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Zusammenfassung

Die Arbeit widmet sich der analytischen und numerischen Untersuchung der Ober-
wellenerzeugung héherer Ordnung und der Emission einzelner superintensiver Attosekun-
denpulse durch ultrarelativistische Laser-Plasma-Wechselwirkung. Im ultrarelativistis-
chen Regime induziert der Strahlungsdruck des Lasers eine Plasma-lonenbewegung durch
den sogenannten Lochbohreffekt, was zu einer Frequenzverbreiterung der harmonischen
Spektren fiithrt. Diese Verbreiterung, analytisch analysiert und durch “particle-in-cell”-
Simulationen validiert, erzeugt ein quasi-kontinuierliches Frequenzspektrum, eine Vo-
raussetzung fiir die Erzeugung eines einzelnen intensiven Attosekundenpulses. Basierend
auf den Ergebnissen und physikalischen Uberlegungen werden Parameterkarten prisen-
tiert, die die optimalen Regionen zur Erzeugung eines einzelnen intensiven Attosekunden-
pulses und kohérenter XUV-Strahlung hervorheben. Dariiber hinaus wird ein robustes
Plasma-Gating entwickelt, um einen super-intensiven phasenstabilisierten Attosekun-
denpuls zu erzeugen. Der Lochbohreffekt begrenzt die effizienteste Hochfrequenzemis-
sion in einem Laserzyklus, wodurch es moglich ist, einen einzelnen Attosekundenpuls zu
isolieren. Der erzeugte Puls ist charakterisiert durch eine stabilisierte spektrale Phase
(w) &~ £7/2 und ein ultrabreites exponentielles Spektrum bis in den keV-Bereich, das
durch ROM-Skalierung und CSE-Skalierung begrenzt ist. Die noch nie da gewesene In-
tensitdt unterstreicht das Potential isolierter Attosekundenpulse fiir die Durchfithrung
von “Attosecond-Pump-Attosecond-Probe”-Experimenten.

Abstract

The thesis is devoted to the analytical and numerical studies of high-order harmonic
generation and super-intense single attosecond pulse emission via ultra-relativistic laser-
plasma interaction. In the ultra-relativistic regime, the laser radiation pressure induces
plasma ion motion through the so called hole-boring effect, resulting in frequency widen-
ing of the harmonic spectra. This widening, analyzed analytically and validated by
particle-in-cell simulations, produces a quasi-continuous frequency spectrum, a prereq-
uisite for generating an intense single attosecond pulse. Based on the results and physical
considerations, parameter maps highlighting the optimum regions for generating a single
intense attosecond pulse and coherent XUV radiation are presented. Moreover, a robust
plasma gating is developed to generate a super-intense phase-stabilized single attosec-
ond pulse. The hole-boring effect limits the most efficient high-frequency emission in one
laser cycle making it possible to isolate a single attosecond pulse. The generated pulse is
characterized by a stabilized spectral phase ¥)(w) &~ +7/2 and an ultra-broad exponential
spectrum up to keV region bounded by ROM scaling and CSE scaling. The unprece-
dented intensity highlights the potential of the isolated attosecond pulse for performing
attosecond-pump attosecond-probe experiments.
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Chapter 1

Introduction

1.1 Laser development

Since the invention of the first laser in 1960 by Maiman [5], lasers have become an
indispensable tool for studies of physical processes in various fields ranging from atomic
and molecular physics to plasma and nuclear physics, even to high-energy astrophysics.
The fast development in laser techniques has brought modern physics into an era, in
which the physical processes with ultra-high energies in GeV level and ultra-short time
scale about attosecond (10718 s) became accessible [6]. The next-generation laser systems
are predicted to extend the frontier of modern physics towards a new area with even
more extreme conditions: TeV energy level and zeptosecond (1072! s) timescale. The
schematic diagram of the development of the laser intensity is illustrated in Fig. 1.1 [7].

The first significant improvement of the laser intensity took place in the 1960s with the
development of Q-switching technique [8] and mode-locking technique [9]. The typical
intensity of the laser pulse was improved rapidly in the first decade from gigawatts
per square centimeter (10° W/cm2) to hundreds of terawatts per square centimeter
(1014 W/ch), and meanwhile, the typical duration was compressed from nanosecond
(1079 s) to picosecond (107!2 s) scale. As the strength of the laser electric field became
comparable to the Coulomb field in atoms, the application of the laser to control the
atomic transition and modulate the chemical bonds in molecules became feasible.

After a rather long stagnation, the second improvement of the laser intensity came in
1980s because of the invention of the chirped pulse amplification technique [10]. The
laser power was taken into the terawatts (10'2 W) regime and could be focused to
intensities above 1020 W/ cm?. The associated laser duration was also compressed from
the picosecond to the femtosecond (1071° s) in the meantime. The laser field amplitude
was orders of magnitude larger than the atomic Coulomb field and became strong enough
to accelerate the electrons to high relativistic energies within one single laser period. If
one shoots such a strong laser to a target, the exposed surface atoms could be ionized
instantly, which opened the door to a new area-laser plasma interaction.

The next generation of the optical laser system in the ten petawatt (~ 10 PW) regime
is under consideration [11, 12] and is expected to deliver the energy of hundreds of
joules (~ 100 J) within ten femtoseconds (~ 10 fs). By focusing this laser into the
diffraction-limit volume (about 1 pm3), the laser intensity can enter the unprecedented
regime of 10%* w/ cm?. Within one laser period, the electrons can be accelerated to
ultra-relativistic energies in the GeV level and even ions can become relativistic. Such
an intense laser field provides the possibility to investigate high-energy astrophysics in
the lab and study the physics under extreme conditions.

It is predicted that the improvement of the laser intensity is restricted by the so called
Schwinger limit [19] yielding the critical electric field Ey = 1.32x 10'® V/m and magnetic
field By = 4.4x10° T corresponding to the optical laser intensity I ~ 10%° W/ cm?. When
this limit is closed, the electron-positron pairs could be created spontaneously from
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Figure 1.1: Schematic diagram of the evolution of the laser intensity taken from Ref. [7]. Different
models for high-order harmonic generation in atomic physics (Three-step model [13, 14]) and plasma
physics (CWE [15], ROM [16], CSE [17], RES [18]) are appended with the development of the laser
intensity.

the vacuum and subsequently accelerated to ultra-relativistic energies triggering QED
cascades [20]. In this case, the laser energy would be absorbed by the self-generated
electron-positron plasma [21]. The estimation for the probability of the QED cascade
initiated by the vacuum pair creation indicates that the limitation on the attainable
intensity of the optical laser is 1026 W/cm? [22, 23].

To further improve the attainable intensity, lasers with very short wavelength A < 1um
are considered in order to decrease the laser diffraction-limit. The electron-positron pairs
created from the vacuum would be quickly expelled out of the laser focal volume by the
extremely strong laser ponderomotive force and the probability of the initialization of
the QED cascade can be effectively suppressed [24]. As recently proposed [25], coherent
focusing of the high harmonics from the plasma surface paves a new way to achieve the
extreme intensity. Numerical calculation in Ref. [25] manifests that the Schwinger limit
can be reached by focusing the high-order harmonics from a concave plasma surface
interacting with a strong femtosecond laser pulse with the attainable intensity I ~
102 W /cm?.

1.2 Laser-plasma interaction
The investigation of laser-matter interaction is one of the most promising fields in modern

physics. Its applications range from the basic plasma phenomena [26] (such as plasma
wave generation, plasma instability excitation and plasma energy transportation), to
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the fundamental physical problems (such as vacuum nonlinearity [27], photon-particle
interaction [28] and plasma radiation [29]), even to multiples of very important appli-
cations (such as particle acceleration [30-32], fast ignition fusion [33, 34], or high-order
harmonic generation [35]).

A laser with an intensity of I > 106 VV/cm2 can rapidly ionize the matter, such as
solid, liquid and gas, and transform the matter to the fourth state so called “plasma”
which maintains atoms ionized but charge neutrality for the whole matter. The ionized
electrons are subsequently caught in the strong laser field and accelerated to energies
much larger than the atomic bounding energy. The fully or partially ionized ions can
also be accelerated in the laser field, but due to the much smaller charge-to-mass ratio,
the response of the ion acceleration is much slower than the response of the electrons.
The electromagnetic field induced by the current of the charged particles feeds back into
the interaction system and complements the incident fields to affect the motion of the
particles. The physics of laser-plasma interaction aims to study this interaction system
self-consistently.

A heuristic benchmark of the laser intensity is the normalized laser electric field ag
(ap = eEj/(mecw;) where e and m, denote the charge and rest mass of the electron,
respectively, F; and w; are the electric field and frequency of the laser, respectively, and
¢ is the light speed in vacuum). This normalized field ag has the very clear physical
meaning that the typical energy absorbed by an electron from the laser field in one
laser period in units of the electron rest energy me.c?. If ag > 1 (corresponding to
1 )‘12 > 1.37 x 10"® pum? W/ch), the laser intensity goes into the relativistic region
as the electron relativistic effects become important in the laser-plasma interaction. If
ag < 1, the relativistic effects can be ignored in the interaction physics.

One of the most important parameters in the laser-plasma interaction is the electron
plasma frequency wpe = (e2npe / eome)l/ 2 where Npe is the electron number density of the
plasma, and ¢p is the vacuum dielectric constant. If the plasma frequency wp. is smaller
than the laser frequency wy, the laser wave can propagate in the plasma. Otherwise, the
laser field would be shielded out by the plasma electrons because of their rapid response
to the laser field. The laser penetration is limited in the plasma skin layer c¢/wp. [36].
Hence, the condition for laser propagation in plasma can be used to define the plasma
critical density n. = meeowl2 /e? [26], which denotes that the plasma frequency is equal
to the laser frequency wpe = w;.

When the laser intensity reaches the relativistic region ag > 1, the characteristic
energy of the electron motion in the interaction becomes relativistic, E. = ~ygmec? ~
(14 a%/2)1/2m602, and the effective electron mass, ygm., increases. With this larger
effective mass, the response of the electrons to the laser field becomes slower. Thus, the
laser propagation in the plasma would be modified, and the self-induced transparency
effect [36] should be considered. Hence, the plasma critical density has to be redefined to
include the relativistic effect as n], = 'yomeeowl2 / e2. If the plasma is overdense, Npe > Ny,
the laser field can not propagate in the plasma, but if the plasma is underdense, n,. < n.,
the laser propagation in plasma is possible even if the plasma density is much than the
critical density n..

Correspondingly, for plasma ions, the typical ion plasma frequency can also be given
wpi = ((Ze)*ny;/eomi)'/?, where ny; is the ion number density, Z and m; denote the
charge number and rest mass of the ion. If one considers a neutral plasma with Zn,; =
Npe, the ion-plasma frequency wy; = wper/Zme/m; is orders of magnitude smaller than
the electron-plasma frequency. This means that the response of the ions is much slower
than the response of the electrons. For physical processes with the time scale of electron
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response ~ 1/wye, the ions can be treated as a static, positively charged background
which only provides an electrostatic field for the electron motion. The other effects from
ions on the electron dynamics may be included by considering the collisions effect. If the
duration of the interaction is comparable to the response time of the ions ~ 1/wy,; , the
ion acoustic wave can be excited. In such case, the plasma dynamics would be governed
by the interference among the low-frequency ion wave, the high-frequency electron wave
and the electromagnetic wave.

In the experiments for ultra-short (~ 20 fs) and ultra-intense (ap > 1) laser- solid
plasma (nye ~ 100n.) interactions, the duration of the interaction is on the time scale
of the laser duration which is, in general, a multiple of the laser period 27 /w;. This
interaction duration is much longer than the response time of electrons but shorter than
or similar to the response time of ions. In this situation, the excitation of the ion acoustic
wave is less important than the electron wave, but the collective motion of the ions due
to the radiation pressure acceleration or the hole-boring effect [31, 37] becomes crucial
because the laser ponderomotive force is extremely strong.

The physics of laser-plasma interaction is characterized with rich nonlinear effects
which closely relate to the different channels for energy transfer, such as particle ac-
celeration [30, 31], high frequency conversion [35, 38], and plasma wave excitation. All
of these channels are associated with each other. For example, the stimulated Raman
scattering [26] involves the phenomena of high frequency conversion and plasma wave
excitation. The plasma wakefield formation interconnects the particle acceleration and
the phenomenon of wavebreaking [36]. One of the main goals of the laser-plasma inter-
action physics is to control the dominance of the different energy transfer channels by
tailoring the interaction with different set-up conditions.

In this thesis, I focus on the plasma high frequency conversion. In the laser-plasma
interaction, there are various physical mechanisms responsible for the conversion, such
as resonance absorption [26, 39], parametric instabilities [40], and high-order harmonic
generation (HHG) [35]. HHG is one of the most promising effects with a high conversion
efficiency and high order of the maximal conversion frequency. In HHG mechanism, the
plasma modulates the incident laser wave nonlinearly and couples the high frequency
components to the laser transmission [41, 42] and/or to the reflection [16]. As this
plasma modulation happens normally in every (or half) period of the laser field, the
harmonic peaks are equally spaced with one (or two) laser frequency in the frequency
space. Because of the interference with the plasma wave, the typical plasma frequency
may also be encoded in the generated harmonic spectrum [43-45].

1.3 High-order harmonics generation

The subject of high-order harmonic generation has been one of the hottest topics in the
scientific community for decades. The motivations driving such long-time interests into
this subject are fundamental. One of the primary motivations is the great potential
of producing a light source with extreme optical properties, such as ultra-short pulse
duration in attosecond or even zeptosecond regime [46, 47], intense coherent radiation
in the extreme-ultraviolet region, and monochromatic light source in the soft x-ray re-
gion. Another very important motivation is the promising application of harmonics to
diagnose the related nonlinear processes, in which the harmonic signal can provide the
straightforward information and a deeper physical insight.
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1.3.1 Atomic high-order harmonic generation

In Fig. 1.1, HHG from different interaction systems are pointed out along the evolution
of the laser intensity. As shown, if the laser intensity reaches the region I > 103 W/ cm?,
the atomic HHG from gaseous materials becomes achievable [48-50]. One of the most
conspicuous characters of the atomic HHG is the evidence of a long plateau in the
harmonic spectrum followed by a rapid drop at a cut-off frequency [46]. As the harmonic
photon beam can be emitted in every half of the laser period, only odd-order harmonics
can be found in the spectra of the atomic HHG.

In experiments [48, 50], picosecond or femtosecond laser pulses were focused onto the
rare gas jets of helium, argon or xenon atoms and generated high-order harmonics via
the nonlinear process of atom ionization and recombination. This process is normally
described by the classical three-step model [13, 14]. In the strong electric field of the
laser pulse, the bounded electrons firstly tunnel-ionize from the gas atoms. Subsequently,
these free electrons are accelerated in the laser field to high kinetic energies. When
the laser field changes its direction, these electrons are driven back to the parent ions.
Finally, some of the high energy electrons recombine with the parent ions and release the
obtained kinetic energy as high energetic harmonic photons. The various field-prescribed
electron trajectories result in the different energies of the harmonic photons because of
the different acceleration energies.

In the so-called three-step model, the third step for the recombination of electrons
and ions essentially imposes one of the most fundamental restrictions on the application
of the atomic HHG. In order to avoid the strong ionization, the electron kinetic energy
cannot be too large to recombine with ions, the practical laser intensity has to be limited
and kept below I ~ 1016 W/ cm?. This would directly lead to the saturation of the
high harmonic intensity. Another fundamental drawback for the atomic HHG is the
poor performance of harmonic phase-matching [51]. Different orders of the harmonics
are emitted at different times corresponding to the different electron trajectories. The
consequence of this poor synchronization is the fact that the duration of the attosecond
pulse synthesized by the harmonics [52] is much larger than the Fourier transformation
limit of the harmonic spectrum [53].

If the incident laser intensity increases beyond the limit, I > 1016 W/ cm?, the mech-
anism of the atomic HHG would break down, and an alternative mechanism — plasma
HHG [35] — takes the place as shown in Fig. 1.1. With a well formed plasma target,
there is, in principle, no upper limitation on the applicable laser intensity, and thus the
saturation of the harmonic intensity does not exist in the plasma HHG.

1.3.2 Plasma high-order harmonic generation

In general, different physical mechanisms are responsible for plasma HHG. The under-
lying physical processes are extensively studied with different models, such as coherent
wake emission (CWE) [15], relativistic oscillating mirror (ROM) [16], coherent syn-
chrotron emission (CSE) [17], and relativistic electron spring (RES) [18]. These models
are characterized by different properties [17, 54-56]: spectrum scaling, pulse divergence,
inherent phase, and their onset depends on the plasma density of the target, laser in-
tensity, incident angle and the plasma pre-gradient [35, 57-59]. The physical processes
behind these models are associated with each other and may happen simultaneously
in the same interaction. The dominance of each model depends on the laser intensity,
plasma density and interaction geometry.

CWE [15] is caused by the plasma oscillation in the wake of the bunched Brunel
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electrons [60]. In the interaction process, the surface plasma electrons are firstly dragged
by the strong laser field out of the plasma into the vacuum, and then, when the laser field
changes the sign, the electrons reverse their moving direction and are accelerated back
to the plasma. These electrons bunched together penetrate into the plasma pre-gradient
and excite the plasma oscillation in the wake field of the electron bunch. In this model,
the oblique incidence of a laser with p-polarization! is required in order to have the field
component perpendicular to the plasma surface, and the finite plasma pre-gradient in
front of the bulk plasma is also essential for larger plasma oscillations [55, 61, 62]. The
emission of the harmonics in CWE model is limited to the local plasma frequency wpe,
and dominant in the non-relativistic region [63], ap < 1, as shown in Fig. 1.1. We want
to point out that CWE model is different from the resonance absorption [26, 39|, in
which the plasma oscillation is excited directly by the laser field.

ROM [16] (also shown in Fig. 1.1) is predominant in the relativistic region [63], ag > 1.
During the interaction, the surface of the plasma electrons, driven by the strong laser
ponderomotive force, oscillates with a large velocity and reflects the incident laser field
as a mirror. The plasma surface oscillation nonlinearly modulates the incident field and
couples the harmonics to the reflection of the laser pulse. In ROM model, the frequency
of the generated harmonics can be much higher than the plasma frequency. There
is no prerequisite for the angle of the laser incidence and the plasma gradient, while
for higher efficiency, the oblique incidence of the laser with p-polarization is preferred
to irradiate the plasma with an appropriate plasma gradient [55, 59, 64]. The first
theoretical calculation for ROM model [65] gave the harmonic intensity spectrum as a
power-law scaling, I(w) o< w™2®, rolling off at the Doppler up-shift frequency 42wy,
where w is the harmonic frequency and ~ is the maximal relativistic factor of the surface
“mirror”. In BGP theory [54], under the assumption that the electric field becomes
zero at the so-called apparent reflection point (ARP), i.e. E'(ct — xarp(t)) + E"(ct +
xArp(t)) = 0, the intensity spectrum of the reflected wave is improved and analytically
calculated as I(w) o< w83 up to a roll-off frequency w, o 3w, where zapp(t) is the
position of the ARP. Although the prediction of this spectral scaling is experimentally
confirmed [66, 67], this theory is not universal. The validity of this theory depends
strongly on the interaction parameters. According to the assumption, the reflected field
is as strong as the incident field with a simple phase modulation. However, in some cases
the amplitude of the reflected field could be much larger than the one of the incident
field, leading to proposals of new models [17, 18, 68, 69].

CSE [17] has the distinct feature that the intensity of the reflection is much larger
than the incident intensity, which cannot be obtained by a simple phase modulation of
the incident laser. In contrast to CWE and ROM, the attosecond pulse contained in
the reflection can be observed directly without any frequency filter. With the stationary
phase approximation [70], the typical spectral scaling of CSE model is given by I(w) o
w~*3 which is much flatter than the spectral scaling in BGP theory and manifests the
higher efficiency for high-order harmonic emission. From numerical analyses, CSE tends
to happen in ultra-relativistic region, ag > 1, with p-polarized oblique incidence. During
the interaction, an ultra-dense nano-bunched electron layer is compressed at the plasma
surface by the laser ponderomotive force, and then emits an extremely strong attosecond
pulse. The occurrence of CSE depends strongly on the parameters of the interaction,
such as plasma pre-gradient, laser intensity, incident angle and even laser carrier envelop
phase (CEP). Actually, the high amplitude of the emission implies that there has to
be an energy storage and release process during the interaction because of the energy

!The definitions for p- and s-polarization are given in Sec. 2.3.2.



Thesis outline and key achievements 7

conservation. This energy conversion process was firstly, to our knowledge, described
explicitly in RES model [18]. These two models are quite similar. Both of them consider
the emissions from the nano-bunched electron layer at the plasma surface, but from two
different points of view, and show the harmonic spectral scaling in different regions. The
detailed comparison between these two models will be presented in Sec. 3.4.

Within the aim of attosecond pulse emission, the performance of phase matching for
harmonics from the different models is crucial. In CWE model, the harmonics with
different order are emitted at different times because the oscillations of different plasma
densities are located at the different positions in the plasma pre-gradient [56, 62, 71—
73]. This leads to poor performance of the harmonic phase-matching and thus results
in longer attosecond pulse duration. However, harmonics from ROM model are emitted
synchronously by the plasma surface “mirror”, thus giving better phase-matching per-
formance [56]. Moreover, the emissions from the nano-bunched electron layer guarantees
the excellent performance of the phase-matching in CSE and RES model.

The experimental investigations of plasma HHG started more than two decades ago. In
the first experiment [74], a femtosecond laser with a focused intensity I ~ 10'7 W /cm?
was used and the 15th order of harmonic was generated. Immediately, with the im-
provement the laser intensity to I ~ 10 W/ cm?, the harmonics up to 75th order was
observed [75] in the interaction of a picosecond laser with a solid target. About ten year
ago, the implementation of the laser with intensity, I ~ 10%° W/cmZ, facilitated the
generation of the keV harmonic photons [66, 67].

In order to improve the harmonic flux and photon energy, a laser with ultra-relativistic
intensity I > 10! VV/cm2 is proposed to drive the interaction with a solid plasma
target. In this ultra-relativistic regime, the assumption and approximation in previous
literatures [16—18] may not be valid any more. For example, ion motion becomes essential
because of HB effect [37]. The laser pressure pushes the plasma target surface inwards
creating a double-layer structure. The electron layer in this structure oscillates around
the ion layer emitting high-harmonics, but the structure itself moves slowly inside the
target [1]. Additionally, the radiation reaction (RR) effects [76] also become important
in the ultra-relativistic laser-solid interaction by affecting the electron dynamics and
repartitioning the laser energy among electrons, ions and radiations in the plasma [77].

1.4 Thesis outline and key achievements

In this thesis, plasma HHG and single attosecond pulse emission via ultra-relativistic
laser-plasma interaction are studied. The two main topics are covered in the following
four chapters.

Chapter 2 presents the theoretical background for the whole thesis. We first introduce
the relativistic plasma fluid equations and plasma current radiation, and then briefly
summarize the basic viewpoints about plasma HHG. After this, we review the hole-
boring effect and discuss the correction from hot-electron generation.

Chapter 3 develops an analytical model for pulse emission from a well-defined electron
layer [3]. In this model, an analytical description for attosecond pulse is given, to our
knowledge, for the first time. We validate the assumptions for our analytical model
via particle-in-cell (PIC) simulations at the beginning, and then derive the expression,
spectral and phase properties of the emitted pulse. Based on these derivations, the
analytical description for attosecond pulse emission is given. Afterward, we discuss
in detail the energy conversion process underpinning the pulse emission and provide a
comparison with CSE and RES models at the end.
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Chapter 4 explores the parameter maps which highlight the optimum regions for gen-
erating a single intense attosecond pulse and coherent extreme ultraviolet (XUV) radia-
tions [1]. We start with a wide range of parametric studies to demonstrate the necessity
of including the effects of ion motion, electron-ion collisions and the radiation reaction
force. Further, we analyze analytically the widening of the harmonic spectra and validate
it by PIC simulations. Based on the results and physical considerations, the parameter
maps are presented.

Chapter 5 proposes a new scheme for an isolated ultra-intense phase-stabilized attosec-
ond pulse generation from a robust plasma self-generated gate [2]. We start with a brief
discussion about the motivations and introduce the basic method for attosecond pulse
generation from plasma high harmonics. After this, we propose the scheme of “plasma
gating” by means of PIC simulations and then analytically verify with our theoretical
model. Moreover, an extensive discussion about the phase properties of the generated
attosecond pulse is given.

Chapter 6 summarizes the main results presented in the thesis and gives a brief outlook
for the future investigations.

In addition, an appendix is attached describing the mathematical techniques used in
this thesis in a greater detail.



Chapter 2
Theoretical Background

In this chapter, we briefly introduce the theoretical background for the whole thesis.
For the completeness, we start from the well-known relativistic Vlasov equation and
Maxwell’s equations to derive the plasma fluid equations in Sec. 2.1, and then, the
coherent radiation from the plasma current is given in Sec. 2.2. On account of the these
derivations, we give the harmonic generation from plasma current and the corresponding
selection rule in Sec. 2.3. In ultra-intense laser-plasma interaction, the hole-boring effect
becomes very important. In Sec. 2.4, we give the theoretical description of the hole-
boring velocity, show the typical double-layer structure, and also discuss the velocity
correction from the hot-electron generation. All the contents in this chapter are based
on Kruer’s book [26], Lichters’s paper [16], Briigge’s thesis [70], Levy’s paper [78], and
our papers [1, 2].

r VL

Plasma

<

Figure 2.1: Schematic diagram of the laser-plasma interacting geometry.

\ 4

Xy,

Before we start the theoretical derivation, we first introduce the geometry of the laser-
plasma interaction for all the discussions and simulations in this thesis. As shown in
Fig. 2.1, a laser from the left side with the wave vector k; irradiates the plasma target at
the right side with the incident angle 6. The plasma target is too thick for the laser pulse
to propagate through, thus we study the harmonics in the reflection. The incident plane



10 2. Theoretical Background

is defined by the vectors k; and n,, as the x — y plane, and the z—axis is perpendicular
to the incident plane, where n,, is the normal direction of the plasma surface. Fig. 2.1 is
the geometry in the frame of lab reference. In practical discussions and simulations, we
transform this oblique incidence 6 # 0 in the lab reference to be a normal incidence 6 = 0
case in a boosted frame of reference by employing a simple Lorentz transformation [79],
see Appendix A.4. In this thesis, we call the boosted frame of reference as the simulation
reference. If normal incident (# = 0) is employed, the simulation reference is identical
to the lab reference.

2.1 Relativistic Vlasov equation

In this thesis, we consider the fully ionized plasma without including any particle creation
and /or annihilation processes. The distribution function f(¢,r, p) of the different particle
species obeys naturally the continuity equation in the phase space (r,p)':

‘2{+v (ﬂfvf)w (Zi’f)—o, (2.1)

where r and p are the spatial and momentum coordinates for the plasma phase space.
v = +/1+ p?/m?c? is the Lorentz factor, m is the mass of the plasma particle. Since r
and p are the independent variables, we can modify Eq. 2.1 and obtain

P d
a{+—Vf+ pfz—f(vp-d‘t’>, (2.2a)

d d
or & ferp) =7 (v, ) (2.2b)

The right term — f(V,- dt P) represents the source of the temporal derivative of the distri-
bution function f(t,r,p), and is the consequence of the force divergence which may come
from collision effect, radiation reaction force and so on. For convenience and clarity, we

only consider the divergence-free force V- %It) = 0 here and include the effects of the
source term later. We get the source-free Vlasov equation [26]
of P )
— V — xB |-V, f=0, 2.3
5 oo Vit < o nf (2.3)

where the Lorentz equation cUlTrt) =q(E+ n% x B) is included?, and ¢ is the charge of the
particle species. The physical meaning of this equation is that the distribution function
is a constant along the dynamic trajectory, i.e. df(¢,r,p)/dt = 0 [26].

2.1.1 Moment equations

Below we will follow the derivations in Kruer’s book [26] for the non-relativistic Vlasov
moment equations to get the relativistic version. Firstly, we introduce the expressions
for the particle number density n(¢,r), the momentum current n(¢,r)P(t,r), and the

'Here, we give the discussion for each charge species, and do not distinguish the electrons and ions
2Tt is easy to verify that Lorentz force is divergence free
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current of the number density J(¢,r) = n(t,r)u(t,r):

n(t,r) = /f(t,r, p)dp, (2.4a)
n(t,r)P(t,r) = / pf(t,r,p)dp, (2.4D)
n(t,r)u(t,r) :/:;yf(t,r, p)dp, (2.4c)

where u(t,r), P(t,r) are the mean velocity and momentum of the plasma fluid. We want
to stress that the relation, P = mu(1 —u?)~1/2, is not correct for the general relativistic
situations, but it is a good approximation for the cold relativistic plasma fluid dynamics
and also the non-relativistic cases.

By integrating Eq. (2.3) over the momentum space, the first moment equation of the
source-free Vlasov equation: conservation equation [26] can be obtained

L ivI=0. (2.5)

The second moment equation can be obtained via the integral:

/P{Z%—%-Vrf—l—q(E—l—%xB)-fo}dp:O. (2.6)

The first term gives

0 0
paffdp = 5,("P)- (2.7)

The second term can be calculated with a simple tensor algorithm as:

P
/pm'Vdep = /pv- Vi fdp = Vr'/VPfdP

~ V- [(v = w)(p ~ P)fdp + - (nuP)
—V,-P+V, (nuP), (2.8)
where v = W% and P = J(v —u)(p — P)fdp is the plasma thermal pressure tensor and

is determined by the plasma temperature (7).
The third term can be evaluated as:

q/p<E+ﬂf7 xB)-vpfdp:q/pvp- [<E+WIL)7><B>f] dp

:q/vp. [(E+T§Y ><B) pf] dp

—q/(E—i—p xB)fdp
my
=—qn(E+uxB), (2.9)
here, we consider the boundary condition of the distribution function, i.e. f(t,r,p) =0

if |p| — +oo.
With above derivations, we can know that the second moment equation is actually
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the motion equation of the plasma fluid [26]:

gt(n’P) +V, (nuP) =qn(E+uxB) -V, P, (2.10)

and with the conservation equation (Eq. 2.5), the motion equation can be simplified as:

?j—i—u-V?ﬂP:q(E—kuxB)—lvr-

i‘Un

(2.11)

3

In the above derivation, we consider the dynamics of the source-free plasma. If the
plasma is very dense (n > n.) and has a low temperature (T'), the collision effect
would be very important and can contribute to the source term in Eq. (2.2). A detailed
consideration of the collision effect is out of the scope of this thesis. Here, we just give a
simple consideration and show the general result. As we know, collisions cannot change
the number of the particles, thus the conservation equation (Eq. 2.5) is unchanged.
However, the collision effect can act as a friction to effectively damp the motion of the
plasma fluid, so we can modify the motion equation (Eq. 2.11) to phenomenologically
include the collisional damping as:

where v, o nT3/2 represents the collision frequency for the momentum damping [26,
29].

Until now, we consider the full-dimensional (3D) system which is not convenient to
apply in the practical situation. In the case where the laser transverse width is much
larger than the laser wavelength, the interaction system can be well approximated to
be a one dimensional (1D) system, wherein the transverse spatial dependence of all the
variables can be neglected. This geometry is capable to address both normal and oblique
incidence cases in the simulation reference with a suitable Lorentz transformation (See
Appendix A.4). As shown in Fig 2.1, we choose the direction x to be the propagating
direction of the incident laser pulse, and for high-order harmonic generation, a linearly
polarized laser is employed. Hence, we can simplify Eq. (2.12) as below:

0Py OPy 10 =

— = - - - .1
T + Uy pe q(Ez +uyB, —u.By) naxPM v Pz, (2.13a)
0Py oP, 10 =
W + 'U/g;% = q(Ey 'U,J;BZ) g%ny chy s (213b)
oP, oP. 10 =
5 U, = q(E. + uz By) E%PM VP, (2.13¢)

with

n

—_—— —

(vp — ug)(pz — Pz) fdp,
(vz — Ux)(py —Py)fdp,

(Ve — uz)(p2 — P2) fdp,

Yy

y =

E:U”

where F, is the plasma electrostatic field, and no static magnetic field B, = 0 in x
direction can be generated by plasma current.
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2.2 Radiation from plasma current

Now, we proceed the general derivations for the coherent radiation from the plasma
current which provides theoretical framework for the plasma high-order harmonic gen-
eration.

Starting from the Maxwell’s equation:

10E
cz ot’

with B =V, x A, E = —V,¢ — JA | /0t and the Coulomb gauge V,- A = 0, we can
obtain the wave equation for the electromagnetic vector potential:

V, x B = pod + (2.15)

1 62 9

g@_vr Al =podL, (2‘16)
where g is the vacuum permeability, A, and J are the vector potential and plasma
current in the perpendicular direction to the laser propagation. In 1D geometry, it can
be simplified as:

10?2 07
———— ——= | A = pued,. 2.17
<02 ot? 83:2) 1= HodL ( )
This is a classical wave equation, and can be solved with the help of a mature algebra—Green
function G(z,t; x/,t/).
By constructing a Green’s function fulfilling the condition:

1 82 82 ;o / /
(cQé?tQ_BxQ> Gz, tix,t)=0x—x)i(t—t),

The wave equation of the vector potential can be solved as:
Al(n,f) = uo//dt/d:ch(x,t; 2 )3 ). (2.18)

In order to attain the specific expression of the Green function G(z, t; z, t/), the bound-
ary condition of the vector potential A (x,t) has to be considered. In this thesis, we
study the harmonics in the reflection from the plasma target. There is no laser pulse
incident from the right side and all the leftward radiation is the reflection of the incident
laser from the left side. The target plasma is thick and dense enough, so that no elec-
tromagnetic wave can propagate through. Hence, we can have the boundary condition:
|A(t,z)| — 0 for z — 4o0.

With this boundary condition, we can choose the Green function G(x,t;2’,t ) as [70):

G(x,t;x’,t’):g [@ (t—t/er_x ) —®<t—t'+ 22 |>] : (2.19)

C C

where © is the Heaviside step function. There are different ways for the construction
of Green functions, All of them will give the same result under the boundary condition.
Here we just provide one possible way with clear physical meaning. Inserting this Green
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function into Eq. (2.18), we can obtain the vector potential

AL(x,t):%//dt’da;’ [@ (t—t’+x_cx ) —@(t—t’+ |x_cx )]h(az',t'),

(2.20)

here we define (ac/, t/) as the space-time point in the plasma, and (x,t) as the space-time
point for the field. To clearly show the physical meaning, we first calculate the electric

field with F| = —%&—# and obtain:

EL(x,t):%//dt'dx’ [5 <t—t’+ |x_cx |> —6<t—t/+x_cx )]JJ_(x/,t/),

(2.21)

here the relation 00 (x)/dx = 0(z) is used. Assuming that during the interaction the
plasma distributes from the leftmost location xé to the rightmost location :1:;, e 1 €
(ZL’;, x;) Ifz > x;, E| (z,t) = 0 in Eq. 2.21 because of the boundary condition. If x < x},
the electric field can be divided into two parts:

B (2,t) = %//dt’dx’a <t e — ) 3.2 ), (2.22a)

E, (z,1) = —%//dt’dm’d <t o qj_f) J.(z,t), (2.22b)
where E' (z,t) denotes the incident laser field which drives the plasma current at (z',¢),
and E'| (z,t) represents the reflected field coming from the superposition of the radia-
tions from the plasma current at (z',t). The ¢ functions in Egs. (2.22) guarantee the
retardation relations ¢t — z = ¢t — z' between the incident laser and the caused current
and ¢t + z = ¢t + 2 between the source current and the reflected wave. If we detect
the field at the location x far enough from the plasma leftmost boundary, i.e. x < x},
Eqgs. (2.22) can be simplified as:

. +oo / / — '
Ei (z,t) = H° do'J | (az P — ) : (2.23a)
2 J_x c
, foc [T / -z
E' (z,t) = —— de J) |x,t+ . (2.23b)
2 J_x c

Eq. (2.23b) describes the radiation from the collective current in the plasma target
and can work as the starting point for the theory of the plasma high-order harmonic
generation.

2.3 Harmonic generation

Plasma harmonic generation has been extensively discussed with different models as
introduced in Sec 1.3.2 and from different points of view: incident field modulation in
ROM model [16], and plasma current radiation inn CWE [15], CSE [17] and RES [18]
models.

The first intuitive point of view from Eqgs (2.23) is that the plasma surface, moving
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as a “mirror” [54, 65, 80-82], modulates the incident wave and couples the harmonics to
the reflected wave. To certify this point, an approximation that:

!/ /

Ji(@ ) =T () —za(t)) (2.24)

is used implying that the field modulation happens within an ultra-narrow interaction
zone at the plasma surface. Inserting this approximation into Eqs (2.23), we can get

: It
B (r,1) = ¢ L) , (2.252)
2 1= ﬁel(t ) ct/—azel(t,):cti—m
E' (z,t,) = _poe _Jutt) ), , (2.25b)
2 1+ Bd(t ) et +xo () =ctr+a

where x¢(t') andBy(t') = dxe(t')/cdt are the location and velocity of the plasma “mir-
ror”, we specify the time ¢; and ¢, for the incident and reflected field. With the retarda-
tion relations in Eqgs.(2.25), the reflected wave can be expressed as:

/

r _ 1= Balt) x_xel(t/)
E' (z,t,) = 1T ) B <ZL‘,tT + 20> . (2.26)

This is the so-called totally reflecting oscillating mirror model [70]. As we can clearly see,
the reflected field is nothing but a modulation of the incident field: phase modulation
and amplitude modulation.

Phase modulation: —2z¢(t)/c originates from the nonlinear motion of the plasma
“mirror”.

Amplitude modulation: (1 — Ba(t))/(1+ Ba(t)) can be regarded as the consequence
of the Doppler effect from the plasma “mirror” motion.

This plasma “mirror” approximation is intuitive for understanding plasma harmonic
generation, but can only works for long-wavelength harmonic emission with wavelength
Aw > Ax, where Az is the thickness of the interaction zero.

The point of the plasma current radiation is that the abundant nonlinearities in the
plasma current driven by the incident laser pulse is coupled to the reflected wave as
harmonics. To verify this point, we trace the source of the harmonics in the reflected
wave by transforming the reflected wave into the frequency space:

. 1 [+oo .
E (r,w)=— E'| (z,t)e™'dt,
T J—o00

and inserting Eq. (2.23b) into above equation, we can obtain

~ +oo . +oo ’ ’ — '
Ei(az,w):—w/ dteZWtL dz J | (:E,t—l—x Cw)

47T — 00 (o)
+OO ! +OO !z / l'—ﬂ')l / /
:—Z—Oc/ dx / dt e ==y (2,1
T J—o00 —00

C S wx +0o0 ’ too z/ ro
e dx / dt eI (1)
4 —oo —o0



16 2. Theoretical Background

= —pgeme e | (—w,w) , (2.27)
c
where the 2D Fourier transformation of the current J L(m,, t/) is used as

1 oo e iwt —kz iy
JL(kw) 42/ dw[m dt e e " J (x ,t).

From Eq. (2.27), we can clearly see that the harmonics contained in the reflected wave
come from the different frequency components in the plasma current propagating to
the left side. There is only a linear phase shift (—iwz/c) between the electromagnetic
harmonics and plasma current harmonics. This phase shift stems from the retardation
relation and can be compensated by a time shift in Eq. (2.27). The harmonic intensity
spectrum can also be obtained

2

2.2 2

’EL T, w ‘ = pyecm (2.28)

w
3. (Y
L( C’W)

As we see, the harmonic spectrum is nothing, but a spectrum of the plasma current.

2.3.1 Cold fluid approximation

To calculate harmonic spectrum, we have to know the analytical expression of the trans-
verse current. In practical case, this can only be done by means of kinetic simulations
with particle-in-cell (PIC) code [83, 84] or the Vlasov code [85, 86]. Here, we resort to
the so-called relativistic cold fluid approximation, and give the analytical expression of
the transverse current which is adequate to understand some general properties of the
plasma harmonics.

In the cold fluid approximation, u and P are the velocity and momentum of the cold
fluid and fulfill the relation:

P = ymu,

T V1—u?

The transverse current can be given as
J| = —eneue + Zen;ug . (2.29)

Here we consider all the quantities in the simulation frame (See Appendix A.4) wherein
the laser is normally incident and the plasma has the density, no/ cos(#), and the initial
velocity, ug = —csin(6)y, 0 is the incidence angle of the laser pulse and ng is the initial
electron plasma density in lab reference. n. is the distorted electron density, and we
neglect the ion density perturbation, Zen; = eng/cos(6), Z is the ion charge number.
To calculate the velocity of the electron fluid, we make use of Egs. (2.13b) and (2.13c¢)

8'Pl+u oPL
ot Y or

—E(EJ_ + Uy X BJ_) , (230)

here we neglect the collisional damping and take the thermal pressure to be zero as a
cold fluid. With By =V, x A, E; = —-0A,/0t and 4 = 8t + uwax, we arrive the
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conservation of canonical momentum for the fluid:

d
—(PL—€eA;)=0. (2.31)
dt
Hence we can have
P.. —eA| =const = PY| = —m.ctan(d)y, (2.32)
and obtain
P.. =eA] —mectan(0)y. (2.33)

Inserting Eq. (2.33) into Eq. (2.29), we gain the expression of the current

J| = —en, +e ug
Ne A
=———A] +ectan(f) [ - no] v, (2.34)

with

AL _ tan(h)y)2
%_\IH(W tan(6)7) (2.35)

2 )
1- exr

where Se; = Ueg/c is the longitudinal velocity of the electron fluid. As we can see, there
are two terms contributing to the current J, [63]. The first term, proportional to A,
is driven by the total field. The second term, proportional to tan(#), originates from the
oblique incidence with ¢ # 0. Both terms include the contributions from the distortion
of the electron density, n., and the acceleration, 7., of the electron fluid because of ne /.
In the first term, the total radiation field, A, is coupled with the current leading to
different parity® from the second term, i.e. if odd-order harmonics is radiated from the
first term, the harmonics from the second term have to be even order, and vice versa.

To solve the temporal evolution of the transverse current, we have to know the dynamic
evolution of the electron density distortion, n., and the electron fluid acceleration, ..
Using also the cold fluid approximation to Egs. (2.13a), we can obtain

OPes | OPer _ P
ot | “"Tor  dt

=—e(Ey+u. xBJ).
Combining with Eq. (2.30) and making use of the relations v2m?2c* = ¢2P? 4+ m2c?, and
E, = —-0A,/0t, we arrive at

de -
i = 76(,PexEx + PeJ. ' EJ_)

dt — m2c,
e 0 tan(6) 0 .
2 (0) AL-y> .

—€

=~ (Bue -

MeC

2 (2.36)

2MeCye ot Yo Ot

3Parity corresponds to the odd or even order of the harmonics
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With the density conservation equation (2.5):

on One Onefex
- T‘J — =0, 2
oy H VAT =02 S8 e = 0 (2.37)
Poisson equation:
V.E— —en, + eng cos™ () N O0E, _ —eneteng COS_1(9)7 (2.38)
60 81‘ 60
where € is vacuum permittivity, and Eq. (2.17):
192 92 e* ne Ne o
<at - a) Ao | tea et ® (2 w3 (239

we can, in principle, solve the temporal evolution of the transverse current J | and obtain
the radiation A | from the current. Here we do not solve this set of equations (2.35—2.39),
but try to extract some information from the equations to give general facts about the
plasma harmonics.

2.3.2 Selection rules

From the above fluid derivations, we can deduce the general “selection rules” of the
plasma harmonics.
Before we start the deduction, we first give two definitions:

p-polarization: the electric field E; of the incident laser is in the incident plane, and the
magnetic field B; is perpendicular to the incident plane, see Fig. 2.1.

s-polarization: the magnetic field B; of the incident laser is in the incident plane, and
the electric field E; is perpendicular to the incident plane, see Fig. 2.1.

For normal incidence (6 = 0): p-polarization and s-polarization are the same, we have
J=—""—A,. (2.40)

From Eq. (2.36), we know that 7. and (., E, relate to the square of the field Ai, and
from Eqgs. (2.37, 2.38), we can infer n. also contains only even order of A due to
BewFx — Pexne — ne. Hence, J | is the function of the odd order of A |. If A | ~ ™t
only odd-order harmonics can be emitted from the transverse current, as we see in
Fig. 2.2(a).

For oblique incidence with s-polarization: A | = A,z, we obtain

Jy = ectan(0) (ne - no) .

€2 ne

J,=——-CA,. (2.41)

Because A -y =0 in Eq. (2.36), the same arguments can be used as those for normal
incidence: n. and 7. are the function of Ag. Thus as we can see, J, only contains the
even order of A, radiating the even-order harmonics with p-polarization, and J, only
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Figure 2.2: PIC simulations for HHG. (a) Harmonic spectrum for normal incidence. Only odd-order of
harmonics are generated. (b) Harmonic spectrum for oblique incidence with s-polarization. Both odd
and even order of harmonics are generated, but with different polarization. (c) Harmonic spectrum
for oblique incidence with p-polarization. Both odd and even order of harmonics are generated with
same polarization. The normalized laser electric field is ap = eFE;/(mecw;) = 40 and the plasma
target has the density ng = 200n.. For (a), 1D simulation is used. For (b) and (c), 2D simulations
are employed with incident angle 6 = /4.

incident laser ‘ Odd harmonics ‘ Even harmonics ‘

normal (linear) | same as incident
oblique (s) s p
oblique (p) p p

Table 2.1: Selection rules for polarization (s-polarized, p-polarized) of harmonics depending on the
polarization of the incident laser for normal and oblique incidence [16, 70].

contains the odd order of A, contributing to the odd-order harmonics with s-polarization.
The harmonics with p- and s-polarizations are clearly shown with the different parity in
Fig. 2.2(b).

For oblique incidence with p-polarization: A | = A,y, we get

€2 ne

n
J, = ———A, +ectan(6 (e—n). 2.42
y o (0) S, o (2.42)

From Eq. (2.36), we can see that 7. and S, E; are driven by both odd and even order
of the field A,. Hence the current J, can contribute to both odd and even order of
harmonics with p-polarization as shown in Fig. 2.2(c).

The selection rules deduced above are summarized in Table 2.1. In practice, these se-
lection rules can be violated due to the high-dimensional effects and the nonlinear plasma
effects, such as tight focused laser, hole-boring effect, plasma waves and wavebreaking
effect etc.

2.4 Hole-boring effect

In the ultra-relativistic laser-plasma interaction, the hole-boring effect becomes essential
as the super-strong laser ponderomotive force provides efficient ion acceleration [31,
32]. This acceleration can change the laser energy partition among ions, electrons and
radiations. In the process of acceleration, ions can be strongly compressed at the plasma
surface. This will affect the dynamics of the electron layer and the plasma surface
current. All of these can influence the plasma high-order harmonic generation.

The hole-boring effect can be understood with a quasistationary laser piston model [37,
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87], where the electrons are pushed forward by the laser ponderomotive pressure and
the ions follow behind. In the hole-boring process, a double-layer structure is built up
as show in Fig. 2.3.

—Zn;
Ne

Vho

Momentum Flux

G—

Laser Pressure

—>

Figure 2.3: Schematic diagram for the double-layer structure of the laser piston model. Electron
density (red line) and ion density (blue line) are strongly compressed at the surfaces. In the piston
reference of frame, the laser pressure (green arrow) from the left side gets balance with the momentum
flux (blue arrow) from the right side. The laser electric field (green line) and the initial profile of the
plasma density (black dashed line) are also shown.

In the reference frame of the stationary piston moving with the velocity, vp, = c¢Bnp,
relative to the lab reference for normal incidence (§ = 0), the laser intensity is given
with a Doppler factor as

I =1 .
: 1+ B

= bw (2.43)

The unperturbed plasma coming from the right side with velocity —wp interacts with
the laser pulse at the laser-plasma interface, and is reflected elastically to the right side
with velocity wvp,. At the interface of interaction, the laser momentum flux 2Il/ /c gets
balanced with the plasma momentum flux Q(N;thme%bvhb + n;vhbmmhbvhb):

21
C

= 2(n, Vb MeVhbURb + VAL Vb VRD) (2.44)

where v, = (1— ﬁ%b)_l/ 2 n/e = ngypy and n; = noype/Z are the density of electrons and
ions in the piston reference, Z is the ion charge number. Substituting all the variables
in piston reference (') with the variables in lab reference, we now arrive at

I _ P (2.45)

nomec3(1 + ZLWZE) (1-— ﬁhb)Q ’
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By introducing the new parameter

I,
B= . 2.46
\/nomec3(1 + Zn-) (2.46)

we can obtain the velocity of the stationary piston

B

5hb:1+7B-

(2.47)

With the piston velocity, we can study the reflection coefficient (R) of the laser energy,
which is crucial for the harmonics generation in the reflection. Via a simple Lorentz
transformation, the reflected laser intensity in the lab reference can be obtained from
the reflected laser intensity I l/ in piston reference:

I =1

1 — By —Il<1_ﬁhb>2- (2.48)

1+ By 1+ By

Considering the power incident to the plasma surface I;(1 — ;) and reflected from the
plasma surface I (1 4 Byp), the energy reflection coefficient is gained:

T+ 8m) 1= B
L(1—PBw) 14 B

As we can see, the energy reflection becomes less if the hole-boring velocity becomes
larger, which would lead to weaker harmonic flux.

Until now, all the above derivations are given for normal incidence (§ = 0). In order
to generalize the expressions for oblique incidence, we can repeat the same derivations,
but substitute the variables with the correspondences in the simulation reference via
the Lorentz transformation (See Appendix A.3), i.e. ng — ng/cos(f), I; — I, cos*(9).
The rest mass of the electron and ion should be replaced with the effective mass: me —
me/ cos(f), m; — m;/ cos(f) because of the transverse momentum. Hence, we can have
the same expressions for the piston velocity (fps) and the reflection coefficient (R) in
the simulation reference, but with the new parameter:

B—\/ ficos’(6) (2.50)

nomec3(1 + anlrie )

R

(2.49)

Here, we ignore the plasma heating effect [88-90] which absorbs the laser energy and
warms the plasma particles in the interaction zone. The plasma heating effect could
change the momentum balance for Eq. (2.44) and further change the energy reflection
(R). We will show that the correction from hot-electron generation on the hole-boring
velocity becomes considerable with low plasma densities, and this discussion will be
included later in Sec. 2.4.2.

2.4.1 Double layer structure

We can clearly see the double-layer structure in Fig. 2.3. The charge separation be-
tween the electron layer and the ion layer is supported by the laser ponderomotive force
Jpond ~ VEIQ. For circularly polarized lasers, the ponderomotive force is constant re-
sulting in the constant charge separation. However, a linear polarized laser is employed
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——mny = 50n, —ng = 50n,
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Figure 2.4: 1D PIC simulations of the temporal evolution of the double-layer structure for normal
incidence (6 = 0) case. (a), (c) Evolution of the ion layer surface. (b), (d) Evolution of the electron
layer surface. The corresponding ion layer evolutions are attached with the dashed lines. The laser
has the temporal profile a(t) = ag(tanh((t —Ts)/W) —tanh((t —T.)/W))/2, where W =T, = \; /¢,
T, = 4T;, T, = 14T}, ag = eE;/(me.cw;) = 40 for (a) and (b), ag = 100 for (c) and (d). The gold
(Z =179, A =197) plasma is used with the constant density profile. We label the time ¢ = 0 when
the laser arrives the plasma surface at = 0. The electron and ion surface are defined at the location
with n, = Zn; = agn.

for plasma harmonic generation, the oscillatory ponderomotive force leads to the oscil-
lation of the charge separation. In one laser cycle, when the laser electric field rises, the
ponderomotive force pushing the electron layer forward gives a large charge separation,
and then the laser electric field drops, the strong charge-separation (electrostatic) field
accelerates the electron layer back crossing the ion layer to emit a pulse. The process can
repeat in one (or half of) laser cycle to give a pulse train in time domain or a harmonic
spectrum in frequency domain.

In Fig.2.4, we can clearly see the oscillation of the double-layer structure. The electron
layer oscillates around the ion layer with the frequency 2w; because of the oscillatory
component in the laser ponderomotive force, where w; is the laser frequency. The ion
layer has a roughly constant motion inside the target, and can not response to the
oscillation of the laser ponderomotive force because the ion plasma frequency is much
smaller.

According to Fig.2.4 (a) and (c), we can numerically calculate the hole-boring velocity
B = dx/cdt and compare with the theoretical calculations from Eq. (2.47). As shown in
Table 2.2, we can clearly see that the simulation results match very well the theoretical
results except that the simulation results are slightly smaller. This comes from the
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ag =40, I; =800, 0 =0
Piston model Simulation  Correction
ng = 50 By = 0.057  Bpp = 0.055 B, = 0.046
ng =120 By, =0.037  SBpp =0.035  Bpp = 0.034
ng =200 B =0.029 By, = 0.027 [y = 0.027

aog = 100, I; = 5000, 8 =0
Piston model Simulation  Correction
ng = 500 By = 0.045  Bpp =0.042 By = 0.043
nog = 2000 Bhb = 0.023 5}11) = 0.022 6hb = 0.022
ng = 5000 By, =0.015 [y, =0.013 By = 0.014

Table 2.2: Comparison between the theoretical calculations and simulation results of the hole-boring
velocity. Eq. (2.47) and the corresponding parameters in Fig. 2.4 are used for theoretical calculations.
The evolution of the ion surfaces in Fig. 2.4 (a) and (c) are used to calculate the hole-boring velocity.
The corrections from the hot-electron generation are also included.

correction of hot-electron generation as we will discuss in the next section.

2.4.2 Correction from hot electron generation

The partitioning of the laser energy and momentum into the piston-punching particles
(ions and electrons) and the hot electrons has been studied for decades [78, 91-94].
It is proved to be very complicate topic. It may depends on laser intensity, plasma
density, interaction geometry etc. To date, no general theoretical framework has been
built based on the first principles or matches the experiments in an extensive parameter
range. Here, we take advantage of the theoretical model from Levy’ paper [78] and the
practical parameters used for plasma harmonic generation to calculate the hole-boring
velocity with the account of correction from hot-electron generation.

In the simulation reference, the incident energy flux onto the plasma surface reads (1—
Bry) 11 cos?(6), which can bring the momentum flux, (1 — Bp3)I; cos?(6) /¢, to the plasma.
The reflected energy flux from the plasma surface can be expressed as R(1— )1 cos?(0)
which can take the momentum flux, —R(1 — Sp)1; cos?(6)/c, from the plasma, where R
is the reflection coefficient as discussed in Eq. (2.49). The plasma absorbed energy and
momentum are partitioned for hot-electron generation and the acceleration of the piston-
punching particles. We can assume that the hot electrons have the averaged energy,
ynmec?, and forward velocity, vj, = c. The velocity of the piston-punching particles can
be calculated from the hole-boring velocity, vy, by a Lorentz transformation since they
are elastically reflected in the piston reference:

o 2B y _ 148
S 1=

For hot electrons, we can have the relations: 7, > 7, and v, > cos~1(6). Hence, we
can have the energy conservation:

(1= Br)(L = R)Icos®(0) = (7 — L)mec?npoy,

+ (ypp — 1) <me + TZZ) ngvpy cos 2(6), (2.51)
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and the momentum conservation:

1
(1= Bu)(1+ B) T cos®(8) = yumevnnon

+ Yop (me + n;) VppnoURy cOs2(0) (2.52)

here we already consider the particle effective mass, m; ./ cos(f), and plasma density,
ng/ cos(theta), in the simulation reference. After simple calculations, we can simplify
the conservation equations as:

(v — Dmec®ny, 287, B

1-— 1-— = — 2.

(1= Bmw)(1 - R) T cos2(0) B (2.53a)
YhmeCPny, Z,B}QLb 1

(1= Bw)(1+ R) =

— 2.53b
Ijcos?(9)  1— 32, B’ ( )

where B is the parameter define in Eq. (2.50). To calculate the hole-boring velocity vpp,
we sum Eq. (2.53a) and Eq. (2.53b), and gain that

288 1
201 = ) =4X + 75— (2.54)
where
x _ G = Omeny e (255)

AT cos2(f) 21 cos?(H)

denotes the rate of energy absorbed by the hot electrons. For plasma harmonic genera-
tion, an over-dense plasma, ng > n., is always employed. In this situation, hot electron
generation is limited because the laser pulse can not penetrate deeply into the plasma.
The hot electrons can only be excited in the plasma skin depth ds ~ \j(n./ no)l/ 2N
by the plasma surface field Fy ~ El(nc/ng)l/2 < E;, where n. = eomewlz/e2 is the
plasma critical density, \; and E; are the laser wavelength and electric field. Thus we
can have the assumption that

(2’711 - 1)menh
4(meng + myng/Z)

XB? = cos?() < 1, (2.56)

which represents that the mass density of the hot electrons in the interaction region is
much less than the total plasma mass density, and the relativistic factor ~;, can not play
a significant role to change the ratio.

With the assumption X B? < 1 and keeping the first order of approximation, we can
arrive at the hole-boring velocity with the correction from hot electron generation,

B
By = m(l -X), (2.57)
To analytically calculate the correction term X, we have to first calculate the average
energy v, and density nj of the hot electrons. Since the precisely calculation is not
possible, we just show the simple estimation of ~; from the plasma surface field F; and
then summarize the hot electron density from previous results [93, 95-97].
As we know, the plasma surface electric field is estimated in ref. [16] for p-polarization
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as
B, ~ 2By, |2 2 (2.58)
8720 g cos(6)” '
and thus the average hot electron energy can be calculated:
1 eEs 2 2Il/Ir
~ =T 2.59
Th Y <(mecwl) > ng cos2(0)/n.’ (2:59)

where I, = egc(mecw;/e)? = mecn. corresponds to the normalized electric field, a = 1,

and the average gives a factor, 1/2, for a linearly polarized laser. From the previous
literature [93, 95-97] and our simulation results, we can estimate the hot electron density
as:

np & % : (2.60)

where n,.. represents the relativistic critical density:

Npe = N COS 9\/1+ < p?/(mec)? >

E 2
znc(:0526$1+<< e ) >
meCW)
:nccos29\/1+I/Ir

~ necos>Oy/1/1,. (2.61)

Inserting Eqs. (2.59)-(2.61) into Egs. (2.55), we can obtain the correction from hot
electron generation as:

v ~_ VITL

N — 2.62
h 3ng cos2(0)/n. (2:62)

To check the correction of the hot-electron generation, we calculate the hole-boring
velocity with Egs. (2.57) and (2.62) for the parameters in Fig. 2.4 and show the results
in Table 2.2. As we can clearly see, with hot electron correction, the theoretical results
match better with the simulation results, except the one for case (ag = 40, ng = 50n,).
In this case, the hot electron correction is overestimated, this may because the plasma
surface is strongly compressed, which would reduce the laser penetration and thus the
hot-electron excitation.
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Chapter 3

Pulse emission from plasma surface
electron layer

In this chapter, we develop a theoretical model for pulse emission from a well-defined
plasma surface electron layer in the ultra-relativistic laser-plasma interaction. In Sec. 3.1,
we first introduce the theoretical model and derive the spectral and phase properties of
the emitted pulse. The influence of the finite extension of the electron layer is also
considered. Based on these derivations, we calculate the analytical expression of the
attosecond pulse by filtering out low-frequency components in Sec. 3.2. Moreover, in
Sec. 3.3, we discuss the energy conversion process underpinning the pulse emssion. At
the end, we present the comparison between our model and the previous CSE and
RES models in Sec. 3.4. The discussions about CSE and RES models are from Briigge’s
paper [17] and Gonoskov’s paper [18], respectively. All the other contents in this chapter
relate to our papers [1-3].

Hereafter, unless specifically stated, dimensionless quantities are used: n. = ne/ne,
t=wt, v = kz, f=v/c, w, =wpfw, I =1/I,, J = J/(een.), E = eE/(mecw;),
B = eB/(mew;), where the plasma critical density n. = w?egm,/e? = 1.742 x 10*'cm ™3
and the relativistic laser intensity I, = ceg(mecw;/e)? = 4.276 x 10 W/cm? for the
laser wavelength A\; = 0.8um. In this system of units, we can have T} = \; = 2m,
c=e=w; = 1.

3.1 Pulse emission

As we can see in Fig. 2.3, the plasma electrons are extremely compressed in the interac-
tion zone of ultra-relativistic laser and plasma, leading to a well-defined electron layer
with nanometer thickness [68] at the plasma surface. This electron layer is crucial for
the laser-plasma interaction dynamics and dominates the plasma radiation.

3.1.1 Theoretical model

From previous literatures [17, 98] and our simulation results in Fig. 3.1, we know that the
pulse is mainly emitted from the compressed electron layer at the plasma front surface
and happens at the node where the longitudinal velocity of the electron layer gets its
maximum and the transverse current changes its sign. Hence before our derivation, we
first discuss the assumptions:

I The emission of the pulse is determined by an ultra-thin electron layer at the plasma
surface as shown in Fig. 3.1 (b). The electron layer has the kinetic trajectory as
!, (t') and possesses the areal density ne(t'). The spatial distribution f(z —a’,(t'))
of the electron layer can be approximated to d(z" — x/,(t')) for coherent emission

if the emission wavelength A, is much larger than the thickness Ax of the electron

27



28 3. Pulse emission from plasma surface electron layer

1400 p=r—r—r—r——r—r—r—r———

s —_—st ]

1200} (b) S

1000 F 3

800 F 3

W o -

g s b

600 [ -

400 F ]

200 p 9

0:----||------:
-0.02 0 0.02 0.04 0.06 0.08 0 0.5 1

t/T;

4 104 1 A A B i Sy

o —— lgi -

o T -

3 - Lst -

102 0.5F v 4

F(d) ;]

= . Il r

« - ;

0 - 0 T -

@__ - l -

_102 05 : 2nd | :

: ) D22:"“'.! :

- Y L

" L _104 1 PR SEPEEPEEEEIE TP
-0.02 0 0.02 0.04 0.06 0.08 0 0.5 1

T//\[ t/ﬂ

Figure 3.1: 1D PIC simulation of the pulse emission process. (a) Contour of the evolution of the
electron density (n.) at the plasma front surface overlaid with the retardation paths of the emitted
pulse centers (red and black lines). Along the paths, we can trace the origins (green stars) of the two
pulses. The solid-line part represents the pulse propagation in vacuum. The dashed-line part denotes
the formation of the pulse (B, (z,t) o [ J,(z",x +t —x )dz) in the plasma. (b) Electron density
(n.) along the retardation paths. One can see that the pulses are mainly emitted from the compressed
electron layers, respectively. (c) Contour of the evolution of the electron current density (J,) at the
plasma surface with also the retardation paths. As shown, the pulse are emitted at the node when
the transversed electron current changes sign. (d) Velocities (58, = —J,/(encc), By = —Jy/(encc))
of the electron current along the retardation paths. At the emission points (green stars), the electron
layers have the maximal longitudinal velocity 3, and the transverse velocity 3, ~ 0 change the sign.
The red lines (solid and dashed) are for the 1st pulse, and the black lines (solid and dashed) are for
the 2nd pulse. Normal incident geometry (@ = 0) is employed. The laser has a step-like profile with
a constant amplitude a(t) = 40 ,and the plasma (Carbon) has no pre-gradient with the constant
density ng = 200n.. Collision effect is not included and ions are fixed. The laser arrive the plasma
surface at (t =0, x = 0).
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layer, i.e. A, > Ax. Thus, we can have the surface plasma current as

/

Ty(@' ) ~ —na(t)By(t)d(x' —ay,(t), (3.1)

where S, (t') is the transverse velocity of the electron layer, and (2, ') is the retarded
spatio-temporal point of plasma current. From Ref. [68], the electron layer thickness
is of the order of nanometer, i.e. Ax ~ Inm, which can guarantee the coherence of
the hundreds-order of harmonics for the incident laser with wavelength A; = 0.8um.

II At the emission instant, the electron layer transverse current changes its sign, i.e.
ﬁy(t/) ~ 0, as one can see in Fig. 3.1 (c¢) and (d). Simultaneously, the longitudinal
velocity approaches the speed of light, 7.e. 8, ~ —1. This is because in the ultra-
relativistic laser-plasma interaction, one can have the approximation 32 + ﬁ; ~ 1
for the electrons in the interaction zone. For pulse emissions, the electron layer
is backward accelerated efficiently in the plasma electrostatic field to the speed of
light, i.e. B, ~ —1 leading to 8, ~ 0. We want to stress that the condition 3, ~ —1
is very important for the approximations below and can simplify the formulae (see
Egs. (3.9), (3.10)), but will not change the form of the pulse expression and the
spectral expression (see Egs. (3.8), (3.17)). The odd-function form of the pulse
expression is the consequence of the transverse current changing its sign at the
emission instant as shown in Fig. 3.1 (c).

To gain the radiation from the surface electron layer, we can start from Eq. (2.23b) and
replace the notation ‘1’ with ‘y’ since we consider the case with p-polarization in the
simulation reference (See Appendix. A.4). Thus we can have

E;(x,t):—;/joodxj («.¢) (3.2)

where (z,t) is the spatio-temporal point of the field detector and (', t') is the retarded
spatio-temporal point of plasma current. The retardation relation t+2 =t+axis
satisfied.

Inserting Eq.(3.1) into Eq.(3.2), we obtain

!

Eﬂmi)zil/+mdxnd()@At)MJ—w&@H

B oo ngl(t (t')
- 2/ TR 1+ﬁx(t’> o)

1 na(®)By(t)
2 1+5:(t) |,

_ na(®)(1 = Bu(t)  By(t)

= 5 D), (3.3)

here we replace the varlable of the ¢- functlon with X = o' — 2/,(t'). Because of the
retardation relation t +@ = t+x = dt = —dx’, we can have dX = da’ —S,(t )dt = (1+
Bo(t))dz" = |1 + B.(t")|dx’, signifying that X is a monotonic function of 2. Therefore,
we can substitute the integral variable with dz’ = dX /(1 + B,(t)), where S,(t) is the
longitudinal velocity of the electron layer with the modulus |3, ()| < 1 and ¢ (X) is a
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function of X. The condition, X =0 = z = zl, (t"), gives a new retardation relation:
t+x=1 +a,(t). (3.4)

Making use of the general relation v = (1 — 32 — BE)_I/ 2 we can have

1 72

1—52 14 (v8y)?*

Inserting this into Eq.(3.3), we can arrive at

ne(t) (L= Ba(t)va(t’) 2py(t)

2 ’ )
4 L+py(t) t+o=t'+a/, (')

El(x,t) = (3.5)

where y¢(t) and py,(t') = ya(t)B8,(t') are the Lorentz factor and transverse momentum
of the electron layer respectively.

Base on the condition (II), we know that the transverse momentum p, = /3, passes
through its zero node during the pulse emission, and since the pulse emission happens
on the attosecond time scale, the transverse momentum of the electron layer in the pulse
emission process can be approximated in the first order:

r dpy At dpy
py=At — = =7 : 3.6
Y dt' Iy, (14 Ba(ty)) dt' ly=, (36)

where At is the short time duration around the node where py(té) = 0, and we make
use of Eq. (3.4) and gain the relation:

At = At (14 (1)), (3.7)

At denotes the time duration around ty which fulfills the retardation relation x + tg =
to 4+ 2, (ty). Hereafter, we label to = 0 for convenience, thus we can replace At with t.

Inserting Eq. (3.6) back into Eq. (3.5), we can gain the real-time dependent pulse
expression:

2wt

El(x,t) = ETAp——2% 3.8
y(x7 ) Yy m1+(wdt)27 ( )
where we introduce two crucial parameters:
/ 1-—
Am(t ) — nel')/( /811)) ~ nel’Y , (39)
4 t+o=t'+a’, (") 2 t+o=t'+a/, (')
which represents the pulse amplitude, and
1 d d
Wi = e | Y 2| 2y , (3.10)
(1 + /81' (t0)> dt t,:té) dt t,:tg

which scales the time duration of the pulse, i.e. Ty ~ 1/wg, and we also introduce

EZ" = sign (ng }’) denoting the sign of the reflected electric field. 5, =~ —1 is used for the
approximations in Egs. 3.9 and 3.10.
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As one can see, the pulse amplitude Am(t,) is retarded-time dependent. With the first
order approximation, we can transform it to be real-time dependent:

! ! / dA
Ap(t) = Am(ty) + At —
dt t'=t,
/ t dA
= An(ty) + ; =
m(to) + 77 Bu(ty) At |y_y
Thus, for simplicity, we can have
Ap(t) =A% + ALt (3.11)
where A% = A, (t,) is the constant pulse amplitude, and A} = dﬁ,m vy /(1 + Ba(ty))
-0

denotes the first order of the temporal derivative of the pulse amplitude. As we can see,
the straightforward consequence of this temporal variation of the amplitude is the pulse
asymmetry and we will also see that this temporal variation induces a constant phase
shift in the pulse spectral phase.

Furthermore, the temporal derivative of the transverse momentum can also be calcu-
lated as

dpy _
dt' |y =t

= —(EZ - 53&3,22) ( — BB )

—(1 = Ba(to)) By (to)
—E2|Ey(to)]

_(Ey - ﬁa:Bth/:tg

t'=t

Q

%

(3.12)

here E}J is the sign of the incident electric field at the emission instant ,, and we consider
the reflected pulse propagating in —z direction with £ = —BZ. Inserting Eq. (3.12)
into Eq. (3.10), we can have

wa = 47 (to) | By (ko) (3.13)

With this calculation, we also relate the sign of the reflected field to the sign of the
incident field at the emission instant, i.e. E’“ = —Eg/.

As we can see, the pulse amplitude A, depends on the product of the areal density
ne; and relativistic factor v of the electron layer, and wy is determined by the transverse
acceleration |dp, / dt'| of the electron layer at the emission instant and also the relativistic
factor v. Thus, in order to generate a more intense pulse with the shorter duration, we
may employ a stronger incident laser pulse to interact with a denser plasma target.
The extremely strong laser ponderomotive force can compress more electrons into the
layer for stronger coherent emission. The more intense laser electric field leads to larger
temporal derivative of the transverse momentum, which would effectively shorten the
pulse duration. Moreover, the stronger laser ponderomotive force can result in larger
charge separation field (See Sec. 3.3) which will lead to more efficient acceleration of the
electron layer, also giving large amplitude and shorter duration of pulse.

The above derivations are based on the dynamic properties of the electron layer and do
not take advantage of any specific effects, such as hole-boring effect, collision damping,
temperature effect, or radiation reaction force etc. Hence, all of these effects can be
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taken into account for the pulse emission (A4,,, wy) by considering their influence on the

kinetic parameters (ne;,, |dp,/dt |) of the electron layer.

For example, collision effect damps the backward motion of the electron layer and
thus decreases the relativistic factor «, which would lead to smaller pulse amplitude
Ay, and longer pulse duration 1/wy. The forward hole-boring motion would result in
the expansion of the backward moving electron layer, which would decrease the pulse
amplitude A,, by reducing the number of electrons for the coherent emission.

3.1.2 Spectral and phase properties

The spectral and phase properties are crucial for the application of the emitted pulse
in experiments. A pulse with an ultra-broad spectrum is always needed for high-energy
excitation processes in X-ray region [99] and a stabilized phase is very important for

coherent control experiments [100, 101].

From Eq. (3.8), the pulse spectrum can be calculated via a simple Fourier transfor-

mation:
ET(w) = L / - E"(t)edt
] o Joo Y

o
_Ey

_%700

det
Am(t) 14 (wqt)?

E’r 0o Al 2X w
= A) 4+ x eaTdx
27de/oo< m+wd )1—|—X26 ’ ’

e™tdt

where the variable of integral is replaced with X = wgt = dt = dX /wy.

integral can be calculated with the Residue Theorem as'

E; Al

o= B (e ) ()
Y 2w S T wy X+i X—i ’

For w > 0,

For w < 0,

_ Er 00 Al 1 Wy
El(w)= 2 / AY + =y eatdx
y(w) 2wy J—co ( m T wq X—I—ie v d

The above

(3.14)

'For w = 0, E; (w) = 0 since the emitted pulse is an odd function of ¢ without considering the temporal

variation of A,,.
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= —_ _ (AJd
27rwd( i) | A, o i]e
Er 1 o
=4 (Agn A”‘z) evde "2
wq Wy
s Ay @ on
= ;widewd eil(iJﬂpAm) , (315)
where
A =/(A9)2 + (AL Jwa)?, (3.16a)
AO Wq
= 4u , 3.16b
) = T - AL 1)
Al
i = o : 3.16
) o T (AL (109
With the above derivations, we can gain the pulse spectrum:
~ A? 2|w|
T 2 m
1) = |B)P = T3 e (%), (317)

As we see, the emitted pulse has an exponential spectrum with the spectral decay 2/wg.
In the ultra-relativistic regime, the spectral decay 2/wq o v~ 2|dp,/dt |~ would be very
slow since the relativistic factor v and the transverse acceleration |dp,/ dt/| would be very
large in this regime, which results in the pulse possessing an ultra-broad spectrum. From
another point of view, if the spectrum can be extended to ultrahigh frequency region, the
spectrum can be used to diagnose tiny changes in the related physical processes as the
high-frequency components are very sensitive to these changes even if their influences
are negligible in low-frequency region.

This exponential spectrum is similar to the result in Ref. [18] for RES model. This is
because in Ref. [18] the emission is from an ideal moving electron layer without consid-
ering the formation of the electron layer. Ref. [17] for CSE model also makes use of the
assumptions as we do, but gives a power-law spectrum which is quite different from our
result. A detailed comparison between these models will be presented in Sec. 3.4.

Now we start to discuss the pulse spectral phase 1 (w) with the definition?:

Ey(w) = |Ej(w)| e (3.18)

From the above derivations, we can have,

Y(w) = :l:g +a,, for w>0, (3.19a)
b(w) = ig — 4.,  for w<O. (3.19h)

As we see, the pulse spectral phase is a constant and comprises of two parts:

1. £3: This particular phase is the consequence of the transverse current changing
its sign at the emission instant when the transverse momentum passes through the

2The sign of 1(w) is chosen to be same with the linear term wt in E(t) = ffooc |E(w)|e ity @lgy,
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zero node p, = 0. This phase mainly regulates the pulse structure and results in
a minimum at the pulse center, contrary to a synchrotron-like pulse [98]. From
Egs. (3.14) and (3.15), we know that the sign (%) of the spectral phase depends
on the sign of the reflected electric field E; which is determined by the sign of

the incident electric field, EA;“ = —EA'L We wish to stress that this locked phase
does not depend on the carrier-envelope-phase (CEP) of the incident laser®, but on
the dynamics of the well-defined electron layer during the emission. This is very
important for the application of attosecond pulse because this stabilized phase
is not only crucial for the attosecond pulse duration, but also for the temporal
resolution of the attosecond pump-probe experiments [100, 102].

2. 14,,: This term comes from the temporal variation of the pulse amplitude A,,
during the emission. Because the duration (o 1/wg) of pulse emission is extremely
short on the attosecond time scale, the value of the temporal variation Al /w, is
relatively smaller than the constant value A% i.e. Al /w; < A% . Therefore we
can approximately gain

YA, ~ A/ (Adwq) . (3.20)

This phase slightly depends on the laser CEP. Because the temporal variation of
the pulse amplitude A,,(t) relates to the processes of layer compression (n.;) and
acceleration (), both of the processes can be changed in the interaction driven by
the laser with difference CEP. However the dependence should be slight since the
phase 14, itself is very small.

We want to stress that this spectral phase denotes the time-independent phase of
the different frequency components in a single emitted pulse (See Appendix A.2), it is
different from, but related to the harmonic phase [51, 56, 103] which is the consequence
of the interference among all the pulses in the whole reflection (See Appendix A.3).

3.1.3 Finite distribution of the electron layer

If the wavelength A, of the emission is close to or smaller than the thickness of the
layer A, < Az, the §-function approximation of the electron layer distribution can not
work. The pulse spectrum and spectral phase would be modulated at least in the high-
frequency region.

We now derive the spectrum directly from Eq. (3.2) with the finite extension of the
current density [17]

/

Tyt a) = =na(t)By(t) f(@" —ay(t)).

Thus we can have

T 1 R iwt
By (z,w) = %/ Ey(x,t)e™"dt

= / dtewt/ dz' J (x t)
47r zt=z"+t'

= / dte lwt/ dx’ nel(t ﬁy( )f(x — mél(t/)) ) (3.21)

x—l—t:m, +t/

3The laser has to be long and strong enough to compress the target and form an electron layer at the
plasma surface for the pulse emission



3.1. Pulse emission 35

By replacing the finite spatial distribution f(z" — l’;l(t,)) with its Fourier expansion:

_ / F(k)e™ d,

and substituting the integral variable 2 witht,ie o' =z +t—t and de’ = —dt , we
have

E'T (z,w) / dte“”t/ dt ne(t By / F(k)etklztt= ¢ =, ()] g,
— 4—/ dt nel(t )By(t ) / dk‘F(k)elk$e—zk[t +xel(t )] / dt@l (w+k)t
T J oo e .

=5 [t na@16,(¢) [ akF et e Ol + k)

o0

— %efiw:pﬁw(_w) / nel(t/)ﬂy (t’)eiw[t/+x;l(tl)}dtl , (322)

—00

As we did in Sec. 3.1.1, the integral can be evaluated by doing substitution dt’ = dxX/(1+
B.(t)) with X =t 4 2/,(t"), thus we can have

—iwx T > ! 2p t/ iw
—e F(—w)/ Am(t)lﬁjfgg(z,)e Xy
. 2

x=t'+a’,(t")
2wqa(X — X,
~e zme / A X XO)l wdé > )(2‘) 5 szdX
+wa (X — ) Xo=to+a!,(ty)
2wgqX
— eiwltgtel,(tg E/ A, A _eiw¥gx 3.23
¢ 1 + wC%XZ ( )

Here we consider the main contribution around the emission instant when By(té) =0,
ﬁx(ta) ~ —1. This is in line with the stationary phase approximation in Refs. [17, 54,
65, 70]. During the emission, the phase term exp(iwX) is close to be a constant because
of dX = dt' (14 B,(t') ~ 0, which mainly contributes to the integral. However, at the
non-stationary phase point, the phase term results in the rapid oscillation in the integral,
especially for high frequency components, thus their contributions cancel each other and
can be neglected [104].
After the same calculations in Eqs. (3.14) and (3.15), we obtain

_ . - A, el e GHvan) >0
r _ —iw Am o =ity (w) ) ’
Ey(zr,w) = Eje " 2n ’F(w) o e “ie {ei(%mm), "0 (3.24)
and
~ A oW
1) = 1By (e,0) = 42122 e, (3.25)
Wd

where F(—w) = F*(w) = |F(w)|e"™®7®) is used. From Eq. (3.24) and (3.25), we clearly
see that the finite distribution of the electron layer can affect not only the pulse spectrum
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with |F(w)|? but also the spectral phase with v (w).
To gain deep insight into the influence of the finite distribution of electron layer, we
can qualitatively express F'(w) as

F(w) = /O:O f(x)e = dy

Ax/2 o
~ flx)e "o dx.
—Az/2

If wavelength A\, > Az, the phase, 2mz/\,, is close to be zero, we have

Az /2

Fw~ [ fads =1,

—Az/2

which means that for low-frequency emission (A, > Ax), the finite distribution of the
electron layer can not affect the spectrum or the spectral phase.

If \, < Az, the phase 2wx/)\, would be significant and results in rapid oscillation in
the integral, thus

_ Ax/2 -
F(w) =~ /_A o flx)e " wdr < 1

which means that for high-frequency emission (A, < Ax), the finite distribution of
the electron layer could speed up the spectral decay. Qualitatively, ¢ ¢(w) ~ 2mrAx /A,
would also be very important for the high-frequency spectral phase.

As one may note, the term, exp[iw(tE) +al,—x)], in Eq. (3.24) does not affect the pulse
spectrum. It only contributes the phase with the first order of w, thus can be canceled
with a time shift.

In the above derivation, we neglect the time-dependence of the finite distribution, i.e.
fl@' —a,(t),t) =~ f(z' —x,,(t)). This is a reasonable approximation since the extremely
short duration of the pulse emission limits the expansion of the electron layer. Moreover,
we assume that different parts of the electron layer emit the pulse coherently. It may
be not true in practice. Different parts of the electron layer may give the emission
at different time. The time difference At < Az/c could result in a phase difference
Atp(w) =~ wAx/c between the emissions, thus affecting the intensity of the pulse which
actually is the superposition of all the emissions. This incoherence of the emission would
be considerable if A, < Ax and would induce significant phase fluctuation in the high-
frequency emission [2].

3.2 Attosecond pulse generation

With above derivations, we know that the high-frequency emissions are bunched in
a very short duration when the compressed electron layer has the largest backward
velocity. In general, this duration is in attoseocnd time scale. Thus, filtering out the
low-frequency components makes it possible to form an intense attosecond pulse with
the high-frequency components.

In order to obtain an analytical expression for the attosecond pulse, we filter out
the low-frequency components (w < wy) in Egs. (3.14) and (3.15), and then inversely
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transform the high-frequency components back to the time domain:

+oo _ . —Wyg .
Ey(wy,t) = E;(w)e*“’tdw —i—/ E;(w)e*’”tdw
Wf —0o
A +o00 w . . —wf W .
= B / efrde*l(“’t*TwAm)der/ " e it Etan )y
Y Wd wy —00

+ w . T ; s
=gy [ i) 5]
w

Yo Jo,
- 2A too _w
= Eg—m/ e “dcos(wt—m/2—1y, )dw
Wd Jwy
- 2A too _w
= L} mCOS(l/}Am)/ e wd sin (wt) dw
Wd wy
Ar2/_1m : oo _w&
— By sin(ya,,) / e cos (wt) dw. (3.26)
d wg

Here, we define two integral constants as below:

+o0 w
Cs(wp,wq) = / e “d sin (wt) dw,
wy
+oo W
Ce(wf,wq) = / e wd cos (wt)dw.
wy

With simple calculation:

_w +o00 too  w too _w
[—wde “d sin(wt)” = / e “d sin (wt) dw — wdt/ e “d cos (wt)dw,
wf wf wy

_w +00 too w too W
[—wde “d cos(wt)” = / e “d cos (wt)dw + wdt/ e “dsin (wt)dw,

wgr wf wf
we arrive at
_ep
wge “d sin(wyst) = Cs(wr,wq) — watCe(wy, wq)

_er
wge “d cos(wrt) = Ce(wf,wq) + watCs(wy, wq) .

Now, we can gain the two integral constants:

wg Lo
Cs(wyp,wa) = W@ “a [sin(wyt) 4+ wqt cos(wyt)] ,
wg =L :
Ce(wf,wq) = e “d [cos(wyst) — watsin(wyt)] .

1+ w§t2

Inserting these two integral constants into Eq. (3.26), we can obtain an explicit expression
for the attosecond pulse:

3 2Am .
By (wy,t) = B o [cos(va,,)Cs(wy, wa) — sin(¢a,, ) Ce(wy, wa)]
Agl—féjﬂ)?ezﬁ [ cos(va,,)sin(wyt) + wat cos(14,,) cos(wyt)]
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. 24,  _“
=+ Egme “d [— Sin(wAm) COS(Oth) + Wdt Sln(wAm) Sln(Wft)]
Sy 2Am _:JTf :
= Eywe d [Sln(u)ft - wAm) + Wdt COS(Wft — wAm)] . (327)

As we can see, the filtering frequency wy works as the carrier frequency for the attosecond
pulse, and the constant phase 1 4,, can be regarded as the CEP of the attosecond pulse.
Since 1 4,, depends slightly on the laser CEP, we may obtain an attosecond pulse with a
well-stabilized CEP (See Sec. 5.3.1), which will be very important for attosecond pump-
probe experiments [102].

With the definition of the temporal phase chirp ¢(t):

cos(p(t) = ——21L_ sin(p(t) = (3.28)

V1+ (wat)?’ V1+ (wat)?’

we can rewrite expression of the attosecond pulse in a compact form:

r 5 2Am it . .
By (wy,t) = By ————==e¢ “d [—sin(p(t)) sin(wst —Pa,,)

Y V1 (wat)?
+cos(p(t)) cos(wst —1a,, )]

.24, _er
yme d COS [Wft‘i‘gp(t) —wAm] (329)

From Eq. (3.29), we can gain the amplitude of the attosecond pulse:

w

Agito = 2Ame “d (3.30)

which depends not only on the amplitude A,, of the original pulse but also on the ratio
of the filtering frequency wy to wy. As we can see, if wy becomes very large in ultra-
relativistic regime, the attosecond pulse can carry a very high frequency, and at the same
time, keep strong intensity. On the other hand, in order to improve the attosecond pulse
intensity, we can employ an intense laser driver to increase the original pulse amplitude
A,, and the parameter wy as we discussed in Sec. 3.1.1.

The temporal profile of the attosecond pulse is expressed as

1

fatto(t) == W .

This attosecond pulse profile does not depend on the filtering frequency wy, but only on
the dynamic parameter wy of the electron layer. The attosecond pulse duration can be

(3.31)

scaled as the full width at half maximum of the profile (f2,,(t)) and is given as
2
Ty=—. 3.32
a= (3.32)

If we neglect the temporal variation of the pulse amplitude A,, since this variation is
very small in the ultra-relativistic regime, we may simplify the attosecond pulse expres-
sion as [2]

, A 2A,, wy
By (wy,t) = Eym exp <—Wd> cos[wst + ()] . (3.33)
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3.3 Energy conversion process

Based on the above discussion, we already know how a pulse is emitted from the plasma
surface electron layer. In this section, we will present the discussion about how the laser
energy is transferred to the emitted pulse. We first give an overview about the energy
conversion process and then a simple analytical model is introduced. After that we
consider the energy conversion process with ion motion, which distinct our investigation
from the RES model [18].

As one can see in Fig. 3.2 (a), (b), the strong laser ponderomotive force compresses
the plasma electrons inside the target to form a strong charge separation field F, as
shown in Fig. 3.2 (a). In this compression process, the reflection of the laser field is
weak, and the laser energy is first largely converted to the plasma internal electrostatic
potential U as shown in Fig. 3.2 (b). After that, the strong electrostatic field accelerates
the compressed electron layer back to the incident laser field as discussed in Fig. 3.1 (d).
In this acceleration process, the stored energy Sg in the plasma field is transferred to the
kinetic energy of the electrons in the layer. Subsequently, these high energetic electrons
interact with the incident laser field coherently to emit a strong attosecond pulse.

In Fig. 3.2 (c), (d), the same energy conversion process happens, but the amount of the
energy storage becomes less with the increasing of the plasma density. To understand
this, a simple analytical model is given below.

3.3.1 Theoretical model

One can assume that for the largest compression, the radiation pressure (P}) of the laser
pulse gets balanced with the electrostatic pressure (Ps) at the surface of the electron
layer. Here for simplicity, the plasma skin depth is neglected, we take the electron layer
surface as the interface of the laser-plasma interaction. Thus one can have

P +P,=0, (3.34)

where P, pushes the electron layer to the left side, and P, pulls the layer to the right
side. The electrostatic pressure (Ps) can be expressed as

+00 +oo
j . / EdQ= [  Eupds, (3.35)
o

o

where zq is the location of the electron layer surface and @), p are the charge and charge
density at the right of zp. With the 1D Poisson equation (2.38): 9E,/dx = p, the
electrostatic pressure Ps can be calculated as

+oo  9F
P, = E, Pz L dz
o x

1 [+ QE?
/ OE2 I
o ox

2

= —%Eg(xg) : (3.36)

where the electric field E, vanishes far inside the target. The laser radiation pressure is

21 (¢
P = 1(t) = Qag sinz(wlt + kjxo) (3.37)
c
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Figure 3.2: 1D PIC simulations for the pulse emission process. (a), (c), (e) Contour of the evolution
of the electrostatic field (E,) at the plasma front surface. The electron surface (blue dashed line)
and ion surface (magenta dashed line) are also overlaid. (b), (d), (e) Temporal evolution of the
electrostatic potential U (¢) at the plasma surface. U(t) = [ E,dx denotes the electrostatic potential
of the charge separation field between the ion and electron surfaces. (a) and (b) are for the case with
density ng = 120n. and fixed ions. (c) and (d) are for the case with density ny = 200n. and fixed
ions. (e) and (f) are for the case with density ng = 200n. and mobile ions. In (a) and (c), we also
plot the retardation paths (red dashed and solid lines) of the first pulse in each case. The physical
interpretation of the retardation path can be found in Fig. 3.1. Collisional effect is included. Same
other parameters are used as in Fig 3.1. The electron and ion surface are defined at the location with
Ne = ZN; = AN
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here the factor 2 comes from complete reflection. At the balance for the largest com-
pression, we can have

1
P+ P, =0=2d2 = §E§(x0) : (3.38)
and obtain the largest electrostatic field at the layer surface
Ez(.%'0> = 2@0 . (339)

At the left side of the electron layer surface, the charge separation field can also be
calculated with the 1D Poisson equation

oE, N OF,
or p ox

=Zn;, = Ey(z)=nozx, (3.40)

where we neglect the perturbation of the ion charge density Zn; = ng and assume there
are no electrons left behind the electron layer. At the surface, the boundary condition
has to be satisfied:
2(10
Ex(l‘o) =norg =200 = ITog=—. (341)
no
Based on the above results, we can calculate the electrostatic potential of the charge
separation field:

U= : E,(z)dx = ?xg = n—oao. (3.42)

On account of the laser intensity I; = a3/2 for linear polarization, we can also express
the largest electrostatic potential as

U=4-", (3.43)

which directly relates to the single particle acceleration. With the parameters in Fig. 3.2,
we can calculate: for ng = 120n., U = 26.7m.c?, and for ng = 200n., U = 16m.c?,
qualitatively matching the simulation results in Fig. 3.2 (b), (d)and (f).
Moreover, the energy density of the electrostatic field can also be calculated:
1

1
PSs 2E§ = §n3x2 : (3.44)

Integrating this energy density, we can gain the energy stored in the electrostatic field:

xo o 1 2
Sg = / pspder = / —niride = @xg. (3.45)
0 0o 2 6
Inserting Eq. 3.41 into Eq. 3.45 and with a simple integral, the largest stored electrostatic
energy can be expressed as:
_ 4a3  8ag

=51 (3.46)

Sg = =—1.
E 3710 3n0

For more straightforward physical meaning, we calculate the ratio of the energy storage
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to the laser energy:

@ . 8&0
S, 3mngy’

(3.47)

where S; = I;T;/2 = «; is the laser energy in half laser period. From the above results,
we know that larger laser intensities and lower plasma densities can give more energy
storage in the plasma field, and the ratio of the energy storage only depends on the
ultra-relativistic similarity parameter, s = ng/ag [105], which is in line with simulation
results in Ref. [18] and clearly explain the simulation results: the ratio of the maximal
energy storage to the laser energy is inversely proportional to the similarity parameter
s in overdense plasma region.

In the above derivation, we consider the balance between the laser radiation pressure
and plasma electrostatic pressure. This is a good approximation for cold and overdense
plasma. For a warm or underdense plasma target, the energy storage would be overes-
timated. In such cases, this energy conversion process would be very complicated and
could be affected by different effects such as plasma energy absorption, plasma heating
and self-induced transparency. For example, if a relativistic under-dense plasma ng < ag
is use, the laser can propagate in the plasma because of the effect of self-induced trans-
parency (see Sec. 1.2). More laser energy would be absorbed by the plasma target and
less would be reflected. Eq. 3.47 would significantly overestimate the energy storage.
Moreover, in the pressure balance (see Eq. 3.34), the contribution from the plasma pres-
sure, such as thermal pressure and surface expansion, are neglected, which may also
reduce the energy storage.

3.3.2 Discussions

Based on the above derivations, we already know how the laser energy is stored in the
plasma internal field. In this subsection, we show how the pulse emission is affected by
the energy storage.

From Eqgs. (3.43) and (3.46), we can know that the energy storage in the plasma charge
separation field is proportional to the laser intensity, and inversely proportional to the
plasma density. Keeping the same laser intensity and increasing the plasma density,
the energy storage is reduced as shown in Fig. 3.2 (b), (d). The reduction of the stored
energy results in a smaller relativistic factor v because of less acceleration of the electron
layer, which would weaken the emitted pulse amplitude A,, and more importantly reduce
high-frequency emission with a more rapid spectral decay 1/wy. As we can see in Fig. 3.3,
the pulses from the target with ng = 120n. are much stronger than those from the target
with ng = 200n., and the pulse spectrum for ng = 120n, case decays much slower than
that for ng = 200n, case implying higher efficiency for high-frequency emission.

In Fig. 3.2 (e), (f), we take the ion motion into account. As we can see, ion motion
changes the energy conversion process significantly. With the evolution of the hole-
boring effect, the charge charge separation field, E,, becomes weaker and weaker, and
electrostatic potential, U, becomes less and less. This is because the hole-boring effect
decreases the laser radiation pressure via Doppler effect, and ions partially absorb the
laser energy for acceleration.

With a weaker electrostatic field and less energy storage, the backward acceleration of
the electron layer becomes slower, thus resulting in smaller pulse amplitude and faster
spectral decay. As shown in Fig. 3.4, the amplitude of the emitted pulses becomes
smaller and smaller, and the pulse spectrum decays faster and faster. We wish to stress



3.4. Comparison with CSE and RES 43

ne = 120n,
Fixed ions

0 200 400 600

Figure 3.3: 1D PIC simulations for pulse emission corresponding to the fixed-ion cases in Fig. 3.2.
(a) Pulse intensities for the case ng = 120n. (red line) and the case ng = 200n. (blue line). The
low-frequency components (w < 2w;) is filtered out. (b) Spectra of the 1st pulse in each case.

that the effect of ion motion on the energy conversion makes it possible to generate an
isolated attosecond pulse (See Sec. 5.2) and highlights the main difference between our
investigation and the RES model.

3.4 Comparison with CSE and RES

As we know from previous literatures, different models [15-18] have been built to in-
terpret the plasma harmonic generation in different parameter regimes. In the ultra-
relativistic regime (ag > 1), coherent synchrotron emission (CSE) [17] and relativistic
electron spring (RES) [18] are associated with our model.

To make a clear comparison, we first briefly introduce the derivations in CES model.
Starting from Eq. (3.22) with the replacement J,(t') = n¢(t)B,(t") and canceling the
phase shift term e~“?, we can have

BT (w) = 1~ 00 S iw [tl+x’8l(tl)] ,

jw) = 5P [ (e dt (3.48)

with the same preconditions that at the emission instant the layer current changes sign,
and the backward velocity approaches to its maximum. Hence, we can have the Taylor
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Figure 3.4: 1D PIC simulations for pulse emission corresponding to the mobile-ion cases in Fig. 3.2.
(a) Pulse emitted in the case ng = 200n.. The low-frequency components (w < 2w;) is filtered out.
(b) Spectra of the each pulses.

expansions for the transverse current, the longitudinal velocity, and the layer location:

Jy(t) = aot, (3.49a)
Bo(t') = —vo + ont’?, (3.49b)
z,(t) = —vot +ant?/3. (3.49¢)

Here the pulse emission is labeled at (tb = 0, xé = 0). Below, we will cancel the
superscript ¢’ for convenience. Inserting Eq. (3.49) into Eq. (3.48), we obtain:

3
oo t—vot+aq %:|

aoteiw { dt

Fr(w) = §F(—w)/

—00

~ X Gw | (1—v @ 2
- @F(—w)/ te [(1 e S}dt

2 —c0
~ o0 i|w?/3(1—vo)ar Y3 x 8
= %F(—w}(wal)_g/ Xe [ (mwo)oy T+ }dX, (3.50)

where we replace the integral variable: X = (way)'/3t.
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With the well-known Airy function: Ai(z) = 5= [ exp [ (acX + )} dX, we have

Ai(z) = 2; Xexp [ (a:X + )1 ax.

By expressing the integral in Eq. (3.50) with Airy function, we can have:

= o) s (w231 —w
Ey(w) = ?OF(—w)(wal)’EAj (W)
@y

Qo ~ 2 o (w3
= D F(-w)a; w Al ( 75 ) (3.51)

with the definition

Wrs = 23/2a1/278, (3.52)

and the approximation 1 — vy = (1 — v3)/(1 + vo) ~ 1/(273). Now we can have the
spectrum from CSE model:

~ a2 ~ é 4 w2/3 2
[(w) = |Ey(w)|* = P IF(w)fe; *ws [Al (2/3)] : (3.53)

Wrs

As one can see, CSE spectrum seems quite different from our results in Egs. (3.17) and
(3.25). This difference may be because our derivation only depends on the condition:
By =~ 0, but not on the specific form of 3, variation during the emission, even though we
took [y ~ —1 to simplify the expressions of wy and A,, in Egs. (3.9), (3.10). However
the expression of CSE model is determined by the variation of 3, = —vg+ a1t?, in order
to make use of Airy function.

Since both our theory and CSE model study the pulse emission in the ultra-relativistic
regime with the conditions: 3, ~ 0 and 3, ~ —1, there must exist some similarities.

If w > wys, we can expand the spectrum (3.53) with the asymptotic expression of

Airy function: Ai (z) ~ 2f:c4e*%x3/2 for x> 1, as

4
X exp (—3 d ) (3.54)
Wrs

As one can see in high-frequency region (w > w,s), CSE model also gives an exponential
spectral decay which is the basic characteristic of our theory. The correction w™! is
negligible in this region*. As shown in Fig. 3.5, the CSE spectrum matches very well
with our spectrum in high-frequency region.

Moreover, with simple approximation, the decay parameter w,s can relate to our

parameter wy as below:

WSWrs

Hog, o (I(w)) = const — log,(w) — %%ﬂ log;,(e) ~ const — %ﬁ log,(e)



46 3. Pulse emission from plasma surface electron layer
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w

Figure 3.5: Comparison between the spectrum (Eq. 3.17) from our theory (blue line) and the spec-
trum (Eq. 3.53) from CSE model(red line). The power-law spectrum I(w) o< w™*/3 is also shown
(green line). We set w,s = 100, wg = 135. The other parameters are chosen to make the spectra
match in different regions.

With the general relation v = 1 + p2 + pz, we have

2

dryo dpz dpy _ dpy _|dpy t (3.55)

W gy TPy TPy Ry By

here we utilize the approximation p, = %t, and neglect the variation of p, since at the

emission instant, the electron layer comes out of or near the ion surface where FE, = 0,
and the laser field drops off in the cycle leading to smaller ponderomotive force in the
longitudinal direction. With this approximation, we can also have

dpy Bz Bz ~ Bz dyo

do
P Ly = 90~ ~ P20 3.56
dt 10"t dt dt o dt (3.56)

+ Be

Combining Eq. (3.55) and Eq. (3.56), the temporal derivative of /3, is expressed as:

s . Bz dpy 2 1 dpy 2
=—= ||t =5 |5 (3.57)
dt Y5 | dt v | dt
With the approximation 8, = —vy + a1t2, we can have
Br = —vo + a1t2 = B =2aqt. (3.58)

dt
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Figure 3.6: 1D PIC simulations for pulse emission. (a), (b) and (c) are for the fixed-ion case with
ne = 120n,; (d), (e) and (f) are for the fixed-ion case with n. = 200n. in Fig. 3.3. (a), (d) Velocities
(Bz. By) of the electron current along the retardation paths of the first pulses in Fig. 3.3 (a) and (c)
respectively. (b), (e) Decaying parameter calculation (|dp/dt|/(1 + /3,)) along the retardation paths.
(c), (f) Fitting of the pulse spectra in Fig. 3.3 (b) with CSE spectrum (Eq. 3.53) and our exponential
spectrum (Eq. 3.17).

Comparing Eq. (3.57) and Eq. (3.58), the introduced parameter «; can be expressed
approximately as:

1 |dp, 2
R —s5 | 3.59
“ 2v¢ | dt | (3:59)
and inserting into the definition of w,s (Eq. 3.52), we can gain
d
Wrs A 292 % R Wy - (3.60)

Based on these calculations, we know that our theory and CSE model are similar in
high-frequency region, both give an exponential spectra with the similar spectral decay
as shown in Fig. 3.5. To further clarify this relation, we take use of the CSE spectrum
(Eq. 3.53) and our exponential spectrum (Eq. 3.17) to fit the simulation results in Fig. 3.3
(b). As shown in Fig. 3.6 (c) and (f), the pulses clearly possess exponential spectra in
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high-frequency region, and both CSE and our exponential spectra can fit the simulation
results if proper decaying parameters (w,s and wg) are chosen.

However, we also note that the values of the decaying parameter for CES (w,s) and
our model (wy) are quite different. In Fig. 3.6 (b) and (e), we numerically calculate the
decaying parameter at the emission instant (green stars) based on Eq. 3.60:

1
L+ B

dpy

dp 2
~ 2
dt

D = | ~
ecay dt Y0

. (3.61)

and obtain that Decqy = 123.2 in Fig. 3.6 (b) and Decqy = 66.4 in Fig. 3.6 (e). Here, the
emission instant (green stars) is defined at the point when 3, = 0 as shown in Fig. 3.6 (a)
and (d)®. One can clearly see that the numerical calculations of the decaying parameter
quantitatively confirm the spectral decay wy for our model, but only matche the CSE
model qualitatively.

For low-frequency region, CSE model gives the famous power-law spectrum [ (w) o
w43 as also shown in Fig. 3.5. This may be the advantage of CSE model as this
power-law spectrum has been observed in experiment® [106] and also in Fig. 3.6 (c) (f),
CSE model has better performance in low-frequency region. Our theory cannot give this
power-law spectrum in low-frequency region as we only consider the main radiation from
the electron layer around the emission point where 3, ~ 0 and 3, ~ —1, the reflections
during the electron layer formation and acceleration processes are ignored.

With the above comparison with CSE model, we can summarize that our theory has
an advantage in high-frequency region as we can qualitatively predict the spectral decay,
and a disadvantage in low-frequency region since we ignore the low-frequency radiations.
Furthermore, our theory has a great advantage in giving the analytical expression for the
attosecond pulse (see Eq. 3.29) and also predicting the phase property (see Eq. 3.19),
all of these are missing in CSE model. In Chap. 5, we validate the expression of the
attosecond pulse and phase property with the PIC simulations as shown in Figs. 5.2
and 5.3.

Our theory seems very close to the RES model [18], but with a big-step development.
In RES model, the radiation is also given as

ET = E 5y(t,)

from an ideal moving charged layer with surface charge, n.;. This expression is same
as our equation (3.3) and also implies an exponential spectrum. The “ideal moving
charge layer” is a good approximation, but the information from the finite extension
of the electron layer is completely ignored, which will have significant influence on the
pulse spectral and phase properties in high-frequency region as we discussed in Sec.3.1.3.
Furthermore, in their analytical calculations, the condition:

B+ =1, (3.63)

is imposed in order to self-consistently evolve the layer motion equations. However,
this condition (Eq. (3.63)) implies an infinity in the pulse radiation (Eq. (3.62)) at the

°In simulations, it is possible to have a small time shift between the point when 8, = 0 and the point
when |B5| is maximal.

In the experiment, the transmission harmonic spectrum is detected in the forward direction which
is different from setup in our theory and CSE model, and the power-law spectrum extends to very
high-frequency region.
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emission instant when 5, = —1.

In RES model, the energy conversion process was explicitly discussed, to our knowl-
edge, for the first time”. This energy conversion process is crucial for a strong attosecond
pulse emission. However, in their discussion, ions are fixed. The energy converts from the
incident laser to the emitted pulse via the electron layer compression and acceleration.
In the ultra-relativistic regime, ion motion (hole-boring effect) becomes inevitable. Ion
acceleration can effectively change the energy partitions in the energy conversion process
and thus decrease the energy absorption for the layer acceleration and the pulse emission.
As we can see in Fig. 3.4, ion motions can strongly affect the emitted pulse spectrum.
This highlights the main difference between our discussion and the RES model.

3.5 Conclusions

In this chapter, we develop an analytical model for the pulse emission from a well-defined
electron layer compressed by the strong laser ponderomotive force at the plasma surface.

We first validate the assumptions, via PIC simulations, that the pulse is emitted
by a strongly compressed electron layer at the laser-plasma interface and the emission
occurs at the node where the layer transverse current changes its sign J, ~ 0, and its
longitudinal velocity approaches the speed of light 8, ~ —1.

On account of these assumptions, we give the analytical expression for the emitted
pulse, and derive the exponential spectrum and the constant spectral phase 1 (w) =
+3 + 14, of the pulse. After this, we analytically analyze the influence of the finite
extension of the electron layer on the pulse spectral and phase properties.

Based on these discussions, we know that high-frequency emissions are bunched on
the attosecond time scale when the compressed electron layer has the largest backward
velocity (8, ~ —1. By filtering out the low-frequency components (w < wy) in the pulse,
the analytical description for an attosecond pulse is derived.

Moreover, we discuss the energy conversion process behind the pulse emission in great
details and give the numerical and analytical comparison with CSE and RES models at
the end.

"This energy conversion process should also happen for CSE model, but they did not mention or discuss
as detailed as RES model.
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Chapter 4

Plasma high harmonic generation from
ultraintense laser pulses

In this chapter, plasma high-order harmonic generation from an extremely intense short-
pulse laser (I; > 102'W/ cm2) is explored by including the effects of ion motion, electron-
ion collisions, temperature effect and radiation reaction force in the plasma dynamics.
In Sec. 4.1, we first introduce the motivation for our study and the simulation setup
for the whole thesis. Then, in Sec. 4.2, we show the parametric study to highlight
the necessity for the inclusion of the effects of ion motion, collisions, temperature and
radiation reaction in this extremely intense regime. Next, in Sec. 4.3, we show that
the super-strong laser ponderomotive force induces plasma ion motion through the hole-
boring effect leading to frequency shifting and widening of the harmonic spectra which
would result in the discrete harmonic peaks in low-frequency region but quasi-continuous
spectrum in high-frequency region. We analyze analytically the widening of the harmonic
spectra and validate it by particle-in-cell (PIC) simulations. Based on these results and
physical considerations, parameter maps highlighting optimum regions for generating a
single intense attosecond pulse and coherent extreme ultraviolet (XUV) radiation are
presented in Sec. 4.4 for different plasma targets and incidence angles. In Sec. 4.5, a
brief conclusion of the whole chapter is presented. Parts of the contents in this chapter
have been published in our paper [1].
Same dimensionless quantities are used as in Chapter 3.

4.1 Motivation and simulation setup

A powerful and coherent source of radiation operating in the XUV region has multi-
tudes of applications ranging from the novel field of attosecond physics [47] to probing
the nonlinear effects in hot and warm dense matter [107, 108]. High-order harmonic
generation (HHG) via the femtosecond relativistic laser-solid interaction is predicted to
be one of the most suitable to extend the coherent radiation sources into the XUV re-
gion [35, 58, 59, 66, 109-113]. Although the HHG from the linearly polarized laser pulse
interaction with gaseous targets has been experimentally demonstrated, the harmonic
flux and conversion efficiency are saturated at nonrelativistic regimes [35], as shown in
Fig. 1.1.

One of the underlying advantages of the solid HHG, in comparison to gaseous HHG, is
to be able to use higher incident laser intensity, see Fig. 1.1. In order to improve the flux
of the high-order harmonics or build a super-strong XUV source, we propose to employ
an ultra-relativistic laser (a9 = eEy/(mecw;) > 1, IN} > 1.37 x 10'8 ym? W/cm? e and
m. denote the charge and rest-mass of the electron respectively, E; and w; are the electric
field and frequency of the laser respectively, c is the light speed in vacuum.) to drive the
solid HHG, since the laser systems with intensities I > 102'W /cm? are currently either
available or on the horizon [6, 114].

o1
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In this ultra-relativistic regime, the plasma ion motion and radiation reaction (RR)
force [27, 76] must instructively be taken into account. Ions cannot be taken as a posi-
tive charge background as in the previous HHG models [15-18]. The direct contribution
from ion current to the plasma HHG is always negligible because of the low-frequency
response, but the indirect influence is significant as ion motion effectively affects the elec-
tron dynamics and changes the energy conversion process. As we discussed in Sec. 2.4,
the plasma ion motion originates from the hole-boring (HB) effect [37, 91, 115], in
which the laser ponderomotive force pushes the plasma target surface inwards, creat-
ing a double-layer structure. The electron layer in this structure oscillates around the
ion layer emitting high-harmonics but the structure itself has a slow motion inward the
target, which can significantly change the energy conversion efficiency as discussed in
Sec. 3.3 and thus the harmonic spectrum [1, 116]. The HB effect leads to strong com-
pression of the plasma density at the laser-target interface as shown in Fig. 2.3, which
necessitates the inclusion of electron-ion collisions in plasma dynamics. While the ion
motion and collisions affect the electron layer dynamics, the plasma is effectively heated,
thus necessitating the consideration of plasma temperature effect. Moreover, the radia-
tion reaction force changes the laser energy partition among electrons, ions and radiation
in the plasma [77, 117-122], thus can also change the harmonic spectrum.

Incident laser

MULIEN

Plasma
Observer
- Filter -
w > O)f
Attosecond Pulses Reflection

Figure 4.1: Schematic diagram of the simulations for HHG via laser-plasma interaction.

To setup the simulation, we irradiate a strong linearly polarized laser pulse onto an
over-dense plasma as shown in Fig 4.1. The strong laser ponderomotive force can oscillate
the plasma surface. This surface oscillation will effectively modulate the incident laser
pulse, and couple abundant harmonics of the incident laser frequency into the reflection.
In this chapter, we analyze the intensity spectrum of the harmonics contained in the
reflection by Fourier transforming the reflection from the time domain to the frequency
domain. If a suitable frequency filter is applied to cut off the low-frequency components
or select the components in a particular frequency interval from the reflection, we can
obtain a train of attosecond pulses or a single attosecond pulse. This will be the topic
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for Chapter 5.

4.2 Parametric study

In this section, we present the parametric studies of plasma HHG in the ultra-relativistic
regime (I; > 102'W/ sz) and highlight the necessity for the consideration of the hole-
boring effect, collision damping, temperature effect and the radiation reaction effect in
this regime for plasma harmonic generation.

4.2.1 Hole-boring effect

We first study the effect of hole-boring motion on the intensity spectrum of harmon-
ics. The hole-boring effect [37] is the inevitable and straightforward consequence if we
improve the intensity of the driving laser pulse. The extremely strong laser ponderomo-
tive force can drive the ion motion in the first few laser cycles, which would effectively
change the energy partitioning among electrons, ions and the reflection as we discussed
in Sec. 3.3.

In Fig 4.2, we show the obtained harmonic intensity spectra in the cases with and
without ion motion. As we can see, ion motion significantly reduces the harmonic inten-
sity for the whole spectral region in (a). This is because the ion acceleration increases
the laser energy absorption, thus decreasing the energy reflection coefficient R as dis-
cussed in Eq. (2.49). One can also see in (b) that ion motion results in the shifting of
the harmonic frequency and broadening of the harmonic peak. In the mobile-ion case,
the harmonic spectrum violates the well-known selection rules in Sec. 2.3.2 [16], and
non-integer harmonics are generated, while in the fixed ion case, only integer harmonics
are generated as described in the selection rules. This harmonic shifting originates from
the Doppler effect arising due to the plasma surface motion, and the harmonic peak
broadening is concomitant with the frequency shifting.

To gain deep insight into the action of the ion motion, we compare the cases with
different target materials in Fig 4.3. As shown in Fig 4.3 (a), the plasma target with
different material gives the indistinguishable harmonic spectrum for the fixed-ion case.
This is expected because ions work in the fixed-ion case as a positive charge background
which only provides the electrostatic field to oscillate the surface electron layer. In
Fig 4.3 (b) for the mobile-ion case, the difference between the harmonic spectra from
different plasma materials, albeit slight, is clearly distinguishable. As one can see, the
target material with higher charge-to-mass ratio (Z/A) gives weaker harmonic intensity
and larger harmonic frequency shifting, where A and Z are the mass and charge number
of the ion, respectively. This is reasonable since the hole-boring velocity Sy, is larger if
the material ion has higher charge-to-mass ratio. From Egs. (2.46) and (2.47), we can
know that

[N

1
Z 1 \?
X (A 1836.2) ’ (4.1)

where B < 1 and the relation m; = 1836.2Am, are used. The larger hole-boring velocity
results in larger harmonic frequency shifting and smaller energy reflection coefficient as
proved by Eq. (2.49).

From another point of view, harmonic is the consequence of the interference between
the different pulses in the reflection. Hole-boring effect reduces the pulse emission by
repartitioning the laser energy in the energy conversion process as discussed in Sec. 3.3,

m; -
B 1
By x B o< ( + Zm@)
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Figure 4.2: 1D PIC simulations of HHG for the cases with (red solid line) and without (blue dashed
line) ion (Carbon) motion. Normal incident geometry (6 = 0) is employed. In (a), we show the
harmonic spectrum in a wide range of frequency with a logarithmic a-axis. In (b), we zoom in the
spectrum in the low-frequency region with a linear x-axis. With ion motion, the harmonic intensity
is significantly reduced, and the harmonic peaks clearly violate the selection rule while the harmonic
peaks in the fixed ion case obey the selection rule. The green dashed lines correspond to integer
harmonics from selection rules discussed in Sec. 2.3.2 [16]. The laser has a step-like profile with a
constant amplitude a(t) = 40 for 0 < t < Ty = 18T;. The plasma has no pre-gradient with the
constant density ng = 200. The interaction is collisionless with the initial temperature T, = OeV.
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Figure 4.3: 1D PIC simulations of HHG for the cases with (a) and without (b) ion motion for different
target material: Gold (Au, blue line), Carbon (C, red line), Hydrogen (H, green line). Normal incident
geometry (6 = 0) is employed. In the fixed-ion case (a), the targets with the different materials have
the same harmonic spectra; While in the mobile-ion case (b), the harmonic intensity from the target
with larger charge-to-mass ratio is smaller. A and Z are the mass and charge number of the ion in
the target material, respectively. Same laser and plasma parameters are used as in Fig. 4.2.

thus decreasing the harmonic intensity.

4.2.2 Collision effect

In low-temperature ultra-dense plasma physics, the collisional effect plays a very impor-
tant role in the transport theory, such as fast particles transfer in the fast-ignition for
the laser fusion [123]. In high-temperature under-dense plasma physics, the collisional
effect is mostly negligible as the collisional frequency ve; is much smaller than the typical
plasma frequency wp. and the laser frequency w;. In the interaction of an ultra-relativistic
laser with an ultra-dense plasma for plasma HHG, the necessity for the consideration of
the collisional effect becomes more complicated and needs detailed discussion [4].

For the Coulomb binary scattering, the electron-ion collision frequency [29] is

Z%n;et In(A)
/2732

.~
Vei =

(4.2)
2776%m

where In(A) ~ 10 ~ 20 is the Coulomb logarithm [124], T is the electron temperature, Z
is the ion charge number, and n; is the ion density. To show the importance of collisional

n this subsection, the international system of units (SI) are used since the numerical calculation is
need
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Figure 4.4: 1D PIC simulations of HHG for the collisional effect. (a) Comparison of the harmonic
intensity spectrum in the cases with (red line) and without (blue) the collisional effect. The collisional
effect reduces the higher-order harmonic emission. (b) Harmonic spectrum with collisional effect for
different target material: Hydrogen (H, blue line), Carbon (C, blue line), Gold (Au, green line). The
harmonics from the material with larger charge number have weaker intensity. In (a) and (b), ions
are fixed. (c) Comparison of the harmonic spectrum in the cases with (red line) and without (blue)
collisional effect. lons are mobile. The collisional effect damps the higher-order harmonic emission.
The plasma has the initial temperature T, = 500eV. The same laser and plasma parameters are used
as in Fig. 4.2.
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effect, we calculate the ratio of the collision frequency to the plasma frequency wp. of
the background electrons as

Vei Z%nie* In(A) ( €0Me ) 1/2

= 172372 | .2
Wpe 27regme/ Te/ € Tlpe

_Ar*ZIn(A) Zn, me/%c3
N )\?nc A/ NeTle Tg’/2 ’

where we make use of the plasma frequency wpe = \/€2npe/(€gme), the plasma critical

density n. = wl2e()7ne/e2 and \; = 2mc/w;. For the laser wavelength \; = 0.8um, the
corresponding plasma critical density is n. = 1.742 * 102'em™3. The carbon (Z = 6)
plasma is used with initial conditions: Zn? = nd = 100n., T, = 1keV. The plasma
frequency is obtained as wpe = 10w;. The Coulomb logarithm is taken as In(A) = 15.
Therefore, the ratio gives rise to

(4.3)

Vei

~ 0.46 . (4.4)

Wpe

Consequently, in the ultra-dense plasma with moderate temperature, the collisional ef-
fect has to be taken into account for plasma HHG as the collision frequency is even
comparable to the plasma frequency.

However, after a long time interaction with the ultra-relativistic laser, the plasma
electrons would be extremely heated to the temperature, T, ~ m.c? and simultaneously,
the plasma ions would be dramatically compressed at the laser-target interface as shown
in Fig. 2.3. In general, this compression could be orders of magnitude, and here we
estimate as n; ~ 100nY [37, 125]. Thus the collision frequency is recalculated as

Vei ~ 0.004wpe = 0.04wy. (4.5)

For the laser with duration Tld ~ 10T} ~ 27fs, the average binary collisions during the
interaction can be estimated as:

VeI ~ 25> 1, (4.6)

which also highlights the necessity for the consideration of the collisional effect on plasma
HHG in a long time ultra-relativistic laser-plasma interaction.

With the above simple estimation, we can know that in the process of plasma HHG,
the collision effect which is neglected in the low-intensity regime [16, 126], is indeed
non-negligible in the ultra-relativistic regime.

As shown in Fig. 4.4, we can clearly see the effect of collisions on plasma harmonic
spectra. With the inclusion of collisions, the harmonic spectrum decays faster, leading
to lower efficiency for high-order harmonic generation as shown in Fig. 4.4 (a). Since the
collision frequency is proportional to the square of the ion charge number, i.e. ve; o< Z2,
plasma HHG from the target with larger charge number is more damped by the collisional
effect as shown in Fig. 4.4 (b). If the ions are mobile, the collisional effect would be
boosted with the dramatically compressed ion layer by the hole-boring effect. Comparing
(a) and (c), the decrease of the intensity starts from about ten order of harmonics
(wp, > 10w;) for mobile-ion case, while for fixed-ion case, the decrease is from hundred
order of harmonics (wy, > 100w;).
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Figure 4.5: 1D PIC simulations of HHG for the temperature effect in the cases with (a) and without
(b) collisional effect. The high-order harmonic intensity becomes weaker for both collisional and
collisionless case if the plasma has higher initial temperature. lons are fixed. The same laser and
plasma parameters are used as in Fig. 4.2.

To understand these effects, we resort to Eq. (2.13). From that, we can see that the
collisional effect acts as a friction which damps the motion of the plasma current, thus
hindering the background acceleration of the electron layer in the energy conversion
process. With a smaller relativistic factor «y, the emitted pulse would have a spectrum
with faster decay, 1/wg oc v~2 (see Eq. (3.10)).

As we also see, the influence on low-order harmonics from collisional effect is not sig-
nificant, which may imply that the total energy of the reflection is not reduced evidently
by the collisional effects.

4.2.3 Temperature effect

In practical experiments, plasmas are created on solid targets irradiated by strong laser
pulses. In the ionization process, the plasma electrons are heated to high temperature
from hundreds of electronvolts (eV) to thousands of electronvolts (keV). In the ultra-
relativistic laser-plasma interaction, the plasma target could be extremely heated via
vacuum heating [60] and J x B heating [127], especially in the oblique incidence with
linear polarization. The strong oscillatory laser ponderomotive force drives the electron
layer oscillation, which would push large numbers of hot electrons inward the target [128]
and produce high-temperature plasma background. All of these bring the necessity for
the consideration of temperature effect.

As shown in Fig. 4.5, we can clearly see the influence of the plasma temperature on the
harmonic generation. The plasma target with higher initial temperature T, can suppress
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the generation of high-order harmonics for both collisional and collisionless case [129].
To interpret these results, we can make use of Eq. (2.13a):

8;? M% = q(Ey +uyB. — u.B,) — %%ﬁm — v P,
= q(E; - q%’%ﬁ’ - qjiz a{i’z) - %a%ﬁm —vePe
_ B 217‘954 20 1) P, (4.7)
where the conservation of canonical momentum is used: P, . = Ayyz,:q = —1 for electron,

and we take the plasma compression as an isothermal process: P,, = ncT.. In the
interface of interaction, the vector potential decays with z, 94%/0x < 0, and the density
increases, dn./0xz < 0, thus for the largest compression, where dP,/dt = 0 and P, = 0,
we can have

o4°
ox

1

10

———(n.T.). (4.8)

As we can see, the thermal pressure changes the pressure balance for the largest
compression, P, + Ps; + Pr, = 0 (See Eq. (3.34)), which reduces the charge separation
field E; and the energy storage in the field, where Pr, denotes the thermal pressure.
Thus, the subsequent acceleration of the electron layer would also be decreased, leading
to a smaller relativistic factor v and resulting in a weaker pulse emission with a faster
spectral decay , 1/wqg oc 72 (see Eq. (3.10)).

Here, we just give a general discussion about the effect of the plasma initial temper-
ature on plasma HHG. During the laser-plasma interaction, the plasma temperature is
both temporally and spatially dependent, it is too complicated to give an explicit dis-
cussion about the effects of the changeable temperature on the real-time plasma HHG.
Fortunately, these effects are included by PIC simulations self-consistently [83, 84]. For
the discussion below, we setup the simulations with an initial temperature without fur-
ther discussion about the variations of the temperature.

4.2.4 Radiation reaction effect

At higher laser intensity I > 10?2 W/ cm?, the electrons could be accelerated to ultra-
relativistic energy v > 1, which motivates the consideration of the radiation reaction
(RR) force [27, 76]. From the previous literature [77], the RR force influences the electron
motion and can repartition the laser energy among different particles: ions, electrons
and photons. Consequently, it can influence the harmonic generation.

In our work, the classical radiation reaction force is considered with the Landau-
Lifshitz prescription [76]?:

47 7, 0 0
F,, T [( p p

p
=__¢ — L ZVE+ = — 1+ Z.V)B
3/\17 8t+7V) +7><(at+7V)]
A7 r,

p P
+?>\7 [(E+7><B)><B+(7-E)E}

2The RR force in the international system of units (SI) is shown in Appendix A.1
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47 e o)
EDY (E‘F;XB)Z—(*'E)z P, (4.9)

=T

where 7, = 2.81794 x 10~'°m is the classical electron radius, and \; = 0.8um is the laser
wavelength.

As we can see, the last term in Eq. 4.9 is proportional to 2 opposite to the direction
of the particle momentum, dominating the RR force [130]. For the ultra-relativistic elec-
trons, v > 1, the proceeding term in Eq. 4.9 is much smaller than the last term because
of the missing of v factor. The term containing the temporal and spatial derivatives is
also negligible compared to the dominant term (proportional to ¥?). From a numerical
point of view, the calculation of the temporal derivative depends on quantities (E, B) at
the proceeding and succeeding time steps. This calculation would tremendously increase
the computational complexity and also the numerical noise in the simulation. For sim-
plicity, we ignore the terms related to the temporal and spatial derivatives in Eq. (4.9)
and only consider the other terms in Eq. (4.10) as the reduced radiation reaction force
in the particle motion equation:

A r P p
F} :e{EerB x B+ EE}
=g B+ 2xB)xB+ 2B
AT 7e { P 2 p 2]
—— — [(E+=xB)*—(=E)*|vp. 4.10
T |® B2 Ep (1.10)
To show the importance of RR force in the ultra-relativistic regime, we try to compare
the main term of the RR force to the electron Lorentz force, Fr,, = —(E + g x B) as
FLL 47 Te P ’ 2
~——|E+=xB
FLOT’ 3 Al 0 K
8T 7Te -, o
~ ——FE~°. 4.11
Pl (4.11)

Here we consider a single electron moving opposite to a laser electric field. For a laser
with normalized electric field ag = 250, the typical relativistic factor of an electron
moving in this laser field can be estimated as v ~ ag = 250. Inserting these into
Eq. (4.11), we can have

~ 0.46.. (4.12)

This ratio does highlight the importance of the RR force in the electron dynamics.
We wish to stress that the above estimation is done for a single electron. In the practical
ultra-relativistic laser-plasma interaction, the situation would be extremely complicated,
the importance of the RR force should be demonstrated via PIC simulations. The
numerical consideration of the RR force in EPOCH (PIC) [83] is discussed in detail in
Appendix A.1

In Fig. 4.6, we show the comparison for plasma HHG between the cases with and
without the RR force. As we can see, the RR force reduces the intensity of the reflected
field, but the reduction becomes significant only after a long time interaction. This is
easy to understand: at the beginning of the interaction, the plasma is very dense and
the electrons are dramatically compressed, the laser penetration depth is much smaller
than the laser wavelength, d < )\;, and thus not enough high energetic electrons are
excited. The reflection is same for the cases with and without the RR force. However,
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Figure 4.6: 1D PIC simulations of plasma HHG for the radiation reaction (RR) force. (a) Incident
field. (b) Reflected field for the case with (red lines) and without (blue line) RR force. The RR force
reduces the reflected field after a long time interaction. (c) Harmonic spectrum of the reflected field
for the case with (red lines) and without (blue line) RR force. The RR force decreases the low-order
harmonic intensity. The laser has the temporal profile: a(t) = ag(tanh((t — Ts)/W) — tanh((t —
T.)/W))/2, where ag = 250, W = 0.5T;. The laser pulse has maximum intensity from T = 47; to
T. = 16T;. Oblique incidence 6 = /4 is used, and the plasma density is ng = 1100n..
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because of the plasma J x B heating [127] from the oscillatory laser ponderomotive force,
the electron layer would be expanded after a long time interaction, thus the laser field
could penetrate deeper into the electron layer to excite more high-energy electrons [128].
Therefore, the RR force can act to quench these high-energy electrons, increasing the
laser absorption and decreasing the reflection. The decrease of the reflected field results
in the weaker low-order harmonics as shown in Fig. 4.6(c).

4.3 Harmonic peak broadening

With the above paranetric study, we can clearly see the necessity of including the effects
of plasma ion motion, electron-ion collisions, initial plasma temperature and the RR
force together in the ultra-relativistic laser-plasma interaction for plasma HHG. The
Doppler shift of incident laser frequency, arising due to the HB effect (ion motion),
in the rest frame of the target leads to non-integer harmonics being generated in a
laboratory frame of reference (see Fig. 4.2). We show that this inevitable frequency shift
leads to the widening of the harmonic peaks resulting in a large frequency bandwidth in
the generated harmonic spectra.

4.3.1 Theoretical model

Essentially the physical mechanism behind the frequency broadening is the dynamic
HB effect. During the initial stage of the interaction, the HB velocity is not constant.
This causes variable frequency shifts and since the whole spectrum is a superposition of
variable frequency shifts, it results in the broadening of the harmonic spectra.

To estimate the broadening, we proceed by recalling the peak frequency shift in the
laboratory frame of reference [37, 116]. The frequency shift is the consequence of the
Doppler effect from the hole-boring motion. In the hole-boring frame of reference, the
incident laser frequency is

_ /
! B’”’)l ; (4.13)

w = (1 — Bro) = wi (1 v

where [y is the hole-boring velocity, vp, = (1 — B%b)l/ 2 is the relativistic factor, and w;
is the incident laser frequency in the laboratory frame of reference. The nth harmonic
in the hole-boring frame of reference is w,, = nw;. In the laboratory frame of reference,
the nth harmonic frequency becomes

wn = W (1 = Brp)

— nwl (1 _ ﬁhb)l/Q
N1+ B
1— By

T B

(4.14)

= Nw,

Therefore, we can gain the peak frequency shift of the nth harmonic in the laboratory
frame of reference:

20np
1+ By

dwy, = nwy — w; = nwj (4.15)
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The HB velocity S8y, is defined as

B
Brb = l—kiB(l — Xh), (4.16)

with

I; cos*(0) VI,
B = Xy~ ————— 4.1
\/no(l +m;/Zm.)’ "™ Bng cos?(6) (4.17)

where [; is the incident laser intensity, 6 is the incidence angle, ng is the plasma initial
density, and X}, denotes the rate of energy absorbed by the hot electrons [78, 94]. The
detailed discussions about the hole-boring velocity Sy and the correction X from hot-
electron generation are given in Sec. 2.4.

We wish to emphasize that this peak frequency shift is indeed important for both lower
and higher order harmonics. While the large HB velocity is bound to cause substantial
frequency shifts, even the small HB velocity induces inevitably large frequency shifts in
higher-order harmonics.

Since the HB effect is not a stationary effect, this frequency shift can lead to broadening
of the harmonic peaks. Considering that the maximum frequency shift and the highest
intensity of the harmonics occurs at the highest intensity of the laser pulse, one can scale
the width (FWHM) of each harmonic peak quantitatively as half of the peak frequency
shift:

dwn,

Aw, = =2 (4.18)

4.3.2 Simulation results

Below, we validate the theoretical discussions with the extensive simulations performed
with the EPOCH (PIC) code [83] .

Fig. 4.7 shows 1D PIC simulation results of HHG in which a linearly polarized laser
pulse with wavelength A\; = 0.8um is normally incident on a preionized Gold (Au, A =
197, Z = 79) plasma target. Fig. 4.7 (a) shows the frequency shift dw, and harmonic
spectrum broadening Aw, with and without the ion motion for constant laser profile.
As we can clearly see, the hole-boring effect arise the frequency shift of the harmonic
peaks.

For the parameters in Fig. 4.7 (a): laser intensity [; = 800, plasma initial density
ng = 200n., one gets the analytical estimates as dwos = 1.30, Awss = 0.65; In Fig. 4.7
(b), a laser pulse with temporal profile is used. The peak laser intensity [; = 800 with
average field < a >= 20 and ng = 80 gives the analytical estimates: dwos = 1.95,
Awgs = 0.97; For the parameters in Fig. 4.7 (c), the analytical estimates for the density
gradient L = )\;/32 case (red dash-dotted line) are the same as in Fig. 4.7(a) which has
a step-function density profile. The frequency shifts (dw,) and broadening (Aw,) for
all the harmonic peaks in Fig. 4.7 have been summarized in Table. 4.1 with both the
analytical estimates and simulation results. As one can see, the analytical estimates are
confirmed by the PIC simulation results.

To further validate the analytical model, Fig. 4.8 shows 2D PIC simulation results of
HHG on fully ionized gold (Au, A/Z = 197/79) and carbon (C, A/Z = 12/6) plasma
targets with plasma density gradient. For the (a) gold and (b) carbon plasma targets,
the analytical estimates yields the frequency bandwidth of the 21st harmonic as (a)
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ap = 40, I; = 800, ng = 200n,. in Fig. 4.7(a)
n 21 23 25 27 29
Analytical dw, 1.09 1.20 1.30 1.40 1.51
Simulation dw, 1.14 1.23 1.32 141 1.50
Analytical Aw, 0.55 0.60 0.65 0.70 0.76
Simulation Aw, 050 0.68 0.72 0.73 0.73

< ag >= 20, ["> = 800, ng = 80n, in Fig. 4.7(b)
n 21 23 25 27 29

Analytical dw, 1.64 1.79 1.95 211 2.26

Simulation Jdw, 1.64 1.73 1.86 2.05 2.23

Analytical Aw, 082 0.89 097 1.05 1.13

Simulation Aw, 0.77 0.82 0.77 0.95 1.13

ap = 40, I; = 800, ng = 200n,., L = A\;/32 in Fig. 4.7(c)
n 21 23 25 27 29 31 33 35
Analytical dw, 1.09 1.20 1.30 1.40 1.51 1.61 1.72 1.82
Simulation dw, 1.10 1.20 1.30 140 150 1.65 1.70 1.80
Analytical Aw, 055 0.60 0.65 0.70 0.76 0.80 0.86 0.91
Simulation Aw, 0.55 0.65 0.80 0.75 0.95 0.95 0.10 0.95

Table 4.1: Comparison between analytical calculations and simulation results of the frequency shift
(dwy,) and harmonic spectrum broadening (Aw,). Egs. (4.15)-(4.18) and the corresponding pa-
rameters in Fig. 4.7 are used for analytical calculations. The simulation results are extracted from
Fig. 4.7.
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Au, ag = 40, I; = 800, 6 = 0, ng = 200n. in Fig. 4.8(a)
n 17 19 21 23 25
Analytical dw, 1.10 1.22 1.34 1.46 1.58
Simulation Jdw, 1.08 1.19 1.24 1.36 147
Analytical Aw, 0.55 0.61 0.67 0.73 0.79
Simulation Aw, 060 046 056 041 0.35

Au, ag =40, I; = 800, § = 7 /4, ng = 200n, in Fig. 4.8(a)
n 16 17 18 19 20 21 22 23 24 25
Analytical dw, 031 0.33 035 037 039 041 043 045 047 049
Simulation Jdw, 0.30 0.35 0.30 0.30 0.40 0.35 0.35 0.40 0.45 0.40
Analytical Aw, 0.16 0.17 0.18 0.19 0.20 0.20 0.21 0.22 0.23 0.24
Simulation Aw, 0.20 0.15 0.20 0.25 0.25 0.15 0.15 0.20 0.20 0.25

C, ag = 40, I; = 800, 6 = 0, ng = 200n. in Fig. 4.8(b)
n 17 19 21 23 25
Analytical dw, 1.00 1.11 1.22 1.34 1.46
Simulation Jdw, 1.03 1.14 1.27 1.37 1.49
Analytical Aw, 0.50 0.56 0.61 0.67 0.73
Simulation Aw, 0.37 041 0.63 0.68 0.71

C, ag = 40, I = 800, 6 = /4, ng = 200n, in Fig. 4.8(b)

n 16 17 18 19 20 21 22 23 24 25
Analytical dw, 0.38 0.41 0.43 0.46 048 050 053 055 0.58 0.60
Simulation dw, 0.34 0.34 0.39 0.39 044 042 049 049 054 0.54
Analytical Aw, 0.19 020 022 023 024 025 026 027 029 0.30
Simulation Aw, 0.20 0.15 0.15 0.25 025 0.15 0.15 0.20 0.20 0.25

Table 4.2: Comparison between analytical calculations and simulation results of the frequency shift
(dwy) and harmonic spectrum broadening (Aw,). Egs. (4.15)-(4.18) and the corresponding pa-
rameters in Fig. 4.8 are used for analytical calculations. The simulation results are extracted from
Fig. 4.8.
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Figure 4.7: 1D PIC simulations of HHG for harmonic frequency shifts and peak broadening. The
frequency shift (deviation from the green dashed lines) is clearly seen. (a) With and without ion
motion at plasma density ng = 200 and with a constant laser amplitude a(t) = ag for 0 < ¢t < Tj.
(b) With a laser pulse of temporal profile a(t) = ag sin®(wt/Ty), where T, = 20T}, at plasma density
ng = 80. (c) HHG with different plasma density gradients L. The maximal plasma density is ng = 200
with the same laser profile as in (a) except T; = 51;. The Gold (Au, A =197, Z = 79) plasma is
used. The green dashed lines correspond to integer harmonics from selection rules defined in [16].

Awgr = 0.67w;(0 = 0), Awar = 0.20w;(6 = 45°) and (b) Awg; = 0.61w;(0 = 0), Aws =
0.25w; (6 = 45°) respectively and they match well with the corresponding PIC simulation
results in Fig. 4.8. The analytical estimates and simulation results for all the other
harmonics in Fig. 4.8 can be found in Table. 4.2. Here we only show harmonics up to
order n < 25 since the peak frequency shift and widening are expected to be large for
higher-order harmonics.

4.3.3 Discussions

With all the simulations in Figs. 4.7 and 4.8 and summarized dates in Tables. 4.1 and 4.2,
we can validate our analytical calculations in Egs. (4.15)-(4.18).

Fig. 4.9 summarizes the comparison between the simulation results (stars) and the
analytical calculations (solid lines). As we can see in Fig. 4.9 (a), (b) and (c), the fre-
quency shifts dw,, in simulations (Fig. 4.7 and Fig. 4.8) match well with the analytical
estimates for the parameters therein, and in Fig. 4.9 (d), the harmonic peak broaden-
ing Aw,, matches qualitatively the relation, Aw, = dw,/2, (see Eq. (4.18)) with the
frequency shift dw,,. The slight discrepancy between analytical estimates and PIC simu-
lation results can be attributed to the rough estimation of the hot electron generation in
the analytical model and the numerical noise in simulations. Therefore, the analytical
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Figure 4.8: (2D PIC simulations with different targets and incident angles. The intensities are nor-
malized to the intensity of the 17th harmonic for normal incidence and the 16th harmonic for oblique
incidence. (a) Gold plasma with density gradient L = \;/8. (b) Carbon plasma with L = X;/16.
The laser has the temporal profile a(t) = ag(tanh((t — Ts)/W) — tanh((t — T.)/W))/2 and the
transverse profile a(t,y) = a(t) exp(—y*/0?), where ag = 40, W = T; = \;/c and o = 4);. The
laser pulse has maximum intensity from T, = 57; to T, = 131;.

calculations in Eqs. (4.15)-(4.18) can be validated.

Apart from hole-boring-induced frequency broadening, two other effects are also re-
sponsible for broadening the harmonic spectrum: first, because of the laser temporal
profile, see also in Ref. [111, 112], harmonics generated by different parts of the laser
pulse can have different frequency shifts as shown by the solid red and dash-dotted blue
lines in Fig. 4.7 (b), leading to the total frequency broadening, as shown by the solid
black line in Fig. 4.7 (b). Second, harmonic spectra can also be broadened due to vari-
able frequency shifts arising from the plasma density gradient i.e. n. = n.exp(x/L)/2.
Fig. 4.7 (c) depicts this broadening and one can clearly see that steep density gradient
results into a narrower spectrum, while longer density gradient leads to widening of the
harmonic spectrum. One may note that the ion-motion-induced broadening dominates
over the last two mechanisms and it occurs in the first few cycles of the laser pulse and
therefore can not be mitigated by resorting to few cycle laser pulses for HHG as shown
by the red dotted line in Fig. 4.7 (b).

If the laser intensity reaches the regime I > 10?2W /cm?, the effect of the RR force [27,
76] is important as it repartitions the laser energy among different particles [77], and
consequently influences harmonic generation. Fig. 4.10 (a) and (b) show the 2D PIC
simulation results depicting the influence of the RR force on plasma HHG. One can see
that the peak frequency shift and the frequency widening of the harmonics is smaller
with the RR force effect. This difference, albeit smaller, is clearly noticeable (see inset of
Fig. 4.10(a)). Essentially the RR force leads to redistribution of the laser energy among
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Figure 4.9: Analytical calculations (solid lines) and simulation dates (stars). The frequency shifts
obtained from the simulations, (a) in Fig. 4.7, (b) in Fig. 4.8(a), (c) in Fig. 4.8(b), are compared
with the analytical shifts calculated with Eq. 4.15 and the parameters in Figs. 4.7, 4.8, respectively.
(d) Frequency shifts and harmonic peak broadening gained from the simulations in Figs. 4.7, 4.8.
The solid line is the analytical relation Aw,, = dw,/2 (see Eq. (4.18)). All the dates have been
summarized in Tables. 4.1, 4.2.

different species of particles (electrons, ions and photons) which enhances the laser energy
absorption and accordingly decreases the HB velocity [37, 77, 115] as shown in Fig. 4.10
(c). However, the intensity of the harmonics emitted is also reduced by the RR force
in the oblique incidence case. The same interpretation can be used as in Sec. 4.2.4.
Here, we give the more detailed understanding: HHG depends strongly on the backward
motion of the electron layer towards the laser pulse. For the backward motion of the
electrons, the RR force is stronger and it tends to slow down the electron layer movement
as shown clearly in Fig. 4.10 (d). In the oblique incidence case, the backward motion can
be accelerated by the E, component of the laser field thereby enhancing the RR force
compared to the normal incidence case. Consequently, the intensity of the generated
harmonics can be slightly more reduced in the oblique incidence case. Hence, the RR
effects can slightly reduce the harmonic intensity, but at the same time slightly improve
the frequency broadening of the generated harmonic. The same analytical calculation
for harmonic frequency shift and peak broadening can be used for the case in the RR
force regime.
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Figure 4.10: 2D PIC simulations of plasma HHG for the radiation reaction (RR) force. The black
lines account for the RR force while the magenta lines do not. (a) Harmonic spectrum in normal
incidence § = 0; (b) Harmonic spectrum in oblique incidence §# = /4. (c) Temporal position (y-axis)
of the electron (X.s/\;, solid line) and ion (X;s/A;, dotted line) layers. The electron and ion layers
are defined at the position with density n. = Zn; = agn.. (d) Relative position (y-axis) of the
electron layer, (X s — X;s)/A;, with respect to the ion layer. (c), (d) are for simplified 1D normal
incidence case for (a). The laser has a constant profile with ag = 250 for 0 < ¢t < Ty = 20T;. The
lasma density is ng = 1100n,. without plasma gradient.

4.4 Parameter maps

We analyze and validate the widening of the harmonic spectra caused by the hole-boring-
induced frequency shifts analytically as well as by PIC simulations. This widening can
produce a quasi-continuous frequency spectrum which is the prerequisite for generating
an intense isolated attosecond pulse [109, 110], though this frequency broadening can
limit the temporal coherence of the high-frequency extreme ultraviolet (XUV) radia-
tion. This juxtaposition can be exploited to create a parameter map (laser intensity vs
plasma density) where different regions of the parameter map correspond to different
applications, such as coherent XUV radiation and single attosecond pulse generations.

4.4.1 Frequency bound

The frequency bound is the line that separates the region for coherent XUV radiation and
the region for a single attosecond pulse generation in a parameter map (laser intensity
vs plasma density)

The line that separates the two regions corresponds to a case when the frequency
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broadening equals the frequency separation between the adjacent harmonic peaks. This
implies the maximal frequency widening of the nth harmonic

Awl™ =d wy, (4.19)

where d = 1,2 for oblique incidence (p-polarization) and normal incidence, respectively,
on taking into account the selection rules for plasma HHG [16]. On using Eq. (4.18),
one gets the maximal frequency shift

Oowy ™ = 2d wy (4.20)

n

and making use of Eq. (4.15), one can connect the frequency shift to the hole-boring
velocity Bnp which is the function of laser intensity I; and plasma density ng, and obtains
the maximal hole-boring velocity:

d
pax — 4.21
= (421)

The hole-boring velocity has to be smaller than ;3 in case the frequency broadening
of the nth harmonic Aw, > d w;. Replacing the hole-boring velocity with Eq. (4.16),
one can have

d n—d -1
Bp™Max — 1-— X 4.22
n — 2d < n —2d h> ’ (4.22)

and substituting the parameter B with Eq. (4.17), one can yield a bound on plasma
density as

2 4 2

i — (22?121) If cos” (6) (1 _n-d Xh> . (4.23)
m;/Zme) n — 2d

As we can see, n™}™ depends on the hot electron generation X} which is also a function

of plasma density. Hence, Eq. (4.23) has to be solved numerically.

For plasma densities lower than Eq. (4.23), i.e. ng < n%", the hole-boring velocity is
large enough to make the harmonics with order higher than n overlap with each other,
producing a quasi-continuous frequency spectrum, while at higher plasma densities, i.e.
no > n%® the harmonics with order lower than n possess sharp harmonic peak, which
can be spectrally filtered to produce a high-frequency radiation source with high tem-
poral coherence. Here and below we do not taken into account RR force as it does not

strongly affect the frequency shift of high-harmonics as shown in Fig. 4.10.

4.4.2 Intensity bounds

The intensity of the generated harmonics is also crucial for intense XUV and attosecond
physics experiments. Fig. 4.7 (a) shows strong reduction in the harmonic intensity due
to the ion motion. This reduction can be attributed to the change in the electron
layer density and the amplitude of layer oscillation, arising significantly due to the HB
effect and to a lesser extent by electron-ion collisions. Moreover, a very high plasma
density does inhibit the formation and oscillation of the electron layer, and consequently
suppresses the harmonic generation efficiency, which poses an upper limit on the plasma
density for plasma HHG.

In ultra-dense plasma HHG, the energy conversion process (see Sec. 3.3) is very inef-
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ficient [18], the local energy conservation is approximately satisfied, thus the Leontovich
boundary condition can be used [54, 133]:

’ !/ !/

E(x(t),t) + E'(x(t),t) =0, (4.24)

where z(t') is the location of the plasma surface at time ¢ . With the retardation relation:
z+t=x(t)+t, we can have the reflected field

! /

E(z,t) = —E'(z(t'),t ) = —Egcos(t —z(t)), (4.25)

where the incident field is given as E'(x,t) = FEgcos(t — z). The laser ponderomotive
force

’

fponder X COSz(t, — a:(t,)) x 1+ cos(2(tl —x(t

) (4.26)

drives the plasma surface oscillation harmonically, and gives an oscillation as:

!

2(t) = Xam cos(2t + @), (4.27)

where X, is the amplitude of the oscillation, ¢ is the relative phase between the driving
field and the plasma surface oscillation, and the plasma surface is located at x = 0. With
the very high plasma frequency wpe > wy, ¢ ~ 0 is expected [16, 109]. Inserting Eq. (4.27)
into the retardation relation and Eq. (4.25), we can have:

t =a+t— Xomcos(2t), (4.28a)
E"(x,t) = —Eqcos(t — 2z(t)) . (4.28D)

Numerically solving Eqgs. (4.28), we can obtain the reflected field and the harmonic
spectrum as we show in Fig. 4.11.

With this simple oscillating mirror model 2, we can know that the harmonic intensity
I(wy) decays faster with a smaller oscillating amplitude Xay,. In order to prevent the
harmonic intensity from decaying faster than I, o« wp 8/3 [54], a minimal oscillating
amplitude is imposed: Xt > 0.05),.

The plasma oscillating amplitude X,,, can be estimated by balancing the electrostatic
force acting on the electron layer inside the plasma shin depth with the ponderomotive
force of the laser, i.e.

0
7 Qes

ox

n
0 am ~ Qes
cos(0)

: (4.29)

where E; = Xamno/ cos(8) is electrostatic field, and fyonder & GesOraes denotes the laser
ponderomotive force. aes is the field inside the electron surface and can be expressed
as aes = asexp (—x/As) [16] with the skin-depth As; o nal/z and the electric field
as ~ 2ag 008_1(0)/11(1)/2 at the electron surface [16]. In this ultra-dense case, we can
neglect the plasma compression becomes of the small oscillation amplitude. With all of

3In principle, this simple oscillating mirror model can only work for ultra-dense plasmas, for which the
oscillating amplitude is much smaller than the laser wavelength.
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Figure 4.11: Harmonic spectra for different oscillating amplitude X,,,. The smaller amplitude shows
less efficient harmonic generation. The black line represents the spectral scaling I(w,,) wn ™/ from

Ref. [54].

these, we can have:

81,

Xom~ —~,
o COS(G)TL(S)/Q

(4.30)

showing that the oscillation amplitude vanishes at very high plasma density.

On equating the plasma oscillating amplitude X, with the minimal amplitude X/
one can place the upper limit on the plasma density for intense HHG. Consequently,
with the given laser intensity I, the maximum density n2'®* of the target plasma can be
cast as

n = 8.65617° (cos 0) "2/3 . (4.31)

In case of laser deep penetration leading to large laser absorption, a lowest limit on
the plasma density for HHG is placed at the plasma relativistic critical density,

nM = p,.. = cos?(0) < v >

~ cos?(0)\/1+ < p? >

~ cos?(0)v/1 + I (4.32)

For the plasma densities higher than Eq. (4.31) or lower than Eq. (4.32), the emitted
harmonics are too weak to have any promising applications in both XUV or attosecond
physics experiments.
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Figure 4.12: Parameter maps for optimum HHG for (a), (b) normal incidence and (c), (d) oblique
incidence (0 = 45°) with p-polarizations. (a), (c) are for gold plasma; (b), (d) are for carbon plasma.
The color bar represents the harmonic numbers. The black line is plotted for the 50th harmonic in
each case. See text for explanation.

4.4.3 Discussions

With the help of the bounds given by Eqgs. (4.23), (4.31) and (4.32), one can construct
a parameter map relating the plasma density with the laser intensity and demarcate the
map into two regions corresponding to both the coherent XUV radiation and an intense
single attosecond pulse generations.

Fig. 4.12 shows these parameter maps for normal ( = 0) and oblique (6 = 7/4)
incidences of the laser pulse on gold (Au, A = 197, Z = 79) and carbon (C, A = 12,
Z = 6) plasma targets. The lowest line (red) corresponds to Eq. (4.32) and sets a lower
bound for HHG. The upper most line (blue dash-dotted) comes from Eq. (4.31) and
it denotes the maximum density for intense plasma HHG. The region between these
two lines shows the contours of plasma densities given by Eq. (4.23) with the color bar
representing different harmonic orders. For instance, the middle dashed and dotted black
lines have been plotted for the 50th harmonic corresponding to a photon of energy 77.5
eV in the XUV region of the electromagnetic spectrum. The dotted black line accounts
for the hot-electron generation and it deviates from the dashed black line only at lower
plasma densities where the generation of the hot electrons effectively reduces the hole-
boring velocity. Thus, the region of the map below the topmost dashed-dotted blue



74 4. Plasma high harmonic generation from ultraintense laser pulses

logy(I(wn))

HONITEEEIT®) R

o b1, UV NN - “

11 12 13 11 12 13 11 12 13
/T, /T, /1)

Figure 4.13: 1D PIC simulation of HHG. (a) Harmonic spectrum of the reflection. The black dashed
line represents the harmonic order (n = 50) from where the harmonic spectrum becomes quasi-
continuous. (b), (c), and (d) denote the normalized attosecond pulses obtained by applying spectral
filters with different frequency (b) wy = 20w;, (¢) wy = 40w; and (d) wy = 60w;. The laser
has the temporal profile a(t) = ag(tanh((t — T5)/W) — tanh((t — Tc)/W))/2, where ay = 100,
W =T,/2=X\/(2c), Ts = 4T}, T. = 16T}, and irradiates the plasma (ny = 500n., L = \;/8) with
incident angle 6 = /4.

line, and above the intersection of the middle dotted black and lowermost red lines, is
the region where the overlap between harmonics with order (n < 50) is not significant,
and it is suitable for generating coherent XUV radiations in the water-window region
with high temporal coherence. While the region of the map between the middle dotted
black and lowermost red lines depicts a region where harmonics with order (n > 50)
overlap significantly with each other, yielding quasi-continuous spectra suitable for single
attosecond pulse generation.

To test this parameter map, we do the 1D simulation of HHG and show the obtained
harmonic spectrum and attosecond pulses in Fig. 4.13. With the parameters herein and
based on Egs. (4.15)-(4.18), we can gain Awsyp = w;. Therefore, the harmonics with
order (n < 50) keep the well-defined shape harmonic peaks, while for harmonics with
order (n > 50), the spectrum becomes quasi-continuous. This prediction matches well
with the simulation result in Fig. 4.13 (a). On filtering out the low-order harmonics, one
can obtain a train of attosecond pulses or a single attosecond pulse [109] as shown in
Fig. 4.13 (b), (c) and (d). If the filtering frequency is in the coherent XUV region, i.e.
wy < 50wy, a train of attosecond pulses is presented. However, if the filtering frequency is
increased into the quasi-continuous region wy > 50w;, one can obtain an intense isolated
attosecond pulse. The details of a single attosecond pulse generation is presented in
Chapter. 5.
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4.5 Conclusions

In this chapter, plasma high-order harmonic generation from an extremely intense short-
pulse laser (I; > 102! W/cm? ) is explored.

We first give a wide range parametric studies to highlight the necessity of including
the effects of ion motion, electron-ion collisions, plasma temperature and the radiation
reaction force in the dynamics of ultra-relativistic laser-plasma interaction for plasma
high-order harmonic generation.

In the ultra-relativistic regime, the ion motion, induced by the HB effect, tends to
strongly broaden the frequency bandwidth of the generated harmonics. We analyze
analytically the broadening of the harmonic spectra and validate it by PIC simulations.
The classical RR force does not strongly affect the frequency bandwidth but can lead to
the slight reduction in the intensity of the harmonics.

Based on these considerations, we have scanned parameter maps (plasma density vs
laser intensity) for different target materials at normal as well as oblique incidences of the
laser pulse. These maps highlight the optimum regions for the generations of coherent
XUV radiation in the water-window part of the electromagnetic spectrum as well as an
intense single attosecond pulse.
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Chapter 5

Super-intense single attosecond pulse
generation

In this chapter, we propose a new scheme to generate an ultra-intense phase-stabilized
isolated attosecond pulse from a robust plasma self-generated gate. In Sec. 5.1, we
briefly give the motivation for our investigation of ultra-intense single attosecond pulse
generation and introduce the basic method for generating attosecond pulses from plasma
high-order harmonic generation. In Sec. 5.2, a robust plasma gating scheme to generate
a single ultra-intense attosecond pulse is proposed and then verified with the theoretical
model and particle-in-cell (PIC) simulations. It is manifested that the hole-boring effect
mainly contributes to the plasma gate isolating the strongest pulse emission within one
laser cycle. Moreover, we present a comprehensive discussion about the pulse phase
properties in different frequency regions in Sec. 5.3. In Sec. 5.4, we shortly conclude all
the discussions in this chapter.
Same dimensionless quantities are used as in Chapter 3.

5.1 Introduction

5.1.1 Motivation

Attosecond (107! s) metrology is an emerging area of research spanning a range of
applications from atomic physics to biological sciences [134]. An attosecond pulse is
regarded as a camera that can capture the hyperfast motion of electrons, making it an
invaluable tool to study many fundamental physical processes in real-time (attosecond
spectroscopy) [47]. Due to the small flux and low photon energy of the current attosecond
pulse source, the application of attosecond spectroscopy is so far limited [47, 135]. The
generation of an isolated, ultra-intense, phase stabilized attosecond pulse with ultra-
broad spectrum can open the hitherto unexplored regime of attosecond spectroscopy [99,
136, 137], extending attosecond metrology to inner-shell processes in high-Z atoms and
high-energy quantum electrodynamical processes [27, 28].

Isolated attosecond pulse generation can be accomplished via high-order harmonic
generation (HHG) in the interaction of strong laser pulses with either gaseous or solid
targets. The underlying physical mechanisms for both cases have been extensively stud-
ied. Although the generation of a single attosecond pulse has been experimentally
demonstrated in gaseous HHG, the attosecond pulse intensity saturates at relativis-
tic incident intensity ag = eEj/(mecw;) = 1 [35], where e and m, denote the electron
charge and mass, E; and w; are the laser electric field and frequency, c is the light
speed in vacuum. In contrast, attosecond pulses from solid HHG scale favorably at rel-
ativistic intensities. After filtering out the low-order harmonics, the solid HHG usually
results in a train of attosecond pulses [109]. To isolate an attosecond pulse, several
techniques [98, 109, 110, 138, 139], e.g. polarization and intensity gatings, attosecond

7
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lighthouse effect and reflection from a tightly focused laser have been implemented.
However, the implementation of these techniques for ultra-intense isolated attosecond
pulse generation may not be practical due to severe constraints on the ultra-relativistic
laser (ap > 1) and target parameters e.g. stable carrier-envelope-phase (CEP), few cycle
duration, extremely thin target, ionization of optical device etc. Moreover, the spectral
phase-stabilization of the isolated attosecond pulse, which is essential not only for the
attosecond pulse duration [51] but also for the temporal resolution of attosecond pump-
probe experiments [102], has not been illuminated in these techniques or in the previous
solid HHG models [15, 16, 18, 54, 58, 66, 103, 111, 132, 140-143], e.g. relativistically os-
cillating mirror (ROM), coherent wake emission (CWE), coherent synchrotron emission
(CSE) and relativistic electron spring (RES).

In this chapter, we propose a new scheme for isolated super-intense attosecond pulse
generation via the ultra-relativistic laser-solid interaction and expound, for the first time,
the pulse spectral phase stabilization. Based on the result in Sec. 4.3 that the hole-boring
effect [37, 115] broadens the harmonic peaks leading to a quasi-continuous spectrum [1],
we show that the hole-boring effect effectively limits the strongest pulse emission within
one laser cycle, making it possible to isolate an attosecond pulse. We term this hole-
boring induced pulse isolation as a “Plasma Gate”. This scheme is indeed predominant in
the ultra-relativistic regime and works for long laser pulses. The harmonics constituting
the isolated pulse are phase-locked to 1(w) ~ +m/2 due to the dynamics of the plasma
surface electron layer. In this ultra-relativistic regime, the radiation reaction force be-
comes important and can be included by employing Landau-Lifshitz prescription [76].

5.1.2 Route to attosecond pulse generation

On one hand, the generation of very short pulses can be regarded as the consequence of
the superposition of large numbers of properly phased monochromatic light waves. The
interference among these coherent waves results in the spatial and temporal confinement
of the wave energy—short pulse generation. Fourier synthesis manifests that the duration
of the generated pulse is inversely proportional to the width of the spectrum of the wave
components with comparable amplitudes. Based on this concept, the ultra-broad and
relatively flat plasma harmonic spectra pave the way to attosecond pulse generation.

On the other hand, the emission of high-frequency components is bunched in the
attoseconds duration in which relativistic factor v of the plasma surface presents to be
a very sharp spike [54, 109], while the low-frequency components could be emitted in
the entire interacting duration. Therefore, to extract the attosecond pulses from plasma
HHG, the low frequency components, in general, have to be filtered out of the reflection
as we show in Fig. 4.1.

In experiments, the generation of attosecond pulses is accomplished via passing the
reflected pulse through a suitable thin metal foil which filters out the low-frequency
components in reflection [109]. In this chapter, we proceed in the same way as in
experiments, but cut off the low-order harmonics numerically. Below we disintegrate
this general process and explain step by step.

In Fig. 5.1 (a), we present the reflected field (red solid line) modulated from an incident
field (blue dashed line) via interacting with a plasma target. From the reflected field,
we can gain the harmonic spectrum shown in Fig. 5.1 (b) via Fourier transformation.
To obtain the attosecond pulses, we filter out the low-order harmonics in the frequency
domain and then inversely transform the high-frequency harmonics back to the temporal
domain. For instance, in Fig. 5.1 (c), the filtering frequency is wy = 20w;, which means
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Figure 5.1: 1D PIC simulation of HHG for attosecond pulse generation. (a) Incident field (blue
dashed line) and reflected field (red solid line). Reflected field is strongly modulated from the incident
field. (b) Harmonic spectrum of the reflected field (c) Attosecond pulse train obtained with filtering
frequency wy = 20. (d) Attosecond pulse train obtained with filtering frequency wy = 40. lons are
fixed, and collisions are included. The laser has a step-like profile with a constant amplitude a(t) = 40
for 0 <t < T4 = 101;. The plasma has no pre-gradient with constant density ny = 280. Two pulses
are emitted in one laser cycle in the normal incident geometry (6 = 0).
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that the harmonics with order n < 20 are cut-off, the harmonics with order n > 20 are
transformed back and constitute a train of attosecond pulses. In the same way, if the
filtering frequency is changed to be wy = 20w;, we can obtain the attosecond pulses with
weaker intensity in Fig. 5.1 (d).

As shown in Fig. 5.1 (c) and (d), trains of attosecond pulses are presented. To generate
a single attosecond pulse, different gating techniques are used in experiments [109, 110,
139, 144, 145]. In next section, we propose a new scheme—plasma gating—to isolate a
super-intense attosecond pulse.

5.2 Single attosecond pulse generation

A quasi-continuous spectrum is the prerequisite for the generation of a single attosecond
pulse. Based on the results in Sec. 4.3 and 4.4, hole-boring effect broadens the harmonic
peaks leading to a quasi-continuous spectrum, which provide the possibility to build a
new scheme to generate a single ultra-intense attosecond pulse. In this section, we show
that the hole-boring effect effectively limits the most efficient high-frequency emission
within one laser cycle, making it possible to isolate an attosecond pulse. We term
this hole-boring induced pulse isolation as a “Plasma Gate”. This scheme is indeed
predominant in the ultra-relativistic regime and works for general situations.

5.2.1 Plasma gate

A 1D simulation result is shown in Fig. 5.2 to verify the action of the plasma gate
for most-general situations e.g. plasma density gradient, oblique incidence, long laser
pulse driver. For generality, we consider a fully ionized plasma with a pre-gradient,
ne(z) = ne/2exp (/L) and a bulk plasma ng behind.

In Fig. 5.2, we show the obtained attosecond pulses by filtering out low-order harmon-
ics (w < wy) in the reflection from a solid plasma irradiated by a long duration laser
pulse. One can clearly see the action of the plasma gate for pulse isolation as only three
attosecond pulses are seen. Although the laser is still on, no strong attosecond pulse is
emitted after the 3rd one in Fig. 5.2 (a).

Here the 1st pulse with weak intensity arises due to the reflection of the laser ramp
from the plasma pre-gradient present at the target surface. The 2nd pulse with ultrahigh
intensity Iy ~ 9.2 x 102'W/ cm? is emitted in the first cycle of the peak laser interacting
with the bulk of the plasma. During the interaction, a large part of the laser energy is
first stored in the plasma electrostatic field due to the compression of the electrons into
an ultra-dense nanometer layer. Without notable ion motion, the stored energy is then
absorbed mainly by the electron layer accelerating backward to emit an ultra-intense
attosecond pulse. This energy conversion process, described in detail in Sec. 3.3, is
similar to the description for RES model [18] and guarantees the ultrahigh intensity of the
emitted pulse which could be orders of magnitude stronger than the isolated attosecond
pulses reported before [98, 109, 110, 138, 139]. The 3rd attosecond pulse is emitted in
the next cycle with much weaker intensity. In this cycle, the energy conversion process
is effectively impacted by the pronounced hole-boring effect. Ion motion decreases the
energy partition for the electron layer acceleration in the energy conversion process as
also discussed in Sec. 3.3, thus reduces the subsequent pulse emission.

We confirm this reduction in Fig. 5.3 (a). As shown, the 1st and 3rd pulses have much
rapider intensity decay than the 2nd pulse, implying lower efficiency for high frequency
emission. To gain deeper insight into this plasma gating, we also show the spectral phase
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Figure 5.2: 1D PIC simulation of HHG for attosecond pulse generation. Attosecond pulses obtained
by applying different filter frequency wy: (a) wy = 40wy, (b) wy = 60w;. The upper frequency of the
filter is 2000w;. (c) Electric field £, and (d) normalized intensity of the 2nd pulse compared with the
analytical expressions. (e) Electric field £, and (f) normalized intensity of the 3rd pulse compared with
the analytical expressions. We label the pulse centers at time t = 0 and zoom in the time axis in unit
of as for (c), (d), (e), (f). The laser, a(t) = ag(tanh((t — Ts)/W) — tanh((t — Tc)/W))/2, radiates
the plasma (ng = 500n., L = A;/8) with incident angle § = /4, where ag = 100, W =T; = \;/c,
T, = 6Ty, T, = 14T;, \; = 0.8um. The laser profile (black dashed line) is shown in (a), (b) with
a.u.. The field detector is located at 3\; from the plasma surface.
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Figure 5.3: Intensity spectra (a) and spectral phase (b) for the pulses in Fig. 5.2. The spectral
fittings of the 2nd pulse (log;((I) = 0.1 — 0.0145w, blue dashed line) and the 3rd pulse (log,,(I) =
1.9 — 0.052w, red dashed line) are shown with the power-law spectral scalings (I = 10*6w~8/3 [54],
black solid, I = 10~27w=%/3 [17], black dashed) fitting the low-frequency and high-frequency regions
in the spectra.

of the each pulse in Fig. 5.3 (b), and find that the high-frequency components in the 1st
and 3rd pulses display larger phase fluctuation than that in the 2nd pulse, which could
further reduce the pulse intensity and extend the duration.

In the following cycles, the pulse emission would have much faster spectral decay and
more fluctuated phase. Thus, we can isolate the 2nd pulse with a suitable frequency
filter and enhance the isolation with a larger filtering frequency wy, e.g. I»/I3 = 6.10
for wy =40 in (a), Io/I3 = 31.13 for wy = 60 in (b). This is in line with our previous
results, the cut-off-frequency in (b) corresponds to Eq. 4.23 in Sec. 4.4 for the parameters
considered here.

From above discussion, we can say that the “plasma gate” acts to isolate the 2nd
pulse by speeding up the spectral decay and degrading the spectral phase coherence of
the other pulse, or we can also say that the “plasma gate” limits the most efficient high-
frequency emission within one laser cycle, making it possible to isolate an attosecond
pulse.

5.2.2 Theoretical model

To complement the simulation results and to depict the properties of the emitted pulse,
we resort to the analytical model for the pulse emission from an electron layer described
in Sec. 3.1.

We first scan the emission process for the 2nd and 3rd pulses in Fig. 5.4. As shown,
the pulses are clearly emitted by the surface electron layer at the node (green stars in
Fig. 5.4 (b),(c) for 2nd pulse, (e),(f) for 3rd pulse) where the layer transverse momentum
py = YBy(t') changes sign [98] and its backward velocity [,(t") ~ —1 approaches the
speed of light, which satisfies the conditions (I, II) for our pulse emission model in
Sec. 3.1. Therefore, the same derivations can be given. For the coherent emission with
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Figure 5.4: 1D PIC simulation for the 2nd and 3rd pulse emission processes in Fig. 5.2. (a) Temporal
shape of the 2nd pulse in Fig. 5.2 (a) shifted along the retardation relation. (b) Evolution of the
electron density n. at the plasma surface around the instant of the emission (green star) of the 2nd
pulse overlaid with the retardation path of the pulse center. Red dashed line denotes the retardation
path before emission, and red solid line is after emission. The evolution of the electron surface
(ne. = agn,, ) is also shown (black dashed line). (c) Velocity (8., ,) along the electron surface.
In (d), (e), (f), we repeat all the plots in (a), (b), (c), but for 3rd pulse. In (c), we can obtain
B: = —0.9988 at the emission instant (green star) for the main pulse, and in (f) 3, = —0.9877
at the emission instant (green star) for the main pulse. The retardation relation is satisfied along
the retardation paths. \; = X\;/ cos(), T} = T,/ cos(f), nl, = n.cos*(#) are defined in the Lorentz
boosted frame [79]
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wavelength A\, > Az, we can make use of the pulse spectrum (Eq. (3.17))

~ A2 2|w|
1(w) = |EN)2 = 2 exp (-2
(@) = By = % exp (-2

), (5.1)

and the expression of the attosecond pulse (Eq. (3.29))

24, ef

By (wy,t) = Er e “d coswst + p(t) —a,,] , (5.2)

V14 (wat)?
where all the variables are defined in Sec. 3.1. For convenience, we label the pulse center

at t = 0. This formula is applicable for oblique incidence by treating in a Lorentz boosted
frame [79] with

Ap~ A ~ % cos 2(6) . (5.3)

As we can see from Eq. (5.1), the pulse possesses an exponential spectrum [18]. In
Fig. 5.3 (a), we confirm this exponential spectrum with the linear-logarithm fitting
A 2logp(e
m%ﬂw»:mwm(m>—1“%w (54)
Wy Wy
The fitting slope of the pulse spectrum (blue dashed line for the 2nd pulse and red
dashed line for the 3rd pulse) reveals the spectral decay:

21 1
_210810(®) _ 145 = L Z0.017,  for 2nd Pulse, (5.5a)

wq wq

21 1
_2logio(®) _ o052 = - —0.060. for 3rd Pulse, (5.5b)

wq Wd

and precisely gives the 2nd pulse duration T; = 2/wy = 14.2as which is much shorter
than the duration of the 3rd pulse (7, = 50.8as). The pulse duration is extremely
shortened with the relativistic backward velocity and larger transverse acceleration. In
Fig. 5.3 (a) we can also find that the exponential region is bounded by ROM scaling
I(w) o w™8/3 [54] in low-frequency region and CSE scaling I(w) o< w™%3 [17] in high-
frequency region.

The distinct feature of the pulse is the constant spectral phase, o(w) = —7/2+ 14,
(or m/2+14,, if E; changes sign). This particular locked phase is the consequence of the
transverse current changing its sign at the node where p, = 0, and the temporal variation
of Ay, (t) during the pulse emission. The phase £7/2 regulates the pulse structure and
results in a minimum at the pulse center, contrary to a synchrotron-like pulse [98]. We
stress that this particular locked phase does not depend on the laser carrier-envelope-
phase (CEP) , but on the dynamics of the well-defined electron layer during the emission.
The phase 14,,, depending slightly on laser CEP (See Sec. 5.3.1), results in the slight
asymmetry of the emitted pulse in Fig. 5.2 (d) and (f). In ultra-relativistic regime,
ha, ~ AL /(A% wy) (See Eq. 3.20) would be very small because A% and wy would be
extremely large. The detailed discussion about this constant phase can be found in
Sec. 3.1.2.

In Fig. 5.3(b) we quantitatively confirm the constant spectral phase for 2nd and 3rd
pulses in E,, ¥ (w) = —m/2 and in B,, (w) ~ m/2 as propagating in —z direction (not
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Figure 5.5: 1D PIC simulation for the 2nd pulse in Fig. 5.2. (a) Velocity (55, 5,) of the plasma
current along the retardation path of 2nd pulse in Fig. 5.2. Phase -space distributions f(z, 3,) (a)
and f(z,By) (b) of the electrons in the surface layer at instant of the emission (green stars). The
distribution functions are normalized as: fumax(, 8z) = 1, fmax(x,By)) = 1. Same parameters as in
Flg. 5.4

shown). The phase mismatch in lower frequency regions may come from the interference
with the emissions from ROM/CWE. Combining with Eq. 3.19, we can obtain that:

Ya,, = —0.127  for 2nd Pulse, (5.6a)
Ya,, = —0.06mr  for 3rd Pulse. (5.6b)

In the ultrahigh frequency region, the phase fluctuation occurs. This phase fluctuation,
Yr(w) ~ 2rAx/\,, originates from the finite extension of the surface layer and may
reflect the incoherence of the high frequency emission from different part of the layer
if Ay < Axz. We verify this by calculating the layer thickness Az and observing the
threshold of the phase fluctuation

w}h ~ % (5.7)
in the simulations. As shown in Fig. 5.6, the thickness of the electron layer is about
Ax ~ 0.002)\2, which corresponds to the phase fluctuation threshold w}h ~ 400w; for the
2nd pulse in Fig. 5.3 (b). The appearance of this fluctuated phase truncates the coherent
spectra of the attosecond pulses in high-frequency region.

In order to further confirm our theoretical model, we try to reproduce the 2nd and



86 5. Super-intense single attosecond pulse generation

B T T T I T T T I T T T I T T T I T T T I T T T i

1000 |~ —
800 |- —

— i ]
E 60 |- -
L = —
z = —
400 |- —

200 - —

O N i 1 I 1 1 1 I 1 1 1 I 1 I 1 1 1 ]

3.92 3.922 3.924 3.926 3.928 3.93 3.932

z/A

Figure 5.6: 1D PIC simulation for the 2nd pulse in Fig. 5.2. Density distribution n.(x) of the
electron filling the conditions: 8, < —0.995 and 8, < |0.025|.

3rd attosecond pulses in Fig. 5.2 with parameters from Egs. (5.5), (5.6) and choose

A, = 52 for 2nd Pulse, (5.8a)

A =112 for 3rd Pulse. (5.8b)

Inserting into Eq. (5.2), the 2nd pulse can be precisely reproduced in Fig. 5.2 (c), (d)
for wy = 60w; and the 3rd pulse in Fig. 5.2 (e), (f) with slight difference. With such
accurate agreements, we can completely confirm that the 2nd and 3rd pulses are emitted
by the surface electron layer within our analytical model in Sec. 3.1.

In order to estimate the amplitude of the attosecond pulse A,,, we have to go to the
deep insight of the electron layer at the emission instant. In Fig. 5.5 (a), we plot the
velocity (B, [By) of the plasma current along the retardation path of the 2nd pulse in
Fig. 5.4 (b). The emission instant is labeled with the green stars, which further confirms
the conditions for our pulse emission model in Sec. 3.1. At the emission instant, the
phase-space distribution of the electrons in the layer are also plotted in Fig. 5.5 (b)
f(z,Bz) and (c) f(x,By). As shown, the electrons in the surface layer have the backward
velocity 3, ~ —1 and the transverse velocity 3, ~ 0, corresponding the Lorentz factor,

1 1
Ji-8-p; VI-B

~13. (5.9)

Simultaneously, the electrons in the layer have a spread phase space, especially in
f(z, By). We assume the emitted pulse is synthesized by the radiation from the electrons
with conditions: v, < 0.995 and |v,| < 0.025 in the phase space. In Figure.5.6, the
density distribution n.(z) = [ f(z, Bz, By)dfzdBy of the electrons under the conditions
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are presented. We integrate the electron density,
Nel = /ne(x)dx ~ 8.7. (5.10)

Therefore, we can have the estimation for the amplitude of the 2nd pulse!:

A &~ ngy/2 = 57, (5.11)

which is very close to the value in Eq. (5.8) (a).

5.2.3 Robust plasma gating

This plasma gating mechanism is very robust and can work for the most general situation.
In this section, we show the action of plasma gate with different laser ramping front,
plasma gradient and laser CEP. The filtering frequency is fixed to be wy = 60w; for all
the cases here.

Fig. 5.7 (a), (b) show the action of plasma gate with different laser ramping front. As
shown, the laser with a longer ramp results in a weaker attosecond pulse. This may be
because the plasma target is warmed by the laser ramping field before the main pulse
emitted. One can also see that the longer laser ramp reduces the action of plasma gate
with a relatively larger attosecond pulse emission after the main one, but the ratio of the
pulse intensities is still larger than one magnitude. For these cases, a single attosecond
pulse can be isolated by plasma gating. If we keep increasing the laser ramping front,
the action of plasma gate would be worse, more attosecond pulses would be emitted
during the interaction of laser ramp with plasma.

In Fig. 5.7 (c¢) and (d), we show the action of plasma gate with different plasma
gradient. As one can see, the isolated attosecond pulse has the largest intensity at
L = X\;/8. This can be understood in the following way: for a very long plasma gradient,
the plasma wave and instabilities are excited in the interaction, which increases the
laser energy absorption and perturbs the dynamics of the electron layer. Both could
decrease the energy for pulse emission; For a steep gradient, the amplitude of the plasma
surface oscillation is smaller which reduces the energy storage in the plasma charge
separation field and thus results in less energy conversion for pulse emission (see Sec. 3.3).
The largest pulse emission comes from a suitable plasma pre-gradient which balances
the excitation of the plasma wave and the efficiency of the energy conversion to pulse
emission. This result is in line with the result in Ref. [59] for plasma HHG. Moreover,
for the long plasma gradient (L = )\;/6), a strong subpulse is emitted which would lead
to the large spectral and phase oscillations in the low-frequency region as discussed in
Sec. 5.3.2, and weaken the plasma gating effect. For other shorter plasma gradients,
plasma gating scheme works very well.

In Fig. 5.7 (e) (f), we show the action of plasma gate with different laser CEP. As
shown, the laser CEP could also change the attosecond pulse intensity by modulating the
laser-plasma interaction before the main pulse emission. However, the influence of laser
CEP on the plasma gating scheme is slight, which would be very important for the ultra-
intense laser-plasma experiments with unstable CEP, and could avoid the shot-to-shot

'Here, we normalize all the quantities in the simulation reference as shown in Figs. 5.4, 5.5, 5.6, thus the
angle factor in Eq. (5.3) donot need to be included. This normalization cannot affect the value of the
normalized electric field in lab reference, since it is Lorentz invariant see Appendix A.4. Moreover,
the temporal variation of A,,(t) is neglected which may result in the difference between the estimated
value in Eq. 5.10 and the value in Eq. 5.8, see the definition of A,, in Eq. 3.16.
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Figure 5.7: 1D PIC simulations of HHG for attosecond pulse generation with filtering frequency
ws = 60w;. The laser a(t) = ag sin(w;t + ¢)(tanh((t —Ts)/W) —tanh((t —Tc)/W))/2, radiates the
plasma (n. = n./2exp (x/L)) with incident angle § = 7 /4, where ag = 100, T, = 61}, T. = 147T],
A; = 0.8um, W is the laser ramping parameter, ¢ is laser CEP, and L is plasma gradient parameter,
The field detector is located at 3\; from the plasma surface. (a) (b) Different laser ramping front W
for gold plasma (Au, Z =79, A = 197) with bulk density ng = 500n., L = X;/8, ¢ = 0.0. (c) (d)
Different plasma gradient L. for gold plasma (Au, Z =79, A = 197) with bulk density ng = 400n.,
W = 1.0T}, ¢ = 0.0. (e) (f) Different laser CEP ¢. for carbon plasma (Ca, Z = 6, A = 12) with
bulk density ng = 500n., W = 1.07;, L = X;/8. (a) (b) (c) show the obtained attosecond pulses
intensity in lab reference. (d) (e) (f) show the attosecond pulse with normalized intensity.
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changes [146].

5.2.4 Discussion

With the simulation results and analytical calculations, we can obtain a comprehensive

understanding of the plasma gating.
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Figure 5.8: 1D PIC simulations for attosecond pulse generation with different filter frequencies wy:
(a) (c) wy = 40wy, (b) (d) wg = 60w;. (a) (b) are for the case without ion motion, and in (c) (d),
we repeat the results in Fig. 5.2 (a) (b) but with logarithm axis for mobile ion case. Same simulation
parameters as in Fig. 5.2. we zoom in the time axis and compare the 3rd pulses in (b), (d) with
normalized intensity in the inset of (d).

As discussed in Sec. 3.1, the pulse amplitude A,, o v and spectral decay 1/wy o< 72
depend sensitively on + which is determined by the backward acceleration of the elec-
tron layer due to the charge separation field (see Sec. 3.3). With hole-boring motion,
the charge separation is mitigated because the Doppler effect decreases the laser pres-
sure, and part of the energy in the electrostatic field is absorbed by mobile ions. The
layer acceleration thus would be restricted by the hole-boring effect, leading to a smaller
amplitude and faster decay of the 3rd pulse, for which the hole-boring velocity is pro-
nounced. Moreover, the forward hole-boring motion inevitably spreads the structure
of the backward-moving electron layer and thus reduces the phase fluctuation thresh-
old w;h, which shortens the coherent phase interval and further decreases the 3rd pulse
amplitude. Essentially, the hole-boring effect isolates the 2nd pulse via suppressing the
coherent emission for the 3rd pulse.

To demonstrate the isolating effect of the hole-boring motion, we present the attosec-
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ond pulses from the case without ion motion in Fig. 5.8(a), (b) and compare with the
results in (c), (d) for the case with ion motion. For fixed-ion case in Fig. 5.8 (a) and (b),
one expects a train of attosecond pulses (only five are shown). Here the 1st pulse arises
also due to the reflection of the laser pulse with the plasma pre-gradient present at the
target surface while the other pulses are generated due to peak of the laser interacting
with the main target and have decaying intensities. This decay in the intensity is not
so pronounced and the intensities of the two adjacent pulses are not more than an order
of magnitude different from each other, For example, Io/I3 = 2.04 for w; = 40 in (a),
I5/I3 = 6.61 for wy = 60 in (b). Hence, it becomes difficult to isolate a single attosecond
pulse from this train. However, one can clearly see “Plasma Gate” in action in Fig. 5.8
(c) and (d) where one takes the ion motion into account and the hole-boring effects are
dominant. No strong attosecond pulse (I < 10 W/cm?) is emitted after the 3rd one.
One can notice that a higher-cut-off frequency in (d) (wy = 60) yields an intense sin-
gle attosecond pulse (the 2nd one) as it’s intensity is more than an order of magnitude
higher than the other pulses, i.e. Is/I3 = 31.13. Hence, this pulse can be easily isolated
from the other two pulses.

Comparing the pulses in Fig. 5.8 (d) with the pulses in Fig. 5.8 (b) respectively, we can
find that the 1st pulses (before 2nd one) are same since both come from the laser rising
front interacting with the plasma pre-gradient; The 2nd pulses are also similar, except in
Fig. 5.8 (d) the 2nd pulse is sightly weaker than that in Fig. 5.8 (b). This may be because
the hole-boring motion starts during the 2nd pulse emission; The obvious difference
appears for the 3rd emission. In the cycle, the hole-boring velocity is pronounced, ion
motion reduces the energy storage in the energy conversion process (see Sec. 3.3)) and
decreases the partitions of the stored energy for electron layer acceleration. To show the
hole-boring motion, we zoom in the time axis and compare the 3rd pulses in Fig. 5.8
(b), (d) with normalized intensity in the inset of Fig. 5.8 (d). As we can see, there is an
obvious time delay for the 3rd pulse in Fig. 5.8 (d) (red line), which clearly manifests
the hole-boring motion during the pulse emission. We cannot observe this time delay
between the 2nd pulses.

To understand how the hole-boring effect isolates the attosecond pulse, we compare
the pulse spectra and the spectral phase in the cases with mobile and immobile ions,
wherein a slow and almost pure hole-boring effect is in action. As shown in Fig. 5.9
(a), the decay of the pulse spectra becomes faster and faster for the mobile-ion case,
while in Fig. 5.9 (b) for the immobile case, the pulse spectra sustain the same decay.
This is in line with our discussion in Sec, 3.3: the hole-boring effect reduces the energy
storage in the charge separation field and thus decreases the energy conversion to the
high-frequency emissions. In Fig. 5.9 (c), the more phase fluctuation is induced in the
emitted pulses with hole-boring effect than that in Fig. 5.9 (d) for immobile case. The
hole-boring effect extends the spatial distribution of the electron layer, thus takes down
the threshold wgch of the incoherent emission.

Another effect also contributing to the pulse isolation is plasma heating. It expands
the layer and decreases the number of electrons for coherent emission. In Fig. 5.9 (b),
the subsequent pulses have the same spectral decay as the 1st one but weaker intensity.
This is because the pulse emission process is roughly repeatable since ions are fixed, but
the layer compression becomes less in longer time interaction. In Fig. 5.9 (d), the phase
fluctuation threshold is also reduced by thermal expansion.

With oblique incidence and long plasma pre-gradient in Fig. 5.2, the plasma heating
is more considerable with the re-injection of Brunel electrons [60] which could severely
disperse the layer structure making larger phase fluctuations in the pulse, and hinder
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Figure 5.9: Intensity spectra (a) (b) and the corresponding spectral phase (c) (d). (a), (c) correspond
to the case with mobile ions and (b), (d) immobile ions. The blue dashed lines are the spectral fitting
for the 1st pulses in both cases. The laser, ag = 40 with step-like temporal profile, radiates normally
on the plasma (ng = 200n., L = 0), and the laser duration is long enough to emit the 5th pulse.
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the layer acceleration decreasing the pulse emission. Both of these can also induce a
weaker isolating effect in the pulse train as shown in Fig. 5.8(a) and (b).

For the 1st pulse in Fig. 5.2, the plasma heating is also strong in the interaction of
the laser ramp with plasma pre-gradient. A well-defined electron layer can’t be formed
because of the weak laser intensity in the ramp and thermal expansion, leading to weaker
intensity in Fig. 5.3 (a) and large phase fluctuations in Fig. 5.3 (b).

Based on above discussions, we can know that the hole-boring effects mainly contribute
to the plasma gating and isolates the 2nd pulse in Fig. 5.2 with the most efficient high-
frequency emission and the widest coherent phase interval. The plasma heating effects
could also assist the plasma gating via thermally expanding the electron layer for the
subsequent pulse emissions.

5.3 Phase property

Phase property is one of the crucial aspects for single attosecond pulse generation. An
isolated attosecond pulse with a constant spectral phase is essential for the temporal
resolution of attosecond pump-probe experiments. The unstable spectral phase can ex-
tend the pulse duration and make it significantly larger than the Fourier transformation
limit. However, the analysis of these unstable phase can provide the deep insight into
the pulse emission process.

With the results in Fig. 5.2 (b), the spectral phase of the isolated pulse (2nd pulse)
can, in principle, be divided into three regions with different properties:

1. 100w; < w < 400w;: constant phase.
2. w < 100w;: oscillating phase in low-frequency region.
3. w < 400w;: fluctuated phase in high-frequency region.

Below, the phase properties in the three regions are discussed separately.

5.3.1 Constant spectral phase

As predicted in our theoretical model in Sec. 3.1.2 and validated with the simulation
results in Fig. 5.3 and 5.9, the attosecond pulse has a constant spectral phase for a
rather long frequency interval. This constant phase is determined by the dynamics
of the well-defined electron layer during the emission, and slightly perturbed by the
temporal variation of pulse amplitude A,,(¢). In ultra-intense ultra-short laser-plasma
experiments, the laser CEP has a significant impact on the interaction physics [146, 147].
However, generation of an ultra-short and ultra-intense laser pulse with a stabilized CEP
is difficult in experiments leading to shot-to-shot changes [146]. Here, we highlight the
spectral phase stabilization from the unstable laser CEP.

In Fig. 5.10, we present the spectral phase in magnetic fields (a) and electric fields (b)
of the attosecond pulses in Fig. 5.7 (e). As we can see, with the laser CEP scanning from
¢ = 0.0m to ¢ = 1.0, the constant spectral phase in the region (100w; < w < 300w;)
has a rather small change within Ay ~ 0.17. This implies that with an appropriate
frequency filter wy ~ 100w;, the obtained attosecond pulse has a quasi-constant spectral
phase extending to a bound (w ~ 500eV), which is very important for the applications
of the attosecond pulse in experiments avoiding shot-to-shot changes [146].

During the pulse emission, the plasma transverse current changing its sign regulates
the pulse structure to be a quasi odd function (see Eq. 3.8) which locks the pulse spectral
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Figure 5.10: 1D PIC simulations of HHG for attosecond pulse spectral phase. The spectral phase
of the attosecond pulses generated by the lasers with different laser CEP are shown in (a) magnetic
field and (b) electric field corresponding to the attosecond pulses in Fig. 5.7 (e). As one can see,
Yp —p = m as propagating in —z direction. The laser has the temporal profile a(t) = ag sin(w;t +
o) (tanh((t — Ts)/W) — tanh((t — T.)/W))/2, 1 is laser CEP.

phase to be £7/2. On the other hand, with the very larger backward velocity £, ~ —1,
the pulse duration, Ty = 2/wy, is extremely shortened, limiting the temporal variation
of A,,(t) and also the constant phase shift ¢4, ~ AL /(A% w4) (See Eq. 3.20). Hence,
the spectral phase of the isolated attosecond pulse approximates to be a constant, i.e.
Y ==xmw/2+14, ~ £7/2, in the ultra-intense laser-plasma interaction.

We can also see that even though the constant spectral phase is approximately in-
dependent on the laser CEP, the coherent spectral interval can be extended to higher-
frequency region (w{h ~ 450w; ~ 700ev) with a well controlled laser CEP (¢ = 7/2), as
the laser CEP has larger influence on phase fluctuations in high-frequency region and
also phase oscillations in low-frequency region.

5.3.2 Phase oscillation in low-frequency region

In Figs. 5.3, 5.9 and 5.10, the spectral and phase oscillation in low-frequency region are
clearly presented. This oscillation corresponds to a double-pulse structure in one emitted
pulse.

In Fig. 5.11 (a), we zoom in the structure of the 2nd pulse in Fig. 5.2 (a) and find
that it consists of a main pulse E}" and a sub-pulse Ey:

E,(t) = EI'(t) + E5(t — At) (5.12)

where the amplitude of the main pulse is orders of magnitude larger than the amplitude
of the sub-pulse, i.e. EJ'(t) > E,(t), and At ~ 0.187 is the time separation.

In Fig. 5.4 (b), we plot the contour of the evolution of the electron density and show
that a secondary electron bunch [148] is formed behind the first electron layer. Here in
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Figure 5.11: (a) Temporal shape of the 2nd pulse in Fig. 5.2 (a) shifted along the retardation relation.
The temporal window (blue dashed line) is used to exclude the sub-pulse pulse (b) Evolution of the
longitudinal electric field F, at the plasma surface around the emission of the 2nd pulse overlaid with
the retardation paths of the pulse centers (red and magenta lines). The evolution of the electron
surface (n. = agn,) is also shown (black dashed line). (c) Velocity (35,8,) along the electron surface.
(d) Spectra of the main pulse (green line) and sub-pulse (red line). (e) Spectral phase of the main
pulse (green line). The spectrum and spectral phase in Fig. 5.3 of the 2nd pulse in the low frequency
region are repeated in (d) and (e) respectively. The spectral phase of the 3rd pulse in Fig. 5.3 is also
zoomed in for (f). Same parameters as in Fig. 5.4.
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Fig. 5.11 (b), we repeat the evolution of the electron surface (black dashed line) as in
Fig. 5.4 (b) and overlay the retardation paths of the two pulses, which confirms that the
sub-pulse is certainly emitted by the secondary electron bunch. In Fig. 5.11 (b), we also
replace the density evolution in Fig. 5.4 (b) with the evolution of the longitudinal electric
field E,. As we can see, a positive electric field is generated when the first electron layer
is moving away from the target [148]. The secondary electron bunch is clumped by this
electric field F, and accelerated to radiate the sub-pulse with a much slower backward
velocity, since this electric field is much weaker than the accelerating field in front of
the first electron layer. Therefore, the intensity of the high frequency emission in the
sub-pulse is significantly lower than that in the main pulse as shown in Fig. 5.11 (d).

By artificially excluding the sub-pulse with the temporal window (blue dashed line in
Fig. 5.11 (a)), one can see that in Fig. 5.11 (d) (e) the main pulse has no spectral and
phase oscillations while the whole 2nd pulse which is a superimposition of the two pulses
shows the oscillations.

To describe the oscillation analytically, we calculate spectral and phase oscillations in
the whole pulse from the double pulse interference:

By (w)] @) = | B (w) ¢ie() ot (5.13)

eim(@) 4 ‘E;(w)

where |E}"*(w)| denotes the modulus of the different frequency components and s is
the spectral phase of each pulse. We can obtain

By (w)? = \E;ﬂ(w)f + ’E;(w)‘z +2| By (w)| [By(w)] cos(9)

2
= ‘E;”(w)f 1+2 ‘Ey(w ‘ cos() + ‘Ey(w)’ AR (5.14)
By ()] )
where
Hw) = Ys(w) — Pm(w) + wAL. (5.15)

Here we only keep the first order of approximation for ‘E; (w)‘ / ‘E?T(w)’, since £} (t) >
E;(t), thus we can have:

I(w) = |By(w)]* = \E;”(w)f (1 + 2% cos(ﬁ)) (5.16)

In order to calculate the phase oscillation, we also start from Eq. (5.13) and show the
analytical calculation below:

Ej (w)| + | Ey(w) v
|Ey(w)]
E;”(w) + E;(w

eV _ itm(w)

~—

cos(¥) + i ‘E;(w)‘ sin(v)
| Ey(w)]
= ew)m(w) [COS(¢m3) + iSiD(¢m3)]

— e“ﬁm (w)

(5.17)
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where we have the new quantity as:

B ‘E;“(w)‘ + ‘Ej(w)‘ cos(19)
ome) =R )

. _\Ej(w)\sin(ﬁ) B W)
n(@ns) =5 T~ Ep@)]

~1,

sin(¥) .

The first order approximation has also be done for the calculation of ¢,s. Thus, we can
reach the phase oscillation:

Y(Ww) = V(W) + dms =hm(w) + M sin(19) . (5.19)
m ms m |E;”(w)\

From Eq. (5.15), we can know that the spectrum and phase oscillate qualitatively with

the frequency

wp = QA—: ~ 5.56w , (5.20)
which matches very well with the simulation results in Fig. 5.11 (d), (e). Fig. 5.11 (f)
shows the phase oscillation with frequency w; = 5.26w; for 3rd pulse, which corresponds
to the pulse separation At ~ 0.197; as clearly shown in Fig. 5.4 (e).

From Egs. (5.16) and (5.19), we can also see that the oscillating amplitude is pro-
portional to |Ej(w)|/|Ey"(w)| which attenuates for higher frequency because of the less
efficient high frequency emission from the secondary electron bunch.

We wish to stress that this oscillation is the consequence of the interference between
the double pulses, which is essentially different from the plasma-wave modulation in
harmonic emission spectrum of the total reflection [43-45]. In order to get an attosecond
pulse with a constant phase, a high frequency filter is needed to overcome the phase
oscillation.

5.3.3 Phase fluctuation in high-frequency region

In the high-frequency region, the phase fluctuation occurs. This phase fluctuation orig-
inates from the incoherent emissions (A, S Ax) from different part of the electron
layer and results in the limit on the interval of the constant spectral phase for coherent
emissions.

In order to extend the coherent emission interval to ultrahigh frequency region, an
stronger laser pulse (I ~ 102 W/ cm2) with shorter ramp is used to compress the electron
layer narrower. As shown in Fig. 5.12 (a), the phase fluctuation threshold w}h is clearly

improved, because the electron layer is further compressed Az ~ (neag)~ /3 [18] by the
extremely strong laser. Here the 1st pulse is the strongest because no laser ramp exists.
As we can see, the coherent emission interval is extended to the ultrahigh region with
Wi ~ 1000w, =~ 1.5keV.

In this ultra-relativistic case, the radiation reaction (RR) force would also be impor-
tant. As shown in Fig. 5.12 (a), RR force reduces the phase fluctuation in ultrahigh-
frequency region. This may suggest the role of RR force in further compressing the elec-
tron layer. During the backward acceleration, RR force, frr o< (1 — 2196)2|EZ,|2 quenches
the hot electrons expansion at the layer front and thus enforces the layer structure for
pulse emission.
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Figure 5.12: 1D PIC simulations of HHG for attosecond pulse spectral phase. Spectral phase (a)
and intensity spectrum (b) for the cases with and without RR force. Same parameters in Fig. 5.2
except ag = 250, W = 073, n. = 1000n....

One can also see in Fig. 5.12 (b) the emitted pulse with RR force has the same
spectral decay as the case without RR force but smaller spectral fluctuation in the
region, w > 1000w;. This may be because the layer collective motion can hardly be
impeded by RR force as the laser field can not penetrate deeply into the ultra-dense
electron layer. This is in line with the simulation result in Fig. 4.6 (b), wherein the RR
force cannot affect the reflection in the first few laser cycle, but can reduce the reflection
after a long time interaction when the plasma is effectively heated by the incident laser
pulse.

The spectral fluctuation comes from the superposition of the incoherent emissions from
the electron layer and the RR force smooths the fluctuation by further compressing the
layer structure. With the same spectral decay and smaller phase fluctuation, a stronger
attosecond pulse may be synthesized 2.

5.4 Conclusions

In this chapter, we propose a new scheme—plasma gating—for the generation of an
isolated ultra-intense phase-stabilized attosecond pulse in the ultra-relativistic regime.
The generated pulse with duration Ty < 20as is characterized by a stabilized spectral
phase 9)(w) ~ £7/2 and an ultra-broad exponential spectrum up to keV region bounded
by ROM scaling in low-frequency region and CSE scaling in high-frequency region. The
unprecedented intensity stemming from an effective energy conversion highlights the
potential of the isolated attosecond pulse for performing attosecond-pump attosecond-
probe experiments [149, 150].

We first show the existence of the plasma gate by means of particle-in-cell simulations
with the most general conditions and then highlight the robustness of this plasma gat-
ing scheme with a extensive parametric studies. The analytical model is employed to
reproduce the emitted attosecond pulses and validated by the numerical calculations.

’In a large part of the simulation results, we can observe the enlargement of the attosecond pulse
intensity with the RR force, but in other results, this enlargement is submerged in the numerical
noise.
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Based on the analytical model and simulation results, the formation of the plasma gat-
ing scheme is comprehensively understood: the hole-boring effect mainly contributes to
the plasma gate by isolating the most efficient high-frequency emission within one laser
cycle

Moreover, the phase properties of the isolated attosecond pulse are extensively dis-
cussed. The phase oscillation in low-frequency region stems from the double-pulse struc-
ture and attenuates at higher frequencies. The frequency of this oscillation is calculated
analytically and validated with the simulation results. Above the region of oscillation,
the pulse spectral phase is locked to be ¢ = +7/2 + 14, ~ £7/2 by the dynamics of
the surface electron layer. This constant spectral phase is approximately independent on
the laser CEP and truncated in high-frequency region by the phase fluctuation, which
originates from the incoherent emissions from the electron layer. This phase fluctuation
is reduced by radiation reaction force in the ultra-relativistic regime.



Chapter 6

Summary and outlook

Summary

High-order harmonic generation and attosecond pulse emission are like the two sides
of the same coin. On one hand in the frequency domain, harmonic spectra are the
consequence of the interference among a train of attosecond pulses. On the other hand
in the time domain, attosecond pulses come from the superposition of a larger group of
harmonic waves.

In this thesis, we set out our investigation from both sides to study the plasma high
harmonic generation via laser-plasma interaction in the ultra-relativistic regime, ag > 1.
In this regime the inevitable hole-boring effect, induced by the extremely strong laser
ponderomotive force, tends to strongly affect the spectra of harmonics and the intensities
of attosecond pulses.

We first give an extensive introduction in Chapter 1 to the historical evolution of
the laser intensity, basic properties for the physics of laser-plasma interaction, and high
harmonic generation with gaseous and solid targets. In particular, we associate the
different harmonic generation mechanisms in both gaseous and solid targets with the
evolution of the laser intensity.

We then introduce the theoretical background for this thesis in Chapter 2. From
the relativistic plasma fluid equation and plasma current radiation, we review the basic
viewpoints of plasma high harmonic generation and give the general selection rules for
plasma harmonics. Afterward, we discuss the typical piston model for the hole-boring
effect and highlight the correction from hot-electron generation.

In Chapter 3, we develop a new analytical model for pulse emission from a well-defined
electron layer compressed by the extremely strong laser ponderomotive force at the in-
terface of the laser-plasma interaction. The pulse emission occurs at the node where the
layer transverse momentum changes its sign and the backward velocity approaches its
maximum. In this model, the exponential spectrum and the constant spectral phase of
the emitted pulse are analytically derived and, more importantly, an analytical descrip-
tion for the attosecond pulse is given and validated via particle-in-cell simulations. The
energy conversion process underpinning the pulse emission is also analytically analyzed
and confirmed with simulation results. Moreover, detailed comparisons to the previous
models are provided numerically and analytically.

After this, we carry on our study from the side of high harmonic generation in Chap-
ter 4. In the ultra-relativistic regime, the hole-boring effect widens the harmonic peaks,
leading to a quasi-continuous spectra in high-frequency region. We analytically analyze
this widening and validate it by particle-in-cell simulations. Based on the simulation
results and physical considerations, we constitute the parameter maps (plasma density
vs laser intensity) highlighting the optimum regions for generating a single intense at-
tosecond pulse and coherent radiation in the extreme ultraviolet region. These results
are important for studies aimed at designing the next generation of short-wavelength
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radiation sources by employing plasma high harmonics.

We proceed with our investigation in Chapter 5 from the side of attosecond pulse
emission. A robust plasma gating scheme for a single attosecond pulse generation is
proposed. Contrary to other schemes, this plasma gating scheme is robust for general
situations and works in the ultra-relativistic regime. The hole-boring effect limits the
most efficient high-frequency emission in one laser cycle, making it possible to isolate a
single attosecond pulse. The isolated pulse has a constant spectral phase, ¥ ~ +7/2.
This particular locked phase does not depend on the carrier-envelop-phase (CEP) of the
laser pulse, but on the dynamics of the well-defined electron layer during the emission
when the layer transverse current changes its sign. This spectral phase regulates the
pulse structure and results in a minimum at the pulse center, contrary to a synchrotron-
like pulse. The unprecedented intensity I ~ 1022 W/ cm? of the isolated attosecond pulse
stems from an effective energy conversion process. The isolated pulse is also characterized
by an exponential spectrum bounded by ROM-scaling in low-frequency region and CSE-
scaling in ultrahigh-frequency region. By improving the laser intensity, the spectrum of
the isolated pulse can be coherently extended to keV region. A promising application
of this ultra-intense, ultra-broadband attosecond pulse is to investigate the inner-shell
electron dynamics in high-Z atoms with attosecond-pump attosecond-probe experiments.
The stable phase can enable the experiments with sub-attosecond precision.

Moreover, due to the strongly compressed electron and ion layers at the plasma surface,
collisional effects become non-negligible and can reduce the efficiency of high harmonic
generation. Furthermore, in the ultra-relativistic laser-plasma interaction, the inclusion
of the radiation reaction force is necessary. From our results, the classical radiation
reaction force slightly reduces the intensity of the harmonics and smooths the phase
fluctuation in high-frequency region.

Outlook

The results in this thesis present the first step, to our knowledge, toward plasma high
harmonic generation and single attosecond pulse emission in the ultra-relativistic regime.
It may induce further discussions on this topic.

From a numerical point of view, fully dimensional simulations with high resolution are
needed. In this thesis, most of the simulations were done in one dimensional geometry for
both normal and oblique incidence in order to obtain high enough resolution. For future
studies, when the computational resource is further developed, fully dimensional effects
on plasma high harmonic generation and single attosecond pulse emission should be
investigated. For example, because of the transverse gradient of the laser intensity, the
plasma surface could be strongly curved, affecting the dynamics of the surface electron
layer and thus the high harmonic generation. The curved surface could also influence
the propagation of the harmonic wave and the attosecond pulse, which relates directly
to the experimental applications, since large surface curvature leads to focusing of the
harmonic wave in the vicinity of the surface and divergence of the harmonic wave at the
location far from the surface.

From a physical point of view, a general theory for plasma high harmonic generation
is absent. As we introduced in Sec. 1.3.2, different models were proposed for plasma high
harmonic generation, but give different spectral properties. The physical reason leading
to these differences is not clear. A general theory, from first principle, is needed to cover
all the models and point out the dominance of the different models in different parameter
regimes. Furthermore, all the models are based on the point of plasma collective current,
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which completely ignore the effects of single particle radiation. A theory considering the
superposition of the radiation from single particles may reveal more information about
the dynamics of harmonic generation and even about other plasma radiations.
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Appendix A

Numerical Techniques

A.1 Particle-in-Cell code

In modern physics, computer numerical simulation is an indispensable tool as it bridges
the theoretical physics and the experimental physics. Generally, simulation could un-
cover more details of physical processes, which can hardly be shown directly from exper-
imental result, and is a convenient method to justify the validity of the approximations
and assumptions in theoretical derivations.

The numerical description of plasma physics, in general, develops into two differ-
ent pictures [151]: fluid description and kinetic description. In the fluid picture, the
magnetohydrodynamic (MHD) equations [29], which provide the macroscopic informa-
tion of the plasma and ignore the physical details at the microscopic level, are solved
analytically and/or evolved numerically. In the kinetic picture, Vlasov-Fokker-Planck
simulation [152-155] and particle-in-cell (PIC) simulation [84] have been developed in-
dependently and used to compute the temporal evolution of the plasma phase space
f(t,r,p) self-consistently in an external and internal field,

of

E—FV-VT]H—

dp

’ V, [ = source term, (A1)

where the source term may come from the collisional effect, radiation reaction force, pair
production, ionization and so on. Vlasov-Fokker-Planck simulation solves directly the
Vlasov equation A.1, while PIC code recovers the plasma phase space via simulating a
collection of so-called pseudo-particles which move in an external field and/or internal
field. Vlasov simulation has an advantage in resolving the physics processes which de-
pend sensitively on the tail of the plasma phase space, and its application is technically
restricted by the extreme requirement of the computer storage space. The tail of the
plasma phase space is difficult to be represented by PIC simulation since the computa-
tional time consumption will be largely increased if enough number of pseudo-particles
are simulated to accurately resolve the phase-space tail. However, for the physical pro-
cesses which mainly depend on the bulk of the plasma phase space and/or require higher
dimensional calculation, PIC simulation has the great advantages in saving the compu-
tational time and also guaranteeing the simulation resolution.

In this thesis, we study the plasma high-order harmonic generation which is determined
by the plasma collective current. The single particle effect is imperceptible and can only
be conspicuous for ultra-high order harmonics in the keV region. Therefore, we employ
the widely used PIC code-EPOCH [83, 84] for all the simulations in this thesis.

The PIC simulation is proceeded as the basic algorithm cycle in Fig. A.1. At the
beginning, the simulation is set up in the simulation box with an initial configuration for
the laser field, particle distribution, spatial resolution and so on. During the running, the
integral of the particle motion equations advances the particle position and momentum
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Figure A.1: The basic algorithm cycle of the PIC simulation in one time step At [151]. i is the
number of the particles, and the grid cells are numbered as j.

(ri, p;) in the electromagnetic field, which would refresh the charge and current density
(pj,J;) on the grid. The electromagnetic fields (E;,B;) are updated by solving the
Maxwell’s equations with (p;,J;) for the advance of particle position and momentum
in next time step. After the advance of the particle momentum, the different physical
processes, such as collision, photon emission, and pair creation, could be included to
modify the particle momentum and influence the current on the grid.

In our work, the classical radiation reaction force is considered according to the
Landau-Lifshitz prescription [76]:

2 2 e d p p Jd p

Fo=-t ‘(2 + P vEtr PP yB

LL 347750mc37 [(6t+m'y ) +m7 X(6t+m7 ) }
2 €2 e? P p
- [(E4+ — x B B —E)E
3 4meg m2ct [( +mfy>< ) xe +(m6”y ) }
2 2 2
e [(E + P B2 (p.E)z] P (A.2)

3 dmweg m2ct my mey me

As we can see, the last term in Eq.A.2 is proportional to 72 opposite to the direction
of the particle momentum, dominating the radiation reaction force [130]. For ultra-
relativistic electrons for which the radiation reaction force is important, the proceeding
term in Eq.A.2 is much smaller than the last term because of the missing of « factor.
The term containing the temporal and spatial derivatives is also negligible compared to
the dominant term (proportional to 72). The ratio between these two terms is approxi-
mated [130]:
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where ag = eFE;/(mcw;) is the normalized laser electric field. From a numerical point
of view, the calculation of the temporal derivative depends on quantities (E, B) at the
proceeding and succeeding time steps. This calculation would tremendously increase the
computational complexity and also the numerical noise in the simulation. For simplicity,
we ignore the terms related to the temporal and spatial derivatives in Eq. (A.2) and
only consider the other terms in Eq. (A.4) as the reduced radiation reaction force in the
particle motion equation.

P 1Y
7 E+— xB B —E)E
LL ™3 Amreq m2ch [( + my xB) x B+ (m07 ) }
2 e* ¢? p 2 p 20 TP
e E+ P B2 (2 g2 P Ad
3 4mweg m2ct [( + my xB) (mUy ) } me (A4)

In our simulations, the pseudo-particles follow the motion equation as below:

dp;

P; r 23
q e+ - Bj) + F . (Ej, B)) (A.5a)
dr; p;
— = A.5b
dt  myy; ( )

A.2 Numerical calculation for phase

In this thesis, we study the spectral phase ¥ (w) of a single attosecond pulse, which
depends only on the pulse emission dynamics. By studying this phase property, one
can get deeper insight into the dynamics of the emission system on the attosecond time
scale.

Before we present the numerical method for calculation, a clear definition for this pulse
spectral phase has to be given. We assume that the attosecond pulse has the waveform
E,(t), and its temporal center is located at tyg. Thus, the pulse electric field can be
denoted as E(t) = E,(t —tg). The physical meaning of the pulse center will be clarified
later.

The pulse properties in time and frequency domain are connected with each other via
a simple Fourier transformation:

Bw) = % / * Bt

1 .
= E t —to)e™tdt
27T ( 0)e
— zwto / E zwtdt
MOE (A.6)

Separating the modulus and phase of the frequency spectra, we can have!

|E(w)|e” ™) = | B, (w)]|e” @) (A7)

!The sign of 1 (w) is chosen to be same with the linear term wt in E(t) = ff; |E(w)|e ity @lgy,
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For modulus:
|E(w)] = [Ep(w)] - (A.8)

The intensity spectrum I(w) = |E(w)|? of the pulse is determined by the modulus | Ey, (w)|
of the waveform.

For phase:

P(w) = u(w) —wio . (A.9)

The phase 1)(w) of the different frequency component in the pulse electric field depends
not only on the phase ¢,,(w) from the waveform, but also on a time-shift phase wtg. We
can polynomially expand v,,(w) as below:

Yow(w) = Yo + arw + agw? + azw + ..., (A.10)

where g is the absolute phase and plays a role similar to the carrier-envelop-phase. The
higher-order terms (w", n > 2) represent the group delay dispersion causing the pulse
expansion and the pulse shape deformation [156]. One can also note the linear term a;jw,
which does not affect the temporal pulse properties and only contributes a time-shift to
the pulse.

Here, we define the pulse center at tg = a1 to compensate the linear term resulting in
a time-independent phase:

P(w) = ap + asw® + agw® + ..., (A.11)

which will not change during pulse propagation.

The time-independent phase of each frequency component in a single pulse is termed
as spectral phase [156] (or atto-chirp [51, 56]). This spectral phase relates closely to the
temporal properties of the attosecond pulse, such as duration, intensity and waveform,
and is determined by the pulse emission dynamics [56, 71, 157].

The practical calculation of the pulse spectral phase is not convenient since one cannot
know the temporal position of the pulse center. To calculate the pulse spectral phase,
we start from the discrete Fourier transformation as below:

E(ty) = Z Je itk (A.12)

where ¢, = to + kAt, w; = woj, T = n1; = NAt is the duration of the pulse, 7; and
wy are the laser period and frequency, wo = 27/T = w;/n and At are the frequency and
temporal resolution, respectively. Rewriting F(w;) with its modulus and spectral phase:

E(w)) = |E(w;)|e” ), (A.13)

and inserting this into Eq. (A.12), we can get:
N—
Z —iw; Atk —z‘ll(wj,to) (A14)

here W(wj,ty) = wjty + ¥(w;) is the time-dependent phase which is the straightforward
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result via the inverse Fourier transformation:
| ()l rto) Z Bt = By (w)) +iEiwy),  (A15)

where we make use of

|E(wy)] = ﬁzw) + E2(wj),

1 V=
E,(wj) = = Z (tr) cos(wjkAt),
=0

=

Bi(w;) = E(ty,) sin(w;kAt). (A.16)

=i
Eond
I
o

From Eq. (A.15), we can calculate the time-dependent phase ¥ (wj,to):

Ey(wj)
cos|¥(w;, = —= ,
9ot =
. Ei(w;)
sin[ W (wj, = —— A.17
e o)l =~ (A17)
To guarantee ¥(wj,tg) in (—m,w|, we can do in this way:
if sin[\ll(wj,tg)] >0
_ Er(Wj))
V(wj, tg) = arccos | ———= | . A.18
(wj to) <1E(w]~)\ (A.18)
if sin[\If(wj,tg)] < 0,
Er(wj)
U (wj, tg) = —arccos | —= . A.19
et <|E<wj>r> )

From this calculation, we can get the time-dependent phase chirp ¥(w,tg). To obtain
the time-independent phase ¥(w) from this time-dependent phase ¥ (w,ty), we have two
different methods:

First one: find the point where tg = 0. If ¢t = 0, ¢¥(w) =~ ¥(w, to).

For general cases, this method may be impossible, because the field shape in the pulse
is erratic. However for our case, this is convenient as the pulse has very simple structure
and the pulse center is obvious. In the practical calculation, we select five points around
the pulse center (two before the pulse center, two after the pulse center, and one at the
pulse center), and then find the one with slope closest to 0.

Second one: delete the first-order term in Taylor expansion of the time-dependent
phase ¥(w,tg) = ag + ajw + asw? + ....

Using polynomial fitting to the time-dependent spectral phase, and deleting the coef-
ficient for the first order term, we can in principle obtain the time-independent spectral
phase 1 (w;).

We did not use this method for the phase calculation in the thesis, because if one
calculates the time-dependent phase ¥(w, to) with ¢y far away from the pulse center, one
will get a large jump in ¥(w,tp) from 7 to —7 as wty increase rapidly for large w.
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A.3 Spectral phase and harmonic phase

Based on above discussions, we can calculate the spectral phase of a single attosecond
pulse as we show in Sec 5.3. The property of spectral phase associates closely to the
temporal property of the attosecond pulse, such as duration, intensity and waveform.
From Fig. 5.1, we also know that the reflection consists of a train of attosecond pulses
and its spectrum is the typical harmonic spectrum. Thus, a fundamental question has
to be asked: how does the spectral phase of each pulse relate to the phase of individual
harmonic contained in the reflection.

To clarify the relation between pulse spectral phase and harmonic phase, we can start
from the equation:

N
=3 AEL(t—ty), (A.20)
k=1

where the total reflection E”(t) includes a train of N attosecond pulses, Ay, Ej(t) and ¢
are the amplitude, temporal waveform and temporal center of the kth attosecond pulse
in the train.

Via a simple Fourier transformation, we can have:

_ 1 foo .
E"(w) = 7 / E"(t)e™tdt
™ J—c0
N o]
_ ZA iwty 1 Eu(t — t.) e t=tk) gy
= s k( ke

Z et B (w) (A.21)

where E” ’E” ‘ —iW"(@) represents the spectral modulus ’ET )’ and phase 9" (w)
of the harmonics contained in the reflection, and Ek ‘Ek ‘ ~ k(@) denotes the

spectrum of kth attosecond pulse with modulus ‘Ek )‘ and spectral phase ¢ (w). With
Eq. A.21, we can connect the harmonic quantities to the quantities of each pulse:

7Z’L[)k(w)eiwtk (A22)

Wm»—t

N
(" (w))2e " ZJ

where intensity spectra I"(w) = ’E"(w)f and Ii(w) = ‘Ek(w)‘Q are used. As one can
clearly see, harmonic spectrum I"(w) and phase 9" (w) come from the superposition of
the pulse spectra and phase in frequency domain.

To clearly illustrate the relations, we consider the ideal case where the attosecond

pulses have the same amplitude and waveform, i.e. Ay = Ao, Ex(t) = Eo(t), leading to
Ei(w) = Ep(w) and ¢g(w) = Yo(w). Thus Eq. A.22 can be simplified as

=2

[Ir(w)]%efiwr( w) _ AOI2 —itho (w Z zwtk (A.23)
k=1
2
where Iy(w ‘EO ‘
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For a perfect periodic case: the attosecond pulses in the train are equally separated
in time, i.e. tp = (k — 1)At, thus we can have:

L L . el WAL # 21
I"(w)]2e ™" (W) = AGIZ (w)e o) J etwdn—1 > ’ A.24
) oI} (@) L e
where the time origin is chosen at the center of the 1st pulse. If the pulse train is very
long N > 1, we can have N > (V@A — 1)/(e%A — 1) for wAt # 27. Hence, a

well-peaked harmonic spectrum can be obtained:

Ir(wn) - N2A%Ik(wn> ’ (A25)
Y (wn) = to(wn), (A.26)

where w, = n2w/At and n is an integer. In this situation, harmonic phase is identical
to pulse spectral phase.

For an aperiodic case: the attosecond pulses in the train are separated in time as
tr = (k — 1)At + 7, 73 is the deviation from perfect periodicity, thus we can have:

N
. 1 . A A
[Ir(w)]%e—zw (W) — AOIO2 (w)e—mbo(w) 2 : eszkezw(k—l)At ’ (AQ?)
k=1

and also consider the nth harmonic with frequency w,, = n27/At:
1 o 1 . N . Th
[ (@) e ) = AgIF (wy)em¥oln) 3 in2rdl (A.28)
k=1

As one can see, the harmonic phase 9" (w,) depends not only on the pulse spectral
phase ¥p(wy), but also on the deviation of the periodicity. The contribution of the
spectral phase is an intrinsic property of the emission dynamics, while the contribution
of aperiodicity relies on the order of the harmonic.

However, for practical situations, especially for plasma harmonic generation in the
ultra-relativistic regime, attosecond pulse generated in different laser cycle has different
amplitude and waveform, leading to a very complicated harmonic phase which is quite
different from the pulse spectral phase.

A.4 Lorentz transformation for oblique incidence

In laser-plasma experiments, the interaction geometry is always high-dimensional, but it
is sometimes convenient to consider the involved physical processes in a one-dimensional
(1D) system, i.e. the spatial dependence perpendicular to the laser propagation is ne-
glected. This approximation is reasonable if the laser wavelength is much smaller than
the transverse width of the laser pulse. For theoretical analysis, 1D geometry sometimes
can provide a simplified but more straightforward and comprehensive insight into the
physical process. For numerical simulations, the resolution for a 1D system is orders
of magnitude higher than that for a high-dimensional system. In the case of normal
incidence (# = 0), this 1D approximation is obvious. In the case of oblique incidence
(0 # 0), Bourdier in Ref. [79] provides an effective method for this 1D approximation
via a proper Lorentz transformation.

For laser oblique incidence, we make a Lorentz transformation from the lab reference
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Figure A.2: Lorentz transformation from a lab frame of reference to the simulation boosted frame
of reference along the y axis [79]. “L" denotes the lab reference and “S” represents the simulation
reference.

(L-reference) to the simulation boosted reference (S-reference) in which the laser is nor-
mally incident onto the plasma, as shown in Fig. A.2. This boosted frame is achieved
with a velocity vg = ¢sin(f) in the y-axis direction parallel to the plasma surface, where
0 is the laser incident angle in lab frame. In S-reference, the unperturbed plasma has
the density ngg = nor/ cos(d) with an initial velocity v, = —¢sin(6) in —y direction.

Transforming from L-reference to S-reference, 4-dimensional vectors have to be trans-
formed with the Lorentz matrix:

vy 0 —B8 0
_3 ; . 3 8 (A.29)
0 0 0 1
where
B=uvg/c=sin(d), ~y=(1-p8%"Y2=cos7}(). (A.30)

Hence, we can obtain the laser frequency wg and wave vector kg in S-reference from the
laser frequency and wave vector

Wy, = wy, (A.Sla)
ky, = ki(cos(0),sin(6),0), (A.31Db)

in L-reference via a Lorentz transformation:

ws = y(wr, — Beky) = wycos(h), (A.32a)
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¢ = ki =kjcos(0), (A.32b)
kg = (ki — B%L) =0, (A.32¢)
ki =k7 =0, (A.32d)

where w; is the laser frequency and k; is the modulus of the laser wave vector in L-
reference, w; = ck;. As we can see, the laser in S-reference propagates in x direction
with

wg = ckg = wycos(0) , (A.33a)
kg = k;cos(0)(1,0,0) . (A.33Db)

The transformation of the electromagnetic fields between S- and L-reference are:
For p-polarization?:
E; = Ej(—sin(0),cos(0),0), (A.34a)
B = B(0,0,1), (A.34b)

where E; and B is the amplitude of the laser field in the L-reference. Via Lorentz
transformation:

Eg =~(EL + BeBi) =0, (A.35a)
E% =FE] = Ejcos(0), (A.35b)
Bg =~(B] + BE]/c) = Bicos(0), (A.35¢)

we can have the electromagnetic fields in S-reference:

Es = E;cos(0)(0,1,0), (A.36a)
Bgs = Bjcos(0)(0,0,1). (A.36D)
For s-polarization:
EL = EI(O, 0, 1) s (A37a)
B = B(sin(), — cos(6),0), (A.37Db)

in the L-reference. Via Lorentz transformation:

E§ =~(EL — BeBL) = Ejcos(0) (A.38a)
Bg =~(Bf —BE}/c) =0, (A.38b)
BY% = B} = —Bjcos(h), (A.38¢)

we can have the electromagnetic fields in S-reference:

Es = Ejcos(0)(0,0,1), (A.39a)
Bgs = Bjcos(6)(0,—1,0). (A.39b)

One may note that the normalized laser electric field a = eFE;/(mcw;) is Lorentz

2The definitions of p- and s- polarization are given in Sec. 2.3.2
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invariant:

E E
ayp, = L _ 7S =ag, (A.40)

MeCWL,  MeCWS

which is very important for our calculation. With this Lorentz invariant, we can do all the
calculations in S-reference conveniently and then equate the normalized electromagnetic
field in L-reference.

Transforming the nth harmonic in S-reference:

Wps = nwg = nwycos(f), (A.4la)
k,s = —nkg = —nk; cos(0)(1,0,0), (A.41Db)
back to L-reference as
wnr, = Y(wns + Beklg) = wpg/ cos(0) = nwy , (A.42a
ki =kyg = —nk;cos(f), (A.42b

Wn Wn, .
kpp = (ks + 575) = 76?5 = nk;sin(f), (A.42¢
oL = kns =0, (A.42d

~—  — —

we can have

WnL = Nwy , (A.43a)
knr = nki(— cos(f),sin(0),0) . (A.43Db)

Thus the order (n) of the harmonic is also Lorentz invariant.
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