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Abstract A classic approach for learning Bayesian networks from data is to iden-
tify a maximum a posteriori (MAP) network structure. In the case of discrete Bayes-
ian networks, MAP networks are selected by maximising one of several possible 
Bayesian–Dirichlet (BD) scores; the most famous is the Bayesian–Dirichlet equiv-
alent uniform (BDeu) score from Heckerman et  al. (Mach Learn 20(3):197–243, 
1995). The key properties of BDeu arise from its uniform prior over the parameters 
of each local distribution in the network, which makes structure learning computa-
tionally efficient; it does not require the elicitation of prior knowledge from experts; 
and it satisfies score equivalence. In this paper we will review the derivation and 
the properties of BD scores, and of BDeu in particular, and we will link them to the 
corresponding entropy estimates to study them from an information theoretic per-
spective. To this end, we will work in the context of the foundational work of Giffin 
and Caticha (Proceedings of the 27th international workshop on Bayesian inference 
and maximum entropy methods in science and engineering, pp 74–84, 2007), who 
showed that Bayesian inference can be framed as a particular case of the maximum 
relative entropy principle. We will use this connection to show that BDeu should not 
be used for structure learning from sparse data, since it violates the maximum rela-
tive entropy principle; and that it is also problematic from a more classic Bayesian 
model selection perspective, because it produces Bayes factors that are sensitive to 
the value of its only hyperparameter. Using a large simulation study, we found in our 
previous work [Scutari in J Mach Learn Res (Proc Track PGM 2016) 52:438–448, 
2016] that the Bayesian–Dirichlet sparse (BDs) score seems to provide better accu-
racy in structure learning; in this paper we further show that BDs does not suffer 
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from the issues above, and we recommend to use it for sparse data instead of BDeu. 
Finally, will show that these issues are in fact different aspects of the same problem 
and a consequence of the distributional assumptions of the prior.

Keywords Bayesian networks · Structure learning · Bayesian posterior 
estimation · Maximum relative entropy principle · Discrete data

1  Introduction and background

Bayesian networks (BNs; Pearl 1988; Koller and Friedman 2009) are probabilistic 
graphical models based on a directed acyclic graph (DAG)  whose nodes are asso-
ciated with a set of random variables � = {X1,… ,XN} following some distribution 
P(�) . (The two are referred to interchangeably.) Formally,  is defined as an independ-
ency map of P(�) such that:

where �A , �B and �C are disjoint subsets of � . In other words, graphical separa-
tion (denoted ⟂⟂G , and called d-separation in this context) between two nodes in  
implies the conditional independence (denoted ⟂⟂P ) of the corresponding variables 
in � . Two nodes linked by an arc cannot be graphically separated; hence the arcs 
of  represent direct dependencies between the variables they are incident on, as 
opposed to indirect dependencies that are mediated by one or more nodes in .

A consequence of this definition is the Markov property (Pearl 1988): in the absence 
of missing data the global distribution of � decomposes into:

where the local distribution of each node Xi depends only on the values of its par-
ents �Xi

 in  (denoted �
Xi

 ). In this paper we will focus on discrete BNs (Heckerman 
et  al. 1995), in which both � and the Xi are multinomial random variables; in 
particular:

where each parameter set �Xi
 comprises the conditional probabilities:

�A ⟂⟂G �B|�C ⟹ �A ⟂⟂P �B|�C,

(1)P(�|) =
N∏

i=1

P
(
Xi|�


Xi

)

Xi|�

Xi
∼ Multinomial

(
�Xi

|�
Xi

)

�ik|j = P
(
Xi = k|�

Xi
= j

)
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of each value k of Xi given each possible configuration of the values of �
Xi

 . Other 
possibilities include Gaussian BNs (Geiger and Heckerman 1994) and conditional 
linear Gaussian BNs (Lauritzen and Wermuth 1989). In Gaussian BNs, � is multi-
variate normal and the (conditional) dependencies between the Xi are assumed to be 
linear, leading to

which can be written as a linear regression model of the form

or using the partial correlations between Xi and each parent given the rest; the two 
parameterisations are equivalent (Weatherburn 1961). Conditional linear Gaussian 
BNs combine multinomial and normal variables using mixture of normals, with dis-
crete variables identifying the components of the mixture.

It is important to note that the decomposition in (1) does not uniquely identify a 
BN; different DAGs can encode the same global distribution, thus grouping BNs into 
equivalence classes (Chickering 1995) characterised by the skeleton of  (its underly-
ing undirected graph) and its v-structures (patterns of arcs of the type Xj → Xi ← Xk , 
with no arc between Xj and Xk ). Intuitively, the direction of arcs that are not part of 
v-structures can be reversed without changing the global distribution, just factorising it 
in different ways, as long as the new arc directions do not introduce additional v-struc-
tures or cycles in the DAG. As a simple example, consider,

The task of specifying BNs is called learning and can be performed using either 
data, prior expert knowledge on the phenomenon being modelled or both. The latter 
has been shown to provide very good results in a variety of applications, and should 
be preferred if it is feasible to elicit prior information from experts (Castelo and 
Siebes 2000; Mukherjee and Speed 2008). Learning BNs from data is usually per-
formed in an inherently Bayesian fashion by maximising,

Xi|�

Xi
∼ N

(
�Xi

|�
Xi

)

Xi = �Xi
+�

Xi
�Xi

+ �, � ∼ N(0, �2
Xi
)

P(Xi)P(Xj|Xi)P(Xk|Xj)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Xi→Xj→Xk

= P(Xj,Xi)P(Xk|Xj)

= P(Xi|Xj)P(Xj)P(Xk|Xj)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Xi←Xj→Xk

.

(2)
P(|) = P(,�|)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

learning

= P(|)
⏟⏟⏟

structure learning

⋅ P(�|,)
⏟⏞⏞⏟⏞⏞⏟

parameter learning

,
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where  is a sample from � and  = (,�) is a BN with DAG  and parameter 
set � =

⋃N

i=1
�Xi

 . Structure learning consists in finding the DAG  that encodes the 
dependence structure of the data; parameter learning involves the estimation of the 
parameters � given  . Expert knowledge can be incorporated in either or both these 
steps through the use of informative priors for  or �.

Structure learning can be implemented in several ways, based on many results 
from probability, information and optimisation theory; algorithms for this task can 
be broadly grouped into constraint-based, score-based and hybrid.

Constraint-based algorithms (Aliferis et al. 2010a, b) use statistical tests to learn 
conditional independence relationships from the data and to determine if the cor-
responding arcs should be included in  . In order to do that they assume that  is 
faithful to P(�) , meaning

this is a strong assumption that does not hold in a number of real-world scenarios, 
which are reviewed in Koski and Noble (2012). Depending on the nature of the data, 
conditional independence tests in common use are the mutual information ( G2 ) and 
Pearson’s �2 tests for contingency tables (for discrete BNs); and Fisher’s Z and the 
exact t tests for partial correlations (for Gaussian BNs); an overview is provided in 
Scutari and Denis (2014).

Score-based algorithms are closer to model selection techniques developed in 
classic statistics and information theory. Each candidate network is assigned a score 
reflecting its goodness of fit, which is then taken as an objective function to maxim-
ise. This is often done using heuristic optimisation algorithms, from local search to 
genetic algorithms (Russell and Norvig 2009); but the availability of computational 
resources and advances in learning algorithms have recently made exact learning 
possible (Cussens 2012). Common choices for the network score include the Bayes-
ian Information Criterion (BIC) and the marginal likelihood P(|) itself; for an 
overview see again Scutari and Denis (2014). We will cover both in more detail for 
discrete BNs in Sect. 2.

Hybrid algorithms use both statistical tests and score functions, combining the 
previous two families of algorithms. Their general formulation is described for BNs 
in Friedman et al. (1999); they have proved to be some of the top performers up to 
date (see for instance MMHC inTsamardinos et al. 2006).

As for parameter learning, the parameters �Xi
 can be estimated independently for 

each node following (1) since its parents are assumed to be known from structure 
learning. Both maximum likelihood and Bayesian posterior estimators are in com-
mon use, with the latter being preferred due to their smoothness and superior predic-
tive power (Koller and Friedman 2009).

In this paper we focus on score-based structure learning in a Bayesian framework, 
in which we aim to identify a maximum a posteriori (MAP) DAG  that directly max-
imises P(|) . For discrete BNs, this means maximising a Bayesian–Dirichlet (BD) 
marginal likelihood: the most common choice is the Bayesian–Dirichlet equivalent 
uniform (BDeu) score from Heckerman et al. (1995). We will show that the uniform 
prior distribution over each �Xi

 that underlies BDeu can be problematic from a Bayes-
ian perspective, resulting in wildly different Bayes factors (and thus structure learning 

�A ⟂⟂G �B|�C ⟺ �A ⟂⟂P �B|�C;
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outcomes) depending on the value of its only hyperparameter, the imaginary sample 
size. We will further investigate this problem from an information theoretic perspec-
tive, on the grounds that Bayesian posterior inference can be framed as a particular 
case of the maximum relative entropy principle (ME; Shore and Johnson 1980; Skilling 
1988; Caticha 2004). We find that BDeu is not a reliable network score when applied 
to sparse data because it can select overly complex networks over simpler ones given 
the same information in the prior and in the data; and that in the process it violates the 
maximum relative entropy principle. That does not appear to be the case for other BD 
scores, which arise from different priors.

The paper is organised as follows: In Sect. 2 we will review Bayesian score-based 
structure learning and BD scores. In Sect. 3 we will focus on BDeu, covering its under-
lying assumptions and issues reported in the literature. In particular, we will show with 
simple examples that BDeu can produce Bayes factors that are sensitive to the choice 
of its only hyperparameter, the imaginary sample size. In Sect. 4 we will derive the 
posterior expected entropy associated with a DAG  , which we will further explore in 
Sect. 5. Finally, in Sect. 6 we will analyse BDeu using ME, and we will compare its 
behaviour with that of other BD scores.

2  Bayesian–Dirichlet marginal likelihoods

Score-based structure learning, when performed in a Bayesian framework, aims at find-
ing a DAG  that has the highest posterior probability P(|) . Starting from (2), using 
Bayes’ theorem we can write,

where P() is the prior distribution over the space of the DAGs spanning the vari-
ables in � and P(|) is the marginal likelihood of the data given  averaged over 
all possible parameter sets � . P() is often taken to be uniform so that it simplifies 
when comparing DAGs; we will do the same in this paper for simplicity while not-
ing that other default priors may lead to more accurate structure learning of sparse 
DAGs (e.g. Scutari 2016). Using (1) we can then decompose P(|) into one com-
ponent for each node as follows:

In the case of discrete BNs, we assume Xi|�

Xi
∼ Multinomial(�Xi

|�
Xi
) where the 

parameters �Xi
|�

Xi
 are the conditional probabilities �ik|j = P(Xi = k|�

Xi
= j) . We 

then assume a conjugate prior �Xi
|�

Xi
∼ Dirichlet(�ijk) , 

∑
jk 𝛼ijk = 𝛼i > 0 to obtain 

the closed-form posterior Dirichlet(�ijk + nijk) which we use to estimate the �ik|j from 
the counts nijk,

∑
ijk nijk = n observed in  . �i is known as the imaginary or 

P(|) ∝ P()P(|) = P()� P(|,�)P(�|) d�

(3)P(|) =
N∏

i=1

P
(
Xi|�


Xi

)
=

N∏

i=1

[

� P
(
Xi|�


Xi
,�Xi

)
P
(
�Xi

|�
Xi

)
d�Xi

]
.
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equivalent sample size and determines how much weight is assigned to the prior in 
terms of the size of an imaginary sample supporting it.

Further assuming positivity ( 𝜋ik|j > 0 ), parameter independence ( �ik|j for differ-
ent parent configurations are independent), parameter modularity ( �ik|j associated 
with different nodes are independent) and complete data, Heckerman et al. (1995) 
derived a closed form expression for (3), known as the Bayesian–Dirichlet (BD) 
family of scores:

where:

• ri is the number of states of Xi

• qi is the number of possible configurations of values of �
Xi

 , taken to be equal to 
1 if Xi has no parents;

• nij =
∑ri

k=1
nijk;

• �ij =
∑ri

k=1
�ijk;

• and � = {�1,… , �N} , �i =
∑qi

j=1
�ij are the imaginary sample sizes associated 

with each Xi.

Various choices for �ijk produce different priors and the corresponding scores in the 
BD family:

• for �ijk = 1 we obtain the K2 score from Cooper and Herskovits (1991);
• for �ijk = 1∕2 we obtain the BD score with Jeffrey’s prior (BDJ; Suzuki 2016);
• for �ijk = �∕(riqi) we obtain the BDeu score from Heckerman et  al. (1995), 

which is the most common choice in the BD family and has �i = � for all Xi;
• for 𝛼ijk = 𝛼∕(riq̃i) , where q̃i is the number of �

Xi
 such that nij > 0 , we obtain the 

BD sparse (BDs) score recently proposed in Scutari (2016);
• for the set �s

ijk
= s∕(riqi) , s ∈ SL = {2−L, 2−L+1,… , 2L−1, 2L} , L ∈ ℕ we obtain 

the locally averaged BD score (BDla) from Cano et al. (2013).

BDeu is the only score-equivalent BD score (Chickering 1995), that is, it is the only 
BD score that takes the same value for DAGs in the same equivalence class. This prop-
erty makes BDeu the preferred score when arcs are given causal interpretation (Pearl 
2009), and their directions have a meaningful interpretation beyond allowing to decom-
pose the P(�) into the P(Xi|�


Xi
) . BDs is only asymptotically score-equivalent because 

(4)

BD(,;�) =

N∏

i=1

BD
(
Xi|�


Xi
;�i

)

=

N∏

i=1

qi∏

j=1

[
� (�ij)

� (�ij + nij)

ri∏

k=1

� (�ijk + nijk)

� (�ijk)

]
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it converges to BDeu when n → ∞ and the positivity assumption holds. The BIC score, 
defined as:

is also score-equivalent and it converges to logBDeu as n → ∞ . In the case of dis-
crete BNs, maximising BIC corresponds to selecting the BN with the minimum 
description length (MDL; Rissanen 1978).

3  BDeu and Bayesian model selection

The uniform prior associated with BDeu has been justified by the lack of prior knowl-
edge on the �Xi

 , as well as its computational simplicity and score equivalence; and it 
was widely assumed to be non-informative (e.g. Silander et al. 2007; Heckerman et al. 
1995).

However, there is increasing evidence that this prior is far from non-informative and 
that it has a strong impact on the accuracy of the learned DAGs, making its use on 
real-world data problematic. Silander et al. (2007) showed via simulation that the MAP 
DAGs selected using BDeu are highly sensitive to the choice of � . Even for “reasona-
ble” values such as � ∈ [1, 20] , they obtained DAGs with markedly different number of 
arcs, and they showed that large values of � tend to produce DAGs with more arcs. This 
is counter-intuitive because a larger � would normally imply stronger regularisation 
and would be expected to produce sparser DAGs. Steck and Jaakkola (2003) similarly 
showed that the number of arcs in the MAP DAG is determined by a complex interac-
tion between � and  ; in the limits � → 0 and � → ∞ it is possible to obtain both very 
sparse and very dense DAGs. (We informally define  to be sparse if |A| = O(N) , typi-
cally with |A| < 5N ; a dense  , on the other hand, has a relatively large |A| compared 
to N.) In particular, for small values of � and/or sparse data (that is, discrete data for 
which we observe a small subset of the possible combinations of the values of the Xi ), 
�ijk → 0 and

where d()
EP

 is the effective number of parameters of the model, defined as

(5)BIC(,) =

N∑

i=1

BIC
(
Xi|�


Xi

)
=

N∑

i=1

[
logP

(
Xi|�


Xi

)
−

log n

2
qi(ri − 1)

]

(6)lim
�ijk→0

BDeu(,;�) − �d
()
EP = 0

d
()
EP

=

N∑

i=i

d
(Xi,)
EP

=

N∑

i=i

[
qi∑

j=1

r̃ij − q̃i

]
;
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r̃ij is the number of positive counts nijk in the jth configuration of �
Xi

 and q̃i is the 
number of configurations in which at least one nijk is positive.

This was then used to prove that the Bayes factor

for two DAGs − and + that differ only by the inclusion of a single parent for Xi . 
The effective degrees of freedom dEDF are defined as d(+)

EP
− d

(−)

EP
 . The practical 

implication of this result is that, when we compare two DAGs using their BDeu 
scores, a large number of zero counts will force dEDF to be negative and favour the 
inclusion of additional arcs (since BDeu(Xi|𝛱

+

Xi
;𝛼) ≫ BDeu(Xi|𝛱

−

Xi
;𝛼) ). But that 

in turn makes dEDF even more negative, quickly leading to overfitting. Furthermore, 
Steck and Jaakkola (2003) argued that BDeu can be rather unstable for “medium-
sized” data and small � , which is a very common scenario.

Steck (2008) approached the problem from a different perspective and derived an 
analytic approximation for the “optimal” value of � that maximises predictive accu-
racy, further suggesting that the interplay between � and  is controlled by the skew-
ness of the �Xi

 and by the strength of the dependence relationships between the nodes. 
Skewed �Xi

 result in some �ik|j being smaller than others, which in turn makes sparse 
data sets more likely; hence the problematic behaviour described in Steck and Jaak-
kola (2003) and reported above. Most of these results have been analytically confirmed 
more recently by Ueno (2010, 2011). The key insight provided by the latter paper is 
that we can decompose the BDeu into a likelihood term that depends on the data and a 
prior term that does not:

Then if 𝛼ijk < 1 (that is, 𝛼 < riqi ) the prior term can be approximated by

(7)
P(|+)

P(|−)
=

BDeu(Xi|𝛱
+

Xi
;𝛼)

BDeu(Xi|𝛱
−

Xi
;𝛼)

→

{
0 if dEDF > 0

+∞ if dEDF < 0

logBDeu(Xi|�

Xi
;�) =

qi∑

j=1

(
log� (�ij) −

ri∑

k=1

log� (�ijk)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
prior term

+

qi∑

j=1

(
ri∑

k=1

log� (�ijk + nijk) − log� (�ij + nij)

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
likelihood term

.

qi∑

j=1

(
log� (�ij) −

ri∑

k=1

log� (�ijk)

)
≈ qi(ri − 1) log �ijk
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and quickly dominates the likelihood term, penalising complex BNs as the number 
of parameters increases, which explains why BDeu selects empty DAGs in the limit 
of �ijk → 0 . On the other hand, if all 𝛼ijk > 1 then the prior term can be approximated 
by

leading BDeu to select a complete DAG when �ijk → ∞ (and therefore � → ∞ ) as 
previously reported in Silander et al. (2007).

As for the likelihood term, Ueno (2011) notes that if � + n is sufficiently small, 
that is, for sparse samples and small imaginary sample sizes,

Hence if some nijk = 0 , the change of the likelihood term dominates the prior term 
and BDeu adds extra arcs, leading to dense DAGs. On the other hand, if � + n is 
sufficiently large, � actually acts as an imaginary sample supporting the uniform dis-
tribution of the parameters assumed in the prior. This explains the observations in 
Steck (2008): the optimal � should be large when the empirical distribution of the 
�Xi

 is uniform because the prior is correct; and it should be small when the empiri-
cal distribution of �Xi

 is skewed so that the prior can be quickly dominated. This is 
also the source of the sensitivity of BDeu to the choice of � reported in Steck and 
Jaakkola (2003).

Finally, Suzuki (2016) studied the asymptotic properties of BDeu by contrast-
ing it with BDJ. He found that BDeu is not regular in the sense that it may learn 
DAGs in a way that is not consistent with either the MDL principle (through BIC) 
or the ranking of those DAGs given by their entropy. Whether this happens depends 
on the values of the underlying �ik|j , even if the positivity assumption holds and if 
n is large. This agrees with the observations in Ueno (2010), who also observed 
that BDeu is not necessarily consistent for any finite n, but only asymptotically for 
n → ∞.

Around the same time, a possible solution to these problems was proposed by 
Scutari (2016) in the form of BDs. Scutari (2016) starts from the consideration that 
if the sample  is sparse, some configurations of the variables will not be observed; 
it may be that the sample size is small and those configurations have low probability, 
or it may be that � violates the positivity assumption ( �ik|j = 0 for some i, j, k). As a 
result, we may be unable to observe all the configurations of (say) �+

Xi
 in the data. 

Then the corresponding nij = 0 and

qi∑

j=1

(
log� (�ij) −

ri∑

k=1

log� (�ijk)

)
≈ � log ri +

1

2
qi(ri − 1) log

�ijk

2�
,

qi∑

j=1

(
ri∑

k=1

log� (�ijk + nijk) − log� (�ij + nij)

)
≈ −qi(ri − 1) log �ijk.
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The effective imaginary sample size, defined as the sum of the �ijk appearing in 
terms that do not simplify (and thus contribute to the value of BDeu), decreases to ∑

j∶nij>0
𝛼ijk = 𝛼(q̃i∕qi) < 𝛼 , where q̃i < qi is the number of parent configurations that 

are actually observed in  . In other words, BDeu is computed with an imaginary 
sample size of 𝛼(q̃i∕qi) instead of � , and the remaining 𝛼(qi − q̃i)∕qi is effectively 
lost. This may lead to comparing DAGs with marginal likelihoods computed from 
different priors, which is incorrect from a Bayesian perspective. In order to prevent 
this from happening, Scutari (2016) replaced the prior of BDeu with

thus obtaining

A large simulation study showed BDs to be more accurate than BDeu in learning 
BN structures without any loss in predictive power.

In addition to all these issues, we also find that BDeu produces Bayes factors that 
are sensitive to the choice of � . (The fact that BDeu is sensitive to the value of � 
does not necessarily imply that the Bayes factor is sensitive itself.) In order to illus-
trate this instability and the other results presented in the section we consider the 
simple examples below.

Example 1 Consider the DAGs − and + and the data set 1 in Fig. 1, originally 
from Suzuki (2016). The sample frequencies nijk for X|�−

X
= {Z,W} are:

and those for X|�+

X
= X|�−

X
∪ {Y} are as follows.

𝛼ijk =

{
𝛼∕(riq̃i) if nij > 0

0 otherwise,
where q̃i = {number of 𝛱+

Xi
such that nij > 0}.

(8)BDs(Xi|𝛱
+

Xi
;𝛼) =

∏

j∶nij>0

[
𝛤 (ri𝛼ijk)

𝛤 (ri𝛼ijk + nij)

ri∏

k=1

𝛤 (𝛼ijk + nijk)

𝛤 (𝛼ijk)

]
.
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The conditional distributions of X|�−

X
 and X|�+

X
 are both singular, and in X|�+

X
 

we only observe 4 parent configurations out of 8. Furthermore, the observed condi-
tional distributions for those parent configurations are identical to the 4 conditional 
distributions in X|�−

X
 , since the nijk are the same. We can then argue that X|�+

X
 

does not fit 1 any better than X|�−

X
 , and it does not capture any additional infor-

mation from the data.
However, if we take � = 1 in BDeu, then �ijk = 1∕8 for − and �ijk = 1∕16 for + , 

leading to

If we choose the DAG with the highest BDeu score, we prefer + to − despite all 
the considerations we have just made on the data. This is not the case if we use BDs, 
which does not show a preference for either − or + because �ijk = 1∕8 for both 
X|�−

X
 and X|�+

X
:

W

X

YZ

W

X

YZ

Fig. 1  DAGs and data sets used in Examples 1 and 2. The DAGs − and + are used in both examples. 
Example 1 uses data set 1 , while Example 2 uses 2 ; the latter is a modified version of the former, 
which is originally from Suzuki (2016)
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The same holds for BDJ, and in general for any BD score with a constant �ijk . Com-
paring the expressions above, it is apparent that the only difference between them is 
the value of �ijk , which is a consequence of the different number of configurations of 
�−

X
 and �+

X
.

The Bayes factors for BDeu and BDs are shown for � ∈ [10−4, 104] in the left 
panel of Fig. 2. The former converges to 1 for both �ijk → 0 and �ijk → ∞ , but var-
ies between 1 and 2.5 for finite � ; whereas the latter is equal to 1 for all values of � , 
never showing a preference for either − or + . The Bayes factor for BDeu does not 
diverge nor converge to zero, which is consistent with (7) from Steck and Jaakkola 
(2003) as d(+)

EP
− d

(−)

EP
= 0 − 0 = 0 . However, it varies most quickly for � ∈ [1, 10] , 

exactly the range of the most common values used in practical applications. This 
provides further evidence supporting the conclusions of Steck and Jaakkola (2003), 
Steck (2008) and Silander et al. (2007).

Finally, if we consider which DAG would be preferred according to the MDL 
principle, we can see that BIC (unlike BDeu, like BDs) does not express a prefer-
ence for either DAG:

BIC
(
X|�−

X

)
= logP

(
X|�−

X

)
− 0 = logP

(
X|�+

X

)
− 0 = BIC

(
X|�+

X

)

log10(α)

B
ay

es
 fa

ct
or

 fo
r

D
1

1.0

1.5

2.0

2.5

−4 −2 0 2 4

BDeu
BDs

log10(α)

B
ay

es
 fa

ct
or

 fo
r

D
2

0.0

0.2

0.4

0.6

0.8

1.0

−4 −2 0 2 4

BDeu
BDs

Fig. 2  The Bayes factors for − versus + computed using BDeu and BDs for Example 1 (left panel) and 
Example 2 (right panel in orange) and dark blue, respectively. The bullet points correspond to the values 
observed for � = 1
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which agrees with Suzuki (2016)’s observation that BDeu violates the MDL princi-
ple.   □

Example 2 Consider another simple example, inspired by Example 1, based on the 
data set 2 and the DAGs − , + shown in Fig. 1. The sample frequencies ( nijk ) for 
X|�−

X
 are:

and those for X|�+

X
 are as follows.

As in Example 1, 4 parent configurations out of 8 are not observed in + and the 
other 4 have nijk that are the same as those arising from − . The resulting conditional 
distributions, however, are not singular. If we take again � = 1 , the BDeu scores for 
− and + are different but this time − has the highest score:

On the other hand, in BDs �ijk = 1∕8 for both DAGs, so they have the same score:

BDeu once more assigns different scores to − and + despite the fact that the 
observed conditional distributions in X|�−

X
 and X|�+

X
 are the same, while BDs 

does not.

BDeu
(
X|�−

X
;1
)
=

(
� (1∕4)

� (1∕4 + 3)

[
� (1∕8 + 2)

� (1∕8)
⋅
� (1∕8 + 1)

� (1∕8)

])4

= 3.906 × 10−7,

BDeu
(
X|�+

X
;1
)
=

(
� (1∕8)

� (1∕8 + 3)

[
� (1∕16 + 2)

� (1∕16)
⋅
� (1∕16 + 1)

� (1∕16)

])4

= 3.721 × 10−8.
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The Bayes factors for BDeu and BDs are shown in the right panel of Fig. 2. BDeu 
results in wildly different values depending on the choice of � , with Bayes factors 
that vary between 0.05 and 1 for small changes of � ∈ [1, 10] ; BDs always gives 
a Bayes factor of 1. Again d(+)

EP
− d

(−)

EP
= 4 − 4 = 0 , which agrees with the fact 

that the Bayes factor for BDeu does not diverge or converge to zero; and − and + 
have the same BIC score, so BDeu (but not BDs) violates the MDL principle in this 
example as well.   □

4  Bayesian structure learning and entropy

Shannon’s classic definition of entropy for a multinomial random variable 
X ∼ Multinomial(�) with a fixed, finite set of states (alphabet)  is:

where the probabilities �a are typically estimated with the empirical frequency of 
each a in  , leading to the empirical entropy estimator. Its properties are detailed 
in canonical information theory books such as Mackay (2003) and Rissanen (2007), 
and it has often been used in BN structure learning (Lam and Bacchus 1994; Suzuki 
2015). However, in this paper we will focus on Bayesian entropy estimators, for two 
reasons. Firstly, they are a natural choice when studying the properties of BD scores 
since they are Bayesian in nature; and having the same probabilistic assumptions 
(including the choice of prior distribution) for the BD scores and for the correspond-
ing entropy estimators makes it easy to link their properties. Secondly, Bayesian 
entropy estimators have better theoretical and empirical properties than the empiri-
cal estimator (Hausser and Strimmer 2009; Nemenman et al. 2002).

Starting from (1), for a BN we can write:

where H(Xi;�Xi
) is the entropy of Xi given its parents �

Xi
 . The marginal posterior 

expectation of H(Xi;�Xi
) with respect to �Xi

 given the data can then be expressed 
as:

H(X;�) = E(− logP(X)) = −
∑

a∈
�a log�a

H(�;�) =

N∑

i=1

H(Xi;�Xi
),

E(H(Xi)|) = � H(Xi;�Xi
)P(�Xi

|) d�Xi
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where we use  to refer specifically to the observed values for Xi and �
Xi

 with a 
slight abuse of notation. We can then introduce a Dirichlet(�ijk) prior over �Xi

 with:

which leads to

where P(�ijk) is a hyperprior distribution over the space of the Dirichlet priors, iden-
tified by their parameter sets {�ijk}.

The first term on the right hand-side of (9) is the posterior expectation of:

and has closed form

as shown in Nemenman et al. (2002) and Archer et al. (2014), with �0(⋅) denoting 
the digamma function. The second term follows a Dirichlet-multinomial distribution 
(also known as multivariate Polya; Johnson et al. 1997) with density

since,

where P(|�Xi
) follows a multinomial distribution and P(�Xi

|�ijk) is a conjugate 
Dirichlet prior. Rearranging terms in (12) we find that,

P(�Xi
|) = � P(�Xi

|, �ijk)P(�ijk|) d�ijk,

(9)
E
(
H(Xi)|)

=� H(Xi;�Xi
)P(�Xi

|, �ijk)P(�ijk|) d�ijk d�Xi

∝� E(H(Xi)|, �ijk)P(|�ijk)P(�ijk) d�ijk,

(10)H(Xi|, �ijk) = −

qi∑

j=1

ri∑

k=1

p
(�ijk)

ik|j log p
(�ijk)

ik|j with p
(�ijk)

ik|j =
�ijk + nijk

�ij + nij

(11)

E(H(Xi)|, �ijk)

=

qi∑

j=1

[
�0(�ij + nij + 1) −

ri∑

k=1

�ijk + nijk

�ij + nij
�0(�ijk + nijk + 1)

]

(12)P(|�ijk) =
qi∏

j=1

nij!� (�ij)

� (�ijk)
ri� (nij + �ij)

ri∏

k=1

� (nijk + �ijk)

nijk!
,

P(|�ijk) = � P(|�Xi
)P(�Xi

|�ijk) d�Xi
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making the link between BD scores and entropy explicit. Unlike (13), BD has a pre-
quential formulation (Dawid 1984) which focuses on the sequential prediction of 
future events (Chickering and Heckerman 2000). For this reason it considers obser-
vations as coming in a specific temporal order and it does not include a multinomial 
coefficient, which we will drop in the remainder of the paper. Therefore,

and is determined by three components: the posterior expected entropy of Xi|�

Xi

 
under a Dirichlet(�ijk) prior, the BD score term for Xi|�


Xi

 , and the hyperprior over 
the space of the Dirichlet priors.

This definition of the expected entropy associated with the structure  of a BN 
is very general and encompasses the entropies associated with all the BD scores as 
special cases. In particular, the entropy associated with K2, BDJ, BDeu and BDs can 
be obtained by giving P(�ijk) = 1 to the single set of �ijk associated with the corre-
sponding prior, leading to,

and similarly for BDla,

5  The posterior marginal entropy

The posterior expectation of the entropy for a given Dirichlet(�ijk) prior in (11), 
despite having a form that looks very different from the marginal posterior entropy 
in (10), can be written in terms of the latter as we show in the following lemma.
Lemma 1 

(13)

P(��ijk) =
qi�

j=1

nij!
∏ri

k=1
niijk!

⋅

qi�

j=1

� (�ij)

� (nij + �ij)

ri�

k=1

� (nijk + �ijk)

� (�ijk)
∝ BD

�
Xi��


Xi
;�
�

(14)E
(
H(Xi)|)

= � E
(
H(Xi)|, �ijk

)
BD

(
Xi|�


Xi
;�
)
P(�ijk) d�ijk,

E
(
H(Xi)|)

= E
(
H(Xi)|, �ijk

)
BD

(
Xi|�


Xi
;�
)
;

E
(
H(Xi)|)

=
1

|SL|
∑

s∈SL

E
(
H(Xi)|, �s

ijk

)
BD

(
Xi|�


Xi
;s
)
.

E
(
H(Xi)|;�ijk

)
≈ H(Xi|, �ijk) −

qi∑

j=1

ri − 1

2(�ij + nij)
.
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Proof of  Lemma  1 Combining �0(z + 1) = �0(z) + 1∕z with 
�0(z) = log(z) − 1∕(2z) + o(z−2) from Anderson and Qiu (1997), we can write 
�0(z + 1) = log(z) + 1∕(2z) + o(z−2) . Dropping the remainder term o(z−2) we 
approximate �0(z + 1) ≈ log(z) + 1∕(2z) , which leads to,

  □

Therefore, E(H(Xi)|;�ijk) is well approximated by the marginal posterior entropy 
H(Xi|, �ijk) from (10) plus a bias term that depends on the augmented counts �ij + nij 
for the qi configurations of �

Xi
 . A similar result was derived in Miller (1955) for the 

empirical entropy estimator and is the basis of the Miller–Madow entropy estimator.

6  BDeu and the principle of maximum entropy

The maximum relative entropy principle (ME; Shore and Johnson 1980; Skilling 1988; 
Caticha 2004) states that we should choose a model that is consistent with our knowl-
edge of the phenomenon we are modelling and that introduces no unwarranted infor-
mation. In the context of probabilistic learning this means choosing the model that has 
the largest possible entropy for the data, which will encode the probability distribution 
that best reflects our current knowledge of � given by  . In the Bayesian setting in 
which BD scores are defined, we then prefer a DAG + over a second DAG − if

because these estimates of entropy incorporate all our knowledge including 
that encoded in the prior and in the hyperprior. The resulting formulation of ME 

E
(
H(Xi)|, �ijk

)

=

qi∑

j=1

[
�0(�ij + nij + 1) −

ri∑

k=1

�ijk + nijk

�ij + nij
�0(�ijk + nijk + 1)

]

≈

qi∑

j=1

[
log(�ij + nij) +

1

2(�ij + nij)

−

ri∑

k=1

�ijk + nijk

�ij + nij

(
log(�ijk + nijk) +

1

2(�ijk + nijk)

)]

= −

qi∑

j=1

ri∑

k=1

�ijk + nijk

�ij + nij
log

(
�ijk + nijk

�ij + nij

)
−

qi∑

j=1

ri − 1

2(�ij + nij)

= H(Xi|, �ijk) −

qi∑

j=1

ri − 1

2(�ij + nij)
.

(15)E
(
H−

(�)|)
⩽ E

(
H+

(�)|)
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represents a very general approach that includes Bayesian posterior estimation as 
a particular case (Giffin and Caticha 2007); which is intuitively apparent since the 
expected posterior entropy in (14) is proportional to BD. Furthermore, ME can also 
be seen as a particular case of the MDL principle (Feder 1986).

Suzuki (2016) defined regular those BD scores that prefer simpler BNs that have 
smaller empirical entropies and few arcs:

For large sample sizes, the probabilities p(�ijk)
ik|j  from (10) used in the posterior entropy 

estimators converge to the empirical frequencies used in the empirical entropy esti-
mator, making the above asymptotically equivalent to,

and connecting DAGs with the highest BD scores with those that minimise the 
marginal posterior entropy from (10). However, we prefer to study BDeu and its 
prior using ME as defined in (15) for two reasons. Firstly, posterior expectations are 
widely considered to be superior to MAP estimates in the literature (Berger 1985), 
as has been specifically shown for entropy in Nemenman et  al. (2002). Secondly, 
ME directly incorporates the information encoded in the prior and in the hyperprior, 
without relying on large samples to link the empirical entropy (which depends on 
�,� ) with the BD scores (which depend on �,� and integrate � out).

Without loss of generality, we consider again the simple case in which − and 
+ differ by a single arc, so that only one local distribution differs between the two 
DAGs. For BDeu, �ijk = �∕(riqi) and substituting (14) in (15) we get,

If the sample  is sparse, some configurations of the variables will not be observed 
and the effective imaginary sample size may be smaller for + than for − like in 
Examples 1 and 2. As a result, when we compare a − for which we observe all con-
figurations of �−

Xi
 with a + for which we do not observe some configurations of 

�+

Xi
 , instead of (16) we are actually using,

H
(
Xi|𝛱

−

Xi
;𝜋ik|j

)
⩽ H

(
Xi|𝛱

+

Xi
;𝜋ik|j

)
, 𝛱−

Xi
⊂ 𝛱+

Xi
⇒

BD
(
Xi|𝛱

−

Xi
;𝛼i

)
⩾ BD

(
Xi|𝛱

+

Xi
;𝛼i

)
.

H
(
Xi|𝛱

−

Xi
;𝛼ijk

)
⩽ H

(
Xi|𝛱

+

Xi
;𝛼ijk

)
, 𝛱−

Xi
⊂ 𝛱+

Xi
⇒

BD
(
Xi|𝛱

−

Xi
;𝛼i

)
⩾ BD

(
Xi|𝛱

+

Xi
;𝛼i

)

(16)
E
(
H−

(Xi)|, �ijk
)
BDeu

(
Xi|�

−

Xi
;�
)

⩽ E
(
H+

(Xi)|, �ijk
)
BDeu

(
Xi|�

+

Xi
;�
)
.
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which is different from (15) and thus not consistent with ME. It is not correct from a 
Bayesian perspective either, because − and + are compared using marginal likeli-
hoods arising from different priors; as expected since we know from Giffin and Cati-
cha (2007) that Bayesian posterior inference is a particular case of ME. From the 
perspective of ME, those priors carry different information on the �Xi

 . They incor-
rectly express different levels of belief in the uniform prior underlying BDeu as a 
consequence of the difference in their effective imaginary sample sizes, even though 
they were meant to express the same level of belief for all possible DAGs. This may 
bias the entropy (which is, after all, the expected value of the information on � and 
on the �Xi

 ) of + compared to that of − in (17) and lead to choosing DAGs which 
would not be chosen by ME. We would like to stress that this scenario is not uncom-
mon; on the contrary, such a model comparison is almost guaranteed to take place 
when the data are sparse. As structure learning explores more and more DAGs to 
identify an optimal one, it will inevitably consider DAGs with unobserved parent 
configurations, either because they are too dense or because those parent sets are not 
well supported by the few observed data points.

In particular, if some nij = 0 then the posterior expected entropy of Xi|�
+

Xi
 becomes,

where the first term collects the conditional entropies corresponding to the qi − q̃i 
unobserved parent configurations, for which the posterior distribution coincides 
with the prior:

(17)
E
(
H−

(Xi)|, 𝛼ijk
)
BDeu

(
Xi|𝛱

−

Xi
;𝛼
)

⩽ E
(
H+

(Xi)|, 𝛼ijk
)
BDeu

(
Xi|𝛱

+

Xi
;𝛼(q̃i∕qi)

)

(18)
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By definition, the uniform distribution has the maximum possible entropy; the pos-
teriors we would estimate if we could observe samples for those configurations of 
the �+

Xi
 would almost certainly have a smaller entropy. At the same time, the entro-

pies in the second term are smaller than what they would be if we only considered 
the q̃i observed parent configurations, because 𝛼ijk = 𝛼∕(riqi) < 𝛼∕(riq̃i) means that 
posterior densities deviate more from the uniform distribution. These two effects, 
however, do not necessarily balance each other out; as we can see by revisiting 
Examples 1 and 2 below it is possible to incorrectly choose + over −.

Example 1 (Continued) The empirical posterior entropies for − and + are:

by convention, but the posterior entropies differ:

The expected posterior entropies for − and + are:

Therefore, substituting these values in (17),

H(X|�−

X
) = H(X|�+

X
) = 4

[
−0 log 0 − 1 log 1

]
= 0

H(X|�−

X
;�) = 4

[
−
0 + 1∕8

3 + 1∕4
log

0 + 1∕8

3 + 1∕4
−

3 + 1∕8

3 + 1∕4
log

3 + 1∕8

3 + 1∕4

]

= 0.652,

H(X|�+

X
;�) = 4

[
−
0 + 1∕16

3 + 1∕8
log

0 + 1∕16

3 + 1∕8
−

3 + 1∕16

3 + 1∕8
log

3 + 1∕16

3 + 1∕8

]

= 0.392.

E
(
H−

(X)|,
1

8

)

= 4

[
�0(1∕4 + 3 + 1) −

0 + 1∕8

3 + 1∕4
�0(1∕8 + 0 + 1) −

3 + 1∕8

3 + 1∕4
�0(1∕8 + 3 + 1)

]

= 0.3931,

E
(
H+

(X)|,
1

16

)

= 4

[
�0(1∕8 + 3 + 1) −

0 + 1∕16

3 + 1∕8
�0(1∕16 + 0 + 1) −

3 + 1∕16

3 + 1∕8
�0(1∕16 + 3 + 1)

]

+ 4

[
�0(1∕8 + 0 + 1) −

0 + 1∕16

0 + 1∕8
�0(1∕16 + 0 + 1) −

3 + 1∕16

0 + 1∕8
�0(1∕16 + 0 + 1)

]

= 0.5707.
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and we would choose + over − even though we only observe q̃i = 4 configurations 
of �+

X
 out of 8, and the sample frequencies are identical for those configurations. 

The data contribute the same information to the posterior expected entropies; both 
X|�−

X
 and X|�+

X
 have empirical entropy equal to zero. The difference must then 

arise because of the priors: both �X|�
−

X
 and �X|�

+

X
 follow a uniform Dirichlet 

prior, but in the former � = 1 and in the latter � = 1∕2 because q̃i = 4 < 8 = qi . A 
consistent model comparison requires that all models are evaluated with the same 
prior, which clearly is not the case in this example.   □

Example 2 (Continued) The conditional distributions of X|�−

X
 and X|�+

X
 both 

have the same (positive) empirical entropy:

However, their posterior entropies are different:

and the respective posterior expected entropies are:

E(H−

(X)|) = 0.3931 ⋅ 0.0326 = 0.0128

< 0.0252 = 0.5707 ⋅ 0.0441 = E(H+

(X)|);

H(X|�−

X
) = H(X|�+

X
) = 4

[
−
1

3
log

1

3
−

2

3
log

2

3

]
= 2.546.

H(X|�−

X
;�) =4

[
−
1 + 1∕8

3 + 1∕4
log

1 + 1∕8

3 + 1∕4
−

2 + 1∕8

3 + 1∕4
log

2 + 1∕8

3 + 1∕4

]

=2.580,

H(X|�+

X
;�) =4

[
−
1 + 1∕16

3 + 1∕8
log

1 + 1∕16

3 + 1∕8
−

2 + 1∕16

3 + 1∕8
log

2 + 1∕16

3 + 1∕8

]

=2.564;

E
(
H−

(X)|,
1

8

)

= 4

[
�0(1∕4 + 3 + 1) −

1 + 1∕8

3 + 1∕4
�0(1∕8 + 1 + 1) −

2 + 1∕8

3 + 1∕4
�0(1∕8 + 2 + 1)

]

= 2.066,

E
(
H+

(X)|,
1

16

)

= 4

[
�0(1∕8 + 3 + 1) −

0 + 1∕16

3 + 1∕8
�0(1∕16 + 1 + 1) −

3 + 1∕16

3 + 1∕8
�0(1∕16 + 2 + 1)

]

+ 4

[
�0(1∕8 + 0 + 1) −

0 + 1∕16

0 + 1∕8
�0(1∕16 + 0 + 1) −

3 + 1∕16

0 + 1∕8
�0(1∕16 + 0 + 1)

]

= 4.069.
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Therefore, substituting these values in (17) leads to,

Even though we choose − over + , we still express a preference for one of the 
DAGs even though the information in the data is the same; which confirms that the 
difference is attributable to the prior.   □

Based on these results and the examples above, we state the following theorem.

Theorem 1 Using BDeu and the associated uniform prior over the parameters of 
a BN for structure learning violates the maximum relative entropy principle if any 
candidate parent configuration of any node is not observed in the data.

This is not the case for BDs, because its piecewise uniform prior preserves the imag-
inary sample size even when q̃i < qi ; and because it prevents the posterior entropy from 
inflating by allowing the q̃i terms corresponding to the nij = 0 to simplify. Assuming 
�ijk = 0 in (18) implies:

E(H−

(X)|) = 2.066 ⋅ 3.906 × 10−7 = 8.071 × 10−7

> 1.514 × 10−7 = 4.069 ⋅ 3.721 × 10−8 = E(H+

(X)|).

∑

j∶nij=0

[
�0(1) −

ri∑

k=1

1

ri
�0(1)

]
= �0(1) − �0(1) = 0.
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Fig. 3  The difference between E(H−

(X)|, �ijk) and E(H+

(X)|, �ijk) computed using BDeu and BDs 
for Example 1 (left panel) and Example 2 (right panel) in orange and dark blue, respectively. The bullet 
points correspond to the values observed for � = 1
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Example 1 (Continued) If we compare X|�−

X
 and X|�+

X
 under the prior assumed 

by BDs, we have that �ijk = 1∕8 for both X|�−

X
 and the q̃i observed parent configu-

rations in X|�+

X
 . Then their posterior expected entropies are:

and substituting these values in (16)

ME does not express a preference for either − or + ; since we have observed above 
that the data contribute exactly the same information for both DAGs, the same must 
be true for the prior associated with BDs.

A side effect of not violating ME is that the choice between − and + is no 
longer sensitive to the value of � ; we can see from the left panels of Figs. 3 and 4 
that both the difference between E(H−

(X)|,
1

8
) and E(H+

(X)|,
1

8
) and the differ-

ence between E(H−

(X)|) and E(H+

(X)|) are equal to zero for all � .   □

E
(
H−

(X)|,
1

8

)
= E

(
H+

(X)|,
1

8

)

= 4

[
�0(1∕4 + 3 + 1) −

0 + 1∕8

3 + 1∕4
�0(1∕8 + 0 + 1) −

3 + 1∕8

3 + 1∕4
�0(1∕8 + 3 + 1)

]

= 0.3931

E(H−

(X)|) = 0.3931 ⋅ 0.0326 = 0.0128

= 0.0128 = 0.3931 ⋅ 0.0326 = E(H+

(X)|).
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Fig. 4  The difference between E(H−

(X)|) and E(H+

(X)|) computed using BDeu and BDs for 
Example  1 (left panel) and Example  2 (right panel) in orange and dark blue, respectively. The bullet 
points correspond to the values observed for � = 1
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Example 2 (Continued) Again �ijk = 1∕8 for both X|�−

X
 and the q̃i observed par-

ent configurations in X|�+

X
 , so

which leads to

Again we can see from the right panels of Figs. 3 and 4 that the choice between − 
and + is no longer sensitive to the choice of � ; and + is never preferred to − . This 
contrasts especially the behaviour of BDeu in Fig.  4, where E(H+

(X)|) can be 
both larger and smaller than E(H−

(X)|) for different values of � .   □

It is easy to show that the theorem we just stated does not apply to K2 or BDJ, 
since under their priors �ijk is not a function of qi ; but it does apply to BDla since 
its formulation is essentially a mixture of BDeu scores.

7  Conclusions and discussion

Bayesian network learning follows an inherently Bayesian workflow in which we first 
learn the structure of the DAG  from a data set  , and then we learn the values of the 
parameters �Xi

 given  . In this paper we studied the properties of the Bayesian poste-
rior scores used to estimate P(|) and to learn the  that best fits the data. For discrete 
Bayesian networks, these scores are Bayesian–Dirichlet (BD) marginal likelihoods that 
assume different Dirichlet priors for the �Xi

 and, in the most general formulation, a 
hyperprior over the hyperparameters �ijk of the prior. We focused on the most common 
BD score, BDeu, which assumes a uniform prior over each �Xi

 ; and we studied the 
impact of that prior on structure learning from a Bayesian and an information theoretic 
perspective. After deriving the form of the posterior expected entropy for  given  , 
we found that BDeu may select models in a way that violates the maximum relative 
entropy principle. Furthermore, we showed that it produces Bayes factors that are very 
sensitive to the choice of the imaginary sample size. Both issues are related to the uni-
form prior assumed by BDeu for the �Xi

 , and can lead to the selection of overly dense 
DAGs when the data are sparse. In contrast, the BDs score proposed in Scutari (2016) 
does not, even though it converges to BDeu asymptotically; and neither do other BD 

E
(
H−

(X)|,
1

8

)
= E

(
H+

(X)|,
1

8

)

= 4

[
�0(1∕4 + 3 + 1) −

1 + 1∕8

3 + 1∕4
�0(1∕8 + 1 + 1) −

2 + 1∕8

3 + 1∕4
�0(1∕8 + 2 + 1)

]

= 2.066

E(H−

(X)|) = 2.066 ⋅ 3.906 × 10−7 = 8.071 × 10−7

= 8.071 × 10−7 = 2.066 ⋅ 3.906 × 10−7 = E(H+

(X)|).
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scores in the literature. In the simulation study we performed in Scutari (2016), we 
found that BDs leads to more accurate structure learning; hence we recommend its use 
over BDeu for sparse data.
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