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1. Introduction

Groupoids are basic objects in noncommutative geometry and differential geome-
try. There are different kinds of groupoids, such as topological groupoids and Lie
groupoids of infinite or finite dimension. Meyer and Zhu [47] developed a framework
to study these different kinds of groupoids with the same theory. More recently,
it became clear that this framework should be modified to allow for various “par-
tial” phenomena, such as partial actions, partial groupoid equivalences, or partial
fibrations. This thesis develops this variant of the theory in [47].

The notion of groupoid has many meanings. It depends on in which field of
mathematics it is considered. For instance, there are topological groupoids, étale
topological groupoids, Lie groupoids of finite and infinite dimension, algebraic
groupoids, and so on. The paper of Meyer and Zhu [47] developers a common theory
for these different kinds of groupoids. For instance, they construct a bicategory
of groupoids with bibundle equivalences as arrows and equivariant maps as 2-
arrows. A bibundle equivalence is also called a Morita equivalence. A Morita
equivalence of locally compact, Hausdorff topological groupoids is defined by Muhly,
Renault and Williams in [39]. They proved that Morita equivalent locally compact,
Hausdorff groupoids have equivalent C∗-algebras. Hilsum and Skandalis define a
generalised morphism between Lie groupoids in [6] in order to build wrong-way
maps in the K-theory of foliation C∗-algebras. Lie groupoids with isomorphism
classes of Hilsum-Skandalis morphisms as arrows form a category [18]. Bibundle
functors are introduced by Meyer and Zhu in [47]. They are an abstract analogue of
Hilsum-Skandalis morphisms. Meyer and Zhu construct a bicategory of groupoids
with bibundle functors as arrows and equivariant maps as 2-arrows.

A pretopology is an extra structure in a general category that allows to develop
various kinds of mathematical objects. For instance, groupoids, groupoid actions,
principal bundles, groupoid fibrations, actors, Hilsum–Skandalis morphisms, Morita
equivalences, and so on. A category with pretopology is equipped with a notion of
“cover”. As it is discused above there are many different kinds of groupoids. In each
case, the range and source maps are assumed to be “covers”. For instance, covers
are surjective submersions in the context of Lie groupoids. The covers also influence
the notion of principal bundle because their bundle projections are assumed to
be covers; this is equivalent to “local triviality” in the sense of the pretopology.
If our category is that of topological spaces and the covers are the continuous
surjections with local continuous sections, then we get exactly the usual notion
of local triviality for principal bundles; this is why many geometers prefer this
pretopology on topological spaces. Many operator algebraists prefer the pretopology
of open continuous surjections instead.

In the abstract setting of groupoids in a category with pretopology there occurred
the importance to modify the categorical framework there to allow for “partial”
notions. A category with partial covers is equipped with a notion of “partial
cover”, which allows to define partial sheaves, partial bibundle actors, partial
Hilsum–Skandalis morphisms, partial Morita equivalences, and so on.

The book proposed by Ruy Exel is about partial dynamical systems, [49]. A
partial action of a group is an important notion in this theory and it is largely
connected to some basic tools in this thesis. Also, Ralf Meyer and Alcides Buss define
and study partial fibrations of topological groupoids. This notion of a groupoid
fibration comes from higher category theory. It can also be defined in a category with
partial covers and several basic properties can be proved in this general situation. If
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the partial covers are étale continuous maps, partial bibundle actors are the groupoid
correspondences which are introduced by Suliman Albandik in his dissertation.

Ralf Meyer and Alcides Buss define different kinds of morphisms between topo-
logical groupoids. They call a continuous functor F : L→ H a fibration of topological
groupoids if the continuous map
(1.1) (F1; sG) : L1 → H1 ×sH,H0,F0 L0, l 7→ (F1(l); s(l)),
is an open surjection. They call the functor F : L → H a groupoid covering if
(1.1) is an isomorphism. The fibre of this fibration of topological groupoids is the
subgroupoid G of L defined by G0 = L0 and

G1 = {g ∈ L1 | F1(g) = 1F0(sG(g)},

equipped with the subspace topology on G1 ⊆ L1. They prove that many properties
are preserved by fibrations, such as being (locally) Hausdorff, locally compact,
amenable, étale or proper. They show that a crossed product for an action of
L is isomorphic to an iterated crossed product first by G and then by H. Here
“groupoid action” means a saturated Fell bundle over the groupoid, and “crossed
product” means the section C∗-algebra. They interpret a (partial) fibration of
topological groupoids L → H with fibre G as a generalised (partial) action of H
on G by groupoid equivalences. The idea is the following: An action of H on G
should give a transformation groupoid H := G o H that contains G and comes with
a continuous functor L → H. Thus defining actions of topological groupoids on
topological groupoids amounts to characterising which chains of continuous functors
G ↪→ L� H correspond to actions. They require L� H to be a groupoid fibration
with fibre G.

Groupoid fibrations are inspired by higher category theory. The thesis of Li Du
describes actions of∞-groupoids on∞-groupoids through Kan fibrations in [54]. By
definition, a groupoid fibration between two topological groupoids is a Kan fibration
between the associated topological ∞-groupoids.

There is the well known decomposition C∗(X o H) ∼= C0(X) o H for an action
of a groupoid H on a space X. Meyer and Buss generalise this fact. If we have
a groupoid fibration G ↪→ L � H, then there is an induced action of H on the
C∗-algebra of G, such that the cross product is C∗(L). In general, an “action” of
a locally compact groupoid on a C∗-algebra is a (saturated) Fell bundle over the
groupoid, and its “crossed product” is the section C∗-algebra of the Fell bundle.
Saturated Fell bundles are interpreted as actions by Morita–Rieffel equivalences.

A (partial) groupoid fibration, (partial) groupoid covering and the fibre can
be defined in a category with partial covers (see Definitions 4.6 and 4.13 and
Proposition 4.15). We use the notation G ↪→ L � H to denote that we have a
partial groupoid fibration from L to H with fibre G. We generalise some basic
results about (partial) groupoid fibrations and their fibres. The fibre of a (partial)
groupoid fibration F : L → H is a 0-groupoid (groupoid where the range map is
an isomorphism) if and only if F : L → H is a (partial) groupoid covering. The
composition of (partial) groupoid fibrations is a (partial) groupoid fibration. The
composable pair of (partial) groupoid fibrations G1 ↪→ L� H and G2 ↪→ H� R gives
a (partial) groupoid fibration G1 ↪→ G� G2, where G is the fibre of the composition.
G1 ↪→ L� G2 is a (partial) groupoid covering if and only if G1 ↪→ L� H is so. If
G2 ↪→ H� R is a (partial) groupoid covering then G and G1 are isomorphic.

We will see that an action of H on G may be transformed along a Morita
equivalence G ∼ K to an action of H on K. We have an action of H on G, that is,
there is a groupoid L and a groupoid fibration F : L� H with fibre G. If we have a
bibundle equivalence X from G to K, then we can construct a generalised action of
the groupoid H on the groupoid K. In particular, we can construct a groupoid R,
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equivalent to the groupoid L by some Y, and a groupoid fibration E : R→ H with
fibre K. Symbolically,

G L

X Y H

K R

F

E

We use the technique of composing bibundle actors. For instance, the arrow space
of the groupoid R is the underlying space of the composition X ◦ L1 ◦ X−1 and the
bibundle equivalence Y is constructed by L1 ◦ X−1.

We say that the groupoid G is basic if the canonical action of G on its objects is
a part of a principal bundle. There is an interesing case when the groupoid fibration
has a basic fibre. We define the quotient groupoid L/G for such a groupoid fibration
F : L� H with basic fibre G. We have a commuting triangle

L H

L/G

F

F1 F2

of groupoid fibrations, where F1 : L� L/G is a cover on objects and F2 : L/G� H is
a groupoid covering. We construct an action of H on the orbit space of the canonical
action of G on its objects. The quotient groupoid L/G is the transformation groupoid
of this action. Roughly speaking, under Assumption 5.63 about actions of basic
groupoids, the quotient groupoid preserves the property of a groupoid H to be basic
and transmits it to L. In a groupoid fibration G ↪→ L� H, if the groupoids G and
H are basic then so is L.

Partial groupoid fibrations appear in the theory of partial dynamical systems.
There is a important notion of a partial action of a group. A partial action of the
topological group G on the topological space X is a pair ({Xg}g∈G; {θg}g∈G) of open
subsets {Xg}g∈G of X and homeomorphisms {θg}g∈G : Xg−1 → Xg such that:

(1) Xe = X and θe = idX;
(2) θg(Xg−1 ∩ Xg1) = Xg ∩ Xg·g1 ;
(3) θg(θg1(x)) = θg·g1(x), for all x in Xg−1

1
∩ Xg−1

1 ·g−1 ;
(4) D−1 := {(g;x) ∈ G× X | x ∈ Xg−1} is open in G× X;
(5) The map D−1 → X given by (g;x) 7→ x is continuous.

Thus a partial action of G on X is also a map from G into the power set of X, just as
for actions of inverse semigroups. For this data we construct a topological groupoid
G with objects X and with

HomG(x, x1) = {(x1; g;x) ∈ X × G× X | (g;x) ∈ D−1;x1 = θg(x)}.

The multiplication map is given by

HomG(x, x1)×HomG(x2, x)→ HomG(x2, x1), (x2, g, x)·(x, g1, x1) 7→ (x2, g ·g1, x1).

It can be shown easily that G is a topological groupoid. There is a continuous
functor F : G → G given by (x1; g;x) 7→ g, which is a partial groupoid covering
from the topological groupoid to the topological group because the continuous
map G → G× X given by (x1; g;x) 7→ (g;x) is open and monic. The fibre of this
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partial groupoid covering is the topological space X. Therefore, partial actions of a
topological group can be understood as partial groupoid coverings.

There is a connection of this thesis and the thesis of Suliman Albandik [35]. We
will see that étale maps form a stronger pretopology in the category of topological
spaces. In this category with stronger pretopology a partial bibundle actor is the
same as a groupoid correspodence, which are introduced by Suliman Albandik. A
partial bibundle actor from a groupoid G to a groupoid H is a commuting left action
of G and a right action of H on the same object X, where the right anchor map
sX : X 99K H0 is a partial cover and the right action of H on X is basic. A groupoid
correspondence from a groupoid G to a groupoid H is a commuting left action
of G and a right action of H on the same object X, where the right anchor map
sX : X→ H0 is étale and the right action of H on X is free and proper. In the category
of topological spaces with étale maps as partial covers an action of a topological
groupoid on a topological space is free and proper if and only if it is basic and the
orbit space is Hausdorff. In the case of locally compact, Hausdorff groupoids the
groupoid correspondences and bibundle actors are just the same because for this
case an action is basic if and only if it is free and proper. We will see that like the
groupoid correspondences, there is a bicategory of groupoids with bibundle actors
as arrows and equivariant maps as 2-arrows.

2. Pretopologies

A stronger pretopology is an extra structure in a general category that allows to
develop various kinds of mathematical objects. A category with stronger pretopology
is equipped with a notion of “partial cover”.

Definition 2.1. Let C be any category. We say there is defined a stronger pretopology
on C if we have a collection Fp of arrows, called partial covers, with the following
properties:

(1) isomorphisms are partial covers;
(2) the composite of two partial covers is a partial cover;
(3) if x : X → B is an arrow in C and f : A 99K B is a partial cover, then

the fibre product A ×f,B,x X exists in C and the coordinate projection
pr2 : A×f,B,x X 99K X is a partial cover. Symbolically,

(2.1)
X

A B

x

f

⇒
A×f,B,x X X

A B

pr2

pr1 x

f

Definition 2.2. Consider a collection F of such partial covers f : A 99K B that
are the coequalisers of the coordinate projections pr1, pr2 : A ×f,B,f A ⇒ A. Call
them covers.

We use dashed arrows 99K to denote partial covers and double-headed arrows �
to denote covers.

Remark 2.3. Let (C,Fp) be a category with partial covers. If F = Fp then (C,F) is
a category with a subcanonical pretopology F , as in [47, Definition 2.1].

Remark 2.4. We cannot say that any category (C,Fp) with partial covers is a
category (C,F) with pretopology because, in general, the composition of two covers
is not a cover.

The following lemmas hold in any category (C,Fp) with partial covers.

Lemma 2.5. If a partial cover splits, then it is a cover.
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Proof. Let f : A 99K B be a partial cover and let g : B → A be such that f ◦g = idB .
We have to show that f : A 99K B is the coequaliser of the coordinate projections
pr1, pr2 : A×f,B,f A⇒ A.

Let x : A→ X be any arrow in C such that x ◦ pr1 = x ◦ pr2. We know that f ◦
(g ◦ f) = f ◦ idA. Therefore, there is an arrow (idA; g ◦ f) : A → A ×f,B,f A such
that pr1 ◦ (idA; g ◦ f) = idA and pr2 ◦ (idA; g ◦ f) = g ◦ f . After this we can see that
the composition x ◦ g : B → X provides a factorization of x through f :

(x ◦ g) ◦ f = x ◦ (g ◦ f)
= x ◦ (pr2 ◦ (idA; g ◦ f))
= (x ◦ pr2) ◦ (idA; g ◦ f)
= (x ◦ pr1) ◦ (idA; g ◦ f)
= x ◦ (pr1 ◦ (idA; g ◦ f))
= x ◦ idA
= x.

Such a factorization is unique because if for some parallel arrows e1, e2 : B ⇒ X we
have e1 ◦ f = e2 ◦ f then

e1 = e1 ◦ idB
= e1 ◦ (f ◦ g)
= (e1 ◦ f) ◦ g
= (e2 ◦ f) ◦ g
= e2 ◦ (f ◦ g)
= e2 ◦ idB
= e2.

�

Corollary 2.6. An isomorphism is a cover.

Proof. Any isomorphism is a partial cover by Definition 2.1 and it splits by its
inverse, so Lemma 2.5 works. �

Corollary 2.7. Let f : A 99K B be a partial cover. If f splits, then any pull-back
of f is a cover. Moreover, it splits too.

Proof. Let pr2 : A ×B X 99K X be the pull-back of f : A 99K B along an arrow
x : X→ B. It is a partial cover by Definition 2.1. Let f : A 99K B split by g : B → A.
We know that

f ◦ (g ◦ x) = (f ◦ g) ◦ x
= idB ◦ x
= x ◦ idX.

Therefore, there is an arrow (g ◦ x; idX) : X→ A×f,B,x X such that
pr2 ◦ (g ◦ x; idX) = idX.

This means that pr2 : A×BX 99K X splits. Therefore, it is a cover by Lemma 2.5. �

Corollary 2.8. Let f : X 99K Y be a partial cover. The pull-back of f : X 99K Y
along itself is a cover. Moreover, it splits.

Proof. It is clear that the arrow (idX; idX) : X → X ×f,Y,f X is well-defined and
pr2 ◦(idX; idX) = idX. So pr2 is a partial cover because it is a pull-back of f : X 99K Y,
and it splits by (idX; idX). Therefore, it is a cover by Lemma 2.5. �
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Corollary 2.9. The composition of splitting covers is a cover. Moreover, it splits.

Proof. It is clear that the composition of splitting arrows is a splitting arrow, too.
Also, the composition of partial covers is a partial cover. So the composition
of splitting covers is a splitting partial cover, and, therefore, it is a cover by
Lemma 2.5. �

Lemma 2.10. The composition of an isomorphism and a cover is a cover.

Proof. Let f : A� B and ϕ : B → C be a cover and an isomorphism, respectively.
The composition ϕ ◦ f is a partial cover by the definition of a stronger pretopology.
Therefore, the object A×ϕ◦f,B,ϕ◦f A exists. The arrows (pr1; pr2) : A×f,B,f A→
A ×ϕ◦f,B,ϕ◦f A and (pr1; pr2) : A ×ϕ◦f,B,ϕ◦f A → A ×f,B,f A are well-defined and
inverses of each other. Hence the arrow f : A� B, and, therefore, the composition
ϕ ◦ f , is a coequaliser of both pairs of the coordinate projections. Thus ϕ ◦ f is a
cover.

Let f : A� B be a cover and let ϕ : C → A an isomorphism. There is the arrow
(ϕ−1 ◦ pr1;ϕ−1 ◦ pr2) : A ×f,B,f A → C ×f◦ϕ,B,f◦ϕ C. It is well-defined because
f ◦ ϕ ◦ ϕ−1 ◦ pr1 = f ◦ pr1 = f ◦ pr2 = f ◦ ϕ ◦ ϕ−1 ◦ pr2. Let the arrow x : C → X be
such that x ◦ pr1 = x ◦ pr2. We have

x ◦ ϕ−1 ◦ pr1 = x ◦ pr1 ◦ (ϕ−1 ◦ pr1;ϕ−1 ◦ pr2)
= x ◦ pr2 ◦ (ϕ−1 ◦ pr1;ϕ−1 ◦ pr2)
= x ◦ ϕ−1 ◦ pr2.

Since f : A� B is a coequaliser of pr1, pr2 : A×f,B,f A⇒ A, there is a unique arrow
h : B → X such that h ◦ f = x ◦ ϕ−1. This equality is equivalent to h ◦ f ◦ ϕ = x.
This means that f ◦ ϕ : C 99K B is a coequaliser of pr1, pr2 : C ×f◦ϕ,B,f◦ϕ C ⇒ C.
Therefore, it is a cover. �

Lemma 2.11. If a cover is monic then it is an isomorphism.

Proof. Let the arrow f : A� B be a cover and monic. By Definition 2.1 f : A� B
is a coequalizer of the pair of arrows pr1, pr2 : A×f,B,f A⇒ A. Since f ◦pr1 = f ◦pr2
and f is monic, pr1 = pr2. Therefore, idA ◦ pr1 = idA ◦ pr2. Hence there is an arrow
g : B → A such that g ◦ f = idA. Also f ◦ pr1 = f ◦ pr2 and we have two arrows
idB , f ◦ g : B → B such that idB ◦ f = f and (f ◦ g) ◦ f = f ◦ (g ◦ f) = f ◦ idA = f .
Thus f ◦ g = idB . Therefore, f is an isomorphism. �

Lemma 2.12. Let f : A 99K B be a partial cover. f is a cover if and only if it is a
coequaliser of some pair of parallel arrows e1, e2 : E ⇒ A.

Proof. One side of the proof is obvious by the definition of a cover. Now, let
f : A 99K B be a coequaliser of parallel arrows e1, e2 : E ⇒ A. There is the arrow
(e1; e2) : E → A×f,B,f A. It is well-defined because f ◦ e1 = f ◦ e2. Let the arrow
g : A → C be such that g ◦ pr1 = g ◦ pr2, where pr1 and pr2 are the coordinate
projections of A×f,B,f A. We have g◦e1 = g◦pr1◦(e1; e2) = g◦pr2◦(e1; e2) = g◦e2.
Since f : A 99K B is the coequaliser of e1, e2 : E ⇒ A, there is a unique h : B → C
such that h ◦ f = g. Therefore, f is a coequaliser of the coordinate projections
pr1, pr2 : A×f,B,f A⇒ A. Hence it is a cover. �

Lemma 2.13. Assume that the pull-back of an arrow g : C → B along a cover
f : A� B is an isomorphism. If the coordinate projection pr2 : A×f,B,g C 99K C is
epic, then g : C → B is an isomorphism, too.
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Proof. Let f : A� B be a coequaliser of the pair of parallel arrows e1, e2 : E ⇒ A.

A×f,B,g C C

E A B

pr2

pr1 g(e2;pr2◦pr−1
1 ◦e1)

e1

e2

pr−1
1

f

pr2◦pr−1
1 g′

There is an arrow (e2; pr2 ◦ pr−1
1 ◦ e1) : E → A×f,B,g C. It is well-defined becasue

g ◦ pr2 ◦ pr−1
1 ◦ e1 = f ◦ pr1 ◦ pr−1

1 ◦ e1

= f ◦ e1

= f ◦ e2.

Since pr1 ◦(e2; pr2 ◦pr−1
1 ◦e1) = e2, we have pr−1

1 ◦e2 = (e2; pr2 ◦pr−1
1 ◦e1). Therefore,

pr2 ◦ pr−1
1 ◦ e2 = pr2 ◦ (e2; pr2 ◦ pr−1

1 ◦ e1) = pr2 ◦ pr−1
1 ◦ e1. Hence there is a unique

arrow g′ : B → C such that g′ ◦ f = pr2 ◦ pr−1
1 . We have

g ◦ g′ ◦ f = g ◦ pr2 ◦ pr−1
1

= f ◦ pr1 ◦ pr−1
1

= f.

Since f : A→ B is a cover, it is epic and, therefore, g ◦ g′ = idB . Also we have

g′ ◦ g ◦ pr2 = g′ ◦ f ◦ pr1

= pr2 ◦ pr−1
1 ◦ pr1

= pr2.

Since pr2 : A×f,B,g C 99K C is epic, we have g′ ◦ g = idC . So g′ is an inverse of g,
and, therefore, g is an isomorphism. �

2.1. Extra assumptions on stronger pretopologies. Let (C,Fp) be a category
with partial covers. We know that the composition of splitting covers is a cover
(Corollary 2.9). Also, the composition of an isomorphism and a cover is a cover
(Lemma 2.10). But, generally, we cannot say that the composition of covers is a
cover. The following assumption on the stronger pretopology is about this.

Assumption 2.14. [47, Definition 2.1]. The composition of covers is a cover.

The next assumption is about the pull-back of a cover. We know that the pull-
back of a splitting cover is a cover (Corollary 2.7). Also, the pull-back of a cover
along itself is a cover (Corollary 2.8). But, generally, the pull-back of a cover is not
a cover. In some results we require the following assumption.

Assumption 2.15. [47, Definition 2.1]. Any pull-back of a cover is a cover.

Remark 2.16. Under Assumption 2.15 we do not need the requirement that the
coordinate projection pr2 : A ×f,B,g C 99K C is epic in Lemma 2.13, because it
automatically comes from Assumption 2.15. pr2 : A×f,B,g C → C is a pull-back of
the cover f : A� B. Therefore, it is a cover. Thus it is epic.

Remark 2.17. Under Assumptions 2.14 and 2.15, a category (C,Fp) with partial
covers is a category (C,F) with pretopology as defined in [47].

The next assumption is important for principal bundles and arrows between
the orbit spaces. We need this assumption for defining a composition of bibundle
functors.
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Assumption 2.18. If a pull-back of f along a cover is a cover, then f is a cover,
too.

The following assumption is stronger than the previous one. It is necessary when
we want to compose bibundle actors.

Assumption 2.19. If f ◦ g and g are covers, then so is f .

The following assumption is about the final object. We know that the obvious
example of a groupoid is a group. A group is a groupoid with only one identity. So
we need the following assumption to define groups in a category (C,Fp) with partial
covers.

Assumption 2.20. There is a final object in (C,Fp) and all arrows to it are covers.

Remark 2.21. Under Assumption 2.20, the category (C,Fp) has finite products
because they are fibre products over the final object.

3. Groupoids in a category with partial covers

Before defining a groupoid we need to explain the notion of elementwise expres-
sions. Let A be any object in C. An element x in A is interpreted as arrow in C from
some object ? ∈∈ C to A. The elements of A form a category, which determines A
by the Yoneda Lemma. If f : A→ B is any arrow in C then for any element x in A
f(x) is interpreted as the composition f ◦ x : ?→ B, which is an element in B.

Definition 3.1. A groupoid G = (G0,G1, r, s,m) in the category (C,Fp) with partial
covers consists of

• objects G0,G1 ∈∈ C,
• arrows r : G1 → G0, s : G1 → G0 and m : G1 ×s,G0,r G1 → G1;

such that
(1) r and s are covers;
(2) for the coordinate projections pr1, pr2 : G1×s,G0,r G1 ⇒ G1 we have equations

r ◦m = r ◦ pr1; s ◦m = s ◦ pr2; r(g · g1) = r(g); s(g · g1) = s(g1), for
all g, g1 ∈ G1 with r(g1) = s(g);

(3) m is associative, that is, the following diagram commutes:

(G1 ×s,G0,r G1)×pr2,G1,pr1
(G1 ×s,G0,r G1) G1 ×s,G0,r G1

G1 ×s,G0,r G1 G1;

(m◦pr1;pr2◦pr2)

(pr1◦pr1;m◦pr2) m

m

m ◦ (m ◦ pr1; pr2 ◦ pr2) = m ◦ (pr1 ◦ pr1; m ◦ pr2); (g · g1) · g2 = g · (g1 · g2),
∀g, g1, g2 ∈ G1 with s(g) = r(g1) and s(g1) = r(g2);

(4) the maps
(pr2; m) : G1 ×s,G0,r G1 −→ G1 ×s,G0,s G1, (g; g1) 7→ (g1; g · g1);(3.1)
(pr1; m) : G1 ×s,G0,r G1 −→ G1 ×r,G0,r G1, (g; g1) 7→ (g; g · g1);(3.2)

are isomorphisms;

We call the objects G0,G1 and G1 ×s,G0,r G1 the objects, arrows and compos-
able pairs, and the arrows r, s and m the range, source and multiplication maps,
respectively.

Here, for g, g1 ∈ G1 with s(g) = r(g1), g · g1 means the composite arrow

? (g;g1)−−−−→ G1 ×s,G0,r G1 m−→ G1.
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Remark 3.2. All objects in (2), (3) and (4) exist because of (1). The arrows
(m ◦ pr1; pr2 ◦ pr2), (pr1 ◦ pr1; m ◦ pr2), (pr2,m) and (pr1,m) are well-defined because
of the equalities in (2).

Remark 3.3. Definition 3.1 is the same as Definition 3.4 in [47]. The only difference
is the structure of the category in which we define groupoids.

Lemma 3.4. Let G = (G0,G1, r, s,m) be a groupoid. Then the coordinate projections
pr1, pr2 : G1 ×s,G0,r G1 ⇒ G1 are covers. Moreover, they split.

Proof. It is clear that the arrow (idG1 ; idG1) : G1 → G1 ×s,G0,s G1 is well-defined. We
also have pr2 ◦ (pr2; m)−1 ◦ (idG1 ; idG1) = pr2 ◦ (idG1 ; idG1) = idG1 . So pr2 splits by
(pr2; m)−1 ◦ (idG1 ; idG1). Analogously, pr1 splits by the arrow (pr1; m)−1 ◦ (idG1 ; idG1).
The coordinate projections are partial covers because they are pull-backs of the
source and range maps. Therefore, they are covers by Lemma 2.5. �

Lemma 3.5. Let G = (G0,G1, r, s,m) be a groupoid and let X be an object in C. Let
x1, x2, g ∈ C(X,G1) be such that (x1; g), (x2; g) ∈ C(X,G1 ×s,G0,r G1) are well-defined
arrows and m ◦ (x1; g) = m ◦ (x2; g), then x1 = x2.

Proof. Consider the following composition:

X (x1;g)−−−−→ G1 ×s,G0,r G1 (pr2;m)−−−−→ G1 ×s,G0,s G1.

We have
(pr2; m) ◦ (x1; g) = (pr2 ◦ (x1; g); m ◦ (x1; g))

= (g; m ◦ (x1; g)).
Analogously,

(pr2; m) ◦ (x2; g) = (g; m ◦ (x2; g)).
Therefore,

(pr2; m) ◦ (x1; g) = (pr2; m) ◦ (x2; g).
The arrow (pr2; m) is an isomorphism by Definition 3.1. So (x1; g) = (x2; g). Hence
x1 = x2. �

Remark 3.6. We can also deduce that x1 = x2 if the arrows (g;x1) and (g;x2) are
well-defined and m◦(g;x1) = m◦(g;x2). In this case, we use the isomorphism (m; pr1).

Remark 3.7. In elementwise notation, Lemma 3.5 and Remark 3.6 say the following:
If x1 · g = x2 · g then x1 = x2, and if g · x1 = g · x2 then x1 = x2.

Proposition 3.8. Let G = (G0,G1, r, s,m) be a groupoid. There are arrows
u : G0 → G1 and i : G1 → G1 such that the following equalities hold:

(1) r ◦ u = idG0 = s ◦ u; r(1g0) = g0 = r(1g0),∀g0 ∈ G0;
(2) m ◦ (u ◦ r; idG1) = idG1 = m ◦ (idG1 ; u ◦ s); 1r(g) · g = g = g · 1s(g),∀g ∈ G1;
(3) s ◦ i = r; r ◦ i = s; s(g−1) = r(g); r(g−1) = s(g),∀g ∈ G1;
(4) m◦(i; idG1) = u◦s; m◦(idG1 ; i) = u◦r; g−1 ·g = 1s(g); g·g−1 = 1r(g),∀g ∈ G1;

Here, for g0 ∈ G0, 1g0 means the composite arrow u ◦ g0, and for g ∈ G1, g−1

means i ◦ g.

Proof. First we construct the arrow u : G0 → G1. Consider the following composition:

ũ : G1 (idG1 ;idG1 )
−−−−−−−→ G1 ×s,G0,s G1 (pr2;m)−1

−−−−−−→ G1 ×s,G0,r G1 pr1−−→ G1.

We have (pr2; m)−1(g; g) = (ũ(g); g). Hence (ũ(g); g) is a composable pair and
(pr2; m)(ũ(g); g) = (g; g). Thus ũ(g) · g = g for all g ∈ G1. So we have

m ◦ (ũ; idG1) = idG1 .
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Consider any composable pair (g; g1) of arrows in G1. We have ũ(g·g1)·g·g1 = g·g1.
Thus ũ(g ·g1) ·g = g by Lemma 3.5. We also have ũ(g) ·g = g. Hence ũ(g ·g1) = ũ(g).
Since the arrow (pr2; m) is an isomorphism, we have

ũ(g) = ũ(g′),

for all g, g′ ∈ G1 with r(g) = r(g′).
The range map is a cover, hence it is a coequaliser of the coordinate projections

pr1, pr2 : G1×r,G0,rG1 ⇒ G1. Since pr1◦ũ = pr2◦ũ, there is a unique arrow u : G0 → G1

such that u ◦ r = ũ. Denote the element u(g0) by 1g0 for all g0 ∈ G0. So we have
1r(g) = ũ(g) for all g ∈ G1. The construction of the arrow u : G0 → G1 is done.

The next step is to show the properties in (1) and (2). We proved above that
s ◦ ũ = r. Thus s ◦ u ◦ r = r. Thus s ◦ u = idG0 because the range map is epic. We
also have r(ũ(g)) = r(ũ(g) · g) = r(g) for all g ∈ G1. Therefore, r = r ◦ ũ = r ◦ u ◦ r,
hence r ◦ u = idG0 . So the proof of (1) is done.

The first part of (2) follows from m ◦ (ũ; idG1) = idG1 and u ◦ r = ũ, which are
proved above. For proving the second part consider a composable pair (g; g1) of
arrows in G1. Since s(1s(g)) = s(g) = r(g1), the pair (1s(g); g1) is composable, too.
We have g · 1s(g) · g1 = g · 1r(g1) · g1 = g · g1. Thus g · 1s(g) = g by Lemma 3.5. That
is, m ◦ (idG1 ; u ◦ s) = idG1 . So (2) is completely proved.

Now we have to construct the arrow i : G1 → G1. We can directly name this arrow.
Let i : G1 → G1 be the following composition:

G1 (idG1 ;u◦s)
−−−−−−→ G1 ×s,G0,s G1 (pr2;m)−1

−−−−−−→ G1 ×s,G0,r G1 pr1−−→ G1.

The first arrow is well-defined because s(1s(g)) = s(g). Denote the element i(g) by g−1.
We have (pr2; m)−1(g; 1s(g)) = (g−1; g). Hence (g−1; g) is a composable pair, that is,
s(g−1) = r(g), and (pr2; m)(g−1; g) = (g; 1s(g)). Thus g−1 · g = 1s(g), for all g ∈ G1.

So s◦ i = r and m◦ (i; idG1) = u◦ s. We also have r(g−1) = r(g−1 ·g) = r(1s(g)) = s(g),
for all g ∈ G1. This means that r ◦ i = s. Hence the pair (g; g−1) is composable. We
have

(g · g−1) · g = g · (g−1 · g)
= g · 1s(g)

= g

= 1r(g) · g.

Therefore, g · g−1 = 1r(g), for all g ∈ G1 by Lemma 3.5. Hence m ◦ (idG1 ; i) = u ◦ r
and the proof is done. �

We call the arrows u : G0 → G1 and i : G1 → G1 described in Lemma 3.8 the
unit and inverse maps of the groupoid G = (G0,G1, r, s,m), respectively. If the
arrows u : G0 → G1 and i : G1 → G1 are the unit and inverse maps of the groupoid
G = (G0,G1, r, s,m) we shortly say it is a groupoid G = (G0,G1, r, s,m, u, i).

Corollary 3.9. Let G = (G0,G1, r, s,m, u, i) be a groupoid. then
(1) m ◦ (u; u) = u, 1g0 · 1g0 = 1g0 ,∀g0 ∈ G0;
(2) i ◦ i = idG1 , (g−1)−1 = g,∀g ∈ G1;
(3) i ◦ u = u, (1g0)−1 = 1g0 ,∀g0 ∈ G0;
(4) m ◦ (i ◦ pr1; i ◦ pr2) = i ◦ m ◦ (pr2; pr1), g−1

1 · g−1 = (g · g1)−1, for all
g, g1 ∈ G1 with s(g) = r(g1). Here pr1 and pr2 are the coordinate projections
of G1 ×r,G0,s G1.

Proof. We already know that 1r(g) · g = g, for all g ∈ G1 and r(1g0) = g0 for all
g0 ∈ G0. Hence 1g0 · 1g0 = 1r(1g0 ) · 1g0 = 1g0 , for all g0 ∈ G0. (1) is proved. We also
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have
(g−1)−1 · g−1 = 1s(g−1)

= 1r(g)

= g · g−1,

for all g ∈ G1. Hence (g−1)−1 = g, for all g ∈ G1 by Lemma 3.5. (2) is done. Also
(1g0)−1 · 1g0 = 1s(1g0 )

= 1g0

= 1g0 · 1g0 .

Therefore, (1g0)−1 = 1g0 , for all g0 ∈ G0. Hence (3) holds. Consider any composable
pair (g; g1) of arrows in G1. We have

(g · g1)−1 · (g · g1) = 1s(g·g1)

= 1s(g1)

= g−1
1 · g1

= g−1
1 · 1r(g1) · g1

= g−1
1 · 1s(g) · g1

= g−1
1 · g−1 · g · g1

= (g−1
1 · g−1) · (g · g1).

Therefore, g−1
1 · g−1 = (g · g1)−1, for all g, g1 ∈ G1 with s(g) = r(g1). So the proof is

done. �

Lemma 3.10. If G = (G0,G1, r, s,m, u, i) is a groupoid, then the multiplication map
is a cover. Moreover, it splits.

Proof. The multiplication map is the following composition

G1 ×s,G0,r G1 G1 ×s,G0,s G1 G1.
(pr2;m) pr2

We know that the arrows (pr2; m) as an isomorphism and pr2 as a pull-back of the
source map are partial covers by Definition 2.1. Therefore, m is a partial cover.
Also, we have that m ◦ (u ◦ r; idG1) = idG1 . So m splits. Therefore, it is a cover by
Lemma 2.5. �

Proposition 3.11. Let G0 and G1 be objects and let r : G1 → G0, s : G1 → G0,
m : G1 ×s,G0,r G1 → G1, u : G0 → G1 and i : G1 → G1 be such that the properties (1),
(2) and (3) in Definition 3.1 and all properties in Proposition 3.8 are satisfied. Then
G = (G0,G1, r, s,m) is a groupoid.

Proof. We just have to prove that the arrows
(pr2; m) : G1 ×s,G0,r G1 −→ G1 ×s,G0,s G1

and
(pr1; m) : G1 ×s,G0,r G1 −→ G1 ×r,G0,r G1

are isomorphisms. We can directly name the inverse arrows of them. Let us show
that these arrows are
(m ◦ (pr2; i ◦ pr1); pr1) : G1 ×s,G0,s G1 −→ G1 ×s,G0,r G1, (g; g1) 7→ (g1 · g−1; g),

and
(pr1; m ◦ (i ◦ pr1; pr2)) : G1 ×r,G0,r G1 −→ G1 ×s,G0,r G1, (g; g1) 7→ (g; g−1 · g1),

respectively. First of all, they are well-defined: in the first case, we have s(g1) =
s(g) = r(g−1), so g1 and g−1 are composable and s(g1 · g−1) = s(g−1) = r(g); in
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the second case, we have s(g−1) = r(g) = r(g1), so g−1 and g1 are composable and
s(g) = r(g−1) = r(g−1 · g1). At this time we used the property (2) in Definition 3.1
and the property (3) in Proposition 3.8.

Now consider the composition:
(m ◦ (pr2; i ◦ pr1); pr1)((pr2; m)(g; g1)) = (m ◦ (pr2; i ◦ pr1); pr1)(g1; g · g1)

= ((g · g1) · g−1
1 ; g1)

= (g · (g1 · g−1
1 ); g1)

= (g · 1r(g1); g1)
= (g · 1s(g); g1)
= (g; g1)

for all g, g1 ∈ G1 with s(g) = r(g1). Hence
(m ◦ (pr2; i ◦ pr1); pr1) ◦ (pr2; m) = id(G1×s,G0,rG1).

Here we used the associativity of the multiplication map m and the properties (2)
and (4) in Proposition 3.8. Also, we need the inverse composition:

(pr2; m)((m ◦ (pr2; i ◦ pr1); pr1)(g; g1)) = (pr2; m)(g1 · g−1; g)
= (g; (g1 · g−1) · g)
= (g; g1 · (g−1 · g))
= (g; g1 · 1s(g))
= (g; g1 · 1s(g1))
= (g; g1)

for all g, g1 ∈ G1 with s(g) = s(g1). Hence (pr2; m) ◦ (m ◦ (pr2; i ◦ pr1); pr1) =
id(G1×s,G0,sG1). As above, we used the associativity of the multiplication map m and
the properties (2) and (4) in Proposition 3.8. So both compositions are identities
and, therefore,

(pr2; m) : G1 ×s,G0,r G1 −→ G1 ×s,G0,s G1

is an isomorphism.
THerefore, for the compositions (pr1; m ◦ (i ◦ pr1; pr2)) ◦ (pr1; m) and (pr1; m) ◦

(pr1; m ◦ (i ◦ pr1; pr2)) is similar.
(pr1; m ◦ (i ◦ pr1; pr2))((pr1; m)(g; g1)) = (pr1; m ◦ (i ◦ pr1; pr2))(g; g · g1)

= (g; g−1 · (g · g1))
= (g; (g−1 · g) · g1)
= (g; 1s(g) · g1)
= (g; 1r(g1) · g1)
= (g; g1)

for all g, g1 ∈ G1 with s(g) = r(g1). Hence
(pr1; m ◦ (i ◦ pr1; pr2)) ◦ (pr1; m) = id(G1×s,G0,rG1).

Also, for the second composition we have
(pr1; m)((pr1; m ◦ (i ◦ pr1; pr2))(g; g1)) = (pr1; m)(g; g−1 · g1)

= (g; g · (g−1 · g1))
= (g; (g · g−1) · g1)
= (g; 1r(g) · g1)
= (g; 1r(g1) · g1)
= (g; g1)
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for all g, g1 ∈ G1 with r(g) = r(g1). Hence
(pr1; m) ◦ (pr1; m ◦ (i ◦ pr1; pr2)) = id(G1×r,G0,rG1).

As for the arrow (pr2; m), we used the properties (2) and (4) in Proposition 3.8 and
the associativity of the multiplication map m. �

Remark 3.12. We did not use the property (1) in the proof, but it has to be required
for the arrows in the property (2) to be well-defined.

Remark 3.13. If we require that the arrows r : G1 → G0 and s : G1 → G0 are partial
covers instead of the property (1) in Definition 3.1 it would be enough because in
this case the arrows r : G1 99K G0 and s : G1 99K G0 are partial covers which split
by u : G0 → G1 and therefore, they are covers by Lemma 2.5.

3.1. Examples of groupoids.

Example 3.14. Let X be an object in C. There is a groupoid with the object X as
arrows and as objects, too. The source and range maps are idX : X � X, and the
multiplication map is the obvious isomorphism pr1 : X×idX,X,idX X ∼→ X. It is easy to
check that this defines a groupoid. The unit and inverse maps are identity arrows
like the source and range maps. We say that the object X is viewed as a groupoid
with only identity arrows.

Example 3.15. Let f : X 99K Y be a partial cover. Its Čech groupoid is the groupoid
with X as objects and X ×f,Y,f X as arrows. The range and source maps are
pr1 : X×f,Y,f X� X and pr2 : X×f,Y,f X� X, respectively. They are covers because
of Corollary 2.8. The multiplication map is

(X ×f,Y,f X)×pr2,X,pr1 (X ×f,Y,f X) (pr1◦pr1;pr2◦pr2)−−−−−−−−−−→ X ×f,Y,f X,
defined elementwise by (x1;x2) · (x2;x3) = (x1;x3) for all x1, x2, x3 ∈ X with
f(x1) = f(x2) = f(x3). It is easy to check that this defines a groupoid. The unit
map is

(idX; idX) : X→ X ×f,Y,f X, x 7→ (x;x)
for all x ∈ X and the inverse map is

(pr2; pr1) : X ×f,Y,f X→ X ×f,Y,f X, (x1;x2) 7→ (x2;x1)
for all x1, x2 ∈ X with f(x1) = f(x2).

Example 3.16. Let G be a groupoid and let f : X 99K G0 be a partial cover. We define
a groupoid G(X, f) with arrows (X×f,G0,r G1)×pr2,G1,pr1

(G1×s,G0,f X) and objects X.
The range and source maps are pr1◦pr1 and pr2◦pr2, respectively. The multiplication
map is ((pr1◦pr1◦pr1; m̂); (m̂; pr2◦pr2◦pr2)), where m̂ = m◦(pr2◦pr1◦pr1; pr2◦pr1◦pr2).
Elementwise, ((x1; g); (g;x2)) · ((x2; g1); (g1;x3)) = ((x1; g · g1); (g · g1;x3)). The
inverse map is the arrow ((pr2 ◦pr2; i◦pr2 ◦pr1); (i◦pr2 ◦pr1; pr1 ◦pr1)). Elementwise,
((x1; g); (g;x2)) 7→ ((x2; g−1); (g−1;x1)). The unit map is ((idX; u ◦ f); (u ◦ f ; idX)).
Elementwise, x 7→ ((x; 1f(x)); (1f(x);x)). Since

pr1 ◦ pr1 ◦ ((idX; u ◦ f); (u ◦ f ; idX)) = idX

= pr2 ◦ pr2 ◦ ((idX; u ◦ f); (u ◦ f ; idX)),
the range and source maps are split partial covers, Hence they are covers by Lemma
2.5. It is easy to check that these arrows satisfy all conditions from Proposition 3.11.
Hence G(X, f) is a groupoid.

If the groupoid G in Example 3.16 is a groupoid with only identity arrows, then
the groupoid G(X, f) is the Čech groupoid of f : X 99K G0 defined in Example 3.15.

If f1 : X1 99K X is a partial cover then there is a natural groupoid isomorphism
G(X1, f ◦ f1) ∼= G(X, f)(X1, f1).
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Example 3.17. Assume Assumption 2.20. A group is a groupoid G = (G0,G1, r, s,m),
where G0 is the final object.

4. Morphisms between groupoids

The usual morphisms between groupoids in a category (C,Fp) with partial covers
are functors. They form a category with the groupoids as objects.

Definition 4.1. Let L and H be groupoids in (C,Fp). A functor from L to H is
given by arrows F0 : L0 → H0 and F1 : L1 → H1 that intertwine the source, range
and multiplication maps. That is,

(1) F0 ◦ sL = sH ◦ F1; F0(sL(l)) = sH(F1(l)), ∀l ∈ L1;
(2) F0 ◦ rL = rH ◦ F1; F0(rL(l)) = rH(F1(l)), ∀l ∈ L1;
(3) F1 ◦ mL = mH ◦ (F1 ◦ pr1; F1 ◦ pr2); F1(l · l1) = F1(l) · F1(l1) for all

l, l1 ∈ L1 with sL(l) = rL(l1); here pr1 and pr2 are the coordinate projections
pr1, pr2 : L1 ×sL,L0,rL L1 ⇒ L1.

The composition of functors F : L→ H and E : H→ R is the functor E ◦ F : L→ R
which is given by the composite arrows (E ◦ F)0 = E0 ◦ F0 and (E ◦ F)1 = E1 ◦ F1.
We just need to check that this composition intertwines the source, range and
multiplication maps of the groupoids L and R. It is so because

(E ◦ F)0 ◦ sL = E0 ◦ F0 ◦ sL

= E0 ◦ sH ◦ F1

= sR ◦ E1 ◦ F1

= sR ◦ (E ◦ F)1.

Analogously,
(E ◦ F)0 ◦ rL = E0 ◦ F0 ◦ rL

= E0 ◦ rH ◦ F1

= rR ◦ E1 ◦ F1

= rR ◦ (E ◦ F)1.

Also, for the multiplication maps we have
(E ◦ F)1 ◦mL = E1 ◦ F1 ◦mL

= E1 ◦mH ◦ (F1 ◦ pr1; F1 ◦ pr2)
= mR ◦ (E1 ◦ pr1; E1 ◦ pr2) ◦ (F1 ◦ pr1; F1 ◦ pr2)
= mR ◦ (E1 ◦ F1 ◦ pr1; E1 ◦ F1 ◦ pr2)
= mR ◦ ((E ◦ F)1 ◦ pr1; (E ◦ F)1 ◦ pr2).

It is clear that the functor idL : L → L given by the arrows idL0 and idL1 is an
identity functor on the groupoid L. So groupoids and functors between them form a
category.

Lemma 4.2. Any functor F : L→ H intertwines the unit and inverse maps of the
groupoids L and H.

Proof. For any element l ∈ L1 the pair (F1(l); F1(1s(l))) is composable in H because
sH(F1(l)) = F0(sL(l)) = F0(rL(1sL(l))) = rH(F1(1sL(l))). We have

F1(l) · F1(1s(l)) = F1(l · 1s(l))
= F1(l)
= F1(l) · 1sH(F1(l))

= F1(l) · 1F0(sL(l)).
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Hence F1(1s(l)) = 1F0(sL(l)) by Remark 3.6. Since the source map is epic, we have
F1(1l0) = 1F0(l0),for all l0 ∈ L0. So F : L→ H intertwines the unit maps.

Also, for any element l ∈ L1 the pair (F1(l); F1(l−1)) is composable in H because
sH(F1(l)) = F1(sL(l)) = F1(rL(l−1)) = rH(F1(l−1)). We have

F1(l) · F1(l−1) = F1(l · l−1)
= F1(1rL(l))
= 1F0(rL(l)) = 1rH(F1(l))

= F1(l) · (F1(l))−1.

Hence F1(l−1) = (F1(l))−1, for all l ∈ L1 by Remark 3.6. So F : L→ H intertwines
the inverse maps. �

Definition 4.3. The groupoids L and H are called isomorphic if there is a func-
tor F : L → H such that F1 and F0 are isomorphisms. Such functors are called
isomorphisms between groupoids.

It is easy to check that if F is an isomorphism from L to H then the pair
((F1)−1; (F0)−1) = F−1 defines a functor from H to L. Hence it is an isomorphism
too.
Lemma 4.4. The groupoid L is isomorphic to the groupoid with only identity arrows
(see Example 3.14) if and only if its source map is an isomorphism. Such groupoids
are called 0-groupoid.
Proof. Let F be a isomorphism from L = (L0, L1, r, s,m) to X = (X,X, idX, idX, pr1).
Then the arrow (F1)−1 ◦ F0 : L0 → L1 is an inverse of the source map, because

(F1)−1 ◦ F0 ◦ s = (F1)−1 ◦ idX ◦ F1

= (F1)−1 ◦ F1

= idL1

and
s ◦ (F1)−1 ◦ F0 = (F0)−1 ◦ idX ◦ F0

= (F0)−1 ◦ F0

= idL0 .

So the source map is an isomorphism and equal to the range map because
s = s ◦ F0 ◦ (F0)−1

= F1 ◦ idX ◦ (F0)−1

= r ◦ F0 ◦ (F0)−1

= r.
Conversely, let the source map be an isomorphism. Then s−1 = u because

s ◦ u = idL0 . Hence r = r ◦ s−1 ◦ s = r ◦ u ◦ s = idL0 ◦ s = s. Hence the source and
range maps are the same. Now it is easy to check that the pair of isomorphisms
(s; idL0) intertwines the source and range maps of the groupoids L = (L0, L1, r, s,m)
and L0 = (L0, L0, idL0 , idL0 , pr1). It intertwines the multiplication maps too because

s(g · g1) = s(g1)
= r(g1)
= r(g1) · r(g1)
= s(g) · s(g1)

for all g, g1 ∈ G1 with s(g) = r(g1). Therefore, (s; idL0) is an isomorphism from L to
L0. �
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Remark 4.5. The proof shows that for any 0-goupoid the source and range maps
are isomorphisms and the unit map is an inverse of them.

4.1. Groupoid fibrations. We consider special functors which form a full subcat-
egory of the category of groupoids. For topological groupoids, groupoid fibrations
are studied in [10].

Definition 4.6. Let L and H be groupoids and let F : L→ H be a functor between
them. We call F a partial groupoid fibration, groupoid fibration, partial groupoid
covering or groupoid covering if the arrow

(4.1) L1 (F1;sL)−−−−→ H1 ×sH,H0,F0 L0

is a partial cover, cover, monic partial cover or isomorphism, respectively.

The arrow (4.1) is well-defined because a functor between groupoids intertwines
the source maps of the groupoids L and H, that is sH ◦ F1 = F0 ◦ sL.

Remark 4.7. Any groupoid covering is a groupoid fibration, any groupoid fibration is
a partial groupoid fibration and any groupoid covering is a partial groupoid covering.

Remark 4.8. If a functor between groupoids is a groupoid fibration and a par-
tial groupoid covering, then it is a groupoid covering. That follows easily from
Lemma 2.11.

Lemma 4.9. Let F : L→ H be a functor between groupoids. Then the arrow

L1 (F1;sL)−−−−→ H1 ×sH,H0,F0 L0

is a partial cover, cover, isomorphism or monic if and only if the arrow

L1 (F1;rL)−−−−→ H1 ×rH,H0,F0 L0

is a partial cover, cover, isomorphism or monic, respectively.

Proof. Since rH ◦ iH = sH, there is a rectangle of pull-back squares

H1 ×sH,H0,F0 L0 H1 ×rH,H0,F0 L0 L0

H1 H1 H0

pr1

pr2

iH

(iH ◦ pr1; pr2)

rH

pr1 F0

By using the well-known lemma about the rectangle of pull-back squares we can say
that the left-side square is a pull-back square. Therefore, the arrow

H1 ×sH,H0,F0 L0 (iH◦pr1;pr2)−−−−−−−→ H1 ×rH,H0,F0 L0

is an isomorphism because it is the pull-back of the inverse map of the groupoid H,
which is an isomorphism because of (2) in Corollary 3.9.

Also, we have

(iH ◦ pr1; pr2) ◦ (F1; sL) = (iH ◦ F1; sL)
= (F1 ◦ iL; rL ◦ iL)
= (F1; rL) ◦ iL.
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So we have the commuting diagram

L1 L1

H1 ×sH,H0,F0 L0 H1 ×rH,H0,F0 L0

(F1; sL) (F1; rL)
(iH ◦ pr1; pr2)

iL

such that the horizontal arrows are isomorphisms. This finishes the proof of the
lemma. �

Proposition 4.10. A composite of partial groupoid fibrations is a partial groupoid
fibration.

Proof. Let F : L → H and E : H → R be partial groupoid fibrations. We have two
partial covers

L1 H1 ×sH,H0,F0 L0(F1;sL)

and

H1 R1 ×sR,R0,E0 H0(E1;sH)

by Definition 4.6. We need to prove that the arrow

L1 R1 ×sR,R0,E0◦F0 L0(E1◦F1;sL)

is a partial cover, too, which implies that the composition E ◦ F : L→ H→ R is a
partial groupoid fibration.

By using the well-known lemma about the rectangle of pull-back squares we can
construct the following diagram, where each square is a pull-back square.

H1 ×sH,H0,F0 L0 R1 ×sR,R0,E0◦F0 L0 L0

H1 R1 ×sR,R0,E0 H0 H0

R1 R0

(E1◦pr1;pr2)

pr1

pr2

(pr1;F0◦pr2) F0

(E1;sH)

E1

pr2

pr1 E0

sR

The arrow

H1 ×sH,H0,F0 L0 R1 ×sR,R0,E0◦F0 L0(E1◦pr1;pr2)

is a partial cover, because it is a pull-back of the arrow (E1; sH). Therefore, the
composition

L1 H1 ×sH,H0,F0 L0 R1 ×sR,R0,E0◦F0 L0(F1;sL) (E1◦pr1;pr2)

is a partial cover. We have

(E1 ◦ pr1; pr2) ◦ (F1; sL) = (E1 ◦ (pr1 ◦ (F1; sL)); pr2 ◦ (F1; sL))
= (E1 ◦ F1; sL).

Hence the composition E ◦ F : L→ H→ R is a partial groupoid fibration. �
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Remark 4.11. The composition of two groupoid coverings is a groupoid covering.
The proof is absolutely same. We just use that a pull-back of an isomorphism is an
isomorphism and a composition of isomorphisms is an isomorphism. Similarly, a
composition of partial groupoid coverings is a partial groupoid covering.

Remark 4.12. Under Assumptions 2.14 and 2.15, compositions of groupoid fibrations
are groupoid fibrations, too. The proof is the same as the proof of Proposition 4.10
if we use the term “cover” instead of the term “partial cover”.

The identity functor (idL1 ; idL0) : L→ L is a groupoid covering because, in this case,
the arrow (4.1) is (idL1 ; sL) : L1 � L1×sL,L0,idL0 L0 with inverse pr1 : L1×sL,L0,idL0 L0 �
L1. Therefore, it is an identity morphism for each kind of functors defined in
Definition 4.6. So, under relevant assumptions, we have four full subcategories of
the category of groupoids with functors as arrows between them.

The next goal is to define the fibre of a partial groupoid fibration.

Definition 4.13. Let F : L→ H be a partial groupoid fibration. A fibre G consists
of

• objects
(1) G1 = L1 ×(F1;sL),(H1×sH,H0,F0 L0),(F1◦uL;idL0 ) L0, elements of this object

are the pairs (l, l0), l ∈ L1, l0 ∈ L0 with sL(l) = l0 and F1(l) = F1(1sL(l));
(2) G0 = L0,

• arrows
(1) sG = sL ◦ pr1 : G1 → G0, sG(l; l0) = sL(l), ∀(l; l0) ∈ G1;
(2) rG = rL ◦ pr1 : G1 → G0, rG(l; l0) = rL(l), ∀(l; l0) ∈ G1;
(3) mG = (mL ◦ (pr1 ◦ pr1; pr1 ◦ pr2); pr2 ◦ pr2) : G1 ×sG,G0,rG G1 → G1,

(l; l0) · (l′; l′0) = (l · l′; l′0) ∀(l; l0), (l′; l′0) ∈ G1 with sG(l; l0) = rG(l′; l′0).

Lemma 4.14. If we have the data above then there are two important equalities:
(1) sL ◦ pr1 = pr2, sL(l) = l0, ∀(l; l0) ∈ G1;
(2) F1 ◦ pr1 = F1 ◦ uL ◦ sL ◦ pr1, F1(l) = F1(1sL(l)), ∀(l; l0) ∈ G1;

Proof. We have
(F1 ◦ pr1; sL ◦ pr1) = (F1; sL) ◦ pr1

= (F1 ◦ uL; idL0) ◦ pr2

= (F1 ◦ uL ◦ pr2; pr2).
Therefore, sL◦pr1 = pr2 and F1◦pr1 = F1◦uL◦pr2. Hence F1◦pr1 = F1◦uL◦sL◦pr1. �

Proposition 4.15. The data G = (G0,G1, rG, sG,mG) in Definition 4.13 is a well-
defined groupoid.

Proof. Firstly we have to check that the arrow

L0 (F1◦uL;idL0 )
−−−−−−−→ H1 ×sH,H0,F0 L0

is well-defined. It is so because
sH ◦ (F1 ◦ uL) = (sH ◦ F1) ◦ uL

= (F0 ◦ sL) ◦ uL

= F0 ◦ (sL ◦ uL)
= F0 ◦ idL0 .

The arrow
L1 H1 ×sH,H0,F0 L0(F1;sL)
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is a partial cover by Definition 4.6. Therefore, the fiber product

G1 L0

L1 H1 ×sH,H0,F0 L0

pr2

pr1 (F1◦uL;idL0 )

(F1;sL)

exists and the coordinate projection pr2 : G1 99K L0 is a partial cover too. We also
have

(F1; sL) ◦ uL = (F1 ◦ uL; sL ◦ uL)
= (F1 ◦ uL; idL0)
= (F1 ◦ uL; idL0) ◦ idL0 .

This means that there is a well-defined arrow (uL; idL0) : L0 → G1. Since pr2 ◦
(uL; idL0) = idL0 , the coordinate projection pr2 : G1 99K L0 is a partial cover which
splits by (uL; idL0). Hence it is a cover by Lemma 2.5. Now we can infer that the
source map sG : G1 → G0 is a cover too because sG = sL ◦ pr1 = pr2 because of
Lemma 4.14.

We need to prove the same for the range map rG : G1 → G0. The inverse map
would help us for proving this, so let us construct it firstly.

Consider the arrow

G1 (iL◦pr1;rL◦pr1)−−−−−−−−−→ G1, (l; l0) 7→ (l−1; rL(l)).(4.2)

First of all, we have to show that this arrow is well-defined. Let us find out what
we need for the arrow (iL ◦ pr1; rL ◦ pr1) to be well-defined. We need that the
arrows (F1; sL)◦ iL ◦pr1 and (F1 ◦uL; idL0)◦ rL ◦pr1 be equal. The first one is the same
as (F1 ◦ iL ◦ pr1; sL ◦ iL ◦ pr1) and the second one is (F1 ◦ uL ◦ rL ◦ pr1; idL0 ◦ rL ◦ pr1). It
is clear that the right parts of the arrows are equal, sL ◦ iL ◦ pr1 = idL0 ◦ rL ◦ pr1. So
we need to prove that the left parts of the arrows are equal too. We have to show
that the arrows F1 ◦ iL ◦ pr1 and F1 ◦ uL ◦ rL ◦ pr1 from G1 to H1 are equal. That is
right because we have (3) in Corollary 3.9 and Lemma 4.14 and we can write:

F1(l−1) = (F1(l))−1

= (F1(1sL(l)))−1

= F1((1sL(l))−1)
= F1(1sL(l))
= F1(l)

for all (l; l0) ∈ G1. Therefore, F1 ◦ pr1 = F1 ◦ iL ◦ pr1. Hence

F1(1rL(l)) = F1(1sL(l−1))
= 1F0(sL(l−1))

= 1sH(F1(l−1))

= 1sH(F1(l))

= 1F0(sL(l))

= F1(1sL(l))
= F1(l)
= F1(l−1)

for all (l; l0) ∈ G1. Therefore, (F1(l−1); sL(l−1)) = (F1(1rL(l)); rL(l)) for all (l; l0) ∈ G1.

Thus the arrow (iL ◦ pr1; rL ◦ pr1) : G1 → G1 is well-defined. Denote it by iG and



22

consider the composition iG ◦ iG:

iG(iG(l; l0)) = iG(l−1; rL(l))
= ((l−1)−1; rL(l−1))
= (l; sL(l))
= (l; l0)

for all (l; l0) ∈ G1. So iG ◦ iG = idG1 . Hence iG is an isomorphism. Also we have

sG(iG(l; l0)) = sG(l−1; rL(l))
= sL(l−1)
= rL(l)
= rG(l; l0)

for all (l; l0) ∈ G1. Therefore, sG ◦ iG = rG. Hence the range map rG : G1 � G1 is a
cover like the source map sG : G1 � G1. So the condition (1) in Definition 3.1 is
satisfied. Now let us prove the condition (2).

rG((l; l0) · (l′; l′0)) = rG(l · l′; l′0)
= rL(l · l′)
= rL(l) = rG((l; l0))

and

sG((l; l0) · (l′; l′0)) = sG(l · l′; l′0)
= sL(l · l′)
= sL(l′)
= sG((l′; l′0))

for all (l; l0), (l′; l′0) ∈ G1 with sG(l; l0) = rG(l′; l′0). So the condition (2) is satisfied.
The next step is to show that the multiplication map mG : G1 ×sG,G0,rG G1 → G1

is associative. We have

((l; l0) · (l′; l′0)) · (l′′; l′′0 ) = (l · l′; l′0) · (l′′; l′′0 )
= ((l · l′) · l′′; l′′0 )
= (l · (l′ · l′′); l′′0 )
= (l; l0) · ((l′; l′0) · (l′′; l′′0 ))

for all (l; l0), (l′; l′0), (l′′; l′′0 ) ∈ G1 with sG(l; l0) = rG(l′; l′0) and sG(l′; l′0) = rG(l′′; l′′0 ).
So the multiplication map mG is associative.

We have proved the properties (1), (2) and (3) in Definition 3.1. The next step
is to construct the arrow uG : G0 → G1 and prove all properties in Proposition 3.8,
which then allows us to use Proposition 3.11.

Consider the arrow

G0 (uL;idL0 )
−−−−−→ G1, l0 7→ (1l0 ; l0)

for all l0 ∈ L0. It is well-defined because (F1(1l0); sL(1l0)) = (F1(1l0); l0) for all
l0 ∈ L0. Denote it by uG. The property (1) in Proposition 3.8 is clear:

sG(uG(l0)) = sG(1l0 ; l0)
= sL(1l0)
= l0
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and

rG(uG(l0)) = rG(1l0 ; l0)
= rL(1l0)
= l0

for all l0 ∈ L0. Also, we have

uG(rG(l; l0)) · (l; l0) = uG(rL(l)) · (l; l0)
= (1rL(l); rL(l)) · (l; l0)
= (1rL(l) · l; l0)
= (l; l0)

and

(l; l0) · uG(sG(l; l0)) = (l; l0) · uG(sL(l))
= (l; l0) · (1sL(l); sL(l))
= (l · 1sL(l); sL(l))
= (l; l0)

for all (l; l0) ∈ G1. So the property (2) is proved.
We proved above that rG = sG ◦ iG and iG ◦ iG = idG1 , thus sG = sG ◦ iG ◦ iG = rG ◦ iG.

So property (3) is done.
The last step is to prove the property (4) in Proposition 3.8. We have

iG(l; l0) · (l; l0) = (l−1; rL(l)) · (l; l0)
= (l−1 · l; l0)
= (1sL(l); sL(l))
= (1sG(l;l0); sG(l; l0))
= uG(sG(l; l0))

and

(l; l0) · iG(l; l0) = (l; l0) · (l−1; rL(l))
= (l · l−1; rL(l))
= (1rL(l); rL(l))
= (1rG(l;l0); rG(l; l0))
= uG(rG(l; l0))

for all (l; l0) ∈ G1. So we have all required properties in Proposition 3.11. Therefore,
G = (G0,G1, rG, sG,mG) is a groupoid. �

Remark 4.16. We shortly denote the element (l; l0) ∈ G1 by g and we always mean
an element g ∈ G1 is equivalent to g ∈ L1 and with F1(g) = F1(1sL(g)).

Remark 4.17. Let G be the fibre of the partial groupoid fibration F : L→ H. The
pair (pr1; idL0) defines a functor from G to L. It intertwines the source, range and
multiplication maps by definition. Let us call this functor an inclusion. This functor
is always monic. Here I mean that the arrow pr1 : G1 � L1 is monic. That is true
because if for some parallel pair of arrows x1, x2 : X⇒ G1 we have pr1 ◦x1 = pr1 ◦x2
then pr2 ◦x1 = sL ◦pr1 ◦x1 = sL ◦pr1 ◦x2 = pr2 ◦x2. Therefore, x1 = x2 by universal
property of the fibre product. Hence pr1 : G1 � L1 is monic.

We will use the notation G ↪→ L� H to denote that we have a partial groupoid
fibration from L to H with fibre G.
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Example 4.18. Any functor F from a groupoid L to a 0-groupoid H is a groupoid
fibration with fibre isomorphic to L. Here the source map sH : H1 � H0 is an
isomorphism. Therefore, pr2 : H1 ×sH,H0,F0 L0 � L0 is an isomorphism, too. Since
(F1; sL) = (pr2)−1 ◦ sL, the arrow (F1; sL) is a partial cover. Moreover, it splits by
uL◦pr2. Thus it is a cover. Hence F is a groupoid fibration. Since pr2◦(F1◦uL; idL0) =
idL0 , we have (pr2)−1 = (F1 ◦ uL; idL0). Therefore, (F1 ◦ uL; idL0) is an isomorphism.
Hence its pull-back is an isomorphism, too, and the functor described in Remark
4.17 is an identity on objects and an isomorphism on arrows. Therefore, the fibre of
F is isomorphic to L.

Lemma 4.19. The fibre of a partial groupoid fibration F : L→ H is a 0-groupoid if
and only if F is a partial groupoid covering.

Proof. Suppose that F : L→ H is a partial groupoid covering. That is, the arrow

L1 H1 ×sH,H0,F0 L0(F1;sL)

is a partial cover and monic. We are going to prove that uG ◦ sG = idG1 , where G is
the fibre of F. We have

(F1; sL)(g) = (F1(g); sL(g))
= (1sL(g); sL(g))
= (1sL(g); sL(1sL(g)))
= (F1(1sL(g)); sL(1sL(g)))
= (F1; sL)(1sL(g))

for all g ∈ G1. Since (F1; sL) is monic, 1sL(g) = g for all g ∈ G1. Therefore,
uG ◦ sG = idG1 . Also we know that sG ◦ uG = idG0 . Hence the source map of G is an
isomorphism. Therefore, G is a 0-groupoid by Lemma 4.4.

Conversely, suppose that G is a 0-groupoid. That is, the source map sG is an
isomorphism. Suppose that there are elements l1, l2 ∈ L1 such that (F1; sL)(l1) =
(F1; sL)(l2). Hence (F1(l1); sL(l1)) = (F1(l2); sL(l2)). Thus F1(l1) = F1(l2) and sL(l1) =
sL(l2). Therefore, there is the element (l1; l−1

2 ) ∈ L1 ×sL,L0,rL L1. We have

F1(l1 · l−1
2 ) = F1(l1) · F1(l−1

2 )
= F1(l2) · F1(l2)−1

= 1rH(F1(l2))

= 1F0(rL(l2)).

Therefore, the element l1 · l−1
2 is in G. Also, the element l2 · l−1

2 is in G. We have
sG(l1 · l−1

2 ) = sG(l−1
2 ) = sG(l2 · l−1

2 ). We know that sG is an isomorphism. Thus
l1 = l2. Hence (F1; sL) is monic and, therefore, F : L → H is a partial groupoid
covering. �

Corollary 4.20. The fibre of a groupoid fibration F : L→ H is a 0-groupoid if and
only if F is a groupoid covering.

Proof. If F : L→ H is a groupoid covering then it is a partial groupoid covering by
Lemma 4.19. Therefore, the fibre of F : L→ H is a 0-groupoid.

Conversely, if the fibre of the groupoid fibration F : L→ H is a 0-groupoid, then
F is a partial groupoid covering by Lemma 4.19. So F is a groupoid fibration and a
partial groupoid covering. Therefore, it is a groupoid covering by Remark 4.8. �

Lemma 4.21. The groupoid fibration described in Example 4.18 is a groupoid
covering if and only if L is a 0-groupoid.
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Proof. If L is a 0-groupoid, then the fibre of F is a 0-groupoid, too. Therefore, F is
a groupoid covering by Corollary 4.20. Conversely, if F is a groupoid covering, then
(F1; sL) : L1 � H1 ×sH,H0,F0 L0 is an isomorphism. Since sL = pr2 ◦ (F1; sL), we have
that sL is an isomorphism, too. Therefore, L is a 0-groupoid. �

Proposition 4.22. Let F : L → H and E : H → R be a composable pair of partial
groupoid fibrations with fibres G1 and G2, respectively. Let G be the fibre of their
composition. There is a partial groupoid fibration F|G : G→ G2 which commutes with
inclusions and F, and its fibre is isomorphic to G1, as in the diagram

G1 G G2

L H R

F|G

F

E◦F

E

Proof. Firstly, we construct the functor F|G from G to G2. The objects of these
groupoids are L0 and H0. Let F|G be F0 on objects and let F|1G = (F1 ◦ pr1; F0 ◦ pr2).
It must be well-defined. We have

E1(F1(g)) = E1(F1(1sL(g)))
= E1(1F0(sL(g)))
= E1(1sH(F1(g)))

for all g ∈ G1. Therefore, F1(g) ∈ G1
2. Now, we need to prove that F|G intertwines

the source, range and multiplication maps of G and G2. There is an important
commutation which holds between arrows of G, G2, L and H. That is

pr1 ◦ F|1G = pr1 ◦ (F1 ◦ pr1; F0 ◦ pr2)
= F1 ◦ pr1.

Therefore, we have

F0 ◦ rG = F0 ◦ rL ◦ pr1

= rH ◦ F1 ◦ pr1

= rH ◦ pr1 ◦ F|1G
= rG2 ◦ F|1G.

Analogously, F|G intertwines the source maps: F0 ◦ sG = sG2 ◦ F|1G.

G1 ×sG,G0,rG G1 G1

L1 ×sL,L0,rL L1 L1 L0

G1
2 ×sG2 ,G

0
2,rG2

G1
2 G1

2

H1 ×sH,H0,rH H1 H1 H0

mG

(F|1G◦pr1;F|1G◦pr2)

(pr1◦pr1;pr1◦pr2) pr1

pr2

F|1G

mL sL

rL

F0

(pr1◦pr1;pr1◦pr2)

mG2

pr1

pr2

(F1◦pr1;F1◦pr2)

mH

F1

sH

rH
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It is easy to check that every relevant square commutes in the diagram. The up
and bottom squares commutes because of the definition of the multiplication map
of the fibre. The left square commutes because the right one does. The square in
front of the reader commutes because the functor F intertwines the multiplication
maps of L and H. Finally, we have

pr1 ◦ F|1G ◦mG = F1 ◦ pr1 ◦mG

= F1 ◦mL ◦ (pr1 ◦ pr1; pr1 ◦ pr2)
= mH ◦ (F1 ◦ pr1; F1 ◦ pr2) ◦ (pr1 ◦ pr1; pr1 ◦ pr2)
= mH ◦ (pr1 ◦ pr1; pr1 ◦ pr2) ◦ (F|1G ◦ pr1; F|1G ◦ pr2)
= pr1 ◦mG2 ◦ (F|1G ◦ pr1; F|1G ◦ pr2).

We know from Remark 4.17 that pr1 : G1
2 � H1 is monic. Therefore, we have

F|1G ◦mG = mG2 ◦ (F|1G ◦pr1; F|1G ◦pr2). Hence F|G intertwines the multiplication maps,
too.

Now, we have to show that this well-defined functor F|G : G → G2 is a partial
groupoid fibration. First step is to show that the following diagram

G1 L1

G1
2 H1

pr1

F|1G F1

pr1

is a pull-back square. Suppose that there are arrows x1 : X→ L1 and x2 : X→ G1
2

such that F1 ◦ x1 = pr1 ◦ x2. Hence

E1 ◦ F1 ◦ x1 = E1 ◦ pr1 ◦ x2

= E1 ◦ uH ◦ sH ◦ pr1 ◦ x2

= E1 ◦ uH ◦ sH ◦ F1 ◦ x1

by Lemma 4.14. Therefore, we have a well-defined arrow (x1; sL ◦ x1) : X → G1

because

(E1 ◦ F1 ◦ uL; idL0) ◦ sL ◦ x1 = (E1 ◦ F1 ◦ uL ◦ sL ◦ x1; idL0 ◦ sL ◦ x1)
= (E1 ◦ uH ◦ sH ◦ F1 ◦ x1; sL ◦ x1)
= (E1 ◦ F1 ◦ x1; sL ◦ x1)
= (E1 ◦ F1; sL) ◦ x1.

Also, pr1 ◦ (x1; sL ◦ x2) = x1 and

pr1 ◦ F|1G ◦ (x1; sL ◦ x1) = F1 ◦ pr1 ◦ (x1; sL ◦ x1)
= F1 ◦ x1 = pr1 ◦ x2.

Since pr1 is monic, F|1G ◦ (x1; sL ◦ x1) = x2. Hence the arrow (x1; sL ◦ x1) commutes
with F|1G : G1 → G1

2 and pr1 : G1 � L1. Such an arrow is unique because pr1 : G1 � L1

is monic. So the diagram above is a pull-back square.
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Now consider the following diagram:

G1 L1

I

G1
2 ×pr2,H0,F0 L0 H1 ×sH,H0,F0 L0 L0

II III

G1
2 H1 H0

pr1

(F|1G;pr2) (F1;sL)

(pr1◦pr1;pr2)

pr1

pr2

pr1 F0

pr1 sH

Since III and (II ;III ) are pull-back squares, II is a pull-back square. We have
shown above that (I ;II ) is a pull-back square, thus I is a pull-back square, too.
Therefore, the arrow (F|1G; pr2) : G1 99K G1

2 ×pr2,H0,F0 L0 is a partial cover and, since
pr2 = sL ◦ pr1 = sG, that is why the functor F|G : G � G2 is a partial groupoid
fibration.

The pull-back square I allows to say that the arrows of the fibre of the partial
groupoid fibration F|G : G� G2 is isomorphic to G1

1 because there is a diagram of
pull-back squares

G1
1 L0

G1 G1
2 ×pr2,H0,F0 L0

L1 H1 ×sH,H0,F0 L0

pr2

(pr1;((F1◦uL;F0);idL0 )) ((F1◦uL;F0);idL0 )

(F|1G;pr2)

pr1 (pr1◦pr1;pr2)

(F1;sL)

which shows that there is a canonical isomorphism (pr1 ◦ pr1; pr1) between arrows of
the fibres of F|G and F. This isomorphism is natural. The objects of these groupoids
are the same, thus they are isomorphic. �

Corollary 4.23. Assume all data from Proposition 4.22. Then F : L � H is a
partial groupoid covering if and only if F|G is so. If E : H� R is a partial groupoid
covering, then G and G1 are isomorphic.

Proof. F is a partial groupoid covering if and only if G1 is a 0-groupoid. That is
equivalent to F|G being a partial groupoid covering by Lemma 4.19.

If E is a partial groupoid covering, then G2 is a 0-groupoid. Therefore, G and G1
are isomorphic by Example 4.18. �

Remark 4.24. Under Assumption 2.15, Proposition 4.22 and Corollary 4.23 are true
in global cases instead of partial situations. The proofs are similar ([10], Propositions
2.10 and 2.21).

Example 4.25. Let f : X 99K G0 be a partial cover over the objects of the groupoid G.
The functor (pr1 ◦ pr2; f) from the groupoid G(X, f), defined in Example 3.16, to
G is a partial groupoid fibration. We just need to check that the arrow (4.1) is a
partial cover. It is equal to

pr2 : (X ×f,G0,r G1)×pr2,G1,pr1 (G1 ×s,G0,f X) 99K (G1 ×s,G0,f X)
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and it is a partial cover because it is a pull-back of pr2 : X ×f,G0,r G1 99K G1, which
is a partial cover because it is a pull-back of f . It is easy to check that the arrow
(pr1 ◦ pr1; pr2 ◦ pr2) ◦ pr1 is an isomorphism between the arrows of the fibre and the
arrows of the Čech groupoid of f . Since they have the same objects, the fibre and
the Čech groupoid of f are isomorphic. Under Assumption 2.15, we can deduce
that if f : X� G0 is a cover, then this functor is a groupoid fibration.

5. Groupoid actions

Definition 5.1. Let G = (G0,G1, r, s,m, u, i) be a groupoid. A right G-action
(X; mX; sX) is an object X with arrows sX : X→ G0 and mX : X ×sX,G0,r G1 → X such
that

(1) sX ◦mX = s ◦ pr2, sX(x · g) = s(g) for all x ∈ X, g ∈ G1 with sX(x) = r(g);
(2) mX ◦ (mX ◦pr1; pr2 ◦pr2) = mX ◦ (pr1 ◦pr1; m◦pr2), (x ·g) ·g1 = x · (g ·g1),

for all x ∈ X, g, g1 ∈ G1 with sX(x) = r(g) and s(g) = r(g1);
That is, the following diagram commutes:

(X ×sX,G0,r G1)×pr2,G1,pr1
(G1 ×s,G0,r G1) X ×sX,G0,r G1

X ×sX,G0,r G1 X;

(mX◦pr1;pr2◦pr2)

(pr1◦pr1;m◦pr2) mX

mX

(3) the arrow
(mX; pr2) : X ×sX,G0,r G1 −→ X ×sX,G0,s G1, (x; g) 7→ (x · g; g),(5.1)

is an isomorphism.
If the arrow sX : X→ G0 is a partial cover or cover then this right action is called a
partial sheaf or sheaf, respectively.

We call the arrows sX : X→ G0 and mX : X×sX,G0,r G1 → X the anchor and action
maps, respectively.
Remark 5.2. All objects in this definition exist because the range and source maps
are covers. The arrows (mX ◦ pr1; pr2 ◦ pr2), (pr1 ◦ pr1; m ◦ pr2) and (mX; pr2) are
well-defined because of (1).
Definition 5.3. Let (X; mX; sX) be a right G-action. An arrow f : X→ Y is called
G-invariant if f ◦mX = f ◦ pr1. Elementwise, f(x · g) = f(x).
Lemma 5.4. Let G = (G0,G1, r, s,m) be a groupoid and let (X; mX; sX) be a right
G-action. Let x1, x2 and g be such that (x1; g), (x2; g) ∈ C(−,X ×sX,G0,r G1) are
well-defined arrows and mX ◦ (x1; g) = mX ◦ (x2; g), then x1 = x2.

Proof. We have
(mX; pr2) ◦ (x1; g) = (mX ◦ (x1; g); g)

= (mX ◦ (x2; g); g)
= (mX; pr2) ◦ (x2; g).

We know that the arrow (mX; pr2) is an isomorphism. Therefore, (x1; g) = (x2; g),
hence x1 = x2. �

Remark 5.5. The elementwise notation of Lemma 5.4 is the following. If x1 ·g = x2 ·g
then x1 = x2.

Lemma 5.6. Let G be a groupoid and let (X; mX; sX) be a right G-action. Then
the action map mX : X ×sX,G0,r G1 → X is a cover. Moreover it splits by the arrow
(idX; u ◦ sX) : X→ X ×sX,G0,r G1.
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Proof. The action map mX : X ×sX,G0,r G1 → X is the following composition:

X ×sX,G0,r G1 X ×sX,G0,s G1 X.(mX;pr2) pr1

Also, the coordinate projection pr1 : X ×sX,G0,s G1 99K X is a partial cover because it
is a pull-back of the source map s : G1 � G0, and the arrow (mX; pr2) is a partial
cover because it is an isomorphism. Therefore, their composition mX is a partial
cover, too.

Consider the following arrow

X ×sX,G0,r G1 ((idX;u◦sX)◦pr1;(u◦r;idG1 )◦pr2)
−−−−−−−−−−−−−−−−−−−→ (X ×sX,G0,r G1)×pr2,G1,pr1

(G1 ×s,G0,r G1).

This map is defined elementwise by (x; g) 7→ ((x; 1sX(x)); (1r(g); g)). It is well-defined
because r(1sX(x)) = sX(x), s(1r(g)) = r(g) and 1sX(x) = 1r(g), for all x ∈ X, g ∈ G1

with sX(x) = r(g). The condition (2) in Definition 5.1 implies

(x · 1sX(x)) · g = x · (1r(g) · g)
= x · g.

Because of Lemma 5.4 we can deduce that x · 1sX(x) = x, for all x ∈ X. Therefore,
mX ◦ (idX; u ◦ sX) ◦ pr1 = pr1. Also we know that pr1 : X ×sX,G0,r G1 � X is a cover
because it is a pull-back of the range map r : G1 � G0, which is a cover and splits by
the unit map u : G0 → G1. Therefore, Corollary 2.7 works. So pr1 is a coequaliser.
Hence it is epic and we can infer that

(5.2) mX ◦ (idX; u ◦ sX) = idX.

So the action map mX is a partial cover and it splits by (idX; u ◦ sX). Therefore, it is
a cover by Lemma 2.5. �

Lemma 5.7. Let G = (G0,G1, r, s,m, u, i) be a groupoid. Assume that the triple
(X; mX; sX) satisfies the conditions (1), (2) and that the equation (5.2) holds. Then
(X; mX; sX) is a right G-action.

Proof. We only need to prove that the arrow (5.1) is an isomorphism. Consider the
arrow

X ×sX,G0,s G1 (mX◦(pr1;i◦pr2);pr2)−−−−−−−−−−−−→ X ×sX,G0,r G1, (x; g) 7→ (x · g−1; g).

It is well-defined because sX(x · g−1) = s(g−1) = r(g). Consider the composition

(mX; pr2)((mX ◦ (pr1; i ◦ pr2); pr2)(x; g)) = (mX; pr2)(x · g−1; g)
= ((x · g−1) · g; g)
= (x · (g−1 · g); g)
= (x · 1s(g); g)
= (x · 1sX(x); g)
= (x; g)

for all x ∈ X, g ∈ G1 with sX(x) = s(g). We also have

(mX ◦ (pr1; i ◦ pr2); pr2)((mX; pr2)(x; g)) = (mX ◦ (pr1; i ◦ pr2); pr2)(x · g; g)
= ((x · g) · g−1; g)
= (x · (g · g−1); g)
= (x · 1r(g); g)
= (x · 1sX(x); g)
= (x; g)
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for all x ∈ X, g ∈ G1 with sX(x) = r(g). Therefore, the arrow (mX ◦ (pr1; i ◦ pr2); pr2)
is an inverse of (mX; pr2). Thus (5.2) is an isomorphism. Hence (X; mX; sX) is a right
G-action. �

The definitions of right and left actions are similar.
Definition 5.8. Let G = (G0,G1, r, s,m, u, i) be a groupoid. A left G-action
(X; mX; rX) is an object X with arrows rX : X → G0 and mX : G1 ×s,G0,rX X → X
such that

(1) rX ◦mX = r ◦ pr1, rX(g · x) = r(g) for all x ∈ X, g ∈ G1 with s(g) = rX(x);
(2) mX ◦ (pr1 ◦pr1; mX ◦pr2) = mX ◦ (m◦pr1; pr2 ◦pr2), g · (g1 ·x) = (g ·g1) ·x,

for all x ∈ X, g, g1 ∈ G1 with s(g) = r(g1) and s(g1) = rX(x);
That is, the following diagram commutes:

(G1 ×s,G0,r G1)×pr2,G1,pr1
(G1 ×s,G0,rX X) G1 ×s,G0,rX X

G1 ×s,G0,rX X X;

(pr1◦pr1;mX◦pr2)

(m◦pr1;pr2◦pr2) mX

mX

(3) the arrow
(pr1; mX) : G1 ×s,G0,rX X −→ G1 ×r,G0,rX X, (g;x) 7→ (g; g · x)(5.3)

is an isomorphism.
If the arrow rX : X→ G0 is a partial cover or cover then this left action is called a
partial sheaf or sheaf, respectively.
Remark 5.9. Lemma 5.4 has an analogue for left actions. If we have the elements
x1, x2 and g with all required properties and g ·x1 = g ·x2, then x1 = x2. The proof
is similar. We have to use the isomorphism (5.3) instead of (5.1). The elementwise
notation of this fact is the following. If g · x1 = g · x2 then x1 = x2.

Remark 5.10. The action map mX of a left G-action is a splitting cover. The proof
is the same as the proof of Lemma 5.6. We just have to use the isomorphism (5.3)
and the arrow (u ◦ rX; idX) : X → G1 ×s,G0,rX X instead of (5.1) and (idX; u ◦ sX),
respectively.
Remark 5.11. Lemma 5.7 has an analogue for left actions. If the triple (X; mX; rX)
satisfies the conditions (1), (2) in Definition 5.8, and the equation 1rX(x) · x = x
holds, then (X; mX; sX) is a left G-action. The proof is almost the same. We just
need to use the arrow (pr1; mX ◦ (i ◦ pr1; pr2)) instead of (mX ◦ (pr1; i ◦ pr2); pr2).
Definition 5.12. Let G = (G0,G1, r, s,m, u, i) be a groupoid and let X and Y be
right G-actions. An arrow f : X → Y is called a right G-map if it satisfies the
following conditions:

(1) sX = sY ◦ f, sX(x) = sY(f(x)), ∀x ∈ X;
(2) f ◦mX = mY ◦ (f ◦ pr1; pr2), f(x · g) = f(x) · g for all x ∈ X, g ∈ G1 with

sX(x) = r(g); that is, the following diagram commutes:

X ×sX,G0,r G1 X

Y ×sY,G0,r G1 Y.

mX

(f ◦ pr1; pr2) f

mY

The arrow (f ◦ pr1; pr2) : X ×sX,G0,r G1 → Y ×sY,G0,r G1 is well-defined because
sY(f(x)) = sX(x) = r(g) for all x ∈ X, g ∈ G1 with sX(x) = r(g).
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Remark 5.13. If f : X → Y is a right G-map and it is invertible, then its inverse
is a right G-map, too. We just need to remark that (f−1 ◦ pr1; pr2) is inverse to
(f ◦ pr1; pr2), and the needed commutation works automatically.

Lemma 5.14. For any groupoid G = (G0,G1, r, s,m, u, i), the right G-actions as
objects and the right G-maps as arrows form a category. Denote it by C(G).

Proof. It is enough to check that the composition of two composable right G-maps
is a right G-map too. Let f1 : X → Y and f2 : Y → Z be right G-maps. We have
sZ(f2(f1(x))) = sY(f1(x)) = sX(x) and f2(f1(x · g)) = f2(f1(x) · g) = f2(f1(x)) · g
for all x ∈ X, g ∈ G1 with sX(x) = r(g). So the composition f2 ◦ f1 satisfies the
conditions. Hence it is a G-map too. �

Remark 5.15. There are full subcategories of right partial G-sheaves and right
G-sheaves. Denote them by CFp

(G) and CF (G), respectively.

Analogously, we can define the categories of left G-actions, left partial G-sheaves
and left G-sheaves.

Definition 5.16. Let G = (G0,G1, r, s,m, u, i) be a groupoid and let X and Y be
left G-actions. The arrow f : X→ Y is called a left G-map if it satisfies the following
conditions:

(1) rX = rY ◦ f, rX(x) = rY(f(x)) for all x ∈ X;
(2) f ◦mX = mY ◦ (pr1; f ◦ pr2), f(g ·x) = g · f(x) for all x ∈ X, g ∈ G1 with

s(g) = rX(x); that is, the following diagram commutes:

G1 ×s,G0,rX X X

G1 ×s,G0,rX Y Y.

mX

(pr1; f ◦ pr2) f

mY

The arrow (pr1; f ◦ pr2) : G1 ×sX,G0,r X → G1 ×sY,G0,r Y is well-defined because
rY(f(x)) = rX(x) = s(g).

Remark 5.17. The left G-actions as objects and the left G-maps as arrows form a
category. The proof is similar to the proof of the Lemma 5.14.

Lemma 5.18. The categories of right and left G-actions are isomorphic.

Proof. We turn a right G-action (X; mX; sX) into a left G-action (X; m̂X; rX) by rX = sX
and m̂X = mX ◦ (pr2; i ◦ pr1). Elementwise, g · x = x · g−1 for all x ∈ X, g ∈ G1 with
s(g) = rX(x). The arrow

G1 ×s,G0,rX X (pr2;i◦pr1)−−−−−−→ X ×sX,G0,r G1

is well-defined because r(g−1) = s(g) = rX(x) = sX(x).
We have to prove that (X; mX ◦ (pr2; i ◦ pr1); sX) defines a left G-action. It is clear

that sX(g · x) = sX(x · g−1) = s(g−1) = r(g) for all x ∈ X, g ∈ G1 with s(g) = rX(x).
So we have the property (1) in Definition 5.8.

We also have
g · (g1 · x) = g · (x · g−1

1 )
= (x · g−1

1 ) · g−1

= x · (g−1
1 · g−1)

= x · (g · g1)−1

= (g · g1) · x
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for all x ∈ X, g, g1 ∈ G1 with s(g) = r(g1) and s(g1) = rX(x). So the property (2) is
satisfied.

The arrow

X ×sX,G0,r G1 (i◦pr2;pr1)−−−−−−→ G1 ×s,G0,rX X, (x; g) 7→ (g−1;x)

is well-defined because s(g−1) = r(g) = sX(x) = rX(x) for all x ∈ X, g ∈ G1 with
s(g) = rX(x). We have

(i ◦ pr2; pr1)((pr2; i ◦ pr1)(g;x)) = (i ◦ pr2; pr1)(x; g−1)
= ((g−1)−1;x)
= (g;x)

for all x ∈ X, g ∈ G1 with s(g) = rX(x) and

(pr2; i ◦ pr1)((i ◦ pr2; pr1)(x; g)) = (g−1;x)
= pr2; i ◦ pr1)(x; (g−1)−1)
= (x; g)

for all x ∈ X, g ∈ G1 with sX(x) = r(g). Therefore, (pr2; i ◦ pr1) is an isomorphism.
Analogously, we have the following isomorphism

(i ◦ pr2; pr1) : X ×sX,G0,s G1 ∼→ G1 ×r,G0,rX X, (x; g) 7→ (g−1;x).

Consider the composition of isomorphisms

G1 ×s,G0,rX X (pr2;i◦pr1)−−−−−−→ X ×sX,G0,r G1 (mX;pr2)−−−−−→ X ×sX,G0,s G1 (i◦pr2;pr1)−−−−−−→ G1 ×r,G0,rX X.
We have

(i ◦ pr2; pr1)((mX; pr2)((pr2; i ◦ pr1)(g;x))) = (i ◦ pr2; pr1)((mX; pr2)(x; g−1))
= (i ◦ pr2; pr1)(x · g−1; g−1)
= (g−1−1;x · g−1)
= (g; g · x)
= (pr1; m̂X)(g;x)

for all x ∈ X, g ∈ G1 with s(g) = rX(x). Hence the arrow (pr1; m̂X) is an isomorphism.
So the property (3) is satisfied, too, and (X; mX ◦ (pr2; i ◦ pr1); sX) is a left G-action.

Analogously, we can prove that if (X; mX; rX) is a left G-action then there is a
corresponding right G-action (X; mX ◦ (i ◦ pr2; pr1); rX). Finally, we can deduce that
this construction of the corresponding left and right G-actions gives an isomorphism
between these categories because the arrows (i◦pr2; pr1) and (pr2; i◦pr1) are inverses
of each other. �

Remark 5.19. In the proof of Lemma 5.18 during the construction of the corre-
sponding left and right G-actions we do not change the anchor map. Therefore, the
categories of left and right partial G-sheaves are isomorphic and the categories of
left and right G-sheaves are isomorphic, too.

Lemma 5.20. Let G = (G0,G1, r, s,m, u, i) be a groupoid. Suppose that (X; mX; sX),
(X1; mX1 ; sX1) and (X2; mX2 ; sX2) are the right G-actions and that f1 : X1 → X and
f2 : X2 → X are the right G-maps. If the fibre product X1×f1,X,f2 X2 exists in C then
it exists in C(G), too. Call it the fibre product of G-maps with the same target.

Proof. We must define a right G-action (X1 ×f1,X,f2 X2; m0; s0). Let the anchor map
be s0(x1;x2) = sX(f1(x1)) and let (x1;x2) · g = (x1 · g;x2 · g) for all x1 ∈ X1,
x2 ∈ X2 and g ∈ G1 with f1(x1) = f2(x2) and s0(x1;x2) = r(g). This action map is
well-defined because f1(x1 · g) = f1(x1) · g = f2(x2) · g = f2(x2 · g). Also we have
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s0((x1;x2) · g) = s0(x1 · g;x2 · g) = sX(f1(x1 · g)) = sX(f1(x1) · g) = r(g). Hence the
property (1) holds. Associativity holds because

(x1;x2) · (g1 · g2) = (x1 · (g1 · g2);x2 · (g1 · g2))
= ((x1 · g1) · g2; (x2 · g1) · g2)
= (x1 · g1;x2 · g1) · g2

= ((x1;x2) · g1) · g2

for all x1 ∈ X1, x2 ∈ X2 and g1, g2 ∈ G1 with f1(x1) = f2(x2), s0(x1;x2) = r(g1) and
s(g1) = r(g2). Also, we have (x1;x2)·1sX(f1(x1)) = (x1 ·1sX1 (x1);x2 ·1sX2 (x2)) = (x1;x2).
Therefore, (X1 ×f1,X,f2 X2; m0; s0) is a right G-action by Lemma 5.7.

We must also show that the coordinate projections pr1 : X1 ×f1,X,f2 X2 → X1 and
pr2 : X1 ×f1,X,f2 X2 → X2 are G-maps. We have

pr1((x1;x2) · g) = pr1(x1 · g;x2 · g)
= x1 · g
= pr1(x1;x2) · g.

Analogously, the second coordinate projection pr2 is a G-map.
Now consider a G-action (A; m̂; ŝ) and two G-maps α : A → X1 and β : A → X2

such that f1 ◦ α = f2 ◦ β. The unique arrow (α;β) : A→ X1 ×f1,X,f2 X2 is a G-map
because

(α;β)(a · g) = (α(a · g);β(a · g))
= (α(a) · g;β(a) · g)
= (α(a);β(a)) · g
= (α;β)(a) · g

for all a ∈ A and g ∈ G1 with ŝ(a) = r(g). Therefore, X1×f1,X,f2 X2 is a fibre product
in C(G), too. �

5.1. Examples of groupoid actions.

Example 5.21. If G is a groupoid then there is a right G-sheaf (G0; s ◦ pr2; idG0). It is
clear that the property (1) in Definition 5.1 is satisfied. The property (3) is satisfied
because the arrow (s ◦ pr2; pr2) has the inverse (r ◦ pr2; pr2). We also have

(g0 · g) · g1 = s(g) · g1

= s(g1) = s(g · g1)
= g0 · (g · g1)

for all g0 ∈ G0, g, g1 ∈ G1 with g0 = r(g) and s(g) = r(g1). The property (2) is done.
So we have a right G-action. It is a sheaf because the anchor map is a cover. The
left case is similar. If G is a groupoid then there is a left G-sheaf (G0; r ◦ pr1; idG0).

Proposition 5.22. (G0; s ◦ pr2; idG0) is a final object in C(G), CFp(G) and CF (G).

Proof. Let (X; mX; sX) be any right G-action. The anchor map sX : X→ G0 is a right
G-map because sX = idG0 ◦ sX and sX ◦mX = s ◦ pr2 = s ◦ pr2 ◦ (sX ◦ pr2; pr2). Also
if any arrow f : Y → G0 is a right G-map then sY = idG0 ◦ f . Therefore, any right
G-map to G0 is an anchor map. Hence (G0; s ◦ pr2; idG0) is a final object in C(G). It
is a final object in CFp

(G) and CF (G) too because of Remark 5.15. �

Example 5.23. Let f : X→ Y be an arrow. If the object Y is viewed as a 0-groupoid
as in Example 3.14, then there is a right Y-action (X; pr1; f). All required properties
of the action are clearly satisfied. A Y-map between the Y-actions (X1; pr1; f1) and
(X2; pr1; f2) is an arrow g : X1 → X2 with f2 ◦ g = f1. Thus the category of Y-actions
C(Y ) is the slice category C ↓ Y of objects in C over Y.
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Example 5.24. If G = (G0; G1; r; s; m) is a groupoid then there is a right G-sheaf
(G1; m; s). All required properties of an action are clearly satisfied. Call this action
the right translation action. Analogously, we have the left translation G-sheaf
(G1; m; r).

Example 5.25. Let (X; mX; sX) and (Y; mY; sY) be right G-actions. If the object
X ×sX,G0,sY Y exists, then there is a unique right G-action (X ×sX,G0,sY Y; m0; s0) such
that both coordinate projections are G-maps. Call this action the fibre product
of (X; mX; sX) and (Y; mY; sY). Since pr1 : X ×sX,G0,sY Y → X is a G-map, we have
s0 = sX ◦ pr1. Elementwise s0(x; y) = sX(x) for all x ∈ X, y ∈ Y, g ∈ G1 with
sX(x) = sY(y). Hence the anchor map s0 is defined uniquely. For the same reason,
we have mX ◦ (pr1 ◦ pr1; pr2) = pr1 ◦ m0. Also, since pr2 : X ×sX,G0,sY Y → Y is a
G-map, we have mY ◦ (pr2 ◦ pr1; pr2) = pr2 ◦m0. Therefore, the action map m0 is
defined uniquely and m0 = (mX ◦ (pr1 ◦ pr1; pr2); mY ◦ (pr2 ◦ pr1; pr2)). Elementwise,
(x; y) · g = (x · g; y · g) for all x ∈ X, y ∈ Y, g ∈ G1 with sX(x) = sY(y) = r(g). We
need to show that such arrows m0 and s0 defines a G-action on X ×sX,G0,sY Y. We
have

s0((x; y) · g) = s0(x · g; y · g)
= sX(x · g)
= s(g)

for all x ∈ X, y ∈ Y, g ∈ G1 with sX(x) = sY(y) = r(g). We have a property (1). The
property (2) holds because

((x; y) · g) · g1 = (x · g; y · g) · g1

= ((x · g) · g1; (y · g) · g1)
= (x · (g · g1); y · (g · g1))
= (x; y) · (g · g1)

for all x ∈ X, y ∈ Y, g, g1 ∈ G1 with sX(x) = sY(y) = r(g) and s(g) = r(g1). We also
have

(x; y) · 1s0(x,y) = (x · 1s0(x,y); y · 1s0(x,y))
= (x · 1sX(x); y · 1sY(y))
= (x; y)

for all x ∈ X, y ∈ Y with sX(x) = sY(y). So (X ×sX,G0,sY Y; m0; s0) is a G-action by
Lemma 5.7.

Example 5.26. Let F : G → H be a functor between groupoids. There is a left
G-sheaf (X; mX; rX), where X = G0 ×F0,H0,rH H1, rX = pr1 : G0 ×F0,H0,rH H1 → G0 and
mX = (rG◦pr1; mH◦(F1◦pr1; pr2◦pr2)) : G1×sG,G0,pr1

(G0×F0,H0,rH H1)→ G0×F0,H0,rH H1.
Elementwise, g · (g0;h)) = (rG(g); F1(g) · h), for all g0 ∈ G0, g ∈ G1, h ∈ H1 with
sG(g) = g0 and F0(g0) = rH(h). The object X exists because rH : H1 � H0 is a cover.
Since it is a splitting cover, the anchor map rX = pr1 : G0 ×F0,H0,rH H1 � G0 is a
cover by Corollary 2.7. We have rX(g · (g0;h)) = pr1(rG(g); F1(g) · h) = rG(g). That
is the property (1) in Definition 5.8. mX commutes with mG because

(g · g1) · (g0;h) = (rG(g · g1); F1(g · g1) · h)
= (rG(g); F1(g) · F1(g1) · h)
= g · (sG(g); F1(g1) · h)
= g · (rG(g1); F1(g1) · h)
= g · (g1 · (sG(g);h))
= g · (g1 · (g0;h))
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for all g0 ∈ G0, g, g1 ∈ G1, h ∈ H1 with sG(g1) = g0, rG(g1) = sG(g) and F0(g0) =
rH(h). We also have

1s0(g0;h) · (g0;h) = 1g0 · (g0;h)
= (rG(1g0); F1(1g0) · h)
= (g0; 1F0(g0) · h)
= (g0; 1rH(h) · h)
= (g0;h)

for all g0 ∈ G0, h ∈ H1 with F0(g0) = rH(h). So we have all required properties in
Remark 5.11 and, therefore, the triple (X; mX; rX) defines a G-sheaf.
Example 5.27. Let G be the fibre of the partial groupoid fibration F : L� H. There
is a left G-sheaf (L1; m; r), where r = rL and m = mL ◦ (pr1 ◦ pr1; pr2). Since the
element g ∈ G1 can be understood as an element in L1, the action map can be
defined elementwise by g · l = g · l, for all g ∈ G1, l ∈ L1 with sG(g) = rL(l). All
required properties are clearly satisfied by Remark 5.11. Therefore, (L1; m; r) is a
left G-action.
Remark 5.28. There is also a right G-sheaf as in Example 5.27, namely, (L1; mL ◦
(pr1; pr1 ◦ pr2); sL). The proof is absolutely similar.
5.2. Transformation groupoids.
Definition 5.29. Let (X; mX; sX) be a right G-action. There is a transformation
groupoid X oG with X as objects and X×sX,G0,r G1 as arrows. The range map r(XoG)
and the source map s(XoG) are pr1 and mX, respectively. The multiplication map
m(XoG) is

(X ×sX,G0,r G1)×mX,X,pr1 (X ×sX,G0,r G1) (pr1◦pr1;m◦(pr2◦pr1;pr2◦pr2))−−−−−−−−−−−−−−−−−−→ X ×sX,G0,r G1,

defined elementwise by (x; g) · (x1; g1) = (x; g · g1), for all x, x1 ∈ X, g, g1 ∈ G1 with
sX(x) = r(g), sX(x1) = r(g1) and x · g = x1.

Lemma 5.30. The data in Definition 5.29 defines a groupoid.
Proof. The source map mX is a cover by Lemma 5.6. The range map pr1 is a cover
because it is a pull-back of r : G1 � G0, which splits by u : G0 → G1, so that Corollary
2.7 works. So condition (1) in Definition 3.1 holds.

Also we have
s(XoG)((x; g) · (x1; g1)) = m(XoG)(x; g · g1)

= x · (g · g1) = (x · g) · g1

= x1 · g1

= s(XoG)(x1; g1)
for all x, x1 ∈ X, g, g1 ∈ G1 with sX(x) = r(g), sX(x1) = r(g1) and x · g = x1. So the
condition (2) is satisfied.

We also have to show that the multiplication map m(XoG) is associative. We have
((x; g) · (x1; g1)) · (x2; g2) = (x; g · g1) · (x2; g2)

= (x; (g · g1) · g2)
= (x; g · (g1 · g2))
= (x; g) · (x1; g1 · g2)
= (x; g) · ((x1; g1) · (x2; g2))

for all x, x1, x2 ∈ X, g, g1, g2 ∈ G1 with sX(x) = r(g), sX(x1) = r(g1), sX(x2) = r(g2),
x · g = x1 and x1 · g1 = x2. So the multiplication map m(XoG) is associative.
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We proved the properties (1), (2) and (3) in Definition 3.1. The next step is to
construct the arrows u(XoG) : (X o G)0 → (X o G)1 and i(XoG) : (X o G)1 → (X o G)1

and prove all properties in Proposition 3.8, which then allows to use Proposition
3.11.

We know from the proof of Lemma 5.6 that there is a well-defined arrow

u(XoG) : X (idX;u◦sX)−−−−−−→ X ×sX,G0,r G1, x 7→ (x; 1sX(x)).

We have the following: s(XoG)(u(XoG)(x)) = s(XoG)(x; 1sX(x)) = x · 1sX(x) = x and
r(XoG)(u(XoG)(x)) = r(XoG)(x; 1sX(x)) = x for all x ∈ X. So (1) in Propesition 3.11 is
done. We also have

1r(XoG)(x;g) · (x; g) = 1x · (x; g)
= (x; 1sX(x)) · (x; g)
= (x; 1r(g) · g)
= (x; g)

and

(x; g) · 1s(XoG)(x;g) = (x; g) · 1x·g
= (x; g) · (x · g; 1sX(x·g))
= (x; g · 1s(g))
= (x; g)

for all x ∈ X, g ∈ G1 with sX(x) = r(g). So condition (2) is satisfied.
Now consider the arrow

i(XoG) : X ×sX,G0,r G1 (mX;i◦pr2)−−−−−−→ X ×sX,G0,r G1, (x; g) 7→ (x · g; g−1).

It is well-defined because sX(x · g) = s(g) = r(g−1). We have

s(XoG)(i(XoG)(x; g)) = s(XoG)(x · g; g−1)
= (x · g) · g−1

= x · (g · g−1)
= x · 1r(g)

= x · 1sX(x)

= x

= r(XoG)(x; g)

and

r(XoG)(i(XoG)(x; g)) = r(XoG)(x · g; g−1)
= x · g
= s(XoG)(x; g)

for all x ∈ X, g ∈ G1 with sX(x) = r(g). So all conditions in Proposition (3) hold.
We also have

i(XoG)(x; g) · (x; g) = (x · g; g−1) · (x; g)
= (x · g; g−1 · g)
= (x · g; 1s(g))
= (x · g; 1sX(x·g))
= 1x·g
= u(XoG)(s(XoG)(x; g))
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and

(x; g) · i(XoG)(x; g) = (x; g) · (x · g; g−1)
= (x; g · g−1)
= (x; 1r(g))
= (x; 1sX(x))
= 1x
= u(XoG)(r(XoG)(x; g))

for all x ∈ X, g ∈ G1 with sX(x) = r(g).
We proved all required properties for Proposition 3.11.Therefore, we can deduce

that the transformation groupoid is a well-defined groupoid. �

We can define the transformation groupoid of a left action analogously. Let
(X; mX; rX) be a left G-action. There is a transformation groupoid G n X with X as
objects and G1 ×s,G0,rX X as arrows. The range and source maps are mX and pr2,
respectively. The multiplication map is

(G1 ×s,G0,rX X)×pr2,X,mX (G1 ×s,G0,rX X) (m◦(pr1◦pr1;pr1◦pr2);(pr2◦pr2))−−−−−−−−−−−−−−−−−−−→ (G1 ×s,G0,rX X)

defined elementwise by (g;x) · (g1;x1) = (g · g1;x1), for all x, x1 ∈ X, g, g1 ∈ G1 with
s(g) = rX(x), s(g1) = rX(x1) and x = g1 · x1.

Transformation groupoids give an important example of a groupoid covering.

Example 5.31. Let (X; mX; rX) be a left G-action. There is a groupoid covering from
the transformation groupoid of (X; mX; rX) to G, which is pr1 : G1 ×s,G0,rX X→ G1 on
arrows and rX : X→ G0 on objects. These maps clearly intertwine the source and
range maps. pr1 intertwines the multiplication maps because

pr1((g;x) · (g1;x1)) = pr1(g · g1;x1)
= g · g1

= pr1(g;x) · pr1(g1;x1).

This functor is a groupoid covering because the arrow (4.1) in this case is (pr1; pr2),
which is the identity arrow on G1×s,G0,rX X. Analogously, for a right action, we have
a groupoid covering F : X o G� G, which is the arrow pr2 : X ×sX,G0,r G1 → G1 on
arrows and sX : X→ G0 on objects.

Proposition 5.32. Let (X,mX, sX) be a G-action. An action of the transformation
groupoid X o G on an object Y is equivalent to an action of G on Y together with a
G-map f : Y → X. Furthermore, the following groupoids are isomorphic:

Y o (X o G) ∼= Y o G.

A map Y → Z is X oG-invariant if and only if it is G-invariant, and a map between
two X o G-actions is an X o G-map if and only if it is a G-map over X.

Proof. Let (Y; mY; sY) be a G-action and let f : Y → X be a G-map. There is an
X o G-action (Y; m̂Y; ŝY) where ŝY = f and m̂Y = mY ◦ (pr1; pr2 ◦ pr2). Elementwise,
y · (x; g) = y · g for all x ∈ X, y ∈ Y, g ∈ G1 with x = f(y) and sX(x) = r(g). We
have

ŝY(y · (x; g)) = f(y · g)
= f(y) · g
= x · g
= s(XoG)(x; g)
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for all x ∈ X, y ∈ Y, g ∈ G1 with x = f(y) and sX(x) = r(g). So we have the
condition (1) in Definition 5.1. Also

(y · (x; g)) · (x1; g1) = (y · g) · (x1; g1)
= (y · g) · g1

= y · (g · g1)
= y · (x; g · g1)
= y · ((x; g) · (x1; g1))

for all x, x1 ∈ X, y ∈ Y, g, g1 ∈ G1 with x = f(y), sX(x) = r(g), sX(x1) = r(g1)
and x1 = x · g. Therefore, the action map m̂Y commutes with the multiplication
map mXoG. We also have

y · 1ŝY(y) = y · 1f(y)

= y · (f(y); 1sX(f(y)))
= y · 1sY(y)

= y

for all y ∈ Y. Therefore, (Y; m̂Y; ŝY) is an X o G-action by Lemma 5.7.
Conversely, if (Y; m̂Y; ŝY) is a right X o G-action then there is a right G-action

(Y; mY; sY), such that the anchor map ŝY : Y → X is a G-map, where sY = sX ◦ ŝY and
mY = m̂Y◦(pr1; (ŝY◦pr1; pr2)). Elementwise, sY(y) = sX(ŝY(y)) and y ·g = y ·(ŝY(y); g)
for all y ∈ Y, g ∈ G1 with sX(ŝY(y)) = r(g).

We are going to prove the conditions (1) and (2) in Definition 5.1. We have
sY(y · g) = sX(ŝY(y · (ŝY(y); g)))

= sX(s(XoG)(ŝY(y); g))
= sX(ŝY(y) · g)
= s(g)

for all y ∈ Y, g ∈ G1 with sX(ŝY(y)) = r(g). The condition (1) is done. We also have
(y · g) · g1 = (y · (ŝY(y); g)) · g1

= (y · (ŝY(y); g)) · (ŝY(y · (ŝY(y); g); g1)
= (y · (ŝY(y); g)) · (s(XoG)(ŝY(y); g); g1)
= (y · (ŝY(y); g)) · (ŝY(y) · g; g1)
= y · ((ŝY(y); g) · (ŝY(y) · g; g1))
= y · (ŝY(y); g · g1)
= y · (g · g1)

for all y ∈ Y, g, g1 ∈ G1 with sX(ŝY(y)) = r(g) and s(g) = r(g1). Hence the condition
(2) holds. The next step is to check (5.2). We have

y · 1sY(y) = y · (ŝY(y); 1sY(y))
= y · (ŝY(y); 1sX (̂sY(y)))
= y · 1ŝY(y)

= y

for all y ∈ Y. So we have all properties which are required in Lemma 5.7. Hence
(Y; mY; sY) is a G-action. The arrow ŝY : Y → X is a G-map because sY = sX ◦ ŝY and

ŝY(y · g) = ŝY(y · (ŝY(y); g))
= s(XoG)(ŝY(y); g)
= ŝY(y) · g
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for all y ∈ Y, g ∈ G1 with sX(ŝY(y)) = r(g). It is clear that these two processes are
inverse to each other. So the first part of the lemma is proved.

Consider an arrow α : Y → Z which is G-invariant. Then
α(y · (x; g)) = α(y · g)

= α(y)
for all x ∈ X, y ∈ Y, g ∈ G1 with x = ŝY(y) and sX(x) = r(g). So α : Y → Z is
X o G-invariant. Conversely, if α : Y → Z is X o G-invariant

α(y · g) = α(y · (ŝY(y); g))
= α(y)

for all y ∈ Y, g ∈ G1 with sX(ŝY(y)) = r(g). Hence the arrow α : Y → Z is G-invariant
if and only if it is X o G-invariant.

Consider an arrow β : Y1 → Y2 which is an XoG-map. That is, ŝY1(y) = ŝY2(β(y))
and β(y · (x; g)) = β(y) · (x; g) for all y ∈ Y1, x ∈ X, g ∈ G1 with x = ŝY1(y) and
sX(x) = r(g). We have sY1(y) = sX(ŝY1(y)) = sX(ŝY2(β(y)) = sY2(β(y)) and

β(y · g) = β(y · (ŝY1(y); g))
= β(y) · (ŝY1(y); g)
= β(y) · (ŝY2(β(y)); g)
= β(y) · g

for all y ∈ Y1, g ∈ G1 with sX(ŝY(y)) = r(g). Hence the arrow β : Y1 → Y2 is a
G-map. Conversely, if we have three G-maps β, f1, f2 such that the following diagram
commutes

Y1 Y2

X

β

f1 f2

then β : Y1 → Y2 is an X o G-map. This is true because f1 = f2 ◦ β and
β(y · (x; g)) = β(y · g)

= β(y) · g
= β(y) · (ŝY2(β(y)); g)
= β(y) · (ŝY1(y); g)
= β(y) · (x; g)

for all y ∈ Y1, x ∈ X, g ∈ G1 with x = ŝY1(y) and sX(x) = r(g). Hence a map
between two X o G-actions is an X o G-map if and only if it is a G-map and over X.

The transformation groupoids Yo(XoG) and YoG have the same objects Y. The
arrows (pr1; pr2 ◦ pr2) and (pr1; (ŝY ◦ pr1; pr2)) are maps between the arrows of these
transformation groupoids, which are inverses of each other. These isomorphisms
clearly intertwine the sorce, range and multiplication maps of these transformation
groupoids. So they give a natural isomorphism between the groupoids Y o (X o G)
and Y o G. �

5.3. Principal bundles. Let G = (G0,G1, r, s,m, u, i) be a groupoid in a category
(C,Fp) with partial covers.

Definition 5.33. A right G-action (X; mX; sX) is called a right G-bundle over
p : X → Z if p : X → Z is G-invariant. A right G-bundle over p : X → Z is partially
principal if
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(1) p is a partial cover;
(2) the arrow

(5.4) (pr1; mX) : X ×sX,G0,r G1 → X ×p,Z,p X, (x; g) 7→ (x;x · g),

is invertible.
A partially principal right G-bundle over p : X→ Z is called principal if p is a cover.
Then we call Z and p an orbit space and orbit space projection of the G-action
(X; mX; sX), respectively.

Lemma 5.34. An orbit space projection of a principal right G-action (X; mX; sX) is
a coequaliser of the arrows pr1,mX : X ×sX,G0,r G1 ⇒ X.

Proof. Since (5.4) is an isomorphism, the equations f◦mX = f◦pr1 and f◦pr1 = f◦pr2
are equivalent. Since p is a cover, it is a coequaliser of pr1, pr2 : X ×p,Z,p X ⇒ X.
Therefore, it is a coequaliser of pr1,mX : X ×sX,G0,r G1 ⇒ X. �

Corollary 5.35. If a right G-action (X; mX; sX) is a principal bundle, then the orbit
space is unique up to isomorphism.

Proof. A coequaliser is unique up to isomorphism. �

Remark 5.36. A left G-bundle is defined similarly. A left G-bundle is partially
principal if p : X 99K Z is a partial cover and the arrow

(mX; pr2) : G1 ×sG,G0,rX X ∼→ X ×p,Z,p X, (g;x) 7→ (g · x;x),

is invertible. If p is a cover then it is called principal.

Remark 5.37. A right G-action is (partially) principal over p : X → Z if and only
if the corresponding left G-action described in Lemma 5.18 is (partially) principal
over p : X→ Z.

Remark 5.38. We denote the element p(x) in Z by [x] for an element x in X. There
are other elements in Z which are not given by the composition of p, but in the case
of principal bundles it is enough to check some condition only for elements which
are given by the composition with p because p is epic.

Definition 5.39. Let (X; mX; sX) and (X̃; m̃X; s̃X) be G-bundles over p : X→ Z and
p̃ : X̃→ Z, respectively. An arrow f : X̃→ X is called a G-bundle map if it is a G-map
and p ◦ f = p̃. Elementwise sX(f(x)) = s̃X(x), f(x · g) = f(x) · g and [f(x)] = [x] for
all x ∈ X̃, g ∈ G1 with s̃X(x) = r(g).

5.4. Examples of principal bundles.

Example 5.40. Let f : X→ Y be an arrow in (C,Fp). The right Y-action (X; pr1; f)
described in Example 5.23 is a principal bundle over idX : X� X because there is
an obvious isomorphism (pr1; pr1) : X ×f,Y,idY Y ∼→ X ×idX,X,idX X.

Example 5.41. Let p : X 99K Z be a partial cover and let G be the Čech groupoid
of p. The action of G on its objects (X; pr2 ◦ pr2; idX) (see Example 5.21) is a
partially principal bundle over p : X 99K Z. We just need to check that the arrow
(pr1; pr2 ◦ pr2) : X ×idX,X,pr1 (X ×p,Z,p X) → X ×p,Z,p X is an isomorphism. That is
true because (pr1; pr2 ◦ pr2) = (pr1 ◦ pr2; pr2 ◦ pr2) = (pr1; pr2) ◦ pr2 = pr2, and this
coordinate projection is an isomorphism because it is a pull-back of idX.

Example 5.42. Let G = (G0; G1; r; s; m) be a groupoid. The right translation action
described in Example 5.24 is a principal G-bundle over r : G1 � G0. This follows
from the well-defined isomorphism (3.2).
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Example 5.43. The G-action (L1; m; r) described in Example 5.27 is a partially
principal bundle over (F1; sL) : L1 99K H1 ×sH,H0,F0 L0. We need to check that the
arrow

G1 ×sG,L0,rL L1 (m;pr2)−−−−→ L1 ×(F1;sL),(H1×sH,H0,F0 L0),(F1;sL) L1, (g; l) 7→ (g · l; l),

is well-defined and invertible. It is well-defined, and therefore, (F1; sL) is G-invariant,
because sL(g · l) = sL(l) and

F1(g · l) = F1(g) · F1(l)
= F1(1sL(g)) · F1(l)
= 1F0(rL(l)) · F1(l)
= 1rH(F1(l)) · F1(l)
= F1(l)

for all g ∈ G1, l ∈ L1 with sL(g) = rL(l).
Consider the arrow

L1 ×(F1;sL),(H1×sH,H0,F0 L0),(F1;sL) L1 ((mL◦(pr1;iL◦pr2);rL◦pr2);pr2)−−−−−−−−−−−−−−−−−−→ G1 ×sG,L0,rL L1

defined elementwise by (l; l1) 7→ (l · l−1
1 ; l1) for all l, l1 ∈ L1 with F1(l) = F1(l1) and

sL(l) = sL(l1). It is well-defined because

F1(l · l−1
1 ) = F1(l) · F1(l−1

1 )
= F1(l) · (F1(l1))−1

= F1(l) · (F1(l))−1

= 1rH(F1(l))

= 1rH(F1(l1))

= 1F0(rL(l1))

= 1F0(sL(l−1
1 ))

= 1F0(sL(l·l−1
1 ))

= F1(1sL(l·l−1
1 ))

and sL(l · l−1
1 ) = sL(l−1

1 ) = rL(l1) for all l, l1 ∈ L1 with F1(l) = F1(l1) and sL(l) =
sL(l1). We also have

(m; pr2)(((mL ◦ (pr1; iL ◦ pr2); rL ◦ pr2); pr2)(l; l1)) = (m; pr2)(l · l−1
1 ; l1)

= ((l · l−1
1 ) · l1; l1)

= (l · (l−1
1 · l1); l1)

= (l · 1sL(l1); l1)
= (l · 1sL(l); l1)
= (l; l1)
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for all l, l1 ∈ L1 with F1(l) = F1(l1) and sL(l) = sL(l1). We also need to compute the
composition in inverse order

((mL ◦ (pr1; iL ◦ pr2); rL ◦ pr2); pr2)((m; pr2)(g; l))
= ((mL ◦ (pr1; iL ◦ pr2); rL ◦ pr2); pr2)(g · l; l)
= ((g · l) · l−1; l)
= (g · (l · l−1); l)
= (g · 1rL(l); l)
= (g · 1sL(g); l)
= (g; l)

for all g ∈ G1, l ∈ L1 with sL(g) = rL(l). So (m; pr2) is invertible. Therefore, the
G-action (L1; m; r) described in Example 5.27 is a partially principal bundle over
(F1; sL) : L1 99K H1×sH,H0,F0 L0. If F : L� H is a groupoid fibration, then the G-action
(L1; m; r) is a principal bundle.

5.5. Pull-back of a bundle. Let G = (G0; G1; r; s; m) be a groupoid in the category
(C,Fp) with partial covers.

Proposition 5.44. Let (Y; mY; sY) be a G-bundle over pY : Y → ZY. If the diagram

X Y

ZX ZY

f

pX pY

f̃

is a pull-back square, then there is a G-bundle (X; mX; sX) over pX : X → ZX, such
that f : X→ Y is a G-map, and this construction is unique.

This G-bundle is called the pull-back of the G-bundle (Y; mY; sY) along the
arrow f̃ : ZX → ZY.

Proof. Firstly, it is clear that the anchor map sX has to be equal to sY◦f.We also need
the following equations to hold: pX◦mX = pX◦pr1 and f◦mX = mY◦(f◦pr1; pr2). This
determines mX uniquely. Therefore, mX = (pX ◦pr1; mY ◦ (f ◦pr1; pr2)). Elementwise,
(z; y) · g = (z; y · g) for all z ∈ ZX, y ∈ Y, g ∈ G1 with f̃(z) = pY(y) and sY(y) = r(g).
The map mX is well-defined because f̃(z) = pY(y) = pY(y · g).

X ×sX,G0,r G1 Y ×sY,G0,r G1 G1

X Y G0

ZX ZY

(f◦pr1;pr2)

pr1 mX

pr2

pr1 mY r

f

pX

sY

pY

f̃

We have to show that (X; mX; sX) is a G-action. We have

sX((z; y) · g) = sX(z; y · g)
= sY(y · g)
= s(g)
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for all z ∈ ZX, y ∈ Y, g ∈ G1 with f̃(z) = pY(y) and sY(y) = r(g). Property (1) in
Definition 5.1 is shown. mX commutes with m because

((z; y) · g) · g1 = (z; y · g) · g1

= (z; (y · g) · g1)
= (z; y · (g · g1))
= (z; y) · (g · g1)

for all z ∈ ZX, y ∈ Y, g, g1 ∈ G1 with f̃(z) = pY(y), sY(y) = r(g) and s(g) = r(g1).
We also have

(z; y) · 1sX(z;y) = (z; y · 1sX(z;y))
= (z; y · 1sY(y))
= (z; y)

for all z ∈ ZX, y ∈ Y, with f̃(z) = pY(y). So Lemma 5.7 works. Hence (X; mX; sX) is
a G-action, and therefore, it is a G-bundle over pX : X→ ZX. �

Remark 5.45. The construction in Proposition 5.44 is for a right G-action. For a
left action the construction is similar. The only change is the action map. The pull
back of a left G-bundle (Y; mY; rY) over pY : Y → ZY along the arrow f̃ : ZX → ZY is
a G-bundle (X; (pX ◦ pr2; mY ◦ (pr1; f ◦ pr2)); rY ◦ f) over pX : X → ZX. The action
map is defined elementwise by g · (z; y) = (z; g · y) for all z ∈ ZX, y ∈ Y, g ∈ G1 with
f̃(z) = pY(y) and rY(y) = s(g).

Proposition 5.46. Let (X; mX; sX) be a partially principal G-bundle over p : X 99K Z.
Let f : Z̃ → Z be any arrow. There are a partially principal G-bundle (X̃; m̃X; s̃X)
over p̃ : X̃ 99K Z̃ and a G-map α : X̃→ X with p ◦ α = f ◦ p̃.

This partially principal G-bundle is called the pull-back of the partially principal
G-bundle (X; mX; sX) over p : X 99K Z along the arrow f : Z̃→ Z.

Proof. Let X̃ = Z̃×f,Z,p X, p̃ = pr1 and α = pr2. We know that this fibre product
exists and p̃ = pr1 is a partial cover because p : X 99K Z is. Now we can use
Proposition 5.44. Consider the pull-back of the G-bundle (X; mX; sX) over p : X 99K Z
along the arrow f : Z̃→ Z. That is (Z̃×f,Z,p X; (pr1 ◦pr1; mX ◦ (pr2 ◦pr1; pr2)); sX ◦pr2)
over pr1 : Z̃×f,Z,p X→ Z̃. This action is defined elementwise by (z;x) · g = (z;x · g)
for all z ∈ Z̃, x ∈ X, g ∈ G1 with f(z) = p(y) and sX(x) = r(g). We have to prove
that it is partially principal. We need to check that (pr1; m̃X) is invertible, where
m̃X = (pr1 ◦ pr1; mX ◦ (pr2 ◦ pr1; pr2)). Let us show that the following arrow

(Z̃×f,Z,p X)×sX◦pr2,G0,r G1 (Z̃×f,Z,p X)×pr1,Z̃,pr1
(Z̃×f,Z,p X)(pr1;m̃X)

(pr1;pr2◦(pr1;mX)−1◦(pr2◦pr1;pr2◦pr2))

is an inverse of (pr1; m̃X). It is defined elementwise by ((z;x); (z;x1)) 7→ ((z;x); g),
for all z ∈ Z̃, x, x1 ∈ X with p(x) = f(z) = p(x1), where the element g ∈ G1 is the
unique one with g · g = x1. This arrow is well-defined because

sX(x) = sX(x1 · g−1)
= s(g−1)
= r(g).
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Consider the composition:

(pr1; pr2 ◦ (pr1; mX)−1 ◦ (pr2 ◦ pr1; pr2 ◦ pr2))((pr1; m̃X)((z;x); g))
= (pr1; pr2 ◦ (pr1; mX)−1 ◦ (pr2 ◦ pr1; pr2 ◦ pr2))((z;x); (z;x) · g)
= (pr1; pr2 ◦ (pr1; mX)−1 ◦ (pr2 ◦ pr1; pr2 ◦ pr2))((z;x); (z;x · g))
= ((z;x); g)

for all z ∈ Z̃, x ∈ X, g ∈ G1 with p(x) = f(z) and sX(x) = r(g). Also,

(pr1; m̃X)((pr1; pr2 ◦ (pr1; mX)−1 ◦ (pr2 ◦ pr1; pr2 ◦ pr2))((z;x); (z;x1)))
= (pr1; m̃X)((z;x); g)
= ((z;x); (z;x) · g)
= ((z;x); (z;x · g))
= ((z;x); (z;x1))

for all z ∈ Z̃, x, x1 ∈ X with p(x) = f(z) = p(x1). So (pr1; m̃X) is an isomorphism
and therefore, (Z̃ ×f,Z,p X; (pr1 ◦ pr1; mX ◦ (pr2 ◦ pr1; pr2)); sX ◦ pr2) is a partially
principal G-bundle over pr1 : Z̃×f,Z,p X 99K Z̃. �

Remark 5.47. Under Assumption 2.15, we have the same result as Proposition 5.46 in
the global case. Let (X; mX; sX) be a principal G-bundle over p : X� Z. Let f : Z̃→ Z
be any arrow. There are a principal G-bundle (X̃; m̃X; s̃X) over p̃ : X̃ � Z̃ and a
G-map α : X̃→ X with p ◦ α = f ◦ p̃. The construction is absolutely the same. The
only difference is the conclusion that the coordinate projection pr1 : Z̃×f,Z,p X� Z̃
is a cover instead of a partial cover by Assumption 2.15.

Proposition 5.48. Assume Assumption 2.15. Let (X; mX; sX) be a partially principal
G-bundle over p : X 99K Z. Let f : Z̃→ Z be any arrow. Let (X̂; m̂X; ŝX) be a principal
G-bundle over p̂ : X̂ � Z̃ with a G-map α : X̂ → X with p ◦ α = f ◦ p̂. Then this
principal G-bundle is bundle isomorphic to the pull-back of the partially principal
G-bundle (X; mX; sX) over p : X 99K Z along the arrow f : Z̃ → Z (described in
Proposition 5.46), which automatically is a principal G-bundle.

Proof. Our data is depicted in the following diagram:

X̂ ×sX◦α,G0,r G1 X ×sX,G0,r G1 G1

X̂ X G0

Z̃ Z

(α◦pr1;pr2)

pr1 m̂X

pr2

pr1 mX r

α

p̂

sX

p

f

There is a well-defined arrow (p̂;α) : X̂→ Z̃×f,Z,p X. It is a G-bundle map because
pr1 ◦ (p̂;α) = p̂ and (p̂;α) ◦ m̂X = m̃X ◦ ((p̂;α) ◦ pr1; pr2), where m̃X is the action map
of the pull-back of the partially principal G-bundle (X; mX; sX) over p : X 99K Z along
f : Z̃→ Z. The previous equation holds because

(p̂;α)(x · g) = (p̂(x · g);α(x · g))
= (p̂(x);α(x) · g)
= (p̂(x);α(x)) · g
= (p̂;α)(x) · g
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for all x ∈ X̂, g ∈ G1 with ŝX(x) = r(g). So (p̂;α) is a G-bundle map. We are going
to show that (p̂;α) is an isomorphism. Consider the following diagram:

X̂ ×p̂,Z̃,p̂ X̂ X̂

X̂ ×f◦p̂,Z,p X Z̃×f,Z,p X X

X̂ Z̃ Z

pr2

(pr1;α◦pr2) (p̂;α)ϕ

(p̂◦pr1;pr2)

pr1

pr2

pr1 p

p̂ f

It is clear that all squares are pull-back squares by the well-known lemma about a
rectangle of a pull-back squares. The arrow

(p̂ ◦ pr1; pr2) : X̂ ×f◦p̂,Z,p X� Z̃×f,Z,p X

is a cover because of Assumption 2.15. Let us show that the arrow

(pr1;α ◦ pr2) : X̂ ×p̂,Z̃,p̂ X̂→ X̂ ×f◦p̂,Z,p X

has an inverse ϕ. Let ϕ = (pr1; m̂X) ◦ (pr1;ψ), where ψ is the composition

X̂ ×f◦p̂,Z,p X (α◦pr1;pr2)−−−−−−−→ X ×p,Z,p X (pr1;mX)−1

−−−−−−−→ X ×sX,G0,r G1 pr2−−→ G1,

defined elementwise by ψ(x;x1) = g for all x ∈ X̂, x1 ∈ X with f(p̂(x)) = p(x1),
where g is the unique element in G1 such that α(x) · g = x1. So ϕ is defined
elementwise by ϕ(x;x1) = (x;x · g) for all x ∈ X̂, x1 ∈ X with f(p̂(x)) = p(x1),
where g is the unique element in G1 such that α(x) · g = x1. Here the arrow
(α ◦ pr1; pr2) is well-defined because p ◦ α ◦ pr1 = f ◦ p̂ ◦ pr1 = p ◦ pr2. The arrow

(pr1;ψ) : X̂ ×f◦p̂,Z,p X→ X̂ ×sX◦α,G0,r G1

is well-defined because sX(α(x)) = sX(x1 · g−1) = s(g−1) = r(g) for all x, x1 ∈ X with
f(p̂(x)) = p(x1).

We compute

(pr1;α ◦ pr2)(ϕ(x;x1)) = (pr1;α ◦ pr2)(x;x · g)
= (x;α(x · g))
= (x;α(x) · g)
= (x;x1)

for all x, x1 ∈ X with f(p̂(x)) = p(x1) and

ϕ((pr1;α ◦ pr2)(x;x1)) = ϕ(x;α(x1))
= (x;x · g)

for all x, x1 ∈ X with p̂(x) = p̂(x1), where g is the unique element in G1 such that
α(x) · g = α(x1) for all x, x1 ∈ X with p̂(x) = p̂(x1). Since p̂(x) = p̂(x1), there
is the unique g1 ∈ G1 such that x · g1 = x1. Thus α(x1) = α(x · g1) = α(x) · g1.
Therefore, g = g1. Thus ϕ((pr1;α ◦ pr2)(x;x1)) = (x;x · g) = (x;x · g1) = (x;x1)
for all x, x1 ∈ X with p̂(x) = p̂(x1). So (pr1;α ◦ pr2) is an isomorphism. Since it
is the pull-back of (p̂;α) along the cover (p̂ ◦ pr1; pr2), (p̂;α) is an isomorphism by
Lemma 2.13. Thus the principal G-bundle (X̂; m̂X; ŝX) over p̂ : X̂� Z̃ is isomorphic
to the pull-back of the partially principal G-bundle (X; mX; sX) over p : X 99K Z along
the arrow f : Z̃ → Z. Hence this pull-back is a principal bundle, too. Thus the
coordinate projection pr1 : Z̃×f,Z,p X� Z̃ is a cover. �
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Corollary 5.49. Assume Assumption 2.15. Let (X; mX; sX) be a principal G-bundle
over p : X� Z. Then its pull-back along any f : Z̃→ Z is a principal bundle, and
it is unique in the following sense: for any principal G-bundle (X̂; m̂X; ŝX) over
p̂ : X̂� Z and for any G-map g : X̂→ X with p ◦ g = f ◦ p̂, this principal G-bundle
is bundle isomorphic to the pull-back of (X; mX; sX) along f : Z̃→ Z.

Proof. The coordinate projection pr1 : Z̃ ×f,Z,p X � Z̃ is a cover by Assumption
2.15 because p : X� Z is a cover. The other things are the same as in the proof of
Proposition 5.48. �

Lemma 5.50. Let (X; mX; sX) be the pull-back of a G-bundle (Y; mY; sY) over
β : Y → A along a partial cover f : A 99K B (Proposition 5.44). If (Y; mY; sY)
is a principal G-bundle over pY : Y � Z, then (X; mX; sX) is a partially principal G-
bundle over (pr1; pY◦pr2) : X 99K B×f,A,αZ, where α : Z→ A is a unique factorization
of pY : Y � Z by β : Y → A. Under Assumption 2.15, (X; mX; sX) is a principal
bundle, too.

Proof. The arrow α : Z→ A exists because pY : Y � Z is a coequaliser of the parallel
arrows pr1,mY : Y ×sY,G0,r G1 ⇒ Y and β ◦ pr1 = β ◦mY. For any element y in Y we
have α([y]) = β(y).

We have the following diagram

X Y

B×f,A,α Z Z

B A

pr2

(pr1;pY◦pr2) pY

β
pr2

pr1 α

f

of pull-back squares, which shows that the upper square is a pull-back square, too.
Therefore, the arrow (pr1; pY ◦ pr2) : X 99K B×f,A,α Z is a partial cover because it
is the pull-back of the cover pY : Y � Z. Because of Propositions 5.46 and 5.44
the G-bundle (X; mX; sX) over (pr1; pY ◦ pr2) : X 99K B ×f,A,α Z is the pull-back of
the principal G-bundle (Y; mY; sY) over pY : Y � Z along pr2 : B ×f,A,α Z 99K Z.
Therefore, it is a partially principal bundle. It is clear that under Assumption 2.15,
the arrow (pr1; pY ◦ pr2) : X � B ×f,A,α Z is a cover and, therefore, the G-bundle
(X; mX; sX) over (pr1; pY ◦ pr2) : X� B×f,A,α Z is principal. �

Lemma 5.51. Let (X; mX; sX) be a principal G-bundle over pX : X � ZX and
let (Y; mY; sY) be a partially principal G-bundle over pY : Y 99K ZY. Any G-map
f : X→ Y induces an arrow f̃ : ZX → ZY such that f̃ ◦ pX = pY ◦ f.

Proof. Let f : X → Y be a G-map. We know that pX : X � ZX is a coequaliser of
the pair of parallel arrows pr1,mX : X ×sX,G0,r G1 ⇒ X, and

pY ◦ f ◦ pr1 = pY ◦ pr1 ◦ (f ◦ pr1; pr2) = pY ◦mY ◦ (f ◦ pr1; pr2) = pY ◦ f ◦mX.

Therefore, there exists an arrow f̃ : ZX → ZY which is a factorization of the arrow
pY ◦ f : X → ZY. Hence f̃ ◦ pX = pY ◦ f. The arrow f̃ is defined elementwise by
f̃([x]) = [f(x)] for all x ∈ X. �

The equality in Lemma 5.51 means that the diagram

X Y

ZX ZY

f

pX pY

f̃
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commutes. Under Assumption 2.15, it is a pull-back square by Proposition 5.48.
The following corollaries give extra information about the arrows f : X → Y and
f̃ : ZX → ZY under additional assumptions.

Corollary 5.52. Under Assumption 2.15, if f̃ : ZX 99K ZY is a partial cover, so is
f : X 99K Y, and if f̃ : ZX � ZY is a cover, so is f : X� Y.

Proof. We just use Proposition 5.48 and Assumption 2.15 and the proof is obvious.
�

Corollary 5.53. Assume Assumptions 2.15 and 2.18. Let (X; mX; sX) and (Y; mY; sY)
be principal G-bundles over pX : X � ZX and pY : Y � ZY, respectively, and let
f : X→ Y be a G-map that induces the arrow f̃ : ZX → ZY. f : X→ Y is a cover if
and only if f̃ : ZX → ZY is.

Proof. If f̃ : ZX → ZY is a cover, then so is f : X→ Y because of Corollary 5.52. If
f : X→ Y is a cover, then so is f̃ : ZX → ZY because of Assumption 2.18. �

Corollary 5.54. Under Assumption 2.15, f̃ : ZX → ZY is an isomorphism if and
only if f : X→ Y is.

Proof. Since pX : X� ZX is a cover, it is epic. Therefore, Lemma 2.13 works. The
converse holds in any pull-back square. �

5.6. Basic actions and assumptions on it. In this subsection, we define basic
and partially basic actions and consider an extra assumption about basic actions.
Let G be a groupoid in the category (C,Fp) with partial covers.

Definition 5.55. A G-action (X; mX; sX) is called partially basic if it is a partially
principal G-bundle over some partial cover p : X 99K Z. A partially basic action is
basic if this G-bundle is principal.

Proposition 5.56. A G-action (X; mX; sX) is partially basic if and only if the
tranformation groupoid X o G is isomorphic to a Čech groupoid of some partial
cover p : X 99K Z.

Here we mean that the isomorphism between these groupoids is an identity arrow
on objects.

Proof. Suppose that the G-action (X; mX; sX) is partially basic. That is, it is
a partially principal G-bundle over a partial cover p : X 99K Z. We are going
to show that the transformation groupoid is isomorphic to the Čech groupoid
of p : X 99K Z. Notice that the pair of arrows (pr1; mX) : X ×sX,G0,r G1 → X ×p,Z,p X
and idX : X → X gives the functor from the transformation groupoid to the Čech
groupoid of p : X 99K Z. The equalities pr1 ◦ (pr1; mX) = pr1 and pr2 ◦ (pr1; mX) = mX
mean that (pr1; mX) and idX intertwine the source and range maps of these groupoids.
We need to check it for the multiplication maps. We have

(pr1; mX)((x; g) · (x1; g1)) = (pr1; mX)(x; g · g1)
= (x;x · (g · g1))
= (x; (x · g) · g1)
= (x;x1 · g1)
= (x;x1) · (x1;x1 · g1)
= (x;x · g) · (x1;x1 · g1)
= (pr1; mX)(x; g) · (pr1; mX)(x1; g1)

for all x, x1 ∈ X, g, g1 ∈ G1 with sX(x) = r(g), sX(x1) = r(g1) and x · g = x1.
So the multiplication maps are intertwined, too. Since (X; mX; sX) is a partially
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principal G-bundle over p : X 99K Z, the arrow (pr1; mX) is invertible. So we have an
isomorphism between the transformation groupoid X o G and the Čech groupoid
of p : X 99K Z.

Conversely, let the transformation groupoid be isomorphic to the Čech groupoid
of p : X 99K Z. We assume that this isomorphism is an identity arrow on objects and
an isomorphism ϕ : X ×sX,G0,r G1 → X ×p,Z,p X on arrows. Since it has to intertwine
the source and range maps, we have pr1 ◦ ϕ = pr1 and pr2 ◦ ϕ = mX. Therefore,
ϕ = (pr1; mX). So (pr1; mX) : X ×sX,G0,r G1 → X ×p,Z,p X is invertible. Thus the
G-action (X; mX; sX) is partially basic. �

Remark 5.57. The global case of Proposition 5.56 with its proof is absolutely the
same. A G-action (X; mX; sX) is basic if and only if the tranformation groupoid XoG
is isomorphic to a Čech groupoid of some cover p : X� Z.

Definition 5.58. A groupoid G is called partially basic or basic if the canoni-
cal action on its objects (described in Example 5.21) is partially basic or basic,
respectively.

Lemma 5.59. A groupoid G = (G0,G1, r, s,m) is partially basic if and only if
there is a partial cover p : G0 99K Z such that the arrow (r; s) : G1 → G0 ×p,Z,p G0 is
well-defined and invertible.

Proof. Suppose that a groupoid G is partially basic. That is, the action de-
scribed in Example 5.21 is partially basic. Therefore, there is a G-invariant partial
cover p : G0 99K Z such that the arrow (pr1; s ◦ pr2) : G0 ×idG0 ,G0,s G1 → G0 ×p,Z,p G0

is invertible. The arrow G0 ×idG0 ,G0,s G1 → G1 is an isomorphism because it is a
pull-back of idG0 . Also, pr1 = r ◦ pr2. Therefore, (r; s) = (pr1; s ◦ pr2) ◦ pr−1

2 . Thus
the arrow (r; s) : G1 → G0 ×p,Z,p G0 is well-defined and invertible.

Conversely, if the arrow (r; s) : G1 → G0 ×p,Z,p G0 is well-defined and invertible,
then the arrow (pr1; s ◦ pr2) : G0 ×idG0 ,G0,s G1 → G0 ×p,Z,p G0 is well-defined and
invertible because (pr1; s ◦ pr2) = (r; s) ◦ pr2. �

It is clear that we have the same in the case of the global situation.

Corollary 5.60. A groupoid G = (G0,G1, r, s,m) is partially basic if and only if it
is isomorphic to the Čech groupoid of some partial cover p : G0 99K Z.

Here we mean that the isomorphism between these groupoids is an identity arrow
on objects.

Proof. If G is partially basic then there are a partial cover p : G0 99K Z and a well-
defined isomorphism (r; s) : G1 → G0 ×p,Z,p G0. This isomorphism and the identity
arrow on objects intertwine the range and source maps of the groupoid G and the
Čech groupoid of p : G0 99K Z. They intertwine the multiplication maps, too because
we have

(r; s)(g · g1) = (r(g · g1); s(g · g1))
= (r(g); s(g1))
= (r(g); s(g)) · (s(g); s(g1))
= (r(g); s(g)) · (r(g1); s(g1))
= (r; s)(g) · (r; s)(g1)

for all g, g1 ∈ G1 with s(g) = r(g1). Therefore, we have an isomorphism between the
groupoid G and the Čech groupoid of p : G0 99K Z. �



49

Remark 5.61. There is an analogous corollary in the global case: A groupoid
G = (G0,G1, r, s,m) is basic if and only if it is isomorphic to the Čech groupoid of
some cover p : G0 � Z.

Corollary 5.62. A G-action (X; mX; sX) is partially basic if and only if the trans-
formation groupoid X o G is partially basic. A G-action (X; mX; sX) is basic if and
only if the tranformation groupoid X o G is basic.

Proof. This follows from Proposition 5.56 and Corollary 5.60. �

The following useful lemmas cannot be proven without the following extra
assumption about basic groupoids and basic actions.

Assumption 5.63. Any action of a basic groupoid is basic.

Lemma 5.64. Let (X; mX; sX) and (Y; mY; sY) be a G-actions and let f : Y → X be
a G-map. Under Assumption 5.63, if (X; mX; sX) is basic then so is (Y; mY; sY).

Proof. Since the G-action (X; mX; sX) is basic, the transformation groupoid X o G is
basic by Corollary 5.62. The G-action (Y; mY; sY) together with a G-map f : Y → X
is equivalent to an X oG-action over Y by Proposition 5.32. Therefore, the G-action
(Y; mY; sY) is basic by Assumption 5.63. �

Lemma 5.65. Assume Assumptions 2.15 and 5.63. Let (X; mX; sX), (X1; mX1 ; sX1)
and (X2; mX2 ; sX2) be principal G-bundles over p : X� Z, p1 : X1 � Z1 and p2 : X2 �
Z2, respectively. Let f1 : X1 → X and f2 : X2 → X be G-maps and let them induce
f̃1 : Z1 → Z and f̃2 : Z2 → Z, respectively. If the fibre products X1 ×f1,X,f2 X2 and
Z1 ×f̃1,Z,f̃2

Z2 exist, then the fibre product of G-maps f1 : X1 → X and f2 : X2 → X,
discribed in Lemma 5.20, is a principal G-bundle over

(p1 ◦ pr1; p2 ◦ pr2) : X1 ×f1,X,f2 X2 � Z1 ×f̃1,Z,f̃2
Z2, (x1;x2) 7→ ([x1]; [x2]).

Proof. We know by construction that the coordinate projections pr1 and pr2 of
X1×f1,X,f2 X2 are G-maps (see Lemma 5.20). So the G-action (X1×f1,X,f2 X2; m0; s0)
is a principal G-bundle over some cover p12 : X1 ×f1,X,f2 X2 � Z12 by Lemma 5.64.
Let p̃r1 : Z12 → Z1 and p̃r2 : Z12 → Z2 be arrows induced by pr1 and pr2, respectively.
We must show that Z12 ∼= Z1 ×f̃1,Z,f̃2

Z2 and p12 = (p1 ◦ pr1; p2 ◦ pr2).
Consider any object A and arrows z1 : A → Z1 and z2 : A → Z2 such that

f̃1 ◦z1 = f̃2 ◦z2. Let G-action (B; m; s) over α : B� A be a pull-back of the principal
G-bundle (X; mX; sX) over p : X� Z along the arrow f̃1 ◦ z1 = f̃2 ◦ z2. On the one
hand it is a pull-back of the principal G-bundle (X1; mX1 ; sX1) over p1 : X1 � Z1
along the arrow z1 : A→ Z1 and on the other hand it is a pull-back of the principal
G-bundle (X2; mX2 ; sX2) over p2 : X2 � Z2 along the arrow z2 : A→ Z2. Therefore,
there are G-maps x1 : B→ X1 and x2 : B→ X2 which induce the arrows z1 : A→ Z1
and z2 : A→ Z2, respectively. Since the lifting of the arrow f̃1 ◦z1 = f̃2 ◦z2 is unique,
we have f1 ◦ x1 = f2 ◦ x2. Thus there is a unique arrow (x1;x2) : B→ X1 ×f1,X,f2 X2
which is a G-map by Lemma 5.20. Therefore, it induces a unique arrow z12 : A→ Z12
such that z12 ◦α = p12 ◦ (x1;x2). Since pr1 ◦ (x1;x2) = x1 and pr2 ◦ (x1;x2) = x2, we
have p̃r1 ◦z12 = z1 and p̃r2 ◦z12 = z2. By construction, such arrow z12 is unique, and
therefore, we have Z12 ∼= Z1×f̃1,Z,f̃2

Z2. Since p̃r1◦p12 = p1◦pr1 and p̃r2◦p12 = p2◦pr2,
we can deduce that the fibre product of the G-maps f1 : X1 → X and f2 : X2 → X is
a principal G-bundle over (p1 ◦ pr1; p2 ◦ pr2) : X1 ×f1,X,f2 X2 � Z1 ×f̃1,Z,f̃2

Z2. �

There is a weaker assumption about basic groupoids and basic action.

Assumption 5.66. Any sheaf over a basic groupoid is basic.

Lemma 5.67. Let (X; mX; sX) and (Y; mY; sY) be G-actions and let the cover f : Y �
X be a G-map. Under Assumption 5.66, if (X; mX; sX) is basic then so is (Y; mY; sY).
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Proof. Since the G-action (X; mX; sX) is basic, the transformation groupoid X o G is
basic by Corollary 5.62. The G-action (Y; mY; sY) together with a G-map f : Y → X
is equivalent to anX o G-action on Y by Proposition 5.32. Therefore, the G-action
(Y; mY; sY) is basic by Assumption 5.63. �

5.7. Groupoid fibrations with basic fibre.

Proposition 5.68. Assume Assumption 2.15. Let F : L� H be a groupoid fibration
with basic fibre G. There is a groupoid L/G, call it a quotient groupoid, with a
canonical groupoid fibration F1 : L� L/G with fibre G, which is a cover on objects,
and with a quotient groupoid covering F2 : L/G� H such that F = F2 ◦ F1.

Proof. Since the groupoid G is basic, there are an object Z and a cover p : L0 � Z
which are an orbit space and orbit space projection of the right canonical action of
G on its objects L0 (see Example 5.21). It is clear that the left canonical action of G
on its objects L0 has the same orbit space and orbit space projection.

Notice that the arrow F0 : L0 → H0 is G-invariant because

F0(l0 · g) = F0(sL(g))
= rH(1F0(sL(g)))
= rH(F1(g))
= F0(rL(g))
= F0(l0)

for all l0 ∈ L0, g ∈ G1 with l0 = rL(g). Thus we have a unique arrow α : Z → H0

such that F0 = α ◦ p. Elementwise α([l0]) = F0(l0) for all l0 ∈ L0.

There is a left principal G-bundle (L1; m; rL) over the arrow

(F1; sL) : L1 � H1 ×sH,H0,F0 L0, l 7→ (F1(l); sL(l)),

which is described in Example 5.27. Also, we have a canonical left principal G-
bundle over p : L0 � Z. Let us show that the range map rL : L1 � L0 is a G-map. It
obviously commutes with anchor maps. We also have

rL(g · l) = rL(g)
= g · sL(g)
= g · rL(l)

for all g ∈ G1, l ∈ L1 with sL(g) = rL(l). Therefore, the G-map rL : L1 � L0 induces
an arrow r̃ : H1 ×sH,H0,F0 L0 → Z such that r̃ ◦ (F1; sL) = p ◦ rL by Lemma 5.51. r̃ is
defined elementwise by r̃(F1(l); sL(l)) = [rL(l)] for all l ∈ L1.

Consider the pull-back of the right G-bundle (L0; sG ◦ pr2; idL0) over F0 : L0 → H0

along the cover sH : H1 � H0. An action map of this action is defined elementwise
by (h; l0) · g = (h; sL(g)) for all h ∈ H1, l0 ∈ L0, g ∈ G1 with sH(h) = F0(l0) and
l0 = rL(g).We know that, under Assumption 2.15, this action is a principal G-bundle
over (pr1; p ◦ pr2) : H1×sH,H0,F0 L0 � H1×sH,H0,α Z by Lemma 5.50. Let us show that
the arrow r̃ : H1 ×sH,H0,F0 L0 → Z is G-invariant. There is one more right G-action
defined in Remark 5.28. That is (L1; m2; sL), where m2 = mL ◦ (pr1; pr1 ◦ pr2). In the
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diagram

L1 ×sL,G0,rG G1 (H1 ×sH,H0,F0 L0)×pr2,G0,rG G1 G1

L1 H1 ×sH,H0,F0 L0 G0

L0 Z

((F1;sL)◦pr1;pr2)

pr1 m2

pr2

pr1 m1 rG

(F1;sL)

rL

pr2

r̃

p

each square is a pull-back square. The arrow ((F1; sL) ◦ pr1; pr2) is a cover by
Assumption 2.15 because it is a pull-back of (F1; sL). So it is a coequaliser and
therefore, it is epic. For any l in L1 and for any g in G1 with sL(l) = rL(g) we have

r̃((F1(l); sL(l)) · g) = r̃(F1(l); rL(g))
= r̃(F1(l); sL(l))
= [rL(l)]
= r̃(F1(l); sL(l)).

Therefore, we have r̃ ◦m1 ◦ ((F1; sL) ◦ pr1; pr2) = r̃ ◦ pr1 ◦ ((F1; sL) ◦ pr1; pr2). Since
((F1; sL) ◦ pr1; pr2) is epic, r̃ ◦m1 = r̃ ◦ pr1. So the arrow r̃ : H1 ×sH,H0,F0 L0 → Z is
G-invariant. Therefore, there is a unique arrow mZ : H1 ×sH,H0,α Z → Z such that
mZ ◦ (pr1; p ◦ pr2) = r̃. Elementwise h · [l0] = r̃(h; l0) for all h ∈ H1, l0 ∈ L0 with
sH(h) = F0(l0). For any element l in L1 we have F1(l) · [sL(l)] = [rL(l)]. We are going
to show that (Z; mZ;α) is a left H-action.

Since the arrows (pr1; p ◦ pr2) and (F1; sL) are covers, they are coequalisers and
therefore, they are epics. It is clear that the composition of epics is epic. So
(pr1; p ◦ pr2) ◦ (F1; sL) is epic. We also have

α(F1(l) · [sL(l)]) = α([rL(l)])
= F0(rL(l))
= rH(F1(l))

for all l ∈ L1. Therefore, α◦mZ◦(pr1; p◦pr2)◦(F1; sL) = rH◦pr1◦(pr1; p◦pr2)◦(F1; sL).
Thus α ◦mZ = rH ◦ pr1. This is the condition (1).

The next goal is to show that the arrow mZ : H1 ×sH,H0,α Z→ Z commutes with
the multiplication map of H.

Consider the following diagram

L1 ×p◦sL,L0,p◦rL L1 L1

L1 L0

A H1 ×sH,H0,α Z

H1 ×sH,H0,α Z Z,

m̃L

pr1
ϕ rL

(F1;p◦sL)rL

(F1;p◦sL)
β

pr1

mZ

mZ

p

where
A = (H1 ×sH,H0,α Z)×pr2,Z,mZ (H1 ×sH,H0,α Z),

β = (mH ◦ (pr1 ◦ pr1; pr1 ◦ pr2); pr2 ◦ pr2), ((h; z); (h1; z1)) 7→ (h · h1; z1),
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ϕ = ((F1; p◦ sL)◦pr1; (F1; p◦ sL)◦pr2), (l; l1) 7→ ((F1(l); [sL(l)]); (F1(l1); [sL(l1)]))
and m̃L = mL ◦ (pr1; mL ◦ (pr1 ◦ ψ; pr2)), where ψ is the following composition:

L1 ×p◦sL,Z,p◦rL L1 (sL◦pr1;rL◦pr2)−−−−−−−−−→ L0 ×p,Z,p L0 (pr1;sG◦pr2)−1

−−−−−−−−−→ L0 ×idL0 ,G0,rG◦pr2
G1 pr2−−→ G1.

The arrow m̃L is defined elementwise by m̃L(l; l1) = l · g · l1 for all l, l1 ∈ L1 with
[sL(l)] = [rL(l1)], where g is the unique element in G1 such that sL(l) · g = rL(l1).
Since pr2 : H1 ×sH,H0,α Z → Z is a pull-back of sH, it is a cover, and therefore, the
object A exists. Since sH◦F1 = F0◦sL = α◦p◦sL, the arrow (F1; p◦sL) is well-defined.
The arrow β is well-defined because

sH(h · h1) = sH(h1)
= α(z1)

for all h, h1 ∈ H1, z1 ∈ Z with sH(h1) = α(z1). The arrow ϕ is well-defined because

F1(l1) · [sL(l1)] = [rL(l1)]
= [sL(l)]

for all l, l1 ∈ L1 with [sL(l)] = [rL(l1)]. We are going to prove that each square
commutes in the diagram above.

Since rL(l · g · l1) = rL(l) forall l, l1 ∈ L1 with [sL(l)] = [rL(l1)], the upper square
commutes. We also have

(F1(l · g · l1); [sL(l · g · l1)]) = (F1(l) · F1(g) · F1(l1); [sL(l1)])
= (F1(l) · F1(l1); [sL(l1)])
= β((F1(l); [sL(l)]); (F1(l1); [sL(l1)]))
= β(ϕ(l; l1))

for all l, l1 ∈ L1 with [sL(l)] = [rL(l1)]. Therefore, β ◦ ϕ = (F1; p ◦ sL) ◦ m̃L. The left
and right squares and the square face to the reader commute obviously. Finally, We
have

mZ ◦ pr1 ◦ ϕ = mZ ◦ (F1; p ◦ sL) ◦ pr1

= p ◦ rL ◦ pr1

= p ◦ rL ◦mL

= mZ ◦ (F1; p ◦ sL) ◦mL

= mZ ◦ β ◦ ϕ.

Hence mZ ◦ pr1 ◦ ϕ = mZ ◦ β ◦ ϕ. The next goal is to show that the arrow ϕ is epic.
Consider the following diagram:

L1 ×p◦sL,Z,p◦rL L1 L1

L1 ×p◦sL,Z,α (H1 ×sH,H0,F0 L0) H1 ×sH,H0,F0 L0

L1 ×p◦sL,Z,mZ (H1 ×sH,H0,α Z) H1 ×sH,H0,α Z

L1 Z

pr2

(pr1;(F1;sL)◦pr2) (F1;sL)

(pr1;(pr1;p◦pr2)◦pr2)

pr2

(pr1;p◦pr2)

pr2

pr1 mZ

p◦sL
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Each square is a pull-back square in it. Under Assumption 2.15, the arrows
(pr1; (F1; sL)◦pr2) and (pr1; (pr1; p◦pr2)◦pr2) are covers. Hence they are coequalisers
and therefore, epics. Thus their composition

(pr1; (pr1; p ◦ pr2) ◦ pr2) ◦ (pr1; (F1; sL) ◦ pr2) = (pr1; (F1; p ◦ sL) ◦ pr2)

is epic. Analogously, if we consider the pull-backs of the following sequence of the
composable covers

L1 H1×sH,H0,F0
(F1;sL) L0 H1×sH,H0,α

((pr1;p◦pr2)◦pr1;pr2) Z Zpr2

along the arrow mZ : H1 ×sH,H0,α Z→ Z, we get that the following composition

((pr1; p ◦ pr2) ◦ pr1; pr2) ◦ ((F1; sL) ◦ pr1; pr2) = ((F1; p ◦ sL) ◦ pr1; pr2)

is epic. Finally,

((F1; p ◦ sL) ◦ pr1; pr2) ◦ (pr1; (F1; p ◦ sL) ◦ pr2)
= ((F1; p ◦ sL) ◦ pr1; (F1; p ◦ sL) ◦ pr2)
= ϕ

is epic. Therefore, mZ ◦ β = mZ ◦ pr1. Elementwise (h · h1) · z1 = h · z for all
((h; z); (h1; z1)) ∈ A. Since z = h1 · z1, we have (h · h1) · z1 = h · (h1 · z1) for all
h, h1 ∈ H1, z1 ∈ Z with sH(h) = rH(h1) and sH(h1) = α(z1). So the condition (2)
holds.

We also have

1α([l0]) · [l0] = r̃(1α([l0]); [l0])
= r̃(1F0(l0); l0)
= r̃(F1(1(l0)); l0)
= r̃(F1(1(l0)); sL(1(l0)))
= [rL(1(l0))]
= [l0]

for all l0 ∈ L0. Since p : L0 � Z is a cover, it is epic and therefore, mZ ◦ (uH ◦α; idZ) =
idZ. So we can deduce that (Z; mZ;α) is a left H-action by Remark 5.11.

Let the groupoid L/G be the transformation groupoid of the left H-action
(Z; mZ;α). We know from Example 5.31 that there is a groupoid covering F2 : HnZ�
H where F1

2 = pr1 : H1 ×sH,H0,α Z→ H1 and F0
2 = α : Z→ H0.

There is a functor F1 : L → H n Z, where F1
1 = (F1; p ◦ sL) : L1 → H1 ×sH,H0,α Z

and F0
1 = p : L0 � Z. These arrows intertwine the range maps because the right

square commutes in the diagram above. They intertwine the source maps because
pr2 ◦ (F1; p ◦ sL) = p ◦ sL. Notice that the multiplication map of H n Z is β. We have

(F1; p ◦ sL)(l · l1) = (F1(l · l1); [sL(l · l1)])
= (F1(l) · F1(l1); [sL(l1)])
= (F1(l); [sL(l)]) · (F1(l1); [sL(l1)])
= (F1; p ◦ sL)(l) · (F1; p ◦ sL)(l1)

for all l, l1 ∈ L1 with sL(l) = rL(l1). Therefore, F1 : L → H n Z intertwines the
multiplication maps, too. We need to check that this functor is a groupoid fibration.
There is a canonical isomorphism

(H1 ×sH,H0,α Z)×pr2,Z,p L0 (pr1◦pr1;pr2)−−−−−−−−→ H1 ×sH,H0,F0 L0.
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And (pr1◦pr1; pr2)◦((F1; p◦sL); sL) = (F1; sL). Therefore, the arrow ((F1; p◦sL); sL) is a
cover, which shows that F1 : L→ HnZ is a groupoid fibration. Since pr1◦(F1; sL) = F1

and α ◦ p = F0, the following diagram commutes

L H

L/G

F

F1 F2

Finally, the fibre of F1 : L→ L/G is G by Corollary 4.23. �

Proposition 5.69. Let F : L � H be a groupoid fibration with fibre G. Under
Assumptions 5.63, 2.15 and 2.14, if the groupoids G and H are basic, then so is L.

Proof. Since the groupoid H is basic, the left H-action (Z; mZ;α), used in the proof
of Proposition 5.68, is basic by Assumption 5.63. Therefore, the quotient groupoid
L/G is basic by Corollary 5.62 in the global case. That is, there are an object Q and
a cover q : Z� Q such that the arrow

H1 ×sH,H0,α Z (pr2;mZ)−−−−−→ Z×q,Q,q Z, (h; z) 7→ (h;h · z),

is a well-defined isomorphism. We are going to show that the arrow

L1 (sL;rL)−−−−→ L0 ×q◦p,Q,q◦p L0 l 7→ (sL(l); rL(l)),

is a well-defined isomorphism, which gives that the groupoid L is basic. It is
well-defined because

[[rL(l)]] = [F1(l) · [sL(l)]]
= [[sL(l)]]

for all l ∈ L1.

Consider the pull-back of the G-bundle (L0; sG ◦pr2; idG0) over q◦p : L0 � Q along
q ◦ p : L0 � Q. That is (L0 ×q◦p,Q,q◦p L0; m1; pr2), where m1 = (pr1 ◦ pr1; sG ◦ pr2).
Elementwise (l0; l′0) · g = (l0; l′0 · g) for all l0, l′0 ∈ L0, g ∈ G1 with [[l0]] = [[l′0]] and
l′0 = rG(g). Since the G-bundle (L0; sG ◦ pr2; idG0) over q ◦ p : L0 � Q is a principal
G-bundle over p : L0 � Z, its pull-back along the arrow q◦p : L0 � Q is a principal G-
bundle over (pr1; p◦pr2) : L0×q◦p,Q,q◦p L0 � L0×q◦p,Q,q Z by Lemma 5.50. Also, there
is one more principal G-bundle over (F1; sL) : L1 � H1×sH,H0,F0 L0. That is (L1; m2; rL),
where m2 = mL ◦ (pr1; iL ◦ pr1 ◦ pr2). Elementwise l · g = g−1 · l for all l ∈ L1, g ∈ G1

with rL(l) = rG(g).We are going to show that the arrow (sL; rL) : L1 → L0×q◦p,Q,q◦p L0

is a G-map. So it induces an arrow (pr2; r̃) : H1 ×sH,H0,F0 L0 → L0 ×q◦p,Q,q Z. All
needed arrows are in the following diagram:

L1 ×rL,G0,rG G1 (L0 ×q◦p,Q,q◦p L0)×pr1,G0,rG G1 G1

L1 L0 ×q◦p,Q,q◦p L0 G0

H1 ×sH,H0,F0 L0 L0 ×q◦p,Q,q Z

((sL;rL)◦pr1;pr2)

pr1 m2

pr2

pr1 m1 rG

(sL;rL)

(F1;sL)

pr2

(pr1;p◦pr2)

(pr2 ;̃r)
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The arrow (sL; rL) : L1 → L0 ×q◦p,Q,q◦p L0 commutes with the anchor maps, that is
pr2 ◦ (sL; rL) = rL. It also commutes with the action maps because

(sL; rL)(l · g) = (sL; rL)(g−1 · l)
= (sL(g−1 · l); rL(g−1 · l))
= (sL(l); rL(g−1))
= (sL(l); sL(g))
= (sL(l); rL(g) · g)
= (sL(l); rL(l) · g)
= (sL(l); rL(l)) · g
= (sL; rL)(l) · g

for all l ∈ L1, g ∈ G1 with rL(l) = rL(g). So the arrow (sL; rL) : L1 → L0 ×q◦p,Q,q◦p L0

is a G-map. Also, the bottom square commutes because

(pr2; r̃)((F1; sL)(l)) = (pr2; r̃)(F1(l); sL(l))
= (sL(l); r̃(F1(l); sL(l)))
= (sL(l); [rL(l)])
= (pr1; p ◦ pr2)(sL(l); rL(l))
= (pr1; p ◦ pr2)((sL; rL)(l))

for all l ∈ L1. Therefore, the bottom square is a pull-back square by Proposition
5.48. Hence (sL; rL) induces (pr2; r̃). Hence one of them is an isomorphism if and
only if the other one is by Corollary 5.54.

Consider the pull-back of the G-bundle (L0; sG ◦pr2; idG0) over q◦p : L0 � Q along
q : Z� Q. That is (Z×q,Q,q◦pL0; m̃1; pr2), where m̃1 = (pr1◦pr1; sG◦pr2). Elementwise
(z; l0) · g = (z; l0 · g) for all z ∈ Z, l0 ∈ L0, g ∈ G1, with [z] = [[l0]] and l0 = rG(g).
Analogously, we can say that this action is a principal G-bundle over the arrow
(pr1; p ◦ pr2) : Z×q,Q,q◦p L0 � Z×q,Q,q Z by Lemma 5.50. Also, we have one more G-
action. That is (H1×sH,H0,F0 L0; m̃2; pr2), where m̃2 = (pr1◦pr1; sG◦pr2). Elementwise
(h; l0)·g = (h; l0 ·g) for all h ∈ H1, l0 ∈ L0, g ∈ G1 with sH(h) = F0(l0) and l0 = rG(g).
This action is a principal bundle over (pr1; p ◦ pr2) : H1 ×sH,H0,F0 L0 � H1 ×sH,H0,α Z
because it is a pull-back of a G-bundle (L0; sG ◦ pr2; idG0) over F0 : L0 → H0 along
sL : H1 � H0, which is principal over p : L0 � Z. We are going to show that the
arrow (̃r; pr2) : H1 ×sH,H0,F0 L0 → Z×q,Q,q◦p L0 is a G-map and it induces the arrow
(mZ; pr2) : H1×sH,H0,α Z→ Z×q,Q,q Z. All needed arrows are in the following diagram:

(H1 ×sH,H0,F0 L0)×pr2,G0,rG G1 (Z×q◦p,Q,q L0)×pr2,G0,rG G1

H1 ×sH,H0,F0 L0 Z×q◦p,Q,q L0

H1 ×sH,H0,α Z Z×q,Q,q Z

((̃r;pr2)◦pr1;pr2)

pr1 m̃2 pr1 m̃1

(̃r;pr2)

(pr1;p◦pr2) (pr1;p◦pr2)

(mZ;pr2)
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The arrow (̃r; pr2) clearly commutes with the anchor maps, pr2 ◦ (̃r; pr2) = pr2. It
also commutes with the action maps because

(̃r; pr2)((h; l0) · g) = (̃r; pr2)(h; l0 · g)
= (̃r(h; l0 · g); l0 · g)
= (h · [l0 · g]; l0 · g)
= (h · [l0]; l0 · g)
= (̃r(h; l0); l0 · g)
= (̃r(h; l0); l0) · g
= (̃r; pr2)(h; l0) · g

for all h ∈ H1, l0 ∈ L0, g ∈ G1 with sH(h) = F0(l0) and l0 = rG(g). The bottom
square commutes because

(pr1; p ◦ pr2)((̃r; pr2)(h; l0)) = (pr1; p ◦ pr2)(̃r(h; l0); l0)
= (pr1; p ◦ pr2)(h · [l0]; l0)
= (h · [l0]; [l0])
= (mZ; pr2)(h; [l0])
= (mZ; pr2)((pr1; p ◦ pr2)(h; l0))

for all h ∈ H1, l0 ∈ L0 with sH(h) = F0(l0). Therefore, the arrow (mZ; pr2) induces
(̃r; pr2). Hence (̃r; pr2) is an isomorphism by Corollary 5.54. Thus the arrow

(sL; rL) : L1 → L0 ×q◦p,Q,q◦p L0

is an isomorphism for the same reason. So the groupoid L is basic because the arrow
q ◦ p is a cover by Assumption 2.14. �

6. Generalised morphisms between groupoids

There are several types of generalised morphisms between groupoids which form
categories with groupoids as objects.

6.1. Actors. Let G = (G0,G1, rG, sG,mG, uG, iG) and H = (H0,H1, rH, sH,mH, uH, iH)
be groupoids in a category (C,Fp) with partial covers.

Definition 6.1. [47, Definition 4.15] An actor from G to H is a pair of arrows (m; r)
such that (H1; m; r) is a left G-action which commutes with the right translation
action (H1; mH; sH). That is,

(1) sH ◦m = sH ◦pr2 sH(g ·h) = sH(h), ∀g ∈ G1, ∀h ∈ H1 with sG(g) = r(h);
(2) r ◦mH = r ◦ pr1 r(h · h1) = r(h), ∀h, h1 ∈ H1 with sH(h) = rH(h1);
(3) mH ◦ (m ◦ pr1; pr2 ◦ pr2) = m ◦ (pr1 ◦ pr1; mH ◦ pr2) (g · h) · h1 = g · (h · h1)

for all g ∈ G1, h, h1 ∈ H1 with sG(g) = r(h) and sH(h) = rH(h1); that is, the
following diagram commutes:

(G1 ×sG,G0,r H1)×pr2,H1,pr1
(H1 ×sH,H0,rH H1) H1 ×sH,H0,rH H1

G1 ×sG,G0,r H1 H1

(m◦pr1;pr2◦pr2)

(pr1◦pr1;mH◦pr2) mH

m

The following lemma allows us to compose actors.

Lemma 6.2. Let (m1; r1) : G→ H and (m2; r2) : H→ L be actors between groupoids.
The pair (m; r), where r = r1 ◦ uH ◦ r2, elementwise r(l) = r1(1r2(l)) for all l ∈ L1

and m = m2 ◦ (m1 ◦ (pr1; uH ◦ r2 ◦ pr2); pr2), elementwise g · l = (g · 1r2(l)) · l, for all
g ∈ G1, l ∈ L1 with sG(g) = r(l) defines an actor from G to L.
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Proof. We have to check the properties required in Definition 6.1.

sL(g · l) = sL((g · 1r2(l)) · l)
= sL(l)

for all g ∈ G1, l ∈ L1 with sG(g) = r(l). That is (1). Also we have

r(l · l1) = r1(1r2(l·l1))
= r1(1r2(l))
= r(l)

for all l, l1 ∈ L1 with sL(l) = rL(l1). Hence the property (2) is satisfied. In case of
the property (3) we compute

(g · l) · l1 = ((g · 1r2(l)) · l) · l1
= (g · 1r2(l)) · (l · l1)
= (g · 1r2(l·l1)) · (l · l1)
= g · (l · l1)

for all g ∈ G1, l, l1 ∈ L1 with sG(g) = r(l) and sL(l) = rL(l1). Therefore, (m; r) is an
actor from G to L. �

Example 6.3. If G is a groupoid then the left and right translation actions of G on
G1 commute. Therefore, (mG; rG) is an actor from G to itself.

It is easy to check that the actor described in Example 6.3 is an identity actor
in the sense of the composition defined in Lemma 6.2. Therefore, groupoids and
actors between them form a category.

Generally, actors do not come from functors and vice versa. The following
example describes actors and functors that are associated to each other.

Example 6.4. Let F : G→ H be a functor with invertible F0. Then the pair (m; r),
where m = mH ◦ (F1 ◦ pr1; pr2) and r = (F0)−1 ◦ rH, defines an actor from G to H.
Conversely, if we have an actor (m; r) from G to H and if r ◦ uH is invertible then
this actor comes from the functor F : G → H, defined by F0 = (r ◦ uH)−1 and
F1 = m ◦ (idG1 ; uH ◦ (r ◦ uH)−1 ◦ sG).

Example 6.5. Given partial groupoid fibration F : L� H there is a functor (pr1; idL0)
from the fibre to L. Therefore, (mL ◦ (pr1 ◦ pr1; pr2); rL) defines an actor from the
fibre of F to L.

6.2. Bibundle actors. The generalised morphisms of groupoids described in this
subsection are a special kind of bibundles of groupoids. Let G = (G0,G1, rG, sG,mG)
and H = (H0,H1, rH, sH,mH) be groupoids.

Definition 6.6. [47, Definition 2.1] A G,H-bibundle is (X; m1X; m2X; sX; rX), where
(X; m1X; rX) is a left G-bundle over sX : X→ H0 and (X; m2X; sX) is a right H-bundle
over rX : X→ G0 such that the action maps commute: m2X ◦ (m1X ◦ pr1; pr2 ◦ pr2) =
m1X ◦ (pr1 ◦ pr1; m2X ◦ pr2). Elementwise (g · x) · h = g · (x · h) for all g ∈ G1, x ∈ X,
h ∈ H1 with sG(g) = rX(x) and sX(x) = rH(h). That is, the following diagram
commutes

(G1 ×sG,G0,rX X)×pr2,X,pr1 (X ×sX,H0,rH H1) X ×sX,H0,rH H1

G1 ×sG,G0,rX X X

(m1X◦pr1;pr2◦pr2)

(pr1◦pr1;m2X◦pr2) m2X

m1X
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An arrow f : X̃ → X is called a G,H-bibundle map between two G,H-bibundles
(X̃; m1X̃; m2X̃; sX̃; rX̃) and (X; m1X; m2X; sX; rX) if it is a G-bundle and an H-bundle
map.

Definition 6.7. A (partial) bibundle actor from G to H is the G,H-bibundle
(X; m1X; m2X; sX; rX), where the right H-action (X; m2X; sX) is basic and a (partial)
sheaf.

An important example is the bibundle actor from the fibre of a groupoid fibration
to itself.

Example 6.8. Let F : L� H be a groupoid fibration with fibre G. The left and right
G-actions (L1; m; r) and (L1; m′; s), described in Example 5.27, define a G,G-bibundle
(L1; m; m′; s; r) because s(g · l1) = s(l1), r(l · g) = r(l) and l · (g · l1) = (l · g) · l1 for
all g ∈ G1, l, l1 ∈ L1 with sL(g) = rL(l1) and sL(l) = rL(g). It is a bibundle actor
because s = sL is a cover and (L1; m′; s) is basic by Example 5.43.

Lemma 6.9. Under Assumptions 2.15 and 5.63, a partial bibundle actor from G
to H induces a functor from the category of right H-actions to the category of left
G-actions:

C(H)→ C(G), Y 7→ X ×H Y.

Proof. Let (X; m1X; m2X; sX; rX) be a bibundle actor from G to H and let (Y; mY; sY)
be a right H-action. Let us consider the fibre product (X ×sX,H0,sY Y; m0; s0) of the
right H-actions (X; m2X; sX) and (Y; mY; sY) (see Example 5.25). It exists because
the anchor map sX : X 99K H0 is a partial cover. Also, we can consider the pull-back
(X ×sX,H0,sY Y; m̃; r̃) of the left G-bundle (X; m1X; rX) over sX : X 99K H0 along the
arrow sY : Y → H0. These actions defines a G,H-bibundle (X×sX,H0,sY Y; m̃; m0; s0; r̃).
We need to check that the action maps m̃ and m0 commute. We have

g · ((x; y) · h) = g · (x · h; y · h)
= (g · (x · h); y · h)
= ((g · x) · h; y · h)
= (g · x; y) · h
= (g · (x; y)) · h

for all x ∈ X, y ∈ Y, g ∈ G, h ∈ H with sX(x) = sY(y) = rH(h) and rX(x) = sG(g).
The arrow r̃ : X ×sX,H0,sY Y → G0 is H-invariant because

r̃((x; y) · h) = rX(pr1((x; y) · h))
= rX(pr1(x · h; y · h))
= rX(x · h)
= rX(x)
= rX(pr1(x; y))
= r̃(x; y)

for all x ∈ X, y ∈ Y, h ∈ H with sX(x) = sY(y) = rH(h). The arrow s0 : X×sX,H0,sY Y →
H is G-invariant because

s0(g · (x; y)) = sX(pr1(g · (x; y))
= sX(pr1(g · x; y))
= sX(g · x)
= sX(x)
= sX(pr1(x; y))
= s0(x; y)
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for all x ∈ X, y ∈ Y, g ∈ G with sX(x) = sY(y) and rX(x) = sG(g).
We know that the H-action (X; m2X; sX) is basic and the coordinate projection

pr1 : X×sX,H0,sY Y → X is an H-map. Hence the H-action (X×sX,H0,sY Y; m0; s0) is basic
by Lemma 5.64. Therefore, there are an orbit space, denote it by X ×H Y, and an
orbit space projection p̃ : X×sX,H0,sY Y � X×H Y of the H-action (X×sX,H0,sY Y; m0; s0).
We are going to define the left action of G on X ×H Y.

Consider the pull-back of the H-bundle (X ×sX,H0,sY Y; m0; s0) over the arrow
r̃ = rX ◦ pr1 : X ×sX,H0,sY Y → G0 along the cover sG : G1 � G0. It is a principal
bundle over (pr1; p̃ ◦ pr2) : G1 ×sG,G0,rX◦pr1

(X ×sX,H0,sY Y)� G1 ×sG,G0,α (X ×H Y) by
Lemma 5.50, where α : X ×H Y → G0 is the unique arrow such that r̃ = α ◦ p̃. Such
α exists because r̃ is H-invariant, and it is defined elementwise by α([x; y]) = rX(x).
The action map m̃ : G1×sG,G0,rX◦pr1

(X×sX,H0,sY Y)� X×sX,H0,sY Y is an H-map because

(g · (x; y)) · h = g · ((x; y) · h).

Therefore, it induces an arrow m : G1 ×sG,G0,α (X ×H Y) → X ×H Y such that m ◦
(pr1; p̃ ◦ pr2) = p̃ ◦ m̃. Elementwise g · [x; y] = [g · x; y]. Now, we need to show that
the triple (X ×H Y; m;α) defines a left G-action. We have

α(g · [x; y]) = α([g · x; y])
= rX(g · x)
= rG(g)

for all x ∈ X, y ∈ Y, g ∈ G1 with sX(x) = sL(y) and = rX(x) = sG(g). Since the
arrow (pr1; p̃ ◦ pr2) is a cover, it is a coequaliser and therefore, it is epic. Thus
α ◦m = rG ◦ pr1. This is property (1).

There is a diagram of pull-back squares

A G1 ×sG,G0 ,̃r (X ×sX,H0,sY Y)

B G1 ×sG,G0,α (X ×H Y)

G1 ×sG,G0,rG G1 G1,

pr2

(pr1;(pr1;p̃◦pr2)◦pr2) (pr1;p̃◦pr2)

pr2

pr1 pr1

pr2

where the object A is (G1×sG,G0,rG G1)×pr2,G1,pr1
(G1×sG,G0 ,̃r (X×sX,H0,sY Y)) and B is

(G1×sG,G0,rG G1)×pr2,G1,pr1
(G1×sG,G0 ,̃r (X×H Y)). Since the upper square is a pull-back

square, the arrow (pr1; (pr1; p̃ ◦ pr2) ◦ pr2) : A � B is a cover by Assumption 2.15
because it is a pull-back of the cover (pr1; p̃ ◦ pr2). Therefore, (pr1; (pr1; p̃ ◦ pr2) ◦ pr2)
is epic. We also have

g1 · (g · [x; y]) = g1 · [g · x; y]
= [g1 · (g · x); y]
= [(g1 · g) · x; y]
= (g1 · g) · [x; y]

for all x ∈ X, y ∈ Y, g, g1 ∈ G1 with sX(x) = sY(y), rX(x) = sG(g) and sG(g1) = rG(g).
Since the arrow (pr1; (pr1; p̃ ◦ pr2) ◦ pr2) is epic, the property (2) holds. That is,
m ◦ (pr1 ◦ pr1; m ◦ pr2) = m ◦ (mG ◦ pr1; pr2 ◦ pr2). We need one more property:

1α([x;y]) · [x; y] = 1rX(x) · [x; y]
= [1rX(x) · x; y]
= [x; y]
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for all x ∈ X, y ∈ Y with sX(x) = sY(y). Since p̃ : X ×sX,H0,sY Y � X ×H Y is epic, we
have m ◦ (uG ◦ α; idX) = idX. Therefore, the triple (X ×H Y; m;α) is a left G-action
by Remark 5.11.

Now, consider any H-map f : Y1 → Y2. Since sY2 ◦f = sY1 , we have a well-defined
arrow (pr1; f ◦pr2) : X×sX,H0,sY1

Y1 → X×sX,H0,sY2
Y2. Elementwise (x; y) 7→ (x; f(y)).

It is a G-map because it clearly commutes with the anchor maps and also we have
g · (x; f(y)) = (g · x; f(y)). It is an H-map, too, because

(x; f(y)) · h = (x · h; f(y) · h)
= (x · h; f(y · h))

for all x ∈ X, y ∈ Y1, h ∈ H1 with sX(x) = sY1(y) = rH(h) Therefore, the H-map
(pr1; f ◦ pr2) induces an arrow f̃ : X ×H Y1 → X ×H Y2 such that

f̃ ◦ p̃1 = p̃2 ◦ (pr1; f ◦ pr2), f̃([x; y]) = [x; f(y)].

Since the cover (pr1; p̃1 ◦ pr2) : G1 ×sG,G0 ,̃r1 (X×sX,H0,sY1
Y1)� G1 ×sG,G0,α1 (X×H Y1)

is epic and

f̃(g · [x; y]) = f̃([g · x; y])
= [g · x; f(y)]
= g · [x; f(y)]
= f̃([x; y])

for all x ∈ X, y ∈ Y1, g ∈ G1 with sX(x) = sY1(y) and rX(x) = sH(g), we have that
f̃ ◦m1 = m2 ◦ (pr1; f̃ ◦ pr2). Also

α2(f̃([x; y])) = α2([x; f(y)])
= rX(x)
= α1([x; y])

for all x ∈ X, y ∈ Y1 with sX(x) = sY1(y). Since p̃1 : X ×sX,H0,sY1
Y1 � X ×H Y1 is a

cover, it is epic and therefore, we have α2 ◦ f̃ = α1. Thus an H-map f : Y1 → Y2
gives a G-map f̃ : X ×H Y1 → X ×H Y2.

The last step is to show that

f̃2 ◦ f1 = f̃2 ◦ f̃1.

Consider two composable H-maps f1 : Y1 → Y2 and f2 : Y2 → Y3.

X ×sX,H0,sY1
Y1 X ×sX,H0,sY2

Y2 X ×sX,H0,sY3
Y3

X ×H Y1 X ×H Y2 X ×H Y3

(pr1;f1◦pr2)

p̃1

(pr1;f2◦pr2)

p̃2 p̃3

f̃1 f̃2

We have

f̃2 ◦ f1([x; y]) = [x; f2(f1(y))]
= f̃2([x; f1(y)])
= f̃2(f̃1([x; y]))
= (f̃2 ◦ f̃1)([x; y])

for all x ∈ X, y ∈ Y1 with sX(x) = sY1(y). The arrow (pr1; f2 ◦ f1 ◦ pr2) induces
a unique arrow f̃2 ◦ f1 such that the suitable square commutes by Lemma 5.51.
Therefore, f̃2 ◦ f1 = f̃2 ◦ f̃1. �
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Remark 6.10. Let (X; m1X; m2X; sX; rX) and (X1; m1X1 ; m2X1 ; sX1 ; rX1) be partial bibun-
dle actors from G to H. A G,H-map f : X→ X1 induces a G-map f̂ : X×HY → X1×HY.
The arrow

X ×sX,H0,sY Y (f◦pr1;pr2)−−−−−−−→ X1 ×sX1 ,H0,sY Y, (x; y) 7→ (f(x); y),
is an H-map because

(f ◦ pr1; pr2)((x; y) · h) = (f ◦ pr1; pr2)(x · h; y · h)
= (f(x · h); y · h)
= (f(x) · h; y · h)
= (f(x); y) · h
= (f ◦ pr1; pr2)(x; y) · h

for all x ∈ X, y ∈ Y, h ∈ H1 with sX(x) = sY(y) = rH(h). Therefore, it induces a
unique arrow f̂ : X×H Y → X1×H Y such that f̂ ◦ p̃ = p̃1 ◦ (f ◦ pr1; pr2). Elementwise
f̂([x; y]) = [f(x); y]. This arrow is a G-map because

f̂(g · [x; y]) = f̂([g · x; y])
= [f(g · x); y]
= [g · f(x); y]
= g · [f(x); y]
= g · f̂([x; y])

for all x ∈ X, y ∈ Y, g ∈ G1 with sX(x) = sY(y) = rH(h) and rX(x) = sG(g).

6.3. Bibundle functor. Let G = (G0; G1; rG; sG; mG) and H = (H0; H1; rH; sH; mH)
be groupoids in a category (C,Fp) with partial covers.

Definition 6.11. A (partial) bibundle functor from G to H is a G,H-bibundle
(X; m1X; m2X; sX; rX), where the right H-bundle (X; m2X; sX) is (partially) principal
over rX : X → G0. A bibundle functor from G to H is a (partially) covering if the
arrow sX : X→ H0 is a (partial) cover.

An important example is the bibundle functor from G to H associated to the
functor F : G→ H.

Example 6.12. Let F : G→ H be a functor between groupoids. There is a bibundle
functor (X; m1X; m2X; sX; rX) from G to H, where the left G-action (X; m1X; rX) is
the G-sheaf described in Example 5.26 and the right H-bundle (X; m2X; sX) is the
pull-back of the principal H-bundle described in Example 5.42 along the arrow
F0 : G0 → H0. We have to check that the multiplication maps commute. We have

(g · (g0;h)) · h1 = (rG(g);h) · h1

= (rG(g);h · h1)
= g · (g0;h · h1)
= g · ((g0;h) · h1)

for all g ∈ G1, g0 ∈ G0, h, h1 ∈ H1 with sG(g) = g0, F0(g0) = rH(h) and sH(h) =
rH(h1). The anchor map sX = sH ◦ pr2 is G-invariant because

sX(g · (g0;h)) = sX(rG(g);h)
= sH(h)
= sX(g0;h)

for all g ∈ G1, g0 ∈ G0, h ∈ H1 with sG(g) = g0 and F0(g0) = rH(h). Also, we
know that the H-bundle (X; m2X; sX) is partially principal by Lemma 5.50. It is



62

even a principal bundle because rH : H1 � H0 is a splitting cover and therefore,
pr1 : G0 ×F0,H0,rH H1 � G0 is a cover by Corollary 2.7. So we have all properties
needed for a bibundle functor. So (X; m1X; m2X; sX; rX) defines a bibundle functor
from G to H. Call such a bibundle functor associated to the functor F : G→ H.

Lemma 6.13. Under Assumptions 2.15 and 5.66, a bibundle functor from G to
H induces a functor from the category of right H-sheaves to the category of left
G-actions:

CF (H)→ C(G), Y 7→ X ×H Y.

Proof. The proof of this lemma and the proof of Lemma 6.9 are almost the same.
There are two differences. The first of them is that the object X ×sX,H0,sY Y exists
for different reasons: In the previous case we use that the arrow sX : X 99K H0 is a
partial cover and in this case we use that the arrow sY : Y � H0 is a cover because
(Y; mY; sY) is an H-sheaf.

The second difference is an argument why an H-action (X ×sX,H0,sY Y; m0; s0)
is basic. In the previous case this is Lemma 5.64. In this case the coordinate
projection pr1 : X ×sX,H0,sY Y � X is a cover as a pull-back of a cover sY : Y � H0

and therefore, (X ×sX,H0,sY Y; m0; s0) is basic by Lemma 5.67. �

Remark 6.14. In Lemma 6.13, under Assumption 2.18, the G-action (X ×H Y; m;α)
is a sheaf. That is, the anchor map α : X ×H Y → G0 is a cover. This anchor map
α : X ×H Y → G0 is induced by pr1 : X ×sX,H0,sY Y � X because α ◦ p̃ = rX ◦ pr1, and
pr1 : X×sX,H0,sY Y � X is a cover because it is a pull-back of sY : Y � H0. Therefore,
α : X ×H Y � G0 is a cover by Corollary 5.53.

Proposition 6.15. Assume Assumptions 2.15, 2.18 and 5.66. Let G, H and K be
groupoids in (C,Fp). Let (X; m1X; m2X; sX; rX) ≡ X and (Y; m1Y; m2Y; sY; rY) ≡ Y
be bibundle functors from G to H and from H to K, respectively. Then there is a
G,K-bibundle functor (Y ◦ X; m1; m2; s; r) from G to K. Call it a composition of
bibundle functors (X; m1X; m2X; sX; rX) ≡ X and (Y; m1Y; m2Y; sY; rY) ≡ Y and denote
it by Y ◦ X.

Proof. First of all, let us define all data in (Y ◦ X; m1; m2; s; r). According to
Lemma 5.18, we have a right H-action (Y; m1Y ◦ (iH ◦ pr2; pr1); rY) corresponding to
the left H-action (Y; m1Y; rY). Let (Y ◦X; m1; r) be the left G-action which is given by
the right H-action (Y; m1Y◦(iH◦pr2; pr1); rY) by using the functor described in Lemma
6.13, which is induced by the bibundle functor (X; m1X; m2X; sX; rX). Also, we need to
define the right K-action (X ×H Y; m2; s). Consider the pull-back (X ×sX,H0,rY Y; m̂; ŝ)
of the right K-bundle (Y; m2Y; sY) over rY : Y � H0 along the arrow sX : X → H0.
Let us show that the anchor map ŝ : X ×sX,H0,rY Y → K0 is H-invariant in the sense
of the right H-action (X ×sX,H0,rY Y; m0; s0), which is used for the construction of
the left G-action (X ×H Y; m1; r). This action is the fibre product of right H-actions
(X; m2X; sX) and (Y; m1Y ◦ (iH ◦ pr2; pr1); rY). We have

ŝ((x; y) · h) = sY(pr2(x · h;h−1 · y))
= sY(h−1 · y)
= sY(y)
= sY(pr2(x; y))
= ŝ(x; y)

for all x ∈ X, y ∈ Y, h ∈ H1 with sX(x) = rY(y) = rH(h). Therefore, there is a
unique arrow s : X ×H Y → K0 such that s ◦ p̃ = ŝ. Elementwise s([x; y]) = sY(y).
Now, consider a pull-back of the H-bundle over ŝ : X×sX,H0,rY Y → K0 along the cover
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rK : K1 � K0. It is a principal bundle over

(p̃ ◦ pr1; pr2) : (X ×sX,H0,rY Y)×ŝ,K0,rK K1 � (X ×H Y)×s,K0,rK K1

by Lemma 5.50. Let us show that the arrow

(X ×sX,H0,rY Y)×ŝ,K0,rK K1 m̂−→ X ×sX,H0,rY Y

is an H-map. We have

((x; y) · h) · k = (x · h;h−1 · y) · k
= (x · h; (h−1 · y) · k)
= (x · h;h−1 · (y · k))
= (x; y · k) · h
= ((x; y) · k) · h

forall x ∈ X, y ∈ Y, h ∈ H1, k ∈ K1 with sX(x) = rY(y) = rH(h) and sY(y) = rK(k).
Therefore, we have an induced arrow m2 : (X ×H Y)×s,K0,rK K1 → X ×H Y such that
m2 ◦ (p̃ ◦ pr1; pr2) = p̃ ◦ m̂. Elementwise [x; y] · k = [x; y · k].

We need to show that (X ×H Y; m2; s) is a right K-action. We have

s([x; y] · k) = s([x; y · k])
= sY(y · k)
= sK(k)

for all x ∈ X, y ∈ Y, k ∈ K1 with sX(x) = rY(y) and sY(y) = rK(k). Since the
arrow (p̃ ◦ pr1; pr2) is a cover, it is a coequaliser and therefore, it is epic. Thus
s ◦m2 = sK ◦ pr2. This is a property (1).

There is a diagram of pull-back squares

A B K1 ×sK,K0,rK K1

(X ×sX,H0,rY Y)×ŝ,K0,rK K1 (X ×H Y)×s,K0,rK K1 K1

((p̃◦pr1;pr2)◦pr1;pr2)

pr1 pr1

pr2

pr1

(p̃◦pr1;pr2) pr2

where the object A is ((X×sX,H0,rY Y)×ŝ,K0,rK K1)×pr2,K1,pr1
(K1 ×sK,K0,rK K1) and the

object B is ((X×H Y)×s,K0,rK K1)×pr2,K1,pr1
(K1×sK,K0,rK K1). Since the left square is a

pull-back square, the arrow ((p̃◦pr1; pr2)◦pr1; pr2) : A� B is a cover by Assumption
2.15 as the pull-back of the cover (p̃ ◦ pr1; pr2). Therefore, ((p̃ ◦ pr1; pr2) ◦ pr1; pr2) is
epic. We have

([x; y] · k) · k1 = [x; y · k] · k1

= [x; (y · k) · k1]
= [x; y · (k · k1)]
= [x; y] · (k · k1)

for all x ∈ X, y ∈ Y, k, k1 ∈ K1 with sX(x) = rY(y), sY(y) = rK(k) and sK(k) = rK(k1).
Since the arrow ((p̃ ◦ pr1; pr2) ◦ pr1; pr2) is epic, the property (2) holds. That is:
m2 ◦ (m2 ◦ pr1; pr2 ◦ pr2) = m2 ◦ (pr1 ◦ pr1; mK ◦ pr2). We need one more property.

[x; y] · 1s([x;y]) = [x; y · 1sY(y)]
= [x; y].

for all x ∈ X, y ∈ Y with sX(x) = rY(y). Since p̃ : X ×sX,H0,rY Y � X ×H Y is
epic, we have m2 ◦ (id(X×HY); uK ◦ s) = id(X×HY). So (5.2) holds. Therefore, the
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triple (X ×H Y; m2; s) is a right K-action by Lemma 5.7. We have to prove that
(X ×H Y; m1; m2; s; r) is a G,K-bibundle. We have

r([x; y] · k) = r([x; y · k])
= rX(x)
= r([x; y])

for all x ∈ X, y ∈ Y, k ∈ K1 with sX(x) = rY(y) and sY(y) = rK(k). Since the
arrow (p̃ ◦ pr1; pr2) : (X×sX,H0,rY Y)×ŝ,K0,rK K1 � (X×H Y)×s,K0,rK K1 is epic, we have
r ◦m2 = r ◦ pr1. So r : X ×H Y → G0 is K-invariant. Also, we have

s(g · [x; y]) = s([g · x; y])
= sY(y)
= s([x; y]).

Since the arrow (pr1; p̃◦pr2) : G1×sG,G0 ,̃r (X×sX,H0,rY Y)� G1×sG,G0,r (X×H Y) is epic,
we have s◦m1 = s◦pr2. So s : X×H Y → K0 is G-invariant. We also have to show that
the action maps m1 and m2 commutes. The arrow ((pr1; p̃◦pr2)◦pr1; (p̃◦pr1; pr2)◦pr2)
from (G1 ×sG,G0 ,̃r (X ×sX,H0,rY Y)) ×pr2,(X×sX,H0,rY

Y),pr1
((X ×sX,H0,rY Y) ×ŝ,K0,rK K1) to

(G1 ×sG,G0,r (X ×H Y)) ×pr2,(X×HY),pr1
((X ×H Y) ×s,K0,rK K1) is epic because it is a

composition of epics.

((pr1; p̃◦pr2)◦pr1; (p̃◦pr1; pr2)◦pr2) = ((pr1; p̃◦pr2)◦pr1; pr2)◦(pr1; (p̃◦pr1; pr2)◦pr2).

The right term of the composition is epic because it is a pull-back of the cover
(p̃ ◦ pr1; pr2). And the left term of the composition is epic because it is a pull-back
of the cover (pr1; p̃ ◦ pr2). So ((pr1; p̃ ◦ pr2) ◦ pr1; (p̃ ◦ pr1; pr2) ◦ pr2) is epic. We have

g · ([x; y] · k) = g · [x; y · k]
= [g · x; y · k]
= [g · x; y · k]
= [g · x; y] · k
= (g · [x; y]) · k

for all x ∈ X, y ∈ Y, g ∈ G1, k ∈ K1 with sX(x) = rY(y), rX(x) = sG(g), sY(y) = rK(k).
Since the arrow ((pr1; p̃◦pr2)◦pr1; (p̃◦pr1; pr2)◦pr2) is epic, the action maps m1 and m2
commute: m1 ◦ (pr1 ◦pr1; m2 ◦pr2) = m2 ◦ (m1 ◦pr1; pr2 ◦pr2). So (X×H Y; m1; m2; s; r)
is a G,K-bibundle. The last step is to show that (X ×H Y; m2; s) is a principal
K-bundle over r : X ×H Y → G0.

The coordinate projection pr1 : X×sX,H0,rY Y � X, as a pull-back of rY : Y � H0, is
a cover. Since r◦ p̃ = r̃ = rX ◦pr1 and the coordinate projection pr1 : X×sX,H0,rY Y � X
is an H-map in the sense of H-bundles (X ×sX,H0,rY Y; m0; s0) and (X; m2X; sX), it
induces the arrow r : X ×H Y → G0. Therefore, r : X ×H Y � G0 is a cover by
Corollary 5.53. Also, we need to show that the arrow

(6.1) (X ×H Y)×s,K0,rK K1 (pr1;m2)−−−−−→ (X ×H Y)×r,G0,r (X ×H Y)

is an isomorphism.
We know that (X×sX,H0,rY Y; m̂; ŝ) is the pull-back of the right principal K-bundle

(Y; m2Y; sY) over rY : Y � H0 along the arrow sX : X → H0. Thus this K-action
(X×sX,H0,rY Y; m̂; ŝ) is a principal bundle over pr1 : X×sX,H0,rY Y � X by Remark 5.47.
Therefore, we have the following isomorphism:

(6.2) (X ×sX,H0,rY Y)×ŝ,K0,rK K1 (pr1;m̂)−−−−→ (X ×sX,H0,rY Y)×pr1,X,pr1 (X ×sX,H0,rY Y).
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We know from Lemma 5.65 that the fibre product of the H-map pr1 : X×sX,H0,rY Y � X
on itself is a principal H-bundle over
(p̃ ◦ pr1; p̃ ◦ pr2) : (X×sX,H0,rY Y)×pr1,X,pr1 (X×sX,H0,rY Y)� (X×H Y)×r,G0,r (X×H Y).
Since the arrow sY : Y → K0 is H-equivariant, the arrow sY ◦ pr2 : X×sX,H0,rY Y → K0

is H-equivariant, too. Therefore, we can consider the pull-back of the H-bundle
(X ×sX,H0,rY Y; m̂; ŝ) over sY ◦ pr2 along the cover rK : K1 � K0. It is a principal H-
bundle over (p̃◦pr1; pr2) : (X×sX,H0,rY Y)×ŝ,K0,rK K1 � (X×H Y)×s,K0,rK K1 by Lemma
5.50. Since m2 ◦ (p̃ ◦ pr1; pr2) = p̃ ◦ m̂, the arrow 6.1 is induced by the isomorphism
in 6.2. Therefore, 6.1 is an isomorphism by Corollary 5.54. So (Y ◦ X; m1; m2; s; r) is
a bibundle functor from G to K. �

Corollary 6.16. Under Assumptions 2.14, 2.15, 2.18, 2.19 and 5.63, we can
compose bibundle actors as in Proposition 6.15.
Proof. The proof is almost the same. We just use the cover p : X � Z instead of
the cover rX : X � G0. One of the differences is that in this case we have to show
that the anchor map s : X ×G Y → K0 is a cover. We have s ◦ p̃ = sY ◦ pr2. The
coordinate projection pr2 : X ×sX,H0,rY Y � Y is a cover because it is a pull-back
of the cover sX : X � H0. Thus sY ◦ pr2 is a cover by Assumption 2.14. Since
p̃ : X ×sX,H0,rY Y � X ×G Y is a cover, the anchor map s : X ×G Y → K0 is a cover,
too by Assumption 2.19.

Also, there is one more important difference from the proof of Proposition 6.15.
We have to find an orbit space projection of the K-action on X×H Y. For this we must
define the right H-action on Z elementwise by [y] · h = [h−1 · y], and then consider
the fibre product of H-actions on X and Z and get the H-action on X ×sX,H0,α Z
defined elementwise by (x; [y]) · h = (x · h; [h−1 · y]). This action is basic because
the coordinate projection pr1 : X×sX,H0,α Z→ X is an H-map, and then, similarly as
in case of bibundle functors, we can deduce that the orbit space projection of the
K-action on X ×H Y is a cover from X ×H Y to X ×H Z induced by the orbit space
projection (pr1; p◦pr2) : X×sX,H0,rY Y � X×sX,H0,α Z of the H-action on X×sX,H0,rY Y.
Here α : Z→ H0 is the unique arrow such that α ◦ p = rY. �

Remark 6.17. Consider the following assumption. If f ◦ g is a partial cover and
g is a cover then f is a partial cover. This assumption holds in most examples
of categories with partial covers which are discussed in this thesis. Under this
assumption we can compose partial bibundle actors. We have to check that the
anchor map s : X ×G Y → K0 is a partial cover. We have that s ◦ p̃ is a partial cover
and p̃ is a cover. Therefore, s : X×G Y 99K K0 is a partial cover by assumption above.
Remark 6.18. The composition of (partial) bibundle actors is a naturally asso-
ciative. Consider three composable (partial) bibundle actors (X; m1X; m2X; sX; rX),
(Y; m1Y; m2Y; sY; rY) and (Z; m1Z; m2Z; sZ; rZ) from G to H, from H to K and from K
to L, respectively. The object Y ×sY,K0,rZ Z with obvious actions of H and K on it is
a (partial) bibundle actor from H to K. Hence we can consider the composition of
this (partial) bibundle actor and (X; m1X; m2X; sX; rX). We get a (partial) bibundle
actor from G to K defined by the object X ×H (Y ×sY,K0,rZ Z) and by suitable G and
K actions on it. We know from the proof of Corollary 6.16 that an orbit space of
the K-action on X ×H (Y ×sY,K0,rZ Z) is X ×H (Y ×K Z). Also, we have a natural
isomorphism X ×H (Y ×sY,K0,rZ Z) ∼= (X ×H Y) ×s′,K0,rZ Z induced by the canonical
isomorphism X×sX,H0,rY◦pr1

(Y×sY,K0,rZ Z) ∼→ (X×sX,H0,rY Y)×sYpr2,K0,rZ Z in the sense
of the H-actions defined elementwise by (x; (y; z)) · h = (x · h; (h−1 · y; z)) and
((x; y); z) · h = (x · h;h−1 · y); z), respectively. An orbit space of the K-action on
(X ×H Y)×s′,K0,rZ Z is (X ×H Y)×K Z by construction. Therefore, we have a natural
isomorphism X ×H (Y ×K Z) ∼= (X ×H Y)×K Z.
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6.4. Bibundle equivalence. In this subsections we define equivalence of groupoids.
It is the same as Morita equivalence. Let G = (G0,G1, rG, sG,mG) and H =
(H0,H1, rH, sH,mH) be groupoids in the category (C,Fp) with partial covers.

Definition 6.19. A (partial) bibundle equivalence from G to H is a G,H-bibundle
(X; m1X; m2X; sX; rX), where the right H-bundle (X; m2X; sX) is (partially) principal
over rX : X → G0 and the left G-bundle (X; m1X; rX) is (partially) principal over
sX : X→ G0. Then we call the groupoids G and H equivalent.

Remark 6.20. A bibundle equivalence from G to H is also a bibundle actor and a
bibundle functor. It has all required properties of being such kinds of generalised
morphisms.

Lemma 6.21. Under Assumptions 2.15, 2.18 and 5.66, equivalence of groupoids as
defined in Definition 6.19 is reflexive, symmetric and transitive.

Proof. Equivalence is reflexive because for any groupoid G = (G0,G1, r, s,m) the left
and right translation actions define a bibundle equivalence (G1; m; m; s; r) ≡ G1 from
G to G because of the properties (2), (3) and (4) in Definition 3.1.

Equivalence is symmetric, too, because we can use Lemma 5.18 and change
the left G-action and right H-action with a suitable right G-action and left H-
action, respectively, and they will give a bibundle equivalence from H to G. Thus
if (X; m1X; m2X; sX; rX) ≡ X is a bibundle equivalence from G to H then (X; m2X ◦
(pr2; iH ◦ pr1); m1X ◦ (iG ◦ pr2; pr1); rX; sX) ≡ X−1 is a bibundle equivalence from H to
G.

If (X; m1X; m2X; sX; rX) ≡ X and (Y; m1Y; m2Y; sY; rY) ≡ Y are bibundle equiva-
lences from G to H and from H to R, respectively, then their composition, as a
bibundle functors, is a bibundle functor from G to R. We are going to show that this
composition (X×H Y; m1; m2; s; r) ≡ Y◦X, described in the proof of Propesition 6.15,
is a bibundle equivalence from G to R. We need to show that the left G-bundle
(X ×H Y; m1; r) over s : X ×H Y → R0 is principal. We have an analogous situation
as in the case of the right principal R-bundle (X ×H Y; m2; s) over r : X ×H Y � G0.
The anchor map s : X ×H Y → R0 is a cover because it is induced by the cover
pr2 : X ×sX,H0,rY Y � Y, which is a pull-back of sX : X� H0. Also, we need to show
that the arrow

G1 ×sG,G0,r (X ×H Y) (m1;pr2)−−−−−→ (X ×H Y)×s,R0,s (X ×H Y)
is an isomorphism. That is right because it is induced by the following isomorphism:

G1 ×sG,G0 ,̃r (X ×sX,H0,rY Y) (m̃;pr2)−−−−→ (X ×sX,H0,rY Y)×pr2,Y,pr2 (X ×sX,H0,rY Y).
�

This proof shows that we can compose bibundle equivalences like bibundle actors
and bibundle functors.

Lemma 6.22. Assume Assumptions 2.15, 2.18 and 5.66. The bibundle equivalence
(G1; m; m; s; r) ≡ G1 from a groupoid G to itself is an identity in the sense of the
composition of bibundle actors, and each bibundle equivalence is invertible in the
same sense.

Proof. Let (X; m1X; m2X; sX; rX) ≡ X be a bibundle equivalence from G to H, and
let (G ×G X; m1; m2; s; r) ≡ X ◦ G1 be a composition of (G1; m; m; s; r) ≡ G1 and
(X; m1X; m2X; sX; rX) ≡ X. The object G1 ×G X is an orbit space of the G-action on
G1×sG,G0,rX X defined elementwise by (g;x)·g1 = (g ·g1; g−1

1 ·x). Also, there is the right
G-action on G1×rG,G0,rX X defined by pulling back the left G-bundle (G1; mG; sG) over
the range map rG : G1 � G0 along rX : X� G0. This action is defined elementwise
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by (g;x) · g1 = (g · g1;x). The coodrinate projection pr2 : G1 ×rG,G0,rX X � X is an
orbit space projection of this action by Lemma 5.50. The isomorphism

(pr1; m1X) : G1 ×sG,G0,rX X→ G1 ×rG,G0,rX X

is a G-map because

(pr1; m1X)((g;x) · g1) = (pr1; m1X)(g · g1; g−1
1 · x)

= (g · g1; g · g1 · g−1
1 · x)

= (g · g1; g · x)
= (g; g · x) · g1

= (pr1; m1X)(g;x) · g1.

Also, it clearly commutes with anchor maps, and therefore, it induces an isomorphism
ϕ : G1×GX ∼→ X such that ϕ◦p̃ = pr2◦(pr1; m1X) = m1X. Elementwise ϕ([g;x]) = g·x.
This isomorphism is a G,H-map because

ϕ(g1 · [g;x]) = ϕ([g1 · g;x])
= g1 · g · x
= g1 · (ϕ([g;x]),

and

ϕ([g;x] · h) = ϕ([g;x · h])
= g · x · h
= (ϕ([g;x]) · h.

Therefore, it gives the isomorphism between G,H-bibundles X and X ◦G1. Analo-
gously, we can construct a G,H-isomorphism between X and H1 ◦ X

Consider the composition of the bibundle equivalence (X; m1X; m2X; sX; rX) from G
to H and the bibundle equivalence (X; m2X ◦ (pr2; iH ◦ pr1); m1X ◦ (iG ◦ pr2; pr1); rX; sX)
from H to G. The object X×HX is the orbit space of the right H-action on X×sX,H0,sX X
defined elementwise by (x;x1) · h = (x · h;h−1 · x1) = (x · h;x1 · h). Also, there
is the right H-action on G1 ×sG,G0,rX X defined by pulling back the right H-bundle
(X; m2X; sX) over rX : X � G0 along the source map sG : G1 � G0. This action is
defined elementwise by (g;x) · h = (g;x · h). This action is a principal bundle over
pr1 : G1 ×sG,G0,rX X� G1 by Lemma 5.50. The isomorphism

(m1X; pr2) : G1 ×sG,G0,rX X→ X ×sX,H0,sX X

is an H-map because

(m1X; pr2)((g;x) · h) = (m1X; pr2)(g;x · h)
= (g · (x · h);x · h)
= ((g · x) · h;x · h)
= (g · x;x) · h
= (m1X; pr2)(g;x) · h.

Also, it clearly commutes with anchor maps, and therefore, it induces an isomorphism
ψ : G1 ∼→ X ×G X such that ψ ◦ pr1 = p̃ ◦ (m1X; pr2). Elementwise ψ(g) = [g · x;x]
This isomorphism is a G,G-map in the sense of G,G-bibundles (G1; m; m; s; r) and
the composition of the bibundle equivalence (X; m1X; m2X; sX; rX) from G to H and
the bibundle equivalence (X; m2X ◦ (pr2; iH ◦ pr1); m1X ◦ (iG ◦ pr2; pr1); rX; sX) from H
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to G because
ψ(g1 · g) = [(g1 · g) · x;x]

= [g1 · (g · x);x]
= g1 · [g · x;x]
= g1 · ψ(g),

and
ψ(g · g1) = [(g · g1) · (g−1

1 · x); (g−1
1 · x)]

= [g · x; g−1
1 · x]

= [g · x;x] · g1 = ψ(g) · g1.

So the composition of the bibundle equivalence (X; m1X; m2X; sX; rX) from G to H
and the bibundle equivalence (X; m2X ◦ (pr2; iH ◦ pr1); m1X ◦ (iG ◦ pr2; pr1); rX; sX) from
H to G gives a bibundle equivalence isomorphic to (G1; m; m; s; r). Therefore, the
bibundle equivalence (X; m2X ◦ (pr2; iH ◦ pr1); m1X ◦ (iG ◦ pr2; pr1); rX; sX) is an inverse
of the bibundle equivalence (X; m1X; m2X; sX; rX). �

7. Generalised groupoid actions

In this section, we discuss generalised groupoid actions. Let G,H, L,K and R be
groupoids in the category (C,Fp) with partial covers.

Definition 7.1. We say that the groupoid H acts on the groupoid G by a groupoid
fibration F : L� H if the fibre of F is G. We call this a generalised groupoid action.

Proposition 7.2. Under Assumptions 2.14, 2.15, 2.18, 2.19 and 5.63, a generalised
groupoid action can be transformed along a bibundle equivalence. That is, if H acts
on G by a groupoid fibration F : L� H and if G and K are equivalent, then we can
construct an action of H on K. In other words, we can construct a groupoid fibration
E : R� H with fibre K such that R and L are equivalent.

Proof. The first step of the proof is to construct the arrows of the groupoid R.
Let (X; m1X; m2X; sX; rX) be a bibundle equivalence from G to K. Since the range
map rL : L1 � L0 is a cover, there is an object X ×rX,L0,rL L1. Consider the fibre
product (X ×rX,L0,rL L1; m1; r1) of the right G-actions (X; m1X ◦ (iG ◦ pr2; pr1); rX) and
(L1,mL ◦ (iL ◦pr1 ◦pr2; pr1), sL) (see Example 5.25). This action is defined elementwise
by

(x; l) · g = (g−1 · x; g−1 · l)
for all x ∈ X, g ∈ G1, l ∈ L1 with rX(x) = rL(l) = rG(g). We know that this action is
principal, too, by Assumption 5.63. Therefore, there is an orbit space projection

p1 : X ×rX,L0,rL L1 � X ×G L1, (x; l) 7→ [x; l].
The arrow sL ◦ pr2 : X ×rX,L0,rL L1 → L0 is G-invariant because

sL(pr2((x; l) · g) = sL(pr2(g−1 · x; g−1 · l))
= sL(g−1 · l)
= sL(l) = sL(pr2(x; l)).

Therefore, we can consider the pull-back of the G-bundle (X ×rX,L0,rL L1; m1; r1) over
sL ◦ pr2 : X ×rX,L0,rL L1 → L0 along the cover rG : G1 � L0. This G-action is a right
principal G-bundle over

(p1 ◦ pr1; pr2) : (X ×rX,L0,rL L1)×sL◦pr2,L0,rG G1 � (X ×G L1)×s2,L0,rG G1

by Lemma 5.50, where s2 : X×GL1 → L0 is the unique arrow such that s2◦p1 = sL◦pr2.
Elementwise s2([x; l]) = sL(l). Let us show that m′2 is G-invariant, where m′2 is the
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action map of the pull-back of the right G-bundle (L1; mL ◦ (pr1; pr1 ◦ pr2); sL) over
rL : L1 � L0 along the cover rX : X� L0. This action map is defined elementwise by
(x; l) · g = (x; l · g). We have

((x; l) · g) · g1 = (g−1 · x; g−1 · l) · g1

= (g−1 · x; (g−1 · l) · g1)
= (g−1 · x; g−1 · (l · g1))
= (x; l · g1) · g
= ((x; l) · g1) · g

for all x ∈ X, g, g1 ∈ G1, l ∈ L1 with rX(x) = rL(l) = rG(g) and sL(l) = rG(g1). This
shows that the action map m′2 is G-invariant. Therefore, it induces a unique arrow
m2 : (X ×G L1) ×s2,L0,rG G1 → (X ×G L1) such that m2 ◦ (p1 ◦ pr1; pr2) = p1 ◦ m′2.
Elementwise [x; l] · g = [x; l · g]. Let us show that (X×G L1; m2; s2) is a right G-action.
We have

s2([x; l] · g) = s2([x; l · g])
= sL(l · g)
= sL(g).

So the property (1) holds. Also

([x; l] · g) · g1 = ([x; l · g]) · g1

= [x; (l · g) · g1]
= [x; l · (g · g1)]
= [x; l] · (g · g1).

That gives (2). And [x; l] · 1s2([x;l]) = [x; l · 1sL(l)] = [x; l]. So (X ×G L1; m2; s2) is a
right G-action.

Consider the fibre product ((X ×G L1) ×s2,L0,rX X; m3; r3) of the right G-actions
(X ×G L1; m2; s2) and (X; m1X ◦ (iG ◦ pr2; pr1); rX). This action is defined elementwise
by

([x; l];x1) · g = ([x; l · g]; g−1 · x1)
for all x, x1 ∈ X, g ∈ G1, l ∈ L1 with rX(x) = rL(l) and rX(x1) = sL(l) = rG(g).
We know that the coordinate projection pr2 : (X ×G L1)×s2,L0,rX X→ X is a G-map.
Therefore, ((X ×G L1) ×s2,L0,rX X; m3; r3) is a principal G-bundle over some cover
p3 : (X ×G L1)×s2,L0,rX X� X ×G L1 ×G X by Lemma 5.64. We are going to use this
object X ×G L1 ×G X as arrows of the groupoid R. So let

R1 = X ×G L1 ×G X.

The next step is to define the groupoid structure on R. It is obvious that
R0=K0 because K must be a fibre of the groupoid fibration E : R� H. The G-map
pr2 : (X ×G L1) ×s2,L0,rX X → X induces a unique arrow sR : X ×G L1 ×G X → K0

such that sR ◦ p3 = sX ◦ pr2. Elementwise sR([[x; l];x1]) = sX(x1). The G-map
pr1 : X×rX,L0,rL L1 → X induces the arrow r′R : X×GL1 → K0 such that r′R◦p1 = sX◦pr1.
Elementwise r′R([x; l]) = sX(x). The arrow r′R ◦ pr1 : (X ×G L1) ×s2,L0,rX X → K0 is
G-invariant in the sense of the G-action ((X ×G L1)×s2,L0,rX X; m3; r3) because

r′R(pr1(([x; l];x1) · g)) = r′R(pr1([x; l · g]; g−1 · x1))
= r′R([x; l · g])
= sX(x)
= r′R([x; l])
= r′R(pr1([x; l];x1))
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for all x, x1 ∈ X, g ∈ G1, l ∈ L1 with rX(x) = rL(l) and rX(x1) = sL(l) = rG(g).
Therefore, there is a unique arrow rR : X×G L1×G X→ K0 such that rR ◦p3 = r′R ◦pr1.
Elementwise rR([[x; l];x1]) = r′R([x; l]). For any element

((x; l);x1) ∈ (X ×rX,L0,rL L1)×sL◦pr2,L0,rX X
we can write rR([[x; l];x1]) = r′R([x; l]) = sX(x). Here the element

[[x; l];x1] ∈ X ×G L1 ×G X
is understood as the composition p3 ◦ (p1 ◦ pr1; pr2) ◦ ((x; l);x1).

We have two arrows, sR and rR. The arrow sR is a cover because it is induced
by the coordinate projection pr2 : (X ×G L1) ×s2,L0,rX X → X, which is a pull-back
of s2 : X ×G L1 → L0, which is a cover under Assumptions 2.14 and 2.19 because
s2 ◦ p1 = sL ◦ pr2. Under these assumptions, the arrow rR is a cover, too, because
rR ◦ p3 = r′R ◦ pr1, where pr1 is a cover, as a pull-back of the cover rX, and r′R is a
cover, as a map induced by the cover pr1 : X×rX,L0,rL L1 � X. So sR and rR are covers
and we use them as the source and range maps of R, respectively.

Consider the fibre product (L1 ×sL;L0;rL L1; m4; r4) of the basic right G-actions
(L1,mL ◦ (pr1; pr1 ◦pr2), sL) and (L1; mL ◦ (iL ◦pr1 ◦pr2; pr1); rL). This action is defined
elementwise by

(l1; l2) · g = (l1 · g; g−1 · l2)
for all g ∈ G1, l1, l2 ∈ L1 with sL(l1) = rG(g) = rL(l2). We know that this action
is basic by Assumption 5.63. Let the cover p4 : L1 ×sL;L0 L1 � L1 ×G L1 be the
orbit space projection of this action. The multiplication map of the groupoid L
is G-invariant because (l1 · g) · (g−1 · l2) = l1 · (g · g−1) · l2 = l1 · l2. Therefore,
there is a unique arrow m′R : L1 ×G L1 → L1 such that m′R ◦ p4 = mL. Elementwise
m′R([l1; l2]) = l1 · l2. We use this map to define the multiplication map mR.

We know that the bibundle equivalence (X; m1X; m2X; sX; rX) ≡ X from G to K is a
bibundle actor from G to K. Let X−1 be the bibundle actor from K to G, described in
Lemma 6.22. Let L1 be the bibundle actor from G to itself described in Example 6.8.
By construction, the object of the composition of bibundle actors

X ◦ (L1 ◦ X−1)
is R1 = X×G L1×G X.We know that the composition of bibundle actors is associative.
Thus X ◦ (L1 ◦X−1) ∼= (X ◦L1) ◦X−1. So an element [[x; l];x1] of R1 = X×G L1×G X
can be understood as p′3 ◦ (pr1; p′1 ◦ pr2) ◦ (x; (l;x1)), we just write [x; l;x1].

The object of the composition L1 ◦ L1 is L1 ×G L1, by construction. We have the
left and right G-actions on L1 ×G L1 defined elementwise by g · [l1; l2] = [g · l1; l2]
and [l1; l2] · g = [l1; l2 · g], which define the bibundle actor L1 ◦ L1 from G to itself.
In the sense of these actions the arrow m′R : L1 ×G L1 → L1 is G,G-map because

m′R(g · [l1; l2]) = m′R([g · l1; l2])
= (g · l1) · l2
= g · (l1 · l2)
= g ·m′R([l1; l2])

and,
m′R([l1; l2] · g) = m′R([l1; l2 · g])

= l1 · (l2 · g)
= (l1 · l2) · g
= m′R([l1; l2]) · g.

Therefore, we have an induced G-map m′′R : X ×G L1 ×G L1 ×G X→ X ×G L1 ×G X by
Remark 6.10. It is defined elementwise by m′′R([x1; l1; l2;x2]) = [x1; l1 · l2;x2]. Since
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the composition of bibundle actors is associative, which is explained in Remark 6.18,
we have the following natural isomorphisms:

(X ◦ L1 ◦ X−1) ◦ (X ◦ L1 ◦ X−1) ∼= X ◦ L1 ◦ (X−1 ◦ X) ◦ L1 ◦ X−1

∼= X ◦ L1 ◦G1 ◦ L1 ◦ X−1

∼= X ◦ L1 ◦ L1 ◦ X−1,

where G1 is the unit bibundle actor from G to itself. Hence there is the following
arrow

m′′′R : (X ×G L1 ×G X)×K (X ×G L1 ×G X)→ X ×G L1 ×G X,
defined elementwise by

m′′′R ([[x; l;x1]; [x′; l′;x′1]]) = [x; l · g · l′;x′1]

for all x, x1, x
′, x′1 ∈ X, l, l′ ∈ L1 with rX(x) = rL(l), rX(x1) = sL(l), rX(x′) = rL(l′),

rX(x′1) = sL(l′) and sX(x1) = sX(x′), where g ∈ G1 is the element which is given
by the following composition pr1 ◦ (pr1; m1X)−1 ◦ (x2;x′1). Now, we can define the
multiplication map of the groupoid R. Let mR = m′′′R ◦ p′′′, where p′′′ is an orbit
space projection of the right K-action on (X ×G L1 ×G X) ×sR,K0,rR (X ×G L1 ×G X)
defined elementwise by

([x; l;x1]; [x′; l′;x′1]) · k = ([x; l;x1 · k]; [x′ · k; l′;x′1])

for all x, x1, x
′, x′1 ∈ X, l, l′ ∈ L1, k ∈ K1 with sX(x1) = sX(x′) = rK(k), rX(x) = rL(l),

rX(x1) = sL(l), rX(x′) = rL(l′) and rX(x′1) = sL(l′). So the multiplication map of the
groupoid R is defined elementwise by

[x; l;x1] · [x′; l′;x′1] = [x; l · g · l′;x′1]

for all x, x1, x
′, x′1 ∈ X, l, l′ ∈ L1 with rX(x) = rL(l), rX(x1) = sL(l), rX(x′) = rL(l′),

rX(x′1) = sL(l′) and sX(x1) = sX(x′), where g ∈ G1 is the element considered above.
Consider the following composition

X ((idX;uL◦rX);idX)−−−−−−−−−−→ (X ×rX,L0,rL L1)×sL◦pr2,L0,rX X (p1◦pr1;pr2)−−−−−−−→ (X ×G L1)×s2,L0,rX X.

It is a G-map in the sense of the right G-actions (X; m1X ◦ (iG ◦ pr2; pr1); rX) and
((X ×G L1) ×s2,L0,rX X; m3; r3) described above because it clearly commutes with
anchor maps and

([x · g; 1rX(x·g)];x · g) = ([g−1 · x; 1rX(g−1·x)]; g−1 · x)
= ([g · g−1 · x; g · 1rX(g−1·x)]; g−1 · x)
= ([x; g]; g−1 · x)
= ([x; 1rG(g)] · g; g−1 · x)
= ([x; 1rX(x)] · g;x · g)
= ([x; 1rX(x)];x) · g.

Therefore, there is a unique arrow uR : K0 → X ×G L1 ×G X such that

uR ◦ sX = p3 ◦ (p1 ◦ pr1; pr2) ◦ ((idX; uL ◦ rX); idX), uR(k0) = [x; 1rX(x);x]

for all k0 ∈ K0, x ∈ X with sX(x) = k0.

Consider the following isomorphism

i′R : (X ×rX,L0,rL L1)×sL◦pr2,L0,rX X (pr1◦pr1;(iL◦pr2◦pr1;pr2))−−−−−−−−−−−−−−−→ X ×rX,L0,rL◦pr1
(L1 ×sL,L0,rX X).

Elementwise i′R((x; l);x1) = (x1; (l−1;x)). This isomorphism is a G-map in the sense
of the G-actions defined elementwise by ((x; l);x1) · g = ((g−1 · x; g−1 · l);x1) and



72

(x; (l;x1)) · g = (x; (l · g; g−1 · x1), respectively, because it clearly commutes with
anchor maps and

i′R((x; l);x1) · g = (x1; (l−1;x)) · g
= (x1; (l−1 · g; g−1 · x))
= (x1; ((g−1 · l)−1; g−1 · x))
= i′R((g−1 · x; g−1 · l);x1)
= i′R(((x; l);x1) · g)

for all x, x1 ∈ X, g ∈ G1, l ∈ L1 with rX(x) = rL(l) = rG(g) and rX(x1) = sL(l). Hence
it induces an isomorphism

i′′R : (X ×G L1)×s2,L0,rX X→ X ×rX,L0,r2 (L1 ×G X)
such that i′′R([x; l];x1) = (x1; [l−1;x]).We also have the G-actions defined elementwise
by ([x; l];x1) · g = ([x; l · g]; g−1 · x1) and (x; [l;x1]) · g = (g−1 · x; [g−1 · l;x1]). The
isomorphism i′′R is a G-map in the sense of these actions because it clearly commutes
with anchor maps and

i′′R([x; l];x1) · g = (x1; [l−1;x]) · g
= (g−1 · x1; [g−1 · l−1;x])
= (g−1 · x1; [(l · g)−1;x])
= i′′R([x; l · g]; g−1 · x1)
= i′′R(([x; l];x1) · g)

for all x, x1 ∈ X, g ∈ G1, l ∈ L1 with rX(x) = rL(l) and rX(x1) = sL(l) = rG(g).
Therefore, it induces the following isomorphism

iR : X ×G L1 ×G X→ X ×G L1 ×G X,
such that iR([x; l;x1]) = [x1; l−1;x] for all x, x1 ∈ X, l ∈ L1 with rX(x) = rL(l) and
rX(x1) = sL(l). We are going to show that the data R = (R0,R1, rR, sR,mR, uR, iR)
defined above is a groupoid in the category (C,Fp) with partial covers.

We have shown above that rR and sR are covers, which is the property (1). Now
let us check the property (2). Let [x; l;x1] and [x′; l′;x′1] be composable pairs in R1.
We have

rR([x; l;x1] · [x′; l′;x′1]) = rR([x; l · g · l′;x′1])
= sX(x)
= rR([x; l;x1])

and
sR([x; l;x1] · [x′; l′;x′1]) = sR([x; l · g · l′;x′1])

= sX(x′1)
= sR([x′; l′;x′1])

for all x, x1, x
′, x′1 ∈ X, l, l′ ∈ L1 with sX(x1) = sX(x′), rX(x) = rL(l), rX(x1) = sL(l),

rX(x′) = rL(l′) and rX(x′1) = sL(l′). So we have the property (2).
Consider a composable triple of arrows in R1. We have

([x; l;x1] · [x′; l′;x′1]) · [x′′; l′′;x′′1 ] = [x; l · g · l′;x′1] · [x′′; l′′;x′′1 ]
= [x; (l · g · l′) · g1 · l′′;x′′1 ],

and
[x; l;x1] · ([x′; l′;x′1] · [x′′; l′′;x′′1 ]) = [x; l;x1] · [x′; l′ · g′1 · l′′;x′′1 ]

= [x; l · g′ · (l′ · g′1 · l′′);x′′1 ].
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By definition of the multiplication in R1 we know that the elements g ∈ G1 and
g′ ∈ G1 are given by the composition pr1 ◦ (pr1; m1X)−1 ◦ (x1;x′). So g = g′. For the
same reason g1 = g′1. Hence

([x; l;x1] · [x′; l′;x′1]) · [x′′; l′′;x′′1 ] = [x; l;x1] · ([x′; l′;x′1] · [x′′; l′′;x′′1 ]).

Therefore, the multiplication map mR is associative. This is (3).
We are going to check all properties in Proposition 3.8 and deduce that R is a

groupoid by Proposition 3.11. Consider any element k0 in R0 and any element x in
X such that sX(x) = k0. We have rR(uR(k0)) = rR([x; 1rX(x);x]) = sX(x) = k0, and
sR(uR(k0)) = sR([x; 1rX(x);x]) = sX(x) = k0. Thus the property (1) holds. Also, we
have

uR(rR([x; l;x1])) · [x; l;x1] = uR(sX(x)) · [x; l;x1]
= [x; 1rX(x);x] · [x; l;x1]
= [x; 1rX(x) · 1rX(x) · l;x1]
= [x; l;x1].

We have used here that the composition pr1 ◦ (pr1; m1X)−1 ◦ (x;x) clearly gives the
element 1rX(x). Analogously, we have

[x; l;x1] · uR(sR([x; l;x1])) = [x; l;x1] · uR(sR(x1))
= [x; l;x1] · [x1; 1rX(x1);x1]
= [x; l · 1rX(x1) · 1rX(x1);x1

= [x; l;x1].

Therefore, the property (2) holds. The property (3) holds obviously:

rR(iR([x; l;x1])) = rR([x1; l−1;x])
= sX(x1)
= sR([x; l;x1]),

and

sR(iR([x; l;x1])) = sR([x1; l−1;x])
= sX(x)
= rR([x; l;x1]).

We need to check one more property. That is (4). We have

iR([x; l;x1]) · [x; l;x1] = [x1; l−1;x] · [x; l;x1]
= [x1; l−1 · 1rX(x) · l;x1]
= [x1; 1rX(x1);x1]
= uR(sX(x1))
= uR(sR([x; l;x1])),

and

[x; l;x1] · iR([x; l;x1]) = [x; l;x1] · [x1; l−1;x]
= [x; l · 1rX(x1) · l−1;x]
= [x; 1rX(x);x]
= uR(sX(x))
= uR(rR([x; l;x1])).

So we have all required properties in Proposition 3.11. Therefore, we can deduce
that R = (R0,R1, rR, sR,mR, uR, iR) is a groupoid by Proposition 3.11.
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The next step is to construct the groupoid fibration from R to H. Consider the
following composition

(X ×rX,L0,rL L1)×sL◦pr2,L0,rX X pr2◦pr1−−−−→ L1 F1

−→ H1.

It is G-invariant in the sense of the G-action on (X×rX,L0,rL L1)×sL◦pr2,L0,rX X defined
elementwise by ((x; l);x1) · g = ((g−1 · x; g−1 · l);x1) because

F1(pr2(pr1(((x; l);x1) · g))) = F1(pr2(pr1((g−1 · x; g−1 · l);x1)))
= F1(g−1 · l)
= F1(l)
= F1(pr2(pr1((x; l);x1))).

Therefore, there is a unique arrow Ẽ1 : (X ×G L1) ×s2,L0,rX X → H1 such that Ẽ1 ◦
(p1 ◦ pr1; pr2) = F1 ◦ pr2 ◦ pr1. Elementwise Ẽ1([x; l];x1) = F1(l). The arrow Ẽ1 is
G-invariant in the sense of G-action on (X ×G L1)×s2,L0,rX X defined elementwise by
([x; l];x1) · g = ([x; l · g]; g−1 · x1) because

Ẽ1(([x; l];x1) · g) = Ẽ1([x; l · g]; g−1 · x1)
= F1(l · g)
= F1(l)
= Ẽ1([x; l];x1).

Therefore, there is a unique arrow E1 : X ×G L1 ×G X→ H1 such that E1 ◦ p3 = Ẽ1.
Elementwise E1([x; l;x1]) = Ẽ1([x; l];x1). For any element

((x; l);x1) ∈ (X ×rX,L0,rL L1)×sL◦pr2,L0,rX X

we can write E1([x; l;x1]) = Ẽ1([x; l];x1) = F1(l). Here the element

[x; l;x1] ∈ X ×G L1 ×G X

is understood as the following composition p3 ◦ (p1 ◦ pr1; pr2) ◦ ((x; l);x1). So we
have the arrow E1 : R1 → H1. Let us show that the composition E0 ◦ rX : X→ H0 is
G-invariant in the sense of the G-action (X; m1X; rX):

F0(rX(g · x)) = F0(rG(g))
= rH(F1(g))
= rH(F1(1sG(g)))
= rH(F1(1rX(x)))
= F0(rX(x)).

Therefore, there is a unique arrow E0 : K0 → H0 such that E0 ◦ sX = F0 ◦ rX.
Elementwise E0(k0) = F0(rX(x)) for all k0 ∈ K0, x ∈ X with sX(x) = k0. We are
going to show that the pair E = (E1; E0) defines a groupoid fibration from R to H.
They intertwine the source maps because

sH(E1([x; l;x1])) = sH(F1(l))
= F0(sL(l))
= F0(rX(x1))
= E0(sX(x1))
= E0(sR([x; l;x1])),
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and analogously, they intertwine the range maps because

rH(E1([x; l;x1])) = rH(F1(l))
= F0(rL(l))
= F0(rX(x))
= E0(sX(x))
= E0(rR([x; l;x1]))

for all x, x1 ∈ X, l ∈ L1 with rL(l) = rX(x) and sL(l) = rX(x1). They intertwine the
multiplication maps because

E1([x; l;x1] · [x′; l′;x′1]) = E1([x; l · g · l′;x′1])
= F1(l · g · l′)
= F1(l) · F1(l′)
= E1([x; l;x1]) · E1([x′; l′;x′1])

for all x, x1, x
′, x′1 ∈ X, l, l′ ∈ L1 with rX(x) = rL(l), rX(x1) = sL(l), rX(x′) = rL(l′),

rX(x′1) = sL(l′) and sX(x1) = sX(x′). So the pair E = (E1; E0) intertwines the source,
range and multiplication maps and therefore, E : R→ H is a functor. We have to
show that the arrow

X ×G L1 ×G X (E1;sR)−−−−→ H1 ×sH,H0,E0 K0

is a cover. Consider the following diagram of pull-back squares:

H1 ×sH,H0,F0◦rX X X

H1 ×sH,H0,E0 K0 K0

H1 H0.

pr2

(pr1;sX◦pr2) sX

F0◦rX
pr2

pr1 E0

sX

Since F0 ◦ rX = E0 ◦ sX, the arrow (pr1; sX ◦pr2) : H1×sH,H0,F0◦rX X� H1×sH,H0,E0 K0 is
well-defined, and it is a cover because it is pull-back of the anchor map sX : X� K0.
Consider one more diagram of pull-back squares:

L1 ×sL,L0,rX X H1 ×sH,H0,F0◦rX X X

L1 H1 ×sH,H0,F0 L0 L0

H1 H0.

(F1◦pr1;pr2)

pr1

pr2

(pr1;rX◦pr2) rX

(F1;sL) pr2

pr1 F0

sH

The diagram shows that the arrow (F1 ◦ pr1; pr2) : L1 ×sL,L0,rX X� H1 ×sH,H0,F0◦rX X
is a pull-back of (F1; sL) : L1 � H1×sH,H0,F0 L0, and therefore, it is a cover. Also, the
coordinate projection pr2 : X ×rX,L0,rL◦pr1

(L1 ×sL,L0,rX X) � L1 ×sL,L0,rX X is a cover
because it is a pull-back of the anchor map rX : X � L0. So we have three covers
and therefore, their composition

(pr1; sX ◦pr2)◦(F1 ◦pr1; pr2)◦pr2 ≡ φ : X×rX,L0,rL◦pr1
(L1×sL,L0,rX X)� H1×sH,H0,E0 K0
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is a cover by Assumption 2.14. This composition is defined elementwise by
φ(x; (l;x1)) = (F1(l); sX(x1)). Let us check that this composition is G-invariant
in the sense of the G-action on X ×rX,L0,rL◦pr1

(L1 ×sL,L0,rX X) defined elementwise by
(x; (l;x1)) · g = (x; (l · g; g−1 · x1)). We have

φ((x; (l;x1)) · g) = φ(x; (l · g; g−1 · x1))
= (F1(l · g); sX(g−1 · x1))
= (F1(l); sX(x1))
= φ(x; (l;x1)).

Therefore, there is a unique arrow φ′ : X ×rX,L0,r2 (L1 ×G X)→ H1 ×sH,H0,E0 K0 such
that φ′ ◦ (pr1; p′1 ◦ pr2) = φ. Elementwise φ′(x; [l;x1]) = (F1(l); sX(x1)). Since the
arrows (pr1; p′1 ◦ pr2) and φ are covers, the arrow φ′ is a cover by Assumption 2.19.
The cover φ′ is G-invariant in the sense of the G-action on X ×rX,L0,rL◦pr1

(L1 ×G X)
defined elementwise by (x; [l;x1]) · g = (g−1 · x; [g−1 · l;x1]) because

φ′((x; [l;x1]) · g) = φ′(g−1 · x; [g−1 · l;x1])
= (F1(g−1 · l); sX(x1))
= (F1(l); sX(x1))
= φ′(x; (l;x1)).

Therefore, there is a unique arrow φ′′ : X ×G L1 ×G X → H1 ×sH,H0,E0 K0 such that
φ′′ ◦ p′3 = φ′. Elementwise φ′′([x; l;x1]) = φ′(x; [l;x1]). Since the arrows p′3 and φ′
are covers, the arrow φ′′ is a cover by Assumption 2.19. For any element

(x; (l;x1)) ∈ X ×rX,L0,rL◦pr1
(L1 ×sL,L0,rX X)

we have φ′′([x; l;x1]) = φ′(x; [l;x1]) = (F1(l); sX(x1)) = (E1([x; l;x1]); sR([x; l;x1]).
Since the arrow p′3 ◦ (pr1; p′1 ◦ pr2) is a cover and therefore, it is epic, we have
that φ′′ = (E1; sR). Hence the arrow (E1; sR) is a cover and therefore, the functor
E : R� H is a groupoid fibration.

The next step is to prove that the fibre of the groupoid fibration E : R � H is
isomorphic to the groupoid K. Consider the following commuting square:

(X ×rX,G0,rG G1)×sG◦pr2,G0,rX X X

(X ×rX,L0,rL L1)×sL◦pr2,L0,rX X H1 ×sH,H0,F0◦rX X.

pr2

((pr1◦pr1;pr1◦pr2◦pr1);pr2) (F1◦uL◦rX;idX)

(F1◦pr2◦pr1;pr2)

Our goal is to prove that this square is a pull-back square. Consider any arrows
((x; l);x1) : A→ (X ×rX,L0,rL L1)×sL◦pr2,L0,rX X and x′1 : A→ X such that

(F1(l);x1) = (1F0(rX(x′1));x′1).

This gives that x′1 = x1 and F1(l) = 1F0(rX(x1)). Therefore, the element l : A → L1

uniquely gives the element in (l; sL(l)) : A → G1 by Definition 4.13. So we have a
unique element ((x; (l; sL(l)));x1) : A→ (X ×rX,G0,rG G1)×sG◦pr2,G0,rX X with needed
requirements. Therefore, the diagram above is a pull-back square.

The arrow (F1 ◦ pr2 ◦ pr1; pr2) from the diagram is G-invariant in the sense of the
G-action on (X ×rX,L0,rL L1)×sL◦pr2,L0,rX X considered above because

(F1 ◦ pr2 ◦ pr1; pr2)(((x; l);x1) · g) = (F1 ◦ pr2 ◦ pr1; pr2)((g−1 · x; g−1 · l);x1)
= (F1(g−1 · l);x1)
= (F1(l);x1)
= (F1 ◦ pr2 ◦ pr1; pr2)((x; l);x1).
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We have a G-action on (X ×rX,G0,rG G1)×sG◦pr2,G0,rX X defined elementwise by

((x; g1);x1) · g) = ((g−1 · x; g−1 · g1);x1),
and it is clear that the right side arrow on the diagram is a G-map. Therefore, there
is a pull-back square

(X ×G G1)×s′2,G0,rX X X

(X ×G L1)×s2,L0,rX X H1 ×sH,H0,F0◦rX X

pr2

α (F1◦uL◦rX;idX)

β

by Proposition 5.44 and Lemma 5.50, where the arrows α and β are induced arrows
defined elementwise by α([x; g];x1) = ([x; g];x1) and β([x; l];x1) = (F1(l);x1). Now
we have a diagram of pull-back squares with suitable G-actions on all the objects
such that each arrow is a G-map. Therefore, the following diagram

X ×G G1 ×G X K0

X ×G L1 ×G X H1 ×sH,H0,E0 K0

p̃r2

α̃ (E1◦uR;idX)

(E1;sR)

is a pull-back square by Lemma 5.65. This pull-back square gives the fibre of
the groupoid fibration E : R � H. The object X ×G G1 ×G X is the object of the
composition of bibundle actors X ◦G1 ◦ X.−1 We know that

X ◦G1 ◦ X−1 ∼= X ◦ X−1 ∼= K1.

Therefore, we have a natural isomorphism X ×G G1 ×G X ∼→ K1, which gives the
isomorphism between the groupoid K and the fibre of E : R� H.

The last step is to show that the groupoids L and R are equivalent. Consider
the object X ×G L1 and define the left R-action and right L-action on it. We know
that the multiplication map mL induces the K,G-map between bibundle actors
L1 ◦ L1 ◦ X−1 and L1 ◦ X−1. That is m′1∗ : X ×G L1 ×G L1 → X ×G L1, defined
elementwise by m′1∗([l1; l;x]) = [l1 · l;x]. This map, with the suitable orbit space
projection gives an action map of the groupoid L on the object X ×G L1. That is
m1∗ : (X ×G L1)×s2,L0,rL L1 → X ×G L1, defined elementwise by

[x; l] · l1 = [x; l · l1]
for all x ∈ X, l, l1 ∈ L1 with rX(x) = rL(l) and sL(l) = rL(l1). We have to show that
(X ×G L1; m1∗; s2) is a right L-action. We have

s2([x; l] · l1) = s2([x; l · l1])
= sL(l · l1)
= sL(l1),

also,
[x; l] · (l1 · l2) = [x; l · (l1 · l2)]

= [x; (l · l1) · l2]
= [x; l · l1] · l2
= ([x; l] · l1) · l2,

and
[x; l] · 1sL(l) = [x; l · 1sL(l)]

= [x; l]
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for all x ∈ X, l, l1, l2 ∈ L1 with rX(x) = rL(l), sL(l) = rL(l1) and sL(l1) = rL(l2).
Therefore, (X ×G L1; m1∗; s2) is a right L-action by Lemma 5.7.

We have the following natural isomorphisms of bibundle actors:

L1 ◦ X−1 ◦ X ◦ L1 ◦ X−1 ∼= L1 ◦G1 ◦ L1 ◦ X−1

∼= L1 ◦ L1 ◦ X−1.

These isomorphisms and m′1∗ give a G,K-map from L1 ◦ X−1 ◦ X ◦ L1 ◦ X−1 to
L1 ◦X−1. That is m2∗ : (X×G L1×G X)×K (X×G L1)→ X×G L1 defined elementwise
by m′2∗([[x; l;x1]; [x′1; l′]]) = [x; l · g · l′]. This map with the suitable orbit space
projection gives an action map of the groupoid R on the object X ×G L1. That is
m′2∗ : (X ×G L1 ×G X)×sR,K0,r′R X ×G L1 defined elementwise by

[x; l;x1] · [x′1; l′] = [x; l · g · l′]

for all x, x1, x
′
1 ∈ X, l, l′ ∈ L1 with rX(x) = rL(l), rX(x1) = sL(l), rX(x′1) = rL(l′)

and sX(x1) = sX(x′1), where g ∈ G1 is the element which is given by the following
composition pr1 ◦ (pr1; m1X)−1 ◦ (x1;x′1). We have to show that (X×G L1; m2∗; r′R) is
a left R-action. We have

r′R([x; l;x1] · [x′1; l′]) = r′R([x; l · g · l′])
= sX(x) = rR([x; l;x1]),

also,

([x̂; l̂; x̂1] · [x; l;x1]) · [x′1; l′] = [x̂; l̂ · g′ · l;x1] · [x′1; l′]
= [x̂; l̂ · g′ · l · g · l′]
= [x̂; l̂; x̂1] · [x; l · g · l′]
= [x̂; l̂; x̂1] · ([x; l;x1] · [x′1; l′]),

and

1sX(x′1) · [x′1; l′] = [x′1; 1rX(x′1);x′1] · [x′1; l′]
= [x′1; 1rX(x′1) · 1rX(x′1) · l′]
= [x′1; l′]

for all x, x1, x
′
1, x̂, x̂1 ∈ X, l, l′, l̂ ∈ L1 with rX(x) = rL(l), rX(x1) = sL(l), rX(x̂) = rL(l̂),

rX(x̂1) = sL(l̂), rX(x′1) = rL(l′), sX(x1) = sX(x′1) and sX(x̂1) = sX(x), where g and g′
are elements in G1 which are given by the pairs (x1;x′1) and (x̂1;x), respectively.
Therefore, (X ×G L1; m2∗; r′R) is a left R-action by Remark 5.11. We are going to
show that (X ×G L1; m1∗; m2∗; s2; r′R) defines an equivalence from R to L. Firstly, we
have to check that it is an R, L-bibundle. We have

s2([x; l;x1] · [x′1; l′]) = s2([x; l · g · l′])
= sL(l · g · l′)
= sL(l′)
= s2([x′1; l′]),

also,

r′R([x′1; l′] · l′′) = r′R([x′1; l′ · l′′])
= sX(x′1)
= r′R([x′1; l′]),



79

and

([x; l;x1] · [x′1; l′]) · l′′ = [x; l · g · l′] · l′′

= [x; l · g · l′ · l′′]
= [x; l;x1] · [x′1; l′ · l′′]
= [x; l;x1] · ([x′1; l′] · l′′)

for all x, x1, x
′
1 ∈ X, l, l′, l′′ ∈ L1 with rX(x) = rL(l), rX(x1) = sL(l), rX(x′1) = rL(l′),

sL(l′) = rL(l′) and sX(x1) = sX(x′1), where g ∈ G1 is the element considered above.
Therefore, (X ×G L1; m1∗; m2∗; s2; r′R) is an R, L-bibundle. We have checked above
that the anchor maps s2 and r′R are covers. After this, we have to show that the
following arrows

(X ×G L1)×s2,L0,rL L1 (pr1;m2∗)−−−−−−→ (X ×G L1)×r′R,K0,r′R (X ×G L1)

and

(X ×G L1 ×G X)×sR,K0,r′R (X ×G L1) (m1∗;pr2)−−−−−−→ (X ×G L1)×s2,L0,s2 (X ×G L1)

are invertible. We know that the fibre product of the G-map pr1 : X ×rX,L0,rL L1 � X
on itself is a principal G-bundle over

(p1◦pr1; p1◦pr2) : (X×rX,L0,rL L1)×pr1,X,pr1 (X×rX,L0,rL L1)� (X×GL1)×r′R,K0,r′R (X×GL1)

by Lemma 5.65. Also, the pull-back of the G-bundle (X ×rX,L0,rL L1; m1; r1) over
sL ◦ pr2 along the cover rL : L1 � L0 is a principal G-bundle over

(p1 ◦ pr1; pr2) : (X ×rX,L0,rL L1)×sL,L0,rL L1 � (X ×G L1)×s2,L0,rL L1

by Lemma 5.50. Let γ be the arrow

γ : (X ×rX,L0,rL L1)×sL,L0,rL L1 → (X ×rX,L0,rL L1)×pr1,X,pr1 (X ×rX,L0,rL L1)

defined elementwise by γ((x; l); l1) = ((x; l); (x; l · l1)). It is a G-map because

γ(((x; l); l1) · g) = γ((x; l) · g; l1)
= γ((g−1 · x; g−1 · l); l1)
= ((g−1 · x; g−1 · l); (g−1 · x; g−1 · l · l1))
= ((x; l) · g; (x; l · l1) · g)
= ((x; l); (x; l · l1)) · g
= γ((x; l); l1) · g

for all x ∈ X, l, l1 ∈ L1, g ∈ G1 with rX(x) = rL(l) and sL(l) = rL(l1) = rG(g). Also,
we have that

(pr1; m2∗)((p1 ◦ pr1; pr2)((x; l); l1)) = (pr1; m2∗)([x; l]; l1)
= ([x; l]; [x; l] · l1)
= ([x; l]; [x; l · l1])
= (p1 ◦ pr1; p ◦ pr2)((x; l); (x; l · l1))
= (p1 ◦ pr1; p ◦ pr2)(γ((x; l); l1))

for all x ∈ X, l, l1 ∈ L1 with rX(x) = rL(l) and sL(l) = rL(l1). Hence we have that
(pr1; m2∗) ◦ (p1 ◦ pr1; pr2) = (p1 ◦ pr1; p ◦ pr2) ◦ γ and therefore, the arrow (pr1; m2∗)
is induced by γ. It is clear that γ is invertible with γ−1 defined elementwise by
γ−1((x; l); (x; l1)) = ((x; l); l−1 ·l1) for all x ∈ X, l, l1 ∈ L1 with rX(x) = rL(l) = rL(l1).
The composition l−1 · l1 is well-defined because rL(l) = rL(l1). Therefore, the arrow
(pr1; m2∗) is invertible by Corollary 5.54. So we have proved that the R, L-bibundle
(X ×G L1; m1∗; m2∗; s2; r′R) is a bibundle functor from R to L.
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We also have to show that the arrow (m1∗; pr2) is invertible. We can do this by
the following logical argumentation. Let us review and analyse our construction at
this moment. We have had the groupoid fibration F : L� H with fibre G. We have
used the groupoid equivalence X from G to K and have constructed the groupoid R
with the object of the composition of bibundle actors X ◦ L1 ◦ X−1 as arrows. Also,
we have constructed the bibundle functor from R to L which is defined on the object
of the composition of bibundle actors L1 ◦ X−1. Now, the idea is the following.
We have the groupoid fibration E : R� H with fibre K. We can use the groupoid
equivalence X−1 from K to G and construct the groupoid L′ with the object of
the composition of bibundle actors X−1 ◦ R1 ◦ X as arrows. We have the following
natural isomorphisms

X−1 ◦ R1 ◦ X ∼= X−1 ◦ (X ◦ L1 ◦ X−1) ◦ X
∼= (X−1 ◦ X) ◦ L1 ◦ (X−1 ◦ X)
∼= G1 ◦ L1 ◦G1

∼= L1.

These isomorphisms show that the groupoid L′ is naturally isomorphic to the
groupoid L. So we can go on to do the same steps and construct a bibundle functor
from L to R. This bibundle functor is defined on the object X ×K R1 which is given
by the composition of bibundle actors R1 ◦ X. We have natural isomorphisms

R1 ◦ X ∼= (X ◦ L1 ◦ X−1) ◦ X
∼= X ◦ L1 ◦ (X−1 ◦ X)
∼= X ◦ L1 ◦G1

∼= X ◦ L1.

The bibundle actor X◦L1 from G to K is defined on the object which is an orbit space
of the G-action on L1×sL,L0,rX X defined elementwise by (l;x) · g = (l · g; g−1 ·x). The
bibundle actor L1 ◦X−1 from K to G is defined on the object which is an orbit space
of the G-action on X ×rX,L0,rL L1 defined elementwise by (x; l) · g = (g−1 · x; g−1 · l).
The isomorphism (pr2; iL ◦ pr1) : L1 ×sL,L0,rX X→ X ×rX,L0,rL L1 is a G-map in for the
G-actions considered above because

(pr2; iL ◦ pr1)((l;x) · g) = (pr2; iL ◦ pr1)(l · g; g−1 · x)
= (g−1 · x; (l · g)−1)
= (g−1 · x; g−1 · l−1)
= (x; l−1) · g
= (pr2; iL ◦ pr1)(l;x) · g.

Therefore, it induces an isomorphism ĩL : L1×G X ∼→ X×G L1, defined elementwise by
ĩL([l;x]) = [x; l−1]. The construction shows that the isomorphism R1 ◦ X ∼= X ◦ L1

equips the object L1×G X with the left L-action (L1×G X; m′2∗; s′2) and right R-action
(L1×G X; m′1∗; r′′R) defined elementwise by l1 · [l;x] = [l1 · l;x] and by [l;x] · [x′; l′, x1] =
[l · g · l′;x1], respectively. This gives a bibundle functor from L to R. So the arrow

(L1 ×G X)×r′′R ,K0,rR (X ×G L1 ×G X) (pr1;m′1∗)−−−−−−→ (L1 ×G X)×s′2,L0,s′2 (L1 ×G X)

is invertible. Also, there are isomorphisms

(X×G L1 ×G X)×sR,K0,r′R (X×G L1)
(̃i−1

L ◦pr2;iR◦pr1)
−−−−−−−−−−→ (L1 ×G X)×r′′R ,K0,rR (X×G L1 ×G X)

and

(L1 ×G X)×s′2,L0,s′2 (L1 ×G X) (̃iL◦pr2 ;̃iL◦pr1)−−−−−−−−→ (X ×G L1)×s2,L0,s2 (X ×G L1).
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We have
((̃iL ◦ pr2; ĩL ◦ pr1) ◦ (pr1; m′1∗) ◦ (̃i−1

L ◦ pr2; iR ◦ pr1))([x; l;x1]; [x2; l1])
= ((̃iL ◦ pr2; ĩL ◦ pr1) ◦ (pr1; m′1∗))([l−1

1 ;x2]; [x1; l−1;x])
= (̃iL ◦ pr2; ĩL ◦ pr1)([l−1

1 ;x2]; [l−1
1 · g−1 · l−1;x])

= ([x; l · g · l1]; [x2; l1])
= ([x; l;x1] · [x2; l1]; [x2; l1])
= (m1∗; pr2)([x; l;x1]; [x2; l1])

for all x, x1, x2 ∈ X, l, l1 ∈ L1 with rX(x) = rL(l), rX(x1) = sL(l), rX(x2) = rL(l1)
and sX(x1) = sX(x2), where the element g ∈ G1 is given by the composition
pr1◦(pr1; m1X)−1◦(x1;x2). It is clear that the composition pr1◦(pr1; m1X)−1◦(x2;x1)
gives the element g−1 ∈ G1. Therefore, we have

(m1∗; pr2) = (̃iL ◦ pr2; ĩL ◦ pr1) ◦ (pr1; m′1∗) ◦ (̃i−1
L ◦ pr2; iR ◦ pr1).

Hence (m1∗; pr2) is an isomorphism and therefore, (X ×G L1; m1∗; m2∗; s2; r′R) is a
groupoid equivalence from R to L and the proof is done. �

8. Examples of categories with partial covers

In this section, we discuss stronger pretopologies on different categories and check
whether they satisfy our extra assumptions. For each case we check the conditions
(1), (2) and (3) in Definition 2.1, and then we describe covers. We begin with a
trivial examples on an arbitrary category with all fibre products.

Example 8.1. Let C be any category with all fibre products and let Fp be the class
of all arrows in C and let F be the class of all coequalisers in C. All conditions in
Definition 2.1 are clearly satisfied.

In this general case we have not any additional information about the extra
assumptions.

Example 8.2. Let C be any category with all fibre products and let Fp be the
class of all monics in C. Then (C,Fp) is a category with partial covers. Since
any isomorphism is monic, the condition (1) is satisfied. Since the composition
of monics is monic, the condition (2) is satisfied. Consider situation as in (3).
Assume pr2 ◦ α = pr2 ◦ β for some parallel arrows α, β : B ⇒ A ×f,B,x X. Then
f ◦ pr1 ◦α = x ◦ pr2 ◦α = x ◦ pr2 ◦ β = f ◦ pr1 ◦ β. Since f is monic, pr1 ◦α = pr1 ◦ β.
By the universality of a fibre product α = β. Therefore, pr2 : A ×f,B,x X 99K X is
monic. So the condition (3) holds. The covers are the isomorphisms by Lemma
2.11.

In the case of Example 8.2 the Assumption 2.14 is the following: The composition
of isomorphisms is an isomorphism. This is clearly satisfied. Assumption 2.15 is
satisfied too because the pull-back of any isomorphism is an isomorphism in any
category. If f ◦ g and g are isomorphisms, then f is an isomorphism with the inverse
g ◦ (f ◦ g)−1. So Assumprtions 2.19 and 2.18 are satisfied. Generally, Assumption
2.20 does not hold.

Any groupoid in (C,Fp) with partial covers as in Example 8.2 is a 0-groupoid
because the source and range maps are isomorphisms. Any action of a 0-groupoid
is a principal bundle by Example 5.40. Therefore, Assumptions 5.63 and 5.66 hold.

Example 8.3. Let (C,F) be a category with a subcanonical pretopology as in
[47, Definition 2.1]. If Fp = F then we have a category (C,Fp) with partial covers.

In this case, Assumptions 2.14 and 2.15 hold by Definition in [47, Definition 2.1].
Generally, we have no additional information about the other extra assumptions.
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8.1. Category of sets. Let Sets be the category of sets.

Example 8.4. Let Fp be the collection of all maps. Then (Sets,Fp) is a category
with partial covers. The conditions (1), (2) and (3) are clearly satisfied. Also, it is
clear that a map in Sets is a coequaliser if and only if it is a surjection. Therefore,
the covers are the surjections.

Since the composition of surjections is a surjection, Assumption 2.14 holds.
Consider a surjection f : A � B, a map g : C → B and an element c in C. Since
f : A� B is sujective, there is a ∈ A such that f(a) = g(c). Thus (a; c) ∈ A×f,B,g C.
Since pr2(a; c) = c, the coordinate projection pr2 : A ×f,B,g C � C is a surjection.
Therefore, Assumption 2.15 holds. Assumptions 2.19 and 2.18 are clearly satisfied.
Sets does have a final object, but Assumption 2.20 does not hold. If we consider the
subcategory of Sets without the empty set then any set with a single element is a
final object in this subcategory, and any map to it is surjective, hence a cover. Since
a fibre-product of non-empty sets along a surjective map is never empty, (Fp) still
forms a stronger pretopology on the subcategory of non-empty sets, and Assumtion
2.20 is satisfied in this category.

Since Sets has arbitrary colimits, for any G-action (X; mX; sX) there is a coequaliser
p : X� Z of the pair of maps pr1,mX : X ×sX,G0,r G1 ⇒ X. A G-action (X; mX; sX) is
basic if and only if the map

(pr1; mX) : X ×sX,G0,r G1 ∼→ X ×p,Z,p X, (x; g) 7→ (x;x · g)

is invertible. This map is surjective by construction of p : X� Z. It is injective if and
only if the following condition holds: if for x ∈ X and g, g1 ∈ G1 with sX(x) = r(g) =
r(g1) we have x · g = x · g1, then g = g1 (free action). In the case of the canonical
action of G on its objects, the groupoid G is basic if and only if for any g, g1 ∈ G1

with s(g) = s(g1) and r(g) = r(g1) we have g = g1. Consider any basic groupoid G
and any G-action (X; mX; sX). Let x · g = x · g1 for some x ∈ X and g, g1 ∈ G1 with
sX(x) = r(g) = r(g1). Then we have s(g) = sX(x · g) = sX(x · g1) = s(g1). Since G is
basic and r(g) = r(g1) and s(g) = s(g1), we have g = g1. Therefore, any G-action
(X; mX; sX) is basic. Hence any action of a basic groupoid is basic. So Assumptions
5.63 and 5.66 are satisfied.

8.2. Categories of topological spaces. Let Top be the category of topologi-
cal spaces and continuous maps. This category is complete and cocomplete. In
particular, all fibre products and all coequalisers exist.

We begin this section with a lemma which helps us to check whether Assumption
5.63 holds.

Lemma 8.5. Let G be a basic groupoid in the category of topological spaces (Top;Fp)
with partial covers. A G-action (X; mX; sX) is basic if and only if the coequaliser of
the pair of continuous maps pr1,mX : X ×sX,G0,r G1 ⇒ X is a cover.

Proof. If a G-action (X; mX; sX) is basic it is a part of a principal bundle by Def-
inition 5.55. So we have an orbit space projection p : X � Z which is a cover
by Definition 5.33. This cover is a coequaliser of the pair of continuous maps
pr1,mX : X ×sX,G0,r G1 ⇒ X by Lemma 5.34.

Conversely, suppose that a coequaliser q : X � X/G of the pair of continuous
maps pr1,mX : X ×sX,G0,r G1 ⇒ X is a cover. Since the groupoid G is basic, the map
(r; s) : G1 → G0 ×p,Z,p G0 is a homeomorphism by Lemma 5.59, where p : G0 � Z is
the orbit space projection of the canonical G-action on its objects. We have to prove
that the map

(pr1; mX) : X ×sX,G0,r G1 ∼→ X ×q,X/G,q X, (x; g) 7→ (x;x · g),
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is a homeomorphism. It is injective because if x · g = x · g1, then sX(x) = r(g) =
r(g1) and s(g) = sX(x · g) = sX(x · g1) = s(g1). Hence (r; s)(g) = (r; s)(g1). Thus
g = g1. So for any x, x1 ∈ X in the same G-orbit we have a unique g ∈ G1 with
x · g = x1. This element g depends continuously on x and x1 because the inverse
of (r; s) : G1 → G0 ×p,Z,p G0 is continuous. So the continuous map (pr1; mX) has a
continuous inverse and therefore, it is a homeomorphism. �

We have different kinds of stronger pretopologies in the category of topological
spaces. We begin with biquotient maps as covers. First of all, consider the main
working lemma for this subsection, which is proved in [51]. We need the following
definition:

Definition 8.6. A map f : X→ Y is limit lifting if every convergent net in Y lifts
to a convergent net in X. More precisely, let (I,≤) be a directed set and let (yi)i∈I
be a net in Y converging to some y ∈ Y. A lifting of this convergent net is a directed
set (J,≤) with a surjective order-preserving map ϕ : J → I and a net (xj)j∈J in X
with f(xj) = yϕ(j) for all j ∈ J , converging to some x ∈ X with f(x) = y.

Definition 8.7. Let f : X→ Y be a continuous surjection. It is a biquotient map if
for every y ∈ Y and every open covering U of f−1(y) in X, there are finitely many
U ∈ U for which the subsets f(U) cover some neighbourhood of y in Y .

Lemma 8.8. Biquotient maps are the same as limit lifting maps.

Example 8.9. Let Fp be the collection of all maps in Top which are biquotient on its
image with the subspace topology. Then (Top,Fp) is a category with partial covers.
It is clear that isomorphisms are limit lifting. Let f : A 99K B and g : B 99K C be
composable maps. If f and g are limit lifting on their image, then so is g ◦ f because
Im(g ◦ f) ⊆ Im(g) and since g is limit lifting, any convergent net in Im(g ◦ f) lifts
to a convergent net in Im(f) and since f is limit lifting, this convergent net lifts
to a convergent net in A. Let pr2 : A×f,B,g C→ C be a pull-back of a limit lifting
map f : A 99K B on its image along any continuous map g : C→ B. It is clear that
c ∈ Im(pr2) if and only if g(c) ∈ Im(f). Let (ci)i∈I be a convergent net in C. Since
g is continuous, g(ci)i∈I is a convergent net in Im(f). This net lifts to a convergent
net (aj)j∈J in A with f(aj) = g(cϕ(j)) for all j ∈ J by Definition 8.6. Therefore, we
have a convergent net (aj ; cϕ(j)) in A×f,B,g C. Therefore, the coordinate projection
pr2 : A ×f,B,g C 99K C is a limit lifting map. So the property (3) holds. We know
that limit lifting maps are quotient maps and quotient maps are coequalisers, so
the biquotient maps on the image are coequalisers if and only if they are surjective
biquotient maps. So covers are surjective biquotient maps.

In this category with such stronger pretopology, Assumptions 2.14 and 2.15 hold
because the compositions of surjections is a surjection and a pull-back of a surjection
is a surjection (compose in Example 8.4).

If the composition g ◦ f of the continuous maps f : A→ B and g : B→ C is limit
lifting, then the map g is so because any convergent net in C lifts to a convergent
net in A and then since f : A → B is continuous, it gives a convergent net in B,
which shows that g is limit lifting. That is more then Assumption 2.19.

Also, such stronger pretopology satisfies Assumption 2.20 if we remove the empty
space from the category. It is clear that a space with a single element is a final
object in Top, and any map from a non-empty space to it is limit lifting.

Assumption 5.63 is not satisfied. A counterexample is given in [47, Example 9.10].
We do not know whether Assumption 5.66 holds.

The following three examples are given by continuous sections. Let f : A→ B be
a continuous map in Top. We call a continuous map σb : Ub → A a local continuous
section for f at b ∈ B if Ub is a neighbourhood of b and f ◦ σb = idUb

.



84

Definition 8.10. We call f : A → B locally split if local continuous sections
σb : Ub → A exist at all b ∈ B.

Example 8.11. Let Fp be the collection of all maps which are locally split onto their
image. Then (Top,Fp) is a category with partial covers. The condition (1) is clearly
satisfied. Let f : A 99K B and g : B 99K C be composable maps. If f and g are locally
split onto their image, then for any c ∈ Im(g ◦ f) ⊆ Im(g) we have local continuous
sections σc : Uc → B for g : B 99K C and τσc(c) : Uσc(c) → A for f : A 99K B. The
composition

τσc(c) ◦ σc : g(Uσc(c) ∩ σc(Uc))→ A

is a local section for g ◦ f. Hence the condition (2) holds. Let pr2 : A×f,B,g C→ C
be a pull-back of a map f : A 99K B that is locally split onto its image along any
continuous map g : C→ B. For any c ∈ Im(pr2) we have a local continuous section
σg(c) : Ug(c) → A for f . Since Ug(c) ⊆ Im(f), we have g−1(Ug(c)) ⊆ Im(pr2). So we
have a local section σg(c) ◦ g : g−1(Ug(c)) → A ×f,B,g C for pr2 : A ×f,B,g C 99K C.
Therefore, the condition (3) holds. Any locally split map is a biquotient map because
any convergent net can be lifted by a local continuous section. A map biquotient
on its image is a coequaliser if and only if it is surjective. Therefore, a locally split
map onto its image is a coequaliser if and only if it is surjective. So the covers are
the locally split surjections.

As in the previous case, Asssumptions 2.14 and 2.15 hold for the same reason:
The composition of surjections is a surjection and a pull-back of a surjection is a
surjection.

If the composition g ◦ f of the continuous maps f : A → B and g : B → C is
a locally split map, then the map g is so because for any c ∈ C we have a local
continuous section σc : Uc → A for g ◦ f and this gives a local continuous section
f ◦ σc : Uc → B for g : B → C. That is more than Assumption 2.19. Therefore,
Assumption 2.18 holds, too.

It is also clear that the constant map f : A → {∗} from any non-empty space
A to the one-point space {∗} has a continuous section σ∗ : {∗} → A, which gives
Assumption 2.20 if we exclude the empty space.

Lemma 8.12. Let G be any basic groupoid in (Top,Fp) defined in Example 8.11,
and let (X; mX; sX) be any G-action. A coequaliser q : X → X/G of the pair of
continuous maps pr1,mX : X ×sX,G0,r G1 ⇒ X is locally split.

Proof. We have that G is basic. That is, there is a locally split continuous map
p : G0 � Z such that (r; s) : G1 → G0×p,Z,p G0 is a well-defined homeomorphism. Let
(X; mX; sX) be any G-action. We are going to show that a coequaliser q : X→ X/G
of the pair of continuous maps pr1,mX : X ×sX,G0,r G1 ⇒ X is locally split. Since
p(sX(x · g)) = p(s(g)) = p(r(g)) = p(sX(x)), for all x ∈ X, g ∈ G1 with sX(x) = r(g),
there is a well-defined continuous map s̃X : X/G→ Z with s̃X([x]) = [sX(x)], for all
x ∈ X. For any [x0] ∈ X/G we have a neighbourhood U[sX(x0)] of [sX(x0)] ∈ Z and a
local continuous section σ[sX(x0)] : U[sX(x0)] → G0 for p : G0 � Z. We can construct
a local continuous section for q : X→ X/G defined on (s̃X)−1(U[sX(x0)]) ⊆ X/G. Let
[x] ∈ (s̃X)−1(U[sX(x0)]). We have an element (sX(x);σ[sX(x0)]([sX(x)])) in G0 ×p,Z,p G0.

Hence it gives a unique element gx ∈ G1 with sX(x) = r(gx) and σ[sX(x0)]([sX(x)]) =
s(gx). Let gx1 ∈ G1 be constructed in the same way for another x1 in the G-orbit of
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x. We have
sX(x · gx) = s(gx)

= σ[sX(x0)]([sX(x)])
= σ[sX(x0)]([sX(x1)])
= s(gx1)
= sX(x1 · gx1).

Since x and x1 are in the same G-orbit, there is g ∈ G1 with x · g = x1. Thus
s(gx) = sX(x · gx)

= sX(x1 · gx1)
= sX(x · g · gx1)
= s(g · gx1).

We also have r(gx) = sX(x) = r(g) = r(g · gx1). Thus gx = g · gx1 because G is basic.
Hence x · gx = x · g · gx1 = x1 · gx1 . Therefore, we have a well-defined continuous
map defined on (s̃X)−1(U[sX(x0)]) ⊆ X/G by [x] 7→ x · gx. This clearly gives a local
continuous section for q. �

Assumptions 5.63 and 5.66 hold by Lemma 8.12 and Lemma 8.5.
As in the previous case, the next example is defined using continuous sections.

Let f : A→ B be a continuous map.

Definition 8.13. f : A → B has many local continuous sections if for all a ∈ A
there is an open neighbourhood Ua ⊆ B of f(a) and a continuous map σa : Ua → A
with σa(f(a)) = a and f ◦ σa = idUa

.

Example 8.14. Let Fp be the collection of all continuous maps with many local
continuous sections. Then (Top,Fp) is a category with partial covers. The condition
(1) is clearly satisfied. Let f : A 99K B and g : B 99K C be composable maps
with many local continuous sections. For any a ∈ A we have the neighbourhoods
Ua ⊆ B of f(a) ∈ B and Vf(a) ∈ C of g(f(a)) ∈ C and the local continuous sections
σa : Ua → A for f : A 99K B with σa(f(a)) = a and τf(a) : Vf(a) → B for g : B 99K A
with τf(a)(g(f(a))) = f(a). The composition

σa ◦ τf(a) : g(Ua ∩ τf(a)(Vf(a)))→ A
is a local section for g ◦ f with (σa ◦ τf(a))(g(f(a))) = a. Hence the condition (2)
holds. Let pr2 : A ×f,B,g C → C be a pull-back of a continuous map f : A 99K B
with many local continuous sections along any continuous map g : C→ B. For any
(a; c) ∈ A×f,B,g C we have a neighbourhood Ua ⊆ B of f(a) = g(c) ∈ B and a local
continuous section σa : Ua → A for f with σa(f(a)) = a. There is a neighbourhood
g−1(Ua) ⊆ C of c and a local continuous section (σa ◦ g; idC) : g−1(Ua)→ A×f,B,g C
for pr2 : A ×f,B,g C → C with (σa ◦ g; idC)(c) = (a; c). Therefore, the condition (3)
holds. Any continuous map with many local continuous sections is a biquotient
map on its image because any convergent net in the image can be lifted by a local
continuous section. A biquotient map on its image is a coequaliser if and only if it
is surjective. Therefore, a continuous map with many local continuous sections is
a coequaliser if and only if it is surjective. So the covers are the surjections with
many local continuous sections

As in the case of the biquotient maps, Asssumptions 2.14 and 2.15 hold. The
composition of surjections is a surjection and a pull-back of a surjection is a
surjection.

Let f : A→ B and g : B→ C be composable continuous maps. Assume that the
composition g ◦ f and f are surjections and that they have many local continuous
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sections. For any b ∈ B we have an element a ∈ A with f(a) = b. We also have a
neighbourhood Ua ⊆ C of g(b) and a local continuous section σa : Ua → A for g ◦ f
with σa(g(b)) = a. There is a local continuous section f ◦ σa : Ua → B for g : B→ C
with (f ◦ σa)(g(b)) = b. Therefore, Assumptions 2.19 and 2.18 hold.

It is also clear that the constant map f : A→ {∗} from any non-empty space A
to the one-point space {∗} has a continuous section for any point in A, which gives
Assumption 2.20 if we exclude the empty space from the category.

Suppose we have all data from Lemma 8.12. For any x ∈ X we have a neighbour-
hood UsX(x) ⊆ Z of [sX(x)] and a local continuous section σsX(x) : UsX(x) → G0 for
p : G0 � Z with σsX(x)([sX(x)]) = sX(x). Then we construct a local continuous section
for q : X → X/G defeined on (s̃X)−1(U[sX(x)]) ⊆ X/G by [x] 7→ x · gx. In this case
gx = 1sX(x). Therefore, the map q : X → X/G has many local continuous sections.
So Assumptions 5.63 and 5.66 hold by Lemma 8.5.

The next example is defined by global continuous sections. Let f : A→ B be a
continuous map.

Definition 8.15. f : A → B is a splitting map if there is a continuous section
σf : B→ A with f ◦ σf = idB.

Example 8.16. Let Fp be the collection of all continuous maps in Top which split
on the image. Then (Top,Fp) is a category with partial covers. The conditions (1)
is clearly satisfied. Let f : A 99K B and g : B 99K C be composable splitting maps on
the image. Since Im(g ◦ f) ⊆ Im(g), we have a split σf ◦ σg|Im(g◦f) : Im(g ◦ f)→ A
for g ◦ f , where σg|Im(g◦f) is a restriction of σg on Im(g ◦ f). So the condition (2)
holds. Let pr2 : A ×f,B,g C → C be a pull-back of a splitting map f : A 99K B on
its image along any continuous map g : C→ B. For any c ∈ Im(pr2) we have that
g(c) ∈ Im(f). Therefore, we have a split (σf ◦ g; idC) : Im(pr2) → A ×f,B,g C for
pr2 : A×f,B,g C 99K C defined on the image of pr2. So the condition (3) holds. Any
splitting map is a biquotient map because any convergent net can be lifted by a
continuous section. A biquotient map on its image is a coequaliser if and only if it
is surjective. Therefore, a splitting map on its image is a coequaliser if and only if
it is surjective. So the covers are the splitting surjections.

Asssumptions 2.14 and 2.15 hold because the composition of surjections is a
surjection and a pull-back of a surjection is a surjection.

If the composition g ◦ f of the continuous maps f : A → B and g : B → C
is a splitting map, then the map g is so because we have a continuous section
f ◦ σf◦g : C → B for g : B → C. That is more than Assumption 2.19. Therefore,
Assumption 2.18 holds, too.

The constant map f : A → {∗} from any non-empty space A to the one-point
space {∗} has a continuous section σ : {∗} → A, where σ(∗) is any point in A. This
gives Assumption 2.20 if we exclude the empty space.

Suppose we have all data from Lemma 8.12. In this case U[sX(x0)] = Z. Also
(s̃X)−1(Z) = X/G. Therefore, the constructed local section is global in this case. So
Assumptions 5.63 and 5.66 hold by Lemma 8.5.

The next example is given by using proper maps. Let f : A→ B be a continuous
map. f is closed if it maps closed subsets to closed subsets. It is proper if and only
if it is closed and f−1(b) is quasi-compact for all b ∈ B. ([4, I.10.2]).

Lemma 8.17 ([4, I.10.1]). A continuous map f : A→ B is proper if and only if the
map f × idX : A× X→ B× X is closed for any topological space X.

Example 8.18. Let Fp be the collection of all proper maps in Top. Then (Top,Fp) is
a category with partial covers. The condition (1) is clearly satisfied. Let f : A 99K B
and g : B 99K C be composable proper maps. For any topological space X, the maps
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f × idX : A × X → B × X and g × idX : B × X → C × X are closed. It is clear that
the composition of closed maps is closed. Hence (g ◦ f) × idX : A × X → C × X is
closed for any topological space X. Thus g ◦ f is proper. So the condition (2) is
satisfied. Let pr2 : A ×f,B,g C → C be the pull-back of a proper map f : A 99K B
along any continuous map g : C→ B. Since f : A→ Im(f) ⊆ B is proper, the map
f × idC × idX : A × g−1(Im(f)) × X → Im(f) × g−1(Im(f)) × X is closed for any
topological space X by Lemma 8.17. Consider

g−1(Im(f))× X ∼= {(g(c); c;x)|∀c ∈ g−1(Im(f)),∀x ∈ X},
a subset of Im(f) × g−1(Im(f)) × X. It is clear that the restriction of the map
f × idC × idX on the subset (f × idC × idX)−1(g−1(Im(f))× X) is closed, too. This
gives that the map pr2 × idX : (A ×f,B,g C) × X → Im(pr2) × X is closed for any
topological space X because Im(pr2) = g−1(Im(f)). Therefore, pr2 is proper. So
the condition (3) is satisfied. Proper maps are biquotient maps on the image by
[32, Proposition 3.2]. Hence the proper maps are coequalisers if and only if they are
proper surjections. Therefore, the covers are the surjective proper maps.

Asssumptions 2.14 and 2.15 hold because the composition of surjections is a
surjection and a pull-back of a surjection is a surjection.

Let f : A→ B and g : B→ C be composable continuous maps. If g ◦ f and f are
surjective proper maps, then the map g is so. For any topological space X the maps
(g ◦ f)× idX : A× X→ C× X and f × idX : A× X→ B× X are closed. Let U be any
closed subset in B × X. Since f × idX is a continuous, the subset (f × idX)−1(U)
is closed in A× X. Since g ◦ f is proper, ((g ◦ f)× idX)((f × idX)−1(U)) is closed
in C × X. This closed subset equals (g × idX)(U) because f × idX is surjective.
Therefore, Assumptions 2.19 and 2.18 are satisfied by Lemma 8.17.

The map from a space A to the one-point space is proper if and only if A is
quasi-compact. Hence Assumption 2.20 fails even if we exclude the empty space.

We have no information about Assumptions 5.63 and 5.66.
The next example is defined using open maps. Let f : A → B be a continuous

map.
Definition 8.19. f is open if the image of all open subsets of A is open in B.
Lemma 8.20 ([51, Proposition 1.15]). A continuous surjection f : A→ B between
topological spaces is open if and only if, for any a ∈ A, a convergent net (bi)i∈I in B
with limi∈I bi = f(a) lifts to a net in A converging to a.
Example 8.21. Let Fp be the collection of all open maps in Top. Then (Top,Fp) is
a category with partial covers. The condition (1) is clearly satisfied. Let f : A 99K B
and g : B 99K C be composable open maps and let U be open in A. Since f : A 99K B
is open, f(U) is open in B. Since g : B 99K C is open, g(f(U)) is open in C. Therefore,
g ◦f is open. So the condition (2) is satisfied. Let pr2 : A×f,B,g C→ C be a pull-back
of an open map f : A 99K B along a continuous map g : C → B. Consider any
element (a; c) in A×f,B,g C and any convergent net (ci)i∈I in Im(pr2) = g−1(f(A))
such that limi∈I ci = c. Since g : B → C is continuous, the net g(ci)i∈I converges
to g(c). Since f(a) = g(c) and f : A 99K B is open, there is a net (aj)j∈J in A with
f(aj) = g(cϕ(j)) for all j ∈ J , converging to a. Hence we have a net (aj ; cϕ(j))j∈J
in A×f,B,g C converging to (a; c) with pr2(aj ; cϕ(j)) = cϕ(j) for all j in J . Therefore,
the coordinate projection pr2 : A×f,B,g C 99K C is open. So the property (3) holds.
An open map is a limit lifting map on the image by Lemma 8.20. Hence the open
surjections are biquotient maps, and therefore, an open map is a coequaliser if and
only if it is surjective. So the covers are the open surjections.

Asssumptions 2.14 and 2.15 hold because the composition of surjections is a
surjection and a pull-back of a surjection is a surjection.
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If the composition g ◦ f of an open surjection f : A� B and a continuous map
g : B→ C is an open surjection, then the map g is an open surjection because for
any open subset U of B we have an open subset f−1(U) in A and since g ◦ f is open
and f is surjective, the subset g(f(f−1(U))) = g(U) is open in C. It is clear that g
is surjective. So Assumptions 2.19 and 2.18 hold.

It is clear that any map from a non-empty space to a space with a single element
is an open surjection. So Assumption 2.20 is satisfied if we remove the empty space
from the category.

Lemma 8.22. Let G be a groupoid and let (X; mX; sX) be a G-action. A coequaliser
q : X→ X/G of the pair of continuous maps pr1,mX : X ×sX,G0,r G1 ⇒ X is open.

Proof. Let G be any groupoid, not necessary basic, and let (X; mX; sX) be a G-
action. We are going to prove that a coequaliser q : X → X/G of the pair of
continuous maps pr1,mX : X ×sX,G0,r G1 ⇒ X is open. Let U ⊆ X be open. Then
q−1(q(U)) = {x · g|x ∈ U, g ∈ G1; sX(x) = r(g)}. This is m((U ×G1)∩ (X×s,G0,r G1)),
which is open because (U ×G1)∩ (X×s,G0,r G1) is open in (X×s,G0,r G1) and m is an
open surjection by Lemma 5.6. Thus q(U) is open in X/G, and q is open. �

Any action of a basic groupoid is basic by Lemmas 8.22 and 8.5. So Assumptions
5.63 and 5.66 hold.

The next example is defined by using the étale maps. Let f : A → B be a
continuous map.

Definition 8.23. f : A→ B is étale if for all a ∈ A there is an open neighbourhood
Ua such that f(Ua) is open and f |Ua

: Ua
∼→ f(Ua) is a homeomorphism for the

subspace topologies on Ua and f(Ua) from A and B, respectively.

Example 8.24. Let Fp be the collection of all étale maps in Top. Then (Top,Fp) is
a category with partial covers. The condition (1) is clearly satisfied. Let f : A 99K B
and g : B 99K C be composable étale maps and let a be any element in A. Since
f : A→ B is étale, we have an open neighbourhood Ua of a and a homeomorphism
f |Ua : Ua

∼→ f(Ua). Since g : A→ B is étale, we have an open neighbourhood Vf(a)

of f(a) and a homeomorphism g|Vf(a) : Vf(a)
∼→ g(Vf(a)). The subset f(Ua) ∩ Vf(a)

is open in f(Ua) and f(a) ∈ f(Ua) ∩ Vf(a). So f−1(f(Ua) ∩ Vf(a)) is an open
neighbourhood of a. The map

(g ◦ f)|f−1(f(Ua)∩Vf(a)) : f−1(f(Ua) ∩ Vf(a))→ g(f(Ua) ∩ Vf(a))

is a homeomorphism as a composition of homeomorphisms. Therefore, g ◦ f is étale.
So the condition (2) is satisfied. Let pr2 : A×f,B,g C→ C be a pull-back of an open
map f : A 99K B along a continuous map g : C→ B. Consider any element (a; c) in
A×f,B,g C. Since f : A→ B is étale, we have an open neighbourhood Ua of a and
a homeomorphism f |Ua : Ua

∼→ f(Ua). Since g : A → B is continuous, the subset
g−1(f(Ua)) is open in C. The element (a; c) belongs to the subset

Ua ×f |Ua ,f(Ua),g|g−1(f(Ua))
g−1(f(Ua))

of A ×f,B,g C, which is open, and the restriction of pr2 : A ×f,B,g C → C to it is a
homeomorphism because the pull-back of the homeomorphism f |Ua : Ua

∼→ f(Ua)
along g|g−1(f(Ua)) is a homeomorphism. Therefore, pr2 : A ×f,B,g C 99K C is étale.
So the condition (3) holds. It is clear that étale surjections are limit liftting, and
therefore, they are biquotient maps. Hence étale maps are coequalisers if and only
if they are étale surjections. Therefore, the covers are the étale surjections.

Asssumptions 2.14 and 2.15 hold because the composition of surjections is a
surjection and a pull-back of a surjection is a surjection.
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Let the composition g ◦ f of an étale surjection f : A� B and a continuous map
g : B → C be an étale surjection. For any element b in B we have an element a
in A and an open neighbourhood Ua of a such that f(a) = b and the restriction
f |Ua : Ua

∼→ f(Ua) is a homeomorphism. Since g ◦ f is étale, we have an open
neighbourhood Va of a such that the restriction (g ◦ f)|Va

: Va
∼→ g(f(Ua)) is a

homeomorphism. The map
(g ◦ f)|Ua∩Va ◦ (f |Ua)−1|f(Ua)∩f(Va) : f(Ua) ∩ f(Va)→ g(f(Ua) ∩ f(Va))

is a restriction of g and it is a homeomorphism because it is a composition of
homeomorphisms. Therefore, g : B � C is étale. It clearly is a surjection. So
Assumption 2.19 is satisfied.

Unless A is discrete, the constant map from A to a point is not étale, so Assump-
tion 2.20 fails even if we exclude the empty space.

Let G be a basic groupoid and let (X; mX; sX) be a G-action. We know from the
proof of Lemma 8.5 that the following map

(pr1; mX) : X ×sX,G0,r G1 ∼→ X ×q,X/G,q X, (x; g) 7→ (x;x · g),
is a homeomorphism. Since the range and source maps are étale, the set of units
u(G0) is open in G1. Therefore, the subset (pr1; mX)(X ×sX,G0,r u(G0)) is open in
X×q,X/G,q X. This subset is the diagonal {(x, x1) ∈ X× X|x = x1}. Therefore, every
element (x;x) of the diagonal has a neighbourhood (V ;V ′) such that (V ;V ′) ⊂
{(x, x1) ∈ X × X|x = x1}. So any element x ∈ X has a neighbourhood U = V ∩ V ′
such that (U×U)∩(X×q,X/G,q X) is the diagonal in U. This means that for x, x1 ∈ U ,
q(x) = q(x1) only if x = x1. Thus q is injective on the open subset U ⊆ X. Since
G is an étale groupoid, its range and source maps are open. Hence q is open by
Proposition 8.22. Its restriction to U is injective, open and continuous, hence a
homeomorphism onto an open subset of X/G. Therefore, it is étale. So Assumptions
5.63 and 5.66 are satisfied by Lemma 8.5.

8.3. Categories of manifolds. The examples of a stronger pretopology considered
in this subsection are defined in the categories of finite-dimensional manifolds
(Mfdfin); Hilbert manifolds (MfdHil); Banach manifolds (MfdBan); Fréchet manifolds
(MfdFré) and locally convex manifolds (Mfdlcs). Such manifolds are Hausdorff
topological spaces that are locally homeomorphic to finite-dimensional vector spaces,
Hilbert spaces, Banach spaces, Fréchet spaces, or locally convex topological vector
spaces, respectively. The morphisms between all these types of manifolds are smooth
maps. In each case, a stronger pretopology is defined by submersions.

Definition 8.25 ([23, Definition 4.4.8], [40, Appendix A]). Let X and Y be locally
convex manifolds. A smooth map is a submersion if for each x ∈ X, there is an
open neighbourhood V of x in X such that U = f(V ) is open in Y, and there are a
smooth manifold W and a diffeomorphism V ∼= U ×W that intertwines f and the
coordinate projection pr1 : U ×W → U .

Example 8.26. Let C be one of the categories Mfdfin, MfdHil, MfdBan, MfdFré, Mfdlcs
considered above. Let Fp be the collection of all submersions in C. Then (C,Fp) is
a category with partial covers. Isomorphisms are submersions, hence (1) holds. A
composition of submersions is a submersion, thus (2) is satisfied. Let pr2 : X ×f,Y,g
Z→ Z be a pull-back of a submersion f : X 99K Y along any smooth map g : Z→ Y.
A submersion f : X 99K Y is open because it is locally open. Thus pr2 : X×f,Y,gZ→ Z
is open because open maps form a stronger pretopology by Example 8.21. So Im(f)
and Im(pr2) are open subspaces. It is clear that X ×f,Y,g Z ∼= X ×f,Im(f),g|Im(pr2)

Im(pr2) and therefore, pr2 : X ×f,Y,g Z → Im(pr2) is a pull-back of the surjective
submersion f : X � Im(f) along g : Z → Im(f). Therefore, pr2 : X ×f,Y,g Z �
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Im(pr2) is a surjective submersion because surjective submersions form a pretopology
([47, Proposition 9.40]). So pr2 : X×f,Y,gZ 99K Z is a submersion. Hence the condition
(3) holds. In the proof of Proposition 9.40 ([47]) it is shown that the pretopology
defined by surjective submersions is subcanonical. That is, all surjective submersions
are coequalisers. It is clear that a coequaliser is surjective. Therefore, a submersion
is surjective if and only if it is a coequaliser. So covers are surjective submersions.

In all categories described in Example 8.26, Assumptions 2.14 and 2.15 hold
by Proposition 9.40 ([47]). In the categories Mfdfin, MfdHil and MfdBan with such
stronger pretopology, Assumptions 2.18 and 5.66 hold by Proposition 9.42 ([47]). In
the category of Banach manifolds with the same stronger pretopology Assumption
5.63 is satisfied by Proposition 9.44 ([47]). We have no information about these
assumptions in other categories.
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