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KURZZUSAMMENFASSUNG 

Unter dem Begriff „Lab-on-a-Chip“ (LoC) fasst man stark miniaturisierte Systeme 

zusammen, die die Fähigkeiten eines ganzen Labors auf einen transportablem Mikrochip 

übertragen. Insbesondere im Bereich der Analyse chemischer und biologischer Proben 

werden solche Plattformen bevorzugt eingesetzt, da sie direkt am Ort der Probenentnahme 

schnelle, hoch sensible Messungen ermöglichen. 

Im Mittelpunkt dieser Doktorarbeit stehen Sensoren auf Basis von Siliziumnanodrähten 

(SiNWs). Auf verschiedenen Gebieten werden innovative Konzepte zur einfachen und 

zuverlässigen Herstellung von LoC Systemen entwickelt.  

Zu Beginn wird ein multifunktionaler Mikrofluidik-Aufbau vorgestellt, der ein einfaches 

reversibles Verschließen von Mikrofluidik-Kanälen auf nahezu allen möglichen Substraten 

erlaubt. Der Aufbau ermöglicht das schnelle Anfertigen und Testen verschiedener 

Kanalstrukturen sowie das Betreiben von Fluidik-Experimenten mit hohen Arbeitsdrücken 

von bis zu 600 kPa. Der zweite Schwerpunkt der Arbeit ist die Entwicklung einer Methode 

zur Funktionalisierung von Sensor-Oberflächen mittels 3-(Triethoxysilyl) Propyl 

Bernsteinsäure Anhydrid (TESPSA) für die Immobilisierung spezifischer Rezeptormoleküle. 

Bei dieser Methode entfällt die Notwendigkeit einer zusätzlichen Passivierung ungenutzter 

Anbindungsstellen. Des Weiteren erfolgt die Herstellung von Parallelschaltungen von 

Schottky-Barrieren-Feld-Effekt-Transistoren (SB-FETs) aus „bottom-up“ gewachsenen 

SiNWs durch mechanisches Abreiben der SiNWs vom Wachstumssubstrat auf ein 

Empfängersubstrat.  

Unter Verwendung des eingangs entwickelten Mikrofluidik-Aufbaus wird die prinzipielle 

Anwendbarkeit der TESPSA-basierten Rezeptor-Immobilisierung nachgewiesen, sowohl 

anhand von Fluoreszenzmikroskopie-Untersuchungen als auch mit Hilfe der SiNW FETs als 

Biosensoren. Mittels eines Rezeptor-Analyt-Systems, bestehend aus verschiedenen 

Antikörpern und einem Peptid des Influenzavirus A, wird gezeigt, dass Antikörper, die über 

TESPSA an Oberflächen gebunden werden, ihre Spezifizität für ihre Antigene beibehalten. 

Der vierte große Forschungsabschnitt dieser Arbeit widmet sich der mikrofluidischen 

Ausrichtung eindimensionaler Nanomaterialien und deren Ablage an vorgegebenen 

Fangstellen, wodurch eine zuverlässige Herstellung von FETs aus Einzelnanodrähten erreicht 

wird. Es wird davon ausgegangen, dass Einzelnanodraht-FETs gegenüber 

Parallelschaltungen von Nanodraht-FETs verbesserte Sensoreigenschaften aufweisen. 

Folglich beinhaltet diese Arbeit viele zukunftsweisende Ansätze für die Herstellung von LoC 

Systemen. Untersuchungen über eine Bandbreite von Längenskalen, von Mikrometer 

großen Strukturen bis hinab zur molekularen Ebene, werden präsentiert. Es wird davon 

ausgegangen, dass die vorgestellten Methoden als eine vielfältige Sammlung von 



Werkzeugen nicht nur bei der Herstellung von Biosensoren auf SiNW-Basis Einsatz finden, 

sondern ganz allgemein den Aufbau verschiedenster LoC Systeme vorantreiben. 



ABSTRACT

The term "Lab-on-a-Chip" (LoC) describes highly miniaturized systems in which the 

functionalities of entire laboratories are scaled down to the size of transportable microchips. 

Particularly in the field of chemical and bio-analysis, such platforms are desired for a fast and 

highly sensitive sample analysis at the point of care. 

This work focuses on silicon nanowire (SiNW) based sensors. Innovative device fabrication 

concepts are developed from various directions, for a facile and reliable assembly of LoC 

analysis systems.  

Firstly, a multifunctional microfluidic set-up is developed which allows for a facile reversible 

sealing of channel structures on virtually any kind of substrate while maintaining the 

possibility of a rapid prototyping of versatile channel designs and the applicability of high 

working pressures of up to 600 kPa. Secondly, a 3-(triethoxysilyl)propylsuccinic anhydride 

(TESPSA) based surface modification strategy for the attachment of specific receptor 

molecules without additional binding site passivation is explored. Thirdly, bottom-up grown 

SiNWs are utilized for producing parallel arrays of Schottky barrier field-effect transistors 

(FETs) via contact printing. 

Using the initially developed microfluidic set-up, the concept of the TESPSA-based receptor 

immobilization is proved via fluorescence microscopy and by applying the SiNW FETs as 

biosensors. Using a receptor-analyte system based on a set of antibodies and a peptide from 

human influenza hemagglutinin, it is shown that antibodies immobilized with the developed 

method maintain the specificity for their antigens.  

The fourth major research field in this work is the microfluidics-based alignment of one-

dimensional nanostructures and their deposition at predetermined trapping sites for reliably 

fabricating single NW-based FETs. Such devices are expected to provide superior sensitivity 

over sensors based on parallel arrays of FETs. 

Consequently, within this work, innovative LoC devices fabrication approaches over a broad 

range of length scales, from micrometer scale down to the molecular level, are investigated. 

The presented methods are considered a highly versatile and beneficial tool set not only for 

SiNW-based biosensors, but also for any other LoC application.  
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INTRODUCTION 

The early and personalized detection of diseases, securing food safety and environment 

monitoring are critical tasks of our society that demand a reliable sensing of biological and 

chemical species. To a very large extent the analyses in these areas are performed via 

costly, time consuming and laborious methods, such as enzyme-linked immonosorbent 

assays (ELISA),1,2 polymerase chain reaction (PCR) 3,4 or gas chromatography-mass 

spectrometry (GC-MS),5,6 that have to be performed in accordingly equipped, central 

laboratories by trained personnel.7 

In the 1990s the idea to scale down all functionalities of a laboratory to the size of a 

transportable (micro) chip – to have a lab on a chip (LoC) which can be used at the point of 

care – became prominent. Initial works by Terry et al.8 who introduced a highly miniaturized 

gas chromatograph in 1979 and Manz et al.9 who published a theoretical article about 

miniaturized total chemical analysis systems (mTAS) in 1990 were the starting points of the 

LoC development. One key aspect of the LoC approach is to use the technologies 

developed in microelectronics industry not only for miniaturizing the components of 

integrated electronic circuits, but also for miniaturizing the sizes of fluidic handling systems. 

Such fluid channels with dimensions in the micrometer range – so-called microfluidic 

systems – drastically reduce the required sample volumes. Built-in miniaturized valves,10,11 

electrodes,12 mixers,13 switches 14 or heaters 15 enable a large degree of automation. The low 

power consumption of such systems further enhances their cost efficiency.16,17  

Concerning their cost and time efficiency as well as their integratability, sensor devices 

implemented in LoC systems are required to detect analytes without a previous chemical 

labeling. Additional optical components, as in surface plasmon resonance-based devices,18 

should be avoided. Furthermore, high sensitivities and specificities towards the analytes of 

interest need to be achieved. For meeting these requirements, the introduction of a silicon 

nanowire (SiNW) field-effect transistor (FET) based biosensor by Lieber et al.19 in 2001 was 

an important milestone. The idea to use FETs for analyte sensing goes back to the invention 

of ion sensitive field-effect transistors (ISFETs) by Bergveld in 1970.20 He showed that the 

ion or charge density at the interface between a liquid and the gate oxide of a FET influences 

the FET resistance. By modifying the sensor surface with particular (bio) receptor 

molecules  –  such as antibodies,21–24 DNA 25 or aptamers 26,27 – only specific analytes will 

adhere to the surface and induce a signal change. Scaling down the semiconducting part to 

nanometer dimensions by using NWs largely enhances the surface to volume ratio, and, 

thus, the sensitivity of the devices. SiNW devices are used for detecting pH 19,28,29 and for 

label-free real-time monitoring of chemicals,19,30,31 proteins 19,22–24,32,33 and DNA 34 with 

detection limits down to the fM range. Having nanoscale sensing structures with sizes 

comparable to the analytes even enables the detection of single species.35 
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The required nanoscale semiconductors can be fabricated “bottom-up” or “top-down”. 

Bottom-up grown SiNWs pose a cost efficient alternative to top-down nanoscale devices 

which are commonly fabricated via time consuming, costly electron-beam lithography (EBL). 

In a single chemical vapor deposition (CVD) run innumerable SiNWs are grown. Bottom-up 

fabricated SiNWs possess a low defect density,36–38 offer competitive electronic properties 

compared to top-down devices,39 and are easily transferred on polymer substrates for 

fabricating flexible sensors.40 Therefore, bottom-up SiNW-based sensors are of high research 

interest at the Chair of Materials Science and Nanotechnology of Prof. Cuniberti at the TU 

Dresden, where this thesis is prepared. 

Within this thesis, the focus lies on the development of novel strategies towards fabricating 

LoC analysis devices based on bottom-up SiNW FETs. Novel approaches at various length 

scales in LoC fabrication are established, ranging from micrometer over nanometer scale 

down to the molecular level. The aim is to facilitate the production of highly sensitive and 

selective LoC analysis devices from various directions. After introducing the fundamentals 

for this work in chapter 1, chapter 2 describes a novel approach for the rapid prototyping of 

PDMS-based microfluidics which can easily be assembled reversibly onto virtually any kind 

of substrate. Additionally, the potential of such microfluidic devices for the patterned 

deposition of versatilely structured, flexible electronics and uniquely shaped 3D polymer 

microstructures is demonstrated. In chapter 3, a new surface functionalization strategy for 

immobilizing receptor molecules without additional binding site passivation is described. The 

fabrication of sensors based on arrays of bottom-up SiNW FETs, their pH and ion sensitivity 

and their utilization as biosensors is presented in chapter 4. Due to evidence that the 

highest analyte sensitivities are achieved when employing single-NW devices,32 in chapter 5 

a novel approach for reliably aligning and positioning bottom-up 1D nanostructures at 

predefined positions via microfluidic traps is developed. At the beginning of each chapter 

describing novel fabrication strategies, the respective investigations are motivated. 

 

 

 

 

 

 

 

 



Fundamentals 

3 

 
Fig 1.1: (a) Basic steps of UV-lithography microfabrication: A - spin coating, B - prebaking, C - UV-

exposure through a photomask, D - development. (b) Typical Sidewall slope of positive photoresist. (c) 

Typical undercut of negative photoresist. 

1 FUNDAMENTALS 

Developing a chip card-sized analysis laboratory is a highly interdisciplinary task. It involves 

the fabrication of electronic circuits and fluid handling systems at the micrometer scale and 

the inclusion of a highly sensitive and selective sensor device. Within this thesis, bottom-up 

SiNW FET-based LoC devices are built. 

At the beginning of this chapter, in section 1.1, the fundamentals of UV-lithography are 

explained, as it is the main (micro-)fabrication tool utilized within this work. Throughout the 

thesis, various kinds of PDMS-based microfluidic devices are developed, built and used, the 

fundamentals of which are described in section 1.2. Section 1.3 explains the working 

principles of FETs and how they can be applied for sensor applications. Means of making 

FET-based sensors specific towards particular analytes via surface functionalization are 

summarized in section 1.4. 

1.1 UV-LITHOGRAPHY 

UV-lithography (UVL) is a standard procedure in top-down integrated circuit technology for a 

patterned etching or deposition of materials.41 Within this work, UVL is used for different 

objectives. Patterned photoresist films serve as mold for the fabrication of microfluidic 

channels (see chapters 2 and 5). Patterns of differently functionalized surfaces are created 

(see chapter 3). And a localized etching of SiO2 with subsequent lift-off-based localized metal 

deposition is performed (see chapters 4 and 5). 

The first step in UVL is the deposition of a thin photoresist film on a substrate via spin 

coating (step A in Fig 1.1a). In a subsequent baking step the solvents of the resist are 

evaporated (step B). Then a photomask is placed on top of the film and the stack is exposed 

to UV-light (step C). The photomask consists of transparent and nontransparent parts which 
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determine the pattern that the photoresist will form at the end of the procedure. For positive 

photoresists, the UV-illuminated parts of the film are rendered much more soluble than the 

non-illuminated parts during immersion in the developer solution (step D).42 For a negative 

photoresist it is the opposite. Commonly, negative photoresists require a post exposure 

bake before their development. There are image reversal photoresists which can be 

chemically changed from a positive to a negative resist by a post exposure bake and a 

second UV-illumination of the entire surface before development. 

The minimum feature size depends on the wavelength of the UV-light and the chemical 

composition as well as the film thickness of the photoresist.41,42 The side walls of the 

developed patterns can either have a slope as shown in Fig 1.1b, for positive photoresists, 

or present an undercut as shown in Fig 1.1c, for negative photoresists.42 A wide undercut is 

intended for patterned metal depositions, because it prevents the side walls from being 

coated with a metal film so that the subsequent lift-off is facilitated. However, for soft 

lithography procedures, the undercut must be minimized for not rupturing the master 

structure when the cast polymer is peeled-off (see sections 1.2 and 2.2.1). Slope and 

undercut mainly depend on the exposure dose during UV-illumination of the photoresist.42 

The dose has to be optimized accordingly.  

1.2 PDMS-BASED MICROFLUIDIC DEVICES 

In the field of microfluidics, fluid flows are controlled and manipulated in channel systems 

with dimensions in the micrometer range.16,17 As opposed to macroscopic systems, fluid 

volumes down to the femtoliter range can be manipulated accurately which provides the 

advantage that only reduced amounts of precious samples and chemicals are required.16 Due 

to the reduced channel sizes, the influences of surface forces such as capillary effects 

become dominant over volume forces of the fluids, e. g. gravity.17 Inertia is less important 

than viscosity.16  

The ratio of inertial forces and viscous forces is expressed by the dimensionless Reynolds 

number  

 Re = ρuL
η

 (1.1) 

where ρ is the density, u the velocity and η the dynamic viscosity of the fluid, and L the 

characteristic length of the channel. In wide channels, at high Re > 2500, the flow regime is 

considered turbulent. In microfluidic devices with low Re < 1, there is a strictly laminar flow, 

free of turbulences,16,17 which substantially enhances the control of concentrations of 

molecules in space and time.16  

Benefiting from the developments in the production of integrated electrical circuits, there 

are various fabrication and design possibilities for microdfluidic devices. The large scale 
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Fig 1.2: Basic steps of microfluidic device fabrication via soft lithography. (a) Preparation of mold (e. g. 

via UVL). (b) Casting and curing polymer on mold. (c) Peeling off polymer stamp and punching inlet 

holes. (d) Attaching tubing and sealing channels with flat substrate.  

integration of fluid handling systems provides at least up to 50-fold sample economy 

compared to conventional preparation systems like 96-well plates.43 High throughput 

microfluidics enable processing up to 106 samples in parallel.44,45 Demonstrated applications 

of microfluidic devices include cell growth studies,46 manipulation and study of single cells 47 

and single molecules,48 droplet formation 49,50 and droplet-based synthesis of (smart) 

microcapsules (see also section 1.2.1),51–53 fabrication of fibers 54 and spray dried 

nanoparticles,55 trapping of particles 56 and cells (see also section 1.2.2),57 high-throughput 

screening in drug development,58,59 and bioanalysis 9,60,61 among others. All these examples 

imply that tasks which are usually performed in macroscopic set-ups in a laboratory can be 

condensed and miniaturized to micro-scaled lab on a chip (LoC) applications. Compared to 

macroscopic set-ups the accuracy of sample handling is increased and temperature control 

and homogeneity over the fluid volume is enhanced. Regarding the analyses of biological or 

chemical species the miniaturization to “miniaturized total chemical analysis systems” 

(mTAS) 9 enables the utilization of the test devices at the point of care, with reduced costs 

per test and shorter time-to-result.45 

Driving the fluid through the channel system is achieved by pressure gradients, capillary 

effects, electric fields, magnetic fields, centrifugal forces or surface acoustic waves.17,45 For 

further manipulating the flow, miniaturized pumps 62 and valves 10,11 are implemented into 

the systems. Special mixer set-ups are utilized to disturb the laminar flow regime and 

accelerate the normally only diffusion-driven mixing of fluids.13,63,64  

The first microfluidic devices were made from silicon or glass using microelectronics 

(etching) processes. However, rapid prototyping of channel structures, which is particularly 

important in academia, requires faster and cheaper production methods. Whitesides et al.65 

introduced in 1997 the replication of (channel) structures via soft lithography. A mold with 

the negative of the intended channel structure is prepared, e. g. via UVL (see Fig 1.2a and 

section 1.1). Then a prepolymer is cast on top and cured (Fig 1.2b) before it is peeled off and 

inlet holes are punched (Fig 1.2c). Afterwards tubing is attached and the channel is sealed 

with a flat substrate (Fig 1.2d) to obtain a microfluidic device. The mold can be replicated 

multiple times which makes the approach very cost-efficient. 
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One of the most often used polymers for the rapid prototyping of microfluidic devices is 

polydimethylsiloxan (PDMS), due to its advantageous properties. PDMS is a soft, optically 

transparent elastomer with low toxicity and with permeability to gases, such as CO2 and O2, 

making it particularly attractive for biological applications.16,66 The elasticity of the material 

enables a simple soft lithographic fabrication of pneumatically actuated pumps,10  valves 10,11  

and mixers.67 Commercially available preparation kits (e. g. Sylgard 184, Dow Corning, USA) 

which contain the required oligomer-base and a cross-linking agent are utilized for a fast, 

cost-efficient stamp fabrication. 

The mixing ratio of base and curing agent allows adjusting the polymer flexibility. With the 

standard mixing ratio of 10:1 (wbase/wcuring agent), stable fluid channels with dimensions in the 

nanometer range 68 and with width to height ratios of 10:1 can be fabricated.69 The more 

curing agent is applied, the more crosslinking between the prepolymer building blocks 

occurs. Thus, the less flexible the cured PDMS will become,70 and higher aspect ratios can 

be realized without risking a collapse of the fluid channels.  

At room temperature the cross-linking time is at least one day. Increasing the curing 

temperature decreases the required curing time, however, induces internal stresses and, 

thus, deformation of the PDMS stamp.71 Deformations of PDMS stamps are also induced by 

many organic solvents which dissolve and swell the polymer.72  

Commonly, to seal the microfluidic channels, PDMS is bonded irreversibly (covalently) on 

silicon wafer substrates after an oxygen plasma treatment.66 A weaker, however, reversible 

sealing is achieved without plasma treatment, based on the self-adhesion of PDMS to other 

surfaces.66,73 The reversible sealing can be supported by mechanical clamps,74–76 permanent 

magnets,70 glass-PDMS-glass sandwich arrangements,77 or by aspiration via vacuum in 

additional channel structures within the stamp.78 A novel strategy for fabricating 

multifunctional reversibly sealable microfluidic devices is described in chapter 2. 

Within this work investigations in the field of droplet microfluidics (see chapter 2) and in the 

field of microfluidic trapping of one-dimensional (1D) nanostructures are performed (see 

chapter 5). The following two sections introduce the backgrounds of the respective fields of 

research.  

1.2.1 Droplet microfluidics 

The formation of droplets of one fluid inside another immiscible fluid via microfluidic devices 

dates back to the early 2 000s when Thorsen et al.49 and Anna et al.50 used soft lithography-

based T-junction or flow focusing microstructures (see Fig. 1.3), respectively, to emulsify 

water droplets in a continuous oil stream. Since then, droplet microfluidics has been used in 

a plethora of applications ranging from investigations on reaction kinetics 79 and protein 

crystallization 80,81 to smart material synthesis,51–53 single cell analysis,82,83 polymerase chain 
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Fig. 1.3: Schematic drawing of droplet formation 

configurations. A discontinuous, discrete phase, 

e. g. water, is introduced into a continuous phase, 

e. g. oil, via (a) T-junction or (b) flow focusing 

arrangements. 

reaction (PCR),84,85 and high throughput-

screening technologies,86 among others. 

There are several review articles on 

droplet microfluidics.51,87 

Compared to continuous flow 

microfluidics, in droplet microfluidics the 

fluid stream is compartmentalized via an 

additional immiscible fluid resulting in a 

segmented flow regime. Up to several 

ten thousands of uniformly shaped 

droplets are generated within seconds.88 

Each of them can be controlled and 

manipulated independently allowing the 

parallel processing of up to 106 nano and 

femtoliter-sized mini reactors in which 

samples are mixed, treated and analyzed 

individually.45,89,90  

Fig. 1.3 schematically depicts the 

fabrication of droplets using a T-junction 

flow configuration. A continuous fluid phase, e. g. oil, flows along the main channel of the 

structure. An immiscible fluid, e. g. water – the subsequent discontinuous, discrete phase –

enters the main channel via an orthogonal channel. At the junction of main and inlet channel, 

the immiscible fluids form an interface.91 As the portion of the discrete phase in the main 

channel grows, a droplet begins to form.91  The droplet is distorted and pushed via shear 

forces by the continuous phase downstream along the main channel.91  When the upstream 

interphase of the droplet reaches the downstream edge of the inlet channel, the neck of the 

discrete phase thins so that the droplet breaks off and is carried downstream within the 

continuous phase.91 In the flow focusing configuration, depicted in Fig. 1.3b, the discrete 

phase enters from the central channel while the continuous phase is introduced from the 

two side channels. Due to shear forces imposed by the stream of the continuous phase, the 

stream of the discrete phase is focused in the narrow orifice. In a highly periodic break-up of 

the discrete phase dispersions with droplets of narrow size distribution are formed.50 

The size of the formed droplets is determined by (i) the size of the orifice of the T-junction or 

flow-focusing nozzle, (ii) the viscosity of the immiscible phases, (iii) the use of surfactants, 

and (iv) the hydrophilicity or hydrophobicity of the channel surface.87 

Within this thesis a T-junction configuration with a UV-curable adhesive as continuous and 

water as discrete phase, is used to fabricate uniquely shaped 3D polymer structures (see 

chapter 2). 
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Fig 1.4: Schematic drawings of microfluidic trapping sites for micrometer-sized cells or particles. (a) U-

shaped pockets with partial openings (gray) capture the respective objects (orange). Subsequently, 

the streamlines (blue) of the fluid mainly pass around the blocked trapping sites.57 (b) Trapping via 

aspiration. Flow resistance between point A and point B along path 1 is lower than along path 2. One 

trapping site after the other is filled and its opening to the narrow side channel, i. e. path 1, blocked.56 

1.2.2 Microfluidic trapping 

Microfluidic trapping is achieved by implementing obstacles in the fluid stream that allow the 

carrier phase to pass while capturing the objects of interest. One design of such obstacles is 

depicted in Fig 1.4a.57 Partially opened U-shaped pockets with the upper part of the U facing 

against the fluid flow are used for trapping single cells. Once a pocket is filled with a cell, the 

fluid mainly streams around the trapping site so that any further cells pass on to the next 

trapping sites.  

Another trapping layout is shown in Fig 1.4b.56 The structure is designed in such way that 

the fluid flow resistance through the trapping site and its narrow side channel is lower than 

along the broad main channel. Thus, particles are aspirated into the side pockets. After 

trapping the particle, the flow resistance along the respective channel side arm is drastically 

increased redirecting the main flow along the main channel. One after the other, every 

trapping site is filled with one particle. There are similar trapping layouts for capturing cells.92 

The above-described trapping layouts are designed for capturing ellipsoidal micrometer-sized 

particles and cells. For the trapping of 1D nanostructures investigated within this thesis, 

other device designs are required (see chapter 5).  

1.3 FIELD-EFFECT TRANSISTORS 

The first physical realization of a transistor is a Noble Prize-winning invention from 1947.93 

Transistors (short for transfer-resistor) are semiconductor devices which are used for 

amplifying and switching electronic signals. In microelectronic industry they are the key 

components in all integrated circuits. Worldwide about 2.5 x 1020 transistors were produced 

in 2014 – about 25 times the number of stars in the Milky Way.94 It is assumed that one 

conventional transistor costs about as much as one character in a printed newspaper.95 
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Within this work, silicon nanowire (SiNW) based  Schottky-barrier field-effect transistors (SB 

FETs) are built and utilized as bio-sensors. Using transistors for sensor applications is part of 

a new development commonly called “More than Moore” where micro- and nanoelectronic 

technologies are merged with non-digital functions.95 The advantages of SiNW-based 

sensors will be highlighted in section 4.1. In the following sections, for ease of 

understanding, first, the fundamental working principle of FETs is introduced using the 

example of “dry” metal-oxide semiconductor field-effect transistors (MOSFETs, section 

1.3.1). Then, the working principle of their "wet" counterparts, the ion sensitive ISFETs, is 

explained (section 1.3.2). In section 1.3.3 the fundamentals of SB FETs are described and 

similarities and differences to MOSFETs are discussed. In the last part, section 1.3.4, the 

influences of charge traps in a FET on the device characteristics are outlined. For a more 

detailed description on the principles of FET devices the reader is referred to standard 

literature such as references 96–99.  

1.3.1 MOSFET 

In Fig. 1.5, a schematic of a typical silicon-based n-channel MOSFET is depicted. Two heavily 

n-doped regions, source and drain, are integrated in a p-type substrate. On top of the device, 

in-between the source and drain contacts, there is an insulating oxide layer covered by a 

gate metal contact. One additional contact is connected to the bulk. Applying different gate 

voltages, VG , puts the FET in different operation modes (Fig. 1.5a-c). In the cut-off mode 

(Fig. 1.5a), i. e. when VG stays below the threshold voltage, Vt  (further discussed below), the 

n-doped regions are electrically insulated by a potential barriers at the p-n-junctions which 

inhibit charge carrier movement. Source drain currents, ISD , only flow via thermal activation 

of charge carriers. At VG above Vt , an inversion layer of mobile electrons is formed towards 

the oxide interface (Fig. 1.5b). A conducting channel between source and drain develops, so 

that the FET behaves like an Ohmic resistor, with a linear dependence between drain 

current, ISD , and source drain voltage, VSD . When VSD is raised above the pinch-off voltage 

(Fig. 1.5c), VSD,po = VG - Vt , the gate-to-channel voltage at the end of the channel falls below 

Vt so that the inversion layer disappears. The channel is pinched-off and ISD saturates.  

The different operation modes of MOSFETs are visible in their output characteristics 

(Fig. 1.5d) and their transfer characteristics (Fig. 1.5e). In the Ohmic mode, the output 

current rises linearly with VSD (Fig. 1.5d). At high VSD the current saturates due to the pinch-

off of the channel. The transfer characteristics of a FET are depicted as a linear plot and as a 

semi-logarithmic plot (Fig. 1.5e). In the subthreshold or cut-off regime, respectively, the 

current is temperature dependent and rises exponentially with VG. 

 ISD ~ exp �κ qVG

kT
� (1.2) 

where q is the elementary charge and kT is the thermal energy of the charge carrier with k 
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Fig. 1.5: (a) Schematic of a typical n-channel MOSFET. Two heavily n-doped semiconductor regions, 

source and drain, are integrated in a p-type semiconducting substrate. On top of the device, there is 

an insulating oxide layer covered by a metal gate. Depending on gate the voltage, VG , applied 

between source and gate, the device specific threshold voltage, Vt , and the source drain voltage, 

VSD , different source drain currents, ISD , and different modes of operation are adjusted. In the cut-off 

or subthreshold mode, VG < Vt , the n-doped regions are isolated from each other by potential barriers 

at the p-n-junctions towards the p-region. ISD only flows via thermal activation of charge carriers. (b) At 

VG  > Vt , an inversion layer of mobile electrons is formed adjacent the oxide. An electron conducting 

channel between source and drain develops. The FET behaves like an Ohmic resistor (Ohmic mode). 

(c) At VSD above the pinch-off voltage, VSD,po = VG - Vt , the conducting channel is pinched-off (pinch-off 

mode) and saturation takes place. (d) Output chracteristics (ISD vs. VSD ) of MOSFET for different VG . 

Different modes of operation indicated by different background colors. (e) Transfer characteristics (ISD 

vs. VG ) of MOSFET plotted in linear and logarithmic scale. In the Ohmic mode ISD depends linearly on 

VG . The slope of the curve is called transconductance, gm. The intersect voltage of the linearly fitted 

transfer curve with ISD = 0 is commonly defined as Vt . In the cut-off or subthreshold mode ISD 

depends exponentially on VG . The inverse slope of the semi-logarithmic plot is called subthreshold 

swing S. 

as Boltzmann constant and T as absolute temperature. The factor, κ , describes the 

effectiveness of gate coupling, which is discussed in more detail in section 1.3.4. The 

inverse slope of the semi-logarithmically plotted transfer curve, the subthreshold swing S, is 

an important characteristic describing how efficient a FET can be switched. 
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Fig. 1.6: Schematic drawing of ISFET 

set-up. As opposed to a MOSFET the 

gate oxide is not covered by a metal 

gate electrode, but by a liquid solution 

instead, with reference electrode 

inside. This liquid gate arrangement 

allows steering the FET. 

 S ≔ ∂ VG 

∂ (lg ISD )
 = 1

κ
 kT

q
ln(10)= 1

κ
 59 mV/dec T[K]

300
 (1.3) 

At room temperature, in case of a maximum gate coupling (κ → 1), the minimum swing is 

approx. 59 mV/dec. 

Another important characteristic determining the quality of an FET is the ratio between the 

ISD in the on- and in the off-state of the device. A high on/off ratio (Ion/Ioff ) commonly arises 

from low leakage currents in the off-state and a high current gain in the on-state. 

In the Ohmic mode, the ideal expression for the source drain current, ISD , is: 

ISD = COx μ W

L
�VG - Vt - 

1
2
VSD �VSD (1.4) 

COx , the capacitance of the gate oxide per unit area, µ , the electron mobility in the channel 

and W and L, the width and length of the channel, respectively, are considered as fixed 

values in a fabricated FET device. For MOSFETs also the threshold voltage is a constant 

Vt = ΦM - ΦSi - 
QOx+ QSS + QD

COx
+ 2 Φf (1.5) 

composed of the workfunction of the gate metal, ΦM , the workfunction of silicon, ΦSi , the 

accumulated charge in the oxide, QOx , the accumulated charge at the oxide-Si interface, QSS , 

the depletion charge in silicon, QD , the gate oxide 

capacitance per unit area, COx , and the onset of 

inversion, expressed in the last term of equation 

(1.5), 2 Φf , which depends on the doping level of 

the channel.  

1.3.2 ISFET (ChemFET, BioFET) 

In Fig. 1.6 a schematic of an ISFET is shown. As 

opposed to MOSFETs, in ISFETs the gate oxide is 

not covered by a metal, but by a liquid contacted to 

a reference electrode instead.20,98 In this liquid gate 

set-up, by means of the reference electrode, the 

FET is gated similarly to a MOSFET. The threshold 

voltage of the FET, however, is not a purely device 

related constant, as it would be the case for 

MOSFETs. For ISFETs, equation (1.4) changes to 

Vt = Eref - Ψ + χsol - ΦSi - 
QOx+ QSS + QD

COx
+ 2 Φf (1.6) 

Here, the (stable) potential of the reference electrode, Eref , substitutes the workfunction of 

the metal, and the term Ψ + χsol describes the potential at the interface between liquid and 
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gate oxide. The surface dipole potential, χsol, has a constant value. The surface potential, Ψ, 

however, depends on the pH of the liquid, as well as the concentration and the type of other 

ions dissolved in it. 

According to the site-binding model,100,101 the hydroxyl groups at the surface of the gate 

oxide can be protonated or deprotonated and, thus, be positively or negatively charged, 

respectively. At the interface the charge of the liquid solution is opposite to the charge on 

the oxide surface. An electrochemical double layer is formed. Based on the Gouy-Chapman-

Stern model 29,102–104 the dependence of the resulting surface potential on the pH of the 

solution is described by 

 ∆Ψ = -2.3 α RT

F
∆pHsolution         ||       α = 1

(2.3 kT/q²)(CS/βS) + 1
 (1.7) 

where R is the universal gas constant, F is the Faraday constant, CS is the differential double-

layer capacitance and βS is the surface buffer capacitance of the oxide, i. e. the ability of the 

surface to take up or deliver protons. Only for sensitivity factors, α, close to 1 a Nernstian 

pH-sensitivity of 59.5 mV/pH (at 300 K) is achieved. Different kinds of gate oxides provide 

different sensitivities. Near Nernstian sensitivity is reported for devices covered with Al2O3,29 

HfO2 
105 and Ta2O5,98 respectively. For SiO2 covered ISFETs sub-Nernstian pH-sensitivities 

between 35 and 45 mV/pH are reported.29,106,107 

Commonly, the sensitivity of the ISFET for other ions is also explained with the site-binding 

model.98 Latest findings by Tarasov et al.108 indicate that there is a direct interaction between 

hydroxyl surface groups and adsorbed anions. In a surface complexation reaction anions 

from the solution replace previously adsorbed protons, which induces a change of the 

surface potential.  

In general, independent of the charge of a chemical or biological species, there is a change 

of the surface potential upon its adsorption to the ISFET surface. Also the blocking of 

binding sites with uncharged molecules influences the sensor signal distinctly.109 Therefore, 

ISFETs are ideal signal transducers for the detection of all sorts of analytes. To ensure that 

there is only a specific interaction with one particular analyte, the oxide surface is chemically 

modified, which is explained in more detail in section 1.4. Depending on the target analyte 

there are also other abbreviations for FET-based sensors, such as ChemFET or BioFET, for 

the particular detection of chemical or biological species, respectively. 

The change of the surface potential results in a shift of the transfer characteristics, which 

can be monitored, e. g. via continuous gate sweeping, as demonstrated by Zörgiebel et al.28 

Within this work, if not otherwise stated, the change of the surface potential is monitored by 

measuring ΔISD of the FETs at constant VG and constant VSD. Subsequently, the measured 

data are used to calculate ΔVt , which is explained in detail in section 4.3.3.1.  
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Fig. 1.7: (a) Simplified schematic of a SiNW SB FET as produced within this thesis. Two Ni source and 

drain electrodes are connected via SiNW. Atomically sharp NiSi2 leads are formed at both ends of the 

Si part. A common back-gate steers the device. The NiSi2-Si Schottky barriers at the contacts 

determine the FET characteristics. (b) Transfer characteristics of one device fabricated within this 

thesis, recorded at VSD = 1 V, plotted in linear (blue) and semi-logarithmic (orange) scale (VG sweep 

from -10 V to +10 V shown). The device shows ambipolar behavior. (c) Schematic drawing of the 

band structure of the SB FET at high negative gate voltages, VG . The SBs are thinned out strongly so 

that holes mainly tunnel through the SBs at drain (D) and source (S). (d) At intermediate negative VG 

the SBs are not thinned out as strongly, so that both tunneling and thermionic emission of holes 

occur to similar extent. (e) Without external electric field only thermionic emission – of holes and 

electrons – takes place. In (a), (c), (d) and (e) x represents the coordinate for space. 

1.3.3 SB FET 

Within this work SiNW-based SB FETs are fabricated in cooperation with the NaMLab 

gGmbH, Dresden. A schematic of the devices is given in Fig. 1.7a (detailed description of 

the fabrication process in section 4.2). Intrinsic SiNWs connect Ni source and drain 

electrodes. Emerging from the Ni electrodes atomically sharp, metallic NiSi2 leads are 

formed towards the Si part of the NW. The NiSi2-Si Schottky barriers at the contacts 

determine the FET characteristics. The NW is surrounded by an oxide shell and is placed on 

top of the oxide layer of a Si wafer. In this silicon on insulator arrangement the SB FET is 

steered via a common back-gate, i. e. the substrate. 

Fig. 1.7b shows typical transfer curves of a SB FET produced within this thesis as semi-
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logarithmic and linear plot. It is visible that SB FETs behave similar to MOSFETs. However, 

the gating is based on different mechanisms. MOSFETs, are single crystalline devices with 

differently doped sections. When raising VG , the external electric field lowers (at VG < Vt )  or 

removes (VG > Vt ) the potential barriers at the p-n junctions so that electrons move 

unhindered  through the lattice from source to drain. In SB FETs, the SB height at the metal-

semiconductor interface is fixed for a specific device. The SB height is influenced by utilized 

materials, interface properties and internal strains,110 among others. For NiSi2-Si interfaces 

the SB height is approx. 0.66 eV for electrons and 0.46 eV for holes.111 An external electric 

field cannot remove the barriers, it just bends the energy bands of the silicon part. Fig. 1.7e 

shows the band diagram of the SB FET in case there is no external electric field. The charge 

carriers overcome the SBs by thermionic emission.110 In case of a strong external electric 

field, the SBs are strongly thinned out (see Fig. 1.7c) so that charge carriers with low 

thermal energy can tunnel through the barriers and current flow increases. Thus, at large 

negative VG , the tunneling of holes is the dominating mechanism for injecting charge 

carriers into the Si. At intermediate negative VG , tunneling and thermionic emission occur to 

similar extend (see Fig. 1.7d).  

For the NiSi2-Si SB FETs built within this thesis, at positive VG electrons can tunnel as well, 

which explains the ambipolar behavior of the device and the current increase at VG ≥ 5 V. By 

means of two separate top gate electrodes on top of both SBs of the FET, precise control 

over hole and electron transport is possible. This is exploited for building reconfigurable logic 

switches at the NaMLab gGmbH.110,112  

Within this work, the SB FET devices are passivated with an oxide layer, and then 

implemented in a microfluidic set-up for ISFET/sensing applications, which is described in 

detail in section 4.2. The SB FETs react in a very similar way to surface potential changes as 

described for MOSFET/ISFET platforms before (see section 1.3.2). 

1.3.4 Gate coupling and charge trapping 

In equation (1.2) and (1.3), the factor κ  is introduced for describing the effectiveness of gate 

coupling of FET devices, i. e. how effective an applied VG steers the FET resistivity. The 

factor is determined by the gate oxide capacitance, COx, and by the depletion capacitance, 

CD, based on the following simplified equation. 

κ = COx

CD+ COx
 (1.8) 

For a maximum gate coupling (κ → 1) the oxide capacitance must be much larger than the 

depletion capacitance, hence, low channel doping and thin oxide thickness are desired.  

In addition to that, defects at the oxide-Si interface and within the oxide-bulk are of great 

importance. Stretched bonds, dangling bonds and other faults, e. g. due to lattice 
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mismatches, enable the trapping of charges during device operation.113 Depending on the 

applied VG , charges can go from the Si-channel into trapping sites, or the other way around, 

via tunneling or thermal activation.114,115 Also a charge exchange between trapping sites is 

possible. There are charge traps with low stability or short lifetimes (1 - 10 µs), respectively, 

commonly at the direct oxide-Si interface,116,117 and charge traps with longer lifetimes (~ 1 s), 

commonly in the oxide bulk.116 

Equations (1.5) and (1.6) show that charges inside the oxide and at the oxide-Si interface 

influence Vt . Depending on trap lifetimes and VG sweeping speed, charge trapping leads to 

hystereses in the transfer characteristics of the devices. The additional charges also reduce 

the gate coupling as they screen the applied electric field. This effect is considered by 

introducing an interface-trap capacitance, Cit, and rewriting equation (1.8) as 99 

κ = COx

CD+ COx + Cit
 (1.9) 

Incorporation of water molecules in the gate oxide during device fabrication is also 

considered as a possible origin of for charge traps with long lifetimes.118,119 

The occurrence of defects in the gate oxide can be prevented by an appropriate passivation, 

such as a thermal growth of high quality oxides.99,120 Furthermore, a subsequent annealing 

treatment in forming gas for saturating Si dangling bonds with hydrogen atoms should be 

included.99,120 

1.4 SENSOR SPECIFICITY 

As described in section 1.3.2 the surface potential of FETs and, hence, the device resistivity 

is influenced by all sorts of chemical and biological species which adhere to their oxide 

surfaces. Consequently, FETs are suitable transducers for a broad range of (bio)sensor 

applications. However, to obtain a sensor which is specific for one particular analyte, the 

surface has to be modified and/or functionalized.  

Biosensors are defined as devices "that use specific biochemical reactions mediated by 

isolated enzymes, immunosystems, tissues, organelles or whole cells to detect chemical 

compounds usually by electrical, thermal or optical signals”.121 In this section, the 

fundamentals of surface modification are discussed. The described approaches are focused 

on FET-based sensors in which the specificity is achieved by immobilizing receptor 

molecules on the transducer surface. The reader is referred to standard literature such as 

references 122–124 and review articles such as references 125,126 for further functionalization 

strategies on a wider field of sensor types. 
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Fig. 1.8: Schematic drawing of an IgG 

antibody. The Y shaped protein 

consists of one Fc domain (fragment 

that crystallizes) and two Fab domain 

(fragments for antigen binding).  

1.4.1 Receptor molecules

A (bio)receptor is a molecule that interacts 

specifically with an analyte via the key-lock- 

principle  –  a non-covalent interaction based on a 

complex interplay of hydrogen bonds, salt bridges, 

hydrophobic interactions, van der Waals forces, 

electrostatic interactions and structural fitting.124 The 

aim of a sensor surface functionalization is to exploit 

these specific interactions. Receptors are attached 

to the sensor surface so that only one particular 

analyte is attracted to go and stay there – always 

based on the equilibrium 127  

analyte + receptor ⇄ analyte-receptor complex 

Then, ideally, any sensor signal exclusively depends 

on the presence or absence of the specific target 

molecule. The background noise due to unspecific adsorption of other species is minimized. 

Commonly applied bio-receptors are antibodies128 or fragments of antibodies,21 other 

proteins,129 enzymes,130 single stranded DNA 25 and aptamers.26 Within this work, single-

stranded DNA and antibodies are used as model systems for investigating new receptor 

binding strategies, as both types of bio-molecules are well suited for model receptor-analyte 

investigations, they are readily available and they can be purchased with or without 

fluorescence label.  

Single stranded DNA interacts specifically with complementary DNA strands. Upon 

hybridization, along the chains at all sites, the base pairs adenine-thymine or cytosine-

guanine are formed. The DNA strands utilized within this work are chemically synthesized by 

Eurofins MWG GmbH, Germany, who provide many options for modifying the ends of the 

strands with different functionalities. 

Antibodies are naturally occurring proteins that play an important role in the immune 

response of animals against pathogens.128 They are extracted from the serum of animals into 

which previously the desired antigen (i. e. analyte) was injected. Fig. 1.8 shows a schematic 

of an IgG antibody. Such antibodies are Y-shaped. One Fc domain (fragment that crystallizes) 

forms the base and two Fab domains (antigen binding fragments) form the arms of the Y. 

Each antibody can bind up to two target molecules, commonly with high specificity and high 

affinity. However, antibodies are sensitive to changes of external conditions, such as 

temperature, ion concentration or pH.127 Also labeling them with fluorescent dyes can alter 

their tertiary folding structure and reduce their specificity. Within this work, as a model 
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receptor system, secondary antibodies, i. e. with specificity towards Fc domains of other 

animals' antibodies, with and without fluorescent label, are used (see chapter 3).  

1.4.2 Receptor immobilization 

When immobilizing receptor molecules on a transducer surface, the specificity of the 

receptor must not be impeded. If, for example, the receptor molecules are not properly 

oriented in such way that the analyte binding sites face away from the surface, there will be 

no specific interaction. Furthermore, a reduced specificity may occur due to steric hindrance, 

either of the analyte attachment or of the proper folding of the receptor. Reasons for that 

can be a too close vicinity to the surface or a too high receptor molecule density. 

For FET-based sensing, it is important to find a strategy which brings the analyte sufficiently 

close to the device surface so that the analyte's influence on the surface potential is not 

screened by other ions in the surrounding buffer solution. The maximum possible distance is 

described by the Debye screening length 

λD= � ϵ0 ϵr k T

2 NA q2 I
 ≈ 0.32

√I
 (1.10) 

with ϵ0 as permittivity of free space, ϵr as dielectric constant, NA as Avogadro number and I 

as ionic strength of the solution. Equation (1.10) illustrates that the maximum possible 

distance for an analyte recognition event depends on the ion concentration of the buffer 

solution. In a 10 mM phosphate buffer (PB) solution λD is approx. 1.5 nm, in a 0.1 mM PB 

solution λD is approx. 14.5 nm.131 Hence, a low ion concentration is beneficial for a high 

sensitivity. However, the receptor specificity is influenced by the ionic strength of the 

solution as well.127,132  

The strategies for immobilizing receptor molecules can be divided into three main 

subgroups   –   physical (non-covalent) adsorption,133 covalent binding or bioaffinity 

immobilization133.126  

1.4.2.1 Physical immobilization 

Proteins, such as antibodies, adhere to surfaces by means of electrostatic, polar and 

hydrophobic interactions.126,134 When using this "stickiness" for immobilizing receptors, 

commonly heterogeneous layers of randomly oriented molecules are formed (see Fig. 1.9a). 

The attachment can be enhanced by chemically modifying the surface making it more 

hydrophobic.126 However, there is always an uncertainty that receptor molecules could be 

washed away during sample analysis which would lead to false signals.126 Therefore, the 

physical adsorption is not considered as receptor immobilization strategy within this thesis.  
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Fig. 1.9: Schematic illustration of three different kinds of receptor immobilization strategies. In the top 

row the prepared initial surfaces are depicted, in the bottom row, the according surfaces after 

antibody immobilization via (a) physical immobilization, (b) covalent binding, (c) bioaffinity 

immobilization.(Adapted from Rusmini et al. 126) 

1.4.2.2 Bioaffinity immobilization 

Receptors are also immobilized on "cushions" of proteins or DNA strands by making use of 

biochemical affinity reactions.126 Avidin and streptavidin for example provide four binding 

sites with strong affinity for biotin. Fig. 1.9c schematically depicts a binding strategy where 

biotinylated linker molecules (colored orange) are utilized to fix streptavidin (green) on a 

surface and other biotinylated functional molecules (red) bind antibodies (blue) on top of 

them.135 

Protein G and protein A are surface proteins of streptococcal bacteria and Staphylococcus 

aureus which possess two and five binding sites, respectively, with high affinity towards the 

Fc domains of antibodies. Thus, both proteins bind antibodies the wrong way round to the 

bacteria surface and protect the bacteria from the immune response of mammals by 

disrupting opsonization and phagocytosis.136,137 Bringing these proteins on a sensor surface 

enables a well oriented immobilization of antibodies afterwards, with the Fc domains as 

anchoring points and the antigen binding sites facing towards the analyte solution.138,139 In 

other strategies, His-tag affine proteins are used as anchors for His-tagged receptor 

molecules.140 Additionally, single stranded DNA on the surface can be employed for 

subsequent affinity binding of receptor molecules that are labeled with the complementary 

DNA strand.141 

However, the bioaffinity immobilization is not considered applicable for FET-based 

biosensors, due to the short maximum distance within which the analyte can be detected. 
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Fig. 1.10: Schematic of covalent binding of silanes to oxide surfaces. (a) General formula of silane 

linker molecules. (b - d) Consecutive reaction steps when binding APTES to SiO2 surface, including (b) 

hydrolysis, (c) hydrogen bond formation between -OH groups among the silane molecules and 

between -OH groups of the molecules and the oxide surface, (d) condensation and formation of 

covalently bound (amino-terminated) silane monolayer, which would be the ideal case. (e) A more 

realistic illustration where a faulty APTES multilayer is formed. 

Protein A for example has a diameter of about 7 nm.142 The height of an antibody is about 

10 nm.143 It is not suitable to use stacks of these molecules for sensing an antigen or analyte 

binding event on top of them. 

1.4.2.3 Covalent binding 

Binding receptors covalently to a surface via linker molecules (see Fig. 1.9b) solves two 

problems of the physical and the bioaffinity immobilization. The receptors cannot be washed 

off during sample analysis. And the distance between sensor surface and analyte binding 

site is minimized which increases the device sensitivity. FET surfaces commonly consist of 

oxides such as SiO2, HfO2 or Al2O3, on which in most cases silane chemistry-based linker 

strategies are applied. 

Surface functionalization via silane chemistry 

Silane molecules for surface functionalization purposes commonly consist of a central silicon 

atom at which up to three hydrolysable groups, such as methoxy or ethoxy groups or Cl-

atoms, are attached (see Fig. 1.10a).144,145 The fourth valence electron of the Si atom bonds 

with a linker alkyl chain at the end of which an organofunctional group is attached.144,145  
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Such coupling agents are commercially available with a broad range of combinations of 

linkers and functionalities which enables a fine tuning of surface properties like wettability 

and chemical reactivity.145,146 

The molecules are stored under inert atmosphere, like Ar, due to their high reactivity. In 

combination with water, a hydrolysis reaction occurs where ultimately the hydrolysable 

groups are replaced by -OH groups. Fig. 1.10b exemplarily depicts the hydrolysis of 

(3-aminopropyl)triethoxysilane (APTES), a common surface modifier when combining 

anorganic surfaces with biomolecules. For APTES during hydrolysis, upon -OH group 

formation, ethanol forms as byproduct. 

Subsequently, the -OH groups attached to the silanes form hydrogen bonds towards 

the -OH groups of other silane molecules or the -OH groups of the surface (see Fig. 1.10c). 

Afterwards, in condensation reactions covalent bonds among the silanes and towards the 

surface are formed.147 Ideally, a monolayer is assembled – a self-assembled monolayer (see 

Fig. 1.10d).148  

In case the initial silane has three hydrolysable groups, as for APTES, since the silanes also 

crosslink among each other, it is more likely that a partial formation of polymerized silane 

chains occurs. Consequently, faulty multilayers are assembled (see Fig. 1.10e). Such faulty 

assemblies destabilize the entire silane functionalization layer.149 Therefore, within this work 

whenever possible, silanes with only one hydrolysable group – and two non-hydrolyzable 

methyl groups attached to the Si atom – are applied. In that case, as soon as a covalent 

bond between two silane molecules is formed, there is no more possibility for the dimer to 

covalently attach to the surface. A multilayer formation is prevented. 

Receptor attachment via silane linker 

There are silanes with different functionalities available. The different functionalities are used 

for various receptor binding strategies. Fig. 1.11 depicts an APTES-based immobilization of 

amino-terminated (protein/receptor) molecules.27,150 When APTES is covalently linked to the 

surface (see Fig. 1.10 and Fig. 1.11a), an amino-terminated layer is formed. Adding succinic 

anhydride (Fig. 1.11b) leads to a ring opening reaction in which an amide bond and a 

carboxy-termination are created.151 In the following steps, N-(3-dimethylaminopropyl)-N′-
ethylcarbodiimide (EDC) and N-hydroxysuccinimide (NHS) are used (Fig. 1.11c) to activate 

the surface and to covalently bind (protein/receptor) molecules that possess an amino group 

for forming a stable amide bond (Fig. 1.11d,e). However, the succinimidyl esters that are 

formed temporarily can be hydrolysed under the bioconjugation conditions, affecting 

seriously the reproducibility of the process.152 

Other strategies rely on the application of homofunctional cross linkers such as 

glutaraldehyde 153 or disuccinimidyl suberate 154 for covalently connecting amino-terminated 
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Fig. 1.11: Schematic of exemplary APTES and crosslinker-based protein immobilization strategy 

comprising the following steps. (a) APTES immobilization, (b) addition of succinic anhydride to the 

amino-terminated surface which results in a ring opening-process creating an amide bond and 

forming a terminal carboxylate, (c) EDC/NHS activation of carboxy group, (d & e) coupling of amino-

terminated (protein/receptor) molecule to the surface. 

surfaces and molecules providing an amino-group, so that there is one reaction step less 

required during the immobilizaition procedure, compared to the procedure in Fig. 1.11. 

The amounts of immobilization steps are further reduced when the surface is initially 

functionalized with silanes that provide other organofunctional groups such as aldehydes 

using 3-(trimethoxysilyl)propyl aldehyde,24,155 isocyanates using 3-(triethoxysilyl)propyl 

isocyanate,152 or epoxides using (3-glycidoxypropyltrimethoxy-silane 156,157 which enable a 

direct covalent binding of amino-terminated molecules.  

These strategies 24,27,152–156 have in common that unused binding sites have to be passivated 

after receptor immobilization which is usually accomplished using ethanolamine as blocking 

agent. The passivation step is crucial for preventing any covalent binding of undesired 

molecules to the surface. 

In total, the receptor attachment via silane linkers comprises at least three steps: (i) the 

linker deposition, (ii) the binding of receptor molecules and (iii) the passivation of excess 

binding sites. In chapter 3 of this thesis, a receptor binding approach is developed which 

allows the covalent binding of amino-terminated molecules on oxide surfaces without the 

subsequent binding site passivation step. 
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Commonly, proteins and antibodies readily provide the required amino groups. However, 

there are often multiple amino acids at multiple positions within one molecule. Therefore, 

the above-described strategies 24,27,152–156 will immobilize such receptors in random 

orientations. An oriented immobilization is achieved by using linker chemistries that bind to a 

chemical functionality at a specific position within the chosen receptor molecule. Antibodies 

possess for example an area rich in aromatic amino acids – a nucleotide binding site (NBS). 

The NBS is near the antigen binding sites of the antibodies and has an affinity for indole-3-

butyric acid.158 On an indole-3-butyric acid-terminated surface, when exposed to 254 nm 

light, a covalent link to NBS is formed.158 While one of the antigen binding sites of each 

photo-attached antibody faces towards the surface and is blocked for antigen interactions, 

the other antigen binding site is well oriented towards the analyte solution.158 There are 

several binding strategies for an oriented covalent immobilization of antibodies. Trilling et 

al. 158 discuss them in their minireview. 

The oriented immobilization of antibodies improves their affinity towards analytes by up to 

two orders of magnitude.158 However, targeting amino groups is a sufficient and common 

immobilization strategy which is also applicable to other types of receptor molecules. In case 

of single stranded DNA or aptamers, it is for example possible to purchase them with amino 

labels at desired positions. Accordingly, their orientation can be engineered during the 

receptor synthesis. 

1.5 CONCLUSION 

In this chapter, the fundamentals of the main fabrication methods and the working principles 

of the LoC devices built within this thesis are described. Sections 1.2 and 1.4 anticipate 

motivations for novel strategies in fabricating PDMS-based microfluidics and silane-based 

receptor immobilization, respectively, which are explained in detail in chapter 2 and 

chapter 3. The fundamentals on the utilization of transistors for sensor applications from 

section 1.3 are applied in chapter 4 and 5 of this thesis. 
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2 MULTIFUNCTIONAL REVERSIBLY SEALABLE 

MICROFLUIDIC SET-UP 

Building LoC devices is not possible without microfluidic set-ups. In this chapter, a novel 

method for fabricating multifunctional reversibly sealable microfluidic devices is described. 

Furthermore, possible applications of such devices beyond their usage in analysis 

assemblies are investigated, such as the direct printing of flexible electronic interconnects 

onto flexible substrates and the deposition of uniquely shaped polymer structures via droplet 

microfluidics using a UV-curable adhesive and water as continuous and dispersed phases, 

respectively. Parts of this chapter are published elsewhere.159   

2.1 MOTIVATION 

Microfluidics are indispensable for an efficient utilization of chemical and biological 

components in a broad spectrum of applications in fluid and sample manipulation 44–48,56–59 

and material synthesis 51,52,54,55. In section 1.2, PDMS is introduced as the common material 

of choice for the rapid prototyping of microfluidic structures, due to its advantageous 

properties. One distinct feature of PDMS is the possibility to bond it covalently and 

irreversibly onto substrates by means of an oxygen plasma treatment of the respective 

surfaces.66 This enables a rapid and simple leak-proof utilization of the cast channel 

structures.46,56–58 However, a plasma treatment is not feasible, if the surface, on which the 

microfluidic structure is placed, was chemically functionalized before. The plasma would 

destroy all organic components making any functionalization efforts useless.160,161 To 

investigate and apply the surface functionalization strategy presented in chapter 3, a reliable 

sealing strategy without need for a plasma treatment is required.  

Due to its high surface energy, PDMS also adheres reversibly to many kinds of substrates 

without the application of an oxygen plasma.66,73 Besides the utilization on previously 

functionalized surfaces, this reversible sealing is advantageous for several applications such 

as the chemical patterning of surfaces,162 a locally confined deposition of cells,163 or the 

production of polymer-based microstructures via micromoulding in capillaries (MIMIC).164 

However, the self-adhesion cannot be used for working pressures above 35 kPa.73 To 

increase the applicable fluid pressures, while maintaining the reversibility of the PDMS 

attachment to the substrate, different techniques were developed. Le Berre et al.78 include 

in their PDMS designs, next to the fluidic circuits, channel networks that allow the 

application of an externally created vacuum to enhance the adhesion of the stamps to the 

substrates by aspiration. The maximum working pressure achieved in this configuration is 

100 kPa. However, the space requirements of the aspiration structures may be a drawback 

for a number of microfluidic applications. Rafat et al.70 use permanent magnets to increase 
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the maximum working pressures up to 145 kPa. A restriction of their approach is its 

suitability for simple microfluidic layouts with large channels only. Pressing PDMS on the 

substrate surface using special mechanical clamps allows maximum working pressures of 

up to 220 kPa as demonstrated by Yang and Maeda76 and Saarela et al..74 Chen et al. achieve 

with a glass-PDMS-glass sandwich configuration maximum working pressures of up to 

400 kPa.77 However, in the latter cases 74,77 the diversity of the channel designs is strongly 

restricted by the layout of the clamps or the glasses fixing the PDMS devices. Changing in- 

or outlet positions, or the tubing amounts, respectively, would require a change of the clamp 

or the glass designs.  

Usage of all advantageous aspects of PDMS-based microfluidics in reversibly sealable set-

ups requires a technique that combines high fluid working pressures with the possibility of a 

rapid prototyping of channel designs. In this chapter, a novel two-step PDMS casting 

method is presented which provides a large freedom in channel structure design, allows 

working pressures of up to 600 kPa and keeps the channel sealing reversible, at the same 

time. 

As a possible application of the microfluidics prepared with the developed method, the 

printing of flexible electronic interconnects is demonstrated. Flexible and stretchable sensor 

devices that do not break upon deformation enable a real time detection of physiological 

data on top of or underneath the skin, or near moving body parts of a patient. There are 

flexible electronics in which tactile,165 temperature,166,167 DNA 40 and glucose 168 sensors are 

implemented. In combination with flexible and stretchable batteries 169 and antennae,169,170 

such devices may enable an on-line monitoring of medically relevant indicators. In this way, 

the idea of measuring at the point of care is pushed to its limits. During the last years, great 

attention was given to the deposition of organic conductive materials on bendable supports 

using different kinds of printing techniques for generating flexible electronic devices.171 

Within this work, as a cost efficient approach for printing flexible interconnects, 

microstructures based on the conductive polymer poly (3,4-ethylenedioxythiophene) 

poly (styrenesulfonate) (PEDOT:PSS) are produced. 

Furthermore, the developed microfluidic set-up is used for the deposition of polymer 

structures with unique shape. The procedure is based on droplet microfluidics (see section 

1.2.1) which in other cases is utilized for the production of various kinds of spheroid-shaped 

objects consisting of multiple components and possessing diverse properties.51–53 Within 

this work a UV-curable adhesive is used as continuous and water as dispersed phase. In this 

way microcavities are formed which may find application in cell culturing in the future. 
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2.2 MATERIALS AND METHODS 

2.2.1 Fabrication of reversibly sealable PDMS-based microfluidics 

Fig. 2.1 depicts the fabrication process of the reversibly sealable microfluidic devices. The 

successive steps are shown as schematic drawings on the left hand side (Fig. 2.1a-f), and as 

photographs on the right hand side (Fig. 2.1h-n). The schematic drawings show the 

production of a simple channel structure with only one in- and one outlet to prevent an 

overcrowding of the images. The photographs provide insight in the complexity that can be 

achieved with the proposed method, as the rapid prototyping of a four-channel structure 

with in total eight in- and outlet-tubes is demonstrated.  

As starting point, a mold or master structure, respectively, is prepared (Fig. 2.1a,h). Within 

this work two types of SU-8 negative photoresist (MicroChem Corp., USA), SU-8 2010 and 

SU-8 2050, are used to produce structures of 10 and 50 µm height, respectively. The 

respective protocols are given in the appendix.  

On top of the mold, PDMS is cast (Fig. 2.1b). For that purpose PDMS base and curing agent 

(Sylgard 184 Silicone Elastomer Kit, Dow Corning, USA) are mixed in varying ratios between 

6:1 and 10:1 (w/w), degassed and poured over the mold. The cast is cured for 5 h at 45°C 

and peeled off (Fig. 2.1i). Then, holes are punched into the in- and outlet areas of the PDMS 

(Fig. 2.1c,k) and PTFE tubing is attached (Fig. 2.1d). Up to this point the procedure does not 

differ from the standard fabrication of PDMS-based microfluidics introduced in section 1.2.  

In the following steps, the freshly prepared stamp, including the attached tubing, is enclosed 

in a second layer of PDMS. The self-adhesion of the PDMS stamp is used to seal the 

channel structure with a glass slide. Then a casting frame with at least n + 1 holes in one 

side is placed around the PDMS stamp, where n is the number of attached tubes. The 

tubing is guided through the holes in the frame on top of which a second glass slide is 

placed (Fig. 2.1e). After fixing the glass slides with clamps to the frame, uncured PDMS is 

cast into the assembly by means of a syringe using the remaining hole in the casting frame, 

through which no tubing is guided (Fig. 2.1l). The second layer of PDMS is again cured for 

5 h at 45°C. A cuboid shaped PDMS stamp with the tubing guided to one side is formed 

(Fig. 2.1m). 

Within this work, 45°C curing temperature are applied to minimize the curing time of the 

PDMS while preventing deformations in the fluid channel layout due to internal stresses 

induced by the heating and cooling cycle.71 Particularly, the curing of the second layer of 

PDMS around the initial one can induce distortions, if too high curing temperatures are used. 
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Fig. 2.1: Fabrication of reversibly sealable PDMS device – photographs on the left hand side and 

according schematic drawings on the right hand side. Including one fluorescence microscopy image 

obtained while utilizing the four-channel PDMS stamp produced during the photo series. 
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Fig. 2.2: Schematic drawing of leakage test 

arrangement. Compressed air is pushed pressure 

controlled into a PDMS device with only one 

attached tube. Having the whole set-up inside a 

water bath allows checking for air bubbles 

indicating a leak. 

 

 

The final PDMS stamp can be placed on top of virtually any kind of substrate. Due to the 

cuboid shape of the stamp a simple sample holder is sufficient to press the PDMS onto the 

substrate which increases the possible fluid working pressures effectively. Within this work 

the sample holder consists of an aluminum base and a polymethylmethacrylate (PMMA) lid 

which can clamp the PDMS and the substrates via four screws (Fig. 2.1f,n). Since the tubing 

is guided to the side, there is no need for any tubing-related holes in the PMMA lid which is 

advantageous over other reversible sealing techniques with regard to a rapid prototyping of 

different channel designs.74,77 Furthermore, having large parts of the tubing (≥ 15 mm) 

embedded in the PDMS stamp provides a tubing strain relief enabling a high robustness of 

the devices. 

2.2.2 Leakage test  

To compare the reliability of microfluidic 

devices fabricated via the presented 

method, a leakage test is performed. 

Partially adopting the scheme of Chen et 

al.,77 a PDMS device with only one 

attached tube (see Fig. 2.2) is fabricated. 

Compressed air is pushed pressure 

controlled (manometer, WIKA Alexander 

Wiegand SE & Co. KG, Germany) into the 

channel while keeping the entire setup inside a water bath. The pressure is gradually 

increased to investigate the maximum applicable working pressure before air bubbles occur 

indicating a leak. 

2.2.3 Printing flexible electronic interconnects  

For generating flexible electronic devices, an aqueous PEDOT:PSS solution (Sigma-Aldrich, 

MO, USA) is pushed into a two-channel-structure possessing the channel layout, depicted in 

Fig. 2.4a. The lines between the inlet and outlet areas in position 1 and 2, and position 3 and 

4, respectively, are of 40 µm width and 10 µm height. A printer foil supported by an object 

carrier glass carrier is utilized as substrate. After fixing the PDMS on the substrate and filling 

the channels with PEDOT:PSS solution, the excess water is removed in two steps. At first a 

local heating, constricted to the aluminum base of the sample holder and, thus, the PDMS 

channels, on a hot plate at 80°C for 48 h is applied. Subsequently, the entire assembly, 

including the tubing, is heated inside a furnace to 80°C for 24 h. Afterwards, the PDMS 

setup is disassembled to obtain the bare printer foil with the PEDOT:PSS on top.  

Samples are investigated via optical microscopy (Axiolab, Carl Zeiss Microscopy GmbH, 

Germany). Conductivity measurements to test the electrical properties of the PEDOT:PSS 
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interconnects are performed using a source measure unit (SMU, Source Meter 2604B, 

Keithley, USA) in combination with a DPP105-V-AI-S micropositioner (Cascade Microtech, 

Inc., USA) probe station. 

2.2.4 Deposition of polymer-based microcavities  

Fig. 2.5a illustrates how inversed porous polymer structures are created and immobilized on 

a polystyrene substrate by using a T-junction droplet microfluidic channel design (see section 

1.2.1). It is a two-step procedure. At the beginning, at t = t1, droplets are formed. An 

adhesive that polymerizes under UV-irradiation (proformic 40166, VIKO UG, Germany) is 

utilized as continuous phase. Water is the discrete phase. Both phases are pushed into the 

channel system with a flow rate of u = 0.003 µl/min. After having generated a sufficient 

amount of droplets, such that the entire channel system is filled, the flow is stopped. 

u = 0 µl/min at t > t1. The droplets are immobilized by applying UV-light from a UV-LED 

supplied with the adhesive for at least 7 s. The illumination is restricted to a desired area of 

the microfluidic chip. Illuminating the entire set-up would be disadvantageous, because the 

consequent polymerization in the in- and outlet tubes would prevent a reutilization of the 

PDMS stamp. Subsequently, the setup is disassembled and the polystyrene substrate is 

rinsed with water and dried under N2 gas flow. The PDMS stamp is cleaned with acetone 

and isopropanol and blown dry. The polymer structure remaining on the polystyrene 

substrate is investigated via optical microscopy (Axiolab, Carl Zeiss Microscopy GmbH, 

Germany) and scanning electron microscopy (SEM, Philips XL 30 ESEM-FEG environmental 

scanning electron microscope, FEI, USA). 

2.3 RESULTS AND DISCUSSION 

2.3.1 Channel deformation during device assembly  

When assembling the microfluidic devices by pressing the PDMS stamps onto the 

respective substrates, at high clamping pressures a deformation of the channels is observed 

(see Fig. 2.3). Particularly wide hollow structures with width to height ratios above 10:1 are 

prone to collapsing as also reported by Xia and Whitesides for covalently bonded PDMS 

devices.69 Therefore, if possible, in all microfluidic channels with high aspect ratios additional 

support posts are included to stabilize the structures, hence, to increase the applicable 

clamping pressures. The imprints of such posts are depicted in Fig. 2.4c.  

In Fig. 2.3 it is also visible that at high clamping pressures the PDMS features in contact 

with the substrate are squeezed to form broader contact areas. Such deformations can 

affect microfluidic channels and their flow profiles in undesirable ways. During assembly, it 

is important to check optically for such deformations and to adjust the clamping pressure 

accordingly. By changing the mixing ratio of PDMS base and curing agent and, thus, the 

stiffness of the PDMS stamp, deformations can be reduced (see section 1.2). 
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Fig. 2.3: Deformation and collapse of PDMS structures upon increased clamping pressure. Optical 

microscopy images of a PDMS device assembly with an array of circularly arranged PDMS walls at 

(a) moderate clamping pressure, (b) high clamping pressure. At high pressure, the PDMS walls are 

squeezed to form broader contact areas with the substrate. In the wide areas between the circular 

wall arrangements the PDMS structure collapses. Within the narrow gaps between the walls of each 

circular arrangement the collapse is prevented. The drawings underneath the microscopy images 

schematically illustrate the PDMS behavior. Black arrows symbolize the pressure strength. Gray 

arrows indicate PDMS deformations. 

Konda et al. 75 make use of clamping pressure-based channel deformations by implementing 

channel walls of different heights in their structures. By increasing or decreasing the 

clamping pressure, additional channel walls are pushed into the flow structure or taken out, 

respectively. 

2.3.2 Maximum fluid working pressure 

Within this work the pressure of compressed air is raised up to 600 kPa without observing 

any air bubble formation in the water bath of the built-up depicted in Fig. 2.2. Hence, at this 

pressure no leakage occurs, not between the PDMS device and the glass substrate, and 

also not along the PTFE tube attached to the channel. This pressure resistance is considered 

as the highest one ever demonstrated for PDMS based reversibly sealable microfluidic 

devices,70,74,77,78 and it exceeds the resilience of plasma bonded PDMS-on-glass devices.172 

The cuboid shape of the PDMS stamp, as a result of guiding the tubing sideways, enables a 

uniform pressure distribution over the entire chip when fixing it in the sample holder on the 

substrate. Consequently, a high device pressure resistance is achieved. Raising the applied 

fluid pressure to values above 600 kPa causes a leak in the outlying tubing assembly. 

Comparing the achieved pressure resistance particularly to the results in the work of Saarela 

et al. 74 in which also mechanical clamps are used, the resistance increase can be attributed 
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Fig. 2.4: Deposition of PEBDOT:PSS-based flexible electronics. (a) Layout of the channel design. 

(b) Optical microscopy images of the printer foil which was utilized as substrate before any polymer 

deposition, (c) of the in- / outlet area and (d) one curved line section after PEDOT:PSS printing. 

(e) Photograph of the conductivity measurement arrangement and in the insets the simultaneously 

displayed data on the SMU readout and a photograph of the entire circuit, respectively.  

 

to the improved tubing integration. In the work of Saarela et al. 74 the tubing is only pushed 

into the PDMS, maximum 6 mm deep. Consequently, leakage mainly occurs at the PDMS-

tubing interface. Embedding the tubing in the PDMS casing circumvents such issues.  

In one of the latest publications on reversibly sealable microfluidics, published after the 

paper that was brought out within this thesis,159 Konda et al. 75 fabricate their devices via 3D 

printing-based molds. 3D printing allows positioning the in- and outlet holes at the sides of 

the PDMS stamps, as well. Therefore, their approach also enables the use of a simple 

clamping arrangement, and it provides a similar degree of freedom concerning the rapid 

change of channel designs. However, a maximum working pressure is not determined in 

their publication. 

2.3.3 Printing flexible electronic interconnects  

The results of the printing experiments using PEDOT:PSS are summarized in Fig. 2.4. 

Fig. 2.4a illustrates the layout of the structure, with positions 1-4 as in- or outlet tube 

attachment areas. The optical microscopy image in Fig. 2.4b shows the substrate 

printer foil in an untreated state. Several dark spots are visible which might be due to 

material inhomogeneities or surface contaminations. The optical microscopy images 

of an inlet region in Fig. 2.4c and of a curved line section in Fig. 2.4d illustrate that the 

developed printing method allows a well defined deposition of PEDOT:PSS with 

homogenous line widths and material densities. The conductive properties of the 

printed structures are examined while bending the substrate foil as depicted in the 

photograph in Fig. 2.4e. Measurements between position 1 and 2, and position 3 and 
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Fig. 2.5: Illustration of the droplet formation and polymer structure immobilization procedure on a 

polystyrene substrate using a T-junction PDMS channel layout. (a) Schematic drawing of the two-step 

procedure. Top view optical microscopy images of (b) the droplet formation process, (c) the droplets 

before curing the utilized UV-curable adhesive, (d) after polymerization of the adhesive and removal of 

the PDMS channel. (e) Side view optical microscopy image of the formed polymer structure. (f) SEM 

picture of a side view on one pore inside the polymer structure and schematic drawing of a pore in 

the polymer material (inset in (f), orientation of the pore similar to the one in the SEM image).  

 

4 (see Fig. 2.4a), respectively, showed resistivities in the low MΩ range, as can be 

derived from the lower right inset in Fig. 2.4e depicting the display of the SMU during 

the experiment. Taking into account the device geometry a conductivity of approx. 

0.01 S.cm-1 is estimated for the PEDOT:PSS. As works of other groups show, this 

value could be further enhanced.173,174 Measuring the resistance between position 1 

and 3 leads to infinite values. These results demonstrate that printing PEDOT:PSS 

based flexible electronic devices is possible using the presented approach. The 

40 µm feature size achieved within this work is similar to the accuracies obtained 

with other conductive polymer printing techniques.171 Since the PDMS channel design 

can be changed very quickly with the presented fabrication method, a rapid 

prototyping of flexible electronic circuits with versatile layouts is possible.  

2.3.4 Deposition of polymer-based microcavities  

Fig. 2.5 summarizes the procedure and the outcome of the droplet formation and polymer 

structure immobilization experiments. As depicted in Fig. 2.5b, water droplets are formed 

inside a continuous phase of UV-curable adhesive. Due to the high viscosity of the adhesive 

of 3,000 cP, droplets of water are even formed when the adhesive is introduced via the 

orthogonal channel. After stopping the fluid flow (see Fig. 2.5c), polymerizing the adhesive 

and removing the PDMS channel the polymer structure is still in shape and fixed to the 

polystyrene substrate (see Fig. 2.5d). Imaging the structure from the side provides more 
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information on the shape of the pores left by the water in its previous polymer “cage” (see 

Fig. 2.5e). The information of Fig. 2.5 e in combination with the insights gained via SEM (see 

Fig. 2.5f) lead to the conclusion that the pores possess different kinds of walls: in the 

direction towards the substrate there is a thin polymer layer on the polystyrene surface; on 

top of the pore there is a thin closed polymer layer, as well; in two lateral directions – along 

the previous channel pattern – there are thick polymer walls between the separate pores. In 

the other two lateral directions, there are thin polymer walls with oval openings that 

previously allowed the water to leave the polymer structure (see also inset in Fig. 2.5f). 

Such cavities may be very helpful for cell growth experiments. The openings at the side 

walls would allow the cells to enter the pores making a large surface area accessible. There 

are various photopolymerizable hydrogels which can be used for tissue engineering 

purposes and which could replace the UV-adhesive utilized within this work.175 As mentioned 

in section 1.2.1, the size of the droplets and, thus, the microcavities can be tuned by altering 

device geometries, viscosities and flow velocities of the immiscible fluids, use of 

surfactants, and hydrophilicity or hydrophobicity of the channel surface.87 In this way large 

amounts of differently sized pores can be produced in very short time and facilitate for 

example experiments on pore size dependent cell fate decisions.176 

2.4 CONCLUSION 

In this chapter, a seminal technique for the production of reversibly sealable microfluidic 

devices withstanding fluid working pressures up to 600 kPa is presented. Guiding the in- and 

outlet tubes connected to the fluid channels sideways enables a rapid prototyping of 

microfluidic devices with a high versatility of channel designs while no changes in the layout 

of the utilized mounting assembly are required. Potential applications for such devices are 

demonstrated by depositing flexible electronic interconnects and patterned polymer 

microstructures on different substrates. Also a patterned etching of Al2O3 using H3PO4 

during the fabrication of ISFETs (see chapter 4) via the presented microfluidic set-up is 

possible (results not shown). In general, the demonstrated technique can be used for a low-

effort patterned interaction of various chemicals with a broad range of substrates opening up 

new possibilities for many research fields. 

A 3D printing-based microfluidic set-up published a few months later by Konda et al.75 shows 

similar advantages. However, a maximum fluid working pressure is not investigated. The 

fluid working pressures achieved within this thesis make the presented approach attractive 

for investigating spray-drying techniques.55 

Adapting the soft lithography procedure to other curable polymers, such as 

perfluoropolyethers,177 polyurethanes or polyimides,69 instead of PDMS, will further broaden 

the range of possible applications. Thus, the demonstrated technique will strongly enhance 

LoC device fabrication. 
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Within this thesis, one highly important feature of the presented technique is the reliable 

sealing of microfluidic channels without any plasma treatment, hence, without destroying 

organic components on the substrate surface. In chapter 3, a novel surface functionalization 

method is investigated. The microfluidics for the respective experiments are based on the 

device fabrication method developed within this chapter. 
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3 SILANE-BASED SURFACE MODIFICATION 

As pointed out in section 1.4, the specific interaction of a sensor with its environment is 

crucial for its application. In this chapter a novel surface modification method for an effort-

less immobilization of (bio)-receptor molecules on oxide surfaces is presented. The strategy 

is based on the silane 3-(triethoxysilyl)propylsuccinic anhydride (TESPSA). For verifying the 

success of the new receptor binding approach, a patterned deposition of TESPSA in 

combination with fluorescence microscopy experiments using fluorescence-labeled 

antibodies is performed. Within the chapter, the patterning of silanes is investigated. Further 

applications of patterned silane-functionalized surfaces, such as a patterned deposition of 

gold nanoparticles (AuNPs) and localized surface wettabilities, are demonstrated. Parts of 

this chapter are published elsewhere.178   

3.1 MOTIVATION 

One common approach to make ChemFET or BioFET devices specific for particular analytes 

is the covalent attachment of receptor molecules on their surfaces. The fundamentals of a 

silane-based attachment of functional groups to oxide surfaces and their subsequent 

utilization for anchoring receptors are described in more detail in section 1.4.2. 

Functionalization approaches based on APTES require up to five reactions steps before 

finishing the immobilization of amino-terminated receptors.27,150 To reduce the efforts during 

receptor immobilization other functionalization approaches were developed. Only three 

reaction steps are needed when using 3-(trimethoxysilyl)propyl aldehyde,24,155 3-

(triethoxysilyl)propyl isocyanate,152 or 3-glycidoxypropyltrimethoxysilane 156,157 as initial 

linkers. The three basic steps are (i) covalent attachment of the silane-linker with its 

organofunctional groups, (ii) covalent binding of receptor molecules via the organofunctional 

groups at the surface (iii) passivation of excess binding sites. The last step is crucial for 

preventing any unspecific, potentially covalent interactions between analytes and the 

surface. 

Within this chapter, a novel strategy is proposed, with which no additional binding site 

passivation is required. This further reduces the amount of necessary reaction steps and, 

thus, the efforts during receptor immobilization. The new approach is based on the silane 

linker TESPSA (see Fig. 3.2) which brings a succinic anhydride functionality to the surface. 

Similar anhydrides are known to readily react with amines in a ring opening reaction forming 

an amide bond.179,180  With this reaction, antibodies or other amino-terminated receptor 

molecules can be covalently bound in a single preparation step (see Fig. 3.2b). Additionally, 

when exposed to water, the anhydride group gets hydrolysed and two carboxy groups are 

generated (see Fig. 3.2c) inhibiting a subsequent covalent binding in the presence of 
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amines.179 Consequently, using TESPSA to attach receptor molecules to oxide surfaces 

makes an additional binding site passivation dispensable.  

In the first part of this chapter (sections 3.2.1 and 3.3.1), different activation procedures for a 

proper silanization of glass substrates are assessed. The effects of different silanes and 

varying silanization times on the surface wettability are monitored. 

In the second part (sections 3.2.2, 3.2.3 and 3.3.2), TESPSA is deposited in stripe patterns 

on glass substrates and immersed with antibody molecules. Using secondary antibodies 

with and without fluorescence label as a model system, fluorescence microscopy is used to 

collect information about (i) the attachment of the antibodies to the surface, (ii) their 

specificity against their target molecules, and (iii) the ability of the surface functionalization 

approach to prevent unspecific binding. 

In-between the TESPSA stripes, a protein repellent surface coverage is required to obtain a 

reference fluorescence signal. Polyethylen glycol (mPEG) layers are known to prevent 

protein adsorption.181 Thus, for investigating the receptor binding, a protocol is developed, 

which enables depositing patterns of TESPSA within mPEG-sliane-functionalized areas. 

Patterns of different silanes can introduce alternating surface wettabilities which can be 

applied for a passive regulation of fluid streams.182,183 In the third part of this chapter 

(sections 3.2.4 and 3.3.3), the formation of hydrophilic patterns within hydrophobic surface 

areas is investigated – with the hydrophobic areas being based on the deposition of the 

fluorinated silane (Heptadecafluoro-1,1,2,2-tetrahydrodecyl) dimethylchlorosilane (HFDMCS) 

and the hydrophilic parts being based on an air plasma treatment or a deposition of TESPSA. 

As will be further explained in chapter 4 of this thesis, one important step for the bottom-up 

growth of SiNWs is the deposition of seed AuNPs on a growth substrate. A patterned 

deposition of AuNPs enables the fabrication of arrays of vertical FETs with very high 

transistor densities 184,185 and arrays of 2D photonic crystals.184 In sections 3.2.4 and 3.3.3 a 

silane-based patterned deposition of AuNPs is described. 

3.2 MATERIALS AND METHODS 

The chemicals utilized for the surface functionalization procedures within this chapter are 

listed in Tab. 3.1. The devices for sample characterization are listed in Tab. 3.2. For initial 

wettability and fluorescence microscopy investigations microscopy-grade glass slides are 

used as substrates (Paul Marienfeld GmbH, Germany). For investigations on silane-based 

patterns of hydrophilic and hydrophobic surface areas and for the deposition of AuNPs 

silicon wafers (single side polished, native SiO2, Siegert Wafer, Germany) are used. Prior to 

silanization, the substrates are consecutively cleaned in acetone, isopropanol and deionized 

(DI) water, dried under a stream of N2 and activated (see section 3.2.1).  
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Tab. 3.1: List of the chemicals applied within this chapter – full names, abbreviations, supplier and 
storage conditions  

Chemical name Abbreviation Supplier Storage 

3-(Triethoxysilyl)propylsuccinic anhydride  TESPSA 
abcr GmbH, 

Germany 

RT, under Ar 

atmosphere 

(3-Aminopropyl)dimethylethoxysilane  APDMES 
abcr GmbH, 

Germany 

RT, under Ar 

atmosphere 

(Heptadecafluoro-1,1,2,2-

tetrahydrodecyl)dimethylchlorosilane  
HFDMCS 

abcr GmbH, 

Germany 

RT, under Ar 

atmosphere 

mPEG-silane, MW 350 Da  Nanocs Inc., USA 
RT, under Ar 

atmosphere 

(3-Aminopropyl)triethoxysilane  APTES Sigma Aldrich, USA 
RT, under Ar 

atmosphere 

AZ 6632 positive photoresist  
MicroChemicals 

GmbH, Germany 

RT, dark 

condition 

Amino-terminated oligonucleotides, FAM 

fluorescence-labeled, λemission = 518 nm 
 

Eurofins MWG 

Operon, Germany 

-20°C, dark 

condition 

Donkey anti-rabbit IgG IgGReceptor 
Fisher Scientific 

GmbH, Germany 

4°C, dark 

condition 

Rabbit anti-mouse IgG, DyLight 488 

fluorescence-labeled, λemission = 518 nm  
IgGTarget_green 

Fisher Scientific 

GmbH, Germany 

4°C, dark 

condition 

Donkey anti-goat IgG, DyLight 594 

fluorescence-labeled, λemission = 617 nm  
IgGControl_red 

Fisher Scientific 

GmbH, Germany 

4°C, dark 

condition 

Aqueous 20 nm AuNP suspension, 

stabilized via branched polyethylenimine 
 

nanoComposix 

Europe, Czech Rep. 

4°C, dark 

condition 

Tab. 3.2: List of devices utilized for sample characterization  

Device Supplier 

Contact Angle System OCA30 
DataPhysics Instruments 

GmbH, Germany 

Axiovert 200M, transmitted light and fluorescence microscope 

  filter set 10 (green fluorescence, excitation band pass (BP) 

filter 450 - 490 nm, beam splitter (BS) 510 nm, emission BP 

filter 515 - 565 nm) 

  filter set 15 (red fluorescence, excitation BP filter 540 -

552 nm, BS 580 nm, emission low pass filter > 590 nm) 

Carl Zeiss Microscopy 

GmbH, Germany 

Axiolab, reflected-light microscope 
Carl Zeiss Microscopy 

GmbH, Germany 

Philips XL 30 ESEM-FEG environmental scanning electron 

microscope 
FEI, USA 
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3.2.1 Surface wettability dependent on surface activation and silane 

functionality 

Before silanization, the substrates are activated to generate a maximum amount of -OH 

groups on the surface for a dense silane deposition. Three activation approaches are applied. 

Glass slides are immersed (i) for 1 h in 1M NaOH, (ii) for 30 min in 1:1 (vol./vol.) 

MeOH:HCl,186 or they are (iii) treated with an air plasma (Plasma Prep II, SPI supplies, USA).  

As a measure for the quality of the silanization process, the static contact angles of water 

drops on the silanized surfaces are determined. At least 5 drops are measured for each 

silanization experiment (V = 1.6 µl). In initial experiments, APDMES is applied. APDMES is a 

derivative of the commonly used APTES, with only one hydrolysable ethoxy group instead of 

three, which prevents the formation of multilayers. 

Two ways of applying the silane are tested. (i) Immersion of the substrate in a solution of 

1 .. 2 vol.% APDMES in ethanol, so that the APDMES molecules diffuse within the ethanol 

and react with the substrate surface. (ii) Positioning the substrate and an open container of 

APDMES inside a closed petri dish, so that the APDMES evaporates and reacts with the 

substrate surface from the vapor phase. Different functionalization times are examined.  

The silanization from the vapor phase is of particular importance for the patterned deposition 

of the silanes described in section 3.2.2. APDMES possesses a sufficiently low boiling point 

(78°C)187 to evaporate at room temperature (RT). The boiling point of TESPSA (152°C)188 is 

much higher. Therefore, the silane is placed inside an open container next to the substrate in 

a desiccator. The silane is evaporated by applying a vacuum of approx. 5 kPa and by 

providing additional heat input via an externally positioned infrared lamp (see Fig. 3.1e). 

Different silanization times are tested. For HFDMCS, which has the highest boiling point 

(189°C)189 among the applied silanes, the same evaporation and silanization built-up is used.  

There are no data available about the boiling point of the mPEG-silane. Therefore, the mPEG-

silane, which is a triethoxysilane,190 is applied as 2 vol.% silane solution in ethanol. Different 

silanization times are tested.  

After silanization, all substrates are rinsed twice in isopropanol and dried under a stream of 

N2. 

3.2.2 Patterned surface functionalization 

The patterned surface functionalization is based on a protocol by Shah et al..191 Fig. 3.1 

schematically depicts the patterning strategy developed within this thesis. At first the entire 

substrate is covered with a silane of one organofunctionality (functionality (A), see Fig. 3.1b). 

By means of UVL using the positive resist AZ6632 the functionalization pattern is defined 
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Fig. 3.1: Schematic illustration of silane-based patterned surface functionalization, starting with (a) a 

plasma activated substrate surface. (b) Immobilization of functionality (A) on the surface. (c) 

Preparation of the pattern via UVL. (d) Removal of functionality (A) and plasma activation of the 

surface in the areas not covered with photoresist. (e) Evaporation of silane with functionality (B) for 

reaction with activated surface areas inside a desiccator, supported by applying a vacuum and heating 

the silane reservoir via external heat source. (f) Resulting patterned surface with functionality (B) 

within areas of functionality (A).  

(see see Fig. 3.1c). The recipe for applying the AZ6632 is provided in the appendix. In a 

15 min air plasma step the previously deposited silanes are removed from the surface and 

the surface is activated again in the areas which are not covered with photoresist (see 

Fig. 3.1d). Subsequently, a second silane with another functionality (functionality (B), see 

Fig. 3.1e,f) is deposited. This reaction must be induced from the vapor phase. Applying the 

second silane in a solution of an organic solvent would dissolve the photoresist, so that the 

resist components could impede the silanization process. 

At the end, the substrate is consecutively cleaned in acetone and isopropanol, and dried 

under a stream of N2. For investigating the immobilization of receptor molecules, the first 

deposited silane is the mPEG-silane and the second one is TESPSA.  

For investigating patterns of hydrophilic within hydrophobic surface areas and for 

investigating the patterned immobilization of AuNPs, the first deposited silane is HFDMCS. 

The second silane is TESPSA, or no second silane is deposited after the plasma treatment.  

3.2.3 TESPSA-based receptor immobilization 

Fig. 3.2 summarizes the behavior of TESPSA in the presence of amino-terminated molecules 

and in aqueous environments. After immobilization on the surface (see Fig. 3.2a), the 
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Fig. 3.2: TESPSA-based surface modification. 

Schematic drawings of (a) the covalent binding of 

TESPSA to an SiO2 surface, (b) the covalent 

attachment of amines via a succinic anhydride 

functionality ring opening reaction leading to an 

amide bond formation, (c) the hydrolysis of the 

succinic anhydride functionalities resulting in the 

generation of two carboxyl groups. (d) 

Fluorescence microscopy image showing a glass 

slide of which one half was dipped into water prior 

to the immobilization of fluorescence labelled 

oligonucleotides. The visible fluorescence intensity 

edge goes along the middle line of the glass slide. 

 

 

succinic anhydride functionality can 

immobilize amino-terminated receptor 

molecules in a ring opening reaction 

under formation of an amide bond (see 

Fig. 3.2b). Or the anhydride can be 

hydrolyzed so that two carboxyl groups 

are formed (see Fig. 3.2c). Thus, prior to 

the immobilization of the desired amine 

molecules, the samples are cured and 

annealed in a furnace at 120°C for at 

least 1.5 h to remove any water from the 

surface and to dehydrate all succinic 

anhydride functionalities.179,192 

In an initial test, to investigate the effect 

of water on the amine immobilization 

behavior, one half of a fully TESPSA-

functionalized and annealed glass slide is 

dipped into a water bath for 1.5 h. 

Subsequently, the sample is immersed 

entirely in a 10 mM PBS solution (pH 7.4) 

containing 0.1 mM FAM labeled amino-

terminated oligonucleotides for 30 min. 

After that, the glass slide is rinsed with 

DI water and dried under a stream of N2. 

A typical fluorescence microscopy image 

is shown in Fig. 3.2d. There is a sharp 

edge along the centerline of the glass 

slide at which the fluorescence intensity 

strongly increases. This edge is a result 

of the hydrolysis of the succinic 

anhydride functionalities on the right-

hand side and the annealed 

functionalities on the left-hand side prior 

to the oligonucleotide immobilization. On 

the left-hand side, the binding affinity 

towards the amino-terminated 

oligonucleotides is much higher, resulting 

in the visible fluorescence contrast. This 
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Fig. 3.3: Sample preparation for fluorescence 

microscopy-based investigations on receptor 

specificity. Schematic drawings of (a) the surface 

pattern consisting of stripes formed from TESPSA 

next to stripes derived from the deposition of 

mPEG-silanes, (b) the experimental layout of the 

PDMS-based microfluidic channels to run four 

experiments in parallel on one substrate, (c) the 

receptor-analyte combination – a receptor without 

fluorescence label is immobilized on the surface 

and specifically attracts the green fluorescently-

labelled analyte, but not the red analyte. 

 

test demonstrates the importance of the 

annealing step. 

For investigating the immobilization of 

antibodies and their specificity on a 

TESPSA-functionalized surface, the 

experimental set-up depicted in Fig. 3.3 

is used. On the glass substrate, stripes 

of TESPSA are deposited next to stripes 

of the mPEG-silane (see Fig. 3.3a and 

section 3.2.2). Using the built-up 

described in chapter 2, a PDMS-based 

microfluidic structure is fixed on top of 

the prepared glass slide. The structure 

consists of four channels arranged in a 

cross like manner (see Fig. 3.3b) to run 

and microscopically observe four 

independent experiments 

simultaneously. 

The composition of the receptor-analyte 

system applied for testing the receptor 

immobilization strategy is schematically 

shown in Fig. 3.3c. As model system 

three secondary antibodies with and 

without fluorescence label are used.  

(i) A donkey anti-rabbit IgG as receptor 

molecule without fluorescence label 

(IgGReceptor),  

(ii) a rabbit anti-mouse IgG with green 

fluorescence label (IgGTarget_green), 

(iii) a donkey anti-goat IgG with red 

fluorescence label (IgGControl_red).  

IgGReceptor specifically interacts with the green analyte IgGTarget_green and repels the red analyte 

IgGControl_red. IgGTarget_green and IgGControl_red also repel each other. 

During the experiment, the microfluidic channels are consecutively filled with different 

antibody solutions, each with a concentration of 0.01 mg/ml IgG in 10 mM PBS buffer, pH 

7.4. The solutions are allowed to incubate for 30 min, followed by a rinsing step using 
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Fig. 3.4: Two surface patterning 

layouts are used for (a) dividing 

the substrate into one HFDMCS-

based, hydrophobic and one 

hydrophilic half, and (b) for 

creating hydrophilic rings within a 

hydrophobic surface.  

 

10 mM PBS-Tween (pH 7.4, 0.05% Tween20), before applying the next antibody solution. 

The sequences of antibody solutions in the different channels are as follows: 

Channel 1: (1st) IgGReceptor, (2nd) IgGTarget_green, (3rd) IgGControl_red

Channel 2: (1st) IgGReceptor, (2nd) IgGControl_red, (3rd) IgGTarget_green 

Channel 3: (1st) IgGTarget_green, (2nd) IgGControl_red  

Channel 4: (1st) IgGControl_red, (2nd) IgGTarget_green 

After each rinsing step the channels are investigated via fluorescence microscopy. 

3.2.4 Patterned surfaces with hydrophilic and hydrophobic areas 

Further applications of silane patterns are investigated by creating hydrophilic areas 

(equivalent to functionality B in Fig. 3.1) next to hydrophobic HFDMCS-based surface areas 

(equivalent to functionality A in Fig. 3.1). The hydrophilic areas are functionalized with 

TESPSA, or no silane is deposited after the plasma treatment. 

Fig. 3.4 depicts the two applied patterning layouts. There is one pattern which divides the 

substrates in one hydrophobic and one hydrophilic half (see Fig. 3.4a) so that sufficiently 

large areas for contact angle measurements are 

provided. And there is one pattern for creating 

hydrophilic rings within a hydrophobic surface 

(Fig. 3.4b). 

The wettabilities of the surfaces are tested via contact 

angle measurements. And the condensation behavior of 

water on the substrate surface is monitored. The 

condensation is induced by cooling down the substrate 

on a layer of ice in standard room conditions. 

The immobilization of AuNPs is tested on substrates 

with the ring pattern. Aqueous suspensions of 20 nm 

AuNPs are pipetted on top of the substrate and blown 

off via a stream of N2 after 30 min incubation time. 

Subsequently, the substrates are sonicated in acetone, 

isopropanol and DI water and dried under a stream of 

N2. Before deposition the AuNP suspension is diluted 

1:100 in di-water. The AuNP distribution is examined via 

SEM. 
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Fig. 3.5: Contact angle measurements on (a) APDMES-functionalized surfaces in dependence of 

activation procedure, silanization strategy and silanization time, (b) TESPSA and mPEG-silane-

functionalized surfaces in dependence of functionalization time after 5 min plasma activation. TESPSA 

is deposited from vapor phase, mPEG-silane in ethanol solution. Dotted lines are guides to the eye. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Surface wettability dependent on surface activation and silane 

functionality 

Fig. 3.5 summarizes the results of contact angle measurements on differently silanized 

surfaces. In Fig. 3.5a, different activation procedures and different APDMES silane 

deposition approaches are compared. In an initial experiment, based on common APTES 

protocols, silanization times of up to 60 min of an ethanol solution with 2 vol.% APDMES  

after a 5 min plasma activation are tested (green diamonds). A freshly activated substrate is 

highly hydrophilic with contact angles below 10°. After 30 min functionalization time the 

contact angles saturate at ~ 65°. Decreasing the plasma activation time to 15 s and the 
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silane concentration in ethanol to 1 vol.% reduces the maximum contact angle to ~ 53° after 

90 min functionalization time (yellow circles). When activating the surface via 1M NaOH or 

1:1 (vol./vol.) MeOH:HCl applying 1 vol.% APDMES in ethanol for the functionalization 

results in similar contact angles (blue and red circles). In case of an activation via 15 s 

plasma treatment or 1:1 (vol./vol.) MeOH:HCl, the silane deposition from the vapor phase 

does not result in contact angle values above 60°, also not after very long functionalization 

times of more than 4 h (yellow and red squares). The activation via 1M NaOH in combination 

with the vapor deposition leads to contact angles of ~ 65° (blue square), similar to the result 

of the 2 vol.% silane solution in ethanol after 5 min plasma activation. In the literature, for 

APDMES contact angles of ~ 50° are reported.193 For APTES, there are values between 58° 

and 63°.27,144,194  These data show that an activation via 1M NaOH or a long plasma treatment 

result in a proper silanization of the surface. The activation via 1:1 (vol./vol.) MeOH:HCl is not 

as efficient, which is also described elsewhere.186 15 s plasma activation are too short. With 

regard to the large standard deviations of the respective samples, it can be assumed that 

the activation is not complete and inhomogeneous. In view of the intended patterning of the 

surface, the dry plasma-based activation process is preferred for the subsequent 

experiments. Also the deposition from the vapor phase is of huge importance for the 

patterning strategy. The optimized protocol includes 5 min plasma activation and the 

deposition from the vapor phase for 90 min, resulting in contact angles of ~ 69° (filled green 

square). 

For forming TESPSA stripes next to stripes of mPEG-silane, at least one of the two silanes 

must be deposited from the vapor phase for using the strategy presented in section 3.2.2. In 

Fig. 3.5b, the contact angles after an ethanol-based deposition of mPEG-silane and a vapor 

phase deposition of TESPSA are summarized. It is visible that the mPEG-silananized surface 

does not change its contact angle between 30 min and 120 min functionalization time. The 

contact angle is ~ 35°. A similar value is reported in the literature.194 In the following, mPEG-

silanization procedures 45 min functionalization time are applied to minimize the formation of 

multilayers of the triethoxysilane. 

The contact angle of TESPSA saturates after 2.5 h at values of ~ 52°. This value is approx. 

twice as high as reported by Lee et al..195 however, in their publication also for APTES, 

compared to other  references,27,144,194 a significantly lower contact angle of ~ 43° is 

determined. In the following experiments, a TESPSA functionalization time of at least 3 h is 

applied. 

The application of HFDMCS is particularly delicate. The chlorosilane is higly reactive, so that 

the storage conditions are very important. The utilization of HFDMCS being stored under N2 

atmosphere results in contact angles below 90°, despite a proper plasma activation and long 

functionalization times. Aliquoting HFDMCS under Ar atmosphere and storing the aliquots in 

an Ar atmosphere leads in subsequent experiments to contact angles of ~ 100° after 5 min 
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plasma activation and 60 min functionalization time. For a similar silane with three instead of 

one hydrolysable chlorine atom, contact angles of ~ 110° are reported in the literature.194  

3.3.2 TESPSA-based receptor immobilization 

Fig. 3.6 summarizes the outcomes of the three stages of the fluorescence microscopy-

based antibody immobilization experiment. The microscopy images combine the information 

of the green and the red fluorescence filter sets. The four separate microfluidic channels are 

indicated by gray dotted lines. Green and red fluorescence intensities are measured along 

the white dashed lines across the images and plotted as gray values in the graphs below.  

As schematically depicted next to the microscopy image in Fig. 3.6a, in channel 1 and 2 at 

first the IgGReceptor is immobilized by guiding it through the channels over the annealed 

TESPSA areas. In channel 3 and 4, IgGTarget_green and IgGControl_red are immobilized, respectively. 

Green and red fluorescence signals are solely detected in the lower two channels. This is 

also visible in the gray value plots. Two intense green fluorescence peaks are detected in 

channel 3. The lower green peak in channel 3 is attributed to a decreased fluorescence 

intensity close to the channel wall. In channel 4, one intense red fluorescence peak is 

detected, and two peaks with lower intensities at positions very close to the channel walls. 

The peaks at positions close to the channel walls are always indicated with ▼. They also 

appear in the subsequent two stages, however, with changing intensities, because the lines, 

along which the gray values are measured, are not exactly identical in the different cases. 

The fluorescence intensities in channel 3 and 4 are used as references for the subsequent 

investigations of the receptor-analyte interactions in the second and the third stage.  

From the microscopy image in Fig. 3.6a, it is already visible that the highest fluorescence 

signals are observed in all cases along identical stripes. Different patterns, at other parts of 

the channel confirm that the dark stripes are the areas that were covered with photoresist 

during the second plasma treatment (see Fig. 3.7). Since the dark stripes show similar gray 

values as the areas next to the microfluidic channels, they are assumed to efficiently repel 

antibodies or proteins, respectively, and, thus, to be still possessing the mPEG-functionality, 

despite the previous photoresist coverage. 

In the second stage, in Fig. 3.6b, the addition of IgGTarget_green in channel 1 results in a strong 

green fluorescence indicating a specific interaction between IgGReceptor and IgGTarget_green. Weak 

red fluorescence signals are detected in channel 2 and channel 3, at positions where 

previously other antibodies were immobilized (indicated with *). This signal is attributed to 

minor unspecific interactions between IgGControl_red and immobilized IgGReceptor in channel 2 as 

well as IgGTarget_green in channel 3. No similar effect could be observed in channel 4 for the 

green fluorescence signal. Thus, the IgGControl_red is assumed to have a tendency to interact 

unspecifically with any antibody covered surface. In channel 4, the IgGTarget_green, however, 

proves that unspecific interactions are not due to unsaturated binding sites of the TESPSA  
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Fig. 3.7: Diagonal lines implemented in 

the stripe pattern allow explicitly 

determining in which stripes TESPSA 

is deposited. The dark stripes were 

covered with photoresist during the 

second plasma treatment and the 

TESPSA deposition. The dark spots 

that overlap with the fluorescent lines 

are due to support posts of the PDMS 

channels preventing the channel 

collapse, as described in section 

2.3.2.  

layer. A surface blocking, for example with bovine 

serum albumin,27,196 might prevent undesired non-

specific interactions entirely. 

In the third stage, a high green fluorescence signal 

is detected in channel 2 (indicated with □ ). This 

signal is attributed to a specific interaction between 

the immobilized IgGReceptor and the IgGTarget_green. The 

fluorescence intensity in channel 2 is not as high as 

in the reference channel 3. This result implies that 

during the initial binding of IgG to the TESPSA 

surface more molecules attach than during the 

specific receptor-analyte interaction. One reason 

might be that not all IgGReceptor are properly oriented. 

Or the equilibrium of the receptor-analyte interaction 

adapts to the space requirements of the 

IgGTarget_green, while the covalent bond between 

IgGTarget_green and TESPSA cannot be reversed, 

independent of the density of molecules already 

attached.  

In conclusion, the results demonstrate the successful TESPSA-based covalent binding of 

receptor molecules. Even multiple subsequent cleaning steps do not reduce the fluorescent 

signal. The bound receptors maintain their specificity. And an additional blocking of excess 

binding sites is not required. Thus, the receptor immobilization strategy presented in this 

chapter will strongly facilitate the development of sensors with high specificity towards 

selected analyte species. 

3.3.3 Patterned surfaces with hydrophilic and hydrophobic areas  

Two exemplary results of the patterning of the wettability of surfaces are depicted in 

Fig. 3.8. In initial tests, the contact angles of the surfaces after applying the patterning 

strategy are tested. As shown in Fig. 3.8a, the patterning allows creating hydrophilic ares 

directly next to hydrophobic ones. However, with ~ 13° the plasma treated surface in 

Fig. 3.8a has a considerably higher contact angle than the freshly plasma cleaned surface in 

section 3.3.1. This is due to the cleaning of the surface after the plasma treatment for 

removing the photoresist. During the cleaning procedure, the highly reactive, plasma treated 

surface interacts with organic components and impurities in the solvent bath so that the 

contact angle increases. The areas functionalized with TESPSA and HFDMCS show similar 

contact angles as determined in section 3.3.1 demonstrating that these surfaces are not 

affected by the patterning procedure. 
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Fig. 3.8: Patterned wettability. (a) Contact angle 

measurement on a surface of which one half is 

functionalized with HFDMCS and one half is 

plasma cleaned. (b) Water condensation on rings 

of TESPSA-functionalized, hydrophilic areas within 

hydrophobic HFDMCS-functionalized parts.  

 

Fig. 3.9: Patterned AuNP deposition via patterned surface silanization. (a) TESPSA- und HFDMCS-

functionalized surface. (b) Plasma treated and HFDMCS-functionalized surface. Insets show TESPSA 

and plasma treated parts, respectively, at higher magnification. 

On the surface depicted in Fig. 3.8b, 

hydrophilic TESPSA-based rings are 

deposited in-between hydrophobic 

HFDMCS-functionalized areas. The 

visible droplet pattern results from the 

condensation of water on that surface. 

The condensation mainly occurs on the 

TESPSA areas under formation of 

relatively large drops. The amount of 

drops and the drop size on the HFDMCS 

areas is significantly smaller. A similar 

preferential condensation of water on the 

hydrophilic areas is observed for plasma 

treated rings within a HFDMCS surface. 

These results show that the applied 

patterning approach can also be used for 

creating surfaces that enable a passive 

control over the behavior of liquids.182,183  

The results of the deposition of AuNPs 

on such patterned surfaces are depicted 

in Fig. 3.9. In Fig. 3.9a, the boundary between a TESPSA-functionalized surface part and a 

HFDMCS-functionalized surface part is shown. It is visible that the AuNP density on the 

TESPSA part is much higher than on the HFDMCS part. A similar result is observed when 

using plasma treated surfaces instead of TESPSA-functionalized ones (see Fig. 3.9b). On 

both, TESPSA-functionalized and plasma treated surfaces ~ 30 AuNPs/µm² are deposited. 

The AuNP density can be tuned by changing the dilution of the initial AuNP suspension prior 

to deposition. As can be seen from the insets in Fig. 3.9a,b the AuNPs are homogeneously 
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spread. Unexpectedly, the surface charges introduced by the plasma treatment 197 appear to 

attract the BPEI stabilized and, thus, amino-terminated AuNPs to a similar extend as the 

TESPSA, even though on plasma treated surfaces no covalent bond can be formed. It must 

be noted that the high AuNP density is measured after cleaning the substrates using 

sonication. Such thorough cleaning conditions are required for preventing a contamination of 

the equipment utilized for the bottom-up growth of SiNWs described in section 4.2.1. In 

earlier works, a removal of AuNPs from the surface after cleaning was observed.120 

In some cases, large agglomerations of AuNPs occur on the HFDMCS parts of the 

substrates, as can be seen in Fig. 3.9b. They might result from the formation of drops while 

blowing the AuNP suspension off the surface. Due to the hydrophobicity, possible 

remainings of the aqueous suspension will rapidly form tiny drops carrying many AuNPs to a 

small area and leave them on the surface owing to a fast evaporation. In subsequent AuNP 

deposition procedures, the AuNP suspension is rinsed off the surface under flowing water 

before continuing as described above (see section 3.2.4). 

Apart from the few AuNP inhomogeneities in the HFDMCS parts, the silane- or plasma-

based patterned deposition of AuNPs is possible with the developed strategy. This may 

become an alternative initial step in the bottom-up fabrication of arrays of vertical FETs with 

very high transistor densities 184,185 or arrays of 2D photonic crystals 184 described in the 

literature. Due to cross-contamination issues between the lithography devices required for 

the patterning and the SiNW growth chamber (see section 4.2.1), a patterned growth of 

SiNWs is not performed within this thesis. 

3.4 CONCLUSION 

In this chapter, the patterned functionalization of surfaces using different silanes is 

demonstrated. A novel receptor immobilization strategy is proposed and it is shown to 

enable a specific receptor-analyte interaction while making an additional passivation of 

excess binding sites dispensable. In the future, this strategy will strongly facilitate the 

functionalization of sensor devices. 

Furthermore, the surface patterning is demonstrated to enable a passive control over the 

behavior of liquids and a localized deposition of AuNPs. 
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4 MULTIPLE SILICON NANOWIRE-BASED SENSING 

This chapter describes the bottom-up growth of SiNWs using the vapor-liquid-solid (VLS) 

method,198 and their assembly into parallel arrays of SB FETs.199 The devices are passivated 

and implemented into microfluidic set-ups as described in chapter 2 of this thesis. In this 

ISFET configuration, pH- and ion-sensitivities are determined, and changes of the device 

behavior after a HFDMCS-based surface functionalization are investigated. Furthermore, the 

practicability of the TESPSA-based receptor immobilization strategy presented in chapter 3 

for BioFET applications is tested. 

4.1 MOTIVATION 

As described in section 1.3, FETs are well suited for the detection of analytes. When using 

SiNWs as sensitive elements, as introduced by the work group around C. M. Lieber in 2001, 

due to their diameters in the range of the analyte dimensions and their huge surface to 

volume ratio, very low detection limits, in theory even the detection of single molecules, can 

be achieved.19 The applicability of SiNW-based sensors is demonstrated in various 

publications on the detection of pH 19,28,29 chemicals,19,30,31 proteins 19,22–24,32,33 and DNA 34 with 

detection limits down to the fM range. Also the real-time and label-free detection of single 

viruses has been shown,35 as well as the detection of gases.200,201 

In the experiments described within this chapter, the successful fabrication of parallel arrays 

of SB FET-based sensors at the Chair of Materials Science and Nanotechnology of Prof. 

Cuniberti at the TU Dresden, in cooperation with the NaMLab gGmbH, Dresden, is 

continued.199,202 The fabrication is based on bottom-up grown SiNWs of which innumerable 

amounts can be produced in a single chemical vapor deposition (CVD) process. Compared to 

a laborious electron-beam lithography-based top-down production of SiNW FETs, the 

bottom-up approach is considered more cost-efficient, and devices with low defect 

densities,36–38 much lower NW diameter 38,203 and competitive device performance 39 can be 

obtained through simpler methods. Bottom-up grown SiNWs are also advantageous for 

assembling polymer substrate-based flexible sensors.40 

The basic layout of the devices fabricated within this thesis is introduced in Fig. 1.7a in 

section 1.3.3. As-grown intrinsic SiNWs are deposited on Si wafer substrates and covered 

with Ni electrodes. In a silicidation step, Ni diffuses into the Si core of the NWs forming the 

Ni silicide NiSi2 and an up to atomically sharp Si-NiSi2 semiconductor-metal interface. 

Introducing such Schottky contacts is relatively simple compared to the application of 

dopants in conventional MOSFET devices and enables high on/off current ratios.199  
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Fig. 4.1: Schematic drawing of randomly 
distributed analytes (blue spheres) on top of (a) a 
parallel array of SiNWs and (b) a planar 
semiconductor between source (S) and drain (D) 
electrodes. The inhomogeneous modification of 
the surface potential by the analytes provides 
percolation paths of unmodified resistivity in case 
(b). Percolation paths are depicted as yellow 
dotted lines. In (a), no percolation paths exist 
making the SiNW-based device more sensitive. 

The NWs are deposited and aligned via a 

simple contact printing method.204,205 By 

means of interdigitated Ni electrodes, 

hundreds of SiNWs per FET are 

contacted yielding low device-to-device 

variability for emerging research devices 

and high source drain currents, ISD, in the 

µA range at low source drain voltages, 

VSD, of 1 V or below. This enables a 

robust device operation. 

In sensor applications, at low analyte 

concentrations, the parallel arrays are 

expected to be more sensitive than planar field-effect devices of similar sensor area. If the 

sensor surface is inhomogeneously covered with analytes, the inhomogeneous modification 

of the surface potential provides percolation paths of unmodified resistivity in the case of 

planar devices (see Fig. 4.1b). Due to the one dimensional current flow through SiNWs, 

there are no possibilities for such percolation paths once a NW is covered with analytes. 

Thus, at a similar coverage with analytes, the current is modulated more efficiently in parallel 

arrays of SiNWs (see Fig. 4.1a).  

Also advantageous for sensor applications is the utilization of intrinsic SiNWs. Because of 

the low charge carrier density, the Debye screening length within the NWs spans the entire 

NW diameter.206 This yields a large gating efficiency in case of surface potential changes 

and, thus, a high sensitivity of the devices. Additionally, applying intrinsic SiNWs makes the 

elaborate accurate control of the NW doping levels dispensable.32 

For employing the devices in liquid environments, they must be protected against 

electrochemical degradation. Therefore, dielectric passivation layers made of Al2O3 or HfO2 

are deposited on top of the structures, including the source and drain electrodes, before 

assembling them in similar microfluidic set-ups as described in chapter 2 and using them in 

pH, ion and protein sensing applications. 

As introduced in section 1.4 and section 3.1, the functionalization of the surface of a FET-

based sensor is indispensable for a specific interaction with desired analytes. One milestone 

in the functionalization of sensor devices is the fabrication of true reference sensors,109,207,208 

which are insensitive to changes of pH or ion concentrations. Devices that react only to 

alterations of the electrostatic potential, i. e. the liquid gate voltage, but not to chemical 

changes would allow building a differential ISFET-reference FET set-up for minimizing the 

influences of drift or temperature.106 Within this chapter the possibility of fabricating such 

true reference sensors via surface functionalization using the silane HFDMCS (see 

chapter 3) is tested.207,208 
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Furthermore, ion-sensitive FETs in a sensor set-up must interact specifically with only one 

target analyte while being unaffected by other molecules. In this regard, the TESPSA-based 

receptor immobilization strategy presented in chapter 3 is investigated in combination with 

the assembled bottom-up SiNW SB FET sensors. 

In the first part of this chapter (section 4.2), the fabrication of sensors based on parallel 

arrays of bottom-up SiNW SB FETs with Al2O3 and HfO2 dielectric surface layers is 

described. Subsequently, in section 4.3, the electrical characteristics of the fabricated 

devices are determined via back-gate measurements and under liquid gate conditions, and 

the pH and ion sensitivities of two kinds of dielectric surfaces – Al2O3 and HfO2 – are 

examined. Furthermore, the applicabilities of the two dielectric surface types for fabricating 

a true reference sensor are investigated, and the TESPSA-based immobilization of receptor 

molecules and the resulting sensor specificities for particular analytes are tested. 

4.2 DEVICE FABRICATION 

In this section, the important steps towards the fabrication of parallel arrays of SiNW SB 

FETs are described. Along the description of the utilized recipes, fundamental information on 

the applied processes are provided and characteristic intermediate fabrication results are 

shown. 

4.2.1 Bottom-up growth of SiNWs 

SiNWs are catalytically grown with the help of AuNP seed particles in a vapor-liquid-solid 

(VLS) process, originally proposed by Wagner and Ellis in 1964.198 AuNPs are deposited on a 

Si wafer surface according to the procedure described in section 3.2.4, however, without 

any previous patterning of the surface. Initially, as schematically depicted in Fig. 4.2, the 

growth behavior on two kinds of substrates is compared. BPEI-stabilized AuNPs are 

deposited on freshly air plasma treated or on TESPSA-functionalized wafers. Subsequently, 

the substrates are treated with a remote O2 plasma (250W, 50 Pa, 20 sccm O2, 30 min, ATV 

SRO-706 Reflow Oven, ATV Technologies, Germany) to remove all organics from the 

surface 191 before starting the growth procedure in a customized Precision 5000 CVD system 

(Applied Materials, USA). 

SiNWs are grown at 450°C in an atmosphere with equal flow of H2 and SiH4 at a pressure of 

6.67 kPa (100 sccm total flow). H2 is used as carrier gas, SiH4 as precursor for the formation 

of Si. As can be seen from the Au-Si phase diagram 209 in Fig. 4.3, pure AuNPs are solid at 

the given temperature. According to the VLS model,120,198,209 SiH4 adsorbs on the surface of 

the AuNPs and decomposes catalytically into Si and H2. Si diffuses into the metal (stage (i) in 

Fig. 4.3). Due to the Si uptake, a liquid Au-Si alloy is formed, and with increasing Si content 

the AuNPs become liquid Au-Si droplets (stage (ii) in Fig. 4.3). The SiH4 precursor continues 

adsorbing and catalytically cracking at the Au-Si droplet surface so that the Si concentration 
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Fig. 4.2: SiNW growth. (a) Schematic drawing of the procedure, starting with seed AuNP deposition 

on air plasma cleaned or TESPSA functionalized surfaces. The seed NP are used for a catalytic growth 

of SiNW in a SiH4-enriched CVD atmosphere. SEM images (courtesy of I. Ibrahim) show the grown 

SiNWs on (b) an initially plasma treated SiO2-coated wafer, (c) an initially TESPSA functionalized 

wafer.  

further increases until the right hand side liquidus line in Fig. 4.3 is reached. Beyond that, a 

Si oversaturation occurs and excess Si precipitates at the interface between Au-Si droplets 

and growth substrate. According to the phase diagram, the precipitate is pure Si, since there 

is no Au-Si solid solution. After a first monolayer of Si with approximately the diameter of the 

Au-Si droplet is deposited, the next monolayer is formed on top. With each deposited layer, 

the Au-Si droplet is pushed further away from the substrate and a SiNW is formed (stage (iii) 

in Fig. 4.3).  

Based on this mechanism, the diameters of the SiNWs are close to the initial diameters of 

the AuNPs.184,202,210 Within this thesis, AuNPs with nominal diameters of 20 ± 3 nm 

(nanoComposix Europe, Czech Republic) are applied. The NWs are found to be of similar 

width. In earlier studies, the grown SiNWs are demonstrated to be single crystalline with 

low defect densities.36–38 

It is important that during the growth the precipitates and, thus, the formed SiNWs are 

made of pure Si. Incorporations of Au into the NWs would affect the characteristics of 

subsequently assembled FETs by creating deep charge traps 211,212 or by creating mid gap 

states that promote charge carrier recombination.209,213  

The SEM images in Fig. 4.2 show that the growth of SiNWs is not influenced by the initial 

AuNP deposition procedure. Both the air plasma- and the TESPSA-based approach yield 

similar growth results. Due to its simplicity, for subsequent NW growth, the air plasma-
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Fig. 4.3: Successive Intermediate stages of 
catalytic VLS bottom-up growth of SiNWs 
projected onto Au-Si phase diagram 208 to illustrate 
the compositional and phase evolution during the 
growth process. At temperatures above 363°C, at 
stage (i) SiH4 precursor gas, depicted as red 
circles, decomposes catalytically at the AuNP 
surface into Si and H2. The yellow circle depicts an 
AuNP. Si diffuses into the AuNP and Si and Au 
form a liquid alloy. After taking up sufficient 
amounts of Si to pass the first liquidus line, at 
stage (ii) an entirely liquid Au-Si droplet is formed. 
The increasing reddening of the droplet represents 
the increasing Si concentration. The droplet further 
absorbs Si via SiH4 decomposition at its surface. 
After passing the second liquidus line, a Si 
oversaturation occurs and pure Si precipitates at 
the droplet-wafer interface. All subsequent 
precipitations are stacked onto the previous ones 
so that a NW is grown at stage (iii).  
 

based deposition of AuNP seed particles 

is applied. In previous works, the AuNPs 

are deposited from citrate stabilized 

AuNP solutions,120,202 with promotion of 

the AuNP adhesion via a thin polymer 

film.202 In most cases, such citrates 

contain Na+ ions 214 which must be 

avoided in Si semiconductor processing 

to prevent a degradation of the electrical 

properties of the devices.215 Therefore, 

the sodium-free AuNP deposition 

developed within this thesis is 

considered an important advancement in 

the fabrication of high quality bottom-up 

SiNW FETs. 

The NW growth conditions are chosen in 

such way that the catalytic 

decomposition of SiH4 at the AuNP 

surface is predominant over a thermal 

decomposition at other  locations of the 

substrate or the CVD chamber.216 

However, the flakes below the grown 

SiNWs in Fig. 4.2b,c are assumed to be 

amorphous Si,202 which indicates that the 

applied recipe can be further optimized, 

e. g. by testing reduced growth temperatures. The growth time has to be adjusted to the 

desired NW length. After 30 min, there are up to 30 µm long NWs which is sufficient to 

bridge the 10 µm distance between the Ni electrodes in the intended device design (see 

Fig. 4.6). The detailed parameters of the recipe are given in the appendix. 

Due to initial repair issues with the NW growth furnace, within this work SiNWs grown by S. 

Pregl are used for the further device fabrication described in the following sections. The 

according NWs are grown from citrate stabilized 20 nm AuNPs (Plano GmbH, Germany) 

deposited on a poly(diallyldimethylammonium chloride) coated wafer. Prior to the growth 

organic components are removed in an O2 plasma, combined with an O2 anneal (1 kPa, 

200 sccm O2, 250 W remote plasma, 400°C, 15 min & 12.5 kPa, 200 sccm, 400°C, 15 min, 

ATV SRO-706 Reflow Oven, ATV Technologies, Germany). The growth is performed in a 

CVD hot-wall reactor (450°C, H2:SiH4, 10:1, vol./vol., 6.5 kPa, ATV PEO-601, ATV 

Technologies, Germany).202 
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Fig. 4.4: Device preparation stages before 
contacting SiNWs depicted via SEM images and 
adjacent schematic drawings. (a) Sideview on as-
grown SiNWs. (b) Schematic pressure and 
substrate movement directions during contact 
printing transfer of SiNWs from growth to receiver 
substrate. (c) As-printed SiNWs. (d & e) One SiNW 
before and after removal of catalyst NPs at the 
NW tip via aqua regia.  
 

4.2.2 Aligned deposition and oxidation of SiNWs 

After their growth, the SiNWs are transferred from the growth substrate (see Fig. 4.4a) to a 

receiver substrate on which all further device fabrication steps are performed. The transfer 

method is named “contact printing”.204,205  It starts by cleaving a small piece of approx. 

12 x 12 mm² off the growth substrate and by attaching a 10 x 10 x 10 mm³ steel cube on its 

backside using double sided scotch tape. The receiver substrate is fixed on a table via a “Gel 

Box” (Gel-Pak, USA) as adhesive underground which also allows for a fast release later on. 

Then the growth substrate is put on top of the receiver substrate. Under the weight of the 

iron cube, the SiNWs are pressed against the receiver substrate surface. Using tweezers, 

the growth substrate is pushed manually a few millimeters in one direction up to an 

undefinable point, where the friction increases significantly, and slightly beyond. During that 

motion, SiNWs are ripped of the growth substrate and deposited on the receiver substrate 

with an alignment parallel to the pushing direction (see Fig. 4.4b,c). It is assumed that the 

SiNWs adhere to the receiver substrate 

via hydrogen bonds between the -OH 

groups on the wire surfaces and on the 

substrate surface or via covalent Si-O-Si 

bonds similar to ones presented in 

Fig. 1.10c,d in section 1.4.2.3.217 

To prevent the formation of scratches on 

the receiver substrate, it is important to 

thoroughly blow off any dust or dirt 

particles from the growth substrates via 

N2 gun prior to the printing. Also the 

receiver substrate is cleaned in advance, 

by successively sonicating it in acetone 

and isopropanol and blowing it dry under 

a stream of N2. Any scratch that is 

formed during the contact printing could 

breach the surface oxide of the receiver 

substrate and cause leakage currents 

through the bulk Si yielding defective 

devices. To minimize the probability for 

cracking the oxide, wafers with 

particularly thick 1.5 µm thermal oxide 

(single side polished, degenerately p-

doped, Siegert Wafer, Germany) are 

used as receiver substrates. 
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Fig. 4.5: Contacting of the SiNWs. (a) Schematic drawing of contact printed, oxidized SiNWs which 

are (b) covered with interdigitated source (S) and drain (D) Ni electrodes after UVL, HF-dip, Ni 

deposition and lift-off. (c) Enlarged view on red labeled section in (b) after the Ni silicide formation 

depicted by a color change at the NW tips. (d & e) SEM image of SiNWs contacted with interdigitated 

Ni electrodes. (f) SEM image of SiNWs covered with Ni electrode. Bright parts of the SiNWs consist 

of NiSi2.   

Having the SiNWs deposited on the chip, before applying any high temperature device 

fabrication steps the catalytic particles at the tips of the NWs (see Fig. 4.4d) must be 

removed. As mentioned in section 4.2.1, Au has a negative impact on the device properties 

and at temperatures above 363°C a liquid alloy would form and destroy the NWs. 

Additionally, a contamination of the utilized furnaces with Au must be prevented. Therefore, 

the chips are put into aqua regia (HNO3:HCl, 1:3, vol./vol.) for 4 h and then  thoroughly rinsed 

with water. The comparison of the same SiNW before and after the aqua regia treatment in 

Fig. 4.4d,e shows that the procedure effectively dissolves the Au. 

In the next step, a thermal oxide shell is formed around the SiNWs to replace the native SiO2 

and, thus, to reduce surface charge densities 218 and improve on/off current ratios and device 

hysteres.120,219,220 Via a rapid thermal processing furnace (RTP, AST Electronic GmbH, 

Germany) the chips are oxidized at 875°C in a 100 kPa O2 atmosphere (flow rate 100 slm) for 

6 min yielding an approx. 6 nm thick oxide shell. In a subsequent forming gas anneal (H2:N2, 

1:20, vol./vol., 100 slm) at 450°C at 100 kPa for 10 min, remaining dangling bonds at the 

interface between the Si core and the oxide shell are saturated.99,120,221,222 

4.2.3 Contacting the SiNWs 

For contacting the printed SiNWs, interdigitated Ni electrodes are deposited on top of them 

(see Fig. 4.5a,b,d,e) using UVL in combination with a lift-off step. At first, the electrode 

patterns are defined using AZ5214e image reversal photoresist as negative resist, so that 
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after the development the resist structures show an undercut which facilitates the lift-off 

later on (see Fig 1.1c in section 1.1). A detailed recipe for applying the photoresist is 

provided in the appendix. Compared to common AZ5214e protocols, in this work only about 

half of the spin coating spinning speed (2000 rpm) is used during the chip fabrication to 

obtain thick resist layers (~ 1.9 µm). This is important for the next step, to withstand the 

immersion of the sample in a 1% aqueous hydrofluoric acid (HF) solution.  

HF is used to locally remove the oxide shell from the SiNWs before the Ni deposition to 

ensure a direct contact between the Si core and the metal. Since HF also penetrates the 

resist, a high resist thickness is applied to elongate the possible HF etching times. SiNWs 

with 6 nm thick SiO2 shells are etched for 80 s. 

Subsequently, the chips are rinsed with water and dried under a stream of N2, and 

transferred into the sputtering machine (High Resolution Ion Beam Coater, Gatan, Inc., 

USA). In total, beetwen the etching in HF and the transfer of the sample into the vacuum of 

the sputtering device, maximum 4-5 min may pass, in order to prevent a re-oxidation of the 

freshly etched Si parts. Such a fast transfer is supported by the load lock system of the 

sputtering machine utilized in this thesis, which brings the sample into its permanently 

evacuated main chamber within 2 min. 

During the sputtering process, the sample is slowly rotated to achieve a homogeneous Ni 

deposition. Due to a close distance between sample and sputter target, the incident material 

beam is not focused, so that occasionally Ni is deposited at areas beneath the undercut of 

the photoresist yielding undefined Ni thicknesses in these parts. One further disadvantage 

of the undercut is the etching of the oxide shell of the SiNWs at positions where no Ni is 

deposited. In these areas, later on, a native oxide is formed. The silicidation length of the 

devices, described in the next paragraph of this chapter, must be longer than the width of 

the undercut (~ 500 nm) to make sure that the Ni-NiSi2 segments are covered with a thermal 

oxide for optimium device characteristics. The important advantage of the undercut is the 

facilitated lift-off of the photoresist. The resist is dissolved in acetone lifting the depositied Ni 

at all areas but the electrode and alignment mark positions. Alignment marks are depositied 

to enable a correct positioning of the mask in subsequent UVL steps (see Fig. 4.6). Detailed 

parameters of the recipe for the lift-off procedure are provided in the appendix.223 

The final step for a proper contacting of the SiNWs is the axial intrusion of Ni silicide leads 

into the silicon core of the NW via diffusion. The Ni-Si system and the conditions for the 

diffusion-based formation of its various silicide phases are well studied for bulk materials, 

due to their importance in semiconductor industry as contact materials with low electrical 

resistance and high temperature stability.224,225 For the silicidation process within SiNWs, 

different phase formation behavior is observed.226,227 With increasing silicidation time, Ni 

steadily diffuses deeper into the SiNWs and forms metallic single crystalline NiSiX phases 

with up to atomically sharp NiSiX-Si interfaces.227–229 
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Fig. 4.6: Layout of the device masks. The blue 
mask defines the electrode structure and the 
alignment marks. The red mask is for a passivation 
layer which opens contact windows to the SiNWs 
in-between the interdigitated electrodes and on 
top of the contact pads. The red mask also has 
alignment marks which enable a correct 
adjustment of the two layers. In total the chip 
layout has a size of 15 x 15 mm², enabling an 
implementation in a multiplexed SD card-based 
transportable biosensor system.223 The space 
between interdigitated electrodes and the design 
edges as well as the contact pads is sufficient to 
implement a microfluidic channel system on top of 
the design (see also Fig. 4.7b). The distance 
between the electrode fingers, depicted in the 
black and green insets, is 10 µm.  
 

Within this work, the silicidation is 

induced by annealing the devices in 

forming gas atmosphere (H2:N2, 1:20, 

vol./vol., 100 kPa, 100 slm) at 450°C for 

90 s in an RTP furnace (AST Electronic 

GmbH, Germany). The heating and 

cooling ramps during the process are 

10 K/s. Under these conditions, axially 

intruded single crystalline NiSi2 segments 

with atomically abrupt NiSi2-Si interfaces 

are formed inside the oxide shell of the 

SiNWs at the NW ends, as schematically 

depicted in Fig. 4.5c.230 After 90 s 

silicidation time, a silicidation distance of 

approx. 3 µm is achieved.202 

Due to cross-contamination issues 

between the RTP furnace and the single-

NW devices fabricated in chapter 5, 

another furnace must be used for their 

forming gas anneals. In the utilized ATV 

SRO-706 Reflow Oven (ATV 

Technologies, Germany) relatively low 

maximum heating and cooling ramps and low working gas pressures must be applied. In 

Fig. 4.5f the SiNWs show a silicidation length of approx. 1 µm after a forming gas anneal 

(N2:H2, 10:1, vol./vol., 1 kPa, 450°C) for 3 min 20 s, with a heating ramp of 2.5 K/s and a 

cooling ramp of 1.8 K/s. This recipe is used for the SiNW devices described in chapter 5. 

The tip shapes of the metallic silicide contacts towards the intrinsic Si parts of the NWs lead 

to local enhancements of the electric fields which results in a better gate coupling and a 

thinning of the SB width and, thus, effectively in a lowering of the SB yielding lower device 

resistivity.199,230 Since the annealing is performed in forming gas atmosphere, one additional 

effect of the procedure is the hydrogen passivation of dangling bonds at the oxide-Si 

interface which further improves the electrical behavior.99,120,221,222 Due to the small lattice 

mismatch of 0.4% between Si and NiSi2, there are almost no deformations visible along the 

silicide ends of the NWs.231 

4.2.4 Device passivation and implementation in microfluidic set-up 

For sensing applications in liquid environments, the FET devices have to be protected 

against electrochemical degradation. Taking into account that the SiNWs are surrounded by 

a passivating oxide shell, it would be sufficient to insulate the Ni electrodes with a 
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photoresist.28 However, in earlier investigations within the workgroup, the resists AR-N 4340 

S5 (Allresist, Germany) and SU-8 (MicroChem Corp., USA) did not yield the required 

passivation reliability. Additionally, SiO2 covered devices have a relatively low pH sensitivity 

of approx. 35 to 45 mV/pH.29,106 They are prone to ion diffusion 232 and show hysteretic 

behavior in pH measurements.28,232 Two types of thin dielectric films are tested on different 

devices. (i) 20 nm Al2O3 or (ii) a stack of 20 nm Al2O3 and 4 nm HfO2 are deposited on top of 

the respective chips to achieve a passivation of the electrodes. Both of these gate 

dielectrics are reported to provide high pH-sensitivities up to the Nernst limit of 59.5 mV/pH 

(at 300 K) 29,105 with low dependency on the salt concentration of the sample solution,105,233 

and low leakage currents between sample solution and FET electrodes.234 Additionally, Al2O3 

is known to exhibit low ion diffusivity 232 and to yield low pH-related hysteresis effects.235 

HfO2 surfaces are often used for applications over broad pH ranges as they are chemically  

inert  to  most  acidic  and  basic  solutions.105 

The dielectrics are deposited via atomic layer deposition (ALD). In an ALD process, the 

substrate is sequentially exposed to commonly two reactive gaseous precursors. The 

materials adhere in monolayers to and react with the surface building up step-by-step a film 

of the desired material.236 

Within this work, 20 nm Al2O3 films are deposited in an ALD chamber (Roth & Rau AG, 

Germany) using Trimethyl Aluminium (TMA) and ozone (O3) as reactants. At 300°C, 266 

cycles of the following procedure are performed: introduction of TMA for 20 ms, N2 purge 

for 5 s, introduction of O3 and reaction time of 5 s, N2 purge for 3 s.  

Stacks of 20 nm Al2O3 and 4 nm HfO2 are deposited in another ALD chamber (FHR-ALD 300, 

FHR Anlagenbau GmbH, Germany) using TMA and O3, and ethylmethylaminohafnium 

(TEMAHf) and water (H2O) as reactants, respectively. For the Al2O3 layer, 222 cycles of the 

following procedure are performed: introduction of TMA for 0.2 s, N2 purge for 0.3 s, 

introduction of O3 und reaction time of 1.3 s, N2 purge for 3 s. For the HfO2 layer it is 50 

cycles of: introduction of TEMAHf for 5 s, N2 purge for 2 s, introduction of H2O und reaction 

time of 2 s, N2 purge for 6 s. The deposition temperature is 250°C. 

For contacting the devices, on top of the contact pads the passivation layers are etched back 

via UVL using AZ5214e as positive photoresist and 1% HF solution as etchant for 2 min. The 

design of the applied photomask is similar to the one shown in red in Fig. 4.6, however, 

without the opening stripes on top of the NWs. A schematic image of the final device is 

shown in Fig. 4.7a, a photograph of an entire finished chip in Fig. 4.7c. 

Having completed the chip fabrication, the device can be assembled into a microfluidic 

system using the technique described in chapter 2. A schematic drawing and a photograph 

of the assembled set-up and a picture taken during the measurement of a liquid sample is 

shown in Fig. 4.7b,d,e. A PDMS-based microfluidic channel of approx. 12 x 2 x 0.5 mm³ size 
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Fig. 4.7: Device passivation and assembly into microfluidic set-up. Schematic drawings of (a) Al2O3 

passivated SB FET with back etched openings for contacting source (S) and drain (D) contact pads, (b) 

device implemented in microfluidic set-up as described in chapter 2. (c) Photograph of finished chip. 

(d) Assembly of chip and microfluidics under tip probe station for electrical measurements. (e) Picture 

taken via stereo microscope of tip probe station during FET measurements in liquid environment. 

is positioned manually on top of the FETs and fixed via screws of the sample holder. In 

Fig. 4.7e, it is visible that the long distance between the interdigitated electrodes and the 

contact pads enables a convenient contacting of the devices using the contact needles of a 

tip probe station. 

An Ag/AgCl reference electrode is used for applying the liquid gate voltage during 

measurements. The electrode is dipped into a 3 M KCl internal filling solution, saturated with 

AgCl, of a flow through housing (Microelectrodes, Inc., USA) which is implemented into the 

inlet tubing system. Within the housing, a ceramic frit or frit membrane, respectively, 

separates the internal stationary 3 M KCl solution from the transfluent sample solution. To 

maintain the quality of the frit membrane, it must be in contact with 3 M KCl on both sides 

at all times, when no experiments are performed. Two shut off valves with screw fittings 

are integrated into the tubing system to enable a separate storage of the tubing section 

which the reference electrode housing is connected to (see Fig. 4.7b). During storage that 

tubing section is filled with 3 M KCl and the valves are shut off.  

Liquid gate measurements are performed using a source measure unit (SMU, Keithley 

Source Meter 2604B, Keithley Instruments, Inc., USA) in combination with a DPP105-V-AI-S 

micropositioner (Cascade Microtech, Inc., USA) probe station. During measurements the 

sample solutions are drawn through the microfluidic set-up under reduced pressure using a 

syringe pump (PHD 2000, Harvard Apparatus, USA). Switching between different solutions 

is performed using an eight-position selection valve (MLE GmbH, Germany). 

Within this thesis, each FET is measured separately. The chip design, as depicted in Fig. 4.6, 

enables a device implementation into a multiplexed SD card-based transportable biosensor 
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system.223  Here, since the applied chips are subjected to various chemical experiments, to 

facilitate the experimental procedure, they are not integrated into the multiplexer. 

4.3 ELECTRICAL CHARACTERISTICS AND SENSOR APPLICATIONS 

In this section, the electrical characteristics of the fabricated devices are described. ISD-VG 

transfer curves of the devices at different fabrication stages are recorded in dry conditions 

using a back-gate arrangement. After the deposition of dielectric thin films on top of the 

FETs, in the second part of this section, the passivated devices are additionally characterized 

under aqueous solution via liquid gate measurements. 

It has to be noted that within this work it is primarily intended to use the devices for sensing 

applications and for surface functionalization investigations. Therefore, at any time, 

characterization measurements are done cautiously avoiding excessive electric fields, to 

prevent e. g. a breakdown of the dielectrics. This holds particularly true when gating the 

devices through liquid solutions (see section 4.3.2). In consequence, the applied VG ranges 

are commonly not sufficient to perfectly switch the devices into their on- or off-states. Thus, 

the data are analyzed with regard to the achieved maximum ISD currents of the devices, Imax, 

instead of the on-currents, Ion. Furthermore, not the Ion/Ioff ratios but the Imax/Imin ratios of 

maximum and minimum currents are determined. The minimum absolute inverse slopes of 

the logarithmic ISD-VG curves are designated as subthreshold swings, and the maximum 

absolute slopes of the linear ISD-VG curves as transconductances (see also Fig. 1.5e).  

If not stated otherwise, when determining the transfer characteristics of the devices the 

gate voltage sweeps start at the largest negative voltage depicted in the respective graphs, 

going to the highest positive voltage and back to the initial negative voltage again. 

In the third part of this section, the pH and ion concentration sensitivities of the devices are 

determined. It is explained how the data are collected and how the data are evaluated. 

Additionally, it is tested, whether a HFDMCS-based surface functionalization enables the 

fabrication of a true reference sensor.109,207,208  

The last part describes the applicability of the TESPSA-based receptor immobilization 

method described in chapter 3 for engineering highly sensitive and highly specific BioFET 

devices. 

4.3.1 Back-gate characteristics 

At different stages of the device fabrication process described in section 4.2, the transfer 

characteristics of the FETs are determined via back-gate measurements using a PM8 Prober 

(Cascade Microtech Inc., USA) in combination with a B1505A Power Device Analyzer/Curve 

Tracer including two High Power Source/Monitor Unit Modules (Agilent Technologies, Inc., 

USA). The back-gate voltages, VBG, are regulated via a metal chuck on top of which the 
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Fig. 4.8: Comparison of device characteristics at different fabrication stages in dry conditions. 

(a) Representative ISD-VG hystereses recorded at VSD = 1 V. (b) Averaged maximum currents, Imax, and 

Imax/Imin ratios, and (c) averaged subthreshold swings, S, and transconductances, g, at VBG = -10 V, 

VSD = 1 V. The sample size is N = 15 devices per plotted point. 

measured chips are fixed using vacuum. Measuring one ISD-VBG forward-backward sweep 

takes a few seconds depending on the ISD current levels. Close to the resolution limit of the 

analyzer system, at around 10-11 A, the holding (integration) time for each measuring point 

increases. 

The device characteristics are measured (i) directly after the deposition of the Ni contacts, 

(ii) after the silicidation process (see section 4.2.3) and after depositing passivation layers 

made of (iii) Al2O3 or (iv) Al2O3+HfO2 (see section 4.2.4). Representative ISD-VBG 

characteristics of devices at the different fabrication stages, measured at VSD = 1 V, are 

shown in Fig. 4.8a. Fig. 4.8b and Fig. 4.8c present the average maximum currents and 

Imax/Imin ratios as well as the average subthreshold swings and transconductances at the 

different fabrication stages. For all plotted points a sample size of N = 15 devices is used.( 1) 

The individual Imax values and the Imax/Imin ratios of each device are extracted from its 

                                                
(1) On each applied chip, 1 out of 16 FETs does not function, either due to a short-circuit or due to an 
open circuit owing to a locally improper development of the photoresist during the lift-off-based 
contacting of the SiNWs, as described in section 4.2.3. 
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respective ISD-VBG hysteresis, measured at VSD = 1 V. It must be noted, that in this case all 

Imax values are extracted at VBG = -10 V. This is due to the fact that directly after the Ni 

deposition and after the silicidation, the devices are not characterized beyond VBG = ±10 V. 

At these stages, the devices show ambipolar behavior with pronounced minima around 

VBG ≈ 3 V, as depicted in Fig. 4.8a. Considering that in liquid gate measurements later on high 

liquid gate voltages, VLG, are avoided to prevent a breakdown of the passivation layers (see 

section 4.3.2), at the first two fabrication stages using relatively narrow VBG = ±10 V is 

regarded sufficient for evaluating the devices. Unexpectedly, after depositing the passivation 

layers, the minima of the ambipolar curves shift to VBG > 10 V so that the characterization 

interval must be extended to VBG = ±30 V. Yet, to enable a better comparison of all 

fabrication stages, the maximum currents displayed in Fig. 4.8b are determined at 

VBG = -10 V. The transconductances and the subthreshold swings of the devices in Fig. 4.8c 

are derived from the p-branches of the backward gate voltage sweeps. 

The representative transfer curves in Fig. 4.8a show that the silicidation process effectively 

reduces the hysteresis of the devices. In contrast, the deposition of the passivation layers 

broadens the hystereses again. Next to the above-mentioned shift of the curves towards 

higher VBG, the passivation layers also induce a shift of the entire characteristics to higher 

Imax. This trend is confirmed by the average maximum currents of all devices depicted in 

Fig. 4.8b. However, the highest Imax/Imin ratios are achieved directly after the silicidation (see 

Fig. 4.8b), even though the freshly silicidized devices are not in saturation at VBG = -10V. The 

relatively good switching behavior of the just silicidized devices is also visible in their 

subthreshold swings, which are the lowest among the tested chips (see Fig. 4.8c). The 

transconductances are highest in case of the passivated devices, because of the shift of 

their entire characteristics to high ISD values. However, it must be noted, that the 

transconductances of the unpassivated devices do not peak within the applied VBG = ±10 V 

interval. 

With regard to the error bars depicted in Fig. 4.8b,c, it is visible that the freshly silicidized 

devices possess the lowest device-to-device variability. In contrast, the Al2O3 passviation 

layer causes large variations in the individual transfer characteristics of the devices, which 

can be seen from the particularly broad error bars of the respective Imax/Imin ratios.  

The data confirm the importance of the silicidation process for improving the switching 

behavior of the SB FETs, as introduced in section 4.2.3. (i) On one hand, the hystereses are 

reduced. Before the silicidation, the metal-semiconductor (Ni-Si) interfaces are located at the 

edges of the as-deposited Ni electrodes, in an area previously etched with HF. The native 

oxide subsequently formed in these areas is known to provide traps for charges causing the 

observed hysteresis. During silicidation, the metal-semiconductor (NiSi2-Si) interface is 

shifted underneath the thermal oxide shell of the NWs. Consequently, the entire 

semiconducting sections of the NWs and the Schottky barriers are covered with high quality 
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oxide so that charge trapping and, thus, the hystereses are minimized. Furthermore, the 

optimized hystereses could be due to a reduction of dangling bonds during the forming gas 

anneal in the silicidation process. (ii) On the other hand, Imax are increased. Due to the 

intrusion of the silicide, the gate coupling at the contacts is enhanced leading to a strong 

thinning of the barriers in the on-state and, thus, high Imax as well as high Imax/Imin ratios. 

The achieved average Imax/Imin current ratio of ~ 3.9 ∙ 105 is about two orders of magnitude 

lower than reported before.199,229,230 As described in section 1.3.4, this can be attributed to a 

weak gate coupling, due to the very thick 1.5 µm thermal oxide of the utilized wafer 

substrates. Additionally, the fact, that the ISD minima of all devices are at VBG > 0 V, implies 

that undesired interface and trapped charges influence the device characteristics and 

potentially further weaken the gate coupling (see equation (1.9) in section 1.3.4). With regard 

to the direction of the curve shift, it must be prominently negative charges for which 

adsorbed water at the NW surface could be responsible.119 

The transfer characteristics of the passivated devices clearly indicate that they are much 

more severely affected by interface and trapped charges. It is known that at the interface 

between SiO2 and other dielectric layers interface charges can be formed.237 Due to these 

charges, the devices are put into pronounced normally-on states with high p-currents at 

VBG = 0 V. Furthermore, due to their screening effects, the charges strongly reduce the gate 

coupling resulting in the degraded S. The relatively large device-to-device variations suggest 

inhomogeneous charge distributions on the respective chips. Since the sole addition of an 

Al2O3 layer results in a smaller shift of the device characteristics than the addition of a stack 

of Al2O3+HfO2, it is concluded that any new layer of material brings in a new interface with 

possible interface charges or interface charge traps. Pulsed measurements with varying 

pulse widths may provide more detailed insights into the nature of the traps by inducing 

trapping and detrapping. Furthermore, it could be tested if forming gas treatments improve 

the devices characteristics.  

Within this thesis, however, the focus is put on the device behavior in liquid gate 

measurements, as will be described in the following sections. 

4.3.2 Liquid gate characteristics 

In dry conditions, FETs can be used as gas sensors.200,201 For a broad range of sensing 

applications, however, the respective devices need to be operated in liquid environments. 

Therefore, the devices are passivated via dielectric layers and mounted into a microfluidic 

the set-up for guiding liquids over the FET surfaces, as explained in section 4.2.4. An 

implemented Ag/AgCl reference electrode allows gating the system through the sample 

solution.  
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Fig. 4.9: Comparison of liquid gate characteristics of the bottom-up SiNW SB FETs fabricated within 

this thesis in dependence of the dielectric passivation layer, recorded at VSD = 0.4 V. The liquid 

solution is DI water. (a) Representative ISD-VLG of the different types of devices (b) Averaged 

maximum currents, Imax, and Imax/Imin ratios, and (c) averaged subthreshold swings, S, and 

transconductances, g, at VSD = 0.4 V. The sample sizes are N = 14 and N = 15 devices per plotted 

point, respectively, as indicated in the graphs. 

In the first part of this section, the liquid gate ISD-VLG characteristics of the fabricated devices 

are reported. Since the Ni electrodes of the SB FETs are often observed to degrade at liquid 

gate voltages beyond VLG = ±0.5V, probably due to an oxide degradation, the devices are 

characterized within the boundaries of VLG = ±0.4V.  

In the second part of this section, an additional protective photoresist layer is used to 

broaden the possible liquid gate voltage range to VLG = ±3 V. The improved device 

characteristics are described. 

4.3.2.1 Influence of the passivating dielectric layer 

The behavior of the devices under liquid gate conditions is presented in Fig. 4.9. 

Representative ISD-VLG curves of two differently passivated bottom-up SB FET devices 

fabricated within this thesis are compared in Fig. 4.9a. The average values of Imax, Imax/Imin 

ratio, subthreshold swing and transconductance of the different types of devices are 

presented in Fig. 4.9b,c. Within the applied VLG range both device are permanently in their 

on-states showing almost no hysteresis. Similarly to the back-gate results (see Fig. 4.8), the 

devices with Al2O3+HfO2 passivation show almost one order of magnitude higher Imax levels 

than the devices with only Al2O3 passivation. For both, the Al2O3 and the Al2O3+HfO2 covered 

chips, the average Imax levels are about one order of magnitude below the respective back-

gate values which is attributed to the limited VLG range. The data in Fig. 4.9a illustrate that 

the limited VLG range does not include the threshold voltages, Vt, yielding for both device 

types only very low average Imax/Imin ratios.  

However, despite that limited VLG range far from Vt, for both device types, lower 

subthreshold swings and higher transconductances than in the back-gate measurements are 
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achieved. Therefore, the data presented in Fig. 4.9 demonstrate an improved switching 

behavior when using the liquid gate, compared to the back-gate characteristics. On one 

hand, the modified switching behavior is attributed to the altered series of gate dielectrics. 

There is no more gating through the 1.5 µm thick thermal oxide of the supporting substrate. 

Instead, there are the maximum 24 nm thin oxides. And in addition to this value, the 

depletion width in the liquid, i. e. the Debye screening, close to the oxide surface adds up as 

a series capacitor between VLG and COx. In DI water, as applied here, it is assumed to be 

maximum ~ 950 nm wide (see equation 1.10). On the other hand, there is an enhanced gate 

geometry, since the liquid gate resembles a gate structure close to a surround gate 

increasing the gate control. Altogether, this enhances the electrical characteristics 

significantly. 

4.3.2.2 Device improvements with additional protective photoresist layer 

As described above, the Ni electrodes of the bottom-up SB FETs are observed to degrade in 

liquid gate measurements beyond VLG = ±0.5V. It is assumed that there is a degradation of 

the dielectrics at too high electric fields making the electrodes vulnerable to electrochemical 

attacks. In an experiment using another device with 20 nm Al2O3 passivation plus an 

additional protective photoresist layer, a much broader range of applicable VLG is achieved. 

In Fig. 4.10 the transfer characteristics of three devices are plotted. The red circles and the 

green diamonds correspond to the representative liquid gate ISD-VLG curves presented in 

Fig. 4.9 of devices passivated with a 20 nm Al2O3 layer or a stack of 20 nm Al2O3 and 4 nm 

HfO2, respectively. Both curves are recorded at VSD = 0.4 V using DI water as liquid solution. 

The device represented via blue squares is covered by an Al2O3 passivation layer and by an 

additional photoresist layer( 2) covering the entire chip, including the interdigitated electrodes. 

Only on top of the SiNWs, there are opening windows in the photoresist layer. The window 

positions are schematically depicted in the red mask layout in Fig. 4.6. The openings provide 

direct contact between the liquid solution and the Al2O3 in the vicinity of the sensitive 

elements – the SiNWs and the Schottky barriers. As depicted in Fig. 4.10 the additional 

protective layer allows sweeping the liquid gate voltage in the range VLG = ±3 V without any 

device degradation. The curve is recorded at VSD = 0.25 V using a 10 mM phosphate buffer 

(PB) liquid solution with pH 7.1. 

                                                
(2) During the experiments for a silane-based surface patterning, described in chapter 3, large 
difficulties occurred when the resist AZ5214e was applied in combination with APTES. In most cases 
the resist did not go off the substrate anymore when APTES was evaporated into the lithographically 
prepared patterns. The manufacturer of the AZ5214e confirmed that the resist crosslinks 
extraordinarily in the presence of amines, such as APTES. Exposing the resist to APTES vapor inside a 
desiccator at a vacuum of approx. 5 kPa (see chapter 3) makes it long-term solvent resistant. After 
48 h in isopropanol no signs of dissolution are visible. After 48 h in actone the resist is considerably 
attacked, but not dissolved. Such stabilized photoresist layer is applied on the above-described device 
during the liquid gate measurements. 
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Fig. 4.10: Transfer characteristics of three bottom-up SB FET 

devices measured via liquid gate. Red circles and green 

diamonds depict devices with plain Al2O3 or Al2O3+HfO2 

passivation layers, respectively, measured in DI water at 

VSD = 0.4 V. Blue squares depict device with Al2O3 

passivation layer and additional photoresist protection with 

opening windows on top of the SiNWs. Measured in 10 mM 

phosphate buffer (PB), at pH 7.1, at VSD = 0.25 V. Additional 

resist passivation enables gate sweeps in-between 

VG = ±3 V. At VG ≈ 2.3 V a subthreshold swing of 0.18 V/dec 

is determined. 

Within the increased VLG range, 

the device is switched from its 

on-state into its off-state at 

VLG = 3 V. This yields 

Imax/Imin = 1.54 ∙ 106, the highest 

Imax/Imin ratio determined within 

all presented experiments, 

close to Ion/Ioff ratios of similar 

SiNW SB FETs reported 

before.199,229,230 The 

subthreshold swing of 

|S| = 0.18 V/dec is the lowest 

one determined within this 

work. A peak transconductance 

of |g| = 1.79 ∙ 10-5 A/V at 

VG = 0.8 V is the highest one 

determined within this work. 

The n-branch of the actually 

ambipolar device is not reached 

within the applied VG range. 

However, the data, including 

the almost nonexistent hysteresis, emphasize the significant improvement of the gate 

coupling under liquid gate conditions, compared to the back-gate measurements in section 

4.3.1. Additionally, the utilization of a PB solution, instead of DI water, during the 

measurement, is expected to positively influence the switching behavior,238 since the Debye 

screening is reduced to λD ≈ 1.5 nm. 

The high transconductance is also attributed to the high on-current level of the tested 

device, despite the lower applied VSD when characterizing the device with the additional 

photoresist layer. The differences in ISD levels between the devices illustrates, that not only 

device-to-device but also chip-to-chip variations play an important role in the bottom-up 

assembly strategy applied within this chapter. 

In summary, the above-described addition of a protective photoresist layer enables the 

operation of the SB FET devices in a broader range of VLG. It makes the subthreshold regime 

of the devices accessible increasing the opportunities to find an optimum operation mode 

for maximum sensitivity, as described in the following section. However, due to 

delamination issues of the applied photoresist layer during assembling and disassembling 

the PDMS set-up, later sensing measurements are performed without additional protective 

layer in the boundaries of VLG = ±0.4V. In this VLG range the devices are mainly in the Ohmic 

mode showing an almost linear dependence of ISD over VLG. 



Multiple silicon nanowire-based sensing 

67 

For future tests on improving the device characteristics by means of such protective 

photoresist layers, the utilization of a thin type of epoxy resist, such as SU-8 2000.5 is 

recommended, due to its high stability and excellent biocompatibility.239 

4.3.2.3 Optimum device operation regime 

In the literature, there are contradictory opinions about the most suitable measuring regime 

for obtaining optimum device sensitivities. There are reports describing that the highest 

signal-to-noise ratios (SNR) of the applied devices are obtained in the subthreshold regime,206 

or at the peak transconductance,240 or in-between these values.202 The optimum operation 

range must be determined for every type of device and measurement set-up separately. 

Due to the constraints given by the narrow window of applicable liquid gate voltages, no 

investigations on the optimum working regime for highest SNR are performed within this 

thesis. From the measurements presented in the previous section (section 4.3.2.2) it is 

assumed that the SB FETs fabricated within this thesis are operated close to their peak 

transconductance within the liquid gate voltage boundaries of VLG = ±0.4V. 

4.3.3 pH and ion sensitivity 

In the experiments described within this section, phosphate buffer (PB) solutions of different 

pH values and aqueous ammonium acetate (CH3COONH4) solutions of different ion 

concentrations are used as primary samples for investigating the sensing behavior of the 

fabricated SB FET-based sensors. At first (section 4.3.3.1) the applied measurement 

approach is explained. Then, distinctive features while preparing the measurements are 

described (section 4.3.3.2) before the pH and ion sensitivities of the devices are tested 

(section 4.3.3.3). Finally, the producibility of a true reference sensor109,207,208 is investigated 

(section 4.3.3.4). 

4.3.3.1 Measurement approach 

As introduced in section 1.3.2, the sensing mechanism of FET-based sensors relies on a 

shift of the threshold voltage upon surface potential changes owing to the adhesion of 

chemical or biological species. In a first approximation, the shape of the ISD-VLG transfer 

characteristics of a sensor does not change during the measurement. The shift of the 

threshold voltage, ΔVt , is considered equal to a plain shift of the ISD-VLG curve of the device. 

This is depicted schematically in Fig. 4.11. In the figure, the blue and the red dotted lines 

represent the ISD-VLG transfer characteristics of a device at the time t1 and tn in an analyte 

solution with the analyte concentration c1 and cn, respectively. Based on this schematic, 

there are various measurement approaches for an ISFET-based detection of analytes. 

For monitoring the respective ΔVt , Bergveld et al.98 propose the application of operational 

amplifier-based source/drain follower circuits. In such circuitries, an output voltage is 

generated the changes of which resemble ΔVt  of the implemented ISFET at constant ISD and 
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Fig. 4.11: Schematic illustration of the applied measurement approach. The blue and the red dotted 

lines depict ISD-VG transfer curves of the schematically shown device in its two states, at the times t1 

and tn in an analyte solution with the concentrations c1 and cn, respectively. During the sensing 

experiment, the shift of the threshold voltage, ∆Vt,, or the shift of the surface potential, respectively, 

is monitored indirectly by observing ISD at constant VLG = VLG,1. At the beginning, at t1, a section of the 

entire ISD-VG curve of the device is recorded within the boundaries VLG,min and VLG,max, i. e. the gate 

voltage constraints explained in section 4.3.2.3. Based on the initial ISD-VLG curve the ISD changes are 

used to determine ∆Vt, over time and to correlate ∆Vt, with the applied analyte concentrations 

c1, c2, .. , cn. The starting point of the sensing experiment (VG,1,ISD,1) is chosen with regard to the 

device operation constraints summarized in section 4.3.2.3. 

VLG levels. However, such set-up is not available within this thesis. Another approach for 

observing ΔVt  would be the implementation of a software-based feedback loop in the 

measurement system which keeps ISD constant while adjusting and recording ΔVLG at 

constant VSD.223 Furthermore, Zörgiebel et al.28 developed a measuring approach of 

permanently sweeping the gate voltage and recording the entire ISD-VLG characteristics at 

each point of time. This enables a comprehensive post-processing of the experimental data 

with the possibility to subsequently extract two or three dimensional maps of ISD versus VLG 

and t, and also the time dependence of specific values such as the transconductance or the 

subthreshold swing, however, at the expense of a valuable time resolution during the 

experiments (see also section 4.3.4.2).  

In the measurements described within this section, a simpler measurement approach with 

very high time resolution is used.29 With regard to the schematic in Fig. 4.11, at the 

beginning of a measurement, at t = t1, when the FET is in contact with a sample solution of 

an analyte concentration c1, the ISD-VLG curve of the device is recorded within the boundaries 

VLG,min and VLG,max, i. e. the above-explained gate voltage constraints of the utilized chips (see 

section 4.3.2.3).  During the sensing experiments the changes of ISD are monitored at 

constant VSD and constant VLG = VLG,1. Based on the initial ISD-VLG curve, via interpolation, the 

ISD changes are used to determine ΔVt, over time and to correlate ΔVt, with the applied 

analyte concentrations. The starting point of the sensing experiment (VG,1, ISD,1) is chosen 
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with regard to the chip operation constraints summarized in section 4.3.2.3, as further 

described in the following section. 

It has to be noted that any alterations in the transfer characteristics not being related to a 

surface potential change, such as device degradation or hysteresis effects, are not 

recognized when only ISD is recorded during the sensing experiment. However, in case of pH 

and ion concentration sensing, no significant transfer curve deformations are expected. 

4.3.3.2 Measurement settings 

Sample solutions 

As sample solutions 100 mM phosphate buffers with pH 6.1, pH 7.1 and pH 8.1 are 

prepared for measuring the pH sensitivity. For ion sensitivity measurements 5 µM, 500 µM 

and 50 mM ammonium acetate (CH3COONH4) solutions are used. CH3COONH4 dissociates 

into CH3COO¯ and NH4
+ ions which are of similar acid or base strength, respectively, as 

indicated by pKb = 9.25 (CH3COO¯) and pKa = 9.25 (NH4
+). Thus, CH3COONH4 solutions are 

expected to be of neutral pH with minimum pH variations so that any visible sensor signals 

are attributed exclusively to the change of the ion concentration. The pH values of the 

solutions range between pH 6.4 (5 µM CH3COONH4) and pH 6.7 (50 mM CH3COONH4). 

Fluidic set-up 

The devices are assembled in the fluidic set-up as described in section 4.2.4. To minimize 

interferences on the experiments by air bubbles, prior to the measurements all sample 

solutions, then ethanol and finally DI water are drawn once through entire the fluidic system. 

Particularly the eight position selection valve requires cautious handling. Its switching 

movements in some cases induce the formation of bubbles. The syringe pump is set to 

draw the solutions through the channel system at 100 µl/min flow ratio. For each tested 

device, the respective initial ISD-VLG curve (see below) is recorded in streaming DI water. 

During the sensing measurements, the eight position selection valve is used for switching 

the sample solutions. Each sensing series comprises three measurement points starting 

with the lowest pH or ion concentration and finishing with the highest pH or ion 

concentration, respectively.  

FET settings  

At the beginning of each experiment, the ISD-VLG curves of the respective devices are 

measured in DI water at VSD = 0.4 V. The applied VLG range is VLG = ±0.4 V. During the actual 

sensing experiments, while guiding different sample solutions over the FET surfaces, ISD is 

recorded at constant VSD = 0.4 V, and constant VLG. Finally, ΔVt is calculated from the 

measured ISD values, based on the backward branch of the initially recorded ISD-VLG curves, 



Multiple silicon nanowire-based sensing 

70 

 
Fig. 4.12: Determination of the pH and ion sensitivities of the devices, demonstrated using the 

example of one bottom-up SiNW SB FET with Al2O3 surface dielectric layer, with (a) and (d) showing 

the recorded time-dependent ISD curves while guiding PB buffers or salt solutions with the indicated 

pH or ion concentrations over the sensor surface at VSD = 0.4 V, VLG = 0 V and (b) and (e) showing the 

initial ISD-VLG hystereses of the device, recorded at VSD = 0.4 V in DI water, before the pH and ion 

sensing experiments, respectively. (c) and (f) show the respective determined ∆Vt curves. The yellow 

highlighted sections in the respective plateaus of the curves are used for determining the pH and ion 

sensitivities of the device. In (g), the average pH and ion sensitivities of N = 3 Al2O3 passivated 

devices are plotted.  

as described in section 4.3.3.1. Commonly, during the measurements, VLG is set to 

VLG = 0 V, i. e. in the middle of the applicable VLG range (see also section 4.3.2.3).  

4.3.3.3 pH and ion sensitivities of bare devices 

Fig. 4.12 shows exemplary results and intermediate results of the above-described 

experimental procedure for determining the pH and ion sensitivities of one bottom-up SiNW 

SB FET with Al2O3 surface dielectric. Fig. 4.12a & d present the time-dependent ISD curves 

while guiding analyte solutions with varying pH or varying CH3COONH4 concentrations over 

the sensor surface. After the measurements, using the ISD-VLG curves in Fig. 4.12b & e, the 

time-dependent ΔVt curves in Fig. 4.12c & f are derived. Additionally, the average pH and ion 

sensitivities of three tested Al2O3 passivated devices are summarized in Fig. 4.12g. The 

corresponding ΔVt values are derived from the yellow highlighted sections in the time-

dependent ΔVt plot (Fig. 4.12c,f), where the ΔVt curves stabilize in plateaus. The Al2O3 

surface is determined to provide a pH sensitivity of SpH ≈ 50 mV/pH and a CH3COONH4 ion 

sensitivity of Sc ≈ 18 mV/dec. 

For the HfO2 surface, a pH sensitivity of SpH ≈ 54 mV/pH and an ion sensitivity of 

Sc ≈ 23 mV/dec is determined. The pH and ion sensitivities of the different surfaces are 

summarized in Fig. 4.13.  
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Fig. 4.13: Summary of the determined average 

sensitivities for (a) pH and (b) CH3COONH4 ion 

concentrations with respect to the dielectric material on 

top of the sensor surface. In each case the sample size 

is N = 3. 

The pH sensitivity of the Al2O3 

surface is slightly lower than the 

57 mV/pH and the 52 mV/pH 

reported by Chen et al.29 and Abe 

et al.,241 respectively. Also the 

measured pH sensitivity for the 

HfO2 surface is below the literature 

values of around 59 mV/pH.105 

These deviations of pH sensitivities 

are assumed to originate from 

contaminations at the sensor 

surfaces. As opposed to Chen et 

al.29 who treat their devices with an 

UV/ozone cleaning step at the beginning of every sensitivity measurement to remove any 

organic impurities from the surface, within this thesis there is no UV/ozone cleaner available. 

An alternative removal of possible contaminations via a plasma cleaning step prior to the 

measurements is not feasible, as it would lead to an irreversible bonding of the PDMS-based 

fluidic channel to the chip surface (see also section 1.2 and section 2.1). Furthermore, a 

plasma cleaning step would make the surface highly reactive and, thus, prone to fast 

recontamination.242 In case of a functionalized sensor, an UV/ozone or plasma cleaning would 

destroy the organic surface modification. 

The ion sensitivities of the devices in CH3COONH4 solutions depicted in Fig. 4.13b are 

comparable to other ion sensitivity observations in the literature. In a work of Bergveld, 

ISFETs with Al2O3 dielectrics exhibit increasing sensitivity towards Na+ and Cl¯ ions with 

increasing NaCl concentrations in the range of cNaCl = 1 mM .. 1 M, up to a maximum ion 

sensitivity of 6 mV/dec.98 In a work of Tarasov et al. both HfO2 and Al2O3 dielectrics are 

found to provide Cl¯ ion sensitivities of up to 60 mV/dec when using buffered KCl solutions 

with different Cl¯ concentrations above cCl - = 10 mM.108 Since the compositions of the 

applied buffer solutions in both studies differ, it is not possible to directly compare the 

determined ion sensitivity values.98,108 However, the reported ion sensitivities are in the 

same order of magnitude as the ones recorded within this work for aqueous CH3COONH4 

solutions. Furthermore, there is agreement between the previous studies and the results in 

Fig. 4.13b that HfO2 and Al2O3 yield similar ion sensitivities.  

With regard to the surface complexation model described by Tarasov et al.,108 CH3COOH¯ 

anions are expected to partially replace previously adsorbed protons and form chemical 

complexes with the surface hydroxyl groups of the dielectrics while NH4
+ cations remain 

further away from the surface. This induces the shift of the threshold voltage to more 

positive values. 
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Fig. 4.14: Summary of the determined average pH 

sensitivities of the devices before (open diamonds or 

circles) and after the functionalization with HFDMCS 

(filled diamonds or circles). On HfO2 covered devices the 

functionalization results in hydrophobic surfaces with 

contact angles of ~99°. On Al2O3 covered devices the 

contact angle is ~69°.  

In the above-described studies, at 

concentrations below cNaCl = 1 mM 

and cCl - = 10 mM, respectively, the 

devices show no ion 

sensitivity.98,108  Such behavior is 

also predicted by the theoretical 

models introduced in section 

1.3.2.101–104,108 Strikingly, the 

measurements within this thesis 

show distinct ion sensitivities at 

three to four orders of magnitude 

lower concentrations. In future 

measurements, the ion sensitivities 

at CH3COONH4 concentrations 

below cCH3COONH4 = 5 µM should be 

investigated to find the threshold 

CH3COONH4 concentration below 

which no more ion sensitivity is 

observed. This way, a better 

understanding of the interplay 

between the ions and the surface 

may be obtained.  

4.3.3.4 Surface functionalization and sensitivity changes 

As introduced in section 4.1, it is highly desirable to modify the sensor devices in such way 

that they become insensitive to chemical changes at their surface while maintaining their 

responsivity to the liquid gate. Such devices could be used as true reference sensors in 

differential set-ups where they are combined with the actual sensing ISFETs with similar 

electrical characteristics, to minimize the influences of drift or temperature on the 

measurements.106,109,207,208 In a publication by Tarasov et al., SiNW-based ISFETs are 

converted into true reference sensors by means of a surface functionalization using 

octadecyldimethylmethoxysilane (ODMMS).109 They observe a reduction of the pH 

sensitivity of their devices by two orders of magnitude and explain the effect by a chemical 

passivation of the -OH groups. In previous surface functionalization attempts with short-

chained organo modifiers, the respective FET-based sensors show a residual pH sensitivity 

of at least SpH > 10 mV/pH.29,103,106 Instead, long-chained silane molecules, such as 

ODMMS,109 docosyldimethyl(dimethylamino)-silane 243 or (heptadecafluoro-1,1,2,2-

tetrahydrodecyl)trimethoxysilane 207,208 reduce the pH sensitivity more efficiently to values 

below SpH ≤ 8 mV/pH.  
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Within this thesis the applicability of the silane (heptadecafluoro-1,1,2,2-

tetrahydrodecyl)dimethylchlorosilane (HFDMCS) for fabricating true reference sensors is 

tested. The silane is similar to the previously applied (heptadecafluoro-1,1,2,2-tetrahydro-

decyl)trimethoxysilane,207,208 however, with only one instead of three leaving groups to 

prevent the formation of multilayers (see inset Fig. 4.14 and section 1.4.2.3). The silane is 

deposited onto the sensor surfaces for up to seven days (7 d) 109 via the desiccator-assisted 

approach described in section 3.3.1. 

Fig. 4.14 summarizes the pH sensitivities of the devices covered with different dielectric 

layers, before and after the functionalization with HFDMCS. Additionally, the wettability of 

the surfaces after their functionalization is depicted. In case of Al2O3 covered surfaces, the 

functionalization yields contact angles of ~ 69°. The pH sensitivity remains at 

SpH ≈ 50 mV/pH. The HfO2-covered devices show contact angles of ~ 99° and their pH 

sensitivity decreases by 9.2% to SpH ≈ 49 mV/pH.   

With respect to the site-binding model introduced in section 1.3.2, Bousse et al. calculated 

that the pH sensitivity near the point of zero charge, pHpzc, of a device surface is given 

by 103,104 

SpH = 59.5 β
(β+1)

 mV

pH
 (4.1) 

with the sensitivity parameter β being 

β = 
2 q2 NS �

Ka2
Ka1

�
1/2

CH k T
 (4.2) 

In equation (4.2), q is the elementary charge, NS is the number of binding sites or -OH 

groups per surface area, respectively, Ka1 and Ka2 are the dissociation constants for 

protonation and deprotonation of the -OH groups, respectively, CH is the Helmholtz layer 

capacitance of the electrochemical double layer on the sensor surface, k the Boltzmann 

constant and T the absolute temperature.103,104 The points of zero charge of both surface 

types, pHpzc,Al2O3 = 8.7 for Al2O3 244 and pHpzc,HfO2 = 7.6 for HfO2,245
 are within or in proximity to 

the pH-range of the buffer solutions utilized for determining the pH sensitivity. Using the 

commonly applied values Ka1 = Ka2 = 10-7 and CH = 20 µF/cm2,103,104,109 equations (4.1) and 

(4.2) allow estimating NS of both surfaces to NS,Al2O3 ≈ 9 ∙ 1012 cm-2 and 

NS,HfO2 ≈ 1.75 ∙ 1013 cm-2, respectively, in case of the non-functionalized devices. After the 

functionalization with HFDMCS, NS of the HfO2 covered device reduces to 

NS,HfO2 ≈ 8 ∙ 1012 cm-2, i. e. more than half of the initial binding sites or -OH groups on the 

surface are chemically passivated by the silane. To reduce the pH sensitivity to values below 

SpH ≤ 3 mV/pH, NS,HfO2 must be further decreased by two orders of magnitude.  
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Other than the contact angle measurements introduced in section 3.2.1, the pH sensitivities 

of the devices reveal more clearly the deficient quality of the HFDMCS silane layers. Since 

long functionalization times of up to 7d do not enhance the chemical passivation of the 

devices, the surface activation procedure before the silane deposition is considered to be 

the critical step of the overall process. From the relatively low amounts of chemically 

passivated -OH groups, compared to above-described works,109,207,208,243 it is evident that the 

initial surface treatment must be further optimized. The functionalization results may be 

improved (i) by a longer plasma treatment, (ii) by using a pure oxygen plasma instead of an 

air plasma, or (iii) by replacing the plasma treatment with a UV/ozone-based activation 

step.29,109 Additionally, it is expected that the silane deposition will be improved by reducing 

the transportation time after the plasma treatment, when carrying the sample from the 

plasma cleaner to the desiccator set-up. The longer a just plasma treated sample is exposed 

to ambient air, the more it interacts with present moisture and contaminants, so that its 

surface gradually reverts back to a non-activated state.242 Within this work, about 5 min 

elapse between switching off the plasma cleaner and switching on the vacuum pump of the 

desiccator set-up for the silane deposition. 

In case of the Al2O3-covered devices, the surface functionalization does not yield the desired 

results, neither with respect to the contact angles nor with respect to the pH sensitivity. The 

reasons for that are not yet known. However, regarding the ALD processes, it is noticeable 

that the Al2O3 films are deposited via an ozone-based procedure and the HfO2 layers are 

formed via a water-based procedure. It remains to be tested, if a water-based ALD 

deposition of Al2O3 dielectrics yields different surface properties for an improved surface 

functionalization outcome via the above-described silane deposition approach. 

In the future, for a better general understanding of the device functionalization behavior, X-

ray photoelectron spectroscopy (XPS) is considered an appropriate tool for obtaining more 

detailed information about the surface chemistry. With regard to the HFDMCS 

functionalization results in this section, all BioFET measurements in the following section 

(section 4.3.4) are performed on HfO2-covered FETs to avoid any complications during the 

required TESPSA silane deposition.  

4.3.4 TESPSA-based BioFET application 

Within this section, the TESPSA-based receptor immobilization strategy presented in 

chapter 3 is applied to the fabricated HfO2-covered bottom-up SiNW FETs for BioFET 

measurements. In the first part (section 4.3.4.1), important adjustments on the fluidic set-up 

and the compositions of the analyte solutions are introduced. Section 4.3.4.2 points out the 

differences of the data acquisition method within this section compared to previous 

measurements in section 4.3.3. In the last part (section 4.3.4.3), the sensitivity and 

specificity of the sensors for target analytes before and after the TESPSA-based 

immobilization of receptor molecules on top of the sensor surface are investigated.  
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Fig. 4.15: Modification of experimental procedure, compared to previous arrangements in Fig. 4.7b 

and Fig. 3.3c, respectively. (a) In the fluidic set-up the sample solution is guided over the sensor 

surface via capillary forces after dropwise addition of excess or new sample solution at one opening 

of the PDMS channel system using a pipette. At the second opening of the PDMS stamp, excess 

sample solution is soaked up via a tissue. The Ag/AgCl reference electrode is dipped into a 3 M KCl 

solution saturated with AgCl inside a housing (see also section 4.2.4) which is incorporated into the 

PDMS set-up and which separates the sample solution from the internal 3 M KCl solution via a 

ceramic frit. (b) Besides the red and the green analytes, i. e. IgGTarget_green and IgGControl_red, introduced in 

section 3.2.3, an additional third analyte is used within the BioFET experiments in this section – an 

unlabeled peptide, schematically depicted as blue wavy element, which is expected to be repelled by 

the IgGReceptor immobilized on the sensor surface. 

4.3.4.1 Fluidic set-up and analyte solutions 

When guiding analyte solutions over the surface of a sensor with immobilized receptor 

molecules, there are three processes occurring in parallel which influence the sensor signal. 

(i) Association of analytes to the receptor molecules to form analyte-receptor complexes 

(see section 1.4.1), (ii) dissociation of the complexes into free receptor structures and free 

analyte molecules in solution, (iii) disturbance and subsequent equilibration of the 

electrochemical double layer at the device-solution interface with each analyte binding and 

unbinding event.  

Fluidic set-up 

From initial measurements of receptor-analyte interactions on the sensor surfaces using the 

microfluidic set-up depicted in Fig. 4.7, it is recognized that reducing the flow rate of the 

liquid to below 2 µl/min or stopping the flow, leads to the formation of air bubbles inside the 

channel system. In a continuous flow regime with at least 2 µl/min flow rate, the sensor 

signal is observed to be not sufficiently stable for conclusively detecting the applied analytes 

(data not shown). Therefore, the fluidic system is changed to a set-up as schematically 

depicted in Fig. 4.15a. Instead of a syringe pump-based flow of the analyte solutions, they 

are guided over the sensor surface via capillary forces. The solutions are added dropwise at 

one opening of the PDMS channel system by means of a pipette. At the second opening of 

the PDMS stamp, excess sample solution is soaked up using a tissue. An Ag/AgCl reference 
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electrode is used for liquid gating the FETs during measurements. The electrode is dipped 

into a 3 M KCl internal filling solution, saturated with AgCl, of a modified version of the 

housing described in section 4.2.4 (Microelectrodes, Inc., USA) the tubing connectors of 

which are entirely removed. The housing is incorporated straight into the PDMS set-up so 

that the ceramic frit with the internal 3 M KCl solution on one side is in direct contact with 

the sample solution on the other side.  

With the described built-up, a continuous sample flow is not possible. Instead, the flow is 

stopped after each liquid exchange. For replacing one sample solution with another, three 

cycles of adding 30 .. 40 µl new solution via a pipette and soaking the liquid through the 

~ 50 µl large PDMS channel via a tissue are performed. Due to the sudden acceleration of 

the liquid in such events, a fourth sensor signal-influencing effect comes into play. (iv) The 

ions forming the electrochemical double layer at the device-solution interface are additionally 

disarranged by the high flow velocity changes.246 The influence of flow velocity changes on 

the surface potential increases with decreasing ion concentrations.246 

Buffer and analyte solutions 

As explained above, within this section the receptor immobilization strategy presented in 

chapter 3 is adapted to the FET-based sensors. TESPSA is applied as linker molecule for the 

covalent attachment of the same IgGReceptor (see Tab. 3.1), based on the same protocol as 

before. The same IgGTarget_green and IgGControl_red and one additional unlabelled peptide are 

utilized as analytes (see Fig. 4.15b). The additional peptide is a nine-amino acid synthetic 

peptide from human influenza hemagglutinin (HA) which is commonly used in epitope-

tagging applications (HA peptide, Roche Diagnostics GmbH, Germany). The HA peptide is 

expected to show no specific interaction with the IgGReceptor.  

In consideration of the height of antibodies of about 10 nm,143 analyte solutions with low ion 

concentrations are prepared. 300 µM sodium hydrogen phosphate (Na2HPO4) solution and 

300 µM sodium dihydrogen phosphate (NaH2PO4) solution are mixed to form a 300 µM 

phosphate buffer (PB) solution with pH 7.4. Subsequently, proportions of commercial 

standard phosphate buffer saline (PBS, pH 7.4, VWR International, USA) are added. Buffers 

for Debye screening lengths (see section 1.4.2) of ~ 10 nM and ~ 7.5 nM are adjusted by 

preparing 300 µM PB with 0.002 x PBS and 300 µM PB with 0.005 x PBS, respectively.  

The addition of PBS to the buffer system is necessary, because the analytes are delivered in 

1 x PBS solutions. IgG stock solutions are diluted 1:500 or 1:200 with PBS-free 300 µM PB, 

resulting in analyte solutions with maximum analyte concentrations of 7 nM and 18 nM, 

respectively. Subsequently, solutions of lower analyte concentration are prepared using the 

respective PBS containing buffers. Maximum concentrations of the HA peptide in the 

analyte solutions are 9 nM and 22 nM, respectively. Additionally, for reducing unspecific 

interactions between analytes and surface, 0.05 vol.% Tween20 are added to all solutions.247      
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Fig. 4.16: Exemplary illustration of recorded 

transfer curves in case of a sensor device 

functionalized with IgGReceptor in the presence of 

300 µM PB solution with 0.002 x PBS 

containing varying concentrations of 

IgGTarget_green. The inset shows a full hysteresis at 

0 nM analyte concentration, the main graph 

sections of the upward branches 

(VLG = +0.4 V ⇢ -0.4 V) of the hystereses at 

0 nM, 5 nM and 7 nM IgGTarget_green 

concentration. The shift of the transfer 

characteristics, which is considered equal to 

ΔVt , is monitored at an as low as possible 

selected fixed ISD level of ISD = 1.9 µA. 

4.3.4.2 Data acquisition and evaluation 

In contrast to the measurement approach 

presented in section 4.3.3.1, within this 

section the entire transfer characteristics of 

the devices are monitored at each point of 

time of all sensing experiments by 

continuously sweeping VLG and recording 

ISD. Commonly, a sweeping cycle starts at 

VLG = 0 V going to VLG = 0.4 V, then to 

VLG = -0.4 V and finally back to VLG = 0 V. 

One cycle requires 3 .. 5 s sweeping time.  

In the post-processing of the recorded data, 

the required VLG for a fixed ISD level are 

determined. The inset in Fig. 4.16 

exemplarily depicts the transfer 

characteristic of a sensor device with 

immobilized IgGReceptor in the presence of a 

pure buffer solution (300 µM PB with 

0.002 x PBS). Throughout the experiment, 

analyte solutions with increasing 

IgGTarget_green concentrations are guided over 

the surface. The shift of the transfer 

characteristics of the device at a fixed ISD 

value of 1.9 µA is considered equal to the shift of the threshold voltage, ΔVt, or the negative 

of the shift of the surface potential of the sensor (see equation 1.6), respectively. For all 

measurements presented in the following section (section 4.3.4.3), fixed ISD values close to 

the corresponding lowest measured ISD are selected for monitoring ΔVt . The lower the 

applied ISD, the closer is the device to its subthreshold regime, which is reported  to be the 

regime with highest signal-to-noise ratio for sensing applications in other publications.206 Of 

the recorded hystereses, only the upward branches (VLG = +0.4 V ⇢ -0.4 V) are taken into 

account for evaluating ΔVt .  

The main graph in Fig. 4.16 depicts sections of the upward branches of the hysterses 

recorded with the device at analyte concentrations of 0 nM, 5 nM and 7 nM. It is visible that 

the curves shift to lower values. The following section (section 4.3.4.3) describes the time 

dependent development of ΔVt while guiding buffer solutions with different analytes of 

varying concentrations over the sensor surface. At each stage of the experiments the 

analyte solutions are allowed to incubate at room temperature for ~ 30 min.127  
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Fig. 4.17: ΔVt response of one device functionalized with IgGReceptor during incubation of 300 µM PB 

solutions with 0.002 x PBS containing HA peptide, IgGControl_red or IgGTarget_green as analytes at varying 

concentrations. (a) Time dependent sensor signal. Before t = 0 min (time segment with light gray 

background), pure buffer is applied on the sensor. Starting from t = 0 min, solutions with gradually 

increasing analyte concentrations are incubated on the device. Arrows and adjacent references 

indicate when the analytes are added at the respective concentrations. The upper curve with blue 

indicators, the middle curve with red indicators and the lower curve with green indicators are related 

to the addition of HA peptide, IgGControl_red and IgGTarget_green, respectively. The respectively colored 

dotted lines are guides to the eye to facilitate the recognition of ΔVt changes. (b) Plot of ΔVt over 

analyte concentration. Blue circles, red triangles and green squares correspond to HA peptide, 

IgGControl_red and IgGTarget_green, respectively. Data points and error bars are determined from the time 

dependent ΔVt values highlighted in the curves in (a), shortly before changing the analyte 

concentrations. Data points in the section having a light gray colored background in (b) correspond to 

pure buffer solutions without analytes. Dotted lines in (b) are guides to the eye. 

4.3.4.3 Sensor sensitivity and specificity for target analytes 

Fig. 4.17a shows the time dependent behavior of ΔVt of a sensor functionalized with 

IgGReceptor in the presence of 300 µM PB with 0.002 x PBS containing different analytes at 

varying concentrations. Every time an analyte solution is replaced by a new one, the ΔVt 

values show distinct jumps which are primarily attributed to disturbances of the 

electrochemical double layer in the course of the sudden acceleration of the liquid on the 

sensor surface (see also section 4.3.4.1). Subsequently, while incubating the surface with 

the new analyte solution, the association and dissociation of analytes influence the 

reconstitution of the electrochemical double layer at the device-solution interface. After 

~ 30 min incubation time, the analyte molecules in solution and the receptor-analyte 

complex and, thus, the electrochemical double layer are considered to be in equilibrium.127 

The sections of the time dependent ΔVt curves (Fig. 4.17a) highlighted with blue, red or 

green color, shortly before introducing the next analyte solution, are utilized for determining 

average ΔVt values assigned to the respective analyte and analyte concentrations. Fig. 4.17b 

depicts the dependence of ΔVt on the concentration of the different analytes. 
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From the graphs in Fig. 4.17, it is visible that there is no effective change of the sensor 

signal upon adding increasing amounts of HA peptide to the sample solutions (data 

highlighted in blue color). Depicted as blue circles in Fig. 4.17b, after a dip of ~ - 5 mV at 

cHA peptide = 450 pM, the HA peptide-related ΔVt values recover at higher concentrations. 

Thus, HA peptide is regarded to exhibit no unspecific interaction with the functionalized 

surface. 

The sensor signal in the presence of the specific antigen IgGTarget_green (data highlighted in 

green color, green squares in Fig. 4.17b) remains almost constant up to 3 nM analyte 

concentration. At cIgG_Target_green = 5 nM and above a distinct decrease of ΔVt is observed. At 

cIgG_Target_green = 7 nM, a difference of ~ - 10 mV compared to the initial ΔVt level is reached. 

Investigating the device behavior at analyte concentrations beyond 7 nM is not possible 

within this experimental arrangement. As explained in section 4.3.4.1, this would imply a 

change of the ionic composition of the sample solution which would affect the Debye 

screening length so that further ΔVt changes were not exclusively reducible to analyte 

concentration differences. 

In case of the nonspecific IgGControl_red (data highlighted in red color, red triangles in 

Fig. 4.17b), the sensor shows a similar behavior as in case of the IgGTarget_green. The 

fluorescence microscopy investigations in Fig. 3.6 in section 3.3.2 indicate a minor 

unspecific adsorption of IgGControl_red to the immobilized receptor when using a 1 x PBS-based 

analyte solution with an ionic strength of I = 175 mM. In the literature, it is observed that the 

specificity of antibodies is reduced with decreasing ionic strength of the applied buffer.127 

Thus, in case of the low ionic strength solutions utilized within this section, with I = 1 mM, 

IgGControl_red is assumed to exhibit a much stronger unspecific attachment to the surface, so 

that the signals of IgGTarget_green and IgGControl_red are not distinguishable within the monitored 

analyte concentration range.  

Since the transfer curve shifts to lower values with adsorption of increasing amounts of IgG, 

the molecules are concluded to be positively charged. The isoelectric point of the antibodies 

is not known. Commonly, polyclonal antibodies, as applied within this thesis, have no set 

isoelectric point.248 For the HA peptide a theoretical isoelectric point of 5.98 is determined.249 

Thus, in the utilized buffer of pH 7.4, the molecules will possess a negative net charge.  

Consequently, in the event of an unspecific adsorption of HA peptide, an increase in the ΔVt 

curve would be expected.  

In subsequent experiments, to explore the impact of the immobilized IgGReceptor on the device 

specificity, two other states of the sensor surface are investigated. Fig. 4.18 depicts the 

behavior of the same device as utilized in Fig. 4.17, however, without immobilization of 

IgGReceptor, but instead directly after an air plasma cleaning step (Fig. 4.18a,b) and directly 

after the deposition of TESPSA (Fig. 4.18c,d), respectively. Again, the analyte solutions are 

composed of 300 µM PB with 0.002 x PBS and contain HA peptide or IgGTarget_green at varying 
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Fig. 4.18: ΔVt response of the same device utilized in Fig. 4.17, (a & b) directly after an air plasma 

cleaning procedure and (c & d) directly after depositing TESPSA on the device surface. Sensor signals 

are recorded during incubation with 300 µM PB solutions with 0.002 x PBS containing HA peptide, or 

IgGTarget_green as analytes at varying concentrations. (a & c) Time dependent sensor signals. Before 

t = 0 min (time segment with light gray background), pure buffer is applied on the sensor. Starting 

from t = 0 min, solutions with gradually increasing analyte concentrations are incubated on the 

device. Arrows and adjacent references indicate when the analytes are added at the respective 

concentrations. Both upper curves with blue indicators and both lower curves with green indicators 

are related to the addition of HA peptide and IgGTarget_green, respectively. The respectively colored 

dotted lines are guides to the eye to facilitate the recognition of ΔVt changes. (b & d) Plots of ΔVt over 

analyte concentration. Blue circles and green squares correspond to HA peptide and IgGTarget_green, 

respectively. Data points and error bars are determined from the time dependent ΔVt values 

highlighted in the curves in (a & c), shortly before changing the analyte concentrations. Data points in 

the sections having a light gray colored background in (b & d) correspond to pure buffer solutions 

without analytes. Dotted lines in (b & d) are guides to the eye. 

concentrations. IgGControl_red is not included in the following investigations, as it is, under the 

given conditions, expected to behave very similar to IgGTarget_green. 

The plasma cleaning procedure before recording the curves in Fig. 4.18a comprises 5 min air 

plasma treatment and 15 min rinsing in an ethanol-water mixture to reduce the reactivity of 

the surface and inhibit a covalent attachment of the PDMS stamp on top of the device.66,242 
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The time dependent ΔVt curve of the incubation with HA peptide solutions shows a very 

noisy signal with large amplitudes and one distinct jump to a ~ 50 mV higher temporary ΔVt 

plateau level in the middle of the 9 nM incubation time. This behavior is attributed to the 

early point of time of the ΔVt measurement directly after the plasma treatment or directly 

after the above-described rinsing procedure, respectively. The unstable charged species, 

introduced into the device surface during the plasma cleaning, slowly react with the 

surrounding matter to enter more stable states.197,242 This retards the equilibration of the 

electrochemical double layer at the device-solution interface. Consequently, highly unstable 

sensor signals are measured, which is also reflected in the huge error bars of the HA 

peptide concentration-dependent plot of ΔVt in Fig. 4.18b. 

Less noisy behavior is observed, when ΔVt is measured at a later point of time after the 

plasma treatment, as can be seen from the IgGTarget_green-related curve in Fig. 4.18a. 

Consequently, the error bars in IgGTarget_green concentration-dependent plot of ΔVt in Fig. 4.18b 

are relatively narrow. 

However, the data for both HA peptide and IgGTarget_green in Fig. 4.18a & b indicate merely a 

drift of the sensor signal. Over the entire concentration range, for both analytes the signal 

shifts consistently downward.  

In case of the just TESPSA functionalized surface in Fig. 4.18c & d, no such distinct 

downward drift of the signals is observed. Initially, after the TESPSA deposition, the surface 

is incubated with pure buffer solution so that the succinic anhydride functionalities are 

hydrolyzed and any formation of covalent amide bonds with primary amines (see chapter 3) 

is suppressed. During the subsequent addition of the analytes, the ΔVt values mainly show a 

slight upward trend, with various ups and downs and one huge outlier after placing 3 nM 

IgGTarget_green on the sensor surface. It appears as if the TESPSA deposition yields a sensor 

without any signal stability.  

Overall, neither after the plasma cleaning nor after the TESPSA deposition, any correlation 

between analyte concentration and measured ΔVt is found. As expected, only the 

immobilization of IgGReceptor on the device surface yields dependable signals for distinguishing 

HA peptide and IgGTarget_green.  

The curves in Fig. 4.19 represent a continuation of the experiments shown in Fig. 4.17. 

Again, the IgGReceptor is immobilized on the sensor surface. However, the buffer solution is 

based on 300 µM PB with 0.005 x PBS, instead of 0.002 x PBS, so that higher maximum 

analyte concentrations can be applied at the expense of a reduced Debye screening length 

of the liquid (see section 4.3.4.1).  

The data in Fig. 4.19 confirm the trend of the initial measurements in Fig. 4.17. Increasing 

concentrations of HA peptide yield no steady change of ΔVt . Combining the information 
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Fig. 4.19: ΔVt response of the same device utilized in Fig. 4.17 and Fig. 4.18, again functionalized with 

IgGReceptor. This time it is incubated with 300 µM PB solutions with 0.005 x PBS containing HA 

peptide, or IgGTarget_green as analytes at varying concentrations. (a) Time dependent sensor signal. 

Before t = 0 min (time segment with light gray background), pure buffer is applied on the sensor. 

Starting from t = 0 min, solutions with gradually increasing analyte concentrations are incubated on 

the device. Arrows and adjacent references indicate when the analytes are added at the respective 

concentrations. The upper curve with blue indicators and the lower curve with green indicators are 

related to the addition of HA peptide and IgGTarget_green, respectively. The respectively colored dotted 

lines are guides to the eye to facilitate the recognition of ΔVt changes. (b) Plot of ΔVt over analyte 

concentration. Blue circles and green squares correspond to HA peptide and IgGTarget_green, 

respectively. Data points and error bars are determined from the time dependent ΔVt values 

highlighted in the curves in (a), shortly before changing the analyte concentrations. Data points in the 

section having a light gray colored background in (b) correspond to pure buffer solutions without 

analytes. Light blue and light green strips are guides to the eye indicating the ΔVt development for HA 

peptide and IgGTarget_green, respectively. Both strips are ~ 5 mV wide which is equal to the estimated 

sensor noise. 

from Fig. 4.17 and Fig. 4.19 leads to the conclusion that the noise of the sensor in case of 

the HA peptide amounts to ~ 5 mV. Therefore, 5 mV wide light blue and light green strips 

are included in Fig. 4.19b as guides to the eye for the development of both sensor signals of 

HA peptide and IgGTarget_green, respectively. It is visible that the data of IgGTarget_green suit the 

assumption of a sensor noise of ~ 5 mV. 

With the reduced Debye screening length, compared to the results in Fig. 4.17, slightly 

higher analyte concentrations, beyond 5 nM, are required to obtain a sufficiently large signal 

for distinguishing HA peptide and IgGTarget_green. Therefore, the limit of detection of the 

investigated analyte-sensor system is considered to be slightly above ~ 5 nM. Beyond that 

minimum concentration, the sensitivity of the device for IgGTarget_green is evaluated to be 

SIgG_Target_green ≈ -10 mV/dec. 

In Fig. 4.20 two more devices are functionalized with IgGReceptor and tested for their response 

to increasing amounts of IgGTarget_green. The signals are compared to the previous results from 
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Fig. 4.20: ΔVt response of three different 

devices functionalized with IgGReceptor, incubated 

with 300 µM PB solutions with 0.005 x PBS 

containing IgGTarget_green as analyte at varying 

concentrations. Green squares depict the 

device already shown in Fig. 4.19, orange 

hexagons and dark yellow diamonds depict 

behavior of two further devices. Data points in 

the section having a light gray colored 

background correspond to pure buffer solutions 

without analytes. Dotted lines are guides to the 

eye. 

Fig. 4.19, reproduced in this graph as green 

squares. All curves show the same trend. 

In any case, no significant signal change is 

observed at analyte concentrations below 

1 nM. Beyond cIgG_Target_green = 1 nM, the 

strengths of the device signals range 

between SIgG_Target_green ≈ -8 .. -14 mV/dec.   

On one hand, the apparent device-to-device 

variations are attributed to possible 

inhomogeneities in the density of the 

TESPSA layer as well as the immobilized 

IgGReceptor. Even though silane deposition 

and receptor attachment are always 

performed according to the same protocol 

and the experimental outcome is partially 

monitored by contact angle measurements, 

the results from section 4.3.3.4 indicate 

that the surface chemistry in some cases 

requires more detailed inspection. For the 

future, e. g. XPS measurements are 

advisable.  

On the other hand, the applied bottom-up 

assembly of the FETs naturally entails such 

device-to-device variations, e. g. by varying 

numbers of SiNWs per device. In chapter 5, 

an approach for a well-defined deposition of bottom-up grown SiNWs is presented which is 

assumed to increase the device-to-device reproducibility in the future.  

Altogether, the data of this section proof the concept that the TESPSA-based receptor 

immobilization method developed in chapter 3, combined with the bottom-up SiNW-based 

FETs assembled within this thesis, yields biosensors capable of distinguishing the specific 

analyte, IgGTarget_green, from the nonspecific analyte, HA peptide. For the future, the utilization 

of different receptor molecules is suggested. Single stranded DNA 25 and aptamers,26 for 

example, are capable of capturing analytes much closer to the device surface than 

antibodies. Consequently, lower Debye screening lengths and, thus, higher ionic strengths 

of the analyte solutions are applicable. This is expected to positively influence the device 

specificity, so that also IgGTarget_green and IgGControl_red could be distinguished,127 similar to the 

fluorescence-based results in Fig. 3.6 in section 3.3.2.  
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4.4 CONCLUSION 

Within this chapter, the successful assembly of FETs based on cost-efficient bottom-up 

grown SiNWs is described. After covering the devices with dielectric layers they are 

implemented in microfluidic set-ups, as described in chapter 2 of this thesis, and applied for 

sensing pH and ion concentrations. Finally, based on the receptor immobilization method 

developed in chapter 3 of this thesis, the FET devices are demonstrated to be adaptable for 

biosensor applications. 
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5 MICROFLUIDIC ALIGNMENT AND TRAPPING OF 
NANOWIRES FOR FABRICATING SINGLE-NANOWIRE 
FETs 

As pointed out by the comparative measurements of the sensors in chapter 4, particularly in 

Fig. 4.20, reproducibly assembling electronic devices from bottom-up grown nanostructures 

is a challenging task. In this chapter, a simple method for the microfluidic alignment and 

trapping of one-dimensional (1D) nanostructures from suspension at well-defined positions 

on a receiver substrate is developed. Instead of implementing a random number of contact 

printed nano building blocks in each device (see section 4.2.2), the presented approach 

allows for a subsequent fabrication of single-nanowire field-effect transistors (NW FETs) by 

contacting the deposited NWs via standard UV-lithography (UVL). Silicon as well as copper 

(II) oxide (CuO) NWs are processed, and up to 13 out of 32 designated trapping sites are 

occupied with single-NW FETs. Parts of this chapter are published elsewhere.250 

5.1 MOTIVATION 

In section 4.2.1 of this work, it is shown that 1D nanostructures, such as SiNWs, can be 

readily synthesized in large quantities in bottom-up growth processes. There are various 

approaches to fabricate 1D nanostructures from metals,251–254 organic molecules 255,256 and 

semiconductors.19,24,32,34,35,38–40,199,203,257–268 Compared to their top-down counterparts, bottom-

up 1D nanostructures offer superior electronic properties,39 better control in the fabrication 

of heterostructures with axial 251,252,257 and radial 258 variations, and smaller achievable 

structures down to the molecular scale.38,203 

The great potential of bottom-up NWs has been demonstrated not only in FETs 39 and (bio-) 

sensors.19,24,32,34,35,40,253 but also in other nano-electronics and in nano-photonics applications, 

such as light-emitting diodes,257,258 microcavity lasers,259 waveguides 255,260 and 

photodetectors.256,261  

Within this work, NWs are of high importance as building blocks for the assembly of sensors 

that enable label free real-time monitoring of biologically and medically relevant data with 

detection limits for proteins19,24,32 or DNA34,40 down to the fM-range. There is evidence that 

the highest sensitivity is achieved employing single-NW devices,32 which even allow for 

detecting single viruses,35 and potentially single molecules.19 To obtain multiplexed 

biosensors24 that enable simultaneous monitoring of several analytes with maximized 

sensitivity, it is necessary to fabricate multiple single-NW devices on one chip. This, 

however, requires precise positioning of "bottom-up" 1D nanostructures on substrates, 

which is an ongoing challenge.  
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Several techniques – each of them with specific advantages and limitations – have been 

developed to arrange these nanostructures. Manipulation approaches making use of optical 

tweezers 269 or the hybridization of NW- and substrate-linked single DNA strands 270 are very 

laborious and not applicable on a large scale. Arranging NWs via electric 254,266 or magnetic 

fields 251 yields single-NW devices, but is limited with regard to material choice and requires 

expensive equipment. Alignment approaches based on spray coating,262 bubble-blown 

films,263 Langmuir-Blodgett technique,253,264 mechanical printing 199,265,268 or capillary forces 252 

enable an efficient deposition of NWs over large areas, however, for reliably contacting 

single NWs, costly electron-beam lithography (EBL) processing is required. 

When aligning 1D nanostructures via microfluidics, as demonstrated by Huang and co-

workers, EBL is also indispensable for contacting individual NWs.267 The deposited NWs are 

well oriented parallel to the liquid flow direction, yet spatial precision is limited.  

The issue of full spatial control can be overcome by microfluidic trapping, as it has been 

demonstrated for spherically shaped, micrometer sized particles 56 and cells.57  In contrast, 

1D nanostructures have orders of magnitude smaller diameters and significantly higher 

aspect ratios. Hence, the formerly presented trapping layouts are not applicable to NWs. 

In this chapter, a microfluidic set-up is developed, which enables the alignment of 1D 

nanostructures and their trapping at designated positions. The deposition of single NWs and 

their subsequent contacting via conventional UVL is demonstrated indicating the simplicity 

and the high scalability and cost-efficiency of the approach. 

Within this work, three types of NWs are used. (i) Commercially available monodisperse 

SiNWs in an isopropanol-based suspension (p-i-p doped, diam. × L 

150 nm ± 30 nm × 20 µm ± 2 µm, 106 wires ml-1, Sigma Aldrich, USA). (ii) “Homemade” 

polydisperse SiNWs grown based on the recipe described in section 4.2.1. (iii) “Homemade” 

polydisperse CuO NWs grown via oxidation of Cu substrates. 

In the following, section 5.2 explains the developed microfluidics-based NW deposition and 

contacting approach using the commercially available monodisperse SiNW suspension. The 

electrical characteristics of the fabricated FETs are demonstrated in section 5.3. 

Subsequently, section 5.4 presents the fabrication of the polydisperse NW suspensions and 

their utilization in the microfluidic alignment procedure. In section 5.5, possible adjustments 

of the technique for higher yields of single-NW devices are discussed. Finally, in section 5.6 

an outlook on future applications of the developed method is provided. 
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Fig. 5.1: Schematic of the basic working principle for single-NW FET fabrication. (a) Fabrication of SU-

8 master for soft lithographic replication with PDMS. The master contains micro-channels for NW 

alignment and trapping (white) and channels for depositing UVL mask alignment marks (dark gray). (b) 

Assembly of flow set-up for trapping NWs from suspension. Suspensions are drawn through 

channels under reduced pressure of 10 kPa applied via a syringe pump at the outlet. Tubing is first 

attached to extra PDMS pieces which are then bound to the PDMS stamp containing the micro-

channels. In the enlarged view of the red labeled section, the process of NW trapping is shown 

(t1 < t2). NWs are first flow-aligned and guided into the trapping sites (t1), then trapped and deposited 

(t2). (c) After NW trapping and formation of cross-linked APTES mask alignment marks the flow set-up 

is dismounted for further NW contacting via UVL. (d) Representative SEM image of contacted SiNWs.  

 

5.2 NANOWIRE ALIGNMENT, TRAPPING AND CONTACTING 

5.2.1 Basic working principle 

In this section (section 5.2.1), a basic overview of the strategy for aligning, trapping and 

contacting single-NW devices is presented. The subsequent sections (sections 5.2.2 - 5.2.7) 

provide more detailed explanations on specific steps of the procedure. 

As introduced in section 1.2, one characteristic feature of microfluidics is the strictly laminar 

flow of fluids through the respective devices.16,17 As presented by Huang et al.,267 the laminar 

flow regime and its inherent forces on rod-like structures allow for aligning NWs in flow 

direction.271,272 Within this work, a microfluidic chip is designed which aligns NWs along the 

liquid flow and guides them into sufficiently narrow channels, so that an abrupt 90° change 

of the channel direction leads to a trapping of the 1D nanostructures. By dividing the 

microfluidic structure into multiple sub-channels, several NWs can be trapped in parallel. 
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Simultaneously deposited mask alignment marks, adjacent to the trapping sites, enable a 

subsequent contacting of the NWs via UVL. 

For casting the PDMS-based flow chambers (see also chapter 2), master structures of 

10 µm height are fabricated using SU-8 2010 (MicroChem, USA). Fig. 5.1a depicts a 

schematic of the utilized master structure. The parts of the structure highlighted in dark gray 

form the channels for the deposition of mask alignment marks. The part of the structure 

highlighted in white forms the channels for aligning and trapping the NWs. 

Within the trapping structure, the broad main channel successively branches over several 

stages into progressively smaller sub-channels. At the trapping sites – i. e. the kinks in the 

middle of the structure – the channels are 6 µm wide. For drawing the NW suspension 

through the channels, a reduced pressure of 10 kPa is applied via a syringe pump at the 

outlet. The NWs align along the laminar flow 271,272 and are guided into the trapping sites (at 

t1 in Fig. 5.1b). Here, the NWs cannot follow the liquid flow at the abrupt 90° change of the 

channel direction. Consequently, they are trapped and deposited on the receiver substrate 

(t2 in Fig. 5.1b).  

For depositing the UVL mask alignment marks, 3-aminopropyltriethoxysilane (APTES, see 

also section 1.4.2.3 and chapter 3) is injected into the channels to the left and to the right of 

the trapped NWs via capillary forces.164 In a condensation reaction, the silane molecules bind 

covalently to the oxide surface of the silicon wafer substrate and cross-link among each 

other.147 Consequently, solvent-resistant mask alignment marks remain on the substrate 

surface after dismounting the PDMS flow chamber (see Fig. 5.1c). The resistance of the 

alignment marks against organic solvents is important to prevent their dissolution during 

photoresist spin coating for subsequent UVL. 

By means of the APTES-based alignment marks, one pair of Ni contacts (source and drain) 

for each designated trapping site is deposited via UVL in combination with a lift-off and NW 

contacting procedure as described in section 4.2.3. A representative scanning electron 

microscopy (SEM) image of the contacted SiNWs is shown in Fig. 5.1d. All depicted devices 

are single-NW FETs. 

5.2.2 Optimized trapping channel layout 

Initially, several possible channel layouts and trapping structures were designed a selection 

of which is shown in Fig. 5.2. Within her Diploma thesis,273 N. Haustein evaluated the NW 

trapping efficiencies of these flow structures and optimized the most suitable one, depicted 

in Fig. 5.2d, by means of theoretical flow calculations and experimental work with regard to 

a more homogenous flow behavior and a more reliable NW trapping yield. For the theoretical 

calculations, she used Comsol Multiphysics® including the computational fluid dynamics 

module. 
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Fig. 5.2: Initial trapping channel layouts designed within the framework of this thesis. Blue-framed 

insets show magnified the intended trapping sites highlighted in orange. In (b) and (c) support posts, 

as described in section 2.3.2, are included in the in- and outlet regions. 

Fig. 5.3 shows the final trapping channel layout, including simulated flow velocities of

isopropanol at a pressure difference of 10 kPa between in- and outlet (further utilized in silico 

simulation parameter listed in the appendix). In the final design, the broad main channel of 

the fluidic structure branches over four stages into 32 sub-channels containing the trapping 

sites. Based on the intended 6 µm channel width at the trapping sites, a generalized 

Murray's law is used to obtain the optimum channel widths at the other sections. Murray’s 

law is a biomimetic design rule, based on the principle of minimum work, derived by Murray 

in 1926.274 Barber and Emerson formulated a generalized version of this law, which allows 

for calculating the optimum width ratio between parent and daughter vessels in microfluidic 

manifolds of constant channel height.275 

Tab. 5.1 summarizes the optimized channel widths at different branching stages for the 

utilized 10 µm-high flow structure. Enumerations for the branching stages are the same as 

depicted in Fig. 5.3. 

In addition to the channel widths, the lengths of the branches on the inlet side of the 

trapping sites are optimized. For each branching stage, the hydrodynamic entrance length of 

the sub-channels is determined – i. e. the axial distance at which the centerline velocity in 

the sub-channel reaches 99 % of its value for the fully developed flow profile.276 Twice the 

simulated entrance length is added to the branches on the inlet side of the trapping sites to 

allow the flow profile to sufficiently stabilize, so that the NWs have a sufficient amount of 

time or space, respectively, to align with the flow. On the outlet side of the trapping sites no 

additional channel elongation is required. 

Furthermore, support posts, similar to the ones described in section 2.3.2, are included in 

the channels at the inlet and outlet regions as well as at the branching stages 1 and 2 (see 

Fig. 5.3) to prevent the channels from collapsing.  
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Fig. 5.4: Schematic assembly of microfluidic flow set-ups for trapping NWs from suspension. 

Suspensions are drawn through channels under reduced pressure of 10 kPa, applied via a syringe 

pump at the outlet channel. Tubing is first attached to extra PDMS pieces which are then bound to 

the PDMS stamp containing the microchannels. (a) Tubing attached at both inlet and outlet. (b) 

Punching a large inlet hole into the PDMS stamp allows for direct pipetting of NW suspensions into 

the microchannels. 

 

 
Fig. 5.3: Layout of the final microfluidic channel for 

alignment and trapping of 1D nanostructures, 

including the numbering of the branching stages 

and simulated flow velocities. Flow direction 

indicated by blue arrow. (Courtesy of N. Haustein) 

As Fig. 5.3 illustrates, the velocity reaches its maximum at the trapping sites. In the other 

sections of the structure the velocity is lower and, more importantly, very uniform. 

Therefore, it is assumed that each inflowing NW can end up in any of the trapping sites with 

equal probability. 

Tab. 5.1: Optimized channel widths in the 

10 µm-high flow structure at different 

branching stages. Optimization carried out on 

basis of a generalized Murray's law.274,275 

Branching stages numbered as in Fig. 5.3c. 

(Courtesy of N. Haustein) 

Branching 
stage 

Number 
of 

branches 

Optimized 
channel 

width (µm) 

4 32 6# 

3 8 64 

2 4 130 

1 2 250 

In-/outlet 1 446 
    # At this stage, 6 µm channel width is the  
    default value 
 

5.2.3 Assembly of trapping set-up 

When assembling the flow set-up, it is important to prevent any distortion of the PDMS 

stamp and, thus, misalignment between trapping sites and mask alignment marks. 
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Therefore, the PDMS stamp is placed very gently on the silicon wafer receiver substrate 

merely utilizing the adhesion forces of the PDMS 73 to seal the structure. Additionally, the 

required tubing is not plugged into the PDMS stamp containing the microchannels, because 

this would strain the material. Instead, the tubing is attached to extra PDMS pieces, which 

are then bound to the main PDMS replica of the microchannels via self-adhesion.73  

Besides the assembly approach presented in Fig. 5.1b with tubing attached at both in- and 

outlet, there is the possibility to punch a large inlet hole of 3 mm diameter into the PDMS 

stamp which allows for direct pipetting of NW suspensions into the microchannels. Both 

set-ups are juxtaposed in Fig. 5.4. 

5.2.4 Flow-through processing of NW suspension 

As will be further explained in section 5.4.1, isopropanol is used as basis for all NW 

suspensions within this work. Since isopropanol is known to swell PDMS,72 the stock NW 

suspensions are mixed 1:1 (vol./vol.) with deionized water directly before the flow 

experiments. This dilution of the organic solvent minimizes the swelling of PDMS, so that no 

distortions occur between trapping sites and alignment marks.  

In case of the commercial SiNW suspension, sample volumes below 5 µl are consumed per 

experiment. These experiments require a delicate, but slow, sample uptake via inlet tubing. 

The flow set-up assembly depicted in Fig. 5.4a is used. When working with the SiNW and 

CuO NW suspensions fabricated within this work (see section 5.4), since their NW 

concentration is relatively low, sample volumes of up to 20 µl are applied. Taking up such 

large sample volumes via inlet tubing would be very time consuming. In these cases, the 

flow set-up assembly depicted in Fig. 5.4b is preferably used. 

By means of a syringe pump and a manometer, the NW suspensions are drawn through the 

channel set-up at a reduced pressure of 10 kPa. 

5.2.5 Alignment mark deposition 

Mask alignment marks made of APTES are utilized for the subsequent contacting of the 

trapped and deposited NWs. Parts of the channels for alignment mark deposition are shown 

in Fig. 5.5. Fig. 5.5a & c depict SEM images of the receiver substrate at the end of the 

alignment and trapping procedure after dismounting the PDMS stamp. The previous position 

of the NW trapping channels is discernible as bright traces in-between the white dotted lines 

in Fig. 5.5a. To the left (not shown here) and to the right of the trapping sites, the APTES-

based alignment marks are deposited. 

The channels for the alignment mark deposition possess an opening at the side of the 

PDMS stamp. Drops of APTES are brought in contact with the channels, and the silane 
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Fig. 5.5: Deposition of APTES-based mask alignment marks. (a) SEM image of receiver substrate after 

dismounting PDMS stamp. In-between the white dotted lines, bright traces of the NW alignment 

channels are visible. To its right, the APTES-based alignment marks are deposited. White arrows 

indicate the outline of what is assumed to be the imprint of the swollen part of the PDMS stamp due 

to a release of ethanol during APTES crosslinking.72 (b) Drawing of the channel layouts. In light gray, 

the channels for NW trapping and in dark gray, the channels for the deposition of the APTES-based 

alignment marks. In orange, drawing of the corresponding alignment marks on the mask for 

contacting the NWs. The arrow included in the alignment mark layout indicates the NW suspension 

flow direction of the device. The blue-framed part represents the area depicted in (a). (c) Magnified 

SEM image of the blue circled alignment mark section in (a). (d & e) Magnified view on the red-

framed parts of the alignment marks in (b). 

enters the channels via capillary forces.164 Inside the channels the APTES molecules bind 

covalently to the oxide surface and/or cross-link among each other via their three 

hydrolysable groups (see section 1.4.2.3).147 After inserting the silane into the channels, it is 

allowed to crosslink for at least 12 h before dismounting the PDMS stamp from the receiver 

substrate.  

The APTES-based alignment marks have the advantage that they are insoluble in organic 

solvents. Thus, they do not vanish while spin coating photoresist onto the substrate as 

required for UVL when contacting the wires. However, during the condensation reaction of 

APTES, ethanol is released, which is also known to swell PDMS.72 Consequently, minor 

deformations of the microchannels occur during the deposition of the mask alignment 

marks. In the SEM image in Fig. 5.5a, the APTES-based alignment marks are surrounded by 

imprints the outlines of which are indicated by white arrows. These imprints are assumed to 

originate from an ethanol-based swelling of the PDMS parts in the vicinity of the channels 

for alignment mark deposition. At the crosses of the alignment pattern (see Fig. 5.5e), about 

2 mm away from the center of the trapping structure, there are deviations of a few 

micrometer between specified and obtained alignment mark positions. These deformations 
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Fig. 5.6: Optical microscopy images of trapping experiment with NW trapping structure utilized in 

preliminary experiments (see also Fig. 5.2b). The blue arrow indicates the flow direction. Scale bars 

denote 100 µm. Although this trapping structure does not provide sufficient control over the NW 

positioning, it can be used for trapping large amounts of NWs, for studying the interactions between 

NWs and PDMS stamp, and NWs and receiver substrate, respectively. (a) Before dismounting the 

flow assembly, large amounts of NWs are trapped in the intended trapping sites, but also in other 

sections of the channel. (b) After dismounting the alignment chamber, a large proportion of the 

trapped NWs adheres to the PDMS stamp, assumingly due to the high adhesion forces of the PDMS. 

(c) On the wafer, only two non-overlapping NWs are left at the trapping site, indicated by the white 

arrow. (Courtesy of N. Haustein) 

decrease the accuracy of the mask alignment during UVL. However, already the alignment 

accuracy achieved when focusing on the alignment structure closest to the trapping sites, 

depicted in see Fig. 5.5c & d, is sufficient to reliably contact the deposited NWs. Fig. 5.5c 

demonstrates the high quality of the APTES structures achieved with the described 

procedure. 

One possible approach for reducing the swelling of the PDMS might be the application of 

silanes with methoxy instead of ethoxy hydrolysable groups. Then, during the crosslinking of 

the alignment mark structures, methanol instead ethanol will be released. Methanol swells 

PDMS only half as much as ethanol.72  

5.2.6 Disassembly of trapping set-up and single-NW yield 

In case of the commercial, monodisperse SiNW suspension, when using the optimized 

trapping structure described in section 5.2.2, rarely more than two SiNWs per trapping site 

are deposited – even if optical microscopy observations during the flow experiments indicate 

the trapping of an increased amount of SiNWs. As emphasized by the images in Fig. 5.6 

from preliminary experiments using the trapping structure depicted in Fig. 5.2b, large 

amounts of trapped SiNWs are lifted off the receiver substrates upon dismounting the 

PDMS flow chamber. It is assumed that mainly SiNWs having contact to the receiver 

substrate over their entire length stay on the substrate surface. SiNWs having only partly or 

no contact to the substrate – e. g. due to lying on top of other SiNWs – are removed with 

the PDMS stamp, due to adhesion forces between stamp and NWs.73  
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Fig. 5.7: (a) Schematic drawing of the average 

tilted deposition of the NWs with respect to the 

trapping channel sidewalls. (b) Schematic drawing 

showing how NW tilt is considered in the source 

(S) and drain (D) metal contact layout.  

Based on this mechanism, after contacting the NWs (see section 5.2.7), up to 13 out of 32 

designated trapping sites are occupied with single-SiNW FETs. On average, 25-40% of the 

produced FET devices do not contain any SiNWs, 35-40% contain one SiNW, 15-25% 

contain two SiNWs, and below 10% contain more than two SiNWs. These yields are 

comparable to earlier works in this field, such as electric field-based NW alignment.254,277 

More recent electric field-based approaches 266 and EBL-supported deposition and contacting 

techniques 268 achieve significantly higher yields of single-NW devices. However, the 

approach developed within this work uniquely unites simplicity, cost-efficiency and 

versatility. 

5.2.7 Contacting the NWs 

Within her diploma thesis, N. Haustein 

found that the commercial, 

monodisperse SiNWs are deposited in 

tilted positions, on average with an angle 

of 21° ± 5° between NW and channel 

wall (see Fig. 5.7a). Using the APTES-

based alignment marks, one pair of metal 

contacts (source and drain) is deposited 

for each designated trapping site. In the 

design of the metal contacts the 

observed NW tilt is taken into account, 

as schematically shown in Fig. 5.7b.  

When contacting the SiNWs, Ni is used 

as electrode material. In accordance with the recipe described in section 4.2.3, AZ5214e 

image reversal photoresist is used as negative resist in the UVL procedure. Immediately 

before depositing 175 nm Ni on the devices (High Resolution Ion Beam Coater, Gatan, USA), 

the samples are dipped in 1% HF for 40 s to remove the native SiO2 shell from the SiNWs. 

After metal deposition and lift-off in acetone, the samples are rinsed in isopropanol and dried 

under a stream of N2. Subsequently, the samples are annealed in forming gas (N2:H2 10:1, 

10 mbar, 450 °C, 3 min, ATV SRO-706 Reflow Oven, ATV Technologies, Germany) to lower 

the contact resistance. 

Fig. 5.1d and Fig. 5.8a show representative scanning electron microscopy (SEM) image of 

contacted SiNWs. All depicted devices are single-NW FETs.  
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Fig. 5.8: SiNW FET characteristics. (a) SEM image of five neighboring back-gated single-SiNW FETs. 

(b) Representative single-SiNW FET ISD-VBG output curves recorded with the device highlighted in (a) 

at VSD = 5 V. (c) Representative single-SiNW FET ISD-VSD output curves recorded with the device 

highlighted in (a) at different gate voltages: orange circles, black squares, blue diamonds correspond 

to VBG = 10 V, 0 V, 10 V respectively. (d) Comparison of averaged drain currents in FET devices with 

different numbers of SiNWs at VSD = 5 V: black circles, orange squares and blue diamonds correspond 

to 0, 1 and 2 SiNWs per FET, respectively. Note the reverse direction of VBG -axis in (b & d). 

5.3 CHARACTERISTICS OF FETs FROM COMMERCIAL MONODISPERSE 
SINW SUSPENSION 

Fig. 5.8 summarizes the electronic properties of the SiNW FETs fabricated within this work. 

In all cases, the receiver substrates are Si wafer with 200 nm thermal oxide (Active Business 

Company GmbH, Germany). For characterizing the back-gated devices, the same PM8 

Prober set-up as described in section 4.3.1 is used.  

Fig. 5.8a shows five neighboring single-NW FETs. In Fig. 5.8b & c the representative ISD-VBG 

and ISD-VSD characteristics of the highlighted single-SiNW FET (see Fig. 2a) are plotted. The 

characteristics demonstrate a p-type behavior of the devices, as expected for the purchased 

p-doped SiNWs. At VSD = 5 V, average on-currents of approximately 0.25 nA per single-SiNW 

FET are observed. 

As pointed out in section 5.2.6, there are also trapping sites where no SiNW or more than 

one SiNW is contacted. The averaged drain-currents of three different kinds of devices (0, 1 

or 2 SiNWs per FET) are compared in Fig. 5.8d. As expected, the graph shows that the 

output current scales with the number of SiNWs per FET. 
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The measured currents are relatively low compared to other SiNW devices in literature.39 

The deviations are attributed to two effects. First, the thick gate oxide and back-gate 

geometry lead to a low gate coupling. Second, the commercial SiNWs utilized within this 

work are not passivated so that charge trapping within the native oxide shell occurs. This 

effectively screens the gate coupling (see section 1.3.4).  

For the future, at the NaMLab gGmbH, there is the vision to fabricate NWs that are readily 

passivated, e. g. with thermal SiO2 and high-k dielectrics, and that possess surrounding gate 

electrodes. Applying such bottom-up 1D nanostructures in the presented alignment and 

trapping set-up is expected to yield single-NW FETs with improved electrical characteristics. 

Initial experiments for applying NW suspensions made from “homemade” 1D 

nanostructures are presented in section 5.4. 

Additionally, compared to the contact printing approach described in section 4.2.2, the 

microfluidics-based deposition of bottom-up grown NWs presented in this chapter enables 

the utilization of receiver substrates with very thin oxide layers without the risk of scratching 

the surface and producing devices with high leakage currents. Consequently, in future 

experiments the gate oxide thickness can readily be reduced for enhancing the device 

performance.  

5.4 “HOMEMADE” NANOWIRE SUSPENSIONS 

The successful fabrication of single-NW FETs using the commercially available SiNW 

suspension in combination with the relatively poor electrical characteristics of the respective 

devices generates a demand for “homemade” NW suspensions with better control over the 

electrical properties of the NWs. In this section, the fabrication of polydisperse NW 

suspensions made from bottom-up grown SiNWs and CuO NWs is described. Furthermore, 

their applicability for the fabrication of single-NW FETs with the presented microfluidics-

based alignment and trapping approach is tested. 

It is expected that the optimized flow structure (see Fig. 5.3) works specifically well with 

NWs having similar mechanical properties as the applied commercial SiNWs. The NW length 

and the NW stiffness are regarded as the two most essential aspects determining the 

success of the alignment and trapping procedure. Considering that the NWs depicted in Fig. 

5.1, Fig. 5.6 and Fig. 5.8 show hardly any bending, rather stiff NWs of at least 20 µm length 

are assumed to be optimum ingredients for the “homemade” NWs suspensions. 

5.4.1 Suspension medium 

The commercial SiNWs are delivered in an isopropanol-based suspension. Due to their 

native oxide shell, SiNWs possess a polar surface, just as CuO NWs.278 As a polar solvent or 

suspension medium, respectively, isopropanol inhibits the agglomeration of such polar nano-

sized objects, which explains its frequent application for similar purposes in other 
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Fig. 5.9: Preparation of SiNW suspension. (a) Schematic drawing of growth and harvesting procedure. 

Al2O3 is used as sacrificial layer. After deposition of seed AuNPs on the TESPSA functionalized 

surface and catalytic growth of SiNWs in a SiH4-enriched CVD atmosphere (see section 4.2.1), Al2O3 

is etched using a 5 vol.% aqueous H3PO4 solution. Subsequently, the SiNWs are dispersed in 

isopropanol. (b & c) SEM images of SiNWs deposited on Si wafer surface from a 5 µl drop of 

isopropanol-based SiNW suspension.  

 

references.120,254,262,266 Consequently, also the NWs grown within this work are dispersed in 

isopropanol by harvesting them via ultrasound. 

5.4.2 Polydisperse SiNW suspensions 

As described in section 4.2.1, the bottom-up growth of SiNWs enables a cost-efficient 

production of innumerable amounts of semiconducting nano-sized building blocks. 

Experience shows that harvesting SiNWs in liquid via ultrasound often yields suspensions of 

NW pieces significantly shorter than the actual NW growth length.120 Therefore, within this 

work, for preparing SiNW suspensions, at first a 20 nm thick Al2O3 sacrificial layer is atomic 

layer deposited (3) on the growth substrate surface, before immobilizing seed gold 

nanoparticles (AuNPs) on top. The idea is, as depicted in Fig. 5.9, to first grow the NWs, 

then etch away the sacrificial Al2O3 layer using H3PO4 
279 and finally disperse the NWs over 

their entire length in isopropanol. 

For depositing the linker silane TESPSA and seed AuNPs on top of the Al2O3 layer and for 

growing the SiNWs, the same recipes as described in section 3.2.4 and in section 4.2.1, 

respectively, are applied. For etching the sacrificial layer, growth substrates are dipped over 

                                                
(3) ALD chamber: Roth & Rau AG (Germany). 300°C, 266 cycles: introduction of TMA for 20 ms, N2 
purge for 5 s, introduction of O3 und reaction time of 5 s, N2 purge for 3 s (see also section 4.2.4). 
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Fig. 5.10: Outcome of alignment and trapping experiments using SiNW suspensions fabricated 

according to the production scheme schematically depicted in Fig. 5.9. (a) SiNW of ~ 14 µm length 

deposited at NW trapping site. The former positions of the microfluidic channel walls are readily 

identifiable due to the debris left behind by the isopropanol-based suspension. (b) NW agglomerations 

observed at the inlet of the flow structure. The locations of the two spots depicted in (a) and (b) on 

the receiver substrate are circled in blue and red, respectively, in the image of the flow structure in 

the middle of the figure. Blue arrow indicates NW suspension flow direction.  

night in 5 vol.% aqueous H3PO4 solution. After rinsing the substrate twice in water, it is 

dipped into isopropanol and sonicated for 1 s so that the SiNWs are released. The sonication 

is kept as short as possible, because sonicating for much longer than 1 s could break already 

harvested SiNWs in the suspension into smaller pieces. 

The SEM images in Fig. 5.9b,c show SiNWs that remained on a fresh Si wafer after putting 

a 5 µl drop of the produced NW suspension on its surface and evaporating the isopropanol. 

In both cases, the longest NWs exceed 40 µm in length indicating a successful dispersion of 

the respective NWs over their entire lengths. It appears that most of the NWs do not detach 

from the growth substrate during the H3PO4-based etching step. Instead, the etching step 

only weakens the connection to the substrate making the NW segments closest to the 

substrate surface preferential breaking points during sonication. This facilitates harvesting 

long SiNWs in isopropanol. However, as exposed in Fig. 5.9b, there are also undesirably 

short NW fragments in the suspension. Furthermore, the bending of the NW in Fig. 5.9c 

demonstrates that its stiffness is undesirably low compared to the commercial SiNWs. 

When applying the produced SiNW suspension in the microfluidic alignment and trapping 

set-up depicted in Fig. 5.4b (see section 5.2.3), the high flexibility of the produced SiNWs 

yields huge complications in the experimental procedure. Fig. 5.10 shows a single-SiNW 

deposited at a trapping site (Fig. 5.10a) and large SiNW agglomerates deposited at the inlet 

area of the flow structure (Fig. 5.10b). It appears that in the microfluidic channel, most of the 

SiNWs entangle together, making them useless for the actual alignment and trapping 

procedure. Furthermore, the SiNW depicted in Fig. 5.10a, with its curvature and its short 

NW length, is assumed to be not trapped but accidently deposited near the intended 

trapping site.  
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Fig. 5.11:  Growth and harvesting of CuO NWs. 

SEM images of (a) CuO NW forest on growth 

substrate, (b) CuO NWs deposited on Si wafer 

surface from isopropanol-based suspension.  

Fig. 5.10a also illustrates that large amounts of debris are left on the receiver substrate near 

the channel walls. Due to the sonication of the substrates during harvesting the SiNWs, it is 

not possible to determine the origin of the debris. Any previous contaminants of the growth 

substrate surface could be included in it, such as flakes of amorphous Si formed as 

undesired side product during SiNW growth.202 

Due to the low yield of SiNWs deposited at the trapping sites and due to the risk of cross 

contaminating the clean room devices of the NaMLab gGmbH, because of the debris on the 

surface, the samples produced from the “homemade” SiNW suspension are not further 

processed. 

For future experiments, the stiffness of the NWs must be increased to obtain better 

alignment and trapping results. Since the SiNWs fabricated within this work are much 

thinner (~ 20 nm) than the utilized commercial SiNWs (~ 150 nm), increasing the NW 

thickness may be one possibility to reduce their flexibility. Furthermore, the application of 

shorter NWs in combination with a narrower channel width and a reduced channel height at 

the trapping sites, could enhance the trapping yield. Shorter NWs are expected to show less 

entanglement at the inlet area (see Fig. 5.10b). The trapping site geometry has to be 

adjusted accordingly. However, as further discussed in section 5.5, adjustments to the 

channel dimensions have to be done with great care. 

5.4.3  Polydisperse CuO NW suspensions 

To verify the applicability of the developed NW positioning method with NWs of another 

type of material, polydisperse suspensions from CuO NWs are prepared. In the literature, 

CuO NWs are proven to yield p-type field-effect transistors and CO gas sensors.280 

Within this work, CuO NWs are grown via oxidation of Cu foil (99,9% Cu content, RCT®-

ANT-99.9, Reichelt Chemietechnik GmbH + Co., Germany) at 500 °C in air for 12 h,281 and 

dispersed in isopropanol via sonication. Fig. 5.11 shows the NWs on the growth substrate 

and after their deposition on a Si wafer 

from a drop of NW suspension. Both 

images show that CuO NWs of at least 

20 µm length are grown. However, also 

large portions of shorter NW pieces go 

into suspension. 

The CuO NW suspensions are diluted 1:1 

(vol./vol.) with deionized water directly 

before applying up to 20 µl of sample 

volume in the alignment and trapping set-

up depicted in Fig. 5.4b. For contacting 
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Fig. 5.12: (a) SEM image of a back-gated single 

CuO NW FET fabricated with the developed 

approach. (b) ISD-VSD characteristics of the device 

shown in Fig. 5.12a at different gate voltages: 

orange circles, black squares, blue diamonds 

correspond to VBG = -40 V, 0 V, 40 V respectively. 

the deposited CuO NWs, Cr/Au 

electrodes (5 nm/110 nm, UNIVEX 300, 

Oerlikon Leybold Vaccum) are used. 

After UVL using AZ5214e image reversal 

photoresist as negative resist, metal 

deposition and lift-off in acetone, the 

samples are rinsed with isopropanol and 

dried under a stream of N2. 

Fig. 5.12a shows a representative image 

of a CuO NW trapped and contacted with 

the presented approach. The plot in 

Fig. 5.12b demonstrates the p-type 

behavior of the CuO single-NW FET. The 

on-current of 0.39 nA is in good agreement with the characteristics of other CuO NW 

devices in literature.280  

Compared to the commercial SiNWs, less single-NW FETs per chip are obtained when using 

the CuO NWs. This is attributed to the polydispersity of the CuO NWs in the obtained 

suspension as well as to the fact that a large proportion of the CuO NWs is significantly 

shorter than the 20 µm-long commercial SiNWs.  

Compared to the “homemade” SiNWs, the CuO NWs show no such entanglement as 

depicted in Fig. 5.10b. The CuO NWs appear to be much stiffer which is attributed to their 

thickness of ~ 150 .. 200 nm. This indicates that increasing the thickness and, thus, the 

stiffness of the 1D nanostructures results in better trapping behavior. 

5.5 POSSIBLE FUTURE TUNING OF SINGLE-NW FET YIELD 

The results show that a monodisperse NW solution with stiff NWs more likely yields single-

NW devices. It is assumed, that the NW concentration in the suspensions, the flow velocity 

at the trapping sites as well as the channel width and height at the trapping sites are also 

important parameters that influence the yield of single-NW devices.  

In case of the trapping site geometry, reducing the channel height will guide the NWs closer 

to the receiver substrate surface on the bottom of the channel. This way they are more likely 

to assemble on the receiver substrate surface over their entire length, reducing the 

probability of receiving devices with no attached NWs. However, the probability of receiving 

devices with more than one NW is increased.  

Reducing the channel width will decrease the amount of trapping sites where two or more 

neighboring NWs are deposited. However, reducing the channel dimensions, i. e. width and 

height, respectively, will make the system prone to clogging. This highlights that there is a 
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delicate interplay of channel width and height towards the effective deposition of single-NW 

devices. 

5.6 CONCLUSION 

The results of this chapter demonstrate the successful development of a continuous-flow 

microfluidics-based approach for the alignment, trapping and deposition of single NWs at 

designated positions, without limitations regarding NW materials. Crucial parameters for the 

alignment and trapping outcome are the stiffness and the length of the 1D nanostructures 

as well as the layout and the dimensions of the trapping sites. The option to use standard 

UVL for contacting the NWs renders the process cost-efficient and attractive for large scale 

applications. The fact that microfluidic channels with hundreds and thousands of trapping 

sites have been built for single-particle 56 and single-cell studies,57 respectively, illustrates the 

upscaling opportunities of the presented method.  

Within the scope of this thesis, in the field of chemo- and biosensing, large-scale arrays of 

single-NW devices are considered a seminal step towards a highly sensitive multiplexed 

detection of large amounts of analytes, with enhanced properties compared to e. g. DNA 

microarrays.196 Generally, as the positioning of 1D nanostructures can be fully controlled, the 

developed approach represents a simple, yet precise and versatile tool for integrating 1D 

bottom-up building blocks with their unique properties into top-down technology. 

The single-NW devices assembled within this work are not passivated with a dielectric film 

(see section 4.2.4), so that they are not used for sensing applications in aqueous 

environments via liquid gate (see sections 4.3.3 and 4.3.4). Instead, they are used for 

memristive sensing 282 in a back-gate arrangement by B. Ibarlucea. 
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FINAL CONCLUSION AND OUTLOOK 

Within this thesis, various innovative concepts for the fabrication of LoC analysis devices are 

developed and successfully applied. Step by step, the respective achievements of the 

different chapters finally result in a facile fabrication of SiNW-based biosensors. 

The sensing devices are comprised of a microfluidic system the channel layouts of which 

are readily adaptable to all kinds of flow requirements, as demonstrated in chapter 2. SiNW-

based FETs are the signal transducing backbone of the biosensors. Implemented into the 

microfluidic channels, they show high pH sensitivities near the Nernst limit (see chapter 4). 

In order to exploit their sensitivities for biosensing purposes, the NWs are functionalized 

using a TESPSA-based surface modification approach, developed in chapter 3, which allows 

for a simple attachment of analyte-specific receptor molecules. In the final set-up, 

immobilized antibodies enable distinguishing between the unspecific analyte, HA peptide, 

which induces no signal changes and the specific analyte, IgGTarget_green, which is detected 

with varying sensitivities of SIgG_Target_green ≈ -8 .. -14 mV/dec at concentrations beyond 

cIgG_Target_green = 1 nM. As a means to diminish device-to-device variations and to increase 

device sensitivities, in chapter 5, a continuous-flow microfluidics-based NW alignment and 

trapping procedure for reliably fabricating single-SiNW FETs is developed.  

Beyond focusing on the assembly of SiNW devices, the developed techniques are utilized 

for exploring several additional applications. The reversible sealability , ranging from (i) the 

fabrication of flexible electronic interconnects and uniquely shaped 3D polymer 

microstructures with possible applications in cell culturing (chapter 2) over (ii) the patterned 

immobilization of AuNPs and patterned surface wettabilities for passively controlling the 

behavior of liquids (chapter 3) to (iii) the implementation of different kinds of NW materials 

into single-NW FETs.  

Currently, the presented techniques are further applied and adjusted for (i) assembling the 

microfluidics of localized SPR devices, (ii) functionalizing SiNW-based sensors similar to the 

ones presented in chapter 4 and (iii) memristive single-SiNW-based sensing. In summary, 

the achievements of this thesis are considered a very versatile, useful toolbox for future 

scientific investigations and further engineering of facile LoC built-ups, not only in the field of 

SiNW-based biosensing but also in the greater field of bionanotechnology. 
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APPENDICES 

A.1  PROTOCOLS 

A.1.1 UV-Lithography 

Preparation of master structures for microfluidic channels using SU-8 2010 (SU-8 2050) 
negative photoresist (MicroChem) 

Substrate 

preparation 

4'' SSP silicon wafer with native oxide (Siegert Wafer) treated with air 

plasma (Plasma Prep II, SPI supplies) for 2 min and heated to 95 °C for 

10 min 

Spin coating of 

photoresist 

Two-step coating protocol: 500 rpm at 100 rpm s-1 for 10 s and 3000 rpm 

at 300 rpm s-1 for 45 s 

Soft-bake At 95 °C for 3 min (7 min) 

UV-exposure 
In MJB4 manual mask aligner (SÜSS MicroTec), 114 mJ cm-2 (4 x 190 mJ 

cm-2) at 365 nm 

Post-exposure 

bake 
At 95 °C for 3.5 min (4 min) 

Development In mr-Dev 600 for 3 min (4 min) 

Rinsing In isopropanol 

Drying Under a stream of N2 

Storage In dust-free conditions in a container 

 

Application of AZ5214e image reversal photoresist as positive resist and application of 

AZ6632 positive photoresist (both MicroChemicals GmbH) 

Spin coating of 

photoresist 
At 2000 rpm, 4000 rpm s-1 for 50 s 

Bake At 110 °C for 1.5 min 



Appendices 

124 

UV-exposure In MJB4 manual mask aligner (SÜSS MicroTec), 57 mJ cm-2 at 365 nm 

Development In AZ 726 MIF developer for 1 min 

Rinsing In water 

Drying Under a stream of N2 

 

Application of AZ5214e image reversal photoresist as negative resist 

Spin coating of 

photoresist 
At 2000 rpm, 4000 rpm s-1 for 50 s 

Prebake At 120 °C for 1.5 min 

UV-exposure In MJB4 manual mask aligner (SÜSS MicroTec), 19 mJ cm-2 at 365 nm 

Reversal bake At 120 °C for 1.5 min 

Flood 

exposure 
In MJB4 manual mask aligner (SÜSS MicroTec), 570 mJ cm-2 at 365 nm 

Development In AZ 726 MIF developer for 1 min 

Rinsing In water 

Drying Under a stream of N2 

 

Patterned Au thin film deposition 

Substrate 

preparation 
AZ5214e lithography-based patterning of the surface 

Au deposition UNIVEX 300, Oerlikon Leybold Vacuum, 5nm Cr / desired thickness of Au 
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Lift-off In acetone 

Rinsing In isopropanol 

Drying Under a stream of N2 

 

Patterned Ni thin film deposition on SiNWs 

Substrate 

preparation 
AZ5214e lithography-based patterning of the substrate 

HF-dip 
Dip in 1 % HF for 40 s (native SiO2 shell around SiNWs) to 80 s (6nm 

thermal SiO2 shell around SiNWs) 

Rinsing Extensively under a stream of water for 1.5 min 

Drying Under a stream of N2 

! Critical step ! 

Max. 5 min between last HF-contact of sample and introduction of sample 

into the vacuum chamber of sputtering device, due to fast reoxidation of 

Si 

Ni deposition 
At 10 keV beam energy in High Resolution Ion Beam Coater (Gatan, Inc.) 

until desired Ni thickness is reached 

Lift-off In acetone 

Rinsing In isopropanol 

Drying Under a stream of N2 

 

A.1.2 Soft lithography 

Preparation of microfluidic channels via polydimethylsiloxane (PDMS)-based soft 

lithography 

Pre-polymer 

mixing 

Mixing of PDMS (Sylgard 184, Dow Corning) base and curing agent 10:1 

by weight 
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Degassing Under vacuum until no more air bubbles are visible 

Casting Pour liquid pre-polymer mixture onto master structure 

Curing At 45°C for at least 5 h 

Mold 

disassembly 
Peel cured PDMS cast from master structure 

Storage 
In dry and dust-free conditions with the indented structure facing away 

from the storage container 

 

A.1.3 SiNW growth and thermal oxidation 

SiNW growth 

Substrate 

preparation 

SSP silicon wafer with native oxide (Siegert Wafer) treated with air plasma 

(Plasma Prep II, SPI supplies) for 2 min 

AuNP 

deposition 

Dilute aqueous AuNP solution (20 nm Gold Nanospheres - BioPure, 1 

mg/mL, BPEI-stabilized, nanoComposix Europe) 1:100 in water and cover 

wafer with solution for 30 min 

Rinsing Under flowing water 

Substrate 

cleaning 

Successive ultra-sonication in acetone, isopropanol and water, in each 

case for 10 min 

Drying Under a stream of N2  

Removing 

organic shell 

of Au-NP 

250 W remote O2 plasma (20sccm O2, 50 Pa) in ATV SRO-706 Reflow 

Oven (ATV Technologies)  

CVD growth of 

SiNWs 

In customized Precision 5000 (Applied Materials) - pre-treatment: (1) 

450 °C, 500 sccm H2, 6.65 kPa, 230s, (2) H2/Ar-plasma, 200 W, 450 °C, 

950 sccm Ar, 50 sccm H2, 0.4 kPa, 300 s - growth: 450 °C, 50 sccm SiH4, 

50 sccm H2, 6.67 kPa (growth rate up to ~ 1 µm/min) 
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Thermal oxidation of SiNWs 

Substrate 

preparation 

Substrate with printed SiNWs is cleaned in acetone, isopropanol and 

water 

Catalyst 

particle 

dissolution 

In aqua regia (HNO3:HCl, 1:3, vol./vol.) for 4 h 

Rinsing In water 

Drying Under a stream of N2  

Thermal 

oxidation 

875°C, 100 kPa O2, 6 min in rapid thermal processing furnace (RTP, AST 

Electronic GmbH)  

Passivation of 

dangling 

bonds 

450°, 100 kPa forming gas (H2:N2, 1:20, vol./vol.), 10 min (RTP, AST 

Electronic GmbH) 

 

 

A.2  IN SILICO FLOW SIMULATION 

Input parameter applied for in silico flow simulation studies of microfluidic NW 

alignment and trapping structures in COMSOL Multiphysics (courtesy of N. Haustein) 

Property name Value 

Density of PDMS ρ
PDMS

 970 kg m-3 

Young’s modulus E
PDMS

 750 kPa 

Poisson’s ratio ν
PDMS

 0.5 

Density of isopropanol ρ
isopropanol

 781 kg m-3 

Dynamic viscosity μ
isopropanol

 0.0025 Pa s 

Pressure at inlet p
in
 100 kPa 

Pressure at outlet p
out

 90 kPa 
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