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Chapter 1

Introduction

Calabi-Yau manifolds and the general setting. Calabi-Yau manifolds
are simply-connected compact projective manifolds X with trivial canonical
bundle Kx = %, where n = dim X, and the additional property that

H0<X,Q§(>=Ofor2<j<n—1.

By Yau’s solution of the Calabi conjecture, X carries a Kahler metric with
vanishing Ricci curvature.

Calabi-Yau manifolds are not only central objects in complex geometry,
but also play an important role in string theory. In fact, much of the mathe-
matical theory of Calabi-Yau manifolds has its origin in physics, e.g. mirror
symmetry. Calabi-Yau manifolds themselves have a special property in de-
formation theory: their first-order deformations are unobstructed, although
the obstructions live in a space H? (X, Tx) which is not 0. So their local
moduli are smooth of dimension dim H! (X, T).

Motivated by the study of D-branes in string theory, physicists started
to study deformations of geometric objects on Calabi-Yau manifolds. For
each joint moduli problem, e.g. the moduli problem of X together with a
coherent sheaf on it, one has to specify the notion of a family of geometric
objects. For example, a simultaneous deformation of a complex manifold
X and a coherent sheaf F on X consists of a deformation X — S of X,
where X and S are complex spaces, and a coherent sheaf F on X, flat over
S. These types of deformations are subject of this thesis.

Picard-Fuchs equations and potential functions. Given a Calabi-
Yau 3-fold X and a geometric object, say A, we are interested in the joint
"local moduli space” M = M (X, A) of A and X. This local moduli space
is realized as a subspace of the Zariski tangent space 7 ~ CV with N :=
dim 7(x,4)M of M at A, which is the space of first-order deformations.

1



2 CHAPTER 1. INTRODUCTION

Thus, given a first-order deformation, one tries to extend it order by order.
However in general there are obstructions to do this, and to understand
how M sits in T is the same as to understand the obstructions. So M
parametrizes — up to convergence — the deformations that are unobstructed
to each order.

The hope is then to have a so-called holomorphic potential function
f: U — C defined on an open set U < T such that the critical locus of f is
M.

More specifically, consider the space of first-order deformations 7 (X, A)
of X and A, and the space of first-order deformations 7 (X) =~ H! (X, Tx) of
X, leading to a forgetful morphism 7 (X, A) — 7 (X). Then there should be
open neighbourhoods U < T (X, A) and V < T (X) of 0 and a holomorphic
function f : U — C such that

{dyjf=0} = M(X,A)nU. (1.0.0.1)

The technical tool to treat infinitesimal deformations are functors of
Artin rings. These functors associate to an Artin ring the space of defor-
mations of the given object over the spectrum of the Artin ring. In this
setting, obstructions are cohomology classes that vanish if a deformation
over the spectrum of an Artin ring can be extended to a deformation over
the spectrum of a larger Artin ring. For geometric deformation problems,
usually the space of first-order deformations is given by the first cohomology
group (or Ext-group) of a certain coherent sheaf. The space of obstructions
is contained in the second cohomology of the same coherent sheaf. In most
cases, the obstructions of a deformation problem are difficult to compute.
Therefore it is useful to have a potential function that gives information
about the obstructions.

Physicists propose that in some situations such a potential function
should exist as a solution of a certain differential equation associated with
the deformation problem, the Picard-Fuchs equation. In the special case of a
family of Calabi-Yau manifolds, the Picard-Fuchs equation is satisfied by all
periods induced by the variation of the complex structure that is related to
the given deformation problem. Furthermore, the potential function should
be a generating function of the obstructions. We explain this in more detail
below.

In several cases potential functions are known to exist, although not
all expected properties are established yet. For example, sometimes just
the existence of a holomorphic potential function is known, but it is still
unknown whether it is a solution of a differential equation with specific
properties.

The existence problem for potential functions is therefore closely related
to the task of constructing Picard-Fuchs equations associated with defor-



mation problems. These Picard-Fuchs equations are differential equations
arising from certain Gaufl-Manin connections. We explain this in the sim-
plest possible situation.

Let X — T be a deformation of a Calabi-Yau n-fold over a complex
manifold T, i.e., a family of Calabi-Yau manifolds, and let € be a fam-
ily of holomorphic n-forms on X. Then R"w.Z is a local system and the
holomorphic vector bundle associated with this local system carries a canon-
ical connection, the Gau3-Manin connection. Now we apply repeatedly the
Gaufl-Manin connection to obtain sections

v [Ql,ViHQ],..., V™ [Q] e H (T, R"1.Z ® Or) .

As the n-th cohomology of the fibres is finite-dimensional, these classes will
be linearly dependent if m is large enough. The resulting equation is called
the Picard-Fuchs equation associated with the family X.

For families of Calabi-Yau manifolds that are special complete intersec-
tions in (weighted) projective spaces the Picard-Fuchs equation can be cal-
culated explicitly using the so-called Griffiths-Dwork method. This method
was first introduced by Griffiths in [Gri69] for Calabi-Yau hypersurfaces in
a projective space. Using a residue map it is possible to represent classes in
the (n — 1)-th cohomology H" ™! (X, C) of a Calabi-Yau hypersurface X in
P™ by rational forms on P" with poles along X. The Griffiths-Dwork method
uses a correspondence between the Hodge filtration on H" ! (X,C) and a
filtration given by the pole order on a complex of rational forms. On the
level of these rational forms one constructs the requested linear combination.

The case of complete intersections of codimension 2 was first established
by Libgober and Teitelbaum in dimension 5 in [LT93]. Strictly speaking,
the Picard-Fuchs equation is calculated for the mirror or a finite quotient of
the Calabi-Yau manifold.

We will now explain this in case of a quintic X < P4. Then the Hodge
numbers are easily computed as

R (X) =1 and Y% (X) = 101.

This creates a problem, since the Picard-Fuchs equation is calculated in
H3(X,C), which has dimension 204. Therefore the number m appearing
in the Griffiths-Dwork procedure will be large. To avoid this difficulty, one
considers special families of quintics X admitting a certain action of a finite
group GG, and the Picard-Fuchs equation can be computed using G-invariant
cohomology. This can be reinterpreted as working on the mirror X instead
of X. On X the Hodge numbers are interchanged so that

it ()?) — 101 and K12 ()?) — 1.
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Consequently dim H? ()v( ,C) = 4. Alternatively, one may argue on X/G.
In this context,

hh?(X/G) = W% (X)Y =1 and dim H? (X/G,C) = dim H3 (X,C)% = 4.

The general task, as proposed by examples from physics, is to study
Picard-Fuchs equations and potential functions for pairs (X, A) as at the
beginning of our discussion, where A is now a coherent sheaf F. This might
be hopeless for a general coherent sheaf; in particular there seems to be no
Hodge theory and therefore no Gaufl-Manin connection available. Instead
of a general coherent sheaf, one might choose for instance vector bundles of
rank two or coherent sheaves ¢,Oy for a subspace Y in X with inclusion
t:Y — X. This leads to the discussion of Picard-Fuchs equations for pairs
(X, D) consisting of a Calabi-Yau 3-fold X and a smooth divisor D. The
Zariski tangent space to the first-order deformations Def (X, D) is given by

Def (X, D) = H' (X, Tx (—log D)),

which is dual to H? (X, Q) (log D)). So the deformations of the pair (X, D)
are governed by the logarithmic complex Q% (log D).

The connection to Hodge theory is therefore given by the mixed Hodge
structure on the hypercohomology of the logarithmic complex, which com-
putes the relative de Rham cohomology H? (X, D, C). In fact, by Deligne’s
theorem we obtain

H3(X,D,C)Y = H*(X,T% (~logD)) = P H”(X,T%(—logD)).
p+q=3

A family of deformations of a pair (X, D) thus gives a Gaufl-Manin
connection and hence a Picard-Fuchs equation. The Griffiths-Dwork method
was first used by Jockers and Soroush in [JS09a] and [JS09b] for calculating
Picard-Fuchs equations and candidates of potential functions for pairs. The
mathematical theory for the Griffiths-Dwork reduction of pairs was carried
out by Li, Lian and Yau in [LLY12].

There are also methods from toric geometry to obtain Picard-Fuchs equa-
tions for pairs (X, D), introduced by Lerche, Mayr and Warner in [LMW02a]
and [LMWO02b]. These authors derived a candidate for a potential function
for deformations of non-compact toric Calabi-Yau 3-folds X with toric divi-
sors satisfying additional symmetry assumptions arising from A/ = 1-special
geometry. They used a mixed Hodge structure on the relative cohomology
of pairs.

Subsequently, in [AHMMO09], [AHJ*10], [AHJ*11] and [AHJ"12] Alim,
Hecht, Mayr and Mertens transferred the ideas of Lerche, Mayr and Warner
to compact Calabi-Yau manifolds and derived systems of Picard-Fuchs op-
erators. In this context, Morrison and Walcher discovered in [MWO09] a



different differential equation which is solved by Hodge-theoretic normal
functions. These normal functions are obtained by integrating a holomor-
phic 3-form over a certain cycle.

It has to be mentioned that for deformations even of complexes of coher-
ent sheaves on a fixzed Calabi-Yau 3-fold Brav, Bussi and Joyce showed in
[BBBBJ15] that there is a holomorphic function whose critical locus gives
the unobstructed deformations. However it is not known that this function
is the solution of a differential equation and there is in general no explicit
construction of the function.

Chern-Simons functional. Another situation is known in which a po-
tential function was found by completely different methods. To explain this,
we first recall the real Chern-Simons functional on the space of connections
of a fixed real 3-manifold. The critical locus of the real Chern-Simons func-
tional is nothing but the subspace of flat connections.

In analogy to the real situation, Thomas [Tho00] developed a holomor-
phic Chern-Simons functional. Since in this setting it will be apparent how
generating functions of the obstructions come into the picture, we will give
a very detailed exposition.

To begin with, let £ — X be a complex differentiable vector bundle
on a fixed Calabi-Yau 3-fold X, and let A be the space of d-operators on
E. The holomorphic structures on £ — X correspond to those d-operators
Op on E satisfying g o 0 = 0, i.e., to those dr that are integrable. We
assume that £ — X is a holomorphic vector bundle and fix a holomorphic
structure dg on E. Then A is an affine space with associated vector space
A% (End (E)). As usual A%! (End (E)) denotes the sheaf of (0, 1)-forms
with values in End (F).

Then the holomorphic Chern-Simons functional for £ will be a holomor-
phic function on A, given as follows

CS3, (0o +a) = ﬁ Xtr <;8Qa A a+ %a Aa A a) A Q (1.0.0.2)
for each a € A%! (End (E)). Here 2 denotes a holomorphic non-vanishing
3-form on X and tr: End (E) — Ox the trace map.

The functional CS = CSg0 descends to a functional on A/Gg, where Gg
denotes the gauge group of E, the space of complex linear C*-automorphisms
of the vector bundle £Z. Then Thomas proves

Crit (CS) = A™,

where A™ denotes the space of integrable d-operators on E — X. Thus the
critical points of the Chern-Simons functional are the holomorphic structures
on £ — X.
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To continue, we observe that a € Crit (CS;O> is equivalent to saying that
a satisfies the Maurer-Cartan equation

doa+ana=0.

We assume now additionally that E is simple, i.e. all holomorphic en-
domorphisms of E are just multiples of the identity. This assumption is
satisfied in the important case that E is semistable for some ample polar-
ization. Under this assumption even more is true: There exists an open
neighbourhood U of o in A/GE such that the critical locus of CSg0 is a lo-
cal moduli space of E, and U can be identified with an open neighbourhood
V of 0 in Ext! (E, E) = Def (E), the space of first-order deformations of E.

At the level of tangent spaces we have

H' (A% (End (E)), Opnag) = H' (X,EndE) = Ext' (E, E) = Def (E).

The obstruction of extending a bundle infinitesimally from order n to
n + 1 can be described by so-called Massey products

o (a®") € Ext® (E, E),

where a € A := @, (A*" (Hom (E, E))) and ry, : A®™ — A are morphisms
subject to further restrictions — so-called product relations — making A into
an Ag-algebra. Then

H'(A) = Ext! (E,E) and H? (A) = Ext* (E, E).

The Ay -structure on A also induces an Ag-structure on H* (X, End (E)).

Fix a Ricci-flat metric on X and a metric on E such that every class
a € Ext! (B, E) is represented by a unique dp-harmonic form a. Then we
define a potential function (/3\850 on Ext! (E, E) by setting

n(n+1)
2

cAng ([a]) = 3] (=1) J Q Atr(aary, (a®)). (1.0.0.3)

n>1 n+1 X

As 71 (a) = 0ga and 73 (a,a) = a A a, the functional 6\850 can be seen as
an extension of the holomorphic Chern-Simons functional CSgO by adding
Massey products of higher order.

Formula (1.0.0.3) uses the non-degenerate pairing between the space of
first-order deformations of £ — X and the space that contains the obstruc-
tions, see Thomas in [Tho97], namely

Ext! (E, E) x Ext? (E, E) — Ext3 (Ox, Kyx) 2% H33 (X) Xc

Here the first map is given by Serre-Duality using Kx =~ Ox. We emphasize
that in the case of vector bundles, Serre-duality provides a non-degenerate



pairing between the space of first-order deformations and obstructions. This
is no longer the case for other deformation problems, e.g. for general coher-
ent sheaves.

In this context the Maurer-Cartan equation generalizes to

Z Tn (a®”) = 0.

n=1

In [Laz01] and [Jial7] it is suggested that the critical loci of é\Sgo and CS3
agree up to A%-relations that should not affect the deformation theory.
Nevertheless, the functional 6\850 carries richer information.

For other deformation problems, e.g. for pairs (X, F), where F is a
coherent sheaf which is not locally free, the pairing between the space of first-
order deformations and their obstructions is missing. However, it is possible
to look at the generalized Maurer-Cartan equation as generating function
of the obstructions. The critical locus of this map gives the unobstructed
first-order deformations.

In [MWO09] Morrison and Walcher suggest a generalization of the Chern-
Simons functional to arbitrary objects B € D® (X) in the derived category of
coherent sheaves on X. If the topological Chern class ¢y (B) € H* (X, Z) of
B vanishes, then the algebraic Chern class cglg (B) € CH? (X) in the Chow
group of algebraic cycles of codimension 2 modulo rational equivalence yields
a normal function vg = Ve () € J3 (X), which is a holomorphic section of

the Griffiths intermediate Jacobian fibration associated with the variation of
Hodge structure satisfying certain properties. Morrison and Walcher study
two algebraic Chern-classes C'y /_ := cglg (E4/-) € CH*(X) of two holomor-
phic vector bundles £, ,_ on a fixed quintic 3-fold X such that the homology
class [Cy — C_] = 0 € Hy (X) vanishes. They derive a differential equation
that is satisfied by the normal function which is defined as the period of a
holomorphic 3-form on X over a 3-chain I' with JI' = C, — C_. The dif-
ferential equation they obtain coincides with the Picard-Fuchs equation for
the quintic Calabi-Yau hypersurface. The normal function coincides with a
potential function W restricted to the critical locus.

Potential function and Noether-Lefschetz locus. A similar situation
is studied by Voisin in the appendix of [Cle05]. On a Calabi-Yau 3-fold X,
let ¢+ : D — X be a smooth very ample divisor in X. We consider a class
Ne H2, (D,Z) n H%' (D), where

van

HZ,, (D,Z) ={ae H?(D,Z)| s (a) = 0} .
Then the first-order deformations of (X, D) are unobstructed. Given a de-

formation (X, D) = (X, Ds) g of (X, D) over a complex manifold S, there
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is a unique smooth family of cycles Ag := (\s),.g extending A such that

As € H2, (D, 7) for each s € S. However \s will in general no longer be of

type (1,1).
We consider the local moduli space R for (X, D). Then basically - up to
a choice of 3-forms — Voisin constructs a holomorphic potential function

énp : R—C

such that the critical locus of ¢y, is the subspace of R where ) is of type
(1,1). This subspace is also called the Noether-Lefschetz locus. In this
thesis, we interprete ¢, as a potential function for a deformation problem.

In the same vein, in [Cle05] Clemens obtains a potential function for
pairs (X, C) consisting of a Calabi-Yau 3-fold X and a smooth curve C.

Outline of the thesis. We explain now the content of the thesis in detail.
After presenting some preliminaries in Chapter 2, we collect in Chapter 3
those basics in deformation theory that will be used later in this thesis. In
particular, we formulate carefully all relevant deformation problems. Fur-
thermore, we elaborate the proof of a well-known theorem (see e.g. [DF89]),
stating that each deformation of the projective space P (E) of a holomorphic
vector bundle F over a compact n-dimensional complex manifold X satis-
fying H' (X,0x) = H?(X,0Ox) = 0 is isomorphic to the projective fibre
space of a locally free sheaf on a deformation of X. As a consequence it is
possible to describe the deformations of X together with a vector bundle F
in terms of the projective bundle P (E) — X. This will be used intensively
in Chapter 6.

Chapter 4 recalls foundational notions from Hodge theory: pure and
mixed Hodge structures and their variations. Then we introduce the notion
of residues, which will form a basic tool in the Griffiths-Dwork theory. The
connection between residues and mixed Hodge structures is provided by the
hypercohomology on the complex of logarithmic differential forms. We also
give a brief account for the de Rham cohomology of pairs (X, Z) consisting
of a submanifold Z or a smooth divisor. For effective computations in spe-
cific examples, we will further need to consider residues for certain singular
divisors as well as invariant cohomology in the presence of a finite group.

Chapter 5 offers a detailed discussion of two deformation problems and
their relation. As already mentioned, physicists came up with examples of
deformation problems for pairs (X, F), where F is a special coherent sheaf
on a Calabi-Yau 3-fold X. A first approach is the study of simultaneous
deformations of X together with the direct image sheaf F = 1,Op of the
trivial sheaf on a subspace given as a hypersurface D of X. We will see
that situation is copnnected to the mixed Hodge structure on a cohomology
group related to the deformation theory for pairs (X, D). This is the starting
point of this thesis.



First we study the connection between the two deformation problems
discussed last, even in a more general context.

To be specific, we consider a compact complex manifold X and a compact
submanifold Z. In practise, X will be a Calabi-Yau 3-fold and Z a divisor.
If v : Z — X denotes the inclusion map, then ¢,Oy is a coherent sheaf. So
we relate the deformations of (X, Z) and (X, 1xOz):

1.0.1 Theorem. (Theorem 5.1.1 in Chapter 5) Let Z be a closed subman-
ifold of codimension d of a compact complex manifold X and ¢ : Z — X be
the inclusion. Then there is a natural linear isomorphism of simultaneous
first-order deformations

Def (X, 1,0y) = Def (X, Z2)® H' (Z,07). (1.0.1.1)

As a preparation, we observe that a simultaneous deformation of X and the
structure sheaf 1,0z yields a coherent sheaf F on a deformation of X that
is a locally free sheaf of rank 1 on Supp (F). This leads to the following
exact sequence which is the basis of the proof of Theorem 1.0.1.

0 — Def (X, Z) 5 Def (X, 1s02) > H (2,05) — 0. (1.0.1.2)

To establish the linearity of the maps ¢ and £ we observe that they extend
to natural transformations of the corresponding deformation functors.
Concerning obstructions, we show

1.0.2 Theorem. (Theorem 5.1.2 in Chapter 5) Assume that H* (Z,0z) =
0 or H?(Z,0z) =0, e.g. Z is an ample divisor in a Calabi-Yau 3-fold or a
smooth curve in a compact manifold. Then

Obs (X, 1+0z) = Obs (X, Z) c H* (X, Tx (-Z)).

Furthermore, we replace the trivial line bundle Oz € Pic (Z) by an arbitrary
line bundle L € Pic(Z) and examine to which extent Theorem 1.0.1 holds.
This is relevant to obtain a Noether-Lefschetz-type theorem. In detail we
show

1.0.3 Theorem. (Theorem 5.4.2 in Chapter 5) Let L € Pic(Z). Then
there is a canonical morphism of vector spaces

© : Def (X, 14 L) — Def (X, 1.0z) .
1. The map © is injective if and only if H' (Z,0z) = 0.

2. O is surjective if and only if, for each first-order deformation (X, Z) of
(X, Z), there is a preimage of L under the restriction map Pic (Z) —
Pic(Z2).
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3. If H*(Z,0z) = 0, then © is surjective.

We then derive the existence of a potential function for deformations of a
pair (X, t+Op (C)), where X is a Calabi-Yau 3-fold, D a very ample smooth
divisor on X with inclusion ¢ : D — X and C a divisor on D whose class
is of type (1,1) and vanishes in X. Let w be holomorphic non-vanishing
3-form on X.

1.0.4 Theorem. There are local open sets W and Z in the spaces of
first-order deformations of the deformation problems (X,t+Op (C),w) and
(X,w) and a holomorphic map

YnL W — C
such that the following property is satisfied:
My (X,140p (€),w) = { @ € W|d g zons, (@) = 0},

where My;, (X, 1+0p (C),w) < W denotes the space of unobstructed defor-
mations of (X,1+Op (C),w) inside W and dW|Z is the relative differential

with respect to the projection W — Z.

This will be a consequence of a theorem of Voisin, addressed above. Thus the
Noether-Lefschetz locus is the critical locus of a potential function for the
deformation problem of the pair (X, +Op (C),w). In [AHJ"11] for several
examples it is shown that there exists a system of differential equations
satisfying certain properties.

1.0.5 Corollary. In the situation of the examples considered in [AHJ' 11]
the function Yy, satisfies a system of Picard-Fuchs operators.

Thus, for the deformation problem (X, 1.Op (C),w) there exists a holo-
morphic potential function as a solution of a differential equation satisfying
the property that its critical locus gives the unobstructed deformations.
However, a representation as a generating function of the obstructions is
not established yet.

We are now turning to the case of pairs (X, C'), where C' is a smooth curve
in the Calabi-Yau 3-fold X, having in mind to possibly set up a Picard-Fuchs
equation.

Chapter 6 studies special curves C, namely those curves arising as the
zero-locus of a section in a vector bundle of rank 2 on X.

1.0.6 Theorem. (Theorem 6.1.1 in Chapter 6) Let X be a Calabi-Yau
3-fold, E — X be a holomorphic vector bundle of rank 2 on X and [s] €
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P (H® (X, E)) be the class of a holomorphic section s € H® (X, E) such that
C :={s =0} is a smooth connected curve.

Then the space of first-order deformations Def (X, E,[s]) of the pair
(X, E,[s]) and the space of their obstructions Obs (X, E, [s]) satisfy the fol-
lowing properties:

There is a locally free sheaf Q of rank 5 on X such that

Def (X, E, [s]) Ext! (Q,0x),
Obs(X,E,[s]) < Ext*(Q,0x).

lle

In order to prove Theorem 1.0.6 we introduce the projectivised bundle
P(E). Inside P (F) we consider the divisor D := P (J¢ ® det E') which turns
out to be the blow-up of X along C. The deformation theory of (X, E, [s])
coincides with the deformation theory of (P (£), D). Since

Def (P (E),D) = H' (P (E), Tp(g) (—log D)) ,

we define @Q := m, (TP(E) (—log D))V, which turns out to be a locally free

sheaf of rank 5 on X. The sheaf ) carries much more information, subsumed
by

1.0.7 Theorem. (Theorem 6.4.1 in Chapter 6) There are exact sequences
0-0% >Q->F®Jc—0 (1.0.7.1)

and
0> FEY —->Q"—>Tx(-C)—0, (1.0.7.2)

where Tx (—C) is a certain subsheaf of Tx controlling the deformations of
the pair (X, C).

Next we obtain a relation between deformations of pairs (X, E) and
triples (X, E, [s]).

1.0.8 Theorem. (Theorem 6.4.2 in Chapter 6) We assume the setting of
Theorem 1.0.7. The logarithmic tangent sequence

0— Tp(—log D) — Tp — tsx Npp — 0
induces a sequence
0—- QY - m (Tp) > Jo ®det E — 0, (1.0.8.1)
which in cohomology gives
H°(X,Jo®det E) - H' (X,QY) - H' (X, 7 Tp) . (1.0.8.2)

This sequence can be interpreted as the natural sequence of first-order defor-
mations
Def ([s]) — Def (X, E,[s]) — Def (X, E).
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We now discuss the case of a splitting bundle. Suppose that X is a
Calabi-Yau 3-fold and Dy, Dy are ample divisors on X meeting transversally
in a smooth curve C and set E := Ox (D1) ® Ox (D3).

1.0.9 Corollary. (Corollary 6.53.7, Chapter 6) If D1 — Do is ample, we
have isomorphisms of spaces of first-order deformations:

Def (X, Dy, Dy) = Def (X, E, [s]) = Def (X,C)

Finally we consider the deformation problem for (X, E,[s]), where E is
not necessarily a splitting bundle. We derive the existence of a holomorphic
function whose critical locus contains the unobstructed deformations pro-
vided H! (X,det EV) = H? (X,det EV) = 0, e.g., if det E is ample. This is
based on the existence of a potential function for the deformations of the
pair (X, C) constructed by Clemens in [Cle05]. If C' =~ P!, this function is
a potential function in the strict sense. For details see Corollary 6.5.5 in
Chapter 6.

Since we only know the existence of the potential function and not an
explicit form, we study Picard-Fuchs equations in the remaining chapters,
hoping that one will finally find potential functions as solutions of differential
equations. Accessing a well-advanced theory of solutions for differential
equations, one would obtain the explicit form.

In Chapter 7we turn to Picard-Fuchs equations and describe the Griffiths-
Dwork reduction first for hypersurfaces in a projective space and then for
complete intersections of codimension 2 in a projective space. We extend
Libgober and Teitelbaum’s theory to any dimension, fill gaps in their proof
and show carefully that the Hodge filtration of the forms on the complement
of the Calabi-Yau manifold is isomorphic to the filtration by pole order of
rational forms with poles along the Calabi-Yau manifold. The precise for-
mulation is as follows:

1.0.10 Theorem. (Corollary 7.3.10 in Chapter 7) Let Y1,Ys be hyper-
surfaces in P™ which intersect transversally. Let dy := deg (Y1) = di and
dy := deg (Y2) = da. Then for each p =0,...,n there exists a map ¥, such
that

U, HO [P Y O (Vi + poYe + Ken) | — FPPH™ (VA,C) :

(p1,p2)eNXN,
p1+p2=p

If n is odd, then ¥, is surjective. If n is even, then im (V,) has codimension
1 in FPPH"2 (V’\,C) forp=35+1.
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We describe in detail the Griffiths-Dwork algorithm for explicitly com-
puting the Picard-Fuchs equation for a Calabi-Yau manifold that appears
as a complete intersection of codimension 2. A detailed example is worked
out in a Singular programme, presented in an appendix.

Chapter 8 treats pairs (X, D) consisting of a Calabi-Yau 3-fold X and
a smooth divisor D. In [JS09a] Jockers and Soroush set up a Picard-Fuchs
equation using a Griffiths-Dwork algorithm for several hypersurfaces X in
weighted projective space, in particular for X being a quintic and D a certain
divisor of degree 4.

First we define a residue map for pairs on a suitable complex of loga-
rithmic forms and also for the cohomology of rational forms. The residues
are then elements in the relative cohomology H"~! (X, D). Using the mixed
Hodge structure which was introduced by Deligne on the hypercohomology
group H" ! (Q% (log D)) of the complex of logarithmic differential forms,
we compare the Hodge filtration and the pole-order filtration and set up a
basis for the relative cohomology H" ! (X, D, C).

To compute the GauB-Manin connection, we will use the work of Li,
Lian and Yau. Their theory will be presented in detail, calculations will
be carried out, constructions will be made precise and at the same time
extended to triples in Chapter 9.

Next the Griffiths-Dwork reduction is set up and we present an example
where X is a quintic 3-fold with symmetries and D is a special divisor of
degree 4 cut out by a hypersurface of degree 4. An important point here
is that this hypersurface as well as the divisor D are singular. This re-
quires detailed explanations, e.g. residues have to be defined carefully. This
difficulty has appearently never been discussed in the connection with the
Griffiths-Dwork reduction. We address this point in detail and explain why
the methods presented so far still work. In particular we will describe the
structure of the surface D and the hypersurface H of degree 4 as well as their
singularities. Furthermore, a Hodge theory for D and H has to be set up.
This, together with the paper of Li, Lian and Yau, provides the mathemat-
ical foundation of the work of Jockers and Soroush. A Singular programme
for computing Picard-Fuchs operators in this situation is presented in the
appendix.

The final chapter is connected with the question whether there is a
Picard-Fuchs equation for the pair (X,C) consisting of a Calabi-Yau 3-
fold X and a smooth curve C' in X. We first observe that H? (X,C,C)
is not a good candidate for the local system underlying the Gaufl-Manin
connection. Therefore we consider a complete intersection curve C = Dy N
Dy where D; are smooth divisors in X meeting transversally. We define a
cohomology group H? (X, D1, D3, C) as a de Rham cohomology of triples of
forms (o, f1, B2) € A3 @ A2D1 @® A%Q with differential

d(aaﬁhBQ) = (daa a|D1 - dﬂla a|D2 - dﬁZ)
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as well as a homology group Hs (X, D, Dy) and set up a perfect pairing
H?(X,Dy,D,C) x H3 (X, Dy, D) — C,

which is needed for defining periods via integration. Then we extend the the-
ory of Li, Lian and Yau to local systems H? (X, Dy, Dy, C) when (X, D1, D5)
varies. After that we set up the general formalism for a Griffiths-Dwork
algorithm for triples and discuss an example. One might hope that the
Picard-Fuchs equation associated to (X, D1, D2) is solved by the potential
function for (X, C) constructed by Clemens in [Cle05] as mentioned above.
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Chapter 2

Preliminaries

In this short chapter we collect some general definitions and set up no-
tions.

2.1 Notation

1. In this thesis we work entirely in the category of complex spaces in
the sense of Grauert-Remmert [GR77].

2. If S is a sheaf and « € S (U) for an open set U, which we do not want
to specify further, we simply write o € S.

3. Given a complex manifold, Q% will denote the sheaf of holomorphic
p—forms. If n = dim X, then we denote by wx = Qx the dualizing
sheaf of X.

4. A Calabi-Yau manifold X is a projective connected simply connected
complex manifold with trivial canonical bundle Kx such that addi-
tionally

H(X,Q%)=0

for 2 < ¢ < dim X — 1. Often, the complex dimension of X will be 3,
then the assumption that X is simply connected with trivial canon-
ical bundles automatically yields H?(X) = H%! (X) = H*?(X) =
H%2(X) =0.

2.2 Singularities

At a very few places singular spaces have to be considered. The basic defi-
nitions and facts are collected below. We refer e.g. to [KM98].

2.2.1 Definition. Let X be a normal complex space.

15
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. X 1is said to have rational singularities if there is a resolution of sin-

gularities m : X — X such that Rim, (O)A() =0 forj > 0.

Assume dim X = 2. A singular rational point xg € X is said to be a
du Val singularity or rational double point if there exists a resolution
m: X — X such that Ky - C =0 for all curves C' contracted by .

The canonical Weil divisor Kx is said to be Q-Cartier if some mul-
tiple mKx is a Cartier divisor. In terms of sheaves, Ox (Kx) is the
reflexive sheaf v (wX ), and the condition is that ((’)X (KX)®m)vv
1s locally free for some m.

reg

. X is said to have only canonical singularities if Kx is Q-Cartier and

if there is a resolution of singularities w: X — X such that

K)QZW*(KX)"‘E/\iEi

where the E; are the m-exceptional divisors and \; = 0.

X is said to be Gorenstein if Kx is Cartier and if X is Cohen-
Macaulay, i.e., all local rings Ox . are Cohen-Macaulay.

X is said to have only quotient singularities if every point x € X has a
neighborhood of the form U /G with U < C™ and G < Gl (n,C) a finite
group.

We will use the following facts, for which we again refer to [KM98].

2.2.2 Remark. Let X be a normal complex space.

1.
2.

If X has only rational singularities, then X is Cohen-Macaulay.

If X is a divisor or a complete intersection in a complex manifold, then
X is Gorenstein.

. In dimension 2, rational Gorenstein singularities are the same as du

Val singularites, often also called ADE singularities.

. Quotient singularities are rational.

2.3 Projective fibre spaces

In order to study the deformation theory of a coherent sheaf it might be
useful to look at the projective fibre spaces of the sheaf. Let F be a coherent
sheaf on a complex manifold X. Then to F is associated a projective fibre

space

P(F) 5 X.

Its basic properties are collected below, we refer to [BS76] or [Har77] (in the
algebraic category).
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1. 7 is a surjective map of complex spaces and 7! (z) = P"~!, where
r = dim¢ Fp/myFy.

2. There is a locally free sheaf Op(r) (1) on P (F) of rank 1 such that
Opr) (D -1y = Opr—1 (1)
for all z € X such that
s (Op(r) (k) = S* (F)
for all k£ and
HY (P(F), Opr) (k) @7 (G)) = H' (X, S (F) ©)
for each coherent sheaf G on X and all ¢ > 0.
We will also need the following property: Let &£, F be coherent sheaves and
E—-F -0
be a surjective morphism. Then there is an injective map
L:P(F)—>P(€)

such that
¢ (Opey (1) = Op(z) (1) -
2.3.1 Remark.

e One should notice that the complex space P (F) is not necessarily
irreducible.

e If F is locally-free of rank r, then P (F) is a P"~'~bundle.
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Chapter 3

Deformation Theory for
geometric objects

In this chapter we refer the definitions and important properties of all
deformation problems appearing in this thesis. All of the material can be
found in [Ser06] or [Har10].

3.1 Functors of Artin rings

The technical tool to treat infinitesimal deformations are functors of Artin
rings.

3.1.1 Definition.

1. Let A be the category of Artin rings, i.e the category of complex, local
Artinian C-algebras. A functor of Artin rings is a covariant functor

F: A — (sets)
from A to the category of sets.

2. Let F : A — (sets) be a functor of Artin rings.
a. The functor F' fulfils property (Hy) if F (C) consists of one point.
b. The functor F satisfies property (H.) if the following condition

holds: Let
A/ A//
A

be a diagram in A. We consider the natural map
a:F (A xyA") — F(A") xpa) F (A”)

19
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induced by the commutative diagram

F (A" x4 A") — F (A")

| |

F(4) F(A).

Then « is bijective if A = C and A" = C [t] /t*.

3. If the functor F satisfies both properties (Hy) and (H), then we call
F a deformation functor.

In this context the following result is important.

3.1.2 Theorem. ([Ser06], Lemma 2.2.1) Let F' be a deformation functor.
Then F (Spec (C[t] /t?)) has the structure of a C-vector space.

Examples for functors of Artin rings are functors of infinitesimal defor-
mations of a geometric object.

3.1.3 Definition. With a geometric object X we associate a functor of
Artin rings Def (X)) : A — (sets) by defining

Def 4 (X) := {isomorphism classes of deformations of the object X
over the Artin ring Spec (A)}.

We also write Defgpec(a) (X) = Defa (X) and Def (X) = Defgpecics/e2) (X)-
A first-order deformation of X is an isomorphism class of deformations of
X over Spec (C[t] /t?).

For each deformation problem under consideration we will give a precise
definition of the notion of a deformation and of the notion of isomorphy.
All functors we consider in the following will be deformation functors in the
sense of Definition 3.1.1.

Since the definiton of an obstruction space is technically a little compli-
cated, we simply refer to Definition 2.2.9 in [Ser06] and confine ourselves
with the following.

3.1.4 Definition. Let F be a deformation functor of Artin rings, describ-
ing the deformations of a geometric object X. Let  be a deformation of X
over Spec (A). Then the obstruction map for ¢ is a map

o¢ : { small extensions e of A} -V
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to a vector space V', called the obstruction space, with the following property:
if A is the Artin ring given by e, then C lifts to Spec ([l) if and only if
oc (e) = 0.

The deformation ¢ is unobstructed if oc (e) = 0 for each small extension e
of A.

The geometric object X is called unobstructed if every infinitesimal defor-
mation ¢ of X is unobstructed.

3.2 Deformation theory of a compact complex mani-
fold

We first treat the case of a compact complex manifold.

3.2.1 Definition. A deformation of X over a (connected) complex space
S consists of a complex space X and a proper flat surjective morphism m :
X — S together with an isomorphism X\SO ~ X for a point sg € S.

Two deformations X and X' of X over the same complex space S are
isomorphic if there is a morphism of complex spaces ¢ : X — X' such that
the following diagram is commutative

¢

NS

S.

X X’

We obtain a deformation functor by setting

F(A):=Defy (X) := {isomorphism classes of deformations of X
over Spec (A)},

where A is an Artin ring.
The following theorem is classical.

3.2.2 Theorem. (e.g. [Har10], p. 38) The space of first-order deforma-
tions Def (X)) of X and the space of obstructions Obs (X) of X satisfy

Def (X) H' (X, Ty),
Obs(X) < H*(X,Tx).

lle

3.2.3 Remark. If X is a Calabi-Yau manifold, then by a theorem of Tian-
Todorov Obs (X) = 0, although H? (X, Tx) # 0 (see e.g. [GHJ03], Theorem
14.10).
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3.3 Deformation theory of a submanifold in a fixed
complex manifold

Next we consider pairs of compact complex manifolds. More precisely, let Z
be a closed complex submanifold of the compact complex manifold X and
let v : Z — X be the inclusion map.

3.3.1 Definition. (/Ser06], p. 161) A deformation of Z in X over a
complex space S consists of a cartesian diagram

z J X xS

N A

)

where Z < X x S is a closed subscheme of X x S with inclusion map J and
woJ is a flat morphism. Furthermore, in the following diagram

I
T

Spec (C) —>—= 8

the pullback of the right column by s has to be isomorphic to the left column.

Two deformations Z and Z' of Z in X over the same complex space S
are isomorphic if

Z J X xS and z! J X xS
S S

s a pair of isomorphisms of deformations

a:Z-Z XX

which makes the following diagram commutative:



3.4. DEFORMATIONS OF COHERENT SHEAVES 23

3.3.2 Theorem. The space of first-order deformations Defx (Z) of Z in
X and the space of obstructions Obsx (Z) satisfy

Defy (Z) H (Z,Nzx),
Obsx (Z) < H'(Z,Ngzx).

lle

3.3.3 Remark. If X is a Calabi-Yau manifold and Z an ample divisor,
then Obsx (Z) = 0, since H' (Z,N zx) = 0.

3.4 Deformation theory of a coherent sheaf on a
fixed complex manifold

Let Fp be a coherent sheaf on the compact complex manifold X.

3.4.1 Definition. ([Har10], p. 14, in the algebraic case) A deformation
of Fo over a complex space S consists of a coherent sheaf F on X x S and
a morphism of Ox-modules A\ : F — Fy which induces an isomorphism
]:|X><{so} ~ Fy.

Two deformations \ : F — Fo and N : F' — F of Fy over the same
complex space S are isomorphic if there is a isomorphism of sheaves ¢ :
F — F' compatible with X and X .

In this context we have

3.4.2 Theorem. The space of first-order deformations Def (Fy) of Fo on
X and the space of infinitesimal obstructions Obs (Fy) of Fo satisfy

Def (Fy) =~ Exti (Fo,Fo),
Obs(fo) c EXt_ZX (fo,fo).

12

3.5 Deformation theory of a pair consisting of a
smooth divisor in a complex manifold
Let ¢t : Z — X be an embedding of a compact, possibly reducible, hypersur-

face or of a compact complex submanifold into a smooth compact complex
manifold. Following [Ser06] we state

3.5.1 Definition. A deformation of j parametrized by a complex space S
s a cartesian diagram

Z Z
o)
X X
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where ¥ and ¥ o J are flat and the pullback of the right column by s is
isomorphic to the left column. We denote the deformations of the pair (Z, X)

by Z <X or (X, 2). An isomorphism between two deformations of j over
the same complex space S

z J X and z J X'

NS N,

S S

is a pair of isomorphisms of deformations
a:Z-2Z XX

which makes the following diagram commutative:

3.5.2 Remark. Note that J is again a closed embedding; see [Ser06],
3.4.4.

3.5.3 Notation. We denote the set of isomorphism classes of infinites-
imal deformations of the embedding j : Z — X over S = Spec(A) by
Defg (j: Z — X), or Defy (Z,X) if j is fized.

In order to describe manifolds together with a subspace we need the
following definition; for details on logarithmic bundles see Chapter 4.

3.5.4 Definition. Let X be a complex manifold.

1. Given a divisor D < X with simple normal crossings, we set

Tx (—log D) := Q% (log D)" .

2. Let Z < X be a submanifold and m : X —> X the blow-up of Z < X

with exceptional divisor E; then we define

Tx (—Z) := 7« (Tg (—log E)) .

In this terminology we state
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3.5.5 Theorem. ([Ser06], Prop. 3.4.17)

1. Let X be a compact complex manifold and D o divisor on X with
stmple normal crossings. Then the spaces of first-order deformations

Def (X, D) and obstructions Obs (X, D) of the pair (X, D) are given
by

Def (X, D) H' (X, Tx (—log D))
Obs (X,D) < H?(X,Tx (—logD)).

12

2. Let Z < X be a compact complex submanifold. Then the spaces of first-
order deformations Def (X, Z) and obstructions Obs (X, Z) of the pair
(X, Z) are given by

Def (X, Z)
Obs(X,Z) < H?(X,Tx (-Z)).

I
T
=
&
N

3.5.6 Remark. Let X be a Calabi-Yau manifold and D an ample divisor
on X with simple normal crossings; then Obs(X,D) = 0. In fact, the
logarithmic tangent sequence

induces in cohomology
0=H"(D,Npjx) = H*(X,Tx (—log D)) —» H* (X,Tx) — H* (D,Np|x) -

The obstructions Obs (X, D) c H?(X,Tx (—logD)) are mapped to the
obstructions of deforming X in H? (X,TY), which vanish by the theorem
by Tian-Todorov. Since D is ample, H'! (D,./\/'D‘X) = 0. Thus the map
H? (X, Tx (—=log D)) — H? (X, Tx) is injective and Obs (X, D) = 0.

3.6 Simultaneous deformations of a coherent sheaf
and its complex base manifold

Let X be a compact complex manifold and Fy be a coherent sheaf on Xj.

3.6.1 Definition. ([Har10], p. 53, [Ser06] p. 146)

A simultaneous deformation of X and Fy is a pair (X, F) consisting of a
deformation X of X over S and a coherent sheaf F on X, which is flat over
S, together with a map F — Fo such that the induced map F ®o, Ox, —
Fo is an isomorphism. Two deformations (X,F) and (X,F) over S are
isomorphic if there is an isomorphism of deformations f : X — X’ and an
isomorphism F — f*F'.
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3.6.2 Notation. We denote the space of isomorphism classes of simul-
taneous first-order deformations of Fo and X over Spec ((C [t]/(t2)) by
Def (X, Fo) and the space of obstructions of extending infinitesimal defor-
mations by Obs (X, Fo).

The general result concerning first-order deformations and obstructions
is stated in the derived category:

3.6.3 Theorem. ([HT10], [Li]) Let X be a smooth projective variety and
E € D (X) a perfect complex, e.g. given by a single coherent sheaf. Let G*
be the mapping cone of the Atiyah class RHom (E,E)[—1] — X. Then

Def (X,E) =~ Exti (G*, 0x),
Obs (X,E) < Ext% (G*,0x).
If the sheaf E is locally free, the situation is much easier.

3.6.4 Corollary. Let X be a compact complex manifold and E a locally
free sheaf on X. Let

0—>End(E)—>D(E)—>Tx —0 (3.6.4.1)
be the Atiyah sequence, where D (E) denotes the sheaf of differential opera-

tors of order < 1 with diagonal symbol.
Def (X, E) H' (X,D(E)),
Obs(X,E) < H*(X,D(E)).

lle

3.6.5 Remark. The extension class defining the exact sequence 3.6.4.1 is
the Atiyah class At (E) of E.

3.7 Deformations of projective bundles

Deformations of the pair (X, E), where X is a compact complex manifold
and E a holomorphic vector bundle on X, are closely related to the defor-
mations of the projective bundle P (E), as we shall see now.

The following proposition is in principle well-known, see [DF89], p. 202,
and [Kod63] for a version over manifolds. In lack of a proper reference, we
give the proof.

3.7.1 Proposition. Let E be a locally free sheaf of rank r over the compact
n-dimensional complex manifold X. Suppose

H'(X,0x) = H*(X,0x) = 0.

Let Y — S be a deformation of P (E) over the spectrum of an Artin ring or
the germ of a complex space S. Then there exists a deformation 7: X — S
of X and a locally free sheaf £ over X such that

y=P(&).
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Proof of Proposition 3.7.1: Let 79 : P(E) — X be the projection of the
projective fibre space of E. Let Hy be the subspace of the Hilbert scheme
Hilb (P (E)) of P (F) consisting of all fibres of 79. Then at each fibre F' of 7
the space Hilb (P (F)) is smooth of dimension n according to [Ser06], Prop.
4.4.7, as the Zariski tangent space at F satisfies

TpHilb (P (E)) = H® (F,Npp(r)) = H® (F,0f) = C"

and furthermore H' (F,N pp(g)) = 0.

Then Ho = X is an irreducible component of Hilb (P (E)), since all fibres
of 19 already form an n-dimensional family parametrized by X.

Let Hilb()/S) be the relative Hilbert scheme of ) — S. According
to [Ser06], Prop. 4.4.7, it is relatively smooth of dimension n over S at
any point [F] € Ho. Let H be the irreducible component of Hilb()/S)
containing all fibres [F] of 79p. Then H is the central fibre of H — S.
Hence the projection H — S has n-dimensional smooth fibres, i.e. it is a
submersion. In particular it is flat.

Let

q:U—-H

be the universal family of H, i.e., set-theoretically
U={(x,F)lxe F} c )Y x H.

Notice also that ¢ is a locally trivial P"~!-bundle, because of the local rigidity
of the projective space. Let p: U — ) be the projection. Furthermore let

qo: Uy :={(z,F)|x e F} cP(E) x Ho — Ho

be the universal family of Hy and po : Uy — P (E) the projection to P (E).
Obviously pg is an isomorphism.

Then the restriction of the maps p and ¢ to the central fibre in .S yields
the maps py and qq.

Over the reduced point 0 € S, we obtain the family

qo : Up — Ho

with projection pg : Uy — P(E).
We define
X =H,

hence X — S is a flat family.

We prove that p is an isomorphism. This follows easily from the fact
that pg is an isomorphism and from the fact that locally both spaces are
of the form V' x S, where V is a small open set in either Hy or P (E). Let
7:=qop ':Y — X be the induced map.
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It remains to construct £ such that Y =~ P (£). It is sufficient (actually
equivalent) to construct a line bundle £ € Pic () such that L[ 1.y =
Opr-1 (1) for each x € X.

Once £ has been found, we set

E=1:(L).
Let
E[) = OIF’(E') (1) .
We aim to extend Ly to a line bundle on ).
Since Y — S is flat and H? (P (E) ,OP(E)) = 0, there is a surjective map
R*m,0y|, — H? (P (E), Op(g)) = 0,

where 0 € S denotes the central point in S. By semicontinuity (see e.g.
[Har77], III, 12.11) this map is an isomorphism on S, hence R?m,.Oy = 0.
Using this vanishing and H* (S, RjT('*Oy) = 0 for i > 0, as S is Stein, the
Leray spectral sequence for 7 : ) — S yields H? (Y, 0y) = 0.

The exponential sequences for Y and P (E), the vanishing

H? (P(E),Opp)) = H*(X,0x) =0,
H' (P(E),Opg) = H' (X,0x) =0
and  H?*(V,Z) = H*>(P(E),Z)
show that there is a line bundle £ € Pic (Y) such that Llp g = Lo.

Since Lo|,-1(,) = Opr-1(1) for z € X, we obtain that L] i, =
Opr—1 (1) for each z € X. O

3.7.2 Remark. If we omit in Proposition 3.7.1 the assumption H! (X, Ox)
H?(X,0x) = 0, then there exists a deformation X — S of X such that J
is a P"~1-bundle over X.

3.7.3 Corollary. Let E be a locally free sheaf of rank r over the compact
n-dimensional complex manifold X. Suppose

H'(X,0x) = H*(X,0x) = 0.
Then there is an isomorphism of functors
Def, (X, E) — Def, (X,P(E)).

3.7.4 Remark. Let X be a compact complex manifold and E be a holo-
morphic vector bundle on X. We consider the relative tangent bundle se-
quence

0 — Tppyx — Tpe) — *Tx — 0.
Taking 7, and using the relative Euler sequence, we obtain the exact se-

quence
0— E®EV/OX - W*TP(E') g TX — 0.

A comparison with Corollary 3.6.4 shows D (E) = m.Tp(g) @ Ox.
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3.8 Simultaneous deformations of a holomorphic
vector bundle and a section

Let X be a compact complex manifold and £ — X a holomorphic vector
bundle of rank 7 on X. Let s € H? (X, E), s # 0, be a holomorphic section of
E and [s] € P (H" (X, E)") the class of s in the projective space associated
to the vector space H? (X, E).

3.8.1 Definition. A simultaneous deformation of X, E and [s] over a
complex space S consists of a simultaneous deformation

ES XS

of E and X over S (Definition 3.6.1) and a class [3] € P (H (X,£)") of a
holomorphic section § € H® (X, E) such that [51{30}] ~[s]eP(H(X,E)").

Two deformations (X,E,[s]) and (X', &', [s']) over Spec (A) are isomor-
phic if there is an isomorphism ¢ : X — X' over Spec (A) and an isomor-
phism. of locally free sheaves p : ¢*E — &' such that p(¢* [s]) = [¢'].

We denote the set of isomorphism classes of simultaneous deformations
of X, E and [s] over Spec(A) by Defy (X, E,[s]) and the obstructions to
extend a first-order deformation by Obs (X, E, [s]).

3.8.2 Remark. We obtain a deformation functor which will be denoted
by Def. (X, E, [s]).

The space of first-order deformations and the space of obstructions will
be studied in Chapter 6.

For further reference we state the following.

3.8.3 Lemma. Let S be the spectrum of an Artin ring or the germ of a
complex space containing 0. Let U be an open set in C™ and D be a divisor

in U x S such that Dy = D n (U x {0}) is a smooth divisor. Then D — S
is a submersion.

Proof of Lemma 3.8.3: As the question is local, we may assume D =
{f =0} with f e Oyxs (U x S).

1. We suppose first that S is a complex manifold. We may assume that
flpyny is regular, hence it is regular on U x {s} for all s € S. Hence D is
smooth and D — § is a submersion.

2. In general we embed S into an open set W < CV. Since the question
is local in U, we may assume that f lifts to f € Ouxw (U x W). Therefore

D lifts to a divisor D := {f = O}. By (1) the map D — W is a submersion,

hence D — S is a submersion by base change, compare [Har77], I11,10.1(b).
O
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Chapter 4

Variation of Hodge
structures on the
cohomology of special
complex manifolds

In this section we briefly review what we will need from Hodge theory.
As general references we use [PS08], [Voi02], [Voi03] and [EV92].

4.1 Variation of pure Hodge structures

4.1.1 Definition. ([PS08/, p. 17) Let Hr be an R-vector space of finite
dimension over R. Let H := Hg Qg C be the complexification of Hg.

A pure Hodge structure of weight n on H is given by a lattice Hy  Hc
together with a direct sum decomposition

H= P HI
p+g=n

with HYP = HP4. The numbers h??1 := dimc HP? are called the Hodge
numbers of the Hodge decomposition.

4.1.2 Definition. ([PS08], p. 241) Let S be a complex manifold. A
variation of (pure) Hodge structure on S consists of the following data:

1. a local system Vy of finitely generated abelian groups on S,

2. a finite decreasing filtration {FP} of the holomorphic vector bundle
V :=Vz ®z Og by holomorphic subbundles (the Hodge filtration ).

These data are subject to the following conditions:

31
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1. for each s € S the filtration {FP (s)} of V(s) = Vz,®z C defines
a Hodge structure of weight k on the finitely generated abelian group
VZ,S)

2. the connection V : V — V Qogq Q}g whose sheaf of horizontal sections
is V¢ satisfies the Griffiths’ transversality condition

V (FP) c FFl@ QL.

4.2 Logarithmic differentials and residues

The notion of logarithmic differential forms will be crucial in all that follows.
For details we refer to [EV92] and [PS08].

4.2.1 The complex of logarithmic differential forms

Let X be a complex manifold of dimension n and D a divisor in X with
simple normal crossings, let ¢ : D < X be the inclusion. Furthermore, we
define U := X\D and j : U — X to be the inclusion.

4.2.1 Definition. Let Q% (log D) be the smallest subcomplex of sheaves
containing Q% , which is stable under the exterior product such that for each
local section f of 7.Oy that is meromorphic along D, the quotient % is a
local section of QY (log D).

A section of jxQF, is said to have a logarithmic pole along D if it is a
section of Q% (log D).

The following is easy to prove.

4.2.2 Theorem.

1. A section a of j«; has a logarithmic pole along D if and only if o
and da have at most simple poles along D.

2. The sheaf QY (log D) is locally free and Q5 (log D) = AP QL (log D).
If {z1,...,zn} are local holomorphic coordinates of X in a neighbour-
hood U of p = (0,...,0) € X such that X nU = {z1-...- 2z =0},

then a local base of Q% (log D) consists of (% and (dz;)

zi )1<i<k k<jsn’

4.2.3 Theorem. (/PS08], Prop. 4.3, p. 91) The inclusion of complexes
Q% (log D) — j.Qp
is a quasi-isomorphism and induces an isomorphism
H* (U,C) = H* (X, Q% (log D)),

where H* (X, Q% (log D)) denotes the hypercohomology of the logarithmic
complez Q5% (log D).
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4.2.4 Theorem. (See e.g. [Voi02], p. 198/199) If the divisor Y with
simple normal crossings has k irreducible components, then the logarithmic
de Rham complex Q% (logY) is exact in degree =k + 1.

Proof of Theorem 4.2.4: As the statement is local, we can assume that
X is an n-dimensional polydisc, i.e.
X =Dy x...x Dy,

where D; 1= {z; € C||z]| < r;} with r; € R for 1 < ¢ < n denotes an open
disc. Furthermore we can assume

Y ={(21,---,2n) €D1 X ... x Dyp| 212z, =0},
Thus locally
U:=X\Y =D} x-x Dff x Dgy1 x - x Dy,

retracts onto the product of circles (S l)k. Using the Kiinneth formula, we
get H" ((Sl)k,(c> =0 for each r > k + 1. O

4.2.2 The residue map

We now introduce the notion of residues, following [PS08], p. 93. We will
use only the case of one or two components.

4.2.5 Notation. Let X be a compler manifold and D = sz\il D; be a
divisor with simple normal crossings. We set:

Dy = Dilﬂ...ﬁDimeTI:{ila-“vim}
D(I) = ZD[ﬂDj.
J¢l

Furthermore, let ar : Df — X be the inclusion and

D) = X
D(m) := H Dy, form=1,... N.
[I|=m

Let am =[] = a1 : D (m) — X be the inclusion.

Let 1 < m < N and I = {i1,...,iy} be an index set of cardinality m.
For p € Dy we choose holomorphic coordinates in a neighbourhood around
p=(0,...,0) such that D;, = {z; = 0} for each j = 1,...,m and the other
components are given by {z; = 0} for j = m 4+ 1,..., N. Then every local
section w of O (log D) can be written as

dzy dzm, ,

W=—A...AN— AN+7, (4.2.5.1)
21 Zm
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where 1 has at most poles along the components D; with j ¢ I and ' is not
divisible by the form dz—zll AL A S

Zm
4.2.6 Theorem. There is a well-defined global map, the residue map, on
the complex of logarithmic differential forms, which is given as follows:

resy : Q% (log D) — Qp, (log (D (I))) [-m], (4.2.6.1)
by setting locally resy (w) := nlp,, where 1 is given by 4.2.5.1.
4.2.7 Remark. If D is a smooth divisor, then we can locally find holo-

morphic coordinates {z1,...,2,} on X such that D = {z; = 0}. Then the
residue map 4.2.6.1 has the form

d
res: Q% (log D) — Qp [-1] ,w = ; An+n = nlp, (4.2.7.1)
1

dzy

where 1 and 7’ do not contain =L,

4.2.8 Example. The residue maps lead to various sequences which we
write down explicitly for the case of one or two divisors. These are the only
relevant situations for us. Let X be a complex manifold.

1. Let D < X be a smooth irreducible divisor. Then there are sequences
0— Q% — Q% (log D) — Q% — 0. (4.2.8.1)
The dual sequence reads

0 — Tx (=log D) - Tx — Npjx — 0. (4.2.8.2)
2. Let D1 and D3 be smooth irreducible divisors such that Dy u D9 has

simple normal crossings. Then there is an exact sequence
0 — Q% (log D) — Q% (log (D1 U D)) — Q5! (log (D1 N D)) — 0.
(4.2.8.3)

In Chapter 8 we will be in a slightly more general situation where one
of the two divisors in Example 4.2.8 is mildly singular. In the following we
will make the necessary preparations. In order not to have trouble with
coherence problems, we assume from now on that X is projective.

4.2.9 Definition. Let X be a projective manifold and D o reduced divisor
on X. Let Xo:= X\Sing (D), i.e. D n Xy is a divisor with simple normal
crossings, and v : Xg <— X be the inclusion. Then we set

Q% (log D) := 1. (Qg(o log (D n X[))) .

4.2.10 Proposition. Let X be a projective manifold and D a normal
divisor. For any k = 1 there are exact residue sequences

0 — Q% — 0% (log D) & Oyt

extending the classical residue sequence 4.2.8.1. The map v is surjective
outside Sing (D).
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Proof of Proposition 4.2.10: We set Xy := X\Sing (D) and Dy :=
D n Xy and consider the usual residue sequence

0 — O, %k, (log Do) B Q%1 — 0.

The map ¢g extends to ¢ : Q% — Qé} (log D). Let @ := coker (¢). Obviously
@ is supported on D and Q| Do = QIB_OI; thus @ is torsion-free as a sheaf
on D. Hence QQ c Q'B_l and we obtain a map ¥ : Q];( (log D) — Q’B_l,
extending 1. Obviously, ¢ is injective and im (¢) = ker(¢). Thus we
obtain a sequence

0— % 5 0% (log D) & QL.

4.2.11 Proposition. In the setting of Proposition 4.2.10 the sequence
0—>Q§(—>Q}((logD)i(’)D—>O

15 exact.

Proof of Proposition 4.2.11: It remains to be shown that 1 is surjective.
Let g € D be a singular point and h be a local holomorphic function on D
defined in an open neighbourhood of xy. We lift A to a holomorphic function
h locally on X and write D = {f = 0} near xo. Define w := % A h locally

on X, then w is a local section in Q% (log D) and ¢ (w) = h. O

4.2.12 Remark. If n = dim X in the setting of Proposition 4.2.10, then
the sequence

0— Q% — Q% (log D) iﬁ%_l — 0

is exact. In fact, Q% (log D) = Ox (Kx + D) and Q5" = Op (Kp); so the
assertion follows from the adjunction formula.

Now we prove that 1 is surjective in special cases; we only treat the
situation we are interested in.

4.2.13 Proposition. Let X be a 3-dimensional projective manifold and
D c X a normal surface with rational singularities. Then all sequences

0— Q])C( — Q])C( (log D) iﬁ%_l — 0

are exact.
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Proof of Proposition 4.2.13: It remains to treat the case k = 2. Let
m: X — X be an embedded resolution of singularities of D. So the strict
transform D of D in X is smooth, and we obtain the residue sequence

0 0% - 0% (1og D) —aL 0. (4.2.13.1)

Since W*Q?( ~ Q%c, since W*Q% ~ Q}D (D has quotient singularities, then
use Remark 4.2.42) and since le*Q%{ = 0 (7 consists only of blow-ups of
points), we obtain the following commutative diagram:

0— 0% —>m (22 (log D)) —= Qb ——0

ST

0 0% Q% (log D) Q 0.

Since @ < Q}j, and since (3 is generically an isomorphism, § is an isomor-
phism everywhere; so is «. This proves the claim. ]

4.2.14 Remark.

1. The proof of Proposition 4.2.13 works in any dimension and any degree
provided
W*Qqﬁ >~ QqD

for all ¢ and that the map
R'7,Q% — R'm, Q% (log f))

induced by Sequence 4.2.13.1 is injective.
The first condition is satisfied if D has canonical singularities, see
[GKKP11].

2. The proof also shows the following: Let 7 : X — X be an embedded
resolution for the normal divisor D < X. We assume that D has only
quotient or canonical singularities and that the injectivity assumption
in 1. holds. Let D be the strict transform of D. Then

W*Q’}( (log lA)) ~ Ok (log D).

4.2.15 Proposition. Let X be a projective manifold, D1 a smooth divisor,
Dy a normal divisor such that D = D1 n Dg is normal and D1 and Dy meet
transversally outside Sing (D). Then we have exact sequences

0 — % (log Da) — % (log (D1 L Da)) % Q5 (log D).

If k=1, then Q%:l (log D) = Op, and v is surjective.
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Proof of Proposition 4.2.15: The proof is the same as for Proposition
4.2.11 and Proposition 4.2.10 and therefore is omitted. 0

4.2.16 Proposition. Let X be a 4-dimensional projective manifold, D1 <
X be a smooth divisor and Dy X be a normal divisor with only canonical
singularities. We assume furthermore

1. D = Dy n Dy is a normal divisor with rational singularities;
2. D1 and Dy meet transversally outside the singular locus Sing (D);

3. Dy n Sing (D2) is contained in the locus of Dy where Dy has the local
product structure U x S with U an open set in C and S a local surface
with a rational double point.

Then we have exact sequences
0 — Q% (log Dy) — Q% (log (D1 U D)) 5 Q’El (log D) - 0

foreach k=1,...,4.

Proof of Proposition 4.2.16: We only need to treat the cases k = 2, 3.
Using Proposition 4.2.15 it suffices to show that k is surjective. By our
assumption, it suffices to show surjectivity of x at p € Sing (D).

Case 1: k=2 Since Q% (log(D; u Dy)) and QlDl (log D) are reflexive, it
suffices to show that

pv 0% (1og (D1 U D)) (V\p) = O, (log D) (V\p)

is surjective for V an arbitrary small Stein neighbourhood of p in X and

V =V n D;. Clearly, sy is surjective if
H (vm 0% (log (D2))) ~0. (4.2.16.1)
For Equation 4.2.16.1 we use the residue sequence
0— Q% — Q% (log D2) — Qp, — 0 (4.2.16.2)

on V. For Sequence 4.2.16.2, we use the local product structure of Ds:
locally Dy = U x S < U x Y =V with a smooth 3-fold Y. Then Sequence
4.2.16.2 has the form

0 — ey = Dy (log (U x 8)) = Q5 — 0. (4.2.16.3)
Sequence 4.2.16.2 follows from the exact sequences

0— QF — OF (log S) —» Q& — 0, (4.2.16.4)
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see 4.2.13, because we have the following isomorphisms:
Dy = (priQy ®pr3Qdy) @ pr30y,
Oy (log (U x 8)) = (pri0h @ priQ) (log $)) @ pr3 3 (log 9),
Ores = priQy @ pryQy.
The middle isomorphism is at first only valid on U x Y\ Sing (D3), then due
to reflexivity also on U x Y. These isomorphisms provide a decomposition
of Sequence 4.2.16.3 in two sequences related to the exact sequences 4.2.16.4

for £k = 1,2. Then the exactness of Sequence 4.2.16.2 follows.
By 4.2.16.2, the equality 4.2.16.1 comes down to

H (V\p, Q%) =0 (4.2.16.5)

and .
H (V’\p, Q}DQ) —0, (4.2.16.6)

where V' :=V n Dy is Stein again.
To show Equation 4.2.16.5, observe that the Riemann extension theorem
(for locally free sheaves, see [Sch61] and [Sch64]) gives

~

o (V,0%) 5 H (V\p, Q%,\Vv) .

But H' (V,Q%) = 0, since V is Stein.
To show Equation 4.2.16.6, we claim that

H' (V. 9),| )= H' (V'\p, O,

V/) (4.2.16.7)

) = 3 (see [BSTG),

11.3.10). Here prof denotes the homological codimension of Q})w as an
Op, p-module. Since

is an isomorphism. To see this, we need prof (Qlljzp

H' V', O,

V’) ~ H! (V/,pr’l“QlU) @H! <V’,pr§f2}g>

and pr’leU ~ Oyxs, furthermore U x S is Cohen-Macaulay, it suffices to
show that prof (pr%‘flé) > 3. Since V! = U x S, this is equivalent to
profo, o (Qé p,> > 2, where p = (0,p'). Indeed, let (pr/, f27p/) be a regular
sequence for Qap, and ¢t a holomorphic coordinate of U. We write t for

prit. Then (tp, (pr3f1), (pr%‘f@p) is a regular sequence for (pr%‘ﬁé)p. This

follows as the quotient sheaf (pr%‘fl}g) / (t . prz‘ﬁ}g) has support {0} x S
P P

and equals Q}g



4.2. LOGARITHMIC DIFFERENTIALS AND RESIDUES 39

We obtain profo, o <Qé p,> > 2 by e.g. [BS76], 11.3.15, as Q}g is a reflex-
ive sheaf.
Then we conclude with Theorem B.

Case 2: k=3 This is done in exactly the same way. O

We comment on the assumption 3 in Proposition 4.2.16:

4.2.17 Remark. Since D has canonical Gorenstein singularities, there
exists a finite set M < Sing (D3) such that at p € Sing (D) \M, the variety
Dy has locally the form U x S as assumed in Proposition 4.2.16, see [Rei87].

There is an alternative way to define residues by using tube maps in case
X is compact:

4.2.18 Theorem. ([/Gri69], Prop. 3.5) Let V. P™ be a smooth hypersur-
face. There is a Z-linear map, the tube map,

7:H,1(V,Z) > H, (P"\V,Z)

such that T () is given geometrically by taking a tube over ~y. The map T is
always surjective and injective if n is even.

The proof actually can be adapted to show the following:

4.2.19 Corollary. Let X be a projective manifold and D < X a smooth
divisor. Then Theorem 4.2.18 can be adapted to this situation such that we
get a tube map

T:H,_1(D,Z) > H, (X\D,Z)

satisfying the properties stated in Theorem 4.2.18.

4.2.20 Theorem. For w € H° (X,0% (log D)) the residue can be com-
puted as an integral for each v € Cp, (D) by

J respD‘X () := f w.
gl ()

This leads to a generalization of the notion of the residue.

4.2.21 Definition. For each rational k-form n € H° (X, Q% (D)) on X
with poles along D we define a residue by

J respD‘X (n) := J n
o T(v)

for each cycle v € Cy (D).
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We now turn to the cohomological level.

4.2.22 Definition. The residue map 4.2.31.1 on the complex of logarith-
mic differential forms induces a residue map in cohomology

Res’pn : H* (X\D,C) — H*"' (D, C) (4.2.22.1)
for each k.

The following alternative definition of the residue map in cohomology is
important:

4.2.23 Theorem. ([Voi03], Chapter 6.1.1)

1. Let U := X\D. The residue map 4.2.22.1 can also be defined as
composition

Res'y x : H" (U,C) - H**' (X,U,C) = H**' (T, oT,C) =~ H*' (D, C),
where T is a tubular neighbourhood of D in X.
2. The residue map is part of the long exact sequence of relative coho-

mology of the pair (X,U), i.e.,

R k
S HYX,Z) > HYU,Z) 3% HU(D,z) s B (X,Z) - .
where 1, denotes the Gysin morphism.

To fix notations, we recall
4.2.24 Definition.

1.

H* (X,Q),. = ker (L L H* (X,R) — H> k42 (X, R))

prim

H*(D,C), = ker (z* . H* (D,Q) — H*2 (X, @))

4.2.25 Theorem. ([Voi03], 2.3.3) If D is ample, then there is an isomor-
phism
H" (X,Q) iy = H" (X, Q) /l.H"* (D, Q)

and an exact sequence

. Res™
Z o U,Q) B HN(D,Q),. —0. (4.2.25.1)

van

0—- H"(X,Q)

prim
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4.2.3 The notion of mixed Hodge structures and variations
of mixed Hodge structures

Mixed Hodge structures occur our context in the following way:

4.2.26 Definition. (See e.g. [PS08], p. 62) Let Hy, be a finitely generated
Z-module and H := Hg ®r C be the complexification.

A mixed Hodge structure of Hg on a finite dimensional Z-module Hy,
consists of:

1. the Hodge filtration, i.e. a decreasing filtration

H>...oFPrl s Ssprlo 50,

2. the weight filtration, an increasing filtration

Oc...cWp1ccWycW,1c...c H

such that the two filtrations verify the condition:

for each m the Hodge filtration induces a pure Hodge structure of weight
m on the m-th graded element GrYY := W,,/W,_1 of the weight filtration.

4.2.27 Remark. The general element of the induced filtration is
FPGr)Y = (Wy, 0 FP) /W1

4.2.28 Definition. (See e.g. [PS08], p.362) Let S be a complex manifold.
A variation of mixed Hodge structure on S consists of the following data:

1. a local system Hy of finitely generated abelian groups on S,

2. the Hodge filtration, i.e. a finite decreasing filtration {F} of the holo-
morphic vector bundle H := Hy ®z Og by holomorphic subbundles,

3. the weight filtration, i.e. a finite increasing filtration {Wp,} of the local
system Hg := Hz ®7 Q by local subsystems.

These data are subject to the following conditions:

1. for each s € S the filtrations {FP (s)} and {Wy,} of H (s) = Hz,,®zC
define a mized Q-Hodge structure on the Q-vector space Hg s,

2. the connection V : H — H ®o4 0 whose sheaf of horizontal sections
is He satisfies the Griffiths’ transversality condition

V (FP) c FFl@Ok.
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4.2.4 The mixed Hodge structure on the hypercohomology
of the complex of logarithmic differential forms

Let U be a complex algebraic manifold and X a good compactification, i.e.
D := X\U is a divisor with simple normal crossings.

4.2.29 Theorem. (See e.g. [PS08], Thm. 4.2, p. 90) The following two
filtrations put a mized Hodge structure on H* (U,C):

1. The decreasing Hodge filtration on H* (U, C) is induced by the decreas-
ing trivial filtration F*Q% (log D) on QY% (log D), i.e.,

FPH* (U,C) := im (]Hlk (X, FPQY% (log D)) — H* (U, «:)) :

where

FPQ% (log D) :EO—»...—>O—>Q§((logD)—>Q§(+1(logD)_>,,”

2. The increasing weight filtration on H* (U, C) is induced by the increas-
ing weight filtration W,Q% (log D) on QY% (log D), i.e.,

W H* (U,C) := im (H’f (X, Win_1 2% (log D)) — H* (U, C)) ,

where
0 form <0
Wi (log D) := Q% (log D) form=p
Q5™ A Q% (logD)  if 0 <m < p.

4.2.30 Theorem. ([PS08], p. 93) The residue map 4.2.6.1 restricts to a
surjective map
resy : Wi, Q% (log D) — Qp, [-m]
and induces an isomorphism of complexes
resy, = (P resy: GrV Q% (log D) 5 sy [—] -
[T|=m

4.2.31 Remark. If the divisor D is smooth, we can locally find holomor-
phic coordinates {z1,...,2,} on X such that D = {z; = 0}. Then we get
the residue map

d
res : Q% (log D) — Qp [-1] ,w = A n+n —nlp, (4.2.31.1)
21

dz%. It induces a surjective map

where 1 and 7’ do not contain
res : W1Q% (log D) — Qp [—1]

and an isomorphism

res : Gri¥ Q% (log D) = Q%! A Q4 (log D) 5 01,05 [-1].
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4.2.32 Remark. ([PS08], [Voi03])

1. The spectral sequence associated to the Hodge filtration of H* (U, C)
degenerates at Fp, furthermore the maps

H* (X, FPQ% (log D)) — H* (U,C)

are injective. Therefore

FPH*(U,C) = im (Hk (X, FPQ% (log D)) — H* (U, (C))
~ HY(X,FPQ% (logD)) = P H" (X, Q% (log D))
r+s=k
s$=p
and

H* (X,Q% (log D)) = P H" (X,Q% (log D)).
r+s=~k

2. If the divisor D is smooth, i.e. it has one smooth irreducible compo-
nent, then the weight filtration on Q% (log D) consists of two steps:

Wk (log D) = Q%
and
W1Q% (log D) = Q% (log D) .
Therefore

WsH3 (U,C) c W,H? (U,C) = H? (U,C).

4.2.5 Relative de Rham-Cohomology

Later we will need a de Rham theory for pairs; the relevant definitions are
found below.

Let X be an n-dimensional compact complex manifold, D <> X a smooth
hypersurface.

4.2.33 Definition. (See e.g. [BT82], p.78) The relative cohomology of
X and D is the cohomology of the complex

. L k k—1
Aoy = (@A)
with the differential }

d(a)ﬁ):::(daab*af_’dﬁ)

forae A’)“(,B € AIB_l, i.e.,
{(a,8) € A% @ Al d (e, 8) = 0}

H¥ (X,D,C) := - (A];(_l - A’{;Q)

for each k € N.
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4.2.34 Remark.
We get a short exact sequence of complexes

0— AL = Aty p) = Ax =0
which yields a long exact sequence in cohomology

— H*1(Xx,C) - H**(D,C) - H*(X,D,C) - H* (X,C) —
— H*(D,C) - H*"' (X, D,C) -

Therefore we get a decomposition of the relative cohomology
H*(X,D,C) = ker (H’c (X,C) — H* (D,(C))
@ coker (Hk_l (X,C) - H1 (D, (C)) .
We denote
H} N (D) = coker (H" 1 (X,C) — H" ' (D,C)).
4.2.35 Definition.
1. We define the relative singular chain complex Co (X, D) by setting
Cr (X, D) := Cy (X) /Cy (D).
Here Cy (X) denotes the space of k-cycles in X (with complex coef-
ficients), Cy (D) is analogously defined. We obtain homology groups

Hy, (X, D).

2. There is a duality pairing between the relative cohomology H* (X, D, C)
and the relative homology Hy, (X, D,C) for each k, which is given by

II: H,(X,D,C)x H*(X,D,C) —
() [ m2)] Hfm f

Then we have the following classical theorem:

4.2.36 Theorem. The pairing in Definition 4.2.35 is non-degenerate.

4.2.37 Theorem. There is an isomorphism

H* % (X,D,C) ~ H* (X\D,C) = H* (Q% (log (D))) .
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Proof of Theorem 4.2.37: By Lefschetz duality we have an isomorphism
H, (X\D,Z) =~ H*"*(X,D, 7).

for each 0 < k < 2n. Using the universal coefficient theorem for X\D we
get
H*(X\D,Z)~ H*" % (X,D,7).

0

4.2.38 Remark. If we define H* (X, D,C) := Hom (Hj, (X, D), C), then
Theorem 4.2.37 remains true for divisors with simple normal crossings.

4.2.6 Hodge theory on quotients by finite groups

In this chapter we consider a normal projective variety X with a finite group
G acting on X. Then the quotient X /G is again a normal projective variety.
Let p: X — X /G be the quotient map. This will be important in Chapter
8, where X is a quintic.

The group G acts on the cohomology H? (X, C). More generally, if F is
a G-sheaf (i.e., F is a coherent Ox-module and p* (F) = F for each p € G),
then G acts on H? (X, F).

We define the sheaf p, (F)¢ by

ps (F)E (U) := F (0~ (0))°

for any open set U < X /G, where F (p~! (U ))G denotes the G-invariant
part of F (p~ (U)).

4.2.39 Definition. Let H1(X,C)% be the G-invariant part of H? (X, C)
and H (X, F)¢ be the G-invariant part of H? (X, F).

4.2.40 Proposition. Given g = 0, then there are isomorphisms
1. H1(X,C)% ~ H1(X/@G,C),
2. HY(X,F)% ~ He (X/G, Pa (]—")G> and

3. H1(X,0x)% = H1 (X/G,0x/q).

Proof of Proposition 4.2.40: For 1, we refer to [Bre72], Theorem 2.4
and Theorem 7.2. For 2, we refer to a manuscript of J. Kollar [Kol]. 3 is a

special case of 2, since p. (OX)G = Ox/q; see also [GKKP11], Lemma 4.2.
O

In the following we consider normal projective varieties with only quo-
tient singularities, i.e., Y is locally of the form U/G, where U < C" is an
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open ball and G < Gl (n,C) a small finite group. Following [Ste77], see also
[PS08], Section 2.5 (where Y is called a V-manifold), we define the Hodge
groups HP?(Y) of Y.

4.2.41 Definition. Let Y be a normal projective variety.

1. Let v : Yreq — Y be the reqular part of Y. We define Q% = Ly (Q%TeEI)

(in accordance with the log case treated before).
2. We set HP9(Y) := HY (Y, Q@).

4.2.42 Remark. [Ste77] We suppose that Y has only quotient singulari-
ties.
1L.Ifr:Y >Yisa desingularisation, then qu = Ty (Q%)
2. There is a Frolicher-type spectral sequence with Ej-term
EDY = 74 (Y)
converging to HP*? (Y, C), which degenerates at F1, so that

H(Y,C)= P HP(Y).

3. These remarks also apply if Y is a normal projective toric variety,
[Dan78|, Theorem 12.5, instead assuming quotient singularities. For
the analogue of 1 see [GKKP11], even in greater generality.

4.2.43 Theorem. Let X be a projective manifold.

1. Letdim X =3 and let D ¢ X be a normal divisor which has only quo-
tient singularities or which is a toric variety. Then there is a spectral
sequence (E,), with Ey-term

EPY = [ (X, % (log D))
and the following properties:
e (E,) converges to H* <Q3( (log D)),

e (E,) degenerates at 1,
o H (QX (log D)) ~ H" (X\D,C) for all r.
2. We suppose that dim X = 4. Let D1 and D3y be irreducible divisors,

Dy smooth and Do with only quotient singularities or a toric variety.
Suppose additionally
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(i) D = D1 n Dy is a normal divisor with rational singularities;
(ii) D1 and Dy meet transversally outside the singular locus Sing (D);

(#ii) D1 ~ Sing (Ds2) is contained in the locus of Dy where Dy has the
local product structure U x S with U an open set in C and S a
local surface with a rational double point.

Then there is a spectral sequence (E,), with Ey-term
EPY = H (X, %, (log Dy L Dg))
and the following properties:

e (E,) converges to H* (QB( (log D1 L Dg)),
e (E,) degenerates at Fy,
o H" (QB( (log Dy U Dg)) ~ H" (X\ (D1 v D3),C) for all r.

Proof of Theorem 4.2.43: The spectral sequence (E,) is just the se-
quence of hypercohomology to the logarithmic complex in question. Then
we consider the exact sequences of the complexes (see Proposition 4.2.16
and Proposition 4.2.13)

0-0% > Q% (D) - Q5! -0
and
0 — Q% (log D) — Q% (log (D1 U D)) — Q35! (log D) — 0,

and apply Remark 4.2.42 to conclude that (E,) at E;. The last statements
follows from the long exact sequence of hypercohomology attached to the
above complexes. O
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Chapter 5

Comparison between two
deformation problems
associated with a closed
submanifold in a compact
complex manifold

In this chapter we consider pairs (X, Z), where X is a compact complex
manifold and Z a compact complex submanifold in X, and compare the
deformations of the pairs (X, Z) and (X, t+Oz), where ¢ denotes the inclu-
sion of Z in X. The results of this chapter will be used later, when X is a
Calabi-Yau 3-fold and Z is a smooth curve or a smooth divisor.

5.1 Statement of the main theorems

5.1.1 Theorem. Let Z be a closed submanifold of codimension d of a
compact complexr manifold X and v : Z — X the inclusion. Then there is a
natural linear isomorphism of simultaneous first-order deformations

Def (X, 1,07) = Def (X, Z)® H' (Z,07). (5.1.1.1)

Concerning obstructions, we restrict ourselves to the situation we are
interested in:

5.1.2 Theorem. We assume that H' (Z,0z) =0 or H?> (Z,0z) =0, e.g.
Z is an ample divisor in a Calabi- Yau 3-fold or a smooth curve in a compact
manifold. Then

Obs (X, 1:07) = Obs (X, Z) c H* (X, Tx (-Z)).

49
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5.2 Preparations

We recall some definitions from the theory of coherent sheaves, see e.g.
[GR84] or [Fis76].

5.2.1 Definition. We denote by F a coherent sheaf on the complex mani-
fold X.

1. Let Ann (F) be the annihilator of F, i.e.,
Ann (F), = {fz € Oxz| fo - S = 0 for each s, € Fy}
for each r e X.
2. Let Supp (F) denote the support of F, i.e., the complex space
Supp (F) := ({p € X| F, # 0}, Ox/Ann (F))

So Supp (F) is not only an analytic set, but carries a natural complex struc-
ture.

5.2.2 Lemma. Let S be the spectrum of an Artin ring or the germ of a
complex space. Let Z be a closed submanifold of codimension d of a compact
complex manifold X and 1 : Z — X be the inclusion.

Any deformation (X, F) of the pair (X, 1.Oz) over S is a pair consisting
of a deformation X of X over S and a coherent sheaf F on X which is a
locally free sheaf of rank 1 on Supp (F) such that F|y = 15Ogz.

Proof of Lemma 5.2.2: The restriction of F to its support Supp (F) is a
coherent sheaf whose restriction to the central fibre X is a locally free sheaf
of rank 1 on Supp (F) n X = Z, namely

(f|Supp(f))‘X ~ 0.

Since X — §' is a submersion, X is locally isomorphic to a product. So
locally in X near p € Supp (F), we can write

X=U(p) xS,

where U (p) is a small neighbourhood of p € Z. Moreover, we choose a
suitable ¢ > 0 and consider S as a subspace of U, (0), where U (0) =
{2 € C"||z| < ¢} for some N > 0. Hence X is locally a subspace of U (p) x
Ue (0).

Possibly, after shrinking U (p) and €, we find a coherent sheaf F on
U (p) x Ue (0) such that the restriction to U (p) x S is

f’U(p)XS = Flugyxs -
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We claim that F _. is locally free of rank 1 on Supp (]} ), possibly
Supp(F

after shrinking U (p) and € again. Since F|, = Oz, we know
dim(c]:"(a:) = dimc ]:"w/mx]:"x =dimc F (z) =1

for all z € U (p) x S, where m, is the maximal ideal at z.
The set

{x e U (p) x U (0) | dime Fy/myFy > 1}

is analytic; in particular, it is closed (see e.g. [Fis76], p. 49). Hence after
shrinking § and e again,

dim¢ .7:"%/711%]:"27 =1

for each z € U (p) x U (0). Hence the Nakayama lemma (see e.g. [AM69],

p. 21) implies that F is locally free of rank 1 and so does F |U( )xS
Supp(F) b
near p for arbitrary p € Supp (F). O

Since all computations are local, we can replace the trivial bundle Oz in
Lemma 5.2.2 by an arbitrary line bundle on Z and obtain also the following
well-known lemma:

5.2.3 Lemma. Let S be the spectrum of an Artin ring or the germ of a
complex space. Let Z be a closed submanifold of codimension d of a compact
complex manifold X and ¢ : Z — X, the inclusion. Let L € Pic (Z) be a line
bundle.

Any deformation (X, F) of the pair (X, txL) over S is a pair consisting
of a deformation X of X over S and a coherent sheaf F on X which is a
locally free sheaf of rank 1 on Supp (F) such that F|y = tsL.

The method of the proof also shows the following classical lemma:

5.2.4 Lemma. Let S be the spectrum of an Artin ring or the germ of
a complex space. Let w : X — S be a deformation of a compact complex
manifold X over S. Let £ be a coherent sheaf on X which is flat over S.
Suppose that E|y is locally free. Then & is locally free.

Next we associate to an infinitesimal deformation of the pair (X, Z) an
infinitesimal deformation of the pair (X, :,Oz) and vice versa.

5.2.5 Lemma. Let Z be a closed submanifold of codimension d of a com-
pact complex manifold X and v : Z — X be the inclusion. Let S be the
spectrum of an Artin ring or the germ of a complex space.
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1. We suppose that the closed subscheme Z L Xisa deformation of the
pair (X, Z) over S. Then by associating to Z L, X the coherent sheaf

we get a deformation (X, F) of the pair (X, 1.Oz) over S.

2. Conversely we suppose that the pair (X,F) is a deformation of the
pair (X, 1+:0z) over S. Then we get an associated deformation of the
pair (X, Z) over S by setting

Z := Supp (F).

Furthermore we define the map 7 : Z — S by setting m = p|, where
p: X — S is the projection.

Proof of Lemma 5.2.5: (1.) F := J,Oz is a coherent sheaf on X which
is flat over S. Indeed, the flatness of F over S follows immediately from the
flatness of Z over S.

The inclusion j; : Z — Z induces a morphism of sheaves

Ox/Jz — j1. (Ox/Tz),

where Jz and Jz denote the ideal sheaves for Z and Z in X, respectively;
i.e., we get a map of sheaves on X

J« (Oz) = 15 (Oz),

where ¢ also denotes the inclusion Z =~ Z x Spec (C) < X. This yields an
isomorphism

J« (Oz) ®0y Ox = JuOzy ispec(c) = J4J1,07 = 1:07.
Therefore F is an infinitesimal deformation of ¢+O4 over S.

(2.) We need to show that 7 : Z — S is flat and that Z x g Spec (C) =~ Z.

We note that Z x gSpec (C) is the subspace of X = X x gSpec (C) defined
by J :=1im (¢* (Ann (F)) — Ox), where ¢ : X — X is the inclusion.

Then

Jy = {f$ € Ox z| fz - 5o = 0 for each s, € (]—"\Z)x}
= {fe€Oxy| fo- sz =0 for each s, € (1:072),}
= Jzz.
Furthermore we have to show that = is flat; i.e. for each x € Z the local
ring Oz, is flat over Og ().
Let x € Z. By assumption F is flat over S; i.e. for each x € X the stalk
Fy is flat over Og ;). As F is alocally free sheaf of rank 1 on Z by Lemma

5.2.2, it is locally trivial, and thus F, = Oz, for each x € Z. Therefore the
flatness of 7 follows. U
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5.3 Proof of Theorem 5.1.1

In this section we give the proof of Theorem 5.1.1. We want to establish an
exact sequence of vector spaces

0 — Def (X, Z) 5 Def (X, 1s02) > H (2,04) — 0. (5.3.0.1)
We first define the map
¢ : Def (X, Z) — Def (X, 1:0z)

by associating to (J : £ — X) the coherent sheaf F constructed in Lemma
5.2.5, (1). Second, in Step 1 below we are going to construct a map

§: Def (X,1.0z) > H' (2,07) , (X, F) = £ (F).
The resulting situation is then shown in the following diagram:

Def (X) =~ H (X, TX) ———— > Def (X) ~ H! (X, TX)

Def (X, Z) =~ H' (X, Tx (—log Z)) — > Def (X,1502) ———— > H'(2,0)

|

Defx (Z) ~ HO (Z,Nz‘x) Defx (tx0z) EEXtﬁ( (tx0z,150z2) ot (Z,0z)

Step 1: Construction of the map (. We start with some preparations:
Let (X, F) be a simultaneous first-order deformation of the pair (X, 1.Oz).
Let Z := Supp (F) be the complex space defined in 5.2.1. According to
Lemma 5.2.2 we know F € Pic (Z) with F|, = Oz € Pic(Z).

From Lemma 5.2.5, (2) we know that the map 7 : Z € X — S induced
by the projection of X to S is a first-order deformation of Z in X. We
observe that the square of the ideal sheaf J of Z in Z vanishes, i.e.

J=J/J? =Ny .
Furthermore we have
Nzjz = 7" Nspec(©)[spec(ci)/(2)) = T Ospec(c) = Oz

Thus, looking at the exponential sequences for Z and Z and the ideal sheaf
sequence for Z in Z, we get the following diagram:
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HY(2,0%)

HO (Z,OZ)

H' (2,7 7z2) ~ H' (Z,N}lz) ~ H' (Z,05)

B

Lz

HY(2,0z) Pic (2) — > H? (2,7)

H(2,7) HY (Z,0) Pic (Z) ——> H?(Z,7).
(5.3.0.2)
The map H° (2,0z) — H° (Z,0z) induced by the ideal sheaf sequence of

Z in Z is surjective, and therefore H° (Z,0z) — H! (Z, N}|Z> is the zero

map. Hence the map 3 : H' (Z,N%Z) — H'(Z,0%) is injective.
Furthermore we observe that the maps ¢z and ¢z in the diagram are
injective. To that end, we extend diagram 5.3.0.2 at the left side and get

HY(2,0z) —= H°(2,0%) —= H' (2,2) —2~ H' (2,0z) X— . ..

i i [ |-
HY(Z,047) — H°(Z,0%) — H' (Z,Z) —2> H' (Z,07) *— ...
(5.3.0.3)
As the map H° (Z,07) — H°(Z,03) ~ C* is surjective, the map vz is
injective. The commutativity of diagram 5.3.0.3 implies then that the map
HY(Z,0%) — H'(Z,Z) is the zero map; thus ¢z is injective.
As F € Pic(Z2) and v (F) = Oy € Pic(Z) and furthermore ¢; (Oyz) =
0e€ H?(Z,7), we know that

c(v(F)=0e H*(Z,7) =~ H*(Z2,Z),

thus ¢; (F) = 0 € H?(Z,Z). Therefore F = p (ﬁ) for a class F €
H' (Z,0z). Because of the commutativity of the second square of diagram
5.3.0.2 we have vo « (]}) = Oy € Pic(Z) and can conclude

o (]}) =1y (.7:')

for a class 7/ € H!'(Z,7Z). Under the isomorphism id : HY(z,2) S
H' (Z,7), the class F' can be viewed as a class 7' € H! (Z,7). As the first
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square of diagram 5.3.0.2 is commutative, we get « (]:") >~ (LZ (ﬁ/)) As

a consequence,
a(.;’:"—LZ (f")) =o¢(]:'> —a(f") =0

F—iz (ﬁ’) cim(8).

and

Let
E(F)e H (Z,07)

be the image under the isomorphism H!(Z,0z) =~ H! (Z, N§|Z) of the
preimage of F — 1z (]}/) e H' (Z,0z) under the injective map j.

We have to prove that & (F )~ is well defined, i.e. the definition is indepen-
dent of the choices of F. Let Fy, Fo € H' (Z,0z) be two classes satisfying

7 (,/%1> =Lu (ﬁg) = FePic(2).

Let ai,ap € H' (Z,N §| Z) be those classes corresponding to the classes

which are the preimages of Fi or Fo, resp., under the map 8. As JTRe
B (a1 —az) = 0, we have 5(a; —ag) € im(tz). Therefore §(a; — az) =
1z (@) for a class a € H' (Z,7Z). Let a € H' (Z,7Z) be the image of @ under

the isomorphism id : H! (Z,Z) = H'(Z,7). Because of the commutativity
of the diagram we get

0=aof(ar—az) =1z(a).

This yields @ = 0 and thus a = 0; hence 8 (a1 — a2) = 0 and, as (3 is injective,
a1 = ag. Thus the construction of £ (F) is unique.

Step 2: Linearity of (. We first treat the linearity of . Let Fj be
the deformation functor of (X,Z) and F» be the deformation functor of
(X,1x0z). Now we construct a morphism f : F; — Fy. Let A be an Artin
ring and 7' = Spec (A). Then f (T') is the infinitesimal deformation (X, F) of
(X, 1x0z) over T induced by the infinitesimal deformation (X, Z) of (X, Z)
over T constructed in Lemma 5.2.5. Then ¢ = f (Spec (C[t] /t?)).

By [Ser06], p. 46, the map ( is therefore linear. As they are deformation
functors (see Chapter 3.1), they satisfy conditions Hy and H..

Step 3: Exactness. Now we show that the sequence (5.3.0.1) is exact.
Obviously ( is injective.
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Moreover, ¢ is surjective, as for each element a € H 1(Z,0z) we can
choose X := X x Spec (C[t]/(¢*)) and Z := Z x Spec (C[t]/ (¢*)). Then

a corresponds to an element a € H' ( Z, N 7 and we can define

1z)
F:=pop(a).

We get F|y = Oz € Pic(Z) because of the commutativity of the dia-
gram, and furthermore F is flat, as it is locally trivial on Z. Thus F €
Defx (L*Oz) c Def (X, L*Oz).

The composition £ o ¢ vanishes. In order to see this, let J : Z — X
be a first-order deformation of the embedding j : Z < X. Under the map
¢, the deformation .J is mapped to the coherent sheaf F = J.Oz on the
deformation space X of X. We choose F := 0 € H* (Z,0z). Since 3 is
injective, we can conclude that zz = 0; thus & (F) = 0.

Next we show that ¢71(0) < im(¢), hence the sequence is exact as
soon as we know that £ is linear. Let the pair (X, F) be an infinitesimal
deformation of the pair (X, (.Oz) with

E(F,X)=2r=0e H (Z,0y)

and Zr € H! (Z, N§|Z) be the image of xr under the isomorphism

H'(2,04) ~ H' (Z,Ng|z> ,
where Z := Supp (F) < X. Then

f-':,uoﬁ(.i']:) ZM(O) = J.0z,

where J : Z — X is the inclusion. Therefore the first-order deformation
(X, F) is the image of the first-order deformation J : Z < X of the inclusion
j : Z — X under the map (. O

Step 4: Linearity of £&. Let I3 be the deformation functor of the sheaf
Oz on Z. We define a morphism of functors

g:F3— Fy

by associating to the infinitesimal deformation £ of Oz the infinitesimal
deformation of (X, :xOz) consisting of X = X x Spec (C[t] /t") and ¢4 L.
Let

A := g (Spec (C[t] /t*)) : Def (Oz) — Def (X, 1.07) .

Then A is linear according to [Ser06], p. 46. By construction of £, we know
£ o X =id. Now & induces a map

€ :Def (X,1,02) /im (¢) - H' (Z,04),
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therefore it suffices to show that ¢ is linear. Let
7 : Def (X, Z) — Def (X, 1+0z) — coker ())

be the induced linear map. Since €71(0) =im(¢) and € o A = id, the map
£ is an isomorphism. Hence

dim H' (Z,07) = dim (Def (X, 1+07) /im (¢))

and \: H' (Z,Z) — Def (X, 140) /im (¢) is an isomorphism. Since £ o A =
id, the map & = 3 is linear.

We have also seen that A defines a splitting of Sequence 5.3.0.1. U

5.3.1 Remark. We summarize the situation of Theorem 5.1.1 in the fol-
lowing diagram:

Def (X) > H (X, TX) ———= > Def (X) =~ H! (X, TX)

Def (X, Z) = H (X, Tx (—log Z)) — > Def (X,150y) ———— > H'(2,05)

|

Defy (2) = HO (2, x) ———> Defx (1407) = Extl (1407, 1x07) —— H' (Z,0)

0 0

The maps a and 8 are defined analogously to the construction of ¢ and &.

It seems well-known that the lower exact sequence can also be constructed

by applying Ext) (-, 1+07) to the ideal sheaf sequence
0—>Jz > O0x - 1.0z =0,

compare [Tho00], Lemma 3.42.

In the next section we examine, to which extend it is important to take
the trivial bundle instead of an arbitrary line bundle on Z in Theorem 5.1.1.

5.4 A generalization of Theorem 5.1.1

We recall the following situation already considered in the proof of Theorem
5.1.1.
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5.4.1 Notation. Given a first-order deformation Z of Z, we consider the
following commutative diagram given by the exponential sequences

H2(2,07) = H2 (2N, ;)
H' (2,0 *6>H12(9* — -2z —— > (2,05 —————— >
(2,0%) , 0% (2,2) (2,0z)

e z
HY(2,05) —> H! (z,og) ——H2(2,2) ———————> H?(2,05) ——————> ...

lﬂ

H?(Z2,0z).
(5.4.1.1)

5.4.2 Theorem. Let L € Pic(Z). Then there is a canonical morphism of

vector spaces
© : Def (X, t4xL) — Def (X, 1.0z) .

1. The map O is injective if and only if H* (Z,0z) = 0.

2. O is surjective if and only if, for each first-order deformation (X, Z) of
(X, Z), there is a preimage of L under the restriction map Pic (Z) —
Pic (Z2).

3. © is surjective if and only if the following holds: €(c1 (L)) = 0 and,
choosing L € Pic(Z) so that L], @ LY = a(¢) with ( € H' (Z,0y),
then B(¢) = 0.

4. If H*(Z,0z) = 0, then © is surjective.

Proof of Theorem 5.4.2: (0.) To construct the morphism ©, let (X, F)
be a first-order deformation of (X, t,L). By Lemma 5.2.3, there is a line
bundle £ € Pic (Z) such that F = j,L, where Z := Supp (F)and j : Z > X
is the inclusion.

We associate to (X, F) the pair (X, j,Oz) =: © (X, F), which is a first-
order deformation of (X,:+Oz). We observe that ¢,Oz is flat over S. In
fact, this is a local question and locally F = 1,Oz.

Since this works for every infinitesimal deformation, we get a morphism
between the corresponding deformation functors. Therefore © is linear.

(1.) We show that © is injective if and only if H!(Z,0z) = 0. We
assume first that H' (Z,Oz) = 0 and consider (X, F) € Def (X, 14L) such
that © (X, F) = (X x S,j+Ozxs), where S := Spec (C|[t] /t?) and j : Z x
S — X x S is the inclusion. Then F = j.L, where £ € Defy (L) =~
H'Y(Z,0z) = 0 is the trivial first-order deformation of L € Pic(Z). Thus ©
is injective.
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Conversely, if © is injective, then H' (Z,Oyz) = 0, since otherwise we
should obtain a nontrivial deformation of the line bundle L, which yields a
nontrivial deformation of (X', F) with trivial image under ©.

Finally, (2.) is just a reformulation, (4.) is a consequence of (2.), and

(3.) is a diagram chase.
g

5.4.3 Remark.
In the situation of Theorem 5.4.2 we have the following commutative
diagram

0 —— Def (X, Z) —— Def (X, 1x0z) —— Def (Oz) ——=0 (5.4.3.1)
\ @T /
Def (X, 1 L) .
In general it is not possible to define a map
Def (X, Z) — Def (X, 1L).

In fact, if Z is a first-order deformation of Z, then Pic(Z) — Pic(Z) is
neither injective nor surjective in general.

A linear map Def (X, Z) — Def (X, ¢4 L) exists if and only if the restric-
tion map Pic (Z) — Pic(Z) is an isomorphism.

5.4.4 Remark. We consider a first-order deformation (X, Z) of (X, Z2)
and a line bundle L on Z. Then L extends to Z if and only if the following
holds: We consider the composition

F:HY (X, Tx) x H (X,Q%) 3 H* (X, Tx ® Q%) — H* (X, Tx)
given by the cup product and the pairing Tx ® Q% — Ox. Then
F (& e (L) =0.
See [Ser06], 3.3.11, for details.

5.5 Proof of Theorem 5.1.2

In this subsection we prove:

5.5.1 Theorem. We assume that H' (Z,07) = 0 or H?(Z,0z) = 0;
e.g., Z is an ample divisor in a Calabi-Yau 3-fold or a smooth curve in a
compact complex manifold. Then

Obs (X, 1+07) = Obs (X, Z) c H* (X, Tx (-Z)).
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Proof of Theorem 5.5.1: (1.) The assumption H' (Z,0z) = 0 implies
immediately that Def (X, Z) = Def (X, 1xOz) and moreover that the defor-
mations of the pairs (X, Z) and (X, :+Oz) over Spec (C [t] /t") are equal,
thus Obs (X, Z) = Obs (X, 1.Oz).

(2.) By Lemma 5.2.5 it suffices to prove the following: given

(X, Fn) € Def,, (X,1:.0z),

let (X, Z,) be the associated element in Def,, (X, 7). If (X, Z,) extends
to an element in Def,, 11 (X, Z), then (X,,Z,) extends to an element in
Def, 11 (X, :O02).

Since H? (Z,0z) = 0, the deformations of line bundles on Z are unob-
structed. Let (X, F,) be a deformation of (X,:Oyz) over Spec (C [t] /t™).
We assume that there is a deformation (X, Z,,) of (X, Z) over Spec (C [t] /t")
which can be extended to a deformation (X;,11, Zn41) over Spec (C [t] /t"*1).

The ideal sheaf sequence

0 - Jzn‘zn+1 - Ozn+l - Ozn - 0

yields, using
1
NERT- jgp(/j%} =0z

and the assumption H? (Z,0z) = 0, the equality
H?(2,,0z,) = H* (2,41,0z,,,) .

Using the exponential sequences for Z, and 2,1, we can extend

‘Fn|SUPP(-7:n) - ]:n|zn

to a sheaf G, 11|z € Pic(Z,41) and set

]:n+1 = ln4+1y (gn+1) )

where 1,41 @ 2, < X,41 is the inclusion. Thus (X, F,) is extendable to
(n + 1)-th order.

Hence the theorem follows by applying and using the fact that the ob-
structions of (X, Z) are in H? (X, Tx (—Z)) due to [Ser06], 3.4.17. O

We conclude that for H' (Z,0y7) = 0, e.g. Z is an ample divisor in a
Calabi-Yau 3-fold, the deformation problems of (X, Z) and (X, ¢.O%) coin-
cide.
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5.6 An example for a potential function:
the Noether-Lefschetz locus

As an application of the previous results, we establish a potential function
of a pair (X, 1+Op (C)), where ¢ : D < X be a smooth very ample divisor
in X such that C' is a special divisor on D. This will be a consequence of a
theorem by C. Voisin.

5.6.1 Setup. Let X be a Calabi-Yau 3-fold; v : D — X be a smooth very
ample divisor in X such that there is a class A € H2,, (D,Z) n H" (D),
where

H,,(D,Z) ={ae H},, (D,Z)| s (a) = 0}.

van van

Then the first-order deformations of (X, D) are unobstructed according to
Remark 3.5.6. For each deformation (X,D) = (X, Ds),cq of (X, D) over
a complex space S we get a unique smooth family of cycles Ag := (Xs)4eg
extending X\ such that \s € H2,, (Ds,Z) for each s € S. However \g will in
general no longer be of type (1,1). We fiz a holomorphic 3-form w on X.

We will make use of the following theorem by C. Voisin, which is proven
in the appendix to [Cle05].

5.6.2 Theorem. ([Cle05], Appendiz) We assume the Setup 5.6.1. Then
there exist

e an open neighbourhood T = H' (X, Tx) of 0 H* (X, Tx) and

e an open neighbourhood R < H'(X,Tx (—log D)) of the point 0 €
H!' (X, Tx (—log D)) with projection R — T,

e furthermore C*-bundles R — R and T — T such that R and T
parametrize the deformations of (X, D,w) and (X,w),

e and a holomorphic map

¢n: R—C

such that the following property is satisfied:
The family of cycles As = (Xs) g induced by the deformation of (X, D, w)
corresponding to 7 € R stays of type (1,1) if and only if

d pypéne (F) = 0.

Here dé]i“ is the relative differential with respect to the projection R — T.
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5.6.3 Definition. The set

NL (X, D, \,w) := {f e R‘ d gpone (7) = 0} .
s called the Noether-Lefschetz locus.

We will now apply Voisin’s theorem to the situation discussed before.
To be specific, we propose the following

5.6.4 Setup. Let X be a Calabi-Yau 3-fold; v : D — X be a smooth very
ample divisor in X. Let C' be a divisor on D, such that

C1 (OD (C)) € Hgan (D7 Z) N Hl’l (D) .

Thus C is a divisor in D which is not effective. We fix a holomorphic 3-form
w on X.

We show that the Noether-Lefschetz locus is the critical locus of a po-
tential function for the deformation problem of the pair (X, 1+Op (C),w).

5.6.5 Theorem. We assume the Setup 5.6.4. There are

open neighbourhoods Z < H' (X,Tx) of 0 € H' (X, Tx) and

W < Def (X, 1:0p (C)) of 0 € Def (X, 1:0p (C)),

furthermore C*-bundles Z — Z and W — W such that Z and W
parametrize the deformations of (X,w) and (X, t:Op (C),w)

and a holomorphic map

wNL:W—NC

such that the following property is satisfied:

MW(X,L*(’)D(C),w):{weW

where M3, (X, 1+0p (C),w) < W denotes the space of unobstructed defor-
mations of (X,1+Op (C),w) inside W and dVV|Z is the relative differential

with respect to the projection W — Z.
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Proof of Theorem 5.6.5: We set A := ¢; (Op (C)) and aim to apply
Theorem 5.6.2.
Step 1. We construct a map

p: Def (X,1,0p (C)) — Def (X, D) = H' (X, Tx (—log D)).

Let (X, F) be a first-order deformation of (X, txOp (C)). Let D := Supp (F).
According to Lemma 5.2.3 we know F = j,£ with £ € Pic (D) and the in-
clusion j : D — X. Then we define

p(‘){v]:) = (XvD)7

which is a deformation of (X, D) according to Lemma 5.2.5. The same
construction also applies to all infinitesimal deformations and to germs of
complex spaces.

Therefore we obtain a map between the deformation functors of the pairs
(X,1xO0p (C)) and (X, D). Hence p is linear by [Ser06], p. 46; see Chapter
3.1. Then p is injective, as H' (D, Op) = 0.

In fact, if (X, F) € Def (X, 1.Op (C)) with p (X, F) = (X x S,D x S) e
Def (X, D) is the trivial deformation, then X = X x S and D = D x S, and
thus F = j,.L, where £ € Pic (D x S) is a first-order deformation of Op (C),
therefore trivial, since H' (D, Op) = 0.

Furthermore p extends trivially to a map

p: Def (X, 1.0p (C),w) — Def (X, D,w).

Step 2. Let W := p~'(R) and Z := T. Let W and Z be as in Theorem
5.6.2, and set

¢NL1=¢NLOﬁ:W—>(C.

Then ¢, is holomorphic, as ¢, is holomorphic and p is linear. Thus
{dmz¢NL = 0} =5t {dR|T¢NL = 0} -
In order to prove the theorem, we show that
M (X,1:0p (C) ,w) = 5~ (NL (X, D, \,w)).

a) Let (X, F) be an unobstructed deformation of (X, :+Op (C)) over a
contractible complex Stein space S.

Then (X, F) induces a deformation (X,D) of (X, D) over S as seen
above. The family A = (), ¢ induced by the deformation (X, D) stays of
type (1,1) on each fibre, as A\ = ¢ (L) for each s € S, where L, € Pic (Ds).
Thus

p(X,F,w)e NL(X,D,\w).

b) Let (X,D,w) € NL(X,D,\,w). Then all members of the family
A = (As)seg stay of type (1,1) along the deformation (X, D). Therefore
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there are line bundles L4 € Pic (D), such that As = ¢1 (Ls). We show that
the line bundles L; fit together to a line bundle on £ on D.
The exponential sequence for the complex space D yields the exact se-

quence
Hl (Dv O;.k?) - H2 (sz) — H2 (D70D))

where H?(D,Z) =~ H° (S, R*m.Z) and H* (D,Op) =~ HY (S, R*m.Op) ac-
cording to the Leray spectral sequence associated to the projection 7 : D —
S. Let

o:H° (S, R27T*Z) — H° (S, RQW*OD)

be the map induced by 7. Then o (A) = 0, since o (A\s) € Pic (D;) for each
s € S. So A induces a class o € H? (D,Z) such that alp, = As and such
that 7 (o) = 0. Hence there exists £ € Pic (D) such that ¢; (£) = a.

Thus (X, L,w) yields a deformation of (X,:t.Op (C),w) over S and
p (X, L,w) = (X,D,w). O

5.6.6 Remark. In the situation of Setup 5.6.4 let [I'] € Hs (X, D) such
that [0L'] € Hy (D) is Poincaré-dual to ¢; (Op (C)). Let [w] = [(w,0)] €
H3(X,D,C). Then according to [Cle05] we can write

YN = Lw-

In [AHJ*11] Alim, Hecht, Jockers, Mayr, Mertens and Soroush give sev-
eral examples which appear as hypersurfaces in weighted projective spaces.
Using toric methods, they derive a generalized hypergeometric GKZ-system,
i.e. a system of Picard-Fuchs equations associated with the deformation
problem (X, :.Op (C)), that is solved by the function ¥y

Using the results from this paper we see that in addition to the result
stated in Theorem 5.6.5 the function ¢, is a solution of a system of Picard-
Fuchs equations satisfying certain properties.

5.6.7 Corollary. In the situation of the examples considered in [AHJ" 11]
the function Yy satisfies a system of Picard-Fuchs operators.



Chapter 6

Simultaneous deformations
of a holomorphic vector
bundle and a section

In this chapter we consider Calabi-Yau 3-folds containing a curve C'
which is given by a section s in a holomorphic vector bundle F of rank 2.
We aim to describe the first-order deformations and the obstructions for the
triple (X, E,[s]). We construct a locally free sheaf @) of rank 5 such that
H'(X,Q") describes the first-order deformations of the triple (X, E, [s])
and the obstructions are in H' (X,QV).

6.1 Situation and main theorem

Let X be a Calabi-Yau 3-fold, £ — X a holomorphic vector bundle of
rank 2 on X and s € H° (X, E) a holomorphic section of E. We assume
that C' := {s = 0} scheme-theoretically is a smooth connected curve in X,
i.e. the ideal sheaf that is locally generated by s is the ideal sheaf of the
complex manifold C. This situation is called the Serre-correspondence for
holomorphic vector bundles of rank 2 and yields the exact Koszul complex

0—>det(EY) > EY > Jo—0
e 0-0x 3 ES Jo®det (E) — 0.

As {s =0} = {\-s=0} for each A € C*, we look at the class [s] €
P (H° (X,E)) of s in the projective space of H° (X, E).

We recall from Section 3.8 that the deformations of the triple (X, E, [s])
form a deformation functor. The main result in this section is:

6.1.1 Theorem. The space of simultaneous first-order deformations
Def (X, F, [5))

65
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of the base manifold X, the vector bundle E and the class [s] of the section
s defined in 3.8.1 and the space of their obstructions Obs (X, E, [s]) satisfy
the following properties:

There is a locally free sheaf Q of rank 5 on X such that

1.
Def (X, E, [s]) = Ext! (Q,0x) and

Obs (X, E, [s]) < Ext? (Q, Ox).

The proof of Theorem 6.1.1 needs various preparations.

6.2 Proof of Theorem 6.1.1

We begin with various preparations.

6.2.1 Construction. We will see that the simultaneous deformations of
FE and X will be described in terms of the projective bundle

m:P:=P(F) > X

of E; see Section 2.3 for the theory of projective fibre spaces. All fibres
of P are isomorphic to P!, and the dimension of the total space P as a
complex manifold is 4. As the exact Koszul complex gives a surjective map
E — Jo ®det (E), we get an injective map

P(Joc®det (E)) — P

of the associated projective fibre spaces. We observe that P (Jc ® det (E)) —
X is generically an isomorphism and has 1-dimensional fibres over C'. Let

D:=P(Jo) = P(Jo ®det (E))

be the projective fibre space associated to Jo ® det (E) and o : D — X be
the restriction of 7 : P — X to D < P.

6.2.2 Lemma. The complex space D is a smooth divisor in P. Moreover
D = {t = O} )

where t € H° (P, Op (1)) is the image of 7 (s) € H° (P, 7* (E)) under the
homomorphism
H® (P, n* (E)) — H° (P, Op (1))

induced by the canonical surjection 7 (E) — Op (1) — 0.
Furthermore, D 1is isomorphic to the blow-up of C in X.
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Proof of Lemma 6.2.2: Step 1. First we show that D = {t = 0}.
We restrict X to X := X\C and define £ := E|; with 5 := 5|5,

furthermore 7 : P := P (E) — X and
B = D‘a—l()z) =P (detE) = X

Hence D is a smooth divisor in P. Furthermore we have

7?*0@ (U’D = ﬁ*OP(detE) (1) ~ det . (6.2.2.1)

Applying 7, to the ideal sheaf sequence
0—Tp®0 (1) = O3 (1) - Op (1)| 5 = 0 (6.2.2.2)
for the inclusion D < P, we get

0— 7 (Tp®0p (1)) > E — det E. (6.2.2.3)

The last map E — det E is nothing but the surjective map & : E — detE
which occurs in the Koszul complex

005 —>E5detE— 0, (6.2.2.4)

as the ideal sheaf sequence 6.2.2.2 is defined using the inclusion D < P,
which is induced by the Koszul complex. Thus we get an exact sequence

0— 7 (T5® 03 (1)) = E 5 det E — 0. (6.2.2.5)

Comparing 6.2.2.4 and 6.2.2.5 we obtain ker k = 7, (Jp @ Op (1)) = Oy,
thus

05 (D) = 0 (1).

Hence D = {t’ = 0} for a section ¢’ € H° (HB, Os (1)) Let s’ € H° (X,E)

be the section of F which is mapped to ¢’ under the isomorphism
H (XE) ~ H° (IFD, Os (1)) .

Then the inclusion map of the Koszul complex 6.2.2.4 is given by the mul-
tiplication with s’ since D = {t’ = 0}.

As the curve C' has codimension 2 in X, by applying the Riemann ex-
tension theorem, we extend the holomorphic section s’ to a section s” €
H° (X, E) on X. The image of s” under the isomorphism of sections defines

an extension of ¢ € H° (IE”, Op (1)) to a section t” € HY (P, Op (1)) on P.

Hence the restrictions s| and s”| ¢ of both sections s and s” to X define
the same Koszul complex. They operate on Oy as multiplication with a
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holomorphic function, which can be extended to a function on X and thus
is constant. So s and s” differ by a constant complex number and therefore
t and ¢" do so. As D < {t' = 0} and D|, 10y = P (Je/T3|.) € {t =0},
we have D < {t = 0} and since {t = 0} is irreducible, D = {t = 0}.

Step 2. Next we show that D < P is smooth.

As this is a local problem on X, we may assume X = C3, E = Ox ®Ox
and s = (21, 22) € H° (X, 0x ® Ox), where z1, 29, 23 are coordinates on C3,
thus

02{2’122220}.
Then P = P! x C? and the section ¢t € H° (P, Op (1)) which is mapped to
s € H°(X, F) under the isomorphism H° (P,Op (1)) ~ HY (X, E), can be

written in local coordinates
t= Wpz1 — W1z2,

where [wg : w1] are homogeneous coordinates in P*. By computing the par-
tial derivatives of t, we see that D = {t = 0} is smooth.

Step 3. It remains to see that D is the blow-up of X along C.
Let ¢ : X — X be the blow-up of C' © X. Then ¢ is a proper, holomor-
phic map, and the exceptional divisor

¢ (C) = P(Tc/TE| ) = D1

is a smooth hypersurface in X.

As o1 (0O) = D|U_1(C) =P (jC/Jg ® det E) ~P (jc/jg) is a smooth
hypersurface in D, we may apply the universalAproperty of the blow-up
which says that there is a unique map 7 : D — X such that the following
diagram is commutative:

D—T-X

BN

X.

It remains to show that 7 is biholomorphic. On X\C' we have the dia-
gram:

D\o~! (C) —= X\p™ (C)

e

X\C,

where
90|)A(\<p*1(0) : X\gofl (C) - X\C
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and
o pro-1cy : D\o ™1 (C) = X\C

are biholomorphic. Thus
Tl po-1(c) : D\o™H(C) = X\ (C)
is also biholomorphic.

Over C we get the following diagram:

7|
P (Jc/TE) —=P (Jc/TE)
\ lso
C.
7 is holomorphic, surjective and
TioTH (@) = o (2)

is finite for x € C. Furthermore 7 is birational, as it is biholomorphic outside
an analytic set. Then from Zariski’s Main Theorem it follows that the fibres
of 7 are connected, so 7 is biholomorphic. Thus D =~ X. O

An immediate consequence of Lemma 6.2.2 is the following observation.
6.2.3 Corollary. Using 3.5.5 we obtain

Def (P, D) H (P, Tp (—log D)),
Obs(P,D) < H?*(P,Tp(—logD)).

lle

6.2.4 Lemma. The coherent sheaf mTp (—log D) on X is locally free of
rank 5 and

12

H' (P, Tp (—log D))
H? (P, Tp (—log D))

H' (X, 7 (Tp (~log D)) ,
H? (X, 74 (Tp (—log D))) .

lle

Proof of Lemma 6.2.4: Once we know that
Rl7, (Tp (—log D)) = 0, (6.2.4.1)
we conclude the statement
H' (P, Tp (~log D)) = H' (X, m (Tp (~log D)),
from the Leray spectral sequence. As the fibres of m have dimension 1,
R%*1,Tp (—log D) = 0,

and the second statement follows by the Leray spectral sequnece, too.
Thus it remains to show that R, (Tp (—log D)) = 0.
Let r€ X and F := 77! (z) @ P! be a fibre of 7 : P — X.
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Case 1: Let z € X\C, then F' and D intersect in one point p € P. Re-
stricting the residue sequence

0— T]p (—logD) - T[P - L*ND“p i 0,
where ¢+ : D — P is the inclusion, to F', we obtain the exact sequence
Tp (—log D)|p — Te|p — tsNpp|, — 0.

The first map is injective as the sheaf 14,V D‘P| F has support in p. So, outside
the point p, we have

Tp (_IOgD)‘F = TP’Fv

and the map Tp (—logD)|p — Tp|p is injective, since Tp (—log D)|p is
torsion-free. Hence with ND\IP"F = Op(D)|p~r = Op (D)], = Cp, we have
the following exact sequence on F' < P:

0 — Tp (—log D)|p — T|p — t+Cp — 0. (6.2.4.2)
In order to compute Tp|, we look at the tangent bundle sequence of F'  P:

As Tp = Tp1 = Op1 (2) and Npp = OF, we conclude that the rank of Tp|p
is 4. Furthermore, as Extg, (O3, 0p1 (2)) = @3 H' (P!, Op1 (2)) = 0, the
sequence is split exact and thus

TIP’|F ~ Op (2) @ Og?ls
Returning to Sequence 6.2.4.2 we obtain
c1 (Tp (—log D)| ) = 1.

As Op1 (2) ® (’)1%3 has 6 sections and C, has 1 section, Tp (—log D)|, has
5 sections. Since there is an inclusion of Tp (—log D), = @j_, O (a;) into

Tp|lp = Op1 (2) @ (’)[?13, there are two possibilities for Tp (—log D)|p: either

(a1,az,as,a4) = (2,0,0,—1)
or
(a1,a2,as3,a4) = (1,0,0,0).

Hence
H' (F, Tp (—log D)| ) = 0.
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Case 2: Letz e (C,s0 DnF = F. Again, we restrict the residue sequence
to F' and obtain
Te (—log D)|p > Tplp — txNpjp|, — 0,
which yields an exact sequence
0 —im (A) — Tp|p 5 teNpjp|, — 0.

First we determine im (\). As Tp|p = Op (2) @ (9%13 and L*ND‘I@|F =
Op: (1), we conclude that im (\) is locally free of rank 3, its first Chern
class is 1 and it has 4 sections. The summand Op1 (2) of Tp|, is mapped to
0 by u; hence it has to be a summand of im (A). So

im (A) = Op1 (2) @ Op:1 (@) @ Op1 (B)
with a + = —1 and «, 8 < 0. Thus we get
im (\) = Op1 (2) ® Op: (0) & Opr (—1).
In order to determine Tp (—log D)|, we look at the exact sequence
0 — ker (A) = Tp (= log D)|» 2> im (A) — 0. (6.2.4.3)

We recall that ¢, (Tp (—log D)|r) = 1. It follows that ker () is locally free
of rank 1 with ¢; (ker (A\)) = 0. Hence ker (\) = Op1. Therefore we get

H' (P',ker (\)) =0 and H' (P',im (X)) = 0.

The long exact sequence in cohomology associated to the short exact Se-
quence 6.2.4.3 yields

H' (F, Tp (—log D)| ) = 0.
Thus, in both cases x € C and =z € X\C we get
H' (F, Tp (—log D)|p) = 0

for F' = 7! (z). Then, because of the constancy of the Euler characteristic
X (F, Tp (= log D)| ),

dim H° (F, Tp (— log D)| )

is constant for all fibres F' and by applying ([Har77], p. 288, 111,12.9) the
sheaf 7, Tp (— log D) is locally free and its rank is

dim (H° (F, Tp (—log D)|5)) = 5.
O

Next we identify the deformation problems of the triple (X, E, [s]) and
the pair (P(E), D).
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6.2.5 Theorem. Let X be a Calabi-Yau 3-fold. An infinitesimal or local
analytic deformation of the triple (X, E,[s]) induces in a natural way an
infinitesimal or local analytic deformation of the pair (P, D).

Conversely every infinitesimal or local analytic deformation of (P, D) is
given by an infinitesimal or local analytic deformation of (X, E,[s]). The
two constructions are inverse to each other.

This construction respects isomorphy of triples (X, E,[s]) and of pairs
(P(E),D). Hence there is a linear isomorphism

Def (X, E, [s]) = Def (P (E), D).

Proof of Theorem 6.2.5: Step 1. We start with a deformation of (X, E, [s])
over S, where S is the spectrum of an Artin ring or the germ of a complex
space. So we have a deformation X — S of X, a coherent sheaf £ on X,
flat over S, such that £|y =~ E and a section p € H° (X,&) with uly = s.
Since &|y = E, the sheaf £ is locally free by Lemma 5.2.4. We consider the
projective bundle

P — X,

then P (€) is a deformation of P (E) over S. Let C € X be the zero scheme
of . Locally, p is given by holomorphic functions f, g € Oy (U) for an open
subset U < X, and the ideal sheaf of C is generated by f and g. We obtain
an exact sequence

0->0r 58— Te®@detE -0 (6.2.5.1)

given by p.
In fact, the section p defines an exact sequence

Or B E—SF0,

where the cokernel F' is a coherent sheaf of rank 1 on X. Dualizing, we
obtain

0—FY - &3 0.
We see that im (\) = Je and det Y =~ det F¥Y ® det Jp =~ det FY = FV.
Therefore we get Sequence 6.2.5.1.

Now we define

D:=P(Je®det&) cP(E).

Then
Dlpg) = D,

since Dlpgy = P (j* (Je @ det &) = P(Jc @det E), where j : X — X is
the inclusion. Therefore
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hence Opg) (D) is locally free and D is a divisor in X. Furthermore D is a
submersion over S by Lemma 3.8.3, hence flat. In conclusion, (P (£),D) is
a deformation of (P (E), D) over S.

Step 2. Now let ()V,D) be a deformation of (P(F),D) over S. Let
m: Y — S be the projection. We will associate to (), D) a deformation of
(X, E,[s]) over S.

By Proposition 3.7.1 there is a deformation 7 : X — S of X := A and
a locally free sheaf £ on X’ such that ) =~ P ().

Let 7 : P(£) — X be the projection. So we need to construct a section

pe HO(X,€),

such that [y = s.

Let t € HO (P (E), Opr) (1)) be the corresponding section such that
7« (t) = s. This means that ¢ corresponds to s under the canonical isomor-
phism H? (P (E), Op (1)) = H° (X, E).

Therefore it suffices to construct a section ji € H® (P (£), Op(gy (1)), such
that [L|]P>(E) = t. Then we set pu := 74 (f1) to be the image of i under the
canonical isomorphism H® (P (£), Opg) (1)) = H? (X, €).

Since Opg) (D)’P(E) =~ Op(g) (D), we may write

Op(ey (D) = Opey (1) @ 7* (L)

for a line bundle L on X and the restriction L|y = Ox is trivial. Hence,
L =0y.

Then we let fi be the section of Op(g) (1) defined by D.

Step 3. Since H' (X, Ox) = 0, the Picard group Pic (X) is discrete, the
deformations of E are the same as the deformations of P (E). Moreover,
if (X,&,[s]) ~ (X", &, [¢]), then (P(E),D) ~ (P(E'),D’) and vice versa.
Finally both constructions are inverse to each other up to isomorphy.

O

The same proof neglecting the divisor D representing the section s also
shows

Def (X, E) =~ Def (P(E)).
6.2.6 Definition. We set Q := (mTp (—log D))" .

Proof of Theorem 6.1.1: The proof is a combination of Corollary 6.2.3,
Lemma 6.2.4 and Theorem 6.2.5. U
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6.3 A special situation

In general Def (X, C) is much larger than Def (X, E, [s]); we will comment
on this in Theorem 6.5.1. Here we consider the case of complete intersections
of ample divisors.

6.3.1 Remark. Let X be a Calabi-Yau 3-fold, £ — X a holomorphic
vector bundle of rank 2 with a section s € H (X, E). Let C := {s = 0} be
the zero set of s.

We assume that the set of simultaneous first-order deformations of X and

the curve C' is isomorphic to the set of simultaneous first-order deformations
of X,E and [s] e P (H" (X, E)):

Def (X, C) = Def (X, E, [s])
Then
Def (X, C) = Def (X, E, [s]) = Def (P, D) =~ H' (P, Tp (— log D))
and there is a locally free sheaf @ of rank 5 on X such that
Def (X,00) = Extk (Q,0x)@H' (C,0¢).

Moreover for ¢ = 1,2 we have
H'(X,Q")=H'(P,Tp (~log D))

We give an example for a vector bundle £ — X such that every in-
finitesimal deformation of C' is induced by an infinitesimal deformation of
the section s.

6.3.2 Example. Let D;, Dy < X be smooth transversally intersecting
divisors and write D; = {s; = 0} ,i = 1,2, for sections s; € H (X, Ox (D;)).
We let C' := D1 n Dy be the intersection of them. Then

E:=0x(D)®0x (D) - X

is a holomorphic vector bundle of rank 2 and the curve C is the zero set
of the section s := (s1,s2) € H° (X, E). This is a very special case of the
Serre-construction for holomorphic vector bundles of rank 2.

We write L; = Ox (D;) and assume that the line bundles L1, Lo, L1 ® Ly
are ample. Then E does not have any nontrivial first-order deformations,
since by Kodaira vanishing

H'(X,EY®E) = H'(X,0x)®H'(X,0x)®H' (X, L1 ®Ly)®
@Hl(XvLi/®L2)
= 0.
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As Neix = El¢ = Li|o ® L2, we have
H° (C,N¢ix) = H° (C, Li|o) @ H (C, Lo|)
»/VCOIX y L1 @ , Lalo) -
The Koszul complex

05 LY®LY > LY ®LY — Jo — 0
& 0L -O0x®(Ly; ®L1) > Jc®Ly — 0

yields H' (X,Joc® L) = 0 and analogously H! (X, Joc® Ly) = 0. The
exact sequences

0->Jc®L1 — L1 — L] — 0
and

0—>Jc®Ly— Ly — Lo — 0

give surjective maps
H° (X, L1) - H°(C, Li|¢) = H' (X, Joc ® L1) = 0

and
HY (X, L) — H°(C, Lo|¢) — H' (X, Jc ® L) = 0

and therefore a surjective map
H'(X,E) - H° (C,N¢|x) — 0.

Thus every first-order deformation of C' is induced by a first-order deforma-
tion of s € HY (X, F), fixing X.

We consider a compact complex manifold X, containing smooth divisors
D1 and Ds. In order to continue, we need the notion of a deformation of a
triple , which will be discussed in detail in Chapter 9.

6.3.3 Definition. A deformation of the triple (X, Dy, D2) parametrized
by a complex space S consists of a deformation of two cartesian diagrams

J J.
and Dy 2

- X
S S
such that each pair (X, D;) is a deformation of (X, D;) over S in the sense
of Definition 3.5.1.
An isomorphism between two deformations (X, D1, D2) and (X', D}, D))
of the triple (X, Dy, D2) consists of a triple of isomorphisms o, : Dy — D;

and 8 : X — X' such that each pair (o, 3) is an isomorphism between the
deformations (X,D;) and (X', D}).

D,
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6.3.4 Remark. If D; and D, are ample divisors, then the deformations
of (X,D;) and (X, Dy) are unobstructed, as seen above. Therefore the
deformations of the triple (X, Dy, D) are unobstructed.

6.3.5 Theorem. Let X be a Calabi-Yau 3-fold and L1, Lo be line bundles
on X. Let D; € |L;| be smooth divisors, given by sections s; € H° (X, L;)
such that dim (D1 n Dg) = 1. We set E := L1 ® Lo and s := s; @ so. Let F
be the deformation functor of (X, D1, D3) and G be the deformation functor

of (X, E,[s]).
1. There is a natural transformation ¢ : F — G.

2. We suppose that H* (X, L1 ® Ly) = H* (X,Ly ® La) = 0. Let A be
an Artin ring. Then ¢4 : F (A) — G (A) is bijective, i.e., ¢ is an
isomorphism of functors. In particular, there is a canonical linear
isomorphism

Def (X, D1, Dy) = Def (X, E, [s]) .

We prepare the proof by the following

6.3.6 Lemma. Let (X, &) be an infinitesimal deformation of (X, E'), where
E =L ® Ly with Ly and Ly are line bundles on X, such that

HY (X, L, ®Ly) = H (X, LY ® Ly) = 0.

Then there are line bundles £1 and Lo on X, such that £ = L1 ® Ls.
Proof of Lemma 6.3.6: We first prove the following

Claim: Let X be an infinitesimal deformation of a Calabi-Yau manifold
X. Then the restriction map Pic (X)) — Pic (X) is an isomorphism.

Proof of the Claim: We obtain a commutative diagram

—— HY(X,0x) — Pic(X) — H? (X,Z) — H? (X,0y) —

| | | |

—— H'(X,0x) ——=Pic(X) —= H*(X,Z) —= H? (X,0x) —
(6.3.6.1)
We observe that H? (X,0y) ~ H?(X,Ox) for ¢ = 1,2. To see this, let J
be the ideal sheaf of X < X. Then J* /T k+1 g a trivial sheaf on X (possibly
zero). Hence HY (Xpy1,0x,,,) = HY (X, Ox,) for the k-th infinitesimal
neighbourhood Xj, of X < X. Since HY(X,0x) = HY (X}, Ox, ), we con-
clude the claim. Compare [Har10], Theorem 6.4.
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By the claim the line bundles L; extend uniquely to line bundles £; on
X. Since

H' (X,E¥® (L1 ®Ls)) = H (X,0x ®Ox ® (LY ® L2) ® (L1 ® LY )) = 0,

we get by induction, using [Har10], Theorem 7.1, that & =~ £ @ L2 on all
X}, hence on X. O

Proof of Theorem 6.3.5: 1.) We establish a map
&, : Def4 (X, D1, Ds) — Defu (X, E, [s])

for any Artin ring A.
Let (X, D1, D2) be a deformation of (X, Dy, Da) over Spec (A), given by
liftings §; € HY (X, Ox (D;)) of 5, € H° (X, Ox (D;)). We set

E:=0x (D) ®Ox (Do)

and § = §1 @ $2 and obtain (X, &, [5]) € Def4 (X, E, [s]).

2.) Conversely, let (X,&,[5]) € Defy (X, E,[s]). Then & = L1 @ L2 by
Lemma 6.3.6 and 5 = §1®3, with 3; € H° (X, £;). We define D; := {5; = 0}.
Then D; is flat over S := Spec (A) since Oy (D;) is locally free, therefore
flat over S, and since D; n X is a divisor in X.

3.) Clearly ®4 respects the isomorphy, and both constructions are inverse
to each other. Since ® := (®4), is a natural transformation of deformation
functors, ®gpec(clr/e2) 18 linear. O

This situation will be studied further in Chapter 9.

6.3.7 Corollary. In the situation of Fxample 6.3.2 we suppose further
Dy — D5 to be ample. Then we get isomorphisms of spaces of first-order
deformations:

Def (X, D1, D3) = Def (X, E, [s]) = Def (X,C).

6.3.8 Corollary. In the situation of Fxample 6.3.2 we suppose further
Dy — D5 to be ample. Then the first-order deformations of (X,C) are un-
obstructed.

Proof of Corollary 6.3.8: The first-order deformations of (X, D1, Da)
are unobstructed (see Remark 6.3.4). O
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6.4 The structure of the sheaf ()

We continue to investigate the structure of the locally free sheaf Q.

6.4.1 Theorem. There are exact sequences
0-0%x >Q—->E®Jc—0 (6.4.1.1)

and
0> FEY ->Q"—->Tx(-C)—0. (6.4.1.2)

Proof of Theorem 6.4.1: As R'm, (Tp (—log D)) = 0 according to 6.2.4.1,
the following sequence is exact

0— QY =7 (Tp (—1log D)) — mTp — mutsN pjp — 0. (6.4.1.3)
Next we apply . to the exact sequence
0—Tpx > Tp > 7"Tx —0
and get
0 — mTpx — mTp — Tx — R'my (Tpx) = 0. (6.4.1.4)

We notice that R, (TIP|X) = 0, since TP|X|7r—1(a; = Op1 (2). Applying 7y

to the short exact sequence

)

0— Op — Op(D) =0p(1) > t:uNpp — 0,
we obtain
0—->0x »>mOp(l)2FE — W*L*NDUP — R'm,Op = 0.
Therefore we have an isomorphism
T+ Npp = E/Ox.
The Koszul complex
0->0x > F— Jo®det E — 0

yields an isomorphism
Jo®det E =~ E/Ox,

where the inclusion Ox — F is given by the section s. Thus

W*L*NDUP = jC ) det E. (6415)



6.4. THE STRUCTURE OF THE SHEAF @ 79

Furthermore, we apply 74 to the relative Euler sequence
0—>0Op—>71*"EYQ0p(l) — Tpix — 0
and get the exact sequence
0->0x > EY®m0p(l) > T x — Rz, (Op) = 0.

Therefore

In summary we obtain the following commutative diagram consisting of the
short exact Sequences 6.4.1.3 and 6.4.1.4:

0 0 0 (6.4.1.7)

0 —— 7. (Tp (— log D)) s Ip W*L*ND|IP>*>O
\
00— 1im (v) Tx Tx/im () —=0
0 0 0

The map 9 : Q¥ =~ 7, (Tp (—log D)) — T is defined to be the composition
of the two maps 7, (Tp (—log D)) — m/Tp and 7, Tp — Tx. It is generically
surjective if rg (im (¢)) = 3.

Since by 6.4.1.6

ker (¢) € my (Tp)x) = (EQ EY) /Ox

and im () € T, we conclude rg (ker (¢)) < 3 and rg(im (¢))) < 3, thus
2 <rg(ker (7)) <3, as rg(Q) = 5.

Claim 1. On X\C we have
1. ker () is locally free of rank 2,
2. im (¥) = T.

Proof of Claim 1:
We consider the map

¢ 7T*TIP>|X = (E®FLEY)/Ox — 7"'=l<L>x<-/\/'D|IP’ >~ Jo ®det F,
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defined in Diagram 6.4.1.7. We show that ¢, is surjective at any point in
x € X\C. Since ker (¢) = ker (¢), this proves the claim.

Let & € D with 7 (%) = 2. Then 7 € 7! (x) =: I. We look at the linear
map

¢s ¢ (msTpix), = H° (z, TP‘X|1) ~ B (B, Tp1) — (metalNpyp), -
Let 6 : Tpx — t+Npjp be the canonical composition Tp|x — Tp — t+ N pjp-
Then ¢ = me¢. Let ue (Tpix), ,u # 0, with
gb* (U) #0e (L*NDHP’)j = (W‘D)* (L*NDHP’)j = (W*L*NDUP)I .
Let v e W*TP‘X)I such that 7, (u) = v. Then
Or (V) = Tr*(;ASj (u) #0€ (W*L*ND“}D):C ,

as 7|p is an isomorphism. So for each x € X\C we know ¢, # 0. Thus we
have shown that ¢, is surjective for each x € X\C; therefore ¢ is surjective.
This finishes the proof of the claim.

Claim 2. There is an isomorphism
s (Tpx ® Op) = J5 @ det E.
Proof of Claim 2: The exact sequence
0— Op — Op(D)=0p(1) = tuNpp —0
tensorized by 7*EY, the relative Euler sequence
0—Op » 7" EY®Op (D) > Tpx —0

(see e.g. [Har77], III, Ex. 8.4) and the ideal sheaf sequence of D in P yield
the following diagram

0 0 0

0 JIpp Op t+Op 0

6 \ B

0——>m*EY —>71*E¥ ® Op (D) —> 1*E" ® 1uN pjp — 0

0 —— coker (9)

T'px ————— coker () ———0
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The maps 5,9 and u are defined as follows:

The map p is defined as the composition of the maps Op — T*EY ®
Op (D) and 7" EY ® Op (D) — m*EY & t+N pjp-

By restricting to a fibre F' of m we see immediately that | # 0; there-
fore p is not zero.

Since p # 0 and Supp (W*EV ®L*ND|P) = D, it factorizes over t.Op
such that the map

B : L*OD — 7*EY ®L*ND‘P

is defined. As a consequence, we define the map ¢ such that Diagram 6.4.1.8
is commutative. It follows immediately that

coker (0) = Tpx ® Op (—D) and coker (3) = Tpx ® Op.
As m, (jD‘p) = 0 and

R'm, (Tpp) = R'm0p = Ry (Tpx ® Op (—D)) = R'my0,0p =
= R'm*EY =0,

by applying m, to Diagram 6.4.1.8 we get the following commutative dia-
gram:

Using [Har77], III, Ex. 8.4, we get
T[plX = detT]p|X = —KMX =n*det BV ®O]P> (2) . (64110)
Hence

Tx (TIP’\X ® OD) = Tx (OP(JC®det E) (2) ® 7" (det Ev)) =
= S (Je®det B) @ det EY = J2 ® (det E)? @ det EY = J2 @ det E,

proving Claim 2.
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Claim 3. The cokernel of the map « : ker (1)) — m,T'p|x in Diagram 6.4.1.7
satisfies
coker (a) = J2 ® det E.

Proof of Claim 3: First we show that
s (Tpix @ Op (—D)) = ker ().
We observe that
coker (0) = Tp|x (—D) = Tp (—D) = Tp (—log D)
and therefore
7 (coker (6)) < (m (Tp (—log D)) N mTpix)

thus
74 (coker (8)) < ker () .

Diagram 6.4.1.9 yields 7, (coker (§)) = EVY, hence we have an inclusion
EY — ker (¢).
On X\C, by Claim 1 we already have the following exact sequence

0—ker () - QY - Tx — 0,
which yields det ker (¢) = det @Y on X. Diagram 6.4.1.7 implies
det (QY) = det m, Tp ® det £V
Furthermore
det m,Tp = det i Tp|x = det (B ® E) = Ox.

Thus we know
detker (¢)) = det EV.

Since im (¢) is torsion-free and ker (¢) is reflexive, the inclusion EY —
ker (1) is an isomorphism.
Diagram 6.4.1.9 can be summarized by the following commutative diagram:

Ox

0 EY P E®EY T Joe®E

ig I .

0—ker (1) —L (E@EY) /Ox 2+ J2@det E— 0

0
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This proves Claim 3.
Claim 4. We obtain the isomorphism
im (¢) = Tx (-C),

where T (—C) is the kernel of Tx — juN¢gix and j : C — X is the
inclusion.

Proof of Claim 4: Using coker (a) = JZ @ det E and 74 Npp = Jo ®
det ¥ Diagram 6.4.1.7 gives

Tx /im (¢) = Jo/Té @ det E = N x @ det Nojx = Nejx-

Since Ty — Tx/im (1)) = N¢|x is the canonical map, we get the assertion
of the claim im (¢p) = T'x (—C).

Now the first row of Diagram 6.4.1.7 reads
0->EY >QV->Tx(—-C)—0.
Dualizing the sequence we get
0—- 0% - Q— F— &axth (Tx (—C),0x) — 0.
Now the proof is completed by proving the following claim:
Claim 5. The following equation holds
Ext! (Tx (—C),0x) = E|,.
Proof of Claim 5: Using the sequence
0— Tx (=C) = Tx — jxN¢gix =0
we obtain

Ext' (Tx (—C),0x) = Ext® (juN¢x, Ox) = Eat® (j«Oc ® E| ¢, Ox)
~ Ext? (7. 00, Ox) @ EY.

By the local fundamental isomorphism (see e.g. [OSS11])
Eaxt’ (j+0c,0x) ® EY =~ det Nojx Q EY,
we conclude the proof of the theorem. O

The following theorem provides a relation between the deformations of
triples (X, E, [s]) with deformations of pairs (X, E).



84 CHAPTER 6. DEFORMATIONS OF A BUNDLE AND A SECTION

6.4.2 Theorem. We assume the setting of Theorem 6.4.1. The logarith-
mic tangent sequence

0— Tp (—log D) — Tp — t:Npp — 0
induces a sequence
0> QY - 7 (Ip) > Jo ®det E — 0, (6.4.2.1)
which in cohomology gives
H (X, Jc®det E) - H' (X,QY) - H' (X, m:Tp) . (6.4.2.2)

This sequence can be interpreted as the natural sequence of first-order defor-
mations

Def ([s]) — Def (X, E, [s]) — Def (X, E).

Proof of Theorem 6.4.2: We already established Sequence 6.4.2.1 in
6.4.1.3 and 6.4.1.5. Taking cohomology of 6.4.2.1 yields 6.4.2.2.

Since H' (X,QY) =~ Def (X, E,[s]) and H! (X, mTp) = Def (X, E), it
remains to be shown that H° (X, Jo ® det E) = Def ([s]). The first-order
deformations of [s] are given by H® (X, E) /H? (X, Ox) and

H°(X,E)/H° (X,0x) = H (X, Joc ® det E)

by the Koszul complex and H! (X, Ox) = 0. We omit the identifications of
the maps. ]

6.5 A comparison theorem and a potential func-
tion

We now compare the first-order deformations of triples (X, F, [s]) and pairs
(X, C) in the situation of Section 6.1.

6.5.1 Theorem. Let X be a Calabi-Yau 3-fold, E be a holomorphic vector
bundle of rank 2 on X and s € H° (X, E) be a holomorphic section. We
assume that C := {s = 0} is a smooth curve in X and that

H'(X,det EY) = H*(X,det EV) = 0.

Let
¢ : Def (X, E,[s]) — Def (X,C)

be the map which associates with a deformation (X,&,[§]) € Def (X, E, [s])
the deformation (X,C) € Def (X, C'), where C := {§ =0} < X.

Then the image of ( consists exactly of those first-order deformations
(X,C) for which there is a line bundle L € Pic (X) extending det (E) such
that ‘C|C ~ Ke.
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Proof of Theorem 6.5.1: In the sequel we will use without mentioning
the following basic facts:

e The complex spaces X and C are Gorenstein; so the dualizing sheaves
Ky and K¢ are line bundles;

o j*(Ky)= Kx =~ Ox and j* (K¢) = K¢, where j denotes the inclusion
of X in X and of C' in C;

o * (Tex) = Joyx-

There are two inclusions to be proved. First we assume that (X,C) is
a first-order deformation of (X,C) coming from a first-order deformation
(X,E,[5]) of (X, E,[s]). Then 5 defines a Koszul sequence

0> 0y > & — JoeR®detE — 0.
We set L := det £ and obtain
Lle = (det (Jc/TZ))" = Ke.

In the other direction, we consider a first-order deformation (X',C) sat-
isfying the property that there is a line bundle £ € Pic(X) such that
L], = K¢. The section s induces the Koszul sequence

0-0x>F—>Jo®L—-0 (6.5.1.1)
with L = det E. We want to construct a Koszul sequence
0->0xy —>&—->Je®detE -0 (6.5.1.2)

with £ = det &£, whose restriction to X yields Sequence 6.5.1.1 up to iso-
morphism. Here £ is a vector bundle of rank 2 on X with j*(£) = E
and t € H(X,€) a section extending s such that {t = 0} = C up to an
automorphism of £.

Sequence 6.5.1.2 is now given by the Serre-correspondence on X, using
our assumption that K¢ = L|,. Since X is not smooth, some comments
have to be made. Following the construction in [OSS11], the arguments go
through provided we know the following.

1. Exth (O¢, Ox) = 0 for k=0, 1;
2. Ext* (Oc, Ox) = Hom (det (Tc/TZ) . L |¢);

3. H2(x,LV) =0.



86 CHAPTER 6. DEFORMATIONS OF A BUNDLE AND A SECTION

Assertion (1) is clear for k = 0, since X is Cohen-Macaulay. For k = 1, either
we need to make a computation in local coordinates or we argue as follows.
We choose A € Pic (&) sufficiently ample on & such that Ext! (Oc, Ox)® A
is generated by global sections; then it suffices to show that

Ext (Oe @ AY,0x) = Extt (O, Ox) @ A = 0,
and therefore we prove
H° (X, Ext' (Oc @ AY,0x)) = 0.
Now we use the Grothendieck spectral sequence (local to global Ext”),
EPT = HP (X, Ext? (Oc @ AY,Oy))

converging to ExtPt? (0O¢ ® AY,Oy). Since dimC = 1, we get Eg’o = 0.
Therefore the vanishing follows, using Serre-duality and dimC = 1, from

Ext! (Oc®AY,0x) = H* (X,0c® AY) = 0.

Assertion (2) is the local fundamental isomorphism, see ([AK70], 1.4.5).

Assertion (3) finally results from the assumption
H*(X,LV) = H*(X,det EY) = 0
by tensoring the ideal sheaf sequence
0 — Jx/x = jsOx — Ox — juOx — 0 (6.5.1.3)

with £ and using L|y =~ L = detE since E is constructed via Serre-
construction.

So Sequence 6.5.1.2 is constructed, defining a section t € H? (X, £) such
that {t = 0} = C. We finally have to show that t|, = s, at least up to an
isomorphism of F. Tensoring the dual Koszul complex with E and taking
cohomology, we obtain an exact sequence

HY(X,EY) - H'(X,EY®E) - H*(X,Jc ®E) - H' (X,EY).

Our assumption H' (X,det EV) = 0 yields H' (X, EY) = 0, again by the
dual Koszul sequence. Therefore, there exists A : E — E such that A (s) =
t|y. Then A has to be an automorphism since both sections vanish in
codimension 2 only. Indeed, det () € H? (X,det EY ® det E) = H? (X, Ox)
is constant on X. Thus, if A is not an automorphism, rg(\) < 2 and the
zero-set of A (s) would be of codimension smaller than 2. Hence both Koszul
sequences on X, defined by t|y and s, are isomorphic. O
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6.5.2 Remark.

1. By choosing the Koszul sequence 6.5.1.2 more carefully, it should be
possible to get rid of the assumption H! (X, det EV) = 0, which how-
ever is anyway used in the following.

2. If Pic (X) =~ Z, then the image of ¢ consists exactly of those first-order
deformations (X,C) for which there is a line bundle £ € Pic (X) such

The same methods also show the following

6.5.3 Proposition. Let X be a Calabi-Yau 3-fold, E — X a vector bundle
of rank 2 on X and s € H° (X, E). Assume that C = {s = 0} is a smooth
curve and that H? (X,det EV) =0 for ¢ = 0,1,2. Let F be the deformation
functor of (X, E,[s]) and G the deformation functor of (X,C). For each
neN let

Tn : F (Spec (C[t] /t")) — G (Spec (C [t] /t™))

be the canonical map. Then the image of T, consists exactly of those n-th
order deformations (X,,Cy,) for which there is a line bundle L, € Pic (&X,)
extending det (E) such that L,|, = K, .

We finally discuss potential functions. To explain the result, we simplify
the situation a little and pretend that there is a potential function

dcp : Def (X,C) — C

constructed in [Cle05] such that the critical locus of ®¢y, is just the set of

points 7 € Def (X, C) corresponding to unobstructed deformations. Then

the corresponding first-order deformation (X7,C;) of (X, C), coming from

a first-order deformation (X1, &1, [s1]) of (X, E,[s]), is unobstructed and

therefore induces a formal unobstructed deformation (XA &, [§]> of (X, E,[s]).
However Proposition 6.5.3 says that this is the case exactly when there exists

a line bundle £ € Pic <2? ) such that

As a preparation, we show

6.5.4 Proposition. The map Def (X, E,[s]) — Def (X, C) is injective if
and only if H* (X,det EV) = 0.
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Proof of Proposition 6.5.4: We first assume that H' (X, det EV) = 0.
Then H! (X, EY) = 0 by the Koszul sequence and

H®(X,Jc) = H (X, Jc) = 0.
Now we use the exact sequence
0=H"'(X,EY) - H' (X,QV) - H (X, Tx (-C))

and conclude by Theorem 6.1.1.
In the other direction, we suppose that Def (X, E, [s]) — Def (X, C) is
injective. Then we consider again the exact sequence

HO (X, Tx (~C)) % H' (X, EY) — H' (X,Q") & H' (X, Tx (~C)).
By our assumption [ is injective. Hence « is surjective. Since
H° (X, Tx (—C)) < H(X,Tx) =0,
it follows that H' (X, EV) = 0. Therefore H' (X,det EV) = 0. O

Using Proposition 6.5.3 we prove:

6.5.5 Corollary. Let X be a Calabi- Yau 3-fold with holomorphic 3-form w
and E be a holomorphic vector bundle of rank 2 such that H' (X,det EV) =
H?(X,det EV) = 0. Let s € H° (X, E) be a section such that C := {s = 0}
is a smooth curve. Then there exist

e an open neighbourhood T < H' (X, Tx) of 0e H' (X,Tx) and

e an open neighbourhood R = H' (X, Q) of the point 0 € H' (X,QY)
with projection R — T,

furthermore C*-bundles R — R and T — T such that R and T
parametrize the deformations of (X, E,[s],w) and (X,w),

and a holomorphic map

¢cr, : R—C

such that the following property is satisfied. The point 7 € R defines an
unobstructed deformation of (X, E, [s],w) if and only if the following holds:
Let (X1, &1, [s1],w1) be the first-order deformation of (X, E, [s],w) given

by 7 € R and (X1,Cy,w1) the induced first-order deformation of (X,C,w).
Then

o dg|f¢CL (7) = 0;
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e the induced formal deformation <2€,CA) of (X,C) satisfies

A

L K5

12

¢
for a line bundle L € Pic (2?) extending det (E).

Here dR]T denotes the relative differential with respect to the projection
R—T.
Proof of Corollary 6.5.5: This follows using Proposition 6.5.3, Propo-

sition 6.5.4 and [Cle05] in the same way as Theorem 5.6.5 is induced from
Theorem 5.6.2. O

6.5.6 Remark. The second condition in Corollary 6.5.5 is satisfied if
H'(C,0¢) =0, ie., if C =~ P

However it is not known so far that this potential function is a solution
of a Picard-Fuchs equation.
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Chapter 7

Picard-Fuchs Equations for
Calabi-Yau manifolds

In this chapter we study Picard-Fuchs equations attached to families of
Calabi-Yau manifolds embedded in a projective space. First we recall the
construction of the Picard-Fuchs equation for a general family. Then we
consider the classical case of hypersurfaces in projective space and explain
the Griffiths-Dwork reduction. The heart of the chapter treats Calabi-Yau
complete intersections of codimension 2 in projective space. We extend
the methods of Libgober and Teitelbaum [LT93] from dimension 3 to any
dimension and at the same time give rigorous proofs of some statements in
[LT93].

7.1 Picard-Fuchs equation associated to a family
of Calabi-Yau manifolds

Let w : X — T be a proper family of Calabi-Yau n-folds over a connected
complex manifold T, where 7 is a submersion such that the fibres X; :=
771 (t) of m in the complex manifold X are complex manifolds for each
teT. Let ty € T be a distinguished point in T

For each t € T, we obtain a canonical (pure) Hodge structure of weight
n on H" (X, C). According to the Ehresmann theorem, all fibres of 7 are
diffeomorphic, and thus H" (X;,C) =~ H" (X;,C) for each s,t € T. The
local system R"m.C yields a variation of Hodge structure of the family ,
and therefore there is a Gauf-Manin connection

V:T'(R"m,C®Or) - T'(R"m,C®Or) @ NL
on the associated holomorphic vector bundle R"7,C ® Op. This connec-
tion satisfies Griffiths-transversality with respect to the Hodge filtration on

R"7,C which is induced by the Hodge filtration of H" (X;,,C). Given a

91
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vector field % on T, we define

Vai (R, C®0Or) > T'(R"m.C® Op),
t

Vs (s) = V(s (;) |

If it is clear which vector field is meant, we just write V instead of V o .
ot
We shrink T" to a small disc around tg such that the locally free sheaf
R, (Q’}‘T) is trivial on T'. Here Q’jHT is the sheaf of relative n-forms,

ie., QF Y = = A" le|T>, where QlX|T is the cokernel of the inclusion map

W*Q%F — QL. We have R"r, (Q’}HT) ~ Or, as H" (Xt, Q’;(t) ~ C for each
t € T. Thus there is a non-vanishing section

Qe H (T, R'x, (Q’;(‘T» ,

which yields a family of holomorphic non-vanishing n-forms (€2 (t)),., on
X (t). We apply V% to the family Q € I' (R"7.C ® Or) of holomorphic
n-forms arbitrarily many times. As H™ (X,, C) is finite-dimensional, we get
a linear dependence of

, Vi [9]

to ot

N v

to

[Q]) € H" (X4,,C)

to

o=

for k > dimc H" (Xy,,C). Hence there are holomorphic functions \; : 7' —
C,j=0,...,k such that

k
DAV, [ =o0. (7.1.0.1)
- ot

This linear dependence yields the Picard-Fuchs equation of the family .

7.1.1 Definition. For each n-cycle v on Xy, the well-defined holomorphic
functionT — C, t — Sv [Q2(¢)], is called a period of the family of Calabi- Yau
manifolds. Here [ (t)] denotes for eacht € T the class of the non-vanishing
holomorphic n-form Q (t) in H" (X, C).

7.1.2 Remark. The Picard-Fuchs equation of the family of Calabi-Yau
manifolds 7 is satisfied by all period integrals Sw [Q2(t)],t € T, for each n-
cycle v on Xy, i.e.,

The following notation will be used in the whole chapter.
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7.1.3 Notation. Let [zg: ...: x,] be homogeneous coordinates of P and
n . —~

A= Z (=1)'zidxo A ... Adxi A ... Adey € H (P, Kpn (n+1)) = C
i=0

be the canonical Euler-form on P™. Furthermore, let

S=@S, S =H(P",0pn (1))
l

be the graded ring of homogeneous polynomials on P™.

In the following sections we present a method for explicitly calculating
Picard-Fuchs equations for families of Calabi-Yau manifolds in projective
varieties, called the Picard-Fuchs reduction or Picard-Fuchs algorithm.

The Griffiths-Dwork reduction is a method in order to explicitly calculate
the Picard-Fuchs equation for Calabi-Yau n-folds. It was first introduced
by Griffiths in [Gri69] for Calabi-Yau manifolds which are hypersurfaces in
projective spaces. The method was extended to hypersurfaces in weighted
projective spaces by Dolgachev in [Dol83] and to Calabi-Yau manifolds that
are complete intersections in projective spaces by Libgober and Teitelbaum
in [LT93].

7.2 The Griffiths-Dwork reduction for families of
hypersurfaces in projective spaces

Let X be a Calabi-Yau hypersurface in P, i.e. X = {f = 0} for a homoge-
neous polynomial f € HY (P", Opn (n + 1)) of degree n + 1 on P".

0
Jp = <a§i,i=0,...,n>

be the Jacobian ideal of f, i.e. the homogeneous ideal in the graded ring
S, which is generated by the partial derivatives %,i =0,...,n, of f. The

graduation of S induces a grading of the Jacobian ideal of f, namely

7.2.1 Notation. Let

where j} is generated by the partial derivatives of f over S'.

We are going to use the residue map

Resh g« H (P"\X,Z) — H*' (X, 2),
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which was introduced in Definition 4.2.22. As X is an ample divisor in
k .

P™ and H* (P", (C)pm-m = 0 for all k, applying the short exact sequence of

Theorem 4.2.25.1, the residue map yields an isomorphism

Resypn : H" (P\X,Q) = H"'(X,Q),,,
= ker (I, : H" 1 (X,Q) - H" (P",Q)),

where [, denotes the Gysin morphism. Furthermore,

H"'(Xx,0) . =H""'(X,C)

prim van *

First we need a representation of all rational forms on P” in local coor-
dinates.

7.2.2 Theorem. ([Gri69], Theorem 2.9) All rational (n + 1 —1)-forms on
P™ can be written as

l

¢ = % 2 (*1)”'”'“”[((2(*1)kx1k14j1...j?...jl>

J1<...<Ji k=1

dxl/\.../\dle/\.../\d:L‘jl/\.../\d:UnH),

where B and Ajl...jAk...jl are homogeneous polynomials on P™ such that

deg B =degA; - . +(n+2-1).

7.2.3 Corollary. (/Gri69], Corollary 2.11) All rational n-forms on P™ can
be written as

P
—ZA
°=0

where P and @ are homogeneous polynomials on P™ with deg Q) = deg P +
(n+1).

The following theorem shows that the residue map induces an isomor-
phism between the filtration by the order of the pole along X of rational
forms on P" with poles along X on the one hand and the Hodge filtration
on X on the other hand.

7.2.4 Theorem. ([Voi03], 6.5, Chapter 6.1.3, 6.10, 6.11)

1. For each p e N,1 < p < n, there is a surjective map

ap:  HY(P",Opn (p(n+1)—n—1)) > F* P " (U,C)

~ F"PH" 1 (X,C)
P — Res&‘ﬂm ([J]; . A]) .

van’
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2. Let

@ H(P",Opn (p(n+1)—n—1)) > F"PH" " (X,C) —
N Fn—pHn—l (X, C) /Fn—p+1Hn—1 (X, C) — H”-Pvp—l (X)

be the composition of oy, with the projection map. Then

ker (ap) _ j;?(n-i-l)—n—l.

7.2.5 Corollary. ([Voi03], 6.12) The residue map induces a natural iso-
morphism
Rp(n+1)fn—1 = gnr—pp—1 (X)

prim

where Ric = SZ/J} denotes the I*" component of the Jacobian ring Ry =
S/Ts.

So far we did not need the Calabi-Yau property.

In the following we briefly describe the Griffiths-Dwork-Algorithm for
Picard-Fuchs equations of Calabi-Yau hypersurfaces in projective spaces (see
e.g. [CK99], Chapter 5.3 or [GHJ03], Chapter 18).

The idea is using the isomorphism of Corollary 7.2.5 in order to find a
linear combination as in Equation 7.1.0.1.

Calculation of the Picard-Fuchs equation: Let m : X — T be a
deformation of a Calabi-Yau n-fold X, i.e., a flat proper family of Calabi-Yau
n-folds over a connected complex manifold T'.

Let Q € H° (T, R™ (Q%T>> be a family of non-vanishing, holomor-

phic (n — 1)-forms on X as in Section 7.1.
We assume that X; = {f; = 0} with homogeneous polynomials
fre H® (P", Opn (n + 1))
for each t € T. Using the notation of Section 7.1 we aim to find a linear
combination of V' [©] in terms of V% [Q],..., V27 1[Q].
A F 7

ot ot t
For each t € T', using Theorem 7.2.4, we may write

ot

20] = V% (9D, = [resigen (- 4)] € B2 60,

As the Gau3-Manin connection V is flat for holomorphic sections, we locally
(in T') compute V by taking partial derivatives of % - A with respect to the
parameter t € T due to the formula

afmw: Vo Q0]

ot N O
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where [y] € Hs (X}); see [CK99], p. 75.

Then for each k we see that V" (Q)] , corresponds to the residue of a
meromorphic form on P™\ X, which has a pole of order at most k£ + 1 along
X. In fact, let k € N. Taking partial derivatives of } - A with respect to ¢,
we find locally in T for the k-th application of the Gaufl-Manin connection

VE [Q]() = Res? * (L. A)]-r ng”A

Wlth suitable polynomials g;; € H? (P", Opn (i (n + 1) —n — 1)) for all i =
Jk+ 1.
Thus applying Theorem 7.2.4, we obtain for each k =0,...,m — 1

vka [Q] (t) c Fn—(k+1)+1Hn—1 (Xt; (C) _ Fn—an—l (Xt,(C) )

This result is consistent with Griffiths transversality. Especially for k& =
m =n+ 1, we get with P, € HY (P", Opn (m (n + 1) — n — 1))

% it Py
V'3 [Q] (t) = Res"spn A+ —
&5 (f)"*!

“Ale FOH" 1 (X,,C),

(7.2.5.1)
which must be a linear combination of the linearly independent classes

vo [Q],..., Ve HQ], as m = dim H" (X4, C).

ot
To find this linear combination explicitly, we observe that every rational
n-form on P™ with poles along X; with numerator in the Jacobian ideal of
f is cohomologous to a rational n-form whose pole order is reduced by 1:

7.2.6 Lemma. For eachte€ T,l € N and homogeneous polynomials g;j,j =
1,...,n, of degree [ (n + 1) — n, the following equality in cohomology holds:

n 69',1:

WY N 2.j=0 2a;
I+1 = fl

t t

‘A, (7.2.6.1)

i.e., the difference of these two forms is an exact rational (n — 1)-form.
Every cohomolgy relation of rational n-forms with poles along X; has the
form 7.2.6.1 for a choice of | and g;;, where j =1,....,n

Proof of Lemma 7.2.6: For each [ € N and homogeneous polynomials
9,7 =1,...,n, of degree [ (n + 1) — n, we define the rational (n — 1)-form

o = flz xlg]t zjgir)dro A ... Andx Ao AdTp A LA dTy,

1<j

e HY (P", Q' (1Xy)) . (7.2.6.2)
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Differentiating ¢, we get

(ZZ] ogjt — ft 20 az3> A
d¢t: Z+1 )

which yields Equation 7.2.6.1. As every rational (n — 1)-form on P" with
poles along X; has the form 7.2.6.2, the second statement of the lemma
follows. ]

Thus, as the class V'} [€2] (t) must be cohomologous to a linear combina-

ot
tion of Voa [],..., V271 [Q], according to Lemma 7.2.6 the homogeneous

ot

polynomlal P, has to be in jf m(nt1)-n-1

. Using the relation 7.2.6.1 we re-

place the meromorphic form G P . A in 7.2.5.1 by a cohomologous form

which has at most poles of order m along Xj.

In this way we find the linear combination for V7 [] () we were looking
ot
for.

7.3 The Griffiths-Dwork reduction for complete
intersections of codimesion 2 in a projective
space

In [LT93] the Griffiths-Dwork method for computing Picard-Fuchs equations
is extended to families of Calabi-Yau manifolds that are complete intersec-
tions of codimesion 2 in P°.

In this section, we extend that procedure to complete intersections of
codimsion 2 in projective spaces of any dimension.

7.3.1 Setup and computation of a residue map

Let @1 (M) and Q2 (M) be two general homogeneous polynomials in P™ de-
pending on a parameter A € C, so that

Y= {Qi(\) =0} P

is smooth and {Q; (A) = 0} U {Q2 (A\) = 0} is a divisor with simple normal
crossings in P and

={Q1(\) =Q2(\) =0} =P

is a smooth Calabi-Yau (n — 2)-fold. Thus, applying the adjunction formula,
we have to assume that

deg (@Q1) + deg (Q2) =n + 1.
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In order to be able to describe cohomology classes on V* as rational
forms on P™ with poles along the divisor {Q; (A\) = 0} U {Q2 () = 0}, we
use a composition of two residue maps:

7.3.1 Definition. For each k € N,k > 1, we define a residue map

rest R+ Qﬁi:{l <log (VI)‘ U VQ)‘)) — Q@}l

VApn
by
res‘L/:f"gil = 1res’l‘“/.A|VlA o res"z;‘lpn,
where
resit, Ok (1og (VlA o V;)) -, (1og (VA))
and

reSIXC/MVl* : Qé’ﬁ <log (V’\>> — Q"“/}l
are the residue maps defined in Chapter 4.2.2.
Let

Resphier' s ML (ng (1og (Vﬁ o 1@))) ~ [kt (IP"\ (VlA U V@) ,C)

- 1 (VA C)

be the map induced in cohomology by reS‘L/if"];,:l.

7.3.2 Remark.

LT k+1

1. Thus, the map Resvx‘Pn

is the composition of

Restil, - B9 (P (11 015Y) €)= HF (VN )
and
Resl‘c/.M%A - H” (Vl’\\V)‘,(C) — Hk1 (VA,(C> .

LT k+1
VA‘[pm

Res/Tkr! (Fin“ (P”\ (vlA U V;) ,c)) c Fi2gh (VA, (C)

2. The residue map Res respects the Hodge filtration, i.e.

for each 0 < i < k + 1 setting F7HF~1 (V’\,(C) = gkt (V’\,(C) for all
J <0 (see e.g. [Voi03], p. 159).

Similar to the Griffiths-Dwork reduction for hypersurfaces, we describe
(n — 2)-forms on V* via meromorphic forms of higher degree on the ambient
space.
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7.3.3 Theorem. ([LT93] for n =5.) The residue map

ResA, « H" (]P’”\ (W o v;) ,(C) — g2 (VA, C)

induces for n € N odd an isomorphism
" (B (7 013).C)
im (H" (P\V},C) @ H™ (P"\V3},C))

~ g2 (VA,C) . (7.3.3.1)

and for n € N even an isomorphism
H™ (P™\ (V{* 0 13Y),C)
im (H" (P\V{},C) @ H™ (P1\V3,C))

@ H"*2 (P",C) =~ H"2 (VA, C> .
(7.3.3.2)

Here, in both cases
im <H” (P"\Vﬁ, (C) O H" (P”\V;, C))
denotes the image of the map
H" (]P”\Vﬁ, C) S H" (P"\V;, c) " ((P”\Vﬁ) A (P”\V;) ,<c) ,
which appears in the Mayer-Vietoris sequence that is associated to (]P’”\Vf‘) U

(P\V3)).

Proof of Theorem 7.3.3: In Step 1, we construct isomorphisms of the
form 7.3.3.1 or 7.3.3.2, resp., which are not necessarily given as residues. In

Step 2, we show that the residue map Res‘L/f’lgn provides such isomorphisms.

Step 1: We follow the arguments of [LT93]. Let T (V*) be a tubular
neighbourhood of VA = V} n V3 = P*. Thus dimg T (V)‘) = 2n. Applying
the universal coefficient theorem, we choose an isomorphism

H" 2 (V’\, C) ~ H,_, (V*, <c) .

Using a retraction from T (VA) onto V* and Poincaré-Lefschetz duality (see
e.g. [Mas91], p. 379), we get

H, s (VA, cc) ~ H,_, (T (VA) ,(C) ~ {2 (T (VA) . oT (VA> ,@) :

Let T be a neighbourhood around T (VA) in P such that 7 and T (VA)
are homotopy equivalent. Then, using the excision theorem for the pairs

(P, P\T (V) and (T, 7\T (V*)), we obtain
H" 2 (IP’”,]P’"\T (V’\) ,C) ~ gt (T, VAVa (V’\> ,(C) ~
H" 2 (T (V’\) oT (VA) ,<c).

lle
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Thus
H"2(13,C) = H"*2 (P, P\T (V) ,C) = 5"+ (P, P\VA,C).
7.3.4 Claim. There are isomorphisms
H" 2 (IP)”,IP”\VA, <c) ~ gt (IP)”\VA,(C)
if n is odd, or
2 (IP’”,IP’”\V’\, c) ~ [ <IP’”\V>‘, <c) @ H™? (P",C)
if n is even, resp..

Proof of Claim 7.3.4: Case 1: n odd. We look at the exact sequence of
the pair (IP’”,IP’”\VA):

— gL (P, C) — H (P"\VA, cc) — H™? (IP", PV, (C) -
— H™?2(P",C) — H"*? (IP’”\VA, @) - (7.3.4.1)

If n is odd, then H"*2? (P",C) = 0 and H"™! (P",C) =~ C. In order to see
that the map

H™! (B, C) — H"* <IP>”\VA, C)
is the zero map, we show equivalently that the dual map
Hyi (IP’”\V)‘, c) s Hpy1 (P",C)
is the zero map. As
Hyo <IP’”\V’\, c) ~ gl (IP’", VA @)

by Lefschetz-duality and H,, 1 (P*, C) = H" ! (P",C) by Poincaré-duality,
we can find the map we are looking for in the exact sequence of relative
cohomology:

> H! (P",V’\,<C> ~ HVL(P,C) - H ! (VA,(C) L
The map
H (B",C) = C — H™! (V*,C)

is injective, because it is not the zero map. In order to see this, let w be
a Kahler form associated to the Fubini-Study metric on P"”. The image of
[WA...Aw] € H* 1 (P",C) under the map is [L’X;/)\w Ao A L”“Mw] #0e€
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H ! (V)‘,(C), where tyx : VA <> P" is the inclusion. This proves Claim
7.3.4 if n is odd.

Case 2: n even. If n is even, then H"*! (P",C) = 0. Furthermore, as in
the case of n being odd, the map

H"2 (P",C) — H"*? (IP’”\V’\, C)
in the exact sequence 7.3.4.1 vanishes. Therefore
H 2 (IP’”, PV, @) ~ gt (IP’”\VA, <c) @ H"2 (P, C).
This proves Claim 7.3.4.

Finally we establish the isomorphism

H™ (P (Vi v V3) . C)
im (H* (P"\V},C) @ H" (B"\V3\,C))

H™ (P, C) =

We look at the Mayer-Vietoris sequence for the open sets U := P"\V}* and
V :=P"\V3\. So we have U UV =P"\V* and U n V =P\ (V} U V3.
— 1" (P\V,C) — B (PR, C) @ " (P1,C) —
S H" (IP’”\ (Vf\ U VQA) ,(C) - gt (IP’”\VA, <c) -
gt <IP"\V1A, c) @ H™! (IP”\V;, (C) - ...
In order to show that the map
H™ (P, C) — B (P, C) @ B (P, C)

is the zero map, we apply Lefschetz- or Poincaré-duality, resp., to the dual
maps and show that the maps

H (P”,W,C) Ny (IP’”,VA,(C)

for i = 1,2 vanish. The relative cohomology H" ! (IP’”, V;’\, C) fori=1,2
appears in the long exact sequence of the pair (IP’", Vi)‘):

.. H"2 (P, C) 5 g ? (W,c) Ny (IP", V,Mc) -

— B (P",C) — H™! (V,Mc) -
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lle

The Lefschetz hyperplane theorem yields an isomorphism H"~2 (P", C)
Hn2 (Vi)‘, C). Furthermore the map

H™ ! (P",C) — H"! (W, C)

is injective also owing to the Lefschetz hyperplane theorem; therefore, the
map

H" 2 (W, @) gl (P”, V2, <c)

is surjective.
If n is odd, then H"~2 (P",C) = 0; therefore H" 2 (V;/\, (C) = 0, and the
map H" 2 (Vf‘,@) — gt (P”, Vi’\, (C) is an isomorphism. Thus

Hn—l (]P)n’ V;/\,(C) =0,

and the map we were looking for is the zero map.
If n is even, H"~! (P",C) = 0; therefore, the map

Hn72 (‘/7;/\7 C) N anl (Pn, V;;)\, C)
is surjective. As it is due to the isomorphism H" 2 (P, C) ~ a2 (Vi)‘, (C)
the zero map, we know
anl (]Pn, ‘/i)\v (C) =0

and the assertion follows, finishing Step 1.

Step 2: Let
a: H" <IP’”\V1’\, (C) o H" (]P"\V;, C) P (IP’”\ (vlA U V;) ,(C)
be the map given by the Mayer-Vietoris sequence for the pair
(P”\Vﬁ, IP’”\VQ’\) .

At first we show
LT, .
ker (Resvk‘gn) o im («). (7.3.4.2)
Let [u] € im (a). Then, using Grothendieck’s Algebraic de Rham Theorem,
we can write

[u] = a ([Ul|p"\(vﬁuv;) ) “2|P”\(V1*uV?)D

with n-forms v; € Q" (IP’”\V;)‘) having poles along V;)‘. Hence

LTn o n—1
Resv)\‘[pm ([u]) = Resvz\|v1A © Res7\l/l)‘|]1"" ([Ul‘pn\(vﬁux@)]> B

—1
R R ([ ]) <0
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n

vp|en (v1) does not have

since vy does not have any poles along V;* and res

any poles along V3. This establishes 7.3.4.2.

Next we show that the map

LTn n—1 n
ReSVMPn = ReswlvIA o Resvmpn

is surjective.

Res’{jwpn induces a map between the direct summands of the mixed
1
Hodge decompositions of H" (IP’”\ (Vl)‘ U V;‘) ,C) and H" ! (VI’\\V)‘, (C) as

shown in the following diagram:
H" (Pn\ (VIA Y VQ)\) 7(:) — @p+q:n H4 (Pn7 Qﬁ" (log (Vl)\ v V2>\)))

Res”
v En

L (VMNV2,C) Dy g H (V1,20 (10g17))

<—Derq:n Hett (an Qpn (log VZ)\)) .
Each map
. (5 19) = (. o)

is part of the long exact sequence in cohomology associated to the short
exact sequence

0 Ok, (log V}) 0k, <log (VlA o V;)) okl (log V’\> =0
1

for k € N (see e.g. [EV92], Prop. 2.3). Applying Serre duality and [EV92],
Cor. 6.4, we get

Ho+1 (]P’", oL, <1og V;)) ~ ol (IP”, Qur (1og VQA) - V2’\> —0.

Therefore Res?Man is surjective.
1
In the same way we get a diagram for the map Res"z/jllw:
1
H =L (VMNVA,C) =@, HY (V1A, @, (log VA))
lReS?{L’;‘llVf‘
Hr (V)\’ (C) <—Berq:nfl H? (V/\a Q€/_Al>

(‘Berq:n—l Htt (Vl)\v Q@ﬁ) :
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Again each map in the direct-sum decompositions is part of the long exact
sequence in cohomology associated to the short exact sequence

0— 00, —Qr (log V’\> ) (7.3.4.3)
1 1

7\Z/K|1V)‘ is surjective.
1
In fact, using Poincaré-duality and the Lefschetz hyperplane theorem, we

obtain

For the case that n is odd, we see that the map Res

H" (vﬁ, c) ~ gn-2 (vﬁ, C) ~ g2 (P",C) = 0;

therefore HIt! (VI’\, QI‘D/A> = 0 for each p,q with p + ¢ = n — 1. Together
1

LTmn
V)‘\IF’"

n
Vl/\upm
is surjective. Furthermore, by Step 1 and 7.3.4.2 we have

with the surjectivity of Res we know that, for n being odd, Res

ker (Rest 3, ) = im (17 (PP17,C) @ H” (P\12,C) ).

This establishes Theorem 7.3.3 for the odd-n case.

If n is even, we similarly get
e (Vﬁ, cc) ~ "2 (P",C) = C;
therefore Hat! (Vf‘, Qf/k) =0 for all (p,q+ 1) # (m,m), and
1
H™ (Vf\, %) ~ C.
Hence the only map between direct summands
HY (Vﬁ, 0, (log VA)> s HY <VA, Q@;l)
induced by Resg.;llvA which is not surjective is the map
1
6 B (V2,0 (1og V) — H™ T (VA i)
Applying [EV92], Cor. 6.4, gives
H™ (Vﬁ, a, <log VA)) ~ groiom (vﬁ, st <log VA> — VA) —0.
Hence the long exact sequence in cohomology
_ ¢ _ _
oo H (V0 (10g V) ) St (VA Qi) -

S H™ (Vﬁ, g}) S H™ (Vf\, A (logVA>) L
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associated to 7.3.4.3 for p = m yields codim (im (¢)) = 1. By Step 1 and
7.3.4.2 we conclude for the case that n is even that

ker (Resp 2, ) = im (H" (P"\11,C) @ " (P"\13),C) ) .

O
As a consequence of this theorem, we can represent each cohomology

class of degree (n —2) on V* as a rational form on P" with poles along V;*
and V3.

7.3.5 Corollary. ([LT93] forn =5.) If n is odd, each class
ae H"? (V)‘, (C)
corresponds, via the isomorphism of Theorem 7.3.3, to a class

H™ (P™\ (Vi U 13Y) ,C)

"€ (@ BV, C) @ 7 (P\V3,C))

If n is even, the same holds fora e W < H" 2 (VA, (C), where W is a linear
subspace of codimension 1 in H" 2 (V’\, (C).

We give further information on the complementary space of the subspace
W in Corollary 7.3.5.

7.3.6 Lemma. We assume the setting of Theorem 7.3.3. Let
7 H, o (V*, c) ~H, (vﬁ\v*, c)

be the tube map. If n is even, then ker (T) is generated by the fundamental
class of a linear section Pzt A VA of VA,

Proof of Lemma 7.3.6: This is [Gri69], Prop. 3.5, for V}* instead of P".
We may simply copy the proof, because H, (V)‘,(C) =~ C according to the
Lefschetz hyperplane theorem. O

7.3.7 Corollary. Let 7 := Pzt A VA be a general linear section of V.
Then the cohomology class [Z] € H™ 2 (V/\,C) of Z, i.e. the dual funda-
mental class, satisfies

[Z] ¢ im (Resé{ign) .
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Proof of Corollary 7.3.7: It suffices to show that

[Z] ¢ im (Res?/;‘lvﬁ ¥ (Vl\VA, <c) g2 (V*, c)) .

But by definition of the residue, Res’ll/;‘lvA = 7*, the dual of the tube map.
1
Hence the claim follows from Lemma 7.3.6. O

7.3.8 Corollary. We also have the following description of the image of
the residue map:

im (ResLT’n ) =H"? (VA)

V)‘|]P’" var

:= coker <H”_2 (Vf\@) Hnj(L) H" 2 <V)‘, C)) c H" 2 (V’\,C) .

Proof of Corollary 7.3.8: Let [Z] € H™ ™1 (V) as in Corollary
7.3.7. In particular, [Z] € H"72 () (H™ ™! (V}")). Furthermore [Z] ¢

im (Res@f];n), and Res‘L/f"gn has codimension 1 in H"~2 (V}*,C). Therefore

we know im (Res‘Lg";n) < Hi,2 (V). O

7.3.2 Pole order and Hodge filtration

Now we will show that under the isomorphism of Theorem 7.3.3 the Hodge
filtration on H™ 2 (V)‘, C) corresponds to the filtration given by the total
pole order of rational forms with poles along V* and V' with classes in
H™ (P™\ (V{* 0 V3Y),C).

The following theorem is an extension of [Voi03], 6.5, Chapter 6.1.3, 6.10,
6.11, or [Gri69], Chapter 8, to divisors with simple normal crossings with
two irreducible components.

7.3.9 Theorem. Let X be a projective manifold of dimension n and
Y =Y1 uYs be a divisor with simple normal crossings in X such that the
following vanishing hypothesis is satisfied: For all positive integers p1,p2,1i,J
we assume '

Hi (X, ¥ (m% +p2Y2)) ~ 0. (7.3.9.1)

Let U := X\Y. For each integer 2 < p < n we consider the natural map

o, H | X, Z Kx (piY1 +p2Y2) | — H"(U,C),

(p1,p2)eNxN,
p1+p2=p

a — [a],
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which maps a section «, viewed as a sum of meromorphic n-forms on X
which are holomophic on U := X\Y with poles of order p; along Y;,i = 1,2,
to the de Rham class [o] of ;.
Then
im (®,) = F"P*2H" (U, C).

Before giving the proof of Theorem 7.3.9, we state two consequences.

7.3.10 Corollary. We assume X = P" and deg(Y7) = dj,deg(Ys) =
da; then, according to Bott’s theorem, the vanishing hypothesis is satzsﬁed
Composing the map ®, of Theorem 7.3.9 with the residue map Reswmn
yields a map

U, HO| P ) Oen (Y + poYa + Kpn) | — FPPH" 2 <V>‘, C) :

(p1,p2)eNxN,
p1+p2=p

If n is odd, then U, is surjective. If n is even, then im (V,) has codimension
1in F"PH" 2 (VAC) forp> % +1.

Proof of Corollary 7.3.10: We have ¥, = = Restlm o ®,. If n is odd,

VA|]P>n
then &, and Resvz"gn o ®, are surjective, and we conclude.
If n is even, then W, is surjective for p < § + 1. O

7.3.11 Corollary. In the setting of Corollary 7.53.5, the class b is repre-
sented in de Rham cohomology by a form

nnzl b A (7.3.11.1)
2 g™ 3.11.

where the P; € H® (P, Opn (idy + (n — i) dy — n — 1)) are homogeneous poly-
nomials of degree id; + (n —1i)dy —n — 1.

Proof of Corollary 7.3.11.1: The proof is an application of Corollary
7.3.10 for p = n, using the fact that every rational n-form on P" with poles
along Y; U Ys is of the form £A with homogeneous polynomials P and Q
with deg (Q) + n+ 1 = deg (P) due to [Gri69], Cor. 2.11. Consequently, the

map ¥, is given by
n—1
P
Z Qz Qn ZA] ’

=1

S
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7.3.12 Corollary. We assume the setting of Corollary 7.3.10. Composing
W, with the natural surjective map

Kp @ HO (P", Opn (p1dy + pady —n — 1)) —
(p1,p2)eNxN,
p1+p2=p

- HY| P, ) Opn (01Y1+paYa + Kpn) |

(p1,p2)eNxN,
p1+p2=p

we obtain a map
P HO (P", Opn (prdy + pads — n — 1)) — FPPH"—2 (VA, C) ,

(p1,p2)eNxN,
p1+p2=p

P=@'_1h 5 RestTm LN
k=1

QtQy "

If n is odd, all classes in F""PH" 2 (V’\,(C) forp=2,...,n are given as

pfl Pk;
Z ReslTn ( A])
VAP —k
o T etes
for homogeneous polynomials P, € H° (P", Opn (kdy + (p — k) da —n — 1)).
If n is even, this holds for all classes in the image of ¥,,.

7.3.3 Proof of Theorem 7.3.9

For the proof of Theorem 7.3.9 we need some preparation. In particular we
need to compute the cohomology H'® (X, Z(pl,pz) Yy (pYh + ngg)).

7.3.13 Lemma. Let T be a sheaf of Ox-modules on a ringed space (X, Ox)
and 81,82 < T sheaves of submodules. Then there is an exact sequence

0—->851nSy i‘>51 (49823»81 + 8 — 0, (7.3.13.1)
where j () =z @ (—z) and a (zDy) =z + y.

7.3.14 Lemma. Let X be a projective manifold and Y := Y1 UYs a divisor
with simple normal crossings. We assume H* (X, QJX (mY1 —i—ngg)) =0
for eachi,j > 0. Let k>0 and M, :== {(k—1,1),...,(k—r,7)}. Then

H | X, Z Q&(P1Y1+p2Y2) =0.
(P17P2)€Mr
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Proof of Lemma 7.3.14: We prove the lemma by induction over r.
For r = 2 we have My = {(k —1,1), (k — 2,2)}, and we obtain an exact
sequence of type 7.3.13.1, namely
0 — QG ((k-2)Y;+Ys) —
— G (k=1)Y1 +Y2) @ ((k—2) Y1 + 2Ya) —
— Qi ((F-1)Y1 +Y2) + Q% (k- 2) Y1 +2Y3) — 0.

After applying Bott’s vanishing theorem, the long exact sequence in coho-
mology yields

Hi X, Z Q%( (p1Y1 +p2Y2) = 0.
(p1,p2)EM>

We assume H' (X’Z(p1,p2)€Mr_1 QJX (mY1 +p2Y2)> = 0 and consider the
exact sequence
0 — Q((k—1)Y+(r—1)Y) —

— Z Q?X (p1Y1 + ngg) &) Q?X ((k — 7") Yi + ’I”Yg) —
(pl,Pz)EMr—1

- Z Yy (Y1 + p2Ya) — 0.
(pl:pQ)EM'r

Now applying Bott’s vanishing theorem and the induction hypothesis, we
obtain a long exact sequence in cohomology we obtain

H X, Y Q@mYi+pY)|=0
(p17p2)€M7'

We proceed in this way until » = k — 1. U
The same methods also show:

7.3.15 Lemma. We assume the setting of Lemma 7.3.14. The natural
map

Kp : P H(X,Kx (pY1 +pYo)) —

(p1,p2)eNxXN,
p1+p2=p

— 0" | X, Z Kx (pmY1 + p2Ya)

(p1,p2)eNxN,
p1+p2=p

18 surjective.
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7.3.16 Notation. We denote by

c

Z Ok (Y1 + p2Ya)

(pl 7p2)€N X N7
p1+p2=p

the sheaf of closed differential k-forms in

D 0% (Y1 + paYa),

(p1,p2)eNxN,
p1+p2=p

the sum being taken inside the sheaf of meromorphic k-foms.
We prepare the proof of Theorem 7.3.9 by

7.3.17 Lemma. Let 2 < p <n and

o€ > 0k (mY + peYa)
(p1,p2)eNxN,

p1+p2=p
1. If p = 3, then, locally on an open subset V < X, we can write
a=df+7,

where

g e >, A (Y + pYa)

(pl ’pQ)GNXNa
p1+p2=p—1

and vy € Z Q])“( (Y1 + p2Ya)
(Pl,pQ)GNXN:
p1+p2=p—1

2. If p =2, then « is a logarithmic form.

Proof of Lemma 7.3.17: Around a point of Y1 n Ys we choose local
coordinates {z1,...,2,} such that Y7 = {21 =0} and Y5 = {22 = 0}. We
write

a=a;+...+ap 1 witha; e Q% (Y1 +(p—j)Ya) forj=1,...,p—1.

Then we can write
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where o/, € Q5! ((p — j) Ya) and o € Q% ((p — j) Y2) do not contain dz;.

J
Furthermore
dzo A B v;
r_ J J
;= p—j p—j’
29 29

where 3} € Q])“(_z and v; € Q])“(_l do not contain dz; and dzs. Similarly we
write

/" "
" dzy n B J 7j

where ﬁ;-’ € Q’;{l and 7;.’ € Q’)“( do not contain dz; and dzy. Therefore

dz1 A dzo A B} dz1 A 7;- dzo A B}’ 7}’
o = — — S 7
7 — — — —
S 212577 212577 212577

and

p—1 B/‘ p—1 '7/'
a = dz Adzg A <Z 7 ;j> +dz1 A (Z 7 ;j> +

j=1 #1%2 j=1 %172
p—1 " p—1 "
B; T
+ dZQ A 2 T p=j + Z 7 p—
j=1 #1%2 j=1 #1%2

In order to calculate da we use the following notation

dﬁ; = dz A ﬁ;(l) + dzg A ,8;(2) +B;‘(O)’

d'y} = dz1 A ’y;-(l) + dzo A 7;.(2) + ,y;(o)’

dﬁ}’ = dz A B;-l(l) +dz A ﬁ;@) + ﬁ;,(o),

dyj = dz A 7;-/(1) +dzo A 7;/(2) + 7;-/(0)
for each j = 1,...,p — 1, where the differential forms

,Bj(l), ,Bj(Q) c Qk)?(—Qj ,Bj(o) c Q’)ﬁ(_l?fyj(l)?fyj@) e Qé?(—l, 7]‘(0) c Q§(7

ﬁj(1)7ﬁj (2) c Q]§(717Bj (0) c Ql)g(?r}/j(l)vfyj (2) c Q§(77j (0) c Q§(+1
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do not contain dz; and dzo. We calculate

~1 0 . (2 . (1
(80 -0 vj“ s g9
da = dz; Adza A Z pro e e M L o
j=1 2122 22 22y A2 ?1%2
p—1 '(0)
7 J’YJ
+dzl/\2 i i J+1 —Jj
j=1 2172 21 2122
_1 n O " 2
J A Bj() (p—17) ’YJ ()
+22A2 T ip—i i p—jtl
j=1 2172 2172
p—l //(0)
75
+ Z —_— .
J 0]
j=1 %172

The assumption d («) = 0 yields four equations:

— (0 . (2 . "1
p—1 /Bj( ) (p —])’Y; Vj( ) ,8” /Bj( )
j ,p—J +1 7 p—j J_;,_l p—j 7 p—j :O, (73171)
m\Az A2 2173 RS 212y
p—1 '(0) - (1)
7 J7; Y;
B J'jp—j g+l ]p—j + j]p_j =0, (7.3.17.2)
Jj=1 2142 Z1 %9 2125
p—1 B”(O) I " ( )
; pP—1 ! Y.
- - ( j 7)3/{ + - — | = 07 (73173)
o\ A A 2287
p—1 ,Y"’(O)
755 =0 (7.3.17.4)
j=1*1%2

1. Now we assume p > 3 and aim to find a decomposition a = df + y such
that the pole order of § and v along Y is p — 1. We can decompose « in the
following way

- l / "
a = dz1 Adza A Z Z]) +dz A ’Ylfl—i-dzg/\ pé;l +
— 2 Z]_Z2 Zl 22
Fw Wy o Z (7.3.17.5)
leQ
with
Vit 7
J
wji=dn N ———————F tdo A ———
Ao N

for j = 1,...,p — 2. We proceed to find the requested decomposition for
every summand of « in 7.3.17.5.
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For p — 5 > 1 we calculate

B; < 1 le A 5/ ) 1 dz1 A dp;
+ ;

dz1 A dzo A =
21722

and for 7 > 1 we get

le/\dZQ/\ - - =

B ( 1 dz A 5;) 1 dzo A df;

S J—1 z{ 10— J—1 z{_lzp_j
Thus for each j = 1,...,p—1 we can find a decomposition dzy Adzo A ’Bg — =
1 23
dp + ~, where the pole order of 8 and v along Y is at most p — 1
In order to show that the summands dz; A and dzg A in the

p 1
Z1%
decomposition 7.3.17.5 of a have already poles of order p — 1 allong Y, we
multiply equation 7.3.17.1 by 2725 and get

S (510 =+ £O) s+ - ) = i) o
j=1

(7.3.17.6)
This equation shows that

" ol ol k—1
Bp—1 = Bp_121 for a form B, ; € QO

and
v} = A1 22 for a form 7] € QL.

So we replace the two k-forms by

oY/ ~
Bp-1 g

dzo A pfz and dz1 A ;72
1 <2 Z1%9

Furthermore equation 7.3.17.6 yields that there are forms ¢;,v; € Qé”(_l
such that

(p— (G +1)Vjp1 — 6] = 2105 + 215
foreach j =1,...,p—2. For each j =1,...,p — 2 we calculate

Y B /T8 a1 36— =G+ D)) |1 D
’ 2l AI! J PE At
1 - 1 ; 1
= d *Lll —dZQ/\f % —dZQ/\f 7’/}] 1 +
J 2] J\ 28 J\ 877"
1 d'7j+1
—j—1"

J z122



114 CHAPTER 7. PICARD-FUCHS EQUATIONS

1

p—1
22

If j > 1, we are done; in the case that j = 1, the term dzy A does

not have the required pole order, but using the same methods as before we

can replace it by
1 =z 1 zd
gl 1¢i )+ 1 ¢i12.
P—22z20 P—22z20
So we have found the requested decomposition of each w;.

"
-1 . .
?_1 ——=5, we conclude in a similar
4

For the last summands of v, namely >
172
way as above using the equations 7.3.17.2 and 7.3.17.3 that there are forms
s s Vis Tp—1 € Qk for j =2,...,p— 2 such that
V1= A2, 1 = Yp121 and 7] = 21 + 22v;

forj=2,....,p—2.
We conclude that

/i ~ I " g/ "
Moo M Tp-1 _ p-1 N Vj
— = T = o T = T —
2125 21287 AT 2y 22y 2T TR 2T

forj=2,....,p—2.

By adding all (k — 1)-forms and all k-forms of the decompositions of the
summands of o we get the statement of the lemma. This finishes the case
p=3.

2. If p=2, then a € Q’;f (Y1 + Y2). In the same way as before we write

/ ! " "
B Y B gl
+dz A +dzo A +
2122 2122 2122 2122

a=dz Adzg A

where ' € Q?{%fy’,ﬁ” € Ql)“{l,'y” € Q% do not contain dz; and dzo. U§ing
da = 0 we get v/ = 3'29,8" = "2, and 1" = 7”2129 for forms 7/, 5" €
Q515" e Ok

Thus we see that « and da have only simple poles along Y'; therefore, o
is a logarithmic form. ]

7.3.18 Corollary. Let

« € Z QI)C( (p1Y1 + ngz)

(p1,p2)eNxN,
p1+p2=p

be as in Lemma 7.3.17 with k = 3. If p1 + p2 = 2, then we can locally write
a = dg,

where

e D, AN+ pYa).

(pl 7P2)€N>< N7
p1+p2=p—1
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Proof of Corollary 7.3.18: Applying Lemma 7.3.17 we write

a = d/61 + 1,
where
Bre > QYT (mY1+paYe) and g € > 0k (mY + peYa)
(p1,p2)eNxN, (p1,p2)eNxN,
p1+p2=p—1 p1+p2=p—1
In the same way we write
7 = df2 + V2,
where
B2 € Z O (p1Y1 + paYa) and g € Z Q% (Y1 + paYa)
(pl,pQ)ENXN, (pl,pg)ENXN,
p1+p2=p—2 p1+p2=p—2

Continuing in this way we obtain

a=dBr+...+ Bp2) +Yp2

with
B:=PB+...+Bp2€ Z Ql)ﬁfl (p1Y1 + p2Ya),

(pl :PZ)GNXN’
p1+p2=p—1

and y,_2 € (Ql)“( (Y1 + Yg))c is a logarithmic form. As according to 4.2.4
the logarithmic de Rham complex Q% (logY’) is exact in degree k > 3 for
a divisor Y with simple normal crossings and two irreducible components,
there is a form v € Q%! (log ) such that 7,_5 = d (7). Thus the assertion
is proven. [l

Proof of Theorem 7.3.9: We first show the following

Claim: There is a surjective map

A HO L X, Y Kx (Vi + peYa) | HP? (X,Q;“L;(p*”’c(logy)).

(p1,p2)eNXN,
p1+p2=p

Proof of the Claim: By Lemma 7.3.14

H X, > % @Yi+pY)|=0,

(pl ,PQ)ENX N7
p1+p2=p

for 4,5 > 0.



Let 2 < p < n. For each k£ > 3,q = 3, Lemma 7.3.17 and Corollary 7.3.18 yield the following exact sequences

(& (&
_ _ d
0— Z O (mY + paYa) | — Z O (Y1 + paYa) S Z 0% (mY1 +paYa) | —0.

(p17p2)ENXN7 (pl,pQ)GNXN, (p17p2)eN><N7

p1t+p2=g—1 p1+p2=q—1 P1+p2=q

(7.3.18.1)
Starting at

C

D1 Kx (pYh+ paYa) = D1 Q% (MY + peYa)

(p1,p2)eNxN, (p1,p2)eNXN,
p1+p2=p p1+p2=p

we use the following exact sequences, which are of the form 7.3.18.1:

C C
0 QL (p1Yh + oY QUL (Y] + poYs) & Q% (p1Y; + oY 0
- Z Y (Y1 +p2Yo) | = Xpipoenxy, Qx  (01Y1 +p2Ya) — 2 % (mY1 +p2Ya) | — 0,
(p1,p2)eNXN, p1t+p2=p—1 (p1,p2)ENXN,
p1+p2=p—1 p1+p2=p
C C
_ _ d _
0— Z Q¥ 2 (p1Y1 +paYo) | — 2(p1,p2)eNxN, 0% 2(mYi +pYa) S Z Q¥ (mY1 +pYo) | — 0,
(p1,p2)eNxN, pit+p2=p=2 (p1,p2)eNXN,
p1+p2=p—2 p1+p2=p—1
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until we arrive at

C

0~ X AT eviepn) | - X TP ememe) S Y oY

(p1,p2)eNxN, (p1,p2)eENXN, (p1,p2)eNXN,
p1+p2=2 p1+p2=2 p1+p2=3

In the last sequence we have by Lemma 7.3.17,

TP mvi+mve) | = QT (v 4 ) = 0 P (log Y)

(pl aPQ)EN X N7
p1tp2=2

and similarly

Z 97;(_(?—2) (ply'l +p2Y2) _ Q”)Z{—(p—2) (Y'l + Yg) )

(pl 7p2)€NX N7
p1+p2=2

(p1Y1 + p2Ya)

The long exact sequences associated to these short exact sequences yield the following surjective maps using the vanishing

NOLLONAHY MHOMA-SHLIAATHD €2

L1T



hypotheses 7.3.9.1:

H X, > EKx(pVi+pYs)| —» H'|[X, Do (e +pYe) | |
(pl,pQ)ENXN, (pl,pg)ENXN,
p1+p2=p p1+p2=p—1

C C

' | X, Z Q}_l (p1Y1 + p2Y2) - H*| X, Z Q?(_2 (p1Y1 + p2Ya) )
(p1,p2)eNxN, (p1,p2)eNxN,
p1+p2=p—1 p1+p2=p—2

until
C
HP | X, SNy i epye) | | - BHP? (X, Q2 (jog Y)) .
(p1,p2)eNxN,
p1+p2=3

This gives the surjective map Ay, finishing the proof of the claim.

STT
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We next establish an isomorphism
pp : HP2 (X, QP72 (1og Y)) — (=2 gy, C)

In fact, this follows as F¥Q% (logY) is a resolution of Q];(’c (logY) in degree
k > 2, because the logarithmic de Rham complex Q% (logY’) is exact in
degree k = 3. Since n — p + 2 > 2, we obtain

P2 (X, QL P=2e (10g Y)) - H" (F“—@—?)Q;( (log Y)) :
As furthermore

Fn—(p—Q)Hn (U, (C) —im <Hn (Fn_(p_Q)QE( (log Y)) &) H" (QB( (log Y)))

and since f, is injective by the degeneracy at Fp of the Frolicher spectral
sequence, we get the requested isomorphism ji,. Finally, one has to check
that indeed p, o A, = ®,,; compare [Voi03].

One has to work through the connecting homomorphisms on the level of
a suitable open covering for C'ech-cohomology and has to use the canonical
isomorphism given in [Vo0i02], Corollary 8.19. We omit the straightforward
but tedious details. O

7.3.4 Griffiths-Dwork reduction for codim-2 complete inter-
sections

In the following we describe the Griffiths-Dwork algorithm for complete
intersections, which was introduced in [LT93]. For convenience we describe
the method here again.

As before, let Q} = Q; and Qﬁ‘ = (J2 be two homogeneous polynomials
on P" of degree d; and dy with the same properties as in Section 7.3.1, and
Y; := {Q; = 0}; moreover

vr={@t =0} n{@} —o}.
To set up the method we need a few definitions.

7.3.19 Definition.
1. Fori=1,2 let

Ji:=<aQi j=1,...,n+1>

é’xj ’
be the Jacobian ideal of Q; in the graded ring of homogeneous poly-
nomials S = @, S' in (n+ 1) variables. Furthermore let J; be the

1 x (n+1) matriz
i = (aQi 0Q; ) '

01" 0Tnrt
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2. For each k > 2 we define a matriz K : S®(+DE=2)+2(k-1)) _,
Ky = (B, Ikp-1-Q1, Ix-1-Q2),
where Iy is the (k — 1) x (k — 1)-identity matriz and By, is the fol-
lowing (k—1) x ((n+ 1) (k — 2)) matrix

(k—2)J; 0 0 0 0
J (k—3)Jy 0 0 0
0 20y (k—4)Ji ... 0 0
B, = 0 0 3J : :
: : : 2.J1 0
0 0 0 (k—3) Jo N
0 0 0 0 (k—2) J

7.3.20 Notation. We apply the matriz K, to a subspace

§p_1 c §®((n+1)(p=2)+2(p—1))

)

which is defined as follows:

Let

xj=x§_1 = (p—1—j)di+jda—nforj=1,....,p—2 and
yjzy;?_l = (p—1—j)di+jdo—n—1forj=1,...,p—1 and
zjzzf_l = (p—j)d1+(G—-1)do—n—1forj=1,....,p—1.

Then we define
- p—1 p—1
@ ( §73) n+1)) @ @Syj @ @ G2
j=1 j=1 j=1

Furthermore we define

p—1
Spf]_ = @Syj (_DS p—j)di+jde—n— L

J=1 J=1

7.3.21 Remark. If we restrict the map K, : S S((n+1)p-2)+2(p-1)
S5®(P—1) to S, 1, we obtain a map K, : S, 1 — Sp 1
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7.3.22 Definition.
1. For each k > 2 we define
M} := coker (K;) = S®*=1 /im (K})

and

k—1
My = @ M [(k— 1) dy + ldy —n — 1] = Sy /im (K})
=1

to be the direct sum of the parts of M} which are homogeneous of degree
(k—=1)di +1ldy —n—1) for 1 <1<k—1; furthermore M := C.

2. Using the description of classes in F™"~PH" 2 (V’\, (C) orim (VU,), resp.,
in Theorem 7.3.12 we define an isomorphism

Op—1: Fn—pHn—Q (VA’C) - vp*la

s LTn Py
w= Z RevaPn Al = (Pp-1,..., 1)
k=1

QrQy ™
and a map
p—1
~ . 0 n 3
Gp1: >, HO(P", Kpn (kY1 + (p — k) Y2)) — Spo1,
k=1

pfl P
k
N A (Bt P
—k p 9 )
o1 Q1Q%

Furthermore, we define a surjective map
s FUPHT(VAC) - M,
Op—1 =PIy, © Op-1,

where

~

Py, + Sp-1 = M,

denotes the projection onto M.

7.3.23 Lemma. For k,l € N and A; homogeneous polynomials of degree
kdy + lda, one obtains the relation in cohomology

+1 0 +1 0 +1 0A;
kZ?:1 A; 51 ZZ?:1 A; 522 Z?:l oz,
i PN = A modulo exact forms.

_|_
] I+1 kOl
Q@R QYQy" QTQ
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Proof of Lemma 7.3.23: We consider the rational (n — 1)-form on P"

n+1

A — 1A —— T~
¢ = Z W(Ml Acoondxp Ao Adrp A oo A dTpg.
k<l, 12
k=1
Then
n+1 0Q1 n+1 ﬁQ n+1 0A;
- k+1 +1 kNl

Qﬁ Q) Q’“ 3 Qi@

0

7.3.24 Remark. Using the cohomology relation of Lemma 7.3.23 for each
p > 2, we calculate for A = (Al, R )A(n+1)(p—2)+2(p—1)) € Sp—l with

Aq

A(n+1)(p-2)+2(p-1)
S -2 A% YA g

=1 =
= A+ A+
Q7' Qo Q7 %Q3
(p 3) Zn+1 Az+n+1 % Zn+1 Az+n+1 (‘82
= SA + -3 A4+
QY Q3 @ Q2
ntl 4. 91 2 LA
Zi:l i+(p—3)(n+1) 3, (p )Zz 1 “Yit+(p=3)(n+1) Iz, 611
+ Py A+ | A+
Q1Q; Q1Q5
N A(n+1)(p—2)+1Q1A - A(n+1)(p—2)+p—2Q1A N
AQ . Q25
1 2 1%2
N A(n+1)(p72)+p+1Q2A - A(n+1)(p72)+2(p71)Q2A
Qv Q3 olte an
n+1 0A; n+1 0Aifnit n+1 9Aiya(ni1)
Z’L=1 al‘i ZZ=1 6:(:1- ZZ=1 5Ii A + o +

= + A+
—2 —3 —4
QY Q2 QY Q3 QY Q3
Zn+1 O0Ai 1 (p—3)(n+1)

i=1 Jzi Aln+1)(p—2)+p—2

Amt1)(p—2)+1

A+ +...+
Q157 QA °Qs Q157
A(n+1;(192—2)+p+1A - A(n-l—l)(p—i)j—;(p—l)A
Ql QQ QlQQ

According to Corollary 7.3.5, we have omitted two summands with poles
only along one of the hypersurfaces Y;,7 = 1, 2.
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Then (in a slightly simplified notation)

Z?g it Aty p-2)+1 + Amr1)(p—2)4p1
P 3}"“ + A1) (p=2)+2 + A1) (p—2)+p+2

+1 0Aisa(n
S T At p-2)43 T Aty p-2)+p+3

=
S
I

n+1 0A; 4)(n+1)
Dty RO 4+ A p-2)tp-3 + A ) (-2) 1203

+1 aAz 3)(n+1)
IS 7“295 L+ A ) (-2 +p-2 T A1) (0-2) 1201

e Y. Sy < SOP2),

7.3.25 Theorem. For each 2 < p < n — 1 there is an exact sequence

%

0 — FPPH"2 (V’\,C> s (1) =2 (VA, cc) % My — 0.
(7.3.25.1)
Ifn is even, we have to replace F*~"H" 2 (V)‘, (C) byim (¥,.) forr = p,p+1.

Proof of Theorem 7.3.25: We just give the proof for n is odd. The
exactness is shown in two steps:

1. Let we FPPH" 2 (V)‘, C). Then there are homogeneous polynomials
Py e HO(P", Opn (kdy + (p—k)da —n — 1)),k =1,...,p— 1, such that

LTn
W= ZResvan(

LT,n
V’\ |IPn

0p (W) = (Pp—1Q1, Pp—2Q1, ..., P1Q1,0).

Py, LTn PO
Qka Nk AD—k ]) Z ResV*IP" ([Qlf+1@]21+1—(k+1)
P10

|
i Mv

A ) e pro+1) pn—2 (VA,(C).

Then

Now we have to show that w € ker (Ep), i.e. we have to find a tuple A =
(Al, ce 7A(n+1)(p—1)+2p) € Sp such that

op (w) = Kp1A.

°))
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In fact,

Kp+1

+

The vector A

= (0,...,0,P, 1,..

CHAPTER 7. PICARD-FUCHS EQUATIONS

Aq
A(n+1)(p71)+2p

(p— 1)t A%
S AGE + (p-2) T A 5B

) 0
2 Z?:Jﬁl Ai+n+1% +(p—3) Zgll AH?(nH)%i1

Z?:ll Az'Jr(p—2)(n+1)aa%i1 +1 (r—2) Z?:Jrll f;}zﬂr(pfi%)(rﬂrl)aé%i2
(P = DI A p-2)nen) 52

A1) p—1)+1GQ1
A1) (p—1)+2Q1 + At 1) (p—1)+p+2Q2
A1) (p-1)+3Q1 T A1) (p—1)+p+3Q2

A1) p=1)4p—1Q1 + A1) (p—1)+2p—1Q2
A(n+1)(p-1)+2pQ@2

., P1,0,0,...,0) solves the problem.

2. Let w e Fr=(P+U[n=2 (VA C) such that 0p (w) = 0. Then there is an
Ae §p such that g, (w) = K,+1A. We have

Kp+1A =

The resulting vector defines a vector (Pp—_1,...

Zn-‘,—l 0A; + A(n+1)(p71)+1 + A(n+1)(p71)+10+2

i=1 Ox;
ZizlaT ot A ) p-1)+2 + A1) (p—1)+p+3
+1 i n
S T 4 A p-1) 48 T A1) p-1)4pia

+1 aAz —3)(n
ity RO 4+ A -1 p—2 + A1) 1201

n+1 OAif (p—2)(nt1)
Sl g | g

i=1 T

(n+1) (p—1)+p—1 T A1) (p—1)+2p

p—1
€@ SV =5, c 5O,
j=1

, P1) such that

Q;_ll (prl, c. ,Pl) =: w/ = F”—p]_ln—2 (VA,C)

and w’ coincides with the given w. This shows that Sequence 7.3.25.1 is

exact.

0
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7.3.5 Description of the method by Libgober and Teitelbaum
for calculating the Picard-Fuchs equation

In this section we present an extension of the Griffiths-Dwork method for
calculating the Picard-Fuchs equation for a codim-2 complete intersection
Calabi-Yau manifold, which was introduced by Libgober and Teitelbaum in
[LT93].

We will proceed similarly to the case of Calabi-Yau hypersurfaces in
Chapter 7.2.

We use the notation introduced in Chapter 7.3.1. Let V = (V”\)AeT - T
be a deformation of the Calabi-Yau (n — 2)-fold V* < P* with T a complex
manifold. Let

Qe HO (T, R" 27 (Qq;u%))

be a family of non-vanishing holomorphic (n — 2)-forms on V. Let m :=
dime H™ 2 (V)‘,(C). We assume that all Hodge groups HP¢ (V)‘) are 1-
dimensional, thus m = n — 1. In practice, these Hodge-groups are not
1-dimensional. However, a finite group is operating on P", leaving V* in-
variant, and the invariant Hodge-groups HP-? (V/\)G are 1-dimensional. Fur-
thermore, all classes V’“ [©2] are G-invariant.

Again, using the notatlon of Chapter 7.1, we alm to find a linear combi-
nation of Vm [©] in terms of VO [Q],...,v2 Q.

Accordlng to Corollary 7.3. 12 we get a famlly of holomorphic (n — 2)-
forms Q (\) by defining

2] = V4% (2], = Res, [(W A)] c 120 (1),

Locally in T" we compute V by taking partial derivatives of the rational
1 . .
form mA with respect to A, i.e.,

v - [ 5 (Gmame) )

It is common practice to use the differential operator © := )\ Y instead of
a)\ The aim is to determine the coefficients s,,—1 (M), .. ()\) € C[A] of
the equation

OF = 8m—1(A) - OV + 550 (N) - O 2+ ...+ 50 (N) - 6.

Locally in T we calculate

1 k+2r—1 )
ek( ) A k=1,....m,
g QM) @ =20 @
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for polynomials P,,(]) = PT(,’;-) (A) € HO(P", Opn (jdi + (r — j)da — n — 1))

depending on the parameter .
Step 1. We reduce the summands of O} (ﬁA) with pole order m + 2,

plm)
namely ZTJEI W%A As OF <ﬁA> has to be cohomologous to a
form with lower pole order in Q7 and Q, there exists a vector A" =

(Agm)7 o ’Ag;n—&)-l)m+2(m+l)) € §m+1 such that

m+1 (71)2
Om+1 (Zl QJ m+g ]A> = Km+2A(m)'
J

Then, according to Remark 7.3.24, we reduce Kpmi2A™ to an element
q" = (g7, ..., q") € S, i.e., Ko A™ = g™ by setting

mo._ (m) (m)
o = Z axz + A(n+l)m+l + A(n+l)m+m+3
n+1 (m)
m aAz+n+1 (m) (m)
2 = Z Oz + A(n +1)m42 T A(n+1)m+m+4
i=1 ¢
n+1 g Am)
mo._ i+2(n+1) (m) (m)
3 = ; 0x; + A(n+l)m+3 + A(n+1)m+m+5
n+1 aA( m)
m L i+ (m—2)(n+1) (m) (m)
Im—1 = Z 0L, + A(n+1)m+m—1 + A(n+1)m+2m+1
i=1 !
n+1 aA( m)
m . i+(m—1)(n+1) (m) (m)
Im = Z ox; + A(n+1)m+m + A(n+1)m+2m+2’

=1

By this reduction process we have found a rational form which is cohomo-

logous to V% [€Q2] and whose pole order in 1 and Q3 is at most m + 1.
ax

Step 2 until Step m.

We continue the reduction procedure in order to find the linear combi-
nation of the class V™ [Q] in terms of V', [],..., V27 [Q] by using the
matrices K19 for p =aAm —1,...,1. ” ”

Starting with an element ¢gP*! € §p+1,p =m—1,...,1, we use the matrix
K

p+2 to find an element AW g §p+1 such that

qp+1 = Kp+2A(p) + Mp+2,
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where my ;2 € M, 2. The element m,,, 2 appears now, as it might be possible
that

¢ ¢ im (Kpiz Spar = Spen ).

i.e., we cannot find a vector A®) e §p+1 with P! = Kp+QA(7’). According to
Theorem 7.3.25, there could be an element my,1 2 € My 9 = H—(P+2).p (VA)
such that mp;o ¢ im (Kp42).

Subsequently, we get ¢P by reduction of Kp+2A(p). We repeat the reduc-
tion procedure successively for p =m —2,..., 1.

After the last reduction, we obtain a vector ¢! € 51 that corresponds to

0 1
the class © (Qle A).

Then, the classes m; should yield the coefficients of the derivatives
o' (ﬁA) in the Picard-Fuchs equation.

Computational Details: In the following we give a more detailed descrip-
tion of how to get the coefficients of the linear combination in practice. This
procedure is implemented in a programme written in the Singular program-
ming language in Appendix A.1.

Step 1’ is exactly Step 1.

For all further steps we change the definition of the matrices K, in the
following way: For each p = 1,...,m — 1 we concatenate the ((p + 1) x 1)-

p) N
matrix gp1 <Z§+i WA) e S®P+1) with the matrix Ko : Spr1 —

§p+1; i.e. we define a map by

p+1 (p)

. A o . ~ 2.
Kp+2 : SI/;+1 — Op+1, Kp+2 = (Qp+1 (Z %A ) Kp+2> )
i1 1@y
where §;+1 =S §p+1.
According to Griffiths transversality and dim H%7 (VA) = 1 for each
1+ J =n— 2, we know that

p+1 P(z;)2 .
~ p+2,j
Op+1 -72_-A
(Zl Qs )
generates F—(p+2) frn—2 (V*,C) JFn= (1) prn—2 (VA,C). Thus we can re-
p)
place the classes myp42 € M,12 by adding the entry g,+1 (Z? +i WA)
to the matrix Ko foreachp=1,...,m — 1.

Step 2’. Starting with p = m—1 we continue by finding a vector A®) e SI’)H
such that

qp+1 = KerQA(p) y
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where AP) — <A(()p), /Nl(p)> € §;+1. Then in case p = m — 1 we can write

m (mfl)

P ~

m (m-1) ~ Z m+1,5 m—1
Jj= ; ;

As in Step 1, we reduce K41 A™Y to an element ¢™ ! € gm_l. We repeat
the reduction procedure with ¢! instead of ¢™.
Step 3’ until Step m’. We continue in this way until p = 1.
In Step 17, we got
m+1 (m)
Gt 1 (Z 7JP T ]A> =q".
J=1 Q1
Then, in Step 2,
m  plm—1)
e g (3 s
j=1

and so on. We have to find the coefficients s, (A) € C[A] for p =m—1,...,1
by collecting the terms of the same pole order such that

m P(erzl) (1) m P(TC:U
~ m+1,j m— ~ _omrly
Sm—1 ()‘) * Om (Z Qj m+1 JA> = AO " Om (Z Qj m+1—j A) +

Jj=1 j=1
m (m)
P
~ m+1,
+ Om (Z 7 m+f 7 A)
J=1 Q1
and
m—1 P?Slm‘_Q) o m—1 Pr(nm'_Q)
$m—2 (A) * Om—1 (Z WA = Aé ). Om—1 Z WA +
j=1 W12 j=1 W12
m—1 Pygqm) m—1 Pélmfl)
+0m—1 (Z ji;rjb—jA — Sm—1 ()\) “Om—1 Z ﬁA
o1 @1Q; o1 1@,
and so on. For general p =m —1,...,1 the coefficient s, () has to satisfy
+1 pl) +1 (p)
Sp ()\) N @p-‘,—l (p p+27] ) A(p ép-i—l <pz Pp+2’]A> +
= Q]QP+2 J = QJle27+2—J

p+1 P(TQ m— p+1 P(TQ_Z)
~ pt2,j ~ pT4,)
+ Op+1 ( § 7@{@5” v ) § Sm— z " Op+1 ( § 7@{@54_2_]‘ A) .

=1 =1

We explain an example carried out by Libgober and Teitelbaum.
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7.3.26 Example. [LT93] Let VV* be the complete intersection of two hy-
persurfaces in P°, given by the zero sets of the two homogeneous polynomials

Q1 = 25 + 23 + 23 — 3\ vaws76 € HY (PP, Ops (3))

and
Q2 = .%'?1 + l’g + 1‘2 — 3\ z1x923 € HY (]P)S, O]ps (3)) .

Then VA = VA n V3 is a Calabi-Yau 3-fold for generic A. According to [LT93]

there is an action of a finite group G < PGL (5,C) that preserves Vf‘ =

{Q1 = 0} and V3* = {Q2 = 0} and all groups HP? (V*) are 1-dimensional.
Then the Picard-Fuchs equation reads

(02 (0r3) (02+2) ) -0

A Singular-Programme can be found in the Appendix A.1.
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Chapter 8

Picard-Fuchs operators for
pairs

In this chapter the Griffiths-Dwork method for calculating the Picard-Fuchs
equation is extended to pairs consisting of a Calabi-Yau manifold in a pro-
jective space and a smooth hypersurface in the Calabi-Yau manifold. The
Griffiths-Dwork method was first transferred to pairs by Jockers and Soroush
in [JS09a]. As the hypersurface appears as a complete intersection in the
projective space, the method introduced by Libgober and Teitelbaum in
[LT93] can be applied in this situation.

To be precise, we consider the following situation.

8.0.-25 Setup. Let X = {P =0} be a Calabi-Yau hypersurface in a pro-
jective space P", defined by a homogeneous polynomial P € HO (P", Opn (n + 1)).
Let H = {Q = 0} be another smooth hypersurface in P", defined by a homo-
geneous polynomial Q € HC (P, Opn (k)) for some k € N. We assume that
X and H intersect transversally; therefore D = X n H is a smooth divisor
mn X.

A central object will be the relative cohomology H"~! (X, D,C). We
first define a residue map for the pair (X, D) at the level of forms. This will
lead to a residue map on the relative cohomology. The residue map will be
used in Section 8.2 in order to compare a Hodge filtration on H"~! (X, D, C)
with a filtration by the pole order on the hypercohomology of a complex of
rational forms. Then we describe the Griffiths-Dwork reduction using the
work of Li, Lian and Yau [LLY12]. The theory of Li, Lian and Yau will be
discussed and extended to triples in Chapter 9.

Finally we describe an example where X is a quintic. Here a major new
difficulty arises, since a suitable D is no longer smooth.

131
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8.1 Definition of residues for pairs

We recall the following

8.1.1 Notation. Given a sheaf S and a section n€ S (U) for an open set
U, we write shortly n € S if we do not want to specify U explicitly.

For convenience we introduce some notation before giving a definition
for a residue map for pairs of logarithmic forms.

8.1.2 Notation. For each form n € Qfm (log X) we define a form 1 €
QEHL (log (X + H)) by

P @

ni=n 0 .

Then

veslyt, (7) = iy € 2 (log D).

8.1.3 Definition. We define a complex
((Q]pn (log X) ® Qpn (log (X + H)))® ,ci)

with differential

d* . k. (log X) @ Qk. (log (X + H)) —
Qi (log X) © Q5 (log (X + H)),

Jk (7717772) = (dknlvﬁ\l - dan) .
Obviously
Jk+1 o dk = O

for each k.

8.1.4 Remark. There is an exact sequence of complexes

0 — (2 (log (X + H)),d) — ((Qen (1og X) @ Qen (log (X + H)))",d)
—  (Qpn (log X),d) — 0.
8.1.5 Definition. We define a residue map resEX D)[pn for the pair (X, D)
by
res]({:X,D)HP" 1= res’)“(mm @ reséﬁ;ffl : 0. (log X) @ Q% (log (X + H))

- O e Q)
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8.1.6 Remark.
The residue resEX7 p)pn MAPS exact forms of the complex

(2 (log X) @ QU (log (X + H)))
to exact forms of the complex Q% ' @ Q3,2 In fact, given
(m,72) € Q1 (log X) @ Q7 (log (X + H)),

then
_ LT h— 5
d (reslﬁqén (m) ; res pypn ! (772)) = reS]fX,D)UPm (d (?717772)) :

This last equality follows immediately from

f— LTk  ~
resx‘{én (nl))D = eSppn (m) ,

which is a consequence of

LTk ~ k— ~ k— k—
TeSpipn (m) = resDu}I o res’;{“pn (m) = resDu}I (mly) = resX‘Hin (mly) -

8.1.7 Definition. According to Remark 8.1.6, for each k = 2 the residue
map res’(“XD)‘Pn defined in Definition 8.1.5 descends to a map which we also
denote by

resty pyen ¢ ( (W (log X) @ Ok, (log (X + H))) ,d) — (25 @0l 2%,d).
8.1.8 Definition. The map res’fXDWn duces a map in cohomology
Resty ppr : HY (Q;Pm (log X) @ Qpn (log (X + H)) ,J) — H*1(X,D,C).

8.1.9 Remark. We obtain a commutative diagram
H* (220 (log (X + H))) —— H* (Qfn (log X) ® Qfn (log (X + H))) —— H* (2fn (log X))

LT,k k k
\LRes D|l§’” lRes(x,D)Pn \LRes X |Bn

H*=2(D,C) H*1(X,D,C) H1(X,C).
(8.1.9.1)

As we aim to work with rational forms on P™ with poles along the hyper-
surfaces X and H, we transfer the definition of ResEX’ D)[Pr to the cohomol-
ogy of rational forms. Therefore we define a complex of global rational forms
whose cohomology coincides with the hypercohomology of the complex of
logarithmic forms defined in Definition 8.1.3.
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8.1.10 Notation. Let

. (+X) = ) Q. (mX)

mz=0

be the sheaf of meromorphic k-forms which are holomorphic outside X .

8.1.11 Definition. Let (IC',CZ‘) be the complex defined by

K i= 1O (B, O (+X) ® Qo (X + +H))

with differential

- ~ d
d": KF = KM dE () o= <dk771,771 A g - dk?h) :

The following remark is in order.
8.1.12 Remark.
1. Let (m,n2) € HO (P",QF, (mX) ® Qf. (sX + rH)), then
& (m,m) € H® (P, 0%, ((m+ 1) X) @ 0b, (s + 1) X + (r+ 1) H)) ,
thus d* is well-defined.

2. Obviously d* o d*=1 = 0 for each k € N.

We now compare the complex of global logarithmic pairs with the complex

K* just defined.
8.1.13 Theorem. The complexes <IC',J> and
(1 (B", (051 (108 X) ® Qe (log (X + H)))") ")
are quasiisomorphic; therefore
HE (IC’, d) ~ HY (ng (log X) @ Q3. (log (X + H)) ,d)

for each g € N.
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Proof of Theorem 8.1.13: We use the exact sequences of complexes
0 — H(P", Q. (log(X + H))) —
— H(P",Qp. (log X) @ QO (log (X + H))) — HO (P, Q. (log X))
and
0— HO(P", Q% (+X + +H)) — K* — H° (P", Qp (X)) — ...
Now we use the quasiisomorphisms
Qp. (log X) = LxSdpm x
and
Opn (log (X + H)) S 35 0pm\ (x L H)»
where ¢ : X < P” and j : X U H — P" denote the inclusion maps. Hence
we obtain quasiisomorphisms

HO (P", Qpn (log (X + H))) — HY (P", Qpn (+X + +H))
and
HY (P, Q3. (log X)) — H® (P", Q8 (+X))
and by the 5-Lemma a quasiisomorphism
HY (P™, Q. (log X) @ Qp (log (X + H))) — K°.
O

We next define a residue map on the cohomology of the complex (IC‘, CZ)
of global rational forms. As we are going to see that this residue map
coincides with the residue map in Definition 8.1.8, we use the same notation.

8.1.14 Definition. The residue map for classes of rational forms is de-
fined by

Res(y pypn : (’C.7d> — H"(X,D,C) = Hom (Hy1 (X, D),C),

[On,m2)] = (Resfy o [(m3m2)]  Hymt (X, D) — €,

[V]HJ ﬁl—f 772>.
T(v) 7'(07)

q

(X,D)[Pn is well-defined.

It is easily checked that the map Res
8.1.15 Corollary. The residue map
Resty pjpn : HY (Qfm (log X) @ Qpn (log (X + H)) ,d‘) — H*1(X,D,C)

defined in Definition 8.1.8 coincides with the residue map for pairs of ratio-
nal forms Res‘(]X’D) defined in Definition 8.1.14 wvia the isomorphism
of Theorem 8.1.13.

[P
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Proof of Corollary 8.1.15: Using Remark 8.1.4 we obtain the following
diagram:

H* (P (X + H),C) H* (K*) H* (P X, C)

lRes%ﬂ;ﬁ iRES?X,D)IP" lRestlﬂm

HF2(D,C) H1(X,D,C) —= H*1 (X,0).
(8.1.15.1)

The left vertical arrow comes from the description of Resgﬁfn in [LT93],

Chapter 2. Now the claim results from comparing Diagram 8.1.9.1 with
Diagram 8.1.15.1. O

Similarly to the case of hypersurfaces and complete intersections in a
projective space, we will now formulate Corollary 8.1.15 in an explicit way
that is accessible for computations.

We recall the maps

ag s H° (P",Opn (gdy —n — 1)) — F*1H" 1 (X, C),
defined in Theorem 7.2.4 and

v H [P, @B Ope(prdi+peds —n—1) | > F""PH"*(D,C),

(pl 7P2)€N>< Na
p1+p2=p

defined in Corollary 7.3.10.
8.1.16 Notation. We set

Cp17p2 = Opn (p1d1 + pads — . — 1) ,
Cq = O]}Dn (qdl —n — 1) .

Furthermore, we define the map

‘I’%’D) : HO ]va OIP’” (qdl —n— 1) @ C—B O[an (p1d1 + p2d2 —-_n— 1)

(p1,p2)eNxN,
p1+p2=p

- anl (X7D7(C)7
" s 2l R,
(S, Ry,..., Rp1) — ReS(X,D)HP’” [(P]A’;@ Pka—kA

8.1.17 Theorem. We get the following diagram

H° (Ipm’ ®P1+p2:p CPl»PZ) —H° (ancq ® @p1+p2:l) Cpl’pz) — 1" (Pn’cq)

lwﬁT lw;jif’) iwq

H"2(D,C) o "1 (X, D,C) —— g1 (X,0),
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where the upper row is defined in the obvious way and (1 and (2 are the
canonical maps given by the cohomology sequence of pairs. The left square is
commutative. The right square is commutative if the map H" ' (X, D, C) —
H" 1 (X, C) is surjective.

Proof of Theorem 8.1.17: Step 1. At first we show the commutativity
of the right square Let (S, Ry,...,Rp_1) € H® (IP’”, Cqa @ D (p1+pap) Cphm),

then T/’pq (S Ry,...,Ry_1) is the linear form

Ho(X0) =€ bl | S f(hkapk

The map (o restricts zppq (S Ry,...,Rp—1) to Hp—1 (X), which lies in-
jective in H,_1 (X, D), since the map H" ! (X,D,C) — H" 1 (X,C) is
assumed to be surjective. Then obviously

(0 (S Ri,....Rp—1) = g (S5).

Step 2. In the second step we show that the left diagram is commutative.
Solet (Ry,...,Ry_1) € HO (IP”, Y. cpm). Then =7 (Ry, ..., Ry1)

is the linear form

o) =€, b= [ Y 1pk@p 3

The composition (y owﬁT (Ri1,...,Rp—1) can be identified with the restriction
of the linear form 1/J£T (R1,...,Rp—1) to the space

={[vle Hna (D) Hn2(1)[7] = 0 € Hpa (X)}.

For each closed cycle v € C),—o (D) with [y] € V, there exists a cycle 74 €
Chr—1 (X) such that 0 (§) =y € Cp—1 (D) and [§] € Hy—1 (X, D). Then

CovtT (Ry,..., Rp—t) ([3]) = 55 (0, Ry, ..., Ry ([A]) -

8.2 Hodge and pole-order filtration

We obtain a mixed Hodge structure on H"~! (X, D, C) in the following way:
The mixed Hodge structure on H"~! (X\D, C) given by the logarithmic com-
plex induces a mixed Hodge structure on the dual space H"~! (X\D,C)",
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which is canonically isomorphic to H" ! (X, D,C) (see Theorem 4.2.37).
The filtration is given as follows by:

s (HN(X,0x)) =2 H (X))
2 Prle (H? (X, Q) (log D))
3 . P2 (H 3 (X,0% (log D))

Y o (H° (X, 9% (logD)))"

On the space H" 2 (D) we have the following filtration steps:

var

EM1(D) @ 0

var

- 2 (D) . Hn—Q,O (D)

var

e 3(D) . Fn_Q(‘BHn 31<D)

var var

(D) F'@ H'"2 (D).

0
F’UGT’ var
Using the canonical Hodge filtration on H"~! (X, C), the sequence is a se-

quence of mixed Hodge structures, i.e. there are exact sequences

0— FFH"2(D) - FFH" ' (X, D,C) — F*ker H" 1 (X,C) — 0,
(8.2.0.1)

where
ker H" ' (X, C) :=ker (H" ' (X,C) - H" ' (D,C)).

We explain Sequence 8.2.0.1 for the case that £k = n — 2 and D ample in
detail. The ampleness implies that the map H"~! (X, D,C) — H" ! (X,C)
is surjective. Modulo H° (X, Q}l{_l), Sequence 8.2.0.1 reads

0— H°(D, Q%) - H" 2 (X,Q% (log D))" — H" % (X,0%)" —0.
Using H° (D, Q%) ~ H"2(D,0p)" and H! (X, Q% ?) =~ H"2(X,04)"
and dualizing the sequence, we obtain

0—H"?(X,Qk%) > H"*(D,0p) > H"?(X,Q%) — 0.

This is just the part of the cohomology sequence associated to the residue
sequence
0— Q% - Qk (logD) - Op — 0.

In fact, H" =3 (D,Op) = 0, as D is ample and H" ! (X, Q) = 0, since X
is Calabi-Yau.
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8.2.1 Remark. Using the isomorphism

H"'(X,D,C) = H" ' (X,C)® H",* (D) (8.2.1.1)

var
we get the Hodge filtration

Fn—l . Hn—l,() (X)
Fn—2 . Fn—l @ Hn—2,1 (X) D HTL—Q,O (D)

var

Fn—3 . Fn—2 @ Hn—3,2 (X) @ HTL—3,1 (D)

var

F : FroH Y (X)®H) (D).

var

As an application of Theorem 8.1.17, we obtain

8.2.2 Theorem. We assume V = P" and deg (X) = di,deg(H) = do;
then according to Bott’s theorem, the vanishing hypothesis is satisfied.

1. im <\III(,§’D)) e F*"H" Y (X, D,C), where n — r is the minimum of

the numbers n — q and n — p.
. (X,D) . _
2. If n is odd, then Wy, 4 is surjective for each p,q.

3. If n is even, then im (\IJI(,f;’D)) is not surjective in general; in that case

it has codimension 1 in F*~"H"~1 (X, D,C), where r is the mazimum
of p and q.
8.3 A basis for relative cohomology

We now consider a family (X,D). For carrying out the Griffiths-Dwork
algorithm, we need a basis of H"~! (X, D, C), which we will set up now.

As parameter spaces for the families X and D, we take local complex
manifolds S; and So. We start with a hypersurface

X P x Sy
More precisely, X, = {P, = 0} < P" is given by a homogeneous polynomial
P, e H*(P", Opn (n + 1)),
which varies holomorphically with z € S7. Let

ﬁCPnXSQ
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be a second hypersurface given analogously by H, = {Q, =0} < P" for
each u € Sy, where @), is a homogeneous polynomial on P" for u € Sy with
Qu € HY (P", Opn (d)) for some d.

In summary,

X = (Xz:{Pz:O})

T
- S17

H = (HU = {QU = O})’U,ESQ E SQ’

z€S1

We define X’ and H as families over S := 57 x Sa:
X = )E' X SQ m—Xi)d
H = S1 X 7:[1 idﬁ? S

Finally we define a divisor D in X by

D = (X.nHJzeSues) T s x5,

and set D, , :=D n X, n H,.

Let [Q] € H*" 10 (X, D) =~ H" ! (X) be the class of a holomorphic non-
vanishing (n — 1)-form on X, and V be the Gaufl-Manin connection attached
to the local system H" ! (X,, D, ,,C) (cp. 9.5.1).

8.3.1 Lemma. We suppose that hP" 1P (X) =1 for allp = 0,...,n —
1 and that R%) 271 (D) =1 for all ¢q = 0,...,n — 2. Then a basis of
H"Y(X,D,C) is given by the 2n — 1 elements

[Q],Vy [Q],VE[Q],.... Vi Q] Ve [Q, Ve Vs [Q],. .., V2V, [Q]
e H" ' (X,D,C).

Proof of Lemma 8.3.1: This is an immediate consequence of Theorem
8.2.2. O

8.4 The Griffiths-Dwork method for pairs

We continue assuming the Setup 8.0.-25 and start discussing the approach
of Jockers and Soroush.

8.4.1 The approach of Jockers and Soroush

In the paper [JS09a] Jockers and Soroush introduce an integral in the case
of Calabi-Yau 3-folds,
f log @ A

P
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and formally compute with this integral. However, this integral needs to
be defined properly. In [LLY12] Li, Lian and Yau take a slightly different
approach and show that the formal computations give the correct result; see
Chapter 9, where we extend the method of Li, Lian and Yau to triples. In
this section we show that at least § %A can be defined and gives a 3-form
on X.

8.4.1 Lemma. There is a well-defined class R (z,u) € H3(X,C) defined

by
JR(z,u):f IOgQuA
5 () P

for each 6 € H3 (X) with 6 = [t (77)] for a closed cycle v € C3(X\D), the
meaning of the integral on the right hand side being explained in the proof.

Proof of Lemma 8.4.1: We first claim that Hs(X\D) — Hj3(X) is
surjective. To see this we consider the following diagram

H3(X,D,C)—— H3(X,C)

lz iz

H3 (X\D) H3 (X)),

where the vertical arrows are given by Poincaré duality and therefore are
isomorphisms. Now it suffices that the map H3 (X, D,C) — H?(X,C) is
surjective, which follows from the assumption that H? (D, C) = 0.

Let {ai,...,a,} be a basis of H3(X). Since the map Hs (X\D) —

Hs (X) is surjective, for each k € {1,...,r} we can choose closed cycles
Yk € Ck (X\D) such that ap = [t (7%)]-
Let

T () € Hy (PY\ (X U H))

be the tube over v, in P4\ (X u D) for each k.
Let o : C5\ {0} — P* be the projection.

Claim: There exist classes
T (vj) € Hy (o7! (PY\ (X U H))),

such that o, <T (fyj)) =T ().

Proof of Claim: Let B :=PY (X U H) and Z := 67! (B). We need to
show that the map o : Hy (Z) — Hy4(B) is surjective. Since o : Z — B is
a C* bundle, we have an exact sequence, see [Spa81], p. 483,

Hy(Z) 5 Hy(B) — Hy (B).
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So it suffices to show that Hy (B) = 0. By duality
Hy(B) ~ HY (P*, X U H).
Now we consider the exact sequence of pairs

..—>0=H°(P,C) » H° (X UH,C)— H (P, X UH,C)—
— H*(P',C)=C—> H (X UH,C)—....
The map
p: H® (P',C) - H (X U H,C)

is injective; in fact,
i (e1 (Op (1))°) = €1 (Ops (Dlx)* #0.

Hence it suffices to show that H° (X u H,C) = 0. To that end we consider
the Mayer-Vietoris sequence

..—» H*(X,C)® H*(H,C) - H*(D,C)=C - H° (X U H,C) —
— H°(X,C)® H° (H,C) — ....
Obviously the map H*(X,C)® H*(H,C) — H*(D,C) does not vanish,
and H® (X,C) = H°(H,C) = 0 by the Lefschetz hyperplane theorem and

duality. Therefore the Mayer-Vietoris sequence implies H° (X u H,C) = 0.
This proves the claim.

We view @ as a map C°\ {0} — C, which we denote by c*Q.
Let E := (6*Q) ' (R™) c C®\ {0} and

U:= (C\{0})\E

be the complement. We choose the standard branch of the logarithm, so
that log (0*Q|;;) makes sense. Then we define:

T (k) P T(vk)nU P

We have to show that this integral is finite. Since T'(v;) n H = (&, hence
T (v;) n {o*Q = 0} = &, and therefore 0*Q (T (7]-)> is compact in C\ {0}.

Therefore log (0*Q) is bounded near T (v;) and hence the integral exists.
In summary we define a linear form on Hj (X) by

log Q
R(a;) := A.
(%) JT(w) P

log ((0*Q)ly) -

U
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8.4.2 Remark. A priori the construction of R(z,u) depends on the
choices made in the construction. If the approach of Jockers and Soroush
works, R (z,u) should be represented by a (3,0)-form, which is unique up
to a constant. This however seems not really clear. But if R (z,u) is rep-
resented by a (3,0)-form, then the construction of R (z,u) does not depend
on the choices made in the construction.

8.4.2 The work of Li, Lian and Yau

The paper [LLY12] justifies the method of Jockers and Soroush for determin-
ing a Picard-Fuchs equation mathematically. Li, Lian and Yau show that
the application of the GauB-Manin connection to the periods of the residue
of a holomorphic n-form with poles along X coincides with taking partial
derivatives of the class R (z,u) introduced in Lemma 8.4.1. We will extend
this to the case of two divisors and carry out details in the next chapter.

To start with, let w, € HY (P", Kpn (X)) be a holomorphic family of
holomorphic n-forms on P" with poles along X,. Then Li, Lian and Yau
show

8.4.3 Theorem. [LLY12] Let T, , € H3(X.,D,,) The periods
I:S—-C, TI(z,u):= f[r ]Res?);j’DZ’u) [(wx.,0)]

satisfy the following relations:

1. 0,11 (Zau) = S[Fz’u] Res?);zl,Dzﬂ) [(aZsz? 0)] = ST(Fz,u) 0wy,
where 7 (01, ,,) < Hy,

2 Gl (zu) = fir_ g Restc! ) | (0. %2 ) | =

o LT 0uQu
Sarz,u Resp,_ ,jpn [ Qu WZ]'

8.4.4 Corollary. [LLY12] All derivatives of I1 coincide with the deriva-
tives of R, i.e.,

0 11 (z,u) = 0,R(z,u),
Oull (Zv u) = O,R (Za u) )
0, 0u11 (2, u) 0,0uR (z,u) .

8.4.3 Griffiths-Dwork reduction for pairs

Similarly to the case of hypersurfaces or complete intersections in projective
spaces, the Griffiths-Dwork algorithm for pairs uses cohomology relations
that appear as residues of rational exact forms. The following is the main
result in this section, compare [JS09a], Chapter 3.2:
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8.4.5 Theorem. For
A, € HY (P", Opn (k - deg (P) —n))

and
By, € HY (P", Opn (k - deg (P) + 1 - deg (Q) — n))

the following cohomology relations hold:

1.
n+1
B, 0., P B &me
!(0’7;1 {k pk+1Ql +1 kal+1 A)] =
n+1
Bnls, P B @ch n e i
:Ko,mz_]l[k i gt A)] e H"(K*.d)
2.
n+1 A0y P n+1 5me A,
Z k—ri pk+1 Z ka

<§1a$;fmA,o>] e H" (K',J).

m=1

For the following lemma, which will be used in the proof of Theorem
8.4.5, we refer to [Gri69], Theorem 7.2.2 and 7.2.3, and [LT93].

8.4.6 Lemma. Let (n1,7) € H* (P", Qp. ' (kX) @ Qp ' (kX + LH)).
Then there are homogeneous polynomials
Ay € HY (P*, Opn (k - deg (P) — n))
and
By, € HY (P", Opn (k - deg (P) + 1 - deg (Q) — n))
such that
Am - mA' m+q 7 -
m = Z %(—1) Ydry Ao A dTgm A . Adri Ao A dTpg
m<j

and

;B — & B; } _ _
o = Z %(—1)"&]&51/\.../\da:m/\.../\d:):j/\.../\d:nnH.

m<j

Consequently,

n+1
AmﬁmmP Oz Am
dm = Z [k PR+l Pk }A

m=1

and

n+1
Bméxmp Bmame axmBm
d772 = Z [k Pk+1Ql +1 Ple—H B Ple ]A'

m=1
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Proof of Theorem 8.4.5: Let
(n1,m2) € H (P", Q" (kX) © Qp (kX + 1H))

be as in Lemma 8.4.6.
An easy computation yields

L 99 _
m 0
n+1 n+1
ax A —_—
2 W}SCQ Z ”degQ L day Ao AdTy A A T
and

n+1
. A, _ .
[Z (—1)? deg Qp—i dri Ao ndxj A oA dmnH] € ker (Reslg;u‘M> .

As Cz(m,m) = (dmﬂh A % — dm), we conclude:
1. For m; =0, i.e., A, = 0 for each m, we get the relation

n+1
Bmammp Bméme axmBm n o 7
KOva_l <k pk+1Ql +1 PkQHl o Ple A)) €H (IC ’d)’
thus
n+1 n+1
B0y, P B0y, Q Oz, Bm
!(QmZ_:l (k PEHIQT +1 PrQI >A> - [(0’7;1 PEQ A
e H" (/C', cZ) . (8.4.6.1)

2. For n2 = 0, we obtain

d(m,0) = <dm,nmcg>:

n+1 n+1
Amame Oz @ - A
- <Z <k Pk+1 >A Z PkQ

m=1

n+1

—Z JdegQ ' day A /\gw\j/\.../\da;wrl).

Thus

n+1 n+1
A0z, P &cm A, O @ - A
[(Z <k Pkl > A, Z ka ) =0,

m=1
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and therefore

n+1 n+1 n+1
AnCa, P Y 22,Q - Am O Arm
[(Z k=1 pk+1 Z ka ) = [(Zl_ Pk A>O>

e H" (/C',J) . (8.4.6.2)

O
This establishes the proof of Theorem 8.4.5.

The general procedure

We finally describe the general procedure how to compute the Picard-
Fuchs equation.

We denote the ordered, (2n — 1)-dimensional basis of the relative coho-
mology H" ! (X, D,C) given by Lemma 8.3.1 by 7 (z, u).

In order to calculate the Picard-Fuchs operators, we determine C-valued
(2n — 1) x (2n — 1)-matrices M, (z,u) and M, (z,u) such that

V.r(z,u) = M, (z,u) w (2, u)

and
Vum (z,u) = M, (z,u)g(z,u) .

In order to do this, we have to use the cohomology relations given above.
Each element of V.7 (z,u) and V.7 (z,u) has to be written as a linear
combination of the basis .

The matrices M, (z,u) and M, (z,u) yield differential operators, the
Picard-Fuchs operators.

8.5 An example

As an application of the theory presented so far we consider now the case of
quintic 3-folds X with a divisor D. However, as already mentioned, H?*! (X)
is too large for the computation of a Picard-Fuchs eqution. Therefore it is
common to consider only those quintics having a sufficiently large symmetry
group GG. Then we will argue on X /G instead of X. Also the divisor we
consider needs to be G-invariant, so that we can consider D/G in X/G.

The case without a divisor has been carried out by Greene—Plesser in
[GP90] and Batyrev. It has however to be noticed that the divisor D has to
be singular, so the theory developed so far has to be adapted to take care
of this difficulty.

8.5.1 A family of Calabi-Yau 3-folds

We briefly recall the mirror construction of Greene and Plesser [GP90], see
also [GHJO03] and [CK99]. For each ¢ € C let Xy := {P, =0} < P! be
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a l-dimensional family of quintic Calabi-Yau 3-folds given by a family of
homogeneous polynomials P, € H° (IP4, Opa (5)) on P4, namely

Py([x1:...:25]) i= 27 + 25 + 2§ + 2§ + 23 — 5¢ z120737475.

It is easy to compute that X, is non-singular for Y® # 1 and for ¢° = 1 it
is singular in 125 distinct points. So from now on we will assume ¢ # 1. By
Batyrev’s theorem, hl'! (X)) = 1 and h'? (X,) = 101.

The group G := (Z/5Z)° / (Z/5Z) acts on P* in the following way: To
begin with, there is an action of (Z/5Z)° on P* by

(Z/5Z)° x P* = P* (a1,...,a5) % [21: ... x5 — [€ ... 1 €9],

where ¢ := e’". Since the subgroup Z/5Z := {(a,...,a)| a € Z} acts as the
identity on P4, we obtain the G-action on Xy. Furthermore, the subgroup

G:={(ai,...,a5)|a1 +... +a5 =0} =2 Z3 < G

of G acts on P*; generators for the G-action on P* can be given in the
following way.

G = <gl = (130307074) y g2 1= (Oa 1703034) y g3 1= (ana 1a054)a
g4 :: (0’ 0’ O’ 1’4)> )

where e.g. g1 acts on P* by
91:[ml:x2:$3:x4:x5]»—>[pxlzxzzx3:x4:p4m5].

27i
Here p:=e5 .
We notice that Xy is G-invariant and we set

Yy = Xy/G.

It is known that the singular locus of Yy, consists of 10 curves isomorphic to
P!: three of them meeting in one point. Furthermore, Y, is Gorenstein with
canonical singularities, and has crepant resolutions 7 : X, — Y.

8.5.1 Theorem. [Bat9/] We assume ¢® # 1. The variety )Z'¢ is a Calabi-
Yau 3-fold with Hodge numbers h'! ()?w> = 101 and h'? ()v(¢) = 1.

8.5.2 Corollary. We obtain the following equalities:
1 W30 (Yy) = B30 ()% = W0 (X)) = b3 (V) = 1,
2. BN (Yy) = hb(Xy)¢ =1,

3. h¥1(Yy) = B2 (Xy)% = h'2 (Xy)% = b2 (Yy) = 1.
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Proof of Corollary 8.5.2: To begin with, we notice that by Proposition
4.2.40, we have HP4 (Y,) = HP1 (Xw)G. The first assertion is obvious.
Since dim HM! (X) = 1, we have dim H! (X¢)G < 1. On the other
hand, obviously H! (X¢)G # 0.
Concerning H*1! (Yy), we use h?! ()v(¢) = 1. Since 7, (Q%}) = Q%w

(see Remark 4.2.42), the Leray spectral sequence gives
2,1 _ 71 A2 1(v 2 _
P (V) = bt (Ve O}, ) < h (le,Q)v(w) -1

The non-vanishing of H>! (Yy) = H>! (Xd,)G will be clear, as it parametrizes
G-invariant deformations of X, and all X, are G-invariant. Therefore it will
be non-zero. We will furthermore construct elements in H?! (V) explicitly.
Finally, by the same arguments or by duality, we obtain H'?(Y,) =1. O

8.5.2 A family of smooth divisors inside the family of Calabi-
Yau 3-folds

Let Hy := {Q = 0} = P* be a family of hypersurfaces in P* given by
Qg ([x1: ... 1 x5]) := T3 — ¢ T1T22374.
Then for ¢ # 0, the hypersurface Hy is singular in the 6 lines
{r;=2;=25=0,1<i<j<4}.

Let
Dw@ = Xw M H¢

for v, € C,9p° # 1,6 # 0.

8.5.3 Proposition. We suppose that ¢ # 1 and v (¢ — ¢)4+44 (56 — )+
4320 (¢ — ¢) = 0. Then

Sing (Dy.¢) = (SingHy) N Xy =
= U {:pl s x5) €P4|£L'1+...—|—$g=0,:L’i=3;‘j=l‘5=0}.
<

Proof of Proposition 8.5.3: We write D = Dy 4 and H = Hy. It is
immediately checked that

(SingHg) N Xy =
U {[3:1:...:x5]eIP>4’x?+...—|—:U§=O,$i=xj:x5=0}.

1<i<j<4
Therefore it suffices to show that

Sing (D) = Sing (H) n D,
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i.e., that there are no singularities of D which are not singularities of H.
Arguing by contradiction, we assume that there is a point a € Sing (D), such
that a ¢ Sing (H).

Then the Jacobian matrix Jpg) of P and @ does not have maximal
rank in a and there is a number A € C, A # 0, such that

X-Jp(a) = Jg(a),

where Jp and Jg denote the Jacobian matrices of P and Q.
Now, choosing the chart given by 1 = 1 and assuming x5 = 0, it follows

easily that a = [1: 0 : ... : 0] in contradiction to our assumption Jg (a) # 0.
Thus x5 # 0. The same argument holds if zo = 1,23 = 1 or z4 = 1.
Therefore we assume that x5 = 1. It follows easily that 27 = ... = 23 and

all additional singularities of D have the form
[z1: pMxy : p®ay : p®ay o 1]

for a1,a9,a3 € N and p = ¢, Via the action of the group G on D it is
possible to map each of these points to a point [1:1:1:1: z5] with x5 # 0.
As the action of an element g € G on D is an automorphism of D, the points
[z1: p™xy 2 p®2xq 2 p™Bxq ¢ 1] are singular if and only if [1:1:1:1: z5] is.
Now a direct computation shows that any point [1:1:1:1: z5] is singular
if ¥ # ¢ and

(W — )t + 41 (5 — ) + 4320 (v — ¢) = 0. (8.5.3.1)

O
As H, being invariant under the action of the group G, the divisor Dy 4
is invariant under GG. So we can form the quotient by the group G.

8.5.4 Definition. We set
D:M) =Dy 4/G.

8.5.5 Corollary. For general parameters v and ¢, the singular locus
Sing (Dibxﬁ) = p(Sing (Dy.¢)) consists of 6 points, where p : Xy — Yy

denotes the projection.

In the following we use the abbreviation D = Dy, 4 and D' = Dy, ;.

We first determine the Hodge numbers of the G-invariant cohomology
H*(D,C)% = H? (D',C).

At the moment we have not yet shown that D has quotient singulari-
ties. Therefore we define ad hoc H*? (D) := H° (D, Kp) and H*? (D) :=
H?(D,0p), where Kp := Kx ® O (D)|p € Pic(D). Of course, provided D
has quotient singularities, then this coincides with the previous Definition
4.2.41 (see [Ste77]).
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8.5.6 Lemma. The Hodge groups of the G-invariant cohomology of D =
Dy, ¢ with v and ¢ as in Proposition 8.5.3 satisfy the following property:

H>*Y(D)¢ ~ H*? (D)¢ ~ C.

Proof of Lemma 8.5.6: The ideal sheaf sequence
0— Ops (=1) = Txpps @ Ops (H) — Opa (H) —> Ox (D) — 0
yields an isomorphism
H° (PY,0ps (H)) = H° (X, 0x (D))
and therefore
H® (P*, Ops (H))© = HY (X, 0x (D)€ .
We observe that dim H° (IP4, Ops (4))G = 2. In fact, a basis is given by the
homogeneous polynomials xé and x1Tor3x4.
Furthermore
H°(X,0x (D) =~ H (Y, 0y (D)) = H? (Y,0y (-D')).

Since Y is a singular Calabi-Yau 3-fold, H? (Y, Oy) = 0 and H3 (Y, Oy) = C.
Then the exact sequence

0 = H?(Y,Oy)— H*(D',Op) — H*(Y,0y (-D')) —
—>H3(KOY)2(C—>H3(D/,OD/):O

yields dim H? (D', Op/) = 1. Thus we know that
H?(D)¢ ~ H**(D') =~ H? (D', Op)

is 1-dimensional. D’ being Cohen-Macaulay as a normal surface, we obtain
by Serre-duality

H2,0 (D/) ~ HO,Q (D/) ’

hence H20 (D)% ~ %2 (D)% ~ C. O

8.5.7 Lemma. The surface D' = D;Mﬁ with ¥ and ¢ sufficiently general
has rational singularities.
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Proof of Lemma 8.5.7: Let 7: D’ — D’ be a minimal desingularisation.
We need to show that

In order to prove this, we compare the cohomology of D' and D'. We know

that H' (D', Op/) = H' (D,0p)¢ = 0 and H2(D',Op/) =~ C. Arguing by
contradiction we assume that

RlT* ((’)f),) # 0.

We recall that D’ has exactly 6 singularities which by symmetry are all of
the same type. Hence all singularities are irrational and therefore

K (D', R'7,0p,) = 6.
By the Leray spectral sequence we obtain
B (D, 0p,) = 5 and 1? (D', 05,) < 1.

Thus
X ((’)[),) < -3

and therefore by surface classification D'is birationally equivalent to a ruled
surface. So D' is covered by rational curves. Since D' = Dy varies with ¢,

the variety Y is covered by rational curves and so is X. This is a well-known
contradiction: Calabi-Yau 3-folds are not covered by rational curves. U

8.5.8 Proposition. The surface D = Dy 4 has rational Gorenstein sin-
gularities for any v, ¢ as in Proposition 8.5.5.

Proof of Proposition 8.5.8: By symmetry, it suffices to consider one
singular point of D, e.g., z = [1:—=1:0:0:0]. We choose the standard
chart z; = 1 and compute in C*. Then we apply the implicit function
theorem to Py and resolve Py locally as xo = g (x3, 4, x5) with g (0,0,0) =
—1. Then locally D < C3 is given by {f = 0}, where

f(x3,24,25) = 23 — ¢ g (x5, T4, T5) V324

Since the Hesse matrix of f has rank 2 in (0,0, 0), the point z is a rational
double point of type A,, [GLS07], Theorem I. 2.4.8. O

8.5.9 Corollary. The surface D' = D;M) has quotient singularities for
any ¥, ¢ as in Proposition 8.5.3.
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Proof of Corollary 8.5.9: Let xg € D’ be a singular point, and take z €
p~!(wo) (recall that p : D — D’ denotes the cover induced by D’ = D/G).
Since D has rational Gorenstein singularities, D has quotient singularities.
Hence there is an open set W = W (0) = C? such that U =~ W /H for some
finite subgroup H < Gl(2,C). By the open mapping theorem, [GR84],
p.109, p is an open map, hence p (U) is an open neighbourhood of xy in D’.
The open mapping theorem can be applied since D’ is normal, hence locally
irreducible ([GR84], p.125). Now by a theorem of Brieskorn, [Bri68], Satz
2.8, [Ish14], Theorem 7.4.18, x( is a quotient singularity. O

8.5.10 Remark. Since quotient singularities are rational, we conclude
again that D’ has rational singularities, actually for all D’ = Dj, , as in
Proposition 8.5.3 such that D is normal.

8.5.11 Proposition. The hypersurface H is a toric variety. In particular,
the Frolicher spectral sequence with E1-term

Y — 1 (H, %)
degenerates at Ey and converges to H* (H,C). Moreover, Poincaré-duality
holds on H. Moreover H has only Gorenstein singularities.
Proof of Proposition 8.5.11: Since H is given by the equation

x5 — ¢ T1wex3Ty = 0,

is follows easily that H is a toric variety. The assertion concerning the
Frolicher spectral sequence is a theorem of Danilov ([Dan78], Theorem 12.5).
O

8.5.12 Lemma. H? (D’,C) = H3(D,C)¢ = 0.
Proof of Lemma 8.5.12: Since D’ has only quotient singularities, Poincaré-
duality holds for D’ (see [PS08], p.58), hence

H?(D',C)~H' (D',C).
So it suffices to prove that H! (D’,C) = 0. Let 7 : D’ — D’ be a min-
imal desingularisation. Since H!'(D’,Op/) = 0 and since D’ has rational

singularities, we have
H! (f)’,oﬁ,) —0.
Hence H'! (lA)’ , (C) = 0 by Hodge decomposition. Using the Leray spectral
sequence we conclude H! (D', C) = 0. O
8.5.13 Lemma. For the Hodge group of type (1,1) we have:
HYL (DY = HYY (D)Y /JHY (X)) ~ C.

var
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Proof of Lemma 8.5.13: We will make use of Section 7.3. However, the
divisor H and the surface D are now singular. The results of Section 7.3
nevertheless remain true for the following reasons.

e The relevant residue maps exist. To verify this, we apply Proposition
4.2.16 to the divisors X and H in the projective manifold P4,

The first two assumptions in Proposition 4.2.16 are satisfied since D
has rational singularities, X and H meet transversally outside the
singular locus Sing (D) = Sing (H) n X.

To check the third assumption we use Remark 4.2.17 and obtain a finite
set M < Sing (H) such that at every p € Sing (D) \M, the variety H
has locally the requested product form. Furthermore, in each compo-
nent {x; =x; =25 =0,1<i<j <4}, eg. i=3,j =4, of Sing(H)
all points with x1,z9 # 0 can be mapped to the point [1:1:0:0: 0]
via an automorphism of H. Therefore the structure of the singularities
is the same in all these points. Hence, as this set is not finite, no point
of M belongs to it. As every point contained in Sing (H) n X has two
coordinates which are not zero, we obtain (Sing (H) n X) n M # .

o HF (]P’4, Qp1 (log (X U H))) — H* (PY\ (X U H),C),
see Theorem 4.2.43.

e Poincaré-duality holds on D (since D has quotient singularities).
e The Lefschetz hyperplane theorem holds for H — P4

e Theorem 7.3.9 and its corollary carry over for surfaces with quotient
singularities.

e The formulas of Li, Lian and Yau remain true in our setting with
essentially the same proof.

We recall the map

VT HY | P, Y O (Bpi+4pa—5) |~ F'H?(D,C)
(p1,p2)eNxN,
p1+p2=3

defined in Corollary 7.3.10. Let

x: F'H*(D,C) - F'H?(D,C) /F?*H?* (D,C) = H"' (D)
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be the projection and set \IJ§T =Ko \IJ?%T. Then, using Corollary 7.3.8,

)
)

where H° (P4, Op (d))G’q denotes the space of homogeneous polynomials R
of degree d on P*, such that Ro g = p? - R for each g € G. We observe that

G
Rie H° (P*,Opa (5i +4(3 — i) — 5))}

_ ) RegkTit 5 R A
=) RS ppps Z pPiQ3—i

= { Rest14 o R A
- g “h
D|P “ pi Q3—z

Ry e H® (P4, O (8)) ",

Ry e H (P*, Ops (9))0’2} ,

G,1
Ry e H° (IP4,(9]P>4 (8)) = <1:§, m%x%x%xi, x1x2x3x4x§>

and

Ry e HY (P4, Opu (9))G’2 = <xg, m%x%m%xix& x1x2x3x4x2> )
In order to obtain the dimension of Hq}alr (D)G, we have to determine the
dimension of the G-invariant part of ker (¥47) = im (K3), where K3 is the
matrix defined in Definition 7.3.19. The Singular programme in Appendix
A.2 shows that the dimension of the kernel is 5. Therefore dim H.;- (D)G =
1. O

8.5.3 Picard-Fuchs operators for (X, D)

For the calculation of the Picard-Fuchs operators, we use the G-invariant
relative cohomology H? (X, D, (C)G.

8.5.14 Corollary. For general ¢ and 1, the vector spaces
3 G 3
H? (Xy, Dy 4, C)” = H® (Yy, Dy 4,C)

form a local system.

Proof of Corollary 8.5.14: We note first that the groups H? (Dy 4, C)
form a local sytem, since D, 4 have only rational double points of the same
type (one might argue via a simultaneous resolution). Therefore, having in
mind that H? (X, C) = C, the groups H2,, (Dy ) form also a local system.

var
Since

H? (Dy,,C) = H' (Dy,4,C) =0,
the groups H3 (Xy, Dy ¢, C) form a local sytem.
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Now everything remains true for the G-invariant parts. In fact, the
action of G on H? (X, C) is independent of ¢ (one could also argue on Yy,
or one the mirror Xy ). The same applies for the cohomology of Dy 4. O

This corollary shows in particular that the Gauf3-Manin connection works
for this singular D and is G-invariant. Therefore the theory of Li, Lian and
Yau is applicable.

Putting things together using again the abbreviations D = Dy 4 and
X = X we have the following sequence:

8.5.15 Proposition. We have an exact sequence

0— F*H? (D)% > FFH? (X, D,C)¢ - FFker H? (X,C)% — 0,
(8.5.15.1)
equivalently
0— F*a2, (D) - F*H? (Y,D',C) — FFker H* (Y,C) — 0. (8.5.15.2)

Proof of Proposition 8.5.15: It suffices to state that H? (D’,C) = 0,
which was proved in Lemma 8.5.12. O

Proposition 8.5.15 yields the following Hodge filtration:

F3H3 (X,C)¢: H*(x)¢

F?H?(X,0)%: FeH> (X)°@H2 (D)Y
F'H?(X,0)%: FeH“?X)°@HN (D)
F'H?(X,0)%: F'@H" (X))@ H%2 (D)¢

We have seen that all Hodge groups H?3 PP (X)G for p = 0,...,3 and
HZpP (D)G for p=0,...,2 are 1-dimensional. Let

1
Wy = PTpA e H° (P", Kpn (Xy)).

According to Lemma 8.3.1 a basis of H? (X,D,C)G consists apart from
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0= Res‘(iXD) [(w,0)] € H*0 (X, D,C)¢ of the elements
5 x1x2x3x4x5 A, 0)]

2. 52 x1x2$3x4$5) A, 0)

0, () = Res‘(kX’D)

2(Q) = Res‘(lX’D) <

6-5° (x1x2:v3x4x5)3 A 0)

—5 T1T2X3X4
5u (Q) = RQSZ(LX7D) <0, W A>:|
—D X1X2X3T4 - T1X2X3T4T
4 14243404 - L1L243L4L5
—2- 5 XL1X2X3T4 T1X2X3L4T5 2
020, () = Reslxp) ( , P3Q( ) A)

We apply the Gaufl-Manin connection with respect to ¢ and ¢ to each of
the seven elements of the basis of H? (X, D, C). For each of these elements
we proceed as follows:

In order to use the cohomology relations 8.4.6.1 and 8.4.6.2, we define
matrices:

8.5.16 Deﬁnition
1. Let gop forp 2 be the map defined by

p—1
PFOP) s ST HO (B, Ko (KY1 + (p — k) Ya)) — S®P,
k=1

R " P
(PpA,k:ZlPkCQPkA>H(R,Pp_l,...,Pl).

2. For each k = 2 we define a matriz Ky, : SO+ (—1)+2k+2) _, g&k p,
Ky:=Br Iy-P Ix-Q Vig Vayg),

where I, is the k x k-identity matriz and By is the following k X
((n+1) (k —1))-matriz

—J; 0 0 0 0 0

Jo (k—2).J 0 0 0

0 J (k—=3)J1 ... 0 0
B, = 0 0 0 : :

0 . 2J1 0

0 0 0 oo (k—=3)Jy Jh

0 0 0 0 (k —2) Js
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where J1 and Jy are defined as in Definition 7.3.19 and Vi j, and Vo,
are the (k x 1)-matrices given by Vi 1, = @,(CX’D) (51(Q)) and Vo, =

P (0620, () for k > 2.

8.5.17 Proposition. ([JS09a/, p. 37) Using the abbreviations

Dy = 1—4°,
Dy = ¢(¢—5)* — 256,

Ty = ¢ (8000 — ¢ (¢ — 5¢) ¢ (617 — 7900 + 2825¢)%)) — 163844,
Ty = 57375¢°¢° — 340004°)" + 71904 — 8 (79¢° + 14336) ¢* +

+6 (19¢° + 95936) ¢ — 1120047,

T3y = 22625¢°¢° — 16325¢%)° + 44904 ! — 2 (293¢° + 49152) o° +
+¢ (37¢° + 112768) ¥° — ¢* (¢° + 26624) ¢ + 19209,

we get the following matrices

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
M B 4 1592 2593 10y —¢Ti —¢Th — ¢T3
P - D1 D1 D1 D1 16D1 D> 16D1 D2 16D1 Do
0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 125¢g>—5w) —175¢(p—5v)* 30¢(¢£)—5w)3
2 2 2
0000 1 0 0
0000 0 1 0
0000 0 0 1
125¢(¢—5¢) —175¢(¢—5¢)" 30¢(¢p—5v)°
My = 0000 D D — Dy
0000 ~3 —i 0
0000 0 _ﬁ _%
00 0 0 _12B6=0)6=50) 175(6=¥)(@=5¢)* _ 1 _ 15(6=1)(6=5¢)
4D2 4D2 4¢> 2D2

An easy computation shows:

8.5.18 Corollary. ([JS09a], p. 37) The matrices My, and My yield the
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following Picard-Fuchs operators

L1 = (Y —0)0yoy— 41/J0¢(3¢ — 310y,
Ly = o503+ <41¢ +5p; 0= ¥ (0 5w>3) 040
Dy (=) (6= 50 0us + 11 (6= 1) (6 - 50) 0

Ly = c§u1k+£§dfy =0y (0 — 1) (0 — 2) (y — 3) — ¢° (6 + 1)°*

o
T D10y + Jer- (150506 + Ty 0y + Tidy)
with
Lhulk :9¢(9w_1)(9¢_2)(9w_3)_w5(0¢+1)4
and

Ut

bdry 4
L ¢D§¢+16D

(Tg&i(%ﬁ, + T2(9¢5¢ + T15¢) .

Note that the operator LUK is exactly the Picard-Fuchs operator which
is satisfied by all periods of the quintic 3-fold Xy, (see e.g. [GHJ03], Chapter
18).

Appendix A.3 contains a programme written in the Singular language
([DGPS16]) for computing the Picard-Fuchs operators of a pair consisting of
a Calabi-Yau hypersurface in a projective space and a divisor that is given by
intersecting the Calabi-Yau manifold with another hypersurface. Applying
the programme to the example discussed above yields the matrices M, and
My stated in Proposition 8.5.17.



Chapter 9

Picard-Fuchs operators for
triples

We consider a Calabi-Yau 3-fold X with a smooth curve C < X. We are
searching for a Picard-Fuchs equation for (X, C). In order to pursue this we
need a local system, and the choice might be to consider H? (X, C,C).
However, we will show in the first section that H3 (X, C,C) = H3 (X, C)
and this isomorphism respects even the natural Hodge structure on (X, C)
on both sides.
One way out might be to consider the blow-up 7 : X>XofCcX

and then study H? ()A( , (C), which encodes also the genus of the curve C.

The disadvantage is that X is no longer Calabi-Yau, although it carries
a holomorphic 3-form. The deformation theories of (X, C') and ()/(\' ) E) are
the same.

Owing to these difficulties we will restrict ourselves to complete inter-
sections C' = Dy n Dy and develop the theory for triples (X, D1, D2). In
particular, we define a cohomology group H? (X, D1, D, C) whose variation
might lead to a Picard-Fuchs equation. We also compute an easy example.
For a family of triples we set up a theory by Li, Lian and Yau. However,
if the parameters of D, and Ds are independent, we cannot reach the full
cohomology. In a computational example we will make a first attempt to
relate the cohomology of Dy and Ds.

9.1 A topological observation

We fix a Calabi-Yau 3-fold X and a smooth curve C = X. Let 7 : X — X be
the blow-up of C = X and let E := 7! (C) be the exceptional divisor. Then

H3(X\C,C) ~ H3 ()A(\E, (C) inherits a canonical mixed Hodge structure,
as we will see in the proof of Theorem 9.1.1.

159
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9.1.1 Theorem. Let X be a Calabi-Yau 3-fold, C a smooth curve in X
and v : C — X the inclusion. Then the following cohomology groups are
isomorphic

H?(X,C,C)Y =~ H*(X\C,C) = H*(X,C),

and the isomorphisms respect the corresponding (mized) Hodge structures.

Proof of Theorem 9.1.1: The first isomorphism is Lefschetz duality.
Next we show that H3 (X,C,C) = H?3(X,C). According to Section 4.2.5
the relative cohomology of the pair (X, C) is part of a long exact sequence

21,
.. H(X,0,C) - H? (x,C) ™ B2 (C,C) - H?(X,C,C) —

— H3(X,C) - H*(C,C)=0—....

We observe that H? (C,C) =~ C and that the map H? (1) : H?(X,C) —
H? (C,C) is not the zero map, as it maps the first Chern class of an ample
line bundle on X to the first Chern class of the ample line bundle restricted
to C. Thus H? (1) is surjective, and the map H? (X,C,C) — H3(X,C) is
injective. Furthermore H? (C,C) = 0; therefore the map H?(X,C,C) —
H3 (X, C) is also surjective, thus bijective. This establishes the second iso-
morphism.

Finally we show that H?(X\C,C) =~ H?(X,C) respects the mixed
Hodge structure. To set up the mixed Hodge structures, we notice that

H3 ()A(\E, (C) ~ 3 (X\C,C) and that according to Theorem 4.2.3 there is
a mixed Hodge structure on H? ()A( \FE, (C). This yields an isomorphism
JiE (X\E,(C) ~ +693Hq (X,Ql;2 (1ogE)).
p+a=

As H3 (X,C) =P H1(X,Q%), we need to show

p+q=3
HY (X, Q%) ~ H ()A(QI)’? (1ogE)) (9.1.1.1)

for each p,q with p + ¢ = 3, which will prove the final statement. The
isomorphy 9.1.1.1 will actually be true for any compact complex manifold
and any blow-up of a submanifold C. By the Leray spectral sequence this
comes down to showing

- (Q‘)’? (logE)) ~ 07, (9.1.1.2)
Rim, (Q’)’{ (log E)) ~0, j>0. (9.1.1.3)

The assertion 9.1.1.2 is clear since 7y (Q (log E)) is torsionfree and con-

p/\
X
: P\ ~ OP
tains 7y (Q)A(> =~ Q.
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For our purposes, it is sufficient to show assertion 9.1.1.3 for the case
j = 1. Moreover, we only deal with p = 1 and leave the rest to the reader.
We apply 7, to the exact sequence

1 1
0—»(2)2—>Q)2(logE)—>(’)E—>0
and get

g Rl’/T* (OE) .

Since W*Q}( ~ W*Q} (log E') is an isomorphism, the map 7.0 =~ O¢ —
Rm, Q}( is injective. The sheaf R'm, Q}( can easily be seen to be locally free
of rank 1 on C; we conclude the vanishing Rl’ﬂ‘*Q} (log E) = 0. O

We end the section comparing the deformations of (X,C) and the de-
formations of the blow-up ()A( , E> and restrict ourselves to the case which

is most interesting in our general setting, see also [Kod63].

9.1.2 Theorem. Let X be a smooth projective 3-fold, C < X a smooth
curve, T : X — X the blow-up of C < X and E = 71 (C). Let S be the
germ of a complex manifold or S = Spec (C [t] /t?).

Then there is a canonical bijection between the deformations of (X,C')
over S and the deformations of ()’(\',E> over S.

Proof of Theorem 9.1.2: Step 1. Let (X,C) be a deformation of (X, C)
over S. Let 7: X — X be the blow-up of C € X and £ := 77! (C) be the

exceptional divisor. Then (XA ,5) is a deformation of ()’(\' , E) over S.

In fact, z‘:’g, the central fibre over 0 € S, is isomorphic to X. By [Har77], I11,
7.15 and by definition of Ap, the blow-up of C n 771 (0) = C in &y = X,
where 7w : X — S is the projection. Moreover £ N Xy = E.

Fur‘ihermore, since X — S and C — S are submersions, so is XS ;
hence & is flat over S. Finally, £ is flat over S by Lemma 3.8.3.

Step 2. Let (V,€) be a deformation of ()?,E) over S. Since E is a P!-
bundle over C and in fact £ = P (N 5| X), according to Lemma 3.7.1 the

space & is a P'-bundle over a variety C — S, which is a deformation of C
over S. Let p: & — C be the projection. We notice

Ny, = Op (1)

Ve ’p—l(m

for all z € C.
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If S is smooth, then ) is smooth, and the contraction theorem of Fujiki-
Nakano (see [Nak71l] and [FN72]) states that there is a complex manifold
X containing C with projection X — S and a map f : Y — X such that f
is the blow-up of C < X. The two operations are obviously inverse to each
other.

Now we suppose that S = Spec ((C [t] /tz). We recall that

Def (X,C) = H' (X, Tx (—C))
(which can be shown directly on X without blowing up) and
Def (f( E) —H! ()A(,Tf( (—log E)) .
By Step 1 we obtain an injective linear map
H' (X, Tx (~C)) — H' ()A(,TX (—log E)) .

This must be an isomorphism, because both spaces have the same dimen-
sions. This fact comes from the definition

T (T (=log B)) = Tx (=C)

and the vanishing
R'm,T¢ (—log E) = 0.

The last equation is obtained by applying m, to the logarithmic tangent
sequence
0—T;(—logk) - Ty _)N’Ep? —0

and using

9.1.3 Remark. As already said, Theorem 9.1.2 clearly generalizes to any
compact complex manifold of any dimension and arbitrary compact complex
submanifolds; also there will be an equivalence of deformation functors, but
we will not pursue this further in this work.

9.2 Definition of a cohomology for triples

Let t1 : D1 — X and 15 : Dy — X be embeddings of compact, possibly
reducible, hypersurfaces or of compact complex submanifolds into a smooth
compact complex manifold. For deformations of triples (X, Dy, D2) we refer
to Definition 6.3.3.

In this section we lay down the foundations for a cohomology of triples.
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9.2.1 Setup. Let X be a projective manifold of dimension n and Dy, Da
be smooth hypersurfaces on X which intersect transversally in the smooth
submanifold C. Let v; : Dy — X,i = 1,2, and j : C — X denote the
inclusion maps.
We first define a relative de Rham cohomology for the triple (X, Dy, D).
9.2.2 Definition. We define the relative de Rham cohomology
H*®* (X, D1, D,,C)
for the triple (X, D1, D2) to be the cohomology of the complex
Ax @ AL @ AL
with the differential
J(a761752) = (an7 O5|D1 - leﬁla a|D2 - dDQBQ) (9221)
forae .A’;( and (; EAIEI,Z’ =1,2,keN.
9.2.3 Remark. One casily verifies that d2 = 0.
Furthermore, if («, 1, 52) € .Alﬁ( @ AIEI ® A’B;l is a closed form, i.e.
d(a751762) = 07 then
dpy~Dy (B1 = B2)Ip,ap, = 0
9.2.4 Theorem. There is an isomorphism
H" (X7D1,D27(C) =

~ ker (H" (x,C) TR C2) b ) @ HT (Do, C))

@ (H" ' (D1,C)@ H" ' (D,,C))

var’

where

(H™(Dy,C) @ H" " (D5,C)). =

var

nflb nflL
coker (Hnl (x,c) I gt (b Y@ B (Dy, C)) .

In particular
dim H" (X, D1, D2,C) = dim H" (X,C) —dimim (H" (t1) ® H" (12))
+dim " (D1, C) + dim H""* (D5, C)
—dimim (H" ! () @ H" ' (12)) .
Furthermore, there is a surjective map
H" (X,Dy,D2,C) — ker(H"(X,C)—> H"(D;,C)® H" (D5,C))
® Hy,,' (D1) @ Hyy,' (D),

and there is a natural mized Hodge structure on H™ (X, D1, Do, C).
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Proof of Theorem 9.2.4: The short exact sequence of complexes
*— o— f ° °— o — 7
0 (A5 @A (dpy dpy)) b (A% @ AL @ AT d) 5
— (A%,dx) — 0,

where the maps f and g are defined in the obvious way, i.e.

frAD@AL - A @ AL @ AL (Br, B2) = (0,81, o)
and

g: A @ AL @AY — A%, (a, 1, B2) — a,

induces a long exact sequence in cohomology

n—lL n—lL
- Hn_l <X7D17D27(C)_)Hn_1 (Xv(C)H (1@ ()

— H"Y(D;,C)@ H" ' (D,,C) % H™ (X, Dy,D5,C) —

 Hr(x,C) I g b C)@ BT (Dy, C)

which yields the first two statements immediately.
Obviously, there is a natural surjective map

(H" (D1, C)@ H" ' (Do, C)yur H' Y (D))®H". ! (D,).

var var

As the maps H* (1) @ H” (1) for k = n — 2,n — 1 respect the Hodge
structures of H* (X, C) and H* (D, C)@H" (D5, C), we get a natural mixed
Hodge structure on H" (X, D1, Dy, C), which is induced by the pure Hodge
structures of H" (X,C) and H" ! (D;,C),i = 1,2. O

9.2.5 Remark. By construction, H"~! (Dy,C) % H™ (X, Dy, D,C) and
H™(X,D1,D,C) — H" (X, C) are morphisms of mixed Hodge structures.

9.2.6 Remark. If D; and D- are ample hypersurfaces such that
H" (D1,C) = H" (Dy,C) =0,
e.g. X is a Calabi-Yau 3-fold, then
H"(X,D1,D,,C) = H*(X,C)® (H" ' (D1,C) @ H" ' (D5,C)) -

According to the Lefschetz hyperplane theorem the map H™ 1 (11)®H" ! (12)
is injective; thus
(Hn_l (Dla (C) S Hn_l (D27 (C))var
~ (H""(D1,C)@® H" " (D2,C)) /H" ' (X,C).
Furthermore
dim H" (X, Dy, D5,C) = dim H" (X,C) + dim H" " (D;,C) +
+dim H" ! (Dy,C) — dim H" ™ (X, C).
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9.2.7 Theorem. There are exact sequences

— H9" ' (Dy,C) - HY(X,Dy,Dy,C) - HY(X,D;,C) —
— HY(D9,C) — ..., (9.2.7.1)

respectively with Dy and Doy interchanged
— H" ' (Dy,C) —» HY(X, Dy, Ds,C) — H? (X, Dy,C) —
— HY(D1,C) — ... (9.2.7.2)

Proof of Theorem 9.2.7: The following exact sequence of complexes,
defined in the obvious way,

0— (A5 d5) — (Ax @ A5 @ A5 d') - (A @ AR d") -0

yields the exact sequence 9.2.7.1. In the same way we get Sequence 9.2.7.2.
O

9.2.8 Corollary. Under the assumptions of Remark 9.2.6, there are exact
sequences

0— H" ' (Dy,C) » H"(X,Dy,D5,C) - H" (X,D;,C) - 0
and

0— H"'(D,C) - H" (X, Dy, D3,C) - H" (X, Dy,C) — 0.

Proof of Corollary 9.2.8: We apply Theorem 9.2.7. As D; are ample,
we know H" (D;,C) = H"2(D;,C) = 0, and the maps H" ! (X,C) —
H" 1 (D;,C) are injective. As

dim H" (X, D1,C) = dim H" (X, C) + dim H" ! (D;,C) — dim H" ! (X, C)

and thus

dim H" (X, Dy, D, C) dim H" (X, C) + dim H"! (Dy,C) +
+dim H" ! (D5, C) — dim H" ! (X, C)

= dim H" (X, Dy,C) + dim H" ™' (D, C),

we conclude that the map H" ! (Ds,C) — H" (X, D1, D2,C) in Sequence
9.2.7.1 is injective. O

9.2.9 Remark. We consider a smooth divisor D in a Calabi-Yau 3-fold
X. For setting up a Picard-Fuchs equation for the pair (X, D), one needs to
study the variation of (X, D). This is related to the first-order deformations
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of the pair (X, D) as follows. We fix a Kahler class on X. By Hodge
decomposition, H? (X,Q% (log D)) is a direct summand of H?(X\D,C).
Hence there is a canonical epimorphism

H?(X\D,C) — H? (X,Q) (log D)) .
By duality we obtain a canonical epimorphism
H3(X,D,C) - H* (X, Tx (—log D)) .

More precisely, we generalize this to the case of two divisors Dy and Do
meeting transversally in the smooth curve C. We will construct an epimor-
phism

H3(X,D1,Dy,C) - H* (X, Tx (—C)),

provided D — D5 is ample. This epimorphism is canonical up to a choice
of a basis of H' (X, Tx). If R (X) = 1 or if the classes of the divisors Dy
and Dy are linearly dependent, this ampleness assumption is not necessary.

9.2.10 Lemma. We assume D1, Dy and D1 — Dy to be ample. Then there
i an exact sequence

0— H°(C,Ngix) —» H (X, Tx (-C)) > H' (X, Tx) — 0.

Proof of Lemma 9.2.10: The exact sequence
0 — Tx (~C) — Tx — jxNejx — 0
yields, using H° (X, Tx) = 0, the exact sequence
0— H°(C,Ngix) —» H (X, Tx (-C)) > H' (X, Tx).

We show that k is surjective, i.e., each first-order deformation of X is the
restriction of a simultaneous first-order deformation of the pair (X, C).

Let X be a first-order deformation of X. We look at the normal bundle
sequence associated to D; ¢ X < X, i.e.,

0—Np,x = Np,jx — NX|X|Di — 0.
We note that N X| X| p. = Op,. The short exact sequence
0— Ox — Ox (D;) = tixNp,x =0

yields, via H! (X,Ox (D;)) = 0, the equation H' (D;,N'p,x) = 0. Thus
we get an exact sequence

0— H° (Di’NDi|X) — H° (Di’NDi|X) — H’ (Di’ODi) — 0,
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and therefore
K (Di, Np,x) = h° (Di, Np,x) + 1,

i.e., there is a first-order deformation D; of D; in X.

Finally, we define C := D; n Dy < X, so that (X,C) is a first-order
deformation of (X, C') which is a preimage of the first-order deformation X
of X under k. O

To prepare the proof of Theorem 9.2.12, we show

9.2.11 Lemma. We assume D1, Dy and D1 — Do to be ample. There is a
canonical surjective map

(H*(Dy) @ H? (D)), — H° (C,N¢x).-

var

Proof of Lemma 9.2.11: It suffices to establish a canonical epimorphism
H>° (Dy) @ H*® (D2) — H° (C,N¢yx) -
By the adjunction formula,
H*"(D;) = H° (D;,Kp,) = H° (Di, N'p,x) -
Hence it suffices to construct an epimorphism
H® (D1,Np,x) ®H® (D2, Np,x) — H° (C.Neyx) -
Due to the decomposition
Nex = Noyxle @ Noyix| o s

it remains to be shown that the restriction maps
H (Dy, Np, ) = HO (C, Np, x|,

are surjective. Using the ideal sheaf sequence for C' < D; it is sufficient to
establish the vanishing

H' (Di’jC|Di ®NDi|X) =0.
We argue only for i« = 1 and consider the ideal sheaf sequence of D; ¢ X
tensorized by Ox (D1 — D2)
.= H'(X,0x (D1 — D3)) > H' (D1, Ox (D1 — Dy)|p,) —
— H?*(X,0x (—=Dy)) —
As
H' (D1, Jcip, ® Npyx) = H' (D1,0p, (D1 — Ds)),

Kodaira vanishing yields H' (D1, Ox (D1 — Da)|p,) = 0. Analogously we
get H' (D3, Ox (D2 — D1)|p,) = 0. O
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9.2.12 Theorem. Assuming again D1, Dy and D1 — Dy to be ample, we
fiz a Kdhler class [w] on X. Then there is a surjective map

H3 (X7D17D27C) - Hl (XvTX <_O>) :
This map is canonical up to a choice of a basis of H* (X, Tx).

Proof of Theorem 9.2.12: According to Lemma 9.2.10 and Lemma
9.2.11 we have the following diagram of exact sequences, where the first and
third vertical arrows are surjective. The map p is still to be constructed.

0 — (H?(D1,C)® H? (D5,C)), — H’(X,D1,D,,C) — H’ (X,C) —0
|
i‘r | 1 io’
\i

0 H° (C,N¢x) H' (X,Tx (-C)) —— H* (X, Tx) — 0,

We first establish a canonical splitting
¢: H(X,C) — H’ (X, D1, D2,C)

of the upper row of the diagram.
For each class u € H? (X, C) we choose the unique harmonic representa-
tive o € ker (Ag) < I' (A%) of the class u, where

Agi=d*d+ dd* : T (A%) — T (A%)

is the Laplace operator. In particular da = d*a = 0. Let w; be the induced
Kahler metric on D;, furthermore A; the associated Laplace operator, H;
the harmonic projection and G; the Green operator; see e.g. [GHT78], p. 84.
Then we obtain the Hodge decomposition

O‘|Di = H; (O‘|Di) ® dd; G; (a’Di) @ d; dG; (04|Di) .

As H?(D;,C) = 0, we get H; (O‘|Di) = 0, furthermore d;‘diG(a|Di) =
d¥Gid (alp,) = 0. Therefore we define f; := d¥G; (alp,) so that a|, = dj;.
Now we define
¢ (u) := (o, B, B2)] -
This splitting establishes an isomorphism
®: H® (X, Dy, D,,C) — (H?(D1,C)® H* (D,,C)), . @®H®(X,C)
and therefore a map

[1' : H3 (X>D11D27(C) _>H0 (CvNC|X) @Hl (XvTX)

By choosing a basis of H' (X,Ty), we obtain a splitting H' (X,Tyx) —
H!' (X, Tx (—C)), which defines the map . O
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9.3 Pairing between homology and cohomology

We return to the general Setup 9.2.1 and assume H" (D;,C) = 0, e.g. D; is
ample in a Calabi-Yau 3-fold X, and start defining a homology group

Hn (X7D17D2)7

which will be dual to H" (X, D1, D2,C). If n > 4, we assume addition-
ally that the Mayer-Vietoris map H,_1 (C) — H,—1(D1) ® H,—1(D>) is
injective. This is automatic if n = 3, since in this case, C is a curve.

We consider the following commutative diagram:

Hp (X)—————— Hn (X) @ Hn (X) Hy (X)

A

Hy (X,0) ——> Hp (X, D1) ® Hyp (X, D3) ——> Hp (X, D1 U D3) ——> Hp_y (X,C)
Hp—1(C) ————— Hyp—1 (D1) @ Hn—1 (D2) ——— Hp_1 (D1 U Dy) ——= Hy_5 (C)

Hy 1 (X)) ———— Hp 1 (X)® Hp1 (X) ————— Hp1 (X)

Hn,1 (X, C) —_— Hn71 ()(7 Dl) @Hn71 ()(7 Dg) _— Hn71 (){7 Dl V) DQ) .
(9.3.0.1)
The first and forth rows are given by the maps

and
H; (X) @ H; (X) — H; (X), (f8)—>a-p.

The second and fifth row are the relative Mayer-Vietoris sequence for pairs
(see e.g. [Spa8l], p. 187). The third row is the Mayer-Vietoris sequence.
The columns are given by the homology sequences of pairs.

The injectivity of the map A : H,, (X) — H, (X, D1 u Ds) results from
our assumptions and from the vanishing H,, (D;) = 0, which follows from
H"2(D;,C) = 0.

9.3.1 Definition. Let

H, (X,Dl,DQ) =
{([I'], ], [2]) € Hy (X, D1 U D2) ® Hyp—1 (D1) © Hy—1 (D2)]
7([I']) = o ([nl, [r2]) € Hu1 (D1 v D2)},

where o and T are defined as in Diagram 9.3.0.1.
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9.3.2 Lemma. If D1, Dy are ample divisors, then the complex vector space
H, (X, Dy, D2) has dimension

dim H, (X, Dy, D5) = dim H" (X, Dy, D2, C)..

Proof of Lemma 9.3.2: We look at the map
T—0:Hy(X,D1 U D2)®Hp1(D1)® Hyp—1(D2) > Hyp1 (D1 U Da),
then H, (X, D1, D3) = ker (1 — o) and

dim H, (X, D1, Ds) = dim H, (X,D; U D) +
+ dim H,—1 (D) + dim H,,—; (D2) — dimim (7 — o) .

The map « : H,—1 (D1 v Dy) — Hp—1(X) defined in Diagram 9.3.0.1 is
surjective, since in Diagram 9.3.0.1 the map

Hy—1(D1) ® Hp—1 (D2) — Hyp—1 (X) @ Hp—1 (X)
is surjective by the Lefschetz hyperplane theorem. Hence

dimim (7) = dim H,,—1 (D1 v D2) — dim H,,—; (X)
and

dim H,, (X,D; v Dy) = dimH, (X)+dimim () =
dim H,, (X) + dim H,,_1 (D1 U DQ)
—dim H,,—1 (X).

We show that the map 7 — o is surjective. Obviously we have im (1) <
im (7 — ). Furthermore for all w ¢ im (7), the diagram shows that there
exists a class w € Hy—1(D1) ® Hyp—1 (D2) with (0 (W) —w) = 0. Thus
o (W) —weim(7) and w € im (7 — o).
Thus
dim H,, (X, Dy, DQ) = dim H, (X) + dim H,,_1 (D1 U Dg)

—dim H,,_4 (X) + dim H,,_1 (Dl) + dim H,,_1 (DQ)

—dim Hn,1 (Dl U DQ) =

= dim H" (X, Dl,DQ,C) .

The proof actually shows the following:

9.3.3 Corollary. The statement of Lemma 9.3.2 remains true if instead
of ampleness we assume the following:

H" (D;,C) =0 or H" 2 (D;,C) = 0
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and the maps
Hy (Dz) — Hp—1 (X)

for i =1,2 are surjective.

9.3.4 Definition. We choose a basis {e1,...,en} of Hy (X, D1, D2) and
representatives e; = ([I';], [vj.1], [vj.2]). Then we define a pairing

¢:Hy(X,D1,D3) x H" (X, D1,D5,C) — C,

(0] b bsal) el [ ()

= L o — b1+ Ba.

J 5,1 V5,2

9.3.5 Remark. Let (o, 1,82) €T (A}_l G—)A%f G—)A%f) and
([Fj] ’ [7]}1] ) [VJ,Z]) € Hy (Xv Dy, D2)' Then

f d(aaﬁlvﬂQ)
(Tyv1,72)

f (da, a\Dl —dp, a\D2 — dﬁg) =
(F771’72

= L do — Ll (alp, —dpr) + LQ (alp, —dB2) =

B P T P
or 7 om V2 0v2

= f a|D1_J aDz_J a|D1+f a|D2 =
st 72 71 72

= 0.
Therefore the pairing is well-defined.

9.3.6 Theorem. We suppose that for j = 1,2 the canonical morphisms
iyt Hpo1 (Dj) — Hyp_ 1 (X) are surjective; e.g., the divisors D; are ample.
Then the pairing ¢ is non-degenerate.

Proof of Theorem 9.3.6: Let [(«, 81,82)] € H" (X, D1, Dy,C). We as-
sume that

J (a’ﬂlaBZ) =0
[(INBEEARE?Y))

for all ([I'], [v1],[12]) € Hyn (X, D1, D2) and aim to show that [(«, f1, B2)] =
0.

For each [I'] € H,, (X, D) we define v := 0I" € Cy,—1 (D7) and integrate
over ([I'],[71],0). As the pairing

H, (X,Dy) x H"(X,D;,C) - C
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is non-degenerate, the image of [(«, 51, 32)] under the map
H" (X, D1, Ds,C) — H" (X, D1, C)
is 0. The exact sequence (see Corollary 9.2.8)
H" Y (D,,C) - H" (X, Dy, D5,C) — H" (X, Dy,C)

yields [(a, f1,82)] = [(0,0,85)] for a closed form S} € A%;l. We need to
show that [3,] = 0€ H" ! (D, C).

Claim: We choose an arbitrary class [y2] € Hy,—1 (D2). Then there exists a
cycle [I'l € Hy, (X, D1 u Ds) and [y1] € Hy,—1 (D7) such that

(L1, ], [el) € Hn (X, Dy, Ds) .

Once the claim ist proved, then

%= | (0,0,8) =0
Y2 ([TLIv1],[v2])

and we conclude [35] = 0e H" ™1 (Dy,C).

Proof of the Claim: Using our assumption there is a class [y1] € Hp—1 (D7)
such that o, (72) = t14(11). Let kj : Dj < Dy u Dy for j = 1,2 and
l: Dy Dy — X be the inclusions. Then

Li (k1s [71] = K2x [12]) = 0 € Hp1 (X).
The relative sequence in homology
o> Hy (X,D1 U Dy) S Hy i (D1 U Do) % Hy g (X) > ...
yields a class [I'] € Hy, (X, D1 u D3) such that
A ([F]) = kl* [71] - kZ* ['72] € Hy1 (Dl (& D2) R

- OIT] = [k1 () — k2 (12)] € Hooy (Dy © Dy).

This proves the claim.

Since dim H,, (X, D1, Dy) = dim H" (X, Dy, Dy, C), the pairing is non-
degenerate.

In summary, we have shown that the canonical map

Hn (X, Dl,DQ,C) - Hn (X, Dl,Dg)v
given by the pairing & is injective. Since
dim H" (X, Dl,DQ, (C) = dlmHn (X, Dl,Dg) 5

this map is an isomorphism and therefore the pairing is non-degenerate. []
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9.4 A residue map for triples
We next extend the definition of residues to triples.

9.4.1 Definition. Let ()C',J') be the complex defined by

KF =T (QH’;L (+X) ® o (+X + +H) @ QF, (+X + *Hz))
with differential
Jk : le N K:k-‘rl
~ d d
d* (m,m2,7m3) := <d’“n1,m N .. dknz) :
@1 Q2
The residue map for classes of rational forms is defined by

q
ReS(X7D17D2)

[(77177727773)] = <Resl(1X7D17D2) [(77177727773)] : Hq—l (Xa D17D2> - (C’

(0. [ [2]) — m—j n2+f 773)-
7(T) 7/(071) T/ (0v2)

As the pairing is non-degenerate, we get a well-defined element

Res?y . py) [(m:m2,m8)] € HO™' (X, Dy, Da, C)

. HY (/C',J) — H9™' (X, Dy, Dy,C),

for each [(n1,12,7n3)] € H? (IC', J)

9.4.2 Remark. For each k there is a surjective map

Kix 0102 = Kix.pyr (@81, 82) = (@, B1)

which maps closed forms to closed forms and exact forms to exact forms.

9.5 Application of the Gauf3-Manin connection to
periods of triples

In this section we extend the theory of Li, Lian and Yau to triples and give
a detailed account on the arguments of Li, Lian and Yau.

Let 7 : X — S be a family of Calabi-Yau n-folds over a complex manifold
S. Let D; and D2 < X be families of smooth hypersurfaces over S meeting
fibrewise transversally. So C := D1 nDy is a family of smooth curves over S.
For s € S'let X, D; 5, Cs be the corresponding fibres over s € . We assume
D1s — Dy to be ample for all s € S.

9.5.1 Lemma. The vector spaces H" (X5, D1 5, D2 s,C) form a local sys-
tem over S, which we denote by H™ (X, Dy, D).



174 CHAPTER 9. PICARD-FUCHS OPERATORS FOR TRIPLES

Proof of Lemma 9.5.1: We apply the theorem of Ehresmann to the fibre

product
W:XXSpl X5D2—>S.

Locally over S, this fibre product is diffeomorphic to (Xo x D1 s x Dy ) x S;

hence the lemma follows. O

9.5.2 Notation. We choose a smooth family
(681, 8:) e T (%, Ay @ AL @ A L)

and set as = 1%_(&) for all s € S, where 1x, : Xy — & is the inclusion. In
the same way we define 3; ; for 7 = 1, 2.
Let
[FS] € Hn (XS, Dl,s ) D275)

be a smooth family of classes represented by relative n-cycles I'y such that

0PS =l1s ('Yl,s) — U2 (72,8)

for each s € S, where (71,5) ¢ and (72,s) ¢ form smooth families of cycles
in Dy and Dy and ;5 : D; s < D1 U Dy for i = 1,2 denote the inclusions.
Then

[:= Lgl“s € Cp (X]S) and 7; := Lg%,s € Cr—1(D4| 9).
se SE

Given a C*-vector field v on S, we denote by © a lifting to X and by 9,
a lifting to Dj, i.e. m, (0) = v, respectively 7y () = v.
Let
Ly: A% — AL

be the Lie derivative with respect to v and

Lyt .Alf\z - .A]f\z_l

the contraction with 0. Usually we write t5 (o) =: 0 1 a.

We compute the Lie derivative of the periods of the triple classes with
respect to a vector field v € Tg.

We aim to compute the Gaufl-Manin connection on the holomorphic
vector bundle associated to the local system H" (X, Dy, D2).

9.5.3 Proposition. The Lie derivative of the periods of the triple classes
with respect to the vector field v € T is as follows

E’U <(F57 71,87 72,8) ) (a87 /81,87 62,5)> =
= (—1)mH <(rs,71,s,72,s) , (f) 1 di, 7y 4 (a - dBl) By 1 (d - d62)>> .



9.5. GAUSS -MANIN CONNECTION 175

For the proof of Proposition 9.5.3 we need the following

9.5.4 Remark. Let M be a smooth compact (r + 1)-dimensional manifold
with boundary and f : M — R be a differentiable function. Then there is a
smooth compact manifold with boundary N such that M =~ N x [0,1]. For
each t > 0 let

M, := N x [0,1].

Furthermore let w € Q"1 (M) =~ Q"1 (N x [0,1]) and v € T)ps. Then
for each t € [0,1] there exists a form 7, € Q" (N) such that we can write
w = n A dt. Then we obtain

|

— w = Va1 w
ot Jur, N ’
since

6J w = 6J /\dt—ajt J dT—J =
ot Jar, ot Inxfoq " at Jo NX{T}nT Nx{t}nt

= (=) JN’U 1w

The last equality follows writing v = (vo, %) € Tnx[o,4 by contraction

vVaw=vgan Ad+ (—1)T+177t.

Proof of Proposition 9.5.3: Let sp € S and o : [0,t] — S be a smooth
local curve such that o (0) = so and J;0 (0) = v. For simplicity we denote
the fibre of I" over o (s) by I's := 'y for each s € [0,].

Let

T := U Lpey and 4 := U Yi,o(s) for i =1,2

0<s<t 0<s<t

be the families of cycles over o (s),0 < s < t. Furthermore

ﬁt = U Ol (s) = U trs (1,8) = 12,8 (V2,8) = A1t — Yot

0<s<t O<s<t

Then obviously we obtain
a(ﬁ) =1y —Fo—éft ~Ty —Tg— (’?l,t —”92,75)-

Then we compute
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thus

Furthermore we obtain for i = 1,2

J dp; = f Bi=| Bi—| B
it 0(Hie) Vit Yi,0
thus

o I I R e PR

Vit Vit Yi,t

Finally we get

O

9.5.5 Corollary. As the Gauf-Manin connection is computed by

VM [(a, Brs, Bas)] = KU 3 dé, By 4 (a - dBl) B 1 (d - d@))] ,
we obtain

Ev <(Fsa '71,57’72,5) 3 (as, ﬂl,sa ﬁ2,s)> =
= (_1)n+1 <(]-_‘Sa ’Yl,& 72,5) ) VUGM [(Oés, ﬁl,sv 5278)]> .
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In addition to the previous assumptions we assume that M = P"*! (one
might also consider a weighted projective space) and set S = S; x Sg x Ss,
where each S; is a complex manifold.

Let

.)E'CMXS:[

be a hypersurface. More precisely, X, = {P, =0} c M is given by a
homogeneous polynomial P, € H® (M, —K ) for each z € S;. Furthermore
let 7:[1 c M x Sy and 7:[2 c M x S3 be hypersurfaces, given by Hi, =
{Qi, =0} c¢ M for each u € Sy and Ha, = {Q2, =0} < M for each
v € 83, where 1, and )2, are homogeneous polynomials on M for all
u € Sy, v € Ss.

In summary,

MxS >X = (X,:={P, = 0}),eq, = St
M x SQ o 7:[1 = (Hl,u = {Ql,u = O})UESQ 3 SQ

MXSgD/}:[Q

(HQ,v = {QQ,U = 0})1,65'3 3 Ss.

We view X, H; and Ho as families over S:

X = .)E'XSQXS;gmﬁ;ddS
My = SixHyx S g
Hg = Sl X Sz X 7:[2 id%m, S.

Moreover we define two divisors D; for ¢ = 1,2, in X:

151 = {inHl’u|z€Shu€Sz} (w) Sl XSQ
252 = {XZ(WH27U|Z€S1,1}653} (w) Sl XSg
Dy = Dy x 55 g
DQ = SQ X jjg idxﬂ;ﬂ—g)) S.

Let
(Ws)ses, € HY (M x 81, K prusyys, @ Onrxsy (X x S1))
be a family of rational (n + 1)-forms on M with poles along X,. Since
Ky ®O0um (X)) = Q4! (log X)),

we can form res x |n (w.) € H Y(X,,Kx.) and get a holomorphic n-form
without zeros for all z.
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9.5.6 Notation. Let (U,), be an open covering of M by Stein open sets
Uy, and set
Ve i=(UyxS)nX.
Then we may write Vy = V¥, x S, where V¥, = Uy n X, for sg € S.
Analogously we define V5 := (Ua x S)n Dy and Vp, = (Uy x S) N Ds.
Let P, , be the defining equation of X in U,. Using a partition of unity
subordinate to the covering (U,), we may write

dy P,
Wy = 2 T:;a A ¢z,aa

67

where ¢, 1= res x| (wz) and ¢, 4 is the restriction of ¢, to U,.

We are going to construct liftings of holomorphic tangent vector fields
v; € T, on S; for 7 = 1,2, 3 to the Calabi-Yau manifold & and to the smooth
divisors Dy and Dj. These liftings consist of a trivial lift of v to Ty, x s, plus
a normal vector induced by a certain variation.

First we construct local holomorphic liftings of vector fields v; € T, to
vector fields on X.

9.5.7 Construction. 1. Let v1 € Ts,. We choose a local smooth complex
curve in S representing vy and denote the variable of the curve by z such
that v; = % € T's,. We view v; as an element in Ty, « g, -

The deformation X in M over S; defines for each z € S; a section

hz € HO (XzaNXz\M)

which corresponds to the first-order deformation of X, in M given by X.
Putting all h., z € Sy, together, we obtain a section h € H° (X’NX\stl)-

Let p: X = X x Sy x S5 — X be the projection. Then applying p* to the
exact sequence

0= Ty = Truxsile = Najpcs, = 0 (9.5.7.1)

we get
0—p*Ty —p* (Tstl\;e) - NX\st — 0. (9.5.7.2)

We restrict the exact sequence 9.5.7.1 to Vy. Since V{ is Stein, we get a
surjective map

kS« HY (V/{?‘,p* (TMx51|V;;>> - H° (V/%’NX‘MXS’V;?> ’
We choose

n e H' (VEon* (Tares g ) ) € HO (V& Tarslyg)
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such that k% (n%) = p*h[vﬁ.

For each z € Sy let n_ € HO (V;} N X,, TM><S|V;;mXZ) be the restriction
of n% to X, ie. K%, (ng“(z) = p*h;, for each z € Si, where k% _ is the
restriction of k4§ to Vg n X,.

Let

+n% e HO (Vgg, TMX5|V£) .

0
wS (v1) = —
0% |ya
X

2. Let vg = % e Tg, and v3 = a% € Ts,. Obviously we can view v2 and v3
as vectors in Tly.

9.5.8 Lemma. On each Uy x S the following statements are valid:

= — 0.P.o|y. for each z € Sy,
z
Xz

1. (ng‘(z 4 dMPZ,a)
2w (v) e BO (V§, Telyg ) fori=1,2,3.

Notation. For each z € Sy let w§, (v;) € H° (V)O(‘Z, TMX5|V§ ) be the

restriction of w% (v;) to X,. We will briefly write in the following k5§, = kx..

Proof of Lemma 9.5.8: 1. A direct computation gives the following
formula

n%, 1 dy P o = kX, (n?{z) dyPro = —5q (2)dyPs .

According to [Ser06], p. 124/125, we know sq (2) dyPsq = 0.P; . This
proves the first assertion.
2. Using 1. we get

0 0
rx, (W%, () = kx, | = +n%, | = =| +n% |2dPo=
0% |ya 02 |yra
Xz Xz
a «
= & 4 dSPZ,a + nXZ 4 dMPZ,a =

o
Vg,

asz,a - azf)z,oz =0

for each z € Sy, thus w% (v;) € H° (V/%, TX\V)?> for all i = 1,2,3. O

Similarly to Construction 9.5.7 we construct local holomorphic liftings
of the vector fields v; € T’s; for 7 = 1,2, 3 to vector fields on Dy:
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9.5.9 Construction. 1. Let v; = a% € Ts, and define

0
wp, (v1) := E + nglp, € H° <V1‘§‘1, TM%"V&) :
Vg,

2. Now consider vy = % € Ts,. The deformation 1 in M over S5 yields
for each u € Sy a section

hl,u € HO (HLU?NHLMM) 5

which corresponds to the first-order deformation of H; , in M given by 7:11.
Putting all Ay, u € S2, together, we get a section hy € HO (ﬁi’Nﬂi\stz)'

Let py : H1 = S x Hy x S3 — H; be the projection. Then applying p;*
to the exact sequence

0 — Ty, = Taxsalyy, = Ny arws, = 0 (9.5.9.1)
we get
0— Pl"‘Tﬁ1 — p¥ (TMx52|gl) — NH1|MxS - 0. (9.5.9.2)

Again we restrict the exact sequence 9.5.9.2 to Stein open subsets V of
H1 and get local surjective maps

S 10 (Vi (Tl ) = 50 (Vi Noaaeslyg, )
We choose
n%l e HY (Vfilapl* (TMX52)|V7_021> c HO (Vf[p TM><S|Vﬁ1> 5

such that £, (ng ) = (Pl*h1)|vﬁ1-

Furthermore for each u € Sy let
0
nr, . € B (Vi 0 Hi, Taislug oy, )
, | NH,

be the restriction of ng, to Hj,. Then /@(I"{Lu (noﬁlu> = (p’{hl,u)|vﬁ
Let

10H] o

a L 0 o]
nD1 = nH1|XEH (LDl’TMXSh/Sl)
and

0
+ 1, € H' (V8,, Tarsslg ) -
« 1
V,D1

w%l (vg) := —

ou

3. Let v3 = % € Ts,. Obviously we can view v3 as a vector in Tp, .
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Similarly to Lemma 9.5.8 we get

9.5.10 Lemma. For each u € Sy and each o on Uy N Hy 4 we have

1. (n%l,u - dMQl,u,a)

Hl,u
2w (vy) € H (vgl, Tp, |y )
1

9.5.11 Remark. Analogously to Construction 9.5.9 we get local liftings
ws, (v5) € HO (VB Telyg ) and wg (v5) € H® (V8 T lyg ) for i = 1,2

Of course, Lemma 9.5.10 has an analogoue for i = 2.

Analogously to Construction 9.5.9 we obtain local liftings w$ (vs) €
1O (V;, TX]V;;) and w, (v3) € H (vgi, Tpl.|vg) for i = 1,2.

Now Theorem 8.4.3 of Li, Lian and Yau [LLY12] generalizes to triples:

9.5.12 Theorem. Let ([I'],[n],[y2]) € H, (X, D1, D). The periods

Z,U,V

HiS =€ M) | Resx oy, [, 0,0)]
(Tyy172)

Z,U,v

satisfy the following relations:

1.
011 (z,u,v) = J ReS?X,Dl,Dg) [(w:,0,0)] =
(F"Yl”m)z,u,v
= J azwza
T(Fz,u,v)
where 7 (01, 4,0) < Hi 4 U Hay, where 7 (L', ) denotes the tube over
Pz,u,v;
2.
ouQ1,
au]-—-[ (Z7 U, 'U) = _J‘ reSDl,z,u‘Hl,ureSHl,u‘M ( u Wy
Y1,z,u Q u
0u@ )
LT 1u
= — res
Ll,z,u DrzulM < Qiu
3. Il (z,u,v) = —§ ,res res 2,
V2,2 D2,z,v‘H2,v H2,17|M Q2 v :

For the proof of Theorem 9.5.12 the following will be crucial:
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9.5.13 Lemma. ([LLY12], Formula 2.10) Let v = 2 € Ts,. Locally for

all a and for all z € Sy, the following formula is satisfied:

aZPZ (0%
w, (v1) 4 doz|x, =resx |u <(9sz —dy <P¢Z>> ) (9.5.13.1)

9.5.14 Remark. The right hand side of Formula 9.5.13.1 is independent
of the choice of the lifting of v € Ts, to w% (v1) € H° (V)@‘, TMX5|V£>, but
the left hand side a priori depends on the choice of the lifting. So Formula
9.5.13.1 shows that the left hand side is in fact independent of the choice of
the lifting. Furthermore the local expressions on the left hand side can be
put together to the global expression on the right hand side.

Proof of Lemma 9.5.13: First we verify the formula

6ZPZ «
n%, 1 dud:lx, =resx, | <— T’dM¢z,a -
. Z,x

Using Lemma 9.5.8 this is equivalent to the following equation

aZ]:)z,oz dMPz a
_%:T,adM(éZ’a = P, N (nXZ 4 dM¢z,a|Xz>

= Z <ng‘(z a1 dMPz,a> VAN dM(bz,a = dMPZ AN <ngé(z 4 dM¢Z7a|XZ> .
«
The last equation holds as

0 = n?‘(z 4 (dMPz,oz N dM¢z,a) =

n?(z 4 (dMPz) A dM¢z - dMPZ A n?(z e (dM¢z) :

Therefore

0
wg“(z (v1) 4 d¢Z|Xz = ng‘(z 1 djwqbz|XZ + 2 1 dS¢Z|XZ -

0, P dp P,
=Tresx,|m <_ ZP ZiadM@z,a) + res x,|m < TZ’Q N aquz,a) =
o 2,00 o 2,00

aZ})Za
=resx, | <6sz—ZdM< 2 : gbz>>

In the last step we made use of the equation

azpza d Pza aZPZOA
O, = Z <_P7dM¢z,a + ]‘; — A azd)z,oz +dM< 7 ¢z>> .

o zZ, Pz,a
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Proof of Theorem 9.5.14.1, Part 1: Using the variation formula 9.5.3,
we obtain

M{(:lx.,0,0)] =
[(wx (02) 1 d(balx.) —wh, , (0:) 1 belp, ., —wh, (0:) 1 ¢z|1>2,z)]

0, P, o
= [(resXZ|M <(?sz —dp < 5 qbz)) ,— nX|Dl,z a ¢Z|D1,z’

~ilp,. 3 0:lp,. ) |

For ([F] s ["yl] s [’}/1]) € H3 (X, Dl, DQ) we obtain

o.P, o.P
dM<Z quz):f ( Z@)
L(F) P, rer) \ P: Dy.UDs.
0, P, 0. P,
N ¢Z> - J ( ¢Z>
‘[’—(71) ( Pz Dl,z T(’YQ) PZ D2,2

—J res | M (8ZPZ¢ > —f TeS 3, | M (azngzﬁ >
= 2 z
" ' P D1,» V2 ’ P

- _J ngﬂDLz 4 ¢Z|'D1,z +f ng{|D2,z 4 ¢Z|D2,z !
Y1 2

DQ,z

Hence we get for the pairing of the class [(¢Z|Xz ,0, 0)] with ([I'], [71], [72])
the following equalities:

0= ([T y1,92)] [(res x.jas (w:),0,0) ])
= <[(F7’71772)]7vgzM [(reSXZ|M (wz) 7070)]>

0, P
= f res x, |M (@wz —dy <sz¢z>> +j ng(|7.71,z 1¢,
T z 71
| o, 2 0.
Y2

aZPZ
=f (azwrdM< : ¢z>)+j n%lzmzj nlp, 3 6
7(I) z 7 ’ 72 ’

Thus we got

az <[(F7’71772)] ) [(reSXz|M (w2> 70 0)]> =
— <[(F,fyl,v2 [(resX v (Ow2), 0,0)]>.
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Proof of Theorem 9.5.14.1, Part 2:
Ve [(:lx,,0,0)] = (9.5.14.1)

= [(wgz (Ou) 1 d (02l x,) s —wh, _, (@) 4 ¢:lp, (9.5.14.2)
b, (003 6D, )|

= [(&u a1 d((bz‘Xz),— (8U|V§1 -l—n%l) a1 ¢Z|Dl,z,u ,— 0Oy 1 ¢Z|D2,z,u>:|

= |:<O, _n%l Jd ¢Z|D1,z,u ,0):| .

As
np, 1 (duQiu A ¢21x.) =0,

we get using Lemma 9.5.10

_ ", Qi 0@

) = A .
Ql,u Z|Xz Ql,u ¢Z‘Xz

Ay Q1 N (n% s baly )
Ql,u ! 8

Thus we have

<n%1 J ¢Z|Xz>

Dl,z,u

o aqu,u
- _reSDl,z,u‘Xz Ql ¢Z
K

Dl,z,u Xz

aqu,u )

= —rele,z’u‘eresXAM ( Ql Wy
U

aqu,u )

= —rele’wM< O1a Wy

Xz

)

X

therefore

vaGuM [(reSXz‘M (Wz) ,0,0)] = [(071'68%1;27”']\4 (aqu,u )

w
Ql,u ?

)

Thus

0
OuIl (2, u,v) = Ll res%C’ZMM ( w1 )

w
Ql,u ‘

Xz
Analogously we get

T [(resxp (0).0.0)] = | (00,0, 3 6l )| -

anZ v
= 0,0, rest? ( : wz>
[< Pz Qa X.
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and

0
oIl (z,u,v) = J res%zﬂww ( UQQ’Uwz) .

Y2 QQ,U
]

For the periods of the form (l"eSlesz,0,0) we obtain the following
relations. We obtain by direct computations:

9.5.15 Corollary.

1. 0% (T, 71,72) 5 (res x. mws,0,0) ) = (T, 71,72) , (res x| (0Fw:) ,0,0))

2. alfjau <(Pa’Yl,’Y2) ) (I'eSXZ|MWZ,O,O)> = S’Yl reslbrllﬂ’zyuuw (_61@?1 alg (%) A)

ol

3. 080y (T, 71,72) , (ves x,jnw=, 0,0)) = § resy (‘ 2ol (p) A)
4. avau<(r771772)7(reSXZ\Mw27070)> =0
5. 61151;611, <(F7 11, 72) ) (I'eSXZ‘MOJZ, 07 0>> = 0.

9.5.16 Remark. It should be noticed that with the triple method one can
not automatically reach the full cohomology H? (X, D1, D3, C). The prob-
lem comes from the difference of (H? (D) ® H? (D2))var and (H2,, (D1))®
(HZ,, (D2)). If dim H? (X, C) = 1, the dimensions of these spaces differ by
1.

A way out might be to choose the variables not independent; a possible

approach is discussed in Section 9.7.

9.6 An Example

We are now going to compute Picard-Fuchs operators in a specific example.
Let X be again the quintic as in Section 8.5. Furthermore, let

4 4
Hyy = {Q1u =0} < P*, where Q1,4 := 2] — u 2232475

and
4 4
Hy :={Q2, = 0} < P*, where Q2 1= 5 — v T12324T5.

Furthermore
Dl,z,u = HLu M Xz and D2727v = Hgﬂ) N Xz'

We use the Singular programme in Appendix A.2. The programme is set
up individually for the pairs (X, D1.,) and (X, Do .,).

The result can be seen as the outcome for a Picard-Fuchs equation of (X, C),
where C' is a complete intersection of two linearly equivalent divisors on X.
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We obtain the following result:
We get the following matrices

o 1 0 0 0 0O 0 0 0 O
o 0 1 0 0 0 0 0 0 O
o 0 0 1 0 0 0 0 0 O
1522 2523 102* A1 Ay A
o b oo b, 4 B ¢ 0 0 0
Mo o 0 0 0 0 1 0 0 0 O
2 o 0 0 0 0 0 1 0 0 0
R R R
o 0 0 0 # E B0 0 0
o0 0 0 0 0 0 0 0 1 0
o 0 o0 0 0 0 0 0 0 1
R R Re
o 0 0 0 0 0 0 f i e
using the following abbreviations
D1 = 1—25,
A = 16(2*1)(z4+z3+z2+z+1)(*5z+u)(*z+u)3
(6252"u — 500z%u? + 1502%u” — 20zu” + u® — 256)
B = —16(2—1)(24+23+22+z+1)(—z+u)3
(6252w — 5002%u? + 1502%u® — 20zu* + u° — 256) ,
C = 16(—2+u) (—31252"% + 31252%u? — 12502%u> + 25027u*

+2502%° + 27625u8 + 2752%07 + 2752368 + 2752%u° + 275200
+275ut 4+ 12802°% + 286925u — 3125242 + 12502313 — 25022u*
+252u° — u® — 1280z + 256u)

Ay = u(—587500002u + 43406250230 + 404625002 %u® — 663325002 u?
+3828850021%° + 2406400020 — 123560002°u° + 2968925024
+24547002%u" — 306928252512 — 30110027 u® — 139888252 u?
+21100254° + 208418752%u* — 6502500 — 85724252°u°
—116659202° + 1786261241’ — 4945856241 — 20108323u”
+807628823u? + 1163322u® — 13889282%u> — 2612u” + 1372162u*
—43200u°) ,

Ay = u(—3875000z u — 181812502302 + 4495750021 %u® — 402235002 u*
+1953430021%45 + 158720021 — 58124002°u° + 105733502
+11009802%u" — 22724552842 — 13074027 u® — 1314565527 >
+89402%% + 11217965250 — 270254V — 4101527254°
—8698882° + 812235218 — 4091200z%u — 883732%u”
+337100823u? + 48792%u® — 3370242%u® — 9921°
—296962u" — 9280u°)
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A3 =

196875002 1% — 35656250230 + 288125002 2u* — 136625002 u®
+41975002%4°% — 81040002 — 8678002°u" — 12416502 1>
+120860z8u® 4+ 10107315280 — 1094027u® — 766492527 u*
+58425uY + 2869807201 + 1638425 — 14254

—6327732°u5 + 34197122%u + 852412*u" — 13359362%u? — 6823234u®
—29427223u3 4 29322u® + 1835522%ut — 5zul® — 242562u°
—16384z 4 8961’ + 16384u,

—25u (1652 — 10zu — 27u?)

—5u (8352 — 230zu — 29u?)

—2 (88752 u — 68002%u? + 18302%u® — 200zu* + Tu® + 128),

— (=52 + u) (6252"u — 5002%u? + 1502°u® — 20zu* + u° — 256) ,
62520 — 50023u? + 1502%u® — 20zu* + u® — 256,

—25v (1652% — 10zv — 27v?)

—5v (83527 — 230zv — 29v?)

—177502%0 + 136002302 — 3660220 + 40020v* — 14v° — 256,

— (=52 + v) (6252"v — 5002%0* + 1502%0" — 2020 + v° — 256)
625210 — 5002302 + 150220 — 2020 + v° — 256,

We receive the equations

F1 =
F2 =
F3 =

G =

Gy =
Gs =

0000 1 0 0 000
0000 O 1 0 000
0000 O O 1 000
0000 & £ & 000

M, = 0000—%24;1;29“000
0000 0 —5 2% 000
0000 & & & 000
0000 O O 0 000
0000 O O 0 000
0000 O O 0 000

—25 (2 — u) (1652° — 102u — 27u?),

—5(z — u) (83522 — 230zu — 29u?)

—208752%u + 34475z u? — 185102°u® + 43102%u? — 439z0°
+1024z + 15uS,

—4 (=52 + u) (6252w — 5002°u? + 1502°u® — 20zu* + u° — 256) ,
4 (6252"u — 500z°u® + 1502°u” — 20zu’ + u® — 256),

—4u (=52 + u) (625z"u — 500z°u® + 1502°u”® — 20zu” + u® — 256) .
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0000 1 0 0 00O
0000 O 1 0 000
0000 O 0O 1 000
0000 %% B & 000
Moo= 0000 o 3 2000
2v 4v
0000 & & & 000
0000 O 0O 0 00O
0000 O 0O 0 00O
0000 O 0O 0 00O
Hy = —25(z—v)(1652* — 10zv — 27v?)
Hy = —5(z—v)(8352% — 230zu — 29u?)
Hy = —208752%v + 344752%0? — 185102%0° + 43102%0* — 43920°
+1024z + 150,
Gy = —4(=5z+0) (6252% — 5002°v? + 150220 — 20z0* + v° — 256)
Gs = 4(6252% —5002°v? + 150220 — 20z0" + v° — 256)
Ge = —4v(—5z+v) (62520 —500z°v* + 1502°v° — 2020 + v® — 256)

We obtain the following differential equations:

2 3 4 A A A
1 o=+ 1820, + 8292 4 W33 4 Mg, + 420,0, + 44020,;

2. 030y = F0u + 10.0u + 12020,;

z

3. 030y = $-0y + 20,0, + 12020,

402 = =30, + 510,0,;

U

5. 0ufsOu = — 30,00 + Z2020,;

6. 0u020y = £-0u + £ 0200 + 5 020u;
T. 08 = — 50, + 320.00

8. 0y0.0, = —5= 0.0, + ZL020,;

9. 0,020, = FL0y + B20.0, + F2020,;
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Not all all these equations are independent. Equation 5, 6, 8, 9 can be
derived from the others. We obtain the following differential operators:

»Cl _ Ebulk +£bdry;
Ly = 4zu85 + 320, — 2 (2 — u) 0,0y;
I £y I3 2 52
= T A VuT 500 T SO0y 7uz;
L3 Glﬁ G256 Ggﬁ& + 0.0
_ Hy Hy Hs 242,
Ly = G Ov a- 020y o 050y + 0,,0%;
with
Loux = (1 — 25) 240 — 102802 — 25270% — 152%0, — 2°

= 0.(0:—1) (0 —2) (6. — 3) — 2" (0. + 1)*,

using the logarithmic derivative 6, := z0,, and

_141D1,Z4a . A2D124a a . A3D124

bdry _
£ A B C

020,.

9.7 A modified example

As indicated in Remark 9.5.16, the deformations of D; and Dy should be
linked. To be specific, let X be a quintic as in Section 8.5.

We are now going to compute Picard-Fuchs operators in a specific ex-
ample. Let X be again the quintic as in Section 8.5. Furthermore, let z and
u be independent parameters and

Hi y:={Q1.u=0}C P*, where Q1 zn = J:% — (2 —u) mawsxgxs
and
Hy 0 ={Q2., =0} C P*, where Q2,20 = m% — (z4+u) z1232475.
Furthermore
Di.y:=HyunX,and Dy, = Hoyp N X..

This will carried out in further research. The method of Li, Lian and
Yau has to be modified suitably.
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Appendix A

Implementation of the
algorithms as Singular
programimes

A.1 A programme for computing the Picard-Fuchs
equation of a complete intersection Calabi-
Yau 3-fold

In this appendix we give a programme written in the Singular language
[DGPS16] for the calculation of the Picard-Fuchs equation for the periods
of a complete intersection Calabi-Yau (n — 3)-fold in P*"~! defined by two
homogeneous equations in P?~! depending on one parameter a.

The programme is applied to the complete intersection Calabi-Yau 3-fold
in P5 given by the two cubic polynomials considered in Example 7.3.26 in
Chapter 7 respectively in [LT93].

We review the situation: Let Q1 (X), Q2 (A) € H? (P®, Ops (3)) be the fol-
lowing two homogeneous cubic polynomials on P? depending on a parameter
A=a€eC:

Q1(N) = 23+ a3+ 23— 3\ xyasue,
Q2 ()\) = mi + .Z‘g + ZL‘% — 3\ z1T273.

For any details we refer to Example 7.3.26 in Chapter 7.
We briefly explain the programme:

LIB "general.lib";

int n = 6;
// n—1 is the dimension of the ambient projective space

int ¢c = 2;

191
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// ¢ is the codimension of the Calabi—Yau manifold in the
// projective space, here c=2, i.e., the Calabi—Yau
// manifold is the intersection of two hypersurfaces
10
ring ra = 0,(a,x(1..n),f(1..¢)),dp;
// the auxilliary ring ra is generated by a parameter a,
// the coordinates of the projective space x(1),...x(n)
// and two generators f(1), f(2) which correspond to the
15 // inverted homogeneous polynomials defining the
// Calabi—Yau manifold.

ideal fa = x(1)"3+x(2)"34+x(3)"3—3%axx(4)=*x(5)*x(6),
x(4)"34%x(5)"3+x(6) "3—3xaxx(1)*x(2)*x(3);

20 // fa is given by the two homogeneous polynomials
// defining the Calabi—Yau manifold

// For the following procedure see Remark 0.1.1

25 proc theta(poly g)
{
proc th(poly f)
{
return(axdiff(f,a));
30 }
poly p=0;
for(int j=1;j<=size(g);j=j+1)
{
matrix cf=coeffs(g[j].f(1));
35 intvec k = size(cf)—1;
poly h=cf[k[1]+1, 1];
int i;
for(i=2;i<=c;i=i+1)
{
40 cf=coeffs(h,f(i));
k=intvec (k,size(cf)—1);
h=cf[k[i]+1,1];

p = p—k[1]*hxth(fa[1])*f (1) (k[1]+1)*f(2) k[2]
5 tth(h)*f(1) k[1]#f(2) k[2]
—k[2]xhxth(fa[2])*f (1) k[1]*f(2) " (k[2]+1);
}

return(p);
50
// The following procedure associates to two matrices A
// and B with the same number of rows a matrix (A,B)

// whose number of columns is the added number of
55 // columns of A and B and whose number of rows coincides
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// with that of A and B. It is defined by concatenating
// the rows of A and B. If the number of rows of A and B
// does not coincide, then the Ixl—matrix 0 is returned.

60 proc concat(matrix A, matrix B)
{

int rA = nrows(A

int cA = ncols(A

B

B

int rB = nrows(B);
65 int cB = ncols(
int i,j;
if (rAl=rB)
{return(0);}
else
70 {
ideal C=A[1,1];
for(i=1;i<=rA;i=i+1)
{
for(j=1;j<=cA;j=j+1)
75 {
if (il=1 || j!=1)

1

)
)
)
) .

C=C,A[i,j];
}

80 }
for(j=1;j<=cB; j=j+1)

C=C,B[i.j];

85 }

return(matrix(C,rA,cA+cB));

90
// The following procedure associates to an integer n the
// Ixn—matrix whose entries are all 0.

proc zero(int n)

95 {
intvec z=0;
int i;
for(i=2;i<=n;i=i+1)
{

100 z=z,0;
}

return(z);

}

193
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// The following procedure associates to a polynomial g
// in the ring ra the maximal total degree in f(1) and f(2)
// of all summands of g. Only summands with at least power
// one in both f(1) and f(2) are taken into account. If

110 // there are no summands with power at least one in both
// f(1) and f(2), then 0 is returned.

proc fdegree(poly g)
{

115 matrix cf=coeffs(g,f(1));
intvec k = size(cf)—1;
poly h=cf[k[1]+1,61];
int i
for(i=2;i<=c;i=i+1)

120
cf=coeffs(h,f(i));
k=intvec (k, size (cf)—1);
h=cf[k[i]+1,1];

}

125 return(int(sum(k)));

}

poly p = f(1)«f(2);
130
int m=4;
// m is the dimension of the (n—2)-th cohomology of the
// Calabi—Yau (n—2)—fold.

135 poly p(1)=theta(f(1)*f(2));

for(int k=2;k<=m; k=k+1)

{
poly p(k)=theta(p(k—1));

// For the following procedure see Remark 0.1.2

145 proc maxvectf(poly p)
{
matrix cf=coeffs(p,f(1));
matrix Maxvectf[size (cf) —1][1];
for(int i=1;i<=size(cf)—1;i=i+1)
150 {
if (size(coeffs(cf[size(cf)—(i—-1),1],f(2)))
>=fdegree(p)—size (cf)+i+1)
{Maxvectf[i,1]=coeffs(cf[size(cf)—(i—1),1],f(2))[i+1,1];}
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else
155 {Maxvectf[i,1]=0;}

return( Maxvectf);

}

160
// The following procedure determines the summands of a
// polynomial p in ra with maximal total degree in f(1)

// and f(2).

165 proc maxpolf(poly p)
{
matrix cf=coeffs(p,f(1l));
poly max=0;
for(int i=1;i<=size(cf);i=i+1)

- if (fdegree(p)—i+2<=size(coeffs(cf[i,1],f(2))))
{max=max+(coeffs (cf[i,1],f(2))[fdegree(p)—i+2,1])
«f(1)"(i—=1)xf(2)"(fdegree(p)—(i—-1));}

else
175 {max=max; }

return(max);

// The following procedure associates to a polynomial g

// in ra a list of polynomials whose first element is g,

// the second element is the polynomial without all

// summands of the highest total degree in f(1) and f(2).
185 // Each following entry is the preceding one minus all

// summands of highest degree.

proc Slist(poly g)
{
190 int k=fdegree(g);
poly S(0)=g;
for(int |=1;l<=k—1;I1=1+1)
{
poly S(1)=S(I—-1)-maxpolf(S(I-1));
195 }
list H;
for(1=1;1<=k—1;1=141)
{
H[I]=S(1);
200 }

return (H);

}
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// Let k be the maximal total degree in f(1) and f(2).
205 // The following procedure associates to a polynomial g

// in ra the list of polynomials whose i—th entry

// consists of all summands of degree k—i.

proc Mlist(poly g)
210 {
int k=fdegree(g);
list H=Slist(g);
list G;
for(int |=1;1<=k—1;1=1+1)

if (size(H[I])!=0)
{G[l]=maxvectf(H[I]);}
else
{G[1]=0;}

}

return(G);

}

225 // Let A be the list of lists of polynomials in ra
// whose |—th entry is the list Mlist associated to p(m-1).

list A;

for(int 1=1;l<=m—1;I=1+1)
230 |

}A[I]:Mlist(p(m—l));

// Let A(0) be the list of polynomials in ra
235 // whose |—th entry is the polynomial maxvectf(p(m-1)).

list A(0);
for(int I=1;l<=m—1;I=1+41)

240 A(O)[I]:maxvectf(p(m—l));

}

list D;
D=Mlist (p(m));
245
for(int i=1;i<=m;i=i+1)
{

matrix K(i)=maxvectf(p(i));

}

250
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ideal ja = subst(p(1)[1],f(1),1,f(2),1);
for(int i=2;i<=size(p(1l));i=i+1)

255 {
ja = ja, subst(p(1)[i],f(1),1,f(2),1);

}

260 // Change of the ring:
ring r = (0,a),x(1..n),dp;
list A=imap(ra,A);

265 list A(0)=imap(ra ,A(0));
list D=imap(ra,D);

for(int i=1;i<=m;i=i+1)

{
270 matrix P(i)=imap(ra K(i));
}
ideal f = imap(ra,fa);
ideal j = imap(ra,ja);
275
matrix z = matrix(zero(n));

int i,il,i2 k,I;

280 for(int i=1;i<=m; i=i+1)
{
matrix J(i)[size(j"i)][1]=0;
J(i)=J(i)+matrix(j"i,size(j"i),1);

// See Remark 0.1.3

for (k=2;k<=n—1;k=k+1)
200 |
matrix E[k][k]; E=E + 1;
if (ken—1) {ideal jk = j"(k—1);}
ideal B=(k—1)*jacob(f[1]);
for(il=1;il<=k;il=il+1)

295 {
for(i2=1;i2<=k—1;i2=i2+41)
{
if(i1=i2)
{

300 if(il>1) {B=B,(k—il)*jacob(f[1]);}



198 APPENDIX A. SINGULAR PROGRAMMES

}
else
{
if (il=i2+1) {B=B,i2xjacob(f[2]);}
305 else {B=B,z;}
}
}
if (k<n—1)

310
matrix M(n—k) =
matrix (concat(concat(concat(matrix(]
matrix(B,k,(k—=1)xn)), f[1]*E), f[2]*E)
}

315 else

“(k=1) ,k,1),
k14 (k—1)*nt+cxk);

matrix M(1) =
matrix (concat(concat(matrix(B,k,(k—1)xn), f[1]*E),
f[2]%E) k,(k—1)xntcxk);

320 }

}

matrix P=P(m);
325 list Q;

// The following division and reduction process is
// explained in Chapter 7.3.4.
330
matrix V[m+1][1];
for(1=1;I<=m; I=1+1)
{
Q = division(P,M(1));
335 matrix P[m+l—1][1]=zero(m+1-1);

if (1==1)
for (k=1;k<=m; k=k+1)
{
340 for(i=1;i<=n;i=i+1)

P[k,1]=P[k, 1]+ diff (Q[1][i+n*(k—1) 1],x(i));

Pk, 1]=P[k,1]+Q[1] [nsmrk 1]+ Q[1] [n#(m+1)+k,1];
345 }s

}

else

{
for (k=1;k<=m+1—-1; k=k+1)
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350 {

for(i=1;i<=n;i=i+1)
Plk,1]=P[k,1]+ diff (Q[1][ i+nx(k—=1)+1,1],x(i));

355 Plk,1]=P[k,1]+Q[1][n*(m+1—1)+1+k, 1]
Q1] [nx(m+-1—=1)+1+(n+1-1)+k , 1];
V[mt+1l-1,1]=Q[1][1 ,1];
V[mt1-1,1];
}

360 }

}
V[m+1,1]=P[1,1];

s6s // In the following part the coefficients of the
// differential operators in the Picard—Fuchs equation
// are determined (see Chapter 7.3.4):

list F;
so list Q(1)=division ((V[m—1,1]%J(m=1)+D[1]) ,A(0)[1]) ;
poly q(1)=poly(Q(1)[1][1,1]);
for(int b=2;b<=m—1;b=b+1)
{
matrix F(b)=zero(m-b+1);
375 for(int v=1,v<=b—1;v=v+1)

F(b)=F(b)+q(v)*A[v][b-v];

list Q(b)=division (V[m-b,1]xJ(m-b)4+D[b]—F(b) ,A(0)[b]);
sso  poly q(b)=poly(Q(b)[1][1,1]);

F[b]=F(b);

}

for(int b=1;b<=m—1;b=b+1)
3ss {
Q(b);
}
V[m+1,1];

390
// The Picard—Fuchs equation is:
// \Theta"m_{lambda} — Q(1)x\ Theta "{m—1}_{\lambda} —
// \ldots — Q(m—1)x\ Theta"1_{\lamda} — V[m+1,1]

1.1.1 Remark. The procedure theta associates to a polynomial f =
Zij>1gi7]~f{f§ in the ring ra (then each g¢; ; a polynomial in the variable
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x1,...,T, depending on the parameter a)

O, ( 2 gi,jfffﬁ) :

written in the ring ra by replacing Ql_i by fi and Q5 J by fg.

1.1.2 Remark. The procedure mazvectf associates to a polynomial p in
the ring ra the summands of maximal total degree d in f; and fs. These
summands are written in a vector whose first entry consists of the factor of
ff fo, the second entry consists of the factor of fld*1 f2 and so on, until the
last entry consists of the factor of f;fJ.

E.g., let p = Af2fo + Bf1f2 + Cf1f2 be a polynomial, where A, B,C
are polynomials in the variables z1,...,z, depending on the parameter a.
Then

maxvectf (p) = ( g ) .

1.1.3 Remark. In the following we define matrices M (1) and M (n —

k) such that M(1) coincides with the matrix K, defined in Section 7.3.4

and M(n — k) coincides with the matrix Kj,; defined in Chapter 7.3.5.
(»)

The vector ((p+ 1) x 1)-matrix gp41 <Z§’:% %A e SOP+Y) for p =

1,...,m—1isreplaced by the matrices J(i) for i = 1,...,m, since the basis

elements theta(p(k)),k = 1,...,m — 1 are given by the Jacobian ideal of

p(1).
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A.2 A programme for calculating a Hodge number

This appendix contains a Singular programme ([DGPS16]) for calculating
the dimension of the variational cohomology H%[l%n (D) in Lemma 8.5.13. We
use the notation of Lemma 8.5.13.

This comes down to calculate the G-invariant part of the kernel of the
map ¥E7. We aim to determine the dimension of the space of all pairs of
homogeneous polynomials (R, Re) with

an
Rie H° (P*,0p4 (8))7 = (a8, aladzia], v120w32477)

and

G2 2.2 2 92

Ry e H (IP’4, Opa (9)) = <xg, TITHLZTITs, x1x2x3x4azg>

such that (Rj,R2) € im(K3). Therefore we search homogeneous poly-
nomials Aq,..., A5, Ag € H° (]P4, Opa (5)) ,Ag, Ag € H° (IP’4,(’)P4 (4)) and
A7 € HO (P*, Ops (3)) such that

5
0
Ry = ﬁAk + PA7 + QAy
= oxy,
and s
oP
Ry =) ——Ap+ PAs + QAs.
i=1 Ok

We give some explanations for the following programme for Singular.
For k=1,...,5,8 we write

_ (k) i1 49 13 14 15
Ay = Z Q4 g g iasis L1 L2 T3 Ty Ty
i1+i2+i3+i4+i5=5

(k)

for coefficients a; " ; ;. ;. € C, furthermore

_ (k) i1 .12 13 .14, .15
Ay = Z @iy ig,igyiasis L1 L2 X3 Ly Ly
11+i2+i3+ig+is=4

for k = 6,9 and

_ (k) i1 .12 13 14 .15
Ay = Z @iy fi,igiasis L1 L2 X3 Ly Ly
i1 +ig+ig+ig+i5=3

for k=7.
We define a (2 x 937)-matrix M whose entries are the factors of the
coefficients ') . in the polynomials Aj. Furthermore, six entries of

21,12,23,%4,15

M consist of the generators of HY (P*, Ops (8))G’1 and H° (P*, Ops (9))G’2
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such that the kernel of M determines all possibilities for (R;, R2) with the
required properties.

In the sequel we calculate all possibilities for (R, R2) we have obtained.
We obtain five independent solutions.

LIB "general.lib";
ring r = (0,b,c),x(1..5) ,dp;
int z=0;

5 poly P=x(1)"5+x(2)"5+x(3)"5+x(4)"5+x(5)"5
—5xbax (1) *x(2)xx(3)*x(4)*x(5);
poly Q@=x(5)"4—cxx(1)*x(2)*x(3)*x(4);

matrix M[2][937];
10 for(int k=1;k<=b5;k=k+1){
for(int i1=0;il<=5;il=il1+1){
for(int i2=0;i2<=5-i1;i2=i2+1){
for(int i3=0;i3<=5-11-i2;i3=i3+1){
for(int i4=0;i4<=5-i1-i2—-i3;i4=i4+1){
15 z=z+1;
M[1,z]=diff (P, x(k))*x(1)"il*xx(2)"i2%x(3)"i3xx(4)"i4
#x(5)"(5—il—i2—i3—i4);
Y //for—loop i4
Y //for—loop i3
20 } //for—loop i2
} //for—loop il
Y //for—loop k
//for—loop for A(6):
for(int i1=0;il<=4;il=i1+1){

25 for(int i2=0;i2<=4-i1;i2=i2+41){
for(int i3=0;i3<=4-i1-i2;i3=i34+1){
for(int i4=0;id<=4-i1-i2—i3;i4=i4+1){

z=z+1;
M[1,z]=Pxx(1)"ilxx(2)"i2xx(3)"i3*x(4)"i4
30 *x(5)"(4—i1—i2—-i3—i4);
Y //for—loop i4
} //for—loop i3
} //for—loop i2
Y //for—loop il
35 //for—loop for A(7):
for(int i1=0;i1<=3;il=i1+1){
for(int i2=0;i2<=3-i1;i2=i2+1){
for(int i3=0;i3<=3-i1—i2;i3=i3+1){
for(int i4=0;id<=3-il1—i2—i3;i4=i4+1){
40 z=z+1;
M[1,z]=0;
Y //for—loop i4
Y //for—loop i3
} //for—loop i2
s} //for—loop il
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//for—loop for A(8):
for(int i1=0;il<=5;il=il1+1){
for(int i2=0;i2<=5-i1;i2=i2+1){
for(int i3=0;i3<=5-i1-i2;i3=i3+1){
50 for(int i4=0;i4<=5-i1—-i2—i3;i4=i4+1){
z=z+1;
M[1,z]=Qxx (1) ilxx(2)"i2xx(3)"i3*x(4)"i4
#x(5) " (5—il—i2—i3—i4);
Y //for—loop i4
55 } //for—loop i3
} //for—loop i2
Y //for—loop il
int v=z;
//for—loop for A(9):
6o for(int i1=0;il<=4;il=i1+1){
for(int i2=0;i2<=4-i1;i2=i241){
for(int i3=0;i3<=4-i1-i2;i3=i34+1){
for(int i4=0;id<=4-i1-i2—i3;i4=i4+1){
z=z+1;
65 M[1,z]=0;
Y //for—loop i4
Y //for—loop i3
Y //for—loop i2
Y //for—loop il
70 z=z+1;
M[1,z]=—x(5) "9;
z—=z-+1;
M[1,z]==(x(1)*x(2)*x(3)*x(4)) " "2%x(5);
z=z+1;
75 M[1,z]=—x(1)*x(2)*x(3)*x(4)*x(5) "5;
z=z+1;
M[1,z]=0;
z—z+1;
M[1,z]=0;
80 z=z+1;
M[1,z]=0;
//
z=0;
for(int k=1;k<=5;k=k+1){
ss for(int i1=0;i1<=5;il=i1+1){
for(int i2=0;i2<=5-i1;i2=i2+1){
for(int i3=0;i3<=5-i1-i2;i3=i3+1){
for(int i4=0;i4<=5-i1—-i2—i3;i4=i4+1){
z=z+1;
90 M[2,z]=diff (Q,x(k))*x(1)"ilxx(2)"i2xx(3)"i3*xx(4)"i4
#x(5)"(5—il—i2—i3—i4);
} //for—loop i4
Y //for—loop i3
} //for—loop i2
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o5 } //for—loop il
Y //for—loop k
//for—loop for A(6):
for(int i1=0;il<=4;il=i1+1){
for(int i2=0;i2<=4-i1;i2=i241){

w0 for(int i3=0;i3<=4-i1—i2;i3=i3+1){

for(int i4=0;id<=4-i1-i2—i3;i4=i4+1){
z=z+1;
M[2,z]=0;
Y //for—loop i4
105 } //for—loop i3
} //for—loop i2
} //for—loop il
//for—loop for A(7):
for(int i1=0;il1<=3;il=il1+1){

10 for(int i2=0;i2<=3-i1;i2=i241){
for(int i3=0;i3<=3-i1-i2;i3=i3+1){
for(int i4=0;i4<=3-i1-i2—i3;i4=i4+1){

z=z+1;
M[2,z]=Pxx(1)"ilxx(2)"i2xx(3)"i3*x(4)"i4
115 *x(5)7(3—il1—i2—-i3—i4);
Y //for—loop i4
} //for—loop i3
} //for—loop i2
Y //for—loop il
120 //for—loop for A(8):
for(int i1=0;il<=5;il=il1+1){
for(int i2=0;i2<=5-i1;i2=i2+1){
for(int i3=0;i3<=5-i1-i2;i3=i3+1){
for(int i4=0;id<=5-il1—i2—i3;i4=i4+1){
125 z=z+1;
M[2,z]=0;
Y //for—loop i4
Y //for—loop i3
+ //for—loop i2
130} //for—loop il
//for—loop for A(9):
for(int i1=0;il<=4il=i1+1){
for(int i2=0;i2<=4-i1;i2=i2+1){
for(int i3=0;i3<=4-i1-i2;i3=i3+1){
135 for(int i4=0;id<=4-il1—i2—i3;i4=i4+1){
z=z+1;
M[2,z]=Qxx (1) " ilxx(2)"i2xx(3)"i3*x(4)"i4
#x(5)"(4—il—i2—i3—i4);
} //for—loop i4
140 } //for—loop i3
} //for—loop i2
Y //for—loop il
z—=z+1;
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M[2,z]=0;
145 z=z+1;
M[2,z]=0;
z=z+1;
M[2,2z]=0;
z—=z+1;
150 M[2 ,Z]:—X(5) ~8:
z=z+1;
M[2,z]=—(x(1)*x(2)*x(3)*x(4))"2;
z=z+1;
M[2,z]=—x (1) *x(2)*x(3)*x(4)*x(5) "4;

155

matrix V[2][1];
for(int i=1;i<=2;i=i+1){
V[i, 1]=0;

160 }

def C=modulo(M,V);

165
for(int t=1;t<=2856;t=t+1){
matrix L(t)[937][1];
}

170 int w=0;
Ifrc:r(int t=1;t<=2856;t=t+1){
}if(ord(C[t])::) {w=w+1; L(w)=matrix(C)[t];}

175 int d=w;

for(int k=1;k<=9;k=k+1){
poly A(k)=0;
}
180
int u=0;

for (w=1;,w<=105;w=w+1){
185 // Calculation of A(1),...,A(5):

z=0;
for(int k=1;k<=5;k=k+1){
for(int i1=0;il<=5;i1=i1+1){
10 for(int i2=0;i2<=5-il;i2=i2+41){
for(int i3=0;i3<=5-i1—-i2;i3=i3+1){
for(int i4=0;i4<=5-i1-i2—i3;i4=i4+1){
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z—=z+1;
A(K)=A(Kk)4+x (1) il*x(2)"i2%x(3)"i3xx(4)"i4
195 xx(5)"(5—il1—i2—i3—i4)*L(w) [z, 1];

} //for—loop i4
Y //for—loop i3
} //for—loop i2
} //for—loop il
20 } //for—loop k
//

//Calculation of the polynomial A(6):

205 for(int i1=0;il<=4;il=i1+1){
for(int i2=0;i2<=4-i1;i2=i2+1){
for(int i3=0;i3<=4-i1-i2;i3=i3+1){
for(int i4=0;i4<=4-i1—-i2-i3;i4=i4+1){
z—z+1;
210 A(6)=A(6)+x (1) il*x(2)"i2%x(3)"i3xx(4)"i4
#x(5) " (4—i1—i2—i3—i4)«L(w)[z,1];
} //for—loop i4
} //for—loop i3
} //for—loop i2
215} //for—loop il
//int n=v;

//Calculation of the polynomial A(7):

220 for(int i1=0;i1<=3;il=i1+1){
for(int i2=0;i2<=3-il;i2=i241){
for(int i3=0;i3<=3-i1-i2;i3=i3+1){
for(int i4=0;i4<=3-i1-i2—i3;i4=i4+1){
z=z+1;
225 A(T)=A(7)4+x (1) il*x(2)"i2%x(3)"i3xx(4)"i4
xx(5)"(3—il—i2—i3—i4)*xL(w)[z,1];
} //for—loop i4
} //for—loop i3
Y //for—loop i2
230 } //for—loop il
//

//Calculation of the polynomial A(8):

25 for(int i1=0;il<=5il=il+1){
for(int i2=0;i2<=5-il;i2=i2+1){
for(int i3=0;i3<=5-i1-i2;i3=i3+1){
for(int i4=0;i4<=5-i1—i2—i3;i4=i4+1)]
z=z+1;
240 A(8)=A(8)4+x (1) ilxx(2)"i2%x(3)"i3xx(4)"i4
xx(5)"(5—il1—i2—i3—i4)*xL(w)[z,1];
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}//for—loop i4
Y //for—loop i3
Y //for—loop i2
245 Y //for—loop il
//

//Calculation of the polynomial A(9):

250 for(int i1=0;il<=4;i1=i1+1){
for(int i2=0;i2<=4-i1;i2=i2+41){
for(int i3=0;i3<=4-i1—i2;i3=i3+1){
for(int i4=0;id<=4-i1-i2—i3;i4=i4+1){
z=z+1;
255 A(9)=A(9)+x (1) il*xx(2)"i2*xx(3)"i3xx(4)"i4
*x(5)"(4—il—i2—i3—id)xL(w)[z,1];
Y //for—loop i4
Y //for—loop i3
Y //for—loop i2
260 |} //for—loop il
//

poly R2(w)=0;
265 for(int j=1;j<=5;j=j+1){
R2(w)=R2(w)+diff (P,x(j))*A(]);
R2(w)=R2(w)+P*A(6)+Q*A(8) ;

270 poly R1(w)=0;
for(int j=1;j<=5;j=j+1){
R1(w)=R1(w)+diff(Q,x(j))*A(]j);

}
R1(w)=R1(w)+P+A(7)+Q+A(9) ;

275 }

for (w=1,w<=d ;w=w+1){
matrix R(w) [2][1];
R(w)[1,1]=R1(w);

280 R(W)[Q,I]ZRQ(W);
}
int a;

285 for (w=1,w<=105;w=w+1){
if (R(w)[1,1]1=0) {a=a+1;}

else {
if (R(w)[2,1]!=0) {a=a+1;}

200 }
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quit;
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A.3 A programme for the computation of Picard-
Fuchs operators of a pair consisting of a Calabi-
Yau 3-fold and a divisor

This appendix contains a Singular programme ([DGPS16]) for the compu-
tation of Picard-Fuchs operators of a pair consisting of a Calabi-Yau 3-fold
and a divisor. It is an extension of the programme given in Appendix A.1l
for a complete intersection Calabi-Yau 3-fold.

LIB "general.lib";

int n = 5;
// n—1 is the dimension of the ambient projective space

int c = 2

ring ra = 0,(a,b,x(1..n),f(1..¢)),dp;

ideal fa = x(1)"5+x(2)"5+x(3)"5+x(4)"5+x(5)"5
—5xaxx (1) *x(2)xx(3)*x(4)*x(5),
x(5)"4—bxx(1)*x(2)*x(3)*x(4)

fa;

// fa is given by the two homogeneous polynomials
// defining the Calabi—Yau manifold and the divisor

int m=4; // m is the dimension of the (n—2)—th
// cohomology of the Calabi—Yau (n—2)—fold.

// We compute the basis of the 3—rd relative
// cohomology .

// The following procedure computes the partial derivative
// of a polynomial in ra with respect to the

// parameter a, such that f(1) and f(2) are assumed to be
// in the denominator.

proc adiff (poly g)

{
proc th(poly f)
{
return(diff(f,a));
}
poly p=0;
for(int j=1;j<=size(g);j=j+1)A
{

matrix cf=coeffs(g[j] . f(1));
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40 intvec k = size(cf)—1;
poly h=cf[k[1]+1 1];
int i;
for(i=2;i<=c;i=i+1)
{

45 cf=coeffs(h,f(i));

k=intvec (k,size(cf)—1);
h=cf[k[i]+1,1];

}
p = p—k[1l]xhxth(fa[l])=f(1)
50 +th(h)*f (1) k[1]*f(2)" k
—k[2]*hxth(fa[2])*f(1)"

“(k[1]+1)*f(2)"k[2]
[2]
k[1]%f(2) " (k[2]+1);

return(p);

}

55

// The following procedure computes the partial
// derivative of a polynomial in ra with respect
60 // to the parameter b

proc bdiff(poly g)
{
65 proc th(poly f)
{
return(diff(f,b));
}
poly p=0;
7o for(int j=1l;j<=size(g);j=j+1)
{
matrix cf=coeffs(g[j].f(1));
intvec k = size(cf)—1;
poly h=cf[k[1]+1,61];
75 int i;
for(i=2;i<=c;i=i+1)
{
cf=coeffs(h,f(i));
k=intvec (k,size(cf)—1);
80 h=cf[k[i]+1,1];
}
p = (k[1]+1)%f(2) "k[2]
2]

p—k[1]xhxth(fa[1l]) "
[
kK[1]*f(2)"(k[2]+1);

xf (1)

+th(h)«f (1) "k[1]*f(2)"k

—k[2]«hxth(fa[2])f(1)"
return(p);

}
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// Calculation of the basis:

poly PX(0)=f(1);

for(int k=1;k<=m;k=k+1)

95 {

100

105

110

115

120

125

130

135

poly PX(k) =

}

poly PD(1)= diff(fa[2],b)*f(1)xf(2);
for(int k=2;k<=m; k=k+1)

poly PD(k) = (k—1));

}

// We denote the vectors we want to decompose

// by Z(1) and Z(2)
// Derivative with respect to z:

poly Z(1)=PX

(4);

poly Z(2)=PD(4);

adiff (PD

adiff (PX(k—1));

// Derivative with respect to u:

poly Z(3)=PX(3)xdif
poly Z(4)=bdiff (PD(
poly Z(5)=bdiff (PD(
poly Z(6)=bdiff (PD(
proc
{
int rA = nrows(A);
int cA = ncols(A);
int rB = nrows(B);
int cB = ncols(B);
int i,j;
if (rAl=rB)
{return(0);}
else

ideal C=A[1,1];
for(i=1;i<=rA;i=i+1)

{

for(j=1;j<=cA; j=j+1)

{

f
1
2
3

(
)
)
)

f
);
)
)

[2],

b)xf

concat(matrix A, matrix B)

(2);

211
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if (il=1 || j!=1)

{
140 C=C,Ali.j];
}
}
for(j=1;j<=cB; j=j+1)
145 C=C,BJ[i,j];
}
return(matrix(C,rA,cA+cB));
}
150 }

proc zero(int n)
155 {
intvec z=0;
int i;
for(i=2;i<=n;i=i+1)
{
160 z=z,0;

}

return(z);

165 // The following procedure associates to a polynomial g
// in the ring ra the maximal total degree in f(1) and f(2)
// of all summands of g. Only summands with at least power
// one in f(1) and f(2) are taken into account.
// If there are no summands with power at least

170 // one in both f(1) and f(2), then 0 is returned.

proc fdegree(poly g)
{
matrix cf=coeffs(g,f(1));
175 intvec k = size(cf)—1;
poly h=cf[k[1]+1 1];
int i;
for(i=2;i<=c;i=i+1)

{
180 cf=coeffs(h,f(i));
k=intvec (k,size(cf)—1);
h=cf[k[i]+1,1];

return(int(sum(k)));

185 }



A.3. PICARD-FUCHS OPERATORS 213

// The following procedure associates to an integer k the
// (k—1)xI—matrix whose i—th entry is the coefficient of
wo // f(1)"if(2)"(k—=i) for i=1,..., k—1.

proc Fmon(int k){

matrix F[1][k—1]=0;

for(int i=1;i<=k—-1;i=i+1)
195

FI1,i]=F[1,i]+f(1)"i*xf(2)"(k=i);

return(F);

}

200
// For the following procedure see Remark

proc maxvectf(poly p){
205 int d=fdegree(p);
matrix cf=coeffs(p,f(1l));
matrix Maxvectf[d][1];
Maxvectf[1,1]=0;
for(int i=2;i<=d;i=i+1){
210 if (size(cf)>=d—(i—2)){
if (size(coeffs(cf[d—(i—2),1],f(2)))>=1+(i —2)){
Maxvectf[i,1l]=coeffs(cf[d—(i—2),1],f(2))[2+(i—-2),1];

else {Maxvectf[i, 1]=0;}
215
else {Maxvectf[i, 1]=0;}
}

return( Maxvectf);

}

220

// The following procedure determines the summands of a
// polynomial p in ra with maximal total degree in

// f(1) and f(2).

proc maxpolf(poly p){

matrix cf=coeffs(p,f(1l));

poly max=0;

for(int i=1l;i<=size(cf);i=i+1){

230 if (fdegree(p)—i+2<=size(coeffs(cf[i, 1],f(2))))
{max=max+(coeffs (cf[i,1],f(2))[fdegree(p)—i+2,1])
| #f(1)"(i—1)xf(2)"(fdegree(p)—(i—-1));}

else

{max=max;}
235}
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return (max);

}

220 // The following procedure associates to a polynomial g
// in ra a list of polynomials whose first element is g,
// the second element is the polynomial without all
// summands of the highest total degree in f(1) and f(2).
// Each following entry is the preceding one minus all

245 // summands of highest degree.

proc Slist(poly g){
int k=fdegree(g);
poly S(0)=g;
250 for(int 1=1;1<=k—1;I=1+1){
poly S(1)=S(I—-1)—maxpolf(S(l1-1));
}
list H;
for(I=1;1<=k—1;1=1+1){
255 H[I]=S(1);

return(H);

260
// Let k be the maximal total degree in f(1) and f(2).
// The following procedure associates to a polynomial
// g in ra the list of polynomials whose i—th entry
// consists of all summands of degree k—i.

)

265
proc Mlist (poly g
int k=fdegree(g)
list H=Slist(g);
list G;

270 for(int |=1;1<=k—1;1=1+1){
if (size(H[I])!=0)
{G[I]=maxvectf(H[I]);}
else

{6[1]1=0;}
)

return(G);

}

280
proc maxvectfl(poly p){
matrix cf=coeffs(p,f(1l));
matrix K[size(cf) —1][1];
K[1,1]=cf[size(cf)  1];
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for(int i=2;i<=size(cf)—1;i=i+1){

K[i,1]=0;

return (K);
}
for(int k=1;k<=m—1;k=k+1)
{

matrix MaxX(k)=maxvectfl (PX(k));
}
for(int k=1;k<=m—1;k=k+1)
{

matrix MaxD(k)=maxvectf(PD(k));
}
for(int k=1;k<=m—1;k=k+1)
{

list MP(k) = Mlist (PX(k));
}

for(int v=1,v<=6;v=v+1)

)i}

if (v==1) {matrix K(v)=maxvectfl(Z(1
(v))i}

if (v>=2) {matrix K(v)=maxvectf(Z

}

N A A aada

// Change of the ring
ring r = (0,a,b),x(1..n),dp;
int m=4;

for(int v=1,v<=6;v=v+1)

{

matrix K(v)=imap(ra ,K(v));

}

for(int v=1,v<=6;v=v+1)

{
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matrix K=K(v);
335

matrix S(v)[2xsm—1][1];

for(int k=1;k<=m—1;k=k+1)

340 {
matrix MaxX(k)=imap(ra, MaxX(k));
}

for(int k=1;k<=m—1;k=k+1)

345 {
matrix MaxD(k)=imap(ra ,MaxD(k));
}

ss0 ideal f = imap(ra,fa);
matrix z = matrix(zero(n));

int i,il,i2,i3,i4 ,k,|,s,o,w;
355 int n=b5;
int m=4;

// In the following we define matrices M(n—k) with
se0 // k rows and n(k—1)+2k lines, they coincide

// which coincide with the matrices K_{k+1}

// defined in 77

// El1(k) ist die kxk—Einheitsmatrix mit der
s3es // letzten Spalte abgeschnitten

for (k=2;k<=n; k=k+1)
{
matrix E1(k)[k][k—1];
sro for(I=1;1<=k;|=1+1)

{
for(s=1;s<=k—1;s=s+1)
{
if(lI=s) {E1(k)[!l,s]=1;}
375 else {El(k)[!,s]=0;
}
}

380

// E2(k) ist die kxk—Einheitsmatrix mit den ersten
// beiden Spalten abgeschnitten
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for (k=2;k<=n; k=k+1)
385 {
matrix E2(k)[k][k—-1];
for (1=1;1<=k; I=I+1)
{
for(s=1;s<=k—1;s=s+1)
w if (1<=1) {E2(k)[I,s]=0;}
else

if(1-1==s) (E2(k)[1s]=1})
395 else {E2(k)[Il,s]=0;}
}
}
}
}

400
for (k=1;k<=n—1;k=k+1)
{
matrix E[k+1][k+1]; E = E + 1;
ideal B=kxjacob(f[1]);
w05 for(il=1;il<=k+1;il=i1+1)
{
for(i2=1;i2<=k;i2=i2+1)
{
if (il=i2)
410 {

if(il1>1) {B=B,(k+l—il)*jacob(f[1]);}

415 if (i1:i2—|—1)

if (i1==2) {B=B,—jacob(f[2]);}
else {B=B,(i2—1)*jacob(f[2]);}

420 else {B=B,z;}
}

}
}

if (k<=n—2) {matrix M(n—k) = matrix(concat(concat(concat

217

425 (concat(matrix(B,k+1,kxn),f[1]*E), f[2]*xE2(k+1)),

MaxX(k)) ,MaxD(k)) , k+1, kxntcx(k+1)+1);}
else {matrix M(n—k) = matrix(concat(concat
(matrix (B, k+1,kxn),f[1]*E),f[2]*E2(k+1)) ,k+1,

kkntcx(k+1)—1);}

430 }
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list Q;
435 matrix P[m+1][1]=K;

int t=m2-size (K);

a0 for(I=t;l<=m; |=I+1)

Y [m=1][1]=zero(m-1);}
Q= d|V|5|on( M(

if (1>1) {poly Ll(

if (I<m) {matrix V(
I
I
445 poly L2(|I

[

)):

)=Q[1][(n—1)*n+2x(n—141) 1];
)=Q[1][(n=1)*n+2x(n—1+1)4+1,1];}

matrix P[m-|+1][1]=zero(m-1+41);
for (k=1;k<=m—I1+41;k=k+1)
{
450 for(i=1;i<=n;i=i+1)
Pl[k,1]=P[k, 1]+ diff (Q[1][i4+nx(k—1),1],x(i));

}i
P[k,1]=P[k,1]4+Q[1][n*(m-I+1)+k,1];

455 if (k>=2) {P[k,1]=P[k,1]4+Q[1][(n+1)*(m-1+1)+1+k, 1];}
if (1<m)
{
for(s=1;s<=m—1|;s=s+1)
{
460 for(i=1;i<=n;i=i+1)
{
}V(I)[s,l]:V(I)[s,l]—Q[l][i+n>|<s,1]>k diff (f[2],x(i));
}
465 }
¥
}
for(int o=2;0<=t—1;0=0+1)
a0 |
poly L1(0)=0; poly L2(0)=0;
}

//Coefficient of PX(0):
S(v)[1,1]=P;

aso //Coefficient of PX(1):
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S(v)[2,1]=L1(4);

//Coefficient of PX(2):
S(v)[3,1]=L1(3);

// Coefficient of PX(3):
S(v)[4,1]=L1(2);

//Coefficient of PD(1):
S(v)[5.1]=L2(4);

//Coefficient of PD(2):
S(v)[6,1]=L2(3);

//Coefficient of PD(3)
S(v)[7.,1]=L2(2);

}

for(int i3=1;i3<=2;i3=i3+1)

matrix M(i3)[2«+m—1][2%m—1];
}

A aa

//matrix M(1):

for(int i4=1;i4<=7;i4=i4+1)
for(int i4=1;i4 <=T7;i4=i4+1)

for(int i4=1;i4<=7;i4=id4+1)

for(int i4=1;i4<=7;i4=i4+1)

{
}
{
}
{
}
for(int i4=1;i4<=7;i4=i4+1) {
{
}
for(int i4=1;i4<=7;i4=i4+1) {
}

{

for(int i4=1;i4<=7;i4=i4+1)

iF(i4==2) {M(1)[1,i4]=1:}
else {M(1)[1,i4]=0;}

i (14—=3) (M(1)[2,i4]=1})
else {M(1)[2,i4]=0;}

if(i4==4) {M(1)[3,i4]=1;}
else {M(1)[3,i4]=0;}

M(1)[4,i4]=S(1)[i4,1];}
if(i4==6) M(1)[5,i4]=1;)
else {M(1)[5,i4]=0;}

if(i4==7) (M(1)[6,i4]=1;}
else {M(1)[6,i4]=0;}

M(1)[7,i4]=S(2)[i4 1];}

e a

219
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//matrix M(2);

for(int

535

for(int i

for(int i

540

for(int
for(int
for(int
sa5 for(int

i4=1;

i4=1;
i4=5;
i4=5h;
i4=5;

14 <=T;i4=i4+1)

{
}
{
}
(14 <=T;i4=i4+1) { if(i4==7) {M(2)[3,i4]=1;}
!
{
{
{
{

i4<=7;i4=i4+1) { if(i4==5) {M(2)[1,i4]=1;}

else {M(2)[1,i4]=0;}

iF(i4==6) (M(2)[2,i4]=1;}
else {M(2)[2,i4]=0;}

else {M(2)[3,i4]=0;}

i4<=7;i4=i4+1)
i4<=7:i4=i4+1)
i4<=7:i4=i4+1)
i4<=7;i4=i4+1)

e

1
1
1
i

—— e

) [4 (3)[i4 .1
)5, (4)[i4,1
)[6,i4]=5(5)[i4,1
)7, (6)[i4,1

N A A aa

M(1);
550 M(2) ;

quit;
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