Dissertation
submitted to the
Combined Faculties of the Natural Sciences and Mathematics
of the Ruperto—Carola—University of Heidelberg, Germany
for the degree of
Doctor of Natural Sciences

Put forward by
Maik Weber
born in Merzig, Germany
Oral examination: Dec. 19, 2012






Structure Formation in
Growing Neutrino Cosmology

Referees: Prof. Dr. Christof Wetterich
Prof. Dr. Luca Amendola






Kosmologische Strukturbildung bei wachsender Neutrinomasse

Das Ritsel der Dunklen Energie konnte in Verbindung stehen mit der Physik
der Neutrinomassen. Es wurde vorgeschlagen, dass eine wachsende Neutrinomas-
se die beschleunigte Expansion des Universums einleitet, indem sie die Entwick-
lung eines dynamischen Skalarfeldes stoppt. In diesen Szenarien vermittelt das
Skalarfeld eine starke anziehende Kraft zwischen Neutrinos, die die Behandlung
von Storungsgroflen erheblich erschwert; Standardmethoden wie lineare Stéruns-
rechnung oder Newtonsche N-Teilchen Simulationen sind nicht angemessen. In
dieser Arbeit stellen wir eine Simulationsmethode vor, die es erlaubt, die Bildung
nichtlinearer Neutrinostrukturen unter Beriicksichtigung von relativistischen Teil-
chengeschwindigkeiten, lokalen Massenvariationen und Riickkopplungseffekten auf
den kosmologischen Hintergrund zu behandeln. Wir untersuchen die kosmologi-
sche Entwicklung des Modells fiir exemplarische Parameterwerte bis zur Rotver-
schiebung z = 1 und identifizieren dabei charakteristische Merkmale. Insbesondere
beschéftigen wir uns mit der Entstehung und den Eigenschaften kompakter Neu-
trinostrukturen. In einem allgemeineren Zusammenhang befassen wir uns auch mit
“3D Weak Lensing”, einer vielversprechenden Methode zur Beobachtung grofiska-
liger Strukturbildung. Ohne ein bestimmtes Modell anzunehmen, entwickeln wir
numerische Methoden, die die notwendigen Berechnungen erleichtern. Als Anwen-
dung untersuchen wir eine einfache Parametrisierung inhomogener Dunkler Energie
und schétzen die zu erwartenden Einschriankungen durch zukiinftige Daten.

Structure Formation in Growing Neutrino Cosmology

The mystery of dark energy may be related to the physics of neutrino mass. It has
been proposed that a growing neutrino mass triggers the onset of the accelerated
expansion of the Universe by stopping the evolution of a dynamical dark energy
scalar field. In these scenarios, the scalar field mediates a strong attractive force
between neutrinos, which considerably complicates the treatment of perturbations;
standard methods such as linear perturbation theory and Newtonian N-body sim-
ulations are not appropriate. In this work, we present a simulation method that
allows to incorporate nonlinear neutrino clustering, relativistic velocities, spatial
neutrino mass variations, and backreaction effects in growing neutrino cosmologies.
For an exemplary parameter set, we study the cosmological evolution until redshift
z = 1 and identify characteristic signatures of the model. In particular, the for-
mation and properties of nonlinear neutrino structures are investigated. In a more
general context, we ask for promising methods to constrain models with enhanced
structure formation on large scales and attend to 3D weak lensing. Without adopt-
ing a specific model, we present adequate numerical tools for the computation of
3D weak lensing spectra. As an application, we consider a simple parameterization
of clustering dark energy and forecast constraints on the properties of dark energy
by future data.
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1 Introduction

The Nobel Prize in Physics 2011 was awarded “for the discovery of the accelerat-
ing expansion of the Universe through observations of distant supernovae.”! This
groundbreaking discovery (Riess et al., 1998; Perlmutter et al., 1999) confronted
cosmologists with a great mystery: What causes the acceleration of the expansion
rate? In the framework of Einstein’s theory of General Relativity (GR), the dynam-
ics of the cosmic expansion are intimately connected with the properties of matter
fields in the Universe. The surprising results from observations of distant super-
novae of Type Ia (SN Ia) that were honored by the Nobel Prize are incompatible
with a universe essentially made up of ordinary matter and radiation. Rather, they
imply that we live in a cosmic epoch in which the energy budget of the Universe is
dominated by a so far unknown component with exotic properties. This puzzling
new component is called the dark energy. It plays a central role in the context of
this thesis.

The paradigm of an expanding Universe has become well established over the
last century. Soon after the proposal of GR, Friedman (1922) studied the class of
homogeneous and isotropic spacetimes and derived the laws governing the uniform
expansion of space that are believed to describe our Universe on average. A few
years later, Hubble (1929) provided the first observational evidence for an expand-
ing Universe when he discovered that the apparent recessional velocities of distant
galaxies increase with distance. During the subsequent decades, a comprehensive
picture of our Universe and its history emerged and became broadly accepted due
to theoretical, experimental and observational progress. One of the milestones of
this development was the discovery of the Cosmic Microwave Background (CMB)
by Penzias and Wilson (1965). This relic black—body radiation is one of the key
predictions of Big Bang Cosmology (e.g. Gamow, 1946; Alpher et al., 1948). Preci-
sion measurements of the tiny CMB temperature fluctuations still provide a major
source of information on the properties and evolution of the Universe (e.g. Ko-
matsu et al., 2011). They allowed to pin down the geometry of the Universe (e.g.
de Bernardis et al., 2000) and thereby revealed the missing energy problem: The
contributions from cold dark matter (CDM), baryons, and the (today negligible)
radiation component can only explain about a quarter of the required total energy
density to explain the inferred shape of the Universe. This strengthens the case for
dark energy; or something that imitates its effect.

The issue of dark energy has led to a revival of the cosmological constant A.
Originally, Einstein proposed it as a modification to his field equations in order to
construct a static Universe but he abandoned it again after Hubble’s discovery. It
has the same effect as a homogeneous fluid with constant energy density pp and

1“The Nobel Prize in Physics 2011”. Nobelprize.org. 15 Sep 2012.
http://www.nobelprize.org/nobel_prizes/physics/laureates/2011/



CHAPTER 1. INTRODUCTION

negative pressure Py = —pp. Despite its simplicity, the cosmological constant is
impressively consistent with major cosmological observations (Komatsu et al., 2011;
Reid et al., 2010). The corresponding model, ACDM, has become the concordance
model of cosmology. The price for its success is an extremely fine-tuned value of
A; in Planck units, it is of order 107122, As a curious fact, the dark energy and
matter densities in the Universe are presently of the same order, although the latter
has been diluted by the cosmic expansion over billions of years and will continue
to decrease in the future. The crossover of matter and dark energy in form of
a cosmological constant obviously singles out a very special cosmological era, in
which we happen to live. This is often referred to as the coincidence or “why now”
problem.

The conceptual problems associated with the cosmological constant can be con-
siderably alleviated by assuming a dynamical form of dark energy. The effect of
a cosmological constant can be imitated by a slowly evolving scalar field ¢. This
is realized in models of Quintessence (Wetterich, 1988; Ratra and Peebles, 1988).
The late-time behavior of these models can be understood from so—called tracker
solutions which are independent of the precise initial conditions. Of particular in-
terest is the scaling solution associated with an exponential potential: The energy
density of the scalar field decays proportional to the energy density of radiation or
matter. Consequently, the huge age of the Universe may provide a natural expla-
nation for the tiny overall scale of the present dark energy density (cf., e. g., Doran
and Wetterich, 2003). However, without a mechanism to exit the scaling regime,
the scenario lacks an explanation for the onset of dark energy domination and ac-
celerated expansion; the “why now” problem persists. More sophisticated models
include the possibility of interactions between the scalar field and other species in
the Universe (e.g. Wetterich, 1995; Amendola, 2000). In the framework of coupled
quintessence, it has been proposed that cosmic neutrinos may play a key role in ex-
plaining the onset of the accelerated expansion (Amendola et al., 2008; Wetterich,
2008). The resultant cosmological model, Growing Neutrino Quintessence (GNQ),
forms the basis of this work.

From a particle physics perspective, neutrinos are singled out due to their tiny
mass scale m,,. Indeed, within the standard model of particle physics, only massless
neutrinos exist. Nonzero neutrino masses are required to explain the phenomenon
of neutrino flavor oscillations (Fukuda et al., 1998). As a lower bound, the data
yields m,, = 0.05 eV for at least one neutrino mass eigenstate (e.g. Ahn et al., 2006;
Adamson et al., 2012). In fact, m, constitutes the only known particle physics scale
in the vicinity of the observed dark energy density ppg ~ (2 x 1073eV)%. As a key
feature, GNQ establishes a fundamental relationship between the physics of neutrino
mass and the properties of dark energy (Wetterich, 2008). The model assumes a
dependence of the neutrino mass on the quintessence field, m, = m,(p), that
leads to a growth of m, over time. This mechanism implies an energy—-momentum
exchange between quintessence and neutrinos that effectively slows down the scalar
field once neutrinos have become non-relativistic. The transition from relativistic
to non—relativistic neutrinos thus acts as a trigger event that terminates the scaling
regime of quintessence. In the subsequent evolution, the scalar field mimics a
cosmological constant. Eventually, the dark matter energy density will drop below



the almost constant dark energy density and accelerated expansion will set in.
Since, in the early Universe, neutrinos are very light and their temperature is high,
the transition naturally happens at late times. In this way, the model addresses the
“why now” problem of dark energy. Studying the model at the background level,
i.e., under the assumption of a perfectly homogeneous and isotropic universe, gives
rise to expansion histories similar to ACDM.

In this work, we investigate the implications of GNQ including perturbations
to the idealized background. This is, on the one hand, crucial for confronting the
model with observational probes such as large—scale matter clustering, weak lensing
(WL), or CMB fluctuation spectra. On the other hand, large perturbations may
in principle modify the evolution of the cosmological background, a phenomenon
known as backreaction. While this effect is found to be small within the standard
ACDM case (e.g. Wetterich, 2003), it is expected to be more important in the
model under consideration (Pettorino et al., 2010).

Understanding the evolution of perturbations in GNQ is challenging due to the
following fact. In consideration of the small neutrino density in the Universe, the
coupling between neutrinos and quintessence needs to be rather strong to have a
significant impact on the dark energy evolution. In consequence, the scalar field
mediates an attractive force between neutrinos substantially stronger than gravity.
Under the influence of this so—called fifth force, neutrino perturbations grow rapidly
and enter the nonlinear regime soon after neutrinos have turned non-relativistic.
Linear perturbation theory breaks down even on large scales (Mota et al., 2008).
Though a broad understanding of the nonlinear evolution is still lacking, specific
aspects have already been studied and it was possible to identify significant effects
(e.g. Wintergerst et al., 2010; Pettorino et al., 2010; Brouzakis et al., 2011; Nunes
et al., 2011; Baldi et al., 2011).

The simulation method presented in this work has been developed with the in-
tention to provide the first comprehensive approach towards the full cosmological
evolution of GNQ at the nonlinear level. It is our aim to shed some light on its com-
plex dynamics and to point out possibly observable signatures. Growing Neutrino
Quintessence provides a compelling mechanism to solve the “why now” problem of
dark energy. We will show that it furthermore exhibits a rich phenomenology at
the level of perturbations.

Our main references are the already published works Ayaita, Weber, and Wet-
terich (2012) and Ayaita, Schéfer, and Weber (2012). Within this collaboration,
my work focusses particularly on modelling of neutrino physics, constraining the
large—scale gravitational potentials, and properties of neutrino lumps.

Outline

We start with a brief review of the basics of cosmology in Chapter 2. After present-
ing the geometry of the homogeneous and isotropic Universe and the Friedmann
equations, we will characterize the constituents of the Universe. Dark energy in
form of a cosmological constant and quintessence will be introduced.

Chapter 3 is dedicated to the Growing Neutrino Quintessence model. We collect
fundamental equations and explain the mechanism that leads to dark energy dom-
ination and accelerated expansion in recent cosmological times. The breakdown
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of linear perturbation theory is summarized based on the findings of Mota et al.
(2008). We also insert a brief introduction to the general formalism of linear per-
turbation theory. At the end of the chapter, we consider particle physics aspects
related to the neutrino mass.

In Chapter 4, we are interested in direct observational probes of the large—scale
gravitational potential ®. In particular, we attend to 3D WL, a precision method
proposed by Heavens (2003). We develop numerical tools for the computation of
three-dimensional weak shear spectra for a given evolution ®(z, k). As an applica-
tion, we forecast constraints on the dark energy sound speed ¢2 from a combination
of Euclid and Planck data by virtue of a Fisher matrix analysis.

Chapter 5 provides a detailed description of our simulation method for GNQ. It
starts with motivating the general framework. We then explain at length the treat-
ment of the distinct components (neutrinos, quintessence, matter, and gravity). In
this context, we also derive necessary equations for the implemented dynamics such
as the fully relativistic equation of motion for neutrinos.

The major simulation results are presented and discussed in Chapter 6. We will
follow the evolution of neutrino perturbations until the formation of large nonlinear
structures. The growth of neutrino velocities will be examined as well as cosmo-
logical implications for the gravitational potentials and dark matter. Moreover, we
will have a closer look at individual neutrino structures. We point out promising
phenomena with regard to observations.

In Chapter 7, we study spherically symmetric neutrino lumps. We briefly con-
sider the motion of test particles in such configurations and derive the conditions
for hydrodynamic equilibrium. Numerically, we will investigate the intrinsic equa-
tion of state of stable neutrino—cosmon lumps and find a remarkable cancellation
of the total pressure.

We conclude and give an outlook in Chapter 8.

Conventions

If not otherwise stated, we use the following units and conventions:

e Natural units: ¢ = h = kg = Mp = 1, with the reduced Planck mass
Mp = .

e Metric signature (—,+,+,+).

e Latin indices run over 1,2, 3 and label spatial coordinates. Greek indices run
over all four values 0,1, 2,3. Repeated indices are summed.

e A subscript 0 (if not indicating a tensor or vector component) refers to the
present time. The scale—factor is normalized so that ag = 1.

e We use the cosmic time ¢ and the conformal time 7. A dot refers to derivatives
with respect to t, a prime to derivatives with respect to 7.

e Concerning the gravitational potentials, we adopt the sign convention cho-
sen by Ma and Bertschinger (1995): The perturbed metric in the conformal
Newtonian gauge reads ds* = a? [—(1 4+ 2V¥)dn? + (1 — 2®)dz?|; ¥ = @ in
the absence of anisotropic stress.




2 Fundamentals of Cosmology

This chapter introduces the basic concepts of cosmology. In the framework of
General Relativity (GR), we will review characteristics of the homogeneous and
isotropic Universe and the dynamics of the cosmic expansion in Sec. 2.1. The
properties of the matter species in the Universe will be studied and we will discuss
observational evidence of dark energy. As prominent candidates, we shall introduce
the cosmological constant and quintessence in Sec. 2.2. In parts of this chapter, we
will closely follow Weinberg (2008) and Amendola and Tsujikawa (2010).

2.1 Expansion of the homogeneous and isotropic
Universe

The assumption of spatial homogeneity and isotropy in the Universe is known as the
Cosmological Principle. It is one of the fundamental guiding principles in modern
cosmology and is supported by observations of the large—scale galaxy distribution
(e.g. Hogg et al., 2005) or the CMB radiation (e.g. Bennett et al., 2003). The
Cosmological Principle leads to a specifically simple form of the metric with a
single function a(t) describing the expansion of space. In the following sections, we
will discuss the geometry associated with this metric, as well as the consequences
of Einstein’s equations for the evolution of a(t). Clearly, the perfectly isotropic and
homogeneous spacetime can only describe the Universe on average, whereas local
perturbations have to be taken into account on smaller scales. This will be crucial
in subsequent chapters.

2.1.1 The geometry of spacetime and Hubble’s law

General Relativity describes physical events as points on a four—dimensional Rie-
mannian manifold, the spacetime. The most fundamental field is a Lorentzian
metric tensor g, defining the geometry of spacetime. The infinitesimal line ele-
ment ds? = g dxtda” provides a means to compute the physical length of a curve
on the manifold. The field equations can be derived from the action

R
S=[dzv—g(—5+CL 2.1

/ v g<167TG+ m) 21)
where G is Newton’s gravitational constant, R is the Ricci scalar (the contraction
of the Ricci tensor R,,) and L, the Lagrangian density of the matter fields. The
volume form contains the determinant of the metric ¢ = det(gu,). Varying the
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action with respect to g, yields Einstein’s equations,

1
RNV - §Rgul/ =8&rGT,

s (2.2)

with the energy—momentum tensor associated with the matter fields defined as

T — -2 5(£m\/—g).
=g dg

Solving the set of coupled differential equations for the metric components,
Eq. (2.2), can be considerably simplified by assuming spacetime symmetries. In
the case of spatial homogeneity and isotropy, the most general form of the metric is
given by the Friedmann—Lemaitre-Robertson—Walker (FLRW) metric. The FLRW
line element can be written as

(2.3)

2

d
ds? = —dt® + a?(t) ( - _TW - r2dQ2> , (2.4)

with a function a(t) and a constant k. Here, we have chosen spherical coordinates
(6, ) on three-dimensional hypersurfaces with dQ? = d#? + sin? 0 dp? as usual.

The function a(t) describes the time dependence of g,,. It universally stretches
or contracts distances on spatial hypersurfaces and therefore is called the scale
factor. Its evolution follows from Einstein’s equations (cf. Sec. 2.1.2). The constant
k characterizes the curvature of three-dimensional space. Depending on its sign,
the spatial part of the FLRW metric describes three different types of geometry.
Constant positive curvature, k& > 0, corresponds to spherical geometry, whereas
constant negative curvature, k < 0, corresponds to hyperbolic geometry. For k = 0,
spatial hypersurfaces are flat and we recover the standard Euclidean metric in three
dimensions. The time coordinate chosen in Eq. (2.4) is called the cosmic time ¢ and
we refer to the spatial coordinates as comoving coordinates. An observer staying
at rest with respect to comoving coordinates observes a perfectly homogeneous
and isotropic space and his proper time coincides with the cosmic time. In the
following, we clarify the notion of distances in an FLRW Universe.

Physical and comoving distances

Let us consider two distant comoving objects and ask for their proper distance d at
a given time t. Without loss of generality, we may assume that the first object is
positioned in the origin of the coordinate system, r; = 0. By virtue of the metric,
Eq. (2.4), the proper distance can then be calculated as

"2 dr
d(t) = a(t / —_— 2.5
0 =at) [ . (25)
where ro denotes the radial coordinate of the second object. The proper or physical
distance between the two objects evolves proportional to a(t). This allows us to
define the time—independent comoving distance x via d = ax. With the usual
normalization ag = 1, comoving and physical distances are identical at the present
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time. Assigning 7 = 0 to our own position in the Universe, we can use Eq. (2.5)
for calculating the comoving distance between us and any distant object in the
Universe. In particular, in the case of a flat universe (k = 0), the comoving
distance simply coincides with the radial coordinate r of the object. Regarding
observations in an expanding Universe, it is crucial to note that light emitted from
distant objects provides valuable distance information. In the case of supernovae
studies, for instance, the comoving distance x to the light source can be determined
by observations of luminosity and redshift. Since photons follow null geodesics
(ds? = 0), x is related to the evolution of a(t) according to

X = /:0 A (2.6)

,oalt)’

where t; and tg refer to the time of emission and observation, respectively. We will
come back to this point when we discuss observational evidence for dark energy
(cf. Sec. 2.1.3).

Hubble’s law

The time evolution of the physical distance d(t) between two comoving objects is
governed by the law '
d= Hd, (2.7)

where we have introduced the Hubble parameter H = a/a. Its present value H is
often referred to as the Hubble constant. For small distances, Hy can be inferred
from the redshift z of light coming from distant sources. For this purpose, we
consider only objects in the close environment of an observer. This allows us to
interpret v = d as the relative velocity of an object in the rest—frame of the observer
(both assumed comoving). As a consequence of the familiar Doppler effect, light
emitted from a distant object experiences a redshift defined as z = \g/A; —1 with A\
and Ag denoting the wavelengths of light at emission and observation, respectively.
As long as the relative velocity is small, v < 1, the Doppler effect yields z ~ wv.
Assuming that the observation takes place at the present time, Eq. (2.7) yields

z =~ Hyd. (2.8)

In 1929, Hubble observed the linear relation between redshift z and distance d with
a positive proportionality constant Hy. It was the first observational evidence for
an expanding Universe. Although his measurement was affected by large peculiar
velocities of the galaxies (perturbing the uniform flow of Eq. 2.7) and considerable
uncertainties in the distance measurements, his conclusion has been supported by
many observations until today.

The concept of relative velocity can only be applied to close objects. More
generally, the FLRW metric implies (see, e. g., Weinberg, 2008)

14+2z=

(2.9)
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for light emitted at a time ¢, and observed at ty. The linear relation, Eq. (2.8), can
be recovered by expanding a(t1) ~ a(to)[1 + (t1 — to)Ho| and using d ~ (tg — t1)c
for close objects.

2.1.2 The Friedmann equations

We now turn to the implications of Einstein’s equations (2.2) for the FLRW met-
ric. The most general energy—momentum tensor respecting the assumptions of
homogeneity and isotropy takes the form of a perfect fluid,

", = (p + P)ut'u, + PV, (2.10)

with the energy—density p(t), the pressure P(t), and the four—velocity u* = (-1, 0,0,
0) in comoving coordinates. From Einstein’s equations, one can derive the following
two differential equations for the scale—factor a(t):

.\ 2

a &G k

- = —p—— 2.11
<a> 3P (2.11)

a e

E = —T(,O + 3P). (2.12)

These are the fundamental Friedmann equations. The meaning of Eq. (2.11) be-
comes most apparent after introducing the critical density pei = 3H?/87G and
the density parameter 2 = p/peit. It can now be put in the form

k

Q—-1= (Ha)®"

(2.13)

This expression intimately connects the energy content of the Universe with its
geometry. The cases k£ < 0, k = 0, and k£ > 0 are equivalent to the conditions
P < Perits P = Perit, and p > perit. The combination of major observational probes
(see, e.g., Reid et al. 2010; Komatsu et al. 2011) allows to tightly constrain the
curvature of the Universe. For instance, Reid et al. (2010) find = 1.009 +0.012.}
Since all observations are consistent with a flat Universe, we will assume £ = 0
throughout this thesis. A flat Universe may result from cosmic inflation, an early
phase of accelerated expansion (Guth, 1981; Linde, 1982). During this period,
(Ha) = a grows rapidly and drives the right-hand side of Eq. (2.13) to zero. Infla-
tion is also considered as the most promising solution to other puzzles of Big Bang
cosmology. In particular, it explains the origin of structure in the Universe by pri-
mordial quantum fluctuations (Mukhanov et al., 1992). For a general introduction
to inflation, we refer the reader to Lyth and Liddle (2009).

Next, we consider Eq. (2.12). It relates the cosmic acceleration @ to the total
energy density p and pressure P of the Universe. Assuming the weak energy con-
dition (cf. Carroll, 2004), p > 0, a positive acceleration @ > 0 is only possible for

'Here, they assume a constant dark energy equation of state which not necessarily equals —1.
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negative pressure P < 0. In terms of the equation of state parameter,

w=—, 2.14
5 (2.14)

the general condition for accelerated expansion reads w < —1/3. If the Universe
was made up of ordinary matter and radiation only, this would be impossible (cf.
Sec. 2.1.3). Generally, the equation of state w is a function of time. It is nonetheless
instructive to consider the case w = const., which is a good approximation over
long periods of the cosmic evolution. Here, we restrict ourselves to the case w > —1
(in the context of the cosmological constant, Sec. 2.2.1, we will also discuss the case
w = —1). The explicit solution of Egs. (2.11) and (2.12) for k = 0 is then given by

a(t) o (t — ti)m, (2.15)

with a constant t; (cf., e.g., Amendola and Tsujikawa, 2010). Such a universe
starts to expand from a singularity, a(t;) = 0, and the expansion continues forever.
The age of the universe follows as

2 —1

to—t;)) = ——H, 2.16
( 0 'l) 3(1 + U)) 0 ( )
Hence, the Hubble time H ! sets the natural scale of the cosmic age. With the

common parameterization, Hy = 100~ Mpc~! km/s, we obtain
Hy' 2~ 9.78 x 10°n7!
0 ~9.78 x V. (2.17)

Observations suggest h of the order unity. As we will discuss at the end of the next
section, dark energy is also necessary to reconcile lower bounds on the age of the
Universe with the theoretical prediction.

2.1.3 The constituents of the Universe

In this section, we will classify the constituents of the Universe and discuss their
role for the cosmic expansion. The total energy density p and pressure P used
in the previous section are recovered as the sum over the individual contributions
pi and P; (with a suitable subscript for each species). We will also use individual
density parameters Q; = p;/peit and equation of state parameters w; = P;/p;. By
virtue of the flatness condition ZZ Pi = Perit, the total equation of state parameter
w is related to the individual w; by w = ), Q;w;. Hence, during periods in which
a single species dominates the energy budget of the Universe, ; ~ 1 (for a specific
label i), this species determines the dynamics of the expansion.

If a component does not interact with others, its individual energy—momentum
tensor is conserved,

VIl = 0. (2.18)

In terms of energy density and pressure, the conservation law reads

pi = —3H(p; + P,). (2.19)
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The corresponding equation for the total energy density p and pressure P can also
be derived from the Friedmann equations (2.11) and (2.12).

Radiation: photons and neutrinos

The radiation component embraces photons and relativistic particles in the Uni-
verse. The equation of state of radiation is w, = 1/3 (for a derivation from the
phase—space distribution function, cf., e. g., Amendola and Tsujikawa, 2010). The
energy—density of a relativistic species in thermal equilibrium only depends on the
temperature T and on the number of internal degrees of freedoms. The photon
energy-density p, is given by

7.(.2

Py = ET;{ (2.20)
After the discovery of the CMB (Penzias and Wilson, 1965), its black-body spec-
trum and fluctuation pattern had been measured by the satellite missions Cos-
mic Background Explorer (COBE) and Wilkinson Microwave Anisotropy Probe
(WMAP). The present temperature was found to be TS = 2.725 £0.002 K (Mather

et al., 1994), yielding
0
&

~ 247 x 107°h 2. (2.21)
Pecrit

0 _
Q, =

At this point, we note that photons are no longer in thermal equilibrium today.?
Rather, they are freely propagating through the Universe while the form of their
spectrum is kept unchanged. Due to the cosmic expansion, photon frequencies
experience a redshift, v oc a~!. Consequently, at very early times, photon energies
were much higher than today. Likewise, we can follow the evolution of matter back
in time and will arrive at an epoch at which the energy densities were too high for
the formation of bound atoms. Rapid scattering processes between photons and
electrons kept photons in thermal equilibrium at that time. When the temperature
had dropped to about 3,000 K, the last interactions took place and free photon
propagation began. Defining a time dependent temperature,

Ty(a) = T;(aL) <a—L) ; (2.22)

a

with a subscript L referring to the event of last scattering, the photon distribution
at later times can conveniently be written in the equilibrium form,

1
hv ’
exp (7168%(@) -1

with Planck’s constant A and Boltzmann’s constant kg.

Jy(w,a) (2.23)

If the masses of neutrinos are small, they can be treated similar to photons and
their energy density p, is fully described by the neutrino temperature 7,,. Taking
into account that neutrinos are fermions and come in different flavors, the energy

2A detailed review of the Universe’s thermal history can be found in standard textbooks, e.g.,
Weinberg, 2008. We will only summarize important results.
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density is given by )
Neffg 711-_5 ;15
with Neg = 3 for standard model neutrinos. At very early times, neutrinos were
also in thermal equilibrium with the primordial plasma due to weak interactions,
e.g. et + e~ = v+ u. Following Weinberg (2008), the collision rate associated
with these processes can be approximated as I', = G% T5 with the Fermi constant
GF. Thermal equilibrium can only be maintained as long as I'), is larger than the
expansion rate H. The latter evolves during radiation domination as H = \/P% x
T2. Inserting the numerical factors, one finds

r, T \?
=~ <101—0K> . (2.25)

Therefore, at temperatures considerably below 10’ K, neutrinos can no longer be
kept in equilibrium. After decoupling, they follow geodesics and can be described
by a temperature T},(a) o< a~! analogously to T (a). Just as in the case of photons,
the form of the distribution function at the time of decoupling is preserved. In the
case of neutrinos, it is given by the relativistic Fermi—Dirac distribution

Pv = (2'24)

1

_— 2.26
exp(—kg%) +1 ( )

fu(p,a) o

This also applies to massive neutrinos, since at the time of decoupling neutrino
masses are negligible compared to the high temperatures. The relativistic energy—
momentum relation € &~ pc thus remains an excellent approximation.

Assuming that neutrinos decoupled instantaneously once the collision rate I',
has dropped below the expansion rate H, one can derive the following relationship
between the neutrino and photon temperatures at late times:

AN\ 13
TV:<H> T,. (2.27)

A more accurate treatment suggests slight corrections, which are usually taken into
account by setting Neg = 3.04 (cf., e. g., Dolgov 2002).

In this thesis, we investigate a model in which neutrinos are coupled to dark
energy. As a consequence, the neutrino mass will grow in time and neutrinos feel
an additional attractive force once they have become non-relativistic. From this
time on, they will no longer follow geodesics. Still, the considerations above remain
perfectly valid at the early stages of the Universe. This will be of relevance when
we draw initial conditions for our simulations of GNQ (Chapter 5). The parameter
T 3 will then be used as in the standard case, although it does no longer describe
the distribution of neutrinos at the present time.

From above, we obtain T = 1.945 K. For standard (uncoupled) neutrinos, this
implies QY ~ 0.7 99/ (cf. Eq. 2.24). Taken together, the present radiation density
parameter only amounts to

QY ~8x 1077, (2.28)

11



CHAPTER 2. FUNDAMENTALS OF COSMOLOGY

for h = 0.7. Neglecting energy—momentum exchange with other species, we may
use Eq. (2.19) to extrapolate p, back in time. The solution is p,(a) = pla=?. Al-
though the contribution of radiation is negligible today, it dominated the Universe
in former times. During radiation domination, the evolution of the scale factor is
approximately described by Eq. (2.15) with w = 1/3: a(t) o (t — t;)'/2.

Baryons and cold dark matter

Non-relativistic matter is characterized by a negligible pressure, P,, < p;,, corre-
sponding to w,, ~ 0. According to Eq. (2.19), the energy density of matter in the
Universe scales as

Pm X a5 (2.29)

Baryonic matter (atomic nuclei and electrons) belongs to this class. During the
radiation dominated era, it was coupled to photons. The interplay of gravity and
photon—baryon pressure gave rise to acoustic waves in the primordial plasma. A
snapshot of these oscillations is imprinted in the CMB anisotropies and, on the other
hand, in the distribution of galaxies in the Universe. The latter is referred to as
baryon acoustic oscillations (BAO) and has been detected in the matter correlation
function (Eisenstein et al., 2005). Current constraints from a combination of CMB
and BAO data (Komatsu et al., 2011), together with precise measurements of Hy
(Riess et al., 2009), yield

QY = 0.0458 £ 0.0016. (2.30)

This is consistent with the bound inferred from the amount of light elements pro-
duced by Big Bang nucleosynthesis (BBN): Qgh2 = 0.020 £ 0.002, at the 95% con-
fidence level. An increase of the baryon density accelerates the process of helium
formation and decreases the abundance of deuterium (see Amendola and Tsujikawa,
2010, for details). We conclude that the baryonic matter component makes up only
about 4.6% of the present energy budget of the Universe.

An additional matter component, the so called dark matter, has already been
proposed in the early 1930s by Fritz Zwicky. Using the virial theorem, he found
that the amount of luminous matter in galaxy clusters was not enough to explain
the observed velocity dispersion among the galaxies. The same is true for individ-
ual galaxies; the rotational speeds of stars in the outer regions of spiral galaxies
are almost constant instead of following the law v o r~/2, expected if most of
the mass were located in the luminous center of the galaxy. For a more detailed
discussion of the virial theorem and a comprehensive summary of the most impor-
tant observational studies of this field, see Weinberg (2008). The missing matter
is assumed to be in large spherical halos surrounding the galaxies.

The nature of dark matter is still one of the greatest mysteries of modern physics.
Its existence, however, has been supported by many independent observations in-
cluding data from CMB anisotropies, SN Ia, and WL. Particularly, gravitational
lensing can provide direct evidence for the presence of dark matter. A prominent
example is the so—called Bullet Cluster, a cluster merger for which the center of
baryonic mass significantly deviates from the peaks in the total mass distribution
(Clowe et al., 2006). Dark matter is also crucial for the formation of galaxies. As-
suming baryonic matter only, small-scale inhomogeneities would have been damped

12
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out by radiative diffusion in the early Universe (Silk, 1968). Since dark matter does
not interact with photons, it is not affected by this and may provide the necessary
seed of perturbations on scales relevant for galaxy formation. On this account, it is
also crucial that the major part of dark matter is “cold”, i. e., it was non-relativistic
at the time of photon decoupling. Otherwise, small scale inhomogeneities would
have been canceled by thermal motion.

A characteristic scale below which thermal motion is relevant is given by the
“free—streaming” length Mg o< vy /H comparing the thermal velocity vy, to the
expansion rate.? If one assumes for instance “hot” dark matter in the form of
massive neutrinos (cf., e.g., Lesgourgues and Pastor, 2006), the free-streaming
length during matter domination is approximately of the order

leV

v

A ~ \/a< ) 20 Mpc, (2.31)
for h =~ 0.7. In this scenario, inhomogeneities form on large scales first. Obser-
vations and numerical simulations of structure formation (e.g. Davis et al., 1985)
have made a case for cold dark matter (CDM) with negligible thermal motion on
cosmological scales instead. The currently best estimate of the present CDM density
parameter quoted by the WMAP team (Komatsu et al., 2011) is

QY = 0.229 £ 0.015. (2.32)

Particle physics has put forward several dark matter candidates. The most
prominent ones are axions and Weakly Interacting Massive Particles (WIMPs), e. g.
in the form of the lightest supersymmetric particles. A large class of experiments
tries to detect dark matter scattering in terrestrial detectors or to find signatures
of dark matter annihilation in the galactic halo. Complementary data comes from
particle accelerators, especially from the Large Hadron Collider (LHC). It is ex-
pected, that these programmes will be able to put several of the proposed dark
matter candidates to stringent tests. For a recent review of dark matter research
including the experimental and observational status, see Bergstrom (2012).

Dark energy

From the previous considerations, we may already conclude that in addition to
matter and radiation another form of energy is needed to fulfill the flatness con-
dition Q = 1. Convincing observational evidence for dark energy was found in
studies of SN Ia (Perlmutter et al., 1999; Riess et al., 1998). This type of super-
novae provides a powerful distance measure in the expanding Universe since their
absolute luminosity L can be deduced from the shape of their light curves; due
to this property one speaks of standard candles. Together with the observed light
flux F, it is possible to measure the so—called luminosity distance

2 L

dj = —.
L™ ynF

(2.33)

3The numerical factor is usually chosen in analogy to the Jeans length, Ass = 27 %UJH‘—‘ (Les-

gourgues and Pastor, 2006).
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The luminosity distance can be related to the redshift z of the supernova and its
comoving distance y via dy, = agx(1+z) (see, e. g., Weinberg, 2008, for derivation).
As we have already anticipated in Sec. 2.1, the comoving distance to a light source
is directly related to the expansion history of the Universe. This carries over to the
luminosity distance:

dr = (1+2) /0 %, (2.34)

where we have used the substitution t — 2z with dz/dt = —(1 + z)H in Eq. (2.6).
Measuring the luminosity distance over a range of redshifts is thus a sensitive probe
of the expansion rate in recent cosmological times. Both of the aforementioned
groups found strong evidence for an accelerating expansion, @ > 0. As we have
seen in Sec. 2.1.2; this requires a negative equation of state parameter, w < —2/3.
The supernovae results are consistent with a dark energy component of constant

equation of state wpg = —1. More recent compilations of SN Ia data combined
with other cosmological observations yield wpg = —0.96970 003 (stat)™)60e (sys)

(Kowalski et al., 2008). It is important to note, that this constraint mainly applies
to the low-redshift regime, z < 1, and wpg is not necessarily constant in time.

Taking dark energy into consideration has also an important impact on the es-
timated age of the Universe. According to Eq. (2.16), the age of a pure matter
universe amounts to 2/3 Hal ~ 9.3 x 10%r (assuming h =~ 0.7). Including the
radiation component slightly reduces the age but has no large effect. This estimate
is in conflict with the estimated ages of the oldest stars in the Milky Way, e.g.
(15.8 £ 2.1) x 10%r (Bolte and Hogan, 1995). Dark energy solves the problem by
increasing the age of the Universe. Adopting for instance the cosmological constant
A (cf. Sec. 2.2.1), one obtains

& dz
-1
Hy / 3 4 1/2
0 (14 2) [Qmo(1+2)%+ Qo1+ 2)* + Qo]
~ 13.73 x 10° yr. (2.35)

(to—t;) =

Observational evidence for dark energy comes from SN Ia, the CMB, BAO, the
large—scale structure, and estimates of ages in the Universe (for a comprehensive
summary and discussion, we refer to Amendola and Tsujikawa, 2010). In the
next section, we will introduce prominent candidates and also discuss their major
problems.

2.2 Dark energy candidates

We now have a closer look at the cosmological constant A and scalar—field dark
energy. The fundamental coincidence problem will be discussed in both frame-
works. Here, we restrict ourselves to the simplest quintessence models involving
an uncoupled scalar field. Our discussion forms the basis for the introduction of
couplings in the next chapter.

We will not consider the field of modified gravity in this work. Generally, mod-
ifications to the laws of gravity are severely constrained by local gravity tests.
Nonetheless, large—scale modifications are in principle possible and may give rise

14
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to accelerated expansion. An introduction to theories of modified gravity can be
found in recent reviews (e. g. Clifton et al., 2012; Nojiri and Odintsov, 2006; Carroll
et al., 2005) and textbooks (e.g. Amendola and Tsujikawa, 2010).

2.2.1 The cosmological constant

The cosmological constant A is the simplest possibility to achieve accelerated ex-
pansion. It was already introduced by Einstein himself as a possible modification
to the fundamental equations of GR. Since his original intention was to realize a
static Universe, he, however, abandoned it again after Hubble’s discovery of the
cosmic expansion. The field equations including a cosmological constant term read

1
Ry, — 3 Rgu +Agu =8n1GT,,. (2.36)

From a different point of view, the cosmological constant can be considered as part
of the energy—momentum tensor on the right-hand side of the Einstein equations.
It then appears as

S o
corresponding to a perfect fluid with constant energy density py = A/87G and
pressure P, = —pa. In this way, we may stick to the original field equations
(2.2) as well as the standard Friedmann equations (2.11) and (2.12). Since the
equation of state parameter associated with a cosmological constant is wpy = —1,
it can generate a positive acceleration of the expansion. For a flat universe with
Qp = 1, the Friedmann equation (2.11) yields a constant Hubble parameter H =
\/A/3 implying an exponentially growing scale factor a(t) o exp(y/A/3t). If
the cosmological constant actually causes the observed accelerated expansion, our
Universe is currently undergoing the transition to such a phase of rapid expansion.

The cosmological constant is often related to the concept of vacuum energy aris-
ing in quantum field theories. Since local Lorentz invariance requires the vacuum
energy-momentum tensor to be proportional to g,,, its contribution is indistin-
guishable from a cosmological constant. Stated differently, the above introduced A
can be considered as an effective quantity including the fundamental cosmological
constant and the vacuum contributions (cf., e. g., Martin, 2012). This leads to the
well-known fine-tuning problem. If A shall explain the present cosmic acceleration,
its energy density needs to be of the same order as

P, = BH3/(87G) ~ 107, (2.38)

with the Planck mass mp = \/he/G ~ 10! GeV. The contribution to the vacuum
energy of a specific quantum field depends on the cutoff scale k¢ of the theory.
Assuming that GR is valid up to the Planck scale, we choose knax identical to the
Planck mass. For a field with mass m, the vacuum energy can then be estimated

according to
k?max d3k 1 3 5 9 4
Pvac = ) W 5 VvV Ek?+m? =10 mp. (2.39)
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Description FEstimate
Hubble parameter Hy (70.2+1.4) (km/s)/Mpc
Baryon density parameter QI? 0.0458 £ 0.0016
CDM density parameter 0 0.229 4+ 0.015
Dark energy density parameter Q% 0.725 £+ 0.016
Scalar amplitude A, (2.43 £0.091) x 107
Spectral index ng 0.968 + 0.012

Table 2.1: Currently best estimates of the ACDM parameters quoted by the WMAP team
(Komatsu et al., 2011). The scalar amplitude and the spectral index describe
the primordial spectrum of perturbations (cf. Sec. 3.3.1).

Consequently, the observationally preferred value of py is about 121 orders of mag-
nitude below the naive expectation. Though only a crude estimation, the result
points towards a miraculous cancellation. This famous discrepancy is often re-
ferred to as the cosmological constant problem. For a comprehensive review of the

problem including precise calculations of vacuum energy contributions, we refer to
Martin (2012).

The second puzzle which cannot be resolved by a cosmological constant is the
coincidence or “why now” problem of dark energy: Although the energy density
PA stays constant in time, observations suggest that it is of the same order of
magnitude as the matter energy density just today. Bearing in mind that p,, has
been diluted over billions of years, this appears as a miraculous coincidence. For
0% ~ 0.7, equality of the two energy densities occurred at

aeq = (2),/Q0)"? ~ 0.75, (2.40)

very close to the present scale factor (in terms of redshift, zeq ~ 0.3). At earlier
times, for instance at z ~ 10 when the first galaxies formed, the impact of the
cosmological constant was completely negligible and would not have been observ-
able at all. On the other hand, the ratio 5 /€2, grows as a and 2, would soon
become completely unimportant.

Despite of its two fundamental problems, the cosmological constant is consistent
with all major cosmological observations (Komatsu et al., 2011; Sullivan et al.,
2011; Reid et al., 2010). The ACDM model has become the standard picture of
cosmology and its parameters are constrained with ever increasing accuracy. In
Tab. 2.1, we quote current estimates. In Fig. 2.1, we plot the resulting evolution
of the energy densities and density parameters in the ACDM universe, highlighting
again the coincidence problem.

The theoretical problems associated with the cosmological constant motivate
the search for alternative explanations of dark energy in which these problems are
absent or at least alleviated. This brings us to the class of dynamical dark energy.
In this framework, it is generally assumed that the cosmological constant vanishes
exactly due to some fundamental symmetry.
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Figure 2.1: Evolution of the energy densities (in units of the present critical density 3Hg)
and the corresponding density parameters in a ACDM universe with the pa-

rameters given in Tab. 2.1.

2.2.2 Quintessence

A dynamical form of dark energy rather than a cosmological constant is, in the
simplest case, realized by a scalar field. Dark energy in this form is known as
quintessence. We will further refer to the scalar field as the cosmon ¢. Its dynamics

follow from the action principle with an appropriate choice of a Lagrangian density
L. Generally, we have to assume that the total Lagrangian density of the theory

also contains couplings between the cosmon and other species of the Universe. This
possibility plays a crucial role in the context of this thesis and will be explored in
Chapter 3. For now, we follow the first proposals of quintessence (Wetterich,
1988; Ratra and Peebles, 1988) and study the case of an uncoupled scalar field.
The dynamics are then governed by gravity and a self-coupling potential V().
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Assuming a standard kinetic term, the Lagrangian density reads
1 I
Ly =—50up "0 = V(p). (2.41)

Many choices of V() have been studied in the literature (cf., e.g., Doran and
Wetterich, 2003; Brax et al., 2000; Skordis and Albrecht, 2002; Steinhardt et al.,
1999; Zlatev et al., 1999). We will discuss two popular examples below, of which the
exponential potential V(¢) o exp (—ag) will be adopted in subsequent chapters.
The Lagrangian density, Eq. (2.41), leads to the Klein-Gordon equation in curved
spacetime,

V.V £ V(g) = 0, (2.42)

with the common abbreviation V, = dV/dy. The energy-momentum tensor fol-
lows as

T(‘::) =0"p0"p+ g L,. (2.43)

In contrast to the cosmological constant, quintessence naturally varies in time.
Moreover, once we include perturbations to the homogeneous and isotropic back-
ground, spatial variations in ¢ are possible. Indeed, they will play a crucial role in
the context of structure formation in Growing Neutrino Quintessence. Yet, at this
point, we continue our discussion within the framework of a perfectly homogeneous
universe and assume ¢ = (). In this case, we recover the energy—momentum ten-
sor of a perfect fluid, cf. Eq. (2.10), with the energy density and pressure given
by

1.

Py = 5s02 +V(p), (2.44)
1.

P, = 5302 —V(y), (2.45)

implying the equation of state parameter

102 = V(p)

%¢2 V(o) (2.46)

Wy =
This expressions allows for a range of values —1 < w, < 1. The case of a cosmolog-
ical constant can be imitated by a slowly varying field: w, &~ —1 for ¢?/2 < V().

In contrast to an actual cosmological constant, however, w, generally varies in
time.

Together with the FLRW metric, Eq. (2.4), the equation of motion (2.42) for ¢(t)
becomes
G+ 3Hp+ V,(p) = 0. (2.47)

The self—coupling potential introduces a force which is counteracted by a damping
term due to the cosmic expansion. In order to cause accelerated expansion, success-
ful models of quintessence need to provide a “slowly rolling” scalar field in recent
cosmological times. Furthermore, the presence of early dark energy is constrained
by complementary probes like BBN, the formation of large—scale structure, and the
fluctuation spectrum of the CMB. This allows to put constraints on the model
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parameters of quintessence cosmologies. Let us now consider specific examples.

Exponential potential

The exponential potential is of the form
V(p) = MYexp (—ay), (2.48)

with a dimensionless parameter o > 0 and a constant M with units of mass (the
value of V(0) is arbitrary and can be changed by shifting ¢). It can be motivated
by the anomaly of the dilatation symmetry (Wetterich, 1988) and naturally arises
in higher-dimensional theories (Wetterich, 2008). The basic features of a scalar
field with an exponential potential in the context of cosmology are reviewed by
Wetterich (1995); Doran and Wetterich (2003).

As an intriguing property, many quintessence models feature tracker solutions.
These are special trajectories to which the evolution of ¢ converges for a large
range of initial conditions. By this means, the late-time evolution of ¢ (under the
assumption of convergence) only depends on parameters of the potential and not
on the precise initial values. An instructive discussion of tracker solutions and fixed
points in quintessence scenarios can be found in the textbook by Amendola and
Tsujikawa (2010). The exponential potential, Eq. (2.48), provides tracker solutions
with a particularly interesting feature: p, decays with the same rate as the energy
density of the dominating species in the Universe, p, o« a™ (n = 4, 3); this is the
so—called scaling solution. In this way, the huge age of the Universe provides a
natural explanation for the small overall size of p, today.

The scaling solution implies that the dark energy density parameter (2, stays
constant during radiation or matter domination. Its value is

n

Q, = PR (2.49)
with n = 4 during radiation domination and n = 3 during matter domination.
Early dark energy constraints based on CMB data (Doran et al., 2007) require
a 2 10.

Despite the tempting possibility to avoid the cosmological constant problem, the
scaling solution presented above has the major drawback that it does not provide
a transition to dark energy domination. If the scaling continues forever, the model
cannot explain the presently accelerating expansion of the Universe. A coupling
between the cosmon ¢ and other species in the Universe may provide a possible
solution to this problem (see Chapter 3).

Inverse power—law potential

Ratra and Peebles (1988) proposed a potential of the form
V(p) = M2, (2.50)

where « is a positive constant and M has units of mass. This model provides a
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tracker solution with an almost constant equation of state at late times,

—2 (2.51)
w, ~ . .
T a2

At earlier times, the evolution is more complicated (cf., e.g., Weinberg, 2008).

Accelerated expansion is possible for v < 1. Since observations suggest wg ~—1,
the parameter « needs to be chosen close to zero. Unlike the exponential potential,
the tracker solution of this model provides a transition to dark energy domination.
However, the present amount of dark energy or, equivalently, the time of matter—
dark energy equality are very sensitive to the choice of the parameters o and M.
A simple comparison of scales (Weinberg, 2008) leads to the condition

MY G712 2, (2.52)

With « close to zero, this is a similar fine-tuning problem as in the case of the cos-
mological constant A. Although the simplest quintessence models already exhibit
appealing features, it remains difficult to solve both of the problems associated
with the cosmological constant.
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3 Growing Neutrino Quintessence

At the end of the previous chapter, we have studied quintessence as an alternative to
the cosmological constant. We have presented scaling solutions that may explain
why the dark energy density is small and comparable to the matter density at
present times. Within the free theory, it is, however, challenging to find a natural
explanation for the recent onset of accelerated expansion. This problem can be
addressed in models of coupled quintessence as discussed in Sec. 3.1. Particularly,
we will introduce Growing Neutrino Quintessence (GNQ), the central model for
this thesis, which proposes a coupling between quintessence and neutrinos. After
summarizing its basic concepts, we will derive the fundamental equations from an
action principle (Sec. 3.2); the computation is also part of the publication Ayaita
et al. (2012b). For the further discussion of the model, it is necessary to introduce
linear perturbation theory (Sec. 3.3). The breakdown of linear perturbation theory
serves as the motivation for developing nonlinear methods, which will be presented
in this work (Chapter 5). We conclude this chapter with a brief look at the physics
of neutrino mass and the specific particle physics realization of GNQ proposed by
Wetterich (2007).

3.1 Motivation and overview

The total energy—momentum tensor appearing on the right—hand side of Einstein’s
equations (2.2) is conserved, i.e. VaTt?f = 0. In the absence of interactions, this
property carries over to the individual energy—momentum tensors describing the
constituents of the Universe. Within the standard framework, this is assumed to
be the case after the epoch of last scattering (cf. Sec. 2.1.3). With the introduction
of a dynamical dark energy field ¢, however, additional interactions are generally
to be expected if not forbidden by any symmetry. Formally, a coupling between
two species is represented by an energy—momentum exchange, i. e., only the sum of
the two corresponding energy-momentum tensors 7%? and S is conserved while
the individual tensors are not:

Vol = +Q° (3.1)
VoS = —QF. (3.2)

We will now investigate the case of coupled quintessence in order to find a solution
to the coincidence problem of dark energy. In the following, S will denote the
energy-momentum tensor of the cosmon ¢; T corresponds to a specific mat-
ter component, e.g. CDM, baryons + CDM, or neutrinos. A specific form of the
coupling, studied for instance by Amendola (2000) and Wetterich (1995), is given
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by

QY= —-BT %, (3.3)
where (8 is a dimensionless coupling parameter and T = T%,. For the energy—
momentum tensor of a perfect fluid, Eq. (2.10), we obtain T" = —p + 3P =

—p(1 — 3w). Hence, the coupling vanishes for radiation with w = 1/3. Cosmolog-
ical observations and local experiments impose severe constraints on the coupling
to ordinary matter. One finds ﬁg < 1073 for the cosmon-baryon coupling and
Be < 0.1 for the coupling to CDM (cf. Wetterich, 1995, Amendola and Quercellini,
2003, and references therein!). Even if a coupling between dark energy and matter
causes the onset of accelerated expansion, the question remains why this happens
just in recent times. In order to avoid a new fine—tuning problem, a kind of cosmic
“trigger event” would be desirable. This is possible with a cosmon—neutrino cou-
pling as proposed by Amendola et al. (2008). In a particle physics realization of
this scenario, Wetterich (2007) motivated a particularly strong coupling between
dark energy and neutrinos (cf. Sec. 3.4.2). Therefore, we will neglect possible
couplings between dark energy and ordinary matter and assume 7% being the
energy—momentum tensor of neutrinos from now on.

Cosmology with a cosmon—neutrino coupling

The equations of motion for the coupled cosmon-neutrino fluid follow from Eqgs. (3.1)
to (3.3):

P+3HO+ V(o) = Bpy (1 —3w,), (3-4)
Py +3H(1+wy,)p, = =06 py (1 —3w,)p. (3.5)

We assume an exponential potential V() o« exp(—ap) with o > 0. Comparing
Eq. (3.4) with the uncoupled case, Eq. (2.47), we identify an additional force term
x pu(1 —3w,) on the right—-hand side. This term may counteract the driving force
—V, and slow down the evolution of . The neutrino equation of state w, acts as
a “switcher”: As long as neutrinos are highly relativistic, w, & 1/3, the coupling
is ineffective and the cosmon field evolves just like a free field. On the other hand,
once the neutrino temperature has considerably fallen below the neutrino mass
scale m,,, the equation of state approaches the limit w, = 0; the term [Sp, then
modifies the further evolution of ¢. This motivates the definition of an effective
potential,

Vg AV
I d + Bow
=aV(g) + Bpy- (3.6)

For 5 < 0, the two terms are counteracting and may cancel. The effective potential
Vet(¢) then exhibits a minimum. It is possible to stop the further evolution of
the cosmon field by this mechanism and thereby provide an exit from the scaling

!The precise constraints depend on the chosen class of potential V(). Amendola and Quercellini
(2003) for instance use an inverse-power law potential.
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3.1. MOTIVATION AND OVERVIEW

solution discussed in Sec. 2.2.2 (Amendola et al., 2008). From this moment on, ¢
will act similar to a cosmological constant with w,, close to —1. In contrast to the
previously discussed free theory, the scenario contains late—time cosmic acceleration
whose onset is triggered by the event of neutrinos becoming non-relativistic. In
this way, the model addresses the “why now” problem of dark energy. However, the
coupling has to be rather strong since the neutrino density is small in the Universe.
Typical values are of the order 3 ~ —102.

We show the cosmological evolution for a viable set of parameters in Fig. 3.1.
The figure not only highlights the transition from the scaling regime to the dark
energy dominated era, but also the consequences for the evolution of the neutrino
component. Apart from the distinct oscillatory features, the neutrino energy den-
sity is almost constant at late times and will soon start to dominate over the matter
energy density. Obviously, the energy—momentum exchange between neutrinos and
quintessence has drastic impacts on both species. This is plausible regarding the
particle physics implications of the coupling.

Growing neutrino mass

On a particle physics level, the coupling is realized as a cosmon—depending neutrino
mass, m, = m,(p). Here, we consider the average neutrino mass m, instead of
distinguishing between the three neutrino species. The coupling parameter 5 then
arises as

. . (3.7)

This relationship can be obtained by introducing a cosmon—depending mass in the
energy—momentum tensor of neutrinos and exploiting the continuity equation for
the total energy density piot = py + py (cf. Amendola and Tsujikawa, 2010). One
arrives at Eq. (3.4) with the above identification of 8. Alternatively, one may define
B via Eq. (3.7) and derive the equations of motions from an action principle. This
approach will be presented in Sec. 3.2. Mass varying neutrinos are also considered
in other scenarios (e.g. Fardon et al., 2004; Gu et al., 2003).

In general, the parameter  is a function of ¢ instead of being constant (cf.
Wetterich, 2007, and Sec. 3.4.2). However, if not otherwise stated, we will assume
the simplest case of a constant coupling parameter 3, corresponding to

my, o exp (=) . (3.8)

While ¢ is “rolling down” its potential, the neutrino mass is steadily growing. If
we, for instance, assume a present neutrino mass of the order eV, it was even much
smaller in the early Universe. This has to be taken into account when asking for the
redshift z,, at which the transition from relativistic to non-relativistic neutrinos
takes place. For a present neutrino mass m,(ty9) < 2.3 eV, this typically happens
in the recent cosmological history, z,, ~ 5-10 (Mota et al., 2008). The strong link
between the phenomenology of dark energy and the neutrino mass becomes also
evident in the effective equation of state describing the combined cosmon—neutrino
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Figure 3.1: The upper figure shows the evolution of the energy densities in GNQ with
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B = —52 and a present neutrino mass m? = 2.3 eV (cf. Amendola et al.,
2008). The lower figure shows the evolution of the density parameters in
recent cosmological times. Dark energy dominates the Universe at present.



3.2. FUNDAMENTAL EQUATIONS FROM AN ACTION PRINCIPLE

fluid (Amendola et al., 2008):

0

m
~—1 L4 .
Wett t 12y (3.9)

This intriguing relation yields weg < —0.8 for m,(ty) < 2.3 eV.

3.2 Fundamental equations from an action principle

In this section, we will derive the fundamental equations presented above from an
action principle (Ayaita et al., 2012b). Instead of including three different neutrino
species, we assume a degenerate neutrino mass (alternatively, one may think of
m,, as the average neutrino mass). Under this working hypothesis, the number of
neutrino flavors enters only in the initial number density of neutrinos.

We describe the dynamics of the cosmon ¢ and the neutrino field ¢ by a standard
scalar—field Lagrangian £, and a Majorana Lagrangian £, (neutrinos are generally
expected to be Majorana particles, cf. Sec. 3.4),

Ly =3 0upd"0 ~ V(g). (3.10)
Lo =19 (Ve +mu(9)) ¥, (3.11)

where we have included a cosmon-dependent neutrino mass m, = m,(y). The
quantities v*(z) are a generalization of the usual Dirac matrices v* (a =0, 1,2, 3)

in curved spacetime based on the vierbein formalism (cf., e. g., Brill and Wheeler,

1957). The vierbein e2(x) is related to the metric via g*? = egefn“b, with the

Minkowski metric n® = diag_(—l,l,l,l). By virtue of the vierbein, we have
v (x) = y*e%(x). The field ¢ is related to ¢ by a Majorana constraint. The
total action of the theory reads

S = /d% V=9 (Lo+ L, +Ly,), (3.12)

where Ly represents gravity and the remaining cosmological species.

Varying the action with respect to ¢,1) yields the Dirac equations in curved
spacetime,

V*Vath +mu(p)Y =0, (3.13)
—Voﬂ; 7a + mu((p)zﬁ = 0. (314)

The neutrino energy-momentum tensor 7% associated with £, can be calculated
from the usual definition (Brill and Wheeler, 1957) and follows as

T = —% Dy BV + %v%y%. (3.15)
In the uncoupled case, i.e. m, = const., the equations of motion (3.13) and (3.14)

imply the conservation law VBTO‘B = 0. In the considered case, however, the
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CHAPTER 3. GROWING NEUTRINO QUINTESSENCE

derivative also acts on m,(¢(z)) leading to

VT = 8%m, () Wy
= Bmy(p) 0%, (3.16)

where, in the last step, we have used the definition of the coupling parameter
B = —dInm,/de¢ and introduced the quantity n, = —iy).
Computing the trace of the energy—momentum tensor (3.15), we find

T =T = —my(p)n,. (3.17)

In the non-relativistic limit, T' &~ —p, and we can identify n, with the neutrino
number density n,. In general, however, n, transforms as a scalar, while n, does
not (even in flat spacetime, n, picks up volume contraction factors under Lorentz
boosts).
Combining Egs. (3.16) and (3.17), we obtain the equation of energy—momentum
exchange,
VT = BT 8%, (3.18)

corresponding to Eq. (3.1) with the coupling specified in Eq. (3.3).
Varying the action, Eq. (3.12), with respect to ¢ yields the modified Klein—
Gordon equation,
VOV + Vlp) = —BT. (3.19)

The energy-momentum tensor associated with £, is found to be
S = 9% 9P o + g“ﬁﬁw, (3.20)
and one can straightforwardly verify the second exchange equation
VS8 = 48T 9%, (3.21)

in accordance with Eq. (3.2).
The introduction of a varying neutrino mass m, = m,(¢) on a fundamental level
leads to the coupling equations of the previous section.

3.3 Linear perturbations

So far, we have only considered GNQ in a perfectly homogeneous and isotropic
universe. We will now introduce perturbations on the FLRW background. As long
as these perturbations are small, it is appropriate to incorporate only first—order
corrections. This is, for instance, extremely useful in the standard ACDM model,
where perturbations are still linear on large scales. In GNQ, however, Mota et al.
(2008) have shown that neutrino perturbations grow non-linear in recent times
even on large scales. This motivates a more accurate treatment, which will be the
topic of Chapter 5. We will now quickly review linear perturbation theory (mainly
based on Doran, 2008, and Ma and Bertschinger, 1995) and summarize the findings
of Mota et al. (2008) afterwards. In the context of perturbation theory, we will use
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3.3. LINEAR PERTURBATIONS

the conformal time n which is related to the cosmic time ¢ via d¢ = adn.

3.3.1 General formalism

We first split into homogeneous background quantities gog(n), Twg(n) and pertur-
bations 6gag (1, ), 0T03(n, ) varying in time and space. The most general form
of the perturbed FLRW metric gog = Jag + 0gap reads

ds? = a*(n)[-(14+2A(n, x))dn* —2B;(n, )dndz' +(6;;+2H;;(n, z))dz'dz’]. (3.22)

Perturbations are usually expanded in scalar, vector, and tensor modes by virtue
of appropriate basis functions (cf., e. g., Doran, 2008). We will restrict ourselves to
scalar perturbations, in which case we recover the usual Fourier decomposition for
a function

3
A(n, ) = / % Aln, k) Qx (), (3.23)

with the basis function Qg(x) = exp(ik - ). As a short hand, we usually simply
write A(n,z) = A(n)Q. Defining Q; = —k719,Q and Q;; = k729;0;Q + 1/36;;Q
with k = |k|, we construct the scalar modes of vector and tensor fields,

Bi(n,x) = B(n)Q;, (3.24)
H;j(n,z) = Hp(n)Qdi; + Hr(n)Qij- (3.25)

Before turning to the perturbed energy—momentum tensor, we make use of the
gauge freedom in order to simplify the form of the perturbed metric, Eq. (3.22).
Gauge transformations arise from infinitesimal coordinate transformations that
keep perturbations small. While ordinary coordinate transformations would also
change the unperturbed background, gauge transformations, by definition, only
affect the perturbation quantities (for a derivation of the transformation laws, cf.,
e.g., Doran, 2008; Ma and Bertschinger, 1995). In this thesis, we will use the
conformal Newtonian gauge (Hr = B = 0),

ds? = a*(n) [—(1 +2¥(n,z))dn® + (1 — 2&(n, z))dz?] (3.26)

using the sign conventions of Ma and Bertschinger (1995).

We now introduce perturbations to the energy—momentum tensor of the perfect
fluid. The perturbed energy density and pressure become p = p + dp and P =
P + §P; we will also use the density contrast § = dp/p. In addition, we take into
account the coordinate (or peculiar) velocity v = da?/dn, related to the four—
velocity u! via u® = v'/a to first order in perturbations.? Moreover, we allow for
an anisotropic stress tensor Eij. The entries of the energy—momentum tensor in

2Since v" is not a tensor, we do not distinguish between upper and lower indices, i.e. v; = 05 V7.
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CHAPTER 3. GROWING NEUTRINO QUINTESSENCE

linear perturbation theory (cf. Ma and Bertschinger, 1995) then are

Too(n ) [(77)+5p(777 )]s
= [p(n) + P(n)] v*(n,®) = =T o(n, z),
= [P(n) + 0P(n,x)] & + £';(n, ), ' =0. (3.27)

The peculiar velocity v?, as defined above, appears as the perturbation to the uni-
form Hubble flow due to peculiar motion: d = dy(ar) = Hd + ai = Hd + v,
where we have used 0, = ad;. In the following, we will use a prime to indicate
derivatives with respect to n. It is useful to define the conformal Hubble parame-
ter H=d/a=aH.

Evolution of perturbations

The evolution of perturbations follows from the perturbed Einstein equations 6G*g =
887G 0T g (for a computation of the perturbed Einstein tensor, cf., e. g. Amendola
and Tsujikawa, 2010). In Fourier space, each mode k evolves independently and we
can omit the basis function Q. One of the fundamental equations is the relativistic
Poisson equation for the metric perturbation ®:

2P = —Lq2 <5p+3%(p+15) v>, (3.28)

2
where v is the scalar part of the velocity perturbation (cf. Eq. 3.24), v; = v Q;. On
subhorizon scales (the most important case for us), k > H, the equation can be
simplified to

1
E® = —§a25p. (3.29)

In the non-relativistic limit, dp describes the distribution of mass and ® can be
identified with the usual Newtonian gravitational potential. The second metric
perturbation ¥ follows from

E2(® — ) = %, (3.30)

where ¥ is the scalar part of the anisotropic stress tensor,? Y =2-Qi;j (X1 = 0 per
definition). The dominant contribution to anisotropic stress comes from relativistic
neutrinos (Ma and Bertschinger, 1995). This may have interesting implications in
the context of GNQ as we will discuss later (Chapter 6). In the absence of anisotropic
stress, the metric perturbations equal each other, ® = ¥. Due to their meaning in
the Newtonian limit, we usually speak of the two gravitational potentials ¥ and ®.

In the uncoupled case, the evolution of matter perturbations is described by the
relativistic continuity and Euler equations,

8 = —kvpy + 3%, (3.31)

v, = —Huvy, + kY, (3.32)

3In order to avoid confusion, we remark that ¥ corresponds to PII in the notation of Doran
(2008) and to 2(p+ P)o in the notation of Ma and Bertschinger (1995).
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3.3. LINEAR PERTURBATIONS

where v,, is the scalar part of the matter peculiar velocity. Gravitational acceler-
ation is mediated by the gradient of W, while the cosmic expansion enters in form
of a damping term o Hv. These equations remain valid in GNQ.

The situation is more complicated for relativistic species like photons and neutri-
nos. Even without any coupling, the treatment outlined above is not appropriate,
since the velocity perturbations can no longer be treated linearly. Instead, one
considers the full phase-space distribution function

f(%l“i,q,”j) = f(q,ﬁ) (1 + w(naxia Qanj)) ) (333)

where ¢; = gn; is the comoving three-momentum with magnitude ¢ and direc-
tion n;j, f(g,n) is the Fermi-Dirac (or Bose-Einstein) distribution with a time—
dependent temperature (cf. Sec. 2.1.3), and 1) denotes a linear perturbation. The
distribution function f allows to reconstruct the full energy—momentum tensor.

The evolution of ¢ is governed by the Boltzmann equation,

Af _of  d'of dgof dn, of _
dp  On  dn ozt dndq = dn On;

Clfl, (3.34)

with a possible collision term C[f] (e.g. due to Compton scattering). In GNQ, the
cosmon—dependent neutrino mass m, = m, (p(z)) generates additional terms when
a derivative acts on the momentum ¢ (Ichiki and Keum, 2008; Mota et al., 2008).
The Boltzmann equation is usually solved as follows (cf. Ma and Bertschinger,
1995). While the spatial coordinates are transformed to Fourier space, x — k,
the momentum ¢ is integrated out in order to reduce the number of variables.
The dependence on the momentum direction n is expanded in a series of Legendre
polynomials Pg(’% ‘n) (ic = k/k) allowing to project out moment equations for
each ¢. The resulting hierarchy of equations is truncated at some £, in order to
achieve a finite set of scalar perturbation equations.

In models of quintessence, we also have to consider perturbations to the cosmon
field, p(n,x) = @(n) + dp(n,x). These are obtained from the perturbed Klein
Gordon equation (cf., e.g., Mota et al., 2008, and Sec. 5.3.1).

Initial conditions

In Fourier space, the linear perturbation equations discussed above are a set of
coupled ordinary differential equations in time depending only on the magnitude
k = |k| but not on the direction of the Fourier mode k. Hence, the general solution
A(n, k) for an arbitrary perturbation variable A can be written as a superposition
of normal modes A, (1) which depend only on k£ and 7 (cf. Weinberg, 2008):

Al k) =Y an(k) Ay r(n). (3.35)

While the functions A, x(n) belong to the specific perturbation variable A, the
coefficients av, (k) are the same for all perturbations. Let us for simplicity assume
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that only a single mode is dominant* and drop the index n (for a thorough discus-
sion, see, e.g., Weinberg, 2008). Still, we have an infinite number of coefficients
a(k) that need to be fixed by initial conditions. These are traced back to quan-
tum fluctuations generated during inflation. This provides a powerful probabilistic
description:

1. The initial perturbation fields fl(k) are Gaussian random fields, i.e., they
are fully characterized by their two-point functions (A(k) A*(k')). Under the
assumption of statistical homogeneity and isotropy, the correlation function
can be written as

(A(k) A*(K')) = (2m)° P;(k) 6 (k — k'), (336)

defining the power spectrum Pj (k).

2. The primordial spectrum Pyim(k) is nearly scale-invariant, commonly pa-
rameterized as ) )
27 k e

Poim(k) = — A <—> , 3.37

prlm( ) k?’ S kpivot ( )

with the spectral index ny &~ 1 and the scalar amplitude A normalized at

a pivot scale kpivor. Here, we choose to normalize the mode functions so

that the k—dependence of the primordial spectrum is fully attributed to the

spectrum of a(k),

{a(k)a* (k') = (27)° Pprim (k) 63 (k — k). (3.38)

The time—evolution of linear perturbations, Eq. (3.35), then implies
(A(n, k) A*(n, k")) = (2m)° [ A (1) [* Porim () 63 (k — K'). (3.39)

Analogous relations hold for higher n—point functions. Consequently, linear per-
turbation theory preserves Gaussianity and the spectrum of A at some time 7 can
be obtained by multiplying the primordial spectrum with the factor |A(n)>. The
latter can be efficiently calculated with the help of Boltzmann codes like CAMB
(Lewis et al., 2000) or CMBEASY (Doran, 2005).

Finally, the adiabatic mode which is predicted by the most prominent models of
inflation refers to initial conditions of the type

4 4 4 1
67 = 550 = g(Sb = 51/ = 5(1 + wgp) 64,0, (340)
together with additional constraints for the velocity perturbations (Doran et al.,
2003). The overall amplitude of the perturbations has to be fixed by observations.

4The assumption of a single mode (adiabatic perturbations) is in concordance with models of
single—field inflation, cf., e. g., Tsujikawa (2003).
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3.3.2 Breakdown of linear perturbation theory

Mota et al. (2008) have implemented the linear perturbation equations for GNQ
in modified versions of the cosmological Boltzmann codes CAMB (Lewis et al.,
2000) and ¢cMBEASY (Doran, 2005). Without quoting the full equations here, we
point out that the scalar field gives rise to a fifth force acting on neutrinos. The
Euler equation governing the neutrino acceleration v}, contains a term o —k 8 d¢
in addition to the gravitational acceleration kV¥. Studying the perturbed Klein—
Gordon equation for dy in the Newtonian limit® (see also Wintergerst et al., 2010)
shows, that kdp ~ 2|8|k ¥, with ¥, denoting the neutrino induced gravitational
potential. Hence, the cosmon perturbations d¢ mediate a new attractive forth
between neutrinos with the strength of 23? compared to gravity. For typical values,
B ~ —102, this force is extremely strong.

As a result, Mota et al. (2008) find a rapid growth of neutrino perturbations
once the coupling becomes effective. In turn, the cosmon perturbations d¢ and the
gravitational potential ® strongly grow and the linear approximation breaks down
soon. At redshift z, < 2, overdensities in the neutrino fluid have become non—
linear on supercluster scales (k < 0.1h/Mpc). These results suggest substantial
neutrino clustering on large scales. The details of the clustering process and its
consequences for the cosmological evolution of GNQ cannot be studied within the
linear approximation and motivate non-linear methods for further analyses. Of
particular interest are the magnitude of the large—scale gravitational potential and
the integrated Sachs—Wolfe effect (ISW) due to late—time growth of the gravitational
potential (cf. Sec. 4.1), and the effects on dark matter perturbations (Mota et al.,
2008). The method presented in this work (Chapter 5) is specifically designed
to explore GNQ beyond the linear level. In Chapter 6, we will come back to the
aforementioned observables.

The peculiarity of nonlinear perturbations on large cosmic scales is due to the
relativistic nature of neutrinos in the early Universe. As mentioned in Sec. 2.1.3,
relativistic species damp out perturbations below their free-streaming length. Con-
sequently, neutrino perturbations first grow on large scales as is known from “hot
dark matter” scenarios.

3.4 Neutrino mass

We complete our introduction of GNQ with a quick review of the concept of neu-
trino masses in particle physics. In Sec. 3.4.1, we summarize important bounds
on the neutrino mass and briefly introduce neutrino mass terms as extensions to
the standard model. Afterwards, we will turn to the particle physics realization of
GNQ presented by Wetterich (2007).

3.4.1 Experimental and theoretical aspects

The standard model of particle physics provides only left-handed neutrinos and
assumes vanishing neutrino masses. The detection of neutrino flavor oscillations

5The perturbation equation for §p will be discussed in more detail in Sec. 5.3.1.
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(Fukuda et al., 1998), however, requires neutrinos to have mass. The amplitudes of
flavor oscillations depend on the quadratic mass splittings Amgj = |m?2(v;)—m?2(v;)|
with 4,5 = 1,2, 3 for three families. Neutrino oscillation experiments consequently
allow to constrain differences between the neutrino masses. Concerning the abso-
lute mass scales, at least, lower bounds can be inferred. For instance, Ahn et al.
(2006) report a best-fit value of Am? = 2.8 x 1073 eV? for the oscillation between
v, and v, flavor states. This corresponds to a lower limit m,, 2 0.05 eV for at least
one neutrino species. Consistent results are also found by Adamson et al. (2012).
Direct constraints on the absolute neutrino mass scale are challenging, but can in
principle be inferred from the kinematics of beta decay, cosmological and astrophys-
ical observations, and the neutrinoless double beta decay (see Rodejohann, 2011,
for a recent review of experimental methods, focusing on the neutrinoless double
beta decay). A conservative upper bound on the mass of the electron neutrino has
been obtained from experiments on tritium beta spectroscopy: m,, < 2.3 eV at the
95% confidence level (Kraus et al., 2005). Considerable improvements are expected
from KATRIN, a tritium beta decay experiment intended to measure the electron
neutrino mass with sub—eV sensitivity (Osipowicz et al., 2001). Upper bounds on
the sum of the neutrino masses can also be inferred from cosmology. Consider-
ing the possibility of a time—varying neutrino mass, it is, however, crucial to note
that these bounds apply to the neutrino masses in the early Universe, particularly
during the epoch of structure formation. The WMAP team (Komatsu et al., 2011)
quotes Y m, = 0.58 eV (at the 95% confidence level); if neutrino masses are mea-
sured today that significantly exceed this bound, this would strongly support the
idea of a growing neutrino mass.

Following Kayser (2003), we will now briefly review the theoretical aspects of
neutrino mass. For simplicity, we consider the case of a single neutrino species. A
possible extension of the standard model assumes the existence of a right—handed
neutrino vp in addition to the left-handed standard model neutrino v;,. The most
general mass term constructed from these fields reads

Ly, = —mpURVL, — % EVL — % %VR +h.c., (3.41)
with a Dirac mass mp and a left-handed and right-handed Majorana mass, mr,
and mpg, respectively. Here, vf; ; denotes the charge-conjugate field. Majorana
mass terms are forbidden for chalrged fermions due to electric charge conservation
(a Majorana mass term for quarks, for instance, would imply transitions between
quarks and antiquarks). The Dirac masses in the standard model arise from Yukawa
couplings to the Higgs field and are of the form h;d, with h; denoting a coupling
constant and d the vacuum expectation value of the Higgs doublet of the order
d ~ 10? GeV. Thus, if we do not assume an extremely small coupling h, between
neutrinos and the Higgs, the scale of mp is expected to be much larger than the
typical scale of neutrino masses. Since neutrinos are electrically neutral and right—
handed fermions are usually described as weak—isospin singlets (which we adopt for
vR), the presence of a right-handed Majorana mass term for neutrinos (in addition
to the Dirac mass term) is compatible with the standard model gauge group. The
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total mass term can then be rewritten as

Lo, =1 (F.7R) ( 0 mD> (”L> fhe. (3.42)

mp Mg vy

The symmetric matrix

M = ( 0 mD> (3.43)

mp Mg
can be diagonalized. Assuming mpg > mp, the eigenvalues are given by

2

m
mp~ —= and ma ~ mg, (3.44)
mpr

In terms of the mass eigenstates, Eq. (3.42) becomes

mg__

2
Lo, = — Z ~ T (3.45)
i=1

The fields v; fulfill the Majorana condition v{ = v; (see, e. g., Kayser, 2003). Con-
sequently, the combination of Dirac and Majorana mass terms predicts Majorana
neutrinos. The mechanism outlined above is known as the “seesaw mechanism”
due to relation (3.44). In order to obtain a light neutrino mass of the order 10~}
eV, mp needs to be of order 10" GeV if h, < 1.

Extending the formalism to three families of neutrinos, the parameters mp and
mp are replaced by 3 X 3 matrices Mp and Mp. The seesaw relation (3.44)
then involves the matrix product Mp M }gl Mg. Additionally, we also consider
the possibility of generating neutrino masses by effective dimension five operators
without the necessity for right—-handed neutrinos. This contribution is accounted
for by a matrix My. The most general mass matrix for the three species of light
neutrinos reads

M, = Mp Mp* M} + M. (3.46)

The induced triplet mechanism (Wetterich, 2007, and references therein) gives
My, = hy v d?/M?, where M; is the mass of a heavy SU(2), triplet field, v ~ Mp_,
is associated with the characteristic scale of B (baryon number) — L (lepton num-
ber) violating effects, and hj, is a dimensionless coupling constant.

3.4.2 Varying neutrino mass

The previous considerations lead to the following expression for the average neu-
trino mass m,:

_ Il | hind?

my
mp ME

(3.47)

A growing neutrino mass can be realized by introducing a time dependence either of
M; or mp. Realizing a cosmon—dependent triplet mass, Wetterich (2007) proposes

1
M? = ¢y Méyr [1 = exp(—gap)] , (3.48)
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with dimensionless parameters ¢; and 7 of the order one, a negative parameter
e < 0, and the grand unification scale Mgyr ~ 106 GeV. The crucial feature of
this expression is that it has a zero for ¢, = —e 'ln7. As a consequence, m,
rapidly increases when ¢ approaches ¢;. A Taylor expansion of M;(p) around ¢y
yields ~
my
my () - (3.49)

with a constant 7, of characteristic size m, ~ 3 x 107° eV. Here, the seesaw
contribution has been neglected.

The equation of motion for the cosmon ¢, Eq. (3.4), now includes a time—
dependent coupling B(p). In the vicinity of ¢, it is approximately of the form

B 1
SD_SDt'

B(e) (3.50)

The coupling can become arbitrarily large in this scenario and will efficiently slow
down ¢ once it approaches ;. Hence, the evolution of ¢ will be almost stopped and
V(¢¢) acts as an effective cosmological constant. Choosing exemplary parameters
resulting in a present neutrino mass m< = 0.44 eV, the model provides an expansion
history very close to the standard ACDM case (Wetterich, 2007). The crossover to
the regime with an almost constant dark energy density happens in recent times, at
z. = 5. Together with the scaling solution provided by the exponential potential,
the model avoids the two fundamental problems associated with the cosmological
constant.

The divergence of the neutrino mass for ¢ — ¢ is the reason for a very strong
coupling between quintessence and neutrinos. Thus, compared to other standard
model particles, neutrinos are singled out by the specific mechanism by which they
acquire mass. In the subsequent chapters, we will return to the simpler case of
a constant, but rather large, coupling parameter 8 and neglect couplings between
dark energy and other species.
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4 Observing the Large—Scale
Potentials: 3D WL

The present chapter contains an excursus on a precision method for observing the
large—scale gravitational potentials: 3D Weak Lensing (Heavens, 2003). Taking ad-
vantage of the full photometric distance information in analyses of the cosmic shear
field, this technique is expected to considerably improve constraints on cosmologi-
cal parameters and the growth of perturbations (Heavens, 2003; Castro et al., 2005;
Kitching et al., 2011). Concerning GNQ, for instance, this offers a promising way
to detect signatures of large—scale neutrino clustering (suggested by the study of
linear perturbations, cf. Sec. 3.3.1). The neutrino-induced gravitational potential
should amplify gravitational lensing and leave an imprint in cosmic shear spectra.
Later, in Chapter 6, we will confirm a significant growth of the large—scale grav-
itational potential during the stage of neutrino structure formation. But even in
uncoupled models, an enhanced amplitude of the potentials on cosmic scales could
be traced back to the dynamical nature of dark energy: In models with a dark en-
ergy sound speed below unity, e. g. within the class of k—essence (Armendariz-Picon
et al., 2000), dark energy itself clusters on subhorizon scales and contributes to the
right-hand side of the Poisson equation (3.29). Observations of the large—scale
gravitational potentials therefore provide an exciting window on the dynamics of
dark energy.

The numerical tools we develop in Sec. 4.3 are not designed for a specific model,
but allow to compute cosmic shear spectra for any prediction or parameterization
of the large—scale gravitational potential ®(z,k). This is not yet fully available
for GNQ. Here, we apply our methods to a simple parameterization of clustering
dark energy (Sec. 4.4). This allows us to forecast the expected uncertainty in the
dark energy sound speed c? for a combination of Euclid (see, e. g., Amendola et al.,
2012) and Planck (see, e. g., Ade et al., 2011) data. The sound speed is particularly
difficult to constrain since the signal of clustering dark energy is heavily suppressed
for a dark energy equation of state w in the vicinity of —1 (cf. Sec. 4.4.1). We will
see that it may become possible to determine at least its order of magnitude.

The work presented in Secs. 4.2 — 4.4 has been published (Ayaita et al., 2012a).
Our presentation will closely follow the structure and content of the paper. We
focus, however, on the computation of the 3D shear spectrum. Optimizations
concerning the Fisher matrix analysis are not part of this work.

We will now start with a brief consideration of photon propagation in the per-
turbed FLRW spacetime (Sec. 4.1), which forms the basis for an understanding of
weak lensing (WL). The integrated Sachs—Wolfe effect (ISW) will also be introduced
in this context. The basics of 3D WL will then be covered in Sec. 4.2, where we
will also present the Fisher matrix.
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4.1 ISW and WL

The effects discussed in this section are linked to the propagation of photons
through the inhomogeneous Universe, described by the perturbed metric, Eq. (3.26),
which we repeat for convenience

ds? = a® [~ (1 +2¥) dn* + (1 — 2®)dz?)] . (4.1)

Introducing the photon momentum k® = dz®/d\, with an affine parameter A, the
photon propagation is described by the geodesic equation

dk®

FiN + 10, kPk7 =0, (4.2)
together with the null condition k. k% = 0. As usual, one splits k% into a background
part and a perturbation, k% = k% + 0k®. The zeroth component §k° corresponds
to an energy shift, whereas the spatial perturbations dk express deflection. The
calculation is presented in detail in the textbook by Amendola and Tsujikawa
(2010). Here, we only quote the results. Perturbations are taken to first order.

The zeroth component of Eq. (4.2) implies

5kO 5k O /9d OV
=) =) -2y - U el el 4.
(%), = (o), 2vo—vors [543 )i 63

where O and E indicate the instants of observation and emission, respectively.
Considering the photons of the CMB, E refers to the surface of last scattering (cf.
Sec. 2.1.3). The energy shift 6k° can then be related to a temperature shift 67". In-
trinsic fluctuations (6kY/k%) g and the gravitational potential ¥z contribute to the
so—called ordinary Sachs—Wolfe effect, which amounts to (67/T)sw = (1/3) V. It
is typically not much affected by dark energy (assuming negligible early dark en-
ergy). This is different for the integral over the time variation of the gravitational
potentials, representing the integrated Sachs—Wolfe effect (Sachs and Wolfe, 1967),

oy _ Oan (® + W) dy. (4.4)
T /)isw JE

In a pure matter universe, €,, = 1, the large-scale gravitational potentials are
constant and the effect vanishes (at the linear level). This is no longer true in
a universe containing dark energy: Accelerating expansion generally implies de-
caying gravitational potentials with a characteristic ISW signal. Correlating CMB
temperature anisotropies with projections of the large—scale structure (provided
by a combination of various datasets), Giannantonio et al. (2008) and Ho et al.
(2008) detect a signal at the 2 4o level, which even slightly exceeds the ACDM
expectation. Complementary studies (Granett et al., 2008b,a) associate hot and
cold spots in the CMB with the most significant structures found in data of the
Sloan Digital Sky Survey. They also provide evidence (above the 4o level) of the
ISW.

Let us briefly comment on the situation in GNQ. An important extra contribution
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4.1. ISW AND WL

to the ISW is expected from the rapid growth of large—scale neutrino fluctuations
in recent cosmological times (cf. Sec. 3.3.2). Depending on the details of the non—
linear evolution, this may lead to characteristic signatures in the spectrum of CMB
temperature anisotropies (Pettorino et al., 2010). Our analysis in Chapter 6 indeed
reveals a significant growth of the gravitational potentials on large scales at redshifts
z 2 1. Precise measurements of the ISW are expected to become an important probe
for constraining the model.

Next, we turn to the implications of the spatial components of Eq. (4.2). Consid-
ering a radial light ray and two directions z! and 22 orthogonal to the unperturbed
propagation direction, one obtains (cf., e. g., Amendola and Tsujikawa, 2010)

A2zt
dr2

— (P + D), (4.5)

with ¢ = 1,2. This equation expresses the familiar gravitational lensing effect.
For a comprehensive review of weak lensing (WL), see Bartelmann and Schneider
(2001), and Bartelmann (2010). Integrating Eq. (4.5) yields a relation between
the angular position of an observed image (for instance of a galaxy) 6o and the
actual angular position of the source Og. In the linear approximation, the mapping
0o — 0Og is described by the matrix

l—Kk—m —%2 >
A= , 4.6
( —72 l—Kk+4+m (46)

defining the convergence x and the shear (7y1,72). While the convergence determines
the magnification of an image, the shear determines its distortion. The convergence
field and the shear field share the same statistics (identical power spectra). From
an observer’s perspective, however, image distortions caused by weak lensing can
be detected much easier than the convergences (Bartelmann, 2010).

Convergence and shear can be calculated from second derivatives of the lensing
potential ¢, e. g.,

1
K= §A19,g0¢’ (47)
where ¢ is defined as the line-of-sight projection of the gravitational potentials.
In a flat universe,

r—r

— (W) + D)), (43)

o(0,r) = /07’ dr’

In the standard approach, an averaging over the redshift range of the sources is
performed resulting in two—dimensional fields %(0) etc. These fields represent a
direct probe of the integrated gravitational potentials ¥ and ®, which in turn are
sourced by the density perturbations in the Universe. Hence, WL can be used as a
probe of the total matter power spectrum without relying on galaxy bias models
(Jain and Seljak, 1997; Hu and White, 2001).

Most of the more recent studies usually divide their data set in bins according
to the redshifts of the source galaxies instead of averaging over the whole range of
redshifts. This approach, lensing tomography, is known to increase the sensitivity
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for constraining specific cosmological parameters (Hu, 2002a). In particular, tomo-
graphic measurements considerably improve constraints on the properties of dark
energy, i.e. mainly its equation of state w (Huterer, 2002; Jain and Taylor, 2003;
Heavens, 2003; Bernstein and Jain, 2004; Takada and Jain, 2004; Hannestad et al.,
2006; Heavens et al., 2006; Amendola et al., 2008; Hollenstein et al., 2009; Kilbinger
et al., 2009; Huterer, 2010). The possibility of further reducing statistical errors
by taking into account the full 3D information provided by the individual source
redshifts was first explored by Heavens (2003). The relationship between the two
methods has been studied by Kitching et al. (2011). The loss of information due to
the averaging over redshift bins for tomography generally leads to larger statistical
errors as in a full 3D analysis. For an investigation of the redshift dependence of
the signal, tomography can nonetheless add valuable information.

4.2 3D weak lensing

In this section, we follow Heavens (2003) and quote an appropriate estimator for a
weak lensing galaxy survey containing full information on the photometric source
redshifts. Based on this estimator, the 3D WL Fisher matrix will be constructed
used to forecast constraints on cosmological parameters.

As already mentioned, the statistics of the convergence field k£ can hardly be ob-
served directly; the shear field (71, 72) is usually measured instead. Since, however,
the statistics of convergence and shear are identical, we can restrict ourselves to a
consideration of k.

In a 3D analysis, we do not perform any line-of-sight averaging of the lensing
potential and, thus, retain the source distance information ¢ = ¢(,¢,r) as in
Eq. (4.8). The convergence field consequently is a three-dimensional field x(J, ¢, 7).
Heavens (2003) proposed a combined Fourier and spherical transform,

Kem (k) = \/g/ﬂdr dQ k9, o,7) je(kr) Yo, (9, ), (4.9)

relating the comoving distance r to a wavenumber k, and the angular position
(9, ¢) to multipoles (¢,m). In this representation, Eq. (4.7) becomes

Ll+1
wem(h) =~ 6 1), (4.10)
according to the well known property of the spherical harmonics. Further, we
may use Eq. (4.8) to relate the convergence to the gravitational potentials. Let us
assume for simplicity that anisotropic stress is negligible (at least on the scales of
interest) and use ® = W. It is also convenient to introduce the growth factor g(k, a)

expressing the (generally scale dependent) growth of the gravitational potential as
®(k,a) = g(k,a) ®°(k)/a. (4.11)

The normalization with a factor of a~! is motivated by the case of a matter domi-
nated universe, in which the Poisson equation gives —k*® = %aQﬁmém = % ﬁ9n6m /a.
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Hence, in this case, the function g(k, a) just describes the growth of the matter den-
sity contrast, &, (k,a) = g(k,a)d? (k). This is of course no longer correct in the
general case.

The central relation between the lensing potential and the gravitational potential
can now be written as

(bfm(k) - nf(kv k/) (bgm(k/)? (4'12)

where we have, following Heavens (2003), introduced the quantity

4 [ r o K o
ek, k) = = /0 r2dr jo(k ) /0 ar' ” /Tjg(k:/r/)g(i’/a) (4.13)

s rr a

and made use of the summation convention

Ak, EYB(K k") = / K2k A(k, k') B(K', k"). (4.14)
0

4.2.1 Estimator

Let us now consider a survey containing a sample of galaxies {g} with convergences
{kg}. The estimator for the convergence spectrum kg, is defined as the discrete
transform,

o (k) = \/g Z Kg Je(krg) Yo (Vg, @g)- (4.15)
galaxies g
Ounly in an idealized situation, the estimator &g, (k) is identical to the actual con-
vergence kgp (k). The main differences occur due to uncertainties of redshift mea-
surements and the discrete distribution of galaxies (Heavens, 2003).
Redshift errors are in the simplest case described by a Gaussian distribution with
a standard deviation o, equal for all galaxies,

1 (z — 2)?
r'lr)dr’ = exp | ————|d?, 4.16
Pl dr’ = ——exp [ o (1.16)
with a typical figure o, = 0.02. For an extension of the method allowing for

individual redshift errors, see Kitching et al. (2011).

The survey’s galaxy distribution is encoded in the number density n(r) = n(r)
assumed rotationally symmetric. It constitutes a statistical weight favoring dis-
tances r (or, equivalently, redshifts z) where the density of galaxies is higher. We
will employ a common parameterization,

n(z)dz x 2% exp [— <3>B] dz. (4.17)

20

For our applications, we will assume 100 galaxies per square arcminute, zg = 0.64,
and 3 = 3/2, yielding a median redshift of zpeq = 0.9 (Amara and Réfrégier, 2007).
For convenience, we consider the idealised case of full sky coverage, fauo = 1 (see
Heavens, 2003, for the general equations). Concerning the Fisher matrix analysis,
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the estimated errors can approximately be scaled by f;ql,/ ? for a realistic fraction
fsky <1

Taking these two sources of uncertainties into account, the expectation value of
Ko Tollows as
I_igm(k:) = Zg(k‘, k‘l) Mg(kﬁ/, k:”) I{gm(k‘”), (4.18)

where the summation convention, Eq. (4.14), is understood and we have defined
the quantities

Zolh K'Y = % / P2y / dr p(r 1) Go(k'r) Gk, (4.19)
2

My(k, k) = ;/’I“Qd’l“jg(kir)jg(k‘/’l“)n(’l“), (4.20)

Instead of directly measuring the convergence (or shear) field, observations infer
its power spectrum,

Seermny (k; k) = (e (k)R (K)). (4.21)

The Cosmological Principle states that the large-scale averages of the shear and
convergence fields vanish; the two—point functions or power spectra are however
definite predictions of perturbation theory within a specific model. Collecting
Egs. (4.10), (4.12), and (4.18), we arrive at

Seprmme (k, k') = A> By(k, k") Po(K") Be(k', k") S0t S (4.22)
with A = ¢(¢ + 1)/2 and the convenient abbreviation
Bo(k, k') = Zolk, ") My(K" K" o (K", k). (4.23)

Note, that the Kronecker deltas &g and 6,,,, are a consequence of the assumed
full-sky coverage and we have replaced the spectrum of ®;,,(k) by the common
spectrum Pg (k) based on the three-dimensional Fourier transform (cf., Heavens,
2003),

(B(2, k) D*(2, k")) = (21)3 Pp(2, k) 6% (k — k). (4.24)

Equation (4.22) describes the 3D WL signal. Cosmological information is encoded
in the dependence of Sy (k, k') on the parameters. But the full covariance also
contains a shot noise part due to discrete galaxy sampling,

2
Nty (k, ') = Z€ Mok, K') Sgt: S (4.25)

with 02 ~ 0.1 (Heavens, 2003). In principle, the correlation between the ellip-
ticities of neighbouring galaxies due to intrinsic alignments (Heavens et al., 2000;
Schéfer, 2009) contributes an additional source of noise. This effect can however be
neglected for large—scale studies. For a discussion of systematic effects in 3D WL
and tomography, we refer to March et al. (2011); Takada and Jain (2009); Kitching
et al. (2008), and Huterer et al. (2006). For our purposes, we stick to the noise
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term in Eq. (4.25). The covariance matrix is then defined as
Crormm (k, k') = Seermme (ky k') + Nogrmme (k, k). (4.26)

In order to keep notation simpler, we usually write Sy(k,k"), Ny(k,k'), and
Cg(/{?, /{?/), where Sgglmm/(/{?, /{?/) = Sg(k,kl)égglfsmm/ ete.

4.2.2 Fisher matrix

The Fisher matrix analysis is a standard method for forecasting how well future
experiments can constrain cosmological parameters. In Sec. 4.4, we will explore the
possibility of constraining the dark energy speed of sound ¢? with a combination
of data from Euclid and Planck. For a general introduction to the formalism, see
Tegmark et al. (1997) or Amendola and Tsujikawa (2010).

As a starting point, we consider the likelihood L = L(&gy,(k)|p) describing the
probability of observing convergences &y, (k) given cosmological parameters p. For
given data, we could ask for the so—called mazimum likelihood parameters p that
maximize the likelihood L. Expanding In L around p, yields

1 0%InL

In L(p) ~ In L(p) + 2 Opiop,
iOPj

i P~ ). (4.27)

The likelihood (as a function of the parameters) takes the simple form of a multi-
variate Gaussian in this approximation:

L ocexp <—%(pz' — pi)Fyj(pj — ﬁj)) ; (4.28)

where we have defined the symmetric matrix

. 0°InL
OpiOp;

ij = (4.29)

p=p

Indices 4, j run over the number of cosmological parameters in this section.
Clearly, when analyzing a future experiment, the maximum likelihood parame-

ters p are not known. Instead, one may assume that they are represented by some

fiducial cosmology and ask for the resulting confidence regions around these values.
This is the basic idea of the Fisher matrix analysis. The general definition of the

Fisher matriz is given by
0?InL >
.= {_ , 4.30
) < apiapj ( )

where angular brackets, in this context, indicate averaging over the data distri-
bution (L(z|p) dx). Within the approximation (4.27), Fj; coincides with Fj; (cf.,
e.g., Amendola and Tsujikawa 2010) and thus fully describes the likelihood (4.28)
in the vicinity of the chosen fiducial values. Moreover, the Fisher matrix provides
stringent lower bounds on the individual uncertainties Ap; of the form

Ap; >/ (F ). (4.31)
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This bound is known as the Cramér—Rao inequality.

Based on the considerations of the previous section, we can now construct the
3D WL Fisher matrix. Following Heavens (2003), we take the likelihood as a multi-
variate Gaussian in the data with the covariance matrix C' specified in Eq. (4.26).
A straightforward computation (cf., Tegmark et al., 1997) then yields

1
Fij = Str [c~Y(a,0)C~H9;0)], (4.32)
with “tr” indicating the trace over the indices (¢,¢,m,m’ , k,k’). In our case,

the summation over m is trivial (cf. Egs. 4.22 and 4.25), leading to a simplified
expression,

exop 41 _ _
Fy=> St [C7 130007 (9;C0)] (4.33)
l
with “tr” now denoting the trace over Fourier modes k.

At the end of this section, let us point out that the Fisher matrix has some nice
and useful properties, which are listed and explained in detail in the textbook by
Amendola and Tsujikawa (2010). We briefly summarize those features which will
be of relevance in this work:

1. If one fixes a specific parameter p; to its fiducial value p;, the rows and columns
related to this parameter are simply removed from the Fisher matrix.

2. Marginalizing over a parameter p; (i.e., integrating out its probability dis-
tribution) is equivalent to removing from the inverse Fisher matrix F'~! the
row and column associated with the particular parameter.

3. Independent data sets can be combined by adding the corresponding Fisher
matrices.

4.3 Numerical strategy

In the previous section, we have introduced the 3D WL estimator &, (k) and the
covariance matrix Cy(k, k') representing its statistics. Further, we have seen that
the Fisher matrix Fj; can directly be computed from the covariance according
to Eq. (4.33). By closer inspection, the computation of the signal part Sy(k,k’),
Eq. (4.22), contains multiple nested integrals involving oscillating functions (cf.
Eqgs. 4.13, 4.19, 4.20). In this section, we derive adequate strategies to tackle these
numerical difficulties.

4.3.1 The matrix B(k, k)

The main ingredient of the signal part Sy(k, k') is the projection By(k, k") PY(K'),
with the previously defined quantity By(k,k") (see Eq. 4.23). In principle, the
quantities Zy, My, and 1y could be computed independently from one another.
Then, in a second step, they would need to be combined to obtain B,. This
procedure would require a total number of seven nested integrals, each introducing
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new numerical inaccuracies. In this section, we propose an alternative procedure
for the calculation of By. Our approach requires no preparation of the individual
quantities Zy, My, and n,. The additional (unproblematic) computation of M,
is then only required for the noise part, Eq. (4.25). The great advantage of this
approach is that we can reduce the number of necessary numerical integrations by
exploiting the orthogonality relation of spherical Bessel functions,

L Sp(r —1'). (4.34)

o 2 . .
/0 k*dk jo(kr) je(kr') = 5.2

For instance, let us consider the product Zy(k,q)My(q, k') in detail:
Zo(k, q)Mo(q,
= %/ / r?dr! /drp r)je qr)]é(k’r)/Szdsjg(qs)jg(k:/s)n(s)
= / r2dr’ /dr/ s*ds p(r'[r)je(k ") je(K's)n ()/qquje(qr)jz(qS)
= / r2dr! /drp r)je(kr")je(K'r)n(r). (4.35)

In the first line, we have inserted the definitions, Eqgs. (4.19) and (4.20) and the
convention Eq. (4.14). After appropriate rearranging of the integrals (second line),
we have identified the integral over ¢ with the orthogonality relation (4.34) and
made use of the delta function to solve the integral over s. We have already
reduced the number of integrations by two. In a similar way, we can simplify the
multiplication with 7, and finally end up with

By(k, k') = %/T’Qd’l“/jg(ki’l“/)/dT‘p(’I“/|’I“)’I’L(’I“) fo(K' r), (4.36)

where we have defined

r =1 g(k,a)

rr a

felk,r) = /07" dr’ je(k ") (4.37)

We will now explain how to efficiently evaluate the inner integral in Eq. (4.36).
The algorithm is based on a discrete Fourier transform (DFT), for which fast meth-
ods exist. In a first step, we need to sample the function f; for a given k at discrete
values {r;},  =1,..., N. For this, it is not necessary to calculate the full integral
(4.37) for each ;. Instead, one can decompose fy(k,r) into two integrals whose
integrands are independent of r,

folk,r) = /Ori—’:jg(kr')@ 1 /0 dr’jg(kr')g(kczla ). (4.38)

r

The values fy(k,r;) can then be obtained successively by computing the integrals
from r;_1 to r; > r;_; and reusing the result of the previous calculation.

Further, we assume that the conditional distribution p(z|z’), describing the un-
certainties of redshift measurements, only depends on (2/ — z). This is true for
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. -1
wave vector k [Mpd]”' wave vector k [Mpc]

Figure 4.1: The quantity Be(k, k") = Ze(k, k") Mo(K", k") ne(K"', k") for £ = 10 (upper
surface) obtained by the method described in the text. We have also included
the difference between the full integration and the Limber approximation.
The error amounts to < 10% of the amplitude.

the Gaussian assumed in Eq. (4.16). It allows us to express the inner integral in
Eq. (4.36) as a convolution in redshift space,

dr

/Ooo dr p('|r)n(r) fo(K',r) = j—j /OOO dzp(Z — 2) <& n(r(z)) fg(k‘l’z)) . (4.39)

The convolution integral can be efficiently solved by virtue of the Fourier trans-
form. This is due to the fact, that a convolution in real space refers to a simple
multiplication in Fourier space and vice versa. The Fourier transform of a Gaus-
sian is again a Gaussian and hence analytically known. The Fourier coefficients of
the second factor are obtained by virtue of a fast Fourier transform (FFT) routine
(e.g. Frigo and Johnson, 2005); therefor, the sampled values of f; are needed. For
completeness, dr/dz = H~(z) in a flat FLRW universe.

The steps outlined above allow for a fast and accurate computation of the quan-
tity By(k, k") and thereby of the covariance Cy(k, k’). For the purpose of a Fisher
matrix analysis, further numerical optimization is possible. Since the Fisher matrix
F;j is given in terms of a trace (cf. Eq. 4.33), one has the freedom to change the ba-
sis in which the covariance matrix is represented. We point out, that it is possible
to circumvent the remaining r’—integration in Eq. (4.36) by a suitable transforma-
tion (Ayaita et al., 2012a). These operations are however not part of this thesis.
Applying By(k, k') to the present spectrum of the gravitational potential according
to Eq. (4.22) eventually yields the signal part of the covariance matrix Cy(k, k).

We note that the computation of By(k, k') is also specifically simple within the

44



4.4. APPLICATION TO CLUSTERING DARK ENERGY

so—called Limber approximation (see, e.g., Kitching et al., 2011). For large ¢, the
spherical Bessel functions j, can be approximated by Dirac delta functions; most
of the necessary integrations can then be performed analytically (see Ayaita et al.,
2012a for details). The results for small ¢ are, however, affected by inaccuracies,
which do not allow for a precise calculation of the covariance. For the investiga-
tion of large—scale phenomena (such as dark energy clustering, see Sec. 4.4), the
Limber approximation generally is not recommendable and we advocate the more
appropriate method described above.

For illustration, we plot the numerical results for By(k, k") in Fig. 4.1 for £ = 10.
The figure also shows the difference between the full integration and the Limber
approximation.

4.3.2 Computation of the Fisher matrix

From the covariance matrix to the Fisher matrix, the following steps have to be
taken (cf. Eq. 4.33):

1. Computation of the derivatives 9;Cy(k, k).
For each parameter p;, we evaluate the covariance matrix for slightly varied
values p; = p; + ¢; around the fiducial value p; (while keeping the other
parameters fixed; p; = p;, for i # j). We typically choose ¢; = 0.05p;. The
derivative 9;Cy(k, k') is then estimated with the difference quotient,

Co(k,K';pi +€i) — Co(k, K5 pi — &)

8iCu(k, k) ~ o

(4.40)

2. Multiplication with the inverse C, ' (k, k')
Equation (4.33) involves matrix products C,” 19;Cy. Tnstead of explicitly cal-
culating the inverse matrix C, ! we solve the linear system

Colle, k) X (K K" = 0k, ), (4.41)

by virtue of a standard LU-decomposition of Cy (for this purpose, we employ
facilities of the GNU Scientific Library, cf. Galassi et al., 2009).

3. Final matrix product and summation.

For calculating the trace, we only need the diagonal elements of the matrix
product X él)X ,§3 ) with X é’) =C, 19,Cy as above. The Fisher matrix then

)

follows as 001 1
Fy= 3 == X0 K) X0 (W k). (4.42)

0k,

4.4 Application to clustering dark energy
In the previous sections, we have reviewed the theory of 3D WL and developed

adequate numerical tools for a quantitative analysis. In the following, we will rep-
resentatively study clustering dark energy as a scenario including a modified growth
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of perturbations on large scales. The decisive quantity is the dark energy speed of
sound ¢, introducing a new characteristic scale for the evolution of perturbations,
the sound horizon. Constraining both, the dark energy equation of state w and its
sound speed cg, can help to distinguish between competing dark energy candidates
(Hu, 2002b; Erickson et al., 2002; DeDeo et al., 2003; Hu and Scranton, 2004). Un-
fortunately, current observational data has not yet provided significant constraints
on ¢s (cf., e.g., Bean and Dore, 2004; de Putter et al., 2010; Li and Xia, 2010).

The signature of a clustering dark energy component is an enhanced gravita-
tional potential on large scales. This is partly due to the presence of large—scale
dark energy perturbations and partly due to the “dragging effect” on matter per-
turbations (we will discuss these effects in more detail in Sec. 4.4.1). As discussed
in Sec. 4.1, the standard WL spectrum provides only an integral measure of the
gravitational potentials. Due to the averaging procedure, the signal coming from
large scales is hardly visible in the spectrum. This serves as the motivation for
employing the 3D method presented in Sec. 4.2. The Fisher matrix analysis in
Sec. 4.4.3 will concentrate on the properties of dark energy. We will present and
discuss constraints expected from a combination of Euclid (Amendola et al., 2012)
and Planck (Ade et al., 2011) data.

4.4.1 The dark energy speed of sound c,

Neglecting possible direct couplings to other species in the Universe, the influence
of dark energy on the evolution of the cosmic background and the dynamics of
linear perturbations is restricted to gravity. The role of the equation of state,
w = P/p, has already been discussed in previous chapters. Here, we introduce the
(squared) speed of sound, ¢2 = §P/dp, as a characteristic parameter on the level of
linear perturbations. The sound speed is only well defined after specifying a gauge
(cf. Sec. 3.3.1). In our notation, ¢? always refers to the rest-frame speed of sound,
computed in a frame where the velocity perturbation of the fluid vanishes, v = 0.
For a brief introduction to dark energy clustering, see, e. g., Gordon and Hu (2004).

Typically, the sound speed defines a characteristic scale Aegr o |cs|/H, below
which gravitational clustering is prevented. Dark energy density perturbations
opg are thus primarily expected on scales above Asg. In consequence, one may
hope to observe traces of a clustering dark energy component if Aog lies within the
horizon, Aeg < H L.

A more accurate consideration of the perturbation equations (cf., e.g., Ayaita
et al., 2012a) shows that the clustering properties of dark energy are also sensitive
to the equation of state w. For the observationally preferred value w ~ —1, only
very small values ¢2 < 1 + w may lead to a significant growth of dark energy
perturbations on sub-horizon scales. We will come back to this point when we
have introduced our parameterization of dark energy.

The sound speed of scalar field dark energy

If dark energy is represented by a cosmological constant, it is perfectly homogeneous
by definition. Alternatively, we have considered a canonical scalar field ¢ as a form
of dynamical dark energy (cf. Sec. 2.2.2). Introducing a perturbation ¢ = ¢ + dop,
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we may derive the linear perturbations of the energy-—momentum tensor, Eq. (2.43).
The density and pressure perturbations are found to be

Spp = P8¢+ V,(p)dp, (4.43)
6P, = ¢op—V,(p)dp. (4.44)

The velocity perturbation v; can be read off (cf. Eq. 3.27) from
T% = —¢ didg, (4.45)

which implies v o« d¢ for the scalar velocity perturbation v. In the rest frame
(v =8p = 0), we find ¢ = 6P/5p = 1. Dark energy clustering does not occur on
sub—horizon scales. This is a well known result for standard quintessence.

Clearly, the situation is very different in models of coupled quintessence, where
the dynamics of the perturbations are no longer described by gravity alone. In
GNQ, for instance, scalar field perturbations mainly grow due to the interaction
with neutrinos. While it is still possible to define a sound speed parameter for
the coupled fluid of quintessence and the specific matter component, the quantity
is not of the same importance anymore. Other parameters have to be taken into
account (e.g., the coupling parameters) and need to be constrained. Weak lensing
constraints for models with a coupling between dark energy and dark matter have
been studied in the literature (Schéfer et al., 2008; La Vacca and Colombo, 2008;
Caldera-Cabral et al., 2009; De Bernardis et al., 2011).

Another prominent class of scalar field models, k—essence (Armendariz-Picon
et al., 2000, 2001), assumes non-standard kinetic terms. Thereby, it is possible
to obtain arbitrary values of the sound speed c? (for a discussion of causality,
see Babichev et al., 2008). Similar to w, the parameter generally varies in time,
which can give rise to characteristic signatures (Ansari and Unnikrishnan, 2011).
Promising 3D WL constraints have already been forecasted for a specific model
within this class (Camera et al., 2010).

The wCDM+c? parameterization

The previous considerations suggest that a measurement of the sound speed pa-
rameter ¢2 may provide a means to distinguish between models of dark energy. In
principle, dynamical dark energy needs to be described by generic functions w(z)
and c2(z). For many purposes, however, simple parameterizations are used. Here,
we will adopt a generalization of the wCDM parameterization (Turner and White,
1997) including the sound speed c? as a free parameter. The equation of state and
the rest—frame speed of sound are assumed constant. Obviously, this simple pa-
rameterization can, by far, not represent the large class of dynamical dark energy
models. Instead, we consider the parameterization as a practical tool to measure
how sensitive future experiments are to deviations from the ACDM prediction.
Still, each specific model of dark energy needs to be confronted with the actual
data in order to constrain its parameters.

The clustering dark energy component appears as an extra term on the right—
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Figure 4.2: The scale dependence of Q? for varying ¢? and a fixed equation of state
w = —0.8 at a = 1. Dark energy perturbations are generally only present at
large scales.

hand side of the Poisson equation (3.29):

1
Po = —5(12 (ﬁm(sm + ﬁDEéDE)

L,

= 5@ Qpndn, (4.46)

where we have introduced the quantity @ = Q(k,a),

Q=14 LoeooE (4.47)
Prm Om
Note, that on sub—horizon scales the density contrasts §; in the conformal New-
tonian gauge coincide with the gauge—invariant quantities A; used in the paper
(Ayaita et al., 2012a). We adopt a suitable parameterization of @) for constant
dark energy parameters w and ¢ (Sapone et al., 2010),

1-Q% (1 +w)a™3 s _ 2 k2cta

~1+ , = .
@ Q01— 3w+ y2 Y 300,12

(4.48)

For illustration, we plot the function Q?(k,a = 1) for w = —0.8 and various values
of ¢2 in Fig. 4.2 (the squared value of @ is relevant for the spectrum Psp). The
separation of scales is clearly visible. For each value of ¢2, we can find a typical
scale et = 1/keg below which dark energy is still homogeneous, Q? ~ 1, whereas
perturbations are present on larger scales. More quantitatively, let us define the
scale Aeg by requiring Q(k,a = 1) 2 1+ ¢ for A > Aeg and a small number e.
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Figure 4.3: The present matter power spectrum PY (k) for w = —0.8 and varying dark
energy speed of sound ¢2 divided by the spectrum for ¢2 = 1. (The spectrum
is computed from the gauge—invariant density contrast A,,,, which is identical
to O, in the conformal Newtonian gauge on sub—horizon scales.)

Choosing Q0 ~ 0.3 and ¢ ~ 1%, we find

|cs|

vV1+w

One may hope to detect dark energy clustering if Ag lies well within the horizon,
Aeft K 7-[61, i.e. ¢2 < (14 w). For the critical value w = —1, we have Aog — 00.
In this case, Q(k,a) = 1 on all scales and the dark energy sound speed ¢ becomes
meaningless.

The factor Q(k,a) in Eq. (4.46) takes into account the direct contribution of dark
energy perturbations to the gravitational potential. In addition, during the course
of their evolution, matter perturbations feel an enhanced gravitational potential
due to the presence of clustering dark energy. This “dragging effect” modifies
large—scale matter perturbations. We use cCAMB (Lewis et al., 2000) to illustrate
the effect. The code integrates the linear perturbation equations for constant dark
energy parameters, w and c2, and adiabatic initial conditions. We show the impact
on the present matter power spectrum PY (k) for different choices of ¢ and a fixed
equation of state w = —0.8 in Fig. 4.3. According to the numerical results, the
effect is below the percent level for ¢2 > 0.1 and only affects large scales. For w
closer to —1, the modifications will be even weaker.

At & 0.1 Ho L. (4.49)

The modified growth of matter perturbations can also be parameterized by means
of the function @. For this purpose, we introduce the growth index v(k, a) (Linder
and Cahn, 2007),

dInétm™

and use the approximation (cf. Sapone and Kunz, 2009; Sapone et al., 2010; Linder
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and Cahn, 2007)
3(1—w—A) Q-1
N—— A= .
7 5—6w 1-Q,
Collecting the equations above allows us to calculate the growth factor g(k,a)
(defined in Eq. 4.11):

a) = Q(kaa’) ex ad_a, a (k,a")
oth.0) = e exp (([* L ). (4.52)

with @ and ~ specified in Eqgs. (4.48) and (4.51).

(4.51)

3D weak lensing with clustering dark energy

Let us briefly point out where the effects of dark energy clustering enter the analysis
presented in Sec. 4.2. The indirect and dynamical effect on the growth of matter
perturbations is accounted for by using the modified growth function, Eq. (4.52),
in the definition of ny(k, k'), Eq. (4.13). Further, the spectrum PJ is a crucial
part of the signal covariance, Eq. (4.22). By virtue of Eq. (4.46), we find P9 (k) o
E=4Q°(k))2P° (k) with the present matter power spectrum P2 (k). Equation (4.22)
then reads

[Q° (k") (k")

Seermme (k, k/) = A? By(k, k//) 7z

Bg(k‘/, k‘//) Seer Oyt (4.53)

with A = %ﬁ%@.

4.4.2 Fisher matrix analysis

Before we employ the Fisher matrix formalism (cf. Sec. 4.2.2) to estimate con-
straints from a 3D WL study, we need to discuss a caveat concerning constraints on
c2. The Fisher matrix formalism owes much of its predictive power to the Cramér—
Rao inequality, Ap; > /(F~1);;. We have to bear in mind, however, that these
bounds are realistic estimates of the actual errors only in the case of an approxi-
mately Gaussian likelihood L (as a function of the parameters). This is always the
case, if In L can be described by a linear expansion around the fiducial cosmology
2 is only weakly constrained, we have to
expect a rather “broad” likelihood instead, reaching into regions of the parameter
space where the linear approximation becomes invalid. This is related to the ques-
tion whether the dependence of the observed spectrum on the parameter under
consideration can approximately be described at the linear level (Ballesteros and
Lesgourgues, 2010). Considering Figs. 4.3 and 4.2, which give a rough impression
of how the 3D WL convergence spectrum depends on the dark energy sound speed,
one may conclude that the parameter log;, ¢ is better suited for a Fisher matrix
analysis than ¢? itself. Still, the Cramér-Rao bounds should only be considered as
first—order estimates of the actual future constraints. As long as the constraints on
¢ are small, we have Ac?/c? ~ In(10) A logyo ¢ ~ 2.3 Alog;, c2.

Our model involves six parameters, p; € {QV | Ay, h,ng, w,log;,c2}. We neglect
the energy contribution of radiation and do not distinguish between baryons and

(cf. Eq. 4.27). If a parameter, such as c
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cold dark matter, i.e. ©,, = Qp + Q.. The flatness condition determines Qpr =
1 — . This leads to a 6 x 6 Fisher matrix, which will be calculated according to
Eq. (4.33). In addition, we will use information from observations of the CMB.

CcMB Fisher matrix

The additivity of Fisher matrices from independent experiments (cf. Sec. 4.2.2)
allows us to combine a WL study with observations of the CMB. The complementary
information coming from the CMB will, for instance, provide tight constraints on
the parameters describing the primordial spectrum, {As,n,}. Here, we will adopt
the expected performance of the Planck satellite and include CMB temperature
(TT), polarization (E'E) and cross—correlation (T'E) spectra. For an introduction
to the physics of CMB anisotropies, see Doran (2008).

CMB sky maps are usually expanded in spherical harmonics, e. g.,

0,00 = Xk V(0. 0) (4.5)

£,m

: T : : T : T T _ T
where the coefficients a,, contain a signal s;,, and a noise part n;,,, a;,, = s;,, +

ngm. The spectrum of the noise part can be modelled (cf. Knox, 1995; Perotto

et al., 2006) as

: : Ap\? 03
PP __ Px P\ __ , P fwhm
Ny = (ngmnp,) = dpp ( 7 ) exp (f(f +1) 81n2> , (4.55)

where Opynm is the full width at half maximum of the beam (assumed Gaussian),
op characterizes the instrumental noise, and P € {T, E'} specifies the observable.
Non-diagonal terms are assumed to vanish. Assuming full-sky observation (fgy,
will be reinserted later) and vanishing correlation between the signal and noise
part, the full covariance reads

(aP*al ) = (Cfpf N pr) P - (4.56)

where the spectra C’f P represent the actual CMB anisotropies. For the computation
of the Fisher matrix ﬂgCMB), we follow Perotto et al. (2006). Using the abbreviation
C’fpl :Cfpl—l—NZPPl,we define the 3 x 3 matrix

(czry" (erey’ CIE GIT
2 AN “5E) 2 ATE AEE
A= e (cre)y” (ce®) ce2 c!
CTEGIT GIEEEE ] [(cgE) e égﬂ
(4.57)

The Fisher matrix can then be computed according to
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Beam width Otwhm = 7 arcmin

Temperature noise | o = 28 pK arcmin

Polarization noise | o = 57 uK arcmin
Sky fraction fsky = 0.65

Table 4.1: Characteristics of the Planck survey (Hollenstein et al., 2009) assumed for the
calculation of the CMB Fisher matrix.

Zl!]ax
FZ(J - Z Z 9:Cy (Aé )PP’QQ/ 9;C (4.58)
(=2 PP".QQ

with the indices PP',QQ" € {TT,EE,TE} in our case.

For each set of cosmological parameters, we employ CAMB for the computation
of the theoretical spectra Cf P' The noise part follows from Eq. (4.55). We list the
assumed properties of the Planck survey according to Hollenstein et al. (2009) in
Tab. 4.1. In all subsequent calculations, we include CMB multipoles up to ypax =
2250. Only for the purpose of constructing the CMB Fisher matrix, we involve the
baryon density parameter QY; before FZ-(]CMB) is added to the WL Fisher matrix, we
marginalize over 0 (cf. Sec. 4.2.2) to obtain a 6 x 6 matrix.

4.4.3 Results

We will now present constraints on cosmological parameters obtained from a nu-
merical implementation (programming language: C) of the strategies discussed in
Sec. 4.3. We are mainly interested in the dark energy parameters w and c2. From
our considerations in Sec. 4.4.1, we expect the constraints on c? to strongly depend
on the chosen fiducial parameters. The critical scale above which dark energy clus-
tering is dominant was found to be proportional to |¢s|/v/1 + w. In particular, if
w = —1, the signal vanishes completely. The tightest constraints are thus expected
for large values of w and small values of ¢2. We can study this dependence quan-
titatively by employing the Fisher matrix analysis for varying fiducial values. For
this purpose, we keep the other parameters fixed to the WMAP estimates (Komatsu
et al., 2011) and consider the 2 x 2 Fisher matrix Fj;, 4,7 € {logyc?, w}. The fidu-

Maximum multipole lmax = 300 (50)
Range of included scales k (1073 — 10~1) Mpc!
Ny =500 (200)
Range of included redshifts z 107% - 10
N, = 1000

Table 4.2: Numerical parameters used for the Fisher matrix analysis. The values in brack-
ets are used for the results shown in Fig. 4.4. N and N, are the numbers of
equidistant steps in k and z. (The CMB Fisher matrix involves multipoles up
to £ = 2250 in all calculations.)
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cial values are varied between —4 and 0 for log;, ¢2, and —0.99 and —0.6 for w. For
each pair of fiducial values, the Fisher matrix analysis yields constraints A log;, c2
and Aw (Cramér-Rao bounds, cf. Sec. 4.2.2). Since the Fisher matrix has to be
computed many times for this application, we choose a somewhat reduced accu-
racy than for subsequent computations. The numerical parameters are specified in
Tab. 4.2. The uncertainties Alog;,c? and Aw/|w| are shown in Fig. 4.4.
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Figure 4.4: Cramér-Rao bounds on Alog;,c? (upper figure) and Aw/|w| (lower figure)
for varying fiducial values w and log;o ¢2. The three red lines mark (from top

to bottom) the scales Aegg = 107" Hy ", n = 1,2,3 (cf. Eq. 4.49).
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Let us first discuss the constraints on the equation of state parameter w. The
estimated errors Aw/|w| are virtually independent of the assumed sound speed c?
and below the percent level. Our findings agree with earlier results: Future 3D WL
studies (combined with information from the CMB) offer promising prospects for
constraining the dark energy equation of state w (Heavens, 2003; Heavens et al.,
2006). The precise value of w plays an important role when it comes to constraints
on the sound speed. Here, the figure shows a strong variation of Alog;,c? over
the considered range of fiducial parameters. For sufficiently small ¢2, and w not
too close to —1 (e.g. w > —0.95), we can identify regions with Alog;oc? < 1. In
these cases, next—generation surveys may be capable of determining the order of
magnitude of ¢2. Since current data prefer an equation of state very close to —1
(e.g. w =~ —0.97, see Sec. 2.1.3), dark energy clustering (in uncoupled scenarios)
will only be detectable if ¢2 is close to zero.

Full Fisher matrix analysis

We will now include variations in all six parameters of our model. Since the value
of ¢2 is completely undetermined, we freely chose an exemplary fiducial value
c2 = 1072, A natural choice of fiducial parameters for Q0 A, h, ng is given
by the WMAP recommended parameters (Komatsu et al., 2011). The choice of w is
problematic, since the effect of dark energy clustering vanishes for w — —1. Dis-
regarding current observational constraints on w, we thus choose the illustrative
value w = —0.8 for which dark energy perturbations grow on sub—horizon scales
(cf. Figs. 4.2 and 4.3). This choice of w also corresponds to other studies of dark
energy perturbations (e.g. Sapone and Kunz, 2009; Sapone et al., 2010).

In Fig. 4.5, we show the confidence regions constructed from the Fisher matrix.
The combination of 3D WL and the CMB provides stringent bounds on most of the
parameters. The sound speed ¢? is pinned down within an order of magnitude.
This does not change significantly if one considers 3D WL alone (cf. Ayaita et al.,
2012a). The tight constraints on A; and ng, on the other hand, are mainly due to
the CMB.

We can further investigate which range of multipoles ¢ needs to be incorporated
for constraining a specific parameter. For this purpose, we consider the estimated
errors Ap; as a function of £, In Fig. 4.6, we plot Alog;,c? together with the
relative errors Ap;/|pi| (pi # logyoc?) for varying fa.. We observe that log;, 2
is mainly constrained by multipoles ¢ < 20; further increasing ¢, cannot consid-
erably reduce the error on log;,c2. Since dark energy clustering is a large-scale
phenomenon (cf. Sec. 4.4.1), this comes as no surprise. As can be easily seen
within the Limber approximation (cf. Ayaita et al., 2012b), the multipole ¢ pri-
marily probes the scale k ~ ¢/r,, where r, is a characteristic comoving distance
of the survey (for instance, the position of the peak in the galaxy distribution, cf.
Eq. 4.17). Hence, increasing fp,x primarily adds more information coming from
small scales, which however are not very sensitive to c2.

On the other hand, the companion figure shows that €,,, h, and w benefit a lot
from larger multipoles. For these parameters, the 3D WL signal on smaller scales
provides valuable information. The parameters of the primordial spectrum, Ag
and ng, are different. As already mentioned above, they are mainly constrained
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by the CMB and the 3D WL signal cannot notably improve these tight constraints.
Therefore, the uncertainties AA; and An, are almost independent of £p,,y.

Figure 4.6:
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Summary

Forecasts for constraints on the sound speed parameter ¢2 strongly depend on the
assumed fiducial values for the equation of state w and c? itself. We have quantified
this dependence in Fig. 4.4. Although it remains challenging to constrain ¢2 for w
close to —1, our results show that it is worthwhile to consider 3D WL in addition
to tomography and galaxy clusters (cf. Sapone et al., 2010). With a combination
of data from Euclid and Planck, it may become possible to determine the order of
magnitude of ¢2. Choosing illustrative fiducial values w = —0.8 and ¢? = 1072, for
which dark energy clustering affects sub—horizon scales, we have found promising
constraints on all cosmological parameters, cf. Figs. 4.5 and 4.6; the constraints on
2 will be weaker for w closer to —1 or larger values of c2.

The value of ¢? can help to distinguish between simple scenarios of dark energy
(cf. Sec. 4.4.1). Measuring the order of magnitude log;,c? could already be a
decisive step into this direction. On the other hand, we have already mentioned
that in more complex models of dark energy the speed of sound parameter c2
becomes less important. From a more general perspective, our results suggest that
3D WL provides a valuable probe of the large—scale gravitational potentials. This is
of particular interest for scenarios in which the large—scale dynamics deviate from
ACDM. The comparison of 3D WL spectra with actual data, coming, e.g., from
Euclid, may yield stringent constraints on the parameters of these models.
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5 Simulating Growing Neutrino
Quintessence

In Chapter 3, we have introduced GNQ as a possible solution to the “why now”
problem of dark energy. Understanding its evolution on the level of perturbations
is, however, challenging (cf. Sec. 3.3.2). The strong coupling between neutrinos
and the cosmon field induces non—linear neutrino clustering on cosmic scales. Fur-
thermore, variations of the neutrino mass in space and time have to be taken into
account. An appropriate method is required that allows us to follow the cosmolog-
ical evolution of GNQ including all major effects. Building on previous studies of
the model, we will motivate a relativistic N—body treatment of growing neutrinos
combined with an explicit computation of the local cosmon field (Sec. 5.1). The
development and application of this simulation method has led to a publication
(Ayaita et al., 2012b). In this work, we focus on the modelling of the neutrino
species. We will derive the equation of motion and explain the numerical realiza-
tion in Sec. 5.2; the generation of initial conditions and the computation of relevant
components of the averaged neutrino energy—momentum tensor are also part of this
section. In Sec. 5.3, we then turn to the computation of the cosmon field. The
treatment of gravity and matter will be described in Sec. 5.4. Finally, we comment
on the runtime and resolution of the method (Sec. 5.5).

5.1 Requirements and general setup

The results of linear perturbation theory (Mota et al., 2008) show that at redshift
z < 2 the neutrino density contrast becomes of order unity on large scales (k ~
10=2h/Mpc). The linear approximation consequently becomes invalid from this
time on. For any quantitative analysis of GNQ at later time, it is necessary to
overcome the linear theory and to simulate the fully nonlinear evolution of neutrino
perturbations. This brings us to the first and most fundamental requirement on
our method:

Requirement 1. Accurate evolution of neutrino perturbations in the monlinear
regime. In particular, neutrino density perturbations dp,(x) can no longer be treated
as linear perturbations.

In a first approach, Wintergerst et al. (2010) studied isolated neutrino overden-
sities in hydrodynamic simulations. Their findings suggest that the overdensities
collapse and form virialized lumps. Hydrodynamic equations of motion, however,
usually employ only the first few moments of the phase—space distribution function
f (n,w",pj). Since higher moments may play an important role for the nonlin-
ear process of lump formation, we advocate a method that directly samples the
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neutrino phase—space distribution function f,. This is the basic idea of N—body
simulations (for a brief review of the theory and history of N-body simulations,
see, e.g., Dehnen and Read, 2011; Dolag et al., 2008; Bagla and Padmanabhan,
1997). This simulation technique has become a powerful tool of computational
cosmology. To give some examples of their applications, N-body simulations have
been used to rule out the hot dark matter scenario (Davis et al., 1985), and to char-
acterize the density profile of dark matter halos (Navarro et al., 1996). Nowadays,
large simulations provide robust and precise predictions concerning the formation
of dark matter structures and galaxies that can be confronted with data from exten-
sive galaxy surveys in order to test the paradigm of structure formation (Springel
et al., 2005). N-body simulations are not only used within the standard model,
but have also been applied to many competing models (e. g., Zhao et al., 2011; Li
et al., 2011; Khoury and Wyman, 2009; Stabenau and Jain, 2006).

Extensions of the successful GADGET-2 code (Springel, 2005) exist that are de-
signed to incorporate an interacting dark energy component (Baldi et al., 2010).
In particular, a first implementation of GNQ has been studied and allowed to inves-
tigate some aspects of the model (Baldi et al., 2011). Several important features
of the model could, however, not have been included yet. First of all, on the level
of perturbations, the neutrino mass varies in space and time (cf. Eq. 3.8),

my () = my () exp(=F dp(z)), (5.1)

with m, (@) o exp(—pB¢) abbreviating the purely time dependent part. The method
employed by Baldi et al. (2011) neglect the variation due to the cosmon fluctuations
0p(z). But even if dy is still linear, the combination fd¢ can reach order unity
(typically, |3| ~ 10%). Studying idealized configurations, Nunes et al. (2011) found
that the local neutrino mass inside nonlinear structures can be substantially sup-
pressed, m, (z) < m, (@), which, in turn, strongly influences the neutrino—-induced
gravitational potential. A reliable estimate of the gravitational potential is, for
example, crucial in connection with CMB observables (Pettorino et al., 2010). In
addition, local mass variations can have important dynamical impacts. Hence, we
decide to resolve the local cosmon field and to respect spatial variations of the
neutrino mass:

Requirement 2. Ezplicit computation of the cosmon perturbations do(x) in order
to allow for local neutrino mass variations.

The first N-body approach to GNQ revealed another important obstacle. We
have already pointed out that the cosmon—mediated fifth force is substantially
stronger than gravity. Standard N-body schemes employ Newtonian dynamics to
describe the acceleration of particles. Within this description, the extra force can
be described in terms of an effective Newton constant (cf. Baldi et al., 2011),

Get = G (1 +26%) 2 5000 G, (5.2)

for typical values of 8 (we will use f = —52). In consequence, neutrinos feel a rapid
acceleration once the coupling is effective, i.e., once they have become sufficiently
non-relativistic. Baldi et al. (2011) have studied the growth of neutrino velocities
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and found that at z < 1.5 roughly 80% of the neutrino particles already have
velocities larger than 0.1¢; in the subsequent evolution, the neutrino velocities
exceed the speed—of-light limit. The Newtonian description breaks down and we
have to respect the fully relativistic law of motion instead:

Requirement 3. Relativistic description of the neutrino dynamics. The law of
motion remains valid for velocities close to the speed of light.

Furthermore, careful attention has to be paid to the evolution of the cosmological
background. In the standard approach, the evolution of all background quantities
is obtained independently from perturbations. Technically this means that, in a
first step, perturbations are completely neglected and the field equations are solved
for “averaged” quantities. In a second step, perturbations are introduced and their
evolution is studied on the previously calculated cosmological background. The
reason why this procedure usually works well is the smallness of perturbations:
Starting from the full field equations, one arrives at the usual background equa-
tions if one first linearizes in the perturbations and then performs the average
(perturbations are defined with vanishing mean). In the presence of nonlinearities,
this procedure can become inaccurate and perturbations can give rise to correc-
tion terms influencing the evolution of the averaged quantities. This phenomenon
is referred to as backreaction. It is a well known issue whether nonlinear matter
perturbations can introduce significant corrections to the dynamics of the metric,
possibly even accounting for the observed cosmic acceleration (cf., e.g., Buchert
and Ehlers, 1997; Wetterich, 2003; Rasanen, 2004; Behrend et al., 2008; Brown
et al., 2009). However, estimates suggest that the backreaction effect induced by
CDM structure formation introduces only small corrections (Wetterich, 2003). In
GNQ, on the contrary, the situation is expected to be different (Baldi et al., 2011;
Nunes et al., 2011; Pettorino et al., 2010). This is also related to the strong mass
suppressions inside nonlinear structures (as will become clearer in Sec. 5.2.4). We
conclude that the usual split between background and perturbations is not advis-
able in GNQ:

Requirement 4. Adequate treatment of backreaction effects on the cosmological
background evolution due to the presence of nonlinear neutrino perturbations.

Finally, let us consider the initial conditions for an N-body simulation of GNQ.
It is our intention to provide an accurate continuation of linear perturbation theory.
Hence, when distributing particles and assigning initial peculiar velocities, we need
to respect the predicted statistics of the perturbation variables as obtained from
the linear calculation (Mota et al., 2008):

Requirement 5. Appropriate generation of initial conditions consistent with the
results of linear perturbation theory.
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In the subsequent sections, we will present our simulation method in detail and
derive the necessary equations. In summary, the aforementioned requirements mo-
tivate the following general setup:

The neutrino and matter components in the Universe are described by a finite
number of effective N-body particles.

Each neutrino particle carries a (comoving) position vector x, a peculiar
velocity vector v = dax/dn, and a (variable) mass M,,. Matter particles carry
a position vector and a velocity vector; their mass M, is constant.

Necessary dynamical fields are realized on a three—dimensional grid. In partic-
ular, the cosmon perturbations dp(x) are explicitly computed and discretized.

Neutrino particles are accelerated using the fully relativistic law of motion.
Their mass varies according to the present position of the particle (Eq. 5.1).
For matter particles, the Newtonian description is sufficient.

Background quantities are evolved simultaneously to perturbations. The re-
quired components of the average neutrino energy—momentum tensor are
measured in the simulation volume.

The initial conditions for the simulation are obtained from the linear code
(Mota et al., 2008). An appropriate routine generates initial particle config-
urations respecting correlations between perturbations.

We specify the properties and typical values of our simulation in Tab. 5.1.

‘ Description ‘ Symbol ‘ Typical value
Simulation volume (cubical) V=1L 6003 h—>Mpc?
Neutrino particles N, 2 x 107
Matter particles Np, 2 x 107
Particle properties x, v, M,, M,, -
Number of cells N, 2563
Size of a cell Az = L/Ncl/3 2.34 h~'Mpc
Dynamical fields v, d, jp -
Background quantities H, @, pvs Py, pm
Initial redshift zi 4 (neutrinos), 49 (matter)
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5.2. MODELLING OF NEUTRINOS

5.2 Modelling of neutrinos

The neutrino component plays the central role in our simulations. In this section,
we will discuss the theoretical and numerical aspects concerning its treatment. Let
us start with deriving the relativistic law of motion.

5.2.1 Equation of motion

In our model, the motion of a neutrino particle deviates from the standard geodesic
equation due to the coupling to the cosmon field . This coupling is realized as
a varying mass m,(p(£)) along the particle’s world line £*. We thus propose the
one—particle action,

5, = - / ar m, ((6))

=~ [V gupdode mo(6), (53)

with the particle’s proper time 7 defined via dr = \/—g,3d¢*d&P. Varying the ac-
tion with respect to the £ yields the modified geodesic equation. In the uncoupled
case, m, = const., the result reduces to the standard geodesic equation in curved
spacetime (see, e.g., Carroll, 2004). The variation corresponds to

£Y — 7469, (5.4)
Jap — 9ap + 8090{[3 550 (55)
my(p) = my(p) + Bamy(p) 66
= my(p) — Bmu(p) Oatp 687, (5.6)
where we have used the definition f = —dInm, /dg in the last line. We remark

that the whole derivation is not restricted to a constant coupling constant 3, but
equally applies to the general case!, 3 = B(¢) . In order to keep notation short,
we nevertheless simply write 3.

The variation of the action, Eq. (5.3), yields

1 dee 4eb de> d(oe?
5S, :/dTml,(gD) <§aogagd—iéagff+5aas06£°‘+ga5d—i (di )>- (5.7)

The last term requires integration by parts,

d¢> d(s¢P d dg”
/dTmy(go)gagd—i_ (df_ ) = _/dTE (mu((p) gaﬁé) 5567 (58)

and gives rise to another extra term due to the time derivative acting on m,,,

dm,, (0(£))
dr

de”

= _5mu(‘10) Oatp ar (5'9)

!This is true since only first order derivatives of m, () are involved. Secondary derivatives would
also act on B(yp).
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The final result can be written as

08, =— / drmy (@) 667 x (5.10)
d2§a 1 dee d§5 o d{ﬁ
[gaaw + 5 (aagﬁo + aﬁgaa - aagaﬁ) dr d <3a§0 + gaaaﬁ@ dr dr ) :| .

Modifications to the standard geodesic equation are proportional to the coupling
constant (. Setting 05, = 0 for arbitrary variations 0£“ yields the equation of
motion,

du”
dr
with the four—velocity u® = d¢®/dr and the Christoffel symbols

+ Ippufu” = B 0% + Butdxpu®, (5.11)

1
FS{O' = 5904)\(8[)9)\0 + aogkp - a)\gpo)' (512)

The same result can also be derived from Eq. (3.1) describing the energy—
momentum transfer between neutrinos and quintessence. All we have to do is
specify the one—particle neutrino energy-momentum tensor 7%, A straightfor-
ward generalization of the expression known from special relativity is given by

1
V=9

where the factor (—g)_l/ 2 is required by the normalization of the Dirac delta func-
tion in curved spacetime. The form of the energy-momentum tensor can also
be derived from the proposed action, Eq. (5.3), employing the general definition,
Eq. (2.3). Using the normalization of the four—velocity, u*u, = —1, the right—hand
side of Eq. (3.1) is simply given by

—BT 0% = drmy, (p) B 0% 6h(x — €). (5.14)

1

Evaluating the covariant derivative on the left—hand side,
VTP = 95T + 0§, T + 3,17, (5.15)

we have to pay attention to derivatives acting on m,(¢). Let us consider

0597 = [ arm @)’ 5 s 6 (5.16)

= [armle©nd goha -9 (517)

= [ ar g (mo(o)u”) shia - ©) (5.1)

where we have used the chain rule u agﬁ = & and integrated by parts. The

time—derivative dm, /d7 is already known from Eq. (5.9). Apart from this extra
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term, Eq. (5.15) reproduces the standard geodesic equation. Thus, we can already
anticipate the result,

Vit == [arm()sh(r =)

X du? + T2 wPu® — Budyp u® (5.19)
dr re ' '
Together with Eq. (5.14), we again obtain Eq. (5.11). It is worth mentioning that
the equation of motion for coupled neutrinos can also be derived using a conformal
transformation of the standard geodesic equation (Baldi et al., 2011).

Interpretation

The law of motion, Eq. (5.11), describes the deviation from the free geodesic mo-
tion due to the cosmon—neutrino coupling. On the left—hand side, we identify the
standard geodesic equation with the Christoffel symbols accounting for gravity.
They give rise to the usual Hubble damping and describe local curvature effects in
terms of the potentials ¥ and ® (see Eq. 3.26 for the metric). Let us focus on the
terms on the right-hand side:

e The first term, 5 9%y, contains the cosmon—mediated fifth force: The gradient
Vo contributes to the acceleration du/dr. In the case of a smooth cosmon
field, ¢(x) = @(n), the effect vanishes. In Sec. 5.3, we will briefly discuss the
Newtonian limit and confirm that the force is about 232 times stronger than
gravity (consistent with Eq. 5.2).

e The second term, Bu*0\pu®, represents a velocity—dependent force that can
be understood from momentum conservation: A particle is accelerated if
it looses mass along its path; a growing mass implies deceleration. At the
background level, the neutrino mass only changes due to time variations
of the homogeneous cosmon field @. This effect is usually interpreted as a
modification of the Hubble damping (cf. Baldi et al., 2011), H — (H — 7).
Including perturbations, the mass also changes due to the particle’s motion
through the inhomogeneous field (z). The scalar product u*dyp = u- Vi -+
u%y’ incorporates both contributions.

5.2.2 Time integration

With the previously derived equation of motion, we can straightforwardly evolve
a particle’s four—velocity w in time. However, in order to move particles in our
simulation volume, we actually require their coordinate velocity v = da/dn. It is
related to the four—velocity via

d
P — ) (5.20)
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At this point, it is convenient to introduce a generalization of the Lorentz factor,

/—gooda?
7= (5.21)
1
= : 5.22
V1= (1-2¥ —20)0? (5.22)

The definition in the first line is chosen such that v = 1 for a particle at rest. The
second line directly follows from the metric, Eq. (3.26). Thus, v = v (1 — ¥)/a
(metric perturbations are treated in linear approximation). Solving Eq. (5.20) for
v yields:
a(l+ W)
v = u.
V14 (1 —20)a2u?

This procedure automatically respects the speed of light limit and is much more
robust than dynamically evolving v itself. Note, that u® also relates du/dn to
du/dr, where the latter is given by Eq. (5.11).

(5.23)

We can now specify the numerical scheme for the time evolution of the effective
neutrino particles in our simulation. Below, we will denote the acceleration of u by
g = du/dn. Let us consider a particle with the current position x,, and the current
four—velocity u,, at an instant n,, (the subscript n labels discrete time steps). The
position x, 1 and the four—velocity u,11 at the time 7,41 = 1, + An are obtained
by the following procedure:

Uny1 = Up+g,An, (by virtue of Eq. 5.11) (5.24)
Unt+1 = Upail, (Eq 523) (525)
Tptl = Tp+ U147, (5.26)
where g,, = g(n, Tn,uy,). In contrast to the standard Euler method, we use

vy41 instead of v, in the last line. This corresponds to the semi—implicit or sym-
plectic Euler method (symplectic integrators are better suited to preserve certain
invariants of motion, cf., e.g., Dehnen and Read, 2011; Vesely, 1994). A more
common choice in modern N—body simulations is the leapfrog integration or gen-
eralizations thereof (e.g. Quinn et al., 1997). This second—order scheme updates
position and velocity in an alternating way exploiting the fact that the acceleration
g for standard Newtonian gravity does not depend on the velocity. For example,
the so—called KDK (“kick—drift—kick”) scheme (employed, e.g., in GADGET-2) sets
Uptl = Upyyjp + %gnJrl after having obtained ;41 and w,;/5 from previous
steps. In our case, the acceleration g,,,; also depends on u,1 and we would have
to solve an implicit equation for the final velocity update of each particle. For this
reason, we stay with the simpler prescription given above.

The time—steps need not necessarily be chosen equidistant but may vary from
step to step. The size of An needs to be adjusted to the timescale of neutrino
dynamics which is approximately 1/ \/ﬁ times smaller than in simulations of
standard gravity (Baldi et al., 2011). Further, we need to bear in mind that our
resolution of the particles’ dynamics is limited by the size Az of the grid cells on
which the dynamical fields (0p, ¥, ®) are realized (cf. Secs. 5.3 and 5.4). Clearly,
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the distance |x,,+1 — @,| should be smaller than Ax for each particle in the sim-
ulation. Since the particles’ speed is limited from above by the speed of light,
we can impose the robust limit An <« Az. This criterion is most restrictive for
high—resolution runs.

5.2.3 Initial conditions

We will now outline how to obtain an appropriate initial configuration of effective
neutrino particles from which our simulation starts. First of all, we have to choose
an initial redshift z; at which we draw random perturbation fields according to the
results of the linear theory. A convenient choice is z; = 4 at which perturbations
are still linear, but neutrinos are no longer highly relativistic (w, ~ 1072 at z = 4
for the model investigated by Mota et al., 2008). This allows us to approximate
the initial phase—space distribution function by taking into account only its first
few moments. Local variations in the neutrino mass are also negligible at this
early stage. We emphasize at this point, that z; = 4 is not appropriate for the
matter component, which has to be treated non-linearly much earlier; our N-body
treatment of matter already starts at z = 49 (see also Sec. 5.4). In the following,
we generally refer to the chosen initial redshift z; and omit the time argument.

The unperturbed neutrino phase-space distribution function is given by the
Fermi—Dirac distribution,

. 1
i\ 33 3
f(v")d vociep/Tu_i_ldp (5.27)

with p’ = myu’ = ym,, v and T, = T2 (14 2) = (4/11)/3T9(1+ ;) (cf. Sec. 2.1.3).
In accordance with homogeneity and isotropy, f does not depend on x and the
distribution of particle velocities is locally isotropic. The magnitude of the velocity
dispersion decreases with the temperature but is non—negligible at z; = 4. Once
we include perturbations, the distribution in space involves small inhomogeneities
described by d, (x) and the growth of perturbations implies peculiar motion v5“ ()
which needs to be added to the thermal velocities drawn from f. We approximate

the perturbed phase—space distribution function by

) = S (o — 0% (@)) (145, (@), (5.25)

The peculiar velocity field v° is related to the scalar velocity perturbation v,

introduced in Sec. 3.3.1 via v} = Vv,. The number density field follows as

ny(x) = / o f, (2%, v;) = %(1 +d,(x)). (5.29)

Once we have generated the initial perturbation fields 6, (x) and v)°(z), the fol-

lowing steps are taken to sample the distribution function f,:

1. Each cell , (n = 1,...,N,) is assigned the rounded number of particles
|n(x;) (a;Ax)3] (in order to correct the error statistically, a uniformly dis-
tributed random number is drawn which decides whether an additional par-
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ticle is added or not). Within the volume of a single cell, the particles are
distributed randomly.

2. For each particle, the thermal velocity v*® is drawn from the Fermi-Dirac
distribution. Therefor, we first obtain the magnitude of the momentum p
from the distribution f(p)dp oc p?dp/lexp(p/T,) + 1] and then use v'" =
p/\/P? + m2. Second, a random vector v is drawn from an isotropic distri-
bution and normalized to |#| = 1. The sum of the thermal velocity v**% and
the peculiar velocity vP®°(x) finally yields the total initial velocity of the par-
ticle. In order to enforce the local average (v'h) = 0, we generate a second
particle with opposite thermal velocity at the same position (cf. Klypin et al.,
1993).

We have checked our strategy by estimating the power spectra of the perturbation
quantities §,, and v, from the particle distribution and comparing the results to
the input from linear perturbation theory. Apart from an expected shot noise
contribution due to discrete sampling (see, e.g., Amendola and Tsujikawa, 2010),
we find good agreement at the specified initial redshift. The remainder of this
section is dedicated to the procedure of realizing initial random fields d,(x) and
vP(x) on a discrete grid.

Discrete realizations of initial random fields

In Sec. 3.3.1, we have discussed the concept of stochastic initial conditions for
the perturbation variables. There, we have introduced the mode functions (we
assume the adiabatic mode) and the stochastic coefficients (k) whose statistics
are described by the primordial spectrum Ppim (k) (Egs. 3.37 and 3.38). Once we
have drawn a realization of «(k), the evolution of each perturbation quantity is
determined (cf. Eq. 3.35), e. g.,

Vy (777 k) Vv, k (77)
The (adiabatic) mode functions, d, ) and v, j, can be computed with the modified
version of CAMB provided by Mota et al. (2008).

In our numerical implementation, the Gaussian random field a(k) is replaced
by discrete random numbers &; with ¢ = 1,..., N, labelling discrete modes k;. In
particular, we employ a discrete Fourier transform (DFT) instead of the continuous
transformation. The relation between «(k;) and &; can be derived by discretizing
the Fourier integral. For this purpose, we define k; = (i1, 12, i3) Ak with Ak = 27 /L
and x; = (j1, jo2,J3)Ax with Az = L/n, n = (N)Y/3. It follows

a(k;) = / Bz a(z) e ki

~ > a(wy) e 2T drtiziatisis)/n
N, &~
J

= % &;, (5.31)
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Figure 5.1: Illustration of neutrino inhomogeneities in our simulation box at z; = 4. The
colors indicate values of n, (x)/7, = 1+ d,(x).

where we have used the definition of the three-dimensional DFT (cf. Galassi et al.,
2009). In the next step, we also discretize the right-hand side of Eq. (3.38) by
replacing the Dirac delta function by a Kronecker delta,

(Ak)?
= Pprim (k) L? ;5. (5.32)

(277)3Pprim(ki) 53D(ki —kj) ~ (277)3Pprim(ki)

The factor (Ak)™® appears due to the normalization condition [ d3kd% (k) =
1. The combination of Egs. (5.31) and (5.32) provides the discrete version of
Eq. (3.38):

2
(|aal*) = %Pprim(kji)- (5.33)

The coefficients &; need to be drawn from a Gaussian distribution with vanishing
mean and the specified variance. Additionally, we have to impose the reality con-
dition for a(x), i.e. only approximately half of the N, numbers @&; are independent
and the others follow from o*(k) = a(—k).

At last, we multiply with the corresponding mode functions and obtain random
realizations of the perturbation fields in Fourier space. A final transform to real
space yields the required perturbation fields. For illustration, Fig. 5.1 shows the
simulation volume at z; = 4 with colors indicating small neutrino inhomogeneities

ny(x) /.
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5.2.4 Averaging the energy—momentum tensor

The evolution of the cosmological background in strongly coupled quintessence
models is complicated by possible backreaction effects (Baldi et al., 2011; Nunes
et al., 2011; Pettorino et al., 2010; Schrempp and Brown, 2010; Wetterich, 2003).
In our case, the presence of nonlinearities in the neutrino fluid may have a great
impact on the evolution of the averaged neutrino energy—momentum tensor T“é
and it is an important question to what extent this carries over to the dynamics of
@. Our simulation method takes these effects into account by computing the actual
averages Toz; in every time step. In particular, as will be explained in Sec. 5.3, the
averaged trace T is used to evolve the background cosmon field ¢. Furthermore,
the averaged energy density p, enters the Friedmann equation determining the
expansion rate, 3H% = Y__ psa? with s € {m,v, p}. We will now collect the ex-
pressions for computing averaged components of the neutrino energy—momentum
tensor from the distribution of N-body particles.

Let us start with the energy density p, = —TOO. The energy density associated
with a single particle with world line £% is obtained from the one—particle energy—
momentum tensor, Eq. (5.13). A straightforward computation yields

1
p=-T%=—=vyM,6(x—¢&) (oneparticle contribution), (5.34)

Vi

with g denoting the determinant of the spatial metric,

g=det(g;;), §=a>(1—3®). (5.35)

Summing up the contributions of all N, particles yields the total energy density
pv(x). By virtue of ergodicity, we then calculate the average p, according to

5, = fv d3x\/§py(a§)
v Jy Bz g

= Y M) (5.37)

particles p

(5.36)

Analogously, one can express the remaining components of the averaged energy—
momentum tensor as sums over one—particle contributions. We quote the results
for the pressure P, = T";/3 and the trace T = T%,:

_ 1 1
b=y 2 S Mulp(6,)] (1 - 20(E,) — 22(6,))v;, (5.38)
particles p
I My [p(§,)]
7 v Z . p)l (5.39)
particles p

Equations (5.37), (5.38), and (5.39) fulfill the familiar relationship T = —p, + 3P,.
The explicit appearance of ¥ and ® in Eq. (5.38) can be rooted to our definition
of the peculiar velocity with respect to the unperturbed metric.
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Relevance

We illustrate the relevance of computing actual averages instead of using back-
ground equations using the example of T.. Equation (5.39) reveals that this quan-
tity can be significantly affected by strong local mass suppressions (expected inside
nonlinear structures corresponding to Nunes et al., 2011) and relativistic neutrino
velocities. Both effects are only present at the level of perturbations and both
go into the same direction: the suppression of |T| compared to the homogeneous
solution. Neglecting these effects would lead to an inconsistent evolution. This
can be illustrated as follows. We run a modified simulation without taking into
account backreaction effects (the background can then be calculated a priori to the
simulation). In the course of the evolution, neutrinos cluster under the influence
of the strong fifth force. We measure the effect on T' by comparing the actual av-
erage with the prediction of the pre—calculated background. The results are shown
in Fig. 5.2 (we plot —T to allow easier comparison with p,). As expected, we
observe the suppression of |T| due to the aforementioned effects. At early times,
the correction is negligible, but once neutrino perturbations have entered the non-
linear regime, the disagreement becomes unacceptable. For comparison, we have
also plotted the evolution of the measured average p,. The difference between p,
and —7T manifests relativistic corrections. We conclude that backreaction in the
cosmon—neutrino fluid cannot be neglected.

8 ‘ |
-T, actual average
-T, background -----
77 py, actual average —-—-— g

. B [10°%/Mpc?]

&~

1 15 2 2.5 3 35 4
redshift z

Figure 5.2: Illustration of the backreaction effect on T". The plot shows how the actual
average of —T more and more deviates from the assumed background evolu-
tion. Additionally, the figure also includes the actual average of the energy
density p, = =T, + 3P,.
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5.3 Computation of the cosmon field

The cosmon—neutrino interaction has important consequences for both species.
Neutrinos are accelerated due to variations of ¢(z) (Eq. 5.11) and steadily change
their mass according to Eq. (5.1). Let us now turn to the dynamics of the cos-
mon field itself. We have already derived the modified Klein—Gordon equation in
Chapter 3, which we repeat here for convenience:

—VVap + Ve(p) = =BT, (5.40)

with T'= T“, denoting the trace of the neutrino energy—momentum tensor.

5.3.1 Background and perturbation equations

We assume that the metric perturbations dg,3 and the cosmon perturbation d¢
can be treated in linear approximation and that their time derivatives are small
compared to spatial derivatives. Under these assumptions, we can straightforwardly
split Eq. (5.40) into a background field ¢ and a perturbation dp. At the background
level, we find

@'+ 2HE + a*V,(p) = —a?BT. (5.41)
We have already discussed the meaning of this equation in Sec. 3.1. Once neutrinos
have become non-relativistic, 7' = —p,, the term on the right-hand side shall slow

down the evolution of @. As already emphasized at the beginning of this chapter,
backreaction effects require us to obtain averaged neutrino quantities directly from
the particle distribution. The computation of T' was presented in Sec. 5.2.4. With
this quantity at hand, we can use Eq. (5.41) to evolve ¢ and ¢ in parallel to the
particles.

Let us now focus on the perturbation field d¢. From Eq. (5.40), we obtain to
first order in the perturbations

Ao — a?V () 8 + 2U(@" + 2H@') = a®BST. (5.42)

In the fluid description, we would have 0T = —dp, + 30P,. Instead, we calculate
6T directly from the distribution of particles. Before we turn to the numerical
treatment of this equation, let us have a brief look at its Newtonian approximation
which is better suited for interpretation.

The fifth force in the Newtonian limit

For a moment, let us neglect gravity and assume non-relativistic neutrinos, P, <
pv- The simplified equation then takes the form

Apop —Vpo(@) dp = =B py, (5.43)
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where A, denotes the Laplace operator with respect to physical coordinates r = ax.
A solution of this equation is given by the well-known Yukawa potential,

=3 [ @ '45\p: e (5.44)
78

with mi = V,o(9). Comparing this result with the Newtonian gravitational poten-
tial W, (r) generated by neutrino inhomogeneities dp, (), the only differences (ne-
glecting homogeneous solutions) are the exponential screening, exp(—my|r — 7']),
and an overall factor.

The fifth force mediated by d¢ has a characteristic range I, = m;l. During the
scaling regime it is related to the Hubble radius via I, = V2/3 H! (Wetterich,
1995; Amendola et al., 2008). We further know that Q, = p,,/(3H?) = 3/a? during
matter domination (cf. Sec. 2.2.2), implying H = a,/p,/3. Once the coupling has
become effective, we may assume that ¢ stays approximately constant (cf., e.g.,
Fig. 3.1). This allows us to estimate [, in recent times:

2 - -1
Iy~ | QQQOH ~0.1Hy", (5.45)

for Qg ~ 0.7 and « = 10. This result shows that the range of the force extends to
cosmic scales.

The overall factor is given by 2|5| in units where 87G = 1. Taking into account
another factor of || in front of V¢ in the equation of motion for neutrinos (5.11),
we arrive at the often—cited relationship |F| ~ 28?|Fgravity| characterizing the
strength of the fifth force F'. In summary, neutrinos feel a new attractive, long—
ranged force which is substantially stronger than gravity.

5.3.2 Solving the perturbed Klein—Gordon equation

For a given neutrino source term d7'(x), the perturbed Klein—Gordon Equation (5.42)
can be treated similar to the Poisson equation for gravity. In Fourier space,

(A = a2V () Sip() = — (K + a*V(2)) Sip(k), (5.46)

leading to a simple algebraic equation which can be solved for the Fourier modes
dp(k). Transforming back to position space yields the field dp(x). Before the final
transform is performed, one can also obtain the gradient of d¢ in Fourier space
according to ikdp(k) — Vip(x). In our simulation, the fields dp(x) and Vip(x)
are realized on a discrete grid. The discrete transforms are efficiently performed
by virtue of a fast Fourier transform (FFT) routine (Frigo and Johnson, 2005).

At this point, we need to discuss a caveat of the method described above. In
fact, we have not linearized the equation completely, since the perturbation of
the neutrino energy—momentum tensor d7" implicitly depends on dp due to the
cosmon—depending neutrino mass m,(¢) x exp(—fSy). As already mentioned in
Sec. 5.1, this dependence is expected to give rise to important backreaction effects
and we have warned against linearizing in Sdp. As a first approach, we may use
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the neutrino masses of the previous time step in order to compute the source
term on the right-hand side of Eq. (5.42). As long as the time steps are chosen
small enough, this procedure is not expected to produce large errors. However,
even small errors may accumulate and systematically lead to a wrong evolution.
Alternatively, one may attempt to apply non-linear methods to Eq. (5.42). For
instance, one could discretize the Laplacian and search for the solution dp(x;) using
Newton’s method. This would have to be done at each time step. Due to the large
number of cells (typically 256%) this method becomes numerically intractable; more
elaborate methods are necessary.

As a compromise, our simulation method employs an iterative scheme building
on the simple Fourier method: Starting from an estimate of the particle masses
{Mio)} at a given instant of time (e. g. the particle masses from the previous time
step), we solve Eq. (5.42) by virtue of the DFT as explained above. The solution
5o () is then used to update the neutrino masses, M,El)(a:) = M, [3,501 (x)],
and the perturbation 67'(x). These steps can be repeated as often as desired:

M (2,500 ()] = 5ot (@) = MMV [, 60 (@)] = - = 5™ (@), (5.47)

If this iteration converges, the fixed point 6p(>°) () is necessarily the true solution
of Eq. (5.42). With this strategy and a few iteration steps (n ~ 10) we achieve
good results until z = 1. For later times, the sequence does not seem to converge
and we therefore decide to stop our simulation.

Asking which factors influence the convergence behavior of the iteration (5.47),
it is instructive to study an idealized configuration of only one dense structure of
mass M and physical size R in the simulation volume (see Ayaita et al., 2012b).
As a result, very large concentrations M /R hinder the convergence of 5™ . This
is clearly a drawback of the scheme we have chosen. Nonetheless, it allows us
for the first time to investigate the nonlinear evolution of GNQ including all of its
major effects until z = 1. As we will see in Chapter 6, this already reveals a rich
phenomenology of the model. Further, we will find that almost all neutrinos are
bound to approximately spherically symmetric lumps at z = 1. This may open
the possibility to employ an effective (and hopefully much simpler) description for
studying the further evolution until z = 0 (we will also comment on this idea in
subsequent chapters).

5.4 Matter and gravity

In this section, we outline the treatment of matter particles and the computation
of the gravitational potentials ¥ and ®. Many aspects are similar to what we
have discussed in the context of neutrino particles (Sec. 5.2) and cosmon pertur-
bations (Sec. 5.3).

5.4.1 N-body treatment of matter

As already mentioned, we describe the matter component with N,, effective N—
body particles. Matter is not coupled to any other species in our model, therefore
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its dynamics are fully described by gravity and the motion of particles follows the
standard geodesic equation

du®

? + FS{JUPUU =0. (548)
In contrast to neutrinos, we may assume v? < 1. Consequently, v ~ 1 and
u’ = dn/dr ~ a(l + V). Since u = u’v, we also have u? < 1. With these
approximations and after inserting the relevant Christoffel symbols, the equation
of motion takes the simple and intuitive form

dv =-VV -Ho. (5.49)
dn
For the time integration, we use the same scheme as for the neutrino particles (cf.
Sec. 5.2.2) with the difference that we evolve v directly instead of first updating w.
The latter was necessary to robustly respect the speed of light limit for relativistic
neutrinos.

The initial configuration of matter particles is generated analogously to the pro-
cedure presented for neutrinos (Sec. 5.2.3). The fact that thermal velocities are
negligible for matter allows us to approximate the initial phase space distribution
function as

it 03) = 2 830 — 00 (@) (1 + B (). (5.50)

The random fields d,,(x) and v},“(z) are drawn at redshift z; = 49, at which we
start the N-body treatment of matter. The coefficients &; used for the realization
of initial random fields are the same as for the neutrinos. Until neutrino particles
are added, matter evolves under the influence of gravity on a GNQ background.

5.4.2 Computation of ¥ and ¢

The gravitational potentials ¥ and ® are related to the perturbations of the to-
tal energy—momentum tensor by virtue of the linearized Einstein equations (cf.
Sec. 3.3.1). It is most convenient to solve these equations in Fourier space. As
mentioned before, metric perturbations are treated linearly and we assume that
time derivatives are small compared to spatial variations.

The Poisson equation (3.29) expresses ®(k) in terms of the density perturbation
dp =3 ,0ps, with s € {m,v, ¢} labelling the relevant species and dp,(x) = ps(x) —
ps as usual. The contribution of the cosmon field to linear order in d¢ is given by

¢ g :
0pp = 2 + V(@) dep. (5.51)

The neutrino and matter density perturbations need to be obtained from the
distribution of the effective N—body particles. As described in Sec. 5.2.4, the
energy—densities p,(x) and p,,(x) follow by summing up one—particle contributions
(Eq. 5.34, with v = 1 for matter particles). The averaged neutrino energy—density
py is given by Eq. (5.37); the analogue expression for matter implies the familiar
result p,, o< a~3, which can be used instead. We have now collected all contribu-
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tions to the perturbation field dp(x) = >, dps(x). Hence, by virtue of the Fourier
transform and Eq. (3.29), we can calculate ®(k).

Next, we consider W(k). The difference between the two potentials is sourced by
anisotropic stress (cf. Eq. 3.30). In our situation, we only need to account for the
contribution from relativistic neutrinos. The anisotropic stress Eij associated with
the one—particle energy—momentum tensor, Eq. (5.13), is given by

. . 1 ..
N =T - 35, " (5.52)
1—20 —20 : v?

The factor (1—2¥—2®) appears due to the definition of the peculiar velocity v with
respect to comoving coordinates and conformal time. The total shear field is the
sum of the contributions from all neutrino particles. The scalar perturbation ¥ is
obtained by a suitable projection in Fourier space (see Ma and Bertschinger, 1995;
Ayaita et al., 2012b). Using the previously calculated potential ®(k), we obtain
U(k) from Eq. (3.30). At this point, it is also advisable to store the coefficients of
the gradients —ik® (k) and —ikW¥ (k). Finally, transforming back to position space
results in the fields ¥(x) and ®(x), together with V¥ (z) and V& (x).

Two comments are in order here. First, we have, for convenience, assumed con-
tinuous positions @ and Fourier modes k above. As explained in previous sections,
we actually perform a discrete transform. The discretized values dp(x;) and 3(x;)
are obtained by collecting all particles contained in the corresponding cell. Second,
the computation of p,(z) and ¥%;(z) already involves the potentials ® and ¥ (in
sub—leading order). We circumvent this problem by approximating the values of
the potentials, only for this purpose, by the results of the previous time step. For
small, slowly—varying potentials and not too large time steps this is an adequate
approximation.

5.5 Runtime and resolution

The simulation method described in Secs. 5.2 to 5.4 has been implemented in
the programming language C++. As discussed in Sec. 5.3.2, it is successful until
z = 1, where we stop our simulation. In each time step, the code has to perform
several Fourier transforms (cf. Secs. 5.3 and 5.4) and summations over all particles
(see, e.g., Egs. 5.37 and 5.39). In order to keep runtime short, we use parallel
programming for these steps (and wherever it is possible). This is achieved by
virtue of the libraries OPENMP and FFTW (Frigo and Johnson, 2005). Running
on a present—day eight—core processor, the wall-clock time amounts to a couple of
days and hence poses no serious problem.

We also need to address the issue of resolution. The dynamical fields ¥ (x), ®(x),
and dp(x) entering the equations of motion, Eqgs. (5.11) and (5.49), are realized on a
grid whose resolution is limited by the finite cell size Ax = L /Nc1 /3, Indeed, modern
CDM simulations sum up two—body forces in a highly efficient scheme and thereby
obtain an excellent resolution even on small scales (e. g., GADGET-2, Springel 2005).
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Figure 5.3: The neutrino spectrum A, (k) at z = 1 for two different resolutions. N, =
2562 corresponds to our standard choice. The vertical dashed line marks the
scale 1/Az{oW),

However, in the model under consideration, nonlinear structure formation is not
a purely small-scale phenomenon. In contrast, our primary interest is in neutrino
clustering which is expected to be dominant on large scales (Mota et al., 2008).
We study the influence of our limited resolution on neutrino clustering by running
a simulation with a lower resolution, NC(IOW) = 1283, The size of a grid cell is
twice as big as for the standard resolution, Az{(°¥) = 2Az. Apart from N,, we
choose all other parameters as in Tab. 5.1 and start the simulation from the same
realization of the initial random fields. In Fig. 5.3, we show for both resolutions
the dimensionless neutrino power spectrum A, (k), defined via
2 K

N2K) = 5y P(R), (5.54)
at redshift z = 1 (P, is the usual spectrum of the neutrino density contrast d,).
As expected, the reduction of N, leads to a loss of power on small scales. On the
other hand, we find satisfying agreement on large scales, k < 1/ Az(o%)  Later,
we will also study individual neutrino structures (Sec. 6.2), where the resolution of
length scales below the size of a lump is more important. On a quantitative level,
these results will be more affected by the limited resolution; we will again use the
low—resolution run in order to quantify the effect (qualitatively, we obtain a robust
picture). Of course, our method is not accurate enough for a precision study of
matter clustering. When we investigate the growth of matter fluctuations in GNQ,
we will compare the results to a pure CDM simulation with the same accuracy in
order to single out the effect of neutrino clustering (Sec. 6.3).

As an option, our implementation also allows to use the so—called “cloud-in—
a—cell” (CIC) interpolation scheme which is an attempt to slightly improve the
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small-scale resolution by distributing particles over the nearest 8 grid cells instead
of assigning each particle to the closest grid point only (see, e.g., Dolag et al.,
2008; Bagla and Padmanabhan, 1997). The scheme also interpolates forces to sub—
grid scales. While this method clearly increases the computation time, we have,
however, not found striking improvements. In the long run, significant refinements
in the resolution, e.g. by using an adaptive mesh, are certainly possible. At the
current stage, this does not seem to be urgent and we thus keep the method as
simple as possible.
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6 Simulation Results

In the previous chapter, we have presented a comprehensive simulation method
for studying nonlinear neutrino clustering and its cosmological implications in the
framework of GNQ. In the following we will show and discuss the results of a sim-
ulation run from redshift z; = 4 to zy = 1 (for the numerical specifications, see
Tab. 5.1). The quantitative outcome of course depends on the chosen model pa-
rameters. We use the values listed in Tab. 6.1. This set of parameters has been
motivated by investigating the background evolution and requiring a viable expan-
sion history similar to ACDM (Amendola et al., 2008); this choice also corresponds
to the studies of Mota et al. (2008) and Baldi et al. (2011). As we have already
pointed out in Chapter 5, we expect nonlinear neutrino perturbations to give rise
to strong backreaction effects on the evolution of the cosmological background (cf.,
e.g., Fig. 5.2). Taking into account these effects will probably require some ad-
justments of the parameters. Although it goes beyond the scope of this work to
explore the full parameter space of GNQ, we will obtain an insightful picture of the
phenomenology of the model at the nonlinear level and will show up effects that
might become decisive for scrutinizing the model. In Sec. 6.1, we will follow the
formation of neutrino structures. Parallel to the evolution of the density field, we
study the growth of neutrino velocities and investigate the properties of the grav-
itational potentials ¥ and ®. A closer look at individual neutrino structures will
be taken in Sec. 6.2. The subsequent section is dedicated to the impact on matter
perturbations (Sec. 6.3). Most of the results we are going to present are part of
the publication Ayaita et al. (2012b).

Specification Parameter value
Coupling constant 8= —52
Present averaged neutrino mass mY = 2.3 eV
Parameter of the cosmon potential a=10
Present neutrino density parameter Q0 =0.15
Present dark energy density parameter Qg = 0.60
Present Hubble parameter Hy =70 km/s Mpc !
Scalar amplitude (kpivot = 0.05 Mpc~1) Ay, =23x%x107°
Spectral index ng = 0.96

Table 6.1: Exemplary model parameters used in the simulations. The values m9, Q9,
and Q?o do not take into account backreaction effects (the model parameters
are specified by the properties of the homogeneous background solution). The
present matter density Q0 follows from the flatness condition (neglecting ra-
diation at late times).
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6.1 Neutrino clustering

The formation of stable nonlinear neutrino lumps has been predicted by several
studies (e.g., Brouzakis et al., 2008; Wintergerst et al., 2010; Baldi et al., 2011).
Our method allows us to follow the growth of neutrino density perturbations over
time, starting from linear initial fluctuations (Sec. 6.1.1). During this process,
neutrino velocities grow under the influence of the cosmon—mediated fifth force. As
we will see in Sec. 6.1.2, this implies a considerable increase of the averaged neutrino
equation of state w,. The gravitational potentials are covered in Sec. 6.1.3.

6.1.1 Formation of nonlinear structures

Figure 6.1 shows snapshots of the evolution of neutrino inhomogeneities in our
simulation box. In the beginning of the evolution, perturbations are still small
and the large—scale neutrino distribution is close to homogeneous. For this reason,
the first two figures (for @ = 0.25 and 0.3) show a spherical section through the
simulation volume visualizing small fluctuations in the number density n, (x) on its
surface. On closer inspection, the growth of perturbations is already visible. It can
still be described by linear perturbation theory at this stage. Shortly thereafter,
however, neutrino perturbations enter the nonlinear regime (in agreement with
Mota et al., 2008).

In the subsequent figures, the blue color marks regions where the local neutrino
number density n,(x) exceeds the threshold 5n,. At a = 0.35, we can identify
overdense regions that have emerged from the initial seed of perturbations. In the
course of the evolution, they start to collapse and form large filament—like nonlinear
structures (a = 0.4). The concentration of neutrinos in structures is accompanied
by the formation of large voids in the simulation box. Eventually, we can identify
separated lumps at a = 0.45. Until ¢ = 0.5, most of these lumps have evolved
almost spherical shapes. The number density n,(x) locally reaches values of the
order 10° times the averaged number density 7, ; the neutrinos have formed highly
nonlinear structures.

At a = 0.5 (2 = 1), we need to stop our simulation (cf. Sec. 5.3.2). Thus,
the further evolution is subject to speculation. The observed spherical shapes can
be interpreted as a sign of virialization, as predicted by the hydrodynamic study
of single idealized overdensities (Wintergerst et al., 2010). Consequently, one may
hope that, after a period of rapid neutrino clustering between a = 0.35 and a = 0.5,
the overall picture remains stable: a collection of virialized, highly concentrated
neutrino structures. This opens the possibility that the further evolution of the
model can be understood from studying an effective “fluid” consisting of neutrino
lumps (we will address the issue of stability and investigate the intrinsic equation
of state of such lumps in Chapter 7). In Fig. 6.2, we give an impression of the
distribution of lumps expected in a comoving volume of size H 3. For this purpose,
we have run a series of 20 simulations starting from different realizations of the
initial random fields; the resolution was reduced in order to shorten the runtime
(the large—scale results are expected to be robust, see Sec. 5.5). The figure shows the
estimated abundance N (f, > f) of lumps for which the number of bound neutrinos
fv (relative to the total number of neutrinos in the Hubble volume) exceeds some
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Figure 6.1: Neutrino clustering in the simulation box of size L = 600 h~'Mpc. The lower
four figures show regions where the number density of neutrinos n,(x) is at
least a factor of 5 higher than the background value n,. We observe the
growth of perturbations from linear fluctuations to nonlinear, separate struc-
tures of almost spherical shapes. The upper figures show a two—dimensional
section of the number density field (the color range goes from 0 (blue) to 5
(red) times the background value).
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threshold f (the results have been scaled by the ratio of the simulation volume to
the Hubble volume). The total number of lumps is of order 10? and the abundances
rapidly decrease for f > 1073. Our results suggest that almost all neutrinos in the
Hubble volume are bound to some lump. We will now continue with our discussion
of the evolution for z < 1.
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Figure 6.2: Estimated distribution of neutrino lumps in a comoving volume equal to the
present Hubble volume H; 3. A lump is characterized by the quantity f,
expressing the number of neutrinos bound to the structure relative to the
total number of neutrinos in the Hubble volume. The abundance N(f, > f)
is the expected number of lumps with f, > f. The lumps have been counted
at redshift z = 1 and we have used a combination of 20 independent simulation
runs for this application.

6.1.2 Relativistic velocities

In this section, we concentrate on the evolution of neutrino velocities. We have
chosen a relativistic treatment of the neutrino dynamics (cf. Sec. 5.2.1) which re-
mains valid even for velocities close to the speed of light. This was motivated by the
breakdown of the Newtonian approximation in previous attempts. The relevance of
relativistic dynamics can be highlighted by counting the number of particles with
velocities v above a considerable fraction of the speed of light (Baldi et al., 2011).
As illustrated in Fig. 6.3, the major part of neutrinos in our simulation reaches
relativistic velocities above 0.5¢ at z = 1. The acceleration is particularly strong
during the phase of nonlinear clustering, z < 2 (a > 0.33).

In order to give a more detailed description, we estimate the velocity distribu-
tion function F, (v) at different instants of time by grouping the effective N-body
particles into bins according to the magnitude of their velocities. The normalized
distribution functions (fol dv F,(v) = 1) are shown in Fig. 6.4. At a = 0.25 and
a = 0.30, neutrino velocities are typically below 10% of the speed of light. At this
stage of the evolution, perturbations are still small and the distribution of velocities
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Figure 6.3: The fraction of neutrinos with velocities v/c > 0.25 and v/c > 0.5,
respectively.

is governed by thermal velocities. The growth of the background neutrino mass
explains the decrease of the mean neutrino velocity from a = 0.25 to a = 0.30.
As already anticipated above, the velocities start to grow once nonlinear cluster-
ing sets in. Between a = 0.3 and a = 0.45, neutrino particles are considerably
accelerated by the strong fifth force; the mean velocity at a = 0.45 is around 0.5 c.
Some few particles have even entered the highly relativistic regime, v > 0.9¢. The
acceleration continues until a = 0.5.

Large neutrino velocities are also expected to become visible in the averaged
equation of state w, = P, /pv. This parameter is of great cosmological relevance.
The necessary averages are calculated from the distribution of N-body particles ac-
cording to Egs. (5.37) and (5.38). We show the evolution of w, in Fig. 6.5 together
with the result obtained from a standard background calculation neglecting back-
reaction. While the simulation perfectly agrees with the background calculation at
early times z > 2.5, we observe a striking discrepancy at more recent redshifts. The
steep increase of w, over several orders of magnitude between z = 2.5 (a ~ 0.29)
and z = 1 (a = 0.5) reflects the rapid growth of neutrino velocities during this
phase (cf. Figs. 6.3 and 6.4). At z = 1, the averaged neutrino equation of state ex-
ceeds 0.1. This is in stark contrast to the non-relativistic value w, < 107> expected
within the homogeneous approximation.

In order to understand the discrepancy, one has to bear in mind that the homoge-
neous calculation does not involve the accelerating fifth force mediated by fluctua-
tions in the cosmon field dp(x). Instead, the neutrino temperature T, continuously
cools down due to the cosmic expansion, while the neutrino mass m, = m, () fol-
lows oscillations of the background cosmon field ¢ around the minimum of its
effective potential (Wetterich, 2008). Hence, apart from oscillatory features, the
quotient T, /m, inevitably decreases in time.

The actual evolution of w, reveals a strong backreaction effect on the background
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Figure 6.4: The distribution of neutrino velocities in our simulation for different stages
of the evolution. Between a = 0.25 and a = 0.3, neutrino velocities are small,
typically v < 0.1¢. During the course of the evolution, the velocities grow
and reach relativistic values. The bin width is 0.01 ¢ in the upper figures and
0.05 ¢ in the two lowermost figures.

evolution of neutrinos. As a direct consequence of energy—momentum conservation
(applied to the coupled cosmon—neutrino fluid), the effect carries over to the evolu-
tion of the background cosmon field . We emphasize that the neutrino’s capability
of stopping the evolution of the cosmon is essentially expressed by the quantity T
(cf. Eq. 5.41). As we have already anticipated in Sec. 5.2.4, nonlinear neutrino
clustering can considerably reduce the value of T' due to local mass suppressions
and relativistic Lorentz factors v > 1. Indeed, both effects are significant in our
simulations (see Sec. 6.2 for local mass variations). A more detailed investigation
of the backreaction effect on the evolution of ¢ (see Ayaita et al., 2012b) reveals
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Figure 6.5: The increase of the equation of state w, due to relativistic velocities. The
dashed horizontal line marks the limit w = 1/3 for ultra—relativistic particles.

that the dark energy equation of state w,, at redshifts z < 1.5 is further away from
wp = —1 as would be expected from a homogeneous background calculation; this
suggests that the onset of accelerated expansion will at least shift to later times.

Relativistic velocities also play an important role in connection with anisotropic
stress Eij, which determines the difference between the gravitational potentials ¥
and ®. This will be interesting in the next section.

6.1.3 The gravitational potentials ¥ and ¢

With the tools presented in Sec. 5.4.2, we are in the position to calculate the gravi-
tational potentials U(x) and ®(x). They are not only needed to accelerate particles
in our simulation (Secs. 5.2 and 5.4), but are also of particular interest in their own
right (cf. Chapter 4). For instance, the ISW and WL both arise from perturbations to
the propagation of photons through (time varying) gravitational potentials, which
leaves observable traces in the CMB spectra or galaxy shear surveys. Concerning
the large—scale regime, particularly the 3D version of WL is promising to provide
valuable constraints (cf. Secs. 4.2 — 4.4). Previously, we have identified a phase of
rapid neutrino clustering between z < 2.5 and z = 1. During this time, both, neu-
trino density contrasts and neutrino velocities, significantly grow with intriguing
implications for the gravitational potentials.

Let us first focus on the presence of relativistic neutrino velocities. A peculiar
effect associated with relativistic motion concerns the difference between the two
potentials ¥ and ®. It is determined by the anisotropic stress tensor X j» which is
of order v? (cf. Sec. 5.4.2). Comparing the fields ¥(z) and ®(x) in our simulation
volume at a given time, we detect a non—vanishing difference (® — ¥) in the vicinity
of neutrino lumps; it however becomes negligible on large scales. For illustration,
we show the neutrino number density field n,(x) and the field (® — ¥)(x) on
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an exemplary two—dimensional slice through our simulation volume at z = 1 in
Fig. 6.6. The number density field allows one to identify the position of neutrino
structures; a rather pronounced one is located in the upper left corner of the slice.
At the same position, we observe an anisotropic pattern in the field (® — ¥) with
an amplitude of the order 10~° (roughly 1 — 10% of the local potentials ® and
U themselves). Similar anisotropic patterns are visible in the regions of smaller
overdensities. The figure also shows that the magnitude of the difference (¢ — V)
is substantially smaller in the space between separated structures. The anisotropic
patterns of ® — W represent a characteristic feature of neutrino lumps with intrinsic
relativistic motion. Regarding large scales (compared to the typical size of neutrino
structures), we conclude that the assumption ¥ = ® is still a good approximation.

We will now analyze the quantitative evolution of W(k) on large scales. This
is especially relevant for the evolution of matter perturbations and also for the
ISW. The latter is sensitive to the sum (® + W)’ (cf. Eq. 4.4) which specializes to
approximately 20’ on large scales. Note that U(k) denotes the square root of the

dimensionless spectrum,
3

U2(z, k) = %P\p(z, k), (6.1)

assuming the usual definition of the power spectrum Py(z,k) (see Eq. 3.36). The
quantity ¥(z, k) is a measure for the expected fluctuation of the gravitational
potential in volumes of size ~ (/k)3.

The main difference to ACDM occurs due to the presence of nonlinear neutrino
perturbations on large scales. Indirectly, they also amplify the growth of matter
perturbations (cf. Sec. 6.3). In order to quantify the total effect of neutrino clus-
tering on the gravitational potential, we compare our results to the case where
matter grows only due to its own gravitational potential. For this purpose, we run
a modified simulation that evolves only matter (and gravity) on an unperturbed
GNQ background. For the chosen set of parameters (Tab. 6.1), the expansion his-
tory is very similar to the ACDM concordance model. Accordingly, we use the
label WACPM {5 the gravitational potential obtained from this run. We make sure
that the matter evolution in the “ACDM” simulation starts from the same initial
random field as in the original GNQ simulation. For two exemplary scales, we plot
the evolution of the quotient W(k)/WACPM(E) in Fig. 6.7. The impact of neutrino
clustering is clearly visible at redshifts z < 2. For k = 0.02h/Mpc, the gravita-
tional potential is almost an order of magnitude larger than the matter induced
gravitational potential in the ACDM simulation. The effect is somewhat weaker
but still pronounced for the smaller scale, kK = 0.05h/Mpc. The absolute amplitude
of the large-scale potential at z = 1 lies between 10~° and 10~ in our simulation.

Large magnitudes of the gravitational potentials may have an important impact
on weak shear spectra. Moreover, the steep increase of the gravitational potentials
contributes to the ISW. In the standard ACDM model, the large—scale gravita-
tional potentials are constant during matter domination and slowly start to decay
when accelerated expansion sets in. In GNQ, in contrast, we have found a growing
magnitude of the large—scale gravitational potentials during the phase of neutrino
clustering. If neutrino lumps indeed virialize shortly thereafter, the growth of the
gravitational potentials is expected to stop again. Indeed, Fig. 6.7 suggests that
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Figure 6.6: The upper figure shows a slice through the neutrino number density field
n,(x) (in multiples of the average 7,) at z = 1. The lower figure visualizes
the difference (® — W) of the two gravitational potentials (scaled by a factor
of 10°) on the same slice. Differences between the gravitational potentials are
most pronounced in the vicinity of the deep neutrino structure in the upper
left corner.

the increase in ¥ slows down around z = 1. The onset of accelerated expansion
may still lead to decaying gravitational potentials in the subsequent evolution.

The details certainly depend on the choice of model parameters. Generally, the
time evolution of the large—scale gravitational potentials in GNQ is more complex
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Figure 6.7: The evolution of the quotient ¥(z, k)/WACPM (2 k) for two different modes
k = 0.05h/Mpc and k = 0.02h/Mpc. For both scales, a considerable en-
hancement of the gravitational potential ¥(z, k) at times z < 2 is visible.

than in the standard ACDM model. Observables that are sensitive to ¥ and ®
on large scales, like the ISW and WL (especially tomography or 3D weak shear, see
Chapter 4), are promising to put stringent constraints on the model parameters
once the quantitative analysis can be continued until z = 0. Concerning the ISW,
measurements of the signal’s redshift dependence and the overall effect on the CMB
spectrum (see also Pettorino et al., 2010) will complement one another.

6.2 A look inside neutrino lumps

In Sec. 6.1, we have presented the overall evolution of the neutrino density and
velocity fields and their impact on the large—scale gravitational potentials. This
section, on the contrary, studies the properties of individual neutrino lumps. We
are particularly interested in the phenomenon of local neutrino mass variations
inside nonlinear structures. For these applications, the resolution of scales inside
the lumps is of greater importance. As discussed in Sec. 5.5, the accuracy of our
method on these scales is reduced. In particular, we do not resolve the neutrino
dynamics below the size of a grid cell, Az ~ 2h~! Mpc in comoving units. In order
to take this issue into account, we will employ the results of a low—resolution run
(Nc(low) = 128) to estimate the uncertainties.

6.2.1 Density and mass profiles

In Fig. 6.6, we have shown a slice through the simulation volume at z = 1 which was
located at the center of a concentrated structure. In order to give a more quanti-
tative impression of this structure, we have measured the neutrino number density
in spherical shells around its center. As the lump is almost spherically symmetric,
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Figure 6.8: The number density profile n,(r) (measured in multiples of the average 7, )
of a pronounced neutrino structure. We also show the results from a low—
resolution run (dashed line). The shaded regions indicate the size of a grid

cell for both resolutions (Az(°%) = 2Az).

the resulting radial density profile n,(r) (Fig. 6.8) is a useful characteristic of the
structure. The distance r is measured in physical units. We identify a concentrated
core with a central neutrino number density nl(,max) = 2 x 10° fi,. The innermost
core extends to a physical distance of roughly 2h 'Mpc. The number density
then quickly drops below 1027, but is still considerably above the average value
for distances above 10 h~'Mpc. The low-resolution run provides a similar shape
of the profile, but the quantitative description of the innermost core is strongly
affected by the reduced resolution. This is due to the fact that neutrino clustering
below the scale of a grid cell (shaded regions in the figure) is suppressed. From this
perspective, our estimate of the central neutrino density should be regarded as a
lower bound.

Next, we turn to the exciting phenomenon of local neutrino mass variations. In
a spherically symmetric neutrino structure, the solution of the perturbed Klein—
Gordon equation (5.42) is given by cosmon fluctuations dp(r) determining the
neutrino mass m,(r) o exp(—B(@ + dp(r)). We have seen in Sec. 5.3 that the
perturbation J¢, in a first approximation, behaves similar to the neutrino in-
duced gravitational potential, do(r) ~ 2|8|¥,(r). This typically implies d¢ < 0,
exp(—Bdp(r)) < 1, in overdense regions; the local neutrino mass consequently
is suppressed. The full calculation takes into account relativistic corrections and
solves Eq. (5.42) by virtue of the strategies discussed in Sec. 5.3.2. We consider the
same neutrino structure as above and average the mass of neutrinos in spherical
shells around its center. The resulting mass profile m, (r) is presented in Fig. 6.9.
We find a considerable neutrino mass suppression inside the lump; the neutrino
mass in the center of the structure is roughly one order of magnitude smaller than
the neutrino mass at larger distances. This is in concordance with previous esti-
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Figure 6.9: The mass profile m, (r) of the structure. As in Fig. 6.8, the dashed line shows
the result of the low-resolution simulation and the shaded regions indicate
the size of a grid cell. At the center of the structure, the neutrino mass is
suppressed by an order of magnitude.

mates (Nunes et al., 2011). Interestingly, the low—resolution run does not deviate
significantly. The presented results are typical for concentrated structures in our
simulation; with decreasing neutrino concentration, the mass suppression is less
pronounced. According to these findings, measurements of the neutrino mass in
the Universe can lead to very different results depending on whether they are per-
formed in the region of a neutrino lump or not.

The results of Fig. 6.9 underline the relevance of local cosmon fluctuations. Ne-
glecting these variations, the neutrino mass would be dictated by the background
field ¢. Oscillations in the background then imply coherent mass oscillations of all
neutrinos in the simulation and even carry over to the process of structure formation
(cf. Baldi et al., 2011). These pronounced effects do not occur in our simulations.
While we still observe oscillations in ¢ (with modifications due to backreaction, see
Ayaita et al., 2012b), their impact on the local neutrino dynamics is much weaker.

6.2.2 Evolution of an isolated lump

The time evolution of the neutrino density field, as illustrated in Fig. 6.1, shows
that distinct neutrino structures are present from a = 0.45 on. We have followed
the evolution of a single isolated lump in the simulation box during the final stage of
our simulation. Changes in the number density profile of the structure are shown
in Fig. 6.10. We observe a moderate transfer of neutrinos from the outer shells
of the structure to the inner core between ¢ = 0.45 and a = 0.5. Apart from
that, the profile appears stable. This can be regarded as another hint towards
virialization. We have chosen an isolated lump, since other structures still undergo
merging processes. For virialized lumps it is expected that the mass profile freezes
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Figure 6.10: The figure visualizes changes in the number density profile n, (r) of an iso-
lated neutrino structure between a = 0.45 and a = 0.5.

and becomes independent of the evolution of the background field ¢ (Nunes et al.,
2011). Thus, if virialization indeed occurs around z = 1, our simulation results
may already give a viable description of the final state of single neutrino lumps.

6.3 Impact on matter perturbations

Understanding the impact of neutrino clustering on matter perturbations is of great
relevance with regard to observations. Constraints on the matter power spectrum
P,,(k) can for instance be inferred from vast galaxy surveys (e. g. Reid et al., 2010;
Percival et al., 2001); fluctuations in the galaxy number density are related to the
matter density fluctuations by a suitable bias model. The evolution of matter per-
turbations in our scenario is sensitive to modifications of the gravitational potential
W. We have found a strong enhancement of the large—scale gravitational potential
in Sec. 6.1.3. Accordingly, an amplification of the growth of matter fluctuations is
expected.

A complementary probe of the matter dynamics is given by measurements of
the peculiar velocity field. By virtue of the continuity equation, the growth of the
fluctuation amplitude on a given scale k is related to the average peculiar velocity
in a volume of size L ~ m/k. The net velocity of a specific volume is also called the
bulk flow. Recent measurements of large—scale matter bulk flows on scales beyond
100 = Mpc have led to some excitement. Several studies suggest values larger (at
least at the 20 level) than the ACDM expectation (Kashlinsky et al., 2009; Watkins
et al., 2009; Lavaux et al., 2010; Feldman et al., 2010). In an earlier study (Ayaita
et al., 2009), we have roughly estimated the enhancement of matter bulk flows due
to the gravitational potential induced by a collection of neutrino lumps. Now, we
are in the position to directly measure large—scale flows in our simulation volume.
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6.3.1 Enhancement of the power spectrum

The matter power spectrum is defined in Fourier space according to the general
expression (see Eq. 3.36),

(B (k) 85, (K')) = (2)3 Pou (k) 63 (k — K). (6.2)

In our numerical implementation, we apply a DFT to the density field §,,(x) and
estimate the amplitude P, (k) by averaging |6,,(k)|? (cf. Sec. 5.2.3 for details con-
cerning discrete Fourier coefficients and their relationship to the continuous quan-
tities). Below, we will follow the evolution of the dimensionless spectrum A, (k),
defined as
ki?’
A% (k) = 5 Pm(k). (6.3)
T

Again, we employ the ACDM simulation described in Sec. 6.1.3 in order to achieve
a fair comparison with standard dynamics. The reference results are labelled by
AACDM Tp Fig. 6.11, we plot the quotient A,,(k)/AAMCPM(E) at different redshifts
z. As long as neutrino perturbations are small, the matter growth function does
not deviate from the ACDM case (matter grows only due to its own gravitational
potential; the influence of dark energy is restricted to the expansion rate). Hence,
the fluctuation amplitudes at first coincide in both simulation runs. At times z < 2,
neutrino clustering significantly contributes to the large—scale gravitational poten-
tial (cf. Fig. 6.7). As a consequence, we observe a mild amplification (of the order
1%) of A, (k) at z = 1.5; only large scales, k < 0.05h/Mpc, are affected. The
effect becomes more pronounced in the subsequent evolution. At z = 1, the en-
hancement amounts to about 10% for small k. Still, compared to the amplification

1.08
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1.04

1.02

enhancement of the matter spectrum

0.01 0.1 1
scale k [h/Mpc]

Figure 6.11: The evolution of the relative matter spectrum A,,(k)/AAPM(k). As a
consequence of the neutrino—induced gravitational potential, we observe an
enhancement of the matter power spectrum at large scales. The effect occurs
at redshifts z < 1.5.
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of the gravitational potential V¥ itself, the signature in the matter power spectrum
is much weaker.

Let us briefly review the dynamics of matter perturbations in consideration of
a raised amplitude of the gravitational potential. Combining the continuity (3.31)
and Euler equation (3.32) within linear perturbation theory (neglecting ®') yields
the following evolution equation for d,,(k):

S (k) + ML (k) = —k> (k). (6.4)

Raising ¥ (k), first of all, causes an increase of the second derivative d,,(k)”, while
the effect on d,, (k) needs to arise dynamically in the subsequent evolution. Peculiar
velocities, on the other hand, represent a possibility to probe the first derivative
8/, (k); even if the amplitude d,,(k) has grown only marginally over a period of
time, the peculiar velocity field might already reveal the dynamics at work.

6.3.2 Large—scale bulk flows

Let us consider a subvolume V; of our simulation box. The matter bulk flow
associated with this specific volume is given by the averaged peculiar velocity,

3,. /=, Dpec
Cpee fwd /U,

myi fVi dgx\/g

The Cosmological Principle predicts a vanishing mean for large—scale bulk flows.
A useful quantity for comparison with observations is the non—vanishing variance
of the bulk flow. In order to measure it, we divide our simulation box into n
subvolumes V; of equal size, V; = V/n; cubical shapes correspond to V; = [* with
I3 = L?/n. An estimate of the bulk flow variance on the comoving scale [ is then

obtained as
1 & 2
W:—E(”ﬂ. 6.6
l n vm,z ( )

i=1

(6.5)

The specific value of the bulk flow variance can depend on the chosen shape of
the subvolumes. A more common choice refers to a Gaussian window function
(e.g. Watkins et al., 2009). Since we are not primarily interested in the abso-
lute magnitude of the matter bulk flow but in the relative amplification due to
neutrino clustering, the proposed “top—hat” windows (with the advantage of clear
boundaries) are a suitable choice.

As in previous applications, we employ our reference ACDM simulation. Devi-
ations from standard dynamics are expressed by the quotient U;/ UIACDM, whose
evolution for two large scales is presented in Fig. 6.12. The figure shows a steep
increase of the large—scale velocity flows at redshifts z < 2. The amplification
is much more pronounced than for the matter density fluctuations; at z = 1, it
reaches factors of about 1.5 to 2. As already anticipated at the end of the previ-
ous section, the bulk flow at a given redshift z is a direct measure of the current
growth rate (cf. Eq. 3.31). Consequently, at z = 1, matter density fluctuations on
the corresponding scales are still growing at an increased rate compared to ACDM.

Recent measurements of large—scale matter bulk flows challenge the ACDM con-
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cordance model at the > 20 level. In a Gaussian window of diameter 100 h~'Mpec,
Feldman et al. (2010) infer a bulk flow magnitude of 416+£78 km /s, whereas the vari-
ance calculated within the ACDM concordance model only amounts to U ~ 200
km/s. The latter can be obtained within linear perturbation theory (see, e.g.,
Ayaita et al., 2009) according to

U? 1‘/mdeI%%HWNMP, (6.7)

)
2 0

where W (k) is the Fourier transform of the Gaussian window function and the
velocity power spectrum P, (k) is related to the matter power spectrum according
m S dlng
P (k) = J& DOk

k2 dlna
Growing Neutrino Quintessence clearly has the potential to produce large matter
bulk flows without significantly distorting the shape of the matter power spectrum
at the same time. A more quantitative comparison with peculiar velocity data be-
comes possible, once the evolution of the model can be followed until z = 0. For the
current choice of parameters, the effect on the velocities is rather strong. Peculiar
velocity surveys are likely to provide useful constraints on the model parameters
such as the coupling strength 3. If anomalous bulk flows will indeed be confirmed
by future observations, this might be an important hint towards large—scale dy-
namics beyond ACDM (see also Ayaita et al., 2009).

P, (k), with f, = (6.8)
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Figure 6.12: The enhancement of large—scale matter bulk flows, U;/U, lACDM, in subboxes

of (comoving) volume [ for [ = 37.5 h='Mpc and [ = 75 h~'Mpc. A signifi-
cant amplification sets in at redshifts z < 2.
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7 Aspects of Spherically Symmetric
Neutrino Lumps

In the previous chapter, we have studied the evolution of GNQ until z = 1. After a
phase of rapid structure formation, the overall picture was dominated by a collec-
tion of almost spherically symmetric neutrino lumps (cf., e. g., Fig. 6.1). Effectively,
the neutrino component has undergone a transition from an unclustered fluid to a
“fluid” of neutrino lumps. An effective description of this state may help to un-
derstand the further cosmological evolution.! In this section, we concern ourselves
with the question of stability. We provide arguments for stable neutrino lumps
from two different perspectives: First, by looking at the motion of a test particle
(Sec. 7.1) and afterwards by studying the conditions for hydrodynamic equilibrium
(Sec. 7.2). We propose a class of stable configurations with locally isotropic velocity
distributions. As we will see in Sec. 7.3, the pressure contributions from neutrinos
and the (inhomogeneous) cosmon field approximately cancel for such lumps, i.e.,
their intrinsic equation of state approximately vanishes.

In the framework of this chapter, we assume that the neutrino dynamics inside
nonlinear structures are dominated by the cosmon—mediated fifth force and hence
neglect the gravitational potentials. Spherical symmetry allows us to express all
quantities as functions of the radial distance r from the center of the lump. We
further split up the neutrino source term in the perturbed Klein—-Gordon equa-
tion (5.42) according to T'(r) = T (r) exp (— 3 d¢(r)). By this means, the field 7 (r)
is independent of local mass variations. For instance, assuming non-relativistic
neutrinos, we have 7 (r) = —n,(r)m, (@) with n,(r) denoting the neutrino number
density and m, () the neutrino mass for do = 0. In the general case, the field
T (r) also accounts for relativistic corrections (cf., e.g., Eq. 5.39). The cosmon
perturbation dp(r) solves the radial Klein—Gordon equation,

/

5" + 257*0 —Voo(@)0p = B (Te_ﬁ‘s“" . T) : (7.1)
with a prime denoting differentiation with respect to r in this chapter (time deriva-
tives will be indicated by a dot and refer to the cosmic time ¢t). Without lineariza-
tion of the mass function, Equation (7.1) is a nonlinear ordinary differential equa-
tion for dp(r). We generally impose the regularity condition ¢’ (r = 0) = 0; for a
unique solution, one may specify a boundary value dp(R) at some large distance
R from the center.

!The effective description of neutrino lumps and their dynamics is work in progress in collabo-
ration with Y. Ayaita and C. Wetterich.
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Figure 7.1: Exemplary profile do(r) obtained as the solution to Eq. (7.1) with vanishing
boundary value at large distances. The shape of the underlying neutrino
profile T (r) was adopted from our simulation results, cf. Fig. 6.8; the (relative)
amplitude of the overdensity amounts to 5 x 10%, leading to a central mass
suppression of exp(—/3dp(0)) ~ 1/3 for 8 = —52.

7.1 Motion of a test particle

In this section, we study the motion of a neutrino particle in a static, spherically
symmetric neutrino lump. Assuming a central overdensity of neutrinos, —7 (r) > 0,
and dp — 0 for large distances, the solution to Eq. (7.1) is typically of the type
illustrated in Fig. 7.1; the particular form of d¢(r) is however not crucial for our
purposes. Due to the fifth force, o Vo = 8¢ (r)e,, the particle is accelerated
towards the center of the structure. In a sense, the situation is comparable to the
dynamics of a test mass in a spherically symmetric gravitational potential. The
main differences arise from mass variations m, = m, (1), which are also responsible
for a velocity dependent acceleration, cf. Sec. 5.2. We also need to account for
possibly relativistic velocities.

The dynamics of our test particle are described by the action

S = —/dTmu(SD) = —/dtm”T“”), (7.2)

with v = (1 — v?)~'/2 within our approximation. We consider the motion of the
particle in a plane with polar coordinates (r,1). The Lagrangian associated with
the action, Eq. (7.2), is given by

L=—my(o(r)\/1—i2—r22. (7.3)

Since L does not explicitly depend on ¢, we obtain angular momentum conserva-
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tion: q oL
Dy . 24
T with pg = =5 = ymyr (7.4)
As in the standard case, angular momentum conservation supports stable orbits.
The equation of motion for the radial coordinate is given by the Euler—Lagrange
equation:
dpr _ p§
dt  ymy,r3

55 with py = OF — i (7.5)
¥ or

We have used the definition of the coupling parameter 5 = —d Inm, /dy above. The
importance of angular momentum conservation now becomes apparent: Similar to
the standard case of gravity, it introduces an effective outwards—directed force.
Due to Lorentz factors and the varying neutrino mass, the usual 1/73 behavior
is modified (for the case of gravity with special relativistic corrections, see, e.g.,
Lemmon and Mondragon, 2010). In order to see that this equation generally implies
stable orbits, we use Eq. (7.4) to replace the time variable by ¥,

d__p _d
dt — ym,r2 dy’

(7.6)

and further define u = 1/r. The radial equation of motion can then be written as

d%u L

(7.7)

For §¢’ < 0 (and 8 < 0), the second term on the right-hand side expresses attrac-
tion towards the center. Assuming 0¢'(r) — 0 for » — 0, it becomes negligible
for small values of r (large u). The first term, on the contrary, is repulsive and
becomes arbitrarily large for » — 0, preventing the particle from falling into the
center. This is also true under more general conditions; assuming for instance
do(r) = @o(r/re)~ with a, 79 > 0 and ¢ < 0, the attractive term behaves like
(r/ro)=*exp (= 2B ¢o(r/ro)~) — 0 for r — 0.

This brief study of particle motion in a spherically symmetric cosmon field (r)
supports the assumption of stability. Although the situation is different to stan-
dard Newtonian dynamics in a spherically symmetric gravitational potential, the
principle of angular momentum conservation plays the major role in both cases.

7.2 Hydrodynamic equilibrium

We now ask for the conditions of hydrodynamic equilibrium for a spherically sym-
metric neutrino lump. The hydrodynamic description employs moments of the
phase-space distribution function f, (¢, 2%, pj), where p; = myu; is the momentum.
The four velocity u; is related to the peculiar velocity v via u; = yv’/a (as in
previous sections, v; = 5l-jvi). A derivation of the moment equations for standard
gravitational dynamics is presented by Bernardeau et al. (2002).

As a starting point, we propose particle conservation in phase space, expressed
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by the continuity equation

of of _

fa' o= +pia— =
o’ ]Bpj

0. (7.8)

Before we start with the actual calculation, we quote the equation of motion for a
neutrino particle in terms of the momentum p;. Therefor, we note that dp;/dr =
(dmy/dT)uj + my(du;/dr) with dm,/dT = —pm, u*0ap and du;/dr given by
Eq. (5.11). Replacing the proper time 7 by the cosmic time ¢ yields

B =7 'my, BOjp. (7.9)

We simplify the whole calculation by restricting ourselves to first—order relativistic
corrections. This means we will use the following equations:

7

i b

it = ) 7.10
= (7.10)
P>
with p? = ?:1 p?. Let us now define the relevant moments of the distribution
function f:
n= /d3pf(t,ac,p) (7.12)
3 Pi
am,,
g UU: = [ 43 _pi Pj t 7.14
oij +nUUy = [ d'p——————f(t, x,p). (7.14)

The moments defined above have clear intuitive meanings: n(t,x) is the number
density, U;(t, x) is the average peculiar velocity, and 0;;(t, ) describes the velocity
dispersion at position & and time ¢. Technically, we may generally define the
averaging
[ dpAf
e
for an arbitrary field A(t, 2%, p;) and identify U; = (vi); and 05 = n ((v; = U;)(v; —
U)

We will now derive the moment equations (analogously to the standard case,

cf., Bernardeau et al., 2002). First, we integrate out the momentum in Eq. (7.8),
yielding

(A); (7.15)

n+ i (nU;) = 0. (7.16)
This is the standard continuity equation describing the change in n(t,x) due to
peculiar motion. The factor of a transforms the derivative 9/0x" into a derivative
with respect to physical coordinates r* = ax’. For convenience, we will use the

abbreviation d,, = a~'9/dz" in the following. Taking the first moment of Eq. (7.8),
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and using the continuity equation (7.16), we find

1
Ui + (U 0r;)U;i + (H — B)U; + Earj%‘ =

30

Bonp (1= 50+ 52 ) + B0 00U+ Sl (1T
with ¢ = ¢%;/3. Again, we identify the fifth force oc SV &y and the velocity
dependent force o< (U - V)U, as well as the modification to the Hubble damping
due to the time variation of . In addition, the “microphysical” motion expressed
by the dispersion tensor o;; gives rise to an effective pressure force o< 9,;0;; and
introduces further extra terms due to the coupling to the cosmon field.

For a stable lump, we demand 7 = 0 and U = 0. According to Eq. (7.16), the
first condition is fulfilled for locally isotropic velocity distributions with U; = 0 for
all . Under this assumption, Eq. (7.17) considerably simplifies. Projecting out
the radial component,?> we obtain

/
= (1-5)

— = 1——), 7.18

— =Py 5 (7.18)
with 0;; = d;j0 (due to local isotropy). Essentially, the effective pressure generated
by the microphysical velocity dispersion needs to balance the inwards directed fifth
force; corrections appear due to the coupling terms in Eq. (7.17). Within our
approximation, the one—dimensional velocity dispersion reads

o= —n('v2>f. (7.19)

Equation (7.18) has to be solved together with the radial Klein-Gordon equation
(7.1) for d¢(r). The source T (r) on the right-hand side is related to the number
density and the velocity dispersion: The contribution of a single particle to 7T is
given by —m,, (@) /v ~ —m,(¢)(1—v?/2) at the position of the particle. Integration
over phase space thus yields

T0) (L N B
o) )<1 2! >f> (r) + 50(r) (7.20)

according to the definitions given above and to first order in v2.

7.3 Pressure cancellation

In the previous section, we have derived the conditions for hydrodynamic stability of
spherically symmetric neutrino lumps. For a given neutrino number density profile
n(r), we can solve Egs. (7.1) and (7.18) with the identification made in Eq. (7.20).
The simulation results presented in Chapter 6 provide us with templates for the
neutrino profile n(r). In this section, we adopt the profile shown in Fig. 6.8 with a
rescaled central amplitude in order to avoid too large velocities; the corresponding

2For U = 0, one simply has UT =U- er.
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cosmon field d¢(r) has already been shown in Fig. 7.1. Stable configurations can be
placed in the center of a smaller simulation box with considerably increased spatial
resolution. This allows to numerically investigate their characteristic properties.
Here, we study the intrinsic equation of state of a cosmon—neutrino lump,

P+ Py,

T (7.21)
Plv + Pl,o

wi

with ]517,,, Pl,w and py,, p1, denoting the averaged pressure and energy density
contributions from neutrinos and the cosmon field associated with the lump. Let
us focus on the pressure first.

From the general definition, P = T%;/3 (cf. Eq. 3.27), we obtain for the neutrino
component

_ 1 .
P, == / d3rT(r)/3 (7.22)
Vil
—iz 1 m(r)v2 ZiI(R) (7.23)
- w 3'Yp vilp)Yp | = V} v 1) .

7"pSRl

where T%g denotes the neutrino energy-momentum tensor (see Eq. 5.13 for the
one—particle contributions), and the subscript p labels particles inside the lump.
We assume that the lump is surrounded by a void region, such that contributions
to the integral in the first line are restricted to r < R; for some radius R;. In the
last line, we have defined the integrated pressure contribution I,,(R;), which will be
used below. Note that we have used physical coordinates above; V; is the volume of
the structure in physical units. Turning to the cosmon contribution, we need to pay
attention to the fact, that the total cosmon pressure P, also includes contributions
from the background field ¢. In order to obtain a well defined quantity, we subtract
this contribution from P(y); this guarantees that the pressure 151#, vanishes for large
distances from the center. The cosmon energy—momentum tensor, Eq. (2.43), then
gives

Po=: [ @ (~§I90b62 = Vig+50) +V(9)) (729
1 [f 1., _ _

= Vl/o Anr?dr (—6|5gp ()2 = V(@ + dp(r)) + V(go)) (7.25)

_ %L{,(Rl), (7.26)

where we have defined I,(R;) analogously to I,(R;) above.

An appropriate choice of R; cannot be motivated by considering the neutrino
distribution only. In general, the cosmon perturbations d¢(r) extend to larger
distances than the neutrino overdensity n(r). This is demonstrated by the example
shown in Fig. 7.1, where dp(r) extends to more than 30 h~!Mpc although the
underlying neutrino density profile is restricted to less than 20 h~'Mpc. For this
reason, we have kept R; as a free parameter. In Fig. 7.2, we plot the functions
I, and I, for varying R;. The neutrino pressure shows a steep increase at small

100



7.3. PRESSURE CANCELLATION

0.006 :
neutrinos
B cosmon
= 0.004
g
[
- T,
8 ............
T
é NV T e T S
o
=
g
gb -0002 ~~~~~~
o A e
I e W
-0.004
| . - 0 50
Ry [h 1Mpd

Figure 7.2: The integrated pressure contributions I,,, I, from neutrinos and the inhomo-
geneous cosmon field as a function of R;. We also plot the sum Iy = I, + 1.
Close to the center, the neutrino pressure dominates. At larger distances, the
two contributions approximately cancel each other.

distances from the center but saturates at R; > 10h~! Mpc. As expected, the
cosmon pressure still receives contributions from larger distances. While it only
slowly saturates, it more and more cancels the contribution from the neutrino
component. The total integrated pressure Iyt = I, + I, tends to zero for large R;.

This result speaks for a vanishing total pressure of the lump. The equation of
state parameter w; sets the residual pressure in relation to the total energy density
associated with the lump. Straightforward computations yield

1
P =3 > mu(ry), (7.27)
rp<Ry
_ I 2 Lo _ _
po=: [ amtar (G0CP VG0 - V). (@)

In Fig. 7.3, we plot w; as a function of R;. For comparison, we also show the
neutrino equation of state w;, = Pl,y /piv- The cancellation of pressure is signif-
icant for w;. Although neutrino motion gives rise to w;, 2 0.1, the combination
of cosmon and neutrino contributions leads to w; < 1073, This is in the regime of
non-relativistic matter. Hence, in its rest—frame, the energy—momentum tensor of
the lump will essentially be described by the total mass energy (with contributions
from neutrinos and the cosmon). This is expected to simplify an effective descrip-
tion of neutrino lumps. As a crucial step in this direction, it however remains to

find an appropriate modelling of the mutual interactions between separated lumps.
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Figure 7.3: The intrinsic equation of state w; of a stable lump as a function of R; compared
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to the neutrino equation of state w;,. The cancellation of neutrino and
cosmon pressure contributions significantly suppresses the total equation of
state. For R; = 50h~! Mpc, w; is two orders of magnitude smaller than Wy, -



8 Conclusions and Outlook

In this thesis, we have investigated the cosmological implications of Growing Neu-
trino Quintessence, a model that has been proposed to provide possible answers to
pressing questions concerning the phenomenon of dark energy: Why is the present
dark energy density in the Universe so small? And why has dark energy become
important just today? These fundamental puzzles are indeed the main motiva-
tion to seek for alternatives to the cosmological constant scenario, which is so far
surprisingly consistent with observational data. The idea of solving these prob-
lems by a growing neutrino mass is intriguing; beyond that, the prospects are also
promising that it will be testable. This work has identified a rich cosmological
phenomenology with features very distinct from the standard ACDM model. Es-
sentially all of them are rooted in the strong coupling between neutrinos and the
quintessence field. This interaction provides the key mechanism for solving the
“why now” problem of dark energy. On the other hand, it renders the treatment of
perturbations extremely challenging due to a strong attractive force acting between
neutrinos; linear perturbation theory as well as standard N-body methods fail.

For this reason, we have developed a relativistic N-body treatment of growing
neutrinos in Chapter 5. In order to incorporate local neutrino mass variations,
inhomogeneities in the quintessence field are modelled on a grid. The presented
method is also compatible with backreaction effects due to nonlinear neutrino clus-
tering. At its current stage, the simulation method is kept as simple as possible. In
particular, it focuses on large—scale dynamics (mostly relevant for neutrino cluster-
ing) and solves the perturbed Klein-Gordon equation by virtue of a simple iterative
scheme that is successful until redshift z = 1. Matter and gravity are evolved as in
ordinary particle-mesh algorithms.

With this method, we were able to follow the formation of nonlinear neutrino
structures from tiny fluctuations to compact, almost spherically symmetric lumps
in Chapter 6. During the phase of nonlinear clustering, we observed a significant
increase in neutrino velocities. Until z = 1, the major part of neutrinos in our sim-
ulation has been accelerated to relativistic velocities = 50% of the speed of light.
As a consequence, the averaged neutrino equation of state grew from small values
of the order 10~% to w, =~ 0.1 between redshifts z = 2.5 and z = 1. Due to relativis-
tic motion inside neutrino structures, we found local differences between the two
gravitational potentials ¥ and ® (a 1% to 10% effect). On large scales, we obtained
a significant enhancement of the potentials’ amplitudes. As a direct consequence, a
steep increase in the large—scale matter bulk velocities was observed, while the ef-
fect on the matter power spectrum was much less pronounced (amounting to about
10% at small k).

Furthermore, we have studied the properties of individual neutrino lumps in our
simulation box. As a major result, we found a strong suppression of the local
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neutrino mass inside concentrated structures. In consideration of our method’s
limited small-scale resolution, we can only provide approximate upper bounds. At
z = 1, the mass of particles at the center of concentrated lumps was typically one
order of magnitude smaller than outside the structure. This effect has already been
suggested by analytical studies (Nunes et al., 2011).

Over the last decades, cosmology has developed a variety of complementary ob-
servational probes to explore the constituents and the expansion of the Universe.
Many of these probes are sensitive to the aforementioned phenomena and are likely
to provide tight constraints on the model parameters once the evolution can be fol-
lowed until redshift z = 0. On the one hand, the ISW probes the time evolution
of the gravitational potentials. Detailed measurements of the signal’s redshift de-
pendence together with the overall effect on the CMB spectrum (see also Pettorino
et al., 2010) can be powerful for scrutinizing the model. Furthermore, the three—
dimensional version of WL is promising to constrain the absolute amplitude of the
large—scale gravitational potentials. We have provided numerical tools for the nec-
essary computations in Chapter 4; as an exemplary application, we have studied
the prospects for constraining the dark energy speed of sound.

Moreover, observations of the large—scale matter bulk flows are of great relevance
since they are sensitive to the neutrino-induced gravitational potential. Interest-
ingly, it is an open debate whether matter bulk flows on scales beyond 100h~'Mpc
are consistent with ACDM (e. g. Feldman et al., 2010). If an anomaly exists, this
will be an important hint towards large—scale dynamics distinct from the concor-
dance model.

On the particle physics side, it is important to accurately measure the present
neutrino mass. In the model under consideration, a definite prediction of the local
neutrino mass at our position in the Universe is complicated by the effect of lo-
cal neutrino mass variations. If terrestrial experiments, however, detect significant
deviations from the cosmological bounds on the neutrino masses in the early Uni-
verse, this will strongly support the idea of a varying neutrino mass. Hopefully,
the results from the KATRIN experiment will reveal new insights. After all, it
may turn out that the exemplary set of parameters chosen in Chapter 6 is not
compatible with observations. Eventually, the full parameter space of the model
needs to be explored.

The simulation method as presented in this work has already helped deepen our
understanding of the cosmological dynamics in the framework of Growing Neutrino
Quintessence. The results have highlighted that relativistic neutrino dynamics, lo-
cal mass variations, and backreaction effects are indeed decisive for any quantitative
analysis of the model. In future, one may, on the one hand, seek improvements on
the numerical side. In particular, more sophisticated methods for the solution of
the perturbed Klein—Gordon equation are in order to extend the range of appli-
cability. Further, an increased resolution at small scales (important for studying
the intrinsic structure of neutrino lumps, but also for matter clustering) can be
achieved by adopting methods from modern N-body codes like GADGET. Alter-
natively, one may pursue a different direction. The simulation results at z = 1
suggest that after a phase of complex structure formation, almost all neutrinos
are bound to approximately spherically symmetric lumps. This raises the ques-
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tion whether the overall cosmological evolution can be understood by studying the
effective dynamics of separated neutrino lumps without paying regard to their de-
tailed intrinsic structures. As a first step in this direction, we have had a look at
spherically symmetric neutrino lumps in Chapter 7. There, we found the conditions
for hydrodynamic equilibrium and studied a simple class of stable configurations.
Numerically, we investigated the intrinsic equation of state and found a remarkable
cancellation of the total pressure. This result suggests that static cosmon—neutrino
lumps can approximately be modelled as effective “particles” characterized by their
total mass energy. With a suitable description of the mutual interactions between
such lumps, the cosmological evolution until z = 0 can possibly be understood
within a considerably simplified approach.

Ingenious developments in the fields of theory, observation, and simulation have
helped to establish the standard framework of modern cosmology. We shall remain
confident that this success continues and the mystery of dark energy can eventually
be unraveled. This may have exciting implications for fundamental physics.
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