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SUMMARY 

With the rapid development of modern industry, energy shortage and environmental 

pollution are getting more and more serious. Groundwater pollution is one of the most 

important problems. A multitude of remediation techniques in situ or ex situ have been used 

to treat contaminated groundwater. This thesis was to investigate whether groundwater 

contaminated mainly by benzene and ammonium can be remediated by constructed 

wetlands in combination with microbial electrochemical technology. The objectives of this 

thesis are (i) to develop and test systems for removing pollutants and simultaneously 

recovering energy from contaminated groundwater, (ii) to maximize the benefits of both 

constructed wetland and microbial electrochemical technology while treating contaminated 

groundwater, (iii) to elucidate the underlying electrochemical reactions and pollutant 

degradation pathways, and (iv) to investigate microbial active species and functional 

proteins involved in benzene degradation and ammonium removal. 

A microbial fuel cell (MFC) equipped with an aerated cathode and a control without 

aeration at the cathode were designed to remove benzene and ammonium from 

contaminated groundwater collected in the Leuna site (Saxony-Anhalt, Germany). The 

performance of pollutant removal and electricity generation was investigated and compared 

in the two reactors. Electrochemical processes occurring in the MFC were determined by 

benzene and ammonium spiking experiments as well as oxygen interruption experiments. 

Additionally, the biodegradation pathways and dominant organisms were elucidated by 

compound specific stable isotope analysis (CSIA) and Illumina sequencing. The results 

indicated the principal feasibility of treating benzene and ammonium contaminated 

groundwater by a MFC equipped with an aerated cathode. Benzene (~15 mg/L) was 

completely removed in the MFC, of which 80% disappeared already at the anoxic anode. 

Ammonium (~20 mg/L) was oxidized to nitrate at the cathode; this reaction was not 

directly linked to electricity generation. The maximum power density was 316 mW/m
3
 net 

anoxic compartment (NAC) at a current density of 0.99 A/m
3
 NAC. Coulombic and energy 

efficiencies of 14% and 4% were obtained based on the anodic benzene degradation. 

Benzene was initially activated by enzymatic monohydroxylation at the oxygen-limited 

anode; the further anaerobic oxidation of the intermediate metabolites released electrons 

accompanied by electrons transfer to the anode. Dominant phylotypes at the MFC anode 

revealed by 16S rRNA Illumina sequencing were affiliated to the Chlorobiaceae, 

Rhodocyclaceae and Comamonadaceae, presumably associated with benzene degradation. 

Nitrification took place at the aerated cathode of the MFC and was catalyzed by phylotypes 
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belonging to the Nitrosomonadales and Nitrospirales. The control reactor failed to generate 

electricity, although phylotypes affiliated to the Chlorobiaceae, Rhodocyclaceae and 

Comamonadaceae were dominant as well; the control reactor can be thus regarded as a 

mesocosm in which granular graphite was colonized by benzene degraders, but showed a 

lower benzene removal efficiency compared to the MFC.  

In order to enhance benzene and ammonium removal while simultaneously 

harvesting energy, a constructed wetland integrated with microbial electrochemical 

technology (MET-CW) was established by embedding four anode modules into the sand 

bed and connecting it to a cathode placed in the open pond inside a bench-scale horizontal 

subsurface flow constructed wetland (HSSF-CW). Compared with the control CW, 

enhanced benzene and ammonium removal efficiencies were found in the MET-CW. The 

electrochemical performances of anode modules located at the four different depths were 

compared; the results showed that anode modules located in the deep layer (Module 3 and 

4) had the relatively high power densities whereas the power densities located in the upper 

layer (modules 1 and 2) were extremely low. The initial activity mechanism of benzene 

degradation was analyzed by CSIA. Ammonium removal processes were assessed using 

nitrogen isotope fractionation of ammonium. Functional proteins and active microbial 

species involved in nitrogen transformation processes were detected using protein-based 

stable isotope probing (protein-SIP) with in situ feeding of 
15

N-NH4
+
. Additionally, 

potential denitrification and anammox rates were measured using Nitrogen isotope tracing. 

The results demonstrated that benzene and ammonium removal in a CW can be improved 

by combination with microbial electrochemical technology. The enhanced benzene removal 

was linked to the use of the anode modules as electron acceptor, whereas efficient 

ammonium removal was probably attributed to the elimination of inhibition effects by the 

co-contaminant benzene. Benzene was initially activated by monohydroxylation, forming 

intermediates which were subsequently oxidized accompanied by extracellular electron 

transfer, leading to current production. Partial nitrification accompanied by either 

heterotrophic denitrification or nitrifier-denitrification was mainly responsible for NH4
+
-N 

removal in the MET-CW, whereas anammox played a minor role. However, the 

contribution of anammox was markedly increased at the location near to the anode 

modules. 

In summary, this research indicated that microbial electrochemical technology can 

be used to improve the performance of pollutant removal while simultaneously harvesting 

energy from contaminated groundwater. Especially, the combination of MET with other 

traditional treatment approaches (e.g. constructed wetland) is a promising alternative to 

treat contaminated water. 
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ZUSAMMENFASSUNG 

Die rasante Entwicklung der modernen Industrie ist begleitet von einer größer 

werdenden Problematik des Energiemangels und der Umweltverschmutzung. 

Verschmutztes Grundwasser ist eines der größten Probleme. Eine Vielzahl von in situ oder 

ex situ-Sanierungstechniken zur Reinigung von kontaminiertem Grundwasser sind bekannt. 

In dieser vorliegenden Arbeit wurde untersucht, wie hauptsächlich durch Benzol und 

Ammonium verunreinigtes Grundwasser in Pflanzenkläranlagen kombiniert mit 

mikrobieller elektrochemischer Technologie gereinigt werden kann. Die Ziele dieser Arbeit 

waren (i) ein System zu entwickeln und auszutesten, mit dem Benzol und Ammonium aus 

dem Grundwasser entfernt und gleichzeitig Energie gewonnen werden kann und, (ii) die 

Vorteile der Kombination Pflanzenkläranlage – mikrobieller elektrochemischer 

Technologie bei der Behandlung von kontaminiertem Grundwasser zu maximieren, (iii) die 

verantwortlichen elektrochemische Reaktionen und Schadstoffabbauwege aufzuklären und 

(iv) die Benzol- und Ammonium-abbauenden mikrobiellen Gemeinschaften zu 

charakterisieren. 

Eine mikrobielle Brennstoffzelle (MFC) mit einer belüfteten Kathode und einer 

Kontrolle ohne Belüftung an der Kathode wurde entwickelt, um Benzol und Ammonium 

aus verunreinigtem Grundwasser vom Standort Leuna (Sachsen-Anhalt, Deutschland) zu 

entfernen. Die Effizienz der Schadstoffentfernung und Stromerzeugung wurde für beide 

Reaktoren bestimmt und miteinander verglichen. Die elektrochemischen Prozesse in der 

mit Benzol betriebenen MFC wurden durch Zugaben von Ammonium sowie durch 

Unterbrechung der Sauerstoffzufuhr experimentell bestimmt. Darüber hinaus wurden die 

mikrobiellen Abbauwege und dominanten Organismendurch komponentenspezifische 

Analyse stabiler Isotope und Illumina-Sequenzierung aufgeklärt. Die Ergebnisse zeigen die 

grundsätzliche Durchführbarkeit der Behandlung von mit Benzol und Ammonium 

verunreinigtem Grundwasser durch eine mit einer belüfteten Kathode ausgestatten MFC. 

Benzol (~15 mg/L) wurde in der MFC vollständig entfernt; 80% waren bereits in der 

anoxischen Anode verschwunden. Ammonium (~20 mg/L) wurde an der Kathode zu Nitrat 

oxidiert; dieser Prozess war nicht direkt mit der Stromerzeugung gekoppelt. Die maximale 

Leistungsdichte betrug 316 mW/m
3
 NAC bei einer Stromdichte von 0,99 A/m

3
. Coulomb- 

und Energieeffizienzen von 14% und 4% wurden für den anodischen Benzolabbau 

bestimmt. Benzol wurde durch enzymatische Monohydroxylierung an der 

sauerstofflimitierten Anode aktiviert; die weitere Oxidation von Metaboliten verlief 

anaerob, wobei die freigesetzten Elektronen auf die Anode übertragen wurden. An der 

MFC-Anode dominierten Phylotypen, die den Familien Chlorobiaceae, Rhodocyclaceae 
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und Comamonadaceae angehören und die vermutlich am Abbau von Benzol beteiligt 

waren. An der belüfteten Kathode der MFC traten Phylotypen der Nitrosomonadales und 

Nitrospirales gehäuft auf, die vermutlich die dort ablaufende Nitrifikation durchführten. 

Der Kontrollreaktor erzeugte keine Elektrizität, war aber ebenfalls mit Phylotypen der 

Chlorobiaceen, Rhodocyclaceen und Comamonadaceen besiedelt. Der Kontrollreaktor 

kann daher als Mesokosmos angesehen werden, bei dem körniger Graphit durch 

Organismen besiedelt wurde, die Benzol in geringerer Rate abbauten als in der MFC  

Darüber hinaus wurde im Labormaßstab eine Pflanzenkläranlage kombiniert mit 

mikrobieller elektrochemischer Technologie (MET-CW) durch Einbetten von vier 

Anodenmodulen in das Sandbett und Verbinden mit einer in der offenen Wassersäule 

platzierten Kathode (HSSF-CW); es sollte überprüft werden, ob es in dem System zu 

erhöhten Schadstoffabbauraten bei gleichzeitiger Produktion von elektrischer Energie 

kommt. Die Leistungen der Anodenmodule, die sich in vier verschiedenen Tiefen befanden, 

wurden verglichen. Der Benzolabbauweg wurde durch komponentenspezifische Analyse 

stabiler Isotopen analysiert. Der mikrobielle Abbau von Ammonium wurde mittels 

Stickstoffisotopenfraktionierung, einer Isotopenverfolgungstechnik sowie nach in situ-

Zugabe von 
15

N-markierten Ammoniums mittels proteinbasierten stable isotope probing 

(Protein-SIP) untersucht. Es konnte gezeigt werden, dass die Kombination von 

Pflanzenkläranlage und mikrobieller elektrochemischer Technologie den Abbau von 

Benzol und Ammonium stimuliert. Die Ergebnisse weisen darauf hin, dass die erhöhten 

Abbauleistungen für Benzol durch die Verwendung der Anodenmodule als 

Elektronenakzeptor ermöglicht wurde, während die effizientere Entfernung von 

Ammonium wahrscheinlich auf die Aufhebung von Inhibitionseffekten durch die Co-

Kontaminante Benzol zurückzuführen war. Benzol wurde initial durch 

Monohydroxylierung aktiviert, wobei vermutlich Zwischenprodukte gebildet wurden; diese 

wurden über die Anodenmodule oxidiert, was zur Stromproduktion führte. Ammonium 

wurde hauptsächlich über partielle Nitrifikation, begleitet von heterotropher Denitrifikation 

oder Nitrifizierer-Denitrifikation, aus dem MET-CW entfernt. Anammox spielte eine 

untergeordnete Rolle, der Anammox-Prozess wurde aber in Nähe der Anodenmodule 

deutlich stimuliert. 

Zusammenfassend konnte festgestellt werden, dass mittels mikrobieller 

elektrochemischer Technologie Grundwasserschadstoffe effizienter abgebaut werden 

können, bei gleichzeitiger Produktion von elektrischer Energie. Insbesondere die 

Kombination von MET mit traditionellen Technologien (z. B. Pflanzenkläranlagen) ist eine 

vielversprechende Alternative zur Behandlung von kontaminiertem Wasser. 
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 Introduction CHAPTER 1

1.1 Global groundwater contamination 

Groundwater is the largest reservoir of freshwater in the world, accounting for about 

97% of all accessible freshwater on earth (Gleick 2014). Groundwater is usually the 

primary source not only for drinking water but also for agriculture and industry in most 

areas over the world. For example, about 75% of drinking water supply comes from 

groundwater in the European Union (EU). Therefore, groundwater plays an essential role in 

the survival of humans and the development of society. Nowadays, groundwater 

contamination is mainly caused by industry, agriculture and human activities and become 

more and more serious with the rapidly development of economy and society. Numerous 

potentially contaminated sites are found worldwide. For example, a total of 2.5 million 

potentially polluted sites are estimated in the EU, of which 340,000 are expected to likely 

require remediation. A variety of contaminants have been detected in groundwater, such as 

arsenic, nitrate, heavy metals and organic compounds (Burmaster 2013). The most 

frequently observed contaminants in groundwater include heavy metals, mineral oil, nitrate 

and BTEX (benzene, toluene, ethylbenzene and xylene) (Panagos et al. 2013). Due to the 

multitude of polluted sites and various pollutants, remediating groundwater sustainably and 

efficiently is still challenging.  

1.1.1 Benzene and ammonium in contaminated groundwater 

Benzene contamination 

Benzene is a main aromatic hydrocarbon contaminant in groundwater and also often 

recalcitrant under anoxic conditions. Benzene is often derived from fossil fuels, particularly 

gasoline, and has been extensively used as solvent or chemical intermediate for the 

manufacture of plastics, resins, nylon, lubricants and pesticides. Benzene is also highly 

toxic and highly water-soluble (1.8 g L
-1

 at 25°C); it usually enters groundwater by the 

discharge of industrial wastewater, gasoline leakage of underground storage tanks or 

pipelines or accidental spills during transportation (Ghattas et al. 2017). According to SPBI 



Chapter 1                                                                                                             Introduction 

2 

(2012), if benzene-concentration in groundwater is above 50 µg L
-1

, the risk of vapors in 

buildings will increase; the concentration of above 500 µg L
-1 

will constitute a threat to 

surface water. The guideline value for benzene concentration in drinking water is set at 1 

µg L
-1 

in Germany (USEPA, 2005; DVGW, 2001). In 2012, global benzene production 

stood at approximately 42.9 million tons and the global benzene consumption exceeded 

42.89 million tons, with increase by more than 1.29 million tons compared to the previous 

year (Merchant Research and Consulting Ltd.). In 2017, the global benzene production will 

follow an upward trend and is forecast to go beyond 50.95 million tons. The large amount 

of production and consumption resulted in serious environmental problems for water, air 

and soil. Nowadays, benzene contaminated groundwater has becoming a widespread 

problem and attracts much attentions due to its persistence and toxicity. The degradation of 

benzene in groundwater primarily depends on microbial activity. Benzene is readily 

degraded under aerobic conditions (Chiang et al. 1989). However, in the underground, 

oxygen is rapidly depleted by microbial respiration (Lovley 1997), leading to anoxic 

conditions, thus anaerobic biodegradation is more important for remediation of benzene 

contaminated groundwater. Benzene biodegradation under anaerobic conditions often is 

slow. When oxygen is not available, an alternative electron acceptor such as nitrate, 

carbonate or iron (II) as well as benzene-degrading microorganisms are needed (Vogt et al. 

2011). Benzene degradation mechanisms are given in a detailed description in 1.3.1. 

            Ammonium pollution 

Inorganic nitrogen in the forms of ammonia (NH3) or ammonium (NH4
+
) is one of 

most common contaminant in groundwater, probably arising from waste disposal, fertilizer 

use and sewage leakage (Mulder 2003).  In general, the natural concentration of NH4
+
 is 

below 0.2 mg L
-1

 in surface water and 0.3 mg L
-1

 in groundwater. The high level of NH4
+ 

in 

water is usually caused by anthropogenic activities. For example, the extensive use of 

nitrogen fertilizers in regions of intensive agriculture and factory farming result in 

excessive nitrogen leaching into groundwater bodies. In 2016, the world nitrogen fertilizer 

consumption was approximately 115 million tons, with 15 million tons in Europe (Heffer 

and Prud'homme 2016). In Europe, up to 18% of N loss from fertilizers enters in water 

bodies (Mulder 2003), resulting in high levels of NH4
+
 in aquatic ecosystems. While the 
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usual level of NH4
+
 does not pose an immediate risk to human health, a high NH4

+
 

concentration suggests the presence of more serious residential or agricultural 

contaminants, such as pathogens or pesticides. In drinking water, NH4
+
 can reduce 

disinfection efficiency, produce nitrite and nitrate, and result in taste and odour problems at 

the concentrations above 35 and 1.5 mg L
-1

 respectively (World Health Organization 

2003a). In surface water, ammonia is toxic to fish and often causes eutrophication at a low 

concentration (Environment agency 1998). The World Health Organization (WHO) and 

European Union standards set a recommended level of 0.05 mg L
-1

 and a maximum level of 

0.5 mg L
-1

 of NH4
+
 for drinking water quality (European Council 1998, World Health 

Organization 2003a). Another important form of N compounds is nitrate (NO3
-
), which is 

converted to nitrite (NO2
-
) under anaerobic conditions and thus causes 

methaemoglobinaemia particularly in infants. The WHO established the maximum limit 

with 10 mg L
-1

 NO3
-
 and 1 mg L

-1 
NO2

-
 in drinking water (World Health Organization 

2003b). 

1.1.2 Contaminated field site-Leuna, Germany 

Large-scale groundwater contamination is a wide-spread problem especially at 

industrial sites throughout the developed world. Leuna located in Saxony-Anhalt, Germany, 

is one example, which is a center of chemical industry for about 100 years. Synthesis of 

ammonia in Leuna started in 1916 to produce nitrogen-based fertilizers and explosives. The 

site was rapidly expanded with plants producing methanol, synthetic petrol and mineral oil, 

becoming one of the biggest chemical industrial complexes in Germany in the last century. 

During world war II, more than 80% of the facilities were destroyed, resulting in massive 

local contamination of the saturated and unsaturated zone (Martienssen et al. 2006). 

Between 1949 and 1990, the Leuna site was gradually rebuilt and expanded for an oil 

refinery, producing a large amount of gasoline, diesel fuel, syngas and methanol. 

Nowadays, Leuna is still one of the largest and modern gas production centers in Europe. 

During the production period, a large amount of gasoline was introduced into the 

subsurface due to accidental spills and leakages from underground storage tanks, resulting 

in serious pollution of groundwater and soil nearby. The subsurface at the former refinery is 

contaminated with different gasoline components, particularly benzene and ammonia 
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released into the groundwater (Seeger et al. 2011). From 2007 to 2015, a pilot plant was 

operated by the Helmholtz Centre for Environmental Research within the project 

Compartment Transfer (CoTra), located at the site “Old Refinery Leuna”, supporting the 

development of near natural groundwater remediation techniques for large scale 

contaminated sites, which is called megasites (Figure 1-1). The groundwater used in this 

study was collected from the Leuna site with benzene (>10 mg L
-1

) and ammonium (>20 

mg L
-1

) as main contaminants. 

 

Figure 1-1  A schematic view of the Leuna site (Schirmer and Niemes 2010). 

1.2 Remediation technologies for contaminated groundwater 

Over the past few decades, different remediation technologies were developed and 

applied to treat contaminated groundwater, such as physical treatment technologies (air 

sparging, adsorption, filtration), chemical technologies (chemical oxidation/reduction, 

photo catalysis), and biological technologies (bioremediation, bioaugmentation, phyto-

remediation, wetlands) (Hashim et al. 2011). These methods are usually divided into in situ 

and ex situ remediation technologies, which can be applied alone or in combination 

(Hashim et al. 2011). Contaminants in groundwater are often multi-component and are 

dispersed underground in plumes with large areas, making conventional treatment 
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technologies difficult to apply. In situ technologies based on physical, chemical and 

biological principles were developed to treat contaminated groundwater, accounting for 

around 63% of the contaminated groundwater treatments due to their low cost and easy 

maintenance compared to ex-situ physical and/or chemical remediation techniques 

(Farhadian et al. 2008). Especially, in situ bioremediation appears to be an efficient, 

economical and environment-friendly approach, because it takes advantage of the natural 

potential of microorganisms or plants for detoxifying polluted waters. Therefore, much 

interest is focused on in situ bioremediation for contaminated groundwater. Constructed 

wetland is a passive in situ bioremediation approach, and is potentially applicable for 

eliminating a variety of pollutants, including petroleum hydrocarbons, chlorinated solvents, 

metals, and nitrogen (Saeed and Sun 2012). Microbial electrochemical technology (MET) 

is a rapidly developing technology platform at the nexus of microbiology and 

electrochemistry (Schröder et al. 2015), which was reported to be able to remove organic 

and nitrogen pollutants from various types of wastewater (Zhang and He 2012a). In this 

thesis, constructed wetlands and microbial electrochemical technology were applied to treat 

benzene and ammonium contaminated groundwater from the Leuna site.  

1.2.1 Constructed wetland 

Constructed wetlands (CWs) are known as a promising technology for wastewater 

treatment due to their low cost, easy operation and maintenance (Garcia et al. 2010, Imfeld 

et al. 2009). The CW systems have rapidly developed over the last three decades, and have 

been established worldwide as an ecological technology for wastewater treatment (Wu et 

al. 2014). CWs were initially used to treat traditional tertiary and secondary municipal 

wastewater, but during the last two decades, their usage has been expanded to treat various 

types of wastewater including domestic sewage, agricultural wastewater, industrial 

effluents, mine drainage, landfill leachate, storm water, polluted river water, and urban 

runoff (Saeed and Sun 2012, Vymazal 2014). A wide variety of pollutants have been 

successfully removed from these wastewaters, such as organic compounds, suspended 

solids, pathogens, metals, and nitrogen, phosphorus (Jiang et al. 2016, Saeed and Sun 

2012). CWs have become an attractive alternative for wastewater treatment due to high 

removal efficiency, low cost and simple operation (Zhang et al. 2014). 



Chapter 1                                                                                                             Introduction 

6 

The removal of contaminants in CWs is complex and a variety of removal 

mechanisms, including sedimentation, filtration, precipitation, adsorption, volatilization and 

plant uptake, are involved in (Imfeld et al. 2009, Wu et al. 2014). It has been recognized 

that the removal of most pollutants in CWs is primarily due to microbial activity 

(Faulwetter et al. 2009). In CWs, the biodegradation of chemicals often involves a complex 

series of biochemical reactions and usually varies with the microorganisms involved and 

the surrounding redox conditions (Faulwetter et al. 2009, Imfeld et al. 2009). The 

availability of oxygen  is very important for the degradation of many contaminants as 

oxygen is often used for activation reactions by mono- and dioxygneases; the produced 

activated compounds are often  degradable under oxic and anoxic conditions (Faulwetter et 

al. 2009). Nitrogen removal is attributed to microbial metabolism such as ammonification, 

nitrification-denitrification or anammox processes. In addition, microorganisms play a vital 

role in sulfur transformations, and the removal of phosphorous and heavy metal (Garcia et 

al. 2010). While plant uptake generally plays a minor role in pollutant removal, it has been 

reported that microbial density, activity, and diversity are enhanced in planted CWs 

compared to unplanted CWs (Faulwetter et al. 2009). Plants in CWs transfer oxygen to 

their root system and release a fraction of oxygen into the rhizosphere, promoting the 

formation of an oxidized layer around the root and creating a redox gradient (Faulwetter et 

al. 2009). Therefore, the rhizosphere exhibits a strong oxygen and redox gradient enabling 

the formation of many ecological niches that promote microbial processes and further 

enhance pollution removal (Garcia et al. 2010). 

The performance of CWs are generally directly and/or indirectly influenced by the 

different loading rates, temperatures, soil types, operation strategies and redox conditions in 

the wetland bed (Saeed and Sun 2012). There are two basic types of constructed wetlands: 

free water surface (FWF) CWs, and subsurface flow (SSF) CWs. SSF CWs are further 

divided into vertical subsurface flow (VSSF) CWs and horizontal subsurface flow (HSSF) 

CWs according to the flow direction. In addition, hybrid systems have been developed by 

combining different types of constructed wetlands with each other to utilize their specific 

advantages, such as VF-HF CWs, HF-VF CWs, HF-FWS CWs and FWS-HF CWs 

(Vymazal 2013). The schematic diagrams of these CW systems are shown in Figure 1-2.  
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Figure 1-2 Main types of constructed wetlands modified from Wu et al. (2015b). A: FWF 

CW; B: VSSF CW; C: HSSF CW; D: hybrid VF-HF CW. 

Free water surface CWs 

SWF CWs are similar to natural wetlands and have a thin aerobic layer at the 

surface attributed to passive aeration of water. SWF CWs mostly employ gravel or soil as 

the main media to support the growth of plants, with water at a relatively shallow depth 

(usually <60 cm), allowing wastewater flows vertically or horizontally through the media 

where it comes into contact with microorganisms especially in the rhizosphere, resulting in 

pollutant removal from wastewater (Faulwetter et al. 2009). The aerobic near-surface water 
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layer and the anaerobic deeper water layer are usually formed in the FWS CWs. The 

removal of organics and suspended solids are more efficient in FWS CWs, compared with 

nitrogen and phosphorus removal (Kadlec and Wallace, 2009). However, their treatment 

performance and sustainable application are usually restricted in the colder climate or after 

the plant decay (Vymazal 2014). The major removal mechanisms for organics are microbial 

degradation and that for suspended solids is through filtration and sedimentation (Kadlec 

and Wallace 2009). In FWS CWs, above 70% of biodegradable organic matter, particulate 

organic matter and pathogens can be removed (Vymazal 2014). Additionally, FWS CWs 

were found to be efficient in removing nitrogen with an efficiency of typically 40-50% 

depending on inflow concentration, water temperature, season, organic carbon availability, 

and dissolved oxygen (DO) concentration (Kadlec and Wallace 2009). 

Vertical subsurface flow CWs 

 In the VSSF CW systems, the wastewater is fed through the whole surface area via 

a distribution system and passes through the media vertically, which generally have a bed 

depth of less than 0.6 m (Vymazal 2014). The feeding mode of the VSSF CW system 

allows wastewater drains vertically through the planted bed, leading to unsaturated flow 

conditions and excellent oxygen transfer, and thus VSSF CWs are generally considered as 

aerobic systems as the high DO and redox potential generally favor aerobic microbial 

processes.  Thus, the removal of organic matter and nitrification were significantly higher 

in VSSF CWs compared to FWS and HSSF CWs, but denitrification was low (Faulwetter 

et al. 2009). In a review, Zhang et al. (2014) summarized the previous studies and found 

that VSSF CWs exhibits the better removal performance for biodegradable organic matter 

(89.29%) compared to HSSF CWs (75.1%). In addition, the higher oxygenation in VSSF 

beds can enhance nitrification and thus a higher NH4
+
-N removal efficiency was generally 

found in VSSF compared to HSSF CWs. But for total nitrogen (TN) removal, both of 

HSSF (51.97%) and VSSF (50.55%) CW systems were reported to be moderately efficient 

(Dan et al. 2011). 

Horizontal subsurface flow CWs 

In HSSF CWs, the wastewater flows slowly through the wetland bed under the 

surface in a more or less horizontal path; these systems are generally considered as 
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anoxic/anaerobic systems. However, the aerobic zones occur in the surface zone (5-20 cm) 

due to passive oxygen diffusion from the atmosphere or around roots and rhizomes due to 

plant oxygen release, which support aerobic microbial processes; thus, anoxic/anaerobic 

processes prevail in the wetland bed while aerobic processes are restricted to a small zone 

around the rhizosphere or to the thin surface layer where oxygen diffusion from the 

atmosphere may occur. The redox potentials in HSSF CWs usually decrease from the 

surface to deep layer, creating a redox gradient in the range of +700 mV to -300 mV (Meng 

et al. 2014). Organic compounds are decomposed in HSSF CWs by both aerobic and 

anaerobic microbial processes as well as by sedimentation and filtration of particulate 

organic matter (Vymazal 2014). Nitrogen can be removed in HSSF CWs primarily by 

nitrification and denitrification. In general, HSSF CWs can provide suitable anoxic or 

microoxic conditions for denitrification, but nitrification is typically limited due to the low 

DO concentration. It is generally reported that HSSF CWs show low removal efficiencies 

for NH4
+
-N and high removal efficiencies for NO3

-
-N (Saeed and Sun 2012). 

Hybrid constructed wetlands 

The hybrid CW systems were firstly introduced in the 1960s and were extensively 

developed since the late 1990s (Vymazal 2013). As most of wastewater are complex and 

may be difficult to be treated in a single-stage system, hybrid systems can combine various 

types of constructed wetlands to complement each other. Considering that the VSSF CW is 

intended to remove organics and suspended solids and to favor nitrification while HSSF 

CW favors denitrification and further removal of organics and suspend solids, the hybrid 

systems of VSSF and HSSF CWs were developed to enhance organic and nitrogen removal 

efficiencies (Vymazal 2013). The hybrid VF-HF CWs are the most frequently used systems 

and have been successfully demonstrated to be able to treat both of sewage and industrial 

wastewater (Dan et al. 2011). A system consisted of FWS CWs and multistage CWs have 

been recently developed as well and these hybrid CWs were reported to be more efficient in 

total nitrogen removal than single HF or VF CWs (Vymazal 2013). Besides hybrid systems 

consisting of different CWs types, the combination of constructed wetlands with other 

treatment processes such as membrane bioreactors, anaerobic processes, electrolysis, and 

biofilm reactors are also developed (Liu et al. 2015). The combinations of CWs with other 
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wastewater treatment processes can achieve a ‘‘win–win’’ performance and also offer a 

new alternative for widespread application of CWs (Liu et al. 2015). 

1.2.2 Microbial electrochemical technology 

Microbial electrochemical technology (MET) is a rapidly growing environmental 

technology, which combines the disciplines of microbiology, electrochemistry, materials 

science and engineering. MET can be applied for a range of environmental challenges, such 

as wastewater treatment, bioremediation, environmental monitoring, synthesis of valuable 

and novel chemicals, and clean energy generation (Logan and Rabaey 2012). In general, 

microbial electrochemical reactors are engineered systems that use microorganisms to 

convert the chemical energy stored in biodegradable organic or inorganic matter into 

electric current or chemicals (Zhang and Angelidaki 2016). Microbial electrochemical 

systems consist of two chambers, i.e. anode and cathode chambers, separated by a 

membrane. In the anode chamber, biodegradable substrates, such as organic matter in 

wastewater, are oxidized by microorganisms. Using the electrons released from 

biodegradable materials, many functions have been developed based on the MET platform 

(Wang and Ren 2013). In brief, the electrons can be captured directly for electricity 

generation (microbial fuel cells, MFCs), or be used to produce H2 and other valuable 

chemicals (microbial electrolysis cells, MECs). The electrons can also be used in the 

cathode chamber to synthesize organic compounds (microbial electrosynthesis, MES) or 

remediate contaminants (microbial remediation cells, MRCs). The potential across the 

electrodes can also drive desalination (microbial desalination cells, MDCs). 

MFCs are a typical microbial electrochemical system which can convert chemical 

energy of organic or inorganic compounds directly into electrical power. In general, MFCs 

consist of an anode, a cathode, a separator and an external circuit. In MFC, substrates are 

oxidized by electrochemically active bacteria, releasing electrons and protons. The 

electrons are transferred to the anode and through the external circuit to the cathode, thus 

generating a current. The protons simultaneously pass through a proton exchange 

membrane (PEM) into the cathode chamber where the reduction of the terminal electron 

acceptor takes place (Logan 2008). When used for wastewater treatment, organic matter or 

nutrients in wastewater can be used as anodic substrate, resulting in pollutant removal by 
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bacterial oxidation. MFCs are considered to be a very promising technology for wastewater 

treatment due to the combination of effective pollutants removal and electricity generation 

(Logan and Regan 2006). Recently, several MFCs have been developed for treating various 

types of wastewater, e.g., municipal wastewater (Feng et al. 2014) animal wastewater (Kim 

et al. 2008, Zhuang et al. 2012) and industrial wastewater (Cercado-Quezada et al. 2010, 

Ha et al. 2012).  

The combination of MFC and CWs are recently developed in order to improve 

wastewater treatment capacity of wetlands while simultaneously producing electrical power 

(Doherty et al. 2015). Considering the fact that MFCs principally contain an anaerobic 

anode and a cathode exposed to oxygen while aerobic and anoxic zones can develop 

naturally in CWs, the combination of CWs with MFCs (CW-MFC) was first conducted by 

Yadav et al. (2012). In their study, a vertical flow CW was embedded with graphite plate 

electrodes and a glass wool separator to treat an azo dye synthetic wastewater, where a 

cathode electrode was placed in the upper near to the aerobic root zone and an anode was 

placed in the anoxic bottom of the CW (Yadav et al. 2012). In order to maximize the redox 

gradient, most CW-MFCs have been operated under upflow conditions with a buried anode 

and a cathode at the surface and/or in the plant rhizosphere (Doherty et al. 2015). The 

integration of MFC with HSSF CWs has been also reported for treating high strength 

wastewater (Villasenor et al. 2013). The integration of MFCs with CWs is a promising 

technique; however, there are still challenges to increasing the electrical output and 

overcoming the limited nitrification and denitrification in the CW-MFC system. 

1.3 Microbial processes involved in benzene degradation and nitrogen 

transformation 

1.3.1 Benzene degradation mechanisms 

Benzene is readily biodegradable under aerobic conditions (Chiang et al. 1989). 

However, once benzene reaches the groundwater, oxygen is usually depleted by microbial 

respiration. Consequently, anaerobic degradation is essential for benzene removal from 

such oxygen-depleted subsurface environments (Lovley 1997). Under both aerobic and 

anoxic conditions, a terminal electron acceptor is required to degrade benzene, which also 
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determines the energy balance and the metabolic reaction used by microorganisms (Ladino-

Orjuela et al. 2016). When oxygen becomes unavailable, anaerobic benzene degradation 

occurs using other electron acceptors such as NO3
-
, Fe

3+
, and SO4

2-
 (Table 1-1).  

Aerobic benzene degradation 

According to Gibbs free energy, bacteria will firstly use oxygen as the terminal 

electron acceptor to degrade benzene, followed by NO3
-
, Fe

3+
, SO4

2-
, and finally 

methanogenesis or fermentation reactions (Vogt et al. 2011). Benzene is readily degraded 

under aerobic conditions  by bacteria, such as Pseudomonas and Rhodococcus (Chiang et al. 

1989).  In a shaker flask experiment, aerobic degradation of benzene was performed using 

enrichment cultures from industrial wastewater treatment plant and the results showed that 

only 8% (4 mg L
-1

) of  initial dose of 50 mg L
-1

 benzene still remained after 6 h (Davis et 

al. 1981). Chiang et al. (1989) demonstrated that aerobic biodegradation was the major 

mechanism responsible for benzene removal in the groundwater at a field site. Davis et al. 

(1994) observed the rapid aerobic degradation of benzene in groundwater samples, with the 

time of 50% disappearance ranging from 4 to 14 days for different initial benzene 

concentration. 

Table 1-1 Terminal electron acceptors and reaction stoichiometry used by bacteria for 

benzene degradation (modified from Vogt et al. (2011)).  

Electron acceptors 

(oxidized/reduced) 

Stoichiometric equation ∆G
0
ʹ 

(kJ mol
-1

) O2/ H2O C6H6 + 7.5O2 + 3H2O       6HCO3
-
 + 6H

+
 -3173

a
 

ClO3
-
/ Cl

-
 C6H6 + 5ClO3

-
 + 3H2O 6HCO3

-
 + 5Cl

-
 + 6H

+
 -3813

b
 

NO3
-
/ NO2

-
 C6H6 + 15NO3

-
 + 3H2O    6HCO3

-
 + 15NO2

-
 + 6H

+
 -2061

b
 

NO3
-
/ N2 C6H6 + 6NO3

-
 + 3H2O   6HCO3

-
 + 3N2 -2978

b
 

Fe
3+

/ Fe
2+

 C6H6 + 30Fe
3-

 + 18H2O      6HCO3
-
 + 30Fe

2-
 + 36H

+
 -3070

a
 

SO4
2-

/ H2S 
C6H6 + 3.75SO4

2-
 + 3H2O  6HCO3

-
 + 1.875H2S

2-
 + 

1.875HS
-
 +0.375H

+
 

-185
c
 

CO2/ CH4 C6H6 + 6.75H2O     2.25HCO3
-
 + 3.75CH4 + 2.25H

+
 -116

b
 

∆G
0
ʹ is standard Gibbs free energy. Downward arrow indicates sequential order of terminal 

electron acceptors preferences according to decreasing redox potential. a: Burland and 

Edwards (1999), b: Weelink et al. (2007), c: Kleinsteuber et al. (2008).  
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Benzene is structurally and chemically very stable due to the symmetric π-electron 

system of the aromatic ring and the lack of any potentially reactive substituents (Vogt et al. 

2011). Therefore, the key for benzene degradation is an initial activation of the aromatic 

ring through reversible or irreversible chemical modifications (Diaz et al. 2013). Under 

aerobic conditions, benzene is initially activated by insertion of molecular oxygen to yield 

phenol or cis-benzene dihydrodiol, followed by further oxidization to catechol, which is 

catalyzed by monooxygenases or dioxygenases (Ladino-Orjuela et al. 2016). Catechol is 

then further transformed through ring cleavage, and then the metabolites are finally 

oxidized into CO2 and H2O via the tricarboxylic acid cycle (TCA cycle) (Ladino-Orjuela et 

al. 2016). As shown in Figure 1-3, monooxygenases and dioxygenases are responsible for 

the initial step of aerobic benzene degradation. Monooxygenases attack aromatic rings by 

incorporating only a single oxygen atom, subsequently forming phenol and catechol in two 

enzymatic steps, while dioxygenases attack aromatic rings by incorporation of two oxygen 

atoms with the formation of cis-benzene dihydrodiol (Ladino-Orjuela et al. 2016). These 

two enzymes have been found e.g. in bacteria species of the genera Pseudomonas, 

Rhodococcus and Burkholderia, which were reported as benzene degraders in both 

enrichment cultures and contaminated field sites (Aburto-Medina and Ball 2015).  

Anaerobic benzene degradation  

Anaerobic benzene biodegradation has been most frequently observed in 

enrichment cultures as well as during remediation processes at anoxic field sites. The 

critical step of anaerobic benzene biodegradation is to destabilize the aromatic ring in the 

absence of molecular oxygen (Vogt et al. 2011). Nevertheless, in the past two decades it 

has shown that benzene can be anaerobically degraded under nitrate-reducing (van der 

Waals et al. 2017), sulfate-reducing (Abu Laban et al. 2009), iron-reducing (Abu Laban et 

al. 2010, Kunapuli et al. 2007), or methanogenic conditions (Weiner and Lovley 1998). 

Three mechanisms for the initial activation of anaerobic benzene degradation have been 

proposed: hydroxylation, carboxylation, or methylation, leading to the putative formation 

of phenol, benzoate, or toluene as the main first metabolites (Meckenstock et al. 2016, Vogt 

et al. 2011), followed by further transformation to benzoyl-coenzyme A (CoA) as central 

intermediate. Benzoyl-CoA can be further reduced by ATP-dependent or ATP-independent 

benzoyl-CoA reductases to CO2 (Figure 1-3).  
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Figure 1-3 Initial benzene activation mechanisms under aerobic (A) and anoxic (B) 

conditions. Reactions under anoxic conditions are hypothesized.  

A wide variety of bacteria were reported to participate in anaerobic benzene 

degradation. Members of Peptococcaceae within the class Clostridia have been identified 

as the dominant benzene degraders, which can switch from nitrate to sulfate or ferric iron as 

alternative electron acceptors (Aburto-Medina and Ball 2015, van der Zaan et al. 2012).  

Syntrophic associations are also found within the Peptococcaceae, suggesting that the same 

primary degraders are able to degrade benzene using different electron acceptors within the 

consortium (Gieg et al. 2014). Rhodocyclaceae and Burkholderiaceae were found to be 

associated with the anaerobic benzene degradation process. Members of the 

Desulfobacteraceae family have also been reported to be the dominant organisms in 

sulfate-reducing and methanogenic enrichments. In addition, other benzene-degrading 

microorganisms belonging to Betaproteobacteria, Gammaproteobacteria and 
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Deltaproteobacteria have been identified to be responsible for benzene degradation 

(Aburto-Medina and Ball 2015). Although the range of microorganisms capable of 

anaerobic benzene degradation has greatly expanded, the isolation of novel species and the 

understanding of their metagenomic and metaproteomic information remain critical in order 

to elucidate the degradation pathway of benzene in complex environments. 

1.3.2 Microbial nitrogen transformation and removal 

Nitrogen compounds are among the most important pollutants in aquifers, usually 

resulting in eutrophication and toxicity to aquatic species. Nitrogen compounds include a 

variety of organic and inorganic forms, of which the most important N compounds are 

NH4
+
, NO2

-
 and NO3

- 
in polluted water. A variety of microbial transformation processes are 

known to remove nitrogen from contaminated water, including ammonification, 

nitrification, denitrification, nitrogen fixation, nitrogen assimilation and anaerobic ammonia 

oxidation (anammox) (Paredes et al. 2007). A general overview of microbial nitrogen 

transformation processes is presented in Figure 1-4.  

 

Figure 1-4 Major microbial nitrogen transformation processes. 

Based on these nitrogen transformation processes, different nitrogen removal 

processes were developed. Conventional nitrification-denitrification was once thought to be 
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the main nitrogen removal process. However, this process usually requires an extra carbon 

source and large treatment areas, thus leading to high maintenance costs (Lee et al. 2009). 

Various novel biological nitrogen removal processes such as short-cut nitrification and 

denitrification (SND), high-activity ammonium removal over nitrite (SHARON), 

completely autotrophic nitrogen removal over nitrite (CANON) and oxygen-limited 

autotrophic nitrification-denitrification (OLAND), have been developed for wastewater 

treatment (Paredes et al. 2007). Recently, anammox was received considerable attention as 

an energy saving and cost-effective alternative, especially for nitrogen removal from 

wastewater at  low oxygen levels and C/N ratios (Paredes et al. 2007).  

Nitrification 

Nitrification is defined as biological oxidization of NH4
+
 to NO3

-
, which is a two-

step process, performed by different microorganisms. The first step is the oxidation of NH4
+
 

to NO2
-
 (Eq. (1)) with hydroxylamine (NH2OH) as the intermediate product, which is the 

limiting step typically carried out by strictly chemolithotrophic ammonia oxidizing bacteria 

(AOB). Five genera of AOB, including clusters of Nitrosomonas, Nitrosospira, 

Nitrosovibrio and Nitrosolobus within the β-Proteobacteria and Nitrosococcus within the 

γ-Proteobacteria have been reported (Ge et al. 2015). Nitrosomonas and Nitrosospira were 

the most often detected. Two key enzymes, ammonia monooxygenase (AMO) and 

hydroxylamine oxidoreductase (HAO) are responsible for catalyzing ammonia oxidation to 

nitrite (Junier et al. 2010). Recently, ammonia oxidation organisms belonging to the 

archaeal domain have been discovered in terrestrial, marine, and geothermal habitats (Stahl 

and de la Torre 2012). The first isolated ammonia-oxidizing archaeon (AOA), 

Nitrosopumilus maritimus SMC1, is affiliated with group I Crenarchaeota, which contains 

putative genes for all three subunits (amoA, amoB and amoC) of ammonia monooxygenase. 

Members of this lineage are ubiquitously distributed in the open ocean and coastal water 

and have been demonstrated to represent 20% to 30% of marine microbes (Hatzenpichler 

2012). Two thermophilic AOA species, “Ca. Nitrososphaera gargensis” (Hatzenpichler et 

al. 2008) and “Ca. Nitrosocaldus yellowstonii” (de la Torre et al. 2008), have been 

described. Besides these known AOA, sequence data suggest that more, as-yet-unidentified 

amoA-encoding and potentially ammonia-oxidizing groups might exist (Stahl and de la 

Torre 2012). 
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The second step of nitrification is the conversion of NO2
-
 to NO3

-
 by nitrite 

oxidizing bacteria (NOB) (Eq. (2)), which are facultative chemolithotrophic bacteria, 

including Nitrococcus within the α-Proteobacteria, Nitrobacter within the γ-Proteobacteria 

and Nitrosospira within the δ-Proteobacteria (Ge et al. 2015). The key enzyme involved in 

nitrite oxidation is nitrite oxidoreductase (NXR) (Junier et al. 2010). 

 
NH4

+ 
+ 1.5 O2                NO2

-
 + H2O +2 H

+
    (∆G

0
ʹ = -274.7 kJ mol

-1
)          (1) 

NO2
- 
+ 0.5 O2           NO3

- 
                          (∆G

0
ʹ = -74.1 kJ mol

-1
)            (2) 

The overall nitrification reaction is given in Eq. (3): 

NH4
+ 

+ 2 O2                NO3
-
 + H2O +2 H

+
      (∆G

0
ʹ = -348.9 kJ mol

-1
)          (3) 

Apart from autotrophic AOB and NOB, heterotrophic nitrifiers were also reported 

to be able to produce NO3
+
. A large number of bacteria and fungi, such as Actinomycetes, 

Arthrobacter, Bacillus, Thiosphaera and Pseudomonas, can carry out heterotrophic 

nitrification using both NH4
+
 and organic N compounds as substrates (Zhang et al. 2015). 

However, nitrification rates performed by Nitrosomonas and Nitrobacter groups are 

substantially higher, compared with other nitrifiers (Saeed and Sun 2012). 

Recently, two Nitrospira species were reported to completely oxidize ammonium 

via nitrite to nitrate, which have phylogenetically distinct ammonia monooxygenases 

compared to the previous reported AMOs (van Kessel et al. 2015). This work demonstrated 

the existence of complete nitrification in a single organism, providing a competitive and 

energy-saving biogeochemical process for nitrogen cycle.  

Denitrification 

Denitrification is a reductive pathway, by which NO3
-
 is sequentially reduced to 

NO2
-
, NO and N2O, and finally to N2 (Eqs. (4-7)): 

NO3
-
 + 2 e

-
 + 2 H

+ 
        NO2

-
 + H2O                                                          (4) 

NO2
-
 + e

-
 + 2 H

+             
NO + H2O                                                               (5) 

2 NO + 2 e
-
 + 2 H

+
         N2O +H2O                                                           (6) 

N2O + 2 e
-
 + 2 H

+
         N2 +H2O                                                                (7)  
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The complete denitrification process can be expressed as a redox reaction (Eq. (8)):   

2 NO3
-
 + 10 e

-
 +12 H

+
          N2 +6 H2O                                                     (8)   

This process is performed by diverse microorganisms, including bacteria, archaea 

and even fungi, which obtain energy through chemical reactions using organic compounds 

as electron donors and a source of cellular carbon and using nitrogen oxides as terminal 

electron acceptors (Vymazal 2007). Four enzymes are involved in a complete 

denitrification process, i.e. nitrate reductase (NAR), nitrite reductase (NIR), nitric oxide 

reductase (NOR) and nitrous oxide reductase (N2OR), reducing NO3
-
, NO2

-
, NO and N2O, 

respectively, and then releasing N2 as the terminal product. However, not all denitrifiers 

possess these four types of enzymes and thus some of them are incapable of complete 

denitrification. For example, Achromobacter are NO2
-
 dependent and cannot reduce NO3

-
 

due to the lack of NAR. Some genera, such as Aerobacter and Flavobacterium can only 

reduce NO3
-
 to NO2

-
 (Kumar and Lin 2010).  

Denitrification was normally thought to be unable to take place in the presence of 

oxygen, since oxygen is thermodynamically more favorable as oxidizing agent compared to 

NO3
-
. Thus, it is considered that the DO concentration should be maintained at <0.5 mg L

-1
, 

to accomplish nitrate reduction (Vymazal 2007). However, denitrifiers are primarily 

facultative anaerobic heterotrophs, which are capable of anaerobic respiration using NO3
-

/NO2
-
 or aerobic respiration using O2 as electron acceptors. Aerobic denitrification capable 

of the simultaneous use of both O2 and NO3
-
 as oxidizing agents were reported in a broad 

range of microorganisms despite with lower productivity than that for aerobic respiration 

process (Ji et al. 2015). The reported aerobic denitrifiers mostly belong to Actinobacteria, 

Bacillus and Pseudomonas, of which ability to catalyze respiratory nitrate reduction under 

aerobic conditions has been shown to correlate with the activity of periplasmic nitrate 

reductase (Nap). In addition, some aerobic denitrifiers were reported to be capable of 

heterotrophic nitrification (He et al. 2016, Yao et al. 2013). Nitrosomonas was able to 

perform denitrification using H2 as the electron donor and NO2
-
 as the electron acceptor, 

named as nitrifier denitrification; this process was detected during bioreactor operation 

upon coupling of aerobic and anaerobic ammonia oxidation (Su et al. 2017). 

Anammox 
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Anammox is a newly discovered nitrogen removal process, where NH4
+ 

is directly 

oxidized to N2 with NO2
- 

as the electron acceptor under anoxic conditions. Different 

intermediate products such as hydroxylamine and hydrazine (N2H4) are formed during the 

anammox reaction. The overall reaction of the anammox process is provided in Eq. (9). 

NH4
+
 + NO2

-
         N2 + 2 H2O                (∆G

0
ʹ = -297 kJ mol

-1
)         (9) 

The anammox process is catalyzed by chemolithoautotrophic bacteria belonging to 

the phylum Planctomycetes. Currently, six anammox genera have been discovered, 

including Brocadia, Kuenenia, Anammoxoglobus, Jettenia, Scalindua and 

Anammoximicrobium. Although a large phylogenetic distance occurs between different 

anammox genera, the same anammox metabolism and cell structure are reported. The 

anammox bacteria have a membrane bound organelle, called anammoxosome, which is the 

locus of the anammox metabolism (Kartal et al. 2011). The anammox process includes the 

reduction of NO2 to nitric oxide (NO) by cd1 nitrite oxidoreductase (NirS), the reaction of 

NH4
+
 and NO to hydrazine (N2H4) by hydrazine synthase (HZS), and the oxidation of N2H4 

to N2 by hydrazine dehydrogenase (HDH) (Kartal et al. 2011).  

Compared with conventional nitrification and denitrification processes, the 

anammox process has the obvious advantages, such as no requirement of external carbon 

sources, a lower oxygen demand and lower energy consumption. 
15

N tracing studies have 

shown that one N atom of N2 originate from NO2
−
 and one from NH4

+
. A molar ratio of 

NH4
+
/NO2

-
 of around 1:1.3 is used during wastewater treatment by anammox process 

(Jetten et al. 2001). The growth rate of anammox bacteria is extremely low, with doubling 

times varying from 7 to 22 days, which usually results in a slow start-up of the anammox 

reactor. Different levels of anammox inhibition by NO2
-
 were reported, with 50 % 

inhibitory values ranging from 100 to 400 mg N L
-1

 (Lotti et al. 2012). Additionally, the 

anammox process is optimized at a pH range of 6.7 - 8.3 and a temperature range of 30 - 

37°C (Saeed and Sun 2012). Nevertheless, technologies based on anammox metabolism 

may provide a more sustainable alternative to wastewater treatment, due to the reduced 

requirement of aeration and external organic carbon. 
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1.4 Methods for analyzing microbial process  

Microbial transformation processes have been investigated using a variety of 

techniques, including physicochemical measurements, traditional microorganism 

cultivation techniques, molecular techniques and isotope tracing techniques.  

Many molecular techniques have been used to analyze microbial processes and 

microbial communities, such as fluorescent in situ hybridization (FISH), polymerase chain 

reaction denaturing gradient gel electrophoresis (PCR-DGGE), real-time PCR (qPCR), and 

transmission electron microscopy (TEM). Compared to cultivation based methods, the 

culture-independent molecular approaches, are more sensitive and accurate, hence have 

been wildly applied to characterize microbial communities and understand microbial 

community function, further supporting to analyze potential microbial processes 

(Faulwetter et al. 2009). In particular, molecular technologies based on functional genes, 

especially metagenomics, are used to understand possible functions of microbial 

communities and trace microbial transformation processes (Streit and Schmitz 2004). These 

techniques are generally believed to overcome the difficulties of selective cultivating and 

isolating bacteria from natural samples in traditional cultural methods. However, one of the 

drawbacks of these techniques is that they can only provide information on the functional 

potential rather than actually metabolic activities for microbial communities. In order to 

link specific microbes to specific ecological functions, labeling techniques with stable 

isotope probing (SIP) have be developed, including DNA-, RNA-, phospholipid fatty acids- 

and protein- SIP (Vogt et al. 2016). Especially, protein-SIP is a powerful method with a 

higher sensitivity in comparison with DNA- or RNA-SIP, which can not only provide 

taxonomic information similar to DNA or RNA analysis but also reflect the metabolic 

properties and actual activities of cells (von Bergen et al. 2013). 

1.4.1 Stable isotope fractionation analysis 

Isotopes are atoms of the same element with different numbers of neutrons and 

therefore have different masses. Significant fractionation occurs naturally for elements of 

H, C, N, O, S, Cl (Meija et al. 2016). Isotope fractionation usually occurs during enzymatic 

catalyzed transformations in which chemical bonds are broken or formed due to different 

rate constants for molecules with variable isotope substitutions. Usually, molecules 
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containing the lighter isotope react faster than that containing the heavier isotope, resulting 

in that heavy isotopes are enriched in the residual substrate pool and the product becomes 

isotopically lighter (Meckenstock et al. 2004).  In addition, isotope ratio variations can also 

occur during physical processes, such as sorption, evaporation and diffusion, but typically 

with a smaller extent compared to biotransformation. Therefore, by measuring changes in 

isotope ratios, stable isotope fractionation analysis can be used to assess biodegradation of 

contaminants in the environment.  

Based on isotope fractionation concepts, compound-specific isotope analysis (CSIA) 

has been developed to characterize biodegradation pathways, identify contaminant sources 

and quantify the extent of biodegradation (Meckenstock et al. 2004). Currently, CSIA has 

been applied to assess biodegradation of most organic contaminants such as BTEX, 

chlorinated hydrocarbons and fuel oxygenates (Braeckevelt et al. 2012). Recent studies 

demonstrated that the initial activation mechanisms of benzene degradation were 

successfully elucidated using two-dimensional CSIA in benzene-contaminated field sites, 

model wetland systems and a MFC reactor (Fischer et al. 2009, Fischer et al. 2007, 

Rakoczy et al. 2011, Wei et al. 2015a). By using the Rayleigh equation, isotope enrichment 

factors (ԑ) can be calculated by quantifying the relationship between change of isotope 

signatures and concentrations, which can be compared with the previous reported 

references and thus allows to quantify degradation processes since isotope fractionation 

factors remarkably differ among different degradation pathway and even among different 

microorganisms using the same degradation pathway (Braeckevelt et al. 2012). Stable 

isotope fractionation analysis can also help to identify biochemical degradation pathways 

using the slope (Λ) derived from a dual isotope plot of δ
2
H versus δ

13
C (Bergmann et al. 

2011). Fischer and colleagues compared the specific Λ values among benzene-degrading 

enrichment and pure cultures using mono- or dioxygenase or anaerobic enzymatic 

pathways and found that Λ values could differentiate between aerobic (typically Λ <10) 

and anaerobic benzene degradation (typically  10) (Fischer et al. 2008a). 

The isotopic signature of N species can reflect their origin and allows to study 

nitrogen transformation processes (Casciotti et al. 2011). Microbial nitrogen 

transformations discriminate against the heavy N isotope, leaving the substrate enriched in
 

15
N and the product depleted in

 15
N. N and O isotope fractionation of NH4

+
 and NO3

-
 has 
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been successfully used to characterize N sources and to identify nitrogen transformation 

processes such as nitrification or denitrification in aquifers (Clark et al. 2008, Ohte et al. 

2007), lakes (Bartrons et al. 2009), marine environments (Robinson et al. 2012) and 

wetlands (Erler and Eyre 2010). Apparent isotope fractionation has been reported for 

microbial nitrogen transformation processes such as nitrification, denitrification and 

anammox (Brunner et al. 2013). For instance, the N isotope effects for bacterial nitrification 

was reported in the range of 14.2 - 38.2‰ and showed differences among the different 

nitrifying strains (Casciotti et al. 2003). The combination of δ
15

N and δ
18

O in NO3
-
 was 

proved to be able to distinguish different nitrate origins and identify denitrification 

processes in the soil and water systems (Nisi et al. 2014). However, the quantitative 

assessment of denitrification based on simple measurements of the isotopic NO3
-
 

composition has mostly failed in wetlands, because additional fractionation processes were 

neglected or could not be assessed (Coban et al. 2015b). 

1.4.2 Protein-based stable isotope probing (Protein-SIP) 

Elucidating the metabolic activities of specific species within complex microbial 

communities is a difficult task. Protein-based stable isotope probing (protein-SIP) is a noval 

and powerful method which can link phylogenetic information and metabolic functions; the 

method is based on the metabolization of isotopically labelled substrates and subsequent 

analysis of the incorporation of heavy isotopes into proteins (Seifert et al. 2012). In brief, 

substrates labeled with heavy isotopes, such as 
13

C, 
15

N or 
36

S, are assimilated by the 

metabolism, leading to the incorporation into biomolecules including proteins, which can 

be detected by mass spectrometry of peptides. From a peptide mass spectrum, the 

percentage of atoms replaced by heavy isotopes, referred to as relative isotope abundance 

(RIA), can be calculated, providing information about the incorporation of labelled 

substrate into biomass. Another important parameter, the labelling ratio (lr), describes the 

ratio of labelled to unlabeled peptides and allows the quantitation of the protein synthesis 

rate (von Bergen et al. 2013). The lr, together with the RIA, reflects the protein expression 

and substrate utilization pattern. 

 Recent studies have demonstrated the successful application of protein-SIP to 

detect metabolic activities in defined communities as well as in enrichment cultures 
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(Bastida et al. 2010, Jehmlich et al. 2008a, Jehmlich et al. 2008b). Protein-SIP was reported 

to trace benzene assimilation and detect the carbon flux in a sulfate-reducing, benzene-

degrading microbial consortium (Taubert et al. 2012). Additionally, degradation pathways 

and metabolic key players were elucidated by in situ protein-SIP in a polycyclic aromatic 

hydrocarbon (PAH) contaminated aquifer (Herbst et al. 2013). More recently, the toluene 

degradation pathway and key degraders were identified by in situ protein-SIP in a 

constructed wetland (Lunsmann et al. 2016). These studies demonstrated that protein-SIP is 

applicable for detecting the key processes and identifying active species involved in the 

degradation of organic pollutants in complex ecosystems. However, protein-SIP studies of 

microbial communities need to be accompanied by metagenome sequencing for a reliable 

identification of proteins; if proteins with the incorporation of heavy isotope can be 

identified, the method allows to identify primary and secondary degraders and their 

respective metabolic pathways (von Bergen et al. 2013). 

1.5 Objectives and outlines of the thesis 

The objective of this work was to investigate the treatment performance and 

pollutant removal mechanisms while treating benzene and ammonium contaminated 

groundwater using microbial electrochemical technology and constructed wetlands. 

Therefore, a MFC with an aerated cathode was constructed to continuously treat benzene 

and ammonium contaminated groundwater from the Leuna site. Moreover, to improve 

benzene and ammonium removal, the integration of MET and a HSSF-CW was established 

to maximize the benefits of both constructed wetland and microbial electrochemical 

technology. 

This thesis is written based on the following three scientific articles. 

1.5.1 Harvesting electricity from benzene and ammonium-contaminated 

groundwater using a microbial fuel cell with an aerated cathode 

Wei, M., Harnisch, F., Vogt, C., Ahlheim, J., Neue, T. R., Richnow, H. H. (2015) 

RSC Advances. 5(7): 5321-5330. 

DOI: 10.1039/C4RA12144A 

This work describes whether a MFC can be used to remediate real groundwater 

contaminated with benzene and ammonium and simultaneously recover energy. For that 
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purpose, a MFC with an aerated cathode and a control without aeration were compared for 

the removal performance of benzene and ammonium as well as electricity generation. 

Additionally, the effect of hydraulic retention time (HRT) on the performance of the MFC 

was investigated. To understand the electrochemical processes occurring in the MFC, 

benzene and ammonium spiking as well as oxygen interruption experiments were 

performed in the batch mode. Additionally, pollutant degradation pathways and key players 

in the MFC were investigated. 

The work was completely finished by Manman Wei. Her own work includes 

experiments, data analysis, preparations of figures and tables, and manuscript writing.  

1.5.2 Enhancement and monitoring of pollutant removal in a constructed wetland by 

microbial electrochemical technology 

Wei, M., Rakoczy, J., Vogt, C., Harnisch, F., Schumanna, R., Richnow, H. H. 

(2015) Bioresource Technology 196: 490-499.  

DOI: 10.1016/j.biortech.2015.07.111 

This work describes an integrated MET-CW which was established by embedding 

four anode modules into the sand bed and connecting it to a cathode placed in the open 

pond inside a bench-scale HSSF-CW. The objective was to evaluate whether MET can be 

used to (i) improve the biodegradation of the main contaminants and (ii) to monitor such 

degradation processes in the HSSF-CW. Furthermore, the performances of anode modules 

located at the different depths were compared in order to determine favorable depths for 

anodic reactions.  

The work was completely finished by Manman Wei. Her own work includes 

experiments, data analysis, preparations of figures and tables, and manuscript writing.  

1.5.3 Isotopic and proteomic evidence for microbial nitrogen transformation process 

in a microbial electrochemical technology-constructed wetland (MET-CW) 

treating contaminated groundwater 

Manman Wei, Carsten Vogt, Vanessa Lünsmann, Naomi Susan Wells, Jana Seifert, 

Nico Jehmlich, Kay Knöller, Hans H. Richnow. The manuscript is in preparation for 

publication in scientific journal. 
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This work describes the investigation of microbial nitrogen transformation 

processes in order to understand their importance for nitrogen removal in the MET-CW. In 

this study, the nitrogen transformation processes in the MET-CW were qualitatively and 

quantitatively analyzed by N stable isotope fractionation, 
15

N isotope tracing techniques 

and in situ protein-SIP. In addition, the effect of anode insertion on nitrogen transformation 

processes in the HSSF-CW was discussed. 

The work was mainly finished by Manman Wei. Her own work includes 

experiments, preparations of figures and tables, and manuscript writing. The data for 

Protein-SIP and metaproteomics were analyzed by Vanessa Lünsmann. 
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 Harvesting electricity from benzene and CHAPTER 2

ammonium-contaminated groundwater using a microbial fuel 

cell with an aerated cathode  

Wei, M., Harnisch, F., Vogt, C., Neue, T. R., & Richnow, H. H. (2015). Harvesting 

electricity from benzene and ammonium-contaminated groundwater using a microbial fuel 

cell with an aerated cathode. RSC Advances, 5(7): 5321-5330.  

Abstract  

Groundwater contaminated with benzene and ammonium was continuously treated 

using a microbial fuel cell with aerated cathode and a control without cathode aeration. 

Benzene (~15 mg/L) was completely removed in the MFC; of which 80% disappeared 

already at the anoxic anode. Ammonium (~20 mg/L) was oxidized to nitrate at the cathode, 

which is not directly linked to electricity generation. The maximum power density was 316 

mW/m
3
 NAC at a current density of 0.99 A/m

3 
normalized by the net anodic compartment 

(NAC). Coulombic and energy efficiencies of 14% and 4% were obtained for the anodic 

benzene degradation. The control reactor failed to generate electricity, and can be regarded 

as a mesocosm in which granular graphite was colonized by benzene degraders with a 

lower benzene removal efficiency 20% compared to the MFC. The dominance of 

phylotypes affiliated to the Chlorobiaceae, Rhodocyclaceae and Comamonadaceae was 

revealed by 16S rRNA Illumina sequencing in the control and the MFC anode, presumably 

associated with benzene degradation. Ammonium oxidation at the cathode of the MFC was 

mainly carried out by phylotypes belonging to the Nitrosomonadales and Nitrospirales. 

Compound specific isotope analysis (CSIA) indicated that benzene degradation was 

initially activated possibly by monohydroxylation with O2. The intermediates of benzene 

degradation pathway were then oxidized accompanied by transferring electrons to the 

anode, leading to current production. This study provided valuable insights into degradation 

mechanisms and microbial communities involved in the treatment of the anoxic wastewater 

contaminated with petroleum hydrocarbons (e.g. benzene) and ammonium using MFCs. 
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Key words benzene degradation; ammonium oxidation; microbial fuel cell; electricity 

recovery; compound-specific stable isotope analysis 

2.1 Introduction 

Remediation by microbial fuel cells (MFCs) is a very promising technology for 

wastewater treatment due to the combination of effective pollutants removal and electricity 

generation (Logan and Regan 2006). Recently, the practical application of MFCs has been 

widely developed to treat various wastewater including e.g., municipal wastewater (Feng et 

al. 2014), animal wastewater (Kim et al. 2008, Zhuang et al. 2012) and industrial 

wastewater (Cercado-Quezada et al. 2010, Ha et al. 2012). In a few cases, the effective 

removal of recalcitrant contaminants from wastewater, like petroleum constituents, coupled 

to electricity generation have been also achieved using MFC technology (Morris and Jin 

2012, Wang et al. 2012). Many industrial activities such as oil refining and chemical 

industry produce wastewater containing ammonium, sulfide and petroleum hydrocarbons 

(e.g. BTEX, benzene, toluene, ethylbenzene, and xylene) (Olmos et al. 2004, van Afferden 

et al. 2011). For example, the Leuna site (Saxony-Anhalt, Germany) has been a center of 

chemical industry for about 100 years, leading to groundwater contaminated mainly by 

benzene and ammonium (Voyevoda et al. 2012). These pollutants have been reported to 

cause severe environmental and public health damage (Gibson 1968). A variety of 

remediation technologies, such as constructed wetlands (Seeger et al. 2011, Seeger et al. 

2013), soil filter systems (Afferden et al. 2011) and aerated treatment pond technology with 

biofilm promoting mats (Jechalke et al. 2010) has been used to treat groundwater 

contaminated with benzene and ammonium from the Leuna site. However, oxygen was 

considered to be one of the limiting factors for efficient ammonium removal in these 

remediation systems (Jechalke et al. 2011, Seeger et al. 2011, Seeger et al. 2013). 

Heterotrophic bacteria were reported to potentially compete for oxygen and inorganic 

nitrogen with nitrifiers, possibly resulting in the low nitrification rate under oxygen-limited 

conditions (Ma et al. 2013a, Truu et al. 2005). Besides, the presence of BTEX and their 

metabolic intermediates (e.g. phenol) was described to inhibit nitrification process (Ben-

Youssef et al. 2009, Lauchnor et al. 2011, Radniecki et al. 2008). The inhibitory effect of 

benzene on nitrification and probable competition between benzene degraders and nitrifiers 
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is an obstacle to simultaneously remove benzene and ammonium using the conventional 

treatment technologies.  

It is already reported that the MFC technology has a practical potential for removing 

benzene at the anode during wastewater treatment. Zhang et al. (2010) observed benzene 

degradation in contaminated sediments by providing a graphite electrode as an electron 

acceptor, demonstrating the potential of electrode-based systems for degradation of 

aromatic hydrocarbons in anoxic environments. Luo et al. (2010) operated a packing-type 

MFC and found that 600 mg/L benzene was completely degraded within 24 h with 

simultaneous power generation when 1000 mg/L glucose was provided as the co-substrate. 

Simultaneous benzene biodegradation and electricity production with potassium 

ferricyanide as electron acceptor in a MFC was also reported by Wu et al. (2013). Due to 

the fast reaction kinetics, the aromatic ring of benzene was likely activated and cleaved by 

mono- and/or dioxygenases (Gibson 1968, Vaillancourt et al. 2006) in the studies of Luo et 

al. (2010) and Wu et al. (2013), indicating aerobic or microaerobic conditions; it has been 

reported previously that benzene can be effectively degraded under oxygen-limited 

conditions (Fahy et al. 2006, Yerushalmi et al. 2002). Nevertheless, the data indicate that 

benzene can be biodegraded under anoxic or oxygen-limited conditions in a MFC system, 

although the mentioned studies were performed under simulated and simplified conditions 

in the laboratory.  

Ammonium removal at the cathode has been reported in the MFCs. He et al. (2009) 

reported that ammonium can be removed mainly by partial nitrification with nitrite 

production in a rotating-cathode MFC, although the process showed only a low coulombic 

efficiency (CE=0.34%). Subsequently, ammonium removal by simultaneous nitrification 

and denitrification was achieved in MFCs coupled with a nitrifying bioreactor (Virdis et al. 

2008) or by introducing additional oxygen into the cathode (Virdis et al. 2010, Yan et al. 

2012, Yu et al. 2011, Zhang and He 2012b). Notably, a denitrifying liter-scale MFCs has 

been successfully used to enhance the total nitrogen removal in a municipal wastewater 

treatment facility (Zhang et al. 2013a). 

Therefore, MFCs are a good choice to sequentially remove benzene and ammonium 

due to the presence of separated anode and cathode compartments. Considering the 

complexity of real wastewater, the feasibility of MFCs for real wastewater treatment is 
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usually limited by high internal resistance, pH buffering, inhibition effect between co-

contaminants and low efficiency of mixed culture biofilm on an electrode (Rozendal et al. 

2008). The practical application of a MFC for benzene and ammonium-contaminated 

wastewater treatment is more complex and has not yet been studies so far. It is worthwhile 

to investigate the practical performance and bio-electrochemical processes using the MFC 

to treat real groundwater contaminated with benzene and ammonium, especially during a 

long-term operation. 

The objective of this study was to investigate whether a MFC can be used to 

remediate real groundwater contaminated with benzene and ammonium and while 

simultaneously recovering energy. For that purpose, a MFC with an aerated cathode and a 

control without aeration were compared for the performance of benzene and ammonium 

removal as well as electricity generation. Additionally, the effect of hydraulic retention 

time (HRT) on the performance of the MFC was investigated. To understand the 

electrochemical processes occurring in the MFC, benzene and ammonium spiking as well 

as oxygen interruption experiments were performed in the batch mode. Additionally, the 

degradation pathways and key players were elucidated by compound specific isotope 

analysis (CSIA) and Illumina sequencing. 

2.2 Materials and Methods 

2.2.1 Reactor construction 

Two reactors, MFC and control, were constructed as previously described by 

Rakoczy et al. (2013) with some modifications (Figure 2-1). Every reactor consisted of two 

cylindrical glass compartments having each a diameter of 6 cm which were separated by a 

Nafion-117 cation exchange membrane (CEM) (QuinTech, Göppingen, Germany). The 

cathode compartment (10 cm height, 330 mL total volume) was located on the top of the 

anode compartment (22 cm height, 680 mL total volume). Both compartments were 

completely filled with granular graphite of 1-6 mm diameter (Edelgraphit GmbH, Bonn, 

Germany) which served as electrodes. After filling with granular graphite, the anodic and 

cathodic compartment had a net liquid volume of 320 mL and 160 mL, respectively. A ring 

of stainless steel (304 SS, 2 cm length, 6 cm diameter) was used as electron collector for 
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granular graphite at each compartment and interfaced to the external resistor. A liquid loop 

between the anode and cathode compartment was added, allowing the anodic effluent 

flowing directly into the cathodic compartment. This loop configuration can eliminate 

proton mass transfer loss and solve the problem of membrane pH gradient. An air sparger 

linked to an air pump (EHEIM 100, Stuttgart, Germany) was installed in the cathodic 

compartment of the MFC to provide aeration. Continuous recirculation was generated using 

peristaltic pumps (Ismatec REGLO Analog MS-2/6, Wertheim, Germany) at a rate of 60 

mL/min
 
in both compartments in order to maintain well-mixed conditions. The reactors 

were completely covered with aluminum foil to avoid light exposure, hence inhibiting 

growth of phototrophic organisms. In the control reactor, pseudo- anode and cathode were 

defined as two separated compartments corresponding to anode and cathode of the MFC, as 

no efficiently electrochemical reactions occurred in the control.  

 

Figure 2-1 Schematic (A) and picture (B) of the MFC and the control used in this study. 
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2.2.2 Start-up and reactor operation 

Both reactors were inoculated and continuously fed with contaminated groundwater 

from Leuna; the composition was listed in Table 2-1. The contaminated groundwater was 

periodically taken from a nearby groundwater well and stored in a 50 L tank which was 

kept at 0.5 bar N2 pressure to maintain anoxic conditions and was also connected to a 

cooling system to keep temperature at 10-12 
o
C.  

Table 2-1 Physico-chemical properties of contaminated groundwater used in this study.  

Parameters Means±Stdv 

NH4
+
 (mg/L) 21.3±1.6 

NO2
-
 (mg/L) <0.02 

NO3
-
 (mg/L) <0.1 

SO4
2-

 (mg/L) 2.4±1.5 

Total Fe (mg/L) 5.6±0.6 

Fe
2+

 (mg/L) 5.4±0.8 

PO4
3-

 (mg/L) 2.3±0.1 

Cl
-
 (mg/L) 95.2±5.6 

Benzene (mg/L) 15.2±0.6 

MTBE (mg/L) 1.1±0.1 

COD (mg/L) 83.8±2.6 

BOD5 (mg/L) 36.8±4.7 

TOC (mg/L) 29.0±7.2 

IC (mg/L) 275.3±27.6 

DO (mg/L) 0.05±0.01 

Eh (mV) -167±23 

pH 7.5±0.3 

Note: Contaminated groundwater was collected during September-December 2013 from the 

Leuna site. 

The reactors were firstly operated in continuous treatment mode (day 0-134), using 

1,000 Ω external resistance and a flow rate of 0.3 mL/min, resulting in a HRT of 27 h. 

These parameters were only changed for polarization measurements (see 2.2.4). Between 

day 134 and 160, the MFC was operated at the flow rates of 0.1, 0.5, 0.7, and 1.0 mL/min, 

corresponding to HRTs of 80, 16, 12, and 8 hours, in order to investigate the effect of 
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varying HRTs. Once changing to a new flow rate, the MFC was running for one week to 

reach a stable current output before further measurements. After running 160 days, benzene 

and ammonium spiking experiments were performed in the MFC. Briefly, 15, 30, and 50 

mg/L of benzene were injected into the anode which was operated in a fed-batch mode, 

while the cathode was running in a continuous flow mode. Subsequently, 20, 50 and 100 

mg/L of ammonium were injected to the cathode in a fed-batch mode, while the anode was 

operated in a continuous mode. Finally, through switching on or off the air pump, oxygen 

interruption was performed twice in the continuous flow mode in order to prove whether 

oxygen was the electron acceptor. 

2.2.3 Chemical analysis 

Benzene was analyzed using a gas chromatograph equipped with a flame ionization 

detector (Varian CP-3800 GC, Palo Alto, CA) described elsewhere (Fischer et al. 2008a). 

NH4
+
-N, NO2

-
-N and NO3

-
-N were analyzed colorimetrically as described before 

(Bollmann et al. 2011); the detection limit was 10 μM for each compound. The pH was 

monitored by a pH meter (Knick, Berlin, Germany). Dissolved oxygen (DO) was measured 

using an optical trace sensor system (PreSens sensor spot PSt6 and FIBOX-3 minisensor 

oxygen meter, Regensburg, Germany) described in more detail by Balcke et al. (2008). The 

redox potential (Eh) was measured with a pH/mV/Temp meter (Jenco Electronics 6230N, 

San Diego, USA). Samples for Fe
2+

 and total Fe measurements were acidified to pH 2 

directly after the sampling and analyzed photometrically according to the guideline DIN 

38405 D11. PO4
3-

, Cl
-
, and SO4

2-
 were measured using the ion chromatograph (Dionex 

DX500, Idstein, Germany) following the guideline EN ISO 10304-2, DIN 38405-19. The 

total organic carbon (TOC), inorganic carbon (IC), 5-day biological oxygen demand 

(BOD), and chemical oxygen demand (COD) were analyzed according to the methods as 

previously described (Jechalke et al. 2010). 

2.2.4 Electrochemical measurements and calculations 

The Voltage (V) across a resistor (R) was recorded at 20 min intervals using a 

multimeter (Metrix MTX 3282, Paris, France). Current (I) was calculated by Ohm’s law (I 

= V/R) and power (P) was calculated as P = V×I. Current and power density were 
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normalized by the net anode compartment volume (NAC). The coulombic efficiency (CE) 

was calculated as the ratio of the number of electrons recovered as charge versus the 

number of released electrons by substrate removal. The energy efficiency (η) was defined 

as the ratio of power produced by the cell to the heat of combustion of organic substrate, 

and was calculated as previously described (Logan et al. 2006). Polarization and power 

density curves presented in the Figure 2-5 were generated by varying the resistor from 

56,000 to 100 Ω (forward). Backward polarizations were also recorded by varying 

resistance from 100 to 56,000 Ω; the hysteresis was comparably low (Supporting 

information Figure S2-4). The reactor was initially disconnected with the external 

resistance and was running under open circuit for 5 h to produce a stable open circuit 

potential (OCP). Data for each resistor adjustment were recorded in intervals of 30 min or 

longer until the voltage change was less than 2 mV in 1 min. Individual anode and cathode 

potentials were measured using an Ag/AgCl reference electrode (Sensortechnik SE11, 

Meinsberg, Germany) and assumed to be +0.197 V against the standard hydrogen electrode 

(SHE).  

2.2.5 Compound-specific stable isotope analysis (CSIA) 

Benzene-containing influent groundwater and water from the pseudo-/anodic 

compartments of two reactors were extracted with pentane. The carbon and hydrogen stable 

isotope compositions were determined using a gas chromatograph-combustion-isotope ratio 

mass spectrometer system (GC-IRMS). The detailed measurement and calculation were 

performed as previously described (Rakoczy et al. 2013). The benzene degradation 

pathways were analyzed by comparing measured isotope composition shifts with published 

isotope enrichment factors (ε) in a two-dimensional isotope plot (Fischer et al. 2008b, 

Mancini et al. 2008). 

2.2.6 MiSeq Illumina sequencing  

Total DNA was extracted from graphite granules and cation exchange membranes 

using the FastDNA® spin Kit for soil (MP Biomedicals, Santa Ana, CA). PCR amplicons 

of bacterial and archaeal 16S rRNA genes were generated using the Bacteria-universal 

primers 341F (5′-TCCTACGGGNGGCWGCAG-3′) and 785R (5′-TGACTACHVGGGTA 
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TCTAAKCC-3′) and Archaea-universal primers 340F (5′-TCCCTAYGGGGYGCASCAG-

3′) and 915R (5′-TGTGCTCCCCCGCCAATTCCT-3′). Sequencing was performed using 

the Illumina MiSeq platform at a commercial laboratory (LGC Genomics GmbH, Berlin, 

Germany). Raw data were processed using Illumina CASAVA data analysis software and 

reads were demultiplexed according to index sequence. Overlapping regions within paired-

end reads were then aligned to generate contigs. If a mismatch was discovered, the paired-

end sequences involved in the assembly were discarded. OTU picking and taxonomical 

classification was performed at 97% identity level with Mothur 1.33. Sequence data were 

deposited in the Sequence Read Archive (SRA) of NCBI database under the accession 

number SRP044693. 

2.2.7 Statistical analysis 

Statistical analyses were performed using SPSS 22.0 package (Chicago, IL, USA). 

The normality and homogeneity were assessed with a Shapiro-Wilk W test and a Levene 

test, respectively. Differences in benzene and ammonium removal efficiencies between the 

MFC and control reactor were compared with one-way AVONA tests. The Tukey′s post-

hoc test was used to further evaluate the difference between the different flow rates when 

significant differences were found. Differences were considered to be statistically 

significant if p<0.05. The linear relationship between removed pollutant loads and power 

generations were further analyzed by a regression analysis. 

2.3 Results and discussion  

2.3.1 Overall treatment performance during continuous operation 

Overall performance of the MFC with an aerated cathode 

The MFC was continuously fed for around 130 days with contaminated 

groundwater containing up to 15 mg/L for benzene and 20 mg/L
 
for ammonium (Table 2-

1), generating current and achieving a constant benzene and NH4
+
-N removal (Figure 2-2 

and 2-3). During the initial stage, benzene and NH4
+
-N removal as well as current output 

gradually increased, probably due to the attachment and growth of ammonium- and 

benzene-metabolizing microorganisms from contaminated groundwater. After 
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approximately two months, benzene and NH4
+
-N removal became relatively stable, 

indicating that electrochemical active biofilms had been fully developed, reflected also by a 

stable current generation (Figure 2-3). In the anodic effluent of the MFC, roughly 80% of 

benzene was removed whereas NH4
+
-N concentrations decreased only slightly (~5%). The 

remaining 20% benzene was removed at the cathode, resulting in an overall benzene 

removal efficiency of 100% in the cathodic effluent. Ammonium disappeared completely in 

the cathodic effluent, showing finally 100% removal efficiency. In summary, benzene was 

removed mainly (80%) in the anodic compartment and NH4
+
-N was removed solely in the 

cathodic compartment of the MFC. Sequential removal of benzene and ammonium in the 

different compartments avoided putative negative effects of benzene and benzene degraders 

on the nitrification process which have been previously reported (2011, Jechalke et al. 

2010). During steady stage, the MFC generated current between 200 and 250 μA and a 

current density of 0.6~0.8 A m
-3

 NAC was obtained (Figure 2-3) when being operated at 

1,000 Ω.  

 

Figure 2-2 Benzene and NH4
+
-N removal in the MFC (A) and the Control (B) during 

continuous treatment of contaminated groundwater. *represents significant higher removal 

efficiency (p<0.05) in the MFC compared to the control at the same sampling time. 
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The comparison with the field studies on the treatment of benzene and ammonium-

contaminated groundwater with other remediation technologies, similar high percentage of 

benzene removal but far more NH4
+
-N concentration reduction were achieved in our MFC 

system, even only considering their best removal efficiencies achieved during summer. For 

example, Seeger et al. (2011) reported 81%-99% benzene removal and 40-50% NH4
+
-N 

removal in a planted constructed wetland. A novel aerated treatment pond exhibited 

approximately 100% benzene concentration reduction, whereas ammonium concentrations 

decreased only slightly from around 59 mg/L at the inflow to 56 mg/L in the outflow, 

indicating no significant NH4
+
-N removal during continuous operation (Jechalke et al. 

2010). Therefore, sequential benzene degradation and nitrification eliminated the inhibition 

effect of benzene on nitrification in our MFC system. 

Most studies on MFC operations using benzene as anodic substrates were 

performed under the simplified laboratory conditions using artificial wastewater. Thus, 

Current output in this study can be compared to these studies. Recently, Rakoczy et al. 

(2013) investigated the treatment of benzene and sulfide-contaminated groundwater using a 

MFC over a period of 770 days and obtained a maximum current output of approximately 

250 µA in a continuous flow mode, which was comparable with our study.  

 

Figure 2-3 Current generation in the MFC during continuous treatment of contaminated 

groundwater.  
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Overall performance of the control reactor without aeration 

In the control reactor, benzene removal in both pseudo-anodic and cathodic effluent 

gradually increased during the initial microbial enrichment, and then achieved steady 

removal efficiencies of 60% and 80%, respectively (Figure 2-2). Compared to the MFC, 

less benzene (20% lower) was removed in the control reactor (p<0.05), indicating enhanced 

benzene degradation in the anode compartment of the MFC. Ammonium was only slightly 

removed (<10%) in the control, similar to the anode of the MFC. A low noise current (< 5 

μA) was observed in the control; hence current was not efficiently generated (Supporting 

information S2-2). In MFCs, the electrochemical potential difference of anode and cathode, 

depending on the redox potential of the electron donor and the terminal electron acceptor, 

determines the possibility and extent of generated current (Wrighton and Coates 2009). As 

nearly the same anode and cathode potentials were observed in the control, no 

electromotive force was obtained and thus no current generated. Therefore, the control 

reactor without aeration can be regarded as a benzene-degrading mesocosm in which 

granular graphite was colonized by benzene degraders but not served as electron donor or 

acceptor.  

2.3.2 Mechanisms of benzene and ammonium removal 

Benzene removal mechanism 

CSIA was performed in order to identify the initial activation mechanisms of 

benzene degradation in the MFC and the control reactor. The initial attack on 

thermodynamically very stable benzene is critical for its degradation process. Combined 

carbon and hydrogen isotope fractionation has been proved to be a powerful tool for the 

characterization of initial metabolic reactions for benzene biodegradation (Fischer et al. 

2008b, Mancini et al. 2008). Carbon and hydrogen isotope fractionations of benzene were 

significantly higher in the control compared to the MFC (Supporting information Figure 

S2-3). However, two dimensional plots of carbon versus hydrogen isotope fractionation 

were similar for both MFC and control (Figure 2-4), indicating that isotope fractionation 

was masked in the MFC. The detected values matched with those indicative for benzene 

monooxygenation to phenol catalyzed by a monooxygenase (Figure 2-4). The produced 

phenol might be further transformed into catechol by a second monooxygenation and also 



Chapter 2                                             Treatment of contaminated groundwater using a MFC 

38 

the other possible intermediates after a possible ortho or meta ring cleavage of catechol 

(Yerushalmi et al. 2001, Zaki 2006). Monohydroxylation as benzene activation step was 

also identifies in the anodic reaction of a MFC for treating benzene and sulfide-

contaminated groundwater (Rakoczy et al. 2013). However, we cannot exclude that 

benzene was actually anaerobically activated and degraded by a mechanism producing 

similar carbon and hydrogen isotope fractionation as observed for aerobic 

monohydroxylation, as different anaerobic benzene activation mechanisms are currently 

proposed: an anaerobic hydroxylation to phenol (Zhang et al. 2013b) or a carboxylation to 

benzoate (Abu Laban et al. 2010, Luo et al. 2014). In any case, the intermediates of the 

initial benzene activation steps were probably further oxidized anaerobically and accelerate 

electricity generation by transferring the released electrons to the anode. This is also 

supported by our electrochemical results and the fact that no other electron donors except 

for benzene were provided. 

Figure 2-4 Two-dimensional isotope plot of ∆δ
13

C versus ∆δ
2
H values of benzene 

measured at the anode of the MFC (red symbol) and pseudo-anode of the Control (black 

symbol) during continuous treatment. Values of ∆δ were calculated by subtracting the 

measured isotopic value from the initial isotopic value determined at the influent. 
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Ammonium removal mechanism 

At the cathode of the MFC, ammonium was mainly oxidized to nitrate by 

nitrification, as indicated by an increase of NO3
-
-N (Supporting information Figure S2-1). 

In the control and the anode of the MFC, NO2
-
 and NO3

-
 concentrations were extremely low 

(data not shown), showing that ammonium removal by nitrification activity was negligible; 

the oxygen concentrations were obviously too low for nitrification, as previously observed 

in an aerated treatment pond with biofilm promoting mats at the Leuna field site (Jechalke 

et al. 2011). The small ammonium losses in the control reactor and the anode compartment 

of the MFC might be due to physical-chemical processes, e.g. adsorption or volatilization 

(Kim et al. 2008, Yan and Regan 2013). 

2.3.3 Effect of the flow rate on the performance of the MFC 

To determine the effect of HRTs, different flow rates were used to study benzene 

and NH4
+
-N removal performance as well as power generation in the MFC. As shown in 

Figure 2-5A, benzene removal at the anode decreased from 80% at a flow rate of 0.3 

mL/min (27 h HRT) to 40% at a flow rate of 1.0 mL/min (8 h HRT). At a flow rate of 0.1 

mL/min (80 h HRT), benzene was completely removed already at the anode. However, 

100% benzene removal efficiency was always obtained in the final cathodic effluent at the 

five studied HRTs. At the lower flow rate (0.1 and 0.3 mL/min), ammonium was 

completely removed (Figure 2-5A). At flow rates higher than 0.3 mL/min, the removal 

efficiencies decreased gradually to around 70% at a flow rate of 1.0 mL/min, implying that 

nitrification was limited at the shorter HRT.  
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Figure 2-5 Effect of flow rate on benzene and ammonium removal (A), power generation 

(B), and electrode potentials (C) in the MFC. B: polarization curve (solid symbol) and 

power density curve (open symbol); C: anode potential (solid symbol) and cathode 
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potential (open symbol). Different letters (a, b, c, d) located above the bars indicate a 

significant difference between removal efficiencies at the different flow rates. 

The maximum power density of 316 mW/m
3
 NAC was achieved at a current of 0.99 

A/m
3
, when the MFC was operated at the flow rate of 0.3 mL/min (Figure 2-5). As shown 

by the polarization and power density curves, lower performances were obtained at higher 

or lower flow rates. The electrode potentials as a function of current density were also 

examined at different flow rates (Figure 2-5C). As expected from the removal data, it was 

observed that the cathodic potentials were not affected by the different flow rates. The 

anodic OCP values shown at zero current density were also similar under the different flow 

rates, demonstrating an excellent stability of the system. The electrode polarization showed 

very different profiles for the anodic potentials at the different flow rates. Therefore, the 

difference of power density at the different flow rates was a result of the polarization 

behavior of the anodic potentials, indicating that anodic benzene oxidation was rate-

limiting and thus determined electricity generation. In order to confirm this finding, 

subsequent benzene injection experiments were performed and also approved that benzene 

served as the main anodic electron donor in the MFC (Figure 2-6).  

Coulombic efficiencies of 28±4.7%, 14±3.4%, 10±1.2%, 8±1.4% and 7±0.9% were 

obtained at the increased flow rates of 0.1, 0.3, 0.5, 0.7, and 1.0 mL/min, respectively; 

analogously, energy efficiencies of 8±1.3%, 4±0.9%, 3±0.3%, 2±0.3% and 1.2±0.2% were 

achieved. The lower coulombic and energy efficiencies at higher flow rates are indicative 

for incomplete benzene degradation, eventually resulting in a lower number of electrons 

transferred to the anode. The data also indicate that a substantial number of electrons were 

generally not transported to the anode, probably caused by the use of penetrating oxygen or 

alternative substances as electron acceptors (e.g. carbonate leading to methanogenesis or 

organic or inorganic metabolites upon fermentation processes). Notably, the MFC with 

aerated cathode was more efficient with regard to benzene degradation than the 

ferricyanide-based MFC described recently by Wu et al. (2013), which produced a power 

density of 2.1 mW/m
2 

and showed a coulombic efficiency of 3.3%. In subsequent 

experiment, a flow rate of 0.3 mL/min was used due to the maximum power density and 

high pollutant removal performance achieved at this date. 
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Figure 2-6 Effect of benzene and ammonium additions, and oxygen interruption on current 

generation in the MFC. (A): benzene injection of 15 mg/L (a1), 30 mg/L (a2), and : 50 

mg/L (a3); (B): NH4
+
-N injection of 20 mg N/L (b1), 50 mg N/L (b2) and 100 mg N/L (b3); 

(C): Interruption of O2 supply at the cathode; (D): correlation between current generation 

and benzene concentration at the anode.  

2.3.4 Detection of electrochemical reaction in the MFC 

Although the complete degradation of benzene can theoretically release 30 electrons 

(Wu et al. 2013), current generation strongly depends on whether electrons from benzene 

oxidation can be efficiently transferred to the anode. In our study, when 15 mg/L
 
benzene 

was injected into the anode, the current rapidly increased from around 240 to 350 μA 

within 3 h; subsequently, the current gradually decreased corresponding to decreasing 

benzene concentrations (Figure 2-6A). Injecting higher benzene concentrations of 30 and 

50 mg/L generated higher current maxima of 415 and 450 μA, respectively. A linear 

correlation was obtained between the current and the concentration of benzene at the anode 

(Figure 2-6D), demonstrating that benzene oxidation was the main anodic reaction, and the 
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released electrons were efficiently delivered to the anode. In contrast, increasing 

ammonium concentrations by injection of 20, 50, 100 mg/L NH4
+
-N did not affect the 

current output (Figure 2-6B), indicating that cathodic ammonium oxidation did not limit 

electricity generation. Subsequently, the effects of varying oxygen concentrations at the 

cathode were investigated (Figure 2-6C). When the supply of oxygen at the cathode was 

stopped, the DO concentration gradually decreased from about 6 to 1 mg/L, and the current 

also decreased from about 300 to 60 μA. The current generation immediately increased 

when oxygen was again supplied and the DO concentration increased. Hence, the DO 

concentration was coupled to current generation, suggesting that oxygen was the main 

terminal electron acceptor at the cathode.  

As NH4
+
-N can release maximally eight electrons via oxidation to nitrate, 

ammonium can theoretically serve as an anodic electron donor (He et al. 2009). However, 

ammonium as a direct anodic fuel for electricity generation has not been demonstrated 

experimentally yet. In our study, ammonium was completely oxidized to nitrate at the 

cathode by nitrifying microorganisms (Supporting information Figure S2-1). Our results 

demonstrate that the released electrons were not involved in electrochemical reactions; 

probably, the electrons were directly respired by nitrifiers, explaining why ammonium 

consumption was not directly connected to electricity generation in the MFC. You et al. 

(2009) showed that additional protons produced from ammonium oxidation can reduce the 

ohmic resistance and maintain the pH balance in the absence of a phosphate buffer, which 

can contribute to the electricity generation process. Recently, it was also reported that the 

oxygen reduction relied on the nitrification activity at the biocathode, at least to some 

extent (Du et al. 2014). In this study, the contaminated groundwater from the Leuna site 

probably had a good buffer capacity, so that biological nitrification was not directly linked 

with current generation.  

Based on these results, the anodic and cathodic reactions occurred in the MFC are 

described by the following equations, with the assumption of complete oxidation of 

benzene. 

Anode: C6H6 + 12 H2O         6 CO2 + 30 e
- 
+ 30 H

+
                                      (1) 

Cathode: O2 + 4 H
+ 

+ 4 e
-
          2 H2O                                                          (2) 

Overall reaction: C6H6 + 7.5 O2             6 CO2 + 3 H2O                                (3) 
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Coulombic and energy efficiencies at the different flow rate were calculated 

according the above electrochemical reactions. 

2.3.5 Analysis of microbial communities in the MFC and Control   

Bacterial community analysis 

The compositions of bacterial communities colonizing at the pseudo-/anode, CEM 

and pseudo-/cathode were analyzed (Figure 2-7A). The anode of the MFC and the control 

reactor were mainly colonized by bacterial phylotypes belonging to the Chlorobiales, 

Rhodocyclales, and Burkholderiales. The family Chlorobiaceae in the Chlorobiales 

accounted for ~15% and 41% of the pseudo-/anodic bacterial communities in the control 

and MFC, respectively. Although Chlorobiales were previously known as anaerobic 

photoautotrophs, several recent studies suggested that they were able to perform anaerobic 

dark respiration by the breakdown of organic substrates when sulfide is not used as electron 

donor (Badalamenti et al. 2013, Feng et al. 2010). Chlorobiales were also identified as the 

dominant phylotypes in benzene degrading enrichment cultures under nitrate-reducing 

conditions (Mancini et al. 2008, van der Zaan et al. 2012) which indicated that 

Chlorobiales can participate in degradation of benzene or its intermediate metabolites. 

Large percentages of Rhodocyclaceae of 43% and 21% (belonging to Rhodocyclales) were 

observed at the pseudo-/anode of the control and MFC respectively, indicating as well a 

role of these phylotypes upon benzene degradation; correspondingly, phylotypes of this 

family were shown to be associated with anaerobic benzene degradation either by DNA-

stable isotope probing with 
13

C-labelled benzene (Liou et al. 2008, van der Zaan et al. 

2012) or by phylogenetic analysis of benzene-degrading enrichment cultures (Kasai et al. 

2006). The Comamonadaceae within the order of Burkholderiales, accounting for 5% and 

6% of bacterial communities at the pseudo-/anode of the control and MFC, were also 

shown to be involved in benzene degradation (Perez-Pantoja et al. 2012, van der Zaan et al. 

2012).  Overall, the dominance of these potential benzene degraders implies that those were 

actually related to benzene degradation in both MFC and control. The whole control 

reactor, including pseudo-anode, CEM and pseudo-cathode, were colonized by similar 

bacteria with slightly different abundances, again supporting the view that it is a 

homogenous mesocosm. 
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Figure 2-7 Phylogenetic distribution of 16S rRNA genes based on the order of bacteria (A) 

and archaea (B) detected in the MFC and Control. Bacterial orders with a read 

abundance<1% in all of the six samples were pooled in others. MFCA: MFC anode; 

MFCM: MFC CEM; MFCC: MFC cathode; ConA: Control pseudo-anode; ConM: Control 

CEM; ConC: Control pseudo-cathode. 

Different from the bacterial community at the anode, the dominant bacteria orders at 

the cathode of the MFC were Nitrospirales (18%), Burkholderiales (15%), Rhodocyclales 

(7%), Nitrosomonadales (4.5%), and Rhizobiales (4%). Obviously, the dominant families 
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of Comamonadaceae and Rhodocyclaceae affiliated to Burkholderiales and Rhodocyclales 

were able to degrade the residual benzene from the anode (van der Zaan et al. 2012). 

Phylotypes affiliated to Nitrosomonadales and Nitrospirales belong to the genera of 

Nitrosovibrio and Nitrospira, which presented the dominant ammonia-oxidizing and nitrite-

oxidizing bacteria respectively (Lucker et al. 2010, Meincke et al. 1989). They were also 

identified as dominant nitrifying bacteria in wastewater treatment plants and MFC systems 

for nitrogen removal (Tu et al. 2014, Yu et al. 2011). The data suggests that ammonium 

was firstly oxidized to nitrite by Nitrosovibrio, then nitrite was further oxidized to nitrate 

by Nitrospira, leading to a high rate of nitrification at the cathode of the MFC.  

The complexity of anode biofilms usually makes it hard to elucidate 

electrochemical mechanisms at the anode, but microbial community analysis will help to 

understand microbial interactions among electrochemically active microorganisms and their 

syntrophic partners and competitors in anode biofilms and further aid in improving the 

MFC performance. Various dominant bacterial phylotypes were identified in the MFC and 

they are able to catalyze syntrophic benzene degradation. Such syntrophic processes has 

been described to govern anaerobic benzene degradation in both benzene-degrading 

enrichment cultures and in situ benzene-degrading columns (Vogt et al. 2011). In this 

study, syntrophic interactions were probably used to break down benzene into simple 

molecules, which can be used for current generation.  

Archaeal community analysis   

The compositions of archaeal communities were shown in Figure 2-7B. The 

archaeal communities were dominated by phylotypes belonging to the Methanosarcinales 

(64-76%) and Methanomicrobiales (1.5-8%) in the three parts of control and the anode of 

the MFC (Figure 2-7B). Methanogens can compete substrates with electrochemically active 

microorganisms and hence reduce electron recovery (Jung and Regan 2011). It was shown 

that electrochemically active microorganisms can outcompete acetoclastic methanogens for 

organic substrates in MFCs, eliminating electron consumption by methanogens (Jung and 

Regan 2011, Lee et al. 2008). Electrochemically active microorganisms are not able to 

completely outcompete hydrogenotrophic methanogens, usually leading to electron loss. In 

this study, acetoclastic Methanosarcinales were the predominant archaea at the MFC anode 
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(76%), while hydrogenotrophic Methanomicrobiales only presented a relatively low 

abundance (2%). These data indicated electron loss by methanogenesis was probably not 

significant in this MFC. Notably, Methanosarcinales and Methanomicrobiales have been 

identified as syntrophic methanogens in anaerobic benzene-degrading enrichment cultures 

(Herrmann et al. 2010, Sakai et al. 2009). The data indicates that benzene was likely 

degraded by a syntrophic consortium of facultative anaerobes, electrochemically active 

microorganisms, methanogens after the initial activation reaction by monohydroxylation 

(Vogt et al. 2011). In this study, a well-balanced microbial community consisting of 

electrochemically active microorganisms and their various syntrophic partners as well as 

competitors was maintained at the anode, which can support an efficient and robust biofilm. 

Different from the archaeal communities in the control and the anode of the MFC, 

the CEM and cathode of the MFC was dominated by unclassified Euyarchaeota (46%), 

unclassified archaea (39%) and Methanosarcinales (12%). It was possible that archaea 

from anoxic groundwater were not able to grow at the aerobic cathode of the MFC due to 

the completely different physicochemical conditions. 

Due to the complexity of anode biofilms, it is usually very difficult to elucidate 

concrete electrochemical mechanisms at the anode, e.g. identifying the microorganisms 

actually transferring electrons to the anode. However, various dominant bacterial 

phylotypes were identified in the MFC, suggesting that the electrons were transferred to the 

anode after the initial activation reaction by a network of microorganisms, using different 

metabolites of benzene degradation as substrates, rather than by a single organism. These 

processes might be syntrophic; such syntrophic processes have been described to govern 

anaerobic benzene degradation in both benzene-degrading enrichment cultures and in situ 

benzene-degrading columns (Herrmann et al. 2010).  
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2.4 Supporting information 

 

Figure S2-1 Concentration changes of NH4
+
, NO2

-
, and NO3

-
 in the cathodic compartment 

of the MFC during continuous treatment. Influent NH4
+
-N (  ), Effluent NH4

+
-N (  ), 

Effluent NO2
-
-N (*), Effluent NO3

-
-N (▲). 

 

Figure S2-2 Noise Current observed in the control during continuous treatment of 

contaminated groundwater. 
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Figure S2-3 Rayleigh plot for carbon and hydrogen stable isotope fractionation of the 

anodic benzene in the MFC and the control reactor. The lines correspond to a linear 

regression: carbon (A) and hydrogen (B) isotope fractionation in the MFC; carbon (C) and 

hydrogen (D) isotope fractionation in the Control. C0: the benzene concentration at the 

influent; Ct: the benzene concentration at the anodic effluent; R0: the isotope ratio 

determined at the influent; Rt: the isotope ratio at the anodic effluent. Enrichment factors 

(ε) are given with the uncertainty (± confidence interval 95%). 



Chapter 2                                             Treatment of contaminated groundwater using a MFC 

50 

0.0 0.3 0.6 0.9 1.2 1.5 1.8
0

100

200

300

400

500

600

700

800

 

Current (mA/m
3
 NAC)

C
e
ll

 v
o

lt
a
g

e
 (

m
V

)

0

50

100

150

200

250

300

350

P
o

w
e
r 

d
e
n

s
it

y
 (

W
/m

3
 N

A
C

 )

 
Figure S2-4 Forwards (circle symbol) and backwards (diamond symbol) polarization and 

power density curves of the MFC at a flow rate of 0.3 mL/min. Solid symbols represent cell 

voltage; open symbols represent power density. Polarization and power curves usually do 

not overlap when resistors are switched in forward (from high to low) and backward (from 

low to high) orders. In our study, a slight hysteresis was observed between the forward and 

backward curves. The backward polarization curve is below the forward one with a 

difference of ~50 mV.  

 

 

 



Chapter 3                                  Enhanced benzene and ammonium removal in the MET-CW 

51 

 Enhancement and monitoring of pollutant removal CHAPTER 3

in a constructed wetland by microbial electrochemical 

technology 

Wei, M., Rakoczy, J., Vogt, C., Harnisch, F., Schumann, R., & Richnow, H. H. (2015). 

Enhancement and monitoring of pollutant removal in a constructed wetland by microbial 

electrochemical technology. Bioresource Technology, 196: 490-499. 

Abstract  

A bench-scale constructed wetland combined with microbial electrochemical 

technology (MET-CW) was run for 400 days with groundwater contaminated with benzene, 

and ammonium (NH4
+
). Four vertically stacked anode modules were embedded into a sand 

bed and connected with a stainless steel cathode placed in an open water pond. In the zone 

where the anode modules were placed, significantly more benzene was removed in the 

MET-CW compared to the control CW without MET in the first 150 operation days. 

Benzene was identified as primary electron donor at the anode. Benzene removal and 

current densities were linearly correlated, implying the potential of the system for 

electrochemically monitoring benzene biodegradation. Compound-specific isotope analysis 

(CSIA) indicated that benzene was initially activated by monohydroxylation forming 

intermediates which were subsequently oxidized accompanied by extracellular electron 

transfer, leading to current production. NH4
+
 removal was not stimulated by MET.  

 

Key words benzene, ammonium, MET, bioremediation, microbial electrochemical 

technology, constructed wetland 
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3.1 Introduction  

Microbial electrochemical technologies (METs) are a rapidly developing 

technology platform at the nexus of microbiology and electrochemistry (Schröder et al. 

2015). The archetypes of METs are MFCs, which can convert chemical energy of organic 

or inorganic compounds into electrical power. Recently, METs were described to remove 

various pollutants from contaminated waters such as organics (Zhang and He 2012a) as 

well as nitrogen and phosphorus containing compounds (Kelly and He 2014). Especially, 

the removal of nitrogen compounds (e.g. NH4
+
, NO2

-
, NO3

-
) in METs attracts increasing 

interest, providing a competitive alternative to traditional wastewater treatment processes 

(Kelly and He 2014). Recently, it was reported that microbial anodes in METs can 

effectively enhance the anaerobic biodegradation of petroleum hydrocarbons (e.g. benzene, 

toluene), providing potential applications for the bioremediation of anaerobic sediment or 

groundwater contaminated with petroleum hydrocarbons (Wang et al. 2012, Wu et al. 2013, 

Zhang et al. 2010). In addition to converting the chemical energy of pollutants in 

electricity, METs were used as biosensors for on-line monitoring of wastewater treatment 

or anaerobic digestion processes, such as MFC-based sensors for measuring the biological 

oxygen demand (Di Lorenzo et al. 2009, Liu et al. 2011). Thus, microbial electrochemical 

technologies possess the attractive potential to allow simultaneously removing pollutants, 

generating electricity, and monitoring the overall processes. 

Constructed wetlands (CWs) have been developed to treat polluted water for 

decades due to their low cost, easy operation and maintenance (Garcia et al. 2010, Imfeld et 

al. 2009). In CWs, spatial gradients of DO concentrations and redox conditions support the 

formation of ecological niches occupied by several eco-physiologically different 

microorganisms, which can perform several different respiration and/or fermentation 

processes and generally show broad pollution removal capacities (Faulwetter et al. 2009, 

Imfeld et al. 2009). Spatially separated oxic zones in the rhizosphere and anoxic zones in 

the deeper layers of a CW generate a potential difference which can be utilized to operate a 

MFC, thereby providing an option for the enhancement of in situ pollutant removal while 

simultaneously generating electricity. Systems efficiently combining MFCs and VSSF or 

HSSF CWs have been previously reported (Fang et al. 2013, Villasenor et al. 2013, Yadav 

et al. 2012, Zhao et al. 2013). Villasenor et al. (2013) reported electricity generation during 
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the treatment of synthetic wastewater with glucose as substrate in a lab-scale HSSF-CW by 

installing a horizontal, rectangular graphite cathode in the upper zone and an identical 

anode in a deeper layer, respectively. However, the practical application is technically 

challenging and more studies on the combined HSSF-CW and MET treating naturally 

polluted waters are essentially needed.  

Several different pilot-scale HSSF-CWs have been constructed in order to remediate 

petroleum hydrocarbons and NH4
+
 contaminated groundwater at Leuna site (Chen et al. 

2012, Seeger et al. 2011, van Afferden et al. 2011). Recently, Wei et al. (2015a) described a 

small-scale MFC reactor with an aerated cathode by which benzene and NH4
+
-N 

contaminated groundwater from this site was successfully treated under controlled 

laboratory conditions; benzene biodegradation at the anode was coupled with electricity 

generation while ammonium was oxidized at the cathode. Although METs and CWs 

technologies have been separately applied for the effective remediation of contaminated 

groundwater at the Leuna site, it is worthwhile to develop a combined MET and CW 

system considering the possibility for exploiting benefits of both METs and CWs. 

In this chapter, an integrated MET-CW was established by embedding four anode 

modules into the sand bed and connecting it to a cathode placed in the open pond inside a 

bench-scale HSSF-CW; the system was used to treat original Leuna groundwater mainly 

contaminated with benzene and NH4
+
. The objective of the study was to evaluate whether 

MET can be used to (i) improve the biodegradation of the main contaminants and (ii) to 

monitor such degradation processes in the HSSF-CW. Furthermore, the performances of 

anode modules located at the different depths were compared in order to determine 

favorable depths for anodic reactions.  

3.2 Materials and methods 

3.2.1 Reactor construction and set-up 

The MET reactor was made of acrylic material and comprised four individual anode 

modules (each 10.5×4.2×3.3 cm, 53 cm height in total) as shown in Figure 3-1A. Each 

module contained 27 holes (diameter 1 cm) covered by nylon gauze allowing water flow-

through. The anode consisted of six parallel graphite plates (9×3.5×0.4 cm), connected each 



Chapter 3                                  Enhanced benzene and ammonium removal in the MET-CW 

54 

other by a graphite rod with a diameter of 0.5 cm, leading to a total specific surface area of 

0.0438 m
2
 per module. The four anode modules were connected with a stainless steel 

cathode (304 SS, 13.5×3.5×1 cm) across the constant external resistances of 200 Ω for 

operation and varying resistances for polarization curves, respectively.   

3.2.2 Setup and operation of the MET-CW system 

A general scheme of the MET-CW system and detailed information on the 

experimental design are provided in Figure 3-1B. The horizontal subsurface flow wetland 

consisted of a stainless steel tank (201×60×5 cm) equipped with a 1 cm thick glass panel on 

the front side, filled to an average depth of 52 cm with quartz sand (grain size = 0.68 ~ 0.80 

mm) and planted with common rush (Juncus effuses, L.). The glass panel was covered by a 

removable light-tight board to avoid light effects. At 150 cm distance from the inflow, a 50 

cm long open water pond was created, remaining in direct contact with the atmosphere. The 

sand bed was separated from the open water pond using a stainless steel plate, which 

contains many holes (diameter 1 cm) covered with nylon gauze, allowing water flow-

through. At the inflow, four inlet pipes were located 4, 12, 20, and 36 cm above the bottom 

to facilitate a uniform distribution of groundwater through the whole wetland body. Due to 

the presence of a pore at the outflow part, the water level was kept at 48 cm depth from the 

bottom. Anoxic groundwater was taken from a contaminated site close to the Leuna 

refinery (Saxonia, Anhalt, Germany) and kept in a 50 L stainless steel tank under constant 

dinitrogen pressure (0.5 bar); this water was continuously pumped into the MET-CW at a 

constant flow rate (0.3 ml min
-1

) by a peristaltic pump (Ismatec REGLO Analog MS-2/6, 

Wertheim, Germany), yielding an inflow of 1.73 liters per day and resulting in a hydraulic 

retention time (HRT) of approximately 15 days. The composition of contaminated 

groundwater is shown in Table 2-1. The system was equipped with a cooling system 

maintaining the temperature of the tank and the wetland constantly at 14 ± 2
o
C. Four anode 

modules were embedded into the sand bed of the CW located between the sampling ports at 

the flow distance of 94 cm and 139 cm. The module sides containing the holes were placed 

in the direction of the water flow, allowing water to pass through. The cathode was 

installed at the surface of the open water body with around 80 cm distance from the anode 

modules. A control CW containing no MET was similarly constructed and operated; the 
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mechanisms of benzene biodegradation and hydrogeological parameters in this system have 

been reported by Rakoczy et al. (2011). 

 

Figure 3-1 Schematic diagram of the MET-CW used in this study. 

3.2.3 Electrochemical measurements and calculations 

The voltage (V) across the resistor (R) was recorded at 20 min intervals using a 

Paperless Recorder (JUMO LOGOSCREEN 500 cf, Fulda, Germany). The current (I) was 

calculated by Ohm’s law (I = V/R). The current and power densities were normalized by 

the total surface area per anode module (A). The coulombic efficiency (CE) was calculated 
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as the ratio of total electrons recovered as charge to maximum possible electrons released 

by all substrate removal. Polarization and power density curves were obtained by varying 

the resistance in a range from 10000 to 100 Ω using a multimeter (Metrix MTX 3282, 

Paris, France). Therefore, the reactor was first disconnected for 5 h to record a stable open 

circuit voltage (OCV). Data for each resistance adjustment were recorded for at least 30 

min interval after the voltage change was less than 2 mV in 1 min. The measurement was 

carried out in triplicates; a constant resistance of 200 Ω was reconnected overnight between 

every replicate measurement. The internal resistance was calculated based on the slope of 

the linear region of the polarization curve. 

3.2.4 Sampling procedure  

Twelve sampling ports were installed for collecting water samples across the bed 

(Figure 3-1). Four vertical groups across the sand bed located at 6, 49, 94 and 139 cm 

distance from the inflow, each consisting of three sampling ports at 24, 36 and 48 cm depth 

from the top, were systematically investigated. Water samples from the inflow, outflow and 

the 12 sampling ports were collected using a gas-tight syringe through a valve as previously 

described (Rakoczy et al. 2011). In order to analyze different biogeochemical parameters, 

each pore water sample consisted of six subsamples which were stored in completely filled 

sterile 20 ml vials. Two subsamples for benzene measurements were immediately fixed 

using sodium hydroxide to inhibit microbial activity. One subsample was adjusted to a pH 

of 2 with HCl (36%) in order to measure ferrous and total ionic iron. The other water 

samples were stored at 4
°
C until analysis. The outflow volumes were measured in 

comparison to the inflow volumes in order to determine water loss, allowing the calculation 

of pollutant load removal. 

3.2.5 Chemical analysis and calculations 

Water samples were analyzed for the concentrations of benzene, ammonium 

(NH4
+
), nitrite (NO2

-
), nitrate (NO3

-
), sulfate (SO4

2-
), phosphate (PO4

3-
), chloride (Cl

-
), 

ferrous iron (Fe
2+

), and total ionic iron. Briefly, benzene were analyzed using a gas 

chromatograph equipped with a flame ionization detector (Varian CP-3800 GC, Palo Alto, 

CA) as described elsewhere (Fischer et al. 2008b, Rosell et al. 2010). The concentrations of 

NH4
+
, NO2

-
 and NO3

-
 were analyzed colorimetrically as described before (Bollmann et al. 
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2011). The pH was monitored by a pH meter168 (Knick, Berlin, Germany). The DO 

concentration was determined in situ by an optical trace sensor system (PreSens sensor spot 

PSt6 and FIBOX-3 minisensor oxygen meter, 170 Regensburg, Germany). The oxygen 

sensor spots were attached to the inner side of the glass panel, distributed corresponding to 

the sampling ports across the sand bed. The redox potential (Eh) was measured with a 

pH/mV/Temp meter (Jenco Electronics 6230N, San Diego, USA).  

Putative water losses through plant transpiration and evaporation from the surface 

(evapotranspiration) were taken into account in order to make more reliable comparisons 

and eliminate the effect of evapotranspiration on pollutant concentrations (Hijosa-Valsero 

et al. 2010). It was assumed that the water loss along the flow path followed a linear 

change. Therefore, the mass of pollutants was calculated as follows:  

 

Mij = Cij × [Q
inf- 

(Qinf - Qeff)

L
 × Li]                                          (1)    

   

where Mij is the pollutant mass at distance i cm and depth j cm (mg d
-1

); Cij is the pollutant 

concentration at distance i cm and depth j cm (mg L
-1

); Qinf is the influent flow rate (L d
-1

); 

Qeff is the effluent flow rate (L d
-1

); Li is the distance from inflow to the sampling point i 

(cm); and L is the entire length of the CW (cm). 

Pollutant removal efficiency was calculated based on the differences of pollutant 

mass between the influent and the sampling points using the following equation: 

  

Removal efficiency (%) = (1 - 
Mij

Minf
) × 100                                (2) 

 

where Minf is the influent mass load (mg d
-1

) and Mij is the mass load of the sampling point 

i (mg d
-1

).  
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3.2.6 Compound-specific stable isotope analysis 

Samples from the inflow and sampling ports were collected at operation day 95 and 

extracted with pentane as previously described (Wei et al. 2015a). The carbon and 

hydrogen stable isotope compositions were determined using a gas chromatograph-

combustion-isotope ratio mass spectrometer system (GC-IRMS). Measurements and 

calculations were performed as described by Rakoczy et al. (2013). The benzene 

degradation pathways were analyzed by comparing measured isotope composition shifts 

with published isotope enrichment factors (ε) in a two-dimensional isotope plot (Fischer et 

al. 2008b).  

3.2.7 Statistical analysis 

Statistical analyses were performed using the SPSS 22.0 package (Chicago, IL, 

USA). The normality and homogeneity were assessed with a Shapiro-Wilk W test and a 

Levene test, respectively. If the data were normally distributed, one-way ANOVA were 

used to analyze differences in pollutant removal efficiencies between the MET-CW and 

control CW. The Tukey′s post-hoc test was used to further evaluate the difference between 

the different depths within the same flow paths when significant differences were found. 

Non-parametric Mann–Whitney U-tests were performed instead of ANOVA tests, as a 

normal distribution could not be assumed. Differences were considered to be statistically 

significant if p<0.05. The linear relationship between pollutant loading removal (mass 

loading difference between 94 and 139 cm) and current densities were analyzed by a 

regression analysis. 

3.3 Results and discussion 

3.3.1 Removal efficiencies of benzene and NH4
+
-N 

The major pollutants in the influent groundwater were benzene and NH4
+
 (Table 2-

1), of which corresponding concentrations were up to 12 and 50 mg L
-1

, respectively. The 

removal efficiencies of these compounds within the MET-CW and control CW during the 

whole experimental period are shown in Figure 3-2. The depth-dependent spatial variations 

of removal efficiencies along the flow path were also determined in order to clarify the role 
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of MET upon pollutant degradation and to detect the most suitable locations of the anode 

modules; this is exemplarily shown in Figure 3-3 for the MET-CW at operation day 95 and 

the control CW at day 97, respectively. Pollutant removal efficiencies reached steady state 

in both the MET-CW and control CW after around 150 days, while current generation of 

the MET-CW start to become lower until completely disappear. Thus, the first 150 days of 

operation were termed phase I, and the subsequent experimental time was termed phase II.  

 

Figure 3-2 Removal efficiencies of benzene and NH4
+
 in the MET-CW and the control CW 

within 400 days, calculated based on the averaged mass loads for 24 cm, 36 cm and 48 cm 

depth at the sampling point after 139 cm flow path (see Fig. 1B). * represents significant 
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differences (p<0.05) between the MET-CW and the control CW. Original concentration 

data in the control CW at days 231, 293 and 345 were already published by Rakoczy et al. 

(2011).  

In phase I, the overall removal efficiencies of benzene and NH4
+
 gradually increased 

in both the MET-CW and control CW, indicating the attachment and growth of degraders 

as it usually occurs in wetland systems (Saeed and Sun 2012). In the first 40 operation days, 

the removal efficiencies of benzene and NH4
+
-N were similar (p>0.05) in both systems 

(Figure 3-2). From day 40 to 150, significant differences (p<0.05) were observed between 

the MET-CW and control CW for benzene removal. In particular, at day 95 and 125, 

benzene was nearly completely removed in the MET-CW, whereas such high removal 

efficiencies were obtained in the control CW only after 150 days (Figure 3-2). In phase II 

(i.e. after 150 days), benzene was almost completely removed in the both MET-CW and 

control CW. Notably, high removal rates of benzene has also been reported in pilot-scale 

CWs at the field site Leuna (Chen et al. 2012, Jechalke et al. 2010, Seeger et al. 2011).  

Figure 3-3 shows the removal efficiencies of benzene and NH4
+
-N at different sampling 

points and depths in the MET-CW at day 95 and the control CW at day 97, respectively. 

Overall, highest removal efficiencies of benzene were observed in the upper layer (24 cm), 

probably due to a better availability of oxygen reflected by the higher DO concentrations in 

this layer (Table 3-1). Compared to the control CW, slightly more benzene was removed in 

the upper layer at 94 cm and 139 cm distance in the MET-CW (Figure 3-3). A hot zone of 

degradation was detectable in the MET-CW between 94 cm and 139 cm distance; here, the 

removal efficiencies of benzene in the MET-CW were significantly higher in all three 

investigated depths (24 cm, 36 cm, 48 cm) compared to the control CW (p<0.05) (Figure 3-

3). Notably, the anode modules of MET were placed in this zone (Figure 3-1), indicating 

that this effect was caused by MET operation. Differences of benzene removal efficiencies 

between the MET-CW and control CW were much less pronounced at 6 cm, 49 cm and 94 

cm distance from the inflow (Figure 3-3). The physico-chemical parameters (pH, DO, Eh, 

Fe
2+

 and SO4
2-

) were rather similar in the MET-CW and control CW at all depths along the 

whole flow path (Table 3-1), indicating that the physico-chemical conditions were 

generally not changed by the insertion of the anode. In the zone where the MET anodes 



Chapter 3                                  Enhanced benzene and ammonium removal in the MET-CW 

61 

where placed (between the sampling points 94 cm and 139 cm), significantly more benzene 

was removed in the deeper layers (36 and 48 cm depth) where the anode modules 3 and 4 

were placed and where the actual DO concentrations were relatively low (<0.5 mg L
-1

). 

Due to the overall higher removal rates in the upper layers of 24 cm depth (Figure 3-2 and 

3-3), a large fraction of benzene (88%) was already degraded at 94 cm distance, and only a 

relatively low percentage of them reached the upper anode modules, thereby leading to less 

benzene removal at 24 cm depth.  

 

 

Figure 3-3 Pollutant removal efficiencies along the flow path in the MET-CW at the 95
th

 

day and the control CW at the 97
th

 day. Electricity was effectively generated in the MET-

CW (Figure 3-4). *represents significant differences (p<0.05) between the MET-CW and 

the control CW at the same sampling sites. 
abc

The different letters indicate significant 

differences (p<0.05) between the different depths at the same flow paths.  
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Table 3-1 Physico-chemical parameters along the flow path and the depth in the MET-CW and the control CW. Values are the average 

measured during the whole operation of 400 days.  

 

Note: Different superscript letters (
a
, 

b
 and 

c
) indicate significant differences (p<0.05) between the MET-CW and the control CW and 

between the different sampling depths. If two CWs or two sampling depths share the same letter, the values are not significantly 

different; if they do not have any letter in common, the values are significantly different (p<0.05). 

Flow 

path 
Depths 

pH DO (mg L
-1

) Eh (mV) Fe II (mg L
-1

) SO4
2-

 (mg L
-1

) 

MET-CW 
Control 

CW 
MET-CW 

Control 

CW 
MET-CW 

Control 

CW 
MET-CW 

Control 

CW 
MET-CW 

Control 

CW 

6 

cm 

24 cm 7.23±0.08
a
 7.02±0.21

a
 0.84±0.35

a
 0.54±0.19

a
 258±28

a
 243±87

a
 1.26±0.92

a
 3.10±2.88

ac
 7.52±4.6

a
 8.24±5.52

a
 

36 cm 7.26±0.06
a
 7.05±0.25

a
 0.16±0.02

b
 0.26±0.21

ab
 229±10

ab
 214±57

a
 1.85±1.06

a
 4.13±2.79

ac
 7.6±4.32

a
 9.25±4.87

a
 

48 cm 7.28±0.05
a
 7.19±0.10

a
 0.06±0.02

c
 0.05±0.02

c
 185±27

b
 189±64

ab
 1.80±1.04

a
 6.33±0.48

bc
 8.6±5.34

a
 9.29±5.12

a
 

49 

cm 

24 cm 7.18±0.14
a
 6.98±0.14

b
 0.75±0.39

a
 0.64±0.02

a
 270±24

a
 298±4

b
 0.62±0.95

a
 1.84±3.55

ac
 9.99±4.79

a
 7.70±5.69

a
 

36 cm 7.20±0.10
a
 6.99±0.18

b
 0.15±0.03

b
 0.23±0.09

b
 248±12

a
 283±25

b
 1.63±1.27

a
 3.69±2.71

ac
 9.43±4.69

a
 7.83±5.03

a
 

48 cm 7.22±0.06
a
 7.08±0.11

b
 0.05±0.03

c
 0.04±0.05

c
 214±17

bc
 201±35

c
 2.29±1.41

a
 5.67±1.09

bc
 10.16±5.51

a
 8.83±5.03

a
 

94 

cm 

24 cm 7.07±0.14
a
 6.94±0.14

ac
 0.83±0.29

a
 0.87±0.19

a
 288±14

a
 294±19

a
 0.20±0.17

a
 1.32±2.24

a
 9.31±5.21

a
 9.03±6.09

a
 

36 cm 7.11±0.08
a
 6.95±0.15

bc
 0.12±0.04

b
 0.19±0.18

b
 264±14

b
 276±25

ab
 1.44±1.61

a
 2.42±3.21

a
 7.27±4.44

a
 6.46±6.25

a
 

48 cm 6.89±0.44
a
 6.99±0.15

ab
 0.06±0.03

b
 0.04±0.06

b
 226±11

c
 244±36

bc
 2.38±2.94

a
 2.99±3.35

a
 9.07±5.21

a
 8.70±6.76

a
 

139 

cm 

24 cm 7.07±0.19
a
 6.98±0.01

ac
 0.65±0.30

a
 0.72±0.28

a
 294±14

a
 291±12

ab
 0.56±0.82

a
 0.68±0.99

a
 9.26±4.91

a
 6.38±3.37

a
 

36 cm 7.00±0.14
a
 6.89±0.14

ac
 0.14±0.03

b
 0.18±0.13

b
 277±13

a
 301±18

b
 0.77±1.07

a
 2.37±3.32

a
 7.75±5.35

a
 8.39±5.16

a
 

48 cm 7.06±0.12
a
 6.93±0.17

bc
 0.06±0.04

c
 0.04±0.08

bc
 236±10

b
 260±58

b
 1.06±1.05

a
 2.70±2.92

a
 9.69±6.66

a
 8.19±4.69

a
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In contrast to the results for benzene, NH4
+
 removal efficiencies were similar between the 

MET-CW and control CW in phase I (p>0.05). However, the mean NH4
+
 removal efficiency in 

phase II was significantly higher in the MET-CW (almost 100%) than that observed in the 

control CW (62%) (p<0.05) (Figure 3-2). NO3
- 
and NO2

-
 accumulated only in the upper layers (24 

cm) of the MET-CW and control CW (Supporting information Figure S3-2), demonstrating that 

nitrification was a major removal process. In contrast, NO3
-
 and NO2

-
 were not detected in the 

lower layers of 36 and 48 cm depth, although NH4
+
 concentrations decreased. This zonation was 

formed probably due to the levels of DO as average DO values of 0.75 and 0.70 mg L
-1

 were 

detected in the upper layers of MET-CW and control CW, respectively, whereas lower average 

values varying between 0.04 and 0.21 mg L
-1

 were measured in the lower layers of both CWs 

(Table 3-1). DO concentrations of less than 0.5 mg L
-1

 are known to promote denitrification or 

anaerobic ammonium oxidation and thereby consuming NO3
-
 and/or NO2

-
 produced from 

nitrification (Saeed and Sun 2012). The transformation processes of inorganic nitrogen in the 

MET-CW will be more deeply described in the chapter 5.  

It is known that the availability of substrates and their oxidation activities at the anode are 

of great importance for electricity generation in METs. In this study, benzene was the main 

organic substrates in the contaminated groundwater and hence expected to be potential electron 

donors for the anodic reaction. Our data indicate that the removal of benzene in the first 150 

operation days was slightly stimulated by the presence of anode modules in the MET-CW. After 

150 days, benzene concentrations in the MET-CW already strongly decreased in the front part of 

the bed due to the enhanced biodegradation by mature microbial communities, thereby cutting 

off the anode modules from its fuels, e.g. benzene. 

Compared with the control CW, higher NH4
+
 removal rates in the MET-CW were 

detected only after 150 days operation. The presence of organic compounds and their metabolic 

intermediates were described to inhibit the nitrification process in general (Saeed and Sun 2012), 

as organo-heterotrophic degraders potentially outcompete nitrifiers for the utilization of oxygen 

and inorganic nitrogen (Ma et al. 2013b), thereby resulting in low nitrification rates under 

oxygen-limited conditions. The presence of benzene probably inhibited the removal of NH4
+
, as 

also previously observed in field studies at the Leuna site (Jechalke et al. 2011, Seeger et al. 

2011). However, the rapid consumption of benzene after 150 days probably leads to a better 

availability of oxygen for nitrifiers, thereby promoting the NH4
+
 removal in the MET-CW.    
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3.3.2 Electricity recovery in the MET-CW 

The electric energy generation 

The current densities generated from the four anode modules of the MET-CW were 

recorded during the whole operation as shown in Figure 3-4A. The highest current output was 

observed in phase I: here, average current densities of 0.86 ± 0.74 and 1.02 ± 0.79 mA m
-2

 were 

obtained in modules 3 and 4, with peak values of 3.39 and 5.46 mA m
-2

, respectively. In contrast, 

modules 1 and 2 produced very low current during the whole operation, which can be ascribed to 

the presence of oxygen. In phase II, the current densities of modules 3 and 4 decreased 

significantly; after 280 days, the current generation ceased completely. Low or no current 

generation in phase II can be explained by the fact that the more efficient benzene degradation 

occurred in the front of the bed after the system had been fully developed (Figure 3-2), resulting 

in less available anodic substrates for the anode modules. The obtained maximum current 

densities in modules 3 and 4 are too low to make the MET practically competitive for electricity 

recovery. However, the relationship between the availability of organic substrates and current 

generation implies the possible application of this MET as a sensor for on-line monitoring 

pollutant degradation processes in situ, as discussed in more detail in section 3. 3. 3. Huge 

fluctuations of the current density were probably due to slight variations of the experimental 

conditions, such as influent pollutant concentrations, pH, or redox potentials (Table 3-1). 

Fluctuating conditions have been also reported for the integrated HSSF-CW and MFC system 

studied by Villasenor et al. (2013).    

Polarization and power density curves 

The electrochemical performance of the MET-CW was evaluated by determining 

polarization and power density curves (Figure 3-4B), which were obtained at day 100 in phase I. 

Modules 3 and 4 showed maximal power densities of 0.86 mW m
-2 

at a current density of 3.62 

mA m
-2

, and 1.74 mW m
-2

 at a current density of 5.75 mA m
-2

, respectively. In contrast, the 

power densities of modules 1 and 2 were extremely low with maximum values of 0.01 and 0.03 

mW m
-2

 respectively (corresponding to the observed extremely low current densities, Figure 3-

4A), which was attributed to the noise current and thus considered to be negligible. These results 

suggest that the anodes located in the deeper layer (modules 3 and 4) supported solely the 

electricity generation. The very low current generations of modules 1 and 2 are possibly due to 
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higher DO concentrations (Table 3-1) disturbing the anodic reaction of the MET. Oxygen in the 

upper layers - stemming from atmospheric diffusion - will outcompete the anode as electron 

acceptor. This result was also consistent with the removed masses of benzene as described in 

section 3. 3. 1.  

 

Figure 3-4 Electricity generation performance of the anode modules in the MET-CW. (A) current 

generation during the whole operation period; (B) polarization and power density curves. 

Average values and standard deviation were calculated from measurements of three replicates. 

In recently described planted MET-CW systems with vertical or horizontal subsurface 

flow (Fang et al. 2013, Villasenor et al. 2013, Zhao et al. 2013), the cathodes were installed in 
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the more aerobic upper layer. In the present study, the cathode was located in the open water 

pond, avoiding the recirculation of pollutants from the anodic compartment to the cathodic 

compartment; in addition, an open water pond is more effective for storing oxygen, thereby 

eliminating the negative effect of the residual organic matter on the maintenance of aerobic 

conditions at the cathode under high organic loading rates as observed by Villasenor et al. 

(2013).  

The maximum power density of 1.74 mW m
-2

 obtained in this work is relatively low 

compared to previously published studies (Villasenor et al. 2013, Yadav et al. 2012, Zhao et al. 

2013), in which values in the range between 10 and 50 mW m
-2

 were observed (Table 3-2). The 

relatively low power densities obtained in this study might be due to lower amounts of available 

substrates, differences in the electrochemical properties of substrates or other operation and 

construction parameters (e.g., the magnitude of the internal resistance). However, they are 

comparable with values obtained in the MFC systems treating waters contaminated with 

petroleum hydrocarbons, e.g. benzene (Rakoczy et al. 2013, Wang et al. 2012, Wu et al. 2013), 

where power densities from 0.85 to 2.1 mW m
-2 

were reported. Recently, a maximum power 

density of 316 mW m
-3

 NAC (net anodic compartment) and a coulombic efficiency of 14% was 

obtained in a lab-scale MFC treating the same groundwater contaminated with benzene and 

NH4
+
-N as used in the present study, in which graphite granules were used as electrode materials 

(Wei et al. 2015a). In our study, coulombic efficiencies were calculated based on benzene 

removal since benzene was identified as primary anodic substrate (see section 3. 3. 3). The 

average coulombic efficiencies of 3.69 ± 0.81% and 4.89 ± 0.60% were obtained for the modules 

3 and 4 in phase I, which are comparable with values reported for other CW-MFC systems 

(Table 3-2). 

Based on the slopes of the polarization curves, internal resistances of 1588 ± 83 and 1253 

± 41 Ω were obtained for modules 3 and 4, respectively. It is generally known that the power 

density reaches its peak value when the external resistance is equal to its internal resistance 

(Harnisch and Schroder 2010). According to the power density curves, the maximum power 

densities were obtained at the external resistance of 1500 and 1200 Ω for module 3 and 4, 

consistent with the values calculated from the slopes of the polarization curves. The high internal 

resistances were probably caused by the relative long distance (~80 cm) between the anode 

modules and the cathode in the MET-CW, leading to a decrease of the electricity generation 
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performance. However, those values are still in an acceptable range; similar values were reported 

in our previous study using a ‘classical’ MFC system (Wei et al. 2015a).  

Table 3-2 Investigated pollutants, used loading rates, and gained electrochemical parameter in 

this and other constructed wetland systems combined with microbial electrochemical technology.  

Configuration Wastewater Pollutants 
Loading rate  

(g m
-2

 d
-1

) 

Maximum 

power density 

(mW m
−2

) 

Coulombic 

efficiencies (%) 
Reference 

VSSF CW Synthetic Methylene 

blue dye 

Bacth mode 

(1000 mg L
-1

) 

15.73 0.05 - 0.06 Yadav et al. (2012) 

VSSF CW Synthetic Azo dye 0.73 - 2.63 8.98 0.58 - 1.71 Fang et al. (2013) 

VSSF CW Synthetic COD 

TN 

2.82 - 2.99 

0.68 - 0.86 

12.42 0.39 - 1.29 Liu et al. (2013) 

HSSF CW Synthetic COD 13.9-61.1 43 0.27 - 0.45 Villasenor et al. 

(2013) 
VSSF CW Swine COD 46.49 - 65.72 9.4 0.1 - 0.6 Zhao et al. (2013) 

VSSF CW Synthetic COD 1.06 - 5.96 55.05 

 

8.39 - 10.48 Liu et al. (2014) 

HSSF CW Contaminated 

groundwater 

Benzene 

NH4
+
-N 

0.16 - 0.23 

0.62 - 0.84 
1.74 3.69 - 4.89 This study 

 

 

Figure 3-5 Linear relationship between benzene loading removal by the anode modules and 

current generation in the MET-CW. The pollutant loading removal was calculated as the 

difference in pollutant loads between the sampling points at 94 cm and 139 cm. 
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3.3.3 Correlations between pollutant removal and electricity generation 

In order to further clarify the relationship of benzene removal and electricity generation 

in the MET-CW, a regression analysis between pollutant loading removal by the anode modules 

and generated current density was performed. When integrating the two pollutants by multiple-

regression analysis, benzene degradation was identified to be the primary correlation factor 

(p<0.05), explaining 99% and 100% of the variation in current generation for the modules 3 and 

4, respectively. As shown in Figure 3-5, benzene loading removal rates and current densities 

were strongly correlated (R=0.99, p<0.05). The steeper slope for module 4 indicated that this 

module generated current more efficiently; correspondingly, the higher current generation was 

also obtained in module 4 (Figure 3-4). In contrast, NH4
+
 removal was not significantly 

associated with current densities in the modules 3 and 4 (p>0.05), implying no direct link 

between NH4
+
 removal and current generation in the MET-CW. Thus, current was generated 

mainly by oxidation of benzene at the anode.  

The strong linear correlation between current generation and benzene removal indicates 

the possibility for monitoring benzene degradation using a MET based biosensor. In order to 

justify and evaluate the potential for the practical application, the operational parameters, such as 

reproducibility, stability and detection limit, need to be clarified in future studies. Nevertheless, 

our results indicate a promising technique for monitoring the removal of organic pollutants in 

constructed wetlands on-line and in situ. 

3.3.4 Electron donors for the anode modules 

Benzene was identified as the primary anodic electron donor in this MET-CW. From 

thermodynamic views, the lower redox potential of the benzene oxidation (HCO3
-
/C6H6, E

0
ʹ=-

0.28 V) are favorable for benzene degradation at the anode compared to that of possible reactions 

involved in NH4
+
 removal. Comparison of possible Half-cell reactions and thermodynamic cell 

potential (Eh) for benzene and NH4
+
 is presented in Table 3-3. Interestingly, the rapid 

consumption of benzene stimulated by the anode modules eliminates potential negative effects 

on NH4
+
 oxidation, and thereby promoting NH4

+
 removal in the MET-CW in the first 150 days. 
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Table 3-3 Comparison of possible half-cell reactions and thermodynamic cell potential (Eh) for 

benzene and NH4
+
 in this study. 

Pollutants Possible reactions Eh (V) 
∆G

0ʹ
  

(kJ mol
-1

) 

Benzene 

Anode: C6H6 + 18 H2O       6 HCO3
- 
+ 30 e

-
+ 36 H

+
     

Cathode: O2 + 4 H
+ 

+ 4 e
- 
2 H2O 

Overall: C6H6 + 7.5 O2 + 3 H2O       6 HCO3
- 
+ 6 H

+
 

E
0
(HCO3

-
/C6H6) = -0.28 

E
0
(O2/H2O) = 0.82 

Ecell = 1.10 

 

-3173 

NH4
+
 

NH4
+ 

+ O2 + H
+ 

+ 2 e
-         

NH2OH + H2O 

NH2OH + 
1

2
 O2       HNO2 + 2 H

+ 
+ 2 e

-         
 

NO2
- 
+ 

1

2
 O2       NO3

-
       

NO3
-
 + 6 H

+ 
+ 5 e

-          1

2
 N2 + 3 H2O 

E
0
(NH4

+
/NH2OH) = 1.02 

E
0
(NO2

-
/NH2OH) = 0.06 

E
0
(NO3

-
/ NO2

-
) = 0.43 

E
0
(NO3

-
/
1

2
N2) = 0.74 

-118 

-134 

-74 

-361 

 

Although NH4
+
 removal from wastewater using electrochemical technologies has been 

previously reported, there is no unanimous agreement whether NH4
+
 can be used as a direct 

substrate for electricity generation in METs. He et al. (2009) showed that electricity production 

is associated with NH4
+
 oxidation in a rotating-cathode MFC, where current generation resulted 

from heterotrophic exoelectrogenesis sustained by nitrifier-produced organic substrates rather 

than direct ammonium oxidation. Furthermore, You et al. (2009) reported that additional protons 

produced by NH4
+
 oxidation can accelerate the cathodic reaction (e.g. oxygen reduction), thereby 

contributing to electricity generation by reducing the ohmic resistance and maintaining the pH 

balance. However, intermediates (hydroxylamine and NO2
-
) of ammonium oxidation can release 

electrons in the view of thermodynamic properties and may possibly serve as anodic substrate to 

generate current (Chen et al. 2014); the reduction of the end product (NO3
-
) at the cathode can 

also result in electrochemical denitrification. In this study, NH4
+ 

oxidation was not directly 

linked with electricity generation in the MET-CW in the presence of benzene as co-

contaminants. Nitrification reactions are characterized by more positive redox potentials and 

generate less available energy compared to benzene oxidation reaction, suggesting that NH4
+
 is a 

less favorable anode substrate. Correspondingly, Wei et al. (2015a) reported that NH4
+ 

oxidation 

did not contribute to electricity generation in a MFC with aerated cathode. The higher removal of 

NH4
+
 in phase II can be attributed to the elimination of the inhibitory effects caused by benzene 

due to their rapid consumption.  
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Figure 3-6 Two-dimensional isotope plot of ∆δ
13

C versus ∆δ
2
H values of benzene measured 

from pore water samples of the MET-CW at the 95
th

 day. Data were from the depths of 36 cm 

and 48 cm. Values of ∆δ were calculated by subtracting the measured isotopic value from the 

initial isotopic value determined at the influent.  

3.3.5 Implications for the mechanism of benzene activation 

Compound-specific isotope analysis (CSIA) was performed in order to identify the initial 

activation mechanisms for benzene degradation in the MET-CW. Application of CSIA to 

characterize benzene activation mechanisms has been successfully demonstrated in laboratory 

and field studies (Fischer et al. 2008b, Rakoczy et al. 2013, Rakoczy et al. 2011). A significant 

shift in the carbon and hydrogen isotope signature was observed with ∆δ13
C up to +2.7‰ and 

∆δ2
H up to +15‰ (Supporting information Figure S3-3). By comparing the values of two-

dimensional CSIA with previously published values for aerobic and anaerobic benzene 

activation mechanisms, the data from our study mainly matched with those indicative for 

pathways initiated by benzene monohydroxylation (Figure 3-6). The slope of the linear 

regression between hydrogen and carbon isotope discrimination (Λ=Δδ
2
H/Δδ

13
C) obtained in the 

MET-CW was Λ=7 ± 2 (R
2
=0.71). It has been predicted that the initial activation step of 
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monohydroxylation reaction leads to Λ-values ranging between 3 and 11 depending on the 

reaction mechanism of monooxygenase (Fischer et al. 2008b), which can be distinguished 

significantly from pathways initiated by (i) benzene dihydroxylation, a reaction which is usually 

not linked to a significant hydrogen isotope effect, and (ii) anaerobic benzene degradation, which 

is usually characterized by the larger Λ values (Λ>13). Benzene monohydroxylation as initial 

activation mechanism of benzene degradation was already reported by Rakoczy et al. (2011) for 

the control-CW, and also identified in a MFC treating benzene and sulfide-contaminated 

groundwater (Rakoczy et al. 2013). However, we cannot exclude that benzene was actually 

anaerobically activated by a mechanism producing similar carbon and hydrogen isotope 

fractionation as observed for monohydroxylation, or that the isotope signatures were produced 

by a mixing of aerobic and anaerobic activation mechanisms due to the coexistence of oxic and 

anoxic zones in the CW. Due to the detection of at least small amounts of DO at each sampling 

location during the whole experimental time (Table 3-1), strictly anoxic processes may not have 

played a significant role for benzene degradation. In any case, the degradation of benzene and/or 

its intermediates accelerated electricity generation by transferring the released electrons to the 

anode in the MET-CW.  
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(A) (B) 

3.4 Supporting information 

 

Figure S3-1 Pictures of MET-CW system. (A): the anodic modules, (B): MET-CW. 
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Figure S3-2 Time-dependent concentration changes of inorganic nitrogen compounds (NH4

+
, 

NO2
-
, and NO3

-
) at the sampling points at 139 cm distance to the influent (different depths: 24 

cm, 36 cm, 48 cm). 



Chapter 3                                 Enhanced benzene and ammonium removal in the MET-CW 

74 

 

Figure S3-3 Rayleigh plot for carbon (A) and hydrogen (B) stable isotope fractionation of 

benzene in the MET-CW. The slope in each graph represents the currently lowest isotope 

fractionation pattern obtained in reference experiments characterizing the benzene 

monohydroxylation pathway towards the dihydroxylation pathway; ԑ = -1.7 and -11 for 

carbon and hydrogen, respectively (Fischer et al. 2008b, Mancini et al. 2008).  
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Abstract  

Microbial nitrogen transformation processes were investigated in a MFC-CW using 

isotope fractionation, 
15

N-isotope tracing, and protein-based stable isotope probing 

(protein-SIP) with in situ 
15

N-NH4
+
 feeding. δ

15
N-NH4

+
 showed a significantly negative 

relationship with NH4
+
-N loads, yielding a isotope fractionation factor vary between -1.5 to 

-5.9‰. The 
15

N enrichment factors of NH4
+
 ranged from -1.5 to -5.9‰, which were 

generally smaller than those reported for ammonia oxidation in the pure culture but is 

comparable to these for nitrification in groundwater and the pilot-scale CWs treating 

contaminated groundwater. These results implied the occurrence of microbial ammonia 

oxidation. Metaproteomic analysis revealed that Nitrosomonadales, Burkholderiales, 

Rhizobiales and Clostridiales were dominant genera, which were potential nitrifying or 

denitrifying bacteria. The proteins related to anammox bacteria showed only a low 

abundance, implied that anammox was of low importance in nitrogen transformation in the 

MET-CW. Protein-SIP analysis indicated the occurrence of partial nitrification, 

heterotrophic denitrification and nitrifier denitrification, and the identification of 
15

N 

incorporated ammonia monooxygenase, hydroxylamine oxidase, and nitrite reductase 

affiliated to Nitrosomonas as well as nitrous oxide reductase belonging to denitrifying 

bacteria provided direct evidence for the activities of these pathways responsible for NH4
+
 

removal in the MET-CW. Interestingly, 
15

N incorporated nitrite reductase were exclusively 

affiliated to Nitrosomonas, illustrating that the existence of the nitrite reduction via 

nitrifier-denitrification by Nitrosomonas. 
15

N-isotope tracing experiment results showed 

that denitrification contributed to 84-96% of total N2 production with the rates of 0.62-

13.37 nmol N2 g
-1

 h
-1

, whereas anammox showed the rates of 0.11-0.91 nmol N2 g
-1

 h
-1

, 

contributing to 4-5% of N2 production only at subsequently increased to 15.07% at the 139 

cm distance in the front of where anode modules located. In summary, the isotope data, 

together with protein-SIP and metaproteomic analysis demonstrated that partial nitrification 

accompanied by either heterotrophic denitrification or nitrifier-denitrification was mainly 

responsible for NH4
+
-N removal in the MET-CW, whereas anammox played a minor role 

but anammox contribution was markedly enhanced by the presence of anode modules in the 

MET-CW. This work is the first report to directly identify functional proteins and active 

species involved in microbial nitrogen transformation using protein-SIP analysis, and 
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provides a promising approach to trace functional proteins and active species involved in 

microbial nitrogen transformation pathways in the complex ecosystems. 

 

Key words microbial nitrogen transformation, 
15

N isotope tracing technique, protein-SIP, 

and microbial electrochemical technology-constructed wetland 

4.1 Introduction 

Constructed wetlands (CWs) represent an effective and cost-saving alternative for 

the treatment of a variety of wastewater, e.g. domestic or municipal sewage, industrial and 

agricultural wastewater, or contaminated groundwater (Imfeld et al. 2009). Different types 

of CWs including free-water-surface (FWS), horizontal subsurface flow (HSSF) and 

vertical subsurface flow (VSSF) CWs have been developed to remove N compounds from 

wastewater or groundwater (Wu et al. 2014). In general, VSSF-CWs can efficiently convert 

NH4
+
 to NO3

-
 due to its greater oxygen transfer capacity in comparison to FWS and HSSF-

CWs but very limited denitrification usually results in the accumulation of NO3
-
 in the 

outflow; whereas, the HSSF-CWs provide anoxic/anaerobic conditions suitable for 

denitrification but the ability to nitrify NH4
+
 is very limited due to the absence of oxygen, 

therefore, high efficient NH4
+
-N removal is not easily achievable in the HSSF-CWs 

(Vymazal 2007). The use of microbial electrochemical technology (MET), e.g. microbial 

fuel cells (MFCs), to treat N-rich wastewater has been reported and attracted growing 

attentions due to the potential benefits of electricity recovery associated with nitrogen 

removal (Mook et al. 2012). More recently, the integration of MFCs into CWs was shown 

to be a promising alternative to enhance wastewater treatment and achieve energy recovery 

based on the complementary point of two individual processes (Fang et al. 2013, Villasenor 

et al. 2013, Yadav et al. 2012, Zhao et al. 2013). The separated anoxic and oxic zones, 

where oxidation and reduction reactions take place, can function as anode and cathode of 

MFCs, thereby supporting the combination of MFCs with CWs. The integration of MFCs 

into HSSF-CWs was also proved to be feasible at lab scale. Villasenor et al. (2013) 

installed a horizontal, rectangular graphite anode located in the gravel bed and an identical 

graphite cathode in the upper rhizosphere of a HSSF-CW treating wastewater. The system 

efficiently removed COD while effectively generating electricity. In chapter 4, we 
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integrated a MET into a HSSF-CW and observed the enhanced removal of benzene and 

NH4
+
-N from contaminated groundwater. Thus, combining MET and HSSF-CWs seems to 

also be a promising technique to treat wastewater containing higher concentrations of NH4
+
. 

These previous studies primarily focused on optimizing the operational parameters of the 

integrated systems for efficient nitrogen removal. However, knowledge about nitrogen 

transformation and removal pathways in the integrated MET-CW systems is still not well 

understood. 

Nitrogen removal mechanisms in the HSSF-CWs have been studied in several 

previous reports and it is generally accepted that microbial conversion is the main process 

responsible for nitrogen removal (Lee et al. 2009). Hence, the knowledge about microbial 

nitrogen transformation processes and the responsible organisms is a key issue for 

improving nitrogen removal efficiencies in CWs and optimizing the technical design. In 

addition to conventional nitrification and denitrification processes, partial nitrification and 

anammox were also reported to likely occur in the HSSF-CWs (Coban et al. 2015a, Zhang 

et al. 2011). Although these potential nitrogen removal processes have been reported in 

HSSF-CWs, the contribution of each process and microbial populations catalyzing these 

processes are yet not well understood.   

Microbial nitrogen transformation processes have been investigated using a variety 

of analytical methods, including physicochemical measurements, classical cultivation 

techniques, molecular methods and stable isotope tools. 
15

N isotope-based approaches, 

especially 
15

N isotope fractionation signatures
 
and 

15
N isotope tracing techniques, have 

been used to evaluate nitrogen transformation processes and their individual contributions 

in marine sediments, soils and also wetland systems (Coban et al. 2015b, Erler et al. 2008, 

Reinhardt et al. 2006, Song et al. 2013a). 
15

N isotope fractionation can potentially reflect 

the source of N; due to different magnitudes of isotope fractionation of the respective 

pathway, it is possible to distinguish different nitrogen transformation processes (e.g. 

nitrification, denitrification and biological N2-fixation) (Brunner et al. 2013, Coban et al. 

2015b, Reinhardt et al. 2006, Robinson et al. 2012). 
15

N isotope tracer incubation has 

become a valuable tool for measuring rates of potential denitrification and anammox, also 

allowing the identification of the relative contribution of denitrification and anammox 

(Coban et al. 2015a, Zhu et al. 2011). Protein-based stable isotope probing (protein-SIP) is 
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a powerful method with a higher sensitivity in comparison with DNA- or RNA-SIP, which 

can not only provide taxonomic information similar to DNA or RNA analysis but also 

reflect the metabolic properties and actual activities of cells (von Bergen et al. 2013). 

However, the application of protein-SIP to trace microbial nitrogen transformation 

processes and reveal active species has not yet been reported.  

The objective of this study was to reveal nitrogen transformation processes in order 

to understand their importance for nitrogen removal in the MET-CW. The nitrogen 

transformation processes in the MET-CW were qualitatively and quantitatively analyzed by 

stable isotope analysis of inorganic N species (N isotope fractionation signatures) and 
15

N 

isotope tracing techniques. Active microbial species involved in nitrogen transformation 

processes were detected using in situ protein-SIP and metaproteomic analysis. In addition, 

the effect of anode insertion on nitrogen transformation processes in the HSSF-CW was 

discussed. 

4.2 Materials and Methods 

4.2.1 N isotopic analysis of NH4
+
 

Water samples from the inflow and four flow distances of 6, 49, 94 and 139 cm in 

the deep layer (36 and 48 cm) were collected at operation days of  95, 192, 300 and 400 

according to methods  described elsewhere (Rakoczy et al. 2011). 50 mL of samples were 

stored at -20
°
C until NH4

+
 isotope analysis.  

The NH4
+
 isotope composition was analyzed using hypobromite (BrO

-
) oxidation 

and azide reaction method described by Zhang et al. (2007). The product N2O was 

measured on an isotope ratio mass spectrometer (IRMS) Delta V plus (Thermo Electron 

GmbH, Bremen, Germany) with a Gasbench II (Thermo Electron GmbH, Bremen, 

Germany). Each sample batch was run with two international reference standards of 

USGS25 (δ
15

N, −30.4‰), and USGS26 (δ
15

N, +53.7‰) plus an internal standard (δ
15

N, 

0‰) for calibration. The analytical precision was ±0.4‰. The 
15

N/
14

N isotope ratios are 

expressed as delta (δ)-notation in per mil (‰) relative to the standards of atmospheric N2 

(AIR). The kinetic isotope fractionation is calculated according to (Mariotti et al. 1981) 

using the Rayleigh equation:  
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ln(
𝛿15𝑁+1

𝛿15𝑁0+1
) = ԑ × ln(f)  

 where ԑ is the enrichment factor and f is the fraction of the initial NH4
+
-N 

remaining at the point of measurement.  In our case, f was modified by NH4
+
-N loads 

when considering water loss as previously described  (Wei et al. 2015b); the inflow is 

defined as zero point. 

4.2.2 In situ 
15

N labelling experiment 

After continuously running for 400 days, a 
15

N labeling experiment was in situ 

carried out by pumping artificial groundwater containing 
15

N-NH4Cl instead of 

contaminated groundwater from the Leuna site into the MET-CW system. The artificial 

groundwater medium was prepared according to the chemical components of original 

Leuna groundwater as follows: 0.15 g L
-1 15

N-NH4Cl, 0.01 g L
-1 

KH2PO4, 0.006 g L
-1 

K2HPO4, 0.84 g L
-1 

NaHCO3, 0.03 g L
-1 

FeSO4∙7H2O, 0.3 g L
-1 

MgCl2∙6H2O, 0.1 g L
-1 

CaCl2 and 1 mL L
-1

 trace elements solution as descried in Verhagen and Laanbroek (1991). 

The medium was autoclaved, flushed with N2, and then stored in a 50 L stainless steel tank 

under constant dinitrogen pressure (0.5 bar) at 14 ± 2
°
C. The MET-CW was continuously 

fed with artificial groundwater containing 
15

N-labelled NH4
+
-N for 28 days similar to the 

operation in the first 400 days of the experiment. At day 28, sand samples in the MET-CW 

were taken from the deep layer (36-48 cm) at the four flow distances of 6, 49, 94 and 139 

cm, respectively, and were subsequently analyzed by protein-SIP. In this depth, the actual 

oxygen concentrations were below 0.05 mg L
-1

; here, NH4
+
-N was efficiently removed but 

no NO2
-
-N and NO3

-
-N accumulations were observed in supporting information Figure S3-

2. 

4.2.3 Protein-SIP and metaproteomic analysis 

Proteins extraction was performed using a modified protocol as described 

previously (Wang et al. 2011). Briefly, 5 g of sands were homogenized and extracted by 

shaking for 1 h at room temperature with 10 mL extraction buffer (1.25% SDS, 0.1 M Tris-

HCl, pH 6.8, 20 mM dithiothreitol), followed by sonication on ice for 2 × 1 min at 70% 

power (25 W) and 70% duty cycle (UP50H, Hielscher Ultrasonics GmbH, Teltow, 

Germany). The supernatant was filtered through a nylon mesh (0.45 mm) and shaken for 30 
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min with 5 mL buffered phenol (pH 8). The two phases were separated by centrifugation 

for 30 min at 12000 rpm at 4
°
C. Subsequently, the proteins in the lower phenol phase were 

precipitated with 5 fold volume of 0.1 M ammonium acetate dissolved in methanol at -20
°
C 

overnight. The protein pellet was washed once with cold methanol and twice with cold 

acetone; the air-dried pellet was stored at -20
°
C until further analysis. Proteins were 

separated by sodium dodecyl sulfate-polyacrylamide (SDS) gel electrophoresis, and 

subsequently tryptic digestion was performed according to Jehmlich et al. (2010), followed 

by purification using ZipTipC18 columns (Merck Millipore, Billerica, MA, USA).  

Peptides were reconstituted in 0.1% formic acid and analyzed on an Orbitrap Fusion 

MS (Thermo Fisher Scientific, Waltham, MA, USA). Briefly, the mobile phase A of 0.1% 

formic acid and mobile phase B containing 80% acetonitrile and 0.08% formic acid were 

prepared. Peptides were loaded for 5 min on a precolumn (µ-precolumn, cartridge column, 

5 µm particle size, 300 µm inner diameter, 2 cm length, C18, Thermo Scientific) at 4% 

mobile phase B and eluted from the analytical column (AccucoreTM C18 LC Column, 50 

cm length, 2.6 µm particle size, Thermo Scientific) over a 120 min gradient of 4-55% 

mobile phase B.  

Raw data obtained were processed for database searches using Thermo Proteome 

Discoverer (v1.4.0.288; Thermo Fisher Scientific, Waltham, MA, USA). Searches were 

performed using the Sequest HT algorithm with the following parameters: tryptic cleavage 

with maximal two missed cleavages, a peptide tolerance threshold of ±10 ppm and an 

MS/MS tolerance threshold of ±0.1 Da, and carbamidomethylation at cysteines as static and 

oxidation of methionines as variable modifications. In the metagenome databases, contigs 

were considered identified with at least two unique peptides with high confidence (false 

discovery rate < 0.01).  

For the identification of 
15

N-labeled peptides, the respective 
14

N peptides were 

measured as well to compare chromatographic retention time and MS/MS fragmentation 

patterns, as described previously (Jehmlich et al. 2008a). The 
15

N incorporation into 

peptides was analyzed using OpenMS and the MetaProSIP node according to Starke et al. 

(2016). For 
15

N incorporated peptides, the relative isotope abundance (RIA) and the 

labeling ratio (lr) were calculated as described by Taubert et al. (2011). The RIA represents 

the percentage of the incorporated 
15

N in relation to the total nitrogen atoms in a peptide. 
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The lr represents the proportion of a peptide’s heavy isotope-labeled isotopologues to all 

isotopologues of that peptide, ranging between 0 (no labelled peptide) and 1 (fully labelled 

peptide). The lr of a protein was calculated averaging the lr of at least three peptides. 

4.2.4 Potential ammonia oxidation rates 

Potential nitrification rates (PNR) were measured using the chlorate inhibition 

method (Kurola et al. 2005) with minor modifications. Briefly, 5 g of fresh sands was 

incubated in 50 mL centrifuge tubes containing 20 mL of 1 mM phosphate buffer solution 

(NaCl, 8.0 g L
-1

; KCl, 0.2 g L
-1

; NaH2PO4, 0.2 g L
-1

; Na2HPO4, 0.2 g L
-1

; pH 7.4) and 1mM 

(NH4)2SO4. Potassium chlorate with a final concentration of 10 mM was added to inhibit 

nitrite oxidation. The suspension was incubated in the dark at 25
°
C and shaken at 180 rpm 

for 24 h. NO2
-
 was extracted using 5 mL of 2 M KCl and centrifuged. The supernatant was 

determined spectrophotometrically at 540 nm using N-(1-naphthyl) ethylenediamine 

dihydrochloride. The calibration was determined with KNO2 over a concentration range of 

10-100 µM. The PNR were calculated from the linear increase in NO2
-
 concentrations 

during the incubation. The actual nitrification rates might be slightly higher because loss of 

NO2
-
 cannot be fully excluded owing to the possibility of denitrification even in strictly 

oxic incubations. 

4.2.5 Measuring anammox and denitrification rates using 
15

N isotope tracing 

method 

15
N isotope incubation experiments were performed to measure potential rates of 

anammox and denitrification and to quantify their contributions based on that described by 

Risgaard-Petersen et al. (2004). Triplicate sand samples were collected for 
15

N-tracing 

experiments. After return to laboratory, 2 g of homogenized fresh sands were 

intermediately transferred to the helium-flushed, 10 mL gas-tight glass vials, followed by 

filling vials with N2-purged sterile MilliQ water without headspace. The slurries were then 

pre-incubated for 24 h to eliminate residual O2 and NOx
-
 in the incubation media. Three 

treatments were subsequently performed by adding (1) 100 µM 
15

NH4
+
 (

15
N > 98%), (2) 

100 µM 
15

NO2
-
 (

15
N > 98%), and (3) 100 µM 

15
NH4

+
 (

15
N > 98%) and 100 µM 

14
NO2

-
 

using a Hamilton syringe (Sigma-aldrich). All isotope solutions were flushed with helium 

before addition. Every treatment was conducted in three replicates and incubated in the 
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dark at 25
°
C. At seven intervals of 0, 3, 6, 8, 10, 12, and 18 h, incubations were stopped 

adding 200 µL of a 7 M ZnCl2 solution. Vials were stored upside down until gas analysis. 

The isotope ratios of 
28

N2, 
29

N2 and 
30

N2 were measured using a gas chromatograph-

isotope ratio mass spectrometer (GC-C-IRMS) equipped with a ShinCarbon ST column 

(100/120 mesh, 1.33 m × 1 mm ID, Restek) connected downstream via an automatic 

injector (Valco Instruments Co. Inc.) to a Molsieve 5A column (10 m × 0.53 mm ID, 0.50 

µm film, Agilent). 100 µL of headspace gas samples were manually injected into a gas 

chromatograph (Agilent 7890A, USA) in split mode interface to an Finnigan MAT 252 

IRMS (Thermo Electron GmbH, Germany) using helium as carrier gas. The following 

program was used for N2 analyses: 40 
°
C oven temperature, 200 

°
C I/F and ion source 

temperature, total flow 14 mL min
-1

 and column flow 8mL min
-1

. The concentration of N2 

was calculated based on a calibration function gained from standard gas calibration (N2 

2530 ppm, loop size: 0.01, 0.5, and 2 mL, 5 repeats for each loop size). The amount of N2 

produced by anammox and denitrification was calculated from the mole fraction of 
29

N2 

and 
30

N2 according to the equations described by Thamdrup and Dalsgaard (2002). The 

rates were calculated from the slopes of the linear regression based on the N2 concentration 

produced through denitrification and anammox as a function of time during the whole 

incubation. The significant difference of the slopes from zero (p<0.05) was determined 

using one-way analysis of variance (ANOVA F-test).  

4.2.6 Statistical analysis 

One-way analysis of variance (ANOVA) was performed to compare the diffidence 

among different flow distances and the significant difference was defined at p<0.05. The 

statistical analyses were performed using the SPSS 22.0 package (SPSS Inc., Chicago, IL, 

USA). 

4.3 Results and discussion 

4.3.1 Microbial ammonia oxidation confirmed by N-NH4
+
 isotope fractionation 

(δ
15

N-NH4
+
) 

The specific shifts in the isotopic composition of N compounds (e.g. NH4
+
 and NO3

-

) can reflect their sources and nitrogen transformation, and thereby can provide insightful 
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information on nitrogen transformation mechanisms during wastewater treatment. The 

δ
15

N-NH4
+
 values and NH4

+
-N loads along the flow path at the deep layers of the MET-CW 

are shown in Figure 4-1, showing that decreasing NH4
+
 loads correlated with increasing 

δ
15

N-NH4
+
 values. For example, at the 95

th
 day, NH4

+
-N loads decreased from 64.3 mg N 

day
-1

 at the inflow to 37.4 mg N day
-1

 at the flow distance of 139 cm, whereas δ
15

N-NH4
+
 

values increased from 18.5‰ to 23.9‰. Similarly, the progressive increase of δ
15

N-NH4
+
 

with decrease of NH4
+
-N loads along the flow path was observed at day 192, 300 and 400. 

The significant enrichment of 
15

N in NH4
+
 indicated the occurrence of microbial NH4

+
 

oxidation, which has been reported for a significant shift in isotope signature of δ
15

N-NH4
+
 

in pure nitrifying cultures and can be readily distinguished from other processes (e.g. plant 

uptake and mineralization) without or only with minor δ
15

N-NH4
+
 change (Casciotti 2009, 

Casciotti et al. 2003).  

 

Figure 4-1 Change of NH4
+
-N loads (A) and δ

15
N-NH4

+
 values (B) at the deep layer along 

the flow path in the MET-CW. 

The calculated 
15

N enrichment factors of NH4
+
 were generally small, ranging from -

1.5 to -5.9‰ (Supporting information Figure S4-1), which were smaller in absolute values 

than what has previously been reported for bacterial nitrification with absolute values of 

14.2 to 38.2‰ (Casciotti 2009, Casciotti et al. 2003). In fact, the isotope effect for AOB 

was generally estimated based on δ
15

N-NO2
-
, which could be overestimated because the 

accumulation of intermediates (e.g., hydroxylamine) would lead to a second 
15

N 
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fractionation step to increase δ
15

N-NO2
-
 difference between the initial NH4

+
 and the 

produced NO2
-
 (Casciotti et al. 2011). Additionally, these reported ε values were 

determined in batch culture experiments, which are unlikely to precisely evaluate microbial 

ammonia oxidation in CW systems and natural environments considering the complex 

physio-chemical conditions and co-occurrence of multiple N conversion processes 

(Vymazal 2007). In this study, although the enrichment factors were lower in comparison 

with the strong isotope fractionation effects based on δ
15

N-NO2
- 

in pure cultures (2009, 

Casciotti et al. 2003), the large increase of δ
15

N-NH4
+
 values (>10‰) with the decrease of 

NH4
+
 loads implied the presence of microbial ammonia oxidation. The calculated 

15
ԑ, 

however, are closer to the range of these factors (-3.5 to -16‰) for nitrification reported in 

groundwater (Böhlke et al. 2006, Jacob et al. 2016), also in agreement with average yearly 

enrichment factors of -5.8‰ and -7.9‰ reported in a study of pilot-scale CWs treating 

contaminated groundwater (Coban et al. 2015b). The N isotope enrichment factors 

associated with ammonia oxidation in our MET-CW were smaller than those found in the 

pure cultures, which could be probably attributed to substrate limitation, low nitrification 

rates or microbial species with low process-specific isotope fractionation. This is also 

consistent with the previous reports that isotope factors in wetlands were usually lower than 

determined in laboratory experiments (Coban et al. 2015b, Erler and Eyre 2010, Sovik and 

Morkved 2008). Nevertheless, the substantial isotope effect that occurred in the MET-CW 

is an evidence for microbial ammonia oxidation process.  

The N isotope effects by archaeal ammonia oxidation (AOA) and anammox, 

ranging from 13 to 41‰ and 23.5 to 29.1‰ respectively (Brunner et al. 2013, Santoro et al. 

2011), also falls in the range of that reported for AOB. Thus, it is not possible to distinguish 

ammonia oxidation activity performed by AOA, AOB or anammox only based on N 

isotope effect. Estimates of ammonia oxidation based on the determination of a N isotope 

effect are complex because the influences of substrate concentration and rate constants 

associated with the different processes involved in ammonia oxidation (e.g. 

transport/diffusion, hydroxylamine oxidation) could lead to different isotope effects for 

ammonia oxidation among nitrifying microorganisms and even among different 

extracellular conditions with the same microorganisms as well as in different natural or 

experimental environment (Casciotti et al. 2011). Additionally, co-occurring processes may 
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lead to overlapping or counteracting influence on isotope fractionation factor for ammonia 

oxidation, thus it is critical to use multiple isotope analysis (e.g. δ
15

N and δ
18

O in NH4
+
, 

NO2
-
, NO3

-
 or N2O) and combine the physico-chemical measurements as well as molecular 

biological approaches for proper evaluation of nitrogen transformation processes. In our 

case, NO2
-
/NO3

-
 in the inflow was negligible and also not detectable at the other flow 

distances (Wei et al. 2015b), thus it was not possible to measure δ
15

N and δ
18

O in NO2
-
 or 

NO3
-
 for better understanding of ammonia oxidation and the subsequent processes (e.g. 

denitrification). In the previous report on several types of pilot-scale CWs, δ
15

N-NO3
- 

showed no change along the flow path and isotope fractionation of denitrification was 

masked by nitrification (Coban et al. 2015b), indicating that it is difficult to estimate 

denitrification using the isotope fractionation approach in the CW system treating NH4
+
 

rich contaminated water. In order to evaluate nitrogen transformation processes in more 

detail, the reactive rates (i.e. nitrification, denitrification and anammox), functional proteins 

and active species involved in nitrogen transformation processes in the MET-CW will be 

further characterized and discussed below.  

4.3.2 Identification of functional proteins and active species involved in microbial 

nitrogen transformation 

15
N labelling experiments were in situ conducted by continuously feeding artificial 

groundwater containing 
15

N-NH4Cl instead of contaminated groundwater. Protein-SIP was 

used to detect functional proteins and active species involved in microbial nitrogen 

transformation in the MET-CW. The shift in mass spectra derived from 
15

N incorporation 

into proteins was analyzed, and relative isotope abundance (RIA) and labelling ratio (lr) 

were calculated by comparison with the spectra of the corresponding unlabeled peptides. 

Figure 4-2 shows an example for mass spectra shift of a peptide with the sequence 

VTHANYDVPGR (m/z 410.2071), which is corresponding to ammonia monooxygenase 

from Nitrosomonas. 
15

N incorporation into the peptides was remarkably reflected by the 

shift of the isotopic peaks to higher m/z values and the shape change of the isotopic 

distribution. 
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Figure 4-2 Mass spectra of the peptide VTHANYDVPGR (m/z 410.2071) from ammonia 

monooxygenase subunit B, which showed a high degree of 
15

N incorporation. The peptide 

was affiliated to Nitrosomonas sp.. 

As shown in Figure 4-3, 
15

N incorporated peptides were identified at the 6, 49 and 

94 cm distance, but not at the distance of 139 cm. This result is in accordance with that 

undetectable potential nitrification rate and low rates of ananmox and denitrification at the 

139 cm distance as described in section 4. 3. 4. The labelled proteins involved in nitrogen 

transformation showed the high RIAs, ranging from 80% to 90%. The lr values varied from 

0.1 to 0.6, reflecting the different extent in protein biosynthesis and turnover. 
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Figure 4-3 The numbers of 
15

N-labelled peptides, relative isotope abundance (RIA), 

labelling ratio (lr) and their respective phylogenetic assignment obtained from in situ 

protein-SIP analysis.   

Eight proteins from a total of 30 peptides were 
15

N incorporated, four of which were 

directly involved in nitrogen transformation, i.e. ammonia monooxygenase, hydroxylamine 

oxidase, nitrite reductase and nitrous oxide reductase (Figure 4-3). Ammonia 

monooxygenase and hydroxylamine oxidase are two key enzymes of nitrification, 

catalyzing the oxidation of NH3 to NH2OH and the oxidation of NH2OH to NO2
-
, 

respectively (Arp et al. 2002). The identified ammonia monooxygenase and hydroxylamine 

oxidase with 
15

N incorporation were assigned to Nitrosomonas, indicating that 

Nitrosomonas was the dominant species involved in nitrification. Nitrite reductase, one of 

the key enzymes catalyzing the reduction of NO2
-
 to NO in the dissimilatory denitrification, 

was also identified for 
15

N incorporation. Interestingly, 
15

N incorporated nitrite reductase 

was exclusively affiliated to Nitrosomonas, illustrating that the existence of the nitrite 

reduction via nitrifier-denitrification by Nitrosomonas in our MET-CW. Nitrosomonas was 

found to reduce nitrite to nitric oxide with nitrous oxide or dinitrogen as terminal products 

under O2 limiting conditions; this process was named nitrifier-denitrification and generally 

occurs under the condition with low O2 availability and low organic carbon content (Kool 

et al. 2011).  In our case, the low O2 (<0.05 mg/L) and relatively low organic carbon 

content with a C/N ratio of about 2 provided favorable conditions for nitrifier-

denitrification. Another key enzyme in denitrification, nitrous oxide reductase, was also 

identified with 
15

N incorporation, which was assigned to either Thauera linaloolentis or 



Chapter 4                                Microbial nitrogen transformation processes in the MET-CW 

89 

Candidatus Accumulibacter phosphatis, demonstrating the activity of heterotrophic 

denitrification in the MET-CW. Nitrate reductase was inactive in the MET-CW and not 

identified in both labelled and all identified proteins from metaproteome. In addition, no 

accumulation of NO3
- 
was detected in this study, suggesting that NO3

-
 was not produced 

from NO2
-
 oxidation via nitrification processes. Together with that nitrate reductase was 

undetectable, full nitrification to NO3
-
 was restricted in our MET-CW, which is accordance 

with the result presented in section 4. 3. 4 that no production of NO3
-
 was measured in the 

incubation for nitrification rates measurement. Protein-SIP analysis suggests that influent 

NH4
+
 was firstly oxidized by AOB to nitrite, which was subsequently reduced by 

heterotrophic denitrification or nitrifier-denitrification. 

The other four proteins with 
15

N incorporation were not directly involved in 

nitrogen transformation pathways (Figure 4-3), which were affiliated to Rhizobium, 

Azoarcus and Burkholderiales bacterium, respectively, phylotypes belonging to these 

orders have been described as being capable to denitrify. Electron donors for denitrification 

could have been organic compounds released by the plants of the CW, or benzene, the main 

contaminant of the system, which were shown to be removed in the investigated CW (Wei 

et al., 2015a).  

4.3.3 Functional and phylogenetic distributions of identified proteins  

The metaproteomic analysis was used to reveal the phylogenetic and functional 

diversity of microbial communities in the MET-CW. Phylogenetic distributions derived 

from identified proteins are given in Figure 4-4. Identified proteins were mainly assigned to 

Nitrosomonadales, Burkholderiales, Rhizobiales and Clostridiales, with the shift for 

relative abundances along the flow path. The proteins affiliated to Nitrosomonadales were 

highly abundant at the 6 cm distance, but decreased from 13.4 to 1.1% at the 139 cm 

distance, which is in agreement with variation trend of potential nitrification rates along the 

flow path (section 4. 3. 4). The majority of proteins from Nitrosomonadales were affiliated 

to Nitrosomonas (>90%), suggesting that Nitrosomonas are the predominant ammonia-

oxidizing bacteria in the MET-CW. Nitrosospira was another AOB genus identified in the 

metaproteomes, but accounted for only 0.56-0.6%, implying a minor role in nitrification 

process. The predominance of Nitrosomonas has been extensively reported in various 
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wastewater treatment systems eg. biofilm reactors, biofilters and different types of CW 

(Adrados et al. 2014, Song et al. 2013b). In contrast, proteins related to nitrite oxidizing 

bacteria (NOB) were affiliated to Nitrospirales and were found with a low abundance 

(1.2%) only at the 6 cm flow distance but not at the other flow distances, suggesting that 

the complete oxidation of ammonia to nitrate was minor or absent in nitrogen 

transformation in this study. This is in accordance with the above-mentioned result that no 

evidence for NOB-related proteins with 
15

N incorporation was found by protein-SIP 

analysis. 

 

Figure 4-4 Phylogenetic distribution of microbial orders based on the numbers of all 

identified proteins by the metaproteomic analysis. Microbial Orders with a relative 

abundance <1% in all samples were pooled into others.  

In addition to proteins for AOB, the majority of the remaining proteins identified in 

the metaproteomes were related to these potential denitrifying bacteria (Figure 4-4). 

Remarkably, proteins belonging to Burkholderiales and Rhizobiales showed the dominant 

abundance, accounting for up to 17.5% and 22.0% at the 6 cm flow distance, respectively. 
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Proteins from Clostridiales were also found in the metaproteomic data, with a relatively 

high percentage of 6.8% at the 6 cm flow distance. Burkholderiales, Rhizobiales and 

Clostridiales were also reported to participate in anaerobic degradation of benzene and 

other aromatic compounds with nitrite or nitrate as the terminal electron acceptors under 

denitrifying conditions (Aburto-Medina and Ball 2015, Vogt et al. 2011). Our previous 

study also confirmed that Burkholderiales and Clostridiales were the dominant populations 

during treatment of benzene and ammonium contaminated groundwater in  a microbial fuel 

cell (Wei et al. 2015a). A recent in situ microcosms study by Herbst et al. (2013) revealed 

that Burkholderiales and Rhizobiales were the most active microorganisms in groundwater 

contaminated by aromatic hydrocarbons. In addition to these proteins belonging to the 

above-mentioned three orders, proteins related to Actinomycetales, Enterobacteriales, 

Pseudomonadales, Rhodobacterales, and Rhodocyclales were also identified despite having 

a low abundance (<3.5%), which are also known for their potential denitrification 

capability. The majority of the identified proteins related to denitrifying bacteria were not 

15
N incorporated in protein-SIP analysis, but it cannot be excluded that these species were 

actually involved in nitrogen transformation because the low identification coverage for 

protein-SIP analysis usually is caused by a lack of protein sequence data (Jehmlich et al. 

2016).  

Notably, only one protein related to anammox was detected at the 139 cm flow 

distance, belonging to genus Brocadia. This could be attributed to enough cell density at 

the 139 cm distance, here higher contribution of anammox was also observed. Although no 

15
N incorporation into proteins related to anammox was detected by protein-SIP, 

metaproteomic analysis implied the occurrence of anammox process in the MET-CW, but 

this process probably only had low contribution to nitrogen removal. The occurrence of 

anammox activity was also confirmed by measurement of potential anammox rates (section 

4. 3. 4). In a similar constructed wetland, anammox bacteria with low abundance were 

detected by quantifying hydrazine synthase (hzsA) genes, but anammox rate could not be 

measured, which also implied that this process appeared to be of low importance in 

nitrogen transformation (Coban et al. 2015a). Nevertheless, in our study, the identification 

of proteins related to nitrifying, anammox and denitrifying bacteria further confirmed 

potential activity of these nitrogen transformation pathways in the MET-CW. 
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4.3.4 Potential nitrification, anammox and denitrification rates 

The potential nitrification rates (PNR) were determined at the different flow 

distances. As shown in table 4-1, the average PNR values of 23.61, 28.84 and 23.82 nmol N 

g
-1

 h
-1 

were detected at the flow distances of 6, 49 and 94 cm, showing no significant 

difference (p>0.05). Thus, stable nitrification activities occurred at these three flow 

distances, corresponding to the continuously decreasing NH4
+
-N loads observed along the 

flow path (Figure 4-1). However, no PNR was detected at the flow distance of 139 cm; 

here, a relatively high NH4
+
-N load (37.36 mg N d

-1
) was found only at the day 95 whereas 

minor or no NH4
+
-N loads were observed at the day 192, 300 and 400, respectively,  as 

shown in Figure 4-1. These results indicate that a mature nitrifying community had 

developed under the long-term supply of NH4
+
-N in the MET-CW, which carried out the 

first step of the nitrification process, converting NH4
+
 into NO2

-
 and thus consequently 

driving the subsequent nitrogen transformation and removal processes. The accumulation 

of NO2
- 
rather than NO3

-
 during the incubations for PNR measurements further indicated 

that the oxidation of NO2
-
 to NO3

-
 did not take place in the MET-CW.  

Table 4-1 Calculated rates of potential nitrification, anammox and denitrification (nmol N2 

g
-1

 h
-1

) at the deep layers along the flow path. 

Flow 

distance 

Nitrification 

 

Anammox 

 

Denitrification 

 

Total 

 

% 

Anammox 

% 

Denitrification 

6 cm 23.61±1.67 0.91±0.07 17.37±1.13 18.28±2.71 4.98 95.02 

49 cm 28.84±3.79 0.56±0.11 13.27±1.72 13.83±2.25 4.05 95.95 

94 cm 23.82±2.78 0.17±0.03 3.78±0.42 3.95±0.43 4.31 95.70 

139 cm ND 0.11±0.01 0.62±0.07 0.73±0.11 15.07 84.93 

 

Potential anammox and denitrification rates were calculated based on 
29

N2 and 
30

N2 

production in the 
15

NO2
-
 incubation as shown in table 4-1. The decrease of anammox rates 

was observed along the flow path, varying from 0.91 to 0.11 nmol N2 g
-1

 h
-1

 (Table 4-1). A 

similar variation trend was also found for denitrification rates, which decreased from 13.37 

to 0.62 nmol N2 g
-1

 h
-1

 along the flow path. This could be explained by decreasing substrate 

(NH4
+
 and NO2

-
 produced by nitrification) availability for anammox and denitrification 

along the flow path due to the gradually consumption of NH4
+
. Denitrification rates were 

much higher than anammox rates at the four flow distances, contributing 84.93 to 95.95% 
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of total N2 production. This result was consistent with previous reports that denitrification is 

the major pathway involved in nitrogen removal in CWs (Coban et al. 2015a, Saeed and 

Sun 2012). The relative contribution of anammox to total N2 production were similar at the 

flow distances of 6, 49 and 94 cm, ranging between 4.05% and 4.98% (Table 4-1), and 

subsequently increased to 15.07% at the distance of 139 cm in the front of where anode 

modules located. The strong increase in the relative significance of anammox from 94 cm 

to 139 cm distance indicated that anammox activity was probably enhanced by the presence 

of the anode in the MET-CW.  

The relative contributions of anammox were reported up to 24% and 33% in the 

surface flow constructed wetland (SFCW) and the vertical flow constructed wetland 

(VFCW), respectively (Erler et al. 2008, Zhu et al. 2011). Moreover, the anammox process 

was identified as the major nitrogen removal pathway, contributing for 55.6-60.0% of N2 

production in an integrated VFCW system (Hu et al. 2016). In contrast, the absence of 

active anammox was reported in the HSSF-CW although anammox bacteria were detected 

by analyzing hydrazine synthase (hzsA) genes (Coban et al. 2015a). In this study, the 

percentages of anammox contribution were lower than that reported in the SFCWs and 

VFCWs but remarkably higher than that reported in the HSSF-CW. Generally, HSSF-CWs 

are predominantly anoxic and thus not favorable for nitrification, resulting in the 

production of limited substrate NO2
-
 for anammox when treating wastewater only with 

NH4
+
 and without NO3

-
. In contrast, VFCWs provide conditions generally favoring 

nitrification; also SFCWs have a thin aerobic layer to enhance nitrification, therefore 

producing NO2
-
 and further stimulating anammox activity. The C/N ratio is also a critical 

factor determining the existence and activity of anammox; a C/N ratio lower than 2 is 

suitable for the growth of anammox bacteria (Kumar and Lin 2010). In our study, the C/N 

ratio in the influent groundwater was about 2, which was favorable for denitrification, 

supporting denitrification as dominant nitrite removal process in the MET-CW. 

Additionally, the higher potential nitrification rates than the denitrification rates indicated 

that anammox might be responsible for consuming the remaining NO2
-
 produced by partial 

nitrification process. In summary, our results confirmed the existence and their activities of 

partial nitrification, anammox and denitrification (heterotrophic denitrification and nitrifier 

denitrification) process in the MET-CW. 
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4.3.5 Implications for nitrogen transformation and removal 

 

Figure 4-5 Schematic illustrations of microbial nitrogen transformation processes and 
15

N 

incorporated proteins identified in the MET-CW. The coexistence of partial nitrification, 

anammox, heterotrophic denitrification and nitrifier denitrification were revealed to involve 

in NH4
+
-N removal in the MET-CW. 

Based on our results, a schematic diagram of microbial nitrogen transformation 

pathways are presented in Figure 4-5. Influent NH4
+
 was firstly oxidized to NO2

-
 by partial 

nitrification, which was directly confirmed by identification of 
15

N labelled ammonia 

monooxygenase and hydroxylamine oxidase; NO2
-
 was further used by denitrifying 

bacteria, and thus are either successively reduced to NO, N2O and N2 by denitrification or 

react with NH4
+
 to produce N2 by anammox. In addition, nitrite reductase involved in 

denitrification was affiliated to Nitrosomonas, strongly indicating the occurrence of 

nitrifier-denitrification. These results demonstrate that partial nitrification, anammox, 

heterotrophic denitrification and nitrifier-denitrification were involved in NH4
+
-N removal 

in the MET-CW, and that partial nitrification and denitrification were dominant nitrogen 

transformation processes. This process saves energy and resources as the nitrite oxidation 
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step and the following nitrate reduction is avoided. Compared to conventional nitrification 

and denitrification in a sequence reactor, the partial nitrification and denitrification process 

can theoretically save 25% of O2 consumption for nitrification and up to 40% of organic 

carbon for denitrification, reducing CO2 emission by 20% (Peng and Zhu 2006). In 

addition, rates of denitrification via NO2
-
 can be 1.5 to 2 times higher than via NO3

-
. 

Moreover, partial nitrification and denitrification combined with the anammox process 

provides an energy-saving and cost-effective alternative for nitrogen removal from 

wastewater with the significant advantages, such as low oxygen demand, no requirement 

for external carbon sources and negligible sludge production (Paredes et al. 2007). More 

recently, the activities of simultaneous partial nitrification, anammox and denitrification 

process was also reported for the removal of N and organic matters in vertical flow 

constructed wetlands (Hu et al. 2016, Wen et al. 2017). 

In the MET-CW, the co-existence of functional microorganisms for nitrification, 

anammox and denitrificaiton was directly confirmed by protein-SIP and metaproteomic 

analysis. In general, chemoautotrophic nitrification occurs under aerobic conditions, 

whereas anammox and denitrification occur preferentially under anoxic conditions. In the 

HSSF-CW, the presence of plants usually establishes microsites with the deep oxygen 

gradient around the rhizosphere, favoring the growth for aerobic nitrifying bacteria as well 

as anaerobic anammox and denitrifying bacteria (Saeed and Sun 2012). In this study, 

nitrification rates were slightly higher than denitrification rates, indicating that the excess 

nitrite produced from nitrification process can be used as electron acceptors for anammox. 

However, anammox rates were much lower than denitrification rates, resulting in a minor 

role to NH4
+
-N removal in the MET-CW, which may be attributed to less competition of 

anammox bacteria due to the lower the standard free energy for anammox reaction and 

lower growth yield compared to denitrifying bacteria (Kumar and Lin 2010). In our study, 

nitrate reduction from NO3
-
 to NO2

-
 was not detected and no NO2

-
 accumulation was 

detected, suggesting that NO2
-
 was probably consumed immediately after production by 

nitrification processes. Although anammox played a minor role in NH4
+
-N removal under 

the current operational conditions, the coexistence of nitrifiers, anammox bacteria and 

denitrifiers provides a potentially possibility to enhance anammox activity via controlling 

operating conditions ( e.g. C/N ratios and hydraulic retention time) in the MET-CW. 
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The activity of nitrifier denitrification was confirmed in the MET-CW based the 

identification of 
15

N incorporated nitrite reductase affiliated to Nitrosomonas. The previous 

studies have reported that AOB was able to anaerobically reduce NO2
-
 to NO, N2O and N2 

under the oxygen limiting condition; this process was named nitrifier denitrification  

(Wrage et al. 2001), which is able to couple ammonia oxidation and nitrite reduction, thus 

can be utilized for more efficient nitrogen removal in wastewater treatment systems (Stein 

2011). It was reported that nitrifier denitrification is favored by low DO and high NO2
-
 

level (Stein 2011). Given that DO concentration was low at the deep layer (<0.05 mg L
-1

) in 

the MET-CW and full nitrification to NO3
-
 was ruled out, these conditions would favor 

nitrifier denitrification in the MET-CW. Recently, nitrifier denitrification has been reported  

as the dominant source of N2O in soils and also in two lab-scale sequencing batch reactors 

(Su et al. 2017, Zhu et al. 2013). Erler et al. (2008) found evidence that nitrifier-

denitrification was potentially responsible for the production of N2O in a surface flow 

wetland. A novel 
15

N and 
18

O isotope tracing approach was presented and used to 

discriminate the contribution of nitrifier denitrification from that of heterotrophic 

denitrification (Kool et al. 2010). In our study, although the occurrence of nitrifier 

denitrification and heterotrophic denitrification were confirmed, of which the contribution 

to nitrite reduction was not possible due to undetectable NO2
-
 and NO3

-
 concentration in the 

MET-CW. 
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4.4 Supporting information 

 

Figure S4-1. Rayleigh plots for N isotopic fractionation of NH4
+
. Kinetic isotopic effects 

were calculated according to the Rayleigh equation of a substrate. f is the fraction of the 

initial NH4
+
-N loads remaining in the MET-CW. 
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 Conclusions and outlook CHAPTER 5

5.1 Treatment of benzene and ammonium contaminated groundwater 

using a MFC 

            One of the objectives of this work is to investigate whether MFC can be 

used to treat benzene and ammonium contaminated groundwater while simultaneously 

recovering energy. Results demonstrated that it is principal feasible to treat benzene and 

ammonium contaminated groundwater by a MFC equipped with an aerated cathode. 

Benzene was initially activated by enzymatic monohydroxylation at the oxygen-limited 

anode; the further anaerobic oxidation of the intermediate metabolites released electrons, 

which were transferred to the anode and eventually captured by oxygen at the cathode, 

driving oxygen reduction and accelerating electricity production. Benzene is considered 

thermodynamically favorable as the electron donor at the anode of MFCs, due to the low 

redox potential of the benzene oxidation (HCO3
-
/C6H6, E

0
ʹ= -0.28 V) (Luo et al. 2010). 

Theoretically, the complete mineralization of benzene to CO2 releases 30 electrons. 

However, the biodegradation of benzene in the MFC produced fewer than the 30 electrons 

expected from the complete oxidation, which is mainly caused by the incomplete oxidation 

of benzene or alternative substances as electron acceptors (e.g. carbonate leading to 

methanogenesis or organic or inorganic metabolites upon fermentation processes) (Wu et 

al. 2013). In this study, the coulombic and energy efficiencies of 14% and 4% were 

obtained for the anodic benzene degradation, indicating a sustainable loss of electrons in 

the MFC system. Wu et al. (2013) recently reported benzene degradation in the MFC with 

potassium ferricyanid as the catholyte, showing a coulombic efficiency of 3.3%. Although 

power densities and coulombic efficiencies obtained here were not as high as the glucose 

based MFC, this work demonstrated that it is feasible to use benzene as the electron donor 

at the anode in the MFC, providing valuable insights for practical applications of MFCs to 

remediate benzene-contaminated groundwater. 

Nitrification took place at the aerated cathode of the MFC and was catalyzed by 

nitrifiers; the process was not directly linked to electricity generation. As NH4
+
-N can 
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release maximally eight electrons via oxidation to nitrate, ammonium can theoretically 

serve as an anodic electron donor (He et al. 2009). However, although NH4
+
 removal from 

wastewater using electrochemical technologies has been previously reported, there is no 

unanimous agreement whether NH4
+
 can be used as a direct substrate for electricity 

generation in MFCs. So far, several different strategies have been used to remove 

ammonium in MFCs: (i) recovering ammonia at the cathode chamber based on ammonia 

migration across ion exchange membranes driven by electricity generation or diffusion 

(Kuntke et al. 2012), (ii) using an external nitrifying bioreactor followed by a subsequent 

denitrification accomplished by microorganisms in the cathode chamber (Virdis et al. 

2008), (iii) by simultaneous cathodic nitrification-denitrification process (Virdis et al. 

2010). Virdis and colleagues revealed that the nitrifying bacteria colonized the outer layer 

of the biofilm and the denitrifying organisms occupied the inner layer, confirming the 

feasibility of  simultaneous nitrification and denitrification at the cathode of a MFC (Virdis 

et al. 2011). The separated aerobic and anoxic cathodes for nitrification and denitrification 

were also designed to remove nitrogen (Xie et al. 2011, Zhang and He 2012b). Recently, a 

simultaneous nitrification and denitrification in the MFC was achieved by intermittent 

aeration at the cathode chamber (Sotres et al. 2016). However, these MFC systems often 

possess two-stage reactor configurations or require extra energy consumption, and thus 

limit their practical application. For improving nitrogen removal without extra energy 

consumption, an integrated wastewater treatment system is proposed by combining the 

anammox process with a MFC system (Ali and Okabe 2015). Several recent studies 

reported that the couple of anammox process and denitrification contributed to nitrogen 

removal in MFCs (Di Domenico et al. 2015, Li et al. 2015), confirming the feasibility of 

the anammox process in microbial electrochemical systems. In this study, although it is 

promising that nitrification occurred with high rates at the cathode of the MFC, the 

accumulated nitrate still needs to be removed by an additional treatment reactor. 

Considering the partial removal of ammonium, further research is of particular interest in 

order to promote simultaneous benzene and ammonium removal using MFC with an anoxic 

cathode, e.g. by addition of nitrite to accelerate anaerobic ammonium oxidation, avoiding 

the need of aeration, or the set-up of an additional denitrification reactor.  
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Despite the fact that in recent years the electricity generation from MFCs have been 

considerably improved and also reached the level of primary power target at least in small 

lab-scale systems, the scaling-up application under field conditions is still a big challenge. 

Currently, the high costs of cation exchange membranes, the potential for biofouling and 

associated high internal resistance restrain the electricity generation and limit the practical 

application of MFCs (Pant et al. 2010). In fact, the major MFC type that has been used for 

practical applications is the sediment MFC which can harvest power from sediment by 

embedding an anode in sediment and connect it via an electrical circuit to a cathode placed 

in the overlying aerobic seawater, making it feasible to power on-site to sensors and 

telemetry devices in remote oceanic areas (Huang et al. 2011, Lu et al. 2014). Additionally, 

rather than electricity generation, the MFC was also reported to be used as a wastewater 

refinery to produce or recover valuable chemicals such as hydrogen gas (Logan and Rabaey 

2012). Recently, two 4 L tubular MFCs were successfully installed in a municipal 

wastewater treatment facility and operated for more than 400 days on primary effluent, 

showing efficient removal of organics and nitrogen (Zhang et al. 2013a). Therefore, in the 

near future the scaling-up application of MFCs could become commercially available along 

with the developments of cost-effective materials and designs. 

5.2 The integration of MET and CWs 

To improve benzene and ammonium removal, an integrated MET-CW was 

established by embedding four anode modules into the sand bed and connecting it to a 

cathode placed in the open pond inside a bench-scale HSSF-CW. Results indicated that 

benzene and NH4
+
 removal in the HSSF-CW can be enhanced by combination with 

microbial electrochemical technology. The enhanced benzene removal was linked to its 

direct use as electron donor for the anode modules which acted as electron acceptor.  

Efficient removal of NH4
+ 

was probably due to the enhanced benzene removal so that 

inhibition by the co-contaminant benzene had no longer effect. The linear relationship 

between current density and benzene removal implied the potential biosensor application 

for monitoring benzene oxidation processes in situ. This is the first study to apply the 

integrated microbial electrochemical technology and constructed wetlands for treating 

benzene and ammonium co-contaminated groundwater.   
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To achieve higher treatment effects, integrating CWs and other technologies, such 

as membrane bio-reactors and MFCs, have emerged in recent years (Liu et al. 2015). A 

merged technique of integrating microbial electrochemical technology with constructed 

wetlands (e.g. CW-MFCs) has been developed (Wang et al. 2017). The fact that CWs 

naturally possess redox gradients provides the favorable conditions for MFCs; aerobic 

zones at the air-water interface or surrounding plant roots, and anoxic areas in the inner/ 

lower layers support the operation of an anaerobic anode and an aerobic cathode in MFCs 

(Doherty et al. 2015). The integration of MFC with CW allows it for wastewater treatment 

and simultaneously electricity generation, making CWs more sustainable and 

environmentally friendly. By incorporating MFCs into CWs, the performance of pollutant 

removal is substantially improved (Fang et al. 2013, Villasenor et al. 2013), which was also 

demonstrated in our study (Wei et al. 2015b). However, it is also worth to note that power 

output and energy recovery efficiencies are still low, and thus more research is required in 

future to increase the power output. The small electrode surface area and the huge electrode 

spacing may result in comparatively low power densities (Zhao et al. 2013), and thus new 

strategies should be considered to increase the surface area of the electrode and to reduce 

the electrode spacing in order to achieve high power output. Another challenge for the 

integrated MET-CW is its full-scale application, which is usually restricted by substrate 

clogging especially when treating high strength wastewater (Doherty et al. 2015). Thus, 

another topic for future studies is to optimize the configuration and operational parameters 

of the integrated systems for scaling-up application.  

In subsurface flow CWs, nitrogen removal efficiencies are often low due to the 

limited nitrification as a result of low oxygen transfer or the limited denitrification caused 

by low amounts of available organics (Saeed and Sun 2012), especially under high nitrogen 

loading rates. The integration of MFCs with CWs is able to improve nitrogen removal by 

promoting the nitrification and denitrification processes. The outstanding removal rates of 

total nitrogen, ammonium nitrogen ranging between 95% and 99% were reported in a pilot-

scale CW-MFC (Wu et al. 2015a). Nitrate can be theoretically used as a final electron 

acceptor at the cathode of MFCs (Virdis et al. 2008, Xie et al. 2011, Zhang and He 2012b). 

In the CW-MFC, the cathode is typically placed at the wetland surface or in the 

rhizosphere, where aerobic conditions favor nitrification; meanwhile, the biofilm at the 
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cathode may provide a anoxic niches suitable for denitrification (Vymazal 2013).  

Therefore, the integration of MET with CWs is a promising technology to enhance nitrogen 

removal in CW systems. 

5.3 Investigation of microbial nitrogen transformation processes  

Microbial nitrogen transformation processes in the MET-CW were qualitatively and 

quantitatively characterized using N isotope fractionation, 
15

N-isotope tracing technique 

and in situ protein-SIP. Microbial ammonia oxidation was implied by negative relationships 

of δ
15

N-NH4
+
 and NH4

+
-N loads. The significant enrichment of 

15
N in NH4

+
 indicated the 

occurrence of microbial NH4
+
 oxidation, which has been reported for a significant shift in 

isotope signature of δ
15

N-NH4
+
 in pure nitrifying cultures and can be readily distinguished 

from other processes (e.g. plant uptake and mineralization) showing no or only minor δ
15

N-

NH4
+
 changes (Casciotti 2009, Casciotti et al. 2003). However, quantifying ammonia 

oxidation based on the determination of N isotope effects is difficult due to the influences 

of substrate concentrations and rate constants. Rate constants are associated with the 

different processes involved in ammonia oxidation (e.g. transport/diffusion, hydroxylamine 

oxidation), which could lead to different isotope effects for ammonia oxidation among 

different nitrifying microorganisms and even for the same microorganisms due to different 

extracellular conditions in different natural or experimental environments (Casciotti et al. 

2011). Additionally, co-occurring processes may lead to masking of isotope fractionation 

for ammonia oxidation, thus it is appropriate to use multiple isotope analysis (e.g. δ
15

N and 

δ
18

O in NH4
+
, NO2

-
, NO3

-
 or N2O) and combine the physico-chemical measurements as 

well as molecular biological approaches for proper evaluation of nitrogen transformation 

processes. 

Protein-SIP and metaproteomic analysis revealed the potential activities of partial 

nitrification, anammox, heterotrophic denitrification and nitrifier denitrification in the 

MET-CW. A much higher contribution of denitrification was observed compared to 

anammox, indicating that denitrification played the major role in NH4
+
-N removal. 

Unfortunately, it is not feasible to distinguish nitrifier denitrification from heterotrophic 

denitrification due to the small NO2
-
 and NO3

 
accumulation. Conventionally, nitrogen 

removal is achieved by nitrification followed by a denitrification process (Saeed and Sun 
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2012). In subsurface flow constructed wetlands, novel biological nitrogen removal 

processes, including partial nitrification and denitrification, simultaneous nitrification and 

denitrification, and anammox were found to contribute nitrogen transformation and 

removal (Vymazal 2007). In this work, partial nitrification and denitrification were detected 

as the dominant nitrogen transformation processes, which can theoretically save 25% of O2 

consumption and 40% of organic carbon requirement, and reduce CO2 emission by 20% 

(Peng and Zhu 2006). Additionally, the presence of anammox bacteria provided a 

promising alternative for nitrogen removal from contaminated groundwater in the MET-

CW system. 

The nitrogen transformation process is complex and dynamic during wastewater 

treatment, which has a strong effect on nitrogen removal efficiency (Faulwetter et al. 2009). 

Therefore, understanding nitrogen transformation processes and their individual 

contributions more in-depth is valuable for optimization of nitrogen removal process and 

improvement of nitrogen removal efficiency. Many studies have been performed to 

elucidate nitrogen transformation processes and nitrogen transformation communities using 

cultivation or molecular methods, e.g. DGGE, FISH, and real-time PCR (Truu et al. 2009). 

Metagenomics approaches offer the ability to directly examine the genomic content of 

microbial communities, complementing taxonomic information with functional capability. 

However, these techniques can only provide information on the functional potential rather 

than actually metabolic activities for microbial communities. Stable isotope probing (SIP) 

techniques offers a powerful new technique allowing for the targeted detection and 

identification of organisms, metabolic pathways and elemental fluxes active in specific 

processes within complex microbial communities (Radajewski et al. 2000). This study 

provides a promising protein-SIP approach to allow to in situ assess nitrogen 

transformation processes and active species in the complex ecosystems. 
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