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1 Introduction

The ability to think and reason and to mentally solve problems is among the most

intriguing traits of mankind. Unsurprisingly, the scientific study of intelligence, as we

call it, is one of the most and longest studied topics in psychology. In the beginning

of the 20th century, Spearman (1904) initiated the branch of correlational psychology

and established the concept of general intelligence. In the same year, Binet and Simon

(1904) published the first intelligence test with the aim to classify the cognitive progress

of school children. The Binet-Simon scale was well received, and soon further refined

and translated (Binet & Simon, 1911; Burt, 1922; Terman, 1916). These first steps in

the development of intelligence testing represented the starting point of the modern

measurement of intelligence. In fact, until today a revised form of the Binet-Simon

scale, the Stanford-Binet test, is still used to measure intelligence (Roid, 2003).

Following the success of intelligence tests, one of the first definitions of intelligence

was simply operational as: "intelligence is simply what the tests of intelligence test"

(Boring, 1923). Arguably, such an operational definition of intelligence by its measure-

ment is no longer up-to date (Hunt & Jaeggi, 2013; Johnson, 2013). Today, intelligence

is understood as "the ability to overcome obstacles by taking thought" (Neisser et al.,

1996, p. 77) or as "the aggregate or global capacity of the individual to act purpose-

fully, to think rationally, and to deal effectively with his environment" (Wechsler, 1944,

p.3). Despite these theoretical conceptualizations of intelligence1, intelligence research

remained strongly focused on psychometric questions such as the factor structure of

intelligence.
1Some researchers argue and criticize that intelligence is still defined operationally (van der Maas,

Kan, & Borsboom, 2014).
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Introduction 2

In the tradition of Spearman (1904), a plethora of factor analytic studies addressed

the question which psychometric model most adequately describes the structure of in-

telligence. Starting with the concept of general intelligence (g) - the shared variance

of cognitive tests - researchers were in debate whether g is formed by different un-

correlated factors (Kovacs & Conway, 2016; Thurstone, 1938) or represents a broad

and domain general factor and domain-specific residuals (Carroll, 1993; Horn & Cat-

tell, 1966; Jensen, 1998; Spearman, 1927). Modern psychometric analyses indicate

that intelligence consists of both, a general factor determining performance in a broad

variety of tasks, and specific uncorrelated factors (i.e. residual factors) that are related

to domain- or task-specific cognitive performance (McGrew, 2005, 2009).

Nevertheless, the positive manifold of cognitive tests still is an enigma demand-

ing for a theoretical explanation. Empirically, results show that heterogeneous sets of

cognitive tasks share between 40 to 50 percent of variance (Jensen, 1998; Johnson,

Bouchard Jr., Krueger, McGue, & Gottesman, 2004). More importantly, g factors from

different cognitive test batteries show large overlaps (r s = .77 – .99; Johnson, te Ni-

jenhuis, & Bouchard, 2008). Both the emergence of g in any set of cognitive tests

and the functional invariance across different test sets were often interpreted as an

indicator that few domain-general cognitive processes underlie individual differences

in intelligence (Jensen, 1998; Spearman, 1927).

Already in the beginning of intelligence research, cognitive process domains such

as processing speed or attention have been linked to general intelligence (Peak & Bor-

ing, 1926; Spearman, 1904). More recent correlational studies further emphasize the

role of processing speed (Jensen, 2006; Schubert, Hagemann, & Frischkorn, 2017) as

an important covariate of g. Furthermore, later established psychological constructs

such as working memory (Baddeley & Hitch, 1974) and attention regulation mech-

anisms such as executive functions (Miyake et al., 2000) have been linked to g as

well (Ackerman, Beier, & Boyle, 2005; Engle & Kane, 2003; Kyllonen & Christal, 1990;

Unsworth & Spillers, 2010). Nonetheless, a comprehensive theoretical account why

and how these different cognitive processes are related to individual differences in in-

telligence is still due.



Introduction 3

The present dissertation aims to contribute conceptually and empirically to this very

question: what are the basic cognitive processes of intelligence?. To address this

question, I identified three issues that my dissertation is focused on:

1. How can we adequately measure individual differences in cognitive processes?

2. How can we test which cognitive processes underlie individual differences in in-

telligence?

3. How can different cognitive processes related to intelligence be integrated?

In detail, the first two manuscripts of my thesis were directed on answering the first

question and discussed how to incorporate theoretically founded measures of a cogni-

tive process (e.g. parameters of a cognitive model) into intelligence research (Manuscript

1), and collected empirical evidence assessing which parameters of the drift-diffusion

model possess trait-like properties qualifying them as predictors of individual differ-

ences in intelligence (Manuscript 2). The third manuscript contributed to the second

question and developed a parametrization for the worst performance rule to provide

future research with means to asses which cognitive processes may explain this phe-

nomenon. And the fourth manuscript of my thesis addressed the last question and

aimed to integrate the currently most prominent candidate processes underlying indi-

vidual differences in intelligence.



2 Measuring individual differences in
cognitive processes

In order to meaningfully link cognitive processes to intelligence, adequate measures

of individual differences in cognitive processes are needed. Two points play an impor-

tant role for this: (1) the measurement of a cognitive process should meet the three

basic psychometric characteristics of objectivity, reliability, and validity (Adams, 1936),

and (2) the cognitive process should exhibit trait-like properties similar to intelligence

to ensure a symmetry in interpretation between the cognitive process and intelligence

(Wittmann, 1988; Wittmann & Süß, 1999). In this, we have to evaluate the psychome-

tric properties of individual difference measures of a cognitive process, and we have

to ensure that the cognitive process shows consistency across different situations and

tasks, just as intelligence does (Danner, Hagemann, Schankin, Hager, & Funke, 2011;

Deary, Whalley, Lemmon, Crawford, & Starr, 2000) .

Evaluating the psychometric properties of a measurement

A psychometric measurement is understood as the mapping of an empirical obser-

vation onto a formal – mostly numerical – representation (Narens & Luce, 1986; v.

Helmholtz, 1921). This mapping procedure is required to follow three main quality cri-

teria: objectivity, reliability, and validity. Objectivity means that the mapping has to be

independent of the observer, reliability that the measurement needs to be sufficiently

precise with respect to the construct to be measured, and validity that the measurement

actually represents the construct, trait or process of interest. In the end, the adequacy

4



Measuring individual differences in cognitive processes 5

of a measurement for a cognitive process is evaluated by how well these psychometric

criteria are met.

Cognitive process parameters related to intelligence (e.g. working memory capac-

ity, processing speed, or executive functions) are usually measured by the response

time and accuracy in a task. These measures can be determined more or less objec-

tively.1 With some additional assumptions, for example from models of classical test

theory (CTT) or structural equation models (SEMs), the reliability of such measures

can be estimated as well (Lord & Novick, 1968). Although estimating and interpret-

ing reliability estimates is certainly not trivial (Cronbach, 1951; Cronbach & Shavelson,

2004; Guttman, 1945; Jackson & Agunwamba, 1977; Mellenbergh, 1996), assessing

the validity of these measures is by far the most complex problem (Borsboom, 2005).

Following one of the current conceptions of validity, the critical point for a valid mea-

sure of a cognitive process is that variations in the underlying process are responsi-

ble for variation in the measurement (Borsboom, Mellenbergh, & van Heerden, 2004).

This problem has often been resolved by implicitly equating the process to be mea-

sured with its measurement. For example, the number of correctly recalled items from

a memory set after a short-delay is said to represent the capacity of short-term mem-

ory. By conceptually adopting a reflective measurement model (see Figure 2.1, p. 6), it

is then stated that any variation in the capacity of short-term memory causes different

numbers of correctly recalled items. However, such a simple reflective measurement

model does not provide an account for how the latent cognitive process translates to

the observed behavior and why changes in the cognitive process lead to differences

in behavior (Rhemtulla, van Bork, & Borsboom, 2015). Moreover, it postulates the

existence of a cognitive process without any evidence regarding its ontological status

(Borsboom, 2005, 2008).

Finding valid measures for cognitive processes is thus concerned with identifying

how a latent cognitive process relates to or determines the associated observed behav-

ior and discussing the ontological status of the cognitive processes to be measured.
1For instance, response time is usually defined as the time taken from the beginning to the end of

the processing of a task and accuracy is operationalized as a match of the response with a logically
derived correct solution.
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Figure 2.1: Path diagram of a reflective measurement model assuming that variations
in the observed variables X1−4 stem from variation in the latent cognitive process ψ
and measurement error e1−4.

This would address the two core problems of reflective measurement models (Bors-

boom, 2005). In order to achieve this, we first have to develop a theoretical model that

specifies how the observed behavior (i.e. reaction time or accuracy) is determined by

the cognitive process to be measured. Although such a model may well be wrong (Box,

1976), I would argue that it will always provide a more useful approach than equating

cognitive processes and observed behavior without accounting for their relation. Sec-

ondly, we have to establish the ontological status of the cognitive process by linking it to

undeniably existing measures.2 For example, assuming a physical basis of a cognitive

process, biological measures can be used as a preliminary reference for the existence

of a cognitive process.
2How to establish the ontology or existence of a process or measure, is an epistemological problem.

The methods used in this realm depend significantly on the philosophical position researchers take
(Borsboom, 2005). A realist position assumes that psychological constructs such as cognitive processes
exist independent of the observer. In contrast, anti-realist positions, such as positivism or constructivism,
assume that psychological constructs are part of our imagination or at least perception and thus not
independent of the observer. Unfortunately, the epistemological problems related to these positions
cannot be discussed in more detail in this dissertation.
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Structural properties of personality traits

Apart from the valid measurement of cognitive processes and their psychometric prop-

erties, any cognitive process supposedly related to intelligence or any other personality

trait has to exhibit similar trait-like properties. Despite that the ontological and theoreti-

cal status of personality traits such as intelligence have been under debate in personal-

ity theory ever since (Allport, 1937; Cattell, 1946; Eysenck, 1967, 1981), all personality

theories expressed similar structural properties defining a trait of personality.

The two most important structural properties of a personality trait and its measure-

ment are situational consistency and independence of assessment methods. Con-

ceptually, this relates to the discussion on how far observed behavior is comprised of

situational and testing contexts, a person’s traits and the interaction between these

variables (Cronbach & Snow, 1977; Endler & Magnusson, 1976). Two approaches to

dissolve the contribution of situational characteristics and personality traits to overt be-

havior have been put forth. One proposal was to randomly vary situations and tasks for

a sample of people in order to separate the variance components of the different factors

with variance analytic methods (Brennan, 2001). The other approach suggested to use

correlation matrices (Campbell & Fiske, 1959) and later SEMs or confirmatory factor

analysis (CFA) to decompose variance proportions unique to persons from situation

and method related variance (Eid, 2000; Steyer, Schmitt, & Eid, 1999).

In general, a trait-like cognitive process should be characterized by a strong consis-

tency across situations and methods. Empirically, this can be estimated by measuring

the same cognitive process in multiple situations with different tasks. Intelligence, for

example, has shown a remarkable differential stability with longitudinal correlations

of r ≈ .70 over a time span of more than 60 years (Deary et al., 2000). Moreover,

between 40 to 70 percent of variance is captured by a task general factor of general in-

telligence (g) in heterogeneous sets of cognitive tasks (Danner et al., 2011; Johnson et

al., 2004). Such a large proportion of variance consistent across situations and tasks,

together with little situation- and task-specific variance proportions, represents strong

evidence for the trait characteristics of intelligence. Any cognitive process underlying
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individual differences in g should thus exhibit similar trait-like properties.

Towards more adequate representations of cognitive processes.

Taken together, there are two important aspects when measuring cognitive processes

related to intelligence that I want to address within my dissertation and the associated

manuscripts. First, I aim at incorporating measures that are theoretically and biolog-

ically more closely connected to the cognitive processes of interest. And second, I

want to provide evidence that these measures exhibit trait-like properties and thus can

be interpreted symmetrically to intelligence. The following two sections will introduce

two different kinds of measures that better meet these requirements: (1) parameters

from cognitive models, and (2) neuro-physiological measures such as the latency of

event-related potential (ERP) components. Specifically, I will first explain how these

two approaches lead to a more adequate representation of individual differences in

cognitive processes. And second, I present evidence that both these measures exhibit

trait-like properties qualifying them as symmetric to intelligence.

2.1 Cognitive models as measurement tools

(Manuscript 1)

As pointed out in the outline of this section (see p. 5), one problem of reflective mea-

surement models is that they do not specify how the latent cognitive processes trans-

lates into observed behavior. To address this problem, the first manuscript of my dis-

sertation (Frischkorn & Schubert, 2018, see p. 50) advocates cognitive models as a

solution. Cognitive models are mathematical formalizations of a cognitive process.3 In

detail, cognitive models translate verbal theories (i.e. descriptive models of a cognitive

process) into mathematical formalizations of these theories (Farrell & Lewandowsky,

2018). Such models provide a detailed formalization of the interplay of different pro-

cesses that generate the observed behavior.
3Cognitive models have been referred to with various terms such as computational models, math-

ematical models or formal models. For consistency, I will use the term cognitive models to refer to
mathematically formalized models of a cognitive process within the present thesis.
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Specifically, I identify three major benefits of cognitive models for intelligence re-

search in the first manuscript of my dissertation (Frischkorn & Schubert, 2018). Namely,

(1) cognitive models provide a testable conceptualization of cognitive processes, (2)

parameters from cognitive models can be interpreted more objectively, and (3) individ-

ual differences in cognitive model parameters can be linked to individual difference in

intelligence. In addition, the first manuscript presents models for processing speed,

working memory and attention that are particularly relevant for intelligence research

and provides guidelines for their application.

In general, I argue within this manuscript that due to the clear formalization of pa-

rameters in a cognitive model, individual differences in cognitive model parameters

provide a more adequate representation of individual differences in a cognitive pro-

cess. Most importantly, they provide a clear formalization how difference parameters

of a cognitive process are translated into the observed behavior. Beyond that, indi-

vidual differences in cognitive model parameters that show strong relationships with

intelligence provide theory guided evidence for the basic cognitive processes of intelli-

gence.

Finally, with respect to the interpretation and ontology of cognitive model parame-

ters, the first manuscript of my dissertation highlights two important points: First, the

semantic interpretation of model parameters is always dependent on the task and con-

text they are estimated in. And second, cognitive models are always simplifications

of a latent cognitive process and can hardly capture the entirety of its existence and

architecture. However, I also point out that linking cognitive process parameters to

biological measures, such as psycho-physiological or neuro-imaging parameters, can

serve as a reference to inform us in how far model parameters are reflected in neural

correlates. This idea will be further elaborated in section 2.2 (p. 14).

Models for performance in intelligence tests

If cognitive models provide an account for the cognitive processes underlying observed

behavior in a measurement, why do we not formulate a cognitive model for intelligence

tests? There actually have been attempts to formalize individual differences in intel-
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ligence test performance. Carpenter, Just, and Shell (1990) formulated a model for

performance in the raven matrices test (Raven & Raven, 2003). In detail, this model

described different processes and strategies that could be used while solving a raven

test item. Interestingly, some of these processes (e.g. incremental encoding or rule in-

duction) were used by all participants, while other processes (e.g. induction of abstract

rules or dynamic management of different rules) were only used by above-average

performing participants.

The cognitive model by Carpenter et al. (1990) represents an important step to-

wards a more formalized and process oriented account of individual differences in intel-

ligence. Still, its application is limited to matrix reasoning tasks. While matrix reasoning

tasks may be the best single item indicator of g (Martinez, 2013; Spearman, 1946), it

has been argued that g is always better represented by a set of heterogeneous tasks

than one single indicator (Gignac, 2015). As the model by Carpenter et al. (1990) is re-

stricted to matrix reasoning, and cannot be adapted for other measures of intelligence,

its parameters cannot exhibit trait characteristics such as task independence. In sum,

Carpenter et al. (1990) attempt was a start but does not provide a exhaustive account

of individual differences in g.

Therefore, I argue to take a step back and exploit advances in cognitive psychol-

ogy; an area in which various cognitive models for processes that may underly g have

been developed over the past decades. Linking person-specific parameter estimates

from such models with individual differences in g provides insights into which specific

aspects of a cognitive process are related to intelligence. This evidence then provides

the basis for combining different processes related to g into a comprehensive process

theory of intelligence.

One promising model that has already been used in intelligence research (e.g. Rat-

cliff, Thapar, & McKoon, 2010; Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007;

Schmitz & Wilhelm, 2016; Schubert, Hagemann, Voss, Schankin, & Bergmann, 2015)

is the drift-diffusion model (DDM). The DDM assumes that a decision in binary choice

tasks stems from an information accumulation process toward one of two response

alternatives (see Fig. 2.2, p. 11). This accumulation process is defined as a random
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Figure 2.2: Graphical illustration of the drift-diffusion model (DDM). The drift rate (illus-
trated by the arrow) determines the speed of information accumulation. The boundary
separation a can be interpreted as response caution, and the starting point z repre-
sents a bias towards one of the two response alternatives. The non-decision time t0
is not depicted in this illustration and is simply added to the time of the above shown
decision process.

walk with a systematic component, the drift rate (v), and random noise (Ratcliff, 1978).

Information accumulation stops until one of the two response thresholds is reached.

The distance between these response thresholds is specified by the boundary separa-

tion (a), and the accumulation process starts at the starting point (z) between the two

boundaries. Finally, time that is not related to this decision process is captured in the

non-decision time (t0).

The DDM nicely demonstrates the benefits of cognitive models. While behavioral

reaction timess (RTs) mixes the contribution of different processes within a decision,

the DDM decomposes the information from the distribution of response times into dis-

tinct parameters representing the different aspects of a decision. More importantly, ex-

perimental studies have validated the interpretation of DDM parameters (Voss, Rother-

mund, & Voss, 2004). In this, drift rate v can be seen as a theoretically more valid

representation of processing speed than individual differences in mean RTs.
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Trait characteristics of cognitive processes parameters (Manuscript 2)

As the DDM has become a very popular cognitive model in intelligence research,

I evaluated which parameters of the DDM exhibit trait-like properties in the second

manuscript of my dissertation (Schubert, Frischkorn, Hagemann, & Voss, 2016, see p.

72). In detail, we estimated drift rate, boundary separation and non-decision time in

three different elementary cognitive tasks (ECTs) across two measurement occasions.

With on average 44% of variance captured by a task- and situation general drift factor,

drift rate was similarly consistent across different tasks and measurement occasions

as intelligence. In contrast, consistency for boundary separation and non-decision

time was lower with the task- and situation-general factors capturing on average 32 to

36% of variance. Interestingly, the variance consistent across the three different task

showed no situation specific variance, and state residuals could all be fixed to zero.

On the one hand, the second manuscript of my dissertation (Schubert et al., 2016)

thus exhibited how trait-properties for parameters of cognitive models can be evaluated,

and on the other hand established that drift rate is the best candidate parameter of

the DDM to be related to intelligence. The results however stress that it is important

to measure drift rate across different tasks, because single task indicators contain a

considerable amount of task-specific variance (up to 17% as estimated by Schubert et

al., 2016). This amount of task specific variance in single task drift rates might also

explain why empirical estimates of the relationship between drift rate and intelligence

varied considerably (r = .50 – .90; Ratcliff et al., 2010; Schmiedek et al., 2007; Schmitz

& Wilhelm, 2016; Schubert et al., 2015).

In summary, the first manuscript of my dissertation (Frischkorn & Schubert, 2018)

demonstrated how cognitive models may provide a more valid representation of in-

dividual differences in cognitive processes, because they provide more explicit mea-

surement models that connect the latent cognitive process with observed behavior.

Moreover, the second manuscript of my dissertation (Schubert et al., 2016) showed

that drift rate of the DDM exhibits trait-like properties rendering it a suitable predictor of

individual differences in intelligence.
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2.2 Neuro-biological measures of cognitive processes

Similar to parameters from cognitive models, neuro-physiological measures such as

latencies or amplitudes of the event-related potential (ERP) can provide a more valid

representation of individual differences in cognitive processes than observed reaction

times or accuracies. The high time-resolution of the electro-encephalogram (EEG)

and ERPs allows to decompose the neural stream of information processing between

stimulus onset and response into distinct components (e.g. the N1 or P3). These

components can be differentiated by polarity, topography, and latency after stimulus

onset. In addition, the EEG reflects physical properties of the information processing

within the brain and can thus be used as biological reference confirming the ontological

status of cognitive processes.

Over the past decades, a plethora of experimental research has sharpened the

psychological interpretation of different ERP components. Specifically, a number of

studies investigated which experimental manipulations elicit specific ERP components

or affect their latency or amplitude (Luck, 2005; Luck & Kappenman, 2011). Ultimately

this has led to a functional interpretation of the different ERP components that arguably

separates different aspects of cognitive processes more validly than behavioral RTs or

accuracy.

Unfortunately, the consistency across different tasks and situations of parameters

of ERP components has often been neglected. Specifically, amplitudes and latencies

of ERP components have often been determined only for a single task and have then

been related to measures of intelligence (Bazana & Stelmack, 2002; McGarry-Roberts,

Stelmack, & Campbell, 1992; Troche, Houlihan, Stelmack, & Rammsayer, 2009). This

has led to inconsistent results with respect to the relationship of ERP components and

intelligence. Beyond that, past research often neglected the question whether ERP

components exhibit trait-like properties that are required for an adequate predictor of

individual differences in intelligence.

A recent study addressed these problems and suggested that as long as parame-

ters of ERP components are determined across multiple tasks, situational effects may



2.2. Neuro-biological measures of cognitive processes 14

be neglected (Schubert et al., 2017). Specifically, latencies of ERP components con-

tained a considerable amount of task specific variance. However, the variance con-

sistent across different tasks contained no significant situation-specific variance. In

this, latencies or amplitudes of ERP components that are measured in different task

seem to be relatively stable across time. On the basis of these results, I adopted

EEG measures across three different tasks in the fourth manuscript of my dissertation

(Frischkorn, Schubert, & Hagemann, submitted) summarized in section 4.1 (p. 25) to

enrich the interpretation of behavioral measures of cognitive processes.

Cross validating parameters from cognitive models and

neuro-physiological process parameters

Although the manuscripts of my dissertation make no contribution to this point, I want

to point out one very promising approach to a more comprehensive understanding of

basic cognitive processes of intelligence: the simultaneous analysis of both parameters

of cognitive models and neuro-physiological process parameters as predictors of intel-

ligence (for an example, see Schubert, Nunez, Hagemann, & Vandekerckhove, 2018).

These so called cognitive latent variable models (CLVMs) combine the advantages of

mathematically formalized cognitive models (see section 2.1, p.8ff.) with benefits of

neuro-psychological process parameters (see section 2.2, p.13f.). Such CLVMs as-

sume that both parameters of cognitive models derived from behavioral measures and

process parameters from neuro-physiological data reflect properties of the same la-

tent cognitive process (Forstmann, Wagenmakers, Eichele, Brown, & Serences, 2011;

Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017). Accordingly, these two kinds

of parameters should be strongly interrelated and predict individual differences in intel-

ligence alike.

Empirically, especially parameters of the DDM and neuro-cognitive process param-

eters have been linked. The P3 component, for example, has been shown to be a

neural indicator of the evidence accumulation process captured in the drift rate of the

DDM (Kelly & O’Connell, 2013; O’Connell, Dockree, & Kelly, 2012; Ratcliff, Sederberg,
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Smith, & Childers, 2016; van Ravenzwaaij, Provost, & Brown, 2017). Further, individual

differences in P3 amplitude have been shown to explain up to 74 percent of variance

in drift rates (Ratcliff, Philiastides, & Sajda, 2009). These results are especially inter-

esting for discussing the ontology of cognitive model parameters and the interpretation

of ERP components. The strong link of drift rate and P3 amplitude suggests that both

these measures reflect the same neuro-biological process. In this, the use of parame-

ters from cognitive models together with neuro-cognitive process parameters provides

a promising way to address both of the critical issues of reflective measurement mod-

els (see p. 5), and investigate theoretically and ontologically grounded basic cognitive

processes of intelligence in future studies.



3 Testing explanations of important
phenomena in intelligence research

The adequate measurement of individual differences in cognitive processes related to

intelligence is only one aspect in the realm of searching for the basic cognitive pro-

cesses of intelligence. Another critical question is, how we can evaluate which cogni-

tive processes underlie individual differences in intelligence and whether they explain

important phenomena in intelligence research? The present chapter will focus on two

different approaches towards this aim, and highlight how the third manuscript of my

dissertation (summarized on p. 18f.; Frischkorn, Schubert, Neubauer, & Hagemann,

2016) contributed to help identifying the basic cognitive processes of intelligence.

To test explanations for individual differences in intelligence, it is necessary to, first,

parameterize important phenomena and second, to design experiments that allow for a

causal interpretation of their results. Individual differences in intelligence are arguably

readily accessible via performance scores from intelligence tests. However, other im-

portant phenomena, for example the worst performance rule (WPR), have been ap-

proached rather descriptively (Frischkorn et al., 2016; Schubert, 2018). Developing a

parametrization of phenomena like the WPR is important in order to statistically test

which cognitive process might explain this phenomenon. In this, a parameterization

of such findings is a necessary first step to provide statistical inference on possible

explanations.

In addition to the parametrization of the phenomena to be explained, study designs

that allow to establish a causal relationships between cognitive processes and intel-

16
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ligence are necessary. Hitherto, almost any evidence concerning the basic cognitive

processes of intelligence is based on correlations. However, correlations can hardly

be interpreted causally (Danner, Hagemann, & Fiedler, 2015; Mooij, Peters, Janzing,

Zscheischler, & Schölkopf, 2016; Tabachnik & Fidell, 2013). Nevertheless, a plethora

of correlational studies mostly adopting structural equation model (SEM) has put for-

ward claims about different cognitive processes underlying individual differences in

intelligence or explaining phenomena such as the WPR. In detail, the capacity of work-

ing memory (Ackerman et al., 2005; Conway, Cowan, Bunting, Therriault, & Minkoff,

2002; Kyllonen & Christal, 1990; Oberauer, Schulze, Wilhelm, & Süß, 2005) or short-

term memory (Colom, Flores-Mendoza, Quiroga, & Privado, 2005; Colom, Jung, &

Haier, 2007), the speed of information processing (Jensen, 2006; Schmitz & Wilhelm,

2016; Schubert et al., 2017, 2015; Sheppard & Vernon, 2008), and attention regulation

mechanisms (Engle & Kane, 2003; Kane, Conway, Hambrick, & Engle, 2007; Kane

et al., 2016) have all been discussed as basic cognitive processes of intelligence and

associated phenomena – e.g. the WPR – on the basis of correlations.

In the case of working memory capacity (WMC) as a basic cognitive process of in-

telligence, there has even been a vivid discussion in how far WMC might be inseparable

to intelligence (Ackerman et al., 2005; Kane, Hambrick, & Conway, 2005; Oberauer et

al., 2005). It is however important to note that perfectly correlated measures can still

refer to different constructs. For example, the pressure and volume of a gas in a closed

system are perfectly correlated as described by Boyle’s law1 (Boyle, 1662). However,

these two measures are obviously not equal. Insofar, correlational evidence does not

suffice if we are to determine the causally basic cognitive processes of intelligence or

explanation for the WPR.

To establish which of the cognitive processes correlated with intelligence cause indi-

vidual differences in intelligence or explain the WPR experimental studies are needed.

An experiment provides the possibility to systematically manipulate specific cognitive

processes such as processing speed (PS) or WMC. Decreases in performance in intel-

ligence measures or changes in the WPR that can be attributed to these manipulations
1This is the case as long as the temperature and amount of gas stay constant.
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then provide evidence for their causal link to intelligence. Ultimately, it is thus necessary

to bridge this often criticized gap between correlational and experimental psychology

(Cronbach, 1957) to identify the causally basic cognitive processes of intelligence.

3.1 Parametrization of the Worst Performance Rule

(Manuscript 3)

The third manuscript of my dissertation (Frischkorn et al., 2016, see p. 18) addressed

the problem that the WPR has mostly been described rather than tested. The WPR

describes the phenomenon that worst rather than average or best performance of par-

ticipants within a cognitive task shows the largest relationship to intelligence (Coyle,

2003b; Larson & Alderton, 1990). Not only does this contradict basic assumptions of

measurement theories such as classical test theory (CTT) but it amplifies in tasks that

are highly related to general intelligence (g) and in samples with below average cog-

nitive abilities that rely more strongly on g related cognitive abilities (Blum & Holling,

2017; Coyle, 2003b; Spearman, 1927). In this, the cognitive processes that are re-

sponsible for the WPR might also be strongly related to g.

Specifically, the third manuscript identified the problem that studies evaluating the

WPR typically computed correlations across performance percentiles with intelligence

and then described the increase in correlations from best to worst performance. Any

group or task comparisons (e.g. between younger and older adults or tasks with

low compared to high g-loading) were then made by descriptively comparing the in-

crease in correlations instead of quantifying or testing differences in the WPR (Coyle,

2003a; Rammsayer & Troche, 2016; Ratcliff, Schmiedek, & McKoon, 2008; Ratcliff et

al., 2010). Although the difference in correlations can be tested (Steiger, 1980), this

test often lacks statistical power (Cohen, 1988). Thus, to effectively review any theo-

retic explanation of the WPR a parameterization of the WPR is required.

To overcome the problem of describing rather than testing the WPR, I developed

a parameterization for the WPR in the third manuscript of my dissertation (Frischkorn

et al., 2016). This parameterization reformulated the WPR as a moderation. In detail,
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Figure 3.1: Visualisation of the worst performance rule (WPR) as evaluated in
Frischkorn et al. (2016). The left side (A) displays the WPR for set size one in the
Sternberg memory scanning task, and the right side (B) for set size five. The line dis-
plays the regression as described in equation 3.1. The gray area around the regression
line displays the standard error of estimation for this linear regression.

the relationship ρ between performance in a given percentile p and intelligence can be

described as:

ρp = β0 + p · β1 (3.1)

In this regression, β0 represents the relationship ρ for the centered percentile, and β1

represents the increase or decrease of this relationship across percentiles. As long as

β1 is significantly different from zero, the correlation ρ between performance in the cog-

nitive task and intelligence across percentiles will change (see Fig. 3.1, p. 19). Thus

testing the significance of the WPR essentially means evaluating whether β1 differs

from zero or not.

While I preliminarily implemented the increase of correlations across percentiles in

a sequential manner in the third manuscript (as it was usually done when describing

the WPR), this does not account for the uncertainty in correlations as statistical es-

timates (Skrondal & Laake, 2001). Therefore, I further recommended to implement

this moderation in a hierarchical model that simultaneously estimates the relationship

between intelligence and performance in a cognitive task while also modeling the in-

crease across percentiles. On the one hand, this conveys the moderation aspect of

the new parametrization of the WPR more clearly (see the following paragraph for an
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extended description). On the other hand, it complies with recent recommendations for

hierarchical models from the area of cognitive modeling (Boehm, Marsman, Matzke, &

Wagenmakers, 2018), and the possibility of incorrect inferences due to the sequential

analysis can be avoided. Specifically, results from the third manuscript showed that a

sequential approach underestimates the standard errors of regression parameters and

thus overestimates the significance of a possible worst performance effect.

In detail, the hierarchical model of the WPR advocated in the third manuscript is a

regression of performance Ψ of the participants i across the percentiles p in a cognitive

task on intelligence g:

Ψ̂ip = β00 + β1p · gi

To additionally implement the WPR in this regression, the regression weight β1p is in

turn predicted by the percentile:

β1p = β10 + β11 · p

A combination of these two nested, and thus hierarchical, regressions results in an

interaction of percentile p and intelligence g across percentiles:

Ψ̂i = β00 + β10 · gi + β11 · p× gi

Conceptually, β10 then represents the relationship between performance Ψ in the cog-

nitive task and intelligence g for the centered percentile (i.e. p = 0; Wainer, 2000),

and β11 represents the change of this relationship across percentiles. This formaliza-

tion elucidates more clearly why the WPR can be seen as a moderation: namely, the

interaction quantified in β11 of percentile p and intelligence g parameterizes the WPR

and can be interpreted as a moderation.

In summary, the parametrization of the WPR developed in the third manuscript of

my dissertation (Frischkorn et al., 2016) provided future research with the means to

evaluate different theoretical explanations of the WPR. This can be achieved with two

approaches: (1) either we additionally control for individual differences in other cog-

nitive processes across percentiles, or (2) we specify a three-way interaction of the

additional cognitive process and the WPR interaction (β11). Both these methods would
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allow to estimate in how far β11 changes with respect to additional cognitive processes.

This provides future research with the means to evaluate different hypothesis concern-

ing the WPR.

Theoretically, it has been argued that either attentional lapses (Unsworth, Redick,

Lakey, & Young, 2010) or the speed of information accumulation (Ratcliff et al., 2008)

might underlie the WPR. To empirically test these hypothesis, one very recent study

measured and controlled for attentional lapses across percentiles and evaluated in

how far the amount of attentional lapses may explain the WPR (Löffler, Schubert,

Frischkorn, Rummel, & Hagemann, 2018). The results indicated that controlling for

attentional lapses did not affect the WPR. In a similar vein, the drift rate of the drift-

diffusion model (DDM) was used to evaluate whether it explains the WPR (Dutilh et al.,

2017). But as Dutilh et al. (2017) did not find a WPR in their data, they were not able

to evaluate whether drift rate does accutaly explain the WPR.

Beyond that, the parametrization of the WPR also allows to summarize results from

multiple studies and obtain meta-analytic evidence on the generalizability of the WPR

(Schubert, 2018). This stresses the significance of parameterizing important phenom-

ena of intelligence research both with respect to cumulative science and their theoreti-

cal explanation.

3.2 Experimental manipulation of cognitive processes

Still, the parameterization of important phenomena in intelligence research is only the

first step in finding and testing explanations for the different phenomena. In addition,

studies that go beyond information on bi-directional relationships (e.g. correlations)

are necessary.2 Yet, research on intelligence has traditionally focused on correlations.

And while causal evidence can be obtained via correlations under very specific cir-

cumstances (c.f. Danner et al., 2015; Mooij et al., 2016), these are hardly given in the

case of most correlational studies in the area of intelligence research. It has therefore
2Although I did not provide any own publications to the following point within this dissertation, I will

still briefly discuss the issue of experimentally studying the basic cognitive processes of intelligence for
the sake of completeness.
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often been argued that we have to incorporate experimental studies supplementing the

correlational results in intelligence research (Cronbach, 1957).

Only few studies have bridged this gap, but these studies in particular often provided

important insights on the basic cognitive processes of intelligence. For instance, Rao

and Baddeley (2013) used different secondary tasks demanding specific processes in

working memory while participants worked on items from a raven matrices test (Raven

& Raven, 2003). By comparing processing time and accuracy of matrix reasoning while

participants had to count backward to control conditions such as engaging in articula-

tory suppression or a silent baseline, Rao and Baddeley (2013) were able to show that

time taken to solve an intelligence test item increases while counting backwards. While

accuracy – the more central measures in raven matrices – showed smaller and incon-

sistent effects, this study still provides first evidence that especially central executive

processes may be causally related to performance in an intelligence test.

Apart from using secondary tasks that capture resources of specific cognitive pro-

cesses, another possibility to experimentally manipulate cognitive processes is psycho-

pharmacology. Schubert, Hagemann, Frischkorn, and Herpertz (2018), for example,

used a nicotine manipulation to increase neural speed of processing and evaluated in

how far this leads to increases in intelligence test performance. Interestingly, results of

this study showed an effect of nicotine administration on neural speed of processing,

but no effect on intelligence test performance. With respect to the well established cor-

relation between mental speed and intelligence (Schmitz & Wilhelm, 2016; Schubert

et al., 2017; Sheppard & Vernon, 2008) this result suggests that a third variable not

affected by the nicotine administration might underlie the relationship of mental speed

and intelligence. This idea will be discussed in more detail in chapter 4 (p. 24ff.)

Taken together, experimentally manipulating specific cognitive processes and eval-

uating how such manipulations interfere with performance in intelligence tests is a

promising approach towards identifying the basic cognitive processes of intelligence.

Obviously, the specificity of such manipulations with respect to a single cognitive pro-

cess needs to be discussed, which is the reason why experimental studies on the basic

cognitive processes of intelligence (Hagemann, Schubert, & Frischkorn, 2016; Schu-
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bert, Hagemann, et al., 2018) always incorporated manipulation checks. In this realm,

again cognitive models could provide further insight which specific part of a cognitive

process was tapped by a manipulation. Building on the first promising results, an im-

portant future direction would thus be to further close the gap between correlational

and experimental studies in intelligence research (Cronbach, 1957)



4 Integrating different cognitive
processes correlated with intelligence

Last but not least, after summarizing my contributions to the issues of measuring cogni-

tive processes and testing explanations for individual differences in intelligence, I want

to address the third aspect raised in the Introduction (see p. 2): How can different

cognitive processes related to intelligence be integrated?

As emphasized throughout this dissertation, different cognitive processes have been

linked to individual differences in intelligence over the past decades. The three most

prominent of these cognitive process domains are working memory (WM), processing

speed (PS), and executive functions (EFs). In detail, working memory capacity (WMC)

has been shown to correlate positively with intelligence, especially on a latent level

(r = .50 – .90; Ackerman et al., 2005; Kyllonen & Christal, 1990; Oberauer et al., 2005).

In contrast, the relationship between PS and intelligence is rather small for single task

measures (r = -.50; Sheppard & Vernon, 2008) but increases considerably when PS

is measured with a heterogeneous set of tasks (|r | ≈ .50; Schmitz & Wilhelm, 2016;

Schubert et al., 2017). Moreover, neural speed of higher order processing has shown

a correlation with intelligence similar in size to WMC (r = -.89; Schubert et al., 2017).

The evidence for the relationship between EFs to intelligence is less consistent.

First, it is still unclear in how far EFs can be described as a unitary attention regulation

mechanism or as a set of diverse attentional processes (Friedman & Miyake, 2017;

Karr et al., 2018; Miyake et al., 2000). Second, due to the separation of different EFs

such as inhibition, updating, and shifting (Miyake et al., 2000) there are inconsistent

24
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results which EF specifically is related to intelligence. Furthermore, there is consid-

erable heterogeneity in the measurement of EF ranging from average performance,

or performance within specific conditions to difference measures between conditions.

This is why estimates for the relationship of EFs with intelligence range from |r | = .08 –

.12 for shifting and inhibition measured with difference scores (Friedman et al., 2006;

Wongupparaj, Kumari, & Morris, 2015) up to r = .44 – .74 for updating measured with

average performance (Friedman et al., 2006; Wongupparaj et al., 2015).

Interestingly, these different cognitive processes and their relationship to intelli-

gence have often been investigated separately or at least as independent predictors

of intelligence (Colom, Abad, Quiroga, Shih, & Flores-Mendoza, 2008). One aim of

my dissertation, in particular the fourth manuscript (summarized on p. 27f.; Frischkorn

et al., submitted), was therefore to integrate these three different cognitive process

domains (WMC, PS, and EFs) as predictors of intelligence.

4.1 Executive Functions: Bridging the gap between

working memory capacity and processing speed

as predictors of intelligence?

Previous studies that have linked WMC to intelligence raised the question which spe-

cific processes within WM are responsible for the strong relationship between WMC

and intelligence. Some researchers have argued that attentional control processes

unique to complex span tasks are the main reason for this strong correlation (Conway,

Kane, & Engle, 2003; Engle, Tuholski, Laughlin, & Conway, 1999), while others sug-

gested that the capacity of short-term memory (STM) underlies the relationship of WM

and intelligence (Colom et al., 2008, 2005; Shahabi, Abad, & Colom, 2014). In fact,

current theories of WM propose that attentional processes may play a major role in

maintenance of memory items regardless of concurrent processing (Oberauer, Farrell,

Jarrold, & Lewandowsky, 2016; Souza & Vergauwe, 2018). In sum, the same atten-

tional processes may underlie both the capacity of STM and additional demands posed
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by complex span tasks (Barrouillet, Portrat, & Camos, 2011; Wilhelm, Hildebrandt, &

Oberauer, 2013).

Similarly, early work has already discussed attention as one of the main reasons

that PS is related to intelligence (Spearman, 1904). Especially in ageing research,

attentional deficits in older adults have been related to changes in processing speed

(Lester, Vatterott, & Vecera, 2018). In addition, many experimental paradigms used

in attention research (e.g. the Stroop task, the Eriksen Flanker task or the Attention

Network Test) measure the effects of their manipulations with response times (Eriksen

& Eriksen, 1974; Fan, McCandliss, Sommer, Raz, & Posner, 2002; Stroop, 1935). In

conclusion, attention seems to be closely related to PS as well.

Following these theoretical and empirical considerations, one candidate for atten-

tional processes that are responsible for the strong relationship between WMC, PS and

intelligence are executive functions (EFs). In reference to the multi-component model

of WM (Baddeley & Hitch, 1974), EFs are often conceptualized as attentional con-

trol mechanisms within the central executive of working memory (Jurado & Rosselli,

2007).1 One prominent model of EFs separates three different EFs (Friedman &

Miyake, 2017; Miyake et al., 2000): inhibition, updating, and shifting. Inhibition refers

to the ability to focus attention on relevant information while ignoring irrelevant infor-

mation, updating describes the ability to remove outdated information from memory

while encoding new information, and shifting represents the ability to effectively switch

between different task instructions or mental sets.

Typically, EF tasks are designed so that specific conditions require the to be mea-

sured EF while others do not. For example, the Stroop- or Flanker-tasks (Eriksen &

Eriksen, 1974; Stroop, 1935) – both proposed as measures of inhibition – contain con-

gruent and incongruent conditions. In the incongruent condition, the irrelevant stimulus

information indicates another response than the relevant information, while in the con-

gruent condition both irrelevant and relevant stimulus information indicate the same
1The definition of EF is anything but unique. In some areas in psychology, especially developmental

psychology, EF subsume all higher order cognitive processes dedicated to control or planning processes
(Diamond, 2013), and other areas, mostly cognitive psychology, define EFs more restrictively as a set
of specific attention control mechanisms (Miyake et al., 2000). Within the present thesis I use the latter
definition of EFs to separate the different cognitive processes such as intelligence, WM, and EFs more
clearly.



4.1. Executive Functions: Bridging the gap? (Manuscript 4) 27

response. Thus, only the incongruent condition requires that the irrelevant stimulus in-

formation is ignored and attention to be focused on the relevant information to respond

correctly. The effort of inhibiting the irrelevant information is thus captured by the dif-

ference between the two conditions. Accordingly, individual differences in inhibition

should be represented by person specific differences in this effect.

Integrating EFs into the relationship of intelligence, WMC, and PS

(Manuscript 4)

The fourth manuscript of my dissertation (Frischkorn et al., submitted, see p. 116)

addressed the question in how far EFs may explain the relationship of both WMC and

PS with intelligence. In this study, a sample of N = 101 participants worked on three EF

tasks – one for each of the three EF sensu Miyake et al. (2000) – while their EEG was

recorded. Additionally, we assessed participants’ intelligence, their WMC, and their

PS. I then addressed the following two research questions, by implementing structural

equation models (SEMs):

1. How much manipulation specific versus unspecific variance do reaction timess

(RTs) in the different conditions of EF tasks contain?

2. How do individual differences in EFs fit into the relationship of WMC, PS, and

intelligence?

The first question addresses in how far performance in EF task shows variations that

can be attributed to the EF demands (i.e. the manipulation that supposedly requires

the EF), and how much variance can be attributed to processes that are not specific

for certain conditions and thus represent variations in more general cognitive pro-

cesses. Building on these results, the second question then aimed at integrating the

general and manipulation specific performance parts into the relationships between

intelligence, WMC, and PS.

For the first research question, I separated the variance specific to the different con-

ditions in the EF tasks from general variance across conditions for both behavioral RTs
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and latencies of the N1 and P3 component of the event-related potential (ERP) with bi-

factor models. This bi-factor approach essentially computes a factor for general perfor-

mance across all conditions, and latent difference scores for the specific manipulation

in comparison to the general performance. Thus, the variance of the manipulation-

specific factors (i.e. latent difference factors) represents individual differences in the

EFs tapped by the respective tasks.

Results from the fourth manuscript indicated that the general factors of the bi-factor

models captured on average 68% of variance in manifest indicators (both behavioral

RTs and ERP latencies), while each of the manipulation specific (i.e. latent difference)

factors captured on average only 14% of variance. This explains both the low relia-

bility of difference measures in experimental paradigms (Hedge, Powell, & Sumner,

2018), and the small and inconsistent relationships of inhibition and shifting that are

usually measured with difference scores to intelligence (Friedman et al., 2006; Miyake,

Friedman, Rettinger, Shah, & Hegarty, 2001; Wongupparaj et al., 2015).

I then joined the bi-factor models from the three EF tasks and estimated the relation-

ship of general and manipulation-specific variance from the EF tasks with intelligence,

WMC, and PS. Interestingly, only the general factors from the bi-factor models cor-

related with the three covariates. Specifically, behavioral RTs were strongly related

(r = .77) to PS operationalized with two elementary cognitive tasks, and showed con-

sistent negative relationships with both intelligence (r = -.55), and WMC (r = -.49).

This pattern, resembled the typical correlations of PS measured by elementary cog-

nitive tasks (ECTs) with intelligence and WMC (Kyllonen & Christal, 1990). As WMC

was strongly correlated with intelligence, I simplified the model by (1) joining all reac-

tion time measures (i.e. RTs in both EFs tasks and ECTs) in one general processing

speed factor and (2) joining intelligence and WMC in one factor for higher cognitive

abilities. These two factors were then negatively correlated and shared approximately

30% of variance. Moreover, none of the manipulation-specific factors for behavioral RT

showed any correlations with intelligence, WMC, or PS.

ERP latencies showed less consistent correlations with the three covariates. In

detail, neither general nor manipulation-specific factors of N1 latencies in the three EF
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tasks showed any significant relationship with intelligence, WMC, or PS. The general

factor for P3 latencies in the three EF tasks was moderately related to PS in ECTs

(r = .40), and showed a small correlation with WMC (r = -.28). However, it was not

related to intelligence. Similar to N1 latencies, the manipulation-specific factors for P3

latencies did not show any significant relationships with intelligence, WMC, or PS.

Overall, the results of the fourth manuscript thus conveyed two important points:

(1) Performance within EF tasks mainly reflects general individual differences, and

(2) only this general variance showed relationships with intelligence, WMC, and PS.

The results from the fourth manuscript (Frischkorn et al., submitted) support previous

evidence on the relationships of WMC and PS with intelligence (Ackerman et al., 2005;

Jensen, 2006; Kyllonen & Christal, 1990; Schmitz & Wilhelm, 2016; Schubert et al.,

2017). However, a comprehensive theoretical account for the inter-relations between

these three constructs by EFs could not be established. In fact, attention regulation

mechanisms such as EF, that were supposed to be related to both WMC and PS (Engle

et al., 1999; Kane & Engle, 2003), did not show any relationships with intelligence, or

WMC and PS.

Revisiting the difference between correlational and causal

relationships between intelligence, WMC, and PS

It is important to note that recent empirical results suggest that PS may not causally

underlie individual differences in intelligence (Schubert, Hagemann, et al., 2018). As

described in section 3.2 (p.21ff.), a pharmacological manipulation of PS, did only affect

RTs and ERP latency but not intelligence test performance. As there is nonetheless

a consistent relationship of PS with intelligence and WMC (Schmitz & Wilhelm, 2016;

Schubert et al., 2015; Sheppard & Vernon, 2008) there has to be at least one third

variable that is responsible for this relationship.

Schubert, Hagemann, et al. (2018) argued that structural brain properties might ex-

plain the relationship between processing speed and general intelligence. For instance,

organizational properties of the salience network (Menon & Uddin, 2010; Soltani &
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Knight, 2000), as well as individual differences in nodal efficiency across brain regions

(e.g. the right anterior insula and the dorsal anterior cingulate cortex) have shown cor-

relations with intelligence (Hilger, Ekman, Fiebach, & Basten, 2017). As EFs could not

explain the inter-relations between intelligence, WMC, and PS, the structural architec-

ture of the neuro-cognitive system could potentially bridge the gap between WMC and

PS as basic cognitive processes of intelligence.

4.2 Bindings: A new account for the relationship

between working memory capacity, processing

speed and intelligence?

In an attempt to acknowledge the structural properties of the brain, the interference

theory of working memory (Oberauer, Lewandowsky, Farrell, Jarrold, & Greaves, 2012;

Oberauer & Lin, 2017) assumes that one critical process in working memory is binding

content information (e.g. words or colors) to arbitrary context information (e.g. serial

or visuo-spatial position; Oberauer & Kliegl, 2006; Oberauer & Lin, 2017; Wilhelm et

al., 2013). Within this theory, that has often been formalized as a cognitive model,

these types of information are typically represented by a distributed activation within a

connectionist network model (for an illustration see Figure 4.1, p. 31). In this model a

specific activation pattern of context neurons is bound to a specific pattern of content

neurons. On a neural level, this might be reflected in associations between brain re-

gions that code context and content information respectively. These associations may

well be related to individual differences in the structural organization of the brain and

thus underlie the relationship between processing speed and intelligence, as hypothe-

sized by Schubert, Hagemann, et al. (2018).

This theoretical idea gains further support by studies that have argued that ba-

sic reaction time tasks incorporate bindings as well (Meiran & Shahar, 2018; Wilhelm

& Oberauer, 2006). In detail, reaction time tasks require participants to represent

stimulus-response bindings. These stimulus-response bindings are often very intuitive,
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Figure 4.1: Graphical illustration of the connectionist network assumed by the interfer-
ence theory of working memory. A specific context cue is represented by a distributed
activation of specific nodes on the context layer. The bindings between these nodes
and the content layer result in an activation pattern on the content layer. This activa-
tion pattern ideally should correspond to the distributed code of a specific semantic
representation.

like pressing the left response key when an arrow pointing left is shown and the right

key for an arrow pointing right. However, if stimulus-response bindings are arbitrary (i.e.

the follow no readily accessible rule) rather than intuitive, the correlation between RTs

and both working memory and general intelligence increased. Maintaining stimulus-

response bindings - especially when arbitrary - thus seems to be a processes that is

required in both measures of processing speed and working memory capacity. Thus,

cognitive processes related to the formation and maintenance of bindings may explain

why WMC and PS are related.

Interestingly, the P3 component of the ERP has been associated with updating of

stimulus-response bindings as well (Verleger, 1997, 2010; Verleger, Metzner, Ouyang,

Śmigasiewicz, & Zhou, 2014). Conceptually, one interpretation of the P3 component

proposes that it reflects aspects of the decision process that are related to response

selection processes (Hillyard & Kutas, 1983; Kelly & O’Connell, 2013). This response

selection processes might rely on stimulus-response bindings that are necessary in

basic reaction time tasks and more complex WM tasks.

Thus, the missing link between processing speed, working memory and general

intelligence, could be that all these processes rely on bindings in some form. In sum,
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individual differences in the ability to form and maintain these bindings might be related

to the structural organization of the brain. It is highly likely, that individual differences

in this structural organization underlie numerous behavioral and neural measures of

cognitive processes (e.g. ERP latencies or RTs) that have been linked to intelligence.

It is important to note, that important phenomena such as the worst performance

rule (WPR) have been linked to bindings as well (McVay & Kane, 2012; Schmiedek

et al., 2007). For example, Schmiedek et al. (2007) argued that the WPR – often as-

sociated with attentional lapses (Unsworth et al., 2010) – might also be explained by

variations in the ability to maintain stimulus-response bindings. In contrast to the atten-

tional lapses account for the WPR, Schmiedek et al. (2007) suggest that the variation

of stimulus-response bindings across trials does not correspond to attentional lapses,

but does reflect individual differences in working memory processes.

How to test whether bindings may explain individual differences in

intelligence

So far, bindings have mostly served as an theoretical account for results concerning

the relationship between intelligence, WMC, and PS. Future research should now fo-

cus on empirically examining this theoretical account. In detail, future studies could

exploit the formalization of the interference theory of WM that is based on bindings

(Oberauer, 2013; Oberauer & Kliegl, 2006), and relate binding parameters from cogni-

tive measurement models (Oberauer & Lewandowsky, 2018) to individual differences

in intelligence. This would (1) profit from the clear translation of the latent binding pro-

cess into observed behavior within the cognitive model and (2) provide evidence in

how far individual differences in the ability to form and maintain bindings are related to

intelligence.

In addition to that, a cross-validation of the binding parameters from cognitive mod-

els with neuro-physiological measures that capture network properties of the brain

could further strengthen the parameter interpretation. Such neuro-physiological mea-

sures could be frequency and cross-frequency coupling in the EEG (Jirsa & Müller,
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2013; Palva & Palva, 2012) or structural or functional connectivity in the fMRI (Honey et

al., 2009; van den Heuvel & Hulshoff Pol, 2010). An important advantage of this cross-

validation would be that it can further specify whether the binding parameters from

cognitive models are related to connectivity between specific brain regions or across

the whole brain. In the light of WM theories, it is reasonable to assume that specifically

fronto-parietal connections but not for example fronto-temporal connections should be

related to bindings in WM.

Ultimately, future research should then link both these domains, cognitive model

parameters and neuro-physiological measures, to individual differences in intelligence.

This would incorporate numerous benefits that were pointed out within the present the-

sis: (1) adequate representations of cognitive processes by both cognitive models and

neuro-physiological measures and (2) an integrative account for individual differences

in intelligence.

Altogether, the idea of bindings is an interesting perspective on the inter-relations

between WMC, PS, and intelligence. However, bindings have been linked to both cog-

nitive domains that show strong relationships with intelligence (e.g. WMC and PS;

Meiran & Shahar, 2018; Wilhelm et al., 2013; Wilhelm & Oberauer, 2006) as well as

domains that seem to be unrelated to intelligence (e.g. EF; Oberauer, 2005). In this,

bindings do not yet provide a exhaustive account for individual differences in intelli-

gence. Thus, future research combining parameters of cognitive models and neuro-

physiological measures could aid to specify which kind of bindings are associated with

intelligence and which are not.



5 Summary and Conclusion

Starting with the question What are the basic cognitive processes and intelligence?,

my dissertation aimed to contribute to three essential aspects (see Introduction, p. 2):

1. How can we measures individual differences in cognitive processes adequately?

2. How can we test which cognitive processes explain individual differences in intel-

ligence?

3. How can we integrate different cognitive processes related to intelligence?

These three aspects tapped into core problems within psychology. First, the measure-

ment of psychological traits, second the quest for causal explanations of psychological

phenomena and individual differences, and third a comprehensive account for the inter-

relations between psychological constructs.

With respect to the first point, I demonstrated that cognitive models specify how la-

tent cognitive processes are linked to observed behavior and that neuro-physiological

measures provide an ontological reference for parameters from cognitive models. More-

over, I showed that the drift rate from the drift-diffusion model (DDM) exhibits trait-like

properties similar to intelligence. Regarding the second point, I conceptualized the

worst performance rule (WPR) as moderation and, based on this conceptualization,

developed a new parameterization for the worst performance rule. This parameteriza-

tion has already been adopted to test theoretical explanations for WPR (Löffler, 2018)

and gain meta-analytic evidence on the WPR (Schubert, 2018). Finally, concerning

the third point, I presented empirical results indicating that attention control mecha-
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nisms such as executive functions cannot explain why working memory capacity and

processing speed are inter-related predictors of intelligence.

These contributions addressed fundamental problems in intelligence research: On

the one hand, a lack of theoretical foundation of intelligence and its measurement,

and on the other hand, a lack of results with respect to the connection and integra-

tion of basic cognitive processes with individual differences in intelligence. Although

the results of my dissertation discarded attention regulation mechanisms such as ex-

ecutive functions as an integration for cognitive processing domains such as working

memory capacity and processing speed that are related to intelligence, the different

studies of my dissertation convey how future research can profit from integrating theo-

retically founded measures for cognitive processes with experimental and correlational

approaches to individual differences in intelligence. Especially the joint modeling of

cognitive model parameters and neuro-cognitive process parameters can provide ex-

citing new insights what the basic cognitive processes of intelligence are.

Gaining a more comprehensive knowledge on the basic cognitive processes of in-

telligence may provide numerous possibilities. First, this is an important step towards

developing a comprehensive process-oriented theory of intelligence that is long due.

Additionally, such insights can provide specific suggestions how to enhance the de-

velopment of cognitive abilities. And finally, such knowledge could bring us one step

closer to a solution for the enigmatic positive manifold of cognitive abilities and a better

understanding of the intriguing trait of mankind that we call intelligence.
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Abstract: Mathematical models of cognition measure individual differences in cognitive processes,
such as processing speed, working memory capacity, and executive functions, that may underlie
general intelligence. As such, cognitive models allow identifying associations between specific
cognitive processes and tracking the effect of experimental interventions aimed at the enhancement of
intelligence on mediating process parameters. Moreover, cognitive models provide an explicit
theoretical formalization of theories regarding specific cognitive processes that may help in
overcoming ambiguities in the interpretation of fuzzy verbal theories. In this paper, we give an
overview of the advantages of cognitive modeling in intelligence research and present models
in the domains of processing speed, working memory, and selective attention that may be of
particular interest for intelligence research. Moreover, we provide guidelines for the application
of cognitive models in intelligence research, including data collection, the evaluation of model fit,
and statistical analyses.

Keywords: intelligence; cognitive modeling; methods; measurement; practical guidelines

1. Introduction

One of the greatest challenges in intelligence research is the identification of cognitive processes
underlying cognitive abilities and the measurement of process parameters giving rise to individual
differences in general intelligence [1]. Traditional as well as current theories of general intelligence
either assume that intelligent behavior is the result of individual differences in various independent
cognitive abilities [2–4], or that there is a hierarchical structure of cognitive abilities with a domain
general and broad factor of general intelligence g that determines individual differences in cognitive
abilities [5–9]. Theoretically and empirically the most discussed process parameters related to
individual differences in general intelligence are the speed of information processing e.g., [9,10],
the capacity of short-term memory e.g., [11], working memory e.g., [12–14] or secondary memory
e.g., [15,16], and the efficiency of executive functions e.g., [4,17,18].

With respect to these theoretical and empirical considerations, there are three main goals to this
process-oriented approach to intelligence research: First, understanding whether one or several cognitive
processes give rise to individual differences in general intelligence will help to decide whether g should
be conceived of as a single cognitive process, as suggested by Spearman’s two-factor theory [5],
or as an emerging phenomenon due to several independent or interacting cognitive processes,
as suggested by sampling theories [4,19]. Second, a process-oriented approach aims to identify the
mechanisms limiting or facilitating performance in certain cognitive processes by developing formal
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theories of the mechanisms constituting these processes. Third, such a process-oriented approach
may ultimately lead to the development of formal theories of general intelligence by combining
psychometric approaches and previous insights into the mechanisms of cognitive processes strongly
related to general intelligence.

In empirical research, individual differences in these cognitive processes are usually measured by
behavioral indicators such as response times and accuracies in tasks supposedly engaging one specific
cognitive process. The behavioral performance in these tasks is then used to quantify the relationship
of these cognitive processes to overall performance in intelligence tests. This approach presumes that
a specific task provides a process-pure measure of a single cognitive process—an assumption that
is often violated as most cognitive tasks do not measure one specific cognitive process, but rather a
combination of several cognitive processes. For example, tasks measuring the efficiency of inhibitory
processes such as the Stroop or Flanker task usually use reaction times as performance measures [20,21].
These reaction times arguably reflect not only the efficiency of inhibitory processes, but also basic
information-processing speed. Another example is complex cognitive tasks such as complex span
tasks measuring working memory capacity that not only require the storage of information in the
face of processing, but may also rely on attentional control processes and speed of information
processing [22,23]. In sum, typical measures for a specific cognitive process thus require additional
cognitive processes beyond the cognitive process aimed to be measured.

Two approaches are typically pursued to overcome this problem. First, variance decomposition
methods may be used to isolate the variance of one latent cognitive process parameter from the
influence of other variables e.g., [11,12,17]. This method is feasible as long as there are “pure”
measurements of the confounding cognitive processes available that can be controlled for. However,
this approach may be resource- and time-consuming, as participants have to complete large test
batteries including both measures of interest and of possible confounds.

A second approach to this measurement problem is to design experimental tasks that contain
a baseline condition requiring the engagement of all confounding processes and an experimental
condition that is equal to the baseline condition except for the insertion of one additional processing
requirement of interest. Subtracting performance in the baseline condition from performance from
the experimental condition is supposed to isolate the efficiency or speed of the added process [24].
However, it is questionable if the resulting difference scores only contain variance that can be attributed
to the inserted process or if the insertion of additional processing demands may affect or interact
with other task demands that are also reflected in the difference scores [25,26]. Moreover, the low
between-subject variability and low reliability of difference scores in typical cognitive tasks renders
the isolation of individual differences in experimental effects by means of difference scores virtually
impossible [27,28].

In the present paper, we aim to demonstrate how mathematical models of cognition can be
used to partially overcome these measurement problems by directly quantifying specific cognitive
processes. Moreover, we will provide practical guidelines and recommendations for the use of
cognitive models in intelligence research. While ultimately a formalization of specific theories
of intelligence e.g., [3,4] would be desirable, these theories are still too general and abstractly
formulated to allow the development of a formalized cognitive model of intelligence. As long as
this is the case, the incorporation of mathematical models of the cognitive processes addressed in
these theories provides a first necessary step towards a concrete formalized theory of intelligence.
Therefore, the present manuscripts focuses on mathematical models of cognitive processes that are
related to general intelligence or g rather than on cognitive models for general intelligence itself.
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2. Advantages of Cognitive Modeling in Intelligence Research

2.1. Statistical Models

Although often not explicitly in mind, each measurement of a cognitive process and more
generally any property of a person is based on a model. Most often we use statistical models, such as
classical test theory or latent variable models for this measurement procedure [29]. These models
typically assume that the measured and observed behavior is the compound of some true or latent
property of a person and of an error of measurement [30–32]. Across repeated measurements of the
same property, this results in a distribution of observations of which the average or expected value
given a person (i.e., the arithmetic mean) is conceptualized as the best estimate of the true person
property, while deviations from this value (i.e., the standard deviation) correspond to the amount
of error or uncertainty in the measurement. Taken together, statistical models describe statistical
properties of observed variables such as their mean and reliability (according to classical test theory),
or the covariances among different variables (according to latent variable models).

Even though statistical models have proven to be very useful in the context of measurement,
such models bear serious conceptual problems [29,33] and the selection of an adequate statistical model
for measurement is anything but trivial. Apart from these general philosophical and epistemological
problems of measurement with statistical models such as the ontological status of true-scores
or latent variables and the adoption of a realist or constructionist perspective on science and
measurement [29], all of these models have another serious shortcoming: Statistical models do not
specify any psychological or cognitive processes underlying the true part of the measurement, but rather
focus on separating true properties of a person from the error of measurement.

In response to this problem, it has been recommended to use more elaborate statistical models
such as ex-Gaussian- or Wald- distributions for reaction times [34–36], and Binomial-distributions
for accuracies or mental test scores [37,38]. Although these distributions correspond more closely to
the empirical shape of the distributions of observed variables, the parameters of these distributions
do not consistently resemble indicators of distinct cognitive processes, see [39]. More importantly,
these models still only describe statistical characteristics of the observed variables and do not
provide a theoretical account of the cognitive processes underlying the observed behavior. In sum,
statistical models may be useful to quantify the amount of variance in a measurement attributable
to the true personality trait (i.e., the reliability), however they do not allow any theoretically
founded statements about the cognitive processes underlying the observed behavior or the latent
personality trait.

2.2. Cognitive Models

Conversely, cognitive models may provide a mathematically-guided quantification of specific
cognitive processes [40]. Specifically, cognitive models translate explicit verbal theories of cognitive
processes in specific tasks into mathematical formulations of these theories. In this, the behavioral
measures within a task are described as the result of different interacting processes or parameters of
the model. The detailed interplay and interaction of these processes is specified within the formal
architecture of the model and represents the assumptions the model makes with respect to a specific
cognitive process. Thus, a cognitive model represents a formalized theory of a cognitive process that
objectively states which parameters of the cognitive process affect differences in observed behavior
across conditions or individuals. The adequacy and validity of this formalization can be evaluated by
parameter recovery studies and by testing the selective effects of theoretically-guided experimental
manipulations on model parameters [41].

Taken together, cognitive models provide several advantages over statistical models:
(1) They provide falsifiable descriptions of the cognitive process underlying behavioral responses in a
specific task; (2) Model parameters can be interpreted in an objective and formally described manner;
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and (3) Model parameters can be used to quantify individual differences in specific cognitive processes
based on the underlying model architecture.

3. Selecting Cognitive Models Suitable for Intelligence Research

Usually, cognitive models are used with two different aims: (1) A cognitive model aims to
formally describe the cognitive processes underlying the observed behavior in a specific task and
explain specific experimental effects observed within this task; (2) The parameters of a cognitive
model estimated from the observed behavior in a task are used as measures for differences across
individuals or experimental conditions. These measures quantify how far people or conditions differ
with respect to a specific process of the cognitive model. Within the field of cognitive modeling,
cognitive models serving the first aim are often described as explanatory cognitive models or
cognitive process models, while cognitive models used with the second aim are often called cognitive
measurement models [42]. Accordingly, any cognitive model can be considered both an explanatory
cognitive model and a cognitive measurement model depending on the circumstances of its use.
Nevertheless, cognitive models that are used to explain the observed behavior within a specific
task (i.e., explanatory cognitive models) often differ from cognitive models that are used to quantify
differences in their parameters across individuals or conditions (i.e., cognitive measurement models).

In detail, explanatory cognitive models aim to provide formal explanations for variations across
experimental conditions in specific paradigms in terms of cognitive processes. These models formally
describe the architecture of a cognitive process and focus on the interplay of different mechanisms
that lead to specific experimental results. In contrast, cognitive measurement models typically
decompose the observed behavior of a person into meaningful parameters of a latent cognitive
process. Thus, instead of explaining differences across individuals or experimental conditions,
cognitive measurement models are highly flexible tools that reflect these differences in variations of
their estimated parameters (for a comparison of these two model types, see [43]). Often cognitive
measurement models rely on a more elaborated explanatory cognitive model. However, there are
many cognitive measurement models that have been developed independently of any explanatory
cognitive model e.g., [44].

With respect to their application, cognitive models used to explain observed behavior, such as the
SOB-CS [45], the slot-averaging model [43], or the interference model of visual working memory [42],
often resemble highly elaborated model architectures that specify detailed formal models for a
cognitive process. These models are often very complex and require high computing power to
calculate predictions for a given set of parameters. In contrast, cognitive models used to measure
differences of parameters across individuals or conditions, such as signal-detection theory [44],
the two-high threshold model for recognition [46], or the drift-diffusion model [47], are mostly
simplified descriptions of a cognitive process that can be generalized to a broad set of paradigms and
observed variables. Beyond that, such cognitive measurement models are easy to use and parameters
of cognitive measurement models can either be readily calculated from observed variables or estimated
with adequate fitting procedures.

In intelligence research, the use of cognitive measurement models is far more widespread than
the use of explanatory cognitive models. Although explanatory cognitive models provide a powerful
tool for comparing different theories with respect to their predictions for experimental paradigms
and manipulations, see [48]; their complexity and especially the lack of estimable parameters renders
their application in intelligence research difficult. Still, results from explanatory cognitive models may
provide the theoretical foundation for deciding for or against a specific cognitive measurement model.

Furthermore, there have been efforts to formulate explanatory models of intelligence test
performance such as the Carpenter et al. [49] model for performance in the Raven matrices. In this
model, Carpenter et al. [49] described different cognitive processes that are used while solving the
Raven matrices. Some of these processes such as incremental encoding processes and rule induction
for each matrix were used by all participants, while other processes such as the induction of abstract
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relations of the dynamic management of different goals in memory were specific to participants
with above-average performance. Although this model provides a strong theoretical explanation for
individual differences in Raven performance, its application remains limited.

Cognitive measurement models may instead provide person- and condition-specific parameters
for distinct cognitive processes. These person-specific parameters can be easily used as measures
of individual differences in specific aspects of cognitive processes, which can then be related to
performance in intelligence tests. For instance, parameters of the drift-diffusion model, that will be
introduced later, have been associated with performance in intelligence test or memory tasks [26,50–52].
In this, parameters from cognitive measurement models may thus provide insights on which cognitive
processes are actually linked to intelligence.

While all cognitive models are deliberate simplifications of the cognitive processes within a
task and rely on often critically discussed assumptions, there is actually no alternative to the use
of a measurement model, may it be statistical or cognitive. While most research does not explicitly
decide for a specific measurement model, by calculating the mean performance for a person in a
task (as often done) they implicitly adopt a statistical measurement model that makes no explicit
statements about the underlying cognitive processes of the measurement. It may even be argued that
not explicitly deciding for a specific measurement model is practically similar to implicitly using the
most simple cognitive model at hand: A model assuming that the observed variable directly represents
the cognitive processes of interest. As already mentioned earlier, this assumption is almost always false.
Therefore, we would argue that using explicit measurement models is always superior to equating
observed variables with the cognitive process of interest.

To convey an idea of the benefits of the application of cognitive modeling in intelligence research,
we will discuss three examples of cognitive models in the following sections. We selected different
models describing cognitive processes of particular interest to intelligence research, such as decision
making, working memory, and cognitive control, and demonstrate how they may be used to quantify
individual differences in the respective cognitive processes. Please note that the three models described
below differ in their breadth of application and in their former use as explanatory or measurement
model. Following these examples, we then provide guidelines for choosing the appropriate model for
a particular research question.

3.1. Different Cognitive Models of Interest for Intelligence Research

3.1.1. The Drift Diffusion Model of Binary Decision Making

The drift diffusion model (DDM) describes performance in two-alternative forced choice decisions
tasks. The model assumes that evidence is accumulated in a random walk process until one of two
decision thresholds is reached, the decision process is terminated, and a motor response (usually a
key press) is initiated (see Figure 1 for an illustration; [47]). This evidence accumulation process can
be described by a Wiener diffusion process that consists of a systematic component, the drift rate v,
and normally distributed random noise with a mean of 0 and a variance of s2 (this so-called diffusion
constant s is usually fixed to a standardized value such as 0.1 or 1 for reasons of identifiability).
The drift rate can be considered as a performance measure that directly quantifies the velocity of
information uptake. In addition, the DDM quantifies the distance between decision thresholds as
a measure of speed-accuracy trade-offs and decision cautiousness in the boundary separation as
the parameter a, the starting point of evidence accumulation as the parameter z, and the time of
non-decisional processes such as encoding and response preparation and execution as the parameter
ter or t0. Beyond these basic parameters, intra-individual variability parameters have been added to
the DDM (i.e., st0, sv, and sz) to account for inter-trial variability within a person [47,53].

The validity of DDM parameters has been demonstrated both by parameter recovery
studies [54] and by experimental validation studies [55–57]. Moreover, model parameters have
been showing satisfying reliabilities estimated with test-retest correlations given sufficiently large
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trial numbers [58] and at least drift rates have been shown to exhibit trait-like properties [59].
Specifically, Schubert et al. [59] used latent-state trait models with additional method factors [60] to
separate different variance sources across three different tasks and two measurement occasions.
The results showed that the variance consistent across tasks and measurement occasions was largest
for drift rates (on average 44%), while this variance was considerably lower for boundary separations
and non-decision times (between 32 to 36%). Although drift rates captured this amount of variance
that was consistent across tasks and measurement occasions best, single task estimates of drift rates
were only moderately reliable (Rel = 0.38 − 0.69) and still contained considerable method specific
variance (9 to 17%). Therefore, individual differences in drift rates should always be measured across
different tasks if one is interested in individual differences in the underlying latent trait.

Figure 1. Graphical illustration of the drift-diffusion model. The decision process starts at the starting
point z, and information is accumulated until the boundary a is reached. The systematic part of the
accumulation process, the drift rate v, is illustrated with the black arrow. The non-decision time t0 is
not included in this figure.

Altogether, it is not surprising that the DDM is the most frequently used cognitive model in
intelligence research. By mathematically identifying parameters quantifying the speed of information
uptake (v), the decision cautiousness (a), and encoding and movement times (ter), it renders
complicated experimental setups that have been used to dissociate these elements of the decision
process with little success unnecessary [61]. Several studies have reported positive associations
between cognitive abilities and drift rates e.g., [26,50,52,62–64], whereas the other model parameters
have been shown to be largely unrelated to fluid intelligence [26,52,64]. The application of the DDM to
data sets is made fairly easy by user-friendly software such as EZ [65,66] and fast-dm [67].

The DDM is part of a larger family of evidence accumulation models that provide a general
description of decision processes. Another member of this model family is the linear ballistic
accumulator model (LBA; [68]), which presumes that a number of independent accumulators race
towards a common response threshold. Hence, where the DDM can only be applied to data from
two-choice reaction times tasks, the LBA can be applied to data from both two- and multiple-choice
reaction time tasks. Another member of this model family is the leaky, competing accumulator model
(LCA; [69]), which entails a number of stochastic accumulators that compete against each other via
mutual inhibition to reach a decision threshold. Both models have not been applied in intelligence
research yet, probably because they do not provide a single performance measure such as the drift rate
of the DDM, as one drift parameter for each of the accumulators is estimated in LBA and LCA models,
resulting in several drift rates.
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3.1.2. The Time-Based Resource-Sharing Model of Working Memory

The time-based resource sharing (TBRS) model of working memory started out as a verbal theory
explaining the performance in complex span tasks measuring working memory capacity [70,71],
but has been extended to verbal and visual WM in general [72–74]. The TBRS model claims that
processing and the maintenance of stored information rely on the same attentional resource in working
memory. Because of this attentional bottleneck, only one of these two processes can be performed at a
given time. In detail, the model assumes that information stored in working memory decays over time,
unless this decay is counteracted by an attentional refreshing process or verbal rehearsal. Moreover,
additional processing demands as imposed in complex span tasks shift attention towards these
secondary processing tasks, resulting in the decay of items stored in working memory (see Figure 2
for an illustration). Altogether, working memory as conceptualized in the TBRS model continuously
shares attentional resources between maintenance and processing in order to counteract decay of
memory items and efficiently process information.

Figure 2. Visualization of the time-based resource sharing (TBRS) theory as implemented in the TBRS2
model by Gauvrit and Mathy [75]. At the top, the current task is displayed. A colored box represents a
to- be-encoded memory item, a black box represents a distractor task, and a white box represents free
time. Below, the focus of attention is shown. During free time, participants engage in refreshing of the
already encoded memory item; during distractor tasks or encoding of other items, the already encoded
memory items decay over time.

In recent years there have been formalizations of the TBRS model as an explanatory model [48]
and as a simplified measurement model [75]. Such models may be of great interest for the field of
intelligence research, not only because intelligence is strongly related to working memory [14,76,77],
but because the field is still in debate about which specific cognitive processes within working memory,
storage or executive processing, underlie its strong relationship with intelligence [11,12]. While the
explanatory TBRS* model by Oberauer and Lewandowsky [48] is fairly complex and foremost an
in-depth test for the experimental predictions of the TBRS theory, the TBRS2 implementation by
Gauvrit and Mathy [75] provides a simplified version of the TBRS model and allows to estimate
parameters that are directly linked to specific processes within the TBRS model. Such a model may
provide person specific estimates of different processes in working memory, such as the encoding
strength when an item is presented (i.e., the baseline β) or the speed of attentional refreshing (i.e., the
refreshing rate r). These parameters may provide further information on which specific processes
within working memory give rise to the strong relationship between working memory and intelligence.

As the mathematical implementations of the TBRS model have been developed only recently,
there have not been any independent, systematic validation studies for the parameters of the model.
Moreover, the psychometric properties of the model estimates (i.e., their reliability and validity) have
not yet been assessed. Additionally, there is still a controversial debate in cognitive psychology
whether decay actually is the core process limiting working memory capacity [78]. Although there
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are competing explanatory models of working memory questioning the role of decay as a limiting
factor for working memory capacity [42,48], these models have not yet been translated into simple
measurement models that allow estimating person-specific parameters of cognitive processes within
working memory1. Until then, the TBRS2 model may provide a first step for including cognitive
measurement models of working memory in intelligence research.

3.1.3. The Shrinking Spotlight Model of Selective Attention

The shrinking spotlight model of selective attention describes processing in the Eriksen flanker
task, in which participants have to respond according to the orientation of a centrally presented target
arrow while ignoring irrelevant arrows flanking the target stimulus [20,80]. The shrinking spotlight
model is an extension of the drift diffusion model of sequential processing: It assumes that both target
and flanker arrows provide perceptual evidence p for a particular response weighted by the amount of
attention a allocated to each of these stimuli. The drift rate consists of the sum of weighted perceptual
evidence across all stimuli at a given time. Over time, attention is assumed to zoom in on the central
arrow, reflecting a narrowing of the focus of selective attention on the target stimulus. Thus, the target
stimulus is weighted more strongly in comparison to the flanker stimuli and therefore affects the drift
rate more strongly over time (see Figure 3). The initial width of attentional distribution is estimated in
the attentional spotlight parameter sda, which reflects the standard deviation of a Gaussian distribution
centered on the target stimulus, whereas the rate of attentional distribution reduction is estimated in
the parameter rd. In addition, the model also allows estimating the encoding and movement times
in the ter parameter, and the distance of symmetrical response thresholds from the starting point of
evidence accumulation in the parameters A and B = −A.

Figure 3. Illustration of the Shrinking Spotlight model for selective attention. The attentional focus
narrows to the central arrow over time (left part). This results in a stronger weight of the critical
information (i.e., the central stimulus) in the drift-rate of an associated diffusion process (right part).

The model has been shown to be able to account for data from a standard flanker task and
experimental manipulations of task properties have been shown to specifically affect single model
parameters [80]. Moreover, parameter recovery studies have shown that model parameters can be
accurately recovered with as few as only 50 experimental trials [81]. However, simulation results
have also shown that the model is not able to recover the attentional spotlight and the shrinking
rate parameter accurately, because a wide initial spotlight with a high shrinking rate makes the
same predictions as a narrow initial spotlight with a low shrinking rate [81]. Therefore, it has been
recommended to calculate a composite measure of the duration of interference as the ratio of the two
parameters, sda/dr, to account for the trade-off during model estimation. Although there have not yet
been any systematic analyses on the psychometric properties of parameter estimates, correlations of

1 Oberauer and Lewandowsky [79] are working on an alternative measurement model that is more closely connected to
interference models of working memory [42,45]. For a preprint, see: osf.io/vkhmu.
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r = 0.42 − 0.80 between model parameters across different cue conditions of the Attention Network
Test suggest at least moderate to good reliabilities, especially for the interference ratio with correlations
of about r ≈ 0.80 [82]. So far, the shrinking spotlight model has not yet been applied in intelligence
research, but it would be promising to relate individual differences in the susceptibility to interference
(as reflected in the interference parameter) to individual differences in intelligence test performance
and working memory capacity to further explore the role of selective attention in cognitive abilities.

An alternative account of performance in the Eriksen flanker task is given by the dual-stage two
phase model [83]. This model proposes two distinct processing stages: In the first processing stage,
evidence accumulation is affected both by evidence accumulation towards the response associated
with the target stimulus and by evidence accumulation towards the response associated with the
flanker stimuli. At the same time, an attention-driven parallel evidence accumulation process selects a
single stimulus for further processing. If this stimulus selection process terminates before response
selection is finished, response selection enters a second stage with the drift rate being solely determined
by the selected stimulus. As of yet, model comparison studies have not yet decided which of the two
models provides the best account of selective attention phenomena [80,81,83,84]. Both models can be
fit to data and subsequently be compared using the R package flankr [85].

3.2. Guidelines for Model Selection

When deciding which cognitive model to use for a specific research question, there are
some conceptual and practical issues to be considered in order to select the appropriate model:
First of all, the research question has to be specified. Second, the cognitive processes of interest
that are to be related to general intelligence for this research question have to be identified.
Third, an appropriate model providing a description of these cognitive processes has to be chosen.
During this step, theoretical reasons for choosing one model over its alternatives should be considered.
Fourth, experimental tasks congruent with the assumptions of the selected model should be selected
to allow the valid estimation of model parameters. For an illustration of these decision steps see the
upper part of Figure 4 (p. 10).

In general, discussing these issues during project planning aims to strengthen two important
points for the conclusions from the modeling results. On the one hand, researchers should clarify which
specific cognitive processes they are interested in and select a cognitive model accordingly. On the
other hand, researchers should maximize the fit between the measurement or operationalization of a
specific cognitive process (i.e., the task used) and the selected cognitive model.

For example, a group of researchers might be interested in which cognitive processes in simple
decision tasks are related to intelligence. Such tasks may require participants to decide whether a
number is odd or even, or whether a letter is a vowel or consonant. They decide to use the drift
diffusion model to quantify the different cognitive processes associated with binary decision making.
However, one of these tasks has an additional switching demand, requiring participants to switch
between the number and the letter decision (for an example, see [86]). Because this task is a binary
decision task, the drift-diffusion model may still provide suitable estimates for the cognitive processes
in such a task [87,88]. However, this task arguably requires more than one decision: On the one hand
the decision which task is to be carried out, and on the other hand the decision corresponding to the
task. Thus, this task does not fully fit the conceptualization of the drift-diffusion model as there may
not be a single decision process but two. Therefore, researchers should either think about using a
different task that has a better fit to the basic assumptions of the drift-diffusion model or search for an
alternative model that better fits the task they want to use.

This example reiterates the importance of an explicit and critical decision for a specific cognitive
measurement model with respect to the measurement and operationalization that has already been
pointed out before. As the developers of cognitive models often suggest a specific task suitable for
parameter estimation e.g., [75], the initial model publication is usually a good starting point for finding
prototypical tasks that match the model assumptions. For popular cognitive models such as the

Manuscript 1 - Cognitive Models in Intelligence Research 58



J. Intell. 2018, 6, 34 10 of 22

diffusion model there are review articles summarizing studies in which the diffusion model was
successfully applied to data from several different tasks [55]. Although some of these prototypical
tasks may not provide the most suitable measures for a specific research question, they nevertheless
constitute a meaningful starting point.

Figure 4. Flowchart illustrating the different planning and decision steps when using cognitive models
in intelligence research.
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4. Guidelines for Model Application

After identifying an appropriate model based on theoretical considerations as outlined in the
previous section, we strongly recommend to further plan the application of mathematical models
ahead of data collection to ensure the interpretability and trustworthiness of the estimated model
parameters. Specifically, three basic steps should be pursued when applying a cognitive model to a
specific research question (see lower part of Figure 4, p. 10):

1. Researchers should plan their data collection to meet requirements for reliable and stable
parameter estimates.

2. Model fit should be carefully evaluated after fitting the model to the empirical data.
3. Model parameters should be adequately related to other individual differences variables of

interest such as intelligence test performances.

In the following section, we will provide step-by-step instructions using examples from the
application of diffusion models in intelligence research, which may serve as guidelines when using
any kind of cognitive model in individual differences research.

4.1. Design and Data Collection

4.1.1. Reliability and Stability of Estimated Model Parameters

The reliable estimation of model parameters from empirical data usually requires more data points
than would be needed if only applying a statistical model to the data. For illustration, compare the
description of reaction time distributions in decision tasks by a Gaussian distribution to the description
by a diffusion model. When describing performance in a binary choice task by a Gaussian distribution,
20–30 trials are usually sufficient to provide reliable estimates of means and standard errors of the
distribution [89]. When describing performance by a diffusion model, however, many more trials
are needed because model parameters are not calculated analytically, but are found by fitting them
to empirical response time distributions in an iterative process. Hence, a small number of trials will
result in an inadequate representation of the full response time distribution and will therefore impair
the estimation of model parameters describing distributional elements beyond measures of central
tendency [90].

For the basic DDM (with the four parameters drift rate, boundary separation, starting point,
and non-decision time), simulation studies have shown that 100 trials are sufficient to produce relatively
reliable estimates of drift rates and that no further increases in parameter reliabilities are gained by
increasing trial numbers beyond 500 trials [90]. For other measurement models less prominently used
in individual differences research, such systematic simulation studies have not yet been conducted.
Therefore, we urge researchers interested in applying less frequently used models to run a simulation
study before starting data collection to determine how many experimental trials are needed for a
reliable parameter recovery. While a simulation does not guarantee reliable parameter estimates
for an experiment in general, it rules out that low reliability is due to noisiness in the parameter
estimation process.

4.1.2. Trait, Situation, and Task Characteristics of Model Parameters

In addition, it is important to consider to what degree individual differences in model parameters
reflect individuals’ personality traits or abilities, and to what degree they reflect task-specific
characteristics, state-specific characteristics, and unsystematic measurement error. Imagine applying a
model of verbal working memory to complex span data: Model parameters such as the individual
rate of verbal refreshing or the ability to resist interference from distracting stimuli would reflect both
individuals’ general abilities in verbal refreshing and inhibition of interference as well as their abilities
to maintain memory stimuli in this specific task. Depending on the research question, researchers may
be more interested in the general ability to maintain information in working memory as reflected in
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those parameters across different working memory tasks, or they may be interested in the specific
ability to maintain information in working memory in precisely this task.

Usually, intelligence research questions are more likely to concern abilities generalized across
specific operationalizations and situations than abilities in specific operationalizations or situations.
However, model parameters estimated in a specific task are always going to contain both trait-,
state- and task-specific amounts of variance [60,91]. For example, a latent state-trait analysis of DDM
parameters in elementary cognitive tasks revealed that only about 45 percent of the variance in
task-specific drift rates was accounted for by the common trait, and that only about 30 to 35 percent of
the variance in task-specific boundary separation and non-decision time parameters were accounted
for by their respective common traits [59]. Therefore, if a research question using cognitive models in
intelligence research concerns performance in certain cognitive processes that is generalizable across
specific operations, it may be worthwhile to design a test battery consisting of three or more tasks
to which the cognitive model can be applied. Averaged or latent performance in process parameters
across tasks will then allow a more precise estimate of individuals’ performance in model parameters
that is independent of specific task or situation characteristics.

4.2. Evaluation of Model Fit

4.2.1. Relative Model Fit: Which Model Provides the Best Account for the Data?

After finishing data collection, but before relating model parameters to intelligence tests or other
covariates, it is necessary to evaluate how well a chosen model describes the empirical data and to
possibly adjust model specifications to increase model fit. For most cognitive models, these empirical
data consist of single-trial accuracies and/or response times, but aggregate measures such as proportion
correct for different conditions might also be entered into the analysis. Before the raw data are entered
into any kind of model, they should be carefully inspected for extreme values or other distributional
properties that violate model assumptions and that may impair or even systematically bias parameter
estimation. Once fidelity in these raw values has been established, cognitive models can be fitted to
these empirical data. For this purpose, it has to be decided how many and which model parameters will
be estimated and which model parameters will be fixed, because they are not expected to be affected by
task characteristics or are not of interest for the current research question. Moreover, if experimental
tasks contain several conditions, it may be necessary to decide which (if any) parameters are allowed to
vary between conditions. It may even be desirable to split data from different conditions into separate
data sets for separate model estimations to be able to subsequently model these separately estimated
model parameters as latent variables. For this purpose, it may be helpful to reflect on the relationship
between model complexity and the stability of parameter estimates: The more parameters of a model
are estimated, the more likely it is to provide an accurate account of the data. However, if too many
model parameters are estimated relative to the number of experimental trials, the stability of parameter
estimates will be impaired [90,92].

Therefore, we suggest fitting several models to the empirical data containing different
combinations of estimated or fixed parameters that are consistent with the current research question,
unless there are strong theoretical reasons to decide on a specific model instantiation a priori.
These models can then be compared based on parsimonious fit indices such as the Akaike Information
Criterion (AIC; [93]) or the Bayesian Information Criterion (BIC; [94]), which take into account both
model fit and model parsimony, to identify the model making the best trade-off between model fit and
model complexity. As mentioned before, this model comparison step may not be necessary when a
priori deciding for a specific instantiation of the model.

However, this model comparison approach only addresses one element of model fit evaluation,
relative model fit. By identifying the best-fitting specification of the model out of a number of alternative
specifications, it is possible to identify the model providing the best description of the empirical data.
However, this does not guarantee that the best-fitting model provides a good description of the data.
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4.2.2. Absolute Model Fit: How Well Does the Selected Model Describe the Data?

Therefore, in the next step the absolute model fit has to be evaluated to decide if the model can be
accepted for all data sets. Absolute model fit is typically ascertained by either (a) statistical tests of
model fit, (b) goodness-of-fit (GOF) indices, or (c) graphical inspections of model fit.

Statistical tests of model fit quantify the discrepancy between the empirical data and model
predictions by means of a test statistic that is then tested for significance. However, this null
hypothesis-testing of model fit contains several problems, as the power of statistical tests is closely
tied to the amount of data available. When only a few trials are available, statistical tests may not
be capable of rejecting the null hypothesis due to a lack of power, whereas when the trial number is
large, statistical tests tend to become overly sensitive and detect even irrelevant deviations between
the empirical data and model predictions [95]. To overcome some of the problems associated with
null hypothesis testing, it has been suggested to simulate a large number of data sets based on the
estimated model parameters, fit the model to each of the simulated data sets, and derive the 95 percent
or 90 percent quantile of the resulting distribution of p-values as a critical value for the statistical tests
of the originally estimated models [96,97]. However, models will still be accepted with an unknown
error probability.

Goodness-of-fit indices are much more common in individual differences research, where they
are used to evaluate the model fit of structural equation models [98], than in cognitive modeling.
GOF indices standardize test statistics and take into account both model complexity and the number
of data points. Typically, GOF indices have a fixed value range from 0 to 1 with certain cut-off values
that indicate acceptable or good model fit. GOF indices are less frequently used in cognitive modeling,
probably because several GOF indices used in structural equation modeling require the comparison of
the actual model to a minimally plausible baseline model, which cannot be easily specified for most
cognitive models. However, it has been recently suggested to adapt the root mean square error of
approximation for the evaluation of cognitive models that can be fitted with a χ2-distribution, such as
the diffusion model [95]. Note that simulation studies have shown that this approach is only advisable
when trial numbers are sufficiently large.

Finally, a third and widespread approach to the evaluation of absolute model fit is to graphically
compare the empirical data to model predictions. To graphically inspect model fit, empirical data
can be plotted against or overlaid by model predictions separately for each participant or aggregated
over participants. This process can be rather time-consuming in larger samples if each participant is
inspected individually. Moreover, it is important to be aware of the fact that graphical evaluations of
model fit are inherently subjective and may therefore lead to spurious conclusions [99]. Having two
independent raters evaluate model fit and discuss their conclusions may therefore increase the
objectivity of the evaluation process.

If individual data sets can be identified that do not provide a satisfying model fit, raw data should
be inspected for coding errors or outliers that may need to be removed (e.g., extremely fast reaction
times with decision behavior close to guessing in a decision task). If model fit remains unacceptable,
individual data sets may then need to be removed from further analyses, as it cannot be ascertained
that the model parameters characterize the cognitive processes in the task accurately.

4.3. Relating Model Parameters to Intelligence Test Performance

Finally, after reliable estimates for the best fitting model have been obtained, the model parameters
should be related to measures of intelligence. While this seems straightforward, there are actually two
major methodological concerns.

First, extreme values in either parameter estimates or cognitive abilities measures need to be
addressed. If extreme values (univariate outliers) are detected in parameter estimates, it is imperative
to inspect if any outliers, coding errors, or abnormal distributional properties of the participant’s
raw data may have contaminated parameter estimation. If this is the case and if these outliers only
constitute only a small amount of the data, they should be removed or winsorized and the model fitting
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procedure should be repeated to see if this treatment has led to more reasonable parameter estimates.
If parameter estimates are still extreme or if outliers in raw data cannot be dealt with (e.g., because this
participant’s distribution of raw data deviates from model assumptions), this participant should be
removed from further analyses as model parameters most likely reflect other properties of cognitive
processes for this participant than for the rest of the sample. A similar problem is raised by multivariate
outliers that may need to be removed based on an inspection of scatterplots or the calculation of the
Mahalanobis distance. It goes without saying that information about the number of data points and/or
participants removed and a rationale of their removal needs to be included in any description of the
modeling results.

Second, researchers usually obtain one or more person-specific estimates for each model parameter
of interest across different tasks or experimental conditions, just like they do when using aggregated
performance measures such as accuracies or mean reaction times. Then the relationship of these
model parameters with intelligence test scores is estimated by means of correlations or structural
equation modeling. However, this approach represents a sequential analysis plan that treats the
estimated parameters as manifest variables when quantifying the relationship between parameters of
the cognitive model and the intelligence measures.

Treating estimated model parameters as manifest variables ignores the uncertainty that these
parameters inherit from estimation and leads to an underestimation of standard errors in the second
analysis step [100]. In fact, this is the case both for behavioral aggregates, such as mean reaction
times or proportion correct, and for model parameters that are estimated from behavioral data or
calculated from aggregate performance measures. Although this does not necessarily affect the
estimated size of the relation between parameters obtained from cognitive models and intelligence
measures, a sequential analysis plan always leads to an overestimation of the statistical significance of
the estimated relationships [101].

A solution to this problem is hierarchical modeling [102,103]2. In hierarchical modeling
approaches, parameters of a cognitive model can be estimated simultaneously not only for all
participants but across various tasks. Additionally, relationships with third variables, such as
intelligence, can be estimated in the same step. On the one hand, such models avoid underestimating
the standard errors of the relationship between model parameters and third variables such as
intelligence measures by simultaneously estimating the model parameters and their relationship
to intelligence (for an example of hierarchical models of the worst performance rule, see [101]). On the
other hand, by assuming that the distribution of model parameters across individuals follows a higher
order distribution3 (so called hyper-priors), hierarchical models do not estimate parameters for each
individual independently, but instead estimate model parameter for each individual informed by the
parameter estimates from all other individuals. Not only does this render the parameter estimation
more robust, but it also allows obtaining reliable estimates for the parameters of a cognitive model for
each individual with fewer trials (for an example, see the hierarchical diffusion model: [105]).

Although this modeling approach is structurally similar to hierarchical modeling in latent variable
models (i.e., SEM), there are some important differences. While hierarchical latent variable models
separate general from specific factors in between person variances e.g., [8], hierarchical models in
the field of cognitive models distinguish between parameters estimated within a person and the
distribution of parameters between persons. In this, hierarchical modeling of cognitive processes is
closely related to multi-level modeling separating the within and between person level [106].

For instance, when applying the diffusion model, parameters of each individual can be estimated
independently without assuming a specific distribution of estimated model parameters across

2 These two references focus on Bayesian hierarchical modeling. While Bayesian parameter estimation might have additional
advantages over frequentist estimation approaches [104], the benefits of hierarchical modeling apply to both Bayesian and
frequentist methods.

3 Typically a Gaussian distribution with a mean and standard deviation is assumed.
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participants. While this achieves the highest flexibility in parameter estimation, this approach ignores
possible information from the between person level. In contrast, hierarchical modeling assumes that
the parameters from each individual stem from a distribution of parameters on the between person
level, and thus parameters for each individual are estimated taking information from all other subjects
into account. As stated before, this account has two important benefits: (1) hierarchal modeling
renders the parameter estimation for each individual more efficient [105]; and (2) parameters and their
relationship to third variables like intelligence can be estimated simultaneously, accounting for the
uncertainty of parameter estimates and thus adequately reporting the significance of the relationship
between parameter estimates and third variables [101].

A serious complication of hierarchical modeling is that these models typically have to be
explicitly specified and translated into code for each application, and that software solutions for
parameter estimation are still rare. Nevertheless, hierarchical models do provide the mathematically
accurate and sound solution for estimating the relationship between estimated model parameters and
intelligence measures. Still, the sequential estimation of model parameters and their relationship to
intelligence test scores seems to yield results comparable to hierarchical approaches [101]. In conclusion,
while sequential approaches may overestimate the statistical significance of the relationship between
model parameters and covariates (biasing inference), they nevertheless provide reasonable and
unbiased estimates of the effect size of this relationship. For the future, it would be desirable that
the application of cognitive modeling in the field of intelligence research or individual differences in
general leads to the development of further simple software solutions or R packages [107,108] that
simplify the use of hierarchical models.

5. Interpretation of the Results

Regardless of how the relationship between parameters from a cognitive model and intelligence
measures is estimated, ultimately this relationship has to be interpreted on a conceptual level.
Although parameters of a cognitive model provide more specific information about the cognitive
process underlying the behavioral responses, these parameters still have to be interpreted with respect
to the operationalization of the cognitive process. For instance, the diffusion model can be estimated
in a broad set of tasks, ranging from perceptual judgment tasks (e.g., a random-dot motion task),
over elementary cognitive tasks (e.g., Posner or Sternberg task), to even more complex memory tasks.
In all of these different tasks, the diffusion model estimates the same set of parameters (i.e., drift rates,
boundary separations, and non-decision times). However, this alone does not imply that model
parameters estimated in the different tasks can be interpreted the same way. Specifically, the drift
rate estimated in a random-dot motion task may represent the speed of perceptual information
accumulation towards one response alternative. In a memory recognition task, however, the drift rate
would rather be interpreted as the signal-to-noise ratio of the representation in memory. Beyond a
theoretical discussion of the similarity of different tasks, statistical methods such as factor analysis or
structural equation models can be used to get further information on variance that is shared across
different tasks, or that is specific to a task or a situation (see: [59]). However, all in all, the interpretation
of parameters of a cognitive model always relies on the specific experimental tasks.

In general, a cognitive model always represents a structural description of the behavioral measures
from a specific task. The semantic meaning of the parameters of a model, however, can only be
obtained with respect to the context (i.e., the task or materials) they are estimated in. Consider the
following equation: v = x/t. On its own, this equation is merely a structural description how v can
be obtained from x and t. In contrast, if the context of the observations of x as a distance between
two points, and t as the time taken to get from one point to the other is known, then v can reasonably
interpreted as the average speed of travel. It is just the same with parameters from any cognitive model:
Without the context of their estimation they are merely transformations or estimated simplifications of
the observed variables. Adding the semantical context of the observations however allows to interpret
the parameters in a meaningful way.
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All in all, the matter of adequately interpreting parameters of a cognitive model relates to a
broader issue, namely validity. On the one hand, there is the question of how far a cognitive model
provides a valid description of the cognitive process underlying the behavioral responses in a task.
On the other hand, there is the question of how far individual differences in these parameters can be
generalized across different tasks and assumed to represent between person variation in a more general
and task-unspecific cognitive process. These are hardly problems that can be solved within a single
study, but there is a combined effort needed to establish which parameters of cognitive models provide
meaningful representations of individual differences in specific aspects of cognitive processing.

For example, attempts to unite psychophysiological and neuroimaging research with cognitive
modeling may be particularly informative about issues of validity, as they allow a direct test of the idea
that process parameters reflect certain neural correlates. Several studies have already suggested a close
link between diffusion model parameter and neural processing correlates in the EEG. In particular,
the latency of the N2, which is a neural correlate of visual encoding time, has been shown to be
associated with the non-decision time parameter of the diffusion model [109], and the buildup rate of
a positive centroparietral positive potential has been suggested to directly reflect the rate of evidence
accumulation captured in the drift rate parameter on a neural level [110,111].

Altogether, following certain guidelines and carefully discussing the underlying assumptions and
the operationalization when using a cognitive model provides a more explicit approach to measuring
individual differences in cognitive processes, and thus represents a decisive improvement compared
to the prevailing methods. At the very least, such careful reflection might immunize against the
category error that cognitive models are accurate reflections of a latent, unobservable cognitive process.
Any (cognitive) model cannot be anything but a simplification of reality that, if successful, captures the
most important aspects, but never the entirety of an ontological (cognitive) process. In the same
way that a map provides a simplification of a city’s layout that is useful for navigation without ever
providing a detailed account of the whole city system, cognitive models may refine our understanding
of how those unobservable cognitive processes operate and thereby facilitate the measurement of
certain process properties. Or, as Box [112] put it: “All models are wrong, but some models are useful”.

6. Conclusions

Altogether, incorporating cognitive models in intelligence research provides numerous
advantages. On the one hand, cognitive models provide explicit theoretical descriptions of cognitive
processes that may underlie individual differences in general intelligence. On the other hand,
they allow to estimate person specific parameters for each individual that can be related to measures of
intelligence. Therefore, cognitive models allow to relate theoretically founded measures of individual
differences in parameters of cognitive processes to individual differences in general intelligence
and to overcome the fuzzy theoretical interpretation of behavioral indicators such as reaction times
or accuracies.

Beyond that, cognitive models may allow identifying the effects of experimental or
pharmacological interventions and training interventions on specific cognitive processes. For example,
the shrinking spotlight model of selective attention might be used to test if a training intervention
aimed at improving selective attention actually affects interference parameters of the model or if
the intervention only reduces non-decision times or response thresholds. In a similar vein, the drift
diffusion model might be used to characterize experimental effects of a pharmacological intervention
on mental speed by distinguishing an increase in the velocity of evidence accumulation from an
increase in motor response times. Last but not least, cognitive process parameters could not only be
related to general intelligence differences, but also to individual differences in neural measures related
to cognitive abilities, and may thus provide a different and possibly more complete perspective on the
neuro-cognitive processes giving rise to individual differences in general intelligence. Taken together,
the application of cognitive models as elaborate measurement tools provides an exciting new avenue
for research on the neuro-cognitive processes underlying intelligence.

Manuscript 1 - Cognitive Models in Intelligence Research 65



J. Intell. 2018, 6, 34 17 of 22

This approach focuses on insights into the cognitive correlates of general intelligence and does
not represent an actual theory of general intelligence. On the one hand, it shows that developing
cognitive models for specific cognitive processes is possible. On the other hand, proper theories of
general intelligence that provide a comprehensive and mechanistic description of general intelligence
as a cognitive process are scarce. As long as theories of general intelligence are mainly concerned
with its factorial structure (i.e., psychometric theories, [2,5–8]), developing a cognitive model of
general intelligence in the sense of a process theory remains difficult. One recently published positive
counterexample is process-overlap theory, which suggests that the positive manifold may arise
from a set of various domain-specific and domain-general cognitive processes which are linked
multiplicatively [4]. In conjunction with mathematical models of the cognitive processes involved
in process-overlap theory, this conceptual idea might be used to develop a formal model from
different cognitive models that are linked in the multiplicative way suggested in process-overlap
theory. In this sense, integrating mathematical models of cognitive processes that are correlated with
measures of intelligence may provide a first step towards a comprehensive process theory of general
intelligence—something for which the field has been searching for a long time.

Author Contributions: G.T.F. and A.-L.S. both wrote the manuscript, and revised and commented on the parts of
the other author respectively. Since both authors were equally involved in the structural and conceptual design of
the manuscript, the first authorship was shared between the two.

Acknowledgments: We thank Debora Fieberg and Ben Riemenschneider for providing Matlab and R code for the
illustration of the DDM and the TBRS2 model.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

SOB-CS Serial-Order in Box Model for Complex Span Tasks
DDM Drift-Diffusion Model
LBA Linear Ballistic Accumulator Model
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Abstract: Cognitive modeling of response time distributions has seen a huge rise in popularity in
individual differences research. In particular, several studies have shown that individual differences
in the drift rate parameter of the diffusion model, which reflects the speed of information uptake, are
substantially related to individual differences in intelligence. However, if diffusion model parameters
are to reflect trait-like properties of cognitive processes, they have to qualify as trait-like variables
themselves, i.e., they have to be stable across time and consistent over different situations. To assess
their trait characteristics, we conducted a latent state-trait analysis of diffusion model parameters
estimated from three response time tasks that 114 participants completed at two laboratory sessions
eight months apart. Drift rate, boundary separation, and non-decision time parameters showed a
great temporal stability over a period of eight months. However, the coefficients of consistency and
reliability were only low to moderate and highest for drift rate parameters. These results show that
the consistent variance of diffusion model parameters across tasks can be regarded as temporally
stable ability parameters. Moreover, they illustrate the need for using broader batteries of response
time tasks in future studies on the relationship between diffusion model parameters and intelligence.

Keywords: mental speed; diffusion model; latent state-trait theory; response times; drift rate;
boundary separation; non-decision time; temporal stability

1. Introduction

Being quick on the uptake or being quick-witted are popular idioms when describing smart
individuals. Decades of research on the relationship between general intelligence and behavioral
response times established the close link between mental abilities and the speed of information
processing. A recent review of 172 studies reported an average correlation of r = −.24 between
mental abilities and different measures of information processing speed [1]. More specifically, the
correlations between mean response times in elementary cognitive tasks and general intelligence
ranged from r = −.25 to r = −.40. In general, composite measures of response times tend to show
higher correlation with general intelligence than single response time measures. For example, canonical
correlations between test batteries of response time tasks and general intelligence ranged from C = .55
to C = .72 [2–4]. This suggests that it is the variance shared by different response time tasks—general
mental speed—that is closely related to general intelligence.

Typically, mental speed is assessed by calculating the mean or median of each participant’s
intra-individual response time distribution in an experimental task. Because mean response times
should exhibit ideal psychometric properties under assumptions of classical test theory, they are
usually preferred over other parameters describing an individual’s response time distribution such
as the standard deviation, skewness, or kurtosis. However, there are a couple of findings suggesting
that inter-individual differences in various parameters of intra-individual response time distributions
may be of particular interest for explaining individual differences in mental abilities. First, previous
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research has indicated that the intra-individual standard deviation of response times is sometimes
more strongly related to general intelligence than mean or median response times [5,6]. However, a
recent meta-analysis of 24 studies found no consistent difference in the size of correlations between
these measures [7]. Second, the worst performance rule [8] describes the phenomenon that when
individual response times are ranked from fastest to slowest, the slowest response times are more
predictive of general intelligence than the mean or best response times [9,10]. Third, using means as
a measure of central tendency to summarize the information contained in individual response time
distributions may not be the ideal choice, as response time distributions are strongly positively skewed,
which contradicts the assumption of a Gaussian distribution.

Moreover, when only mean response times are used as measures of mental speed, information
contained in the shape of response time distributions is inevitably lost. Response time distributions
can be described as combined Gaussian and exponential distributions. Shifts in both of these elements
of response time distributions can lead to a similar increase in mean response times, just like a shift
in the response time distribution or an increase in skewness can result in higher mean response
times [11,12]. Taken together, these phenomena suggest that it may be worthwhile to consider the
complete distribution of response times when analyzing the relationship between mental speed and
mental abilities.

Beyond that, the distinction between decision times and movement times has proven to be another
critical issue for the study of individual differences in mental chronometry. Some experimental setups
require participants to rest their finger(s) on a home button that they are instructed to release as soon
as the stimulus is presented and their decision is made. Subsequently, they have to press one of several
response keys. Home-button setups are supposed to allow dissociating between the time required for
the stimulus to be perceived, encoded, and processed (decision time, DT), and the time required for
response execution (motor time, MT). Although DT and MT tend to load on two orthogonal factors [13],
moderate correlations between DT and MT are reported in many studies [6]. The view that some
degree of process contamination exists in both of these measures is supported by two experiments
showing that participants release the home key immediately after detecting the stimulus, but before
finalizing their decision, in anticipation of their response [14]. These results suggest that a clear-cut
distinction between decision times and movement times cannot be easily achieved by a home-button
setup and that other methods have to be employed to obtain a process-pure measurement of the speed
of information processing.

1.1. The Diffusion Model: A Process Model of Speeded Binary Decision Making

Mathematical models of response times can overcome the aforementioned problems (i.e.,
providing adequate parameters for the description of a response time distribution, analyzing the
complete distribution, allowing a more valid distinction between the time required for decision
processes and for non-decision processes such as movement times), because they provide a
process-based account of decision making that uses a participant’s whole response time distribution
to estimate parameters reflecting various elements of the decision process. The most prominent
mathematical model of binary response time tasks is the diffusion model, which is a random-walk
model that assumes a continuous information accumulation during a binary decision until one of
two decision thresholds is reached [15]. This information accumulation process can be described by
a Wiener diffusion process consisting of a constant systematic component, the drift, and normally
distributed random noise.

The basic diffusion model contains four parameters (see Figure 1): The drift rate (v) reflects the
strength and direction of the systematic influence on the diffusion process and is a direct performance
measure for the speed of information uptake. Boundary separation (a) reflects the amount of
information considered for a decision, which is for example influenced by a participant’s cautiousness
or by instructions stressing speed over accuracy and vice versa, e.g., [16,17]. The starting point (z)
reflects a priori biases in decision making that can be influenced by asymmetric pay-off matrices [16].
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Finally, the non-decision time (t0) reflects the time required for all sorts of decision-unrelated processes
such as encoding or motor programming and execution.

Figure 1. A simplified illustration of the basic diffusion model. Information accumulation begins
at the starting point z and continues with a mean drift rate v (affected by random noise) until one
of two thresholds is hit. Boundary separation a represents the amount of information that has to be
accumulated before a decision is made. Outside of the information accumulation process, non-decision
time t0 (not shown here) quantifies the time of non-decision processes such as stimulus encoding and
response execution. This figure was inspired by the illustration of the diffusion model in Voss et al. [18].

For each participant, a set of parameters is estimated by permuting parameter values until the
predicted response time distribution closely resembles the empirical response time distributions.
One advantage of the diffusion model is that it maps different cognitive processes to different model
parameters and provides process-pure measures of these parameters that have been empirically
validated [16]. Hence, the diffusion model takes into account the whole distribution of response times
and allows separating the speed of information uptake—reflected in the drift rate parameter—from
the speed of the motor response—reflected in the non-decision time parameter.

The diffusion model has seen a recent rise in popularity thanks to the publication of
software solutions that allow fitting the model without extensive programming knowledge [19–22].
Applications in individual differences research include studies on individual differences in
attention [23], in impulsivity, e.g., [24], in mental abilities, e.g., [25–28], in numeracy [29], and in
word recognition [30].

1.2. Correlations between Diffusion Model Parameters and Mental Abilities

First studies on the relationship between diffusion model parameters and mental abilities have
supported the notion that the diffusion model may help to identify the speed of specific cognitive
processes and their specific associations with intelligence. This research is based on the assumption
that individual differences in these model parameters reflect trait-like properties of cognitive processes.
Four studies analyzing the relation between diffusion model parameters and mental abilities reported
substantial correlations between drift rate and mental abilities ranging from r = .18 to .90 [25–28].
Ratcliff et al. [25] asked participants in three age groups (college age, 60–74 years old, 75–90 years old)
to complete the vocabulary and matrix reasoning subtests of the Wechsler intelligence test and analyzed
correlations with a latent drift rate factor from a numerosity discrimination, recognition memory, and
lexical decision response time task. Correlations ranged from r = .60 to .90 for the vocabulary subtest,
and from r = .36 to .85 for the matrix reasoning subtest. Moreover, the same participants also completed
an item and associative recognition task. Manifest correlations between drift rate parameters estimated
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from response time distributions of these tasks ranged from r = .18 to .67 with the matrix reasoning
subtest, and from r = .28 to .68 with the verbal subtest [26]. Schmiedek et al. [27] reported a latent
correlation of r = .79 between reasoning ability and drift rates in eight response time tasks (including
verbal, numerical, and spatial tasks) in a student sample, and Schubert et al. [28] reported a correlation
of r = .50 between general intelligence and a drift rate factor derived from three response time tasks
(choice response task, recognition task, semantic discrimination task). Taken together, these results
indicate that smarter individuals have a greater speed of information uptake as reflected in the drift
rate parameter.

Previous studies have reported less consistent associations between non-decision time and mental
abilities. Ratcliff et al. [25] found latent correlations ranging from r = −.14 to .40 for the vocabulary
subtest, and from r = −.04 to −.50 for the matrix reasoning subtest, and Ratcliff et al. [26] reported
manifest correlations ranging from r = −.29 to .37 between non-decision times in item recognition
tasks and associative recognition tasks and intelligence, leading them to conclude that non-decision
times were not reliably associated with intelligence. Schmiedek et al. [27], however, reported a small
but significant positive correlation between a latent non-decision time factor and reasoning ability,
r = .25. Schubert et al. [28] also found evidence for an association between the non-decision time
parameter and general intelligence, but in the direction that more intelligent individuals had shorter
non-decision times, r = −.42. More research is needed to conclude whether intelligence is consistently
associated with the non-decision time parameter. Because the non-decision time parameter captures to
some degree movement times, it would be consistent with previous research if it was not related to
intelligence. However, the non-decision time parameter does not only reflect motor speed, but also
the time required for encoding and for memory-related processes [31] and may thus be related to
general intelligence.

Finally, some studies have found associations between boundary separation and mental abilities.
Ratcliff et al. [25] found latent correlations ranging from r = −.02 to .52 for the vocabulary subtest,
and from r = .15 to .37 for the matrix reasoning subtest, and Ratcliff et al. [26] reported manifest
correlations ranging from r = −.32 to .14 between boundary separation parameters in item and
associative recognition tasks and intelligence. Schmiedek et al. [27] reported a negative latent
correlation between a boundary separation factor and reasoning ability, r = −.48. Again, the results
seem largely inconsistent, because greater intelligence has been found to be associated both with a
smaller and a larger boundary separation, i.e., with less and more decision cautiousness.

Taken together, these first studies strongly support the view that more intelligent individuals have
a higher drift rate across a broad variety of response time tasks and participant samples. In comparison,
associations between intelligence and non-decision time/boundary separation parameters were smaller
and largely inconsistent within and across studies. The number of studies relating diffusion model
parameters to mental abilities is still too small to allow identifying variables moderating the size and
direction of these associations such as sample characteristics or task difficulties.

1.3. Diffusion Model Parameters as Personality Traits

Before a claim can be made that diffusion model parameters reflect trait-like properties of cognitive
processes, it has to be shown that they qualify as trait-like variables themselves. Several authors have
previously suggested an integration of item response theory (IRT) and the diffusion model into a latent
variable model, which takes into account that the mean drift rate consists of a person part and an item
part [32–34]. It has been shown that diffusion IRT models can account for psychometric responses
on tests of bipolar traits [33] as well as for ability tests under the assumption that abilities have a
natural zero point [34]. Moreover, Vandekerckhove [35] has suggested a cognitive latent variable
model based on Bayesian hierarchical modeling for the simultaneous analysis of response time data
and personality or ability test data. This framework allows estimating latent task abilities, which are
reflected in diffusion model parameters across different tasks and which can be related to external
covariates. However, none of these approaches explicitly takes into consideration the core assumption
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of many personality theories, which consists of the temporal stability and trans-situational consistency
of personality traits [36–38]. Showing that diffusion model parameters can be accounted for with a
latent variable model is a necessary, but not a sufficient condition to conclude that they can be treated
as trait-like variables, as state variables can also be modeled as latent variables [38]. Hence, diffusion
model parameters only qualify as trait-like variables if it can be shown that they are stable across time
and consistent over different tasks/situations.

Moreover, because diffusion model parameters can be affected by task properties [16], it is
important to identify to what extent specific parameter values reflect person properties common to
different tasks and to what extent they reflect specific person-task interactions. This knowledge would
facilitate the planning of future studies on the relationship between mental speed and intelligence
by helping to determine how many response time tasks are needed for a reliable assessment of
common model parameters. Moreover, estimates of the consistency of task-specific model parameters
would allow evaluating the associations between these model parameters and intelligence. From the
viewpoint of classical test theory (CTT), the effects of the situation and the effects of the person–situation
interaction act as nuisance variables when estimating the diffusion model parameters, i.e., these effects
add to the error variance. In turn, the variance portions that are not due to individual differences in a
latent trait attenuate the correlations between diffusion model parameters and intelligence. Thus, the
estimates of consistency inform us about the maximum correlation that may be expected in empirical
investigations of the relationship between diffusion model parameters and intelligence (the coefficient
of consistency indicates an upper bound of the correlation between the diffusion model parameters
and intelligence). Therefore, knowing the consistencies helps to interpret the empirical correlations
that have been reported in previous research and that may be reported in future research.

Previous research has suggested that response times may be experimentally influenced by fatigue
and performance-dependent rewards [39,40]. However, it is as of yet unclear whether such situational
factors affect the relative performance in response time tasks when not experimentally induced and
how this might be reflected in diffusion model parameters. Previous research on the temporal stability
of diffusion model parameters is scarce, but first studies suggest a moderate temporal stability over
a period of one week. One week test-retest correlations of drift rate, threshold separation, and
non-decision time parameters ranged from r = .48 to .86 (mean r = .66) in lexical decisions tasks [30,41],
from r = .35 to .77 (mean r = .56) in a recognition memory task [41], and from r = .30 to .79 (mean r = .67)
in an associative priming task [41].

However, a period of one week may be suited to estimate the reliability with test-retest correlations,
but it does not convey much information about the temporal stability and trans-situational consistency
of model parameters in a broader sense. Because intelligence is known to show a great temporal
stability over longer periods of time, e.g., [13,42], diffusion model parameters should show a similar
temporal stability if considered to reflect processes giving rise to individual differences in general
intelligence. Moreover, if diffusion model parameters are to be considered as trait-like properties of
cognitive processes, not only the temporal stability of parameters in specific tasks, but the temporal
stability of model parameters across tasks—i.e., of hierarchical or latent model parameters—is of
particular interest for individual differences research.

To evaluate whether diffusion model parameters (namely: drift rate, boundary separation, and
non-decision time) qualify as trait-like variables, we asked participants to complete three response
time tasks at two laboratory sessions approximately eight months apart. The tasks were so-called
elementary cognitive tasks (ECTs) that are the most widely used tasks in individual differences
research on the relationship between mental speed and mental abilities [1]. ECTs are tasks with
minimal cognitive demands that minimize unwanted sources of variance such as strategy use and
learning effects. The first task we used was a visual choice response time task in which participants
had to decide in which of four squares a cross appeared. Previous research has shown that an increase
of stimulus alternatives leads to a linear increase in response times [43]. This linear increase indicates
that evidence is accumulated continuously until a decision point is reached and that this process takes
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longer the more stimulus alternatives are presented, either because more evidence has to be considered
or because the process gets noisier. We know that other cognitive models such as the linear ballistic
accumulator (LBA [44]) or the leaky competing accumulator (LCA [45]) model may be better suited
to model response times in this task, but we are aware of at least one study that previously used
the diffusion model to model behavioral data of this task and came to similar results as a study that
used the LCA model [28,46]. The second task we used was the Sternberg memory scanning task [47],
in which participants have to decide whether a probe item was part of a previously presented memory
set. As Ratcliff [15] has shown, performance in this task can be adequately described by the diffusion
model under the assumption of parallel diffusion processes for each memory set item. The third task
we used was the Posner letter matching task [48], in which participants have to decide whether two
letters have (a) the same physical and (b) the same name identity. While participants decide whether
the letters are identical, they may either accumulate information simultaneously from both letters
regarding their similarity until reaching a threshold, or they may first encode one of the letters and
then apply a decision process to the second one. In the first case, one common diffusion process or
two parallel ones might be occurring, whereas in the latter case only a single diffusion process should
occur reflecting the comparison process to the previously encoded stimulus. Moreover, evaluating the
name identity of letters may require additional processing demands due to the access of long-term
memory, which should be reflected in the non-decision time [31].

We used latent state-trait (LST) models to quantify the amount of variance in model parameters
that can be attributed to a common trait, to situational influences, to specific experimental tasks,
and to measurement error [49,50]. If diffusion model parameters qualify as trait-like properties of
cognitive processes affecting response times in a variety of tasks , they should show at least moderate
consistencies and low occasion-specificities.

2. Experimental Section

2.1. Participants

We recruited N = 134 participants (81 females, 53 males, Mage = 37.1, SDage = 13.8) from different
educational and occupational backgrounds. Of these, N = 114 (66 females, 48 males, Mage = 36.9,
SDage = 13.5) attended both the first and the second experimental session that were approximately
eight months apart. Participants who did not attend the second laboratory session tended to have
smaller drift rates, average d = −0.46, greater boundary separation parameters, average d = 0.44,
and negligible differences in non-decision time parameters, average d = −0.06. We only included
participants who attended both experimental sessions in our analyses. All participants had normal or
corrected to normal vision. As a reward for their participation, they received 100e and feedback about
their personal results.

2.2. Measures

Response Time Tasks

Visual choice response time task. We used a choice response time (CRT) task with either two
(CR2) or four (CR4) response alternatives. Four white squares were presented in a row on a black
screen. Participants’ middle and index fingers rested on four keys directly underneath the squares.
After a delay of 1000–1500 ms, a cross appeared in one of the four squares and participants had to press
the corresponding key as fast as possible. In the two-choice response time condition, the choice space
was reduced to two squares in which the cross could appear for 50 subsequent trials. After completing
a block of 50 trials, participants were informed that the cross could now only appear in a different
combination of squares (outer left and left squares, outer right and right squares, inner squares, outer
squares). In the four-choice response time condition, the cross could appear in any of the four squares.
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Both conditions began with ten practice trials with immediate feedback followed by 200 test trials
without feedback. The order of conditions was counterbalanced across participants.

Sternberg memory scanning task. Participants were shown a memory set consisting of one (set
size one, S1), three (set size three, S3), or five (set size five, S5) digits from 0 to 9 on a black computer
screen. Subsequently, participants were shown a probe digit and had to decide whether the probe was
contained in the previously presented memory set by pressing one of two keys. This was the case in
50% of the trials. The position of keys indicating whether the probe item was part of the memory set
was counterbalanced across participants. Each of the three conditions began with ten practice trials
with immediate feedback followed by 100 test trials without feedback. The order of conditions was
counterbalanced across participants.

Posner letter matching task. Participants were shown two letters and had to decide whether
they were identical. In the physical identity (PI) condition, participants had to decide whether they
were physically identical, and in the the name identity (NI) condition, they had to decide whether the
two presented letters had the same name. The position of keys indicating whether the letters were
identical was counterbalanced across participants. Both conditions began with ten practice trials with
immediate feedback followed by 300 test trials without feedback. All participants started with the PI
condition at the first laboratory session, whereas all participants started with the NI condition at the
second laboratory session.

2.3. Procedure

The two experimental sessions were approximately eight months apart. We administered the CRT
task first, followed by the Sternberg memory scanning task and the Posner letter matching task. The
order of tasks was the same for all participants at both experimental sessions. An EEG was recorded
while participants completed the tasks (data are not reported here). Each session took approximately
three hours.

2.4. Data Analysis

2.4.1. Response Time Data

We discarded any RTs faster than 100 ms or slower than 3000 ms. In a second step, we discarded any
trials with logarithmized RTs exceeding ± 3 SDs of the mean of each condition on an intra-individual
level. Diffusion model parameters were estimated with fast-dm-30 [19] for each participant, each
condition, and each experimental session separately. We analyzed the data in such a way that responses
to the upper threshold reflected correct decisions and that responses to the lower threshold reflected
incorrect decisions. For the CR4 task, this implied that responses to any of the three incorrect locations
were aggregated into one RT distribution of incorrect trials. The starting point z was fixed to a/2,
and the difference in speed of response execution d and the trial-to-trial variability parameters of
the drift and the starting point were fixed to 0. Thus, four parameters were estimated for each
participant, each condition, and each experimental session: The drift rate v, the boundary separation
a, the non-decision time t0, and the variability of the non-decision time st0. Model parameters were
estimated with the Kolmogorov-Smirnov statistic. Model fit was evaluated graphically by plotting
predicted values against empirical values for the 25, 50, and 75 quantiles of the RT distribution
separately for each task and each laboratory session (see Figure A1, Appendix A).

2.4.2. Statistical Analysis

We used latent state-trait models to assess the relationship between diffusion model parameters
estimated for the three response time tasks across the two experimental sessions. We specified a
structural equation model with a common trait T, a state residual SRi for each of the two measurement
occasions i, and a method factor Mj for each of the three experimental tasks j. The path coefficients of
the common trait T as well as the path coefficients of the state residuals SRi on the latent states Si were
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fixed to 1. Moreover, the path coefficients of the method factors Mj were also fixed to 1. Finally, the path
coefficients of the latent states Si were estimated with the exception of the path coefficient loading on
the CR2 task, which was fixed to 1. The variances of error residuals were set equal across measurement
occasions. In addition, we also specified LST models separately for diffusion model parameter and
each experimental task. These structural equation models were specified as above with the exceptions
that method factors Mj reflected experimental conditions within the task and that all paths were fixed
to 1. We did not analyze the mean structure in any of the models and fixed the intercepts to 0, because
the diffusion model parameters were z-standardized prior to being entered into structural equation
models. Note that the assumption of measurement invariance is not necessary to explore the relative
temporal stability of latent model parameter states [38]. All in all, we calculated four LST models for
each diffusion model parameter (v, a, t0): One model across all experimental tasks and three separate
models for each of the experimental tasks (CRT task, Sternberg memory scanning task, Posner letter
matching task).

Moreover, we calculated several LST parameters to assess the reliability, consistency,
occasion-specificity, and method-specificity of the model parameters [38]. The coefficient of consistency
is computed as σ2(T)/σ2(Yij) and reflects the proportion of variance of the manifest variable Yij that
can be accounted for by individual differences in the latent trait T. The coefficient of occasion-specificity
is computed as σ2(SRi)/σ2(Yij) and reflects the proportion of variance that is due to situational effects
SRi. Similarly, the coefficient of method-specificity is computed as σ2(Mj)/σ2(Yij) and reflects the
proportion of variance that can be accounted for by a specific method Mj. Taken together, these
different sources of systematic variation contribute to the reliability of a manifest variable Yij, which
can thus be computed as [σ2(T) + σ2(SRi) + σ2(Mj)]/σ2(Yij). For the purposes of our analyses,
we defined LST parameters ≤.30 as small, between .30 and .60 as moderate, and ≥.60 as great, as
consistencies of well-known intelligence and personality tests all exceeded this threshold value [51,52].
Note that these cut-offs should only be treated as heuristics. For the evaluation of LST parameters,
we sighted the literature carefully for previous evaluations of these parameters. In their formulation
of LST theory, Steyer et al. [49] did not offer any guidelines for the interpretation of LST parameters.
Hence, we used previous applications of LST theory in individual differences research on mental
abilities and personality traits as benchmarks. Danner et al. [51] calculated the LST parameters of
intelligence tests and reported consistencies ranging from .67 to .72 and reliabilities ranging from .86
to .83, which they evaluated as “great”. In comparison, method-specificities of intelligence tests ranged
from .13 to .24 and were evaluated as “small”. Deinzer et al. [52] evaluated the trait characteristics of
different personality questionnaires (Freiburg Personality Inventory (FPI), NEO Five-Factor Inventory
(NEO-FFI), Eysenck Personality Questionnaire (EPI)) and reported consistencies ranging from .73
to .94 for the FPI, from .62 to .92 for the NEO-FFI, and from .72 to .83 for the E and N scales of the
EPI. In comparison, occasion-specificities ranged from .00 to .17 for the FPI, from .00 to .22 for the
NEO-FFI, and from 0 to .16 for the E and N scales of the EPI. These results led the authors to conclude
that situational and/or interactional influences explained a significant proportion of variance of these
personality questionnaires and that test scores depended both on latent traits and (albeit to a lesser
degree) on situational and/or interactional influences.

Structural equation models were estimated with MPlus 7 [53] (the data and analysis files for
all structural equation models are provided in the supplementary materials online). Model fit
was evaluated with the chi-square test, the comparative fit index (CFI) and root-mean-square
error of approximation (RMSEA). According to Browne and Cudeck [54] and Hu and Bentler [55],
we considered CFI values > .90 and RMSEA values < .08 to indicate acceptable model fit, and
CFI values > .95 and RMSEA values < .06 to indicate good model fit. Missing values were accounted
for using the ML algorithm implemented in MPlus.
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3. Results and Discussion

3.1. Descriptive Data

Table 1 shows the mean RTs and accuracies for each condition of the three response time tasks
at both experimental sessions. All in all, accuracies were relatively high due to the low complexity
of the response time tasks. Moreover, RTs tended to increase with increasing information-processing
demands within each task.

Table 1. Mean accuracies (ACC), mean RTs (RT), and mean diffusion model parameters (v, a, t0, and st0)
across conditions in the three response time tasks at both measurement occasions (SDs in parantheses).

Session 1

ACC RT v a t0 st0
CR2 1.00 (.01) 383.45 (58.08) 5.55 (1.31) 1.15 (0.26) 0.27 (0.04) 0.08 (0.04)
CR4 .98 (.02) 479.92 (89.30) 4.68 (1.30) 1.18 (0.34) 0.34 (0.06) 0.15 (0.09)
S1 .98 (.02) 585.07 (108.54) 3.48 (1.15) 1.63 (0.98) 0.35 (0.08) 0.13 (0.11)
S3 .98 (.02) 719.53 (161.38) 3.20 (1.04) 1.63 (0.79) 0.45 (0.09) 0.16 (0.11)
S5 .96 (.03) 878.86 (232.06) 2.55 (0.79) 1.73 (0.52) 0.53 (0.13) 0.21 (0.19)
PI .98 (.02) 614.90 (88.35) 4.00 (0.94) 1.27 (0.25) 0.45 (0.05) 0.14 (0.06)
NI .97 (.02) 699.66 (112.81) 2.97 (0.70) 1.46 (0.35) 0.45 (0.05) 0.14 (0.07)

Session 2

ACC RT v a t0 st0
CR2 1.00 (.01) 381.26 (61.00) 5.58 (1.56) 1.14 (0.27) 0.27 (0.03) 0.08 (0.05)
CR4 .98 (.02) 467.36 (85.75) 4.72 (1.11) 1.14 (0.32) 0.34 (0.04) 0.14 (0.06)
S1 .98 (.02) 584.02 (135.64) 3.65 (1.35) 1.38 (0.41) 0.36 (0.07) 0.13 (0.10)
S3 .98 (.03) 706.61 (176.81) 3.24 (1.00) 1.43 (0.35) 0.47 (0.10) 0.16 (0.11)
S5 .95 (.09) 850.98 (223.18) 2.52 (1.00) 1.54 (0.48) 0.53 (0.13) 0.19 (0.15)
PI .98 (.02) 605.19 (102.41) 4.04 (1.06) 1.33 (0.36) 0.42 (0.05) 0.12 (0.06)
NI .97 (.2) 704.38 (126.36) 3.10 (0.77) 1.49 (0.38) 0.45 (0.06) 0.15 (0.08)

3.2. Diffusion Model Analysis

Results from one participant in the set size one condition of the Sternberg memory scanning task
and results from one participant in the name identity condition of the Posner letter matching task had
to be discarded, because the predicted RTs deviated strongly from the empirical RTs across all four
quantiles (Figure A1 in Appendix A displays the relation of empiric vs. predicted response times for
the remaining data).

Drift rates tended to decrease and boundary separation and non-decision parameters tended to
increase with increasing information-processing demands within each task. Drift rates of experimental
tasks were comparable across experimental sessions, all |ds| ≤ 0.13, except for the name identity
condition of the Posner letter matching task. Here, drift rates were slightly greater at the second than
at the first laboratory session, d = 0.24. Boundary separation parameters were also comparable across
sessions, all |ds| ≤ 0.19, except for the Sternberg memory scanning task. Here, boundary separation
parameters decreased from the first to the second session, all |ds| ≥ 0.27. Finally, non-decision time
parameters were also comparable across sessions, all |ds| ≤ 0.16, except for the set size one condition of
the Sternberg memory scanning task, in which non-decision time parameters increased across sessions,
d = 0.21, and the physical identity condition of the Posner letter matching task, in which non-decision
time parameters decreased across sessions, d = 0.48.

3.2.1. Drift Rate

Manifest correlations of drift rate parameters are shown in Table A1 in Appendix B. The LST
model for drift rate across experimental tasks provided a good fit for the data, χ2(94) = 136.44, p = .003,
CFI = .95, RMSEA = .06 [.04; .09]. However, the variances of the latent state residuals and of the
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method factor for the Posner letter matching task were non-significant (VAR(SR1) = 0.03, p = .660;
VAR(SR2) = 0.03, p = .643; VAR(Pv) = 0.00, p = .992). Hence, these variances were fixed to zero.
These modifications did not impair model fit, χ2(97) = 143.94, p = .001, CFI = .94, RMSEA = .07
[.04; .09]. Although the χ2 test indicated significant differences between the implied and empirical
covariance structure, the goodness-of-fit indices CFI and RMSEA indicated acceptable model fit [54,55].
See Figure 2 for the modified model.
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Figure 2. The latent state-trait model of drift rate parameters consists of a common trait T, a state
residual SRi for each of the two measurement occasions i, and a method factor Mj for each of the
three experimental tasks. CR2/4 = choice response time task with two/four alternatives; S1 = set size
one; S3 = set size three; S5 = set size five; PI = physical identity; NI = name identity. Latent variables
displayed in gray were non-significant.

Subsequently, we calculated the coefficients of reliability, consistency, occasion-specificity, and
method-specificity based on LST theory (see Table 2). Drift rate parameters estimated in the CRT
and Sternberg memory scanning task showed moderate consistencies and low method-specificities.
Drift rate parameters estimated in the Posner letter matching task showed the highest consistencies
and no method-specificities. Overall, the temporal stabilities of the latent drift rate states were great as
state residuals were not significant and occasion-specificities were therefore zero, but the reliabilities
of the manifest drift rate parameters were only moderate, with coefficients of reliability ranging
from .38 to .69.
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Table 2. Latent state-trait theory parameters of diffusion model parameters. Occ. Spec. =
Occasion-specificity; Meth. Spec. = Method-specificity.

Session Consistency Occ. Spec. Meth. Spec. Reliability

1 2 1 2 1 2 1 2

Drift rate parameters
CR2 .46 .46 .00 .00 .17 .17 .63 .63
CR4 .28 .36 .00 .00 .17 .15 .45 .51
S1 .34 .42 .00 .00 .11 .10 .45 .52
S3 .31 .44 .00 .00 .12 .09 .43 .54
S5 .28 .36 .00 .00 .11 .10 .38 .45
PI .53 .52 .00 .00 .00 .00 .53 .52
NI .66 .69 .00 .00 .00 .00 .66 .69

Boundary separation parameters
CR2 .14 .14 .00 .00 .20 .20 .35 .35
CR4 .38 .33 .00 .00 .17 .19 .55 .52
S1 .16 .32 .00 .00 .13 .10 .29 .42
S3 .06 .30 .00 .00 .13 .10 .20 .40
S5 .21 .15 .00 .00 .11 .12 .32 .27
PI .42 .54 .00 .00 .00 .00 .42 .54
NI .64 .62 .00 .00 .00 .00 .64 .62

Non-decision time parameters
CR2 .19 .19 .00 .00 .24 .24 .43 .43
CR4 .36 .31 .00 .00 .24 .26 .60 .57
S1 .14 .31 .00 .00 .00 .00 .14 .31
S3 .36 .45 .00 .00 .00 .00 .36 .45
S5 .43 .43 .00 .00 .00 .00 .43 .43
PI .60 .54 .00 .00 .00 .00 .60 .54
NI .41 .34 .00 .00 .00 .00 .41 .34

CRT task. The LST model provided a good fit for the data, χ2(7) = 6.90, p = .440, CFI = 1,
RMSEA = .00 [.00; .11]. However, the variances of the latent state residuals and of the method factor
for the four choice condition were negative and/or non-significant (VAR(SR1) = −0.03, p = .659;
VAR(SR2) = 0.05, p = .413; VAR(CR4v) = 0.01, p = .948). Hence, these variances were fixed to zero.
These modifications did not impair model fit, χ2(10) = 7.67, p = .661, CFI = 1, RMSEA = .01 [.00; .08].
See the upper part of Figure 3A (p. 12) for the final model and Table 3 (p. 13) for the associated
LST parameters.

Sternberg memory scanning task. The LST model provided an acceptable fit for the data,
χ2(18) = 26.53, p = .088, CFI = .96, RMSEA = .06 [.00; .11]. However, the variances of the latent state
residuals and of the method factor for the set size 3 condition were non-significant (VAR(SR1) = 0.02,
p = .748; VAR(SR2) = 0.90, p = .099; VAR(S3v) = 0.01, p = .851). Hence, these variances were fixed to zero.
These modifications did not impair model fit, χ2(21) = 31.38, p = .068, CFI = .96, RMSEA = .07 [.00; .11].
See the middle part of Figure 3A (p. 12) for the final model and Table 3 (p. 13) for the associated
LST parameters.

Posner letter matching task. The LST model provided a good fit for the data, χ2(7) = 7.44,
p = .385, CFI = 1, RMSEA = .02 [.00; .12]. However, the variances of the latent state residuals and of
the method factor for the physical identity condition were non-significant (VAR(SR1) = 0.06, p = .301;
VAR(SR2) = 0.12, p = .063; VAR(PIv) = 0.07, p = .322). Hence, these variances were fixed to zero.
Afterwards, model fit was still acceptable, χ2(10) = 16.08, p = .097, CFI = .97, RMSEA = .07 [.00; .14].
See the lower part of Figure 3A (p. 12) for the final model and Table 3 (p. 13) for the associated
LST parameters.
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Figure 3. Seperate LST models for the three parameters of the diffusion model: drift rate v, boundary
separation a, and non-decision time t0—estimated for each of the three tasks.

3.2.2. Boundary Separation

Manifest correlations between boundary-separation parameters across tasks and measurements
are shown in Table A2 in Appendix B. The LST model for boundary separation across the
three experimental tasks provided a good fit for the data, χ2(94) = 124.78, p = .019, CFI = .94,
RMSEA = .05 [.02; .08]. Because the variances of the latent state residuals and of the method factor
for the Posner letter matching task were negative and/or non-significant again (VAR(SR1) = −0.04,
p = .181; VAR(SR2) = 0.10, p = .156; VAR(Pa) = 0.08, p = .227), we also fixed these variances to zero. These
modifications did not impair model fit, χ2(97) = 134.26, p = .007, CFI = .93, RMSEA = .06 [.03; .08].
Again, the χ2 test indicated significant differences between the implied and empirical covariance
structure, but the CFI and the RMSEA indicated an acceptable model fit [54,55]. See Figure 4 for the
modified model.

Coefficients of reliability, consistency, occasion-specificity, and method-specificity are shown in
the middle part of Table 2. Consistencies of boundary separation parameters were low to moderate
and highest in the Posner letter matching task. Methods-specificities were low in the SRT, CRT,
and Sternberg memory scanning task, whereas method factors explained no variance in boundary
separation parameters in the Posner letter matching task. While the temporal stabilities were as great
for the latent boundary separation states as for the latent drift rate states, the reliabilities of manifest
boundary separation parameters were notably lower ranging from .27 to .64.
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Table 3. LST parameters for the LST models by task (see Figure 3). Cond. = Condition; Occ. Spec. =
Occasion-specificity; Meth. Spec. = Method-specificity; Rel. = Reliability; Boundary sep. = Boundary
separation; Non-dec. time = Non-decision time.

Task dm Parameter Cond. MP Cons. O. Spec. M. Spec Rel.

CRT

Drift rate v

CR2 1 .53 .00 .15 .68
CR4 1 .51 .00 .00 .51
CR2 2 .53 .00 .15 .68
CR4 2 .51 .00 .00 .51

Boundary sep. a

CR2 1 .43 .00 .00 .43
CR4 1 .43 .00 .00 .43
CR2 2 .43 .00 .00 .43
CR4 2 .43 .00 .00 .43

Non-dec. time t0

CR2 1 .38 .14 .18 .70
CR4 1 .39 .15 .25 .79
CR2 2 .37 .16 .18 .71
CR4 2 .38 .16 .25 .79

Sternberg

Drift rate v

S1 1 .46 .00 .11 .57
S3 1 .47 .00 .00 .47
S5 1 .42 .00 .15 .57
S1 2 .46 .00 .11 .57
S3 2 .47 .00 .00 .47
S5 2 .42 .00 .15 .57

Boundary sep. a

S1 1 .31 .00 .00 .31
S3 1 .30 .00 .00 .30
S5 1 .30 .00 .00 .30
S1 2 .31 .00 .00 .31
S3 2 .30 .00 .00 .30
S5 2 .30 .00 .00 .30

Non-dec. time t0

S1 1 .31 .00 .00 .31
S3 1 .34 .00 .00 .34
S5 1 .35 .00 .00 .35
S1 2 .31 .00 .00 .31
S3 2 .34 .00 .00 .34
S5 2 .35 .00 .00 .35

Posner

Drift rate v

PI 1 .58 .00 .00 .58
NI 1 .57 .00 .16 .72
PI 2 .58 .00 .00 .58
NI 2 .57 .00 .16 .72

Boundary sep. a

PI 1 .55 .00 .00 .55
NI 1 .57 .00 .00 .57
PI 2 .55 .00 .00 .55
NI 2 .57 .00 .00 .57

Non-dec. time t0

PI 1 .44 .16 .00 .60
NI 1 .39 .14 .00 .54
PI 2 .52 .00 .00 .52
NI 2 .46 .00 .00 .46

CRT task. The LST model provided a good fit for the data, χ2(7) = 2.43, p = .933, CFI = 1,
RMSEA = .00 [.00; .03]. However, the variances of the latent state residuals and of the method factors
were non-significant (VAR(SR1) = 0.04, p = .536; VAR(SR2) = 0.11, p = .134; VAR(CR2v) = 0.08, p = .303;
VAR(CR4v) = 0.15, p = .079). Hence, these variances were fixed to zero. These modifications did not
impair model fit, χ2(11) = 8.38, p = .679, CFI = 1, RMSEA = .00 [.00; .08]. See the upper part of Figure 3B
(p. 12) for the final model and Table 3 (p. 13) for the associated LST parameters.
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Figure 4. The latent state-trait model of boundary separation parameters consists of a common trait
T, a state residual SRi for each of the two measurement occasions i, and a method factor Mj for
each of the three experimental tasks. CR2/4 = choice response time task with two/four alternatives;
S1 = set size one; S3 = set size three; S5 = set size five; PI = physical identity; NI = name identity.
Latent variables displayed in gray were non-significant.

Sternberg memory scanning task. The LST model provided an acceptable fit for the data,
χ2(18) = 24.78, p = .131, CFI = .94, RMSEA = .06 [.00; .11]. However, the variances of the latent state
residuals and of the method factors were non-significant and/or negative (VAR(SR1) = −0.04, p = .465;
VAR(SR2) = 0.11, p = .100; VAR(S1v) = 0.08, p = .330; VAR(S3v) = −0.09, p = .247; VAR(S5v) = 0.05,
p = .529). Hence, these variances were fixed to zero. These modifications did not impair model fit,
χ2(23) = 31.51, p = .111, CFI = .93, RMSEA = .06 [.00; .10]. See the middle part of Figure 3B (p. 12) for
the final model and Table 3 (p. 13) for the associated LST parameters.

Posner letter matching task. The LST model provided a good fit for the data, χ2(7) = 5.52, p = .597,
CFI = 1, RMSEA = .00 [.00; .10]. However, the variances of the latent state residuals and of the method
factors were negative and/or non-significant (VAR(SR1) = −0.03, p = .652; VAR(SR2) = 0.05, p = .429;
VAR(PIv) = −0.11, p = .071, VAR(NIv) = 0.13, p = .079). Hence, these variances were fixed to zero. These
modifications did not impair model fit, χ2(11) = 11.55, p = .398, CFI = 1, RMSEA = .02 [.00; .10]. See the
lower part of Figure 3B (p. 12) for the final model and Table 3 (p. 13) for the associated LST parameters.

3.2.3. Non-Decision Time

Manifest correlations for non-decision time parameters across tasks and measurements are shown
in Table A3 in Appendix B. The LST model for non-decision time provided a mediocre fit for the
data, χ2(94) = 274.01, p < .001, CFI = .76, RMSEA = .13 [.11; .15]. Because the variances of the latent
state residuals and of the method factor for the Sternberg and the Posner letter matching task were
non-significant or negative (VAR(SR1) = 0.02, p = .667; VAR(SR2) = −0.02, p = .718; VAR(St0) = −0.06,
p = .053; VAR(Pt0) = 0.03, p = .542), we also fixed these variances to zero. These modifications did
not impair model fit, χ2(98) = 292.27, p < .001, CFI = .76, RMSEA = .13 [.11; .15]. This time, both the
χ2 test and the CFI and RMSEA indicated significant differences between the implied and empirical
covariance structure [54,55]. See Figure 5 for the modified model.
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Figure 5. The latent state-trait model of non-decision time parameters consists of a common trait
T, a state residual SRi for each of the two measurement occasions i, and a method factor Mj for
each of the three experimental tasks. CR2/4 = choice response time task with two/four alternatives;
S1 = set size one; S3 = set size three; S5 = set size five; PI = physical identity; NI = name identity. Latent
variables displayed in gray were non-significant.

Coefficients of reliability, consistency, occasion-specificity, and method-specificity are shown in
the lower part of Table 2. Consistencies of non-decision time parameters were overall low to moderate
and highest in the Posner letter matching task. We observed low method-specificities only in the
SRT/CRT task; for the other two tasks, we found no effect of task-specific characteristics. Again, the
temporal stabilities of the latent states were great, but reliabilities of the manifest non-decision time
parameters were low to moderate, ranging from .14 to .60.

CRT task. The LST model provided a good fit for the data, χ2(7) = 2.21, p = .947, CFI = 1,
RMSEA = .00 [.00; .01]. See the upper part of Figure 3C (p. 12) for the final model and Table 3 (p. 13)
for the associated LST parameters.

Sternberg memory scanning task. The LST model did not provide an acceptable fit for the
data, χ2(18) = 62.32, p < .001, CFI = .78, RMSEA = .15 [.11; .19]. The variances of the latent state
residuals and of the method factors were non-significant and/or negative (VAR(SR1) = −0.06, p = .316;
VAR(SR2) = 0.05, p = .473; VAR(S1v) = −0.07, p = .377; VAR(S3v) = −0.24, p = .002; VAR(S5v) = −0.17,
p = .016). Hence, these variances were fixed to zero. These modifications did not change model fit
to a great degree, χ2(23) = 83.49, p < .001, CFI = .67, RMSEA = .15 [.12; .19]. See the middle part of
Figure 3C (p. 12) for the final model and Table 3 (p. 13) for the associated LST parameters.

Posner letter matching task. The LST model provided a good fit for the data, χ2(7) = 1.77, p = .971,
CFI = 1, RMSEA = .00 [.00; .10]. However, the variances of the latent state residual reflecting the second
measurement occasion and of the method factor for the name identity condition were negative and/or
non-significant (VAR(SR2) = 0.13, p = .086; VAR(NIv) = −0.10, p = .145. Hence, these variances were
fixed to zero. These modifications did not impair model fit, χ2(9) = 8.13, p = .521, CFI = 1, RMSEA = .00
[.00; .10]. Now, however, the method factor for the physical identity condition was non-significant,
VAR(PIv) = 0.11, p = .110, and was subsequently fixed to zero. The final model still provided a good fit
for the data, χ2(10) = 10.99, p = .359, CFI = .99, RMSEA = .03 [.00; .11]. See the lower part of Figure 3C
(p. 12) for the final model and Table 3 (p. 13) for the associated LST parameters.
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3.3. Discussion

The present study evaluated whether diffusion model parameters (drift rate, boundary separation,
non-decision time) qualify as trait-like variables that may be considered temporally stable person
properties of cognitive processes. For this purpose, we used LST models to assess the amount of
variance in model parameters that can be attributed to a common trait. If diffusion model parameters
from elementary cognitive tasks are to be treated as trait-like variables in individual differences
research, they have to be stable across time and consistent over situations [38].

First, we evaluated the temporal stability of the latent drift rate, boundary separation, and
non-decision time states across a time period of eight months in three tasks. The variance of
model parameters consistent across tasks was not affected by situational influences or influences
of person-situation interactions such as fatigue, motivation, or familiarization with the testing
environment, as reflected in the result that the state residuals in all LST models could be fixed to zero
without impairing model fit. These results are consistent with previous research on the reliability
of diffusion model parameters reporting moderate to good test-retest correlations over a period of
one week [30,41]. They support the notion that the variances of diffusion model parameters that are
consistent across tasks can be considered trait-like properties of cognitive processes. Moreover, because
their temporal stability is comparable to the temporal stability of intelligence tests [13,42,51], these
results are consistent with the view that individual differences in diffusion model parameters reflect
elementary person properties that may give rise to general intelligence.

Second, we evaluated the consistency of diffusion model parameters across three elementary
cognitive tasks, which showed a great variability. Only manifest (note that in this context “manifest”
refers to the estimates of the latent diffusion model parameters that were entered into structural
equation models as manifest variables) drift rate variables showed a moderate consistency, whereas
the coefficients of consistency of boundary separation and non-decision time parameters were rather
low. On average, 44 percent of the variance of each manifest drift rate parameter was accounted for
by the common trait. Based on these results, individual differences in drift rate can be considered
as a temporally stable and trans-situationally consistent trait across different tasks, as they are likely
to reflect an ability of a person. Nevertheless, the consistencies of drift rate parameters were still
lower than the consistencies typically observed in intelligence tests [51], which is why we suggest
administering more than one response time task in future studies on individual differences in drift
rates to reliably capture the common variance across tasks.

In comparison, on average only 32 to 36 percent of the variance of each manifest boundary
separation and non-decision time parameter was accounted for by the common trait across the three
tasks. Moreover, the LST model of non-decision times did not even provide a good account for the
data due to the complex factorial structure with several low covariances between manifest parameters.
These results suggest that while latent variables of boundary separation and non-decision times showed
a great temporal stability, the manifest parameters are likely to reflect mostly narrower and more
task-specific skills as well as measurement error. Hence, an individual does not have one boundary
separation or one non-decision time. Instead, an individual has task-specific boundary separation and
non-decision time parameters that are only weakly correlated across tasks. This result is most intuitive
for the non-decision time parameter, which reflects the speed of different non-decisional processes such
as encoding, memory retrieval, or response execution [31]. As such, it is not a process-pure parameter.
Individual differences in non-decision time may thus reflect mostly individual differences in encoding
speed in one kind of task, and individual differences in response execution in another kind of task.

Third, we repeated these analyses separately for each task and each model parameter. While the
results of these task-specific analyses were largely consistent with the results of the LST models across
tasks, we observed that consistencies for all model parameters tended to increase when evaluated at a
task-specific level. This finding supports the notion that model parameters consist to a considerable
degree of task-specific variance. Interestingly, we found that even at a task-specific level a common
trait model was not suited to describe the non-decision times in the Sternberg memory scanning task
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as reflected in the bad model fits. Correlations between non-decision times in the set size three and
five conditions were substantially greater than correlations between non-decision times in the set size
one condition and any of the other conditions, as can be seen in Table A3 in Appendix B. We believe
that the additional short-term memory access demands of any set size larger than one are reflected
in the non-decision time parameter [28,31], which explains why non-decision time parameters from
these conditions are less strongly related to a non-decision time parameter from a condition without
short-term memory access. Again, this result suggests that non-decision time parameters should not
be treated as trait-like variables, as they contain different sources of variation. On a side note, we
would like to point out that the model specifications of the task-specific analyses allow a weak test of
relative measurement invariance, as all paths were fixed to one and error variances for each condition
were constrained to be equal across sessions. This weak test of measurement invariance suggests that
at least the assumption of relative measurement invariance holds for the majority of diffusion model
parameters, as indicated by the acceptable model fits under these model specifications except for the
LST model of non-decision times in the Sternberg memory scanning task.

4. Conclusions

All in all, our analysis of the psychometric properties of diffusion model parameters may
help understanding why only drift rate parameters have been consistently positively associated
with mental abilities, whereas the associations between boundary separation and non-decision time
parameters have been inconsistent and sometimes even in opposite directions [25–28]. First, drift rate
parameters showed overall slightly higher consistencies than boundary separation and non-decision
time parameters. Second and more importantly, drift rate parameters had fewer extremely small
consistencies than boundary separation and non-decision time parameters (smallest consistencies: .26
(drift rate), .09 (boundary separation), .18 (non-decision time)). Future studies should thus consider
using broader batteries of response time tasks to capture the small amount of temporally stable
common variance in boundary separation and non-decision time parameters across different tasks and
to minimize the effect of tasks with extremely low consistencies, or focus on studying task-specific
associations with mental abilities. However, when analyzing only the association between drift rates
and mental abilities, a small test battery consisting of only a few response time tasks will be sufficient
to reliably estimate the common drift rate trait. Moreover, we caution against treating the non-decision
time parameter as a trait-like variable, as it is not a process-pure parameter and contains substantial
task-specific sources of variation.

There are several limitations to the present study. First, we only used elementary cognitive
tasks, which are relatively simple response time tasks with low error rates. Whether cognitively more
demanding tasks such as recognition memory or lexical decision tasks yield comparable results is
an open question. Second, we applied the diffusion model to the CRT task, although it is not clear
whether the decision process in this task reflects a diffusion process or whether it requires only a
spatial identification of the stimulus position. There is some evidence that the decision process reflects
at least an evidence accumulation process, as Leite and Ratcliff [46] successfully fitted sequential
sampling models to data from a similar task. Moreover, factor loadings of the structural equation
models and the resulting consistencies in Figures 2–5 and Table 2 do not suggest that the CRT task
stands out from the rest of the tasks. Nevertheless, we do not presume that the diffusion model
captures the true diffusion process, but rather that it provides a simplifying description related to
the true process. As such, it describes the data in terms of parameters that are likely related to
a substantial (but unknown) degree to the true parameters characterizing evidence accumulation,
boundary separation, and non-decision time. This important distinction between the true process
and its description in terms of model parameters has important implications for the interpretation
of the resulting parameters estimates. In particular, other process models may be better suited to
describe the cognitive processes involved in the CRT task than the diffusion model. It would be
interesting to explore the convergent validity of diffusion model parameters with conceptually related
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parameters from sequential sampling models in the CRT task in future studies. Third, we only used
the Kolmogorov-Smirnov statistic to estimate diffusion model parameters and previous research
has suggested that other estimation algorithms such as the χ2 statistic and the maximum likelihood
estimation may yield different test-retest correlations [41]. Fourth, we did not evaluate the temporal
stability of manifest variables on a latent level, because an odd-even split of trials within each condition
was not feasible without affecting the stability of parameter estimates due to relatively low trial
numbers. Hence, we do not know to what degree manifest variables reflect task-specific skills and to
what extent they reflect measurement error.

Taken together, our results show that the consistent variance of diffusion model parameters across
tasks can be regarded as temporally stable ability parameters. We have shown that only the drift rate
parameter can be regarded as a trait-like variable that is stable across time and consistent over different
tasks [38]. Because the diffusion model allows an elegant, process-pure measurement of the speed
of information uptake with trait-like characteristics, we believe that the mathematical modeling of
response times provides a promising avenue for identifying the cognitive processes giving rise to
individual differences in general intelligence.
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Appendix A. QQ-Plot Evaluating the Fit of Diffusion Model Parameters
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Figure A1. Correlations between empirical and predicted mean response times in seconds across four
percentiles (P1 to P4) after the removal of outliers in all tasks. Dots represent mean response times at
the first laboratory session and crosses represent mean response times at the second laboratory session.
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Appendix B. Correlation Tables for Diffusion Model Parameters Across Measurement Points

Table A1. Product–moment correlations between drift rate parameters at the first and second
laboratory session.

Session 1 Session 2

CR2 CR4 S1 S3 S5 PI NI CR2 CR4 S1 S3 S5 PI NI

Ses. 1

CR2 1 0.43 0.28 0.35 0.25 0.51 0.55 0.60 0.47 0.51 0.45 0.47 0.48 0.56
CR4 1 0.26 0.37 0.21 0.31 0.45 0.39 0.44 0.42 0.43 0.33 0.35 0.41
S1 1 0.41 0.30 0.37 0.37 0.37 0.22 0.53 0.42 0.32 0.23 0.23
S3 1 0.31 0.44 0.40 0.30 0.15 0.43 0.52 0.35 0.39 0.40
S5 1 0.38 0.45 0.25 0.26 0.30 0.53 0.53 0.32 0.44
PI 1 0.56 0.35 0.36 0.56 0.53 0.42 0.60 0.57
NI 1 0.39 0.37 0.46 0.56 0.53 0.49 0.71

Ses. 2

CR2 1 0.64 0.52 0.43 0.38 0.37 0.30
CR4 1 0.36 0.30 0.32 0.35 0.31
S1 1 0.60 0.50 0.49 0.51
S3 1 0.59 0.59 0.66
S5 1 0.47 0.60
PI 1 0.70
NI 1

Note: Ses.1/2 = measures at measurement point one or two; CR2/4 = choice response time task with two/four
alternatives; S1 = set size one; S3 = set size three; S5 = set size five; PI = physical identity; NI = name identity.

Table A2. Product–moment correlations between boundary separation parameters at the first and
second laboratory session.

Session 1 Session 2

CR2 CR4 S1 S3 S5 PI NI CR2 CR4 S1 S3 S5 PI NI

Ses. 1

CR2 1 0.39 0.06 0.15 0.26 0.22 0.17 0.46 0.33 0.40 0.26 0.15 0.18 0.13
CR4 1 0.02 0.12 0.24 0.42 0.54 0.41 0.51 0.46 0.30 0.22 0.48 0.49
S1 1 0.09 0.11 0.07 0.23 0.18 0.19 0.20 0.14 0.05 0.16 0.07
S3 1 0.15 0.09 0.20 0.24 0.07 0.23 0.22 0.22 0.23 0.15
S5 1 0.29 0.45 0.25 0.35 0.32 0.47 0.34 0.24 0.36
PI 1 0.56 0.27 0.33 0.43 0.36 0.22 0.47 0.53
NI 1 0.32 0.33 0.39 0.55 0.24 0.57 0.60

Ses. 2

CR2 1 0.50 0.48 0.28 0.20 0.29 0.35
CR4 1 0.52 0.33 0.26 0.49 0.48
S1 1 0.55 0.33 0.45 0.44
S3 1 0.45 0.38 0.47
S5 1 0.22 0.39
PI 1 0.57
NI 1

Note: Ses.1/2 = measures at measurement point one or two; CR2/4 = choice response time task with two/four
alternatives; S1 = set size one; S3 = set size three; S5 = set size five; PI = physical identity; NI = name identity.

Table A3. Product–moment correlations between non-decision time parameters at the first and second
laboratory session.

Session 1 Session 2

CR2 CR4 S1 S3 S5 PI NI CR2 CR4 S1 S3 S5 PI NI

Ses. 1 CR2 1 0.48 0.25 0.31 0.28 0.39 0.41 0.26 0.28 0.22 0.21 0.24 0.33 0.27
CR4 1 0.17 0.33 0.37 0.48 0.44 0.17 0.26 0.33 0.43 0.28 0.34 0.40
S1 1 0.16 0.11 0.28 0.21 0.32 0.27 0.44 0.22 0.13 0.31 0.22
S3 1 0.61 0.42 0.29 0.30 0.18 0.33 0.55 0.53 0.23 0.20
S5 1 0.54 0.34 −0.01 0.03 0.23 0.61 0.54 0.29 0.34
PI 1 0.59 0.21 0.38 0.40 0.56 0.45 0.63 0.63
NI 1 0.33 0.36 0.31 0.35 0.20 0.55 0.56

Ses. 2 CR2 1 0.99 0.12 −0.03 −0.06 −0.09 −0.22
CR4 1 0.15 0 .01 −0.02 −0.04 −0.14
S1 1 0.49 0.35 0.28 0.37
S3 1 0.53 0.29 0.34
S5 1 0.27 .30
PI 1 0.66
NI 1

Note.: Ses.1/2 = measures at measurement point one or two; CR2/4 = choice response time task with two/four
alternatives; S1 = set size one; S3 = set size three; S5 = set size five; PI = physical identity; NI = name identity.
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Abstract: Worst performance in cognitive processing tasks shows larger relationships to general
intelligence than mean or best performance. This so called Worst Performance Rule (WPR) is of
major theoretical interest for the field of intelligence research, especially for research on mental
speed. In previous research, the increases in correlations between task performance and general
intelligence from best to worst performance were mostly described and not tested statistically.
We conceptualized the WPR as moderation, since the magnitude of the relation between general
intelligence and performance in a cognitive processing task depends on the performance band or
percentile of performance. On the one hand, this approach allows testing the WPR for statistical
significance and on the other hand, it may simplify the investigation of possible constructs that
may influence the WPR. The application of two possible implementations of this approach is
shown and compared to results of a traditional worst performance analysis. The results mostly
replicate the WPR. Beyond that, a comparison of results on the level of unstandardized relationships
(e.g., covariances or unstandardized regression weights) to results on the level of standardized
relationships (i.e., correlations) indicates that increases in the inter-individual standard deviation from
best to worst performance may play a crucial role for the WPR. Altogether, conceptualizing the WPR
as moderation provides a new and straightforward way to conduct Worst Performance Analysis and
may help to incorporate the WPR more prominently into empirical practice of intelligence research.

Keywords: mental speed; worst performance rule; moderation; general intelligence

1. Introduction

A wealth of research has reported results that support a consistent and moderate to mediocre
relationship between mental speed and general intelligence (for a review, see [1]). Across a variety of
different tasks measuring mental speed, Sheppard and Vernon [1] reported an average correlation of
r = −.24 between response times and measures of general intelligence. This indicates that faster speed
of information processing is associated with greater general intelligence. Beyond that, this relationship
between mental speed and intelligence is not only present in behavioral measures of mental speed
but in neural measures of mental speed, such as latencies of event-related potentials, as well [2].
However, most of these results rely on mean scores for mental speed.

Recent empirical results have suggested that inter-individual differences in mean performance
on tasks measuring mental speed or memory capacity may not be best suited to predict general
intelligence. In fact, it seems that within such tasks worst performance is more indicative for general
intelligence [3]. In detail, performance in various processing speed or memory tasks was ranked from
fastest to slowest reaction times (RTs) or best to worst memory recall. Then, means of different RT
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bands or best and worst memory performance were correlated with a measure of general intelligence.
The absolute size of these correlations mostly increased from best to worst performance, suggesting that
worst performance is more closely related to general intelligence than mean or best performance.
This phenomenon is called the worst performance rule (WPR) [4]. Although a few studies replicated
this phenomenon [5–10], it has yet to be acknowledged adequately in the field of intelligence research.

In previous research, the analysis of the WPR, or so called worst performance analysis (WPA),
mostly described increases in correlations between performance in cognitive processing tasks and
general intelligence from best to worst performance instead of providing an adequate statistical test
for this phenomenon (for a detailed review, see [3]). The present work conceptualizes the WPR as
moderation and introduces new approaches to analyze and test the WPR for statistical significance.
These analyses try to overcome the rather descriptive approach of formerly published WPA and offer
new possibilities to search for empirical foundations of the WPR. The here presented analysis may
hence constitute a useful step towards an accurate test for the WPR that may in turn help to better
distinguish between different theoretical explanations for the WPR in future empirical research.

1.1. The Phenomenon of the Worst Performance Rule

The WPR was first explicitly described by Larson and Alderton [4] who showed that correlations
of general intelligence with RTs in a simple reaction time paradigm increased from best (rBP = −.20)
to worst performance (rWP = −.37). This initiated a number of conceptually associated studies [5–11]
with different related tasks of which all but one [11] reproduced the basic phenomenon of the WPR.

Interestingly, the WPR did not only occur in speeded processing tasks but in non-speeded tasks as
well [7,8]. In a multi-trial word recall task, the number of words recalled in worst performance
trials correlated more strongly with general intelligence (rWP = .38) than in best performance
trials (rBP = .13). The effect size Cohen’s q [12] for this difference in correlations was q = .27.
Moreover, even the number of memorizing strategies in worst performance trials showed a higher
correlation with general intelligence in worst performance trials (r = .24) than in best performance
trials (r = .12, q = .11). However, only minimal recall performance (i.e., worst performance) predicted
general intelligence, and strategy use showed no incremental validity [7].

With these results, the WPR questions some of the core assumptions within theories of
intelligence [3]. In particular, the WPR shows that it may not be the inter-individual difference
in average performance that depicts differences in intelligence best, rather inter-individual differences
in worst performance seem to be most predictive for general intelligence. Although the standard
deviation of intra-individual reaction time distributions (RTsd) has been discussed as an additional
and supposedly more valid predictor for general intelligence (e.g., the oscillation theory [13–15]),
a recent meta-analysis has shown that mean RT and the RTsd are equally valid predictors for
general intelligence [16]. In addition, the magnitude of the WPR relies on the g-loading of a task [3].
This suggests that processes fundamental to the WPR may well be processes fundamental to g [17].
Therefore, the WPR is an interesting phenomenon that needs to be studied further.

Theoretically, two main approaches to understand the WPR have been suggested so far.
Either worst performance more strongly reflects the speed of information accumulation [18,19] or worst
performance trials occur when a person has lapses in attention resulting in longer reaction times [20,21].
Both approaches acknowledge that worst performance trials may contain information on processes that
are not adequately represented in mean performance. In fact, the phenomenon of the WPR may be one
of the possibilities to shed light on interactions between different cognitive processes (e.g., information
accumulation and attentional control), because the WPR does not necessarily represent a cognitive
process on its own, but it may occur in the interplay of different cognitive processes.

Beyond that, some methodological explanations have been suggested that may explain the
WPR [3]. Specifically, Coyle [3] discussed five possible methodological explanations: (1) the role
of outliers; (2) variance compression in best performance; (3) skewness of the intra-individual
performance distribution; (4) differences in measurement reliability between best and worst
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performance; and (5) trial novelty as confound of worst performance. Altogether, Coyle [3] concluded
that none of these explanations sufficiently explains the phenomenon of the WPR.

In sum, the WPR seems to be a rather robust phenomenon regarding the relationship between
mental speed and intelligence and is of major theoretical interest for research on intelligence,
specifically for insights on processes fundamental to g.

1.2. Analyzing the Worst Performance Rule

The studies that investigated the WPR so far commonly used a stepwise procedure.
First, intra-individual performance in a cognitive processing task was ranked within each person.
Then the intra-individual distribution was separated either into performance bands consisting of
a specific number of trials per band [4,6], or into percentiles (e.g., [9,11]). Finally, the mean or median for
each performance band or percentile was correlated with a measure of general intelligence. The size of
these correlations usually increased with ascending performance bands. Yet, this is merely a description
of the WPR. An actual test for the significance of the WPR has hardly been reported.

Infrequently the increases in correlations were tested for statistical significance with
a rank-correlation between number of performance band and the correlation in the respective
performance band [4,5]. This tests whether correlations increase consistently across performance
bands or percentiles (quantified in the size of R2). However, this does neither quantify the slope nor
the shape of the increases across performance bands or percentiles and therefore the rank-correlation
does not allow to compare the magnitude and shape of the WPR across different conditions or
tasks. Additionally, this test treats the estimated correlations as manifest and enters them as discrete
values into a new analysis, namely the rank-correlation, that does not account for the uncertainty of
the estimation. Thus, the significance of this test may be over-estimated [22].

Alternatively, correlations of best, mean and worst performance bands may be compared
with a Fisher’s Z-test [12,23]. However, this was rarely implemented in studies on the WPR,
presumably because the test for differences in correlations lacks statistical power [12].
Moreover, the effect size of the difference in correlations between best, mean and worst performance
was hardly discussed. Due to the low power of the Fisher’s Z-test and rather small WPR
effects (Mean q = .14 [17]), these tests will most likely be non-significant, no matter how consistent
the increases of correlations across RT bands may be. Nevertheless, there have been efforts to overcome
some shortcomings of the Z-Test [24,25] and a recent study by Rammsayer and Troche [10] presented
significant results from Z-Tests comparing correlations between RT in the fastest and slowest RT
band with general intelligence. Nevertheless, this approach does not directly account for the shape of
increases as well and assumes a linear increase in correlations across performance bands.

Concluding, there have been some attempts to test the WPR for statistical significance,
nevertheless the WPR was rather described than tested. For more elaborate insights into the WPR
a quantification and statistical test for the WPR is much-needed.

WPR as Moderation

The core of the WPR is moderation. Specifically, the relationship between performance in
a cognitive processing task and general intelligence depends on the consecutive number of
the performance band or percentile. This means that the size of the relationship between g and
performance in a cognitive processing task is moderated by the number of the performance band
in which the relationship is quantified. This essentially represents an interaction or moderation
effect [26,27].

The conceptual approach of WPR as moderation offers an interesting way to test the WPR.
Unlike testing a number of correlations against each other, the WPR effect may be modeled as increase
in correlations from best to worst performance bands. This increase can be represented as a regression
predicting the size of the relationship between g and performance by number of performance band.
This regression can easily be tested for significance with its coefficients depicting the magnitude
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of the WPR in the slope of the regression. Finally, this test may be more powerful than the test
for differences between correlations and thus even small effects may be detected, even in smaller
samples [12].

Furthermore, by comparing results from increases in unstandardized and standardized estimates
for the relationship between performance across performance bands and g some of the methodological
explanations of the WPR (e.g., variance compression in best performance) can be explored in more
detail. Specifically, increases in standardized estimates (e.g., correlations or standardized regression
weights) control for increases in inter-individual variance from best to worst performance. In contrast,
increases in unstandardized estimates (e.g., covariance or unstandardized regression weights) do not
control for these increases in inter-individual variance across performance bands. If differences in
variance across performance bands do not affect the WPR, as suggested by Coyle [3], then there should
be no difference between WPA on the level of standardized versus unstandardized estimates.

1.3. Possibilities to Analyze the WPR as a Moderation

The regression of covariance or correlation between g and performance (PF) in a cognitive
processing tasks on the number of performance band or percentile can be implemented in two ways.
First, the relationship between g and performance in a cognitive processing task across performance
bands can be estimated and then the estimated relationships across performance bands are predicted
by the consecutive number of performance band in a second step. Alternatively, this relationship and
its increases across performance bands can be estimated within one step. The first approach represents
a sequential regression procedure, whereas the second approach requires Multi-Level Modeling for
estimating both the covariances and their increases across performance bands in one step.

Whether this analysis is carried out at the level of standardized or unstandardized parameters,
is regulated by the way the dependent variable is entered into the analysis. Entering RT or cognitive
performance from best to worst performance bands as absolute values will yield an analysis on the level
of unstandardized estimates. In contrast, when RT or performance is z-standardized within each
performance band, the analysis is performed on the level of standardized estimates. For convenience
and ease of interpretation, we recommend that the measure for g is z-standardized in both the analysis
with unstandardized and standardized estimates prior to the analysis.

Both, the sequential regression and the multi-level modeling (MLM) approach will be outlined
for unstandardized and standardized estimates in detail in the following sections.1 We start with
presenting the two approaches for unstandardized estimates and then present the two approaches for
standardized estimates.

1.3.1. New WPA Approaches with Unstandardized Estimates

Sequential Regression. The sequential regression approach is basically an extension of the traditional
worst performance analysis. In a first step mean or median performance PF of each participant i within
each performance band B is predicted by general intelligence g:

PFB = bB · g + b0B + εi (1)

This yields different unstandardized regression weights bB for each performance band B,
representing the relationship of PF with g within each performance band. The intercept of these

1 Please note that both approaches can be implemented with all common approaches that separate the intra-individual
performance distribution (i.e., performance bands, percentiles, or, quantiles). The only prerequisite is that the number
of performance band or percentile is coded so that the variable contains ascending integer values from fast to worst
performance percentile, bands or quantiles. Furthermore this variable is ideally centered to a meaningful value in order to
gain interpretable results [28].
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regressions b0B in contrast represents the performance of a person with g = 0, therefore g should be
centered prior to this step [28].

In a second step the unstandardized regression weights bB across performance bands B are
predicted by the number of performance band B (i.e., the consecutive number of performance
bands: 1 for the first and best performance band, 2 for the next best, and so on). This represents
the moderation of the relationship between g and performance by performance bands. To approximate
the increases of unstandardized regression weights across performance bands adequately it may
be reasonable to implement non-linear parameters within this regression. In correspondence to the
shape of increases of mean RT across performance bands (see Equation (4) in the section of the
Multi-level approach), we implemented a polynomial function of third order. Not only does this
function approximate the increases in unstandardized regression weights reasonably well (R2 ≥ .99,
see Figure 1, p. 12), but it also implements the moderation of the RT–g relationship by all performance
band variables that describe the shape of increases in mean RT across performance bands (Equation (4)).
This solution suited the present data very well. Beyond that, this may still be a good description
for the WPR in performance measures that show normal distribution at the intra-individual level in
general due to their characteristic shape of increases of mean performance across performance bands.
Therefore, the second regression was specified as follows:

bB = bL · B + bQ · B2 + bC · B3 + b00 + εb (2)

For this second regression, there are two parameters that quantify the significance and magnitude
of the WPR. The variance explained by the regression (i.e., R2) represents in how far the unstandardized
regression weights increase across performance bands and thus the significance of the WPR. As a high
R2 only indicates how consistent the increases in unstandardized regression weights across RT bands
are, an additional measure is needed to quantify the magnitude of the WPR.

The shape and magnitude of the increases across performance bands are determined by the size of
the slope parameters within the regression (bL, bQ bC)2. The intercept (b00) of the regression represents
the regression weight within the centred performance band (i.e., B = 0). As the interpretation of the
three slope parameters within this regression is rather complex, we propose a difference between bB
in the worst performance (WP) percentile and in the best performance (BP) percentile in reference to
mean performance (MPF) as a measure for the effect size (ES) of the WPR:

ESWPR =
bB(WP) − bB(BP)

MPF
(3)

This effect size basically corresponds to the effect size Cohen’s q comparing the correlation
between best performance and g to the correlation between worst performance and g. It quantifies the
magnitude of increase in unstandardized regression weights as percentage of mean performance in the
respective task (for an example see p. 12). Still, it is a simplification with respect to the full shape of the
increases in unstandardized regression weights across performance bands. As it does only reflect the
absolute difference between best and worst performance bands, it does not represent the non-linear
shape of increases between best and worst performance bands. Thus, increases in unstandardized
regression weights should always be plotted by performance bands, so that the shape of increases can
be evaluated as well. Nevertheless, the proposed effect size may be a good heuristic to evaluate in
how far increases in unstandardized regression weights are larger in one task or condition compared
to another.

Altogether, the sequential regression approach quantifies the WPR by predicting the magnitude of
the relationship between g and performance across performance bands by band number. This provides

2 The indices of these regression weights refer to the linear (L), quadratic (Q), and cubic (C) trend across performance bands.
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a set of regression parameters that can be tested for statistical significance on the one hand,
and an estimate for the consistency of increases across percentiles on the other hand.

Mutli-level moderation. The multi-level approach is essentially equal to the sequential regression
approach, except it estimates all parameters of the sequential regression approach within one step.
Accounting for the data structure of performance bands nested in participants, the multi-level approach
combines Equations (1) and (2) by entering Equation (2) into Equation (1).

In addition, the intercept varies across performance bands for obvious reasons. The mean
performance within each performance band evidently decreases with ascending performance bands.
Specifically performance in the first band will be best or fastest, whereas performance in the last band
will be worst or slowest. Therefore the intercept b0 from Equation (1) should be able to change across
performance bands as well.

Similar to the increase of unstandardized regression weights across performance bands,
the intercept does not increase linearly across performance bands either. In fact, a linear increase of
intercepts across performance bands would correspond to an equal distribution of performance at
the intra-individual level. Usually we would assume intra-individual performance to be normally
distributed, or in case of reaction times right-skewed (e.g., ex-Gaussian or Wald distributed).
The intercepts within these distributions usually show non-linear increases across performance bands.
These increases are again quite well approximated by a polynomial function of third order. For this,
b0 from Equation (1) will be predicted by percentile:

b0B = bB · B + bB2 · B2 + bB3 · B3 + bB0 + εb (4)

Entering this equation into Equation (1) together with Equation (2) yields a prediction of the
performance PF in each performance band B for participants i:

PFiB = (bL · B + bQ · B2 + bC · B3 + b00) · gi (5)

+ (bB · B + bB2 · B2 + bB3 · B3 + bB0) + εiB

The term in the first line represents Equation (2) and the term in the second line represents
Equation (4). Note that now performance within performance bands PFiB is the dependent variable
and that all regression parameters are summarized within one Equation.

As multi-level modeling (MLM) allows to separate effects on level 1 (within a person) and
level 2 (between people), we may additionally implement random effects for predictors on level 1.
This means that the level 1 parameters (i.e., regression weights of performance bands) may vary across
level 2 units (i.e., participants). Specifically, this reflects inter-individual differences in the increases
of mean RT across performance bands that basically correspond to inter-individual differences in the
intra-individual distribution of performance or RTs. This seemed reasonable to us and therefore the
whole Equation (4) was estimated with random effects3. This results in a MLM equation with correct
notation of:

PFiB =(γ0 + ui0) + (γ1 + ui1) · B + (γ2 + ui2) · B2 + (γ3 + ui3) · B3+ (6)

γ4 · gi + γ5 · (gi × B) + γ6 · (gi × B2) + γ7 · (gi × B3) + εiB

The performance PF in each performance band B of each participant i is composed of a random
intercept (γ0 + ui0) and random effects of performance band (γ1−3 + ui1−3). This first line of
Equation (6) essentially is Equation (4) . Additionally, PFiB is predicted by a fixed effect of g (γ4),
representing the relationship of PFiB and g for B = 0 and cross level interactions between g and

3 Within MLM, random effects are estimated with a fixed effect γ equal for all level 2 units and a variance ui across level 2
units (with ui = N(0, σ2

i )).
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B (γ5−7), representing the increases of the relationship between PFiB and g across performance
bands. This second line of Equation (6) basically represents Equation (2), with the difference that
the interactions between performance band B and g are explicitly stated in Equation (6).

This Equation of the MLM allows to estimate the interaction between performance band and g on
the relation between g and performance across performance bands. However, because the dependent
variable within this approach is the performance within each performance band B, the overall explained
variance R2 of this regression does not refer to the same explained variance as in the second step of
the sequential regression approach. In contrast, this approach treats the unstandardized regression
weights between g and performance across performance bands as estimates, whereas the sequential
regression approach enters these coefficients as manifest variables. Consequently, the sequential
regression approach will underestimate the standard errors of coefficients in the second step and thus
overestimates their statistical significance [22]. In this sense, the MLM approach results in more accurate
estimates of the standard errors from a statistical perspective, because it does not underestimate
the standard errors of the respective coefficients. Hence, the MLM approach judges the significance of
coefficients more accurately than the sequential regression approach.

The interpretation of the results of the MLM approach is arguably more complex. There is no
direct measure for the effect size of the WPR, because unlike the R2 in the second step of the sequential
regression approach, the R2 of the MLM approach does not refer to the consistency of the increases
of unstandardized regression weighs across performance bands. Instead it refers to the variance
explained in the performance (PFiB) across performance bands. Still, the effect size introduced in
Equation (3) can be computed in the MLM approach as well. For this, the unstandardized regression
weight bB predicting PF by g across performance bands B can be estimated with γ4 to γ7:

b̂B = γ4 + γ5 · P + γ6 · P2 + γ7 · P3 (7)

To calculate the effect size as stated in Equation (3) the regression weights for the best and worst
performance bands can be estimated. The mean performance can be estimated with the fixed slope
(γ0), when the performance band variable was centered. With these variables, the proposed effect size
can then be calculated.

1.3.2. New WPA Approaches for Standardized Regression Weights

To implement these two WPA approaches on the level of standardized regression weights,
the performance within each performance band has to be z-standardized on the inter-individual
standard deviation (SD) of the respective performance band. Although we thereby lose information
on the absolute increases in performance across performance bands (e.g., increasing RTs from best to
worst performance bands) the covariance structure between performance across performance bands
and g remains the same only that it is now controlled for increasing variances from best to worst
performance. Furthermore, it is necessary that g is z-standardized for the analyses on the level of
standardized estimates. However, we recommend to do that for both the analyses on the level of
unstandardized and standardized estimates.

Sequential Regression. For the sequential regression approach with standardized estimates only
the first step differs considerably from analysing unstandardized estimates. Specifically, we no
longer predict the absolute performance PF of each participant i within each performance band B,
but the z-standardized performance z(PF) within each performance band B by general intelligence g:

z(PFB) = βB · g + εi (8)

This results in standardized regression weights βB for each performance band quantifying the
standardized relationship (i.e., correlation) between performance in each performance band with g.
Please note that there is no longer any intercept for this regression, because the intercept is always zero
when using z-standardized measures. The standardized regression weights across performance bands
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βB can again be predicted by the number of performance band in a second step that implements the
moderation of the relationship between performance PF and g by performance band:

βB = bL · B + b00 + εb (9)

According to the common assumption that correlations increase linearly from best to worst
performance [3], we implemented only a linear increases in standardized regression weights across
performance bands.4 Nevertheless, it is possible to implement non-linear increases in this approach as
well. For this, additional regression weights specifying quadratic or cubic trends can be entered into
Equation (9), just like in Equation (2).

Comparable to the sequential regression approach on the level of standardized regression weights,
there are two parameters that quantify the significance of the WPR. On the one hand, the R2 of
this regression quantifies the consistency of increases in performance bands. On the other hand,
the regression weight bL quantifies the size of increases across performance bands. The intercept b00

quantifies the standardized relation for the centered performance band.
To quantify the magnitude of the WPR on the level of standardized estimates it is best to compute

the effect size Cohen’s q from Equation (9). To do so, we calculate the estimated standardized
regression weight for the best performance band βBP and the estimated standardized regression weight
for the worst performance band βWP. These can then be transformed into Z-values with a Fisher
Z-transformation and the difference between ZWP and ZBP yields Cohen’s q [12].

Multi-level moderation. Again, the Multi-level approach is essentially equal to the sequential
regression approach apart from the fact that it estimates both steps of the sequential regression
approach in one step. For this, Equation (9) is entered into Equation (8), resulting in:

z(PFiB) = (bL · B + b00) · g + εiB (10)

= b00 · g + bL · (B × g) + εiB

In contrast to the MLM approach on the level of unstandardized regression weights, it is
not necessary to estimate a fixed effect of the increases in performance across performance bands
(see Equation (4)), because the z-standardization of performance in each performance band resulted in
a mean performance of zero within each performance band. However, a random effect for this effect
can still be estimated. This effect reflects that there may not be full differential stability in performance
across performance bands. For example, one person can show above average performance in best
performance bands and only average performance in worst performance bands, whereas for another
person the position in comparison to other participants stays the same across performance bands.
This results in a full MLM equation with correct notation of:

z(PFiB) = γ1 · g + γ2 · (B × g) + (γ3 + ui3) · B + εiB (11)

with the fixed effect γ3 = 0 this results in:

z(PFiB) = γ1 · g + γ2 · (B × g) + (ui3) · B + εiB

Within this approach γ1 represents the relationship between performance and g in the centred
performance band and γ2 represents the linear increase in this relationship across performance bands.
The random effect ui3 represents the variance in the relative position across performance bands for

4 This is also reflected in often non-linear increase of variance across performance bands, especially for RT. In the process of
standardization the MLM equation for unstandardized regression weights basically gets divided by this non-linear increase
and this leaves only the linear part of the increases in regression weights as a good approximation for the WPR across
RT bands.
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participants. In detail, this variance would be zero, if performance across performance bands is
perfectly correlated.

As in the sequential regression approach, the increase in standardized regression weights can
be computed with γ1 and γ2. Thus we can estimate the relationship between performance and g in
the best and worst performance band and estimate the effect size Cohen’s q as difference between
these two estimates on the level of Z-scores. Specifically, the estimated standardized regression weight
within each performance band B can be estimated via:

β̂B = γ2 · B + γ1 (12)

Once more, the MLM approach treats the standardized regression weights βB across performance
bands as estimated, whereas the sequential regression approach treats them as manifest. Thus the MLM
approach is generally, for unstandardized and standardized estimates, the statistically more sound
approach because it will lead to less attenuated standard errors of increases in regression weights and
thus does not inflate α-error probability of these increases.

1.4. Aims of the Empirical Example

The application of these newly introduced methods for WPA with empirical data has two main
objectives. First, this will allow to compare the newly introduced methods for WPA to the traditional
approach for WPA. Second, this comparison will allow to determine advantages and problems of
the newly introduced methods, and may thereby convey which method and which level of analysis
(unstandardized versus standardized) is adequate for a powerful analysis of the WPR.

Providing a powerful test and a quantification of the WPR would help researchers to determine
processes that underlie the WPR and thus gain deeper knowledge on processes basic for g.
Specifically, the newly introduced methods will not be capable of distinguishing between different
theoretical explanations of the WPR. Nevertheless, they may present a more accurate analysis and test
for the WPR and thereby provide researchers with a method that gives more robust results in studies
that aim at testing different theoretical explanations of the WPR. This may help in finding processes
underlying the WPR and result in a better understanding of processes fundamental to g.

To facilitate the use of the new approaches for WPA we provide commented R code for both
approaches in the supplementary material. Additionally, the data of the empirical example are given
in the supplementaries, so that the results can be reproduced and both approaches for unstandardized
and standardized estimates can be studied in more detail.

2. Experimental Section

2.1. Participants

Data for this example were taken from a study over three measurement occasions with
a cognitive abilities and personality assessment on the second measurement occasion. For this study,
134 participants from the area around Heidelberg, Germany were recruited. Participants’ age ranged
from 18 to 61 years (Mage = 37.12, SDage = 13.75), 60.4% were female, and they had different educational
and occupational backgrounds.

For the present analysis we used data from the first and second measurement occasion.
Some participants dropped out and one participant was excluded due to extreme scores (for a detailed
description of the outlier analysis see the statistical analyses section on page 10). This resulted in
a sample of 121 participants (58.7% female) aged from 18 to 61 years (Mage = 36.64, SDage = 15.65) that
were included in this analysis.
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2.2. Measures

Sternberg Memory Span Task. The cognitive processing task analyzed in the present study was
a computerized version of the Sternberg Memory Span Task [29] also used by Schubert et al. [2].
In this task participants were shown a memory set consisting of one to five numbers from 0 to 9 on
a black computer screen. Subsequently, participants were shown a probe number and had to decide
whether the probe was or was not contained in the afore presented number set by pressing one of
two keys. The position of keys indicating whether the probe item was part of the memory set or not
was counterbalanced across participants.

Three experimental conditions with different memory set sizes (1, 3, and 5 numbers) were
administered. All three blocks started with ten practice trials with feedback, followed by 100 test trials
without feedback. The order of the three memory set size conditions was counterbalanced across
participants. Between blocks participants were offered a short break.

Each trial started with a fixation cross presented for 1000 to 1500 ms. Then, numbers were
presented sequentially for 1000 ms. Between numbers a blank screen was presented for 400 to 600 ms.
After the last number of the memory set was presented, a black screen with a question mark was
shown for 1800 to 2200 ms, followed by a probe item showing a single digit. Participants then had to
indicate whether the number was part of the memory set or not by pressing the corresponding key on
a standard computer keyboard.5 After the response the probe item remained on screen for 1000 ms,
followed by an inter-trial interval of 1000 to 1500 ms. The stimuli were presented on a 17 inch LED
computer screen and the experiment was programmed in E-Prime 2.0 Professional.

Berlin Intelligence Structure Test (BIS). Within the cognitive abilities and personality assessment,
participants completed the Berlin Intelligence Structure Test (BIS [30]). The assessment was carried
out according to the standardized instructions. The assessment ran in groups of up to four persons
and started with the BIS assessment, followed by a personality questionnaire (NEO-FFI), the Raven
Advanced Progressive Matrices, and a demographic questionnaire. For this study only the BIS results
were analyzed.6

BIS results were evaluated in correspondence with the evaluation instructions from the manual.
First, raw scores were determined for all tasks and subsequently the raw scores were transformed into
standardized scores. From these scores one score for general intelligence (g) was calculated.

2.3. Statistical Analyses

Outlier Analysis. Before running all analyses, we carefully examined the data for uni- and
multivariate outliers in a three-step procedure. First we discarded all RTs with incorrect responses.
For all correct response RTs we checked for intra-individual outliers in reaction times: initially,
reaction times lower than 100 ms and higher than 3000 ms were excluded for all participants.
Then, we computed mean and standard deviation for the logarithmized reaction time within each
participant and each experimental condition, and excluded reaction times below and above three
standard deviations from the mean of logarithmized reaction times.

Secondly, participants with univariate outliers in reaction time and intelligence test scores were
excluded from the data analysis when mean reaction time or intelligence test scores showed an absolute
difference larger than three standard deviations from the sample mean. Finally, multivariate outliers

5 Although often specialized response boxes are used for the registration of responses in such tasks because latencies are a
lot smaller on these specialized devices (1 to 3 ms) compared to a standard keyboard (12 to 36 ms), we used a standard
keyboard for economic reasons. However, the same keyboard and computer set-up was used for all participants and thus it
is unlikely that the use of a standard keyboard systematically distorted the RT data.

6 In many former studies investigating the WPR the Raven Advanced Progressive Matrices (RAPM) were used as measure for
g. While the RAPM may be the best single measurement to approximate g, estimating g with a more heteogeneous set of
tasks (in our case the BIS) gains a better estimate for g [31]. Furthermore, results with the RAPM as measure for g were
similar to the results reported in the manuscript.
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on the combination of mean RT in each condition and intelligence test score were excluded when
they had a Mahalanobis distance larger than 13.816, corresponding to χ2(2)p<.001. In an iterative
process, this procedure was repeated until no further participants were detected as multivariate
outliers. Within this procedure, one person was identified as a uni-variate outlier on general
intelligence, processing speed, creativity, and verbal abilities (zs < −3), as well as a multivariate
outlier on the combination of IQ and RT in experimental conditions with memory set size 1 and 5
(Mahalanobis Distance = 14.08–16.71).

Statistical Analysis. Both the sequential regression approach and the MLM approach were
calculated with R [32] and conducted separately for the three experimental conditions of the
Sternberg memory span task. For the sequential regression analysis, regressions were estimated
in a stepwise procedure. First, performance within each RT band was predicted by general intelligence
(see Equations (1) and (8)), and second, the unstandardized and standardized regression weights from
step one were predicted by RT band (see Equations (2) and (9)).

The analysis of the MLM approach of the Worst Performance Rule was conducted using the
nlme package in R [33]. In a stepwise procedure all parameters from Equations (6) and (11) were
added to a Random Intercept Model that served as baseline model. As following models were nested,
models with additional parameters were required to show significant increase in Log likelihood to be
considered a better data description. In addition, decreases in Akaike’s Information Criterion (AIC)
and Bayesian Information Criterion (BIC) were used as indicators for model fit.

Fixed effects were tested for significant deviation from zero using a one-sided t-test.
Further, random slopes were tested for significance with a Likelihood-Ratio test. Additionally, random
effects were estimated with an unstructured G-Matrix, not only estimating the variances of each
random effect but additionally estimating the covariances between all random effects.

For both approaches, nine RT bands that contained 9 to 11 RTs were constructed, so that each RT
band contained approximately 11.1% of RTs of the intra-individual RT distribution. Although many
other studies used percentiles or RT bands with five RTs in each band, we decided to construct nine RT
bands in order to be able to center the RT band variable to a meaningful value (i.e., the fifth RT band).
If two reaction times at the border of an RT band were equal, they were assigned to different RT
bands. RT band number (i.e., performance band variable B) was centered to the fifth RT band of the
intra-individual RT distribution, in order to obtain meaningfully interpretable estimates for the fixed
intercepts and fixed slopes [28]. Specifically, the intercept represents approximately the median RT of
an average intelligent person and the fixed effect of g represents the unstandardized regression weight
from g on RT in the fifth RT band. After centering B to the fifth RT band, B2 and B3 were derived
from the centred B-variable. The general intelligence score (g) from the BIS was z-standardized within
the sample.

3. Results and Discussion

3.1. Descriptives

Descriptive statistics for the Sternberg memory span task and BIS results are given in Table 1.
In line with earlier results, RT increased with larger memory set size, F(2, 240) = 277.5, p < .05, ε = .69,
ω2 = .70. The BIS scores were representative compared to the standardization sample, t(120) = −.71,
p > .05, Cohen’s d = −.06.7 There were no significant differences in general intelligence between
women and men, t(119) = .95, p > .05, Cohen’s d = .18.

7 Please note that the standardization sample of the BIS consisted of adolescents and young adults with higher education.
Thus, the present sample may be somewhat above average in cognitive abilities compared to an average
intelligent population.
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Table 1. Descriptives for the Sternberg Task and the BIS.

Measure Mean Median SD Min Max Rel.

S1 (RT) 587.9 564.8 111.0 396.2 969.5 .96 a

S3 (RT) 726.7 694.0 166.8 479.0 1372.0 .98 a

S5 (RT) 889.6 828.0 241.7 539.4 1638.0 .97 a

BIS c 99.6 99.7 5.7 86.3 114.8 .94 b

Note: Rel. = reliability; a Estimated via Odd-Even correlations—for this trials were separated into odd and
even trials by trial-number; b Estimated via Cronbach’s α; c Standardized scores of the BIS are set to have a
mean of 100 and a standard deviation of 10.

3.2. Results from New WPA Approaches with Unstandardized Regression Weights

3.2.1. Results of the Sequential Regression Approach

In the first step of the sequential regression approach, general intelligence predicted reaction
time within RT bands across all three conditions, Fs(1, 119) ≥ 6.7, ps < .05 and R2s = .05–.22.
Specifically, these results convey that inter-individual differences in mean reaction time in each RT
band across all three conditions were predicted by general intelligence. In the second step, the number
of RT band predicted the unstandardized regression weights across RT bands in all three conditions,
Fs(3, 5) ≥ 127.2, ps < .05 and R2s ≥ .98 (for an illustration of the regressions estimated in the second
step, see Figure 1).
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Figure 1. Depicts the prediction of the unstandardized regression weights (dots) across RT bands by
the sequential regression and the MLM approach (lines). Note that point estimates for the SR and MLM
approach were equal. Thus there were no separate lines for the two approaches.

All estimated parameters differed significantly from zero (see Table 2). As indicated by the
effect size proposed in Equation (3), increases in the unstandardized regression weight bB did not
differ between set size 1 and 3, but tended to be larger for set size 5 (ESS1 = .09, ESS3 = .09 and
ESS5 = .17). Specifically, this means that the increases in the unstandardized regression weight from
best to worst performance correspond to 9% to 17% of the mean reaction time in the corresponding
condition. For example, in the S1 condition the mean performance was 587.9 ms. With an ES = .09,
the difference of the unstandardized regression weight between best and worst performance thus was
about 52.9 ms. This means that the difference in RT between an individual one SD above average in IQ
and an individual average in IQ increased for 52.9 ms from best to worst performance RT band.
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Table 2. Estimated parameters for the sequential regression approach with unstandardized
regression weights.

Condition

S1 S3 S5Parameters

Estimate S.E. Estimate S.E. Estimate S.E.

b00 (Int.) −27.00 * 1.25 −48.62 * 0.85 −84.93 * 2.86
bWPR1 (B) −3.32 * 0.84 −2.26 * 0.57 −8.11 * 1.92
bWPR2 (B2) −0.72 * 0.14 −1.11 * 0.10 −2.81 * 0.32
bWPR3 (B3) −0.22 * 0.07 −0.39 * 0.04 −0.70 * 0.15

R2 .98 1.00 .99

Note: S.E. = standard error of the respective estimate; * Indicates p < .05; The terms in brackets indicted the
predictor corresponding to the respective parameter.

3.2.2. Results of the MLM Approach

For all three conditions the Log-likelihood (LL) ratio tests indicated best fit for the full MLM
with all parameters included (see Table 3). Although successive LL-ratio tests did not always indicate
significant improvement in fit, for S1, the comparison of model 6 to 10 showed improved model fit,
χ2(4) = 11.1, p < .05, for S3, the comparison of model 7 to 10 indicated improved model fit, χ2(3) = 8.1,
p < .05, and for S5, the comparison of model 7 to 10 indicated better model fit, χ2(3) = 28.5, p < .05
(see Table 3).

Table 3. Estimates for model fit of the MLM across all three conditions for the WPA with unstandardized
regression weights.

Cond Model DF AIC BIC LogLik L. Ratio p

S1 Base 3 14,352.4 14,367.3 −7173.2 – –
1 (+γ1) 4 13,099.3 13,119.2 −6545.6 1255.1 .000
2 (+γ2) 5 12,891.7 12,916.7 −6440.8 209.6 .000
3 (+γ3) 6 12,775.8 12,805.8 −6381.9 117.9 .000
4 (+ui1) 8 11,657.3 11,697.2 −5820.6 1122.6 .000
5 (+ui2) 11 11,247.5 11,302.4 −5612.7 415.8 .000
6 (+ui3) 15 10,940.2 11,015.1 −5455.1 315.3 .000
7 (+γ4) 16 10,939.3 11,019.2 −5453.6 2.9 .090
8 (+γ5) 17 10,937.7 11,022.6 −5451.9 3.6 .059
9 (+γ6) 18 10,938.9 11,028.8 −5451.5 0.8 .369

10 (+γ7) 19 10,937.0 11031.9 −5449.5 3.9 .049

S3 Base 3 14,825.1 14,840.1 −7409.5 – –
1 (+γ1) 4 13,630.7 13,650.6 −6811.3 1196.4 .000
2 (+γ2) 5 13,465.1 13,490.1 −6727.6 167.6 .000
3 (+γ3) 6 13,343.2 13,373.2 −6665.6 123.9 .000
4 (+ui1) 8 12,329.8 12,369.7 −6156.9 1017.4 .000
5 (+ui2) 11 11,736.6 11,791.5 −5857.3 599.2 .000
6 (+ui3) 15 11,260.5 11,335.4 −5615.2 484.2 .000
7 (+γ4) 16 11,255.3 11,335.2 −5611.6 7.2 .007
8 (+γ5) 17 11,255.9 11,340.8 −5610.9 1.4 .236
9 (+γ6) 18 11,257.8 11,347.7 −5610.9 0.0 .847

10 (+γ7) 19 11,253.2 11,348.1 −5607.6 6.7 .010

S5 Base 3 15,501.8 15,516.8 −7747.9 – –
1 (+γ1) 4 14,245.4 14,265.4 −7118.7 1258.4 .000
2 (+γ2) 5 14,038.7 14,063.7 −7014.4 208.7 .000
3 (+γ3) 6 13,905.5 13,935.5 −6946.8 135.2 .000
4 (+ui1) 8 12,740.3 12,780.2 −6362.1 1169.3 .000
5 (+ui2) 11 12,265.7 12,320.6 −6121.9 480.6 .000
6 (+ui3) 15 11,974.5 12,049.4 −5972.3 299.2 .000
7 (+γ4) 16 11,971.0 12,050.9 −5969.5 5.5 .019
8 (+γ5) 17 11,970.6 12,055.4 −5968.3 2.4 .119
9 (+γ6) 18 11,965.3 12,055.1 −5964.6 7.3 .007

10 (+γ7) 19 11,948.5 12,043.4 −5955.3 18.8 .000

Note: Cond = condition, LogLik = Log Likelihood, L. Ratio = Log Likelihood Ratio in comparison to the model
one line above, Base = Baseline model, Expressions in parentheses denote variables added to the model.
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The AIC decreased across successive models, except within the S3 conditions for models 7 to 9.
For models 6 to 10 in the S1 and S3 conditions, these decreases were below the critical difference of 10,
which is often used as a cut off criterion for significant differences in model fit [34]. The BIC indicated
best fit for the full MLM only in the S5 condition. For S1, the BIC was lowest for model 6, without
the prediction of PFiB by g and interactions between RT band and g (i.e., without γ4 to γ7). And for
S3, BIC was lowest for model 7, without interactions between RT band and g (i.e., without γ5 to γ7).
However, as the prediction of PFiB by g and interactions of g with RT band were the core of the present
analysis and because the LL-ratio tests for model fit indicated better fit for the more complex models,
we retained the full MLM for all three conditions.

The parameters estimating the WPR from the retained MLMs were numerically equivalent to
those from the sequential regression approach (see Table 4). All other parameters for the MLMs in
all three conditions can be reproduced with the syntax and data given in the supplementary material
online. As parameters from the MLM were equal to the parameters from the sequential regression
approach, the estimated effect sizes were equal for the MLM likewise (ESS1 = .09, ESS3 = .09 and
ESS5 = .17).

Table 4. Parameters estimating the WPR within the MLM approach with unstandardized
regression weights.

Condition

S1 S3 S5Parameters

Estimate S.E. Estimate S.E. Estimate S.E.

γ4 (g) −27.00 * 8.79 −48.62 * 12.02 −84.93 * 18.4
γ5 (g × P) −3.32 * 1.42 −2.26 1.30 −8.11 * 2.53
γ6 (g × P2) −0.72 * 0.34 −1.11 * 0.51 −2.81 * 0.53
γ7 (g × P3) −0.22 * 0.11 −0.39 * 0.15 −0.70 * 0.16

Note: S.E. = standard error of the respective parameter; * Indicates p < .05; The expression in brackets indicates
the predictor corresponding to each parameter.

The standard errors for the coefficients were considerably larger in the MLM than in the sequential
regression approach. As mentioned earlier, this is because the MLM approach treats the covariances
between PFiB and g across RT bands as estimated, whereas the sequential regression approach treats
them as observed. Thus, the sequential regression approach underestimates the standard errors of the
coefficient and the MLM approach estimates the standard errors more accurately (see p. 7). This is
why one parameter (γ5) in the S3 condition did not differ from zero to a statistically meaningful extent
in the MLM approach, although parameters showed significant differences from zero in the sequential
regression approach.

Altogether, these results showed that both approaches, the sequential regression approach and the
MLM approach, estimate the WPR via an interaction between RT band and g. In addition to RT band
and g itself, this interaction predicts the performance in each RT band. Beyond that, results showed
that increases in unstandardized regression weights between performance in each RT band and g are
almost perfectly predicted by RT band (R2 ≥ .99).

3.3. Results from New WPA Approaches with Standardized Regression Weights

3.3.1. Sequential Regression Approach

On the level of standardized regression weights, in step one, z-standardized RT was predicted by
g across all performance bands in all three experimental conditions, Fs(1, 119) ≥ 6.7, ps < .05, and R2

= .05–.22. In step two, results showed that standardized regression weights βB increased in absolute
size in the S1 and S5 condition, whereas standardized regression weights decreases in size in the S3
condition (see Table 5 for the estimated parameters). Additionally, the results from step two showed
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that standardized regression weights were overall smallest in the S1 condition and increased with
larger memory set size, which is reflected in increasing size of the intercepts from S1 to S5 (see Table 5).

Table 5. Estimated parameters from WPA with z-standardized RTs as DVs.

Condition Parameter Seq. Regression MLM

Seq. Reg. MLM Estimate S.E. Estimate S.E.

S1 b00 γ1 −.266 * .004 −.266 * .082
bL γ2 −.006 * .001 −.006 .010

S3 b00 γ1 −.336 * .005 −.336 * .083
bL γ2 .008 * .001 .008 .007

S5 b00 γ1 −.409 * .005 −.409 * .081
bL γ2 −.008 * .002 −.008 .007

Note: Seq. Regression and Seq. Reg. = sequential regression approach;
S.E. = standard error of the respective parameter; * Indicates p < .05.

With respect to the consistency and magnitude of increases across RT bands, the results from
the sequential regression with standardized estimates suggested that increases of standardized
regression weights across RT bands were less consistent, R2 = .66–.67, than increases of unstandardized
regression weights. Furthermore, the magnitude of increases was slightly smaller in the S1 condition
(q = .05) than in the S5 condition (q = .08). In the S3 condition standardized regression weights
actually decreased in size from best to worst performance bands (q = −.07). Thus, the S3 condition
contradicted the WPR on the level of standardized regression weights.

3.3.2. MLM Approach

For all three conditions, the Log-likelihood-ratio tests indicated best model fit for a MLM model
without the interaction of g × B (i.e., model 2), indicating that there are no increases in the relationship
between g and RT across RT bands (see Table 6 for model fit). AIC and BIC likewise indicated best
model fit for a MLM model without the interaction of g × B, although ∆AIC is below the critical
value of 10 in the S1 condition and ∆BIC is below the critical value of 10 for the S1 and S3 condition.
Altogether these results indicate that there are significant relationships between g and RT, however
this relationship does not vary across RT bands, contrary to the predictions made by the WPR.

Table 6. Estimates for model fit of the MLM with standardized regression weights across all
three conditions.

Cond Model DF AIC BIC LogLik L. Ratio p

S1 Base 3 1313.0 1328.0 −653.5 – –
1 (+ui3) 5 384.1 409.0 −187.0 933.0 .000
2 (+γ1) 6 376.0 406.0 −182.0 10.0 .000
3 (+γ2) 7 377.7 412.6 −181.8 0.4 .551

S3 Base 3 588.2 603.2 −291.1 – –
1 (+ui3) 5 −399.1 −374.2 204.6 991.3 .000
2 (+γ1) 6 −412.5 −382.6 212.3 15.4 .000
3 (+γ2) 7 −411.7 −376.7 212.8 1.1 .287

S5 Base 3 534.5 549.5 −264.2 – –
1 (+ui3) 5 −297.4 −272.5 153.7 835.9 .000
2 (+γ1) 6 −319.5 −289.6 165.8 24.1 .000
3 (+γ2) 7 −318.8 −283.9 166.4 1.3 .249

Note: Cond = condition, LogLik = Log Likelihood, L. Ratio = Log Likelihood Ratio in comparison to the model
one line above, Base = Baseline model, Expressions in parentheses denote the variable added to the model.
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However, if we take a look at the estimated parameters of model 3 with the interaction of g × B
(see Table 5), the results show that the numerical estimates for the relationship in B = 0 between g
and RT (i.e., b00 or γ1) and the increases across RT bands (i.e., bL or γ2) are equal for the sequential
regression approach and the MLM approach in all three conditions. The difference in the significance
of these parameters is again due to larger standard errors in the MLM approach. Just as in the
analyses with unstandardized regression weights, this can be explained by the fact that the sequential
regression approach treats the standardized regression weights across RT bands as manifest and the
MLM approach treats them as estimated. Thus, the MLM approach takes into account that there
is uncertainty in the estimation of standardized regression weights across RT bands and estimates
standard errors of the parameters accordingly. All in all, the MLM approach is therefore more accurate
and the results suggest that there is no WPR on the level of standardized regression weights.

3.4. Results from a Traditional WPA

To compare the results of the two introduced methods with results from a traditional worst
performance analysis, we performed the latter as well. For this, we calculated mean RTs for the 9 RT
bands within each participant in all experimental conditions. Then, we computed correlations of the
mean RTs across RT bands with the BIS score.

For the S1 and S5 condition, the WPR was replicated with slightly more consistently increasing
correlations across RT bands in the S5 condition (see Table 7). Furthermore, the effect size Cohen’s q
for the difference between correlations in best and worst performance RT band was higher in the
S5 condition (qS5 = .10) than in the S1 condition (qS1 = .04). In the S3 condition, correlations were
positively associated with RT band number and decreased in absolute value with ascending RT bands.
The S3 condition thus did not replicate the WPR. However, the differences in correlations between
best and worst performance bands did not differ significantly from zero for all three conditions,
ZS1 = .41, p = .68, ZS3 = −1.08, p = .28, and ZS5 = 1.47, p = .14.

The estimated reliability for RTs within RT bands was high across all RT bands and conditions
(see Table 7). Since reliabilities did not increase with ascending RT bands, the increases in correlations
between RT and g cannot be attributed to decreases in error variance with ascending RT bands.

Altogether, the results from a traditional WPA differed from the results of the sequential regression
and the MLM approach with unstandardized regression weights. Although there were consistent
increases in correlations across RT bands in the S1 and S5 condition (Spearman’s rank correlation
r = −.82 to −.91) suggesting a WPR, the size of the differences in correlations across RT bands was
not significant. Thus the traditional WPA described the WPR, but the actual test for increases in
correlations across RT bands was not significant in all three experimental conditions. The results
from the MLM approach with standardized regression weights were in line with the results from
the z-Test and indicated that there is no WPR. Considering that the sequential regression approach
with standardized regression weights estimated equal parameters as in the MLM approach but
overestimates the significance of these parameters, the results of the sequential regression approach
with standardized regression weights may be interpreted the same way.

In contrast, both the sequential regression approach and the MLM approach on the level of
unstandardized regression weights showed significant increases in unstandardized regression weights
from best to worst performance bands in all three conditions that support the WPR. On the one
hand, the consistency of increases in unstandardized regression weights analyzed in the sequential
regression approach and in the MLM approach was substantially larger (R2 ≥ .99) than in the
analysis of correlations in the traditional WPA and of standardized regression weights (R2 = .66 to .83).
On the other hand, on the level of unstandardized regression weights the increases were all consistent
with the WPR, whereas on the level of standardized regression weights and correlations there was a
decrease in the size of correlations with ascending RT bands in the S3 condition. All in all, there are
considerable differences between results on the level of unstandardized versus standardized regression
weights that need to be discussed.
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Table 7. Covariance, unstandardized regression weight, standard of RT, correlation, and reliability of RTs across the nine RT bands in all three experimental conditions.

S1 S3 S5
P Cov bRT,g SDRT rRT,g Rel. Cov bRT,g SDRT rRT,g Rel. Cov bRT,g SDRT rRT,g Rel.

1 −12.4 −12.4 51.5 −0.24 .98 −33.3 −33.3 96.1 −0.35 .99 −55.0 −55.0 140.5 −0.39 .99
2 −15.5 −15.5 67.3 −0.23 1.00 −40.3 −40.3 111.7 −0.36 1.00 −64.1 −64.1 164.2 −0.39 1.00
3 −20.5 −20.5 80.1 −0.26 1.00 −44.2 −44.2 121.8 −0.36 1.00 −71.4 −71.4 179.3 −0.40 1.00
4 −24.2 −24.2 91.6 −0.26 1.00 −47.5 −47.5 134.4 −0.35 1.00 −78.9 −78.9 201.2 −0.39 1.00
5 −28.8 −28.8 103.0 −0.28 1.00 −50.5 −50.5 146.8 −0.34 1.00 −88.2 −88.2 221.8 −0.40 1.00
6 −33.5 −33.5 116.4 −0.29 1.00 −53.5 −53.5 163.3 −0.33 1.00 −101.2 −101.2 251.0 −0.40 1.00
7 −37.1 −37.1 135.2 −0.27 1.00 −58.4 −58.4 183.2 −0.32 1.00 −117.7 −117.7 283.8 −0.41 1.00
8 −46.1 −46.1 161.4 −0.29 1.00 −75.6 −75.6 228.5 −0.33 1.00 −144.5 −144.5 336.0 −0.43 1.00
9 −67.9 −67.9 245.3 −0.28 .96 −101.1 −101.1 355.7 −0.28 .98 −212.1 −212.1 454.4 −0.47 .98

R −1.00 1.00 −.82 −1.00 1.00 .90 −1.00 1.00 −.91

Note: P = number of RT band, Cov = covariance between RT and g, bRT,g = unstandardized regression weight predicting RT by g, SDRT = inter-individual standard deviation of
mean RT within each RT band, rRT,g = correlation between RT and g, Rel. = reliability of RT estimated with odd-even correlations—for this Trials were separated into odd and even
trials by trial number and reliability of all RT in an performance band was estimated with the Spearman-Brown formula, R = Spearman’s rank correlation between RT band and the
variable presented in the column.
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3.5. Discussion

The present work conceptualized the WPR as a moderated effect of g on performance in a cognitive
processing task that depends on the performance band or percentile in which performace is measured.
Following this idea, we introduced two approaches to analyze the WPR. Both approaches were tested
on the level of unstandardized and standardized estimates in an empirical example. unstandardized
regression weights quantifying the relation between g and RT across RT bands showed perfect
monothonic increases from best to worst performance bands. In correspondence to a larger WPR
in tasks with higher g-loadings [3,17], the increases tended to be larger in more complex conditions.
However, comparing the results with unstandardized regression weights to results with standardized
regression weights and to results from a traditional WPA showed that increases in unstandardized
regression weights do not necessarily correspond to the WPR from a traditional WPA perspective.

3.5.1. Differences in Analyses with Unstandardized and Standardized Estimates

These differences between results with unstandardized regression weights and results with
standardized regression weights or results from traditional WPA are due to increases in inter-individual
standard deviation of RT across performance bands. Equally to the covariance, the inter-individual
standard deviation of RT (SDRT) increased consistently (Spearman’s rank correlation: r = 1.00) from
best to worst performance bands (see Table 7). Furthermore, for a pair of highly correlated variables
(e.g., RTBP and RTWP) with different variances, the covariance between these two variables and a third
variable g increases proportionally to the increase in variance. As correlations between mean RT across
performance bands are medium to very high (r = .55 to .99 for the present sample), it may be that
larger standard deviations of RT in worst performance percentiles lead to higher covariances with
g, given that the covariance with g is a function of the variance for perfectly correlated variables.
If this were the case, the increase in unstandardized regression coefficients that basically represents
the covariance may be nothing else but a reflection of the increase in inter-individual standard deviation
of RT. It seems that this was exactly the case in the present study, because analyses on the level of
standardized regression weights that control for increases in variance across performance bands did
not show the WPR.

In contrast to Coyle [3] who stated that differences in variance between best and worst
performance do not affect the WPR, the present results show that increases in variance from best to
worst performance may play a crucial role for the WPR, especially if best and worst performance is
highly correlated. Specifically, the WPR on the level of correlations relies on increases in covariance
between performance and g from best to worst performance that are proportionally larger than
and independent from increases in variance in performance from best to worst performance bands.
Despite the fact that results of analyses on the level of standardized regression weights may provide
the actual WPR, we think that it is noteworthy that variance as well as covariance with g in worst
performance band is notably larger than in best performance bands. In a nutshell, there are larger
inter-individual differences in worst performance RT than in best performance RT that may drive
the increase in covariance with g from best to worst performance bands. It would be interesting to see
in how far this result is present in other basic cognitive processing task as well.

3.5.2. Differences between Newly Introduced WPA and Traditional WPA

Beyond the difference in analyses with unstandardized and standardized regression weights,
there are important differences between traditional WPA and the newly introduced methods to
analyze the WPR. Specifically, the traditional WPA described the increases in correlations accross
RT bands, whereas the newly introduced methods provided an acutal test and a quantification for
the magnitude of the WPR. Although the consistency and significance of increases in correlations
across RT bands was sometimes tested with Spearman’s rank-correlations or a Fisher’s Z-Test [10],
this is not sufficient for quantifying the actual magnitude and shape of increases across RT bands.
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Despite the possibility to compute an effect size for the difference in correlations across RT bands
(Cohen’s q) as a measure fot the magnitude of the WPR, a test for the significance of these differences
lacks statistical power [12]. By modelling the increases in unstandardized and standardized regression
weights as a moderation, the newly introduced methods provided an actual test for the significance
of the WPR and a quantification for the magnitude of the WPR. Furthermore, the newly introduced
methods take the full shape of increases in unstandardized or standardized regression weights across
all performance bands into account, whereas the Z-test only evaluates in how far correlations from best
to worst performance with g differ significantly. And additionally, the test for consistency in increases
across performance bands with Spearman’s rank correlations is flawed like the sequential regression
approach, because it treats the estimated correlations in performance bands as manifest and does not
account for the error in estimation. Altogether, the new methods thus overcome some major problems
of traditional WPA.

3.5.3. Discussion of Differences between the Sequential Regression and the MLM Approach

With respect to differences between the two newly introduced methods, the results showed that
the coefficients estimated to describe the increases in unstandardized and standardized regression
weights are equal for both approaches. However, the standard errors of these coefficients were smaller
for the sequential regression approach than for the MLM approach. Although smaller standard
errors may seem as an advantage of the sequential regression approach, this approach actually
underestimates the standard errors because the unstandardized regression weights across RT bands
analyzed in the second step are treated as observed [22]. This leads to an overestimation of the
significance, and thus may in turn provide an overly liberal judgement regarding the significance
of the WPR. In contrast, the MLM approach treats the unstandardized regression weights across RT
bands as estimated and thus provides unbiased standard errors. Taken together, the MLM approach
is the more accurate method to analyze the WPR on the level of unstandardized and standardized
regression weights. Therefore, we strongly recommend using the MLM approach instead of the
sequential regression approach, because the sequential regression approach has serious shortcomings
from a statistical perspective.

4. Conclusions

All in all, conceptualizing the WPR as moderation of the effect of g on RT by RT band not only
allowed to test the WPR but also provided a quantification of the WPR. We thereby introduced a new
way of analyzing the WPR that may overcome the problem of weak power when testing the difference
of two correlations, takes the whole shape of increases of unstandardized or standardized estimates
across performance bands into account, and additionally quantifies the increases of unstandardized
and standardized regression weights across RT bands.

These newly introduced methods for analyzing the WPR suggested that there are perfectly
consistent increases in unstandardized regression weights across RT bands in all three experimental
conditions. The differences between traditional WPA and results with standardized regression weights
to the results with unstandardized regression weights are driven by variations in inter-individual
standard deviation of performance across RT bands. And finally, the interaction between RT band
and g additionally suggests that general intelligence is related to the shape of the intra-individual
performance distribution and not only to the mean performance.

Although these results give promising new insights on the WPR, further evidence with the newly
introduced methods with larger sample sizes is needed. Especially because the estimation of the
MLM approach is complex and robust estimates of the cross-level interactions can only be obtain in
sufficiently large samples. Nonetheless, these results provide preliminary evidence for the feasibility
of the newly introduced methods and therefore we hope that researchers will adopt these methods in
future studies to gain deeper knowledge of the WPR and its underlying processes.
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Nevertheless, by reformulating the WPR in regression termini the two new methods have
provided a tool for more sophisticated analyses in future research that aims at an explanation
of the WPR. The most accurate method to analyze the WPR would be the MLM approach.
Although the sequential regression approach provides equal estimates for the actual increases of
unstandardized and standardized regression weights and may be more accessible to use, researchers
should bear in mind that the sequential regression approach overestimates the significance of these
increases. Therefore, we advise researchers to use the MLM approach and otherwise discuss results
from the sequential regression approach reluctantly.

Finally, analyzing the WPR on the level of unstandardized regression weights showed that other
context variables, such as the inter-individual standard deviation of performance within each RT
band, may affect the results when investigating the WPR on the level of correlations. Therefore future
studies should consider analyzing the WPR on the level of unstandardized and standardized regression
weights, in order to gain further insight into methodological issues, such as increases in inter-individual
standard deviation from best to worst performance, that are related to the WPR.

Beyond that, the here presented methods are not restricted to WPA. In fact, these methodological
approaches can be implemented within any setting where a certain result is moderated by a continuous
third variable, especially with nested data structures. For instance, a researcher wants to evaluate
the relationship between processing speed and general intelligence across different age groups in a
longitudinal study. Increases or decreases of this relationship with age could be modeled in a sequential
regression approach or multi-level models as well. In that sense, the MLM approach presented for the
WPA is only one example where such methods can provide powerful and interesting results.

Future research in search for constructs or processes that mediate the WPR effect, could test
whether there are differences in the WPR between trials with and without lapses in attention. Further it
would be interesting to know whether the relationship between diffusion model parameters and
processing speed affects the outcome of these newly introduced WPA. Results from these studies
may take further steps towards a refined understanding of the WPR. Because the WPR is stronger in
tasks highly related to g [3,17], this may ultimately present a chance for a better understanding of the
processes underlying general intelligence.
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Abstract 

Both working memory capacity (WMC) and processing speed (PS) have been discussed 

as important covariates of individual differences in intelligence. Recent results indicated that 

especially latencies of ERP components associated with higher-order processing (P2, N2, and 

P3) may share up to 80% of variance with individual differences in intelligence. WMC has a 

similar predictive power and thus these two processes cannot explain individual differences in 

intelligence independently. The current study explores in how far individual differences in 

executive functions (EFs) may bridge the gap between WMC and PS as predictors of 

intelligence. We recruited 101 participants who completed three EF tasks – one for each of the 

three executive functions shifting, updating, and inhibition – while an EEG was recorded. 

Additionally, we assessed participants’ intelligence, WMC, and PS. Results showed that only 

variance of behavioral RTs consistent across manipulations in the EF tasks was related to WMC, 

PS, and intelligence. While P3 latencies were not associated with intelligence, they showed 

significant correlation with WMC and PS, and N1 latencies showed no correlation with any of 

the three covariates. The variance specific to the manipulations in EF tasks was small for both 

behavioral RTs and ERP latencies and showed no consistent correlations with each other or with 

any of the three covariates. These results suggest that EF tasks capture mostly manipulation-

unspecific cognitive processes. Hence, individual differences in the impairment due to additional 

executive processing demands cannot explain why WMC and PS are related predictors of 

individual differences in intelligence. 

Keywords: Intelligence; Processing Speed; Working Memory; Executive Functions; 

EEG; 
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Processing Speed, Working Memory, and Executive Functions: Independent or inter-

related predictors of general intelligence 

 

The currently most discussed cognitive processes underling individual differences in general 

intelligence (g) are speed of information processing (Jensen, 2006; Schubert, Hagemann, & 

Frischkorn, 2017; Sheppard & Vernon, 2008), working memory capacity (Ackerman, Beier, & 

Boyle, 2005; Conway, Cowan, Bunting, Therriault, & Minkoff, 2002; Kane, Hambrick, & 

Conway, 2005), and executive functions (Friedman et al., 2006; Jewsbury, Bowden, & Strauss, 

2016; Miyake, Friedman, Rettinger, Shah, & Hegarty, 2001). These three processing domains 

were often discussed separately or as independent predictors of individual differences in 

intelligence, focusing on the question which of the processes shows the largest relationship to 

individual differences in intelligence. Especially regarding processing speed and working 

memory capacity as predictors of g, some researchers argued for them being independent 

predictors (Colom, Abad, Quiroga, Shih, & Flores-Mendoza, 2008), while others showed 

considerable correlations between these two processes (Ackerman, Beier, & Boyle, 2002; 

Kyllonen & Christal, 1990; Schmiedek, Oberauer, Wilhelm, Süß, & Wittmann, 2007; Schmitz & 

Wilhelm, 2016). 

Recent results indicated that the neural speed of information processing of higher order 

cognitive processes explains up to 80% of variance in intelligence (Schubert, Hagemann, & 

Frischkorn, 2017), matching the amount of variance in intelligence often explained by working 

memory capacity (Kyllonen & Christal, 1990; Oberauer, Schulze, Wilhelm, & Süß, 2005). This 

finding strongly suggests that these two processes cannot be independent predictors of individual 

differences in intelligence. Hence, it follows that speed of information processing and the 
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capacity of working memory have to be inter-related and might be constrained by similar 

features of the neuro-cognitive system (Dang, Braeken, Colom, Ferrer, & Liu, 2015). The aim of 

the present study is to bridge the gap between working memory capacity (WMC) and processing 

speed (PS) as predictors of g. On the basis of current theories of working memory (Barrouillet, 

Portrat, & Camos, 2011; Cowan, 2017; Oberauer, 2002; Oberauer & Kliegl, 2006) that 

emphasize the role of attentional processes the present study explores in how far executive 

functions (Miyake et al., 2000) may explain the inter-relation between WMC and PS as 

predictors of g.  

The relationship of processing speed with intelligence 

Across a variety of different measures there is a consistent negative relationship between 

speed of information processing and general intelligence (Jensen, 2006). A review of a broad 

variety of tasks reported an average correlation of r = -.24 of single task measures of PS and g 

(Sheppard & Vernon, 2008). These correlations tend to increase (r = -.40 to -.50) when reaction 

times from different tasks are aggregated (Kranzler & Jensen, 1991; Schmitz & Wilhelm, 2016; 

Schubert, Hagemann, & Frischkorn, 2017), indicating that foremost variance shared between 

different measures for PS is related to g. Moreover, the correlation between PS and g increases 

even further, if measures specifically representing the speed of the decision process, such as the 

drift rate from the drift-diffusion model, are used to represent processing speed (Schmiedek et 

al., 2007). 

Separating encoding processes and motor execution from the actual decision process via 

cognitive modeling is a promising approach to further investigate the relationship between speed 

of information processing and intelligence (Frischkorn & Schubert, 2018). Specifically, the drift-

diffusion model (DDM; Ratcliff, 1978) has often been successfully used to separate the speed of 
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information accumulation, represented by the drift rate, from other processes included in 

reaction times, such as encoding, motor execution or response caution. Results indicated that 

drift rates show trait-like properties (Schubert, Frischkorn, Hagemann, & Voss, 2016) and show 

consistent relationships with intelligence ranging from r = .50 to .90 (Ratcliff, Thapar, & 

McKoon, 2010; Schmiedek et al., 2007; Schubert, Hagemann, Voss, Schankin, & Bergmann, 

2015). This indicates that it is precisely the speed of information accumulation that is related to 

general intelligence and not speed of motor execution or encoding.  

However, PS can not only be measured via behavioral indicators such as reaction times, 

but also with neurophysiological indicators such as latencies of event-related potential 

components (Verleger, 1997). The event-related potential (ERP) decomposes the stream of 

neural information processing from stimulus onset until the response into distinct components 

that can be linked to specific cognitive functions. Specifically, individual differences in the 

latency of an ERP component may reflect individual differences in the neural speed of 

information processing, meaning that a higher speed of information processing results in shorter 

latencies of an ERP components. Moreover, the onset of an ERP component may also serve as an 

indicator of its functionality. While ERP components occurring early after stimulus onset are 

mostly related to stimulus encoding, ERP components with a later onset are foremost connected 

to higher-order processing. 

Despite rather weak and inconsistent results on the relationship between latencies of ERP 

components and intelligence (Schulter & Neubauer, 2005), a number of empirical results showed 

consistent negative relations between the latency of the P3 component or the mismatch 

negativity (MMN) and intelligence (Bazana & Stelmack, 2002; McGarry-Roberts, Stelmack, & 

Campbell, 1992). In detail, more intelligent people displayed shorter latencies of the P3 (Bazana 
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& Stelmack, 2002; McGarry-Roberts et al., 1992; Troche, Houlihan, Stelmack, & Rammsayer, 

2009), which is an ERP component that is associated with stimulus evaluation and 

categorization, context updating, and context closure. Furthermore, this relationship of latencies 

of ERP components with intelligence is mediated via behavioral RTs (Schubert et al., 2015) 

suggesting that neural processing speed may functionally underlie faster information processing 

on a behavioral level. 

The mostly inconsistent relationship of ERP latencies with intelligence can be attributed 

to different problems, such as (1) small sample sizes (N < 50), (2) questionable selection of 

electrode sites for the measurement of ERP latencies, and (3) quantification of relationships with 

single task measures that confound task-related fluctuations with the trait-like neural processing 

speed of a person. A recent study addressing these issues by measuring ERP latencies for three 

different tasks at two measurement occasions could demonstrate that the shared variance of later 

ERP components (P2, N2, & P3) explained up to 65% of variance in general intelligence 

(Schubert, Hagemann, & Frischkorn, 2017). Moreover, the results of this study indicated that the 

variance of single task latencies of ERP components included a large proportion of task- and 

condition-specific variance, which may be irrelevant to the relationship of ERP latencies with 

general intelligence, as well as substantial unsystematic error variance. This finding may explain 

the inconsistent results from earlier studies using only single task measures. Taken together, all 

these results from behavioral and neuro-psychological studies indicate that there is a strong 

relationship between speed of higher order information processing and intelligence. 

The relationship of working memory capacity with intelligence 

In addition to speed of information processing, also working memory capacity has been 

closely linked to individual differences in intelligence (Ackerman et al., 2005; Kane et al., 2005; 
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Oberauer et al., 2005). Comparable to cognitive ability tasks, measures of working memory 

capacity (WMC) are highly correlated with each other (Engle, Tuholski, Laughlin, & Conway, 

1999; Kane et al., 2004; Oberauer, Süß, Wilhelm, & Wittman, 2003; Unsworth, Fukuda, Awh, & 

Vogel, 2014) and resemble a hierarchical structure, with a broad single factor at the highest level, 

and more domain and process specific factors on the lower level (Bayliss, Jarrold, Gunn, & 

Baddeley, 2003; Kane et al., 2004; Oberauer et al., 2003; Shah & Miyake, 1996). Correlations 

between the broad factor of WMC and g are very high, ranging from r = .70 to .90 (Conway et 

al., 2002; Kane et al., 2005; Kyllonen & Christal, 1990; Oberauer et al., 2005). These high 

correlations have led to a vivid discussion in how far WMC and intelligence may be isomorphic 

(Ackerman et al., 2005; Kane et al., 2005; Oberauer et al., 2005), ultimately resolved by 

concluding WMC explains a large proportion of individual differences in intelligence. 

In addition to these correlational studies there are results from an experimental study 

suggesting that overloading working memory while performing a test of fluid intelligence 

affected performance in the intelligence measure (Rao & Baddeley, 2013). In detail, participants 

were asked to remember a set of three digits and count backwards while working on a matrix 

reasoning task. Results showed that especially the time needed to solve an item increased 

compared to a silent control and an articulatory suppression condition. Altogether these results 

suggest that working memory is not only strongly related to individual differences in intelligence 

but may actually causally underlie variations in g. 

While this strong relationship between working memory and intelligence is undisputed, 

researchers do not agree which process within working memory is central to the relationship of 

working memory and intelligence. Some researchers argue that the relationship is best explained 

by similar demands on short-term memory storage (Colom et al., 2008; Colom, Flores-Mendoza, 
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Quiroga, & Privado, 2005; Shahabi, Abad, & Colom, 2014), and others argue that processes 

specific to complex span tasks such as attention regulation are the reason for the strong 

association between working memory and intelligence (Conway et al., 2002; Unsworth et al., 

2014). As there is robust evidence that the capacity of working memory is related to attentional 

processes (Chuderski, Taraday, Nęcka, & Smoleń, 2012; Kane & Engle, 2003; McVay & Kane, 

2009, 2012; Meier & Kane, 2013) and current theories of working memory assume that attention 

plays a major role in maintenance of memory items regardless of concurrent processing 

(Oberauer, Farrell, Jarrold, & Lewandowsky, 2016; Souza & Vergauwe, 2018), it is plausible 

that both the capacity of short-term memory storage and additional demands in complex span 

tasks are strongly related to the same attentional processes within working memory (Barrouillet 

et al., 2011; Wilhelm, Hildebrandt, & Oberauer, 2013). 

Executive Functions: Bridging the gap between processing speed and working memory? 

Candidates for the attentional processes underlying both maintenance of items in short-

term memory as well as additional demands of complex span tasks are executive functions. 

Executive functions (EFs) are defined as attentional control mechanisms (Karr et al., 2018; 

Miyake et al., 2000) that are used to (a) focus attention on relevant information while ignoring 

irrelevant information (i.e. inhibition), (b) encode new information to memory while removing 

outdated and no longer relevant information (i.e. updating), or (c) switch between different tasks 

(i.e. shifting). While it is still under debate in how far these different EFs have to be separated or 

share common variance (Friedman & Miyake, 2017; Miyake & Friedman, 2012), the majority of 

results suggests that there is considerable overlap between the three EFs (Karr et al., 2018). 

Moreover, EFs have recently been subsumed within the hierarchical structure of intelligence 

(Jewsbury et al., 2016). In detail, updating was integrated within a general memory factor gm, 
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while shifting and inhibition were integrated in the general speed factor gs, pointing towards 

relations of EFs with both memory and processing speed. 

With respect to speed of information processing, the results from Schubert et al. (2017) 

support the proposal that executive functions may underlie the relationship of processing speed 

with intelligence as well. In detail, the latency of the P3 component showed the strongest 

association with general intelligence. The P3 component has often been interpreted as an 

indicator of the efficiency of context-updating (Donchin, 1981; Polich, 2007), and thus shorter 

latencies of the P3 may reflect a faster inhibition of nonessential processes that in turn ease the 

transmission of information from attention and working memory regions located frontally in the 

brain to parietal memory storage processes (Polich, 2007). There is additional support for this 

hypothesis from behavioral studies showing strongest relations between inhibition and updating 

with intelligence (Wongupparaj, Kumari, & Morris, 2015). 

Beyond that, cognitive as well as neural theories of intelligence are in line with this 

theoretical perspective. The process-overlap theory (POT; Kovacs & Conway, 2016) assumes 

that attentional control mechanisms are among the domain-general processes that act as a 

bottleneck constraining performance in a broad range of cognitive tasks. Moreover, the parieto-

frontal integration theory (P-FIT; Jung & Haier, 2007) proposes that individual differences in the 

efficiency of information transmission from frontal association cortices and parietal brain regions 

may explain individual differences in g. P-FIT has been widely supported by results from 

structural and functional neuroimaging studies (Burgess, Gray, Conway, & Braver, 2011; Colom, 

Jung, & Haier, 2007; Colom & Thompson, 2013; Gläscher et al., 2010).  Altogether, attention 

regulation mechanisms such as EFs may provide a theoretical account to bridge the gap between 

processing speed and working memory as predictors of individual differences in g. 
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The present study 

We conducted the present study to investigate in how far individual differences in 

executive functions (EFs) may underlie the relationship of processing speed (PS) and working 

memory capacity (WMC) with intelligence (g). To that end, we administrated three different EF 

tasks each tapping one of the executive functions (i.e. shifting, updating, and inhibition). To 

further differentiate between behavioral and neurophysiological indicators of executive functions 

we recorded the EEG while participants worked on these three EF tasks. Additionally, we 

assessed participants’ general intelligence, their working memory capacity, and speed of 

information processing to investigate in how far individual differences in EF tasks explain the 

relationship between these three constructs. 

More specifically, we aimed to address two major points: First, we wanted to investigate 

in how far performance in the different experimental conditions of EF tasks measure 

performance specific to the manipulations that are related to the respective EFs, or performance 

that is unspecific with respect to the experimental manipulations. And second, we were 

interested how these two components of performance in EF tasks are related to WMC, PS, and g. 

All in all, joining the individual differences constructs of intelligence, WMC, and PS with 

executive functions may provide insights in how far individual differences in EFs may explain 

the relationship between WMC and PS as predictors of intelligence. 
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Methods 

Sample 

We recruited a community sample of 107 participants via newspaper ads and flyers. The 

101 participants1 who attended both sessions of the experiment were on average 39.1 years 

(SDage = 14.5, Minage = 18, Maxage = 61), and 52.5 % were female. Participants had a 

heterogeneous educational background (42.6% university degree, 42.6% college degree, 10.9 % 

high school degree, 3.9% did not report educational background) and were rewarded with 50€ 

for their participation. While the overall sample size is comparably small for structural equation 

modeling, we secured that it had sufficient power (1- > .80) to assess model fit with the 

RMSEA (H0RMSEA =.05, H1RMSEA = .10, dfModel = 50, α = .05, NMin = 97). 

General Procedure 

The study consisted of two sessions that were approximately four months apart. In the 

first occasion, participants completed three executive functioning tasks – a Switching task, an N-

Back task, and the Attention Network Test – while an EEG was recorded. For this occasion, 

participants were seated in a dimly lit, sound-attenuated EEG cabin and tested individually. In 

the second session, participants’ intelligence, working memory capacity, and processing speed 

were measured with paper-pencil tests and computerized tasks. In addition, participants 

completed three knowledge tests and two personality questionnaires not reported here. This 

session was conducted in groups of up to four participants. Both sessions took approximately 3 

hours, and the sequence of tasks within the two occasions was the same for all participants. 

                                                 

1 Only data from the participants who attended both sessions was analyzed and reported in the manuscript. 
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Measures 

Executive Functions. The three executive functions – shifting, updating, and inhibition – 

were each assessed with one task. To additionally asses in how far all executive functions rely on 

the same attention process conceptualized as executive attention by Posner and Petersen (1990), 

a flanker manipulation was implemented in each of the three tasks (Eriksen & Eriksen, 1974). 

Switching Task. The Switching task was adapted from Sauseng et al. (2006). An 

illustration of the trial procedure can be found in Figure 1A (p. 50). In this task, participants saw 

a digit from 1 to 9 (except the number 5) colored red or green that was presented centrally on a 

black screen. Participants either had to decide whether the digit was smaller or larger than five or 

whether it was odd or even, depending on the color of the presented number. Prior to the onset of 

the target stimulus, a light grey fixation cross was presented centrally on the screen for 400-

600ms. Between onset of the target stimulus and the fixation cross, an inter-stimulus interval 

(ISI) consisting of a blank screen was shown for 400-600ms that was presented until participants 

responded and stayed on the screen for another 500ms to avoid offset potentials in the EEG due 

to perceptual changes on the screen. Participants responded via keypresses on the keyboard by 

pressing a left key “d” if the digit was smaller than five or odd, and a right key “l” if the number 

was larger than five or even. Before the next trial started, there was an inter-trial interval (ITI) of 

1000-1500ms. 

The switching task consisted of four different blocks. In the first two blocks, participants 

had to decide whether the number was less or more than 5 in one block, or odd or even in the 

other block, irrespective of the stimulus color. These control blocks consisting of 48 trials (8 

digits x 2 colors x 3 repetitions) did not require any task switching and were used to quantify 

global switch costs in comparison to the two switching blocks. In the third block, participants 
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were instructed to decide whether the digit was smaller or bigger than 5 for red stimuli and odd 

or even for green stimuli. This shifting block consisted of 96 trials (8 digits x 2 tasks x 2 shifting 

x 3 repetitions) of which the to-be-conducted task switched in half of the trials. In the last block, 

additional flanker stimuli that were congruent, neutral, or incongruent to the target stimulus were 

added to the task and participants were instructed to ignore the flankers while completing the 

same task as in the shifting block. This shifting flanker block consisted of 288 trials (8 digits x 2 

tasks x 2 shifting x 3 flanker x 3 repetitions). The color of flanker and target stimuli was always 

the same, therefore congruency of the flankers was only manipulated on the content level (i.e. the 

numerical information), but not on the task cue level. Incongruent flankers were always a 

different digit than the target stimulus, but could indicate the same response as the target 

stimulus (e.g., red 8 as flankers and a red 6 as target are both larger than 5). 

All participants completed 16 practice trials per block. The experimental trials within all 

blocks were pseudo-randomly sorted following some constraints: In all blocks, digits were not 

allowed to repeat more than three times in a row. Likewise, stimulus color, and thus tasks in the 

switching blocks, and responses were not allowed to repeat more than three times in a row. 

N-Back Task. Participants completed a 2-Back task that was adapted from Scharinger et 

al. (2015). The trial procedure of the N-Back task can be seen in Figure 1B (p. 50). Participants 

saw a series of light grey letters (H, C, F, or S) shown centrally on the screen one after the other. 

For each letter, participants decided whether or not it was identical to the letter presented two 

steps before. Between subsequent letters, there was an ISI consisting of a blank screen that was 

shown for 1000-1500ms. The letters were always shown for 2500ms irrespective of the time 

participant needed to respond. This way we ensured that all participants had the same time to 

encode the new letter and decide whether it matched the letter two steps back. Additionally, by 
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not changing the perceptual input after participants’ responses, we avoided offset potentials in 

the EEG. Participants responded via keypress, pressing a left key “d” if the current letter did not 

match the letter two steps back, and pressing a right key “l” if the current letter matched the letter 

two steps back. 

The N-Back task consisted of two blocks. In the 2-back block, participants completed 96 

trials (4 letters x 2 match x 12 repetitions) of the 2-Back task, preceded by two introductory trials 

requiring no response as there were no letters two steps prior to presentation. In the 2-back 

flanker block, participants completed 384 trials (4 letters x 2 match x 4 flanker x 12 repetitions) 

of the 2-Back task with additional flanker stimuli. Unlike in the Shifting Task, there were four 

levels of the flanker manipulation within this block. There either were no flanker stimuli – like in 

the 2-back block – or flanker stimuli that were either congruent, neutral or incongruent. 

Moreover, the flanker block was separated into three sub-blocks consisting of 128 trials, in order 

to give participants short breaks. Like in the 2-back block, the experimental trials of all sub-

blocks were preceded by two introductory trials requiring no response. 

Participants completed 16 practice trials that were repeated until participants’ average 

accuracy in these 16 practice trials was above chance. Experimental trials were pseudo-randomly 

sorted with the constraint that responses and thus the match conditions were allowed to repeat a 

maximum of two times. Additionally, flanker congruency was not allowed to repeat more than 

two times in the flanker block. 

Attention Network Test (ANT). In the Attention Network Test (Fan et al.), participants 

had to decide whether an arrow pointed left or right (see Figure 1C for the trial procedure). The 

arrow (i.e., the target stimulus) could appear above or below a fixation cross that was located 

centrally on the screen. Furthermore, the centrally presented arrow was flanked by two more 
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arrows to the left and right. The flanking arrows were either pointing in the same direction 

(congruent), in the other direction (incongruent), or were without arrow heads indicating any 

direction (neutral). 

Each trial started with a light grey fixation cross presented centrally on the black screen 

for 400-1600ms, followed by a short cue stimulus presented for 100ms. There were four different 

cue options: (1) There was no cue and the fixation cross remained on the screen, (2) there was a 

central cue at the position of the fixation cross, (3) there was a double cue above and below of 

the fixation cross, or (4) there was a spatial cue located either above or below the fixation cross 

validly cueing the position of the following target stimulus. Between the cue stimulus and the 

target stimulus there was an ISI of 400ms with the fixation cross being presented centrally on the 

screen. Then the target stimulus, i.e. the central arrow, and flanker arrows appeared above or 

below the fixation cross on the screen and participant had to decide whether the central arrow 

pointed right or left. Participants responded via key press, pressing the left key “d” if the arrow 

pointed left, and the right key “l” if the arrow pointed right. The target stimulus and flanker 

stimuli remained on-screen for 1700ms, irrespective of the speed of the response. Before the next 

trial started, there was an ITI again consisting of the light grey fixation cross presented centrally 

on the screen that lasted 1700ms. 

The ANT consisted of three blocks of 96 trials each (2 direction x 2 location x 4 cue x 3 

flanker x 2 repetitions) that were pseudo-randomly sorted. Specifically, all of the four 

experimental factors were allowed to repeat a maximum of three times in subsequent trials. 24 

practice trials were conducted prior to the first experimental block. In between blocks, 

participants took short breaks and read a short reminder of the task instructions. 
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Intelligence (Gf). Intelligence was measured with the short-version of the Berlin 

Intelligence Structure test (BIS; Jäger, Süß, & Beauducel, 1997). The BIS is based on the 

bimodal Berlin Intelligence Structure model (Jäger, 1982). According to this model, the 15 tasks 

of the BIS short version are grouped into four operation-related (processing capacity, memory, 

processing speed, and creativity) and three content-related (verbal, numerical, and figural) 

components of fluid intelligence. Each task combines one operation-related component with one 

content-related component of intelligence. The standard scores of the five tasks with verbal, 

numerical, and figural content were aggregated across operations and used as separate indicators 

of fluid intelligence. 

Working Memory Capacity (WMC). Working memory capacity was measured with 

four tasks from the working memory test battery by Lewandowsky et al. (2010). Specifically, we 

used the memory updating task, two complex span tasks, and a spatial short-term memory task. 

Following the scoring script provided by Lewandowsky et al. (2010), performance was measured 

by the mean proportion of correctly remembered items for each task separately.  

Processing Speed (PS). We measured participants’ processing speed with two 

elementary cognitive tasks (ECTs), the Posner letter matching task and the Sternberg memory 

scanning task. These tasks are commonly used as an indicator of basic information processing 

speed.  

Posner Letter Matching Task. In the Posner Letter Matching task (Posner & Mitchell, 

1967), participants decided whether two letters were physically or semantically identical. The 

participants completed two different blocks, first a physical identical and second a name identity 

block. Each of the two blocks consisted of 40 trials preceded by 10 practice trials, in half of 

which the two letters matched physically or semantically corresponding to the block instructions. 
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The two letters comprising the target stimulus were selected from a pool of five letters (a, b, f, h, 

q) that could be capitalized or not. Each trial started with a fixation cross presented centrally on 

the screen for 1000-1500ms. Immediately after that, the letter pair was shown on the screen. 

Participants then responded via key press, pressing either a right or left key with their index 

fingers, indicating whether the two letters were physically or semantically identical. Response 

mapping of the keys was counterbalanced across participants. After the response, the trial ended 

and the next trial started after an ITI of 1000-1500ms. We used the mean logarithmized RT of 

correct responses in the two blocks as a measure of processing speed. 

Sternberg Memory Scanning Task. In the Sternberg Memory Scanning task (Sternberg, 

1969), participants saw a memory set of digits from zero to nine and had to decide whether a 

subsequently presented probe digit was contained in the memory set or not. Participants 

completed two blocks, first one block with memory set size three and second one block with set 

size five, each consisting of 40 trials, preceded by 10 practice trials. In each block, the probe 

digit was contained in the memory set in half of the trials. Each trial started with a fixation cross 

presented centrally on the screen for 1000-1500ms. Then the digits comprising the memory set 

were presented sequentially on the screen for 1000ms with an ISI of 400-600ms. After the last 

digit, a question mark was presented for 1800-2200ms, followed by the probe digit. Participants 

then responded via key press, pressing either a left or right key with their index finger. The 

response mapping of keys was counterbalanced across participants. After the response, the trial 

ended and the next trial started after an ISI of 1000-1500ms. Again, we used the mean 

logarithmized RT of correct responses in the two experimental blocks as an indicator of 

processing speed. 
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EEG Recording 

In the first session, we recorded the participants’ EEG during the three EF tasks 

(Switching Task, N-Back task, and ANT) with 32 equidistant Ag–AgCl electrodes. In addition, 

we used the aFz as ground electrode, and Cz as a common online reference. The signal of all 32 

channels was offline re-referenced to an average reference. We kept all electrode impedances 

below 5 k, and recorded the EEG signal continuously with a sampling rate of 1000 Hz (band-

pass 0.1–100 Hz). The data was filtered offline with a low-pass filter of 12 Hz. 

Data Analyses 

Behavioral data. To ensure that intra-individual outliers in reaction times measured in 

EF tasks and ECTs did not distort our results, we discarded trials with RTs shorter than 150ms or 

longer than 3000ms. Then, we discarded any incorrect trials and trials in which the logarithmized 

reaction times of correct responses deviated more than 3 SD from the mean logarithmized 

reaction time of each participant within the different conditions in each task. Finally, we 

calculated the mean logarithmized reaction time as the dependent variable. As accuracies were 

very high (M > .90) and showed little to no variation in all EF tasks and ECTs (see Table 1), we 

refrained from analyzing accuracy measures. 

For all measures, we conducted additional uni- and multi-variate outlier analyses on the 

between-person level. First, univariate outliers deviating more than 3 SDs from the mean were 

deleted, resulting in 0.0 % to a maximum of 2.3 % of subjects being excluded across the different 

measures. Second, multi-variate outliers on the different measures within each cognitive process 

were identified. Only in the ANT did the Mahalanobis distance for one participant exceed the 

critical value of 2(12) = 39.9. This subject was excluded case wise for the ANT. Finally, 

multivariate outliers across the measures of different cognitive processes were again identified 
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via the Mahalanobis distance. As no subject exceeded the critical value of 2(23) = 49.7, no data 

was discarded in this final step. 

Electrophysiological data. The event-related potentials (ERPs) were calculated 

separately for each EF tasks and conditions with the ERPLAB toolbox (Lopez-Calderon & Luck, 

2014). All ERPs were time-locked to the stimulus onset with a baseline of 200ms before stimulus 

onset for the Switching and the N-Back task and 700ms to 500ms for the ANT. The baseline for 

the ANT was earlier due to the cue stimulus 500ms before stimulus onset that elicited 

considerable activity in the EEG. After stimulus onset epochs continued for 1000ms, resulting in 

1200ms epochs for the Switching and the N-Back task and 1700ms epochs for the ANT. First, 

channels and epochs with gross artifacts were rejected based on the standard settings 

implemented in EEGLAB. Second, ocular artifacts and generic discontinuities were corrected via 

ICA and artifact ICs were identified using the ADJUST algorithm (Delorme & Makeig, 2004; 

Mognon, Jovicich, Bruzzone, & Buiatti, 2011). 

As we were interested in the neural speed of information processing we determined 

latencies of EPR components instead of evaluating amplitudes that are associated with 

processing capacity. Furthermore, to differentiate between the neural speed of earlier versus later 

processes in the neural stream of information processing we analyzed the N1 and P3 latency (see 

Figure 2 for grand average ERPs). The latency of the N1 was determined at the frontal electrode 

site over midline and the latency of the P3 was determined at the parietal electrode over midline 

for all EF tasks. Peak latencies were determined separately for each EF task and the conditions 

within each task. For participants that did not show a N1 or P3 component in the average ERP, 

peak latencies were coded as missing in the respective condition of the respective EF task. 

Finally, univariate-outliers within each condition of the three EF tasks exceeding ±3SDs from the 
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mean latency were discarded. We did not analyze amplitudes of ERP components, as recent 

research suggest that the latency of ERP components is strongly associated with intelligence 

(Schubert, Hagemann, & Frischkorn, 2017)  

Statistical analyses. As an initial manipulation check, we analyzed whether the 

experimental manipulations in the EF tasks showed the usual effects on behavioral response 

times. This ensured that the EFs supposed to be required by specific experimental manipulations 

were actually demanded within the respective task. In addition, we reported the corresponding 

results for latency measures of ERP components. For all ANOVAs, we corrected violations of 

sphericity by adjusting the degrees of freedom with the Greenhous-Geisser correction. For post-

hoc comparisons, p-values were corrected with the Tukey method. 

Following these experimental analyses, we ran structural equations models for behavioral 

and EEG measures of the EF tasks separately. First, we established separate measurement 

models for the EF tasks. All of these models were set up as bi-factor models with all indicators 

across the different blocks and experimental manipulations loading on a general behavioral or 

neural speed factor, and factors specific to the experimental manipulations or blocks within each 

EF task. This approach allowed us to separate task-general and manipulation-specific variance in 

the EF tasks, with the manipulation-specific factors capturing individual differences in executive 

functions associated with specific experimental manipulations. These bi-factor models will 

answer the first of the two major points we wanted to investigate within the present study, 

namely, in how far performance within one condition of an EF task represents general 

performance, or performance specific to the manipulation that is linked to the respective EF. 

The best fitting bi-factor models for the EF tasks were then merged and covariates were 

entered into the model. In a first step, we analyzed the three covariates – general intelligence, 
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processing speed, and working memory capacity – separately; in a second step, we included all 

covariates simultaneously to additionally assess the inter-relations between covariates and 

answer the second of the two major points we wanted to investigate in the present study: How is 

general and manipulation-specific variance from EF task related to WMC, PS, and intelligence, 

and do these relationships provide evidence that individual difference in EF might represent the 

missing link between WMC and PS as a predictor of intelligence? 

We assessed model fit of all structural equation models using the comparative fit index 

(CFI; Bentler, 1990) and the root mean square error of approximation (RMSEA; Browne & 

Cudeck, 1992). We considered model fit as acceptable with CFI > .90 and RMSEA < .10 

(Bentler, 1990; Browne & Cudeck, 1992; Hu & Bentler, 1999). When model evaluation diverged 

between the two fit criteria, we evaluated model fit with the more favorable fit index, because 

previous research has shown that goodness-of-fit statistics tend to underestimate absolute model 

fit in small samples (Kenny, Kaniskan, & McCoach, 2015; Schubert, Hagemann, Voss, & 

Bergmann, 2017). For comparisons of two models, we required more complex models to show a 

lower AIC than more parsimonious models with an AIC difference > 10 to retain the more 

complex model (Burnham & Anderson, 2002). Finally, we assessed statistical significance of 

model parameters with the two-sided critical ratio test. If parameters did not differ significantly 

from zero, we fixed them to zero and estimated the SEM again. Thus, only parameters 

significantly different from zero are reported in the results section. 
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Results 

Manipulation Check: EF tasks 

To ensure that experimental manipulations within the EF tasks demanded the respective 

attentional control mechanisms, we ran within-subject ANOVAs for the three EF tasks. The 

mean reaction time and proportion of correct responses across the different experimental 

conditions within the three tasks are displayed in Table 1, descriptive statistics for the latencies 

of ERP components are displayed in Table 2. Grand Averages of the ERPs are displayed in 

Figure 2. For brevity, we only report the effect size estimates of the critical manipulations, the 

full statistical results of the ANOVAs can be found in the supplementary material (osf.io/6trne). 

For descriptive plots that display the effects of experimental manipulations on behavioral RT in 

the three EF tasks see Figure 3. 

Switching. For reaction times there were substantial global switch costs as indicated by 

the difference between control and both the shifting and shifting flanker blocks, p
2 = .94. Within 

shifting blocks, responses times were faster in trials with task repetition than task switches, p
2 = 

.69, indicating large local switch costs over all conditions (see left part of Figure 3A). While 

there was a small difference in N1 latency across blocks, p
2 = .11, the direction of the effect 

contradicted the usual global switch costs (i.e. longer latencies for shifting than for control 

blocks). In addition, we obtained no local switch cost on the N1 latency, p
2 = .01. P3 latencies 

showed no global switch costs, as P3 latency did not vary across blocks, p
2 = .02. However, P3 

latency was slightly shorter for switch than for repeat trials, p
2 = .04, contradicting the usual 

direction for local switch costs. Altogether, the Shifting manipulation was successful for 

behavioral reaction times. 
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With respect to the flanker manipulation in the shifting flanker block, response times 

were slowest in trials with incongruent flankers and response times did not differ between trials 

with neutral and congruent flankers, p
2 = .31 (see right part of Figure 3A). In contrast, neither 

N1, p
2 = .00, nor P3 latency, p

2 = .00, differed between flanker conditions. Similar to the 

shifting manipulations, the flankers showed an effect for behavioral reaction that resembles the 

standard inhibition effect of flanker stimuli (c.f. Eriksen & Eriksen, 1974) 

N-Back. Neither behavioral reaction times nor N1 latencies varied between the 2-back 

and the 2-back flanker block, both p
2 = .00. Only P3 latencies were slightly shorter for the 2-

back than for the 2-back flanker block, p
2 = .09. In contrast, only response times were faster for 

match than for no-match trials in both blocks, p
2 = .87 (see left part of Figure 3B). This is a 

common difference between match and no match retrievals from memory. While N1 did not 

differ between the two match conditions, p
2 = .00, P3 latencies were slightly shorter for no 

match than for match trials, p
2 = .07, contradicting the usual direction of this effect. 

All three dependent variables varied between flanker conditions in the flanker block, with 

the largest effect for behavioral response times, p
2 = .60 (see right part of Figure 3B), and 

slightly smaller effects for N1, p
2 = .21, and P3 latency, p

2 = .14. However, this flanker effect 

was mostly due to differences between the neutral and no flanker condition with congruent or 

incongruent flankers. The critical inhibition effect – i.e. longer reaction times in incongruent than 

in congruent trials – was, however, only present for behavioral reaction times in match trials. In 

sum, there was no consistent inhibition effect of flanker stimuli in the N-Back task on behavioral 

RTs. 

ANT. Overall, participants’ response time as well as ERP latencies varied across cue 

conditions (see Figure 3C). Again this effect was largest for behavioral response time, p
2 = .87, 
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and smaller for N1, p
2 = .49, as well as P3 latency, p

2 = .14. While all three dependent 

variables showed an alerting effect (i.e. longer reaction times/latencies for no cues than for 

double cues), an orienting effect (i.e. shorter latencies for spatial than for central cues) was only 

present for behavioral reaction times. More importantly, behavioral reaction times showed a 

strong inhibition effect, p
2 = .93, with slowest response times for trials with incongruent 

flankers compared to congruent or neutral flankers. However, neither N1, p
2 = .04, nor P3 

latency, p
2 = .05, showed this inhibition effect. In sum, the manipulation of inhibition again was 

successful for behavioral reaction times. 

SEM Analysis: Bi-factor models for the EF tasks 

Switching task. The bi-factor model capturing general and condition-specific variance of 

behavioral RTs in the Shifting task (see Figure 4A) fitted well to the data, 2(53) = 41.1, p < 

.884, CFI = 1.00, RMSEA = .00, 90% CI = [.00, .03]. The general processing speed factor 

explained between 43 to 76% of the variance of the manifest indicators, while all condition 

specific factors together explained between 36 to 51% of the variance in the manifest indicators. 

In detail, the global shifting factor explained between 6 to 51%, the local shifting factor 9 to 

10%, and the flanker factor between 21 to 23% of the variance in the manifest indicators. 

Additional factors for inhibition or facilitation effects of flanker stimuli had non-significant 

variances and were thus not included in the final model. Taken together, between 76 to 95% of 

variance in manifest indicators was explained by both manipulation-specific factors and the 

general factor. 

The bi-factor model for the N1 latency in the Shifting task (see Figure 5A) showed a 

good fit to the data, 2(60) = 51.7, p < .767, CFI = 1.00, RMSEA = .00, 90% CI = [.00, .05]. In 

detail, the general factor of neural information processing speed captured 71 to 88 % of variance 
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of manifest N1 latencies across the different conditions. Furthermore, only the factor capturing 

individual differences in the flanker effect had a variance significantly different from zero, 

capturing 8 to 9 % of variance in manifest N1 latencies. The other manipulation-specific factors 

had variances not significantly different from zero and were not included in the model. In sum, 

manipulation-specific factors and the general factor explained between 77 to 89% of variance in 

manifest N1 latencies. 

Likewise, the bi-factor model for P3 latencies (see Figure 6A) showed a good fit to the 

data, 2(56) = 47.3, p < .983, CFI = 1.00, RMSEA = .00, 90% CI = [.00, .05]. In specific, the 

overall speed factor explained between 61 to 93 % of variance in manifest P3 latencies, while all 

condition specific factors together captured between 11 to 25% of variance in manifest P3 

latencies. However, there was only a condition-specific factor for global switch cost that 

captured between 9 to 11%, and a flanker-specific factor that captured between 13 to 14% of 

variance in manifest P3 latencies. Variances of manipulation-specific factors for local switch 

costs, facilitation or inhibition had non-significant variances. In this, all these factors together 

explained between 81 to 93% of variance in manifest P3 latencies. 

N-Back task. The bi-factor model for the behavioral RTs in the N-Back task (see Figure 

4B) fitted well to the data, 2(56) =60.2, p < .326, CFI = 1.00, RMSEA = .03, 90% CI = [.00, 

.07]. The general processing speed factor again explained the largest proportion of variance in 

manifest RTs in the N-Back task with 43 to 81%. All condition-specific factors together 

explained 18 to 52% of variance. Specifically, the flanker factor explained between 27 to 29%, 

the no match factor explained between 18 to 21% and the facilitation factor 3% of the variance in 

manifest indicators. The factor for inhibition effects of flanker stimuli showed a non-significant 

Manuscript 4 - Processing Speed, Working Memory, and Executive Functions:
Independent or inter-related predictors of general intelligence 140



PS, WM, AND EF AS PREDICTORS OF G  26 

variance and was thus not included in the model. All these factors together explained between 81 

to 95% of variance in manifest response times. 

For the N1 latency in the N-Back task (see Figure 5B), the bi-factor model showed a 

good fit to the data as well, 2(56) = 52.2, p < .619, CFI = 1.00, RMSEA = .00, 90% CI = [.00, 

.06]. The general speed factor captured between 44 to 80 % of variance in manifest N1 latencies, 

and only the flanker-specific factor had a variance significantly different from zero and captured 

8 to 9 % of variance in manifest N1 latencies. Apart from that, none of the other manipulation-

specific factor had a variance significantly different from zero. Thus, the two factors with 

significant variances explained between 52 to 92% of variance in manifest N1 latencies. 

For the P3 latency, the bi-factor model (see Figure 6B) fit the data acceptably, 2(55) = 

72.0, p < .062, CFI = .98, RMSEA = .06, 90% CI = [.00, .09]. The general neural speed factor 

explained between 62 to 81% of variance, while all condition-specific factors explained between 

8 to 22 % of variance in manifest P3 latencies. In detail, both the factor for no match trials and 

the factor for the flanker manipulation explained 8 to 10% of variance and the factor for the 

facilitation effect of flanker 7% of variance in manifest P3 latencies. The factors for inhibition 

effects of the flanker stimuli did not differ from zero and was not included in the final model. 

Together these factors explained between 80 to 89% of variance in manifest P3 latencies. 

ANT. Consistent with results of the two other EF tasks, the bi-factor model for 

behavioral RTs in the ANT (see Figure 4C) showed a good fit as well, 2(83) = 91.8, p < .238, 

CFI = 1.00, RMSEA = .03, 90% CI = [.00, .07]. Again, consistent with results from the other two 

EF tasks, the general processing speed factor explained between 86 to 96% of variance in 

manifest indicators. Contrary to results from the other two EF tasks, the condition-specific 

factors explained a lower amount of variance in manifest variables with only 2 to 9%. 
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Specifically, the inhibition factor explained 7% and the no cue and spatial cue factor about 2% of 

variance in manifest variables. Condition-specific factors for the other cue conditions and for 

facilitation showed non-significant variances and were not included in the model. Taken 

together, all factors explained between 93 and 96% of variance in manifest response times. 

The bi-factor model for N1 latencies (see Figure 5C) fit the data acceptable, 2(83) = 

114.7, p < .012, CFI = .942, RMSEA = .06, 90% CI = [.03, .09]. In this model, the general factor 

of N1 latencies across all experimental manipulations captured between 36 to 62% of variance in 

manifest N1 latencies, while the only experimental factor significantly differing from zero, the 

factor for spatial cues, captured 17 to 18% of variances in the respective manifest N1 latencies. 

All other manipulation-specific factors did not have variance significantly different from zero. 

Altogether these factors explained between 47 to 64% of variance in manifest N1 latencies. 

For the P3 latency in the ANT, the bi-factor model (see Figure 6C) showed a good fit to 

the data as well, 2(83) = 79.7, p < .581, CFI = 1.00, RMSEA = .00, 90% CI = [.00, .06]. With 

50 to 72% of variance the general factor capturing variance consistent across all experimental 

manipulation explained most of the variance in manifest P3 latencies. In this model, the factor 

for the no cue condition capturing 13% and the factor for the spatial cue condition capturing 19 

to 20% of variance had variances significantly different from zero. The other manipulation-

specific factors did not have a variance significantly different from zero. In sum, these factors 

explained between 62 to 75% of variance in manifest P3 latencies. 

SEM Analysis: Relationship of EFs with WMC, PS, and Intelligence 

Joint Models for the three EF tasks. A joint model of behavioral reaction times in the 

three EF tasks indicated only correlations between the three general factors measured in the three 

EF tasks (rs = .37 – .76). Additionally estimating correlations between manipulation-specific 
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factors of the three EF tasks did not improve model fit, AIC = -30.8, 2(27) = 23.2, p = .672. 

Moreover, joining the three general processing speed factors into one factor did not impair model 

fit, AIC = -1.8, 2(1) = 0.2, p = .643, and represented a more parsimonious account of the 

covariance structure. Specifically, the task-general factor explained all variance of the general 

factor from the shifting task, 56 % of variance of the general ANT factor, and 27 % of variance 

of the general N-Back factor. As this model showed a good fit to the data, 2(528) = 647.8, p < 

.001, CFI = .98, RMSEA = .05, 90% CI = [.0533, .06], it was retained for further analyses with 

the three covariates. 

Similarly, the joint model for N1 latencies indicated correlations between the general N1 

factors in all three EF tasks (rs = .62 - .93). Exploratory analysis revealed that additionally 

estimating a correlation between the flanker factor from the shifting task with the flanker factor 

from the N-back task (r = .81) and with the spatial cue factor from the ANT (r = .50) improved 

the model fit, AIC = 16.4, 2(2) = 20.4, p < .001. In general, there was however no consistent 

pattern of correlations between manipulation-specific factors that could have indicated shared 

variance between the different manipulations. In addition, merging the general N1 latency factors 

from the three different EF tasks in one task-general N1 factor did not impair model fit and 

represented a more parsimonious account for the data, AIC = -1.3, 2(2) = 2.7, p = .261. This 

task-general N1 factor captured all variance of the general N1 factor for the N-Back task, 87% of 

variance of the general N1 factor for the shifting task, and 47% of variance of the general N1 

factor for the ANT. While this model still showed only a mediocre fit to the data, 2(536) = 

953.5, p < .001, CFI = .864, RMSEA = .09, 90% CI = [.08, .10], it still was retained for further 

analysis as it was the best fitting model. 
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The joint model for P3 latencies indicated correlations between the general P3 factors (rs 

= .48 - 67) as well. Again exploratory analysis revealed that additionally estimating four 

correlations between manipulation-specific factors improved the model fit, AIC = 19.6, 2(4) 

= 27.6, p < .001. Specifically, correlations between the global shifting factor and the flanker 

factor in the N-Back task (r = .73), between the flanker factor in the shifting task and the double 

cue factor from the ANT (r = -.45), between the flanker factor in the N-back task and the no cue 

factor from the ANT (r = -.59), and between the facilitation factor from the N-Back task and the 

double cue factor from the ANT (r = .53) were significantly different from zero. Still, there was 

no consistent pattern of correlations between manipulation-specific factors that would indicate a 

general factor of the different manipulations across EF tasks. Moreover, joining the three general 

P3 factors in one overarching factor for the P3 latency in the three EF tasks did not impair model 

fit and represented a more parsimonious account for the data, AIC = -3.7, 2(2) = 0.3, p = 

.845. In this model, the task-general P3 factor explained all variance in the general P3 factor for 

the shifting task, 42% of variance in the general P3 factor for the N-Back task, and 47% of 

variance of the general P3 factor for the ANT. Albeit, this model still had only a mediocre fit, 

2(529) = 908.2, p < .001, CFI = .867, RMSEA = .09, 90% CI = [.08, .09]. It still was retained 

for further analysis because it represented the best solution of all estimated models. 

Altogether, the joint modeling of the three EF tasks indicated that general performance in 

the three EF tasks was consistently correlated and could be merged into one factor. Although 

there were some significant correlations between manipulation-specific factors, there were no 

consistent patterns within these correlations suggesting that individual differences with respect to 

specific manipulations were divergent rather than unitary. 
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Bi-variate models of EF tasks and covariates. Detailed results of the bi-variate models 

between EF tasks and the three covariates can be found in the analysis scripts available at: 

osf.io/6trne. There were no consistent correlations between the three covariates (i.e. WMC, PS, 

and intelligence) and manipulation-specific factors in the EF tasks. Interestingly, this was the 

case both for behavioral RTs and latencies of ERP component measures in the EF tasks. Thus, 

these correlations were not estimated in the joint model with all three covariates and the three EF 

tasks. In contrast, the general factors that represented similar individual differences across the 

three EF tasks showed considerable correlations and were thus included in the model joining all 

three covariates and the three EF tasks. Detailed results will be reported in the next section. 

Joint modeling of all covariates and EFs. A combined model with all three covariates 

and behavioral RTs in the three EF tasks showed a good fit to the data, 2(940) = 1168.6, p < 

.001, CFI = .97, RMSEA = .05, 90% CI = [.04, .06]. The path diagram of this model is shown in 

the top part (A) of Figure 7. Specifically, the factor merging behavioral performance in the three 

EF tasks showed a large positive correlation with processing speed in the ECTs (r = .77), and 

slightly lower and negative correlations with both Gf  (r = -.55) and WMC (r = -.49). In addition, 

results indicated a very high correlation between Gf and WMC (r = .95), and medium 

correlations of Gf and WMC with PS in the ECTs (r = -.46 to -.55). Due to the strong association 

between PS in ECTs and the general performance factor of EFs, we simplified the model by 

estimating one general processing speed factor consisting of EFs and ECTs and one factor 

tentatively named higher cognition summarizing Gf and WMC (see bottom part of Figure 7 for 

the path diagram). These simplifications did not impair model fit, AIC = -4.0, 2(7) = 10.0, p 

= .191, and the model itself fit the data well, 2(947) = 1178.6, p < .001, CFI = .97, RMSEA = 
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.05, 90% CI = [.04, .06]. This model indicated a medium correlation between the factor for 

higher cognition and general processing speed (r = -.54). 

The SEM combining N1 latencies from the EF tasks with all three covariates showed 

only a mediocre fit to the data, 2(947) = 1926.6, p < .001, CFI = .77, RMSEA = .10, 90% CI = 

[.09, .11]. All correlations between the task general N1 factor and covariates were low (rs = -.16 

to .06) and non-significant (all ps > .160). In additions, assuming no covariance between the task-

general N1 latency factor and the three covariates did not impair model fit, AIC = -1.7, 2(3) 

= 4.3, p = .230, further indicating that there was no correlation between the N1 latencies in the 

three EF tasks and any of the three covariates (see Figure 8A for a path-diagram of this model).  

Finally, the joint model of P3 latencies in the EF tasks with all three covariates showed a 

mediocre fit to the data, 2(941) = 2366.2, p < .001, CFI = .68, RMSEA = .12, 90% CI = [.11, 

.13]. Because the size of our sample did not allow for a more complex model to be estimated, we 

provisionally retained this model. It must be noted that no strong conclusions can be drawn due 

to unsatisfactory model fit. In detail, the task-general P3 factor showed significant correlations 

with WMC (r = -.38), and PS from ECTs (r = .45), while the correlation with intelligence (r = -

.16) was non-significant (p = .179). Setting the correlation between intelligence and the task-

general P3 factor to zero did not impair model fit, AIC = -0.1, 2(1) = 1.9, p = .173, but 

correlations with the other two covariates changed (see Figure 8B for a path diagram). 
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Discussion 

The present study aimed to disentangle the relationship between individual differences in 

processing speed, working memory capacity and executive functions with general intelligence. 

Specifically, we were interested in two different points: (1) in how far performance in EF tasks 

represented general or manipulation-specific aspects. And (2) which of these two different 

aspects of performance in EF tasks was related to intelligence, working memory capacity 

(WMC), and processing speed (PS). Overall, performance in specific conditions within EF tasks 

seemed to largely capture general variance rather than variance specific to an experimental 

manipulation. Furthermore, manipulation-specific variance in EF tasks did not show any 

consistent relationships among the different EF tasks and with the three covariates, while general 

variance in behavioral RTs was related to all three covariates, and general variance in P3 

latencies was related to WMC and PS. 

Performance in EF tasks: What does it measure? 

Before taking on the question in how far performance in EF tasks is related to WMC, PS 

and intelligence, we addressed the question what is measured by reaction times as performance 

measures in EF tasks. This is an important point as former studies investigating this relationship 

have used various indicators for individual differences in EFs. Some studies have used 

performance from specific conditions in an EF task that should require one specific executive 

function (e.g., RTs for incongruent conditions in a Stroop task; Wongupparaj et al., 2015) or 

average performance across conditions (e.g., mean proportion correct in updating tasks; Miyake 

et al., 2000), while differences between specific experimental conditions in EF tasks were used 

in other studies (e.g. the difference between RTs in switch versus repeat trials in a shifting task; 

Friedman et al., 2006). Interestingly, these different measures have often been mixed within 
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studies (Friedman & Miyake, 2017; Miyake et al., 2000; Wongupparaj et al., 2015), and in the 

most cases difference measures have been used for inhibition and shifting tasks, while average 

performance across conditions has been used for updating tasks. 

From a theoretical perspective, the use of either measure is not entirely unproblematic. 

Using performance from a single condition or average performance across conditions may 

confound different variance sources. In this case, such measures may contain variance specific to 

experimental manipulations that require specific executive functions and more general variance 

linked to processing speed or memory capacity (Frischkorn & Schubert, 2018). In contrast, 

difference measures assume that cognitive processes are additive and that experimental 

conditions vary in all but a single cognitive process (Donders, 1868, 1969). Yet, it is likely that 

cognitive processes are not additive and that inserting an additional cognitive process interacts 

with other cognitive processes required in the task (Alexander, Trengove, & van Leeuwen, 2015; 

Friston et al., 1996; Schubert et al., 2015). 

Our results from the bi-factor models of the three EF tasks indicate that behavioral RTs and 

ERP latencies from one condition within any EF task represented mostly general performance. 

Specifically, the general factors summarizing the variance consistent across all manipulations did 

capture the largest proportion of variance in manifest indicators across all EF tasks (on average 

68%), while each manipulation-specific factor captured considerably smaller variance 

proportions (on average 14%). Hence, behavioral or neural measures from a single condition or 

average performance across all conditions will mostly represent individual differences in general 

rather than manipulation-specific cognitive processes. 

 As manipulation-specific factors can be interpreted as latent difference scores, the small 

amount of variance of manipulation-specific factors might also explain why difference scores in 
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experimental paradigms often show low reliabilities (Hedge, Powell, & Sumner, 2018). In detail, 

when calculating the difference between two correlated experimental conditions, the small 

amount of systematic variance in this difference (i.e. the variance of manipulation-specific 

factors) gets outweighed by unsystematic error variance that gets amplified when calculating the 

difference between highly correlated variables. One very recently proposed solution to this may 

be to account for trial-to-trial noise by adopting a hierarchical modeling approach (Rouder & 

Haaf, 2018). However, it remains to be seen whether this approach solves the reliability issues of 

difference measures, and provides an increment above the here used method of latent difference 

scores that are virtually error free. 

In conclusion, researchers have to consider that the selection of a specific measure such 

as difference scores or performance in a single experimental condition may change both the 

interpretation of the measure and the relationship with covariates. Specifically, results from 

studies that have not used difference scores as indicators of EFs could also be interpreted as 

indication that general processing speed (when using RTs in shifting or inhibition tasks) or 

memory/processing capacity (when using accuracies in updating tasks) are related to general 

intelligence instead of individual differences specific to executive functions. Since difference 

measures are not unproblematic either (Friston et al., 1996), developing theoretically founded 

measures for executive functions is a critical step towards accurately assessing the relationship 

between EFs and individual differences in other cognitive processes such as intelligence, WMC, 

and PS. 

Executive Functions: Still no bridge across the gap. 

While theoretically and empirically executive functions are supposed to underlie working 

memory capacity and thus to be related to intelligence as well (Kane, Conway, Hambrick, & 
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Engle, 2007; Kane & Engle, 2003; Unsworth, 2010; Unsworth et al., 2014), the results of the 

present study indicated that variance specific to experimental manipulations is consistently 

unrelated to working memory capacity, processing speed, and general intelligence. Moreover, 

manipulation-specific factors did not show any consistent correlational pattern with each other, 

indicating that executive functions required by the different experimental manipulations are 

divergent rather than unitary. This is in line with  recent results suggesting that individual 

differences in executive functions, specifically inhibition, may not be as unitary as suggested 

(Rey-Mermet, Gade, & Oberauer, 2018; Stahl et al., 2014). In sum, correlations between 

difference measures from executive functioning tasks both with each other and with external 

criteria seem to be small and largely inconsistent (Hedge et al., 2018; Rey-Mermet et al., 2018; 

Stahl et al., 2014), calling into question (1) whether individual differences in executive functions 

are unitary at all and (2) whether they underlie the relationship between WMC, PS and 

intelligence. 

Instead, only variance consistent across experimental manipulations showed relationships 

with the three covariates. Specifically, behavioral RTs in EF tasks showed medium-sized 

negative relationships with working memory capacity and general intelligence (r = -.49 to -.55), 

and a large positive relationship with PS from ECTs (r = .77). P3 latencies showed medium 

correlations with processing speed (r = .40), a small negative correlation with WMC (r = -.28), 

but no relationship with intelligence. Finally, N1 latencies showed no significant relationships 

with any of the three covariates. While smaller relationships of ERP latencies are often observed 

due to their tendency for lower reliability (Cassidy, Robertson, & O’Connell, 2012), the present 

results do not suggest that this is a problem, because residual error variance captured only a 

small proportion of variance in manifest ERP latencies. Nevertheless, it is important to note that 

Manuscript 4 - Processing Speed, Working Memory, and Executive Functions:
Independent or inter-related predictors of general intelligence 150



PS, WM, AND EF AS PREDICTORS OF G  36 

model fit was unsatisfactory for all structural equation models including ERP latencies, 

especially P3 latencies, and the covariates (i.e. intelligence, WMC, and PS). Thus, the results for 

ERP latencies need to be replicated with tasks better suited for the EEG and a larger sample. 

Until then they should be interpreted with caution. 

Although relationships of ERP latencies with intelligence were smaller and not as 

consistent as suggested by results from a recent study (Schubert, Hagemann, & Frischkorn, 

2017), the present results replicated the finding that the speed of higher-order cognitive processes 

occurring later in the stream of neural processing is related to cognitive processes. In detail, 

latencies of the N1 component showed no significant relationship with general intelligence, 

working memory capacity, and processing speed, while latencies of the P3 component were 

positively correlated with processing speed, and negatively correlated with WMC. These results 

are in line with the theoretical interpretation by Schubert et al. (2018) and further support the 

idea that specific neural or cognitive processes underlie the relationship between general 

intelligence and information processing (Kievit, Davis, Griffiths, Correia, & Henson, 2016; 

McVay & Kane, 2012; van Ravenzwaaij, Brown, & Wagenmakers, 2011). 

Speed of higher-order information processing: Basis of general intelligence? 

Although behavioral results indicated that processing speed measured in both EF tasks 

and ECTs is related to intelligence and WMC, the present results did not replicate the large 

relationship between latencies of later ERP components (P2, N2, and P3) with general 

intelligence (Schubert, Hagemann, & Frischkorn, 2017). In fact, the present results did not show 

any correlation of P3 latency with general intelligence. Nevertheless, there was a small 

correlation of P3 latency with working memory capacity (r = -.28) and a medium correlation 

with basic information processing speed (r = .40). Still, the non-significant correlation of P3 
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latency with general intelligence in the present study and the overall smaller correlations demand 

an explanation. 

One important aspect is that the present study used considerably different tasks. On the 

one hand the present tasks were more complex resulting in longer reaction times and more errors. 

And on the other hand, the present tasks integrated multiple cognitive processes to be performed 

simultaneously. The study by Schubert et al. (2017) used elementary cognitive tasks such as the 

Posner Letter matching task or the Sternberg task, whereas the present study measured latencies 

of ERP components in more complex executive functioning tasks. In detail, ECTs are designed 

to systematically vary the demand on one specific cognitive process (Hick, 1952; Posner & 

Mitchell, 1967; Sternberg, 1969). Thus, individual differences in latencies of ERPs computed in 

ECTs may specifically capture individual differences in the speed of this specific process (e.g., 

memory retrieval) the ECTs are designed to tap. 

In contrast, the tasks used in the present study required at least two different cognitive 

processes while processing the target stimulus. In all three tasks, a decision with respect to the 

target stimulus had to be made, while additionally irrelevant information had to be ignored (i.e., 

inhibition in the ANT, and in flanker blocks in the Shifting and N-Back task), the decision task 

to be conducted had to be determined (i.e., shifting), or the target stimulus had to be encoded in 

memory while outdated information was being removed (i.e., updating in the N-back task). It is 

likely that these different processes run at least partly in parallel. As soon as there is a latency 

jitter between this two processes this will smear out the ERP (Ouyang, Herzmann, Zhou, & 

Sommer, 2011) and render the two processes inseparable. Thus, individual differences in average 

ERP latencies may mix up individual differences with respect to the decision process and other 

processes such as inhibition, updating, and shifting.  
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Results from both behavioral and neural measures suggested that individual differences 

specific to executive functions were not related to each other and other cognitive processes. 

However, the variance stemming from these EF processes might still be reflected in latencies of 

ERP components in addition to variance due to individual differences of the decision process. 

This uncorrelated additional variance may have masked the strong relationship of purely 

decision-specific variance in the latency of later ERP components with general intelligence. 

Processing speed, working memory capacity and general intelligence: The missing link  

Neural speed of information processing showed small and inconsistent relationships with 

general intelligence, working memory capacity, and processing speed. Nevertheless, the present 

results replicate the negative relationship (r = -.54) of behavioral processing speed with both 

intelligence and WMC and the strong relationship between the latter processes (Ackerman et al., 

2005; Kyllonen & Christal, 1990; Schmiedek et al., 2007; Schmitz & Wilhelm, 2016; Schubert et 

al., 2015). Moreover, results still showed that individuals with higher working memory capacity 

and faster behavioral processing speed have shorter latencies of the P3 component. Taken 

together, we observed a considerable overlap between individual differences in speed of 

information processing, working memory and general intelligence that requires a theoretical 

explanation. 

Even though researchers have often argued for a causal relationship between basic 

cognitive processes such as processing speed or working memory and general intelligence, there 

may also be a confounding variable that affects all these different cognitive processes. For 

instance, a recent study using a psychopharmacological manipulation of processing speed with 

nicotine indicated that the speed of neural information processing might not causally underlie 

individual differences in general intelligence (Schubert, Hagemann, Frischkorn, & Herpertz, 
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2018). In detail, nicotine administration did increase neural as well as behavioral processing 

speed, while not showing any effect on performance in a matrix reasoning task. Hence, 

processing speed may not causally underlie individual differences in intelligence despite being 

correlated with intelligence. 

Conclusion 

Altogether, the present results further emphasize the important role of processing speed 

and working memory for individual differences in general intelligence. In contrast, executive 

functions did not underlie either individual differences in processing speed or working memory 

capacity and thus did not explain why these two domains are related to general intelligence. 

Nevertheless, it is reasonable to assume that individual differences in both processing speed and 

working memory capacity arise due to similar limitations in the cognitive system (Meiran & 

Shahar, 2018; Wilhelm & Oberauer, 2006). A promising approach to further investigate this idea 

might lie in joining theoretically grounded measures for behavioral indicators of processing 

speed and working memory capacity (e.g. cognitive models; Frischkorn & Schubert, 2018), with 

biological indicators of neural processing related to these two processes (c.f. Schubert, Nunez, 

Hagemann, & Vandekerckhove, 2018).  More comprehensive insights on the basic cognitive 

processes underlying individual differences in general intelligence may thus be gained by 

associating structural and function architectural features of the brain related to intelligence 

(Hilger, Ekman, Fiebach, & Basten, 2017; Menon & Uddin, 2010) with cognitive process 

domains such as working memory capacity and processing speed. Ultimately, this may provide 

the integration of working memory capacity and processing speed as related predictors of 

intelligence that could not be reached by executive functions. 
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Tables 

Table 1 

Descriptive Statistics for the Executive Functioning tasks 

Task Block Task Shifting Flanker

Control LM 583.23 (94.12) 0.93 (0.01)

Control OE 679.28 (130.57) 0.80 (0.02)

Switch 1'383.33 (306.83) 0.95 (0.09)

Repeat 1'181.51 (245.18) 0.97 (0.08)

congruent 1'176.39 (249.79) 0.98 (0.03)

neutral 1'181.13 (246.60) 0.98 (0.03)

incongruent 1'215.83 (251.07) 0.98 (0.03)

congruent 1'072.24 (234.69) 0.99 (0.02)

neutral 1'080.16 (242.77) 0.99 (0.02)

incongruent 1'132.30 (248.04) 0.99 (0.03)

Block Match Flanker

False 1'108.53 (186.25) 0.91 (0.10)

True 911.32 (190.45) 0.95 (0.06)

no 1'059.88 (189.14) 0.95 (0.08)

congruent 1'144.80 (202.73) 0.94 (0.09)

neutral 1'106.65 (190.48) 0.93 (0.10)

incongruent 1'133.33 (202.27) 0.94 (0.08)

no 843.02 (169.66) 0.97 (0.04)

congruent 912.05 (163.71) 0.97 (0.05)

neutral 859.21 (163.17) 0.96 (0.05)

incongruent 934.95 (165.75) 0.97 (0.05)

Cue Flanker

congruent 703.76 (93.69) 1.00 (0.00)

neutral 684.50 (85.34) 1.00 (0.00)

incongruent 825.63 (103.92) 0.98 (0.05)

congruent 669.78 (97.38) 1.00 (0.00)

neutral 660.10 (90.57) 1.00 (0.00)

incongruent 809.02 (102.68) 0.98 (0.04)

congruent 653.44 (92.16) 1.00 (0.00)

neutral 652.69 (90.99) 1.00 (0.00)

incongruent 790.15 (105.19) 0.98 (0.04)

congruent 593.61 (93.37) 1.00 (0.00)

neutral 593.61 (88.29) 1.00 (0.00)

incongruent 706.48 (113.98) 0.99 (0.03)

Repeat

Switch
Shifting

MRT (SDRT) MPc (SDPc)

Shifting (SH)

SH Flanker

Note.  RT = Reaction Time in ms; Pc = Proportion correct responses; LM = Less More; OE = Odd-Even

no

central

double

spatial

ANT

2-Back 

Flanker

False

True

2-Back

N-Back
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Table 2 

Descriptive statistics for the ERP latencies in the Executive Functioning tasks 

Task Block Task Shifting Flanker

M (SD) M (SD)

Control LM 117.41 (24.27) 465.39 (89.93)

Control OE 118.01 (23.88) 467.83 (91.32)

Switch 120.43 (22.39) 473.87 (92.62)

Repeat 120.59 (21.54) 466.81 (96.82)

congruent 114.84 (22.81) 492.48 (88.66)

neutral 114.16 (24.46) 497.88 (105.80)

incongruent 116.44 (23.67) 489.48 (82.99)

congruent 112.72 (22.91) 487.65 (87.63)

neutral 114.52 (23.57) 480.70 (96.00)

incongruent 115.01 (22.13) 481.13 (85.33)

Block Match Flanker

False 126.10 (25.49) 505.05 (97.14)

True 130.29 (25.88) 478.47 (101.20)

no 121.49 (28.32) 510.05 (97.96)

congruent 122.86 (25.26) 512.43 (101.48)

neutral 122.86 (28.14) 495.34 (91.48)

incongruent 131.90 (27.12) 505.58 (109.58)

no 121.50 (24.79) 508.64 (84.91)

congruent 121.32 (26.31) 501.34 (85.81)

neutral 122.84 (24.23) 464.29 (76.57)

incongruent 131.78 (24.34) 469.60 (99.87)

Cue Flanker

congruent 144.05 (30.91) 431.58 (52.40)

neutral 148.33 (28.00) 440.05 (56.18)

incongruent 150.61 (31.07) 448.16 (51.45)

congruent 140.80 (28.54) 425.77 (62.13)

neutral 142.43 (29.97) 419.55 (55.21)

incongruent 149.54 (31.73) 436.70 (61.62)

congruent 135.93 (24.54) 416.18 (60.74)

neutral 137.48 (20.83) 408.56 (51.77)

incongruent 136.59 (24.30) 425.86 (49.24)

congruent 127.67 (17.61) 422.12 (69.08)

neutral 131.81 (17.70) 418.43 (70.76)

incongruent 130.47 (22.34) 431.10 (61.16)

spatial

Shifting (SH)

SH Flanker

2-Back

2-Back 

Flanker

Note . Lat = latency, LM = Less More, OE = Odd-Even;

N1 Lat P3 Lat

Shifting
Switch

Repeat

N-Back

False

True

ANT

no

central

double
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Table 3 

Descriptive Statistics for the elementary cognitive tasks 

 

Task Block Match

False 673.90 (118.19) 0.99 (0.03)

True 623.83 (105.12) 0.99 (0.02)

False 753.08 (141.04) 0.99 (0.02)

True 693.93 (120.58) 0.98 (0.03)

False 885.29 (193.78) 0.99 (0.02)

True 882.70 (202.77) 0.98 (0.03)

False 1051.46 (291.60) 0.98 (0.04)

True 1017.01 (250.26) 0.97 (0.05)

Note.  RT = Reaction time in ms; Pc = Proprotion correct; PI = Physical 

Identity; NI = Name Identity; S3 = Set Size 3; S5 = Set Size 5.

MRT (SDRT) MPc (SDPc)

Posner

Sternberg

PI

NI

S3

S5
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Figures 

 

Figure 1. Trial Procedure of the three EF tasks for (A) Task Shifting with red (dark) as cue for 

less/more decision and green (light) for odd/even decision (Switching Task), (B) Updating (N-

Back task), and (C) Inhibition (Attention Network Test, ANT). Presentation times are given 

below the different screens in the trial procedure. In the Shifting task and the N-Back task, the 

flanker stimuli as shown above were only presented in the flanker blocks. The other blocks in 

these two tasks did not include flanker stimuli and only showed the central target stimulus.  
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Figure 2. Grand Averages of the ERPs in the three executive function tasks across the 

experimental blocks. More detailed differences between specific experimental functions were 

omitted for readability. Time is displayed on the x-axis in milliseconds and the potential on the 

y-axis in µV. N1 latency was determined at Fz, and P3 latency at Pz.  
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Figure 3. Descriptive Plots displaying the effects of experimental manipulations on behavioral 

RTs in the three EF tasks. The top panel (A) displays the effects in the Shifting task, the mid 

panel (B) the effects in the N-Back task, and the bottom panel (C) the effects in the ANT.  
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Figure 4. Path-diagrams of the Bi-factor models for behavioral RT in the three executive 

function tasks. The top part (A) shows the model for the shifting task (Shift), the middle part (B) 

shows the model for the N-Back task, and the lower part (C) the model for the Attention 

Network Test (ANT). All loadings that are not explicitly stated were fixed to one and 

unstandardized parameters are reported. 
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Figure 5. Path-diagrams of the Bi-factor models for N1 latency in the three executive function 

tasks. The top part (A) shows the model for the shifting task, the middle part (B) shows the 

model for the N-Back task, and the lower part (C) the model for the ANT. All loadings that are 

not explicitly stated were fixed to one and unstandardized parameters are reported. 
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Figure 6. Path-diagrams of the Bi-factor models for P3 latency in the three executive function 

tasks. The top part (A) shows the model for the shifting task, the middle part (B) shows the 

model for the N-Back task, and the lower part (C) the model for the ANT. All loadings that are 

not explicitly stated were fixed to one and unstandardized parameters are reported.  
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Figure 7. Path-diagrams for SEM of behavioral reaction times (RTs) in three EF tasks with the 

three covariates processing speed (PS), intelligence (Gf), and working memory capacity (WMC). 

Gf indicators are: verbal (Verb), numerical (Num), and figural (Fig) score from the BIS. 

Indicators for WMC are: proportion correct in a memory updating (MU), a sentence span (SS), 

an operation span (OS), and a spatial short-term memory (SSTM) task. Processing Speed 

indicators are: name identity (NI), and physical identity (PI) RTs from the Posner task (P), and 

set size 3 (S3) and set size 5 (S5) RTs from the Sternberg task (S). The top part (A) shows a 

correlational model, whereas the bottom part (B) shows a simplified model joining PS and EF 

performance into one general processing speed factor and Gf and WMC into a factor for higher 

cognitive abilities. Manipulation-specific factors of EF tasks are not depicted as all relationships 

of these factors with other factors were fixed to zero. All loadings that are not explicitly stated 

were fixed to one. Parameters are unstandardized except for correlations and differ all 

significantly from zero. 
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Figure 8. Path-diagrams for SEM of ERP latencies in three EF tasks with the three covariates 

processing speed (PS), intelligence (Gf), and working memory capacity (WMC). Gf indicators 

are: verbal (Verb), numerical (Num), and figural (Fig) score from the BIS. Indicators for WMC 

are: proportion correct in a memory updating (MU), a sentence span (SS), an operation span 

(OS), and a spatial short-term memory (SSTM) task. Processing Speed indicators are: name 

identity (NI), and physical identity (PI) RTs from the Posner task (P), and set size 3 (S3) and set 

size 5 (S5) RTs from the Sternberg task (S). The top part (A) shows the model for N1 latencies, 

and the bottom part (B) shows the model for P3 latencies. Manipulation-specific factors of EF 

tasks are not depicted as all relationships of these factors with other factors were fixed to zero. 

All loadings that are not explicitly stated were fixed to one. Parameters are unstandardized 

except for correlations and differ all significantly from zero. 
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