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Chapter 1

Introduction

Calabi-Yau manifolds and the general setting. Calabi-Yau manifolds
are simply-connected compact projective manifolds X with trivial canonical
bundle KX “ ΩnX , where n “ dimX, and the additional property that

H0
´

X,ΩjX

¯

“ 0 for 2 ď j ď n´ 1.

By Yau’s solution of the Calabi conjecture, X carries a Kähler metric with
vanishing Ricci curvature.

Calabi-Yau manifolds are not only central objects in complex geometry,
but also play an important role in string theory. In fact, much of the mathe-
matical theory of Calabi-Yau manifolds has its origin in physics, e.g. mirror
symmetry. Calabi-Yau manifolds themselves have a special property in de-
formation theory: their first-order deformations are unobstructed, although
the obstructions live in a space H2 pX,TXq which is not 0. So their local
moduli are smooth of dimension dimH1 pX,TXq.

Motivated by the study of D-branes in string theory, physicists started
to study deformations of geometric objects on Calabi-Yau manifolds. For
each joint moduli problem, e.g. the moduli problem of X together with a
coherent sheaf on it, one has to specify the notion of a family of geometric
objects. For example, a simultaneous deformation of a complex manifold
X and a coherent sheaf F on X consists of a deformation X Ñ S of X,
where X and S are complex spaces, and a coherent sheaf F̃ on X , flat over
S. These types of deformations are subject of this thesis.

Picard-Fuchs equations and potential functions. Given a Calabi-
Yau 3-fold X and a geometric object, say A, we are interested in the joint
”local moduli space” M “ M pX,Aq of A and X. This local moduli space
is realized as a subspace of the Zariski tangent space T – CN with N :“
dim TpX,AqM of M at A, which is the space of first-order deformations.

1



2 CHAPTER 1. INTRODUCTION

Thus, given a first-order deformation, one tries to extend it order by order.
However in general there are obstructions to do this, and to understand
how M sits in T is the same as to understand the obstructions. So M
parametrizes – up to convergence – the deformations that are unobstructed
to each order.

The hope is then to have a so-called holomorphic potential function
f : U Ñ C defined on an open set U Ă T such that the critical locus of f is
M.

More specifically, consider the space of first-order deformations T pX,Aq

ofX and A, and the space of first-order deformations T pXq – H1 pX,TXq of
X, leading to a forgetful morphism T pX,Aq Ñ T pXq. Then there should be
open neighbourhoods U Ă T pX,Aq and V Ă T pXq of 0 and a holomorphic
function f : U Ñ C such that

␣

dU{V f “ 0
(

“ M pX,Aq X U. (1.0.0.1)

The technical tool to treat infinitesimal deformations are functors of
Artin rings. These functors associate to an Artin ring the space of defor-
mations of the given object over the spectrum of the Artin ring. In this
setting, obstructions are cohomology classes that vanish if a deformation
over the spectrum of an Artin ring can be extended to a deformation over
the spectrum of a larger Artin ring. For geometric deformation problems,
usually the space of first-order deformations is given by the first cohomology
group (or Ext-group) of a certain coherent sheaf. The space of obstructions
is contained in the second cohomology of the same coherent sheaf. In most
cases, the obstructions of a deformation problem are difficult to compute.
Therefore it is useful to have a potential function that gives information
about the obstructions.

Physicists propose that in some situations such a potential function
should exist as a solution of a certain differential equation associated with
the deformation problem, the Picard-Fuchs equation. In the special case of a
family of Calabi-Yau manifolds, the Picard-Fuchs equation is satisfied by all
periods induced by the variation of the complex structure that is related to
the given deformation problem. Furthermore, the potential function should
be a generating function of the obstructions. We explain this in more detail
below.

In several cases potential functions are known to exist, although not
all expected properties are established yet. For example, sometimes just
the existence of a holomorphic potential function is known, but it is still
unknown whether it is a solution of a differential equation with specific
properties.

The existence problem for potential functions is therefore closely related
to the task of constructing Picard-Fuchs equations associated with defor-
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mation problems. These Picard-Fuchs equations are differential equations
arising from certain Gauß-Manin connections. We explain this in the sim-
plest possible situation.

Let X Ñ T be a deformation of a Calabi-Yau n-fold over a complex
manifold T , i.e., a family of Calabi-Yau manifolds, and let Ω be a fam-
ily of holomorphic n-forms on X . Then Rnπ˚Z is a local system and the
holomorphic vector bundle associated with this local system carries a canon-
ical connection, the Gauß-Manin connection. Now we apply repeatedly the
Gauß-Manin connection to obtain sections

∇0 rΩs ,∇1 rΩs , . . . ,∇m rΩs P H0 pT,Rnπ˚Z b OT q .

As the n-th cohomology of the fibres is finite-dimensional, these classes will
be linearly dependent if m is large enough. The resulting equation is called
the Picard-Fuchs equation associated with the family X .

For families of Calabi-Yau manifolds that are special complete intersec-
tions in (weighted) projective spaces the Picard-Fuchs equation can be cal-
culated explicitly using the so-called Griffiths-Dwork method. This method
was first introduced by Griffiths in [Gri69] for Calabi-Yau hypersurfaces in
a projective space. Using a residue map it is possible to represent classes in
the pn´ 1q-th cohomology Hn´1 pX,Cq of a Calabi-Yau hypersurface X in
Pn by rational forms on Pn with poles along X. The Griffiths-Dwork method
uses a correspondence between the Hodge filtration on Hn´1 pX,Cq and a
filtration given by the pole order on a complex of rational forms. On the
level of these rational forms one constructs the requested linear combination.

The case of complete intersections of codimension 2 was first established
by Libgober and Teitelbaum in dimension 5 in [LT93]. Strictly speaking,
the Picard-Fuchs equation is calculated for the mirror or a finite quotient of
the Calabi-Yau manifold.

We will now explain this in case of a quintic X Ă P4. Then the Hodge
numbers are easily computed as

h1,1 pXq “ 1 and h1,2 pXq “ 101.

This creates a problem, since the Picard-Fuchs equation is calculated in
H3 pX,Cq, which has dimension 204. Therefore the number m appearing
in the Griffiths-Dwork procedure will be large. To avoid this difficulty, one
considers special families of quintics X admitting a certain action of a finite
group G, and the Picard-Fuchs equation can be computed using G-invariant
cohomology. This can be reinterpreted as working on the mirror qX instead
of X. On qX the Hodge numbers are interchanged so that

h1,1
´

qX
¯

“ 101 and h1,2
´

qX
¯

“ 1.
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Consequently dimH3
´

qX,C
¯

“ 4. Alternatively, one may argue on X{G.

In this context,

h1,2 pX{Gq “ h1,2 pXq
G

“ 1 and dimH3 pX{G,Cq “ dimH3 pX,Cq
G

“ 4.

The general task, as proposed by examples from physics, is to study
Picard-Fuchs equations and potential functions for pairs pX,Aq as at the
beginning of our discussion, where A is now a coherent sheaf F . This might
be hopeless for a general coherent sheaf; in particular there seems to be no
Hodge theory and therefore no Gauß-Manin connection available. Instead
of a general coherent sheaf, one might choose for instance vector bundles of
rank two or coherent sheaves ι˚OY for a subspace Y in X with inclusion
ι : Y ãÑ X. This leads to the discussion of Picard-Fuchs equations for pairs
pX,Dq consisting of a Calabi-Yau 3-fold X and a smooth divisor D. The
Zariski tangent space to the first-order deformations Def pX,Dq is given by

Def pX,Dq – H1 pX,TX p´ logDqq ,

which is dual to H2
`

X,Ω1
X plogDq

˘

. So the deformations of the pair pX,Dq

are governed by the logarithmic complex Ω‚
X plogDq.

The connection to Hodge theory is therefore given by the mixed Hodge
structure on the hypercohomology of the logarithmic complex, which com-
putes the relative de Rham cohomology H3 pX,D,Cq. In fact, by Deligne’s
theorem we obtain

H3 pX,D,Cq
_

– H3 pX,T ‚
X p´ logDqq –

à

p`q“3

Hp pX,T q p´ logDqq .

A family of deformations of a pair pX,Dq thus gives a Gauß-Manin
connection and hence a Picard-Fuchs equation. The Griffiths-Dwork method
was first used by Jockers and Soroush in [JS09a] and [JS09b] for calculating
Picard-Fuchs equations and candidates of potential functions for pairs. The
mathematical theory for the Griffiths-Dwork reduction of pairs was carried
out by Li, Lian and Yau in [LLY12].

There are also methods from toric geometry to obtain Picard-Fuchs equa-
tions for pairs pX,Dq, introduced by Lerche, Mayr and Warner in [LMW02a]
and [LMW02b]. These authors derived a candidate for a potential function
for deformations of non-compact toric Calabi-Yau 3-folds X with toric divi-
sors satisfying additional symmetry assumptions arising from N “ 1-special
geometry. They used a mixed Hodge structure on the relative cohomology
of pairs.

Subsequently, in [AHMM09], [AHJ`10], [AHJ`11] and [AHJ`12] Alim,
Hecht, Mayr and Mertens transferred the ideas of Lerche, Mayr and Warner
to compact Calabi-Yau manifolds and derived systems of Picard-Fuchs op-
erators. In this context, Morrison and Walcher discovered in [MW09] a
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different differential equation which is solved by Hodge-theoretic normal
functions. These normal functions are obtained by integrating a holomor-
phic 3-form over a certain cycle.

It has to be mentioned that for deformations even of complexes of coher-
ent sheaves on a fixed Calabi-Yau 3-fold Brav, Bussi and Joyce showed in
[BBBBJ15] that there is a holomorphic function whose critical locus gives
the unobstructed deformations. However it is not known that this function
is the solution of a differential equation and there is in general no explicit
construction of the function.

Chern-Simons functional. Another situation is known in which a po-
tential function was found by completely different methods. To explain this,
we first recall the real Chern-Simons functional on the space of connections
of a fixed real 3-manifold. The critical locus of the real Chern-Simons func-
tional is nothing but the subspace of flat connections.

In analogy to the real situation, Thomas [Tho00] developed a holomor-
phic Chern-Simons functional. Since in this setting it will be apparent how
generating functions of the obstructions come into the picture, we will give
a very detailed exposition.

To begin with, let E Ñ X be a complex differentiable vector bundle
on a fixed Calabi-Yau 3-fold X, and let A be the space of B-operators on
E. The holomorphic structures on E Ñ X correspond to those B-operators
BE on E satisfying BE ˝ BE “ 0, i.e., to those BE that are integrable. We
assume that E Ñ X is a holomorphic vector bundle and fix a holomorphic
structure B0 on E. Then A is an affine space with associated vector space
A0,1 pEnd pEqq. As usual A0,1 pEnd pEqq denotes the sheaf of p0, 1q-forms
with values in End pEq.

Then the holomorphic Chern-Simons functional for E will be a holomor-
phic function on A, given as follows

CSB0

`

B0 ` a
˘

:“
1

4π2

ż

X
tr

ˆ

1

2
B0a^ a`

1

3
a^ a^ a

˙

^ Ω (1.0.0.2)

for each a P A0,1 pEnd pEqq. Here Ω denotes a holomorphic non-vanishing
3-form on X and tr : End pEq Ñ OX the trace map.

The functional CS “ CSB0
descends to a functional on A{GE , where GE

denotes the gauge group of E, the space of complex linear C8-automorphisms
of the vector bundle E. Then Thomas proves

Crit pCSq “ Aint,

where Aint denotes the space of integrable B-operators on E Ñ X. Thus the
critical points of the Chern-Simons functional are the holomorphic structures
on E Ñ X.
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To continue, we observe that a P Crit
´

CSB0

¯

is equivalent to saying that

a satisfies the Maurer-Cartan equation

B0a` a^ a “ 0.

We assume now additionally that E is simple, i.e. all holomorphic en-
domorphisms of E are just multiples of the identity. This assumption is
satisfied in the important case that E is semistable for some ample polar-
ization. Under this assumption even more is true: There exists an open
neighbourhood U of B0 in A{GE such that the critical locus of CSB0

is a lo-
cal moduli space of E, and U can be identified with an open neighbourhood
V of 0 in Ext1 pE,Eq – Def pEq, the space of first-order deformations of E.

At the level of tangent spaces we have

H1
`

A0,1 pEnd pEqq , BEndE

˘

“ H1 pX,EndEq “ Ext1 pE,Eq – Def pEq .

The obstruction of extending a bundle infinitesimally from order n to
n` 1 can be described by so-called Massey products

rn
`

abn
˘

P Ext2 pE,Eq ,

where a P A :“ ‘nΓ
`

A0,n pHom pE,Eqq
˘

and rn : Abn Ñ A are morphisms
subject to further restrictions – so-called product relations – making A into
an A8-algebra. Then

H1 pAq “ Ext1 pE,Eq and H2 pAq “ Ext2 pE,Eq .

The A8-structure on A also induces an A8-structure on H˚ pX,End pEqq.
Fix a Ricci-flat metric on X and a metric on E such that every class

a P Ext1 pE,Eq is represented by a unique B0-harmonic form α. Then we

define a potential function xCSB0
on Ext1 pE,Eq by setting

xCSB0
prαsq “

ÿ

ně1

p´1q
npn`1q

2

n` 1

ż

X
Ω ^ tr

`

a^ rn
`

abn
˘˘

. (1.0.0.3)

As r1 paq “ B0a and r2 pa, aq “ a^ a, the functional xCSB0
can be seen as

an extension of the holomorphic Chern-Simons functional CSB0
by adding

Massey products of higher order.
Formula (1.0.0.3) uses the non-degenerate pairing between the space of

first-order deformations of E Ñ X and the space that contains the obstruc-
tions, see Thomas in [Tho97], namely

Ext1 pE,Eq ˆ Ext2 pE,Eq Ñ Ext3 pOX ,KXq
^Ω
Ñ H3,3 pXq

ş

X
Ñ C.

Here the first map is given by Serre-Duality using KX – OX . We emphasize
that in the case of vector bundles, Serre-duality provides a non-degenerate
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pairing between the space of first-order deformations and obstructions. This
is no longer the case for other deformation problems, e.g. for general coher-
ent sheaves.

In this context the Maurer-Cartan equation generalizes to

ÿ

ně1

rn
`

abn
˘

“ 0.

In [Laz01] and [Jia17] it is suggested that the critical loci of xCSB0
and CSB0

agree up to A8-relations that should not affect the deformation theory.
Nevertheless, the functional xCSB0

carries richer information.

For other deformation problems, e.g. for pairs pX,Fq, where F is a
coherent sheaf which is not locally free, the pairing between the space of first-
order deformations and their obstructions is missing. However, it is possible
to look at the generalized Maurer-Cartan equation as generating function
of the obstructions. The critical locus of this map gives the unobstructed
first-order deformations.

In [MW09] Morrison and Walcher suggest a generalization of the Chern-
Simons functional to arbitrary objects B P Db pXq in the derived category of
coherent sheaves on X. If the topological Chern class ctop2 pBq P H4 pX,Zq of

B vanishes, then the algebraic Chern class calg2 pBq P CH2 pXq in the Chow
group of algebraic cycles of codimension 2 modulo rational equivalence yields
a normal function νB “ ν

calg2 pBq
P J3 pXq, which is a holomorphic section of

the Griffiths intermediate Jacobian fibration associated with the variation of
Hodge structure satisfying certain properties. Morrison and Walcher study
two algebraic Chern-classes C`{´ :“ calg2

`

E`{´

˘

P CH2 pXq of two holomor-
phic vector bundles E`{´ on a fixed quintic 3-fold X such that the homology
class rC` ´ C´s “ 0 P H2 pXq vanishes. They derive a differential equation
that is satisfied by the normal function which is defined as the period of a
holomorphic 3-form on X over a 3-chain Γ with BΓ “ C` ´ C´. The dif-
ferential equation they obtain coincides with the Picard-Fuchs equation for
the quintic Calabi-Yau hypersurface. The normal function coincides with a
potential function W restricted to the critical locus.

Potential function and Noether-Lefschetz locus. A similar situation
is studied by Voisin in the appendix of [Cle05]. On a Calabi-Yau 3-fold X,
let ι : D ãÑ X be a smooth very ample divisor in X. We consider a class
λ P H2

van pD,Zq XH1,1 pDq, where

H2
van pD,Zq “

␣

a P H2 pD,Zq
ˇ

ˇ ι˚ paq “ 0
(

.

Then the first-order deformations of pX,Dq are unobstructed. Given a de-
formation pX ,Dq “ pXs, DsqsPS of pX,Dq over a complex manifold S, there
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is a unique smooth family of cycles ΛS :“ pλsqsPS extending λ such that
λs P H2

van pDs,Zq for each s P S. However λs will in general no longer be of
type p1, 1q.

We consider the local moduli space R for pX,Dq. Then basically - up to
a choice of 3-forms – Voisin constructs a holomorphic potential function

ϕNL : R Ñ C

such that the critical locus of ϕNL is the subspace of R where λs is of type
p1, 1q. This subspace is also called the Noether-Lefschetz locus. In this
thesis, we interprete ϕNL as a potential function for a deformation problem.

In the same vein, in [Cle05] Clemens obtains a potential function for
pairs pX,Cq consisting of a Calabi-Yau 3-fold X and a smooth curve C.

Outline of the thesis. We explain now the content of the thesis in detail.
After presenting some preliminaries in Chapter 2, we collect in Chapter 3
those basics in deformation theory that will be used later in this thesis. In
particular, we formulate carefully all relevant deformation problems. Fur-
thermore, we elaborate the proof of a well-known theorem (see e.g. [DF89]),
stating that each deformation of the projective space P pEq of a holomorphic
vector bundle E over a compact n-dimensional complex manifold X satis-
fying H1 pX,OXq “ H2 pX,OXq “ 0 is isomorphic to the projective fibre
space of a locally free sheaf on a deformation of X. As a consequence it is
possible to describe the deformations of X together with a vector bundle E
in terms of the projective bundle P pEq Ñ X. This will be used intensively
in Chapter 6.

Chapter 4 recalls foundational notions from Hodge theory: pure and
mixed Hodge structures and their variations. Then we introduce the notion
of residues, which will form a basic tool in the Griffiths-Dwork theory. The
connection between residues and mixed Hodge structures is provided by the
hypercohomology on the complex of logarithmic differential forms. We also
give a brief account for the de Rham cohomology of pairs pX,Zq consisting
of a submanifold Z or a smooth divisor. For effective computations in spe-
cific examples, we will further need to consider residues for certain singular
divisors as well as invariant cohomology in the presence of a finite group.

Chapter 5 offers a detailed discussion of two deformation problems and
their relation. As already mentioned, physicists came up with examples of
deformation problems for pairs pX,Fq, where F is a special coherent sheaf
on a Calabi-Yau 3-fold X. A first approach is the study of simultaneous
deformations of X together with the direct image sheaf F “ ι˚OD of the
trivial sheaf on a subspace given as a hypersurface D of X. We will see
that situation is copnnected to the mixed Hodge structure on a cohomology
group related to the deformation theory for pairs pX,Dq. This is the starting
point of this thesis.
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First we study the connection between the two deformation problems
discussed last, even in a more general context.

To be specific, we consider a compact complex manifoldX and a compact
submanifold Z. In practise, X will be a Calabi-Yau 3-fold and Z a divisor.
If ι : Z ãÑ X denotes the inclusion map, then ι˚OZ is a coherent sheaf. So
we relate the deformations of pX,Zq and pX, ι˚OZq:

1.0.1 Theorem. (Theorem 5.1.1 in Chapter 5) Let Z be a closed subman-
ifold of codimension d of a compact complex manifold X and ι : Z ãÑ X be
the inclusion. Then there is a natural linear isomorphism of simultaneous
first-order deformations

Def pX, ι˚OZq – Def pX,Zq ‘H1 pZ,OZq . (1.0.1.1)

As a preparation, we observe that a simultaneous deformation of X and the
structure sheaf ι˚OZ yields a coherent sheaf F on a deformation of X that
is a locally free sheaf of rank 1 on Supp pFq. This leads to the following
exact sequence which is the basis of the proof of Theorem 1.0.1.

0 Ñ Def pX,Zq
ζ

Ñ Def pX, ι˚OZq
ξ

Ñ H1 pZ,OZq Ñ 0. (1.0.1.2)

To establish the linearity of the maps ζ and ξ we observe that they extend
to natural transformations of the corresponding deformation functors.

Concerning obstructions, we show

1.0.2 Theorem. (Theorem 5.1.2 in Chapter 5) Assume that H1 pZ,OZq “

0 or H2 pZ,OZq “ 0, e.g. Z is an ample divisor in a Calabi-Yau 3-fold or a
smooth curve in a compact manifold. Then

Obs pX, ι˚OZq “ Obs pX,Zq Ă H2 pX,TX ⟨´Z⟩q .

Furthermore, we replace the trivial line bundle OZ P Pic pZq by an arbitrary
line bundle L P Pic pZq and examine to which extent Theorem 1.0.1 holds.
This is relevant to obtain a Noether-Lefschetz-type theorem. In detail we
show

1.0.3 Theorem. (Theorem 5.4.2 in Chapter 5) Let L P Pic pZq. Then
there is a canonical morphism of vector spaces

Θ : Def pX, ι˚Lq Ñ Def pX, ι˚OZq .

1. The map Θ is injective if and only if H1 pZ,OZq “ 0.

2. Θ is surjective if and only if, for each first-order deformation pX ,Zq of
pX,Zq, there is a preimage of L under the restriction map Pic pZq Ñ

Pic pZq.
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3. If H2 pZ,OZq “ 0, then Θ is surjective.

We then derive the existence of a potential function for deformations of a
pair pX, ι˚OD pCqq, where X is a Calabi-Yau 3-fold, D a very ample smooth
divisor on X with inclusion ι : D ãÑ X and C a divisor on D whose class
is of type p1, 1q and vanishes in X. Let ω be holomorphic non-vanishing
3-form on X.

1.0.4 Theorem. There are local open sets W̃ and Z̃ in the spaces of
first-order deformations of the deformation problems pX, ι˚OD pCq , ωq and
pX,ωq and a holomorphic map

ψNL : W̃ Ñ C

such that the following property is satisfied:

MW̃ pX, ι˚OD pCq , ωq “

!

w̃ P W̃
ˇ

ˇ

ˇ
dW̃ |Z̃ψNL pw̃q “ 0

)

,

where MW̃ pX, ι˚OD pCq , ωq Ă W̃ denotes the space of unobstructed defor-

mations of pX, ι˚OD pCq , ωq inside W̃ and dW̃ |Z̃ is the relative differential

with respect to the projection W̃ Ñ Z̃.

This will be a consequence of a theorem of Voisin, addressed above. Thus the
Noether-Lefschetz locus is the critical locus of a potential function for the
deformation problem of the pair pX, ι˚OD pCq , ωq. In [AHJ`11] for several
examples it is shown that there exists a system of differential equations
satisfying certain properties.

1.0.5 Corollary. In the situation of the examples considered in [AHJ`11]
the function ψNL satisfies a system of Picard-Fuchs operators.

Thus, for the deformation problem pX, ι˚OD pCq , ωq there exists a holo-
morphic potential function as a solution of a differential equation satisfying
the property that its critical locus gives the unobstructed deformations.
However, a representation as a generating function of the obstructions is
not established yet.

We are now turning to the case of pairs pX,Cq, where C is a smooth curve
in the Calabi-Yau 3-fold X, having in mind to possibly set up a Picard-Fuchs
equation.

Chapter 6 studies special curves C, namely those curves arising as the
zero-locus of a section in a vector bundle of rank 2 on X.

1.0.6 Theorem. (Theorem 6.1.1 in Chapter 6) Let X be a Calabi-Yau
3-fold, E Ñ X be a holomorphic vector bundle of rank 2 on X and rss P
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P
`

H0 pX,Eq
˘

be the class of a holomorphic section s P H0 pX,Eq such that
C :“ ts “ 0u is a smooth connected curve.

Then the space of first-order deformations Def pX,E, rssq of the pair
pX,E, rssq and the space of their obstructions Obs pX,E, rssq satisfy the fol-
lowing properties:
There is a locally free sheaf Q of rank 5 on X such that

Def pX,E, rssq – Ext1 pQ,OXq ,

Obs pX,E, rssq Ď Ext2 pQ,OXq .

In order to prove Theorem 1.0.6 we introduce the projectivised bundle
P pEq. Inside P pEq we consider the divisor D :“ P pJC b detEq which turns
out to be the blow-up of X along C. The deformation theory of pX,E, rssq
coincides with the deformation theory of pP pEq , Dq. Since

Def pP pEq , Dq – H1
`

P pEq , TPpEq p´ logDq
˘

,

we define Q :“ π˚

`

TPpEq p´ logDq
˘_

, which turns out to be a locally free
sheaf of rank 5 on X. The sheaf Q carries much more information, subsumed
by

1.0.7 Theorem. (Theorem 6.4.1 in Chapter 6) There are exact sequences

0 Ñ Ω1
X Ñ Q Ñ E b JC Ñ 0 (1.0.7.1)

and
0 Ñ E_ Ñ Q_ Ñ TX ⟨´C⟩ Ñ 0, (1.0.7.2)

where TX ⟨´C⟩ is a certain subsheaf of TX controlling the deformations of
the pair pX,Cq.

Next we obtain a relation between deformations of pairs pX,Eq and
triples pX,E, rssq.

1.0.8 Theorem. (Theorem 6.4.2 in Chapter 6) We assume the setting of
Theorem 1.0.7. The logarithmic tangent sequence

0 Ñ TP p´ logDq Ñ TP Ñ ι˚ND|P Ñ 0

induces a sequence

0 Ñ Q_ Ñ π˚ pTPq Ñ JC b detE Ñ 0, (1.0.8.1)

which in cohomology gives

H0 pX,JC b detEq Ñ H1 pX,Q_q Ñ H1 pX,π˚TPq . (1.0.8.2)

This sequence can be interpreted as the natural sequence of first-order defor-
mations

Def prssq Ñ Def pX,E, rssq Ñ Def pX,Eq .
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We now discuss the case of a splitting bundle. Suppose that X is a
Calabi-Yau 3-fold and D1, D2 are ample divisors on X meeting transversally
in a smooth curve C and set E :“ OX pD1q ‘ OX pD2q.

1.0.9 Corollary. (Corollary 6.3.7, Chapter 6) If D1 ´ D2 is ample, we
have isomorphisms of spaces of first-order deformations:

Def pX,D1, D2q – Def pX,E, rssq – Def pX,Cq

Finally we consider the deformation problem for pX,E, rssq, where E is
not necessarily a splitting bundle. We derive the existence of a holomorphic
function whose critical locus contains the unobstructed deformations pro-
vided H1 pX, detE_q “ H2 pX, detE_q “ 0, e.g., if detE is ample. This is
based on the existence of a potential function for the deformations of the
pair pX,Cq constructed by Clemens in [Cle05]. If C – P1, this function is
a potential function in the strict sense. For details see Corollary 6.5.5 in
Chapter 6.

Since we only know the existence of the potential function and not an
explicit form, we study Picard-Fuchs equations in the remaining chapters,
hoping that one will finally find potential functions as solutions of differential
equations. Accessing a well-advanced theory of solutions for differential
equations, one would obtain the explicit form.

In Chapter 7 we turn to Picard-Fuchs equations and describe the Griffiths-
Dwork reduction first for hypersurfaces in a projective space and then for
complete intersections of codimension 2 in a projective space. We extend
Libgober and Teitelbaum’s theory to any dimension, fill gaps in their proof
and show carefully that the Hodge filtration of the forms on the complement
of the Calabi-Yau manifold is isomorphic to the filtration by pole order of
rational forms with poles along the Calabi-Yau manifold. The precise for-
mulation is as follows:

1.0.10 Theorem. (Corollary 7.3.10 in Chapter 7) Let Y1, Y2 be hyper-
surfaces in Pn which intersect transversally. Let d1 :“ deg pY1q “ d1 and
d2 :“ deg pY2q “ d2. Then for each p “ 0, . . . , n there exists a map Ψp such
that

Ψp : H
0

¨

˚

˚

˝

Pn,
ÿ

pp1,p2qPNˆN,
p1`p2“p

OPn pp1Y1 ` p2Y2 `KPnq

˛

‹

‹

‚

Ñ Fn´pHn´2
´

V λ,C
¯

.

If n is odd, then Ψp is surjective. If n is even, then im pΨpq has codimension
1 in Fn´pHn´2

`

V λ,C
˘

for p ě n
2 ` 1.
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We describe in detail the Griffiths-Dwork algorithm for explicitly com-
puting the Picard-Fuchs equation for a Calabi-Yau manifold that appears
as a complete intersection of codimension 2. A detailed example is worked
out in a Singular programme, presented in an appendix.

Chapter 8 treats pairs pX,Dq consisting of a Calabi-Yau 3-fold X and
a smooth divisor D. In [JS09a] Jockers and Soroush set up a Picard-Fuchs
equation using a Griffiths-Dwork algorithm for several hypersurfaces X in
weighted projective space, in particular forX being a quintic andD a certain
divisor of degree 4.

First we define a residue map for pairs on a suitable complex of loga-
rithmic forms and also for the cohomology of rational forms. The residues
are then elements in the relative cohomology Hn´1 pX,Dq. Using the mixed
Hodge structure which was introduced by Deligne on the hypercohomology
group Hn´1 pΩ‚

X plogDqq of the complex of logarithmic differential forms,
we compare the Hodge filtration and the pole-order filtration and set up a
basis for the relative cohomology Hn´1 pX,D,Cq.

To compute the Gauß-Manin connection, we will use the work of Li,
Lian and Yau. Their theory will be presented in detail, calculations will
be carried out, constructions will be made precise and at the same time
extended to triples in Chapter 9.

Next the Griffiths-Dwork reduction is set up and we present an example
where X is a quintic 3-fold with symmetries and D is a special divisor of
degree 4 cut out by a hypersurface of degree 4. An important point here
is that this hypersurface as well as the divisor D are singular. This re-
quires detailed explanations, e.g. residues have to be defined carefully. This
difficulty has appearently never been discussed in the connection with the
Griffiths-Dwork reduction. We address this point in detail and explain why
the methods presented so far still work. In particular we will describe the
structure of the surface D and the hypersurface H of degree 4 as well as their
singularities. Furthermore, a Hodge theory for D and H has to be set up.
This, together with the paper of Li, Lian and Yau, provides the mathemat-
ical foundation of the work of Jockers and Soroush. A Singular programme
for computing Picard-Fuchs operators in this situation is presented in the
appendix.

The final chapter is connected with the question whether there is a
Picard-Fuchs equation for the pair pX,Cq consisting of a Calabi-Yau 3-
fold X and a smooth curve C in X. We first observe that H3 pX,C,Cq

is not a good candidate for the local system underlying the Gauß-Manin
connection. Therefore we consider a complete intersection curve C “ D1 X

D2 where Di are smooth divisors in X meeting transversally. We define a
cohomology group H3 pX,D1, D2,Cq as a de Rham cohomology of triples of
forms pα, β1, β2q P A3

X ‘ A2
D1

‘ A2
D2

with differential

d pα, β1, β2q :“
`

dα, α|D1
´ dβ1, α|D2

´ dβ2
˘
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as well as a homology group H3 pX,D1, D2q and set up a perfect pairing

H3 pX,D1, D2,Cq ˆH3 pX,D1, D2q Ñ C,

which is needed for defining periods via integration. Then we extend the the-
ory of Li, Lian and Yau to local systems H3 pX,D1, D2,Cq when pX,D1, D2q

varies. After that we set up the general formalism for a Griffiths-Dwork
algorithm for triples and discuss an example. One might hope that the
Picard-Fuchs equation associated to pX,D1, D2q is solved by the potential
function for pX,Cq constructed by Clemens in [Cle05] as mentioned above.
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Chapter 2

Preliminaries

In this short chapter we collect some general definitions and set up no-
tions.

2.1 Notation

1. In this thesis we work entirely in the category of complex spaces in
the sense of Grauert-Remmert [GR77].

2. If S is a sheaf and α P S pUq for an open set U , which we do not want
to specify further, we simply write α P S.

3. Given a complex manifold, ΩpX will denote the sheaf of holomorphic
p´forms. If n “ dimX, then we denote by ωX “ ΩX the dualizing
sheaf of X.

4. A Calabi-Yau manifold X is a projective connected simply connected
complex manifold with trivial canonical bundle KX such that addi-
tionally

H0pX,ΩqXq “ 0

for 2 ď q ď dimX ´ 1. Often, the complex dimension of X will be 3,
then the assumption that X is simply connected with trivial canon-
ical bundles automatically yields H1,0 pXq “ H0,1 pXq “ H2,0 pXq “

H0,2 pXq “ 0.

2.2 Singularities

At a very few places singular spaces have to be considered. The basic defi-
nitions and facts are collected below. We refer e.g. to [KM98].

2.2.1 Definition. Let X be a normal complex space.

15
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1. X is said to have rational singularities if there is a resolution of sin-
gularities π : pX Ñ X such that Rjπ˚

`

O
pX

˘

“ 0 for j ą 0.

2. Assume dimX “ 2. A singular rational point x0 P X is said to be a
du Val singularity or rational double point if there exists a resolution
π : X̂ Ñ X such that KX̂ ¨ C “ 0 for all curves C contracted by π.

3. The canonical Weil divisor KX is said to be Q-Cartier if some mul-
tiple mKX is a Cartier divisor. In terms of sheaves, OX pKXq is the
reflexive sheaf ι˚

`

ωXreg

˘

, and the condition is that
`

OX pKXq
bm˘__

is locally free for some m.

4. X is said to have only canonical singularities if KX is Q-Cartier and
if there is a resolution of singularities π : pX Ñ X such that

K
pX

“ π˚ pKXq `
ÿ

i

λiEi

where the Ei are the π-exceptional divisors and λi ě 0.

5. X is said to be Gorenstein if KX is Cartier and if X is Cohen-
Macaulay, i.e., all local rings OX,x are Cohen-Macaulay.

6. X is said to have only quotient singularities if every point x P X has a
neighborhood of the form U{G with U Ă Cn and G Ă Gl pn,Cq a finite
group.

We will use the following facts, for which we again refer to [KM98].

2.2.2 Remark. Let X be a normal complex space.

1. If X has only rational singularities, then X is Cohen-Macaulay.

2. If X is a divisor or a complete intersection in a complex manifold, then
X is Gorenstein.

3. In dimension 2, rational Gorenstein singularities are the same as du
Val singularites, often also called ADE singularities.

4. Quotient singularities are rational.

2.3 Projective fibre spaces

In order to study the deformation theory of a coherent sheaf it might be
useful to look at the projective fibre spaces of the sheaf. Let F be a coherent
sheaf on a complex manifold X. Then to F is associated a projective fibre
space

P pFq
π

Ñ X.

Its basic properties are collected below, we refer to [BS76] or [Har77] (in the
algebraic category).
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1. π is a surjective map of complex spaces and π´1 pxq – Pr´1, where
r “ dimCFx{mxFx.

2. There is a locally free sheaf OPpFq p1q on P pFq of rank 1 such that

OPpFq p1q
ˇ

ˇ

π´1pxq
– OPr´1 p1q

for all x P X such that

π˚

`

OPpFq pkq
˘

– Sk pFq

for all k and

Hq
`

P pFq ,OPpFq pkq b π˚ pGq
˘

» Hq
´

X,Sk pFq b G
¯

for each coherent sheaf G on X and all q ě 0.

We will also need the following property: Let E ,F be coherent sheaves and

E Ñ F Ñ 0

be a surjective morphism. Then there is an injective map

ι : P pFq ãÑ P pEq

such that
ι˚
`

OPpEq p1q
˘

– OPpFq p1q .

2.3.1 Remark.

• One should notice that the complex space P pFq is not necessarily
irreducible.

• If F is locally-free of rank r, then P pFq is a Pr´1–bundle.
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Chapter 3

Deformation Theory for
geometric objects

In this chapter we refer the definitions and important properties of all
deformation problems appearing in this thesis. All of the material can be
found in [Ser06] or [Har10].

3.1 Functors of Artin rings

The technical tool to treat infinitesimal deformations are functors of Artin
rings.

3.1.1 Definition.

1. Let A be the category of Artin rings, i.e the category of complex, local
Artinian C-algebras. A functor of Artin rings is a covariant functor

F : A Ñ psetsq

from A to the category of sets.

2. Let F : A Ñ psetsq be a functor of Artin rings.

a. The functor F fulfils property pH0q if F pCq consists of one point.

b. The functor F satisfies property pHϵq if the following condition
holds: Let

A1

  @
@@

@@
@@

@ A2

~~}}
}}
}}
}}

A

be a diagram in A. We consider the natural map

α : F
`

A1 ˆA A
2
˘

Ñ F
`

A1
˘

ˆF pAq F
`

A2
˘

19
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induced by the commutative diagram

F pA1 ˆA A
2q //

��

F pA2q

��
F pA1q // F pAq .

Then α is bijective if A “ C and A2 “ C rts {t2.

3. If the functor F satisfies both properties pH0q and pHϵq, then we call
F a deformation functor.

In this context the following result is important.

3.1.2 Theorem. ([Ser06], Lemma 2.2.1) Let F be a deformation functor.
Then F

`

Spec
`

C rts {t2
˘˘

has the structure of a C-vector space.

Examples for functors of Artin rings are functors of infinitesimal defor-
mations of a geometric object.

3.1.3 Definition. With a geometric object X we associate a functor of
Artin rings Def pX q : A Ñ psetsq by defining

DefA pX q :“ tisomorphism classes of deformations of the object X
over the Artin ring Spec pAqu .

We also write DefSpecpAq pX q “ DefA pX q and Def pX q “ DefSpecpCrts{t2q pX q.
A first-order deformation of X is an isomorphism class of deformations of
X over Spec

`

C rts {t2
˘

.

For each deformation problem under consideration we will give a precise
definition of the notion of a deformation and of the notion of isomorphy.
All functors we consider in the following will be deformation functors in the
sense of Definition 3.1.1.

Since the definiton of an obstruction space is technically a little compli-
cated, we simply refer to Definition 2.2.9 in [Ser06] and confine ourselves
with the following.

3.1.4 Definition. Let F be a deformation functor of Artin rings, describ-
ing the deformations of a geometric object X. Let ζ be a deformation of X
over Spec pAq. Then the obstruction map for ζ is a map

oζ : t small extensions e of Au Ñ V
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to a vector space V , called the obstruction space, with the following property:

if Ã is the Artin ring given by e, then ζ lifts to Spec
´

Ã
¯

if and only if

oζ peq “ 0.

The deformation ζ is unobstructed if oζ peq “ 0 for each small extension e
of A.

The geometric object X is called unobstructed if every infinitesimal defor-
mation ζ of X is unobstructed.

3.2 Deformation theory of a compact complex mani-
fold

We first treat the case of a compact complex manifold.

3.2.1 Definition. A deformation of X over a (connected) complex space
S consists of a complex space X and a proper flat surjective morphism π :
X Ñ S together with an isomorphism X |s0 – X for a point s0 P S.

Two deformations X and X 1 of X over the same complex space S are
isomorphic if there is a morphism of complex spaces ϕ : X Ñ X 1 such that
the following diagram is commutative

X

  @
@@

@@
@@

@
ϕ / / X 1

~~}}
}}
}}
}}

S.

We obtain a deformation functor by setting

F pAq :“ DefA pXq :“ t isomorphism classes of deformations of X

over Spec pAqu ,

where A is an Artin ring.

The following theorem is classical.

3.2.2 Theorem. (e.g. [Har10], p. 38) The space of first-order deforma-
tions Def pXq of X and the space of obstructions Obs pXq of X satisfy

Def pXq – H1 pX,TXq ,

Obs pXq Ď H2 pX,TXq .

3.2.3 Remark. If X is a Calabi-Yau manifold, then by a theorem of Tian-
Todorov Obs pXq “ 0, although H2 pX,TXq ‰ 0 (see e.g. [GHJ03], Theorem
14.10).
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3.3 Deformation theory of a submanifold in a fixed
complex manifold

Next we consider pairs of compact complex manifolds. More precisely, let Z
be a closed complex submanifold of the compact complex manifold X and
let ι : Z ãÑ X be the inclusion map.

3.3.1 Definition. ([Ser06], p. 161) A deformation of Z in X over a
complex space S consists of a cartesian diagram

Z

π˝J ��?
??

??
??

?
J // X ˆ S

π
{{xx
xx
xx
xx
x

S,

where Z Ă X ˆS is a closed subscheme of X ˆS with inclusion map J and
π ˝ J is a flat morphism. Furthermore, in the following diagram

Z //

ι
��

Z

J
��

X //

��

X ˆ S

π

��
Spec pCq

s // S,

the pullback of the right column by s has to be isomorphic to the left column.

Two deformations Z and Z 1 of Z in X over the same complex space S
are isomorphic if

Z

��?
??

??
??

?
J // X ˆ S

||xx
xx
xx
xx
x

and Z 1

��@
@@

@@
@@

@
J 1

// X ˆ S

||xx
xx
xx
xx
x

S S

is a pair of isomorphisms of deformations

α : Z Ñ Z 1, β : X Ñ X 1

which makes the following diagram commutative:

Z J //

α
��

X
β
��

Z 1 J 1
// X 1.
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3.3.2 Theorem. The space of first-order deformations DefX pZq of Z in
X and the space of obstructions ObsX pZq satisfy

DefX pZq – H0
`

Z,NZ|X

˘

,

ObsX pZq Ď H1
`

Z,NZ|X

˘

.

3.3.3 Remark. If X is a Calabi-Yau manifold and Z an ample divisor,
then ObsX pZq “ 0, since H1

`

Z,NZ|X

˘

“ 0.

3.4 Deformation theory of a coherent sheaf on a
fixed complex manifold

Let F0 be a coherent sheaf on the compact complex manifold X.

3.4.1 Definition. ([Har10], p. 14, in the algebraic case) A deformation
of F0 over a complex space S consists of a coherent sheaf F on X ˆ S and
a morphism of OX-modules λ : F Ñ F0 which induces an isomorphism
F |Xˆts0u – F0.

Two deformations λ : F Ñ F0 and λ1 : F 1 Ñ F of F0 over the same
complex space S are isomorphic if there is a isomorphism of sheaves ϕ :
F Ñ F 1 compatible with λ and λ1.

In this context we have

3.4.2 Theorem. The space of first-order deformations Def pF0q of F0 on
X and the space of infinitesimal obstructions Obs pF0q of F0 satisfy

Def pF0q – Ext1X pF0,F0q ,

Obs pF0q Ď Ext2X pF0,F0q .

3.5 Deformation theory of a pair consisting of a
smooth divisor in a complex manifold

Let ι : Z ãÑ X be an embedding of a compact, possibly reducible, hypersur-
face or of a compact complex submanifold into a smooth compact complex
manifold. Following [Ser06] we state

3.5.1 Definition. A deformation of j parametrized by a complex space S
is a cartesian diagram

Z //

j
��

Z

J
��

X //

��

X

ψ
��

Spec pCq
s // S,
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where ψ and ψ ˝ J are flat and the pullback of the right column by s is
isomorphic to the left column. We denote the deformations of the pair pZ,Xq

by Z J
ãÑ X or pX ,Zq. An isomorphism between two deformations of j over

the same complex space S

Z

��?
??

??
??

?
J // X

����
��
��
��

and Z 1

  @
@@

@@
@@

@
J 1

// X 1

~~~~
~~
~~
~~

S S

is a pair of isomorphisms of deformations

α : Z Ñ Z 1, β : X Ñ X 1

which makes the following diagram commutative:

Z J //

α
��

X
β
��

Z 1 J 1
// X 1.

3.5.2 Remark. Note that J is again a closed embedding; see [Ser06],
3.4.4.

3.5.3 Notation. We denote the set of isomorphism classes of infinites-
imal deformations of the embedding j : Z Ñ X over S “ Spec pAq by
DefA pj : Z ãÑ Xq, or DefA pZ,Xq if j is fixed.

In order to describe manifolds together with a subspace we need the
following definition; for details on logarithmic bundles see Chapter 4.

3.5.4 Definition. Let X be a complex manifold.

1. Given a divisor D Ă X with simple normal crossings, we set

TX p´ logDq :“ Ω1
X plogDq

_ .

2. Let Z Ă X be a submanifold and π : pX Ñ X the blow-up of Z Ă X
with exceptional divisor E; then we define

TX ⟨´Z⟩ :“ π˚

`

T
pX

p´ logEq
˘

.

In this terminology we state
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3.5.5 Theorem. ([Ser06], Prop. 3.4.17)

1. Let X be a compact complex manifold and D a divisor on X with
simple normal crossings. Then the spaces of first-order deformations
Def pX,Dq and obstructions Obs pX,Dq of the pair pX,Dq are given
by

Def pX,Dq – H1 pX,TX p´ logDqq

Obs pX,Dq Ď H2 pX,TX p´ logDqq .

2. Let Z Ă X be a compact complex submanifold. Then the spaces of first-
order deformations Def pX,Zq and obstructions Obs pX,Zq of the pair
pX,Zq are given by

Def pX,Zq – H1 pX,TX ⟨´Z⟩q
Obs pX,Zq Ď H2 pX,TX ⟨´Z⟩q .

3.5.6 Remark. Let X be a Calabi-Yau manifold and D an ample divisor
on X with simple normal crossings; then Obs pX,Dq “ 0. In fact, the
logarithmic tangent sequence

0 Ñ TX p´ logDq Ñ TX Ñ ι˚ND|X Ñ 0

induces in cohomology

0 “ H1
`

D,ND|X

˘

Ñ H2 pX,TX p´ logDqq Ñ H2 pX,TXq Ñ H2
`

D,ND|X

˘

.

The obstructions Obs pX,Dq Ă H2 pX,TX p´ logDqq are mapped to the
obstructions of deforming X in H2 pX,TXq, which vanish by the theorem
by Tian-Todorov. Since D is ample, H1

`

D,ND|X

˘

“ 0. Thus the map
H2 pX,TX p´ logDqq Ñ H2 pX,TXq is injective and Obs pX,Dq “ 0.

3.6 Simultaneous deformations of a coherent sheaf
and its complex base manifold

Let X be a compact complex manifold and F0 be a coherent sheaf on X0.

3.6.1 Definition. ([Har10], p. 53, [Ser06] p. 146)
A simultaneous deformation of X and F0 is a pair pX ,Fq consisting of a

deformation X of X over S and a coherent sheaf F on X , which is flat over
S, together with a map F Ñ F0 such that the induced map F bOX OX0 Ñ

F0 is an isomorphism. Two deformations pX ,Fq and pX ,Fq over S are
isomorphic if there is an isomorphism of deformations f : X Ñ X 1 and an
isomorphism F Ñ f˚F 1.
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3.6.2 Notation. We denote the space of isomorphism classes of simul-
taneous first-order deformations of F0 and X over Spec

`

C rts {
`

t2
˘˘

by
Def pX,F0q and the space of obstructions of extending infinitesimal defor-
mations by Obs pX,F0q.

The general result concerning first-order deformations and obstructions
is stated in the derived category:

3.6.3 Theorem. ([HT10], [Li]) Let X be a smooth projective variety and
E P D pXq a perfect complex, e.g. given by a single coherent sheaf. Let G‚

be the mapping cone of the Atiyah class RHom pE,Eq r´1s Ñ X. Then

Def pX,Eq – Ext1X pG‚,OXq ,

Obs pX,Eq Ă Ext2X pG‚,OXq .

If the sheaf E is locally free, the situation is much easier.

3.6.4 Corollary. Let X be a compact complex manifold and E a locally
free sheaf on X. Let

0 Ñ End pEq Ñ D pEq Ñ TX Ñ 0 (3.6.4.1)

be the Atiyah sequence, where D pEq denotes the sheaf of differential opera-
tors of order ď 1 with diagonal symbol.

Def pX,Eq – H1 pX,D pEqq ,

Obs pX,Eq Ď H2 pX,D pEqq .

3.6.5 Remark. The extension class defining the exact sequence 3.6.4.1 is
the Atiyah class At pEq of E.

3.7 Deformations of projective bundles

Deformations of the pair pX,Eq, where X is a compact complex manifold
and E a holomorphic vector bundle on X, are closely related to the defor-
mations of the projective bundle P pEq, as we shall see now.

The following proposition is in principle well-known, see [DF89], p. 202,
and [Kod63] for a version over manifolds. In lack of a proper reference, we
give the proof.

3.7.1 Proposition. Let E be a locally free sheaf of rank r over the compact
n-dimensional complex manifold X. Suppose

H1 pX,OXq “ H2 pX,OXq “ 0.

Let Y Ñ S be a deformation of P pEq over the spectrum of an Artin ring or
the germ of a complex space S. Then there exists a deformation τ : X Ñ S
of X and a locally free sheaf E over X such that

Y – P pEq.
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Proof of Proposition 3.7.1: Let τ0 : P pEq Ñ X be the projection of the
projective fibre space of E. Let H0 be the subspace of the Hilbert scheme
Hilb pP pEqq of P pEq consisting of all fibres of τ0. Then at each fibre F of τ0
the space Hilb pP pEqq is smooth of dimension n according to [Ser06], Prop.
4.4.7, as the Zariski tangent space at F satisfies

TFHilb pP pEqq – H0
`

F,NF |PpEq

˘

“ H0 pF,On
F q – Cn

and furthermore H1
`

F,NF |PpEq

˘

“ 0.

Then H0 – X is an irreducible component of Hilb pP pEqq, since all fibres
of τ0 already form an n-dimensional family parametrized by X.

Let Hilb pY{Sq be the relative Hilbert scheme of Y Ñ S. According
to [Ser06], Prop. 4.4.7, it is relatively smooth of dimension n over S at
any point rF s P H0. Let H be the irreducible component of Hilb pY{Sq

containing all fibres rF s of τ0. Then H0 is the central fibre of H Ñ S.
Hence the projection H Ñ S has n-dimensional smooth fibres, i.e. it is a
submersion. In particular it is flat.

Let

q : U Ñ H

be the universal family of H, i.e., set-theoretically

U “ tpx, F q|x P F u Ă Y ˆ H.

Notice also that q is a locally trivial Pr´1-bundle, because of the local rigidity
of the projective space. Let p : U Ñ Y be the projection. Furthermore let

q0 : U0 :“ tpx, F q|x P F u Ă P pEq ˆ H0 Ñ H0

be the universal family of H0 and p0 : U0 Ñ P pEq the projection to P pEq.
Obviously p0 is an isomorphism.

Then the restriction of the maps p and q to the central fibre in S yields
the maps p0 and q0.

Over the reduced point 0 P S, we obtain the family

q0 : U0 Ñ H0

with projection p0 : U0 Ñ PpEq.

We define

X :“ H,

hence X Ñ S is a flat family.

We prove that p is an isomorphism. This follows easily from the fact
that p0 is an isomorphism and from the fact that locally both spaces are
of the form V ˆ S, where V is a small open set in either H0 or P pEq. Let
τ :“ q ˝ p´1 : Y Ñ X be the induced map.
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It remains to construct E such that Y – P pEq. It is sufficient (actually
equivalent) to construct a line bundle L P Pic pYq such that L|τ´1pxq “

OPr´1 p1q for each x P X .
Once L has been found, we set

E :“ τ˚ pLq .

Let
L0 :“ OPpEq p1q .

We aim to extend L0 to a line bundle on Y.
Since Y Ñ S is flat and H2

`

P pEq ,OPpEq

˘

“ 0, there is a surjective map

R2π˚OY
ˇ

ˇ

t0u
Ñ H2

`

P pEq ,OPpEq

˘

“ 0,

where 0 P S denotes the central point in S. By semicontinuity (see e.g.
[Har77], III, 12.11) this map is an isomorphism on S, hence R2π˚OY “ 0.
Using this vanishing and H i

`

S,Rjπ˚OY
˘

“ 0 for i ą 0, as S is Stein, the
Leray spectral sequence for π : Y Ñ S yields H2 pY,OYq “ 0.

The exponential sequences for Y and P pEq, the vanishing

H2
`

P pEq ,OPpEq

˘

– H2 pX,OXq “ 0,

H1
`

P pEq ,OPpEq

˘

– H1 pX,OXq “ 0

and H2 pY,Zq – H2 pP pEq ,Zq

show that there is a line bundle L P Pic pYq such that L|PpEq – L0.
Since L0|τ´1pxq “ OPr´1 p1q for x P X, we obtain that L|τ´1pxq “

OPr´1 p1q for each x P X. □

3.7.2 Remark. If we omit in Proposition 3.7.1 the assumptionH1 pX,OXq “

H2 pX,OXq “ 0, then there exists a deformation X Ñ S of X such that Y
is a Pr´1-bundle over X .

3.7.3 Corollary. Let E be a locally free sheaf of rank r over the compact
n-dimensional complex manifold X. Suppose

H1 pX,OXq “ H2 pX,OXq “ 0.

Then there is an isomorphism of functors

Def‚ pX,Eq Ñ Def‚ pX,P pEqq .

3.7.4 Remark. Let X be a compact complex manifold and E be a holo-
morphic vector bundle on X. We consider the relative tangent bundle se-
quence

0 Ñ TPpEq|X Ñ TPpEq Ñ π˚TX Ñ 0.

Taking π˚ and using the relative Euler sequence, we obtain the exact se-
quence

0 Ñ E b E_{OX Ñ π˚TPpEq Ñ TX Ñ 0.

A comparison with Corollary 3.6.4 shows D pEq “ π˚TPpEq ‘ OX .
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3.8 Simultaneous deformations of a holomorphic
vector bundle and a section

Let X be a compact complex manifold and E Ñ X a holomorphic vector
bundle of rank r onX. Let s P H0 pX,Eq , s ı 0, be a holomorphic section of
E and rss P P

`

H0 pX,Eq
_
˘

the class of s in the projective space associated
to the vector space H0 pX,Eq.

3.8.1 Definition. A simultaneous deformation of X,E and rss over a
complex space S consists of a simultaneous deformation

E π
Ñ X Ñ S

of E and X over S (Definition 3.6.1) and a class rs̃s P P
`

H0 pX , Eq
_
˘

of a

holomorphic section s̃ P H0 pX , Eq such that
”

s̃|ts0u

ı

– rss P P
`

H0 pX,Eq
_
˘

.

Two deformations pX , E , rssq and pX 1, E 1, rs1sq over Spec pAq are isomor-
phic if there is an isomorphism ϕ : X Ñ X 1 over Spec pAq and an isomor-
phism of locally free sheaves µ : ϕ˚E Ñ E 1 such that µ pϕ˚ rssq “ rs1s.

We denote the set of isomorphism classes of simultaneous deformations
of X,E and rss over Spec pAq by DefA pX,E, rssq and the obstructions to
extend a first-order deformation by Obs pX,E, rssq.

3.8.2 Remark. We obtain a deformation functor which will be denoted
by Def‚ pX,E, rssq.

The space of first-order deformations and the space of obstructions will
be studied in Chapter 6.

For further reference we state the following.

3.8.3 Lemma. Let S be the spectrum of an Artin ring or the germ of a
complex space containing 0. Let U be an open set in Cn and D be a divisor
in U ˆ S such that D0 “ D X pU ˆ t0uq is a smooth divisor. Then D Ñ S
is a submersion.

Proof of Lemma 3.8.3: As the question is local, we may assume D “

tf “ 0u with f P OUˆS pU ˆ Sq.
1. We suppose first that S is a complex manifold. We may assume that

f |D0XU is regular, hence it is regular on U ˆ tsu for all s P S. Hence D is
smooth and D Ñ S is a submersion.

2. In general we embed S into an open set W Ă CN . Since the question
is local in U , we may assume that f lifts to f̃ P OUˆW pU ˆW q. Therefore

D lifts to a divisor D̃ :“
!

f̃ “ 0
)

. By p1q the map D̃ Ñ W is a submersion,

hence D Ñ S is a submersion by base change, compare [Har77], III, 10.1pbq.
□
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Chapter 4

Variation of Hodge
structures on the
cohomology of special
complex manifolds

In this section we briefly review what we will need from Hodge theory.
As general references we use [PS08], [Voi02], [Voi03] and [EV92].

4.1 Variation of pure Hodge structures

4.1.1 Definition. ([PS08], p. 17) Let HR be an R-vector space of finite
dimension over R. Let H :“ HR bR C be the complexification of HR.

A pure Hodge structure of weight n on H is given by a lattice HZ Ă HC
together with a direct sum decomposition

H “
à

p`q“n

Hp,q

with Hq,p “ Hp,q. The numbers hp,q :“ dimCH
p,q are called the Hodge

numbers of the Hodge decomposition.

4.1.2 Definition. ([PS08], p. 241) Let S be a complex manifold. A
variation of (pure) Hodge structure on S consists of the following data:

1. a local system VZ of finitely generated abelian groups on S,

2. a finite decreasing filtration tFpu of the holomorphic vector bundle
V :“ VZ bZ OS by holomorphic subbundles (the Hodge filtration).

These data are subject to the following conditions:

31
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1. for each s P S the filtration tFp psqu of V psq – VZ,s bZ C defines
a Hodge structure of weight k on the finitely generated abelian group
VZ,s,

2. the connection ∇ : V Ñ V bOS Ω1
S whose sheaf of horizontal sections

is VC satisfies the Griffiths’ transversality condition

∇ pFpq Ă Fp´1 b Ω1
S .

4.2 Logarithmic differentials and residues

The notion of logarithmic differential forms will be crucial in all that follows.
For details we refer to [EV92] and [PS08].

4.2.1 The complex of logarithmic differential forms

Let X be a complex manifold of dimension n and D a divisor in X with
simple normal crossings, let ι : D ãÑ X be the inclusion. Furthermore, we
define U :“ XzD and j : U ãÑ X to be the inclusion.

4.2.1 Definition. Let Ω‚
X plogDq be the smallest subcomplex of sheaves

containing Ω‚
X , which is stable under the exterior product such that for each

local section f of j˚OU that is meromorphic along D, the quotient df
f is a

local section of Ω1
X plogDq.

A section of j˚Ω
p
U is said to have a logarithmic pole along D if it is a

section of ΩpX plogDq.

The following is easy to prove.

4.2.2 Theorem.

1. A section α of j˚Ω
p
U has a logarithmic pole along D if and only if α

and dα have at most simple poles along D.

2. The sheaf Ω1
X plogDq is locally free and ΩpX plogDq “

ŹpΩ1
X plogDq.

If tz1, . . . , znu are local holomorphic coordinates of X in a neighbour-
hood U of p “ p0, . . . , 0q P X such that X X U “ tz1 ¨ . . . ¨ zk “ 0u,

then a local base of Ω1
X plogDq consists of

´

dzi
zi

¯

1ďiďk
and pdzjqkďjďn.

4.2.3 Theorem. ([PS08], Prop. 4.3, p. 91) The inclusion of complexes

Ω‚
X plogDq ãÑ j˚Ω

‚
U

is a quasi-isomorphism and induces an isomorphism

Hk pU,Cq “ Hk pX,Ω‚
X plogDqq ,

where Hk pX,Ω‚
X plogDqq denotes the hypercohomology of the logarithmic

complex Ω‚
X plogDq.
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4.2.4 Theorem. (See e.g. [Voi02], p. 198/199) If the divisor Y with
simple normal crossings has k irreducible components, then the logarithmic
de Rham complex Ω‚

X plog Y q is exact in degree ě k ` 1.

Proof of Theorem 4.2.4: As the statement is local, we can assume that
X is an n-dimensional polydisc, i.e.

X “ D1 ˆ . . .ˆDn,

where Di :“ tzi P C| |zi| ă riu with ri P R for 1 ď i ď n denotes an open
disc. Furthermore we can assume

Y “ tpz1, . . . , znq P D1 ˆ . . .ˆDn| z1 ¨ ¨ ¨ zk “ 0u ,

Thus locally

U :“ XzY “ D˚
1 ˆ ¨ ¨ ¨ ˆD˚

k ˆDk`1 ˆ ¨ ¨ ¨ ˆDn

retracts onto the product of circles
`

S1
˘k
. Using the Künneth formula, we

get Hr
´

`

S1
˘k
,C

¯

“ 0 for each r ě k ` 1. □

4.2.2 The residue map

We now introduce the notion of residues, following [PS08], p. 93. We will
use only the case of one or two components.

4.2.5 Notation. Let X be a complex manifold and D “
řN
i“1Di be a

divisor with simple normal crossings. We set:

DI :“ Di1 X . . .XDim for I “ ti1, . . . , imu

D pIq :“
ÿ

jRI

DI XDj .

Furthermore, let aI : DI ãÑ X be the inclusion and

D p0q :“ X

D pmq :“
ž

|I|“m

DI , for m “ 1, . . . , N.

Let am “
š

|I|“m aI : D pmq Ñ X be the inclusion.

Let 1 ď m ď N and I “ ti1, . . . , imu be an index set of cardinality m.
For p P DI we choose holomorphic coordinates in a neighbourhood around
p “ p0, . . . , 0q such that Dij “ tzj “ 0u for each j “ 1, . . . ,m and the other
components are given by tzj “ 0u for j “ m ` 1, . . . , N . Then every local
section ω of ΩpX plogDq can be written as

ω “
dz1
z1

^ . . .^
dzm
zm

^ η ` η1, (4.2.5.1)
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where η has at most poles along the components Dj with j R I and η1 is not
divisible by the form dz1

z1
^ . . .^ dzm

zm
.

4.2.6 Theorem. There is a well-defined global map, the residue map, on
the complex of logarithmic differential forms, which is given as follows:

resI : Ω
‚
X plogDq Ñ Ω‚

DI
plog pD pIqqq r´ms , (4.2.6.1)

by setting locally resI pωq :“ η|DI , where η is given by 4.2.5.1.

4.2.7 Remark. If D is a smooth divisor, then we can locally find holo-
morphic coordinates tz1, . . . , znu on X such that D “ tz1 “ 0u. Then the
residue map 4.2.6.1 has the form

res : Ω‚
X plogDq Ñ Ω‚

D r´1s , ω “
dz1
z1

^ η ` η1 ÞÑ η|D , (4.2.7.1)

where η and η1 do not contain dz1
z1

.

4.2.8 Example. The residue maps lead to various sequences which we
write down explicitly for the case of one or two divisors. These are the only
relevant situations for us. Let X be a complex manifold.

1. Let D Ă X be a smooth irreducible divisor. Then there are sequences

0 Ñ ΩkX Ñ ΩkX plogDq Ñ Ωk´1
D Ñ 0. (4.2.8.1)

The dual sequence reads

0 Ñ TX p´ logDq Ñ TX Ñ ND|X Ñ 0. (4.2.8.2)

2. Let D1 and D2 be smooth irreducible divisors such that D1 YD2 has
simple normal crossings. Then there is an exact sequence

0 Ñ ΩkX plogD2q Ñ ΩkX plog pD1 YD2qq Ñ Ωk´1
D1

plog pD1 XD2qq Ñ 0.
(4.2.8.3)

In Chapter 8 we will be in a slightly more general situation where one
of the two divisors in Example 4.2.8 is mildly singular. In the following we
will make the necessary preparations. In order not to have trouble with
coherence problems, we assume from now on that X is projective.

4.2.9 Definition. Let X be a projective manifold and D a reduced divisor
on X. Let X0 :“ XzSing pDq, i.e. D X X0 is a divisor with simple normal
crossings, and ι : X0 ãÑ X be the inclusion. Then we set

Ω̃qX plogDq :“ ι˚

´

ΩqX0
log pD XX0q

¯

.

4.2.10 Proposition. Let X be a projective manifold and D a normal
divisor. For any k ě 1 there are exact residue sequences

0 Ñ ΩkX Ñ Ω̃kX plogDq
ψ
Ñ Ω̃k´1

D

extending the classical residue sequence 4.2.8.1. The map ψ is surjective
outside Sing pDq.
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Proof of Proposition 4.2.10: We set X0 :“ XzSing pDq and D0 :“
D XX0 and consider the usual residue sequence

0 Ñ ΩkX0

ϕ0
Ñ ΩkX0

plogD0q
ψ0
Ñ Ωk´1

D0
Ñ 0.

The map ϕ0 extends to ϕ : ΩkX Ñ Ω̃kX plogDq. Let Q :“ coker pϕq. Obviously
Q is supported on D and Q|D0

– Ωk´1
D0

; thus Q is torsion-free as a sheaf

on D. Hence Q Ă Ω̃k´1
D and we obtain a map ψ : Ω̃kX plogDq Ñ Ω̃k´1

D ,
extending ψ0. Obviously, ϕ is injective and im pϕq “ ker pψq. Thus we
obtain a sequence

0 Ñ ΩkX
ϕ

Ñ Ω̃kX plogDq
ψ
Ñ Ω̃k´1

D .

□

4.2.11 Proposition. In the setting of Proposition 4.2.10 the sequence

0 Ñ Ω1
X Ñ Ω̃1

X plogDq
ψ
Ñ OD Ñ 0

is exact.

Proof of Proposition 4.2.11: It remains to be shown that ψ is surjective.
Let x0 P D be a singular point and h be a local holomorphic function on D
defined in an open neighbourhood of x0. We lift h to a holomorphic function
h̃ locally on X and write D “ tf “ 0u near x0. Define ω :“ df

f ^ h̃ locally

on X, then ω is a local section in Ω̃1
X plogDq and ψ pωq “ h. □

4.2.12 Remark. If n “ dimX in the setting of Proposition 4.2.10, then
the sequence

0 Ñ ΩnX Ñ Ω̃nX plogDq
ψ
Ñ Ω̃n´1

D Ñ 0

is exact. In fact, Ω̃nX plogDq “ OX pKX `Dq and Ω̃n´1
D “ OD pKDq; so the

assertion follows from the adjunction formula.

Now we prove that ψ is surjective in special cases; we only treat the
situation we are interested in.

4.2.13 Proposition. Let X be a 3-dimensional projective manifold and
D Ă X a normal surface with rational singularities. Then all sequences

0 Ñ ΩkX Ñ Ω̃kX plogDq
ψ
Ñ Ω̃k´1

D Ñ 0

are exact.
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Proof of Proposition 4.2.13: It remains to treat the case k “ 2. Let
π : pX Ñ X be an embedded resolution of singularities of D. So the strict
transform pD of D in pX is smooth, and we obtain the residue sequence

0 Ñ Ω2
pX

Ñ Ω2
pX

´

log pD
¯

Ñ Ω1
pD

Ñ 0. (4.2.13.1)

Since π˚Ω
2
pX

– Ω2
X , since π˚Ω

1
pD

– Ω̃1
D (D has quotient singularities, then

use Remark 4.2.42) and since R1π˚Ω
2
pX

“ 0 (π consists only of blow-ups of

points), we obtain the following commutative diagram:

0 // Ω2
X

//

–

��

π˚

´

Ω2
pX

´

log pD
¯¯

//

α

��

Ω̃1
D

//

β

��

0

0 // Ω2
X

// Ω̃2
X plogDq // Q // 0.

Since Q Ă Ω̃1
D, and since β is generically an isomorphism, β is an isomor-

phism everywhere; so is α. This proves the claim. □

4.2.14 Remark.

1. The proof of Proposition 4.2.13 works in any dimension and any degree
provided

π˚Ω
q
pD

– ΩqD

for all q and that the map

R1π˚Ω
q
pX

Ñ R1π˚Ω
q
pX

´

log pD
¯

induced by Sequence 4.2.13.1 is injective.

The first condition is satisfied if D has canonical singularities, see
[GKKP11].

2. The proof also shows the following: Let π : pX Ñ X be an embedded
resolution for the normal divisor D Ă X. We assume that D has only
quotient or canonical singularities and that the injectivity assumption
in 1. holds. Let pD be the strict transform of D. Then

π˚Ω
k
pX

´

log pD
¯

– Ω̃kX plogDq .

4.2.15 Proposition. Let X be a projective manifold, D1 a smooth divisor,
D2 a normal divisor such that D “ D1 XD2 is normal and D1 and D2 meet
transversally outside Sing pDq. Then we have exact sequences

0 Ñ Ω̃kX plogD2q Ñ Ω̃kX plog pD1 YD2qq
ψ
Ñ Ω̃k´1

D1
plogDq .

If k “ 1, then Ω̃k´1
D1

plogDq “ OD1 and ψ is surjective.
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Proof of Proposition 4.2.15: The proof is the same as for Proposition
4.2.11 and Proposition 4.2.10 and therefore is omitted. □

4.2.16 Proposition. Let X be a 4-dimensional projective manifold, D1 Ă

X be a smooth divisor and D2 Ă X be a normal divisor with only canonical
singularities. We assume furthermore

1. D “ D1 XD2 is a normal divisor with rational singularities;

2. D1 and D2 meet transversally outside the singular locus Sing pDq;

3. D1 X Sing pD2q is contained in the locus of D2 where D2 has the local
product structure U ˆS with U an open set in C and S a local surface
with a rational double point.

Then we have exact sequences

0 Ñ Ω̃kX plogD2q Ñ Ω̃kX plog pD1 YD2qq
κ

Ñ Ω̃k´1
D1

plogDq Ñ 0

for each k “ 1, . . . , 4.

Proof of Proposition 4.2.16: We only need to treat the cases k “ 2, 3.
Using Proposition 4.2.15 it suffices to show that κ is surjective. By our
assumption, it suffices to show surjectivity of κ at p P Sing pDq.

Case 1: k=2 Since Ω̃2
X plog pD1 YD2qq and Ω̃1

D1
plogDq are reflexive, it

suffices to show that

κV : Ω̃2
X plog pD1 YD2qq pV zpq Ñ Ω̃1

D1
plogDq

´

Ṽ zp
¯

is surjective for V an arbitrary small Stein neighbourhood of p in X and
Ṽ “ V XD1. Clearly, κV is surjective if

H1
´

V zp, Ω̃2
X plog pD2qq

¯

“ 0. (4.2.16.1)

For Equation 4.2.16.1 we use the residue sequence

0 Ñ Ω2
X Ñ Ω̃2

X plogD2q Ñ Ω̃1
D2

Ñ 0 (4.2.16.2)

on V . For Sequence 4.2.16.2, we use the local product structure of D2:
locally D2 “ U ˆ S Ă U ˆ Y “ V with a smooth 3-fold Y . Then Sequence
4.2.16.2 has the form

0 Ñ Ω2
UˆY Ñ Ω̃2

UˆY plog pU ˆ Sqq Ñ Ω̃1
UˆS Ñ 0. (4.2.16.3)

Sequence 4.2.16.2 follows from the exact sequences

0 Ñ ΩkY Ñ Ω̃kY plogSq Ñ Ω̃k´1
S Ñ 0, (4.2.16.4)
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see 4.2.13, because we have the following isomorphisms:

Ω2
UˆY –

`

pr˚
1Ω

1
U b pr˚

2Ω
1
Y

˘

‘ pr˚
2Ω

2
Y ,

Ω̃2
UˆY plog pU ˆ Sqq –

´

pr˚
1Ω

1
U b pr˚

2Ω̃
1
Y plogSq

¯

‘ pr˚
2Ω̃

2
Y plogSq ,

Ω̃1
UˆS – pr˚

1Ω
1
U ‘ pr˚

2Ω̃
1
S .

The middle isomorphism is at first only valid on UˆY z Sing pD2q, then due
to reflexivity also on U ˆ Y . These isomorphisms provide a decomposition
of Sequence 4.2.16.3 in two sequences related to the exact sequences 4.2.16.4
for k “ 1, 2. Then the exactness of Sequence 4.2.16.2 follows.

By 4.2.16.2, the equality 4.2.16.1 comes down to

H1
`

V zp,Ω2
X

˘

“ 0 (4.2.16.5)

and
H1

´

V 1zp, Ω̃1
D2

¯

“ 0, (4.2.16.6)

where V 1 :“ V XD2 is Stein again.
To show Equation 4.2.16.5, observe that the Riemann extension theorem

(for locally free sheaves, see [Sch61] and [Sch64]) gives

H1
`

V,Ω2
V

˘ –
Ñ H1

´

V zp, Ω2
V

ˇ

ˇ

V zp

¯

.

But H1
`

V,Ω2
V

˘

“ 0, since V is Stein.
To show Equation 4.2.16.6, we claim that

H1
´

V 1, Ω̃1
D2

ˇ

ˇ

ˇ

V 1

¯

Ñ H1
´

V 1zp, Ω̃1
D2

ˇ

ˇ

ˇ

V 1

¯

(4.2.16.7)

is an isomorphism. To see this, we need prof
´

Ω̃1
D2,p

¯

ě 3 (see [BS76],

II.3.10). Here prof denotes the homological codimension of Ω̃1
D2,p

as an
OD2,p-module. Since

H1
´

V 1, Ω̃1
D2

ˇ

ˇ

ˇ

V 1

¯

– H1
`

V 1,pr˚
1Ω

1
U

˘

‘H1
´

V 1,pr˚
2Ω̃

1
S

¯

and pr˚
1Ω

1
U – OUˆS , furthermore U ˆ S is Cohen-Macaulay, it suffices to

show that prof
´

pr˚
2Ω̃

1
S

¯

ě 3. Since V 1 “ U ˆ S, this is equivalent to

profOS,p1

´

Ω̃1
S,p1

¯

ě 2, where p “ p0, p1q. Indeed, let
`

f1,p1 , f2,p1

˘

be a regular

sequence for Ω̃1
S,p1 and t a holomorphic coordinate of U . We write t for

pr˚
1t. Then

´

tp, ppr
˚
2f1qp , ppr

˚
2f2qp

¯

is a regular sequence for
´

pr˚
2Ω̃

1
S

¯

p
. This

follows as the quotient sheaf
´

pr˚
2Ω̃

1
S

¯

p
{

´

t ¨ pr˚
2Ω̃

1
S

¯

p
has support t0u ˆ S

and equals Ω̃1
S .



4.2. LOGARITHMIC DIFFERENTIALS AND RESIDUES 39

We obtain profOS,p1

´

Ω̃1
S,p1

¯

ě 2 by e.g. [BS76], II.3.15, as Ω̃1
S is a reflex-

ive sheaf.
Then we conclude with Theorem B.

Case 2: k=3 This is done in exactly the same way. □

We comment on the assumption 3 in Proposition 4.2.16:

4.2.17 Remark. Since D2 has canonical Gorenstein singularities, there
exists a finite set M Ă Sing pD2q such that at p P Sing pDq zM , the variety
D2 has locally the form U ˆS as assumed in Proposition 4.2.16, see [Rei87].

There is an alternative way to define residues by using tube maps in case
X is compact:

4.2.18 Theorem. ([Gri69], Prop. 3.5) Let V Ă Pn be a smooth hypersur-
face. There is a Z-linear map, the tube map,

τ : Hn´1 pV,Zq Ñ Hn pPnzV,Zq

such that τ pγq is given geometrically by taking a tube over γ. The map τ is
always surjective and injective if n is even.

The proof actually can be adapted to show the following:

4.2.19 Corollary. Let X be a projective manifold and D Ă X a smooth
divisor. Then Theorem 4.2.18 can be adapted to this situation such that we
get a tube map

τ : Hn´1 pD,Zq Ñ Hn pXzD,Zq

satisfying the properties stated in Theorem 4.2.18.

4.2.20 Theorem. For ω P H0
`

X,ΩpX plogDq
˘

the residue can be com-
puted as an integral for each γ P Cp pDq by

ż

γ
respD|X pωq :“

ż

τpγq

ω.

This leads to a generalization of the notion of the residue.

4.2.21 Definition. For each rational k-form η P H0
`

X,ΩpX pDq
˘

on X
with poles along D we define a residue by

ż

γ
respD|X pηq :“

ż

τpγq

η

for each cycle γ P Ck pDq.
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We now turn to the cohomological level.

4.2.22 Definition. The residue map 4.2.31.1 on the complex of logarith-
mic differential forms induces a residue map in cohomology

ReskX|Pn : Hk pXzD,Cq Ñ Hk´1 pD,Cq (4.2.22.1)

for each k.

The following alternative definition of the residue map in cohomology is
important:

4.2.23 Theorem. ([Voi03], Chapter 6.1.1)

1. Let U :“ XzD. The residue map 4.2.22.1 can also be defined as
composition

ReskD|X : Hk pU,Cq Ñ Hk`1 pX,U,Cq – Hk`1 pT, BT,Cq – Hk´1 pD,Cq ,

where T is a tubular neighbourhood of D in X.

2. The residue map is part of the long exact sequence of relative coho-
mology of the pair pX,Uq, i.e.,

. . . Ñ Hk pX,Zq Ñ Hk pU,Zq
ReskD|X

Ñ Hk´1 pD,Zq
l˚
Ñ Hk`1 pX,Zq Ñ . . . ,

where l˚ denotes the Gysin morphism.

To fix notations, we recall

4.2.24 Definition.

1.

Hk pX,Qqprim :“ ker
´

L : Hk pX,Rq Ñ H2n´k`2 pX,Rq

¯

2.

Hk pD,Cqvan :“ ker
´

l˚ : Hk pD,Qq Ñ Hk`2 pX,Qq

¯

4.2.25 Theorem. ([Voi03], 2.3.3) If D is ample, then there is an isomor-
phism

Hn pX,Qqprim “ Hn pX,Qq {l˚H
n´2 pD,Qq

and an exact sequence

0 Ñ Hn pX,Qqprim
j˚

Ñ Hn pU,Qq
ResnD|X

Ñ Hn´1 pD,Qqvan Ñ 0. (4.2.25.1)
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4.2.3 The notion of mixed Hodge structures and variations
of mixed Hodge structures

Mixed Hodge structures occur our context in the following way:

4.2.26 Definition. (See e.g. [PS08], p. 62) Let HZ be a finitely generated
Z-module and H :“ HR bR C be the complexification.

A mixed Hodge structure of HR on a finite dimensional Z-module HZ
consists of:

1. the Hodge filtration, i.e. a decreasing filtration

H Ą . . . Ą F p`1 Ą F p Ą F p´1 Ą . . . Ą 0,

2. the weight filtration, an increasing filtration

0 Ă . . . Ă Wm´1 Ă Wm Ă Wm´1 Ă . . . Ă H

such that the two filtrations verify the condition:

for each m the Hodge filtration induces a pure Hodge structure of weight
m on the m-th graded element GrWm :“ Wm{Wm´1 of the weight filtration.

4.2.27 Remark. The general element of the induced filtration is

F pGrWm “ pWm X F pq {Wm´1.

4.2.28 Definition. (See e.g. [PS08], p.362) Let S be a complex manifold.
A variation of mixed Hodge structure on S consists of the following data:

1. a local system HZ of finitely generated abelian groups on S,

2. the Hodge filtration, i.e. a finite decreasing filtration tFu of the holo-
morphic vector bundle H :“ HZ bZ OS by holomorphic subbundles,

3. the weight filtration, i.e. a finite increasing filtration tWmu of the local
system HQ :“ HZ bZ Q by local subsystems.

These data are subject to the following conditions:

1. for each s P S the filtrations tFp psqu and tWmu of H psq – HZ,s bZ C
define a mixed Q-Hodge structure on the Q-vector space HQ,s,

2. the connection ∇ : H Ñ H bOS Ω1
S whose sheaf of horizontal sections

is HC satisfies the Griffiths’ transversality condition

∇ pFpq Ă Fp´1 b Ω1
S .
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4.2.4 The mixed Hodge structure on the hypercohomology
of the complex of logarithmic differential forms

Let U be a complex algebraic manifold and X a good compactification, i.e.
D :“ XzU is a divisor with simple normal crossings.

4.2.29 Theorem. (See e.g. [PS08], Thm. 4.2, p. 90) The following two
filtrations put a mixed Hodge structure on Hk pU,Cq:

1. The decreasing Hodge filtration on Hk pU,Cq is induced by the decreas-
ing trivial filtration F ‚Ω‚

X plogDq on Ω‚
X plogDq, i.e.,

F pHk pU,Cq :“ im
´

Hk pX,F pΩ‚
X plogDqq Ñ Hk pU,Cq

¯

,

where

F pΩ‚
X plogDq :” 0 Ñ . . . Ñ 0 Ñ ΩpX plogDq Ñ Ωp`1

X plogDq Ñ . . . .

2. The increasing weight filtration on Hk pU,Cq is induced by the increas-
ing weight filtration W‚Ω

‚
X plogDq on Ω‚

X plogDq, i.e.,

WmH
k pU,Cq :“ im

´

Hk pX,Wm´kΩ
‚
X plogDqq Ñ Hk pU,Cq

¯

,

where

WmΩ
p
X plogDq :“

$

&

%

0 for m ă 0
ΩpX plogDq for m ě p

Ωp´m
X ^ ΩmX plogDq if 0 ď m ď p.

4.2.30 Theorem. ([PS08], p. 93) The residue map 4.2.6.1 restricts to a
surjective map

resI :WmΩ
‚
X plogDq Ñ Ω‚

DI
r´ms

and induces an isomorphism of complexes

resm “
à

|I|“m

resI : GrWmΩ‚
X plogDq

–
Ñ am˚Ω

‚
Dpmq r´ms .

4.2.31 Remark. If the divisor D is smooth, we can locally find holomor-
phic coordinates tz1, . . . , znu on X such that D “ tz1 “ 0u. Then we get
the residue map

res : Ω‚
X plogDq Ñ Ω‚

D r´1s , ω “
dz1
z1

^ η ` η1 ÞÑ η|D , (4.2.31.1)

where η and η1 do not contain dz1
z1

. It induces a surjective map

res :W1Ω
‚
X plogDq Ñ Ω‚

D r´1s

and an isomorphism

res : GrW1 Ω‚
X plogDq “ Ω‚´1

X ^ Ω1
X plogDq

–
Ñ a1˚Ω

‚
D r´1s .
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4.2.32 Remark. ([PS08], [Voi03])

1. The spectral sequence associated to the Hodge filtration of Hk pU,Cq

degenerates at E1, furthermore the maps

Hk pX,F pΩ‚
X plogDqq Ñ Hk pU,Cq

are injective. Therefore

F pHk pU,Cq “ im
´

Hk pX,F pΩ‚
X plogDqq Ñ Hk pU,Cq

¯

– Hk pX,F pΩ‚
X plogDqq –

à

r`s“k
sěp

Hr pX,ΩsX plogDqq

and
Hk pX,Ω‚

X plogDqq –
à

r`s“k

Hr pX,ΩsX plogDqq .

2. If the divisor D is smooth, i.e. it has one smooth irreducible compo-
nent, then the weight filtration on Ω‚

X plogDq consists of two steps:

W0Ω
‚
X plogDq ” Ω‚

X

and
W1Ω

‚
X plogDq ” Ω‚

X plogDq .

Therefore

W3H
3 pU,Cq Ă W4H

3 pU,Cq “ H3 pU,Cq .

4.2.5 Relative de Rham-Cohomology

Later we will need a de Rham theory for pairs; the relevant definitions are
found below.

LetX be an n-dimensional compact complex manifold, D
ι

ãÑ X a smooth
hypersurface.

4.2.33 Definition. (See e.g. [BT82], p.78) The relative cohomology of
X and D is the cohomology of the complex

A‚
pX,Dq :“

´

Ak
X ‘ Ak´1

D

¯

kPN

with the differential
d̃ pα, βq :“ pdα, ι˚α ´ dβq

for α P Ak
X , β P Ak´1

D , i.e.,

Hk pX,D,Cq :“

!

pα, βq P Ak
X ‘ Ak´1

D

ˇ

ˇ

ˇ
d̃ pα, βq “ 0

)

d̃
´

Ak´1
X ‘ Ak´2

D

¯

for each k P N.
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4.2.34 Remark.

We get a short exact sequence of complexes

0 Ñ A‚´1
D Ñ A‚

pX,Dq Ñ A‚
X Ñ 0

which yields a long exact sequence in cohomology

¨ ¨ ¨ Ñ Hk´1 pX,Cq Ñ Hk´1 pD,Cq Ñ Hk pX,D,Cq Ñ Hk pX,Cq Ñ

Ñ Hk pD,Cq Ñ Hk`1 pX,D,Cq Ñ ¨ ¨ ¨ .

Therefore we get a decomposition of the relative cohomology

Hk pX,D,Cq – ker
´

Hk pX,Cq Ñ Hk pD,Cq

¯

‘ coker
´

Hk´1 pX,Cq Ñ Hk´1 pD,Cq

¯

.

We denote

Hn´1
var pDq :“ coker

`

Hn´1 pX,Cq Ñ Hn´1 pD,Cq
˘

.

4.2.35 Definition.

1. We define the relative singular chain complex C‚ pX,Dq by setting

Ck pX,Dq :“ Ck pXq {Ck pDq .

Here Ck pXq denotes the space of k-cycles in X (with complex coef-
ficients), Ck pDq is analogously defined. We obtain homology groups
Hk pX,Dq.

2. There is a duality pairing between the relative cohomology Hk pX,D,Cq

and the relative homology Hk pX,D,Cq for each k, which is given by

Π : Hk pX,D,Cq ˆHk pX,D,Cq Ñ C,

prγs , rpη1, η2qsq ÞÑ

ż

γ
η1 ´

ż

Bpγq

η2.

Then we have the following classical theorem:

4.2.36 Theorem. The pairing in Definition 4.2.35 is non-degenerate.

4.2.37 Theorem. There is an isomorphism

H2n´k pX,D,Cq – Hk pXzD,Cq – Hk pΩ‚
X plog pDqqq .
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Proof of Theorem 4.2.37: By Lefschetz duality we have an isomorphism

Hk pXzD,Zq – H2n´k pX,D,Zq .

for each 0 ď k ď 2n. Using the universal coefficient theorem for XzD we
get

Hk pXzD,Zq – H2n´k pX,D,Zq .

□

4.2.38 Remark. If we define Hk pX,D,Cq :“ Hom pHk pX,Dq ,Cq, then
Theorem 4.2.37 remains true for divisors with simple normal crossings.

4.2.6 Hodge theory on quotients by finite groups

In this chapter we consider a normal projective variety X with a finite group
G acting on X. Then the quotient X{G is again a normal projective variety.
Let p : X Ñ X{G be the quotient map. This will be important in Chapter
8, where X is a quintic.

The group G acts on the cohomology Hq pX,Cq. More generally, if F is
a G-sheaf (i.e., F is a coherent OX -module and ρ˚ pFq – F for each ρ P G),
then G acts on Hq pX,Fq.

We define the sheaf p˚ pFq
G by

p˚ pFq
G

pUq :“ F
`

p´1 pUq
˘G

for any open set U Ă X{G, where F
`

p´1 pUq
˘G

denotes the G-invariant
part of F

`

p´1 pUq
˘

.

4.2.39 Definition. Let Hq pX,Cq
G be the G-invariant part of Hq pX,Cq

and Hq pX,Fq
G be the G-invariant part of Hq pX,Fq.

4.2.40 Proposition. Given q ě 0, then there are isomorphisms

1. Hq pX,Cq
G

– Hq pX{G,Cq,

2. Hq pX,Fq
G

– Hq
´

X{G, p˚ pFq
G
¯

and

3. Hq pX,OXq
G

– Hq
`

X{G,OX{G

˘

.

Proof of Proposition 4.2.40: For 1, we refer to [Bre72], Theorem 2.4
and Theorem 7.2. For 2, we refer to a manuscript of J. Kollár [Kol]. 3 is a
special case of 2, since p˚ pOXq

G
“ OX{G, see also [GKKP11], Lemma 4.2.

□

In the following we consider normal projective varieties with only quo-
tient singularities, i.e., Y is locally of the form U{G, where U Ă Cn is an



46 CHAPTER 4. VARIATION OF HODGE STRUCTURE

open ball and G Ă Gl pn,Cq a small finite group. Following [Ste77], see also
[PS08], Section 2.5 (where Y is called a V -manifold), we define the Hodge
groups Hp,q pY q of Y .

4.2.41 Definition. Let Y be a normal projective variety.

1. Let ι : Yreg ãÑ Y be the regular part of Y . We define Ω̃qY :“ ι˚

´

ΩqYreg

¯

(in accordance with the log case treated before).

2. We set Hp,q pY q :“ Hq
´

Y, Ω̃pY

¯

.

4.2.42 Remark. [Ste77] We suppose that Y has only quotient singulari-
ties.

1. If π : Ỹ Ñ Y is a desingularisation, then Ω̃qY “ π˚

´

Ωq
Ỹ

¯

.

2. There is a Frölicher-type spectral sequence with E1-term

Ep,q1 “ Hp,q pY q

converging to Hp`q pY,Cq, which degenerates at E1, so that

Hr pY,Cq “
à

p`q“r

Hp,q pY q .

3. These remarks also apply if Y is a normal projective toric variety,
[Dan78], Theorem 12.5, instead assuming quotient singularities. For
the analogue of 1 see [GKKP11], even in greater generality.

4.2.43 Theorem. Let X be a projective manifold.

1. Let dimX “ 3 and let D Ă X be a normal divisor which has only quo-
tient singularities or which is a toric variety. Then there is a spectral
sequence pErqr with E1-term

Ep,q1 “ Hq
´

X, Ω̃pX plogDq

¯

and the following properties:

• pErq converges to H˚
´

Ω̃‚
X plogDq

¯

,

• pErq degenerates at E1,

• Hr
´

Ω̃‚
X plogDq

¯

– Hr pXzD,Cq for all r.

2. We suppose that dimX “ 4. Let D1 and D2 be irreducible divisors,
D1 smooth and D2 with only quotient singularities or a toric variety.
Suppose additionally
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(i) D “ D1 XD2 is a normal divisor with rational singularities;

(ii) D1 and D2 meet transversally outside the singular locus Sing pDq;

(iii) D1 X Sing pD2q is contained in the locus of D2 where D2 has the
local product structure U ˆ S with U an open set in C and S a
local surface with a rational double point.

Then there is a spectral sequence pErqr with E1-term

Ep,q1 “ Hq
´

X, Ω̃pX plogD1 YD2q

¯

and the following properties:

• pErq converges to H˚
´

Ω̃‚
X plogD1 YD2q

¯

,

• pErq degenerates at E1,

• Hr
´

Ω̃‚
X plogD1 YD2q

¯

– Hr pXz pD1 YD2q ,Cq for all r.

Proof of Theorem 4.2.43: The spectral sequence pErq is just the se-
quence of hypercohomology to the logarithmic complex in question. Then
we consider the exact sequences of the complexes (see Proposition 4.2.16
and Proposition 4.2.13)

0 Ñ Ω‚
X Ñ Ω̃‚

X pDq Ñ Ω̃‚´1
D Ñ 0

and

0 Ñ Ω̃‚
X plogD2q Ñ Ω̃‚

X plog pD1 YD2qq Ñ Ω̃‚´1
D1

plogDq Ñ 0,

and apply Remark 4.2.42 to conclude that pErq at E1. The last statements
follows from the long exact sequence of hypercohomology attached to the
above complexes. □
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Chapter 5

Comparison between two
deformation problems
associated with a closed
submanifold in a compact
complex manifold

In this chapter we consider pairs pX,Zq, where X is a compact complex
manifold and Z a compact complex submanifold in X, and compare the
deformations of the pairs pX,Zq and pX, ι˚OZq, where ι denotes the inclu-
sion of Z in X. The results of this chapter will be used later, when X is a
Calabi-Yau 3-fold and Z is a smooth curve or a smooth divisor.

5.1 Statement of the main theorems

5.1.1 Theorem. Let Z be a closed submanifold of codimension d of a
compact complex manifold X and ι : Z ãÑ X the inclusion. Then there is a
natural linear isomorphism of simultaneous first-order deformations

Def pX, ι˚OZq – Def pX,Zq ‘H1 pZ,OZq . (5.1.1.1)

Concerning obstructions, we restrict ourselves to the situation we are
interested in:

5.1.2 Theorem. We assume that H1 pZ,OZq “ 0 or H2 pZ,OZq “ 0, e.g.
Z is an ample divisor in a Calabi-Yau 3-fold or a smooth curve in a compact
manifold. Then

Obs pX, ι˚OZq “ Obs pX,Zq Ă H2 pX,TX ⟨´Z⟩q .

49
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5.2 Preparations

We recall some definitions from the theory of coherent sheaves, see e.g.
[GR84] or [Fis76].

5.2.1 Definition. We denote by F a coherent sheaf on the complex mani-
fold X.

1. Let Ann pFq be the annihilator of F , i.e.,

Ann pFqx :“ tfx P OX,x| fx ¨ sx “ 0 for each sx P Fxu

for each x P X.

2. Let Supp pFq denote the support of F , i.e., the complex space

Supp pFq :“ ptp P X|Fp ‰ 0u ,OX{Ann pFqq .

So Supp pFq is not only an analytic set, but carries a natural complex struc-
ture.

5.2.2 Lemma. Let S be the spectrum of an Artin ring or the germ of a
complex space. Let Z be a closed submanifold of codimension d of a compact
complex manifold X and ι : Z ãÑ X be the inclusion.

Any deformation pX ,Fq of the pair pX, ι˚OZq over S is a pair consisting
of a deformation X of X over S and a coherent sheaf F on X which is a
locally free sheaf of rank 1 on Supp pFq such that F |X – ι˚OZ .

Proof of Lemma 5.2.2: The restriction of F to its support Supp pFq is a
coherent sheaf whose restriction to the central fibre X is a locally free sheaf
of rank 1 on Supp pFq XX “ Z, namely

´

F |SupppFq

¯ˇ

ˇ

ˇ

X
– OZ .

Since X Ñ S is a submersion, X is locally isomorphic to a product. So
locally in X near p P Supp pFq, we can write

X – U ppq ˆ S,

where U ppq is a small neighbourhood of p P Z. Moreover, we choose a
suitable ϵ ą 0 and consider S as a subspace of Uϵ p0q, where Uϵ p0q “
␣

z P CN
ˇ

ˇ |z| ă ϵ
(

for some N ą 0. Hence X is locally a subspace of U ppq ˆ

Uϵ p0q.
Possibly, after shrinking U ppq and ϵ, we find a coherent sheaf F̃ on

U ppq ˆ Uϵ p0q such that the restriction to U ppq ˆ S is

F̃
ˇ

ˇ

ˇ

UppqˆS
“ F |UppqˆS .
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We claim that F̃
ˇ

ˇ

ˇ

SupppF̃q
is locally free of rank 1 on Supp

´

F̃
¯

, possibly

after shrinking U ppq and ϵ again. Since F |Z “ OZ , we know

dimC F̃ pxq “ dimC F̃x{mxF̃x “ dimCF pxq “ 1

for all x P U ppq ˆ S, where mx is the maximal ideal at x.

The set
!

x P U ppq ˆ Uϵ p0q | dimC F̃x{mxF̃x ą 1
)

is analytic; in particular, it is closed (see e.g. [Fis76], p. 49). Hence after
shrinking δ and ϵ again,

dimC F̃x{mxF̃x “ 1

for each x P U ppq ˆ Uϵ p0q. Hence the Nakayama lemma (see e.g. [AM69],

p. 21) implies that F̃
ˇ

ˇ

ˇ

SupppFq
is locally free of rank 1 and so does F |UppqˆS

near p for arbitrary p P Supp pFq. □

Since all computations are local, we can replace the trivial bundle OZ in
Lemma 5.2.2 by an arbitrary line bundle on Z and obtain also the following
well-known lemma:

5.2.3 Lemma. Let S be the spectrum of an Artin ring or the germ of a
complex space. Let Z be a closed submanifold of codimension d of a compact
complex manifold X and ι : Z ãÑ X, the inclusion. Let L P Pic pZq be a line
bundle.

Any deformation pX ,Fq of the pair pX, ι˚Lq over S is a pair consisting
of a deformation X of X over S and a coherent sheaf F on X which is a
locally free sheaf of rank 1 on Supp pFq such that F |X – ι˚L.

The method of the proof also shows the following classical lemma:

5.2.4 Lemma. Let S be the spectrum of an Artin ring or the germ of
a complex space. Let π : X Ñ S be a deformation of a compact complex
manifold X over S. Let E be a coherent sheaf on X which is flat over S.
Suppose that E |X is locally free. Then E is locally free.

Next we associate to an infinitesimal deformation of the pair pX,Zq an
infinitesimal deformation of the pair pX, ι˚OZq and vice versa.

5.2.5 Lemma. Let Z be a closed submanifold of codimension d of a com-
pact complex manifold X and ι : Z ãÑ X be the inclusion. Let S be the
spectrum of an Artin ring or the germ of a complex space.
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1. We suppose that the closed subscheme Z J
ãÑ X is a deformation of the

pair pX,Zq over S. Then by associating to Z J
ãÑ X the coherent sheaf

F :“ J˚OZ

we get a deformation pX ,Fq of the pair pX, ι˚OZq over S.

2. Conversely we suppose that the pair pX ,Fq is a deformation of the
pair pX, ι˚OZq over S. Then we get an associated deformation of the
pair pX,Zq over S by setting

Z :“ Supp pFq .

Furthermore we define the map π : Z Ñ S by setting π “ p|Z , where
p : X Ñ S is the projection.

Proof of Lemma 5.2.5: p1.q F :“ J˚OZ is a coherent sheaf on X which
is flat over S. Indeed, the flatness of F over S follows immediately from the
flatness of Z over S.

The inclusion j1 : Z ãÑ Z induces a morphism of sheaves

OX {JZ Ñ j1˚ pOX {JZq ,

where JZ and JZ denote the ideal sheaves for Z and Z in X , respectively;
i.e., we get a map of sheaves on X

J˚ pOZq Ñ ι˚ pOZq ,

where ι also denotes the inclusion Z – Z ˆ Spec pCq ãÑ X . This yields an
isomorphism

J˚ pOZq bOX OX – J˚OZˆSSpecpCq – J˚j1˚OZ “ ι˚OZ .

Therefore F is an infinitesimal deformation of ι˚OZ over S.

p2.q We need to show that π : Z Ñ S is flat and that Z ˆS Spec pCq – Z.
We note that ZˆSSpec pCq is the subspace ofX “ X ˆSSpec pCq defined

by J :“ im pι˚ pAnn pFqq Ñ OXq, where ι : X ãÑ X is the inclusion.
Then

Jx “
␣

fx P OX,x| fx ¨ sx “ 0 for each sx P pF |Zqx

(

“ tfx P OX,x| fx ¨ sx “ 0 for each sx P pι˚OZqxu

“ JZ,x.

Furthermore we have to show that π is flat; i.e. for each x P Z the local
ring OZ,x is flat over OS,πpxq.

Let x P Z. By assumption F is flat over S; i.e. for each x P X the stalk
Fx is flat over OS,ppxq. As F is a locally free sheaf of rank 1 on Z by Lemma
5.2.2, it is locally trivial, and thus Fx – OZ,x for each x P Z. Therefore the
flatness of π follows. □
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5.3 Proof of Theorem 5.1.1

In this section we give the proof of Theorem 5.1.1. We want to establish an
exact sequence of vector spaces

0 Ñ Def pX,Zq
ζ

Ñ Def pX, ι˚OZq
ξ

Ñ H1 pZ,OZq Ñ 0. (5.3.0.1)

We first define the map

ζ : Def pX,Zq Ñ Def pX, ι˚OZq

by associating to pJ : Z ãÑ X q the coherent sheaf F constructed in Lemma
5.2.5, (1). Second, in Step 1 below we are going to construct a map

ξ : Def pX, ι˚OZq Ñ H1 pZ,OZq , pX ,Fq ÞÑ ξ pFq .

The resulting situation is then shown in the following diagram:

Def pXq – H1 pX,TXq
» // Def pXq – H1 pX,TXq

Def pX,Zq – H1 pX,TX p´ logZqq
ζ //

OO

Def pX, ι˚OZq
ξ //

OO

H1 pZ,OZq

DefX pZq – H0
`

Z,NZ|X

˘

OO

DefX pι˚OZq – Ext1X pι˚OZ , ι˚OZq

OO

H1 pZ,OZq

OO

0

OO

0

OO

Step 1: Construction of the map ξ. We start with some preparations:
Let pX ,Fq be a simultaneous first-order deformation of the pair pX, ι˚OZq.
Let Z :“ Supp pFq be the complex space defined in 5.2.1. According to
Lemma 5.2.2 we know F P Pic pZq with F |Z “ OZ P Pic pZq.

From Lemma 5.2.5, p2q we know that the map π : Z Ď X Ñ S induced
by the projection of X to S is a first-order deformation of Z in X. We
observe that the square of the ideal sheaf J of Z in Z vanishes, i.e.

J – J{J2 – N_
Z|Z .

Furthermore we have

NZ|Z – π˚NSpecpCq|SpecpCrts{pt2qq – π˚OSpecpCq – OZ .

Thus, looking at the exponential sequences for Z and Z and the ideal sheaf
sequence for Z in Z, we get the following diagram:
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H0 pZ,OZq

��
H0 pZ,OZq

��
H1

`

Z,JZ|Z
˘

– H1
´

Z,N_
Z|Z

¯

– H1 pZ,OZq

β

��
H1 pZ,Zq

ιZ //

–id

��

H1 pZ,OZq
µ //

α

��

Pic pZq
c1 //

γ

��

H2 pZ,Zq

–id

��
H1 pZ,Zq

ιZ // H1 pZ,OZq
ν // Pic pZq

c1 // H2 pZ,Zq .

(5.3.0.2)

The map H0 pZ,OZq Ñ H0 pZ,OZq induced by the ideal sheaf sequence of

Z in Z is surjective, and therefore H0 pZ,OZq Ñ H1
´

Z,N_
Z|Z

¯

is the zero

map. Hence the map β : H1
´

Z,N_
Z|Z

¯

Ñ H1 pZ,OZq is injective.

Furthermore we observe that the maps ιZ and ιZ in the diagram are
injective. To that end, we extend diagram 5.3.0.2 at the left side and get

H0 pZ,OZq //

��

H0 pZ,O˚
Zq //

��

H1 pZ,Zq
ιZ //

–id
��

H1 pZ,OZq
µ //

α

��

// . . .

H0 pZ,OZq // H0 pZ,O˚
Zq // H1 pZ,Zq

ιZ // H1 pZ,OZq
ν //// . . . .

(5.3.0.3)
As the map H0 pZ,OZq Ñ H0 pZ,O˚

Zq – C˚ is surjective, the map ιZ is
injective. The commutativity of diagram 5.3.0.3 implies then that the map
H0 pZ,O˚

Zq Ñ H1 pZ,Zq is the zero map; thus ιZ is injective.
As F P Pic pZq and γ pFq “ OZ P Pic pZq and furthermore c1 pOZq “

0 P H2 pZ,Zq, we know that

c1 pγ pFqq “ 0 P H2 pZ,Zq – H2 pZ,Zq ,

thus c1 pFq “ 0 P H2 pZ,Zq. Therefore F “ µ
´

F̃
¯

for a class F̃ P

H1 pZ,OZq. Because of the commutativity of the second square of diagram

5.3.0.2 we have ν ˝ α
´

F̃
¯

“ OZ P Pic pZq and can conclude

α
´

F̃
¯

“ ιZ
`

F 1
˘

for a class F 1 P H1 pZ,Zq. Under the isomorphism id : H1 pZ,Zq
–
Ñ

H1 pZ,Zq, the class F 1 can be viewed as a class F̃ 1 P H1 pZ,Zq. As the first
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square of diagram 5.3.0.2 is commutative, we get α
´

F̃
¯

– α
´

ιZ

´

F̃ 1
¯¯

. As
a consequence,

α
´

F̃ ´ ιZ

´

F̃ 1
¯¯

“ α
´

F̃
¯

´ α
´

F̃
¯

“ 0

and

F̃ ´ ιZ

´

F̃ 1
¯

P im pβq .

Let

ξ pFq P H1 pZ,OZq

be the image under the isomorphism H1 pZ,OZq – H1
´

Z,N_
Z|Z

¯

of the

preimage of F̃ ´ ιZ

´

F̃ 1
¯

P H1 pZ,OZq under the injective map β.

We have to prove that ξ pFq is well defined, i.e. the definition is indepen-
dent of the choices of F̃ . Let F̃1, F̃2 P H1 pZ,OZq be two classes satisfying

µ
´

F̃1

¯

“ µ
´

F̃2

¯

“ F P Pic pZq .

Let a1, a2 P H1
´

Z,N_
Z|Z

¯

be those classes corresponding to the classes

which are the preimages of F̃1 or F̃2, resp., under the map β. As µ ˝

β pa1 ´ a2q “ 0, we have β pa1 ´ a2q P im pιZq. Therefore β pa1 ´ a2q “

ιZ pãq for a class ã P H1 pZ,Zq. Let a P H1 pZ,Zq be the image of ã under

the isomorphism id : H1 pZ,Zq
–
Ñ H1 pZ,Zq. Because of the commutativity

of the diagram we get

0 “ α ˝ β pa1 ´ a2q “ ιZ paq .

This yields a “ 0 and thus ã “ 0; hence β pa1 ´ a2q “ 0 and, as β is injective,
a1 “ a2. Thus the construction of ξ pFq is unique.

Step 2: Linearity of ζ. We first treat the linearity of ζ. Let F1 be
the deformation functor of pX,Zq and F2 be the deformation functor of
pX, ι˚OZq. Now we construct a morphism f : F1 Ñ F2. Let A be an Artin
ring and T “ Spec pAq. Then f pT q is the infinitesimal deformation pX ,Fq of
pX, ι˚OZq over T induced by the infinitesimal deformation pX ,Zq of pX,Zq

over T constructed in Lemma 5.2.5. Then ζ “ f
`

Spec
`

C rts {t2
˘˘

.

By [Ser06], p. 46, the map ζ is therefore linear. As they are deformation
functors (see Chapter 3.1), they satisfy conditions H0 and Hϵ.

Step 3: Exactness. Now we show that the sequence p5.3.0.1q is exact.
Obviously ζ is injective.
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Moreover, ξ is surjective, as for each element a P H1 pZ,OZq we can
choose X̃ :“ X ˆ Spec

`

C rts {
`

t2
˘˘

and Z :“ Z ˆ Spec
`

C rts {
`

t2
˘˘

. Then

a corresponds to an element ã P H1
´

Z,N_
Z|Z

¯

, and we can define

F :“ µ ˝ β pãq .

We get F |X – OZ P Pic pZq because of the commutativity of the dia-
gram, and furthermore F is flat, as it is locally trivial on Z. Thus F P

DefX pι˚OZq Ă Def pX, ι˚OZq.
The composition ξ ˝ ζ vanishes. In order to see this, let J : Z ãÑ X

be a first-order deformation of the embedding j : Z ãÑ X. Under the map
ζ, the deformation J is mapped to the coherent sheaf F “ J˚OZ on the
deformation space X of X. We choose F̃ :“ 0 P H1 pZ,OZq. Since β is
injective, we can conclude that xF “ 0; thus ξ pFq “ 0.

Next we show that ξ´1 p0q Ď im pζq, hence the sequence is exact as
soon as we know that ξ is linear. Let the pair pX ,Fq be an infinitesimal
deformation of the pair pX, ι˚OZq with

ξ pF ,X q “ xF “ 0 P H1 pZ,OZq

and x̃F P H1
´

Z,N_
Z|Z

¯

be the image of xF under the isomorphism

H1 pZ,OZq – H1
´

Z,N_
Z|Z

¯

,

where Z :“ Supp pFq Ď X . Then

F “ µ ˝ β px̃F q “ µ p0q “ J˚OZ ,

where J : Z ãÑ X is the inclusion. Therefore the first-order deformation
pX ,Fq is the image of the first-order deformation J : Z ãÑ X of the inclusion
j : Z ãÑ X under the map ζ. □

Step 4: Linearity of ξ. Let F3 be the deformation functor of the sheaf
OZ on Z. We define a morphism of functors

g : F3 Ñ F2

by associating to the infinitesimal deformation L of OZ the infinitesimal
deformation of pX, ι˚OZq consisting of X “ X ˆ Spec pC rts {tnq and ι˚L.
Let

λ :“ g
`

Spec
`

C rts {t2
˘˘

: Def pOZq Ñ Def pX, ι˚OZq .

Then λ is linear according to [Ser06], p. 46. By construction of ξ, we know
ξ ˝ λ “ id. Now ξ induces a map

ξ : Def pX, ι˚OZq {im pζq Ñ H1 pZ,OZq ,
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therefore it suffices to show that ξ is linear. Let

τ : Def pX,Zq Ñ Def pX, ι˚OZq Ñ coker pλq

be the induced linear map. Since ξ´1 p0q “ im pζq and ξ ˝ λ “ id, the map
ξ is an isomorphism. Hence

dimH1 pZ,OZq “ dim pDef pX, ι˚OZq {im pζqq

and λ : H1 pZ,Zq Ñ Def pX, ι˚OZq {im pζq is an isomorphism. Since ξ ˝ λ “

id, the map ξ “ λ
´1

is linear.

We have also seen that λ defines a splitting of Sequence 5.3.0.1. □

5.3.1 Remark. We summarize the situation of Theorem 5.1.1 in the fol-
lowing diagram:

Def pXq – H1 pX,TXq
» // Def pXq – H1 pX,TXq

Def pX,Zq – H1 pX,TX p´ logZqq
ζ //

OO

Def pX, ι˚OZq
ξ //

OO

H1 pZ,OZq

DefX pZq – H0
`

Z,NZ|X

˘ α //

OO

DefX pι˚OZq – Ext1X pι˚OZ , ι˚OZq
β //

OO

H1 pZ,OZq

OO

0

OO

0

OO

The maps α and β are defined analogously to the construction of ζ and ξ.
It seems well-known that the lower exact sequence can also be constructed
by applying Ext1X p¨, ι˚OZq to the ideal sheaf sequence

0 Ñ JZ Ñ OX Ñ ι˚OZ Ñ 0,

compare [Tho00], Lemma 3.42.

In the next section we examine, to which extend it is important to take
the trivial bundle instead of an arbitrary line bundle on Z in Theorem 5.1.1.

5.4 A generalization of Theorem 5.1.1

We recall the following situation already considered in the proof of Theorem
5.1.1.
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5.4.1 Notation. Given a first-order deformation Z of Z, we consider the
following commutative diagram given by the exponential sequences

H2 pZ,OZq – H2
´

Z,N_
Z|Z

¯

��
H1 pZ,OZ q

δ //

γ

��

H1
´

Z,O˚
Z

¯ //

r

��

H2 pZ, Zq
ϵ //

–id

��

H2 pZ,OZ q
µ //

α

��

// . . .

H1 pZ,OZq
α //

β

��

H1
´

Z,O˚
Z

¯ // H2 pZ, Zq

ιZ // H2 pZ,OZq
ν //// . . . .

H2 pZ,OZq .

(5.4.1.1)

5.4.2 Theorem. Let L P Pic pZq. Then there is a canonical morphism of
vector spaces

Θ : Def pX, ι˚Lq Ñ Def pX, ι˚OZq .

1. The map Θ is injective if and only if H1 pZ,OZq “ 0.

2. Θ is surjective if and only if, for each first-order deformation pX ,Zq of
pX,Zq, there is a preimage of L under the restriction map Pic pZq Ñ

Pic pZq.

3. Θ is surjective if and only if the following holds: ϵ pc1 pLqq “ 0 and,
choosing L P Pic pZq so that L|Z b L_ “ α pζq with ζ P H1 pZ,OZq,
then β pζq “ 0.

4. If H2 pZ,OZq “ 0, then Θ is surjective.

Proof of Theorem 5.4.2: (0.) To construct the morphism Θ, let pX ,Fq

be a first-order deformation of pX, ι˚Lq. By Lemma 5.2.3, there is a line
bundle L P Pic pZq such that F “ j˚L, where Z :“ Supp pFq and j : Z Ñ X
is the inclusion.

We associate to pX ,Fq the pair pX , j˚OZq “: Θ pX ,Fq, which is a first-
order deformation of pX, ι˚OZq. We observe that ι˚OZ is flat over S. In
fact, this is a local question and locally F “ ι˚OZ .

Since this works for every infinitesimal deformation, we get a morphism
between the corresponding deformation functors. Therefore Θ is linear.

(1.) We show that Θ is injective if and only if H1 pZ,OZq “ 0. We
assume first that H1 pZ,OZq “ 0 and consider pX ,Fq P Def pX, ι˚Lq such
that Θ pX ,Fq “ pX ˆ S, j˚OZˆSq, where S :“ Spec

`

C rts {t2
˘

and j : Z ˆ

S ãÑ X ˆ S is the inclusion. Then F “ j˚L, where L P DefZ pLq –

H1 pZ,OZq “ 0 is the trivial first-order deformation of L P Pic pZq. Thus Θ
is injective.
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Conversely, if Θ is injective, then H1 pZ,OZq “ 0, since otherwise we
should obtain a nontrivial deformation of the line bundle L, which yields a
nontrivial deformation of pX ,Fq with trivial image under Θ.

Finally, (2.) is just a reformulation, (4.) is a consequence of (2.), and
(3.) is a diagram chase.

□

5.4.3 Remark.
In the situation of Theorem 5.4.2 we have the following commutative

diagram

0 // Def pX,Zq // Def pX, ι˚OZq // Def pOZq // 0

Def pX, ι˚Lq .

hhPPPPPPPPPPPP
Θ

OO 77nnnnnnnnnnnn

(5.4.3.1)

In general it is not possible to define a map

Def pX,Zq Ñ Def pX, ι˚Lq .

In fact, if Z is a first-order deformation of Z, then Pic pZq Ñ Pic pZq is
neither injective nor surjective in general.

A linear map Def pX,Zq Ñ Def pX, ι˚Lq exists if and only if the restric-
tion map Pic pZq Ñ Pic pZq is an isomorphism.

5.4.4 Remark. We consider a first-order deformation pX ,Zq of pX,Zq

and a line bundle L on Z. Then L extends to Z if and only if the following
holds: We consider the composition

F : H1 pX,TXq ˆH1
`

X,Ω1
X

˘ Y
Ñ H2

`

X,TX b Ω1
X

˘

Ñ H2 pX,TXq

given by the cup product and the pairing TX b Ω1
X Ñ OX . Then

F pξ, c1 pLqq “ 0.

See [Ser06], 3.3.11, for details.

5.5 Proof of Theorem 5.1.2

In this subsection we prove:

5.5.1 Theorem. We assume that H1 pZ,OZq “ 0 or H2 pZ,OZq “ 0;
e.g., Z is an ample divisor in a Calabi-Yau 3-fold or a smooth curve in a
compact complex manifold. Then

Obs pX, ι˚OZq “ Obs pX,Zq Ă H2 pX,TX ⟨´Z⟩q .
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Proof of Theorem 5.5.1: p1.q The assumption H1 pZ,OZq “ 0 implies
immediately that Def pX,Zq – Def pX, ι˚OZq and moreover that the defor-
mations of the pairs pX,Zq and pX, ι˚OZq over Spec pC rts {tnq are equal,
thus Obs pX,Zq – Obs pX, ι˚OZq.

p2.q By Lemma 5.2.5 it suffices to prove the following: given

pXn,Fnq P Defn pX, ι˚OZq ,

let pXn,Znq be the associated element in Defn pX,Zq. If pXn,Znq extends
to an element in Defn`1 pX,Zq, then pXn,Znq extends to an element in
Defn`1 pX, ι˚OZq.

Since H2 pZ,OZq “ 0, the deformations of line bundles on Z are unob-
structed. Let pXn,Fnq be a deformation of pX, ι˚OZq over Spec pC rts {tnq.
We assume that there is a deformation pXn,Znq of pX,Zq over Spec pC rts {tnq

which can be extended to a deformation pXn`1,Zn`1q over Spec
`

C rts {tn`1
˘

.

The ideal sheaf sequence

0 Ñ JZn|Zn`1
Ñ OZn`1 Ñ OZn Ñ 0

yields, using

JZn|Zn`1
“ J n

Z|X{J n`1
Z|X “ OZ

and the assumption H2 pZ,OZq “ 0, the equality

H2 pZn,OZnq “ H2
`

Zn`1,OZn`1

˘

.

Using the exponential sequences for Zn and Zn`1, we can extend

Fn|SupppFnq “ Fn|Zn

to a sheaf Gn`1|Zn P Pic pZn`1q and set

Fn`1 “ ιn`1˚ pGn`1q ,

where ιn`1 : Zn ãÑ Xn`1 is the inclusion. Thus pXn,Fnq is extendable to
pn` 1q-th order.

Hence the theorem follows by applying and using the fact that the ob-
structions of pX,Zq are in H2 pX,TX ⟨´Z⟩q due to [Ser06], 3.4.17. □

We conclude that for H1 pZ,OZq “ 0, e.g. Z is an ample divisor in a
Calabi-Yau 3-fold, the deformation problems of pX,Zq and pX, ι˚OZq coin-
cide.
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5.6 An example for a potential function:
the Noether-Lefschetz locus

As an application of the previous results, we establish a potential function
of a pair pX, ι˚OD pCqq, where ι : D ãÑ X be a smooth very ample divisor
in X such that C is a special divisor on D. This will be a consequence of a
theorem by C. Voisin.

5.6.1 Setup. Let X be a Calabi-Yau 3-fold; ι : D ãÑ X be a smooth very
ample divisor in X such that there is a class λ P H2

van pD,Zq X H1,1 pDq,
where

H2
van pD,Zq “

␣

a P H2
van pD,Zq

ˇ

ˇ ι˚ paq “ 0
(

.

Then the first-order deformations of pX,Dq are unobstructed according to
Remark 3.5.6. For each deformation pX ,Dq “ pXs, DsqsPS of pX,Dq over
a complex space S we get a unique smooth family of cycles ΛS :“ pλsqsPS

extending λ such that λs P H2
van pDs,Zq for each s P S. However λs will in

general no longer be of type p1, 1q. We fix a holomorphic 3-form ω on X.

We will make use of the following theorem by C. Voisin, which is proven
in the appendix to [Cle05].

5.6.2 Theorem. ([Cle05], Appendix) We assume the Setup 5.6.1. Then
there exist

• an open neighbourhood T Ă H1 pX,TXq of 0 P H1 pX,TXq and

• an open neighbourhood R Ă H1 pX,TX p´ logDqq of the point 0 P

H1 pX,TX p´ logDqq with projection R Ñ T ,

• furthermore C˚-bundles R̃ Ñ R and T̃ Ñ T such that R̃ and T̃
parametrize the deformations of pX,D, ωq and pX,ωq,

• and a holomorphic map

ϕNL : R̃ Ñ C

such that the following property is satisfied:

The family of cycles ΛS “ pλsqsPS induced by the deformation of pX,D, ωq

corresponding to r̃ P R̃ stays of type p1, 1q if and only if

d R̃|T̃ϕNL pr̃q “ 0.

Here d R̃|T̃ is the relative differential with respect to the projection R̃ Ñ T̃ .
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5.6.3 Definition. The set

NL pX,D, λ, ωq :“
!

r̃ P R̃
ˇ

ˇ

ˇ
d R̃|T̃ϕNL pr̃q “ 0

)

.

is called the Noether-Lefschetz locus.

We will now apply Voisin’s theorem to the situation discussed before.

To be specific, we propose the following

5.6.4 Setup. Let X be a Calabi-Yau 3-fold; ι : D ãÑ X be a smooth very
ample divisor in X. Let C be a divisor on D, such that

c1 pOD pCqq P H2
van pD,Zq XH1,1 pDq .

Thus C is a divisor in D which is not effective. We fix a holomorphic 3-form
ω on X.

We show that the Noether-Lefschetz locus is the critical locus of a po-
tential function for the deformation problem of the pair pX, ι˚OD pCq , ωq.

5.6.5 Theorem. We assume the Setup 5.6.4. There are

• open neighbourhoods Z Ă H1 pX,TXq of 0 P H1 pX,TXq and

• W Ă Def pX, ι˚OD pCqq of 0 P Def pX, ι˚OD pCqq,

• furthermore C˚-bundles Z̃ Ñ Z and W̃ Ñ W such that Z̃ and W̃
parametrize the deformations of pX,ωq and pX, ι˚OD pCq , ωq

• and a holomorphic map

ψNL : W̃ Ñ C

such that the following property is satisfied:

MW̃ pX, ι˚OD pCq , ωq “

!

w̃ P W̃
ˇ

ˇ

ˇ
dW̃ |Z̃ψNL pw̃q “ 0

)

where MW̃ pX, ι˚OD pCq , ωq Ă W̃ denotes the space of unobstructed defor-

mations of pX, ι˚OD pCq , ωq inside W̃ and dW̃ |Z̃ is the relative differential

with respect to the projection W̃ Ñ Z̃.
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Proof of Theorem 5.6.5: We set λ :“ c1 pOD pCqq and aim to apply
Theorem 5.6.2.
Step 1. We construct a map

ρ : Def pX, ι˚OD pCqq Ñ Def pX,Dq – H1 pX,TX p´ logDqq .

Let pX ,Fq be a first-order deformation of pX, ι˚OD pCqq. LetD :“ Supp pFq.
According to Lemma 5.2.3 we know F “ j˚L with L P Pic pDq and the in-
clusion j : D ãÑ X . Then we define

ρ pX ,Fq :“ pX ,Dq ,

which is a deformation of pX,Dq according to Lemma 5.2.5. The same
construction also applies to all infinitesimal deformations and to germs of
complex spaces.

Therefore we obtain a map between the deformation functors of the pairs
pX, ι˚OD pCqq and pX,Dq. Hence ρ is linear by [Ser06], p. 46; see Chapter
3.1. Then ρ is injective, as H1 pD,ODq “ 0.

In fact, if pX ,Fq P Def pX, ι˚OD pCqq with ρ pX ,Fq “ pX ˆ S,D ˆ Sq P

Def pX,Dq is the trivial deformation, then X “ X ˆS and D “ DˆS, and
thus F “ j˚L, where L P Pic pD ˆ Sq is a first-order deformation of OD pCq,
therefore trivial, since H1 pD,ODq “ 0.

Furthermore ρ extends trivially to a map

ρ̃ : Def pX, ι˚OD pCq , ωq Ñ Def pX,D, ωq .

Step 2. Let W :“ ρ̃´1 pRq and Z :“ T . Let W̃ and Z̃ be as in Theorem
5.6.2, and set

ψNL :“ ϕNL ˝ ρ̃ : W̃ Ñ C.

Then ψNL is holomorphic, as ϕNL is holomorphic and ρ̃ is linear. Thus
!

dW̃ |Z̃ψNL “ 0
)

“ ρ̃´1
!

d R̃|T̃ϕNL “ 0
)

.

In order to prove the theorem, we show that

MW̃ pX, ι˚OD pCq , ωq “ ρ̃´1 pNL pX,D, λ, ωqq .

a) Let pX ,Fq be an unobstructed deformation of pX, ι˚OD pCqq over a
contractible complex Stein space S.

Then pX ,Fq induces a deformation pX ,Dq of pX,Dq over S as seen
above. The family Λ “ pλsqsPS induced by the deformation pX ,Dq stays of
type p1, 1q on each fibre, as λs “ c1 pLsq for each s P S, where Ls P Pic pDsq.
Thus

ρ̃ pX ,F , ωq P NL pX,D, λ, ωq .

b) Let pX ,D, ωq P NL pX,D, λ, ωq. Then all members of the family
Λ “ pλsqsPS stay of type p1, 1q along the deformation pX ,Dq. Therefore
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there are line bundles Ls P Pic pDsq, such that λs “ c1 pLsq. We show that
the line bundles Ls fit together to a line bundle on L on D.

The exponential sequence for the complex space D yields the exact se-
quence

H1 pD,O˚
Dq Ñ H2 pD,Zq

τ
Ñ H2 pD,ODq ,

where H2 pD,Zq – H0
`

S,R2π˚Z
˘

and H2 pD,ODq – H0
`

S,R2π˚OD
˘

ac-
cording to the Leray spectral sequence associated to the projection π : D Ñ

S. Let
σ : H0

`

S,R2π˚Z
˘

Ñ H0
`

S,R2π˚OD
˘

be the map induced by τ . Then σ pΛq “ 0, since σ pλsq P Pic pDsq for each
s P S. So Λ induces a class α P H2 pD,Zq such that α|Ds “ λs and such
that τ pαq “ 0. Hence there exists L P Pic pDq such that c1 pLq “ α.

Thus pX ,L, ωq yields a deformation of pX, ι˚OD pCq , ωq over S and
ρ̃ pX ,L, ωq “ pX ,D, ωq. □

5.6.6 Remark. In the situation of Setup 5.6.4 let rΓs P H3 pX,Dq such
that rBΓs P H2 pDq is Poincaré-dual to c1 pOD pCqq. Let rωs “ rpω, 0qs P

H3 pX,D,Cq. Then according to [Cle05] we can write

ψNL :“

ż

Γ
ω.

In [AHJ`11] Alim, Hecht, Jockers, Mayr, Mertens and Soroush give sev-
eral examples which appear as hypersurfaces in weighted projective spaces.
Using toric methods, they derive a generalized hypergeometric GKZ-system,
i.e. a system of Picard-Fuchs equations associated with the deformation
problem pX, ι˚OD pCqq, that is solved by the function ψNL.

Using the results from this paper we see that in addition to the result
stated in Theorem 5.6.5 the function ψNL is a solution of a system of Picard-
Fuchs equations satisfying certain properties.

5.6.7 Corollary. In the situation of the examples considered in [AHJ`11]
the function ψNL satisfies a system of Picard-Fuchs operators.



Chapter 6

Simultaneous deformations
of a holomorphic vector
bundle and a section

In this chapter we consider Calabi-Yau 3-folds containing a curve C
which is given by a section s in a holomorphic vector bundle E of rank 2.
We aim to describe the first-order deformations and the obstructions for the
triple pX,E, rssq. We construct a locally free sheaf Q of rank 5 such that
H1 pX,Q_q describes the first-order deformations of the triple pX,E, rssq
and the obstructions are in H1 pX,Q_q.

6.1 Situation and main theorem

Let X be a Calabi-Yau 3-fold, E Ñ X a holomorphic vector bundle of
rank 2 on X and s P H0 pX,Eq a holomorphic section of E. We assume
that C :“ ts “ 0u scheme-theoretically is a smooth connected curve in X,
i.e. the ideal sheaf that is locally generated by s is the ideal sheaf of the
complex manifold C. This situation is called the Serre-correspondence for
holomorphic vector bundles of rank 2 and yields the exact Koszul complex

0 Ñ det pE_q Ñ E_ Ñ JC Ñ 0

ô 0 Ñ OX
¨s
Ñ E

^s
Ñ JC b det pEq Ñ 0.

As ts “ 0u “ tλ ¨ s “ 0u for each λ P C˚, we look at the class rss P

P
`

H0 pX,Eq
˘

of s in the projective space of H0 pX,Eq.

We recall from Section 3.8 that the deformations of the triple pX,E, rssq
form a deformation functor. The main result in this section is:

6.1.1 Theorem. The space of simultaneous first-order deformations

Def pX,E, rssq

65



66 CHAPTER 6. DEFORMATIONS OF A BUNDLE AND A SECTION

of the base manifold X, the vector bundle E and the class rss of the section
s defined in 3.8.1 and the space of their obstructions Obs pX,E, rssq satisfy
the following properties:

There is a locally free sheaf Q of rank 5 on X such that

1.
Def pX,E, rssq – Ext1 pQ,OXq and

2.
Obs pX,E, rssq Ď Ext2 pQ,OXq .

The proof of Theorem 6.1.1 needs various preparations.

6.2 Proof of Theorem 6.1.1

We begin with various preparations.

6.2.1 Construction. We will see that the simultaneous deformations of
E and X will be described in terms of the projective bundle

π : P :“ P pEq Ñ X

of E; see Section 2.3 for the theory of projective fibre spaces. All fibres
of P are isomorphic to P1, and the dimension of the total space P as a
complex manifold is 4. As the exact Koszul complex gives a surjective map
E Ñ JC b det pEq, we get an injective map

P pJC b det pEqq ãÑ P

of the associated projective fibre spaces. We observe that P pJC b det pEqq Ñ

X is generically an isomorphism and has 1-dimensional fibres over C. Let

D :“ P pJCq “ P pJC b det pEqq

be the projective fibre space associated to JC b det pEq and σ : D Ñ X be
the restriction of π : P Ñ X to D Ă P.

6.2.2 Lemma. The complex space D is a smooth divisor in P. Moreover

D “ tt “ 0u ,

where t P H0 pP,OP p1qq is the image of π˚ psq P H0 pP, π˚ pEqq under the
homomorphism

H0 pP, π˚ pEqq Ñ H0 pP,OP p1qq

induced by the canonical surjection π˚ pEq Ñ OP p1q Ñ 0.
Furthermore, D is isomorphic to the blow-up of C in X.
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Proof of Lemma 6.2.2: Step 1. First we show that D “ tt “ 0u.
We restrict X to X̃ :“ XzC and define Ẽ :“ E|X̃ with s̃ :“ s|X̃ ,

furthermore π̃ : P̃ :“ P
´

Ẽ
¯

Ñ X̃ and

D̃ :“ D|σ´1pX̃q “ P
´

det Ẽ
¯

– X̃.

Hence D̃ is a smooth divisor in P̃. Furthermore we have

π̃˚OP̃ p1q
ˇ

ˇ

D̃
“ π̃˚OPpdet Ẽq p1q – det Ẽ. (6.2.2.1)

Applying π̃˚ to the ideal sheaf sequence

0 Ñ JD̃ b OP̃ p1q Ñ OP̃ p1q Ñ OP̃ p1q
ˇ

ˇ

D̃
Ñ 0 (6.2.2.2)

for the inclusion D̃ Ă P̃, we get

0 Ñ π̃˚

`

JD̃ b OP̃ p1q
˘

Ñ Ẽ Ñ det Ẽ. (6.2.2.3)

The last map Ẽ Ñ det Ẽ is nothing but the surjective map κ : Ẽ Ñ det Ẽ
which occurs in the Koszul complex

0 Ñ OX̃ Ñ Ẽ
κ

Ñ det Ẽ Ñ 0, (6.2.2.4)

as the ideal sheaf sequence 6.2.2.2 is defined using the inclusion D̃ Ă P̃,
which is induced by the Koszul complex. Thus we get an exact sequence

0 Ñ π̃˚

`

JD̃ b OP̃ p1q
˘

Ñ Ẽ
κ

Ñ det Ẽ Ñ 0. (6.2.2.5)

Comparing 6.2.2.4 and 6.2.2.5 we obtain kerκ – π̃˚

`

JD̃ b OP̃ p1q
˘

– OX̃ ,
thus

OP̃

´

D̃
¯

– OP̃ p1q .

Hence D̃ “ tt1 “ 0u for a section t1 P H0
´

P̃,OP̃ p1q

¯

. Let s1 P H0
´

X̃, Ẽ
¯

be the section of Ẽ which is mapped to t1 under the isomorphism

H0
´

X̃, Ẽ
¯

– H0
´

P̃,OP̃ p1q

¯

.

Then the inclusion map of the Koszul complex 6.2.2.4 is given by the mul-
tiplication with s1 since D̃ “ tt1 “ 0u.

As the curve C has codimension 2 in X, by applying the Riemann ex-
tension theorem, we extend the holomorphic section s1 to a section s2 P

H0 pX,Eq on X. The image of s2 under the isomorphism of sections defines

an extension of t1 P H0
´

P̃,OP̃ p1q

¯

to a section t2 P H0 pP,OP p1qq on P.
Hence the restrictions s|X̃ and s2|X̃ of both sections s and s2 to X̃ define

the same Koszul complex. They operate on OX̃ as multiplication with a
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holomorphic function, which can be extended to a function on X and thus
is constant. So s and s2 differ by a constant complex number and therefore
t and t2 do so. As D̃ Ď tt2 “ 0u and D|σ´1pCq – P

`

JC{J 2
C

ˇ

ˇ

C

˘

Ď tt “ 0u ,
we have D Ď tt “ 0u and since tt “ 0u is irreducible, D “ tt “ 0u.

Step 2. Next we show that D Ă P is smooth.

As this is a local problem on X, we may assume X “ C3, E “ OX ‘OX

and s “ pz1, z2q P H0 pX,OX ‘ OXq, where z1, z2, z3 are coordinates on C3,
thus

C “ tz1 “ z2 “ 0u .

Then P “ P1 ˆ C3 and the section t P H0 pP,OP p1qq which is mapped to
s P H0 pX,Eq under the isomorphism H0 pP,OP p1qq – H0 pX,Eq, can be
written in local coordinates

t “ w0z1 ´ w1z2,

where rw0 : w1s are homogeneous coordinates in P1. By computing the par-
tial derivatives of t, we see that D “ tt “ 0u is smooth.

Step 3. It remains to see that D is the blow-up of X along C.

Let φ : pX Ñ X be the blow-up of C Ă X. Then φ is a proper, holomor-
phic map, and the exceptional divisor

φ´1 pCq – P
`

JC{J 2
C

ˇ

ˇ

C

˘

– D|σ´1pCq

is a smooth hypersurface in pX.

As σ´1 pCq “ D|σ´1pCq “ P
`

JC{J 2
C b detE

˘

– P
`

JC{J 2
C

˘

is a smooth
hypersurface in D, we may apply the universal property of the blow-up
which says that there is a unique map τ : D Ñ pX such that the following
diagram is commutative:

D
τ //

σ   @
@@

@@
@@

@
pX

φ

��
X.

It remains to show that τ is biholomorphic. On XzC we have the dia-
gram:

Dzσ´1 pCq
τ

–
//

σ
–

''NN
NNN

NNN
NNN

N
pXzφ´1 pCq

φ–

��
XzC,

where

φ|
pXzφ´1pCq

: pXzφ´1 pCq Ñ XzC
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and
σ|Dzσ´1pCq : Dzσ´1 pCq Ñ XzC

are biholomorphic. Thus

τ |Dzσ´1pCq : Dzσ´1 pCq Ñ pXzφ´1 pCq

is also biholomorphic.
Over C we get the following diagram:

P
`

JC{J 2
C

˘ τ |C //

σ
''OO

OOO
OOO

OOO
OO

P
`

JC{J 2
C

˘

φ

��
C.

τ is holomorphic, surjective and

τ : σ´1 pxq Ñ φ´1 pxq

is finite for x P C. Furthermore τ is birational, as it is biholomorphic outside
an analytic set. Then from Zariski’s Main Theorem it follows that the fibres
of τ are connected, so τ is biholomorphic. Thus D – pX. □

An immediate consequence of Lemma 6.2.2 is the following observation.

6.2.3 Corollary. Using 3.5.5 we obtain

Def pP, Dq – H1 pP, TP p´ logDqq ,

Obs pP, Dq Ď H2 pP, TP p´ logDqq .

6.2.4 Lemma. The coherent sheaf π˚TP p´ logDq on X is locally free of
rank 5 and

H1 pP, TP p´ logDqq – H1 pX,π˚ pTP p´ logDqqq ,

H2 pP, TP p´ logDqq – H2 pX,π˚ pTP p´ logDqqq .

Proof of Lemma 6.2.4: Once we know that

R1π˚ pTP p´ logDqq “ 0, (6.2.4.1)

we conclude the statement

H1 pP, TP p´ logDqq “ H1 pX,π˚ pTP p´ logDqqq ,

from the Leray spectral sequence. As the fibres of π have dimension 1,

R2π˚TP p´ logDq “ 0,

and the second statement follows by the Leray spectral sequnece, too.
Thus it remains to show that R1π˚ pTP p´ logDqq “ 0.
Let x P X and F :“ π´1 pxq – P1 be a fibre of π : P Ñ X.
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Case 1: Let x P XzC, then F and D intersect in one point p P P. Re-
stricting the residue sequence

0 Ñ TP p´ logDq Ñ TP Ñ ι˚ND|P Ñ 0,

where ι : D ãÑ P is the inclusion, to F , we obtain the exact sequence

TP p´ logDq|F Ñ TP|F Ñ ι˚ND|P
ˇ

ˇ

F
Ñ 0.

The first map is injective as the sheaf ι˚ND|P
ˇ

ˇ

F
has support in p. So, outside

the point p, we have

TP p´ logDq|F “ TP|F ,

and the map TP p´ logDq|F Ñ TP|F is injective, since TP p´ logDq|F is
torsion-free. Hence with ND|P

ˇ

ˇ

F
“ OP pDq|DXF “ OP pDq|p “ Cp, we have

the following exact sequence on F Ă P:

0 Ñ TP p´ logDq|F Ñ TP|F Ñ ι˚Cp Ñ 0. (6.2.4.2)

In order to compute TP|F we look at the tangent bundle sequence of F Ă P:

0 Ñ TF Ñ TP|F Ñ NF |P Ñ 0.

As TF – TP1 – OP1 p2q and NF |P – O‘3
P1 , we conclude that the rank of TP|F

is 4. Furthermore, as Ext1P1

`

O‘3,OP1 p2q
˘

“
À

3H
1
`

P1,OP1 p2q
˘

“ 0, the
sequence is split exact and thus

TP|F – OP1 p2q ‘ O‘3
P1 .

Returning to Sequence 6.2.4.2 we obtain

c1 pTP p´ logDq|F q “ 1.

As OP1 p2q ‘ O‘3
P1 has 6 sections and Cp has 1 section, TP p´ logDq|F has

5 sections. Since there is an inclusion of TP p´ logDq|F “
À4

i“0O paiq into
TP|F – OP1 p2q ‘ O‘3

P1 , there are two possibilities for TP p´ logDq|F : either

pa1, a2, a3, a4q “ p2, 0, 0,´1q

or

pa1, a2, a3, a4q “ p1, 0, 0, 0q .

Hence

H1 pF, TP p´ logDq|F q “ 0.
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Case 2: Let x P C, so DXF “ F . Again, we restrict the residue sequence
to F and obtain

TP p´ logDq|F
λ

Ñ TP|F Ñ ι˚ND|P
ˇ

ˇ

F
Ñ 0,

which yields an exact sequence

0 Ñ im pλq Ñ TP|F
µ

Ñ ι˚ND|P
ˇ

ˇ

F
Ñ 0.

First we determine im pλq. As TP|F – OP1 p2q ‘ O‘3
P1 and ι˚ND|P

ˇ

ˇ

F
–

OP1 p1q|F , we conclude that im pλq is locally free of rank 3, its first Chern
class is 1 and it has 4 sections. The summand OP1 p2q of TP|F is mapped to
0 by µ; hence it has to be a summand of im pλq. So

im pλq “ OP1 p2q ‘ OP1 pαq ‘ OP1 pβq

with α ` β “ ´1 and α, β ď 0. Thus we get

im pλq “ OP1 p2q ‘ OP1 p0q ‘ OP1 p´1q .

In order to determine TP p´ logDq|F , we look at the exact sequence

0 Ñ ker pλq Ñ TP p´ logDq|F
λ

Ñ im pλq Ñ 0. (6.2.4.3)

We recall that c1 pTP p´ logDq|F q “ 1. It follows that ker pλq is locally free
of rank 1 with c1 pker pλqq “ 0. Hence ker pλq – OP1 . Therefore we get

H1
`

P1, ker pλq
˘

“ 0 and H1
`

P1, im pλq
˘

“ 0.

The long exact sequence in cohomology associated to the short exact Se-
quence 6.2.4.3 yields

H1 pF, TP p´ logDq|F q “ 0.

Thus, in both cases x P C and x P XzC we get

H1 pF, TP p´ logDq|F q “ 0

for F “ π´1 pxq. Then, because of the constancy of the Euler characteristic
χ pF, TP p´ logDq|F q,

dimH0 pF, TP p´ logDq|F q

is constant for all fibres F and by applying ([Har77], p. 288, III,12.9) the
sheaf π˚TP p´ logDq is locally free and its rank is

dim
`

H0 pF, TP p´ logDq|F q
˘

“ 5.

□

Next we identify the deformation problems of the triple pX,E, rssq and
the pair pP pEq , Dq.
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6.2.5 Theorem. Let X be a Calabi-Yau 3-fold. An infinitesimal or local
analytic deformation of the triple pX,E, rssq induces in a natural way an
infinitesimal or local analytic deformation of the pair pP, Dq.

Conversely every infinitesimal or local analytic deformation of pP, Dq is
given by an infinitesimal or local analytic deformation of pX,E, rssq. The
two constructions are inverse to each other.

This construction respects isomorphy of triples pX,E, rssq and of pairs
pP pEq , Dq. Hence there is a linear isomorphism

Def pX,E, rssq – Def pP pEq , Dq .

Proof of Theorem 6.2.5: Step 1. We start with a deformation of pX,E, rssq
over S, where S is the spectrum of an Artin ring or the germ of a complex
space. So we have a deformation X Ñ S of X, a coherent sheaf E on X ,
flat over S, such that E |X – E and a section µ P H0 pX , Eq with µ|X “ s.
Since E |X – E, the sheaf E is locally free by Lemma 5.2.4. We consider the
projective bundle

P pEq Ñ X ,

then P pEq is a deformation of P pEq over S. Let C Ă X be the zero scheme
of µ. Locally, µ is given by holomorphic functions f, g P OX pUq for an open
subset U Ă X , and the ideal sheaf of C is generated by f and g. We obtain
an exact sequence

0 Ñ OX
¨µ
Ñ E Ñ JC b det E Ñ 0 (6.2.5.1)

given by µ.
In fact, the section µ defines an exact sequence

OX
¨µ
Ñ E Ñ F Ñ 0,

where the cokernel F is a coherent sheaf of rank 1 on X . Dualizing, we
obtain

0 Ñ F_ Ñ E_ λ
Ñ OX .

We see that im pλq “ JC and det E_ – detF_ b detJC – detF_ “ F_.
Therefore we get Sequence 6.2.5.1.

Now we define
D :“ P pJC b det Eq Ă P pEq .

Then
D|PpEq “ D,

since D|PpEq “ P pj˚ pJC b det Eqq “ P pJC b detEq, where j : X ãÑ X is
the inclusion. Therefore

OPpEq pDq
ˇ

ˇ

PpEq
– OPpEq pDq ,



6.2. PROOF OF THEOREM 6.1.1 73

hence OPpEq pDq is locally free and D is a divisor in X . Furthermore D is a
submersion over S by Lemma 3.8.3, hence flat. In conclusion, pP pEq ,Dq is
a deformation of pP pEq , Dq over S.

Step 2. Now let pY,Dq be a deformation of pP pEq , Dq over S. Let
π : Y Ñ S be the projection. We will associate to pY,Dq a deformation of
pX,E, rssq over S.

By Proposition 3.7.1 there is a deformation τ : X Ñ S of X :“ X0 and
a locally free sheaf E on X such that Y – P pEq.

Let π̃ : P pEq Ñ X be the projection. So we need to construct a section

µ P H0 pX , Eq ,

such that µ|X0
“ s.

Let t P H0
`

P pEq ,OPpEq p1q
˘

be the corresponding section such that
π̃˚ ptq “ s. This means that t corresponds to s under the canonical isomor-
phism H0

`

P pEq ,OPpEq p1q
˘

– H0 pX,Eq.

Therefore it suffices to construct a section µ̃ P H0
`

P pEq ,OPpEq p1q
˘

, such
that µ̃|PpEq “ t. Then we set µ :“ π̃˚ pµ̃q to be the image of µ̃ under the

canonical isomorphism H0
`

P pEq ,OPpEq p1q
˘

– H0 pX , Eq.

Since OPpEq pDq
ˇ

ˇ

PpEq
– OPpEq pDq, we may write

OPpEq pDq “ OPpEq p1q b π̃˚ pLq

for a line bundle L on X and the restriction L|X “ OX is trivial. Hence,
L “ OX .

Then we let µ̃ be the section of OPpEq p1q defined by D.

Step 3. Since H1 pX,OXq “ 0, the Picard group Pic pXq is discrete, the
deformations of E are the same as the deformations of P pEq. Moreover,
if pX , E , rssq » pX 1, E 1, rs1sq, then pP pEq ,Dq » pP pE 1q ,D1q and vice versa.
Finally both constructions are inverse to each other up to isomorphy.

□

The same proof neglecting the divisor D representing the section s also
shows

Def pX,Eq – Def pP pEqq .

6.2.6 Definition. We set Q :“ pπ˚TP p´ logDqq
_.

Proof of Theorem 6.1.1: The proof is a combination of Corollary 6.2.3,
Lemma 6.2.4 and Theorem 6.2.5. □



74 CHAPTER 6. DEFORMATIONS OF A BUNDLE AND A SECTION

6.3 A special situation

In general Def pX,Cq is much larger than Def pX,E, rssq; we will comment
on this in Theorem 6.5.1. Here we consider the case of complete intersections
of ample divisors.

6.3.1 Remark. Let X be a Calabi-Yau 3-fold, E Ñ X a holomorphic
vector bundle of rank 2 with a section s P H0 pX,Eq. Let C :“ ts “ 0u be
the zero set of s.

We assume that the set of simultaneous first-order deformations ofX and
the curve C is isomorphic to the set of simultaneous first-order deformations
of X,E and rss P P

`

H0 pX,Eq
˘

:

Def pX,Cq – Def pX,E, rssq

Then

Def pX,Cq – Def pX,E, rssq – Def pP, Dq – H1 pP, TP p´ logDqq

and there is a locally free sheaf Q of rank 5 on X such that

Def pX,OCq – Ext1X pQ,OXq ‘H1 pC,OCq .

Moreover for i “ 1, 2 we have

H i pX,Q_q “ H i pP, TP p´ logDqq .

We give an example for a vector bundle E Ñ X such that every in-
finitesimal deformation of C is induced by an infinitesimal deformation of
the section s.

6.3.2 Example. Let D1, D2 Ă X be smooth transversally intersecting
divisors and write Di “ tsi “ 0u , i “ 1, 2, for sections si P H0 pX,OX pDiqq.
We let C :“ D1 XD2 be the intersection of them. Then

E :“ OX pD1q ‘ OX pD2q Ñ X

is a holomorphic vector bundle of rank 2 and the curve C is the zero set
of the section s :“ ps1, s2q P H0 pX,Eq. This is a very special case of the
Serre-construction for holomorphic vector bundles of rank 2.

We write Li “ OX pDiq and assume that the line bundles L1, L2, L1bL_
2

are ample. Then E does not have any nontrivial first-order deformations,
since by Kodaira vanishing

H1 pX,E_ b Eq “ H1 pX,OXq ‘H1 pX,OXq ‘H1 pX,L1 b L_
2 q ‘

‘H1 pX,L_
1 b L2q

“ 0.
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As NC|X – E|C – L1|C ‘ L2|C , we have

H0
`

C,NC|X

˘

“ H0 pC, L1|Cq ‘H0 pC, L2|Cq .

The Koszul complex

0 Ñ L_
1 b L_

2 Ñ L_
1 ‘ L_

2 Ñ JC Ñ 0

ô 0 Ñ L_
2 Ñ OX ‘ pL_

2 b L1q Ñ JC b L1 Ñ 0

yields H1 pX,JC b L1q “ 0 and analogously H1 pX,JC b L2q “ 0. The
exact sequences

0 Ñ JC b L1 Ñ L1 Ñ L1|C Ñ 0

and
0 Ñ JC b L2 Ñ L2 Ñ L2|C Ñ 0

give surjective maps

H0 pX,L1q Ñ H0 pC, L1|Cq Ñ H1 pX,JC b L1q “ 0

and
H0 pX,L2q Ñ H0 pC, L2|Cq Ñ H1 pX,JC b L2q “ 0

and therefore a surjective map

H0 pX,Eq Ñ H0
`

C,NC|X

˘

Ñ 0.

Thus every first-order deformation of C is induced by a first-order deforma-
tion of s P H0 pX,Eq, fixing X.

We consider a compact complex manifold X, containing smooth divisors
D1 and D2. In order to continue, we need the notion of a deformation of a
triple , which will be discussed in detail in Chapter 9.

6.3.3 Definition. A deformation of the triple pX,D1, D2q parametrized
by a complex space S consists of a deformation of two cartesian diagrams

D1

  A
AA

AA
AA

A
J1 // X

����
��
��
��

and D2

  A
AA

AA
AA

A
J2 // X

����
��
��
��

S S

such that each pair pX ,Diq is a deformation of pX,Diq over S in the sense
of Definition 3.5.1.

An isomorphism between two deformations pX ,D1,D2q and pX 1,D1
1,D1

2q

of the triple pX,D1, D2q consists of a triple of isomorphisms αi : Di Ñ D1
i

and β : X Ñ X 1 such that each pair pαi, βq is an isomorphism between the
deformations pX ,Diq and pX 1,D1

iq.
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6.3.4 Remark. If D1 and D2 are ample divisors, then the deformations
of pX,D1q and pX,D2q are unobstructed, as seen above. Therefore the
deformations of the triple pX,D1, D2q are unobstructed.

6.3.5 Theorem. Let X be a Calabi-Yau 3-fold and L1, L2 be line bundles
on X. Let Di P |Li| be smooth divisors, given by sections si P H0 pX,Liq
such that dim pD1 XD2q “ 1. We set E :“ L1 ‘L2 and s :“ s1 ‘ s2. Let F
be the deformation functor of pX,D1, D2q and G be the deformation functor
of pX,E, rssq.

1. There is a natural transformation ϕ : F Ñ G.

2. We suppose that H1 pX,L1 b L_
2 q “ H1 pX,L_

1 b L2q “ 0. Let A be
an Artin ring. Then ϕA : F pAq Ñ G pAq is bijective, i.e., ϕ is an
isomorphism of functors. In particular, there is a canonical linear
isomorphism

Def pX,D1, D2q – Def pX,E, rssq .

We prepare the proof by the following

6.3.6 Lemma. Let pX , Eq be an infinitesimal deformation of pX,Eq, where
E “ L1 ‘ L2 with L1 and L2 are line bundles on X, such that

H1 pX,L1 b L_
2 q “ H1 pX,L_

1 b L2q “ 0.

Then there are line bundles L1 and L2 on X , such that E “ L1 ‘ L2.

Proof of Lemma 6.3.6: We first prove the following

Claim: Let X be an infinitesimal deformation of a Calabi-Yau manifold
X. Then the restriction map Pic pX q Ñ Pic pXq is an isomorphism.

Proof of the Claim: We obtain a commutative diagram

// H1 pX ,OX q //

��

Pic pX q //

��

H2 pX ,Zq //

��

H2 pX ,OX q //

��
// H1 pX,OXq // Pic pXq // H2 pX,Zq // H2 pX,OXq //

(6.3.6.1)
We observe that Hq pX ,OX q – Hq pX,OXq for q “ 1, 2. To see this, let J
be the ideal sheaf of X Ă X . Then J k{J k`1 is a trivial sheaf on X (possibly
zero). Hence Hq

`

Xk`1,OXk`1

˘

– Hq pXk,OXkq for the k-th infinitesimal
neighbourhood Xk of X Ă X . Since Hq pX ,OX q “ Hq pXk,OXkq, we con-
clude the claim. Compare [Har10], Theorem 6.4.
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By the claim the line bundles Li extend uniquely to line bundles Li on
X . Since

H1 pX,E_ b pL1 ‘ L2qq “ H1 pX,OX ‘ OX ‘ pL_
1 b L2q ‘ pL1 ‘ L_

2 qq “ 0,

we get by induction, using [Har10], Theorem 7.1, that E – L1 ‘ L2 on all
Xk, hence on X . □

Proof of Theorem 6.3.5: 1.q We establish a map

ΦA : DefA pX,D1, D2q Ñ DefA pX,E, rssq

for any Artin ring A.

Let pX ,D1,D2q be a deformation of pX,D1, D2q over Spec pAq, given by
liftings s̃i P H0 pX ,OX pDiqq of si P H0 pX,OX pDiqq. We set

E :“ OX pD1q ‘ OX pD2q

and s̃ “ s̃1 ‘ s̃2 and obtain pX , E , rs̃sq P DefA pX,E, rssq.

2.q Conversely, let pX , E , rs̃sq P DefA pX,E, rssq. Then E – L1 ‘ L2 by
Lemma 6.3.6 and s̃ “ s̃1‘ s̃2 with s̃i P H0 pX ,Liq. We define Di :“ ts̃i “ 0u.
Then Di is flat over S :“ Spec pAq since OX pDiq is locally free, therefore
flat over S, and since Di XX is a divisor in X.

3.q Clearly ΦA respects the isomorphy, and both constructions are inverse
to each other. Since Φ :“ pΦAqA is a natural transformation of deformation
functors, ΦSpecpCrts{t2q is linear. □

This situation will be studied further in Chapter 9.

6.3.7 Corollary. In the situation of Example 6.3.2 we suppose further
D1 ´ D2 to be ample. Then we get isomorphisms of spaces of first-order
deformations:

Def pX,D1, D2q – Def pX,E, rssq – Def pX,Cq .

6.3.8 Corollary. In the situation of Example 6.3.2 we suppose further
D1 ´ D2 to be ample. Then the first-order deformations of pX,Cq are un-
obstructed.

Proof of Corollary 6.3.8: The first-order deformations of pX,D1, D2q

are unobstructed (see Remark 6.3.4). □
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6.4 The structure of the sheaf Q

We continue to investigate the structure of the locally free sheaf Q.

6.4.1 Theorem. There are exact sequences

0 Ñ Ω1
X Ñ Q Ñ E b JC Ñ 0 (6.4.1.1)

and

0 Ñ E_ Ñ Q_ Ñ TX ⟨´C⟩ Ñ 0. (6.4.1.2)

Proof of Theorem 6.4.1: AsR1π˚ pTP p´ logDqq “ 0 according to 6.2.4.1,
the following sequence is exact

0 Ñ Q_ “ π˚ pTP p´ logDqq Ñ π˚TP Ñ π˚ι˚ND|P Ñ 0. (6.4.1.3)

Next we apply π˚ to the exact sequence

0 Ñ TP|X Ñ TP Ñ π˚TX Ñ 0

and get

0 Ñ π˚TP|X Ñ π˚TP Ñ TX Ñ R1π˚

`

TP|X

˘

“ 0. (6.4.1.4)

We notice that R1π˚

`

TP|X

˘

“ 0, since TP|X

ˇ

ˇ

π´1pxq
“ OP1 p2q. Applying π˚

to the short exact sequence

0 Ñ OP Ñ OP pDq “ OP p1q Ñ ι˚ND|P Ñ 0,

we obtain

0 Ñ OX Ñ π˚OP p1q – E Ñ π˚ι˚ND|P Ñ R1π˚OP “ 0.

Therefore we have an isomorphism

π˚ι˚ND|P – E{OX .

The Koszul complex

0 Ñ OX Ñ E Ñ JC b detE Ñ 0

yields an isomorphism

JC b detE – E{OX ,

where the inclusion OX Ñ E is given by the section s. Thus

π˚ι˚ND|P – JC b detE. (6.4.1.5)
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Furthermore, we apply π˚ to the relative Euler sequence

0 Ñ OP Ñ π˚E_ b OP p1q Ñ TP|X Ñ 0

and get the exact sequence

0 Ñ OX Ñ E_ b π˚OP p1q Ñ π˚TP|X Ñ R1π˚ pOPq “ 0.

Therefore
π˚TP|X – pE b E_q {OX . (6.4.1.6)

In summary we obtain the following commutative diagram consisting of the
short exact Sequences 6.4.1.3 and 6.4.1.4:

0

��

0

��

0

��
0 // ker pψq

��

α // π˚TP|X

��

//

ϕ

&&LL
LLL

LLL
LL

coker pαq

��

// 0

0 // π˚ pTP p´ logDqq //

��

ψ

''PP
PPP

PPP
PPP

PPP
π˚TP //

��

π˚ι˚ND|P

��

// 0

0 // im pψq //

��

TX

��

// TX{im pψq //

��

0

0 0 0

(6.4.1.7)

The map ψ : Q_ – π˚ pTP p´ logDqq Ñ TX is defined to be the composition
of the two maps π˚ pTP p´ logDqq ãÑ π˚TP and π˚TP Ñ TX . It is generically
surjective if rg pim pψqq “ 3.

Since by 6.4.1.6

ker pψq Ď π˚

`

TP|X

˘

– pE b E_q {OX

and im pψq Ď TX , we conclude rg pker pψqq ď 3 and rg pim pψqq ď 3, thus
2 ď rg pker pψqq ď 3, as rg pQq “ 5.

Claim 1. On XzC we have

1. ker pψq is locally free of rank 2,

2. im pψq “ TX .

Proof of Claim 1:
We consider the map

ϕ : π˚TP|X – pE b E_q {OX Ñ π˚ι˚ND|P – JC b detE,



80 CHAPTER 6. DEFORMATIONS OF A BUNDLE AND A SECTION

defined in Diagram 6.4.1.7. We show that ϕx is surjective at any point in
x P XzC. Since ker pψq “ ker pϕq, this proves the claim.

Let x̃ P D with π px̃q “ x. Then x̃ P π´1 pxq “: l. We look at the linear
map

ϕx :
`

π˚TP|X

˘

x
– H0

´

l, TP|X

ˇ

ˇ

l

¯

– H0
`

P1, TP1

˘

Ñ
`

π˚ι˚ND|P
˘

x
.

Let pϕ : TP|X Ñ ι˚ND|P be the canonical composition TP|X Ñ TP Ñ ι˚ND|P.

Then ϕ “ π˚
pϕ. Let u P

`

TP|X

˘

x̃
, u ‰ 0, with

pϕx̃ puq ‰ 0 P
`

ι˚ND|P
˘

x̃
– pπ|Dq

˚

`

ι˚ND|P
˘

x̃
–
`

π˚ι˚ND|P
˘

x
.

Let v P
`

π˚TP|X

˘

x
such that π˚ puq “ v. Then

ϕx pvq “ π˚
pϕx̃ puq ‰ 0 P

`

π˚ι˚ND|P
˘

x
,

as π|D is an isomorphism. So for each x P XzC we know ϕx ‰ 0. Thus we
have shown that ϕx is surjective for each x P XzC; therefore ϕ is surjective.
This finishes the proof of the claim.

Claim 2. There is an isomorphism

π˚

`

TP|X b OD

˘

– J 2
C b detE.

Proof of Claim 2: The exact sequence

0 Ñ OP Ñ OP pDq – OP p1q Ñ ι˚ND|P Ñ 0

tensorized by π˚E_, the relative Euler sequence

0 Ñ OP Ñ π˚E_ b OP pDq Ñ TP|X Ñ 0

(see e.g. [Har77], III, Ex. 8.4) and the ideal sheaf sequence of D in P yield
the following diagram

0

��

0

��

0

��
0 // JD|P //

δ

��

OP //

��

µ

))RRR
RRR

RRR
RRR

RRR
RR ι˚OD

//

β

��

0

0 // π˚E_ //

��

π˚E_ b OP pDq //

��

π˚E_ b ι˚ND|P //

��

0

0 // coker pδq //

��

TP|X
//

��

coker pβq //

��

0

0 0 0 .
(6.4.1.8)
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The maps β, δ and µ are defined as follows:
The map µ is defined as the composition of the maps OP Ñ π˚E_ b

OP pDq and π˚E_ b OP pDq Ñ π˚E_ b ι˚ND|P.
By restricting to a fibre F of π we see immediately that µ|F ‰ 0; there-

fore µ is not zero.
Since µ ı 0 and Supp

`

π˚E_ b ι˚ND|P
˘

“ D, it factorizes over ι˚OD

such that the map
β : ι˚OD Ñ π˚E_ b ι˚ND|P

is defined. As a consequence, we define the map δ such that Diagram 6.4.1.8
is commutative. It follows immediately that

coker pδq “ TP|X b OP p´Dq and coker pβq “ TP|X b OD.

As π˚

`

JD|P
˘

“ 0 and

R1π˚

`

JD|P
˘

“ R1π˚OP “ R1π˚

`

TP|X b OP p´Dq
˘

“ R1π˚ι˚OD “

“ R1π˚π
˚E_ “ 0,

by applying π˚ to Diagram 6.4.1.8 we get the following commutative dia-
gram:

0

��

0

��

0

��
0 // 0 //

��

OX
//

��

µ

))RRR
RRR

RRR
RRR

RRR
R OX

//

��

0

0 // E_ //

��

E_ b E //

��

E_ b π˚ι˚ND|P //

��

0

0 // π˚

`

TP|X b OP p´Dq
˘

//

��

pE_ b Eq {OX
//

��

π˚

`

TP|X b OD

˘

//

��

0

0 0 0
(6.4.1.9)

Using [Har77], III, Ex. 8.4, we get

TP|X “ detTP|X “ ´KP|X “ π˚ detE_ b OP p2q . (6.4.1.10)

Hence

π˚

`

TP|X b OD

˘

“ π˚

`

OPpJCbdetEq p2q b π˚ pdetE_q
˘

“

“ S2 pJC b detEq b detE_ “ J 2
C b pdetEq

2
b detE_ “ J 2

C b detE,

proving Claim 2.
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Claim 3. The cokernel of the map α : ker pψq Ñ π˚TP|X in Diagram 6.4.1.7
satisfies

coker pαq – J 2
C b detE.

Proof of Claim 3: First we show that

π˚

`

TP|X b OP p´Dq
˘

– ker pψq .

We observe that

coker pδq “ TP|X p´Dq Ă TP p´Dq Ă TP p´ logDq

and therefore

π˚ pcoker pδqq Ă
`

π˚ pTP p´ logDqq X π˚TP|X

˘

,

thus
π˚ pcoker pδqq Ă ker pψq .

Diagram 6.4.1.9 yields π˚ pcoker pδqq – E_, hence we have an inclusion
E_ ãÑ ker pψq.

On XzC, by Claim 1 we already have the following exact sequence

0 Ñ ker pψq Ñ Q_ Ñ TX Ñ 0,

which yields det ker pψq “ detQ_ on X. Diagram 6.4.1.7 implies

det pQ_q “ detπ˚TP b detE_.

Furthermore

detπ˚TP “ detπ˚TP|X “ det pE_ b Eq “ OX .

Thus we know
det ker pψq “ detE_.

Since im pψq is torsion-free and ker pψq is reflexive, the inclusion E_ ãÑ

ker pψq is an isomorphism.
Diagram 6.4.1.9 can be summarized by the following commutative diagram:

OX

��
0 // E_ ρ //

ζ
��

E b E_ τ //

pr

��

JC b E //

ν
��

0

0 // ker pψq
α// pE b E_q {OX

ϕ // J 2
C b detE //

��

0

0
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This proves Claim 3.

Claim 4. We obtain the isomorphism

im pψq – TX ⟨´C⟩ ,

where TX ⟨´C⟩ is the kernel of TX Ñ j˚NC|X and j : C ãÑ X is the
inclusion.

Proof of Claim 4: Using coker pαq “ J 2
C b detE and π˚ι˚ND|P – JC b

detE Diagram 6.4.1.7 gives

TX{im pψq “ JC{J 2
C b detE – N_

C|X b detNC|X – NC|X .

Since TX Ñ TX{im pψq “ NC|X is the canonical map, we get the assertion
of the claim im pψq “ TX ⟨´C⟩.

Now the first row of Diagram 6.4.1.7 reads

0 Ñ E_ Ñ Q_ Ñ TX ⟨´C⟩ Ñ 0.

Dualizing the sequence we get

0 Ñ Ω1
X Ñ Q Ñ E Ñ Ext1X pTX ⟨´C⟩ ,OXq Ñ 0.

Now the proof is completed by proving the following claim:

Claim 5. The following equation holds

Ext1 pTX ⟨´C⟩ ,OXq – E|C .

Proof of Claim 5: Using the sequence

0 Ñ TX ⟨´C⟩ Ñ TX Ñ j˚NC|X Ñ 0

we obtain

Ext1 pTX ⟨´C⟩ ,OXq – Ext2
`

j˚NC|X ,OX

˘

– Ext2 pj˚OC b E|C ,OXq

– Ext2 pj˚OC ,OXq b E_.

By the local fundamental isomorphism (see e.g. [OSS11])

Ext2 pj˚OC ,OXq b E_ – detNC|X b E_,

we conclude the proof of the theorem. □

The following theorem provides a relation between the deformations of
triples pX,E, rssq with deformations of pairs pX,Eq.
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6.4.2 Theorem. We assume the setting of Theorem 6.4.1. The logarith-
mic tangent sequence

0 Ñ TP p´ logDq Ñ TP Ñ ι˚ND|P Ñ 0

induces a sequence

0 Ñ Q_ Ñ π˚ pTPq Ñ JC b detE Ñ 0, (6.4.2.1)

which in cohomology gives

H0 pX,JC b detEq Ñ H1 pX,Q_q Ñ H1 pX,π˚TPq . (6.4.2.2)

This sequence can be interpreted as the natural sequence of first-order defor-
mations

Def prssq Ñ Def pX,E, rssq Ñ Def pX,Eq .

Proof of Theorem 6.4.2: We already established Sequence 6.4.2.1 in
6.4.1.3 and 6.4.1.5. Taking cohomology of 6.4.2.1 yields 6.4.2.2.

Since H1 pX,Q_q – Def pX,E, rssq and H1 pX,π˚TPq – Def pX,Eq, it
remains to be shown that H0 pX,JC b detEq – Def prssq. The first-order
deformations of rss are given by H0 pX,Eq {H0 pX,OXq and

H0 pX,Eq {H0 pX,OXq – H0 pX,JC b detEq

by the Koszul complex and H1 pX,OXq “ 0. We omit the identifications of
the maps. □

6.5 A comparison theorem and a potential func-
tion

We now compare the first-order deformations of triples pX,E, rssq and pairs
pX,Cq in the situation of Section 6.1.

6.5.1 Theorem. Let X be a Calabi-Yau 3-fold, E be a holomorphic vector
bundle of rank 2 on X and s P H0 pX,Eq be a holomorphic section. We
assume that C :“ ts “ 0u is a smooth curve in X and that

H1 pX, detE_q “ H2 pX, detE_q “ 0.

Let
ζ : Def pX,E, rssq Ñ Def pX,Cq

be the map which associates with a deformation pX , E , rs̃sq P Def pX,E, rssq
the deformation pX , Cq P Def pX,Cq, where C :“ ts̃ “ 0u Ă X .

Then the image of ζ consists exactly of those first-order deformations
pX , Cq for which there is a line bundle L P Pic pX q extending det pEq such
that L|C – KC.
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Proof of Theorem 6.5.1: In the sequel we will use without mentioning
the following basic facts:

• The complex spaces X and C are Gorenstein; so the dualizing sheaves
KX and KC are line bundles;

• j˚ pKX q – KX – OX and j˚ pKCq – KC , where j denotes the inclusion
of X in X and of C in C;

• j˚
`

JC{X
˘

– JC{X .

There are two inclusions to be proved. First we assume that pX , Cq is
a first-order deformation of pX,Cq coming from a first-order deformation
pX , E , rs̃sq of pX,E, rssq. Then s̃ defines a Koszul sequence

0 Ñ OX Ñ E Ñ JC b det E Ñ 0.

We set L :“ det E and obtain

L|C “
`

det
`

JC{J 2
C
˘˘_

– KC .

In the other direction, we consider a first-order deformation pX , Cq sat-
isfying the property that there is a line bundle L P Pic pX q such that
L|C – KC . The section s induces the Koszul sequence

0 Ñ OX Ñ E Ñ JC b L Ñ 0 (6.5.1.1)

with L “ detE. We want to construct a Koszul sequence

0 Ñ OX Ñ E Ñ JC b det E Ñ 0 (6.5.1.2)

with L “ det E , whose restriction to X yields Sequence 6.5.1.1 up to iso-
morphism. Here E is a vector bundle of rank 2 on X with j˚ pEq – E
and t P H0 pX , Eq a section extending s such that tt “ 0u “ C up to an
automorphism of E .

Sequence 6.5.1.2 is now given by the Serre-correspondence on X , using
our assumption that KC “ L|C . Since X is not smooth, some comments
have to be made. Following the construction in [OSS11], the arguments go
through provided we know the following.

1. Extk pOC ,OX q “ 0 for k “ 0, 1;

2. Ext2 pOC ,OX q – Hom
`

det
`

JC{J 2
C
˘

, L_|C
˘

;

3. H2 pX ,L_q “ 0.
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Assertion (1) is clear for k “ 0, since X is Cohen-Macaulay. For k “ 1, either
we need to make a computation in local coordinates or we argue as follows.
We choose A P Pic pX q sufficiently ample on X such that Ext1 pOC ,OX q bA
is generated by global sections; then it suffices to show that

Ext1 pOC bA_,OX q “ Ext1 pOC ,OX q bA “ 0,

and therefore we prove

H0
`

X , Ext1 pOC bA_,OX q
˘

“ 0.

Now we use the Grothendieck spectral sequence (”local to global Ext”),

Ep,q2 “ Hp pX , Extq pOC bA_,OX qq

converging to Extp`q pOC bA_,OX q. Since dim C “ 1, we get E2,0
2 “ 0.

Therefore the vanishing follows, using Serre-duality and dim C “ 1, from

Ext1 pOC bA_,OX q – H2 pX ,OC bA_q “ 0.

Assertion (2) is the local fundamental isomorphism, see ([AK70], I.4.5).

Assertion (3) finally results from the assumption

H2 pX,L_q “ H2 pX, detE_q “ 0

by tensoring the ideal sheaf sequence

0 Ñ JX{X – j˚OX Ñ OX Ñ j˚OX Ñ 0 (6.5.1.3)

with L_ and using L|X – L “ detE since E is constructed via Serre-
construction.

So Sequence 6.5.1.2 is constructed, defining a section t P H0 pX , Eq such
that tt “ 0u “ C. We finally have to show that t|X “ s, at least up to an
isomorphism of E. Tensoring the dual Koszul complex with E and taking
cohomology, we obtain an exact sequence

H0 pX,E_q Ñ H0 pX,E_ b Eq Ñ H0 pX,JC b Eq Ñ H1 pX,E_q .

Our assumption H1 pX, detE_q “ 0 yields H1 pX,E_q “ 0, again by the
dual Koszul sequence. Therefore, there exists λ : E Ñ E such that λ psq “

t|X . Then λ has to be an automorphism since both sections vanish in
codimension 2 only. Indeed, det pλq P H0 pX, detE_ b detEq “ H0 pX,OXq

is constant on X. Thus, if λ is not an automorphism, rg pλq ă 2 and the
zero-set of λ psq would be of codimension smaller than 2. Hence both Koszul
sequences on X, defined by t|X and s, are isomorphic. □
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6.5.2 Remark.

1. By choosing the Koszul sequence 6.5.1.2 more carefully, it should be
possible to get rid of the assumption H1 pX, detE_q “ 0, which how-
ever is anyway used in the following.

2. If Pic pXq – Z, then the image of ζ consists exactly of those first-order
deformations pX , Cq for which there is a line bundle L P Pic pX q such
that L|C – KC .

The same methods also show the following

6.5.3 Proposition. Let X be a Calabi-Yau 3-fold, E Ñ X a vector bundle
of rank 2 on X and s P H0 pX,Eq. Assume that C “ ts “ 0u is a smooth
curve and that Hq pX, detE_q “ 0 for q “ 0, 1, 2. Let F be the deformation
functor of pX,E, rssq and G the deformation functor of pX,Cq. For each
n P N let

τn : F pSpec pC rts {tnqq Ñ G pSpec pC rts {tnqq

be the canonical map. Then the image of τn consists exactly of those n-th
order deformations pXn, Cnq for which there is a line bundle Ln P Pic pXnq

extending det pEq such that Ln|Cn – KCn.

We finally discuss potential functions. To explain the result, we simplify
the situation a little and pretend that there is a potential function

ΦCL : Def pX,Cq Ñ C

constructed in [Cle05] such that the critical locus of ΦCL is just the set of
points r P Def pX,Cq corresponding to unobstructed deformations. Then
the corresponding first-order deformation pX1, C1q of pX,Cq, coming from
a first-order deformation pX1, E1, rs1sq of pX,E, rssq, is unobstructed and

therefore induces a formal unobstructed deformation
´

pX , pE , rpss
¯

of pX,E, rssq.

However Proposition 6.5.3 says that this is the case exactly when there exists

a line bundle pL P Pic
´

pX
¯

such that

pL
ˇ

ˇ

ˇ

pC
– K

pC .

As a preparation, we show

6.5.4 Proposition. The map Def pX,E, rssq Ñ Def pX,Cq is injective if
and only if H1 pX, detE_q “ 0.
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Proof of Proposition 6.5.4: We first assume that H1 pX, detE_q “ 0.
Then H1 pX,E_q “ 0 by the Koszul sequence and

H0 pX,JCq “ H1 pX,JCq “ 0.

Now we use the exact sequence

0 “ H1 pX,E_q Ñ H1 pX,Q_q Ñ H1 pX,TX ⟨´C⟩q

and conclude by Theorem 6.1.1.

In the other direction, we suppose that Def pX,E, rssq Ñ Def pX,Cq is
injective. Then we consider again the exact sequence

H0 pX,TX ⟨´C⟩q α
Ñ H1 pX,E_q Ñ H1 pX,Q_q

β
Ñ H1 pX,TX ⟨´C⟩q .

By our assumption β is injective. Hence α is surjective. Since

H0 pX,TX ⟨´C⟩q Ă H0 pX,TXq “ 0,

it follows that H1 pX,E_q “ 0. Therefore H1 pX, detE_q “ 0. □

Using Proposition 6.5.3 we prove:

6.5.5 Corollary. Let X be a Calabi-Yau 3-fold with holomorphic 3-form ω
and E be a holomorphic vector bundle of rank 2 such that H1 pX, detE_q “

H2 pX, detE_q “ 0. Let s P H0 pX,Eq be a section such that C :“ ts “ 0u

is a smooth curve. Then there exist

• an open neighbourhood T Ă H1 pX,TXq of 0 P H1 pX,TXq and

• an open neighbourhood R Ă H1 pX,Q_q of the point 0 P H1 pX,Q_q

with projection R Ñ T ,

• furthermore C˚-bundles R̃ Ñ R and T̃ Ñ T such that R̃ and T̃
parametrize the deformations of pX,E, rss , ωq and pX,ωq,

• and a holomorphic map

ϕCL : R̃ Ñ C

such that the following property is satisfied. The point r̃ P R̃ defines an
unobstructed deformation of pX,E, rss , ωq if and only if the following holds:

Let pX1, E1, rs1s , ω1q be the first-order deformation of pX,E, rss , ωq given
by r̃ P R̃ and pX1, C1, ω1q the induced first-order deformation of pX,C, ωq.
Then

• d R̃|T̃ϕCL pr̃q “ 0;
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• the induced formal deformation
´

pX , pC
¯

of pX,Cq satisfies

pL
ˇ

ˇ

ˇ

pC
– K

pC

for a line bundle pL P Pic
´

pX
¯

extending det pEq.

Here d R̃|T̃ denotes the relative differential with respect to the projection

R̃ Ñ T̃ .

Proof of Corollary 6.5.5: This follows using Proposition 6.5.3, Propo-
sition 6.5.4 and [Cle05] in the same way as Theorem 5.6.5 is induced from
Theorem 5.6.2. □

6.5.6 Remark. The second condition in Corollary 6.5.5 is satisfied if
H1 pC,OCq “ 0, i.e., if C – P1.

However it is not known so far that this potential function is a solution
of a Picard-Fuchs equation.
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Chapter 7

Picard-Fuchs Equations for
Calabi-Yau manifolds

In this chapter we study Picard-Fuchs equations attached to families of
Calabi-Yau manifolds embedded in a projective space. First we recall the
construction of the Picard-Fuchs equation for a general family. Then we
consider the classical case of hypersurfaces in projective space and explain
the Griffiths-Dwork reduction. The heart of the chapter treats Calabi-Yau
complete intersections of codimension 2 in projective space. We extend
the methods of Libgober and Teitelbaum [LT93] from dimension 3 to any
dimension and at the same time give rigorous proofs of some statements in
[LT93].

7.1 Picard-Fuchs equation associated to a family
of Calabi-Yau manifolds

Let π : X Ñ T be a proper family of Calabi-Yau n-folds over a connected
complex manifold T , where π is a submersion such that the fibres Xt :“
π´1 ptq of π in the complex manifold X are complex manifolds for each
t P T . Let t0 P T be a distinguished point in T .

For each t P T , we obtain a canonical (pure) Hodge structure of weight
n on Hn pXt,Cq. According to the Ehresmann theorem, all fibres of π are
diffeomorphic, and thus Hn pXs,Cq – Hn pXt,Cq for each s, t P T . The
local system Rnπ˚C yields a variation of Hodge structure of the family π,
and therefore there is a Gauß-Manin connection

∇ : Γ pRnπ˚C b OT q Ñ Γ pRnπ˚C b OT q b Ω1
T

on the associated holomorphic vector bundle Rnπ˚C b OT . This connec-
tion satisfies Griffiths-transversality with respect to the Hodge filtration on
Rnπ˚C which is induced by the Hodge filtration of Hn pXt0 ,Cq. Given a

91
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vector field B
Bt on T , we define

∇ B
Bt

: Γ pRnπ˚C b OT q Ñ Γ pRnπ˚C b OT q ,

∇ B
Bt

psq :“ ∇ psq

ˆ

B

Bt

˙

.

If it is clear which vector field is meant, we just write ∇ instead of ∇ B
Bt
.

We shrink T to a small disc around t0 such that the locally free sheaf

Rnπ˚

´

ΩnX |T

¯

is trivial on T . Here ΩnX |T is the sheaf of relative n-forms,

i.e., ΩnX |T “ Λn
´

Ω1
X |T

¯

, where Ω1
X |T is the cokernel of the inclusion map

π˚Ω1
T ãÑ Ω1

X . We have Rnπ˚

´

ΩnX |T

¯

– OT , as H
n
`

Xt,Ω
n
Xt

˘

– C for each

t P T . Thus there is a non-vanishing section

Ω P H0
´

T,Rnπ˚

´

ΩnX |T

¯¯

,

which yields a family of holomorphic non-vanishing n-forms pΩ ptqqtPT on
X ptq. We apply ∇ B

Bt
to the family Ω P Γ pRnπ˚C b OT q of holomorphic

n-forms arbitrarily many times. As Hn pXt0 ,Cq is finite-dimensional, we get
a linear dependence of

∇0
B
Bt

rΩs

ˇ

ˇ

ˇ

t0
, ∇1

B
Bt

rΩs

ˇ

ˇ

ˇ

t0
, . . . , ∇k

B
Bt

rΩs

ˇ

ˇ

ˇ

t0
P Hn pXt0 ,Cq

for k ą dimCH
n pXt0 ,Cq. Hence there are holomorphic functions λj : T Ñ

C, j “ 0, . . . , k such that

k
ÿ

j“0

λj ¨ ∇j
B
Bt

rΩs “ 0. (7.1.0.1)

This linear dependence yields the Picard-Fuchs equation of the family π.

7.1.1 Definition. For each n-cycle γ on Xt0 the well-defined holomorphic
function T Ñ C, t ÞÑ

ş

γ rΩ ptqs, is called a period of the family of Calabi-Yau

manifolds. Here rΩ ptqs denotes for each t P T the class of the non-vanishing
holomorphic n-form Ω ptq in Hn pXt,Cq.

7.1.2 Remark. The Picard-Fuchs equation of the family of Calabi-Yau
manifolds π is satisfied by all period integrals

ş

γ rΩ ptqs , t P T, for each n-
cycle γ on Xt0 , i.e.,

k
ÿ

j“0

λj
Bj

Btj

ż

γ
rΩ ptqs “ 0.

The following notation will be used in the whole chapter.
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7.1.3 Notation. Let rx0 : . . . : xns be homogeneous coordinates of Pn and

∆ :“
n
ÿ

i“0

p´1q
i xi dx0 ^ . . .^ xdxi ^ . . .^ dxn P H0 pPn,KPn pn` 1qq – C

be the canonical Euler-form on Pn. Furthermore, let

S “
à

l

Sl, Sl “ H0 pPn,OPn plqq

be the graded ring of homogeneous polynomials on Pn.

In the following sections we present a method for explicitly calculating
Picard-Fuchs equations for families of Calabi-Yau manifolds in projective
varieties, called the Picard-Fuchs reduction or Picard-Fuchs algorithm.

The Griffiths-Dwork reduction is a method in order to explicitly calculate
the Picard-Fuchs equation for Calabi-Yau n-folds. It was first introduced
by Griffiths in [Gri69] for Calabi-Yau manifolds which are hypersurfaces in
projective spaces. The method was extended to hypersurfaces in weighted
projective spaces by Dolgachev in [Dol83] and to Calabi-Yau manifolds that
are complete intersections in projective spaces by Libgober and Teitelbaum
in [LT93].

7.2 The Griffiths-Dwork reduction for families of
hypersurfaces in projective spaces

Let X be a Calabi-Yau hypersurface in Pn, i.e. X “ tf “ 0u for a homoge-
neous polynomial f P H0 pPn,OPn pn` 1qq of degree n` 1 on Pn.

7.2.1 Notation. Let

Jf :“

⟨
Bf

Bxi
, i “ 0, . . . , n

⟩
be the Jacobian ideal of f , i.e. the homogeneous ideal in the graded ring
S, which is generated by the partial derivatives Bf

Bxi
, i “ 0, . . . , n, of f . The

graduation of S induces a grading of the Jacobian ideal of f , namely

Jf “
à

l

J l
f ,

where J l
f is generated by the partial derivatives of f over Sl.

We are going to use the residue map

ReskX|Pn : Hk pPnzX,Zq Ñ Hk´1 pX,Zq ,
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which was introduced in Definition 4.2.22. As X is an ample divisor in
Pn and Hk pPn,Cqprim “ 0 for all k, applying the short exact sequence of
Theorem 4.2.25.1, the residue map yields an isomorphism

ResnX|Pn : Hn pPnzX,Qq
–
Ñ Hn´1 pX,Qqvan

:“ ker
`

l˚ : Hn´1 pX,Qq Ñ Hn pPn,Qq
˘

,

where l˚ denotes the Gysin morphism. Furthermore,

Hn´1 pX,Cqprim “ Hn´1 pX,Cqvan .

First we need a representation of all rational forms on Pn in local coor-
dinates.

7.2.2 Theorem. ([Gri69], Theorem 2.9) All rational pn` 1 ´ lq-forms on
Pn can be written as

ϕ “
1

B

ÿ

j1ă...ăjl

p´1q
j1`...`jl

˜˜

l
ÿ

k“1

p´1q
k xjkAj1...xjk...jl

¸

dx1 ^ . . .^ ydxj1 ^ . . .^ ydxjl ^ . . .^ dxn`1

¯

,

where B and A
j1...xjk...jl

are homogeneous polynomials on Pn such that

degB “ degA
j1...xjk...jl

` pn` 2 ´ lq .

7.2.3 Corollary. ([Gri69], Corollary 2.11) All rational n-forms on Pn can
be written as

ϕ “
P

Q
∆

where P and Q are homogeneous polynomials on Pn with degQ “ degP `

pn` 1q.

The following theorem shows that the residue map induces an isomor-
phism between the filtration by the order of the pole along X of rational
forms on Pn with poles along X on the one hand and the Hodge filtration
on X on the other hand.

7.2.4 Theorem. ([Voi03], 6.5, Chapter 6.1.3, 6.10, 6.11)

1. For each p P N, 1 ď p ď n, there is a surjective map

αp : H0 pPn,OPn pp pn` 1q ´ n´ 1qq Ñ Fn´p`1Hn pU,Cq

– Fn´pHn´1 pX,Cqvan ,

P ÞÑ ResnX|Pn

ˆ„

P

fp
¨ ∆

ȷ˙

.
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2. Let

αp : H0 pPn,OPn pp pn` 1q ´ n´ 1qq Ñ Fn´pHn´1 pX,Cq Ñ

Ñ Fn´pHn´1 pX,Cq {Fn´p`1Hn´1 pX,Cq “ Hn´p,p´1 pXq

be the composition of αp with the projection map. Then

ker pαpq “ J ppn`1q´n´1
f .

7.2.5 Corollary. ([Voi03], 6.12) The residue map induces a natural iso-
morphism

Rppn`1q´n´1 –
Ñ Hn´p,p´1 pXqprim ,

where Rlf :“ Sl{J l
f denotes the lth component of the Jacobian ring Rf “

S{Jf .

So far we did not need the Calabi-Yau property.
In the following we briefly describe the Griffiths-Dwork-Algorithm for

Picard-Fuchs equations of Calabi-Yau hypersurfaces in projective spaces (see
e.g. [CK99], Chapter 5.3 or [GHJ03], Chapter 18).

The idea is using the isomorphism of Corollary 7.2.5 in order to find a
linear combination as in Equation 7.1.0.1.

Calculation of the Picard-Fuchs equation: Let π : X Ñ T be a
deformation of a Calabi-Yau n-foldX, i.e., a flat proper family of Calabi-Yau
n-folds over a connected complex manifold T .

Let Ω P H0
´

T,Rnπ˚

´

ΩnX |T

¯¯

be a family of non-vanishing, holomor-

phic pn´ 1q-forms on X as in Section 7.1.
We assume that Xt “ tft “ 0u with homogeneous polynomials

ft P H0 pPn,OPn pn` 1qq

for each t P T . Using the notation of Section 7.1 we aim to find a linear
combination of ∇m

B
Bt

rΩs in terms of ∇0
B
Bt

rΩs , . . . ,∇m´1
B
Bt

rΩs.

For each t P T , using Theorem 7.2.4, we may write

rΩ ptqs “ ∇0
B
Bt

prΩsq

ˇ

ˇ

ˇ

t
“

„

resnX|Pn

ˆ

1

ft
¨ ∆

˙ȷ

P Hn´1,0 pXtq .

As the Gauß-Manin connection ∇ is flat for holomorphic sections, we locally
(in T ) compute ∇ by taking partial derivatives of 1

ft
¨ ∆ with respect to the

parameter t P T due to the formula

B

Bt

ż

γ
Ω ptq “

ż

γ
∇ B

Bt
rΩ ptqs ,
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where rγs P H3 pXtq; see [CK99], p. 75.
Then for each k we see that ∇k pΩq

ˇ

ˇ

t
corresponds to the residue of a

meromorphic form on PnzX, which has a pole of order at most k ` 1 along
X. In fact, let k P N. Taking partial derivatives of 1

ft
¨ ∆ with respect to t,

we find locally in T for the k-th application of the Gauß-Manin connection

∇k
B
Bt

rΩs ptq “ ResnX|Pn

„

Bk

Btk

ˆ

1

ft
¨ ∆

˙ȷ

“ ResnX|Pn

«

k`1
ÿ

i“2

gi,t

pftq
i

¨ ∆

ff

with suitable polynomials gi,t P H0 pPn,OPn pi pn` 1q ´ n´ 1qq for all i “

2, . . . , k ` 1.
Thus applying Theorem 7.2.4, we obtain for each k “ 0, . . . ,m´ 1

∇k
B
Bt

rΩs ptq P Fn´pk`1q`1Hn´1 pXt,Cq “ Fn´kHn´1 pXt,Cq .

This result is consistent with Griffiths transversality. Especially for k “

m “ n` 1, we get with Pt P H0 pPn,OPn pm pn` 1q ´ n´ 1qq

∇m
B
Bt

rΩs ptq “ ResnX|Pn

«

m
ÿ

i“2

gi,t

pftq
i

¨ ∆ `
Pt

pftq
m`1 ¨ ∆

ff

P F 0Hn´1 pXt,Cq ,

(7.2.5.1)
which must be a linear combination of the linearly independent classes
∇0

B
Bt

rΩs , . . . ,∇m´1
B
Bt

rΩs, as m “ dimHn pXt,Cq.

To find this linear combination explicitly, we observe that every rational
n-form on Pn with poles along Xt with numerator in the Jacobian ideal of
f is cohomologous to a rational n-form whose pole order is reduced by 1:

7.2.6 Lemma. For each t P T, l P N and homogeneous polynomials gj , j “

1, . . . , n, of degree l pn` 1q ´ n, the following equality in cohomology holds:

l ¨
řn
j“0 gj,t

Bft
Bxj

f l`1
t

¨ ∆ –

řn
j“0

Bgj,t
Bxj

f lt
¨ ∆, (7.2.6.1)

i.e., the difference of these two forms is an exact rational pn´ 1q-form.
Every cohomolgy relation of rational n-forms with poles along Xt has the
form 7.2.6.1 for a choice of l and gj,t, where j “ 1, . . . , n.

Proof of Lemma 7.2.6: For each l P N and homogeneous polynomials
gj , j “ 1, . . . , n, of degree l pn` 1q ´ n, we define the rational pn´ 1q-form

ϕt :“
1

f l

ÿ

iăj

p´1q
i`j

pxigj,t ´ xjgi,tq dx0 ^ . . .^ xdxi ^ . . .^ ydxj ^ . . .^ dxn

P H0
`

Pn,Ωn´1
Pn plXtq

˘

. (7.2.6.2)
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Differentiating ϕ, we get

dϕt “

´

l
řn
j“0 gj,t

Bft
Bxj

´ ft
řn
j“0

Bgj,t
Bxj

¯

¨ ∆

f l`1
t

,

which yields Equation 7.2.6.1. As every rational pn´ 1q-form on Pn with
poles along Xt has the form 7.2.6.2, the second statement of the lemma
follows. □

Thus, as the class ∇m
B
Bt

rΩs ptq must be cohomologous to a linear combina-

tion of ∇0
B
Bt

rΩs , . . . ,∇m´1
B
Bt

rΩs, according to Lemma 7.2.6 the homogeneous

polynomial Pt has to be in Jmpn`1q´n´1
ft

. Using the relation 7.2.6.1 we re-

place the meromorphic form Pt
fm`1
t

¨ ∆ in 7.2.5.1 by a cohomologous form

which has at most poles of order m along Xt.
In this way we find the linear combination for ∇m

B
Bt

rΩs ptq we were looking

for.

7.3 The Griffiths-Dwork reduction for complete
intersections of codimesion 2 in a projective
space

In [LT93] the Griffiths-Dwork method for computing Picard-Fuchs equations
is extended to families of Calabi-Yau manifolds that are complete intersec-
tions of codimesion 2 in P5.

In this section, we extend that procedure to complete intersections of
codimsion 2 in projective spaces of any dimension.

7.3.1 Setup and computation of a residue map

Let Q1 pλq and Q2 pλq be two general homogeneous polynomials in Pn de-
pending on a parameter λ P C, so that

V λ
i :“ tQi pλq “ 0u Ă Pn

is smooth and tQ1 pλq “ 0u Y tQ2 pλq “ 0u is a divisor with simple normal
crossings in Pn and

V λ :“ tQ1 pλq “ Q2 pλq “ 0u Ă Pn

is a smooth Calabi-Yau pn´ 2q-fold. Thus, applying the adjunction formula,
we have to assume that

deg pQ1q ` deg pQ2q “ n` 1.
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In order to be able to describe cohomology classes on V λ as rational
forms on Pn with poles along the divisor tQ1 pλq “ 0u Y tQ2 pλq “ 0u, we
use a composition of two residue maps:

7.3.1 Definition. For each k P N, k ě 1, we define a residue map

resLT,k`1
V λ|Pn : Ωk`1

Pn

´

log
´

V λ
1 Y V λ

2

¯¯

Ñ Ωk´1
V λ

by
resLT,k`1

V λ|Pn :“ resk
V λ|V λ1

˝ resk`1
V λ1 |Pn ,

where
resk`1

V λ1 |Pn : Ωk`1
Pn

´

log
´

V λ
1 Y V λ

2

¯¯

Ñ Ωk
V λ1

´

log
´

V λ
¯¯

and
resk

V λ|V λ1
: Ωk

V λ1

´

log
´

V λ
¯¯

Ñ Ωk´1
V λ

are the residue maps defined in Chapter 4.2.2.
Let

ResLT,k`1
V λ|Pn : Hk`1

´

Ω‚
Pn

´

log
´

V λ
1 Y V λ

2

¯¯¯

– Hk`1
´

Pnz

´

V λ
1 Y V λ

2

¯

,C
¯

Ñ Hk´1
´

V λ,C
¯

be the map induced in cohomology by resLT,k`1
V λ|Pn .

7.3.2 Remark.

1. Thus, the map ResLT,k`1
V λ|Pn is the composition of

Resk`1
V λ1 |Pn : Hk`1

´

Pnz

´

V λ
1 Y V λ

2

¯

,C
¯

Ñ Hk
´

V λ
1 zV λ,C

¯

and
Resk

V λ|V λ1
: Hk

´

V λ
1 zV λ,C

¯

Ñ Hk´1
´

V λ,C
¯

.

2. The residue map ResLT,k`1
V λ|Pn respects the Hodge filtration, i.e.

ResLT,k`1
V λ|Pn

´

F iHk`1
´

Pnz

´

V λ
1 Y V λ

2

¯

,C
¯¯

Ă F i´2Hk´1
´

V λ,C
¯

for each 0 ď i ď k ` 1 setting F jHk´1
`

V λ,C
˘

“ Hk´1
`

V λ,C
˘

for all
j ă 0 (see e.g. [Voi03], p. 159).

Similar to the Griffiths-Dwork reduction for hypersurfaces, we describe
pn´ 2q-forms on V λ via meromorphic forms of higher degree on the ambient
space.
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7.3.3 Theorem. ([LT93] for n “ 5.) The residue map

ResLT,n
V λ|Pn : Hn

´

Pnz

´

V λ
1 Y V λ

2

¯

,C
¯

Ñ Hn´2
´

V λ,C
¯

induces for n P N odd an isomorphism

Hn
`

Pnz
`

V λ
1 Y V λ

2

˘

,C
˘

im
`

Hn
`

PnzV λ
1 ,C

˘

‘Hn
`

PnzV λ
2 ,C

˘˘ – Hn´2
´

V λ,C
¯

, (7.3.3.1)

and for n P N even an isomorphism

Hn
`

Pnz
`

V λ
1 Y V λ

2

˘

,C
˘

im
`

Hn
`

PnzV λ
1 ,C

˘

‘Hn
`

PnzV λ
2 ,C

˘˘ ‘Hn`2 pPn,Cq – Hn´2
´

V λ,C
¯

.

(7.3.3.2)
Here, in both cases

im
´

Hn
´

PnzV λ
1 ,C

¯

‘Hn
´

PnzV λ
2 ,C

¯¯

denotes the image of the map

Hn
´

PnzV λ
1 ,C

¯

‘Hn
´

PnzV λ
2 ,C

¯

Ñ Hn
´´

PnzV λ
1

¯

X

´

PnzV λ
2

¯

,C
¯

,

which appears in the Mayer-Vietoris sequence that is associated to
`

PnzV λ
1

˘

Y
`

PnzV λ
2

˘

.

Proof of Theorem 7.3.3: In Step 1, we construct isomorphisms of the
form 7.3.3.1 or 7.3.3.2, resp., which are not necessarily given as residues. In
Step 2, we show that the residue map ResLT,n

V λ|Pn provides such isomorphisms.

Step 1: We follow the arguments of [LT93]. Let T
`

V λ
˘

be a tubular
neighbourhood of V λ “ V λ

1 X V λ
2 Ă Pn. Thus dimR T

`

V λ
˘

“ 2n. Applying
the universal coefficient theorem, we choose an isomorphism

Hn´2
´

V λ,C
¯

– Hn´2

´

V λ,C
¯

.

Using a retraction from T
`

V λ
˘

onto V λ and Poincaré-Lefschetz duality (see
e.g. [Mas91], p. 379), we get

Hn´2

´

V λ,C
¯

– Hn´2

´

T
´

V λ
¯

,C
¯

– Hn`2
´

T
´

V λ
¯

, BT
´

V λ
¯

,C
¯

.

Let T̃ be a neighbourhood around T
`

V λ
˘

in Pn such that T̃ and T
`

V λ
˘

are homotopy equivalent. Then, using the excision theorem for the pairs
`

Pn,PnzT
`

V λ
˘˘

and
´

T̃ , T̃ zT
`

V λ
˘

¯

, we obtain

Hn`2
´

Pn,PnzT
´

V λ
¯

,C
¯

– Hn`2
´

T̃ , T̃ zT
´

V λ
¯

,C
¯

–

– Hn`2
´

T
´

V λ
¯

, BT
´

V λ
¯

,C
¯

.
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Thus

Hn´2 pVλ,Cq – Hn`2
´

Pn,PnzT
´

V λ
¯

,C
¯

– Hn`2
´

Pn,PnzV λ,C
¯

.

7.3.4 Claim. There are isomorphisms

Hn`2
´

Pn,PnzV λ,C
¯

– Hn`1
´

PnzV λ,C
¯

if n is odd, or

Hn`2
´

Pn,PnzV λ,C
¯

– Hn`1
´

PnzV λ,C
¯

‘Hn`2 pPn,Cq

if n is even, resp..

Proof of Claim 7.3.4: Case 1: n odd. We look at the exact sequence of
the pair

`

Pn,PnzV λ
˘

:

. . . Ñ Hn`1 pPn,Cq Ñ Hn`1
´

PnzV λ,C
¯

Ñ Hn`2
´

Pn,PnzV λ,C
¯

Ñ

Ñ Hn`2 pPn,Cq Ñ Hn`2
´

PnzV λ,C
¯

Ñ . . . . (7.3.4.1)

If n is odd, then Hn`2 pPn,Cq “ 0 and Hn`1 pPn,Cq – C. In order to see
that the map

Hn`1 pPn,Cq Ñ Hn`1
´

PnzV λ,C
¯

is the zero map, we show equivalently that the dual map

Hn`1

´

PnzV λ,C
¯

Ñ Hn`1 pPn,Cq

is the zero map. As

Hn`1

´

PnzV λ,C
¯

– Hn´1
´

Pn, V λ,C
¯

by Lefschetz-duality and Hn`1 pPn,Cq – Hn´1 pPn,Cq by Poincaré-duality,
we can find the map we are looking for in the exact sequence of relative
cohomology:

. . . Ñ Hn´1
´

Pn, V λ,C
¯

Ñ Hn´1 pPn,Cq Ñ Hn´1
´

V λ,C
¯

Ñ . . . .

The map

Hn´1 pPn,Cq – C Ñ Hn´1
´

V λ,C
¯

is injective, because it is not the zero map. In order to see this, let ω be
a Kähler form associated to the Fubini-Study metric on Pn. The image of
rω ^ . . .^ ωs P Hn´1 pPn,Cq under the map is

“

ι˚
V λ
ω ^ . . .^ ι˚

V λ
ω
‰

‰ 0 P
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Hn´1
`

V λ,C
˘

, where ιV λ : V λ ãÑ Pn is the inclusion. This proves Claim
7.3.4 if n is odd.

Case 2: n even. If n is even, then Hn`1 pPn,Cq “ 0. Furthermore, as in
the case of n being odd, the map

Hn`2 pPn,Cq Ñ Hn`2
´

PnzV λ,C
¯

in the exact sequence 7.3.4.1 vanishes. Therefore

Hn`2
´

Pn,PnzV λ,C
¯

– Hn`1
´

PnzV λ,C
¯

‘Hn`2 pPn,Cq .

This proves Claim 7.3.4.

Finally we establish the isomorphism

Hn`1
´

PnzV λ,C
¯

–
Hn

`

Pnz
`

V λ
1 Y V λ

2

˘

,C
˘

im
`

Hn
`

PnzV λ
1 ,C

˘

‘Hn
`

PnzV λ
2 ,C

˘˘ .

We look at the Mayer-Vietoris sequence for the open sets U :“ PnzV λ
1 and

V :“ PnzV λ
2 . So we have U Y V “ PnzV λ and U X V “ Pnz

`

V λ
1 Y V λ

2

˘

.

. . . Ñ Hn
´

PnzV λ,C
¯

Ñ Hn
´

PnzV λ
1 ,C

¯

‘Hn
´

PnzV λ
2 ,C

¯

Ñ

Ñ Hn
´

Pnz

´

V λ
1 Y V λ

2

¯

,C
¯

Ñ Hn`1
´

PnzV λ,C
¯

Ñ

Ñ Hn`1
´

PnzV λ
1 ,C

¯

‘Hn`1
´

PnzV λ
2 ,C

¯

Ñ . . . .

In order to show that the map

Hn`1
´

PnzV λ,C
¯

Ñ Hn`1
´

PnzV λ
1 ,C

¯

‘Hn`1
´

PnzV λ
2 ,C

¯

is the zero map, we apply Lefschetz- or Poincaré-duality, resp., to the dual
maps and show that the maps

Hn´1
´

Pn, V λ
i ,C

¯

Ñ Hn´1
´

Pn, V λ,C
¯

for i “ 1, 2 vanish. The relative cohomology Hn´1
`

Pn, V λ
i ,C

˘

for i “ 1, 2
appears in the long exact sequence of the pair

`

Pn, V λ
i

˘

:

. . . Ñ Hn´2 pPn,Cq
–
Ñ Hn´2

´

V λ
i ,C

¯

Ñ Hn´1
´

Pn, V λ
i ,C

¯

Ñ

Ñ Hn´1 pPn,Cq Ñ Hn´1
´

V λ
i ,C

¯

Ñ . . . .
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The Lefschetz hyperplane theorem yields an isomorphismHn´2 pPn,Cq –

Hn´2
`

V λ
i ,C

˘

. Furthermore the map

Hn´1 pPn,Cq Ñ Hn´1
´

V λ
i ,C

¯

is injective also owing to the Lefschetz hyperplane theorem; therefore, the
map

Hn´2
´

V λ
i ,C

¯

Ñ Hn´1
´

Pn, V λ
i ,C

¯

is surjective.
If n is odd, then Hn´2 pPn,Cq “ 0; therefore Hn´2

`

V λ
i ,C

˘

“ 0, and the
map Hn´2

`

V λ
i ,C

˘

Ñ Hn´1
`

Pn, V λ
i ,C

˘

is an isomorphism. Thus

Hn´1
´

Pn, V λ
i ,C

¯

“ 0,

and the map we were looking for is the zero map.
If n is even, Hn´1 pPn,Cq “ 0; therefore, the map

Hn´2
´

V λ
i ,C

¯

Ñ Hn´1
´

Pn, V λ
i ,C

¯

is surjective. As it is due to the isomorphism Hn´2 pPn,Cq – Hn´2
`

V λ
i ,C

˘

the zero map, we know

Hn´1
´

Pn, V λ
i ,C

¯

“ 0

and the assertion follows, finishing Step 1.

Step 2: Let

α : Hn
´

PnzV λ
1 ,C

¯

‘Hn
´

PnzV λ
2 ,C

¯

Ñ Hn
´

Pnz

´

V λ
1 Y V λ

2

¯

,C
¯

be the map given by the Mayer-Vietoris sequence for the pair
´

PnzV λ
1 ,PnzV λ

2

¯

.

At first we show
ker

´

ResLT,n
V λ|Pn

¯

Ą im pαq . (7.3.4.2)

Let rus P im pαq. Then, using Grothendieck’s Algebraic de Rham Theorem,
we can write

rus “ α
´”

v1|PnzpV λ1 YV λ2 q , v2|PnzpV λ1 YV λ2 q

ı¯

with n-forms vi P Ωn
`

PnzV λ
i

˘

having poles along V λ
i . Hence

ResLT,n
V λ|Pn prusq “ Resn´1

V λ|V λ1
˝ Resn

V λ1 |Pn

´”

v1|PnzpV λ1 YV λ2 q

ı¯

´

´ Resn´1
V λ|V λ1

˝ Resn
V λ1 |Pn

´”

v2|PnzpV λ1 YV λ2 q

ı¯

“ 0,
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since v2 does not have any poles along V λ
1 and resn

V λ1 |Pn
pv1q does not have

any poles along V λ
2 . This establishes 7.3.4.2.

Next we show that the map

ResLT,n
V λ|Pn “ Resn´1

V λ|V λ1
˝ Resn

V λ1 |Pn

is surjective.
Resn

V λ1 |Pn induces a map between the direct summands of the mixed

Hodge decompositions of Hn
`

Pnz
`

V λ
1 Y V λ

2

˘

,C
˘

and Hn´1
`

V λ
1 zV λ,C

˘

as
shown in the following diagram:

Hn
`

Pnz
`

V λ
1 Y V λ

2

˘

,C
˘ – //

Resn
V λ
1

|Pn

��

À

p`q“nH
q
`

Pn,ΩpPn
`

log
`

V λ
1 Y V λ

2

˘˘˘

��

Hn´1
`

V λ
1 zV λ,C

˘ – //
À

p`q“nH
q
´

V λ
1 ,Ω

p´1

V λ1

`

log V λ
˘

¯

��
À

p`q“nH
q`1

`

Pn,ΩpPn
`

log V λ
2

˘˘

.

Each map

Hq
´

Pn,ΩpPn
´

log
´

V λ
1 Y V λ

2

¯¯¯

Ñ Hq
´

V λ
1 ,Ω

p´1

V λ1

´

log V λ
¯¯

is part of the long exact sequence in cohomology associated to the short
exact sequence

0 Ñ ΩkPn
´

log V λ
2

¯

Ñ ΩkPn
´

log
´

V λ
1 Y V λ

2

¯¯

Ñ Ωk´1
V λ1

´

log V λ
¯

Ñ 0

for k P N (see e.g. [EV92], Prop. 2.3). Applying Serre duality and [EV92],
Cor. 6.4, we get

Hq`1
´

Pn,ΩpPn
´

log V λ
2

¯¯

– Hn´q´1
´

Pn,Ωn´p
Pn

´

log V λ
2

¯

´ V λ
2

¯

“ 0.

Therefore Resn
V λ1 |Pn is surjective.

In the same way we get a diagram for the map Resn´1
V λ|V λ1

:

Hn´1
`

V λ
1 zV λ,C

˘ – //

Resn´1

V λ|V λ
1

��

À

p`q“n´1H
q
´

V λ
1 ,Ω

p

V λ1

`

log V λ
˘

¯

��

Hn´2
`

V λ,C
˘ – //

À

p`q“n´1H
q
´

V λ,Ωp´1
V λ

¯

��
À

p`q“n´1H
q`1

´

V λ
1 ,Ω

p

V λ1

¯

.
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Again each map in the direct-sum decompositions is part of the long exact
sequence in cohomology associated to the short exact sequence

0 Ñ Ωp
V λ1

Ñ Ωp
V λ1

´

log V λ
¯

Ñ Ωp´1
V λ

Ñ 0. (7.3.4.3)

For the case that n is odd, we see that the map Resn´1
V λ|V λ1

is surjective.

In fact, using Poincaré-duality and the Lefschetz hyperplane theorem, we
obtain

Hn
´

V λ
1 ,C

¯

– Hn´2
´

V λ
1 ,C

¯

– Hn´2 pPn,Cq “ 0;

therefore Hq`1
´

V λ
1 ,Ω

p

V λ1

¯

“ 0 for each p, q with p ` q “ n ´ 1. Together

with the surjectivity of Resn
V λ1 |Pn we know that, for n being odd, ResLT,n

V λ|Pn
is surjective. Furthermore, by Step 1 and 7.3.4.2 we have

ker
´

ResLT,n
V λ|Pn

¯

“ im
´

Hn
´

PnzV λ
1 ,C

¯

‘Hn
´

PnzV λ
2 ,C

¯¯

.

This establishes Theorem 7.3.3 for the odd-n case.

If n is even, we similarly get

Hn
´

V λ
1 ,C

¯

– Hn´2 pPn,Cq – C;

therefore Hq`1
´

V λ
1 ,Ω

p

V λ1

¯

“ 0 for all pp, q ` 1q ‰ pm,mq, and

Hm
´

V λ
1 ,Ω

m
V λ1

¯

– C.

Hence the only map between direct summands

Hq
´

V λ
1 ,Ω

p

V λ1

´

log V λ
¯¯

Ñ Hq
´

V λ,Ωp´1
V λ

¯

induced by Resn´1
V λ|V λ1

which is not surjective is the map

ϕ : Hm´1
´

V λ
1 ,Ω

m
V λ1

´

log V λ
¯¯

Ñ Hm´1
´

V λ,Ωm´1
V λ

¯

.

Applying [EV92], Cor. 6.4, gives

Hm
´

V λ
1 ,Ω

m
V λ1

´

log V λ
¯¯

– Hn´1´m
´

V λ
1 ,Ω

n´1´m
V λ1

´

log V λ
¯

´ V λ
¯

“ 0.

Hence the long exact sequence in cohomology

. . . Ñ Hm´1
´

V λ
1 ,Ω

m
V λ1

´

log V λ
¯¯

ϕ
Ñ Hm´1

´

V λ,Ωm´1
V λ

¯

Ñ

Ñ Hm
´

V λ
1 ,Ω

m
V λ1

¯

Ñ Hm
´

V λ
1 ,Ω

m
V λ1

´

log V λ
¯¯

Ñ . . .
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associated to 7.3.4.3 for p “ m yields codim pim pϕqq “ 1. By Step 1 and
7.3.4.2 we conclude for the case that n is even that

ker
´

ResLT,n
V λ|Pn

¯

“ im
´

Hn
´

PnzV λ
1 ,C

¯

‘Hn
´

PnzV λ
2 ,C

¯¯

.

□
As a consequence of this theorem, we can represent each cohomology

class of degree pn´ 2q on V λ as a rational form on Pn with poles along V λ
1

and V λ
2 .

7.3.5 Corollary. ([LT93] for n “ 5.) If n is odd, each class

a P Hn´2
´

V λ,C
¯

corresponds, via the isomorphism of Theorem 7.3.3, to a class

b P
Hn

`

Pnz
`

V λ
1 Y V λ

2

˘

,C
˘

im
`

Hn
`

PnzV λ
1 ,C

˘

‘Hn
`

PnzV λ
2 ,C

˘˘ .

If n is even, the same holds for a P W Ă Hn´2
`

V λ,C
˘

, where W is a linear
subspace of codimension 1 in Hn´2

`

V λ,C
˘

.

We give further information on the complementary space of the subspace
W in Corollary 7.3.5.

7.3.6 Lemma. We assume the setting of Theorem 7.3.3. Let

τ : Hn´2

´

V λ,C
¯

Ñ Hn´1

´

V λ
1 zV λ,C

¯

be the tube map. If n is even, then ker pτq is generated by the fundamental
class of a linear section P

n
2

`1 X V λ of V λ.

Proof of Lemma 7.3.6: This is [Gri69], Prop. 3.5, for V λ
1 instead of Pn.

We may simply copy the proof, because Hn

`

V λ
1 ,C

˘

– C according to the
Lefschetz hyperplane theorem. □

7.3.7 Corollary. Let Z :“ P
n
2

`1 X V λ be a general linear section of V λ.
Then the cohomology class rZs P Hn´2

`

V λ,C
˘

of Z, i.e. the dual funda-
mental class, satisfies

rZs R im
´

ResLT,n
V λ|Pn

¯

.
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Proof of Corollary 7.3.7: It suffices to show that

rZs R im
´

Resn´1
V λ|V λ1

: Hn´1
´

V1zV λ,C
¯

Ñ Hn´2
´

V λ,C
¯¯

.

But by definition of the residue, Resn´1
V λ|V λ1

“ τ˚, the dual of the tube map.

Hence the claim follows from Lemma 7.3.6. □

7.3.8 Corollary. We also have the following description of the image of
the residue map:

im
´

ResLT,n
V λ|Pn

¯

“ Hn´2
var

´

V λ
¯

:“ coker

ˆ

Hn´2
´

V λ
1 ,C

¯

Hn´2pιq
Ñ Hn´2

´

V λ,C
¯

˙

Ă Hn´2
´

V λ,C
¯

.

Proof of Corollary 7.3.8: Let rZs P Hm´1,m´1
`

V λ
˘

as in Corollary
7.3.7. In particular, rZs P Hn´2 pιq

`

Hm´1,m´1
`

V λ
1

˘˘

. Furthermore rZs R

im
´

ResLT,n
V λ|Pn

¯

, and ResLT,n
V λ|Pn has codimension 1 in Hn´2

`

V λ
1 ,C

˘

. Therefore

we know im
´

ResLT,n
V λ|Pn

¯

Ă Hn´2
var

`

V λ
˘

. □

7.3.2 Pole order and Hodge filtration

Now we will show that under the isomorphism of Theorem 7.3.3 the Hodge
filtration on Hn´2

`

V λ,C
˘

corresponds to the filtration given by the total
pole order of rational forms with poles along V λ

1 and V λ
2 with classes in

Hn
`

Pnz
`

V λ
1 Y V λ

2

˘

,C
˘

.

The following theorem is an extension of [Voi03], 6.5, Chapter 6.1.3, 6.10,
6.11, or [Gri69], Chapter 8, to divisors with simple normal crossings with
two irreducible components.

7.3.9 Theorem. Let X be a projective manifold of dimension n and
Y “ Y1 Y Y2 be a divisor with simple normal crossings in X such that the
following vanishing hypothesis is satisfied: For all positive integers p1, p2, i, j
we assume

H i
´

X,ΩjX pp1Y1 ` p2Y2q

¯

“ 0. (7.3.9.1)

Let U :“ XzY . For each integer 2 ď p ď n we consider the natural map

Φp : H
0

¨

˚

˚

˝

X,
ÿ

pp1,p2qPNˆN,
p1`p2“p

KX pp1Y1 ` p2Y2q

˛

‹

‹

‚

Ñ Hn pU,Cq ,

α ÞÑ rαs ,
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which maps a section α, viewed as a sum of meromorphic n-forms on X
which are holomophic on U :“ XzY with poles of order pi along Yi, i “ 1, 2,
to the de Rham class rαs of α|U .

Then

im pΦpq “ Fn´p`2Hn pU,Cq .

Before giving the proof of Theorem 7.3.9, we state two consequences.

7.3.10 Corollary. We assume X “ Pn and deg pY1q “ d1, deg pY2q “

d2; then, according to Bott’s theorem, the vanishing hypothesis is satisfied.
Composing the map Φp of Theorem 7.3.9 with the residue map ResLT,n

V λ|Pn
yields a map

Ψp : H
0

¨

˚

˚

˝

Pn,
ÿ

pp1,p2qPNˆN,
p1`p2“p

OPn pp1Y1 ` p2Y2 `KPnq

˛

‹

‹

‚

Ñ Fn´pHn´2
´

V λ,C
¯

.

If n is odd, then Ψp is surjective. If n is even, then im pΨpq has codimension
1 in Fn´pHn´2

`

V λ,C
˘

for p ě n
2 ` 1.

Proof of Corollary 7.3.10: We have Ψp “ ResLT,n
V λ|Pn ˝ Φp. If n is odd,

then Φp and ResLT,n
V λ|Pn ˝ Φp are surjective, and we conclude.

If n is even, then Ψp is surjective for p ă n
2 ` 1. □

7.3.11 Corollary. In the setting of Corollary 7.3.5, the class b is repre-
sented in de Rham cohomology by a form

η “

n´1
ÿ

i“1

Pi

Qi1Q
n´i
2

∆, (7.3.11.1)

where the Pi P H0 pPn,OPn pid1 ` pn´ iq d2 ´ n´ 1qq are homogeneous poly-
nomials of degree id1 ` pn´ iq d2 ´ n´ 1.

Proof of Corollary 7.3.11.1: The proof is an application of Corollary
7.3.10 for p “ n, using the fact that every rational n-form on Pn with poles
along Y1 Y Y2 is of the form P

Q∆ with homogeneous polynomials P and Q
with deg pQq `n` 1 “ deg pP q due to [Gri69], Cor. 2.11. Consequently, the
map Ψp is given by

p´1
ÿ

i“1

Pi ÞÑ

«

n´1
ÿ

i“1

Pi

Qi1Q
n´i
2

∆

ff

.

□
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7.3.12 Corollary. We assume the setting of Corollary 7.3.10. Composing
Ψp with the natural surjective map

κp :
à

pp1,p2qPNˆN,
p1`p2“p

H0 pPn,OPn pp1d1 ` p2d2 ´ n´ 1qq Ñ

Ñ H0

¨

˚

˚

˝

Pn,
ÿ

pp1,p2qPNˆN,
p1`p2“p

OPn pp1Y1 ` p2Y2 `KPnq

˛

‹

‹

‚

,

we obtain a map

à

pp1,p2qPNˆN,
p1`p2“p

H0 pPn,OPn pp1d1 ` p2d2 ´ n´ 1qq Ñ Fn´pHn´2
´

V λ,C
¯

,

P “ ‘
p´1
k“1Pk ÞÑ

p´1
ÿ

k“1

ResLT,n
V λ|Pn

˜«

Pk

Qk1Q
p´k
2

∆

ff¸

.

If n is odd, all classes in Fn´pHn´2
`

V λ,C
˘

for p “ 2, . . . , n are given as

p´1
ÿ

k“1

ResLT,n
V λ|Pn

˜«

Pk

Qk1Q
p´k
2

∆

ff¸

for homogeneous polynomials Pk P H0 pPn,OPn pkd1 ` pp´ kq d2 ´ n´ 1qq.
If n is even, this holds for all classes in the image of Ψp.

7.3.3 Proof of Theorem 7.3.9

For the proof of Theorem 7.3.9 we need some preparation. In particular we

need to compute the cohomology H i
´

X,
ř

pp1,p2q Ω
j
X pp1Y1 ` p2Y2q

¯

.

7.3.13 Lemma. Let T be a sheaf of OX-modules on a ringed space pX,OXq

and S1,S2 Ă T sheaves of submodules. Then there is an exact sequence

0 Ñ S1 X S2
j

Ñ S1 ‘ S2
α

Ñ S1 ` S2 Ñ 0, (7.3.13.1)

where j pxq “ x‘ p´xq and α px‘ yq “ x` y.

7.3.14 Lemma. Let X be a projective manifold and Y :“ Y1YY2 a divisor

with simple normal crossings. We assume H i
´

X,ΩjX pp1Y1 ` p2Y2q

¯

“ 0

for each i, j ą 0. Let k ą 0 and Mr :“ tpk ´ 1, 1q , . . . , pk ´ r, rqu. Then

H i

¨

˝X,
ÿ

pp1,p2qPMr

ΩjX pp1Y1 ` p2Y2q

˛

‚“ 0.



7.3. GRIFFITHS-DWORK REDUCTION 109

Proof of Lemma 7.3.14: We prove the lemma by induction over r.
For r “ 2 we have M2 “ tpk ´ 1, 1q , pk ´ 2, 2qu, and we obtain an exact

sequence of type 7.3.13.1, namely

0 Ñ ΩjX ppk ´ 2qY1 ` Y2q Ñ

Ñ ΩjX ppk ´ 1qY1 ` Y2q ‘ ΩjX ppk ´ 2qY1 ` 2Y2q Ñ

Ñ ΩjX ppk ´ 1qY1 ` Y2q ` ΩjX ppk ´ 2qY1 ` 2Y2q Ñ 0.

After applying Bott’s vanishing theorem, the long exact sequence in coho-
mology yields

H i

¨

˝X,
ÿ

pp1,p2qPM2

ΩjX pp1Y1 ` p2Y2q

˛

‚“ 0.

We assume H i
´

X,
ř

pp1,p2qPMr´1
ΩjX pp1Y1 ` p2Y2q

¯

“ 0 and consider the

exact sequence

0 Ñ ΩjX ppk ´ rqY1 ` pr ´ 1qY2q Ñ

Ñ
ÿ

pp1,p2qPMr´1

ΩjX pp1Y1 ` p2Y2q ‘ ΩjX ppk ´ rqY1 ` rY2q Ñ

Ñ
ÿ

pp1,p2qPMr

ΩjX pp1Y1 ` p2Y2q Ñ 0.

Now applying Bott’s vanishing theorem and the induction hypothesis, we
obtain a long exact sequence in cohomology we obtain

H i

¨

˝X,
ÿ

pp1,p2qPMr

ΩjX pp1Y1 ` p2Y2q

˛

‚“ 0.

We proceed in this way until r “ k ´ 1. □
The same methods also show:

7.3.15 Lemma. We assume the setting of Lemma 7.3.14. The natural
map

κp :
à

pp1,p2qPNˆN,
p1`p2“p

H0 pX,KX pp1Y1 ` p2Y2qq Ñ

Ñ H0

¨

˚

˚

˝

X,
ÿ

pp1,p2qPNˆN,
p1`p2“p

KX pp1Y1 ` p2Y2q

˛

‹

‹

‚

.

is surjective.
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7.3.16 Notation. We denote by
¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p

ΩkX pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

the sheaf of closed differential k-forms in
ÿ

pp1,p2qPNˆN,
p1`p2“p

ΩkX pp1Y1 ` p2Y2q ,

the sum being taken inside the sheaf of meromorphic k-foms.

We prepare the proof of Theorem 7.3.9 by

7.3.17 Lemma. Let 2 ď p ď n and

α P

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p

ΩkX pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

.

1. If p ě 3, then, locally on an open subset V Ă X, we can write

α “ dβ ` γ,

where

β P
ÿ

pp1,p2qPNˆN,
p1`p2“p´1

Ωk´1
X pp1Y1 ` p2Y2q

and γ P

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p´1

ΩkX pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

.

2. If p “ 2, then α is a logarithmic form.

Proof of Lemma 7.3.17: Around a point of Y1 X Y2 we choose local
coordinates tz1, . . . , znu such that Y1 “ tz1 “ 0u and Y2 “ tz2 “ 0u. We
write

α “ α1 ` . . .` αp´1 with αj P ΩkX pjY1 ` pp´ jqY2q for j “ 1, . . . , p´ 1.

Then we can write

αj “
dz1 ^ α1

j

zj1
`
α2
j

zj1
,



7.3. GRIFFITHS-DWORK REDUCTION 111

where α1
j P Ωk´1

X ppp´ jqY2q and α2
j P ΩkX ppp´ jqY2q do not contain dz1.

Furthermore

α1
j “

dz2 ^ β1
j

zp´j
2

`
γ1
j

zp´j
2

,

where β1
j P Ωk´2

X and γ1
j P Ωk´1

X do not contain dz1 and dz2. Similarly we
write

α2
j “

dz2 ^ β2
j

zp´j
2

`
γ2
j

zp´j
2

,

where β2
j P Ωk´1

X and γ2
j P ΩkX do not contain dz1 and dz2. Therefore

αj “
dz1 ^ dz2 ^ β1

j

zj1z
p´j
2

`
dz1 ^ γ1

j

zj1z
p´j
2

`
dz2 ^ β2

j

zj1z
p´j
2

`
γ2
j

zj1z
p´j
2

and

α “ dz1 ^ dz2 ^

˜

p´1
ÿ

j“1

β1
j

zj1z
p´j
2

¸

` dz1 ^

˜

p´1
ÿ

j“1

γ1
j

zj1z
p´j
2

¸

`

` dz2 ^

˜

p´1
ÿ

j“1

β2
j

zj1z
p´j
2

¸

`

p´1
ÿ

j“1

γ2
j

zj1z
p´j
2

.

In order to calculate dα we use the following notation

dβ1
j :“ dz1 ^ β

1p1q

j ` dz2 ^ β
1p2q

j ` β
1p0q

j ,

dγ1
j :“ dz1 ^ γ

1p1q

j ` dz2 ^ γ
1p2q

j ` γ
1p0q

j ,

dβ2
j :“ dz1 ^ β

2p1q

j ` dz2 ^ β
2p2q

j ` β
2p0q

j ,

dγ2
j :“ dz1 ^ γ

2p1q

j ` dz2 ^ γ
2p2q

j ` γ
2p0q

j

for each j “ 1, . . . , p´ 1, where the differential forms

β
1p1q

j , β
1p2q

j P Ωk´2
X , β

1p0q

j P Ωk´1
X , γ

1p1q

j , γ
1p2q

j P Ωk´1
X , γ

1p0q

j P ΩkX ,

β
2p1q

j , β
2p2q

j P Ωk´1
X , β

2p0q

j P ΩkX , γ
2p1q

j , γ
2p2q

j P ΩkX , γ
2p0q

j P Ωk`1
X
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do not contain dz1 and dz2. We calculate

dα “ dz1 ^ dz2 ^

p´1
ÿ

j“1

¨

˝

β
1p0q

j

zj1z
p´j
2

`
pp´ jq γ1

j

zj1z
p´j`1
2

´
γ

1p2q

j

zj1z
p´j
2

´
jβ2

j

zj`1
1 zp´j

2

`
β

2p1q

j

zj1z
p´j
2

˛

‚

` dz1 ^

p´1
ÿ

j“1

¨

˝´
γ

1p0q

j

zj1z
p´j
2

´
jγ2
j

zj`1
1 zp´j

2

`
γ

2p1q

j

zj1z
p´j
2

˛

‚

` dz2 ^

p´1
ÿ

j“1

¨

˝´
β

2p0q

j

zj1z
p´j
2

´
pp´ jq γ2

j

zj1z
p´j`1
2

`
γ

2p2q

j

zj1z
p´j
2

˛

‚

`

p´1
ÿ

j“1

γ
2p0q

j

zj1z
p´j
2

.

The assumption d pαq “ 0 yields four equations:

p´1
ÿ

j“1

¨

˝

β
1p0q

j

zj1z
p´j
2

`
pp´ jq γ1

j

zj1z
p´j`1
2

´
γ

1p2q

j

zj1z
p´j
2

´
jβ2

j

zj`1
1 zp´j

2

`
β

2p1q

j

zj1z
p´j
2

˛

‚“ 0, (7.3.17.1)

p´1
ÿ

j“1

¨

˝´
γ

1p0q

j

zj1z
p´j
2

´
jγ2
j

zj`1
1 zp´j

2

`
γ

2p1q

j

zj1z
p´j
2

˛

‚“ 0, (7.3.17.2)

p´1
ÿ

j“1

¨

˝´
β

2p0q

j

zj1z
p´j
2

´
pp´ jq γ2

j

zj1z
p´j`1
2

`
γ

2p2q

j

zj1z
p´j
2

˛

‚“ 0, (7.3.17.3)

p´1
ÿ

j“1

γ
2p0q

j

zj1z
p´j
2

“ 0. (7.3.17.4)

1. Now we assume p ě 3 and aim to find a decomposition α “ dβ ` γ such
that the pole order of β and γ along Y is p´ 1. We can decompose α in the
following way

α “ dz1 ^ dz2 ^

p´1
ÿ

j“1

β1
j

zj1z
p´j
2

` dz1 ^
γ1
1

z1z
p´1
2

` dz2 ^
β2
p´1

zp´1
1 z2

`

` ω1 ` . . .` ωp´2 `

p´1
ÿ

j“1

γ2
j

zj1z
p´j
2

(7.3.17.5)

with

ωj :“ dz1 ^
γ1
j`1

zj`1
1 z

p´pj`1q
2

` dz2 ^
β2
j

zj1z
p´j
2

for j “ 1, . . . , p ´ 2. We proceed to find the requested decomposition for
every summand of α in 7.3.17.5.
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For p´ j ą 1 we calculate

dz1 ^ dz2 ^
β1
j

zj1z
p´j
2

“ d

˜

1

p´ j ´ 1

dz1 ^ β1
j

zj1z
p´j´1
2

¸

`
1

p´ j ´ 1

dz1 ^ dβ1
j

zj1z
p´j´1
2

,

and for j ą 1 we get

dz1 ^ dz2 ^
β1
j

zj1z
p´j
2

“ d

˜

´
1

j ´ 1

dz2 ^ β1
j

zj´1
1 zp´j

2

¸

´
1

j ´ 1

dz2 ^ dβ1
j

zj´1
1 zp´j

2

.

Thus for each j “ 1, . . . , p´1 we can find a decomposition dz1^dz2^
β1
j

zj1z
p´j
2

“

dβ ` γ, where the pole order of β and γ along Y is at most p´ 1.

In order to show that the summands dz1 ^
γ1
1

z1z
p´1
2

and dz2 ^
β2
p´1

zp´1
1 z2

in the

decomposition 7.3.17.5 of α have already poles of order p ´ 1 along Y , we
multiply equation 7.3.17.1 by zp1z

p
2 and get

p´1
ÿ

j“1

´´

β
1p0q

j ´ γ
1p2q

j ` β
2p1q

j

¯

zp´j
1 zj2 ` pp´ jq γ1

jz
p´j
1 zj´1

2 ´ jβ2
j z
p´j´1
1 zj2

¯

“ 0.

(7.3.17.6)
This equation shows that

β2
p´1 “ β̃2

p´1z1 for a form β̃2
p´1 P Ωk´1

X

and
γ1
1 “ γ̃1

1z2 for a form γ̃1
1 P Ωk´1

X .

So we replace the two k-forms by

dz2 ^
β̃2
p´1

zp´2
1 z2

and dz1 ^
γ̃1
1

z1z
p´2
2

.

Furthermore equation 7.3.17.6 yields that there are forms ϕj , ψj P Ωk´1
X

such that
pp´ pj ` 1qq γ1

j`1 ´ jβ2
j “ z1ϕj ` z2ψj

for each j “ 1, . . . , p´ 2. For each j “ 1, . . . , p´ 2 we calculate

ωj “ d

˜

1

j

´γ1
j`1

zj1z
p´j´1
2

¸

` dz2 ^
1

j

˜

jβ2
j ´ pp´ pj ` 1qq γ1

j`1

zj1z
p´j
2

¸

`
1

j

dγ1
j`1

zj1z
p´j´1
2

“ d

˜

1

j

´γ1
j`1

zj1z
p´j´1
2

¸

´ dz2 ^
1

j

˜

ϕj

zj´1
1 zp´j

2

¸

´ dz2 ^
1

j

˜

ψj

zj1z
p´j´1
2

¸

`

`
1

j

dγ1
j`1

zj1z
p´j´1
2

.
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If j ą 1, we are done; in the case that j “ 1, the term dz2 ^

ˆ

ϕ1
zp´1
2

˙

does

not have the required pole order, but using the same methods as before we
can replace it by

d

˜

´
1

p´ 2

z1ϕ1

z1z
p´2
2

¸

`
1

p´ 2

z1dϕ1

z1z
p´2
2

.

So we have found the requested decomposition of each ωj .

For the last summands of α, namely
řp´1
j“1

γ2
j

zj1z
p´j
2

, we conclude in a similar

way as above using the equations 7.3.17.2 and 7.3.17.3 that there are forms
γ̃2
1 , µj , νj , γ̃

2
p´1 P ΩkX for j “ 2, . . . , p´ 2 such that

γ2
1 “ γ̃2

1z2, γ
2
p´1 “ γ̃2

p´1z1 and γ2
j “ z1µj ` z2νj

for j “ 2, . . . , p´ 2.
We conclude that

γ2
1

z1z
p´1
2

“
γ̃2
1

z1z
p´2
2

,
γ2
p´1

zp´1
1 z2

“
γ̃2
p´1

zp´2
1 z2

,
γ2
j

zj1z
p´j
2

“
µj

zj´1
1 zp´j

2

`
νj

zj1z
p´j´1
2

for j “ 2, . . . , p´ 2.
By adding all pk ´ 1q-forms and all k-forms of the decompositions of the

summands of α we get the statement of the lemma. This finishes the case
p ě 3.

2. If p “ 2, then α P Ωk,cX pY1 ` Y2q. In the same way as before we write

α “ dz1 ^ dz2 ^
β1

z1z2
` dz1 ^

γ1

z1z2
` dz2 ^

β2

z1z2
`

γ2

z1z2

where β1 P Ωk´2
X , γ1, β2 P Ωk´1

X , γ2 P ΩkX do not contain dz1 and dz2. Using

dα “ 0 we get γ1 “ γ̃1z2, β
2 “ β̃2z1 and γ2 “ γ̃2z1z2 for forms γ̃1, β̃2 P

Ωk´1
X , γ̃2 P ΩkX .
Thus we see that α and dα have only simple poles along Y ; therefore, α

is a logarithmic form. □

7.3.18 Corollary. Let

α P

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p

ΩkX pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

be as in Lemma 7.3.17 with k ě 3. If p1 ` p2 ě 2, then we can locally write

α “ dβ,

where
β P

ÿ

pp1,p2qPNˆN,
p1`p2“p´1

Ωk´1
X pp1Y1 ` p2Y2q .
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Proof of Corollary 7.3.18: Applying Lemma 7.3.17 we write

α “ dβ1 ` γ1,

where

β1 P
ÿ

pp1,p2qPNˆN,
p1`p2“p´1

Ωk´1
X pp1Y1 ` p2Y2q and γ1 P

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p´1

ΩkX pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

.

In the same way we write
γ1 “ dβ2 ` γ2,

where

β2 P
ÿ

pp1,p2qPNˆN,
p1`p2“p´2

Ωk´1
X pp1Y1 ` p2Y2q and γ2 P

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p´2

ΩkX pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

.

Continuing in this way we obtain

α “ d pβ1 ` . . .` βp´2q ` γp´2

with
β :“ β1 ` . . .` βp´2 P

ÿ

pp1,p2qPNˆN,
p1`p2“p´1

Ωk´1
X pp1Y1 ` p2Y2q ,

and γp´2 P
`

ΩkX pY1 ` Y2q
˘c

is a logarithmic form. As according to 4.2.4
the logarithmic de Rham complex Ω‚

X plog Y q is exact in degree k ě 3 for
a divisor Y with simple normal crossings and two irreducible components,
there is a form γ P Ωk´1

X plog Y q such that γp´2 “ d pγq. Thus the assertion
is proven. □

Proof of Theorem 7.3.9: We first show the following

Claim: There is a surjective map

Λp : H
0

¨

˚

˚

˝

X,
ÿ

pp1,p2qPNˆN,
p1`p2“p

KX pp1Y1 ` p2Y2q

˛

‹

‹

‚

Ñ Hp´2
´

X,Ω
n´pp´2q,c
X plog Y q

¯

.

Proof of the Claim: By Lemma 7.3.14

H i

¨

˚

˚

˝

X,
ÿ

pp1,p2qPNˆN,
p1`p2“p

ΩjX pp1Y1 ` p2Y2q

˛

‹

‹

‚

“ 0,

for i, j ą 0.
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Let 2 ď p ď n. For each k ě 3, q ě 3, Lemma 7.3.17 and Corollary 7.3.18 yield the following exact sequences

0 Ñ

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“q´1

Ωk´1
X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

Ñ
ÿ

pp1,p2qPNˆN,
p1`p2“q´1

Ωk´1
X pp1Y1 ` p2Y2q

d
Ñ

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“q

ΩkX pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

Ñ 0.

(7.3.18.1)

Starting at

ÿ

pp1,p2qPNˆN,
p1`p2“p

KX pp1Y1 ` p2Y2q “

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p

ΩnX pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

we use the following exact sequences, which are of the form 7.3.18.1:

0 Ñ

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p´1

Ωn´1
X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

Ñ
ř

pp1,p2qPNˆN,
p1`p2“p´1

Ωn´1
X pp1Y1 ` p2Y2q

d
Ñ

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p

ΩnX pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

Ñ 0,

0 Ñ

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p´2

Ωn´2
X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

Ñ
ř

pp1,p2qPNˆN,
p1`p2“p´2

Ωn´2
X pp1Y1 ` p2Y2q

d
Ñ

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p´1

Ωn´1
X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

Ñ 0,

...
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until we arrive at

0 Ñ

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“2

Ω
n´pp´2q

X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

Ñ
ÿ

pp1,p2qPNˆN,
p1`p2“2

Ω
n´pp´2q

X pp1Y1 ` p2Y2q
d

Ñ

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“3

Ω
n´pp´3q

X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

Ñ 0.

In the last sequence we have by Lemma 7.3.17,

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“2

Ω
n´pp´2q

X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c

“ Ω
n´pp´2q,c
X pY1 ` Y2q “ Ω

n´pp´2q,c
X plog Y q

and similarly

ÿ

pp1,p2qPNˆN,
p1`p2“2

Ω
n´pp´2q

X pp1Y1 ` p2Y2q “ Ω
n´pp´2q

X pY1 ` Y2q .

The long exact sequences associated to these short exact sequences yield the following surjective maps using the vanishing
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hypotheses 7.3.9.1:

H0

¨

˚

˚

˝

X,
ÿ

pp1,p2qPNˆN,
p1`p2“p

KX pp1Y1 ` p2Y2q

˛

‹

‹

‚

Ñ H1

¨

˚

˚

˝

X,

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p´1

Ωn´1
X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c˛

‹

‹

‚

,

H1

¨

˚

˚

˝

X,

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p´1

Ωn´1
X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c˛

‹

‹

‚

Ñ H2

¨

˚

˚

˝

X,

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“p´2

Ωn´2
X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c˛

‹

‹

‚

,

...

until

Hp´3

¨

˚

˚

˝

X,

¨

˚

˚

˝

ÿ

pp1,p2qPNˆN,
p1`p2“3

Ω
n´pp´3q

X pp1Y1 ` p2Y2q

˛

‹

‹

‚

c˛

‹

‹

‚

Ñ Hp´2
´

X,Ω
n´pp´2q,c
X plog Y q

¯

.

This gives the surjective map Λp, finishing the proof of the claim.
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We next establish an isomorphism

µp : H
p´2

´

X,Ω
n´pp´2q,c
X plog Y q

¯

Ñ Fn´pp´2qHn pU,Cq .

In fact, this follows as F kΩ‚
X plog Y q is a resolution of Ωk,cX plog Y q in degree

k ě 2, because the logarithmic de Rham complex Ω‚
X plog Y q is exact in

degree k ě 3. Since n´ p` 2 ě 2, we obtain

Hp´2
´

X,Ω
n´pp´2q,c
X plog Y q

¯

“ Hn
´

Fn´pp´2qΩ‚
X plog Y q

¯

.

As furthermore

Fn´pp´2qHn pU,Cq “ im

ˆ

Hn
´

Fn´pp´2qΩ‚
X plog Y q

¯

fp
Ñ Hn pΩ‚

X plog Y qq

˙

and since fp is injective by the degeneracy at E1 of the Frölicher spectral
sequence, we get the requested isomorphism µp. Finally, one has to check
that indeed µp ˝ Λp “ Φp; compare [Voi03].

One has to work through the connecting homomorphisms on the level of
a suitable open covering for Čech-cohomology and has to use the canonical
isomorphism given in [Voi02], Corollary 8.19. We omit the straightforward
but tedious details. □

7.3.4 Griffiths-Dwork reduction for codim-2 complete inter-
sections

In the following we describe the Griffiths-Dwork algorithm for complete
intersections, which was introduced in [LT93]. For convenience we describe
the method here again.

As before, let Qλ1 “ Q1 and Qλ2 “ Q2 be two homogeneous polynomials
on Pn of degree d1 and d2 with the same properties as in Section 7.3.1, and
Yi :“ tQi “ 0u; moreover

V λ “

!

Qλ1 “ 0
)

X

!

Qλ2 “ 0
)

.

To set up the method we need a few definitions.

7.3.19 Definition.

1. For i “ 1, 2 let

Ji :“
⟨

BQi
Bxj

, j “ 1, . . . , n` 1

⟩
be the Jacobian ideal of Qi in the graded ring of homogeneous poly-
nomials S “

À

l S
l in pn` 1q variables. Furthermore let Ji be the

1 ˆ pn` 1q matrix

Ji :“

ˆ

BQi
Bx1

, . . . ,
BQi

Bxn`1

˙

.
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2. For each k ą 2 we define a matrix Kk : S‘ppn`1qpk´2q`2pk´1qq Ñ

S‘pk´1q by
Kk :“ pBk, Ik´1 ¨Q1, Ik´1 ¨Q2q ,

where Ik´1 is the pk ´ 1q ˆ pk ´ 1q-identity matrix and Bk is the fol-
lowing pk ´ 1q ˆ ppn` 1q pk ´ 2qq matrix

Bk :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

pk ´ 2q J1 0 0 . . . 0 0
J2 pk ´ 3q J1 0 . . . 0 0
0 2J2 pk ´ 4q J1 . . . 0 0

0 0 3J2 . . .
...

...
...

...
...

. . . 2J1 0
0 0 0 . . . pk ´ 3q J2 J1
0 0 0 . . . 0 pk ´ 2q J2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

7.3.20 Notation. We apply the matrix Kp to a subspace

pSp´1 Ă S‘ppn`1qpp´2q`2pp´1qq,

which is defined as follows:
Let

xj “ xp´1
j :“ pp´ 1 ´ jq d1 ` jd2 ´ n for j “ 1, . . . , p´ 2 and

yj “ yp´1
j :“ pp´ 1 ´ jq d1 ` jd2 ´ n´ 1 for j “ 1, . . . , p´ 1 and

zj “ zp´1
j :“ pp´ jq d1 ` pj ´ 1q d2 ´ n´ 1 for j “ 1, . . . , p´ 1.

Then we define

pSp´1 :“
p´2
à

j“1

´

pSxj q‘pn`1q
¯

‘

p´1
à

j“1

Syj ‘

p´1
à

j“1

Szj .

Furthermore we define

qSp´1 :“
p´1
à

j“1

Sy
p
j “

p´1
à

j“1

Spp´jqd1`jd2´n´1.

7.3.21 Remark. If we restrict the map Kp : S‘ppn`1qpp´2q`2pp´1qq Ñ

S‘pp´1q to pSp´1, we obtain a map Kp : pSp´1 Ñ qSp´1.
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7.3.22 Definition.

1. For each k ą 2 we define

M˚
k :“ coker pKkq “ S‘pk´1q{im pKkq

and

Mk :“
k´1
à

l“1

M˚
k rpk ´ lq d1 ` ld2 ´ n´ 1s “ qSk´1{im pKkq

to be the direct sum of the parts ofM˚
k which are homogeneous of degree

ppk ´ lq d1 ` ld2 ´ n´ 1q for 1 ď l ď k ´ 1; furthermore M2 :“ C.

2. Using the description of classes in Fn´pHn´2
`

V λ,C
˘

or im pΨpq, resp.,
in Theorem 7.3.12 we define an isomorphism

ϱp´1 : Fn´pHn´2
´

V λ,C
¯

Ñ qSp´1,

ω “

p´1
ÿ

k“1

ResLT,n
V λ|Pn

˜«

Pk

Qk1Q
p´k
2

∆

ff¸

ÞÑ pPp´1, . . . , P1q

and a map

ϱ̃p´1 :

p´1
ÿ

k“1

H0 pPn,KPn pkY1 ` pp´ kqY2qq Ñ qSp´1,

p´1
ÿ

k“1

Pk

Qk1Q
p´k
2

∆ ÞÑ pPp´1, . . . , P1q .

Furthermore, we define a surjective map

ϱp´1 : Fn´pHn´2
´

V λ,C
¯

Ñ Mp,

ϱp´1 :“ prMp
˝ ϱp´1,

where

prMp
: qSp´1 Ñ Mp

denotes the projection onto Mp.

7.3.23 Lemma. For k, l P N and Ai homogeneous polynomials of degree
kd1 ` ld2, one obtains the relation in cohomology

k
řn`1
i“1 Ai

BQ1

Bxi

Qk`1
1 Ql2

∆ `
l
řn`1
i“1 Ai

BQ2

Bxi

Qk1Q
l`1
2

∆ ”

řn`1
i“1

BAi
Bxi

Qk1Q
l
2

∆ modulo exact forms.
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Proof of Lemma 7.3.23: We consider the rational pn´ 1q-form on Pn

ϕ :“
n`1
ÿ

kăl,
k,l“1

xkAl ´ xlAk

Qk1Q
l
2

dx1 ^ . . .^ ydxk ^ . . .^ xdxl ^ . . .^ dxn`1.

Then

dϕ “
k
řn`1
i“1 Ai

BQ1

Bxi

Qk`1
1 Ql2

∆ `
l
řn`1
i“1 Ai

BQ2

Bxi

Qk1Q
l`1
2

∆ ´

řn`1
i“1

BAi
Bxi

Qk1Q
l
2

∆.

□

7.3.24 Remark. Using the cohomology relation of Lemma 7.3.23 for each
p ą 2, we calculate for A “

`

A1, . . . , Apn`1qpp´2q`2pp´1q

˘

P pSp´1 with

ϱ̃´1
p´1

¨

˚

˝

Kp

¨

˚

˝

A1
...

Apn`1qpp´2q`2pp´1q

˛

‹

‚

˛

‹

‚

“

“

řn`1
i“1 pp´ 2qAi

BQ1

Bxi

Qp´1
1 Q2

∆ `

řn`1
i“1 Ai

BQ2

Bxi

Qp´2
1 Q2

2

∆ `

`
pp´ 3q

řn`1
i“1 Ai`n`1

BQ1

Bxi

Qp´2
1 Q2

2

∆ `
2
řn`1
i“1 Ai`n`1

BQ2

Bxi

Qp´3
1 Q3

2

∆ ` . . .`

`

řn`1
i“1 Ai`pp´3qpn`1q

BQ1

Bxi

Q2
1Q

p´2
2

∆ `
pp´ 2q

řn`1
i“1 Ai`pp´3qpn`1q

BQ2

Bxi

Q1Q
p´1
2

∆ `

`
Apn`1qpp´2q`1Q1

Qp´1
1 Q2

∆ ` . . .`
Apn`1qpp´2q`p´2Q1

Q2
1Q

p´2
2

∆ `

`
Apn`1qpp´2q`p`1Q2

Qp´2
1 Q2

2

∆ ` . . .`
Apn`1qpp´2q`2pp´1qQ2

Q1Q
p´1
2

∆

”

řn`1
i“1

BAi
Bxi

Qp´2
1 Q2

∆ `

řn`1
i“1

BAi`n`1

Bxi

Qp´3
1 Q2

2

∆ `

řn`1
i“1

BAi`2pn`1q

Bxi

Qp´4
1 Q3

2

∆ ` . . .`

`

řn`1
i“1

BAi`pp´3qpn`1q

Bxi

Q1Q
p´2
2

∆ `
Apn`1qpp´2q`1

Qp´2
1 Q2

∆ ` . . .`
Apn`1qpp´2q`p´2

Q1Q
p´2
2

∆ `

`
Apn`1qpp´2q`p`1

Qp´2
1 Q2

∆ ` . . .`
Apn`1qpp´2q`2pp´1q

Q1Q
p´2
2

∆.

According to Corollary 7.3.5, we have omitted two summands with poles
only along one of the hypersurfaces Yi, i “ 1, 2.
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Then (in a slightly simplified notation)

KpA ”

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

řn`1
i“1

BAi
Bxi

`Apn`1qpp´2q`1 `Apn`1qpp´2q`p`1
řn`1
i“1

BAi`n`1

Bxi
`Apn`1qpp´2q`2 `Apn`1qpp´2q`p`2

řn`1
i“1

BAi`2pn`1q

Bxi
`Apn`1qpp´2q`3 `Apn`1qpp´2q`p`3

...
řn`1
i“1

BAi`pp´4qpn`1q

Bxi
`Apn`1qpp´2q`p´3 `Apn`1qpp´2q`2p´3

řn`1
i“1

BAi`pp´3qpn`1q

Bxi
`Apn`1qpp´2q`p´2 `Apn`1qpp´2q`2pp´1q,

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P

p´2
à

j“1

Sy
p´1
j “ Šp´2 Ă S‘pp´2q.

7.3.25 Theorem. For each 2 ď p ď n´ 1 there is an exact sequence

0 Ñ Fn´pHn´2
´

V λ,C
¯

Ñ Fn´pp`1qHn´2
´

V λ,C
¯

ϱp
Ñ Mp`1 Ñ 0.

(7.3.25.1)
If n is even, we have to replace Fn´rHn´2

`

V λ,C
˘

by im pΨrq for r “ p, p`1.

Proof of Theorem 7.3.25: We just give the proof for n is odd. The
exactness is shown in two steps:

1. Let ω P Fn´pHn´2
`

V λ,C
˘

. Then there are homogeneous polynomials
Pk P H0 pPn,OPn pkd1 ` pp´ kq d2 ´ n´ 1qq , k “ 1, . . . , p´ 1, such that

ω “

p´1
ÿ

k“1

ResLT,n
V λ|Pn

˜«

Pk

Qk1Q
p´k
2

∆

ff¸

“

p´1
ÿ

k“1

ResLT,n
V λ|Pn

˜«

PkQ1

Qk`1
1 Q

p`1´pk`1q
2

∆

ff¸

“

p
ÿ

k“2

ResLT,n
V λ|Pn

˜«

Pk´1Q1

Qk1Q
p`1´k
2

∆

ff¸

P Fn´pp`1qHn´2
´

V λ,C
¯

.

Then

ϱp pωq “ pPp´1Q1, Pp´2Q1, . . . , P1Q1, 0q .

Now we have to show that ω P ker
`

ϱp
˘

, i.e. we have to find a tuple A “
`

A1, . . . , Apn`1qpp´1q`2p

˘

P pSp such that

ϱp pωq “ Kp`1A.
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In fact,

Kp`1

¨

˚

˝

A1
...

Apn`1qpp´1q`2p

˛

‹

‚

“

“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

pp´ 1q
řn`1
i“1 Ai

BQ1

Bxi
řn`1
i“1 Ai

BQ2

Bxi
` pp´ 2q

řn`1
i“1 Ai`n`1

BQ1

Bxi

2
řn`1
i“1 Ai`n`1

BQ2

Bxi
` pp´ 3q

řn`1
i“1 Ai`2pn`1q

BQ1

Bxi
...

řn`1
i“1 Ai`pp´2qpn`1q

BQ1

Bxi
` pp´ 2q

řn`1
i“1 Ai`pp´3qpn`1q

BQ2

Bxi

pp´ 1q
řn`1
i“1 Ai`pp´2qpn`1q

BQ2

Bxi

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

`

¨

˚

˚

˚

˚

˚

˚

˚

˝

Apn`1qpp´1q`1Q1

Apn`1qpp´1q`2Q1 `Apn`1qpp´1q`p`2Q2

Apn`1qpp´1q`3Q1 `Apn`1qpp´1q`p`3Q2
...

Apn`1qpp´1q`p´1Q1 `Apn`1qpp´1q`2p´1Q2

Apn`1qpp´1q`2pQ2

˛

‹

‹

‹

‹

‹

‹

‹

‚

P qSp.

The vector A “ p0, . . . , 0, Pp´1, . . . , P1, 0, 0, . . . , 0q solves the problem.

2. Let ω P Fn´pp`1qHn´2
`

V λ,C
˘

such that ϱp pωq “ 0. Then there is an

A P pSp such that ϱp pωq “ Kp`1A. We have

Kp`1A ”

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

řn`1
i“1

BAi
Bxi

`Apn`1qpp´1q`1 `Apn`1qpp´1q`p`2
řn`1
i“1

BAi`n`1

Bxi
`Apn`1qpp´1q`2 `Apn`1qpp´1q`p`3

řn`1
i“1

BAi`2pn`1q

Bxi
`Apn`1qpp´1q`3 `Apn`1qpp´1q`p`4

...
řn`1
i“1

BAi`pp´3qpn`1q

Bxi
`Apn`1qpp´1q`p´2 `Apn`1qpp´1q`2p´1

řn`1
i“1

BAi`pp´2qpn`1q

Bxi
`Apn`1qpp´1q`p´1 `Apn`1qpp´1q`2p

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P

p´1
à

j“1

Sy
p
j “ Šp´1 Ă S‘pp´1q.

The resulting vector defines a vector pPp´1, . . . , P1q such that

ϱ´1
p´1 pPp´1, . . . , P1q “: ω1 P Fn´pHn´2

´

V λ,C
¯

and ω1 coincides with the given ω. This shows that Sequence 7.3.25.1 is
exact. □
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7.3.5 Description of the method by Libgober and Teitelbaum
for calculating the Picard-Fuchs equation

In this section we present an extension of the Griffiths-Dwork method for
calculating the Picard-Fuchs equation for a codim-2 complete intersection
Calabi-Yau manifold, which was introduced by Libgober and Teitelbaum in
[LT93].

We will proceed similarly to the case of Calabi-Yau hypersurfaces in
Chapter 7.2.

We use the notation introduced in Chapter 7.3.1. Let V “
`

V λ
˘

λPT
Ñ T

be a deformation of the Calabi-Yau pn´ 2q-fold V λ Ă Pn with T a complex
manifold. Let

Ω P H0
´

T,Rn´2π˚

´

Ωn´2
V|T

¯¯

be a family of non-vanishing holomorphic pn´ 2q-forms on V. Let m :“
dimCH

n´2
`

V λ,C
˘

. We assume that all Hodge groups Hp,q
`

V λ
˘

are 1-
dimensional, thus m “ n ´ 1. In practice, these Hodge-groups are not
1-dimensional. However, a finite group is operating on Pn, leaving V λ in-

variant, and the invariant Hodge-groups Hp,q
`

V λ
˘G

are 1-dimensional. Fur-
thermore, all classes ∇k

B
Bλ

rΩs are G-invariant.

Again, using the notation of Chapter 7.1, we aim to find a linear combi-
nation of ∇m

B
Bλ

rΩs in terms of ∇0
B

Bλ

rΩs , . . . ,∇m´1
B

Bλ

rΩs.

According to Corollary 7.3.12 we get a family of holomorphic pn´ 2q-
forms Ω pλq by defining

rΩ pλqs “ ∇0
B

Bλ

prΩsq

ˇ

ˇ

ˇ

λ
“ ResLT,n

V λ|Pn

„ˆ

1

Q1 pλqQ2 pλq
∆

˙ȷ

P Hn´2,0
´

V λ
¯

.

Locally in T we compute ∇ by taking partial derivatives of the rational
form 1

Q1pλqQ2pλq
∆ with respect to λ, i.e.,

∇i
B

Bλ

rΩs pλq “ ResLT,n
V λ|Pn

„

Bi

Bλi

ˆ

1

Q1 pλqQ2 pλq
∆

˙ȷ

.

It is common practice to use the differential operator Θλ :“ λ B
Bλ instead of

B
Bλ . The aim is to determine the coefficients sm´1 pλq , . . . , s0 pλq P C rλs of
the equation

Θm
λ “ sm´1 pλq ¨ Θm´1

λ ` sm´2 pλq ¨ Θm´2
λ ` . . .` s0 pλq ¨ Θ0

λ.

Locally in T we calculate

Θk
λ

ˆ

1

Q1 pλqQ2 pλq
∆

˙

“

k`2
ÿ

r“2

r´1
ÿ

j“1

P
pkq

r,j

Qj1Q
r´j
2

∆, k “ 1, . . . ,m,
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for polynomials P
pkq

r,j “ P
pkq

r,j pλq P H0 pPn,OPn pjd1 ` pr ´ jq d2 ´ n´ 1qq

depending on the parameter λ.

Step 1. We reduce the summands of Θm
λ

´

1
Q1Q2

∆
¯

with pole order m` 2,

namely
řm`1
j“1

P
pmq
m`2,j

Qj1Q
m`2´j
2

∆. As Θm
λ

´

1
Q1Q2

∆
¯

has to be cohomologous to a

form with lower pole order in Q1 and Q2, there exists a vector Apmq “
´

A
pmq
1 , . . . , A

pmq

pn`1qm`2pm`1q

¯

P pSm`1 such that

ϱ̃m`1

˜

m`1
ÿ

j“1

P
pmq

m`2,j

Qj1Q
m`2´j
2

∆

¸

“ Km`2A
pmq.

Then, according to Remark 7.3.24, we reduce Km`2A
pmq to an element

qm “ pqm1 , . . . , q
m
mq P qSm, i.e., Km`2A

pmq ” qm, by setting

qm1 :“
n`1
ÿ

i“1

BA
pmq

i

Bxi
`A

pmq

pn`1qm`1 `A
pmq

pn`1qm`m`3

qm2 :“
n`1
ÿ

i“1

BA
pmq

i`n`1

Bxi
`A

pmq

pn`1qm`2 `A
pmq

pn`1qm`m`4

qm3 :“
n`1
ÿ

i“1

BA
pmq

i`2pn`1q

Bxi
`A

pmq

pn`1qm`3 `A
pmq

pn`1qm`m`5

...

qmm´1 :“
n`1
ÿ

i“1

BA
pmq

i`pm´2qpn`1q

Bxi
`A

pmq

pn`1qm`m´1 `A
pmq

pn`1qm`2m`1

qmm :“
n`1
ÿ

i“1

BA
pmq

i`pm´1qpn`1q

Bxi
`A

pmq

pn`1qm`m `A
pmq

pn`1qm`2m`2.

By this reduction process we have found a rational form which is cohomo-
logous to ∇m

B
Bλ

rΩs and whose pole order in Q1 and Q2 is at most m` 1.

Step 2 until Step m.

We continue the reduction procedure in order to find the linear combi-
nation of the class ∇m

B
Bλ

rΩs in terms of ∇0
B

Bλ

rΩs , . . . ,∇m´1
B

Bλ

rΩs by using the

matrices Kp`2 for p “ m´ 1, . . . , 1.

Starting with an element qp`1 P qSp`1, p “ m´1, . . . , 1, we use the matrix

Kp`2 to find an element Appq P pSp`1 such that

qp`1 “ Kp`2A
ppq `mp`2,



7.3. GRIFFITHS-DWORK REDUCTION 127

wheremp`2 P Mp`2. The elementmp`2 appears now, as it might be possible
that

qp`1 R im
´

Kp`2 : pSp`1 Ñ qSp`1

¯

,

i.e., we cannot find a vector Appq P pSp`1 with q
p`1 “ Kp`2A

ppq. According to
Theorem 7.3.25, there could be an element mp`2 P Mp`2 – Hn´pp`2q,p

`

V λ
˘

such that mp`2 R im pKp`2q.
Subsequently, we get qp by reduction of Kp`2A

ppq. We repeat the reduc-
tion procedure successively for p “ m´ 2, . . . , 1.

After the last reduction, we obtain a vector q1 P qS1 that corresponds to

the class Θ0
´

1
Q1Q2

∆
¯

.

Then, the classes mi should yield the coefficients of the derivatives

Θi
´

1
Q1Q2

∆
¯

in the Picard-Fuchs equation.

Computational Details: In the following we give a more detailed descrip-
tion of how to get the coefficients of the linear combination in practice. This
procedure is implemented in a programme written in the Singular program-
ming language in Appendix A.1.

Step 1’ is exactly Step 1.

For all further steps we change the definition of the matrices Kp`2 in the
following way: For each p “ 1, . . . ,m ´ 1 we concatenate the ppp` 1q ˆ 1q-

matrix ϱ̃p`1

ˆ

řp`1
j“1

P
ppq
p`2,j

Qj1Q
p`2´j
2

∆

˙

P S‘pp`1q with the matrix Kp`2 : pSp`1 Ñ

qSp`1; i.e. we define a map by

K̃p`2 : pS
1
p`1 Ñ qSp`1, K̃p`2 :“

˜

ϱ̃p`1

˜

p`1
ÿ

j“1

P
ppq

p`2,j

Qj1Q
p`2´j
2

∆

¸

, Kp`2

¸

,

where pS1
p`1 :“ S0 ‘ pSp`1.

According to Griffiths transversality and dimH i,j
`

V λ
˘

“ 1 for each
i` j “ n´ 2, we know that

ϱ̃p`1

˜

p`1
ÿ

j“1

P
ppq

p`2,j

Qj1Q
p`2´j
2

∆

¸

generates Fn´pp`2qHn´2
`

V λ,C
˘

{Fn´pp`1qHn´2
`

V λ,C
˘

. Thus we can re-

place the classes mp`2 P Mp`2 by adding the entry ϱ̃p`1

ˆ

řp`1
j“1

P
ppq
p`2,j

Qj1Q
p`2´j
2

∆

˙

to the matrix Kp`2 for each p “ 1, . . . ,m´ 1.

Step 2’. Starting with p “ m´1 we continue by finding a vector Appq P pS1
p`1

such that

qp`1 “ K̃p`2A
ppq,
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where Appq “

´

A
ppq
0 , Ãppq

¯

P pS1
p`1. Then in case p “ m´ 1 we can write

qm “ A
pm´1q
0 ¨ ϱ̃m

˜

m
ÿ

j“1

P
pm´1q

m`1,j

Qj1Q
m`1´j
2

∆

¸

`Km`1Ã
pm´1q.

As in Step 1, we reduceKm`1Ã
pm´1q to an element qm´1 P qSm´1. We repeat

the reduction procedure with qm´1 instead of qm.

Step 3’ until Step m’. We continue in this way until p “ 1.

In Step 1’, we got

ϱ̃m`1

˜

m`1
ÿ

j“1

P
pmq

m`2,j

Qj1Q
m`2´j
2

∆

¸

” qm.

Then, in Step 2’,

qm ” A
pm´1q
0 ¨ ϱ̃m

˜

m
ÿ

j“1

P
pm´1q

m`1,j

Qj1Q
m`1´j
2

∆

¸

` qm´1,

and so on. We have to find the coefficients sp pλq P C rλs for p “ m´1, . . . , 1
by collecting the terms of the same pole order such that

sm´1 pλq ¨ ϱ̃m

˜

m
ÿ

j“1

P
pm´1q

m`1,j

Qj1Q
m`1´j
2

∆

¸

“ A
pm´1q
0 ¨ ϱ̃m

˜

m
ÿ

j“1

P
pm´1q

m`1,j

Qj1Q
m`1´j
2

∆

¸

`

` ϱ̃m

˜

m
ÿ

j“1

P
pmq

m`1,j

Qj1Q
m`1´j
2

∆

¸

and

sm´2 pλq ¨ ϱ̃m´1

˜

m´1
ÿ

j“1

P
pm´2q

m,j

Qj1Q
m´j
2

∆

¸

“ A
pm´2q
0 ¨ ϱ̃m´1

˜

m´1
ÿ

j“1

P
pm´2q

m,j

Qj1Q
m´j
2

∆

¸

`

`ϱ̃m´1

˜

m´1
ÿ

j“1

P
pmq

m,j

Qj1Q
m´j
2

∆

¸

´ sm´1 pλq ¨ ϱ̃m´1

˜

m´1
ÿ

j“1

P
pm´1q

m,j

Qj1Q
m´j
2

∆

¸

and so on. For general p “ m´ 1, . . . , 1 the coefficient sp pλq has to satisfy

sp pλq ¨ ϱ̃p`1

˜

p`1
ÿ

j“1

P
ppq

p`2,j

Qj1Q
p`2´j
2

∆

¸

“ A
ppq
0 ¨ ϱ̃p`1

˜

p`1
ÿ

j“1

P
ppq

p`2,j

Qj1Q
p`2´j
2

∆

¸

`

` ϱ̃p`1

˜

p`1
ÿ

j“1

P
pmq

p`2,j

Qj1Q
p`2´j
2

∆

¸

´

m´p´1
ÿ

i“1

sm´i pλq ¨ ϱ̃p`1

˜

p`1
ÿ

j“1

P
pm´iq
p`2,j

Qj1Q
p`2´j
2

∆

¸

.

We explain an example carried out by Libgober and Teitelbaum.
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7.3.26 Example. [LT93] Let V λ be the complete intersection of two hy-
persurfaces in P5, given by the zero sets of the two homogeneous polynomials

Q1 “ x31 ` x32 ` x33 ´ 3λ x4x5x6 P H0
`

P5,OP5 p3q
˘

and
Q2 “ x34 ` x35 ` x36 ´ 3λ x1x2x3 P H0

`

P5,OP5 p3q
˘

.

Then V λ “ V λ
1 XV λ

2 is a Calabi-Yau 3-fold for generic λ. According to [LT93]
there is an action of a finite group G Ă PGL p5,Cq that preserves V λ

1 “

tQ1 “ 0u and V λ
2 “ tQ2 “ 0u and all groups Hp,q

`

V λ
˘

are 1-dimensional.
Then the Picard-Fuchs equation reads

˜

Θ4
λ ´ λ

ˆ

Θλ `
1

3

˙2ˆ

Θλ `
2

3

˙2
¸

“ 0.

A Singular-Programme can be found in the Appendix A.1.
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Chapter 8

Picard-Fuchs operators for
pairs

In this chapter the Griffiths-Dwork method for calculating the Picard-Fuchs
equation is extended to pairs consisting of a Calabi-Yau manifold in a pro-
jective space and a smooth hypersurface in the Calabi-Yau manifold. The
Griffiths-Dwork method was first transferred to pairs by Jockers and Soroush
in [JS09a]. As the hypersurface appears as a complete intersection in the
projective space, the method introduced by Libgober and Teitelbaum in
[LT93] can be applied in this situation.

To be precise, we consider the following situation.

8.0.-25 Setup. Let X “ tP “ 0u be a Calabi-Yau hypersurface in a pro-
jective space Pn, defined by a homogeneous polynomial P P H0 pPn,OPn pn` 1qq.
Let H “ tQ “ 0u be another smooth hypersurface in Pn, defined by a homo-
geneous polynomial Q P H0 pPn,OPn pkqq for some k P N. We assume that
X and H intersect transversally; therefore D “ X X H is a smooth divisor
in X.

A central object will be the relative cohomology Hn´1 pX,D,Cq. We
first define a residue map for the pair pX,Dq at the level of forms. This will
lead to a residue map on the relative cohomology. The residue map will be
used in Section 8.2 in order to compare a Hodge filtration on Hn´1 pX,D,Cq

with a filtration by the pole order on the hypercohomology of a complex of
rational forms. Then we describe the Griffiths-Dwork reduction using the
work of Li, Lian and Yau [LLY12]. The theory of Li, Lian and Yau will be
discussed and extended to triples in Chapter 9.

Finally we describe an example where X is a quintic. Here a major new
difficulty arises, since a suitable D is no longer smooth.

131
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8.1 Definition of residues for pairs

We recall the following

8.1.1 Notation. Given a sheaf S and a section η P S pUq for an open set
U , we write shortly η P S if we do not want to specify U explicitly.

For convenience we introduce some notation before giving a definition
for a residue map for pairs of logarithmic forms.

8.1.2 Notation. For each form η P ΩkPn plogXq we define a form pη P

Ωk`1
Pn plog pX `Hqq by

pη :“ η ^
dQ

Q
.

Then

resk`1
H|Pn ppηq “ η|H P ΩkH plogDq .

8.1.3 Definition. We define a complex

´

pΩPn plogXq ‘ ΩPn plog pX `Hqqq
‚ , d̃

¯

with differential

d̃k : ΩkPn plogXq ‘ ΩkPn plog pX `Hqq Ñ

Ωk`1
Pn plogXq ‘ Ωk`1

Pn plog pX `Hqq ,

d̃k pη1, η2q :“
´

dkη1, pη1 ´ dkη2

¯

.

Obviously

d̃k`1 ˝ d̃k ” 0

for each k.

8.1.4 Remark. There is an exact sequence of complexes

0 Ñ pΩ‚
Pn plog pX `Hqq , dq Ñ

´

pΩPn plogXq ‘ ΩPn plog pX `Hqqq
‚ , d̃

¯

Ñ pΩ‚
Pn plogXq , dq Ñ 0.

8.1.5 Definition. We define a residue map res‚
pX,Dq|Pn for the pair pX,Dq

by

reskpX,Dq|Pn :“ reskX|Pn ‘ resLT,kD|Pn : ΩkPn plogXq ‘ ΩkPn plog pX `Hqq

Ñ Ωk´1
X ‘ Ωk´2

D .
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8.1.6 Remark.

The residue res‚
pX,Dq|Pn maps exact forms of the complex

pΩ‚
Pn plogXq ‘ Ω‚

Pn plog pX `Hqqq

to exact forms of the complex Ω‚´1
X ‘ Ω‚´2

D . In fact, given

pη1, η2q P Ωk´1
Pn plogXq ‘ Ωk´1

Pn plog pX `Hqq ,

then

d
´

resk´1
X|Pn pη1q , resLT,k´1

D|Pn pη2q

¯

“ reskpX,Dq|Pn
´

d̃ pη1, η2q

¯

.

This last equality follows immediately from

resk´1
X|Pn pη1q

ˇ

ˇ

ˇ

D
“ resLT,kD|Pn p pη1q ,

which is a consequence of

resLT,kD|Pn p pη1q “ resk´1
D|H ˝ reskH|Pn p pη1q “ resk´1

D|H pη1|Hq “ resk´1
X|Pn pη1|Hq .

8.1.7 Definition. According to Remark 8.1.6, for each k ě 2 the residue
map resk

pX,Dq|Pn defined in Definition 8.1.5 descends to a map which we also
denote by

reskpX,Dq|Pn :
´´

ΩkPn plogXq ‘ ΩkPn plog pX `Hqq

¯

, d̃
¯

Ñ

´

Ωk´1
X ‘ Ωk´2

D , d
¯

.

8.1.8 Definition. The map resk
pX,Dq|Pn induces a map in cohomology

ReskpX,Dq|Pn : Hk
´

Ω‚
Pn plogXq ‘ Ω‚

Pn plog pX `Hqq , d̃
¯

Ñ Hk´1 pX,D,Cq .

8.1.9 Remark. We obtain a commutative diagram

Hk pΩ‚
Pn plog pX ` Hqqq //

Res
LT,k
D|Pn

��

Hk pΩ‚
Pn plogXq ‘ Ω‚

Pn plog pX ` Hqqq //

ReskpX,Dq|Pn

��

Hk pΩ‚
Pn plogXqq

Resk
X|Pn

��
Hk´2 pD,Cq // Hk´1 pX,D,Cq // Hk´1 pX,Cq .

(8.1.9.1)

As we aim to work with rational forms on Pn with poles along the hyper-
surfaces X and H, we transfer the definition of Res‚

pX,Dq|Pn to the cohomol-
ogy of rational forms. Therefore we define a complex of global rational forms
whose cohomology coincides with the hypercohomology of the complex of
logarithmic forms defined in Definition 8.1.3.
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8.1.10 Notation. Let

ΩkPn p˚Xq “
ÿ

mě0

ΩkPn pmXq

be the sheaf of meromorphic k-forms which are holomorphic outside X.

8.1.11 Definition. Let
´

K‚, d̃‚
¯

be the complex defined by

Kk :“ H0
´

Pn,ΩkPn p˚Xq ‘ ΩkPn p˚X ` ˚Hq

¯

with differential

d̃k : Kk Ñ Kk`1, d̃k pη1, η2q :“

ˆ

dkη1, η1 ^
dQ

Q
´ dkη2

˙

.

The following remark is in order.

8.1.12 Remark.

1. Let pη1, η2q P H0
`

Pn,ΩkPn pmXq ‘ ΩkPn psX ` rHq
˘

, then

d̃k pη1, η2q P H0
´

Pn,ΩkPn ppm` 1qXq ‘ ΩkPn pps` 1qX ` pr ` 1qHq

¯

,

thus d̃‚ is well-defined.

2. Obviously d̃k ˝ d̃k´1 “ 0 for each k P N.

We now compare the complex of global logarithmic pairs with the complex
K‚ just defined.

8.1.13 Theorem. The complexes
´

K‚, d̃
¯

and

´

H0 pPn, pΩPn plogXq ‘ ΩPn plog pX `Hqqq
‚
q , d̃‚

¯

are quasiisomorphic; therefore

Hq
´

K‚, d̃
¯

– Hq
´

Ω‚
Pn plogXq ‘ Ω‚

Pn plog pX `Hqq , d̃
¯

for each q P N.
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Proof of Theorem 8.1.13: We use the exact sequences of complexes

0 Ñ H0 pPn,Ω‚
Pn plog pX `Hqqq Ñ

Ñ H0 pPn,Ω‚
Pn plogXq ‘ Ω‚

Pn plog pX `Hqqq Ñ H0 pPn,Ω‚
Pn plogXqq

Ñ . . .

and

0 Ñ H0 pPn,Ω‚
Pn p˚X ` ˚Hqq Ñ K‚ Ñ H0 pPn,Ω‚

Pn p˚Xqq Ñ . . . .

Now we use the quasiisomorphisms

Ω‚
Pn plogXq

–
Ñ ι˚Ω

‚
PnzX

and
Ω‚
Pn plog pX `Hqq

–
Ñ j˚Ω

‚
PnzpXYHq,

where ι : X ãÑ Pn and j : X Y H ãÑ Pn denote the inclusion maps. Hence
we obtain quasiisomorphisms

H0 pPn,Ω‚
Pn plog pX `Hqqq Ñ H0 pPn,Ω‚

Pn p˚X ` ˚Hqq

and
H0 pPn,Ω‚

Pn plogXqq Ñ H0 pPn,Ω‚
Pn p˚Xqq

and by the 5-Lemma a quasiisomorphism

H0 pPn,Ω‚
Pn plogXq ‘ Ω‚

Pn plog pX `Hqqq Ñ K‚.

□

We next define a residue map on the cohomology of the complex
´

K‚, d̃
¯

of global rational forms. As we are going to see that this residue map
coincides with the residue map in Definition 8.1.8, we use the same notation.

8.1.14 Definition. The residue map for classes of rational forms is de-
fined by

Resq
pX,Dq|Pn : Hq

´

K‚, d̃
¯

Ñ Hq´1 pX,D,Cq – Hom pHq´1 pX,Dq ,Cq ,

rpη1, η2qs ÞÑ

´

Resq
pX,Dq|Pn rpη1, η2qs : Hq´1 pX,Dq Ñ C,

rγs ÞÑ

ż

τpγq

η1 ´

ż

τ 1pBγq

η2

¸

.

It is easily checked that the map Resq
pX,Dq|Pn is well-defined.

8.1.15 Corollary. The residue map

ReskpX,Dq|Pn : Hk
´

Ω‚
Pn plogXq ‘ Ω‚

Pn plog pX `Hqq , d̃
¯

Ñ Hk´1 pX,D,Cq

defined in Definition 8.1.8 coincides with the residue map for pairs of ratio-
nal forms Resq

pX,Dq|Pn defined in Definition 8.1.14 via the isomorphism

of Theorem 8.1.13.
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Proof of Corollary 8.1.15: Using Remark 8.1.4 we obtain the following
diagram:

Hk pPnz pX `Hq ,Cq //

ResLT,k
D|Pn

��

Hk pK‚q //

Resk
pX,Dq|Pn

��

Hk pPnzX,Cq

ReskX|Pn
��

Hk´2 pD,Cq // Hk´1 pX,D,Cq // Hk´1 pX,Cq .

(8.1.15.1)

The left vertical arrow comes from the description of ResLT,kD|Pn in [LT93],

Chapter 2. Now the claim results from comparing Diagram 8.1.9.1 with
Diagram 8.1.15.1. □

Similarly to the case of hypersurfaces and complete intersections in a
projective space, we will now formulate Corollary 8.1.15 in an explicit way
that is accessible for computations.
We recall the maps

αq : H
0 pPn,OPn pqd1 ´ n´ 1qq Ñ Fn´qHn´1 pX,Cq ,

defined in Theorem 7.2.4 and

ΨLT
p : H0

¨

˚

˝

Pn,
à

pp1,p2qPNˆN,
p1`p2“p

OPn pp1d1 ` p2d2 ´ n´ 1q

˛

‹

‚

Ñ Fn´pHn´2 pD,Cq ,

defined in Corollary 7.3.10.

8.1.16 Notation. We set

Cp1,p2 :“ OPn pp1d1 ` p2d2 ´ n´ 1q ,

Cq :“ OPn pqd1 ´ n´ 1q .

Furthermore, we define the map

ΨpX,Dq
p,q : H0

¨

˚

˝

Pn,OPn pqd1 ´ n´ 1q ‘
à

pp1,p2qPNˆN,
p1`p2“p

OPn pp1d1 ` p2d2 ´ n´ 1q

˛

‹

‚

Ñ Hn´1 pX,D,Cq ,

pS,R1, . . . , Rp´1q ÞÑ ResnpX,Dq|Pn

«˜

S

P q
∆,

p´1
à

k“1

Rk
P kQp´k

∆

¸ff

.

8.1.17 Theorem. We get the following diagram

H0
´

Pn,
À

p1`p2“p Cp1,p2
¯

//

ψLT
p

��

H0
´

Pn, Cq ‘
À

p1`p2“p Cp1,p2
¯

ψpX,Dq
p,q

��

// H0 pPn, Cqq

ψq

��
Hn´2 pD,Cq

ζ1 // Hn´1 pX,D,Cq
ζ2 // Hn´1 pX,Cq ,
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where the upper row is defined in the obvious way and ζ1 and ζ2 are the
canonical maps given by the cohomology sequence of pairs. The left square is
commutative. The right square is commutative if the map Hn´1 pX,D,Cq Ñ

Hn´1 pX,Cq is surjective.

Proof of Theorem 8.1.17: Step 1. At first we show the commutativity

of the right square. Let pS,R1, . . . , Rp´1q P H0
´

Pn, Cq ‘
À

pp1`p2“pq Cp1,p2
¯

,

then ψ
pX,Dq
p,q pS,R1, . . . , Rp´1q is the linear form

Hn´1 pX,Dq Ñ C, rγs ÞÑ

ż

τpγq

S

P q
∆ ´

ż

τ 1pBγq

p´1
ÿ

k“1

Rk
P kQp´k

∆.

The map ζ2 restricts ψ
pX,Dq
p,q pS,R1, . . . , Rp´1q to Hn´1 pXq, which lies in-

jective in Hn´1 pX,Dq, since the map Hn´1 pX,D,Cq Ñ Hn´1 pX,Cq is
assumed to be surjective. Then obviously

ζ2 ˝ ψpX,Dq
p,q pS,R1, . . . , Rp´1q “ ψq pSq .

Step 2. In the second step we show that the left diagram is commutative.

So let pR1, . . . , Rp´1q P H0
´

Pn,
À

p1`p2“p Cp1,p2
¯

. Then ψLTp pR1, . . . , Rp´1q

is the linear form

Hn´2 pDq Ñ C, rγs ÞÑ

ż

τ 1pγq

p´1
ÿ

k“1

Rk
P kQp´k

.

The composition ζ1˝ψLTp pR1, . . . , Rp´1q can be identified with the restriction

of the linear form ψLTp pR1, . . . , Rp´1q to the space

V :“ trγs P Hn´2 pDq|Hn´2 pιq rγs “ 0 P Hn´2 pXqu .

For each closed cycle γ P Cn´2 pDq with rγs P V , there exists a cycle γ̃ P

Cn´1 pXq such that B pγ̃q “ γ P Cn´1 pDq and rγ̃s P Hn´1 pX,Dq. Then

ζ1 ˝ ψLTp pR1, . . . , Rp´1q prγ̃sq “ ψpX,Dq
p,q p0, R1, . . . , Rp´1q prγ̃sq .

□

8.2 Hodge and pole-order filtration

We obtain a mixed Hodge structure on Hn´1 pX,D,Cq in the following way:
The mixed Hodge structure onHn´1 pXzD,Cq given by the logarithmic com-
plex induces a mixed Hodge structure on the dual space Hn´1 pXzD,Cq

_,
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which is canonically isomorphic to Hn´1 pX,D,Cq (see Theorem 4.2.37).
The filtration is given as follows by:

Fn´1 :
`

Hn´1 pX,OXq
˘_

– Hn´1,0 pXq

Fn´2 : Fn´1 ‘
`

Hn´2
`

X,Ω1
X plogDq

˘˘_

Fn´3 : Fn´2 ‘
`

Hn´3
`

X,Ω2
X plogDq

˘˘_

...

F 0 : F 1 ‘
`

H0
`

X,Ωn´1
X plogDq

˘˘_
.

On the space Hn´2
var pDq we have the following filtration steps:

Fn´1
var pDq : 0

Fn´2
var pDq : Hn´2,0 pDq

Fn´3
var pDq : Fn´2 ‘Hn´3,1

var pDq

...

F 0
var pDq : F 1 ‘H0,n´2

var pDq .

Using the canonical Hodge filtration on Hn´1 pX,Cq, the sequence is a se-
quence of mixed Hodge structures, i.e. there are exact sequences

0 Ñ F kHn´2
var pDq Ñ F kHn´1 pX,D,Cq Ñ F k kerHn´1 pX,Cq Ñ 0,

(8.2.0.1)
where

kerHn´1 pX,Cq :“ ker
`

Hn´1 pX,Cq Ñ Hn´1 pD,Cq
˘

.

We explain Sequence 8.2.0.1 for the case that k “ n´ 2 and D ample in
detail. The ampleness implies that the map Hn´1 pX,D,Cq Ñ Hn´1 pX,Cq

is surjective. Modulo H0
`

X,Ωn´1
X

˘

, Sequence 8.2.0.1 reads

0 Ñ H0
`

D,Ωn´2
D

˘

Ñ Hn´2
`

X,Ω1
X plogDq

˘_
Ñ Hn´2

`

X,Ω1
X

˘_
Ñ 0.

UsingH0
`

D,Ωn´2
D

˘

– Hn´2 pD,ODq
_ andH1

`

X,Ωn´2
X

˘

– Hn´2
`

X,Ω1
X

˘_

and dualizing the sequence, we obtain

0 Ñ Hn´2
`

X,Ω1
X

˘

Ñ Hn´2 pD,ODq Ñ Hn´2
`

X,Ω1
X

˘

Ñ 0.

This is just the part of the cohomology sequence associated to the residue
sequence

0 Ñ Ω1
X Ñ Ω1

X plogDq Ñ OD Ñ 0.

In fact, Hn´3 pD,ODq “ 0, as D is ample and Hn´1
`

X,Ω1
X

˘

“ 0, since X
is Calabi-Yau.
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8.2.1 Remark. Using the isomorphism

Hn´1 pX,D,Cq – Hn´1 pX,Cq ‘Hn´2
var pDq (8.2.1.1)

we get the Hodge filtration

Fn´1 : Hn´1,0 pXq

Fn´2 : Fn´1 ‘Hn´2,1 pXq ‘Hn´2,0
var pDq

Fn´3 : Fn´2 ‘Hn´3,2 pXq ‘Hn´3,1
var pDq

...

F 0 : F 1 ‘H0,n´1 pXq ‘H0,n´2
var pDq .

As an application of Theorem 8.1.17, we obtain

8.2.2 Theorem. We assume V “ Pn and deg pXq “ d1,deg pHq “ d2;
then according to Bott’s theorem, the vanishing hypothesis is satisfied.

1. im
´

Ψ
pX,Dq
p,q

¯

P Fn´rHn´1 pX,D,Cq, where n ´ r is the minimum of

the numbers n´ q and n´ p.

2. If n is odd, then Ψ
pX,Dq
p,q is surjective for each p, q.

3. If n is even, then im
´

Ψ
pX,Dq
p,q

¯

is not surjective in general; in that case

it has codimension 1 in Fn´rHn´1 pX,D,Cq, where r is the maximum
of p and q.

8.3 A basis for relative cohomology

We now consider a family pX ,Dq. For carrying out the Griffiths-Dwork
algorithm, we need a basis of Hn´1 pX,D,Cq, which we will set up now.

As parameter spaces for the families X and D, we take local complex
manifolds S1 and S2. We start with a hypersurface

X̃ Ă Pn ˆ S1.

More precisely, Xz “ tPz “ 0u Ă Pn is given by a homogeneous polynomial

Pz P H0 pPn,OPn pn` 1qq ,

which varies holomorphically with z P S1. Let

H̃ Ă Pn ˆ S2
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be a second hypersurface given analogously by Hu “ tQu “ 0u Ă Pn for
each u P S2, where Qu is a homogeneous polynomial on Pn for u P S2 with
Qu P H0 pPn,OPn pdqq for some d.

In summary,

X̃ “ pXz “ tPz “ 0uqzPS1

π1
Ñ S1,

H̃ “ pHu “ tQu “ 0uquPS2

π2
Ñ S2.

We define X and H as families over S :“ S1 ˆ S2:

X :“ X̃ ˆ S2
π1ˆid
ÝÑ S

H :“ S1 ˆ H̃1
idˆπ2
ÝÑ S

Finally we define a divisor D in X by

D :“ tXz XHu| z P S1, u P S2u
pπ1,π2q
ÝÑ S1 ˆ S2

and set Dz,u :“ D XXz XHu.

Let rΩs P Hn´1,0 pX,Dq – Hn´1 pXq be the class of a holomorphic non-
vanishing pn´ 1q-form onX, and∇ be the Gauß-Manin connection attached
to the local system Hn´1 pXz, Dz,u,Cq (cp. 9.5.1).

8.3.1 Lemma. We suppose that hp,n´1´p pXq “ 1 for all p “ 0, . . . , n ´

1 and that hq,n´2´q
var pDq “ 1 for all q “ 0, . . . , n ´ 2. Then a basis of

Hn´1 pX,D,Cq is given by the 2n´ 1 elements

rΩs ,∇ψ rΩs ,∇2
ψ rΩs , . . . ,∇n´1

ψ rΩs ,∇ϕ rΩs ,∇ψ∇ϕ rΩs , . . . ,∇n´2
ψ ∇ϕ rΩs

P Hn´1 pX,D,Cq .

Proof of Lemma 8.3.1: This is an immediate consequence of Theorem
8.2.2. □

8.4 The Griffiths-Dwork method for pairs

We continue assuming the Setup 8.0.-25 and start discussing the approach
of Jockers and Soroush.

8.4.1 The approach of Jockers and Soroush

In the paper [JS09a] Jockers and Soroush introduce an integral in the case
of Calabi-Yau 3-folds,

ż

logQ

P
∆,
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and formally compute with this integral. However, this integral needs to
be defined properly. In [LLY12] Li, Lian and Yau take a slightly different
approach and show that the formal computations give the correct result; see
Chapter 9, where we extend the method of Li, Lian and Yau to triples. In
this section we show that at least

ş logQ
P ∆ can be defined and gives a 3-form

on X.

8.4.1 Lemma. There is a well-defined class R pz, uq P H3 pX,Cq defined
by

ż

δ
R pz, uq “

ż

T pγq

logQu
Pz

∆

for each δ P H3 pXq with δ “ rι˚ pγqs for a closed cycle γ P C3 pXzDq, the
meaning of the integral on the right hand side being explained in the proof.

Proof of Lemma 8.4.1: We first claim that H3 pXzDq Ñ H3 pXq is
surjective. To see this we consider the following diagram

H3 pX,D,Cq //

–

��

H3 pX,Cq

–

��
H3 pXzDq // H3 pXq ,

where the vertical arrows are given by Poincaré duality and therefore are
isomorphisms. Now it suffices that the map H3 pX,D,Cq Ñ H3 pX,Cq is
surjective, which follows from the assumption that H3 pD,Cq “ 0.

Let ta1, . . . , aru be a basis of H3 pXq. Since the map H3 pXzDq Ñ

H3 pXq is surjective, for each k P t1, . . . , ru we can choose closed cycles
γk P Ck pXzDq such that ak “ rι˚ pγkqs.
Let

T pγkq P H4

`

P4z pX YHq
˘

be the tube over γk in P4z pX YDq for each k.
Let σ : C5z t0u Ñ P4 be the projection.

Claim: There exist classes

T̃ pγjq P H4

`

σ´1
`

P4z pX YHq
˘˘

,

such that σ˚

´

T̃ pγjq
¯

“ T pγjq.

Proof of Claim: Let B :“ P4z pX YHq and Z :“ σ´1 pBq. We need to
show that the map σ˚ : H4 pZq Ñ H4 pBq is surjective. Since σ : Z Ñ B is
a C˚ bundle, we have an exact sequence, see [Spa81], p. 483,

H4 pZq
σ˚
Ñ H4 pBq Ñ H2 pBq .
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So it suffices to show that H2 pBq “ 0. By duality

H2 pBq – H6
`

P4, X YH
˘

.

Now we consider the exact sequence of pairs

. . . Ñ 0 “ H5
`

P4,C
˘

Ñ H5 pX YH,Cq Ñ H6
`

P4, X YH,C
˘

Ñ

Ñ H6
`

P4,C
˘

– C Ñ H6 pX YH,Cq Ñ . . . .

The map
µ : H6

`

P4,C
˘

Ñ H6 pX YH,Cq

is injective; in fact,

µ
´

c1 pOP4 p1qq
3
¯

“ c1 pOP4 p1q|XYHq
3

‰ 0.

Hence it suffices to show that H5 pX YH,Cq “ 0. To that end we consider
the Mayer-Vietoris sequence

. . . Ñ H4 pX,Cq ‘H4 pH,Cq Ñ H4 pD,Cq – C Ñ H5 pX YH,Cq Ñ

Ñ H5 pX,Cq ‘H5 pH,Cq Ñ . . . .

Obviously the map H4 pX,Cq ‘ H4 pH,Cq Ñ H4 pD,Cq does not vanish,
and H5 pX,Cq “ H5 pH,Cq “ 0 by the Lefschetz hyperplane theorem and
duality. Therefore the Mayer-Vietoris sequence implies H5 pX YH,Cq “ 0.
This proves the claim.

We view Q as a map C5z t0u Ñ C, which we denote by σ˚Q.
Let E :“ pσ˚Qq

´1
pR´q Ă C5z t0u and

U :“
`

C5z t0u
˘

zE

be the complement. We choose the standard branch of the logarithm, so
that log pσ˚Q|U q makes sense. Then we define:

ż

T pγkq

logQ

P
∆ :“

ż

T̃ pγkqXU
σ˚

ˆ

∆

P

˙ˇ

ˇ

ˇ

ˇ

U

¨ log ppσ˚Qq|U q .

We have to show that this integral is finite. Since T pγjq X H “ H, hence

T̃ pγjq X tσ˚Q “ 0u “ H, and therefore σ˚Q
´

T̃ pγjq
¯

is compact in Cz t0u.

Therefore log pσ˚Qq is bounded near T̃ pγjq and hence the integral exists.
In summary we define a linear form on H3 pXq by

R pajq :“

ż

T pγjq

logQ

P
∆.

□
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8.4.2 Remark. A priori the construction of R pz, uq depends on the
choices made in the construction. If the approach of Jockers and Soroush
works, R pz, uq should be represented by a p3, 0q-form, which is unique up
to a constant. This however seems not really clear. But if R pz, uq is rep-
resented by a p3, 0q-form, then the construction of R pz, uq does not depend
on the choices made in the construction.

8.4.2 The work of Li, Lian and Yau

The paper [LLY12] justifies the method of Jockers and Soroush for determin-
ing a Picard-Fuchs equation mathematically. Li, Lian and Yau show that
the application of the Gauß-Manin connection to the periods of the residue
of a holomorphic n-form with poles along X coincides with taking partial
derivatives of the class R pz, uq introduced in Lemma 8.4.1. We will extend
this to the case of two divisors and carry out details in the next chapter.

To start with, let ωz P H0 pPn,KPn pXzqq be a holomorphic family of
holomorphic n-forms on Pn with poles along Xz. Then Li, Lian and Yau
show

8.4.3 Theorem. [LLY12] Let Γz,u P H3 pXz, Dz,uq The periods

Π : S Ñ C, Π pz, uq :“

ż

rΓz,us

Resn´1
pXz ,Dz,uq

rpωXz , 0qs

satisfy the following relations:

1. BzΠ pz, uq “
ş

rΓz,us
Resn´1

pXz ,Dz,uq
rpBzωXz , 0qs “

ş

τpΓz,uq
Bzωz,

where τ pBΓz,uq Ă Hu,

2. BuΠ pz, uq “
ş

rΓz,us
Resn´1

pXz ,Dz,uq

”´

0, BuQu
Qu

ωz

¯ı

“

“ ´
ş

BΓz,u
ResLTDz,u|Pn

”

BuQu
Qu

ωz

ı

.

8.4.4 Corollary. [LLY12] All derivatives of Π coincide with the deriva-
tives of R, i.e.,

BzΠ pz, uq “ BzR pz, uq ,

BuΠ pz, uq “ BuR pz, uq ,

BzBuΠ pz, uq “ BzBuR pz, uq .

8.4.3 Griffiths-Dwork reduction for pairs

Similarly to the case of hypersurfaces or complete intersections in projective
spaces, the Griffiths-Dwork algorithm for pairs uses cohomology relations
that appear as residues of rational exact forms. The following is the main
result in this section, compare [JS09a], Chapter 3.2:
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8.4.5 Theorem. For

Am P H0 pPn,OPn pk ¨ deg pP q ´ nqq

and
Bm P H0 pPn,OPn pk ¨ deg pP q ` l ¨ deg pQq ´ nqq

the following cohomology relations hold:

1.
«˜

0,
n`1
ÿ

m“1

„

k
BmBxmP

P k`1Ql
` l

BmBxmQ

P kQl`1

ȷ

∆

¸ff

“

“

«˜

0,
n`1
ÿ

m“1

„

k
BmBxmP

P k`1Ql
` l

BmBxmQ

P kQl`1

ȷ

∆

¸ff

P Hn
´

K‚, d̃
¯

2.
«˜

n`1
ÿ

m“1

k
AmBxmP

P k`1
∆,

n`1
ÿ

m“1

BxmQ ¨Am
P kQ

∆

¸ff

“

“

«˜

n`1
ÿ

m“1

´
BxmAm
P k

∆, 0

¸ff

P Hn
´

K‚, d̃
¯

.

For the following lemma, which will be used in the proof of Theorem
8.4.5, we refer to [Gri69], Theorem 7.2.2 and 7.2.3, and [LT93].

8.4.6 Lemma. Let pη1, η2q P H0
`

Pn,Ωn´1
Pn pkXq ‘ Ωn´1

Pn pkX ` lHq
˘

.
Then there are homogeneous polynomials

Am P H0 pPn,OPn pk ¨ deg pP q ´ nqq

and
Bm P H0 pPn,OPn pk ¨ deg pP q ` l ¨ deg pQq ´ nqq

such that

η1 “
ÿ

măj

xjAm ´ xmAj
P k

p´1q
m`j dx1 ^ . . .^ ydxm ^ . . .^ ydxj ^ . . .^ dxn`1

and

η2 “
ÿ

măj

xjBm ´ xmBj
P kQl

p´1q
m`j dx1 ^ . . .^ ydxm ^ . . .^ ydxj ^ . . .^ dxn`1.

Consequently,

dη1 “

n`1
ÿ

m“1

„

k
AmBxmP

P k`1
´

BxmAm
P k

ȷ

∆

and

dη2 “

n`1
ÿ

m“1

„

k
BmBxmP

P k`1Ql
` l

BmBxmQ

P kQl`1
´

BxmBm
P kQl

ȷ

∆.
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Proof of Theorem 8.4.5: Let

pη1, η2q P H0
`

Pn,Ωn´1
Pn pkXq ‘ Ωn´1

Pn pkX ` lHq
˘

be as in Lemma 8.4.6.

An easy computation yields

η1 ^
dQ

Q
“

“

n`1
ÿ

m“1

BxmQ ¨Am
P kQ

∆ ´

n`1
ÿ

j“1

p´1q
j degQ

Aj
P k

dx1 ^ . . .^ ydxj ^ . . .^ dxn`1

and
«

n`1
ÿ

j“1

p´1q
j degQ

Aj
P k

dx1 ^ . . .^ ydxj ^ . . .^ dxn`1

ff

P ker
´

ResLT,nDz,u|M

¯

.

As d̃ pη1, η2q “

´

dη1, η1 ^
dQ
Q ´ dη2

¯

, we conclude:

1. For η1 “ 0, i.e., Am “ 0 for each m, we get the relation

«˜

0,
n`1
ÿ

m“1

ˆ

k
BmBxmP

P k`1Ql
` l

BmBxmQ

P kQl`1
´

BxmBm
P kQl

∆

˙

¸ff

P Hn
´

K‚, d̃
¯

,

thus
«˜

0,
n`1
ÿ

m“1

ˆ

k
BmBxmP

P k`1Ql
` l

BmBxmQ

P kQl`1

˙

∆

¸ff

“

«˜

0,
n`1
ÿ

m“1

BxmBm
P kQl

∆

¸ff

P Hn
´

K‚, d̃
¯

. (8.4.6.1)

2. For η2 “ 0, we obtain

d̃ pη1, 0q “

ˆ

dη1, η1 ^
dQ

Q

˙

“

“

˜

n`1
ÿ

m“1

ˆ

k
AmBxmP

P k`1
´

BxmAm
P k

˙

∆,
n`1
ÿ

m“1

BxmQ ¨Am
P kQ

∆

´

n`1
ÿ

j“1

p´1q
j degQ

Aj
P k

dx1 ^ . . .^ ydxj ^ . . .^ dxn`1

¸

.

Thus
«˜

n`1
ÿ

m“1

ˆ

k
AmBxmP

P k`1
´

BxmAm
P k

˙

∆,
n`1
ÿ

m“1

BxmQ ¨Am
P kQ

∆

¸ff

“ 0,
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and therefore
«˜

n`1
ÿ

m“1

k
AmBxmP

P k`1
∆,

n`1
ÿ

m“1

BxmQ ¨Am
P kQ

∆

¸ff

“

«˜

n`1
ÿ

m“1

´
BxmAm
P k

∆, 0

¸ff

P Hn
´

K‚, d̃
¯

. (8.4.6.2)

□
This establishes the proof of Theorem 8.4.5.

The general procedure
We finally describe the general procedure how to compute the Picard-

Fuchs equation.
We denote the ordered, p2n´ 1q-dimensional basis of the relative coho-

mology Hn´1 pX,D,Cq given by Lemma 8.3.1 by π pz, uq.
In order to calculate the Picard-Fuchs operators, we determine C-valued

p2n´ 1q ˆ p2n´ 1q-matrices Mz pz, uq and Mu pz, uq such that

∇zπ pz, uq “ Mz pz, uqπ pz, uq

and
∇uπ pz, uq “ Mu pz, uqπ pz, uq .

In order to do this, we have to use the cohomology relations given above.
Each element of ∇zπ pz, uq and ∇uπ pz, uq has to be written as a linear
combination of the basis π.

The matrices Mz pz, uq and Mu pz, uq yield differential operators, the
Picard-Fuchs operators.

8.5 An example

As an application of the theory presented so far we consider now the case of
quintic 3-foldsX with a divisorD. However, as already mentioned, H2,1 pXq

is too large for the computation of a Picard-Fuchs eqution. Therefore it is
common to consider only those quintics having a sufficiently large symmetry
group G. Then we will argue on X{G instead of X. Also the divisor we
consider needs to be G-invariant, so that we can consider D{G in X{G.

The case without a divisor has been carried out by Greene–Plesser in
[GP90] and Batyrev. It has however to be noticed that the divisor D has to
be singular, so the theory developed so far has to be adapted to take care
of this difficulty.

8.5.1 A family of Calabi-Yau 3-folds

We briefly recall the mirror construction of Greene and Plesser [GP90], see
also [GHJ03] and [CK99]. For each ψ P C let Xψ :“ tPψ “ 0u Ă P4 be
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a 1-dimensional family of quintic Calabi-Yau 3-folds given by a family of
homogeneous polynomials Pψ P H0

`

P4,OP4 p5q
˘

on P4, namely

Pψ prx1 : . . . : x5sq :“ x51 ` x52 ` x53 ` x54 ` x55 ´ 5ψ x1x2x3x4x5.

It is easy to compute that Xψ is non-singular for ψ5 ‰ 1 and for ψ5 “ 1 it
is singular in 125 distinct points. So from now on we will assume ψ ‰ 1. By
Batyrev’s theorem, h1,1 pXψq “ 1 and h1,2 pXψq “ 101.

The group G̃ :“ pZ{5Zq
5

{ pZ{5Zq acts on P4 in the following way: To
begin with, there is an action of pZ{5Zq

5 on P4 by

pZ{5Zq
5

ˆ P4 Ñ P4, pa1, . . . , a5q ˆ rx1 : . . . : x5s ÞÑ rξa1 : . . . : ξa5s ,

where ξ :“ e
2πi
5 . Since the subgroup Z{5Z :“ tpa, . . . , aq| a P Zu acts as the

identity on P4, we obtain the G̃-action on Xψ. Furthermore, the subgroup

G :“ tpa1, . . . , a5q| a1 ` . . .` a5 “ 0u – Z3
5 ă G̃

of G̃ acts on P4; generators for the G-action on P4 can be given in the
following way.

G “ ⟨g1 :“ p1, 0, 0, 0, 4q , g2 :“ p0, 1, 0, 0, 4q , g3 :“ p0, 0, 1, 0, 4q ,

g4 :“ p0, 0, 0, 1, 4q⟩ ,

where e.g. g1 acts on P4 by

g1 : rx1 : x2 : x3 : x4 : x5s ÞÑ
“

ρx1 : x2 : x3 : x4 : ρ
4x5

‰

.

Here ρ :“ e
2πi
5 .

We notice that Xψ is G-invariant and we set

Yψ :“ Xψ{G.

It is known that the singular locus of Yψ consists of 10 curves isomorphic to
P1; three of them meeting in one point. Furthermore, Yψ is Gorenstein with

canonical singularities, and has crepant resolutions π : qXψ Ñ Yψ.

8.5.1 Theorem. [Bat94] We assume ψ5 ‰ 1. The variety qXψ is a Calabi-

Yau 3-fold with Hodge numbers h1,1
´

qXψ

¯

“ 101 and h1,2
´

qXψ

¯

“ 1.

8.5.2 Corollary. We obtain the following equalities:

1. h3,0 pYψq “ h3,0 pXψq
G

“ h0,3 pXψq
G

“ h0,3 pYψq “ 1,

2. h1,1 pYψq “ h1,1 pXψq
G

“ 1,

3. h2,1 pYψq “ h2,1 pXψq
G

“ h1,2 pXψq
G

“ h1,2 pYψq “ 1.
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Proof of Corollary 8.5.2: To begin with, we notice that by Proposition
4.2.40, we have Hp,q pYψq “ Hp,q pXψq

G. The first assertion is obvious.

Since dimH1,1 pXψq “ 1, we have dimH1,1 pXψq
G

ď 1. On the other

hand, obviously H1,1 pXψq
G

‰ 0.

Concerning H2,1 pYψq, we use h2,1
´

qXψ

¯

“ 1. Since π˚

´

Ω2
qXψ

¯

“ Ω̃2
Yψ

(see Remark 4.2.42), the Leray spectral sequence gives

h2,1 pYψq “ h1
´

Yψ, Ω̃
2
Yψ

¯

ď h1
´

qXψ,Ω
2
qXψ

¯

“ 1.

The non-vanishing ofH2,1 pYψq “ H2,1 pXψq
G will be clear, as it parametrizes

G-invariant deformations of Xψ and all Xψ are G-invariant. Therefore it will
be non-zero. We will furthermore construct elements in H2,1 pYψq explicitly.
Finally, by the same arguments or by duality, we obtain H1,2 pYψq “ 1. □

8.5.2 A family of smooth divisors inside the family of Calabi-
Yau 3-folds

Let Hϕ :“ tQϕ “ 0u Ă P4 be a family of hypersurfaces in P4 given by

Qϕ prx1 : . . . : x5sq :“ x45 ´ ϕ x1x2x3x4.

Then for ϕ ‰ 0, the hypersurface Hϕ is singular in the 6 lines

txi “ xj “ x5 “ 0, 1 ď i ă j ď 4u .

Let
Dψ,ϕ :“ Xψ XHϕ

for ψ, ϕ P C, ψ5 ‰ 1, ϕ ‰ 0.

8.5.3 Proposition. We suppose that ϕ ‰ ψ and ψ pψ ´ ϕq
4
`44 p5ϕ´ ψq`

43 ¨ 20 pψ ´ ϕq “ 0. Then

Sing pDψ,ϕq “ pSingHϕq XXψ “

“
ď

1ďiăjď4

␣

rx1 : . . . : x5s P P4
ˇ

ˇx51 ` . . .` x55 “ 0, xi “ xj “ x5 “ 0
(

.

Proof of Proposition 8.5.3: We write D “ Dψ,ϕ and H “ Hϕ. It is
immediately checked that

pSingHϕq XXψ “

“
ď

1ďiăjď4

␣

rx1 : . . . : x5s P P4
ˇ

ˇx51 ` . . .` x55 “ 0, xi “ xj “ x5 “ 0
(

.

Therefore it suffices to show that

Sing pDq “ Sing pHq XD,
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i.e., that there are no singularities of D which are not singularities of H.
Arguing by contradiction, we assume that there is a point a P Sing pDq, such
that a R Sing pHq.

Then the Jacobian matrix JpP,Qq of P and Q does not have maximal
rank in a and there is a number λ P C, λ ‰ 0, such that

λ ¨ JP paq “ JQ paq ,

where JP and JQ denote the Jacobian matrices of P and Q.
Now, choosing the chart given by x1 “ 1 and assuming x5 “ 0, it follows

easily that a “ r1 : 0 : . . . : 0s in contradiction to our assumption JQ paq ‰ 0.
Thus x5 ‰ 0. The same argument holds if x2 “ 1, x3 “ 1 or x4 “ 1.
Therefore we assume that x5 “ 1. It follows easily that x51 “ . . . “ x54 and
all additional singularities of D have the form

rx1 : ρ
a1x1 : ρ

a2x1 : ρ
a3x1 : 1s

for a1, a2, a3 P N and ρ “ e
2πi
5 . Via the action of the group G on D it is

possible to map each of these points to a point r1 : 1 : 1 : 1 : x5s with x5 ‰ 0.
As the action of an element g P G on D is an automorphism of D, the points
rx1 : ρ

a1x1 : ρ
a2x1 : ρ

a3x1 : 1s are singular if and only if r1 : 1 : 1 : 1 : x5s is.
Now a direct computation shows that any point r1 : 1 : 1 : 1 : x5s is singular
if ψ ‰ ϕ and

ψ pψ ´ ϕq
4

` 44 p5ϕ´ ψq ` 43 ¨ 20 pψ ´ ϕq “ 0. (8.5.3.1)

□
As Hϕ being invariant under the action of the group G, the divisor Dψ,ϕ

is invariant under G. So we can form the quotient by the group G.

8.5.4 Definition. We set

D1
ψ,ϕ :“ Dψ,ϕ{G.

8.5.5 Corollary. For general parameters ψ and ϕ, the singular locus

Sing
´

D1
ψ,ϕ

¯

“ p pSing pDψ,ϕqq consists of 6 points, where p : Xψ Ñ Yψ

denotes the projection.

In the following we use the abbreviation D “ Dψ,ϕ and D1 “ D1
ψ,ϕ.

We first determine the Hodge numbers of the G-invariant cohomology

H2 pD,Cq
G

“ H2
`

D1,C
˘

.

At the moment we have not yet shown that D has quotient singulari-
ties. Therefore we define ad hoc H2,0 pDq :“ H0 pD,KDq and H0,2 pDq :“
H2 pD,ODq, where KD :“ KX b O pDq|D P Pic pDq. Of course, provided D
has quotient singularities, then this coincides with the previous Definition
4.2.41 (see [Ste77]).
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8.5.6 Lemma. The Hodge groups of the G-invariant cohomology of D “

Dψ,ϕ with ψ and ϕ as in Proposition 8.5.3 satisfy the following property:

H2,0 pDq
G

– H0,2 pDq
G

– C.

Proof of Lemma 8.5.6: The ideal sheaf sequence

0 Ñ OP4 p´1q – JX|P4 b OP4 pHq Ñ OP4 pHq Ñ OX pDq Ñ 0

yields an isomorphism

H0
`

P4,OP4 pHq
˘

– H0 pX,OX pDqq

and therefore

H0
`

P4,OP4 pHq
˘G

– H0 pX,OX pDqq
G .

We observe that dimH0
`

P4,OP4 p4q
˘G

“ 2. In fact, a basis is given by the
homogeneous polynomials x45 and x1x2x3x4.

Furthermore

H0 pX,OX pDqq
G

– H0
`

Y,OY

`

D1
˘˘

– H3
`

Y,OY

`

´D1
˘˘

.

Since Y is a singular Calabi-Yau 3-fold, H2 pY,OY q “ 0 andH3 pY,OY q – C.
Then the exact sequence

0 “ H2 pY,OY q Ñ H2
`

D1,OD1

˘

Ñ H3
`

Y,OY

`

´D1
˘˘

Ñ

Ñ H3 pY,OY q – C Ñ H3
`

D1,OD1

˘

“ 0

yields dimH2 pD1,OD1q “ 1. Thus we know that

H0,2 pDq
G

– H0,2
`

D1
˘

– H2
`

D1,OD1

˘

is 1-dimensional. D1 being Cohen-Macaulay as a normal surface, we obtain
by Serre-duality

H2,0
`

D1
˘

– H0,2
`

D1
˘

,

hence H2,0 pDq
G

– H0,2 pDq
G

– C. □

8.5.7 Lemma. The surface D1 “ D1
ψ,ϕ with ψ and ϕ sufficiently general

has rational singularities.
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Proof of Lemma 8.5.7: Let τ : pD1 Ñ D1 be a minimal desingularisation.
We need to show that

R1τ˚

`

O
pD1

˘

“ 0.

In order to prove this, we compare the cohomology of pD1 and D1. We know
that H1 pD1,OD1q “ H1 pD,ODq

G
“ 0 and H2 pD1,OD1q – C. Arguing by

contradiction we assume that

R1τ˚

`

O
pD1

˘

‰ 0.

We recall that D1 has exactly 6 singularities which by symmetry are all of
the same type. Hence all singularities are irrational and therefore

h0
`

D1, R1τ˚O
pD1

˘

ě 6.

By the Leray spectral sequence we obtain

h1
´

pD1,O
pD1

¯

ě 5 and h2
´

pD1,O
pD1

¯

ď 1.

Thus

χ
`

O
pD1

˘

ď ´3

and therefore by surface classification pD1 is birationally equivalent to a ruled
surface. So D1 is covered by rational curves. Since D1 “ D1

ϕ varies with ϕ,

the variety Y is covered by rational curves and so is qX. This is a well-known
contradiction: Calabi-Yau 3-folds are not covered by rational curves. □

8.5.8 Proposition. The surface D “ Dψ,ϕ has rational Gorenstein sin-
gularities for any ψ, ϕ as in Proposition 8.5.3.

Proof of Proposition 8.5.8: By symmetry, it suffices to consider one
singular point of D, e.g., x “ r1 : ´1 : 0 : 0 : 0s. We choose the standard
chart x1 “ 1 and compute in C4. Then we apply the implicit function
theorem to Pψ and resolve Pψ locally as x2 “ g px3, x4, x5q with g p0, 0, 0q “

´1. Then locally D Ă C3 is given by tf “ 0u, where

f px3, x4, x5q “ x45 ´ ϕ g px3, x4, x5qx3x4.

Since the Hesse matrix of f has rank 2 in p0, 0, 0q, the point x is a rational
double point of type An, [GLS07], Theorem I. 2.4.8. □

8.5.9 Corollary. The surface D1 “ D1
ψ,ϕ has quotient singularities for

any ψ, ϕ as in Proposition 8.5.3.
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Proof of Corollary 8.5.9: Let x0 P D1 be a singular point, and take x P

p´1 px0q (recall that p : D Ñ D1 denotes the cover induced by D1 “ D{G).
Since D has rational Gorenstein singularities, D has quotient singularities.
Hence there is an open set W “ W p0q Ă C2 such that U – W {H for some
finite subgroup H Ă Gl p2,Cq. By the open mapping theorem, [GR84],
p.109, p is an open map, hence p pUq is an open neighbourhood of x0 in D1.
The open mapping theorem can be applied since D1 is normal, hence locally
irreducible ([GR84], p.125). Now by a theorem of Brieskorn, [Bri68], Satz
2.8, [Ish14], Theorem 7.4.18, x0 is a quotient singularity. □

8.5.10 Remark. Since quotient singularities are rational, we conclude
again that D1 has rational singularities, actually for all D1 “ D1

ψ,ϕ as in
Proposition 8.5.3 such that D is normal.

8.5.11 Proposition. The hypersurface H is a toric variety. In particular,
the Frölicher spectral sequence with E1-term

Ep,q1 “ Hq
´

H, Ω̃pH

¯

degenerates at E1 and converges to H˚ pH,Cq. Moreover, Poincaré-duality
holds on H. Moreover H has only Gorenstein singularities.

Proof of Proposition 8.5.11: Since H is given by the equation

x45 ´ ϕ x1x2x3x4 “ 0,

is follows easily that H is a toric variety. The assertion concerning the
Frölicher spectral sequence is a theorem of Danilov ([Dan78], Theorem 12.5).
□

8.5.12 Lemma. H3 pD1,Cq “ H3 pD,Cq
G

“ 0.

Proof of Lemma 8.5.12: SinceD1 has only quotient singularities, Poincaré-
duality holds for D1 (see [PS08], p.58), hence

H3
`

D1,C
˘

– H1
`

D1,C
˘

.

So it suffices to prove that H1 pD1,Cq “ 0. Let τ : pD1 Ñ D1 be a min-
imal desingularisation. Since H1 pD1,OD1q “ 0 and since D1 has rational
singularities, we have

H1
´

pD1,O
pD1

¯

“ 0.

Hence H1
´

pD1,C
¯

“ 0 by Hodge decomposition. Using the Leray spectral

sequence we conclude H1 pD1,Cq “ 0. □

8.5.13 Lemma. For the Hodge group of type p1, 1q we have:

H1,1
var pDq

G
“ H1,1 pDq

G
{H1,1 pXq – C.
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Proof of Lemma 8.5.13: We will make use of Section 7.3. However, the
divisor H and the surface D are now singular. The results of Section 7.3
nevertheless remain true for the following reasons.

• The relevant residue maps exist. To verify this, we apply Proposition
4.2.16 to the divisors X and H in the projective manifold P4.

The first two assumptions in Proposition 4.2.16 are satisfied since D
has rational singularities, X and H meet transversally outside the
singular locus Sing pDq “ Sing pHq XX.

To check the third assumption we use Remark 4.2.17 and obtain a finite
set M Ă Sing pHq such that at every p P Sing pDq zM , the variety H
has locally the requested product form. Furthermore, in each compo-
nent txi “ xj “ x5 “ 0, 1 ď i ă j ď 4u, e.g. i “ 3, j “ 4, of Sing pHq

all points with x1, x2 ‰ 0 can be mapped to the point r1 : 1 : 0 : 0 : 0s

via an automorphism of H. Therefore the structure of the singularities
is the same in all these points. Hence, as this set is not finite, no point
of M belongs to it. As every point contained in Sing pHq XX has two
coordinates which are not zero, we obtain pSing pHq XXq XM ‰ H.

• Hk
´

P4, Ω̃P4 plog pX YHqq

¯

“ Hk
`

P4z pX YHq ,C
˘

,

see Theorem 4.2.43.

• Poincaré-duality holds on D (since D has quotient singularities).

• The Lefschetz hyperplane theorem holds for H Ă P4.

• Theorem 7.3.9 and its corollary carry over for surfaces with quotient
singularities.

• The formulas of Li, Lian and Yau remain true in our setting with
essentially the same proof.

We recall the map

ΨLT
3 : H0

¨

˚

˚

˝

P4,
ÿ

pp1,p2qPNˆN,
p1`p2“3

OP4 p5p1 ` 4p2 ´ 5q

˛

‹

‹

‚

Ñ F 1H2 pD,Cq

defined in Corollary 7.3.10. Let

κ : F 1H2 pD,Cq Ñ F 1H2 pD,Cq {F 2H2 pD,Cq – H1,1 pDq
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be the projection and set ΨLT
3 :“ κ ˝ ΨLT

3 . Then, using Corollary 7.3.8,

H1,1
var pDq

G
“ im

´

ΨLT
3

¯G
“

“

#

ResLT,4
D|P4

˜«

2
ÿ

i“1

Ri
P iQ3´i

∆

ff¸ˇ

ˇ

ˇ

ˇ

ˇ

Ri P H0
`

P4,OP4 p5i` 4 p3 ´ iq ´ 5q
˘

+G

“

#

ResLT,4
D|P4

˜«

2
ÿ

i“1

Ri
P iQ3´i

∆

ff¸ˇ

ˇ

ˇ

ˇ

ˇ

R1 P H0
`

P4,OP4 p8q
˘G,1

,

R2 P H0
`

P4,OP4 p9q
˘G,2

)

,

where H0
`

P4,OP4 pdq
˘G,q

denotes the space of homogeneous polynomials R
of degree d on P4, such that R ˝ g “ ρq ¨R for each g P G. We observe that

R1 P H0
`

P4,OP4 p8q
˘G,1

“
⟨
x85, x

2
1x

2
2x

2
3x

2
4, x1x2x3x4x

4
5

⟩
and

R2 P H0
`

P4,OP4 p9q
˘G,2

“
⟨
x95, x

2
1x

2
2x

2
3x

2
4x5, x1x2x3x4x

5
5

⟩
.

In order to obtain the dimension of H1,1
var pDq

G, we have to determine the
dimension of the G-invariant part of ker

`

ΨLT
3

˘

“ im pK3q, where K3 is the
matrix defined in Definition 7.3.19. The Singular programme in Appendix
A.2 shows that the dimension of the kernel is 5. Therefore dimH1,1

var pDq
G

“

1. □

8.5.3 Picard-Fuchs operators for pX,Dq

For the calculation of the Picard-Fuchs operators, we use the G-invariant
relative cohomology H3 pX,D,Cq

G.

8.5.14 Corollary. For general ϕ and ψ, the vector spaces

H3 pXψ, Dψ,ϕ,Cq
G

“ H3
`

Yψ, D
1
ψ,ϕ,C

˘

form a local system.

Proof of Corollary 8.5.14: We note first that the groups H2 pDψ,ϕ,Cq

form a local sytem, since Dψ,ϕ have only rational double points of the same
type (one might argue via a simultaneous resolution). Therefore, having in
mind that H2 pX,Cq – C, the groups H2

var pDψ,ϕq form also a local system.
Since

H3 pDψ,ϕ,Cq – H1 pDψ,ϕ,Cq “ 0,

the groups H3 pXψ, Dψ,ϕ,Cq form a local sytem.



8.5. AN EXAMPLE 155

Now everything remains true for the G-invariant parts. In fact, the
action of G on H3 pXψ,Cq is independent of ψ (one could also argue on Yψ
or one the mirror X̌ψ). The same applies for the cohomology of Dψ,ϕ. □

This corollary shows in particular that the Gauß-Manin connection works
for this singular D and is G-invariant. Therefore the theory of Li, Lian and
Yau is applicable.

Putting things together using again the abbreviations D “ Dψ,ϕ and
X “ Xψ we have the following sequence:

8.5.15 Proposition. We have an exact sequence

0 Ñ F kH2
var pDq

G
Ñ F kH3 pX,D,Cq

G
Ñ F k kerH3 pX,Cq

G
Ñ 0,
(8.5.15.1)

equivalently

0 Ñ F kH2
var

`

D1
˘

Ñ F kH3
`

Y,D1,C
˘

Ñ F k kerH3 pY,Cq Ñ 0. (8.5.15.2)

Proof of Proposition 8.5.15: It suffices to state that H3 pD1,Cq “ 0,
which was proved in Lemma 8.5.12. □

Proposition 8.5.15 yields the following Hodge filtration:

F 3H3 pX,Cq
G : H3,0 pXq

G

F 2H3 pX,Cq
G : F 3 ‘H2,1 pXq

G
‘H2,0

var pDq
G

F 1H3 pX,Cq
G : F 2 ‘H1,2 pXq

G
‘H1,1

var pDq
G

F 0H3 pX,Cq
G : F 1 ‘H0,3 pXq

G
‘H0,2

var pDq
G

We have seen that all Hodge groups H3´p,p pXq
G for p “ 0, . . . , 3 and

H2´p,p
var pDq

G for p “ 0, . . . , 2 are 1-dimensional. Let

ωψ :“
1

Pψ
∆ P H0 pPn,KPn pXψqq .

According to Lemma 8.3.1 a basis of H3 pX,D,Cq
G consists apart from
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Ω :“ Res4pX,Dq rpω, 0qs P H3,0 pX,D,Cq
G of the elements

Bz pΩq “ Res4pX,Dq

„ˆ

5 x1x2x3x4x5
P 2

∆, 0

˙ȷ

B2
z pΩq “ Res4pX,Dq

«˜

2 ¨ 52 px1x2x3x4x5q
2

P 3
∆, 0

¸ff

B3
z pΩq “ Res4pX,Dq

«˜

6 ¨ 53 px1x2x3x4x5q
3

P 4
∆, 0

¸ff

Bu pΩq “ Res4pX,Dq

„ˆ

0,
´5 x1x2x3x4

PQ
∆

˙ȷ

BzBu pΩq “ Res4pX,Dq

„ˆ

0,
´5 x1x2x3x4 ¨ x1x2x3x4x5

P 2Q
∆

˙ȷ

B2
zBu pΩq “ Res4pX,Dq

«˜

0,
´2 ¨ 52 x1x2x3x4 ¨ px1x2x3x4x5q

2

P 3Q
∆

¸ff

.

We apply the Gauß-Manin connection with respect to ψ and ϕ to each of
the seven elements of the basis of H3 pX,D,Cq

G. For each of these elements
we proceed as follows:

In order to use the cohomology relations 8.4.6.1 and 8.4.6.2, we define
matrices:

8.5.16 Definition.

1. Let φ
pX,Dq
p for p ě 2 be the map defined by

φpX,Dq
p :

p´1
ÿ

k“1

H0 pPn,KPn pkY1 ` pp´ kqY2qq Ñ S‘p,

˜

R

P p
∆,

p´1
ÿ

k“1

Pk
P kQp´k

∆

¸

ÞÑ pR,Pp´1, . . . , P1q .

2. For each k ě 2 we define a matrix Kk : S
‘ppn`1qpk´1q`2k`2q Ñ S‘k by

Kk :“ pBk Ik ¨ P Ik ¨Q V1,k V2,kq ,

where Ik is the k ˆ k-identity matrix and Bk is the following k ˆ

ppn` 1q pk ´ 1qq-matrix

Bk :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

´J1 0 0 0 0 0
J2 pk ´ 2q J1 0 . . . 0 0
0 J2 pk ´ 3q J1 . . . 0 0

0 0 0 . . .
...

...

0
...

...
. . . 2J1 0

0 0 0 . . . pk ´ 3q J2 J1
0 0 0 . . . 0 pk ´ 2q J2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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where J1 and J2 are defined as in Definition 7.3.19 and V1,k and V2,k

are the pk ˆ 1q-matrices given by V1,k “ φ
pX,Dq

k

`

Bk´1
z pΩq

˘

and V2,k “

φ
pX,Dq

k

`

Bk´2
z Bu pΩq

˘

for k ě 2.

8.5.17 Proposition. ([JS09a], p. 37) Using the abbreviations

D1 :“ 1 ´ ψ5,

D2 :“ ϕ pϕ´ 5ψq
4

´ 256,

T1 :“ ϕ
`

8000 ´ ϕ pϕ´ 5ψqψ
`

61ϕ2 ´ 790ψϕ` 2825ψ2
˘˘

´ 16384ψ,

T2 :“ 57375ϕ2ψ5 ´ 34000ϕ3ψ4 ` 7190ϕ4ψ3 ´ 8
`

79ϕ5 ` 14336
˘

ψ2 `

`ϕ
`

19ϕ5 ` 95936
˘

ψ ´ 11200ϕ2,

T3 :“ 22625ϕ2ψ6 ´ 16325ϕ3ψ5 ` 4490ϕ4ψ4 ´ 2
`

293ϕ5 ` 49152
˘

ψ3 `

`ϕ
`

37ϕ5 ` 112768
˘

ψ2 ´ ϕ2
`

ϕ5 ` 26624
˘

ψ ` 1920ϕ3,

we get the following matrices

Mψ :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
ψ
D1

15ψ2

D1

25ψ3

D1

10ψ4

D1

´ϕT1
16D1D2

´ϕT2
16D1D2

´ϕT3
16D1D2

0 0 0 0 0 1 0
0 0 0 0 0 0 1

0 0 0 0 125ϕpϕ´5ψq

D2

´175ϕpϕ´5ψq2

D2

30ϕpϕ´5ψq3

D2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

Mϕ :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

0 0 0 0 125ϕpϕ´5ψq

D2

´175ϕpϕ´5ψq2

D2

30ϕpϕ´5ψq3

D2

0 0 0 0 ´ 3
4ϕ ´

ϕ´ψ
4ϕ 0

0 0 0 0 0 ´ 1
2ϕ ´

ϕ´ψ
4ϕ

0 0 0 0 ´
125pϕ´ψqpϕ´5ψq

4D2

175pϕ´ψqpϕ´5ψq2

4D2
´ 1

4ϕ ´
15pϕ´ψqpϕ´5ψq3

2D2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

An easy computation shows:

8.5.18 Corollary. ([JS09a], p. 37) The matrices Mψ and Mϕ yield the
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following Picard-Fuchs operators

L1 “ pψ ´ ϕq θψBϕ ´ 4ψθϕBϕ ´ 3ψBϕ,

L2 “ B2
ψB2

ϕ `

ˆ

1

4ϕ
`

15

2D2
pϕ´ ψq pϕ´ 5ψq

3

˙

B2
ψBϕ

´
175

4D2
pϕ´ ψq pϕ´ 5ψq

2
BψBϕ `

125

4D2
pϕ´ ψq pϕ´ 5ψq Bϕ,

L3 “ Lbulk
3 ` Lbdry

3 “ θψ pθψ ´ 1q pθψ ´ 2q pθψ ´ 3q ´ ψ5 pθψ ` 1q
4

`ψ4D1B4
ψ `

ψ4ϕ

16D2

`

T3B2
ψBϕ ` T2BψBϕ ` T1Bϕ

˘

with
Lbulk
3 “ θψ pθψ ´ 1q pθψ ´ 2q pθψ ´ 3q ´ ψ5 pθψ ` 1q

4

and

Lbdry
3 “ ψ4D1B4

ψ `
ψ4ϕ

16D2

`

T3B2
ψBϕ ` T2BψBϕ ` T1Bϕ

˘

.

Note that the operator Lbulk
3 is exactly the Picard-Fuchs operator which

is satisfied by all periods of the quintic 3-fold Xψ (see e.g. [GHJ03], Chapter
18).

Appendix A.3 contains a programme written in the Singular language
([DGPS16]) for computing the Picard-Fuchs operators of a pair consisting of
a Calabi-Yau hypersurface in a projective space and a divisor that is given by
intersecting the Calabi-Yau manifold with another hypersurface. Applying
the programme to the example discussed above yields the matrices Mψ and
Mϕ stated in Proposition 8.5.17.



Chapter 9

Picard-Fuchs operators for
triples

We consider a Calabi-Yau 3-fold X with a smooth curve C Ă X. We are
searching for a Picard-Fuchs equation for pX,Cq. In order to pursue this we
need a local system, and the choice might be to consider H3 pX,C,Cq.

However, we will show in the first section that H3 pX,C,Cq – H3 pX,Cq

and this isomorphism respects even the natural Hodge structure on pX,Cq

on both sides.

One way out might be to consider the blow-up π : pX Ñ X of C Ă X

and then study H3
´

pX,C
¯

, which encodes also the genus of the curve C.

The disadvantage is that pX is no longer Calabi-Yau, although it carries

a holomorphic 3-form. The deformation theories of pX,Cq and
´

pX,E
¯

are

the same.

Owing to these difficulties we will restrict ourselves to complete inter-
sections C “ D1 X D2 and develop the theory for triples pX,D1, D2q. In
particular, we define a cohomology group H3 pX,D1, D2,Cq whose variation
might lead to a Picard-Fuchs equation. We also compute an easy example.
For a family of triples we set up a theory by Li, Lian and Yau. However,
if the parameters of D1 and D2 are independent, we cannot reach the full
cohomology. In a computational example we will make a first attempt to
relate the cohomology of D1 and D2.

9.1 A topological observation

We fix a Calabi-Yau 3-foldX and a smooth curve C Ă X. Let π : pX Ñ X be
the blow-up of C Ă X and let E :“ π´1 pCq be the exceptional divisor. Then

H3 pXzC,Cq – H3
´

pXzE,C
¯

inherits a canonical mixed Hodge structure,

as we will see in the proof of Theorem 9.1.1.

159
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9.1.1 Theorem. Let X be a Calabi-Yau 3-fold, C a smooth curve in X
and ι : C ãÑ X the inclusion. Then the following cohomology groups are
isomorphic

H3 pX,C,Cq
_

– H3 pXzC,Cq – H3 pX,Cq ,

and the isomorphisms respect the corresponding (mixed) Hodge structures.

Proof of Theorem 9.1.1: The first isomorphism is Lefschetz duality.
Next we show that H3 pX,C,Cq – H3 pX,Cq. According to Section 4.2.5
the relative cohomology of the pair pX,Cq is part of a long exact sequence

. . . Ñ H2 pX,C,Cq Ñ H2 pX,Cq
H2pιq
Ñ H2 pC,Cq Ñ H3 pX,C,Cq Ñ

Ñ H3 pX,Cq Ñ H3 pC,Cq “ 0 Ñ . . . .

We observe that H2 pC,Cq – C and that the map H2 pιq : H2 pX,Cq Ñ

H2 pC,Cq is not the zero map, as it maps the first Chern class of an ample
line bundle on X to the first Chern class of the ample line bundle restricted
to C. Thus H2 pιq is surjective, and the map H3 pX,C,Cq Ñ H3 pX,Cq is
injective. Furthermore H3 pC,Cq “ 0; therefore the map H3 pX,C,Cq Ñ

H3 pX,Cq is also surjective, thus bijective. This establishes the second iso-
morphism.

Finally we show that H3 pXzC,Cq – H3 pX,Cq respects the mixed
Hodge structure. To set up the mixed Hodge structures, we notice that

H3
´

pXzE,C
¯

– H3 pXzC,Cq and that according to Theorem 4.2.3 there is

a mixed Hodge structure on H3
´

pXzE,C
¯

. This yields an isomorphism

H3
´

pXzE,C
¯

–
à

p`q“3

Hq
´

pX,Ωp
pX

plogEq

¯

.

As H3 pX,Cq –
À

p`q“3H
q
`

X,ΩpX
˘

, we need to show

Hq
`

X,ΩpX
˘

– Hq
´

pX,Ωp
pX

plogEq

¯

(9.1.1.1)

for each p, q with p ` q “ 3, which will prove the final statement. The
isomorphy 9.1.1.1 will actually be true for any compact complex manifold
and any blow-up of a submanifold C. By the Leray spectral sequence this
comes down to showing

π˚

´

Ωp
pX

plogEq

¯

– ΩpX , (9.1.1.2)

Rjπ˚

´

Ωp
pX

plogEq

¯

“ 0, j ą 0. (9.1.1.3)

The assertion 9.1.1.2 is clear since π˚

´

Ωp
pX

plogEq

¯

is torsionfree and con-

tains π˚

´

Ωp
pX

¯

– ΩpX .
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For our purposes, it is sufficient to show assertion 9.1.1.3 for the case
j “ 1. Moreover, we only deal with p “ 1 and leave the rest to the reader.

We apply π˚ to the exact sequence

0 Ñ Ω1
pX

Ñ Ω1
pX

plogEq Ñ OE Ñ 0

and get

0 Ñ π˚Ω
1
pX

Ñ π˚Ω
1
pX

plogEq Ñ π˚OE Ñ R1π˚Ω
1
pX

Ñ R1π˚Ω
1
pX

plogEq Ñ

Ñ R1π˚ pOEq .

Since π˚Ω
1
pX

– π˚Ω
1
pX

plogEq is an isomorphism, the map π˚OE – OC Ñ

R1π˚Ω
1
pX
is injective. The sheaf R1π˚Ω

1
pX
can easily be seen to be locally free

of rank 1 on C; we conclude the vanishing R1π˚Ω
1
pX

plogEq “ 0. □

We end the section comparing the deformations of pX,Cq and the de-

formations of the blow-up
´

pX,E
¯

and restrict ourselves to the case which

is most interesting in our general setting, see also [Kod63].

9.1.2 Theorem. Let X be a smooth projective 3-fold, C Ă X a smooth
curve, π : pX Ñ X the blow-up of C Ă X and E “ π´1 pCq. Let S be the
germ of a complex manifold or S “ Spec

`

C rts {t2
˘

.

Then there is a canonical bijection between the deformations of pX,Cq

over S and the deformations of
´

pX,E
¯

over S.

Proof of Theorem 9.1.2: Step 1. Let pX , Cq be a deformation of pX,Cq

over S. Let τ : pX Ñ X be the blow-up of C Ă X and E :“ τ´1 pCq be the

exceptional divisor. Then
´

pX , E
¯

is a deformation of
´

pX,E
¯

over S.

In fact, pX0, the central fibre over 0 P S, is isomorphic to pX. By [Har77], III,
7.15 and by definition of pX0, the blow-up of C X π´1 p0q “ C in X0 “ X,
where π : X Ñ S is the projection. Moreover E X X0 “ E.

Furthermore, since X Ñ S and C Ñ S are submersions, so is pX Ñ S;
hence pX is flat over S. Finally, E is flat over S by Lemma 3.8.3.

Step 2. Let pY, Eq be a deformation of
´

pX,E
¯

over S. Since E is a P1-

bundle over C and in fact E “ P
´

N_
C|X

¯

, according to Lemma 3.7.1 the

space E is a P1-bundle over a variety C Ñ S, which is a deformation of C
over S. Let p : E Ñ C be the projection. We notice

N_
E|Y

ˇ

ˇ

ˇ

p´1pxq
“ N_

E| pX

ˇ

ˇ

ˇ

p´1pxq
“ OP1 p1q

for all x P C.



162 CHAPTER 9. PICARD-FUCHS OPERATORS FOR TRIPLES

If S is smooth, then Y is smooth, and the contraction theorem of Fujiki-
Nakano (see [Nak71] and [FN72]) states that there is a complex manifold
X containing C with projection X Ñ S and a map f : Y Ñ X such that f
is the blow-up of C Ă X . The two operations are obviously inverse to each
other.

Now we suppose that S “ Spec
`

C rts {t2
˘

. We recall that

Def pX,Cq “ H1 pX,TX ⟨´C⟩q

(which can be shown directly on X without blowing up) and

Def
´

pX,E
¯

“ H1
´

pX,T
pX

p´ logEq

¯

.

By Step 1 we obtain an injective linear map

H1 pX,TX ⟨´C⟩q Ñ H1
´

pX,T
pX

p´ logEq

¯

.

This must be an isomorphism, because both spaces have the same dimen-
sions. This fact comes from the definition

π˚

`

T
pX

p´ logEq
˘

“ TX ⟨´C⟩

and the vanishing

R1π˚T
pX

p´ logEq “ 0.

The last equation is obtained by applying π˚ to the logarithmic tangent
sequence

0 Ñ T
pX

p´ logEq Ñ T
pX

Ñ N
E| pX

Ñ 0

and using

π˚NE| pX
“ R1π˚T

pX
“ 0.

9.1.3 Remark. As already said, Theorem 9.1.2 clearly generalizes to any
compact complex manifold of any dimension and arbitrary compact complex
submanifolds; also there will be an equivalence of deformation functors, but
we will not pursue this further in this work.

9.2 Definition of a cohomology for triples

Let ι1 : D1 ãÑ X and ι2 : D2 ãÑ X be embeddings of compact, possibly
reducible, hypersurfaces or of compact complex submanifolds into a smooth
compact complex manifold. For deformations of triples pX,D1, D2q we refer
to Definition 6.3.3.

In this section we lay down the foundations for a cohomology of triples.
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9.2.1 Setup. Let X be a projective manifold of dimension n and D1, D2

be smooth hypersurfaces on X which intersect transversally in the smooth
submanifold C. Let ιi : Di ãÑ X, i “ 1, 2, and j : C ãÑ X denote the
inclusion maps.

We first define a relative de Rham cohomology for the triple pX,D1, D2q.

9.2.2 Definition. We define the relative de Rham cohomology

H‚ pX,D1, D2,Cq

for the triple pX,D1, D2q to be the cohomology of the complex

A‚
X ‘ A‚´1

D1
‘ A‚´1

D2

with the differential

d̃ pα, β1, β2q :“
`

dXα, α|D1
´ dD1β1, α|D2

´ dD2β2
˘

(9.2.2.1)

for α P Ak
X and βi P Ak´1

Di
, i “ 1, 2, k P N.

9.2.3 Remark. One easily verifies that d̃2 “ 0.
Furthermore, if pα, β1, β2q P Ak

X ‘ Ak´1
D1

‘ Ak´1
D2

is a closed form, i.e.

d̃ pα, β1, β2q “ 0, then

dD1XD2 pβ1 ´ β2q|D1XD2
“ 0.

9.2.4 Theorem. There is an isomorphism

Hn pX,D1, D2,Cq –

– ker

ˆ

Hn pX,Cq
Hnpι1q‘Hnpι2q

ÝÑ Hn pD1,Cq ‘Hn pD2,Cq

˙

‘
`

Hn´1 pD1,Cq ‘Hn´1 pD2,Cq
˘

var
,

where
`

Hn´1 pD1,Cq ‘Hn´1 pD2,Cq
˘

var
:“

coker

ˆ

Hn´1 pX,Cq
Hn´1pι1q‘Hn´1pι2q

ÝÑ Hn´1 pD1,Cq ‘Hn´1 pD2,Cq

˙

.

In particular

dimHn pX,D1, D2,Cq “ dimHn pX,Cq ´ dim im pHn pι1q ‘Hn pι2qq

`dimHn´1 pD1,Cq ` dimHn´1 pD2,Cq

´dim im
`

Hn´1 pι1q ‘Hn´1 pι2q
˘

.

Furthermore, there is a surjective map

Hn pX,D1, D2,Cq ↠ ker pHn pX,Cq Ñ Hn pD1,Cq ‘Hn pD2,Cqq

‘ Hn´1
var pD1q ‘Hn´1

var pD2q ,

and there is a natural mixed Hodge structure on Hn pX,D1, D2,Cq.
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Proof of Theorem 9.2.4: The short exact sequence of complexes

0 Ñ

´

A‚´1
D1

‘ A‚´1
D2

, pdD1 , dD2q

¯

f
Ñ

´

A‚
X ‘ A‚´1

D1
‘ A‚´1

D2
, d̃
¯

g
Ñ

Ñ pA‚
X , dXq Ñ 0,

where the maps f and g are defined in the obvious way, i.e.

f : A‚´1
D1

‘ A‚´1
D2

Ñ A‚
X ‘ A‚´1

D1
‘ A‚´1

D2
, pβ1, β2q ÞÑ p0, β1, β2q

and
g : A‚

X ‘ A‚´1
D1

‘ A‚´1
D2

Ñ A‚
X , pα, β1, β2q ÞÑ α,

induces a long exact sequence in cohomology

. . . Ñ Hn´1 pX,D1, D2,Cq Ñ Hn´1 pX,Cq
Hn´1pι1q‘Hn´1pι2q

ÝÑ

Ñ Hn´1 pD1,Cq ‘Hn´1 pD2,Cq
φ
Ñ Hn pX,D1, D2,Cq Ñ

Ñ Hn pX,Cq
Hnpι1q‘Hnpι2q

ÝÑ Hn pD1,Cq ‘Hn pD2,Cq Ñ . . . .

which yields the first two statements immediately.
Obviously, there is a natural surjective map

`

Hn´1 pD1,Cq ‘Hn´1 pD2,Cq
˘

var
↠ Hn´1

var pD1q ‘Hn´1
var pD2q .

As the maps Hk pι1q ‘ Hk pι2q for k “ n ´ 2, n ´ 1 respect the Hodge
structures of Hk pX,Cq and Hk pD1,Cq‘Hk pD2,Cq, we get a natural mixed
Hodge structure on Hn pX,D1, D2,Cq, which is induced by the pure Hodge
structures of Hn pX,Cq and Hn´1 pDi,Cq , i “ 1, 2. □

9.2.5 Remark. By construction, Hn´1 pD2,Cq
φ
Ñ Hn pX,D1, D2,Cq and

Hn pX,D1, D2,Cq Ñ Hn pX,Cq are morphisms of mixed Hodge structures.

9.2.6 Remark. If D1 and D2 are ample hypersurfaces such that

Hn pD1,Cq “ Hn pD2,Cq “ 0,

e.g. X is a Calabi-Yau 3-fold, then

Hn pX,D1, D2,Cq – Hn pX,Cq ‘
`

Hn´1 pD1,Cq ‘Hn´1 pD2,Cq
˘

var
.

According to the Lefschetz hyperplane theorem the mapHn´1 pι1q‘Hn´1 pι2q

is injective; thus
`

Hn´1 pD1,Cq ‘Hn´1 pD2,Cq
˘

var

–
`

Hn´1 pD1,Cq ‘Hn´1 pD2,Cq
˘

{Hn´1 pX,Cq .

Furthermore

dimHn pX,D1, D2,Cq “ dimHn pX,Cq ` dimHn´1 pD1,Cq `

`dimHn´1 pD2,Cq ´ dimHn´1 pX,Cq .
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9.2.7 Theorem. There are exact sequences

. . . Ñ Hq´1 pD2,Cq Ñ Hq pX,D1, D2,Cq Ñ Hq pX,D1,Cq Ñ

Ñ Hq pD2,Cq Ñ . . . , (9.2.7.1)

respectively with D1 and D2 interchanged

. . . Ñ Hq´1 pD1,Cq Ñ Hq pX,D1, D2,Cq Ñ Hq pX,D2,Cq Ñ

Ñ Hq pD1,Cq Ñ . . . . (9.2.7.2)

Proof of Theorem 9.2.7: The following exact sequence of complexes,
defined in the obvious way,

0 Ñ

´

A‚´1
D2

, d‚´1
D2

¯

Ñ

´

A‚
X ‘ A‚´1

D1
‘ A‚´1

D2
, d̃‚

¯

Ñ

´

A‚
X ‘ A‚´1

D1
, d̃‚

¯

Ñ 0

yields the exact sequence 9.2.7.1. In the same way we get Sequence 9.2.7.2.
□

9.2.8 Corollary. Under the assumptions of Remark 9.2.6, there are exact
sequences

0 Ñ Hn´1 pD2,Cq Ñ Hn pX,D1, D2,Cq Ñ Hn pX,D1,Cq Ñ 0

and

0 Ñ Hn´1 pD1,Cq Ñ Hn pX,D1, D2,Cq Ñ Hn pX,D2,Cq Ñ 0.

Proof of Corollary 9.2.8: We apply Theorem 9.2.7. As Di are ample,
we know Hn pDi,Cq “ Hn´2 pDi,Cq “ 0, and the maps Hn´1 pX,Cq Ñ

Hn´1 pDi,Cq are injective. As

dimHn pX,D1,Cq “ dimHn pX,Cq ` dimHn´1 pD1,Cq ´ dimHn´1 pX,Cq

and thus

dimHn pX,D1, D2,Cq “ dimHn pX,Cq ` dimHn´1 pD1,Cq `

`dimHn´1 pD2,Cq ´ dimHn´1 pX,Cq

“ dimHn pX,D1,Cq ` dimHn´1 pD2,Cq ,

we conclude that the map Hn´1 pD2,Cq Ñ Hn pX,D1, D2,Cq in Sequence
9.2.7.1 is injective. □

9.2.9 Remark. We consider a smooth divisor D in a Calabi-Yau 3-fold
X. For setting up a Picard-Fuchs equation for the pair pX,Dq, one needs to
study the variation of pX,Dq. This is related to the first-order deformations
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of the pair pX,Dq as follows. We fix a Kähler class on X. By Hodge
decomposition, H2

`

X,Ω1
X plogDq

˘

is a direct summand of H3 pXzD,Cq.
Hence there is a canonical epimorphism

H3 pXzD,Cq Ñ H2
`

X,Ω1
X plogDq

˘

.

By duality we obtain a canonical epimorphism

H3 pX,D,Cq Ñ H1 pX,TX p´ logDqq .

More precisely, we generalize this to the case of two divisors D1 and D2

meeting transversally in the smooth curve C. We will construct an epimor-
phism

H3 pX,D1, D2,Cq Ñ H1 pX,TX ⟨´C⟩q ,

provided D1 ´ D2 is ample. This epimorphism is canonical up to a choice
of a basis of H1 pX,TXq. If h1,1 pXq “ 1 or if the classes of the divisors D1

and D2 are linearly dependent, this ampleness assumption is not necessary.

9.2.10 Lemma. We assume D1, D2 and D1 ´D2 to be ample. Then there
is an exact sequence

0 Ñ H0
`

C,NC|X

˘

Ñ H1 pX,TX ⟨´C⟩q Ñ H1 pX,TXq Ñ 0.

Proof of Lemma 9.2.10: The exact sequence

0 Ñ TX ⟨´C⟩ Ñ TX Ñ j˚NC|X Ñ 0

yields, using H0 pX,TXq “ 0, the exact sequence

0 Ñ H0
`

C,NC|X

˘

Ñ H1 pX,TX ⟨´C⟩q κ
Ñ H1 pX,TXq .

We show that κ is surjective, i.e., each first-order deformation of X is the
restriction of a simultaneous first-order deformation of the pair pX,Cq.

Let X be a first-order deformation of X. We look at the normal bundle
sequence associated to Di Ă X Ă X , i.e.,

0 Ñ NDi|X Ñ NDi|X Ñ NX|X
ˇ

ˇ

Di
Ñ 0.

We note that NX|X
ˇ

ˇ

Di
– ODi . The short exact sequence

0 Ñ OX Ñ OX pDiq Ñ ιi˚NDi|X Ñ 0

yields, via H1 pX,OX pDiqq “ 0, the equation H1
`

Di,NDi|X

˘

“ 0. Thus
we get an exact sequence

0 Ñ H0
`

Di,NDi|X

˘

Ñ H0
`

Di,NDi|X
˘

Ñ H0 pDi,ODiq Ñ 0,
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and therefore
h0

`

Di,NDi|X
˘

“ h0
`

Di,NDi|X

˘

` 1,

i.e., there is a first-order deformation Di of Di in X .
Finally, we define C :“ D1 X D2 Ă X , so that pX , Cq is a first-order

deformation of pX,Cq which is a preimage of the first-order deformation X
of X under κ. □

To prepare the proof of Theorem 9.2.12, we show

9.2.11 Lemma. We assume D1, D2 and D1 ´D2 to be ample. There is a
canonical surjective map

`

H2 pD1q ‘H2 pD2q
˘

var
Ñ H0

`

C,NC|X

˘

.

Proof of Lemma 9.2.11: It suffices to establish a canonical epimorphism

H2,0 pD1q ‘H2,0 pD2q Ñ H0
`

C,NC|X

˘

.

By the adjunction formula,

H2,0 pDiq “ H0 pDi,KDiq “ H0
`

Di,NDi|X

˘

.

Hence it suffices to construct an epimorphism

H0
`

D1,ND1|X

˘

‘H0
`

D2,ND2|X

˘

Ñ H0
`

C,NC|X

˘

.

Due to the decomposition

NC|X “ ND1|X

ˇ

ˇ

C
‘ ND2|X

ˇ

ˇ

C
,

it remains to be shown that the restriction maps

H0
`

Di,NDi|X

˘

Ñ H0
´

C, NDi|X

ˇ

ˇ

C

¯

are surjective. Using the ideal sheaf sequence for C Ă Di it is sufficient to
establish the vanishing

H1
`

Di,JC|Di b NDi|X

˘

“ 0.

We argue only for i “ 1 and consider the ideal sheaf sequence of D1 Ă X
tensorized by OX pD1 ´D2q

. . . Ñ H1 pX,OX pD1 ´D2qq Ñ H1
`

D1, OX pD1 ´D2q|D1

˘

Ñ

Ñ H2 pX,OX p´D2qq Ñ . . . .

As
H1

`

D1,JC|D1
b ND1|X

˘

“ H1 pD1,OD1 pD1 ´D2qq ,

Kodaira vanishing yields H1
`

D1, OX pD1 ´D2q|D1

˘

“ 0. Analogously we

get H1
`

D2, OX pD2 ´D1q|D2

˘

“ 0. □
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9.2.12 Theorem. Assuming again D1, D2 and D1 ´ D2 to be ample, we
fix a Kähler class rωs on X. Then there is a surjective map

H3 pX,D1, D2,Cq Ñ H1 pX,TX ⟨´C⟩q .

This map is canonical up to a choice of a basis of H1 pX,TXq.

Proof of Theorem 9.2.12: According to Lemma 9.2.10 and Lemma
9.2.11 we have the following diagram of exact sequences, where the first and
third vertical arrows are surjective. The map µ is still to be constructed.

0 // `H2 pD1,Cq ‘ H2 pD2,Cq
˘

var
//

τ

����

H3 pX,D1, D2,Cq //

µ

���
�
� H3 pX,Cq //

σ

����

0

0 // H0
`

C,NC|X

˘ // H1 pX,TX ⟨´C⟩q // H1 pX,TXq // 0,

We first establish a canonical splitting

ϕ : H3 pX,Cq Ñ H3 pX,D1, D2,Cq

of the upper row of the diagram.
For each class u P H3 pX,Cq we choose the unique harmonic representa-

tive α P ker p∆dq Ă Γ
`

A3
X

˘

of the class u, where

∆d :“ d˚d` dd˚ : Γ
`

A3
X

˘

Ñ Γ
`

A3
X

˘

is the Laplace operator. In particular dα “ d˚α “ 0. Let ωi be the induced
Kähler metric on Di, furthermore ∆i the associated Laplace operator, Hi

the harmonic projection and Gi the Green operator; see e.g. [GH78], p. 84.
Then we obtain the Hodge decomposition

α|Di “ Hi

`

α|Di

˘

‘ dd˚
iGi

`

α|Di

˘

‘ d˚
i dGi

`

α|Di

˘

.

As H3 pDi,Cq “ 0, we get Hi

`

α|Di

˘

“ 0, furthermore d˚
i diG

`

α|Di

˘

“

d˚
iGid

`

α|Di

˘

“ 0. Therefore we define βi :“ d˚
iGi

`

α|Di

˘

so that α|Di “ dβi.
Now we define

ϕ puq :“ rpα, β1, β2qs .

This splitting establishes an isomorphism

Φ : H3 pX,D1, D2,Cq Ñ
`

H2 pD1,Cq ‘H2 pD2,Cq
˘

var
‘H3 pX,Cq

and therefore a map

µ̃ : H3 pX,D1, D2,Cq Ñ H0
`

C,NC|X

˘

‘H1 pX,TXq .

By choosing a basis of H1 pX,TXq, we obtain a splitting H1 pX,TXq Ñ

H1 pX,TX ⟨´C⟩q, which defines the map µ. □
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9.3 Pairing between homology and cohomology

We return to the general Setup 9.2.1 and assume Hn pDi,Cq “ 0, e.g. Di is
ample in a Calabi-Yau 3-fold X, and start defining a homology group

Hn pX,D1, D2q ,

which will be dual to Hn pX,D1, D2,Cq. If n ě 4, we assume addition-
ally that the Mayer-Vietoris map Hn´1 pCq Ñ Hn´1 pD1q ‘ Hn´1 pD2q is
injective. This is automatic if n “ 3, since in this case, C is a curve.

We consider the following commutative diagram:

Hn pXq
� � //

��

Hn pXq ‘ Hn pXq // //
� _

��

Hn pXq� _

λ

��
Hn pX,Cq //

��

Hn pX,D1q ‘ Hn pX,D2q //

��

Hn pX,D1 Y D2q
δ //

τ

��

Hn´1 pX,Cq

��
Hn´1 pCq //

��

Hn´1 pD1q ‘ Hn´1 pD2q
σ //

��

Hn´1 pD1 Y D2q
ϵ // //

κ

��

Hn´2 pCq

Hn´1 pXq
� � //

��

Hn´1 pXq ‘ Hn´1 pXq // //

��

Hn´1 pXq

��
Hn´1 pX,Cq // Hn´1 pX,D1q ‘ Hn´1 pX,D2q // // Hn´1 pX,D1 Y D2q .

(9.3.0.1)

The first and forth rows are given by the maps

Hi pXq Ñ Hi pXq ‘Hi pXq , α ÞÑ pα, αq

and
Hi pXq ‘Hi pXq Ñ Hi pXq , pα, βq ÞÑ α ´ β.

The second and fifth row are the relative Mayer-Vietoris sequence for pairs
(see e.g. [Spa81], p. 187). The third row is the Mayer-Vietoris sequence.
The columns are given by the homology sequences of pairs.

The injectivity of the map λ : Hn pXq Ñ Hn pX,D1 YD2q results from
our assumptions and from the vanishing Hn pDiq “ 0, which follows from
Hn´2 pDi,Cq “ 0.

9.3.1 Definition. Let

Hn pX,D1, D2q :“

tprΓs , rγ1s , rγ2sq P Hn pX,D1 YD2q ‘Hn´1 pD1q ‘Hn´1 pD2q|

τ prΓsq “ σ prγ1s , rγ2sq P Hn´1 pD1 YD2qu ,

where σ and τ are defined as in Diagram 9.3.0.1.
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9.3.2 Lemma. If D1, D2 are ample divisors, then the complex vector space
Hn pX,D1, D2q has dimension

dimHn pX,D1, D2q “ dimHn pX,D1, D2,Cq .

Proof of Lemma 9.3.2: We look at the map

τ ´ σ : Hn pX,D1 YD2q ‘Hn´1 pD1q ‘Hn´1 pD2q Ñ Hn´1 pD1 YD2q ,

then Hn pX,D1, D2q “ ker pτ ´ σq and

dimHn pX,D1, D2q “ dimHn pX,D1 YD2q `

` dimHn´1 pD1q ` dimHn´1 pD2q ´ dim im pτ ´ σq .

The map κ : Hn´1 pD1 YD2q Ñ Hn´1 pXq defined in Diagram 9.3.0.1 is
surjective, since in Diagram 9.3.0.1 the map

Hn´1 pD1q ‘Hn´1 pD2q Ñ Hn´1 pXq ‘Hn´1 pXq

is surjective by the Lefschetz hyperplane theorem. Hence

dim im pτq “ dimHn´1 pD1 YD2q ´ dimHn´1 pXq

and

dimHn pX,D1 YD2q “ dimHn pXq ` dim im pτq “

“ dimHn pXq ` dimHn´1 pD1 YD2q

´dimHn´1 pXq .

We show that the map τ ´ σ is surjective. Obviously we have im pτq Ă

im pτ ´ σq. Furthermore for all w R im pτq, the diagram shows that there
exists a class w̃ P Hn´1 pD1q ‘ Hn´1 pD2q with κ pσ pw̃q ´ wq “ 0. Thus
σ pw̃q ´ w P im pτq and w P im pτ ´ σq.
Thus

dimHn pX,D1, D2q “ dimHn pXq ` dimHn´1 pD1 YD2q

´dimHn´1 pXq ` dimHn´1 pD1q ` dimHn´1 pD2q

´dimHn´1 pD1 YD2q “

“ dimHn pX,D1, D2,Cq .

□
The proof actually shows the following:

9.3.3 Corollary. The statement of Lemma 9.3.2 remains true if instead
of ampleness we assume the following:

Hn pDi,Cq “ 0 or Hn´2 pDi,Cq “ 0



9.3. PAIRING BETWEEN HOMOLOGY AND COHOMOLOGY 171

and the maps

Hn´1 pDiq Ñ Hn´1 pXq

for i “ 1, 2 are surjective.

9.3.4 Definition. We choose a basis te1, . . . , emu of Hn pX,D1, D2q and
representatives ej “ prΓjs , rγj,1s , rγj,2sq. Then we define a pairing

ϕ : Hn pX,D1, D2q ˆHn pX,D1, D2,Cq Ñ C,

pprΓjs , rγj,1s , rγj,2sq , rpα, β1, β2qsq ÞÑ

ż

prΓjs,rγ1,js,rγ2,jsq

pα, β1, β2q

:“

ż

Γj

α ´

ż

γj,1

β1 `

ż

γj,2

β2.

9.3.5 Remark. Let pα, β1, β2q P Γ
´

An´1
X ‘ An´2

D1
‘ An´2

D2

¯

and

prΓjs , rγj,1s , rγj,2sq P Hn pX,D1, D2q. Then

ż

pΓ,γ1,γ2q

d̃ pα, β1, β2q “

ż

pΓ,γ1,γ2q

`

dα, α|D1
´ dβ1, α|D2

´ dβ2
˘

“

“

ż

Γ
dα ´

ż

γ1

`

α|D1
´ dβ1

˘

`

ż

γ2

`

α|D2
´ dβ2

˘

“

“

ż

BΓ
α ´

ż

γ1

α|D1
`

ż

Bγ1

β1 `

ż

γ2

α|D2
´

ż

Bγ2

β2 “

“

ż

γ1

α|D1
´

ż

γ2

α|D2
´

ż

γ1

α|D1
`

ż

γ2

α|D2
“

“ 0.

Therefore the pairing is well-defined.

9.3.6 Theorem. We suppose that for j “ 1, 2 the canonical morphisms
ιj˚

: Hn´1 pDjq Ñ Hn´1 pXq are surjective; e.g., the divisors Di are ample.
Then the pairing ϕ is non-degenerate.

Proof of Theorem 9.3.6: Let rpα, β1, β2qs P Hn pX,D1, D2,Cq. We as-
sume that

ż

prΓs,rγ1s,rγ2sq

pα, β1, β2q “ 0

for all prΓs , rγ1s , rγ2sq P Hn pX,D1, D2q and aim to show that rpα, β1, β2qs “

0.

For each rΓs P Hn pX,D1q we define γ1 :“ BΓ P Cn´1 pD1q and integrate
over prΓs , rγ1s , 0q. As the pairing

Hn pX,D1q ˆHn pX,D1,Cq Ñ C
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is non-degenerate, the image of rpα, β1, β2qs under the map

Hn pX,D1, D2,Cq Ñ Hn pX,D1,Cq

is 0. The exact sequence (see Corollary 9.2.8)

Hn´1 pD2,Cq Ñ Hn pX,D1, D2,Cq Ñ Hn pX,D1,Cq

yields rpα, β1, β2qs “ rp0, 0, β1
2qs for a closed form β1

2 P An´1
D2

. We need to

show that rβ1
2s “ 0 P Hn´1 pD2,Cq.

Claim: We choose an arbitrary class rγ2s P Hn´1 pD2q. Then there exists a
cycle rΓs P Hn pX,D1 YD2q and rγ1s P Hn´1 pD1q such that

prΓs , rγ1s , rγ2sq P Hn pX,D1, D2q .

Once the claim ist proved, then
ż

γ2

β1
2 “

ż

prΓs,rγ1s,rγ2sq

`

0, 0, β1
2

˘

“ 0

and we conclude rβ1
2s “ 0 P Hn´1 pD2,Cq.

Proof of the Claim: Using our assumption there is a class rγ1s P Hn´1 pD1q

such that ι2˚ pγ2q “ ι1˚ pγ1q. Let kj : Dj ãÑ D1 Y D2 for j “ 1, 2 and
l : D1 YD2 Ñ X be the inclusions. Then

l˚ pk1˚ rγ1s ´ k2˚ rγ2sq “ 0 P Hn´1 pXq .

The relative sequence in homology

. . . Ñ Hn pX,D1 YD2q
λ

Ñ Hn´1 pD1 YD2q
l˚
Ñ Hn´1 pXq Ñ . . .

yields a class rΓs P Hn pX,D1 YD2q such that

λ prΓsq “ k1˚ rγ1s ´ k2˚ rγ2s P Hn´1 pD1 YD2q ,

i.e.,
B rΓs “ rk1 pγ1q ´ k2 pγ2qs P Hn´1 pD1 YD2q .

This proves the claim.
Since dimHn pX,D1, D2q “ dimHn pX,D1, D2,Cq, the pairing is non-

degenerate.
In summary, we have shown that the canonical map

Hn pX,D1, D2,Cq Ñ Hn pX,D1, D2q
_

given by the pairing Φ is injective. Since

dimHn pX,D1, D2,Cq “ dimHn pX,D1, D2q ,

this map is an isomorphism and therefore the pairing is non-degenerate. □
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9.4 A residue map for triples

We next extend the definition of residues to triples.

9.4.1 Definition. Let
´

K‚, d̃‚
¯

be the complex defined by

Kk :“ Γ
´

ΩkPn p˚Xq ‘ ΩkPn p˚X ` ˚H1q ‘ ΩkPn p˚X ` ˚H2q

¯

with differential

d̃k : Kk Ñ Kk`1,

d̃k pη1, η2, η3q :“

ˆ

dkη1, η1 ^
dQ1

Q1
´ dkη2, η1 ^

dQ2

Q2
´ dkη3

˙

.

The residue map for classes of rational forms is defined by

Resq
pX,D1,D2q

: Hq
´

K‚, d̃
¯

Ñ Hq´1 pX,D1, D2,Cq ,

rpη1, η2, η3qs ÞÑ

´

Resq
pX,D1,D2q

rpη1, η2, η3qs : Hq´1 pX,D1, D2q Ñ C,

prΓs , rγ1s , rγ2sq ÞÑ

ż

τpΓq

η1 ´

ż

τ 1pBγ1q

η2 `

ż

τ 1pBγ2q

η3

¸

.

As the pairing is non-degenerate, we get a well-defined element

Resq
pX,D1,D2q

rpη1, η2, η3qs P Hq´1 pX,D1, D2,Cq

for each rpη1, η2, η3qs P Hq
´

K‚, d̃
¯

.

9.4.2 Remark. For each k there is a surjective map

Kk
pX,D1,D2q Ñ Kk

pX,D1q, pα, β1, β2q ÞÑ pα, β1q ,

which maps closed forms to closed forms and exact forms to exact forms.

9.5 Application of the Gauß-Manin connection to
periods of triples

In this section we extend the theory of Li, Lian and Yau to triples and give
a detailed account on the arguments of Li, Lian and Yau.

Let π : X Ñ S be a family of Calabi-Yau n-folds over a complex manifold
S. Let D1 and D2 Ă X be families of smooth hypersurfaces over S meeting
fibrewise transversally. So C :“ D1 XD2 is a family of smooth curves over S.
For s P S let Xs, Di,s, Cs be the corresponding fibres over s P S. We assume
D1,s ´D2,s to be ample for all s P S.

9.5.1 Lemma. The vector spaces Hn pXs, D1,s, D2,s,Cq form a local sys-
tem over S, which we denote by Hn pX ,D1,D2q.
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Proof of Lemma 9.5.1: We apply the theorem of Ehresmann to the fibre
product

π : X ˆS D1 ˆS D2 Ñ S.

Locally over S, this fibre product is diffeomorphic to pX0 ˆD1,s ˆD2,sqˆS;
hence the lemma follows. □

9.5.2 Notation. We choose a smooth family
´

α̃, β̃1, β̃2

¯

P Γ
´

X ,An
X |S ‘ An´1

D1|S ‘ An´1
D2|S

¯

and set αs “ ι˚Xs pα̃q for all s P S, where ιXs : Xs ãÑ X is the inclusion. In
the same way we define βi,s for i “ 1, 2.

Let
rΓss P Hn pXs, D1,s YD2,sq

be a smooth family of classes represented by relative n-cycles Γs such that

BΓs – ι1,s pγ1,sq ´ ι2,s pγ2,sq

for each s P S, where pγ1,sqsPS and pγ2,sqsPS form smooth families of cycles
in D1 and D2 and ιi,s : Di,s ãÑ D1,s YD2,s for i “ 1, 2 denote the inclusions.
Then

Γ̃ :“
ď

sPS

Γs P Cn pX |Sq and γ̃i :“
ď

sPS

γi,s P Cn´1 pDi|Sq .

Given a C8-vector field v on S, we denote by ṽ a lifting to X and by ṽj
a lifting to Dj , i.e. π˚ pṽq “ v, respectively π˚ pṽjq “ v.

Let
Lṽ : Ak

X Ñ Ak
X

be the Lie derivative with respect to ṽ and

ιṽ : Ak
X Ñ Ak´1

X

the contraction with ṽ. Usually we write ιṽ pαq “: ṽ { α.

We compute the Lie derivative of the periods of the triple classes with
respect to a vector field v P TS .

We aim to compute the Gauß-Manin connection on the holomorphic
vector bundle associated to the local system Hn pX ,D1,D2q.

9.5.3 Proposition. The Lie derivative of the periods of the triple classes
with respect to the vector field v P TS is as follows

Lv ⟨pΓs, γ1,s, γ2,sq , pαs, β1,s, β2,sq⟩ “

“ p´1q
n`1

⟨
pΓs, γ1,s, γ2,sq ,

ˆ

ṽ { dα̃, ṽ1 {
´

α̃ ´ dβ̃1

¯

, ṽ2
{
´

α̃ ´ dβ̃2

¯

˙⟩
.
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For the proof of Proposition 9.5.3 we need the following

9.5.4 Remark. LetM be a smooth compact pr ` 1q-dimensional manifold
with boundary and f :M Ñ R be a differentiable function. Then there is a
smooth compact manifold with boundary N such that M – N ˆ r0, 1s. For
each t ą 0 let

Mt :“ N ˆ r0, ts .

Furthermore let ω P Ωr`1 pMq – Ωr`1 pN ˆ r0, 1sq and v P TM . Then
for each t P r0, 1s there exists a form ηt P Ωr pNq such that we can write
ω “ ηt ^ dt. Then we obtain

B

Bt

ż

Mt

ω “

ż

N
v { ω,

since

B

Bt

ż

Mt

ω “
B

Bt

ż

Nˆr0,ts
ηt ^ dt “

B

Bt

ż t

0

˜

ż

Nˆtτu

ητ

¸

dτ “

ż

Nˆttu
ηt “

“ p´1q
r`1

ż

N
v { ω.

The last equality follows writing v “
`

v0,
B
Bt

˘

P TNˆr0,ts by contraction

v { ω “ v0
{ ηt ^ dt` p´1q

r`1 ηt.

Proof of Proposition 9.5.3: Let s0 P S and σ : r0, ts Ñ S be a smooth
local curve such that σ p0q “ s0 and Btσ p0q “ v. For simplicity we denote
the fibre of Γ̃ over σ psq by Γs :“ Γσpsq for each s P r0, ts.

Let

pΓt :“
ď

0ďsďt

Γσpsq and pγi,t :“
ď

0ďsďt

γi,σpsq for i “ 1, 2

be the families of cycles over σ psq , 0 ď s ď t. Furthermore

xBΓt :“
ď

0ďsďt

BΓσpsq »
ď

0ďsďt

ι1,s pγ1,sq ´ ι2,s pγ2,sq “ pγ1,t ´ pγ2,t.

Then obviously we obtain

B

´

pΓt

¯

“ Γt ´ Γ0 ´ xBΓt » Γt ´ Γ0 ´ ppγ1,t ´ pγ2,tq .

Then we compute

ż

pΓt

dα̃ “

ż

BppΓtq
α̃ “

ż

Γt

α̃ ´

ż

Γ0

α̃ ´

˜

ż

pγ1,t

α̃ ´

ż

pγ2,t

α̃

¸

,
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thus
ż

Γt

α̃ “

ż

pΓt

dα̃ `

ż

Γ0

α̃ `

˜

ż

pγ1,t

α̃ ´

ż

pγ2,t

α̃

¸

and therefore

B

Bt

ż

Γt

α̃ “
B

Bt

ż

pΓt

dα̃ `
B

Bt

˜

ż

pγ1,t

α̃ ´

ż

pγ2,t

α̃

¸

“

“ p´1q
n`1

ż

Γt

ṽ { dα̃ ` p´1q
n
ż

γ1,t

ṽ1
{ α̃ ´ p´1q

n
ż

γ2,t

ṽ2
{ α̃.

Furthermore we obtain for i “ 1, 2

ż

pγi,t

dβ̃i “

ż

Bppγi,tq
β̃i “

ż

γi,t

β̃i ´

ż

γi,0

β̃i,

thus
B

Bt

ż

γi,t

β̃i “
B

Bt

ż

pγi,t

dβ̃i “ p´1q
n
ż

γi,t

ṽ1
{ dβ̃i.

Finally we get

Lv ⟨pΓs, γ1,s, γ2,sq , pαs, β1,s, β2,sq⟩ “
B

Bt

˜

ż

Γt

α̃ ´

ż

γ1,t

β̃1 `

ż

γ2,t

β̃2

¸

“

“ p´1q
n`1

ż

Γt

ṽ { dα̃ ` p´1q
n
ż

γ1,t

ṽ1
{ α̃ ´ p´1q

n
ż

γ2,t

ṽ2
{ α̃

´ p´1q
n
ż

γ1,t

ṽ1
{ dβ̃1 ` p´1q

n
ż

γ2,t

ṽ2
{ dβ̃2

“ p´1q
n`1

˜

ż

Γt

ṽ { dα̃ ´

ż

γ1,t

ṽ1
{
´

α̃ ´ dβ̃1

¯

`

ż

γ2,t

ṽ2
{
´

α̃ ´ dβ̃2

¯

¸

.

□

9.5.5 Corollary. As the Gauß-Manin connection is computed by

∇GM
v rpαs, β1,s, β2,sqs “

„ˆ

ṽ { dα̃, ṽ1 {
´

α̃ ´ dβ̃1

¯

, ṽ2
{
´

α̃ ´ dβ̃2

¯

˙ȷ

,

we obtain

Lv ⟨pΓs, γ1,s, γ2,sq , pαs, β1,s, β2,sq⟩ “

“ p´1q
n`1 ⟨

pΓs, γ1,s, γ2,sq ,∇GM
v rpαs, β1,s, β2,sqs

⟩
.
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In addition to the previous assumptions we assume that M “ Pn`1 (one
might also consider a weighted projective space) and set S “ S1 ˆ S2 ˆ S3,
where each Si is a complex manifold.

Let

X̃ Ă M ˆ S1

be a hypersurface. More precisely, Xz “ tPz “ 0u Ă M is given by a
homogeneous polynomial Pz P H0 pM,´KM q for each z P S1. Furthermore
let H̃1 Ă M ˆ S2 and H̃2 Ă M ˆ S3 be hypersurfaces, given by H1,u “

tQ1,u “ 0u Ă M for each u P S2 and H2,v “ tQ2,v “ 0u Ă M for each
v P S3, where Q1,u and Q2,v are homogeneous polynomials on M for all
u P S2, v P S3.

In summary,

M ˆ S1 Ą X̃ :“ pXz :“ tPz “ 0uqzPS1

π1
Ñ S1

M ˆ S2 Ą H̃1 :“ pH1,u :“ tQ1,u “ 0uquPS2

π2
Ñ S2

M ˆ S3 Ą H̃2 :“ pH2,v :“ tQ2,v “ 0uqvPS3

π3
Ñ S3.

We view X ,H1 and H2 as families over S:

X :“ X̃ ˆ S2 ˆ S3
π1ˆidˆid

ÝÑ S

H1 :“ S1 ˆ H̃1 ˆ S3
idˆπ2ˆid

ÝÑ S

H2 :“ S1 ˆ S2 ˆ H̃2
idˆidˆπ3

ÝÑ S.

Moreover we define two divisors Di for i “ 1, 2, in X :

D̃1 :“ tXz XH1,u| z P S1, u P S2u
pπ1,π2q
ÝÑ S1 ˆ S2

D̃2 :“ tXz XH2,v| z P S1, v P S3u
pπ1,π3q
ÝÑ S1 ˆ S3

D1 :“ D̃1 ˆ S3
pπ1,π2qˆid

ÝÑ S

D2 :“ S2 ˆ D̃2
idˆpπ1,π3q

ÝÑ S.

Let

pωzqzPS1
P H0

`

M ˆ S1,KMˆS1|S1
b OMˆS1 pX ˆ S1q

˘

be a family of rational pn` 1q-forms on M with poles along Xz. Since

KM b OM pXzq “ Ωn`1
M plogXzq ,

we can form resXz |M pωzq P H0 pXz,KXzq and get a holomorphic n-form
without zeros for all z.
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9.5.6 Notation. Let pUαqα be an open covering of M by Stein open sets
Uα, and set

V α
X :“ pUα ˆ Sq X X .

Then we may write V α
X “ V α

X ,0 ˆ S, where V α
X ,0 “ Uα X Xs0 for s0 P S.

Analogously we define V α
D1

:“ pUα ˆ Sq X D1 and V α
D2

:“ pUα ˆ Sq X D2.
Let Pz,α be the defining equation of Xz in Uα. Using a partition of unity

subordinate to the covering pUαqα we may write

ωz “
ÿ

α

dMPz,α
Pz,α

^ ϕz,α,

where ϕz :“ resXz |M pωzq and ϕz,α is the restriction of ϕz to Uα.

We are going to construct liftings of holomorphic tangent vector fields
vi P TSi on Si for i “ 1, 2, 3 to the Calabi-Yau manifold X and to the smooth
divisors D1 and D2. These liftings consist of a trivial lift of v to TUαˆSi plus
a normal vector induced by a certain variation.

First we construct local holomorphic liftings of vector fields vi P TSi to
vector fields on X .

9.5.7 Construction. 1. Let v1 P TS1 . We choose a local smooth complex
curve in S1 representing v1 and denote the variable of the curve by z such
that v1 “ B

Bz P TS1 . We view v1 as an element in TUαˆS1 .

The deformation X̃ in M over S1 defines for each z P S1 a section

hz P H0
`

Xz,NXz |M

˘

which corresponds to the first-order deformation of Xz in M given by X̃ .

Putting all hz, z P S1, together, we obtain a section h P H0
´

X̃ ,N X̃ |MˆS1

¯

.

Let p : X “ X̃ ˆ S2 ˆ S3 Ñ X̃ be the projection. Then applying p˚ to the
exact sequence

0 Ñ TX̃ Ñ TMˆS1 |X̃ Ñ N X̃ |MˆS1
Ñ 0, (9.5.7.1)

we get
0 Ñ p˚TX̃ Ñ p˚ pTMˆS1 |X̃

˘

Ñ NX |MˆS Ñ 0. (9.5.7.2)

We restrict the exact sequence 9.5.7.1 to V α
X . Since V α

X is Stein, we get a
surjective map

καX : H0
´

V α
X , p

˚ pTMˆS1 |V αX

¯¯

Ñ H0
´

V α
X , NX |MˆS

ˇ

ˇ

V αX

¯

.

We choose

nαX P H0
´

V α
X , p

˚
´

TMˆS1 |V αX

¯¯

Ă H0
´

V α
X , TMˆS |V αX

¯
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such that καX pnαX q “ p˚h|V αX
.

For each z P S1 let n
α
Xz

P H0
´

V α
X XXz, TMˆS |V αX XXz

¯

be the restriction

of nαX to Xz, i.e. καXz
`

nαXz
˘

“ p˚hz for each z P S1, where καXz is the
restriction of καX to V α

X XXz.

Let

wαX pv1q :“
B

Bz

ˇ

ˇ

ˇ

ˇ

V αX

` nαX P H0
´

V α
X , TMˆS |V αX

¯

.

2. Let v2 “ B
Bu P TS2 and v3 “ B

Bv P TS3 . Obviously we can view v2 and v3
as vectors in TX .

9.5.8 Lemma. On each Uα ˆ S the following statements are valid:

1.

ˆ

nαXz
{ dMPz,α

˙ˇ

ˇ

ˇ

ˇ

Xz

“ ´ BzPz,α|Xz for each z P S1,

2. wαX pviq P H0
´

V α
X , TX |V αX

¯

for i “ 1, 2, 3.

Notation. For each z P S1 let wαXz pviq P H0
´

V α
Xz
, TMˆS |V αXz

¯

be the

restriction of wαX pviq toXz. We will briefly write in the following καXz “ κXz .

Proof of Lemma 9.5.8: 1. A direct computation gives the following
formula

nαXz
{ dMPz,α “ κXz

`

nαXz
˘

dMPz,α “ ´sα pzq dMPz,α.

According to [Ser06], p. 124/125, we know sα pzq dMPz,α “ BzPz,α. This
proves the first assertion.

2. Using 1. we get

κXz
`

wαXz pv1q
˘

“ κXz

˜

B

Bz

ˇ

ˇ

ˇ

ˇ

V αXz

` nαXz

¸

“

˜

B

Bz

ˇ

ˇ

ˇ

ˇ

V αXz

` nαXz

¸

{ dPz,α “

“
B

Bz

ˇ

ˇ

ˇ

ˇ

V αXz

{ dSPz,α ` nαXz
{ dMPz,α “

“ BzPz,α ´ BzPz,α “ 0

for each z P S1, thus w
α
X pviq P H0

´

V α
X , TX |V αX

¯

for all i “ 1, 2, 3. □

Similarly to Construction 9.5.7 we construct local holomorphic liftings
of the vector fields vi P TSi for i “ 1, 2, 3 to vector fields on D1:



180 CHAPTER 9. PICARD-FUCHS OPERATORS FOR TRIPLES

9.5.9 Construction. 1. Let v1 “ B
Bz P TS1 and define

wαD1
pv1q :“

B

Bz

ˇ

ˇ

ˇ

ˇ

V αD1

` nαX |D1
P H0

´

V α
D1
, TMˆS |V αD1

¯

.

2. Now consider v2 “ B
Bu P TS2 . The deformation H̃1 in M over S2 yields

for each u P S2 a section

h1,u P H0
`

H1,u,NH1,u|M

˘

,

which corresponds to the first-order deformation of H1,u in M given by H̃1.

Putting all h1,u, u P S2, together, we get a section h1 P H0
´

H̃i,N H̃i|MˆS2

¯

.

Let p1 : H1 “ S1 ˆ H̃1 ˆ S3 Ñ H̃1 be the projection. Then applying p1
˚

to the exact sequence

0 Ñ TH̃1
Ñ TMˆS2 |H̃1

Ñ N H̃1|MˆS2
Ñ 0, (9.5.9.1)

we get

0 Ñ p1
˚TH̃1

Ñ p1
˚
´

TMˆS2 |H̃1

¯

Ñ NH1|MˆS Ñ 0. (9.5.9.2)

Again we restrict the exact sequence 9.5.9.2 to Stein open subsets V α
H1

of
H1 and get local surjective maps

καH1
: H0

´

V α
H1
, p1

˚ pTMˆS2q|V αH1

¯

Ñ H0

ˆ

V α
H1
, NH1|MˆS

ˇ

ˇ

V αH1

˙

.

We choose

nαH1
P H0

´

V α
H1
, p1

˚ pTMˆS2q|V αH1

¯

Ă H0
´

V α
H1
, TMˆS |V αH1

¯

,

such that καH1

`

nαH1

˘

“ pp1
˚h1q|V αH1

.

Furthermore for each u P S2 let

nαH1,u
P H0

´

V α
H1

XH1,u, TMˆS |V αH1
XH1,u

¯

be the restriction of nαH1
to H1,u. Then κ

α
H1,u

´

nαH1,u

¯

“ pp˚
1h1,uq|V αH1XH1,u

.

Let
nαD1

:“ nαH1

ˇ

ˇ

X P H0
´

V α
D1
, TMˆS |V αD1

¯

and

wαD1
pv2q :“

B

Bu

ˇ

ˇ

ˇ

ˇ

V αD1

` nαD1
P H0

´

V α
D1
, TMˆS |V αD1

¯

.

3. Let v3 “ B
Bv P TS3 . Obviously we can view v3 as a vector in TD1 .
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Similarly to Lemma 9.5.8 we get

9.5.10 Lemma. For each u P S2 and each α on Uα XH1,u we have

1.

ˆ

nαD1,u

{ dMQ1,u,α

˙ˇ

ˇ

ˇ

ˇ

H1,u

“ ´ BuQ1,u,α|H1,u
for each u P S2,

2. wαD1
pv2q P H0

´

V α
D1
, TD1 |V αD1

¯

.

9.5.11 Remark. Analogously to Construction 9.5.9 we get local liftings

wαD2
pviq P H0

´

V α
Di , TX |V αDi

¯

and wαDi pv3q P H0
´

V α
Di , TDi |V αDi

¯

for i “ 1, 2.

Of course, Lemma 9.5.10 has an analogoue for i “ 2.

Analogously to Construction 9.5.9 we obtain local liftings wαX pv3q P

H0
´

V α
X , TX |V αX

¯

and wαDi pv3q P H0
´

V α
Di , TDi |V αDi

¯

for i “ 1, 2.

Now Theorem 8.4.3 of Li, Lian and Yau [LLY12] generalizes to triples:

9.5.12 Theorem. Let prΓs , rγ1s , rγ2sqz,u,v P Hn pX,D1, D2q. The periods

Π : S Ñ C, Π pz, u, vq :“

ż

pΓ,γ1,γ2qz,u,v

RespX,D1,D2q rpωz, 0, 0qs

satisfy the following relations:

1.

BzΠ pz, u, vq “

ż

pΓ,γ1,γ2qz,u,v

ResnpX,D1,D2q rpωz, 0, 0qs “

“

ż

τpΓz,u,vq

Bzωz,

where τ pBΓz,u,vq Ă H1,u YH2,v, where τ pΓz,u,vq denotes the tube over
Γz,u,v,

2.

BuΠ pz, u, vq “ ´

ż

γ1,z,u

resD1,z,u|H1,u
resH1,u|M

ˆ

BuQ1,u

Q1,u
ωz

˙

“ ´

ż

γ1,z,u

resLTD1,z,u|M

ˆ

BuQ1,u

Q1,u
ωz

˙

,

3. BvΠ pz, u, vq “ ´
ş

γ2,z,v
resD2,z,v |H2,v

resH2,v |M

´

BvQ2,v

Q2,v
ωz

¯

.

For the proof of Theorem 9.5.12 the following will be crucial:
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9.5.13 Lemma. ([LLY12], Formula 2.10) Let v1 “ B
Bz P TS1. Locally for

all α and for all z P S1, the following formula is satisfied:

wαXz pv1q { dϕz|Xz “ resXz |M

ˆ

Bzωz ´ dM

ˆ

BzPz,α
Pz,α

ϕz

˙˙

. (9.5.13.1)

9.5.14 Remark. The right hand side of Formula 9.5.13.1 is independent

of the choice of the lifting of v1 P TS1 to wαX pv1q P H0
´

V α
X , TMˆS |V αX

¯

, but

the left hand side a priori depends on the choice of the lifting. So Formula
9.5.13.1 shows that the left hand side is in fact independent of the choice of
the lifting. Furthermore the local expressions on the left hand side can be
put together to the global expression on the right hand side.

Proof of Lemma 9.5.13: First we verify the formula

nαXz
{ dMϕz|Xz “ resXz |M

˜

´
ÿ

α

BzPz,α
Pz,α

dMϕz,α

¸

.

Using Lemma 9.5.8 this is equivalent to the following equation

´
ÿ

α

BzPz,α
Pz,α

dMϕz,α “
dMPz
Pz

^

ˆ

nαXz
{ dMϕz,α|Xz

˙

ô
ÿ

α

ˆ

nαXz
{ dMPz,α

˙

^ dMϕz,α “ dMPz ^

ˆ

nαXz
{ dMϕz,α|Xz

˙

.

The last equation holds as

0 “ nαXz
{ pdMPz,α ^ dMϕz,αq “

“ nαXz
{ pdMPzq ^ dMϕz ´ dMPz ^ nαXz

{ pdMϕzq .

Therefore

wαXz pv1q { dϕz|Xz “ nαXz
{ dMϕz|Xz `

B

Bz
{ dSϕz|Xz “

“ resXz |M

˜

´
ÿ

α

BzPz,α
Pz,α

dMϕz,α

¸

` resXz |M

˜

ÿ

α

dMPz,α
Pz,α

^ Bzϕz,α

¸

“

“ resXz |M

˜

Bzωz ´
ÿ

α

dM

ˆ

BzPz,α
Pz,α

ϕz

˙

¸

.

In the last step we made use of the equation

Bzωz “
ÿ

α

ˆ

´
BzPz,α
Pz,α

dMϕz,α `
dMPz,α
Pz,α

^ Bzϕz,α ` dM

ˆ

BzPz,α
Pz,α

ϕz

˙˙

.

□
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Proof of Theorem 9.5.14.1, Part 1: Using the variation formula 9.5.3,
we obtain

∇GM
Bz

“`

ϕz|Xz , 0, 0
˘‰

“
„ˆ

wαXz pBzq
{ d

`

ϕz|Xz
˘

,´wαD1,z
pBzq

{ ϕz|D1,z
, ´wαD2,z

pBzq
{ ϕz|D2,z

˙ȷ

“

„ˆ

resXz |M

ˆ

Bzωz ´ dM

ˆ

BzPz
Pz

ϕz

˙˙

,´ nαX |D1,z

{ ϕz|D1,z
,

´ nαX |D2,z

{ ϕz|D2,z

˙ȷ

.

For prΓs , rγ1s , rγ1sq P H3 pX,D1, D2q we obtain

ż

τpΓq

dM

ˆ

BzPz
Pz

ϕz

˙

“

ż

τpBΓq

ˆ

BzPz
Pz

ϕz

˙ˇ

ˇ

ˇ

ˇ

D1,zYD2,z

“

ż

τpγ1q

ˆ

BzPz
Pz

ϕz

˙ˇ

ˇ

ˇ

ˇ

D1,z

´

ż

τpγ2q

ˆ

BzPz
Pz

ϕz

˙ˇ

ˇ

ˇ

ˇ

D2,z

“

ż

γ1

resH1|M

ˆ

BzPz
Pz

ϕz

˙ˇ

ˇ

ˇ

ˇ

D1,z

´

ż

γ2

resH2|M

ˆ

BzPz
Pz

ϕz

˙ˇ

ˇ

ˇ

ˇ

D2,z

“ ´

ż

γ1

nαX |D1,z

{ ϕz|D1,z
`

ż

γ2

nαX |D2,z

{ ϕz|D2,z
.

Hence we get for the pairing of the class
“`

ϕz|Xz , 0, 0
˘‰

with prΓs , rγ1s , rγ2sq

the following equalities:

Bz
⟨
rpΓ, γ1, γ2qs ,

“`

resXz |M pωzq , 0, 0
˘‰⟩

“
⟨
rpΓ, γ1, γ2qs ,∇GM

Bz

“`

resXz |M pωzq , 0, 0
˘‰⟩

“

ż

Γ
resXz |M

ˆ

Bzωz ´ dM

ˆ

BzPz
Pz

ϕz

˙˙

`

ż

γ1

nαX |D1,z

{ ϕz

´

ż

γ2

nαX |D2,z

{ ϕz

“

ż

τpΓq

ˆ

Bzωz ´ dM

ˆ

BzPz
Pz

ϕz

˙˙

`

ż

γ1

nαX |D1,z

{ ϕz ´

ż

γ2

nαX |D2,z

{ ϕz

“

ż

τpΓq

Bzωz.

Thus we got

Bz
⟨
rpΓ, γ1, γ2qs ,

“`

resXz |M pωzq , 0, 0
˘‰⟩

“

“
⟨
rpΓ, γ1, γ2qs ,

“`

resXz |M pBzωzq , 0, 0
˘‰⟩

.

□
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Proof of Theorem 9.5.14.1, Part 2:

∇GM
Bu

“`

ϕz|Xz , 0, 0
˘‰

“ (9.5.14.1)

“

„ˆ

wαXz pBuq { d pϕz|Xz
˘

,´wαD1,z,u
pBuq { ϕz|D1,z,u

, (9.5.14.2)

´wαD2,z,u
pBvq { ϕz|D2,z,u

˙ȷ

“

„ˆ

Bu
{ d

`

ϕz|Xz
˘

,´
´

Bu|V αD1

` nαD1

¯

{ ϕz|D1,z,u
,´Bv

{ ϕz|D2,z,u

˙ȷ

“

„ˆ

0,´nαD1

{ ϕz|D1,z,u
, 0

˙ȷ

.

As

nαD1

{ `

dMQ1,u ^ ϕz|Xz
˘

“ 0,

we get using Lemma 9.5.10

dMQ1,u

Q1,u
^

ˆ

nαD1

{ ϕz|Xz

˙ˇ

ˇ

ˇ

ˇ

D1,z,u

“
nαD1

{ dMQ1,u

Q1,u
^ϕz|Xz “ ´

BuQ1,u

Q1,u
^ϕz|Xz .

Thus we have
ˆ

nαD1

{ ϕz|Xz

˙ˇ

ˇ

ˇ

ˇ

D1,z,u

“ ´resD1,z,u|Xz

ˆ

BuQ1,u

Q1,u
ϕz

˙ˇ

ˇ

ˇ

ˇ

Xz

“

“ ´resD1,z,u|XzresXz |M

ˆ

BuQ1,u

Q1,u
ωz

˙ˇ

ˇ

ˇ

ˇ

Xz

“

“ ´resLTD1,z,u|M

ˆ

BuQ1,u

Q1,u
ωz

˙ˇ

ˇ

ˇ

ˇ

Xz

,

therefore

∇GM
Bu

“`

resXz |M pωzq , 0, 0
˘‰

“

«˜

0, resLTD1,z,u|M

ˆ

BuQ1,u

Q1,u
ωz

˙ˇ

ˇ

ˇ

ˇ

Xz

, 0

¸ff

.

Thus

BuΠ pz, u, vq “

ż

γ1

resLTD1,z,u|M

ˆ

BuQ1,u

Q1,u
ωz

˙ˇ

ˇ

ˇ

ˇ

Xz

.

Analogously we get

∇GM
Bv

“`

resXz |M pωzq , 0, 0
˘‰

“

„ˆ

0, 0,´nαD2,z,v

{ ϕz|D2,z,v

˙ȷ

“

“

«˜

0, 0, resLTD2,z,v |M

ˆ

BvQ2,v

Q2,v
ωz

˙ˇ

ˇ

ˇ

ˇ

Xz

¸ff
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and

BvΠ pz, u, vq “

ż

γ2

resLTD2,z,v |M

ˆ

BvQ2,v

Q2,v
ωz

˙

.

□
For the periods of the form

`

resXz |Mωz, 0, 0
˘

we obtain the following
relations. We obtain by direct computations:

9.5.15 Corollary.

1. Bkz
⟨
pΓ, γ1, γ2q ,

`

resXz |Mωz, 0, 0
˘⟩

“
⟨
pΓ, γ1, γ2q ,

`

resXz |M

`

Bkzωz
˘

, 0, 0
˘⟩

2. BkzBu
⟨
pΓ, γ1, γ2q ,

`

resXz |Mωz, 0, 0
˘⟩

“
ş

γ1
resLTD1,z,u|M

´

´
BuQ1

Q1
Bkz

`

1
P

˘

∆
¯

3. BkzBv
⟨
pΓ, γ1, γ2q ,

`

resXz |Mωz, 0, 0
˘⟩

“
ş

γ2
resLTD2,z,v |M

´

´
BvQ2

Q2
Bkz

`

1
P

˘

∆
¯

4. BvBu
⟨
pΓ, γ1, γ2q ,

`

resXz |Mωz, 0, 0
˘⟩

“ 0

5. BvBkzBu
⟨
pΓ, γ1, γ2q ,

`

resXz |Mωz, 0, 0
˘⟩

“ 0.

9.5.16 Remark. It should be noticed that with the triple method one can
not automatically reach the full cohomology H3 pX,D1, D2,Cq. The prob-
lem comes from the difference of

`

H2 pD1q ‘H2 pD2q
˘

var
and

`

H2
var pD1q

˘

‘
`

H2
var pD2q

˘

. If dimH2 pX,Cq “ 1, the dimensions of these spaces differ by
1.

A way out might be to choose the variables not independent; a possible
approach is discussed in Section 9.7.

9.6 An Example

We are now going to compute Picard-Fuchs operators in a specific example.
Let X be again the quintic as in Section 8.5. Furthermore, let

H1,u :“ tQ1,u “ 0u Ă P4, where Q1,u :“ x41 ´ u x2x3x4x5

and

H2,v :“ tQ2,v “ 0u Ă P4, where Q2,v :“ x42 ´ v x1x3x4x5.

Furthermore

D1,z,u :“ H1,u XXz and D2,z,v :“ H2,v XXz.

We use the Singular programme in Appendix A.2. The programme is set
up individually for the pairs pXz, D1,z,uq and pXz, D2,z,vq.
The result can be seen as the outcome for a Picard-Fuchs equation of pX,Cq,
where C is a complete intersection of two linearly equivalent divisors on X.
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We obtain the following result:
We get the following matrices

Mz :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
z
D1

15z2

D1

25z3

D1

10z4

D1

A1
A

A2
B

A3
C 0 0 0

0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 R1
B1

R2
B2

R3
B1

0 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 R4
B3

R5
B4

R6
B3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

using the following abbreviations

D1 :“ 1 ´ z5,

A :“ 16 pz ´ 1q
`

z4 ` z3 ` z2 ` z ` 1
˘

p´5z ` uq p´z ` uq
3

`

625z4u´ 500z3u2 ` 150z2u3 ´ 20zu4 ` u5 ´ 256
˘

,

B :“ ´16 pz ´ 1q
`

z4 ` z3 ` z2 ` z ` 1
˘

p´z ` uq
3

`

625z4u´ 500z3u2 ` 150z2u3 ´ 20zu4 ` u5 ´ 256
˘

,

C :“ 16 p´z ` uq
`

´3125z10u` 3125z9u2 ´ 1250z8u3 ` 250z7u4

`250z6u5 ` 276z5u6 ` 275z4u7 ` 275z3u8 ` 275z2u9 ` 275zu10

`275u11 ` 1280z6 ` 2869z5u´ 3125z4u2 ` 1250z3u3 ´ 250z2u4

`25zu5 ´ u6 ´ 1280z ` 256u
˘

A1 :“ u
`

´58750000z14u` 43406250z13u2 ` 40462500z12u3 ´ 66332500z11u4

`38288500z10u5 ` 24064000z10 ´ 12356000z9u6 ` 29689250z9u

`2454700z8u7 ´ 30692825z8u2 ´ 301100z7u8 ´ 13988825z7u3

`21100z6u9 ` 20841875z6u4 ´ 650z5u10 ´ 8572425z5u5

´11665920z5 ` 1786261z4u6 ´ 4945856z4u´ 201083z3u7

`8076288z3u2 ` 11633z2u8 ´ 1388928z2u3 ´ 261zu9 ` 137216zu4

´43200u5
˘

,

A2 :“ u
`

´3875000z14u´ 18181250z13u2 ` 44957500z12u3 ´ 40223500z11u4

`19534300z10u5 ` 1587200z10 ´ 5812400z9u6 ` 10573350z9u

`1100980z8u7 ´ 2272455z8u2 ´ 130740z7u8 ´ 13145655z7u3

`8940z6u9 ` 11217965z6u4 ´ 270z5u10 ´ 4101527z5u5

´869888z5 ` 812235z4u6 ´ 4091200z4u´ 88373z3u7

`3371008z3u2 ` 4879z2u8 ´ 337024z2u3 ´ 99zu9

´29696zu4 ´ 9280u5
˘

,
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A3 :“ 19687500z14u2 ´ 35656250z13u3 ` 28812500z12u4 ´ 13662500z11u5

`4197500z10u6 ´ 8104000z10u´ 867800z9u7 ´ 1241650z9u2

`120860z8u8 ` 10107315z8u3 ´ 10940z7u9 ´ 7664925z7u4

`584z6u10 ` 2869807z6u5 ` 16384z6 ´ 14z5u11

´632773z5u6 ` 3419712z5u` 85241z4u7 ´ 1335936z4u2 ´ 6823z3u8

´294272z3u3 ` 293z2u9 ` 183552z2u4 ´ 5zu10 ´ 24256zu5

´16384z ` 896u6 ` 16384u,

R1 :“ ´25u
`

165z2 ´ 10zu´ 27u2
˘

,

R2 :“ ´5u
`

835z2 ´ 230zu´ 29u2
˘

,

R3 :“ ´2
`

8875z4u´ 6800z3u2 ` 1830z2u3 ´ 200zu4 ` 7u5 ` 128
˘

,

B1 :“ ´ p´5z ` uq
`

625z4u´ 500z3u2 ` 150z2u3 ´ 20zu4 ` u5 ´ 256
˘

,

B2 :“ 625z4u´ 500z3u2 ` 150z2u3 ´ 20zu4 ` u5 ´ 256,

R4 :“ ´25v
`

165z2 ´ 10zv ´ 27v2
˘

,

R5 :“ ´5v
`

835z2 ´ 230zv ´ 29v2
˘

,

R6 :“ ´17750z4v ` 13600z3v2 ´ 3660z2v3 ` 400zv4 ´ 14v5 ´ 256,

B3 :“ ´ p´5z ` vq
`

625z4v ´ 500z3v2 ` 150z2v3 ´ 20zv4 ` v5 ´ 256
˘

,

B4 :“ 625z4v ´ 500z3v2 ` 150z2v3 ´ 20zv4 ` v5 ´ 256,

We receive the equations

Mu :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 R1
B1

R2
B2

R3
B1

0 0 0

0 0 0 0 ´ 3
4u

z´u
4u 0 0 0 0

0 0 0 0 0 ´ 1
2u

z´u
4u 0 0 0

0 0 0 0 F1
G1

F2
G2

F3
G3

0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

F1 :“ ´25 pz ´ uq
`

165z2 ´ 10zu´ 27u2
˘

,

F2 :“ ´5 pz ´ uq
`

835z2 ´ 230zu´ 29u2
˘

,

F3 :“ ´20875z5u` 34475z4u2 ´ 18510z3u3 ` 4310z2u4 ´ 439zu5

`1024z ` 15u6,

G1 :“ ´4 p´5z ` uq
`

625z4u´ 500z3u2 ` 150z2u3 ´ 20zu4 ` u5 ´ 256
˘

,

G2 :“ 4
`

625z4u´ 500z3u2 ` 150z2u3 ´ 20zu4 ` u5 ´ 256
˘

,

G3 :“ ´4u p´5z ` uq
`

625z4u´ 500z3u2 ` 150z2u3 ´ 20zu4 ` u5 ´ 256
˘

.
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Mv :“

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

0 0 0 0 R4
B3

R5
B4

R6
B3

0 0 0

0 0 0 0 ´ 3
4v

z´v
4v 0 0 0 0

0 0 0 0 0 ´ 1
2v

z´v
4v 0 0 0

0 0 0 0 H1
G4

H2
G5

H3
G6

0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

H1 :“ ´25 pz ´ vq
`

165z2 ´ 10zv ´ 27v2
˘

H2 :“ ´5 pz ´ vq
`

835z2 ´ 230zu´ 29u2
˘

H3 :“ ´20875z5v ` 34475z4v2 ´ 18510z3v3 ` 4310z2v4 ´ 439zv5

`1024z ` 15v6,

G4 :“ ´4 p´5z ` vq
`

625z4v ´ 500z3v2 ` 150z2v3 ´ 20zv4 ` v5 ´ 256
˘

G5 :“ 4
`

625z4v ´ 500z3v2 ` 150z2v3 ´ 20zv4 ` v5 ´ 256
˘

G6 :“ ´4v p´5z ` vq
`

625z4v ´ 500z3v2 ` 150z2v3 ´ 20zv4 ` v5 ´ 256
˘

We obtain the following differential equations:

1. B4
z “ z

D1
` 15z2

D1
Bz ` 25z3

D1
B2
z ` 10z4

D1
B3
z ` A1

A Bu ` A2
B BzBu ` A3

C B2
zBu;

2. B3
zBu “ R1

B1
Bu ` R2

B2
BzBu ` R3

B1
B2
zBu;

3. B3
zBv “ R4

B3
Bv ` R5

B4
BzBv ` R6

B3
B2
zBv;

4. B2
u “ ´ 3

4uBu ` z´u
4u BzBu;

5. BuBzBu “ ´ 1
2uBzBu ` z´u

4u B2
zBu;

6. BuB2
zBu “ F1

G1
Bu ` F2

G2
BzBu ` F3

G3
B2
zBu;

7. B2
v “ ´ 3

4vBv ` z´v
4v BzBv;

8. BvBzBv “ ´ 1
2vBzBv ` z´v

4v B2
zBv;

9. BvB2
zBv “ H1

G4
Bv ` H2

G5
BzBv ` H3

G6
B2
zBv;
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Not all all these equations are independent. Equation 5, 6, 8, 9 can be
derived from the others. We obtain the following differential operators:

L1 “ Lbulk ` Lbdry;

L2 “ 4zuB2
u ` 3zBu ´ z pz ´ uq BzBu;

L3 “ ´
F1

G1
Bu ´

F2

G2
BzBu ´

F3

G3
B2
zBu ` B2

uB2
z ;

L4 “ ´
H1

G4
Bv ´

H2

G5
BzBv ´

H3

G6
B2
zBv ` B2

vB2
z ;

with

Lbulk “
`

1 ´ z5
˘

z4B4
z ´ 10z8B3

z ´ 25z7B2
z ´ 15z6Bz ´ z5

“ θz pθz ´ 1q pθz ´ 2q pθz ´ 3q ´ z5 pθz ` 1q
4 ,

using the logarithmic derivative θz :“ zBz, and

Lbdry “ ´
A1D1z

4

A
Bu ´

A2D1z
4

B
BzBu ´

A3D1z
4

C
B2
zBu.

9.7 A modified example

As indicated in Remark 9.5.16, the deformations of D1 and D2 should be
linked. To be specific, let X be a quintic as in Section 8.5.

We are now going to compute Picard-Fuchs operators in a specific ex-
ample. Let X be again the quintic as in Section 8.5. Furthermore, let z and
u be independent parameters and

H1,z,u :“ tQ1,z,u “ 0u Ă P4, where Q1,z,u :“ x41 ´ pz ´ uq x2x3x4x5

and

H2,z,u :“ tQ2,z,u “ 0u Ă P4, where Q2,z,u :“ x42 ´ pz ` uq x1x3x4x5.

Furthermore

D1,z,u :“ H1,u XXz and D2,z,v :“ H2,v XXz.

This will carried out in further research. The method of Li, Lian and
Yau has to be modified suitably.
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Appendix A

Implementation of the
algorithms as Singular
programmes

A.1 A programme for computing the Picard-Fuchs
equation of a complete intersection Calabi-
Yau 3-fold

In this appendix we give a programme written in the Singular language
[DGPS16] for the calculation of the Picard-Fuchs equation for the periods
of a complete intersection Calabi-Yau pn´ 3q-fold in Pn´1 defined by two
homogeneous equations in Pn´1 depending on one parameter a.

The programme is applied to the complete intersection Calabi-Yau 3-fold
in P5 given by the two cubic polynomials considered in Example 7.3.26 in
Chapter 7 respectively in [LT93].

We review the situation: Let Q1 pλq , Q2 pλq P H0
`

P5,OP5 p3q
˘

be the fol-
lowing two homogeneous cubic polynomials on P5 depending on a parameter
λ “ a P C:

Q1 pλq :“ x31 ` x32 ` x33 ´ 3λ x4x5x6,

Q2 pλq :“ x34 ` x35 ` x36 ´ 3λ x1x2x3.

For any details we refer to Example 7.3.26 in Chapter 7.

We briefly explain the programme:

LIB ” g e n e r a l . l i b ” ;

i n t n = 6 ;
// n´1 i s the d imens ion o f the ambient p r o j e c t i v e space

5

i n t c = 2 ;

191
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// c i s the cod imens ion o f the Ca lab i´Yau man i f o l d i n the
// p r o j e c t i v e space , he r e c=2, i . e . , the Ca lab i´Yau
// man i f o l d i s the i n t e r s e c t i o n o f two h y p e r s u r f a c e s

10

r i ng r a = 0 , ( a , x ( 1 . . n ) , f ( 1 . . c ) ) , dp ;
// the a u x i l l i a r y r i n g ra i s g ene r a t ed by a paramete r a ,
// the c o o r d i n a t e s o f the p r o j e c t i v e space x (1 ) , . . . x ( n )
// and two g e n e r a t o r s f (1 ) , f ( 2 ) which co r r e spond to the

15 // i n v e r t e d homogeneous po l y n om i a l s d e f i n i n g the
// Ca lab i´Yau man i f o l d .

i d e a l f a = x (1)ˆ3+x (2 )ˆ3+x (3 ) ˆ3´3∗a∗x (4 ) ∗x (5 ) ∗x (6 ) ,
x (4 )ˆ3+x (5 )ˆ3+x (6) ˆ3´3∗a∗x (1 ) ∗x (2 ) ∗x (3 ) ;

20 // f a i s g i v en by the two homogeneous po l y nom i a l s
// d e f i n i n g the Ca lab i´Yau man i f o l d

// For the f o l l o w i n g p rocedu r e s e e Remark 0 . 1 . 1

25 proc t h e t a ( poly g )
{
proc th ( poly f )
{
return ( a∗ d i f f ( f , a ) ) ;

30 }
poly p=0;
f o r ( i n t j =1; j<=s i z e ( g ) ; j=j +1)
{
matrix c f=c o e f f s ( g [ j ] , f ( 1 ) ) ;

35 i n tvec k = s i z e ( c f ) ´1;
poly h=c f [ k [ 1 ]+1 , 1 ] ;
i n t i ;
f o r ( i =2; i<=c ; i=i +1)
{

40 c f=c o e f f s (h , f ( i ) ) ;
k=i n tvec ( k , s i z e ( c f )´1) ;
h=c f [ k [ i ]+1 , 1 ] ;

}
p = p´k [ 1 ] ∗ h∗ th ( f a [ 1 ] ) ∗ f ( 1 ) ˆ( k [1 ]+1) ∗ f ( 2 ) ˆk [ 2 ]

45 +th ( h ) ∗ f ( 1 ) ˆk [ 1 ] ∗ f ( 2 ) ˆk [ 2 ]
´k [ 2 ] ∗ h∗ th ( f a [ 2 ] ) ∗ f ( 1 ) ˆk [ 1 ] ∗ f ( 2 ) ˆ( k [2 ]+1) ;

}
return ( p ) ;

}
50

// The f o l l o w i n g p rocedu r e a s s o c i a t e s to two ma t r i c e s A
// and B wi th the same number o f rows a mat r i x (A,B)
// whose number o f columns i s the added number o f

55 // columns o f A and B and whose number o f rows c o i n c i d e s
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// wi th tha t o f A and B. I t i s d e f i n e d by con ca t e na t i n g
// the rows o f A and B. I f the number o f rows o f A and B
// does not c o i n c i d e , then the 1x1´mat r i x 0 i s r e t u r n e d .

60 proc concat (matrix A, matrix B)
{
i n t rA = nrows (A) ;
i n t cA = nco l s (A) ;
i n t rB = nrows (B) ;

65 i n t cB = nco l s (B) ;
i n t i , j ;
i f ( rA!=rB )
{ return (0 ) ;}

e l s e
70 {

i d e a l C=A [ 1 , 1 ] ;
f o r ( i =1; i<=rA ; i=i +1)
{
f o r ( j =1; j<=cA ; j=j +1)

75 {
i f ( i !=1 | | j !=1)
{

C=C,A[ i , j ] ;
}

80 }
f o r ( j =1; j<=cB ; j=j +1)
{
C=C,B[ i , j ] ;

}
85 }

return (matrix (C , rA , cA+cB) ) ;
}

}

90

// The f o l l o w i n g p rocedu r e a s s o c i a t e s to an i n t e g e r n the
// 1xn´mat r i x whose e n t r i e s a r e a l l 0 .

proc z e r o ( i n t n )
95 {

i n tvec z=0;
i n t i ;
f o r ( i =2; i<=n ; i=i +1)
{

100 z=z , 0 ;
}
return ( z ) ;

}
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105

// The f o l l o w i n g p rocedu r e a s s o c i a t e s to a po l ynom ia l g
// i n the r i n g ra the maximal t o t a l deg r ee i n f (1 ) and f (2 )
// o f a l l summands o f g . Only summands wi th at l e a s t power
// one i n both f (1 ) and f (2 ) a r e taken i n t o account . I f

110 // t h e r e a r e no summands wi th power at l e a s t one i n both
// f (1 ) and f (2 ) , then 0 i s r e t u r n e d .

proc f d e g r e e ( poly g )
{

115 matrix c f=c o e f f s ( g , f ( 1 ) ) ;
i n tvec k = s i z e ( c f ) ´1;
poly h=c f [ k [ 1 ]+1 , 1 ] ;
i n t i ;
f o r ( i =2; i<=c ; i=i +1)

120 {
c f=c o e f f s (h , f ( i ) ) ;
k=i n tvec ( k , s i z e ( c f )´1) ;
h=c f [ k [ i ]+1 , 1 ] ;

}
125 return ( i n t ( sum( k ) ) ) ;

}

poly p = f (1 ) ∗ f ( 2 ) ;
130

i n t m=4;
// m i s the d imens ion o f the (n´2)́ th cohomology o f the
// Ca lab i´Yau (n´2)́ f o l d .

135 poly p (1 )=the t a ( f (1 ) ∗ f ( 2 ) ) ;

f o r ( i n t k=2;k<=m; k=k+1)
{
poly p ( k )=the t a ( p ( k´1) ) ;

140 }

// For the f o l l o w i n g p rocedu r e s e e Remark 0 . 1 . 2

145 proc maxvect f ( poly p )
{
matrix c f=c o e f f s (p , f ( 1 ) ) ;
matrix Maxvectf [ s i z e ( c f ) ´1 ] [ 1 ] ;
f o r ( i n t i =1; i<=s i z e ( c f ) ´1; i=i +1)

150 {
i f ( s i z e ( c o e f f s ( c f [ s i z e ( c f )´( i ´1) , 1 ] , f ( 2 ) ) )

>=fd e g r e e ( p )´ s i z e ( c f )+i +1)
{Maxvectf [ i ,1 ]= c o e f f s ( c f [ s i z e ( c f )´( i ´1) , 1 ] , f ( 2 ) ) [ i +1 ,1 ] ;}
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e l s e
155 {Maxvectf [ i , 1 ]=0 ;}

}
return ( Maxvectf ) ;

}

160

// The f o l l o w i n g p rocedu r e d e t e rm in e s the summands o f a
// po l ynom i a l p i n ra w i th maximal t o t a l deg r ee i n f (1 )
// and f (2 ) .

165 proc maxpol f ( poly p )
{
matrix c f=c o e f f s (p , f ( 1 ) ) ;
poly max=0;
f o r ( i n t i =1; i<=s i z e ( c f ) ; i=i +1)

170 {
i f ( f d e g r e e ( p )´ i+2<=s i z e ( c o e f f s ( c f [ i , 1 ] , f ( 2 ) ) ) )
{max=max+( c o e f f s ( c f [ i , 1 ] , f ( 2 ) ) [ f d e g r e e ( p )´ i +2 ,1])
∗ f ( 1 ) ˆ( i ´1)∗ f ( 2 ) ˆ( f d e g r e e ( p )´( i ´1) ) ;}

e l s e
175 {max=max ;}

}
return (max) ;

}

180

// The f o l l o w i n g p rocedu r e a s s o c i a t e s to a po l ynom i a l g
// i n ra a l i s t o f p o l y nom i a l s whose f i r s t e l ement i s g ,
// the second e lement i s the po l ynom i a l w i thout a l l
// summands o f the h i g h e s t t o t a l deg r ee i n f (1 ) and f (2 ) .

185 // Each f o l l o w i n g en t r y i s the p r e c ed i n g one minus a l l
// summands o f h i g h e s t deg r ee .

proc S l i s t ( poly g )
{

190 i n t k=f d e g r e e ( g ) ;
poly S (0)=g ;
f o r ( i n t l =1; l<=k´1; l=l +1)
{
poly S( l )=S( l ´1)́ maxpo l f (S ( l ´1) ) ;

195 }
l i s t H;
f o r ( l =1; l<=k´1; l=l +1)
{
H[ l ]=S( l ) ;

200 }
return (H) ;

}
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// Let k be the maximal t o t a l deg r ee i n f (1 ) and f (2 ) .
205 // The f o l l o w i n g p rocedu r e a s s o c i a t e s to a po l ynom ia l g

// i n ra the l i s t o f p o l y nom i a l s whose i´th e n t r y
// c o n s i s t s o f a l l summands o f deg r ee k´ i .

proc Ml i s t ( poly g )
210 {

i n t k=f d e g r e e ( g ) ;
l i s t H=S l i s t ( g ) ;
l i s t G;
f o r ( i n t l =1; l<=k´1; l=l +1)

215 {
i f ( s i z e (H[ l ] ) !=0)
{G[ l ]=maxvect f (H[ l ] ) ;}

e l s e
{G[ l ]=0;}

220 }
return (G) ;

}

225 // Let A be the l i s t o f l i s t s o f p o l y nom i a l s i n ra
// whose l´th e n t r y i s the l i s t M l i s t a s s o c i a t e d to p (ḿ l ) .

l i s t A;
f o r ( i n t l =1; l<=m´1; l=l +1)

230 {
A[ l ]=M l i s t ( p (ḿ l ) ) ;

}

// Let A(0 ) be the l i s t o f p o l y nom i a l s i n ra
235 // whose l´th e n t r y i s the po l ynom i a l maxvect f ( p (ḿ l ) ) .

l i s t A(0) ;
f o r ( i n t l =1; l<=m´1; l=l +1)
{

240 A(0) [ l ]=maxvect f ( p (ḿ l ) ) ;
}

l i s t D;
D=Ml i s t ( p (m) ) ;

245

f o r ( i n t i =1; i<=m; i=i +1)
{
matrix K( i )=maxvect f ( p ( i ) ) ;

}
250
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i d e a l j a = sub s t ( p (1 ) [ 1 ] , f ( 1 ) ,1 , f ( 2 ) , 1 ) ;

f o r ( i n t i =2; i<=s i z e ( p (1 ) ) ; i=i +1)
255 {

j a = ja , s ub s t ( p (1 ) [ i ] , f ( 1 ) ,1 , f ( 2 ) , 1 ) ;
}

260 // Change o f the r i n g :

r i ng r = (0 , a ) , x ( 1 . . n ) , dp ;

l i s t A=imap ( ra ,A) ;
265 l i s t A(0)=imap ( ra ,A(0 ) ) ;

l i s t D=imap ( ra ,D) ;

f o r ( i n t i =1; i<=m; i=i +1)
{

270 matrix P( i )=imap ( ra ,K( i ) ) ;
}

i d e a l f = imap ( ra , f a ) ;
i d e a l j = imap ( ra , j a ) ;

275

matrix z = matrix ( z e r o ( n ) ) ;

i n t i , i 1 , i2 , k , l ;

280 f o r ( i n t i =1; i<=m; i=i +1)
{
matrix J ( i ) [ s i z e ( j ˆ i ) ] [ 1 ]= 0 ;
J ( i )=J ( i )+matrix ( j ˆ i , s i z e ( j ˆ i ) , 1 ) ;

}
285

// See Remark 0 . 1 . 3

f o r ( k=2;k<=n´1;k=k+1)
290 {

matrix E [ k ] [ k ] ; E = E + 1 ;
i f ( k<n´1) { i d e a l j k = j ˆ( k´1) ;}
i d e a l B=(k´1)∗ j a cob ( f [ 1 ] ) ;
f o r ( i 1 =1; i1<=k ; i 1=i 1 +1)

295 {
f o r ( i 2 =1; i2<=k´1; i 2=i 2 +1)
{
i f ( i 1==i 2 )
{

300 i f ( i1 >1) {B=B, ( k´i 1 ) ∗ j a cob ( f [ 1 ] ) ;}
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}
e l s e
{
i f ( i 1==i 2+1) {B=B, i 2 ∗ j a cob ( f [ 2 ] ) ;}

305 e l s e {B=B, z ;}
}

}
}
i f ( k<n´1)

310 {
matrix M(n´k ) =
matrix ( concat ( concat ( concat (matrix ( j ˆ( k´1) , k , 1 ) ,
matrix (B, k , ( k´1)∗n ) ) , f [ 1 ] ∗E) , f [ 2 ] ∗E) , k ,1+(k´1)∗n+c∗k ) ;

}
315 e l s e

{
matrix M(1) =
matrix ( concat ( concat (matrix (B, k , ( k´1)∗n ) , f [ 1 ] ∗E) ,
f [ 2 ] ∗E) , k , ( k´1)∗n+c∗k ) ;

320 }
}

matrix P=P(m) ;
325 l i s t Q;

// The f o l l o w i n g d i v i s i o n and r e d u c t i o n p r o c e s s i s
// e x p l a i n e d i n Chapter 7 . 3 . 4 .

330

matrix V[m+1 ] [ 1 ] ;
f o r ( l =1; l<=m; l=l +1)
{
Q = d i v i s i o n (P ,M( l ) ) ;

335 matrix P[m+1́ l ] [ 1 ]= ze r o (m+1́ l ) ;
i f ( l ==1)
{
f o r ( k=1;k<=m; k=k+1)
{

340 f o r ( i =1; i<=n ; i=i +1)
{
P[ k ,1 ]=P [ k ,1 ]+ d i f f (Q [ 1 ] [ i+n∗( k´1) , 1 ] , x ( i ) ) ;
} ;

P [ k ,1 ]=P [ k ,1 ]+Q[ 1 ] [ n∗m+k ,1]+Q[ 1 ] [ n∗(m+1)+k , 1 ] ;
345 } ;

}
e l s e
{
f o r ( k=1;k<=m+1́ l ; k=k+1)
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350 {
f o r ( i =1; i<=n ; i=i +1)
{
P[ k ,1 ]=P [ k ,1 ]+ d i f f (Q [ 1 ] [ i+n∗( k´1)+1 ,1] , x ( i ) ) ;
} ;

355 P[ k ,1 ]=P [ k ,1 ]+Q[ 1 ] [ n∗(m+1́ l )+1+k , 1 ]
+Q[ 1 ] [ n∗(m+1́ l )+1+(n+1́ l )+k , 1 ] ;

V [m+1́ l ,1 ]=Q[ 1 ] [ 1 , 1 ] ;
V [m+1́ l , 1 ] ;

}
360 }

}

V[m+1,1]=P [ 1 , 1 ] ;

365 // In the f o l l o w i n g pa r t the c o e f f i c i e n t s o f the
// d i f f e r e n t i a l o p e r a t o r s i n the Picard´Fuchs equa t i on
// a r e de te rm ined ( s e e Chapter 7 . 3 . 4 ) :

l i s t F ;
370 l i s t Q(1)=d i v i s i o n ( (V[m´1 ,1]∗ J (m´1)+D[ 1 ] ) ,A(0 ) [ 1 ] ) ;

poly q (1 )=poly (Q(1) [ 1 ] [ 1 , 1 ] ) ;
f o r ( i n t b=2;b<=m´1;b=b+1)
{
matrix F(b )=ze ro (ḿ b+1) ;

375 f o r ( i n t v=1;v<=b´1; v=v+1)
{
F(b )=F(b )+q ( v ) ∗A[ v ] [ b´v ] ;

}
l i s t Q(b )=d i v i s i o n (V[ḿ b , 1 ] ∗ J (ḿ b )+D[ b]´F(b ) ,A(0 ) [ b ] ) ;

380 poly q ( b )=poly (Q(b ) [ 1 ] [ 1 , 1 ] ) ;
F [ b]=F(b ) ;

}

f o r ( i n t b=1;b<=m´1;b=b+1)
385 {

Q(b ) ;
}

V[m+1 ,1 ] ;

390

// The Picard´Fuchs equa t i on i s :
// \Thetaˆm { lambda} ´ Q(1) ∗\Theta ˆ{ḿ 1} {\ lambda} ´

// \ l d o t s ´ Q(m´1)∗\Theta ˆ1 {\ lamda} ´ V[m+1 ,1]

1.1.1 Remark. The procedure theta associates to a polynomial f “
ř

i,jě1 gi,jf
i
1f

j
2 in the ring ra (then each gi,j a polynomial in the variable
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x1, . . . , xn depending on the parameter a)

Θa

˜

ÿ

i,jě1

gi,jf
i
1f

j
2

¸

,

written in the ring ra by replacing Q´i
1 by f i1 and Q´j

2 by f j2 .

1.1.2 Remark. The procedure maxvectf associates to a polynomial p in
the ring ra the summands of maximal total degree d in f1 and f2. These
summands are written in a vector whose first entry consists of the factor of
fd1 f2, the second entry consists of the factor of fd´1

1 f22 and so on, until the
last entry consists of the factor of f1f

d
2 .

E.g., let p “ Af21 f2 ` Bf1f
2
2 ` Cf1f2 be a polynomial, where A,B,C

are polynomials in the variables x1, . . . , xn depending on the parameter a.
Then

maxvectf ppq :“

ˆ

A
B

˙

.

1.1.3 Remark. In the following we define matrices Mp1q and Mpn ´

kq such that Mp1q coincides with the matrix Kn defined in Section 7.3.4
and Mpn ´ kq coincides with the matrix K̃k`1 defined in Chapter 7.3.5.

The vector ppp` 1q ˆ 1q-matrix ϱ̃p`1

ˆ

řp`1
j“1

P
ppq
p`2,j

Qj1Q
p`2´j
2

∆

˙

P S‘pp`1q for p “

1, . . . ,m´1 is replaced by the matrices Jpiq for i “ 1, . . . ,m, since the basis
elements thetapppkqq, k “ 1, . . . ,m ´ 1 are given by the Jacobian ideal of
pp1q.
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A.2 A programme for calculating a Hodge number

This appendix contains a Singular programme ([DGPS16]) for calculating
the dimension of the variational cohomology H1,1

var pDq in Lemma 8.5.13. We
use the notation of Lemma 8.5.13.

This comes down to calculate the G-invariant part of the kernel of the
map ΨLT

3 . We aim to determine the dimension of the space of all pairs of
homogeneous polynomials pR1, R2q with

R1 P H0
`

P4,OP4 p8q
˘G,1

“
⟨
x85, x

2
1x

2
2x

2
3x

2
4, x1x2x3x4x

4
5

⟩
and

R2 P H0
`

P4,OP4 p9q
˘G,2

“
⟨
x95, x

2
1x

2
2x

2
3x

2
4x5, x1x2x3x4x

5
5

⟩
such that pR1, R2q P im pK3q. Therefore we search homogeneous poly-
nomials A1, . . . , A5, A8 P H0

`

P4,OP4 p5q
˘

, A6, A9 P H0
`

P4,OP4 p4q
˘

and
A7 P H0

`

P4,OP4 p3q
˘

such that

R1 “

5
ÿ

i“1

BQ

Bxk
Ak ` PA7 `QA9

and

R2 “

5
ÿ

i“1

BP

Bxk
Ak ` PA6 `QA8.

We give some explanations for the following programme for Singular.
For k “ 1, . . . , 5, 8 we write

Ak “
ÿ

i1`i2`i3`i4`i5“5

a
pkq

i1,i2,i3,i4,i5
xi11 x

i2
2 x

i3
3 x

i4
4 x

i5
5

for coefficients a
pkq

i1`i2`i3`i4`i5
P C, furthermore

Ak “
ÿ

i1`i2`i3`i4`i5“4

a
pkq

i1,i2,i3,i4,i5
xi11 x

i2
2 x

i3
3 x

i4
4 x

i5
5

for k “ 6, 9 and

Ak “
ÿ

i1`i2`i3`i4`i5“3

a
pkq

i1,i2,i3,i4,i5
xi11 x

i2
2 x

i3
3 x

i4
4 x

i5
5

for k “ 7.
We define a p2 ˆ 937q-matrix M whose entries are the factors of the

coefficients a
pkq

i1,i2,i3,i4,i5
in the polynomials Ak. Furthermore, six entries of

M consist of the generators of H0
`

P4,OP4 p8q
˘G,1

and H0
`

P4,OP4 p9q
˘G,2
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such that the kernel of M determines all possibilities for pR1, R2q with the
required properties.

In the sequel we calculate all possibilities for pR1, R2q we have obtained.
We obtain five independent solutions.

LIB ” g e n e r a l . l i b ” ;
r i ng r = (0 , b , c ) , x ( 1 . . 5 ) , dp ;
i n t z=0;

5 poly P=x (1)ˆ5+x (2)ˆ5+x (3 )ˆ5+x (4 )ˆ5+x (5) ˆ5
´5∗b∗x (1 ) ∗x (2 ) ∗x (3 ) ∗x (4 ) ∗x (5 ) ;

poly Q=x (5)ˆ4´c∗x (1 ) ∗x (2 ) ∗x (3 ) ∗x (4 ) ;

matrix M[ 2 ] [ 9 3 7 ] ;
10 f o r ( i n t k=1;k<=5;k=k+1){

f o r ( i n t i 1 =0; i1 <=5; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=5́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=5́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=5́ i1´i 2´i 3 ; i 4=i 4 +1){

15 z=z+1;
M[ 1 , z ]= d i f f (P , x ( k ) ) ∗x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4

∗x (5 ) ˆ(5´ i 1´i 2´i 3´i 4 ) ;
} // fo r´l oop i 4

} // fo r´l oop i 3
20 } // fo r´l oop i 2

} // fo r´l oop i 1
} // fo r´l oop k
// fo r´l oop f o r A(6 ) :
f o r ( i n t i 1 =0; i1 <=4; i 1=i 1 +1){

25 f o r ( i n t i 2 =0; i2<=4́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=4́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=4́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;
M[ 1 , z ]=P∗x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4

30 ∗x (5 ) ˆ(4´ i 1´i 2´i 3´i 4 ) ;
} // fo r´l oop i 4

} // fo r´l oop i 3
} // fo r´l oop i 2

} // fo r´l oop i 1
35 // fo r´l oop f o r A(7 ) :

f o r ( i n t i 1 =0; i1 <=3; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=3́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=3́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=3́ i1´i 2´i 3 ; i 4=i 4 +1){

40 z=z+1;
M[ 1 , z ]=0;
} // fo r´l oop i 4

} // fo r´l oop i 3
} // fo r´l oop i 2

45 } // fo r´l oop i 1
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// fo r´l oop f o r A(8 ) :
f o r ( i n t i 1 =0; i1 <=5; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=5́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=5́ i1´i 2 ; i 3=i 3 +1){

50 f o r ( i n t i 4 =0; i4<=5́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;
M[ 1 , z ]=Q∗x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4

∗x (5 ) ˆ(5´ i 1´i 2´i 3´i 4 ) ;
} // fo r´l oop i 4

55 } // fo r´l oop i 3
} // fo r´l oop i 2

} // fo r´l oop i 1
i n t v=z ;
// fo r´l oop f o r A(9 ) :

60 f o r ( i n t i 1 =0; i1 <=4; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=4́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=4́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=4́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;

65 M[1 , z ]=0;
} // fo r´l oop i 4

} // fo r´l oop i 3
} // fo r´l oop i 2

} // fo r´l oop i 1
70 z=z+1;

M[ 1 , z]=´x (5 ) ˆ9 ;
z=z+1;
M[ 1 , z ]=´(x (1 ) ∗x (2 ) ∗x (3 ) ∗x (4 ) ) ˆ2∗ x (5 ) ;
z=z+1;

75 M[1 , z]=´x (1 ) ∗x (2 ) ∗x (3 ) ∗x (4 ) ∗x (5 ) ˆ5 ;
z=z+1;
M[ 1 , z ]=0;
z=z+1;
M[ 1 , z ]=0;

80 z=z+1;
M[ 1 , z ]=0;
//
z=0;
f o r ( i n t k=1;k<=5;k=k+1){

85 f o r ( i n t i 1 =0; i1 <=5; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=5́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=5́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=5́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;

90 M[2 , z ]= d i f f (Q, x ( k ) ) ∗x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4
∗x (5 ) ˆ(5´ i 1´i 2´i 3´i 4 ) ;

} // fo r´l oop i 4
} // fo r´l oop i 3

} // fo r´l oop i 2
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95 } // fo r´l oop i 1
} // fo r´l oop k
// fo r´l oop f o r A(6 ) :
f o r ( i n t i 1 =0; i1 <=4; i 1=i 1 +1){

f o r ( i n t i 2 =0; i2<=4́ i 1 ; i 2=i 2 +1){
100 f o r ( i n t i 3 =0; i3<=4́ i1´i 2 ; i 3=i 3 +1){

f o r ( i n t i 4 =0; i4<=4́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;
M[ 2 , z ]=0;
} // fo r´l oop i 4

105 } // fo r´l oop i 3
} // fo r´l oop i 2

} // fo r´l oop i 1
// fo r´l oop f o r A(7 ) :
f o r ( i n t i 1 =0; i1 <=3; i 1=i 1 +1){

110 f o r ( i n t i 2 =0; i2<=3́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=3́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=3́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;
M[ 2 , z ]=P∗x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4

115 ∗x (5 ) ˆ(3´ i 1´i 2´i 3´i 4 ) ;
} // fo r´l oop i 4

} // fo r´l oop i 3
} // fo r´l oop i 2

} // fo r´l oop i 1
120 // fo r´l oop f o r A(8 ) :

f o r ( i n t i 1 =0; i1 <=5; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=5́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=5́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=5́ i1´i 2´i 3 ; i 4=i 4 +1){

125 z=z+1;
M[ 2 , z ]=0;
} // fo r´l oop i 4

} // fo r´l oop i 3
} // fo r´l oop i 2

130 } // fo r´l oop i 1
// fo r´l oop f o r A(9 ) :
f o r ( i n t i 1 =0; i1 <=4; i 1=i 1 +1){

f o r ( i n t i 2 =0; i2<=4́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=4́ i1´i 2 ; i 3=i 3 +1){

135 f o r ( i n t i 4 =0; i4<=4́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;
M[ 2 , z ]=Q∗x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4

∗x (5 ) ˆ(4´ i 1´i 2´i 3´i 4 ) ;
} // fo r´l oop i 4

140 } // fo r´l oop i 3
} // fo r´l oop i 2

} // fo r´l oop i 1
z=z+1;
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M[2 , z ]=0;
145 z=z+1;

M[ 2 , z ]=0;
z=z+1;
M[ 2 , z ]=0;
z=z+1;

150 M[2 , z]=´x (5 ) ˆ8 ;
z=z+1;
M[ 2 , z ]=´(x (1 ) ∗x (2 ) ∗x (3 ) ∗x (4 ) ) ˆ2 ;
z=z+1;
M[ 2 , z]=´x (1 ) ∗x (2 ) ∗x (3 ) ∗x (4 ) ∗x (5 ) ˆ4 ;

155

matrix V [ 2 ] [ 1 ] ;
f o r ( i n t i =1; i <=2; i=i +1){
V[ i , 1 ]=0 ;

160 }

de f C=modulo (M,V) ;

165

f o r ( i n t t =1; t<=2856; t=t+1){
matrix L( t ) [ 9 3 7 ] [ 1 ] ;

}

170 i n t w=0;
f o r ( i n t t =1; t<=2856; t=t+1){
i f ( ord (C [ t ] )==0) {w=w+1; L (w)=matrix (C) [ t ] ; }

}

175 i n t d=w;

f o r ( i n t k=1;k<=9;k=k+1){
poly A( k )=0;

}
180

i n t u=0;

f o r (w=1;w<=105;w=w+1){

185 // C a l c u l a t i o n o f A(1 ) , . . . , A(5 ) :

z=0;
f o r ( i n t k=1;k<=5;k=k+1){
f o r ( i n t i 1 =0; i1 <=5; i 1=i 1 +1){

190 f o r ( i n t i 2 =0; i2<=5́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=5́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=5́ i1´i 2´i 3 ; i 4=i 4 +1){
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z=z+1;
A( k )=A( k )+x (1) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4

195 ∗x (5 ) ˆ(5´ i 1´i 2´i 3´i 4 ) ∗L(w) [ z , 1 ] ;
} // fo r´l oop i 4

} // fo r´l oop i 3
} // fo r´l oop i 2

} // fo r´l oop i 1
200 } // fo r´l oop k

//

// C a l c u l a t i o n o f the po l ynom ia l A(6 ) :

205 f o r ( i n t i 1 =0; i1 <=4; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=4́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=4́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=4́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;

210 A(6)=A(6)+x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4
∗x (5 ) ˆ(4´ i 1´i 2´i 3´i 4 ) ∗L(w) [ z , 1 ] ;

} // fo r´l oop i 4
} // fo r´l oop i 3

} // fo r´l oop i 2
215 } // fo r´l oop i 1

// i n t n=v ;

// C a l c u l a t i o n o f the po l ynom ia l A(7 ) :

220 f o r ( i n t i 1 =0; i1 <=3; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=3́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=3́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=3́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;

225 A(7)=A(7)+x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4
∗x (5 ) ˆ(3´ i 1´i 2´i 3´i 4 ) ∗L(w) [ z , 1 ] ;

} // fo r´l oop i 4
} // fo r´l oop i 3

} // fo r´l oop i 2
230 } // fo r´l oop i 1

//

// C a l c u l a t i o n o f the po l ynom ia l A(8 ) :

235 f o r ( i n t i 1 =0; i1 <=5; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=5́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=5́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=5́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;

240 A(8)=A(8)+x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4
∗x (5 ) ˆ(5´ i 1´i 2´i 3´i 4 ) ∗L(w) [ z , 1 ] ;



A.2. HODGE NUMBER 207

}// fo r´l oop i 4
} // fo r´l oop i 3

} // fo r´l oop i 2
245 } // fo r´l oop i 1

//

// C a l c u l a t i o n o f the po l ynom ia l A(9 ) :

250 f o r ( i n t i 1 =0; i1 <=4; i 1=i 1 +1){
f o r ( i n t i 2 =0; i2<=4́ i 1 ; i 2=i 2 +1){
f o r ( i n t i 3 =0; i3<=4́ i1´i 2 ; i 3=i 3 +1){
f o r ( i n t i 4 =0; i4<=4́ i1´i 2´i 3 ; i 4=i 4 +1){
z=z+1;

255 A(9)=A(9)+x (1 ) ˆ i 1 ∗x (2 ) ˆ i 2 ∗x (3 ) ˆ i 3 ∗x (4 ) ˆ i 4
∗x (5 ) ˆ(4´ i 1´i 2´i 3´i 4 ) ∗L(w) [ z , 1 ] ;

} // fo r´l oop i 4
} // fo r´l oop i 3

} // fo r´l oop i 2
260 } // fo r´l oop i 1

//

poly R2(w)=0;
265 f o r ( i n t j =1; j <=5; j=j +1){

R2(w)=R2(w)+d i f f (P , x ( j ) ) ∗A( j ) ;
}
R2(w)=R2(w)+P∗A(6)+Q∗A(8) ;

270 poly R1(w)=0;
f o r ( i n t j =1; j <=5; j=j +1){
R1(w)=R1(w)+d i f f (Q, x ( j ) ) ∗A( j ) ;

}
R1(w)=R1(w)+P∗A(7)+Q∗A(9) ;

275 }

f o r (w=1;w<=d ;w=w+1){
matrix R(w) [ 2 ] [ 1 ] ;
R(w) [1 ,1 ]=R1(w) ;

280 R(w) [2 ,1 ]=R2(w) ;
}

i n t a ;

285 f o r (w=1;w<=105;w=w+1){
i f (R(w) [ 1 , 1 ] !=0 ) {a=a+1;}
e l s e {
i f (R(w) [ 2 , 1 ] !=0 ) {a=a+1;}

}
290 }
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a ;

qu i t ;
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A.3 A programme for the computation of Picard-
Fuchs operators of a pair consisting of a Calabi-
Yau 3-fold and a divisor

This appendix contains a Singular programme ([DGPS16]) for the compu-
tation of Picard-Fuchs operators of a pair consisting of a Calabi-Yau 3-fold
and a divisor. It is an extension of the programme given in Appendix A.1
for a complete intersection Calabi-Yau 3-fold.

LIB ” g e n e r a l . l i b ” ;

i n t n = 5 ;
// n´1 i s the d imens ion o f the ambient p r o j e c t i v e space

5

i n t c = 2 ;
r i ng r a = 0 , ( a , b , x ( 1 . . n ) , f ( 1 . . c ) ) , dp ;

i d e a l f a = x (1)ˆ5+x (2 )ˆ5+x (3 )ˆ5+x (4)ˆ5+x (5 ) ˆ5
10 ´5∗a∗x (1 ) ∗x (2 ) ∗x (3 ) ∗x (4 ) ∗x (5 ) ,

x (5 )ˆ4´b∗x (1 ) ∗x (2 ) ∗x (3 ) ∗x (4 ) ;

f a ;

15 // f a i s g i v en by the two homogeneous po l y nom i a l s
// d e f i n i n g the Ca lab i´Yau man i f o l d and the d i v i s o r

i n t m=4; // m i s the d imens ion o f the (n´2)́ th
// cohomology o f the Ca lab i´Yau (n´2)́ f o l d .

20

// We compute the b a s i s o f the 3´rd r e l a t i v e
// cohomology .

// The f o l l o w i n g p rocedu r e computes the p a r t i a l d e r i v a t i v e
25 // o f a po l ynom ia l i n ra w i th r e s p e c t to the

// paramete r a , such tha t f (1 ) and f (2 ) a r e assumed to be
// i n the denominator .

30 proc a d i f f ( poly g )
{

proc th ( poly f )
{

return ( d i f f ( f , a ) ) ;
35 }

poly p=0;
f o r ( i n t j =1; j<=s i z e ( g ) ; j=j +1)A
{

matrix c f=c o e f f s ( g [ j ] , f ( 1 ) ) ;
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40 i n tvec k = s i z e ( c f ) ´1;
poly h=c f [ k [ 1 ]+1 , 1 ] ;
i n t i ;
f o r ( i =2; i<=c ; i=i +1)
{

45 c f=c o e f f s (h , f ( i ) ) ;
k=i n tvec ( k , s i z e ( c f )´1) ;
h=c f [ k [ i ]+1 , 1 ] ;

}
p = p´k [ 1 ] ∗ h∗ th ( f a [ 1 ] ) ∗ f ( 1 ) ˆ( k [1 ]+1) ∗ f ( 2 ) ˆk [ 2 ]

50 +th ( h ) ∗ f ( 1 ) ˆk [ 1 ] ∗ f ( 2 ) ˆk [ 2 ]
´k [ 2 ] ∗ h∗ th ( f a [ 2 ] ) ∗ f ( 1 ) ˆk [ 1 ] ∗ f ( 2 ) ˆ( k [2 ]+1) ;

}
return ( p ) ;

}
55

// The f o l l o w i n g p rocedu r e computes the p a r t i a l
// d e r i v a t i v e o f a po l ynom i a l i n ra w i th r e s p e c t

60 // to the paramete r b

proc b d i f f ( poly g )
{

65 proc th ( poly f )
{
return ( d i f f ( f , b ) ) ;

}
poly p=0;

70 f o r ( i n t j =1; j<=s i z e ( g ) ; j=j +1)
{

matrix c f=c o e f f s ( g [ j ] , f ( 1 ) ) ;
i n tvec k = s i z e ( c f ) ´1;
poly h=c f [ k [ 1 ]+1 , 1 ] ;

75 i n t i ;
f o r ( i =2; i<=c ; i=i +1)
{

c f=c o e f f s (h , f ( i ) ) ;
k=i n tvec ( k , s i z e ( c f )´1) ;

80 h=c f [ k [ i ]+1 , 1 ] ;
}
p = p´k [ 1 ] ∗ h∗ th ( f a [ 1 ] ) ∗ f ( 1 ) ˆ( k [1 ]+1) ∗ f ( 2 ) ˆk [ 2 ]

+th ( h ) ∗ f ( 1 ) ˆk [ 1 ] ∗ f ( 2 ) ˆk [ 2 ]
´k [ 2 ] ∗ h∗ th ( f a [ 2 ] ) ∗ f ( 1 ) ˆk [ 1 ] ∗ f ( 2 ) ˆ( k [2 ]+1) ;

85 }
return ( p ) ;

}
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90 // C a l c u l a t i o n o f the b a s i s :

poly PX(0)=f (1 ) ;

f o r ( i n t k=1;k<=m; k=k+1)
95 {

poly PX( k ) = a d i f f (PX(k´1) ) ;
}

poly PD(1)= d i f f ( f a [ 2 ] , b ) ∗ f ( 1 ) ∗ f ( 2 ) ;
100

f o r ( i n t k=2;k<=m; k=k+1)
{
poly PD( k ) = a d i f f (PD(k´1) ) ;

}
105

// We denote the v e c t o r s we want to decompose
// by Z(1 ) and Z(2)
// D e r i v a t i v e w i th r e s p e c t to z :

110

poly Z(1)=PX(4) ;
poly Z(2)=PD(4) ;

// D e r i v a t i v e w i th r e s p e c t to u :
115

poly Z(3)=PX(3) ∗ d i f f ( f a [ 2 ] , b ) ∗ f ( 2 ) ;
poly Z(4)=b d i f f (PD(1) ) ;
poly Z(5)=b d i f f (PD(2) ) ;
poly Z(6)=b d i f f (PD(3) ) ;

120

proc concat (matrix A, matrix B)
{

i n t rA = nrows (A) ;
125 i n t cA = nco l s (A) ;

i n t rB = nrows (B) ;
i n t cB = nco l s (B) ;
i n t i , j ;
i f ( rA!=rB )

130 { return (0 ) ;}
e l s e
{

i d e a l C=A [ 1 , 1 ] ;
f o r ( i =1; i<=rA ; i=i +1)

135 {
f o r ( j =1; j<=cA ; j=j +1)
{
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i f ( i !=1 | | j !=1)
{

140 C=C,A[ i , j ] ;
}

}
f o r ( j =1; j<=cB ; j=j +1)
{

145 C=C,B[ i , j ] ;
}

}
return (matrix (C , rA , cA+cB) ) ;

}
150 }

proc z e r o ( i n t n )
155 {

i n tvec z=0;
i n t i ;
f o r ( i =2; i<=n ; i=i +1)
{

160 z=z , 0 ;
}
return ( z ) ;

}

165 // The f o l l o w i n g p rocedu r e a s s o c i a t e s to a po l ynom ia l g
// i n the r i n g ra the maximal t o t a l deg r ee i n f (1 ) and f (2 )
// o f a l l summands o f g . Only summands wi th at l e a s t power
// one i n f (1 ) and f (2 ) a r e taken i n t o account .
// I f t h e r e a r e no summands wi th power at l e a s t

170 // one i n both f (1 ) and f (2 ) , then 0 i s r e t u r n e d .

proc f d e g r e e ( poly g )
{

matrix c f=c o e f f s ( g , f ( 1 ) ) ;
175 i n tvec k = s i z e ( c f ) ´1;

poly h=c f [ k [ 1 ]+1 , 1 ] ;
i n t i ;
f o r ( i =2; i<=c ; i=i +1)
{

180 c f=c o e f f s (h , f ( i ) ) ;
k=i n tvec ( k , s i z e ( c f )´1) ;
h=c f [ k [ i ]+1 , 1 ] ;

}
return ( i n t ( sum( k ) ) ) ;

185 }
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// The f o l l o w i n g p rocedu r e a s s o c i a t e s to an i n t e g e r k the
// ( k´1)x1´mat r i x whose i´th e n t r y i s the c o e f f i c i e n t o f

190 // f (1 ) ˆ i f ( 2 ) ˆ( k´ i ) f o r i =1 , . . . , k´1.

proc Fmon( i n t k ) {
matrix F [ 1 ] [ k´1]=0;
f o r ( i n t i =1; i<=k´1; i=i +1)

195 {
F [ 1 , i ]=F [ 1 , i ]+ f (1 ) ˆ i ∗ f ( 2 ) ˆ( k´ i ) ;

}
return (F) ;

}
200

// For the f o l l o w i n g p rocedu r e s e e Remark

proc maxvect f ( poly p ) {
205 i n t d=f d e g r e e ( p ) ;

matrix c f=c o e f f s (p , f ( 1 ) ) ;
matrix Maxvectf [ d ] [ 1 ] ;
Maxvect f [ 1 , 1 ]=0 ;
f o r ( i n t i =2; i<=d ; i=i +1){

210 i f ( s i z e ( c f )>=d´( i ´2) ) {
i f ( s i z e ( c o e f f s ( c f [ d´( i ´2) , 1 ] , f ( 2 ) ) )>=1+(i ´2) ) {
Maxvectf [ i ,1 ]= c o e f f s ( c f [ d´( i ´2) , 1 ] , f ( 2 ) ) [2+( i ´2) , 1 ] ;

}
e l s e {Maxvectf [ i , 1 ]=0 ;}

215 }
e l s e {Maxvectf [ i , 1 ]=0 ;}

}
return ( Maxvectf ) ;

}
220

// The f o l l o w i n g p rocedu r e d e t e rm in e s the summands o f a
// po l ynom i a l p i n ra w i th maximal t o t a l deg r ee i n
// f (1 ) and f (2 ) .

225

proc maxpol f ( poly p ) {
matrix c f=c o e f f s (p , f ( 1 ) ) ;
poly max=0;
f o r ( i n t i =1; i<=s i z e ( c f ) ; i=i +1){

230 i f ( f d e g r e e ( p )´ i+2<=s i z e ( c o e f f s ( c f [ i , 1 ] , f ( 2 ) ) ) )
{max=max+( c o e f f s ( c f [ i , 1 ] , f ( 2 ) ) [ f d e g r e e ( p )´ i +2 ,1])

∗ f ( 1 ) ˆ( i ´1)∗ f ( 2 ) ˆ( f d e g r e e ( p )´( i ´1) ) ;}
e l s e
{max=max ;}

235 }
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return (max) ;
}

240 // The f o l l o w i n g p rocedu r e a s s o c i a t e s to a po l ynom ia l g
// i n ra a l i s t o f p o l y nom i a l s whose f i r s t e l ement i s g ,
// the second e lement i s the po l ynom i a l w i thout a l l
// summands o f the h i g h e s t t o t a l deg r ee i n f (1 ) and f (2 ) .
// Each f o l l o w i n g en t r y i s the p r e c e d i n g one minus a l l

245 // summands o f h i g h e s t deg r ee .

proc S l i s t ( poly g ) {
i n t k=f d e g r e e ( g ) ;
poly S (0)=g ;

250 f o r ( i n t l =1; l<=k´1; l=l +1){
poly S( l )=S( l ´1)́ maxpo l f (S ( l ´1) ) ;

}
l i s t H;
f o r ( l =1; l<=k´1; l=l +1){

255 H[ l ]=S( l ) ;
}
return (H) ;

}

260

// Let k be the maximal t o t a l deg r ee i n f (1 ) and f (2 ) .
// The f o l l o w i n g p rocedu r e a s s o c i a t e s to a po l ynom ia l
// g i n ra the l i s t o f p o l y nom i a l s whose i´th e n t r y
// c o n s i s t s o f a l l summands o f deg r ee k´ i .

265

proc Ml i s t ( poly g ) {
i n t k=f d e g r e e ( g ) ;
l i s t H=S l i s t ( g ) ;
l i s t G;

270 f o r ( i n t l =1; l<=k´1; l=l +1){
i f ( s i z e (H[ l ] ) !=0)
{G[ l ]=maxvect f (H[ l ] ) ;}

e l s e
{G[ l ]=0;}

275 }
return (G) ;

}

280

proc maxvect f1 ( poly p ) {
matrix c f=c o e f f s (p , f ( 1 ) ) ;
matrix K[ s i z e ( c f ) ´1 ] [ 1 ] ;
K[1 ,1 ]= c f [ s i z e ( c f ) , 1 ] ;
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285 f o r ( i n t i =2; i<=s i z e ( c f ) ´1; i=i +1){
K[ i , 1 ]=0 ;

}
return (K) ;

}
290

f o r ( i n t k=1;k<=m´1;k=k+1)
{
matrix MaxX( k )=maxvect f1 (PX( k ) ) ;

295 }

f o r ( i n t k=1;k<=m´1;k=k+1)
{

300 matrix MaxD( k )=maxvect f (PD( k ) ) ;
}

f o r ( i n t k=1;k<=m´1;k=k+1)
305 {

l i s t MP( k ) = M l i s t (PX( k ) ) ;
}

310 f o r ( i n t v=1;v<=6;v=v+1)
{
i f ( v==1) {matrix K( v )=maxvect f1 (Z(1 ) ) ;}
i f ( v>=2) {matrix K( v )=maxvect f (Z( v ) ) ;}

}
315

// ////////////////////////////////////////////////////

// Change o f the r i n g
320

r i ng r = (0 , a , b ) , x ( 1 . . n ) , dp ;

i n t m=4;

325

f o r ( i n t v=1;v<=6;v=v+1)
{
matrix K( v )=imap ( ra ,K( v ) ) ;

}
330

f o r ( i n t v=1;v<=6;v=v+1)
{
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matrix K=K( v ) ;
335

matrix S( v ) [2∗m´ 1 ] [ 1 ] ;

f o r ( i n t k=1;k<=m´1;k=k+1)
340 {

matrix MaxX( k )=imap ( ra ,MaxX( k ) ) ;
}

f o r ( i n t k=1;k<=m´1;k=k+1)
345 {

matrix MaxD( k )=imap ( ra ,MaxD( k ) ) ;
}

350 i d e a l f = imap ( ra , f a ) ;

matrix z = matrix ( z e r o ( n ) ) ;

i n t i , i 1 , i2 , i3 , i4 , k , l , s , o ,w ;
355 i n t n=5;

i n t m=4;

// In the f o l l o w i n g we d e f i n e ma t r i c e s M(n´k ) wi th
360 // k rows and n ( k´1)+2k l i n e s , they c o i n c i d e

// which c o i n c i d e w i th the ma t r i c e s K {k+1}
// d e f i n e d i n ??

// E1 ( k ) i s t d i e kxk´E i n h e i t sm a t r i x mit de r
365 // l e t z t e n Spa l t e a b g e s c hn i t t e n

f o r ( k=2;k<=n ; k=k+1)
{
matrix E1( k ) [ k ] [ k´1] ;

370 f o r ( l =1; l<=k ; l=l +1)
{
f o r ( s=1; s<=k´1; s=s+1)
{
i f ( l==s ) {E1( k ) [ l , s ]=1;}

375 e l s e {E1( k ) [ l , s ]=0;}
}

}
}

380

// E2 ( k ) i s t d i e kxk´E i n h e i t sm a t r i x mit den e r s t e n
// be i den Spa l t en a bg e s c hn i t t e n
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f o r ( k=2;k<=n ; k=k+1)
385 {

matrix E2( k ) [ k ] [ k´1] ;
f o r ( l =1; l<=k ; l=l +1)
{
f o r ( s=1; s<=k´1; s=s+1)

390 {
i f ( l<=1) {E2( k ) [ l , s ]=0;}
e l s e
{
i f ( l 1́==s ) {E2( k ) [ l , s ]=1;}

395 e l s e {E2( k ) [ l , s ]=0;}
}

}
}

}
400

f o r ( k=1;k<=n´1;k=k+1)
{
matrix E [ k+1] [ k+1] ; E = E + 1 ;
i d e a l B=k∗ j a cob ( f [ 1 ] ) ;

405 f o r ( i 1 =1; i1<=k+1; i 1=i 1 +1)
{

f o r ( i 2 =1; i2<=k ; i 2=i 2 +1)
{

i f ( i 1==i 2 )
410 {

i f ( i1 >1) {B=B, ( k+1́ i 1 ) ∗ j a cob ( f [ 1 ] ) ;}
}
e l s e
{

415 i f ( i 1==i 2+1)
{
i f ( i 1==2) {B=B,´ j a cob ( f [ 2 ] ) ;}
e l s e {B=B, ( i2 ´1)∗ j a cob ( f [ 2 ] ) ;}

}
420 e l s e {B=B, z ;}

}
}

}
i f ( k<=n´2) {matrix M(n´k ) = matrix ( concat ( concat ( concat

425 ( concat (matrix (B, k+1,k∗n ) , f [ 1 ] ∗E) , f [ 2 ] ∗ E2( k+1) ) ,
MaxX( k ) ) ,MaxD( k ) ) , k+1,k∗n+c ∗( k+1)+1) ;}

e l s e {matrix M(n´k ) = matrix ( concat ( concat
(matrix (B, k+1,k∗n ) , f [ 1 ] ∗E) , f [ 2 ] ∗ E2( k+1) ) , k+1,
k∗n+c ∗( k+1)´1) ;}

430 }
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l i s t Q;

435 matrix P[m+1][1]=K;

i n t t=m+2́ s i z e (K) ;

440 f o r ( l=t ; l<=m; l=l +1)
{
i f ( l<m) {matrix V( l ) [ḿ l ] [ 1 ]= ze r o (ḿ l ) ;}
Q = d i v i s i o n (P ,M( l ) ) ;
i f ( l >1) {poly L1 ( l )=Q[ 1 ] [ ( n´ l ) ∗n+2∗(n´ l +1) , 1 ] ;

445 poly L2 ( l )=Q[ 1 ] [ ( n´ l ) ∗n+2∗(n´ l +1)+1 ,1 ] ;}

matrix P[ḿ l +1][1]= ze ro (ḿ l +1) ;
f o r ( k=1;k<=ḿ l +1;k=k+1)
{

450 f o r ( i =1; i<=n ; i=i +1)
{
P[ k ,1 ]=P [ k ,1 ]+ d i f f (Q [ 1 ] [ i+n∗( k´1) , 1 ] , x ( i ) ) ;
} ;

P [ k ,1 ]=P [ k ,1 ]+Q[ 1 ] [ n∗(ḿ l +1)+k , 1 ] ;
455 i f ( k>=2) {P[ k ,1 ]=P [ k ,1 ]+Q[ 1 ] [ ( n+1)∗(ḿ l +1)+1+k , 1 ] ; }

i f ( l<m)
{
f o r ( s=1; s<=ḿ l ; s=s+1)
{

460 f o r ( i =1; i<=n ; i=i +1)
{
V( l ) [ s ,1 ]=V( l ) [ s ,1]´Q[ 1 ] [ i+n∗ s , 1 ] ∗ d i f f ( f [ 2 ] , x ( i ) ) ;

}
}

465 }
}

}

f o r ( i n t o=2;o<=t ´1;o=o+1)
470 {

poly L1 ( o )=0; poly L2 ( o )=0;
}

475

// C o e f f i c i e n t o f PX(0) :
S( v ) [1 ,1 ]=P ;

480 // C o e f f i c i e n t o f PX(1) :
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S( v ) [2 ,1 ]= L1 (4 ) ;

// C o e f f i c i e n t o f PX(2) :
S( v ) [3 ,1 ]= L1 (3 ) ;

485

// C o e f f i c i e n t o f PX(3) :
S( v ) [4 ,1 ]= L1 (2 ) ;

// C o e f f i c i e n t o f PD(1) :
490 S( v ) [5 ,1 ]= L2 (4 ) ;

// C o e f f i c i e n t o f PD(2) :
S( v ) [6 ,1 ]= L2 (3 ) ;

495 // C o e f f i c i e n t o f PD(3)
S( v ) [7 ,1 ]= L2 (2 ) ;

}

500

f o r ( i n t i 3 =1; i3 <=2; i 3=i 3 +1)
{
matrix M( i 3 ) [2∗m´1] [2∗m´1] ;

}
505

// /////////////////////////////////////////

// mat r i x M(1) :

510 f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { i f ( i 4==2) {M(1) [ 1 , i 4 ]=1;}
e l s e {M(1) [ 1 , i 4 ]=0;}

}
f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { i f ( i 4==3) {M(1) [ 2 , i 4 ]=1;}

e l s e {M(1) [ 2 , i 4 ]=0;}
515 }

f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { i f ( i 4==4) {M(1) [ 3 , i 4 ]=1;}
e l s e {M(1) [ 3 , i 4 ]=0;}

}
f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { M(1) [ 4 , i 4 ]=S (1) [ i4 , 1 ] ; }

520 f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { i f ( i 4==6) {M(1) [ 5 , i 4 ]=1;}
e l s e {M(1) [ 5 , i 4 ]=0;}

}
f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { i f ( i 4==7) {M(1) [ 6 , i 4 ]=1;}

e l s e {M(1) [ 6 , i 4 ]=0;}
525 }

f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { M(1) [ 7 , i 4 ]=S (2) [ i4 , 1 ] ; }

// ////////////////////////////////////////////
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530

// mat r i x M(2) ;

f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { i f ( i 4==5) {M(2) [ 1 , i 4 ]=1;}
e l s e {M(2) [ 1 , i 4 ]=0;}

535 }
f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { i f ( i 4==6) {M(2) [ 2 , i 4 ]=1;}

e l s e {M(2) [ 2 , i 4 ]=0;}
}

f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { i f ( i 4==7) {M(2) [ 3 , i 4 ]=1;}
540 e l s e {M(2) [ 3 , i 4 ]=0;}

}
f o r ( i n t i 4 =1; i4 <=7; i 4=i 4 +1) { M(2) [ 4 , i 4 ]=S (3) [ i4 , 1 ] ; }
f o r ( i n t i 4 =5; i4 <=7; i 4=i 4 +1) { M(2) [ 5 , i 4 ]=S (4) [ i4 , 1 ] ; }
f o r ( i n t i 4 =5; i4 <=7; i 4=i 4 +1) { M(2) [ 6 , i 4 ]=S (5) [ i4 , 1 ] ; }

545 f o r ( i n t i 4 =5; i4 <=7; i 4=i 4 +1) { M(2) [ 7 , i 4 ]=S (6) [ i4 , 1 ] ; }

// ///////////////////////////////////////////////

M(1) ;
550 M(2) ;

qu i t ;
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