rule, being a monomorphism, “embeds” its left-hand side L injectively

into its right-hand side R, we use a compact syntaxmerging both L and R in the
same diagram. Elements (vertices and edges) that are both in L and R are de-
picted black. These elements represent the triple graphwhich is to be extended
and are referred to as context elements required by the rule. Elements that are
in R but not in L are depicted green and additionally with a (++)-markup for
monochrome printing. These elements represent the extensions intended by
the rule and are referred to as created elements. We also use attribute constraints
in some rules (within a note icon) that require solely name equality between
Java and UML elements (and position equality between parameters) that are
created together. Our rules have the following purposes:

• ClassRule (r1) does not require any context elements and creates a pair of
Java and UML classes together with a correspondence in the middle. The
names of the Java and UML class, furthermore, must be equal.

• InterfaceRule (r2) is similar to the previous rule and creates a correspond-
ing pair of Java and UML interfaces without requiring a context.

2.2 Triple Graph Grammars (TGGs) 27

(++)
jc : JClass

(++)
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

r5: SubClassRule

jc' : JClass uc' : UMLClassc2c' :C2C

(++) superClass (++) general

(++)
jc : JClass

(++)
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

r1: ClassRule

(++)
ji : JInterface

(++)
ui : UMLInterface

(++)
c2c :C2C

ji.name == ui.name

r2: InterfaceRule

ji : JInterface ui : UMLInterfacec2c :C2C

r4: GeneralRule

ji' : JInterface ui' : UMLInterfacec2c' :C2C

(++) superInterface (++) general

jc : JClass uc : UMLClassc2c :C2C

r3: ContractRule

ji : JInterface ui : UMLInterfacec2c' :C2C

(++) superInterface (++) contract

(++)
jm : JMethod

(++)
um : UMLMethod

(++)
m2m :M2M

jm.name == um.name

r6: MethodRule

jc : JClassifier uc : UMLClassifierc2c :C2C

(++) method (++) method

(++)
jp : JParameter

(++)
up : UMLParameter

(++)
p2p :P2P

jp.name == up.name
jp.pos == up.pos

r7: ParameterRule

jm : JMethod um : UMLMethodm2m :M2M

(++) parameter (++) parameter

Figure 2.7: TGG rules for our running example

• ContractRule (r3) requires a corresponding pair of Java and UML classes
as well as a corresponding pair of Java and UML interfaces as context
(which, e.g., can be created by the previous two rules), and creates a
superInterface edge from the Java class to the Java interface as well as a
contract edge from the UML class to the UML interface.

• GeneralRule (r4) requires two corresponding pairs of Java and UML inter-
faces as context, and creates a superInterface edge on the Java side as well
as a general edge on the UML side. Both edges are created in the same
direction.

• SubClassRule (r5) requires a corresponding pair of Java and UML classes,
and creates a corresponding pair of subclasses with equal names. Note
that the rule crates a Java class together with its superClass edge. As we
do not have any other rule creating a superClass edge for an existing
Java class, it is ensured that a Java class has either one super class (when
created with this rule) or no super class (when created with ClassRule)
but never multiple super classes which is forbidden in Java.

28 2 Fundamentals and Running Example

• MethodRule (r6) requires a corresponding pair of Java andUML classifiers
(which can be classes or interfaces) as context and creates a corresponding
pair of Java and UML methods with equal names.

• ParameterRule (r7), finally, requires a corresponding pair of Java andUML
methods as context and creates a corresponding pair of Java and UML
parameters with equal names and positions.

As the reader might have noted, our definition of a rule (Definiton 10) is nothing
but a monomorphism in TripleGraphs but we discuss them with the intention of
creating vertices and edges. In fact, creations are realized by applying a rule to a
given triple graph. A rule application is basically gluing the right-hand side of a
rule with the given triple graph along the left-hand side of the rule. Constructions
over gluings is generalized as a pushout in the sense of category theory.

Definition 11 (Pushout).F(X) F(Y)

G(X) G(Y)

F(f)

G(f)

αX αY

X

A Bm

f g

A Bf

C

g

Df'

g'

X
c

x

b

L Gm

R

r

G'm'

g

PO

PO
Given morphisms f : A → B and g : A → C in a category
C, a pushout is defined by a pushout object D ∈ ObC and
morphisms f ′ : C→ D and g′ : B→ D with f ′ ◦ g � g′ ◦ f ,
such that the following property, referred to as the universal
property, is fulfilled: For all morphisms b : B → X and
c : C → X, there is a unique morphism such that x ◦ g′ � b
and x ◦ f ′ � c.

Future diagrams representing a pushout are labeled with PO (as is the case in
Definition 11).

Example 8. As the category Sets is the underlying category for Graphs (and
consequently TripleGraphs), we again start with an intuition on the level of
sets to understand how a pushout is constructed in our future examples. The
pushout object over two morphisms f : A → B and g : A → C in Sets (i.e.,
two total functions) can be constructed as the quotient B]C |≡where] denotes
disjoint union of sets and≡ is the smallest equivalence relation such that∀a ∈ A,
(f (a), g(a)) ∈≡.
In the exemplary diagram below, all functions map the elements in the input

set to the elements with the same index in the output set, e.g., f (a1) � b1 and
g(a1) � c1. The pushout object, finally, is the set of equivalence classes with
respect to≡. Equivalence classes that contain two elements (i.e., {b1, c1}, {b2, c2},
and {b3, c3}) are collapsed to a single representative (i.e., to d1, d2, and d3,
respectively) while all other equivalence classes (i.e., {b4}, {c4}, and {c5}) are
represented with the symbol of their single element.

{a1, a2, a3} {b1, b2, b3, b4}

{c1, c2, c3, c4, c5} {d1, d2, d3, b4, c4, c5}

f

f'

g g'PO

A B

C D

2.2 Triple Graph Grammars (TGGs) 29

Pushouts inGraphs and consequently TripleGraphs are induced by component-
wise pushouts inSets.We refer to [42] (Fact 2.17 for graphs and Fact A.37 for functor
categories in general) for a detailed proof of the following fact.

Fact 2 (Pushouts in TripleGraphs).
Pushouts exist in Graphs and TripleGraphs. In Graphs, pushouts can be con-
structed componentwise for vertices and edges in Sets, where pushouts in
TripleGraphs can be constructed componentwise for the source, correspon-
dence, and target graph in Graphs.

Definition 12 (Rule Application).F(X) F(Y)

G(X) G(Y)

F(f)

G(f)

αX αY

X

A Bm

f g

A Bf

C

g

Df'

g'

X
c

x

b

L Gm

R

r

G'm'

g

PO

PO

A rule applicationwith a rule r : L→ R and a triple graph G over

amonomorphism m : L→ G, denoted as G
r@m
���⇒ G′, is a pushout

as depicted in the diagram to the right. For a rule application, we
refer to m and m′ as match and comatch, respectively. A sequence

d : G1
r1@m1
����⇒ G2

r2@m2
����⇒ . . .

rn@mn
����⇒ Gn of rule applications is

referred to as a derivation.

Example 9. Figure 2.8 depicts a derivation consisting of two rule applications
(represented as two pushout diagrams) with two of our exemplary rules from
Figure 2.7. The vertical arrows on the left side represent the two rules, namely
ClassRule (r1) and MethodRule (r6). Note that, for the first time, we explic-
itly show the rules as a morphism and do not use the compact syntax with
(++)-markup. Accordingly, L1 (R1) and L6 (R6) refer to the left-hand side (right--
hand side) of r1 and r6, respectively. The matches and comatches of the single
rule applications, furthermore, are represented as m and m′, respectively.
We start with the empty triple graph (G0) and find amatch of L1 which is also

an empty triple graph, and create a pair of Java and UML classes by gluing R1

over the empty triple graph, resulting in the pushout object G1. We then find a
match of L6 in G1, glue R6 over this match resulting in a corresponding pair of
Java and UML methods in the pushout object G2.

Finally, a TGG is a set of rules and its language consists of triple graphs that can
be constructed via derivations with these rules startingwith the empty triple graph
(as illustrated, e.g., in Figure 2.8).

Definition 13 (Triple Graph Grammar).
A triple graph grammar, denoted and abbreviated as TGG, is a set of rules.
The language L(TGG) of a TGG is defined as:

L(TGG) � {G∅} ∪ {G | ∃ d : G∅
r1@m1
����⇒ G1 . . .

rn@mn
����⇒ Gn with r1, . . . , rn ∈ TGG}

where G∅ � ∅ ← ∅ → ∅ is the empty triple graph.
The source language LS(TGG) and the target language LT(TGG) are defined as:
LS(TGG) � {GS | ∃ GS ← GC → GT ∈ L(TGG)}
LT(TGG) � {GT | ∃ GS ← GC → GT ∈ L(TGG)}.

30 2 Fundamentals and Running Example

jc : JClass uc : UMLClassc2c :C2C

jc.name == uc.name

: JClass

name = "List"

: UMLClass

name = "List"
:C2C

m1

r1

m'1

jc : JClassifier uc : UMLClassifierc2c :C2C

jm : JMethod um : UMLMethodm2m :M2M

jm.name == um.name

jc : JClassifier uc : UMLClassifierc2c :C2C

 method method

: JClass

name = "List"

: JMethod

name = "remove"

: UMLClass

name = "List"

: UMLMethod

name = "remove"

method

:M2M

:C2C

method

m2

r6

g2

m'2

g1

L1

R1

L6

R6

PO

PO

G0

G1

G2

Figure 2.8: A derivation with two rule applications

Example 10. The set of rules in Figure 2.7 forms a TGG for our running example.

The language of a TGG induces a notion of consistency for source and target
graphs which is central in the upcoming sections.

Definition 14 (Inter-model Consistency).
Given a TGG, two graphs GS ∈ LS(TGG) and GT ∈ LS(TGG) are said to be
consistentwith respect to TGG if ∃ GS ← GC → GT ∈ L(TGG).

2.3 An Extended Consistency Specification for the Running Example

So far, we have discussed the consistency of Java and UML models on minimal
examples with a rather simple set of rules (Figure 2.7). Our rules seem symmetric
and basically describe a one-to-one mapping: For each Java classifier, method, pa-
rameter, and inheritance relation, there must be a counterpart in UML. Consistency
can be considered as a bĳective function in this case, i.e., for a given Java model
in the source language of our TGG there is exactly one UML model in the target
language simply consisting of the same classifiers, methods, parameters, and in-

2.3 An Extended Consistency Specification for the Running Example 31

heritance relations (this also applies reversely for a given UMLmodel). Experience
over the years with industrial consistency projects, however, shows that a more
flexible conception of consistency is needed such that consistency of two models is
a relation (and not necessarily a function). That is, for a given a source model in the
source language of a TGG, there might be several target models that are consistent
to the given source model (and vice versa).
In fact, consistency of Java and UMLmodels is also a typical scenario requiring a

broad consistency understanding that goes beyond bĳections. If UML models are
intended to be rather high-level models abstracting from implementation details,
the extent of abstraction can be considered as a design choice leading to a certain
degree of freedom. For example, assume that some classifiers,methods, and further
elements in a Java model are used for good Java programming practices but do not
necessarily contribute to a platform-independent understanding of the developed
system (and this platform-independent understanding is probably the main mo-
tivation of using UML). In this case, a UML model representing “less” than the
Java model can still be considered as consistent. In the following, we focus on one
of these situations and extend our consistency specification which (together with
our former set of rules in Figure 2.7) can construct several UML models (differ-
ing in their extent of abstraction) for the same Java model. Reversely, several Java
models can be constructed for the same UML model (differing in their usage of
programming practices that are irrelevant to the UML model).
A well-known practice in Java, which indeed is used by several tools such

as [39, 140] when generating Java code from PIMs, is to represent each entity
systematically as an interface together with an implementation class. A client appli-
cationwhichmakes use of such Java code should only interact with interfaceswhile
implementation classes exist only for hiding behavioral complexity. In fact, there is
usually technological support to enforce this by making only interfaces available
to clients. Generally, the implementation classes adopt a naming convention (e.g.,
an “Impl”-suffix to the name of the respective interface) to easily assign them to
their interfaces when reading code. It is then a reasonable abstraction for the UML
model to allow that pairs of interfaces and implementation classes (adhering to the
naming convention) in Java are represented as single UML classes. We consider
this as a decision for each individual case (e.g., more abstraction in UML for a cer-
tain group of Java elements and less abstraction for others depending on what the
stakeholders expect from a UML model).
In Figure 2.9, two Java models and two UML models are depicted in concrete

syntax, all representing a Rectangle entity once as an interface together with an
implementation class and once solely as a class. We use an Impl-suffix for naming
an implementation class, e.g., RectangleImpl, and refer to such classes as Impl-class
(the naming convention generally can be matter of a predefined configuration
when generating code or matter of taste when programming). According to our
extended, and actually relaxed, understanding of consistency, the following three
pairs of models must be regarded as consistent (these pairs are also indicated by
the bidirectional arrows in Figure 2.9):

1. The Java model containing only one Rectangle class is consistent to the UML
model containing only one Rectangle class, i.e., not using the aforementioned

32 2 Fundamentals and Running Example

public class Rectangle{

}

public interface Rectangle{

}

public class RectangleImpl
implements Rectangle{

}

Rectangle

«interface»
Rectangle

RectangleImpl

Figure 2.9: Two Java models and two UML models where three pairs are consistent (indi-
cated with⇔ between models)

programming practice in Java models is allowed (this case is already sup-
ported with our rules so far).

2. Also the Javamodel containing aRectangle interface and aRectangleImpl class
is consistent to the UML model containing only one Rectangle class, i.e., the
UML model may abstract from Impl-classes (and this is exactly the extension
we are intending in the following).

3. The Java model containing a Rectangle interface and a RectangleImpl class
is also consistent to the UML model containing both, i.e., the UML model
does not necessarily have to abstract from Impl-classes (this case is already
supported with our rules so far).

Moreover, systematic use of interfaces and Impl-classes in Java is not only a good
practice but also a necessity if a corresponding UML model describes multiple
inheritance between classes (which is not allowed in Java as already taken into
account by our rules). Consider, for example, the UML model in Figure 2.10 con-
sisting of Rectangle, Clickable, and Button classes where the latter has inheritance
relations to the first two. In this case, demanding for each UML class a correspond-
ing Java class (as we have done so far) is not appropriate anymore. The Java model
in Figure 2.10, therefore, represents all these classes as an interface and an Impl-class
where multiple inheritance is represented via inheritance relations between inter-
faces. While such a strategy might seem to be an unsatisfactory solution in many
cases leading to redundantmethod implementations and attributes as these are not
inherited from interfaces, it is also the most common means for dealing with the
discrepancy between Java and UML. The strategy is especially useful for entities
that are rather meant for maintaining and querying data but not for complex com-

2.3 An Extended Consistency Specification for the Running Example 33

putations. Default method implementations in interfaces since the introduction of
Java 8, nevertheless, mitigates the problem of redundant method implementations.

public class Rectangle{

}

public interface Rectangle{

}

public class RectangleImpl
implements Rectangle{

}

Rectangle

«interface»
Rectangle

RectangleImpl

Rectangle Clickable

Button

public interface Rectangle{

}

public class ClickableImpl
implements Clickable{

}

public interface Clickable{

}

public class RectangleImpl
implements Rectangle{

}

public interface Button
extends Rectangle, Clickable{

}

public class ButtonImpl
implements Button{

}

Figure 2.10: A model pair representing multiple inheritance

Having discussed some examples with additional Impl-classes in Java without
explicit UML counterparts, we are now ready to extend our consistency specifica-
tion to capture this. While we need new rules that create a Java interface and a
corresponding UML class, the additional Java Impl-class will be connected to the
same UML class. To this end, we first extend our correspondence meta-model and
introduce a new type of correspondence, namely C2C*, between Java and UML
classes as depicted in Figure 2.11 (all other meta-model parts that have already
been shown in Figure 2.1 are grayed out). This new correspondence type will be
used to connect Impl-classes with the corresponding UML class of their interfaces
and, furthermore, allow us to distinguish Impl-classes from other Java classes.

JClassifier

JInterface

JClass

superInterface 0..*

superClass 0..1

UMLClassifier

UMLInterface

UMLClass

general 0..*

contract 0..*

C2C

C2C*

Figure 2.11: New correspondence type C2C* for Impl-classes

34 2 Fundamentals and Running Example

Finally, Figure 2.12 depicts further rules that describe how consistent Java and
UML models are constructed where Java models may have additional Impl-classes.
The individual rules in Figure 2.12 have the following purposes:

ji: JInterface uc : UMLClassc2c :C2C

r9: InterfaceClassGeneralRule

ji' : JInterface uc' : UMLClassifierc2c' :C2C

(++) superInterface (++) general

(++)
ji : JInterface

(++)
uc : UMLClass

(++)
c2c :C2C

ji.name == uc.name
jc.name == ji.name + “Impl“

r8: ImplClassRule

(++)
jc : JClass

(++) superInterface

(++)
c2c* :C2C*

jc' : JClass uc' : UMLClassc2c'* :C2C*

r11: SubClassOfImplClassRule

(++)
jc : JClass

(++) superClass

(++)
c2c* :C2C*

jc : JClass uc : UMLClassc2c* :C2C*

r12: SuperInterfaceOfImplClassRule

ji : JInterface

(++) superInterface

jc : JClass uc : UMLClassc2c* :C2C*

r13: MethodOfImplClassRule

(++)
jm : JMethod

(++) method

jc : JClass uc : UMLClassc2c* :C2C*

r14: ParameterOfImplClassRule

jm : JMethod

method

(++)
jp : JParameter

(++) parameter

(++)
ji : JInterface

(++)
uc : UMLClass

(++)
c2c :C2C

ji.name == uc.name
jc.name == ji.name + “Impl“

r10: ImplClassWithSuperClassRule

(++)
jc : JClass

(++) superInterface

(++)
c2c* :C2C*

jc' : JClass

(++) superClass

Figure 2.12: New rules to capture additional Impl-classes in Java models

• ImplClassRule (r8) creates a Java interface and a corresponding UML class
with the same name. Additionally, an Impl-class is created on the Java side
and connected to the UML class with a correspondence of type C2C*. The
name of the Impl-class has a suffix “Impl”.

• InterfaceClassGeneralRule (r9) is similar to GeneralRule (r4) as it creates a
superInterface on the Java side and a general edge on the UML side. The Java
interfaces, however, can now have correspondences to UML classes (and not
necessarily to UML interfaces) as allowed by the previous rule. Note that
this rule enables, for the first time, creating multiple inheritance among UML
classes (while still only interfaces might have multiple inheritance in Java).

2.4 Summary, Open Issues, and Existing Extensions to TGGs 35

The remaining rules in Figure 2.12 are provided for the sake of completeness
and play rather a minor role in our future examples and discussions. These rules
basically describe how further Java elements concerning Impl-classes in Java are
created without having a counterpart in UML:

• ImplClassWithSuperClassRule (r10) creates all elements that can also be cre-
ated by the previously mentioned rule ImplClassRule. The only difference as
compared to ImplClassRule is that the Impl-class is created as a subclass of an
existing Java class. This inheritance relation is not reflected on the UML side
(as the Impl-class itself is not explicitly represented on the UML side).

• SubClassOfImplClassRule (r11) creates a subclass of an Impl-class on the Java
side (note thatwe indicate an Impl-class by requiring a correspondence of type
C2C*). The new subclass in Java does not have any counterpart on the UML
side but is also connected to the UML class corresponding to its super class.
We again use a correspondence of type C2C* for this connection. That is, we
handle subclasses of Impl-classes in the same manner and consider them as
further Impl-classes that can be omitted on the UML side.

• SuperInterfaceOfImplClassRule (r12) creates a superInterface edge from an ex-
isting Impl-class to an existing interface on the Java side. While Impl-classes
inherently have at least one superInterface edge as they are created together
with their interfaces, this rule creates further superInterface edges. There is no
UML counterpart for these edges as we abstract from Impl-classes in UML.

• MethodOfImplClassRule (r13) creates a method for an Impl-class without any
UML counterpart.

• ParameterOfImplClassRule (r14) creates parameters for Impl-class methods,
again without any UML counterpart.

Overall, the two sets of rules from Figure 2.7 and 2.12 constitute together a
consistency specification that allowsdifferent degrees of abstraction inUMLmodels
for the same Java model (depending on whether a Java class with an Impl-suffix is
created as an Impl-class or as a normal class). While such extensions can admittedly
blow up the size of a consistency specification, e.g., doubling the number of rules
in our concrete case, modularity and reuse concepts for rules as proposed in [11]
provide viablemeans to reduce specification andmaintenance effort in practice.We
shall exploit the diversity of our rules to exemplify different situations concerning
consistency checking and restoration in the upcoming sections. In each individual
case, the examples will be reduced to a minimal subset of the rules.

2.4 Summary, Open Issues, and Existing Extensions to TGGs

In this section we have

• discussedmeta-models that define the structure ofmodels in anMDE context,

36 2 Fundamentals and Running Example

• formalized (meta-)models and triples of (meta-)models as graphs and triple
graphs, respectively, using functor categories consequently to derive both
structures basically from the well-known category Sets of sets,

• captured typing information in triple graphs using slice categories,

• introduced TGGs as a set of rules that describe how to construct triple graphs
yielding a language of consistent models.

In all cases, we have exemplified the concepts based on our running example
concerning the consistency between Java and UML models. Overall, a consistency
specification is provided first as a one-to-one mapping between Java and UML
elements and later extended to cater for more complex situations where UML
models abstract from some details in Java.
The notion of consistency with respect to a TGG (basically defined as a language

membership) is of uttermost importance in the upcoming sections representing our
contributions. First, we start with a given TGG and two models and discuss how
to check their consistency with respect to the TGG. Besides detecting consistent
portions of the models, we create correspondences between them in accordance
to the TGG. Second, given a triple graph representing a consistent pair of models
together with correspondences, we discuss how to restore consistency when one
of the models is changed via added and/or deleted elements. This also captures
the case where some model portions are detected to be consistent via consistency
checking and the remaining elements are considered as additions to the consistent
portions (and thus requiring actions for consistency checking).
We have discussed attributes and vertex type inheritance in graphs only infor-

mally (in particular, only on the level of our examples) and left them out in our
formalization to avoid notational inflation. These concepts, however, are and re-
main orthogonal to our statements and are indeed supported in the meta-tool that
represents the practical contribution of this thesis.
On the one hand, the entirety of concepts introduced in this section (be it for-

mally or informally) defines the scope for our consistency checking and restoration
support in the upcoming sections. On the other hand, nonetheless, some possi-
ble extensions to TGGs that are intentionally left out (and possibly missed by a
reader who is familiar with TGGs) might represent what is not yet supported by
our consistency checking and restoration approach and define the future work. We,
therefore, dedicate the remaining of this section to these open issues and exist-
ing extensions of TGGs. Most of the issues discussed here are not specific to our
consistency scenario but point at some general expressiveness challenges with open
research questions. While these challenges are currently investigated in an ongoing
research project on TGGs (and thus go beyond the scope of this thesis asmentioned
in the introduction), we discuss them in order to understand what can or cannot
be expected from our consistency checking and restoration approach.
In general, given a source and target meta-model, the source and target language

of a TGG covers a subset of all possible source and target models, respectively. In
fact, the extension to our consistency specification via additional rules in Figure 2.12
can be regarded as an attempt to enlarge the target language of our TGG (these rules
can create multiple inheritance between UML classes which was not the case in our

2.4 Summary, Open Issues, and Existing Extensions to TGGs 37

first set of rules in Figure 2.7).While enlarging the source and/or target language of
a TGG is one of the reasonable goals when specifying consistency (i.e., consistency
should be specified for as many models as possible), restricting these languages to
valid models is the other side of the coin.
The validness of a model in an MDE context is examined with regard to a set

of constraints formulated over the respective meta-model. The most typical type of
constraints which we also have implicitly used in our meta-models (Figure 2.1) are
multiplicities of edges. For example, Javamodels are constrained such thatmultiple
inheritance between classes is not allowed (due to the 0..1 multiplicity at the super-
Class edge). Our TGG respects this constraint: If a superClass edge is created at all
in our rules, it is created with the Java class itself. We do not have any rules that
would create further superClass edges for existing Java classes. Constraints, how-
ever, are not limited to multiplicities and can describe more complex requirements
that demand or forbid the occurrence of certain (groups of) elements in a model.
Indeed, there exists a further OMG standard, namely theObject Constraint Language
(OCL) [115], to formulate constraints in the form of predicates. An alternative con-
cept to describe constraints for models, furthermore, is that of graph constraints [41]
where demanded or forbidden structures over model elements are traced back to
existence or absence of graph morphisms in a model. Given a set of constraints
for the source and target meta-models, be it formulated as OCL predicates, graph
constraints, or just with natural language, the question is whether a TGG constructs
only valid models that fulfill the formulated constraints.
In Figure 2.13, the relation between the sets of all possible models, valid models,

and the language of a TGG is depicted: The sets LS and LT represent all possible
source and target models, respectively, without considering any constraint while
the subsets L∗S and L∗T represent valid source and target models, respectively (we
omit these sets for correspondence models as constraints over correspondences,
being only auxiliary structures for the consistency, are not of practical relevance).

LC = L*
C LTLS

L*
S LS(TGG) LC(TGG) L*

T LT(TGG)

LTLS

L*
S LS(TGG) L*

T LT(TGG)

Figure 2.13: Sets of all source and target models (LS,LT), valid source and target models
(L∗S,L∗T), and the source and target language of a TGG (LS(TGG),LT(TGG))

The intersections LS(TGG) ∩ L∗S and LT(TGG) ∩ L∗T in Figure 2.13 indicate
valid models which can also be constructed by a TGG. The relative complements
LS(TGG)\L∗S and LT(TGG)\L∗T , however, indicate models that can be created by
the TGG but violate some constraints. That is, the consistency specification is not
expressive enough to create only valid models.
The depiction of languages in Figure 2.13 also reflects the capabilities of the TGG

for our running example, i.e., the TGG can indeed create Java and UML models
that belong to the relative complements LS(TGG)\L∗S and LT(TGG)\L∗T . In the

38 2 Fundamentals and Running Example

following list, we state two exemplary constraints for Java and/or UML models in
natural language and describe why our TGG violates these constraints:

• Java andUML classifiers (classes or interfaces)may not have cyclic inheritance
relations. This also applies transitively. Some rules of our TGG (in particular
those which are meant to allow multiple inheritance such as ContractRule),
however, create inheritance relation between two existing classifiers. When
such a rule, e.g., is applied once and later again applied the other way around,
cyclic inheritance relations are created.

• If a Java class inherits from some interfaces, all (transitively or directly) inher-
ited methods must be represented in the Java class (in practice, this does not
apply to abstract Java classes which, however, are not captured by our TGG
anyway). When creating an inheritance relation between a Java class and and
a Java interface, therefore, all inherited methods (whose number is arbitrary
and model-specific) must be created which is not provided by our TGG.

The first constraint is of symmetric nature where a model pair created by our
TGG can satisfy or violate the constraint on both sides at the same time. The second
constraint, however, is specific to the Java side and can be violated by a model pair
where the UML model is in fact valid.

In both cases, moreover, the necessity for at least two additional mechanisms
can be observed: First, applications of some TGG rules must be blocked to prevent
invalid model elements if certain circumstances occur (the first constraint). Second,
applications of some TGG rules must be enforced to complement missing elements
in models (the second constraint). The following two possible extensions to TGGs
(which go beyond what we have formalized so far) can potentially cater for these
required mechanisms:

• Application conditions that require and/or forbid certain morphisms when
applying a rule, i.e., a rule is applied over a match only if the application
conditions are satisfied,

• Multi-amalgamation that enforces the application of further rules (over certain
matches) when a rule is applied, i.e., multiple rule applications are amalga-
mated (consolidated) in one single step of a rule application (hence the term
multi-amalgamation).

There already exist some primarywork to integrate application conditions [7, 85]
and multi-amalgamation [98, 101] into TGGs. Lifting these concepts to a high level
of expressiveness for TGGs is a current research objective where integrating them
into consistency checking and restoration procedures is the next logical step. We,
therefore, leave these concepts out of our formalization, and consequently out of the
scope of this thesis. While the combination of consistency checking and restoration
discussed in the upcoming sections is a novel progress already for basic TGGs, we
also believe to provide a foundation to comply with when future extensions are
developed for TGGs.

3
CONS I STENCY CHECK ING WITH TGGS

This section presents our first main contribution based on [95, 100], namely consis-
tency checking between two models that are possibly developed and maintained
concurrently (and independently) by their owners. Different than consistency man-
agement support as provided by existing MDE tools, and in particular TGG tools,
we do not require any available traces or similar information on consistency history
between two models but produce these as a result of consistency checking. This is
the first step towards a BX vision as depicted in Figure 1.3 where model owners
can start using BX in an advanced stage of their development process, and not
necessarily from the very beginning as assumed so far.
The grammatical characteristics of TGGs lead to a constructive, precise, and

direction-agnostic notion of consistency as stated in Definition 14: A source graph
GS and a target graph GT are consistent to each other with respect to a TGG if a
triple graph GS ← GC → GT can be constructed by the TGG. Hence, given GS and
GT , the main goal of a consistency checking procedure is to find a valid GC if there
exists one. In the case of inconsistency, moreover, a triple graph G′S ← GC → G′T
must be explored where G′S and G′T are subgraphs of GS and GT , respectively,
indicating their consistent portions.
Establishing consistency checking with TGGs is crucial as practical yet formally

founded support for consistency checking is scarce in MDE. The checkonlymode of
QVT-R is currently the only available standard for consistency checking whereas
the standard documentation [120] is intentionally not specific on how to realize this.
We shall qualitatively compare TGGs and QVT-R in detail for consistency checking
purposeswhendiscussing the relatedwork at the endof this section. Tomention the
main advantages of TGGs in advance, nevertheless, the following points provide
the driving force behind our motivation: precise semantics in defining consistency,
a symmetric consistency notion which is checked once (and not twice in either
direction), and explicit correspondences serving as traceability information. These
aspects are not, or not sufficiently, addressed by QVT-R.
However, despite these advantages, progress in consistency checking with TGGs

has been slow in more than twenty years since their introduction: The pioneer
work concerning consistency checkingwith TGGs is [43] where operational rules are
derived from TGG rules to perform consistency checking. These operational rules
do not build all source, correspondence, and target models simultaneously as the
TGG rules do. Instead, they require source and target models as context and create
only correspondences in conformance to the TGG rules. How to apply these rules
correctly on a given pair of models, however, remains an open issue and, if done
naïvely, can lead to misleading results where, e.g., two consistent models can be

40 3 Consistency Checking with TGGs

recognized as inconsistent. Arguably due to that reason, TGG tools generally do
not support consistency checking but only consistency restoration (in one direction
and only with available correspondences from former runs). The only exception
we are aware of is HenshinTGG [46] whose consistency checking, however, fails if
there exist decision points regarding possible applications of operational rules.
Our goal in the rest of this section, therefore, is to identify and clear the last obsta-

cles concerning consistency checking with TGGs and to come up with a viable and
practical solution that provides the aforementioned advantages. We first discuss in
more detail, in particular on the level of model elements via our running example,
what we expect from a consistency checking approach. Subsequently, we present
an overall architecture of a TGG-based consistency checking approach and investi-
gate its single components. We adopt operational rules for consistency checking as
proposed in [43], illustrate the problems with regard to wrong choices of applying
these rules, and finally, exploit optimization techniques to calculate the “best” choice
of rule applications when detecting consistent portions of models.
In sum, our contribution is shaped by (i) formulating consistency checking with

TGGs as a linear optimization problem, (ii) concluding (in-)consistency of twomod-
els via the outcome of linear optimization, and finally, (iii) a consistency checking
procedure based on these results.

3.1 Examples of Consistency Checking

Using some exemplary Java andUMLmodel pairs shown in Section 1 and 2,we first
discuss a mental evaluation of their consistency with respect to our TGG before
automating this task. Our goal is to demonstrate what shapes the outcome of a
consistency checking run. We start with the four possible model pairs representing
a Rectangle entity from Figure 2.9 and depict in Figure 3.1 (this time in abstract
syntax) the desired outcome of consistency checking for these model pairs.
A very important notion and notation when discussing the consistency of two

models throughout the rest of this thesis is that of markings. We use markings for
individual elements (vertices and edges) of source and target graphs to indicate
which elements could be created by a given set of TGG rules when started with the
empty triple graph. That is, marked elements in a source and target graph represent
their consistent portions while unmarked elements require actions for consistency
restoration. Consequently, two models are consistent when they can entirely be
marked. In Figure 3.1, and also in future figures, marked elements are denoted
with a checked box (2�) and unmarked elements with an unchecked box (�).

Considering the first model pair at the top of Figure 3.1, both models consist
of a Rectangle class which clearly can be created by our TGG with ClassRule (r1).
The outcome of consistency checking is then the markings at both sides and the
correspondence of type C2C (as it would be created by our TGG). The models are
consistent as all source and target elements can be marked. Similarly, the second
model pair can completely be created by ImplClassRule (r8). The outcome is thus
again a completelymarkedmodel pair, this timewith an additional correspondence
of type C2C* showing us that consistency is inferred due to our extension with
Impl-classes. The third model pair can be constructed by three rule applications:

3.1 Examples of Consistency Checking 41

ClassRule (r1) for classes, InterfaceRule (r2) for interfaces, and ContractRule (r3) for
the inheritance relations from classes to interfaces. The fourth model pair, however,
is not consistent. In contrast to what our TGG intends to describe, the UML model
has an interface with an Impl-class and the Java model is the more abstract one
representing this with one single Java class. None of our rules could create any
portion of this model pair, leaving the models completely unmarked.

☑

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
☑ ☑

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
☑ ☑

: JClass

name = "RectangleImpl"

☑

superInterface

:C2C*

☑

: JInterface

name = "Rectangle"

: UMLInterface

name = "Rectangle"

:C2C
☑ ☑

: JClass

name = "RectangleImpl"

☑

superInterface

:C2C
: UMLClass

name = "RectangleImpl"

☑

contract ☑

: JClass

name = "Rectangle"

: UMLInterface

name = "Rectangle"

: UMLClass

name = "RectangleImpl"

contract

☐ ☐

☐

☐

consistent

consistent

inconsistent

consistent

Figure 3.1: Expected results of consistency checking for the fourmodel pairs fromFigure 2.9

Overall, a mental or automated execution of consistency checking requires de-
termining which rules could create the given model pair. While these decisions
are obvious for the model pairs in Figure 3.1, “more careful” decision making is
required when model elements seem to be creatable in different ways at a first
glance. We illustrate such a situation in Figure 3.2 using model pairs that exhibit
method overloading (these models originally stem from Figure 1.5).

42 3 Consistency Checking with TGGs

☐

☐

☑

☑

☑

☑

☑
☑

☑

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

:P2P

: UMLMethod

name = "remove"

: UMLParameter

name = "i"

:M2M

:M2M

:P2P

:C2C

method

parameter

parameter

consistent

☑

☑

☑

☑

☑

☑

☑

☑

☑

☑

☑

☑

☑☑

☑

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method
:M2M

:P2P

:C2C

parameter

☑

☑

☑

☑

☑

☑

☐

☐

inconsistent

pos = 0 pos = 0

pos = 0 pos = 0

pos = 0 pos = 0

pos = 0

Figure 3.2: A consistent (top) and inconsistent (bottom) model pair with List classes

3.2 Consistency Rules 43

In the first model pair in the upper part of Figure 3.2, both models have a
List class with two remove methods, one with an i parameter and one with an
o parameter. Remember that we omit typing of parameters and methods in our
running example for brevity and require only name equality for consistent pairs of
elements (additionally position equality for parameters). At a first glance, having
two remove methods on both sides, there seem to be two possible ways of how
these methods could be created together by our TGGwith the ruleMethodRule (r6).
On the parameter level, however, it becomes clear which pairs of remove methods
indeed belong together with respect to our TGG (namely those which have the
same parameters).
Similar decisions are also due to be made when models are inconsistent, i.e.,

when there actually does not exist a way to create a given model pair entirely with
a TGG. This is the case in the lower part of Figure 3.2 where the Java model again
has the two remove methods but the UML model has only one remove method. No
matter which Java method is chosen to be marked with the UMLmethod, the other
one remains unmarked. Hence, the model pair will be detected as inconsistent in
all cases (which is correct). Again on the parameter level, however, it turns out to
be the case that one of the choices is “better” as it at least leads to markings of
some parameters. The o parameters can indeed be marked in Figure 3.2 and the
only inconsistency is the second remove method in Java with the i parameter.
To sum up, the result of a consistency checking is not only a yes or no answer

in our context but also a set of markings (indicating which model elements are
part of consistency) and a correspondence graph. This process generally requires a
decision making to determine which rules from a TGG could create a given model
pair or at least its portions.

3.2 Consistency Rules

After discussing in the previous subsection, actually mainly via human intuition,
how to detect whether (or to what extent) two models can be created by a TGG,
we are now ready to formalize and automate this. The overall architecture of a
consistency checking approach based on TGGs is depicted in Figure 3.3 consisting
of two basic tasks: First, TGG rules are operationalized to consistency checking rules,
short consistency rules, that do not create source and target elements but process
these. Second, a TGG engine applies these consistency rules to a given model pair
and produces, as discussed before, a correspondence model and indicates the in-
consistent parts of the input models. Consistency rules as well as their applications,
therefore, are central in the upcoming definitions and discussions.
We furthermore discuss marking elements of a consistency rule. Intuitively, mark-

ing elements of a consistency rule result from created elements on the source and
target side in the original TGG rule. Our goal in introducing these marking ele-
ments is to “simulate” via consistency rules how a given pair of source and target
graphs could be created by the original TGG rules.
The operationalization of a rule to a consistency rule can be captured as a pushout

construction inTripleGraphs. Havingmorphisms inTripleGraphs as natural trans-
formations consisting of three morphisms in Graphs (cf. Definition 5 for natural

44 3 Consistency Checking with TGGs

<<input>>

<<output>>

Source
Model

Target
Model

TGG engine

Source
Model

Correspondence
Model

Target
Model

<<input>>

<<input>>

<<input>>

<<output>>

Consistency rules

Original rules of a TGG

Operationalization

: inconsistent parts

Figure 3.3: Overall architecture of consistency checking with TGGs

transformations and Definition 7 for TripleGraphs), we consider morphisms in
TripleGraphs componentwise in the following definition when constructing a con-
sistency rule fromanoriginal TGGrule. For example, (rs , id, rt) refers to amorphism
in TripleGraphs consisting of the three morphisms rs , id, and rt in Graphs.

Definition 15 (Consistency Rule).

(id, Ø, id) PO

LS ← Ø → LT

LS ← LC → LT

RS ← Ø → RT

RS ← LC → RT

(rS, Ø, rT)

(id, Ø, id)

(rS, id, rT)
RS ← RC → RT

cr

(id, Ø, id)

r

L CL CR = R

Given a rule r : L → R with
L � LS ← LC → LT and
R � RS ← RC → RT , the re-
spective consistency checking
rule, or short consistency rule,
cr : CL → CR is a rule constructed, as depicted in the diagram, such that CL
is a pushout of L and RS ← ∅ → RT over LS ← ∅ → LT , and CR � R. The
morphism cr : CL→ CR is induced as the universal property of the pushout.
An element e ∈ elements(RS) ∪ elements(RT) is referred to as amarking element
of cr if � e′ ∈ elements(LS) ∪ elements(LT)with rs(e′) � e or rT(e′) � e.

When applying consistency rules to a given model pair, i.e., to a triple graph
GS ← ∅ → GT where the correspondence graph is missing and yet to be created,
the goal is to determine whether a triple graph GS ← GC → GT can be created
by the original TGG rules. If not, a triple graph G′S ← GC → G′T where G′S and
G′T are subgraphs of GS and GT , respectively, must be explored which still can
be created by the original rules. We exploit the notion of markings for this task
in the following sense: The creation of individual source and target elements by
the original rules is traced back to markings created by the respective consistency

3.2 Consistency Rules 45

rules. This is, in fact, similar to parsing in the classical theory of grammars but,
additionally, correspondences are created on the way which direct the process to
new matches and new rule applications.

Example 11. In Figure 3.4, the construction of a consistency rule forMethodRule
(r6) is exemplified. Basically, the left hand-side of a consistency rule cr for an
original TGG rule r is constructed such that all source and target elements of r
are required as context. The right hand-side of cr, furthermore, simply equals
to the right hand-side of r. That is, cr creates only correspondences as created
in r but no source or target elements. Moreover, cr marks exactly those source
and target elements that are created by r.
At the bottom right of Figure 3.4, the result of this construction is depicted

againwith our compact syntax. The created elements (only correspondences in
the case of a consistency rule) are again depicted with a (++)-markupwhile the
marking elements are now denoted with a 2�-markup. From a purely cosmetic
point of view, a consistency rule replaces the (++)-markups with 2�-markups
on the source and target side.
Regarding the attribute parts of the graphs, a consistency rule requires ex-

actly the same attribute constraints as the original TGG rule (e.g., name equality
must hold for a given method pair to be marked together by the consistency
rule in Figure 3.4).

jc : JClassifier uc : UMLClassifierc2c :C2C

L6

jm : JMethod um : UMLMethod

jm.name == um.name

jc : JClassifier uc : UMLClassifierc2c :C2C

 method method

CL6

jm : JMethod um : UMLMethodm2m :M2M

jm.name == um.name

jc : JClassifier uc : UMLClassifierc2c :C2C

 method method

CR6=R6

r6

cr6

jc : JClassifier uc : UMLClassifier
jm : JMethod um : UMLMethod

jm.name == um.name

jc : JClassifier uc : UMLClassifier

 method method

PO

☑
jm : JMethod

☑
um : UMLMethod

(++)
m2m :M2M

jm.name == um.name

jc : JClassifier uc : UMLClassifierc2c :C2C

☑ method ☑ method

Figure 3.4: Example of a consistency rule construction

Finally, Figure 3.5 and 3.6 depict all consistency rules that are constructed for the
original rules from Figure 2.7 and 2.12, respectively.

46 3 Consistency Checking with TGGs

☑
jc : JClass

☑
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

cr5: SubClassRule

jc' : JClass uc' : UMLClassc2c' :C2C

☑ superClass ☑ general

☑
jc : JClass

☑
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

cr1: ClassRule

☑
ji : JInterface

☑
ui : UMLInterface

(++)
c2c :C2C

ji.name == ui.name

cr2: InterfaceRule

ji : JInterface ui : UMLInterfacec2c :C2C

cr4: GeneralRule

ji' : JInterface ui' : UMLInterfacec2c' :C2C

☑ superInterface ☑ general

jc : JClass uc : UMLClassc2c :C2C

cr3: ContractRule

ji : JInterface ui : UMLInterfacec2c' :C2C

☑ superInterface ☑ contract

☑
jm : JMethod

☑
um : UMLMethod

(++)
m2m :M2M

jm.name == um.name

cr6: MethodRule

jc : JClassifier uc : UMLClassifierc2c :C2C

☑ method ☑ method

☑
jp : JParameter

☑
up : UMLParameter

(++)
p2p :P2P

jp.name == up.name
jp.pos == up.pos

cr7: ParameterRule

jm : JMethod um : UMLMethodm2m :M2M

☑ parameter ☑ parameter

Figure 3.5: Consistency rules for the original TGG rules from Figure 2.7

3.2 Consistency Rules 47

ji: JInterface uc : UMLClassc2c :C2C

cr9: InterfaceClassGeneralRule

ji' : JInterface uc' : UMLClassifierc2c' :C2C

☑ superInterface ☑ general

☑
ji : JInterface

☑
uc : UMLClass

(++)
c2c :C2C

ji.name == uc.name
jc.name == ji.name + “Impl“

cr8: ImplClassRule

☑
jc : JClass

☑ superInterface

(++)
c2c* :C2C*

jc' : JClass uc' : UMLClassc2c'* :C2C*

cr11: SubClassOfImplClassRule

☑
jc : JClass

☑ superClass

(++)
c2c* :C2C*

jc : JClass uc : UMLClassc2c* :C2C*

cr12: SuperInterfaceOfImplClassRule

ji : JInterface

☑ superInterface

jc : JClass uc : UMLClassc2c* :C2C*

cr13: MethodOfImplClassRule

☑
jm : JMethod

☑ method

jc : JClass uc : UMLClassc2c* :C2C*

cr14: ParameterOfImplClassRule

jm : JMethod

method

☑
jp : JParameter

☑ parameter

☑
ji : JInterface

☑
uc : UMLClass

(++)
c2c :C2C

ji.name == uc.name
jc.name == ji.name + “Impl“

cr10: ImplClassWithSuperClassRule

☑
jc : JClass

☑ superInterface

(++)
c2c* :C2C*

jc' : JClass

☑ superClass

Figure 3.6: Consistency rules for the original TGG rules from Figure 2.12

48 3 Consistency Checking with TGGs

In order to trace consistency rule applications to original TGG rule applications,
we define sets ofmarked, required, and created elements of a consistency rule applica-
tion. Marked elements of a consistency rule application are those source and target
elements that are matched by the marking elements of the consistency rule, and
created elements are created correspondences. Required elements of a consistency
rule application, furthermore, are neither marked nor created but only matched.

Definition 16 (Marked, Required, and Created Elements).
Let cr : CL → CR be a consistency rule with CL � CLS ← CLC → CLT ,
CR � CRS ← CRC → CRT , CLS � CRS, and CLT � CRT . For a rule application

α : G
cr@cm
����⇒ G′with G � GS ← GC → GT and G′ � GS ← G′C → GT , we define

the following sets:

• marked(α) � {e ∈ elements(GS) ∪ elements(GT) |
∃ e′ ∈ elements(CLS) ∪ elements(CLT) with cm(e′) � e where e′ is a
marking element of cr}

• requiredSrcTrg(α) � {e ∈ elements(GS) ∪ elements(GT) |
∃ e′ ∈ elements(CLS) ∪ elements(CLT) with cm(e′) � e where e′ is not a
marking element of cr}

• requiredCorr(α) � {e ∈ elements(GC) |
∃ e′ ∈ elements(CLC)with cm(e′) � e}

• createdCorr(α) � elements(G′C) \ elements(GC).

Example 12. In Figure 3.7, the result of a derivation is depictedwith the follow-
ing three consistency rule applications in the given order: α1 via the consistency
rule cr1 of ClassRule, α2 via the consistency rule cr6 of MethodRule, and α3 via
the consistency rule cr7 of ParameterRule. For each marking, we explicitly state
next to the respective checked box with which consistency rule application the
marking takes place. For the three consistency rule applications, we get the
following sets of marked, required, and created elements:

• For α1, requiredSrcTrg(α1) and requiredCorr(α1) are empty,marked(α1) con-
sists of the Java class and the UML class, and createdCorr(α1) consists of
the correspondence between these classes.

• For α2, requiredSrcTrg(α2) consists of the Java class and the UML class,
requiredCorr(α2) consists of the correspondence between these two classes,
marked(α2) consists of the upper Java method and the UMLmethod, and
createdCorr(α2) consists of the correspondence between these methods.

• For α3, finally, requiredSrcTrg(α3) consists of the upper Java method and
the UML method, requiredCorr(α3) consists of the correspondence be-
tween these two methods, marked(α3) consists of the upper Java param-

3.2 Consistency Rules 49

eter and the UML parameter, and createdCorr(α3) consists of the corre-
spondence between these parameters.

The lower Java method and its parameter are neither marked nor matched
by any of these consistency rule applications and, therefore, do not belong to
any of the sets of marked or required elements.

☐

☐

☑(α2)

☑(α3)☑(α3)

☑(α2)

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

:M2M

:P2P

:C2C

parameter

☑(α1)

☑(α2)

☑(α3)

☑(α2)

☑(α3)

☑(α1)

☐

☐

α1 : ClassRule (cr1)
α2 : MethodRule (cr6)
α3 : ParameterRule (cr7)

pos = 0

pos = 0

pos = 0

Figure 3.7: A derivation with consistency rules

A derivation with consistency rule applications must fulfill certain properties in
order to conform to a derivation with original TGG rules:

• First, consistency rule applications should not mark an element in total more
than once as the original rules can self-evidently create these elements only
once. Derivations with consistency rule applications fulfilling this property
are referred to as creation preserving.

• Second, the required source and target elements of a consistency rule ap-
plication (denoted as requiredSrcTrg in Definition 16) must be marked by
some preceding rule applications in the same derivation. We demand this as
creations by the original TGG rules can only take place if context elements
are already created (accordingly, markings should take place when required
context elements are marked). We refer to derivations with consistency rule
applications fulfilling this second property as context preserving. In a context
preserving derivation, an edge, for example, is never marked “before” its con-
nected vertices (in analogy to the fact that an edge can never be created before
its vertices are created).

50 3 Consistency Checking with TGGs

Definition 17 (Creation and Context Preserving Derivations).
Let G0 � GS ← ∅ → GT be a triple graph and CR a set of consistency rules. We

refer to a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR as

• creation preserving, if for all pairs of rule applications αi : Gi−1
cri@cmi
�����⇒ Gi

and α j : G j−1
cr j@cm j
�����⇒ G j in d with 1 ≤ i, j ≤ n and i , j, it holds that

marked(αi) ∩marked(α j) � ∅

• context preserving, if for all rule applications αi : Gi−1
cri@cmi
�����⇒ Gi in d with

1 ≤ i ≤ n, it holds that ∀e ∈ requiredSrcTrg(αi), ∃ α j : G j−1
cr j@cm j
�����⇒ G j in

d with 1 ≤ j < i such that e ∈ marked(α j).

Example 13. The derivation depicted in Figure 3.7 is creation preserving (as
none of the Java or UML elements are marked by more than one consistency
rule application) and context preserving (as all required source and target
elements of a consistency rule application are marked by preceding ones). In
particular, α1 marks all required elements of α2 and α2 does the same for α3.

While creation and context preserving derivations comply with the applications
of original TGG rules, it is also of interest whether a derivation with consistency
rules entirely marks a given pair of GS and GT .

Definition 18 (Entirely Marking Derivations).
Given a triple graph G0 � GS ← ∅ → GT and a set CR of consistency rules,

and a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR, let

D be the set of all rule applications in d. We refer to d as entirely marking, if⋃
α∈D

marked(α) � elements(GS) ∪ elements(GT).

We are now ready to state the most basic formal result that directly follows from
consistency rule construction (Definition 15) and from the required properties for
derivationswith consistency rules (Definition 17 and 18): Consistent pairs of source
and target graphs, and in fact only consistent ones, can entirely be marked via
creation and context preserving derivations with consistency rules.

Lemma 1 (Marking Consistent Pairs).
Given a TGG, let CR be the set of the respective consistency rules. For two
graphs GS and GT , it holds that

∃ (GS ← GC → GT) ∈ L(TGG) ⇐⇒ ∃ d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn where

cr1, . . . , crn ∈ CR, G0 � GS ← ∅ → GT , Gn � GS ← GC → GT , d is creation
preserving, context preserving, and entirely marking.

Proof. As a result of pushout composition and decomposition (Fact 2.20 in [42]),

each rule application G
r@m
���⇒ G′ via a rule r ∈ TGG can uniquely be decomposed

3.3 Wrong Choices of Consistency Rule Applications 51

into and accordingly composed from twopushouts depicted as (1) and (2) in the dia-
gram below. The first pushout (1) creates only source and target elements while the
second pushout (2) creates only correspondences. The second pushout, moreover,
equals to a consistency rule application.

(id, Ø, id) PO

LS ← Ø → LT

LS ← LC → LT

RS ← Ø → RT

RS ← LC → RT

(rS, Ø, rT)

(id, Ø, id)

(rS, id, rT)
RS ← RC → RT

cr

(id, Ø, id)

r

L CL CR = R

LS ← LC → LT RS ← LC → RT
(rS, id, rT)

RS ← RC → RT
cr

L CL CR = R

GS ← GC → GT G'S ← GC → G'T
(gS, id, gT)

G'S ← G'C → G'T
(id, gC, id)

(mS, mC, mT) (m'S, mC, m'T) (m'S, m'C, m'T)

r

(1)
PO

(2)
PO

As a result of the consistency rule construction (Definition 15), the consistency
rule application in (2) marks exactly those source and target elements which are
created in (1). Applying the composition and decomposition of single rule applica-
tions with original rules to entire derivations, it follows that for each derivation d′

with the original rules of a TGG, a derivation d exists consisting of the respective
consistency rule applications in the same order. As markings in d bĳectively cor-
respond to creations in d′, each source and target element is marked exactly once
by d (i.e., d is creation preserving and entirely marking) and elements that are not
marked by a rule application in d should have been previously marked (i.e., d is
context preserving). Due to the bĳection between creations and markings, this also
applies in the reverse direction aswell such that the existence of d′ can be concluded
from the existence of d. �

The equivalence relation (⇐⇒) stated in Lemma 1 captures two essential prop-
erties for TGGs as proposed in [129] (in fact, introduced only for model-to-model
transformations with TGGs but analogously transferable to other operational sce-
narios including consistency checking). The⇐�-direction relates to correctness, i.e.,
that a triple graph constructed by the operational rules (consistency rules in our
case) belongs to the language of the given TGG. The �⇒-direction, furthermore,
relates to completeness, i.e., each triple graph in the language of the TGG can be con-
structed this way. In other words, for all triple graphs G � GS ← GC → GT in the
language of a TGG, the triple graph GS ← ∅ → GT can evolve to G by a derivation
d via consistency rules. Finding d, however, is an open challenge and defines our
focus in the rest of this section (and shapes the core of our contribution).

3.3 Wrong Choices of Consistency Rule Applications

Lemma 1 provides a basic result to conclude (in-)consistency of a source graph GS

and a target graph GT from the existence of derivations with consistency rules fulfill-
ing certain properties. Fundamentally, a creation and context preserving derivation
must be built to mark individual elements of GS and GT . When realizing this in
a TGG engine, however, it is still open how to find a derivation with consistency
rules which would entirely mark GS and GT if they are consistent.
As our discussions via examples in Section 3.1 already implied, the process of

marking individual elements in GS and GT can require a decisionmaking. Hence, if

52 3 Consistency Checking with TGGs

consistency rules are applied naïvely, i.e., elements aremarked step by stepwithout
comparing different possibilities of rule applications, consistency checking might
end up with a misleading result where more markings would actually be possible.
In fact, this also reflects the open challenges with regard to existing foundational
work [43] and the respective tool support [46] of consistency checking with TGGs.

In Figure 3.8, a consistency checking run with our running example is depicted
with an undesired outcome. The Java and UMLmodels each containing a List class
with two remove methods, which are indeed consistent as depicted previously
in Figure 3.2, are indicated to be inconsistent as the “wrong” pairs of remove
methods have been marked together (as they simply match for the consistency rule
cr6 of MethodRule). Parameters cannot be marked after this wrong choice as the
name equality between parameters of corresponding methods, as required by the
consistency rule cr7 of ParameterRule, does not hold in this case.

☐

☐☐

☐☐
☑(α2)

☑(α3)

☑(α3)

☑(α2)

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

: UMLMethod

name = "remove"

: UMLParameter

name = "i"

:M2M

:M2M

:C2C

method

parameter

parameter

☑(α1)

☑(α2)

☑(α3)

☑(α3)

☑(α2)

☑(α1)

Inconsistent

(misleading result)☐ ☐

☐ ☐
α1 : ClassRule (cr1)
α2 : MethodRule (cr6)
α3 : MethodRule (cr6)

☐

☐☐

☑(α2)

☑(α2)

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

:M2M

:C2C

parameter

☑(α1)

☑(α2)

☑(α2)

☑(α1)

☐ ☐

☐
α1 : ClassRule (cr1)
α2 : MethodRule (cr6)

☐

Inconsistent

pos = 0 pos = 0

pos = 0 pos = 0

pos = 0

pos = 0

pos = 0

Figure 3.8: Undesired outcome of consistency checking with consistent models

A noteworthy aspect is that this example is only related to our first set of TGG
rules (Figure 2.7)which actually describes nothingbut a one-to-onemapping.While
translating single Java elements to UML elements (or vice versa) one by one for
consistency restoration purposes can be a straightforward task with these rules,
setting given Java and UML elements in correspondence is apparently a more
difficult task that is subject to a larger search space of possible rule applications.
The problem arising from possibly wrong choices of consistency rule applica-

tions does not only concern consistent models that are mistakenly indicated as
inconsistent. Also in the case of inconsistent model pairs where an entirely mark-
ing derivation cannot be found anyway, decisions can still lead to a more appro-
priate or unsuitable set of markings. In Figure 3.9, a situation is depicted where
the models are correctly indicated as inconsistent but actually marking more el-
ements would be possible. The only remove method on the UML side with an o
parameter is marked together with the removemethod with the i parameter on the
Java side. Hence, no more markings at the parameter level are possible. As already

3.3 Wrong Choices of Consistency Rule Applications 53

depicted in Figure 3.2, however, setting the remove methods with o parameter in
correspondence yields a better result where more elements are marked.

☐

☐☐

☐☐
☑(α2)

☑(α3)

☑(α3)

☑(α2)

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

: UMLMethod

name = "remove"

: UMLParameter

name = "i"

:M2M

:M2M

:C2C

method

parameter

parameter

☑(α1)

☑(α2)

☑(α3)

☑(α3)

☑(α2)

☑(α1)

Inconsistent

(misleading result)☐ ☐

☐ ☐
α1 : ClassRule (cr1)
α2 : MethodRule (cr6)
α3 : MethodRule (cr6)

☐

☐☐

☑(α2)

☑(α2)

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

:M2M

:C2C

parameter

☑(α1)

☑(α2)

☑(α2)

☑(α1)

☐ ☐

☐
α1 : ClassRule (cr1)
α2 : MethodRule (cr6)

☐

Inconsistent

pos = 0 pos = 0

pos = 0 pos = 0

pos = 0

pos = 0

pos = 0

Figure 3.9: Undesired outcome of consistency checking with inconsistent models

Search space problems regarding different choices of rule applications are, in
fact, not new in the broad field of graph grammars but in some way remarkably
critical in the case of consistency checking (it should be noted that we demonstrate
the problems at oversimplified examples whereas the situation is most likely aggra-
vated in real-world consistency scenarios). In general, the following two measures
are commonly practiced for eliminating wrong choices of rule applications:

• backtracking, i.e., revoking some rule applications back to a decision point after
a wrong choice has been detected,

• look-ahead, i.e., exploring the input graph in advance to determine which rule
application to choose at a decision point.

For our concrete examples with Java and UML models exhibiting method over-
loading, backtracking from the parameter level to themethod level or look-ahead at
the method level to the parameter level can yield satisfactory results. We, however,
argue that a general solution with backtracking or look-ahead is not feasible as it
requires in general arbitrary (and unknown) depth of backtracking or look-ahead.
More crucially, if themodels are inconsistent, it remains unclearwhether unmarked
elements are due to wrong choices of rule applications or just the consequence of
inconsistency, i.e., exhaustive backtracking or look-ahead can be performed looking
for a solution which is not there.
There are also static analysis techniques in graph grammars to check whether a

set of rules fulfills certain properties, in particular confluence [40], such that their
applications always lead to the same result irrespectively of what decisions are
taken. If not, it is then up to the user (to the consistency tool developer in our
concrete case) how the rules are modified to ensure this. While this additional

54 3 Consistency Checking with TGGs

effort at specification time can eliminate the need for backtracking, look-ahead, or
any other means to avoid wrong choices of rule applications at runtime, we would
end up with a very restrictive solution even rejecting a one-to-one mapping as our
first set of rules does. We are actually also not aware of any modification to our
TGG such that it describes the same consistency but does not suffer from the search
space involved in applying consistency rules.
If there are better or worse consistency rule applications, we propose to capture

the situation as an optimization problem. Intuitively,wefirst consider different choices
of consistency rule applications without explicitly taking a decision. Subsequently,
we formulate constraints between these choices to calculate a proper subset such
that creation and context preserving derivations can be built (and we can make use
of Lemma 1). Finally, we pick a solution that satisfies the constraints and marks “as
many elements as possible”. This allows us to handle consistent and inconsistent
models in a unifiedmanner: If the global maximum in the sense of markings marks
all model elements, consistency can be concluded. If not, the approach still gives
its best with regard to the number of marked elements (and unmarked elements
require action for consistency restoration).
Before discussing these ideas and stating our formal results, we make at this

point a digression to the basics of our chosen optimization technique, namely
Integer Linear Programming (ILP), with focus on our consistency checking goals.

3.4 Integer Linear Programming (ILP) Techniques

In recent years, there has been a growing interest in exploiting optimization tech-
niques inmodel transformation. Optimization techniques, being already employed
in many engineering and business fields, enjoy a mature foundation and practical
tool support that is provided in a general way and can be used for custom purposes.
While some approaches (e.g., [28, 81]) propose to formulate amodel transformation
task entirely as an optimization problem over the input model(s), some approaches
(e.g., [17, 48, 49]) choose to use optimization techniques only as a means for deci-
sion making in rule-based model transformation. In the latter case, rules and their
rationale (consistency in the case of TGGs) remain central and only decision mak-
ing is outsourced to optimization techniques when different rule applications are
possible. This strategy plays a key role in our statements in the rest of this section.
For consistency checkingwithTGGs, our formulation of an optimizationproblem

mainly consists of the following two parts:

• logical constraints expressing implications and exclusions between rule appli-
cations such that creation and context preserving derivations can be built,

• an objective that maximizes the number of marked elements while satisfying
these constraints.

Both aspects can be captured by ILP techniques. In this setting, logical constraints
are formulated as linear equalities or inequalities between integer variables, and
the objective is given by a linear function over these variables (which is then to be
maximized or minimized). A special case of ILP (which is also easier to manage

3.4 Integer Linear Programming (ILP) Techniques 55

from a practical point of view) is the so-called 0-1 ILP where all integer variables
are restricted to integers between 0 and 1. As a result of its binary nature, the
constraint part of a 0-1 ILP problem is comparable to a Boolean Satisfiability Problem
(SAT) where 0 and 1 represent Boolean values false and true, respectively.

ILP techniques are commonly used as a computational means in management
and economics to solve different resource allocation tasks such as capital budgeting,
transportation and infrastructure planning. An artificial, though still well-fitting,
analogy to resource allocation tasks can also bedrawn for consistency checkingwith
TGGs in the following sense: Source and target graph elements are resources which
are consumed by consistency rule applications (in particular by their markings).
The challenge is then to allocate as many elements as possible to their consumers
such that creation and context preserving derivations can be constructed.
Understanding the art of formulating integer equalities and inequalities to solve

certain tasks is also crucial to exploit ILP techniques. In [24], a collection of good
practices is provided when modeling logical constraints as integer equalities and
inequalities. Given n integer variables x1, . . . , xn where 0 ≤ x1, . . . , xn ≤ 1, we
shall basically focus on the following three types of integer inequalities for our
purposes. Note that each variable xi represents a consistency rule application αi

in our case. When finding values for the variables, xi � 1 indicates that αi is to be
chosen among the collected rule applications with consistency rules (and xi � 0
accordingly indicates that αi is eliminated).

• If at most one of x1, . . . , xn is allowed to be 1, i.e., at most one of αi , . . . , αn

might be chosen as they compete for marking the same source and/or target
elements, we state this as x1 + . . . + xn ≤ 1.

• If xi � 1 implies that at least one of x1, . . . , xn is 1, i.e., choosing a consis-
tency rule application αi implies choosing at least one of the consistency rule
applications α1, . . . , αn as these provide some markings required by αi , we
state this as xi ≤ x1 + . . . + xn . A special case of such constraints is of the
form xi ≤ x j where choosing αi directly implies choosing α j as α j creates a
correspondence required by αi .

• If x1, . . . , xn cannot all be 1 at the same time, we state this as x1 + . . .+ xn < n.
We use this type of constraint to avoid cyclic implications between rule appli-
cations. That is, if rule applications directly or transitively provide markings
for each other in a cyclic manner, at least one of them must be eliminated to
break the cycle and to sequence rule applications to a derivation.

Finally, objective functions are of the form k1 ∗ x1 + . . . + kn ∗ xn where each vari-
able xi is weighted with a constant ki . In our concrete case, the weights are the
numbers of marked source and target elements for each individual consistency rule
application. While this is the most general (and arguably the most formally justi-
fied)way for determining theweights of consistency rule applications, case-specific
weights can be assigned to consistency rule applications for a higher prioritization
of certain correspondence types and/or markings. In all cases, the optimization
task is then to find a solution that fulfills the constraints as introduced above and
maximizes the value of the objective function.

56 3 Consistency Checking with TGGs

3.5 Consistency Checking with TGGs and ILP

In a final step in this section, we formalize the integration of ILP techniques into
consistency checking with TGGs to cope with the discussed search space problems.
We consider derivations with consistency rules that possibly mark model elements
multiple times and thus represent a superset of correct markings. While such a
derivation is not necessarily creation and/or context preserving, we calculate a
subset of the collected consistency rule applications which yields a creation and
context preserving derivation and marks as many elements as possible.
In Figure 3.10, our ultimate goal is exemplified schematically with the consistent

model pair containing two remove methods both on the Java and UML side. In
the upper part, a derivation consisting of the seven rule applications α1, . . . , α7 is
depicted where all remove methods (and their incident edges from the List classes)
are marked twice as there exist two possible ways to mark these elements. Besides
markings, we explicitly show at each correspondence its creating rule application.
Of the four rule applications marking Java and UML methods, α2 and α3 lead

to the undesired result previously depicted in Figure 3.8 while α4 and α5 lead to a
desired result where parameters can also be marked. Performing ILP solving over
these rule applications as we shall discuss in the following, the subset consisting of
the five rule applications α1, α4, α5, α6, and α7 is chosen to construct a creation and
context preserving derivation. Finally, the models are indicated to be consistent
as the found solution marks both models entirely. Further examples including
inconsistent models shall be provided to exemplify our statements as well.
A constraint for a derivation d with consistency rules is a conjunction of integer in-

equalities (while ILP techniques generally support both equalities and inequalities,
inequalities suffice for our purposes). These inequalities are stated over some inte-
ger variables each representing an individual consistency rule application. When
choosing a subset of the consistency rule applications in d, the constraints must
be satisfied by assigning 1 to the respective variables of the chosen consistency
rule applications (and by assigning 0 to the respective variables of the eliminated
consistency rule applications).

Definition 19 (Constraints for Derivations with Consistency Rules).
Given a triple graph G0 � GS ← ∅ → GT , a set CR of consistency rules, and

a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR, let D be

the set of all rule applications in d. For each rule application α1, . . . , αn ∈ D,
we define respective integer variables x1, . . . , xn with 0 ≤ x1, . . . , xn ≤ 1.
A constraintC for d is a conjunctionof linear inequalitieswhich involve x1, . . . , xn .
A setD′ ⊆ D fulfills C, denoted asD′ ` C, if and only if C is satisfied for vari-
able assignments xi � 1 if αi ∈ D′ and xi � 0 if αi < D′ with 1 ≤ i ≤ n.

Given a model pair G0 � GS ← ∅ → GT and a derivation d via some consistency
rules that marks elements in G0 (possibly multiple times as no explicit decisions
are taken between alternativemarkings), our first constraintmarkedAtMostOnce(G0)
requires that each source and target element in G0 be marked at most once by the
chosen consistency rule applications. Consequently, an element can either remain
unmarked (due to inconsistency) or it can be marked once. Having introduced

3.5 Consistency Checking with TGGs and ILP 57

☑(α7)

☑(α6)☑(α6)

☑(α2)
☑(α5)

☑(α3)
☑(α4)

☑(α3)
☑(α5)

☑(α2)
☑(α4)

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

: UMLMethod

name = "remove"

: UMLParameter

name = "i"

:M2M

:M2M

:C2C

method

parameter

parameter

☑(α1)

☑(α2)
☑(α4)

☑(α3)
☑(α5)

☑(α3)
☑(α4)

☑(α2)
☑(α5)

☑(α1)

α1 : ClassRule (cr1)
α2 : MethodRule (cr6)
α3 : MethodRule (cr6)
α4 : MethodRule (cr6)
α5 : MethodRule (cr6)
α6 : ParameterRule (cr7)
α7 : ParameterRule (cr7)

:M2M

:P2P

:M2M

:P2P

☑(α6) ☑(α6)

☑(α7)

☑(α7)

☑(α7)

α1

α4

α2

α6

α5

α3

α7

α1 : ClassRule (cr1)
α4 : MethodRule (cr6)
α5 : MethodRule (cr6)
α6 : ParameterRule (cr7)
α7 : ParameterRule (cr7)

ILP
Solving

☑(α7)

☑(α6)☑(α6)

☑(α5)

☑(α4)

☑(α5)

☑(α4)

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

: UMLMethod

name = "remove"

: UMLParameter

name = "i"

:C2C

method

parameter

parameter

☑(α1)

☑(α4)

☑(α5)

☑(α4)

☑(α5)

☑(α1)

:M2M

:P2P

:M2M

:P2P

☑(α6) ☑(α6)

☑(α7)

☑(α7)

☑(α7)

α1

α4

α6

α5

α7

consistent

pos = 0 pos = 0

pos = 0 pos = 0

pos = 0 pos = 0

pos = 0 pos = 0

Figure 3.10: A schematic exemplification of our approach with consistent models

58 3 Consistency Checking with TGGs

integer variables for each rule application in Definition 19, we first define the sum
of alternative markings of the same element in Definition 20. Subsequently, this
sum is restricted to 0-1 as a constraint in Definition 21.

Definition 20 (Sum of Alternative Markings for an Element).
Given a triple graph G0 � GS ← ∅ → GT , a set CR of consistency rules, and

a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR, let D �

{αi , . . . , αn} be the set of all rule applications in d where αi : Gi−1
cri@cmi
�����⇒ Gi ,

1 ≤ i ≤ n. For each element e ∈ elements(GS) ∪ elements(GT), we define an
integer variablemarkersSum(e) that denotes the sum of integer variables for all

rule applications that mark e, i.e., markersSum(e) �
n∑

i�1
ki ∗ xi where ki � 1 if

e ∈ marked(αi) and ki � 0 otherwise.

Definition 21 (Constraint 1: Marking Each Element At Most Once).
Given a triple graph G0 � GS ← ∅ → GT , a set CR of consistency rules, and

a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR, the

constraint markedAtMostOnce(G0) for d is defined as
∧

e ∈ elements(GS) ∪
elements(GT)

markersSum(e) ≤ 1.

Example 14. For the derivation depicted in the upper part of Figure 3.10,
we get the following inequalities for the markedAtMostOnce constraint. The
inequalities are stated over the seven integer variables x1, . . . , x7 representing
the seven rule applications α1, . . . , α7. In each inequality, the left hand-side
of the ≤ sign represents the markersSum for the respective element(s) stated
explicitly in brackets.

• x1 ≤ 1 (as the Java and UML classes are only marked by α1)

• x2 + x4 ≤ 1 (as the upper Java method is marked by α2 and α4)

• x3 + x4 ≤ 1 (as the upper UML method is marked by α3 and α4)

• x3 + x5 ≤ 1 (as the lower Java method is marked by α3 and α5)

• x2 + x5 ≤ 1 (as the lower UML method is marked by α2 and α5)

• x6 ≤ 1 (as the upper Java and UML parameters are only marked by α6)

• x7 ≤ 1 (as the lower Java and UML parameters are only marked by α7).

Obviously, the goal of the markedAtMostOnce constraint is to make a choice of
rule applications that lead to creation preserving derivations. The next constraint
context(d) defines dependencies as implications between consistency rule applica-
tions in a derivation d due to their required context. A consistency rule application
is either not chosen, or its required source and target elements (denoted as required-
SrcTrg in Definition 16) must be marked by some other chosen rule applications.

3.5 Consistency Checking with TGGs and ILP 59

Similarly, the required correspondences (denoted as requiredCorr in Definition 16)
of a chosen rule application must be created by some other chosen ones.

Definition 22 (Constraint 2: Providing Context for Markings).
Given a triple graph G0 � GS ← ∅ → GT , a set CR of consistency rules, and

a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR, for each

rule application αi : Gi−1
cri@cmi
�����⇒ Gi in d, we define the following constraints:

• contextSrcTrg(αi) �
∧

e ∈ requiredSrcTrg(αi)
xi ≤ markersSum(e),

• contextCorr(αi) �
∧

1≤ j<i,
requiredCorr(αi) ∩ createdCorr(α j) , ∅

xi ≤ x j .

The constraint context(d) denotes ∧
1≤i≤n

contextSrcTrg(αi) ∧ contextCorr(αi).

Example 15. Westate in the following the integer inequalities resulting from the
context constraint for the derivation depicted in the upper part of Figure 3.10.
The following inequalities result from the consistency rule applications

α2, α3, α4, and α5 (each with cr6 of MethodRule) where all of them require
the marked elements and the created correspondence by α1 (with cr1 of Class-
Rule) as context. Each line below, therefore, represents contextSrcTrg(αi) and
contextCorr(αi) at the same time where 2 ≤ i ≤ 5:

• x2 ≤ x1

• x3 ≤ x1

• x4 ≤ x1

• x5 ≤ x1

Furthermore, the following inequalities result from the consistency rule ap-
plications α6 and α7 (with cr7 ofParameterRule) requiring a correspondence cre-
ated by α4 and α5, respectively.Hence, the lines below represent contextCorr(α6)
and contextCorr(α7):

• x6 ≤ x4

• x7 ≤ x5

Finally, we discuss contextSrcTrg(α6) and contextSrcTrg(α7) which actually
do not provide any logical significance to our set of inequalities. For example,
the consistency rule application α6 requires the upper Java method (which is
marked by α2 and α4) and the upper UML method (which is marked by α3

and α4). Accordingly, we get x6 ≤ x2 + x4 and x6 ≤ x3 + x4 for contextSrcTrg(α6)

60 3 Consistency Checking with TGGs

whereas both of them are already implied by x6 ≤ x4 above and can thus
logically be omitted.
In general, it is most likely that contextCorr constraints already suffice to de-

termine which consistency rule applications actually imply which other ones
without considering contextSrcTrg constraints. It is, however, a case-specific
matter depending on concrete rules and models whether such logical simplifi-
cations can be applied, while Definition 22 is formulated in the most general
and conservative way (we also choose this conservative strategy in our current
implementation for simplicity).

The constraint context(d) ensures that the context for each chosen consistency
rule application is supplied but cyclesmust still be avoided. Intuitively, two selected
rule applicationsmay not provide correspondences and/ormarkings for each other
(also not transitively) as such rule applications cannot be sequenced to a derivation
in termsof theunderlyingTGGrules. In otherwords, a partial order between chosen
consistency rule applications must exist with respect to their required elements.

Definition 23 (Cyclic Markings).
Given a triple graph G0 � GS ← ∅ → GT , a set CR of consistency rules, and

a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR, let D be

the set of all rule applications in d. We define the relations CC,CST ,C ⊆ D ×D
between two rule applications αi , α j ∈ D as follows:

• αi CC α j if requiredCorr(αi) ∩ createdCorr(α j) , ∅,

• αi CST α j if requiredSrcTrg(αi) ∩ marked(α j) , ∅,

• αi C α j if (αi CC α j) ∨ (αi CST α j).

We refer to a sequence c y ⊆ D of rule applications with c y � {αi , . . . , αi+k} as
a cycle if αi C . . . C αi+k C αi .

Definition 24 (Constraint 3: Eliminating Cycles).
Given a triple graph G0 � GS ← ∅ → GT , a set CR of consistency rules, and

a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR, let D be

the set of all rule applications in d and let CY be the set of all cycles c y ⊆ D.
We define a constraint acyclic(d) as follows:
acyclic(d) � ∧

c y∈CY,
c y�{αi ,...,αi+k}

xi + . . . + xi+k < |c y | where |c y | is the cardinality of c y.

Example 16. The derivation in the upper part of Figure 3.10 does not contain
any cycles. The C relation forms in this case a partial order between the consis-
tency rule applications (in particular, we get α2 C α1, α3 C α1, α4 C α1, α5 C α1,
α6 C α4, and α7 C α5). Hence, acyclic(d) is trivially satisfied.

3.5 Consistency Checking with TGGs and ILP 61

In most cases, cycles over the C relation between chosen consistency rule
applications are already avoided by satisfying markedAtMostOnce and context
constraints. There exist, however, some corner cases where these constraints
do not suffice. We, therefore, make an exception at this point by leaving our
running example and resort to an abstract example demonstrating this.
In Figure 3.11, a TGG rule r is given that requires a source and target vertex

of type S and T, respectively. Different than our exemplary TGG rules so far, no
correspondence is required as context between these context vertices. Finally,
r creates a source and target vertex (again of type S and T) both with an
outgoing edge. A correspondence between the new vertices is created as well.
The respective consistency rule cr accordingly marks these source and target
vertices with their outgoing edges.

Considering now a model pair G0 : GS ← ∅ → GT where both GS and GT

are cycle graphs with two vertices, a derivation d with cr can mark all vertices
and edges (depicted at the bottom of Figure 3.11) with the two consistency
rule applications α1 and α2. As α1 and α2 do not overlap in their marked
elements, themarkedAtMostOnce(G0) constraint is satisfied by d. Moreover, the
context(d) constraint is also satisfied as α1 marks the required elements of α2

and, reversely, α2 marks the required elements of α1.
While it can trivially be concluded that r alone cannot create any triple

graph starting with the empty triple graph, the given model pair seems to be
entirely marked using cr. The two rule applications α1 and α2, however, mark
the required elements for each other (we get α1 CST α2 and α2 CST α1 which
consequently leads to α1 C α2 and α2 C α1). That is, they actually cannot be
sequenced to a derivation in the sense of the original TGG rule r. Accordingly,
α1 and α2 cannot be chosen at the same time, i.e., we get x1 + x2 < 2 as the
acyclic(d) constraint.
Satisfying the acyclic(d) constraint in this concrete case means that, if one of

α1 and α2 is chosen, there must be some other consistency rule applications
(obviouslywith some consistency rules other than cr) whichmark the required
source and target elements.

Summarizing our constraints so far, we enforce the following conditions:

• each source and target element in a model pair is marked at most once
(markedAtMostOnce in Definition 21),

• each chosen consistency rule application completely satisfies its context, i.e.,
markings of required source and target elements as well as creations of re-
quired correspondences are provided by some other chosen consistency rule
applications (context in Definition 22),

• chosen consistency rule applications do not provide markings and/or corre-
spondences for each other in a cyclic manner (acyclic in Definition 24).

Given a set D of consistency rule applications (which do not necessarily satisfy
these constraints), we refer to each subsetD′ ⊆ D that satisfies the constraints as a
proper subset ofD.

62 3 Consistency Checking with TGGs

☑
:S

☑
:T

(++)
 :S2T

:S :T

☑ :s ☑ :t

(++)
:S

(++)
:T

(++)
 :S2T

:S :T

(++) :s (++):t

:S :T

:S :T

 :s :t :s :t

:S :T

:S :T

 :s :t :s :t

☑(α1) ☑(α1)

☑(α1)☑(α1)

☑(α2) ☑(α2)

☑(α2) ☑(α2)

 :S2T

 :S2T
α1 : cr
α2 : cr

r

cr

G0

d

α1

α2

Figure 3.11: From top to bottom; a TGG rule r, the respective consistency rule cr, a model
pair G0, and a derivation d with cr where α1 C α2 and α2 C α1

Definition 25 (Proper Subset of Consistency Rule Applications).
Given a TGG with the set CR of the respective consistency rules, a triple graph

G0 � GS ← ∅ → GT , and a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with

cr1, . . . , crn ∈ CR, let D be the set of all rule applications in d. We refer to any
subset D′ ⊆ D with D′ ` markedAtMostOnce(G0) ∧ context(d) ∧ acyclic(d) as a
proper subset ofD.

Lemma 2 in the following states that, given a model pair G0 : GS ← ∅ → GT and
a derivation d starting from G0 with some consistency rules of a TGG, each proper
subset of consistency rule applications in d leads to a triple graph representing
a consistent portion of GS and GT . This consistent portion consists of source and
target elements that aremarked by the chosen rule applications in the proper subset.
Inversely, for each consistent portion of GS and GT , a proper subset of consistency
rule applications exists marking this consistent portion.

3.5 Consistency Checking with TGGs and ILP 63

Lemma 2 (Consistent Portions of Source and Target Graphs).
Given a TGG with the set CR of the respective consistency rules, a triple graph

G0 � GS ← ∅ → GT , and a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with

cr1, . . . , crn ∈ CR, letD be the set of all rule applications in d.
∃ D′ ⊆ D ⇐⇒ ∃ G′ ∈ L(TGG) with G′ � G′S ← GC → G′T fulfilling the
following properties:

• D′ is a proper subset ofD,

• elements(G′S) ⊆ elements(GS) and elements(G′T) ⊆ elements(GT),

• elements(G′S) ∪ elements(G′T) �
⋃
α∈D′

marked(α),

• elements(GC) �
⋃
α∈D′

createdCorr(α).

Proof. Existence of a proper subsetD′ ofD is equivalent to the existence of a deriva-
tion d′ consisting of the consistency rule applications in D′ (sequenced over the
C relation). Our constraints, moreover, logically describe the properties of creation
and context preserving derivations. In particular, we get:

• D′ ` markedAtMostOnce(G0) ⇐⇒ d′ is creation-preserving,

• D′ ` context(d) ∧ acyclic(d) ⇐⇒ d′ is context-preserving.

According to Lemma 1, the existence of d′ is equivalent to the existence of a triple
graph G′ � G′S ← GC → G′T with G′ ∈ L(TGG) which consists of the elements
markedand createdby d′. Finally,elements(G′S) ⊆ elements(GS) andelements(G′T) ⊆
elements(GT) hold as consistency rule applications in D′ and consequently in d′

solely mark source and target elements in G0 � GS ← ∅ → GT . �

With Lemma 2,we have captured the constraint part of our optimization problem
such that a creation and context preserving derivation can be built via a proper
subset of all collected consistency rule applications. This, however, still does not
cover our optimization goalwith respect to detecting themaximal consistent portion
of two models. In an extreme case, choosing none of the collected consistency rule
applications is also a valid instantiation of Lemma 2 resulting in the empty triple
graph as the detected consistent portion of a model pair.
Our next step, therefore, is to define the quality of proper subsets of consistency

rule applications, referred to as fitness in the following definition. To calculate the
fitness value of a proper subset of consistency rule applications, we consider each
chosen consistency rule application α and sum up the cardinalities of marked(α)
(denoted as |marked(α)| in the definition). We furthermore define proper subsets
with the maximal fitness value among all proper subsets. Note that more than one
proper subsetmight existwith themaximal fitness value.Our upcoming statements
hold irrespectively of which one is selected by linear optimization.

64 3 Consistency Checking with TGGs

Definition 26 (Maximal and Proper Subset of Consistency Rule Applications).
Given a TGG with the set CR of the respective consistency rules, a triple graph

G0 � GS ← ∅ → GT , and a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with

cr1, . . . , crn ∈ CR, let D � {α1, . . . , αn} be the set of all rule applications in d.

For each proper subset D′, we define an integer value fitness(D′) �
n∑

i�1
ki ∗ xi

such that ki � |marked(αi)|, xi � 1 if αi ∈ D′, and xi � 0 otherwise. We refer to
D′ as amaximal and proper subset ofD if there does not exist any proper subset
D′′ ofD such that fitness(D′′) > fitness(D′).

Example 17. Considering the derivation in the upper part of Figure 3.10, the
integer value fitness(D′) for each proper subsetD′ ofD is given by

2 ∗ x1 + 4 ∗ x2 + 4 ∗ x3 + 4 ∗ x4 + 4 ∗ x5 + 4 ∗ x6 + 4 ∗ x7

where xi � 0 or xi � 1depending onwhether αi is contained inD′. Theweights
(2 for x1 and 4 for all other integer variables) result from the number of marked
elements for each individual consistency rule application (we handle vertices
and edges equally). The proper subset depicted in the lower part of Figure 3.10
marks all source and target elements (overall 18 elements). The proper subset,
therefore, is maximal in the sense of markings.

When a proper subsetD′ of consistency rule applications is maximal in the sense
of the number of marked elements as required in Definition 26, the triple graph
yielded fromD′ according to Lemma 2 is of special interest.

Definition 27 (Maximally Marked Triple Graph).
Given a TGG with the set CR of the respective consistency rules, a triple

graph G0 � GS ← ∅ → GT , and a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒

Gn with cr1, . . . , crn ∈ CR, let D be the set of all rule applications in d and
let D′ be a maximal and proper subset of D. We refer to the triple graph
G′ : G′S ← GC → G′T yielded fromD′ according to Lemma 2 as a maximally
marked triple graphwith respect to d.

We are now ready to state one of the main formal results of this thesis, namely a
sufficient condition for consistency of two models with respect to a given TGG.

Theorem 1 (A Sufficient Condition for Consistency).
Given a TGG with the set CR of the respective consistency rules, a triple graph

G0 � GS ← ∅ → GT , and a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with

cr1, . . . , crn ∈ CR, let G′S ← GC → G′T be a maximally marked triple graph
with respect to d. GS and GT are consistent if GS � G′S and GT � G′T .

Proof. This is an instantiation of Lemma 2 where the proper subset D′ is maximal
in the number of marked elements (Definition 26). As G′ ∈ L(TGG) (Lemma 2), we
can conclude the consistency of GS and GT if G′S � GS and G′T � GT . �

3.5 Consistency Checking with TGGs and ILP 65

Example 18. Considering the seven consistency rule applications depicted in
the upper part of Figure 3.10, the chosen five rule applications in the lower part
form a maximal and proper subset. The chosen consistency rule applications
mark the models entirely, hence consistency is concluded.

Theorem 1 lets us conclude consistency from arbitrarily collected consistency rule
applications in a derivation d. Note thatwedo not yet state or require any properties
for d (but rather for a chosen subset of consistency rule applications in d). While
this makes Theorem 1 independent of any strategy for applying consistency rules,
our condition is not sufficient and necessary due to a missing characterization of d.
If consistency cannot be concluded from d according to Theorem 1, it is unclear
if the models are really inconsistent or if there are some further consistency rule
applications thatwere not collected in d. That is, inconsistency cannot be concluded.
Although a sufficient condition for consistency stated over incompletely applied

consistency rules is useful in most cases, lifting the result to a sufficient and nec-
essary condition is a desirable supplement from a formal point of view. First and
foremost, “all possible” consistency rule applications that potentially can be a part
of a creation and context preserving derivation must be collected for being able
to conclude inconsistency via an optimization problem. We, therefore, restrict our-
selves to TGGs where applying a consistency rule over the “same” match multiple
times does not enable new markings. In particular, we forbid TGG rules of the
form depicted in Figure 3.12 which do not create any source and target elements
but only correspondences. In such a case, the respective consistency rule looks the
same and does not contribute any markings but only correspondences. Applying
consistency rules of this form multiple times over the same match does not violate
any of our constraints but can yield some new matches for other consistency rules
after arbitrarily many repetitions. This is exactly what we want to avoid!

:S :T
(++)
 :S2T

Figure 3.12: A TGG rule that does not create any source or target elements (the respective
consistency rule looks the same)

Thus, the process of applying consistency rule applications must be progressive
such that each distinct consistency rule should mark at least one element (hence
the word choice in the following definition).

Definition 28 (Progressive TGGs).
We refer to a TGG with the set CR of consistency rules as progressive if each
consistency rule cr ∈ CR has at least one marking element.

In a progressive TGG, repeating consistency rule applications over the same
match with the same consistency rule does not bring any significant contribution
to the optimization problem stated over the collected consistency rule applications.
Hence, we consider derivations that contain each possible consistency rule applica-
tion over a distinct match only once.

66 3 Consistency Checking with TGGs

A critical problem of technical nature, however, arises when the process applying
consistency rules over distinct matches does not terminate. In a consistency check-
ing run, the correspondence graph is the only one evolving after consistency rule
applications. When consistency rules, however, continuously produce new corre-
spondences for each other (or for themselves) in a cyclicmanner, there exists always
a distinct match which has not yet been considered (and actually does not need to
be considered in a progressive TGG due to repeated markings). Such a situation is
depicted in Figure 3.13 based on our running example.
Both the Java and the UML model in Figure 3.13 have two classes (List and

Queue) inheriting from each other via a superClass reference. These models are
neither valid in Java and UML nor producible with our TGG (but assume that our
goal is to find out the latter). The derivation depicted in Figure 3.13 first marks
the List classes via the consistency rule cr1 of ClassRule. The Queue classes are
then marked as subclasses via the consistency rule cr5 of SubclassRule. Due to the
created correspondence between the Queue classes, however, this leads to a new
match for marking List classes this time as subclasses via the same rule. This again
leads to a new match for marking Queue classes as subclasses (this time under a
new correspondence). Hence, each new correspondence leads to a new match for
cr5 and applying consistency rules does not terminate if the process naïvely reacts
to each distinct match (occurring due to a new correspondence).

☑(α3)☑(α3) ☑(α2)☑(α4)

: JClass

name = "List"

: UMLClass

name = "List":C2C

☑(α1)

: JClass

name = "Queue"

: UMLClass

name = "Queue"

:C2C

:C2C

...

:C2C

...

superClass

superClass

☑(α3)

☑(α1)

☑(α3)

☑(α2)

☑(α4)

☑(α2)

☑(α4)

☑(α2)☑(α4)

superClass

superClass

α1

α3

α2

α4

α1 : ClassRule (cr1)
α2 : SubClassRule (cr5)
α3 : SubClassRule (cr5)
α4 : SubClassRule (cr5)
...

Figure 3.13: A derivation with consistency rules where the search for all possible rule
applications does not terminate

The problem, in fact, constitutes a special case of what we have defined as a cy-
cle in Definition 23: A consistency rule application matches the created correspon-
dence of another consistency rule application butmarks the required source/target
elements thereof. Eliminating repeated and superfluous markings in Figure 3.13
would not be a challenge from a logical point of view as our markedAtMostOnce
and context constraints already suffice (even without the acyclic constraint). From

3.5 Consistency Checking with TGGs and ILP 67

a graph grammar point of view, however, the search for possible rule applications
must be adjusted to avoid a non-terminating rule application process.
In order to avoid termination problems, we need to restrict which consistency

rule applications are really to be performed. In the following definition, therefore,
we distinguish between essential and superfluous consistency rule applications. In-
tuitively, a consistency rule application α is essential for a derivation d if

• there does not already exist a consistency rule application in d over the same
match with the same consistency rule,

• α does not imply other consistency rule applications due to correspondences
while excluding them at the same time.

In Figure 3.13, for example, α3 violates the second condition as it implies α1

(we get α3 ≤ α2 ≤ α1 due to the contextCorr constraints) while marking the same
elements as α1 (we get α1 + α3 ≤ 1 due to the markedAtMostOnce constraints).
Overall, no proper subset of these consistency rule applications can contain α3, i.e.,
α3 is not essential but superfluous.

Definition 29 (Essential and Superfluous Consistency Rule Applications).
Given a triple graph G0 � GS ← ∅ → GT , a set CR of consistency rules, and

a derivation d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR, let D be

the set of all rule applications in d and let CC
∗ ⊆ D ×D be the transitive closure

of the CC-relation in Definition 23.
We refer to a consistency rule application αn+1 : Gn

crn+1@cmn+1
���������⇒ Gn+1 with

crn+1 ∈ CR as essential for d if:

• � αi ∈ D, αi : Gi−1
cri@cmi
�����⇒ Gi , such that crn+1 � cri and cmn+1(Gn) �

cmi(Gi−1), and

• marked(αn+1) ∩
⋃
α∈D,

αn+1CC
∗ α

marked(α) � ∅.

We refer to αn+1 as superfluous otherwise.

Example 19. The consistency rule applications α1 and α2 in Figure 3.13 are
essential while α3 and α4 are superfluous due to the second condition in Defi-
nition 29. In the case of α3, for example, we get α3 CC α2 and α2 CC α1 leading
to α3 CC

∗ α1. However, α3 marks the same Java and UML classes as α1, i.e., α3

excludes α1 while implying it at the same time and can never be chosen to
satisfy our constraints.

Superfluous consistency rule applications constitute a “stopping criterion”when
applying consistency rules. We refer to a derivation d via consistency rules as final
if any further consistency rule application that can be added to d is superfluous.

68 3 Consistency Checking with TGGs

Definition 30 (Final Derivations with Consistency Rules).
Given a triple graph G0 � GS ← ∅ → GT , a set CR of consistency rules, let

d : G0
cr1@cm1
������⇒ G1 . . .

crn@cmn
������⇒ Gn be a derivation with cr1, . . . , crn ∈ CR.

We refer to d as final if ∀ αn+1 : Gn
crn+1@cmn+1
���������⇒ Gn+1 with crn+1 ∈ CR it holds

that αn+1 is superfluous for d.

Before lifting Theorem 1 to a sufficient and necessary condition given a final
derivation, we first state in the following lemma that final derivations exist for all
model pairs GS ← ∅ → GT in a progressive TGG. Practically, existence of a final
derivation leadsus to the notion of terminationwhen applying essential consistency
rules over distinct matches.

Lemma 3 (Existence of a Final Derivation).
Given a progressive TGG with the set CR of the respective consistency rules,

for all triple graphs G0 � GS ← ∅ → GT a final derivation d : G0
cr1@cm1
������⇒

G1 . . .
crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR exists.

Proof. As the correspondence graph is the only one that evolves when applying
consistency rules, we must show that the number of essential consistency rule
applications that require a correspondence is always limited. With regard to their
required correspondences, essential consistency rule applications form sequences
of the form αi CC . . . CC α j over the CC relation. In the first part of the proof, we
show that the number of such sequences with a particular length is always finite
whereas the length itself is not necessarily bounded (and can go from 1 to infinite).
In the second part, we show that a sequence of infinite length cannot be constructed
with essential consistency rule applications.

Given that G0 and CR have finite sizes, it can be proven by induction that the
number of sequences αi CC . . . CC α j of length ` is limited for all ` ∈ [1,∞).

Base case (` � 1): A sequence αi of length 1 can only be constructed by
consistency rule applications that do not match any correspondences (but
only elements from G0). The number of consistency rules in CR that do not
match any correspondence and the number of elements in G0 are finite. We,
moreover, consider only distinct matches in the case of essential consistency
rule applications. The number of sequences αi of length 1, therefore, is finite.

Induction step (from ` to ` + 1): Let A` be the set of all consistency rule
applicationswhose position in a sequence αi CC . . .CC α j is never greater than
`. If the number of sequences of lengths between 1 and ` is finite,A` is finite.
A sequence αi CC . . .CC α j CC αk of length ` + 1 can only be constructed with
a consistency rule application αk that requires correspondences created by
other consistency rule applications inA` . IfA` is finite, the number of these
correspondences is finite. Having only distinct matches of consistency rule
applications, therefore, thenumberofpossible sequences αi CC . . .CC α j CC αk

of length ` + 1 is finite.

In the remaining part of the proof, we show that a sequence over the CC re-
lation has always a finite length for essential consistency rule applications. For

3.5 Consistency Checking with TGGs and ILP 69

each sequence αi CC . . . CC α j of essential consistency rule applications, we define
a sequence Mi , . . . , M j of natural numbers calculated cumulatively via the sets of
marked elements such that:

• Mi � |marked(αi)|,

• M j � |marked(αi) ∪ . . . ∪marked(α j)|

The sets marked(αi), . . . , marked(α j) are non-empty (as the TGG is progressive),
while their pairwise intersections are empty (cf. the second condition in Defini-
tion 29). Hence, we get Mi < . . . < M j . While always getting greater, however, the
sequence Mi < . . . < M j is subject to an upper bound given by the overall number
of source and target elements in G0 (i.e., M j ≤ |elements(GS) ∪ elements(GT)|). That
is, not overlapping in the marked elements, the sequence αi CC . . . CC α j together
cannot mark more than what is available in GS and GT . Consequently, the length of
all sequences over theCC relation is finite for essential consistency rule applications.
To sum up, essential consistency rule applications form a finite number of se-

quences over the CC relation where the lengths of these sequences are finite as well.
Hence, a final derivation always exists. �

We are now ready to lift our sufficient condition for consistency in Theorem 1
to a sufficient and necessary condition. Additional statements in Theorem 2 as
compared to Theorem 1 are italicized.

Theorem 2 (A Sufficient and Necessary Condition for Consistency).
Given a progressive TGG with the set CR of the respective consistency rules,

a triple graph G0 � GS ← ∅ → GT , and a final derivation d : G0
cr1@cm1
������⇒

G1 . . .
crn@cmn
������⇒ Gn with cr1, . . . , crn ∈ CR, let G′S ← GC → G′T be a maximally

marked triple graph with respect to d. GS and GT are consistent if and only if
GS � G′T and GT � G′T .

Proof. If GS � G′S and GT � G′T , consistency of GS and GT can be concluded using
exactly the same arguments as in Theorem 1. We, therefore, must only show that
inconsistency can be concluded if GS , G′S or GT , G′T .

TGG is progressive and d is final. Any further consistency rule application

αn+1 : Gn
crn+1@cmn+1
���������⇒ Gn+1, therefore, is superfluous where at least one of the

following arguments holds for not choosing αn+1 (due to the two conditions stated
in Definition 29).

• αn+1 violates the first condition Definition 29: There already exists a consis-
tency rule application αi that contributes the same markings over the same
match. In particular, we get xi + xn+1 ≤ 1 due to the markedAtMostOnce con-
straints, i.e., αi and αn+1 cannot be chosen at the same time. Considering
the markings of αi and αn+1 required by another consistency rule applica-
tion α j , furthermore, all respective contextSrcTrg constraints are of the form
x j ≤ xi + . . . + xn+1, i.e., choosing αn+1 satisfies exactly the same contextSrc-
Trg constraints as choosing αi . Moreover, if any subsequent consistency rule

70 3 Consistency Checking with TGGs

application αn+2 requires a correspondence created by αn+1, i.e., xn+2 ≤ xn+1,
there already exists a consistency rule application αk that requires a corre-
spondence created by αi and differs from αn+2 only in its required correspon-
dences, i.e., marked(αk) � marked(αn+2) and xk ≤ xi . Hence, choosing αn+2

and consequently αn+1 due to the contextCorr constraints marks exactly the
same elements as choosing αk and consequently αi .

• αn+1 violates the second condition Definition 29: There exists a consistency
rule application αi implied as well as excluded by αn+1. In particular, αn+1

marks some elements that are marked by αi as well but relies on some corre-
spondences created by αi (i.e., αn+1 CC

∗ αi). As a result, we get xi + xn+1 ≤ 1
due to the markedAtMostOnce constraints and xn+1 ≤ . . . ≤ xk ≤ . . . ≤ xi

(or directly xn+1 ≤ xi if αn+1 CC αi) due to the contextCorr constraints. These
inequalities, however, cannot be satisfied with xn+1 � 1. Hence, αn+1 cannot
be chosen at all.

Consequently, choosing αn+1 cannot increase the number of marked elements
while satisfying our constraints at the same time. Hence, all possible consistency
rule applications that can be part of a creation and context preserving derivation
are exhaustively contained in d. If GS , G′S or GT , G′T while G′S ← GC → G′T is
maximally marked, therefore, the absence of a proper subset D′ of D that entirely
marks GS and GT can be concluded (Lemma 2). This, finally, leads to the absence of a
derivation via original TGG rules thatwould create GS and GT together asmarkings
via consistency rules and creations via TGG rules bĳectively exist (Lemma 1).

The arguments apply to all triple graphs GS ← ∅ → GT as a final derivation
exists in all cases (Lemma 3). �

Example 20. The derivation depicted in Figure 3.10 is final and exemplifies not
only Theorem 1 but also Theroem 2 when concluding consistency. We show
a further example in Figure 3.14 where this time inconsistency is concluded.
In the example, the UML model has only one remove method, while the Java
model has two remove methods (the question then which one of the two is a
better choice to be related to the UML method).
In the upper part of Figure 3.14, a derivation with four consistency rule

applications is depicted which, again, is final (i.e., any further consistency
rule application would only repeat existing ones). We also explicitly show the
integer inequalities (our constraints) and the objective function (the fitness
of a proper subset) that is to be maximized. These form the input for the
ILP solving step whose outcome is a proper subset consisting of three rule
applications. The outcome of the optimization reveals that choosing the upper
Java method is a beter choice leading to a greater number of marked elements.
Having unmarked elements after the optimization step, however, models are
indicated to be inconsistent. The marked portions, nevertheless, represent a
maximally marked triple graph for this model pair (Definition 27) which is
a consistent triple graph (Lemma 2). The unmarked elements, finally, require
action for consistency restoration (the focus of our next contribution).

3.5 Consistency Checking with TGGs and ILP 71

☑(α4)☑(α4)

☑(α2)
☑(α3)

☑(α3)

☑(α2)

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

:M2M

:C2C

parameter

☑(α1)

☑(α2)

☑(α3)

☑(α2)
☑(α3)

☑(α1)

α1 : ClassRule (cr1)
α2 : MethodRule (cr6)
α3 : MethodRule (cr6)
α4 : ParameterRule (cr7)

:M2M

:P2P
☑(α4) ☑(α4)

α1

α2

α4

α3

α1 : ClassRule (cr1)
α2 : MethodRule (cr6)
α4 : ParameterRule (cr7)

ILP
Solving

pos = 0 pos = 0

pos = 0

☐

☐

x2 + x3 ≤ 1
x2 ≤ x1
x3 ≤ x1
x4 ≤ x2

MAX 2*x1 + 4*x2 + 4*x3 + 4*x4

☑(α4)☑(α4)

☑(α2)☑(α2)

: JClass

name = "List"

: JMethod

name = "remove"

: JParameter

name = "o"

: JMethod

name = "remove"

: JParameter

name = "i"

method

method

parameter

parameter

: UMLClass

name = "List"

: UMLMethod

name = "remove"

: UMLParameter

name = "o"

method

:C2C

parameter

☑(α1)

☑(α2) ☑(α2)

☑(α1)

:M2M

:P2P
☑(α4) ☑(α4)

α1

α2

α4

pos = 0 pos = 0

pos = 0

☐

☐

☐

☐

inconsistent

Figure 3.14: A schematic exemplification of our approach with inconsistent models

72 3 Consistency Checking with TGGs

Next, we provide a consistency checking procedure in Algorithm 1 that basically
summarizes our formal results in a procedural overview. The inputs are the con-
sistency rules of a progressive TGG and a triple graph of the form GS ← ∅ → GT

(and the goal is a consistency checking between GS and GT). The outputs are three-
fold: A boolean value stating whether GS and GT are consistent, a triple graph
G′S ← GC → G′T representing the maximal consistent portions of GS and GT to-
gether with correspondences, and also a derivation d′ stating how these consistent
portions can be created by the TGG. The latter represents a “consistency history”
stating how the (possibly partial) consistency between GS and GT is induced (this
information will be later used for consistency restoration purposes in the next
section).
Algorithm 1makes use of Theorem 2 and has basically the following two phases:

• Phase 1 (Line 3-10): Consistency rules are applied to the input triple graph un-
til no more essential consistency rule application exists. Hence, the resulting
derivation d is final (in the sense of Definition 30).

• Phase 2 (Line 12-20): Making choices among consistency rule applications
involved in d is captured in this phase. In particular, Line 13 represents the
linear optimization step where a maximal and proper subset of the collected
consistency rule applications are calculated (Definition 26). This yields the
individual components of the output including a derivation d′ and the triple
graph G′S ← GC → G′T (induced according to Lemma 2). Finally, it is exam-
ined if G′S and G′T entirely covers GS and GT , respectively.

Note that the correctness of Algorithm 1 and its termination are direct conse-
quences of Theorem 2 and Lemma 3, respectively.
In particular, Theorem 2 (and consequently Algorithm 1) relies on an exhaustive

search of consistency rule applications. A strong distinction must be made, how-
ever, between our approach and a brute force approach that enumerates all possible
derivations with consistency rules. We only require an exhaustive search of distinct
consistency rule applications but not derivations. Consequently, applying consis-
tency rules repeatedly for obtaining (probably only slightly) different derivations
does not represent our strategy. Instead, we build one (possibly large) final deriva-
tion by applying consistency rules in a progressive manner and calculate a subset
of collected consistency rule applications based on linear optimization.
We shall discuss and evaluate the applicability of combining TGGs and ILP based

on a concrete implementation as part of our practical contribution. Nevertheless,
some expectations and observations in terms of computability and complexity
theory still merit a closer look on the conceptual basis.
For indicating (in-)consistency of two graphs, we restrict ourselves to progressive

TGGs that alwaysmark some source and/or target elements.Ourmotivationbehind
introducing progressive TGGs is to avoid a potentially infinite evolvement of the
correspondence graph when marking a given pair of source and target graphs (in
other words, we want to avoid the need for anticipating and performing arbitrary
computations in the correspondence graph). This is, in fact, a classical example
where Turing-completeness of a rule-basedmechanism is sacrificed for a viable rule
application process. The rewardwe get for this is the notion of essential consistency

3.5 Consistency Checking with TGGs and ILP 73

Algorithm 1 Consistency Checking
Require:

TGG : A progressive TGG

CR : Consistency rules of TGG

G0 : GS ← ∅ → GT

1: procedure CheckConsistency(G, CR)
2:
3: d ← empty derivation . Phase 1
4: G← G0

5:

6: while ∃ α : G
cr@cm
����⇒ G′ with cr ∈ CR and α is essential for d do

7: perform α
8: d ← add α to d
9: G← G′

10: end while
11:
12: D ← all consistency rule applications in d . Phase 2
13: D′←maximal and proper subset ofD
14: d′← derivation consisting of consistency rule applications inD′
15: (G′S ← GC → G′T) ← triple graph consisting of marked elements and

created correspondences in d′

16:
17: bool consistency
18: if G′S � GS and G′T � GT then consistency← true
19: else consistency← false
20: end if
21:
22: return (consistency, (G′S ← GC → G′T), d′)
23:
24: end procedure

74 3 Consistency Checking with TGGs

rule applications (Definition 29) and consequently final derivations (Definition 30).
Having shown that a final derivation exists in all cases, the rule application part
of our approach always exits after performing a finite number of consistency rule
applications (without any repetitions). Linear optimization via 0-1 ILP, moreover,
forms the second subtask that is effectively solvable. Hence, consistency checking
with TGGs is a decidable problem.

Before discussing the complexity of our solution, we first must understand the
hardness of the formulated problem (in terms of complexity theory). First of all,
consistency checking with a progressive TGG belongs to the complexity class NP
as a proof of consistency (e.g., a derivation building up a given graph pair) is
of polynomial length. In fact, the size of the derivation never exceeds the size of
the input graph pair as each rule creates at least one element. We, however, have
an NP-complete problem (for which there is no known way to locate a solution
efficiently). An indicative argument for this can be inferred from reducing subgraph
isomorphism check (which is known to be NP-complete) to consistency checking.
Assume a TGG describing consistency as subgraph isomorphism, e.g., some rules
create isomorphic vertices and edges on both sides and some rules create additional
elements only on the target side. Given a source graph GS and a target graph GT in
such a case, GS is a subgraph of GT if and only if GS and GT are consistent.
Having inherently an NP-complete problem, our approach is not an attempt to

come up with polynomial time complexity. First, the number of collected consis-
tency rule applications can grow exponentially or even factorially in the size of the
input graph pair (a factorial growth occurs, for example, when a TGG constructs
sequences of vertices and consistency checking permutes all possible sequences in
a given complete graph). Second, preparing integer inequalities and an objective
function is polynomial in the size of a final derivation (we solely require the knowl-
edge on which consistency rule application marks/creates which elements). Third,
moreover, ILP solving is not a decision problem but an optimization problem and is
NP-hard (going beyond NP-completeness). Nevertheless, our special case of linear
optimization has an upper bound (given by the overall number of graph elements)
and can thus be solved purely with integer inequalities. Given a graph pair with n
elements, the sum of markings can be equated with n and, if not satisfiable, then
with n − 1, n − 2, and so on until a feasible solution is found. This way, the problem
can be solved with 0-1 ILP without any objective function which, again, is known
to be NP-complete [80].
Reformulating an NP-complete problem as an optimization problem brings the

following practical advantage in our case:We do not only answer consistency check-
ing with a yes or no but also detect what is at least partially consistent in the case of
no. As a final remark, therefore, it should be noted that we have pragmatic under-
standing of scalability and define it, as already mentioned in the introduction, as
the capability of dealing with industry-sized consistency scenarios. The applicabil-
ity of our approach relies on optimized tool support for graph transformation and
ILP solving which shall be experimentally evaluated in the next section but one.

3.6 Related Work 75

3.6 Related Work

We have already mentioned some important related work to motivate our consis-
tency checking approach. Some lines of research, nevertheless, should be discussed
in more detail to understand the novelty as well as the inspiration of our approach.
We first give an overview of consistency checking in the context of BX languages,

in particular based on TGGs and QVT-R. Subsequently, custom solutions to trace-
ability management and model differencing, which pursue similar goals to ours,
are discussed. Finally, having combined linear optimization techniques with graph
grammars in our formalization, similar combinations from the broader field of
MDE merit mentioning (even if they are not necessarily meant for consistency
checking purposes).

TGGs:Most closely,we consider our consistency checking approach as an extension
to [43]. At a time when most of the research on TGGs had been conducted for
consistency restoration, the new type of operational rules is introduced in [43]
which, for the first time, takes two models as input and creates correspondences.
More importantly, it has been shown that applying these rules is equivalent to
applying original TGG rules, shaping the foundation for our intermediate results
(in particular for our lemmas before incorporating optimization techniques). The
search space problems in applying the operational rules, however, remain open
and, in fact, go beyond the scope of [43]. Our work demonstrates these open issues
and exploits linear optimization techniques to overcome them.
In addition to [43], yet another new type of operational rules is proposed in [68],

referred to as consistency creating rules. In this case, all of the three models (i.e., not
only the source and target but also the correspondence model) are taken as input
and marked. Furthermore, partial derivations with these rules (partial markings
when transferred to our setting) are discussed in [44]. Overall, these extensions
intend to reuse existing correspondences in consistency checking (which might,
e.g., have been created in previous runs). Reusing existing correspondences can
potentially mitigate search space problems in consistency checking but do not clear
them entirely, i.e., wrong decisions can still be taken when creating the remain-
ing correspondences (and markings). Nevertheless, a combination of our approach
and [44, 68] is worthwhile to consider as it can reduce rule application and opti-
mization efforts. This can be achieved by incorporating applications of consistency
creating rules in the sense of [44, 68] into our constraints and objectives.

QVT-R: The checkonly mode of QVT-R [120] is the only available standard as
previously mentioned at the beginning of this section. The central elements of a
QVT-R specification are relations consisting of a set of domain patterns (source
and target patterns) describing what should hold given the occurrences of these
patterns in a model pair. As a means for modularity, a relation can make use of and
invoke other relations as pre- and post-conditions, referred to as when and where
clauses, respectively. Similar to TGG rules, relations in QVT-R form nothing but a
consistency description in the first place, though not a grammatical one but rather
based on predicates (evaluating to true or false for a set of elements). Again similar
to TGGs, therefore, an operationalization step is needed to perform consistency

76 3 Consistency Checking with TGGs

checking. The standard proposes to translate QVT-R toQVTCore, a language that is
intended to be “simpler” and to support explicit correspondences betweendomains
(while QVT-R specifications are independent of any correspondence notion).

The translation from QVT-R to QVT Core is the least understood and most criti-
cized part of QVT-R, and even its semantics preservation has been justifiably chal-
lenged due to discrepancies between the two languages [133]. Briefly summarizing
the observations stated in [133], themost crucial discrepancy is due to how bindings
are handled to satisfy relations. While QVT-R seems to be more relaxed specifying
consistency over existence quantifiers (e.g., for all source patterns there exists a
target pattern), mappings in QVT Core restrictively demand unique bindings (e.g.,
for all source patterns there exists a unique target pattern).
Having identified operationalization issues, the author in [133] furthermore pro-

poses a game-theoretic approach for formalizing consistency checking based on a
QVT-R specification. Consistency checking is a game between two players whose
interests are either to verify or to refute consistency by choosing bindings for indi-
vidual relations. Consistency is concluded if the verifier has a strategy with which
they must necessarily win. While only non-recursive invocations among relations
(over the when and where clauses) are considered in [133], the approach is later
extended by capturing recursive invocations in [22].
At least two further approaches to consistency checking with QVT-R strive to

bypass the translation to QVT Core and represent their own formalisms. In [103],
QVT-R relations are translated to logical constraints.Accordingly, consistency check-
ing (besides consistency restoration) is realized as constraint solving. Although we
also make use of constraints in the form of integer inequalities, a distinction must
be made: Our approach is rule-based in the first place and constraints are only
formulated over rule applications to choose between alternatives. In [103], on the
contrary, constraint solving is the main mechanism operating on individual model
elements. This distinction practically has an influence on the processable model
sizes (e.g., tens of elements versus thousands of elements). In [62], furthermore,
QVT-R relations are translated to graph patterns which resemble our consistency
checking rules but without correspondences. Satisfying the relations is then traced
back to existence of morphisms (from graph patterns to a given model pair).
While these formalizations seminally cope with the ambiguities in the standard,

we observe the further two general drawbacks of QVT-R (and advantages of TGGs)
for consistency checking purposes:

• In QVT-R, consistency of two models is designed and checked separately in
two directions (in our running example, this would mean that consistency
from Java to UML is not necessarily the same matter as consistency from
UML to Java). The main reason for this is that the checkonly mode of QVT-R
is only considered as a special case (or an integral subtask) ofmodel-to-model
transformation which, however, has a direction. This is also reflected in the
aforementioned formalizations of consistency checking. That is, matching
the graph patterns in [62], solving the constraints in [103], or playing the
game in [133] must be done in both directions if a symmetric conclusion of
consistency is desired. Related to this point, TGGs provide a direction-ag-
nostic notion of consistency which is checked once. We argue that this is

3.6 Related Work 77

advantageous and easier to manage for all stakeholders in a BX landscape
(Figure 1.7) including meta-tool developers, consistency tool developers, and
finally, model owners.

• A QVT-R specification is independent of an explicit trace model. A concrete
implementation, nevertheless, can introduce some internal trace information
depending on the chosen formalism to realize consistency checking. The
traces, however, cannot be read symmetrically in either direction as consis-
tency checking itself is not symmetric. In TGGs, correspondences are vital for
the symmetric consistency notion and serve as explicit traceability informa-
tion between two models. Hence, further tools for traceability purposes (e.g.,
traceability matrices or change impact analyzers) can be built operating upon
correspondences resulting from a consistency checking run.

Having TGGs (including previous works [43, 44, 68]) and QVT-R as the twomain
fronts in consistency checking inMDE,we conclude this discussion inTable 3.1with
our estimation of how our approach is seated in this landscape (before coming to
the wider areas of related work).

Reliability Traceability Symmetry Reuse of
Traceability

TGGs à la [43, 44, 68] - + + +
QVT-R à la [62, 103, 133] + - - -
this work + + + -

Table 3.1: Comparing our approach to related work based on TGGs and QVT-R

The individual columns in Table 3.1 represent different aspects of consistency
checking ordered from left to right according to their importance in our belief.
With regard to providing correct results for consistency checking, we adopt the
term reliability from software engineering referring there to “continuity of correct
service”. Having addressed search space problems, the strength of our extensions
to TGGs lies in reliable consistency checking. Accordingly, reliability of consistency
checking is not sufficiently addressed in former TGG approaches [43, 44, 68] as
the process might end up with wrong results due to the involved search space.
Symmetric consistency checking with explicit traceability support forms the main
advantages against QVT-R. Reusing traceability information from former runs as
proposed in [44, 68], finally, seems to be the next logical step in further research.

Traceability Management: Notwithstanding that we name our ultimate goal as
consistency checking, it is at the same time a means for managing traceability
between twomodels by creating correspondences on theway. Reversely,we observe
that custom traceability management approaches pursue similar goals to ours even
if a consistency notion is not the centre of attention.
Traceability is usually associatedwith requirements engineering (withprominent

tool support such as DOORS [38], Reqtify [125], or YAKINDU [152]), in particular
for reasoning the existence of an element (be it a document, a product, or a compo-
nent) according to requirements. Going beyond requirements engineering, there is
an increasing awareness of the need for traceability management in any collabora-
tive engineering environment. Consequently, there is a vast literature addressing

78 3 Consistency Checking with TGGs

traceability practices mostly dedicated to a particular context such as, for example,
software engineering or mechatronics.
For comprehensive surveys of traceability practices (that manage to remain gen-

eral), we exemplarily refer to [1, 53, 145, 89, 147]. These surveys define different
aspects to classify traceability approaches and also to identify relevant research
directions. Some of the directions are indeed very helpful to locate consistency
checking (or correspondence creation in this particular case) with TGGs in the con-
text of traceability management. First and foremost, all considered surveys identify
creating traceability information as an important challenge. Common practices to
traceability usually rely on manual extraction of traceability links (by model own-
ers) or strive tomake suggestions tomitigate this substantial effort. In the case of our
approach, we propose a fully automated mechanism that extracts correspondences
via a combination of graph grammars and linear optimization. Development effort,
of course, still exists and is shifted to consistency tool developers who should spec-
ify consistency in the form of TGG rules. This effort, nevertheless, is nonrecurring
as soon as, or as long as, a TGG is finalized and in operation.
With the establishment of MDE, furthermore, new chances are expected to arise

for capturing traceability information as models [1]. Indeed, providing a traceability
scheme (which can be understood as a meta-model for traceability information in
our setting) seems to be a desirable practice to semantically distinguish between
trace links [1, 53, 89, 147]. This is similar to the idea of specifying a correspondence
meta-model in TGGs to capture different mapping possibilities even for the same
types of elements (for example, remember how we have used the two correspon-
dence types C2C and C2C* to distinguish between two different ways of relating
Java and UML classifiers). Again coupled with MDE, a distinction between hori-
zontal traceability (within the PSM level or the PIM level) and vertical traceability
(between PSMs and PIMs) is made in [145]. This relates to our vision for addressing
horizontal and vertical consistency uniformly as motivated in Figure 1.1.
While TGGs can increase the level of automation in traceability management,

existing traceability solutions reversely can inspire TGGs for user involvement. A
good example is the ModelTracer approach [135] which is rule-based similar to
TGGs but allows for manually created trace links. The proposed workflow strives
to retain manually created trace links but can also discard these when contradict-
ing the rules. Furthermore, incremental traceability management as illustrated by,
e.g., [76, 102, 104] offers an appealing approach to updating traceability informa-
tion. In general, however, we observe that traceability approaches usually lack an
underlying formal foundation (focusing directly on concrete tool architectures and
their features). A good exception, finally, is made in [58, 59] introducing algorithms
in detail to map the vertices of two models pairwise using similarity functions.
The formalization of models and their mappings, indeed, is based on the notion of
graphs. While the approach considers only two vertices in each mapping step (one
from the source and one from the target model), a TGG rule can be considered as
a generalization of this going beyond two vertices.

Model Differencing: A relevant task in MDE is to compare two different versions
of a model and to calculate what is changed from a version to another, referred
to as model differencing. In fact, this can be considered as a special case of what

3.6 Related Work 79

we call consistency checking assuming that consistency is defined as isomorphism
between the source and target model (conforming to the same meta-model).
For surveys of model differencing approaches, we refer to [88, 131] both identify-

ing four groups of model differencing approaches: Identity-based approaches [2, 91]
assume a non-volatile and unique identifier feature for each element to govern
the process of relating individual element pairs. Signature-based approaches [122,
130, 137] operate similarly but the identity is calculated by custom (user-defined)
functions over possibly volatile values. Similarity-based approaches [45] rely on
“weights” for features to calculate similarities between individual element pairs. Fi-
nally, language-specific approaches provide specific matching algorithms dedicated
to a particular meta-model, e.g., for the UMLmeta-model as is the case in [112, 148].
Overall, the strategies used in model differencing approaches can also facilitate

consistency checking with TGGs. First, static or dynamically calculated identifiers,
if available, can help reducing the search space involved in applying consistency
rules. Second, custom similarity notions can inspire new types of objective func-
tions in our linear optimization, e.g., bymaximizing the achieved similarity instead
ofmaximizing the number ofmarked elements aswe do. Reversely, our consistency
checking approach can provide an alternative way of model differencing (where
unmarked elements represent the differences between two models). Of course, we
cannot claim to have come up with a tailored solution for model differencing but
can always guarantee a maximal matching in the terms of model elements (while
especially similarity-based approaches rely on fine-tuning and trial-and-error pro-
cesses for accurate results). In our practical contribution (in the next section but one),
we shall experimentally evaluate how costly our combination of graph grammars
and linear optimization operates for model differencing purposes.

OptimizationTechniques inMDE:Our utilization of optimization techniquesmay
be unique in consistency checking but not in the general field of model transforma-
tions. Recently, genetic algorithms have been investigated to govern rule application
process in model transformation [48, 49]. This setting gets its inspiration from bi-
ology by considering individual rule applications as genomes and derivations as
individuals. Generations of individuals are calculated by mutation and crossover
operations. Having an objective in mind as we do, individuals have a fitness value
calculated according to this objective, and these fitness values determine the proba-
bility of passing on genes from one generation to the next. The technique is demon-
strated in [105] for object-oriented refactoring where refactorings are captured as
rules andfitness values are given by classicalmetrics such as coupling and cohesion,
i.e., multiple objectives are considered different than our case.
The type of our constraints and objective justifies our choice for ILP. Nevertheless,

genetic algorithms can provide an interesting alternative to cope with the search
spaceproblems.While our approachpossiblyputs a lot of effort into rule application
(in finding final derivations) and solves rather a simple optimization problem in
retrospect, an approach like [48, 49] can reverse the situation by skipping some
rule applications but performing a continuous and more complex optimization.
Again reduced to the biological analogy, however, this can also mean that some
individuals possibly cannot pass on their genes although they would eventually
lead to a correct result. Hence, we consider genetic algorithms as an alternative that

80 3 Consistency Checking with TGGs

optimizes well for multiple objectives but possibly compromises reliability. ILP
techniques, finally, are used in [144], similar to our utilization, to address the large
search space of a graph grammar, but different than our purposes, for a guided
traversal of the search space.

3.7 Summary and Future Work

In this section, we have

• identified the search space problems that prevented practical solutions for
consistency checking with TGGs,

• formulated decision making in the search space of consistency rule applica-
tions as a linear optimization problem,

• stated sufficient as well as sufficient and necessary conditions for consistency
with formal proofs based on the outcome of the optimization problem,

• provided a procedure for consistency checking based on these conditions,

• discussed the complexity of our procedure in terms of complexity theory,

• given an overview of related work that pursues the same or comparable goals
as we do with consistency checking.

There are at least two important lines of tasks for future work in our belief:

• First and foremost, incremental consistency checking based on our results is
the next logical step. That is, given that a consistency checking run has already
been performed between two models and the models are then changed, the
results from the former run (i.e., markings and correspondences) should be
reused instead of a computation from scratch. An important decision when
addressing incremental consistency checking is to define what to do with
eliminated consistency rule applications. When models change, eliminated
consistency rule applications indeed might become “choosable” or even bet-
ter choices than formerly chosen ones. An incremental approach, therefore,
should either maintain eliminated consistency rule applications or be ca-
pable of “complementing” missing rule applications upon model changes.
Incrementality of the linear optimization part defines the second dimension
of research in this regard. While incremental ILP solving is an open issue
(with regard to the state-of-the art solvers), incrementality can be provided
at the client side by formulating the optimization problem for a subset of
consistency rule applications (and not for all of them as we currently do).

• Furthermore, incorporating user-defined preferences into the optimization prob-
lemwould practically provide an added value to our approachwith regard to
its use cases. Given that, e.g., model owners prefer certain types of correspon-
dences or have additional requirements on the mapping of two models, new
types of logical constraints and objective functions are to be formulated to

3.7 Summary and Future Work 81

tackle a broader class of mapping problems. A current example is already be-
ing investigated in the network domain where our implementation is used to
map the resources of a computer network to the requirements of a data centre.
Besides mapping the models in a graph-grammatical sense as we discussed
so far, further bandwidth and CPU constraints form the additional part of
the optimization problem. While it is a case-specific matter to choose how
to enrich the optimization problem, it is important to come up with formal
arguments for respecting consistency in the sense of a TGG while support-
ing additional requirements. To this end, even multi-objective optimization
is worthwhile to consider to address correctness of consistency checking on
the one hand and optimizing for user-defined preferences on the other hand.

4
CONS I STENCY RESTORAT ION WITH TGGS

This section presents our second contribution based on [99], namely consistency
restoration between twomodels.Given a consistent pair of source and targetmodels
together with correspondences, consistency restoration is the process of propagat-
ing a set of changes, referred to as a delta, in one of the models to the other.
A delta changing a graph (e.g., a source graph) is given by added and deleted

elements (vertices and edges) in the graph.1 Generally, deltas in the source and
target graph of a consistent triple are induced from the activities of model owners.
In our context, furthermore, after executing consistency checking as discussed in
the previous section, source and target elements beyond the consistent portions (or
a selection of them depending on the preferences of model owners) can also be
considered as deltas in the form of added elements (i.e., as additions to the consis-
tent portions). Hence, our consistency restoration can operate complementarily to
a preceding consistency checking run. This completes the picture of the BX vision
depicted in Figure 1.3 and makes our overall approach to consistency management
with TGGs unique in terms of a generalized support. While deltas and their propa-
gation are at the center of attention in the following discussions, we handle deltas
uniformly no matter whether they result from modifications by model owners or
from a consistency checking run (or from a combination of both).
Given a TGG and a consistent triple graph GS ← GC → GT , the task of a

consistency restoration in the forward direction (i.e., from source to target) is to
propagate a source delta δS that changes GS to G′S and to create again a consistent
triple graph G′S ← G′C → G′T if there exists one. This applies analogously to the
backward directionwhen propagating a target delta δT . Due to the symmetric nature
of TGGs and the analogy between the forward andbackwarddirections,weprovide
our statements only in the forward direction throughout this section (and switch
back to the backward direction only for illustrating some interesting situations
based on our running example).
One of the most important challenges (for TGGs as well as for BX in general)

when restoring consistency is to realize delta propagation as an incremental update.
That is, the previously consistent state of the model pair (and correspondences in
the case of TGGs) must be taken into account and only those parts of the models
must be transformed whose consistency may be affected by a given delta.

1 A third type of change, namely attribute changes, and their special treatment are out of scope in
this thesis. Although not always ideal from a practical point of view, nevertheless, such changes
can be captured as a combination of deletions and additions (i.e., deleting a vertex and adding a
new one with new attribute values).

84 4 Consistency Restoration with TGGs

There exist at least two main reasons to prefer incremental updates over trans-
forming a changedmodel from scratch: The first and probablymore obvious reason
is the efficiency of consistency restoration. Efficiency is especially crucial if consis-
tency restoration operates frequently with rather tiny deltas and is subject to perfor-
mance requirements. Second, a source and/or target model can contain informa-
tion which is not producible from the other one (considering consistency between
Java and UML models, for example, language-specific programming practices and
method implementations in a Java model cannot be produced from amore abstract
UMLmodel). Hence, incremental updates are necessary for information preservation
in the already consistent parts of two models.
Similar to consistency checking as discussed in the previous section, consistency

restoration with TGGs also relies on operational rules, e.g., forward rules for consis-
tency restoration in the forward direction. Applications of operational rules, again,
are traced back to applications of original TGG rules to argue that a consistent triple
is created at the end of the process.
For incremental updates, consistency restoration with TGGs furthermore relies

on a given derivation representing the consistency history of two models, i.e., a
derivation that describes how the previously consistent state of the twomodels has
been constructed. Such a derivation can either be inferred from consistency check-
ing or from former consistency restoration runs, in both cases from operational rule
applications that are traced back to TGG rule applications. Accordingly, the main
runtime tasks of consistency restoration in the case of TGGs are:

• to revoke some rule applications in the consistency history, namely those that
are no more available for the changed source graph,

• to perform new rule applications that are available for the changed source
graph.

These tasks have been the focus of research on TGGs in the last two decades
and investigated with diverse techniques, formalisms, and implementations. All
state-of-the-art TGG-based consistency restoration frameworks we are aware of (in
particular [5, 60, 66, 70, 86, 93, 116]) address these runtime steps either (i) in a
simple but non-scalable manner, calculating a valid consistency history each time
from scratch over the entiremodels [66], or (ii) by performing auxiliary dependency
analyses over the source and target model elements [93], correspondences [70], or
operational rule matches [5, 116] to calculate the consequences of a delta, or (iii) by
exploiting practically justified but as yet informal heuristics without general proofs
of consistency [60, 86].
There is no doubt that this diversity is advantageous from a scientific community

point of view. Our observation, however, is that the complexity in addressing the
runtime steps of consistency restoration is accidental and is caused by entangling
high-level delta propagation strategieswith low-level details of howdeltas and their
consequences must be handled efficiently and correctly. Due to this entanglement,
it is difficult to exchange ideas amongst the different TGG approaches, even though
they all essentially share the same basic goal and the same formal foundation.
Considering the state-of-the-art tool support in the general field of graph gram-

mars, moreover, our second observation is that incremental pattern matching tech-

4.1 Examples of Consistency Restoration 85

niques (e.g., [50]) naturally address the requirements for incremental updates (as a
matter of fact, the shared term “incremental” here is not a coincidence and refers
to a change-driven operation mode in both cases). An incremental pattern matcher
monitors all (potential) matches of a given set of patterns in a (possibly changing)
host graph and thus can report consequences of deltas. For consistency restoration
purposes, this can eliminate the need for additional dependency analyses, heuris-
tics, or calculations from scratch when determining rule applications that become
invalidated or available as a result of a given delta.
Our main contribution in this section, therefore, is to integrate incremental pat-

tern matching into consistency restoration based on TGGs. Our goal is to provide a
solid yet simplified foundation for a newgeneration of TGG tools that cannow lever-
age available incremental graphpatternmatching frameworks [139, 142].We reduce
consistency restoration with TGGs to a relatively straightforward component that
reacts to invalidated or available rule applications reported by its underlying in-
cremental pattern matcher. Our formal results consist of Algorithm 2 representing
this simplified concept as a procedure, and the formal proofs for its termination
(Theorem 3) and correctness as well as completeness (Theorem 4).

On the way of stating these results, we again identify search space problems in
consistency restoration. Different than consistency checking where we exploited
linear optimization techniques, we use application conditions, a well-known tech-
nique from graph grammars to prevent undesired rule applications, to overcome
search space problems in consistency restoration. This choice has practical reasons
in the first place as we shall discuss (in particular, differences between consistency
checking and restoration lead to different solutions for the two use cases).
Outsourcing technical aspects of consistency restoration to incremental pattern

matching techniques, the added value of consistency restoration as proposed in
this thesis lies in its simplification and viability from an implementation point of
view. The contribution, therefore, is addressed to meta-tool developers in the first
place. We also believe that the simplified conception furthermore brings a didactic
advantage for consistency tool developers and model owners to understand how
consistency restoration works.
In the rest of this section, we first discuss examples of consistency restoration

(again based on the consistency between Java and UMLmodels). Subsequently, we
formally present operational rules for consistency restoration, identify challenges
with respect to their applications, and finally propose an algorithmic approach for
consistency restoration that makes use of incremental pattern matching techniques
to calculate consequences of deltas.

4.1 Examples of Consistency Restoration

As previously done for consistency checking, we exemplarily discuss a mental
execution of consistency restoration before automating this task. Starting with con-
sistent triple graphs (andwith available consistency history showing uswithwhich
TGG rule applications the triple graph has been constructed), our goal is to demon-
strate how a delta is formed and what its consequences are.

86 4 Consistency Restoration with TGGs

If we consider consistency restoration in the forward direction as processing the
elements of a (changed) sourcemodel, the notation ofmarkings (2�) again helps us to
indicate which part of the source model is already consistent. Unmarked elements
(�), accordingly, indicate which part of the source model is beyond consistency.

At the top of Figure 4.1, a model triple is given consisting of a Java and a UML
interface Shapewith a correspondence in between. Furthermore, a consistency his-
tory is provided showing how these models are created with our TGG rules. The
only rule application in the consistency history is α1 via InterfaceRule (r2). We ex-
plicitly annotate at each model element (be it from the source, correspondence, or
the target model) by which rule application it has been created, and additionally
provide markings on the source model. The source model at the top of Figure 4.1
is entirely marked, i.e., there is not yet a need for any action for consistency restora-
tion. Below this consistent model pair, a source delta is given adding some new
(and consequently unmarked) Java elements highlighted in a green and transpar-
ent rectangle with an «add» markup. The source delta consists of the following
added elements: A Java interface Rectangle inheriting from Shape and a Java class
RectangleImpl inheriting from Rectangle.
The source delta in Figure 4.1 does not invalidate any rule application from the

consistency history, i.e., the consistency of the previously existing Shape interfaces
is not affected by the added elements. Therefore, it remains to determine with
which rule applications the added source elements can be created (and accordingly
the missing correspondence and target elements are yet to be complemented).
There exist two possibilities to create the added Java elements in Figure 4.1: First,

the Rectangle interface and the RectangleImpl class can be created one by one using
our first set of rules in Figure 2.7, in particular by applying InterfaceRule (r2) and
ClassRule (r1). Second, we can create both together using our Impl-class strategy
provided by our extended set of rules in Figure 2.12, in particular by applying
ImplClassRule (r8). We choose the latter at the bottom of Figure 4.1 and restore con-
sistency by creating a UML class Rectangle. Furthermore, the inheritance relation
between the Rectangle interface and the Shape interface on the Java side is reflected
on the UML side by applying InterfaceClassGeneralRule (r9).
The consistency history is now extended to three rule applications incrementally,

i.e., α1 is retained and α2 as well as α3 are added. Having found rule applications
to create all added source elements, the model triple is again in a consistent state
where all source model elements are marked (and the missing correspondence and
target elements are complemented).
Starting with this consistent state, a further example of consistency restoration

is shown in Figure 4.2. This time, some Java elements are deleted, namely the
RectangleImpl class together with its inheritance relation, highlighted in a red and
transparent rectangle with a «del»markup. This clearly invalidates the rule applica-
tion α2 via ImplClassRule (r8) in the consistency history, i.e., the Impl-class strategy
is not applicable anymore after deleting the RectangleImpl class. As a result, α2

must be revoked such that the obsolete correspondence and target elements must
be deleted (and α2 is removed from the consistency history). Consequently, the
rule application α3 is also invalidated and revoked as its context elements (e.g., the
UML class Rectangle) are deleted.

4.1 Examples of Consistency Restoration 87

α3

 (α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

α1 : InterfaceRule (r2)

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface general (α3)

α2
α2

α2
 (α2)

: JInterface

name = "Rectangle"

: JClass

name = "RectangleImpl"

superInterface

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface

<<add>>

α1 : InterfaceRule (r2)
α2 : ImplClassRule (r8)
α3 : InterfaceClass-
GeneralRule (r9)

Source delta

Consistency
restoration

α3

 (α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface general (α3)

α2
α2

α2
 (α2)

α1 : InterfaceRule (r2)
α2 : ImplClassRule (r8)
α3 : InterfaceClass-
GeneralRule (r9)

Source delta

α3

 (α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface general (α3)

α2
α2

α2
 (α2)

Consistency
restoration

α5

: JInterface

name = "Rectangle"

: UMLInterface

name = "Rectangle"

:C2C
 (α4)

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface general (α5)

α4
α4

α1 : InterfaceRule (r2)
α4 : InterfaceRule (r2)
α5 : GeneralRule (r4)

<>

Figure 4.1: From top to bottom; a consistent model pair, a source delta adding some new
elements to the source model, and expected result after consistency restoration

88 4 Consistency Restoration with TGGs

In a final step, it must be determined how the remaining Rectangle interface and
its inheritance relation on the Java side can now be created again (note that these
elements are not deleted but only their consistency is affected by the delta). The only
possibility for this is to create the Rectangle interface with InterfaceRule (r2) and
subsequently to create the inheritance relation with GeneralRule (r4). The result of
these rule applications is depicted at the bottom of Figure 4.2 showing the models
again in a consistent state. Overall, two new rule applications (α4 and α5) have
been added to the consistency history representing these actions, two have been
removed (α2 and α3) due to being invalidated, and α1, finally, is just retained.
Regarding the two examples of consistency restoration discussed so far, it can

intuitively be observed that added elements in a delta lead to new rule applica-
tions and deleted elements lead to invalidated rule applications. As illustrated in
Figure 4.2, however, deleted elements can also lead to new rule applications as dele-
tions can affect the consistency of some remaining (non-deleted) elements. Even
more counter-intuitively, added elements can lead to invalidated rule applications.
Such a situation is depicted in Figure 4.3.
The consistent state depicted at the top of Figure 4.3 represents a pair ofRectangle

and a pair of Square classes where the consistency history consists of the rule appli-
cations α1 and α2 with ClassRule (r1). The source delta solely adds an inheritance
relation (a superClass edge) from the Square class to the Rectangle class on the
Java side. If we retain α1 and α2 in the consistency history (claiming that an added
element would not affect the consistency of previously existing elements), however,
there does not exist any rule in our consistency specification that would only create
the added superClass edge (remember that our consistency specification creates su-
perClass edges always together with a new Java class to avoidmultiple inheritance).
A rule application with SubClassRule (r3) is the only way to create the Square class
with its superClass edge. Hence, due to the given delta, α2 with ClassRule turns
out to be a “wrong" choice for the Square class and is thus invalidated. Restoring
consistency at the bottom of Figure 4.3, α2 is removed from the consistency history
and a new rule application α3 with SubClassRule (r3) is added.
To sumup, themain task of consistency restoration in a rule-based approach such

as TGGs is to determine which rule applications from former runs are invalidated
and which ones become available due to a given delta. In the forward direction
where the source model is changed, the question is how the changed source model
can be created using TGG rules (and the missing correspondence and target ele-
ments are created accordingly). We incorporate a consistency history in the process
and retain former rule applications that are still valid after a delta.
As a final remark, though not illustrated explicitly, transforming an entire source

model to a targetmodel (as there does not exist a corresponding targetmodel yet) is
a special case of what we call consistency restoration. In this case, the entire source
model can be regarded as a delta where the initially consistent state is the empty
triple graph (and the consistency history does not contain any rule applications).

4.1 Examples of Consistency Restoration 89

α3

 (α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

α1 : InterfaceRule (r2)

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface general (α3)

α2
α2

α2
 (α2)

: JInterface

name = "Rectangle"

: JClass

name = "RectangleImpl"

superInterface

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface

<<add>>

α1 : InterfaceRule (r2)
α2 : ImplClassRule (r8)
α3 : InterfaceClass-
GeneralRule (r9)

Source delta

Consistency
restoration

α3

 (α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface general (α3)

α2
α2

α2
 (α2)

α1 : InterfaceRule (r2)
α2 : ImplClassRule (r8)
α3 : InterfaceClass-
GeneralRule (r9)

Source delta

α3

 (α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface general (α3)

α2
α2

α2
 (α2)

Consistency
restoration

α5

: JInterface

name = "Rectangle"

: UMLInterface

name = "Rectangle"

:C2C
 (α4)

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface general (α5)

α4
α4

α1 : InterfaceRule (r2)
α4 : InterfaceRule (r2)
α5 : GeneralRule (r4)

<>

Figure 4.2: From top to bottom; a consistent model pair, a source delta deleting some
elements in the source model, and expected result after consistency restoration

90 4 Consistency Restoration with TGGs

: JClass

name = "Square"

: UMLClass

name = "Square"

:C2C
 (α2)

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α1) α1

α1

α2
α2

α1 : ClassRule (r1)
α3 : SubClassRule (r5)α3

: JClass

name = "Square"

: UMLClass

name = "Square"

:C2C
 (α3)

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α1) α1

α1

superClass general

α3
α3

 (α3)

: JClass

name = "Square"

: UMLClass

name = "Square"

:C2C
 (α2)

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α1) α1

α1

α2
α2

superClass

<<add>>

Source delta

Consistency
restoration

α1 : ClassRule (r1)
α2 : ClassRule (r1)

Figure 4.3: A further example of consistency restoration where an added element leads to
invalidated as well as new rule applications

4.2 Forward Rules 91

4.2 Forward Rules

In line with consistency checking, consistency restoration with TGGs also operates
upon operational rules and their applications. In Figure 4.4, the overall architecture
of consistency restoration in the forward direction is depicted.
First, TGG rules are operationalized to forward rules. A forward rule f r differs

from its original TGG rule r in the following sense: f r does not create any source ele-
ments but marks those source elements which would be created by r. Furthermore,
f r creates correspondence as well as target elements in accordance to r.
Second, given a consistent triple graph (in its present version indicated as V.1 in

Figure 4.4) with a consistency history showing how the triple graph is constructed
and a source delta, a TGG engine (i) revokes some invalidated rule applications,
i.e., removes obsolete correspondence and target elements that have been created
by the invalidated rule applications and (ii) performs new rule applications to
mark remaining source elements. The result is a consistent state of the triple graph
representing the updated versions (indicated as V.2) of the source, correspondence,
and target graphs, and additionally, the updated consistency history. Note that
consistency restoration in the forward direction changes only the correspondence
and target graph but not the source graph (i.e., V.2 on the source side of the output
is solely the result of the source delta).

<<input>>

<<output>>

TGG engine

<<input>>

<<output>>

Forward rules

Original rules of a TGG

Operationalization

Source
Model
(V.1)

Correspondence
Model
(V.1)

Target
Model
(V.1)

Consistency history (V.1)

Source
Delta

<<input>>

<<input>>

Source
Model
(V.2)

Correspondence
Model
(V.2)

Target
Model
(V.2)

Consistency history (V.2)

Figure 4.4: Overall architecture of consistency restoration with TGGs

While our contribution mainly concerns the TGG engine part of this architecture
(discussing how to revoke rule applications and to perform new ones), we start
with defining how a forward rule is constructed from a TGG rule. In analogy
to consistency rules in the previous section, we define the marking elements of a
forward rule (in fact, only the source marking elements as the goal of consistency
restoration in the forward direction is to process a source model).

92 4 Consistency Restoration with TGGs

Remark 4. Definitions and statements in this subsection form the consistency
restoration counterpart of some former definitions and statements for consis-
tency checking. In particular, Definition 31, 32, 33, 34 and Lemma 4 in the
following are adopted fromDefinition 15, 16, 17, 18 and Lemma 1, respectively.
Treatment of wrong choices of forward rules and the incrementality aspect,
however, distinguish our consistency restoration approach from consistency
checking as we shall discuss after this subsection.

Definition 31 (Forward Rule).

(id, Ø, Ø) PO

LS ← Ø → Ø

LS ← LC → LT

RS ← Ø → Ø

RS ← LC → LT

(rS, Ø, Ø)

(id, Ø, Ø)

(rS, id, id)
RS ← RC → RT

fr

(id, Ø, Ø)

r

L FL FR = R

LS ← LC → LT RS ← LC → RT
(rS, id, rT)

RS ← RC → RT
cr

L CL CR = R

GS ← GC → GT G'S ← GC → G'T
(gS, id, gT)

G'S ← G'C → G'T
(id, gC, id)

(mS, mC, mT) (m'S, mC, m'T) (m'S, m'C, m'T)

r

(1)
PO

(2)
PO

Given a rule r : L → R with
L � LS ← LC → LT and R �

RS ← RC → RT , the respec-
tive forward rule f r : FL →
FR is a rule constructed, as
depicted in the diagram, such that FL is a pushout of L and RS ← ∅ → ∅ over
LS ← ∅ → ∅, and FR � R. The morphism f r : FL → FR is induced as the
universal property of the pushout.
An element e ∈ elements(RS) is referred to as a source marking element of f r if
� e′ ∈ elements(LS)with rs(e′) � e.

jc : JClassifier uc : UMLClassifierc2c :C2C

L6

jm : JMethod

jc : JClassifier uc : UMLClassifierc2c :C2C

 method

FL6

jm : JMethod um : UMLMethodm2m :M2M

jm.name == um.name

jc : JClassifier uc : UMLClassifierc2c :C2C

 method method

FR6=R6

r6

fr6

jc : JClassifier

PO

☑
jm : JMethod

(++)
um : UMLMethod

(++)
m2m :M2M

jm.name == um.name

jc : JClassifier uc : UMLClassifierc2c :C2C

☑ method (++) method

jm : JMethod

jc : JClassifier

 method

Figure 4.5: Example of a forward rule construction

Example 21. The construction of the forward rule for MethodRule (r6) is exem-
plified in Figure 4.5. The left hand-side of a forward rule f r for an original TGG
rule r is constructed such that all source elements of r are required as context.

4.2 Forward Rules 93

The right hand-side of f r, furthermore, simply equals to the right hand-side of
r. That is, f r creates correspondence as well as target elements as created in r
but no source elements. Moreover, f r marks exactly those source elements that
are created by r. The result of this construction is depicted again with our com-
pact syntax at the bottom right of Figure 4.5.While created correspondence and
target elements are denoted with a (++)-markup, the source marking elements
are now denoted with a 2�-markup.
A forward rule, furthermore, requires exactly the same attribute constraints

as its respective TGG rule (e.g., name equality must hold when marking a Java
method and creating a corresponding UML method in Figure 4.5).
Finally, Figure 4.6 and 4.7 depict all forward rules that are constructed from

the original rules from Figure 2.7 and 2.12, respectively. A noteworthy aspect
is that some forward rules in Figure 4.7 have only source marking elements
but do not create any correspondence or target elements. Hence, these rules
contribute to a consistency restoration process only with their markings (i.e.,
by processing source elements) without changing the triple graph.

Our next goal is to discuss how to apply forward rules correctly, i.e., that a
consistent triple graph is created at the end of a consistency restoration process.
Given a consistent triple graph GS ← GC → GT and a source delta δS changing GS

to G′S, our ultimate strategy for correctness is as follows:

• We take a derivation d via forward rule applications that entirely marks the
triple graph GS ← ∅ → ∅ (and creates GS ← GC → GT) as the starting point.

• Reacting to the consequences of δS, we change d to a derivation d′ that entirely
marks the triple graph G′S ← ∅ → ∅ (and creates a triple graph G′S ← G′C →
G′T). Forward rule applications in d are retained in d′ when possible.

In order to argue that a derivation via forward rules (starting from G′S ← ∅ → ∅
and ending with G′S ← G′C → G′T) amounts to a derivation via original TGG
rules (starting from ∅ ← ∅ → ∅ and ending with G′S ← G′C → G′T), forward rule
applications must fulfill certain properties with regard to their markings G′S.

Definition 32 (Marked and Required Source Elements).
Let f r : FL → FR be a forward rule with FL � FLS ← FLC → FLT and

FR � FRS ← FRC → FRT . For a rule application α : G
fr@ fm
����⇒ G′ with

G � GS ← GC → GT , we define the following sets:

• marked(α) � {e ∈ elements(GS) |
∃ e′ ∈ elements(FLS) with f m(e′) � e where e′ is a source marking
element of f r}

• required(α) � {e ∈ elements(GS) |
∃ e′ ∈ elements(FLS) with f m(e′) � e where e′ is not a source marking
element of f r}

94 4 Consistency Restoration with TGGs

☑
jc : JClass

(++)
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

fr5: SubClassRule

jc' : JClass uc' : UMLClassc2c' :C2C

☑ superClass (++) general

☑
jc : JClass

(++)
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

fr1: ClassRule

☑
ji : JInterface

(++)
ui : UMLInterface

(++)
c2c :C2C

ji.name == ui.name

fr2: InterfaceRule

ji : JInterface ui : UMLInterfacec2c :C2C

fr4: GeneralRule

ji' : JInterface ui' : UMLInterfacec2c' :C2C

☑ superInterface (++) general

jc : JClass uc : UMLClassc2c :C2C

fr3: ContractRule

ji : JInterface ui : UMLInterfacec2c' :C2C

☑ superInterface (++) contract

☑
jm : JMethod

(++)
um : UMLMethod

(++)
m2m :M2M

jm.name == um.name

fr6: MethodRule

jc : JClassifier uc : UMLClassifierc2c :C2C

☑ method (++) method

☑
jp : JParameter

(++)
up : UMLParameter

(++)
p2p :P2P

jp.name == up.name
jp.pos == up.pos

fr7: ParameterRule

jm : JMethod um : UMLMethodm2m :M2M

☑ parameter (++) parameter

Figure 4.6: Forward rules for the original TGG rules from Figure 2.7

4.2 Forward Rules 95

ji: JInterface uc : UMLClassc2c :C2C

fr9: InterfaceClassGeneralRule

ji' : JInterface uc' : UMLClassifierc2c' :C2C

☑ superInterface (++) general

☑
ji : JInterface

(++)
uc : UMLClass

(++)
c2c :C2C

ji.name == uc.name
jc.name == ji.name + “Impl“

fr8: ImplClassRule

☑
jc : JClass

☑ superInterface

(++)
c2c* :C2C*

jc' : JClass uc' : UMLClassc2c'* :C2C*

fr11: SubClassOfImplClassRule

☑
jc : JClass

☑ superClass

(++)
c2c* :C2C*

jc : JClass uc : UMLClassc2c* :C2C*

fr12: SuperInterfaceOfImplClassRule

ji : JInterface

☑ superInterface

jc : JClass uc : UMLClassc2c* :C2C*

fr13: MethodOfImplClassRule

☑
jm : JMethod

☑ method

jc : JClass uc : UMLClassc2c* :C2C*

fr14: ParameterOfImplClassRule

jm : JMethod

method

☑
jp : JParameter

☑ parameter

☑
ji : JInterface

(++)
uc : UMLClass

(++)
c2c :C2C

ji.name == uc.name
jc.name == ji.name + “Impl“

fr10: ImplClassWithSuperClassRule

☑
jc : JClass

☑ superInterface

(++)
c2c* :C2C*

jc' : JClass

☑ superClass

Figure 4.7: Forward rules for the original TGG rules from Figure 2.12

96 4 Consistency Restoration with TGGs

Definition 33 (Creation and Context Preserving Derivations).
Let G0 � GS ← ∅ → ∅ be a triple graph and F R a set of forward rules. We refer

to a derivation d : G0
fr1@ fm1
������⇒ G1 . . .

frn@ fmn
������⇒ Gn with f r1, . . . , f rn ∈ F R as

• creation preserving, if for all pairs αi : Gi−1
fri@ fmi
�����⇒ Gi and α j : G j−1

fr j@ fm j
�����⇒

G j of forward rule applications in d with 1 ≤ i, j ≤ n and i , j, it holds
that marked(αi) ∩marked(α j) � ∅

• context preserving, if for all forward rule applications αi : Gi−1
fri@ fmi
�����⇒ Gi

in d with 1 ≤ i ≤ n, it holds that ∀e ∈ required(αi), ∃ α j : G j−1
fr j@ fm j
�����⇒ G j

in d with 1 ≤ j < i such that e ∈ marked(α j).

Remark 5. The conditions for creation and context preserving derivationswith
forward rules can inherently be satisfied by encoding markings into graphs
and forward rules. In such a setting, forward rules can only have a match
if the marking conditions in Definition 33 are met. To this end, translation
attributes in [65] ormarkers in [99] are twocategorical attempts both enriching the
category Graphs (and accordingly TripleGraphs) with marking information.
For brevity and readability, we choose to remain on a set-theoretical basis
regarding markings (as was the case for consistency checking in the previous
section) and only state what conditions a forward rule application needs to
satisfy over these sets. In practice, marking information can indeed be encoded
as additional parts of the graph structures or can be provided as an additional
service by the underlying pattern matcher.

Definition 34 (Entirely Marking Derivations).
Given a triple graph G0 � GS ← ∅ → ∅ and a set F R of forward rules, and a

derivation d : G0
fr1@ fm1
������⇒ G1 . . .

frn@ fmn
������⇒ Gn with f r1, . . . , f rn ∈ F R, let D be

the set of all forward rule applications in d. We refer to d as entirely marking, if⋃
α∈D

marked(α) � elements(GS).

Example 22. Figure 4.8 depicts a derivation consisting of the two forward
rule applications α1 and α2. While required(α1) is empty, marked(α1) as well as
required(α2) consists of the Java class Rectangle and marked(α2) consists of the
Java class Squarewith its outgoing superClass edge. Overall, the two rule appli-
cationsdonot overlap in theirmarkedelements, and their required elements are
marked by some previous forward rule applications (this especially concerns
α2 whose required elements are marked by α1). Hence, the depicted derivation
is creation and context preserving. As all source elements are marked with the
two rule applications, furthermore, the derivation is entirely marking.

As previously done for Lemma 1 for consistency checking, we again exploit
creation and context preservation of operational rule applications to argue that

4.2 Forward Rules 97

α1 : ClassRule (fr1)
α2 : SubClassRule (fr5)α2

: JClass

name = "Square"

: UMLClass

name = "Square"

:C2C
☑(α2)

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
☑(α1) α1

α1

superClass general

α2
α2

☑(α2)

Figure 4.8: A creation and context preserving derivation with forward rules

an equivalent derivation via the original TGG rules exists. In the case of forward
rules, creation preservation ensures that source elements are marked exactly once
(as they would be created once by the original TGG rules). Context preservation,
furthermore, ensures that a forward rule application can be performed only if
the required source elements are previously marked (as they would be previously
created when applying the original TGG rule).

Lemma 4 (Marking a Source Graph).
Given a TGG, let F R be the set of the respective forward rules.

∃ (GS ← GC → GT) ∈ L(TGG) ⇐⇒ ∃ d : G0
fr1@ fm1
������⇒ G1 . . .

frn@ fmn
������⇒ Gn where

f r1, . . . , f rn ∈ F R, G0 � GS ← ∅ → ∅, Gn � GS ← GC → GT , d is creation
preserving, context preserving, and entirely marking.

Proof. The proof is analogous to that of Lemma 1 and follows from pushout com-
position and decomposition. This time, as depicted in the following diagram, each

rule application G
r@m
���⇒ G′ via a rule r ∈ TGG can uniquely be decomposed into

and accordingly composed from two pushouts. The first pushout (1) creates only
source elements while the second pushout (2) creates only correspondence and
target elements. The second pushout equals to a forward rule application and, due
to forward rule construction (Definition 31), marks exactly those source and target
elements that are created in the first pushout.

(id, Ø, Ø) PO

LS ← Ø → Ø

LS ← LC → LT

RS ← Ø → Ø

RS ← LC → LT

(rS, Ø, Ø)

(id, Ø, Ø)

(rS, id, id)
RS ← RC → RT

fr

(id, Ø, Ø)

r

L FL FR = R

LS ← LC → LT RS ← LC → LT
(rS, id, id)

RS ← RC → RT
fr

L FL FR = R

GS ← GC → GT G'S ← GC → GT

(gS, id, id)

G'S ← G'C → G'T
(id, gC, gT)

(mS, mC, mT) (m'S, mC, mT) (m'S, m'C, m'T)

r

(1)
PO

(2)
PO

If (GS ← GC → GT) ∈ L(TGG), there exists a derivation d′ : (∅ ← ∅ → ∅)
r1@m1
����⇒

. . .
rn@mn
����⇒ (GS ← GC → GT)where r1, . . . , rn are the rules of the TGG. Transferring

the idea of composition and decomposition depicted above to d′, the existence of
d′ is equivalent to the existence of d stated in the lemma where f r1, . . . , f rn are the
respective forward rules of r1, . . . , rn . �

98 4 Consistency Restoration with TGGs

4.3 Wrong Choices of Forward Rule Applications

Similar to consistency checking, consistency restoration with a TGG is also subject
to a search space involved in applying the respective forward rules. A forward rule
application process can lead to a result where a source graph GS is not entirely
marked even though a triple graph GS ← GC → GT exists in the language of the
TGG. The challenges mainly arise from forward rule applications that overlap in
their marked elements and thus constitute alternatives to each other.
While we have depicted in Figure 4.8 a creation and context preserving deriva-

tion that marks a Java class and its subclass entirely, things can also go wrong
when marking this model as depicted in Figure 4.9. This time, both classes have
been marked using the forward rule f r1 of ClassRule leaving the superClass edge
unmarked as none of our forward rules (in Figure 4.6 and 4.7) would mark this
edge alone. Obviously, even though a match might exist, the forward rule f r1 of
ClassRule should not be applied to mark subclasses.

☐
α1 : ClassRule (fr1)
α2 : ClassRule (fr1)

: JClass

name = "Square"

: UMLClass

name = "Square"

:C2C
☑(α2)

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
☑(α1) α1

α1

superClass

α2
α2

Figure 4.9: An undesired state in applying forward rules

Considering the incrementality aspect of consistency restoration,moreover, search
space problems do not only arise from choosing the wrong one among alternative
forward rule applications but also from deltas that make a forward rule application
wrong “in retrospect”. As previously exemplified in Figure 4.3, marking two Java
classes with the forward rule f r1 of ClassRule might be a correct (and in fact the
only possible) choice. A source delta adding a superClass edge between the two
classes, however, requires a reconsideration of this choice.
A similar and arguably more challenging, though less obvious, problem exists in

the backward direction when applying backward rules to UML models exhibiting
multiple inheritance amongUML classes. Such a situation is depicted in Figure 4.10.
As backward rules have been omitted so far, we first show at the top of Figure 4.10
the four backward rules that mark UML classes and their general edges (these
backward rules suffice for the current discussion while we further on mainly focus
on the forward direction in the rest of this section).
Below the backward rules, an undesired outcome of applying them to an UML

model is depicted. Concretely, the Button class inherits from the Rectangle and
the Clickable class on the UML side. When these UML classes are marked by the
respective backward rules of ClassRule and SubClassrule, one of the two general
edges of the Button class remains unmarked. Apparently, as long as UML classes
exhibit multiple inheritance, the Impl-class strategy, i.e., marking the UML classes
with the respective backward rule of ImplClassRule, is the only correct choice in the
backward direction. The desired outcome (respecting this condition whenmarking

4.3 Wrong Choices of Forward Rule Applications 99

α5

α4

α3

α2

α1

(++)
jc : JClass

☑
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

br1: ClassRule

(++)
jc : JClass

☑
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

br5: SubClassRule

jc' : JClass uc' : UMLClassc2c' :C2C

(++) superClass ☑ general

(++)
ji : JInterface

☑
uc : UMLClass

(++)
c2c :C2C

ji.name == uc.name
jc.name == ji.name + “Impl“

br8: ImplClassRule

(++)
jc : JClass

(++) superInterface

(++)
c2c* :C2C*

ji: JInterface uc : UMLClassc2c :C2C

br9: InterfaceClassGeneralRule

ji' : JInterface uc' : UMLClassifierc2c' :C2C

(++) superInterface ☑ general

α1 : ImplClassRule (br8)
α2 : ImplClassRule (br8)
α3 : ImplClassRule (br8)
α4 : InterfaceClassGeneralRule (br9)
α5 : InterfaceClassGeneralRule (br9)

: JInterface

name = "Button"

: UMLClass

name = "Button"

:C2C
α2

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
α1

general

α2

: JInterface

name = "Clickable"

: UMLClass

name = "Clickable"

:C2C
α3

α3

general

☑(α1)

☑(α4)

☑(α2)

☑(α3)

α2

☐

α1 : ClassRule (br1)
α2 : SubClassRule (br5)
α3 : ClassRule (br1)

: JClass

name = "Button"

: UMLClass

name = "Button"

:C2C
α2

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
α1

α1

superClass general

α2

: JClass

name = "Clickable"

: UMLClass

name = "Clickable"

:C2C
α3

α3

general

☑(α1)

☑(α2)

☑(α2)

☑(α3)

: JClass

name = "RectangleImpl"

α1

superInterface

: JClass

name = "ButtonImpl"

α1

superInterface

: JClass

name = "ClickableImpl"

α3

superInterface

:C2C*

α1

α1

:C2C*

superInterface

:C2C*

☑(α5)
superInterface

α2

α3

Figure 4.10: From top to down; four backward rules from our running example, an unde-
sired outcome of applying these backward rules formarkingUML classeswith
multiple inheritance, and the desired outcome

100 4 Consistency Restoration with TGGs

theUMLmodel) is depicted at the bottomof Figure 4.10. Again, evenmore critically,
if multiple inheritance among UML classes occurs first due to a target delta, this
can concern the consistency of an entire UML class hierarchy (assuming that the
UML classes are not marked via the Impl-class strategy in the consistency history).
To sum up, rule applications in a consistency restoration process may be subject

to different alternatives whenmarking elements. Some of the alternatives, however,
are wrong choices or becomewrong choices in retrospect due to a given delta. Such
cases indeed act as an indicator to determine the capabilities of different consistency
restoration approaches with TGGs. While some approaches [60, 70] simply do not
consider (wrong) choices of forward rule applications and exclude TGGswith these
search space problems, some of them [5, 93, 116] resort to additional dependency
analyses, partly with user involvement [116], to detect invalidated alternatives.
A reasonable suggestion to tackle such search space problems in consistency

restoration is to capture decisions again as an optimization problem as done for
consistency checking in the previous section. Though unified with consistency
checking and formally justified, we argue against performing multiple alternatives
of forward rule applications due to two practical reasons:

• First, it contradicts the performance-related motivations of incremental up-
dates. We have made this compromise for consistency checking which is in
our opinion amore difficult task as correspondences and a consistency history
miss initially. For consistency restoration, however, exploring and maintain-
ing alternative decisions can lead to high costs for propagating expectedly
tiny deltas.

• Second, and more crucially, performing alternative forward rule applications
means that superfluous elements (that are to be removed in retrospect after the
optimization step) are not only created in the correspondence graph but also
in the target graph. Though rather harmless in the correspondence graph,
multiplicity constraints for a target graph can technically prevent creating
superfluous target elements. We do not consider leaving the technical space
of MDE and resorting to a hand-crafted model infrastructure (with relaxed
multiplicity constraints) as a satisfactory solution.

We, therefore, argue that a consistency restoration processmust be “governed” at
rule application time and propose an algorithmic approach to consistency checking
(and not an optimization-based approach as done for consistency checking). Before
stating an algorithm for governing forward rule applications, we first discuss appli-
cation conditions to “block” some wrong choices of forward rule applications.

4.4 Application Conditions

Application conditions are a common technique in graph grammars to forbid a rule
application depending on the existence or absence of additional morphisms. The
following definition is adopted from [42] with focus on forward rules. Moreover,
application conditions in our context only relate to the source side of a triple graph,
i.e., additional morphisms are only defined for the source graph while only id
morphisms are used for the correspondence and target graphs.

4.4 Application Conditions 101

Definition 35 (Application Conditions).
Given a forward rule f r : FL → FR with FL � FLS ← FLC → FLT , an
application condition (p,C) for f r is given by a monomorphism p : FL → P,
called premise, with P � PS ← FLC → FLT and p � (pS, id, id) and a set C of
monomorphisms, called conclusions, with ∀c ∈ C, c : P → C with C � CS ←
FLC → FLT and c � (cS, id, id). We refer to an application condition (p,C) as a
negative application condition if C is empty.

A forward rule application G
f r@ f m
�����⇒ G′ fulfills an application condition (p,C)

for f r if for each monomorphism p g : P → G with p g ◦ p � f m the dia-
gram below commutes, i.e., there exist a conclusion c : P → C in C and a
monomorphism c g : C→ G with c g ◦ c � p g.

FLS ← FLC → FLT PS ← FLC → FLT CS ← FLC → FLT

GS ← GC → GT

fm

p:
(pS, id, id)

c:
(cS, id, id)

FL P C

G

cg
pg

It is important to note that a source graph does not evolve after a forward rule
application while our application conditions introduce additional morphisms only
on the source side. Hence, if a forward rule application fulfills its application
conditions, it keeps doing so as long as the source graph is not changed by a
delta (and, in fact, consequences of deltas concerning application conditions shall
constitute one of the matters to be observed via incremental pattern matching).
Besides the general definition of application conditions, the special case of nega-

tive application conditions (NACs) is of particular interest in our running example.
A NAC simply forbids the occurrence of its premise commuting with the match of
the forward rule. As the set of conclusions is empty in a NAC, the requirement in
Definition 35 is trivially unsatisfied when the premise occurs at all.

Example 23. In Figure 4.11, our forward rule f r1 of ClassRule is extended with
a NACwhere the additional elements in P as compared to FL are depicted in a
red rectanglewith a «NAC»-markup (we do not have any conclusion in the case
of a NAC). When marking a Java class with f r1, this NAC can only be fulfilled
if the Java class does not have any super class. Accordingly, assuming that a
Java class has been marked with f r1, the NAC can get violated in retrospect if
the Java class gets a new super class due to a source delta.

A NAC as depicted in Figure 4.11 can automatically be generated using the
state-of-the-art operationalization techniques for TGGs. Apparently developed in-
dependently from each other but pursuing the same goals, filter NACs in [64] and
Dangling Edge Conditions (DECs) in [85] propose a technique to analyze forward
rules in the following sense: If a forward rule marks a vertex but not all of its inci-
dent edges, there should exist further “candidates” of forward rules thatwould later
mark these edges. Otherwise, a NAC is generated to forbid such edges, i.e., a for-
ward rule application is blocked via NACs if some edges would remain unmarked
otherwise. Recently, a more generalized analysis for incident edges of vertices have

102 4 Consistency Restoration with TGGs

☑
jc : JClass

(++)
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

fr1: ClassRule

: JClass

superClass

<<NAC>>

Figure 4.11: A NAC for the forward rule f r1 of ClassRule

been proposed in [52]. In addition to [64, 85], the approach does not only gener-
ate NACs but also normal application conditions (with at least one conclusion)
to check whether incident edges can eventually have a match for the candidate
forward rules.
For the backward direction in our running example, however, the problems

discussed in the previous subsection go beyond edges of single vertices and, there-
fore, beyond the capabilities of these techniques. More sophisticated and possibly
manual analyses are required in this case to detect that Impl-class strategymust con-
sequently be chosen to mark UML classes if multiple inheritance exists somewhere
in an inheritance hierarchy.

4.5 Marking-Complete Forward Rules

Having introduced application conditions as an additional means for forbidding
rule applications in certain cases, the next question is whether a set of forward rules
can indeed be “arbitrarily” applied for an entire marking of a source graph GS (con-
sistency restoration might end up with a misleading result otherwise). We refer to
forward rules exhibiting this property as marking-complete. Marking-completeness
here should imply that we only deal with markings of the source elements and not
with the correspondence and target graphs whose evolvement can still depend on
the choices of forward rule applications.
Note that, as from now on, we only assume that some application conditions

are given for the forward rules and state our results orthogonally to how they are
constructed (be it by exploiting [52, 64, 85] or any future construction technique
for application conditions). Our focus is rather what a derivation via forward rules
must fulfill given these application conditions.
In a first step, we restrict ourselves to source-progressive TGGswhere each forward

rule applicationmarks at least one source element (so that repeating a forward rule
application over the same match arbitrarily many times is never needed).

Definition 36 (Source-Progressive TGGs).
We refer to a TGG with the set F R of forward rules as source-progressive if each
forward rule f r ∈ F R has at least one source marking element.

4.5 Marking-Complete Forward Rules 103

Example 24. The TGG for our running example is source-progressive as each
forward rule (Figure 4.6 and 4.7) marks at least one source element. The analo-
gous property for the backward direction, however, does not hold, i.e., the TGG
is not target-progressive as some TGG rules do not create any target elements
(and thus their respective backward rules do not mark any target elements).

Remark 6. If a TGG is not source-progressive (or target-progressive), it requires
case-specific arguments whether the forward (or backward) rules violating the
condition in Definition 36 can be “ignored” in a consistency restoration pro-
cess. Regarding the backward direction in our running example, considering
only those backward rules that mark at least one target element suffices to en-
tirely mark a UML model (while the remaining rules would only create some
additional Java elements without any contribution to the marking process).
What we want to avoid here is repeating some forward (or backward) rule

applications in the hope that they would eventually lead to some newmatches
for other effectively marking forward (or backward) rules. This is not the case
in our running example where we can simply restore consistency with a subset
of the backward rules (that have at least one target marking element).

Next, we consider only those forward rule applications that (i) construct creation
and context preserving derivations and (ii) satisfy their application conditions.
Derivations with such forward rule applications are referred to as final if there does
not exist any further forward rule application satisfying these properties.

Definition 37 (Valid and Final Derivations with Forward Rules).
Given a source-progressive TGG with the set F R of the respective forward
rules where each f r ∈ F R is providedwith a setAC of application conditions,

let d : G0
fr1@ fm1
������⇒ G1 . . .

frn@ fmn
������⇒ Gn be a derivation with f r1, . . . , f rn ∈ F R.

We refer to d as a valid derivation if

• d is creation and context preserving,

• each forward rule application αi : Gi−1
fri@ fmi
�����⇒ Gi in d fulfills the respec-

tive setAC i of application conditions.

Given d, a forward rule application αn+1 : Gn
frn+1@ fmn+1
���������⇒ Gn+1 with f rn+1 ∈ F R

is valid if the derivation d′ : G0
fr1@ fm1
������⇒ G1 . . .

frn@ fmn
������⇒ Gn

frn+1@ fmn+1
���������⇒ Gn+1 is

valid. We refer to d as final if there does not exist any valid forward rule
application αn+1.

Example 25. Assuming that the forward rule f r5 of SubClassRule is provided
with the NAC depicted in Figure 4.11, the derivation depicted in Figure 4.8 is

104 4 Consistency Restoration with TGGs

valid and final fulfilling this NACwhile the derivation in Figure 4.9 is not valid
(violating the NAC).

In the case of a marking-complete set of forward rules as stated in the following
definition, available forward rule applications can be arbitrarily chosen (either
randomly or by asking model owners) to entirely mark a source graph GS.

Definition 38 (Marking-Complete Forward Rules).
Given a source-progressive TGG, let F R be the set of the respective forward
rules where each f r ∈ F R is providedwith a setAC of application conditions.
We refer to F R as marking-complete if, for each GS ∈ LS(TGG), all valid and

final derivations d : G0
fr1@ fm1
������⇒ G1 . . .

frn@ fmn
������⇒ Gn with G0 � GS ← ∅ → ∅ and

f r1, . . . , f rn ∈ F R are entirely marking (Definition 34).

While Definition 38 states what we require in an abstract manner, the following
points intuitively add up to marking-completeness (or constitute a threat to it):

• The evolvement of the correspondence and target graph must not lead to a
state where no more forward rule applications can be found while GS is still
not entirely marked,

• The markings by forward rules must not lead to a state where any further
marking would necessarily violate creation and context preservation while
GS is still not entirely marked,

• Application conditions must block forward rule applications to prevent that
one of the previous two conditions is violated.

Remark 7. Our definition of marking-complete forward rules represent the
minimum requirement for a “successful” consistency restoration run. In par-
ticular, application conditions are required to block wrong choices of forward
rule applications but we do not make any explicit statement on blocking some
correct choices. We indeed do not forbid this as long as there exists for each
source graph at least one entirely marking (and valid) derivation. In summary
it can be said, therefore, that we conservatively allow application conditions to
be more restrictive than necessary.
Thebackwarddirectionof our running examplehelpsus construct a situation

justifying this choice. As previously discussed (mainly based on Figure 4.10),
the Impl-class strategy must be used to mark a UML class in the backward
direction as long as multiple inheritance exists in the inheritance hierarchy (of
themarkedUML class). Application conditions navigating through a hierarchy
of arbitrary depth, however, are not possible in our case as we only resort to
the classical theory of graph grammars consisting of single, and not recursively
nested, graph patterns. Given this expressiveness issue, enforcing the Impl-class
strategy if multiple inheritance exists “somewhere” in the UMLmodel can be a
good compromise for the sake of guaranteeing successful consistency restora-
tion. In Figure 4.12, the backward rule br1 of ClassRule is enriched with three

4.5 Marking-Complete Forward Rules 105

NACs forbiddingmultiple inheritance globally for applying this backward rule.
NAC1 and NAC2 relate to the neighborhood of the UML class, while NAC3
relates to any other location (NAC3 does not cover the neighborhood of the
class as matches are injective in our formalization). These NACs, in particular
NAC3, can possibly block harmless one-to-one mappings of UML classes to
Java classes but at least the Impl-class strategy still remains a possibility for
marking all UML models entirely. Nevertheless, if possible, it is more ideal
from a practical point of view that application conditions only block wrong
choices.

(++)
jc : JClass

☑
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

br1: ClassRule

: UMLClass : UMLClass

 general general

<<NAC 1>>

: UMLClass : UMLClass

 general

 general

<<NAC 2>>

: UMLClass : UMLClass

: UMLClass

 general general

<<NAC 3>>

Figure 4.12: Three conservative NACs for the backward rule br1 of ClassRule forbidding
multiple inheritance globally (the Impl-class strategy remains the only way for
marking UML classes in the case of multiple inheritance)

A further relevant question in the current research on TGGs is how to check
whether a set of forward rules with application conditions is marking-complete.
Currently, there exist two different static analysis techniques (both adopted from
the general field of graph grammars) that state sufficient conditions for applying
forward rules arbitrarily (and getting a consistent triple graph at the end):

• In [65], confluence is required among forward rules such that each derivation
starting from the same source graph results in the same triple graph (i.e.,
determinism is not only required for marking the source side but also for the
evolvement of the entire triple).

• In [9], furthermore, the so-called local-completeness property and a static anal-
ysis to check this property have been proposed. The approach makes use of
source rules (not required in our setting) that only mark a source graph with-
out requiring or creating any correspondence and target elements. Using the
source rules, an ordering is calculated for how to mark the individual ele-
ments of a source graph GS (an intermediate condition is that GS can always
be entirely marked by these source rules). Accordingly, local-completeness
means that the forward rules can indeed mark GS in this calculated order.
This way, the approach strives to govern forward rule applications solely
based on analyzing the source side. While the order of source elements to
be marked is fixed, the choice of forward rules is not fixed (in the case of
alternatives) differentiating this technique from confluence.

106 4 Consistency Restoration with TGGs

Our forward rules, for example, are not confluent in the forward direction as we
allow different UMLmodels for the same Java model depending on whether (or to
what extent) the Impl-class strategy is used. Nevertheless, the local-completeness
property is satisfied as our rules are rather of symmetric nature. That is, a match
for the source side implies a match for the entire forward rule.
Unfortunately, or perhaps fortunately froma restrictiveness point of view, none of

the confluence and local-completeness requirements proves to be a generalization
of the other. That is, a set of forward rules can be confluent but not local-complete,
or the other way around, but is in both cases marking-complete. Nevertheless, it
should be mentioned that the motivation of local-completeness is to increase the
industrial applicability of TGGs while confluence enforces TGGs to be a function
from source to target graphs.
Besides these techniques (and their extension/combination which is the focus of

an ongoing research project), it is also worthwhile to consider state space exploration
(e.g., as practically supported by [55]) as a third option to check whether a set
of forward rules always entirely marks source graphs (or at least a representative
group of source graphs). Though sounding inefficient, it should be noted that such
an analysis is to be performed at specification time and not at runtime. The rest of
this section (and the core of our contribution) rather focuses on runtime.

4.6 A Consistency Restoration Procedure

We discuss in the following a consistency restoration procedure that “reacts” to the
consequences of a delta applied to the source graph of a consistent triple graph.
We define some concepts that are relevant to this procedure, provide subsequently
pseudo code for consistency restoration in the forward direction, demonstrate its
intermediate and end results based on the three examples previously discussed via
human intuition at the beginning of this section, and, finally, conclude with stating
the formal guarantees of consistency restoration if certain conditions are met.
In a first step, we formally define a delta changing a graph G to G′ as a span of two

monomorphisms G← G− → G′ (not to be confused with a triple graph). The first
monomorphism G← G− indicates which elements are deleted in G (namely those
that are not involved in G−). The second monomorphism G− → G′, furthermore,
indicates which elements are added (namely those that are in G′ but not in G−).

Definition 39 (Delta).
A delta δ : G ← G− → G′ for a graph G is given by two monomorphisms
δ− : G← G− and δ+ : G− → G′ in Graphs.
Given a delta δ : G ← G− → G′, an element e ∈ elements(G) with � e′ ∈
elements(G−) such that δ−(e′) � e is referred to as deleted by δ. Accordingly,
an element e ∈ elements(G′) with � e′ ∈ elements(G−) such that δ+(e′) � e is
referred to as created by δ.

As the forward direction is the focus in our statements, we consider source deltas
of the form δS : GS ← G−S → G′S changing a source graph GS to G′S.

4.6 A Consistency Restoration Procedure 107

Example 26. Changes on the Java models depicted in Figure 4.1, 4.2, and 4.3
are exemplary source deltas.

Given a derivation d of forward rule applications, a source delta δS does not only
lead to new forward rule applications but also invalidates some existing ones in d.
Thismust be handled by revoking the respective forward rule applications. Revoking
a forward rule application α means that (i) the created correspondence and target
elements are deleted (but no source element is deleted as the source graph is only
to be changed by δS) and (ii) the source elements marked by α become unmarked.

Definition 40 (Revoking a Forward Rule Application).

Let α : G
f r@ f m
�����⇒ G′ be a forward rule application with G � GS ← GC → GT

and G′ � G′S ← G′C → G′T . Revoking α refers to deleting all elements in
elements(G′C) \ elements(GC) and in elements(G′T) \ elements(GT). All source
elements in marked(α), furthermore, are said to be unmarked when revoking α.

Remark 8. When deleting graph elements for revoking a forward rule appli-
cation as stated in Definition 40, “dangling edges” can occur which are not
deleted (for the moment) but their vertices are. As we shall discuss in the
next statements, nevertheless, revoking a forward rule application triggers fur-
ther revocations such that the dangling edges are also eventually deleted. In
practice as well as in our examples, deleting a vertex implicitly deletes its in-
cident edges (i.e., some edges are cleaned up in advance whereas upcoming
revocations would delete them as well).

Besides forward rule applications, deltas and revoking forward rule applications
constitute now two further concepts that change a triple graph during a consistency
restoration process. Our strategy for consistency restoration is mainly concerned
with identifying the consequences of these changes. We, therefore, discuss in the
following what is to be “observed and reported” when restoring consistency.
Obviously, a consistency restoration procedure must perform valid forward rule

applications (Definition 37). Before this step, however, invalidated forward rule ap-
plications must be detected and revoked. A forward rule application α might be
invalidated due to three different reasons: First, some elementsmatched by αmight
have been deleted (by a source delta or by revoking some other forward rule ap-
plications). Second, some source elements required by α (required(α)) might have
been unmarked (by revoking some other forward rule applications). Finally, the ap-
plication conditions stated for α might be no more fulfilled (e.g., due to the source
delta adding some forbidden elements).

Definition 41 (Invalidated Forward Rule Applications).
Given a TGG with the set F R of the respective forward rules where each

f r ∈ F R is providedwith a setAC of application conditions, let d : G0
fr1@ fm1
������⇒

G1 . . .
frn@ fmn
������⇒ Gn be a valid derivation with f r1, . . . , f rn ∈ F R.

108 4 Consistency Restoration with TGGs

When changing Gn by a source delta or by revoking some forward rule appli-

cations in d, we refer to a forward rule application αi : Gi−1
fri@ fmi
�����⇒ Gi in d as

invalidated if at least one of the following conditions occurs:

• some elements matched by αi , i.e., fmi(Gi−1), are deleted,

• some elements in required(αi) are unmarked,

• αi does not fulfill the setAC i of application conditions for f ri .

Before introducing our consistency restoration procedure, we briefly and infor-
mally discuss its underlying technical component, namely an incremental pattern
matcher. While incremental pattern matchers have the general purpose of observ-
ing appearances and disappearances of predefined graph patterns in a host graph,
we exploit this concept to detect valid and invalidated forward rule applications
(stated in Definition 37 and 41, respectively). That is, the left- and right-hand sides
of our forward rules together with application conditions andmarking information
constitute what we observe via incremental pattern matching. In Figure 4.13, these
patterns are exemplified for the forward rules f r1 and f r5.

☐
jc : JClass

: JClass

superClass

<<NAC>>

☑
jc : JClass

uc : UMLClassc2c :C2C

jc.name == uc.name

fr1: ClassRule

: JClass

superClass

<<NAC>>

☐
jc : JClass

fr5: SubClassRule

☑
jc' : JClass

uc' : UMLClassc2c' :C2C

☐ superClass

☑
jc : JClass

uc : UMLClassc2c :C2C

jc.name == uc.name

☑
jc' : JClass

uc' : UMLClassc2c' :C2C

☑ superClass general

Forward
Rule

Left hand‐side together with application
conditions and markings

Right hand‐side together with application
conditions and markings

Figure 4.13: Patterns to be observed for valid and invalidated applications of f r1 and f r5

In the case of f r1, for example, assuming furthermore the NAC depicted in
Figure 4.11, unmarked Java classes without any super class are observed for the left
hand-side. Each appearance of such a pattern reported by the incremental pattern
matcher points at an available valid application of f r1. After applying f r1, obviously,
a match for such a pattern disappears (as the marking state changes). For the right
hand-side of f r1, furthermore, marked Java classes without a super class but with
a corresponding UML class are observed. Each disappearance of such a pattern
reported by the incremental pattern matcher points at an invalidated application
of f r1. This holds analogously for the left and right-hand side of f r5 (depicted at
the bottom of Figure 4.13), this time without any application condition but with

4.6 A Consistency Restoration Procedure 109

some context elements whose existence and markings are observed as well. To
sum up, appearance of the patterns shown in the left column of Figure 4.13 and
disappearance of thepatterns shown in the right columnconstitute the eventswhich
are to be reported by an incremental pattern matcher and to which consistency
restoration needs to react.
Considering the state-of-the-art support [139, 142] for incremental patternmatch-

ing, the Rete algorithm [50] seems to have gained acceptance as the underlying tech-
nique. The Rete algorithm stores partial matches of patterns as data tuples and joins
them to complete matches. Its strength lies in eliminating redundancy of matched
structures depending on how the data tuples are chosen for partial matches, i.e.,
a data tuple is maintained once but can be used as a part of multiple matches for
possibly different patterns. Given that some changes are made in the host graph,
individual data tuples containing the changed elements are updated (instead of a
complete re-evaluation of the patterns), hence the qualification as “incremental”.
Storing partial matches, of course, can be regarded as sacrificing memory for faster
evaluations as compared to conventional pattern matching.
While we strongly recommend the interested reader to consult [50, 142] for

the insights of the Rete algorithm, it is transparent (invisible) to our upcoming
consistency restoration procedure how an incremental pattern matcher internally
works. We, therefore, only define the interaction with such a component (this
interaction basically must be implemented as an interface between a TGG engine
and a general-purpose incremental pattern matcher).

Definition 42 (Incremental Pattern Matcher).
Given a TGG with the set F R of the respective forward rules with a set AC

of application conditions, let d : G0
fr1@ fm1
������⇒ G1 . . .

frn@ fmn
������⇒ Gn be a derivation

with f r1, . . . , f rn ∈ F R. An incremental pattern matcher ipm(F R,AC, d) refers
to a component with the following operations:

• ipm.getValid returns all possible valid applications of forward rules in F R
that can be added to d,

• ipm.getInvalidated returns all invalidated forward rule applications in d
that are not revoked.

Finally, Algorithm 2 presents our procedure in pseudo code which requires, be-
sides the incremental pattern matcher, the following inputs: A source-progressive
TGG whose forward rules are marking-complete (possibly provided with addi-
tional application conditions), a consistent triple graph GS ← GC → GT whose
creation is traced to a final derivation d via the forward rules, and, finally, a source
delta δS that changes GS to G′S.
Overall, the incremental pattern matcher operates on the input derivation d. The

changed derivation after revoking and performing forward rule applications is
stored in d′. The evolvement of G, furthermore, is stored in G′. Note that both G′

and d′ together constitute the output of Algorithm 2 and serve as input for further
runs. The consistency restoration procedure consists of the following three phases
to produce G′ and d′:

110 4 Consistency Restoration with TGGs

Algorithm 2 Consistency Restoration
Require:

TGG : A source-progressive TGG

F R : A marking-complete set of forward rules for TGG with a set AC of
application conditions

G : A triple graph (GS ← GC → GT) ∈ L(TGG)

d : A valid, final, and entirely marking derivation G0
fr1@ fm1
������⇒ G1 . . .

frn@ fmn
������⇒ Gn

with f r1, . . . , f rn ∈ F R, G0 � GS ← ∅ → ∅, and Gn � G

δS : A source delta GS ← G−S → G′S

ipm : an incremental pattern matcher ipm(F R,AC, d)

1: procedure RestoreConsistencyInForward(G, d, δS, ipm)
2:
3: G′← apply δS to G . Phase 1
4: d′← d
5:
6: while ipm.getInvalidated is not empty do . Phase 2
7: α← choose from ipm.getInvalidated
8: (G′, d′) ← revoke α
9: end while
10:
11: while ipm.getValid is not empty do . Phase 3
12: α′← choose from ipm.getValid
13: (G′, d′) ← perform α′

14: end while
15:
16: if d′ is entirely marking then return (G′, d′)
17: else Error: � (G′S ← G′C → G′T) ∈ L(TGG)
18: end if
19:
20: end procedure

4.6 A Consistency Restoration Procedure 111

• Phase 1 (Line 3-4): δS is applied to the source graph GS in this initial phase.
This step can lead to valid and/or invalidated forward rule applications (ipm
will be inquired about these in the next phases).

• Phase 2 (Line 6-9): Invalidated forward rule applications in d are revoked
in this intermediate phase. First and foremost, deletions in δS lead to the
disappearance of somematches of forward rule applications where additions
as well as deletions in δS can possibly lead to violation of some application
conditions in d. Revoking a forward rule application, furthermore, can lead to
further invalidated forward rule applications (as correspondences and target
elements are deleted and source elements become unmarked). This phase
exits after no more invalidated forward rule application is reported by ipm.

• Phase 3 (Line 11-14): Valid forward rule applications are performed in this
final phase. Valid rule applications can occur due to additions in δS (where
added elements are inherently unmarked) and also due to revoking steps in
the previous phase (where some source elements become unmarked but not
deleted by δS). In each iteration, a valid forward rule application is chosen
and performed. This, in turn, might give rise to new valid forward rule appli-
cations as the correspondence and the target graph as well as the markings at
the source side evolve. Note that the choice of performed forward rule appli-
cation in each iteration (Line 12) can either be made arbitrarily or by asking
the model owner but does not constitute a threat to marking G′S entirely if
the forward rules are marking-complete. This phase exits after no more valid
forward rule application is reported by ipm.

The resultingG′ is a triple graphG′S ← G′C → G′T produced fromGS ← GC → GT

after applying δS, revoking invalidated rule applications, and performing valid rule
applications. The changed derivation d′ contains those forward rule applications
that are either retained (not revoked) in Phase 2 or performed in Phase 3. If d′ is not
entirely marking, however, the procedure terminates with an error stating that no
G′S ← G′C → G′T exists. We will conclude this subsection with a theorem showing
that this error state is never reached if G′S ∈ LS(TGG).
Before discussing the formal guarantees of Algorithm 2, however, we first demon-

strate how it operates using the three examples of consistency restoration discussed
with human intuition at the beginning of this section.

Example 27. We start with the example previously depicted in Figure 4.1. As
repeated in the following diagram, the consistent triple graph contains a pair
of Java and UML interfaces (named Shape) and the source delta adds a new
Java interface Rectangle (inheriting from Shape) as well as a new Java class
RectangleImpl (inheriting from Rectangle). The derivation marking the initial
state of the source graph (required as d in Algorithm 2) consists of only one
forward rule application (α1 via the forward rule f r2 of InterfaceRule).

112 4 Consistency Restoration with TGGs

: JInterface

name = "Rectangle"

: JClass

name = "RectangleImpl"

superInterface

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface

<<add>>

α1 : InterfaceRule (fr2)

Given these inputs, we discuss the intermediate and end results of the three
phases in Algorithm 2.

Phase 1:The source delta does not invalidate α1. That is, the source delta neither
deletes an element in the match of α1 nor violates its application conditions
(in fact, we do not have any application condition stated for f r2). The source
delta, however, gives rise to matches for three valid forward rule applications
depicted below (the arrows explicitly indicate with which forward rules). Note
that the available forward rule applications partly overlap in their marked
source elements (i.e., we have alternatives to mark the added Java elements).

: JInterface

name = "Rectangle"

☐ fr2 :
InterfaceRule

: JClass

name = "RectangleImpl"

☐ fr1 :
ClassRule

: JInterface

name = "Rectangle"

: JClass

name = "RectangleImpl"

superInterface

☐

☐

☐

fr8 :
ImplClassRule

Phase 2: As the source delta does not invalidate any forward rule application
from former runs, this phase exits without any iteration.

Phase 3: Having the three valid forward rule applications induced due to the
source delta, one of them is to be chosen in the first iteration of this phase.
Depending onwhat a concrete implementation supports, this choice can either
be made arbitrarily or some user decisions can be incorporated (be it over user
interaction or some predefined configuration). We assume that user decisions
are supported and choose to apply the forward rule f r8 of ImplClassRule (i.e.,
we prefer the Impl-class strategy to a one-to-one mapping of interfaces and
classes). The result after applying the chosen forward rule is depicted to the
left in the following diagram. While the other two forward rule applications
induced due to the source delta are no more valid (as they mark the same Java
elements), a new valid forward rule application becomes available to mark the
superInterface edge between the Rectangle and the Shape interface (depicted
to the right). Hence, a second iteration is required in this phase where there is
only one valid forward rule application to be chosen.

4.6 A Consistency Restoration Procedure 113

☐

☑(α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"
:C2C

☑(α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"
:C2C

☑(α1) α1
α1

superInterface

α2
α2

α2☑(α2)

fr9 :
InterfaceClass
GeneralRule

☐

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"
:C2C

☑(α2)

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"
:C2C

☑(α1) α1
α1

superInterface

α2
α2

After performing this valid forward rule application in the second iteration,
all source elements aremarked and this phase accordingly exits. The end result
consists of, as depicted below, the extended triple graph and the derivation
containing now three forward rule applications.

α3

☑(α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"
:C2C

☑(α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"
:C2C

☑(α1) α1
α1

superInterface general☑(α3)

α2
α2

α2☑(α2)

α1 : InterfaceRule (fr2)
α2 : ImplClassRule (fr8)
α3 : InterfaceClass‐
GeneralRule (fr9)

Example 28. We start with the end result of the previous example and delete
the RectangleImpl class in the Java model as depicted below.

α3

 (α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"

:C2C
 (α1) α1

α1

superInterface general (α3)

α2
α2

α2
 (α2)

α1 : InterfaceRule (fr2)
α2 : ImplClassRule (fr8)
α3 : InterfaceClass-
GeneralRule (fr9)

<>

Phase 1: The source delta invalidates α2 (and for the moment only α2) as some
of its matched source elements are deleted. The following diagram depicts α2

while the elements that are now “missed” by α2 are grayed out.

114 4 Consistency Restoration with TGGs

☑(α2)

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"
:C2C

☑(α2)

: JClass

name = "RectangleImpl"

superInterface

:C2C*

α2
α2

α2☑(α2)

Phase 2: In the first iteration of this phase, α2 is to be revoked which means
that (i) the Rectangle interface in the Java model is now unmarked and (ii) the
Rectangle class in theUMLmodel (whichwas created by α2) is deleted together
with its outgoing edge. The correspondences created by α2 are deleted as well.
The state of the triple graph after revoking α2 is depicted below to the left.
Unmarking the Rectangle interface in the Java model, moreover, gives rise to a
new valid forward rule application as depicted to the right.

: JInterface

name = "Rectangle"

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"
:C2C

☑(α1) α1
α1

superInterface☑(α3)

☐

: JInterface

name = "Rectangle"

☐ fr2 :
InterfaceRule

Performing the new forward rule application, however, is the task of the next
phase while we are not yet finished in this phase. Revoking α2 invalidates α3.
As depicted below to the left, α3 nowmisses some of its requiredUMLelements
and correspondences as well as the marking of the Java interface Rectangle (all
grayed out). Hence, a second iteration is needed to revoke α3. The state after
revoking α3 is depicted below to the right where the superInterface edge in the
Java model is now unmarked. This phase finally exits as α1 (being the only
remaining forward rule application from the former runs) is not invalidated.

α3

: JInterface

name = "Rectangle"

: UMLClass

name = "Rectangle"
:C2C

☑(α2)

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"
:C2C

☑(α1) α1
α1

superInterface general☑(α3)

α2
α2 : JInterface

name = "Rectangle"

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"
:C2C

☑(α1) α1
α1

superInterface

☐

☐

Most importantly, the end result of this phase consists of only valid forward
rule applications and the source graph is partially marked. The remaining
markings are to be complemented in the next phase.
Phase 3: In the first iteration, the only valid forward rule application that
became available in the previous phase is performed (theRectangle interface in
the Java model is marked and a corresponding Rectangle interface in the UML
model is created). The state of the triple graph is depicted in the following
diagram. The created elements and markings now give rise to a new valid

4.6 A Consistency Restoration Procedure 115

forward rule application via the forward rule f r4 of GeneralRule (the entire
triple graph below constitutes the match for this forward rule application).

: JInterface

name = "Rectangle"

: UMLInterface

name = "Rectangle"
:C2C

☑(α4)

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"
:C2C

☑(α1) α1
α1

superInterface

α4
α4

☐

fr4:
GeneralRule

Performing this valid forward rule application in the second iteration of this
phase, the superInterface edge in the Java model is marked and a general edge
in the UML model is created. Having all source elements marked, this phase
exits with the result depicted below. Overall, α1 is retained from former runs,
α2 and α3 have been revoked, and finally, α4 and α5 have been performed.

α5

: JInterface

name = "Rectangle"

: UMLInterface

name = "Rectangle"
:C2C

☑(α4)

: JInterface

name = "Shape"

: UMLInterface

name = "Shape"
:C2C

☑(α1) α1
α1

superInterface general☑(α5)

α4
α4

α1 : InterfaceRule (fr2)
α4 : InterfaceRule (fr2)
α5 : GeneralRule (fr4)

Example 29. In a last example, we demonstrate how an added element invali-
dates a forward rule application, previously shown in Figure 4.3. As depicted
below, the initially consistent state consists of twopairs of Java andUMLclasses.
The Java classes are marked by two forward rule applications α1 and α2 via the
forward rule f r1 of ClassRule. The source delta adds an inheritance link.

: JClass

name = "Square"

: UMLClass

name = "Square"

:C2C
 (α2)

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"

:C2C
 (α1) α1

α1

α2
α2

superClass

<<add>>
α1 : ClassRule (fr1)
α2 : ClassRule (fr1)

Phase 1: Applying the source delta to the Java model and assuming that the
forward rule f r1 ofClassRule is providedwith theNACdepicted in Figure 4.11,
the forward rule application α2 is invalidated. In the following diagram, the
new Java elements that violate the NAC are depicted via dashed lines.

116 4 Consistency Restoration with TGGs

☐

: JClass

name = "Square"

: UMLClass

name = "Square"
:C2C

☑(α2)

: JClass

name = "Rectangle"

☑(α1)

α2
α2

superClass

Phase 2: In the first (and only) iteration, α2 is revoked. The result is depicted
below. This, moreover, gives rise to a new valid rule application via the forward
rule f r5 of SubClassRule (where the entire triple graph constitutes the match).
As α1 is not invalidated, this phase exits after one iteration.

☐

: JClass

name = "Square"

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"
:C2C

☑(α1) α1
α1

superClass

☐

fr5:
SubClassRule

Phase 3: Performing the only available valid forward rule application, the
Java model is again entirely marked. The end result, as depicted below, is a
triple graph having now inheritance links at both sides. Overall, α1 is retained
from former runs, α2 is revoked due to the added elements, and α3 has been
performed to complement the missing markings.

α1 : ClassRule (fr1)
α3 : SubClassRule (fr5)α3

: JClass

name = "Square"

: UMLClass

name = "Square"
:C2C

☑(α3)

: JClass

name = "Rectangle"

: UMLClass

name = "Rectangle"
:C2C

☑(α1) α1
α1

superClass general

α3
α3

☑(α3)

A noteworthy aspect of this example is that some created UML elements are
identical to some deleted UML elements. In particular, the UML class Square
is deleted when revoking α2 but a UML class Square is again created when
performing α3. While deleting something just in order to create it again is
not always ideal especially with regard to information preservation, possible
measures (and extensions) addressing such cases shall be discussed in the next
subsection.

We conclude the contribution part of this section by discussing the formal guar-
antees of Algorithm 2. First, termination of Algorithm 2 is shown, i.e., both loops
(in Phase 2 and 3) exit after a finite number of iterations.

4.6 A Consistency Restoration Procedure 117

Theorem 3 (Termination of Algorithm 2).
Given its required inputs, Algorithm 2 always terminates.

Proof. Termination of the individual loops in Phase 2 and Phase 3 must be shown
for the proof. Given the input derivation d, Phase 2 only revokes some forward rule
applications in d. Phase 2 terminates as d is finite (in the worst case all forward rule
applications are revoked). Considering Phase 3, each iterationmarks some elements
of G′S as the TGG is source-progressive, while valid forward rule applications never
overlap in their marked elements (Definition 37). As elements(G′S) is finite, the
number of iterations in Phase 3 is finite. Phase 3, therefore, terminates as well. �

Finally, we relate Algorithm 2 to the research challenges stated in [129] for con-
sistency restoration with TGGs. In particular, [129] identifies correctness, i.e., that
the returned triple graph is consistent, and completeness, i.e., that a triple graph is
returned for all G′S ∈ LS(TGG), as two desired properties. Of course, source-pro-
gressive TGGs andmarking-complete forward rules define our required conditions
to fulfill these properties with Algorithm 2. The following theorem is stated for all
G′S ∈ LS(TGG) and thus captures both correctness and completeness at the same
time. Hence, the error state in Algorithm 2 can only be reached if G′S < LS(TGG).

Theorem 4 (Correctness and Completeness of Algorithm 2).
Given its required inputs and provided that G′S ∈ LS(TGG), Algorithm 2
returns a triple graph G′ such that G′ ∈ L(TGG).

Proof. We consider the three phases of Algorithm 2 with the following inputs
required as a starting point:

• A source-progressive TGG,

• A marking-complete set F R of forward rules for TGG,

• A triple graph G � GS ← GC → GT with G ∈ L(TGG),

• A valid, final, and entirely marking derivation d : G0
fr1@ fm1
������⇒ G1 . . .

frn@ fmn
������⇒

Gn with f r1, . . . , f rn ∈ F R, G0 � GS ← ∅ → ∅, and Gn � G,

• A source delta δS : GS ← G−S → G′S.

Phase 1: GC and GT are not changed in this phase but only GS is changed to G′S.
Phase 2: This phase directly exits if applying δS in the previous phase did not
invalidate any forward rule application in d. Otherwise, invalidated forward rule
applications are revoked. Revoking a forward rule application, however, can invali-
date further forward rule applications in d which are also revoked. Each individual
revoking clears the markings and created elements of the respective forward rule
application. Provided that ipm.getInvalidated returns all invalidated forward rule ap-
plications as required in Definition 42, the remaining (non-revoked) forward rule
applications are valid, i.e., they still satisfy their required context, application con-
ditions, andmarking states. Hence, the resulting derivation d′ at the end of Phase 2
represents a valid (but possibly not final) derivation starting from G′S ← ∅ → ∅.

118 4 Consistency Restoration with TGGs

Phase 3: Valid forward rule applications are performed in this phase until d′ is final.
A forward rule application α′ performed in this phase never invalidates previously
performed ones. In particular, it holds that:

• α′ does not delete any element. Hence, all forward rule applications in d′

further on satisfy their context.

• α′doesnot changeG′S but only createsnewmarkingsofG′S.Hence, application
conditions of all forward rule applications in d′ are further on fulfilled as these
solely relate to G′S but not to its markings.

• α′ neither deletes markings nor overlaps with other forward rule applications
in its markings. Hence, d′ further on remains creation and context preserving.

Provided that ipm.getValid returns all possible valid forward rule applications in
each iteration, the derivation d′ is final at the end of this phase. If G′S ∈ LS(TGG),
moreover, d′ is entirely marking when final as F R is marking-complete (Defini-
tion 38). Finally, being creation and context preserving, d′ can be traced back to a
derivation via the original TGG rules (Lemma 4). Hence, G′ ∈ L(TGG). �

Finally, the complexity-related consequences of using an incremental pattern
matcher merit mentioning as compared to conventional pattern matching strate-
gies (i.e., pattern matching without any internal data tuples for maintaining partial
matches). In particular, using a conventional pattern matching strategy, the run-
time complexity of consistency restoration with TGGs is estimated to be O(nk)
in [94] where n is the size of the input model and k is the size of a rule (size refers
to the number of vertices and edges in graphs). This estimation is based on the
runtime complexity of conventional pattern matching in general. The runtime com-
plexity of state-of-the-art incremental pattern matchers based on Rete, however, is
O(n2k−1) [50] as partial matches are maintained as well, i.e., almost a quadratic
growth of complexity can be expected as compared to conventional solutions. In
the incremental case, nevertheless, n does not refer to size of entire graphs but to
the number of elements operated on (e.g., new elements that are added by a delta).
Hence, it can be expected that incremental pattern matching brings an overhead if
the delta size is large (e.g., in the case of an initial transformation) but scales well for
small deltas. Our experimental evaluation in the upcoming section also backs up
this expected overhead (and, in fact, custom optimizations for conventional pattern
matching even enlarge the difference in the current tooling). While improvements
in the sense of complexity and scalability rely on progress in research on incremen-
tal pattern matching, simplifying consistency restoration and providing a viable
basis for developing meta-tools remain the main advantages of our concept.

4.7 Related Work

Although bidirectionality does not necessarily mean incrementality, consistency
restoration in the sense of incremental updates has mostly been investigatedwithin
the BX field. We, therefore, first discuss different BX approaches to consistency
restoration in the following and, subsequently, consider some unidirectional ap-
proaches that pursue the same goals.

4.7 Related Work 119

TGGs: We have already mentioned between the lines that consistency restoration
has been the main focus of research on TGGs since their introduction.
In particular, the precedence-driven approaches [5, 93, 116] shape the most rep-

resentative group formalizing consistency restoration over precedences to decide
what is to bedonefirst andnext. In [93], TGGrules are analyzed andprecedences are
calculated over model elements inducing a partial order for markings. Transferred
to our running example, this would mean that marking a Java class “precedes”
marking its subclasses and methods (and marking a method precedes marking its
parameters). Given a delta changing the source model, consistency restoration first
updates the precedences and concludes which elements are affected by the delta,
namely those “losing” their predecessors (due to deletions) or getting new prede-
cessors (due to additions). As the calculation of precedences is governed by static
information gathered fromTGG rules, however, discrepancies are possible between
calculated and actual precedences for a concrete model. That is, a precedence rela-
tion between twomodel elements in the sense of [93] does not necessarilymean that
they must be marked in this precedence order. This over-approximation of prece-
dences, of course, canmislead the process of applying or revoking operational rules
in consistency restoration.
Refining the precedence idea of [93], therefore, calculating the precedences over

model elements is detached in [116] from static information (and only actual prece-
dences are considered). Though avoiding over-approximation, the approach suf-
fers from under-approximation especially when handling additions. If an added
element changes the predecessors of an already existing element (e.g., when an
existing class gets a new super class as we have exemplified), the proposed algo-
rithm resorts to fallback procedures that are not further specified (user involvement,
heuristics, or backtracking are mentioned as possibilities).
Addressing the over- and under-approximation issues, precedences are calcu-

lated in [5] directly over the source matches of forward rules. The approach per-
forms auxiliary procedures dedicated to updating precedences for a given delta,
and consistency restoration subsequently operates upon the results of these pro-
cedures. The proposed algorithm governs consistency restoration solely over the
precedences of source matches. However, it can terminate with an error if the
correspondence and target graphs have indeed an impact on which forward rule
to apply next. In other words, a source match whose turn has come according
to precedences must necessarily guarantee a successful forward rule application
irrespectively of how the correspondence and target graphs have evolved (the afore-
mentioned local-completeness property refers to this requirement). We relinquish
the decomposition into source matches and govern consistency restoration over
the entire matches of forward rules. Calculating the individual steps, moreover, is
outsourced to incremental patternmatching instead of auxiliary procedures which,
in our belief, is advantageous from a practical and didactic point of view.
Different than precedences, a special type of correspondences as introduced

in [70] is another means to govern consistency restoration. While a correspondence
in the sense of [70] has connections to all source and target elements within a
rule application, the proposed algorithm navigates from changed elements to their
correspondences, and from there to all other affected elements. Besides the existence

120 4 Consistency Restoration with TGGs

of at least one correspondence in each TGG rule, a further assumption is confluence,
i.e., the evolvement of the triple graph at the end of consistency restoration is
deterministic. The focus of the approach lies in performant consistency restoration.
To this end, repairing forward rule applications is discussed instead of revoking
them. This increases information preservation capabilities and reduces the effort in
consistency restoration, especially when revoking a forward rule application has a
domino effect invalidating some further ones. Repair rules, unfortunately, are not
specified or formalized in detail. Our reactive concept of consistency restoration
indeed can offer new chances for this task.
Although simplicity is one of our main arguments for Algorithm 2, an even

simpler approach is introduced in [66]. The proposed algorithm marks in a first
step the changed source graph G′S from scratch but reuses the given correspondence
and target elements. All correspondence and target elements that are not reused in
this first step are deleted. In a second step, the remaining (unmarked) parts of G′S are
marked by applying forward rules (and creating new correspondence and target
elements). Overall, incrementality is not addressed in the terms of computational
effort as G′S is entirely analyzed. Similar to [70], moreover, confluence is required
for successful consistency restoration. Our observation is that the approach enjoys
a very solid formal foundation but compromises practicality for this.
The opposite extreme compromising formal foundation for practicality can be

observed in [60]. Given that the source graph is changed in a consistent triple, the
proposed algorithm first iterates over the forward rule applications from former
runs. If a forward rule application is invalidated but some of its marked elements
still remain in the source graph, a repair is attempted by applying the same or an-
other forward rule. In the case of a repair, the correspondence and target elements
from the invalidated forward rule application are reused “as much as possible”.
Required conditions for repairs, governing how to reuse elements, and the conse-
quences in the case of an impossible direct repair, however, remain open.
Table 4.1 summarizes our estimation for comparing different consistency restora-

tion approaches based on TGGs. Our approach, similar to the precedence-driven
approaches [5, 93, 116], strives to provide a formal foundation for incremental
updates while supporting a large class of TGGs that go beyond confluence. A
straightforward algorithm that eliminates the need for auxiliary precedence analy-
ses makes our approach unique in this regard. On the other side, we make consis-
tency restorationwith TGGs “technology-dependent”where technology here refers
to incremental pattern matching but not to a specific tool or algorithm thereof.

formal
foundation

incremental
computation

straightforward
algorithm

non-confluent
TGGs

quality
heuristics

Anjorin et al. [5] + + - + -
Greenyer et al. [60] - - + + +
Hermann et al. [66] + - + - -

Hildebrandt et al. [70] - + + - +
Lauder et al. [93] + + - + -
Orejas et al. [116] + + - + -

this work + + + + -

Table 4.1: Comparing our consistency restoration approach to related work based on TGGs

4.7 Related Work 121

Finally, heuristics to improve the quality of consistency restoration (in particular
with respect to information preservation capabilities) seem to be the next gap to
close. It requires again formal arguments forwhen and how to apply such heuristics
for a fully-fledged consistency restoration approach. In this sense, it is probably not
a coincidence that the +/- entries in the formal foundation column and the quality
heuristics column of Table 4.1 are exactly the opposites in the current landscape.

QVT-R: Similar to consistency checking, QVT-R and its operationalization as in-
troduced in [120] form an available standard for consistency restoration in MDE.
Arguably due to the semantics issues (especially the uncertainty about whether
and how non-confluent consistency restoration is supported as pointed at in [134]),
however, a scarcity of acceptance and practical tool support can be observed here
as well. Hence, bypassing the standard operationalization in [120] and resorting to
alternative formalisms has been the main strategy for consistency restoration (as is
the case with consistency checking as well).
In [103], consistency restorationwithQVT-R (in fact a subset ofQVT-R) is reduced

to model finding via logical constraints. While model finding can yield different
valid results, the approach utilizes a notion of graph edit distance (by counting the
added and deleted elements) to restore consistency with minimal change regard-
ing the previous version of the updated model. Capturing graph structures, their
meta-model conformance as well as inter-model consistency as logical constraints,
however, the main practical challenge is that it easily comes to an explosion of the
formulated constraints and consequently of the effort in model finding.
Though not directly addressing QVT-R but introducing an own QVT-R-like syn-

tax, a similar approach to consistency restoration via model finding, namely the
Janus Transformation Language (JTL), is introduced in [32]. In JTL, the individual
relations between a pair of source and target models are operationalized to answer
set programming, a declarative paradigm to tackle search problems. A unique char-
acteristic of the approach is that all possible target models that correspond to a
changed source model are captured in the output, while we take decisions already
at rule application time among different outcomes.

Bidirectional Programming: A further notion of BX is that of bidirectional pro-
grammingwhich has its roots in reversible computation models, e.g., reversible Turing
machines [14, 15, 106]. In the context of BX, functional programming languages
such as Janus [153], BiGUL [87], and UnQL+ [69] shape a representative group for
reversible computation. In this setting, a consistency tool developer has to design
consistency via functions in one direction (e.g., in the forward direction) which,
indeed, might be intuitive from a software engineering point of view. The inverse
functions are accordingly derived. Having ultimately a mechanism that is as pow-
erful as a reversible Turing machine, these languages offer fine grained control
over consistency restoration, while approaches such as TGGs and QVT-R can be
qualified as declarative (at least in a relative sense). Reversible computation typi-
cally requires determinism in both directions which, however, does not hold in
consistency restoration scenarios where different outcomes are possible. Moreover,
addressing potential information loss in both directions also goes beyond the scope

122 4 Consistency Restoration with TGGs

of these techniques. That is, at least in one direction (in the programmed direction)
the output model should always be entirely derivable from the input model.

Lenses:A lens [51] is a pair of functions, usually called get and put (which aremeant
for the forward and backward direction when transferred to the TGG terminology).
In their original sense as introduced in [51], the get function takes a source as input
and gives a (more abstract) view as the output, while the put function takes a source
together with its “changed” view as input and gives an updated source as output.
This is referred to as the asymmetric case as a view can entirely be derived from a
source but the inverse does not hold. In other words, information loss exists only
in one direction. The more general case of symmetric lenses has been introduced
in [72] where information loss can exist in both directions. While the preliminary
work on lenses focuses solely on models as the input and output of the get and
put functions, delta lenses [37] yield an alternative understanding where not only
models but also deltas become first class citizens when evaluating these functions.
Lenses, in fact, shape a mathematical framework for describing BX rather than a

concrete BX language as an alternative to TGGs. Well-behavedness laws formulated
over the get and put functions define the “sanity” of consistency restoration, and
the question is then whether a concrete BX approach conforms to these laws. The
most basic laws are referred to as the PutGet and the GetPut laws. Intuitively, the
PutGet law demands that the result of get after put should be the same view that
served as input for put (the GetPut law is analogously defined).
While the formal guarantees of consistency restoration as introduced in this thesis

have a grammatical focus (where we discuss correctness and completeness over the
language of a TGG), well-behavedness laws of lenses offer an alternative viewpoint
in this sense. Relating TGGs to lenses, i.e., checkingwhether a TGG implementation
forms a well-behaved lens, however, makes only sense after eliminating at least one
discrepancy. In particular, consistency restoration with TGGs is inherently not a
function but different outcomes are possible due to alternative rule applications
(and we refer to an algorithm as correct as long as it produces one of the possible
results within the language of a TGG). For a functional consideration of TGGs as is
the casewith lenses, therefore, a componentmust be assumed that deterministically
decides which rules to apply when restoring consistency.
Overall, it is advantageous to have the heterogeneous viewpoints of formal prop-

erties, shaped by the grammatical characteristics of a TGG on the one hand and by
thewell-behavedness laws of lenses on the other hand. Experience, however, shows
that the latter usually requires a problem-specific investigation for a concrete TGG
operating in a concrete TGG implementation. For the general fulfillment of the
well-behavedness laws, the aforementioned group of bidiectional programming
approaches seems to be closer to the idea of lenses (especially their restrictions
are well-fitting in this sense). Nevertheless, some restrictive cases of consistency
restoration with TGGs are introduced in [10] and [68] as instantiations of lenses.

Unidirectional Transformations: Model transformations shape a wide research
area in MDE. While BX can be considered as a special case, the majority of the
approaches addresses the unidirectional case. We exemplarily refer to [26, 47, 79,
136] for surveys of model transformation approaches and consider in the following

4.8 Summary and Future Work 123

a subset with support for incremental change propagation (which are more related
to our consistency restoration purposes).
PROGRES [127] is one of the earliest representatives in the sense of an incremental

execution mode. Its incremental capabilities capture derived attributes and edges
which are computed from other information, e.g., from other attributes and/or
edges. As introduced in [82], if model changes invalidate derived structures, the
algorithm lazily re-evaluates them (delayed until the first read access). Indeed,
this can be considered as consistency restoration among attribute values within
graphs. Furthermore, an own incremental pattern matching concept is employed
to observe invariants (graph constraints that must be met in a graph all the time).
Possible repair actions are then incrementally activated as a reaction to model
changes when invariants are violated.
TheVIATRA framework [18] uses an incremental patternmatcher as the underly-

ing technique for its incremental mode and has been one of the most inspirational
works for our consistency restoration approach. Similar to our case, a model trans-
formation is realized as reactions to the reports of an incremental pattern matcher.
In fact, it has been suggestedmultiple times (e.g., in [121, 143]) that TGGs can profit
from this technique. This clearly defined the focus of our contribution.
TheAtlas Transformation Language (ATL) [78] is a further prominent example for a

unidirectional model transformation approachwhere its incremental mode is intro-
duced in [77]. The incremental algorithm reacts to atomic model changes directly
(by using a notifier mechanism attached to the model elements) and re-evaluates
the affected rule applications.
Event-driven graph grammars [61], finally, form another incremental approach re-

sembling an operationalized TGG (i.e., operating in one direction). The focus of
the approach lies in user interaction components in the context of visual languages.
The utilized graph grammar rules exploit correspondences and describe how event
objects in frontend can incrementally be transformed to backend data. The underly-
ing transformation engine Atom3 [36] is started whenever an event is received, i.e.,
incrementality is ensured on the client side but not in the engine itself.

4.8 Summary and Future Work

In this section, we have

• exemplarily demonstrated themain subtasks of consistency restorationwhich
amount to revoking rule applications from former runs and performing new
ones,

• identified search space problems in applying available rule applications in
consistency restoration and made use of application conditions to block un-
desired rule applications,

• stated what is to be observed to detect which rule applications are to be re-
voked or performed andmade this observation task amenable to incremental
pattern matching techniques,

124 4 Consistency Restoration with TGGs

• proposeda straightforwardprocedure for consistency restorationwhich solely
reacts to the reports of its underlying incremental pattern matcher,

• discussed the termination, correctness, and completeness of this procedure,

• given an overview of related BX approaches to consistency restoration as well
as unidirectional transformations with an incremental mode.

Algorithm 2 constitutes the main contribution of this section where its added
value lies in its simplicity and viability from a practical point of view. We reduce
consistency restoration to a reactive component that relies on “reports” concern-
ing forward rule applications. This way, consistency restoration is made amenable
to state-of-the-art incremental pattern matching techniques and, most importantly,
does not introduce additional dependency analyses or heuristics to handle deltas.
The reactive concept reflects a novel understanding of what is to be done for con-
sistency restoration. This understanding did not only require years of experience
with TGGs but also had to wait for powerful pattern matching techniques.

We mainly focus on runtime tasks of consistency restoration but at least two
aspects of static construction and analysis techniques are left open (which rather
concern the specification time). First, requiring marking-complete forward rules,
we have discussed application conditions to ensure this. In our examples, we rely
on existing construction techniques [64, 85] to generate (negative) application con-
ditions. These construction techniques suffice to avoid wrong choices of forward
rules with regard to incident edges of a vertex. More generalized approaches, how-
ever, are needed to handle wrong choices that arise from more complex situations
(and not only from single edges). Second, and coupled with this point, how to
check whether a set of forward rules is marking-complete is yet to be generalized.
While confluence [65] and local-completeness [9] are two static analysis techniques
towards this goal, both can be too restrictive (rejecting a set of forward rules al-
though they are marking-complete). State space exploration over the forward rules,
nevertheless, remains a further option to check marking-completeness. Overall, we
provide our statements orthogonally to how forward rules are made marking-com-
plete or checked to bemarking-complete (and expect to remain compatible to future
static construction and analysis techniques).
One of the open runtime issues (not only in our approach but in general) is

to increase information preservation capabilities of consistency restoration. In our
context, Algorithm 2, being a reactive strategy for consistency restoration, might be
“overreacting” to a source delta. As illustrated in our last example in this section,
elements can be deleted (by revoking forward rule applications) just in order to be
created again. This is especially the case when multiple forward rules basically do
the same with slight differences. Practical (but as yet to be formalized) measures to
preserve information as much as possible include reusing deleted elements before
creating new ones [60] and repairing a forward rule application instead of revoking
it [70]. After investigating how these measures can be applied while retaining cor-
rectness arguments in the first place, our reactive conception again can be exploited
for such extensions, e.g., by introducing new types of repair reactions to invalidated
forward rule applications (besides revoking them).

5
TOOL SUPPORT, EXPER IMENTAL EVALUAT ION, AND
PRACT ICAL APPL ICAT ION

This section discusses our practical contributions. We first present a meta-tool,
namely eMoflon (http://www.emoflon.org), that supports consistency specifica-
tion with TGGs and executing consistency checking as well as restoration as in-
troduced in the previous two sections. Subsequently, we quantitatively evaluate
consistency checking and restoration in their currently implemented form with
particular regard to performance-related research questions. Finally, we report on
a consistency project with Siemens AG as the industrial partner where we used
eMoflon to check and restore consistency between computer-aided design (CAD)
and mechatronic simulation models. The insights gained from this project serve to
qualitatively discuss the applicability of TGGs from a tooling point of view and to
draw the lessons learned from an industrial context.

5.1 The Meta-Tool eMoflon

The predecessor of eMoflon is MOFLON [3], developed prior to this work and
mainly until 2011. MOFLON was an extension to the FUJABA tool suite [113]
which supported Java code generation from programmed graph transformation speci-
fications. In this setting, graph grammar rules are embedded into classical control
flow structures including if-else branches and for-each loops. MOLFON used this
infrastructure to generate Java code that searches matches for and applies the oper-
ational rules of a TGG (in particular forward and backward rules). Its capabilities
with TGGs were limited to forward and backward transformations from scratch
(i.e., it was rather a graph translator and not a consistency restorer in the incremen-
tal sense). While MOFLON was compatible to a Java-based implementation of the
MOF standard to represent (meta-)models, the chance was being missed to comply
with a more prominent and modern MDE tool landscape, namely the Eclipse Mod-
eling Framework (EMF) [39]. In [6], therefore, the developers at that time report on
re-engineering MOFLON to its EMF-based successor eMoflon.
Similar to MOFLON, eMoflon in its initial version compiles operational TGG

rules to programmed graph transformation specifications which then are com-
piled to Java code. Most importantly, consistency checking and restoration are the
two new features implemented based on this infrastructure. For incrementality of
consistency restoration, however, a hand-crafted bookkeeping mechanism is used
which, roughly spoken, “mocks” an incremental patternmatcher by detecting avail-
able and invalidated forward (and backward) rule applications. As this increased
the complexity of the tool and the coupled maintenance efforts for future develop-

http://www.emoflon.org

126 5 Tool Support, Experimental Evaluation, and Practical Application

ments, yet another re-engineering process had to be undertaken to profit from the
simplifications via incremental patternmatching as argued in this thesis. Therefore,
a new version of eMoflon is implemented that uses a Rete-based incremental pat-
tern matcher (which is developed in the same research group) instead of an own
bookkeeping mechanism entangled in programmed graph transformation.
From now on, eMoflon relying on programmed graph transformation is referred

to as eMoflon::TiE, while the new eMoflon relying on incremental patternmatching
is referred to as eMoflon::ibex.1 Currently, both tools are available for users, whereas
eMoflon::ibex is at the centre of ongoing development efforts. The present author is
a main contributor to both eMoflon::TiE and eMoflon::ibex which altogether repre-
sent the implementationwork for this thesis. Figure 5.1 depicts the components and
artifacts involved in using eMoflon::TiE (top) and eMoflon::ibex (bottom). Bold ar-
rows indicate transformation of an artifact to another, while simple arrows indicate
input, output, or, use-relationships among components, artifacts, and users.

Model Owner

Consistency Tool
Developer

<<use>> <<output>>

TGG Editor

TGG Model Operational Rule
Patterns

Incremental
Pattern
Matcher

<<input>>

(++)
jc : JClass

(++)
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

r1: ClassRule

(++)
ji : JInterface

(++)
ui : UMLInterface

(++)
c2c :C2C

ji.name == ui.name

r2: InterfaceRule

jc : JClass

uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

cr1: ClassRule

ji : JInterface

ui : UMLInterface

(++)
c2c :C2C

ji.name == ui.name

cr2: InterfaceRule

TGG Engine

<<input>>

<<use>>

Client
Applciation

<<use>> <<use>>

eMoflon::ibex

Model Owner

Consistency Tool
Developer

<<use>> <<output>>

TGG Editor

TGG Model Programmed Graph
Transformation

Java Code for Rule
Applications

(++)
jc : JClass

(++)
uc : UMLClass

(++)
c2c :C2C

jc.name == uc.name

r1: ClassRule

(++)
ji : JInterface

(++)
ui : UMLInterface

(++)
c2c :C2C

ji.name == ui.name

r2: InterfaceRule

TGG Engine

<<use>>

Client
Applciation

<<use>> <<use>>

package org.emoflon.tgg

//Pattern matching

//Rule Application

//Bookkeeping

<<input>>

eMoflon::TiE

Figure 5.1: Involved components and artifacts when working with eMoflon::TiE (top) and
eMoflon::ibex (bottom)

1 TiE is an acronym for “Tool Integration Environment” and has been used in [84] for the first time,
while ibex solely refers to goat species which also inspired the eMoflon logo.

5.1 The Meta-Tool eMoflon 127

Both tools provide a common TGG editor, a textual and Eclipse-based editor to
specify a TGG (consisting of correspondence types and a set of rules). Of course,
the question arises why to use textual syntax after exemplifying TGGs visually
throughout the entire thesis. The arguments (and counter-arguments) are not dif-
ferent than those from the common debates in software engineering. We choose
a textual editor in particular to reduce maintenance effort (of a component that
does not lie at the heart of our research objectives) and to profit from mature ed-
itor frameworks of Eclipse with advanced features including syntax highlighting,
syntax validation, and code completion.
Figure 5.2 is intended to give a brief glimpse of this textual editor and our textual

syntax.ATGGrule is shown to the left, basically consistingof four textual fragments
representing the source, correspondence, and target parts and attribute conditions
of the rule. Similar to our visual rule diagrams, black and green lines of text
represent individual context and created elements, respectively, while additional
++-markups again indicate created elements for a monochrome representation.
For the visually inclined, nevertheless, a real-time and read-only (but admittedly
modest) visualization of a TGG rule is provided (to the right in Figure 5.2) depicting
source and target elements in different colors and correspondences as dashed lines.

Figure 5.2: A glimpse of the textual TGG editor (left) and a respective visualization (right)

Coming back to the overall picture of components and artifacts shown in Fig-
ure 5.1, a TGG model is extracted in both tools by parsing the textual specification.
This model indeed conforms to a TGG meta-model describing how TGG rules are
structured and organized. That is, a consistency specification between two models

128 5 Tool Support, Experimental Evaluation, and Practical Application

forms a model on its own (and the MDE vision suggesting to regard “everything
as a model” becomes appreciable here to process the consistency specification).
The TGG model is the input for the operationalization step which makes the

first main difference between eMoflon::TiE and eMoflon::ibex. In eMoflon::TiE, the
TGG model is transformed to a programmed graph transformation which in turn
is transformed to Java code representing the ultimate program for performing rule
applications (i.e., the generated Java code is specific to the rules of a TGG). In
eMoflon::ibex, on the contrary, patterns of operational rules are generated instead
of a program. These patterns include the left and right-hand sides and possibly
application conditions of forward, backward, and consistency rules. Overall, the
entirety of these patterns represents what is to be observed and reported by an
incremental pattern matcher when applying or revoking operational rules.
At runtime, both tools employ a TGG enginewhose realization makes the second

main difference between the tools. In eMoflon::TiE, the TGG engine interacts with
the generated Java code to detect available rule applications. Moreover, a bookkeep-
ing structure for the rule applications is maintained and used to detect invalidated
rule applications when the involved models change. In eMoflon::ibex, the TGG
engine solely reacts to its incremental pattern matcher and applies/revokes the
respective operational rules. Finally, a client application, with which the model own-
ers interact, uses this TGG engine as the underlying component for consistency
management. Both eMoflon::TiE and eMoflon::ibex generate the plainest client ap-
plication, a code fragment that serves as the entry point for executing consistency
checking and restoration. Custom client applications, possibly with a graphical
user interface as iconically implied in Figure 5.1, can be built upon this entry point
depending on the needs of the model owners.
Being currently less mature and less optimized than eMoflon::TiE, scalability

is not yet an advantage of eMoflon::ibex. Overall, simplifying consistency restora-
tion and naturally addressing its subtasks via a reactive component remain the
main improvement of eMolfon::ibex as we have carefully motivated so far. The
underlying incremental pattern matcher has not yet reached an advanced state to
handle the match-intensive task of consistency checking (at least not in the size of
our experiments). For evaluating consistency checking in the following, therefore,
eMoflon::TiE is our choice of tool which can stand the size of our experiments.
For consistency restoration (which has been the main argument for eMoflon::ibex),
furthermore, we use both tools and provide a comparison revealing the necessary
improvements with regard to the scalability of eMoflon::ibex.

5.2 Experimental Evaluation of Consistency Checking

We first investigate the applicability of our consistency checking approach as im-
plemented with eMoflon::TiE. In particular, we state the following two research
questions related to its performance:

• RQ-1: How does consistency checking by combining TGGs and linear opti-
mization scale? What are the main scalability barriers of this combination?

5.2 Experimental Evaluation of Consistency Checking 129

• RQ-2: How is the required runtime of individual subtasks in consistency
checking (rule application and linear optimization) affected by the model
sizes and the numbers of collected/chosen marking steps?

Furthermore, we compare our consistency checking approach with custom solu-
tions of model differencing by stating the following research question below. Note
that model differencing refers to the special case of consistency checking where
consistency is defined as isomorphism between twomodels that are conform to the
samemeta-model (in fact, an extreme case of consistency checking due to its search
space, while the regarded model differencing solutions have tailored algorithms as
they do not consider the general case of consistency checking).

• RQ-3: How does our consistency checking approach compare to existing
model differencing solutions with regard to accuracy and required runtime?

Experiment set-up: We approach RQ-1 and RQ-2 with an extended version of
our running example, from now on referred to as JavaToUML-TGG, and a second
TGG that defines consistency as isomorphism between two UML models, from
now on referred to asUMLDiff-TGG. Consistency checking results withUMLDiff-TGG,
moreover, are compared to the results of twomodel differencing tools, namely EMF
compare [45] and SiDiff [137], to address RQ-3. That is, UMLDiff-TGG is developed
for the purpose of model differencing between two UMLmodels (and is thus used
for a comparison with EMFCompare and SiDiff), while JavaToUML-TGG represents
an average case of consistency checking relating to two different meta-models (and
thus goes beyond the use cases of EMFCompare and SiDiff).

JavaToUML-TGG consists of 28 rules and relates packages, classifiers, attributes,
methods, and parameters from Java and UMLmodels. Method bodies in Java mod-
els are ignored as they do not have any counterpart in UML models. UMLDiff-TGG,
furthermore, consists of 34 rules relating UML elements with the same type and
attribute values. Moreover, the rules of UMLDiff-TGG are rather of atomic nature.
Mainly inspired by the guidelines presented in [12], we distinguish between island,
bridge, and extension rules (all depicted in Figure 5.3) in our design principle.

(++) (++)(++)

(++) (++)(++) (++)(++) (++) (++)

Figure 5.3: Designprinciples used forUMLDiff-TGG: Island rules (left), bridge rules (middle),
and extension rules (right)

Island rules are used to relate pairs of vertices while bridge rules create edges
between already related pairs of vertices. Using mainly these two types of rules in
UMLDiff-TGG, vertices and edges in UML models are marked separately allowing
for fine-grained consistency checking (and thus fine-grained model differencing in
this particular case). Most importantly, two vertices can be related even if some of
their edges do not have any counterparts (and these edges are detected as model
differences). Requiring a minimal context (if any) in each rule, it most likely comes

130 5 Tool Support, Experimental Evaluation, and Practical Application

to an explosion of search space making consistency checking even more challeng-
ing (and allowing us to explore the limits of our implementation). For some leaf
elements, e.g., for parameters of methods, however, we make a compromise and
use extension rules that create vertices together with their incident edges.
To conduct experiments with JavaToUML-TGG and UMLDiff-TGG, we extracted

JavaandUMLmodels fromreal-world and synthetically generated softwareprojects
using the MoDisco tool [25]. In the upper part of Table 5.1, the four real-world soft-
ware projects are listed together with the numbers of their contained packages,
classifiers, attributes, methods, and parameters. The list of the software projects
includes the core of our own TGG implementation (tgg.core), the Java discoverer
of the Modisco tool (modisco.java), and two further Eclipse plugins (eclipse.graphiti
and eclipse.compare). All these projects are representatives of different sizes (which
is crucial to approach our performance-related research questions).

packages # classifiers # attributes # methods # parameters
tgg.core 114 372 197 614 813
modisco.java 75 561 263 1,423 1,556
eclipse.graphiti 74 611 683 2,438 4,079
eclipse.compare 99 1,115 1,913 4,050 6,205

synthetic-25 2 11 0 25 325
synthetic-50 2 11 0 50 1275
synthetic-75 2 11 0 75 2,850
synthetic-100 2 11 0 100 5,050

Table 5.1: Four real-world and four synthetic software projects used in our experiments

class MyClass
{

void do(int p1)
void do(int p1, int p2)
…
void do(int p1, int p2, …, int pn)

}

Besides the real software projects, we systemati-
cally generated synthetic software projects consist-
ing of solely one class with lots of method over-
loadings (leading to search space problems for con-
sistency checking as we exemplified in Section 3).
These synthetic software projects (listed in the lower
part of Table 5.1) contain 10 primitive Java types and
one class with n overloaded methods. The overloaded methods have one to n pa-
rameters all adhering to the same naming convention as depicted in the figure
above (p1, . . . , pn as parameter names). We, therefore, get a quadratically growing
number of possibilities for relating methods and parameters (this applies to both
JavaToUML-TGG and UMLDiff-TGG). From now on, we identify a synthetic software
project with n overloaded methods as synthetic-n, e.g., synthetic-25 refers to the syn-
thetic software project containing 25 overloadedmethodswith one to 25 parameters
with the same naming convention.

Finally, we measured the required runtime of consistency checking on Intel
i5-4200U @ 1.60GHz,Windows 8.1 (64 bit), and Java 8with 10 GB availablememory.
In our plots, we show the median of five repetitions.

Experiment results and discussion: In order to get an impression of the involved
search space before discussing the runtime measurements, Table 5.2 shows the re-
spective numbers of all and chosen consistency rule applications (abbreviated as

5.2 Experimental Evaluation of Consistency Checking 131

CRA) with JavaToUML-TGG. Figure 5.4, subsequently, shows the required runtime
for consistency checking in the form of a bar chart. We use stacked bars to particu-
larly stress the distribution of the total runtime over consistency rule applications
and ILP solving. In the case of real-world software projects, however, the share
of ILP solving is not visible in the bars as it indeed amounts to negligible values.
Therefore, the exact values of the required runtime for each individual component
are explicitly given under the bars. Finally, we use a dashed line to separate the
measurements with real-world and synthetic software projects.

all CRAs # chosen CRAs
tgg.core 2,007 1,919
modisco.java 29,977 3,791
eclipse.graphiti 8,819 7,271
eclipse.compare 11,670 10,700

synthetic-25 6,162 362
synthetic-50 45,437 1,137
synthetic-75 149,087 2,937
synthetic-100 348,362 5,162

Table 5.2: Counted rule applications for consistency checking with JavaToUML-TGG

tgg.core modisco.java eclipse.graphiti eclipse.compare synthetic‐25 synthetic‐50 synthetic‐75 synthetic‐100
ILP 0.125 1.208 0.417 0.514 0.606 9.512 64.676 274.749

CRA 5.546 15.543 55.071 142.471 2.462 10.336 35.720 102.254

0
20
40
60
80
100
120
140
160
180
200
220
240
260
280
300
320
340
360
380
400

t i
n
se
c

Figure 5.4: Runtime measurements for consistency checking with JavaToUML-TGG

Considering, for example, the measurements for tgg.core, consistency rule ap-
plications terminate in 5.5 seconds while ILP solving requires 0.1 of a second. As
Table 5.2 shows, the search space for tgg.core involves approximately 2K consis-
tency rule applications whereas 1.9K of them are chosen to mark the model pair
entirely. The remaining consistency rule applications are wrong choices occurring
due to method overloadings as we have demonstrated in our examples. The largest
search space among the real-world software projects is observed in the case of
modisco.java containing ca. 30K consistency rule applications whereas ca. 3.8K of
them are chosen, i.e., ca. 87% of the collected consistency rule applications are
wrong choices. A closer look at modisco.java revealed that the project makes exces-
sive use of method overloading (due to the well-known visitor pattern leading to a
lot of visit methods). In this case, collecting all consistency rule applications takes

132 5 Tool Support, Experimental Evaluation, and Practical Application

15.5 seconds while ILP solving takes only 1.2 seconds. Applying consistency rules,
however, reaches its limits in larger projects, e.g., takingmore than 2minutes in the
case of eclipse.compare while ILP solving takes only 0.5 of a second.
Overall, we observe that, in the case of real-world software projects, ILP solving is

quite performant while applying consistency rules constitutes the main bottleneck.
In the case of synthetic projects, however, the situation is reversed. For synthetic-100,
e.g., consistency rule applications require 102.2 seconds while ILP solving requires
274.7 seconds. The optimization step chooses ca. 5K consistency rule applications
out of ca. 348K in this case, i.e., the share ofmisleading consistency rule applications
in the search space amounts to ca. 98% representing an extreme case.
Runtime measurements for model differencing with UMLDiff-TGG are conducted

twice. In the first round, we copied the model files and checked with eMoflon,
EMF Compare, and SiDiff whether the models are identical with their copies. In
the second round, we shuffled the orderings of some collections representing the
references in the copies and performed the same check with the same tools. We
only shuffled unordered references such as contained elements of a UML package
and contained methods of a UML class, and respected ordered references such as
the parameters of a UML method. Hence, our shuffled models are consistent to
their originals (just like copied models).
The shuffled case indeed represents a realistic situation where two models are

independently created and, therefore, do not have exactly the same order of ele-
ments in reference collections. In line with our expectation, however, changing the
orderings in reference collections makes a significant difference for EMF Compare
and SiDiff. Before discussing the runtime measurements, therefore, Table 5.3 first
shows our test results showing which tools can detect the equivalence or the mini-
mal difference between twoUMLmodels (we had added solely one vertex to one of
the models when expecting the minimal difference). Note that the same TGG spec-
ification is used in eMoflon for both copied and shuffled models as neither TGGs
in general nor our implementation relies on the orderings of reference collections.

eMoflon EMF Compare SiDiff
copied models pass pass pass
shuffled models pass fail no default support

Table 5.3: Test results with UMLDiff-TGG for copied and shuffled models

While eMoflon (with UMLDiff-TGG) provides correct results for both copied and
shuffled models, EMF Compare and SiDiff can provide correct results only in the
copied cases. EMFCompare passes testswith shuffledmodels only if themodels are
very small consistingof a fewelementswhich shows that the shuffledcase is actually
intended to be supported. It, however, fails with all of our models extracted from
the aforementioned real-world and synthetic software projects. Instead of detecting
equivalence or minimal differences, EMF Compare concludes that the majority of
the model elements is deleted and new ones are added in the shuffled case.
More crucially, the shuffled case (at least for UML models) goes beyond the de-

fault support of model differencing with SiDiff. While SiDiff has a special model
matcher designated for copied models, none of the default model matchers is ap-
plicable to model differencing with shuffled UML models. The closest one to our

5.2 Experimental Evaluation of Consistency Checking 133

purposes, the so-called named-element matcher, requires unique name attributes
of model elements which is not always the case with UML models (some vertices
even do not have a name when representing, e.g., inheritance, dependency, or mul-
tiplicity). The named-element matcher of SiDiff consequently ignores a substantial
part of our models, i.e., it does not attempt to match model elements with ambigu-
ous names or to calculate their differences in contrast to EMF Compare. In order to
avoid misleading conclusions, therefore, we take SiDiff out of comparison for the
shuffled case and measure its required runtime only for the copied case.2
The required runtime for detecting the equivalence of two models is given in

Figure 5.5. The upper diagram shows the measurement results with copiedmodels
(where both EMF Compare and SiDiff are involved in the comparison) and the
lower one shows the measurement results with shuffled models (where only EMF
Compare is involved). Note that we use a logarithmic time axis due to the large
differences in measurement results especially in the case of copied models.

tgg.core modisco.java eclipse.graphiti eclipse.compare synthetic‐25 synthetic‐50 synthetic‐75 synthetic‐100
eMoflon 15.344 54.465 190.435 666.910 5.459 52.657 236.681 778.758
EMF Compare 0.672 0.860 4.953 5.480 0.807 1.229 2.912 3.383
Sidiff 2.020 3.413 20.027 63.553 0.155 1.703 5.067 16.204

0.1

1.0

10.0

100.0

1000.0

tgg.core modisco.java eclipse.graphiti eclipse.compare synthetic‐25 synthetic‐50 synthetic‐75 synthetic‐100
eMoflon 16.766 55.704 205.019 736.960 6.046 51.313 244.211 781.147
EMF Compare 1.862 3.352 288.044 951.979 4.351 27.122 138.698 433.328

1.0

10.0

100.0

1000.0

t i
n
se
c

t i
n
se
c

Figure 5.5: Runtime measurements for model differencing with copied models (at the top)
and shuffled models (at the bottom)

For copiedmodels, EMF Compare is not only reliable but also performant requir-
ing under 6 seconds for all models. In contrast, EMF Compare does not only fail
in the case of shuffled models but also faces scalability issues requiring, e.g., more
than 15 minutes for the software project eclipse.compare. Runtime measurements
with eMoflon do not have such a significant differentiation between copied and
shuffled models. The required runtime amounts to 5-15 seconds for small software

2 A further option would be to develop a custom matcher for (shuffled) UML models and SiDiff
would only act as a framework calling this custom matching algorithm. This, however, is not
only a cumbersome task but also does not fit into our experiment purposes as we want to locate
consistency checking with TGGs into the landscape of “existing” approaches.

134 5 Tool Support, Experimental Evaluation, and Practical Application

projects (tgg.core and synthetic-25) and more than 10 minutes for large software
projects (eclipse.compare and synthetic-100). SiDiff with copied models, finally, re-
quires under 5 seconds for small and mid-sized software projects and ca. 1 minute
for the largest model (eclipse.compare).
Before finally answering the research questions, we furthermore take a closer

look at the runtime measurements with eMoflon for UMLDiff-TGG. First, Table 5.4
shows the counted numbers of all and chosen consistency rule applications in
our experiments. Comparing these values to those in Table 5.2, it can be observed
that consistency checking with UMLDiff-TGG involves much larger search spaces
than with JavaToUML-TGG. In the case of eclipse.compare, for example, 27K of 350K
consistency rule applications are chosen via ILP solving, i.e., 92% of the consistency
rule applications are misleading. Evenmore extremely, 5K of 696K consistency rule
applications are chosen in the case of synthetic-100 amounting to 99%wrong choices
of consistency rule applications. These larger search spaces of UMLDiff-TGG (as
compared to JavaToUML-TGG) are due to the atomic nature of its rules as depicted
in Figure 5.3, i.e., more vertices and edges from both sides seem to be relatable as
the rules require a minimal context.

all CRAs # chosen CRAs
tgg.core 7,724 4,612
modisco.java 68,712 8,005
eclipse.graphiti 56,982 15,497
eclipse.compare 350,167 27,159

synthetic-25 12,335 410
synthetic-50 90,885 1,410
synthetic-75 298,185 3,035
synthetic-100 696,735 5,285

Table 5.4: Counted rule applications for consistency checking with UMLDiff-TGG

In Figure 5.6, runtime measurements with UMLDiff-TGG (previously presented
in Figure 5.5 by the eMoflon bars) are depicted in more detail using a stacked
bar chart. We again distinguish between consistency rule applications and ILP
solving as two componentswhose required runtime amounts to the overall runtime.
Both components last longer than it was the case with JavaToUML-TGG. Applying
consistency rules reaches its limits in the case of eclipse.compare taking ca. 10
minutes. ILP solving, furthermore, reaches its limits in the case of synthetic-100
taking, again, ca. 10 minutes.
In line with these measurement results and observations, we draw the following

conclusions to answer our research questions:

• RQ-1: How does consistency checking by combining TGGs and linear optimization
scale? What are the main scalability barriers of this combination?

Consistency checking scaleswell in the case of realisticmodels andTGGswith
moderate (i.e., non-explosive) search space, terminating in the order of sec-
onds with small and mid-sized models and in the order of 1-2 minutes with
large models (when considering the measurement results with JavaToUM-
L-TGG and real-world models). In the challenging cases with large models

5.2 Experimental Evaluation of Consistency Checking 135

tgg.core modisco.java eclipse.graphiti eclipse.compare synthetic‐25 synthetic‐50 synthetic‐75 synthetic‐100
ILP 0.391 9.166 3.300 133.103 1.807 35.872 171.735 586.587
CRA 14.953 45.299 187.135 533.807 3.652 16.785 64.946 192.171

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850

CRA ILP

t i
n
se
c

tgg.core modisco.java eclipse.graphiti eclipse.compare synthetic‐25 synthetic‐50 synthetic‐75 synthetic‐100
ILP 0.396 9.268 3.438 115.776 2.270 35.202 177.691 592.268

CRA 16.370 46.436 201.581 621.184 3.776 16.111 66.520 188.879

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850

CRA ILP

t i
n
se
c

Figure 5.6: Detailed runtimemeasurements for eMoflon with UMLDiff-TGG (copied models
at the top and shuffled models at the bottom)

and explosive search spaces including up to ca. 700K consistency rule appli-
cations, however, scalability issues arise and consistency checking requires
5-15 minutes. The main scalability barriers are (i) finding all possible consis-
tency rule applications when the models are large and (ii) ILP solving when
the search space is explosive involving more than 90% wrong choices.

• RQ-2: How is the required runtime of individual subtasks in consistency checking
(rule application and linear optimization) affected by the model sizes and the numbers
of collected/chosen marking steps?

The required runtime for consistency rule applications highly depends on the
model sizes rather than the number of applied consistency rules. Especially
themeasurementswith JavaToUML-TGGmake this abundantly clear: Perform-
ing 30K consistency rule applications for modisco.java takes only 15 seconds,
while performing 11K consistency rule applications for eclipse.compare takes
142 seconds. Patternmatching, i.e., exploring the possible consistency rule ap-
plications between large models, is apparently the expensive task here, and

136 5 Tool Support, Experimental Evaluation, and Practical Application

performing (lots of) consistency rule applications is not the main challenge.
Runtime of ILP solving, on the contrary, highly depends on the number of
collected consistency rule applications which, at the same time, defines the
number of integer variables in the formulated optimization problem. Mea-
surement results with UMLDiff-TGG furthermore show that the required run-
time of ILP solving abruptly increases (e.g., under 3.5 seconds for up to 57K
consistency rule applications but ca. 10 minutes for up to 700K consistency
rule applications).

• RQ-3: How does our consistency checking approach compare to existing model differ-
encing solutions with regard to accuracy and required runtime?

Having experimented with two prominent model differencing tools, we ob-
serve a gap in sufficiently addressing accurate model differencing. Both EMF
Compare and SiDiff (in their default support) highly rely on the assump-
tion that one of the models is the copy of the other and thus preserves the
orderings of (non-deleted) elements. Consistency checking with TGGs does
not employ such assumptions and purely relies on the notion of graphs and
linear optimization to provide accurate results. The price for this is that the
required runtime exceeds ten minutes for large models, while EMF Compare
as well as SiDiff require a few seconds for the cases they can pass. Neverthe-
less, eMoflon is not the only tool challenged by model differencing from a
performance point of view. In the case of shuffled models where its internal
heuristics and assumptions are not applicable, EMF Compare does not only
fail but also becomes slower than eMoflon with increasing model sizes.

We finally discuss the threats to validity of our evaluation in the following two
groups: internal validity concerning possibly unaccounted for factors that could
distort the results, external validity concerning the generalizability of the results.
With regard to external validity, generalizability of our results requires further

non-trivial case studies. We, nevertheless, argue that our experiments are the ulti-
mately challenging cases of consistency checking with large models and explosive
search spaces. Hence, the required runtime for an “average” application can expect-
edly stay within the spectrum of our measurements.
Internal validity is also a justified concern. Even if all runtime measurements

are performed on the same hardware resources, available memory still plays an
important role for the comparisons. Consistency checking exhaustively exploits the
available memory in the case of larger models and its required runtime is thus
influenced by the Java garbage collector that must regularly free some space. More
or less available memory can, therefore, improve or worsen runtime results (this
especially applies to consistency checking with large models).

5.3 Experimental Evaluation of Consistency Restoration

We experimentally evaluate in the following the scalability of consistency restora-
tion with both eMoflon::TiE and eMoflon::ibex. Our experiments are of compara-
tive nature and intend to reveal the current drawbacks of eMoflon::ibex being less

5.3 Experimental Evaluation of Consistency Restoration 137

mature than eMoflon::TiE which is optimized throughout a period of years. For
comparisons that span multiple tools (i.e., tools other than the different versions of
eMoflon), we refer to [97] (specific to TGGs) and to [13] (different BX approaches).
While such comparisons have only been possible with academic “toy” examples
(in order to find a common ground for all involved tools), our experiments are
conducted with industry-sized examples and thus focused on eMoflon.
In our experiments, we primarily distinguish between initial transformation of

a model from scratch and delta propagation between two already existing models.
Note that the first is a special case of consistency restoration (where the empty triple
graph can be regarded as the formerly consistent state), while the latter represents
the incremental case that has been the focus in our examples so far. In line with our
evaluation goals, we state the next three research questions:

• RQ-4:How does the initial transformation of a model from scratch scale with
increasingmodel sizewhen performedwith eMoflon::TiE and eMoflon::ibex?

• RQ-5: How does delta propagation from one model to an existing related
model scale with increasing model size and delta size when performed with
eMoflon::TiE and eMoflon::ibex?

• RQ-6: What are the current drawbacks and improvement potentials of using
an incremental pattern matcher in eMoflon::ibex?

Finding answers to RQ-6 is particularly crucial as eMoflon::ibex further on re-
mains an actively developed tool within an ongoing research project on TGGs,
while this work presents its very first version.

Experiment set-up: We use JavaToUML-TGG (which has been used for evaluating
consistency checking in the previous subsection) to address our research questions.
For RQ-4, we transform the Java models extracted from the real-world software
projects listed in Table 5.1 to UMLmodels. ForRQ-5, furthermore, we take existing
model triples as starting point and propagate the addition and then the random
deletion of 1, 5, 10, 50, and 100 Java elements. While deltas with 1 element relate to
a single method parameter, larger additive deltas (with 5, 10, 50, and 100 elements)
comprise a mixture of packages, classes, methods, parameters, and attributes. For
deletions, we remain on the level of leaf elements (parameters and attributes) to
have a control over the number of deleted elements (i.e., to avoid further implicit
deletions). To answer RQ-6, moreover, we performed additional runs of these ex-
periments with a Java profiling tool detecting the hotspots in eMoflon::ibex. Finally,
we used in these experiments the same platform as done for evaluating consistency
checking (Intel i5-4200U @ 1.60GHz, Windows 8.1 64 bit, and Java 8 with 10 GB
available memory).

Experiment results and discussion: In Figure 5.7, the runtime measurements for
the initial transformation are depicted which show that eMoflon::ibex is especially
challenged in this case (note the logarithmic time axis).
While eMoflon::TiE requires less than 5 seconds for all of our input models, the

required runtime of eMoflon::ibex is multiplied by a factor up to 15 for small and

138 5 Tool Support, Experimental Evaluation, and Practical Application

tgg.core modisco.java eclipse.graphiti eclipse.compare
eMoflon::TiE 2.287 2.975 3.808 4.877
eMoflon::ibex 21.866 47.752 161.805 322.438

1

10

100

1000

t i
n
se
c

Figure 5.7: Runtime measurements for the initial transformation

mid-sizedmodels. For largermodels, more critically, the initial transformationwith
eMoflon::ibex runs on exhaustively filled memory most of the time and requires
more than 5 minutes. Profiling shows that runtime spent for filling the data tuples
for (partial and complete) matches within the Rete network mainly leads to this
difference. In fact, we can arguably expect that an incremental pattern matcher
introduces an overhead for the initial transformation (for the sake of an incremental
match maintenance in later runs). Reducing this overhead, however, seems to be
critical for improving eMoflon::ibex.
In Figure 5.8 and 5.9, the runtime measurements for propagating additions and

deletions, respectively, are depicted. We show the required runtime of both tools
separately and use 3D bar charts as delta size now becomes a further dimension.
For eMoflon::ibex, we use a logarithmic time axis due to the differences between
the least and the greatest measurement values.
The required runtime of consistency restoration (when adding or deleting up to

100 elements) is in the order of milliseconds in most cases and at least does not
exceed 4 seconds in the worst case (the worst case is deleting 100 elements from
eclipse.compare and propagating this with eMoflon::ibex). Hence, both implemen-
tations back up the performance-related motivation of consistency restoration as
compared to a transformation from scratch.
Again, eMoflon::TiE is our faster implementation and is especially performant

when propagating deletions (requiring less than 100 milliseconds in almost all
cases). This is mainly because eMoflon::TiE does not resort to pattern matching
at all in the case of deletions but accesses its bookkeeping structures to calculate
matches concernedby thedeletions.While former versions of bookkeeping suffered
from the scalability (in particular memory consumption) of Java collections, an
alternative collection API, namely Trove [138], substantially contributed to this
optimized state.
Currently, the only casewhere eMoflon::ibex performs better than eMoflon::TiE is

thepropagation of addingone element. In this case, eMoflon::ibex almost constantly
requires 16 milliseconds for all models. Such a behavior, in fact, reflects an “ideal”
consistency restorer whose propagation time solely depends on the delta size (and
not on the model size). This, however, cannot be observed in other measurement

5.3 Experimental Evaluation of Consistency Restoration 139

0
20
40
60
80

100
120
140

tgg.core modisco.java eclipse.graphiti eclipse.compare
ADD 1 22 39 61 79

ADD 5 27 47 62 89
ADD 10 27 47 67 87
ADD 50 60 68 88 111
ADD 100 98 95 100 122

eMoflon::TiE

t i
n
m
ill
is
ec

1

10

100

1000

10000

tgg.core modisco.java eclipse.graphiti eclipse.compare
ADD 1 16 15 16 16

ADD 5 47 63 78 109

ADD 10 110 158 156 234
ADD 50 812 782 766 1078
ADD 100 1031 1797 2953 2688

eMoflon::ibex

t i
n
m
ill
is
ec

Figure 5.8: Runtime measurements with eMoflon::TiE (top) and eMoflon::ibex (down) for
propagating additions of elements

140 5 Tool Support, Experimental Evaluation, and Practical Application

0
20
40
60
80
100
120

tgg.core modisco.java eclipse.graphiti eclipse.compare
DELETE 1 9 8 12 17
DELETE 5 9 12 15 22

DELETE 10 17 16 24 27

DELETE 50 23 39 43 55

DELETE 100 75 73 98 111

eMoflon::TiE
t i
n
m
ill
is
ec

1

10

100

1000

10000

tgg.core modisco.java eclipse.graphiti eclipse.compare
DELETE 1 16 32 31 63
DELETE 5 47 125 203 235
DELETE 10 109 156 313 281
DELETE 50 360 687 1094 1047
DELETE 100 906 1297 2578 3703

eMoflon::ibex

t i
n
m
ill
is
ec

Figure 5.9: Runtime measurements with eMoflon::TiE (top) and eMoflon::ibex (down) for
propagating deletions of elements

5.3 Experimental Evaluation of Consistency Restoration 141

results (also not for eMoflon::TiE). Overall, eMoflon::ibex has a stronger tendency
to be dependent on the delta size instead of the model size (having similar lengths
of the bars on the same row from left to right in Figure 5.8 and 5.9). The absolute
values of the required runtime, however, currently speak for a better scalability
of eMoflon::TiE in general. The main drawback in using the incremental pattern
matcher is again the scalability of updating data tuples of matches (which has to
be done more frequently when the delta size grows).
In conclusion, we answer RQ-4, RQ-5, and RQ-6 as follows:

• RQ-4: How does the initial transformation of a model from scratch scale with increas-
ing model size when performed with eMoflon::TiE and eMoflon::ibex?

Initial transformations scale well with increasing model size in eMoflon::TiE.
Although our input models represent diverse sizes, the required runtime
grows onlywith a factor of ca. 2 from the smallestmodel to the largest one. The
same scalability, however, is currently not provided in eMoflon::ibex facing,
in the first place, excessive memory usage in the case of larger models. The
growth factor is consequently ca. 15 from the smallest to the largest model.

• RQ-5: How does delta propagation from one model to an existing related model scale
with increasing model size and delta size when performed with eMoflon::TiE and
eMoflon::ibex?

Both tools propagate addition and deletion deltas with a size up to 100 el-
ements within milliseconds in most cases. When propagating addition or
deletion of 100 elements, the required runtime of eMoflon::ibex amounts to
seconds but never exceeds 4 seconds overall. Both tools have a growth in the
required runtime when fixing the model size and increasing the delta size.
When fixing the delta size and increasing the model size, again a growth can
be observed (but rather a moderate one as compared to increasing the delta
size). The only exception is the propagation of adding one element where
eMoflon::ibex manages to provide constant time over different models.

• RQ-6: What are the current drawbacks and improvement potentials of using an
incremental pattern matcher in eMoflon::ibex?

Memory consumption of incremental pattern matching is currently the most
obvious drawbackwith regard to scalability and, in fact, becomes the decisive
factor for the required runtime when the Java garbage collector must regu-
larly intervene. This, however, is rather the symptom of a more fundamental
problem, namely the effort put in maintaining partial and complete matches
in the Rete network. New ways of reducing this effort must be found and
define the focus of future developments. In particular, construction of data
tuples for matches must be optimized (e.g., the number of maintained data
tuples must be decreased). In this sense, optimization ideas such as tree-like
representations of matches [74] are worthwhile to consider. Further matching
algorithms such as TREAT [108] or LEAPS [109] may also provide additional
performance improvements but an appropriate tool support tailored for the

142 5 Tool Support, Experimental Evaluation, and Practical Application

MDE landscape is currently missing. Nonetheless, it is most likely that opti-
mizations specific to TGGs can provide the most effective speedup (whereas
the currently used incremental pattern matcher is general-purpose). Similar
optimizations based on the knowledge of what specialities a triple graph
exhibits as compared to any other model structure and what is expected to
change during consistency restoration, in fact, brought eMoflon::TiE to its
current performant state. Though not a fundamental solution but at least
pragmatically mitigating the symptoms, furthermore, using more scalable
alternatives to Java collections in pattern matching has also improvement po-
tential (at least experience from the bookkeeping mechanism of eMoflon::TiE
points at this potential).

External validity of our results, again, requires further case studies with different
types of models and TGGs. Nevertheless, our experiments represent a large-scale
consistency scenario and thus a suitable starting point to evaluate the scalability
of eMoflon::TiE and eMoflon::ibex. Internal validity, furthermore, requires a spe-
cial care especially in the case of RQ-6 demanding a fine-grained investigation of
eMoflon::ibex (besides its overall scalability).We, therefore, carefully utilized a Java
profiling tool to conclude what are the main bottlenecks in consistency restoration
with eMoflon::ibex in regard to required runtime and memory consumption.

5.4 The GraTraM Project

Funded by the Federal Ministry of Education and Research (Germany), the formal
results of this thesis have been implemented and applied to an industrial case study
provided by Siemens AG. The micro-project3 is called GraTraM, an acronym for “A
Graph grammar-based approach to Traceability of relatedModels”.
The focus of the GraTraM project is to explore how the consistency management

techniques as discussed in this thesis can be applied to support interdisciplinary
engineering landscapes. The case study involves, on the one hand, CAD models
developed and maintained by mechanical engineers. A CAD model is a techni-
cal drawing and conveys basically physical information on the dimensions and
materials of a system, e.g., an excavator or a water supply line as exemplified in
the project. On the other hand, the same system is represented by multi-domain
simulation models developed and maintained by mechanical, electrical, and au-
tomation engineers. A simulationmodel does not focus on the physical appearance
of the system but rather on interaction and behavior of components with regard
to, among others, mechanical dynamics, energy flows, electrical signal processing,
and controllers.
The most important aspect here, distinguishing this project from previous ones

with TGGs such as [5, 21, 67, 126], is that bothmodels initially exist, i.e., consistency
management becomes relevant after concurrently developing the models. There
are at least two reasons for this: First, the amount of information shared between a
pair of CAD and simulation models is rather small as compared to the entire size

3 Industrial projects within the scope of the parent organization Software Campus (http:\www.
softwarecampus.de) are commonly referred to as micro-projects involving grants up to 100,000
Euros and directly led by a PhD student (the present author in the case of GraTraM).

http:\www.softwarecampus.de
http:\www.softwarecampus.de

5.4 The GraTraM Project 143

of the models. While the models must agree on geometrical structures, dimensions,
and material properties of individual components, it always requires human intel-
ligence and domain-specific knowledge to lift the models onto an advanced state.
Hence, deriving one model from another entirely for an initial start as assumed so
far in BX is not feasible. Second, it is a common practice that engineers start with
already existing solutions on the CAD and/or simulation side and adjust their
models to match customer specific needs (instead of modeling an excavator or a
water supply line each time from scratch).

The workflow investigated in the project is depicted in Figure 5.10 using the
Business Process Model and Notation [27]. We vertically distinguish between two
environments, namely those of the CAD engineer and the simulation engineer
both having the model owner role. The individual runs of consistency checking or
restoration in the workflow are labeled with ¶, ·, and ¸ in Figure 5.10.

C
A

D
 E

n
gi

n
e

er
Si

m
u

la
ti

o
n

 E
n

gi
n

e
e

r

Design CAD
model

Design
Simulation

Model

[Adjusted]

No

Check
Consistency

Synchronize
Simulation

Model

Optimization?

Consistent?

Yes

Adjust
Simulation

Model

Synchronize
CAD- Model Provide

CAD-Model

Optimization?

CAD-Model

Simulation
Model

Yes

No

No

Yes

Adjust
CAD

Model

CAD-Model

[Adjusted]

Simulation
Model

1

2

3

Figure 5.10: The workflow investigated in the GraTaM project

Starting with a consistency checking run (¶), the first goal is to make the simula-
tion model consistent to the CADmodel, i.e., design decisions of the CAD engineer
has a higher priority at this stage. If the models are inconsistent, which is very
likely if some legacy solutions are intended to be used, therefore, a consistency
restoration run (·) is performed to synchronize the simulation model.
Having a consistent state (no matter whether directly after ¶ or first after ·), the

simulation engineer performs simulations and checks the properties of the system
(e.g., answering questions such as “How much stress can the excavator bucket
handle?” or “What amount of flow can be reached with the water supply line?”).
If the simulation engineer “approves” the system regarding the simulation results,
no further consistency restoration is needed until the models are again changed for

144 5 Tool Support, Experimental Evaluation, and Practical Application

some reasons. If not, however, the simulation engineer adjusts parameters (possibly
including geometric properties) until the simulation results are satisfactory. This
again gives rise to the need for a further consistency restoration run (¸) where this
time the decisions of the simulation engineer have a higher priority, i.e., the CAD
model must be synchronized. The CAD engineer either releases the synchronized
CAD model or has some new modifications in the meantime which again require
a new iteration starting with consistency checking (¶).
In the first iteration of the project, the consistency between a pair of CAD and

simulation models representing an excavator is investigated. The CAD model is
specified with the CAD tool NX [114], while the Amesim platform [4] represents
the simulation side. The shared information between the two models is given by
the actuators of the excavator, in particular a chain of three hydraulic components
that move back and forth. In Figure 5.11, excerpts from the CAD model (left)
and the simulation model (right) representing the excavator are depicted. The
hydraulic cylinders that are at the centre of the consistency tasks are marked via
black rectangles in both models.

Figure 5.11: The CAD (left) and simulation (right) model of the excavator

In theCADmodel, the hydraulic cylinders are technicallydrawnas a combination
of a cylinder body and a piston rod. In the simulation model, however, a group of
several components from the Amesim library is used representing, among others, a
mechanical piston, a hydraulic piston, a displacement sensor (observing the piston
position), and a PID controller (for piston movements). Especially the electrical
components (such as sensors and controllers) are not represented in the CAD
model but are integral parts of the consistency notion. Hence, examining their
existence via consistency checking as well as retaining them incrementally are
crucial for the simulation purposes. Furthermore, two parallel hydraulic cylinders
in the CAD model (that are meant to move always in the same direction with the
same displacement) can be reduced to one group of elements in the simulation
model. This is the case for the lowermost rectangles in Figure 5.11. Finally, besides
this structural understanding of consistency, geometric parameter values such as
length, radius, and initial displacements of the cylinder bodies aswell as the pistons
constitute the remaining objects of consistency tasks. Overall, the expressiveness of
TGGs (as implemented in eMoflon) suffices to address these requirements.

5.4 The GraTraM Project 145

Figure 5.12 gives an overview of the involved components and artifacts in the
excavator case study. Considering the eMoflon part, the TGG specification consists
of 15 rules capturing the aforementioned consistency notion of cylinder bodies,
piston rods, and their geometric parameters. The derived consistency checking and
restoration tool operates on EMF models. Hence, the actual CAD and simulation
models must be converted to an EMF representation and also vice versa to reflect
consistency restoration actions on the EMF representation again in the actual mod-
els. Components addressing this task are called tool adapter and play generally a
crucial role to exploit an MDE tool for the ultimate engineering documents.

NX Amesim

Sim.
Meta-Model

(EMF)

Sim.
Model
(EMF)

Python
Script

conforms to inferred from

Xtext
Xtend

Tool
Adapter
Amesim

Python
Import/Export

CAD
Meta-Model

(EMF)

CAD
Model
(EMF)

conforms to

Model
Owner

Tool
Adapter

NX

TGG
Specification

inferred from

Consistency checking and
restoration

Figure 5.12: Overview of the tooling for the excavator case study

To implement a bidirectionally operating tool adapter, it is important to have
access to the data represented in the respective tool. This can either be achieved
by directly parsing and generating the user files of the tool, referred to as offline
tool adapter (as the tool itself does not have to run in the background), or by a
plug-in interacting with the programming interface of the tool, referred to as online
tool adapter. For the Amesim side, an offline tool adapter enables a bidirectional
conversion between Amesim models and their EMF representation. The Python
export/import facility of Amesim is used as a subcomponent for this where the
excavator is represented as a sequence of Python commands (which are executed
by Amesim to create the excavator model step by step). The Python commands are
parsed via a grammar specifiedwith Xtext [151]which induces, at the same time, an
EMF-based meta-model for the simulation side (the relationship between the Xtext
component and the simulation meta-model is depicted explicitly in Figure 5.12).
Accordingly, the parser produces a model conforming to this meta-model. For the

146 5 Tool Support, Experimental Evaluation, and Practical Application

reverse direction, i.e., for producing Python commands from the EMF representa-
tion, Xtend [150] is used as a template-based code generation technology.
For the NX side, however, the same level of automation is not feasible for a tool

adapter. Different CAD file formats have been considered for an offline tool adapter
but all of them turned out to be unsuitable for parsing. CAD files are either of
binary nature or represent a technical drawing at the lowest level consisting of
atomic drawing instructions. Therefore, for example, recognizing a cylinder and
its geometric properties is not possible with a justifiable effort. A similar level of
difficulty also applies to an online tool adapter in the case of NX which would go
beyond the scope and research goals of the project. Therefore, the tool adapter for
NX is not automated but the relevant portions of the CAD model are manually
reproduced in the EMF representation.
Considering overall the individual runs ¶, ·, and ¸ with our consistency check-

ing and restoration tool as depicted in Figure 5.10, consistency checking (¶) is
coupled with the manual effort of creating the EMF representation of the CAD
model. Restoring consistency by synchronizing the simulation model (·) is then
fully automated. Operating incrementally as introduced in the previous section,
this step only changes the inconsistent parts of the simulation model and keeps all
other irrelevant information (which is necessary though for executing a simulation).
From a demonstration point of view, therefore, the combination of ¶ and · enjoys
the most positive reception from the industrial partner in this first iteration. Restor-
ing consistency on the CAD side (¸), finally, is again coupled with the manual
effort of feeding the changes on the EMF representation back into NX.
In the second iteration of the project, a further case study based on a water

supply line has been investigated (instead of going deeper into the excavator case
study). This time, Parasolid [117] represents the CAD side, while Amesim further
on remains the simulation side. Mitigating the tool adapter challenges experienced
in the first iteration, the industrial partner has a custom solution for Parasolid that
extracts an XML representation of a CAD model. Hence, the CAD model is not
provided as a technical drawing but as an XML file in the second iteration. The
industrial partner indeed utilizes such XML files to derive sketches of simulation
models, while the GraTraM project additionally introduces consistency checking
and incremental consistency restoration aspects into the tooling.
In Figure 5.13, model excerpts of the water supply line and their relations are

depicted. The CAD model has an XML-based representation describing a water
supply line consisting of individual pipe components as well as their connectors
such as bends and T-junctions. In the simulation model, special components from
the Amesim library again represent the system for simulation purposes. Besides
the existence of pipes, bends, and T-junctions, their relative locations within the
network and geometric properties constitute the consistency notion that must be
checked and, if necessary, restored.
Figure 5.14 depicts the components and artifacts involved in addressing con-

sistency for the water supply line models, differing from those of the excavator
case study mainly on the CAD side. With the help of the provided XML export,
the initial consistency checking and synchronizing the simulation model are fully
automated (¶ and · in Figure 5.10). The conversion between the XML and EMF

5.4 The GraTraM Project 147

 ...
 <bend>
 …
 </bend>
 ...
 <pipe>
 …
 </pipe>
 ...
 <tjunction>
 ...
 </tjunction>
 ...

Figure 5.13: The XML-based CAD (left) and simulation (right) model of the water supply
line

representations of the CAD model is implemented with Java using standard XML
parsing and generation libraries. Feeding the changes on the XMLmodel back into
Parasolid after consistency restoration on the CAD side (¸) remains the only aspect
that requires manual effort.

Parasolid Amesim

Sim.
Meta-Model

(EMF)

Sim.
Model
(EMF)

Python
Script

conforms to inferred from

Xtext
Xtend

Tool
Adapter
Amesim

Python
Import/Export

CAD
Meta-Model

(EMF)

CAD
Model
(EMF)

conforms to

Model Owner

Tool
Adapter
Parasolid

TGG
Specification

inferred from

Consistency checking and
restoration

CAD
Model
(XML)

XML
Export

XML to EMF
(Java)

Figure 5.14: Overview of the tooling for the water supply line case study

Overall, we draw the following conclusions from the GraTraM project. Note that
the first two points have been decisive for our research and development activities

148 5 Tool Support, Experimental Evaluation, and Practical Application

and had a considerable impact on the contents of this thesis. The third point,
furthermore, rather relates to the tooling aspect in an industrial context.

• Even though models in an interdisciplinary engineering landscape are said
to be “related”, the amount of shared information might refer to a small
(nevertheless crucial) subpart of the models. Therefore, all involved domains
exhibit their own unique justification for relying on human intelligence, and
the ambitious objective of deriving one model from the other automatically
does not necessarily address consistency challenges adequately. Instead, con-
sistency management approaches should allow concurrent developments by
human intelligence and should accept the advanced state after concurrent
developments as the starting point. Our consistency checking approach is the
foundational step towards this conception.

• While custom solutions exist for information exchange between two different
models, the incrementality aspect is the most difficult one to address with-
out a systematic practice. Coupled with the previous point, however, models
generally exhibit private information which are lost without incrementality.
Considering the feedback from the industrial partner, the added value of our
prototypes as compared to existing solutions especially lies in their incremen-
tality. This is not due to efficiency reasons (at least not in the investigated case
studies) but rather due to information preservation. Hence, a fully-fledged
BX approach to consistency restoration (be it with TGGs or other formalisms)
must attach importance to preserving as much information as possible when
restoring consistency.

• Engineering toolsmust consequentlymake use ofMDE in order to profit from
its vision for consistency management. That is, suitable abstractions (models)
that conform to a well-defined specification (meta-model) must be provided
so that any MDE tool can operate on these. In the project, especially the CAD
side was challenging in this regard representing relevant engineering data
mostly in low-level and atomic drawing instructions. This makes the devel-
opment of appropriate tool adapters very difficult if not impossible. While a
custom XML export serves as a helpful subcomponent in the second iteration
of the project, general solutions (in particular file formats) are necessary to
makeCADdatamore accessible. This aspect, of course, goes beyond the scope
of the project but indeed shapes a relevant research challenge on its own (for
some preliminary efforts, we exemplarily refer to [16, 19, 54]). For the fully
automated applicability of consistency management, addressing these issues
is crucial from a tooling point of view.

5.5 Summary and Future Work

In this section, we have

• presented our meta-tool eMoflon, currently having the two different versions
eMoflon::TiE and eMoflon::ibex,

5.5 Summary and Future Work 149

• experimentally evaluated our consistency checking approach by (i) investi-
gating the distribution of overall runtime over rule applications and linear
optimization and (ii) comparing consistency checking to model differencing
solutions via dedicated examples,

• experimentally evaluated our consistency restoration approach via a compar-
ison between eMoflon::TiE and eMoflon::ibex revealing the future directions
in terms of scalability for eMoflon::ibex,

• reported on an industrial project where we applied our consistency checking
and restoration approach to maintain consistency between CAD and mecha-
tronic simulations models.

Tasks for future work regarding consistency checking and restoration have been
already discussed in the respective sections and also define tasks for future work
from an implementation point of view. First and foremost, however, performance
optimizations with regard to the incremental pattern matching in eMoflon::ibex
define the first crucial step, whereas this thesis presents a first version of the tool
and reveals its current scalability limits.
Furthermore, model differencing via consistency checking with TGGs indeed

seems to be a promising approach (when we consider the gaps in sufficiently ad-
dressing model differencing). Hence, a custom implementation of TGGs tailored
for the model differencing case is worthwhile to consider. Accordingly, more com-
prehensive comparisons with existing solutions to model differencing are needed
to determine whether TGGs can be established as a model differencing approach.

6
CONCLUS ION

This thesis addressed consistency management tasks in Model-Driven Engineer-
ing (MDE), in particular consistency checking and restoration between related
models based on Triple Graph Grammars (TGGs). A TGG is a grammar-based con-
sistency description (stating how consistent pairs of models are constructed) from
which consistency checkers and restorers are automatically derived.

In the introduction,wedistinguishedbetween threedifferent groupsof stakehold-
ers includingmodel owners, consistency tool developers, andmeta-tool developers
(whereas the term“meta-tool” refers to a tool used for developing consistency tools).
Furthermore, we identified their functional and non-functional requirements (in
Table 1.1) which defined the contributions of this thesis. These requirements are
repeated and used to structure the following discussion for concluding this thesis.
Regarding the functional requirements, the following results have been achieved:

• Check consistency: In Section 3, we established consistency checking as a novel
use case of TGGs, while practical solutions thereof are scarce in the general
landscape of MDE. In our setting, given two related models, consistency
checking does not only refer to finding a yes or no answer for consistency
but also detects the maximal consistent portions of the models. Based on our
results, model owners can concurrently work and then check whether or to
what extent their models are consistent to each other.

• Restore consistency: In Section 4, we introduced a mechanism for consistency
restoration via delta propagation from one model to the other. A delta can
be inferred either from consistency checking (i.e., model parts beyond the
detected consistent portions) or from modifications made by model owners
(or from a combination of both). Given a delta, our approach brings two
models again to a consistent state and also maintains a consistency history
that can serve as input for further runs of consistency restoration when the
models are again changed.

• Develop meta-tool: The level of formalization in both Section 3 and 4 focuses
on how to realize consistency checking and restoration, and, therefore, is ad-
dressed to meta-tool developers in the first place. For consistency checking,
we identify search space problems that form an obstacle to an implementa-
tion and clear this obstacle by exploiting linear optimization techniques. For
consistency restoration, moreover, our contribution is to come up with a sim-
plified and straightforward procedure that outsources necessary tasks to an
incremental pattern matcher. Available tool support for our used techniques
also enables the development of a meta-tool for TGGs.

152 6 Conclusion

• Develop consistency tool:We presented our ownmeta-tool, namely eMoflon, in
Section 5which is available as an open source project at http://www.emoflon.
org. The tool allows for specifying TGGs and derives consistency checking
and restoration tools based on our formal results.

Furthermore, the non-functional requirements in Table 1.1 are addressed by our
contributions as follows:

• Scalability: Dealing with challenging problems (in fact even an NP-complete
problem in the case of consistency checking), we have a pragmatic under-
standing of scalability and refer to it as the capability of handling real-world
consistency scenarios in reasonable runtime. Our experiments in Section 5
showed that consistency checking can terminate already in the order of sec-
onds for realistic examples but can also require several minutes in the most
challenging corner cases. Delta propagation in consistency restoration, fur-
thermore, terminates in the order of milliseconds in most cases. Having cur-
rently two available versions of our tool as discussed in Section 5, we also
identified necessary optimization steps for the re-engineered version (such
that the matureness of the older version can be reached again).

• Formal properties: For both consistency checking and restoration, we resorted
to the well-known construction techniques of category theory and in the
case of consistency checking, furthermore, to integer linear programming.
For our consistency checking and restoration procedures in Section 3 and 4,
respectively, we provided formal proofs for termination, correctness (i.e., the
returned result is conform to the consistency notion yielded by the TGG), and
completeness (i.e., a result is always returned).

• Usability: Our meta-tool is based on the Eclipse Modeling Framework (EMF)
and profits from the mature infrastructure of Eclipse. For specifying TGGs,
we provide a textual editor with code completion, syntax highlighting, and
validation. For performing consistency checking and restoration, moreover,
our meta-tool generates the respective tools automatically (in line with our
operationalization results) and provides entry points for the execution.

• Validation:While academic “toy” examples are generally used to demonstrate
consistency tools,wewent one step further in our experiments and focused on
a real-world scenario related to consistency between Java and UML models.
Furthermore, we used our consistency checking approach for model differ-
encing purposes (where the twomodels represent the different versions of the
same artifact). Most importantly, we further validated our approach with an
industrial project from the domain of mechanical engineering and addressed
consistency between computer-aided design (CAD) and mechatronic simula-
tion models.

At the end of Section 3, 4, and 5, we discussed the important lines of research for
future work which can be summarized as follows:

http://www.emoflon.org
http://www.emoflon.org

153

• For consistency checking, lifting our results to the incremental case (where
markings and correspondences from former runs are reused) seems to be the
next logical step. While consistency checking is formulated as choosing (via
linear optimization) between alternative rule applications, the incremental
case can requiremaintaining unchosen ones (as theymight become choosable
in retrospect after changing the involvedmodels). Furthermore, incorporating
user-specific constraints and objectives into our linear optimization problem
can broaden the possible use cases of our formalisms (tackling different map-
ping problems that have their own requirements besides consistency).

• For consistency restoration, static analysis techniques must be explored to
guarantee successful consistency restoration. We state sufficient properties
for this but how to check them in a general manner was not within the scope
of this thesis. Existing static analysis techniques [9, 65] provide a help but
can be too restrictive, while state space exploration (e.g., as practically sup-
ported in [55]) seems to be a further promising choice. Moreover, increasing
information preservation capabilities of consistency restoration is a necessary
improvement. In particular, repairing invalidated rule applications must be
explored before revoking them in order to reduce the actions taken by con-
sistency restoration. Of course, remaining compatible to the correctness and
completeness results of consistency restoration is of the utmost importance
for these extensions. Finally, our understanding of consistency restoration is
concerned with propagating a delta in one model to the other. Given that
both models have a delta due to concurrent modifications, conflict detection
and (semi-automatic) resolution between these deltasmust be established (be-
fore consistency restoration) for a more generalized support for consistency
management.

• From a tooling point of view, performance improvements (and possibly op-
timizations specific to TGGs) for incremental pattern matching define the
most crucial task. To this end, especially the memory consumption in main-
taining (partial and complete) matches must be reduced as our experimental
evaluation results revealed.

Finally, expressiveness of TGGs is identified in Table 1.1 as a further non-func-
tional requirement that goes beyond the scope of this thesis. Increasing the ex-
pressiveness of TGGs in order to support a larger class of consistency scenarios
requires new language features, possibly adopted from the general field of graph
grammars such as multi-amalgamation [57], nested quantification [123], or nested
application conditions [63]. We, nevertheless, believe to have come up with a solid
formal foundation for TGGs that can be compatibly extended for these features.

B IBL IOGRAPHY

[1] Neta Aizenbud-Reshef, Brian T. Nolan, Julia Rubin, and Yael Shaham-Gafni.
Model traceability. IBM Systems Journal, 45(3):515–526, 2006. doi: 10.1147/sj.
453.0515. URL https://doi.org/10.1147/sj.453.0515. (Cited on page 78.)

[2] Marcus Alanen and Ivan Porres. Difference and Union of Models. In
«UML» 2003 - The Unified Modeling Language, Modeling Languages and Ap-
plications, 6th International Conference, San Francisco, CA, USA, October 20-24,
2003, Proceedings, pages 2–17, 2003. doi: 10.1007/978-3-540-45221-8_2. URL
https://doi.org/10.1007/978-3-540-45221-8_2. (Cited on page 79.)

[3] Carsten Amelunxen, Alexander Königs, Tobias Rötschke, and Andy Schürr.
MOFLON: A Standard-Compliant Metamodeling Framework with Graph
Transformations. In Model Driven Architecture - Foundations and Applications,
Second European Conference, ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006,
Proceedings, pages 361–375, 2006. doi: 10.1007/11787044_27. URL https:
//doi.org/10.1007/11787044_27. (Cited on page 125.)

[4] Amesim, Siemens AG. http://www.plm.automation.siemens.com/en/

products/lms/imagine-lab/amesim/index.shtml, 2017. [Online; accessed
20-November-2017]. (Cited on page 144.)

[5] AnthonyAnjorin. Synchronization ofModels onDifferentAbstraction Levels using
Triple Graph Grammars. PhD thesis, Darmstadt University of Technology, Ger-
many, 2014. URL http://tuprints.ulb.tu-darmstadt.de/4399/. (Cited
on page 4, 84, 100, 119, 120, and 142.)

[6] Anthony Anjorin, Marius Lauder, Sven Patzina, and Andy Schürr. eMoflon:
Leveraging EMF and Professional CASE Tools. In Tagungsband der INFOR-
MATIK - Lecture Notes in Informatics, volume 192. July 2011. (Cited on
page 125.)

[7] Anthony Anjorin, Andy Schürr, and Gabriele Taentzer. Construction of In-
tegrity Preserving Triple Graph Grammars. In Graph Transformations - 6th
International Conference, ICGT 2012, Bremen, Germany, September 24-29, 2012.
Proceedings, pages 356–370, 2012. doi: 10.1007/978-3-642-33654-6_24. URL
https://doi.org/10.1007/978-3-642-33654-6_24. (Cited on page 38.)

[8] Anthony Anjorin, Gergely Varró, and Andy Schürr. Complex Attribute Ma-
nipulation in TGGs with Constraint-Based Programming Techniques. ECE-
ASST, 49, 2012. URLhttp://journal.ub.tu-berlin.de/eceasst/article/
view/707. (Cited on page 22.)

[9] Anthony Anjorin, Erhan Leblebici, Andy Schürr, and Gabriele Taentzer. A
Static Analysis of Non-confluent Triple Graph Grammars for Efficient Model
Transformation. In Graph Transformation - 7th International Conference, ICGT

https://doi.org/10.1147/sj.453.0515
https://doi.org/10.1007/978-3-540-45221-8_2
https://doi.org/10.1007/11787044_27
https://doi.org/10.1007/11787044_27
http://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/index.shtml
http://www.plm.automation.siemens.com/en/products/lms/imagine-lab/amesim/index.shtml
http://tuprints.ulb.tu-darmstadt.de/4399/
https://doi.org/10.1007/978-3-642-33654-6_24
http://journal.ub.tu-berlin.de/eceasst/article/view/707
http://journal.ub.tu-berlin.de/eceasst/article/view/707

156 bibliography

2014, Held as Part of STAF 2014, York, UK, July 22-24, 2014. Proceedings, pages
130–145, 2014. doi: 10.1007/978-3-319-09108-2_9. URL https://doi.org/
10.1007/978-3-319-09108-2_9. (Cited on page 105, 124, and 153.)

[10] Anthony Anjorin, Sebastian Rose, Frederik Deckwerth, and Andy Schürr.
Efficient Model Synchronization with View Triple Graph Grammars. InMod-
elling Foundations and Applications - 10th European Conference, ECMFA 2014,
Held as Part of STAF 2014, York, UK, July 21-25, 2014. Proceedings, pages 1–17,
2014. doi: 10.1007/978-3-319-09195-2_1. URL https://doi.org/10.1007/
978-3-319-09195-2_1. (Cited on page 122.)

[11] Anthony Anjorin, Karsten Saller, Malte Lochau, and Andy Schürr. Mod-
ularizing Triple Graph Grammars Using Rule Refinement. In Fundamental
Approaches to Software Engineering - 17th International Conference, FASE 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, pages 340–354,
2014. doi: 10.1007/978-3-642-54804-8_24. URL https://doi.org/10.1007/
978-3-642-54804-8_24. (Cited on page 35.)

[12] Anthony Anjorin, Erhan Leblebici, Roland Kluge, Andy Schürr, and Perdita
Stevens. A Systematic Approach and Guidelines to Developing a Triple
Graph Grammar. In Proceedings of the 4th International Workshop on Bidi-
rectional Transformations co-located with Software Technologies: Applications and
Foundations, STAF 2015, L’Aquila, Italy, July 24, 2015., pages 81–95, 2015. URL
http://ceur-ws.org/Vol-1396/p81-anjorin.pdf. (Cited on page 129.)

[13] Anthony Anjorin, Zinovy Diskin, Freédéric Jouault, Hsiang-Shang Ko, Er-
han Leblebici, and Bernhard Westfechtel. Benchmarx Reloaded: A Practical
Benchmark Framework for Bidirectional Transformations. InProceedings of the
6th International Workshop on Bidirectional Transformations, Bx 2016, co-located
with The European Joint Conferences on Theory and Practice of Software, ETAPS
2017, Uppsala, Sweden, April 29, 2017., 2017. (Cited on page 3 and 137.)

[14] Holger Bock Axelsen and Robert Glück. What Do Reversible Programs
Compute? In Foundations of Software Science and Computational Struc-
tures - 14th International Conference, FOSSACS 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2011,
Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, pages 42–56,
2011. doi: 10.1007/978-3-642-19805-2_4. URL https://doi.org/10.1007/
978-3-642-19805-2_4. (Cited on page 121.)

[15] Holger Bock Axelsen and Robert Glück. A Simple and Efficient Universal
Reversible Turing Machine. In Language and Automata Theory and Applications
- 5th International Conference, LATA 2011, Tarragona, Spain, May 26-31, 2011.
Proceedings, pages 117–128, 2011. doi: 10.1007/978-3-642-21254-3_8. URL
https://doi.org/10.1007/978-3-642-21254-3_8. (Cited on page 121.)

[16] Jing Bai, Shuming Gao, Weihua Tang, Yusheng Liu, and Song Guo. Seman-
tic-basedpartial retrieval of CADmodels for design reuse. InProceedings of the

https://doi.org/10.1007/978-3-319-09108-2_9
https://doi.org/10.1007/978-3-319-09108-2_9
https://doi.org/10.1007/978-3-319-09195-2_1
https://doi.org/10.1007/978-3-319-09195-2_1
https://doi.org/10.1007/978-3-642-54804-8_24
https://doi.org/10.1007/978-3-642-54804-8_24
http://ceur-ws.org/Vol-1396/p81-anjorin.pdf
https://doi.org/10.1007/978-3-642-19805-2_4
https://doi.org/10.1007/978-3-642-19805-2_4
https://doi.org/10.1007/978-3-642-21254-3_8

bibliography 157

2009 ACM Symposium on Solid and Physical Modeling, San Francisco, California,
USA, October 5-8, 2009, pages 271–276, 2009. doi: 10.1145/1629255.1629289.
URL http://doi.acm.org/10.1145/1629255.1629289. (Cited on page 148.)

[17] Ameni ben Fadhel, Marouane Kessentini, Philip Langer, and Manuel Wim-
mer. Search-based detection of high-level model changes. In 28th IEEE Inter-
national Conference on Software Maintenance, ICSM 2012, Trento, Italy, September
23-28, 2012, pages 212–221, 2012. doi: 10.1109/ICSM.2012.6405274. URL
https://doi.org/10.1109/ICSM.2012.6405274. (Cited on page 54.)

[18] Gábor Bergmann, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth,
Zoltán Ujhelyi, and Dániel Varró. Viatra 3: A Reactive Model Transformation
Platform. In Theory and Practice of Model Transformations - 8th International
Conference, ICMT2015,Held as Part of STAF 2015, L’Aquila, Italy, July 20-21, 2015.
Proceedings, pages 101–110, 2015. doi: 10.1007/978-3-319-21155-8_8. URL
https://doi.org/10.1007/978-3-319-21155-8_8. (Cited on page 123.)

[19] Nestor Velasco Bermeo, Miguel González-Mendoza, and Alexander Gar-
cía Castro. Semantic Representation of CAD Models Based on the IGES
Standard. In Advances in Artificial Intelligence and Its Applications - 12th
Mexican International Conference on Artificial Intelligence, MICAI 2013, Mex-
ico City, Mexico, November 24-30, 2013, Proceedings, Part I, pages 157–168,
2013. doi: 10.1007/978-3-642-45114-0_13. URL https://doi.org/10.1007/
978-3-642-45114-0_13. (Cited on page 148.)

[20] Jean Bézivin and Olivier Gerbé. Towards a Precise Definition of the
OMG/MDA Framework. In 16th IEEE International Conference on Automated
Software Engineering (ASE 2001), 26-29 November 2001, Coronado Island, San
Diego, CA, USA, pages 273–280, 2001. URL https://doi.org/10.1109/ASE.
2001.989813. (Cited on page 1.)

[21] Dominique Blouin, Alain Plantec, Pierre Dissaux, Frank Singhoff, and
Jean-Philippe Diguet. Synchronization of Models of Rich Languages with
Triple Graph Grammars: An Experience Report. In Theory and Practice of
Model Transformations - 7th International Conference, ICMT 2014, Held as Part
of STAF 2014, York, UK, July 21-22, 2014. Proceedings, pages 106–121, 2014.
URL https://doi.org/10.1007/978-3-319-08789-4_8. (Cited on page 4
and 142.)

[22] JulianC. Bradfield andPerdita Stevens. RecursiveCheckonlyQVT-RTransfor-
mations with General when and where Clauses via the Modal Mu Calculus.
In Fundamental Approaches to Software Engineering - 15th International Confer-
ence, FASE 2012, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings, pages 194–208, 2012. doi: 10.1007/978-3-642-28872-2_14. URL
https://doi.org/10.1007/978-3-642-28872-2_14. (Cited on page 76.)

[23] Alan W. Brown. Model driven architecture: Principles and practice. Software
and System Modeling, 3(4):314–327, 2004. URL https://doi.org/10.1007/
s10270-004-0061-2. (Cited on page 1.)

http://doi.acm.org/10.1145/1629255.1629289
https://doi.org/10.1109/ICSM.2012.6405274
https://doi.org/10.1007/978-3-319-21155-8_8
https://doi.org/10.1007/978-3-642-45114-0_13
https://doi.org/10.1007/978-3-642-45114-0_13
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1109/ASE.2001.989813
https://doi.org/10.1007/978-3-319-08789-4_8
https://doi.org/10.1007/978-3-642-28872-2_14
https://doi.org/10.1007/s10270-004-0061-2
https://doi.org/10.1007/s10270-004-0061-2

158 bibliography

[24] Gerald G. Brown and Robert F. Dell. Formulating Integer Linear Programs:
A Rogues’ Gallery. INFORMS Trans. Education, 7(2):153–159, 2007. doi: 10.
1287/ited.7.2.153. URL https://doi.org/10.1287/ited.7.2.153. (Cited
on page 55.)

[25] HugoBrunelière, Jordi Cabot, GrégoireDupé, and FrédéricMadiot. MoDisco:
A model driven reverse engineering framework. Information & Software Tech-
nology, 56(8):1012–1032, 2014. doi: 10.1016/j.infsof.2014.04.007. URL https:
//doi.org/10.1016/j.infsof.2014.04.007. (Cited on page 15 and 130.)

[26] Thomas Buchmann, Alexander Dotor, Sabrina Uhrig, and Bernhard West-
fechtel. Model-Driven Software Development with Graph Transformations:
A Comparative Case Study. In Applications of Graph Transformations with
Industrial Relevance, Third International Symposium, AGTIVE 2007, Kassel, Ger-
many, October 10-12, 2007, Revised Selected and Invited Papers, pages 345–360,
2007. doi: 10.1007/978-3-540-89020-1_24. URL https://doi.org/10.1007/
978-3-540-89020-1_24. (Cited on page 122.)

[27] Business Process Model and Notation, Object Management Group. http:
//www.omg.org/spec/BPMN/, 2017. [Online; accessed 17-November-2017].
(Cited on page 143.)

[28] Glenn Callow and Roy Kalawsky. A Satisficing Bi-Directional Model Trans-
formation Engine using Mixed Integer Linear Programming. Journal of
Object Technology, 12(1):1: 1–43, 2013. doi: 10.5381/jot.2013.12.1.a1. URL
https://doi.org/10.5381/jot.2013.12.1.a1. (Cited on page 54.)

[29] Chaos Report, The Standish Group. https://www.projectsmart.co.uk/
white-papers/chaos-report.pdf, 2014. [Online; accessed 08-June-2017].
(Cited on page 1.)

[30] Noam Chomsky. Three models for the description of language. IRE Transac-
tions on Information Theory, 2:113–124, 1956. (Cited on page 25.)

[31] Noam Chomsky. Syntactic Structures. Mouton and Co., The Hague, 1957.
(Cited on page 25.)

[32] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso Pieran-
tonio. JTL: A Bidirectional and Change Propagating Transformation Lan-
guage. In Software Language Engineering - Third International Conference,
SLE 2010, Eindhoven, The Netherlands, October 12-13, 2010, Revised Selected
Papers, pages 183–202, 2010. doi: 10.1007/978-3-642-19440-5_11. URL
https://doi.org/10.1007/978-3-642-19440-5_11. (Cited on page 121.)

[33] Volker Claus, Hartmut Ehrig, and Grzegorz Rozenberg, editors. Graph--
Grammars and Their Application to Computer Science and Biology, International
Workshop, Bad Honnef, October 30 - November 3, 1978, volume 73 of Lec-
ture Notes in Computer Science, 1979. Springer. ISBN 3-540-09525-X. doi:
10.1007/BFb0025713. URL https://doi.org/10.1007/BFb0025713. (Cited
on page 25.)

https://doi.org/10.1287/ited.7.2.153
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1016/j.infsof.2014.04.007
https://doi.org/10.1007/978-3-540-89020-1_24
https://doi.org/10.1007/978-3-540-89020-1_24
http://www.omg.org/spec/BPMN/
http://www.omg.org/spec/BPMN/
https://doi.org/10.5381/jot.2013.12.1.a1
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
https://doi.org/10.1007/978-3-642-19440-5_11
https://doi.org/10.1007/BFb0025713

bibliography 159

[34] Krzysztof Czarnecki and Simon Helsen. Feature-based survey of model
transformation approaches. IBM Systems Journal, 45(3):621–646, 2006. URL
https://doi.org/10.1147/sj.453.0621. (Cited on page 3.)

[35] Krzysztof Czarnecki, J. Nathan Foster, Zhenjiang Hu, Ralf Lämmel, Andy
Schürr, and James F. Terwilliger. Bidirectional Transformations: A Cross-Dis-
cipline Perspective. In Theory and Practice of Model Transformations, Sec-
ond International Conference, ICMT 2009, Zurich, Switzerland, June 29-30,
2009. Proceedings, pages 260–283, 2009. URL https://doi.org/10.1007/
978-3-642-02408-5_19. (Cited on page 3.)

[36] Juan de Lara and Hans Vangheluwe. AToM3: A Tool for Multi-formalism
and Meta-modelling. In Fundamental Approaches to Software Engineering, 5th
International Conference, FASE 2002, held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2002, Grenoble, France, April 8-12,
2002, Proceedings, pages 174–188, 2002. doi: 10.1007/3-540-45923-5_12. URL
https://doi.org/10.1007/3-540-45923-5_12. (Cited on page 123.)

[37] Zinovy Diskin, Yingfei Xiong, and Krzysztof Czarnecki. From State-
to Delta-Based Bidirectional Model Transformations. In Theory and
Practice of Model Transformations, Third International Conference, ICMT
2010, Malaga, Spain, June 28-July 2, 2010. Proceedings, pages 61–76,
2010. doi: 10.1007/978-3-642-13688-7_5. URL https://doi.org/10.1007/
978-3-642-13688-7_5. (Cited on page 122.)

[38] DOORS, IBM. http://www.ibm.com/us-en/marketplace/rational-doors,
2017. [Online; accessed 20-November-2017]. (Cited on page 77.)

[39] Eclipse Modeling Framework, Eclipse Foundation. http://www.eclipse.
org/modeling/emf/, 2017. [Online; accessed 03-August-2017]. (Cited on
page 31 and 125.)

[40] Hartmut Ehrig and Hans-Jörg Kreowski. Parallelism of Manipulations in
Multidimensional Information Structures. In Mathematical Foundations of
Computer Science 1976, 5th Symposium, Gdansk, Poland, September 6-10, 1976,
Proceedings, pages 284–293, 1976. doi: 10.1007/3-540-07854-1_188. URL
https://doi.org/10.1007/3-540-07854-1_188. (Cited on page 53.)

[41] Hartmut Ehrig, Karsten Ehrig, Annegret Habel, and Karl-Heinz Penne-
mann. Constraints and Application Conditions: From Graphs to High-Level
Structures. In Graph Transformations, Second International Conference, ICGT
2004, Rome, Italy, September 28 - October 2, 2004, Proceedings, pages 287–303,
2004. doi: 10.1007/978-3-540-30203-2_21. URL https://doi.org/10.1007/
978-3-540-30203-2_21. (Cited on page 37.)

[42] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange, and Gabriele Taentzer. Funda-
mentals of Algebraic Graph Transformation. Monographs in Theoretical Com-
puter Science. An EATCS Series. Springer, 2006. ISBN 978-3-540-31187-4. doi:
10.1007/3-540-31188-2. URL https://doi.org/10.1007/3-540-31188-2.
(Cited on page 15, 17, 18, 19, 21, 22, 24, 29, 50, and 100.)

https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/978-3-642-02408-5_19
https://doi.org/10.1007/3-540-45923-5_12
https://doi.org/10.1007/978-3-642-13688-7_5
https://doi.org/10.1007/978-3-642-13688-7_5
http://www.ibm.com/us-en/marketplace/rational-doors
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
https://doi.org/10.1007/3-540-07854-1_188
https://doi.org/10.1007/978-3-540-30203-2_21
https://doi.org/10.1007/978-3-540-30203-2_21
https://doi.org/10.1007/3-540-31188-2

160 bibliography

[43] Hartmut Ehrig, Karsten Ehrig, and Frank Hermann. From Model Trans-
formation to Model Integration based on the Algebraic Approach to Triple
GraphGrammars. ECEASST, 10, 2008. URL http://journal.ub.tu-berlin.
de/index.php/eceasst/article/view/154. (Cited on page 39, 40, 52, 75,
and 77.)

[44] Hartmut Ehrig, Claudia Ermel, Ulrike Golas, and Frank Hermann. Graph
and Model Transformation - General Framework and Applications. Monographs
in Theoretical Computer Science. An EATCS Series. Springer, 2015. ISBN
978-3-662-47979-7. doi: 10.1007/978-3-662-47980-3. URL https://doi.org/
10.1007/978-3-662-47980-3. (Cited on page 75 and 77.)

[45] EMFCompare, Eclipse Foundation. http://www.eclipse.org/emf/

compare/, 2017. [Online; accessed 03-August-2017]. (Cited on page 79
and 129.)

[46] Claudia Ermel, Frank Hermann, Jürgen Gall, and Daniel Binanzer. Visual
Modeling and Analysis of EMF Model Transformations Based on Triple
GraphGrammars. ECEASST, 54, 2012. URL http://journal.ub.tu-berlin.
de/eceasst/article/view/771. (Cited on page 4, 40, and 52.)

[47] Juergen Etzlstorfer, Angelika Kusel, Elisabeth Kapsammer, Philip Langer,
Werner Retschitzegger, Johannes Schoenboeck, Wieland Schwinger, and
Manuel Wimmer. A Survey on Incremental Model Transformation Ap-
proaches. In Proceedings of the Workshop onModels and Evolution co-located with
ACM/IEEE 16th International Conference onModel Driven Engineering Languages
and Systems (MoDELS 2013), Miami, Florida, USA, October 1, 2013., pages 4–13,
2013. URL http://ceur-ws.org/Vol-1090/1.pdf. (Cited on page 122.)

[48] Martin Fleck, Javier Troya, and Manuel Wimmer. Search-based model trans-
formations. Journal of Software: Evolution and Process, 28(12):1081–1117, 2016.
doi: 10.1002/smr.1804. URL https://doi.org/10.1002/smr.1804. (Cited
on page 54 and 79.)

[49] Martin Fleck, Javier Troya, andManuel Wimmer. Search-BasedModel Trans-
formations with MOMoT. In Theory and Practice of Model Transformations - 9th
International Conference, ICMT 2016, Held as Part of STAF 2016, Vienna, Austria,
July 4-5, 2016, Proceedings, pages 79–87, 2016. doi: 10.1007/978-3-319-42064-6_
6. URL https://doi.org/10.1007/978-3-319-42064-6_6. (Cited on
page 54 and 79.)

[50] Charles Forgy. Rete: A Fast Algorithm for the Many Patterns/Many Objects
Match Problem. Artif. Intell., 19(1):17–37, 1982. doi: 10.1016/0004-3702(82)
90020-0. URL https://doi.org/10.1016/0004-3702(82)90020-0. (Cited
on page 85, 109, and 118.)

[51] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, andAlan Schmitt. Combinators for bidirectional tree transformations:
A linguistic approach to the view-update problem. ACMTrans. Program. Lang.

http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/154
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/154
https://doi.org/10.1007/978-3-662-47980-3
https://doi.org/10.1007/978-3-662-47980-3
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/emf/compare/
http://journal.ub.tu-berlin.de/eceasst/article/view/771
http://journal.ub.tu-berlin.de/eceasst/article/view/771
http://ceur-ws.org/Vol-1090/1.pdf
https://doi.org/10.1002/smr.1804
https://doi.org/10.1007/978-3-319-42064-6_6
https://doi.org/10.1016/0004-3702(82)90020-0

bibliography 161

Syst., 29(3):17, 2007. doi: 10.1145/1232420.1232424. URL http://doi.acm.
org/10.1145/1232420.1232424. (Cited on page 122.)

[52] Lars Fritsche, Erhan Leblebici, AnthonyAnjorin, andAndy Schürr. ALook-A-
head Strategy for Rule-Based Model Transformations. In Proceedings of the
11th Workshop on Models and Evolution co-located with ACM/IEEE 20th Interna-
tional Conference onModel Driven Engineering Languages and Systems (MODELS
2017), Austin, TX, USA, September 17-22, 2017, 2017. (Cited on page 102.)

[53] Ismênia Galvão and Arda Goknil. Survey of Traceability Approaches in
Model-Driven Engineering. In 11th IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2007), 15-19 October 2007, Annapolis,
Maryland, USA, pages 313–326, 2007. doi: 10.1109/EDOC.2007.42. URL
https://doi.org/10.1109/EDOC.2007.42. (Cited on page 78.)

[54] Samer Abdul Ghafour, Parisa Ghodous, Behzad Shariat, Eliane Perna, and
Farzad Khosrowshahi. Semantic interoperability of knowledge in fea-
ture-based CAD models. Computer-Aided Design, 56:45–57, 2014. doi:
10.1016/j.cad.2014.06.001. URL https://doi.org/10.1016/j.cad.2014.06.
001. (Cited on page 148.)

[55] Amir Hossein Ghamarian, Arash Jalali, and Arend Rensink. Incremen-
tal Pattern Matching in Graph-Based State Space Exploration. ECEASST,
32, 2010. URL http://journal.ub.tu-berlin.de/index.php/eceasst/
article/view/520. (Cited on page 106 and 153.)

[56] Holger Giese, Stephan Hildebrandt, and Stefan Neumann. Model Syn-
chronization at Work: Keeping SysML and AUTOSAR Models Consis-
tent. In Graph Transformations and Model-Driven Engineering - Essays Ded-
icated to Manfred Nagl on the Occasion of his 65th Birthday, pages 555–579,
2010. doi: 10.1007/978-3-642-17322-6_24. URL https://doi.org/10.1007/
978-3-642-17322-6_24. (Cited on page 4.)

[57] Ulrike Golas, Annegret Habel, and Hartmut Ehrig. Multi-amalgamation
of rules with application conditions in -adhesive categories. Mathematical
Structures in Computer Science, 24(4), 2014. doi: 10.1017/S0960129512000345.
URL https://doi.org/10.1017/S0960129512000345. (Cited on page 153.)

[58] Birgit Grammel. Automatic Generation of Trace Links in Model-driven Software
Development. PhD thesis, Dresden University of Technology, 2014. URL
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155839. (Citedon
page 78.)

[59] Birgit Grammel, Stefan Kastenholz, and Konrad Voigt. Model Matching
for Trace Link Generation in Model-Driven Software Development. In
Model Driven Engineering Languages and Systems - 15th International Confer-
ence, MODELS 2012, Innsbruck, Austria, September 30-October 5, 2012. Pro-
ceedings, pages 609–625, 2012. doi: 10.1007/978-3-642-33666-9_39. URL
https://doi.org/10.1007/978-3-642-33666-9_39. (Cited on page 78.)

http://doi.acm.org/10.1145/1232420.1232424
http://doi.acm.org/10.1145/1232420.1232424
https://doi.org/10.1109/EDOC.2007.42
https://doi.org/10.1016/j.cad.2014.06.001
https://doi.org/10.1016/j.cad.2014.06.001
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/520
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/520
https://doi.org/10.1007/978-3-642-17322-6_24
https://doi.org/10.1007/978-3-642-17322-6_24
https://doi.org/10.1017/S0960129512000345
http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-155839
https://doi.org/10.1007/978-3-642-33666-9_39

162 bibliography

[60] Joel Greenyer, Sebastian Pook, and Jan Rieke. Preventing Information
Loss in Incremental Model Synchronization by Reusing Elements. In
Modelling Foundations and Applications - 7th European Conference, ECMFA
2011, Birmingham, UK, June 6 - 9, 2011 Proceedings, pages 144–159,
2011. doi: 10.1007/978-3-642-21470-7_11. URL https://doi.org/10.1007/
978-3-642-21470-7_11. (Cited on page 84, 100, 120, and 124.)

[61] Esther Guerra and Juan de Lara. Event-driven grammars: relating abstract
and concrete levels of visual languages. Software and System Modeling, 6(3):
317–347, 2007. doi: 10.1007/s10270-007-0051-2. URL https://doi.org/10.
1007/s10270-007-0051-2. (Cited on page 123.)

[62] Esther Guerra and Juan de Lara. An Algebraic Semantics for QVT-Relations
Check-only Transformations. Fundam. Inform., 114(1):73–101, 2012. doi: 10.
3233/FI-2011-618. URL https://doi.org/10.3233/FI-2011-618. (Cited on
page 76 and 77.)

[63] Annegret Habel and Karl-Heinz Pennemann. Nested constraints and appli-
cation conditions for high-level structures. In Formal Methods in Software and
Systems Modeling, Essays Dedicated to Hartmut Ehrig, on the Occasion of His
60th Birthday, pages 293–308, 2005. doi: 10.1007/978-3-540-31847-7_17. URL
https://doi.org/10.1007/978-3-540-31847-7_17. (Cited on page 153.)

[64] FrankHermann,Hartmut Ehrig, UlrikeGolas, and FernandoOrejas. Efficient
Analysis and Execution of Correct and Complete Model Transformations
Based on Triple Graph Grammars. In Proceedings of the First International
Workshop on Model-Driven Interoperability, MDI ’10, pages 22–31, New York,
NY, USA, 2010. ACM. ISBN 978-1-4503-0292-0. doi: 10.1145/1866272.1866277.
URL http://doi.acm.org/10.1145/1866272.1866277. (Cited on page 101,
102, and 124.)

[65] Frank Hermann, Hartmut Ehrig, Fernando Orejas, and Ulrike Golas. Formal
Analysis of Functional Behaviour forModel Transformations Based on Triple
GraphGrammars. InGraph Transformations - 5th International Conference, ICGT
2010, Enschede, The Netherlands, September 27 - - October 2, 2010. Proceedings,
pages 155–170, 2010. doi: 10.1007/978-3-642-15928-2_11. URL https://doi.
org/10.1007/978-3-642-15928-2_11. (Cited on page 96, 105, 124, and 153.)

[66] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki,
Zinovy Diskin, and Yingfei Xiong. Correctness of Model Synchro-
nization Based on Triple Graph Grammars. In Model Driven Engineer-
ing Languages and Systems, 14th International Conference, MODELS 2011,
Wellington, New Zealand, October 16-21, 2011. Proceedings, pages 668–682,
2011. doi: 10.1007/978-3-642-24485-8_49. URL https://doi.org/10.1007/
978-3-642-24485-8_49. (Cited on page 84 and 120.)

[67] Frank Hermann, Susann Gottmann, Nico Nachtigall, Hartmut Ehrig, Ben-
jamin Braatz, Gianluigi Morelli, Alain Pierre, Thomas Engel, and Claudia Er-
mel. TripleGraphGrammars in the Large for Translating Satellite Procedures.

https://doi.org/10.1007/978-3-642-21470-7_11
https://doi.org/10.1007/978-3-642-21470-7_11
https://doi.org/10.1007/s10270-007-0051-2
https://doi.org/10.1007/s10270-007-0051-2
https://doi.org/10.3233/FI-2011-618
https://doi.org/10.1007/978-3-540-31847-7_17
http://doi.acm.org/10.1145/1866272.1866277
https://doi.org/10.1007/978-3-642-15928-2_11
https://doi.org/10.1007/978-3-642-15928-2_11
https://doi.org/10.1007/978-3-642-24485-8_49
https://doi.org/10.1007/978-3-642-24485-8_49

bibliography 163

In Theory and Practice of Model Transformations - 7th International Conference,
ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22, 2014. Proceedings,
pages 122–137, 2014. URL https://doi.org/10.1007/978-3-319-08789-4_
9. (Cited on page 4 and 142.)

[68] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki,
Zinovy Diskin, Yingfei Xiong, Susann Gottmann, and Thomas Engel.
Model synchronization based on triple graph grammars: correctness, com-
pleteness and invertibility. Software and System Modeling, 14(1):241–269,
2015. doi: 10.1007/s10270-012-0309-1. URL https://doi.org/10.1007/
s10270-012-0309-1. (Cited on page 75, 77, and 122.)

[69] SoichiroHidaka, ZhenjiangHu, Kazuhiro Inaba, Hiroyuki Kato, andKeisuke
Nakano. GRoundTram: An integrated framework for developing well-be-
haved bidirectional model transformations. In 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA,
November 6-10, 2011, pages 480–483, 2011. doi: 10.1109/ASE.2011.6100104.
URL https://doi.org/10.1109/ASE.2011.6100104. (Cited on page 4
and 121.)

[70] Stephan Hildebrandt. On the performance and conformance of triple graph
grammar implementations. PhD thesis, University of Potsdam, 2014. URL
http://d-nb.info/1054564477. (Cited on page 84, 100, 119, 120, and 124.)

[71] Stephan Hildebrandt, Leen Lambers, and Holger Giese. The MDELab tool
framework for the development of correct model transformations with triple
graph grammars. In Proceedings of the First Workshop on the Analysis of Model
Transformations, AMT@MODELS 2012, Innsbruck, Austria, October 2, 2012,
pages 33–34, 2012. URL http://doi.acm.org/10.1145/2432497.2432504.
(Cited on page 4.)

[72] Martin Hofmann, Benjamin C. Pierce, and Daniel Wagner. Symmetric lenses.
In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011,
pages 371–384, 2011. doi: 10.1145/1926385.1926428. URL http://doi.acm.
org/10.1145/1926385.1926428. (Cited on page 122.)

[73] Ivaylo Hristakiev and Detlef Plump. Attributed Graph Transformation via
Rule Schemata: Church-Rosser Theorem. In Software Technologies: Applications
and Foundations - STAF 2016 Collocated Workshops: DataMod, GCM, HOFM,
MELO, SEMS, VeryComp, Vienna, Austria, July 4-8, 2016, Revised Selected Papers,
pages 145–160, 2016. doi: 10.1007/978-3-319-50230-4_11. URL https://doi.
org/10.1007/978-3-319-50230-4_11. (Cited on page 22.)

[74] Arash Jalali, Arend Rensink, and Amir Hossein Ghamarian. Incremen-
tal Pattern Matching for Regular Expressions. ECEASST, 47, 2012. URL
http://journal.ub.tu-berlin.de/eceasst/article/view/736. (Cited on
page 141.)

https://doi.org/10.1007/978-3-319-08789-4_9
https://doi.org/10.1007/978-3-319-08789-4_9
https://doi.org/10.1007/s10270-012-0309-1
https://doi.org/10.1007/s10270-012-0309-1
https://doi.org/10.1109/ASE.2011.6100104
http://d-nb.info/1054564477
http://doi.acm.org/10.1145/2432497.2432504
http://doi.acm.org/10.1145/1926385.1926428
http://doi.acm.org/10.1145/1926385.1926428
https://doi.org/10.1007/978-3-319-50230-4_11
https://doi.org/10.1007/978-3-319-50230-4_11
http://journal.ub.tu-berlin.de/eceasst/article/view/736

164 bibliography

[75] Java Language Specification, Oracle America Inc. http://docs.oracle.com/
javase/specs/jls/se7/html/index.html, 2017. [Online; accessed 26-Ju-
ly-2017]. (Cited on page 15.)

[76] Hsinyi Jiang, TienN.Nguyen, Carl K. Chang, and Fei Dong. Traceability Link
Evolution Management with Incremental Latent Semantic Indexing. In 31st
Annual International Computer Software and Applications Conference, COMPSAC
2007, Beĳing, China, July 24-27, 2007. Volume 1, pages 309–316, 2007. doi: 10.
1109/COMPSAC.2007.225. URL https://doi.org/10.1109/COMPSAC.2007.
225. (Cited on page 78.)

[77] Frédéric Jouault and Massimo Tisi. Towards Incremental Execution of ATL
Transformations. In Theory and Practice of Model Transformations, Third In-
ternational Conference, ICMT 2010, Malaga, Spain, June 28-July 2, 2010. Pro-
ceedings, pages 123–137, 2010. doi: 10.1007/978-3-642-13688-7_9. URL
https://doi.org/10.1007/978-3-642-13688-7_9. (Cited on page 123.)

[78] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev, and Patrick
Valduriez. ATL: a QVT-like transformation language. In Companion to the
21th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, OOPSLA 2006, October 22-26, 2006, Port-
land, Oregon, USA, pages 719–720, 2006. doi: 10.1145/1176617.1176691. URL
http://doi.acm.org/10.1145/1176617.1176691. (Cited on page 123.)

[79] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger, and
Manuel Wimmer. Model Transformation By-Example: A Survey of the First
Wave. In Conceptual Modelling and Its Theoretical Foundations - Essays Dedi-
cated to Bernhard Thalheim on the Occasion of His 60th Birthday, pages 197–215,
2012. doi: 10.1007/978-3-642-28279-9_15. URL https://doi.org/10.1007/
978-3-642-28279-9_15. (Cited on page 122.)

[80] Richard M. Karp. Reducibility Among Combinatorial Problems. In Proceed-
ings of a symposium on the Complexity of Computer Computations, held March
20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights,
New York., pages 85–103, 1972. URL http://www.cs.berkeley.edu/~luca/
cs172/karp.pdf. (Cited on page 74.)

[81] Marouane Kessentini, Houari A. Sahraoui, and Mounir Boukadoum. Model
Transformation as an Optimization Problem. In Model Driven Engineer-
ing Languages and Systems, 11th International Conference, MoDELS 2008,
Toulouse, France, September 28 - October 3, 2008. Proceedings, pages 159–173,
2008. doi: 10.1007/978-3-540-87875-9_12. URL https://doi.org/10.1007/
978-3-540-87875-9_12. (Cited on page 54.)

[82] Norbert Kiesel, Andy Schürr, and BernhardWestfechtel. GRAS:AGraph-Ori-
ented Software Engineering Database System. In Building Tightly Integrated
Software Development Environments: The IPSEN Approach, pages 397–425, 1996.
URL http://link.springer.com/chapter/10.1007/BFb0035688. (Cited on
page 123.)

http://docs.oracle.com/javase/specs/jls/se7/html/index.html
http://docs.oracle.com/javase/specs/jls/se7/html/index.html
https://doi.org/10.1109/COMPSAC.2007.225
https://doi.org/10.1109/COMPSAC.2007.225
https://doi.org/10.1007/978-3-642-13688-7_9
http://doi.acm.org/10.1145/1176617.1176691
https://doi.org/10.1007/978-3-642-28279-9_15
https://doi.org/10.1007/978-3-642-28279-9_15
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
http://www.cs.berkeley.edu/~luca/cs172/karp.pdf
https://doi.org/10.1007/978-3-540-87875-9_12
https://doi.org/10.1007/978-3-540-87875-9_12
http://link.springer.com/chapter/10.1007/BFb0035688

bibliography 165

[83] Ekkart Kindler, Vladimir Rubin, and Robert Wagner. An Adaptable TGG
Interpreter for In-Memory Model Transformation. In Proc. of the 2nd Interna-
tional Fujaba Days 2004, Darmstadt, Germany, volume tr-ri-04-253 of Technical
Report, pages 35–38. University of Paderborn, 2004. (Cited on page 4.)

[84] Felix Klar, Sebastian Rose, andAndy Schürr. TiE - A Tool Integration Environ-
ment. In Proceedings of the 5th ECMDA Traceability Workshop, volume WP09-0
of CTIT Workshop Proceedings, pages 39–48, 2009. (Cited on page 126.)

[85] Felix Klar, Marius Lauder, Alexander Königs, and Andy Schürr. Extended
Triple Graph Grammars with Efficient and Compatible Graph Transla-
tors. In Graph Transformations and Model-Driven Engineering - Essays Ded-
icated to Manfred Nagl on the Occasion of his 65th Birthday, pages 141–174,
2010. doi: 10.1007/978-3-642-17322-6_8. URL https://doi.org/10.1007/
978-3-642-17322-6_8. (Cited on page 38, 101, 102, and 124.)

[86] Lilĳa Klassen and Robert Wagner. EMorF - A tool for model transfor-
mations. ECEASST, 54, 2012. URL http://journal.ub.tu-berlin.de/
eceasst/article/view/768. (Cited on page 4 and 84.)

[87] Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. BiGUL: a formally verified
core language for putback-based bidirectional programming. In Proceedings
of the 2016 ACM SIGPLANWorkshop on Partial Evaluation and ProgramManipu-
lation, PEPM 2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 61–72,
2016. doi: 10.1145/2847538.2847544. URL http://doi.acm.org/10.1145/
2847538.2847544. (Cited on page 4 and 121.)

[88] D. S. Kolovos, D. Di Ruscio, A. Pierantonio, and R. F. Paige. Different models
formodelmatching:Ananalysis of approaches to supportmodel differencing.
In 2009 ICSE Workshop on Comparison and Versioning of Software Models, pages
1–6, 2009. doi: 10.1109/CVSM.2009.5071714. (Cited on page 79.)

[89] Simon Frederick Königs, Grischa Beier, Asmus Figge, and Rainer Stark.
Traceability in Systems Engineering - Review of industrial practices,
state-of-the-art technologies and new research solutions. Advanced Engi-
neering Informatics, 26(4):924–940, 2012. doi: 10.1016/j.aei.2012.08.002. URL
https://doi.org/10.1016/j.aei.2012.08.002. (Cited on page 78.)

[90] Thomas Kühne. Matters of (Meta-)Modeling. Software and System Modeling,
5(4):369–385, 2006. URL https://doi.org/10.1007/s10270-006-0017-9.
(Cited on page 1.)

[91] Dilshodbek Kuryazov. Delta Operation Language for Model Difference Rep-
resentation. In 44. Jahrestagung der Gesellschaft für Informatik, Informatik 2014,
Big Data - Komplexität meistern, 22.-26. September 2014 in Stuttgart, Deutsch-
land, pages 2221–2232, 2014. URL http://subs.emis.de/LNI/Proceedings/
Proceedings232/article51.html. (Cited on page 79.)

[92] Leen Lambers, Stephan Hildebrandt, Holger Giese, and Fernando Orejas. At-
tribute Handling for Bidirectional Model Transformations: The Triple Graph

https://doi.org/10.1007/978-3-642-17322-6_8
https://doi.org/10.1007/978-3-642-17322-6_8
http://journal.ub.tu-berlin.de/eceasst/article/view/768
http://journal.ub.tu-berlin.de/eceasst/article/view/768
http://doi.acm.org/10.1145/2847538.2847544
http://doi.acm.org/10.1145/2847538.2847544
https://doi.org/10.1016/j.aei.2012.08.002
https://doi.org/10.1007/s10270-006-0017-9
http://subs.emis.de/LNI/Proceedings/Proceedings232/article51.html
http://subs.emis.de/LNI/Proceedings/Proceedings232/article51.html

166 bibliography

Grammar Case. ECEASST, 49, 2012. URL http://journal.ub.tu-berlin.
de/eceasst/article/view/706. (Cited on page 22.)

[93] Marius Lauder, Anthony Anjorin, Gergely Varró, and Andy Schürr.
Efficient Model Synchronization with Precedence Triple Graph Gram-
mars. In Graph Transformations - 6th International Conference, ICGT
2012, Bremen, Germany, September 24-29, 2012. Proceedings, pages 401–415,
2012. doi: 10.1007/978-3-642-33654-6_27. URL https://doi.org/10.1007/
978-3-642-33654-6_27. (Cited on page 84, 100, 119, and 120.)

[94] Marius Paul Lauder. Incremental model synchronization with precedence-driven
triple graph grammars. PhD thesis, Darmstadt University of Technology, Ger-
many, 2013. URL http://tuprints.ulb.tu-darmstadt.de/3352/. (Cited
on page 118.)

[95] Erhan Leblebici. Towards a Graph Grammar-Based Approach to Inter-Model
Consistency Checks with Traceability Support. In Proceedings of the 5th Inter-
national Workshop on Bidirectional Transformations, Bx 2016, co-located with The
European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eind-
hoven, The Netherlands, April 8, 2016., pages 35–39, 2016. (Cited on page 39.)

[96] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. Developing eMoflon
with eMoflon. In Theory and Practice of Model Transformations - 7th Interna-
tional Conference, ICMT 2014, Held as Part of STAF 2014, York, UK, July 21-22,
2014. Proceedings, pages 138–145, 2014. URL https://doi.org/10.1007/
978-3-319-08789-4_10. (Cited on page 4.)

[97] Erhan Leblebici, Anthony Anjorin, Andy Schürr, Stephan Hildebrandt, Jan
Rieke, and Joel Greenyer. A Comparison of Incremental Triple Graph Gram-
mar Tools. ECEASST, 67, 2014. URL http://journal.ub.tu-berlin.de/
eceasst/article/view/939. (Cited on page 137.)

[98] Erhan Leblebici, Anthony Anjorin, Andy Schürr, and Gabriele Taentzer. Mul-
ti-amalgamated Triple GraphGrammars. InGraph Transformation - 8th Interna-
tional Conference, ICGT 2015, Held as Part of STAF 2015, L’Aquila, Italy, July 21-23,
2015. Proceedings, pages 87–103, 2015. doi: 10.1007/978-3-319-21145-9_6. URL
https://doi.org/10.1007/978-3-319-21145-9_6. (Cited on page 38.)

[99] Erhan Leblebici, Anthony Anjorin, Lars Fritsche, Gergely Varró, and Andy
Schürr. Leveraging Incremental PatternMatching Techniques for Model Syn-
chronisation. In Graph Transformation - 10th International Conference, ICGT
2017, Held as Part of STAF 2017, Marburg, Germany, July 18-19, 2017, Proceed-
ings, pages 179–195, 2017. doi: 10.1007/978-3-319-61470-0_11. URL https:
//doi.org/10.1007/978-3-319-61470-0_11. (Cited on page 83 and 96.)

[100] Erhan Leblebici, Anthony Anjorin, and Andy Schürr. Inter-model Consis-
tency Checking Using Triple Graph Grammars and Linear Optimization
Techniques. In Fundamental Approaches to Software Engineering - 20th Inter-
national Conference, FASE 2017, Held as Part of the European Joint Conferences on

http://journal.ub.tu-berlin.de/eceasst/article/view/706
http://journal.ub.tu-berlin.de/eceasst/article/view/706
https://doi.org/10.1007/978-3-642-33654-6_27
https://doi.org/10.1007/978-3-642-33654-6_27
http://tuprints.ulb.tu-darmstadt.de/3352/
https://doi.org/10.1007/978-3-319-08789-4_10
https://doi.org/10.1007/978-3-319-08789-4_10
http://journal.ub.tu-berlin.de/eceasst/article/view/939
http://journal.ub.tu-berlin.de/eceasst/article/view/939
https://doi.org/10.1007/978-3-319-21145-9_6
https://doi.org/10.1007/978-3-319-61470-0_11
https://doi.org/10.1007/978-3-319-61470-0_11

bibliography 167

Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, pages 191–207, 2017. (Cited on page 39.)

[101] Erhan Leblebici, Anthony Anjorin, Andy Schürr, and Gabriele Taentzer. Mul-
ti-amalgamated triple graph grammars: Formal foundation and application
to visual language translation. J. Vis. Lang. Comput., 42:99–121, 2017. doi:
10.1016/j.jvlc.2016.03.001. URL https://doi.org/10.1016/j.jvlc.2016.
03.001. (Cited on page 38.)

[102] Andrea De Lucia, Rocco Oliveto, and Paola Sgueglia. Incremental Approach
and User Feedbacks: a Silver Bullet for Traceability Recovery. In 22nd IEEE
International Conference on Software Maintenance (ICSM 2006), 24-27 September
2006, Philadelphia, Pennsylvania, USA, pages 299–309, 2006. doi: 10.1109/ICSM.
2006.32. URL https://doi.org/10.1109/ICSM.2006.32. (Cited on page 78.)

[103] Nuno Macedo and Alcino Cunha. Implementing QVT-R Bidirectional
Model Transformations Using Alloy. In Fundamental Approaches to Soft-
ware Engineering - 16th International Conference, FASE 2013, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings, pages 297–311,
2013. doi: 10.1007/978-3-642-37057-1_22. URL https://doi.org/10.1007/
978-3-642-37057-1_22. (Cited on page 76, 77, and 121.)

[104] Patrick Mäder, Orlena Gotel, and Ilka Philippow. Enabling Automated
Traceability Maintenance through the Upkeep of Traceability Relations. In
Model Driven Architecture - Foundations and Applications, 5th European Con-
ference, ECMDA-FA 2009, Enschede, The Netherlands, June 23-26, 2009. Pro-
ceedings, pages 174–189, 2009. doi: 10.1007/978-3-642-02674-4_13. URL
https://doi.org/10.1007/978-3-642-02674-4_13. (Cited on page 78.)

[105] Usman Mansoor, Marouane Kessentini, Manuel Wimmer, and Kalyanmoy
Deb. Multi-view refactoring of class and activity diagrams using a mul-
ti-objective evolutionary algorithm. Software Quality Journal, 25(2):473–501,
2017. doi: 10.1007/s11219-015-9284-4. URL https://doi.org/10.1007/
s11219-015-9284-4. (Cited on page 79.)

[106] John McCarthy. The Inversion of Functions Defined by Turing Machines. In
J. McCarthy C.E. Shannon, editor, Automata Studies, Annals of Mathematical
Studies, number 34, pages 177–181. Princeton University Press, 1956. (Cited
on page 121.)

[107] MetaObject Facility, ObjectManagementGroup. http://www.omg.org/mof/,
2017. [Online; accessed 08-June-2017]. (Cited on page 2.)

[108] Daniel P. Miranker. TREAT: A Better Match Algorithm for AI Production
System Matching. In Proceedings of the 6th National Conference on Artificial
Intelligence. Seattle, WA, July 1987., pages 42–47, 1987. URL http://www.aaai.
org/Library/AAAI/1987/aaai87-008.php. (Cited on page 141.)

https://doi.org/10.1016/j.jvlc.2016.03.001
https://doi.org/10.1016/j.jvlc.2016.03.001
https://doi.org/10.1109/ICSM.2006.32
https://doi.org/10.1007/978-3-642-37057-1_22
https://doi.org/10.1007/978-3-642-37057-1_22
https://doi.org/10.1007/978-3-642-02674-4_13
https://doi.org/10.1007/s11219-015-9284-4
https://doi.org/10.1007/s11219-015-9284-4
http://www.omg.org/mof/
http://www.aaai.org/Library/AAAI/1987/aaai87-008.php
http://www.aaai.org/Library/AAAI/1987/aaai87-008.php

168 bibliography

[109] Daniel P. Miranker, David A. Brant, Bernie J. Lofaso, and David Gadbois. On
the Performance of Lazy Matching in Production Systems. In Proceedings of
the 8th National Conference on Artificial Intelligence. Boston, Massachusetts, July
29 - August 3, 1990, 2 Volumes., pages 685–692, 1990. URL http://www.aaai.
org/Library/AAAI/1990/aaai90-103.php. (Cited on page 141.)

[110] Model Driven Architecture, Object Management Group. http://www.omg.
org/mda/, 2017. [Online; accessed 08-June-2017]. (Cited on page 2.)

[111] Peter Naur and Brian Randell, editors. Software Engineering: Report of a Con-
ference Sponsored by the NATO Science Committee, Garmisch, Germany, 7-11 Oct.
1968, Brussels, Scientific Affairs Division, NATO. 1969. (Cited on page 1.)

[112] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve M. Easterbrook,
and Pamela Zave. Matching and Merging of Statecharts Specifications. In
29th International Conference on Software Engineering (ICSE 2007), Minneapolis,
MN, USA, May 20-26, 2007, pages 54–64, 2007. doi: 10.1109/ICSE.2007.50.
URL https://doi.org/10.1109/ICSE.2007.50. (Cited on page 79.)

[113] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment.
In Proceedings of the 22nd International Conference on on Software Engineering,
ICSE 2000, Limerick Ireland, June 4-11, 2000., pages 742–745, 2000. doi: 10.1145/
337180.337620. URL http://doi.acm.org/10.1145/337180.337620. (Cited
on page 125.)

[114] NX, Siemens AG. http://www.plm.automation.siemens.com/en/

products/nx/, 2017. [Online; accessed 20-November-2017]. (Cited on
page 144.)

[115] Object Constraint Language, Object Management Group. http://www.omg.
org/spec/OCL/, 2017. [Online; accessed 21-September-2017]. (Cited on
page 37.)

[116] Fernando Orejas and Elvira Pino. Correctness of Incremental Model Syn-
chronization with Triple Graph Grammars. In Theory and Practice of
Model Transformations - 7th International Conference, ICMT 2014, Held as
Part of STAF 2014, York, UK, July 21-22, 2014. Proceedings, pages 74–90,
2014. doi: 10.1007/978-3-319-08789-4_6. URL https://doi.org/10.1007/
978-3-319-08789-4_6. (Cited on page 84, 100, 119, and 120.)

[117] Parasolid, Siemens AG. http://www.plm.automation.siemens.com/de/

products/open/parasolid/, 2017. [Online; accessed 20-November-2017].
(Cited on page 146.)

[118] Benjamin C. Pierce. A taste of category theory for computer scientists. Techni-
cal report, Carnegie Mellon University, Computer Science Department, 1988.
(Cited on page 18.)

[119] Terrence W. Pratt. Pair Grammars, Graph Languages and String-to--
Graph Translations. J. Comput. Syst. Sci., 5(6):560–595, 1971. doi: 10.1016/

http://www.aaai.org/Library/AAAI/1990/aaai90-103.php
http://www.aaai.org/Library/AAAI/1990/aaai90-103.php
http://www.omg.org/mda/
http://www.omg.org/mda/
https://doi.org/10.1109/ICSE.2007.50
http://doi.acm.org/10.1145/337180.337620
http://www.plm.automation.siemens.com/en/products/nx/
http://www.plm.automation.siemens.com/en/products/nx/
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
https://doi.org/10.1007/978-3-319-08789-4_6
https://doi.org/10.1007/978-3-319-08789-4_6
http://www.plm.automation.siemens.com/de/products/open/parasolid/
http://www.plm.automation.siemens.com/de/products/open/parasolid/

bibliography 169

S0022-0000(71)80016-8. URL https://doi.org/10.1016/S0022-0000(71)
80016-8. (Cited on page 4 and 26.)

[120] Query/View/Transformation, ObjectManagementGroup. http://www.omg.
org/spec/QVT/, 2017. [Online; accessed 08-June-2017]. (Cited on page 4, 39,
75, and 121.)

[121] István Ráth, Gábor Bergmann, András Ökrös, and Dániel Varró. Live
Model Transformations Driven by Incremental Pattern Matching. In
Theory and Practice of Model Transformations, First International Conference,
ICMT 2008, Zürich, Switzerland, July 1-2, 2008, Proceedings, pages 107–121,
2008. doi: 10.1007/978-3-540-69927-9_8. URL https://doi.org/10.1007/
978-3-540-69927-9_8. (Cited on page 123.)

[122] Raghu Reddy, Robert France, Franck Fleuery, and Benoit Baudry. Model com-
position - a signature based approach. In Aspect Oriented Modeling workshop
held with MODELS/UML 2005, Montego, page 2, 2005. (Cited on page 79.)

[123] ArendRensink. Nested quantification in graph transformation rules. InGraph
Transformations, Third International Conference, ICGT 2006, Natal, Rio Grande
do Norte, Brazil, September 17-23, 2006, Proceedings, pages 1–13, 2006. doi:
10.1007/11841883_1. URL https://doi.org/10.1007/11841883_1. (Cited
on page 153.)

[124] Arend Rensink. The Edge of Graph Transformation - Graphs for Behavioural
Specification. In Graph Transformations and Model-Driven Engineering - Essays
Dedicated to Manfred Nagl on the Occasion of his 65th Birthday, pages 6–32,
2010. doi: 10.1007/978-3-642-17322-6_2. URL https://doi.org/10.1007/
978-3-642-17322-6_2. (Cited on page 22.)

[125] Reqtify, Dassault Systems. https://www.3ds.com/products-services/

catia/products/reqtify/, 2017. [Online; accessed 20-November-2017].
(Cited on page 77.)

[126] SebastianRose,Marius Lauder,Michael Schlereth, andAndy Schürr. AMulti-
dimensional Approach for Concurrent Model-Driven Automation Engineer-
ing. InModel-Driven Domain Analysis and Software Development - Architectures
and Functions., pages 90–113. 2011. doi: 10.4018/978-1-61692-874-2.ch005.
URL https://doi.org/10.4018/978-1-61692-874-2.ch005. (Cited on
page 4 and 142.)

[127] Andy Schürr. Introduction to PROGRESS, an Attribute Graph Grammar
Based Specification Language. InGraph-Theoretic Concepts in Computer Science,
15th International Workshop, WG ’89, Castle Rolduc, The Netherlands, June 14-16,
1989, Proceedings, pages 151–165, 1989. doi: 10.1007/3-540-52292-1_11. URL
https://doi.org/10.1007/3-540-52292-1_11. (Cited on page 123.)

[128] Andy Schürr. Specification of Graph Translators with Triple Graph Gram-
mars. In Graph-Theoretic Concepts in Computer Science, 20th International Work-
shop,WG ’94,Herrsching,Germany, June 16-18, 1994, Proceedings, pages 151–163,

https://doi.org/10.1016/S0022-0000(71)80016-8
https://doi.org/10.1016/S0022-0000(71)80016-8
http://www.omg.org/spec/QVT/
http://www.omg.org/spec/QVT/
https://doi.org/10.1007/978-3-540-69927-9_8
https://doi.org/10.1007/978-3-540-69927-9_8
https://doi.org/10.1007/11841883_1
https://doi.org/10.1007/978-3-642-17322-6_2
https://doi.org/10.1007/978-3-642-17322-6_2
https://www.3ds.com/products-services/catia/products/reqtify/
https://www.3ds.com/products-services/catia/products/reqtify/
https://doi.org/10.4018/978-1-61692-874-2.ch005
https://doi.org/10.1007/3-540-52292-1_11

170 bibliography

1994. URL https://doi.org/10.1007/3-540-59071-4_45. (Cited on page 4
and 26.)

[129] Andy Schürr and Felix Klar. 15 Years of Triple Graph Grammars.
In Graph Transformations, 4th International Conference, ICGT 2008, Leices-
ter, United Kingdom, September 7-13, 2008. Proceedings, pages 411–425,
2008. doi: 10.1007/978-3-540-87405-8_28. URL https://doi.org/10.1007/
978-3-540-87405-8_28. (Cited on page 51 and 117.)

[130] Petri Selonen and Markus Kettunen. Metamodel-Based Inference of Inter--
Model Correspondence. In 11th European Conference on Software Maintenance
and Reengineering, Software Evolution in Complex Software Intensive Systems,
CSMR 2007, 21-23 March 2007, Amsterdam, The Netherlands, pages 71–80, 2007.
doi: 10.1109/CSMR.2007.31. URL https://doi.org/10.1109/CSMR.2007.
31. (Cited on page 79.)

[131] Matthew Stephan and James R. Cordy. A Survey of Model Compar-
ison Approaches and Applications. In MODELSWARD 2013 - Proceed-
ings of the 1st International Conference on Model-Driven Engineering and Soft-
ware Development, Barcelona, Spain, 19 - 21 February, 2013, pages 265–277,
2013. doi: 10.5220/0004311102650277. URL https://doi.org/10.5220/
0004311102650277. (Cited on page 79.)

[132] Perdita Stevens. A Landscape of Bidirectional Model Transformations. In
Generative and Transformational Techniques in Software Engineering II, Interna-
tional Summer School, GTTSE 2007, Braga, Portugal, July 2-7, 2007. Revised Papers,
pages 408–424, 2007. URL https://doi.org/10.1007/978-3-540-88643-3_
10. (Cited on page 3.)

[133] Perdita Stevens. A Simple Game-Theoretic Approach to Checkonly QVT
Relations. In Theory and Practice of Model Transformations, Second International
Conference, ICMT 2009, Zurich, Switzerland, June 29-30, 2009. Proceedings, pages
165–180, 2009. doi: 10.1007/978-3-642-02408-5_12. URL https://doi.org/
10.1007/978-3-642-02408-5_12. (Cited on page 76 and 77.)

[134] Perdita Stevens. Bidirectionalmodel transformations inQVT: semantic issues
and open questions. Software and System Modeling, 9(1):7–20, 2010. URL
https://doi.org/10.1007/s10270-008-0109-9. (Cited on page 4 and 121.)

[135] Atakan Sünnetcioglu, Elisabeth Brandenburg, Uwe Rothenburg, and Rainer
Stark. ModelTracer: User-friendly Traceability for the Development of
Mechatronic Products. Procedia Technology, 26(Supplement):365–373, 2016.
doi: 10.1016/j.protcy.2016.08.047. URL http://www.sciencedirect.com/
science/article/pii/S2212017316303942. (Cited on page 78.)

[136] Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan De Lara, Tihamer Lev-
endovszky, Ulrike Prange, Daniel Varro, and et al. Model Transformations
by Graph Transformations: A Comparative Study. In Model Transformations
in Practice Workshop at MoDELS 2005, MONTEGO, 2005. (Cited on page 122.)

https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1007/978-3-540-87405-8_28
https://doi.org/10.1007/978-3-540-87405-8_28
https://doi.org/10.1109/CSMR.2007.31
https://doi.org/10.1109/CSMR.2007.31
https://doi.org/10.5220/0004311102650277
https://doi.org/10.5220/0004311102650277
https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1007/978-3-540-88643-3_10
https://doi.org/10.1007/978-3-642-02408-5_12
https://doi.org/10.1007/978-3-642-02408-5_12
https://doi.org/10.1007/s10270-008-0109-9
http://www.sciencedirect.com/science/article/pii/S2212017316303942
http://www.sciencedirect.com/science/article/pii/S2212017316303942

bibliography 171

[137] Christoph Treude, Stefan Berlik, Sven Wenzel, and Udo Kelter. Difference
computation of large models. In Proceedings of the 6th joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2007, Dubrovnik, Croatia,
September 3-7, 2007, pages 295–304, 2007. doi: 10.1145/1287624.1287665.
URL http://doi.acm.org/10.1145/1287624.1287665. (Cited on page 79
and 129.)

[138] Trove. https://bitbucket.org/trove4j/trove, 2017. [Online; accessed
15-January-2018]. (Cited on page 138.)

[139] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek
Izsó, István Ráth, Zoltán Szatmári, and Dániel Varró. EMF-IncQuery: An
integrated development environment for live model queries. Sci. Comput.
Program., 98:80–99, 2015. doi: 10.1016/j.scico.2014.01.004. URL https://doi.
org/10.1016/j.scico.2014.01.004. (Cited on page 85 and 109.)

[140] UML Lab, Yatta Solutions. http://www.uml-lab.com/de/uml-lab/, 2017.
[Online; accessed 28-June-2017]. (Cited on page 6 and 31.)

[141] Unified Modeling Language, Object Management Group. http://www.omg.
org/spec/UML/, 2017. [Online; accessed 08-June-2017]. (Cited on page 2, 15,
and 16.)

[142] Gergely Varró and Frederik Deckwerth. A Rete Network Construc-
tion Algorithm for Incremental Pattern Matching. In Theory and Prac-
tice of Model Transformations - 6th International Conference, ICMT 2013,
Budapest, Hungary, June 18-19, 2013. Proceedings, pages 125–140, 2013.
doi: 10.1007/978-3-642-38883-5_13. URL https://doi.org/10.1007/

978-3-642-38883-5_13. (Cited on page 85 and 109.)

[143] Gergely Varró, Dániel Varró, and Andy Schürr. Incremental Graph
Pattern Matching: Data Structures and Initial Experiments. ECEASST,
4, 2006. URL http://journal.ub.tu-berlin.de/index.php/eceasst/
article/view/12. (Cited on page 123.)

[144] Szilvia Varró-Gyapay and Dániel Varró. Optimization in Graph Trans-
formation Systems Using Petri Net Based Techniques. ECEASST,
2, 2006. URL http://journal.ub.tu-berlin.de/index.php/eceasst/
article/view/61. (Cited on page 80.)

[145] Antje von Knethen and Barbara Paech. A survey on tracing approaches in
practice and research. Technical report, Fraunhofer IESE, 2002. (Cited on
page 78.)

[146] Bernhard Westfechtel. Case-based exploration of bidirectional transforma-
tions in QVT Relations. Software & Systems Modeling, 2016. doi: 10.1007/
s10270-016-0527-z. URL https://doi.org/10.1007/s10270-016-0527-z.
(Cited on page 4.)

http://doi.acm.org/10.1145/1287624.1287665
https://bitbucket.org/trove4j/trove
https://doi.org/10.1016/j.scico.2014.01.004
https://doi.org/10.1016/j.scico.2014.01.004
http://www.uml-lab.com/de/uml-lab/
http://www.omg.org/spec/UML/
http://www.omg.org/spec/UML/
https://doi.org/10.1007/978-3-642-38883-5_13
https://doi.org/10.1007/978-3-642-38883-5_13
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/12
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/12
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/61
http://journal.ub.tu-berlin.de/index.php/eceasst/article/view/61
https://doi.org/10.1007/s10270-016-0527-z

172 bibliography

[147] StefanWinkler and Jens von Pilgrim. A survey of traceability in requirements
engineering and model-driven development. Software and SystemModeling, 9
(4):529–565, 2010. doi: 10.1007/s10270-009-0145-0. URL https://doi.org/
10.1007/s10270-009-0145-0. (Cited on page 78.)

[148] Zhenchang Xing and Eleni Stroulia. UMLDiff: An Algorithm for Object
Oriented Design Differencing. In 20th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2005), November 7-11, 2005, Long Beach,
CA, USA, pages 54–65, 2005. doi: 10.1145/1101908.1101919. URL http://
doi.acm.org/10.1145/1101908.1101919. (Cited on page 79.)

[149] XML Metadata Interchange, Object Management Group. http://www.omg.
org/spec/XMI/, 2017. [Online; accessed 08-June-2017]. (Cited on page 2.)

[150] Xtend,EclipseFoundation. http://www.eclipse.org/xtend/, 2017. [Online;
accessed 21-November-2017]. (Cited on page 146.)

[151] Xtext, Eclipse Foundation. http://www.eclipse.org/Xtext/, 2017. [Online;
accessed 21-November-2017]. (Cited on page 145.)

[152] YAKINDU, itemis. https://www.itemis.com/en/yakindu/, 2017. [Online;
accessed 20-November-2017]. (Cited on page 77.)

[153] Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. Towards a Re-
versible Functional Language. In Reversible Computation - Third International
Workshop, RC 2011, Gent, Belgium, July 4-5, 2011. Revised Papers, pages 14–29,
2011. doi: 10.1007/978-3-642-29517-1_2. URL https://doi.org/10.1007/
978-3-642-29517-1_2. (Cited on page 4 and 121.)

https://doi.org/10.1007/s10270-009-0145-0
https://doi.org/10.1007/s10270-009-0145-0
http://doi.acm.org/10.1145/1101908.1101919
http://doi.acm.org/10.1145/1101908.1101919
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/
http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/
https://www.itemis.com/en/yakindu/
https://doi.org/10.1007/978-3-642-29517-1_2
https://doi.org/10.1007/978-3-642-29517-1_2

CURR ICULUM VITAE

Personal Details
Date of Brith 31. 05. 1988
Place of Birth Istanbul, Turkey
Nationality Turkish

Work Experience
07/2013–06/2018 Research and Teaching Assistant

Technische Universität Darmstadt
09/2011–03/2012 Intern, Working Student

msg systems AG, Frankfurt
11/2010–05/2011 Graduate Student Assistant

Technische Universität Darmstadt
04/2009–02/2010 Undergraduate Student Assistant

Technische Universität Darmstadt

Education
10/2010–05/2013 M.Sc., Electrical Engineering and Information Technology,

Technische Universität Darmstadt
10/2007–10/2010 B.Sc., Electrical Engineering and Information Technology,

Technische Universität Darmstadt
09/2002–06/2007 German Abitur

Istanbul High School - The German Department

	Declaration
	Acknowledgments
	Abstract
	Contents
	Acronyms
	1 Overview and Motivation
	1.1 Co-existing Models and Bidirectional Transformations (BX)
	1.2 Challenges of BX in an MDE context
	1.3 Stakeholders and Requirements
	1.4 Contributions and the Structure of the Thesis

	2 Fundamentals and Running Example
	2.1 Graphs and Triple Graphs
	2.2 Triple Graph Grammars (TGGs)
	2.3 An Extended Consistency Specification for the Running Example
	2.4 Summary, Open Issues, and Existing Extensions to TGGs

	3 Consistency Checking with TGGs
	3.1 Examples of Consistency Checking
	3.2 Consistency Rules
	3.3 Wrong Choices of Consistency Rule Applications
	3.4 Integer Linear Programming (ILP) Techniques
	3.5 Consistency Checking with TGGs and ILP
	3.6 Related Work
	3.7 Summary and Future Work

	4 Consistency Restoration with TGGs
	4.1 Examples of Consistency Restoration
	4.2 Forward Rules
	4.3 Wrong Choices of Forward Rule Applications
	4.4 Application Conditions
	4.5 Marking-Complete Forward Rules
	4.6 A Consistency Restoration Procedure
	4.7 Related Work
	4.8 Summary and Future Work

	5 Tool Support, Experimental Evaluation, and Practical Application
	5.1 The Meta-Tool eMoflon
	5.2 Experimental Evaluation of Consistency Checking
	5.3 Experimental Evaluation of Consistency Restoration
	5.4 The GraTraM Project
	5.5 Summary and Future Work

	6 Conclusion
	Bibliography
	Curriculum Vitae

