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Abstract 

The preservation of terrestrial organic carbon (OC) in marine sediments is a crucial component of global 

carbon cycle on geological timescale. Characterizing the origins and compositions of the terrestrial OC 

is critical for understanding the fate of terrestrial OC in marine sediments and constraining the terrestrial 

OC cycling. The amount of terrestrial OC discharged by the Amazon River to the Atlantic Ocean every 

year is about 8-10 % of the global annual input of terrestrial OC to oceans. Therefore, the terrestrial OC 

in the Amazon system has been extensively investigated. However, until now, many aspects regarding 

the origin and fate of terrestrial OC in the Amazon system are still ambiguous and need to be elucidated. 

Firstly, little is known about the disperse pattern of lignin (a major component of higher plants biomass 

and can serve as a biomarker of terrestrial OC) and the factors controlling the characteristics of 

terrestrial OC in the Amazon continental margin. Secondly, it is questionable whether the Amazon 

continental margin can efficiently store terrestrial OC or serve as a sedimentary OC incinerator. Thirdly, 

the response of vegetation to climate change during late Pleistocene is debated. To fill these knowledge 

gaps, lignin and its isotope compositions (13C and 14C) are used as the major tools to provide a better 

understanding of the origins, pattern of distribution, processing, composition and fate of terrestrial OC 

in the Amazon system.  

In the first part, the biogeochemical characteristics of terrestrial OC in the fluvial sediments from the 

Amazon drainage basin and in the adjacent marine sediments are compared. Total organic carbon (TOC) 

and lignin content exhibit positive correlations with aluminium to silicon ratios (Al/Si, indicative of the 

sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an 

important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine 

particles. Low δ13C values of bulk OC in the main tributaries consistently correspond with the 

dominance of C3 vegetation. Compositions of lignin, syringyl to vanillyl (S/V) and cinnamyl to vanillyl 

(C/V), suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon 

basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin 

compositions are not observed. In the marine sediments, the distribution of δ13C values of bulk OC and 

lignin contents implies that terrestrial OC discharged by the Amazon River is transported north-

westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions 

in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples 

suggesting that processing of terrestrial OC during offshore transport does not change the encoded 

source information. Therefore, the lignin compositions preserved in these offshore sediments can 

reliably reflect the vegetation in the Amazon River catchment. In sediments from the Amazon Fan, low 

lignin content, relatively low δ13C values of bulk OC and high degradation degree of lignin demonstrate 

that a significant fraction of the deposited terrestrial OC is derived from petrogenic (sourced from 

ancient rocks) sources. 
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In the second part, a new method of assessing procedural blank for compound-specific 14C analysis is 

developed with a Bayesian model. This method is successfully used in the third part of this thesis, which 

is about radiocarbon dating of source-specific biomarkers (n-alkanoic acids and lignin phenols) in 

riverbed sediments from the lowland Amazon basin and offshore sediments. The results show that ∆14C 

values of terrestrial OC on the Amazon continental margin are substantially influenced by matrix 

association effects, where terrestrial OC associated with the finer-grained particles is better preserved 

and more resistant to decomposition during residence in intermediate reservoirs. The compound-

specific ∆14C values imply that as expected short-chain n-alkanoic acids represent recently 

biosynthesized organic matter from riverine or marine primary production whereas both long-chain n-

alkanoic acids and lignin phenols used as markers for land vegetation have pre-aged in soils where they 

resided attached to mineral surfaces. By using a ternary mixing model, a well-constrained quantitative 

estimate of the composition of sedimentary OC in riverbed and marine sediments is obtained. Despite 

the variable composition of sedimentary OC in the Amazon system, the burial of fossil rock-derived 

OC is relatively constant. Based on the absolute content of bulk terrestrial OC, lignin, and long-chain 

n-alkanoic acids and their 14C ages, half-lives of bulk terrestrial OC, lignin and long-chain n-alkanoic 

acids during transport are estimated to be about 2310 years, 13860 and 470 years, respectively. This 

suggests that the preservation of terrestrial OC in the mud belt on the Amazon shelf is more efficient 

than previously assumed. 

In the fourth part, the δ13C analysis of lignin phenols are applied in marine surface sediments from the 

Amazon shelf and sediment core GeoB16224-1 recovered from the continental margin NW of the 

Amazon mouth. The weighted average δ13C values of lignin indicate that the modern terrestrial OC on 

the Amazon shelf is dominated by C3 plants and the vegetation source remained constant over the past 

12.8-50 kyr, in agreement with previous studies. A general pattern of phenolic δ13C values is observed 

with the acid monomers of V and S phenols displaying lower δ13C values than their aldehyde 

counterparts, while C phenols are always more enriched in 13C than V and S phenols. The lignin content 

and composition paired with δ13C of lignin are used to reconstruct the characteristics of terrestrial OC 

deposited on the continental margin NW of the Amazon mouth over the period 12.8-50 kyr. Lignin 

composition, δ13C values of lignin, BIT index, δ13C and δD values plant-wax lipids show clear in-phase 

variation. Therefore, it can be proposed that next to vegetation change, the variation of δ13C values of 

lignin and plant-wax lipids during HS could reflect either enhanced discharge of more degraded 

terrestrial OC and/or more contributions of terrestrial from high altitude regions. These two possible 

scenarios suggest that the Amazon basin was still a stable ecological system dominated by C3 forest 

and the increases of δ13C values of lignin and plant-wax lipids were actually the consequence of changes 

of sources of terrestrial OC through the late Pleistocene. 
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Kurzfassung  

Die Erhaltung von terrestrischem organischen Kohlenstoff (OC, engl.: organic carbon) in ma-rinen 

Sedimenten stellt über geologische Zeiträume eine wichtige Komponente im globalen 

Kohlenstoffkreislauf dar. Um den Verbleib von terrestrischem OC in marinen Sedimenten zu verstehen, 

sind die Charakterisierung der Quellen und der Zusammensetzung des terrestri-schen OC entscheidend 

und bilden einen wichtigen Grundbaustein zum Verständnis des Kreislaufs von terrestrischem OC. Die 

Menge an terrestrischem OC, die jährlich mit der Sedi-mentfracht des Amazonas in den Atlantik 

eingetragen wird, beträgt 8-10% der globalen Zu-fuhr in die Ozeane. Aus diesem Grund ist die 

organische Sedimentfracht des Amazonas inten-siv in wissenschaftlichen Studien untersucht worden. 

Dennoch sind bis heute zahlreiche As-pekte bezüglich der Herkunft und des Verbleibs von 

terrestrischem OC im Amazonas Fluss-system und den angrenzenden marinen Sedimenten noch immer 

nicht eindeutig verstanden und bedürfen weiterer Forschung. Erstens ist über das Verteilungs-verhalten 

von Lignin (einer wichtigen organischen Verbindung terrestrischer Pflanzen und signifikanter Teil des 

terrestri-schen OCs in Flusssystemen) am Kontinentalhang und der zugrundeliegenden Prozesse wenig 

bekannt. Zweitens ist es fraglich, ob der Kontinentalhang vorm Amazonas effizient terrestri-schen OC 

erhalten und lagern kann oder, ob der OC primär abgebaut, bzw. remineralisiert wird. Drittens ist bisher 

nicht vollständig geklärt, wie die Vegetation im Amazonasbecken auf pleistozäne Klimaschwankungen 

reagiert hat. Um diese Wissenslücken zu füllen, werden in dieser Dissertation Lignin-Phenole und deren 

isotopische Zusammensetzung (13C, 14C) als In-dikatoren für Ursprung, Verteilungsmuster und 

Zusammensetzung des terrestrischen OC im Amazonassystem angewandt. Dies soll einen Beitrag 

leisten, die sedimentologischen, hydro-logischen und biogeochemischen Prozesse, denen der 

terrestrische OC im System ausgesetzt ist, besser zu verstehen.  

Im ersten Teil der Arbeit werden die biogeochemischen Charakteristika des terrestrischen OC in 

fluviatilen Sedimenten aus dem Einzugsgebiet des Amazonas mit denen aus marinen Sedi-menten im 

Flussmündungsbereich verglichen. Die Gesamtgehalte organischen Kohlenstoffs (TOC, engl.: total 

organic carbon) und Ligningehalte sind positiv mit Alumini-um/Silicium Verhältnissen (Al/Si; ein 

Anzeiger für Korngrößen im Sediment) korreliert. Das impliziert, dass die Korngrößenverteilung der 

Sedimentfracht des Amazonas eine wichtige Rolle für die Erhaltung von TOC spielt und zur 

bevorzugten Erhaltung einzelner Lignin-Phenole in der Feinfraktion führt. Niedrige δ13C-Werte des 

organischen Kohlenstoffs (δ13Cbulk) aus den Hauptarmen des Flusses reflektieren die Dominanz von C3-

Pflanzen im Einzugsgebiet. Die Zusammensetzung von Lignin, (d.h. Syringyl/Vanillyl (S/V) und 

Cinnamyl/Vanillyl (C/V) Verhältnisse) suggerieren, dass holzfreie Angiospermen die dominierende 

Quelle für Lignin im Amazonasbecken sind. Obwohl vaskuläre Pflanzen im Einzugsgebiet des 

Flusssystems eine hohe Diversität aufweisen, zeigen die Daten aus den verschiedenen Flussarmen keine 

regionalen Unterschiede in der Ligninzusammensetzung. In den marinen Sedimenten impli-zieren die 
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Ligningehalte und die Verteilung der δ13Cbulk-Werte, dass der terrestrische OC aus der Amazonasfracht 

durch den Nordbrasilien-Strom nordwestlich transportiert und hauptsäch-lich auf dem inneren Schelf 

abgelagert wird. Die Ligninzusammensetzung in Offshore-Sedi-menten, welche unter dem Einfluss der 

Amazonassediment-fracht stehen, entspricht der Zu-sammensetzung in den Flussbettproben. Dies zeigt, 

dass sedimentologische und biogeochemi-sche Prozesse während des Transports die ursprünglichen 

Informationen bezüglich der Quel-len, die in der Phenolverteilung enthaltenen sind, nicht verändern. 

Daher kann die Ligninzu-sammensetzung in den marinen Sedimenten als verlässlicher Indikator für die 

Vegetationszu-sammensetzung im Amazonasbecken herangezogen werden. In den Sedimenten des 

Amazo-nas-Sedimentfächers, zeigen niedrige Ligningehalte zusammen mit relativ geringen δ13Cbulk-

Werten und hohen Degradationsgraden von Lignin, dass eine signifikante Fraktion des abge-lagerten 

terrestrischen OC petrogen ist. 

Im zweiten Teil der Arbeit wird eine neue Methode zur Bestimmung des Blindwertes in der 

komponenten-spezifischen 14C Analyse mit Hilfe bayesscher Statistik entwickelt. Dieser An-satz wird 

im dritten Teil der Dissertation benötigt, um komponentenspezifische 14C-Datie-rungen an 

Pflanzenbiomarkern (n-Alkansäuren und Lignin-Phenole), die an Flussbettsedimen-ten des Flachlandes 

und an offshore Sedimenten durchgeführt werden, für den Blindwert zu korrigieren. Die Ergebnisse der 

komponentenspezifischen Datierung zeigen, dass Δ14C-Werte von terrestrischem OC substanziell von 

matrixgebundenen Effekten beeinflusst werden. So wird an der Feinfraktion anhaftender terrestrischer 

OC generell besser erhalten. Die Flussbett-sedimente zeigen, dass terrestrischer OC während seiner 

Residenzzeit in intermediären Reser-voiren resistenter gegenüber Abbauprozessen ist. Die 

komponentenspezifischen Δ14C-Werte implizieren, dass kurzkettige n-Alkansäuren rezent 

biosynthetisiertes organisches Material aus fluviatiler oder mariner Primärproduktion repräsentieren. 

Die beiden Vegetationsbiomarker, langkettige n-Alkansäuren und Lignin-Phenole, sind dagegen 

vorgealtert, was auf Anhaften der Komponenten an Mineraloberflächen in Böden und der daraus 

resultierenden zwischen-zeitlichen Lagerung zurückzuführen ist. Mit Hilfe eines ternären 

Mischungsmodells kann eine quantitative Abschätzung der Zusammensetzung des sedimentären OC in 

Flussbettsedimenten und marinen Sedimenten gemacht werden. Trotz der variablen Zusammensetzung 

des sedi-mentären Materials im Amazonassystem, ist die Ablagerung von fossilem, petrogenem Mate-

rial relativ konstant. Um die Halbwertszeiten für den exponentiellen Abbau von terrestri-schem OC, 

Lignin und langkettigen n-Alkansäuren im Amazonas-system zu berechnen, wer-den die Gesamtgehalte 

der drei Komponenten und deren 14C-Alter herangezogen. Die Halb-wertszeiten können auf 2310, 

13860 und 470 Jahre eingegrenzt werden. Diese Ergebnisse zei-gen, dass die Erhaltung von 

terrestrischem OC im Schlammgürtel des Amazonasschelfs effi-zienter ist, als in vorherigen Studien 

angenommen. 

Im vierten Teil der Dissertation werden δ13C-Analysen von Lignin-Phenolen sowohl in Ober-

flächensedimenten vom Schelf als auch in einem marinen Sedimentkern vom Kontinental-hang 
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südwestlich der Amazonasmündung gemessen. Der gewichtete Mittelwert der δ13C-Werte aus den 

Schelfsedimenten zeigt, dass C3-Pflanzen die dominante Quelle des terrestri-schen OCs im heutigen 

System darstellen. Generell haben die Säuremonomere der V- und S-Phenole niedrigere δ13C-Werte als 

ihre jeweiligen Aldehyd-Äquivalente. Dagegen sind C-Phenole grundsätzlich stärker an 13C 

angereichert, als V- und S- Phenole. Der Ligningehalt und die -zusammensetzung werden mit den 13C-

Werten von Lignin kombiniert, um die Eigen-schaften des terrestrischen OCs im Zeitraum zwischen 

12,8-50 ka BP zu rekonstruieren. Die Ergebnisse zeigen, dass die dominante Quelle des terrestrischen 

OCs auch zwischen 12,8-50 ka BP konstant aus C3-Pflanzen bestanden hat, was mit früheren Studien 

übereinstimmt. Die Variationen in der Lignin-Zusammensetzung, den δ13C-Werte von Lignin, im BIT-

index (engl.: Branched and Isoprenoid Tetraether index) und in den δ13C und δD-Werten von Pflan-

zenwachslipiden sind in Phase und zeigen Veränderungen im terrestrischen OC während der Heinrich 

Stadiale (HS). Diese Schwankungen deuten entweder auf vermehrten Transport von relativ stark 

degradiertem terrestrischen OC oder/und auf verstärkten Eintrag von terrestri-schem OC aus größeren 

Höhenlagen. Aus den Daten lässt sich insgesamt ableiten, dass das Amazonasbecken ein stabiles 

ökologisches System gewesen ist, dessen Vegetation primär aus C3-Pflanzenwäldern bestanden hat. 

Die Variabilität in den δ13C-Werten von Lignin und den Pflanzenwachslipiden im späten Pleistozän 

resultieren primär aus Quellenverschiebungen des terrestrischen OCs während der HS.  
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1. Introduction 

1.1. The importance of terrestrial organic carbon  

Terrestrial organic carbon (OC) includes large amounts of carbon stored in various continental 

reservoirs, such as plants, soils, fluvial sediments, and sedimentary rocks. Compared to the carbon in 

atmospheric CO2, the amount of terrestrial OC is greatly larger (Galy and Eglinton, 2011). Over 

geological timescales, the exchange of carbon between the continental and atmospheric reservoirs can 

cause variations of the atmospheric CO2 concentration (Galy and Eglinton, 2011), which may affect the 

climate change. Globally, rivers transport about 200 Tg particulate OC from continental reservoirs to 

the ocean each year (Galy et al., 2007; Ludwig et al., 1996; Schlünz and Schneider, 2000; Galy et al., 

2015). The accumulation of the river-delivered terrestrial OC in modern marine sediments occurs 

mostly at continental margins, despite that continental margins occupy only around 10 % of ocean 

surface area (Hedges and Keil, 1995). Terrestrial OC deposited in the continental margins records 

valuable information with regard to environmental conditions in the continents, which can be used to 

reconstruct paleo-environmental conditions and provide knowledge about processes and fate on 

terrestrial OC (Galy et al., 2011; Hedges, et al., 1997). Therefore, terrestrial OC buried in the marine 

sediments is a crucial component of global carbon cycle and plays an important role in controlling 

atmospheric gases, e.g., CO2 and CH4 and regulating the global climate over geological time scales 

(Drenzek et al., 2009). Quantitative knowledge of processing and fate of terrestrial OC is fundamental 

for understanding the dynamic state of terrestrial OC in global carbon cycle and comprehending the 

response and influence of terrestrial OC on climate change (Bloom et al., 2015).   

Although many studies have been conducted on different aspects about terrestrial OC in marine 

sediments (Bianchi, 2011; Hedges et al., 1997; Keil et al., 1997; Schmidt et al., 2010; Tesi et al., 2014),  

it is currently still the least constrained component of the global carbon cycle (Bloom et al., 2015). For 

example, the missing carbon mystery has not been resolved that the burial of terrestrial OC in the 

continental margins account for less than 50 % of terrestrial OC exported by rivers to the ocean 

suggesting a substantial loss of a large fraction of terrestrial OC in the marine sediments (Hedges and 

Keil, 1995; Hedges et al., 1997; Bianchi, 2011). The difficulty in constraining the processing and fate 

of terrestrial OC in the marine sediments relies in many aspects, such as the complicate compositions 

of terrestrial OC, complexities of sedimentological regimes and geochemical process of accumulation 

(Schmidt et al., 2010). Terrestrial OC contains components from different provenances, with different 

stabilities, at various stages of degradation and having different pre-depositional histories. Different 

compositions of terrestrial OC might exhibit variant behaviour under the same environmental conditions, 

e.g., differential decomposition rates and reactivities to diagenetic processes (Blair and Aller, 2012). 

When terrestrial OC is composed mainly of compounds with simple structures and readily available for 
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degradation, it has fast turnover times (days to years). If terrestrial OC is dominated by fractions with 

complex structures and refractory to degradation, it has long turnover times of decades to millenniums 

or even longer. The composition of terrestrial OC can therefore to some extent define the fate of 

terrestrial OC in marine sediments (Burdige, 2005). During the transport and preservation, terrestrial 

OC is subjected to complex interplay of many physical and biological processes, e.g., sediment 

accumulation, association with mineral surfaces, oxygen exposure time, and chemical and biological 

alteration. These processes have large influence on the preservation of terrestrial OC in marine 

sediments. For instance, previous studies have suggested that association with mineral surfaces protects 

terrestrial OC from remineralization (Mayer, 1994; Hedges and Keil, 1995), high sediment 

accumulation rate and low oxygen availability can improve the preservation of terrestrial OC (Blair and 

Aller, 2012; Galy et al., 2007). The integrated effects of these processes can regulate the distribution 

and preservation of terrestrial OC in marine sediments. Thus, understanding of the mechanism in how 

these processes operate is vital for assessing the fate of terrestrial OC in marine sediments. The 

composition of terrestrial OC and the influential processes are in response to different environmental 

conditions at different settings, such as temperature, hydrology and topography, and during the last few 

thousands of years, are affected by human disturbance (i.e., land use) (Schuur et al., 2015). 

Given that the current knowledge about processing and fate of terrestrial OC in marine sediments 

remains incomplete, exhaustive studies with various geochemical indicators are needed to provide a 

comprehensive understanding of diverse factors controlling the fate of terrestrial OC in marine 

sediments from different regions. This is important for deciphering the role of terrestrial OC for global 

carbon cycle (Zonneveld et al., 2009). 

1.2. General introduction of the Amazon system  

The Amazon River originates from the Ucayali River and the Marañón River in the Andean region in 

southwestern Peru (Goulding et al., 2003). The Amazon River is the largest river in terms of water 

discharge as it supplies estimated 15-20 % of the freshwater river flow on Earth. (Meybeck, 1982; 

Richey et al., 1986). The Amazon River mainstream receives about 1000 tributaries draining vast and 

heterogenous regions of the northern South America (Salati and Vose, 1984), which integrate the largest 

drainage basin in the world, the Amazon basin (Fig. 1.1). The Amazon basin covers a continental-scale 

region of about 6.1×106 km2 (Guyot et al., 2007). It borders the Andes mountain range to the west and 

southwest, extends to the Guiana shield in the north, and to the Brazilian shield in the southern and 

eastern parts (Cordani and Sato, 1999) (Fig. 1.1). As the tributaries of the Amazon River drain such a 

large basin with various environments, they inevitably present different characteristics. They can be 

generally classified into three types according to their colours, which are white water rivers, black water 

rivers and clear water rivers. The Solimões River and the Madeira River are the typical white water 

rivers. Because they originate from the mountain environment (Peruvian and Bolivian Andean region) 
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and drain steep slope and intense weather areas (Gibbs, 1967), they are characterized by high 

concentrations of dissolved nutrients and enriched in suspended sediments, which is responsible for the 

white colour. The Negro River is a typical black water river that drains almost exclusively lowland 

tropical environment and have high content of dissolved humic substances, from which its dark tea-

colour comes. The clear water rivers, such as the Xingu River, are nearly devoid of suspended sediment 

loads and depleted in dissolved organic matter. Due to their water clarity, the clear water rivers are also 

characterized by high phytoplankton production (Junk, 1997; Richey et al., 1990). 

 

Figure 1.1. A general map of the Amazon system showing the sources and major tributaries of the Amazon 

River, the Amazon basin, and offshore area. The range of the Amazon basin is indicated by the black line. 

The Amazon-Guianas mud belt is marked by dark blue dots and the Amazon Fan is indicated by dashed 

fan-shaped sector. The colour bar shows altitudes. 

The rainfall over the Amazon basin varies spatially with high annual rainfall in the north-western part 

but relatively lower rainfall in southern and eastern parts (Sombroek, 2001). In total, the Amazon basin 

receives a mean annual rainfall of about 2500 mm year-1, which leads to a water discharge of 2×105 

m3s-1 (Callede et al., 2000; Guyot et al., 2007). The vegetation and ecosystems in the Amazon basin are 

mainly dependent on the distribution pattern of rainfall. In wet non-flooded regions with higher rainfall, 

the predominant vegetation is the rainforest, which has diverse species of evergreen broad-leaf trees 

with closed canopy cover and has high tree density and biodiversity rates (Saatchi et al., 2000). The 

relatively drier regions, where there is a six-month dry season, are dominated by deciduous and/or 
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semideciduous vegetation that have smaller canopy and larger proportion of root biomass (Saatchi et 

al., 2000). The savannah prevails mainly in the south and south-eastern part of the Amazon basin due 

to both dry climatic conditions and deforestation (Houghton et al., 2001).  

The other important component of the Amazon system is the Amazon offshore region including the 

Amazon shelf and fan, which is the important sink of the Amazon River discharge (Fig.1.1). The 

Amazon shelf is an energetic regime and involves several physical processes such as tides, waves, and 

along-shore North Brazil Current (NBC), etc. These processes act in concert to control the dispersion 

of the Amazon-derived plume of water and suspended sediment. Once entering the ocean, the sediment-

charged Amazon plume is advected northwestwards along the northern South American coastline. The 

suspended sediments move progressively and form highly turbid mud belt dispersal system, which 

extends 1600 km along the Amazon-Guianas coast (Geyer et al., 1996; Nittrouer and DeMaster, 1996). 

The Amazon Fan is one of the largest submarine fans in the world covering about 3.3×105 km2 (Damuth 

and Kumar, 1975). It is located off the northern coast of Brazil (approximately 322 km from the mouth 

of the Amazon River) and extends 700 km down slope from the shelf break reaching a maximum width 

of about 650 km (Damuth and Kumar, 1984). In contrast to interglacial periods with high sea levels like 

today, the Amazon Fan receives most of the sediment loads derived from the Amazon River during 

glacial periods with low sea levels such as the Last Glacial Maximum (Schlünz et al., 1999). Generally, 

the function of the Amazon Fan as the receiver of Amazon River-derived discharge is interrupted by 

the glacial-interglacial sea level variation. 

1.3. Scientific background of terrestrial OC in the Amazon system 

The estimated average annual discharge of terrestrial OC by the Amazon River to the Atlantic Ocean is 

40 Tg C, which accounts for around 8-10 % of the global annual amount of terrestrial OC transported 

into oceans by rivers (Moreira-Turcq et al., 2003; Spitzy and Ittekkot, 1991). Therefore, the Amazon 

system is a critical component of the global carbon cycling in source-to-sink sedimentary system. The 

sources, transportation and fate of terrestrial particulate OC in the Amazon system is of particular 

interest and important for disentangling terrestrial OC dynamics (Blair and Aller, 2012).  

The characteristics of terrestrial OC in the Amazon system have been extensively investigated with 

various biomarkers and parameters of bulk OC. It has been found that organic matter (OM) transported 

by the Amazon River is mainly sourced from the lowland Amazon basin, whereas the suspended 

sediments are predominantly derived from the Andes (Meade et al., 1985; Bouchez et al., 2014). Most 

of the OM is transported associated with mineral particles along the Amazon River mainstream and 

grain size plays a crucial role in regulating the composition of terrestrial OM in the Amazon system 

(Hedges et al., 1986; Bouchez et al., 2010). For instance, the content of OC is higher in coarse 

particulate OM (CPOM, >63 µm) than in fine particulate OM (FPOM, 0.1-63 µm). The degradation 

degree of CPOM is lower than that of FPOM, and dissolved OM (DOM, <0.1 µm) shows the highest 
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degradation degree (Hedges et al., 1986). Within the same size fraction (CPOM or FPOM), the 

composition of OM in the Amazon system is nearly constant along the downstream transport (Hedges 

et al., 1986). However, this implication was challenged by the observed fast alteration of the OC, 

evidenced by lignin signatures, from the lower reach of the Amazon River to the mouth (Ward et al., 

2015). This apparent anomaly highlights the necessity of improving our knowledge about the processing 

of terrestrial particulate OC during the transport in the Amazon system. The stable carbon isotopic 

compositions (δ13C) of bulk OC in the Amazon basin revealed that terrestrial OM in the Amazon system 

is mainly sourced from C3 plants with only a small contribution of C4 plants (Hedges et al., 1986; 

Bouchez et al., 2010). This has been corroborated by compound-specific δ13C analyissis of long-chain 

n-alkanes in the Amazon system (Häggi et al., 2016). The distribution of crenarchaeol and branched 

glycerol dialkyl glycerol tetraethers (GDGTs) in the riverine suspended sediments from the Amazon 

basin also indicated a mixture source of C3 plant-derived soil OC and aquatic-derived OC (Kim et al., 

2012). The source and transport of OC in the Amazon basin have been constrained with radiocarbon 

analysis (∆14C) of bulk OC, which reflected that rock-derived OC is a significant component and 

contributes a constant proportion of the POC in the Amazon basin (Bouchez et al., 2010, 2011).  

In the Amazon offshore area, the distribution of δ13C of bulk OC and terrigenous biomarkers have been 

successfully used to trace the transport and fate of terrestrial OC (Aller and Blair, 2006; Feng et al., 

2016; Häggi et al., 2016; Schlünz et al., 1999; Williams et al., 2015; Zell et al., 2014). Increasingly 

higher δ13C values of bulk OC along the coast towards northwest support the hypothesis that terrestrial 

OC from the Amazon River is advected northwestwards with Amazon-derived plume under the 

influence of NBC. The drastic decreases of OC loads along the Amazon-Guianas dispersal system 

indicated a net loss of terrestrial OC, which suggest the Amazon-Guianas is an effective incinerator of 

sedimentary OC (Aller and Blair, 2006). The rapid loss of terrestrial OC was explained by the energetic 

conditions in the Amazon-Guianas mud belt, where terrestrial OC experiences deposition-resuspension 

cycles leading to relatively long cumulative oxygen exposure time (Blair and Aller, 2012). It has been 

estimated that decay rate of terrestrial OC during the transport along the Amazon-Guianas mud belt is 

around 0.2 yr-1, which suggests that most terrestrial OC is remineralized within a few years (Aller and 

Blair 2006). In contrast, ramped pyrolysis ∆14C values of sedimentary OC revealed more efficient 

preservation of refractory terrestrial OC in the Amazon-Guianas mud belt (Williams et al., 2015). Thus, 

insightful constraints on the ages and components of terrestrial OC are required to better understand the 

processing and fate of terrestrial OC in the Amazon system. Apart from the characterization of terrestrial 

OC, isotopic compositions (δD and δ13C) of terrigenous biomarkers have been used to reconstruct past 

vegetation and environmental conditions (Crivellari et al., 2017; Häggi et al., 2017; Kastner and Goñi, 

2003). Both δ13C of long-chain n-alkanes and lignin compositions suggested that the vegetation remains 

relatively stable and dominated by C3 plants during late Pleistocene (Häggi et al., 2017; Kastner and 

Goñi, 2003). These evidences from terrigenous biomarkers apparently question the ‘refugia hypothesis’ 
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that the expansion of savannahs during the LGM leads to contraction of the Amazon rainforest to 

isolated fragments. Therefore, multiple biogeochemical indicators are needed to reconstruct the 

response of vegetation and discharge of terrestrial OM to past climate variation. 

1.4. Biomarkers and isotopic compositions  

1.4.1. Lignin 

Lignin is a major component of cell walls in vascular plants and is the second most abundant biopolymer 

after cellulose on Earth (Adler, 1977; Hedges et al., 1979a). It accounts for about 15-35 % of the dry 

biomass, depending on types of plants (Galbe and Zacchi, 2007), for example, 20-35 % in woody tissues 

and 15-20 % in grass tissues (Faravelli et al., 2010; Perez-Pimienta et al., 2013). Lignin is exclusively 

biosynthesized by vascular plants and can be found in various natural environments, such as soils and 

sediments. Compared to other biopolymers, lignin is more recalcitrant to microbial degradation and 

enzymatic actions (Killops and Killops, 2005). The transport of lignin from lands to oceans is mainly 

by rivers. Due to these natural characteristics, lignin can serve as a biomarker of terrestrial OC and the 

quality and quantity of lignin can provide important information on sources, pathways and sinks of 

terrestrial OC (Ingalls et al., 2010; Opsahl and Benner, 1995).  

 

Figure 1.2. A random part of lignin polymer illustrating its schematic structure. The structural formulas 

of the three basic building blocks are shown in the rectangle (Christopher et al., 2014).  

Lignin is mainly composed of phenylpropanoid units with different numbers of methoxyl group, which 

are linked together randomly by carbon-carbon and carbon-oxygen bonds (Adler, 1977, Karhunen et 

al., 1995) (Fig. 1.2). Three main phenylpropanoid units are p-coumaryl alcohol, coniferyl alcohol and 

sinapyl alcohol (Fig. 1.2). Therefore, lignin has high molecular weight and structural complexity, which 
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limits our ability to identify and quantify lignin polymers directly. Whereas, after oxidation with copper 

oxide (CuO), lignin polymers can produce several characteristic methoxylated phenols that can be 

analysed by gas chromatography. The most commonly used eleven phenolic monomers are shown in 

Fig. 1.3. According to their structure, these phenolic monomers can be divided into different groups 

(Fig. 1.3). The vanillyl phenols (V) include vanillin (Vl), acetovanillone (Vn), and vanillic acid (Vd). 

Syringyl phenols (S) include syringaldehyde (Sl), ancetosyringone (Sn), and syringic acid (Sd). 

Cinnamyl phenols (C) include p-coumaric acid (p-Cd) and ferulic acid (Fd). These eight phenolic 

monomers derive only from lignin. The para-hydroxybenzenes (P), which include p-

hydroxybenzaldehyde (Pl), p-hydroxybenzophenone (Pn), and p-hydroxybenzoic acid (Pd), might also 

be yielded by non-lignin precursor, e.g., amino acid (Hedges et al., 1976). The compositions of these 

phenolic monomers vary in different plant types. Vanillyl phenols can be obtained in all vascular plants, 

but syringyl phenols exit only in angiosperms. Cinnamyl phenols are exclusively present in non-woody 

tissues of vascular plants. Hence, the C/V and S/V ratios can distinguish lignin between woody and 

nonwoody tissues of angiosperm and gymnosperms (Hedges and Mann, 1979a). Because microbial 

degradation of lignin increase the relative abundance of phenolic acids of V and S phenols, the ratios 

of vanillic acid to vanillin (Ad/Al)V and syringic acid to syringaldehyde (Ad/Al)S can indicate the 

degradation degree of lignin (Ertel and Hedges, 1984). The carbon- and sediment-normalized contents 

of the V, S, and C phenols (Λ8, mg/100 mg OC and Σ8, mg/10 g dry sediment) can reflect the content 

of lignin (Hedges and Mann, 1979b).  

 

Figure 1.3. The structural formulas of eleven characteristic lignin phenolic monomers produced after the 

alkaline CuO oxidation (Thevenot et al., 2010). 
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1.4.2. n-alkanoic acids 

Lipids are a class of source-specific compounds that have been extensively employed as biomarkers for 

terrigenous and planktonic OM in various environments (Eglinton and Eglinton, 2008; Meyers, 1997). 

The primary lipid compounds used in this thesis are long-chain and short-chain n-alkanoic acids. Long-

chain n-alkanoic acids are the major constitutes of leaf-wax lipids that are uniquely from the waxy 

coatings of land plants. They have predominantly even carbon numbers (C24-C36). Because of the long 

chain structure, they are insoluble in water and have low volatility, which make them chemically stable 

and resist to biodegradation during long distance transport and after deposition in sediments. Therefore, 

long-chain n-alkanoic acids can function as a biomarker to detect variations in terrestrial inputs and 

preservation (Blair and Aller, 2012). 

Short-chain (C16 and C18) n-alkanoic acids also exist in all plants but only account for small proportion 

compared to their long-chain homologues. In contrast, short-chain n-alkanoic acids are dominantly 

produced by algae (Meyers, 1997). Thus, the short-chain n-alkanoic acids can serve as biomarkers for 

the aquatic produced OM. Compared to the long-chain homologues, short-chain n-alkanoic acids are 

labile and selectively decomposed. Thus, short-chain n-alkanoic acids can be used to reflect marine and 

terrestrial modern autochthonous OC inputs. 

1.4.3. Branched and Isoprenoid Tetraether (BIT) index 

The BIT index is a newly developed proxy based on the abundance ratio of branched glycerol dialkyl 

glycerol tetraether (GDGTs) to isoprenoid GDGTs (Hopmans et al., 2004). The structural formulas of 

branched and isoprenoid GDGTs are shown in Fig. 1.4. The branched GDGTs derive mainly from 

anaerobic or heterotrophic bacterial thriving in terrestrial environments such as peats and soils (Kim et 

al., 2006; Weijers et al., 2004, 2006a,b, 2010) and the isoprenoid GDGT ‘crenarchaeol’ is 

predominantly produced by marine planktonic Crenarchaeota (Sinninghe Damste et al., 2002). Because 

of their similar chemical structures, the branched and isoprenoid GDGTs have the same recalcitrance 

towards degradation (Kim et al., 2006). This makes the BIT index less subjected to diagenetic 

overprinting that can bias their source information (Kim et al., 2006). Therefore, the BIT index can be 

used to reflect contribution of soil OC in marine sediments (Sinninghe Damsté et al., 2002).  
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circumvented by applying compound-specific δ13C analysis of biomarkers of vascular plants. The δ13C 

of lignin phenols are used in this thesis. Due to different synthesis pathways of various compounds 

during photosynthesis, the isotope compositions of major compounds are influenced by the isotope 

fractionation effect and exhibit different abundances in 13C, e.g., the δ13C values of lignin are slightly 

depleted in 13C than the corresponding bulk OC. For example, δ13C values of lignin from C3 plants 

show an average of about -30 ‰, while lignin from C4 plants have a higher average of around -17 ‰ 

(Goñi and Eglinton, 1996). The δ13C values of lignin can be used to estimate C3 vs. C4 plants 

contributions to terrestrial OC, which can be further applied to assess terrestrial OC in marine sediments. 

The downcore record of δ13C values of lignin can reveal the change of dominant vegetation type, which 

is helpful for reconstructing paleoclimate. 

Radiocarbon (14C) is a radioactive isotope that is used for determining the age of carbon (Ziokowski et 

al., 2009). 14C compositions of bulk OC can indicate the residence time after the synthesis process of 

the OM stop, i.e., the death of an organism. 14C compositions reveal additional information on the 

sources of OC that could not be obtained by δ13C values. For example, 14C compositions can distinguish 

freshly synthesized OC from pre-aged soil OC, although they have similar δ13C values. Therefore, 14C 

compositions of bulk OC is a powerful tool to constrain sources and turnover times of OC, which is 

important for understanding the pre-depositional history of OC (Marwick et al., 2015). Because bulk 

OC consists of a complex mixture of compounds from different sources and with different residence 

times and distinct fates, such as pre-aged terrestrial OC of vascular plant origin and relict OC (kerogen) 

inputs from erosion of sedimentary rocks. 14C compositions on bulk OC level are not enough for 

characterizing the provenances and ages of the major components. Thus, 14C compositions of source-

specific compounds are needed to provide insights into turnover of the OC at molecular level. The 

compound-specific 14C composition analyses of n-alkanoic acids and lignin were carried out in this 

thesis. As short-chain n-alkanoic acids derived mainly from aquatic production, their 14C compositions 

can reflect the turnover of freshly produced OC pools. 14C compositions of long-chain n-alkanoic acids 

and lignin can represent the cycling of pre-aged terrestrial OC as they are of vascular plant origin and 

might have undergone long-term turnover in soils before transport to oceans and deposition in sediments. 

1.5. Objectives of this thesis 

Although substantial research efforts have been made in investigating terrestrial particulate OC in the 

Amazon system, several issues are still unexplored and/or of debate as reviewed above. These issues 

include the following aspects:  

I: Despite that lignin has been used to characterize terrestrial OC in the Amazon basin, little is known 

about the transport and distribution of lignin in the adjacent offshore region especially in the Amazon-

Guianas mud belt sediments, where receives most of the terrestrial OC inputs. It is also unclear what 
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factors play critical role in controlling the transport, distribution and deposition of terrestrial OC in the 

Amazon system. 

II: Up to now, the preservation of terrestrial OC in the Amazon system still debated, especially in the 

Amazon shelf area. Only few studies applied both 13C and 14C compositions of bulk OC to investigate 

the source and turnover of OC in the Amazon system. The compound-specific 14C analysis of terrestrial 

OC biomarkers is needed to better constrain the major components of terrestrial OC and their specific 

residence time and fate in the Amazon system.  

III: As a major biomarker of terrestrial vascular plants, the 13C composition of lignin can provide new 

evidences to resolve the debate on whether the vegetation of the Amazon basin changed significantly 

during the late Pleistocene.  

In order to address these problems, the major objectives of this thesis are 

Objective 1: to investigate the origins and processing of terrestrial OC based on the δ13C of bulk OC 

and content and composition of lignin in riverbed sediments of the Amazon basin and marine surface 

sediments on the Amazon shelf area;  

Objective 2: to develop insights into the influence of grain size on the preservation and fates of terrestrial 

OC in the Amazon system; 

Objective 3: to quantify contributions of OC from different pools and to reveal the pre-depositional 

histories of terrestrial OC; 

Objective 4: to reconstruct the past vegetation change of the Amazon basin during the late Pleistocene. 

1.6. Outline of the thesis 

This thesis is composed of four manuscripts (chapter 2-5) aiming at achieving the raised objectives. 

These four manuscripts are either published, submitted, or in preparation for submission to international 

peer-reviewed journals. The first manuscript (chapter 2) (focused on objective 1 and 2) employed the 

content and composition of lignin to reflect the characteristics of terrestrial OC and the influence of 

grain size on lignin composition. In the second manuscript (chapter 3), a novel method of assessing 

procedural blank during compound-specific 14C composition analysis was developed to prepare for 

accurate 14C composition analyses of n-alkanoic acids and lignin. In the third manuscript (chapter 4, 

aiming at objective 2 and 3), a dual-carbon-isotope (13C and 14C) mixing model and compound-specific 
14C analyses of n-alkanoic acids and lignin were carried out to provide constraints on the origins of 

sedimentary OC and estimate the decay rate of terrestrial OC in the Amazon system. In the fourth 

manuscript (chapter 5, dealing with objective 4), compound-specific 13C analysis of lignin was 

conducted to explore the vegetation change in the Amazon basin and the variation in discharge of 
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terrestrial OC from the Amazon basin to the offshore area. The major findings and conclusions of this 

thesis are summarized in the chapter 6.  

1.7. Description of own contributions 

All the samples used in this thesis were collected by André O. Sawakuchi, Cristiano M. Chiessi, Enno 

Schefuß, Paul A. Baker, and Stefan Mulitza. Enno Schefuß, Gesine Mollenhauer and I designed this 

study.  

For the first manuscript, I prepared the marine surface sediments labelled with GeoB for δ13C analysis 

of bulk OC. The preparation for δ13C analysis of bulk OC of other samples are conducted by Stefanie 

Buchheister and measured by Monika Segl. The weight ratio of Al/Si was measured by Matthias Zabel. 

Grain size analysis was performed by Jürgen Titschack. The extraction and measurement of lignin were 

conducted by myself with technical support from Jens Hefter and Maria Winterfeld. I wrote the 

manuscript with comments and contributions from co-authors. 

For the second manuscript, the idea of the method was drafted by Gesine Mollenhauer. Vera Meyer and 

I wrote the manuscript together with comments and contributions from co-authors. Vera Meyer and I 

contribute equally to this manuscript and share the first authorship. I prepared the extraction and 

purification of all the lignin standards and part of the n-alkanoic acids standards. Vera Meyer conducted 

the extraction and isolation of most of the other n-alkanoic acids standards. Maria Winterfeld and Wolf 

Dummann processed some n-alkanoic acids standards as well. The preparation of the standards was 

performed under supervision and help of Daniel Montluçon, Jens Hefter and Tessa van der Voort. The 

measurement of the F14C values was conducted by Cameron McIntyre, Lukas Wacker, Negar 

Haghipour and Torben Gentz. Andrew Dolman provided the R and Stan code for the Bayesian model 

and performed the statistical analysis.  

For the third manuscript, I wrote the manuscript with comments and contributions from co-authors. I 

extracted n-alkanoic acids and lignin, and purified individual compounds with preparative capillary gas 

chromatography (PCGC) and preparative high-performance liquid chromatography (prep-HPLC), and 

prepared the samples on vacuum line with help from Daniel Montluçon, Tessa van der Voort, and Jens 

Hefter. The F14C values of n-alkanoic acids and lignin were measured by Negar Haghipour. The marine 

surface sediment samples for F14C analysis of bulk OC were pre-treated and measured by Negar 

Haghipour. 

For the fourth manuscript, the extraction of lignin was conducted by myself. The measurement of δ13C 

values of lignin phenols were performed by myself under supervision of Enno Schefuß and Ralf Kreutz. 

The extraction of branched and isoprenoid GDGTs were conducted by Christoph Häggi and measured 

by Jens Hefter. I wrote the manuscript with comments and contributions from co-authors.  
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Abstract. The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the 

Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical 

characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent 

marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main 

tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon 

(TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC 

and lignin content exhibit positive correlations with Al/Si ratios (indicative of the sediment grain size) 

implying that the grain size of sediment discharged by the Amazon River plays an important role in the 

preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted 

δ13CTOC values (-26.1 ‰ to -29.9 ‰) in the main tributaries consistently correspond with the dominance 

of C3 vegetation. Ratios of syringyl to vanillyl (S/V) and cinnamyl to vanillyl (C/V) lignin phenols 

suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. 

Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin 

compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of 

eight lignin phenols in organic carbon (OC), expressed as mg/100mg OC) values implies that OCterr 

discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly 
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deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the 

Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during 

offshore transport does not change the encoded source information. Therefore, the lignin compositions 

preserved in these offshore sediments can reliably reflect the vegetation in the Amazon River catchment. 

In sediments from the Amazon Fan, low lignin content, relatively depleted δ13CTOC values and high 

(Ad/Al)V ratios indicating highly degraded lignin imply that a significant fraction of the deposited OCterr 

is derived from petrogenic (sourced from ancient rocks) sources. 

2.1. Introduction 

Rivers deliver annually about 200 Tg of particulate organic carbon (POC) to the oceans (Galy et al., 

2007; Ludwig et al., 1996; Schlünz and Schneider, 2000; Galy et al., 2015), which is predominantly 

deposited on continental shelves and slopes (Hedges and Keil, 1995). Terrestrial organic carbon (OCterr) 

buried in marine sediments has been intensely studied in order to reconstruct climate and environmental 

conditions on land (Bendle et al., 2010; Collins et al., 2014; Vogts et al., 2012) with rivers playing a 

role not only as conduits between terrestrial and marine reservoirs but also as efficient reactors of the 

OCterr (Aufdenkampe et al., 2011; Battin et al., 2009). During transport in fluvial systems, OCterr is 

subject to various natural processes, such as selective preservation within the watershed and microbial 

degradation, as well as anthropogenic processes associated to land-use change (Jung et al., 2015; Wang 

et al., 2015; Wu et al., 2007). In marine environments, OCterr mixes with marine organic carbon and 

experiences further diagenetic alteration (Aller and Blair, 2006). The refractory fractions of OCterr, 

which survive these processes, are preserved at sites of sediment deposition. As a result of this extensive 

processing, the climatic and environmental information recorded by OCterr in marine sediments may be 

subject to temporal and spatial offsets. Hence, a comparison between the characteristics of OCterr in 

drainage basins and adjacent continental margins is helpful to decipher which depositional sites can 

provide reliable marine sedimentary archives and to what extent they reflect climatic and environmental 

changes within the catchment. 

The Amazon River is of special interest due to its large drainage basin size and discharge of OCterr to 

the ocean. Previous studies that assessed the fate of OCterr transported and discharged by the Amazon 

mainly relied on bulk organic parameters, isotope compositions of total organic carbon (δ13CTOC and 

Δ14CTOC) (Bouchez et al., 2014) as well as on analyses of various biomarkers (e.g., lignin, plant-waxes 

and tetraether lipids) (Zell et al., 2014). Based on the correlation between TOC contents and Al/Si ratios, 

the latter being indicative of grain-size variations, Bouchez et al. (2014) showed a distinct mineral and 

size class association of particulate organic matter (POM), which in turn affects its transport in the 

fluvial system. Moreover, the δ13CTOC and Δ14CTOC of POM indicated that rock-derived POM accounts 

for a significant proportion of riverbed sediments. Hedges et al. (1986) reported lignin compositions of 
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typical plant tissues in the Amazon basin and found that POM has distinct lignin compositions in 

different grain size fractions.  

Offshore the Amazon River mouth, the predominant depo-center of terrestrial organic matter has been 

shown to change between glacial and interglacial periods (Schlünz et al., 1999). During glacials (i.e., 

low sea-level), most of the Amazon derived OCterr is deposited on the Amazon Fan, while during 

interglacials (i.e., high sea-level), along-shore currents result in deposition of OCterr on the continental 

shelf northwest of the Amazon River mouth. Terrestrial climate and vegetation from the last glacial 

period has thus been reconstructed by analysing molecular biomarkers, such as lignin, plant-wax lipids, 

and branched glycerol dialkyl glycerol tetraethers (GDGTs) in sediment cores recovered from the 

Amazon Fan (Bendle et al., 2010; Boot et al., 2006; Goñi et al, 1997; Kastner and Goñi, 2003).  

Lignin is a useful tracer for OCterr because it is exclusively produced by vascular plants and accounts 

for about 20-30 % of dry biomass in woody plants (Zhu and Pan, 2010) and 15-20 % in grasses (Perez-

Pimienta et al., 2013). It is relatively resistant to microbial degradation (Killops and Killops, 2005) and 

abundant in many environments (e.g. Kuzyk et al., 2008; Loh et al., 2012; Winterfeld et al., 2015). To 

date, little is known about the factors influencing lignin composition in the Amazon basin and adjacent 

marine sediments, its transport pathways in the Amazon continental margin, and the potential of lignin 

in offshore sedimentary archives to constrain sources and compositions of OCterr. 

Here we determined lignin contents and composition in riverbed sediments of the Amazon River and 

its lowland tributaries as well as in surface sediments of the Amazon shelf and slope. By doing so, we 

provide evidence on the spatial distribution of OCterr, its plant sources, its origin within the catchment, 

and its dispersal patterns on the Amazon continental margin. 

2.2. Study area 

The Amazon River originates from the confluence of the Ucayali and Marañon Rivers in the Andean 

region in southwestern Peru and receives numerous tributaries that form the largest hydrographic basin 

in the world (Goulding et al., 2003). It covers an area of about 6.1×106 km2 extending from the Guiana 

Highlands in the north to the Central Brazil Highlands in the south, and is bordered by the Andes 

mountain range in the west (Guyot et al., 2007). The Peruvian and Bolivian Andean tributaries Solimões 

(upper stretch of the Amazon River from its confluence with the Negro River) and Madeira are typical 

white water rivers. Because they drain the steep slope and rapidly weathering Andean region, they are 

characterized by high concentrations of suspended sediments and dissolved nutrients (Gibbs, 1967). 

The other major tributaries in the Amazon basin drain lowland regions and are classified as either black 

or clear water rivers. The black water rivers, such as the Negro River, are rich in dissolved humic 

substances derived from podzols and depleted in suspended sediments (Mounier et al., 1999). The clear 

water rivers (e.g., the Xingu River) have low concentrations of suspended sediments and dissolved 
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organic matter compared to the white and black water rivers, and their clarity allows high phytoplankton 

productivity (Junk, 1997; Richey et al., 1990). Although the deforested area of the Amazon basin is 

increasing significantly in the eastern and south-eastern portions, the remainder of the lowland Amazon 

basin is largely forested except for some small areas dominated by savannah (Houghton et al., 2001). 

Elsewhere, some grasses grow along the shoreline regions of white water rivers (Guyot et al., 2007; 

Hedges et al., 1986).  

The Amazon basin annually receives an average of about 2500 mm rainfall and has the world’s largest 

water discharge of about 2×105 m3s-1 (Callede et al., 2000; Guyot et al., 2007). Up to 40 Tg of carbon 

are discharged along with 8-12×1011 kg suspended sediment load each year by the Amazon River into 

the Atlantic Ocean, which makes the Amazon the largest fluvial source of OCterr to the ocean (Dunne 

et al., 1998; Moreira-Turcq et al., 2003). The Amazon-derived plume of water and suspended sediment 

is advected northwestward along the northern South American coastline by the North Brazil Current, 

eventually forming the Amazon subaqueous delta-Guianas mud belt extending 1600 km along the 

northeastern coast of South America (Geyer et al., 1996; Nittrouer and DeMaster, 1996). The Amazon 

Fan is located off the northern coast of Brazil centered around 4 °N, extending 700 km from the shelf 

break seaward reaching a maximum width of about 650 km. The Amazon Fan is largely inactive today, 

but during past periods of low sea level such as the Last Glacial Maximum, large amount of suspended 

sediment and bed load were transported via submarine canyons and deposited on the Fan (Schlünz et 

al., 1999). 

2.3. Materials and methods 

2.3.1. Sample collection 

Riverbed sediments were collected from the Amazon River mainstream and its main tributaries during 

two sampling campaigns in November 2011 and May 2012, corresponding respectively to the dry and 

wet seasons. Sediment samples were retrieved from sites with different channel depths to reflect their 

range of grain size variability. A Van Veen grab sampler was used for sampling, and the station 

locations are shown in Table 2.1 and Fig. 2.1A. 
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Figure 2.1. A) Map of the Amazon basin with the sample locations in individual tributaries and offshore 

area indicated by colored dots (red dots=Solimões, yellow dots=Negro, blue dots=Madeira, aqua 

dots=Xingu, violet dots=Amazon mainstream, black dots=offshore), the black rectangle indicates the area 

of map B and B) Map of the Amazon continental margin with the sample locations indicated by black dots. 

Maps were created using Ocean Data View 4.7.8 (Schlitzer, 2016). 

Marine surface sediments from the Amazon shelf and fan were collected during two cruises (Table 2.2, 

Fig. 2.1B). The GeoB samples were recovered with a multicorer in February/March 2012 during the 

R/V Maria S. Merian cruise MSM 20/3, while the other marine surface sediments were taken in 

February/March 2010 with a box corer deployed from R/V Knorr during cruise KNR197-4. All samples 

were kept frozen at -20 °C before analysis and were subsampled into 1-cm intervals. The uppermost 2 

cm of GeoB multicore samples and slices of 1 cm from intervals between 5 and 8 cm sediment depth 

of cores taken during cruise KNR197-4 were used in this study. 

The GeoB surface sediments were oven dried at 50 °C, while the riverbed and the other marine surface 

sediments were freeze dried in a Christ Alpha 1-4 LD plus freeze dryer. After drying, all samples were 

homogenized for further analysis. 

2.3.2. Grain size analysis 

Grain size analysis was only conducted for marine sediments, because the riverbed sediment samples 

had already been ground before sub-sampling. For grain size measurement of the terrigenous fraction, 

bulk marine sediments were pre-treated as follows. Samples of about 0.5 g were successively boiled 

with H2O2 (35 %), HCl (10 %) and NaOH to remove respectively organic matter, carbonate and biogenic 

silica. To prevent potential aggregation, 10 ml of dissolved sodium pyrophosphate (Na4P2O7·10H2O) 

was added immediately prior to grain size analysis. Samples were measured using a Laser Diffraction 

Particle Size Analyser (Beckman Coulter laser particle sizer LS-13320) in 116 size classes ranging from 

0.04 to 2000 μm. All measurements were performed in demineralized and degassed water to avoid 

interference of gas bubbles. 
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2.3.3. Elemental and bulk isotopic analysis 

About 4 g dry sediment was used to measure the Al and Si elemental concentrations by energy 

dispersive polarization X-ray fluorescence (EDP-XRF) spectroscopy. The device was operated with the 

software Spectro X-Lab Pro (Version 2.4) using the Turboquant method. Analytical quality of 

measurements was assessed by repeated analyses of the certified standard reference material MAG-1, 

and the standard deviation of replicate measurement of sediment samples was better than 0.5%. 

After removal of carbonates with 12.5 % HCl and drying, the total organic carbon content (TOC) of all 

samples was determined by a LECO CS 200 CS-Analyzing System. The relative standard deviation of 

duplicate analyses was better than 1%.  

Stable carbon isotopic ratios of TOC (δ13CTOC) were analyzed on a Finnigan MAT Delta plus coupled 

with a CE elemental analyzer and a Con-Flo II interface. Samples were pre-treated by the same method 

as used for the TOC measurement. δ13CTOC values are reported using the standard notation relative to 

the Vienna Pee Dee Belemnite (VPDB) standard. The uncertainty was less than ±0.1‰, as calculated 

by long-term repeated analyses of the internal reference sediment (WST2). 

2.3.4. Lignin-phenol analysis  

Alkaline CuO oxidation was used to obtain eight lignin-derived phenols (vanillyl phenols, syringyl 

phenols and cinnamyl phenols) and three para-hydroxybenzenes. A CEM MARS5 microwave 

accelerated reaction system was used to perform alkaline CuO oxidation of lignin based on the approach 

described by Goñi and Montgomery (2000). Dried sediment samples (containing about 2-5 mg of TOC) 

were oxidized with CuO (500 mg) and ferrous ammonium sulfate (50 mg) in de-aerated 2 N NaOH at 

150 °C for 90 min under a nitrogen atmosphere. After the oxidation, known amounts of recovery 

standards (ethyl vanillin and trans-cinnamic acid) were added to each reaction tube. The alkaline 

supernatant was transferred and acidified to pH 1 by addition of concentrated HCl. Reaction products 

were extracted twice with ethyl acetate and water in the ethyl acetate solution was removed by addition 

of Na2SO4. Ethyl acetate was evaporated under a continuous nitrogen flow. Once dry, 400 μl of pyridine 

was added immediately to re-dissolve the reaction products. Lignin phenols were analyzed by gas 

chromatography-mass spectrometry (GC-MS). Prior to the injection to the GC-MS, compounds in 

pyridine were derivatized with bis-trimethylsilyl-trifluoroacetamide (BSTFA) +1 % 

trimethylchlorosilane (TMCS) to silylate exchangeable hydrogen. Chromatographic separation was 

achieved by a 30 m×0.25 mm (i.d.) DB-1MS (0.25 μm film thickness) capillary GC column. The 

temperature program was 100 °C initial temperature, 4 °Cmin-1 ramp and 300 °C final temperature with 

a hold of 10 minutes.  

The eight lignin-derived phenols obtained by alkaline CuO oxidation are subdivided into the following 

groups: the vanillyl (V) phenols include vanillin (Vl), acetovanillone (Vn), and vanillic acid (Vd); 
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syringyl (S) phenols are syringaldehyde (Sl), acetosyringone (Sn) and syringic acid (Sd); and cinnamyl 

(C) phenols consist of p-coumaric acid (p-Cd) and ferulic acid (Fd). The para-hydroxybenzenes include 

p-hydroxybenzaldehyde (Pl), p-hydroxybenzophenone (Pn) and p-hydroxybenzoic acid (Pd). The C 

phenols are only present in non-woody tissues of vascular plants while the S phenols are unique to 

angiosperms and V phenols exist in all vascular plants. Therefore, the ratios of S/V and C/V divide the 

plant sources of lignin into four types, non-woody and woody tissues of gymnosperms and angiosperms 

(Hedges and Mann., 1979a). (Ad/Al)V and (Ad/Al)S refers to the acid to aldehyde ratios of V and S 

phenols, which indicate the degradation of lignin (Ertel and Hedges, 1985).  

The lignin phenols and identified compounds were quantified by individual response factors calculated 

from mixtures of commercially available standards analyzed periodically. The yields of Pl, Vl and Sl 

were calculated by the recovery rate of ethyl vanillin and the recovery rate of trans-cinnamic acid was 

applied for the yield estimation of other lignin-derived compounds (Kuzyk et al., 2008).  

Carbon-and sediment-normalized lignin yields are respectively reported as Λ8 (mg/100mg OC) and Σ8 

(mg/10g dry sediment). These measures indicate respectively the relative contributions of vascular plant 

material to the TOC, and to the total samples, and were respectively calculated as the sum of S, V and 

C phenols in 100 mg organic carbon and 10 g dried sample (Hedges and Mann, 1979b). 

2.4. Results 

2.4.1. Riverbed sediments 

2.4.1.1. TOC and stable carbon isotopic composition 

Part of the TOC and Al/Si data were previously published in Häggi et al. (2016). Riverbed sediments 

contain between 0.13 % and 3.99 % dry weight (wt) TOC (Table 2.1, Fig. 2.2A). Negro River and 

Xingu River sediments have similar TOC contents (0.53 %-3.99 %, mean=2.08±1.15 %, n=7 and 

0.52 %-3.82 %, mean=2.44±1.37 %, n=8, respectively), which are higher than the TOC contents in 

other main tributaries. Consistently low TOC contents are observed in the Madeira River varying from 

0.14 % to 0.52 % (mean=0.36±0.17 %, n=6). Solimões River sediments display TOC contents ranging 

from 0.28 % to 0.90 % with an average of 0.62±0.20 % (n=7). Amazon River mainstream sediments 

have intermediate TOC contents ranging from 0.13 % to 1.44 % (mean=0.73±0.36 %, n=19).  

The range of δ13CTOC values of all riverbed samples is from -26.1 ‰ to -29.9 ‰ (Table 2.1, Fig. 2.2B). 

The most enriched (-26.1 ‰) and depleted (-29.9 ‰) δ13CTOC values are both observed in Solimões 

River sediments, which have an average value of -28.2±1.2 ‰ (n=6). A similar scatter of δ13CTOC values 

is obtained from sediments of the Negro River varying between -26.5 ‰ and -29.8 ‰ (mean=-

28.7±1.3 ‰, n=7). In comparison, narrower ranges are found in the other tributaries and the Amazon 

River mainstream, with values ranging from -27.8 ‰ to -28.4 ‰ (mean=-28.0±0.3 ‰, n=3) for the 
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Madeira River, from -27.9 ‰ to -29.8 ‰ (mean=-29.2±0.8 ‰, n=8) for the Xingu River, and from -

27.5 ‰ to -29.4 ‰ (mean=-28.2±0.5 ‰, n=15) for the Amazon River mainstream. 

2.4.1.2. Lignin phenols 

The Λ8 values in riverbed sediments vary from 0.73 mg/100mg OC in the Madeira River to 9.27 

mg/100mg OC in the northern channel of the Amazon River mouth (Table 2.1, Fig. 2.2C). The highest 

average Λ8 of 4.92±1.44 mg/100mg OC (n=8) is observed in the Xingu River with values ranging 

between 3.30 and 6.91 mg/100mg OC. In contrast, Madeira River sediments display the lowest average 

Λ8 value of 2.61±1.30 mg/100mg OC (n=6; 0.73 to 4.42 mg/100mg OC). The Λ8 values of samples in 

the Negro River and the Solimões River vary respectively between 3.55 and 4.89 mg/100mg OC 

(mean=4.38±0.51 mg/100mg OC, n=7) and 3.49 and 6.44 mg/100mg OC (mean=4.59±0.96 mg/100mg 

OC, n=7). The Λ8 values of the mainstream sediments have the largest variability, from 0.75 to 9.27 

mg/100mg OC (mean=4.88±1.93 mg/100mg OC, n=19).  

Negro River and Xingu River sediments have higher Σ8 values and greater variability, ranging 

respectively from 1.89 to 19.52 mg/10g dry sediment (mean=9.50±5.90 mg/10g dry sediment, n=7) and 

from 2.73 to 17.97 mg/10g dry sediment (mean=11.18±5.93 mg/10g dry sediment, n=8). In contrast, 

the samples from the other tributaries and the Amazon mainstream display lower Σ8 values, 0.99-4.94 

mg/10g dry sediment (mean=2.91±1.22 mg/10g dry sediment, n=7) for the Solimões River, 0.10-2.30 

mg/10g dry sediment (mean=1.11±0.85 mg/10g dry sediment, n=6) for the Madeira River and 0.10-

11.05 mg/10g dry sediment (mean=3.96±2.93 mg/10g dry sediment, n=19) for the Amazon River 

mainstream. Apart from the Xingu River, the Σ8 values and Λ8 values in individual tributaries are well 

correlated (r2 from 0.64 to 0.96, p<0.05).  

S/V and C/V of all riverbed samples range respectively from 0.70 to 1.51 and 0.08 to 0.47 (Table 2.1, 

Fig. 2.3). Negro River and Xingu River sediments show slightly lower average S/V ratios (0.88 and 

1.00) than samples from the Solimões River, the Madeira River and the Amazon mainstream (1.08, 

1.10, and 1.09, respectively). The range of average C/V ratios of all tributaries is from 0.16 to 0.24 and 

the highest mean C/V ratio was observed in the Madeira River. Except for the highest P/V ratio in the 

Madeira River (0.38), the P/V ratios in the other tributaries vary only slightly (0.24-0.27). (Ad/Al)V 

values in all riverbed samples (Table 2.1, Fig. 2.2D) vary from 0.26 to 0.71 with an average of 0.42, 

and (Ad/Al)S values range from 0.15 to 0.57 with an average of 0.28. The (Ad/Al)V and (Ad/Al)S are 

correlated (r2=0.76, p<0.05, n=47), but all (Ad/Al)S values are lower than the respective (Ad/Al)V values. 

2.4.1.3. Al/Si 

In riverbed sediments, the Al/Si varies from 0.11 to 0.56 (Fig. 2.4A), which is larger than the Al/Si 

range of riverbed sediments reported by Bouchez et al. (2011). Solimões River sediments have a narrow 

Al/Si range (0.27-0.37) with an average of 0.33±0.04. The samples in the Madeira River and the 
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Amazon River mainstream display lower Al/Si values (0.17-0.37, mean=0.26±0.08, n=6 and 0.11-0.38, 

mean=0.29±0.07, n=19, respectively). On the contrary, Negro River and Xingu River sediments have 

larger variations and higher average Al/Si ratios (0.17-0.51, mean=0.37±0.15, n=7 and 0.14-0.56, 

mean=0.40±0.15, n=8, respectively). 
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Table 2.1. Sample information, results of bulk OC and lignin analyses of riverbed sediment samples from the Amazon basin presented in this study. 

Sample 
code 

River Long Lat TOC 
(%) 

δ13CTOC 
（‰） 

Λ8 
(mg/100mgOC) 

C/V S/V P/V (Ad/Al)v (Ad/Al)s Σ8 
(mg/10g 
dry 
sediment) 

Al/Si 

(weight 
ratio) 

MAO02d Negro -60.36 -3.07 1.44 -29.5 3.79 0.26 0.82 0.34 0.59 0.44 5.44 0.19 

MAO02e Negro -60.35 -3.06 2.93 -29.3 4.62 0.13 0.85 0.24 0.43 0.30 13.53 0.51 

MAO02f Negro -60.35 -3.05 1.22 -27.3 4.46 0.13 0.97 0.25 0.59 0.32 5.44 0.43 

MAO1 Negro -60.30 -3.06 3.99 -29.3 4.89 0.14 1.09 0.23 0.61 0.30 19.52 0.50 

MAO03a Negro -60.20 -3.05 2.13 -26.5 4.73 0.10 0.70 0.25 0.56 0.26 10.08 0.49 

MAO03h Negro -60.20 -3.05 0.53 -29.6 3.55 0.18 0.91 0.31 0.71 0.36 1.89 0.17 

MAO4 Negro -60.15 -3.11 2.31 -29.8 4.59 0.18 0.81 0.28 0.35 0.24 10.59 0.31 

MAO11c Solimões -60.38 -3.30 0.90 -29.9 3.86 0.20 1.12 0.24 0.32 0.20 3.48 0.37 

MAO09b Solimões -60.29 -3.27 0.28 n.a. 3.49 0.17 1.19 0.30 0.28 0.15 0.99 0.30 

MAO08b Solimões -60.21 -3.30 0.59 -27.9 4.97 0.21 0.99 0.25 0.33 0.28 2.93 0.37 

MAO08a Solimões -60.20 -3.29 0.74 -28.4 4.34 0.24 1.13 0.22 0.32 0.23 3.19 0.34 

MAO05a Solimões -60.03 -3.27 0.50 -26.1 4.30 0.28 1.10 0.23 0.52 0.34 2.13 0.27 

MAO05d Solimões -60.02 -3.29 0.57 -28.4 4.71 0.14 0.94 0.17 0.35 0.26 2.69 0.33 

MAO13c Solimões -59.88 -3.20 0.77 -28.4 6.44 0.17 1.06 0.24 0.28 0.19 4.94 0.37 

MAO23a Madeira -59.08 -3.68 0.52 -28.4 4.42 0.14 0.96 0.21 0.29 0.23 2.30 0.37 

MAO25e Madeira -58.91 -3.52 0.47 -27.8 3.29 0.21 1.21 0.26 0.35 0.22 1.55 0.31 

MAO28d Madeira -58.80 -3.44 0.52 -27.9 3.10 0.24 1.17 0.25 0.39 0.25 1.61 0.23 

MAO23c Madeira -59.08 -3.67 0.16 n.a. 1.69 0.29 1.04 0.44 0.49 0.40 0.28 0.17 

MAO25d Madeira -58.91 -3.53 0.14 n.a. 0.73 0.36 1.07 0.63 0.67 0.57 0.10 0.17 
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MAO25b Madeira -58.91 -3.53 0.35 n.a. 2.42 0.23 1.16 0.48 0.71 0.38 0.84 0.31 

MAO15e Amazon -59.38 -3.19 0.25 n.a. 2.84 0.20 1.14 0.18 0.31 0.21 0.70 0.24 

MAO15a Amazon -59.38 -3.15 0.80 -27.9 4.01 0.14 0.91 0.20 0.40 0.24 3.21 0.36 

MAO17 Amazon -59.29 -3.15 0.59 -28.9 3.51 0.14 1.16 0.34 0.37 0.20 2.06 0.26 

MAO19 Amazon -59.13 -3.18 1.00 -29.4 4.22 0.14 0.92 0.23 0.48 0.32 4.22 0.37 

MAO21f Amazon -59.03 -3.23 0.99 -28.7 5.04 0.12 0.96 0.26 0.29 0.21 5.01 0.38 

MAO36 Amazon -58.62 -3.25 1.44 -28.1 4.76 0.21 0.84 0.24 0.45 0.26 6.85 0.31 

OB1 Amazon -55.56 -1.89 0.61 -28.4 3.79 0.21 1.10 0.30 0.48 0.28 2.33 0.32 

MC11 Amazon -51.09 -0.06 0.13 n.a. 0.75 0.47 1.01 0.64 0.61 0.56 0.10 0.11 

MC12-2 Amazon -51.05 -0.08 1.19 -28.3 9.27 0.11 0.88 0.17 0.28 0.25 11.05 0.37 

MC12-1 Amazon -51.05 -0.08 1.01 -28.1 7.20 0.13 1.05 0.19 0.42 0.29 7.29 0.36 

MC8 Amazon -50.66 -0.13 0.62 -27.5 5.30 0.13 1.20 0.37 0.30 0.19 3.27 0.31 

MC1 Amazon -50.65 -0.12 0.60 -28.0 3.83 0.16 1.51 0.35 0.35 0.15 2.29 0.30 

MC2 Amazon -50.64 -0.13 0.40 -28.0 3.82 0.15 1.14 0.20 0.36 0.22 1.53 0.26 

MC3 Amazon -50.62 -0.15 0.26 n.a. 6.36 0.15 1.17 0.19 0.26 0.22 1.67 0.18 

MC4 Amazon -50.61 -0.17 0.72 -28.0 5.06 0.16 1.14 0.20 0.27 0.19 3.64 0.30 

MC7 Amazon -50.59 -0.21 0.37 n.a. 3.51 0.13 1.08 0.29 0.38 0.22 1.29 0.27 

MC5 Amazon -50.58 -0.20 1.29 -28.0 7.11 0.11 1.01 0.18 0.30 0.31 9.18 0.23 

MC6 Amazon -50.56 -0.19 0.80 -27.8 5.13 0.21 1.31 0.33 0.57 0.25 4.10 0.29 

MC10 Amazon -50.09 -0.05 0.76 -28.4 7.18 0.11 1.22 0.35 0.30 0.23 5.49 0.26 

XA14L Xingu -52.69 -3.88 3.37 -29.7 5.33 0.16 0.98 0.20 0.55 0.36 17.97 0.29 

XA30 Xingu -52.24 -1.69 0.83 -27.9 3.30 0.16 1.23 0.28 0.31 0.18 2.73 0.33 

XA36 Xingu -52.13 -2.22 3.24 -29.8 3.33 0.08 0.90 0.24 0.43 0.26 10.81 0.55 
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XA25 Xingu -51.97 -2.64 3.82 -29.4 3.90 0.19 1.12 0.25 0.42 0.27 14.90 0.54 

XA38 Xingu -52.02 -2.47 3.52 -29.6 4.47 0.15 1.05 0.25 0.55 0.28 15.73 0.49 

XA31 Xingu -52.25 -1.79 1.11 -28.4 6.91 0.19 0.91 0.19 0.34 0.26 7.70 0.30 

XA34 Xingu -52.26 -1.79 0.52 -28.3 6.88 0.19 0.75 0.40 0.38 0.27 3.55 0.14 

XA35 Xingu -52.19 -2.04 3.07 -29.8 5.22 0.16 1.03 0.36 0.53 0.37 16.04 0.56 

n.a.: not available 
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2.4.2. Marine sediments 

2.4.2.1. TOC and stable carbon isotopic composition 

TOC content in the marine surface sediments on the Amazon shelf varies from 0.11 % to 0.91 % (Table 

2.2, Fig. 2.5A). Three samples near the Amazon River mouth exhibit low TOC contents of less than 

0.2 % (0.13±0.04 %, GeoB16209-2, GeoB16210-2 and GeoB16211-2). The highest TOC content is 

obtained for GeoB16204-1, the sample from the south-east region to the Amazon River mouth. The 

δ13CTOC values for marine surface sediments range from -18.6 ‰ at station GeoB16202-1, which is 

located southeast of the river mouth (SE sector), to -26.7 ‰ at station MC33A (near the river mouth) 

(Table 2.1 and Fig. 2.5B). The samples from the SE sector reveal the most enriched δ13CTOC values 

between -18.6 ‰ and -21.6 ‰ (-19.6±1.1 ‰, n=6). The samples collected off the Amazon River mouth 

exhibit the most depleted δ13CTOC values (-24.8±1.4‰, n=5). δ13CTOC values increase along the shelf 

towards the northwest from the Amazon River mouth to around -20.4 ‰ at the north-westernmost 

stations deeper than 2000m. Apart from the relatively depleted δ13CTOC value of -24.5 ‰ at station 

BC61C, the δ13CTOC values on the Amazon Fan range between -21.4 ‰ and -23.0 ‰.  

2.4.2.2. Lignin phenols 

The Λ8 values in marine surface sediments vary from 0.04 to 2.01 mg/100 mg OC (Table 2.2, Fig. 

2.5C). The samples in the SE sector display very low Λ8 values (0.04-0.17 mg/100mg OC), which 

increase slightly with distance from the Amazon River mouth. Apart from the higher lignin content at 

station BC61C (0.57 mg/100mg OC), the samples in the Amazon Fan (Fan sector) also have low Λ8 

values ranging from 0.05 to 0.22 mg/100mg OC with a decreasing trend with distance from the Amazon 

River mouth. The distribution pattern of lignin content in the northwest area (NW sector) is similar to 

that shown by δ13C values. In the NW sector, Λ8 values increase first from 0.19 to 2.01 mg/100mg OC 

at stations closest to the Amazon River mouth, decrease north-westward and reach rather constant low 

values of 0.18 mg/100mg OC on the offshore slope of the NW sector. The Σ8 values in marine surface 

sediments vary from 0.01 to 1.49 mg/10g dry sediment and are highly correlated with Λ8 values 

(r2=0.85, p<0.05, n=30). 

Ranges of S/V and C/V ratios in marine sediments are similar to those observed in riverbed sediments. 

S/V and C/V ratios vary respectively from 0.59 to 1.62 and from 0.10 to 0.43 (Table 2.2, Fig. 2.3). 

Sediments in the SE sector have higher C/V ratios (mean=0.30±0.11, n=9). The (Ad/Al)V and (Ad/Al)S 

values in marine samples vary respectively from 0.37 to 1.16 (Table 2.2, Fig. 2.5D) and from 0.32 to 

0.97 (Table 2.2). However, our marine samples show no correlation between (Ad/Al)V and (Ad/Al)S 

values. Samples from the Amazon Fan exhibit the highest average (Ad/Al)V,S values of 0.81 and 0.71. 

Samples in the SE and NW sectors have similar average (Ad/Al)V values (0.62 and 0.61, respectively), 

but samples from the NW region exhibit larger variation. 
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2.4.2.3. Al/Si and grain size 

In marine sediments, the Al/Si varies from 0.14 to 0.47. The SE and Fan sectors have narrow Al/Si 

ranges, which are respectively 0.37-0.41 with an average of 0.39±0.01 and 0.40-0.46 with an average 

of 0.43±0.02 (Table 2.2). In contrast, the samples in the NW sector display large Al/Si variance (0.14-

0.47, mean=0.32±0.14).  

Grain size of marine sediments is reported as mean grain size and varies between 3.23-92.90 μm (Table 

2.2). Coincident with the Al/Si ratio distribution, samples in the SE and Fan sectors respectively have 

narrow grain size ranges, which are 4.44-11.79 μm with an average of 8.07±2.75 μm and 3.23-14.50 

μm with an average of 5.84±3.38 μm. On the contrary, sediments in the NW sector display wide range 

grain sizes (4.74-92.90 μm, mean=31.23±35.19 μm). The correlation between grain size and Al/Si ratio 

(r2=0.85, p<0.05, n=28) indicates that the Al/Si ratio is a reliable proxy for the grain size of terrestrial 

sediments. 
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Table 1. Sample information, results of bulk OC and lignin analyses of marine surface sediment samples from the Amazon continental margin presented in this study. 

Sample code Long Lat TOC 
(%) 

δ13CTOC 
（‰） 

Λ8 
（mg/100mg 

OC） 

S/V C/V (Ad/Al)v (Ad/Al)s Σ8 (mg/10g 
sediment) 

Al/Si 

(weigt 
ratio) 

Mean grain 
size 

(μm) 

The Amazon Fan sector (Fan)          

BC14B -48.35 4.04 0.46 -23.0 0.09 0.81 0.15 0.91 0.81 0.04 0.42  5.2  

BC17B -48.54 3.96 0.44 -21.8 0.14 1.33 0.13 0.99 0.65 0.06 0.42  6.2  

BC24B -48.89 3.80 0.49 -22.2 0.22 1.62 0.18 0.88 0.49 0.11 0.40  14.5  

BC3C -48.61 4.46 0.60 -21.9 0.19 1.33 0.35 0.65 0.71 0.11 0.45  3.9  

BC44C -48.17 3.78 0.44 -21.8 0.10 0.59 0.11 0.75 0.70 0.04 0.41  4.7  

BC50C -47.31 3.65 0.57 -22.3 0.09 0.78 0.22 0.87 0.80 0.05 0.45  3.8  

BC55C -47.64 3.07 0.46 -21.7 0.13 0.76 0.14 0.81 0.70 0.06 0.40  8.2  

BC61C -47.74 2.85 0.64 -24.5 0.57 1.28 0.24 0.92 0.61 0.37 0.46  3.2  

BC71C -46.25 3.39 0.50 -21.4 0.06 1.28 0.35 0.70 0.77 0.03 0.46  n.a. 

MC12A -48.34 4.04 0.67 -22.6 0.13 1.61 0.27 0.56 0.78 0.09 0.43  5.1  

MC6A -48.62 4.46 0.77 -22.2 0.06 1.04 0.26 0.92 0.76 0.05 0.45  3.5  

The southeast sector (SE)          

BC75C -45.35 1.68 0.31 n.a. 0.04 0.81 0.25 0.86 0.92 0.01 0.40  n.a. 

BC80C -44.35 0.66 0.21 n.a. 0.10 0.80 0.11 0.49 0.42 0.02 0.38  4.8  

BC82C -44.21 0.34 0.35 -21.6 0.05 0.91 0.31 0.80 0.77 0.02 0.40  4.4  

BC90B -42.74 -1.03 0.43 n.a. 0.08 1.25 0.20 0.76 0.48 0.04 0.40  6.0  

GeoB16202-1 -41.59 -1.91 0.47 -18.6 0.06 0.86 0.27 0.50 0.64 0.05 0.37  9.3  

GeoB16203-2 -41.72 -2.04 0.75 -19.1 0.08 0.98 0.43 0.51 0.67 0.07 0.41  8.3  
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GeoB16204-1 -42.34 -2.00 0.91 -19.6 0.09 1.05 0.43 0.52 0.68 0.10 0.39  11.8  

GeoB16205-3  -43.10 -1.35 0.50 -19.7 0.17 0.70 0.23 0.54 0.53 0.12 0.40  10.9  

GeoB16206-2 -43.02 -1.58 0.55 -18.9 0.07 0.87 0.43 0.59 0.85 0.05 0.39  9.1  

The northwest sector (NW)           

MC33A -49.79 3.23 0.74 -26.7 2.01 1.23 0.16 0.73 0.54 1.49 0.46  5.0  

GeoB16209-2 -49.37 2.83 0.11 -23.2 0.19 0.83 0.20 0.64 0.97 0.03 0.15  88.4  

GeoB16210-2 -49.36 2.87 0.11 -24.1 0.39 1.06 0.29 0.50 0.48 0.04 0.17  48.7  

GeoB16211-2 -49.35 2.88 0.18 -24.1 1.08 0.84 0.12 0.46 0.35 0.22 0.22  41.9  

GeoB16212-2  -49.39 3.10 0.73 -25.7 1.55 1.01 0.16 0.51 0.35 1.05 0.46  5.7  

GeoB16216-2  -51.26 6.24 0.79 -20.4 0.18 1.17 0.31 0.66 0.90 0.17 0.41  5.7  

GeoB16217-1  -51.29 6.07 0.50 -20.3 0.18 1.10 0.25 1.16 0.76 0.10 0.30  13.1  

GeoB16218-3 -51.52 4.77 0.76 -23.7 1.18 0.99 0.16 0.47 0.32 0.95 0.47  4.7  

GeoB16223-1 -52.12 6.63 0.79 -20.5 0.19 1.11 0.29 0.65 0.86 0.17 0.38  6.1  

GeoB16225-2  -52.86 5.67 0.27 -21.7 1.05 0.63 0.10 0.37 0.32 0.33 0.14  92.9  

n.a.: not available 
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2.5. Discussion 

2.5.1. Lowland Amazon River system 

2.5.1.1. Spatial distribution and isotopic composition of OCterr 

The TOC contents of our riverbed sediments in individual tributaries are larger than values of bedload 

sediments reported by Bouchez et al. (2014) (mean=0.23±0.42 % in the Solimões and Madeira rivers 

and the Amazon mainstream), but lower than the values of suspended materials (e.g. mean=1.14±0.33 % 

in the Solimões and Madeira rivers and the Amazon mainstream) in the Amazon lowland basin (Hedges 

et al., 1986; Moreira-Turcq et al., 2003; Bouchez et al. , 2014). The distribution of TOC contents 

basically reflects the characteristics of the tributaries, which are mainly influenced by the content of 

dissolved organic matter and suspended sediment (Fig. 2.2A). The relatively high TOC contents in the 

Negro River are due to the low suspended sediment content and high content of humic substances (Ertel 

et al., 1986). The Xingu river is characterized by low suspended sediment content and high 

phytoplankton production, which lead to the high TOC contents in riverbed sediments (Moreira-Turcq 

et al., 2003). In contrast, the Solimões River and the Madeira River being the primary contributors of 

the suspended sediment to the Amazon River mainstream, have large suspended sediment load 

(Moreira-Turcq et al., 2003). Consequently, the low TOC contents in the riverbed sediments in these 

tributaries are due to dilution by lithogenic material. The lower-intermediate TOC contents for the 

Amazon River mainstream results from the mixing of different signals from these tributaries with a 

greater influence from the Solimões and the Madeira Rivers. 
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Figure 2.2. A) Total organic carbon (TOC) content, B) stable carbon isotopic composition of total organic 

carbon (δ13CTOC), C) carbon-normalized lignin content (Λ8) and D) degradation index of lignin (Ad/Al)V in 

different tributaries and in the Amazon mainstream. In D, (Ad/Al)V ≤0.24 suggests fresh vascular plant 

tissues, whereas (Ad/Al)V >0.24 reveals degraded plant material. See Table 2.1 and Fig. 2.1 for the location 

of the samples. 

The δ13CTOC values of our riverbed sediments (i.e., from -26.1 ‰ to -29.9 ‰) (Fig. 2.2B) are similar to 

the values reported for riverbed sediments (e.g. from -27.6 ‰ to -28.8 ‰) and suspended particulate 

matter (e.g. -28.3±1.1 ‰) in the Amazon River system in previous studies (Hedges et al., 1986; Cai et 

al., 1988; Kim et al., 2012; Bouchez et al., 2014). Hedges et al. (1986) studied δ13CTOC values of different 

organic carbon sources in samples from the Amazon River and found the respective average δ13CTOC 

values of C3 tree leaves, woods, macrophyte tissues and C4 grasses to be -30.1±0.9 ‰, -27.6±1.0 ‰, -

21.4±8.4 ‰ and -12.2 ‰. The total average δ13CTOC value of riverbed sediments in this study (-

28.5±0.9 ‰) confirms the dominant contribution from terrestrial C3 plants. There is no significant 

difference in the distribution of δ13CTOC values among the sampled tributaries.  

2.5.1.2. Characteristics of lignin phenols 

With the exception of the samples from the Xingu River (r2=0.02, p=0.71), all riverbed sediments 

exhibit a good relation between Λ8 values and Σ8 values (average r2=0.76, p<0.05, n=39). In the Xingu 

River, the high level of in situ primary production and low-turbidity conditions favour the settling of 

phytoplankton-derived organic matter from the water column (Moreira-Turcq et al., 2003). The 

deposited phytoplankton-derived organic matter dilutes the abundance of lignin in TOC (Λ8) but has 
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only a small influence on sediment mass and, as a result, Σ8, resulting in divergence of Λ8 and Σ8 

(Rezende et al., 2010). Based on previous studies, the Λ8 values of different organic matter fractions 

range from 0.45 to 2.40 mg/100 mg OC for fine particulate organic matter (FPOM, silt and clay fraction, 

<63 μm), and from 1.21 to 10.46 mg/100 mg OC for coarse particulate organic matter (CPOM, sand-

size fraction, >63 μm) (Aufdenkampe et al., 2007; Hedges et al., 1986; Hedges et al., 2000). In this 

study, riverbed sediments (Fig. 2.2C), except for three samples with lignin contents lower than 2.0 

mg/100 mg OC, had Λ8 values (2.42-9.27 mg/100 mg OC) similar to those of CPOM. Most of the Λ8 

values of our samples are smaller than the average Λ8 values of tree wood tissues (19.3 mg/100 mg OC) 

and C4 grasses (9.1 mg/100 mg OC), and closer to the range of tree leaves and macrophytes (3.7 

mg/100mg OC and 6.4 mg/100mg OC, respectively) (Hedges et al., 1986). This finding is also 

supported by the distribution of C/V and S/V ratios. The plot of S/V vs. C/V (Fig. 2.3) indicates that 

angiosperm leaves are the major origin of lignin in the lower Amazon basin. It is noteworthy that the 

range of typical C/V values for angiosperm leaf material in the Amazon basin is larger (i.e., including 

C/V values as low as 0.07) than in other regions (with lowest C/V values around 0.20) (Bianchi et al., 

2011; Cathalot et al., 2013; Tesi et al., 2014). The resulting small difference between C/V ratios of non-

woody and woody tissues of angiosperms in the Amazon region results in a larger uncertainty in 

inferring the plant sources of lignin. C/V values around 0.1 could be interpreted either as signals 

exclusively from leaves or as signals from a mixture of woody tissues and leaves. To circumvent this 

uncertainty, the P/V values are also used to identify the lignin sources. P phenols in our samples are 

derived from lignin, as supported from the significant correlation of the content of P phenols and lignin 

content (r2=0.50, p<0.05, n=47). All P/V values of our samples (0.17-0.64) are higher than the average 

P/V ratio of woods (0.05) and similar to the range observed for leaves (0.16-6.9) (Hedges et al., 1986). 

Considering all parameters, non-woody angiosperms are the most likely major source of lignin in the 

lowland Amazon basin. The slightly higher C/V ratios in the Solimões River (0.20) and the Madeira 

River (0.24) suggest a small contribution of grass-derived material (C/V>1) probably from the Andean 

highlands (Aufdenkampe et al., 2007; Hedges et al., 2000).  
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Figure 2.3. Syringyl:vanillyl (S/V) vs. cinnamyl:vanillyl (C/V) ratios of lignin from Amazon basin river bed 

sediments and marine surface sediments from the adjacent continental margin. The black boxes show 

typical ranges for different vascular plant tissues from the Amazon basin (Hedges et al., 1986, Goñi et 

al.,1998). See Tables 2.1 and 2.2, and Fig. 2.1 for the location of the samples. 

The degradation extent of OCterr can be assessed by (Ad/Al)V and (Ad/Al)S ratios as more degraded 

lignin yields elevated (Ad/Al)V and (Ad/Al)S values (Hedges et al., 1988; Opsahl and Benner, 1995). In 

the case of the Amazon basin, the (Ad/Al)V and (Ad/Al)S ratios of typical fresh woods and tree leaves 

both range from 0.11 to 0.24 (Hedges et al., 1986). All of our samples exhibiting values between 0.26 

and 0.71 for (Ad/Al)V (Fig. 2.2D) and between 0.15 and 0.57 for (Ad/Al)S  are outside of the range of 

fresh plant materials, suggesting degraded OCterr in all samples. Instead, the (Ad/Al)V,S ratios observed 

in our samples are within the ranges of suspended particulate solids obtained in the lower Amazon basin 

and Bolivian headwaters ((Ad/Al)V,S of 0.21-0.39 and 0.13-0.22 for CPOM and (Ad/Al)V,S of 0.38-0.79 

and 0.22-0.41 for FPOM (Hedges et al., 1986; Hedges et al., 2000)). The Negro River displayed the 

highest average (Ad/Al)V ratio (0.55), reflecting a greater degree of degradation. This might be 

indicative of more efficient degradation in the podzols of the lateritic landscapes in the Negro River 

watershed (Bardy et al., 2011). The (Ad/Al)V ratios in the Solimões and the Madeira Rivers increase 

with increasing C/V values (r2=0.50, p<0.05, n=13), which implies that the plant tissues with higher 

C/V values (higher grass contributions) are more degraded. This further supports the inference that the 

Solimões and the Madeira Rivers receive POC from grass sources from high-altitude watersheds, where 

deeper soil erosion of more degraded OCterr could occur. The degradation status of lignin in riverbed 

sediments does not display a downstream increasing trend and is similar to previous studies on 

suspended POC of different size fractions. This leads to the conclusion that OCterr processing during 

transport through the Amazon river system probably has limited influence on the composition of lignin 

recorded in the riverbed sediments and the degradation information likely reflects source characteristics 
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of OCterr prior to fluvial transport (Hedges et al., 1986; Hedges et al., 1994). This finding contradicts 

the conclusion of Ward et al. (2013) that lignin is rapidly degraded within the Amazon River. Ward et 

al. (2013) studied particulate and dissolved lignin in the water column, which is exposed to degradative 

environments. In contrast, our study focuses on the lignin associated with mineral particles, which are 

deposited and protected from degradation. This discrepancy highlights the important role of matrix 

association effects in the preservation of organic matter.   

2.5.1.3. Sedimentological control on OCterr characteristics 

As grain size data could not be obtained directly on the riverbed sediment samples, we inferred grain 

size information based on the relationship between the Al/Si ratio and grain size of riverbed sediments 

observed by Bouchez et al. (2011) in samples from the Amazon basin. High Al/Si indicates aluminium-

rich fine-grained sediment, whereas low Al/Si suggests silicon-rich particles of larger grain size 

(Bouchez et al., 2011; Galy et al., 2008).  

As expected, the TOC contents increase with Al/Si (Fig. 2.4A), indicating that fine particles, associated 

with larger specific surface areas and likely rich in clay, carry more TOC than coarser particles. The 

Negro and the Xingu Rivers have larger Al/Si and TOC variations, and for a given Al/Si ratio, the Negro 

and the Xingu Rivers show higher TOC contents compared to the other tributaries. As these rivers have 

distinct chemical characteristics and clay mineral composition (e.g., lower pH in the waters of the Negro 

River and higher kaolinite content in the sediments of the Negro and the Xingu Rivers than in other 

tributaries; Guyot et al., 2007), the adsorption affinities of OCterr on different clay minerals or under 

different chemical conditions may be distinct.  

Different grain size classes may not only have different TOC content but also the composition of their 

OCterr might vary. For example, previous studies on POM in the Amazon basin found that CPOM has a 

higher content of lignin phenols than FPOM and that CPOM is composed of fresher lignin with lower 

C/V ratios (Hedges et al., 1986). Nevertheless, contradictory results were observed in our riverbed 

sediments. The Λ8 values in the Madeira River, the Solimões River and the mainstream Amazon River 

show a remarkable increase with decreasing grain size (indicated by increasing Al/Si ratios) (Fig. 2.4B). 

This rise in lignin content in organic matter associated with finer minerals implies preferential 

preservation of lignin on finer particles compared with other components. A similar trend has been 

observed in other environments, such as in surficial sediments of the East China Sea (Wu et al., 2013) 

and the Iberian margin (Schmidt et al., 2010). However, opposite distribution patterns with lignin 

enriched in coarser size-classes and low density fractions have been found in sediments from the 

Washington margin (Keil et al., 1998) and the Laptev Sea (Tesi et al., 2016). This is likely because 

codeposited plant debris preferentially accumulates within coarser and low density fractions. Thus the 

apparent discrepancy between these studies may derive from the different methods employed, i.e. 

partitioning sediments into discrete size and density fractions (Keil et al., 1998, Tesi et al., 2016) versus 
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characterizing the mean grain size of bulk sediments, respectively (Wu et al., 2013, Schmidt et al., 2010, 

and our study). On the other hand, the distinct environmental settings in which these studies were 

conducted, may influence the grain size distribution of lignin. The Amazon River drains tropical 

lowlands where degradation on land is efficient, and the turbid waters of the Amazon River might limit 

the settling of plant fragments. Consequently, in our riverbed samples sedimentary organic matter likely 

contains only a small contribution of plant debris, whereas less efficient degradation on land in the 

colder climates of the higher latitudes will result in deposition of more coarse plant debris. In the Negro 

River, there is only a slight increase in Λ8 values as mineral particles become finer, probably as a result 

of the large amount of sediment-associated chemically stable humic substances (Hedges et al., 1986), 

in which the lignin content is relatively constant. However, Xingu River sediments exhibit decreasing 

Λ8 values with decreasing grain size probably because the lignin content in finer particles from the 

Xingu River is diluted by other non-lignin organic components. With respect to the indicator of plant 

sources (Fig. 2.4C), the C/V ratios for samples from the Madeira River, the Solimões River and the 

Negro River decrease with decreasing grain size, which implies that lignin with higher C/V ratios is 

typically enriched in coarser particles. This suggests that the non-woody tissues with higher proportions 

of cinnamyl phenols are enriched in coarse-grained sediments. Xingu River and Amazon River 

mainstream sediments present no pronounced trend between C/V ratios and Al/Si values.  

 

Figure 2.4. A) Total organic carbon (TOC) content vs. Al/Si, B) carbon-normalized lignin content (Λ8) vs. 

Al/Si, C) cinnamyl:vanillyl (C/V) ratio vs. Al/Si, and D) degradation index of lignin ((Ad/Al)V) vs. Al/Si 

from Amazon basin riverbed sediments. See Table 2.1 and Fig. 2.1 for the location of the samples. 
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(Ad/Al)V values for all riverbed sediments do not show any obvious relationship with Al/Si (Fig. 2.4D). 

Only Madeira River and Solimões River sediments exhibit decreasing (Ad/Al)V values with increasing 

Al/Si, which suggests that lignin associated to larger mineral particles is more degraded. This 

observation implies preferential preservation of lignin in finer-grained sediments due to better 

protection against oxidative degradation (Killops and Killops, 2005). Like the correlation between Λ8 

values and Al/Si, our observation on (Ad/Al)V values is different to the trends found by Keil et al. (1998) 

and Tesi et al. (2016), where lower (Ad/Al)V values have been found in coarser fractions. Again, this is 

likely due to the fact that these studies investigated individual grain size and density fractions, and that 

they were conducted in higher latitudes with less efficient processing of plant remains prior to 

deposition. As a result, fresh plant tissue would be found in the coarse fractions leading to low (Ad/Al)V 

values (see discussion above). Because our sediments likely contain limited amounts of plant debris, 

the (Ad/Al)V are lower in finer sediments implying that lignin is better preserved in finer grained 

particles. In previous studies on suspended sediments, lignin in the coarse fractions is more abundant 

and less degraded compared to the counterpart in fine fractions (e.g. Hedges et al., 1986). In contrast, 

our results for riverbed sediments suggest that lignin is preferentially preserved and better protected 

against degradation on fine-grained material. The different grain size effects on OCterr composition 

between suspended and riverbed sediments suggest that there are other processes working on OCterr in 

suspended sediments and riverbed sediments which cause post-depositional changes in the OCterr 

characteristics.  

In summary, our data indicate that lignin derives mainly from non-woody tissues of angiosperms in the 

lowland Amazon basin, and there is little evidence for contribution from C4 plants to riverbed sediments. 

Grain size plays an important role in OCterr preservation and lignin composition in the Amazon River. 

Fine inorganic particles have high adsorption affinity for OCterr, especially for lignin compared to other 

OCterr components and efficiently protect lignin from degradation. 

2.5.2. Amazon shelf and fan 

2.5.2.1. Spatial distribution and characteristics of OCterr and lignin phenols 

Because of the depleted average 13CTOC values of the riverbed sediments (-28.5±0.9 ‰), contribution 

of C4 plants is not expected in the offshore sediments affected by the Amazon outflow. Therefore, 

enriched 13CTOC values in the SE sector (-18.6 ‰ to -21.6 ‰) likely indicate organic matter 

predominantly of marine origin. δ13CTOC values in the Amazon Fan sector ranging from -21.4 ‰ to -

24.5 ‰, (Fig. 2.5B) also reflect dominantly marine organic matter. These values are within the range 

of published values for high sea-level periods (Schlünz et al., 1999), when most terrestrial POM 

discharged from the Amazon River is transported to the north-western shelf. In the NW sector, 

increasing δ13CTOC values with distance from the Amazon River mouth indicate that the terrestrial POM 

input from the Amazon River transported to the NW by the North Brazil Current is increasingly diluted 
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by marine organic matter. OCterr is dominant on the continental shelf, corroborating previous results 

(e.g., Schlünz et al., 1999).  

 

Figure 2.5. Spatial distribution of A) total organic carbon (TOC) content, B) stable carbon isotopic 

composition of total organic carbon (δ13CTOC), C) carbon-normalized lignin content (Λ8), and D) 

degradation index of lignin ((Ad/Al)V) in marine surface sediment samples from the Amazon continental 

margin. The dashed ellipses and the rectangle represent the northwest sector (NW), the Amazon Fan sector 

(Fan) and southeast sector (SE). 

Sediments in the SE sector exhibit much lower Λ8 values than observed in the Fan and NW sectors. 

Here, slightly increasing Λ8 values with distance from the Amazon River mouth suggest that this 

terrestrial material is predominantly supplied by rivers to the southeast of the Amazon mouth and not 

by the Amazon River itself. The Λ8 values in sediments near the Amazon River mouth are highly 

variable and decrease with distance from the river mouth to the Fan and NW sectors, reaching very low 

Λ8 values in the slope of the NW sector. Lower lignin contents (0.05-0.32 mg/mg OC) have been 

observed in the deep sea fan sediments measured in the study of Feng et al. (2016), which means there 

is increasing loss of lignin during the transport seawards to the Fan and NW sectors. Λ8 and δ13CTOC 

values show similar spatial distribution and are positively correlated (r2=0.53, p<0.05, n=27) (Fig. 2.6). 

The agreement in the spatial patterns of lignin content and isotope composition of organic matter 

suggest that lignin is a reliable tracer of OCterr in the Amazon shelf and fan, and that the SE sector 

receives little OCterr contribution from the Amazon River. The intercept of the correlation between 8 
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and 13CTOC of NW and Fan sediments (r2=0.58, p<0.05, n=21) is at -20.8 ‰, which corresponds to 

conditions with minimal OCterr input to the marine sediments. It should be noted that the samples from 

the Amazon Fan have the same low lignin contents as in the SE sector, which indicates low contribution 

of OCterr from terrestrial vascular plants under modern conditions. However, the Fan sediments show 

more depleted δ13CTOC than sediments from the SE sector, which implies that a small terrestrial fraction 

is contained in the organic matter of the modern Fan sediments. Potentially, the OCterr from vascular 

plants deposited in the Amazon Fan is readily degraded as indicated, e.g., by the high (Ad/Al)V,S ratios, 

while the relict OCterr is predominantly rock-derived (with estimated δ13CTOC between -24.3 ‰ and -

25.7 ‰) (Bouchez et al., 2014) and responsible for the depleted δ13CTOC. Petrogenic organic matter is 

thus likely a significant component in the offshore sediments because of its refractory nature and 

resulting high preservation potential.  

 

Figure 2.6. Stable carbon isotopic composition of total organic carbon (δ13CTOC) vs. carbon-normalized 

lignin content (Λ8) for marine surface sediment samples from the Amazon continental margin. 

C/V and S/V ratios (0.08-0.47 and 0.70-1.57, respectively; Fig. 2.3) in the entire Amazon shelf and fan 

are comparable to those in the riverbed sediments of the lowland Amazon basin, which indicates the 

same predominant source of non-woody angiosperm tissues. This also implies no further alteration of 

Amazon-derived lignin after it is discharged into the ocean and deposited in marine sediments. Lignin 

in offshore marine sediments thus can provide reliable evidence for the reconstruction of the vegetation 

cover in the Amazon basin. 

The distribution of the degradation state of lignin based on (Ad/Al)V is shown in Fig. 2.5D. The 

strikingly elevated (Ad/Al)V values in the Amazon Fan are probably caused by longer exposure to 

oxygen (Blair and Aller, 2012) at the sediment-water interface under low sedimentation rates, 

corroborating our previous interpretation of the low Λ8 values but intermediate δ13CTOC values in the 

Fan sediments (Fig. 2.6). In the NW sector, there is no obvious decreasing trend of the (Ad/Al)V values 
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with the distance from the river mouth. Low (Ad/Al)V values found at shallow nearshore sites far from 

the Amazon River mouth (e.g., GeoB16218-3 and GeoB16225-2) may be due to rapid transport and 

deposition of the material discharged from the Amazon River (Nittrouer et al., 1995) or contributions 

from local small rivers which may carry an indistinguishable lignin signature from the Amazon River. 

In the study of Feng et al. (2016), the sampling locations in the Amazon deep sea fan are in deeper water 

depths than our samples (>4000 m). Despite, very low (Ad/Al)V,S (0.04-1.3 and 0.03-0.8 for V and S 

phenols, respectively) were observed. Neither S/V nor C/V ratios decrease with (Ad/Al)V,S in the marine 

sediments, which would be expected because cinammyl and syringyl pheonls are preferentially 

degraded compared to vanillyl phenols (Benner et al., 1990; Opsahl and Benner, 1995). Despite the fact 

that the degradation of lignin preserved in marine sediments is slightly higher than that preserved in 

riverbed sediments, degradation has no major impact on the lignin composition. 

2.5.2.2. Influence of grain size on OCterr deposition in marine sediments 

The grain size and Al/Si in the Amazon Fan and SE sectors vary within a rather small range. The grain 

size and Al/Si relationship in the NW sector is in accordance with the results obtained by Bouchez et 

al. (2011). The sediments in the NW sector have similar Al/Si ratios as our riverbed sediments (Table 

2.2) which are correlated with grain size. We use grain size data for the following discussion of the 

sedimentological control on the distribution pattern of OCterr in the NW sector and refer to the 

relationship between TOC and Al/Si as observed in the riverbed sediments.  
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Figure 2.7. A), B), C) and D) indicate total organic carbon (TOC) content, carbon-normalized lignin content 

(Λ8), cinnamyl:vanillyl (C/V) ratio and lignin degradation index ((Ad/Al)V) for marine surface sediment 

samples from the NW sector vs. mean grain size, respectively. Empty triangles represent the three deepest 

sites (>2000 m) far from the coast, and filled triangles represent the other sites in the NW sector with water 

depth shallower than 100 m. See Table 2.2 and Fig. 2.5 for the location of the NW sector. 

Fine sand sediments were observed at the position closest to the Amazon River mouth (GeoB16209-2) 

and at site GeoB16225-2, which is far from the Amazon River mouth (about 700 km) but near the coast 

in a water depth of 34 m. The sample GeoB16225-2 probably receives additional input from local 

smaller rivers, from which coarser sediments are discharged. Considering that the characteristics of 

organic matter in the lowland Amazon basin are almost uniform, the local contributions deposited in 

GeoB16225-2 cannot reliably be distinguished from the material from the Amazon River system. The 

trend of increasing TOC contents with decreasing grain size (Fig. 2.7A) parallels the one demonstrated 

for the riverbed sediments (Fig. 2.4A) and in other marine sediments (Keil et al, 1997; Mayer 1994). 

The lignin content in organic matter (8) and grain size are not significantly related likely because the 

OCterr is mixed with marine-derived organic matter in marine environments (Fig. 2.7B). For example, 

according to the enriched δ13CTOC values (mean=-20.4±0.1 ‰), sites GeoB16216-2, GeoB16217-1 and 

GeoB16223-1, which are the sites located farthest offshore, contain the largest fractions of marine 

organic matter, which reduces their 8 values to about 0.18 despite their small mean grain size (<14 
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μm). Except for these three locations, the Λ8 values are higher in finer grained sediments than in sandy 

sediments. This suggests that in marine sediments, as in the riverbed sediments, sorption of lignin on 

finer sediment is the dominant control on its distribution.  

C/V and (Ad/Al)V values are not related to the grain size in the NW sector (Fig. 2.7C, D), which suggests 

that the influence of grain size on lignin composition and degradation is not as important as in the 

riverbed sediments. The control on the degradation of lignin on the inner Brazil-French Guiana shelf 

and slope is probably complex and influenced by many factors, including oxygen exposure time, 

contribution of material by coastal rivers, and sedimentation rate. Compared with riverbed sediments, 

offshore sediments also exhibit better preservation of organic matter and selective preservation of lignin 

in finer grain size particles, but grain size has limited impact on the lignin composition and degradation 

status. 

In summary, the spatial patterns of lignin content and isotope compositions of organic matter 

corroborates earlier findings (Geyer et al., 1996; Nittrouer and DeMaster, 1996; Schlünz et al., 1999) 

that material discharged by the Amazon River is transported north-westward by the North Brazil 

Current. The modern Amazon Fan area receives more marine organic matter, and petrogenic organic 

matter is a significant component of OCterr in the Amazon Fan sediments. The similarity of lignin 

composition (C/V and S/V) of marine and riverbed sediments suggests that lignin is a reliable tracer 

reflecting the plant source of terrestrial organic matter in the Amazon basin and can be applied to 

reconstruct vegetation changes and paleoclimate conditions. Organic matter and lignin content 

furthermore vary with sediment grain size in the Amazon shelf and slope area and show the same 

preservation trend, better preservation in finer grained sediments, as in riverbed sediments. However, 

lignin composition is rather uniform in sediments of different grain sizes. 

2.6. Conclusions 

In this study, we use TOC content, stable carbon isotopic composition of organic matter, lignin phenol 

concentrations, sediment grain size and Al/Si ratios (as indicator of grain size) to investigate the 

characteristics of OCterr in the lowland Amazon basin and its fate on the adjacent continental margin. 

Depleted δ13CTOC of all riverbed sediments prove that there are limited contributions from C4 plants to 

the OCterr in the lowland Amazon basin. As evidenced by lignin compositions and stable carbon isotopes 

of organic matter, the most important plant sources of organic matter in the lowland Amazon basin are 

non-woody angiosperm C3 plants. There are no distinct regional lignin compositional signatures in the 

lowland Amazon basin, although the Amazon River receives contributions from tributaries draining 

different watersheds. Both the bulk organic matter parameters and the lignin compositions were 

observed to be related to the grain size of the riverbed sediments. Fine inorganic particles in the Amazon 

River carry more organic matter, preferentially preserving lignin against degradation. Lignin with 

higher C/V ratio is inclined to be adsorbed to coarse inorganic particles. 
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In marine surface sediments, the bulk parameters and lignin compositions indicate that the continental 

shelf southeast of the Amazon River mouth receives little OCterr from the Amazon River. Most of the 

OCterr discharged from the Amazon River is transported by the North Brazil Current to the northwest 

and deposited on the continental shelf close to the coast. Modern organic matter in the Amazon Fan is 

composed predominantly of marine-derived organic matter and the terrestrial organic matter undergoes 

extensive diagenetic alteration before deposition. On the Amazon shelf, the OCterr and lignin are both 

associated preferentially with fine-grained sediments. Despite long-distance transport in the marine 

environment, the lignin composition found in the marine sediments retains its plant source information 

in accordance with riverbed sediments. Lignin can thus be used to reliably provide assessments on the 

integrated vegetation cover in the Amazon basin.  

Data availability. The data presented here are available on the Pangaea database 

(https://doi.pangaea.de/10.1594/PANGAEA. 875162). 
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In preparation for Radiocarbon 

Abstract. Compound-specific radiocarbon dating often requires working with small samples of < 100 

µg carbon (µgC). This makes the radiocarbon dates of biomarker compounds very sensitive to biases 

caused by extraneous carbon of unknown composition, a procedural blank, which is introduced to the 

samples during the steps necessary to prepare a sample for radiocarbon analysis by accelerator mass 

spectrometry (i.e., isolating single compounds from a heterogeneous mixture combustion, gas 

purification and graphitization). Reporting accurate radiocarbon dates thus requires a correction for the 

procedural blank. We present our approach to assess the fraction modern carbon (F14C) and the mass of 

the procedural blanks introduced during the preparation procedures of lipid biomarkers (i.e. n-alkanoic 

acids) and lignin phenols. We isolated differently sized aliquots (6-151 µgC) of n-alkanoic acids and 

lignin phenols obtained from standard materials with known F14C values. Each compound class was 

extracted from two standard materials (one fossil, one modern) and purified using the same procedures 

as for natural samples of unknown F14C. There was an inverse linear relationship between the measured 
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F14C values of the processed aliquots and their mass, which suggests constant contamination during 

processing of individual samples. We used Bayesian methods to fit linear regression lines between F14C 

and 1/mass for the fossil and modern standards. The intersection points of these lines were used to infer 

F14Cblank and mblank and their associated uncertainties. We estimated 4.88±0.69 μgC of procedural blank 

with F14C of 0.714±0.077 for n-alkanoic acids, and 0.90±0.23 μgC of procedural blank with F14C of 

0.813±0.155 for lignin phenols. These F14Cblank and mblank can be used to correct AMS results of lipid 

and lignin samples by isotopic mass balance. This method may serve as a standardized procedure for 

blank assessment in small-scale radiocarbon analysis. 

3.1. Introduction 

Compound-specific radiocarbon analysis (CSRA) is an attractive tool for studying the carbon cycle as 

it provides information about the sources and transport mechanisms of biomarker molecules. A major 

challenge in CSRA of biomarkers is the low abundance of these specific compounds in natural matrices 

(e.g. sediments and water) from which they are commonly extracted. This often requires CSRA to work 

with samples of small sizes (< 100 µgC). Recent improvements in the technology of accelerator mass 

spectrometry (AMS) permit the radiocarbon analysis of samples as small as ~1 μgC (Santos et al., 2007). 

However, small samples are very sensitive to biases caused by blank carbon (carbon of unknown 

isotopic composition and from unknown sources) that enters the samples during processing in the 

laboratory. This makes it necessary to carefully assess and correct for the mass and 14C content of the 

blank carbon. 

The preparation of samples for CSRA usually requires a series of complex procedures. An unknown 

amount of contaminant carbon of unknown F14C value might be introduced into the sample at any of 

these steps, such as during chemical extraction, isolation of pure compounds with preparative capillary 

gas chromatography (PCGC) or preparative-high performance liquid chromatography (prep-HPLC), 

preparation on vacuum line systems, and, in some cases, graphitization. Potential contamination sources 

include solvents, column bleed (from PCGC, prep-HPLC), carry-over and atmospheric carbon during 

combustion and vacuum line handling. Combined, these procedural blanks might be large enough to 

contribute a significant proportion of the mass of purified compound samples or even outweigh the 

target compound for ultra-small mass samples (Shah and Pearson, 2007). The F14C value of the analysed 

samples will significantly deviate from the true values of the target compounds without the proper 

assessment and correction of procedural blank, which will potentially lead to erroneous interpretation 

of the biogeochemical characteristics or cycling of the biomarker compounds. Therefore, the assessment 

of procedural blanks, i.e. the determination of F14C and the mass of the procedural blank (F14Cblank, 

mblank), is critical for reporting accurate radiocarbon composition.  

Several studies have used various approaches to quantify the procedural blank and have attempted to 

identify the sources of the blank carbon. Shah and Pearson (2007) measured the masses of procedural 
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blanks from different volumes of effluent from a prep-HPLC system (no sample added) and found 

masses of the procedural blank to be correlated to the prep-HPLC effluent volumes, which suggests that 

the procedural blank introduced during the isolation of compounds would vary in proportion to the mass 

of sample (the larger size samples require larger effluent volume). They also observed that the blank 

introduced from combustion is constant and there are some additional blanks introduced during other 

preparation steps in addition to prep-HPLC and combustion that are difficult to identify. Ziolkowski 

and Druffel (2009) have analyzed the mass and F14C of the eluted procedural blank from repeated dry 

injections (no solvent injected) on PCGC to directly evaluate the blank introduced from the PCGC 

separation step. An indirect method of determining the F14C of PCGC isolated size-series of paired 

standard compounds (one modern, one fossil) has also been used to calculate the masses of modern and 

fossil blanks introduced during the PCGC step. Ziolkowski and Druffel (2009) have shown that the 

direct and indirect methods agree in the assessment of the mass and F14C of procedureal blank and half 

of the procedural blank is introduced before PCGC isolation and likely from the chemical extraction 

step. In the study of Tao et al. (2015), the authors added modern and fossil standards of known F14C 

values into solvent blanks and used the deviation between the measured and known F14C values to 

indirectly assess the amount of modern and fossil blanks. Santos et al. (2010) proposed an approach to 

consider the amount of modern and fossil procedural blanks as integrated components which are a 

combination of all potential sources. Hanke et al. (2017) separated the procedural blank into 14C-

depleted and modern components and varied their masses to obtain the best value by chi-square fitting. 

As stated above, preparing samples for CSRA involves many steps. Although it is theoretically possible 

to quantify the mass and F14C value of extraneous carbon from each step and potentially helpful when 

attempting to minimize the procedural blank, this work is very time consuming and further complicates 

the process for CSRA analysis. In addition, a detailed assessment of blank-carbon contributions from 

each step will further complicate the error propagation during the correction for blank carbon and 

introduces additional large uncertainties into the final F14C data. Therefore, a simplified but precise 

approach for blank assessment, which integrates over all preparation steps and avoids the detailed 

determination of individual contaminant sources, is highly needed for CSRA analysis - especially for 

small sized samples.  

Here, we present a protocol for blank assessment that is relatively easy to achieve without complicated 

calculation or labour-intensive laboratory procedures. As a case study, we apply this method to two 

different biomarker compound classes (n-alkanoic acid and lignin phenols), both commonly targeted 

for CSRA, to test whether it is practical for different compounds and preparation procedurals. 

3.2. Blank assessment 

In our approach we neither focus on the extraneous carbon added through individual preparation steps, 

nor attempt to determine modern C and fossil C contamination separately. Instead, the procedural blank 
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is integrally considered. This approach is based on a hypothesis stated in the study of Santos et al. (2007) 

according to which the mass and F14C value of the integral procedural blank is generally constant per 

batch of samples handled with the same preparation protocol for a certain class of compounds. Relying 

on this assumption, the measured mass and F14C value of a processed sample consists of the pure 

compound of interest and the constant contaminant (blank). Thus, the measured mass (m) and F14C 

value of a processed sample can be described as equation (3.1) and (3.2), respectively. 𝑚sample = 𝑚true + 𝑚blank                  (3.1)    
F14Csample =  F14Ctrue × ( 𝑚true𝑚sample) + F14Cblank × ( 𝑚blank𝑚sample)                 (3.2)        

Where msample, mture and mblank refer to the mass of carbon of the processed sample, the pure compound 

and the procedural blank, respectively. F14Csample, F14Ctrue and F14Cblank are the F14C values of a processed 

sample, the pure compound and the procedural blank, respectively. Equation (3.2) can be rearranged to 

show the relation between F14Csample and msample: 

F14Csample = (F14Cblank × 𝑚blank − F14Ctrue × 𝑚blank) × 1𝑚sample + F14Ctrue               (3.3)        
Except for msample, the other terms in equation (3.3) are constant when using differently sized aliquots 

of the same material. Therefore, equation (3.3) shows a linear relation between F14Csample and 1/msample 

(Shah and Pearson, 2007). The intercept (F14Ctrue) is the F14C value of the pure compound and the slope 

(a) is defined as: 

      a=F14Cblank×mblank-F14Ctrue× mblank             (3.4)                                                   

This shows the effect of the procedural blank on the measured F14Csample as a function of the sample size 

(msample). It allows the procedural blank to be assessed graphically when determining the F14Csample of 

several aliquots (of different size) of two standard materials, with known F14Ctrue values (F14Ctrue1 and 

F14Ctrue2), e.g. one modern and one fossil standard. We can correlate the F14Csample to 1/msample resulting 

in two regression lines with two slopes (a1 and a2), which can be used to derive the mblank from their 

point of intersection: 

mblank=
a1-a2

(F14Ctrue2-F14Ctrue1)
                 (3.5) 

The F14Cblank can then be calculated as: 

F14Cblank=
a1

mblank
+F14Ctrue1     or      F14Cblank=

a2

mblank
+F14Ctrue2                  (3.6) 
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The chosen standards should contain the same or at least similar biomarker compounds as the set of 

“real” samples which is intended to be blank corrected. The standards and “real” samples should be 

processed using identical protocols. The range of chosen sample sizes (msample) for the standards should 

include the mass-range covered by the real sample-set and extend to the high- and low- detection limits 

at the same time (e.g. 10-100µgC). 

There are uncertainties in the measurements of the mass and F14C values of the different sized standards 

and both of these should be considered when fitting regression lines and calculating the intersection 

point. Accordingly, we applied a Bayesian model that included error models for both response and 

predictor variables. This method allows for easy numerical estimation of the bivariate distribution of 

the intersection of the two regression lines (from which mblank and F14Cblank are inferred) using the 

posterior sample of the distribution of the model parameters. The statistical model was written in the 

Stan language (Carpenter et al. 2017) and was fitted using the RStan package (Stan Development Team, 

2018) for R (R Core Team, 2017). The values of 1/mblank and F14Cblank (the intersection point) were 

constrained to be positive. Weak half-normal priors (mean = 0, sd = 10) were placed on the regression 

slopes, with the fossil slope constrained to be positive and the modern slope negative. When available, 

F14Ctrue values for the standards were used to place an informative prior on the value of the intercept 

(F14C value at 1/m = 0). Three chains of the fitting process were run for 5000 iterations and checked for 

convergence visually and with the Rhat statistic (Gelman and Rubin, 1992). The output from the 

Bayesian model is the ‘posterior distribution’, which consists of a matrix of parameter estimates based 

on 7500 iterations, 2500 from the second half of each chain. Each iteration provided one paired estimate 

of F14Cblank and 1/mblank. The median absolute deviation (MAD) is used as a robust measure of 

uncertainty for error propagation because the intersection is the ratio of the differences in slopes and 

intercepts, whose distribution has long tails. For normally distributed variables, the expected value of 

MAD is equal to the standard deviation. The script and the necessary Stan-code file are provided in the 

supplementary material along with diagnostic plots of the model fit. 

3.3. Case studies 

We applied this approach to two groups of biomarkers, i.e. n-alkanoic acids (lipid biomarkers) and 

lignin phenols. For the blank assessment of radiocarbon analysis on lipid biomarkers, n-hexadecanoic 

acid (n-C16:0 alkanoic acid) from apple peel collected in 2013 (F14C value of bulk OC=1.031±0.001) 

was used as modern standard. A commercial n-triacontanoic acid (n-C30:0 alkanoic acid; Sigma-Aldrich 

Prod. No. T3527-100MG, LOT 018K3760) of known F14C value (0.003±0.001) (Rethemeyer et al., 

2013) as well as n-hexacosanoic acid (n-C26:0 alkanoic acid) and n-octacosanoic acid (n-C28:0 alkanoic 

acid) extracted from Messel Shale (immature Eocene oil shale, F14C value of bulk OC=0.000) were 

used as fossil standards.  
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For the blank assessment of radiocarbon analysis on lignin phenols, vanillin extracted from woodchips 

collected in the wood workshop of University of Bremen in 2010 was used as the modern standard and 

the commercial standard ferulic acid (Sig-Aldrich, Prod. No.12,870-8, Lot STBB6360) of known F14C 

value (0.000) was used as fossil standard.  

The handling of purified standards for 14C analysis was described in the study of Winterfeld et al 

(submitted for publication) and Sun et al. (manuscript in preparation). Briefly, the procedure involves 

flame-sealing the standards with CuO in a vacuum line system and combustion to CO2 that was purified 

and transferred to glass ampoules in the next step on the same vacuum line system. The 14C of these 

standards was analysed as gaseous samples using the miniaturized radiocarbon dating system 

(MICADAS) at the Laboratory of Ion Beam Physics, ETH Zürich (Ruff et al., 2007).  

3.3.1. Case Study I: n-alkanoic Acid Samples – methods and results 

To collect sufficient n-C16:0 and n-C28:0 alkanoic acid from standard material to permit isolation of 

multiple aliquots, about 2 g dried apple peel and about 10 g dried and homogenized Messel Shale were 

Soxhlet-extracted with dichloromethane (DCM): methanol (MeOH) 9:1 (v/v) at 60 °C for 48 hours and 

further processed by the method described in Mollenhauer and Eglinton (2007). Additionally, 

asphaltene precipitation was performed with the total lipid extract of the Messel Shale according to the 

protocol described in Weiss et al. (2000). The dried total lipid extracts were saponified with 0.1 N 

potassium hydroxide (KOH) in MeOH:H2O 9:1 (v/v) at 80 °C for two hours. After the extraction of 

neutral compounds by n-hexane, the solution was acidified to pH=1. The acid fraction was extracted by 

DCM. Approximately 2 mg of the commercial standard n-C30:0 alkanoic acid was processed following 

the same procedure as the extracted acid fraction from this step onwards. The acid fractions and n-C30:0 

alkanoic acid were then methylated with MeOH of known F14C value (0.001±0.000) to corresponding 

n-alkanoic acid methyl esters in 5 % HCl under N2 atmosphere at 50 °C overnight. The n-alkanoic acid 

methyl esters were extracted into n-hexane and further eluted with DCM:n-hexane 2:1 (v/v) through 

silica gel column chromatography. The targeted n-C16:0, n-C26:0, n-C28:0 and n-C30:0  alkanoic acid methyl 

esters were purified and collected by preparative capillary gas chromatography (PCGC) following the 

methods described by Eglinton et al. (1996) and Kusch et al. (2010). The injection volume was 5 μl, 

and ~25-120 repeated injections were conducted to collect sufficient mass of individual standard 

approximately ~22-151 μgC. This covers a reasonable range of sample sizes, in which samples for 

CSRA may commonly occur (Table 3.1). The purity of these standards was checked by injecting a small 

aliquot of collected standards to a gas chromatograph coupled to a flame ionization detector (GC-FID). 

Table 3.1. The measured msample and F14Csample of standard compounds for the blank assessment for n-

alkanoic acid methyl ester.  

Standard compound msample (μgC) F14Csample±σ(F14Csample) 

fossil standard   
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Unprocessed n-C30:0 alkanoic acid methyl ester  n.a.  0.0003±0.0002 

Processed n-C30:0 alkanoic acid methyl ester 

89.00±4.452015 0.0400±0.00162015 
63.00±3.152015 0.0568±0.00282015 
24.00±1.22014W 0.1453±0.003382014W 

Processed n-C28:0 alkanoic acid methyl ester 

81.00±4.052017 0.0220±0.00112017 
32.00±1.602017 0.0582±0.00182017 

23.00±1.152017 0.1833±0.00302017 

Processed n-C26:0 alkanoic acid methyl ester 
108.00±5.402017 0.0685±0.00282017 
75.00±3.752017 0.0625±0.00192017 

modern standard   
Unprocessed n-C16:0 alkanoic acid methyl ester  n.a. 0.9705±0.0036 

Processed n-C16:0 alkanoic acid methyl ester 

151.00±7.552014W 0.9650±0.00782014W 

136.00±6.802017 0.9670±0.00612017 

119.00±5.952015 0.9960±0.00152015 

67.00±3.352015 0.9442±0.00882015 

44.00±2.202015 0.9594±0.00682015 

22.00±1.102014W 0.9013±0.00832014W 

n.a.: not available. The superscript W refer to the data adopted from Winterfeld et al. (submitted for 

publication). The superscript numbers represent the years when the standards were prepared. 

The measured msample and F14Csample of the modern and fossil standards of this case study are listed in 

Table 3.1. The measured F14Csample is plotted against 1/msample of the modern and fossil n-alkanoic acid 

methyl esters standards in Fig. 3.1. The true F14C values of modern and fossil n-alkanoic acid standards 

are assumed to be identical to the bulk organic carbon of apple peel and Messel Shale, respectively. In 

the course of the isolation procedure in the laboratory, n-alkanoic acids usually are methylated to n-

alkanoic methyl esters in order to facilitate gas chromatography. Therefore, CSRA-data is obtained 

from the methyl esters and not from the pure n-alkanoic acids. This has to be acknowledged for the 

blank assessment. The methylation means that F14Csample is affected by the F14C of the added methyl-

group (F14Cmethyl) while the F14Ctrue (unprocessed equivalent, apple peel bulk, Messel Shale bulk values) 

is not. Hence, when determining the mblank and F14Cblank as discussed above and shown in Fig. 3.1, the 

methyl group of the processed n-C16:0 and n-C26:0-30:0 methyl esters affects the slope of the regression 

lines. As a result, this would count towards the unknown blank. Combining the F14Cmethyl value, with 

the F14Ctrue of the modern and fossil standard (bulk values of apple peel and Messel Shale) by isotopic 

mass balance yields the F14Ctrue of the respective methyl esters. The calculated value is set as the 

intercept for the regression lines as indicated in equation (3.3).  
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Figure 3.1. Procedural blank assessment for n-alkanoic acid methyl esters. (a) A sample of 500 regression 

lines from the posterior distribution give a visual check of the of the fitted Bayesian model. (b) The posterior 

distribution of masses and F14C values of the procedural blank. 

It appears in Fig.3.1a that both standards display significant linear relationships between their measured 

F14Csample and 1/msample as expected according to equation (3.3). Although the fossil standards include 

saturated n-alkanoic acid methyl esters with different chain lengths (n-C26, n-C28 and n-C30), their 

F14Csample and 1/msample relationships are consistent. It is also worth noting that these fossil standards 

were actually processed at different times between 2014 and 2017. However, this did not influence the 

consistency in the linear relationship, which suggests that the procedural blank is relatively invariant 

with time. A sample from the posterior distribution of regression lines fitted with the Bayesian model 

are plotted in Fig. 3.1a. Fig. 3.1b shows the posterior distribution of masses and F14C values of the 

procedural blank, which are obtained from the pairwise intersection points of the regression lines. Using 

our Bayesian model, the mblank and F14Cblank of the n-alkanoic acids and their uncertainties are estimated 

at mblank±σ(mblank) 4.88±0.69 μgC and F14Cblank±σ(F14Cblank) 0.714±0.077, respectively (Table 3.3). 

3.3.2. Case Study II: Lignin Phenol Samples – methods and results 

Vanillin from woodchips was extracted using the method of Goñi and Montgomery (2000). Briefly, 

about 10 g of woodchip were oxidized with copper oxide (CuO) and ferrous ammonium sulfate in de-

aerated 2 N sodium hydroxide (NaOH) at 150 °C for 90 min under a nitrogen (N2) atmosphere in CEM 

MARS5 microwave accelerated reaction system. After the oxidation, the supernatant was acidified to 

pH=1 and the reaction products were extracted into ethyl acetate. Approximately 3 mg of commercial 

standard ferulic acid were dissolved in ethyl acetate and processed as the extracted oxidation products 

according to the method of Feng et al. (2013). 

Briefly, the extracts and the ferulic acid were both pre-cleaned with Supelclean ENVI-18 solid phase 

extraction (SPE) cartridges and eluted with acetonitrile. Subsequently, the vanillin from the extracts 
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and ferulic acid were further isolated by LC-NH2 SPE cartridges and were eluted into MeOH and 

MeOH:12 N HCl 95:5 (v:v), respectively. The vanillin and ferulic acid were extracted from their elution 

with ethyl acetate and re-dissolved in MeOH for purification on prep-HPLC. The vanillin was then 

purified with a Phenomenex Synergi Polar-RP column followed by a ZORBAX Eclipse XDB-C18 

column. The ferulic acid was purified with the same columns but in reverse order. The specific elution 

conditions on the prep-HPLC system can be found in Feng et al. (2013). ~ 20 repeated injections were 

conducted to collect sufficient mass of individual standard, which was divided into a range of sample 

sizes (Table 3.2).  The purity of the collected standards was checked by injecting a small aliquot of the 

standard to GC-FID. 

Table 3.2. The measured msample and F14Csample of standard compounds for the blank assessment of lignin 

phenols (Sun et al., manuscript in preparation). 

Standard compound msample (μgC) F14Csample±σ(F14Csample) 

fossil standard   

Unprocessed ferulic acid n.a. 0.0000 

Processed ferulic acid 

83.00±4.15 0.0095±0.0013 

51.00±2.55 0.0076±0.0012 

33.00±1.65 0.0110±0.0013 

13.00±0.65 0.0130±0.0016 

6.00±0.30 0.1446±0.0067 

modern standard   

vanillin 70.00±3.50 1.2129±0.0115 

vanillin 50.00±2.50 1.2007±0.0113 

vanillin 29.00±1.45 1.2237±0.0120 

vanillin 11.00±0.55 1.1875±0.0132 

vanillin 6.00±0.30 1.1577±0.0234 

n.a.: not available. 

As is the case of blank assessment for n-alkanoic acid methyl esters, the measured mblank and F14Cblank 

of a range of different sized modern and fossil lignin phenolic standards are listed in Table 3.2. The 

F14C value of pure ferulic acid was measured as graphite target and assumed to be the F14Ctrue, which is 

set as the intercept for the regression line of the fossil standard. Because the F14C value of wood chips 

from which the vanillin was extracted is not available, the intercept of the regression line of modern 

standard (F14Ctrue) is not set manually but produced statistically. The statistically produced value is 

assumed to be the F14Ctrue of vanillin. Similar to the lipid standards, the measured F14Csample of both 

vanillin and ferulic acid are linearly related to the corresponding 1/msample (Fig. 3.2a). This suggest that 

the assumption of a constant procedural blank is also valid for the purification of lignin phenolic 

compounds. The posterior distribution of the masses and F14C values of the procedural blank from the 

Bayesian model is shown in Fig. 3.2b. The mblank and F14Cblank value of the procedural blank during 

CSRA of lignin phenolic compounds are estimated at 0.90±0.23 μgC and 0.813±0.155, respectively 

(Table 3.3). 
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Figure 3.2. Procedural blank assessment for lignin phenols. (a) A sample of 500 regression lines from the 

posterior distribution give a visual check of the of the fitted Bayesian model. (b) The posterior distribution 

of masses and F14C values of the procedural blank. 

 

 

Table 3.3. Estimated values of mblank and F14Cblank 

Blanks Parameter mean sd median MAD 

Blank of n-alkanoic acid 
F14Cblank 0.716 0.083 0.714 0.077 

mblank (µgC) 4.898 0.746 4.881 0.691 

Blank of lignin phenols 
F14Cblank 0.809 0.166 0.813 0.155 

mblank (µgC) 0.927 0.291 0.905 0.229 

3.4. Case studies-discussion 

From our two case studies, it can be seen that we were able to obtain statistically robust estimates of 

the mass and F14C value of the procedural blank (i.e. small uncertainties in both variables), despite 

requiring a long extrapolation of the regression lines to the intersection point. This also suggests that 

much smaller uncertainties could be obtained if small sized samples with masses close to the 

intersection point (mass of the blank) are available because this will shorten the extrapolation distance. 

Therefore, the smallest sample sizes of the set of standards should be go as small as possible to shorten 

the extrapolation distance, which will get better estimate of mblank and F14Cblank.  

The mass and F14C values of procedural blanks for n-alkanoic acid methyl esters and lignin phenolic 

compounds can be further applied to correct for the F14C values of the real samples. The F14C of the 

procedural blank (0.714±0.077 or ∆14C=-292±71 ‰) for n-alkanoic acid methyl esters is similar to the 

procedural blank assessed in the study of Tao et al. (2015) (∆14C=-325±129 ‰), in which a similar 

sample preparation protocol was applied. In Tao et al. (2015), the mass of the combined procedural 
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blank was determined to be 1.3±0.2 μgC per 30 PCGC injections, which means that these authors 

assumed the procedural blank varies with the sample size rather than a constant procedural blank.  

The larger procedural blank for n-alkanoic acid methyl esters (4.88±0.69 μgC) means for this case, the 

results of small size samples (e.g. <15 μgC) are meaningless due to a high proportion of contaminant 

carbon (~30 %). Compared to the preparation process of n-alkanoic acid methyl esters, our preparation 

of CSRA for lignin phenols introduced a lower amount of procedural blank (0.90±0.23 μgC). Although 

the masses of procedural blank in preparation of lignin phenols and n-alkanoic acid methyl esters are 

different, their F14C values are identical within errors. This implies that the blank introduced by the two 

different protocols has the same composition and source but varies in size.  

We use the same vacuum line system for both n-alkanoic acid methyl esters compounds and lignin 

phenols.  The difference in the preparation for these two types of compounds is the chemical extraction, 

cleaning and isolation methods prior to vacuum line handling, i.e. solvent extraction and PCGC for n-

alkanoic acid methyl esters and alkaline CuO oxide digestion and solvent extraction followed by prep-

HPLC for lignin phenols. The mass difference of the blank for these two compound classes might derive 

from any step or the combination effect of several steps.   

According to the results of these two case studies, our approach of blank assessment is successfully 

applied for n-alkanoic acid methyl esters and lignin phenols that require different isolation methods. It 

demonstrates that this blank assessment method can further be applicable for other compounds and 

various preparation protocols. Unlike the methods considering modern or fossil procedural blank 

separately and assessing contamination introduced from different preparation steps, our method is not 

difficult to achieve and reduces the complexity in the calculation of uncertainty. Therefore, this method 

has the potential to serve as a simple and widely applied approach for blank assessment. We propose to 

routinely conduct blank assessment for different batches of samples and different compounds-classes 

to ensure the accuracy and precision of F14C values of real samples, especially of small sizes (<100 

μgC).  

3.5. Conclusion 

Based on our methods of blank assessment, we observe that our preparation protocol of radiocarbon 

analysis of n-alkanoic acid and lignin phenols will produce 4.88±0.69 μg of extraneous carbon with 

F14C of 0.714±0.077 and 0.90±0.23 μg of extraneous carbon with F14C of 0.813±0.155, respectively. 

The F14C of the procedural blanks for both biomarkers are similar, but the mass of the procedural blank 

of n-alkanoic acid is five times larger than that for lignin. This discrepancy is probably due to different 

chemical cleaning and isolation methods prior to preparation on vacuum line system and highlights the 

necessity to conduct blank assessment for different compounds and preparation procedures. The method 
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proposed in this study is not time consuming or labour intensive, and it is worth extending to other 

biomarkers and may serve as a standardized method for blank assessment.  

Data and supplementary material. The data and supplementary material presented here are available 

on the Pangaea database (https://doi.pangaea.de/10.1594/PANGAEA.892180). 
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Abstract. Assessing the composition and age of terrestrial organic carbon (OC) buried in continental 

margins is essential for understanding its origin and transformations before deposition in marine 

sediments. In order to comprehensively characterize sources and pre-depositional histories of terrestrial 

OC in the Amazon system, we employ radiocarbon dating of bulk OC and source-specific biomarkers 

(n-alkanoic acids and lignin phenols) in riverbed sediments from the lowland Amazon basin and 

offshore sediments. We find that ∆14C values of terrestrial OC on the Amazon continental margin are 

substantially influenced by matrix association effects, where terrestrial OC associated with the finer-

grained particles is better preserved and more resistant to decomposition during residence in 

intermediate reservoirs. The compound-specific ∆14C values imply that as expected short-chain n-

alkanoic acids represent recently biosynthesized organic matter from riverine or marine primary 

production whereas both long-chain n-alkanoic acids and lignin phenols used as markers for land 

vegetation have pre-aged in soils where they resided attached to mineral surfaces. By using a ternary 

mixing model, we obtain a well-constrained quantitative estimate of the composition of sedimentary 

OC in riverbed and marine sediments. Despite the variable composition of sedimentary OC in the 

Amazon system, the burial of fossil rock-derived OC is relatively constant. Derived from the absolute 

content of bulk terrestrial OC, the sediment-normalized lignin yields, long-chain n-alkanoic acids and 

their 14C ages, we estimate the half-lives of bulk terrestrial OC, lignin and long-chain n-alkanoic acids 

during transport to be about 2310 years, 13860 and 470 years, respectively. This suggests that the 
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preservation of terrestrial OC in the mud belt on the Amazon shelf is more efficient than previously 

assumed. 

4.1. Introduction 

Rivers are major links between continental and oceanic carbon reservoirs. The annual contribution of 

river-borne terrestrial particulate organic carbon (POC) to the oceans is about 200 Tg (Galy et al., 2007, 

2015; Ludwig et al., 1996; Schlünz and Schneider, 2000). During the transport from river catchments 

to the oceans, terrestrial organic carbon (OC) experiences various physical and biogeochemical 

processes before deposition together with autochthonous marine OC. It is estimated that about 55-80 % 

of the fluvially transported terrestrial OC is remineralized after being exported to the oceans (Burdige, 

2005). The remaining terrestrial OC is primarily buried in the deltaic regions and on the inner 

continental shelves and becomes a critical component of the global carbon cycle (Hedges and Keil, 

1995). Terrestrial OC contains OC originating from different sources (such as plant debris, soils and 

petrogenic OC), which vary in reactivity and age (Hedges and Keil, 1995). These constituents have 

their own pre-depositional histories and abilities to resist the multiple processes of sediment transport 

and early diagenesis until deposition. Thus, a quantitative assessment of the surviving and remineralized 

fractions of the terrestrial OC in continental drainage basins and adjacent marine sediments is crucial 

for understanding the fate of terrestrial OC.  

Combinations of isotopic mass balance, radiocarbon (∆14C) and/or stable carbon (δ13C) isotopic 

compositions have been used to provide source apportionments and temporal constraints on the 

sedimentary organic matter transport (Cathalot et al., 2013; Komada et al., 2005; Vonk et al., 2015; Wu 

et al., 2013). The development of compound-specific ∆14C and δ13C analysis of organic compound 

classes has provided a tool to better constrain the provenance and residence time of sedimentary OC at 

the molecular level. This is a more powerful and detailed method than the approach at the bulk level 

(Eglinton et al., 1996; Goñi and Eglinton, 1996). Compound-specific ∆14C and/or δ13C analysis have 

been successfully applied in several studies to characterize the composition of terrestrial OC in a variety 

of environments, such as rivers (e.g., Galy et al., 2011) and soils (van der Voort et al., 2017). For 

example, the compositions of OC in the Yellow River suspended load and the marine sediments in the 

Bohai Sea and Yellow Sea have been investigated based on the ∆14C and δ13C values of biomarkers 

specific to modern autochthonous OC, pre-aged soil OC, and petrogenic OC, respectively (Tao et al., 

2015, 2016). ∆14C values of various terrestrial biomarkers (e.g. plant wax lipids, cutin, lignin) have been 

measured in riverbed sediments of major rivers across Arctic watersheds to distinguish the sources and 

fates of terrestrial OC from various pools (Feng et al., 2015). By combining the initial 14C ages of leaf-

wax n-alkanes and n-alcohols and their hydrogen stable isotope compositions in a sedimentary archive 

offshore the Congo River, Schefuß et al. (2016) were able to show the effect of continental hydrologic 

changes on terrestrial OC release.  



 

56 
 

Better constraints on sources and ages of sedimentary OC not only provide knowledge about major 

components of the global carbon budget but are also important for quantifying the efficiency and 

understanding the diagenetic state of terrestrial carbon cycling. The rate and efficiency of terrestrial OC 

cycling differs between climatic regions. For instance, in the Amazon system, young and labile carbon 

pools were found to drive the outgassing of carbon dioxide, which suggests rapid cycling of 

contemporary OC pools (Mayorga et al., 2005). In contrast, old terrestrial OC was found to be the 

dominant source of respiration in temperate lakes and streams in Quebéc, which indicates fast 

degradation of old terrestrial OC (McCallister and Paul, 2012). From a global perspective, it has been 

demonstrated that the decay rate of OC during transport from land to ocean is negatively related to 

water retention times (Catalán et al., 2016). Despite numerous studies on the carbon dynamics, it is still 

difficult to define the efficiency of terrestrial OC cycling in different regions and systems, because the 

estimates of decay rate of terrestrial OC were based on different assumptions, used different quantitative 

approaches and time constraints. Therefore, improved estimates of losses of terrestrial OC and the 

corresponding time constraints are needed to develop a decay model for predicting the terrestrial OC 

cycling efficiency and identifying the main controlling parameters on terrestrial OC cycling.  

Tropical ecosystems are of particular interest because they are the most productive ecosystems (about 

15.3 Gt C yr-1) on Earth and act as important reservoirs of terrestrial OC (Killops and Killops, 2005). 

Moreover, tropical rivers serve as the major pathways of terrestrial OC to the oceans (up to about 60 % 

of the global terrestrial OC discharge) and integrate various biogeochemical processing of terrestrial 

OC within river networks (Meybeck, 1982). In spite of their global relevance, a lack of knowledge on 

residence times of terrestrial OC and drivers of terrestrial OC cycling in tropical regions persists. As an 

important conduit between the Amazon tropical forest, flood plain lakes and the Atlantic Ocean OC 

reservoirs, the Amazon River is of global relevance for terrestrial OC cycling. The contribution of 

terrestrial OC transported by the Amazon River accounts for 8-10 % of the global terrestrial OC flux to 

the oceans (Kim et al., 2012; Moreira-Turcq et al., 2003). A variety of biomarkers (e.g. lignin, plant 

wax lipids and GDGTs) have been studied to investigate the origins and composition of terrestrial OC 

suggesting that C3 plants from the lowland Amazon basin are the major plant sources of the terrestrial 

OC in the Amazon system (Häggi et al., 2016; Kim et al., 2012; Sun et al., 2017). In addition to 

biomarkers, many previous studies have also applied ∆14C and δ13C analyses to characterize the 

terrestrial OC in the Amazon system. ∆14C and δ13C analyses of POC indicate that the absolute content 

of petrogenic carbon is invariant in the lowland Amazon basin, and may account for a substantial 

proportion of terrestrial OC in offshore sediments (Bouchez et al., 2010, 2014). Ramped pyrolysis ∆14C 

analysis has been employed to constrain terrestrial OC on the Amazon shelf, which suggests efficient 

preservation of refractory pre-aged terrestrial OC in marine sediments (Williams et al., 2015). Several 

studies employing compound-specific radiocarbon analysis in other regions, e.g., Fiordland fjords in 

New Zealand and Eurasian Arctic river basins, have shown that lignin displays higher ∆14C values than 
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long-chain n-alkanoic acids, although they both predominantly originate from the same initial source, 

i.e. terrestrial vascular plants (Cui et al., 2017; Feng et al., 2013b). This discrepancy is interpreted as 

the consequence of the contribution from different soil layers via various transport pathways. 

Specifically, lignin is dominantly supplied from young plant debris in surface layers and introduced 

into rivers by surface runoff. Unlike lignin, long-chain n-alkanoic acids are thought to be rather 

associated with mineral surfaces and leached from deeper soil layers (Cui et al., 2017; Feng et al., 2013b; 

van der Voort et al., 2017). As the Amazon River drains a large tropical hinterland with different 

hydroclimatic processes than the Fiordland fjords and the Eurasian Arctic river basins, the release and 

transport of terrestrial OC in the Amazon basin might exhibit its own pattern imprinted on the ∆14C 

values of compounds deriving from specific origins. So far, however, ∆14C analyses in most previous 

studies addressing OC cycling the Amazon system were based on bulk OC.  

In order to determine residence times of specific compounds and obtain insights on the efficiency of 

the terrestrial OC cycling, we analyse compound-specific ∆14C data of higher plant biomarkers in 

riverbed sediments from the lowland Amazon basin and in marine surface sediments from the adjacent 

offshore area along with ∆14C of bulk OC. The sources and compositions of sedimentary OC in the 

Amazon system are quantitatively constrained based on diagnostic ∆14C and δ13C signatures deriving 

from different OC pools. In addition, we estimate the decay rate of terrestrial OC during the transport 

from the lowland Amazon basin to the offshore area based on the spatial distribution of ∆14C values and 

absolute content of terrestrial OC. 

4.2. Study area 

The Amazon River is the largest river on Earth in terms of water discharge and drainage basin size, 

with an average annual water discharge of 2×105 m3s-1 (Callède et al., 2000; Guyot et al., 2007) and a 

catchment area of about 6.1×106 km2 (Guyot et al., 2007). Originating from the source tributaries 

(Ucayali and Marañon Rivers) in south-eastern Peru, the Amazon River flows eastward from the Andes 

through the lowland Amazon floodplain and finally discharges into the Atlantic Ocean (Guyot et al., 

2007) (Fig. 4.1). The Amazon watershed consists of numerous tributaries that can be roughly classified 

into three types based on their colour, which correspond to physical and chemical water properties. The 

Solimões and the Madeira Rivers (draining the fast weathering Andean region) are typical white water 

rivers, characterized by high concentrations of suspended sediments and dissolved nutrients (Gibbs, 

1967). Black water rivers (e.g. the Negro River) have high levels of chromophoric dissolved organic 

matter and are depleted in suspended sediments (Mounier et al., 1999). Clear water rivers (e.g. the 

Xingu River) typically have high phytoplankton productivity but low suspended sediment load and low 

content of dissolved chromophoric dissolved organic matter compared to the black and white water 

rivers (Junk, 1997; Richey et al., 1990). An annual discharge of about 40 Tg OC ranks the Amazon 

River the largest fluvial source of terrestrial OC to the ocean (Moreira-Turcq et al., 2003). When sea 
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level is high during interglacial periods (e.g., Holocene), the terrigenous sediments from the Amazon 

River are advected north-westward by the North Brazil Current (NBC)  and predominantly deposited 

on the inner shelf along the northern South American coastline, forming the 1600-km long Amazon-

Guianas subaqueous mud belt (Geyer et al., 1996; Nittrouer and DeMaster, 1996; Schlünz et al., 1999). 

In regions beyond the inner shelf (i.e., on the continental margin), Amazonian sedimentation is low 

during interglacial periods. The fluid mud in the Amazon-Guianas subaqueous mud belt is continuously 

influenced by tides and waves, and the deposits are consequently constantly resuspended and 

remobilized. In this environment, the sedimentary OC is repetitively exposed to oxic or suboxic 

conditions that promote “incineration” of organic matter (Aller and Blair, 2006; Hedges and Keil, 1995). 

 

Figure 4.1. Map of the lowland Amazon basin and the offshore area with sample locations. Samples used 

for compound-specific ∆14C analysis are indicated by rectangles. The map was created using Ocean Data 

View 4.7.10 (Schlitzer, 2017). The dashed ellipse and rectangle represent the north-west sector (NW) and 

the south-east sector (SE), respectively. 

4.3. Material and analytical methods 

4.3.1. Sample collection 

Riverbed sediment samples were collected with a Van Veen grab sampler in November 2011 and May 

2012. Marine surface sediments from the Amazon continental margin were recovered with a multicorer 

during the R/V Maria S. Merian cruise MSM 20/3 in February/March 2012 (Mulitza et al., 2013). 

Sampling sites are listed in Table 4.1 and displayed in Fig. 4.1. Detailed information about the sampling 

sites and processing of riverbed and marine surface sediments can be found in Häggi et al. (2016) and 

Sun et al. (2017). The results for contents of total organic carbon (TOC), stable carbon isotopic ratios 
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of TOC (δ13CTOC), aluminium to silicon ratios (Al/Si), as well as concentrations and compositions of 

lignin have been reported and discussed in detail in Häggi et al. (2016) and Sun et al. (2017). 

4.3.2. Extraction and purification of compounds for radiocarbon measurement 

4.3.2.1. Extraction and purification of n-alkanoic acids  

Dried and homogenized samples were processed for compound-specific radiocarbon measurement of 

n-alkanoic acids in accordance with the methods described by Mollenhauer and Eglinton (2007). MC12-

1 (32 g), GeoB16212-2 (31 g), GeoB16218-3 (11 g) and GeoB16225-2 (55 g) were Soxhlet-extracted 

with dichloromethane (DCM): methanol (MeOH) 9:1 (v/v) at 60 °C for 48 hours. MAO19 (13 g) and 

MAO13c (15 g) were ultrasonically extracted three times for 15 minutes with DCM: MeOH 9:1 (v/v). 

After removing the solvent by rotary evaporation, the total extracts were saponified with 0.1 N 

potassium hydroxide (KOH) in MeOH: H2O 9:1 (v/v) at 80 °C for two hours. The neutral fraction was 

liquid-liquid extracted into hexane. The remaining solution was acidified to pH=1 by adding Seralpure 

water and 12 N hydrochloric acid (HCl), and the acid fraction was extracted into DCM. MeOH of 

known 14C composition and about 5 % HCl were added to the acid extracts and the n-alkanoic acids 

were methylated to corresponding n-alkanoic acid methyl esters under N2 atmosphere at 50 °C overnight. 

After methylation, Seralpure water was added and the n-alkanoic acid methyl esters were extracted into 

hexane. The n-alkanoic acid methyl esters were further separated by silica gel column chromatography 

and eluted with DCM: hexane 2:1 (v/v).  

In order to purify the target compounds, the extracted n-alkanoic acid methyl esters were isolated and 

collected by preparative capillary gas chromatography (PCGC). Aliquots of 5 µL of the FAME-fraction 

in hexane were repeatedly (24-38 times) injected via a Gerstel CIS 4 in solvent vent mode and into an 

Agilent 6890N gas chromatograph. The inlet was equipped with a deactivated, baffled glass liner (70 

mm x 1.6 mm i.d.), set to an initial temperature of 60°C and heated to 320°C at 12°C s-1 and a final hold 

time of 2 min. For compound separation, the GC was equipped with a Restek Rxi-XLB capillary column 

(30 m, 0.53 mm i.d., 0.5 µm film thickness). The GC was operated using Helium as carrier gas at a 

constant flow of 4 mL min-1. After an initial time of 2 min at 60°C, the oven was heated with 20° min-

1 to 150°C and with 8°C min-1 to 320°C, with a final hold time of 6 min. A zero dead volume splitter 

diverted 1 % of the column effluent via a restriction control capillary to a flame ionization detector 

(FID), whereas the remaining 99 % were transferred to a Gerstel preparative fraction collector (PFC). 

The PFC was connected via a heated fused silica transfer capillary to the GC and set to 320°C. The 

switching device, directing the column effluent into seven time-programmable individual traps, was 

also set to 320°C. After trapping, the target compounds were recovered by rinsing the traps with 5 x 

500 µL hexane.  

From our samples, n-C16, n-C18, n-C24, n-C26, n-C28, and n-C30 alkanoic acid methyl esters were collected. 

A split of collected n-alkanoic acid methyl esters was injected to an Agilent 7890A GC-FID equipped 
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with Agilent J&W DB-5ms column (60 m×0.25 mm i.d., 0.25 μm film thickness) to quantify and check 

the purity. The n-alkanoic acid methyl esters were recombined to short-chain (n-C16+18) and long-chain 

(n-C24+26+28+30) alkanoic acid methyl esters groups to obtain sufficient carbon for radiocarbon analysis. 

The combined short-chain (n-C16+18) and long-chain (n-C24+26+28+30) alkanoic acid methyl esters are used 

to reflect aquatic and vascular plant inputs, respectively. 

4.3.2.2. Extraction and purification of lignin phenols 

The extraction and purification of lignin phenols for radiocarbon analysis followed the method 

described by Feng et al. (2013a). The solvent extracted sediment residues (see above) were dried and 

hydrolysed with 1 N KOH in MeOH at 100 °C for three hours to remove hydrolysable lipids (Otto and 

Simpson, 2005, 2006). The remaining sediments after the hydrolysis were divided equally to one to five 

vessels (6-12 g sediments in each vessel) and oxidized with copper oxide (CuO) (4 g) and ferrous 

ammonium sulfate (0.6 g) in de-aerated 2 N sodium hydroxide (NaOH) (20 ml) at 150 °C for 90 min 

under a nitrogen (N2) atmosphere in a CEM MARS5 microwave accelerated reaction system (Goñi and 

Montgomery, 2000). After the oxidation, the alkaline supernatant was transferred and acidified to pH 

1, and the reaction products were extracted into ethyl acetate. Traces of water remaining in ethyl acetate 

were removed by Na2SO4. The ethyl acetate was evaporated under N2 close to dryness. 

The extracts were first pre-cleaned with a Supelclean ENVI-18 solid phase extraction (SPE) cartridge 

(Supelco, 1 g), through which part of the undesired compounds were absorbed on the stationary phase 

while phenolic compounds were eluted with acetonitrile. The phenolic compounds were further 

separated on Supelclean LC-NH2 SPE cartridges (Supelco, 0.5 g). The lignin phenols with aldehyde and 

ketone groups, i.e. vanillin (Vl), syringaldehyde (Sl), acetovanillone (Vn) and acetosyringone (Sn) were 

eluted with MeOH and the lignin phenols with acid groups, i.e. vanillic acid (Vd), syringic acid (Sd), 

p-coumaric acid (p-Cd) and ferulic acid (Fd) were subsequently rinsed out with MeOH: 12 N HCl 95:5 

(v:v). The lignin phenols were extracted from these two fractions with ethyl acetate and re-dissolved in 

MeOH. These pre-separated lignin phenols of interest were isolated by preparative high-performance 

liquid chromatography (prep-HPLC), using an Agilent 1200 HPLC with a diode array detector (DAD) 

and a fraction collector unit. The lignin phenols in the aldehyde and ketone fraction were purified with 

a Phenomenex Synergi Polar-RP column (4.6×250 mm, 4 μm particle size) coupled with a Polar–RP 

guard column (4.0×3.0 mm, 4 μm particle size) followed by further purification with a ZORBAX 

Eclipse XDB-C18 column (4.6×160 mm, 4 μm particle size) coupled with a ZORBAX Eclipse C18 

guard column (4.6×12.5 mm, 5 μm particle size). The lignin phenols in the acid fraction were purified 

with identical columns but in a reversed order. The specific settings for the prep-HPLC system were 

given in detail by Feng et al. (2013a). Aliquots of collected lignin phenols were derivatized with bis-

trimethylsilyl-trifluoroacetamide (BSTFA) +1 % trimethylchlorosilane (TMCS) and injected to GC-

FID for quantification and to check the purity. 
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4.3.3. Radiocarbon analysis 

4.3.3.1. Radiocarbon analysis of TOC 

Dried and homogenized sediments were fumigated with 12N HCl at 60 °C for 72 hours to remove 

carbonates (Komada et al., 2008). Samples were subsequently heated with solid NaOH at 60 °C for 72 

hours to remove excess acid and dry the samples. The 14C compositions of TOC were determined from 

gaseous CO2 introduced to a MICADAS accelerator mass spectrometer (AMS) coupled with an 

elemental analyser at the Laboratory of Ion Beam Physics, ETH Zürich (McIntyre et al., 2016; Ruff et 

al., 2010; Wacker et al., 2010). Oxalic acid II (NIST-SRM-4990C) and ancient carbon dioxide were 

used for the calibration and blank correction for the 14C measurements.  

4.3.3.2. Radiocarbon analysis of biomarkers 

Individual purified n-alkanoic acid methyl esters and lignin phenols were flame-sealed with pre-

combusted CuO in pre-combusted quartz tubes (850 °C, 5 h) under vacuum conditions. The sealed 

quartz tubes were heated at 850 °C for 5 hours to oxidize organic compounds to CO2. The CO2 was 

cryogenically dried and quantified on the vacuum line and subsequently transferred to glass ampoules 

(63 mm 4 mm o.d.) that fit the ampoule cracker unit connected to the MICADAS. Samples that 

contained less than 15 μg C (estimated by GC-FID quantification) were directly flame-sealed in 4 mm 

o.d. quartz ampoules and combusted with CuO (850 °C, 5 h), i.e. the step of cryogenic drying and 

quantification of CO2 on the vacuum line was omitted for small samples. The gaseous 14C measurements 

were performed by the MICADAS AMS system equipped with a gas inlet system at the Laboratory of 

Ion Beam Physics, ETH Zürich (Ruff et al., 2007). The calibration and blank correction for the AMS 

data were conducted with the same standards used for radiocarbon analysis of TOC.  

4.3.3.3. Data report and blank correction 

14C composition is reported as fraction modern carbon (F14C), conventional radiocarbon age (14C age) 

and Δ14C value according to the conventions of Reimer et al. (2004) and Stuiver and Polach (1977). 

The procedural blank for compound-specific 14C analysis was estimated by analysing a series of modern and 

radiocarbon dead (fossil) standards (Sun et al., submitted). n-C16 alkanoic acid (extracted from apple peel) and n-

C30 alkanoic acid (Sigma, Prod. No.T3527-100MG, Lot 018K3760, Rethemeyer et al., 2013) were methylated to 

corresponding n-alkanoic acid methyl esters and purified with the procedure described in section 4.3.2.1 and used 

as the modern and fossil standards for n-alkanoic acid methyl esters, respectively. Vanillin (extracted from wood 

chips) and ferulic acid (Aldrich, Prod. No.12,870-8, Lot STBB6360) were isolated with the procedure described 

in section 4.3.2.2 and represent the modern and fossil standards for lignin phenols. The amount and 14C 

composition of the procedural blank contributions were indirectly assessed based on the method developed by 

Sun et al. (submitted). Briefly, the mass and F14C of the procedural blank were determined by the intersection 

point of the linear regression lines of different sizes of modern and fossil standards. The linear regression lines 
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were yielded with a Bayesian model to take the analytical error of each standard into account.  A detailed 

description of the blank assessment and correction is given in the supplementary material. The 14C compositions 

of n-alkanoic acid methyl esters and lignin phenols are calculated after the correction for the blank carbon using 

an isotopic mass balance. 14C compositions of n-alkanoic acid methyl esters are further corrected for the methyl 

group carbon added during methylation to obtain the 14C compositions of n-alkanoic acids. The 14C composition 

of lignin is calculated as weighted average based on the abundance of individual lignin phenols. 

4.4. Results 

4.4.1. Radiocarbon data of TOC 

The 14C compositions of TOC are shown in Table 4.1. Riverbed sediments and marine surface sediments 

exhibit a relatively wide range of 14C compositions between ∆14C -457.8±6.5 ‰ and -64.1±10.2 ‰, 

which correspond to conventional 14C ages from 4860±100 to 470±90 years before present (yr BP). 

Riverbed sediments show slightly lower ∆14C values of TOC (∆14CTOC) (-133.6±13.9 ‰ to -

91.4±13.9 ‰) compared to marine surface sediments in the south-east sector (SE) (-112.5±9.8 ‰ to -

64.1±10.2 ‰). The distribution of ∆14CTOC values of marine surface sediments is shown in Fig. 4.2. The 

lowest ∆14CTOC value was obtained at station GeoB16210-2, located in the north-west sector (NW) near 

the Amazon River mouth and has the lowest TOC value (Table 4.1, Fig. 4.1). The highest ∆14CTOC value 

was detected at station GeoB16203-2 in the far SE sector, where a relatively high δ13CTOC value was 

found. The marine surface sediments from the NW sector exhibit lower and more variable ∆14CTOC 

values (-457.8±6.5 ‰ to -138.1±9.6 ‰) than the SE sector. For marine surface sediments, ∆14CTOC and 

δ13CTOC values are positively correlated (r2=0.69, p<0.05, n=11) (Fig. 4.3). 

4.4.2. Radiocarbon data of n-alkanoic acids 

The 14C compositions of short- and long-chain n-alkanoic acids are displayed in Table 4.2. Riverbed 

sediments in station MAO19 located in the mainstream of the Amazon River (Fig. 4.1) displays the 

highest ∆14C values of both n-C16+18 alkanoic acids (-18.5±11.9 ‰) and n-C24+26+28+30 alkanoic acids (-

147.5±8.9 ‰) compared to other samples. Riverbed sediments from station MAO13c from the Solimões 

River and MC12-1 from the Amazon River mainstream near the mouth show lower ∆14C values for n-

C24+26+28+30 alkanoic acids than riverbed sediments from station MAO19. The ∆14C values of n-C16+18 

alkanoic acids in marine surface sediments are lower than in MAO19. The lowest ∆14C values of n-

C16+18 alkanoic acids (-84.0±22.8 ‰) and n-C24+26+28+30 alkanoic acids (-366.9±47.6 ‰) are both 

observed in marine surface sediments from station GeoB16218-3, which is located far away from the 

Amazon River mouth. Compared to n-C16+18 alkanoic acids, n-C24+26+28+30 alkanoic acids in all samples 

are consistently lower in ∆14C values. The ∆14C values of n-C16+18 alkanoic acids and n-C24+26+28+30 

alkanoic acids in marine surface sediments are generally lower than those in riverbed sediments.  
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4.4.3. Radiocarbon data of lignin 

The 14C compositions of lignin are reported as weighted averages of individual lignin phenols in Table 

4.2. The 14C compositions of individual lignin phenols are shown in Table S4.4 in the supplementary 

information. Similar to the n-C24+26+28+30 alkanoic acids, the highest and lowest ∆14C values of lignin are 

observed in stations MAO19 (-103.3±13.8 ‰) and GeoB16218-3(-406.7±8.2 ‰), respectively. The 

∆14C values of lignin in marine surface sediments (-406.7 ‰ to -238.9 ‰) tend to be slightly lower than 

those detected in riverbed sediments (-265.8 ‰ to -103.3 ‰). The ∆14C values of lignin are highly 

correlated to the corresponding ∆14C values of n-C24+26+28+30 alkanoic acids (r2=0.93, p<0.05, n=5). 
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Table 4.2. New total organic carbon radiocarbon data and published geochemical data of the riverbed and marine surface sediments by Häggi et al. (2016) and Sun 

et al. (2017).  

Sample Long Lat 

 
WaterH 
depth  
(m) 

TOCH, S 
(%) 

δ13CTOC
S 

(‰) 

Λ8S 
(mg/100mg OC) 

(Ad/Al)V
S 

Al/SiH, S 
 

TOC 

F14C Δ14C (‰) 
14C age  
(yr BP) 

Riverbed            
MAO13c -59.88 -3.20 9 0.77 -28.4 6.44 0.28 0.37 0.873±0.014 -133.6±13.9 1090±130 
MAO19 -59.13 -3.18 12 1.00 -29.4 4.22 0.48 0.37 0.916±0.014 -91.4±13.9 710±125 
MC12-1* -51.05 -0.08 20 1.01 -28.1 7.20 0.42 0.36 n.a. n.a. n.a. 
South-east Sector            
GeoB16202-1 -41.59 -1.91 2247 0.47 -18.6 0.06 0.50 0.37 0.917±0.009 -90.3±8.9 700±80 
GeoB16203-2 -41.72 -2.04 1590 0.75 -19.1 0.08 0.51 0.41 0.943±0.010 -64.1±10.2 470±90 
GeoB16206-2 -43.02 -1.58 1367 0.55 -18.9 0.07 0.59 0.39 0.894±0.010 -112.5±9.8 900±90 
North-west Sector            
GeoB16209-2 -49.37 2.83 24 0.11 -23.2 0.19 0.64 0.15 0.688±0.007 -316.9±7.0 3000±90 
GeoB16210-2 -49.36 2.87 40 0.11 -24.1 0.39 0.50 0.17 0.546±0.006 -457.8±6.5 4860±100 
GeoB16211-2 -49.35 2.88 64 0.18 -24.1 1.08 0.46 0.22 0.596±0.007 -409.0±6.7 4160±100 
GeoB16212-2 -49.39 3.10 77 0.73 -25.7 1.55 0.51 0.46 0.763±0.009 -243.8±9.3 2180±100 
GeoB16216-2 -51.26 6.24 2851 0.79 -20.4 0.18 0.66 0.41 0.868±0.010 -138.1±9.6 1130±90 
GeoB16217-1 -51.29 6.07 2433 0.50 -20.3 0.18 1.16 0.30 0.846±0.010 -160.3±9.5 1340±100 
GeoB16218-3 -51.52 4.77 40 0.76 -23.7 1.18 0.47 0.47 n.a. n.a. n.a. 
GeoB16223-1 -52.12 6.63 2251 0.79 -20.5 0.19 0.65 0.38 0.797±0.009 -209.2±8.8 1830±90 
GeoB16225-2 -52.86 5.67 34 0.27 -21.7 1.05 0.37 0.14 0.763±0.008 -242.5±8.4 2170±90 
n.a.: not available. The sample denoted by an asterisk is the identical sample labelled as ‘*7/5 P95 MACAPA NORTE MEIO’ in Häggi et al. (2016). The parameters 
denoted by an H and S have been published in Häggi et al. (2016) and Sun et al. (2017), respectively. 

Table 4.3. Compound-specific radiocarbon data of riverbed and marine surface sediments.  

Sample 

n-C16+18 alkanoic acids n-C24+26+28+30 alkanoic acids Lignin (weighted average) Σ8  
(mg/10g dry 
sediments) 

Content of n-
C24+26+28+30 
alkanoic acids 
(µg/g dry 
sediment) 

F14C Δ14C (‰) 
14C age  
(yr BP) 

 
F14C Δ14C (‰) 

14C age  
(yr BP) 

F14C Δ14C (‰) 
14C age  
(yr BP) 

Riverbed            
MAO13c n.a. n.a. n.a. 0.778±0.010 -227.9±9.9 2020±100 0.782±0.015 -224.2±15.3 1980±160 4.94 5.47 
MAO19 0.989±0.012 -18.5±11.9 90±100 0.859±0.009 -147.5±8.9 1220±80 0.904±0.014 -103.3±13.8 820±120 4.22 n.a. 
MC12-1 n.a. n.a. n.a. 0.702±0.011 -303.4±10.9 2840±130 0.740±0.009 -265.8±8.8 2420±100 7.29 1.05 
North-west Sector   
GeoB16212-2 0.938±0.016 -69.1±15.9 510±140 0.727±0.011 -278.5±10.9 2560±120 0.767±0.011 -238.9±11.3 2130±120 1.05 4.20 
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GeoB16218-3 0.923±0.023 -84.0±22.8 640±200 0.638±0.048 -366.9±47.6 3610±600 0.598±0.008 -406.7±8.2 4130±110 0.95 0.89 
GeoB16225-2 n.a. n.a. n.a. n.a. n.a. n.a. 0.728±0.024 -277.5±24.0 2550±270 0.33 n.a. 

n.a.: not available. 
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Using 13CTOC and 14CTOC values, it is possible to estimate the average age of terrigenous organic 

matter deposited in the marine surface sediments. Assuming that the average δ13CTOC value of surface 

sediment samples in the SE sector (-18.9±0.3 ‰) represents the end-member value of marine organic 

matter (Sun et al., 2017), an extrapolation of the correlation between 13CTOC and 14CTOC (Fig. 4.3) 

yields the corresponding average ∆14CTOC value of marine organic carbon (-107.4±78.4 ‰). The average 

δ13CTOC value of riverbed sediments from the Amazon River mainstream (-28.2±0.2 ‰) published in 

the study of Sun et al. (2017) is used as the end-member value of terrestrial OC. A binary mixing model 

is employed to assess the relative contribution of marine and terrestrial OC to the marine surface 

sediments. The model is expressed by the following equations: 

fM × (δ13CTOC-M) + fT × (δ13CTOC-T) = δ13CTOC          (1) 

fM + fT = 1                                                                (2) 

where fM and fT represent the fraction of marine and terrestrial OC, respectively. δ13CTOC-M, δ13CTOC-T and 

δ13CTOC represent the end-member values of marine OC, terrestrial OC, and the δ13CTOC of the specific 

sample, respectively. The estimated contribution of marine and terrestrial OC is shown in Table 4.3. 

The ∆14CTOC value of terrestrial OC can be further assessed based on isotopic mass balance as described 

by equation 3: 

fM× (∆14CTOC-M) + fT × (∆14CTOC-T) = ∆14CTOC         (3) 

where ∆14CTOC-M, ∆14CTOC-T and ∆14CTOC represent the end-member ∆14C value of marine OC (-

107.4±78.4 ‰), the estimated average ∆14C values of terrestrial OC, and the measured ∆14CTOC values 

of specific samples, respectively. The calculated ∆14C values and 14C ages of terrestrial OC are shown 

in Table 4.3. The three samples in the SE sector are not discussed here because they receive very limited 

terrestrial input. For the sediments in the NW sector, the estimated ∆14C values of terrestrial OC 

(∆14CTOC-T) vary widely (-734.1±95.1 ‰ to -293.9±81.8 ‰) and are approximately linearly related to 

Al/Si ratios (Sun et al., 2017) reflecting the grain size of terrestrial mineral particles (r2=0.40, p<0.05, 

n=8) (Fig. 4.4). This correlation suggests that the terrestrial OC associated with the finer-grained 

particles is more effectively protected against degradation during the transport offshore the Amazon 

River mouth. 
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to the uncertainties of the considered associated parameters. 14C ages and their errors are rounded to the 

nearest 10 and 5 years, respectively.  

Sample fM 

(%) 
fT (%) Weight percentage 

of 
terrestrial OC 

(wt %) 

Δ14C value of terrestrial 
OC 
(‰) 

14C Age of terrestrial OC (yr 
BP) 

GeoB16209-2 54±4 46±4 0.05 -560.5±92.1 6550±1090 
GeoB16210-2 44±4 56±4 0.06 -734.1±95.1 10580±1410 
GeoB16211-2 44±4 56±4 0.10 -646.8±91.9 8300±1250 
GeoB16212-2 27±5 73±4 0.53 -293.9±81.8 2740±870 
GeoB16216-2 84±4 16±4 0.13 -297.7±120.9 2800±1130 
GeoB16217-1 85±4 15±4 0.08 -458.8±150.0 4890±1440 
GeoB16223-1 83±4 17±4 0.14 -699.1±173.5 9620±1760 
GeoB16225-2 70±4 30±4 0.08 -556.1±106.3 6470±1130 

n.a.: not available. 

 

Figure 4.4. Correlation between total organic carbon ∆14C of terrestrial organic carbon (∆14CTOC-T) and 

Al/Si ratios representing variations in grain size from marine surface sediments. The continuous line 

represents a linear regression (given also in numerical form). 

4.5.2. ∆14
C values of compounds from different sources and with various reactivities 

Although there is considerable uncertainty in the specific source of short-chain n-alkanoic acids, they 

are commonly assumed to be mainly produced by microorganisms indicating autochthonous input from 

algal and/or bacterial sources (Volkman et al., 1998). Indeed, a study conducted in the Amazon Plume 

found that δD of short-chain n-alkanoic acids reflect local salinity conditions and hence represent a 

modern autochthonous OC fraction in aquatic environments (Häggi et al., 2015). This is reflected by 

the highest ∆14C values of n-C16+18 alkanoic acids in the riverbed and marine sediments compared to the 

∆14C values of TOC and other components (Table 4.2, Fig. 4.5). Compared to the ∆14C values of 

dissolved inorganic carbon (DIC) in the lowland Amazon basin (89±44 ‰) (Mayorga et al., 2005), n-

C16+18 alkanoic acids in the riverbed sediment from station MAO19 exhibit a slightly lower ∆14C value 

(-18.5±11.9 ‰) and a near modern 14C age (90±100 yr BP), which suggests predominant input from 
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recently produced material and rapid turnover. The ∆14C values of n-C16+18 alkanoic acids in the marine 

surface sediment samples (-84.0±22.8 ‰ to -69.1±15.9 ‰) agree with that of their riverine counterparts 

within uncertainties (Table 4.2, Fig. 4.5).  

 

Figure 4.5. Radiocarbon data (reported as ∆14C values) of total organic carbon (TOC) and compounds with 

different reactivities for riverine and marine sediments, as well as the terrestrial fraction of organic carbon 

(TOC-T) in marine sediments. The samples are plotted in an upstream-offshore order.  

As a major class of leaf wax-derived biomarkers produced by vascular plants, long-chain n-alkanoic 

acids are used to trace the distribution of terrestrial OC (Feng et al., 2013a; Hedges et al., 2000; 

Mollenhauer and Eglinton, 2007). In contrast to the short-chain homologues, the n-C24+26+28+30 alkanoic 

acids consistently display the lowest ∆14C values except for the marine surface sediments from station 

GeoB16218-3, in which the ∆14C value is higher than that of lignin and has a larger uncertainty due to 

the small sample size (Table S4.2, Fig. 4.5). This pattern of ∆14C values of short- and long-chain n-

alkanoic acids suggests heterogeneous sources and different turnover times. Moreover, the difference 

in the ∆14C values between short- and long-chain n-alkanoic acids increases from the riverbed sediment 

in the middle of the Amazon River mainstream (i.e. station MAO19) to marine surface sediments far 

away from the river mouth (Table 4.2). The increasing age offset (1130-2970 years) suggests that during 

the long-distance transport from the lowland Amazon basin to the ocean, the long-chain n-alkanoic 

acids are continuously aged and become increasingly older compared to the in-situ produced OC. The 

lignin in our samples exhibits the same spatial distribution pattern of the ∆14C values as the long-chain 

n-alkanoic acids, in which they show a trend towards lower values with transport distance from 

upstream of the Amazon mainstream to the offshore area (Table 4.2). 
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The correlation between the ∆14C values of long-chain n-alkanoic acids and lignin and their coincident 

variations with distance from upstream source suggests that they derive from a similar source and 

undergo similar processes during transport. The ∆14C values of long-chain n-alkanoic acids are 

marginally lower than, or about the same as lignin within errors. The general pattern of long-chain n-

alkanoic acids being lower in ∆14C values than lignin has also been found in other regions with different 

environmental conditions, for example, in suspended sediments of the Yellow River basin, estuarine 

sediments from Eurasian Arctic river basins, and sediments from fjord systems in Fiordland, New 

Zealand (Cui et al. 2017; Feng et al., 2013b; Tao et al., 2015). This suggests that long-chain n-alkanoic 

acids intrinsically have a higher potential to survive in the longer term under various climatic and 

hydrodynamic conditions irrespective of the dominant local plant composition. 

Not all studies mentioned above observed a correlation between long-chain n-alkanoic acids and lignin 

14C. In particular in the Arctic, based on their relatively high ∆14C values, lignin phenols were inferred 

to be mainly derived from rapidly exported OC from topsoil layers which are rich in relatively fresh 

OC in various stages of decomposition and transported via surface runoff. Instead, long-chain n-

alkanoic acids exhibiting lower ∆14C values were inferred to originate more likely from aged OC 

associated to mineral soil released from deeper permeable permafrost layers (Feng et al., 2013b). The 

lowland Amazon basin, in contrast, is different in various biogeochemical aspects from the Arctic (e.g., 

soil properties and hydrodynamic processes). First, the age differences between organic matter in upper 

and deeper soil layers are observed to be less significant in the lowland Amazon basin than in the Arctic, 

with drainage basins of the latter covered by discontinuous and/or continuous permafrost (Trumbore, 

1993). Second, the grain size influence on the content and composition of lignin in the Amazon system 

suggests that the transport of lignin as well as long-chain n-alkanoic acids is intimately associated with 

soil minerals (Sun et al., 2017). In addition, compared to the Arctic, deep soils in the lowland Amazon 

basin might be better drained so that the lignin in deeper soils has equal potential to be released along 

with long-chain n-alkanoic acids (Quesada et al., 2011; Wynn, 2007). For these reasons, in contrast to 

Arctic environments, the mechanisms that control the fate of lignin and long-chain n-alkanoic acids in 

soils and their transfer to rivers in the lowland Amazon basin are inferred to be similar. Because we do 

not observe a significant discrepancy in ages between lignin and long-chain n-alkanoic acids, it appears 

that in the lowland Amazon basin lignin as well as long-chain n-alkanoic acids can be used as tracer for 

terrigenous pre-aged OC. 

In our riverbed sediments, bulk terrestrial OC shows higher ∆14C values compared to the refractory 

components (e.g. long-chain n-alkanoic acids and lignin) (Tables 4.1, 4.2, Fig. 4.5). However, in 

corresponding marine surface sediments, the terrestrial fraction of the sedimentary OC exhibits lower 

∆14C values than the long-chain n-alkanoic acids and lignin.  This is particularly the case for the sample 

from station GeoB16225-2, which is likely grain-size related (Tables 4.2, 4.3, Fig. 4.5). The low ∆14C 

value of terrestrial OC in the marine sediments illustrates that terrestrial OC contains material 
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predominantly more recalcitrant and aged than long-chain n-alkanoic acids and lignin which has 

survived remineralization. 

Lignin in sample GeoB16218-3 from the shelf off French Guiana is approximately 2000±160 yr older 

in 14C age than lignin in GeoB16212-2 (Table 4.2), the marine sample close to the river mouth. Yet, its 

(Ad/Al)V value indicating the degree of lignin degradation is not elevated (Table 4.1). The age 

difference in long-chain n-alkanoic acids between GeoB16218-3 and GeoB16212-2 is about 1050±610 

yr. These differences suggest that it takes about 2000±160 years and 1050±610 years, respectively, to 

transport lignin and long-chain n-alkanoic acids about 100 km from the Amazon River mouth to station 

GeoB16218-3. It has been reported that the aging of long-chain n-alkanoic acids during the 600 km 

long transport from the Lena River to the Laptev Sea shelf edge is around 3600±300 years (Bröder et 

al., 2018). While these estimated transport times are on the same order of magnitude, the transport of 

lignin and long-chain n-alkanoic acids on the Amazon shelf appears to be slower than on the Laptev 

Sea shelf. Our estimates for the Amazon shelf, however, are based on only two sites and should thus be 

interpreted with caution.  

The 14C age of lignin in the surface sediment GeoB16225-2 (2550±270 yr BP), located even more 

distant from the Amazon River mouth than GeoB16218-3, does not follow the aging trend along the 

transport pathway but displays a younger 14C age of lignin than that of the sample GeoB16218-3 

(4130±110 yr BP) (Table 4.2). The coarser sediments (reflected by lower Al/Si ratio in GeoB16225-2) 

suggest additional input of fine sand particles (Table 4.1), with which plant debris might be deposited. 

Thus, the unexpectedly young lignin in GeoB16225-2 could result from contributions of fresher lignin 

from local rivers mixed with Amazon-derived pre-aged lignin. The fresh lignin introduced from local 

rivers in GeoB16225-2 is both reflected by its lower (Ad/Al)V value (0.37; Sun et al., 2017) and a large 

age difference between lignin and the terrestrial fraction of bulk OC (Fig. 4.5; see discussion above). 

The 14C age of lignin in marine surface sediments from station GeoB16225-2 (2550±270 yr BP) (Table 

4.2) generally agrees with the results (2150±285 yr BP) obtained by Williams et al. (2015) in nearby 

mud belt sediments. 

4.5.3. Constraints on the origin of terrestrial OC in the Amazon system 

The river-transported OC consists of components that originate from different sources with various 

reactivities, such as recently biosynthesized labile OC, pre-aged refractory OC released from soils, and 

highly resistant fossil rock-derived material (Marwick et al., 2015). When terrestrial OC is exported to 

the ocean, labile components will be replaced by modern OC produced by marine plankton while pre-

aged and fossil components will potentially be preserved and stored along with marine OC. With the 

help of radiocarbon and δ13CTOC values, a three end-member mixing model can be established to provide 

better constraints on the origin of sedimentary OC in continental and marine carbon reservoirs of the 

Amazon system. The model is expressed using the following equations: 
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fbio × F14Cbio +  fpre-aged × F14Cpre-aged+ ffossil × F14Cfossil = F14CTOC                                (4) 

fbio × (δ13Cbio) +  fpre-aged× (δ13Cpre-aged)+ ffossil × (δ13Cfossil)= δ13CTOC                 (5) 

fbio + fpre-aged + ffossil= 1                                                                                      (6) 

where fbio, fpre-aged and ffossil represent the fractions of modern biosynthesized OC, pre-aged OC and fossil 

OC, respectively. F14Cbio, F14Cpre-aged, F14Cfossil, and F14CTOC refer to the F14C values of modern 

biosynthesized OC, pre-aged OC, fossil OC and bulk OC of specific samples, respectively. δ13Cbio, 

δ13Cpre-aged, δ13Cfossil and δ13CTOC refer to the δ13C values of modern biosynthesized OC, pre-aged OC, 

fossil OC and bulk OC of specific samples, respectively. As discussed above, the short-chain n-alkanoic 

acids are mainly derived from local aquatic production, therefore, their F14C values are used as F14Cbio, 

0.989±0.012 for riverbed sediments and 0.931±0.020 (average of two samples of marine surface 

sediments) for marine sediments. Because the major plant source of terrestrial OC is non-woody tissues 

of C3 vascular plants (Häggi et al., 2016; Sun et al., 2017), a typical average δ13C of -30±0.9 ‰ for C3 

plants is assigned to δ13Cbio for riverbed sediments (Hedges et al., 1986). The δ13C of -18.9±0.3 ‰ is 

taken for δ13Cbio in marine sediments. It has to be noted that, as GeoB16212-2 might receive terrestrial 

input of modern biospheric OC, the end-member δ13C of -18.9±0.3 ‰ would result in an 

underestimation of the terrestrial contribution. Both the long-chain n-alkanoic acids and lignin have 

F14C values suggesting moderate degradation histories. Considering that lignin accounts for more 

biomass in plants and might be more abundant in soils than lipids (Ingalls et al., 2010), the specific F14C 

values of lignin are accordingly used as the F14Cpre-aged for individual samples. An average δ13C of (-

27.0 ‰) of wetland soil (Sobrinho et al., 2016) with an assumed uncertainty of 0.8 ‰ is set to represent 

δ13Cpre-aged of OC in soils under C3 forest in the Amazon basin. Bouchez et al. (2014) have reported that 

the δ13C value of fossil rock-derived OC in the Amazon basin is around -25.0‰, therefore, the F14Cfossil 

and δ13Cfossil are set as 0 and -25.0±0.7 ‰, respectively. 

Two riverbed samples and two marine samples have sufficient data for the calculation of this dual 

isotope mixing model. A Monte Carlo simulation with 1000 iterations is implemented to evaluate the 

contributions of these OC pools and uncertainties. The results are shown in Table 4.4 and Fig. 4.6. The 

relative contributions of different OC reservoirs vary greatly along the transport pathway from station 

MAO13c in the Solimões River to station GeoB16225-2 in the mobile mud belt off French Guiana. The 

modern biospheric OC and/or pre-aged soil OC are the predominant components of sedimentary OC in 

all samples. For the riverbed sediments, modern OC constitutes the predominant fraction in sample 

MAO13c in the Solimões River (60±13 %) and MAO19 in the Amazon River mainstream (71±14 %). 

The pre-aged soil OC makes smaller contributions relative to modern OC, 35±15 % in sample MAO13C 

and 24±15 % in sample MAO19, respectively. Compared to MAO19, the high proportion of soil OC in 

MAO13c is probably due to a greater contribution of sediments derived from erosion of Late Pleistocene 

and Holocene sediments (Rossetti et al., 2005), which form soft substrates drained by the Solimões 
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River and its tributaries. In contrast, the location of MAO19 in the Amazon River mainstream also 

receives contributions from the Negro River that drains the Guiana shield, where forests cover older 

substrates more resistant to erosion and probably introduce younger OC from surface soil layers. This 

may explain the larger proportion of modern OC in MAO19. 

Fossil OC is consistently a minor fraction with a large uncertainty, 5±3 % and 5±2 % of TOC in riverbed 

sediments MAO13c and MAO19, respectively, which accounts for absolute contents (TOC × ffossil) of 

around 0.04 % of dry weight. These calculated values are similar to the extrapolated results obtained 

by the binary mixing model applied by Bouchez et al. (2010), which shows that the absolute contents 

of fossil OC in the Amazon basin are constant in individual rivers, e.g., 0.03±0.02 % in the Solimões 

River and 0.06±0.05 % in the Amazon mainstream.  

Table 4.4. Percentages of organic carbon from different sources estimated according to the ternary mixing 

model in riverbed and marine surface sediments, as described in section 4.5.3. 

Sample fbio (%) fpre-aged (%) ffossil (%) 

MAO13c 60±13 35±15 5±3 

MAO19 71±14 24±15 5±2 

GeoB16212-2 16±7 80±8 4±2 

GeoB16225-2 62±4 25±6 13±2 

 

For the marine surface sediments, pre-aged soil OC accounts for the major proportion of sedimentary 

OC (80±8 %) in sample GeoB16212-2 near the mouth of the Amazon River (Table 4.4, Figs. 1, 6). 

Sample GeoB16225-2 further away from the Amazon River mouth contains less soil OC (25±6 %) and 

is slightly more enriched in the proportion of fossil OC (13±2 %) relative to GeoB16212-2. In terms of 

terrestrial OC, the preservation of soil OC decreases while fossil OC progressively becomes a more 

important component away from the Amazon River mouth. In the view of absolute contents, there is a 

substantial decrease of soil OC during the transport from GeoB16212-2 (0.58±0.06 %) to GeoB16225-

2 (0.07±0.02 %). The marked depletion of the absolute content of soil OC is not only the consequence 

of increasing dilution by marine OC and inorganic particles but likely also reflects loss of the relatively 

labile components in the soil OC by decomposition. The substantial loss of the labile soil OC in 

GeoB16225-2 is very likely related to the coarser grain size (reflected by a low Al/Si ratio of 0.14) of 

terrestrial particles in GeoB16225-2 (Table 4.1). As discussed in section 4.5.1, the preservation of 

terrestrial OC in the Amazon system is highly dependent on grain size of the mineral particles, i.e., soil 

OC is likely to adsorb to finer-grained particles and is better preserved through association with mineral 

surfaces. Unlike soil OC, the absolute contents of fossil OC in marine sediments appear to be almost 

invariant, 0.03±0.01 % in GeoB16212-2 and 0.02±0.01 % in GeoB16225-2 (Fig. 4.6), respectively. The 

absolute contents of fossil OC in riverbed and marine sediments do not change with Al/Si ratios. This 

observation suggests that the burial of fossil OC in the Amazon is spatially almost constant on the 
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Amazon shelf and the distribution of absolute contents of fossil OC in sediments is not influenced by 

the variation of sediment grain size. This also suggests that fossil OC is not remobilized to a large degree 

during transport in the Amazon system. The proportion of the refractory terrestrial OC in GeoB16225-

2 (37±8 %) is in accordance with the results obtained with the Ramped PyrOX method in the study of 

Williams et al. (2015). These authors found that the refractory terrestrial OC preserved in a nearby 

location to be at least 36 %. The contributions of terrestrial OC in GeoB16212-2 and GeoB16225-2 

estimated with the three end-member mixing model (around 84 % and 38 %, respectively) are higher 

than the results obtained by the binary mixing model used in section 4.5.1 (about 73 % and 30 %, 

respectively) (Tables 4.3, 4.4). This difference arises from the fact the three end-member model utilizing 

both radiocarbon and stable carbon isotopic data takes into account that terrestrial OC contains 

components with different origins and reactivities. Hence, the more detailed quantitative view can avoid 

underestimation of terrestrial OC and provides better constraints on the origin of sedimentary OC.  

 

Figure 4.6. Quantitative estimation of proportion of organic carbon derived from different origins with 

different reactivities. The histograms with error bars represent the percentages of organic carbon from 

different pools. The black squares, circles and triangles refer to the absolute contents of modern biospheric 

organic carbon (OC), pre-aged soil OC and fossil rock-derived OC in the sediments, respectively. 

4.5.4. Degradation and cycling of terrestrial OC in the Amazon system 

Terrestrial OC is exposed to various physical and biogeochemical processes resulting in transformation 

or decomposition of terrestrial OC during residence within and transfer between different carbon pools 

(e.g., soils, fluvial deposits and coastal sediments). Consequently, the abundances, degrees of 

degradation, and ages of residual terrestrial organic matter varies widely along the transport trajectory. 

The radiocarbon ages of terrestrial OC represent the residence time in the reservoirs where various 

processes induce degradation of terrestrial OC. By plotting the absolute contents of terrestrial OC 
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normalized to mass in our riverbed and marine surface sediments with their 14C ages, we observe an 

exponential relation (Fig. 4.7a), which fits the single exponential decay model of organic matter 

(Catalán et al., 2016). The model can be described as OC(t) = OC(0) × e-kt, in which OC(t) and OC(0) 

are defined as the remaining and initial mass of OC during decomposition, respectively. The constant 

k represents the decay rate and t is the residence time of the terrestrial OC.  

 

Figure 4.7. Absolute content of terrestrial organic carbon (OC) (a), lignin and long-chain alkanoic acids (b) versus the 

corresponding 14C age from riverine and marine samples. For marine sediments, the absolute content of terrestrial OC 

was corrected by the corresponding fraction of terrestrial OC, as estimated in section 4.5.1 (i.e., TOC * fM). The 

calculated age of terrestrial OC (as estimated in section 4.5.1) is applied here.  

In Fig. 4.7a, the data of our two riverbed sediments and marine sediments in the NW sectors are 

compiled with the results of riverine suspended sediments from lowland Amazon basin reported by 

Bouchez et al. (2010). As shown in Fig. 4.7a, our riverbed sediments and most of the suspended 

sediments exhibit relatively younger 14C ages and more abundant terrestrial OC. The data of riverbed 

sediments (Table 4.1) and riverine suspended sediments reflect the initial 14C age, composition or 

degradation status of the terrestrial OC entering the Amazon River system, i.e. OC(0). The data of 

marine sediments are regarded as reflecting the composition and degradation status of terrestrial OC at 
14C age t after residence in the Amazon system and transport to offshore areas (Table 4.3), i.e. OC(t). 

Terrestrial OC becomes older while losing the less stable components until deposition in the marine 

sediments. This variation from the riverine to the marine sediments reflects loss of terrestrial OC since 

it is exported to the river until its (final) deposition in marine surface sediments, i.e., the degradation 

during transport. Our finding is consistent to the global pattern of older riverine POC age with 

decreasing POC content, which suggests preferential decomposition of younger and more labile OC 

during the residence time within the river network (Marwick et al., 2015). It should be noted that the 

loss of terrestrial OC in our study is not necessarily caused by decomposition alone, but also includes 

other effects, such as the burial within the river and/or dilution by marine inorganic particles. The latter 

point could be especially relevant for the marine samples off the inner shelf, where limited present-day 

terrestrial sedimentation takes place.  

Based on our data we attempt an approximation of the decay rate of terrestrial OC. Based on the 

obtained correlation, k is 3×10-4±3×10-5 yr-1 and the half-life of terrestrial OC can be calculated as T(1/2) 
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= ln (2)/k. The half-life of terrestrial OC is estimated to be about 2310±230 years. Aller and Blair (2006) 

have estimated a so-called “conditional” (i.e., based on a set of assumptions, see Aller and Blair, 2006) 

reactivity of terrestrial OC during the transport from the Amazon River to the mobile mud belt surface 

sediments based on the approximate residence time of particles and the change in terrestrial OC loading. 

They estimated that the “conditional” rate constant for terrestrial OC is around 0.2 yr-1 and the 

corresponding T(1/2) is about 3.5 years, suggesting that most terrestrial OC is remineralized within a 

few years (Aller and Blair 2006). The difference in the estimation of the decay rate of terrestrial OC in 

our and their study most likely derives from the different ways of constraining the residence time of 

terrestrial OC. In the study of Aller and Blair (2006), the transport time of particles (carrier of terrestrial 

OC) in the mud belt surface sediments is used for the estimation. However, ages and contents of 

terrestrial OC are not necessarily related to the depositional locations. Therefore, our findings are based 

on the residence time of terrestrial OC itself in the intermediate reservoirs and reveals the cycling 

kinetics of terrestrial OC in the Amazon system before deposition. A similar approach has been applied 

to investigate the decay rate of terrestrial OC on the Laptev Sea shelf, which gave a degradation rate of 

2.4×10-3±6×10-4 yr-1 (Bröder et al., 2018). Compared to the decay rate of terrestrial OC on the Laptev 

Sea shelf, our estimate of decay rate of terrestrial OC in the Amazon system is approximately 10 times 

lower. This is consistent with more rapid organic matter degradation in tropical soils compared to high 

latitude permafrost systems, resulting in the release of less bioavailable terrestrial organic matter to the 

ocean in the tropics than in the Arctic. It is also in agreement with our observation that terrestrial OC 

exported by the Amazon is older than lignin and lipids and hence inferred to consist predominantly of 

highly refractory material (see discussion above).  

As an indicator for the degradation degree of lignin, the (Ad/Al)V ratio can be used to reflect the 

decomposition status of terrestrial OC. In our riverbed and marine sediments, (Ad/Al)V ratios are not 

correlated with either 14C ages of terrestrial OC or 14C ages of lignin (Table 4.1, 4.2 and 4.3). Similarly, 

no correlation between lignin composition and 14C ages of lignin has been observed in high latitude 

regions (e.g., the Eurasian Arctic river basins; Feng et al., 2013b), or in tropical settings (e.g., the 

Mekong River; Martin et al., 2013). This suggests that the microbial degradation of lignin is not 

necessarily related to its residence time within intermediate reservoirs, and instead it is more likely 

dependent on the specific environmental conditions. Lignin in settings favouring preservation might 

show low (Ad/Al)V ratios but old 14C ages. Conversely, if lignin is preserved under conditions 

promoting degradation, their (Ad/Al)V ratios are probably high while their 14C ages are young. The 

absolute contents of lignin in riverbed and marine sediments do not show any correlation with their 14C 

ages of lignin (Fig. 4.7b) as the decay curve of terrestrial OC (Fig. 4.7a). As illustrated by the large 

range of the absolute contents of lignin (Σ8) and 14C ages of lignin in riverbed sediments, the riverbed 

sediments probably do not represent the initial status before the decay, as decay may already start prior 

to or during riverine transport (e.g., within soils). Because marine sediments from GeoB16225-2 are 
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potentially influenced by contributions of lignin from local small rivers, it may not properly characterize 

the final status after the decay either. Therefore, we only consider here the decomposition of lignin 

during the transport between GeoB16212-2 and GeoB16218-3. Assuming that the decay of lignin 

follows the same exponential model, the decay rate k of lignin decomposition occurring during transport 

from GeoB16212-2 to GeoB16218-3 can be estimated from the corresponding Σ8 values and 14C ages. 

This result in a lignin decay rate of 5×10-5 yr-1 and corresponding half-life of ~ 13860 years. The longer 

half-life of lignin compared to terrestrial OC is consistent with expectations because lignin is thought 

to be one of the most refractory components in terrestrial OC pools. Therefore, if our estimate is correct, 

it highlights the great preservation potential of lignin in the mud belt on the Amazon shelf. The absolute 

contents and 14C ages of long-chain alkanoic acids riverbed and marine sediments are also plotted in 

Fig. 4.7b. The decay rate k of long-chain alkanoic acids (1.5×10-3 yr-1) obtained by the exponential 

model based on GeoB16212-2 and GeoB16218-3 is strikingly higher than that of lignin corresponding 

to a half-life of 470 years. The high decay rate of long-chain alkanoic acids is the consequence of 

marked decreased of its content from GeoB16212-2 to GeoB16218-3, while the ages of long-chain 

alkanoic acids and lignin hardly differ. The rapid loss of long-chain alkanoic acids might imply that 

organic matter degradation in marine sediments favours long-chain alkanoic acids over lignin, as the 

degradation of lignin occurs mostly in soils by fungi under oxic conditions (Hedges et al., 1988). 

Compared to the decay rates of lignin and long-chain alkanoic acids on the Laptev Sea shelf (2.8×10-

3±0.2×10-3 yr-1 and 4.0×10-3±0.9×10-3 yr-1, respectively) (Bröder et al., 2018), our estimate of the decay 

rate of lignin is lower by two orders of magnitude but the decay rate of long-chain alkanoic acids is 

comparable.  

Decay of terrestrial OC during the transport is influenced by many factors, such as burial loss, variable 

degree of adsorption onto particles of different grain sizes, hydrodynamic processes, oxygen exposure 

time, etc., and the available data used for our estimation is relatively small with decay rates of lignin 

and long-chain alkanoic acids based on only two samples. While our preliminary estimates should be 

regarded as a starting point for future studies in the Amazon system, they provide important new 

constraints on the dynamics of terrestrial OC during land-ocean transfer.  

4.6. Conclusions 

In this study, we use radiocarbon and stable carbon isotopic composition of the TOC and source-specific 

biomarkers to investigate the characteristics of terrestrial OC in the Amazon system. The ∆14CTOC and 

δ13CTOC values of marine surface sediments on the Amazon continental margin are positively correlated, 

suggesting that the pre-aged terrestrial OC dispersed from the Amazon River is progressively diluted 

by younger marine-derived OC as the sediment is transported towards the north-west along the Amazon 

mobile mud belt. ∆14C values of terrestrial OC on the Amazon continental margin are negatively 

correlated to sediment grain size indicating that terrestrial OC associated with finer-grained particles 
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have a greater preservation potential during the passage from inland floodplains to the Amazon 

continental margin. Thus, grain size might be the dominant controlling factor of terrestrial OC cycling 

in the Amazon system. The different radiocarbon compositions of individual biomarkers indicate 

variations in their sources and pre-depositional histories. In the Amazon system, short-chain n-alkanoic 

acids represent the recently biosynthesized organic matter from aquatic primary production, whereas 

both the long-chain n-alkanoic acids and lignin derive from pre-aged soil OC associated to mineral 

surfaces and show generally similar radiocarbon ages. Application of a ternary mixing model using 

∆14C and δ13C compositions suggests variable compositions of fresh biospheric and pre-aged soil 

organic carbon in riverbed and marine sediments during transport, but a relatively constant burial of 

fossil rock-derived OC. Estimates of the decay rates of terrestrial OC, lignin and long-chain alkanoic 

acids based on their absolute contents and 14C ages suggest a half-life of about 2310 years for terrestrial 

OC during transport from the lowland Amazon basin to the Amazon continental margin. For the 

transport along the Amazon mobile mud belt the half-lives of lignin and long-chain alkanoic acids are 

estimated to be around 13860 and 470 years, respectively. Based on these findings, we infer that the 

terrestrial OC buried in the Amazon-Guianas mobile mud belt is highly refractory, and subject only to 

long-term degradation.   
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4.7. Supplementary information  

4.7.1. Blank assessment and correction of n-alkanoic acid methyl esters 

Our method for the assessment of the extraneous carbon contaminants is based on the study of Shah 

and Pearson (2007). This method relies on the assumption that the contaminants introduced before the 

purification on preparative capillary gas chromatography (PCGC) or preparative high-performance 

liquid chromatography (prep-HPLC) are removed. Hence, the contaminants include contributions from 

the chromatographic collection of target compounds, pre-treatments for flame-sealing and the processes 

carried out on the vacuum line. Another key premise is that the size and the isotopic composition of 

contamination are constant. Based on these assumptions, a graphical presentation of the masses and 

F14C values of modern (n-C30 alkanoic acid methyl ester) and fossil (n-C16 alkanoic acid methyl ester) 

standard compounds can be applied to assess the mass and the F14C value of the procedural blank. The 

basic concept of the blank assessment method can be found in Sun et al. (submitted for publication). 

Briefly, a range of standard compounds of different masses of carbon were collected by PCGC, which 

account for 24 μgC, 63 μgC, and 89 μgC for n-C30 alkanoic acid methyl ester (fossil standard) and 22 

μgC, 67 μgC, μgC 119 μgC and 151 μgC for n-C16 alkanoic acid methyl ester (modern standard), 

respectively. The data of 24 μgC n-C30 alkanoic acid methyl ester and 22 μgC and 151 μgC n-C16 

alkanoic acid methyl ester were measured by Winterfeld et al. (submitted for publication). Their masses 

and F14C values were measured with MICADAS and the results are displayed in Table S4.1. The F14C 

value of unprocessed n-C30 alkanoic acid methyl ester was calculated based on known F14C values of n-

C30 alkanoic acid (0.002±0.001) (Rethemeyer et al., 2013) and MeOH (0.001±0.000) using isotopic 

mass balance. The calculated F14C value of unprocessed n-C30 alkanoic acid methyl ester is regarded as 

the true F14C value of n-C30 alkanoic acid methyl ester without the influence of any extraneous blank 

(Table S4.1). The bulk organic carbon from a piece of apple peel was graphitized and analysed for the 

F14C value. The obtained F14C value of the bulk organic carbon from the apple peel is 1.031±0.004, 

which was used to calculate the F14C value of n-C16 alkanoic acid methyl ester. The calculated F14C 

value of n-C16 alkanoic acid methyl ester is 0.970±0.004 and regarded as the true F14C of pure n-C16 

alkanoic acid methyl ester (Table S4.1). 

The F14C values were plotted against the reciprocal of masses of carbon (Fig. S4.1a). It is clear that the 

F14C values of both the fossil and modern standards deviate from their true F14C values towards each 

other as their masses decrease. This trend implies that as the masses of compounds decrease, their 

measured mass and F14C value increasingly approach the values of the blank. The true F14C values of 

fossil and modern standards were set as the intercepts to obtain the linear relations. The intersection 

point of these two trend lines can represent the reciprocal of mass and F14C of the blank. In order to 

take the measurement errors in the mass and the F14C values of these standards into account, a Bayesian 

regression model was applied to estimate the distribution of the intersection of the regression lines. This 
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model was established by Sun et al. (submitted for publication) using an R script. The distribution of 

the regression lines and intersections are plotted in Fig. S4.1a and Fig. S4.1b, respectively. The output 

from the Bayesian model gives the mass and F14C values of the procedural blank to be 4.85±0.62 μgC 

with a F14C value of 0.721±0.079. The F14C values of n- alkanoic acid methyl esters from our samples 

were corrected for the procedural blank by isotopic mass balance and the propagated error are shown 

in Table S4.2.  

The F14C values of the corresponding n-alkanoic acids were further corrected for the methyl group 

carbon added during the methylation step. Because our samples are a mixture of n-alkanoic acid methyl 

esters with different carbon numbers, the ratios of methyl group carbon were first calculated based on 

the abundance of individual n-alkanoic acid methyl esters and the results are shown in Table S4.2. Using 

the isotopic mass balance, the F14C values of n-alkanoic acids methyl esters were calculated and shown 

in Table S4.2. 

4.7.2. Blank assessment and correction of lignin phenols  

Similar to the blank assessment for n-alkanoic acid methyl esters, a range of standard compounds of 

different masses of carbon were collected by prep-HPLC, which account for 6 μgC, 13 μgC, 33 μgC, 

51 μgC, and 83 μgC for ferulic acid (fossil standard), and 6 μgC, 11 μgC, 29 μgC, 50 μgC, and 70 μgC 

for vanillin (modern standard), respectively. Their masses and F14C values were measured with 

MICADAS and the results are displayed Table S4.3. The F14C value of unprocessed ferulic acid is 

regarded as the true F14C value without the influence of any extraneous blank (Table S4.3) and set as 

the intercept for the linear regression of masses and F14C values of fossil standards.  

Fig. S4.2a shows the relation between F14C values and the reciprocal of masses of carbon of the modern 

and fossil standards. The possible regression lines of modern and fossil standards stimulated by the 

Bayesian model cross each other at the points that give the distribution of the mass and F14C values of 

the procedural blank Fig. S4.2b. The output estimation of the procedural blank is 0.90±0.23 μgC with a 

F14C value of 0.813±0.155. The F14C values of lignin phenols were corrected for the blank carbon using 

isotopic composition and shown in Table S4.4. 

Table S4.5. Mass and F14C values of standard compounds for the blank assessment for n-alkanoic acid 

methyl ester. 

Standard compound Mass of carbon (μgC) F14C σF14C 

fossil standard    

Unprocessed n-C30 alkanoic acid methyl ester  n.a.  0.002 R 0.001 R 

Processed n-C30 alkanoic acid methyl ester 

89 0.040 0.002 

63 0.057 0.003 

24 W 0.145 W 0.004 W 

modern standard    

Bulk OC of the apple peel n.a. 0.970 0.004 

Processed n-C16 alkanoic acid methyl ester 151 W 0.965 W 0.008 W 
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119 0.996 0.015 

67 0.944 0.009 

22 W 0.901 W 0.008 W 

n.a.: not available. The superscript R and W refer to the data adopted from Rethemeyer et al. (2013) and  

Winterfeld et al. (submitted for publication).
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Table S4.6. Masses and F14C values of n-alkanoic acid methyl esters from the samples and the correction for blank 

carbon of 4.85±0.62 μgC with a F14C value of 0.721±0.079 and methyl group carbon from MeOH (0.001±0.000). 

Sample 

Mass 
of 

carbon 
(μgC) 

F14C value of n-alkanoic acid methyl 
esters±1σ Ratio of carbon from MeOH in 

n-alkanoic acid methyl esters 
(%) 

F14C value of n- 
alkanoic acids±1σ Uncorrected for 

blank carbon 
Corrected for 
blank carbon 

MAO13c 
 n-C24+26+28+30  

69 0.748±0.007 0.750±0.010 3.64 0.778±0.010 

MAO19  
n-C16+18  

63 0.915±0.008 0.932±0.011 5.75 0.989±0.012 

MAO19  
n-C24+26+28+30  

101 0.822±0.008 0.828±0.009 3.71 0.859±0.009 

MC12-1  
n-C24+26+28+30  

61 0.680±0.007 0.677±0.010 3.55 0.702±0.011 

GeoB16212-2 
 n-C16+18  

40 0.864±0.008 0.884±0.015 5.68 0.938±0.016 

GeoB16212-2 
 n-C24+26+28+30  

53 0.703±0.006 0.701±0.011 3.54 0.727±0.011 

GeoB16218-3  
n-C16+18  

26 0.840±0.008 0.869±0.022 5.88 0.923±0.023 

GeoB16218-3  
n-C24+26+28+30 

14 0.652±0.008 0.615±0. 046 3.60 0.638±0.048 
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Table S4.7. Masses and F14C values of standard compounds for the blank assessment of lignin phenols. 

Standard compound Mass of carbon (μgC) F14C σF14C 

fossil standard    

Unprocessed ferulic acid n.a. 0.000 n.a. 

Processed ferulic acid 

83 0.010 0.001 

51 0.008 0.001 

33 0.011 0.001 

13 0.013 0.002 

6 0.145 0.007 

modern standard    

vanillin 70 1.213 0.012 

vanillin 50 1.200 0.011 

vanillin 29 1.224 0.012 

vanillin 11 1.188 0.013 

vanillin 6 1.158 0.023 

n.a.: not available. 
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Figure S4.2. (a) The probable regression lines of the fossil and modern standards of lignin phenols. (b) The 

posterior distribution of masses and F14C values of the procedural blank. The red cross indicates the 

probability of 68 %. 
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In preparation for Earth and Planetary Science Letters 

Abstract. As lignin is unique to terrestrial vascular plants, its stable carbon isotope composition (δ13C) 

could potentially be a powerful tool to identify sources of terrestrial organic carbon (OC) in sediments. 

However, lignin is subject to various biodegradation processes, which may cause isotope fractionation 

and influences the δ13C values. This complicates the interpretation of δ13C of lignin used to reconstruct 

vegetation changes. We present δ13C data of individual lignin phenols from marine surface sediments 

from the Amazon shelf and sediment core GeoB16224-1 recovered from the continental margin NW of 

the Amazon mouth. The weighted average δ13C values of lignin indicate that the modern terrestrial OC 

on the Amazon shelf is dominated by C3 plants and the vegetation source remained constant over the 

past 50-12.8 kyr, in agreement with previous studies. A general pattern of phenolic δ13C values is 

observed with the acid monomers of V and S phenols displaying lower δ13C values than their aldehyde 

counterparts, while C phenols are always more enriched in 13C than V and S phenols. However, the 

effects of biodegradation on δ13C values of lignin phenols are not very clear based our results. We use 

lignin content and composition paired with δ13C of lignin to reconstruct the characteristics of terrestrial 

OC deposited on the continental margin NW of the Amazon mouth over the period 50-12.8 kyr. Based 

on the in-phase variation between lignin composition, δ13C values of lignin, δ13C and δD values plant-

wax lipids, we propose that next to vegetation change, the variation of δ13C values of lignin and plant-

wax lipids during HS could reflect either enhanced discharge of more degraded terrestrial OC and/or 

more contributions of terrestrial from high altitude regions. These two possible scenarios suggest that 
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the Amazon basin was still a stable ecological system dominated by C3 forest and the increases of δ13C 

values of lignin and plant-wax lipids were actually the consequence of changes of sources of terrestrial 

OC. The discharge of terrestrial OC is largely governed by hydrologic conditions in the Amazon system. 

5.1. Introduction  

Compound-specific stable isotope composition (δ13C) is widely used to trace the source of sedimentary 

organic carbon (OC) in various environments (Hockun et al., 2016; Pearson et al., 2001; Tao et al., 

2016; Vogts et al., 2012). Particularly the δ13C values of biomarkers of terrestrial OC, such as leaf wax 

lipids and lignin, are important tools to accurately differentiate the terrestrial OC from marine OC; by 

using source specific terrigenous biomarkers the complication in estimating terrigenous OC input 

arising from mixed C3 (δ13C around -27 ‰)and C4 (δ13C around -14 ‰) plant sources can be 

circumvented.  (Collister et al., 1994). For example, Goñi et al. (1997) have used δ13C values of lignin 

and found that the proportion of terrestrial OC in offshore sediments in the Gulf of Mexico has been 

significantly underestimated due to contributions of C4 plants that had not been recognized (Hedges 

and Parker, 1976; Jasper and Gagosian, 1989). The relative contributions of C3 and C4 plants reflected 

by δ13C values of vascular plant biomarkers can be used to infer vegetation change, which is related to 

climate variation. Vogts et al. (2012) have applied δ13C values of long-chain n-alkanes from deep sea 

sediments off southwest Africa to calculate contributions of C3 and C4 plants reflecting continental 

vegetation and climate conditions. In applications of compound-specific δ13C analysis, isotope 

fractionation effects between different molecules have been observed widely. The isotope fractionation 

may be caused by isotope discrimination occurring during photosynthesis and degradation by 

heterotrophic microorganisms (Dümig et al., 2013; Fernandez et al., 2003; Kodina, 2010; Wang et al., 

2015). Apart from isotope fractionation, δ13C values of plant wax biomarkers have been found to be 

sensitive to altitude and have the potential to serve as a proxy for paleoaltimetry (Wu et al., 2017). 

When interpreting compound-specific δ13C values for vegetation variation, it is necessary to also 

consider these effects. 

The Amazon basin is a complex ecosystem due to its enormous diversity of vegetation species and has 

received considerable attention with regard to the link between biodiversity and climate change (Cheng 

et al., 2013). The Refugia Hypothesis proposed by Haffer (1969) is a theory suggesting that the Amazon 

rainforest was contracted to discrete patches of small forests due to expansion of savannahs during the 

Last Glacial Maximum (LGM). These isolated forest ‘islands’ served as the refuges for forest species 

to survive. This theory was supported by some pollen records but also has been challenged by 

contradictory evidence derived from both isotope composition and vascular plant biomarker records 

obtained in sedimentary archives (Boot et al., 2006; Kastner and Goñi, 2003; Schlünz et al., 1999). For 

instance, the record of δ13C values of terrestrial OC in the Amazon fan did not show a change from a 

C3- to a C4-dominated signal, which did not suggest the expansion of savannah during LGM (Schlünz 
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et al., 1999). The lignin composition in a sediment core from the Amazon fan indicates constancy of 

vegetation sources of terrestrial OC from 10 to 70 kyr (Kastner and Goñi, 2003). Recently, Häggi et al. 

(2017) have used δ13C and δD values of long-chain n-alkanes to reconstruct shifts of vegetation and 

precipitation regimes of the Amazon basin for the late Pleistocene (50-12.8 kyr before present). They 

have found that the glacial climate variation controls the hydrological conditions in the Amazon basin 

and further influences vegetation, while the evidence of shifts in vegetation are not enough to prove the 

large-scale replacement of forests by savannah. As lignin is the major component of vascular plants, its 

δ13C value could be capable of providing knowledge about the sources of terrestrial OC and its response 

to climate change. However, to date, compound-specific δ13C analyses in paleoclimatology have been 

predominantly conducted on plant wax lipids. Only a few studies have carried out δ13C analyses of 

lignin phenols (Bianchi et al., 2002; Huang et al., 1999). In the Amazon basin and adjacent offshore 

area, information about δ13C values of lignin phenols has not been reported yet.  

Here we present compound-specific δ13C data of individual lignin phenols in marine surface sediments 

from the Amazon shelf area and a sediment core retrieved from the continental margin off French 

Guiana receiving sediments from the Amazon. We interpret the data in context of vegetation types in 

the source area and test whether the isotope variation associated with biodegradation of lignin have a 

substantial influence on δ13C values of individual lignin phenols. We further apply δ13C lignin of the 

sediment core to reconstruct potential changes in vegetation over the late Pleistocene (50-12.8 kyr). In 

addition, we combine the δ13C values and composition of lignin with Branched and Isoprenoid 

Tetraether (BIT) index and published inorganic geochemical data, δD and δ13C values of plant-waxes 

from the same cores to reconstruct the hydrological control on discharge of terrestrial OC in the Amazon 

system. 

5.2. Study area  

The research area is located on the Amazon shelf and continental slope offshore the coast of northern 

Brazil and French Guiana to the north of the Amazon River mouth. Today, the Amazon shelf receives 

large amounts of sediments originating from the Amazon River. The terrestrial sediments are 

transported north-westward to our study area under the influence of the North Brazil Current and tides 

forming the 1600 km-long and 50-150 km-wide sediment deposition and resuspension mudbelt along 

Amazon-Guianas coast (Geyer et al., 1996; Nittrouer and DeMaster, 1996). When sea level is low, such 

as during glacial periods, most of the sediments discharged by the Amazon River are transported to the 

Amazon fan forming an about 3.3×105 km2 depo-center of the terrestrial OC (Damuth and Flood, 1984; 

Schlünz et al., 1999). 
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5.3. Material and methods 

5.3.1. Sample collection 

The GeoB marine surface sediments and a 7.6 m-long sediment core GeoB16224-1 (2510 water depth) 

were collected from stations on the Amazon shelf during the R/V Maria S. Merian cruise MSM 20/3 in 

February/March 2012 (Fig. 5.1). Another two marine surface sediments (BC61C and MC33A) on the 

Amazon shelf were taken during cruise KNR197-4 in February/March 2010. The information regarding 

the locations, the sampling and processing of the sediments have been presented in Häggi et al. (2016, 

2017), Häggi et al. (2017)  and Sun et al. (2017).  

The age model for core GeoB16224-1 was first established by Zhang et al. (2015) and amended by 

Häggi et al. (2017). Due to a potential hiatus between 50 and 66 cm core depth (dated as 6.3 kyr and 

12.6 kyr, respectively), results in intervals of the first 12.8 kyr are not not displayed in this study (Häggi 

et al. 2017). Selected sediment horizons (62 samples) from core GeoB16224-1 were analysed for lignin 

content and a subset of intervals (11 samples) were measured for δ13C of lignin phenols. The intervals 

for analyses of lignin content and δ13C were selectively sampled based on published δ13C values of 

plant-waxes in Häggi et al. (2017) that higher resolution sampling in depth with larger variation in δ13C 

values of plant-waxes.  

 

Figure 5.1. Map of the Amazon offshore area with sample locations. The marine surface sediments are 

indicated with black dots. The core GeoB16224-1 is indicated with a cross star. The dashed ellipse and 

rectangle indicate the northwest area of the Amazon shelf and the Amazon fan. The mudbelt is marked by 

the chain of small filled squares. The map was created using Ocean Data View 4.7.10 (Schlitzer, 2017). 
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5.3.2. Lignin analysis and the δ13
C values of lignin phenols 

The extraction of lignin phenols for irm-GC-MS analysis was carried out based on the method of Goñi 

and Eglinton (1996) and described in detail in Sun et al. (2017). Dried sediment samples were oxidized 

with copper oxide and ferrous ammonium sulfate in 2 N NaOH under anoxic conditions. The oxidation 

was conducted with a CEM MARS5 microwave accelerated reaction system at 150 °C for 90 min. After 

the oxidation, known amounts of ethyl vanillin and trans-cinnamic acid were added to each reaction 

vessel as recovery standards. The solution was acidified to pH 1 with concentrated HCl after being 

separated from the sediments by centrifugation. The reaction products were subsequently recovered by 

liquid-liquid extraction by using ethyl acetate. The extracts were dehydrated with Na2SO4 and the ethyl 

acetate was then evaporated under a stream of nitrogen. The dried extracts were re-dissolved in 400 μl 

ethyl acetate and an aliquot (50 μl) was taken for quantification.  This aliquot of extracts was dried and 

dissolved in 50 μl pyridine. 50 μl of bis-trimethylsilyl-trifluoroacetamide (BSTFA)+1% 

trimethylchlorosilane (TMCS) was added to derivatize lignin phenols (70 °C for 40 min).  The 

concentrations of lignin phenols were quantified using gas chromatography-mass spectrometry (GC-

MS). The mass spectrometer was operated in the electron impact (EI) mode at 70 eV ionization energy 

and scanned from 50 to 600 m/z with a scanning rate of 2.5 cycles per second. The GC-MS system was 

equipped with a DB-1 MS column (30 m × 0.25 mm i.d., film thickness 0.25 μm). The temperature of 

the GC-MS column was programmed 100 °C initially and followed by 4 °C/min ramp to 300 °C with a 

hold of 10 min. According to the quantification results, the ethyl acetate of the remnant solution was 

dried and the extracts were redissolved in pyridine to prepare the appropriate concentrations (~50 ng/μl) 

of lignin phenols for the measurement of δ13C values.  An equal volume of BSTFA+1% TMCS was 

added to the pyridine solution and derivatized at 70 °C for 40 min for the δ13C analysis.  

The measurement of the δ13C values of lignin phenols was carried out by using an isotope ratio 

monitoring gas chromatography mass spectrometry (irm-GC-MS), which mainly consists of a Thermo 

Fisher Scientific Trace GC equipped with a DB-1 MS column (30 m × 0.25 mm i.d., film thickness 0.25 

μm) and an on-column injector, a GCC combustion interface, and a Thermo Fisher Scientific MAT 252 

isotope ratio mass spectrometer. The lignin phenols eluted from the GC column were combusted to CO2 

by the GCC combustion interface maintained at 1000 °C. The δ13C values of lignin-phenol CO2 peaks 

were measured and calibrated based on the known δ13C value of CO2 reference gas, which was injected 

at the beginning and end of each run. δ13C values are reported in ‰ relative to Vienna Pee Dee 

Belemnite (VPDB). The stability of the δ13C analysis on the irm-GC-MS was assured by routine 

measurements of the δ13C values of laboratory n-alkane standards (‘Arndt B2’) against their offline-

determined δ13C values every five samples during the analysis sequence. The integration of derivatized 

lignin-phenol peaks were approached manually with Isodat software 3.0 according to the method by 

Goñi and Eglinton (1996). The δ13C value of the trimethylsilyl carbon, which was added to replace the 

active hydrogens of lignin phenols, was calculated based on the known δ13C value of ethyl vanillin (-
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28.9±0.2 ‰) and isotope mass balance. The δ13C values of lignin phenols were further corrected for the 

δ13C value of the trimethylsilyl carbon by using isotope mass balance. For marine surface sediments, 

duplicate injections of the real samples are unfortunate not available.  The analytical precision of the 

δ13C values of individual lignin phenols were estimated based on the discrepancy between the irm-GC-

MS determined and offline-determined δ13C values of lignin standards, which ranged from 0.2 ‰ to 

1.8 ‰. For GeoB16224-1 down-core samples, duplicate measurements were conducted to calculate the 

average and uncertainty, which varied from 0.2 ‰ to 2.2 ‰.  

Eight lignin-derived phenols were analyzed in this study. They can be classified into three groups 

according to their plant sources and structures. The vanillyl phenols (V) exist in all vascular plant and 

include vanillin (Vl), acetovanillone (Vn), and vanillic acid (Vd). The syringyl phenols (S) derive only 

from angiosperms and include syringaldehyde (Sl), acetosyringone (Sn), and syringic acid (Sd). The 

cinnamyl phenols (C) are unique to non-woody tissues of vascular plants and consist of p-coumaric acid 

(p-Cd) and ferulic acid (Fd). The OC- and sediment-normalized content of lignin (Λ8 and Σ8) are the 

sum of S, V and C phenols in 100 mgTOC and 10 g dry sediment, respectively, which reflect the 

contribution of lignin to TOC carbon and total sediment. The ratios of S/V and C/V can be used as 

proxies to indicate the plant sources of lignin, such as non-woody and woody tissues of angiosperms 

and gymnosperms. The acid to aldehyde ratios of V and S, (Ad/Al)V and (Ad/Al)S, can serve as indices 

to reflect degradation of lignin (Ertel and Hedges, 1985). Except for these 8 phenols, lignin-derived 

para-hydroxybenzenes (P) including p-hydroxybenzaldehyde (Pl), p-hydroxybenzophenone (Pn), and 

p-hydroxybenzoic acid (Pd) can also be used with V and S, i.e. P/(V+S), to indicate degradation.  

5.3.3. BIT index  

The BIT index refers to the abundance ratio of branched glycerol dialkyl glycerol tetraether (GDGTs) 

to isoprenoid GDGTs (Hopmans et al., 2004). As branched GDGTs are unique to peats and soils (Kim 

et al., 2006; Weijers et al., 2004) and isoprenoid GDGTs originate from marine source, their relative 

amount can reflect terrestrial soil OC in marine sediments (Sinninghe Damsté et al., 2002) that higher 

BIT values suggest more contributions from terrestrial soil OC.   

The extraction of GDGTs has been described in detail in Meyer et al. (2016). Briefly, 5 g dry sediments 

with 10 µg C46-GDGT (internal standard) were extracted with dichloromethane (DCM): methanol 

(MeOH) 9:1 (v/v) using accelerated solvent extractor (Dionex ASE 200) at 100 °C and 1000psi for 15 

minutes (with three cycles). After drying with a rotary evaporator, the total lipid extracts were 

hydrolysed with 0.1 N potassium hydroxide (KOH) in MeOH:H20 9:1 (v/v). The neutral fraction with 

GDGTs was extracted into n-hexane and further separated with by chromatography with a column filled 

with deactivated SiO2. The polar compounds including GDGTs were eluted with MeOH: DCM 1:1 

(v/v).  Afterwards, the polar compounds were dissolved in n-hexane: isopropanol 99:1 (v/v) and filtered 

with a PTFE filter (0.45 µm pore size) for quantification (Hopmans et al., 2004). GDGTs were analysed 
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by a high-performance liquid chromatography -atmospheric pressure chemical ionization-mass 

spectrometry (HPLC-APCI-MS). Selective ion monitoring (SIM) was applied to identify and quantify 

the target GDGTs and the detailed instrumental parameters have been given in (Crivellari et al., 2018). 

The BIT index was calculated as ([I]+[II]+[III])/([I]+[II]+[III]+[IV]). [I], [II], and [III] refer to the 

concentrations of branched GDGTs and [IV] refers to the concentration of isoprenoid GDGT. Their 

concentrations were determined by their respective peak areas and the response factor of the internal 

standard.   

5.4. Results  

5.4.1. δ13
C values of lignin phenols 

The δ13C values of individual lignin phenols in marine surface sediments and core GeoB16224-1 are 

shown in Table 5.1 and Fig. 5.2. For the marine surface sediments, the δ13C values of individual lignin 

phenols display obvious differences within a sample. The largest intra-sample variation in δ13C values 

of lignin phenols is observed in GeoB16211-2 from Sd of -39.4±0.9 ‰ to p-Cd of -28.3±1.8 ‰. Despite 

that we were not able to obtain for δ13C values for all lignin phenols, the δ13C values of individual lignin 

phenols in GeoB16225-2 show the smallest variation, from Vd of -34.8±1.3 ‰ to Sl of -29.1±0.7 ‰. 

The Sd in GeoB16212-2 has the lowest δ13C values (-39.6±0.9 ‰). The highest δ13C values (-

25.7±0.9 ‰) is observed in Sd in GeoB16210-2. The Sd is inclined to exhibit large inter-sample 

variation in the δ13C values, with a discrepancy of 13.9 ‰ between the highest and lowest observed 

δ13C values. In contrast, the δ13C values of Vl and Sn are relatively consistent in our samples, the 

discrepancies between highest and lowest δ13C values are 3 ‰ and 2.3 ‰ for Vl and Sn, respectively. 

The abundance weighted average δ13C values of lignin (δ13Clignin) range from -33.3±0.5 ‰ in 

GeoB16212-2 to -28.9±0.4 ‰ in GeoB16210-2. The weighted average δ13C values of C phenols are 

consistently higher than V and S phenols in each sample. 
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values of Vd present the largest variation (9.6 ‰). The weighted average δ13C values of V, S, and C 

phenols exhibit a pattern with δ13C(V)< δ13C(S)< δ13C(C). 
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Table 5.1. δ13C values (‰) of individual lignin phenols of marine surface sediments and core samples. The δ13C values of V, S and C phenol groups and lignin are 

reported as weighted averages.    

Sample Vl Vn Vd Sl Sn Sd p-Cd Fd Lignin V S C 

GeoB16210-2 -29.0(1.3) -35.2(0.4) -30.8(1.3) -26.9(0.7) n.a. -25.7(0.9) -26.2(1.8) n.a. -28.9(0.4) -32.0(0.6) -26.4(0.6) -26.2(1.8) 

GeoB16211-2 -30.6(1.3) -29.8(0.4) -39.4(1.3) -32.1(0.7) -31.3(0.4) -39.4(0.9) -28.3(1.8) -29.3(1.1) -32.6(0.5) -32.5(0.8) -33.6(0.6) -28.9(1.0) 

GeoB16212-2 -32.0(1.3) -31.8(0.4) -35.8(1.3) -33.3(0.7) -31.7(0.4) -39.6(0.9) -29.1(1.8) -28.8(1.1) -33.3(0.5) -32.9(0.8) -34.6(0.6) -28.9(1.0) 

MC33A -29.2(1.3) -28.8(0.4) -33.8(1.3) -31.4(0.7) -29.4(0.4) -36.5(0.9) -31.3(1.8) -32.3(1.1) -31.6(0.4) -30.8(0.8) -32.3(0.5) -31.9(1.0) 

BC61C -30.1(1.3) -31.6(0.4) -34.5(1.3) -32.3(0.7) n.a. -36.5(0.9) -28.5(1.8) -29.9(1.1) -32.5(0.4) -32.0(0.7) -34.0(0.6) -29.4(0.9) 

GeoB16225-2 -30.9(1.3) n.a. -34.8(1.3) -29.1(0.7) n.a. -33.1(0.9) n.a. n.a. -31.3(0.5) -33.8(1.0) -30.0(0.6) n.a. 

 
Core GeoB165224-1 

111-122 cm -33.2(0.9) -28.4(1.0) -42.0(1.5) -29.8(1.6) n.a. -31.4(2.1) n.a. n.a. -32.6(0.7) -34.6(0.7) -30.3(1.3) n.a. 

122-123 cm -32.3(0.6) -30.1(0.2) -35.6(1.8) -29.9(0.5) -27.8(1.1) -30.1(1.5) -29.2(1.1) -29.0(0.9) -30.8(0.4) -33.3(0.8) -29.5(0.5) -29.1(0.7) 

146-147 cm -30.5(0.5) -29.8(1.1) -34.6(0.4) -29.4(1.1) -28.8(0.5) n.a. -29.0(0.8) -27.6(1.1) -30.0(0.4) -31.7(0.4) -29.2(0.8) -28.2(0.7) 

195-196 cm -32.3(0.2) -29.4(0.5) -33.9(0.2) -30.5(0.2) -29.2(0.6) -30.6(n.a.) -27.5(0.6) -27.0(0.4) -30.6(0.1) -32.2(0.2) -30.3(0.2) -27.2(0.3) 

349-350 cm -31.4(0.2) -29.2(0.2) -32.9(0.3) -29.4(0.2) -28.5(0.2) -32.4(n.a.) -28.3(0.2) -27.5(0.6) -30.1(0.1) -31.3(0.1) -30.1(0.2) -27.9(0.4) 

431-432 cm -30.8(0.6) -29.2(0.3) -32.4(0.3) -29.7(0.2) -28.2(1.5) -26.3(1.0) -27.4(0.5) -26.9(0.9) -29.3(0.3) -31.1(0.3) -28.5(0.4) -27.1(0.5) 

447-448 cm -31.2(0.3) -29.7(0.2) -33.9(0.2) -30.3(0.2) -28.9(0.2) -30.4(n.a.) -29.6(0.2) -29.1(1.0) -30.5(0.1) -31.8(0.1) -29.9(0.1) -29.3(0.5) 

491-492 cm -31.9(0.3) -29.1(0.5) -33.7(0.3) -29.7(0.7) -28.4(0.2) -33.2(n.a.) -28.7(1.3) -28.0(0.9) -30.7(0.2) -31.8(0.2) -30.6(0.5) -28.3(0.8) 

591-592 cm -31.6(1.2) -29.6(0.2) -32.6(0.2) -30.1(0.6) -27.9(0.2) -29.0(0.7) -28.7(0.2) -28.8(0.2) -30.0(0.2) -31.6(0.4) -29.3(0.4) -28.8(0.1) 

645-646 cm -30.7(0.2) -30.2(1.7) -34.5(0.4) -26.3(n.a.) n.a. -32.7(n.a.) n.a. n.a. -30.7(0.3) -32.2(0.4) -29.0(n.a.) n.a. 

653-654 cm -31.5(1.4) -29.4(0.8) -32.5(2.2) -30.0(0.9) n.a. -29.8(n.a.) n.a. n.a. -30.7(0.8) -31.7(1.3) -29.9(2.1) n.a. 

n.a.: not available. The standard deviation of the δ13C value is shown in parentheses.  
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5.4.2. Lignin composition in core GeoB16224-1  

The record of the content, composition, and δ13C values of lignin are shown in Fig. 5.4.  The lignin 

content Σ8 varies between 0.24 and 0.67 mg/10g dry sediment (Fig. 5.4a). Over the last 50 kyr, the 

lignin content of core GeoB16224-1 displays low values and small variation between Heinrich Stadial 

(HS) 3 and HS4. Obvious increases of lignin content were observed during HS1, HS4, HS5 and during 

the interglacial period between HS 4 and HS5. The maximum lignin content was found during HS1. 

Lignin contents during HS2 and HS3 are lower than during the other periods and present only slight 

changes. 

C/V ratios fluctuate drastically between 0.17 and 0.46 throughout the record, except for 35-40 kyr, 

during which C/V remains stable (Fig. 5.4d). S/V ratios vary from 1.04 to 2.41. The highest S/V ratios 

are found between HS4 and HS5. During Marine Isotope Stage (MIS) 3 S/V present larger extent of 

variation especially from HS4 to HS5. In contrast, S/V in MIS2 show little change except for an increase 

in the HS1(Fig. 5.4d).  

The δ13C values of lignin present relatively small variations, ranging from -32.6±0.7 ‰ to -29.3±0.3 ‰ 

(Fig. 5.4e). The lowest value was obtained from the youngest interval dated to the end of HS1 and the 

highest value was observed during HS3. δ13C values increase during HS1, HS3 and HS4. 

The records of (Ad/Al)V and (Ad/Al)S ratios display different variations over the last 50 kyr (Fig. 5.4f). 

The (Ad/Al)V change between 0.37 and 0.79, and the (Ad/Al)S vary between 0.16 and 0.58. During 

MIS2, (Ad/Al)V and (Ad/Al)S have similar average values, 0.45 for (Ad/Al)V and 0.42 for (Ad/Al)S, 

respectively. From MIS3 to MIS2, (Ad/Al)V gradually decreases with peaks during HS3, HS4 and 

between HS4 and HS5. However, an opposite trend was observed for (Ad/Al)S, increasing towards 

MIS2. During MIS3, the (Ad/Al)S (mean=0.32±0.11) are considerably lower than (Ad/Al)V 

(mean=0.60±0.07).  

5.4.3. BIT index in core GeoB16224-1  

The BIT index varies between 0.32 and 0.76 (Fig. 5.4a). Over the last 50 kyr, the BIT index of core 

GeoB16224-1 displays low values between HS3 and HS5 and late HS1. Higher BIT index values were 

observed during HS1, HS2, HS3, and HS5. The highest and the lowest BIT index values were found 

during HS1 and during late HS1 and late HS5, respectively. Obvious increases of BIT index values 

occurred during early HS1 and HS3. The BIT index values decreased markedly during HS5 and late 

HS1.  
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5.5. Discussion  

5.5.1. Carbon isotope signatures of lignin phenols 

The δ13Clignin in marine surface sediments (-33.3 ‰ ~ -28.9‰, mean=-31.7±1.6 ‰) and core 

GeoB16224-1 (-32.6 ‰ ~ -29.3‰, mean=-30.5±0.8 ‰) are lower than δ13C values of TOC in the 

Amazon riverbed sediments (-29.9 ‰ ~ -26.1 ‰, mean=-28.5±0.9 ‰) (Table 5.1) (Sun et al., 2017). In 

our marine surface sediments and sediment core, lignin is more 13C-enriched compared to the 

corresponding C29 and C31 n-alkanes (mean δ13C n-C29-31=-33.4±0.1 ‰ and -33.0±0.5 ‰ for surface 

sediments and core GeoB16224-1, respectively) (Häggi et al., 2016, 2017). It has been reported that the 

typical δ13Clignin of C3 and C4 plants are around 4 ‰ and 1 ‰ lower relative to the corresponding δ13C 

values of bulk OC (Dümig et al., 2013), which suggests δ13Clignin of C3 and C4 plants are generally -

31 ‰ and -15 ‰, respectively. Bulk OC is enriched in 13C compared to lignin because it consist of main 

polymers that are isotopically heavier such as starch  and hemicellulose (δ13C ~ -26 ‰) (Kodina, 2010). 

Both the δ13C values of lignin and long chain n-alkanes in marine surface sediments and in the sediment 

core suggest that the dominant vegetation source of terrestrial OC deposited on the Amazon shelf is C3 

plants. The discrepancy between δ13C values of lignin and n-C29-31 alkanes is expected as the result of 

isotope fractionation of 13C during the biosynthesis and/or biodegradation of main polymers of higher 

plants (Kodina, 2010). The differences in isotope composition are detected not only between lignin and 

n-C29-31 alkanes, but also observed within different lignin phenols.  

In the marine surface sediments, the δ13C values of individual lignin phenols within a sample show 

significant offsets with magnitudes of 5.7-11.1 ‰. In the sediment core GeoB16224-1, the intra-sample 

variation in δ13C values of lignin phenols display magnitudes of 3.2-13.6 ‰. Large intra-sample 

differences between individual lignin phenols have also been found in other regions, such as the surface 

sediments in the Mississippi plume region (offsets of 3.8-15.8 ‰; Bianchi et al., 2011) and a sediment 

core in the Sacred Lake, Mount Kenya (offsets of up to 9.5 ‰; Huang et al., 1999). In these previous 

studies, the differences were interpreted as the consequence of different contributions from C3 and C4 

plants to different lignin phenol groups (Bianchi et al., 2011; Huang et al., 1999). Given that C phenols 

are more abundant in C4 plants, C phenols would be expected to be more 13C-enriched if the 

contributions from C3 vs. C4 plants controls the isotopic signature. However, in our marine surface 

sediments only the S and C phenols of GeoB16210-2 exhibit slightly higher δ13C values (-26.9±0.7 ‰ 

to -25.7±0.9 ‰) that can potentially be caused by C4 plant influence (Table 5.1). The C phenols in the 

other samples (-32.3±1.1 ‰ to -28.3±1.8 ‰) are depleted in 13C and compared to the typical C4 plant 

signal.  

In sediment core GeoB16224-1, the δ13C values of C phenols also imply predominant C3 plant 

contribution (mean=-28.2±0.8 ‰) (Table 5.1), corroborating previous findings based on δ13C values of 

n-C29-31 alkanes (Häggi et al., 2017). Thus, the intra-sample variation in δ13C of different lignin phenols 
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cannot be explained solely by the mixing of C3 and C4 plants for our marine surface sediments. Instead, 

it stems more likely from the isotope fractionation effects occurring during both biosynthetic processes 

and long-term degradation. Except for GeoB16210-2, the δ13C values of lignin phenols in our marine 

sediments exhibit a general pattern with the phenolic acids Vd and Sd being always poorest in 13C within 

V and S phenol groups, respectively (Table 5.1 and Fig. 5.2a). The phenolic ketones Vn and Sn are 

inclined to be more enriched in 13C within V and S phenols, respectively. The δ13C values of C phenols 

are relatively higher than those of the other lignin phenols. The δ13C values of lignin in GeoB16224-1 

basically display the same pattern (Table 5.1 and Fig. 5.2b).  Similar patterns were also found in fresh 

plant tissues and soils (Dignac et al., 2005; Goñi and Eglinton, 1996). This pattern suggests that the 

isotopic discrepancy among lignin monomers intrinsically exist when they are still in growing plants. 

The variation in initial fresh plants implies that these phenols are probably incorporated into the lignin 

polymer precursor through different photorespiratory steps (Goñi and Eglinton, 1996). Apart from the 

isotope fractionation associated with biosynthesis, the degradation of lignin might make further changes 

of δ13C values after lignin enters the intermediate reservoirs such as soils, riverbed and marine sediments. 

Previous research has shown that microbial degradation of lignin can cause structural alteration of lignin 

polymers resulting in the increase of the (Ad/Al) ratios of V and S phenols and decrease of C/V and 

S/V ratios (Hedges et al., 1988; Thevenot et al., 2010). Together with the changes of the contents and 

composition, δ13C values of lignin might also change due to the preferential consumption of 13C or 12C 

by microorganisms. Dümig et al. (2013) have found 13C enrichment of lignin phenols in C3 forest soils 

during decomposition compared to fresh plants. It was therefore hypothesized that the δ13C values of 

lignin phenols may be related to the degradation degree, which is indicated by (Ad/Al) ratios of V and 

S phenols. However, the δ13C values of phenolic aldehydes and acids of V and S groups do not show 

any clear correlation with the corresponding (Ad/Al) ratios in our marine surface sediments and 

sediment core GeoB1224-1 (Fig. 5.5a, b).  Although the phenolic aldehydes are decomposed faster than 

the phenolic acids of the V and S groups, the δ13C offset between phenolic aldehydes and acids are not 

correlated to the degradation degree (Fig. 5.5a, b). The ambiguous evidence for the influence of 

degradation on δ13C values can be attributed to the complicated degradation pathways employed (Loftis, 

2013). For example, aromatic ring cleavage, side-chain oxidation and demethylation are all probably 

involved in the microbial degradation of the lignin polymer. These different pathways might result in 

different effects on isotope composition of lignin monomers (Loftis, 2013). Although the δ13C values 

of individual lignin phenols do not show clear trend with the degradation degree, the weighted average 

δ13C values display slight enrichment with decreasing sediment-normalized lignin contents (Σ8) in both 

marine surface sediments (r2=0.17) and the sediment core GoeB16224-1 (r2=0.45) (Fig. 5.5c). This 

suggests the loss of lignin might indeed lead to the increase of the δ13C values of lignin in the sediment. 

In the sediment core GeoB16224-1, the pattern with δ13C(V)< δ13C(S)< δ13C(C), is likely associated to 
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the effect of degradation, as the rates of degradation are known to increase from V to S to C phenols 

(Hedges et al., 1988).  

Because there is only a very limited number of studies investigating δ13C values of lignin phenols, it is 

difficult to compare our results to available published data. According to our data, it seems the 

degradation of lignin might increase the δ13C values of lignin. Therefore, our findings can provide 

evidence about the influence of degradation of lignin in ‘real word’ on the isotope composition. This 

hypothesis can be tested in lab and/or in-situ incubation studies in future.  

5.5.2. Sources and processing of terrestrial OC discharge from the Amazon River 

The sediment-normalized lignin contents (Σ8) in sediment core GeoB16224-1 show large variations 

during HS1 and over the period from HS4 to HS5 but smaller variations between HS4 and the LGM. 

This reflects changes of inputs of terrestrial organic matter (OM) from the Amazon River (Fig. 5.4a). 

Σ8 values throughout the sediment core GeoB16224-1 (0.24-0.67 mg/10 g dry sediments) are larger 

than those of the modern surface sediments retrieved from the nearby stations (0.10-0.17 mg/10 g dry 

sediments), which indicates more deposition of terrestrial OM at this position compared to recent 

periods (Sun et al., 2017). This is probably because the sea level during MIS2 and MIS3 was at least 30 

m lower today (Kastner and Goñi, 2003). Thus, the core was closer to the coast and received more 

terrestrial input. The downcore variations of Σ8 are generally in accordance with Fe/Ca ratios, which 

indicates sediment discharge from the Amazon River. (Fig. 5.4c) (Zhang et al., 2017). This suggests 

that deposition of terrestrial OM is associated with the preservation of sediment over the last 50kyr and 

the characteristics of terrestrial OM might be influenced by the sedimentological conditions. A notable 

mismatch is the period between HS4 and HS5, when there was a peak of Σ8 but the Fe/Ca was low and 

displayed minor change. This exception probably implies that the lignin deposited during this period is 

not dominantly carried by terrigenous sediment but receives contribution from coastal small rivers. The 

Andean sediment influence on the characteristics of terrestrial OM is also reflected by the negative 

correlation between Σ8 values and Al/Si ratios (Fig. 5.5a, b). Al/Si rations have been used as an indicator 

of sediment grain size in the Amazon system (Bouchez et al., 2011; Sun et al., 2017). The co-variation 

of Σ8 values and Al/Si during HS1, HS3, HS4 and HS5 implies that more lignin is preserved in finer-

grained sediments. This is in accordance to earlier observations in the Amazon riverbed sediments and 

marine surface sediments Sun et al. (2017). BIT index and Σ8 show approximately the same variation 

trend during MIS2. However, they are not correlated during MIS3, particularly before HS4, when they 

are even anti-phased with each other (Fig. 5.4a). This discrepancy might derive from the slight 

difference in the sources of lignin and branched GDGTs. As BIT index reflects contribution from soil 

OM and lignin might exist as plant debris in addition to soil OM. Therefore, the opposite variation trend 

before HS4 probably suggests there were substantially higher contribution of lignin existing as plant 

debris apart from as soil OM. 
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Figure 5.3. Syringyl/vanillyl (S/V) vs. cinnamyl/vanillyl (C/V) ratios of lignin in the Amazon basin riverbed 

sediments, marine surface sediments, and the core GeoB16224-1. The black rectangles indicate the typical 

ranges for different vascular plant tissues according to the study of Hedges et al. (1986) and Goñi et al. 

(1998).  

 

The plant sources of lignin are indicated by S/V and C/V ratios. The data suggest that non-woody 

angiosperm plants are the predominant source (Fig. 5.3). Compared to the large variation of C/V ratios, 

the S/V ratios changed in a small range over most of the record and exhibit only a large variation 

between HS4 and HS5, which suggests large contribution of the vegetation characterized with high S/V 

signals (Fig. 5.4d). The rather uniform composition of lignin suggests that the vegetation within the 

Amazon basin was relatively invariable from 50 kyr to 12.8 kyr BP. Moreover, the plant sources of 

lignin deposited between 50 to 12.8 kyr BP were comparable to those of lignin deposited in the modern 

riverbed sediments of the lowland Amazon basin and marine surface sediments on the Amazon shelf 

(Sun et al., 2017).  
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phenols of V (δ13C(Ad-Al)V) and S phenols (δ13C(Ad-Al)S) vs. Ad/Al ratios of V and S phenols (triangles) of 

sediment core GeoB16224-1. (c) Weighted average δ13C values lignin vs. sediment-normalized lignin 

contents (Σ8) in marine surface sediments (blue circles) and in the sediment core GeoB16224-1 (red circles). 

In the following, we discuss alternative scenarios to explain the increases of δ13Clignin and δ13C n-C29-31 

during HS. As discussed in section 5.5.1, the influence of biodegradation on δ13Clignin is not very clear 

and the effects of n-alkanes degradation on isotope changing has not been studied intensively either. It 

is, however, plausible that the changes of δ13Clignin and δ13C n-C29-31 might be attributed to isotope 

fractionation effects associated to biodegradation of lignin and n-alkanes, as the increases of δ13Clignin 

and δ13C n-C29-31 during HS are in phase with increases of (Ad/Al)V ratios (Fig. 5.4f) indicating a higher 

degree of degradation of lignin. This suggests that when there was more precipitation during HS, more 

degraded terrestrial OM with slightly higher δ13Clignin and δ13C n-C29-31 were eroded from the Amazon 

basin and transported to the Amazon offshore area.  

Another possible explanation for the changes of δ13Clignin and δ13C n-C29-31 is the altitude effect on 

isotope composition. The altitude dependency of δ13C values of bulk OC and leaf wax biomarkers has 

been observed in the Andes Mountains by Wu et al. (2017). δ13C n-C29-31 increases by 1.45±0.33 ‰ km-

1 with increasing elevation, and this trend is observed for various tree species. Despite that the elevation 

effects on δ13Clignin has not been tested yet, δ13Clignin could potentially display the same pattern as lignin 

and leaf wax biomarkers are both major components of vascular plants and should respond to 

environment conditions in a similar way. Due to this inference, the increases of δ13Clignin and δ13C n-C29-

31 during HS can be interpreted as evidence that a larger proportion of terrestrial OM from the highland 

regions was transported by the Amazon River during high precipitation events. Terrestrial OM sourced 

from highland regions experienced longer-term degradation processes, in agreement with the 

observation of elevated (Ad/Al)V ratios during HS. In sum, both the isotope variation associated to 

biodegradation of terrestrial OM and higher contributions of highland-derived terrestrial OM can lead 

to the changes of δ13Clignin and δ13C n-C29-31 during HS. It is notable that these two effects are actually 

driven by high precipitation. Therefore, the Amazonian hydrology plays an important role in the 

discharge of terrestrial OM in the Amazon system.  

The degree of lignin degradation as indicated by the (Ad/Al)V ratio co-varies with the changing pattern 

of precipitation not only during HS but also over long time scales from MIS3 to MIS2 (Fig. 5.4f). This 

suggests that more degraded lignin was discharged from the Amazon basin during phases of enhanced 

precipitation. The increases of the (Ad/Al)V ratio during HS are in parallel with slight decreases of the 

Al/Si ratio, which indicates slight increases of grain size of sediments. This suggests that more degraded 

lignin associated with coarser sediment particles was discharged during HS, when precipitation was 

enhanced. This observation in the downcore record is in accordance with the results found in the 

riverbed sediments in the Amazon basin, where lignin associated to coarser-grained particles has higher 

(Al/Al)V ratios (Sun et al. 2017). Unlike the riverbed sediments and marine surface sediments on the 
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Amazon shelf (Sun et al. 2017), the (Ad/Al)V and (Ad/Al)S ratio in sediment core GeoB16224-1 are not 

correlated with each other and even exhibit opposite trends during MIS3 (Fig. 5.4f). This is unexpected 

because both ratios serve as proxies for the degree of lignin degradation.  Instead of being correlated 

with (Ad/Al)V, the record of (Ad/Al)S presents a positive relationship with P/(V+S) (Fig. 5.6), which is 

also an indicator of lignin biodegradation by the pathway of demethylation (Dittmar and Lara, 2001). 

When (Ad/Al)V and (Ad/Al)S showed opposite patterns, especially during MIS3, the S/V ratio also 

displayed large increases (Fig. 5.4d). Thus, the much lower (Ad/Al)S ratios compared to corresponding 

(Ad/Al)V values can probably be interpreted as suddenly increasing supply of fresh tissues with high 

S/V signals. This inference is in agreement with the above reasoning for the opposite changes of BIT 

index and Σ8 during MIS3. 

 

Figure 5.6. P/(V+S) vs. (Ad/Al)S of the sediment core GeoB16224-1. 

5.6. Conclusions 

We use compound-specific δ13C of lignin phenols in marine surface sediments and sediment core 

GeoB16224-1 to explore the potential of δ13C of lignin phenols as proxies for vegetation changes and 

degradation of terrigenous OM in marine sediments and inspect the influence of degradation on δ13C of 

individual lignin phenols. Our results show that the weighted average δ13C values of lignin are 

consistently slightly higher than those of long-chain n-alkanes but lower than those of bulk OC, which 

implies isotope fractionation between different biomarkers of terrestrial OC. The dominant plant source 

of lignin is C3 plants and the contribution of C4 plants is limited. Some distinct patterns of the isotope 

compositions of lignin phenols have been observed, with the acid monomers of V and S phenols tending 

to have lower δ13C than their aldehyde counterparts, and C phenols being always enriched in 13C relative 

to V and S phenols. Although the degradation effect on isotope variation of lignin phenols is not clear 

according to our results, it should not be neglected when we interpreting variations of δ13C values of 

various biomarkers. 
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Combined with lignin content and composition, δ13C of lignin has been applied to reconstruct the 

characteristics of terrestrial OM over the past 50 kyr. The correlation between lignin contents, Fe/Ca 

and Al/Si corroborates our expectation that discharge of lignin should be tied to total discharge of 

terrigenous materials and lignin is more abundant in fine-grained sediments. In addition to vegetation 

change, we propose two likely scenarios to explain the increases of δ13Clignin and δ13C n-C29-31 during HS 

based on the covariation δ13Clignin with (Ad/Al)V and δD n-C29-31. First, enhanced precipitation will 

increase the erosion of more degraded terrestrial OC, which has higher (Ad/Al)V. The increases of 

δ13Clignin and δ13C n-C29-31 during HS could result from isotope variation associated to the degradation. 

Alternatively, enhanced precipitation leads to more discharge of terrestrial OC from highland regions 

with higher (Ad/Al)V because of longer residence time during transport. Terrestrial OM from these 

highland regions is expected to display higher δ13C values due to the altitude effect Both of these two 

mechanisms reflect significant hydrologic control on carbon discharge in the Amazon system. 
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6. Synthesis and perspectives 

In this thesis, lignin and its 13C and 14C isotope compositions were used as the major tools, combined 

with other biomarkers (e.g., n-alkanoic acids and BIT index), isotope compositions (13C and 14C) of 

bulk OC and inorganic geochemical data (Al/Si), to reflect the characteristics of terrestrial particulate 

OC in the Amazon basin and achieve the main objectives: (1) to investigate the origins and processing 

of terrestrial OC based on the δ13C of bulk OC and content and composition of lignin in riverbed 

sediments of the Amazon basin and marine surface sediments on the Amazon shelf area; (2) to develop 

insights into the influence of grain size on the preservation and fate of terrestrial OC in the Amazon 

system; (3) to quantify OC from different pools and reveal the pre-depositional history and fate of 

terrestrial OC; (4) to reconstruct the past vegetation change of the Amazon basin during the late 

Pleistocene. 

In the following sections, the key findings from the main chapters are summarized and the major 

concepts of this thesis are presented to provide a clear understanding of the origin and fate of terrestrial 

OC in the Amazon system. 

6.1. Sources and compositions of terrestrial OC in the Amazon system today 

The relatively low δ13C values of bulk OC in the riverbed sediments from the Amazon basin suggest 

that terrestrial OC in the Amazon system originate mainly from C3 plants with only limited contribution 

of C4 plants. The dominant source of terrestrial OC of C3 plants is also corroborated by the low δ13C 

values of lignin phenols obtained in marine surface sediments from the Amazon continental shelf (see 

chapter 5). The composition of lignin in both the Amazon basin and the adjacent continental margin 

further indicates that the most important plant sources of terrestrial OC in the Amazon system are non-

woody angiosperm C3 plants (see chapter 2). Although the Amazon River and its tributaries drain large 

area with different vegetation types, the compositions of lignin obtained in different main streams show 

similar signatures.  

Despite that the predominant and essential source of terrestrial OC is C3 plants, more specific 

information of the sources of terrestrial OC in the Amazon system are further constrained and divided 

into three main fractions, i.e., recently biosynthesized OC, soil OC, and rock-derived OC.  The OC from 

these three fractions have different reactivities and pre-depositional histories, which are revealed by the 
14C compositions of biomarkers. The recently biosynthesized OC is represented by short-chain n-

alkanoic acids, which are labile and show young 14C ages. Soil OC is relatively pre-aged and resistant 

to degradation, which is indicated by older 14C ages of long-chain n-alkanoic acids and lignin. The rock-

derived OC is fossil and the most refractory component of terrestrial OC (see chapter 4). The 

proportions of individual fractions were estimated based on dual-carbon-isotope (13C and 14C) mixing 

model. We found that the relative abundance of fresh biospheric and pre-aged soil organic carbon in 
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riverbed and marine sediments vary during transport in the Amazon system. Fossil OC accounts for 

only a minor fraction of terrestrial OC in the riverbed sediments and its abundance remains relatively 

constant. The proportion of fossil OC rises as terrestrial OC is discharged into the ocean and transported 

further away from the Amazon river mouth on the continental margin (see chapter 4).  

6.2. Spatial distribution of terrestrial OC on the Amazon continental margin 

Both the distribution of lignin and δ13C values of bulk OC in the marine surface sediments indicate that 

the terrestrial OC is transported to the north-western region of the Amazon continental shelf under the 

influence of the North Brazil Current. The south-eastern region of the Amazon continental shelf receives 

little terrestrial OC supplied by local rivers but not Amazon River-derived terrestrial OC and dominated 

by marine OC (see chapter 2). The correlation between lignin content and δ13C values of bulk OC 

suggests that lignin is a reliable tracer of tracer of terrestrial OC in the Amazon continental margin. The 

sedimentary OC in the modern Amazon Fan is composed predominantly of marine OC. Moreover, the 

terrestrial OC in the Amazon Fan is extensively degraded and composed of with a significant proportion 

of petrogenic organic matter (see chapter 2).   

The spatial distribution pattern of ∆14C values of bulk OC are similar to those of lignin and δ13C values 

of bulk OC in the Amazon continental margin (see chapter 4). It verifies the conclusion that the south-

eastern region of the Amazon continental margin is dominated by young marine OC while the north-

western part is the depositional regime of pre-aged terrestrial OC (see chapter 4). 

6.3. Influence of grain size on terrestrial OC preservation 

In the Amazon basin, neither the composition of lignin nor δ13C values of terrestrial OC are obviously 

related to the deposition position and environments. Instead, the variability of content of TOC and lignin 

are more clearly influenced by the grain size of the mineral particles, to which the terrestrial OC is 

associated. In all the riverbed sediments, the TOC contents increase with decreasing grain sizes 

(indicated by Al/Si), which suggests fine particles can carry more TOC. Except for the Xingu River, 

the contents of lignin in riverbed sediments of the main tributaries increase with decreasing grain sizes. 

This means lignin is preferentially preserved on finer particles compared to other components. This is 

corroborated by less degradation degree of lignin on finer particles observed in the riverbed sediments 

in the Madeira River and the Solimões River. The correlation between contents of TOC and lignin and 

grain sizes were also observed in the marine surface sediments on the Amazon continental margin. 

Thus, grain size of particles remains relevant in the preservation of sedimentary OC in the Amazon 

continental margin (see chapter 2).  

The influence of grain size of mineral particles on preservation of OC is further proved by the 

correlation between ∆14C values of terrestrial OC and Al/Si ratios, which suggests the terrestrial OC 

associated with finer particles have younger 14C ages, while the terrestrial OC adsorbed to coarse 
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particles are substantially older (see chapter 4). This trend is interpreted as a result of more effective 

protection of young and labile fraction of the terrestrial OC on the finer-grained particles. Whereas the 

coarse particles cannot protect young and easily-degradable OC, only the pre-aged refractory fractions 

can survive the long-distance transport associated with the coarse particles (see chapter 4). 

Therefore, grain size of mineral particles is a dominant power to control the preservation and 

composition of terrestrial OC in the Amazon system. And lignin is selectively preserved and can be 

efficiently protected from degradation on the finer particles. 

6.4. Fate of terrestrial OC in the Amazon system 

Based on the 14C ages of long-chain n-alkanoic acids and lignin, the time spent during the about 100 

km transport in the Amazon-Guianas mud belt is estimated to be 1050±610 years and 2000±160 years 

for long-chain n-alkanoic acids and lignin, respectively. The time it takes to transport terrestrial OC 

through the Amazon system can substantially control the fate of terrestrial OC. Based on the contents 

and 14C ages of terrestrial OC, the decay rate of terrestrial OC is estimated with an exponential decay 

model to be 3×10-4±3×10-5 yr-1 corresponding to a half-life of terrestrial to be 2310±230 years in the 

Amazon system. The similar method was applied to assess the half-life of long-chain n-alkanoic acids 

and lignin during the 100 km transport in the Amazon-Guianas mud belt. The results show that the half-

lives of lignin and long-chain n-alkanoic acids are approximately 13860 and 470 years, respectively. 

The estimate of decay rate of terrestrial OC in the Amazon system is considerably lower compared to 

the finding of Aller and Blair (2006), which imply the half-life of terrestrial OC is only 3.5 years during 

the transport in the Amazon-Guianas mud belt (see chapter 4). 

Altogether, the terrestrial OC buried in the Amazon-Guianas mud belt is highly refractory and subject 

only to long-term degradation and the preservation of terrestrial OC is more efficient than previously 

assumed. 

6.5. Discharge of terrestrial OC during the late Pleistocene 

In this thesis, the compound-specific δ13C of lignin phenols is for the first time applied in marine surface 

sediments and a sediment core GeoB16224-1 in the Amazon system. We tested the potential of δ13C of 

lignin phenols as proxies for reconstructing vegetation changes and investigate the influence of 

degradation of terrigenous OM on δ13C of individual lignin phenols. The results demonstrate that the 

weighted average δ13C values of lignin are consistently slightly higher than those of long-chain n-

alkanes but lower than those of bulk OC due to the isotope fractionation between different biomarkers 

of terrestrial OC (see chapter 5). The degradation of lignin might increase the δ13C values of lignin, 

which should be considered when using δ13C values of lignin to reconstruct vegetation changes.  
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In the sediment core GeoB16224-1, lignin content and composition, δ13C of lignin were employed to 

reconstruct the characteristics of terrestrial OM over the past 50 kyr. The contents of lignin are 

correlated to the amount of sediments input from the Amazon River and the precipitation in the Amazon 

system. The discharge of lignin is closely associated with mineral particles and might be controlled by 

hydrologic conditions. The correlation between lignin content and Al/Si ratios in the sediment core is 

the same to results found in the riverbed sediments and this corroborate the inference that lignin is 

preferentially preserved in finer particles (see chapter 5). The very small-scale increases of δ13Clignin 

during HS periods might not be caused of expansion of savannah. Instead, we two alternative 

explanations were proposed according to the correlation between δ13Clignin and lignin degradation. First, 

increases of δ13Clignin derive from more discharge of terrestrial OC from degraded layers of the soils 

because of greater erosion caused by enlarged precipitation. Second, enhanced precipitation brings more 

terrestrial OC from the highland regions with higher δ13Clignin, which is also revealed by the larger 

degrees of lignin degradation (see chapter 5).     

Thus, the variation of δ13Clignin more likely reflect the change of sources of the terrestrial OC discharged 

by the Amazon River instead of the vegetation changes.  

6.6. Blank assessment for compound-specific 
14

C analysis 

In order to analyse the 14C compositions of the biomarkers used in this thesis, a good method of 

assessing the procedural blank is necessary. In chapter 3, a Bayesian model was used to produce the 

linear fitting between the measured F14C values and masses of a set of processed modern and fossil 

standards. According to the distributions of the intersection points of the possible regression lines of 

modern and fossil standards, the procedural blanks were estimated to be 4.88±0.69 μgC with F14C of 

0.714±0.077 for n-alkanoic acids, and 0.90±0.23 μgC with F14C of 0.813±0.155 for lignin phenols, 

respectively. The estimate of the procedural blank assures the accuracy of the measurement of the 14C 

composition of the biomarkers. Compared to previous methods, this method is easy to conduct and not 

time consuming or labour intensive. Therefore, it can serve as a standardized procedure for blank 

assessment in small-scale radiocarbon analysis. 

6.7. Perspective- origins, processing and fate of terrestrial OC in the Amazon system  

This thesis measured the parameters and lignin compositions of riverbed sediments from the main 

tributaries to reflect the properties of OC in different regions of the Amazon basin. However, the results 

from the riverbed sediment samples reflect more likely the integrated signal and might be different from 

OC carried in suspended particles, which are transported to the ocean. In particular, Bouchez et al. 

(2011) has observed chemical and isotopic compositions of sediments with sampling depth of the 

suspended sediments. Therefore, the same analysis should also be applied in suspended sediments in 

the Amazon basin to complement the results. 
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It has been proved that the deposition centre of terrestrial OC in the Amazon continental margin today 

is the north-west sector, i.e., the Amazon-Guianas mud belt. Nevertheless, either some of the samples 

from this region were collected from continental slope, where receives little modern sediment, or were 

some samples located too closed to each other. The locations of the marine surface sediments do not 

extend long-distance in high spatial resolution. Because of this, the decay rate of lignin and long-chain 

n-alkanoic acids were estimated based on only two marine surface sediments, which induced large 

uncertainty in the analysis. Thus, more surface sediments from the Amazon-Guianas mud belt would 

be helpful to better constrain the fate of terrestrial OC during the transport and preservation in the 

Amazon system.    

6.8. Perspective- matrix association effects on preservation of terrestrial OC 

One key finding of this thesis is that grain size strongly influences the composition of terrestrial OC 

and affect the preservation of terrestrial OC in the Amazon system.  The grain sizes of riverbed and 

marine surface sediments are indicated by Al/Si ratios and actually reflect the average grain sizes of the 

sediments. However, the bulk sediments are composed of fractions with different sizes and densities. 

As shown by Tesi et al. (2016), the compositions of OC associated in different density/size/settling 

velocity fractions are distinct and preferentially accumulated in different regions in coastal sediments. 

To fully understand the mechanism behind the link between OC and mineral surfaces, density and size 

fractionations of sediments would be necessary to investigate how the mineral particles influence the 

adsorbed OC in the Amazon system. 

6.9. Perspective- the influence of degradation of lignin on its δ13
C value 

The δ13C values of lignin analysed in the sediment core GeoB16224-1 are low in temporal resolution 

compared to other geological indicators. First, more δ13C data of lignin would be more helpful to support 

the conclusion. Furthermore, the major assumption that degradation of lignin can potentially increase 

the δ13C values of lignin was not reflected by the relation between δ13C values of lignin and (Ad/Al)V,S 

ratios. This is partly because the degradation degree of lignin in the sediments are not high enough to 

cause obvious variation in δ13C values. To test this hypothesis, laboratory incubation experiments are 

needed to investigate whether and to what extent the δ13C values of lignin would change with the 

enhanced degradation. This information would be very important for interpreting δ13C values of lignin 

to reflect response of vegetation to climate change.  
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