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Abstract. We characterize the inconsistency of certain nonlinear systems under mild convexity require-
ments and without need for a regularity assumption. The result is used to establish a duality result for
Pareto optimal points.

1. The present note is a continuation of [5]. There for Y a real topological vector
space, P C Y a nonvoid convex coné, and S C Y X IR a nonvoid set, the inconsistency
of the system

(y,t)eS, ye-P, t<0
had been characterized by the existence of y* € P* (P* the polar cone of P ) such that
‘ 0<t forall (y,t)€ S satisfying (y*,y}<0.
In order to make the necessity part of this characterization valid one needs first a con-
vexity assumption, namely that the set D := {y € Y|(y,t) € S,t < 0} is convex, and
second one needs a so called regularity assumption, which may take various forms. The
simplest regulé.rity assumption, but also the least practical for many applications, requi-
res the set D to be open in ¥'. Another regularity assumption, which in essence goes back
to 3], requires that D is open in Sy (Sy the projection of S onto Y) and Sy is convex
with Oy € int Sy. This assumption is more practical, but still has its drawbacks. Here,
similarly to [1], we want to describe a simple approach which does not need any regula-
rity assumption at all, yet gives a necessary and sufficient condition for the inconsistency
of the above system. IR is replaced by a more general vector space Z, permitting the
consideration of Pareto optimma. We conclude with a duality result in scalar and vectorial

form respectively.

2. From now on we shall make the following assumptions :
Y, Z are real topological vector spaces, with Y being locally convex;
PCY and @ C Z are nonvoid convex cones, with Pclosed , Q open, and Q # Z;
Pt cY* and @ C Z* are the nonnegative polar cones of P and Q;
SCcYxZisa given nonvoid set;

= {2 € Z|(y,z) € S,y € —P} is convex, and for all 2* € Q@+ \ {0z.:} the set
D:={yeY|(y,z) € S,{z*, 2} <0} is convex;
S7 denotes the collection of all finste, nonempty subsets of S.

Note that y € —P and y* € P* imply (y*,y) < 0, whereas z € —Q and 2* € Q* \ {0z.}
imply (2*,2) < 0. For simplicity we write {0} instead of {0z.} .
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Theorem 1. The system
(1) (v,2)€ S, ye-P, z2€-Q
has no solution if, and only if, there exists z* € Q% \ {0} with the property that

2) for all Q€ S/ there exists y* € P* such that -
(z*,2) 20 forall (y,z) € satisfying (y*,y) <0.

Proof: a) Assume that (2) is satisfied with some 2* € Q* \ {0}. Then (1) cannot have
a solution (7,%). Otherwise with 2 := {(7,7)} we would have for y* € P* as given by
(2) that {(y*,7) < 0 and thereby {z*,%) > 0, whereas from z € —Q and 2* € Q* \ {0}
follows (2*,%) < 0, a contradiction. ‘
b) Assume that (1) has no solution. Then the convex set V introduced in the assumptions
is disjoint from the open convex cone —@Q. Hence by the weak separation theorem for
convex sets there exists z* € Q* \ {0} such that {z*,2) > 0forall z€ V (if V is empty,
then choose 2* € @t \ {0} arbitrarily, which is possible since Q # Z}. Then the system
(y,2) €S8, ye-P, (z*,2)<0
has no solution. For the convex set D introduced in the assumptions this means that
DN —P =9. Let Q be a finite, nonempty subset of S. Let Dg := {y € Y|(y,2) € Q,
(2*,2z) < 0}. If Do =@, then choose y* =0. If Dg # @, then from the convexity of D
follows conv Dg C D. Hence conv DgN —P = §. Since conv Dgq is convex, compact and
P is convex, closed and Y is locally convex, the strong separation theorem gives y* € P+
such that {(y*,y) > 0 for all y € conv Dgq, hence for all y € Dg. So from {y*,y} < 0 and
(y,2) € Q follows y € Dq, i.e., {2*,2) > 0. q.e.d.

We mention that in order to obtain in (2) the slightly stronger but more familiar "La-
grangian” statement 0 < (y*,y} + (2*, 2) for all (y,2) € {7, not only stronger convexity

requirements are needed (e.g. .S convex), but also a regularity assumption — see [1].

Of particular interest is the case that
S:=(fxg)(X)+ (P xclQ),
where X is a convex set and f : X — Y,g : X — Z are given mappings. With this
specialization, since P + P = P and ¢l Q + Q = @Q, the inconsistency of (1) means the
inconsistency of the system
zeX, [lz)e-P, g(z)e-Q.

Statement (2) takes the following form :

For all W € X/ there exists y* € Pt such that

(2*,9(z)) =20 forall zeW satisfying (y*, f(z))<0.

The convexity of D resp. V in this case is satisfied if for the multivalued mappings




()= flg~ )+ Prresp. () :=g(f!(-)) +cl Q one has that ¥(C) is convex for all
convex subsets C C Z resp. CC Y. ’

Motivated by [7] we give a vector-valued version of Theorem 1.

Theorem 2. The system (1) has no solution if, and only if,

(3) { for all @ € S/ there exists y* € PT such that
z¢ —Q for all (y,2) € O satisfying {y*,y) <0.

Proof: If (1) has no solution, then there exists z* € QT \ {0} such that (2) is satisfied,
and this implies (3) since otherwise 2 € —Q would imply (z*, z} < 0. Conversely, let (3)
hold. Then (1) has no solution (7, z). Otherwise we would set Q := {(7,%)} and obtain
from(3) an y* € P* such that {y*, 5} < 0, hence 7 ¢ —Q. This contradicts (7, %) being a
solution of (1). q.e.d.

8. Theorem 1 and Theorem 2 give rise to a duality theorem (compare [2] and [4])
in scalar and in vectorial form respectively. We first turn to the vectorial case, starting
from Theorem 2. As before we let

V:={be Z|(y,b)€ S,y € —-P},

and we let
W := {b€ Z| for all 2 € S/ there exists y* € P such that

z—b¢ —Q for all (y,2) € Q satisfying (y*,y} < 0}.
te Z is called Pareto minimalin V ifbeV and b—5 ¢ —QforallbeV.
b€ Z is called Pareto mazimalin W iff b€ W and b—b¢ Q forallbe W.

Ifby € V and b3 € W, then b; — by ¢ —Q. Indeed: For by € V let (y1,51) € S with
y1 € —P. Then for all y* € P+ we have {y*,%;) < 0. In particular for the y* € P*
resulting from b, € W with Q := {(y1,61)} we have (y*,31) <0, implying 6; — b3 ¢ —Q.
From this it follows immediately :

IfbeV NW, then 5 is Pareto minimal in V and Pareto maximal in W.

Theorem 8. b € Z is Pareto minimal in V if, and only if, 5€ V NW.

Proof: a) Assume that b is Pareto minimal in V. Then 5 € V, and the system
(y,b)e S, ye—-P, b—-be-Q
has no solution. By Theorem 2, where we have to replace S by S — (0, 3), we obtain that
bew.
b) That & € V NW implies § being Pareto minimal in V has already been observed. q.e.d.

The scalar version is fully analogous.' Again we let
V ={be Z|(y,b) € S,y € —P},

3




and for z* € Q1 \ {0} we let
W (z*) :={b€& Z| for all @ € S/ there exists y* € P* such that
(z*,z—b) > 0 for all (y,2) €  satisfying (y*,y} < 0}.

By a similar reasoning as above we obtain: If ; €V and b3 €W (2*), then {2*,5;—b5) > 0.
From this it follows immediately :

If b€V NW(z*), then gxg&l(z.,b)=(z ,b)=b€r§,zt§.)(z , by .

Theorem 4. b € Z is Pareto minimal in V if, and only if, there exists z* € @t \ {0}
such that b € V N W (z*).

Proof: The proof is analogous to that of Theorem 3. Note that from (z*,5 — %) > 0 and

z* € Q1 \ {0} follows b — b ¢ —Q. q.e.d.
For fixed 2* € Q1 \ {0} let us consider the quantities
o= ?g‘x}(z 2y, PBti= zex{}lva():')(z ' 2).

There holds

T i . Q, {v*, ) <
s nggi y.sgg+(mf{(z,z)|(y,z)e Av*,v) <0})

> inf (inf{(z*,2)|(v,2) € O, (v*,9) S O
z sup nf (nf{(=%,2)(v,2) € 0, (" v} < O})

= e (inf{(2*,2)|(y,2) € S, (y*,y) < 0})

=: .
Hence in the situation of Theorem 4 one has o = §* > 4. Under a suitable regularity
assumption ( see [5], [6]) one has even o = 8. But without such a regularity assumption
one may have a duality gap o > #, and the value 8* is designed so as to close eventually

this gap.
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