Contents

Preface —— IX

Notation --- XXI

1	Preliminaries —— 1
1.1	Fundamentals in the theory of Banach spaces —— 1
1.1.1	Linear operators and functionals —— 1
1.1.2	The dual <i>X</i> * 5
1.1.3	The bidual X** 6
1.1.4	Different choices of topology on a Banach space: strong and weak
	topologies —— 8
1.1.5	The strong topology on X —— 9
1.1.6	The weak* topology on X^* —— 10
1.1.7	The weak topology on X —— 14
1.2	Convex subsets of Banach spaces and their properties —— 22
1.2.1	Definitions and elementary properties —— 22
1.2.2	Separation of convex sets and its consequences —— 24
1.3	Compact operators and completely continuous operators —— 28
1.4	Lebesgue spaces —— 33
1.5	Sobolev spaces — 39
1.6	Lebesgue-Bochner and Sobolev-Bochner spaces —— 48
1.7	Multivalued maps 52
1.7.1	Michael's selection theorem —— 55
1.8	Appendix —— 57
1.8.1	The finite intersection property —— 57
1.8.2	Spaces of continuous functions and the Arzelá–Ascoli theorem —— 57
1.8.3	Partitions of unity —— 58
1.8.4	Hölder continuous functions —— 58
1.8.5	Lebesgue points —— 59
2	Differentiability, convexity and optimization in Banach spaces —— 61
2.1	Differentiability in Banach spaces —— 61
2.1.1	The directional derivative —— 61
2.1.2	The Gâteaux derivative —— 61
2.1.3	The Fréchet derivative —— 64
2.1.4	C ¹ functionals —— 66
2.1.5	Connections between Gâteaux, Fréchet differentiability and
	continuity —— 67
2.1.6	Vector valued maps and higher order derivatives —— 69
2.2	General results on optimization problems —— 71

2.3	Convex functions —— 75
2.3.1	Basic definitions, properties and examples —— 76
2.3.2	Three important examples: the indicator, Minkowski and support functions —— 79
2.3.3	Convexity and semicontinuity —— 80
2.3.4	Convexity and continuity —— 83
2.3.5	Convexity and differentiability —— 83
2.4	Optimization and convexity —— 87
2.5	Projections in Hilbert spaces —— 89
2.6	Geometric properties of Banach spaces related to convexity —— 92
2.6.1	Strictly, uniformly and locally uniformly convex Banach spaces —— 92
2.6.2	Convexity and the duality map —— 97
2.7	Appendix —— 101
2.7.1	Proof of Proposition 2.3.20 —— 101
2.7.2	Proof of Proposition 2.3.21 —— 102
3	Fixed-point theorems and their applications —— 105
3.1	Banach fixed-point theorem —— 105
3.1.1	The Banach fixed-point theorem and generalizations —— 105
3.1.2	Solvability of differential equations —— 107
3.1.3	Nonlinear integral equations —— 108
3.1.4	The inverse and the implicit function theorems —— 109
3.1.5	Iterative schemes for the solution of operator equations —— 114
3.2	The Brouwer fixed-point theorem and its consequences —— 116
3.2.1	Some topological notions —— 116
3.2.2	Various forms of the Brouwer fixed-point theorem —— 117
3.2.3	Brouwer's theorem and surjectivity of coercive maps —— 119
3.2.4	Application of Brouwer's theorem in mathematical economics —— 120
3.2.5	Failure of Brouwer's theorem in infinite dimensions —— 122
3.3	Schauder fixed-point theorem and Leray-Schauder alternative —— 123
3.3.1	Schauder fixed-point theorem —— 124
3.3.2	Application of Schauder fixed-point theorem to the solvability of
	nonlinear integral equations —— 125
3.3.3	The Leray–Schauder principle —— 127
3.3.4	Application of the Leray–Schauder alternative to nonlinear integral equations —— 128
3.4	Fixed-point theorems for nonexpansive maps —— 130
3.4.1	The Browder fixed-point theorem —— 131
3.4.2	The Krasnoselskii-Mann algorithm —— 134
3.5	A fixed-point theorem for multivalued maps —— 138
3.6	The Ekeland variational principle and Caristi's fixed-point
	theorem —— 140

3.6.1	The Ekeland variational principle —— 141
3.6.2	Caristi's fixed-point theorem —— 143
3.6.3	Applications: approximation of critical points —— 144
3.7	Appendix —— 145
3.7.1	The Gronwall inequality —— 145
3.7.2	Composition of averaged operators —— 145
4	Nonsmooth analysis: the subdifferential 147
4.1	The subdifferential: definition and examples —— 147
4.2	The subdifferential for convex functions —— 151
4.2.1	Existence and fundamental properties —— 151
4.2.2	The subdifferential and the right-hand side directional
	derivative —— 154
4.3	Subdifferential calculus —— 157
4.4	The subdifferential and the duality map —— 162
4.5	Approximation of the subdifferential and density of its domain —— 166
4.6	The subdifferential and optimization —— 168
4.7	The Moreau proximity operator in Hilbert spaces —— 170
4.7.1	Definition and fundamental properties —— 170
4.7.2	The Moreau-Yosida approximation —— 174
4.8	The proximity operator and numerical optimization algorithms —— 177
4.8.1	The standard proximal method —— 178
4.8.2	The forward-backward and the Douglas–Rachford scheme —— 184
5	Minimax theorems and duality —— 191
5.1	A minimax theorem —— 191
5.2	Conjugate functions —— 196
5.2.1	The Legendre-Fenchel conjugate —— 196
5.2.2	The biconjugate function —— 200
5.2.3	The subdifferential and the Legendre–Fenchel transform —— 204
5.3	The inf-convolution —— 207
5.4	Duality and optimization: Fenchel duality —— 212
5.5	Minimax and convex duality methods —— 222
5.5.1	A general framework —— 223
5.5.2	Applications and examples —— 231
5.6	Primal dual algorithms —— 235
5.7	Appendix 243
5.7.1	Proof of Proposition 5.1.2 —— 243
5.7.2	Proof of Lemma 5.5.1 —— 245
5.7.3	Proof of relation (5.61) —— 247
6	The calculus of variations —— 249

6.1	Motivation —— 249
6.2	Warm up: variational theory of the Laplacian —— 251
6.2.1	The Dirichlet functional and the Poisson equation —— 252
6.2.2	Regularity properties for the solutions of Poisson-type
	equations —— 257
6.2.3	Laplacian eigenvalue problems —— 261
6.3	Semicontinuity of integral functionals —— 268
6.3.1	Semicontinuity in Lebesgue spaces —— 269
6.3.2	Semicontinuity in Sobolev spaces —— 273
6.4	A general problem from the calculus of variations —— 274
6.5	Differentiable functionals and connection with nonlinear PDEs: the
	Euler-Lagrange equation — 276
6.6	Regularity results in the calculus of variations —— 279
6.6.1	The De Giorgi class —— 281
6.6.2	Hölder continuity of minimizers —— 284
6.6.3	Further regularity —— 288
6.7	A semilinear elliptic problem and its variational formulation —— 294
6.7.1	The case where sub and supersolutions exist —— 295
6.7.2	Growth conditions on the nonlinearity —— 300
6.7.3	Regularity for semilinear problems —— 306
6.8	A variational formulation of the <i>p</i> -Laplacian —— 307
6.8.1	The p-Laplacian Poisson equation —— 307
6.8.2	A quasilinear nonlinear elliptic equation involving the
	p-Laplacian —— 309
6.9	Appendix —— 314
6.9.1	A version of the Riemann–Lebesgue lemma —— 314
6.9.2	Proof of Theorem 6.6.3 —— 315
6.9.3	Proof of Theorem 6.6.5 —— 327
6.9.4	Proof of generalized Caccioppoli estimates —— 332
7	Variational inequalities —— 335
7.1	Motivation —— 335
7.2	Warm up: free boundary value problems for the Laplacian —— 336
7.3	The Lax-Milgram-Stampacchia theory —— 341
7.4	Variational inequalities of the second kind —— 348
7.5	Approximation methods and numerical techniques —— 351
7.5.1	The penalization method —— 351
7.5.2	Internal approximation schemes —— 356
7.6	Application: boundary and free boundary value problems —— 359
7.6.1	An important class of bilinear forms —— 359
7.6.2	Boundary value problems — 362
7.6.3	Free boundary value problems —— 369

7.6.4	Semilinear variational inequalities —— 376
7.7	Appendix —— 378
7.7.1	An elementary lemma —— 378
8	Critical point theory —— 379
8.1	Motivation —— 379
8.2	The mountain pass and the saddle point theorems —— 380
8.2.1	The mountain pass theorem —— 380
8.2.2	Generalizations of the mountain pass theorem —— 381
8.2.3	The saddle point theorem —— 384
8.3	Applications in semilinear elliptic problems —— 385
8.3.1	Superlinear growth at infinity —— 386
8.3.2	Nonresonant semilinear problems with asymptotic linear growth at infinity and the saddle point theorem —— 390
8.3.3	Resonant semilinear problems and the saddle point theorem — 394
8.4	Applications in quasilinear elliptic problems —— 399
8.4.1	The p -Laplacian and the mountain pass theorem —— 399
8.4.2	Resonant problems for the p -Laplacian and the saddle point
	theorem —— 404
9	Monotone-type operators —— 409
9.1	Motivation —— 409
9.2	Monotone operators —— 410
9.2.1	Monotone operators, definitions and examples —— 410
9.2.2	Local boundedness of monotone operators —— 411
9.2.3	Hemicontinuity and demicontinuity —— 413
9.2.4	Surjectivity of monotone operators and the Minty-Browder
	theory 414
9.3	Maximal monotone operators —— 417
9.3.1	Maximal monotone operators definitions and examples —— 417
9.3.2	Properties of maximal monotone operators —— 418
9.3.3	Criteria for maximal monotonicity —— 421
9.3.4	Surjectivity results —— 422
9.3.5	Maximal monotonicity of the subdifferential and the duality map —— 427
9.3.6	Yosida approximation and applications —— 429
9.3.7	Sum of maximal monotone operators —— 439
9.4	Pseudomonotone operators —— 442
9.4.1	Pseudomonotone operators, definitions and examples —— 442
9.4.2	Surjectivity results for pseudomonotone operators —— 444
9.5	Applications of monotone-type operators —— 446
9.5.1	Quasilinear elliptic equations —— 446

XX — Contents

9.5.2	Semilinear elliptic inclusions —— 448	
9.5.3	Variational inequalities with monotone-type operators —— 450	
9.5.4	Gradient flows in Hilbert spaces —— 451	
9.5.5	The Cauchy problem in evolution triples —— 455	
Bibliography —— 463		
Index —	– 469	