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Summary

Summary

South China is prone to floods and droughts which are often caused by extremes in
meteorological dryness and wetness conditions, such as heavy precipitation or dry spells,
and their hydrological responses. The monsoon circulation is the driving force behind
meteorological extremes and corresponding hydrological challenges in China’s river basins.
Floods and droughts cause casualties and high agricultural and economic losses, whether
directly or indirectly. One of the worst droughts hit Southwest China in the winter of
2009/10 due to a preceding weak South Asian Monsoon. In June 2010, record-breaking
floods occurred in the whole of South China due to anomalously intense rainfall as a result of
a strong East Asian Summer Monsoon circulation. These events have affected millions of
people, caused hundreds of fatalities and triggered harvest losses over tens of thousands of
square kilometers of farmland which resulted in direct economic losses of CNY 20bn and
CNY 84bn, respectively.

The most important river system in South China is the Zhujiang River Basin which
covers rural and mountainous regions in the western part, but also megacities, such as
Guangzhou (Canton) and Hong Kong, on the southern coast. The Zhujiang River (Pearl River)
covers 80% of the drinking water demand of Hong Kong and hosts an important agricultural
basis with approx. 17% of China’s rice production. The Zhujiang River is considerably prone
to floods and droughts which can have a larger impact on the socio-economic sphere than in
other river basins of China. However, scientific information on the susceptibility of regional
climate extremes and dryness/wetness pattern are neither available in high resolution nor
quality, both in spatial and temporal extent, for the South of China. Data and methodological
analyses have so far been inadequately used in existing studies, as most researchers used
data of a limited number of stations and with multiple data gaps. Additionally, research
areas have been too large in extent to allow sound analyses and interpretations. Only basic
trend and frequency tests have been applied so far to investigate the regional climate
characteristics. Therefore, an integrated assessment of meteorological dryness/wetness
pattern and hydrological responses has not been made available yet. Considering the
current challenges in water, food, and economic security, a comprehensive methodological
framework, to investigate seasonal and monthly climate extremes and their impacts on the

water cycle in the Zhujiang River Basin, is of great importance. There is also scientific need



Summary

to tackle the existing deficiencies in data availability, data interpretation, and
implementation of the results into planning.

In this context, the objective of the present study is to develop and provide
reliable baseline data and evaluation methods for spatio-temporal pattern of the
occurrence of extreme weather events for the Zhujiang River Basin. The data
interpretation focuses on assessing the vulnerability of communities to climate extremes as
a starting point for sustainable development through the improvement of adaptation
measures to climate extremes and their hydrological consequences.

In order to achieve the objective, new data are generated with high quality and high
spatio-temporal resolution. In this process, the currently highest density of monitoring
stations and the longest meteorological and hydrological time-series available in South
China have been coupled with the results of global and regional climate models. The
relevance of observed, simulated, and projected meteorological and hydrological parameters
is tested and statistically or dynamically modeled for the assessment of the vulnerability of
communities to climate extremes. Statistical methods, such as standardization, moving
averaging, and specific extreme value determination, were developed or modified in order
to generate relevant indicators of climate extremes. The time-series were then analyzed on
their trends, change-points, frequencies, periodicities, and impacts in dryness / wetness
conditions. The causes and interdependencies of the changes are analyzed and interpreted
using trend tests (e.g. Mann-Kendall Test and linear regression), particular cumulative
summation, modern distribution functions (e.g. Generalized Extreme Value, Generalized
Pareto und Wakeby), and combinations of the adapted principal component analysis and the
wavelet transform.

Spatio-temporal effects of meteorological dryness/wetness on the river discharge (i.e.
droughts and floods) are investigated with regard to reoccurrence and susceptibility. In
order to determine the hydrological impacts and responses of extreme weather events,
innovative spatio-temporal modeling and interdependency tests, such as new interpolation
methods, spatial averaging, and principal component analysis, are applied. These novel
approaches in data generation and analytical techniques deliver an accurate methodological
framework for the interpretation of spatio-temporal trends, periodicities and frequencies of
dryness/wetness conditions. With this approach, significant increases in extreme
temperatures can be identified in the entire region. Precipitation extremes, such as dry days

and heavy precipitation, have changed only in some parts of the basin. For the first time,
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these spatio-temporal differences in precipitation extremes deliver details of the regional
variance and the probability to dryer conditions in the western part but to more extreme
wet conditions in the northern and coastal areas.

Overall, unexpectedly strong correlations between “meteorological” precipitation
extremes and “hydrological” extremes such as high and low peak discharge can be identified
for the Zhujiang River Basin. This suggests that the identified changes and frequencies in the
meteorological dryness/wetness pattern will have direct hydrological responses. This
dependency is proven by the detected cycles of intensive dryness and wetness periods, with
3-,7- and 11-14-year cycles in both meteorological and hydrological extremes. It can be
detected that changes in climate extremes can be attributed to changes in regional
atmospheric circulation pattern, predominantly the East Asian Monsoon. The projections of
future dryness/wetness pattern on the basis of model calculations and statistical
extrapolations show a general trend towards warmer conditions and an increase in regional
disparities. The temporal and regional patterns that could be detected deliver a sound basis
to identify various regional and local prevention and adaptation measures in South China

and to reduce the vulnerability and risks to extreme climate events.



Zusammenfassung

Zusammenfassung

Der Siiden Chinas ist anfillig fiir Uberschwemmungen und Diirren, welche hiufig
durch extreme meteorologische Trockenheit oder Feuchtigkeit und die daraus
resultierenden hydrologischen Reaktionen hervorgerufen werden. Die Monsunzirkulation
ist die treibende Kraft hinter diesen meteorologischen Extremen und den entsprechenden
hydrologischen Auswirkungen in den chinesischen Flussgebieten. Uberschwemmungen und
Diirren verursachen hohe Opferzahlen und hohe landwirtschaftliche und wirtschaftliche
Verluste. Im Winter 2009/10 gab es aufgrund eines vorhergehenden schwachen
stidasiatischen Monsuns eine der schlimmsten Diirren in Siidwestchina. Im darauffolgenden
Juni 2010 traten Rekord-Uberschwemmungen in ganz Siidchina auf, ausgelést durch
anomale Starkniederschlage infolge eines starken ostasiatischen Sommermonsuns. Allein
diese beiden Ereignisse zogen mehrere Millionen Menschen in Mitleidenschaft, verursachten
Hunderte Tote und hatten Ernteverluste auf Zehntausenden von Quadratkilometern
Ackerland zur Folge. Die direkten wirtschaftlichen Schaden beliefen sich auf iiber 20 Mrd.
CNY bzw. 84 Mrd. CNY.

Das wichtigste Fluss-System im Siiden Chinas ist das Zhujiang-Einzugsgebiet. Es
umfasst landliche und bergige Regionen in den westlichen Gebieten, aber auch Megacities,
wie Guangzhou (Kanton) und Hongkong an der Stdkiiste. Das Zhujiang-Einzugsgebiet deckt
80% des Trinkwasserbedarfs von Hong Kong und stellt mit einer jahrlichen Reisproduktion
von ca. 17% von ganz China eine bedeutende landwirtschaftliche Basis dar. Der Zhujiang
Fluss (Perlenfluss) ist sehr anfillig fiir Uberschwemmungen und Diirren, die jeweils grofiere
Auswirkungen auf die sozio-6konomische Sphare haben kdnnen als in anderen chinesischen
Flussgebieten. Informationen liber die Anfalligkeit fiir regionale Wetter- und Klimaextreme
sowie extreme Trockenheit / Feuchtigkeit in Stidchina stehen weder in hoher Auflésung
noch Qualitat, fiir zeitliche oder raumliche Merkmale meteorologischer und hydrologischer
Daten, zur Verfiigung. In vorhandenen Studien wurden bislang weder die vorhandenen
Daten noch die mdglichen Analysemethoden ausreichend angewendet, da die meisten
Forscher nur die Messdaten von einigen wenigen Beobachtungsstationen, mit dazu vielen
Datenliicken analysieren konnten. Aufderdem umfassen diese Studien in der Regel ein zu
grofdes Untersuchungsgebiet um eine aussagekriaftige Analyse zu ermdoglichen. Dariiber
hinaus wurden bisher nur einfache Trend-und Frequenz-Tests benutzt, um die regionalen

klimatischen Eigenschaften zu bestimmen. Schlussfolgernd bedeutet dies, dass bis heute
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keine integrierte Bewertung meteorologischer Extremereignisse mit entsprechenden
hydrologischen Reaktionen zur Verfiigung steht. Angesichts der aktuellen
Herausforderungen im Hinblick auf die Bereitstellung von Wasser und Nahrungsmitteln
sowie der Sicherung der wirtschaftlichen Entwicklung Chinas ist ein umfassendes
methodisches Rahmenwerk zur Bestimmung der saisonalen und monatlichen Klimaextreme
und deren Auswirkungen auf den Wasserkreislauf im Zhujiang-Einzugsgebiet von grofier
Wichtigkeit. Zusatzlicher Entwicklungsbedarf besteht hinsichtlich der Beseitigung
bestehender Mangel in der Verfiigbarkeit von klimatischen und hydrologischen Daten, deren
Interpretation und die anschlieflende Umsetzung der Ergebnisse in der Planung.

Vor diesem Hintergrund ist es das Ziel der vorliegenden Arbeit, belastbare
Grundlagendaten und Auswertungsmethoden hinsichtlich des raumlich-zeitlichen
Musters fiir das Auftreten von meteorologischen Extremereignissen fiir das Zhujiang-
Einzugsgebiet zu entwickeln und bereitzustellen. Die Dateninterpretation konzentriert
sich auf die Bewertung der Anfilligkeit von Gemeinden gegeniiber Klimaextremen als
Ausgangspunkt flir eine nachhaltige Entwicklung durch die Verbesserung von
Anpassungsmafdnahmen an Klimaextreme und deren hydrologische Folgen.

Hierzu wurden zunichst Daten von hoher Qualitit und mit hoher raumlich-zeitlicher
Auflésung generiert. Dabei wurden die bislang hdchste Dichte von Beobachtungsstationen
und die langsten meteorologischen und hydrologischen Zeitreihen, die fiir Siidchina
verfiigbar sind, mit globalen und regionalen Klimamodellergebnissen gekoppelt.
Beobachtete, simulierte und projizierte meteorologische und hydrologische Parameter
wurden hinsichtlich ihrer Relevanz fiir die Bewertung der Anfailligkeit von Gemeinden
gegeniiber Klimaextremen getestet und statistisch oder dynamisch modelliert. Um relevante
Indikatoren fiir Klimaextreme zu erzeugen, wurden statistische Methoden, wie z.B.
Standardisierung, Gleitende Mittelwertbildung sowie spezifische Extremwertbildung,
entwickelt oder modifiziert. Die Datenreihen wurden daraufhin auf ihre Trends, Change-
Points, Frequenzen, Periodizititen und spezifische Auswirkungen auf Trockenheit /
Feuchtigkeit hin untersucht. Die Ursachen und Wechselbeziehungen der Veranderungen
wurden analysiert und mittels Trend-Tests (z.B. Mann-Kendall Test und Lineare Regression),
kumulativer Summierung, moderner Verteilungsfunktionen (z.B. Generalized Extreme Value,
Generalized Pareto und Wakeby), sowie mit angepassten Hauptkomponenten-Analysen und

Wavelet-Transformationen bemessen und interpretiert.
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Raumlich-zeitliche Auswirkungen der meteorologischen Trockenheit bzw.
Feuchtigkeit auf den Flussabfluss (d.h. hydrologische Diirren bzw. Uberschwemmungen)
wurden in Hinblick auf ihre Wiederkehr und diesbeziigliche Anfélligkeit hin untersucht. Um
die hydrologischen Auswirkungen und Reaktionen von extremen Wetterereignissen zu
bestimmen, wurden innovative rdumlich-zeitliche Modellierungen und Interdependenz-
Tests, raumliche Mittelbildung und Hauptkomponentenanalyse angewendet. Diese neuen
Anséitze der Datengenerierung und -analyse liefern ein prazises methodisches Rahmenwerk
fiir die Interpretation der raumlich-zeitlichen Trends, Perioden und Frequenzen von
Trockenheit / Feuchtigkeit im Zhujiang-Einzugsgebiet. Die Ergebnisse dieses
Rahmenwerkes zeigen eine deutliche Steigerung von extremen Temperaturen in der
gesamten Region. Niederschlagsextreme, wie zum Beispiel trockene Tage und
Starkniederschlédge, haben sich dagegen nur in einigen Teilen des Einzugsgebietes verandert.
Diese rdumlich-zeitlichen Unterschiede in Niederschlagsextremen liefern erstmalig Details
tiber die sich verandernde regionale Varianz von Trockenheit / Feuchtigkeit. Dariiber hinaus
konnen relativ konkrete Aussagen iiber die Wahrscheinlichkeit hin zu trockeneren
Bedingungen im westlichen Teil und zu extremerer Feuchtigkeit im nérdlichen und stid-
ostlichen Teil des Einzugsgebietes getroffen werden.

Insgesamt zeigen die Ergebnisse fiir das Zhujiang-Einzugsgebiet unerwartet starke
Korrelationen zwischen "meteorologischen" Extremniederschldgen und "hydrologischen"
Spitzen im Hoch- und Niedrigwasserabfluss. Dies deutet darauf hin, dass jegliche
Veranderungen in den Verhaltensmustern von meteorologischer Trockenheit / Feuchtigkeit,
die festgestellt werden konnten, direkte hydrologische Auswirkungen zur Folge haben.
Diese Abhangigkeit wird durch die erfassten Zyklen intensiver Trockenheits- und
Feuchtigkeitsperioden von 3-7 und 11-14 Jahren bestatigt. Es kann aufgezeigt werden, dass
diese Verdnderungen der Klimaextreme den Anderungen der regionalen atmosphérischen
Zirkulation, vor allem des ostasiatischen Monsuns, folgen. Die Projektionen von zukiinftigen
Trockenheits- und Feuchtigkeitsmustern anhand der Modellrechnungen und statistischen
Extrapolationen zeigen einen allgemeinen Trend zu wirmeren Bedingungen und zu einer
Intensivierung der regionalen Disparitdten. Das so ermittelte regionale und zeitliche Muster
bildete die Grundlage, um verschiedene regionale und lokale Praventions- und
Anpassungsmafdnahmen in Stidchina zu identifizieren und die Vulnerabilitit und Risiken

gegeniiber klimatologischen Extremereignissen zu verringern.
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Introduction

1. Introduction

1.1 Background

Extreme weather and climate events (summarized as ‘climate extremes’ in the
following) such as rain storms and heat waves are important factors influencing the
occurrence of floods and droughts (Easterling et al., 2000; Alexander et al., 2006). These can
have severe impacts on ecosystems and socio-economic structures. The recent record-
breaking and persistent drought in Yunnan, from autumn 2009 to spring 2010, was directly
caused by extreme deficient precipitation of 20% below normal due to a preceding
weakened vertical Asian Monsoon circulation. The drought has affected the drinking water
supply of more than 7 million people and crop areas of almost 22,000 km?, causing direct
economic losses of more than 20 billion CNY (Lii et al., 2012).

In June of 2010, major floods occurred in South China due to anomalously intense
rainfalls caused by a strong East Asian Summer Monsoon, affecting nearly 70 million people,
flooding more than 44,000 km? of farmland, destroying hundreds of thousands of housings,
and totaling in almost 84 billion CNY of direct economic losses. This flood event was caused
by preceding torrential rainfall events, resulting in large-scale inundations and numerous
devastating landslides. A record-breaking rainfall with above 600 mm precipitation in a six-
hour period was observed in Guangdong province (Asia News Network, China Daily, 2010).

These events have extents similar to the devastations reported for the 1998 Yangtze
floods and the large droughts of 2003-04 or 1963-64. In recent decades, droughts occurred
almost every year in entire China, causing an increase in the proportion of crop losses and
threatening the security of drinking water supplies. The annual amount of crops that were
lost due to droughts would feed about 85 million people (Wu et al., 2011).

Accordingly, rain storm, flood, and drought events become more important variables
in hampering sustainable socio-economic development and securing freshwater resources,
especially in the developing countries of Asia (Mertz et al., 2009). Such events do also have
adverse consequences on the agricultural production of the crop growing regions. A
changing climate will lead to changes in the frequency, intensity, spatial extent, duration,
and timing of extreme weather and climate events (Kharin et al., 2007; IPCC, 2012). It is
estimated that by 2050, one billion people in Asia will be adversely affected by changes in
the hydrological cycle as a growing population and higher standards of living push up the

pressure on freshwater resources (Parry et al,, 2007).
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Introduction

Conducting research and applying
innovative methodologies to investigate
climate extremes will enhance the
knowledge on their characteristics, and
thus contribute to strengthen the
adaptation to and prediction of such
extremes. A series of scientific studies
has analyzed the characteristics, causes,
and impacts of trends and frequencies of
climate extremes in East Asia and
worldwide (Ding et al., 2008; Solomon et
al, 2007; Parry et al,, 2007; Klein Tank et
al,, 2009; Hoskins, 2003; Feng et al.,
2007).

Additionally, Barnett et al. (2005)
emphasized that the discharge of most
large rivers is very sensitive to changes
in climate extremes. The changes in
climate extremes can be linked to
changes in the mean and/or the
variability, i.e. changes in the shape of
probability distributions of climate
parameters (Figure 1), such as
temperature, precipitation, and
evaporation (Klein Tank et al., 2009; IPCC,
2012).

According to China’s first and second National Assessment Reports on Climate Change

(MoST, 2006 and 2011), the trends and frequencies of climate extremes have increased in

China and will very likely increase in the future. Associated with global warming, the most

severe impacts that are projected for East Asia are a decrease in freshwater availability and

a significant increase in the variability of river runoff. The recently observed weakening of

the East Asian Monsoon (EAM), which plays an important role in regional precipitation

patterns and water availability, might lead to decreases in precipitation over southeast
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China (Chen et al. 2000). On the contrary, in a global study on precipitation extremes,
Easterling et al. (2000) found increasing heavy precipitation pattern over South China for

the decades before 2000 (Figure 2).

Figure 2 Regions for which the large sets of daily precipitation time series are available for
analyses of precipitation extremes. Signs (pluses and minuses) indicate regions where
significant changes in heavy precipitation have occurred during the past decades.

(Source: Easterling et al., 2000)

1.2 Research Problems

Up to now, not many certain observations and predictions on changes in such
extremes are available for the study region (cf. Wang et al., 2012). The high uncertainty in
the forecasts is a huge obstacle for regional and local stakeholders in implementing
preventive adaptation measures. A related key issue to tackle the increasing climate change
is to intensify water resource management and protection, as well as to enhance the ability
of early warning of rainstorms, floods and droughts. For this major global issue, more
scientific research in the characteristics of extreme events and the associated vulnerability
needs to be reinforced (MoST, 2011).

During the past decade, temporal variations in runoff of Chinese rivers, the Yangtze
and the Yellow River in particular, have been extensively studied (e.g. Chu et al., 2009; Xu

and Milliman, 2009; Xu et al., 2010). Between 1951 and 2000, precipitation has increased in
13
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the south and decreased in the north of China, but most changes of basin-wide precipitation
were statistically insignificant. In the Yellow River Basin, the frequency and contribution of
moderately heavy rainfall events to total rainfall show a significant decreasing trend in
summer (Hu et al,, 2012). This might explain the obvious increase in extreme dryness
observed in the 1990s (Ma et al,, 2004). In the Yangtze River Basin, for example, 7-8 years
fluctuations in dryness/wetness conditions have been detected for most parts of the region
(Gemmer et al.,, 2008; Zeng et al., 2012). In addition, a trend towards wetter conditions from
1990 onward is also obvious (Zhao et al., 2012). Changes in precipitation extremes and
significant quasi periodicities in the 2-3 and 3-4 year ranges have been observed in the
Yangtze River Basin (Becker et al., 2008; Gemmer et al., 2008), and are related to high and
low river flows. Gemmer et al. (2008) conclude that flood and drought hazards in the
Yangtze River Basin have been aggravated accordingly. The Yangtze runoff shows little
changes, while in the north, the Yellow, Liao, and Songhua rivers decreased by 80%, 54%
and 14%, respectively (Xu et al,, 2010, Liu et al,, 2011). The spatial and temporal variability
of precipitation and runoff was also analyzed for multiple sub-basins of the Yellow and
Yangtze rivers, which show several significant changes. These and further findings (Zhai et
al,, 1999, 2004; Alexander et al,, 2006) imply that extremes in low runoff events (droughts)
and extremes in high runoff events (floods) may occur more frequently (Parry et al., 2007).
In turn, changes in water resources can also alter local climate conditions and the risk to
more intense climate extremes (Hattermann and Kundzewicz, 2010; IPCC, 2012).

Regional changes are, however, diverse and Southeast China for instance experienced
an increase in annual temperature and extreme precipitation during the last fifty years (Ding
etal. 2005). Parry et al. (2007) highlighted that projected changes in spatial and temporal
precipitation pattern for most regions in China are very uncertain. This is emphasized by the
low confidence in observed and projected changes in heavy precipitation and dryness
pattern for East and South-East Asia (IPCC, 2012). Regarding the temporal scale, changes in
seasonal and monthly climate extremes are of higher concern than changes on annual scale
(Piao et al, 2010). A closer look into the interdependencies of seasonal and monthly
meteorological and hydrological dryness and wetness conditions and the specific
uncertainties of projections will help to enhance the understanding of changing spatio-

temporal climate patterns.
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1.3 Rationale

Observed and projected climate conditions have been intensely analyzed for the
Yangtze and Yellow River basins which are the two largest river basins in China. As
compared to these two basins, little research has been conducted on the other large river
basins in China. It is also difficult to compare and elaborate the findings of existing studies as
data sets, station density, time series, climate indices, methodologies, models, and
interpretations vary broadly between the existing studies. Hence, the implementation of the
available findings into flood/drought adaptation planning such as projects on integrated
water resources management or climate change adaptation is rather unfeasible, due to the
incoherent use of international or even national standards.

Furthermore, Easterling et al. (2000) emphasize that one of the biggest problems in
performing analyses of global climate extremes is a lack of access to high-quality, long-term
climate data with the time resolution appropriate for analyzing such extremes. The
homogeneity of climate data, especially of extreme events, underlies several factors which
can result in high biases. To avoid these deficiencies in data problems, specific indices for
climate extremes derived from meteorological parameters, which are responsible for the
occurrence of extreme events, must be generated to determine trends, probabilities, and
long-term variability in the climate data for an efficient use in various adaptation projects.

In spite of water security issues, i.e. water supply, water demand and water scarcity,
the China Ministry of Science and Technology (MoST) has put one focus on climate extremes
in South China’s monsoon region. As the country’s third largest river basin, the Zhujiang
River drains the major part of South China. Zhang et al. (2008) concluded that the annual
water discharge in the Zhujiang River Basin is mainly influenced by precipitation variability,
rather than by the construction of reservoirs and dams.

Considering the current challenges with freshwater resources such as water security,
agricultural production such as food security, and economic losses, a comprehensive
investigation of seasonal and monthly climate extremes and their impacts on the water cycle
in the Zhujiang River Basin is of great importance to tackle the existing deficiencies in data

availability and implementation of results.
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2. Objectives

Information on temperature trends, precipitation trends, and long-term
meteorological and hydrological dryness/wetness conditions, especially in South China’s
large river basin, is scarce. This is due to the unavailability of data in required spatio-
temporal resolution and the lack of scientific research conducted in this area. It is important
for regional and local stakeholders to gain more detailed knowledge on the probability
distribution, change-points and trends in climate extremes to prevent and adapt to climate
induced disasters and socio-economic impacts. For this, the simulation and projection of
climate extremes using high resolution regional climate models are required. For feasible
adaptation measures, such as a weather-index based flood insurance, the probabilities and
uncertainties in projected flood frequency and heavy rainfalls must be made available to
regional and local stakeholders. It is also important to interpret the causes of changes in
meteorological and hydrological extremes in order to strengthen the scientific basis and
increase the preparedness. Based on the need to obtain timely results and solutions for the

aforementioned deficiencies,

the objective of the present study is to develop and provide reliable baseline
data and evaluation methods for spatio-temporal pattern of the occurrence of

extreme weather events for the Zhujiang River Basin.

In order to achieve this objective, a comprehensive methodological framework for the
analysis of climate extremes and hydrological responses in South China will be developed by
compiling the results of seven peer-reviewed manuscripts. Specific climate risks are
determined by generating comprehensive data sets and developing statistical modeling and
interpolation methods as described in the subsequent section. Based on this data generating
approach, detected regional impacts of climate extremes on the water cycle (droughts and
floods) are analyzed with regard to the identified trends and frequencies. The causes of the
observed changes in climate extremes are also determined. The significant characteristics
and interdependencies of meteorological and hydrological indicators at different spatio-
temporal scales can be used for water resources management and climate change

adaptation.
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3. Data and Methodology
3.1 Data

Quality controlled daily temperature and precipitation data from 192 meteorological
stations for 1961-2007 in the Zhujiang River Basin, and daily river discharge data as well as
socio-economic and disaster loss data, are provided by the China Meteorological
Administration (CMA). This data was successfully checked on homogeneity by the China
National Meteorological Information Center. The applied NCEP reanalysis data (western
pacific subtropical high, relative humidity, geopotential heights, and u- and v-wind pattern
for 1948-2010) are provided on the website of the US National Oceanic and Atmospheric
Administration (NOAA). The annual East Asian Summer Monsoon Index data is taken from
the website of the Chinese State Key Laboratory of Numerical Modelling for Atmospheric
Sciences and Geophysical Fluid Dynamics. The daily data of simulated and projected
precipitation and temperature from four general circulation models (GCMs) have been
retrieved from the [PCC Data Distribution Centre and from the CMA. The regional climate
model (RCM) data is provided by the Potsdam Institute for Climate Impact Research (PIK).

The observed, simulated, and projected meteorological and hydrologic parameters are
collected and are tested for their suitability, modified, and statistically modeled to achieve
the objective. The parameters, such as temperature, precipitation, wind, and discharge, are
analyzed on the basis of various annual and monthly indicators. These indicators are
developed according to international standards or following specific methodological
necessities in the framework of the study’s objective. Among the developed indicators are
for example Dry Days, Maximum 5-day Precipitation (RX5), the Standardized Precipitation
Index (SPI), and the East Asian Summer Monsoon Index (EASMI), which are investigated on
their trends, change-points, frequencies, periodicities, and impacts especially in
dryness/wetness pattern.

The highest density of observation stations (192 stations), longest meteorological and
hydrologic time series (1961-2007), high resolution GCM/RCM outputs, reanalysis data, and
the latest socio-economic and disaster loss data available in South China are used to identify
to what extent climate extremes changed and will change, and of how the water cycle is and

will be affected.
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3.2 Methodology

For investigating the time series and the developed indicators, a variety of state-of-
the-art methodologies are applied and further developed. For example, the rank related non-
parametric Mann-Kendall test is used to detect significant trends in the time series (Gemmer
etal,, 2004; Yang et al., 2010), while the linear regression is used to determine the
magnitude of the increase or decrease. The CUSUM method (Taylor, 2000; Leung and Wu,
2005) is applied to determine change-points in the time series based on the accumulation of
the annual differences. For estimating the significance of change, the confidence levels are
identified by a bootstrap technique, where the time series are re-sampled without
replacement (Wilks, 2006).

To investigate the probability of occurrence of extreme events, various distribution
functions (e.g. Gamma-3, Generalized Extreme Value, Generalized Pareto, and Wakeby) are
applied (Palutikof et al., 1999; Hamed and Rao, 1999; Su et al,, 2008; Yang et al,, 2010).
Further, three Goodness-of-Fit tests (Kolmogorov-Smirnov, Anderson-Darling, and Chi2-Test)
are used to detect the most adequate probability distribution which fits best (Corder and
Foreman, 2009; Su et al,, 2008). In this case, sampling with replacement is used to estimate
confidence bounds for the return levels of extreme events in climate extremes and to
estimate their natural variability (Davison and Hinkley, 1997, Kay et al., 2009; Kharin et al.,
2007).

The Thiessen Polygon method is applied for spatial averaging (Jiang et al., 2007). Each
polygon surrounds one station with its corner-points at half the distance between the
nearest neighboring stations. To reveal certain spatial interdependencies of climate
extremes in the study area, the principal component analysis is used (Bordi et al., 2004).
This innovative method employs a multi-dimensional approach of the spatial correlation of
all stations or sub-basins to the regional average (Santos et al.,, 2010; Zhao et al., 2012).

The Fast Fourier power spectrum (Schonwiese, 2006; Wilks, 2006) in combination
with the Morlet wavelet analysis (Torrence and Compo, 1998) is used to define significant
periodicities. With the power spectrum the strongest cycles in the time-series can be
detected, while the wavelet analysis visualizes the increases and decreases in the magnitude.
A future continuation of the observed cycles is done by extrapolating the time series based
on the strongest cycles (Bordi et al., 2004; Becker et al., 2008). Several GCMs (e.g. ECHAMS5,
MK3.5, CCSM3, and HIRES), the regional climate model CCLM, and the hydrological model

HBV-D are applied to simulate and project future climate extremes and river runoff.
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The modern methods are often implemented by using different software packages
such as ArcGIS, R, GrADS, Autosignal, and MS Excel. The combination of all techniques and
approaches delivers an innovative methodological framework for the interpretation of

spatio-temporal trends, frequencies, and characteristics of dryness/wetness conditions.

4. Regional Setting

The Zhujiang River Basin (also known as the Pearl River Basin) is located in South
China (Figure 3). The entire basin covers approximately 579,000 km? (including the Leizhou
Peninsula region), which is slightly larger than France, and embraces the administrative
areas of Guangdong Province and Guangxi Autonomous Region almost entirely. It also cuts
into the provinces of Yunnan, Guizhou, Hunan, Jangxi, and Fujian (Figure 4). A tropical to
sub-tropical climate prevails while the East Asian Monsoon has strong seasonal influences

on it (Zhai et al. 2009).
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Figure 3 Topography and main rivers/cities of China, plus location of the Zhujiang River Basin
(red area)
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Figure 4 Topography and river system of the Zhujiang River Basin, location of meteorological
stations, and province boundaries (and names)
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Figure 5 Location of the Xijiang River Basin, the sub-basins (and names) and the hydrological
station on the Xijiang River at Gaoyao
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The basin is characterized by mountainous areas with peaks above 2500 m in the
western part. The northern and north-eastern parts are composed of lower mountain ranges
and hills that surround the central and southern (south-eastern) lowland areas. The
Zhujiang River consists of three main tributaries, i.e. the Xijiang River, Beijiang River, and
Dongjiang River. The largest tributary is the Xijiang River, which accounts for 78% of the
total drainage area of the Zhujiang River Basin and is subdivided into six sub-basins, namely
Beipan, Nanpan, Yujiang, Hongshui, Liujiang, and Lijiang (Figure 5).

With an average discharge of 7,000m3/s at Gaoyao hydrological station, the Xijiang
drains the entire western and central parts of the basin. Due to the basin’s topography
(Figure 6), the Xijiang has a south-eastward stream flow direction, while the Beijiang and
Dongjiang flow south-westward. At the south-eastern coastal area, the tributaries merge
into a large network delta (i.e. Zhujiang River Delta) before they mound into the South China
Sea.

The annual temperature in the basin ranges from 13 °C in the elevated western and
north-western parts of the basin to 24 °C in the coastal lowlands in the south and south-east.
Similarly distributed is the annual average precipitation (1500 mm) with only 800 mm in
the west and more than 2000 mm at the coastline. This distribution can be mainly explained
by the driving climate factors of the transition from maritime (lowlands) to continental
(highlands) of the meteorological stations. A more detailed description of the basins climatic
and hydrologic conditions are provided by Yang et al. (2010) and Zhang et al. (2009), while
historic and current data related to the basin can be also found on the website of the Pearl

River Water Resource Commission (www.pearlwater.gov.cn).

With a population of more than 166 million, the region is currently one of the most
economically prosperous areas of China, with very high development rates, and one of
China’s highest GDP per capita of more than 40,000 CNY per year (National Bureau of

Statistics of China: www.stats.gov.cn, 2011). The basin covers remote rural areas but also

megacities such as Guangzhou and Shenzhen on the southern coast of South China (Figure 6).
The Zhujiang River covers 80% of the drinking water demand of Hong Kong and its basin
hosts an important agricultural basis for entire China. Approximately 12% of the country’s
rice is produced in the basin, which comprises more than 80,000 km?2 of cultivated land.

The population and industrialization have been increasing in recent decades, thus the

damage potentials of extreme climate events and other natural disasters have risen (Feng et
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al,, 2007). Hence, detailed knowledge on and adaptation to potential climate extremes are

needed to lower this increasing vulnerability.

Figure 6 Photographs of the Zhujiang River Basin; Rain fed rice terraces near Longsheng,
Guangxi (upper left), Lijiang River in the tropical Karst region at Yangshuo, Guangxi (upper
right), Xijiang River in agricultural and industrial developed area near Gaoyao, Guangdong
(lower left), and Zhujiang River in the city center of Guangzhou, Guangdong at night (lower
right), by T. Fischer, August 2011.
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5. Overview of the seven Manuscripts

The objective of this dissertation thesis is supported by numerous statistical analyses
and literature reviews, and interpretations on climate extremes in South China in the last
two-and-a-half years. So far, seven manuscripts have been published in or submitted to
international journals. In the following sections, each manuscript is summarized using
modified abstracts, introductions and main findings of the original papers. They are
structured according to the data and methods applied and to the results and conclusions

which are essential to the overall objectives.

5.1 Trends in Annual Temperature, Precipitation, and Dryness/Wetness Pattern

(manuscript 1, published in Quaternary International, IF* 1.768, Appendix I)

Spatial and temporal characteristics of annual temperature and precipitation time
series are analyzed in order to identify tendencies in dryness and wetness. Daily
temperature and precipitation data from 1961-2007 of 192 weather stations are used. All
time series have only minor data gaps and passed the homogeneity check based on the
moving t-test (Peterson et al. 1998), the standard normal homogeneity test (Alexandersson
1986), and the departure accumulating method (Buishand 1982). The Mann-Kendall trend
test (Gemmer et al.,, 2004; Yang et al,, 2010) and linear regression are applied to nine climate
indicators (Klein Tank et al., 2009) which have been generated in order to detect patterns in
dryness and wetness conditions. They are further compared with two drought indices, i.e.
the Standardized Precipitation Index (SPI; McKee et al., 1993) and the Palmer Drought
Severity Index (PDSI; Hayes, 2006).

Significant positive trends are found for mean temperature, number of warm days,
longest warm period, dry days, and longest dry period. A significant increase in temperature
by more than 0.7 K from 1961 to 2007 is observed in the entire basin and the coastal and far
western areas in particular. The temperature changes might be explained the anticipated
global warming (Ding et al., 2007). Negative trends are observed for annual cool days,
longest cool period, wet days, and longest wet period. The findings are in line with national

and international observations (Liu et al., 2009; Trenberth et al., 2007; Zhai et al., 2004), but

1 Impact Factor for 2010
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display the regional disparities in much more detail now, which also underline a stronger
increase in temperature at the coastal and western areas than has been published before.

Almost no significant trends in annual mean and extreme precipitation could be found,
but a shift to a greater regional imbalance in precipitation patterns within the basin is
detected. A major new finding is the more regionalized distribution of annual no rain days
and wet/dry periods with a significant trend to more dry days (i.e. fewer rain days) over the
entire western part and significant negative trends to shorter wet periods but longer dry
periods particularly in the far western corner and the delta region (Figure 7). Rainfall
intensity has also increased along the coastline and in the far West of the catchment, which
is in line with the findings by Zhang et al. (2009) and can be explained by the increasing
number of dry days.

It can be concluded that indicators describing dryness (e.g. annual temperatures and
dry days) have increased in magnitude, and dry periods have become longer while wet
periods have shortened in time. The spatial distributions of the trends of these indicators
show tendencies to stronger regional disparities. The identified spatio-temporal
distributions of annual dryness/wetness indicators are partially linked to orographic
convection, the transition from maritime to continental climate factors, and to changing
wind patterns due to a weakening of the East Asian Summer Monsoon (EASM; Su et al.,, 2005;

Yu et al,, 2009; Chou, 2004).
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Figure 7 Observed (A) average duration of annual longest wet period (Pwe) and trend in
annual rain days (Prain), (B) number of annual no rain days and trend in annual longest dry
period in the Zhujiang River Basin, 1961-2007.
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5.2 Trends in Monthly Precipitation Extremes

(manuscript 2, published in Journal of Climate, IF 3.513, Appendix II)

Spatial and temporal characteristics of monthly precipitation trends in the Zhujiang
River basin, South China, are analyzed to identify seasonal changes in extremes in more
detail. Again the non-parametric Mann-Kendall trend test is applied to daily precipitation
data from 192 weather stations for various extreme indicators. Among others, the annual
and monthly number of rain days and the annual and monthly amounts in maximum and
maximum 5-day precipitation are of special interest. Further, NCEP reanalysis data

(http://www.esrl.noaa.gov/psd/; Kalney et al. 1996) are investigated on geopotential

heights and wind direction pattern (1948-2010) linked to the East Asian Monsoon.

In line with the findings of manuscript 1, the results show that few stations
experienced trends in the precipitation indices on an annual basis. On a monthly basis,
significant positive and negative trends above the 90% confidence level appear in all months
except December. The trends in the indicators of monthly precipitation, rain intensity, rain
days, and monthly maximum precipitation show very similar characteristics. They all
experience the most distinct negative trends in October (Figure 8). The findings are
somewhat supported on a seasonal basis by Liu et al. (2009) who detected, although not
significantly, that autumn precipitation decreased, but spring, summer, and winter
precipitation increased. It becomes apparent that if monthly results are merged for seasons
(e.g. September, October, and November merged to ‘autumn’) the information on the
significant decrease of precipitation intensity in October would have been lost.

A change of the mean wind direction by around 50° from East-South-East to East-
North-East might explain the downward trend in precipitation indicators in October. Dry
October months (months with low precipitation indices) can be observed when the mean
wind direction is East-North-East (arid) instead of the prevailing mean wind direction East-
South-East (moist) which is similar to Wet October months. East-North-East wind directions
are typical for the East Asian Winter Monsoon (EAWM). Nearly 90% of the driest October
months can be explained by the wind pattern of the EAWM (Figure 9).

In regard to the findings in manuscript 1, the early onset of the EAWM in relation with
a weak EASM (Chou, 2004) can be linked to the observed changes in annual and monthly
dryness conditions. This identified linkage of large-scale atmospheric circulation with

observed regional trends delivers more detailed information on observed changes than
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other studies in the same area. This can be attributed to the higher station density and

quality of daily data, and the focus on monthly trends in the current study.

Figure 8 Monthly trends in maximum 5-day precipitation (shadings) and number of dry days
(triangles) in the Zhujiang River Basin, 1961-2007.
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Figure 9 Characteristics of relative humidity (shadings) at 850hPa level and winds (arrows)
for average dry October (left panel) and for average wet October (right panel) in the Zhujiang
River Basin (black rectangle).
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5.3 Change-Points in Climate Extremes

(manuscript 3, published in Climatic Change, IF 3.016, Appendix III)

In this manuscript, change-points and corresponding abrupt shifts in time series of
annual climate extremes are investigated on their potential connections with atmospheric
circulation patterns. Annual mean temperature, maximum temperature, warm days, total
precipitation, 5-day maximum precipitation, and dry days (Klein Tank et al., 2009) of 192
meteorological stations for the period 1961-2007 are analyzed using the CUSUM method
(Taylor, 2000; Leung and Wu, 2005) and bootstrapping techniques. Similarly, the East Asian
Summer Monsoon Index (EASMI; Li and Zeng, 2003; http://www.lasg.ac.cn/staff/ljp/data-

monsoon/EAMI1948-present.ascii), the Western Pacific subtropical high Index (WPI;

Barnston and Livezey, 1987; http://www.cpc.ncep.noaa.gov/data/) and the NCEP wind

directions in October (http://www.esrl.noaa.gov/psd/data/) are also investigated.

Significant change-points (1986/87,1997/98, 1968/69, and 2003/04) are detected in
time series of the indicators at varying numbers of stations. For 1986/87, most stations with
a change-point in temperature indicators are located in the eastern and coastal areas of the
basin. Stations with this change-point in dry days are located in the western area. Identified
change-points signify an abrupt shift to higher/lower amounts in the annual indicators and
are mostly caused by spatial changes (movements) of regional climate regimes (Seidel and
Lanzante, 2004; Wilks, 2006). The means and trends of the temperature indicators shift
upward in the entire basin after 1986/87. The highest magnitudes can be found at the coast
and delta. Downward (upward) shifts in total and 5-day maximum precipitation (dry days)
are mostly observed in the western and central regions.

Conclusively, the change points result in above-average temperatures, below-average
precipitation in winter and spring, and fewer moderate-to-heavy rainfall events in summer.
The detected change-points can be explained by changes in the WPI and the EASMI as well
as by change-points in wind directions in October (Figure 10). The linkage of the change-
points to large-scale atmospheric circulation has not yet been investigated for South China.
In years when the WPI and EASMI simultaneously increase and decrease (indices taking
reverse directions to negative and positive values), higher annual temperatures and lower
annual precipitation amounts occur in the Zhujiang River Basin. In recent decades, the
contrast of a slight decrease in summer temperatures over Central Asia and an increase over
the North West Pacific caused the weakening of the summer monsoon and the shift of the

rain belt over South China, leading to less rain days (Su et al., 2005; Chou, 2004). It not only
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underlines and verifies the findings of manuscripts 1 and 2, but changes in the location of
the East Asian Jet Stream and shifts in the transition phase from EASM to EAWM can be
deduced. Therefore, the results can be used for forecasts of abrupt shifts in climate extremes
and rain seasons, to provide valuable data for adaptation measures against climate risks, e.g.

for flood control, disaster preparedness, and water resource management.
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Figure 10 Averaged mean temperature (dashed red line) and dry days (blue line) in the
Zhujiang River Basin, change-points of mean temperature and dry days (orange columns),
change-points of wind directions in the eastern Zhujiang River Basin in October (purple
columns), years of reverse indices for WPI and EASMI (green columns), 1961-2007.
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5.4 Probability Distribution of Precipitation Extremes

(manuscript 4, published in Journal of Hydrometeorology, IF 2.185, Appendix 1V)

Precipitation extremes have caused floods and droughts, which in turn led to
economic and agricultural losses and extensive impacts on harvest areas in the Zhujiang

River Basin (CMA, 2010; www.pearlwater.gov.cn; www.ers.usda.gov). Increasing trends in

economic losses and affected harvest areas can be detected, and a 14-year cycle in affected
areas due to droughts can be distinguished (Figure 11). Based on regional experiences in
climate change adaptation techniques, the concept of weather-index based insurance is
introduced as a new approach in adaptation to climate extremes (Boyd et al.,, 2011; Parry et

al,, 2009; The World Bank, 2007; Turvey and Kong, 2010; www.circ.gov.cn). By insuring

harvest losses due to certain climate extremes, this approach can decrease the vulnerability
of local farmers to climate extremes. After identifying observed changes in climate extremes
(see manuscripts above), the analysis of their frequencies is important to improve the

management of the associated risks (here: flood risks).
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Figure 11 Direct economic losses (in billion RMB; left panel) and Affected harvest area (in
million ha; right panel) due to Typhoon, Rain & Floods, and Drought Disaster in Guangdong
and Guangxi 1983-2009
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The probability of precipitation extremes is necessary to determine return periods of
extreme events, and is also a key input in the development of thresholds for weather-index
based insurance (Adger et al., 2007; The World Bank, 2007). Therefore, the probability
distribution of annual precipitation extremes is analyzed by applying four distribution
functions (Gamma-3, Generalized Extreme Value [GEV], Generalized Pareto, and Wakeby) as
used and described by Palutikof et al. (1999), Hamed and Rao (1999), Feng et al. (2007), Su
etal. (2008), and Yang et al. (2010). Three Goodness-of-Fit tests (Kolmogorov-Smirnov,

29



Overview of the seven Manuscripts

Anderson-Darling, and Chi2) are applied to the distribution functions for annual time series
(1961-2007) of 192 meteorological stations to identify the most adequate probability
distribution which fits best (Corder and Foreman, 2009; Su et al., 2008). To obtain reliable
results in the estimation of return levels and hence in the application of all common
distribution functions, stationarity in the time series needs to be confirmed beforehand. For
this, the methods of linear regression, Mann Kendall test, and Engle’s test (Gao et al,, 2010;
Duchesne, 2006) are applied, to identify stations exhibiting significant trends and
conditional heteroscedasticity in residuals. Here, eleven stations out of 192 were excluded
from the calculations. For each station-based indicator, 1000 bootstrap members are
generated by sampling with replacement (Davison and Hinkley, 1997, Kharin et al., 2007) to
estimate confidence bounds for the return levels.

The results show that maximum precipitation and 5-day-maximum precipitation are
best described by the Wakeby distribution, which is similar to the findings by Su et al. (2008)
for the Yangtze River Basin, which is the only available comparative study for East China so
far. However, on basin-scale, the GEV is the most reliable and robust distribution for
estimating precipitation indexes for an index-based insurance program in the Zhujiang River
Basin. Nonetheless, it is recommended that each station has to be analyzed individually as
GEV is not always the best fitting distribution function. Based on the distribution functions,
spatio-temporal characteristics of return periods for maximum precipitation and 5-day-
maximum precipitation are determined. The return levels of the 25- and 50-year return
periods (using GEV) show similar spatial pattern: they are higher in the southeast and lower
in the southwest of the basin (Figure 12). This spatial distribution is in line with the annual
averages and the findings in manuscripts 1 and 2. They are also to some extent similar to the
visualizations by Yang et al. (2010) and Yin et al. (2009), and comparable to the findings of
Su et al. (2008) for the Yangtze River Basin. The detected changes in climate extremes are
integrated in the actual probability function, but will probably change to even higher
thresholds in the future.

Due to increasing economic development and population growth, future climate
extremes will probably lead to even higher economic losses. Keeping this in mind, the
statistical probability distribution of climate extremes delivers important information for a
theoretical weather-index based insurance program and gives further new insights in
regional extreme rainfall events and their linkage with economic and agricultural losses in

the Zhujiang River Basin.
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Figure 12 Return levels of the 25-year (a,b) and 50-year (c,d) return period for RX1 (a,c) and
RX5 (b,d) in the Zhujiang River Basin, 1961-2007. The dashed lines indicate the 25/50mm

interval (RX1/RX5).
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5.5 Long-term meteorological and hydrological dryness/wetness conditions

(manuscript 5, accepted in Hydrology and Earth System Sciences, IF 2.463, Appendix V)

As assessed in manuscript 4, floods and droughts are frequently causing large
economic losses in South China. These conditions vary in space, time, and magnitude. While
we focused on short-term precipitation extremes in manuscript 4, we now analyze the long-
term meteorological and hydrological dryness and wetness conditions in the Xijiang River
Basin. These long-term conditions are of interest, as they do not implicate short-term
economic losses but rather long-term indirect losses and/or large-scale drought events
(Bordi et al,, 2004). Comparing the inter-annual monthly precipitation and monthly
discharge (provided by the CMA) in the Xijiang River Basin, a very similar course can be
observed. The Thiessen Polygon method (Jiang et al., 2007) is applied to the station-based
precipitation data, to generate monthly values for the calculation of the internationally
recommended SPI (Bordi et al., 2004; Mishra and Singh, 2010). The SPI is also used to show
the temporal characteristics of dryness and wetness pattern in the six sub-basins of the
Xijiang River.

An impressive finding is that the SPI1-24 correlates high with the standardized
discharge index (SDI-24; McKee et al., 1993; Mishra and Singh, 2010) for Gaoyao
hydrological station at the mouth of the Xijiang River (Figure 13). Hence, the natural
variation in precipitation is responsible for the discharge to a very high degree. This is in line
with the findings of Zhang et al. (2008), who concluded that the long-term changes of annual
water discharge are mainly controlled by precipitation variation, rather than construction of
reservoirs and dams, in the Zhujiang River Basin. Distinct long-term dryness and wetness
sequences can be substantiated in the time series for both indices (SPI-24 and SDI-24).

The principal component analysis (Bordi et al., 2004; Santos et al., 2010; Zhao et al,,
2012) reveals many spatial interdependencies in dryness and wetness conditions for the
sub-basins and explains some spatio-temporal disparities. Moderate dryness conditions
have a larger spatial impact than moderate wetness conditions in the sub-basins. The
loading pattern of the first principal component shows that the correlation with the entire
Xijiang River Basin is highest in the eastern and lowest in the western sub-basins. Further
spatial dipole conditions explain the spatio-temporal heterogeneity of dryness and wetness
conditions. Accordingly, the precipitation in the eastern sub-basins contributes higher to
hydrological wetness conditions than in the western sub-basins, which mainly contribute to

dryness patterns.
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Using the Fast Fourier power spectrum (Schonwiese, 2006; Wilks, 2006), the
spectral analysis for the SPI-24 of the entire Xijiang River Basin and the SDI-24 shows
similar peaks for periods of 11-14.7 years, 2.8 years, 3.4-3.7 years, and 6.3-7.3 years. The
same periods can be found for the SPI-24 of Xijiang River’s six sub-basins with some
variability in the magnitude. The Morlet wavelet analysis (Torrence and Compo, 1998)
shows that the most significant periods are stable over time since the 1980s.

By using the most significant periodicities the potential course of the reconstructed
time series of the SPI-24 and SDI-24 can be statistically extrapolated (Bordi et al., 2004;
Becker et al,, 2008). These extrapolations do not suggest any spatial or temporal changes in
the occurrence of dryness and wetness conditions in the next two decades but display a
continuation of the observed cycles at given magnitude (Figure 13). The extrapolation
shows a distinct extreme dryness in 2008-09 which is spatially and temporally in line with
the observed long-term drought that occurred in Southwest China in 2009-10 (Lii et al.,
2012).

Increases in the magnitude of indices describing dryness, and a prolongation of dry
periods with an opposing shortening of wet periods was identified in manuscript 1 and 2.
These findings can explain the long-term drought sequences which we observed in the SPI-
24 and SDI-24 time series during the second half the observed time period. It might also
explain why the short-term periods around 3-4 years shifted to slightly longer periods
which would then indicate inner-annual changes. Further noticeable are the change-points
in precipitation indicators 1985/86 and 2003 /04 that have been detected in manuscript 3.
Both change-points mark the start of the two most distinct dryness clusters in the SPI-24
and SDI-24 time series.

It can be concluded that long-term hydrological dryness and wetness conditions are
directly caused by periodic cycles of meteorological conditions (i.e. precipitation). The
applied methodologies prove to be able to identify spatial interdependencies and
corresponding regional disparities, and to detect significant periodicities in long-term
dryness and wetness conditions in the Xijiang River Basin. The findings display the most
accurate interpretation of long-term dryness/wetness conditions due to the highest station

density and quality of daily data, and the focus on monthly indices in the current manuscript.
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Figure 13 Reconstructed and extrapolated SPI-24 of the Xijiang River Basin (upper panel) and
SDI-24 of Gaoyao Hydrological Station (lower panel)
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5.6 Simulated and Projected Climate Extremes

(manuscript 6, accepted in International Journal of Climatology, IF 2.479, Appendix VI)

Having assessed the observed trends and periodicities in dryness and wetness
conditions in the former manuscripts, we now focus on a detailed analysis of simulated and
projected climate extremes until 2050. As provided by the Potsdam Institute for Climate
Impact Research (PIK), daily output is used from the regional climate model COSMO-CLM
(CCLM) as driven by the global circulation model (GCM) ECHAMS5 (Steppeler et al.,, 2003;
Bohm et al., 2006; Nikulin et al,, 2011; Hollweg et al., 2008; Rockel et al., 2008). The hindcast
simulation covers the period from 1961 to 2000 while the projection concentrates on the
near future period from 2011 to 2050. Spatio-temporal statistical characteristics are
investigated for three temperature and three precipitation indicators (Alexander and
Arblaster, 2009; Klein Tank et al., 2009; Su et al., 2008). The six simulated annual and
monthly indicators are statistically compared with synoptic observations (Alexander and
Arblaster, 2009; Bordi et al., 2004; Corder and Foreman, 2009; Gemmer et al., 2004; Sheskin,
2004; Wilks, 2006). The investigation is based on daily values of 195 grid-points and 192
meteorological stations.

Compared to the observations, slightly higher amounts in temperature indicators and
lower amounts in precipitation indicators are simulated. The distribution patterns of the
CCLM simulations are visually much more similar with the observations than the ECHAM5
simulations, and CCLM can simulate monthly PRCPTOT and TMEAN more realistic than
ECHAMS5, which shows high deficiencies in spring. CCLM shows also a better simulation of
the seasonal cycle, especially in regard to the precipitation extremes. Due to the reasonable
similarities in spatial variation and trends we conclude that CCLM is able to satisfyingly
reproduce climate extreme for the simulated period. Therefore, our analyses show that
CCLM can be used to project climate extremes in the Zhujiang River Basin for the period
from 2011 to 2050.

Based on SRES A1B (IPCC SRES, 2000), the projected changes indicate warmer and
wetter conditions in the northern and southern regions, especially in winter and spring
(Figure 14). This includes more intense rainfall events, which might potentially increase the
risk of flooding in the central parts of the ZRB in these seasons. Warmer and dryer
conditions can be expected in the western and eastern regions, especially in summer and fall.
These lower precipitation amounts but warmer temperatures will probably increase the

evapotranspiration, which potentially leads to a higher risk of drought. The findings of Liu et
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al. (2009) are similar to our findings in TMEAN and PRCPTOT, but at less detailed regional
and temporal resolution. The findings in GCM projected precipitation extremes by Xu et al.
(2011) show opposed trends, i.e. increasing trends in annual consecutive dry days and
decreasing trends in annual RX5, for the south china basin (comprising the Zhujiang and the
Yangtze River basins). These discrepancies underline the importance of spatial resolution in
climate modeling and emphasize the existing high uncertainty in current projections (Chen
etal,, 2011).

So far, this manuscript is the first projection of future climate extremes in South China
with such a high spatial and temporal resolution by a regional climate model and
observations available. Regarding the projected climate extremes, adverse consequences in

various sectors, such as agriculture, water, and energy should be anticipated.
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Figure 14 CCLM-simulated (1961-2000) and CCLM-projected (2010-2050) averaged annual
mean temperature (red line) and annual total precipitation (green columns), including the
means of 1961-2000 and 2011-2050 (dark red / dark blue lines) and the linear trend in mean
temperature for 2011-2050 (black dashed line) in the Zhujiang River Basin.
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5.7 Projected Flood Frequencies and their Uncertainty

(manuscript 7, accepted in Quaternary International, IF 1.768, Appendix VII)

Following the projections of climate extremes in manuscript 6, we now analyze the
changes in projected flood frequencies of the Zhujiang River and additionally investigate the
uncertainties in the modeling of the hydrological impacts of climate change. We applied the
hydrological model HBV-D (Krysanova and Bronstert, 1999) to simulate and project future
stream flow based on a multi-model ensemble, which includes the GCM’s: ECHAMS5, MK3.5,
CCSM3, HIRES, and CCLM (http://ipcc-ddc.cru.uea.ac.uk; and as provided by PIK). A monthly

re-sampling technique is used to estimate the natural variability (Kay et al., 2009; Jenkins
and Lowe, 2003). The magnitude of three uncertainty sources, i.e. emission scenarios, GCM
structure, and downscaling techniques, are related to the observed and projected natural
variability. The relative change in each uncertainty source and the overall dominance
among the three sources are analyzed. As several investigations (Kay et al., 2009; Menzel et
al,, 2006; Liu et al,, 2011) show that uncertainty from hydrological modeling is less
important, it is not assessed in this manuscript. Based on the peak over threshold method
and the generalized Pareto distribution (Begueria, 2005; Kay et al., 2009; Prudhomme et al,,
2003), the changes in flood frequency are presented for five return periods (2, 5, 10, 20, and
50 years) and three future time periods (2020s, 2050s, and 2080s; Figure 15).

The results suggest that a steady

1.0 ; increase in peak flow will occur in the
; baseline
. 08 r ——2020s projected time frame. These increases are
% 06 r 2050s subject to various uncertainty sources,
=
! ——2080s
g 04 r { which show much stronger variations in
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0.0 . ; . — T multi-model ensemble. The range of their
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Figure 15 Frequency curves of changes in 16). In most of the cases, the dominant
projected annual maximum 1-day flood peak
flows (i.e. flood frequency) for three future
periods relative to the baseline period (1961-
1990) based on a multi-model ensemble

uncertainty can primarily be attributed to
emission scenarios for all three future time
periods. The GCM structure is the second

dominant source, especially for the
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projected flood frequency in the 2050s. Downscaling techniques represent the lowest
uncertainty ranges of the three sources. The uncertainty and projected impact of climate
change differs also between the four applied GCMs, as compared to the natural variability
CCSM3 and HIRES show higher ranges than MK3.5 and ECHAM5.

The upper bounds (95% percentile) in uncertainty mostly show an increasing
tendency with increasing return period, and partially with increasing lead time. Hence, the
more extreme the return period (higher flood frequency) the higher is the uncertainty of the
model projections. It is therefore essential that climate change impact assessments consider
a wide range of climate scenarios derived from different GCMs under multiple emission
scenarios and including several downscaling techniques. The uncertainty due to natural
variability should also be considered more intensely (Ruosteenoja et al., 2003). The
projection of changes in flood frequency of the Zhujiang River and in estimating and
quantifying the influence of the uncertainty sources (Wilby and Dawson, 2007; Kay et al.,
2009), policy-makers can be better convinced of integrating adaptation to climate extremes
into their long-term plans, which can further strengthen the essential water resources
management and disaster risk reduction in the Zhujiang River Basin.

In climate modelling, various sources of uncertainties are involved in the detection of
climate change impacts amongst natural variability. In estimating and quantifying the
influence of such uncertainty sources, policy-makers can be better convinced of integrating
climate change into their long-term plans (Kay et al., 2009), which can strengthen e.g. water

resources management in the Zhujiang River basin.
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Figure 16 Bar charts of the relative impact range of three uncertainty sources, i.e. emission
scenarios (blue), GCM structure (red) and downscaling techniques (green) for five return
periods (2, 5, 10, 20 and 50 years) for the future periods of the 2020s (left panel), 2050s
(middle panel), and 2080s (right panel)

38



Conclusions

6. Conclusions

With the methodological approach that was developed, the objectives of the
dissertation thesis, comprising the detection of climate extremes and their impacts on
dryness/wetness pattern in the Zhujiang River Basin and their past and future changes, has
been achieved. Meteorological and hydrological parameters were statistically analyzed
based on observations, simulations, and projections. The parameters, such as temperature,
precipitation, wind, and river discharge, have been analyzed on the basis of various annual
and monthly indicators that have been developed. Among the many indicators were the very
important 5-day-maximum precipitation, dry days, and the SPI. These indicators have been
analyzed on their trends, change-points, frequencies, periodicities, and impacts, especially
regarding dryness and wetness pattern. Further, new data sets have been generated using
state-of-the-art global and regional climate models as well as statistical programming. The
data and methodological framework have not been made available before and support the
interpretation of the causes of detected changes and processes. It can be concluded that
the indicators developed and the novel methodologies applied in the framework of
this thesis are valuable tools to analyze spatio-temporal changes in meteorological
dryness/wetness pattern and hydrological responses in South China.

Generally, dryness conditions have increased in magnitude and duration, while wet
periods have shortened in time in the Zhujiang River Basin in South China. The spatial
distributions of these trends show tendencies to more distinct regional disparities. Few
stations in the basin experienced trends in the annual precipitation indices, but on a
monthly basis, significant positive and negative trends appear in all months except in
December. The trends in monthly precipitation, rain intensity, rain days, and monthly
maximum precipitation show very similar characteristics, with the most distinct negative
trends in October. The identified spatio-temporal distributions of annual dryness/wetness
indicators are partially linked to orographic convection, the transition from maritime to
continental climate factors, and to changing wind patterns due to a weakening of the East
Asian Summer Monsoon (EASM). The early onset of the East Asian Winter Monsoon (EAWM)
in relation with a weak EASM can be linked to the observed changes in annual and monthly
dryness conditions. This identified linkage of large-scale atmospheric circulation with
observed regional trends delivers more detailed information on observed changes than
other studies in the same area. This can be attributed to the higher station density and

quality of daily data, and the focus on monthly trends in the current thesis.
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The significant change-points (1986/87,1997/98, 1968/69, and 2003/04) detected in
time series of climate extreme indicators at varying numbers of stations, similarly result in
temporal steps towards above-average temperatures, slightly below-average precipitation
in winter and spring, and fewer moderate-to-heavy rainfall events in summer. The changes
are linked to the changing conditions of the East Asian Summer Monsoon and the Western
Pacific Subtropical High. The detected change-points can be partially explained by abrupt
changes in the indices of the Western Pacific subtropical high (WPI) and the EASM as well as
by change-points in wind directions in October. Changes in the location of the East Asian Jet
Stream and shifts in the transition phase from EASM to EAWM can be deduced and support
the findings in annual and monthly dryness/wetness conditions.

Numerous events within the time series of observed monthly and annual precipitation
extremes have caused floods and droughts, which in turn led to economic and agricultural
losses and extensive impacts on harvest areas in the Zhujiang River Basin. Increasing trends
in economic losses and in affected harvest areas, and a 14-year cycle in affected areas due to
droughts can be distinguished in the available loss records. Looking into the probability
distribution of flood-supporting extremes, it can be concluded that maximum precipitation
and 5-day-maximum precipitation are best described by the Wakeby distribution. However,
on basin-scale, the generalized extreme value (GEV) distribution is the most reliable and
robust distribution for estimating the probability of precipitation extremes, which is also in
accordance with the World Meteorological Organization (WMO). Therefore, the application
of GEV is highly recommended for investigations on probability distributions of dryness and
wetness conditions in the Zhujiang River Basin.

Strong correlations are detected in annual regional precipitation amounts and river
discharge of the Xijiang River as well as for their monthly standardized indexes (SPI and
SDI). This is supported by the periodicities in the SPI and SDI of the entire Xijiang River
Basin, which show similar peaks for periods of 11-14.7 years, 2.8 years, 3.4-3.7 years, and
6.3-7.3 years. Additionally, it becomes apparent that moderate dryness conditions have a
larger spatial impact than moderate wetness conditions in the sub-basins of the Xijiang
River Basin. Accordingly, the precipitation in the eastern sub-basins contributes higher to
hydrological wetness conditions than in the western sub-basins, which mainly contribute to
hydrological dryness patterns. It can be concluded that long-term hydrological dryness and

wetness conditions are directly caused by periodic cycles of meteorological conditions (i.e.
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regional precipitation pattern). The extrapolated dryness/wetness conditions can be used
for potential guidance in the development of adaptation measures in the near future.

The simulation results for regional climate extremes in the Zhujiang River Basin
confirm that the regional climate model CCLM is able to satisfyingly reproduce climate
extreme in the simulation period. Subsequently, CCLM is used to project climate extremes in
for the period from 2011 to 2050. The projected changes in climate extremes indicate
warmer and wetter conditions in the northern and southern parts, especially in winter and
spring, with more intense rainfall events, which might potentially increase the risk of
flooding in the central parts of the ZRB in these seasons. Contrarily, warmer and dryer
conditions can be expected in the western and eastern regions, especially in summer and fall.
These lower precipitation amounts but warmer temperatures will probably increase the
evapotranspiration, which potentially leads to a higher risk of drought.

The results from the hydrological model HBV-D suggest that a steady increase in peak
discharge (i.e. flood frequency) of the Xijiang River will occur at least until 2100. The
dominant source of uncertainty in this peak discharge projection can primarily be attributed
to emission scenarios. The upper bounds (95% percentile) in uncertainty mostly show an
increasing tendency with increasing return period, and partially with increasing lead time.
Hence, the more extreme the return period (i.e. the shorter the flood frequency) the higher
is the uncertainty of the model projections. It is therefore essential that climate change
impact assessments consider a wide range of climate scenarios derived from different global
climate models under multiple emission scenarios and including several downscaling
techniques. The detected changes in climate extremes are integrated in the actual
probability function, but will probably change to even higher thresholds in the future.

In this thesis, the highest density of observation stations, longest meteorological and
hydrologic time-series, and GCM/RCM outputs available in South China have been generated.
They are used to identify spatio-temporal changes in past and future climate extremes and
how the water cycle is and will be affected. The innovative methodologies that have been
selected, tested, and developed prove to be able to identify spatio-temporal
interdependencies and corresponding regional disparities, and to detect significant trends,
change-points, and periodicities in short- and long-term dryness and wetness conditions in
the Zhujiang River Basin. The approach proves to be excellent to achieve the objectives of
the thesis. Such an integrated spatio-temporal analysis has not been available before.

Furthermore, the thesis could identify causes of changes in extremes, e.g. changes of
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pressure systems in the West North-Pacific. The largest benefit of this thesis is the solid
results that can be used by decision makers who are involved in the management of climate
risk. The causes of the observed and projected changes have not been identified as such
before. They can serve to improve predictions and early warning systems in the Zhujiang

River Basin.

7. Outlook

So far, observed changes in climate extremes had an impact on flood and drought
events and were partially caused by changes in atmospheric pattern. For the upcoming years,
the maximum 1- and 5-day rainfall events are projected to become more intense and might
lead to higher surface runoff and flooding, increased soil erosion, and reduced water quality.
In contrast, the projected increase in dry days with a larger spatial impact of dryness
conditions might lead to water scarcity (i.e. drought), soil degradation, and lowering of the
groundwater table. An increase in dry days can also lead to soil desiccation and soil sealing,
which in turn increases the potential of flooding. Hence, an increase in dry days and in
average maximum 5-day rainfall might be regarded as factors indicating an increasing
frequency and magnitude of drought and flood events. All such impacts might directly or
indirectly affect the plant growth of the agricultural production with high losses in yield (as
detected), which will have adverse consequences on the food security of the entire region.
The strong increases in temperature extremes in the entire basin might affect most sectors,
e.g. the energy demand or plant growth pattern will change the current economic and
agricultural systems. High temperatures in summer will affect the population and economic
sectors, as heat-induced health issues and higher cooling demand of public, private, and
industrial sectors will appear. Nevertheless, higher temperatures in winter might effectively
extend the plant growth period (i.e. longer annual agricultural production) and lessens the
heating demand (i.e. less energy consumption). These examples show that the thesis has
delivered a sound basis for further sectoral studies, e.g. in agricultural science, forestry
science, wetland biology, or energy research.

South China might face an imbalance between the supply and demand of water for
supporting the rapid socio-economic development while protecting the natural ecosystems

(Cheng and Hu, 2012). The Chinese basins are particularly vulnerable to environmental
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factors (Varis et al,, 2012), hence, changes in dryness and wetness conditions are expected
to further stress freshwater resources and widen the gap between the demand for and
supply of water (Cheng and Hu, 2012) in the Zhujiang River Basin. Hard and soft measures
to adapt to the adverse consequences, related to the detected changes in dryness/wetness
conditions, have to be identified and implemented based on specifically issued policies and
regulations. A sustainable water resources management strategy, based on both supply and
demand, should be considered at the river basin scale. One good opportunity would be the
implementation of an Integrated Water Resources Management (IWRM) which takes into
account the socio-economic and environmental concerns in an integrative manner (Varis et
al,, 2012). This, or a similar approach, should also include mechanisms for climate change
adaptation, climate proofing, and disaster risk reduction; incorporating the results

presented in this dissertation thesis, to decrease the future vulnerability to climate extremes.
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Spatial and temporal characteristics of temperature and precipitation in the Zhujiang River Basin, South
China, are analysed in order to identify tendencies in dryness and wetness. Trend tests are applied to
daily temperature and precipitation data from 1961 to 2007 of 192 weather stations. Nine indicators are
applied in order to detect cycles of dryness and wetness and are compared with the drought indices
Standardized Precipitation Index (SPI) and Palmer Drought Severity Index (PDSI).

Tendencies in temperature and precipitation characteristics can be observed. Significant positive
trends (>90% confidence level) can be found for annual temperature, number of warm days, longest
warm period, no rain days, and longest dry period. A significant increase in temperature by more than
0.7 K from 1961 to 2007 can be observed in the entire basin and the coastal and far western areas in
particular. Negative trends are observed for annual cool days, cool period, wet days, and wet period.
Almost no significant trends in annual mean and extreme precipitation are detected. Rain days
decreased, and a tendency to longer dry periods and shorter wet periods can be observed.

The magnitude of indices describing dryness has increased in the Zhujiang River Basin, and dry periods
have become longer while wet periods have shortened in time. Rainfall intensity has increased along the
coastline and in the far west of the catchment. This tendency can be partially explained by the weakening
of the East Asian Summer Monsoon. Regarding the high temperature increases, the influences of the
urban heat island effect due to urbanization and industrialization, especially along the coast and at the
delta, should be considered. The high station density and data quality are very useful for describing
detailed changes in wetness and dryness in the Zhujiang River basin.

© 2010 Elsevier Ltd and INQUA. All rights reserved.

1. Introduction

Extreme weather events are very likely to cause damage to
ecosystems and society. Increasing intensity and/or frequency of
such events are of great concern and have been substantiated by
various studies on future climate change throughout the world (e.g.
Trenberth et al., 2007). An increase in temperature and precipita-
tion extremes will lead to prolonged, more frequent droughts and
might also lead to an expansion of drought affected areas (Solomon
et al., 2007). For south China, many studies focused on recent and
future wet and dry conditions, and extremes of climate and
weather events have been observed and predicted (e.g. Ren et al.,
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1040-6182/$ — see front matter © 2010 Elsevier Ltd and INQUA. All rights reserved.
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2005a,b; Qian and Lin, 2005; Ding et al., 2007; Yang et al., 2010).
Changing climatic patterns were observed in southeast China,
where an increase in annual precipitation by 60—130 mm during
the last fifty years occurred (Ding et al., 2007). In contrast, Qian and
Lin (2005) comprehensively analysed regional characteristics of
daily precipitation indices at 494 stations in China (1961—2000)
and showed that in coastal southeast China, a negative decadal
tendency in annual and summer precipitation is apparent.

Bordi et al. (2004) analysed the variability of dry and wet
periods from 1951 to 2000 at 160 stations in eastern China. They
used the standardized precipitation index (SPI) and the principal
component analysis to assess the climatic conditions and the co-
variability of the stations. They found that more frequent dry
conditions are experienced in the northern part of eastern China,
and concluded that long-term fluctuations range from 16 to 4 years.

Zhai et al. (2009a) applied SPI and Palmer’s drought severity
index (PDSI) to identify the spatial variation of dry and wet
conditions in mainland China from 1961 to 2005 and developed an
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Fig. 1. Topographical sketch map of the Zhujiang River Basin with 192 weather stations.

indication for water resource availability. In their study, 58 stations
were analysed for the Zhujiang River Basin (including Hainan), and
no significant trends in frequencies of dry/wet days and runoff
anomalies in this region were detected.

Zhang et al. (2009a) analysed the SPI for the winter and summer
season at 41 stations in the Zhujiang River Basin from 1960 to 2005
and detected few decreasing trends. No statistical significant
decreasing trends of severe wet months in summer were found. In
contrary, a non-significant increasing trend of wet conditions in
winter was detected.

Gemmer et al. (in preparation) observed trends to dryer condi-
tions and stronger precipitation intensities in the Zhujiang River
Basin from 1961 to 2007. Increasing annual air temperature (+1.8 °C)
1961—-2007 has been detected by Liu et al. (2009) with highest
increasing rates in winter and less temperature increase in summer
in the Zhujiang River Basin. They also observed an increase of annual
precipitation. Zhai et al. (2009b) simulated the SPI with projections
of ECHAMS5 for 2001—2050. For the Zhujiang River Basin, a trend to
more wet conditions in the first half of the 21st century under the
SRES-A1B scenario was projected.

These existing studies on climate and wet/dry conditions in the
Zhujiang River Basin (and China) deal with different climate
variables, number of stations, temporal settings, and time-series.
In the face of anticipated climate change, profound information to
adapt to changing risks of droughts and floods is very necessary.
Therefore, more detailed information on the regional and
temporal distribution of dry and wet conditions in the Zhujiang
River Basin is needed. This study focuses on the observation of
annual temperature and precipitation conditions and their spatio-
temporal pattern in the Zhujiang River Basin. The objective of the
study is to identify and analyze tendencies in dryness and
wetness, making use of the up-to-date highest number of stations
and longest high-quality time-series available. The novel approach
in combining trend and correlation analysis of various extreme
temperature and precipitation indicators and two indices on
dryness and wetness gives meaningful information. This is sup-
ported by a clear and simple visualization of the results.

2. Data and methodology
2.1. Regional setting

The study is carried out for the Zhujiang River Basin (ZRB) which
is located in South China. A comprehensive description of the
catchment is provided by Zhai et al. (2009a). The basin covers
579,000 km? and has tropical and sub-tropical climates. In summer,
the East Asian Summer Monsoon, and in winter, the East Asian
Winter Monsoon, influences the region. The basin is covered by
mountainous areas in the western part and lowlands in the central
and south-eastern parts. Due to this topography, the main stream
flow directions of the river system are southeastwards. Zhujiang
River discharges into the South China Sea in a large network delta
(Zhujiang River Delta). An elevation map including the main river
system and the location of 192 weather stations is provided in Fig. 1.
Annual temperature in the ZRB ranges from 13 °Cin the western and
north-western elevated parts of the basin to 24 °C in the coastal
lowlands in the south and southeast (Fig. 2). This distribution can be
mainly explained by the driving climate factors of the transition
from maritime (lowlands) to continental (highlands) of the stations.

2.2. Data

Data sets of 192 weather stations with long-term daily mean
temperature and precipitation records from 1st January 1961 to
31st December 2007 in the ZRB are used. The standardized
precipitation index (SPI) and the Palmer drought severity index
(PDSI) are calculated for data of 51 stations evenly distributed in the
ZRB for the period 1st January 1961 to 31st December 2004. Data
was provided by the National Meteorological Information Center
(NMIC) of the China Meteorological Administration (CMA). The
NMIC controlled all data sets for quality (Qian and Lin, 2005) and
checked the temperature data for homogeneity using either
the standard normal homogeneity test (Alexandersson, 1986), the
departure accumulating method (Buishand, 1982), or the moving
t-test (Peterson et al., 1998). The temperature data records used in
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Fig. 2. Annual mean temperature (shading) and temperature change magnitude (symbols) in the Zhujiang River Basin 1961-2007.

this study have been homogeneity-adjusted (Song et al., 2004; Ren
et al., 2005a,b), whereas the precipitation data records remain
unadjusted. Temperature and precipitation records show less than
0.1% data gaps.

2.3. Methodology

In order to analyse and describe the temporal and spatial distri-
bution of temperature and precipitation changes, 11 indicators were
created. Five temperature-based and six precipitation-based indica-
tors reflect intensity, trend, and their possible correspondence in
dryness/wetness. In order to determine dryness/wetness, two
drought indices (SPI, PDSI) have been calculated and analysed. A list of
all indicators created and their definitions can be found in Table 1.
Most indicators were defined on fixed terms or thresholds pre-
determined by CMA or international research standards; similar
indicators have been used in various studies (e.g. Beniston and
Stephenson, 2004; Schmidli and Frei, 2005; Qian and Lin, 2005;
Li et al.,, 2010). The peaks over threshold indicators (Pgg, Tgg, T10)
were calculated from daily mean temperature or precipitation
records for the time period 1961 to 2007. The approach using

percentile values gives insights to the intensity of local changes of
climate pattern and thus a better comparability between single
stations (Qian and Lin, 2005; Li et al., 2010).

In this paper, frequencies of dry and wet conditions from 1961 to
2004 are examined by calculating and analyzing two drought
indices (SPI and PDSI). The Standardized Precipitation Index (SPI) is
a meteorological index which was developed by McKee et al. (1993)
in order to quantify precipitation deficits/excesses in different
climate regimes. In general the SPI is the difference of the (annual/
monthly) total precipitation and its mean value, divided by the
standard deviation of the time series. Dry and wet events are
classified by their severity and calculated for multiple time scales.
The standardization is based on an equal probability trans-
formation which depends critically on the assumed statistical
distribution (Bothe et al., 2009). Following the studies by McKee
et al. (1993), Bordi et al. (2004), and Zhai et al. (2009a), the long-
term (1961—2004) precipitation record was fitted to a gamma
distribution to obtain the annual conditions of dryness or wetness
for the study area. Positive (negative) SPI values indicate higher
(lower) than median precipitation (Zhai et al., 2009a). Following
McKee et al. (1993), the classification of severity varies between

Table 1

Definition of precipitation and temperature indices.
ID Name Definition Unit
Pmean Mean precipitation Annual total precipitation mm
Pxiim Rain days/Wet days Annual number of days with precipitation above or equal to 0.1 mm/d day
e Wet period Annual longest rain day (Pr.in) period day
P win No rain days/Dry days Annual number of days with precipitation below 0.1 mm/d day
Pary Dry period Annual longest no rain day (Ppo rain) period day
Pao Extreme precipitation Annual number of days above the 90-Percentile of daily precipitation (1961-2007) day
Threem Mean temperature Annual average temperature based on daily mean temperatures °C
Too Warm days Annual number of days above the 90-percentile of daily mean temperatures (1961—2007) day
e Warm period Annual longest warm day (Top) period day
Tio Cool days Annual number of days below the 10-Percentile of daily mean temperatures (1961-2007) day
Teool Cool period Annual longest cool day (T;o) period day
SPI Standardized precipitation index
PDSI Palmer drought severity index
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below —2 (extremely dry) and above 2 (extremely wet). In this
analysis, dry and wet years are defined when the annual SPI is
below —1 (moderately dry) and above 1 (moderately wet)
respectively.

The results of the Palmer Drought Severity Index (PDSI) on
annual basis from 1961 to 2004 were analysed to quantify precip-
itation deficits/excesses and to compare it with the SPI and climate
indicators. The PDSI is based on the water balance equation and

incorporates precipitation, temperature, and soil moisture data
(Hayes, 2006). For this study, annual moisture anomalies between
1961 and 2004 were calculated and converted to severity degrees.
Based on Palmer’s studies, the classification of severity varies
between below —4 (extremely dry) and above 4 (extremely wet)
(Hayes, 2006). Similar to the SPI, dry or wet years are defined when
the annual PDSI falls below —2 (moderately dry) or exceeds 2
(moderately wet) respectively.
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The trends and the absolute changes of the various indicators have
been calculated by applying the parametric linear regression and the
non-parametric Mann—Kendall test to the data of 192 (51 for SPI and
PDSI) weather stations. The regression gradient for the time period
1961-2007 was determined for each station (Kundzewicz and
Robson, 2004). Although the linear regression must be handled
carefully as it mostly neglects the strong variability of factors in
weather and climate data, the gradients reflect the tendencies of
certain indicators in absolute terms and can have visual impact.

The Mann—Kendall test is applied on the assumption of inde-
pendence of the time series. No serial correlation must exist within
the time series, as this dependency influences the significance of
the Mann-Kendall statistics. Following von Storch (1995), Hamad
and Rao (1998), Yue and Wang (2002), and Bayazit and Onéz
(2007), the serial correlation, the coefficient of variance, and the
dimensionless slope of the linear regression were checked. When
a time series shows an autocorrelation coefficient of lag-1 above the

5% significance level (i.e. 1.96/./n) the pre-whitening method (PW)
can be applied as it eliminates the influence of the serial correlation
on the significance level of the Mann—Kendall test. The PW is not
applicable if the coefficient of variance is small (CV < 0.40) or the
dimensionless slope is large (b > 0.005) (Bayazit and Onéz, 2007). It
has also no effect if the time series consists of a large sample size or
a high correspondence with the regression gradient (Yue and
Wang, 2002).

As some of the station-based time series in this study show
a serial correlation, their coefficients of variance and dimension-
less slopes were checked. When calculated for the original data
series, the Mann—Kendall test statistics correspond very highly
with the regression gradient (correlation above 0.95). Based on
these results and the aforementioned reasoning of applying
a method for eliminating the influence of serial correlation, no
pre-whitening or similar method has been applied at these time-
series. A comprehensive description on the application and
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Table 2
Correlation matrix of station-averaged annual indices in the Zhujiang River Basin 1961—-2004.
SPI PDSI Pgo Wet days Wet period Dry days Dry period Warm days Warm period Cool days
SPI 1
PDSI 0.84 1
Poo 0.91 0.78 1
Wet days 0.81 0.82 0.67 1
Wet period 0.48 0.46 0.42 0.54 1
Dry days -0.81 -0.82 -0.68 -1.00 -0.54 1
Dry period -0.43 —0.40 -0.32 —-0.50 -0.23 0.51 1
Warm days —-0.50 -0.45 -0.45 -0.56 -0.50 0.55 0.16 1
Warm period -0.21 —0.06 —-0.20 -0.24 —-0.16 0.23 0.11 0.69 1
Cool days -0.19 0.07 —0.20 0.17 —0.08 -0.15 -0.13 -0.13 -0.15 1

definition of the Mann—Kendall test is further provided by Yang
et al. (2010), Liu et al. (2008), Zhang et al. (2009b) and Gemmer
et al. (2004). The significance of positive or negative trends for
the temperature- and precipitation-based indicators was
expressed by using the 90% confidence level as threshold. Trends
above this threshold only were considered as significant and used
for the analyses.

The standard Pearson’s product-moment coefficient was also
used to identify the correlation and multiple correlation of the
basin-averaged annual indicators. The results give insights to the
dependency of the indicators to each other and relations to the
power of impact can be drawn.

The indicators and trends were spatially interpolated using the
Inverse Distance Weighting (IDW) method in the Geographical
Information System ArcGIS. A raster image is created whose cell
values are calculated using the weighted averages of 12 neigh-
bouring stations. The weighting is based on the local influence of
distant points (stations) which decrease with distance (Gemmer
et al, 2004). As 192 (51) station values were used, the power
parameter of each station was set to 2 to receive a reasonable and
smooth visualization.

3. Results
3.1. Observed temperature trends and extremes

3.1.1. Annual and monthly temperature

Following the results of the Mann—Kendall test applied to the
daily mean temperature time-series, significant positive trends of
annual mean temperature can be observed for 157 of 192 stations.
The highest number of stations without significant trends is located
in the north-western part of the basin. Looking at the changes in
absolute terms (change magnitude), which are based on the results
of the linear regression analysis, stations with an increase above 1 K
are mostly located along the coastline and in the far western tip of
the basin. Around ten stations exceed 1.5 K in mean temperature
rise for the 47 years time-series (1961—2007) and can be found in
the delta region and the Far East of the basin (Fig. 2).

On monthly basis, significant positive trends can be found at
many stations for all months. In four months (May, July, August,
September), few significant negative trends (between 3 and 6
stations each) appear.

In summary, annual and monthly mean temperatures have
increased in the entire basin whereas the temperatures increased
less in summer than in winter.

3.1.2. Warm and cool days

Records for the annual warm days (Tgp) in the ZRB are found in
the summer half (April to September) of each year only. The station-
based thresholds for Tgg range from 19.5 °C in the west to above

29 °Cin the south and central parts as well as in the Zhujiang River
Delta (Fig. 3A). All over the study area, for 112 of 192 stations (58%)
significant positive trends in the annual number of warm days are
observed. Most stations without significant trends can be found
along the northern border; also one single station is found with
a significant negative trend.

The stations’ mean magnitude of change of Tgy shows an
increase by more than 14 warm days. Stations with the highest
gradient (above a 30 days increase) can predominantly be found
along the coastline and in the far West of the basin, with an accu-
mulation of stations in the delta region and the most eastern part of
the basin.

Cool days (Typ) in the ZRB, in contrast, appear in the winter half
(October to March). The spatial distribution of the thresholds for
cool days (T10) shows a North (low) to South (high) disparity with
a strong decrease in the north-western part. For 174 of 192 stations,
significant negative trends of Tig can be observed (Fig. 3B). No
significant positive trend can been found. Based on the results of
the linear regression, the average decrease of T1o from 1961 to 2007
is directly opposed to the increase of Tgy values. Around 45 cool
days per year were observed in 1961. These were reduced to less
than 30 days in 2007. The spatial distribution of the absolute
changes (change magnitude) follows the same pattern as that for
Tgp; some high values are also measurable in the west-central area.

Following these calculations, a significant increase of warm days
(Tgo) and an even more significant decrease of cool days (T1p) can be
expressed.

3.1.3. Warm and cool periods

The basin-wide annual average of Tyarm (annual longest period
of warm days [Tgp]) is 10 days. At station level, a west to east
increase (from 7 to 13 days) can be observed (Fig. 3C). An exception
is the far western part of the ZRB (West of 104°E longitude) which
shows a rise to higher numbers towards the west. It can be
perceived that the periods of warm days (Tgg) are shorter in the
west and longer in the east of the ZRB.

Based on results of the Mann—Kendall trend test, a significant
positive trend of Tyam can be found at 45 stations which are
mainly located along the coastline and scattered in the western
part of the basin. In the central-north area, 6 of 7 stations with
significant negative trends can be found (Fig. 3C). In total, the ZRB
experiences an average increase in Twam by 2 days. Stations
showing an extreme increase of more than 10 days from 1961 to
2007 can be located in the delta region and along the eastern
coastline of the basin. Most of the stations with declining
magnitudes (less than 5 days decline) can be located in the west-
central part of the basin.

For the cool period (Tcoo]) the basin-wide annual average is
around 13 days. With a similar distribution as that detected for
Twarm, @ NW to SE decrease (from 17 to 10 days) can be observed. As
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Fig. 7. Comparison of basin-wide annual SPI (black line) with (A) station-averaged annual extreme precipitation (Pgp), (B) station-averaged annual no rain days (P rain), and (C)
station-averaged annual warm days (Tg) for the Zhujiang River Basin.

can be seen in Fig. 3D, the far western part (west of 104°E) shows Based on the results of the Mann—Kendall trend test, 74 stations
a strong gradient which has its low in the west. Therefore, the experienced a significant negative trend in Tcoo. These are mainly
longest cool periods are observed in the north-western part and the located along the coastline and scattered in the western part of the
shortest cool periods in the east and far west of the study area. basin. For the entire basins, a cool period in 2007 lasted 10 days in
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Table 3
Multiple-correlation of station-averaged annual indices in the Zhujiang River Basin
1961-2004.

Y X1 X2 Multiple R
SPI Dry days Warm days 0.82
PDSI Dry days Warm days 0.82
SPI Dry days Pgo 0.95
PDSI Dry days Pgo 0.87
SPI Warm days Pog 0.92
PDSI Warm days Pgo 0.79
SPI Warm days Cool days 0.56
DSI Warm days Cool days 0.45

average, which is 6 days (37%) less than the average of 1961. No
significant positive trend or magnitude in annual Teo can be
observed.

Comparing the spatial trends of the indicators Tyarm and Teoo), it
is clear that warm periods are prolonged in the same areas where
cool periods shortened in time.

3.2. Observed precipitation trends and extremes

3.2.1. Annual, monthly, daily, and extreme precipitation

On average from 1961 to 2007, the annual total precipitation was
above 2000 mm along the south-eastern coastline and below
1000 mm in the mountainous western parts of the ZRB (Fig. 4).
Only 7 stations show significant negative trends, located in the west
of the ZRB. One single station with a significant positive trend is
located in the eastern corner of the basin. The absolute change
(change magnitude) detected by the linear regression reveals
a distinct west-east disparity. Several stations in the north-western
part (more than 15) and central part (around 18) show declining
precipitation by more than 100 mm in the analysed 47 years.
Stations with increased annual total precipitation (above 100 mm
rise in 2007 compared to 1961) are found in the entire eastern part,
the northeast and some south-coastal areas.

Main precipitation is concentrated during summer. The winter
season is comparatively dry, with around 50 mm of rain per month;
compared to around 200 mm in summer months.

For extreme precipitation days (Pgp) the threshold gradually
increases from as low as 16 mm/day in the northwest to more than
45 mmy/day in the southeast. The spatial disparity of the average
number of Pgq is converse; many days of extreme precipitation (up
to 21) occur in the north-western part and the lowest number
(below 15) can be detected along the coast and apparently in the far
west corner. Significant trends can be found at few stations only. 7
(3) stations with significant positive (negative) trends are located in
the western and eastern corners as well as in the centre (northwest
and southwest). The area of positive trends (up to 5 days) and
negative trends (up to 4 days) follows the same pattern as
mentioned before; stations with high (low) numbers in Pgg have
negative (positive) change magnitudes (Fig. 4).

Extreme precipitation events increased significantly at stations
with high values and decreased at those with low values. This
explains an aggravation of the spatial divergence in both annual
extreme precipitation and annual total precipitation. More details
on monthly precipitation extremes in the ZRB are provided by
Gemmer et al. (in preparation).

3.2.2. Rain and no rain days

For each of the 192 stations in the ZRB the number of annual rain
days (Prain) varies strongly. Stations with the highest number of rain
days (up to 210 days/year) occur in the north-western highlands
and northern central-east lowlands of the Zhujiang basin. The
lowest number of rain days (around 110 days/y) can be found at

stations along the coastline and in the far western corner of the
basin. To some extent, a disparity from south to north (inland) can
be identified. This is not in line with the annual precipitation which
shows the highest amounts (above 2000 mm/y) along the coastline
and the lowest amounts (below 1000 mm/y) in the far west (see
above). In general, more rain days are found in the summer months
and less in the winter months at each station.

The results of the trend test for the number of annual P;,;, show
no positive trends. In contrary, significant negative trends are
apparent at 94 stations. Most of these stations are located in the
western half of the basin (Fig. 5A). Based on the results of the linear
regression, at stations with significant trends the number of annual
rain days decreased by more than 20 days during the period
1961—-2007. From the spatial distribution of changes in annual
precipitation, an interrelation with the distribution of annual rain
days can be detected. On average, the western parts experience less
rain days and less rainfall throughout the course of the time-series
as opposed to higher precipitation in the eastern half.

The temporal and spatial distribution of the annual number of
days with no rain (P rain) are in contrary to the patterns detected for
Prain. The number ranges from 150 to 250 for the stations. Stations
that observed many no rain days (above 220) can be found along the
coastline and in the far western corner of the basin (Fig. 5B).

3.2.3. Wet and dry periods

The indicators of the annual longest rain day period (Pwe¢) and
no rain day period (Pqry) accentuate the most distinct duration of
wet/dry conditions. For most stations, a high variability is found.
Most wet periods occurred during the summer months and all dry
periods during the winter months. According to the basin-wide
means, an annual wet period in average lasts 13 days, whereas the
annual dry period lasts around 27 days. The spatial distribution of
both indicators (Pwet and Pgry) shows strong similarities to the
distribution of Pran and Ppg rain. As can be seen in Fig. 5A, the far
western part (west of 104°E) and the central-western part
(106°E—108°E) show very low (high) numbers for Pyet (Pdry)-

Trend directions for Pyet are divergent and significant positive
trends can be found at 7 stations only. These stations experience
a prolongation of annual longest wet periods and are mainly
located in the central part of the basin. In the western and eastern
areas, 28 stations with significant negative trends can be found. A
shortening of wet periods is observed. The basin experiences an
average decrease in Twer by 1 day. Stations showing distinct
decreases by more than 5 days (1961—2007) can be located in the
far western corner and near the delta of the basin.

For Py, significant positive trends can be found at 59 stations.
These stations are mostly located in the central-northern part
(Fig. 5B). It is worth mentioning that all stations with significant
increases (more than 10 days in magnitude) are located in the far
south-eastern corner. For the entire basin, an average prolongation
of the dry period by 5 days can be detected for the time-series.

The main finding regarding longest wet and dry periods is the
tendency to longer dry periods and shorter wet periods, which
might imply that more severe dry events and more intensive
rainfall events have occurred.

3.3. Drought indices

The annual SPI and annual PDSI for 51 stations from 1961 to
2004 are calculated in order to explain the impacts of drought on
the ZRB. Fig. 6 shows the temporal and spatial distribution of
moderate dry and wet years. The stations are numbered from west
to east based on their location (°E). Results for the SPI show much
more moderate events than the PDSI. No obvious trend can be
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found for the majority of stations. For the SPI, station 34 only shows
significant positive trends, and significant negative trends can be
found at stations 2 and 30.

At five stations (2, 3, 5, 7, and 13) significant negative trends of
the PDSI can be found. For both parameters, negative trends indi-
cate a tendency to a higher number of dry years; positive trends
indicate a tendency towards wet conditions at the respective
station. Following the location of the stations, it can be assumed
that a slight tendency to more dry years is experienced for the
western part of the basin.

The temporal variations and frequencies of droughts and wet
conditions in the basin were analysed by Zhai et al. (2009a) who
studied all main watersheds of China. For the ZRB, the frequency of
dry years between 1961 and 2005 was 15.7% (6.7%) according to the
results of the SPI (PDSI) calculated by the authors; the frequency of
wet years was 16.4% (4.6%), respectively (Zhai et al., 2009a). The
observed frequencies of the SPI and PDSI show a relatively even
distribution of dry/wet years in time. This is also consistent with
the analysis of Bordi et al. (2004). However, the spatial distribution
of dry years shows distinct regional pattern. A subjective analysis of
this spatial distribution (Fig. 6) shows a high inconsistency of the
western stations compared to a relative uniformity of the stations
in the east.

Several distinct dry and wet years can be detected when
comparing the SPI with the PDSI. For the western part of the ZRB,
following dry (wet) years are noticeable: 1963, 1987, 1989, and
2004 (1961, 1968, 1973, and 1994/7). In the eastern part of the ZRB,
dry years (1963, 1967, 1971, 1977, 1991, and 2003/4) and wet years
(1961,1973/5,1981/3, and 1994/7) are much more dominant than in
the West. The main peak years for the entire basin can be
summarized as 1963, 1989/91, and 2003/04 for dry years and 1961,
1973, and 1994/97 for wet years.

3.4. Correlation of indicators

In the following, potential correlations between the variables
used above are analysed. Pearson’s product—moment coefficient
was used to identify the correlation of the basin-averaged annual
indicators (Table 2). In Fig. 7 the annual SPI and an annual indicator
(P90, Pno rain and Tgp) are plotted in an adjusted scale. Using this
visualization, the significant correlations of the SPI and interesting
indicators are more comprehensible.

The SPI is calculated with precipitation data only, and implies
that wet years are most often accompanied by extreme precipita-
tion events. In contrast, dry years experience almost no extreme
precipitation events. Therefore, the correlation of the SPI and Py is
0.91 what is significantly high (Fig. 7A). Significant correlations of
SPI/PDSI and dry days (wet days) ranging 0.81 (0.82) respectively
can be explained for similar reasons (Fig. 7B). The multiple-corre-
lation of SPI/PDSI with both dry days and Pgg resulted in a very
strong correlation of 0.95/0.87 (Table 3) which demonstrates
impressively the high correspondence of extreme precipitation and
dry days to dryness/wetness patterns. Of interest are the correla-
tion results of warm days and dry days (0.55), wet days (—0.56), and
SPI (—0.50) (Fig. 7C). Correlations above 0.5 (or below —0.5) indi-
cate a moderate to strong affinity.

The multiple-correlation of warm days and dry days with the SPI
(0.82) is even slightly higher than dry days and SPI alone (—0.81).
All indicated periods (wet/dry/warm/cool period) show fewer
correlations with SPI/PDSI than the indicators mentioned above.
Both warm and cool periods correlate slightly negatively with the
SPI and Pgg. From the multiple-correlation of Tcool, Twarm, and SPI
(PDSI), a relatively moderate affinity of 0.56 (0.45) can be found. It is
more likely that dry (wet) years occur when high (low) numbers for
both longest warm and cool periods have occurred.

A high number of warm days occur more frequently during dry
years and years with above average dry days, vice-versa. This
finding is more significant when focusing on the peak years of
drought and wetness.

4. Conclusions and discussion

The methodologies applied deliver some new insights to
tendencies of dryness/wetness pattern in the ZRB, South China,
therefore achieving the objective of the paper. The results will be
followed up by the authors, and more stations will be used for
calculating the SPI (PDSI) in order to achieve regionally more
focused results. The data at hands for this study, however, were
sufficient to achieve the objectives.

The detected significant positive trend of observed annual mean
temperature, rather in winter than in summer, in the ZRB from 1961
to 2007 is in line with international and national observations as
well as projections (Ren et al., 2005a,b; Zhai et al., 2005; Trenberth
et al,, 2007; Liu et al., 2009). The increasing (decreasing) number of
warm (cool) days by 14 (15) days underlines the observed warming
condition. The significant increases (decreases) in the duration of
the longest warm (cool) period by more than 21% (37%) show
a strong shift to warmer, more extreme, climates. It is interesting to
find that areas where warm periods prolong automatically expe-
rience shorter cool periods (in winter).

Main causes of these surface temperature changes and warm/
cool periods might be explained by the anticipated global warming
(Ding et al., 2007). The temperature increase has been observed
basin-wide, and not only at urban agglomerations, including the
densely populated Zhujiang River Delta, and therefore potential
influences of the urban heat island effect (UHIE) can be neglected at
this point. Nevertheless, simulation results demonstrate that rapid
urbanization can substantially alter regional climate conditions in
the Zhujiang River Delta (Lin et al., 2009), including monthly mean
temperature and precipitation. This is based on a change detection
analysis of 18 Landsat scenes from the 1970s to 2000 by Lin et al.
(2009). Chen et al. (2005) observed the UHIE in Hubei province
for 1961—2000. They analysed the warming rates of urban and rural
areas and calculated the related contribution of the UHIE. For urban
agglomerations a contribution rate of sixty percent during the forty
years was estimated. Similar but lower findings were made by Zhou
and Ren (2005) for North China, where they estimated a UHIE
contribution rate of up to 37.9%. All these results indicate an
essential influence of UHIE to temperature increases, especially in
urban agglomerations. Following this, the UHIE in the ZRB might
have a certain impact on the climate conditions especially when
focusing on the urban areas along the coastline with their signifi-
cant warming trends and should not be neglected but considered
when analyzing the temperature increase in urban regions.

Almost no significant trends have been found for annual total and
extreme precipitation events, but regional tendencies can be
pointed out. The observed tendency of significant increase
(decrease) of extreme precipitation at stations with high (low)
thresholds (west—east disparity) is noteworthy, as it describes a shift
to a greater regional imbalance in precipitation patterns within the
basin. A major finding is the more regionalized distribution of rain/
no rain days and wet/dry periods with a significant trend to fewer
rain days over the entire western part and significant negative trends
of wet periods particularly in the far western corner and the delta
region. Some similar findings with lower resolution can be compiled
from Qian and Lin (2005) for south China.

The significant increase of the number of dry periods in the
south-eastern corner complete the picture of regional imbalance
with rising extremes in both temperature and precipitation. The
corresponding indices (Twarm, Tcool, Pdry» and Pwet) were defined by
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the single longest period per year only. Two consecutive periods
might be only one day suspended from each other, but might add
up to a longer period when added if not suspended, or occurring at
the year break, and are therefore not utilized in the index. Results
looking into consecutive periods will be produced by the authors in
future.

The observed increase of precipitation intensity can be
explained by a decreasing number of rain days while stable
amounts of total precipitation on monthly and annual basis. This
finding is in line with the observations made by Gemmer et al. (in
preparation), Zhang et al. (2009b), and Qian and Lin (2005). The
coastal and eastern areas as well as the far western part of the ZRB
have experienced longer dry periods and shorter wet periods.

The analysis of the SPI (PDSI) does not show significant trends,
except for very few of the 51 stations, and generally no changes in
dry or wet conditions can be detected, what is in line with the
findings of Zhai et al. (2009a) and Zhang et al. (2009a). The time-
consuming calculation and analysis of SPI and PDSI at all 192
available weather stations could eventually deliver significant,
more regionally focused results, and will be conducted by the
authors in the next steps.

Most parts of the ZRB, considering temperature and precipita-
tion, are influenced by the East Asian Summer Monsoon and the
East Asian Winter Monsoon. The spatial distribution of annual rain
and no rain days might be strongly caused by orographic convec-
tion, the transition from maritime to continental climate factors,
and by the weakening of the East Asian Summer Monsoon (Wang
and Ding, 1997; Su et al.,, 2005; Yu et al., 2009). According to Su
et al. (2005), the summer temperature over Central Asia
decreased slightly in recent decades whereas the temperature over
the North West Pacific has become warmer. This contrast caused
the weakening of the summer monsoon and the shift of the rain
belt over Southern China, leading to less rain days (Chou, 2004; Su
et al,, 2005). The shift of the transition phase between the end of
the EASM and the onset of the EAWM could be another aspect in
the decrease in rain days, but this has not been studied in detail
(Gemmer et al., in preparation). The detected expansion of drought
periods in the ZRB is more negative than any impacts that wetness
(i.e. with regards to flood events) might have.
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ABSTRACT

Spatial and temporal characteristics of precipitation trends in the Zhujiang River basin, South China, are
analyzed. Nonparametric trend tests are applied to daily precipitation data from 192 weather stations between
1961 and 2007 for the following indices: annual, monthly, and daily precipitation; annual and monthly number of
rain days and precipitation intensity; annual and monthly maximum precipitation; 5-day maximum precipitation,
number of rainstorms with >50 mm day ', and peaks over thresholds (90th, 95th, and 99th percentile).

The results show that few stations experienced trends in the precipitation indices on an annual basis. On
a monthly basis, significant positive and negative trends above the 90% confidence level appear in all months
except December. Trends in the indices of monthly precipitation, rain intensity, rain days, and monthly
maximum precipitation show very similar characteristics. They experience the most distinct negative (posi-
tive) trends in October (January). A change of the mean wind direction by 50° from east-southeast to east-
northeast explains the downward trend in precipitation in October. Dry October months (months with low
precipitation indices) can be observed when the mean wind direction is east-northeast (arid) instead of the
prevailing mean wind direction, east-southeast (moist). The former is typical for the East Asian winter
monsoon (EAWM). Nearly 90% of the driest October months can be explained by wind directions typical for
the EAWM. The upward trend in precipitation indices in January cannot be explained by changes in large-
scale circulation. The analysis of the precipitation indices delivers more detailed information on observed
changes than other studies in the same area. This can be attributed to the higher station density, the quality of
daily data, and the focus on monthly trends in the current study.
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1. Introduction

According to China’s National Assessment Report on
Climate Change (Ding et al. 2007), changes in annual
precipitation have been observed in China for the last
century. In the last decades, an increase in national av-
erage precipitation was detected, with increasing spring
precipitation but slightly decreasing autumn precipita-
tion. The Fourth Intergovernmental Panel on Climate
Change (IPCC) Assessment Report (Trenberth et al.
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2007) is in line with China’s National Assessment Re-
port on Climate Change and indicates that the frequency
of heavy precipitation events will very likely increase
in China. Regional changes are, however, diverse—
southeast China, for instance, experienced an increase
in annual precipitation by around 60 to 130 mm during
the last 50 years (Ding et al. 2007). The East Asian
monsoon plays an important role in regional precipita-
tion patterns. A strong (weak) winter monsoon with
northerly winds leads to decreased (increased) winter
precipitation over south China (Chen et al. 2000; Zhou
and Wu 2010).

It is therefore important to understand regional changes
in precipitation patterns and the causes of these changes.
Several studies have analyzed precipitation records for
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the whole of China. Feng et al. (2007) have analyzed
annual maximum precipitation time series (1-,2-, 5-, and
10-day) for 651 stations in China from 1951 to 2000 and
detected negative trends in extreme events in north
China. Significant positive trends were observed at sta-
tions in the Yangtze River basin and northwestern
China, where extreme events with a 50-yr return period
in the 1950s became more frequent 25-yr events in the
1990s. More results for China using longer time series
and analyzing linear trends in rain days with different
intensities are provided by Fu et al. (2008). Liu et al.
(2005) used 272 stations in China and examined change
rates for eight regions and different seasons from 1960 to
2000 and found a nonsignificant increase of precipitation
in southeast coastal China.

Qian and Lin (2005) comprehensively analyzed re-
gional characteristics of daily precipitation indices at
494 stations in China (1961 to 2000) and showed inter-
decadal differences. In coastal southeast China, a negative
decadal tendency in annual and summer precipitation was
detected. Likewise, Wang and Zhou (2005) used linear
regressions to analyze trends in annual and seasonal
mean precipitation in China during 1961-2001. The re-
sults show decreasing extreme events in summer and a
higher decreasing trend in autumn. Yang and Lau (2004)
focused on spring and summer precipitation and noted
positive trends in spring precipitation for a gridded data-
set covering 1951-98, while Yao et al. (2008) focused on
the time series 1978-2002 and concluded that for sum-
mer precipitation, the amount of total precipitation and
light-moderate precipitation exhibited positive trends
over southeast China.

Zhai et al. (1999) detected no significant trends in
annual precipitation but a significant increase in above-
normal mean intensity of precipitation in east China
from 1951 to 1995. Zhai et al. (2005) applied trend tech-
niques to a time series covering 1951-2000 and delivered
the currently most comprehensive analysis of annual and
extreme precipitation in China. Annual total, spring, and
extreme precipitation significantly increased along the
southeastern coastline of China, and winter precipitation
increased in the south.

More and more studies on precipitation changes fo-
cus on a river-basin scale in order to identify results for
hydrologically homogeneous areas as compared to ad-
ministrative boundaries. Significant increasing trends
in extreme precipitation have been observed for the
Zhujiang River basin, also known as the Pearl River
basin, in the last decades (Luo et al. 2008; Yang et al.
2010). These studies have mostly analyzed time series of
annual and seasonal precipitation in the Zhujiang River
basin to define precipitation extremes and their spatial
pattern (Zhang et al. 2009a—c). Only few of these studies
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examined the temporal and spatial variations in monthly
precipitation events.

Yang et al. (2010) analyzed the regional frequency
of annual precipitation extremes based on consecutive
1-, 3-, 5-, and 7-day averages for 42 stations in the
Zhujiang River basin from 1960 to 2005. It was identified
that major precipitation events in regions of low eleva-
tion in the lower (southeastern) part of the basin occur
mainly in May, June, July, and August, whereas the
main precipitation periods for the mountainous region
upstream are June, July, and August.

Liu et al. (2009) observed variations of seasonal pre-
cipitation in the Zhujiang River basin at 64 stations
(1961-2007) and showed a decrease in autumn precipi-
tation but increases in spring, summer, winter, and annual
precipitation. An enhancement of interannual variability
of annual and winter precipitation and a weakening of
autumn precipitation is projected using the general cir-
culation model (GCM) ECHAMS-Max Planck Institute
Ocean Model (MPI-OM; Roeckner et al. 2003).

Based on data from 63 stations for the period 1959-
2003, Luo et al. (2008) observed a downward trend in
precipitation over the Beijiang River basin (northeast-
ern tributary of Zhujiang) in the early flood period
(April-June), especially in May, and an upward trend in
July and in the dry season (October-March). The com-
mon precipitation belt over the Beijiang River, which
is caused by frontal precipitation when the front of warm
air masses from the south meets cold air masses from
the north, has shifted northward in recent years. This
has caused positive precipitation trends in the north and
negative trends in the south of the catchment.

Zhang et al. (2009b) calculated a decreasing precipi-
tation concentration index (CI) for the southwestern
and northeastern parts as well as for the West River
and East River basin of the Zhujiang River basin using
precipitation data from 42 stations from 1960 to 2005.
The study also described a significant increasing pre-
cipitation CI after 1990 in the West River basin, in the
lower North River basin, and in the upper Beipan River
basin.

Based on daily precipitation data for 47 stations from
1951 to 2005, Zhang et al. (2009a) did not detect sig-
nificant trends in annual, summer, or winter precipita-
tion. However, the trends in precipitation intensity,
variability of precipitation, and high-intensity rainfall
events increased. Zhang et al. (2009c¢) identified trends
toward dryness in the rainy season (April-September)
and an increase of wet conditions in the dry season
(December—February).

Previous studies on the Zhujiang River basin have
detected seasonal changes in precipitation, but most re-
search focused on summer precipitation. Little has been
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FIG. 1. Topographical map of the Zhujiang River basin showing the 192 weather stations.

written about the characteristics and causes of precipi-
tation extremes—for example, changes in precipitation
intensity on a daily basis and their statistical trends.
The station density used in existing studies for the whole
of China is sufficient to describe large-scale changes,
but insufficient on a regional scale. In addition, the causes
of precipitation trends are not entirely understood. The
objective of this paper is to analyze trends in and causes
of precipitation extremes in the Zhujiang River basin at
the highest possible spatiotemporal resolution allowed by
available data.

2. Data and methodology
a. Study area

The Zhujiang (Pearl River) basin is located in South
China and falls within the provinces of Guangdong,
Guangxi, Guizhou, and Yunnan. The Zhujiang River
basin is one of China’s largest river basins (Zhai et al.
2010) and drains an area of 579 000 km? (including the
Leizhou Peninsula region). It has a tropical and sub-
tropical climate. The annual mean temperature varies
from 14°C in the west to 22°C in the east, and the annual
average precipitation is 800 mm in the west and more
than 2000 mm at the coastline (average for the basin:
1500 mm). The months from June to August are influ-
enced by the East Asian summer monsoon. The basin is
characterized by mountainous areas with peaks above
2500 m in the western part. The northern and north-
eastern parts are composed of lower mountain ranges
and hills that surround the central and southern (south-
eastern) lowland areas. Following these elevation steps,
the flow directions of the rivers are mainly from west
and north toward the coast of the South China Sea in the
southeast of the basin. The river system forms a large
network delta before it enters into the sea. A compre-
hensive overview on the hydrological setting of the basin

is given by Zhang et al. (2009b). Figure 1 provides a to-
pographical sketch map of the Zhujiang River basin with
the location of 192 weather stations and the main river
system.

b. Data

Daily precipitation data covering the Zhujiang River
basin were provided by the National Climate Center
(NCC) of the China Meteorological Administration
(CMA). For the basin, 253 stations passed the internal
homogeneity check of the China National Meteoro-
logical Center (CNMC), including the moving ¢ test
(Peterson et al. 1998), standard normal homogeneity
test (Alexandersson 1986), and departure accumulating
method (Buishand 1982). Stations that were installed
after 1961 and those with data gaps were excluded. As
a result, 192 weather stations with precipitation records
for 47 years (1 January 1961 to 31 December 2007) were
selected. Data gaps account for less than 0.01% (less
than 100 daily records out of over 3 000 000), and were
reconstructed by the median precipitation from at least
three neighboring stations. In most of these cases, 0-mm
precipitation was interpolated as the neighboring stations
did not record precipitation. In four cases, daily precipi-
tation of less than 2 mm was interpolated.

National Centers for Environmental Prediction (NCEP)
reanalysis data (geopotential height, and u- and v-wind
pattern for 1948-2010) provided by the National Oce-
anic and Atmospheric Administration/Oceanic and At-
mospheric Research/Earth System Research Laboratory
(NOAA/OAR/ESRL) Physical Sciences Division (PSD)
were examined to understand the causes of observed
precipitation trends (Kalnay et al. 1996).

Based on the CMA classification, a rain day is consid-
eredif at least 0.1 mm day ! can be measured. Rainstorms
are classified by minimum 50 mm day'. An overview of
the indices is given in Table 1.
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TABLE 1. Definition of precipitation indices.

Name Definition Unit
Mean precipitation Annual or monthly avg precipitation mm
Annual max precipitation Highest one-day precipitation in one year mm
Monthly max precipitation Highest one-day precipitation in one month mm
Annual 5-day max precipitation = The highest precipitation that was measured during five consecutive days in one year =~ mm
Monthly 5-day max precipitation The highest precipitation that was measured during five consecutive days in one month mm
Rain days Annual or monthly number of days >0.1 mm day day
Precipitation intensity Precipitation amount per rain day mm day !
Rainstorm days Annual number of days >50 mm day ' day
Peak over threshold 90% Annual number of precipitation days above the 90th percentile, 1961-2007 day
Peak over threshold 95% Annual number of precipitation days above the 95th percentile, 1961-2007 day
Peak over threshold 99% Annual number of precipitation days above the 99th percentile, 1961-2007 day

¢. Methodology

The Mann-Kendall trend test was applied to detect
trends at all 192 stations (1961-2007) for annual, monthly,
and daily precipitation sums; annual and monthly number
of rain days and rain intensity; annual and monthly maxi-
mum precipitation; 5-day maximum precipitation, and
number of rainstorms (>50 mm day '). Trends for
the indicator peak over threshold were calculated for
the 90th, 95th, and 99th percentile, representing the an-
nual number of days above the 90th, 95th, and 99th per-
centile for each station (1961-2007). The thresholds were
calculated with daily data based on the time series 1961—
2007.

The 90% confidence level was taken as the threshold
to classify the significance of positive and negative trends
for all indices. Trends below 90% confidence level were
not considered. A comprehensive description and refer-
ence list of the Mann—Kendall trend test is provided by
Gemmer et al. (2004) and Gao et al. (2010).

The inverse distance weighting (IDW) method is used
to interpolate results for each station and to project

the results two-dimensionally in the Arc geographical
information system (ArcGIS). This interpolation method
has been used and described by Gemmer et al. (2004).
The interpolation results were compared with interpo-
lations carried out by the kriging method (Goovaerts
2000; Yang et al. 2010), and little discrepancy was found.
The Kriging method produced less generalized areas
and followed the steps in the digital elevation model in
more detail. For the sake of the readability of the illus-
trations in the necessary size for this journal, maps are
produced by applying the IDW method. Interpolation
was carried out for the following figures: 1) Fig. 2 shows
the long-term annual precipitation for the Zhujiang
River basin (1961-2007) using data interpolated from
the 192 stations; 2) the shading in Fig. 4 shows the trend
in January precipitation, the area being interpolated from
the results of 192 stations; and 3) the shading in Fig. 5
shows the trend in October precipitation, the area being
interpolated from the results of 192 stations.

To distinguish between dry and wet years (Fig. 8), the
annual values of five precipitation indices are stan-
dardized by subtracting the indicator’s arithmetic mean
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FIG. 2. Annual mean precipitation in the Zhujiang River basin, 1961-2007.
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FIG. 3. Observed monthly precipitation trends 1961-2007 at the 90% confidence level in the Zhujiang
River basin for five indices.

from the annual value and dividing it by the indicator’s
standard deviation. For each year, the arithmetic mean
of the five annual values is calculated. When the arith-
metic mean of the five annual standardized values is
negative (positive), we determine a dry (wet) year. The
degree dryness and wetness is higher when the values
are higher.

3. Results
a. Annual and monthly precipitation trends

Annual precipitation (multiannual mean from 1961 to
2007) in the Zhujiang River basin shows an increase from
west to south, from less than 1000 mm to more than
2000 mm at the coastline in the east (Fig. 2). The annual
average precipitation in the basin is 1500 mm. The
Mann-Kendall trend test was applied to the annual
precipitation of the 192 stations in the Zhujiang River
basin. Hardly any significant trends in annual precipi-
tation during 1961-2007 can be detected. Only eight
out of 192 stations (4% ) show significant trends above

the 90% confidence level. Seven of these stations are
located in the mountainous west of the Zhujiang River
basin and show negative trends. The other station is
located in the east and shows a positive trend (not
displayed).

The monthly precipitation (multiannual mean over
1961-2007) in the Zhujiang River basin shows a distinct
seasonality. Sixty-one percent of the annual precip-
itation falls from May to August. With an average of
266 mm (29 mm), June (December) is the month with
the highest (lowest) precipitation. The Mann-Kendall
trend test was applied to the monthly precipitation time
series of the 192 stations. December is the only month
that shows no significant trend at any station at a
90% confidence level (Fig. 3). Monthly precipitation in
January and October shows the largest trends in precipi-
tation indices. Precipitation in January shows significant
upward trends at 50 stations (26%) and October precip-
itation shows significant downward trends at 76 stations
(40%). Precipitation in April has significantly de-
creased at 50 stations (26 % ). However, the increasing and
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FIG. 4. January precipitation trends (area, left legend) and maximum precipitation trends
(symbols, right legend) in the Zhujiang River basin, 1961-2007.
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decreasing trends of the four other precipitation in-
dices (Fig. 3) are less dominant in April than in January
or October.

Positive precipitation trends in January are concen-
trated in a belt from the tributaries in the west of the
basin to the northern boundary. This spatial distribution
is similar to the area that experienced trends in maxi-
mum precipitation in January (Fig. 4). The negative
precipitation trends for October can be found in a belt
stretching from the middle reaches of the Zhujiang in
the center of the basin to the boundary in the east along
the coastline. This area is similar to the region for which
trends in monthly maximum precipitation in October can
be detected (Fig. 5).

Significant negative trends in monthly precipitation can
only be detected from April to June and from August
to November. Positive trends occurred from January to
September only. Both positive (19 stations or 10%) and
negative precipitation trends (17 stations or 9%) can be
detected in August.

b. Trends in annual extremes

Annual maximum precipitation (the highest rainfall
per day at one station per year) can be detected in areas
that are similar to the spatial distribution of annual
mean precipitation (Fig. 2). Annual maximum precipi-
tation is below 80 mm in the west of the catchment, be-
tween 120 and 160 mm along the coastline, and more
than 160 mm in spots along the coast. The Mann—-Kendall
test detects trends in annual maximum precipitation at
a 90% confidence level, but this precipitation index de-
creased at 6 stations (3%) and increased at 12 stations
(6%) only. The results are not displayed as no large-scale
trend can be found for annual maximum precipitation.

The annual 5-day maximum precipitation (long-term
annual average) is less than 140 mm in the western part

and more than 260 mm in the south and southeast coast
of the research area. The Mann-Kendall test shows
negative trends at a 90% confidence level at 5 stations
(3%) and positive trends at 8 stations (4%) only and is
not displayed.

The number of annual rain days shows a significant
downward trend at a 90% confidence level at 94 stations
(49%). These trends were mainly experienced in the
west of the Zhujiang River basin. The trend test shows
no clear signal for the annual number of rainstorms days
(>50 mm day !). Positive trends can be detected at
12 stations (6% ) and negative trends occurred at 2 stations
(1%) only.

The results for the Mann—Kendall test on the peak
over threshold at 90th, 95th, and 99th percentile detects
trends at few stations only. For the 90th percentile,
seven positive (4%) and three (2% ) negative trends were
detected. Eleven positive (6%) and two (1%) negative
trends occurred for the 95th percentile. Fourteen posi-
tive (7%) and four (2% ) negative trends are detected for
the 99th percentile.

c. Trends in monthly extremes

The results of the Mann—Kendall trend test for indices
on a monthly basis are more diverse and concise than
those for annual data. Figure 3 displays the results of
the trend test for five indices on a monthly basis, indi-
cating the number of stations and percentage of stations
that have experienced significant trends. The results for
trends in monthly precipitation have been discussed in
the previous subsection. For the five indices, significant
trends in either a negative or positive direction appear
in certain months. The only exception is August, where
monthly precipitation and monthly 5-day maximum pre-
cipitation show a balanced number of positive and neg-
ative trends.
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The number of monthly rain days in October experi-
enced the most dominant trend of all indices. Rain days
are significantly decreasing in October at 121 stations
(63%), followed in the ranking by November (76 sta-
tions or 35%) and September (62 stations or 32%). No
increasing trend for rain days can be found at any station
in these three months. A decreasing trend in rain days
occurred exclusively in the months between April and
December. In general, hardly any positive trends in
the number of monthly rain days can be found in the
Zhujiang River basin. Only May shows a slight increase
in rain days at 10 stations (5%).

Precipitation intensity shows a scattered appearance
over the months. The highest increase in precipitation
intensity can be observed in January (64 stations or 33%),
followed by July (29 stations or 15% ) and December (25
stations or 13%). No station experienced a decreasing
trend in precipitation intensity in these months. Nega-
tive trends in precipitation intensity mainly occurred
in October (39 stations or 20%) and April (38 stations).
The magnitude of these decreasing trends is much lower
compared to the 64 stations (33% ) with increasing trends
in precipitation intensity in January.

Maximum precipitation experienced the highest in-
crease in January (73 stations or 38%) and the most se-
vere decrease in October (65 stations or 34%).

Monthly 5-day maximum precipitation experienced a
significant increase in March (45 stations or 23%) and
January (33 stations or 17%). October experienced a neg-
ative trend in 5-day maximum precipitation amounts
over the period from 1961 to 2007. This decreasing trend
was detected at 77 stations (40%).

Figures 4 and 5 illustrate trends in monthly precip-
itation and maximum precipitation in January and
October, respectively. January and October represent
the most dominant increase and decrease in the pre-
cipitation indices. The figures show that the northwest
of the Zhujiang River basin experienced higher precip-
itation and increased maximum precipitation in January.
A band stretching along the middle and lower reaches
of the Zhujiang River experienced a decrease in pre-
cipitation and lower maximum precipitation in October.
It is noteworthy that the trends in the indices, whether
positive or negative, occurred in the same regions and
stations for a given month. With the exception of one
station for one index, no significant negative trends can be
detected for any of the indices between January and
March. With the exception of six stations, the months
October and November experienced negative trends for
the indices and no positive trends.

Considering all five indices, January (October) experi-
enced the most pronounced increasing (decreasing) trend
in precipitation and the analyzed precipitation extremes.
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4. Interpretation: Relation to large-scale
circulation

Yang et al. (2010) described an approach to link flood
seasons in the Zhujiang River basin with large-scale
circulation and identified monthly mean moisture trans-
ports from the southwest Pacific Ocean and Indian Ocean
as being the driver of wet and dry seasons.

In another example from the Yangtze River catch-
ment, reasons for positive precipitation trends in July
were found in variations in the meridional wind pattern
at the 850-hPa level, which account for an increased
transport of warm moist air to the Yangtze River catch-
ment during the summer months (Becker et al. 2006).
Hartmann et al. (2009) found phases and anti-phases in
high precipitation at some stations in the Yangtze River
catchment that are linked with SST in the Bay of Bengal.
The detected directions of 850-hPa winds on a seasonal
basis are in line with the seasonal water vapor flux in the
Zhujiang River basin described by Zhang et al. (2009c).

We have therefore investigated geopotential heights
and winds at 850 hPa for January and October for the
entire time series covering the period 1961-2007 in or-
der to explain reasons for the observed monthly (ex-
treme) precipitation trends in the Zhujiang River basin.
Interesting conclusions can be drawn. Figure 6 summa-
rizes the findings and displays geopotential heights and
winds at 850 hPa. The mean geopotential heights and
winds for the time series (upper panel) are shown for
January (Fig. 6a) and October (Fig. 6b).

a. January precipitation

When investigating the observed data, the positive
precipitation trends in January cannot be explained by
a shift in precipitation from December or February to
January, as neither December nor February shows
negative trends. In an attempt to explain the changes in
January and October, focus is placed on the East Asian
winter monsoon (EAWM).

According to the mean geopotential height at 850-hPa
level, and as can be seen from Fig. 6a, January pre-
cipitation in the Zhujiang River basin is influenced by
an interaction between three high pressure areas. Here,
the most distinct area is over west China; others are a
large area over southeast China crossing Taiwan toward
the west Pacific, and one over India. Prevailing winds
in the Zhujiang River basin circulate over southeast
China, the west Pacific, and the South China Sea, and
the wind direction is south-southwest.

Figure 6¢ shows a composite of the monthly circula-
tion pattern for years with high January precipitation
(1969, 1983, 1992, 1997, and 2003). This circulation pat-
tern is similar in each of the years with “wet” January.
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FIG. 6. Characteristics of 850-hPa geopotential height and winds: (a) mean of all Januarys 1961-2007, (b) mean of all Octobers 1961—
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FIG. 7. Arithmetic mean of five standardized precipitation indices (monthly precipitation, 5-day max
precipitation, precipitation intensity, rain days, maximum precipitation) for October from 1961 to 2007 in

the Zhujiang River basin.

The circulation is influenced by a distinct high over west
China and a band of high pressure that covers the entire
east and southeast Asian continent. Circulation is simi-
lar to the multiannual mean (Fig. 6a), but the circulation
over the Zhujiang River basin is less strong. A com-
posite of the large-scale system for the years 1963, 1976,
1986, 1994, and 2006 with low January precipitation (dry
January) is shown in Fig. 6e. It is quite similar to the
mean; however, the high over India is less distinct. At
the same time, the western extension of the anticyclone
over southeast China hardly covers the coastal area. The
speed of the winds entering the Zhujiang River basin is
below average.

When examining the monthly time series of winds at
850 hPa since 1961, it can be concluded that average
and high precipitation in January occurs when a high
pressure field north of the Himalayas forms, the in-
tensity and size of which is stronger than that of the high
over India. Reasons for positive precipitation trends
in January, however, cannot entirely be explained by
changes in large-scale circulation. The atmospheric
conditions are, to a certain extent, stable in January with
no distinct changes in the mean wind directions. The
positive trends might be related to local climatic condi-
tions in the topographically diverse basin of the Zhu-
jlang River; they might also be driven by the different
wind speed that can be observed for years with pre-
cipitation means above and below January.

b. October precipitation

The average large-scale circulation in October is shown
in Fig. 6b. In the multiannual mean in October, two
anticyclones form over west and east China, respec-
tively. Strong easterly winds are supported by a low
pressure system over the Philippines and are blocked
from entering the Zhujiang River basin. In October, the

long-term wind direction in the basin is easterly and the
winds have crossed the East China Sea. Strong winds
from the east transport water vapor to the basin if the high
over east China has not developed. The system is further
supported by the belt of lower pressure south of China.

In Fig. 6d, the circulation in October has been com-
posited for five years with high October precipitation
(1965, 1976, 1995, 2000, and 2002). Winds from the east-
southeast transport water vapor to the Zhujiang River
basin. Precipitation, number of rain days, and other pre-
cipitation indices in October are higher in the basin if
the high over west China is small in size.

Figure 6f shows a composite of the large-scale circu-
lation in October for the years 1967, 1979, 1992, 2004,
and 2007, which show the most significant negative pre-
cipitation indices (see Fig. 7). It represents the October
circulation during dry conditions. Low October precipi-
tation indices are detected if a high pressure system
forms over east China and if this is bordered by a trough
to the east. The mean wind direction is north-northeast.
The water vapor is potentially lower as it is transported
directly from north China and the Bohai Sea.

The negative trend in precipitation indices in October
is influenced by a large-scale high over west China and
a deep pressure system in the western North Pacific that
forms a trough, changing the mean wind direction in the
Zhujiang River basin from east to northeast or east-
northeast. This is the so-called East Asian Trough, which
is typical for the EAWM (Wang et al. 2009). Wang and
Ding (1997) described the onset of the EAWM as being
in October. The EAWM is delivering dry, cold air from
northeast China to the Zhujiang River basin.

Figure 7 shows the annual arithmetic mean (see sec-
tion 2) of five standardized precipitation indices (monthly
precipitation, 5-day maximum precipitation, precipitation
intensity, rain days, and maximum precipitation) in the
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FIG. 8. Arithmetic mean of five standardized precipitation indices (monthly precipitation,
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Zhujiang River basin for October 1961-2007, mean wind direction in the eastern part of the
Zhujiang River basin October 1961-2007, linear trend (line), and highlighted severe dry (tri-

angle) and wet (square) Octobers.

Zhujiang River basin in October from 1961 to 2007.
As can be seen, some years show pronounced negative
means and indicate dry October months (2007, 2005,
2004, 2003, 1992, 1979, 1985, and 1967). Figure 8 shows
the arithmetic mean of the same five standardized pre-
cipitation indices for October during 1961 to 2007 and the
according mean wind direction in the eastern part of the
Zhujiang River basin for each index (e.g., wind direction
in dry and wet October months). The linear trend of the
wind direction 1961-2007 is also displayed. It becomes
clear that years with extremely negative means of stan-
dardized precipitation indices (dry October months) oc-
curred when the large-scale winds at 850 hPa entered the
Zhujiang River basin from the northeast. With the ex-
ception of 1985, the nine October months with a mean
of —1 or below (i.e., the nine most severe dry October
months, indicated by the triangle in Fig. 8) can be ex-
plained by general circulation typical for the EAWM
(89%). Wet October months can be observed in years
when the mean wind direction is east or southeast (in-
dicated by the square in the right part of Fig. 8) with
the exception of 1965. The dry (wet) October in the ex-
ceptional year 1985 (1965) might be explained by lo-
cal circumstances—for example, occurrence of a tropical
cyclone or heat wave instead of by large-scale wind pat-
terns. The linear trend displayed in Fig. 8 illustrates
that the more wind comes from northeast (southeast) in
October, the drier (wetter) the weather conditions are.
The observed trends toward lower precipitation in Oc-
tober might be related to an early onset of the EAWM,
but is definitely caused by the change of the mean wind

directions. Over the time series 1961-2007, the mean
wind direction in the Zhujiang River basin has expe-
rienced a change by 50° from east-southeast to east-
northeast (Fig. 9). Checking the occurrence of El Nifio
and La Nifa years leads to the assumption that low pre-
cipitation and its indices in October are associated with
northerly winds in the transition phase between two
El Nifio events. This is consistent with the findings of
Zhou et al. (2007), who found many strong EAWM in
the years before the developing year of an El Nifo or
during the decaying La Nifia years.

5. Discussion and conclusions

The paper has made use of some basic methods to
analyze data on precipitation trends in the Zhujiang
River basin that have not been made available in the
current form elsewhere. The approach is very helpful to

Wind

S

1961 1966 1971 1976 1981 1986 1991 1996 2001 2006

FIG. 9. Mean wind direction in the eastern part of the Zhujiang
River basin for October 1961-2007 and its linear trend.
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detect positive and negative trends in precipitation and
indices related to precipitation extremes on a monthly
and daily basis. Few stations show significant trends
above a 90% confidence level for annual indices. The
only index that shows a somewhat negative direction is
the number of annual rain days. This is consistent with
the findings of Zhang et al. (2009a). Annual maximum
precipitation shows trends at 18 of 192 stations. This is
the highest number of detected trends on an annual basis
and indicates that less than 9% of all stations in the
Zhujiang River basin show significant trends in annual
extreme precipitation events (maximum precipitation,
rainstorm days, intensive rain days, extremely intensive
rain days for 90/95/99 percentile rain events). No spatial
pattern can be detected for the stations with significant
trends. Zhang et al. (2009a) also report that no trends
can be detected for annual precipitation in the Zhujiang
River basin. We can therefore conclude that no distinct
regions in the Zhujiang River basin have experienced
trends for annual indices.

Our results for the monthly precipitation trends as
well as for the monthly indices of rain days, intensity,
maximum precipitation, and 5-day maximum precipi-
tation are somewhat in line with the seasonal findings
by Zhang et al. (2009a), who estimate increasing trends
in total precipitation, precipitation intensity, and rain
days in winter [(December—February (DJF)]. Our find-
ings are also supported on a seasonal basis by Liu et al.
(2009), who detected that autumn precipitation de-
creased, but spring, summer, and winter precipitation
increased during the period covered by the same time
series.

Each of the previous studies delivered findings that
are correct for the time series of data and the number of
stations used. Comparing this paper’s results on monthly
and daily basis with previous studies on seasonal basis
shows that much more interpretation is possible on
monthly basis. If monthly results were merged for sea-
sons (e.g., September, October, and November merged
to “autumn”), the information on the significant de-
crease of precipitation intensity in October would have
been lost. Additionally, monthly changes of wind direc-
tion that could explain trends in October precipitation
could not be assessed.

In this study, 192 stations that passed a homogeneity
and quality check have been used, compared to other
studies that used less than one quarter of these stations
without official checks. This, in combination with the
use of the maximum possible number and quality of sta-
tions, delivers new information on the quality and quan-
tity of observed trends.

The observed positive precipitation trends in January
cannot be explained by changes in large-scale wind

JOURNAL OF CLIMATE

VOLUME 24

directions. Reasons might be found in local climatic
conditions or in the generally low monthly precipita-
tion. Generally, the wind speed is different in years
with observed high, mean, and low precipitation in
January, which might be a factor causing positive trends.
This will be examined in future studies.

The change of the mean wind direction in years with
below-average precipitation and rain days in October
is an interesting finding that has not been described
before. Chou (2004) described a weak anomalous cy-
clone over the Philippine Sea and the South China Sea
in the developing summer of an El Nifio event. October,
marking the transition period between the East Asian
summer monsoon (EASM) and the EAWM, has not
received much attention in climate studies yet, but it
appears to be sensitive with regards to areal precipi-
tation. The negative trends in the precipitation indices
in October are consistent with the trend in the mean
wind direction at 850 hPa. Therefore, low precipitation
records in October can be explained by pressure systems
typical for the EAWM and winds from northeast and
east-northeast in the eastern part of the Zhujiang River.

In forthcoming research, the authors will further ex-
amine the return periods of extreme events on a monthly
basis for below- (above-) average October (January)
precipitation and indices and investigate links with the
statistical onset of the EAWM.
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Abstract In this paper, change-points in time series of annual extremes in temper-
ature and precipitation in the Zhujiang River Basin are analyzed with the CUSUM
test. The data cover the period 1961-2007 for 192 meteorological stations. Annual
indicators are analyzed: mean temperature, maximum temperature, warm days,
total precipitation, 5-day maximum precipitation, and dry days. Significant change-
points (1986/87, 1997/98, 1968/69, and 2003/04) are detected in the time series of
most of the indicators. The change-point in 1986/87 is investigated in more detail.
Most stations with this change-point in temperature indicators are located in the
eastern and coastal areas of the basin. Stations with this change-point in dry days
are located in the western area. The means and trends of the temperature indicators
increase in the entire basin after 1986/87. The highest magnitudes can be found at
the coast and delta. Decreasing (increasing) tendencies in total and 5-day maximum
precipitation (dry days) are mostly observed in the western and central regions. The
detected change-points can be explained by changes in the indices of the Western
Pacific subtropical high and the East Asian summer monsoon as well as by change-
points in wind directions. In years when the indices simultaneously increase and
decrease (indices taking reverse directions to negative and positive) higher annual
temperatures and lower annual precipitation occur in the Zhujiang River Basin.
The high station density and data quality are very useful for spatially assessing
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change-points of climatic extreme events. The relation of the change points to
large-scale oscillation can provide valuable data for planning adaptation measures
against climate risks, e.g. for flood control, disaster preparedness, and water resource
management.

1 Introduction

In China, an increasing population lives in areas vulnerable to extreme events such
as floods, rain storms, and droughts. These extreme weather events are very likely to
cause damages to ecosystems and hence affect the socio-economic sphere. The fast
growing population and industrialization in major river basins in China in recent
decades have increased the damage potentials that extreme climate events and
other natural disasters have (Feng et al. 2007). Weather extremes are common in
China due to the huge Asian landmass influencing the large-scale circulation and
China’s various climate regimes (Zhai et al. 2005). Flood, rain storm, and drought
events become more important variables in hampering sustainable development.
The intensity and frequency of these extremes are of main concern and have been
substantiated by multiple studies on climate change in China and in the world (Ding
et al. 2007; Trenberth et al. 2007; Klein Tank et al. 2009; Hoskins 2003).

The East Asian Summer Monsoon (EASM) and the Western Pacific subtropical
high (WP) have been identified as strong influencing climate factors in the South
China region (Ding et al. 2008; Yin et al. 2009; Yu et al. 2009). Morrill et al. (2003) and
Qian et al. (2007) identified that variations in components of the climatic system have
the potential for triggering rapid and major shifts in the Asian monsoon precipitation.

A fundamental approach to understand the behavior of extreme events is the
detection of trends and change-points in time-series (Hoskins 2003; Seidel and
Lanzante 2004). For South China, many studies already dealt with trends in temper-
ature and precipitation extremes, which often found higher frequency and increasing
intensity. Increasing annual temperature and precipitation in the Zhujiang River
Basin of South China for the period of 1961-2007 have been detected by Liu et al.
(2009). They observed the highest temperature increases in the winter season. For
the annual extreme high temperatures in China, an insignificant rise was detected by
Ren et al. (2005a). According to Ding et al. (2007), southeast China experienced an
increase in annual precipitation by around 60 to 130 mm during the last fifty years.
Qian and Lin (2005) found different results when analyzing regional characteristics
of daily precipitation indices for 494 stations in China (1961-2000) and depict a
negative decadal tendency in annual and summer precipitation in coastal southeast
China. Gemmer et al. (2011) observed increasing tendencies to dryer conditions and
stronger precipitation intensities using 192 quality-controlled precipitation datasets
for the Zhujiang River Basin from 1961-2007. Analyzing the SPI, no significant
trends in frequencies of dry/wet days and runoff anomalies have been detected by
Zhai et al. (2009) in this region. This was also elaborated by Fischer et al. (2010)
who observed significant negative trends in dry days on the basis of 192 quality-
controlled time-series. All of these studies applied the Mann—Kendall test and/or
the linear regression to identify trends in climate indicators.

An important question is whether climate trends occurred gradually or rapidly.
Qian et al. (2007) already linked climate change-points and regime shifts in China to
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the interaction of mid- and low latitude atmospheric circulations by. Zhang et al.
(2009a) applied a Bayesian change-point analysis to annual, summer, and winter
precipitation and intensity, using data of 47 meteorological stations in the Zhujiang
River Basin. The authors concluded that the abrupt changes in the precipitation
totals occurred in the late 1970s, 1980s and early 1990s and these of the precipitation
intensity occurred in 1972-1975. The precipitation intensity generally increased after
the change-point. Leung and Wu (2005) used the cumulative summation (CUSUM)
method to identify regime shifts in summer rainfall in South China during the period
1952-2003. They discovered one shift from wet to dry conditions between the mid-
1970s and another shift from dry to wet in the early 1990s. A northward shift of the
Meiyu (summer monsoon rainfall) belt of East China in 1999 has been observed by
Si et al. (2009) using the Empirical Orthogonal Function analysis. Implying trends
to dryer conditions in South China, they associated this shift to changes in the
atmospheric circulation over East Asia.

Most variations in climate and atmospheric circulation are certainly natural, while
some components could be associated with increased concentrations of greenhouse
gases or other anthropogenic effects (Miller et al. 1994). The studies of shifts in
climate regimes and of various natural climate variations are of paramount impor-
tance (Hoskins 2003; Seidel and Lanzante 2004). Detection of abrupt changes in
climate systems (change-point detection) has been rarely applied to temperature
and precipitation indicators in the Zhujiang River Basin, South China, a densely
populated area which has already been subject to the negative impacts of weather
extremes. The changing temporal patterns, i.e. change-points and trends, are vari-
ables essential for adaptation measures in flood control, disaster preparedness, and
water resource management. Time-series of observed climate data for assessing
and estimating climate variables are therefore relevant for the implementation of
necessary adaptation measures (Adger et al. 2007; Klein Tank et al. 2009).

The objectives of this study are therefore, (1) to detect abrupt changes in climate
indicators in the Zhujiang River Basin, (2) to analyze the trends and spatial extent,
and (3) to investigate their relation with characteristics of atmospheric circulation
patterns. This approach will give insights to the spatio-temporal behaviour of ex-
treme climate events and their underlying causes which, for example, is required for
planning of climate change adaptation measures in South China.

2 Data and methodology
2.1 Regional setting

The Zhujiang River Basin (also known as the Pearl River Basin) is located in South
China. The basin covers approximately 579,000 km? and embraces the administrative
areas of Guangdong Province and Guangxi Autonomous Region almost entirely.
It also cuts into the provinces of Yunnan, Guizhou, Hunan, Jangxi, and Fujian. A
tropical to sub-tropical climate prevails while the East Asian Monsoon has strong
influences on it. The basin has mountainous areas in the western part but got mainly
low lands in the central and south-eastern parts. The Zhujiang River consists of
three main tributaries, i.e. the Xijiang River, Beijiang River, and Dongjiang River.
The Xijiang River is the largest and drains the entire western and central parts of
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the basin, while the other two catchments are found in the east. All three have
a south-east (-west) ward stream flow direction due to the basin’s topography. At
the south-eastern coastal area, the tributaries merge into a large network delta (i.e.
Zhujiang River Delta) before they mound into the South China Sea. A more detailed
description of the basins climatic and hydrologic conditions are provided by Yang
et al. (2010) and Zhang et al. (2009b), while historic and current data related to
the basin can also be found on the website of the Pearl River Water Resource
Commission (www.pearlwater.gov.cn). An elevation map including the location of
the 192 weather stations used in this study and the course of the main river system is
provided in Fig. 1.
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Fig. 1 Overview map of the Zhujiang River Basin in South China, indicating elevation (shading),
administrative boundaries (grey lines) incl. names, and the location of the meteorological stations
(black dots)
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2.2 Data

Daily temperature and precipitation records of 192 meteorological stations in the
Zhujiang River Basin for the period 1961-2007 are used. The data set was provided
by the National Meteorological Information Center (NMIC) of the China Mete-
orological Administration (CMA). The data sets were controlled on their quality
by the NMIC (Qian and Lin 2005). The NMIC checked the data on homogeneity
using the departure accumulating method (Buishand 1982). Due to the results, the
temperature data records used in this study have been homogeneity-adjusted (Song
et al. 2004; Ren et al. 2005a, b). The precipitation data records remain unadjusted.
Less than 0.1 percent of data gaps appear in the daily temperature and precipitation
records.

The East Asian Summer Monsoon index (EASMI) is based on the intensity of
the normalized seasonality of the wind field at 850 hPa (10-40° N, 110-140° E)
for June to August (Li and Zeng 2003). The annual EASMI data is available
on the website of the Chinese State Key Laboratory of Numerical Modelling for
Atmospheric Sciences and Geophysical Fluid Dynamics (http://www.lasg.ac.cn/staff/
ljp/data-monsoon/E AMI1948-present.ascii).

The WP index (WPI) specifies the low-frequency variability of a north-south
dipole of the western North Pacific. It signifies the zonal and meridional variation of
the location and intensity of the East Asian jet stream entrance region, i.e. the north-
ward shift of the Western Pacific subtropical high (Barnston and Livezey 1987). The
WPI data (monthly/annual) is provided by the U.S. National Centers for Environ-
mental Prediction (NCEP) on their website (http://www.cpc.ncep.noaa.gov/data/).

Vector data of monthly u-/v-winds (gridded for 22.5-25° N and 112.5-115° E)
within the eastern part of the Zhujiang River Basin are also derived from NCEP
website (http://www.esrl.noaa.gov/psd/data/).

2.3 Methodology

2.3.1 Indicators

Based on daily temperature and precipitation data (1961-2007), six climate indicators
are created for the detection of change-points in temperature and precipitation
extremes (Table 1). Temperature indicators are the annual mean temperature
(Tiean), the annual maximum temperature (Tp,x), and the annual number of warm
days (Tgp). The precipitation indicators consist of the annual total precipitation
(Piotan), the annual 5-day maximum precipitation (Psgqy), and the annual number of
dry days (Pgry). The climate indicators were defined on fixed terms predetermined
by the China Meteorological Administration or international standards (Li et al.
2010; Qian and Lin 2005; Su et al. 2008; Klein Tank et al. 2009). The peak over
threshold indicator (i.e. Tqp) is based on the time period 1961-2007. This approach
on percentile values provides a good comparability of single stations (Li et al. 2010).

2.3.2 Change-point detection

A change-point analysis is applied to six climate indicators (1961-2007) for 192
meteorological stations. A combination of cumulative sum charts and bootstrapping
is applied to detect abrupt changes within the time-series (Taylor 2000; Leung and
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Table 1 List of six temperature and precipitation indicators used for analysis in the Zhujiang River
Basin (1961-2007)

ID Name Definition Unit
Tean Mean temperature Annual average value of daily °C
mean temperature
Tax Maximum Annual maximum value of daily °C
temperature mean temperature
Too Warm days Annual number of days above the days
90-percentile of mean temperature
Piotal Total precipitation Annual total precipitation mm
Psqay 5-day maximum Annual maximum consecutive mm
precipitation 5-day precipitation
Pary Dry days Annual number of days with days

precipitation below 0.1 mm

Wu 2005). The difference between the annual values and the arithmetic mean (u) of
the time-series are calculated and cumulated as follows:

Si=Si—1+x—wp (withi=1,..., nand S, = 0) (1)

where S; is the cumulative sum, w is the arithmetic mean of the time-series, x is
the variable.

The cumulative sums (S;) are plotted and interpreted. CUSUM delivers infor-
mation on segments with notable slopes and abrupt turns in direction, which give an
indication of a shift in the average. The confidence level is determined by performing
a bootstrap analysis. As an estimator of the magnitude of change (Sqir) we define the
difference of the maximum cumulative sum:

Sqitf = max S; — min S; (withi=0,..., n) (2)

In this study 1,000 bootstrap samples (S?) of n samples (here: 47) for each station
and climate indicator are generated. For each bootstrap sample the CUSUM is
performed and its respective magnitude of change (S, is calculated following
Eq. 2. The confidence level is determined by the difference of bootstrap samples with
Siodiff < Sqirr and the total number of bootstrap samples (here: 1,000). We consider
change-points if the significance is marked by a confidence level of minimum 95%,
i.e. at least 950 out of 1,000 bootstrap samples have a magnitude of change (S
below the magnitude of change (Sqif) of the original data.

The CUSUM estimator (Taylor 2000) detects whether a change occurred. The
point furthest from zero (Sy,) in the CUSUM chart is the last point (i) in time (here:
year) before the change:

S,, = max |S;| (withi=0,...,n) 3)

The best occurrence of the detected change is between m and m + 1. After detecting
a significant change-point, the original data is divided into two segments, one before
and one after the change-point. The whole of the change-point detection procedure
is repeated with each segment and sub-segment until no significant change reoccurs.
The same procedure was applied for the time-series of wind direction in the eastern
part of the Zhujiang River Basin in October. In this study, up to four change-
points are detected for single time-series. For each year and climate indicator, the
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basin-wide number of change-points is determined as the sum of stations which
show a change-point in the respective year and indicator time-series (Taylor 2000;
Leung and Wu 2005). The results are combined to several 2-year-periods, which
comprise the highest numbers in change-points encountered.

2.3.3 The z-score and shift of indicator classes

In order to spatially visualize the absolute changes of the indicators, the flat steps
method (Seidel and Lanzante 2004) was used. Here, the arithmetic means (u,
and u,) of the periods before and after the most significant change-point were
calculated for each station. The standard score (z) is calculated (Wilks 2006) in order
to compare the station-based indicator values. It indicates by how many standard
deviations the arithmetic mean of the period after the change-point (u,) is above or
below the arithmetic mean of the period before the change-point (). The z-score
reflects the tendency in changing temporal patterns of the indicators in standardized
terms. The z-score is a dimensionless quantity derived by subtracting the time-series
mean from an individual raw score and then dividing the difference by the time-series
standard deviation:

z=x—p)/o 4)

where u is the arithmetic mean of the time-series (i.e. i), x is the variable (i.e. u,),
and o is the standard deviation of the time-series (i.e. standard deviation of ;). A
z-score of 1.0 for example depicts a shift by one standard deviation of the time-series
after the change-point as compared to the time-series before the change-point. The
further the z-score is away from zero, the larger is the actual shift of the two time-
series’ means.

Varying indicator classes (three to six) are used to illustrate the spatial shift of the
arithmetic mean of the period after the change-point (u;) to the arithmetic mean
of the period before the change-point (). The z-scores, indicators classes and
the shifts were spatially interpolated using the Inverse Distance Weighting (IDW)
method (Gemmer et al. 2004).

3 Results
3.1 Change-point detection

Each time-series for each indicator (192 stations) was analyzed for significant change-
points. In numerous time-series, change-points were not detected, while in some
others more than one change-point occurred. The number of stations where no
change-points were detected varies greatly for each indicator. As can be seen in
Table 2, in Trean, only 9% of the stations but up to 88 (87)% in Pyotal (Psday) did not
experience any abrupt changes. Correspondingly, much more stations with change-
points are found for temperature indicators than for precipitation indicators.

Some distinct 2-year-periods show relatively high number of stations with sig-
nificant change-points. For Tpan, three significant change-points were detected in
the years 1986/87, 1997/98, and 1968/69 which occurred at 42%, 71%, and 11% of all
stations in the Zhujiang River Basin (Table 2). Change-points in Tyax and Toy were
detected for a lower percentage of stations. The highest percentage of stations (11%
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Table 2 Number of stations (#), and percentage of total stations (%), with detected change-point
(CUSUM) at the most significant 2-year-periods for temperature and precipitation indicators (192
stations in the Zhujiang River Basin 1961-2007)

Change-point Tmean Tmax Too Piotal Psday Pary

# % # % # % # % # % # %
1967-1968 22 11 6 3 9 5 2 1 1 1 0 0
1986-1987 81 42 21 11 52 27 2 1 1 1 64 33
1997-1998 137 71 14 7 47 24 0 0 2 1 12 6
2003-2004 4 2 18 9 13 7 0 0 1 1 15 8
No CP 18 9 71 37 48 25 168 88 167 87 87 45

and 27% respectively) had a significant change-point in 1986/87, followed by 1997/98
(7% and 24% respectively). Especially in Tq), change-points were also estimated for
the late 1970s, early 1980’s and early 1990’s at 13% to 17% of all stations. For Py
and Psq,y few stations (highest of 7% in 1984/85 and 1992/93) showed change-points
throughout the time-series (not displayed). In Py, more than 33% of all stations
experienced a significant change-point in 1986/87. With less stations (6% and 8%)
and similar to the temperature indicators, change-points are also detected for 1997/98
and 2003/04. The most significant results of the CUSUM change-point analysis for
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Fig. 2 Basin-averaged time-series (1961-2007) of a Timean, b Tmax, € Too, d Piotal, € Psday, and f Pyry
(red or blue line, left axis), number of stations with most significant or no change-points (yellow or
green column, right axis), and trends (dashed lines) for the periods of 1961-1986 and 1987-2007
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Table 3 Annual means, z-score, and trends (unit per year) of six temperature and precipitation
indicators in the time-periods before (1961-1986) and after (1987-2007) the detected most significant
change-point (1986/87), averaged of 192 stations in the Zhujiang River Basin

Indicators Tmean Tmax Too Piotal Psday Pary

Annual mean 1961-1986 (111) 19.7°C  29.5°C  33.9d 1517 mm  192.5mm  205.3d
Annual mean 1987-2007 (12) 20.2°C  29.8°C  42.6d 1489 mm  193.1mm  214.4d

z-score (ua to ) 1.4 0.5 0.9 -0.1 0.0 0.7
Linear trend 1961-1986 (unit/a) ~ —0.01 —0.01 -0.05 412 —0.17 —0.36
Linear trend 1987-2007 (unit/a)  0.03 0.02 0.30 1.71 0.45 0.61

the six indicators (1961-2007) at 192 stations are listed in Table 2 and illustrated in
Fig. 2, where the change-points are visualized in the background of the respective
basin-averaged indicator’ time-series.

According to the findings, the years with the majority of significant change-points
for the entire Zhujiang River Basin are 1986/87 and 1997/98. The change-point in
1986/87 is often valid for the highest number of stations and found for most of
the indicators (Tmean, Tmax, Too, and Pyry). Therefore, this change-point (1986/87)
is chosen for the spatial analysis of the mean shift of each indicator.

Hence, two time-periods (1961-1986 and 1987-2007) are statistically described.
Their arithmetic means, average z-score, and linear trends for the entire Zhujiang
River Basin can be derived from Table 3. Illustrated in standardized terms by the z-
score, an increase in the mean of Tyean (by 0.5°C), Tax (by 0.3°C), Ty (by 8.7d), and
Pgry (by 9.1d) can be observed while a stable mean in P54,y and a slight decrease in
the mean of Py, (by 28 mm) can be detected for the entire basin. The corresponding
linear trends in 1961-1986 are decreasing at all indicators except for Piota, While in
1987-2007 all trends show an increasing tendency (Table 3). Most significant are the
trends in Trean and Py (Fig. 2a, f), while no significance is found for Py and Psgay
(Fig. 2d, e).

3.2 Temporal change (z-score)

The z-score reflects the standardized spatial shift of the mean before and after the
change-point (1986/87). Estimated for each station and indicator, the interpolated z-
scores are displayed in Fig. 3. The stations with significant change-points in 1986/87
are highlighted (black dots), and it can be seen that most of them are located in the
areas of high z-scores (here: strong increases). Concerning the change-point of less
significant years (e.g. 1997/98), it is assumed that the shift (trend) in all indicators
has the same direction as of 1961-1986 or 1987-2007, and is expressed as part of the
corresponding mean (e.g. 1987-2007).

A high number of stations experienced change-points in 1986/87 and show positive
station-based z-scores for Tpean (Fig. 3a2). Most areas, except the mountainous parts
in the north-west, have z-scores above 1.0, which implies a strong increase to higher
mean temperatures (by 0.3°C to 1.2°C) for the period after the change-point (1987-
2007). The z-scores of Tmax and Ty reflect similar features. Most stations show
positive z-scores (except Tmax in the central area), while even higher z-scores (above
1.0) are detected in the south-east (along the coast and delta) (Fig. 3b, c). These
indicate a strong increase to higher maximum temperatures (by 0.5°C to 1.3°C) and
more warm days (by 8d to 35d) near the coast and delta.
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Fig. 3 Spatial distribution of the z-score (standardized mean for 1987-2007 in relation to the mean
and standard deviation of 1961-1986) of a Tmean, b Tmax, € Too, d Piotar € Psday, and f Pary (shadings);
and stations with significant change-point in 1986/87 (points) in the Zhujiang River Basin

Total precipitation and 5-day-maximum precipitation have a similar distribution
of z-scores. Z-scores in most of the western and south-central areas of the basin
are slightly negative, while most of the north-central and eastern parts have slightly
positive scores (Fig. 3d, e). Only slight changes occurred as almost no change-points
exist for these indicators. The entire basin experiences slightly positive z-scores in
Pgry, while in the western part high z-scores (above 1.0) are observed (Fig. 3f). This
area experiences an increase by 10 to 22 more dry days in the period 1987-2007
compared to 1961-1986.

3.3 Spatial shift

Figure 4 shows the spatial shifts for each indicator’s mean of 1987-2007 against the
mean 1961-1986. In the low lying central and eastern parts of the basin, an obvious
northward shift of Tyean classes can be observed (Fig. 4a). The border of the Tpean
class >22°C extensively progressed northward and along the coast from the Leizhou
Peninsula. In the western mountainous areas, a slight shift in Ty,can can be detected
towards higher altitudes. For maximum temperature indicators, an expansion from
the centre to all geographical directions can be observed. A south-eastward shift
to >31°C in Tmax can be identified in most parts of the coast and delta, though
before (1961-1986) only the central areas experienced high maximum temperatures
(Fig. 4b). With a more west- and southward direction, warm days show a more
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Fig. 4 Averaged annual mean of 1987-2007 (shadings) and corresponding regime shift of indicator
classes against the time-period 1961-1986 (texture) of a Tmean, b Tmax, € Too, d Protal € Psday, and
f Pyry interpolated for 192 station-based time-series in the Zhujiang River Basin (1961-2007)

south-east coverage. Figure 4c shows that stations along the coast and few stations in
the west experienced shifts by two classes (from <30d to >45d), which emphasizes a
strong change in Ty.

Few small progressing (more in the north-east) and retreating (more in the south-
west) shifts are detected for Py and Psgay (Fig. 4d, €). In contrary, Py, classes
shift northward and in the western region relatively extensively upwards (to higher
altitudes). In 1987-2007, the class containing >220 dry days can be found along the
southern border of the watershed (from west to east). Before, only few areas (in the
far west and east, and Leizhou Peninsula) experienced extensive dry days (Fig. 4f).
Similarly, a shift from the class <200d to the class 200-220d is observed in the north-
central areas.

4 Interpretation: analysis of circulation pattern

4.1 Change-points in wind directions

Temperature and precipitation in the Zhujiang River Basin are strongly influenced
by the East Asian Monsoon System. This is expressed by changes in wind directions

(Li and Zeng 2003; Feng et al. 2007; Gemmer et al. 2011). The question is whether
the detected change-points of the climate indicators can be explained by changes
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Fig. 5 Average wind directions in October (red squares) in the eastern Zhujiang River Basin, years
with significant change-points (purple columns), and mean wind directions of the periods separated
by change-points (black lines)

in the atmospheric circulation. Therefore, a change-point analysis is carried out for
time-series of wind directions in October for the eastern part of the Zhujiang River
Basin. Wind directions in October were chosen because the EASM ends in average in
October. Recent findings by Gemmer et al. (2011) also emphasize October as being
a key month concerning temporal precipitation changes and trends (especially in dry
days). Therefore, October is the turning point from EASM to the East Asian Winter
Monsoon and marks the season when the WP starts influencing South China.

The analysis shows that at least two significant change-points can be detected
in the wind directions in October: 1985/86 and 2002/03 (Fig. 5). The shifts of the
wind direction are around 30° each from an ESE-direction (1961-1985) to an E-
direction (1986-2002) and then to an ENE-direction (2003-2007). A high variation
(between S- and NE-directions) is evident in the period before the 1985/86 change-
point. Noteworthy is the extreme outlier in 1997 which shows a SSE-direction.

4.2 Reverse characteristics of EASMI and WPI

The wind pattern in October is strongly influenced by the EASM and WP. Therefore,
it is analyzed whether the EASMI and WPI influence the detected change-points of
the climate indicators. Change-points cannot be detected in the time-series’ of the
EASMI and WPI. However, the EASMI and WPI show special characteristics that

Index score

3
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Fig. 6 EASMI (red line) and WPI (dashed blue line), years of simultaneous increase in WPI and
decrease in EASMI (green columns)
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Fig. 7 Averaged mean temperature (Tmean, dashed red line) and dry days (Pqry, blue line) in the
Zhujiang River Basin (1961-2007), change-points of Tmean and Pyry (orange columns), change-points
of wind directions in October (purple columns) in the eastern Zhujiang River Basin (1961-2007),
years of reverse indices for WPI and EASMI (green columns)

are concurrent to the change points in the climate indicators. Four years (1968/69,
1975/76, 1986/87, and 1997/98) show a negative WPI and positive EASMI which are
succeeded by a year with positive WPI and negative EASMI, i.e. the indices take
reverse directions (Fig. 6).

These years match the change-points of the analyzed temperature and precipita-
tion indicators in the Zhujiang River Basin, except for 1975 (Fig. 7). The change-
points of the wind directions in the eastern Zhujiang River Basin in October are one
year prior to the estimated change-points of Tyax and Pgyy.

5 Discussion
5.1 Discussion on circulation pattern

Strong negative values of the EASMI are brought into relation with high summer
precipitation amounts in the Yangtze River Basin (Li and Zeng 2003), but with
low summer precipitation amounts in South China (i.e. Zhujiang River Basin). For
recent decades, Ding et al. (2008) noticed a regime transition of summer precipitation
from a positive-negative-positive north-south pattern to a dipole north—south pattern
with two abrupt change-points (1978 and 1992). This transition and a simultaneous
weakening of the EASM are leading to less moisture transport and convergence. This
is pre-dominantly caused by a weakening of the tropical easterly jet (Ding et al. 2008).
Yin et al. (2009) identified a similar positive-negative pattern (high-low pressure
at 500 hPa) north and south of 40°N latitude of east China during the EASM, and
related it to fewer moderate-to-heavy rainfall events in Guizhou province in June
to August. If the pattern is reversed, more persistent moderate-to-heavy rainfall
events are experienced. These modes of circulation are associated by Yin et al. (2009)
with the northward intrusion of the WP. Yu et al. (2009) identified a zonal dipole
oscillation (referred to as APD) at 500 hPa in the East Asia—West Pacific region and
stated that anomalies in APD (low/high values) cause high/low summer precipitation
over the southern Yangtze River Basin (bordering the northern Zhujiang River
Basin).
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During winter and spring, a north—south dipole of circulation anomalies over the
western North Pacific exists, with one centre located over the Kamchatka Peninsula
and another broad centre of opposite sign (i.e. WP) covering portions of southern
East Asia and the western subtropical North Pacific. Strong positive or negative
phases of this pattern (WPI) reflect pronounced zonal and meridional variations in
the location and intensity of the entrance region of the East Asian jet steam. The
positive phase of the WP pattern is associated with above-average temperatures over
the lower latitudes of the western North Pacific and with below-average precipitation
across the central North Pacific (Barnston and Livezey 1987).

According to Su et al. (2005), the summer temperature over Central Asia de-
creased slightly in recent decades whereas the temperature over the North West
Pacific has become warmer. This contrast caused the weakening of the summer
monsoon and the shift of the rain belt over South China, leading to less rain days (Su
et al. 2005; Chou 2004). Considering the change-points found in the wind directions
in October and based on findings by Gemmer et al. (2011), the shift of the transition
phase between the end of the EASM and the onset of the East Asian winter monsoon
could be another link to explain change-points in precipitation indicators.

5.2 Discussion on change-point detection and trends

The change-point analysis for the indicators reveals that the highest number of sta-
tions show significant change-points in 1986/87. Change-points in the years 1967/68
(Tmean> Tmax, Too), 1997/98 and 2003/04 (Tmax and Pgry) are less significant but
noteworthy.

For Tpean, most stations with change-points in 1986/87 are located in the eastern
and coastal areas of the Zhujiang River Basin. For annual dry days, such stations
are located in the western areas. This difference in distribution is also found in the
intensity of the z-scores. Increases in temperature indicators are found in the entire
basin, with the highest scores at the coast and delta, which can also be found in the
different shifts of classes of indicators towards the north and the coast. Decreasing
(increasing) tendencies in total and 5-day maximum precipitation (dry days) are
mostly experienced in the western and central parts of the basin, with a significant
northward shift to more dry days.

For different regions of China, change-points in time-series of annual temperature
and precipitation in 1986/87 were, for example, detected in the upper Yellow River
Basin (Zhao et al. 2007), in the Tarim River Basin (Chen et al. 2006), and in Inner
Mongolia (You et al. 2010). These studies support the findings of the most significant
change-point in 1986/87.

As almost no change-points in total precipitation were estimated, the findings of
Zhang et al. (2009a) cannot entirely be supported, as they detected abrupt changes
in precipitation totals of 47 stations which occurred in the late 1970s, 1980s and early
1990s. Using the CUSUM method, Leung and Wu (2005) observed shifts in summer
rainfall at nine stations in South China (1952-2003) from wet to dry conditions
between the mid-1970s and from dry to wet in the early 1990s. In our study, a change-
point in total precipitation can only be detected at seven percent of the stations for
the early 1990s and the mid 1980s. The shift in summer rainfall in 1999, estimated
by Si et al. (2009), can therefore not be proven for the Zhujiang River Basin. In
comparison with Zhang et al. (2009a), Si et al. (2009), and Leung and Wu (2005),
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the dissimilar results might be explained by the use of different methods or different
time-scales and time-periods.

The detected basin-averaged increase and spatial distribution in Tpean (by 0.5°C)
and Ty (by 8.7d) is in line with the findings of Ren et al. (2005b), Fischer et al. (2010),
and Qian and Lin (2005). They highlight an increase in annual mean temperature
by around 0.4°C for South China (1951-2004), or a mean basin-wide increase by
0.7°C (1961-2007). Qian and Lin (2005) estimated an increase by 4.8d in warm
days in South China for 1961-2000, while Fischer et al. (2010) found a basin-wide
average increase by 14 warm days for 1961-2007. Using daily precipitation data of
47 stations (1951-2005), Zhang et al. (2009a) did not detect significant trends in
annual precipitation. Similar findings were made by Gemmer et al. (2011), who found
very few negative trends in annual and maximum precipitation at 192 stations (1961-
2007), significant trends in dry days. Both studies support our findings in precipitation
indicators, especially the increase in dry days (by 9.1d).

Observed change-points for Tmean, Tmax, Too, and Pgry can be explained by two
atmosphere—ocean indices related to the study region (EASMI and WPI) and wind
directions in October (Li and Zeng 2003; Barnston and Livezey 1987; Gemmer et al.
2011). The years of the simultaneous increase/decrease in WPI/EASMI match the
estimated change-points (1986/87, 1997/98, and 1968/69) in the Zhujiang River Basin,
except for 1975. The two change-points in wind directions in October both occur one
year prior the change-points in Tpax and Pgry (1986/87 and 2003/04). These staggered
occurrences might be explained by time-lagged climatic teleconnections, which will
be investigated in further research.

6 Conclusions

In the Zhujiang River Basin, climate change-points (1986/87, 1997/98, 2003/04, and
1967/68) can be linked to changes in the indices of the EASM and WP. These change
points result in above-average temperature, below-average precipitation in winter
and spring, and fewer moderate-to-heavy rainfall events in summer in the Zhujiang
River Basin.

The abrupt shift to higher annual temperatures and less annual precipitation
events detected can partly be explained by simultaneous increase/decrease of the
WPI and EASMI.

It will be possible to plan adaptation measures against climate risks, e.g. for flood
control, disaster preparedness, and water resource management, when using infor-
mation of change points. Although climate-proofing of infrastructure, e.g. inland
dykes, reservoirs, should take into account climate trends and projected changes,
change points are not foreseen as a standard procedure. The results of this study show
that climate change points may lead to abrupt changes of external conditions in the
disaster management system. More focus should therefore be put on the assessment
on the linkage between large-scale oscillation and change points in climate indices
which can serve early warning systems. The information can feed into existing
disaster preparedness models that are used at national meteorological observations
in South China and Southeast Asia.
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ABSTRACT

In a changing climate, understanding the frequency of weather extremes is crucial to improving the man-
agement of the associated risks. The concept of weather index—based insurance is introduced as a new ap-
proach in weather risk adaptation. It can decrease the vulnerability to precipitation extremes that cause floods
and economic losses in the Zhujiang River basin. The probability of precipitation extremes is a key input and
the probability distribution of annual precipitation extremes is analyzed with four distribution functions
[gamma 3, generalized extreme value (GEV), generalized Pareto, and Wakeby]. Three goodness-of-fit tests
(Kolmogorov-Smirnov, Anderson-Darling, and Chi Squared) are applied to the distribution functions for
annual time series (1961-2007) of 192 meteorological stations. The results show that maximum precipitation
and 5-day-maximum precipitation are best described by the Wakeby distribution. On a basin scale, the GEV
is the most reliable and robust distribution for estimating precipitation indexes for an index-based insurance
program in the Zhujiang River basin. However, each station has to be analyzed individually as GEV is not
always the best-fitting distribution function. Based on the distribution functions, spatiotemporal character-
istics of return periods for maximum precipitation and 5-day-maximum precipitation are determined. The
return levels of the 25- and 50-yr return periods show similar spatial pattern: they are higher in the southeast
and lower in the southwest of the basin. This spatial distribution is in line with the annual averages. The statistical
distribution of precipitation indexes delivers important information for a theoretical weather index—based
insurance program.
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1. Introduction
a. Weather extremes in south China

In China, extreme weather events regularly cause dam-
ages to ecosystems and affect the socioeconomic sphere
(e.g., the agricultural production). The population that is
living in areas vulnerable to weather extremes such as
floods, rain storms, and droughts is increasing. Weather
extremes are common in China because of the monsoon
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systems over East Asia and China’s various climate re-
gimes (Zhai et al. 2005). The potential for economic
damages from extreme climate events and other natural
disasters increased in recent decades because of the fast-
growing population and industrialization in major river
basins in China (Feng et al. 2007). The intensity and fre-
quency of these extremes have been analyzed in several
studies on climate change in China and at the global scale
(Ding et al. 2007; Trenberth et al. 2007; Klein Tank et al.
2009). For the climate and weather extremes in south
China, the East Asian summer monsoon (EASM) and the
western Pacific subtropical high (WP) have been identi-
fied as strong influencing factors (Ding et al. 2007; Fischer
et al. 2011, 2012; Gemmer et al. 2011; Yin et al. 2009).



1024

b. Impacts of precipitation extremes and weather
insurance concept

Heavy rainfall has led to catastrophic flooding in
southern China and caused decreasing annual grain
production and direct economic losses observable in
economic data from the China Meteorological Admin-
istration (CMA), the Pearl River Water Resources
Commission (PRWRC), and the Economic Research
Service (ERS) from the United States Department of
Agriculture. Thus, these flood and heavy rainfall events
have adverse effects on farmers’ livelihoods. According
to the World Food Programme (WFP), weather-indexed
crop insurance programs can help farmers to cope with
disaster losses and help governments predict the onset of
natural hazards to take appropriate measures to cushion
their impacts and to reduce vulnerability (Hazell et al.
2010; Parry et al. 2009). Crop insurance has been one
of the most successful risk management and longest-
running stabilization programs for farmers in many parts
of the world (Boyd et al. 2011). Recently, the China In-
surance Regulatory Commission (CIRC) is encouraging
insurers to apply new methods to extend agricultural in-
surance cover to improve food security and decrease the
vulnerability to weather-related losses in the country
(www.circ.gov.cn). Based on several case studies, Skees
(2007) concludes that properly designed and targeted
index-based weather insurance products can facilitate the
development of robust rural financial markets. In
weather-indexed crop insurance, a contract is written
against a prespecified index that establishes a relationship
between weather phenomena (e.g., heavy rainfall) and
crop failure (i.e., losses in agricultural production). Based
on another study by Turvey and Kong (2010), farmers in
China would have an interest in purchasing weather in-
surance, with a strong interest in precipitation insurance.

Statistically, weather index insurance covers the ex-
treme tail of the probability distribution of weather
events for a specified region (Belete et al. 2007). The
determination of the index depends on the probabilities
associated with the given risk. This typically depends on
long datasets of acceptable quality, which enable the
estimation of the likelihood of an extreme event, the
level of vulnerability and exposure, and the economic
losses incurred (Jiang et al. 2010). Commonly, the
probability distribution of the indexed parameter is
calculated on observed data. The probability distribu-
tion of the extreme tails is often expressed in return
levels of reconstructed and observed climate variables
(i.e., precipitation extremes) at specific return periods.
An accurate estimation of return levels at given return
periods are relevant for the determination of indices
for weather index-based crop insurance and other
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adaptation measures (Adger et al. 2007; Belete et al.
2007; Klein Tank et al. 2009; Semmler and Jacob 2004;
Lehner et al. 20006).

These statistical distributions are often used to model
time series and to define the frequency of annual ex-
tremes. The r-yr return level is the quantile that has
a probability 1/r of being exceeded in a particular year.
In general, the distributions of hydrological time series
are assessed to distinguish the extent of an r-yr return
level of a 100-yr flood event, for instance (Petrow and
Merz 2009). Less often, studies focus on the distribution
of meteorological time series of maximum precipitation
and rain storm events, as these extreme precipitation
indicators are the main climate elements where flood
risks are concerned (e.g., Feng et al. 2007; Groisman
et al. 1999; Klein Tank et al. 2009; Nadarajah and Choi
2007; Su et al. 2009; Vovoras and Tsokos 2009; Yang
et al. 2010; Zhai et al. 1999).

Insurance providers require preliminary research on
the accurate estimation of potential weather indexes for
crop insurance products in south China. In addition, it is
important to identify which distribution function fits
best for the determination of the extreme tails of these
precipitation extremes.

c. Distribution functions and state of research
in south China

In China, the most commonly applied distribution func-
tion for precipitation extremes in the last decades was
the three-parameter gamma distribution (GA3; similar
to the Pearson type-3 distribution) for comparing ex-
treme floods (Groisman et al. 1999; Wang et al. 2008).
For example, Wang et al. (2008) applied the gamma
distribution and the Kolmogorov-Smirnov (KS) test to
detect changes in extreme precipitation and extreme
streamflow in southern China. The gamma distribution
is also used as the standard distribution in the calcula-
tion of the standardized precipitation index (SPI; Zhai
et al. 2010; Fischer et al. 2011) and for precipitation in-
tensity estimation in the Intergovernmental Panel on
Climate Change (IPCC) Fourth Assessment Report
(AR4; Solomon et al. 2007).

Recently, the World Meteorological Organization
(WMO) recommended the use of the generalized ex-
treme value (GEV) for block maxima and the general-
ized Pareto (GPA) distribution for peak-over-threshold
events (Klein Tank et al. 2009). Several studies applied
these distributions with diverse results (e.g., Solomon
et al. 2007, etc.). For 651 stations in China, time series of
annual maximum precipitation (1,2, 5, and 10 day) from
1951 to 2000 have been analyzed by Feng et al. (2007).
Applying the GEV distribution, they concluded that 50-
yr events in these regions in the 1950s became more
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frequent and developed to 25-yr events in the 1990s.
They detected negative trends in extreme events in north
China but significant positive trends in the Yangtze River
basin and northwestern China. For eastern China, Jiang
et al. (2009) analyzed extreme precipitation from daily
records and concluded that the GPA distribution is su-
perior to other extreme value distributions such as GEV.
For the Zhujiang River basin (ZRB) in south China,
Yang et al. (2010) analyzed annual consecutive 1-, 3-, 5-,
and 7-day precipitation for 42 stations from 1960 to 2005
and determined the best fitting of six different distribu-
tions for six predefined regions. In that study, GEV is
among the best-fitting distributions for the estimation of
return periods of 1, 10, 50, and 100 years. They also
showed the spatial distribution of the different calculated
return periods.

Relatively recent studies investigated and applied the
five-parameter Wakeby (WAK) distribution for the es-
timation of return periods of extreme precipitation in-
dicators (Park et al. 2001; Oztekin 2007; Su et al. 2009).
To obtain reliable quantile estimates with the WAK
distribution, Park et al. (2001) investigated the use of L
moments for the estimation of the five parameters. Simi-
lar research was undertaken by Oztekin (2007), who con-
cluded that based on results by the Anderson-Darling
(AD) test the WAK distribution fits best for station data
in the eastern United States. Su et al. (2009), who calcu-
lated the maximum precipitation and the Munger index
to estimate observed and projected extreme precipitation
events in the Yangtze River basin, selected the best-
fitting distribution for flood/drought frequencies by
comparing the GEV, general logistic (GLO), GPA, and
WAK distributions. Here, the WAK distribution proved
the best fit based on the Kolmogorov—Smirnov test. The
50-yr return periods were estimated for simulated
(1951-2000) and projected (2001-50) time series.

Most of the aforementioned studies analyze the spa-
tial pattern of extreme events at certain return periods,
while some also investigate the best-fitting distributions.
The results indicate the probability of extreme events
and can be used in the planning of adaptation measures.

d. Objectives

For the preliminary research of the theoretical de-
velopment of a weather index—based insurance program
in south China, reported annual economic losses caused
by flood events are associated with annual extreme
precipitation indicators and annual grain production.
An accurate estimation of return levels at given return
periods is required to determine the theoretical thresh-
olds. An investigation on four commonly used distri-
bution functions for precipitation extremes will be
carried out on the hypothesis that GEV is the overall

FISCHER ET AL.

1025

best-fitting distribution for 192 stations in the Zhujiang
River. Different goodness-of-fit tests will be applied to
obtain insights on the reliability and robustness of each
distribution function, as this has not been done yet. Based
on the results, a spatial analysis of the frequency of annual
precipitation extremes in the ZRB is presented and set
into context with the theoretical development of a
weather index—based crop insurance program.

2. Data and methodology
a. Regional setting

Located in south China, the Zhujiang River basin (also
known as the Pearl River basin) stretches almost entirely
over the administrative areas of Guangdong Province and
Guangxi Autonomous Region. With an area of approxi-
mately 579 000 km?, it is ranked as the third largest within
China. The East Asian summer and winter monsoons
have strong influences on the seasonal climate regimes,
which are categorized as tropical to subtropical climates.
In the western part of the basin the topography shows
mountainous areas, while the central and southeastern
parts are mainly hilly low lands. The Zhujiang River is
a construct of three main rivers (i.e., the Beijiang River,
Dongjiang River, and Xijiang River). The streamflow has
a southeast- to southwestward direction because of the
basin’s topography. All three main rivers, including
tributaries, merge into a large network delta (i.e., Zhu-
jiang River Delta) at the southeastern coast. A map with
the location of the 192 weather stations used in this in-
vestigation and the main river system is provided in Fig. 1.

b. Data

Daily precipitation records of 192 meteorological sta-
tions (Fig. 1) in the ZRB for the period 1961-2007 are
used. Earlier instrumental records are unavailable. The
dataset was provided by the National Meteorological In-
formation Center (NMIC) of the CMA. The datasets were
controlled on their quality by the NMIC (Qian and Lin
2005). The NMIC checked the data on homogeneity using
the departure accumulating method (Buishand 1982).
The precipitation data records remain unadjusted, while
less than 0.01% of data gaps appear in the daily pre-
cipitation records. The same dataset was used and in-
vestigated by Gemmer et al. (2011) and Fischer et al.
(2011, 2012). Multiple findings (including figures and
tables) on precipitation extremes, wetness and dryness
pattern, and change points in the ZRB can be retained
from these articles.

Historical and recent data on major flood events in the
ZRB (i.e., economic losses and affected area and pop-
ulation) are taken from the website of the PRWRC
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FIG. 1. Overview map of the Zhujiang River basin in south China, indicating location of
meteorological stations (black dots) and the river system (gray curved line).

(www.pearlwater.gov.cn), while the annual overall eco-
nomic losses from all natural hazards of Guangxi Auton-
omous Region are taken from the Provincial Disaster
Statistics for Guangxi Autonomous Region 1950-2000 as
provided by the CMA. The estimated annual grain pro-
duction from 1963-2007 for the provinces of Guangdong
and Guangxi is extracted from the ERS website
(www.ers.usda.gov).

¢. Methodology
1) INDICATORS

Based on observed daily precipitation data (1961-
2007), two indicators are created in order to analyze and
describe annual 1- and 5-day maximum precipitation
extremes, which represent flood indexes’ weather index—
based insurance. The precipitation indicators consist of
the annual maximum 1-day precipitation (RX1) and an-
nual maximum consecutive 5-day precipitation (RXS).
The indicators were defined on fixed terms predeter-
mined by CMA and international standards (Li et al.
2010; Qian and Lin 2005; Su et al. 2009; Klein Tank et al.
2009).

For reliable results in estimated return levels, and
hence in the application of all common distribution
functions, a main assumption is that the time series are
stationary. Significant trends, cycles, and autocorrelation
(heteroscedasticity) indicate nonstationarity. Hence, the
methods of linear regression, Mann-Kendall test, and
Engle’s test (on autocorrelation) are applied to the RX1
and RX5 of each station to identify stations exhibiting
significant trends and autoregressive conditional hetero-
skedasticity (ARCH) effects in residuals at the 0.05 sig-
nificance level (Gemmer et al. 2004; Gao et al. 2010;
Duchesne 2006). Based on the two trend tests on the

extreme indicators RX1 (RXS), significant trends are
found at 8 (9) and 4 (3) out of 192 stations. Autocorre-
lation at lag 1 was detected at 4 and 7 stations. At these
stations, the residual indicator time series are not in-
dependently distributed. The stations with significant
trend and/or autocorrelation show no obvious spatial
patterns in their location. Hence, the influence of large-
scale covariates is rather unlikely. Conclusively, 181
time series are assumed to be stationary, while 11 time
series show significant trends or autocorrelation, and are
therefore excluded from the distribution analysis.

2) DISTRIBUTION FUNCTIONS

To identify the best-fitting distribution function for
extreme precipitation at 181 stations in the ZRB, a
comparative frequency analysis is applied to the preci-
pitation indicators (RX1 and RXS). Following the ex-
amples by Feng et al. (2007), Su et al. (2009), and Yang
et al. (2010), only the four most commonly used three-
and five-parameter distributions are considered. Here,
the GA3, GEV, and GPA distributions and the WAK
distribution are used. In reference to the GEV and GPA
distributions, a good overview of the advantages and
disadvantages of the peak-over-threshold and block
maxima approaches is given by Palutikof et al. (1999).
The indicator values of the total available time period
from 1961 to 2007 (47 years) are chosen for estimating
the distributions, because results for longer return pe-
riods (e.g., of 25 years) are more accurate than from
values of a shorter time period. The definition of the
cumulative distribution functions of GA3, GEV, and
GPA (Klein Tank et al. 2009; Hamed and Rao 1999; Su
et al. 2009) are presented in Table 1. Here, x is an in-
dividual raw score, vy is a location parameter similar to
the time series’ mean, B and k are continuous shape
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TABLE 1. Respective cumulative and probability distribution functions of GA3, GEV, GPA, and WAK.
Cumulative distribution function (GA3, GEV, GPD)
Distribution probability distribution function (WAK) Domains
T yyp(@) [~
GA3 F(x)= "2 " T(a)= J et dr y=x<+wa>0;>0
I'(a) 0
—1/k
GEV F(x) = (P[0 Tk2) 7] k70 1+ kz>0fork 40
R e ’
-~ ~1/k —o<xy<owfork=0
1—{1+K<u>} k40
GPA F(x)= Xf w=x<pu— olkfork <0
1—exp[—< )] k=0 p=x<xfork=0
o
WAK x(F):§+%[1—(1—F)B]—Z[]—(l—F)_”] f=x<wifo=0andy>0
ag

E=x<étalBptyloifo<0ory=0

parameters, and z is the time series’ mean (u) subtracted
from an individual raw score (X) and divided by the time
series’ standard deviation (o). While for the probability
distribution function of WAK (Table 1), B8, vy, and o are
shape parameters, and £ and « are location parameters
(Hamed and Rao 1999; Su et al. 2009).

Several methods can be used for the estimation of
distribution function parameters. The most common are
the maximum likelihood method, the method of mo-
ments, the probability weighted moments method, and
the L-moments method. According to Hamed and Rao
(1999), the maximum likelihood method is the most ef-
ficient since it provides the smallest sampling variance of
the estimated quantiles. The L-moments method has
advantages when dealing with small and moderate
samples (Hosking and Wallis 1997). The use of different
parameter estimation methods may result in different
quantile estimates as each parameter estimation method
has its own strengths and limitations. In this paper, the
maximum likelihood method (with one thousand itera-
tions) and the L-moments approach are applied.

3) UNCERTAINTY QUANTIFICATION

We apply the bootstrapping method to more reliably
assess the associated variability of the parameter esti-
mation. For each station-based indicator, 1000 bootstrap
members are generated by sampling with replacement
(Davison and Hinkley 1997; Kharin et al. 2007). The
10% and 90% confidence bounds for each distribution
function are generated for the return levels of the 25- and
50-yr return periods (Kao and Ganguly 2011). To quantify
the uncertainty in parameter estimation of each distribu-
tion function due to sample errors in annual precipitation
extremes, we compare the percentage differences of
the confidence bounds to the estimated return level of
the original sample. A higher percentage displays a higher
(i.e., more uncertain) variability of the return level
estimators of the used candidate distribution. Further

procedures, equations, and estimations of parameter
uncertainty can be derived from Hamed and Rao (1999),
Su et al. (2009), Yang et al. (2010), and Hosking and
Wallis (1997).

4) GOODNESS OF FIT

As a second step, the adequacy for each probability
distribution (i.e., goodness of fit) is assessed. Three
goodness-of-fit tests (KS, AD, and y tests) are applied
in order to determine the distribution with the best
fit—that is, the most adequate probability distribution
(Corder and Foreman 2009; Su et al. 2009).

(i) Kolmogorov—Smirnov test

The KS test derives the distance between the empir-
ical cumulative distribution function (ECDF) of the
observed time series and the cumulative distribution
function (CDF) of the candidate distribution (Corder
and Foreman 2009; Su et al. 2009; Schonwiese 2006).
The KS test statistic (D,,) for a given candidate cumu-
lative distribution function [F(x)] is the largest vertical
difference between F(x) and F,(x). The equation for the
KS test statistic (D,,) and the ECDF are defined in Table 2.
Here, sup, is the least upper bound of the set of distances
and Iy;—, is an indicator function, which is 1 if X; = x or
0if otherwise. If D is greater than the critical value (here
0.198) at the 0.05 significance level, the hypothesis on the
distributional form is rejected.

(ii) Anderson—Darling test

The AD test is similarly to the KS test used to compare
an ECDF to the CDF of a candidate distribution. The AD
statistic (A%) measures how well the data follow a partic-
ular distribution. For a given dataset and distribution, the
better the distribution fits the data, the smaller this sta-
tistic will be. The calculation is weighted more heavily in
the tails of the distribution than the KS test (Corder and
Foreman 2009; D’ Agostino and Stephens 1986). For the
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TABLE 2. Functions of goodness-of-fit tests (KS, AD, and x?).

Goodness-of-fit Functions for

test test statistics
KS test D, = slip\Fn(x)—F(x)\ Fn(x)ziélx,sx
AD test A= —n —% il (2i = 1){InF (X,)
i=
+In[1-FX,_, I}
X test x> = é (Oigéi)z E;=F(x,) — F(x,)

i

equation described in Table 2, if A% is greater than the
critical value (here 2.502) at the 0.05 significance level,
the hypothesis on the distributional form is rejected. The
critical value is approximated depending on the sample
size only and not on the distribution.

(iii) x° test

The x? test (normally used for independence deter-
mination) is used here to determine if the empirical data
can be fitted well to the candidate distribution. In gen-
eral, this test is applied to binned data with a certain de-
gree of freedom (Corder and Foreman 2009; Schonwiese
2006). The calculation of the y? statistic is shown in Table
2, where O is the observed frequency for bin i, and E; is
the expected frequency for bin i with F as the CDF of the
candidate distribution, while x;, x, are the limits for bin i.
Here, the values of the test statistics have a degree of
freedom of 3, 4, or 5. Hence, the critical values at the 0.05
significance level are 7.81, 9.49, or 11.07, respectively.

5) RETURN LEVELS

As stated by Klein Tank et al. (2009), information on
multidecadal time scales are particularly relevant for
adaptation planning and typical thresholds of weather
indexes for insurance products (Adger et al. 2007; Belete
et al. 2007), because nearly all infrastructure design relies
on assessment of probabilities of extremes with return
periods of 20 years or more. To further allow comparisons
with relevant findings in recent literature (Feng et al.
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2007; Su et al. 2009; Yang et al. 2010), the return levels in
this study are calculated for the 25- and 50-yr return
periods (quantiles 0.96 and 0.98, respectively) for each
indicator and meteorological station. Based on the test
results, the best-fitting distribution function for each
station is determined according to the highest scores and
robustness of the three goodness-of-fit tests. Additionally,
the averaged percentage differences of the 10% and 90%
confidence bounds to the estimated 25- and 50-yr return
levels are calculated for each distribution function and
presented as a basin average.

The return levels of the 25- and 50-yr return period of
both indicators are spatially interpolated using the inverse
distance weighting (IDW) method. This method is chosen
because of its common use in previous articles on the ZRB
(Gemmer et al. 2011; Fischer et al. 2011, 2012) and other
relevant literature (e.g., Su et al. 2009). Although IDW
usually performs with less accuracy than the kriging
method (Shi et al. 2007; Chen et al. 2011), it does not assign
values outside the range of the given points as is done
within kriging, and hence a potential secondary over-
estimation of the return levels can be avoided, while local
differences are more accentuated (Anderson 2011). With
IDW, the weighted averages of 12 neighboring stations are
used to calculate a raster image that presents the spatial
distribution of the estimated indicators. The weighting is
based on the local influence of distant points (stations),
which decreases with distance (Gemmer et al. 2004).

3. Results
a. Indicators

The spatial distribution of RX1 and RXS arithmeti-
cally averaged for the period 1961-2007 is displayed in
Fig. 2. A very similar and obvious west-to-southeast
disparity in the amounts of RX1 and RXS can be found.
The lowest average amounts in extreme precipitation
(RX1 amounts are below 80 mm and RXS amounts are
below 120 mm) fall in the western parts, while the
highest values (RX1 amounts are above 160 mm and
RXS5 amounts are above 240 mm) (RX1 > 160 mm;
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FIG. 2. Average annual (a) 1- and (b) 5-day-maximum precipitation (RX1 and RXS5) in the ZRB, 1961-2007.
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FIG. 3. Extreme precipitation [RX1 (green line) and RX5 (orange line)], economic flood losses
in the ZRB (red column), and overall disaster losses in Guangxi Province (blue columns).

RX5 > 240 mm) are recorded along the southeastern
coast of the basin.

b. Association of indicators with flood events and
economic data

The two basin-averaged annual indicators, the annual
economic losses due to floods for the ZRB, and the
overall disaster losses of Guangxi are presented in Fig. 3.
Only four major flood events with reported economic
losses are documented for the ZRB from 1978 to 2000,
with the highest losses (above ¥7 billion, where ¥ is the
symbol for Chinese yuan) in 1994. It can be seen that the
highest amount of the heavy rainfall indicators in 1994
coincides with higher than usual overall economic losses
in Guangxi Province. Taking the relatively steady trend
in grain production of Guangdong and Guangxi into
account (Fig. 4), some obvious corresponding low peak
events in 1988, 1994, and 2002 can be distinguished, and
decreases by more than 0.5 ton ha™' are apparent. The
loss event in 1994 can be found in RX1 and RXS5 (Fig. 5),
while the loss event in 1988 is not well represented in
RX1 and RXS. In Fig. 5, the RXS values of 1994 are
visualized for all stations. The affected regions can be
quite obviously distinguished for the northern and south-
ern parts of the basin. The highest rainfall amounts in 1994
were detected in these areas, where similar high losses
might be assumed.

c. Distribution functions

As a first step of the comparative frequency analysis,
the parameters for the candidate distribution (GA3,
GEV, GPA, and WAK) are estimated for each time
series and two indicators at 181 stations. For each station

and indicator, the four distribution functions are calcu-
lated and integrated into a database. Based on this, the
probability density curves, the cumulative probability,
and the probability difference (P-P plot) can be statis-
tically interpreted and visualized for every single station
and indicator. The averaged percentage differences of
the 10% and 90% confidence bounds to the 25- and
50-yr return levels for each candidate distribution as
basin averages are presented in Table 3. It can be seen
that GEV and GPA show smaller differences than GA3
and WAK. This indicates that the parameter estimation
with GEV and GPA is slightly less affected in the case of
sample errors in annual precipitation extremes.

As an example, the estimated parameters of the four
candidate distributions at Xuwen station are shown in
Table 4. The distribution functions are drawn according
to their parameters (Fig. 6). In Fig. 6a the empirical
probability density in comparison to all four candidate
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FIG. 4. Agricultural grain production (t/ha) of Guangdong and
Guangxi Provinces of China, 1963-2007.
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FIG. 5. Maximum consecutive 5-day precipitation (RXS) in 1994 in the ZRB.

distributions is shown. The probability density of RXS5 is
shown as columns with a left-sided distribution. The
highest probability density is above 0.10 (at around 190
and 250 mm), where at the right tail end the two most
extreme events in the 47 years of record can be distin-
guished. The estimated probability curves of GA3 and
GEYV (red and blue curves) show a right-sided bell curve
with relatively similar shape, scale, and location. Com-
pared to GA3 and GEV the curve of WAK (purple
curve) shows a narrower shape, a higher scale, and
a more right-shifted location, while the GPA (green
curve) probability curve simply slopes downward from
the left (P > 0.09 at 120 mm) to the right.

In Fig. 6b, the S-shaped GA3, GEV, and WAK curves
are relatively close to the (stepwise) empirical cumula-
tive probability curve. The GPA curve is simpler in its
shape but also follows the empirical curve quite closely.
To determine the actual difference of the candidate
probability distribution to the empirical probability
distribution, the P-P plot (Fig. 6¢) allows an easy in-
terpretation. The closer the candidate’s probability is to
the diagonal line (0.0-1.1), the better it fits to the em-
pirical probability. In Fig. 6¢, the GPA line shows the

TABLE 3. Averaged percentage differences of the 10% and 90%
confidence bounds to the 25- and 50-yr return levels for each of
the four candidate distribution functions (GA3, GEV, GPA, and
WAK) for two extreme precipitation indicators (RX1 and RX5) at
181 stations in the ZRB, 1961-2007.

RX1 RXS5
Distribution 25 year 50 year 25 year 50 year
GA3 +13.3% *17.2% +13.9% +17.4%
GEV +11.5% *15.3% +12.6% +16.3%
GPA +12.4% +15.5% +12.7% +16.1%
WAK +13.2% +18.1% +14.4% +18.3%

highest distance from the diagonal line, while the other
three show a very similar behavior and are closer to the
empirical probability.

d. Goodness of fit

In the present study, goodness-of-fit tests (KS, AD,
and x?) are applied to all four candidate distributions of
the two indicators at 181 stations. The statistics are cal-
culated, proven on significance at the 0.05 significance
level, and can be ranked based on a direct comparison of
all four candidate distributions (the lowest value ranks
first). Exemplarily, in Table 5, the test statistics for the
four candidate distributions and for each goodness-of-fit
test, as well as the corresponding return levels and the
averaged percentage differences to the 10% and 90%
confidence bounds, are presented for RXS at Xuwen
station.

In Table 6, the number of stations for which the cal-
culation of the test statistics was successful (i.e., avail-
ability) are summarized. Some statistics are not available
as some parameters of the candidate distribution could
not be estimated or the hypotheses of the tests were re-
jected. The number of significant stations (« = 0.05) are
also presented in Table 6. Table 7 includes the number of

TABLE 4. Estimated parameters of four candidate distribution
functions (GA3, GEV, GPA, and WAK) for annual maximum
consecutive 5-day precipitation (RXS) at Xuwen station, 1961—
2007.

Distribution Parameters
GA3 a = 3.3359; B = 46.977; y = 77.337
GEV k = 0.0127; o0 = 66.77; u = 194.66
GPA k = —0.3952; 0 = 156.52; u = 121.87
WAK a =394.98; B = 5.492; y = 79.256

o = —0.0156; ¢ = 95.175




JUNE 2012 FISCHER ET AL. 1031
Probability Density Cumulative Probability x P-P Plot
oM a = i 1 b v c
a0s 08 L
008 M : Z or o7
o7 ?‘Z\\ 08 0%
* 008 \ = I §
g 71 TN g GAS £
% \ L | 5 b 04
ik . — GEV
oss 7 ] — GPA 53
002 " = — \WAK o
4 120 160 200 240 20 20 30 400 440 480 520 120 160 00 240 260 0 360 400 440 480 520 01 02 03 04 05 06 07 08 [Y) 1
o * P (empirical)

FIG. 6. (a) Probability density, (b) cumulative probability, and (c) P—P plot of annual 5-day-maximum precipitation (RX5) and four
candidate distributions (GA3, GEV, GPA, and WAK) at Xuwen station, 1961-2007. In (a) and (b) the x axis shows the precipitation
(mm) and the y axis the probability [f(x)]; in (c) the x axis represents the empirical probability [ f(RXS5)] and the y axis the candidate

probabilities [ f(x)].

stations where the candidate distribution is ranked first in
a direct comparison of all four candidate distributions. To
validate the reliability and robustness of the candidate
distributions from a different perspective, the numbers of
stations at which the statistics are below a certain
threshold (D < 0.09, A> < 0.50, and x* < 4.00) are also
shown in Table 7.

1) KOLMOGOROV—SMIRNOV TEST RESULTS

As can be seen in Table 6, the results of the KS test of
the observed time series show that the calculation of the
distributions’ test statistics (D) was successful for most
of the stations and all available statistics are significant
at the 0.05 confidence level (here 0.198 with n = 47). For
RX1 (RXS), only at 5 (4) stations are the WAK statistics
not available.

In Table 7, the KS test statistics for each candidate
CDF and for each station are ranked according to their
point-oriented highest distance to the empirical CDF.
The candidate distribution with the shortest distance is
ranked first (rank 1). WAK was ranked first at 118 (126)
of 181 rankings, followed by GEV with 43 (31) of 181.
The number of stations [RX1 (RX5)] below the threshold
of D < 0.09 (taken from Su et al. 2009) are highest for

WAK [174 (168)], followed by GEV [168 (153)] and GA3
[127 (128)].

2) ANDERSON-DARLING TEST RESULTS

The calculation of the AD test statistics (4%) for RX1
(RXS) was successful at most of the stations, but not all
statistics are significant at the 0.05 confidence level (here
2.502 with n = 47). At 5 (4) stations the WAK statistics
are not available. All statistics are significant for GEV.
No significance was found at 7 (4) stations for GA3, at 49
(51) stations for WAK, and at 175 (177) stations for
GPA (Table 6). The significant candidate distributions
are ranked according to their lowest distance to the
weighted squared empirical distribution statistic (Table 7).
WAK was ranked first at 92 (89) of 181 rankings, fol-
lowed by GEV with 61 (68) of 181 stations. The number
of stations below the chosen threshold of A? < 0.50 are
highest for GEV [171 (167)], followed by GA3 [141 (148)]
and WAK [124 (114)], and very low for GPA [6 (4)].

3) x° TEST RESULTS

The availability of x* test statistics shows higher dif-
ferences between the candidate distributions than those
of KS and AD test statistics (cf. Table 6). The avail-
ability is given for GEV at all stations (181), for GA3 at

TABLE 5. Goodness-of-fit test results (KS, AD, and )(2) for four candidate distribution functions (GA3, GEV, GPA, and WAK), and
estimated return levels for 25 and 50 years [F(0.96) and F(0.98)], including the averaged difference to the 10% and 90% confidence bounds
(percentage difference in brackets) of RX5 at Xuwen station, 1961-2007.

25-yr return 50-yr return

Distribution KS (D) AD (A?) X level level
GA3 0.048 0.22 731 411 + 51.4 125%) 456 + 65.0 143%)
GEV 0.043 0.17 0.30 413 + 50.9 123%) 462 + 70.5 153%)
GPA 0.075 14.82% n/a 407 + 54.4 134%) 434 + 70.5 (16:2%)
WAK 0.053 0.16 0.28 416 + 55.6 134%) 468 + 76.6 (16:4%)

* Not significant; n/a = not available.
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TABLE 6. Availability and significance of stations according to the goodness-of-fit test results (KS, AD, and x?) for four candidate
distribution functions (GA3, GEV, GPA, and WAK) of two extreme precipitation indicators (RX1 and RX5) at 181 stations in the ZRB,

1961-2007.

KS AD X
Indicator Distribution Auvailability Significance Auvailability Significance Availability Significance
RX1 GA3 181 181 181 174 174 169
GEV 181 181 181 181 181 178
GPA 181 181 181 6 6 6
WAK 176 176 176 127 135 134
RX5 GA3 181 181 181 177 177 173
GEV 181 181 181 181 181 180
GPA 181 181 181 4 4 3
WAK 177 177 177 116 123 120

174 (177), for WAK at 135 (123), and for GPA at 6 (4)
stations. Not all available statistics are significant at the
0.05 confidence level (here 7.81,9.49, or 11.07 depending
on the degree of freedom). In Table 7, the significant
candidate distributions are ranked based on their dis-
tance to the binned empirical probability distribution.
For RX1, GEV and WAK ranked first for similar number
of stations (>70), while for RX5 a relatively even distri-
bution of first ranks between GA3, GEV, and WAK can
be found. GPA ranks first two (one) times only. For RX1
(RXY), the number of stations below the chosen thresh-
old of x* < 4.00 are highest for GEV [135 (132)], followed
by GA3 [114 (125)], and WAK [102 (99)], and very low
for GPA [5 (3)].

4) COMBINED TEST RESULTS

Following the goodness-of-fit tests’ results, the ade-
quacy of each candidate probability distribution can be
determined. The overall outcome shows similar results
for RX1 and RXS5 (Table 6 and Table 7). Comparing
the three tests, only GEV achieves successful calcula-
tion of test statistics (availability) for all stations.

Availability of GA3 statistics is relatively high, while
for WAK and GPA fewer results are found for . The
significant test statistics show similar responses. For
RX1 (RXY), all test statistics for GEV are significant,
except for 3 (1) times when x* was applied. GA3 shows
also a high number of significant results in significance
testing. In the AD testing, WAK shows a high variation
with nonsignificance at one-third of available statistics,
while GPA is nonsignificant at almost all statistics
(Table 6).

Within the four candidate distributions, the five-
parameter WAK ranks proportionately highest for both
indicators at 181 possible stations. Comparing the three-
parameter distribution functions, GEV ranks first more
often than GA3 and GPA. Analyzing the test statistics
below a certain threshold (D < 0.09, A% < 0.50, and y* <
4.00), the results reveal that the statistics of WAK and
GEV show most often relatively low values, followed by
GA3, while the statistics of GPA show generally the
highest values (Table 7). Low values of available sta-
tistics indicate a good reliability and robustness of the
candidate distribution.

TABLE 7. First rank and number of stations under a certain threshold according to the goodness-of-fit test results (KS, AD, and x?) for
four candidate distribution functions (GA3, GEV, GPA, and WAK) of two extreme precipitation indicators (RX1 and RXS5) at 181

stations in the ZRB, 1961-2007.

KS AD Chi®
Indicator Distribution Rank 1* D < 0.09 Rank 1* A? <050 Rank 1* x> <4.00
RX1 GA3 10 127 23 141 40 114
GEV 43 168 61 171 71 135
GPA 10 128 5 6 2 5
WAK 118 174 92 124 68 102
RX5 GA3 10 128 21 148 58 125
GEV 31 153 68 167 59 132
GPA 14 104 3 4 1 3
WAK 126 168 89 114 63 99

* Number of times the candidate distribution function was ranked first out of the available candidate distribution functions.



JUNE 2012 FISCHER ET AL. 1033

105°E 10°E 115°E 105°E 110°E 115°E
T T T T T T

26°N
26°N
26°N

Best Fit

Best Fit

z ; F F s
S 9 Y e
523 GPA ’ b o) KS /RX1 2538 GPa
. WAK 2 Ak
T05°E T05°E TIvE
105°E

105°E 110°E

26°N

Best Fit Best Fit
Z ‘ z ‘ y z
& e I E76as 4‘ &
GEV GEV 3
223 GPA F297 GPA AD / RX5
. WAK . WAK iomatars
1Ug”E 1Dg'E
105°E
v
Lf
2 Best Fit 2z Best Fit
8 [Ticas JRky| O
[ ]GEV GEV
. WAK I WAK
i s S i s
105°E N0°E 115°E 105°E M0"E

FIG. 7. Spatial distribution of (a),(c),(e) first-ranking candidate distributions (GA3, GEV, GPA, and WAK) of RX1
and (b),(d),(f) RXS5 for (a),(b) the KS, (c),(d) AD, and (e),(f) x> tests (1961-2007).

5) SPATIAL DISTRIBUTION OF TEST RESULTS important role in the estimation and calculation of re-

. . liable distribution functions.
To spatially analyze the test results, the first-ranking table distribution functions

candidate distributions were visualized for each goodness- e. Return levels
of-fit test on the station area level for RX1 and RX5
(Fig. 7). No spatial pattern or relationship of the first-
ranking candidate distributions can be recognized for For both indicators, all four candidate distribution
RX1 or RXS. The results illustrated in Fig. 7 indicate  functions are used to estimate return levels of 25- and
that the geographic location of stations does not play an ~ 50-yr return periods in the ZRB (1961-2007). Taking

1) CALCULATED RESULTS

a —— b . — c
-
ouldl-y€AS_ _ _
i LR e D )
g o Z os o b :EE
b — GA3 )
ma — GEV
= ez - GPA
- A — WAK
o 09

30 w0 o w0 Y 0 S0 = 0 ] 0 w0 0 [T} T
" P (empirical)

FIG. 8. As in Fig. 6, but for the right (upper) tail section with precipitation above 380 mm or from f{(x) > 0.90. The (a) blue columns and
(b),(c) the light-gray lines signify the empirical distribution. In (b) and (c) the dashed dark-gray lines indicate the 25- and 50-yr return
periods [f(x) = 0.96/f(x) = 0.98].
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all results of both indicators at 181 stations into ac-
count, the return levels range from GPA (lowest return
level) to GA3, GEV, and finally WAK (highest return
levels).

Figure 8 shows the right (upper) tail section of the
aforementioned curves/lines for RXS5 at Xuwen station.
Similar curves can be detected for GA3, GEV, and
WAK, and a different path for GPA. As can be seen
in Table 4, the test statistics of GA3, GEV, and WAK
have similarly low values (except GA3 with x*), while
values of GPA are higher (KS), not significant (AD), or
even not available (). The return levels are estimated
higher for WAK and GEV. Hence, considering the
ranking results, the return levels of GEV and WAK
should be assumed as fitting best for RX5 at Xuwen

115°E
T

station. The return levels of GA3 and especially GPA
involve an underestimation of the 25- and 50-yr return
periods.

A station-based calculation and visualization of the
temporal distribution of extreme precipitation amounts,
including the return level thresholds, can be used to
easily identify the years when, for example, 25- and
50-yr events occurred. This is shown in Fig. 9 for RX5
at Xuwen station, where the 50-yr return level was
reached once (in 1990) and 25-yr return level was crossed
twice (in 1990 and 2007). These one- and two-time oc-
currences can be logically explained by the sample size
of 47 years (1961-2007). Based on such temporal find-
ings, further analyses (e.g., on local extreme events) can
be realized.

110°E
T

26°N

Return Level (mm)

26°N

26°N

26°N

Return Level (mm)

F4 zz F4
L <150 4= &L <200 4=
8 [ Js0-200 QW[ [ 1200-300 &
(] 201 - 280 [0 301 - 400
[ 251 - 300 I 401 - 500
.o s
105°E 105°E

105°E
T

26°N

Return Level (mm)

<150

22°N

[ J150-200
[ 201 - 250
I 251 - 300

.-

26°N

22°N

26°N

22°N

105°E
T

1 1
105°E 110°E 115°E

1
115°E

1
110°E

FIG. 10. Return levels of the (a),(b) 25- and (c),(d) 50-yr return periods for (a),(c) RX1 and (b),(d) RX5 in the ZRB,
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2) SPATIAL DISTRIBUTION OF RETURN LEVELS

Mapping the spatial distribution of return levels pro-
vides a simple (supra) regional overview for decision
makers concerned with weather extremes and risks. The
return levels in this paper were calculated with each
candidate distribution function and interpolated and
mapped for both extreme indicators in the ZRB (not
shown). Comparing the maps, no distinct spatial
anomalies are apparent because of the large range in
return levels for the entire basin and relatively small
differences between the results of each candidate dis-
tribution. Hence, we only visualize the return levels of
RX1 and RXS for the 25- and 50-yr return period based
on GEV (Fig. 10), as the GEV distribution function can
be considered to fit best the time series of both in-
dicators because of the good availability and high ro-
bustness of its test statistics.

For both indicators, the spatial distribution of the
return levels of the 25- and 50-yr return periods show
similar characteristics (Fig. 10) and are also very akin to
the averaged annual amounts (cf. Figure 2). In general,
the 25- and 50-yr return levels for RX1 and RXS in-
crease from west to southeast. For RX5, the 25 (50)-yr
return levels range from less than 200 mm to more than
500 mm (Figs. 10b,d). The highest 25 (50)-yr return levels
with a maximum of 796 mm (942 mm) are reached along
the southeast coast and in a small area in the central
north. The lowest return levels with a minimum of
137 mm (143 mm) are found in the western mountain-
ous region. The basin-averaged 25 (50)-yr return levels
are for RX1 200 mm (228 mm) and for RXS 329 mm
(379 mm), respectively.

4. Discussion and conclusions
a. Distribution functions

The WMO recommends the use of GEV in the anal-
ysis of climate extremes (Klein Tank et al. 2009). In this
study, four commonly used distribution functions were
used in order to investigate whether the WMO’s rec-
ommendation can be underlined for a humid area in
south China. Different goodness-of-fit tests were used
for analyzing the reliability and robustness of each dis-
tribution function. GEV was successfully used (suc-
cessful parameter estimation or proven test assumption)
with all three tests for all stations but one. GA3 was
available with all three tests at most of the time series,
while GPA and WAK showed especially low availability
with y?. Most test statistics were significant for GEV and
GA3, while WAK and GPA showed fewer significant
test statistics with AD. In direct comparison, WAK
ranked first with each test followed by GEV and GA3.
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It is noted that the test results (in significance and
ranking) of each goodness-of-fit test often differ within
each time series. As every test depicts different criteria,
this means more weighting should be put on the test
results depending on the focus of further analysis. In the
case of climate extremes, the tails of the distributions
are of main concern (for extreme return periods); hence,
in this study, the AD test is weighted higher than KS and
X° as it focuses more on the tail ends of a distribution.
Based on the results of the KS, AD, and X2 tests, we
determine that the GEV distribution fits best for both
extreme precipitation indicators at 181 meteorological
stations in the ZRB.

In the case of single-station analysis, WAK does often
fit better but is less often available than GEV and shows
a higher uncertainty in parameter estimation. The results
of this investigation agree upon the hypothesis that GEV
is the overall best-fitting distribution for climate extremes
as recommended by the WMO. GEV shows a high avail-
ability and high significance for most test statistics
regionwide and a relatively low uncertainty in parame-
ter estimation due to sample errors in annual pre-
cipitation extremes. It should be noted that the applied
statistical distributions can reasonably fit the observed
time series of extreme precipitation data, but differences
in the estimated quantiles may be apparent, since esti-
mation of higher extreme quantiles is based on the upper
tail of the probability distribution. For the development
of a theoretical weather index-based insurance, it de-
pends on the regional scale of the area to cover, of which
one of the best-fitting distributions is recommended. If it
only covers a small area of few stations, the best-fit
distribution of those stations should be considered. The
use of GEV should be considered for larger areas.

Our findings are in line with those of Yang et al.
(2010), who concluded that GLO, GEV, Generalized
Normal (GNO), and Pearson Type III (PE3) distribu-
tion fit best to estimate return periods for indicated pre-
cipitation events at 42 stations in the ZRB based on the
Z-distance goodness-of-fit test. The determination of the
best-fitting distribution was not the focus in their paper,
hence a more detailed approach including three tests and
with much higher resolution (192 stations instead of 42
stations) is presented in our study. Su et al. (2009) con-
cluded that the Wakeby distribution is the best-fitting
distribution for precipitation maxima in the Yangtze
River basin (north of the study region), which is partially
in line with the current study. These results would have
similarly favored WAK as the best-fitting distribution in
our study. As our study focused more on the identifica-
tion of the best-fitting distribution, the differences might
be the result of the application of different goodness-of-fit
tests, station densities, and even different time series data
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sources. Thus, the use of a variety of goodness-of-fit tests
allows a more precise analysis with distinct findings, which
has been done in the current study.

b. Frequencies

Based on the results, a spatial analysis on the fre-
quency of annual precipitation extremes in the ZRB is
presented. The GEV was used to identify return levels
of both precipitation extremes for different return pe-
riods. Data on different return periods are displayed
separately. This paper delivers practical maps on the
return levels at given time periods. Distinct patterns in
the spatial distribution of return levels for the 25- and
50-yr return periods of each indicator were detected. A
west to southeast disparity (low to high levels) for both
1- and 5-day-maximum precipitation is apparent. The
highest return levels for both indicators can be found in
the southeast of the basin (e.g., delta region) and in the
central northern part. Low return levels for 1- and 5-day-
maximum precipitation are estimated for the western
and southwestern area.

The spatial distribution of the 50-yr return level of 1-
and 5-day-maximum precipitation (RX1 and RX5) shows
similar disparity to the distributions of the 100-yr return
levels of annual maximum 1-day and 5-day rainfall
(AM1R and AM5R) by Yang et al. (2010), with highest
levels located at the southeast coast and the central-
northern region. The spatial distribution of RX1 in the
northwestern part is also relatively similar to the findings in
summer rainfall of Guizhou Province by Yin et al. (2009)
and the precipitation maxima of the Yangtze River basin
by Su et al. (2009).

c. Final conclusions

Conclusively, the results of calculating and estimating
the best-fitting distribution function (i.e., GEV) as well
as the estimated return levels for the Zhujiang River
basin can be adopted in the planning of weather index—
based crop insurance or rainstorm control measures and
for the production of practical maps that correspond to
typical return periods in other sectoral planning (e.g.,
the 50-yr return period in flood management). The re-
search in return periods of extreme precipitation might
give assistance to the potential development of a weather
index-based crop insurance. In future studies, projected
changes of return levels should also be addressed to give
estimates on future frequencies of precipitation extremes
and flood/drought events.
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Abstract

Floods and droughts are frequently causing large economic losses in China. These
conditions vary in space, time, and magnitude. In this study, long-term meteorological and
hydrological dryness and wetness conditions are analyzed for the Xijiang River Basin which
is the largest tributary of the Zhujiang (Pearl) River. A very similar inter-annual course of
precipitation and discharge can be observed. The standardized precipitation index (SPI) is
used to show dryness and wetness pattern in the six sub-basins of the Xijiang River. The SPI-
24 correlates high with the standardized discharge index (SDI-24) for Gaoyao hydrological
station at the mouth of Xijiang River. Distinct long-term dryness and wetness sequences are
found in the time series for the SPI-24 and SDI-24. The principal component analysis reveals
many spatial interdependencies in dryness and wetness conditions for the sub-basins and
explains some spatio-temporal disparities. Moderate dryness conditions have a larger
spatial impact than moderate wetness conditions in the sub-basins. The loading pattern of
the first principal component shows that the correlation with the entire Xijiang River Basin

is highest in the eastern and lowest in the western sub-basins. Further spatial dipole
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conditions explain the spatio-temporal heterogeneity of dryness and wetness conditions.
Accordingly, the precipitation in the eastern sub-basins contributes more to the hydrological
wetness conditions than in the western sub-basins, which mainly contribute to dryness
patterns.

The spectral analysis for the SPI-24 (entire Xijiang River Basin) and SDI-24 shows
similar peaks for periods of 11-14.7 years, 2.8 years, 3.4-3.7 years, and 6.3-7.3 years. The
same periods can be found for the SPI-24 of Xijiang River’s six sub-basins with some
variability in the magnitude. The wavelet analysis shows that the most significant periods
are stable over time since the 1980s. The extrapolations of the reconstructed time series do
not suggest any spatial or temporal changes in the occurrence of dryness and wetness
conditions in the next two decades but a continuation of the observed cycles at given
magnitude. It can be concluded that long-term hydrological dryness and wetness conditions
are directly caused by periodic cycles of meteorological conditions (i.e. precipitation). The
applied methodologies prove to be able to identify spatial interdependencies and
corresponding regional disparities, and to detect significant periodicities in long-term

dryness and wetness conditions in the Xijiang River Basin.

Keywords: dryness; wetness; precipitation; discharge; Xijiang; South China

1. Introduction

Spatio-temporal changes in dryness and wetness patterns have been observed for
large areas in China for the past 50-60 years since the meteorological observation network
has been extended. China is influenced by complex atmospheric circulation regimes that
result in diverse precipitation patterns which cause more frequent meteorological weather
risks such as extreme droughts or serious floods than in other parts of the world (Bordi et al,,
2004). Decadal sequences of flood and drought years are historically documented for China,
including the Huanghe (Yellow) River, the Yangtze River, and the Zhujiang (Pearl) River. A
significant share of the global economic losses due to floods in the last decades has been
recorded in China. According to the Munich Reinsurance (Berz and Kron 2004), the floods
on the Yangtze and Songhua Rivers in 1998 and the 1996 floods on the Yangtze, Huanghe

and Huaihe rivers caused material damages of 30.7 billion USD and 24 billion USD,
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respectively (nominal 1998 and 1996 price level). Droughts in the north, northeast, and
southwest of China in 2009 have caused about 18 billion USD direct economic losses.

Regional climate characteristics and the spatio-temporal variation of dryness and
wetness in China have been described nationally (Zhai et al.,, 2010a,b), regionally (Bordi et
al,, 2004; Zhai and Qi, 2009), and on basin scales (Zhang et al., 2005; Gemmer et al., 2008;
Fischer et al, 2011 and 2012). The highest number of articles on observations of
precipitation and river discharge in China are available for the Yangtze and the Yellow River,
describing how precipitation patterns and surface hydrology have changed. For example,
Zhai et al. (2010b) show changes to more dry conditions and their impacts on the stream
flow in the western regions of the yellow and Yangtze Rivers in the past 50 years, while Liu
etal. (2011) describe a projected increase in spring/summer precipitation and
corresponding stream flow of the Yellow River for the 21st century. In the past few years,
more literature on these topics has been made available for the Zhujiang River.

The Zhujiang River Basin is located in subtropical, southern China. This third largest
river basin in China is home to more than 160 million people. The population and
industrialization have been increasing in recent decades, thus the damage potentials of
extreme climate events and other natural disasters have risen (Feng et al,, 2007; Fischer et
al, 2011 and 2012; Gemmer et al., 2011). Precipitation and discharge in the Zhujiang River
Basin with its tributaries is an important field of study in order to understand their
interaction and consequences.

As many other large rivers in China, the Zhujiang River is characterized by dams. The
total storage capacity of reservoirs in the basin had reached 65 km3 by 2005, which is 23%
of the annual water discharge of the Zhujiang River (Dai et al.,, 2008). Annual water
discharges are mainly influenced by precipitation variability, while the construction of
reservoirs/dams in the Zhujiang River Basin had little influence on water discharge (Zhang
etal., 2008). As precipitation variability has the highest impact on water discharge, recent
findings on precipitation trends, climate extremes, and change points (Fischer et al,, 2011
and 2012) suggest that the hydrology in the Zhujiang River Basin has also changed. Xu et al.
(2010) indicated that annual discharge of the Zhujiang River correlates well with basin-
averaged precipitation. However, Gemmer et al. (2011) have observed increasing tendencies
to dryer conditions and stronger precipitation intensities for the Zhujiang River Basin from
1961 to 2007. Fischer et al. (2011) have observed increased numbers of dry days and Zhang

etal. (2009) confirmed a tendency to drier conditions in the West of the basin. Another
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study suggests that the Zhujiang River has the largest human footprint of the 10 largest river
basins in South and East Asia (Varis et al.,, 2011). The assessment of observations in
climatological and hydrological time series has delivered some results already showing
spatio-temporal changes of stream flow in the past 50 years, mostly on annual scale. The
characteristics and frequencies of long-term droughts and wetness conditions in the
Zhujiang River Basin have yet to be explained.

Most of the studies mentioned above employed standard methods for assessing
spatio-temporal changes in annual, seasonal, monthly precipitation and discharge, and their
trends, e.g. the standardized precipitation index or aridity index, and nonparametric trend
tests. In this manuscript, we place a broader view of long-term dryness and wetness period
fluctuations (1961-2030) in the Xijiang River Basin of the Zhujiang River Basin using the
standardized precipitation index which is recommended by the World Meteorological
Organization (WMO) to characterize meteorological droughts (Klein Tank et al., 2009). The
standardized discharge index is employed to characterize hydrological dryness and wetness
conditions in order to analyze how long-term precipitation patterns have impacted the
discharge of the river and to evaluate the characteristics of long-term climatological and

hydrological dryness and wetness conditions.

2. Regional Settings, Data, and Methods
2.1 Regional Settings

The Zhujiang River Basin in subtropical South China (Fig. 1) covers an area of
approximately 450,000 km2 with a population of more than 160 million. The region is
currently one of the most economically prosperous areas of China, with very high
development rates, and one of China’s highest GDP per capita of more than 40,000 CNY per
year (National Bureau of Statistics of China: www.stats.gov.cn). Since the 1950’s,
approximately 9000 dams with a reservoir storage capacity of 65 km3 have been
constructed (Dai et al., 2008; Waterpub, 2012). In 2008, the Longtan hydropower station,
China's third-largest with an estimated capacity of 4.9 GW, started operation in the upper
reaches of the Hongshui River (China Daily, 2008).

The largest tributary of the Zhujiang River is the Xijiang (West) River, which accounts

for 78% of the total drainage area of the Zhujiang River Basin. At Gaoyao hydrological
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station the daily average discharge of the Xijiang River is observed. To examine an even
higher level of spatial differentiation, the Xijiang River Basin is subdivided into its six sub-
basins (Beipan, Nanpan, Yujiang, Hongshui, Liujiang, and Lijiang, see Fig. 1). Due to the
availability of discharge data at Gaoyao and the high importance in total drainage, the Xijiang
River Basin and its six sub-basins are examined on their long-term climatological and

hydrological dryness and wetness conditions.

2.2 Data

Daily precipitation data of 118 weather stations in the Xijiang River Basin (Fig. 1) for
the period 1961-2007 and daily average discharge data of the hydrological station at Gaoyao
on the Xijiang River for the period 1961-2006 are used. The data sets were provided by the
National Meteorological Information Center (NMIC) of the China Meteorological
Administration (CMA). The data sets were controlled on their quality by the NMIC (Qian and
Lin, 2005). The NMIC checked the data on homogeneity using the departure accumulation
method (Buishand, 1982). Less than 0.1 percent of data gaps appear in the daily

precipitation records.

2.3 Methods
2.3.1 Standardized Precipitation and Discharge Indices (SPI & SDI)

Weighted area averages in precipitation are calculated for six sub-basins (Fig. 1) of the
Xijiang River Basin using the Thiessen polygon method provided within the ArcGIS software
package. This method is a common approach for modelling the spatial distribution of rainfall
based on station observations (Jiang et al., 2007). Here, for each sub-basin, the areal
percentage of each Thiessen polygon within its boundary is used to determine the weight of
each station’s total precipitation and standardized precipitation index (SPI). This is used to
calculate the weighted area average annual precipitation and monthly SPI for the according
sub-basin. Following this, the areal percentages of the six sub-basins of the Xijiang tributary
are used to calculate the weighted area average annual precipitation and monthly SPI for the

entire Xijiang River Basin.
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The SPI is calculated using the statistical software R, to quantify dryness and wetness
periods (McKee et al.,, 1993). It is a meteorological index using monthly precipitation data
(Mishra and Singh, 2010). Comprehensive descriptions on the SPI and its application in
China are available e.g. from Bordi et al. (2004), Zhang et al. (2009), Zhai et al. (2010a,b),
and Zhao et al. (2011). In our analyses, we consider the categories of the SPI / SDI values
according to Lloyd-Hughes and Saunders (2002), who defined the values at -1.00 to -1.49 as
moderate drought (-1.50 to -1.99 as severe drought, and -2 or less as extreme drought), and
the values at 1.00 to 1.49 as moderately wet (1.50 to 1.99 as severely wet, and 2 or more as
extremely wet). In this study, the SPI1 is calculated with weighted area averaged monthly
precipitation data at a 24-months scale (SPI-24), which is suitable for the determination of
meteorological and hydrological long-term dryness and wetness conditions (Bordi et al.,
2004).

The standardized discharge index (SDI) is performed in an analogous manner to the
SPI. It contains monthly discharge data instead of precipitation data and expresses
hydrological excess or deficit availability of water. McKee et al. (1993) suggested the
application of the SPI procedure to other water variables, such as observed discharge data.
Hence, the method can be derived from McKee et al. (1993), Nalbantis and Tsakiris (2009),
and Mishra and Singh (2010), although the respective terminology and input data vary in
each of the manuscripts. To our best knowledge, the SDI has not been applied in the
Zhujiang River Basin yet. In this study, the SDI is calculated with averaged monthly
discharge data at a 24-months scale (SDI-24).

2.3.2 Principal Components Analysis

The principal component analysis (PCA) is broadly used for identifying patterns in
climate data and to highlight their similarities and differences (Santos et al., 2010). We use
the PCA to sum up the spatial patterns of co-variability of dryness and wetness according to
the SPI-24 series at different stations. A set of linearly independent spatial patterns
(loadings) are generated, which describe the correlations with the specific principal
components (PC). The PCA is introduced by Bordi et al. (2004, 2007) and Zhao et al. (2011),

and calculated by using the statistical software R.
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2.3.3 Power Spectrum and Continuous Wavelet Analysis

The fast Fourier transform is used to generate the power spectrum of the signal in the
monthly time series (Schonwiese, 2006; Wilks, 2006). The significant periodicities
embedded in the time series can be determined based on the amplitude of the
corresponding signal. Similarly, a continuous wavelet transform is used to break up the
signal into shifted and scaled versions of the original wavelet by decomposing a time series
into a time-frequency space (Torrence and Compo, 1998). In this study, we apply the Morlet
wavelet, which is the most commonly used continuous wavelet transform to visualize the
amplitudes in the time-frequency space. All calculations are done by using related packages
of the statistical software R. The results can be used to detect periodicities and their changes
in time (i.e. time-frequency relationships) in climatological datasets. Gao et al. (2010) used
the continuous wavelet transform likewise in order to assess the fluctuation of monthly
observed and projected average stream flows (return periods of extremes) in the Huaihe
River basin in China. Becker et al. (2008) determined quasi periodicities of extreme
precipitation events in the Yangtze River basin by employing the continuous wavelet

analysis.

2.34 Extrapolation

The SPI-24 and SDI-24 time series are extrapolated between 2007 and 2030 in order
to determine the periodicity of dryness and wetness conditions. We apply the fast Fourier
transform again, but this time only to the significant periodicities indentified in the power
spectrum. The estimation of future monthly values follows an optimization and
extrapolation process for the observed time series as developed by Bordi et al. (2004). We
use the parameterized software autosignal. The predicted values are generated based on the
assumption that the significant periods are stable in time, i.e. the periodicity is similar for
the following two decades (Becker et al., 2008). In order to characterize the reliability of this
assumption, the results of the wavelet analyses are investigated on the stability of the

significant periods.
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3. Results

3.1 Relationship between Precipitation and Discharge

Figure 2 shows the time series of area averaged annual precipitation in the Xijiang
River Basin and the mean annual discharge at Gaoyao hydrological station from 1961 to
2006. The annual average precipitation is about 1,350mm and the inter-annual variability is
10% according to the coefficient of variation. Two distinct minima in annual precipitation
(below 1,100mm) can be observed for 1963 and 1989. A maximum in precipitation (above
1,700mm) occurred in 1994.

The average discharge between 1961 and 2006 is 7,000m3/s (Fig. 2). The inter-annual
variability is 19%. Two minima in discharge (below 5,000m3/s) appeared simultaneously
with the precipitation minima (1963, 1989). Two maxima (above 10,000m3/s) can be
observed in 1968 and 1994. A strong correlation (0.88) is found for the monthly area
averaged precipitation and monthly discharge at Gaoyao station from 1961 to 2006.

Figure 3 shows the average monthly precipitation in the Xijiang River Basin and the
average monthly discharge at Gaoyao hydrological station for the period 1961-2006. The
monthly precipitation maximum occurs in June with nearly 250mm. The highest monthly
average discharge can be measured in July with nearly 16,000m3/s. The distinct seasonality
is also expressed in this figure with a distinct dry period from November to March, with
monthly precipitation of less than 50mm and monthly discharge minima of less than
4,000m3/s. The highest inner-annual variability of monthly precipitation can be observed in
December with 69%, while the highest monthly variability of discharge is in March (64%).
The high percentages are mainly due to the low average values of these months.

For illustration purposes, the monthly precipitation and discharge values of 1963 and
1994 are shown Figure 4. In comparison with the long-term average, much less (more)
precipitation and discharge was observed in 1963 (1994), especially in the summer months
from May to August. Precipitation and discharge amounted for 50%-80% less in 1963 and
30%-60% more in 1994.

This section underlines the strong correlation between the monthly area averaged
precipitation and monthly discharge. Based on the monsoon climate in the research area, the
innerannual variability of precipitation and discharge appears natural, the latter following
the course of the former. It is of high interest whether the interannual variability of

precipitation and discharge are short term or lead to long-term dryness and wetness
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conditions, both in hydrological and meteorological terms. The magnitude and periodicity of

dryness and wetness and their interrelation are analyzed in the following.

3.2 Relationship between SPI-24 and SDI-24

Figure 5 shows the area averaged SPI-24 weighted for the Xijiang River Basin and the
SDI-24 for Gaoyao Hydrological Station. The SP1-24 (Fig. 5 upper panel) reveals that wet
conditions (SPI values > 1) prevailed for about 20 years after a drought (SPI values < -1)
ended in 1965. Uninterrupted dryness conditions at different magnitudes characterized the
period 1985-1995. The wetness conditions after 1995 are again nearly uninterrupted for 10
years. After 2004, a sequence of dryness conditions prevailed in the basin. The most distinct
peaks in wetness conditions occurred around 1974 and 1995. Peaks in dryness conditions
occurred around 1964, 1990, and 2005.

The SDI-24 (Fig. 5 lower panel) is very similar to the corresponding SP1-24 and takes
the same chronological positive and negative course. The peaks and durations of
climatological dryness and wetness conditions in the SPI-24 can simultaneously be found in
the SDI-24. The highest peak for climatological drought around 1964 for instance is also the
most severe hydrological drought. The coefficient for the correlation between the average
SPI-24 for the weighted sub-basins and the corresponding SDI-24 is 0.94.

The identified peak years in SPI-24 /SDI-24 are chronologically similar to the maxima
and minima in the annual total precipitation and annual average discharge (cf. Fig. 2). The
SPI-24 /SDI-24 reveals long-term dryness and wetness conditions for the Xijiang River Basin.
The strong similarities imply a very high influence of natural precipitation pattern on the
discharge, which can be spatially determined and explained by investigating the SPI-24 of
the six sub-basins.

The SPI-24 for the six sub-basins is illustrated in Figure 6. Sequences of wetness and
dryness vary in the sub-basins. In general, the sub-basins take the same course as the
averaged SPI-24 for the entire basin (Fig. 5). However, the wetness conditions after 1965 are
more distinct 1) in magnitude for the Beipan sub-basin (Northwest) and 2) in duration for
the Nanpan sub-basin. Beipan shows a more distinct magnitude in the drought of the early
1990s whereas it was longer in e.g. the Liujiang sub-basin (Southeast).

Focusing on moderate wetness conditions (SPI > 1) and dryness conditions (SPI < -1),

one can see that the droughts around 1965, 1990 and 2005 were simultaneously measured
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in all six sub-basins. The less distinct drought around 1986 was measured in 50% of the sub-
basins. Most of the moderate wetness conditions were simultaneously recorded in 2-3 of the
sub-basins only (e.g. 1983, 2003). The wetness around 1975 occurred in 5 of the sub-basins,
but moderate wetness conditions were never recorded in all of the six sub-basins at the
same time. Figure 6 underlines the distinct spatial variability of dryness and wetness
sequences which can well describe the averaged SDI-24 and show that moderate dryness
conditions have a larger spatial impact than moderate (and higher) wetness conditions.

The correlation coefficient between the SPI-24 for each sub-basin and the SDI-24
varies between 0.65 (Beipan) and Hongshui and Yujiang (each 0.82). This suggests that each
sub-basin has a considerable impact on the SDI-24 at Gaoyao hydrological station, but some
sub-basins contribute higher to the discharge.

Conclusively, changes in the SDI-24 can be profoundly explained by the average SP1-24
weighted for the sub-basins. We have identified distinct long-term dryness and wetness
conditions in the Xijiang River Basin. To determine the temporal characteristics of dryness

and wetness and their changes, we analyze their frequencies in the following.

3.3 Peakdry and wet periods

Frequencies of peak (moderate) dry and wet conditions (SPI < -1 and SPI > 1) can be
explained in different ways. Here, the duration and magnitude of dryness and wetness are of
highest concern. The duration of wet and dry conditions is regarded as being scattered if the
values fall below a given threshold (Mishra and Singh, 2010). Four distinct moderate
drought events and four slightly less distinct wetness periods are found for the entire time
period from 1963 to 2006 (Fig. 5). Distinct drought events occurred during 1963-65, 1988-
90, 1990-92, and 2004-06. In summer 1990, a relatively wet period of few months separates
the two distinct drought events. The moderate wetness events (1968-70, 1974/75, 1994-96,
and 1997/98) show a higher disparity between the sub-basins i.e. most events occur only in
half of the sub-basins (Fig. 6).

Table 1 shows the duration (in months) and the magnitude (as sum of SPI-24 or SDI-
24) of hydrological and meteorological dryness and wetness according to the SPI-24 and
SDI-24 for conditions below -1 (moderate dryness) and above +1 (moderate wetness) only.
Most of the meteorological dryness conditions occurred in the sub-basins, the entire Xijiang

River Basin, and Gaoyao at the same time periods while the wet periods are less developed.
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However, as can be seen, the 1963-65 dryness in the SDI-24 for instance had the same
duration as the 1988-90 dryness, but was higher in magnitude. The 2004-06 drought ranks
third both in duration and magnitude. The SPI-24 corresponds likewise. The longest and
highest wetness conditions in the SDI-24 occurred in the 1990s. 1994-96 shows the longest
and highest wetness conditions in both the SDI-24 and SPI-24.

Regarding each sub-basin’s role in contributing to the intensity of the hydrological dry
or wet conditions at Gaoyao, for each examined dryness or wetness event different sub-
basins contributed varyingly strong (Table 1). For example, the drought event in 1963-65
occurred longer and stronger in the eastern sub-basins; hence those were supporting the
long duration and high magnitude discharge at Gaoyao with a higher proportion. Contrarily
to that, the long drought event at Gaoyao in 2004-2006 was very strongly affected by the
more than two-year drought in Beipan. It can be also seen that all of the sub-basins
contributed to dryness conditions to a higher or lower extent, while proportionately the
(north-) eastern sub-basins contribute stronger to the wetness conditions at Gaoyao.

The SPI-24 values of the sub-basins of Xijiang River have each a certain share of the
dryness and wetness conditions at Gaoyao hydrological station. This finding will be further

investigated and specified with the principal components analysis (PCA) in the following.

3.4 Principal Component Analysis of SPI-24

PC scores are investigated in order to illustrate the spatio-temporal variability of
dryness and wetness conditions in the Xijiang River Basin that have been described above.
The PC scores of the SPI-24 are displayed in Figure 7. The first three loadings explain 92% of
the variance. PC-1 (Fig. 7a) explains 67% and shows multi-year fluctuations. PC-2 shows a
higher frequency of negative values and describes 14% of the variance (Fig. 7b) whereas PC-
3 falls below 11% with balanced positive and negative values (Fig. 7c). As expected, the
magnitude of all PC scores is highest in PC-1 given the high percentage. PC-3 shows a higher
tendency to dryness in magnitude and duration as compared to PC-2.

The loading patterns (linearly independent spatial pattern) of PC-1, PC-2, and PC-3 in
each of the sub-basins are displayed in Figure 8. In Figure 83, the correlation between the
sub-basins’ PC-1 loading and the averaged PC-1 loading is highest in Liujiang sub-basin.
Nevertheless, the loading of PC-1 is spatially homogeneous in the Xijiang River Basin. The

loading of PC-2 (Fig. 8b) is negative for three sub-basins in the East and positive in the West.
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PC-3 (Fig. 8c) also reflects a dipole pattern but from South to North. These dipole conditions
explain the opposing course of the sub-basins’ SPI-24 in some few years (especially in the
mid-1980’s) and the difference in magnitude in others.

The PCA’s loading patterns describe a generally good spatial homogeneity of the
appearance of dryness and wetness conditions in the Xijiang River Basin. Spatially
heterogeneous appearance of dryness and wetness in some years can be explained by the
loading patterns. In the following, we investigate the periodicity of the peak dryness and

wetness conditions that have been detected spatially and temporally.

3.5 Periodicities of SPI-24 and SDI-24

The results of the spectral analysis (Fig. 9) show similar peaks in the SPI-24 and the
SDI-24. The highest peaks (power magnitude) for the SPI-24 and SDI-24 are located
between 0.006 and 0.008 representing significant frequencies (at 90% confidence level) at
11-14.7 year periods. Lower peaks are found at frequencies of 2.8 years, 3.4-3.7 years, and
6.3-7.3 years. The magnitude of the peaks varies slightly between the SPI-24 and SDI-24.
This underlines that the dryness and wetness conditions are subject to distinct periodic
reoccurrence and that the cycles in the SPI-24 dominate cycles in the SDI-24.

The results of the spectral analysis for the six sub-basins of Xijiang River are shown in
Figure 10. All sub-basins show the most significant (at 90% confidence level) peaks located
at 11 and 14.7 year periods. In the Beipan and Nanpan sub-basins, the 11 year peak is much
stronger. The 14.7 year period is the strongest in the other four sub-basins. Other peaks are
similar to those for the SPI-24 and SDI-24. However, Yujiang sub-basin is the only watershed
with a distinct peak at 3.7 years which is nearly as high as that for the 11-14.7 year period.
Lower peaks are found at frequencies of 2.8 years, 3.4-3.7 years, and 6.3-7.3 years for all
sub-basins. These periods highlight consistency with the periods in the SPI-24 of the entire
Xijiang River Basin and the SDI-24 of Gaoyao hydrological station with some variation in
magnitude.

Figure 11 shows the results of the wavelet analyses of the SPI-24 (entire Xijiang River
Basin) and the SDI-24. As can be seen, the significant periodicity in the SPI-24 and SDI-24
with 11-14.7 year frequency is stable over time since the 1980s and has the highest
significance in the 1980s and 1990s. The peak in the SPI-24 of 3.4-3.7 year frequency shifts

12
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slightly over time after the 1980s. It loses some significance in the late 1990s and shifts to a
slightly lower frequency.

As the PCA suggests spatial disparities in dryness and wetness conditions, we analyze
the wavelet pattern of the SPI-24 over the sub-basins (Fig. 12). The 11-14.7 year frequency
is apparent for all sub-basins and is stable over time and in intensity except for Yujiang. The
latter is apparently dominated by the frequency of 3.7 years. The sub-basins Beipan and
Hongshui for instance are dominated by the 11-14.7 year frequency over the entire time
series whereas the frequency has slightly longer periods in the Hongshui sub-basin. The
frequency of 3.4-3.7 years is also most persistent in the Hongshui sub-basin. The sub-basins
located in the south and east (Yujiang and Lijiang) lack significant periodicities in the first
decade of their time series. The periodicity around 3.7 years in Beipan and Nanpan eases in
the 1960s, whereas it first starts in Lijiang and Liujiang after 1980s.

In the following, we extrapolate the significant peaks in periodicity of the spectral
analysis assuming that the observed periods that cause dryness and wetness conditions will

prevail in the future.

3.6 Extrapolation of SPI-24 and SDI-24

Figure 13 shows the SPI-24 and SDI-24 extrapolated until 2030. The extrapolation of
the SPI-24 (entire Xijiang River Basin) is dominated by the significant short-term periodicity
of 2.8 and 3.4-3.7 years, respectively, that can be seen in the reconstructed frequency (black
line from 1963 to 2006). The beginning of the extrapolation (from 2007 until 2014) shows a
change from slight wetness to moderate dryness conditions. After 2014, the extrapolation
points out an increase in SPI-24 values which peak in moderate wetness conditions in 2028
which are then followed by moderate dryness conditions. Likewise, the reconstructed
frequency and the extrapolation of the SDI-24 with the observed periodicities show a similar
course as the SPI-24.

The reconstructed frequency for each of the six sub-basins (Fig. 14) shows the
periodicity that has been detected in the power spectrum. The extrapolation is based on the
continuation of the selected periodicities. Distinct spatial disparities in the extrapolation
(and reconstruction) of the SPI-24 can be seen. The period 2007-2008 is highlighted by a
shift from dry to normal conditions except for Beipan which shows an aggravation of the

dryness conditions towards an extreme drought starting in 2008. Based on the periodicity of
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each sub-basin, the course of the SPI-24 shows different magnitudes and durations in the
extrapolations. A 3.7 year periodicity is most apparent in Yujiang and Hongshui sub-basins.
The extrapolation clearly relies on these periods for the two sub-basins whereas the

extrapolation for the other sub-basins is controlled by longer periods.

4. Discussion and Conclusions

The main interest of this study was to evaluate how long-term precipitation patterns
have impacted the discharge of Xijiang River. Therefore, the characteristics of long-term
climatological and hydrological dryness and wetness conditions were analyzed. It can be
concluded that the discharge of Xijiang River based on its SDI-24 directly relies on the area
weighted SPI-24 of the Xijiang River Basin. Hence, the natural variation in precipitation is
responsible for the discharge to a very high degree. This is in line with the findings of Zhang
etal. (2008), who concluded that the long-term changes of annual water discharge are
mainly controlled by precipitation variation, while the construction of reservoirs/dams has
made little influence on water discharge in the Zhujiang River Basin. We can also conclude
that each sub-basin has a considerable strong impact on the SDI-24 at Gaoyao hydrological
station, while some sub-basins contribute higher to the discharge (correlation up to 85%)
than others. With the calculation of the spatial interdependencies of the sub-basins using the
PCA, it was possible to determine that all sub-basins contribute to hydrological dryness
conditions, while mainly the north-eastern sub-basins can be made responsible for wetness
conditions. The western sub-basins have rather little influence in hydrological wetness
conditions of Xijiang River. We can also conclude that meteorological dryness conditions are
larger in spatial extent (i.e. covering all sub-basins) than wetness conditions.

We found that distinct cycles of dryness and wetness occurred chronologically over
periods of several years. The precipitation in the Xijiang River Basin and the discharge of
Xijiang River are dominated by significant periods of 11-14.7 years and significant cycles of
shorter periodicity (2.8 years, 3.4-3.7 years, and 6.3-7.3 years). The controlling force of the
long-term hydrological status at Xijiang River is therefore an 11-14.7 year oscillation in the
precipitation. Additionally, spatial disparities can be observed in the sub-basins which are
an interesting feature but can be explained by regional disparities in annual and monthly
precipitation patterns with annual values decreasing from the East to the West of the river

basin (Gemmer et al,, 2011).
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An increase in dry days has been detected by Gemmer et al. (2011) for the same
precipitation time series. Furthermore, increases in the magnitude of indices describing
dryness, and a prolongation of dry periods with an opposing shortening of wet periods were
identified by Fischer et al. (2011). These findings can explain the long-term drought
sequences which we observed in the SPI-24 and SDI-24 time series during the second half
the observed time period. It might also explain why the short-term periods, around 3-4
years, shifted to slightly longer periods which would then indicate inner-annual changes.
Further noticeable are the change points in precipitation indices in 1985/86 and 2003 /04
that have been detected by Fischer et al. (2012). Both change points mark the start of the
two most distinct dryness clusters in the SPI-24 and SDI-24 time series. To some extent,
Gemmer et al. (2011) and Fischer et al. (2011 and 2012) link the observed changes to the
weakening of the East Asian Summer Monsoon (EASM).

Compared to earlier studies, our approach of analyzing long-term changes and
periodicities disaggregates extreme events and allows a broader view on meteorological and
hydrological statuses. With the standardization of long-term precipitation cycles, they can be
compared with the hydrology. With the understanding of the periods and reoccurring
dryness and wetness conditions, it is important to consider the identified periods in any
water-related planning.

The extrapolation of the significant periodicities identified in the power spectrum is a
statistical prediction obtained through the fast Fourier transform and not based on
modelling results from global or regional climate models. It is assumed that the significant
periods will pertain in the near future with their extrapolation suggesting certain spatial
and/or temporal changes in the occurrence of dryness and wetness conditions in the next
two decades, but no obvious tendencies to significantly higher or lower magnitudes. This
prediction of no significant trends in regional precipitation pattern in the first three decades
of the 21st century can be supported by the findings of Sun and Ding (2010). By using a
multi-model ensemble of global circulation models, they projected an increase in summer
precipitation for the whole of South China merely starting around the 2040’s. Similarly,
Fischer et al. (submitted) projected climate extremes in the Zhujiang River Basin, using the
regional climate model CCLM, and did not identify any significant trends in precipitation
extremes for the period 2011-2050. Furthermore, Zeng et al. (2012) applied the outputs
from the global circulation model ECHAMS to an artificial neural network to project future

river discharge of the Yangtze River, but did not identify any obvious trends.
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Based on these findings, we can draw the hypothesis that it is more important to
investigate periodic events rather than trends or extremes. This hypothesis is fully
supported by the statistical approach applied as compared to a physical or dynamical
approach based on global or regional climate models. Although we are unable to reliably
predict the stability of the periodicities using few statistical spectral-analysis methods (Ghil
etal., 2011), we can place more confidence on our short-term extrapolations, as these rely
on the observed significant periodicities, than on near-future projections of global or
regional climate models (cf. Becker et al,, 2008).

In future, nonetheless, a physical based approach can be used to further test this
hypothesis at a smaller regional scale, where regional disparities will have to be considered.
A recent example can be drawn for the Beipan sub-basin. The extrapolation showed distinct
extreme dryness conditions in 2008-09 which are spatially and temporally in line with the
observed long-term drought that occurred in Southwest China in 2009-10 (Lii et al., 2012).
Here, an anomalous weakening of the vertical Asian monsoon circulation in South Asia has
been found responsible for this drought event. The extrapolation for Beipan takes a different
course than the other sub-basins, which the newly available statistics prove to be correct. It
has yet to be confirmed whether the magnitude of the peaks are precise.

The PCA has shown regional disparities in the SPI-24 of the sub-basins. The area
averaged SPI-24 for the Xijiang River Basin agrees well with the SDI-24 and each sub-basin
might have different long-term dryness and wetness conditions. At a regional level, any
significant changes in the sub-basins will have effect on the discharge and long-term
dryness/wetness conditions of Xijiang River. This factor might have been underestimated in
previous studies (e.g. Zhang et al., 2008). The method using the weighted SPI-24 for instance
shows that Beipan has a distinct impact on Xijiang’'s hydrology, especially during dryness
conditions such as in 2008-09. Therefore, our methodology proves to be able to detect
significant periodicities and to display regional disparities in long-term dryness and wetness
conditions.

Our initial investigations on the origin of the long-term dryness and wetness
occurrences and the corresponding periodicities did not show any inter-connections with
large-scale atmospheric circulation indices (e.g. El Nifio-Southern Oscillation [ENSO],
Madden-Julian-Oscillation [M]O]). Such physical explanations for the observed periodicities
are needed to gain more confidences on the future stability of the cycles, and hence, of the

reliability of our extrapolation results (Ghil et al., 2011). Studies by Bordi et al. (2004),
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Fischer et al. (2012), Gemmer et al. (2011), Lii et al. (2012), and Zhang et al. (2008) suggest
that several large-scale atmospheric circulations are responsible for certain changes in the
strength of the East Asian Monsoon, which further leads to changing periodicities, change
points, and trends in precipitation pattern. Nonetheless, the extrapolation of the significant
periodicities in the next decades provides valuable information on the potential occurrence
and magnitude of dryness and wetness conditions for such as flood risk forecast and
drought preparedness.

This study highlights the close relationship of spatio-temporal meteorological dryness
and wetness conditions with hydrological responses. Considering that natural factors are
responsible for the variation in precipitation, very little influence of human activities can be
found in the monthly characteristics of hydrological processes. Water resource management
planning and future research on the projection or prediction of hydrological long-term
dryness and wetness conditions in the Zhujiang River Basin should particularly take

periodicities in regional precipitation patterns into consideration.
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Tables

Table 1: Duration and magnitude of peak periods of moderate drought (SPI<-1) and
moderate wetness (SPI>1) in the six sub-basins of the Xijiang River Basin, the
entire basin (Xijiang), and at Gaoyao hydrological station (SDI<-1, SDI>1), 1963-
2006

Figures

Fig. 1: Location of the six sub-basins in the Xijiang River Basin of the Zhujiang River Basin

Fig. 2: Annual Precipitation (grey bars) in the Xijiang River Basin and Annual Discharge
(black line) at Gaoyao Hydrological Station 1961-2006

Fig. 3: Average Monthly Precipitation (grey bars) in the Xijiang River Basin and Average
Monthly Discharge (black line) at Gaoyao Hydrological Station 1961-2006

Fig. 4: Average Monthly Precipitation (grey bars) in the Xijiang River Basin and Average
Monthly Discharge (black line) at Gaoyao Hydrological Station in 1963 (left) and
1994 (right)

Fig. 5: SPI-24 of the Xijiang River Basin (upper panel) and the SDI-24 of Gaoyao Hydrological
Station (lower panel)

Fig. 6: SPI-24 of the six sub-basins in the Xijiang River Basin

Fig. 7: PC scores of the SPI-24 in the Xijiang River Basin

Fig. 8: Loading pattern of PC-1 (a), PC-2 (b), and PC-3 (c) in the six sub-basins of the Xijiang
River Basin

Fig. 9: Spectral analysis of the SPI-24 (left panel) and SDI-24 (right panel)

Fig. 10: Spectral analysis of the SPI-24 of the six sub-basins in the Xijiang River Basin

Fig. 11: Wavelet analysis of the SPI-24 (left panel) and the SDI-24 (right panel)

Fig. 12: Wavelet analysis of the SPI-24 of the six sub-basins in the Xijiang River Basin

Fig. 13: Observed (dark gray shadings) and reconstructed time series (black line; confidence
interval = light gray shading) plus extrapolation (starting in 2007) of the SPI-24
(upper panel) and SDI-24 (lower panel) 1963-2030

Fig. 14: Observed (dark gray shadings) and reconstructed time series (black line; confidence
interval = light gray shading) plus extrapolation (starting in 2007) of the SPI-24 of
the six sub-basins in the Xijiang River Basin 1963-2030

21



Appendix V

Table 1: Duration and magnitude of peak periods of moderate drought (SPI<-1) and

moderate wetness (SPI>1) in the six sub-basins of the Xijiang River Basin, the

entire basin (Xijiang), and at Gaoyao hydrological station (SDI<-1, SDI>1), 1963-

2006

Event | Period Duration (months)
Nanpan | Beipan | Hongshui | Liujiang | Yujiang | Lijiang | Xijiang | Gaoyao

mode | 1963-65 14 9 16 20 20 19 18 25
rate 1988-90 17 14 11 8 16 3 10 25
droug | 1990-92 8 11 3 4 5 22 7 20
ht 2004-06 2 27 6 3 6 8 6 22
(<1

event sum | 41 61 36 35 47 52 41 92
mode | 1968-70 0 13 12 7 0 0 0 21
rate 1974/75 3 0 2 2 8 12 2 11
wetne | 1994-96 0 0 13 20 5 21 12 26
ss 1997/98 0 0 2 3 2 15 1 23
1)

eventsum |3 13 29 32 15 48 15 81
Event | Period Magnitude (sum of monthly SPI values)

Nanpan | Beipan | Hongshui | Liujiang | Yujiang | Lijiang | Xijiang | Gaoyao

mode | 1963-65 -21.4 -11.3 -23.1 -25.1 -26.8 -24.7 1-23.0 -51.0
rate 1988-90 -23.0 -25.8 -15.7 -9.5 -21.1 -3.4 -13.1 -35.7
droug | 1990-92 -8.5 -20.1 -3.2 -4.6 -6.0 -30.5 | -7.8 -29.3
ht 2004-06 -3.4 -33.4 -6.4 -3.1 -6.3 -10.2 | -6.5 -29.5
(<1

event sum | -56.3 -90.6 -48.5 -42.4 -60.2 -68.8 | -50.4 -145.5
mode | 1968-70 0.0 16.0 13.5 7.7 0.0 0.0 0.0 29.1
rate 1974/75 3.3 0.0 23 2.1 9.2 14.0 2.2 13.5
wetne | 1994-96 0.0 0.0 20.0 35.2 53 28.0 14.4 43.8
ss 1997/98 0.0 0.0 2.1 3.4 2.2 18.0 1.0 35.7
1)

event sum | 3.3 16.0 37.9 48.5 16.7 60.0 17.6 122.1
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Abstract

This paper presents a detailed analysis of simulated and projected climate extremes in
the Zhujiang River Basin. Daily output from the regional climate model COSMO-CLM (CCLM),
driven by ECHAMS5, is used. The hindcast simulation covers the period from 1961 to 2000
while the projection concentrates on the near future period from 2011 to 2050. Spatio-
temporal statistical characteristics are investigated for three temperature and three

precipitation indicators. The six simulated annual and monthly indicators are statistically
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compared with synoptic observations. The investigation is based on daily values of 195 grid-
points and 192 meteorological stations.

The findings are presented and interpreted in terms of the model’s capability.
Compared to observations, slightly higher amounts in temperature indicators lower
amounts in precipitation indicators are simulated. With the resulting good similarities in the
spatial variation and trends we conclude that CCLM is able to satisfyingly reproduce climate
extreme for the simulated period. Therefore, our analyses show that CCLM can be used to
project climate extremes in the Zhujiang River Basin for the period from 2011 to 2050. The
projected changes indicate warmer and wetter conditions in the northern and southern
regions, especially in winter and spring. This includes more intense rainfall events, which
might potentially increase the risk of flooding in the central parts of the ZRB in these
seasons. Warmer and dryer conditions can be expected in the western and eastern regions,
especially in summer and fall. These lower precipitation amounts but warmer temperatures
will probably increase the evapotranspiration, which potentially leads to a higher risk of
drought. Regarding these findings in climate extremes, adverse consequences in various

sectors, such as agriculture, water, and energy should be anticipated.

Keywords: climate extremes, simulation, projection, validation, CCLM, Zhujiang, China

1. Introduction

Climatic changes have huge potential impacts on the socio-economic welfare and
peoples living conditions. Especially changes in the frequency and magnitude of extreme
weather events are an important driver for economic and society changes. Changes in
precipitation pattern can lead to both higher drought and higher flood risk, which are
potentially linked to high socio economic costs. In recent years, climate change and its
implications were investigated in numerous studies (Adger et al., 2007; Huntingford et al,,
2003; Klein Tank et al., 2009).

In China, the fast growing population and industrialization has increased the potential
for economic damages from severe events due to climate change (Feng et al., 2007).
According to the Fourth Assessment Report of the Intergovernmental Panel on Climate
Change (IPCC AR4) and China’s National Assessment Report on Climate Change increases in

annual temperature, total precipitation, and heavy precipitation events have been observed
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in China and are very likely to increase in the future (Ding et al., 2007; Fischer et al., 2011a,b;
Gemmer et al,, 2011; Jiang et al,, 2011; Liu et al,, 2009; Qian and Lin, 2005; Trenberth et al.,
2007; Xuetal, 2011).

Future climate projections give important estimations on potential changes in
magnitudes and frequencies of extreme events (from now on defined as climate extremes)
and their related hazardous consequences. The analysis of changes in climate conditions (e.g.
variability and extremes) at different spatial and temporal scales is of great benefit to
national and regional adaptation strategies. Global circulation models (GCM’s) are known to
be in good agreement with observed magnitudes and tendencies of temperature while it is
believed that the coarse resolution results in poor agreement especially with the
precipitation patterns (Kharin et al,, 2007). High resolution regional climate models (RCM’s)
represent a huge improvement in modeling of precipitation (Meehl et al,, 2000; Pal et al,,
2007; Kunkel et al., 2010; Rockel and Geyer, 2008). A number of studies utilize RCM’s to
investigate climate change impacts at high resolution for European, American, and Asian
regions (Alexander and Arblaster, 2009; Trenberth et al., 2007; Sillmann and Roeckner,
2008).

Changes in the intensity and frequency of climate extremes are of major concern for
socio-economic welfare. Hence, it is of high importance for regional institutions of various
sectors (e.g. water, industry, and agriculture) to be aware of current and future climate
extremes related risks within their area. The water sector bears climate change related risks
such as floods and droughts and the river basin scale emphasizes the logical spatial extent
for a study region. Focusing on climate characteristics and extremes in China, RCM’s were
mostly applied to analyze future changes in climate conditions on a larger scale (Chen et al.
2011; Ding et al,, 2006; Gao et al,, 2008; Wang et al., 2003; Xu et al., 2009). To our knowledge
there is no study published dealing with the ability of RCM's to simulate climate extremes in
the Zhujiang River Basin comprehensively.

The Zhujiang River Basin (ZRB) in South China covers an area of approximately
450,000 km2 with a population of more than 166 million. The region is currently one of the
most economically prosperous areas of China, with very high development rates, and one of
China’s highest GDP per capita of more than 40,000 CNY per year (National Bureau of
Statistics of China: www.stats.gov.cn). As large numbers of the population and economic
facilities are exposed to certain climate risks (Fischer et al., 2011a,b; Gemmer et al,, 2011)

and hence highly vulnerable, knowledge on and adaptation to potential climate extremes are
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needed to lower the vulnerability. It is presumed that simulations and projections with the
COSMO-CLM (CCLM) will potentially alter the knowledge on climate conditions and
extremes.

Therefore, the objective of this paper is to evaluate and analyze the simulated and
projected climate parameters of the CCLM for the Zhujiang River Basin. We will calculate
various error estimations, trends and frequencies of observed and simulated climate
indicators and will analyze the projected indicators for the period 2011 to 2050. Based on
the results, current climate characteristics can be substantiated and the performance of
projections with CCLM can be specified.

In section 2, we describe the applied data and methodologies. Thereafter, we show the
results of the validation of CCLM in section 3, and perform an analysis of the projections in

section 4. In the final section 5, we discuss and conclude all findings.

2. Data and Methodology
2.1 Observational Data

Daily temperature and precipitation records of 192 meteorological stations in the ZRB
(Figure 1) for the period 1961-2007 are provided by the National Meteorological
Information Center (NMIC) of the China Meteorological Administration (CMA). Most of the
stations are located in hilly low lying areas at an average altitude of under 700m, except in
the mountainous western part of the basin. The data sets passed the internal temporal
homogeneity check of the China National Meteorological Center (CNMC), which controlled
the quality by using the departure accumulating method (Buishand, 1982) and the Pettit’s
test (Schonwiese, 2006). Gaps in precipitation data account for less than 0.005%, and were

reconstructed by the median precipitation from at least three neighboring stations.

2.2 COSMO-CLM

The regional climate model CCLM is based on the weather prediction model LM
(Steppeler et al., 2003), and adapted and improved for climate projections (Béhm et al.,
2006). It is a dynamical RCM based on thermo-hydro-dynamical equations to describe

atmospheric flows with a resolution of 1 to 50 kilometers. Currently CCLM is used in various
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studies (Nikulin et al., 2011; Hollweg et al., 2008; Rockel et al., 2008; Rockel and Geyer, 2008;
Bachner et al., 2008; Ebell et al., 2008). CCLM uses a nesting technique to downscale a coarse
resolution dataset/model (usually a GCM or reanalysis). It uses a rotated geographical grid
with a terrain following an altitudinal coordinate system.

The calculation of CCLM is carried out on a 0.44° by 0.44° rotated grid covering the
CORDEX-East-Asia domain (http://wcrp.ipsl.jussieu.fr/SF_RCD_CORDEX.html) with 32
atmosphere levels in vertical direction and 9 soil layers. The parameterization of CCLM was
optimized with a hindcast simulation of the years 1960 to 2000 driven by ERA40 reanalysis
(Uppala et al., 2005). In the following the optimized parameter setup is used for a GCM
ECHAMS driven run covering the same period. Here we used the historical 20th century
reconstruction run of the ECHAMS5, realization 1, with greenhouse gas concentrations based
on observed values. The projection concentrates on the period 2011 to 2050 with the SRES
A1B emission scenario which assumes a rapid economic growth and a quick spread of new
and efficient technologies with a balanced emphasis on all energy sources (IPCC SRES, 2000).
The driving model for the projection was ECHAMS5 respectively (ECHAM5_A1B run 1). A full
validation of the used CCLM run including future projections for larger regions is in progress
and will be published soon. For analytical purposes, CCLM is interpolated to a 0.5° by 0.5°
regular geographical grid resulting in 195 grid-points within the Zhujiang River Basin. For
comparison purposes, daily data is also used from the ECHAM5_A1B run for 24 grid-points
based on the T63 Gaussian grid (approx. 2.8° by 2.8°).

2.3 Indicators

Six indicators are calculated from observed, simulated and projected daily data in
order to analyze and describe annual and monthly climate characteristics with particular
focus on climate extremes. These are the annual and monthly averaged daily mean
temperature (TMEAN), the annual and monthly maximum and minimum daily mean
temperature (TMAX and TMIN). The annual and monthly total precipitation sum of wet days
(>=1mm/d, PRCPTOT), the maximum annual and monthly total precipitation sum of five
consecutive days (RX5DAY) and the annual and monthly sum of dry days, i.e. days with
precipitation below 1mm (DRY DAYS).

TMEAN and PRCPTOT were chosen as they represent the two most recognized climate

characteristics. TMAX and TMIN are single-day events and are depicted as the most extreme
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temperature events (Hottest or Coldest Day) of each year or month. RX5DAY and DRY DAYS
represent heavy precipitation or drying events which potentially lead to flood or drought
events. The indicators were defined on fixed terms (Table 1) predetermined by the China
Meteorological Administration and as recommended by the CCl/CLIVAR Expert Team for
Climate Change Detection Monitoring and Indices (ETCCDMI) (Alexander and Arblaster,
2009; Fischer et al., 2011a,b; Klein Tank et al., 2009; Su et al., 2008).

The comparison of the simulated and observed indicators is conducted at two spatial
scales. On one hand, we investigate the spatial relation and value for each grid point and
meteorological stations within the entire basin. On the other hand, we focus on the region-
averaged indicators of four specified regions. Thus, the regionalized indicators are the
average of the annual and monthly indicators at all grid points or stations within these
regions. The regions are subjectively chosen based on results in past research (Gemmer et
al,, 2011, Fischer et al,, 2011a,b). Each region covers 45-50 stations, i.e. approx. 25% of the
available stations. According to their location (Figure 1), the four regions are named Region

West (W), North (N), South (S), and East (E).

2.4 Methods
BIAS and RMSE

The difference between observed and simulated indicators for both scales are
estimated and analyzed with different methods. To characterize the average difference
between the two datasets at a grid point or region, the BIAS or mean error is estimated,
which is defined as the positive or negative amount between the observed (o) and simulated
(c) mean of the indicators (for 40 years: n = 40). Similar to the BIAS, the root mean squared
error (RMSE) is estimated for each point and region to make additional statements about the
magnitude of the inter-annual differences as it combines positive and negative discrepancies
of the annual amounts. The BIAS is also used to identify the averaged monthly differences of
each indicator in the entire basin and partially in the four regions. The equations for BIAS

and RMSE are given here:

n n
lz : 12 :

BIAS = ; (Ci - Oi) = CcC—o0 RMSE = ; (Ci —_ Ol‘)z
i=1 i=1
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For identifying similarities in the probability distribution of each annual indicator we
visualize the sorted simulated annual data points to the observed for the entire ZRB

(Alexander and Arblaster, 2009; Schonwiese, 2006).

Spatial correlation and spatial variance

To quantify the differences in the spatial distribution of the observed and simulated
indicators for the ZRB, the Pearson product moment correlation coefficient (PCOR) is
calculated. This is done by interpolating the unequal distributed station observations as well
as the simulation results to a regular geographical grid with 0.5° x 0.5° resolution. The PCOR
is here defined as the covariance of observed (0) and simulated (c) means of each grid point
divided by the product of their standard deviations (o) (Sheskin, 2004; Wilks, 2006). The
equation for PCOR is as follows:
cov (0]¢)

PCOR =
O-O O-C

The closer the results are to 1.0 the stronger is the spatial correlation of the observed
and simulated indicator means. A PCOR above 0.5 is commonly referred to as strong
correlation. Here we point out, that the dissimilarities in resolution of the three studied data
may cause systematic differences in the spatial correlation coefficients (Corder and Foreman,
2009).

To describe the basin-wide spatial variance in the simulated and observed indicators,
the principal component analysis (PCA) is applied to the annual indicators. The spatial
variance gives deeper insight in the similarities or dissimilarities of the respective time-
series’ (Bordi et al., 2004; Leung and Wu, 2005). A set of linearly independent spatial
patterns (loadings) are generated, which describe the correlations with the specific principal
components (PC). We concentrate here on the first four principle components (PC1 to PC4),
as it is assumed that these explain most of the variation from the mean, i.e. the spatial
variance (Bordi et al., 2004; Leung and Wu, 2005; Schonwiese, 2006; Wilks, 2006). The
assumption is subject to be proven by the results in the validation section. The higher the
percentage of explained variance the stronger the station-/grid-based time-series are
correlated to the mean. The differences in spatial variance of simulated and observed

indicators are estimated according to the findings in the PCA and the visual pattern of PC1.
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Trend estimation

The linear regression, based on ordinary least squares, was calculated to determine
the absolute decadal trend (unit/10a) of increase/decrease at each point and region. The
Mann-Kendall trend test is further applied to each point and region average for the time
period 1961-2000 and 2011-2050, respectively, to determine the significance of estimated
trends. A comprehensive description on the application and definition of the Mann-Kendall
trend test can be found in e.g. Gemmer et al. (2004), Liu et al. (2008), and Yang et al. (2010).
The threshold for positive or negative trends (Kendall’s Tau) is based on the 0.05

significance level.

3. Validation of CCLM

In the following section we will calculate and analyze the above described statistical
values for observed and simulated time-series. The comparison considers the time period
from 1961 to 2000. This is done to evaluate the capability of CCLM to simulate the climate
indicators for the Zhujiang River Basin representatively. CCLM was driven by the 20th
century historical reconstruction run of ECHAMS based on observed carbon dioxide
emissions. After evaluating the hindcast simulation, we will subsequently analyze the

projected climate indicators for the time period 2011-2050.

Annual area-averaged BIAS and RMSE

In Figure 2, the spatial distribution of the average TMEAN, TMAX and TMIN (1961-
2000) of the observations and the simulations with CCLM and ECHAMS5 are presented. In all
maps an even distribution with a Northwest-Southeast disparity in the temperature
indicators can be distinguished. The distribution patterns of the CCLM simulations are
visually more similar with the observations than the ECHAMS5 simulations. This is most
likely associated with the higher resolution of CCLM resulting in a more accurate
representation of the orography, as there is also a Northwest-Southeast gradient in the
elevation. The simulated temperatures of CCLM tend to be higher than the observed ones,

especially in the south-eastern parts of the basin, where the BIAS is up to 2.7°C.
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In Figure 3 the spatial distribution of the averaged means (1961-2000) of PRCPTOT,
RX5DAY and DRY DAYS of the observations and the simulations with CCLM and ECHAMS are
presented. The precipitation indicators exhibit more unevenly regionalized differences.
Comparing the CCLM simulations with the observations, PRCPTOT shows relatively high
positive biases for the central-northern area and the delta region of the Zhujiang River,
while an underestimation is found for the central-south area. Especially high positive biases
are simulated for RX5DAY in the delta region, while strong negative biases are apparent in
the western and central areas. For DRY DAYS very high positive differences are simulated in
Region South, but moderate to high negative biases in the other three regions. The
simulated spatial distribution of RX5DAY and PRCPTOT of CCLM, especially the difference
between the mountainous western and the low lying south-eastern parts, is similar to the
observations. However the spatial distribution patterns of DRY DAYS differ significantly.
This implies that on one hand CCLM is able to capture the spatial structure, the magnitude of
maximum 5-day rainfall events, and also the regional distribution of the total annual
distribution, but on the other hand is not able to reproduce the correct number of dry days
significantly. Nevertheless, the distribution patterns of the CCLM simulations are visually
much more similar with the observations than the ECHAMS5 simulations. ECHAM5 simulates
PRCPTOT and RX5DAY with much lower and more evenly distributed amounts than CCLM,
and also with less DRY DAYS than the observations, which is probably due to the much
lower resolution of ECHAMS. Hence, CCLM produces more reliable regional distribution
pattern and probabilities in precipitation indicators.

The average annual BIAS and RMSE of the CCLM and ECHAMS5 simulations of the three
temperature and three precipitation indicators are listed in Table 2 and Table 3. For CCLM,
we find a warm BIAS for TMEAN and TMAX in each region, while for TMIN only in Region
South a warm BIAS is found, while a cold BIAS is found in Region West and North. The
resulting basin-wide BIAS shows a general over-/underestimation of temperature extremes
(TMAX too high, TMIN too low), potentially resulting from an overestimation of the diurnal
temperature range in CCLM. Looking at the RMSE in the temperature indicators of CCLM the
differences in the BIAS can be supported, as the values in RMSE are relatively close to the
absolute values in BIAS. The largest RMSE in the temperature indicators are generally found
in Region North and East. Compared to the BIAS and RMSE of CCLM, ECHAMS5 simulates

TMAX closer to the observations at basin and regional scale, except for Region West (Table

3).
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The BIAS in PRCPTOT and DRY DAYS of CCLM are negative in all Regions and the ZRB,
with the exception of small positive amounts for Region North and Region South,
respectively. This means that less total precipitation and fewer dry days are generally
simulated by CCLM. In contrary, the basin-averaged BIAS of RX5DAY is positive, with only
Region West exhibiting lower maximum 5-day rainfall amounts. The RMSE of the
precipitation indicators are very high in Region South and Region East. Most obviously for
CCLM are the strong BIAS and RMSE in all three precipitation indicators for Region South
(Table 2) which is in accordance to Figure 3. At basin scale, PRCPTOT and DRY DAYS
simulated with CCLM are mainly underestimated, while RX5DAY is overestimated. This
implies that CCLM generates fewer rain days which are more intense, especially in Region
South. The precipitation related indicators show high absolute values for ECHAMS5 (Table 3).
Large amounts in BIAS and RMSE indicate strong differences between the probability
distribution of observed and simulated time-series. This is underlined with the visualization
of basin-averaged and sorted observed and simulated annual indicators in scatter plots
(Figure 4). Here, we can see very similar distributions of the simulated temperature
indicators, except for TMAX, where ECHAMS is closer to the observed distribution. The
distributions of the CCLM-simulated precipitation indicators are even more similar to the
observation, whereas the distributions of ECHAMS5 are lower. This means that the
distribution of annual values simulated with CCLM are closer to the observations than
simulated with ECHAMS5, except for TMAX. An interesting visualized feature is the sharper
angle of the simulated distributions (compared to the diagonal), which indicates a higher

variability in annual values.

Monthly distribution

The monthly distributions of observed and simulated area-averaged PRCPTOT and
TMEAN for the ZRB are shown in Figure 5. Additionally, the differences between CCLM
simulations and observations, i.e. monthly mean differences, for the four regions are
displayed in Figure 6. For the entire basin, the simulated PRCPTOT and TMEAN follow
relatively well the course of the year. Monthly PRCPTOT is mostly underestimated, which
can be found for all regions, except Region West from February to May and Region South
from October to December. TMEAN shows a slight underestimation from April to July but a

strong overestimation (by more than two degrees) from September to November. CCLM can
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simulate monthly PRCPTOT and TMEAN more realistic than ECHAMS5, which shows strong
deficiencies in spring.

The basin-averaged observed and simulated monthly extreme indicators (RX5DAY
and TMAX, DRY DAYS and TMIN) show a similar course of the year and monthly differences
as in PRCPTOT and TMEAN for the ZRB (Figure 7). Higher amounts in RX5DAY and DRY
DAYS are simulated with CCLM for February to April but lower maximum 5-day rainfall
amounts and fewer dry days are simulated for the summer months. Simulated with CCLM,
TMAX exhibits stronger differences as TMEAN year-round, with a high overestimation of the
summer and fall months, while TMIN shows a distinct underestimation during summer.
These differences imply that CCLM generates a larger diurnal temperature range, especially
in summer. Compared to ECHAMS5, CCLM is closer to the observations considering the inner-
annual variability of the precipitation extremes. Here it is remarkable, that CCLM
underestimates RX5DAY most of the year, while it simulates a positive BIAS for the whole
year. This might be explained by the incorrect simulation of a higher variability in monthly
RX5DAY and the averaging of annual RX5DAY for the entire ZRB. Nevertheless, both models
seem to be able to capture the monthly precipitation variability of the East Asian Monsoon.
Conclusively, CCLM shows a more realistic annual course than ECHAMS5, with an
underestimation of the precipitation indicators and TMIN and an overestimation of TMAX all
during summer. The performance of CCLM can be explained by the higher resolution

capturing the regional precipitation pattern better than ECHAMS5.

Spatial correlation and spatial variance

Based on the average annual means of observed and simulated grid-points, PCOR of
each indicator is estimated for the entire basin. The spatial correlation coefficients for the
CCLM-simulated PRCPTOT, RX5DAY, and DRY DAYS are moderately high at 0.45, 0.63, and
0.59, respectively. All CCLM-simulated temperature indicators show high positive spatial
correlation coefficients with TMEAN at 0.87, TMAX at 0.65, and TMIN at 0.88. Compared
with the CCLM results, ECHAM5-simulated indicators show similar spatial correlation
coefficients with the observed indicators, except for DRY DAYS (Figure 3) even though the
region-wide BIAS differs broadly. This similarity might be related to the fact that CCLM is
dynamically downscaled from ECHAMS5. However, the CCLM-simulated indicators

correspond temporally and spatially well with the observations.
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The first principal component (PC1) of the observed TMEAN describes 70.3% of the
spatial variation in the station data (Figure 8a), while the PC1 of the CCLM-simulated
TMEAN describes 85.2% of the spatial variation in the gridded data (Figure 8b). For
PRCPTOT, the observed PC1 describes 33.2% and the CCLM-simulated PC1 describes 45.1%
of the spatial variation (Figure 8c,d). It can be seen that the loading patterns of PC1 for
observed and CCLM-simulated TMEAN and PRCPTOT show similar spatial patterns (Figure
8a-d), while more uniform patterns are apparent for the CCLM-simulated loadings. The first
four components (PC1-4) describe 87.3% and 97.5% of the spatial variation of the observed
and CCLM-simulated TMEAN, respectively. The spatial variation of the observed and CCLM-
simulated PRCPTOT can be described by 57.1% and 75.7% with the PC1-4, respectively. The
higher percentages in spatial variation of CCLM imply a lower variability within the
simulated time-series. Based on this, the CCLM-simulated spatial variation of PRCPTOT and
TMEAN of all 195 grid-points are less diverse than the observed spatial variation of all 192
stations within the ZRB. Taking the similar spatial distribution into account, we conclude

that the spatial variation in TMEAN and PRCPTOT are relatively well represented by CCLM.

Trend estimation

According to the Mann-Kendall test, only a small number of time-series show
significant trends. The station observations show only a significant increase in TMEAN by
0.14 K per decade in Region East and by 0.12 K per decade in Region South (Table 4). In
CCLM-simulated TMAX, a significant decrease is found for Region East, while in ECHAMS5-
simulated time-series an increase in TMEAN and a decrease in PRCPTOT, RX5DAY, and DRY
DAYS, are calculated for Region West. Based on linear regression, the decadal trends and
tendencies are presented in Table 4. Both simulations could not simulate the observed
significant increases in regional TMEAN. CCLM and ECHAMS5 simulate similar trends in
TMEAN, but different values in the trends of temperature extremes (TMIN and TMAX).
Nevertheless, in regard to the insignificant regression slopes and compared to the

observation, CCLM produces more reliable trends than ECHAMS.

Compared to the global circulation model ECHAMS5, the regional climate model CCLM

seems to capture the annual and monthly means, the annual course of the year, the spatial
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distribution patterns and variation, and the trends closer to the observations of all
indicators. Both models’ capabilities for the temperature indicators are generally higher
than that for the precipitation indicators. CCLM is able to satisfyingly reproduce the
temperature and precipitation indicators in regional and monthly means, spatial
distribution and variation, and temporal trends. Hence, we conclude that CCLM can be used
to project spatial distribution patterns, annual and monthly means, and temporal trends of
temperature and precipitation indicators in the Zhujiang River Basin, for the future period of

2011 to 2050.

4. Projection of Climate Extremes with CCLM (2011-2050)

In this section, we use CCLM to project the climate for the period 2011-2050 with
specific focus on the climate extreme indices based on the emission scenario SRES A1B. We
will analyze the differences between the climate reconstruction (1961-2000) and the future
projection (2011-2050) to assess possible future changes resulting from a higher
atmospheric CO2 concentration modeled by CCLM. According to our projections, conclusions

to future changes in climate extremes will be elaborated.

Spatial and temporal differences

In Figure 9, the spatial distributions of the projected differences (2011-2050 relative
to 1961-2000) in means of the temperature and precipitation indicators are presented. All
projected temperature indicators show an increase in the entire basin, with moderate
differences in the South and East and larger differences in Regions West and North (Figure
9a-c). Following this Southeast-Northwest disparity TMEAN exhibits even region-averaged
differences from 1.0°C to 1.2°C. TMAX has the strongest increases by 1.2°C to 1.8°C, while
TMIN shows a similar distribution but with lower positive differences by 0.8°C to 1.4°C
leading to a higher diurnal temperature range.

The projected PRCPTOT and RX5DAY show mostly strong positive differences in
Region North and South (Figure 9d-e). Here, the differences are 95mm to 97mm in PRCPTOT
and 14mm to 40mm in RX5DAY. Slightly negative differences can be seen in the West and

coastal East. Nevertheless, differences range from 16mm to 80mm in PRCPTOT, and from -
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1mm to 10mm in RX5DAY from West to East, respectively. Regionally opposing to PRCPTOT
and RX5DAY, the projected DRY DAYS show also mostly positive differences (Figure 9f).
Here, positive differences to more dry days in the West and East range from 0.6days to
1.1days, while it ranges from 0.2days to 0.7days in the North and South. Hence the
projection shows an increase in total rainfall and intensity but a decrease in number of wet
days, i.e. an increase in dry days.

Accordingly we can conclude that an average increase is projected for the 50-year
interval of the period 2011-2050 relative to 1961-2000 for all indicators: TMEAN (by 1.1°C),
TMAX (by 1.6°C), TMIN (by 1.1°C), PRCPTOT (by 73mm), RX5DAY (by 15mm), and DRY
DAYS (by 0.7days).

Changes in monthly distribution

In Figure 10, the projected monthly differences (2011-2050 relative to 1961-2000) in
means of the temperature and precipitation indicators are presented. All projected
temperature indicators show an increase in all months, with higher values in summer, fall
and winter (Figure 10a). CCLM projects the highest change in TMIN for winter and in TMAX
for summer, leading to much warmer winter and summer. PRCPTOT and RX5DAY show the
main positive differences from January to May, while DRY DAYS show negative differences
in this time-frame (Figure 10b). The increases in precipitation in the first half of the year are
followed by a sudden change in June. No significant changes are observable for the second
half of the year.

Relative to 1961-2000, the projection shows warmer and wetter conditions for the
first half of the year, but with stronger warming in summer and fall. The lower temperature

trends in spring might be associated with the changes in precipitation.

Trend estimation

For the period 2011-2050, significant increasing trends are detected in CCLM-
projected TMEAN, TMAX and TMIN for all four regions, while none are apparent for the
precipitation indicators (Table 5). The significant trends range from 0.35K to 0.48K per
decade in regional TMEAN, from 0.62K to 0.78K per decade in TMAX, and from 0.23K to

0.52K per decade in TMIN. Compared to almost no significant trends in the hindcast
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simulation, this is a remarkable feature in all temperature indicators implying a strong
projected warming (Figure 11). Such significant trends are not projected for precipitation
indicators, i.e. no clear statements on projected trends to more wet or dry conditions can be

given (Figure 11).

5. Conclusions and Discussion

In the present study, we validate the regional climate model CCLM on its performance
to simulate observed climate characteristics and extremes in the Zhujiang River Basin. This
is done to substantiate the provided analysis of future changes in climate extremes projected

with CCLM.

Validation of CCLM

In the first part of this study, various error estimations and differences in distributions,
variability and trends in indicators of climate extremes from observations and simulations
for a 40-year period (1961-2000) were presented. The results show that CCLM has certain
abilities to simulate the basic characteristics of climate extremes, in both the spatial and
temporal distribution, compared to the observations. The distribution patterns of the CCLM
simulations are visually much more similar with the observations than the ECHAM5
simulations. CCLM seems to reduce the even distributed climate patterns of the coarse
driving model to more detailed regional patterns, due to the higher resolution. However, the
simulated temperatures of CCLM tend to be higher than the observed temperatures. Most
obviously for CCLM are the strong BIAS and RMSE in all three precipitation indicators for
Region South. Nevertheless, CCLM can simulate monthly PRCPTOT and TMEAN more
realistic than ECHAMS5, which shows high deficiencies in spring. CCLM shows also a better
simulation of the seasonal cycle, especially in regard to the precipitation extremes. The
CCLM-simulated annual indicators correspond temporally and spatially well with the
observations. CCLM simulates PRCPTOT and TMEAN with lower temporal variability but a
similar spatial variation. In its spatial distribution patterns the observed variability in

TMEAN and PRCPTOT is well represented by CCLM.
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The large BIAS of ECHAMS5 in various indices might be partly responsible for the BIAS
of CCLM, since the simulations were driven by ECHAMS5, which implies that CCLM is not able
to correct the anomalous input sufficiently (Wang et al., 2003; Roeckner et al., 2003;
Hagemann et al,, 2005; Ebell et al.,, 2008). Further reasons for the overestimation in the
means of temperature indicators and underestimation of the precipitation indicators might
be the averaging into four regions, as much more local disparities and high variability are
found. The fact that all observations are point-based but the simulated grid-points
encompass a 0.5° x 0.5° regular grid, which was interpolated from a 0.44 x 0.44 rotated grid,
might also play an important role in the differences to the observations (Rockel and Geyer,
2008; Bachner et al., 2008). The differences in their variability and trends can also be
explained by the fact that CCLM is driven by a GCM (ECHAMS5) rather than reanalysis (e.g.
ERA40) or station-based observations. As the Zhujiang River Basin is strongly influenced by
the East Asian Monsoon (Wang and Ding, 1997; Yu et al,, 2009; Gemmer et al., 2011; Fischer
etal., 2011), additionally to the above mentioned reasons, the more distinct
underestimation of precipitation indicators in summer and fall might be also related to an
underrepresentation of the East Asian Summer Monsoon in the parameterization of the
CCLM (and ECHAM5S).

But considering these differences, we conclude that CCLM can be used to project
spatial distribution patterns, monthly means, and temporal trends of temperature and

precipitation indicators in the Zhujiang River Basin, for the period from 2011 to 2050.

Projection of Climate Extremes with CCLM

The projected temperature and precipitation indicators in the Zhujiang River Basin
are analyzed for the period from 2011 to 2050 relative to the period from 1961 to 2000.
Higher values of all temperature indicators are projected for the entire ZRB, with stronger
increases in the west and moderate increases in the eastern part of the basin. Especially the
Region North and South will experience higher total precipitation, higher RX5DAY amounts,
and slightly less DRY DAYS. The western part and the far eastern corner of the basin are
expected to become dryer. Concerning the seasonal cycle, there is a moderate increase of
temperature in spring followed by an enhanced increase in summer and fall. Additionally, a
tendency to increasing and more intense precipitation is projected. In accordance with the

projected changes in means, spatial distribution, and monthly distribution relative to 1961-
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2000, we can expect warmer and wetter conditions in Region North and South, especially in
winter and spring. This includes more intense rainfall events, which might potentially
increase the risk of flooding in the central parts of the ZRB during winter and spring.
Warmer and dryer conditions can be expected in Region West and East, especially in
summer and fall. The lower precipitation amounts but warmer temperatures will probably
increase the evapotranspiration, which potentially leads to a higher risk of drought in these
regions.

Our results are barely supported by other articles. Based on downscaled ECHAM5
outputs for the Pearl River basin, the findings of Liu et al. (2009) are similar to our findings
in TMEAN and PRCPTOT, but at less detailed regional and temporal resolution. The findings
in projected precipitation extremes by Xu et al. (2011) show opposed trends, i.e. increasing
trends in annual consecutive dry days and decreasing trends in annual RXS5, for the south
china basin (comprising the Zhujiang and the Yangtze River basins). These trends have been
calculated from three different GCM outputs (CSIRO_MK3_5, MPI_ECHAMS5 and
NCAR_CCSM3). However, this study covers a larger area with lower resolution, while in our
study various more reliable significant trends are found for much smaller regions. According
to our evaluation our model seems to simulate the climate extremes reasonably compared to
the observations. It should be noted that we use only one RCM driven by one GCM under one
emission scenario (SRES A1B), which does not allow exploring uncertainties in future
projections of climate extremes satisfyingly (Chen et al., 2011). To assess the uncertainties
of future projections of climate extremes in the Zhujiang River Basin, different types of
dynamical and statistical downscaling models and driving GCM’s under multiple emission
scenarios need to be investigated.

Regarding the findings in climate extremes, adverse consequences in various sectors,
such as agriculture, water, and energy, should be anticipated. The projected more intense
maximum 5-day rainfall events can lead to e.g. higher surface runoff (and eventually
flooding), increased soil erosion, and diminished water quality. In contrary the projected
increase in dry days might lead to e.g. water scarcity (i.e. drought), soil degradation (i.e.
desertification), and lowering of the groundwater table. An increase in dry days can also lead
to soil desiccation and soil sealing, which in turn increases the potential of flooding. Hence,
an increase in dry days and in maximum 5-day rainfall might be regarded as a positive
feedback towards more and stronger drought and flood events. All such impacts might e.g.

directly or indirectly affect the plant growth of the agricultural production with high losses
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in yield, which will have adverse consequences on the food security of the entire region. The
strong increases in temperature extremes in the entire basin might affect most sectors, as e.g.
the energy demand or plant growth pattern will change the current economic and
agricultural systems. High temperatures in summer will quite severely affect the population
and economic sectors, as heat-induced health issues and higher cooling demand of public,
private, and industrial sectors will appear. Nevertheless, higher temperatures in winter
might e.g. effectively extend the plant growth period (i.e. longer annual agricultural
production) and lessens the heating demand (i.e. less energy consumption). Hard and soft
measures to adapt to these and other consequences have to be identified and implemented
based on specifically issued policies and regulations e.g. integrated in water resource

management plans and activities.
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Figure 2 Observed, CCLM-simulated and ECHAM5-simulated averaged annual temperature
indicators: (a) TMEAN, (b) TMAX, and (c) TMIN for the Zhujiang River Basin,
1961-2000.

Figure 3 Observed, CCLM-simulated and ECHAM5-simulated averaged annual precipitation
indicators: (a) PRCPTOT, (b) RX5DAY, and (c) DRY DAYS for the Zhujiang River
Basin, 1961-2000.

Figure 4 Scatter plots of six basin-averaged and sorted annual observed and simulated
indicators (CCLM = blue; ECHAMS =red), (a) TMEAN (°C), (b) TMAX (°C), (c)
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the Zhujiang River Basin, 1961-2000.

Figure 5 Basin-averaged observed (yellow bar and solid line), CCLM-simulated (blue bar and
dashed line), and ECHAMS5-simulated (red bar and dotted line) monthly PRCPTOT
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Figure 6 Area-averaged monthly differences in (a) PRCPTOT and (b) TMEAN, i.e. the BIAS of
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(N), South (S), and East (E) for the Zhujiang River Basin 1961-2000.

Figure 7 same as in Figure 5, but for basin-averaged monthly observed, CCLM-simulated and
ECHAMS5-simulated (a) RX5DAY precipitation (bars) and TMAX (lines); (b)
number of DRY DAYS (bars) and TMIN (lines) for the Zhujiang River Basin, 1961-
2000.

Figure 8 Loading patterns of the first principal component (PC1) of (a) observed TMEAN, (b)
CCLM-simulated TMEAN, (c) observed PRCPTOT, and (d) CCLM-simulated
PRCPTOT, for the Zhujiang River Basin, 1961-2000.

Figure 9 Difference of CCLM-simulated (1961-2000) and CCLM-projected (2011-2050)
averaged annual means of (a) TMEAN, (b) TMAX, (c) TMIN, (d) PRCPTOT, (e)
RX5DAY, and (f) DRY DAYS in the Zhujiang River Basin.

Figure 10 Difference of CCLM-simulated (1961-2000) and CCLM-projected (2011-2050)
basin-averaged monthly means of (a) temperature indicators and (b)
precipitation indicators in the Zhujiang River Basin.

Figure 11 CCLM-simulated (1961-2000) and CCLM-projected (2010-2050) averaged annual
TMEAN (red line) and PRCPTOT (green bars), including the means of 1961-2000
and 2011-2050 (dark red / dark blue lines) and the linear trend in TMEAN for
2011-2050 (black dashed line) in the Zhujiang River Basin.
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Table 1 List of climate indicators
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ID Indicator name Definitions Unit
Annual and monthly mean value of daily
TMEAN Average Temperature °C
mean temperature
Maximum Annual and monthly maximum value of daily
TMAX °C
Temperature mean temperature
Annual and monthly minimum value of daily
TMIN Minimum Temperature °C
mean temperature
Total wet-day Annual and monthly total precipitation in wet
PRCPTOT mm
precipitation days (rainfall >=1mm/d)
Max 5-day Annual and monthly maximum consecutive 5-
RX5DAY mm
precipitation day precipitation
DRY Annual and monthly number of dry days
Dry Days d
DAYS (rainfall < Tmm/d)

Table 2 Average annual BIAS and RMSE of CCLM-simulated indicators in four

regions of the Zhujiang River Basin (ZRB), South China, 1961-2000.

Indicator BIAS RMSE

Region: | ZRB w N S E| ZRB w N S E
TMEAN (°C) 1.1 0.4 1.2 1.8 1.1 1.3 0.9 1.5 1.9 1.2
TMAX (°C) 2.6 1.8 3.2 2.7 2.3 2.8 2.2 35 3.0 2.6
TMIN (°C) -0.5 -1.2 -0.9 0.7 0.0 2.0 2.0 2.2 2.5 2.6
PRCPTOT

-138 | -136 44 | -509 -60 323 226 353 689 440

(mm)
RX5DAY (mm) | 17.7 | -18.3 1.0 839| 21.7| 494 | 293 | 39.2| 1493 81.9
DRY DAYS (d) -0.6 -70 | -16.3| 545 | -19.0| 165| 17.6 | 27.0| 56.6 28.5
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Table 3 Average annual BIAS and RMSE of ECHAMS5-simulated indicators in
four regions of the Zhujiang River Basin (ZRB), South China, 1961-2000.

Indicator BIAS RMSE

Region: | ZRB w N S E| ZRB w N S E
TMEAN (°C) 1.3 1.4 -0.3 2.3 0.7 1.5 1.6 0.9 2.5 1.0
TMAX (°C) 1.0 2.2 -0.3 1.8 -0.5 1.3 2.6 0.9 2.1 1.1
TMIN (°C) -0.1 -0.2 -2.9 2.0 0.1 2.2 2.1 3.7 3.4 2.5
PRCPTOT
(mm) -415 | -255| -447 | -408| -563 471 317 515 490 650
RX5DAY (mm) | -84.8 | -52.2 | -89.7 | -92.2 | -110 87.1 58.9 97.5| 1005 | 113.4
DRY DAYS (d) -23.2 | -179 | -22.2 | -21.6 | -279 28.2 22.8 27.4 28.0 35.4

Table 4 Decadal trend statistics (unit per decade) for six observed, CCLM-
simulated, and ECHAMS5-simulated indicators in four regions of the Zhujiang

River Basin, 1961-2000.

PRCPTO
Region
TMEAN TMAX TMIN T | RX5DAY | DRY DAYS
(°C/10a) (°C/10a) (°C/10a) | (mm/10a) | (mm/10a) | (days/10a)
OBS 0.06 0.08 0.17 -4.5 2.0 1.3
West CCLM 0.17 -0.02 -0.28 -17.6 -1.2 2.7
ECHAM 0.22 0.17 -0.17 -41.8 -6.0 -2.8
OBS 0.06 -0.03 0.21 10.4 1.4 1.0
North CCLM 0.00 -0.26 -0.11 -29.8 2.8 2.9
ECHAM -0.01 0.03 -0.23 -7.5 -5.6 1.6
OBS 0.12 0.06 0.21 3.5 -0.6 0.7
South CCLM 0.01 -0.21 -0.26 -2.8 8.5 1.5
ECHAM 0.10 0.09 -0.41 0.4 1.2 1.2
OBS 0.14 0.09 0.20 35.6 -1.8 -1.5
East CCLM -0.03 -0.37 -0.02 -18.4 14.8 3.1
ECHAM 0.01 0.00 -0.34 8.9 2.7 1.8

*numbers in bold show a significant trend above the 0.05 significance level
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Table 5 CCLM-projected decadal trends (unit per decade) for six annual

indicators in four regions of the Zhujiang River Basin for the period 2011-2050.

PRCPTO
Region TMEAN TMAX TMIN T RX5DAY | DRY DAYS
(°C/10a) (°C/10a) (°C/10a) | (mm/10a) | (mm/10a) | (days/10a)
West 0.48 0.62 0.52 7.5 1.3 0.2
North 0.45 0.78 0.36 37.5 5.5 0.0
South 0.35 0.65 0.36 -17.6 -3.9 -0.5
East 0.41 0.73 0.23 54.2 10.4 -1.4

*numbers in bold show a significant trend above the 0.05 significance level
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Figure 5 - Basin-averaged observed (yellow bar and solid line), CCLM-
simulated (blue bar and dashed line), and ECHAMS5-simulated (red column and
dotted line) monthly PRCPTOT (bars) and TMEAN (lines) for the Zhujiang
River Basin, 1961-2000.
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Figure 6 - Area-averaged monthly differences in (a) PRCPTOT and (b) TMEAN,
i.e. the BIAS of monthly averaged observation and CCLM-simulation for Region
West (W), North (N), South (S), and East (E) for the Zhujiang River Basin 1961-
2000.
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Figure 7 - same as in Figure 5, but for basin-averaged monthly observed, CCLM-
simulated and ECHAMS5-simulated (a) RX5DAY precipitation (bars) and TMAX
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(lines); (b) number of DRY DAYS (bars) and TMIN (lines) for the Zhujiang River
Basin, 1961-2000.
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Figure 8 - Loading patterns of the first principal component (PC1) of (a)
observed TMEAN, (b) CCLM-simulated TMEAN, (c) observed PRCPTOT, and (d)
CCLM-simulated PRCPTOT, for the Zhujiang River Basin, 1961-2000.
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Figure 9 - Difference of CCLM-simulated (1961-2000) and CCLM-projected
(2011-2050) averaged annual means of (a) TMEAN, (b) TMAX, (c) TMIN, (d)
PRCPTOT, (e) RX5DAY, and (f) DRY DAYS in the Zhujiang River Basin.
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Figure 10 - Difference of CCLM-simulated (1961-2000) and CCLM-projected
(2011-2050) basin-averaged monthly means of (a) temperature indicators and
(b) precipitation indicators in the Zhujiang River Basin.
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Figure 11 - CCLM-simulated (1961-2000) and CCLM-projected (2010-2050)
averaged annual TMEAN (red line) and PRCPTOT (green columns), including
the means of 1961-2000 and 2011-2050 (dark red / dark blue lines) and the
linear trend in TMEAN for 2011-2050 (black dashed line) in the Zhujiang River
Basin.
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Abstract

In this study, we investigate uncertainties in the modeling of hydrological impacts of
climate change on projected flood frequencies of the Zhujiang River, South China. We
applied the hydrological model HBV-D to simulate and project future stream flow based on a
multi-model ensemble. A monthly re-sampling technique is used to estimate the natural
variability. The magnitude of three uncertainty sources, i.e. emission scenarios, GCM
structure, and downscaling techniques, are related to the observed and projected natural
variability. The relative change in each uncertainty source and the overall dominance among
the three sources are analyzed. The changes in flood frequency are presented for five return
periods (2, 5, 10, 20, and 50years) and three future time periods (2020s, 2050s, and 2080s).

The results suggest that in comparison to the natural variability of the multi-model
ensemble, the uncertainty sources show much stronger variations. The range of their
relative change and their dominance vary with the lead time and return period. In most of
the cases, the dominant uncertainty can primarily be attributed to emission scenarios for all
three future time periods. The GCM structure is the second dominant source, especially for
the projected flood frequency in the 2050s. Downscaling techniques represent the lowest
uncertainty ranges of the three sources. The uncertainty and projected impact of climate
change differs also between the four applied GCMs, as compared to the natural variability

CCSM3 and HIRES show higher ranges than MK3.5 and ECHAMS.
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The upper bounds (95% percentile) in uncertainty mostly show an increasing
tendency with increasing return period, and partially with increasing lead time. Hence, the
more extreme the return period (higher flood frequency) the higher is the uncertainty of the
model projections. It is therefore essential that climate change impact assessments consider
a wide range of climate scenarios derived from different GCMs under multiple emission
scenarios and including several downscaling techniques. The uncertainty due to natural
variability should also be considered more intensely. The projection of flood frequency and
the identification and quantification of the uncertainties in the modeling is important for the
implementation of adaptation policies into water resource planning in the Zhujiang River

basin, South China.

Keywords: Uncertainty; Flood Frequency; Natural Variability; Emission; Downscaling;

Zhujiang River

1. Introduction

Water is the most severely affected resource by climate change. Any changes in the
hydrologic cycle will affect energy production and flood risks. Extreme climatic and
hydrological events have become more frequent in recent years, which may be due to
anthropogenic global warming (Prudhomme et al., 2003). Water management and climate
adaptation measures will very likely become more necessary (Minville et al., 2008). It is
important to quantify climate change impacts on water resources to develop and implement
mitigation and adaptation policies in the water sector.

In the Zhujiang River basin, increasing annual temperatures and increasing total
precipitation in terms of areal mean were detected using datasets of 64 meteorological
stations (Liu et al,, 2009). The multi-annual mean precipitation (1961-2007) in the basin
shows increasing amounts from west to south, from less than 1000 mm in the western
mountains to more than 2000 mm at the eastern coastline. Decreasing (increasing)
tendencies in total and 5-day maximum precipitation (dry days) were detected in the
western and central regions by Fischer et al. (2011), and increasing tendencies to dryer
conditions and stronger precipitation intensities were detected by Gemmer et al.

(2011).Both studies used 192 quality-controlled precipitation datasets for the period 1961-
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2007 and applied the Mann-Kendall test and linear regression to identify trends in climate
indicators.

Climate studies suggest that more frequent flood disasters occurred due to heavy
rainfall since 1990s (He et al, 2006). A slight upward trend in runoff during the dry season
was observed from 1951 to 2000 (Yin, 2010). As for the future, upward trends are projected
in seasonal temperature and annual precipitation from 2011 to 2060 using the global
circulation model (GCM) ECHAMS5/MPI-OM (Liu et al,, 2009). Using three GCMs and three
greenhouse gas emission scenarios, similar trends are projected in seasonal precipitation
and runoff from May to October for the period from 2011 to 2099 in the Xijiang River basin
(the largest tributary of the Zhujiang River), while downward trends are projected from
December to February. In addition, floods could be more severe and more frequent after
2050 (Liu et al.,, 2012a,b). In these studies, a large uncertainty in projected values is
apparent.

The uncertainty can be partially linked to various conditions and assumptions in
greenhouse gas emission scenarios (GHGES) and atmosphere-ocean general circulation
models (AOGCM). In order to provide detailed projections of local climate change, the use of
regional climate models (RCM) or the application of downscaling methods also add
uncertainty to the projected climate data due to the limitations that are inherent in each
technique (Déqué et al., 2007). Finally, the fourth source of uncertainty is introduced by the
sampling method, as time series of climate data exhibit inter-annual and inner-annual
variability. These sources of uncertainties are introduced and put into context with
hydrologic impact by Minville et al. (2008). Further, Kay et al, (2009) emphasize that the
hydrological model structure and its parameters are two more sources of uncertainty.

Climate uncertainty at both global and regional scale was identified as the dominant
driving force in hydrological risk assessments (Preston and Jones, 2008). As stated by
Preston and Jones (2008), the largest source of uncertainty can be attributed to the type of
GCM used in studies on climate change impacts on the flood regimes of five catchments in
Great Britain. This conclusion is based on the application of 16 GCMs with four different
emission scenarios (SRES-98). This is underlined, as Prudhomme et al. (2003) indicate that
adaptation policies do not rely on results from only very few models and scenarios. The
study using PRUDENCE data by Graham et al. (2007) also demonstrates that the
uncertainties in the projections of river flow are larger due to the choice of GCMs than due to

the applied RCM or emissions scenario. Comparing the results of three GCMs and two RCMs,
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Booij (2005) found that the uncertainty due to the hydrological model structure or
parameterization is smaller than the uncertainty of each GCM/RCM. This conclusion is also
supported by Gosling etal. (2011) and Todd et al. (2011), who compared the uncertainty of
hydrological model structure and climate model structure using seven GCMs. The
elimination of uncertainty is probably impossible (Koutsoyiannis and Efstratiadis, 2007),
but for the design of long-term planning strategies for flood management schemes, the
quantification of uncertainty must be accounted for.

So far, few investigations on impacts of climate change in terms of projected flood
frequency and hardly any comparisons of sources of uncertainties have been done for the
Zhujiang River basin in China. Based on the multi-model ensemble projection of flood
frequencies of the Zhujiang River, the objectives of this study are (1) to compare the
influence of three sources of uncertainty, with the uncertainty sources being emission
scenarios, GCM structure, and downscaling techniques, as relative changes to the natural
variability; (2) to detect trends in the magnitude of uncertainty regarding return periods
and different future time periods; and (3) how both findings relate to the natural variability
and climate change impacts on the projected flood frequency of the Zhujiang River in South
China.

In section 2, we give a description of the study area and the used datasets. The basic
methodology is outlined in section 3, including a brief description of the calibration and
validation of the applied hydrological model, the frequency analysis and the quantification of
uncertainty. In section 4, the different sources of uncertainty are described. In section 5, we
analyze the results, including the comparison of the magnitude and range in the relative
change of the different sources of uncertainty, and how these relate to the natural variability.

Finally, we conclude and discuss the results in section 6.

2. Study area and datasets
2.1 Description of the Zhujiang River basin

The Zhujiang River (or Pearl River) basin is one of China’s largest river basins. It is
located in South China and covers approximately 453,700 km2 (excluding the Leizhou
Peninsula region) in the provinces of Guangdong, Guangxi, Guizhou, Yunnan, Hunan, Jangxi,

and Fujian in China and partly Northeastern Vietnam (Dai et al., 2007). The basin is
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characterized by mountainous areas in the western part but mainly low lands in the central
and south-eastern parts, with subtropical and tropical climate. The annual mean
temperature varies from 14°C in the west to 222C in the east, and the annual average
precipitation is 800 mm in the west and more than 2000 mm at the coastline (Gemmer et al.,
2011). Due to the East Asian summer monsoon, precipitation during the flood season (April
to September) accounts for 80% of the annual precipitation.

The basin consists of three main tributaries, i.e. the Xijiang River, Beijiang River, and
Dongjiang River, and additionally many small rivers within Zhujiang River Delta. The Xijiang
River is the largest tributary with a total length of 2,214km and draining an area of
353,100km2 (Liu et al., 2012a). It drains the entire western and central parts of the Zhujiang
River basin, while the other two tributaries are found in the east (Fischer et al., 2012a). The
watershed area of the Xijiang River outlet at Gaoyao hydrological station accounts for 99.4%
of the Xijiang basin area. Due to available data, the Xijiang River basin is chosen as the study
region. The location of the basin and the course of the main river system are provided in

Figure 1.

2.2 Data

A digital elevation model (DEM) with a scale of 1: 250 000 is used to extract the river
network and to define the sub-basins of the Xijiang River basin for hydrological modeling.
The DEM was provided by the China Fundamental Geographic Information Center.

Daily climate data of 129 meteorological stations within the Xijiang River Basin for the
period of 1960-2006 are provided by the National Meteorological Information Center, CMA.
The daily stream flow records from Gaoyao hydrological station are obtained from the
annual Water Year Books of the Zhujiang Conservancy Commission of the Ministry of Water
Resources, and are also available for the period 1960-2006. All data are used to calibrate
and validate the hydrological model. An elevation map including the location of the 129
meteorological stations is provided in Figure 1.

Daily data of precipitation and temperature from four GCMs (Table 1) are available for
the simulation period (1961-1990) and for the 21st century and have been retrieved from
the [PCC Data Distribution Centre (http://ipcc-ddc.cru.uea.ac.uk). The RCM data (here CCLM)
covering the same periods is provided by the Potsdam Institute for Climate Impact Research

(PIK). All simulated and projected data are used as input to the hydrological model (here
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HBV-D) to simulate the runoff of the Xijiang basin. Based on the provided data, past and

potential future changes in flood frequency are analyzed in this study.

3. Methodologies
3.1 Description of the hydrological model (HBV-D)

In comparison with physically-based distributed hydrological models, relatively
simple semi-distributed hydrological models are more useful for exploring climate risks
over long time-scales and large geographic areas (Preston and Jones, 2008). Based on
research using the semi-distributed hydrological model HBV-D, Krysanova and Bronstert
(1999) conclude that semi-distributed conceptual hydrological models avoid an increase in
the number of parameters with the area, while preserving the underlying conceptual
information about the spatially-distributed parameters used for the hydrological response
categories defined.

The Hydrologiska Byrans Vattenbalansavdelning (HBV) model is a semi-distributed
conceptual hydrological model (Bergstréom, 1992), with sub-basins as primary hydrological
units (HU). Here, we apply the HBV-D model (Krysanova and Bronstert, 1999), which is a
derivative of the ‘Nordic’ HBV model (Saelthun, 1996) including an improved rainfall-runoff
coupling. The model divides the basin into a certain number of HU’s depending on different
parameters. Every HU is categorized into certain elevation and land cover zones, including
their climate parameters in order to better comprise the regional characteristics and
increase the performance of the model.

Daily potential evapotranspiration (EP) is computed using the formula by Blaney and
Criddle (1950) rather than method for monthly EP as suggested by Menzel et al. (2006).
Compared to the original HBV, HBV-D results in an improved description of land cover
characteristics and more physically sound evapotranspiration schemes, which are more
appropriate for investigations of regional hydrological impacts of global change in large

basins (Krysanova and Bronstert, 1999).
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3.2 Calibration and validation of hydrological model (HBV-D)

Preliminarily, the Xijiang River basin is subdivided into 17 HU’s with areas ranging
from 754km?2 to 54,400km?2. The calibration and the validation of the HBV-D model
performance are based on the daily stream flow at Gaoyao hydrological station from 1960 to
2006. The stream flow time series is firstly divided into three time-periods: 1960-1975,
1976-1990 and 1991-2006. Daily data of the period 1976-1990 are used to calibrate the
model, while data of the other two periods are used to validate the model. A model run was
considered to be successful when certain measures of efficiency are in specific efficiency
levels. The applied measures of efficiency are the widely used Nash-Sutcliffe coefficient (Ens),
the correlation coefficient (Cor), and the relative error (Bias). The definitions and calculation
of these measures are provided by Menzel et al. (2006), Liu et al. (2011) and Fischer et al.
(2012D).

For all three periods, the thresholds are determined for Ens above 0.8, for Cor above
0.9, and for the Bias below 4%. The results of the calibration and validation periods are
shown in (Liu et al., 2012b). It can be seen that all three measures fall in the specific
efficiency levels for both the calibration and the validation periods.

Moreover, by comparing the empirical frequency curve of the observed stream flow
with the frequency curves of the simulated stream flow for each period, we can see that the
model can well simulate the daily stream flow at Gaoyao hydrological station. Although the
simulated high frequencies show slightly lower amounts than the empirical high frequencies,
i.e. extreme stream flow amounts, the frequency curves of simulated daily stream flow
matches well those of the observed (Fig. 2). As can be seen in Figure 2, the simulated stream
flow shows more often slightly higher frequencies in stream flow amounts of 4-6 mm/d than
the observed. A strong correlation and similar seasonal annual course is further determined
for the observed and simulated runoff depth with the precipitation. This is in line with the
studies by Liu et al. (2012a,b) and Fischer et al. (2012c), who have concluded that
hydrological responses depend strongly on the precipitation patterns; hence, changes in

precipitation will impact the stream flow correspondingly.
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3.3 Frequency analysis

For many rivers, the stream flow varies significantly from season to season and
especially from wet years to drought years and vice versa. Using the method of annual block
maxima to estimate flood frequencies, it is possible that the annual maximum peak stream
flow does not reach flood potential in drought years, nor does it imply high floods in wet
years. Hence, for estimating frequencies in flood occurrence and magnitude, the use of the
peaks over threshold (POT) method is preferred over the annual block maxima method. The
POT considers all peaks in stream flow above a certain threshold (Begueria, 2005); hence,
most flood events will be taken into account. Here, the highest peaks are sampled at an
average rate of three events per year, applying the standard independence criteria (Bayliss
and Jones, 1992; Kay et al., 2009).

Because of its flexibility and robustness, the Generalized Pareto Distribution (GPD)
has been chosen for estimating return periods of flood events (Davison, 1984). In 1975,
Pickands (1975) introduced the GPD into the hydro-meteorological field, which was then
widely used in the following decades (Smith, 1984; van Montfort and Witter, 1985; Kay et al.,
2009; Fang et al,, 2007). Kay et al. (2009) indicate that the GPD can be successfully fitted to
the magnitudes of the POT with the peak arrival times assumed to correspond to a Poisson
distribution (Naden, 1992).

For the estimation of changes in flood frequencies of the Xijiang River, the GPD is
applied to simulated peak stream flow events. Based on the fitted GPD, return levels of five
return periods (2 years, 5 years, 10 years, 20 years, and 50 years) are estimated for the
baseline period (1961-1990) and three future 30-year periods, i.e. the 2020s (2011-2040),
the 2050s (2041-2070), and the 2080s (2071-2100; or 2071-2099 for NCAR/CCSM3). The
estimated return levels (Fischer et al,, 2012a) describe a range of flood events, from annual

(2-year return period) to rare events (50-year return period).

3.4 Quantitative estimation of changes in flood frequencies

Magnitude and frequency of flood events are usually used to discuss changes in flood
events. The comparison of return periods of flood events will give an indication of how the
flood regime may evolve in the future (Prudhomme et al., 2003). In this study, we intend to

identify changes in flood magnitude of future periods compared to the current climate. The
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flood magnitudes are estimated as return levels of five return periods for observed and
future 30-year-periods (by four different GCMs) using the GPD. Based on this, the impact of
climate change on flood frequencies will be defined as the relative difference (i.e. Bias) of
projected flood flow to the current flood flow at a certain return level. Therefore, the Bias is

calculated using the following equation:

(Qp-Qc) /Qc* 100 %

Where, Qp is the flood flow of a certain return period in future, and Qc is the flood flow
of the same return period of the baseline period.

The uncertainty of climate change impact is described as the range of the 90% interval
in natural variability of the climate system, while described as the relative range of all
ensemble members. For example, the uncertainty from GCMs structure is the interval
between minimum (5% percentile) and maximum (95% percentile) change of each GCM

under the same emission scenarios.

4. Sources of uncertainty

The uncertainties of projected impacts of climate change are usually expressed by
changes in pre-defined sources of uncertainty relative to a baseline scenario or baseline
period (Kay et al., 2009; Jenkins and Lowe, 2003). On one hand, the relative change to a
baseline makes it easy to compare impacts between different regions and different time
horizons. On the other hand, e.g. the use of relative changes can avoid the influence of a bias
in GCM simulations etc. In our study, the mean of the re-sampled natural variability, based
on 100 iterations, is chosen as the baseline scenario. Hence, uncertainty is expressed as the
change in an uncertainty source relative to the mean of the re-sampled natural variability in

order to remove the bias of absolute values.

4.1 Natural variability of the climate system

Natural variability of the climate system is mainly caused by internal "chaos" of the

system or external factors such as solar energy, natural CO2 emissions from volcanic
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eruptions etc. The influence of natural variability on the current climate variability can
either be added to, or subtracted from any anthropogenic changes identified in the current
climate system (Jenkins and Lowe, 2003).We cannot yet predict the effect of this natural
variability in a given future period, but we can quantify its range of uncertainty by different
approaches.

Kay et al. (2009) specified two methods to assess the effects of climate variability. In
the first approach, a large number of climate simulations are generated by a dynamic model,
whereas each simulation is based on a different initial condition compared to the control run
of the model (Jenkins and Lowe, 2003). However, it is indicated that such model-based
climate variability ensemble may or may not be representative of the actual climate
variability (Hulme et al., 2002). The other method is based on a stochastic rainfall model
with which a large number of rainfall time-series are generated for the current and future
climate periods (Cameron, 2006; Kilsby et al., 2007). This approach requires the checking of
its ability to simulate extremes as well as its replication of the seasonal cycle. Moreover, it is
based on the assumption of a stationary climate system, i.e. the features of the model under
current climate are still valid under future climate (Kay et al., 2009). Another method by
Menzel et al. (2006) suggests driving certain GCM at a constant greenhouse gas
concentration to roughly represent the status of the climate system at a certain time interval.
This model is then run for multiple years by using unmodified boundary conditions. The
generated time series are considered to represent the whole range of possible natural
variability, and serve to identify effects of a changing climate derived by other model
scenarios assuming natural conditions (Menzel et al., 2006).

In general, model-based approaches are computationally too large to run GCM or RCM
ensembles which integrate multiple hundred years. Therefore, we apply a stochastic rainfall
model to explore the effects of climate variability. A set of hundred rainfall time series are
generated through monthly re-sampling. This is based on simulated daily rainfall series from
a certain GCM for both the baseline (1961-1990) and future climate periods. For example,
taking the monthly data from January 1961 to December 1990, a new series is created by
first selecting a data of January from any of those 30 years to represent January 1961, then
selecting data of any February to represent February 1961, and so on until a time series of
the same length as the original is generated. The rainfall data for the baseline and future
climate periods are the simulated/projected results of the GCMs (Table 1). Each of the

hundred new rainfall time series of every GCM is used to drive HBV-D. Then, the flood

10
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frequencies at five return periods (2, 5, 10, 20, 50 years) are estimated for the baseline and

the three future climate periods.

4.2 Uncertainty from emission scenarios

The SRES scenarios (IPCC SRES, 2000), were designed to improve some aspects of the
[S92 scenarios and have been used in the second, third and fourth IPCC Assessment Reports.
The scenarios have been widely used for projections of future climate conditions. Forty
different scenarios are organized into six families containing individual scenarios with
common themes. The six families of scenarios are A1FI, A1B, A1T, A2, B1, and B2. They are
discussed on their uncertainty in the IPCC Fourth Assessment Report (IPCC AR4, 2007). Only
the projections of the GCMs under SRES A2, A1B, and B1 are widely available. Whereas
complete series of daily precipitation and average temperature from1961 to 2100 (or to
2099 for CCSM3) for all three scenarios are available only for MK3.5 and CCSM3. Hence, the
uncertainty from these emission scenarios is discussed on the basis of the two GCMs (MK3_5

and CCSM3).

4.3 Uncertainty from GCM structure

Each GCM generally project different changes in climatic parameters when forced by a
given emissions scenario. The use of different climate sensitivities to a doubling of CO2 leads
to different variations and trends in temperature and precipitation (Hulme et al. 2002; Kay
etal., 2009). In this study, the uncertainty from these GCM structures is assessed on the
basis of runoff simulations by HBV-D focusing on climate change impacts on flood frequency
at five return periods. These simulations are based on the precipitation and temperature
parameters from the four GCMs (Table 1) under the SRES A1B scenario. The results of the
uncertainty from GCM structure are compared with the natural variability (Kay et al., 2009).

Here, the natural variability is the average of the GCMs as described in section 4.1.

11
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4.4 Uncertainty from downscaling techniques

The simulations by a hydrological model may produce relative large bias when data
from Global Circulation Models (GCMs) is directly used to drive the hydrological model,
because the spatial resolution of GCMs is too coarse and does not capture smaller scale
climate effects (Cubasch, 2001; Menzel et al., 2006). In order to bridge this gap so-called
“downscaling techniques” are usually used. In many studies, dynamical and statistical
downscaling models have been developed and implemented (e.g. Wilby and Dawson, 2007;
Liu etal,, 2011; Xu, 1999; Fowler et al., 2007). In this study, we use the statistical method of
daily percentile scaling by Chiew (2006) and the dynamical method of the regional climate
model CCLM (Rockel et al., 2008) to estimate the uncertainty from downscaling techniques.
CCLM is a regional climate model partially developed by PIK. In this study, CCLM uses a
nesting technique to downscale the coarse resolution GCM ECHAMS5 under the SRES A1B
scenario. The daily percentile scaling method has been used to correct daily precipitation
from ECHAMS5, CCSM3 and MK3.5 to reduce the simulation bias (Liu and Ren, 2012). This
method relates each percentile of GCM simulated daily rainfall to the observed “natural”
rainfall of the same percentile. Using this relationship, the GCM projected daily rainfall of
future climate periods is converted to the “natural” rainfall in future periods (Chiew, 2006).
The difference of the results of both downscaling techniques is compared with the natural

variability.

5. Results

5.1 Projected changes in flood frequencies

A multi-model ensemble is used to generate the projected stream flow of Xijiang River
and to identify future changes in flood frequency (cf. Liu et al., 2012b). In Figure 3, the
frequency curves of changes in projected annual maximum 1-day flood peak flows, i.e. the
flood frequency, are shown for three future periods relative to the baseline period (1961-
1990). The shift in future periods towards the right side of the baseline scenario implies a
projected shift to more intense peak stream flows (Fig. 3). The projected stream flow was
generated by HBV-D using the multi-model ensemble which incorporates four GCMs, one

RCM (CCLM) and one downscaled ECHAMS5 dataset based on daily percentile scaling. In

12
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Figure 4, the change of flood intensity for the 2020s, 2050s, and 2080s are illustrated
relative to the mean of the baseline period (1961-1990). The figure shows that there are
different bias in the projected flood frequencies depending on the GCM, the emission
scenario, and the downscaling method. This large scattering in the projections is due to
internal climate variability. The differences can be described by estimating uncertainties of
the different sources, i.e. the emission scenario, the GCM structure, and the downscaling

technique.

5.2 Validation of simulated and projected natural variability

The observed and simulated natural variability of the climate system is calculated
using 100 rainfall time series generated with the monthly re-sampling method based on the
original daily rainfall series of the observed and each GCM (Table 1) for both the baseline
(1961-1990, Fig. 5) and the three future climate periods (Fig. 6). Differences in the
frequencies for the five return periods are shown as percentage anomaly relative to the
observed baseline period. As can be seen in Figure 5, the GCMs show similar natural
variability as observed, whereas MK3_5 shows a larger range, while CCSM3 and HIRES show
slightly smaller ranges, for most of the return periods.

Taking the temporal tendencies of the future periods into account, we observe that the
projected natural variability in flood frequency of CCSM3 shows - compared to the baseline
period - much higher frequencies than the other three GCMs. This might represent a more
significant representation or overestimation of the effects of climate change in CCSM3. The
projected bounds for MK3_5 and ECHAMS5 are almost completely within the simulated
baseline bounds (except for MK3_5 for the 2-year return period), this implies that according
to the two GCMs no strong shifts in magnitude and range will occur in the future (Fig. 6).

It is also shown that the uncertainty ranges from natural variability for longer return
periods are larger than that for shorter return periods. In addition, the natural variability
differs between the GCMs to a high extent, but taking the multi-model-ensemble a relatively
good representation of the natural variability is given, which e.g. is in line with the findings

for world regions by Ruosteenoja et al. (2003).
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5.3 Uncertainty from emission scenarios

The uncertainty from emission scenarios is shown in Figure 7. Here, we compare the
natural variability with the re-sampled natural variability under the SRES A2, A1B and B1
scenarios of two combined GCMs (MK3.5 and CCSM3). The uncertainty from scenarios for
both GCMs is larger than from natural variability, because the ‘future’ scenario bounds shift
upwards than the ‘future’ variability bounds, especially in the 2050s and 2080s. For
emission scenarios, the differences in the range at the same return periods are largest for
the 2080s, while smallest for the 2020s. Moreover, the range becomes wider with larger
return periods in the same time period. GPD function chosen to fit the flood frequencies

probably results in higher range of the flood intensity with longer recurrence time.

5.4 Uncertainty from GCM structure

In Figure 8, the ranges in uncertainty from GCM structure of four GCMs under SRES
A1B are shown. It is projected that the 2050s and 2080s have larger ranges than the 2020s.
The uncertainty from GCM structure is larger than the natural variability for the 2050s and
2080s for all five return periods, as the projected frequencies are consistently shifted
upwards. In the 2020s, the uncertainty from GCM structure shows disparate pattern in the
five return periods. This behavior might be partly correlated with the use of the GPD
function, which might not reflect the larger return periods (20- and 50-years) in a verifiable
manner. In addition, the ‘future’ natural variability of the multi-model ensemble of four
GCMs is larger than the baseline variability (cf. Fig. 5). This finding explains that the GCM

structure is one of the sources of uncertainty.

5.5 Uncertainty from downscaling techniques

The changes in flood frequencies due to different downscaling techniques are shown
in Figure 9. Here, ECHAMS5 output is downscaled using CCLM and daily percentile scaling.
The results are expressed as the relative change to the re-sampled baseline natural
variability. It is shown that the change in flood frequency is higher for GCM ECHAMS5 than for
both the dynamical (CCLM) and statistical (daily percentile scaling) downscaling techniques

for almost all return periods and future periods (Fig. 9). This shows that downscaling
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techniques have relatively little impact as an uncertainty source in this study. The flood
frequency for the downscaling techniques shows an increasing trend with time and return
period. Hence, the uncertainties from downscaling are larger than from natural variability
for the 2050s and 2080s, because the bounds are shifted upwards in each return period, but

are similar or shifted downwards for the 2020s.

5.6 Comparison of uncertainty sources

In Figure 10, bar charts of the relative impact range of the uncertainty sources are
shown at five return periods for three future time periods. The order of importance varies
with the lead time and return period. The emission scenarios are the dominant source of
uncertainty at high return periods, while the GCM structure is dominant at the lower return
periods. The emission scenarios are dominant in the 2020s and 2080s, while in the 2050s
the emission scenarios and the GCM structure are both similarly dominant. For the 2080s,
the importance of downscaling techniques is comparative to the GCM structure, which may
be explained by the fact that uncertainty from downscaling is relatively stable with lead time,

but uncertainty from GCM structure becomes smaller with lead time.

6. Conclusions and discussion

In this paper, the impact ranges of three uncertainty sources in projected flood
frequencies in Zhujiang River, South China have been discussed. The projection is based on a
multi-model ensemble, which incorporates results from four GCMs, one RCM, and one daily
percentile scaling. To identify relative changes in flood frequencies for each uncertainty
source, we applied the single-propagation rather than the multi-propagation approach to
the available data.

The results reveal that the order of importance varies with the lead time and return
period. The emission scenarios are the dominant source of uncertainty especially at higher
return periods, while the GCM structure is the dominant source at the lowest return period
in the three future periods. The importance of downscaling techniques is comparative to the

GCM structure at most return periods for the 2080s, but relatively less important in the

15



Appendix VII

2020s and 2050s. Kay et al. (2009) discussed the importance of various uncertainty sources
in flood frequency over two basins in the UK for the 2080s, they found that the dominance of
uncertainty sources vary with the region. They conclude that uncertainty from GCM
structure and emission scenarios are more dominant than from downscaling techniques.
This is also consistent with the findings of Jenkins and Lowe (2003), who indicate that the
largest uncertainty probably lies with the global prediction rather than the RCM
downscaling. The magnitude of uncertainty sources is different among the various case
studies, but more similar in the dominance of one source. The low ranges in uncertainty
based on the two applied downscaling techniques suggest that both methods can be used to
analyze regional impacts of climate change (with higher resolution) because only little
increases in the uncertainty of projected flood frequencies are expected.

As for the natural variability, the impacts of climate change are stronger represented
with CCSM3 and HIRES, as the bounds of future periods are shifted higher upwards than the
bounds of the baseline period (1961-1990). Accordingly, climate change impacts are less
strong represented with MK3.5 and ECHAMS5, as their ‘future’ bounds are almost completely
of similar size and magnitude as the baseline bounds. Hence, we conclude that projected
natural variability differs among GCMs, which is also indicated on similar terms by
Ruosteenoja et al. (2003). Moreover, larger ranges in natural variability are projected for
longer return periods than for shorter periods.

The ranges in uncertainty from GCM structure are higher in the 2050s and 2080s than
in the 2020s for the same return period. The uncertainty from emissions is largest in the
2020s, while smallest in the 2050s for the same return periods. The ranges increase with
rising return period for the same time period especially in the 2020s and 2080s. This
behavior might be correlated to the use of the GPD function, which might not reflect the
higher return periods (20- and 50-years) in a verifiable manner. As we investigate changes
in 30-year time intervals, the estimations for the 20-year and 50-year return periods should
be interpreted carefully as longer return periods are less accurate than shorter periods
considering the relatively short time interval (Fischer et al., 2012a).

The results are not fully representative, as some sources of uncertainty are not
investigated in this study. For example, the GCM initial conditions, the RCM structure, the
hydrological model structure, and the hydrological parameterization are not discussed here.

We have neglected the uncertainties from the applied hydrological model (HBV-D), as

16



Appendix VII

several investigations show that uncertainty from hydrological modeling is less important
(Kay et al., 2009; Menzel et al,, 2006; Liu et al,, 2011).

Ideally, more emission scenarios, GCMs, RCMs and statistical downscaling methods
should be incorporated into multi-model ensembles, to lower the uncertainty of future
climate projections. Finally, further investigations into different climate and hydrological
parameters and their uncertainties might give more conclusive suggestions to the
tendencies in climate change impacts. According to Wilby and Dawson (2007) and Kay et al.
(2009), various sources of uncertainties are involved in the detection of climate change
impacts amongst natural variability. In estimating and quantifying the influence of such
uncertainty sources, policy-makers can be better convinced of integrating climate change
into their long-term plans (Kay et al., 2009), which can strengthen e.g. water resources

management in the Zhujiang River basin.
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Table captions:

Table 1 Components of the four GCMs used in this study

Figure captions:

Fig. 1 Overview map of the Zhujiang River basin in South China (upper panel), and map
(lower panel) of Xijiang River basin (red line) indicating elevation (shading),
administrative boundaries (grey lines) incl. names, the meteorological stations (red
dots) and the outlet (red triangle) at Gaoyao.

Fig. 2 Frequency curves of observed (solid line) and simulated (dashed line) stream flow at
Gaoyao hydrological station for the calibration period (a) and the validation periods
(b, c).

Fig. 3 Frequency curves of changes in projected annual maximum 1-day flood peak flows (i.e.
flood frequency) for three future periods relative to the baseline period (1961-1990)
based on a multi-model ensemble (adapted from Fig. 6 in Liu et al., 2012b)

Fig. 4 Box plots of changes in projected annual maximum 1-day flood frequency for three
future periods relative to the baseline period (1961-1990). Box plots: the central
mark is the median; the box-edges are the 25th and 75th percentiles

Fig. 5 Change in natural variability of monthly re-sampled simulated flood frequencies
relative to the mean of each resampling series at five return periods (2, 5, 10, 20 and
50 years) for the baseline period 1961-1990. Observations (black), CCSM3 (red),
MK3.5 (blue), ECHAMS (cyan), and HIRES (green)

Fig. 6 Change in flood frequency of four monthly re-sampled GCMs for the future periods of
2020s (red), 2050s (blue), and 2080s (green) relative to the baseline period of 1961-
1990 (black) for five return periods (2, 5, 10, 20 and 50 years). The box plots
represent the median (central mark), the 25th and 75th percentiles (edges of the
boxes), and the inter-quartile range (length of the whiskers)

Fig. 7 Change in flood frequency of the SRES A2 (square), A1B (diamond) and B1 (circle)
scenarios of two combined GCMs (MK3_5 and CCSM3) relative to the re-sampled
observed (black +) and simulated (colored +) natural variability for five return

periods (2, 5, 10, 20, and 50 years) for the 2020s (red), 2050s (blue), and 2080s
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(green). For the variability, the bars show the median and the 90% upper and lower
bounds.

Fig. 8 Change in flood frequency of four GCMs under SRES A1B relative to the re-sampled
observed (black +) and simulated (colored +) natural variability for five return
periods (2, 5, 10, 20, and 50 years) for the 2020s (red), 2050s (blue), and 2080s
(green). For the variability, the bars show the median and the 90% upper and lower
bounds.

Fig. 9 Change in flood frequency from downscaling techniques (CCLM and daily percentile
scaling), using ECHAMS5, relative to the re-sampled observed (black +) and simulated
(colored +) natural variability for five return periods (2, 5, 10, 20, and 50 years) for
the 2020s (red), 2050s (blue), and 2080s (green). Changes for ECHAMS (squares)
and for downscaled ECHAMS5 (triangles)

Fig. 10 Bar charts of the relative impact range of three uncertainty sources, i.e. emission
scenarios (blue), GCM structure (red) and downscaling techniques (green) for five
return periods (2, 5, 10, 20 and 50 years) for the future periods of the 2020s (left
panel), 2050s (middle panel), and 2080s (right panel)

Table 1 Components of the four GCMs used in this study

D GCM Country Atmosphere  Ocean Sea ice Land
component component component component
Te3Llg  MOM22
1 CSIRO/ Australia 1.875° % L31 n/a n/a
MK3 5 us Lg7e0 1.875° x
' 0.925°
, MPLOMS/ ]%231{1‘:“31\245 OML4l y
ECHAM5 ~ermany 20 x 30 1.0° x 1.0° a
CAM3 T85 POP1.4.3
3 Iggg‘l\% USA 126 L40 %S;MS 0 comso
1.4°¢1.4°  1.0°x 1.0°
MIROC3.2/ TI06L56 =47 02812°x  0.5625° x
4 Japan o 10 0.2812°x o o
HIRES 1L125°% 1% oo, 0.1875 0.5625
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Fig. 1 Overview map of the Zhujiang River basin in South China (upper panel), and
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Fig. 2 Frequency curves of observed (solid line) and simulated (dashed line) stream
flow at Gaoyao hydrological station for the calibration period (a) and the validation
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Fig. 6 Change in flood frequency of four monthly re-sampled GCMs for the future
periods of 2020s (red), 2050s (blue), and 2080s (green) relative to the baseline
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Fig. 7 Change in flood frequency of the SRES A2 (square), A1B (diamond) and B1
(circle) scenarios of two combined GCMs (MK3_5 and CCSM3) relative to the re-
sampled observed (black +) and simulated (colored +) natural variability for five
return periods (2, 5, 10, 20, and 50 years) for the 2020s (red), 2050s (blue), and
2080s (green). For the variability, the bars show the median and the 90% upper and
lower bounds.

26



Appendix VII

80

% 40 |- : o : A ¢ .
= 04, 8. I |

e fIAI@I o] IOI al I I T

g FALT T OF T RO LOR TRV RO LR O LT IR L L

[

2 a

5'40 2 : 5 r A1o i A20 i 50

Return period [years]

Fig. 8 Change in flood frequency of four GCMs under SRES A1B relative to the re-
sampled observed (black +) and simulated (colored +) natural variability for five
return periods (2, 5, 10, 20, and 50 years) for the 2020s (red), 2050s (blue), and
2080s (green). For the variability, the bars show the median and the 90% upper and
lower bounds.
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Fig 9 Change in flood frequency from downscaling techniques (CCLM and daily
percentile scaling), using ECHAMS, relative to the re-sampled observed (black +) and
simulated (colored +) natural variability for five return periods (2, 5, 10, 20, and 50
years) for the 2020s (red), 2050s (blue), and 2080s (green). Changes for ECHAMS
(squares) and for downscaled ECHAMS (triangles)
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Fig. 10 Bar charts of the relative impact range of three uncertainty sources, i.e.
emission scenarios (blue), GCM structure (red) and downscaling techniques (green)
for five return periods (2, 5, 10, 20 and 50 years) for the future periods of the 2020s
(left panel), 2050s (middle panel), and 2080s (right panel)
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