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1 Introduction

The theory of random matrices had its origins in the applications, namely in statistics,
where John Wishart analyzed properties of multivariate normal populations (see [67]), and
mathematical physics, where Eugene Wigner studied energy levels of heavy nuclei (see
[64] and [65]). As quantum mechanics predicts, these energy levels are eigenvalues of self-
adjoint operators. As described in [27] and [14], Wigner depicted these operators by large
dimensional random matrices with independent entries. He found that asymptotically,
the empirical distribution of the eigenvalues has a semicircular shape, which led to the
famous Wigner’s semicircle law.

In his experiments with heavy nuclei, Wigner also analyzed the distribution of the
gaps in the set of energy levels, which he found to be independent of the underlying
material, thus universal. Surprisingly, this gap distribution was successfully reproduced
by his random matrix models. For Gaussian ensembles with independent entries and so
that the distribution of the entire ensemble is invariant under conjugation by orthogo-
nal/unitary matrices, Dyson, Gaudin and Mehta were able to analytically compute the
exact gap distribution. This gave rise to the Wigner-Dyson-Mehta (WDM) universality
conjecture, which states that local spectral statistics of random matrices should be inde-
pendent of the exact distribution of their entries, and coincide with the Gaussian case.
First breakthroughs in proving WDM universality were achieved for invariant ensembles,
whose entries were not necessarily Gaussian (and then necessarily not independent) any-
more. But due to a lack of analytical tools or concepts, progress was very slow for general
random matrices with independent entries. Eventually in 2009, the so-called local law was
developed, which turned out to be a powerful tool both to prove the WDM-conjecture for
Wigner matrices and to give insights into the mechanisms that govern convergence of the
empirical distribution of the eigenvalues to the semicircle distribution, the latter being
the main focus of this text.

Ever since the historical developments just described, the reach of the theory of random
matrices has grown tremendously, with fruitful interactions in the fields of information
theory (e.g. wireless communication, see [62]), biology (e.g. RNA analysis, see [5]) and
pure mathematics (e.g. free probability, see [47]).

But what are random matrices? In the context of the present thesis, a random matrix is
an Hermitian n×n matrix Xn, whose entries Xn(i, j) are real or complex random variables
on some probability space (Ω,A,P). Then Xn possesses n real eigenvalues λXn1 ≤ . . . ≤
λXnn , all of them random. We want to analyze the following problem: Given a very large
dimensional random matrix (choosing n very large) and picking uniformly at random one
of the eigenvalues, where on the real line will this randomly picked random eigenvalue
be located? Of course, the outcome of this experiment will follow a certain probability
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1 Introduction

distribution. To answer the question, we form the empirical spectral distribution (ESD)

σn ..=
1

n

n∑
i=1

δλXni
,

where for each a ∈ R we denote by δa the Dirac measure in a. It is clear that σn is actually
a random probability measure, for it depends on the realization of the eigenvalues, which
in turn depend on the realization of the matrix entries. For each interval (a, b) ⊆ R,
the (random) number σn((a, b)) yields the proportion of the eigenvalues that fall into
this interval. In other words, this is the (empirical) probability that a randomly picked
eigenvalue will lie in the interval (a, b).

Given a sequence (Xn)n, where each Xn is an n×n random matrix, we obtain a sequence
(σn)n of random probability measures, and we can analyze its weak convergence in some
probabilistic sense. For example, a common version of Wigner’s semicircle law states
that if all entries of Xn are standardized random variables which are independent (up to
the symmetry constraint), identically distributed and possess moments of all orders, the
sequence σn converges weakly almost surely to the semicircle distribution σ on the real
line given by its Lebesgue density 1

2π

√
4− x21[−2,2](x) in x (see [6]). That is, we find a

set A ∈ A with P(A) = 1, such that for all ω ∈ A we have that σn(ω) → σ weakly as
n → ∞. Wigner’s semicircle law can be viewed as the central limit theorem in random
matrix theory. It has been developed by Wigner in his papers [64] and [65].

In classical probability theory, the central limit theorem holds even if random variables
are mildly correlated. Therefore, in the context of random matrices, a natural question to
ask is whether one can relax the assumption of independence in Wigner’s semicircle law
and still obtain the semicircle distribution as a limit distribution of the ESDs. Such matrix
ensembles with correlated entries have been studied, for example, in the papers [55], [33],
[32], [37], [15], [30] or [42]. Another interesting way to relax the original assumptions
is to study (periodic and non-periodic) band matrices instead of full matrices. Roughly
speaking, band matrices are obtained from regular matrices by symmetrically setting
certain off-diagonals to zero, thus losing randomness in the system. The ESDs of random
band matrices with independent entries have been studied, for example, in [11] and [14].
Another fruitful and interesting way to deviate from the classical analysis is to study
local convergence behavior of the ESDs to the semicircle distribution. Just as there are
local versions of the central limit theorem (see [34], for example), local versions of the
semicircle law have been established in random matrix theory, starting with [25] in 2009.
These local laws provide very detailed insight into how exactly convergence against the
limiting distribution takes place on very small intervals.

This dissertation will address all the extensions to the classical Wigner’s semicircle
law that we just mentioned. While doing so, it is our goal to provide a rather self-
contained exposition that is not only aimed at the expert in the field, but should also be
understandable to newcomers with only little or no background in random matrix theory.
We will now describe how this dissertation is organized and which contributions it makes.
Some of these contributions lie only in the detail, others might be considered folklore
knowledge that just has not been written down adequately, yet, and then there are, of

12



course, the bigger contributions that make up the main work in this text:

In Chapter 2, we will introduce and analyze in depth the concept of weak convergence for
probability measures and random probability measures. Concerning random probability
measures, we show in Lemma 2.18 that these are exactly stochastic kernels, the latter being
a concept that is known from introductory classes in probability theory. A derivative of
a random probability measure µ is its expected measure Eµ, which plays a major role in
random matrix theory. In Theorem 2.20 we point out some intricacies that arise when
integrating with respect to Eµ. We go on to define the stochastic convergence types of
random probability measures, namely weak convergence almost surely, in probability and
in expectation. In the literature of random matrix theory, especially the concept of weak
convergence in probability is not well motivated, nor characterized. We will do so in
Definition 2.24 and Theorem 2.25. A key observation that we made (which helps not only
with the proof of Theorem 2.25) lies in Lemma 2.28.

In Chapter 3, we introduce the method of moments, a tool to derive weak convergence
of deterministic probability measures. It postulates that probability measures converge
weakly if their moments converge. Theorem 3.5 clarifies how the method of moments can
be extended to random probability measures: Random probability measures converge
weakly in expectation resp. in probability resp. almost surely if their random moments
converge in the same sense. For the proof of this theorem, we make use of Lemma 2.28
again, and our assumptions are very mild. In particular, we do not need compactness
of the target probability distribution, which is (thus unnecessarily) used in texts about
random matrix theory, such as [6] or [39]. A highlight of Chapter 3 is Theorem 3.14,
which can be considered the method of moments for random matrix theory.

In Chapter 4, we present our first ”hard” results of the thesis, using the method of
moments, Theorem 3.14 ii) and iii) with z = 2, thus analyzing the variance of the random
moments. We strengthen the publication [37], where for ”almost uncorrelated” random
matrix ensembles, the semicircle law was shown in probability. We extend their results to
be valid almost surely and for band matrices, where in the latter case we need to impose
conditions on the bandwidth (resp. halfwidth) of the periodic (resp. non-periodic) band
matrices to secure almost sure convergence. We also mildly generalize the model studied
in [37] from ”almost uncorrelated” to ”α-almost uncorrelated” schemes. Here, α > 0
is parameter that controls the correlation decay in the ensemble. As we will point out
in Remark 4.27, α-almost uncorrelated ensembles appear quite naturally when random
matrices with correlated Gaussian entries are studied. The main theorem of Chapter 4 is
Theorem 4.9 for periodic random band matrices, including full matrices as a special case.
Since this statement is multi-dimensional, we will draw many corollaries that exemplify its
reach. Examples that fit almost uncorrelated random matrix ensembles are those matrices
filled with Curie-Weiss or Gaussian random variables. Here, the Curie-Weiss distribution
is a model for the behavior of ferromagnetic particles (spins) at the inverse temperature
β. At low temperatures, that is, if β is large, all magnetic spins are likely to have the same
alignment, resembling a strong magnetic effect. On the contrary, at high temperatures
(if β is small), spins can act almost independently, resembling a weak magnetic effect. In
the end of Chapter 4, we use an elegant argument in Theorem 4.46, which is also one
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1 Introduction

of the main contributions, that allows us to infer asymptotic equivalence of the ESDs of
periodic and non-periodic random band matrices. Therefore, it will help us to extend our
results of Theorem 4.9 to non-periodic random band matrices.

In Chapter 5, we introduce the Stieltjes-transform of finite measures on (R,B). Just as
the method of moments, the Stieltjes transform method is a very popular and established
tool in random matrix theory. However, its relationship to the underlying ESD is much
closer than the moments are. For example, the imaginary part acts as a Lebesgue density
for a probability measure approximating the ESD, and the ESD can be retrieved easily
and constructively from its Stieltjes transform. This relationship will be analyzed in detail
in Section 5.3 and is the main reason that the Stieltjes transform can be used to greatly
enhance knowledge about the convergence mechanisms in semicircle laws.

This leads directly to Chapter 6, where we will derive local laws of various types for
ensembles which we call ”of Curie-Weiss type.” Of course, random matrices with Curie-
Weiss distributed random variables will be of Curie-Weiss type, but so far only for inverse
temperatures β ≤ 1. The local laws now enhance precision of dynamic aspects in random
matrix theory. It gives strong probability bounds on the events that |σn(In)− σ(In)|
converges to zero in probability, where (In)n is a sequence of intervals whose diameters
do not decrease too quickly.

14



2 Weak Convergence

2.1 Spaces of Continuous Functions

On the set R of real numbers we will always consider the standard topology and the
associated Borel σ-algebra B. To study convergence of probability measures on (R,B), it
is useful to get acquainted with certain spaces of functions R → R first. If f : R → R is
a function, we define the support of f as

supp(f) ..= {x ∈ R : f(x) 6= 0}.

Note that by definition, the support of f is always a closed subset of R, and it is immediate
that a point x ∈ R lies in the support of f if and only if for any ε > 0 there is a y ∈ Bε(x),
such that f(y) 6= 0. Here and later, Bδ(z) denotes the open δ-ball around the element z
in a metric space which is clear from the context.

We say that a function f : R→ R vanishes at infinity, if

lim
x→±∞

f(x) = 0.

Denote by C(R) the vector space of continuous functions R → R. We define the three
subspaces

1. Cb(R) ..= {f : R→ R | f is continuous and bounded},

2. C0(R) ..= {f : R→ R | f is continuous and vanishes at infinity} and

3. Cc(R) ..= {f : R→ R | f is continuous with compact support}.

It is clear that
Cc(R) ( C0(R) ( Cb(R) ( C(R),

since the function x 7→ min(1, 1/|x|) lies in C0(R)\Cc(R), the function x 7→ 1R(x) lies in
Cb(R)\C0(R) and the function x 7→ x lies in C(R)\Cb(R). Since all functions in Cc(R),
C0(R) and Cb(R) are bounded, we can equip these spaces with the supremum norm ‖ · ‖∞
defined by

‖f‖∞ ..= sup
x∈R
|f(x)|.

From now on, we will always consider the spaces Cb(R), C0(R) and Cc(R) as vector spaces
normed by the supremum norm. Convergence with respect to this norm is also called uni-
form convergence. To analyze properties of these normed spaces, we introduce continuous
cutoff-functions as in [41, p. 8]:
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2 Weak Convergence

Definition 2.1. For any real numbers L > R ≥ 0 we define the function φR,L : R→ [0, 1]
by

φR,L(x) ..=


1 if |x| ≤ R,
L−|x|
L−R if R < |x| < L,

0 if |x| ≥ L.

Note that for any L > R ≥ 0, φR,L is continuous with compact support [−L,L]. The
following theorem will summarize important properties of Cb(R), C0(R) and Cc(R). We
give a full proof for the convenience of the reader. Parts of the proof are taken from [41].

Theorem 2.2. The following statements hold:

i) Cb(R) is complete, but not separable.

ii) C0(R) is complete and separable.

iii) Cc(R) is not complete, but separable.

iv) Cc(R) is dense in C0(R). C0(R) is the completion of Cc(R).

Proof. i) We first show that Cb(R) is complete: If (fn)n is a Cauchy sequence in Cb(R),
and x ∈ R is arbitrary, then fn(x) is a Cauchy sequence in R, thus converges to a limit
f(x) ∈ R. We need to show that the function x 7→ f(x) ..= limn→∞ fn(x) is continuous
and bounded, and that fn → f uniformly. To show the latter, let ε > 0 be arbitrary, then
choose N ∈ N so large that ‖fn− fm‖∞ ≤ ε for all m,n ≥ N . Then let n ≥ N and x ∈ R
be arbitrary. Then we have for m ≥ N arbitrary that

|f(x)− fn(x)| ≤ |f(x)− fm(x)|+ |fm(x)− fn(x)| ≤ |f(x)− fm(x)|+ ε.

Taking the limit over m yields |f(x)− fn(x)| ≤ ε. Therefore, since n ≥ N and x ∈ R
were arbitrary, ‖f − fn‖∞ ≤ ε for all n ≥ N , which shows fn → f uniformly. This also
implies that f is bounded, since there is an n ∈ N such that ‖f − fn‖∞ ≤ 1, so for x ∈ R
arbitrary we have

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| ≤ 1 + ‖fn‖∞,

which yields ‖f‖∞ ≤ 1 + ‖fn‖∞ <∞.
To show that f is continuous, let xn → x in R. Pick ε > 0 arbitrary, then choose m

large enough, such that ‖fm − f‖∞ ≤ ε
3
, then chose N ∈ N such that for all n ≥ N we

find that |fm(xn)− fm(x)| ≤ ε
3
. Then it holds for all n ≥ N :

|f(xn)− f(x)| ≤ |f(xn)− fm(xn)|+ |fm(xn)− fm(x)|+ |fm(x)− f(x)| ≤ ε

3
+
ε

3
+
ε

3
= ε

and thus f(xn)→ f(x) as n→∞.
Next, we show that Cb(R) is not separable, where we proceed as in [41, p. 9]. The idea

is to construct an uncountable subset F ⊆ Cb, such that for all f, g ∈ F with f 6= g we
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2.1 Spaces of Continuous Functions

have ‖f − g‖∞ = 1. To this end, denote by Z the set of 0-1-sequences, so Z = {0, 1}N.
Note that Z is uncountable. For any sequence z ∈ Z we define

∀x ∈ R : Fz(x) ..=
∑
i∈N

zi · φ 1
10
, 2
10

(x− i)

and F ..= {Fz | z ∈ Z}. Note that all Fz are [0, 1]-valued and continuous. Since Fz(i) = zi
for all z ∈ Z and i ∈ N we find that Fz 6= Fz′ for z 6= z′ ∈ Z, and even ‖Fz − Fz′‖∞ = 1
for z 6= z′ ∈ Z. Therefore, if G ⊆ Cb(R) is any dense subset, for all z ∈ Z there must be a
Gz ∈ G for which ‖Fz −Gz‖∞ ≤ 1

4
holds. But then we find for z 6= z′ that

‖Gz −Gz′‖∞ = ‖Fz − Fz′ − (Fz −Gz)− (Gz′ − Fz′)‖∞

≥ ‖Fz − Fz′‖∞ − ‖Fz −Gz‖∞ − ‖Fz′ −Gz′‖∞ ≥ 1− 1

4
− 1

4
=

1

2
,

so Gz 6= Gz′ . Therefore, G has an uncountable subset and can thus not be countable.
iii) To show that Cc(R) is not complete, we show that it is not closed in the strict superset
C0(R). In fact, we show even more, that is, that Cc(R) is dense in C0(R) (then since
Cc(R) ( C0(R), Cc(R) cannot be closed). This fact is also needed for statements ii) and
iv). So let f ∈ C0(R) be arbitrary. Now consider the sequence of functions (fn)n, where

∀n ∈ N : ∀x ∈ R : fn(x) ..= φn,n+1(x)f(x).

Then (fn)n is a sequence in Cc(R) which converges uniformly to f . To see this, let ε > 0
be arbitrary and N ∈ N be so large that for all x ∈ R with |x| ≥ N we have |f(x)| ≤ ε.
Then for any n ≥ N we have ‖f − fn‖∞ ≤ ε. Indeed, let n ≥ N be arbitrary, then since
for any x ∈ R we find

|f(x)− fn(x)| = |f(x)− φn,n+1(x)f(x)| = |1− φn,n+1(x)| · |f(x)|,

we have |f(x)− fn(x)| ≤ |f(x)| ≤ ε for |x| > n and |f(x)− fn(x)| = 0 for |x| ≤ n.
Next, we will show that Cc(R) is separable. To this end, denote by P the countable set

of all polynomials with rational coefficients and set

Q ..= {p · φn,n+1 | p ∈ P , n ∈ N}.

Then Q is a countable subset of Cc(R). Now let f ∈ Cc(R) and ε > 0 be arbitrary. Since
the support of f is compact, there is an n ∈ N such that supp(f) ⊆ [−n, n]. It follows
that f = φn,n+1f . By the Weierstrass approximation theorem, we obtain a polynomial p
with rational coefficients such that |p(x)− f(x)| ≤ ε for all x ∈ [−(n + 1), n + 1]. Then
for all x ∈ [−(n+ 1), n+ 1] we find

|φn,n+1p(x)− f(x)| = |φn,n+1(p(x)− f(x))| ≤ |φn,n+1| · |(p(x)− f(x))| ≤ ε

and for all x /∈ [−(n+ 1), n+ 1] we obtain |φn,n+1p(x)− f(x)| = 0. As a result, φn,n+1 · p
is ε-close to f .

17



2 Weak Convergence

ii) To show that C0(R) is complete, let (fn)n be an arbitrary Cauchy sequence in C0(R).
This is also a Cauchy sequence in Cb(R), so with i) we know that there is an f ∈ Cb(R)
such that fn → f uniformly. What is left to show is that f vanishes at infinity. To this
end, let ε > 0 be arbitrary and n so large that ‖f − fn‖∞ ≤ ε

2
. Then since fn vanishes at

infinity, we find an R > 0 so large that |fn(x)| ≤ ε
2

whenever |x| ≥ R. It follows for all
x ∈ R with |x| ≥ R that

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| ≤ ε

2
+
ε

2
= ε.

Therefore, f vanishes at infinity. This shows that C0(R) is complete, and to see that C0(R)
is separable, note that we have already seen that Cc(R) is separable and dense in C0(R).
iv) The inclusion Cc(R) ↪→ C0(R) is an isometric embedding with dense image (as shown
in the proof of iii)) and C0(R) is complete as shown in the proof of ii), which makes C0(R)
the completion of Cc(R).

2.2 Convergence of Probability Measures

We will denote the set of measures on (R,B) by M(R), the set of finite measures by
Mf (R), the set of probability measures byM1(R), and the set of sub-probability measures
byM≤1(R). Here, a measure µ on (R,B) is called sub-probability measure, if µ(R) ∈ [0, 1].
Note that

M1(R) (M≤1(R) (Mf (R) (M(R).

As a shorthand notation, if µ ∈M(R) and f : R→ R is measurable, we write

〈µ, f〉 ..=

∫
f dµ

with the convention that when in doubt, x is the variable of integration:

〈
µ, xk

〉
=

∫
xkµ(dx).

Definition 2.3. Let F ⊆ Cb(R) be a linear subspace, then a positive linear bounded
functional I on F is a bounded R-linear map F → R with I(f) ≥ 0 for all f ∈ F with
f ≥ 0.

Lemma 2.4. Let F ⊆ Cb(R) be a linear subspace with Cc(R) ⊆ F . Then for any µ ∈
Mf (R), the map

Iµ : F −→ R
f 7−→ Iµ(f) ..= 〈µ, f〉

defines a positive linear bounded functional on F with operator norm µ(R).
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2.2 Convergence of Probability Measures

Proof. We only need to show that the operator norm is indeed µ(R). To see this, note
that for any K > 0, we have φK,K+1 ∈ F , φK,K+1 ≥ 0 and ‖φK,K+1‖∞ = 1. Further,

Iµ(φK,K+1) = 〈µ, φK,K+1〉 ≥ µ([−K,K]).

Thus, the operator norm of Iµ is at least µ([−K,K]) for all K > 0, hence at least µ(R).
On the other hand, the operator norm is at most µ(R), since for any f ∈ F we find
|〈µ, f〉| ≤ 〈µ, |f |〉 ≤ µ(R) · ‖f‖∞.

The representation theorem of Riesz now states that any positive linear bounded func-
tional I on F ∈ {Cc(R), C0(R), Cb(R)} has the form I = Iµ as in Lemma 2.4.

Theorem 2.5. Let F ∈ {Cc(R), C0(R), Cb(R)} be equipped with the supremum norm. Then
for any positive linear bounded functional I on F , there exists exactly one µ ∈ Mf (R)
with I = Iµ. It then holds ‖I‖op = µ(R).

Proof. The proof is rather lengthy. We refer the reader to [21], where the various repre-
sentation theorems are discussed in detail.

The next lemma will help us infer equality of two finite measures. Notationally, if A is
a subset of a topological space, we denote its boundary by ∂A.

Lemma 2.6. Let µ and ν be two finite measures on (R,B) and let F ⊆ Cc(R) be a dense
subset. Then

i) µ = ν ⇔ µ(I) = ν(I) for all bounded intervals I with µ(∂I) = ν(∂I) = 0,

ii) µ = ν ⇔ ∀ f ∈ Cc(R) : 〈µ, f〉 = 〈ν, f〉 ⇔ ∀ f ∈ F : 〈µ, f〉 = 〈ν, f〉.

Proof. i) ”⇒” is clear, and for ”⇐” we show that µ and ν agree on all finite open
intervals. To this end, note that for any finite measure ρ ∈ Mf (R), the set of atoms
Aρ ..= {x ∈ R | ρ(x) > 0} is at most countable. As a result R\(Aµ∪Aν) is dense in R. For
arbitrary a < b in R, we find sequences (an)n and (bn)n in R\(Aµ ∪Aν) with an ↘ a and
bn ↗ b as n→∞ and an < bn for all n ∈ N. Then we obtain with continuity of measures
from below (note that µ and ν agree on all intervals (an, bn)):

µ((a, b)) = lim
n→∞

µ((an, bn)) = lim
n→∞

ν((an, bn)) = ν((a, b)).

ii) The two ”⇒’s” are clear. Assume for all f ∈ F we have 〈µ, f〉 = 〈ν, f〉. Now if
f ∈ Cc(R) is arbitrary, we find a sequence (fn)n in F such that fn → f uniformly. Due
to continuity of Iµ and Iν on Cc(R) (see Theorem 2.5), we find

〈µ, f〉 = lim
n→∞

〈µ, fn〉 = lim
n→∞

〈ν, fn〉 = 〈ν, f〉 ,

hence 〈µ, f〉 = 〈ν, f〉 for all f ∈ Cc(R). And if 〈µ, f〉 = 〈ν, f〉 for all f ∈ Cc(R), we find
Iµ = Iν on Cc(R), so µ = ν with Theorem 2.5.
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2 Weak Convergence

We are especially interested in convergence behavior of sequences inM1(R), where the
limit may lie in M≤1(R).

Definition 2.7. Let (µn)n∈N be a sequence in in M1(R).

i) The sequence (µn)n∈N is said to converge weakly to an element µ ∈M1(R), if

∀f ∈ Cb(R) : lim
n→∞

〈µn, f〉 = 〈µ, f〉 . (2.1)

ii) The sequence (µn)n∈N is said to converge vaguely to an element µ ∈M≤1(R), if

∀f ∈ Cc(R) : lim
n→∞

〈µn, f〉 = 〈µ, f〉 . (2.2)

Remark 2.8. We would like to shed light on the seemingly innocent Definition 2.7:

1. Weak convergence clearly implies vague convergence. Further, due to Lemma 2.6,
weak and vague limits are unique.

2. In light of Theorem 2.2, it is appropriate to say that the set of test functions for
weak convergence is considerably larger than the set of test functions for vague
convergence. As a result, weak limits are much more restrictive than vague limits,
as clarified by the next two points.

3. The target measures µ ∈ M(R), for which (2.1) can be satisfied for some sequence
(µn)n of probability measures are exactly all µ ∈M1(R). To see this, if (2.1) holds
for some µ ∈M(R) and a sequence (µn)n in M1(R), then we must have µ(R) = 1,
since 1R ∈ Cb(R). On the other hand, if µ ∈ M1(R) is arbitrary, then (2.1) is
satisfied for the sequence (µn)n, where µn = µ for all n ∈ N.

4. The measures µ ∈ M(R), for which (2.2) can be satisfied for some sequence (µn)n
of probability measures are (somewhat surprisingly) exactly all µ ∈ M≤1(R). To
see this, if (2.2) holds for some µ ∈M(R) and a sequence (µn)n inM1(R), then we
have for any m ∈ N that 〈µn, φm,m+1〉 →n 〈µ, φm,m+1〉, so 〈µ, φm,m+1〉 ≤ 1, which
entails µ([−m,m]) ≤ 1 for all m ∈ N. Since measures are continous from below,
we conclude that also µ(R) ≤ 1, so µ is a sub-probability measure. On the other
hand, if µ ∈ M≤1(R) is arbitrary, then define α ..= 1 − µ(R) ∈ [0, 1] and for all
n ∈ N : µn ..= µ + αδn. Then (µn)n is a sequence of probability measures and
(2.2) is satisfied for the sequence (µn)n. To see this, let f ∈ Cc(R) be arbitrary
and N ∈ N be so large that supp(f) ⊆ [−N,N ]. Then it holds for all n ≥ N that
〈µn, f〉 = 〈µ, f〉+ αf(n) = 〈µ, f〉.

5. As a result of points 3. and 4., the limit domains for weak and vague convergence
in Definition 2.7 are exact. The probability measures lie vaguely dense in the sub-
probability measures.
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2.2 Convergence of Probability Measures

Lemma 2.9. Let (µn)n∈N be a sequence of probability measures and µ a sub-probability
measure on (R,B). Then (µn)n∈N converges vaguely (resp. weakly) to µ if and only if every
subsequence (µn)n∈J , J ⊆ N, has a subsequence (µn)n∈I , I ⊆ J , that converges vaguely
(resp. weakly) to µ.

Proof. Of course, we only need to show ”⇐”. We assume the statement to be false, that
is, that it is not true that (µn)n∈N converges vaguely (resp. weakly) to µ. Then we find a
continuous function f : R→ R which has compact support (resp. which is bounded) and
an ε > 0 such that |〈µn, f〉 − 〈µ, f〉| ≥ ε for all n ∈ J , where J ⊆ N is an infinite subset.
But now we find a subsequence (µn)n∈I , I ⊆ J that converges vaguely (resp. weakly) to
µ. In particular, we find an n ∈ I ⊆ J such that |〈µn, f〉 − 〈µ, f〉| < ε, which leads to a
contradiction to our assumption that the statement is false.

Vague convergence of probability measures can also be characterized by convergence of
the integrals 〈µn, f〉 for all f ∈ C0(R).

Lemma 2.10. A sequence (µn)n inM1(R) converges vaguely to an element µ ∈M≤1(R),
if and only if

∀f ∈ C0(R) : lim
n→∞

〈µn, f〉 = 〈µ, f〉 .

Proof. The condition is obviously sufficient for vague convergence. We now show necessity:
Let f ∈ C0(R) and then ε > 0 be arbitrary. Since Cc(R) ⊆ C0(R) is dense by Theorem 2.2,
we find an fc ∈ Cc(R) with ‖f − fc‖∞ ≤ ε/2. Then

|〈µn, f〉 − 〈µ, f〉|
≤ |〈µn, f〉 − 〈µn, fc〉|+ |〈µn, fc〉 − 〈µ, fc〉|+ |〈µ, fc〉 − 〈µ, f〉|
≤ ε+ |〈µn, fc〉 − 〈µ, fc〉|

Since µn → µ vaguely, we obtain lim supn→∞ |〈µn, f〉 − 〈µ, f〉| ≤ ε. Since ε > 0 was
arbitrary, this yields limn→∞ 〈µn, f〉 = 〈µ, f〉.

If µn → µ weakly, we know that 〈µn, f〉 → 〈µ, f〉 for all f ∈ Cb(R). Often, we would
like to be able to conclude 〈µn, f〉 → 〈µ, f〉 for more general functions f . The next lemma
will be of great use in this respect, see also [20, p. 101].

Lemma 2.11. Let (µn)n and µ be probability measures such that µn → µ weakly as
n→∞. Let h : R→ R be continuous. Then to show

〈µn, h〉 −−−→
n→∞

〈µ, h〉 ,

it is sufficient to show that there is a strictly positive continuous function g : R→ (0,∞)
such that h/g vanishes at infinity and supn∈N 〈µn, g〉 <∞.

Proof. Let C ..= supn∈N 〈µn, g〉 ∈ [0,∞). We first show that also 〈µ, g〉 ≤ C. To this end,
let K > 0 be arbitrary, then gφK,K+1 ∈ Cb(R), so we know that

〈µn, gφK,K+1〉 −−−→
n→∞

〈µ, gφK,K+1〉 .
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2 Weak Convergence

Since for all n ∈ N, 0 ≤ 〈µn, gφK,K+1〉 ≤ 〈µn, g〉 ≤ C, also 〈µ, gφK,K+1〉 ∈ [0, C]. But
K > 0 was arbitrary. Therefore, by monotone convergence, we find

〈µ, g〉 = lim
K→∞

〈µ, gφK,K+1〉 ∈ [0, C].

This shows that 〈µ, g〉 ≤ C. Now let ε > 0 be arbitrary, then K > 0 so large that |h|/g ≤
ε/C on [−K,K]c (where if A is a set, we denote its complement by Ac, where we assume
that the superset of A is clear from the context. For example, [−K,K]c = R\[−K,K]).
We conclude that for all ν ∈ {µ, (µn)n},

|〈ν, h(1− φK,K+1)〉| ≤
〈
ν,
|h|
g
· g(1− φK,K+1)

〉
≤ ε

C
· C = ε.

In particular, these integrals are well-defined. Since also for any ν ∈ {µ, (µn)n},
〈ν, hφK,K+1〉 is well-defined, h is ν-integrable as a sum of ν-integrable functions. We
find for ε > 0 and K > 0 as picked above, that for all n ∈ N:

|〈µn, h〉 − 〈µ, h〉|
≤ |〈µn, h(1− φK,K+1)〉 − 〈µ, h(1− φK,K+1)〉|+ |〈µn, hφK,K+1〉 − 〈µ, hφK,K+1〉|
≤ ε+ |〈µn, hφK,K+1〉 − 〈µ, hφK,K+1〉|,

where the last summand converges to 0 as n→∞, such that

lim sup
n→∞

|〈µn, h〉 − 〈µ, h〉| ≤ ε.

Since ε > 0 was arbitrary, we find 〈µn, h〉 → 〈µ, h〉 as n→∞.

As we just saw in Remark 2.8, vague convergence allows the escape of probability mass.
The concept of tightness prevents this from happening:

Definition 2.12. A sequence of probability measures (µn)n on (R,B) is called tight, if
for all ε > 0 there exists a compact subset K ⊆ R such that

∀n ∈ N : µn(Kc) ≤ ε.

A sufficient condition for tightness is given in the next Lemma, which we adopted from
[20, p. 104]:

Lemma 2.13. Let (µn)n be a sequence of probability measures on (R,B). If there exists
a measurable non-negative function φ : R→ R with φ(x)→∞ for x→ ±∞ and

sup
n
〈µn, φ〉 <∞,

then (µn)n is tight. In particular, this holds true if

sup
n

〈
µn, x

2
〉
<∞.
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2.2 Convergence of Probability Measures

Proof. Let C ..= supn 〈µn, φ〉 <∞. Then it holds for any n ∈ N and K > 0 that

C ≥ 〈µn, φ〉 ≥
〈
µn,1[−K,K]c · inf

|x|>K
φ(x)

〉
=
〈
µn,1[−K,K]c

〉
· inf
|x|>K

φ(x).

Since inf |x|>K φ(x)→∞ as K →∞, the statement follows.

Lemma 2.14. Let (µn)n be a sequence in M1(R) and µ ∈ M≤1(R) such that µn → µ
vaguely as n→∞, then the following statements are equivalent:

i) (µn)n is tight.

ii) µ is a probability measure.

iii) µn converges weakly to µ.

Proof. i)⇒ iii) Let f ∈ Cb(R) be arbitrary and set s ..= max(‖f‖∞, 1). Let ε > 0 be
arbitrary, then due to tightness of (µn)n and continuity from below of µ, we find a K > 0
such that µn([−K,K]c) ≤ ε

3s
and µ([−K,K]c) ≤ ε

3s
. Now for n ∈ N arbitrary we find

|〈µn, f〉 − 〈µ, f〉|
≤ |〈µn, f〉 − 〈µn, fφK,K+1〉|+ |〈µn, fφK,K+1〉 − 〈µ, fφK,K+1〉|+ |〈µ, fφK,K+1〉 − 〈µ, f〉|
≤ 〈µn, |f | · |1− φK,K+1|〉+ |〈µn, fφK,K+1〉 − 〈µ, fφK,K+1〉|+ 〈µ, |f | · |φK,K+1 − 1|〉

≤ s · ε
3s

+ |〈µn, fφK,K+1〉 − 〈µ, fφK,K+1〉|+ s · ε
3s

Now chooseN ∈ N so large that for all n ≥ N we have |〈µn, fφK,K+1〉 − 〈µ, fφK,K+1〉| ≤ ε
3
.

Then |〈µn, f〉 − 〈µ, f〉| ≤ ε for all n ≥ N . Since ε > 0 was arbitrary, 〈µn, f〉 → 〈µ, f〉 as
n→∞. Since f ∈ Cb(R) was arbitrary, µn → µ weakly as n→∞.
iii)⇒ ii) This statement is obvious. Consider 1R ∈ Cb(R).
ii)⇒ i). Let ε > 0 be arbitrary. Then for K > 0 we find

µn([−(K + 1), K + 1]) ≥ 〈µn, φK,K+1〉 ≥ 〈µ, φK,K+1〉 − |〈µ, φK,K+1〉 − 〈µn, φK,K+1〉|

Now first choose K large enough such that the first summand on the r.h.s. is larger than
1 − ε/2, then choose N ∈ N large enough such that for all n > N the absolute value on
the r.h.s. is at most ε/2. Then we obtain for all n > N that µn([−(K+1), K+1]) ≥ 1−ε.
On the other hand, we find K1, . . . , KN > 0 such that

∀ i ∈ {1, . . . , N} : µi([−Ki, Ki]) ≥ 1− ε.

Let K∗ ..= max{K + 1, K1, . . . , KN}, then we obtain for all n ∈ N that µn([−K∗, K∗]) ≥
1− ε. Therefore, (µn)n is tight.
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2 Weak Convergence

Lemma 2.15. Let (µn)n be a sequence in M1(R), then the following statements hold:

i) (µn)n has a vaguely convergent subsequence against some µ ∈M≤1(R).

ii) If (µn)n is tight, it has a weakly convergent subsequence against some µ ∈M1(R).

Proof. i) Let (gm)m be a dense sequence in Cc(R), then for all m ∈ N, (〈µn, gm〉)n is a
sequence in R whose absolute value is bounded by ‖gm‖∞ < ∞, thus has a convergent
subsequence by Bolzano-Weierstrass. By a diagonal argument, we can find a subsequence
J ⊆ N, such that for all m ∈ N, (〈µn, gm〉)n∈J converges. But since (gm)m is dense in
Cc(R), limn∈J 〈µn, f〉 exists for all f ∈ Cc(R) (it can be shown that (〈µn, f〉)n is Cauchy).
The function

I : Cc(R) −→ R
f 7−→ I(f) ..= lim

n∈J
〈µn, f〉

is a linear bounded positive functional on Cc(R) with operator norm at most 1, since
|〈µn, f〉| ≤ ‖f‖∞ for all n ∈ N and f ∈ Cc(R). With Theorem 2.5, we find an element
µ ∈M≤1(R) such that I = Iµ, which entails µn → µ vaguely for n ∈ J .
ii) With i) we find a subsequence J ⊆ N and a µ ∈M≤1(R) such that (µn)n∈J converges
to µ vaguely. But Lemma 2.14 yields that µ ∈M1(R) and µn → µ weakly for n ∈ J .

Note that statement i) of Lemma 2.15 is the well-known Helly’s selection theorem
contained in most standard books on probability theory, see [20] or [44], for example.
However, we give a new proof here that differs completely from the standard proofs which
utilize distribution functions.

So far we have discussed the intricacies of weak and vague convergence of probability
measures. Our next goal is to better understand the topology of weak convergence on
M1(R), which will deepen our understanding of stochastic weak convergence to be dis-
cussed in the next section. Our first goal will be to reduce the number of test functions
for weak convergence to a countable subset of Cb(R). However, (Cb(R), ‖ · ‖∞) is large;
it is not even separable. But there is no reason for despair, since the following theorem
holds, which we adopted from our previous work [31].

Theorem 2.16. Fix a sequence (gk)k∈N in Cc(R) which lies dense in Cc(R). Then the
following statements hold:

i) Let µ, (µn)n ∈M1(R), then the following statements are equivalent:

a) µn → µ weakly.

b) ∀ k ∈ N : 〈µn, gk〉 −−−→
n→∞

〈µ, gk〉.

ii) Define for all µ, ν ∈M1(R):

dM(µ, ν) ..=
∑
k∈N

|〈µ, gk〉 − 〈ν, gk〉|
2k · (1 + |〈µ, gk〉 − 〈ν, gk〉|)

.

24



2.2 Convergence of Probability Measures

Then dM forms a metric on M1(R) which metrizes weak convergence. That is, a
sequence (µn)n∈N in M1(R) converges weakly to µ ∈ M1(R) iff dM(µn, µ) → 0 as
n→∞.

iii) (M1(R), dM) is a separable, but not complete, metric space.

Proof. i) Let (µn)n∈N and µ be probability measures. If µn → µ weakly, then surely we
have for all k ∈ N that 〈µn, gk〉 → 〈µ, gk〉 as n→∞. If on the other hand we have for all
k ∈ N that 〈µn, gk〉 → 〈µ, gk〉 as n→∞, then one can show that µn converges vaguely to
µ, that is

∀ f ∈ Cc(R) : 〈µn, f〉 −−−→
n→∞

〈µ, f〉 .

To this end, let f ∈ Cc(R) and ε > 0 be arbitrary, then there is an l ∈ N such that
‖f − gl‖∞ ≤ ε

3
. Since we know that 〈µn, gl〉 → 〈µ, gl〉 as n → ∞, there is an N ∈ N so

that for all n ≥ N we have

|〈µn, gl〉 − 〈µ, gl〉| ≤
ε

3
.

Then it holds for all n ≥ N :

|〈µn, f〉 − 〈µ, f〉|
≤|〈µn, f〉 − 〈µn, gl〉|+ |〈µn, gl〉 − 〈µ, gl〉|+ |〈µ, gl〉 − 〈µ, f〉|
≤ 〈µn, |f − gl|〉︸ ︷︷ ︸

≤ ε
3

+ |〈µn, gl〉 − 〈µ, gl〉|︸ ︷︷ ︸
≤ ε

3

+ 〈µ, |f − gl|〉︸ ︷︷ ︸
≤ ε

3

≤ ε.

Since ε was arbitrary, it follows that

lim
n→∞

〈µn, f〉 = 〈µ, f〉 .

Now since µn converges vaguely to µ and µ is a probability measure, we know by Lemma 2.14,
that µn → µ weakly.

ii) and iii):
From Lemma 2.6, we find for any µ, ν ∈M1(R) that

µ = ν ⇔ ∀ k ∈ N : 〈µ, gk〉 = 〈ν, gk〉 .

Next, we will inspect the space RN endowed with the product topology. With respect to
this topology, a sequence (zn)n in RN converges to a z ∈ RN iff for all i ∈ N the coordinates
zn(i) in R converge to z(i) as n→∞. Further, it is well-known that the topology on RN

is metrizable through the metric ρ with

∀x, y ∈ RN : ρ(x, y) ..=
∑
k∈N

|x(k)− y(k)|
2k · (1 + |x(k)− y(k)|)

.

This follows (for example) with 3.5.7 in [56, p. 121] in combination with Theorem 4.2.2
in [22, p. 259]. Further, (RN, ρ) is a separable metric space (Theorem 16.4 in [66, p. 109]).
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2 Weak Convergence

We now define the following map (see [48, p. 43]):

T :M1(R) −→ RN

µ 7−→ (〈µ, g1〉 , 〈µ, g2〉 , . . .)

Then surely, T is injective, since if T (µ) = T (ν), then also for all k ∈ N : 〈µ, gk〉 = 〈ν, gk〉
and then µ = ν. Additionally, we have for all µ, ν ∈M1(R) that

dM(µ, ν) =
∑
k∈N

|〈µ, gk〉 − 〈ν, gk〉|
2k · (1 + |〈µ, gk〉 − 〈ν, gk〉|)

= ρ(T (µ), T (ν)). (2.3)

Since T injective and ρ is a metric, dM is a metric as well, so that (M1(R), dM) is
a metric space. With equation (2.3) we see that T : (M1(X, d), dM) −→ RN is not
only injective, but even isometric, especially continuous and a homeomorphism onto its
image. Surely, the image is separable as a subspace of a separable metric space . Thus,
(M1(R), dM), being homeomorphic to a separable space, is also separable (Corollary 1.4.11
in [22, p. 31]).

With what we have shown so far we obtain for arbitrary (µn)n∈N, µ ∈M1(R):

µn converges weakly to µ

⇔ ∀ k ∈ N : 〈µn, gk〉 −−−→
n→∞

〈µ, gk〉

⇔ T (µn) −−−→
n→∞

T (µ) in RN

⇔ ρ(T (µn), T (µ)) −−−→
n→∞

0

⇔ dM(µn, µ) −−−→
n→∞

0.

We showed the first equivalence in the first part of this proof, the second equivalence
holds per definition of T and the above mentioned characterization of convergence in
RN, the third equivalence follows with the metrizability of RN through ρ, and the last
equivalence follows from above equation (2.3). What is left to show is that (M1(R), dM)
is not complete. To this end, let (µn)n be any sequence inM1(R) which converges vaguely
to a sub-probability measure ν with ν(R) < 1. Then for all k ∈ N, 〈µn, gk〉 → 〈ν, gk〉 as
n → ∞. Thus, dM(µn, ν) → 0 as n → ∞ (the function dM makes sense even with sub-
probability measures as arguments). Since for any n,m ∈ N, dM(µn, µm) ≤ dM(µn, ν) +
dM(µm, ν), we find that (µn)n is a Cauchy sequence in (M1(R), dM) that does not converge
weakly to an element in M1(R).

2.3 Random Probability Measures on (R,B)
As we saw in Theorem 2.16, the setM1(R) can be metrized in such a way that the result-
ing convergence is exactly ”weak convergence of probability measures.” This shows that
Definition 2.7 was adequate in the sense that it defined weak convergence for sequences
of probability measures rather than for nets. The reason is that in metric spaces (or more
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2.3 Random Probability Measures on (R,B)

generally, in spaces which satisfy the first axiom of countability, which means that any
point has a countable neighborhood basis), the topology can be reconstructed from the
knowledge of convergent sequences rather than nets. This is due to the fact that a set in
such a space is closed iff any limit of a convergent sequence in the set is an element of the
set.

From now on, we will always view M1(R) as equipped with the topology of weak
convergence and the associated Borel σ-algebra. We know that M1(R) is separable and
that dM as in Theorem 2.16 is a metric yielding the topology of weak convergence. It is
then a triviality that for any f ∈ Cb(R), the function

If :M1(R) −→ R
µ 7−→ If (µ) ..= 〈µ, f〉

is continuous on M1(R).
Since M1(R) is a measurable space, we can study M1(R)-valued random variables,

which is the subject of this section. We proceed as in our previous work [31], but streamline
our argumentation and supplement our exposition with new aspects, for example, a more
rigorous analysis of integrability with respect to expected measures, see Theorem 2.20.

Definition 2.17. Let (Ω,A,P) be a probability space.

i) A random probability measure on (R,B) is a measurable map µ : Ω → M1(R),
ω 7→ µ(ω, ·).

ii) A stochastic kernel from (Ω,A) to (R,B) is a map µ : Ω × B −→ R, so that the
following holds:

a) For all ω ∈ Ω, µ(ω, ·) is a probability measure on (R,B).

b) For all B ∈ B, µ(·, B) is A-B-measurable.

Lemma 2.18. Let (Ω,A,P) be a probability space.

i) A map µ : Ω× B −→ R is a random probability measure iff it is a stochastic kernel.

ii) If µ is a stochastic kernel from (Ω,A) to (R,B) and f : R → R is measurable and
bounded, then ω 7→ 〈µ(ω), f〉 is measurable and bounded by ‖f‖∞.

Proof. We first show ii): Surely, the indicated map is bounded by ‖f‖∞, since we have
for all ω ∈ Ω:

|〈µ(ω), f〉| ≤ 〈µ(ω), |f |〉 ≤ 〈µ(ω), ‖f‖∞〉 ≤ ‖f‖∞.

To show measurability, we employ the monotone class argument: To start with, we know
that the map ω 7→ µ(ω,B) is measurable for all B ∈ B. Let f be a simple function on
(R,B), that is, f =

∑n
i=1 αi · 1Bi for some n ∈ N, αi ∈ [0,∞) and Bi ∈ B, i = 1, . . . , n,

then also ω 7→ 〈µ(ω), f〉 =
∑n

i=1 αi · µ(ω,Bi) is measurable as a linear combination of
finitely many measurable functions. Now let f ≥ 0 be measurable and bounded, then
there exists sequence of simple functions (fn)n∈N such that fn ↗n f pointwise. For
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2 Weak Convergence

ω ∈ Ω arbitrary it follows per monotone convergence that 〈µ(ω), fn〉 ↗n 〈µ(ω), f〉, so
also ω 7→ 〈µ(ω), f〉 is measurable as a pointwise limit of measurable functions. Now if
f : R −→ R is measurable and bounded, then also the positive and negative parts f+ and
f− (then f+, f− ≥ 0 with f = f+ − f−). Then ω 7→ 〈µ(ω), f〉 = 〈µ(ω), f+〉 − 〈µ(ω), f−〉 is
measurable as a difference of measurable functions.

We now show i):
”⇐” We have just shown that for all f ∈ Cb(R) the map ω 7→ 〈µ(ω), f〉 is measurable.
Then we obtain for all ν ∈ M1(R) that the map ω 7→ dM(µ(ω), ν) is measurable as a
limit of measurable functions, since

dM(µ(ω), ν) =
∑
k∈N

|〈µ(ω), gk〉 − 〈ν, gk〉|
2k · (1 + |〈µ(ω), gk〉 − 〈ν, gk〉|)

.

To show the measurability of ω 7→ µ(ω, ·), it suffices to show that preimages of open balls
from (M1(R), dM) are measurable, since the σ-algebra on M1(R) is generated by the
topology which is generated by the metric dM , and the space M1(R) is separable with
respect to the topology of weak convergence, see [10, p. 73]. So let ν ∈M1(R) and ε > 0

be arbitrary, then it holds with B
M1(R)
ε (ν) ..= {ν ′ ∈M1(R) : dM(ν ′, ν) < ε}:

µ−1
(
BM1(R)
ε (ν)

)
= {ω ∈ Ω : dM(µ(ω), ν) < ε} = dM(µ(·), ν)−1([0, ε)) ∈ A,

since above we already recognized dM(µ(·), ν) as measurable.
”⇒” If µ is a random probability measure, then for all ω ∈ Ω, µ(ω, ·) is a probability

measure on (R,B). We now argue that for any B ∈ B, ω 7→ µ(ω,B) is measurable. We
first prove this for all open bounded intervals in R, since these intervals generate B. So
let a < b ∈ R be arbitrary and define ε ..= (b − a)/4. Then define for all n ∈ N the
function φn : R→ R so that φn ≡ 1 on [a+ 1

n
ε, b− 1

n
ε], φn ≡ 0 on (a, b)c and φn is affine

on the intervals [a, a+ 1
n
ε] and [b− 1

n
a, b] in such a way that it is continuous. Then φn is

bounded, continuous and φn(x) ↗n 1(a,b)(x) for all x ∈ R. We know that for all n ∈ N,
ω 7→ 〈µ(ω), φn〉 is measurable as a composition of a measurable and a continuous map
(see remark before Definition 2.17). Now for any ω ∈ Ω:

lim
n→∞

〈µ(ω), φn〉 =
〈
µ(ω),1(a,b)

〉
= µ(ω, (a, b)).

by monotone convergence. As a result, µ(·, (a, b)) is A-B-measurable as the pointwise
limit of measurable functions. Now define the set

G ..= {B ∈ B |ω 7→ µ(ω,B) is measurable}.

Surely, all open intervals lie in G as we have just shown. If we can show that G is a
Dynkin system we can conclude that G = B, which is our goal. First of all, ∅ , R ∈ G,
since constant functions are always measurable. Second, since µ(·, Bc) = 1 − µ(·, B), we
have that Bc ∈ G whenever B ∈ G. Third, if (Bn)n is a sequence of pairwise disjoint
sets in G, then µ(·,∪nBn) =

∑
n µ(·, Bn), so since all µ(·, Bn) are measurable, then so is

µ(·,∪nBn) as a pointwise limit of a sequence of measurable functions. This shows that
∪nBn ∈ G so that G is indeed a Dynkin system.
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Random probability measures are not so uncommon in probability theory. Consider
the next example:

Example 2.19. Let Y1, . . . , Yn be real-valued random variables on a probability space
(Ω,A,P). Then

ρ ..=
1

n

n∑
i=1

δYi

is a random probability measure on (R,B), which we call empirical distribution (of the
Yi). Indeed, for any ω ∈ Ω,

ρ(ω) =
1

n

n∑
i=1

δYi(ω)

is a convex combination of probability measures and thus again a probability measure on
(R,B). On the other hand, if B ∈ B is arbitrary, then

ω 7→ ρ(ω,B) =
1

n

n∑
i=1

δYi(ω)(B) =
1

n

n∑
i=1

1B(Yi(ω))

is certainly measurable. Thus, we recognize the empirical distribution ρ as a random
probability measure on (R,B) via Lemma 2.18. For any measurable set B, ρ(B) yields
the proportion of the Yi’s that fall into the set B. Connected to the empirical distribution
ρ is its empirical distribution function Fρ(x) ..= ρ((−∞, x]) defined for all x ∈ R. This
is a random distribution function and the protagonist of the famous Glivenko-Cantelli
theorem and the Dvoretzky–Kiefer–Wolfowitz inequality, see [68, p. 553].

Now, let us resume our study. If µ is a random probability measure and B ∈ B, then
µ(B) is a bounded random variable. It is natural to consider its expectation Eµ(B) as
the expected mass that µ prescribes to the set B. But as it turns out, B 7→ Eµ(B) is yet
another (deterministic) probability measure:

Theorem 2.20. Let (Ω,B,P) be a probability space and µ be a random probability measure
on (R,B). Then the following statements hold:

i) The map

µ̄ : B −→ [0, 1]

B 7−→ µ̄(B) ..=

∫
Ω

µ(ω,B)P(dω) = Eµ(B)

is an element of M1(R), the so called expected measure of µ.

ii) Any non-negative measurable function f : R −→ R+ is µ̄-integrable iff 〈µ, f〉 is P-
integrable, and in this case it holds

〈µ̄, f〉 =

∫
R
f(x) µ̄(dx) =

∫
Ω

∫
R
f(x)µ(ω, dx)P(dω) = E 〈µ, f〉 .

In particular, this equation is valid for any bounded measurable function f : R→ R.
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2 Weak Convergence

iii) If f : R→ R is µ̄-integrable, then 〈µ, f〉 is P-integrable and 〈µ̄, f〉 = E 〈µ, f〉.

iv) Heed must be taken: If f : R→ R is measurable and such that 〈µ, f〉 is P-integrable
so that E 〈µ, f〉 is well-defined, f need not be µ̄-integrable, so that it is not true that
〈µ̄, f〉 = E 〈µ, f〉 whenever one of the two exists. In particular, statement ii) cannot
be generalized to arbitrary measurable functions f : R→ R.

Due to these interrelations we will also write Eµ instead of µ̄, and with what we have
seen so far it holds for all Eµ-integrable, bounded or non-negative functions f , that

〈Eµ, f〉 = 〈µ̄, f〉 = E 〈µ, f〉 .

Proof. i) Clearly, Eµ(∅) = 0 and Eµ(R) = 1. Now if (Bn)n is a sequence of pairwise
disjoint elements in B, then

Eµ(∪nBn) = E
∑
n

µ(Bn) =
∑
n

Eµ(Bn),

where in the last step we used dominated convergence. This shows that µ̄ is indeed a
probability measure.
ii) Let f : R → R be a simple function, that is, f =

∑n
i=1 αi · 1Bi for some n ∈ N,

αi ∈ [0,∞) and Bi ∈ B, i = 1, . . . , n. Then

〈µ̄, f〉 =
n∑
i=1

αi · µ̄(Bi) = E

n∑
i=1

αi · µ(Bi) = E 〈µ, f〉 .

Now let f : R → R be non-negative and measurable witnessed by a sequence of simple
functions (fn)n with fn ↗n f pointwise, then clearly

〈µ̄, f〉 = lim
n→∞

〈µ̄, fn〉 = lim
n→∞

E 〈µ, fn〉 = E 〈µ, f〉 ,

where in the first and the last step we used monotone convergence. In particular, the
non-negative f is µ̄-integrable iff 〈µ, f〉 is P-integrable and in this case it holds 〈µ̄, f〉 =
E 〈µ, f〉. Now if f : R → R is bounded, then there exists a C ∈ R such that f + C is
non-negative (and of course, it remains bounded, thus integrable). Then we immediately
obtain 〈µ̄, f〉 = 〈µ̄, f + C〉 − C = E 〈µ, f + C〉 − C = E 〈µ, f〉.
iii) If now f : R→ R is µ̄-integrable, then f = f+−f− where f+, f− ≥ 0 are µ̄-integrable.
By ii), the non-negative random variables 〈µ, f+〉 and 〈µ, f−〉 are both P-integrable. Then
their difference 〈µ, f+〉 − 〈µ, f−〉 = 〈µ, f〉 is also P-integrable and we obtain with ii):

〈µ̄, f〉 = 〈µ̄, f+〉 − 〈µ̄, f−〉 = E 〈µ̄, f+〉 − E 〈µ̄, f−〉 = E 〈µ̄, f〉 .

iv) Unfortunately, this point appears to be overlooked in the literature. We need to
construct a counter-example to show what we state. To this end, consider the random
probability measure µ on (R,B) with

∀n ∈ N : P(µ =
1

2
δ−n +

1

2
δn) =

1

cn2
,
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2.3 Random Probability Measures on (R,B)

where c ..=
∑

n
1
n2 < ∞. Further, let f be the identity on R, that is, f(x) = x for all

x ∈ R. Then surely, f is measurable, and since almost all realizations of µ are symmetric
measures, we have 〈µ, f〉 = 0 almost surely, which is P-integrable with E 〈µ, f〉 = 0. We
now assume that f is µ̄-integrable and lead this to a contradiction: If f were µ̄-integrable,
then so were |f | and by ii) we would have 〈µ̄, |f |〉 = E 〈µ, |f |〉 <∞. But with probability

1
cn2 , µ takes the value 1

2
δ−n + 1

2
δn, so 〈µ, |f |〉 takes the value n, leading to the calculation

E 〈µ, |f |〉 =
∑
n∈N

n

cn2
=∞,

which is a contradiction.

In the remainder of this section, we will derive and discuss three notions of convergence
of random probability measures on (R,B), namely weak convergence in expectation, weak
convergence in probability and weak convergence almost surely.

Definition 2.21. Let (µn)n∈N and µ be random probability measures on (R,B), then we
say that (µn)n converges weakly in expectation to µ, if the sequence of expected measures
(Eµn)n∈N converges weakly to the expected measure Eµ, so if:

∀ f ∈ Cb(R) : 〈Eµn, f〉 −−−→
n→∞

〈Eµ, f〉 ,

which is equivalent to (see Theorem 2.20)

∀ f ∈ Cb(R) : E 〈µn, f〉 −−−→
n→∞

E 〈µ, f〉 .

The concept of weak convergence in expectation is extremely important for investi-
gations in the field of random matrix theory, since it lies the foundation for stronger
convergence types. This is due to the fact that weak convergence P-almost surely or in
probability will also imply weak convergence in expectation, so the latter convergence
type is a necessary condition for stronger convergence types (see also Theorem 3.7). The
exact interrelations between the three concepts of convergence for random probability
measures are summarized in the end of this section in Theorem 2.29.

Before turning to the next convergence types, we wish to remind the reader what
convergence in probability and almost surely means for random variables in metric spaces:

Definition 2.22. Let (Yn)n∈N and Y be random variables defined on a probability space
(Ω,A,P), which take values in a metric space (X , d).

i) We say that (Yn)n∈N converges to Y in probability, if d(Yn, Y ) converges to 0 in
probability.

ii) We say that (Yn)n∈N converges to Y almost surely, if d(Yn, Y ) converges to 0 almost
surely.

Let us collect a quick lemma:
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2 Weak Convergence

Lemma 2.23. Let (Yn)n∈N and Y be random variables defined on a probability space
(Ω,A,P), which take values in a metric space (X , d). If (Yn)n∈N converges to Y almost
surely, then also in probability.

Proof. Let (Yn)n∈N converge to Y almost surely. This means that the sequence of real-
valued random variables (d(Yn, Y ))n converges to 0 almost surely. But this implies that
(d(Yn, Y ))n converges to 0 in probability, which is precisely what it means for (Yn)n to
converge to Y in probability.

Now let us define and analyze what it means for random probability measures to con-
verge in probability and almost surely. Since random probability measures are nothing
but random variables into the metric space M1(R), we know what to do:

Definition 2.24. Let (Ω,A,P) be a probability space, µ and (µn)n∈N be random proba-
bility measures on (R,B).

i) We say that (µn)n converges weakly to µ in probability, if dM(µn, µ) converges to 0
in probability.

ii) We say that (µn)n converges weakly to µ almost surely, if dM(µn, µ) converges to 0
almost surely.

Although stochastic types of weak convergence can be defined solidly as in Defini-
tion 2.24, this definition is not convenient to work with in practice. In addition, we would
like to see that these convergence concepts do not depend on the choice of the metric that
metrizes weak convergence on M1(R).

Theorem 2.25. Let (Ω,A,P) be a probability space, µ and (µn)n∈N be random probability
measures on (R,B).

i) The following statements are equivalent:

a) (µn)n converges weakly to µ in probability, that is, dM(µn, µ)→ 0 in probability.

b) If d is any metric on M1(R) that metrizes weak convergence, then d(µn, µ) → 0
in probability.

c) For all f ∈ Cb(R), the sequence of bounded real-valued random variables (〈µn, f〉)n
converges in probability to 〈µ, f〉, so

∀ f ∈ Cb(R) : ∀ ε > 0 : P(|〈µn, f〉 − 〈µ, f〉| > ε) −−−→
n→∞

0.

ii) The following statements are equivalent:

a) (µn)n converges weakly to µ almost surely, that is, dM(µn, µ)→ 0 almost surely.

b) For P-almost all ω ∈ Ω, µn(ω) converges weakly to µ(ω).

c) If d is any metric on M1(R) that metrizes weak convergence, then d(µn, µ) → 0
almost surely.
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2.3 Random Probability Measures on (R,B)

d) For all f ∈ Cb(R), 〈µn, f〉 converges almost surely to 〈µ, f〉, that is,

∀ f ∈ Cb(R) :
[
〈µn, f〉 −−−→

n→∞
〈µ, f〉 almost surely

]
.

e) Almost surely we find that for all f ∈ Cb(R), 〈µn, f〉 converges to 〈µ, f〉, that is,[
∀ f ∈ Cb(R) : 〈µn, f〉 −−−→

n→∞
〈µ, f〉

]
almost surely.

Remark 2.26. 1. Note that in Theorem 2.25 ii) d) and e) we used careful bracketing
[. . .] when it comes to almost sure convergence of multiple objects. This is done
to avoid ambiguity. For example, questions could arise whether we find a set of
measure 1 on which all objects converge (as in e)), or if for each object, we find a
set of measure 1, possibly depending on that object, on which the considered object
converges (as in d)).

2. We consider Theorem 2.25 i) as equivalent definitions for the concept ”weak con-
vergence in probability”, and ii) as equivalent definitions for ”weak convergence
almost surely.” After the proof of the theorem, we will keep on working with this
characterization without always referring to Theorem 2.25.

Before we begin with the proof of Theorem 2.25, we will introduce two tools which we
will make use of. For later use, we will formulate the lemmas in greater generality, that
is, for complex-valued random variables.

Lemma 2.27. Let (Xn)n and X be complex-valued random variables defined on a prob-
ability space (Ω,A,P). Then (Xn)n∈N converges to X in probability iff any subsequence
J ⊆ N has another subsequence I ⊆ J so that (Xn)n∈I converges to X almost surely.

Proof. The proof can be found in [44, p. 134] .

The next extremely useful lemma generalizes the previous one by finding a simultaneous
almost surely convergent subsequence for a countable number of sequences of random
variables.

Lemma 2.28. Let (Ω,A,P) be a probability space and for all k ∈ N let X(k) and (X
(k)
n )n∈N

be complex-valued random variables. Then the following statements are equivalent:

i) For all k ∈ N, (X
(k)
n )n converges to X(k) in probability.

ii) For any subsequence J ⊆ N, we find a subsequence I ⊆ J and a set N ∈ A with
P(N) = 0 such that

∀ω ∈ Ω\N : ∀k ∈ N : X(k)
n (ω) −−→

n∈I
X(k)(ω).
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Proof. The part ii)⇒ i) follows immediately with Lemma 2.27. So we only need to show

i) ⇒ ii): For k = 1 we find that (X
(1)
n )n∈J converges in probability to X(1). Therefore,

we find a subsequence I1 ⊆ J such that

X(1)
n −−→

n∈I1
X(1) P-a.s. witnessed by a set of measure zero N1.

Since (X
(2)
n )n∈I1 converges to X(2) in probability, we find a subsequence I2 ⊆ I1 with

min(I2) > min(I1) such that

X(2)
n −−→

n∈I2
X(2) P-a.s. witnessed by a set of measure zero N2.

We continue this approach for all k ∈ N and obtain subsequences

N ⊇ J ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Ik ⊇ . . .

such that for all k ∈ N we have min(Ik+1) > min(Ik) and

X(k)
n −−−→

n∈Ik
X(k) P-a.s. witnessed by a set of measure zero Nk.

We set N ..= ∪k∈NNk and for all k ∈ N : ik ..= min(Ik), then we obtain that (ik)k∈N is
strictly increasing in N and

∀ω ∈ Ω\N : ∀ l ∈ N : X
(l)
ik

(ω) −−→
k∈N

X(l)(ω).

To see this, let ω ∈ Ω\N and l ∈ N be arbitrary. Then we have that ω ∈ Ω\Nl and
ik = min(Ik) ∈ Il for all k ≥ l, so that indeed

X
(l)
ik

(ω) −−→
k∈N

X(l)(ω).

The proof is completed by setting I ..= {ik | k ∈ N}.

Now we are ready to prove Theorem 2.25:

Proof of Theorem 2.25. We show ii) first.
Clearly, a), b) and c) are equivalent, since the metrics metrize weak convergence. Also,
e) is just a reformulation of b), thus equivalent. In addition, d) follows immediately from
e), so we have

a) ⇔ b) ⇔ c) ⇔ e) ⇒ d)

We now show d)⇒ b) : For each k ∈ N we have that 〈µn, gk〉 converges to 〈µ, gk〉 almost
surely on a set Ak of measure 1 (the functions (gk)k are as in Theorem 2.16). Then the
set Ω1

..= ∩kAk has measure 1 and for all ω ∈ Ω1 we find that

∀ k ∈ N : 〈µn(ω), gk〉 −−−→
n→∞

〈µ(ω), gk〉 .
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2.3 Random Probability Measures on (R,B)

Therefore, with Theorem 2.16, we have for all ω ∈ Ω1 that µn(ω) → µ(ω) weakly as
n→∞ and hence b).
We now show i):
a)⇔ b) By exact symmetry in the argument, we will only argue a) ⇒ b): Let µn → µ
weakly in probability, that is, (dM(µn, µ))n∈N converges to 0 in probability. We want to
show that also (d(µn, µ))n∈N converges to 0 in probability. To use Lemma 2.27, let J ⊆ N
be an arbitrary subsequence. Then we find a subsequence I ⊆ J such that (dM(µn, µ))n∈I
converges to 0 almost surely. With part ii) this means that also (d(µn, µ))n∈I converges
to 0 almost surely. But then (d(µn, µ))n∈N converges to 0 in probability.
a)⇒ c) If (µn)n converges weakly to µ in probability, then this means that dM(µn, µ)
converges to 0 in probability. Let f ∈ Cb(R) be arbitrary. We must show that 〈µn, f〉
converges to 〈µ, f〉 in probability. To this end, let J ⊆ N be an arbitrary subsequence.
Then there is a subsequence I ⊆ J such that (dM(µn, µ))n∈I converges to 0 almost surely
on a measurable subset Ω1 ⊆ Ω with measure 1. Then it holds in particular for any
ω ∈ Ω1 that (〈µn(ω), f〉)n∈I converges to 〈µ(ω), f〉, so (〈µn, f〉)n∈I converges to 〈µ, f〉
almost surely. The statement follows with Lemma 2.27.
c)⇒ a) We find that for all k ∈ N, (〈µn, gk〉)n∈N converges to 〈µ, gk〉 in probability. We
must show that dM(µn, µ) converges to zero in probability. Let J ⊆ N be any subsequence.
With Lemma 2.28, we find a subsequence I ⊆ J and a measurable set Ω1 ⊆ Ω of measure
1, such that

∀ω ∈ Ω1 : ∀ k ∈ N : 〈µn(ω), gk〉 −−→
n∈I
〈µ(ω), gk〉

With Theorem 2.16, this entails that for all ω ∈ Ω1, (dM(µn(ω), µ(ω)))n∈I converges to 0.
With Lemma 2.27, this means that (dM(µn, µ))n∈N converges to zero in probability.

So, what we have seen so far is that random probability measures can converge in three
different ways, namely weakly in expectation, weakly in probability and weakly almost
surely. We have solidly defined and then characterized these convergence concepts. At
last, we point out a hierarchy among them:

Theorem 2.29. Let (Ω,A,P) be a probability space, (µn)n∈N and µ be random probability
measures on (R,B).

i) If µn → µ weakly almost surely, then also weakly in probability.

ii) If µn → µ weakly in probability, then also weakly in expectation.

Proof. i) This follows directly with Lemma 2.23.
ii) If µn → µ weakly in probability, per Theorem 2.25 this means that for all f ∈
Cb(R) we find 〈µn, f〉 → 〈µ, f〉 in probability, thus E 〈µn, f〉 → E 〈µ, f〉 by the following
Lemma 2.30, since |〈µn, f〉| ≤ ‖f‖∞ and |〈µ, f〉| ≤ ‖f‖∞.

Lemma 2.30. Let (Xn)n∈N and X be complex-valued random variables on a probability
space (Ω,A,P) and C ∈ R such that |Xn| ≤ C for all n ∈ N and |X| ≤ C. Then Xn → X
in probability implies EXn → EX.
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2 Weak Convergence

Proof. Let ε > 0 be arbitrary, then we calculate:

|EXn − EX| ≤ E|Xn −X|
= E|Xn −X|1{|Xn−X|≤ε} + E|Xn −X|1{|Xn−X|>ε}
≤ ε+ P(|Xn −X| > ε) · 2C.

Therefore, we conclude
lim sup
n→∞

|EXn − EX| ≤ ε.

Since ε > 0 was arbitrary, this shows the statement.

2.4 Random Matrices and their ESDs

In this section, which is as generalization from our previous work [31], we will introduce
the types of random probability measures which we would like to investigate, namely
the empirical spectral distribution of random matrices. To this end, let K ∈ {R,C} and
denote by (Matn(K), ‖ · ‖op) the normed K-vector space of n× n-matrices with K-valued
entries, where ‖ · ‖op denotes the operator norm with respect to the euclidian norm ‖ · ‖
on Kn, that is,

∀X ∈ Matn(K) : ‖X‖op = sup {‖Xv‖ : v ∈ Kn, ‖v‖ = 1} .

It is immediate that (Matn(K), ‖·‖op) is a Banach-space and a sequence of matrices (Xm)m
converges to a matrix X in Matn(K), iff all entries Xm(i, j) converge to X(i, j) in K as
m→∞. If X ∈ Matn(K) we denote its adjoint by X∗, which is just the transpose of X if
K = R and the conjugate transpose of X if K = C. A matrix X ∈ Matn(K) is called self-
adjoint if X∗ = X (then X is also called symmetric if K = R and Hermitian if K = C)
and we denote the subset of all self-adjoint matrices of Matn(K) by SMatn(K). Then
SMatn(K) ⊆ Matn(K) is a closed subset, since X 7→ X∗ is continuous. Further, SMatn(K)
is closed under R-linear combinations. To introduce more notation, if λ1, . . . , λn ∈ R
are arbitrary, we denote by diag(λ1, . . . , λn) the diagonal matrix D ∈ SMatn(K) with
entries D(i, i) = λi for all i ∈ {1, . . . , n}. Further, we denote by tr the trace functional
Matn(K) −→ K, that is,

∀X ∈ Matn(K) : trX =
n∑
t=1

X(t, t).

The trace has some interesting properties, which are summarized in the following lemma:

Lemma 2.31. The trace tr is a continuous linear functional on (Matn(K), ‖·‖op). Further,
if X,S ∈ Matn(K) are arbitrary, where S is invertible, then tr(X) = tr(S−1XS).

Proof. It is immediate that the trace is a continuous linear functional. The equality
tr(X) = tr(S−1XS) is due to the fact that X and S−1XS have the same characteris-
tic polynomial. The trace is the (n − 1)th coefficient of the characteristic polynomial
(multiplied by (−1)n−1). For details we refer the reader to [29].
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2.4 Random Matrices and their ESDs

The next lemma clarifies the eigenvalue structure of self-adjoint matrices:

Lemma 2.32. For any matrix X ∈ SMatn(K) we find an invertible matrix S ∈ Matn(K)
and real numbers λX1 ≤ . . . ≤ λXn , such that S−1XS = diag(λX1 , . . . , λ

X
n ). In particular,

X has exactly n real eigenvalues (counting multiplicities) and all eigenvalues are real.

Proof. We refer the reader to [29].

In general, if Y is a self-adjoint n × n matrix, we will denote its n real eigenvalues by
λY1 ≤ . . . ≤ λYn . The next theorem is a very versatile tool in random matrix theory. For
example, it can be used to derive that eigenvalues are continuous functions of the entries
of the matrix (Corollary 2.34), or it can be used to analyze asymptotic equivalence of
empirical spectral distributions via the bounded Lipschitz metric, see Section 4.4.

Theorem 2.33 (Hoffman-Wielandt). For all n ∈ N and X, Y ∈ SMatn(K) it holds:

n∑
i=1

|λXi − λYi |2 ≤ tr(X − Y )∗(X − Y ) = tr(X − Y )2.

Proof. See [36, p. 217].

We can immediately conclude that eigenvalues are continuous functions of the matrices.

Corollary 2.34. Let n ∈ N and l ∈ {1, . . . , n} be arbitrary, then

Eigl : SMatn(K) −→ R
X 7−→ λXl

is continuous.

Proof. Let (Xm)m∈N and X in SMatn(K) so that Xm → X for m → ∞ (which means
convergence in operator norm, or equivalently, entry-wise convergence). Then we find
with Theorem 2.33 and Lemma 2.31 that

|λXml − λXl |2 ≤
N∑
i=1

|λXmi − λXi |2 ≤ tr(Xm −X)2 −−−→
m→∞

0.

Having studied eigenvalues of self-adjoint matrices, let us turn our attention to random
matrices.

Definition 2.35. Let (Ω,A,P) be a probability space and n ∈ N be arbitrary then a

(n×n self-adjoint) random matrix is a measurable map X : (Ω,A)→ (SMatn(K),B(n2)
s ),

where B(n2)
s denotes Borel σ-algebra on SMatn(K).
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It is clear that a map X : (Ω,A) → (SMatn(K),B(n2)
s ) is measurable iff all entries

X(i, j) : (Ω,A) → (K,BK) are measurable, where BK denotes the Borel σ-algebra on K.
If X is an n × n random matrix on (Ω,A,P), then for all ω ∈ Ω, X(ω) ∈ SMatn(K),

such that X(ω) possesses eigenvalues λ
X(ω)
1 ≤ . . . ≤ λ

X(ω)
n . We wish to see that the maps

ω 7→ λ
X(ω)
l for l = 1, . . . , n are measurable.

Lemma 2.36. Let X be an n × n-random matrix on (Ω,A,P) and l ∈ {1, . . . , n} be
arbitrary, then

λXl : (Ω,A) −→ (R,B)

ω 7−→ λ
X(ω)
l

is measurable, thus a real-valued random variable.

Proof. We know by Corollary 2.34 that

Eigl : SMatn(K) −→ R
X 7−→ λXl

is continuous, in particular measurable. Further, X : Ω −→ SMatn(K) is measurable per
definition, hence the composition λXl

..= Eigl ◦X is measurable as well.

Lemma 2.36 allows us to study eigenvalues of random matrices in the context of prob-
ability theory. One aspect which gains a lot of attention is the behavior of the empirical
distribution of the eigenvalues (see also Example 2.19).

Definition 2.37. Let X be an n × n random matrix on (Ω,A,P), then the empirical
spectral distribution (ESD) σn of X is the random probability measure on (R,B) given
by

σn : Ω× B −→ [0, 1]

(ω,B) 7−→ σn(ω,B) ..=
1

n

n∑
l=1

δ
λ
X(ω)
l

(B)

It follows from our discussion in Example 2.19 that σn really is a random probability
measure. How is σn to be interpreted? For any interval I ⊆ R, the random variable σn(I)
tells us the proportion of the n eigenvalues that fall into the interval I. Thus, σn carries
information on the location of the eigenvalues, and it is of particular interest where the
eigenvalues are located in the limit, that is, for n→∞.

It is a famous theorem by Wigner that allows us to conclude under fairly weak assump-
tions (mainly independence of matrix entries and uniformly bounded moments) that in
the limit, eigenvalues will be spread according to the semicircle distribution:

38



2.4 Random Matrices and their ESDs

Definition 2.38. The semicircle distribution σ is the probability measure on (R,B) with
Lebesgue-density fσ where

fσ : R −→ R

x 7−→ fσ(x) ..=
1

2π

√
4− x21[−2,2](x).

Here and throughout this text, we will denote the Lebesgue measure on (R,B) by
λλ. With respect to Definition 2.38, we have to prove that fσλλ is actually a probability
measure. We see immediately that the measure is finite, since fσ is bounded and has
compact support. We will postpone the proof that the Lebesgue integral over fσ is 1
to Lemma 3.8. Since convergence to the semicircle distribution is an important and
ubiquitous concept, we make the following definition.

Definition 2.39. If (σn)n are the ESDs of random matrices (Xn)n and σn → σ weakly in
expectation resp. in probability resp. almost surely, then we say that the semicircle law
holds for (Xn)n in expectation resp. in probability resp. almost surely.

We now turn to Wigner’s semicircle law. Notationally, for all n ∈ N we define the index
set �n ..= {1, 2, . . . , n} × {1, 2, . . . , n}.

Definition 2.40. Let for all n ∈ N, an = (an(i, j))(i,j)∈�n be a family of real-valued
random variables, then the sequence (an)n is called Wigner scheme, if the following holds:

i) All random variables have uniformly bounded absolute moments, that is: For all
p ∈ N there exists a constant Lp ∈ (0,∞) such that for all n ∈ N and all (i, j) ∈ �n:
E|an(i, j)|p ≤ Lp.

ii) All random variables are standardized, that is: For all n ∈ N and all (i, j) ∈ �n:
Ean(i, j) = 0 and Van(i, j) = 1.

iii) The families an are symmetric, that is: For all n ∈ N and (i, j) ∈ �n we have
an(i, j) = an(j, i).

iv) For all n ∈ N the family (an(i, j))1≤i≤j≤n is independent.

Note in particular that in Definition 2.40 we do not require that the whole family
((an(i, j))1≤i≤j≤n)n∈N be independent. A very simple Wigner scheme is given in the fol-
lowing example:

Example 2.41. Let (a(i, j))1≤i≤j be an i.i.d. family of real-valued random variables such
that E|a(1, 1)|p <∞ for all p ∈ N, Ea(1, 1) = 0 and Va(1, 1) = 1. Further, set a(i, j) ..=
a(j, i) for all 1 ≤ j < i. Now set for all n ∈ N and all (i, j) ∈ �n: an(i, j) ..= a(i, j).
Roughly speaking, an is the n× n submatrix of the infinite matrix a. Then clearly, (an)n
is a Wigner scheme as in Definition 2.40.
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The following Theorem is called ”Wigner’s semicircle law.”

Theorem 2.42. Let (an)n be a Wigner scheme defined on a probability space (Ω,A,P).
Define for all n ∈ N the random matrix Xn by

∀ (i, j) ∈ �n : Xn(i, j) ..=
1√
n
an(i, j).

Then the semicircle law holds for (Xn)n almost surely.

Proof. This theorem is a special case of our Theorem 4.9, see Corollary 4.11.

Of course, a valid question is how to prove Theorem 2.42. We see that certain conditions
are formulated for the matrix entries. In order to use these conditions in our analysis,
how can we relate σn back to the entries of the random matrix? And lastly, how can we
conclude (stochastic) weak convergence of the ESDs? There are (at least) two standard
ways to achieve this, namely the method of moments and the Stieltjes transform method.
These methods will be discussed in depth in the following two sections.
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3 The Method of Moments

In Chapter 2 we have studied in depth the concepts of weak convergence of probability
measures and random probability measures. In this chapter, which is adopted from our
previous work [31], we want to discuss a tool which helps us to infer weak convergence:
The method of moments. We will carefully develop this method for both deterministic
and random probability measures. To be able to use this method correctly, we also need
to delve into the moment problem. But let us first define what the moments of a measure
are:

Definition 3.1. Let µ be a measure on (R,B) and k ∈ N0. If
〈
µ, |xk|

〉
< ∞ (where

x0 = 1∀x ∈ R) we call the real number

mk
..=
〈
µ, xk

〉
the k-th moment of µ. In this case, we say that µ has a finite k-th moment. On the other
hand, if

〈
µ, |xk|

〉
=∞, we say the k-th moment of µ does not exist.

3.1 The Moment Problem

In numerous applications it is important to know the moments of a probability measure
or at least some properties of the moments. In the Hamburger moment problem (see [51,
p. 145] and [57], for example), the question is reversed. Given a sequence of real numbers
(mk)k∈N0 , what can be said about the existence and uniqueness of a measure µ on (R,B)
with moments (mk)k∈N0? To be more precise, does there exist a measure µ on (R,B) with
moments (mk)k∈N0 , and if so, is it the only measure with those moments? Of course, if
such a measure exists, it is a probability measure iff m0 = 1. It is rather surprising that
the existence of such a measure can be nicely characterized:

Theorem 3.2. A sequence of real numbers (mk)k∈N0 constitutes the moments of at least
one measure on (R,B), if and only if for all N ∈ N the corresponding Hankel matrix

m0 m1 m2 . . . mN

m1 m2 m3 . . . mN+1

m2 m3 m4 . . . mN+2
...

...
...

. . .
...

mN mN+1 mN+2 . . . m2N


is positive semi-definite, that is, if for all N ∈ N0 and all β0, . . . , βN ∈ R it holds:

N∑
r,s=0

βrβsmr+s ≥ 0.
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3 The Method of Moments

Proof. See [51, p. 145] in combination with the fact that a real symmetric matrix is
positive definite in the real sense iff it is positive definite in the complex sense.

Oftentimes it will not be of interest if a sequence of numbers (mk)k∈N0 really belongs to a
probability measure, since we automatically obtain this result when employing the method
of moments, see Theorem 3.4. Theorem 3.2 still has two important applications: On the
one hand, if the researcher is a priori assuming the target distribution to have specific
moments, Theorem 3.2 can be used to check whether this is a plausible assumption and
can spare the researcher from trying to prove convergence to a non-existing probability
measure. On the other hand, if one has already employed the method of moments and the
moments of the target distribution have been calculated, one can a posteriori evaluate the
plausibility of the calculations via Theorem 3.2. Indeed, this is not uncommon practice,
see [13, p. 15], for example. In any case, what will be essential for the method of moments
is the knowledge about the uniqueness of a distribution with given moments, that is, the
answer to the question whether there is at most one distribution with a given sequence
of moments.

Theorem 3.3. Let (mk)k∈N be a sequence of real numbers. If one of the following
three conditions holds, there is at most one probability measure on (R,B) with moments
(mk)k∈N:

i)
∑∞

k=1
1

2k
√
m2k

=∞ (Carleman condition),

ii) lim supk→∞
2k
√
m2k

2k
<∞,

iii) ∃C,D ≥ 1 : ∀ k ∈ N : |mk| ≤ C ·Dk · k!.

Further, it holds that iii) ⇒ ii) ⇒ i), that is, the Carleman condition is the weakest of
the three.

Proof. i): See [3, p. 85].
ii): See [20, p. 122].
iii): See [51, p. 205].
Additional statement: The additional statement also proves that ii) and iii) are sufficient
when knowing that i) is sufficient.

We assume that ii) holds. Let for all k ∈ N : αk ..= 2k
√
m2k ≥ 0, then we have to

show
∑∞

k=1
1
αk

= ∞ under the condition that r ..= lim supk→∞
αk
2k
< ∞. But there exists

a K ∈ N such that for all k ≥ K we find αk
2k
≤ r + 1, thus αk ≤ 2k · (r + 1). Due to

divergence of the harmonic series we obtain:
∞∑
k=1

1

αk
≥
∑
k≥K

1

2k · (r + 1)
=∞.

Therefore, i) follows from ii). Now if iii) holds, we find for all k ∈ N:

2k
√
m2k

2k
≤

2k
√
C ·D2k · (2k)!

2k
≤ C ·D ·

2k
√

(2k)!

2k
≤ C ·D,

since (2k)2k ≥ (2k)! yields 2k ≥ 2k
√

(2k)! for all k ∈ N. Thus, ii) holds.
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3.2 The Method of Moments for Probability Measures

3.2 The Method of Moments for Probability Measures

Now we are well-prepared to introduce the method of moments, which is a means to infer
weak convergence of a sequence of distributions from the convergence of their moments.

Theorem 3.4. Let (µn)n∈N be a sequence in M1(R), so that all moments of every µn
exist. If there exists a sequence of real numbers (mk)k∈N, so that

∀ k ∈ N : lim
n→∞

〈
µn, x

k
〉

= mk, (3.1)

the following statements hold:
There exists a µ ∈M1(R) and a subsequence of (µn)n∈N, which converges weakly to µ.

Then ∀ k ∈ N : mk =
〈
µ, xk

〉
. In particular, the (mk)k∈N are moments of a probability

measure on (R,B). Further: If µ is uniquely determined by its moments, then the entire
sequence (µn)n converges weakly to µ.

Proof. With (3.1) it follows with k = 2 and Lemma 2.13 that (µn)n∈N is tight. Therefore,
with Lemma 2.15 there exists a µ ∈ M1(R) and a subsequence J ⊆ N such that (µn)n∈J
converges weakly to µ. With Lemma 2.11, we then obtain for all k ∈ N that (

〈
µn, x

k
〉
)n∈J

converges to
〈
µ, xk

〉
, since the sequence (

〈
µn, 1 + x2k

〉
)n∈J is bounded and the function

x 7→ xk

1+x2k
vanishes at infinity. We conclude with (3.1) that for all k ∈ N we have〈

µ, xk
〉

= mk, so (mk)k are indeed moments of a probability measure.
Now, if µ is uniquely determined by its moments, then the entire sequence (µn)n∈N

– and not just a subsequence – converges weakly to µ. To see this, let (µn)n∈I be an
arbitrary subsequence. By Lemma 2.9, it suffices to show that this subsequence has
another subsequence that converges weakly to µ. But as above (with swapped roles of I
and N) we find a probability measure ν on (R,B) and a subsequence J ′ ⊆ I, such that
that (µn)n∈J ′ converges weakly to ν and the numbers (mk)k∈N are the moments of ν. Since
µ is uniquely determined by these moments, we must have µ = ν.

3.3 The Method of Moments for Random Probability
Measures

The next theorem will generalize the method of moments to the convergence types of
random probability measures, namely to weak convergence in expectation, in probability
and almost surely. Although this could be presented in greater generality, we will restrict
our attention to convergence of random probability measures to a deterministic probability
measure. This is the type of convergence we will encounter in our analyses ahead.

Theorem 3.5. Let (µn)n∈N be random probability measures on (R,B) and µ be a deter-
ministic probability measure on (R,B) which is uniquely determined by its moments. Then
assuming that all following expressions (random moments, expected random moments) are
well-defined and finite, we conclude:
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i) If ∀ k ∈ N : E
〈
µn, x

k
〉
−−−→
n→∞

〈
µ, xk

〉
, then µn −−−→

n→∞
µ weakly in expectation.

ii) If ∀ k ∈ N :
〈
µn, x

k
〉
−−−→
n→∞

〈
µ, xk

〉
in probability, then µn −−−→

n→∞
µ weakly in probabil-

ity.

iii) If ∀ k ∈ N :
[〈
µn, x

k
〉
−−−→
n→∞

〈
µ, xk

〉
P-a.s.

]
, then µn −−−→

n→∞
µ weakly almost surely.

Proof. i) In the statement of the theorem, for every n, k ∈ N, the random variable
〈
µn, x

k
〉

is assumed to be well-defined, real-valued and P-integrable. This implies:

a) Eµn has existing moments of all orders.

b) ∀ k ∈ N :
〈
Eµn, x

k
〉

= E
〈
µn, x

k
〉
.

Of course, b) will follow from a) with Theorem 2.20. To show a), let n, k ∈ N be arbitrary
and observe 〈

Eµn, |xk|
〉2 ≤

〈
Eµn, x

2k
〉

= E
〈
µn, x

2k
〉
<∞,

where we first applied Jensen’s inequality and then Theorem 2.20. But now we have

∀ k ∈ N :
〈
Eµn, x

k
〉

= E
〈
µn, x

k
〉
−−−→
n→∞

〈
µ, xk

〉
and thus Eµn → µ weakly as n→∞ by Theorem 3.4.
ii) We want to show that µn → µ weakly in probability, which means that for all f ∈ Cb(R),
〈µn, f〉 converges to 〈µ, f〉 in probability. To this end, let f ∈ Cb(R) be arbitrary. To show
that (〈µn, f〉)n∈N converges to 〈µ, f〉 in probability we will show that any subsequence
has an almost surely convergent subsequence: Let J ⊆ N be a subsequence. Applying
Lemma 2.28 we find a subsequence I ⊆ J and a measurable set Ω1 ⊆ Ω of measure 1,
such that

∀ω ∈ Ω1 : ∀ k ∈ N :
〈
µn(ω), xk

〉
−−→
n∈I

〈
µ, xk

〉
.

In particular, with Theorem 3.4 we find that for all ω ∈ Ω1, µn(ω) converges weakly to µ
for n ∈ I, so that in particular, 〈µn(ω), f〉 → 〈µ, f〉 for n ∈ I. Therefore, 〈µn, f〉 → 〈µ, f〉
almost surely for n ∈ I.
iii) For all k ∈ N we find a measurable set Ωk ⊆ Ω with measure 1 such that for all

ω ∈ Ωk :
〈
µn(ω), xk

〉
→
〈
µ, xk

〉
as n→∞. Then Ω′ ..= ∩k∈NΩk has measure 1 and for all

ω ∈ Ω′ we find that
〈
µn(ω), xk

〉
→
〈
µ, xk

〉
for all k ∈ N, so that with Theorem 3.4, for

all ω ∈ Ω′ we have that µn(ω) converges weakly to µ. Therefore, µn converges weakly to
µ almost surely.

We refer the reader to Remark 2.26 for an explanation on the use of brackets [. . .] in
Theorem 3.5 iii).

Remark 3.6. The method of moments for random probability measures (Theorem 3.5)
works as follows: If one wants to show weak convergence of random probability measures
in expectation, in probability or almost surely, it will suffice to show that the random
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3.3 The Method of Moments for Random Probability Measures

moments converge in expectation, in probability or almost surely. This is a very useful
theorem, in particular considering we do not make any assumptions on the target measure
µ except those mentioned in Theorem 3.5. In particular, we do not require the target
probability measure to have a compact support. In the literature on random matrices,
this condition is often used to justify the method of moments, see [6, p. 11], for example.

The next theorem will help us to determine when the conditions for Theorem 3.5 are
met, to be more precise, when we are able to confirm convergence of the moments in
probability or almost surely. Further, it does not assume a priori the knowledge of the
target measure µ ∈M1(R). In summary, this is the theorem that is used when applying
the method of moments to random matrix theory, see also Theorems 3.12 and 3.14.

Theorem 3.7. Let (µn)n∈N be random probability measures on (R,B) and (mk)k∈N be
a sequence of real numbers, so that there is at most one probability measure on (R,B)
with moments (mk)k∈N. We formulate the following conditions, where we assume that all
expressions (random moments, expectations and variances) are finite:

(M1) ∀ k ∈ N : E
〈
µn, x

k
〉
−−−→
n→∞

mk,

(M2) ∃ z ∈ N : ∀ k ∈ N : E
(
|
〈
µn, x

k
〉
− E

〈
µn, x

k
〉
|z
)
−−−→
n→∞

0,

(M3) ∃ z ∈ N : ∀ k ∈ N : E
(
|
〈
µn, x

k
〉
− E

〈
µn, x

k
〉
|z
)
−−−→
n→∞

0 summably fast.

Then we conclude:

i) If (M1) holds, then there is a µ ∈ M1(R) with moments (mk)k∈N, so that Eµn → µ
weakly (that is, µn → µ weakly in expectation). In particular, the numbers (mk)k∈N
are the moments of a probability measure.

ii) If (M1) and (M2) hold , we conclude

∀ k ∈ N :
〈
µn, x

k
〉
−−−→
n→∞

〈
µ, xk

〉
in probability

and thus µn → µ weakly in probability via Theorem 3.5.

iii) If (M1) and (M3) hold , we conclude

∀ k ∈ N :
[〈
µn, x

k
〉
−−−→
n→∞

〈
µ, xk

〉
P-a.s.

]
and thus µn → µ weakly almost surely via Theorem 3.5.

Proof. i) As we saw in the beginning of the proof of Theorem 3.5, we find that for all
n ∈ N, the expected measure Eµn has moments of all orders and that for all k ∈ N :
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〈
Eµn, x

k
〉

= E
〈
µn, x

k
〉
. Now given (M1), statement i) follows directly with Theorem 3.4.

ii)/iii) Let k, z ∈ N and ε > 0 be arbitrary, then we first observe that

P
(∣∣〈µn, xk〉− 〈µ, xk〉∣∣ > ε

)
≤ P

(∣∣〈µn, xk〉− E 〈µn, xk〉+ E
〈
µn, x

k
〉
−
〈
µ, xk

〉∣∣ > ε
)

≤ P
(∣∣〈µn, xk〉− E 〈µn, xk〉∣∣ > ε

2

)
+ P

(∣∣E 〈µn, xk〉− 〈µ, xk〉∣∣ > ε

2

)
≤
E|
〈
µn, x

k
〉
− E

〈
µn, x

k
〉
|z

εz

2z

+ P
(∣∣E 〈µn, xk〉− 〈µ, xk〉∣∣ > ε

2

)
,

where we applied Markov’s inequality in the last step. We note that if (M1) holds, the
second summand on the r.h.s. vanishes ε-finally (which means for all n ≥ N , where
N ∈ N is a number that depends on ε). In particular, if (M2) holds, we obtain that〈
µn, x

k
〉
→n

〈
µ, xk

〉
in probability and if (M3) holds we obtain

〈
µn, x

k
〉
→n

〈
µ, xk

〉
almost surely by the Lemma of Borel-Cantelli. This shows the theorem.

3.4 The Moments of the Semicircle Distribution

In random matrix theory, the probability measure that appears as the limit of the em-
pirical spectral distribution is typically the semicircle distribution as defined in Defini-
tion 2.38. What we mean by typically is that it appears in Wigner’s semicircle law,
Theorem 2.42, which is the easiest non-trivial random matrix ensemble, for it has stan-
dardized entries which are independent up to the symmetry constraint. It is safe to say
that the role of the semicircle distribution in random matrix theory is as large as the
role of the standard normal distribution in probability theory. To remind the reader, the
semicircle distribution σ is the probability measure on (R,B) with Lebesgue-density fσ
where

fσ : R −→ R

x 7−→ fσ(x) ..=
1

2π

√
4− x21[−2,2](x).

Since we would like to apply the method of moments to random matrix theory, we will
proceed to derive the moments of the semicircle distribution. As it turns out, we will
obtain that 〈σ, x0〉 = 1, so that σ is identified as a probability measure, which we still
owed to the reader.

Lemma 3.8. The moments of the semicircle distribution σ are given by

mσ
k =

{
k!

k
2

!( k
2

+1)!
for k ∈ N0 even,

0 for k ∈ N0 odd.
(3.2)
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3.4 The Moments of the Semicircle Distribution

Proof. We follow the sketch in [6, p. 7]. To this end, note that the integrand is compactly
supported and bounded. Further, for odd k the integrand is odd, so the statement follows
for odd k. For even k, we obtain the statement by the following calculation:

mσ
k =

1

2π

∫ 2

−2

xk
√

4− x2dx

=
2k+1

π

∫ π
2

−π
2

sink(φ) cos2(φ)dφ

=
2k+1

π

∫ π
2

−π
2

sink(φ)(1− cos2(φ))

k + 1
dφ

=
2k+1

π

∫ π
2

−π
2

sink(φ)

k + 1
dφ− 2k+1

π

∫ π
2

−π
2

sink(φ) cos2(φ)

k + 1
dφ,

where we used the substitution x = 2 sin(φ) in the second step and integration by parts
in the third, where the factor to be integrated is sink cos. It follows

mσ
k =

2k+1

(k + 2)π

∫ π
2

−π
2

sink(φ)dφ.

In particular, for k = 0 we obtain mσ
0 = 1, so σ is indeed a probability measure. For all

k ≥ 2 even we calculate

mσ
k =

2k+1

(k + 2)π

∫ π
2

−π
2

sink−2(φ)(1− cos2(φ))dφ

=
2k+1

(k + 2)π

(∫ π
2

−π
2

sink−2(φ)dφ−
∫ π

2

−π
2

sink−2(φ) cos2(φ)dφ

)

=
2k+1

(k + 2)π

π(k − 1)

2k−1
mσ
k−2

=
4(k − 1)

k + 2
mσ
k−2,

where in the third step we used the calculation from the beginning of the proof with k−2
instead of k. Using this recursion with mσ

0 = 1, we can prove

∀ k ∈ N0 even: mσ
k =

k!
k
2
!(k

2
+ 1)!

.

To this end, using induction, the statement is clear for k = 0, and if it is known for some
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k ≥ 0 even, then we calculate

mσ
k+2 =

4(k + 1)

k + 4
mσ
k =

4(k + 1)

k + 4

k!
k
2
!(k

2
+ 1)!

!
=

(k + 2)!

(k
2

+ 1)!(k
2

+ 2)!

⇔ 4

k + 4

(
k

2
+ 1

)(
k

2
+ 2

)
= k + 2

⇔ (k + 2)(k + 4) = (k + 2)(k + 4).

and the last statement is true.

The values of the even moments of the semicircle distribution carry a special name:

Definition 3.9. The Catalan numbers are elements of the sequence of natural numbers
(Ck)k∈N0 , where

∀ k ∈ N0 : Ck
..=

(2k)!

k!(k + 1)!
.

Combining the results of Lemma 3.8 with the definition of the Catalan numbers, we
obtain for the sequence (mσ

k)k∈N0 of the moments of the semicircle distribution:

mσ
k =

{
Ck/2 for k even,

0 for k odd.
(3.3)

But the Catalan numbers are not only the (even) moments of the semicircle distribution.
They also appear as the solution to various combinatorial problems, see [45] or [58], for
example.

3.5 Application of the Method of Moments in RMT

So far we have pointed out what the method of moments is and how it works. Now we
want to build the bridge to random matrix theory. To this end, we need the following
observation, where as before, K ∈ {R,C}:

Lemma 3.10. Let n ∈ N and X ∈ SMatn(K), then we obtain for all k ∈ N:

n∑
i=1

(λXi )k = trXk =
n∑

t1,...,tk=1

X(t1, t2)X(t2, t3) · · ·X(tk, t1).

Proof. The second equality is clear. For the first equality, note that since X ∈ SMatn(K),
by Lemma 2.32, there exists an invertible matrix S ∈ Matn(K) so that X = S−1DS,
where D = diag(λX1 , . . . , λ

X
n ). Then

Xk = S−1DS · S−1DS · . . . · S−1DS︸ ︷︷ ︸
k factors

= S−1DkS = S−1 diag
(
(λX1 )k, . . . , (λXn )k

)
S.
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With Lemma 2.31, we obtain

tr(Xk) = tr diag
(
(λX1 )k, . . . , (λXn )k

)
=

n∑
i=1

(λXi )k.

Corollary 3.11. Let (Xn)n be a sequence of random matrices with corresponding ESDs
(σn)n. Then for all k ∈ N we find

〈
σn, x

k
〉

=
1

n
trXk

n =
1

n

n∑
t1,...,tk=1

Xn(t1, t2)Xn(t2, t3) · · ·Xn(tk, t1). (3.4)

Proof. Using Lemma 3.10, we calculate:

〈
σn, x

k
〉

=
1

n

n∑
i=1

(λXni )k =
1

n
trXk

n =
1

n

n∑
t1,...,tk=1

Xn(t1, t2)Xn(t2, t3) · · ·Xn(tk, t1).

The next theorem will be of use in highly explorative settings, where the target dis-
tribution is not known (or assumed) yet. This is the very first step in showing that the
ESDs of random matrices converge to a probability measure. To clarify terminology that
we use, if Y is a K-valued random variable, where K ∈ {R,C}, and if p ∈ N0, then we
call E|Y |p the p-th absolute moment of Y . Further, we say that Y has absolute moments
of all orders, if E|Y |p < ∞ for all p ∈ N0. Note that Y is integrable iff its first absolute
moment exists.

Theorem 3.12. Let (σn)n be the empirical spectral distributions of random matrices
(Xn)n, whose (K-valued) entries have absolute moments of all orders. Then if

∀ k ∈ N : E
〈
σn, x

k
〉
−−−→
n→∞

mk,

where (mk)k is a sequence of real numbers that satisfy the Carleman condition (cf. The-
orem 3.3), then (σn)n converges in expectation to a probability measure µ on (R,B) with
moments (mk)k.

Proof. This follows with Theorem 3.7, since by Corollary 3.11, for each k ∈ N0, the k-th
random moment is given by

〈
σn, x

k
〉

=
1

n

n∑
t1,...,tk=1

Xn(t1, t2)Xn(t2, t3) · · ·Xn(tk, t1),

which is a real-valued random variable whose expectation is finite, see the following
Lemma 3.13.
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3 The Method of Moments

Lemma 3.13. Let Y1, . . . , Yk be K-valued random variables such that E|Yi|k <∞ for all
i ∈ {1, . . . , k}, then

E|Y1Y2 · · ·Yk| ≤ max
i=1,...,k

E|Yi|k

Proof. This follows with a repeated application of Holder’s inequality, see [41, p. 31].

We remind the reader that convergence in expectation is a necessity for stronger con-
vergence types, see Theorem 2.29. Therefore, Theorem 3.12 is really the basis for any
explorative analysis. The next Theorem will be of use either after Theorem 3.12 has been
applied or if a priori, one has the target distribution of the ESDs in mind, for example if
one wants to show a semicircle law.

Theorem 3.14. Let (σn)n be the empirical spectral distributions of Hermitian random
matrices (Xn)n, whose entries have absolute moments of all orders. Denote by µ a prob-
ability measure which is uniquely determined by its moments (cf. Theorem 3.3). Then

i) σn converges to µ weakly in expectation, if

∀ k ∈ N : E
〈
σn, x

k
〉
−−−→
n→∞

〈
µ, xk

〉
,

ii) σn converges to µ weakly in probability, if i) holds and for some z ∈ N:

∀ k ∈ N : E
∣∣〈σn, xk〉− E 〈σn, xk〉∣∣z −−−→

n→∞
0,

iii) σn converges to µ weakly almost surely, if i) holds and for some z ∈ N:

∀ k ∈ N : E
∣∣〈σn, xk〉− E 〈σn, xk〉∣∣z −−−→

n→∞
0 summably fast.

Proof. This is a direct consequence of Theorem 3.7, considering that since matrix entries
have moments of all orders, Corollary 3.11 and Lemma 3.13 imply that expected random
moments and all other expectations are well-defined and finite.

Next, as an application, let us discuss the proof strategy behind Wigner’s semicircle
law, Theorem 2.42, where we restrict our attention to convergence in probability:

Example 3.15. Consider the setup of Theorem 2.42. Let (mσ
k)k∈N denote the moments

of the semicircle distribution, then we can use Theorem 3.14 and show that

1. For all k ∈ N:

E
〈
σn, x

k
〉

=
1

n1+k/2

n∑
t1,...,tk=1

Ea(t1, t2)a(t2, t3) · · · a(tk, t1) −−−→
n→∞

mσ
k .

2. For all k ∈ N:
E
(〈
σn, x

k
〉2
)
−−−→
n→∞

(mσ
k)2.
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This will imply statements i) and ii) from the preceding theorem with z = 2, thus the
semicircle law in probability.

This is also exactly what is shown in [6], as can be seen from their Lemma 2.1.6 in
combination with the proof of their Lemma 2.1.7. However, although Theorem 3.14
yields that above points 1 and 2 suffice for weak convergence in probability, in [6] further
cumbersome calculations are carried out, utilizing the compactness of the support of the
semicircle distribution, which can be observed on their pages 10 and 11.
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4 Random Band Matrices with
Correlated Entries

4.1 Introduction and Setup

We will start by following up on the publication [37]: In their 2015 paper, Hochstättler,
Kirsch and Warzel defined a new scheme of random matrices they called almost uncorre-
lated. The entries in these matrices are allowed to exhibit a certain correlation structure.
For an almost uncorrelated ensemble, they showed convergence of the empirical spectral
distribution to the semicircle law weakly in probability. Naturally, it remained to investi-
gate if convergence also holds almost surely. In this part of the thesis, we will provide a
positive answer, using the method of moments. Further, we generalize this result to also
be valid for band matrices. To be more precise, we study random band matrices whose
entries are almost uncorrelated. We show convergence of the ESDs in probability and
also almost surely, where for the latter result, a minimum growth rate of the bandwidth
of the band matrices seems indispensable. In addition, for non-periodic band matrices,
we will define a new parameter called ”halfwidth” on which convergence statements will
depend. As a special case, we will also obtain almost sure convergence of the ESDs of
band matrices with independent entries to the semicircle distribution.

To achieve our results, new combinatorial ideas must be developed, and the original
definition of almost uncorrelated schemes is slightly altered to be aligned with the new
combinatorial arguments. The underlying model introduced in this thesis will be called
α-almost uncorrelated to distinguish it from the 2015 ensemble and to place emphasis
on the model parameter α. Here, α is a parameter which controls the correlation in our
ensemble. A smaller α is associated with large correlations and vice versa.

In 2015, the driving motivating factor for the analysis of almost uncorrelated random
matrices were random matrices whose entries are Curie-Weiss distributed. Curie-Weiss
distributed random variables are exchangeable, whereas the general definition of almost
uncorrelated schemes also admit non-exchangeable families of random variables. The up-
dated ensemble in this thesis will still admit Curie-Weiss distributed matrix entries, but
also non-exchangeable variables. In fact, we will present a new example of almost un-
correlated random matrices, which are filled with not necessarily exchangeable correlated
Gaussian entries.

Chapter 4 of the thesis is organized as follows: Right after this introduction, we will
develop the underlying scheme of random matrices, which we call α-almost uncorrelated.
We will also introduce the structure of periodic band matrices. In Section 4.2 we will
begin by stating our main result for periodic band matrices, Theorem 4.9. This theorem
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4 Random Band Matrices with Correlated Entries

will be formulated in a rather general manner. Therefore, it will be important to draw
simple corollaries that exemplify the reach of the theorem. The remainder of the second
section will be devoted to examples of α-almost uncorrelated triangular schemes, namely
those with Curie-Weiss distributed and Gaussian entries. We will also elaborate on the
connection to the previous almost uncorrelated scheme developed in [37]. Section 4.3
is devoted to the proof of Theorem 4.9. In the section that follows, Section 4.4, we
will extend our results to non-periodic band matrices. To do so, we will formulate a
rather general theorem, which allows us to conclude asymptotic equivalence of ESDs of
periodic and non-periodic random band matrices, hence might also be of general interest.
Section 4.5 is devoted to auxiliary statements that we need for our proofs. A part of this
chapter is already available as a preprint in [30].

Almost Uncorrelated Triangular Schemes and Band Matrices

As usual in random matrix theory, one first defines a sequence of underlying random
matrices and then alters it in such a way (e.g. through rescaling), that a non-trivial limit
of the empirical spectral distribution can be proved. To do this, we use the concept of
triangular schemes. As before, for n ∈ N we will denote by �n the ”square of index pairs”
of dimension n, the set {1, . . . , n} × {1, . . . , n}.

Definition 4.1. Let (Ω,A,P) be a probability space, and for all n ∈ N let {an(p, q) :
(p, q) ∈ �n} be a family of real-valued random variables. Then we call the sequence
(an)n∈N a triangular scheme, if it is symmetric, that is, if the following holds: ∀n ∈ N :
∀ (p, q) ∈ �n : an(q, p) = an(p, q).

A triangular scheme received its name due to the fact that it is completely determined
by fixing the upper right triangle including the main diagonal. We have already seen
an example of a triangular scheme, namely the Wigner schemes as in Definition 2.40.
To identify entries in a triangular scheme which are different taking the symmetry into
account, we make the following definition:

Definition 4.2. We will call two pairs of numbers (a, b), (c, d) ∈ N2 fundamentally equal,
if {a, b} = {c, d} and fundamentally different, if they are not fundamentally equal, that
is, if {a, b} 6= {c, d}.

We will now define α-almost uncorrelated triangular schemes. These are the underlying
and non-scaled random matrices that we study in this chapter. Notationally, we will
denote by #M the cardinality of the set M .

Definition 4.3. Let (an)n∈N be a triangular scheme and α > 0. Then we call (an)n∈N
α-almost uncorrelated, if for all fixed N, l ∈ N and fundamentally different pairs (p1, q1),
. . ., (pl, ql) in �N we have

(AAU1) Distinct decay and boundedness condition: For all δ1, . . . , δl ∈ N we have

∀n ≥ N : |Ean(p1, q1)δ1 · · · an(pl, ql)
δl | ≤

CΦ(δ1,...,δl)

nα·#{i∈{1,...,l}|δi=1} , (4.1)
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(AAU2) Second moment condition:

∀n ≥ N : |Ean(p1, q1)2 · · · an(pl, ql)
2 − 1| ≤ C(l)

n , (4.2)

and strongly α-almost uncorrelated, if additionally it holds:

(AAU3) Fourth moment condition:

∀n ≥ N : |Ean(p1, q1)4 · (an(p2, q2)2 · · · an(pl, ql)
2 − 1)| ≤ D(l)

n , (4.3)

Here, Φ is a function that assigns to (δ1, . . . , δl) a (δ1 + . . . + δl)-vector, where the m-th
element is given by

(Φ(δ1, . . . , δl))m = #{i ∈ {1, . . . , l} : δi = m}.

Especially, all constants of the form CΦ(δ1,...,δl) do not depend on n. Further, the sequences

of the form (C
(l)
n )n and (D

(l)
n )n shall be non-negative real sequences that converge to zero

and depend on only on l. Further requirements about their convergence speed to zero will
be made in the statement of the main theorem.

Note that in above definition, the conditions (4.1), (4.2) and (4.3) do not make sense
for all n ∈ N, but only for those n large enough so that the factors an(pi, qi) exist, that
is, n must be larger than all the pi’s and qi’s. This is precisely the role of the number
N . That is, first an N is fixed, then pairs (pi, qi) ∈ �N are fixed, and then the three
conditions are formulated for all n ≥ N . Note also for condition (4.3) that by convention,
empty products shall have the value 1, so that the case l = 1 in that condition is trivial.

The properties of the entries of an almost uncorrelated triangular scheme are manifold,
but let us mention a few of them: In general, entries need not be independent, and they
need not have zero expectation nor unit variance, but they do so asymptotically. Further,
(AAU1) quantifies the correlation decay between the variables. It is required that for
each single factor in the product of the random variables, we obtain an increase of the
decay rate of their expectation by nα. A small value of α will thus lead to slowly decaying
correlations whereas a large value will lead to a fast decay of correlations within the
random matrices. Additionally, (AAU1) yields bounded moments of any order, uniformly
over all random variables of the scheme. The second moment condition (AAU2) is to
be interpreted as an extension of the requirement that asymptotically, matrix entries
should have unit variance. Lastly, let us turn to condition (AAU3). One way to interpret
(AAU3) is that a fourth power should not hinder the product of squares to converge to
1 in expectation, as postulated in (AAU2). Further, it is clear that (AAU3) is satisfied
when we have standardized independent entries, so we require this property to carry over
to the correlated case. Indeed, all examples of random matrices treated in this text will
satisfy (AAU3). Further, it should be noted that in many results we obtain, condition
(AAU3) is not needed, and this will be pointed out at the appropriate places by requiring
either an α-almost uncorrelated or a strongly α-almost uncorrelated triangular scheme.
A sufficient condition which helps to verify (AAU3) in practice is given in Lemma 4.18.
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Although more involved examples will be discussed in the next section, we would like
to give the simplest example α-almost uncorrelated schemes, namely Wigner schemes as
in Definition 2.40.

Lemma 4.4. Let (an)n be a Wigner scheme, then (an)n is strongly α-almost uncorrelated
for any α > 0.

Proof. We need to prove that the triangular scheme (an)n as in the statement satisfies the
conditions (AAU1), (AAU2) and (AAU3). To see this, pick N, l ∈ N and fundamentally
different pairs (p1, q1), . . ., (pl, ql) in �N . Due to independence and unit variance, the

left hand sides of (4.2) and (4.3) will vanish. Therefore, we can set C
(l)
n

..= D
(l)
n

..= 0 for
all n ∈ N. To check (4.1), denote by (Lp)p∈N the uniform bounds on the respective p-th
absolute moments of the variables an(i, j), as given in Defintion 2.40. Let δ1, . . . , δl ∈ N
be arbitrary. Due to independence end centrality, we can set CΦ(δ1,...,δl)

..= 0 whenever
Φ(δ1, . . . , δl)1 ≥ 1, since then the left hand side of (4.1) vanishes. On the other hand, if
Φ(δ1, . . . , δl)1 = 0, then set CΦ(δ1,...,δl)

..= Lδ where δ ..= δ1 + . . . + δl. Then for all n ≥ N
we obtain

|Ean(p1, q1)δ1 · · · an(pl, ql)
δl | ≤ max

{
E|an(p1, q1)|δ, . . . ,E|an(pl, ql)|δ

}
≤ Lδ = CΦ(δ1,...,δl),

where we used Lemma 3.13. In both cases whether there are single factors or not, we
obtain validity of (4.1) with the constants we defined and for all α > 0.

Thus far we constructed the underlying sequence of α-almost uncorrelated triangular
schemes. Since in this section we want to derive conclusions about the ESDs of periodic
band matrices, let us obtain a first intuition about their structure. A 6× 6 periodic band
matrix M with bandwidth 3 has the structure

M =


x1,1 x1,2 0 0 0 x1,6

x2,1 x2,2 x2,3 0 0 0
0 x3,2 x3,3 x3,4 0 0
0 0 x4,3 x4,4 x4,5 0
0 0 0 x5,4 x5,5 x5,6

x6,1 0 0 0 x6,5 x6,6

 ,

whereas with bandwidth 5 we obtain the structure

M =


x1,1 x1,2 x1,3 0 x1,5 x1,6

x2,1 x2,2 x2,3 x2,4 0 x2,6

x3,1 x3,2 x3,3 x3,4 x3,5 0
0 x4,2 x4,3 x4,4 x4,5 x4,6

x5,1 0 x5,3 x5,4 x5,5 x5,6

x6,1 x6,2 0 x6,4 x6,5 x6,6

 .

Loosely speaking, the bandwidth is the width of the diagonal in the middle of the matrix.
It is also the number of permitted non-trivial entries in each row of the matrix, and the
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number of non-vanishing diagonals in the upper right triangle of the matrix, including
the main diagonal.

We make the observation that the concept of a ”bandwidth” makes sense for each odd
natural number smaller than n, or for n itself (regardless if n is odd or not), in which case
we obtain the full matrix. This motivates the following definition.

Definition 4.5. Let n ∈ N be arbitrary, then a number bn ∈ N is called (n-)bandwidth,
if bn ∈ {b < n | b odd} ∪ {n}.

Further, given an n×n periodic band matrix with bandwidth bn, we want to be able to
identify index pairs (i, j) which are relevant, that is, whose matrix entries do not vanish
identically due to the band structure.

Definition 4.6. Let n ∈ N and bn be a bandwidth, then an index pair (i, j) ∈ �n is
called bn-relevant, if

|i− j| ≤ bn − 1

2
or |i− j| ≥ n− bn − 1

2
,

or if bn = n.

A simple observation is that if n ∈ N and bn is a bandwidth, then there are exactly n ·bn
relevant index pairs in �n, since there are bn non-trivial entries per row of the matrix.

Given any n × n matrix, we can convert it into a periodic band matrix with a given
bandwidth bn by dropping the non-relevant entries:

Definition 4.7. Let (an)n be a sequence of arbitrary n × n-matrices (for example, a
triangular scheme) and b = (bn)n be a sequence of n-bandwidths, then we define the
periodic band matrices abn as

∀n ∈ N : ∀ (i, j) ∈ �n : abn(i, j) ..=

{
an(i, j) if (i, j) is bn-relevant

0 otherwise.

Definition 4.8. Let (Ω,A,P) be a probability space, (an)n∈N a triangular scheme and
b = (bn)n a sequence of n-bandwidths.

1. We say that a sequence of random matrices (Xn)n∈N is based on the triangular
scheme (an)n∈N, if for all n ∈ N we have:

i) Xn has dimension n× n.

ii) Xn(p, q) = 1√
n
an(p, q) ∀ (p, q) ∈ �n.

2. We say that a sequence of periodic random band matrices (Xn)n∈N is based on the
triangular scheme (an)n∈N with bandwidth b, if for all n ∈ N we have:

i) Xn has dimension n× n.

ii) Xn(p, q) = 1√
bn
abn(p, q) ∀ (p, q) ∈ �n.
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Please note in point 2 of the above definition that if bn = n for all n, we obtain for all
n that

Xn(p, q) =
1√
n
an(p, q) ∀ (p, q) ∈ �n,

since we are considering the full matrices. Thus, in case of full bandwidth, we are actually
dealing with ”un-banded” random matrices. In particular, the first part of Definition 4.8
is encapsulated in the second. Nevertheless, we grant the first part of the definition its
own place, since it is the most common way to construct and rescale random matrices.

4.2 Results and Examples

Now, let us turn to the main theorem of this chapter and draw some corollaries. The
corollaries will be proved immediately, whereas the lengthy proof of the main theorem
will be postponed and carried out in Sections 4.3.1, 4.3.2 and 4.3.3. We remind the reader
that Wigner schemes are defined in Definition 2.40.

Main Result and Corollaries

Theorem 4.9. Let (an)n be an α-almost-uncorrelated triangular scheme, b = (bn)n be a
sequence of n-bandwidths with bn → ∞ and (Xn)n be the periodic random band matrices
which are based on (an)n with bandwidth b. Then we obtain the following results:

1. If α ≥ 1
2
, then the semicircle law holds for (Xn)n in probability.

2. If α ≥ 1
2
, 1
b3n

is summable over n and all entries of (an)n are {−1, 1}-valued, then

the semicircle law holds almost surely for (Xn)n.

3. If (an)n is even strongly α-almost-uncorrelated with α > 1
2
, and the sequences 1

b2n
,

1
bn
D

(l)
n and C

(l)
n are summable over n, then we obtain the semicircle law almost surely

for (Xn)n.

4. If (an)n is a Wigner scheme and if ( 1
nbn

)n is summable, then we obtain the semicircle
law almost surely for (Xn)n.

Remark 4.10. Before we proceed, let us elaborate on the requirements in statement 3 of
Theorem 4.9. Firstly, the requirement that 1

b2n
be summable entails that the bandwidth has

to exhibit a certain minimal growth. This condition is satisfied, for example, if bn ∼ n
1
2

+ε

for some ε > 0, where ∼ denotes asymptotic equivalence of sequences, e.g. bn/n
1/2+ε → 1.

Secondly, 1
bn
D

(l)
n should be summable which displays the importance of some conver-

gence rate in the fourth moment condition. If D
(l)
n ∼ 1/n, then we will always have that

1
bn
D

(l)
n is summable, since 1

b2n
is assumed summable already. On the other hand, when

considering the full bandwidth model bn = n, then D
(l)
n ∼ 1/nε for some ε > 0 will suffice.
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As becomes obvious in the last remark, the main theorem is a ”multi-dimensional”
statement. Therefore, with help of the next corollaries, we look at some important special
cases of the theorem, where certain model parameters are fixed.

The first corollary will deal with the full matrix model without erased diagonals.

Corollary 4.11. Let (an)n be an α-almost-uncorrelated triangular scheme and (Xn)n be
the random matrices which are based on (an)n. Then we obtain the following results:

1. If α ≥ 1
2
, then the semicircle law holds for (Xn)n in probability.

2. If α ≥ 1
2

and all entries of (an)n are {−1, 1}-valued, then the semicircle law holds
almost surely for (Xn)n.

3. If (an)n is even strongly α-almost-uncorrelated with α > 1
2

and the sequences C
(l)
n and

1
n
D

(l)
n are summable over n, then we obtain the semicircle law almost surely for

(Xn)n.

4. If (an)n is a Wigner scheme, then we obtain the semicircle law almost surely for
(Xn)n.

Proof. Immediate from Theorem 4.9 considering bn = n.

Note that statement 4 of the last corollary is Wigner’s semicircle law. The next corollary
will deal with a bandwidth increasing proportionally to n.

Corollary 4.12. Let (an)n be an α-almost-uncorrelated triangular scheme, b = (bn)n a
bandwidth that grows proportionally with n, that is, there is a p ∈ (0, 1) such that bn ∼ p·n.
Let (Xn)n be the periodic random band matrices which are based on (an)n with bandwidth
b. Then we obtain the following results:

1. If α ≥ 1
2
, then the semicircle law holds for (Xn)n in probability.

2. If α ≥ 1
2

and all entries of (an)n are {−1, 1}-valued, then the semicircle law holds
almost surely for (Xn)n.

3. If (an)n is even strongly α-almost-uncorrelated with α > 1
2

and the sequences C
(l)
n and

1
n
D

(l)
n are summable over n, then we obtain the semicircle law almost surely for

(Xn)n.

4. If (an)n is a Wigner scheme, then we obtain the semicircle law almost surely for
(Xn)n.

Proof. This follows from Theorem 4.9: Statement 1 holds since surely, bn →∞. Statement
2 holds since 1

b3n
is summable, which follows from

∑
n∈N

1

b3
n

=
∑
n∈N

(p · n)3

b3
n

· 1

p3n3
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and the sequence (p·n)3

b3n
is bounded. Statement 3 follows since 1

b2n
is summable which follows

from ∑
n∈N

1

b2
n

=
∑
n∈N

(p · n)2

b2
n

· 1

p2n2

and the sequence (p·n)2

b2n
is bounded. In addition, 1

bn
D

(l)
n is summable since∑

n∈N

1

bn
D(l)
n =

∑
n∈N

p · n
bn
· 1

p · n
D(l)
n

and the sequence p·n
bn

is bounded. Statement 4 holds since 1
nbn

is summable due to∑
n∈N

1

nbn
=
∑
n∈N

p · n
bn
· 1

p · n2

where the sequence p·n
bn

is bounded.

We will now introduce some examples of α-almost uncorrelated triangular schemes. An
application of Theorem 4.9 will then allow conclusions regarding the asymptotic behavior
of the ESDs of the random matrices which are based on these schemes.

Curie-Weiss Ensembles and Relations to Previous Work

The previous work on almost uncorrelated ensembles in [37] (where these ensembles were
invented) was motivated by random matrices with Curie-Weiss distributed entries. Let
us recall their definition of almost uncorrelated triangular schemes:

Definition 4.13. A triangular scheme (an)n∈N is called almost uncorrelated, if for all
N ∈ N we have:

(AU1) Distinct decay and boundedness condition:

∀n ≥ N : |Ean(p1, q1) · · · an(pl, ql)an(pl+1, ql+1) · · · an(pl+m, ql+m)| ≤ Kl,m

nl/2

(AU2) Second moment condition:

∀n ≥ N : |Ean(p1, q1)2 · · · an(pl, ql)
2 − 1| ≤ K(l)

n

for all sequences of pairs (p1, q1), . . . , (pl+m, ql+m) in �N , where l,m ∈ N0, so that
(p1, q1), . . . , (pl, ql) are fundamentally different from all other pairs of the entire sequence
(p1, q1), . . . , (pl+m, ql+m).1 Further, the constants Kl,m are non-negative real numbers that

only depend on l and m, and for all l ∈ N0 we have that (K
(l)
n )n∈N is a non-negative real

sequence that converges to zero.

1To clarify, that means, for example, that (p2, q2) is fundamentally different from the pairs
(p1, q1), (p3, q3), (p4, q4), . . . , (pl+m, ql+m).
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How is this definition related to Definition 4.3 on page 54? On the one hand, notice
that (AU2) and (AAU2) are the same. On the other hand, clearly, (AAU3) is a new
condition, which we had to introduce to derive statement 3 of Theorem 4.9. But what
about (AU1) and (AAU1)? In (AU1), the decay gain per single factor is set to n1/2

whereas in (AAU1) this decay gain is nα for some α > 0. Again, this flexibility was
introduced to derive statement 3 of Theorem 4.9. The following lemma sheds light on the
relationship between (AU1) and (AAU1), and between almost uncorrelated and α-almost
uncorrelated schemes.

Lemma 4.14. A triangular scheme (an)n satisfies condition (AU1) if and only if it sat-
isfies condition (AAU1) with α = 1

2
. In particular, (an)n is almost uncorrelated iff it is

1
2
-almost uncorrelated.

Proof. Due to the discussion preceding this lemma, we only need to show the first state-
ment. We first show ”⇒”: Pick N ∈ N and an n ≥ N arbitrarily. Then, pick an l ∈ N,
δ1, . . . , δl ∈ N arbitrarily. Next, pick fundamentally different pairs (p1, q1), . . . , (pl, ql) ∈
�N arbitrarily. Define the two numbers

a ..= #{i ∈ {1, . . . , l}|δi = 1}

and
b ..=

∑
i:δi 6=1

δi

Then we have for all n ≥ N by condition (AU1):

|Ean(p1, q1)δ1 · · · an(pl, ql)
δl |

≤ Ka,b

n
1
2
·a

We observe that the numbers a and b only depend on the multiplicities of the values in
the tuple (δ1, . . . , δl). Therefore, setting

CΦ(δ1,...,δl)
..= Ka,b

will be well-defined.
Now, we show ”⇐”: Pick N ∈ N and an n ≥ N arbitrarily. Then, pick l,m ∈ N0 and

pairs (p1, q1), . . . , (pl, ql), (pl+1, ql+1), . . . , (pl+m, ql+m) ∈ �N arbitrarily, so that the pairs
(p1, q1), . . . , (pl, ql) are fundamentally different from all other pairs in the sequence
(p1, q1), . . . , (pl, ql), (pl+1, ql+1), . . . , (pl+m, ql+m). Then define the finite set

S(l,m) ..=

{
CΦ(δ1,...,δr)

∣∣∣∣∣ r ≤ l +m, #{i : δi = 1} ≥ l,
r∑
j=1

δj = l +m

}

and the number
Kl,m

..= max{C : C ∈ S(l,m) ∪ {1}}.
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which is well-defined, since it only depends on the numbers l and m and the set S(l,m)
surely is finite. Then, by (AAU1) we will have for some C ∈ S(l,m) that

|Ean(p1, q1) · · · an(pl, ql)an(pl+1, ql+1) · · · an(pl+m, ql+m)| ≤ C

n
1
2
·l
≤ Kl,m

nl/2
,

which we needed to show.

The lemma we just proved yields the following corollary:

Corollary 4.15. Let (Xn)n be the sequence of periodic random band matrices which is
based on an almost uncorrelated triangular scheme (an)n with bandwidth b = (bn)n.

1. If bn →∞, then the semicircle law holds for (Xn)n in probability.

2. If 1
b3n

is summable over n and all entries of (an)n are {−1, 1}-valued, then the semi-

circle law holds almost surely for (Xn)n.

Proof. The corollary follows directly from Lemma 4.14 and Theorem 4.9.

We will now introduce our first example of α-almost uncorrelated triangular arrays,
namely those filled with Curie-Weiss distributed random variables. We refer the reader
to [41] for a rigorous treatment of the properties of the Curie-Weiss distribution.

Definition 4.16. Let n ∈ N be arbitrary and Y1, . . . , Yn be random variables defined
on some probability space (Ω,A,P). Let β > 0, then we say that Y1, . . . , Yn are Curie-
Weiss(β,n)-distributed, if for all y1, . . . , yn ∈ {−1, 1} we have that

P(Y1 = y1, . . . , Yn = yn) =
1

Zβ,n
· e

β
2n

(
∑
yi)

2

where Zβ,n is a normalization constant. The parameter β is called inverse temperature.

The Curie-Weiss(β, n) distribution is used to model the behavior of n ferromagnetic
particles (spins) at the inverse temperature β. At low temperatures, that is, if β is large, all
magnetic spins are likely to have the same alignment, resembling a strong magnetic effect.
On the contrary, at high temperatures (if β is small), spins can act almost independently,
resembling a weak magnetic effect.

Theorem 4.17. Let 0 < β ≤ 1 and let for each n ∈ N the random variables (ãn(i, j))1≤i,j≤n
be Curie-Weiss(β, n2)-distributed. Define the triangular scheme (an)n by setting

∀n ∈ N : ∀ (i, j) ∈ �n : an(i, j) =

{
ãn(i, j) if i ≤ j

ãn(j, i) if i > j.

Let (Xn)n be the random matrices which are based on (an)n. Let b = (bn)n be a sequence
of n-bandwidths and (Yn)n be the periodic random band matrices which are based on (an)n
with bandwidth b. Then the following statements hold:

62



4.2 Results and Examples

i) The triangular scheme (an)n is almost uncorrelated.

ii) The triangular scheme (an)n is 1
2
-almost uncorrelated.

iii) The semicircle law holds for (Xn)n almost surely.

iv) If bn →∞ as n→∞, then the semicircle law holds for (Yn)n in probability.

v) If 1
b3n

is summable over n, then the semicircle law holds almost surely for (Yn)n.

Proof. In [37] it was shown that (an)n is almost uncorrelated, where we also refer the
reader to [41] for technical details. This shows i), and ii) follows with Lemma 4.14.
Statements iii), iv) and v) follow with Corollary 4.15 or Theorem 4.9.

Correlated Gaussian Entries

We will now study random matrices filled with correlated Gaussian entries. By placing
quite natural conditions on the covariance matrices of the entries with dependence on a
parameter α > 0, we will then obtain α-almost uncorrelated ensembles. In other words, α-
almost uncorrelated ensembles appear quite naturally when studying correlated Gaussian
ensembles. Since we are interested in semicircle laws both in probability and almost
surely, we will need condition (AAU3). To validate (AAU3) in practice, we formulate the
next lemma.

Lemma 4.18. Let (an)n∈N be a triangular scheme and suppose that there exists a K ∈ R
such that for all l, N ∈ N and fundamentally different pairs (p1, q1), . . . , (pl, ql) in �N we
have that

∀n ≥ N : |Ean(p1, q1)4an(p2, q2)2 · · · an(pl, ql)
2 −K| ≤ D̃(l)

n , (4.4)

where for each l ∈ N, (D̃
(l)
n )n is a sequence converging to zero. Then (AAU3) is also

satisfied with constants D
(l)
n

..= D̃
(l)
n + D̃

(1)
n .

Proof. We calculate

|Ean(p1, q1)4 · (an(p2, q2)2 · · · an(pl, ql)
2 − 1)|

≤ |Ean(p1, q1)4an(p2, q2)2 · · · an(pl, ql)
2 −K|+ |Ean(p1, q1)4 −K|

≤ D̃(l)
n + D̃(1)

n

What follows is a generalization of the author’s work in [31]. New ideas had to be
incorporated for the proceedings in the present exposition. Notationally, we define

∀n ∈ N : [n] ..= {1, . . . , n}.

Further, for any α > 0 we denote by CovMat(α) the set of all sequences (Σn)n, where for
each n ∈ N, Σn is a real symmetric n× n matrix with the following properties:
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i) Σn(i, i) = 1 for all i ∈ [n],

ii) |Σn(i, j)| ≤ 1/nα for all i 6= j ∈ [n].

iii) Σn is positive definite.

Note that if α ≥ 1, then any symmetric n× n matrix A satisfying above conditions i)
and ii) will already be positive definite, since then, A will be strictly diagonally dominant
with strictly positive diagonal entries. We refer the reader to [49] for details.

To give examples, if (Σn)n ∈ CovMat(1), then for n = 4 we could have

Σ4 =


1 1

4
1
4

1
4

1
4

1 1
4

1
4

1
4

1
4

1 1
4

1
4

1
4

1
4

1


or

Σ4 =


1 1

4
−1

5
−1

6
1
4

1 1
7

1
8

−1
5

1
7

1 1
9

−1
6

1
8

1
9

1

 .

In the following, we would like to define the multi-dimensional normal distribution and
list some of its properties, where we followed the exposition in [44].

Definition 4.19. Let n ∈ N and Σ be a positive definite real symmetric n × n matrix,
µ ∈ Rn. A random vector Y = (Y1, . . . , Yn) on a probability space (Ω,A,P) with values in
Rn is called n-dimensional normally distributed with expectation µ and covariance matrix
Σ, if its distribution P(Y1,...,Yn) has Lebesgue density fµ,Σ with

∀ y ∈ Rn : fµ,Σ(y) =
1√

(2π)n det(Σ)
exp

(
−1

2
· (y − µ)t · Σ−1 · (y − µ)

)
,

where for a (column) vector z ∈ Rn we denote by zt the transposed vector (thus a row
vector). In this case, we write Y ∼ N (µ,Σ).

Theorem 4.20. Let n ∈ N, Σ be a positive definite real symmetric n × n matrix and
µ ∈ Rn. From (Y1, . . . , Yn) ∼ N (µ,Σ) it follows:

i) For all j ∈ [n] : EYj = µj.

ii) For all (i, j) ∈ �n : Cov(Yi, Yj) = Σ(i, j).

iii) For all j ∈ [n] : Yj ∼ N (µj,Σ(j, j)).

Proof. This is part of Theorem 15.53 in [44], page 327.

Next, we would like to be able to compute the expectation of an arbitrary product of
multi-dimensional normal random variables.
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Theorem 4.21. Let n ∈ N and Σ be a positive definite, real symmetric n×n matrix. For
the real-valued random variables Y1, . . . , Yn on (Ω,A,P) it is assumed that (Y1, . . . , Yn) ∼
N (0n,Σ) (where 0n is the n-dimensional vector containing only zeroes). Then for all
k ∈ N and i(1), . . . , i(k) ∈ [n], we have that

EYi(1) · · ·Yi(k) =
∑

π∈PP(k)

∏
{r,s}∈π

EYi(r)Yi(s) =
∑

π∈PP(k)

∏
{r,s}∈π

Σ
(
i(r), i(s)

)
,

where PP(k) denotes the set of all pair partitions on {1, . . . , k}. Especially, we obtain for
k odd that

EYi(1) · · ·Yi(k) = 0.

Proof. This theorem is known as ”Wick’s theorem” or ”Theorem of Isserlis”. It can be
found in [47] or [38].

Example 4.22. Let α > 0 be arbitrary and let us construct an example of a strongly
α-almost uncorrelated matrix ensemble, where the sequences (C

(l)
n )n and (D

(l)
n )n can be

chosen to be summable if α > 1/4.
The triangular scheme will be filled with normal random variables. Due to symmetry,

it suffices to specify the right upper triangle of each an in the triangular scheme (an)n∈N
now to be defined. For each n ∈ N, there are at most n2 such entries. Fix a sequence
(Σn)n ∈ CovMat(α). We will endow the right upper triangle of each an with variables from

a random vector (Y
(n)

1 , . . . , Y
(n)

n2 ) ∼ N (0n2 ,Σn2), where different entries in the right upper

triangle of an will also receive different random variables out of the vector (Y
(n)

1 , . . . , Y
(n)

n2 ).
To this end, for each n ∈ N we fix an injection

ϕn : {(i, j) ∈ �n : i ≤ j} −→ {1, . . . , n2}

and set for all (i, j) ∈ �n with i ≤ j: an(i, j) ..= Y
(n)
ϕn(i,j). We will proceed in this way

for all n ∈ N and obtain thus a completely specified triangular scheme (an)n∈N. To avoid
future technical difficulties, we extend for all n ∈ N the domain of ϕn onto the whole
square �n, by setting for all (i, j) ∈ �n with j < i: ϕn(i, j) ..= ϕn(j, i).

Of course, what we have to prove next is that the triangular scheme (an)n∈N, which
we just constructed in Example 4.22, is indeed strongly α-almost uncorrelated as in Def-
inition 4.3 on page 54, so we need to check that the conditions (AAU1), (AAU2) and
(AAU3) hold. The next three lemmas will help us in this endeavor.

Lemma 4.23. Let α > 0 and (Σn)n ∈ CovMat(α) be arbitrary. Let l ∈ N and then
δ1, . . . , δl ∈ N, so that δ1 + . . .+ δl is even.
Let n ∈ N and i(1), i(2), . . . , i(δ1 + . . .+ δl) ∈ [n2], so that

i(1) = i(2) = . . . = i(δ1)

i(δ1 + 1) = . . . = i(δ1 + δ2)

i(δ1 + δ2 + 1) = . . . = i(δ1 + δ2 + δ3)

...

i(δ1 + . . .+ δl−1 + 1) = . . . = i(δ1 + . . .+ δl)
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but i(1), i(δ1 + 1), . . ., i(δ1 + . . .+ δl−1 + 1) are distinct. Then we have∣∣∣∣∣∣
∑

π∈PP(δ1+...+δl)

∏
{r,s}∈π

Σn2

(
i(r), i(s)

)∣∣∣∣∣∣ ≤ #PP(δ1 + . . .+ δl)

nα·#{i | δi=1} .

Proof. Each diagonal entry of Σn2 equals 1 and each off-diagonal entry lies in the interval
[−1/n2α, 1/n2α]. Let π ∈ PP(δ1 + . . .+ δl) be arbitrary, then we have that∏

{r,s}∈π

Σn2

(
i(r), i(s)

)
is a product of (δ1 + . . .+ δl)/2 entries of Σn2 . For each block {r, s} ∈ π with i(r) = i(s)
we find Σn2

(
i(r), i(s)

)
= 1, and for each block {r, s} ∈ π with i(r) 6= i(s) we obtain

|Σn2

(
i(r), i(s)

)
| ≤ 1/n2α. But now we have at least

#{i | δi = 1}
2

blocks {r, s} in π with i(r) 6= i(s), since for any δi with δi = 1, the index i(δ1 + . . .+ δi) is
unique among all indices and must therefore share a block with a different index. Then
in the worst case possible, the number of δi’s with δi = 1 is even and their corresponding
unique indices are all paired, yielding the bound above. Therefore,

∏
{r,s}∈π

|Σn2

(
i(r), i(s)

)
| ≤

(
1

n2α

)#{i|δi=1}
2

=
1

nα·#{i | δi=1}

and this bound holds for each π ∈ PP(δ1 + . . .+ δl), proving the lemma.

Lemma 4.24. Let α > 0 and (Σn)n ∈ CovMat(α) be arbitrary. Let n, z ∈ N. Let
i(1), . . . , i(2z) be in [n2], so that i(1) = i(2), i(3) = i(4), . . . , i(2z − 1) = i(2z), but
i(1), i(3), . . . , i(2z − 1) are pairwise distinct. Then it holds:∣∣∣∣∣∣

∑
π∈PP(2z)

∏
{r,s}∈π

Σn2

(
i(r), i(s)

)
− 1

∣∣∣∣∣∣ ≤ #PP(2z)

n4α
.

Proof. First, let us repeat some observations that we already made in the proof of
Lemma 4.23. Each diagonal entry of the matrix Σn2 equals 1 and each off-diagonal entry
lies in the interval [−1/n2α, 1/n2α]. Now let π ∈ PP(2z) be arbitrary, then we have that∏

{r,s}∈π

Σn2

(
i(r), i(s)

)
is a product of z entries of Σn2 . For each block {r, s} ∈ π with i(r) = i(s) it holds
Σn2

(
i(r), i(s)

)
= 1 and for each block {r, s} ∈ π with i(r) 6= i(s) it holds |Σn2

(
i(r), i(s)

)
| ≤

1/n2α.
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But now consider the pair partition π0 = {{1, 2}, {3, 4}, . . . , {2z − 1, 2z}} ∈ PP(2z).
This is the only pair partition in PP(2z) that pairs the distinct pairs in i(1), . . . , i(2z).
In other words: [∀ {r, s} ∈ π0 : i(r) = i(s)]. Thus∏

{r,s}∈π0

Σn2

(
i(r), i(s)

)
= 1.

On the other hand, for each π ∈ PP(2z) with π 6= π0 we find a block {r′, s′} ∈ π with
i(r′) 6= i(s′), and then necessarily at least one further block {r′′, s′′} ∈ π with i(r′′) 6= i(s′′),
leading to ∏

{r,s}∈π

|Σn2

(
i(r), i(s)

)
| ≤ 1

n4α
.

There are at most #PP(2z) partitions π ∈ PP(2z) with π 6= π0, which concludes the
proof.

Lemma 4.25. Let α > 0 and (Σn)n ∈ CovMat(α) be arbitrary. Let n, z ∈ N and
i(1), . . . , i(2z + 2) be in [n2], so that i(1) = i(2) = i(3) = i(4), i(5) = i(6), i(7) =
i(8), . . . , i(2z+ 1) = i(2z+ 2), but i(1), i(5), i(7), . . . , i(2z+ 1) are pairwise distinct. Then
it holds: ∣∣∣∣∣∣

∑
π∈PP(2z+2)

∏
{r,s}∈π

Σn2

(
i(r), i(s)

)
− 3

∣∣∣∣∣∣ ≤ #PP(2z + 2)

n4α
.

Proof. The proof is analogous to the proof of Lemma 4.24. Here, the pair partitions

π1 = {{1, 2}, {3, 4}, {5, 6}, {7, 8}, . . . , {2z + 1, 2z + 2}}
π2 = {{1, 3}, {2, 4}, {5, 6}, {7, 8}, . . . , {2z + 1, 2z + 2}}
π3 = {{1, 4}, {2, 3}, {5, 6}, {7, 8}, . . . , {2z + 1, 2z + 2}}

in PP(2z+2) are exactly the pair partitions π in PP(2z+2) so that each block {r, s} ∈ π
satisfies i(r) = i(s). Thus for every j ∈ {1, 2, 3}, we obtain∏

{r,s}∈πj

Σn2

(
i(r), i(s)

)
= 1.

On the other hand, we note that for each π ∈ PP(2z+2) with π 6= πj for all j ∈ {1, 2, 3},
we find a block {r′, s′} ∈ π with i(r′) 6= i(s′), and then necessarily at least one further
block {r′′, s′′} ∈ π with i(r′′) 6= i(s′′), leading to∏

{r,s}∈π

|Σn2

(
i(r), i(s)

)
| ≤ 1

n4α
.

Surely, there are at most #PP(2z + 2) partitions π ∈ PP(2z + 2) with π 6= πj for all
j ∈ {1, 2, 3}, which concludes the proof.
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Now we are ready to prove that the claims in Example 4.22 are true.

Theorem 4.26. Let α > 0 and (Σn)n ∈ CovMat(α) be arbitrary. Let the triangular
scheme (an)n∈N be constructed with respect to α and (Σn)n as in Example 4.22. Then
(an)n∈N is strongly α-almost uncorrelated, and if α > 1/4, then for all l ∈ N, the sequences

C
(l)
n and D

(l)
n can be chosen summable over n. Further, this property is tight in the sense

that (an)n∈N need not be α′-almost uncorrelated for any α′ > α.

Proof. To prove the first statement, we first want to specify the constants CΦ(δ1,...,δl) in
(AAU1), which is readily done by setting CΦ(δ1,...,δl)

..= #PP(δ1 + . . .+ δl). To prove the
bound in (AAU1) with these constants, we need only consider the case where δ1 + . . .+ δl
is even, since if δ1 + . . .+ δl is odd, then the inequality yields 0 ≤ 0 by Theorem 4.21. So
let N ∈ N and l ∈ N be arbitrary, then choose arbitrary δ1, . . . , δl ∈ N so that δ1 + . . .+ δl
is even, then choose a sequence of fundamentally different pairs (p1, q1), . . . , (pl, ql) ∈ �N .

Then we have for all n ≥ N that an(pi, qi) = Y
(n)
ϕn(pi,qi)

for all i ∈ {1, . . . , l}. Let us define

the indices i(1), i(2), . . . , i(δ1 + . . .+ δn) through

i(1), i(2), . . . , i(δ1) ..= ϕn(p1, q1)

i(δ1 + 1), i(δ1 + 2), . . . , i(δ1 + δ2) ..= ϕn(p2, q2)

...

i(δ1 + . . .+ δl−1 + 1), . . . , i(δ1 + . . .+ δl−1 + δl) ..= ϕn(pl, ql).

Then the indices i(1), i(2), . . . , i(δ1 + . . .+ δn) ∈ [n2] meet the conditions of Lemma 4.23.
With this Lemma and Theorem 4.21 it now follows:∣∣Ean(p1, q1)δ1 · an(p2, q2)δ2 · . . . · an(pl, ql)

δl
∣∣

=

∣∣∣∣E(Y (n)
ϕn(p1,q1)

)δ1
·
(
Y

(n)
ϕn(p2,q2)

)δ2
· . . . ·

(
Y

(n)
ϕn(pl,ql)

)δl∣∣∣∣
=
∣∣∣EY (n)

i(1) · · ·Y
(n)
i(δ1+...+δl)

∣∣∣
=

∣∣∣∣∣∣
∑

π∈PP(δ1+...+δl)

∏
(r,s)∈π

Σn2(i(r), i(s))

∣∣∣∣∣∣ ≤ #PP(δ1 + . . .+ δl)

nα·#{j | δj=1}

and thus (AAU1) with CΦ(δ1,...,δl) as we just defined.
Now let us turn to condition (AAU2), then we must choose appropriate sequences

(C
(l)
n )n∈N for all l ∈ N. For all l ∈ N we set C

(l)
n

..= #PP(2l)
n4α for all n ∈ N. Then these

sequences are summable over n iff α > 1/4.
Now let N, l ∈ N be arbitrary and (p1, q1), . . . , (pl, ql) in �N be a sequence of funda-

mentally different pairs. Then we have for all n ≥ N that an(pi, qi) = Y
(n)
ϕn(pi,qi)

for all

i ∈ {1, . . . , l}. Further, the indices

(i(1), i(2), i(3), i(4), . . . , i(2l − 1), i(2l))
..= (ϕn(p1, q1), ϕn(p1, q1), ϕn(p2, q2), ϕn(p2, q2), . . . , ϕn(pl, ql), ϕn(pl, ql))
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in [n2] meet the conditions of Lemma 4.24. With this lemma and Theorem 4.21 it now
follows:

|Ean(p1, q1)2 · · · an(pl, ql)
2 − 1| =

∣∣∣∣E(Y (n)
ϕn(p1,q1)

)2

· · ·
(
Y

(n)
ϕn(pl,ql)

)2

− 1

∣∣∣∣
=
∣∣∣EY (n)

i(1) · · ·Y
(n)
i(2l) − 1

∣∣∣
=

∣∣∣∣∣∣
∑

π∈PP(2l)

∏
(r,s)∈π

Σn2

(
i(r), i(s)

)
− 1

∣∣∣∣∣∣ ≤ #PP(2l)

n4α
.

and thus (AAU2) with C
(l)
n = #PP(2l)

n4α , as just defined above.
Now let us turn to condition (AAU3), then in accordance with Lemma 4.18 we choose

a K ∈ R and appropriate sequences (D̃
(l)
n )n∈N for all l ∈ N. We set K ..= 3 and for all

l ∈ N we set D̃
(l)
n

..= #PP(2l+2)
n4α for all n ∈ N.

Now let N, l ∈ N be arbitrary and (p1, q1), . . . , (pl, ql) in �N be a sequence of funda-

mentally different pairs. Then it holds for all n ≥ N , that an(pi, qi) = Y
(n)
ϕn(pi,qi)

for all

i ∈ {1, . . . , l}. Further, the indices

(i(1), i(2), i(3), i(4), . . . , i(2l + 1), i(2l + 2))
..= (ϕn(p1, q1), ϕn(p1, q1), ϕn(p1, q1), ϕn(p1, q1), ϕn(p2, q2), ϕn(p2, q2), ϕn(p3, q3), ϕn(p3, q3),

. . . , ϕn(pl, ql), ϕn(pl, ql))

in [n2] meet the conditions of Lemma 4.25. With this lemma and Theorem 4.21 it follows:

|Ean(p1, q1)4an(p2, q2)2 · · · an(pl, ql)
2 − 3|

=

∣∣∣∣E(Y (n)
ϕn(p1,q1)

)4 (
Y

(n)
ϕn(p2,q2)

)2

· · ·
(
Y

(n)
ϕn(pl,ql)

)2

− 3

∣∣∣∣
=
∣∣∣EY (n)

i(1) · · ·Y
(n)
i(2l+2) − 3

∣∣∣
=

∣∣∣∣∣∣
∑

π∈PP(2l+2)

∏
(r,s)∈π

Σn2

(
i(r), i(s)

)
− 3

∣∣∣∣∣∣ ≤ #PP(2l + 2)

n4α
.

and thus (AAU3) with D
(l)
n = #PP(2l+2)+#PP(4)

n4α , where we used Lemma 4.18. Note that

for all l ∈ N, the sequence D
(l)
n is summable over n iff α > 1/4.

To show the last statement, just assume that for all n ∈ N and i 6= j ∈ [n], Σn(i, j) =
1/nα. Then surely, for all n ∈ N, Σn will be positive definite (since Σn then is a sum of
a positive semi-definite matrix and a positive multiple of the identity matrix). Further
for all n ≥ 2 we obtain |Ean(1, 1)an(1, 2)| = Ean(1, 1)an(1, 2) = 1/nα. In particular, if
α′ > α is arbitrary, we will not find a constant C such that |Ean(1, 1)an(1, 2)| ≤ C/nα

′
for

all n ≥ 2, so (AAU1) cannot be satisfied with respect to α′, hence (an)n is not α′-almost
uncorrelated.
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Remark 4.27. Example 4.22 features entries which are not necessarily exchangeable.
Therefore, the example shows that there are relevant models of non-exchangeable en-
sembles that fit the model of ”α-almost uncorrelated random matrices.” In addition,
Theorem 4.26 shows nicely that α-almost uncorrelated ensembles appear naturally in
correlated Gaussian ensembles where all correlations between different variables are ab-
solutely bounded by 1/nα.

A part of the results of the following corollary have already been established in the au-
thor’s work [31], where full ensembles with specific correlation structures were considered
and only weak convergence in probability was derived. The results are now strength-
ened to be valid (i) almost surely, (ii) for band matrices, and (iii) with the strongly
relaxed condition that correlations in non-normalized random matrices lie in the interval
[−1/n2α, 1/n2α] (when the matrix is of dimension n×n), without imposing an additional
structure. To the best knowledge and understanding of the author, these are novel results
when compared with previous work on Gaussian entries, such as [46], [8] and [16], where
additional correlation structures are assumed and/or weak convergence to the semicircle
distribution is not discussed.

Corollary 4.28. Let α > 0 and (Σn)n ∈ CovMat(α) be arbitrary, and let (an)n be the
triangular scheme filled with correlated Gaussian entries as developed in Example 4.22,
which is strongly α-almost uncorrelated by Theorem 4.26. Let (Xn)n be the random ma-
trices which are based on (an)n. Let b = (bn)n be a sequence of bandwidths with bn → ∞
and (Yn)n be the periodic random band matrices which are based on (an)n with bandwidth
b. Then the following statements hold:

i) If α ≥ 1/2, then the semicircle law holds in probability for (Xn)n.

ii) If α > 1/2, then the semicircle law holds almost surely for (Xn)n.

iii) If α ≥ 1/2, then the semicircle law holds in probability for (Yn)n.

iv) If α > 1/2 and ( 1
b2n

)n is summable, then the semicircle law holds almost surely for

(Yn)n.

Proof. By Theorem 4.26, (an)n∈N is strongly α-almost uncorrelated, and if α > 1/4, then

for all l ∈ N, the sequences C
(l)
n and D

(l)
n can be chosen summable over n. Then all

statements follow directly from 1. and 3. in Theorem 4.9, where for i) and ii), remember
that full matrices are periodic band matrices with full bandwidth b̃n ..= n.

4.3 Proof of the Main Theorem

To prove the main theorem, Theorem 4.9, we will use Theorem 3.14 with µ = σ and
z = 2. Note that due to condition (AAU1), any α-almost uncorrelated triangular scheme
will have absolute moments of all orders, and this remains in particular true for (band)
matrices which are based on the triangular scheme.
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In order to derive weak convergence in probability and almost surely, what we need to
show now is:

1. The random moments converge in expectation, that is, for each k ∈ N we have

E
〈
σn, x

k
〉
−−−→
n→∞

〈
σ, xk

〉
. (4.5)

2. The variance of the random moments decays to zero, that is, for every k ∈ N we
have

V
〈
σn, x

k
〉
−−−→
n→∞

0. (4.6)

Then (4.5) will yield weak convergence in expectation, and if in addition we show
(4.6), we will have weak convergence in probability. If further, the convergence in (4.6) is
summably fast, then we obtain weak convergence almost surely.

We remind the reader that if b = (bn)n is a sequence of n-bandwidths, (an)n is a
triangular scheme and (Xn)n the periodic random band matrices which are based on
(an)n with bandwidth b, then we have (by Corollary 3.11) for the k-th moment of σn that

〈
σn, x

k
〉

=
1

nb
k/2
n

n∑
t1,...,tk=1

abn(t1, t2)abn(t2, t3) · · · abn(tk, t1). (4.7)

4.3.1 Development of Combinatorics for the Method of Moments

As we observe above in (4.7), the random moment of an ESD is actually a rather elaborate
sum of random variables, which means it is crucial to sort the summands in a way that
makes the sum amenable for analysis. For this sorting (which amounts to subdividing
indices into certain equivalence classes) we need the language of graph theory and some
combinatorics, which we will introduce next. The following ”definition” will incorporate
all the graph theoretical notions we will need for our endeavor, where we followed the
expositions as in [58] and [63], as we did in our previous work [31].

Definition 4.29. Let M be a finite set, k ∈ N0 be arbitrary, then we denote by
(
M
k

)
the

set of all k-element subsets of M . A graph G is a triple G = (V,E, φ), where the following
holds:

i) V is a finite set, whose elements are called vertices, or nodes.

ii) E is a finite set, whose elements are called edges.

iii) φ : E −→
(
V
1

)
∪
(
V
2

)
is a function, which is called incidence function.

Given arbitrary elements e ∈ E and u, v ∈ V , such that φ(e) = {u, v}, then it is the
underlying view that the edge e connects the vertices u and v. In this situation, if u = v,
then e is called loop. If u 6= v, then e is called proper edge. Two nodes u, v ∈ V are
called adjacent, if they are connected by an edge, that is, if there is an e ∈ E such that
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4 Random Band Matrices with Correlated Entries

φ(e) = {u, v}. A vertex v ∈ V and an edge e ∈ E are called incident, if v ∈ φ(e), that is,
if e is connected to v. Two different edges e 6= f ∈ E are called parallel if they connect
the same nodes, so if φ(e) = φ(f). If there are edges e1, . . . , ek ∈ E which are all parallel
to one another, but not parallel to any other edge in E, then we call each of the ei a k-fold
edge. For k = 2 we use the term double edge. If an edge e does not have a parallel edge, e
is called a single edge. An edge is called even, if it is a k-fold edge with k even, and odd,
if it is a k-fold edge with k odd. A path is a finite sequence of the form

v1, e1, v2, e2, v3, e3, . . . , vk, ek, vk+1

for a k ∈ N, vertices v1, . . . , vk+1 ∈ V and edges e1, . . . , ek ∈ E, so that each two neighbor-
ing vertices are connected by the edge in between, so φ(ei) = {vi, vi+1} for all i = 1, . . . , k.
If we also have v1 = vk+1, then we call the path a cycle. A Eulerian cycle in a graph
G = (V,E, φ) is a cycle which traverses each edge in E exactly once. A graph in which a
Eulerian cycle can be constructed is called Eulerian graph.

To utilize the method of moments to show the semicircle law, we have to show (4.5)
and (4.6). To do this, we will analyze the sum in (4.7). We will use the language of graph
theory to aid us. Recalling (4.7), we write for an arbitrary k ∈ N:

〈
σn, x

k
〉

=
1

nb
k/2
n

n∑
t1,...,tk=1

abn(t1, t2)abn(t2, t3) · · · abn(tk, t1) =
1

nb
k/2
n

∑
t∈[n]k

abn(t), (4.8)

where [n] ..= {1, . . . , n} and for t ∈ [n]k with t = (t1, . . . , tk) :

abn(t) ..= abn(t1, t2)abn(t2, t3) · · · abn(tk, t1).

Now in equation (4.8), we observe that many summands vanish due to the band struc-
ture of the matrix. To account for this, we make the following definition:

Definition 4.30. Let b = (bn)n be a sequence of n-bandwidths. Then for fixed n and
k in N, we call a tuple t ∈ [n]k bn-relevant if each pair (ti, ti+1) for i = 1, . . . , k (where
k + 1 ≡ 1) is bn-relevant (cf. Definition 4.6). We further define

[n]kb
..=
{
t ∈ [n]k : t is bn-relevant

}
.

Then we obtain 〈
σn, x

k
〉

=
1

nb
k/2
n

∑
t∈[n]kb

abn(t). (4.9)

In the following, we want to sort the sum in (4.9) by classifying its index set. Generally,
for a given t ∈ [n]k, t = (t1, . . . , tk), we define the graph Gt = (Vt, Et, φt) with vertices
Vt = {t1, . . . , tk} and (abstract) edges Et = {e1, . . . , ek}, where φt(ei) = {ti, ti+1} for all
i = 1, . . . , k and with the convention that k + 1 ≡ 1. Then, through

t1, e1, t2, e2, . . . tk−1, ek−1, tk, ek, t1 (4.10)
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we obtain a Eulerian cycle which passes through the graph Gt. We notice that each
t ∈ [n]k spans its own graph Gt and also constitutes a Eulerian cycle through that graph.
Therefore, we do not just perceive t as a tuple, but also as a graph and a Eulerian cycle.
When we say that t has 7 vertices and 2 different l-fold edges, or that t traverses only
double edges, then those are statements concerning the graph Gt and the cycle through
Gt which was induced by t.

For a t ∈ [n]k we will define its profile κ(t) as the k-vector

κ(t) = (κ1(t), . . . , κk(t)),

where for every l ∈ {1, . . . , k} we define

κl(t) ..= #{different l-fold edges in t} = #{φt(e) | e ∈ Et is an l-fold edge}.

To make this concept clear, the tuple t = (1, 1, 2, 3, 2, 6, 7, 6, 2, 6, 2) has only one single
edge {1} (a loop in this case), three different double edges, {1, 2}, {2, 3} and {6, 7}, and
one 4-fold edge, {2, 6}. Therefore, κ(t) = (1, 3, 0, 1, 0, 0, 0, 0, 0, 0, 0).

For each t ∈ [n]k we immediately observe the equality

k =
k∑
l=1

l · κl(t).

Now there are certain inequalities concerning the profile of a t ∈ [n]kb which we will
heavily draw upon. Denote by `(t) the number of different loops in t, so

`(t) = #{φt(e) | e a loop in Et}.

For example, for the tuple t = (1, 1, 2, 2, 3, 3, 3, 3) we will have `(t) = 3. The following
lemma will provide upper bounds for the number of vertices of a tuple t ∈ [n]k depending
on the tuple’s profile.

Lemma 4.31. Let n, k ∈ N and t ∈ [n]k be arbitrary, then

i) #Vt ≤ 1 + κ1(t) + . . .+ κk(t)− `(t).

ii) If t contains at least one odd edge, then

#Vt ≤ κ1(t) + . . .+ κk(t).

Remark 4.32. Oftentimes we only need a weaker version of statement i) in above lemma,
which is that

#Vt ≤ 1 + κ1(t) + . . .+ κk(t).
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Proof of Lemma 4.31. Let t ∈ [n]k be arbitrary. The idea behind this proof is that we
travel the cycle

t1, e1, t2, e2, . . . , tk, ek, t1 (4.11)

by picking an initial node ti and then traversing the edges in (increasing) cyclic order
until reaching ti again. On the way, we count the number of different nodes that were
discovered. When traversing the path, only proper edges may discover a new vertex,
whereas loops will never discover a new vertex. Further, if we pass a k-fold edge, only the
first instance of that edge may discover a new vertex.
i) We write `(t) = `1(t) + . . .+ `k(t), where `m(t) denotes the number of different m-fold
loops in t. When we start our tour along the circle t at the initial vertex t1, we first
observe this very vertex. Then, as we travel along the circle, for each m ∈ {1, . . . , k} we
will pass m ·κm(t) m-fold edges out of which only the first instance of proper m-fold edges
can discover a new node, and there are κm(t)− `m(t) of these first instances. Considering
the initial node, we arrive at #Vt ≤ 1 +κ1(t)− `1(t) + . . .+κk(t)− `k(t), which yields the
desired inequality.
ii) The idea is that in presence of an odd edge, we can start the tour at a specific vertex
such that the odd edge cannot contribute to the newly discovered vertices. To this end,
fix an m-fold edge in t with m odd. Let ei1 , . . . , eim , i1 < . . . < im, be the m-fold edges
in question in the cycle (4.11). If t traverses each of these m edges in the same direction
(this is in particular the case if m = 1), that is, ti1 = . . . = tim and ti1+1 = . . . = tim+1,
then start the tour at the vertex ti1+1 and observe that now, none of the edges ei1 , . . . , eim
can discover a new node, since if our m-fold edge is a loop, this is clear, and if it is not a
loop, ti2 must be discovered by an edge different from our m-fold edge. So the odd m-fold
edge in question cannot discover a new node. If t does not traverse each of these m edges
in the same direction, then, since m is odd and we are on a cycle, there still must be an
index l ∈ {1, . . . ,m}, such that eil and eil+1

are traversed in the same direction, where
im+1 cycicly becomes i1. Then, start the tour at the vertex til+1 and we have again (with
the same reasoning as before) that none of the edges ei1 , . . . , eim of our m-fold edge will
discover a new node. In any of the cases, counting the initial node, our roundtrip yields
at most 1 +κ1(t) +κ2(t) + . . .+κm(t)− 1 +κm+1(t) + . . .+κk(t) nodes discovered, which
proves the desired inequality.

So, what we have learned so far is an upper bound on the vertices of a t ∈ [n]k,
depending on its profile κ(t). The next lemma will answer the question of how many
bn-relevant tuples in t ∈ [n]kb with a maximum number of vertices we can obtain:

Lemma 4.33. Let b = (bn)n be a sequence of n-bandwidths. If k, n ∈ N are arbitrary and
l ∈ {1, . . . , k}, then

#{t ∈ [n]kb |#Vt ≤ l} ≤ kk · nbl−1
n

Proof. We bound the number of possibilities to construct a t ∈ {t′ ∈ [n]kb |#Vt′ ≤ l}.
Since t contains at most l different vertices, we first determine the color structure of the
k-tuple t, that is, we determine which places in the tuple should have equal or different
vertex numbers (colors). To do this, we fix a map f : {1, . . . , k} −→ {1, . . . , l}, for which
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we have at most lk ≤ kk possibilities. Now, we pick a value for the first node t1 and have

n possibilities. Then if f(2) = f(1), we have no choice for the node t2, since then t2
!

= t1.
But if f(2) 6= f(1), we are left with at most bn choices for t2, since the tuple should be
bn-relevant. We proceed this way through the whole tuple t. Whenever we reach a tl with
f(l) = f(j) for some j < l, then we have no choice to make for tl. Otherwise, we have
at most bn choices. And this happens at most l − 1 times after freely picking the initial
node t1. Therefore, we are left with at most kk · nbl−1

n possibilities, which concludes the
lemma.

Let us now develop some more combinatorics which will be used in later proofs. Fix
a sequence b = (bn)n of n-bandwidths. Now, we call two tuples s, t ∈ [n]kb equivalent, if
κ(s) = κ(t). Obviously, this defines an equivalence relation on [n]kb . For a tuple s ∈ [n]kb ,
we define

T (s) ..= {t ∈ [n]kb : κ(t) = κ(s)}.

as the set of tuples that have the same profile as s. So T (s) is the equivalence class that
s belongs to. How many equivalence classes do we have in [n]kb , and given a t ∈ [n]kb , how
many elements does the equivalence class T (t) have?

Lemma 4.34. Let n, k ∈ N be fixed.

i) There are at most (k + 1)k equivalence classes in [n]kb .

ii) Let s ∈ [n]kb be arbitrary, then

a) #T (s) ≤ kk · nbκ1(s)+...+κk(s)
n .

b) If s contains at least one odd edge, we have

#T (s) ≤ kk · nbκ1(s)+...+κk(s)−1
n .

Proof. i) There are as many different equivalence classes as there are different profiles
(κ1, . . . , κk) of relevant tuples. Now surely, in a profile (κ1, . . . , κk), each entry is an
integer in the set {0, . . . , k}, so there are at most (k + 1)k profiles which can be assumed
by tuples.
ii)a) Let us fix an s ∈ [n]kb . How many possibilities do we have to construct a t ∈ T (s)?
Surely, each t ∈ T (s) has the same profile as s, thus has at most

min(1 + κ1(s) + . . .+ κk(s), k)

different vertices by Lemma 4.31 (note that it need not have the same number of loops,
so we cannot obtain a generally better upper bound). Thus, Lemma 4.33 yields

#T (s) ≤ kk · nbκ1(s)+...+κk(s)
n

which is the desired inequality.
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4 Random Band Matrices with Correlated Entries

ii)b) We repeat the argument as in ii)a): Let us fix an s ∈ [n]kb with at least one odd
edge. How many possibilities do we have to construct an t ∈ T (s)? Surely, each t ∈ T (s)
has the same profile as s, thus has at most

κ1(t) + . . .+ κk(t) ≤ k

different vertices by Lemma 4.31. Therefore, Lemma 4.33 yields

#T (s) ≤ kk · nbκ1(s)+...+κk(s)−1
n .

Later on in the proofs, we will also need to deal with maximum numbers of equivalent
pairs of tuples. Let us develop their combinatorics at this place.

We will introduce some mildly new notation. For s, s′ ∈ [n]kb we define

T (s, s′) ..= {(t, t′) | t, t′ ∈ [n]kb , κ(t) = κ(s), κ(t′) = κ(s′)}

and partition this set into edge disjoint tuple pairs

T d(s, s′) ..= {(t, t′) | t, t′ ∈ [n]kb , κ(t) = κ(s), κ(t′) = κ(s′), φt(Et) ∩ φt′(Et′) = ∅}

and into tuples pairs with at least one common edge

T c(s, s′) ..= {(t, t′) | t, t′ ∈ [n]kb , κ(t) = κ(s), κ(t′) = κ(s′), φt(Et) ∩ φt′(Et′) 6= ∅}.

We further partition the set T c(s, s′) into the subsets of equivalent tuples that have exactly
l edges in common. So for each l ∈ {1, . . . , k} we define

T cl (s, s′) ..= {(t, t′) | t, t′ ∈ [n]kb , κ(t) = κ(s), κ(t′) = κ(s′),#[φt(Et) ∩ φt′(Et′)] = l}.

We are now interested in bounds for #T d(s, s′), #T c(s, s′) and #T cl (s, s′). The first
quantity can be trivially bounded by

#T d(s, s′) ≤ #T (s) ·#T (s′), (4.12)

since the number of possibilities to pick equivalent tuples edge disjoint is bounded by
the number of unrestricted possibilities. On the other hand, the latter two quantities
will require some further attention. First, we realize that if the k-tuples t and t′ in [n]k

have a common edge, the superposition of their graphs will form another Eulerian graph,
since vertex degrees remain even (see [61, p. 51]). Therefore, we can find a Eulerian cycle
u ∈ [n]2k that travels first through all the edges of t (not necessarily in the same order
as t travels its edges, but in the same cyclic order) and then through all the edges of t′

(again, not necessarily in the same order as t′ travels its edges). The next lemma will
make our statement precise. Note that by a cyclic permutation of a tuple we mean, for
example, (1, 2, 3, 4) (4, 1, 2, 3) or (1, 2, 3, 4) (2, 3, 4, 1).
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4.3 Proof of the Main Theorem

Lemma 4.35. Let t and t′ in [n]k have a common edge, then there is a u ∈ [n]2k such
that

i) (u1, . . . , uk) is a cyclic permutation of (t1, . . . , tk) and (uk+1, . . . , u2k) is a cyclic per-
mutation of (t′1, . . . , t

′
k).

ii) ((u1, u2), . . . , (uk, uk+1)) is a cyclic permutation of ((t1, t2), . . . , (tk, t1)) and
((uk+1, uk+2), . . . , (u2k, u1)) is a cyclic permutation of ((t′1, t

′
2), . . . , (t′k, t

′
1)).

In particular, the Eulerian cycle u spans the graph obtained through superposition of the
graphs of t and t′, and it travels first through all the edges of t and then through all the
edges of t′.

Proof. So let t and t′ be as in the statement of the lemma, then they surely have a common
node. Therefore, there exist cyclic permutations of t̃ of t and t̃′ of t′ such that t̃1 = t̃′1.
Set u ..= (t̃1, . . . , t̃k, t̃

′
1, . . . , t̃

′
k). Then the first statement of the lemma is clear, and for the

second we write

((u1, u2), . . . , (uk, uk+1)) = ((t̃1, t̃2), . . . , (t̃k, t̃
′
1))

= ((t̃1, t̃2), . . . , (t̃k, t̃1)),

and this is a cyclic permutation of ((t1, t2), . . . , (tk, t1)), since t̃ is a cyclic permutation of
t. Analogously, we write

((uk+1, uk+2), . . . , (u2k, u1)) = ((t̃′1, t̃
′
2), . . . , (t̃′k, t̃1))

= ((t̃′1, t̃
′
2), . . . , (t̃′k, t̃

′
1)),

and this is a cyclic permutation of ((t′1, t
′
2), . . . , (t′k, t

′
1)), since t̃′ is a cyclic permutation of

t′.

Next, we formulate a lemma which is in the spirit of Lemma 4.34, but for overlapping
edges.

Lemma 4.36. Let b = (bn)n be a sequence of n-bandwidths and n, k ∈ N fixed. Let
s, s′ ∈ [n]kb . Then the following statements hold:

1. If s and s′ have only even edges, we have for each (t, t′) ∈ T c(s, s′) that

#(Vt ∪ Vt′) ≤ k.

2. Let at least one of the tuples s or s′ contain at least one odd edge and let l ∈
{1, . . . , k}. Then it holds for each (t, t′) ∈ T c(s, s′) so that t and t′ have at least l
different common edges, that

#(Vt ∪ Vt′) ≤
k∑
i=1

κi(s) +
k∑
j=1

κj(s
′)− l.
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4 Random Band Matrices with Correlated Entries

Proof. To prove the first statement, we need to show that for each (t, t′) ∈ T c(s, s′) we
have that - taken together - t and t′ can have at most k different nodes. To argue this,
we have by Lemma 4.31 that t spans at most k

2
+ 1 nodes, and in this case t consists of

only double edges, all of them proper. In particular, since having a proper edge with t in
common, t′ can span at most k

2
+ 1 − 2 additional nodes, leading to a total of at most

k
2

+ 1 + k
2

+ 1 − 2 = k different nodes. Now on the other hand, if initially, we assume t
to contain less than k

2
+ 1 nodes, thus at most k

2
nodes, t might have loops, especially t′

could have a loop in common with t, thus contributing up to k
2

+ 1− 1 additional nodes,
again leading to a total number of different nodes of at most k

2
+ k

2
+ 1− 1 = k.

To prove the second statement, we need to dive a little deeper. To start, we assume
w.l.o.g. that s contains an odd edge.

Now, since t and t′ have at least one edge in common, we will find a u ∈ [n]2k as in
Lemma 4.35. Surely, we have that #(Vt ∪ Vt′) = #Vu. Thus, we will travel through the
Eulerian cycle

u1, e
u
1 , u2, e

u
2 , . . . , u2k−1, e

u
2k−1, u2k, e

u
2k, u1

and observe how many nodes we can discover. By traveling the first k edges of u, we
actually travelled the edges of t (by Lemma 4.35) and can thus discover at most

κ1(t) + . . .+ κk(t)

nodes by Lemma 4.31. Now, while traveling the last k edges of u, how many additional
nodes can we discover? By Lemma 4.35, we will travel all the edges of t′. Then at most
all the single edges and first instances of m-fold edges with m ≥ 2 may discover a new
node, but only if that edge has not been travelled before during the crossing of the first
k edges. Since we have at least l common edges, while crossing the last k edges we can
see at most

κ1(t′) + . . .+ κk(t
′)− l

new nodes. Thus, in total we can observe at most

κ1(t) + . . .+ κk(t) + κ1(t′) + . . .+ κk(t
′)− l

nodes while traveling the cycle u.

Lemma 4.37. Let b = (bn)n be a sequence of n-bandwidths. Fix n, k ∈ N and let s and
s′ in [n]kb be arbitrary.

a) If both s and s′ contain only even edges, then #T c(s, s′) ≤ k2 · (2k)2k · nbk−1
n .

b) If s or s′ contains at least one odd edge, we have

#T c(s, s′) ≤ k2 · (2k)2k · nbκ1(s)+...+κk(s)+κ1(s′)+...+κk(s′)−2
n .

c) If s or s′ contains at least one odd edge, we have for all l ∈ {1, . . . , k}, that

#T cl (s, s′) ≤ k2 · (2k)2k · nbκ1(s)+...+κk(s)+κ1(s′)+...+κk(s′)−l−1
n .
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4.3 Proof of the Main Theorem

Proof. a) Let us pick s and s′ in [n]kb with only even edges. How many possibilities do
we have to construct a tuple pair (t, t′) ∈ T c(s, s′)? By Lemma 4.35, t and t′ are cyclic
permutations of the first and second half of a tuple u ∈ [n]2k, which serves as a Eulerian
cycle through the superposition of the graphs of t and t′. Further, by Lemma 4.36, u has
at most k different nodes. Therefore, the number of possible (t, t′) ∈ T c(s, s′) is surely
bounded by the number of all u ∈ [n]2k with at most k different nodes multiplied by the
number of possibilities to cyclicly permute the first and second half of those tuples. Since
the latter admits at most k2 choices, we obtain by Lemma 4.33:

#T c(s, s′) ≤ k2 · (2k)2k · nbk−1
n .

b) We can imitate the proof of part a) almost word by word: Let us pick s and s′ in [n]kb ,
so that at least one of the two tuples contains an odd edge. How many possibilities do
we have to construct a tuple pair (t, t′) ∈ T c(s, s′)? By Lemma 4.35, t and t′ are cyclic
permutations of the first and second half of a tuple u ∈ [n]2k, which serves as a Eulerian
cycle through the superposition of the graphs of t and t′. Further, since we have at least
one odd edge, we obtain by Lemma 4.36 that u has at most

∑
j κj(s) +

∑
j κj(s

′) − 1
different nodes. Therefore, the number of possible (t, t′) ∈ T c(s, s′) is surely bounded
by the number of all u ∈ [n]2k with at most

∑
j κj(s) +

∑
j κj(s

′) − 1 different nodes
multiplied by the number of possibilities to cyclicly permute the first and second half of
those tuples. Since the latter admits at most k2 choices, we obtain by Lemma 4.33:

#T c(s, s′) ≤ k2 · (2k)2k · nb
∑
i κi(s)+

∑
j κj(s

′)−2
n .

c) We proceed as in the previous parts of this proof: Let us pick s and s′ in [n]kb , so that
at least one of the two tuples contains an odd edge. How many possibilities do we have to
construct a tuple pair (t, t′) ∈ T cl (s, s′)? By Lemma 4.35, t and t′ are cyclic permutations
of the first and second half of a tuple u ∈ [n]2k which serves as a Eulerian cycle through
the superposition of the graphs of t and t′. Further, by Lemma 4.36, u has at most∑

j κj(s)+
∑

j κj(s
′)−l different nodes. Therefore, the number of possible (t, t′) ∈ T cl (s, s′)

is surely bounded by the number of all u ∈ [n]2k with at most
∑

j κj(s) +
∑

j κj(s
′) − l

different nodes multiplied by the number of possibilities to cyclicly permute the first and
second half of those tuples. Since the latter admits at most k2 choices, we obtain by
Lemma 4.33:

#T c(s, s′) ≤ k2 · (2k)2k · nb
∑
i κi(s)+

∑
j κj(s

′)−l−1
n .

The last lemma concludes our combinatorial endeavors.
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4.3.2 Convergence of Expected Moments

So now, let us show (4.5) on page 71, convergence in expectation.

Theorem 4.38. Let (Xn)n be a sequence of periodic random band matrices which is based
on an α-almost uncorrelated triangular array (an)n with α ≥ 1

2
and bandwidth b = (bn)n.

Denote by (σn)n the ESDs of (Xn)n. Then if bn →∞, we have for all k ∈ N that

E
〈
σn, x

k
〉
−−−→
n→∞

〈
σ, xk

〉
.

Proof. By Lemma 3.8, if k is even, then the k-th moment of the semicircle distribution σ
is given by the Catalan number C k

2
. The odd moments of σ vanish.

Step 1: Let k ∈ N be even.
We need to show that

E
〈
σn, x

k
〉

=
1

nb
k/2
n

∑
t∈[n]kb

Eabn(t)
!−−−→

n→∞
C k

2
.

Case 1:
At first we consider an s ∈ [n]kb which consists of only double edges. This means it has
the profile (0, k/2, 0, . . . , 0). We partition the set T (s) into the sets

T k
2

+1(s) ..=

{
t ∈ T (s) : #Vt =

k

2
+ 1

}
and

T≤ k
2
(s) ..=

{
t ∈ T (s) : #Vt ≤

k

2

}
.

To count the possibilities to construct a t ∈ T k
2

+1(s), we first pick an appropriate surjective

coloring f : {1, . . . , k} � {1, . . . , k/2 + 1} in standard form. This means f(1) = 1 and
for l > 1 we have that if f(l) 6= f(j) for all j < l, then f(l) = max{f(j) : j < l} + 1.
Intuitively, a standard coloring always uses the lowest color number possible. Now the
possible standard colorings for k-tuples with only proper double edges and k/2+1 different
vertices are in bijective correspondence to Dyck paths of length k, and there are exactly
C k

2
of them. For example, the tuple (8, 5, 6, 9, 6, 2, 6, 5) has the standard coloring scheme

(1, 2, 3, 4, 3, 5, 3, 2), which is associated with the difference sequence of the Dyck path
(1, 1, 1,−1, 1,−1,−1,−1). For a formal proof of this we refer the reader to [6, p. 15]:
There, note that given a coloring f as above, we obtain the associated Wigner word
representative (f(1), f(2), . . . , f(k), f(1)) (and vice versa) as in the proof of their Lemma
2.1.6.

Now given such a standard coloring f , to construct a bn-relevant tuple (t1, . . . , tk) ∈
[n]k matching this coloring, we first have n choices for t1, then for subsequent choices
of ti+1, i = 1, . . . , k − 1, whenever f(i + 1) ∈ {f(1), . . . , f(i)} we have no choice for

ti+1 because then ti+1
!

= tj where j ∈ {1, . . . , i} with f(j) = f(i + 1). On the other
hand, if f(i + 1) /∈ {f(1), . . . , f(i)}, then ti+1 must be different from t1, . . . , ti. At the
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4.3 Proof of the Main Theorem

same time, (ti, ti+1) needs to be bn-relevant. Accounting for both, we sill have at least
bn −#{f(1), . . . , f(i)} ≥ bn − i ≥ 1 possibilities for n large enough (so that bn ≥ k), but
at most bn possibilities. Therefore, given a standard coloring f , to construct a bn-relevant
tuple t ∈ [n]k, we have at least

n · (bn − 1) · · · (bn −
k

2
) =

n(bn − 1)!

(bn − k
2
− 1)!

possibilities (for all n large enough), but at most n · b
k
2
n possibilities. Since we had C k

2

choices for the standard coloring, we obtain

C k
2

n(bn − 1)!

(bn − k
2
− 1)!

≤ #T k
2

+1(s) ≤ C k
2
· n · b

k
2
n . (4.13)

Further, we have

#T≤ k
2
(s) ≤ kknb

k
2
−1

n ,

which follows from Lemma 4.33.
In addition, it holds in conjunction with the second moment property of our almost

uncorrelated scheme, that for all t ∈ T (s) we find

|Eabn(t)− 1| ≤ C(k/2)
n ,

where C
(k/2)
n converges to 0 as n→∞.

Therefore, we obtain∣∣∣∣∣∣ 1

nb
k/2
n

∑
t∈T (s)

(Eabn(t)− 1)

∣∣∣∣∣∣ ≤ 1

nb
k/2
n

∑
t∈T (s)

|Eabn(t)− 1|

=
1

nb
k/2
n

∑
t∈T k

2 +1
(s)

|Eabn(t)− 1|+ 1

nb
k/2
n

∑
t∈T≤ k2

(s)

|Eabn(t)− 1|

≤ 1

nb
k/2
n

#T k
2

+1(s) · C(k/2)
n +

1

nb
k/2
n

#T≤ k
2
(s) · C(k/2)

n

≤ nb
k/2
n

nb
k/2
n

· C k
2
· C(k/2)

n︸ ︷︷ ︸
−→
n

0

+
kknb

k/2−1
n

nb
k/2
n

· C(k/2)
n −−−→

n→∞
0

and since with (4.13) we have

1

nb
k/2
n

C k
2

n(bn − 1)!

(bn − k
2
− 1)!

≤ 1

nb
k/2
n

#T k
2

+1(s) ≤ 1

nb
k/2
n

C k
2
· n · b

k
2
n ,

thus
1

nb
k/2
n

#T k
2

+1(s) −−−→
n→∞

C k
2
,
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it follows
1

nb
k/2
n

#T (s) =
1

nb
k/2
n

#T k
2

+1(s) +
1

nb
k/2
n

#T≤ k
2
(s)︸ ︷︷ ︸

→0 as n→∞

−−−→
n→∞

C k
2
.

Therefore,

1

nb
k/2
n

∑
t∈T (s)

Eabn(t) =
1

nb
k/2
n

∑
t∈T (s)

(Eabn(t)− 1) +
1

nb
k/2
n

#T (s) −−−→
n→∞

C k
2
.

Case 2:
Let s ∈ [n]k have only even edges, but at least one m-fold edge with m ≥ 4 even. Then
it holds by Lemma 4.34, that

#T (s) ≤ kk · nbκ2(s)+κ4(s)...+κk(s)
n .

The exponent is maximized when s has one 4-fold edge and just double edges otherwise,
and then we obtain the exponent

κ2(s) + κ4(s) =
k − 4

2
+ 1 =

k

2
− 1.

Therefore, we surely have

#T (s) ≤ kk · nb
k
2
−1

n .

Further, due to the boundedness property in (AAU1) we have for each t ∈ T (s) that
(note that κ(t) = κ(s))

|Eabn(t)| ≤ Cκ(s).

Therefore, we obtain∣∣∣∣∣∣ 1

nb
k/2
n

∑
t∈T (s)

Eabn(t)

∣∣∣∣∣∣ ≤ 1

nb
k/2
n

∑
t∈T (s)

|Eabn(t)|

≤ 1

nb
k/2
n

#T (s) · Cκ(s)

≤ 1

nb
k/2
n

· kk · nb
k
2
−1

n · Cκ(s) −−−→
n→∞

0.

Case 3: Let s ∈ [n]kb , so that s contains an odd edge. Since k is even, s must contain a
second odd edge. Further, it holds by Lemma 4.34, that

#T (s) ≤ kk · nbκ1(s)+κ2(s)...+κk(s)−1
n .

Due to the distinct decay property in (AAU1), we have for all t ∈ T (s), that

|Eabn(t)| ≤
Cκ(s)

nα·κ1(s)
≤

Cκ(s)

b
1
2
·κ1(s)

n

.
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This yields ∣∣∣∣∣∣ 1

nb
k/2
n

∑
t∈T (s)

Eabn(t)

∣∣∣∣∣∣ ≤ 1

nb
k/2
n

·#T (s) ·
Cκ(s)

b
1
2
·κ1(s)

n

≤
Cκ(s)

nb
k/2
n

· kk · nb
1
2
·κ1(s)+κ2(s)+...+κk(s)−1

n .

The last exponent is maximized, for example, when the two odd edges of s are simple
and all other edges of s are simple as well, yielding the bound

1

2
· κ1(s) + κ2(s) + . . .+ κk(t)− 1 ≤ k

2
− 1,

leading to ∣∣∣∣∣∣ 1

nb
k/2
n

∑
t∈T (s)

Eabn(t)

∣∣∣∣∣∣ ≤ Cκ(s)

b
k/2
n

· kk · bk/2−1
n −−−→

n→∞
0.

Conclusion of Step 1: We observe that for even k, the sum over all tuples in only one
equivalence class does not vanish at infinity, namely the class of tuples which contains
only double edges. This sum converges to the desired quantity C k

2
. All sums over each

of the finitely many other classes (Lemma 4.34 i)) converge to zero, thus proving the
theorem for k even.

Step 2: Let k ∈ N be odd.

Then we know that for each s ∈ [n]kb we must have at least one edge which is odd. Also,
due to the distinct decay property (AAU1) of our ensemble, we have for every t ∈ T (s)
(thus κ(t) = κ(s)), that

|Eabn(t)| ≤
Cκ(s)

nα·κ1(s)
≤

Cκ(s)

b
α·κ1(s)
n

.

Therefore, we obtain with Lemma 4.34, that∣∣∣∣∣∣ 1

nb
k/2
n

∑
t∈T (s)

Eabn(t)

∣∣∣∣∣∣ ≤ 1

nb
k/2
n

·#T (s) ·
Cκ(s)

b
α·κ1(s)
n

≤
Cκ(s)

nb
k/2
n

· kk · nb(1−α)·κ1(s)+κ2(s)+...+κk(s)−1
n

Since α ≥ 1
2
, the last exponent is maximal if s consists of only one single edge and

double edges otherwise, giving an exponent of (1− α) + k−1
2
− 1 ≤ k

2
− 1. Therefore,∣∣∣∣∣∣ 1

nb
k/2
n

∑
t∈T (s)

Eabn(t)

∣∣∣∣∣∣ ≤ Cκ(s)

b
k/2
n

· kk · bk/2−1
n −−−→

n→∞
0.

Conclusion of Step 2: We have shown that for odd k, the sum over all the tuples in any
equivalence class converges to zero. Since there are only finitely many equivalence classes
(Lemma 4.34 i)), the entire sum converges to zero for odd k, completing the proof.
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Remark 4.39. In Step 2 of the last proof it becomes apparent that α ≥ 1
2

is a necessity
for our proof to work for all bandwidths. Suppose α < 1

2
. Then the last exponent in

question is maximal iff s consists of single edges only and becomes (1 − α) · k − 1. To
ensure convergence to zero, we must have

(1− α) · k − 1 <
k

2

⇔ 1

2
− 1

k
< α.

But this must hold for all odd k ∈ N, which cannot be true if α < 1
2
.

4.3.3 Decay of Variance of Moments

Now, let us show (4.6) on page 71, a decay of the variance, which is somewhat more
involved.

Theorem 4.40. Let (Xn)n be a sequence of periodic random band matrices which is based
on an α-almost uncorrelated triangular array (an)n with α ≥ 1

2
and bandwidth b = (bn)n.

Denote by (σn)n the ESDs of (Xn)n. Then we obtain the following results:

i) If bn →∞, we have for all k ∈ N that

V
〈
σn, x

k
〉
−−−→
n→∞

0.

ii) If all random variables of (an)n are {+1,−1}-valued and 1
b3n

is summable over n, then
we have for all k ∈ N that

V
〈
σn, x

k
〉
−−−→
n→∞

0 summably fast.

iii) If (an)n is even strongly α-almost uncorrelated with α > 1
2
, and the sequences 1

b2n
,

1
bn
D

(l)
n and C

(l)
n are summable over n for all l ∈ N, then we have for all k ∈ N that

V
〈
σn, x

k
〉
−−−→
n→∞

0 summably fast.

iv) If (an)n∈N is a Wigner scheme and if 1
nbn

is summable over n, we have that

V
〈
σn, x

k
〉
−−−→
n→∞

0 summably fast.

The proof is rather long and will be subdivided into several steps, each containing several
cases and sometimes even subcases. The case-by-case analysis allows for a fine analysis,
since only certain combinations of cases are relevant for each part of Theorem 4.40. An
overview over the cases to be analyzed is given. Before we begin with the proof of
Theorem 4.40, let us formulate a lemma which will facilitate the use of condition (AAU3).
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4.3 Proof of the Main Theorem

Lemma 4.41. Let (an)n be a strongly α-almost uncorrelated triangular scheme. Then for
all l, N ∈ N, l ≥ 3 odd, and fundamentally different pairs P1, . . . , Pl in �N we have for
all n ≥ N :∣∣E [an(P1)4an(P2)2 · · · an(Pl)

2
]
− E

[
an(P1)4an(P2)2 · · · an(Pl1)

2
]
· E
[
an(Pl2)

2 · · · an(Pl)
2
]∣∣

≤ D(l)
n + C(0,0,0,1) · C(l2)

n +D(l1)
n · C(0,l2,0,...,0)2l2

,

where we set l1 ..= l−1
2

and l2 ..= l+1
2

(thus l − l2 = l1) and the subscript 2l2 of the vector
(0, l2, 0, . . . , 0) indicates its dimension.

Proof. We calculate∣∣E [an(P1)4an(P2)2 · · · an(Pl)
2
]
− E

[
an(P1)4an(P2)2 · · · an(Pl1)

2
]
· E
[
an(Pl2)

2 · · · an(Pl)
2
]∣∣

= |E
[
an(P1)4[an(P2)2 · · · an(Pl)

2 − 1]
]

+ E
[
an(P1)4

]
− E

[
an(P1)4[an(P2)2 · · · an(Pl1)

2 − 1]
]
· E
[
an(Pl2)

2 · · · an(Pl)
2
]

− E
[
an(P1)4

]
· E
[
an(Pl2)

2 · · · an(Pl)
2
]
|

≤ D(l)
n + |E

[
an(P1)4

]
||E
[
an(Pl2)

2 · · · an(Pl)
2 − 1

]
| + D(l1)

n · C(0,l2,0,...,0)2l2

≤ D(l)
n + C(0,0,0,1) · C(l2)

n + D(l1)
n · C(0,l2,0,...,0)2l2

.

Proof of Theorem 4.40. To begin with, we note that

V
〈
σn, x

k
〉

= E
(〈
σn, x

k
〉)2 −

(
E
〈
σn, x

k
〉)2

.

Therefore, considering (4.9) on page 72, we need to show that

1

n2bkn

∑
t,t′∈[n]kb

(
Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

)
−−−→
n→∞

0 (4.14)

and determine when this convergence is summably fast.
To show (4.14), we will subdivide the sum into finitely many subsums and determine

the convergence for each of these subsums.
We remind the reader of the following notation (from page 76): For s, s′ ∈ [n]kb we have

T (s, s′) = {(t, t′) | t, t′ ∈ [n]kb , κ(t) = κ(s), κ(t′) = κ(s′)}

and a partitioning of this set into

T d(s, s′) = {(t, t′) | t, t′ ∈ [n]kb , κ(t) = κ(s), κ(t′) = κ(s′), t and t′ are edge-disjoint}

and

T c(s, s′) ..= {(t, t′) | t, t′ ∈ [n]kb , κ(t) = κ(s), κ(t′) = κ(s′), t and t′ have a common edge}.
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In the following, we analyze the convergence in (4.14) by partitioning the sum into subsums
over different (subsets of) equivalence classes of tuple pairs (s, s′). For example, we might
consider the subsum

1

n2bkn

∑
(t,t′)∈T c(s,s′)

(
Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

)
,

where we suppose the tuple pair (s, s′) to belong to a specific equivalence class of tuple
pairs, that is, we assume the profiles of s and s′ to have certain properties. Since there
are only finitely many equivalence classes of tuples pairs (this number is bounded by
(k + 1)k · (k + 1)k by Lemma 4.34), this line of argumentation is valid.

For a better overview, we provide an outline of the upcoming case-by-case analysis:
1. Step: The tuples in the tuple pairs have disjoint edge sets.

1. Case: Both s and s′ have only even edges.
1. Subcase: κ2(s) = k

2
= κ2(s′).

2. Subcase: κl(s) ≥ 1 or κl(s
′) ≥ 1 for some l ∈ {4, 6, 8, . . .}.

2. Case: s has at least one odd edge and s′ has only even edges, or vice versa.
1. Subcase: s has an m-fold edge with m ≥ 3.
2. Subcase: s has no m-fold edge with m ≥ 3, but s′ does.
3. Subcase: Both s and s′ have no m-fold edge with m ≥ 3.

3. Case: Both s and s′ have at least one odd edge.
2. Step: The tuples in the tuple pairs have non-disjoint edge sets.

1. Case: s and s′ have only even edges.
2. Case: s or s′ contains at least one odd edge.

Here, if in ”Step 1, Case 2” the vice versa case is treated, then s and s′ will also swap
their roles in the subcases.

In each case, we will determine which conditions are needed for regular convergence
(i.e. convergence per se) and summable convergence in (4.14), and we will summarize our
findings at the beginning of each case. After the case-by-case analysis we will argue for
the statements i) through iv) of Theorem 4.40 by combining the findings of the relevant
cases.

1. Step: Disjoint edge sets.
We analyze convergence to zero for subsums of

1

n2bkn

∑
t,t′∈[n]kb

φt(Et)∩φt′ (Et′ )=∅

(
Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

)
.

1. Case: Both s and s′ have only even edges.

1. Subcase: κ2(s) = k
2

= κ2(s′).

[Outcome: We achieve regular convergence if the sequences (C
(l)
n )n converge to zero and

summably fast convergence if the sequences (C
(l)
n )n are summable, where for both versions,

we use conditions (AAU1) and (AAU2).]

86



4.3 Proof of the Main Theorem

So this is the subcase in which both s and s′ consist only of double edges. Then we
have due to the second moment property (AAU2) for all t ∈ T (s) and t′ ∈ T (s′) with
disjoint edge sets, that

|Eabn(t)abn(t′)− 1| ≤ C(k)
n ,

|Eabn(t)− 1| ≤ C(k/2)
n ,

|Eabn(t′)− 1| ≤ C(k/2)
n .

Therefore,

|Eabn(t)abn(t′)− Eabn(t)Eabn(t′)|
≤|Eabn(t)abn(t′)− 1|+ |1− (Eabn(t)− 1)Eabn(t′)− Eabn(t′)|
≤|Eabn(t)abn(t′)− 1|+ |Eabn(t)− 1| · |Eabn(t′)|︸ ︷︷ ︸

≤Cκ(s′)

+|Eabn(t′)− 1| ≤ Dn

for the real sequence Dn
..= C

(k)
n + Cκ(s′)C

(k/2)
n + C

(k/2)
n that converges to 0.

Further, by Lemma 4.34, we have at most

#T d(s, s′) ≤ #T (s) ·#T (s′) ≤ kk · nb
k
2
n · kk · nb

k
2
n = k2k · n2bkn

pairs of tuples t ∈ T (s) and t′ ∈ T (s′) with disjoint edge sets. Therefore,∣∣∣∣∣∣ 1

n2bkn

∑
(t,t′)∈T d(s,s′)

(
Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

)∣∣∣∣∣∣ ≤ k2kDn −−−→
n→∞

0

and this convergence is summably fast if the sequences (C
(l)
n )n converge to zero summably

fast.
2. Subcase: We have κl(s) ≥ 1 or κl(s

′) ≥ 1 for some l ∈ {4, 6, 8, . . .}.
[Outcome: We achieve regular convergence if bn →∞, and summably fast convergence if
1
b2n

, 1
bn
D

(l)
n and C

(l)
n are summable for all l. For the regular version we use (AAU1), for the

summable version (AAU1) and (AAU3).]
We first argue for regular convergence without using condition (AAU3): For all t ∈ T (s)

and t′ ∈ T (s′) with disjoint edge sets we have that |Eabn(t)abn(t′)− Eabn(t)Eabn(t′)| remains
uniformly (in n ∈ N, (t, t′) ∈ T d(s, s′)) bounded by some real number B, which follows
from the boundedness property (AAU1). To make this more precise, note that if n, z ∈ N
are arbitrary and P1, . . . , Pz ∈ �n are arbitrary, then using Lemma 3.13 and (AAU1) we
obtain

E|an(P1) · · · an(Pz)| ≤ max
i=1,...,z

E|an(Pi)|z ≤ max
i=1,...,z

√
Ean(Pi)2z ≤

√
CΦ(2z). (4.15)

and thus
|Eabn(t)abn(t′)|+ |Eabn(t)| · |Eabn(t′)| ≤

√
CΦ(4k) + CΦ(2k) =: B.
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We assume w.l.o.g. that κl(s) ≥ 1 with l ∈ {4, 6, 8, . . .}, then by Lemma 4.34 we obtain

#T (s) ≤ kk · nbκ2(s)+κ4(s)+...+κk(s)
n ≤ kk · nb

k
2
−1

n ,

where the bound follows from the fact that the exponent in the term before is maximized
when κl(s) = 1 and the rest of the edges of s are double edges, thus giving the exponent

1 +
k − lκl(s)

2
≤ 1 +

k

2
− l

2
≤ 1 +

k

2
− 4

2
=
k

2
− 1.

To choose the other tuple t′ ∈ T (s′) edge-disjoint from t, we have at most kk · nb
k
2
n possi-

bilities, since this is the unrestricted upper bound. Therefore, in total, we are considering
at most

kk · nb
k
2
−1

n · kk · nb
k
2
n = k2k · n2bk−1

n

tuple pairs in this subcase, in formulas

#T d(s, s′) ≤ k2k · n2bk−1
n .

Therefore, we calculate∣∣∣∣∣∣ 1

n2bkn

∑
(t,t′)∈T (s,s′)

Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

∣∣∣∣∣∣ ≤ 1

n2bkn
· k2k · n2bk−1

n ·B −−−→
n→∞

0,

if bn →∞. Note that since bn ≤ n, 1
bn

is not summable.
Now we will obtain faster decays: First note that in above calculation, if l can be

chosen in the set {6, 8, . . .} or if l = 4 and κl(s) ≥ 2, we achieve an exponent of bn of
at most k

2
− 2 in the upper bound of #T (s) and thus summably fast convergence to

zero if 1
b2n

is summable. Also note in above calculation, that if also κl′(s
′) ≥ 1 for some

l′ ∈ {4, 6, 8, . . .}, then also #T (s′) ≤ kknb
k/2−1
n , thus #T d(s, s′) ≤ k2kn2bk−2

n and thus
summably fast convergence if 1/b2

n is summable.
Now if l = 4, κl(s) = 1, κ2(s) = (k− 4)/2 and κ2(s′) = k/2 (that is, we have one 4-fold

edge and double edges otherwise), then we must resort to (AAU3) and Lemma 4.41 (note
that abn(t) = an(t) for bn-relevant tuples t), since then there are natural numbers z1 and
z2 and constants C1 and C2 such that∣∣∣∣∣∣ 1

n2bkn

∑
(t,t′)∈T (s,s′)

Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

∣∣∣∣∣∣
≤ 1

n2bkn
· k2k · (D(z1)

n + C1 · C(z2+1)
n +D(z2)

n · C2) · n2bk−1
n −−−→

n→∞
0.

where the convergence is summably fast if 1
bn
D

(l)
n and C

(l)
n are summable for all l.

This completes the 1. Case of the 1. Step, in which s and s′ had only even edges.
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2. Case: s has at least one odd edge and s′ has only even edges, or vice versa.
Throughout this case, we assume w.l.o.g. that s has at least one odd edge and s′ has only
even edges (in the vice versa case, s and s′ will also swap their roles in the subcases).
Then, actually, s has at least two odd edges, since the total number of edges is even.
1. Subcase: s has an m-fold edge, m ≥ 3.
[Outcome: We achieve regular convergence if bn →∞ and summably fast convergence if
1
b2n

is summable and α > 1
2
. For both versions we use (AAU1).]

For each (t, t′) ∈ T d(s, s′) we now have due to the distinct decay property (AAU1):

|Eabn(t)abn(t′)| ≤
C[κ(s)+κ(s′)]

nα·κ1(s)

and

|Eabn(t)| · |Eabn(t′)|︸ ︷︷ ︸
≤Cκ(s′)

≤
Cκ(s) · Cκ(s′)

nα·κ1(s)

Now, we determine an upper bound for #T d(s, s′). Clearly, the number of possibilities
to choose t ∈ T (s) and t′ ∈ T (s′) edge-disjoint is bounded by the number of unrestricted
possibilities, where by Lemma 4.34 we have at most

kk · nbκ1(s)+...+κk(s)−1
n

possibilities for t and at most

kk · nbκ1(s′)+...+κk(s′)
n ≤ kk · nbk/2n

possibilities for t′, yielding the bound

#T d(s, s′) ≤ k2k · n2b
k
2

+κ1(s)+...+κk(s)−1
n .

Therefore, we obtain∣∣∣∣∣∣ 1

n2bkn

∑
(t,t′)∈T d(s,s′)

Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

∣∣∣∣∣∣
≤ 1

n2bkn

∑
(t,t′)∈T d(s,s′)

|Eabn(t)abn(t′)|+ 1

n2bkn

∑
(t,t′)∈T d(s,s′)

|Eabn(t)| · |Eabn(t′)|

≤ 1

n2bkn
· k2k · C[κ(s)+κ(s′)] · n2 · b

k
2

+κ1(s)+κ2(s)+...+κk(s)−1
n

nα·κ1(s)

+
1

n2bkn
· k2k · Cκ(s) · Cκ(s′) · n2 · b

k
2

+κ1(s)+κ2(s)+...+κk(s)−1
n

nα·κ1(s)

=
k2k

b
k
2
n

· (C[κ(s)+κ(s′)] + Cκ(s) · Cκ(s′)) ·
b
κ1(s)+κ2(s)+...+κk(s)−1
n

nα·κ1(s)
−−−→
n→∞

0
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if bn →∞, where the convergence is summably fast if 1
b2n

is summable over n and α > 1
2
.

Of course, we will have to prove the last statements, so we will analyze the decay of

1

b
k
2
n

· b
κ1(s)+κ2(s)+...+κk(s)−1
n

nα·κ1(s)
.

To this end, we first assume that κ1(s) = 0. Then the exponent

κ1(s) + κ2(s) + . . .+ κk(s)− 1

is maximal if m = 3, κm(s) = 2 and κ2(s) = k−6
2

= k
2
− 3 (note that since k is even, we

need to have at least two odd edges) and then assumes the value

k

2
− 3 + 2− 1 =

k

2
− 2.

Therefore, we obtain regular convergence if bn →∞ and a summable convergence if 1
b2n

is
summable.

Now, we assume that κ1(s) > 0. Then the exponent in the numerator can surely be
bounded in the following way, in which we assume we have κ1(s) single edges, one m-fold
edge, and that all remaining edges (besides the single edges and the m-fold edge) can be
allocated to double edges (if this cannot be done, i.e. k − mκm(s) − κ1(s) is not even,
then our bound gets even better, i.e. tighter, since then we have to allocate the remaining
edges to edges of higher multiplicity, of which there can be fewer):

κ1(s) + κ2(s) + . . .+ κk(s)− 1 ≤ κ1(s) +
k −m− κ1(s)

2
+ 1− 1 =

κ1(s)

2
+
k

2
− m

2

Remembering that |ab| ≤ 1
2
(a2 + b2), we calculate

1

b
k
2
n

· b
κ1(s)+κ2(s)+...+κk(s)−1
n

nα·κ1(s)
≤ 1

b
k
2
n

· b
κ1(s)

2
+ k

2
−m

2
n

nα·κ1(s)

=
b
κ1(s)

2
−m

2
n

nα·κ1(s)

=
1

b
m
2
−κ1(s)

2
n

· 1

nα·(κ1(s)−1)
· 1

nα

≤ 1

2

1

b
m−κ1(s)
n

1

n2α(κ1(s)−1)
+

1

2

1

n2α

≤ 1

2

1

b
m−κ1(s)
n

1

b
κ1(s)−1
n

+
1

2

1

n2α

=
1

2

1

bm−1
n

+
1

2

1

n2α
−−−→
n→∞

0

if bn → ∞ since m ≥ 3, where the convergence is summably fast if 1
b2n

is summable and

α > 1
2
.
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2. Subcase: s has no m-fold edge with m ≥ 3, but s′ has an m-fold edge with m ≥ 3.
[Outcome: We achieve regular convergence if bn →∞ and summably fast convergence if
1
b2n

is summable. For both versions we use condition (AAU1).]

First, considering that s′ has only even edges, we have by Lemma 4.34, that

#T (s′) ≤ kk · nbκ1(s′)+...+κk(s′)
n ≤ kk · nb

k
2
−1

n .

We need to justify the last inequality: Since s′ has only even edges and an m-fold edge
with m ≥ 3, it actually has an m-fold edge with m ≥ 4. Then the exponent is maximized
if s′ has just one such m-fold edge, thus κm(s′) = 1, and all other edges are double, thus
κ2(s′) = k−m

2
. This yields an exponent of at most

k −m
2

+ 1 =
k

2
− m

2
+ 1 ≤ k

2
− 1,

since m ≥ 4.
Now the number of possibilities to choose a t ∈ T (s) edge-disjoint from a chosen

t′ ∈ T (s′) is bounded by the number of unrestricted possibilities. There are at most

kknb
κ1(s)+κ2(s)−1
n such possibilities by Lemma 4.34, yielding

#T d(s, s′) ≤ k2k · n2b
k
2

+κ1(s)+κ2(s)−2
n .

Fortunately, in this subcase we can bound more generously than in the previous subcase:
For each (t, t′) ∈ T d(s, s′) we now have due to the distinct decay property (AAU1):

|Eabn(t)abn(t′)| ≤
C[κ(s)+κ(s′)]

nα·κ1(s)
≤
C[κ(s)+κ(s′)]

b
1
2
·κ1(s)

n

and

|Eabn(t)| · |Eabn(t′)|︸ ︷︷ ︸
≤Cκ(s′)

≤
Cκ(s) · Cκ(s′)

nα·κ1(s)
≤
Cκ(s) · Cκ(s′)

b
1
2
·κ1(s)

n

.

We thus arrive at

∣∣∣∣∣∣ 1

n2bkn

∑
(t,t′)∈T d(s,s′)

Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

∣∣∣∣∣∣
≤ k2k

n2bkn
· (C[κ(s)+κ(s′)] + Cκ(s) · Cκ(s′)) · n2b

k
2

+ 1
2
κ1(s)+κ2(s)−2

n

=
k2k

bkn
· (C[κ(s)+κ(s′)] + Cκ(s) · Cκ(s′)) · bk−2

n −−−→
n→∞

0

if bn → ∞ and where the convergence is summably fast if 1
b2n

is summable over n. Note
that the last equality follows due to the fact that s has k edges, all of them single or
double, so 1/2κ1(s) + κ2(s) = k/2.
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3. Subcase: Both s and s′ have no m-fold edge with m ≥ 3.

[Outcome: We achieve regular convergence for α ≥ 1
2

and summably fast convergence if
α > 1

2
. For both versions we use (AAU1).]

In this subcase, s has an even number of single edges, but at least 2 of them, and the
remaining edges are double edges, whereas s′ contains only double edges.

By above standard argumentation and Lemma 4.34, we have

#T d(s, s′) ≤ k2k · n2b
k
2

+κ1(s)+κ2(s)−1
n ,

and for each (t, t′) ∈ T d(s, s′) we will bound |Eabn(t)abn(t′)| and |Eabn(t)||Eabn(t′)| as follows:

|Eabn(t)abn(t′)| ≤
C[κ(s)+κ(s′)]

nα·κ1(s)

and

|Eabn(t)| · |Eabn(t′)|︸ ︷︷ ︸
≤Cκ(s′)

≤
Cκ(s) · Cκ(s′)

nα·κ1(s)
.

Using κ2(s) = k−κ1(s)
2

, we arrive at∣∣∣∣∣∣ 1

n2bkn

∑
(t,t′)∈T d(s,s′)

Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

∣∣∣∣∣∣
≤ k2k

b
k/2
n

· (C[κ(s)+κ(s′)] + Cκ(s) · Cκ(s′)) ·
b
κ1(s)+κ2(s)−1
n

nα·κ1(s)

=
k2k

b
k/2
n

· (C[κ(s)+κ(s′)] + Cκ(s) · Cκ(s′)) ·
b
κ1(s)+

k−κ1(s)
2
−1

n

nα·κ1(s)

= k2k · (C[κ(s)+κ(s′)] + Cκ(s) · Cκ(s′)) ·
b
κ1(s)

2
−1

n

nα·κ1(s)

≤ k2k · (C[κ(s)+κ(s′)] + Cκ(s) · Cκ(s′)) ·
n
κ1(s)

2
−1

nα·κ1(s)

= k2k · (C[κ(s)+κ(s′)] + Cκ(s) · Cκ(s′)) ·
1

n(2α−1)
κ1(s)

2
+1
−−−→
n→∞

0

where the convergence is regular for α ≥ 1
2

and summably fast if α > 1
2
, since κ1(s) ≥ 2.

3. Case: Both s and s′ have at least one odd edge.
[Outcome: We achieve regular convergence if bn →∞ and summably fast convergence if
1
b3n

is summable. For both versions we use (AAU1).]

To begin, by Lemma 4.34, we have #T (s) ≤ kk · nbκ1(s)+...+κk(s)−1
n and #T (s′) ≤ kk ·

nb
κ1(s′)+...+κk(s′)−1
n and therefore surely

#T d(s, s′) ≤ k2k · n2bκ1(s)+...+κk(s)+κ1(s′)+...+κk(s′)−2
n .
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Further, by (AAU1) we have for each (t, t′) ∈ T d(s, s′), that

|Eabn(t)abn(t′)| ≤
C[κ(s)+κ(s′)]

nα·(κ1(s)+κ1(s′))
≤

C[κ(s)+κ(s′)]

n
1
2
·(κ1(s)+κ1(s′))

and

|Eabn(t)||Eabn(t′)| ≤
Cκ(s) · Cκ(s′)

nα·(κ1(s)+κ1(s′))
≤

Cκ(s) · Cκ(s′)

n
1
2
·(κ1(s)+κ1(s′))

.

By the triangle inequality and the bounds above we obtain∣∣∣∣∣∣ 1

n2bkn

∑
(t,t′)∈T d(s,s′)

Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

∣∣∣∣∣∣
≤ 1

n2bkn
· (C[κ(s)+κ(s′)] + Cκ(s)Cκ(s′)) · k2kn2 · b

∑
i≤k κi(s)+

∑
j≤k κj(s

′)−2
n · 1

n
1
2
·(κ1(s)+κ1(s′))

=
1

bkn
· C · b

∑
i≤k κi(s)+

∑
j≤k κj(s

′)−2
n · 1

n
1
2
·(κ1(s)+κ1(s′))

−−−→
n→∞

0

if bn → ∞, where the convergence is summably fast if 1
b3n

is summable (and where C

absorbs all constants).
Of course, we have to argue the last statement, for which we will distinguish three

subcases, but we will not declare these as subcases formally.
First, we assume that κ1(s) = 0 = κ1(s′). Then the exponent of bn is maximized if both
s and s′ have only one triple edge and just double edges otherwise (if this is possible, i.e.,
k is odd. If k is even, we will get an even tighter bound, since we will have more edges of
higher multiplicity, of which there can only be fewer. This reasoning will be used in the
second and third point as well). Then the exponent of bn in the numerator is bounded by

k − 3

2
+ 1 +

k − 3

2
+ 1− 2 = k − 3,

showing the above statement.
Second, we assume that κ1(s) ≥ 1 but κ1(s′) = 0 (or vice versa). In this case the term

1

bkn
· b

∑
i≤k κi(s)+

∑
j≤k κj(s

′)−2
n · 1

n
1
2
·(κ1(s)+κ1(s′))

is maximized if s consists of only one single edge and double edges otherwise, whereas s′

consists of only one triple edge and double edges otherwise, and we get

1

bkn
· b

∑
i≤k κi(s)+

∑
j≤k κj(s

′)−2
n · 1

n
1
2
·(κ1(s)+κ1(s′))

≤ 1

bkn
b

1+ k−1
2

+ k−3
2

+1−2
n · 1

n
1
2

=
1

b2
n

· 1

n
1
2

≤ 3

5
· 1

b
10
3
n

+
2

5
· 1

n
5
4

,
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which converges to zero as bn →∞ and this summably fast if 1
b3n

is summable. In the last
step in above calculation we used Young’s inequality

ab ≤ ap

p
+
bq

q
,

which holds for all non-negative real numbers a, b, p and q such that 1
p

+ 1
q

= 1.

Third, we assume that κ1(s) ≥ 1 and κ1(s′) ≥ 1. In this case the term

1

bkn
· b

∑
j≤k κj(s)+

∑
j≤k κj(s

′)−2
n · 1

n
1
2
·(κ1(s)+κ1(s′))

is maximized if s and s′ both consist of only one single edge and double edges otherwise,
and we get

1

bkn
· b

∑
i≤k κi(s)+

∑
j≤k κj(s

′)−2
n · 1

n
1
2
·(κ1(s)+κ1(s′))

≤ 1

bkn
· b1+ k−1

2
+1+ k−1

2
−2

n · 1

n

=
1

bn
· 1

n
≤ 1

3
· 1

b3
n

+
2

3
· 1

n
3
2

,

which converges to zero if bn →∞ and this summably fast if 1
b3n

is summable.
Now, the first step of the proof, when we sum over edge-wise disjoint tuples, is com-

pleted.
2. Step: Non-disjoint edge sets.
We analyze convergence to zero for subsums of

1

n2bkn

∑
t,t′∈[n]kb

φt(Et)∩φt′ (Et′ )6=∅

(
Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

)
.

1. Case: s, s′ have only even edges.

[Outcome: We achieve regular convergence as is and summably fast convergence if 1
nbn

is
summable. For both versions we use (AAU1).]

By Lemma 4.37, we obtain the bound

#T c(s, s′) ≤ k2 · (2k)2knbk−1
n .

Next, recall the constant B which we constructed in ”Step 1, Case 1, Subcase 2” (see (4.15)
and beyond) independent of n, which clearly satisfies for all n ∈ N and all (t, t′) ∈ T c(s, s′):

|Eabn(t)abn(t′)− Eabn(t)Eabn(t′)| ≤ E|abn(t)abn(t′)|+ E|abn(t)|E|abn(t′)| ≤ B.

With these bounds, we achieve∣∣∣∣∣∣ 1

n2bkn

∑
(t,t′)∈T c(s,s′)

Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

∣∣∣∣∣∣ ≤ 1

n2bkn
· k2 · (2k)2k · nbk−1

n ·B −−−→
n→∞

0,
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4.3 Proof of the Main Theorem

where the convergence is summably fast if 1
nbn

is summable over n.

We now turn to the final case of this proof.
2. Case: s or s′ contains at least one odd edge.

[Outcome: We achieve regular convergence as is and summably fast convergence if ( 1
nbn

)n
is summable. For both versions we use (AAU1).]

Of course, we have∣∣∣∣∣∣ 1

n2bkn

∑
(t,t′)∈T c(s,s′)

Eabn(t)abn(t′)− Eabn(t)Eabn(t′)

∣∣∣∣∣∣
≤ 1

n2bkn

∑
(t,t′)∈T c(s,s′)

(|Eabn(t)abn(t′)|+ |Eabn(t)| · |Eabn(t′)|)

=
k∑
l=1

1

n2bkn

∑
(t,t′)∈T cl (s,s′)

(|Eabn(t)abn(t′)|+ |Eabn(t)| · |Eabn(t′)|).

Thus, it suffices to show that each of the k summands converges to zero if bn → ∞,
and that this convergence is summably fast as long as ( 1

nbn
)n is summable. To this end,

pick an l ∈ {1, . . . , k} and a (t, t′) ∈ T cl (s, s′). How can we bound |Eabn(t)abn(t′)| and
|Eabn(t)| · |Eabn(t′)|?

Surely, by the distinct decay property (AAU1), we obtain

|Eabn(t)| · |Eabn(t′)| ≤
Cκ(s) · Cκ(s′)

nα·(κ1(s)+κ1(s′))
≤

Cκ(s) · Cκ(s′)

b
1
2
·(κ1(s)+κ1(s′))

n

.

Now to treat |Eabn(t)abn(t′)|, note that with Lemma 4.35, we find a Eulerian cycle u ∈
[n]2k which passes through the graph obtained through superposition of the graphs of t
and t′. But how many single edges does u have, i.e., what can we say about κ1(u)? If
t and t′ were edge-disjoint, we would have κ1(u) = κ1(t) + κ1(t′). But now, for each
common edge of t and t′, the number of single edges can be reduced by at most 2 after
superposition of the graphs, which happens if the common edge is a single edge in both t
and t′. Therefore, we obtain

κ1(u) ≥ max(κ1(t) + κ1(t′)− 2l, 0) = max(κ1(s) + κ1(s′)− 2l, 0)

and thus

|Eabn(t)abn(t′)| = |Eabn(u)| ≤
Cκ(u)

nα·κ1(u)
≤

Cκ(u)

b
1
2
·κ1(u)

n

≤ B

b
1
2
·max(κ1(s)+κ1(s′)−2l,0)

n

,

where the constant B is taken from the cases above. Since Lemma 4.37 yields

#T cl (s, s′) ≤ k2 · (2k)2k · nb
∑
i κi(s)+

∑
j κj(s

′)−l−1
n ,
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we obtain

1

n2bkn

∑
(t,t′)∈T cl (s,s′)

(|Eabn(t)abn(t′)|+ |Eabn(t)| · |Eabn(t′)|)

≤ 1

n2bkn
· k2 · (2k)2k · nb

∑
i κi(s)+

∑
j κj(s

′)−l−1
n ·

(
B

b
1
2
·max(κ1(s)+κ1(s′)−2l,0)

n

+
Cκ(s) · Cκ(s′)

b
1
2
·(κ1(s)+κ1(s′))

n

)

≤ k2(2k)2k

nbkn
· (B + Cκ(s) · Cκ(s′))b

1
2
κ1(s)+

∑
i≥2 κi(s)+

1
2
κ1(s′)+

∑
j≥2 κj(s

′)−1
n

≤ k2(2k)2k

nbkn
· (B + Cκ(s) · Cκ(s′))b

k−1
n −−−→

n→∞
0,

where the convergence is summably fast if 1
nbn

is summable. We have to justify the second
and third inequality in above calculation. The second inequality follows by a case-by-case
analysis whether κ1(s)+κ1(s′) ≥ 2l or κ1(s)+κ1(s′) < 2l. In the first case, the inequality is

clear, while in the second case we obtain l > κ1(s)
2

+ κ1(s′)
2

, which also yields the inequality.
The third inequality follows since the exponent of bn is maximized, for example, when

both tuples s and s′ contain only single edges and thus assumes the value k − 1.
This concludes the lengthy case-by-case analysis. For each of the different cases we pointed

out which conditions we need for regular and summable convergence of the variance to
zero. Now we will argue for the statements i) through iv) of Theorem 4.40:

i) As can be seen from the outcome of each of the cases, the condition that bn → ∞
suffices for regular convergence of the variance to zero.

ii) Assuming {+1,−1}-valued entries, we observe that the term in (4.14) on page 85
vanishes for each subsum in our case-by-case analysis except in ”Step 1, Case 3” and
”Step 2, Case 2” (since if t, say, consists of only even edges, we have an(t) ≡ 1). In
those cases, for a summably fast convergence we need that 1

b3n
is summable and that

1
nbn

is summable. Since the former implies the latter through

1

nbn
≤ 2

3
· 1

n
3
2

+
1

3
· 1

b3
n

,

where we used Young’s inequality, it is enough to assume that 1
b3n

is summable.

iii) Without extra assumptions on the entries of (an)n, all of the above subcases are
relevant. Therefore, for a summably fast convergence of the variance we need α > 1

2

and the sequences ( 1
b2n

)n, ( 1
bn
D

(l)
n )n and (C

(l)
n )n for all l ∈ N to be summable over n.

In particular, we used condition (AAU3).

iv) Assuming independent entries in (an)n with existing moments, zero expectation and
unit variance, we see that the term in (4.14) vanishes for each subsum in our case-
by-case analysis except for ”Step 2, Case 1” and ”Step 2, Case 2”, since if the edge
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sets of tuples t and t′ are disjoint, we obtain Eabn(t)abn(t′) = Eabn(t)Eabn(t′). For those
two subcases just mentioned, we achieve a summable convergence to zero if ( 1

nbn
)n is

summable over n.

We have now proved Theorem 4.9:

Proof of Theorem 4.9. This is a direct consequence of Theorem 3.14 with z = 2, Theo-
rem 4.38 and Theorem 4.40.

4.4 Extension of Results to Non-Periodic Band Matrices

In this section, we will extend our results to non-periodic band matrices. In order to
analyze these matrices in a sensible manner, the concept of a bandwidth should be replaced
by the concept called halfwidth, which we adopted from [42]. Intuitively, the halfwidth
h = (hn)n should be interpreted as half of a bandwidth b = (bn)n, hence the name. A
6× 6 non-periodic band matrix M with halfwidth 2 has the structure

M =


x1,1 x1,2 0 0 0 0
x2,1 x2,2 x2,3 0 0 0
0 x3,2 x3,3 x3,4 0 0
0 0 x4,3 x4,4 x4,5 0
0 0 0 x5,4 x5,5 x5,6

0 0 0 0 x6,5 x6,6

 ,

whereas with halfwidth 4 we obtain the structure

M =


x1,1 x1,2 x1,3 x1,4 0 0
x2,1 x2,2 x2,3 x2,4 x2,5 0
x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

x4,1 x4,2 x4,3 x4,4 x4,5 x4,6

0 x5,2 x5,3 x5,4 x5,5 x5,6

0 0 x6,3 x6,4 x6,5 x6,6

 .

The halfwidth denotes the number of possible non-trivial entries in the first row of the
matrix. For an n× n matrix, a valid halfwidth is thus a number in the set {1, 2, . . . , n}.
For a visual comparison of the structure of periodic and non-periodic band matrices, the
reader is encouraged to turn to page 56. We notice the difference between the periodic
and the non-periodic case is that in the latter case the triangular areas in the upper right
and lower left corner of the matrices are missing, leading to the possibility that the inner
band is so wide that it reaches the top right and lower left corners of the matrix. Also, the
rows of the matrix do not possess the same number of non-trivial entries any longer. This
makes analysis of such matrices a little less straight-forward when applying the method
of moments. We will use a different route to extend our results to the non-periodic case:
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We will show that under reasonable conditions, the ESDs of periodic and non-periodic
matrices are asymptotically equivalent, so that we can directly make use of our previous
results. In order to compare these two types of band matrices, we need to relate the
concepts halfwidth and bandwidth:

Definition 4.42. Let n ∈ N be arbitrary, then an hn ∈ N is called (n-)halfwidth, if
hn ∈ {1 . . . n}. By slight abuse of language, a sequence h = (hn)n of halfwidths will also
be called halfwidth. Given a halfwidth h = (hn)n, we set

∀n ∈ N : bn ..= min(2hn − 1, n)

and call bn (resp. b = (bn)n) the bandwidth associated with the halfwidth hn (resp. h =
(hn)n).

It is clear that for any n ∈ N, the bandwidth bn that is associated with a halfwidth hn
is either n itself or an odd number in the set {1, . . . , n}, thus coincides with the concept
of a bandwidth in previous sections. As before, bn is the number of possible non-trivial
entries in ”the middle row” of the matrix, whereas hn is the number of possible non-trivial
entries in the first row.

Definition 4.43. Let (Ω,A,P) be a probability space, (an)n∈N a triangular scheme, h =
(hn)n be a sequence of n-halfwidths with associated bandwidths b = (bn)n.

1. We define the non-periodic random matrices which are based on the triangular
scheme (an)n∈N with halfwidth h as

∀n ∈ N : ∀ (i, j) ∈ �n : XNP
n (i, j) ..=

{
1√
bn
an(i, j) if |i− j| ≤ hn − 1

0 otherwise.

2. We define the periodic random matrices which are based on the triangular scheme
(an)n∈N with associated bandwidth b as

∀n ∈ N : ∀ (i, j) ∈ �n : XP
n (i, j) ..=


1√
bn
an(i, j) if |i− j| ≤ hn − 1

1√
bn
an(i, j) if |i− j| ≥ max(n− hn + 1, hn)

0 otherwise.

Note that in the previous definition, we always normalize with the square root of the
bandwidth. In particular, the normalization does not increase for hn ≥ (n+ 1)/2, despite
the fact that (in the non-periodic case) more non-trivial entries are allowed. Note also
that the definition of periodic random matrices has not changed in comparison to previous
sections, see Definitions 4.6, 4.7 and 4.8 and the following lemma:

Lemma 4.44. Let for some n ∈ N, hn be an n-halfwidth with associated bandwidth bn.
Then an index pair (i, j) ∈ �n is bn-relevant iff |i− j| ≤ hn − 1 or |i− j| ≥ max(n −
hn + 1, hn).
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Proof. By definition, bn = min(2hn − 1, n). We show ”⇒” first. If (i, j) is bn-relevant,
then this means that

|i− j| ≤ bn − 1

2
or |i− j| ≥ n− bn − 1

2
or bn = n. (4.16)

Now if the first condition in (4.16) is satisfied, we calculate

|i− j| ≤ bn − 1

2
=

min(2hn − 1, n)− 1

2
≤ hn − 1.

If the second condition in (4.16) is satisfied (but not bn = n, which we consider further be-
low, in particular, we assume bn = 2hn−1), the first one cannot be satisfied by transitivity
of ≤ (since bn ≤ n) and hence

|i− j| > bn − 1

2
=

2hn − 1− 1

2
≥ hn − 1,

which yields |i− j| ≥ hn. In addition, the second condition itself yields:

|i− j| ≥ 2n− bn + 1

2
=

2n− (2hn − 1) + 1

2
= n− hn + 1,

so in combination with |i− j| ≥ hn we obtain |i− j| ≥ max(n − hn + 1, hn). Now let
the third condition in (4.16) be satisfied, that is, bn = n which implies n ≤ 2hn − 1
by definition of bn, so that hn ≥ n − hn + 1. Then if ¬(|i− j| ≤ hn − 1), this entails
|i− j| ≥ hn ≥ n − hn + 1, so indeed |i− j| ≥ max(n − hn + 1, hn). This completes
the direction ”⇒.” For ”⇐” we assume that bn 6= n, which entails that bn < n, so
bn = 2hn − 1 < n, hence n− hn + 1 > hn and we must show that

|i− j| ≤ bn − 1

2
or |i− j| ≥ n− bn − 1

2

given that |i− j| ≤ hn − 1 or |i− j| ≥ n− hn + 1. But if |i− j| ≤ hn − 1, we find

|i− j| ≤ hn − 1 =
bn − 1

2
,

and if |i− j| ≥ n− hn + 1, we obtain

|i− j| ≥ n− hn + 1 = n− (hn − 1) = n− bn − 1

2
.

We have secured that Theorem 4.9 and its corollaries are applicable to periodic band
matrices XP

n which are based on bandwidths that are associated with halfwidths. We want
to study next in which way those results can be extended to the non-periodic versions
XNP
n . In addition, since the significant parameter in the non-periodic case is the halfwidth
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of which the bandwidth is just a derivate, we should also formulate the results for non-
periodic band matrices in terms of the halfwidth.

The question we should ask ourselves is what kind of results we can hope for. Bogachev
et al. have shown in [11] that for the i.i.d. case, the semicircle law holds in probability for
(XNP

n )n if

lim
n→∞

hn =∞ and lim
n→∞

hn
n
∈ {0, 1}, (4.17)

whereas the semicircle law does not hold if limn hn/n = p for some p ∈ (0, 1).

Therefore, our analysis which follows will always impose condition (4.17), since we are
interested in convergence to the semicircle distribution (and the i.i.d. case is a special case
of ours). Now instead of applying the method of moments once again, we realize that if
(4.17) holds, XNP

n and XP
n will only differ in small triangles in the upper right and lower

left corners of the matrix. To visualize this effect for small fractions hn/n, assume that
n = 10, hn = 3 and thus bn = 5, yielding the following structures for XNP

10 and XP
10:

XNP
10 =



x1,1 x1,2 x1,3 0 0 0 0 0 0 0
x2,1 x2,2 x2,3 x2,4 0 0 0 0 0 0
x3,1 x3,2 x3,3 x3,4 x3,5 0 0 0 0 0
0 x4,2 x4,3 x4,4 x4,5 x4,6 0 0 0 0
0 0 x5,3 x5,4 x5,5 x5,6 x5,7 0 0 0
0 0 0 x6,4 x6,5 x6,6 x6,7 x6,8 0 0
0 0 0 0 x7,5 x7,6 x7,7 x7,8 x7,9 0
0 0 0 0 0 x8,6 x8,7 x8,8 x8,9 x8,10

0 0 0 0 0 0 x9,7 x9,8 x9,9 x9,10

0 0 0 0 0 0 0 x10,8 x10,9 x10,10



XP
10 =



x1,1 x1,2 x1,3 0 0 0 0 0 x1,9 x1,10

x2,1 x2,2 x2,3 x2,4 0 0 0 0 0 x2,10

x3,1 x3,2 x3,3 x3,4 x3,5 0 0 0 0 0
0 x4,2 x4,3 x4,4 x4,5 x4,6 0 0 0 0
0 0 x5,3 x5,4 x5,5 x5,6 x5,7 0 0 0
0 0 0 x6,4 x6,5 x6,6 x6,7 x6,8 0 0
0 0 0 0 x7,5 x7,6 x7,7 x7,8 x7,9 0
0 0 0 0 0 x8,6 x8,7 x8,8 x8,9 x8,10

x9,1 0 0 0 0 0 x9,7 x9,8 x9,9 x9,10

x10,1 x10,2 0 0 0 0 0 x10,8 x10,9 x10,10



On the other hand, for large fractions hn/n, we assume n = 10, hn = 8 and thus
bn = 10, and we obtain the following structures for XNP

10 and XP
10:
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XNP
10 =



x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 0 0
x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9 0
x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8 x3,9 x3,10

x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 x4,7 x4,8 x4,9 x4,10

x5,1 x5,2 x5,3 x5,4 x5,5 x5,6 x5,7 x5,8 x5,9 x5,10

x6,1 x6,2 x6,3 x6,4 x6,5 x6,6 x6,7 x6,8 x6,9 x6,10

x7,1 x7,2 x7,3 x7,4 x7,5 x7,6 x7,7 x7,8 x7,9 x7,10

x8,1 x8,2 x8,3 x8,4 x8,5 x8,6 x8,7 x8,8 x8,9 x8,10

0 x9,2 x9,3 x9,4 x9,5 x9,6 x9,7 x9,8 x9,9 x9,10

0 0 x10,3 x10,4 x10,5 x10,6 x10,7 x10,8 x10,9 x10,10



XP
10 =



x1,1 x1,2 x1,3 x1,4 x1,5 x1,6 x1,7 x1,8 x1,9 x1,10

x2,1 x2,2 x2,3 x2,4 x2,5 x2,6 x2,7 x2,8 x2,9 x2,10

x3,1 x3,2 x3,3 x3,4 x3,5 x3,6 x3,7 x3,8 x3,9 x3,10

x4,1 x4,2 x4,3 x4,4 x4,5 x4,6 x4,7 x4,8 x4,9 x4,10

x5,1 x5,2 x5,3 x5,4 x5,5 x5,6 x5,7 x5,8 x5,9 x5,10

x6,1 x6,2 x6,3 x6,4 x6,5 x6,6 x6,7 x6,8 x6,9 x6,10

x7,1 x7,2 x7,3 x7,4 x7,5 x7,6 x7,7 x7,8 x7,9 x7,10

x8,1 x8,2 x8,3 x8,4 x8,5 x8,6 x8,7 x8,8 x8,9 x8,10

x9,1 x9,2 x9,3 x9,4 x9,5 x9,6 x9,7 x9,8 x9,9 x9,10

x10,1 x10,2 x10,3 x10,4 x10,5 x10,6 x10,7 x10,8 x10,9 x10,10


To measure the difference between spectral distributions, we employ the bounded Lip-

schitz metric dBL, which can be used particularly well to analyze the effect of small
perturbations of random matrices. Please turn to Section 4.5 for details and notational
conventions, which we will use in passing in what follows. The main reason this metric
is so convenient is that the distance between the ESDs of two random matrices M1 and
M2 is expressed through the entries of the difference matrix M1 −M2 (see Lemma 4.52).
Comparing our non-periodic and periodic band matrices given some halfwidth h and as-
sociated bandwidth b (as we just visualized, but see also Definition 4.43), we realize that
both matrices contain a non-trivial area with indices |i− j| ≤ hn−1, which is the band in
the middle of the matrix, and additionally, periodic matrices contain non-trivial triangular
areas with indices |i− j| ≥ max(n− hn + 1, hn).

To employ the bounded Lipschitz metric, it is useful to count the index pairs that
either point to the common band in the middle of the matrix or to the entries in the
triangular areas that make up the difference. Since we only consider real symmetric
random matrices and the main diagonal is trivial to deal with (and will never be part of
any of the mentioned triangular areas), for a given halfwidth (hn)n we set for all n ∈ N :

B(hn) ..= {(i, j) | 1 ≤ i < j ≤ n, j − i ≤ hn − 1}

and

T (hn) ..= {(i, j) | 1 ≤ i < j ≤ n, j − i ≥ max(n− hn + 1, hn)} ,
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4 Random Band Matrices with Correlated Entries

where ”B” stands for ”band” and ”T” for ”triangular area.” These sets are obviously
disjoint and we will denote their union by S(hn), so S(hn) ..= B(hn) ∪ T (hn).

Lemma 4.45. Let n ∈ N and hn ∈ {1, . . . , n}, then

i) #B(hn) = (hn−1)(2n−hn)
2

.

ii) #T (hn) = min
(

(hn−1)hn
2

, (n−hn)(n−hn+1)
2

)
.

iii) #S(hn) = min
(
n(hn − 1), n(n−1)

2

)
.

Proof. i) B(hn) contains all index pairs (i, j) corresponding the diagonals where j − i ∈
{1, . . . , hn − 1}. Their count is

hn−1∑
k=1

(n− k) = n(hn − 1)−
hn−1∑
k=1

k = n(hn − 1)− (hn − 1)hn
2

=
(hn − 1)(2n− hn)

2
.

ii) To count the index pairs in T (hn), let k ∈ {1, . . . , n} be fixed and let us count the
index pairs in the set

{1 ≤ i < j ≤ n | j − i ≥ k}.

To this end, if j = n, then we can pick i ∈ {1, . . . , n − k}, if j = n − 1 we can pick
i ∈ {1, . . . , n− k− 1} and so on until finally, if j = k+ 1, we can pick i ∈ {1}. Therefore,
with k = max(n− hn + 1, hn), hence n− k = min(hn − 1, n− hn), we calculate

n−k∑
l=1

l =

min(hn−1,n−hn)∑
l=1

l = min

(
hn−1∑
l=1

l,
n−hn∑
l=1

l

)
= min

(
(hn − 1)hn

2
,
(n− hn)(n− hn + 1)

2

)
index pairs in T (hn).
iii) We calculate, using that B(hn) and T (hn) are disjoint,

#S(hn) = #(B(hn) ∪ T (hn))

= #B(hn) + #T (hn)

=
(hn − 1)(2n− hn)

2
+ min

(
(hn − 1)hn

2
,
(n− hn)(n− hn + 1)

2

)
= min

(
2n(hn − 1)

2
,
n(hn − 1) + (hn − 1)(n− hn) + (n− hn)(n− (hn − 1))

2

)
= min

(
n(hn − 1),

n(hn − 1) + n(n− hn)

2

)
= min

(
n(hn − 1),

n(n− 1)

2

)
.
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4.4 Extension of Results to Non-Periodic Band Matrices

Having studied the areas of non-trivial entries away from the main diagonal of periodic
and non-periodic band matrices, we now turn to the statement that the conditions hn →
∞ and limn hn/n ∈ {0, 1} render the ESDs of these matrices asymptotically equivalent.
The theorem that follows is the main tool of this section and might also be of independent
interest, since it relates the asymptotic ESDs of period and non-periodic random matrices
in quite general settings. One of the statements in the theorem concerns sub-Gaussian
entries. We refer the reader to Section 4.5 for details on both the metric dBL and sub-
Gaussian random variables.

Theorem 4.46. Let (an)n be a triangular scheme and let (hn)n be a halfwidth with hn →
∞ and limn hn/n ∈ {0, 1}. Denote by XP

n the periodic and by XNP
n the non-periodic

random matrices which are based on an with halfwidth h and associated bandwidth b.
Then the following statements hold:

i) If the entries of (an)n possess uniformly bounded second moments, then

dBL(XP
n , X

NP
n ) −−−→

n→∞
0 in probability.

ii) If the entries of (an)n are uniformly bounded, then

dBL(XP
n , X

NP
n ) −−−→

n→∞
0 surely.

iii) If for all n ∈ N, the family of random variables (an(i, j))1≤i≤j≤n is independent, and
if all variables in (an)n possess uniformly bounded eighth moments, then

dBL(XP
n , X

NP
n ) −−−→

n→∞
0 almost surely.

iv) If the entries of (an)n are β-sub-Gaussian for some β > 0, and if there exist C, d > 1
such that

∀n ∈ N : min

(
1− hn

n
,
hn
n

)
≤ C

logd(n)
,

where logd(n) = (log(n))d, then

dBL(XP
n , X

NP
n ) −−−→

n→∞
0 almost surely.

Before we start with the proof, let us analyze the condition on the halfwidth in statement
iv). Knowing already that limn hn/n ∈ {0, 1}, this condition lets us conclude that the
convergence takes place with some polylogarithmic convergence speed. An important
special case is that hn/n

ρ → 1 for some ρ ∈ (0, 1). Then we find

hn
n

=
hn
nρ
· 1

n1−ρ ≤
C ′

nγ
≤ C

logd(n)

where γ = 1− ρ > 0, C ′ > 0 is a bound for the convergent sequence hn/n
ρ, d > 1 can ac-

tually be chosen arbitrarily, and C is a bound for the bounded sequence (C ′ logd(n)/nγ)n.
Therefore, the case hn/n

ρ → 1 for some ρ ∈ (0, 1) is covered by the theorem.
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4 Random Band Matrices with Correlated Entries

Proof of Theorem 4.46. We start by making the following calculation, using Lemma 4.52:

dBL(XP
n , X

NP
n )2 ≤ 1

n
tr
[
(XP

n −XNP
n )∗(XP

n −XNP
n )

]
=

1

n

∑
(i,j)∈�n

∣∣(XNP
n −XP

n )(i, j)
∣∣2 (4.18)

=
2

nbn

∑
(i,j)∈T (hn)

|an(i, j)|2.

We also note the following: If hn/n → 0, we will have bn = min(2hn − 1, n) = 2hn − 1
finally, since

2hn − 1 ≤ n⇔ 2hn
n
− 1

n
≤ 1,

and the latter is finally true. (Here and throughout the whole proof, the word ”finally”
is used exclusively to mean ”for all n ∈ N with n ≥ N , where N ∈ N depends only on
the specific choice of the halfwidth h”.) On the other hand, if hn/n → 1, we will have
bn = min(2hn − 1, n) = n finally, since

2hn − 1 ≥ n⇔ 2hn
n
− 1

n
≥ 1,

and the latter is finally true. Therefore, in our calculations below, whenever we consider
the cases hn/n→ 0 or hn/n→ 1, we may and will replace bn by 2hn−1 or n, respectively,
without further notice.
Statement i) Let m2 ≥ 0 denote a uniform bound of the second moment of the entries of
(an)n. Then for any ε > 0, we find using (4.18) and Lemma 4.45 ii), that

P(dBL(XP
n , X

NP
n ) > ε) ≤ E dBL(XP

n , X
NP
n )2

ε2

≤ 2m2

ε2nbn
·min

(
(hn − 1)hn

2
,
(n− hn)(n− hn + 1)

2

)
,

Now if hn/n→ 0, we will finally have

P(dBL(XP
n , X

NP
n ) > ε) ≤ 2m2

ε2n(2hn − 1)

(hn − 1)hn
2

=
m2

ε2
hn − 1

2hn − 1︸ ︷︷ ︸
≤1/2

hn
n
−−−→
n→∞

0,

whereas if hn/n→ 1 we will finally have

P(dBL(XP
n , X

NP
n ) > ε) ≤ 2m2

ε2n2

(n− hn)(n− hn + 1)

2

=
m2

ε2

(
1− hn

n

)(
1− hn

n
+

1

n

)
−−−→
n→∞

0.
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4.4 Extension of Results to Non-Periodic Band Matrices

So indeed, dBL(XP
n , X

NP
n )→ 0 in probability, which is exactly statement i).

Statement ii) Denote by C ≥ 0 a uniform bound of the entries of (an)n. Then, using
Lemma 4.45 ii) and (4.18), we obtain

dBL(XP
n , X

NP
n )2 ≤ 2

nbn

∑
(i,j)∈T (hn)

|an(i, j)|2

≤ 2C2

nbn
min

(
(hn − 1)hn

2
,
(n− hn)(n− hn + 1)

2

)
.

Now if hn/n→ 0, we conclude that finally

dBL(XP
n , X

NP
n )2 ≤ 2C2

n(2hn − 1)

(hn − 1)hn
2

= C2 hn − 1

2hn − 1

hn
n
−−−→
n→∞

0,

whereas if hn/n→ 1, we conclude that finally

dBL(XP
n , X

NP
n )2 ≤ 2C2

n2

(n− hn)(n− hn + 1)

2
= C2

(
1− hn

n

)(
1− hn

n
+

1

n

)
−−−→
n→∞

0,

so in particular, dBL(XP
n , X

NP
n )→ 0 surely.

Statement iii) For a truncation level T > 0, denote by XP,T
n and XNP,T

n the truncated

versions of XP
n and XNP

n , that is, for all n ∈ N and (i, j) ∈ �n, set

XP,T
n (i, j) ..= XP

n (i, j)1{|
√
bnXP

n (i,j)|≤T}

and
XNP,T
n (i, j) ..= XNP

n (i, j)1{|
√
bnXNP

n (i,j)|≤T}.

Since the entries of (an)n have uniformly bounded eighth moments, the family
((|an(i, j)|2)(i,j)∈�n)n∈N has uniformly bounded fourth moments and is thus uniformly
integrable. In particular, for any ε > 0 we can find a truncation level T > 0 such that for
all n ∈ N and (i, j) ∈ �n we have E|an(i, j)|21{|an(i,j)|>T} ≤ ε2. We show that then the
following holds:

1. lim supn→∞ dBL(XP
n , X

P,T
n ) ≤ ε almost surely,

2. lim supn→∞ dBL(XNP
n , XNP,T

n ) ≤ ε almost surely.

To this end, we calculate using Lemma 4.52

dBL(XP
n , X

P,T
n )2 ≤ 1

nbn

∑
(i,j)∈�n

|
√
bnX

P
n (i, j)|21{|√bnXP

n (i,j)|>T}

=
1

nbn

n∑
i=1

|an(i, i)|21{|an(i,i)|>T} +
2

nbn

∑
(i,j)∈S(hn)

|an(i, j)|21{|an(i,j)|>T}

(4.19)

=: A(1)
n + A(2)

n .
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4 Random Band Matrices with Correlated Entries

We will handle these two series separately and invoke the SLLN as in Theorem 4.51
each time. First of all, since hn →∞, also bn →∞ and with

lim sup
n→∞

1

n

n∑
i=1

|an(i, i)|21{|an(i,i)|>T} ≤ ε2

almost surely by the SLLN, we obtain

A(1)
n −−−→

n→∞
0 almost surely. (4.20)

For A
(2)
n we obtain via Lemma 4.45 iii) that

2 ·#S(hn)

nbn
=

2

nbn
min

(
n(hn − 1),

n(n− 1)

2

)
=

1

bn
min (2(hn − 1), n− 1) .

Now if hn/n→ 0, we finally have bn = 2hn − 1 and min(2(hn − 1), n− 1) = 2(hn − 1), so
that finally

2 ·#S(hn)

nbn
=

2(hn − 1)

2hn − 1
−−−→
n→∞

1.

On the other hand, if hn/n→ 1, we finally have bn = n and min(2(hn−1), n−1) = n−1,
so that finally

2 ·#S(hn)

nbn
=
n− 1

n
−−−→
n→∞

1.

Therefore, in either case we have 2 ·#S(hn)/(nbn)→ 1 and since finally

#S(hn) = min

(
n(hn − 1),

n(n− 1)

2

)
≥ n, thus

1

(#S(hn))2
≤ 1

n2
,

1/(#S(hn))2 is finally summable (cf. Definition 4.50). Therefore, using the SLLN once
again we obtain

lim sup
n→∞

A(2)
n = lim sup

n→∞

2

nbn

∑
(i,j)∈S(hn)

|an(i, j)|21{|an(i,j)|>T}

= lim sup
n→∞

2 ·#S(hn)

nbn

1

#S(hn)

∑
(i,j)∈S(hn)

|an(i, j)|21{|an(i,j)|>T} ≤ ε2

almost surely. Therefore,

lim sup
n→∞

dBL(XP
n , X

P,T
n ) ≤ ε almost surely

for all T so large that E|an(i, j)|21{|an(i,j)|>T} ≤ ε2 for all n ∈ N and (i, j) ∈ �n.
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4.4 Extension of Results to Non-Periodic Band Matrices

To treat the non-periodic case, we calculate

dBL(XNP
n , XNP,T

n )2 ≤ 1

nbn

n∑
i,j=1

|
√
bnX

NP
n (i, j)|21{|√bnXNP

n (i,j)|>T}

=
1

nbn

n∑
i=1

|an(i, i)|21{|an(i,i)|>T} +
2

nbn

∑
(i,j)∈B(bn)

|an(i, j)|21{|an(i,j)|>T}

≤ 1

nbn

n∑
i=1

|an(i, i)|21{|an(i,i)|>T} +
2

nbn

∑
(i,j)∈S(bn)

|an(i, j)|21{|an(i,j)|>T}

= A(1)
n + A(2)

n .

As we just argued above, it holds

A(1)
n −−−→

n→∞
0 almost surely.

and
lim sup
n→∞

A(2)
n ≤ ε2 almost surely,

so that
lim sup
n→∞

dBL(XNP
n , XNP,T

n ) ≤ ε almost surely.

In total, we achieved that for all ε > 0 we find a T > 0 such that

lim sup
n→∞

dBL(XNP
n , XP

n )

≤ lim sup
n→∞

dBL(XNP
n , XNP,T

n ) + lim sup
n→∞

dBL(XNP,T
n , XP,T

n ) + lim sup
n→∞

dBL(XP,T
n , XP

n )

≤ ε+ 0 + ε = 2ε almost surely.

where we used statement ii) for the summand in the middle. Since ε > 0 was arbitrary,
for each k ∈ N we can find a set Ak ∈ A of measure 1 where

lim sup
n→∞

dBL(XP
n , X

NP
n ) ≤ 1

k
.

Then A∞ ..=
⋂
k∈NAk has measure one and

lim sup
n→∞

dBL(XP
n , X

NP
n ) = 0 on A∞.

Thus,
lim
n→∞

dBL(XP
n , X

NP
n ) = 0 almost surely.

Statement iv) We proceed similarly as in statement iii), but must be careful: We do not
have a powerful SLLN at our disposal for sub-Gaussian random variables with arbitrary
correlation structures. Therefore, we must follow a different idea, which is comprised of

107



4 Random Band Matrices with Correlated Entries

an increasing truncation level Tn ↗ ∞ and the use of tail probability bounds witnessed
by the sub-Gaussian property. Given β > 0 as in statement iv), we set Tn ..= 4β

√
log(n)

as our dynamic truncation parameter. Using (4.18) as above and Lemma 4.45 ii), we
obtain finally

dBL(XP,Tn
n , XNP,Tn

n )2 ≤ 2

nbn

∑
(i,j)∈T (hn)

|an(i, j)|21{|an(i,j)|≤Tn}.

≤ 2

nbn
·min

(
(hn − 1)hn

2
,
(n− hn)(n− hn + 1)

2

)
T 2
n .

We note that by choice of Tn, T 2
n/ logd(n)→ 0 as n→∞, since d > 1. Now if hn/n→ 0,

using the convergence speed as in the statement of iv), we conclude that finally,

dBL(XP,Tn
n , XNP,Tn

n )2 ≤ 2

n(2hn − 1)

(hn − 1)hn
2

· T 2
n

=
hn − 1

2hn − 1
· hn
n
· T 2

n

≤ hn − 1

2hn − 1

C

logd(n)
· T 2

n −−−→
n→∞

0 surely.

On the other hand, if hn/n→ 1 we conclude that finally

dBL(XP,Tn
n , XNP,Tn

n )2 ≤ 2

n2

(n− hn)(n− hn + 1)

2
· T 2

n

=

(
1− hn

n

)(
1− hn

n
+

1

n

)
· T 2

n

≤ C

logd(n)

(
C

logd(n)
+

1

n

)
· T 2

n −−−→
n→∞

0 surely.

Therefore, it suffices to show that

1. lim supn→∞ dBL(XP
n , X

P,Tn
n ) −−−→

n→∞
0 almost surely,

2. lim supn→∞ dBL(XNP
n , XNP,Tn

n ) −−−→
n→∞

0 almost surely.

By Markov’s inequality and the Borel-Cantelli lemma, it suffices to show

I. E dBL(XP , XP,Tn)2 → 0 summably fast.

II. E dBL(XNP , XNP,Tn)2 → 0 summably fast.
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To show I. we obtain finally, using (4.19), the Cauchy-Schwarz inequality, Lemma 4.45
iii) and Theorem 4.53:

E dBL(XP
n , X

P,Tn
n )2

≤ 1

nbn

n∑
i=1

E|an(i, i)|21{|an(i,i)|>Tn} +
2

nbn

∑
(i,j)∈S(hn)

E|an(i, j)|21{|an(i,j)|>Tn}

≤ 1

nbn

n∑
i=1

√
E|an(i, i)|4 ·

√
P (|an(i, i)| > Tn)

+
2

nbn

∑
(i,j)∈S(hn)

√
E|an(i, i)|4 ·

√
P (|an(i, j)| > Tn)

≤
√

2
√
m4

bn
· e−

T2
n

4β2 +
2
√

2
√
m4

nbn
min

(
n(hn − 1),

n(n− 1)

2

)
· e−

T2
n

4β2 , (4.21)

where m4 denotes a fourth moment bound of the entries. To be more precise, if Y is
β-sub-Gaussian, then by Theorem 4.53,

EY 4 =

∫ ∞
0

P(Y 4 > t)dt =

∫ ∞
0

P(|Y | > t
1
4 )dt ≤ 2

∫ ∞
0

e
−
√
t

2β2 dt =: m4 <∞,

where the finiteness of the integral is easily seen since for all t large enough we obtain

e
−
√
t

2β2 ≤ 1
t2

. Now to argue the summability of (4.21), note that e−T
2
n/(4β

2) is summable in

n since by choice of Tn = 4β
√

log(n),

e
− T2

n
4β2 = e−4 log(n) =

1

n4
.

Therefore, only summability of the second summand on the r.h.s. of (4.21) must be argued.
But this is straight-forward with arguments we have used before: Assuming hn/n → 0,
we may finally substitute bn by 2hn− 1 and then consider the first term in the minimum.
On the other hand, if hn/n → 1, we may finally substitute bn by n and then consider
the second term on the minimum. In both cases, the summability of e−T

2
n/(4β

2) will then
ensure summability of the summand in question.

Analogously, for II. we calculate

EdBL(XNP
n , XNP,Tn

n )2

≤ 1

nbn

n∑
i=1

E|an(i, i)|21{|an(i,i)|>Tn} +
2

nbn

∑
(i,j)∈B(hn)

E|an(i, j)|21{|an(i,j)|>Tn}

≤ 1

nbn

n∑
i=1

E|an(i, i)|21{|an(i,i)|>Tn} +
2

nbn

∑
(i,j)∈S(hn)

E|an(i, j)|21{|an(i,j)|>Tn}

and we have just seen that this expression converges to zero summably fast.
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We will derive the following theorem for the non-periodic case:

Theorem 4.47. Let (an)n be an α-almost-uncorrelated triangular scheme, h = (hn)n a
sequence of n-halfwidths and (XNP

n )n the non-periodic random matrices which are based
on (an)n with halfwidth h. We assume that

hn →∞ but lim
n→∞

hn
n
∈ {0, 1}.

Then we obtain the following results:

1. If α ≥ 1
2
, then the semicircle law holds for (XNP

n )n in probability.

2. If α ≥ 1
2
, 1
h3n

is summable over n and all entries of (an)n are {−1, 1}-valued, then

the semicircle law holds almost surely for (XNP
n )n.

3. If (an)n∈N is a Wigner scheme (Def. 2.40) and if ( 1
nhn

)n is summable, then we obtain

the semicircle law almost surely for (XNP
n )n.

Proof. First of all, note that if hn → ∞, also bn → ∞. The theorem is then a direct
implication of Theorem 4.46 and Theorem 4.9. To give details, 1. follows with the fact
that entries in α-almost uncorrelated triangular schemes have uniformly bounded second
moments, 2. follows with the fact that

1

b3
n

is summable ⇔ 1

h3
n

is summable (4.22)

and 3. follows with the fact that

1

nbn
is summable ⇔ 1

nhn
is summable, (4.23)

where (4.22) and (4.23) follow easily since there exists a c ≥ 1 such that finally,

1

c
hn ≤ bn ≤ chn. (4.24)

To see this, we know from the proof of Theorem 4.46 that if hn/n→ 0, then bn = 2hn− 1
finally and then (4.24) holds with c = 2. If hn/n→ 1, then bn = n finally and we obtain
again that (4.24) holds with c = 2, since hn ∈ {1, . . . , n} and

n ≤ 2hn ⇔ 1

2
≤ hn

n
,

which is finally true since hn/n→ 1.

The next corollary will deal with non-periodic random band matrices with Curie-Weiss
entries:
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Corollary 4.48. Let 0 < β ≤ 1 and let for each n ∈ N the random variables ãn(i, j)1≤i,j≤n
be Curie-Weiss(β, n2)-distributed. Define the triangular scheme (an)n by setting

∀n ∈ N : ∀ (i, j) ∈ �n : an(i, j) =

{
ãn(i, j) if i ≤ j

ãn(j, i) if i > j.

Let h = (hn)n be a sequence of n-halfwidths with hn → ∞ and limn hn/n ∈ {0, 1}. Let
(XNP

n )n be the non-periodic random band matrices which are based on (an)n with halfwidth
h. Then the following statements hold:

i) The semicircle law holds for (XNP
n )n in probability.

ii) If 1
h3n

is summable over n, then the semicircle law holds almost surely for (XNP
n )n.

Proof. This is a direct consequence of Theorem 4.17 and Theorem 4.47 i) and ii).

Obviously, a statement analogous to the third statement of Theorem 4.9 is missing
in Theorem 4.47. The statement in question was formulated mainly to be able to treat
correlated Gaussian ensembles, as in Example 4.22, which is 1-almost uncorrelated with
summable sequences (D

(l)
n )n and (C

(l)
n )n by Theorem 4.26. This motivated the formulation

of Theorem 4.46 iv). Inspecting the third statement of Theorem 4.9 and the fourth
statement of Theorem 4.46 (and keeping in mind that finally, 1/2hn ≤ bn ≤ 2hn as
pointed out in the proof of Theorem 4.47), the halfwidth hn should satisfy hn → ∞,
limn hn/n ∈ {0, 1} and both

1

h2
n

−−−→
n→∞

0 summably fast and min

(
1− hn

n
,
hn
n

)
≤ C

logd(n)
(4.25)

for some C, d > 1 and all n ∈ N. Let us analyze these conditions. The first condition in
(4.25) requires hn →∞ with some minimal speed. For example, hn ∼

√
n loga(n) grows

too slowly for a = 1 but fast enough for all a > 1. The second condition in (4.25) states
how hn shall grow in comparison to n. If hn/n→ 0, then hn should not grow too quickly.
The quickest growth rate allowed is of the form hn ∼ C ′n/ logd(n) for some C ′ > 0 and
d > 1. If hn/n→ 1, then hn should not grow too slowly. A minimal speed of

hn ≥ n

(
1− C ′

logd(n)

)
for some C ′ > 0, d > 1 suffices. This will render the first condition to be satisfied, since
then

1

h2
n

=
1

h2
n

n2

(
1− C ′

logd(n)

)2

︸ ︷︷ ︸
→1

· 1

n2

(
1− C ′

logd(n)

)2

︸ ︷︷ ︸
≥ 1

2
finally

.
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4 Random Band Matrices with Correlated Entries

Let us discuss some classic examples that satisfy the conditions in (4.25). For halfwidths
(hn)n with hn/n → 0, a very slow growth of hn would be hn ∼

√
n log(n), whereas a

rather fast growth rate would be of the type hn ∼ n/ log2(n). Rates of the type hn ∼ nρ

for ρ ∈ (1/2, 1) lie in between and are thus also admissible. Now if hn/n→ 1, a rate of

hn ≥ n

(
log(n)− 1

log(n)

)
does not satisfy the convergence condition, for then, hn does not grow quickly enough.
On the other hand, a rate of

hn ≥ n

(
log2(n)− 1

log2(n)

)
would be admissible.

Theorem 4.49. Let (an)n be the triangular scheme with correlated Gaussian entries as
in Example 4.22 with respect to arbitrarily fixed α > 0 and (Σn)n ∈ CovMat(α).

Let (hn)n be n-halfwidths which satisfy hn →∞ and limn hn/n ∈ {0, 1}, and let (XNP
n )n

be the non-periodic random matrices which are based on (an)n with halfwidth (hn)n. Then
the following statements hold:

i) If α ≥ 1/2, then the semicircle law holds for (XNP
n )n in probability.

ii) If α > 1/2 and the conditions in (4.25) are satisfied, then the semicircle law holds
almost surely for (XNP

n )n.

Proof. By Theorem 4.26, (an)n∈N is strongly α-almost uncorrelated. Thus, the first state-
ment follows immediately from Theorem 4.47 i). The second statement of almost sure
convergence follows from Corollary 4.28 iv) (note that summability of 1/h2

n is equivalent
to summability of 1/b2

n by (4.24)) in combination with Theorem 4.46 iv), since entries of
(an)n are 1-sub-Gaussian.

4.5 Auxillary Statements

The SLLN for L4-Schemes with Independent Variables

We would like to make statements about terms involving a factor 1/#I(n), where I(n)
is an n-dependent and possibly empty index set. In this context, we use the convention
1/0 =∞ and make the following definition:

Definition 4.50. A sequence (xn)n in R+∪{∞} is called finally summable, if there exists
an N ∈ N such that xn 6=∞ for all n ≥ N and∑

n≥N

xn <∞.
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4.5 Auxillary Statements

Theorem 4.51. Let
(

(Y
(n)
i )i∈I(n)

)
n∈N

be a sequence of real-valued random variables,

where I(n) is an n-dependent finite index set, such that the following holds:

a) The random variables have a uniformly bounded fourth moment:

∃C ≥ 0 : ∀n ∈ N : ∀ i ∈ I(n) : E
(
Y

(n)
i

)4

≤ C.

b) (1/(#I(n))2)n∈N is finally summable.

Then the following statements hold:

i) If for all n ∈ N and i ∈ I(n), EY
(n)
i = 0, then

1

#I(n)

∑
i∈I(n)

Y
(n)
i −−−→

n→∞
0 almost surely.

ii) If there are real numbers l ≤ u such that for all n ∈ N and i ∈ I(n), EY
(n)
i ∈ [l, u],

then almost surely

l ≤ lim inf
n→∞

1

#I(n)

∑
i∈I(n)

Y
(n)
i ≤ lim sup

n→∞

1

#I(n)

∑
i∈I(n)

Y
(n)
i ≤ u.

Proof. It is clear that i) follows from ii). However, in the proof it is convenient to show
i) first. To this end, let ε > 0 be arbitrary, then we calculate:

P

∣∣∣∣∣∣ 1

#I(n)

∑
i∈I(n)

Y
(n)
i

∣∣∣∣∣∣ > ε


≤ 1

ε4(#I(n))4

∑
i,j,k,l∈I(n)

EY
(n)
i Y

(n)
j Y

(n)
k Y

(n)
l

=
1

ε4(#I(n))4

∑
i=j 6=k=l

E
(
Y

(n)
i

)2 (
Y

(n)
k

)2

+
1

ε4(#I(n))4

∑
i=k 6=j=l

E
(
Y

(n)
i

)2 (
Y

(n)
j

)2

+
1

ε4(#I(n))4

∑
i=l 6=j=k

E
(
Y

(n)
i

)2 (
Y

(n)
j

)2

+
1

ε4(#I(n))4

∑
i=j=k=l

E
(
Y

(n)
i

)4

≤ 3 · 1

ε4(#I(n))4
· (#I(n))2 · C +

1

ε4(#I(n))4
·#I(n) · C −−−→

n→∞
0 summably fast,

where we used Markov’s inequality in the first step, independence and centrality in the
second and the Cauchy-Schwarz inequality in the third step. The statement follows by
Borel-Cantelli.

Now to show ii), we write

1

#I(n)

∑
i∈I(n)

Y
(n)
i =

1

#I(n)

∑
i∈I(n)

(
Y

(n)
i − EY (n)

i

)
+

1

#I(n)

∑
i∈I(n)

EY
(n)
i =: S(1)

n + S(2)
n .
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4 Random Band Matrices with Correlated Entries

We will analyze the two subsums separately. For S
(1)
n note that for all n ∈ N and i ∈ I(n),

‖Y (n)
i − EY (n)

i ‖4 ≤ ‖Y (n)
i ‖4 + ‖EY (n)

i ‖4 ≤
4
√
C + |EY (n)

i | ≤
4
√
C + max{|l|, |u|}.

Therefore, for all n ∈ N and i ∈ I(n) we find

E
(
Y

(n)
i − EY (n)

i

)4

≤ (
4
√
C + max{|l|, |u|})4,

so we can apply Statement i) to the scheme
(

(Y
(n)
i − EY (n)

i )i∈I(n)

)
n∈N

and obtain

S(1)
n −−−→

n→∞
0 almost surely,

that is, this convergence takes place on some measurable set A with measure 1. For S
(2)
n ,

note that for finally all n ∈ N, I(n) will be nonempty (due to condition b)) and then for
all such n,

S(2)
n =

1

#I(n)

∑
i∈I(n)

EY
(n)
i ∈ [l, u].

Therefore, in total, on the set A we find

lim sup
n→∞

1

#I(n)

∑
i∈I(n)

Y
(n)
i ≤ lim sup

n→∞
S(1)
n + lim sup

n→∞
S(2)
n ≤ 0 + u.

and

lim inf
n→∞

1

#I(n)

∑
i∈I(n)

Y
(n)
i ≥ lim inf

n→∞
S(1)
n + lim inf

n→∞
S(2)
n ≥ 0 + l.

The Bounded Lipschitz Metric

We denote by M1(R) the space of probability measures on (R,B), where B is the Borel
σ-algebra over R. For all ν, µ ∈M1(R) we define

dBL(ν, µ) ..= sup

{∣∣∣∣∫
R
f dµ−

∫
R
f dν

∣∣∣∣ : ‖f‖∞ ≤ 1, f ∈ Lip1

}
,

where Lip1 denotes the set of functions R → R, which are Lipschitz-continuous with a
Lipschitz constant of at most 1. Then dBL is a metric on M1(R) which metrizes weak
convergence (see [12, p. 191] and [50, p. 74]). That is, a sequence of probability measures
(µn)n inM1(R) converges weakly to an element µ ∈M1(R) if and only if dBL(µn, µ)→ 0
as n → ∞. Since we are mainly interested in weak convergence of empirical spectral
distributions of random matrices, we use the following notation: Whenever dBL receives
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4.5 Auxillary Statements

an Hermitian matrix X as an argument, we will interpret this argument as the ESD of
X. For example, if X and Y are Hermitian matrices with ESDs µX and µY , then

dBL(X, Y ) ..= dBL (µX , µY )

and, keeping in mind that σ will always denote the semicircle distribution,

dBL(X, σ) ..= dBL (µX , σ) .

Now there is a fruitful inequality concerning the dBL-distance of two ESDs.

Lemma 4.52. Let X and Y be two Hermitian n× n matrices, then we obtain

dBL(X, Y )2 ≤ 1

n
tr [(X − Y )∗(X − Y )] =

1

n

n∑
i,j=1

|(X − Y )(i, j)|2,

where tr denotes the trace functional.

Proof. We only need to show the first inequality. Let f ∈ Lip1 be arbitrary, λZi denote
the eigenvalues and µZ the ESD of Z, where Z ∈ {X, Y } and i ∈ {1, . . . , n}, then∣∣∣∣∫

R
f µX −

∫
R
f µY

∣∣∣∣2 =

∣∣∣∣∣ 1n
n∑
i=1

f
(
λXi
)
− 1

n

n∑
i=1

f
(
λYi
)∣∣∣∣∣

2

≤ 1

n

n∑
i=1

∣∣f (λXi )− f (λYi )∣∣2
≤ 1

n

n∑
i=1

∣∣λXi − λYi ∣∣2
≤ 1

n
tr [(X − Y )∗(X − Y )] ,

where we used convexity in the second step and the Hoffman-Wielandt inequality (The-
orem 2.33) in the fourth step.

Sub-Gaussian Random Variables

If β > 0 is arbitrary, then a real-valued random variable X is said to be β-sub-Gaussian,
if its moment generating function is dominated by the one of an N (0, β2)-distributed
random variable, thus if

∀ t ∈ R : EetX ≤ e
β2t2

2 .

In particular, a standard normal random variable is 1-sub-Gaussian. Sub-Gaussian
random variables have rich properties, which can be studied in [52]. For example, if X
is β-sub-Gaussian, then EX = 0 and VX ≤ β2. The following theorem characterizes
sub-Gaussian random variables:
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4 Random Band Matrices with Correlated Entries

Theorem 4.53. For a real-valued random variable X, the following statements are equiv-
alent:

1. X is β-sub-Gaussian for some β > 0, i.e. ∀ t ∈ R : EetX ≤ e
β2t2

2 .

2. There is a c > 0 such that ∀λ > 0 : P(|X| ≥ λ) ≤ 2e−cλ
2
.

3. There is an a > 0 such that EeaX
2 ≤ 2.

Further, if statement 1 holds with constant β > 0, statement 2 holds with constant c = 1
2β2 .

Proof. See [52].
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5 The Stieltjes Transform Method

5.1 Motivation and Basic Properties

In order to analyze properties of random variables and their distributions, it is a common
technique to use transforms of these distributions which make analysis more accessible
due to their favorable algebraic structure. For example, a common and short proof of the
central limit theorem is conducted by using the Fourier transform of the random variables
involved, owing to the property that Fourier transforms handle convolutions particularly
well (and the central limit theorem is about a sum of random variables).

In random matrix theory, however, when analyzing empirical spectral distributions of
diverse matrix ensembles, it is desirable to use a tool for analysis that relates the behavior
of the empirical spectral distribution back to the level of the entries of the matrices. For
example, using the method of moments, one sees in equation (3.4) that the moments of
the ESD σn of a random matrix Xn can be calculated through:

∀ k ∈ N :
〈
σn, x

k
〉

=
1

n
tr(Xk

n) =
1

n

n∑
i1,...,ik=1

Xn(i1, i2)Xn(i2, i3) · · ·Xn(ik, i1).

In other words, instead trying to work with an ESD directly, we can analyze its moments
which allows us to work on the level of the matrix entries.

A tool that combines both worlds, that is, that provides the structure of a transform
with favorable algebraic properties and that allows us to work on the level of the matrix
entries is the so called Stieltjes transform:

Definition 5.1. Let µ be a finite measure on (R,B). Then we define the Stieltjes trans-
form Sµ of µ as the map

Sµ : C\R −→ C

z 7−→
∫
R

1

x− z
µ(dx)

.

We note that the Stieltjes transform is defined via a measure-theoretical integral over a
complex-valued function. We refer the reader to Section 5.6 for elementary but important
properties concerning these integrals. The following lemma studies the Stieltjes transform
Sµ(z) =

∫
R

1
x−zµ(dx). Note that we do not have to consider the trivial case where µ ≡ 0,

since in this case, Sµ ≡ 0. Notationally, we set C+
..= {z ∈ C | Im(z) > 0}.
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5 The Stieltjes Transform Method

Lemma 5.2. Let µ be a finite measure on (R,B) with µ(R) > 0 and Sµ be its Stieltjes
transform. Further, let E ∈ R, η ∈ R\{0} and z ..= E + iη, then we obtain:

i) For any x ∈ R we find: 1
x−z = x−E

(x−E)2+η2
+ i η

(x−E)2+η2
.

ii) ReSµ(z) =
∫

x−E
(x−E)2+η2

µ(dx) and ImSµ(z) =
∫

η
(x−E)2+η2

µ(dx).

iii) Im(z) ≷ 0⇔ ImSµ(z) ≷ 0.

iv) Sµ(z) = Sµ(z).

v) Sµ is uniquely determined by its restriction Sµ : C+ → C+.

vi) |Sµ(z)| ≤ µ(R)
|Im(z)|

vii) Sµ is holomorphic.

viii) In particular, Sµ is continuous, can be represented by a power series around any
z0 ∈ C\R, and is infinitely often differentiable.

Proof. Statement i) is obvious, ii) follows from i) by construction of the integral, iii)
follows directly from ii) and so does iv) in combination with the construction of the
integral. Statement v) follows directly from iii) and iv), and vi) follows from∣∣∣∣ 1

x− z

∣∣∣∣ =
1

|x− z|
≤ 1

|Im(x− z)|
=

1

|Im(z)|
.

To show statement vii), let (zn)n and z ∈ C\R with zn → z, but zn 6= z be arbitrary,
then:

Sµ(zn)− Sµ(z)

zn − z
=

1

zn − z

∫
1

x− zn
− 1

x− z
µ(dx)

=
1

zn − z

∫
zn − z

(x− zn)(x− z)
µ(dx) −−−→

n→∞

∫
1

(x− z)2
µ(dx)

by dominated convergence, since for some C > 0 and all n ∈ N,∣∣∣∣ 1

(x− zn)(x− z)

∣∣∣∣ ≤ 1

|Im(zn)||Im(z)|
≤ C,

for convergent sequences are bounded.

It was mentioned in [59, p. 143] that the Stieltjes transform is holomorphic; we just gave
a proof for the convenience of the reader. Also in [59, p. 144], boundedness properties
are stated for the derivatives of the Stieltjes transform. They follow directly from our
calculation of the derivatives in the following lemma.
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5.1 Motivation and Basic Properties

Lemma 5.3 (Derivatives of Sµ). For all k ∈ N0 we denote by S
(k)
µ the k-th derivative of

Sµ. We find

∀ k ∈ N0 : ∀ z ∈ C\R : S(k)
µ (z) =

∫
k!

(x− z)k+1
µ(dx).

Proof. For k = 0 the statement is trivial, and for k = 1 we have shown the statement in
the proof of Lemma 5.2. We proceed by induction. We assume the statement to be true
for some k ∈ N and show that it is valid for k + 1. To this end, let z, (zn)n ∈ C\R be
arbitrary with zn → z but zn 6= z. Using that for any a, b ∈ C and k ∈ N0, we have

ak+1 − bk+1 =

(
k∑
l=0

ak−lbl

)
(a− b),

we calculate, using the induction hypothesis in the first step,

S
(k)
µ (zn)− S(k)

µ (z)

zn − z
=

k!

zn − z

∫
1

(x− zn)k+1
− 1

(x− z)k+1
µ(dx)

=
k!

zn − z

∫ ( k∑
l=0

1

(x− zn)k−l
1

(x− z)l

)(
1

x− zn
− 1

x− z

)
µ(dx)

= k!

∫ k∑
l=0

1

(x− zn)k−l+1

1

(x− z)l+1
µ(dx).

Realizing that for all n ∈ N,∣∣∣∣∣
k∑
l=0

1

(x− zn)k−l+1

1

(x− z)l+1

∣∣∣∣∣ ≤
k∑
l=0

1

|Im(zn)|k−l+1|Im(z)|l+1
≤ C,

for some positive constant C (since zn converges), we obtain via dominated convergence:

S(k+1)
µ (z) = lim

n→∞

S
(k)
µ (zn)− S(k)

µ (z)

zn − z
= k!

∫ k∑
l=0

1

(x− z)k+2
µ(dx) =

∫
(k + 1)!

(x− z)k+2
µ(dx)

Theorem 5.4 (Retrieval of Measure). For any bounded interval I ⊆ R with end points
α < β, we obtain the following:

µ((α, β)) +
1

2
(µ({α}) + µ({β})) = lim

η↘0

1

π

∫
I

ImSµ(E + iη)λλ(dE).

Proof. Let I be an interval with end points α < β and η > 0. Then we obtain via Fubini:

1

π

∫
I

ImSµ(E + iη)λλ(dE) =
1

π

∫
I

∫
R

η

(x− E)2 + η2
µ(dx)λλ(dE)

=
1

π

∫
R

∫
I

η

(x− E)2 + η2
λλ(dE)µ(dx)

=
1

π

∫
R

∫ β

α

η

(x− E)2 + η2
dEµ(dx).
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5 The Stieltjes Transform Method

Now since ∫ β

α

η

(x− E)2 + η2
dE =

1

η

∫ β

α

1

(E−x
η

)2 + 1
dE

=

∫ β−x
η

α−x
η

1

E2 + 1
dE

= arctan

(
β − x
η

)
− arctan

(
α− x
η

)
,

and arctan : R → (−π
2
,+π

2
) is strictly increasing with limx→±∞ arctan(x) = ±π

2
, we

obtain

lim
η↘0

[
arctan

(
β − x
η

)
− arctan

(
α− x
η

)]
=


π if x ∈ (α, β)

0 if x /∈ [α, β]
π
2

if x = α ∨ x = β.

Thus, by dominated convergence we find

lim
η↘0

1

π

∫
I

ImSµ(E + iη)λλ(dE) = lim
η↘0

1

π

∫
R

arctan

(
β − x
η

)
− arctan

(
α− x
η

)
µ(dx)

=

∫
R
1(α,β)(x) +

1

2
1{α,β}(x)µ(dx)

= µ((α, β)) +
1

2
(µ({α}) + µ({β}))

The previous theorem and the following corollary are similar to Theorem 2.4.3 in [6].
As usual, for a subset I of a topological space, we denote by ∂I its boundary, which is a
concept we assume to be known to the reader.

Corollary 5.5. For any bounded interval I ⊆ R with µ(∂I) = 0, we find:

µ(I) = lim
η↘0

1

π

∫
I

ImSµ(E + iη)λλ(dE).

Thus, any finite measure µ on (R,B) is uniquely determined by Sµ. In other words,
µ 7→ Sµ is injective.

Proof. The convergence statement follows from Theorem 5.4. Now if µ and ν are finite
measures on (R,B) with Sµ = Sν , denote their sets of atoms by Aρ ..= {x ∈ R, ρ({x}) > 0}
for ρ ∈ {µ, ν}. Then Aµ and Aν are at most countable. Let a < b be arbitrary real
numbers, then there are sequences (an)n and (bn)n in R\(Aµ ∪ Aν) with a < an < bn < b
for all n ∈ N such that an ↘ a and bn ↗ b. It follows

µ((a, b)) = lim
n→∞

µ((an, bn)) = lim
n→∞

ν((an, bn)) = ν((a, b)),

where we used continuity of measures in the first and last step and Theorem 5.4 in the
middle step. Since µ and ν agree on all open bounded intervals, we conclude µ = ν.
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5.2 The Stieltjes Transform and Weak Convergence

The last theorem and its corollary suggest that for any finite measure µ on (R,B) and
η > 0 small, E 7→ 1

π
ImSµ(E+ iη) acts as a Lebesgue density for (a measure approximat-

ing) µ. In particular, even measures that do not possess a Lebesgue density (for example,
all empirical measures) can be approximated in this way by using the Stieltjes transform.
In Section 5.3 we will see how this can be made precise.

5.2 The Stieltjes Transform and Weak Convergence

For any finite measure, Sµ carries all the information of µ (cf. Corollary 5.5). Therefore, it
is not surprising that this tool can be used particularly well to analyze weak convergence
of probability measures. The following theorem generalizes Theorem 2.4.4 in [6].

Theorem 5.6 (Convergence Theorem). Let Z ⊆ C\R be a subset that has an accumula-
tion point in C\R (which is not necessarily an element of Z itself). Then the following
statements hold:

1. Let (µn)n in M1(R), such that for all z ∈ Z we find that S(z) ..= limn→∞ Sµn(z)
exists. Then there is a sub-probability measure µ with µn → µ vaguely and Sµ = S.

2. Let (µn)n and µ in M1(R), then we find:

µn → µ weakly ⇔ Sµn(z)→ Sµ(z) for all z ∈ Z.

3. Let (µn)n be random probability measures and µ be a deterministic probability mea-
sure, then:

a) µn → µ weakly in expectation ⇔ ESµn(z)→ Sµ(z) for all z ∈ Z.

b) µn → µ weakly in probability ⇔ Sµn(z)→ Sµ(z) in probability for all z ∈ Z.

c) µn → µ weakly almost surely ⇔ [Sµn(z)→ Sµ(z) almost surely] for all z ∈ Z.

Proof. 1. Let (µn)n∈J be an arbitrary subsequence of (µn)n∈N. Due to Lemma 2.15, there
exists a subsequence (µn)n∈I , I ⊆ J , such that µn → µ vaguely for n ∈ I and a sub-
probability measure µ. Since x 7→ 1

x−z vanishes at ±∞, it follows Sµn(z) → Sµ(z) for
n ∈ I for all z ∈ Z (cf. Lemma 2.10). Therefore, S(z) = Sµ(z) for all z ∈ Z. If ν is another
subsequential limit of (µn)n∈J , we find by the same argument that Sµ(z) = S(z) = Sν(z)
for all z ∈ Z. This implies Sµ = Sν , since Stieltjes transforms are holomorphic. Therefore,
µ = ν by Theorem 5.4. By Lemma 2.9, we find µn → µ vaguely for n ∈ N.
2. Since x 7→ 1

x−z is continuous, ”⇒” is obvious. To show ”⇐”, statement 1 yields that
µn → µ vaguely, thus µn → µ weakly, since all measures involved are probability measures
(cf. Lemma 2.14).
3.a) This follows directly from statement 2, considering

ESµn(z) = E

∫
1

x− z
µn(dx) =

∫
1

x− z
Eµn(dx) = SEµn(z),
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5 The Stieltjes Transform Method

see also Theorem 2.20.
3.c) If µn → µ weakly on a measurable set A with P(A) = 1, then we have on A that for all
z ∈ Z we find Sµn(z)→ Sµ(z) (by statement 2). This shows ”⇒”, and to show ”⇐”, fix a
sequence (zk)k in Z that converges to some z ∈ C\R. For all k ∈ N we find a measurable
set Ak with P(Ak) = 1 on which Sµn(zk) → Sµ(zk) as n → ∞. Then A ..= ∩k∈NAk is
measurable with P(A) = 1, and on A we find that for all z ∈ Z ′ ..= {zk|k ∈ N} we have
Sµn(z) → Sµ(z). Since Z ′ has an accumulation point in C\R, we find on the set A that
µn → µ weakly by statement 2.
3.b) The direction ”⇒” is trivial since x 7→ x−E

(x−E)2+η2
and x 7→ η

(x−E)2+η2
are bounded

and continuous (cf. Theorem 2.25). For ”⇐” we let f ∈ Cb(R) be arbitrary. Then we
need to show that 〈µn, f〉 → 〈µ, f〉 in probability. Let J ⊆ N be a subsequence, then by
Lemma 2.28, we find a subsequence I ⊆ J and a measurable set N with P(N) = 0, such
that for (zk)k fixed as in the proof of 3.c):

∀ω ∈ Ω\N : ∀k ∈ N : Sµn(ω)(zk) −−→
n∈I

Sµ(ω)(zk).

Therefore, it follows with statement 3.c) that µn −−→
n∈I

µ almost surely, so in particular

〈µn, f〉 −−→
n∈I
〈µ, f〉 almost surely. Then 〈µn, f〉 −−→

n∈N
〈µ, f〉 in probability by Lemma 2.27.

We refer the reader to Remark 2.26 for an explanation on the use of brackets [. . .] in
Theorem 5.6 3. c).

5.3 The Imaginary Part of the Stieltjes Transform

In Corollary 5.5 we saw that if µ ∈ M1(R), then for a small η > 0, the function E 7→
1
π

ImSµ(E + iη) should be the Lebesgue density of a probability measure on (R,B) that
approximates µ well. But so far, we do not even know whether E 7→ 1

π
ImSµ(E + iη)

yields a density of a probability measure at all. How can this intuition be portrayed in the
right context, and is there a connection to the weak convergence results of Section 5.2?
This section aims to shed light onto these aspects. First, we will rigorously delve into
convolution of probability measures, which will be based on [4]. Second, we will introduce
kernel density estimators, which motivate further the use of the Stieltjes transform when
analyzing ESDs of random matrices. We begin by making the following definition:

Definition 5.7. Let µ and ν be probability measures on (R,B) and f, g : R → R
Lebesgue-density functions (i.e. h ≥ 0 and

∫
hdλλ = 1, h ∈ {f, g}).

i) The convolution of the probability measures µ and ν is defined as µ ∗ ν ..= (µ⊗ ν)+.
Here, µ⊗ν is the product measure on (R2,B2), + : R2 → R is the addition map, and
(µ⊗ ν)+ is the push-forward of the product measure under the addition map.
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5.3 The Imaginary Part of the Stieltjes Transform

ii) The convolution of the density f and the probability measure ν is defined as the
function f ∗ ν : R→ R with

∀x ∈ R : (f ∗ ν)(x) ..=

∫
R
f(x− y)ν(dy).

iii) The convolution of the densities f and g is the function f ∗ g : R→ R with

∀x ∈ R : (f ∗ g)(x) ..=

∫
R
f(x− y)g(y)λλ(dy).

Note that in ii) and iii) above, the definitions of the convolution are to be understood for
λλ-almost all x ∈ R, since the respective integrals are well-defined only for λλ-almost all
x ∈ R, which can be observed via Fubini/Tonelli. The convolutions are understood to
equal zero on the respective sets of measure zero.

We will now casually discuss Definition 5.7 and summarize the most important aspects
of our findings in the next lemma. So let us assume we are in the situation of said
definition.

Let us first discuss point i) of Definition 5.7: Per construction, the convolution of two
probability measures yields another probability measure on the real line, and if B ∈ B is
arbitrary, we find

(µ ∗ ν)(B) = (µ⊗ ν)
({

(x, y) ∈ R2 : x+ y ∈ B
})
.

Further, if f : R→ R is µ ∗ ν-integrable, then we obtain by transformation:∫
R
fd(µ∗ν) =

∫
R2

(f◦+)d(µ⊗ν) =

∫
R2

f(x+y)(µ⊗ν)(d(x, y)) =

∫
R

∫
R
f(x+y)µ(dx)ν(dy),

so that in particular for an indicator function f = 1B for some B ∈ B:

(µ ∗ ν)(B) =

∫
R
1Bd(µ ∗ ν) =

∫
R

∫
R
1B(x+ y)µ(dx)ν(dy) =

∫
R
µ(B − y)ν(dy),

where the fact that the first term is equal to the third shows in a particularly nice way that
the convolution is commutative (via Fubini). Let us introduce a quick but enlightening
example:

Example 5.8 (Convolution with Dirac measures). For all a ∈ R, denote by δa the Dirac
measure in a and by Ta the translation by a, that is, Ta : R → R, Ta(x) = x + a for all
x ∈ R. Then we find for any probability measure µ ∈M1(R):

µ ∗ δa = µTa , in particular: µ ∗ δ0 = µ,

since T0 = idR. We conclude that δ0 is the neutral element of convolution (there is no
other neutral element, since ∗ is commutative). To prove our claim, we calculate for an
arbitrary B ∈ B:

(µ ∗ δa)(B) =

∫
R
µ(B − y)δa(dy) = µ(B − a) = µTa(B),

where we used that T−1
a = T−a.
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5 The Stieltjes Transform Method

Now, let us discuss point ii) of Definition 5.7: First of all, we point out that f ∗ ν is a
Lebesgue-density function, for it is non-negative, and via Fubini we obtain immediately
that

∫
f ∗νdλλ = 1. But even more holds: f ∗ν is the Lebesgue-density of the convolution

(fλλ) ∗ ν, so that the equality (fλλ) ∗ ν = (f ∗ µ)λλ holds. In particular, this convolution
is Lebesgue-continuous. To verify our statement, we calculate for an arbitrary B ∈ B:

[(fλλ) ∗ ν](B) =

∫
R
(fλλ)(B − y)ν(dy)

=

∫
R

∫
B−y

f(x)λλ(dx)ν(dy)

=

∫
R

∫
B

f(x− y)λλ(dx)ν(dy)

=

∫
B

∫
R
f(x− y)ν(dy)λλ(dx)

=

∫
B

[f ∗ ν](x)λλ(dx),

where the third step follows from∫
B−y

f(x)λλ(dx) =

∫
T−1
y (B)

(f ◦ T−1
y ◦ Ty)(x)λλ(dx) =

∫
B

(f ◦ T−1
y )(x)λλTy(dx),

and the Lebesgue measure is translation invariant, thus λλTy = λλ.
Lastly, let us discuss point iii) of Definition 5.7: Again by Fubini, we find immediately

that f ∗ g is a Lebesgue-density function. Now since from the definition we have for all
x ∈ R that (f ∗ g)(x) = (f ∗ (gλλ))(x), we find through our discussion of point ii) that
f ∗ g is the Lebesgue-density of the convolution (fλλ) ∗ (gλλ), so (f ∗ g)λλ = (fλλ) ∗ (gλλ).
Let us summarize our findings in the following lemma:

Lemma 5.9. In the situation of Definition 5.7, we make the following observations (point
x here is with respect to point x in Definition 5.7, x ∈ {i), ii), iii)}):

i) The convolution is a commutative binary operation on the space of probability mea-
sures. The neutral element is given by δ0. Further, the following formula holds:

∀B ∈ B : (µ ∗ ν)(B) =

∫
R
µ(B − y)ν(dy).

ii) f ∗ ν is a Lebesgue-density for the convolution (fλλ) ∗ ν, that is, (fλλ) ∗ ν = (f ∗ ν)λλ.

iii) f ∗ g is a Lebesgue-density for the convolution (fλλ) ∗ (gλλ), that is, (fλλ) ∗ (gλλ) =
(f ∗ g)λλ.

Proof. This follows from the discussion preceding the lemma.

The following lemma will capture a very important property of the convolution:
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5.3 The Imaginary Part of the Stieltjes Transform

Lemma 5.10. The convolution of probability measures on (R,B) is continous with respect
to weak convergence. That is, if (µn)n, (νn)n, µ and ν are probability measures on (R,B)
with µn → µ and νn → ν weakly, then µn ∗ νn → µ ∗ ν weakly.

Proof. With [10, p. 23] it follows that µn ⊗ νn → µ ⊗ ν. Now if f ∈ Cb(R) is arbitrary,
then we also have that (x, y) 7→ f(x+ y) is a continuous and bounded function on R2, so∫

R
fd(µn ∗ νn) =

∫
R2

(f ◦+)d(µn ⊗ νn) −−−→
n→∞

∫
R2

(f ◦+)d(µ⊗ ν) =

∫
R
fd(µ ∗ ν).

Now, we will bring the Stieltjes transform into play:

Definition 5.11. For all η > 0, we define the Cauchy kernel Pη : R→ R as the function
with

∀x ∈ R : Pη(x) ..=
1

π

η

x2 + η2
,

which is the λλ-density function of the Cauchy distribution with scale parameter η.

We will collect a quick lemma before proceeding:

Lemma 5.12. As η ↘ 0, we find (Pηλλ)→ δ0 weakly.

Proof. The characteristic function of the measure Pηλλ is given by t 7→ e−η|t|, see [44,
p. 330] and [54, p. 208]. Fixing t ∈ R and letting η → 0 will yield the statement, since e0

is the characteristic function of δ0.

Now, as we see, for any probability measure µ on (R, B), we have

1

π
ImSµ(E + iη) =

∫
R

1

π

η

(E − x)2 + η2
µ(dx) = (Pη ∗ µ)(E)

Therefore, 1/π ImSµ(· + iη) is the convolution of the density Pη with µ and thus a
Lebesgue-density for the measure (Pηλλ) ∗ µ. In particular, as η ↘ 0 we have that

1

π
ImSµ(·+ iη)λλ = (Pηλλ) ∗ µ −→ δ0 ∗ µ = µ weakly.

This immediately proves Corollary 5.5 again (using the Portmanteau theorem). But due
to continuity of the convolution, we can say much more:

Assume that (σn)n is a sequence of ESDs of Hermitian random matrices, so that σn
converges almost surely to the semicircle distribution σ. We assume this convergence
takes place on a measurable set A with P(A) = 1. Then we find on A that the following
commutative diagram holds, where all arrows indicate weak convergence:
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5 The Stieltjes Transform Method

(Pη ∗ σn)λλ (Pη ∗ σ)λλ

δ0 ∗ σn = σn σ

η ↘ 0

n→∞

n→∞

η ↘ 0
n→∞
η↘0

In particular, the diagonal arrow says that we obtain weak convergence (Pηn ∗ σn)λλ→ σ
as n→∞ for any sequence ηn ↘ 0. This is an interesting result, but it does not tell us if
also densities align. More concretely, write σ = fσλλ, then from (Pη ∗σn)λλ→ fσλλ weakly
we cannot infer that also Pη ∗σn → fσ in some sense, for example in ‖ ·‖∞ over a specified
compact interval. This is desirable since it allows conclusion about local estimation of σn
by σ. If η = ηn drops too quickly to zero as n→∞, then (Pηn ∗σn) will have steep peaks
at each eigenvalue, thus will not approximate the density of the semicircle distribution
uniformly. This ”problem” is typical for kernel density estimators in general (see [54],
especially their Remark 11.2.10), which we will introduce next.

Definition 5.13. A kernel K is a Lebesgue-probability-density function R→ R, that is,
K is non-negative and ∫

R
K(y)λλ(dy) = 1.

Further, if K is a kernel and h > 0, we define Kh as the kernel with Kh(x) = 1
h
K(x

h
) for

all x ∈ R and call Kh the kernel K at bandwidth h. In particular, K = K1.

In above definition, it is clear that Kh is a kernel if K is a kernel and h > 0. An example
of a kernel is the Cauchy kernel P1 from Definition 5.11, which yields the standard Cauchy
distribution. We have for all x ∈ R and η > 0:

P1(x) =
1

π

1

x2 + 1
and Pη(x) =

1

πη

1(
x
η

)2

+ 1
=

1

π

η

x2 + η2
.

Now given a vector v = (v1, . . . , vN) of real-valued observations, we are interested in
constructing a Lebesgue-density that describes the experiment of drawing uniformly at
random from these observations, in other words that approximates the empirical proba-
bility measure

νN ..=
1

N

N∑
i=1

δvi . (5.1)

This can be done with help of a kernel K, which is oftentimes chosen to be unimodal and
symmetric around 0, just as the Cauchy kernel P1.
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5.3 The Imaginary Part of the Stieltjes Transform

Definition 5.14. The kernel density estimator with kernel K and bandwidth h > 0 for an
empirical measure ν as in (5.1) is the Lebesgue-density given by the convolution Kh ∗ ν,
thus

Kh ∗ ν : R −→ R

x 7−→ (Kh ∗ ν)(x) =
1

N

N∑
i=1

Kh(x− vi) =
1

Nh

N∑
i=1

K1

(
x− vi
h

)

Heuristically speaking, the concept works in the following way: The center of the
kernel is placed upon each observation, whose influence (i.e. probability mass of 1/N)
is smoothed over its neighborhood. The size of this neighborhood is governed by the
bandwidth h: A small h will restrain the probability mass of 1/N to be closer to its
observation, whereas a larger h will result in a wider spread of probability mass. Therefore,
a smaller h will result in a peaky density function (with steep peaks at the observation),
whereas a larger h will result in a smoother density function.

We now assume we are given an empirical spectral distribution σN from a real symmetric
N × N matrix XN . The kernel density estimator at location E ∈ R for σN with kernel
P1 at bandwidth η > 0 is then given by

(Pη∗σN)(E) =
1

Nη

N∑
i=1

1

π

1(
E−λXNi

η

)2

+ 1

=
1

πN

N∑
i=1

η

(E − λXNi )2 + η2
=

1

π
ImSσN (E+iη).

This gives the imaginary part of the Stieltjes transform the new role of a kernel density
estimator for the empirical spectral distribution. Let us conduct a simulation study
for N = 100. Let A100 be a symmetric 100 × 100 random matrix with independent
Rademacher distributed variables in the upper half triangle, including the main diagonal.
Let X100

..= 1√
100
A100. Denote by σ100 the empirical spectral distribution of X100. Further,

we define the bandwidths η1
..= 1/N1/2 = 1/10 and η2

..= 1/N1 = 1/100. With respect to
the commutative diagram after Lemma 5.12 and the discussion below it, let us analyze
how well Pη1 ∗ σ100 and Pη2 ∗ σ100 can be approximated by the density of the semicircle
distribution, fσ, in Figures 5.1 and 5.2, which are based on the same simulation outcome.

As we see, considering that we are in the case of a very low N = 100, we already
obtain a decent approximation by the semicircle density in Figure 5.1. Reducing the scale
from η1 to η2 we obtain the result in Figure 5.2. There we observe that for the smaller
bandwidth parameter η2, we do not obtain a useful approximation by the semicircle
density anymore. Indeed, as we will elaborate in the next chapter, the scale 1/N1 is too
fast to obtain uniform convergence of the estimated density to the target density, whereas
a scale of 1/N1−γ for any γ ∈ (0, 1) would be sufficient. Nevertheless, Figure 5.2 displays
nicely how the kernel density estimator works: A closer look – in particular to the edges of
the bulk – shows how the probability mass of each individual eigenvalue is spread around
its neighborhood.
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Figure 5.1: Red line: fσ. Blue line: 1
π

ImSσ100(·+ iη1) = Pη1 ∗ σ100. Grey bars: eigenvalue
locations.
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Figure 5.2: Red line: fσ. Blue line: 1
π

ImSσ100(·+ iη2) = Pη2 ∗σ100. Grey bars: Eigenvalue
locations.
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5.4 The Stieltjes Transform of the Semicircle
Distribution

This section is devoted to the Stieltjes transform of a very specific probability measure,
namely the semicircle distribution σ on (R,B) as in Definition 2.38. We will simply write
s ..= Sσ for brevity. Here and later, for any z ∈ C\R+, we will denote by

√
z the square

root with positive imaginary part.

Lemma 5.15. Denote by s the Stieltjes transform of the semicircle distribution, then we
obtain

∀ z ∈ C+ : s(z) =
−z +

√
z2 − 4

2
.

Proof. See [7, p. 32].

The Stieltjes transform s of the semicircle law has important properties, which are
summarized in the following theorem (compare with Lemma 6.2 in [27], which was not
proved):

Theorem 5.16. For the Stieltjes transform s of the semicircle distribution, we find:

1. For z ∈ C+, the equation in m

m2 + zm+ 1 = 0 (5.2)

has the solutions −z±
√
z2−4

2
in C. Further, s(z) is the positive and 1/s(z) is the

negative branch of these solutions.

2. For z ∈ C+, we find s(z) = − 1
z+s(z)

.

3. There exists a constant Cs > 0 such that for all z = E + iη ∈ [−10, 10] + i(0, 10] we
find

a) |s(z)| ≤ Cs.

b)
∣∣∣ 1
s(z)

∣∣∣ ≤ Cs.

c) 1
Cs

√
κ+ η ≤

∣∣∣s(z)− 1
s(z)

∣∣∣ ≤ Cs
√
κ+ η,

where κ = ||E| − 2|. Cs can be chosen to be 16.

Proof. Clearly, the solutions of (5.2) are given by

m1,2 = −z
2
±
√
z2

4
− 1 =

−z ±
√
z2 − 4

2
.

In particular, s(z) is the positive branch of the solutions to (5.2), that is, s(z)2+zs(z)+1 =
0. Especially, s(z) + z 6= 0, hence statement 2 holds, and from this we obtain (since
s(z) 6= 0 by Lemma 5.2)

1

s(z)
= −z − s(z) = −z − −z +

√
z2 − 4

2
=
−z −

√
z2 − 4

2
,
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which completes 1. To see 3. a) and b), note that∣∣∣∣−z ±√z2 − 4

2

∣∣∣∣ ≤ |z|+
√
|z|2 + 4

2
≤ 2|z|+ 2

2
≤ 16,

since
√
· is sub-additive on [0,∞) and |z| ≤ 10

√
2 ≤ 15. So a) and b) hold with Cs ..= 16.

For c) we must conduct some light calculations: First of all, with z = E + iη we notice
that ∣∣∣∣s(z)− 1

s(z)

∣∣∣∣ =

∣∣∣∣−z +
√
z2 − 4

2
− −z −

√
z2 − 4

2

∣∣∣∣
= |
√
z2 − 4|

=
√
|z + 2||z − 2|

=
√
|E + 2 + iη| · |E − 2 + iη|.

Second, since for all real numbers a and b we easily find

1√
2

(|a|+ |b|) ≤
√
a2 + b2 ≤ |a|+ |b|,

it follows (since then for example, 1√
2
(|E + 2|+ η) ≤ |E + 2 + iη| ≤ |E + 2|+ |η|)

1√
2

√
(|E + 2|+ η) · (|E − 2|+ η) ≤

√
|E + 2 + iη| · |E − 2 + iη|

≤
√

(|E + 2|+ η) · (|E − 2|+ η).

For both cases E ≥ 0 and E < 0 it follows immediately that√
(|E + 2|+ η) · (|E − 2|+ η) ≤

√
22
√
||E| − 2|+ η,

which shows that ∣∣∣∣s(z)− 1

s(z)

∣∣∣∣ ≤ √22
√
κ+ η ≤ 16

√
κ+ η.

On the other hand, for E ≥ 0 arbitrary, we find√
||E| − 2|+ η =

√
|E − 2|+ η

≤
√
|E + 2|+ η

2
·
√
|E − 2|+ η =

1√
2

√
|E + 2|+ η

√
|E − 2|+ η

and similarly for E < 0 that√
||E| − 2|+ η =

√
|E + 2|+ η

≤
√
|E − 2|+ η

2
·
√
|E + 2|+ η =

1√
2

√
|E + 2|+ η

√
|E − 2|+ η,
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which implies
√
κ+ η ≤

∣∣∣∣s(z)− 1

s(z)

∣∣∣∣ .
In total, we obtain

1

Cs

√
κ+ η ≤

∣∣∣∣s(z)− 1

s(z)

∣∣∣∣ ≤ Cs
√
κ+ η.

In the following we would like to unveil that as η ↘ 0, the function E 7→ 1
π

Im s(E+iη),
that is Pη ∗ fσ, converges uniformly to fσ over any compact interval and with a speed of
O(
√
η). We know that

1

π
Im s(z) = −Im(z)

2π
+

Im(
√
z2 − 4)

2π
.

How do we gain access to Im(
√
z2 − 4)? We need an auxiliary lemma:

Lemma 5.17. Let a, b, c, d ∈ R, where b > 0. If (a+ ib)2 = c+ id, then

b =

√
−c+

√
c2 + d2

2
.

Proof. We find:

c+ id = (a+ ib)2 = a2 + 2abi− b2

⇒ c = a2 − b2 ∧ d = 2ab

⇒ b2 + c = a2 =
d2

4b2

⇒ (b2)2 + cb2 − d2

4
= 0

⇒ (b2)1,2 = − c
2
±
√
c2

4
+
d2

4

⇒ b2 = − c
2

+

√
c2

4
+
d2

4

⇒ b =

√
−c+

√
c2 + d2

2
,

where we used in the fifth step that b2 > 0 and in the sixth step that b > 0.

We can now prove the following lemma, which is also one of the contributions of this
thesis.

Lemma 5.18. Let C ≥ 2 be arbitrary, then we obtain for any η ∈ (0, C]:

sup
E∈[−C,C]

∣∣∣∣ 1π Im(s(E + iη))− fσ(E)

∣∣∣∣ ≤√Cη.
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Proof. Throughout the proof we use that for x, y ≥ 0 we have
√
x+ y ≤

√
x+
√
y, without

further mention. With C ≥ 2 and z = E+ iη, where E ∈ [−C,C] and η > 0, we find that

z2 − 4 = E2 − η2 − 4︸ ︷︷ ︸
=:c

+i 2Eη︸︷︷︸
=:d

.

Applying Lemma 5.17 (with c and d as just defined) yields:

Im(
√
z2 − 4) =

√
4 + η2 − E2 +

√
(E2 − η2 − 4)2 + 4E2η2

2
,

so

1

π
Im(s(z)) =

1

2π

−η +

√
4 + η2 − E2 +

√
(E2 − η2 − 4)2 + 4E2η2

2

 .

Assuming at first that E ∈ [−2, 2], we find∣∣∣∣ 1π Im(s(z))− fσ(E)

∣∣∣∣
=

∣∣∣∣∣∣ 1

2π

−η +

√
4 + η2 − E2 +

√
(E2 − η2 − 4)2 + 4E2η2

2

− 1

2π

√
4− E2

∣∣∣∣∣∣
≤ η

2π
+

1

2π

√4 + η2 − E2 +
√

(E2 − η2 − 4)2 + 4E2η2

2
−
√

4− E2

 .

Since
√
· is uniformly continuous, we analyze the difference of the arguments:∣∣∣∣∣4 + η2 − E2 +

√
(E2 − η2 − 4)2 + 4E2η2 − 8 + 2E2

2

∣∣∣∣∣
=
E2 − 4 + η2 +

√
(E2 − η2 − 4)2 + 4E2η2

2

≤ E2 − 4 + η2 + 4− E2 + η2 + 2|E|η
2

≤ 2η2 + 4η

2
= η2 + 2η

Since the modulus of continuity of
√
· is given by

√
· itself, we obtain∣∣∣∣ 1π Im(s(z))− fσ(E)

∣∣∣∣ ≤ η

2π
+

√
η2 + 2η

2π
≤
η +
√
η

π
≤
√
η
√
C +
√
η

π
≤ 2
√
Cη

π
≤
√
Cη.
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Now assuming that E ∈ [−C,C]\[−2, 2] we find∣∣∣∣ 1π Im(s(z))− fσ(E)

∣∣∣∣
=

∣∣∣∣∣∣ 1

2π

−η +

√
4 + η2 − E2 +

√
(E2 − η2 − 4)2 + 4E2η2

2

∣∣∣∣∣∣
Then if η2 ≤ E2 − 4, we have

4 + η2 − E2 +
√

(E2 − η2 − 4)2 + 4E2η2

≤ 4 + η2 − E2 + E2 − η2 − 4 + 2|E|η
= 2|E|η ≤ 2Cη,

whereas if η2 > E2 − 4, we find

4 + η2 − E2 +
√

(E2 − η2 − 4)2 + 4E2η2

≤ 4 + η2 − E2 + 4− E2 + η2 + 2|E|η
= 2(η2 − (E2 − 4)) + 2|E|η
≤ 2η2 + 2Cη,

where we used that |E| > 2 in the last step. We conclude that if E ∈ [−C,C]\[−2, 2], we
obtain∣∣∣∣ 1π Im(s(z))− fσ(E)

∣∣∣∣ ≤ η

2π
+

1

2π

√
η2 + Cη ≤ 2η +

√
Cη

2π
≤ 2
√
Cη +

√
Cη

2π
≤
√
Cη.

So in total, we obtain

sup
E∈[−C,C]

∣∣∣∣ 1π Im(s(E + iη))− fσ(E)

∣∣∣∣ ≤√Cη.

5.5 The Stieltjes Transform of ESDs of Hermitian
Matrices

As we motivated the Stieltjes transform in the beginning of this chapter, it is possible to
relate the Stieltjes transform of an ESD of a random matrix to the entries of the random
matrix. We will now see how this is done. Notationally, as the Stieltjes transform of the
semicircle distribution received the special letter s ..= Sσ, the Stieltjes transform of an
ESD σn of an Hermitian n×n matrix Xn is denoted by sn ..= Sσn . The following theorem
summarizes the findings of this section (see also [7, pp. 470-472]):

133



5 The Stieltjes Transform Method

Theorem 5.19. Let Xn be an Hermitian n× n matrix with ESD σn.

i) For all z ∈ C\R we find:

sn(z) = Sσn(z) =
1

n
tr(Xn − z)−1 =

1

n

n∑
k=1

1

Xn(k, k)− z − x∗k(X
(k)
n − z)−1xk

.

ii) For z = E + iη, where E ∈ R and η > 0, we obtain for all k ∈ {1, . . . , n}:∣∣tr (Xn − z)−1 − tr (X(k)
n − z)−1

∣∣ ≤ 1

η
.

Here, X
(k)
n denotes the k-th principal minor of Xn (thus an (n− 1)× (n− 1) matrix) and

xk the k-th column of Xn without the k-th entry (thus an (n− 1)-vector).

Proof. i) The first equality is just a notational convention and the last equality is the
statement of Corollary 5.23 below. For the second equality, let λ1, . . . , λn be the eigen-
values of Xn, then by the spectral theorem for normal operators, 1

λ1−z , . . . ,
1

λn−z are the

eigenvalues of (Xn − z)−1. Since for normal matrices, the trace yields the sum of the
eigenvalues, we conclude

Sσn(z) =

∫
R

1

x− z
σn(dx) =

1

n

n∑
i=1

1

λi − z
=

1

n
tr(Xn − z)−1.

ii) This is the statement of Corollary 5.25 below.

Note that Theorem 5.19 i) also allows us to work with the Stieltjes transform SEσn of
the expected ESD Eσn, since as in the proof of Theorem 5.6 we have SEσn = ESσn = Esn.

The remainder of this section will be devoted to the proof of Theorem 5.19, for which
we follow the roadmap as in [7]. We begin by noting:

Lemma 5.20. Let A be an n × n matrix with det(A) 6= 0, then it holds for all k ∈
{1, . . . , n}:

A−1(k, k) =
detA(k)

detA
,

where as before, A(k) denotes the k-th principle minor of A.

Proof. For all i, j ∈ [n] we define A(i,j) to be the (n− 1)× (n− 1) matrix obtained from
A through elimination of the i-th row and j-th column. Further, for all such (i, j) we let
C(i, j) ..= (−1)i+j detA(i,j) be the (i, j)-th cofactor of A. We obtain an n×n matrix C of
cofactors of A, and invoke the well-known identity ACT = det(A) · In (see [29, p. 204]).
Multiplying by A−1 on the left and dividing by det(A) yields A−1 = det(A)−1CT , from
which the statement follows.

In the following Lemma, the Schur complement is defined and studied (see also [69]).
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Lemma 5.21. Let

A =

(
A11 A12

A21 A22

)
be a quadratic block matrix with A11 invertible. Then the Schur complement of A11 in A
is defined as

B ..= A22 − A21A
−1
11 A12

and has the following properties, where I resp. 0 are identity matrices resp. 0-matrices of
appropriate dimension:

i) We obtain the Schur complement formula(
I 0

−A21A
−1
11 I

)(
A11 A12

A21 A22

)(
I −A−1

11 A12

0 I

)
=

(
A11 0
0 B

)
.

ii) We find the Schur complement determinant formula

det(A) = det(A11) det(B) = det(A11) det(A22 − A21A
−1
11 A12)

iii) If A is invertible, so is B = A22 − A21A
−1
11 A12.

iv) In case A is invertible, we find the Schur complement inversion formula

A−1 =

(
I −A−1

11 A12

0 I

)(
A−1

11 0
0 B−1

)(
I 0

−A21A
−1
11 I

)
=

(
A−1

11 + A−1
11 A12B

−1A21A
−1
11 −A−1

11 A12B
−1

−B−1A21A
−1
11 B−1

)
.

Proof. Statement i) requires mere verification through multiplication of the matrices, ii)
follows directly from i) and iii) follows directly from ii). The first equality of statement
iv) follows directly by inverting the Schur complement formula and multiplying from the
left and right with the appropriate matrices. The second equality is again verified through
simple multiplication of the matrices.

Lemma 5.22. Let A be an invertible n × n matrix. If A(k) is invertible for some k ∈
{1, . . . , n}, then

A−1(k, k) =
1

A(k, k)− rkA(k)−1ck
,

where rk is the k-th row of A without the k-th entry and ck is the k-th column of A without
the k-th entry.

Proof. We first prove the statement for k = n. We obtain

A =

(
A(n) cn
rn A(n, n)

)
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By the Schur complement determinant formula, we obtain det(A) = det(A(n)) det(A(n, n)−
rnA

(n)−1cn). Therefore, with Lemma 5.20, we obtain

1

A(n, n)− rnA(n)−1cn
=

det(A(n))

det(A)
= A−1(n, n).

Next, we assume k < n. Then define a permutation matrix column-wise as

V ..= (e1|e2| . . . |êk| . . . |en|ek)

where the ei are the standard n-dimensional basis vectors, and the hat over ek indicates
that this vector is left out. In other words, V is obtained through the identity matrix
by erasing its k-th column ek and appending it at the end of the matrix. We obtain
immediately that V T = V = V −1. Then AV is the matrix A with erased and then
appended k-th column and V A is the matrix A with erased and then appended k-th row.
Therefore, (V AV )(n) = A(k) and by the case above

A−1(k, k) = (V A−1V )(n, n) = (V AV )−1(n, n) =
1

(V AV )(n, n)− r′n(V AV )(n)−1c′n
,

where r′n denotes the n-th row of V AV and c′n denotes the n-th column of V AV , both
without their n-th entry. But r′n = rk, c

′
n = ck and (V AV )(n, n) = A(k, k).

Corollary 5.23. Let Xn be an Hermitian n× n matrix, then it holds for z ∈ C\R:

tr(Xn − z)−1 =
n∑
k=1

1

Xn(k, k)− z − x∗k(X
(k)
n − z)−1xk

.

Proof. Xn and all X
(k)
n are Hermitian, thus Xn−z and X

(k)
n −z = (Xn−z)(k) are invertible

for all k. We also know that the k-th column (resp. row) of Xn without the k-th entry
is also the k-th column (resp. row) of (Xn − z) without the k-th entry. Therefore, the
statement follows directly with Lemma 5.22.

Lemma 5.24. Let A be an invertible n× n matrix and k ∈ {1, . . . , n}, such that A(k) is
invertible. Then we obtain:

trA−1 − trA(k)−1 =
1 + rkA

(k)−2ck
A(k, k)− rkA(k)−1ck

,

where rk denotes the k-th row of A without the k-th entry and ck denotes the k-th column
of A without the k-th entry.

Proof. We first prove the statement vor k = n. The Schur complement inversion formula
for

A =

(
A(n) cn
rn A(n, n)

)
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yields with B ..= A(n, n)− rnA(n)−1cn ∈ C, that

A−1 =

(
A(n)−1 + A(n)−1cnB

−1rnA
(n)−1 −A(n)−1cnB

−1

−B−1rnA
(n)−1 B−1

)
.

Therefore, since the trace is linear and only depends on the diagonal block matrices, we
find

trA−1 − trA(n)−1 = tr

(
A(n)−1cnB

−1rnA
(n)−1 0

0 B−1

)
=

1

B
tr

(
A(n)−1cnrnA

(n)−1 0
0 1

)
=

1

B

(
1 +

n−1∑
k,l,m=1

A(n)−1(k, l)cn(l)rn(m)A(n)−1(m, k)

)

=
1

B

(
1 +

n−1∑
k,l,m=1

rn(m)A(n)−1(m, k)A(n)−1(k, l)cn(l)

)

=
1

B

(
1 + rnA

(n)−2cn
)
,

which concludes the statement for k = n. Now if k < n, let V be the permutation matrix
as in the proof of Lemma 5.22, then since A(k) = (V AV )(n), we obtain with first part that

trA−1 − trA(k)−1 = trV A−1V − tr(V AV )(n)−1

= tr(V AV )−1 − tr(V AV )(n)−1

=
1 + r′n(V AV )(n)−2c′n

(V AV )(n, n)− r′n(V AV )(n)−2c′n

where r′n (resp. c′n) is the n-th row (resp. column) of V AV without the n-th entry. This
concludes the statement, since r′n = rk, c

′
n = ck, and (V AV )(n, n) = A(k, k).

Corollary 5.25. Let Xn be an Hermitian n × n matrix, z = E + iη where E ∈ R and
η > 0, then we find for any k ∈ {1, . . . , n}:∣∣tr(Xn − z)−1 − tr(X(k)

n − z)−1
∣∣ ≤ 1

η
,

where for all k ∈ {1, . . . , n}, X(k)
n denotes the k-th principal minor of Xn and xk denotes

the k-th column of Xn without the k-th entry.

Proof. By Lemma 5.24, we know that∣∣tr(Xn − z)−1 − tr(X(k)
n − z)−1

∣∣ =

∣∣∣∣∣ 1 + x∗k(X
(k)
n − z)−2xk

Xn(k, k)− z − x∗k(X
(k)
n − z)−1xk

∣∣∣∣∣
≤ |1 + x∗k(X

(k)
n − z)−2xk|

|−η − Im(x∗k(X
(k)
n − z)−1xk)|
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where xk denotes the k-th column of Xn without the k-th entry. We also used that
Xn(k, k) ∈ R, since Xn is Hermitian. We proceed by analyzing the numerator and de-
nominator separately. Before we begin, consider the following: If T is a bounded normal
operator on some Hilbert space and x is a vector, then ‖Tx‖ = ‖T ∗x‖, so

|
〈
T 2x | x

〉
| = |〈Tx | T ∗x〉| ≤ ‖Tx‖‖T ∗x‖ = ‖T ∗x‖2 = 〈T ∗x | T ∗x〉 = 〈TT ∗x | x〉 .

Since (X
(k)
n − z)−1 is normal, we obtain

|1 + x∗k(X
(k)
n − z)−2xk| ≤ 1 + x∗k(X

(k)
n − z)−1(X(k)

n − z̄)−1xk.

Now let us turn to the denominator. To do so, we write P ..= (X
(k)
n − z)−1(X

(k)
n − z̄)−1,

then P is a positive operator, and so is
√
P . Both P and

√
P commute with X

(k)
n as

images of the continuous functional calculus for normal operators. Now we calculate:〈
(X(k)

n − z)−1xk | xk
〉

=
〈
(X(k)

n − z)−1(X(k)
n − z̄)−1(X(k)

n − z̄)xk | xk
〉

=
〈
P (X(k)

n − z̄)xk | xk
〉

=
〈√

P (X(k)
n − z̄)xk |

√
Pxk

〉
=
〈
X(k)
n

√
Pxk |

√
Pxk

〉
︸ ︷︷ ︸

∈R

−z̄ 〈Pxk | xk〉︸ ︷︷ ︸
≥0

,

Therefore, Im(x∗k(X
(k)
n − z)−1xk) = ηx∗k(X

(k)
n − z)−1(X

(k)
n − z̄)−1xk. It follows with what

we have shown above that∣∣tr(Xn − z)−1 − tr(X(k)
n − z)−1

∣∣ ≤ 1 + x∗k(X
(k)
n − z)−1(X

(k)
n − z̄)−1xk

|−η − ηx∗k(X
(k)
n − z)−1(X

(k)
n − z̄)−1xk|

=
1 + x∗k(X

(k)
n − z)−1(X

(k)
n − z̄)−1xk

η(1 + x∗k(X
(k)
n − z)−1(X

(k)
n − z̄)−1xk)

,

from which the statement follows.

5.6 Auxillary Statements

Integration of Complex-Valued Functions

We assume the reader to be acquainted with measure-theoretical integration of real-valued
functions on measure spaces. Since we will also need to integrate complex-valued func-
tions, we give a very short introduction in the form of one definition and two lemmata.

Definition 5.26. Let (Ω,A, µ) be a measure space, f : (Ω,A) → C measurable, then f
is called µ-integrable, if the real-valued functions Re f and Im f both are µ- integrable.
In this case, we define ∫

Ω

fdµ ..=

∫
Ω

Re fdµ+ i

∫
Ω

Im fdµ.

We will denote the space of C-valued integrable functions as L1(µ,C).
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It is worth noting the following lemma about the properties of the integral:

Lemma 5.27. Let (Ω,A, µ) be a measure space, then the following statements hold:

1. The map L1(µ,C)→ C, f 7→
∫
fdµ is C-linear.

2. ∀ f ∈ L1(µ,C) :
∫
fdµ =

∫
fdµ.

3. ∀ f ∈ L1(µ,C) :
∣∣∫ fdµ

∣∣ ≤ ∫ |f |dµ.

Proof. 1) follows by elementary calculations and 2) holds by the definition of the integral.
To see 3), let z ∈ C with |z| = 1, such that z

∫
fdµ =

∣∣∫ fdµ
∣∣, then it follows∣∣∣∣∫ fdµ

∣∣∣∣ = z

∫
fdµ =

∫
Re(zf)dµ+ i

∫
Im(zf)dµ︸ ︷︷ ︸

=0

≤
∫
|zf |dµ =

∫
|f |dµ.

Lemma 5.28 (Lebesgue’s Dominated Convergence Theorem). Let (Ω,A, µ) be a measure
space, (fn)n, f : Ω→ C be measurable with fn → f µ-almost everywhere. If there exists a
µ-integrable g : Ω→ R with |fn| ≤ g µ-almost everywhere for all n, then f is µ-integrable
and it holds

lim
n→∞

∫
|f − fn|dµ = 0,

so that in particular

lim
n→∞

∫
fndµ =

∫
fdµ.

Proof. Certainly, |Re fn|, |Im fn| ≤ |fn| ≤ |g| and Re fn → Re f , Im fn → Im f µ-almost
everywhere. Also, |f − fn| ≤ |Re f − Re fn|+|Im f − Im fn|. Now for real-valued measur-
able functions, the theorem is assumed to be known. See [44, p. 142] for a reference.

139





6 The Local Law for Curie-Weiss Type
Ensembles

The local semicircle law is a rather recent result that was derived to gain a more detailed
understanding of the convergence of the ESDs of random matrices to the semicircle distri-
bution (and also to other deterministic and not necessarily known limiting distributions).
Further, as mentioned in the introduction of this thesis, it was also used to establish
universality results for Wigner matrices. In the literature, the local law has many shapes
and forms, so it is hard to speak of ”the local law.” A common formulation of this type
of theorem is a uniform alignment of the Stieltjes transforms of the ESDs and the semi-
circle distribution, see [9], for example. Reducing this statement to the imaginary parts
and keeping in mind our exposition in Section 5.3, this will directly imply alignment of
Lebesgue densities of the probability measures approximating the ESDs and the semicircle
distribution. Another formulation of the local law is as follows, see [60]: For any sequence
of intervals (IN)N , whose diameter is not decaying to zero too quickly, σN(IN) can be well
approximated by σ(IN) for large N . In fact, the second formulation of the local law will
follow from the first, as we will show further below. But there are even more versions of
the local law that also allow conclusions about the asymptotic behaviour of eigenvectors
of random matrices. These types will not be treated in this thesis, but is rather ongoing
work as this thesis is handed in.

Although there were some previous results into the direction of a local law in [40] and
[26], it is safe to say that on the level of strength available today, it first appeared in
[25] by Erdős, Schlein and Yau. Ever since, the results were strengthened (see [35], for
example) and proof layouts were refined to make the theory more accessible to a broader
audience. Indeed, although there are areas of lesser gravity in probability theory - both in
power and complexity of concepts and proofs - the local laws are displayed in an accessible
manner in the text [9] by Benaych-Georges and Knowles and the book [27] by Erdős and
Yau. Both of these texts are in turn based on their joint publication [28].

As the semicircle law itself, the local semicircle law was initially considered for matrices
with independent and identically distributed entries in [25]. Further generalizations can
be found in [28], where entries are still assumed to be independent, but not identically
distributed anymore.

Of course, the next question is if and how local laws can also be proved for random
matrices with correlated entries. Even up to today, these ensembles are not well under-
stood in terms of the local law. In [1], the local law was proved for random matrices with
correlated Gaussian entries, where the covariance matrix is assumed to posses a certain
translation invariant structure. In [2], ensembles with correlated entries were considered,
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where the correlation decays arbitrarily polynomially fast in the distance of the entries.
This result has been improved by [24] (who reference an older preprint version of [2]),
where fast polynomial decay is assumed only for entries outside of neighborhoods of a
size growing slower than

√
N , and a slower correlation decay between entries within these

neighborhoods. Meanwhile, another correlation structure was analyzed in [17], where cor-
relation was only allowed for entries close to each other and independence was assumed
otherwise. What all four mentioned publications have in common is that their results are
formulated in such a general manner that the limiting distribution of the local law need
not be the semicircle distribution. They all require additional analysis to derive a local
semicircle law.

In this chapter, we will derive a semicircle law of the weak type for a random matrix
ensemble with very slow correlation decay for entries that are arbitrarily close or far
apart. In fact, our correlation decay between any two different matrix entries (regardless
of their distance) in the upper right half of the matrix will be of order N−1. In particular,
our model is not covered by the previous work on correlated entries that was mentioned
above (for example, in [24], Assumption (D) is violated), and new proof techniques must
be developed.

The ensemble we study will be called ”of Curie-Weiss type”, and not surprisingly, Curie-
Weiss(β)-distributed entries will be admissible (as long as β ≤ 1). For our proof we need
to establish new sets of so called large-deviation inequalities. We state and prove them
in such a general manner that they can also be used to derive stronger local laws.

The second goal of this chapter is to turn the proofs of the local law that are available
in the literature so far into a proof that is both complete and structured in a way that is
easy to follow by a broader audience. To this end, we have molded the expositions in [9]
and [27] into one comprehensible and complete proof.

Notationally, we would like to point out that throughout this chapter, the dimension
parameter n will be capitalized (written as N), which has some notational advantages.

6.1 De-Finetti Type Random Variables

In this section we introduce random variables of de-Finetti type. It should be noted that
the expectation operator E will always denote the expectation with respect to the generic
probability space (Ω,A,P). In addition, probability spaces with finite sample space will
always be equipped with the power set as σ-algebra. Further, if I is an index set and for
all i ∈ I, Zi is a mathematical object, then we write ZI ≡ (Zi)i∈I for better readability.
Now, we proceed as in [41].

Definition 6.1. Let I be a finite index set and YI be a family of {±1}-valued random
variables on some probability space (Ω,A,P). Further, let µ be a probability measure
on the interval [−1, 1] equipped with its Borel σ-algebra. Then the random vector YI is
called of de-Finetti type with mixture µ, if for all configurations yI ∈ {±1}I we have

P(YI = yI) =

∫
[−1,1]

P⊗It (yI)dµ(t), (6.1)
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where P⊗It
..= ⊗i∈IPt for all t ∈ [−1, 1] and Pt is the probability measure on {±1} with

Pt(1) =
1 + t

2
and Pt(−1) =

1− t
2

.

In particular, P⊗It is the I-fold product measure of Pt on {±1}I .

Remark 6.2. We would like to make several observations concerning Definition 6.1:

1. As becomes clear from the definition, for {±1} -valued random variables to be of de-
Finetti type is solely a property of their distribution and not a property concerning
the specific construction of the variables or the probability space on which they are
defined.

2. If YI is of de-Finetti type with mixture µ, so is YJ for any subset J ⊆ I.

3. It is interesting to point out that if the variables YI are of de-Finetti type, then
their distribution is a mixture of product distributions with identically distributed
coordinates. Further, the expectation of the measure Pt is t. Thus, coordinates
of the identity map on the probability space ({±1}I , P⊗It ) are i.i.d. Pt-distributed
with expectation t.

4. From Definition 6.1 it is clear that a family YI of de-Finetti-type is exchangeable, that
is, if π : I → I is a bijection, then (Yi)i∈I and (Yπ(i))i∈I have the same distribution.

Lemma 6.3. Let YI be of de-Finetti type with mixture µ as in Definition 6.1. Then we
obtain for any function F : {±1}I → C that

EF (YI) =

∫
[−1,1]

∫
{±1}I

F (yI)dP⊗It (yI)dµ(t).

Further, if J,K ⊆ I are nonempty with J ∩K = ∅ and J ∪K = I, then

EF (YJ∪K) =

∫
[−1,1]

∫
{±1}K

∫
{±1}J

F (yJ , yK)dP⊗Jt (yJ)dP⊗Kt (yK)dµ(t).

Proof. This is straightforward considering

EF (YI) =
∑

yI∈{±1}I
F (yI)P(YI = yI).

and applying Fubini.

It is clear that the second statement of Lemma 6.3 can be generalized to an arbitrary
number of pairwise disjoint nonempty subsets J1, J2, . . . , Jl whose union is I. However,
the case l = 2 already captures the essence of the technique.

We now study a prominent example for random variables of de-Finetti type, see Defi-
nition 4.16.
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6 The Local Law for Curie-Weiss Type Ensembles

Theorem 6.4. If Y1, . . . , YN are Curie-Weiss(β,N)-distributed, then they are of de-
Finetti-type with mixture µβN , which is Lebesgue-continuous with density on (−1, 1) given
by

t 7→ fN(t) ..=
1∫

(−1,1)
e
−N2 Fβ(s)

1−s2 λλ(ds)

e−
N
2
Fβ(t)

1− t2
1(−1,1)(t),

where for all t ∈ (−1, 1) we define

Fβ(t) ..=
1

β

(
1

2
ln

(
1 + t

1− t

))2

+ ln(1− t2).

Further, if β ≤ 1, the mixtures (µβN)N∈N satisfy the following moment decay:

∀ p ∈ 2N :

∫
[−1,+1]

tpµβN(dt) ≤ Kβ,p

N
p
4

,

where Kβ,p ∈ R+ is a constant that depends on β and p only.

Proof. This was shown rigorously in [41], see Theorem 5.6, Remark 5.7, Proposition 5.9
and Theorem 5.17 in their text.

6.2 Stochastic Domination

For the statement of the weak local law and its proof we need the concept of stochastic
domination. The following exposition is based on [27]. The first time that this concept
was used was in [23].

For the remainder of this thesis, we will say that a statement which depends on N ∈ N
holds v-finally, where v is a parameter or a parameter-vector, if the statement holds for
all N ≥ N∗, where N∗ ∈ N depends on v. We will also write N∗ = N(v) and say the
statement holds for all N ≥ N(v) in this case.

Definition 6.5. Let X = X(N) be a sequence of complex-valued and Y = Y (N) be a
sequence of non-negative random variables, then we say that X is stochastically dominated
by Y , if for all ε,D > 0 there is a constant Cε,D ≥ 0 such that

∀ N ∈ N : P
(
|X(N)| > N εY (N)

)
≤ Cε,D

ND
.

In this case, we write

X ≺ Y or X(N) ≺ Y (N).

If both X and Y depend on a possibly N -dependent index set U = U (N), such that

X =
(
X(N)(u), N ∈ N, u ∈ U (N)

)
, Y =

(
Y (N)(u), N ∈ N, u ∈ U (N)

)
,
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6.2 Stochastic Domination

then we say that X is stochastically dominated by Y uniformly in u ∈ U , if for all ε,D > 0
we can find a Cε,D ≥ 0 such that

∀N ∈ N : sup
u∈U(N)

P
(
|X(N)(u)| > N εY (N)(u)

)
≤ Cε,D

ND
. (6.2)

In this case, we write

X ≺ Y or X(u) ≺ Y (u), u ∈ U or X(N)(u) ≺ Y (N)(u), u ∈ U (N),

where the first version is used if U is clear from the context. If in above situation, all Y (u)
are strictly positive, then we say that X is stochastically dominated by Y , simultaneously
in u ∈ U , if for all ε,D > 0 we can find a Cε,D ≥ 0, such that

∀N ∈ N : P

(
sup

u∈U(N)

|X(N)(u)|
Y (N)(u)

> N ε

)
≤ Cε,D

ND
,

and then we write

sup
u∈U

|X(u)|
Y (u)

≺ 1 or sup
u∈U(N)

|X(N)(u)|
Y (N)(u)

≺ 1.

Remark 6.6. We make the following important observations with regards to Defini-
tion 6.5:

1. Simultaneous stochastic domination implies uniform stochastic domination.

2. The intuition of stochastic domination is that if X ≺ Y then X does not grow faster
in N than any N ε-multiple of Y .

3. If (6.2) holds for allN ≥ N(ε,D), then also for allN ∈ N after rescaling Cε,D. There-
fore, it suffices to show (6.2) (ε,D)-finally. To validate our claim, suppose we have
shown (6.2) to hold for all N ≥ N(ε,D), then replace Cε,D by max(Cε,D, N(ε,D)D)
which is also a constant depending only on ε and D, making (6.2) valid for all
N ∈ N, since the left hand side is bounded by 1.

4. In order to show X ≺ Y , it suffices to show that (6.2) holds for all ε small enough.
To be more precise, if there is an ε0 > 0, such that for all ε ∈ (0, ε0] and D > 0
we find a constant Cε,D ≥ 0 such that (6.2) holds, then clearly for all ε > ε0 and
N ∈ N:

sup
u∈U(N)

P
(
|X(N)(u)| > N εY (N)(u)

)
≤ sup

u∈U(N)

P
(
|X(N)(u)| > N ε0Y (N)(u)

)
≤ Cε0,D

ND
.

Therefore, for all ε ≥ ε0 and D > 0 the constant Cε0,D can be utilized.

5. Another characterization of ≺ is often used in the literature (see [9] or [27]), that is,
X ≺ Y holds if and only if for any ε,D > 0 there exists an N(ε,D) ∈ N such that

∀N ≥ N(ε,D) : P
(
|X(N)| > N εY (N)

)
≤ 1

ND
.
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6 The Local Law for Curie-Weiss Type Ensembles

Let us validate the equivalence: If the condition holds then X ≺ Y is satisfied with
constants Cε,D ..= N(ε,D)D, and now assume that we have X ≺ Y , then let ε,D > 0
be arbitrary, then there exists a constant Cε,D+1 ≥ 0 such that

∀ N ∈ N : P
(
|X(N)| > N εY (N))

)
≤ Cε,D+1

ND+1
=

1

ND

Cε,D+1

N
.

so that the alternative condition holds for all N ≥ N(ε,D) ..= dCε,D+1e, where d·e
is the ceiling function.

Stochastic domination admits several important and intuitive rules of calculation, which
we collect in the following lemma. It supplements the findings in the literature, see [9]
and [27]:

Lemma 6.7. Let X,X1, X2 be C-valued and (Wi)i∈I , Y, Y1, Y2, Z be R+-valued random
variables, all depending on N ∈ N and u ∈ U (N) as in Definition 6.5. Further, the index
set I shall depend on N with |I| ≤ C · Nk for some fixed C ≥ 0 and k ∈ N. Then the
following holds:

i) If X ≺ Y and Y ≺ Z, then X ≺ Z.

ii) If X1 ≺ Y1 and X2 ≺ Y2, then X1 +X2 ≺ Y1 + Y2.

iii) If X1 ≺ Y1 and X2 ≺ Y2, then X1 ·X2 ≺ Y1 · Y2.

iv) If Wi ≺ Z ∀ i ∈ I, and if the constants Cε,D for ≺ can be chosen independently of
i ∈ I, then maxi∈IWi ≺ Z.

v) If Y ≤ Z, then Y ≺ Z. In particular, Y ≺ Y .

vi) If Y ≺ Z and p > 0, then Y p ≺ Zp.

vii) If X ≺ Y and c > 0, then X ≺ cY .

viii) If for all N ∈ N, U
(N)
1 and U

(N)
2 are subsets of U (N), then if X(u) ≺ Y (u), u ∈ U (N)

1

and X(u) ≺ Y (u), u ∈ U (N)
2 , then also X(u) ≺ Y (u), u ∈ (U

(N)
1 ∪ U (N)

2 ).

Proof. Notationally, we drop the N from all N -dependent quantities (except for N itself,
which would be disastrous). Let ε,D > 0 be arbitrary.

i) We know the following:

X ≺ Y ⇒ ∀N ∈ N : sup
u∈U

P(|X(u)| > N ε/2Y (u)) ≤ C
(1)
ε/2,DN

−D

Y ≺ Z ⇒ ∀N ∈ N : sup
u∈U

P(Y (u) > N ε/2Z(u)) ≤ C
(2)
ε/2,DN

−D.
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6.2 Stochastic Domination

We conclude that for all N ∈ N and with C∗ε,D
..= C

(1)
ε/2,D +C

(2)
ε/2,D, we obtain for any u ∈ U

(which we drop from the notation here and later in this proof):

P(|X| > N εZ) ≤ P(|X| > N ε/2Y or Y > N ε/2Z)

≤ P(|X| > N ε/2Y ) + P(Y > N ε/2Z)

≤ C
(1)
ε/2,DN

−D + C
(2)
ε/2,DN

−D = C∗ε,DN
−D

ii) We know the following:

X1 ≺ Y1 ⇒ ∀N ∈ N : sup
u∈U

P(|X1(u)| > N εY1(u)) ≤ C
(1)
ε,DN

−D

X2 ≺ Y2 ⇒ ∀N ∈ N : sup
u∈U

P(|X2(u)| > N εY2(u)) ≤ C
(2)
ε,DN

−D

We conclude that for all N ∈ N and with C∗ε,D
..= C

(1)
ε,D + C

(2)
ε,D, we obtain for any u ∈ U :

P(|X1 +X2| > N ε(Y1 + Y2)) ≤ P(|X1|+ |X2| > N εY1 +N εY2)

≤ P(|X1| > N εY1 or |X2| > N εY2)

≤ P(|X1| > N εY1) + P(|X2| > N εY2)

≤ C
(1)
ε,DN

−D + C
(2)
ε,DN

−D = C∗ε,DN
−D.

iii) We know the following:

X1 ≺ Y1 ⇒ ∀N ∈ N : sup
u∈U

P(|X1(u)| > N ε/2Y1(u)) ≤ C
(1)
ε/2,DN

−D

X2 ≺ Y2 ⇒ ∀N ∈ N : sup
u∈U

P(|X2(u)| > N ε/2Y2(u)) ≤ C
(2)
ε/2,DN

−D.

We conclude that for all N ∈ N and with C∗ε,D
..= C

(1)
ε/2,D+C

(2)
ε/2,D, we obtain for any u ∈ U :

P(|X1||X2| > N εY1Y2) ≤ P(|X1| > N ε/2Y1 or |X2| > N ε/2Y2)

≤ C
(1)
ε/2,DN

−D + C
(2)
ε/2,DN

−D = C∗ε,DN
−D.

iv) We know the following, considering all Wi are R+-valued:

[∀ i ∈ I : Wi ≺ Z]⇒ ∀N ∈ N : ∀ i ∈ I : sup
u∈U

P(Wi(u) > N εZ(u)) ≤ Cε,D+kN
−D−k

We conclude that for all N ∈ N and with C∗ε,D
..= C · Cε,D+k, we obtain for any u ∈ U :

P(max
i∈I

Wi > N εZ) = P(∃i ∈ I : Wi > N εZ)

≤
∑
i∈I

P(Wi > N εZ)

≤ C ·Nk · Cε,D+k ·N−D−k = C∗ε,DN
−D.
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6 The Local Law for Curie-Weiss Type Ensembles

v) This is immediate, since P(Y (u) > N εZ(u)) = 0 for all N ∈ N, u ∈ U .
vi) We find for N ∈ N and u ∈ U :

P(Y (u)p > N εZ(u)p) = P(Y (u) > N ε/pZ(u)) ≤
Cε/p,D
ND

,

thus the statement holds with constants (ε,D) 7→ Cε/p,D.
vii) For c ≥ 1, the statement is clear, since then Y ≤ cY , hence Y ≺ cY by v), and

now i). If c < 1, then there is an N(ε) ∈ N, such that cN ε/2 ≥ 1 for all N ≥ N(ε). This
entails that for all N ≥ N(ε) and u ∈ U :

P(|X| > N εcY ) ≤ P(|X| > N ε/2Y ) ≤
Cε/2,D
ND

.

Therefore, the constants (ε,D) 7→ Cε/2,D can be used ε-finally. Now consider Remark 6.6.

viii) Denote by C
(1)
ε,D the constants for ≺ over U

(N)
1 and by C

(2)
ε,D the constants for ≺

over U
(N)
2 , then Cε,D ..= max(C

(1)
ε,D, C

(2)
ε,D) will clearly yield valid constants for ≺ over

U
(N)
1 ∪ U (N)

2 .

6.3 The Weak Local Law and its Consequences

Definition 6.8. An ensemble of real symmetric random matrices (XN)N is called of
Curie-Weiss type, if the following holds:

1. For all N ∈ N, the random variables (
√
NXN(i, j))1≤i≤j≤N are of de-Finetti type

with mixture µN .

2. The sequence of mixtures (µN)N satisfies the moment decay condition

∀ p ∈ 2N : ∃Kp ∈ R+ : ∀N ∈ N :

∫
[−1,1]

tpdµN(t) ≤ Kp

Np/2
. (6.3)

Example 6.9. Let 0 < β ≤ 1 and let for each N ∈ N the random variables (ãN(i, j))i,j∈[N ]

be Curie-Weiss(β,N2)-distributed. Define the ensemble (XN)N by setting

∀N ∈ N : ∀ (i, j) ∈ �N : XN(i, j) =

{
1√
N
ãN(i, j) if i ≤ j

1√
N
ãN(j, i) if i > j.

.

Then by Theorem 6.4, (XN)N is an ensemble of Curie-Weiss type with mixtures (µN)N ..=
(µβN2)N and constants Kp

..= Kβ,p.

The local law, which we will formulate in a moment, is about a locally uniform approx-
imation of the ESDs of the Curie-Weiss type ensemble by the semicircle distribution in
terms of their Stieltjes transforms. Since the semicircle distribution has compact support
on [−2, 2], it suffices to consider a region around this interval, say, [−10, 10] for the real
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6.3 The Weak Local Law and its Consequences

part of the domain and a moderately falling imaginary part, so to be able to obtain better
and better Stieltjes transform kernel density estimates, see Section 5.3.

We will proceed to define certain quantities and regions which will be needed in the
sequel. Whenever a z ∈ C is considered, we will denote by E its real part and by η its
imaginary part and denote by κ the minimal distance of E to −2 or 2. To be more precise,
if a z ∈ C is considered,

E = E(z) = Re(z)

η = η(z) = Im(z)

κ = κ(z) = ||E| − 2|.

Further, for all N ∈ N and γ ∈ (0, 1) we define the domains

DI ..= {z ∈ C | − 10 ≤ E ≤ 10, 1 ≤ η ≤ 10} ,

DN(γ) ..=

{
z ∈ C | − 10 ≤ E ≤ 10,

1

N1−γ ≤ η ≤ 10

}
,

DN ..=

{
z ∈ C | − 10 ≤ E ≤ 10,

1

N
≤ η ≤ 10

}
.

For all N ∈ N we find DI ⊆ DN(γ) ⊆ DN . The region DI will be used for an initial
estimate, and quantities to be analyzed will behave nicely here. The region DN(γ) will
be used in the formulation of the local law and is thus the main region of interest. The
region DN covers all regions DN(γ) with γ ∈ (0, 1) and will serve as a domain on which
continuity properties of certain functions of interest will be proven (so that we know they
hold on all regions DN(γ)).

We will now turn to our main theorem of this chapter. In formulation and proof, our
weak local law is closer to [27] than to [9].

Theorem 6.10 (Weak Local Law for Curie-Weiss Type Ensembles). Let γ ∈ (0, 1) be
fixed and (XN)N be an ensemble of Curie-Weiss type. Further, denote by sN the Stieltjes
transform of the empirical spectral distribution σN of XN and by s the Stieltjes transform
of the semicircle distribution σ. Then we obtain

|sN(z)− s(z)| ≺ min

{
1√
Nηκ

,
1

(Nη)
1
4

}
, z ∈ DN(γ).

To interpret the weak local law very roughly, it ensures that on DN(γ) and up to a
factor of N ε, |sN(z)− s(z)| is bounded by (Nη)−1/4, and a minimal distance away from
the edges of the bulk −2 and 2, the bound sharpens to (Nη)−1/2.

Before turning to the proof of the theorem, we will discuss some of its consequences.
The simplest corollary is perhaps:

Corollary 6.11. In the setting of Theorem 6.10 we obtain that σN → σ weakly in prob-
ability and weakly almost surely.
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6 The Local Law for Curie-Weiss Type Ensembles

Proof. Fix a z ∈ DI , then any η ≥ 1, Theorem 6.10 implies that for ε = 1/8 and D = 2
we obtain a constant Cε,D ≥ 0 such that

P

(
|sN(z)− s(z)| > N

1
8

N
1
4

)
≤ Cε,D

N2
.

This inequality certainly implies sN(z) → s(z) in probability, but by Borel-Cantelli also
almost surely. Since z ∈ DI was arbitrary, Theorem 5.6 yields that σN → σ in probability
and almost surely.

Now, let us strengthen Theorem 6.10, which is a statement about the supremum of
certain probabilities. As it turns out, this supremum can be taken inside the probability,
which is possible due to the Lipschitz continuity of all quantities involved in the statement.
This will imply that ≺ does not only hold uniformly for z ∈ DN(γ), but simultaneously
for these z (cf. Definition 6.5).

The following theorem is far-reaching and can even be used to prove uniformity in the
statement of stronger local laws (Theorem 2.6 in [9], for example). To state it in a general
manner (in which we need it), we define for any sequence of regions GN ⊆ DN the subsets

GLN ..= GN ∩
1

NL
(Z + iZ).

For example, we will set GN ..= DN(γ) for all N ∈ N and consider the sets G4
N . At another

point, we will set GN ..= DI for all N ∈ N and consider the sets G4
N . We notice that in

both cases, G4
N forms a 2

N4 -net in GN (if A ⊆ B ⊆ C are subsets and τ > 0, then A is
called τ -net in B, if for any b ∈ B there is an a ∈ A such that |b− a| ≤ τ). In formulation
and proof, the following theorem strongly generalizes Remark 2.7 in [9].

Theorem 6.12. Suppose we are given stochastic domination of the form

F
(N)
i (z) ≺ Ψ(N)(z), i ∈ IN , z ∈ GLN ,

where for all N ∈ N:

• GN ⊆ DN is a non-empty subset with a geometry such that GLN forms a 2
NL -net in

GN .

• (F
(N)
i )i∈IN is a family of complex-valued functions on DN , where #IN ≤ C1N

d1 and

for all i ∈ IN , F
(N)
i is C2N

d2-Lipschitz-continuous on DN ,

• Ψ(N) is an R+-valued function on DN , which is C3N
d3-Lipschitz-continuous and

bounded from below by 1
C4Nd4

,

where C1, . . . , C4 > 0 and d1, . . . , d4 > 0 are N-independent constants and L > max(d2 +
d4, d3 + d4).

Then we obtain the simultaneous statement:

sup
z∈GN

max
i∈IN

|F (N)
i (z)|

Ψ(N)(z)
≺ 1. (6.4)
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Proof. The following statements hold trivially for all N ∈ N:

i) #GLN ≤ #DLN ≤ 21NL · 11NL = C5N
2L,

ii) ∀ z ∈ GN : ∃ z′ ∈ GLN : |z − z′| ≤ 2
NL ,

where we set C5
..= 231.

Step 1: (6.4) holds if GN is replaced by GLN .
This is easily done by the following calculation for ε,D > 0 arbitrary:

P

(
sup
z∈GLN

max
i∈IN

|F (N)
i (z)|

Ψ(N)(z)
> N ε

)
≤
∑
z∈GLN

∑
i∈IN

P

(
|F (N)
i (z)|

Ψ(N)(z)
> N ε

)
≤ C5N

2LC1N
d1
Cε,D
ND

This concludes the first step by shifting D  D + 2L + d1 and absorbing C1 · C5 into
Cε,D+2L+d1 . Note that we did not use any Lipschitz-continuity yet, but rather the union
bound and the polynomial growth of the index sets.
Step 2: Extension from GLN to GN .
Now, Lipschitz-continuity comes into play: For an arbitrary ε > 0, suppose

∃z ∈ GN , ∃i ∈ IN : |F (N)
i (z)| > Ψ(N)(z)N ε.

Then there exists a z′ ∈ GLN with |z − z′| ≤ 2
NL , and then due to Lipschitz-continuity of

F
(N)
i :

|F (N)
i (z′)| > Ψ(N)(z)N ε − 2

NL
· C2N

d2 .

Further, due to Lipschitz-continuity of Ψ(N):

2

NL
· C3N

d3+ε + |F (N)
i (z′)| > Ψ(N)(z′)N ε − 2

NL
· C2N

d2 .

It follows, using the lower bound on Ψ(N):

|F (N)
i (z′)|

Ψ(N)(z′)
> N ε − 2

C2N
d2 + C3N

d3+ε

NLΨ(N)(z′)
≥ N ε − 2C4N

d4
C2N

d2 + C3N
d3+ε

NL
.

We may assume w.l.o.g. that ε is small, for example, ε ∈ (0, L−d3−d4) (see Remark 6.6).
Then there exists an N(ε) ∈ N, such that for all N ≥ N(ε):

N ε − 2C4N
d4
C2N

d2 + C3N
d3+ε

NL
> N

ε
2 .

We have shown that for all N ≥ N(ε):[
∃ z ∈ GN , ∃i ∈ IN :

|F (N)
i (z)|

Ψ(N)(z)
> N ε

]
⇒

[
∃ z′ ∈ GLN , ∃i ∈ IN :

|F (N)
i (z′)|

Ψ(N)(z′)
> N

ε
2

]
.
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Therefore, if D > 0 is arbitrary, we obtain for all N ≥ N(ε):

P

(
sup
z∈GN

max
i∈IN

|F (N)
i (z)|

Ψ(N)(z)
> N ε

)
≤ P

(
sup
z∈GLN

max
i∈IN

|F (N)
i (z)|

Ψ(N)(z)
> N

ε
2

)
≤
C ε

2
,D

ND
,

where we used Step 1 for the last inequality. This concludes the proof by choosing
constants as (ε,D) 7→ C ε

2
,D and with Remark 6.6.

In order to apply Theorem 6.12 to Theorem 6.10 and to other local laws, we must
analyze the Lipschitz-continuity of the quantities involved. This is the task of the following
two lemmas. The first lemma will study general properties of Lipschitz continuity, the
second lemma will then analyze Lipschitz-continuity of the relevant quantities involved.

Lemma 6.13. Let V,W and X be normed K-vector spaces, where K ∈ {R,C}, and let
f, g : U → W , h : W → X be maps, where U ⊆ V is a subset, then the following
statements hold:

i) If f is L-Lipschitz, so is ‖f‖.

ii) If f is L-Lipschitz and λ ∈ K, then λf is |λ|L-Lipschitz.

iii) If f is L-Lipschitz and g is K-Lipschitz, then f + g is (L+K)-Lipschitz.

iv) If f resp. g are R-valued and L- resp. K-Lipschitz, then min(f, g) and max(f, g) are
both max(L,K)-Lipschitz.

v) If f is L-Lipschitz and h is K-Lipschitz, then h ◦ f is L ·K-Lipschitz.

Proof. To show i), note that

|‖f(v1)‖ − ‖f(v2)‖| ≤ ‖f(v1)− f(v2)‖ ≤ L‖v1 − v2‖.

For ii), we see that

‖λf(v1)− λf(v2)‖ = |λ|‖f(v1)− f(v2)‖ ≤ |λ|L‖v1 − v2‖.

To see iii), we observe

‖f(v1)+g(v1)−f(v2)−g(v2)‖ ≤ ‖f(v1)−f(v2)‖+‖g(v1)−g(v2)‖ ≤ L‖v1−v2‖+K‖v1−v2‖.

In iv), we will only show the statement for the minimum (the statement for the maximum
then follows, since max(f, g) = −min(−f,−g) and ii) was already shown). Setting
M ..= max(L,K), we need to show for all v1, v2 ∈ U that

|min(f(v1), g(v1))−min(f(v2), g(v2))| ≤M‖v1 − v2‖.

We assume that there exist v1, v2 in U such that ”>” holds. Then the two minima cannot
be assumed by the same function, since both f and g are M -Lipschitz. Thus, w.l.o.g. we
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may assume that min(f(v1), g(v1)) = f(v1) and min(f(v2), g(v2)) = g(v2). The statement
is clear if f(v1) = g(v2). Now on the one hand, if f(v1) < g(v2), then we actually obtain
f(v1) < g(v2) ≤ f(v2). But then

|f(v2)− f(v1)| = f(v2)− f(v1) ≥ g(v2)− f(v1) > M‖v2 − v1‖,

which is a contradiction, since f is M -Lipschitz. On the other hand, if f(v1) > g(v2),
then we actually obtain g(v1) ≥ f(v1) > g(v2). But then

|g(v2)− g(v1)| = g(v1)− g(v2) ≥ f(v1)− g(v2) > M‖v2 − v1‖,

which is a contradiction, since g is M -Lipschitz. Finally, for v) we note

‖h(f(v1))− h(f(v2))‖ ≤ K‖f(v1)− f(v2)‖ ≤ K · L‖v1 − v2‖.

Lemma 6.14. Let N ∈ N be arbitrary and XN be an Hermitian N ×N matrix.

i) The Stieltjes transform s of the semicircle distribution σ is N2-Lipschitz and its
reciprocal 1/s is 2N2-Lipschitz on DN .

ii) The resolvent G = G(N) of XN , that is, z 7→ G(z) = (XN − z)−1 is N2-Lipschitz on
DN .

iii) For any i, j ∈ [N ], the resolvent entry Gij is N2-Lipschitz on DN .

iv) The Stieltjes transform sN of the ESD of XN , that is, sN(z) = 1
N

∑N
i=1Gii(z), is

N2-Lipschitz on DN .

v) The absolute difference |sN(z)− s(z)| is 2N2-Lipschitz and |sN(z)− 1/s(z)| is 3N2-
Lipschitz on DN .

vi) The minimum SN(z) ..= min
{
|sN(z)− s(z)|,

∣∣∣sN(z)− 1
s(z)

∣∣∣} is 3N2-Lipschitz on DN .

vii) The error term RN(z) ..= min

{
1√
Nηκ

, 1

(Nη)
1
4

}
is 10N-Lipschitz on DN .

Proof. Throughout the proof, we will tacitly use Lemma 6.13. Let N ∈ N and z, y ∈ DN
be arbitrary. It should be very clear, when and which part of Lemma 6.13 is used.

i) We calculate

|s(z)− s(y)| =
∣∣∣∣∫

R

1

x− z
σ(dx)−

∫
R

1

x− y
σ(dx)

∣∣∣∣
≤
∫
R

∣∣∣∣ z − y
(x− z)(x− y)

∣∣∣∣σ(dx)

≤ |z − y|
∫
R

1

|Im(z)||Im(y)|
σ(dx)

≤ |z − y| ·N2,
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6 The Local Law for Curie-Weiss Type Ensembles

since Im(z), Im(y) ≥ 1/N2. Now with

1

s(z)
= −z − s(z),

we see that the reciprocal 1/s is (N2 + 1)-Lipschitz, hence 2N2 - Lipschitz.

ii) Since the resolvent identity yields G(z)−G(y) = (z − y)G(z)G(y), we conclude

‖G(z)−G(y)‖ ≤ |z − y|‖G(z)‖‖G(y)‖ ≤ |z − y| · 1

Im(z)
· 1

Im(y)
≤ |z − y|N2,

where we used that for any z′ ∈ C\R :

‖G(z′)‖ = sup

{∣∣∣∣ 1

λi − z′

∣∣∣∣ | i = 1, . . . , n, λi eigenvalue of XN

}
≤ 1

|Im(z′)|
,

by the spectral theorem.

iii) We calculate

|Gij(z)−Gij(y)| = |(G(z)−G(y))ij| ≤ ‖ei‖ · ‖G(z)−G(y)‖ · ‖ej‖ ≤ |z − y|N2.

iv) We calculate

|sN(z)− sN(y)| =

∣∣∣∣∣ 1

N

N∑
i=1

Gii(z)− 1

N

N∑
i=1

Gii(y)

∣∣∣∣∣
≤ 1

N

N∑
i=1

|Gii(z)−Gii(y)| ≤ 1

N
·N ·N2|z − y|.

v) This follows immediately from i) and iv).

vi) This follows immediately from v).

vii) For this result, we actually need to work. First we write

AN(z) =
1√

Nη||E| − 2|
and BN(z) =

1

(Nη)
1
4

,

so that RN(z) = min(AN(z), BN(z)). We note that

AN(z) ≤ BN(z) ⇔ 1√
Nη||E| − 2|

≤ 1

(Nη)
1
4

⇔ 1√
Nη
≤ ||E| − 2|

The question is: For which constant L > 0 do we find

∀ z1, z2 ∈ DN : |RN(z1)−RN(z2)| ≤ L|z1 − z2|?
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6.3 The Weak Local Law and its Consequences

Case 1: RN(z1) = AN(z1) and RN(z2) = AN(z2). Then this entails that

1√
Nη1

≤ ||E1| − 2| and
1√
Nη2

≤ ||E2| − 2| (6.5)

Therefore, with explanations right after the calculation,

|RN(z1)−RN(z2)| =

∣∣∣∣∣ 1√
Nη1||E1| − 2|

− 1√
Nη2||E2| − 2|

∣∣∣∣∣
=

∣∣∣∣∣
√
Nη2||E2| − 2| −

√
Nη1||E1| − 2|

N
√
η1||E1| − 2|

√
η2||E2| − 2|

∣∣∣∣∣
≤
∣∣∣√Nη2||E2| − 2| −

√
Nη1||E1| − 2|

∣∣∣
≤ 1

2

∣∣∣Nη2||E2| − 2| −Nη1||E1| − 2|
∣∣∣

=
N

2

∣∣∣η2||E2| − 2| − η1||E1| − 2|
∣∣∣

≤ 10N

∥∥∥∥(||E2| − 2|
η2

)
−
(
||E1| − 2|

η1

)∥∥∥∥
2

≤ 10N

∥∥∥∥(E2

η2

)
−
(
E1

η1

)∥∥∥∥
2

= 10N |z1 − z2|

where the third step follows since with (6.5), the denominator is lower bounded as
follows:

N
√
η1||E1| − 2|

√
η2||E2| − 2| ≥ N

√
η1

1√
Nη1

η2
1√
Nη2

= N

√
1

N

√
η1η2 ≥

N√
N

√
1

N
= 1.

The fourth step follows from the fact that
√
· is 1

2
-Lipschitz on [1,∞) and this is the

domain of the arguments of
√
·, as seen with (6.5), for example

Nη2||E2| − 2| ≥ Nη2
1√
Nη2

=
√
Nη2 ≥

√
N

1

N
= 1.

Further, the sixth step follows since f : [0, 10]2 → R, f(x, y) = xy is 10
√

2-Lipschitz,
since ‖∇f(x, y)‖2 =

√
x2 + y2 ≤ 10

√
2. The seventh step follows from the direct

calculation

|E2 − E1| ≥ ||E2| − |E1|| = |(|E2| − 2)− (|E1| − 2)| ≥
∣∣∣||E2| − 2| − ||E1| − 2|

∣∣∣,
where we applied the reverse triangle inequality two times.
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6 The Local Law for Curie-Weiss Type Ensembles

As we see, in Case 1 the Lipschitz constant of 10N suffices.
Case 2: RN(z1) = BN(z1) and RN(z2) = BN(z2). We calculate

|RN(z1)−RN(z2)| =

∣∣∣∣∣ 1

(Nη1)
1
4

− 1

(Nη2)
1
4

∣∣∣∣∣
=

∣∣∣∣∣(Nη2)
1
4 − (Nη1)

1
4

√
N(η1η2)

1
4

∣∣∣∣∣
≤ |(Nη2)

1
4 − (Nη1)

1
4 |

≤ N

4
|η1 − η2|,

where in the third step we used that
√
N(η1η2)

1
4 ≥
√
N
(

1
N

1
N

) 1
4 = 1 and in the fourth step

we used that (·) 1
4 is 1

4
-Lipschitz on [1,∞) and the arguments are at least 1, for example,

Nη1 ≥ N 1
N

= 1. Again, the Lipschitz-constant of 10N suffices.
Case 3: [RN(z1) = AN(z1) and RN(z2) = BN(z2)]
or [RN(z1) = BN(z1) and RN(z2) = AN(z2)].
Per symmetry we may assume that RN(z1) = AN(z1) and RN(z2) = BN(z2). In particular,
we have

||E1| − 2| ≥ 1√
Nη1

and ||E2| − 2| ≤ 1√
Nη2

.

We conclude

|RN(z1)−RN(z2)| =

∣∣∣∣∣ 1√
Nη1||E1| − 2|

− 1

(Nη2)
1
4

∣∣∣∣∣
=

∣∣∣∣∣(Nη2)
1
4 −

√
Nη1||E1| − 2|√

Nη1||E1| − 2|(Nη2)
1
4

∣∣∣∣∣
≤
∣∣∣∣√√Nη2 −

√
Nη1||E1| − 2|

∣∣∣∣ (6.6)

≤ 1

2

∣∣∣√Nη2 −Nη1||E1| − 2|
∣∣∣ ,

where the third step follows since the denominator can be lower bounded by 1:

√
Nη1||E1| − 2|(Nη2)

1
4 ≥

√
Nη1

1√
Nη1

√√
1 =

√√
Nη1 ≥ 1.

The fourth step follows since
√
· is 1

2
-Lipschitz on [1,∞) and this is clearly the domain of

the arguments.
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Subcase 1:
√
Nη2 > Nη1||E1| − 2|. Then∣∣∣√Nη2 −Nη1||E1| − 2|

∣∣∣ =
√
Nη2 −Nη1||E1| − 2|

≤
√
Nη2 −

√
Nη1

≤ 1

2
|Nη2 −Nη1|

≤ N

2

√
(η2 − η1)2 + (E2 − E1)2 =

N

2
|z1 − z2|

and thus again, the constant of 10N suffices with (6.6).
Subcase 2:

√
Nη2 ≤ Nη1||E1| − 2|. Then∣∣∣√Nη2 −Nη1||E1| − 2|

∣∣∣ = Nη1||E1| − 2| −
√
Nη2

≤ Nη1||E1| − 2| −Nη2||E2| − 2|

= N
∣∣∣η1||E1| − 2| − η2||E2| − 2|

∣∣∣
≤ 20N |z1 − z2|,

where the second step follows with our findings at the very beginning of Case 3 and the
last step follows from our calculation in Case 1. As we see, again a Lipschitz constant of
10N suffices (note the factor 1/2 in the end of (6.6)).

We will now show that Theorem 6.10 actually holds simultaneously. It should be noted
that later in Section 6.4, where we prove Theorem 6.10, we actually already prove it
simultaneously. But this is merely due to the nature of our proof. It is still nice (and
important) to see here that the simultaneous version actually follows from the seemingly
weaker uniform version, employing Theorem 6.12.

Theorem 6.15 (Simultaneous Weak Local Law for Curie-Weiss-Type Ensembles). In the
setting of the weak local law for Curie-Weiss type ensembles (Theorem 6.10) we obtain

sup
z∈DN (γ)

|sN(z)− s(z)|

min

{
1√
Nηκ

, 1

(Nη)
1
4

} ≺ 1

Proof. We know by Lemma 6.14 that F (N)(z) ..= |sN(z)− s(z)| is 2N2-Lipschitz and

Ψ(N)(z) ..= min

{
1√
Nηκ

, 1

(Nη)
1
4

}
is 10N -Lipschitz on DN . Since on DN we find η, κ ≤ 10,

we obtain that 1√
Nηκ
≥ 1

10
√
N

and 1

(Nη)
1
4
≥ 1

10N
1
4

, such that Ψ(N)(z) ≥ 1
10
√
N

.

Further, we surely obtain by Theorem 6.10 that

F (N)(z) ≺ Ψ(N)(z), z ∈ D4
N(γ).

Therefore, the statement follows with Theorem 6.12 by choosing constants C2 = 2, d2 = 2,
C3 = 10, d3 = 1, C4 = 10, d4 = 1/2 and L = 4.
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6 The Local Law for Curie-Weiss Type Ensembles

We draw two further immediate but important corollaries from Theorem 6.15.

Corollary 6.16. In the situation of Theorem 6.10, we find that for any γ ∈ (0, 1):

sup
z∈DN (γ)

|sN(z)− s(z)| ≺ 1

N
γ
4

.

Proof. Since for any z ∈ DN(γ) we find

1

(Nη)
1
4

≤ 1(
N 1

N1−γ

) 1
4

=
1

N
γ
4

,

it follows

sup
z∈DN (γ)

|sN(z)− s(z)|
1

N
γ
4

≤ sup
z∈DN (γ)

|sN(z)− s(z)|

min

{
1√
Nηκ

, 1

(Nη)
1
4

} ≺ 1

by Theorem 6.15. Multiplying both sides by 1/Nγ/4 concludes the proof.

Corollary 6.16 allows us to conclude that on sets with high probability, sN converges
uniformly to s on a growing domain DN(γ) that approaches the real axis.

Corollary 6.17. In the situation of Theorem 6.10 let γ ∈ (0, 1) be arbitrary and define
the scale ηN ..= 1/N1−γ for all N ∈ N. Then for all ε,D > 0 there exists a constant
Cε,D ≥ 0 such that for all N ∈ N we have

P

(
sup

E∈[−10,10]

∣∣∣∣ 1π Im(sN(E + iηN))− fσ(E)

∣∣∣∣ > N ε

πN
γ
4

+

√
10

N
1
2
− γ

2

)
≤ Cε,D

ND
.

Proof. We find for all N ∈ N that

sup
E∈[−10,10]

∣∣∣∣ 1π Im(sN(E + iηN))− fσ(E)

∣∣∣∣
≤ sup

E∈[−10,10]

∣∣∣∣ 1π Im(sN(E + iηN))− 1

π
Im(s(E + iηN))

∣∣∣∣
+ sup

E∈[−10,10]

∣∣∣∣ 1π Im(s(E + iηN))− fσ(E)

∣∣∣∣
≤ 1

π
sup

z∈DN (γ)

|sN(z)− s(z)|+
√

10ηN

≤ N ε

πN
γ
4

+
√

10ηN .

on a set AN with P(AN) > 1− Cε,D/ND for an N -independent constant Cε,D, witnessed
by Corollary 6.16. We also used Lemma 5.18 for the second summand. This proves the
statement.
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Corollary 6.17 states in particular that, at the scale ηN = 1/N1−γ (γ ∈ (0, 1) fixed),
we find uniform convergence in probability of the kernel density estimator PηN ∗ σN to fσ
on the interval [−10, 10], where we have strong control on the probability estimates. In
his publication [40], Khorunzhy showed for the Wigner case that for arbitrary but fixed
E ∈ (−2, 2) and for slow scales ηN = 1/N1−γ (γ ∈ (3/4, 1) fixed), PηN ∗ σN(E) → fσ(E)
in probability. But very importantly, he showed that this does not hold in general for
scales that decay too quickly, such as the scale ηN = 1/N , see his Remark 4 on page
149 in above mentioned publication. Therefore, the scale that is used in our weak local
law, Theorem 6.10, cannot be improved while still implying convergence in probability
of PηN ∗ σN to fσ pointwise or uniformly. See also Figures 5.1 and 5.2 on page 128 for
a visulization of these findings. We need to keep this in mind when interpreting the
Theorem 10.1 in [9, p. 45] which implies that (in particular), Theorem 6.10 remains true
even if every DN(γ) is replaced by [−10, 10]+ i(0, 10]. For note that for faster decays such
as ηN = 1/N5 and for E ∈ [−10, 10] fixed, we would obtain the statement that for each
ε,D > 0 we find a constant Cε,D ≥ 0 such that

∀N ∈ N : P

(
|sN(E + iηN)− s(E + iη)| > N ε min

{
N2

√
κ
,N

})
≤ Cε,D

ND
,

which is hardly a statement from which we could infer convergence in probability or almost
surely of |sN(E + iηN)− s(E + iηN)| to zero. Rather, this statement has the structure of
a tail probability bound, which is a whole different matter.

Theorem 6.10 and Theorem 6.15 guarantee closeness of the Stieltjes transforms of the
ESDs and of the semicircle distribution. But how can we conclude that for certain classes
of functions f , 〈σN , f〉 is close to 〈σ, f〉? The following lemma is a key ingredient. Indeed,
in the equality in the following lemma, if we integrate both sides with respect to (say)
σN(dλ), we obtain a triple integral on the right hand side. Applying Fubini, we retrieve
a double integral over a term that includes the Stieltjes transform of σN at z.

Lemma 6.18 (Non-Holomorphic Cauchy Integral Formula). Let f : C→ C be a function
that is continuously differentiable in the real sense. Further, we assume f to be compactly
supported. Then it holds for all λ ∈ C:

f(λ) =
1

2π

∫
R

∫
R

(∂x + i∂y)f(z)

λ− z
dxdy (z = x+ iy).

In particular, the integral on the right hand side exists.

Proof. This lemma is proved in [53, p. 388] using elementary arguments. The idea is to
use polar coordinates with epicenter λ.

Next, we will formulate and prove a semicircle law on small scales, where we will follow
the sketch in [9] (see their Theorem 2.8), but implement own ideas such as the use of the
Cauchy-Riemann equations. What we are after is a probabilistic evaluation of how well
the semicircle distribution predicts the fraction of eigenvalues in given intervals I ⊆ R.
This is a very important theorem and exemplifies well what the local law is capable of.
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6 The Local Law for Curie-Weiss Type Ensembles

In fact, a variant of the following theorem (see Theorem 6.20 below) even constitutes the
local law per se in [60]. Notationally, if A ⊆ R is a subset, denote by I(A) the set of all
intervals I ⊆ A.

Theorem 6.19 (Semicircle Law on Small Scales). In the setting of the weak local law for
Curie-Weiss type ensembles (Theorem 6.10) we obtain

sup
I∈I(R)

|σN(I)− σ(I)| ≺ 1

N
1
4

.

Further, for any fixed θ ∈ (0, 1),

sup
I∈I([−2+θ,2−θ])

|σN(I)− σ(I)| ≺ 1

N
1
2

.

Proof. We will show the first statement and afterwards discuss the minor changes to be
made for the proof of the second statement.

First of all, since σN(I) is a random variable (i.e. measurable) for all I ∈ I(R), so is
supI∈I(R) |σN(I)− σ(I)|, since this value coincides with the supremum over all intervals
I ⊆ R with rational end points, which is then a countable supremum of measurable
functions, hence measurable. Therefore, it is valid to analyze events as in the statement
of Theorem 6.19 in a probabilistic manner.

Step 1: Initialization of smooth indicator functions
We will start by introducing certain quantities that we will employ in the proof. For
any interval I ∈ I([−3, 3]) and η ∈ (0, 1] denote by f = fI,η ∈ C∞c (R, [0, 1]) a smoothed
indicator function with

• f(x) = 1 for all x ∈ I,

• f(x) = 0 for all x ∈ R with dist(x, I) ≥ η,

• ‖f ′‖∞ ≤ C1

η
,

• ‖f ′′‖∞ ≤ C2

η2
,

where C1 and C2 are suitable constants independent of η and I, and dist(x, I) ..= infy∈I |x− y|.
It follows that the supports of f , f ′ and f ′′ are contained in [−4, 4]. Further, the supports
of f ′ and f ′′ have Lebesgue measure of at most 2η. In particular, Lebesgue integrals over
|f ′| are bounded by 2C1 and Lebesgue integrals over |f ′′| are bounded by 2C2/η . These
facts will be used later on without always mentioning them again.

Now, we pick a smooth even cutoff function χ ∈ C∞c (R, [0, 1]) with

• χ(y) = 1 for all y ∈ [−1, 1].

• χ(y) = 0 for all y ∈ R\[−2, 2].

• ‖χ′‖∞ ≤ C3 for some C3 ≥ 0.
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Note that the support of χ′ lies within the set [−2, 2]\(−1, 1). The purpose of χ is to serve
as a cutoff function for the imaginary part in the calculations below. Instead of the smooth
approximations of indicators fI,η and χ, that is, infinitely often differentiable ones, for
our analysis we only need two times continuously differentiable approximations, as seen
in the calculations that follow. However, even the existence of smooth approximations is
well-known, see for example [19, p. 20].

Step 2: Applying the Non-Holomorphic Cauchy Integral Formula
If f and χ are as in Step 1, note that the function g : C → C with g(x + iy) ..=
(f(x) + iyf ′(x))χ(y) vanishes outside of a compact set, and is continuously differentiable
in (x, y) when regarded as a function R2 → R2. Note also that per construction, for real
arguments λ it holds that g(λ) = f(λ). Therefore, if ν is an arbitrary probability measure
on (R,B) with Stieltjes transform Sν , we obtain with Lemma 6.18:∫

R
f(λ)ν(dλ) =

1

2π

∫
R

∫
R

∫
R

(∂x + i∂y)[(f(x) + iyf ′(x))χ(y)]

λ− (x+ iy)
dydxν(dλ)

=
1

2π

∫
R

∫
R
(∂x + i∂y)[(f(x) + iyf ′(x)χ(y))]Sν(x+ iy)dydx

Note that the partial derivatives ∂x and ∂y are only applied to the term in the brackets
[. . .]. This derivative can be evaluated as

(∂x + i∂y)[(f(x) + iyf ′(x))χ(y)]

= f ′(x)χ(y) + iyf ′′(x)χ(y) + ∂y(if(x)χ(y)− yf ′(x)χ(y))

= f ′(x)χ(y) + iyf ′′(x)χ(y) + if(x)χ′(y)− f ′(x)χ(y)− yf ′(x)χ′(y)

= iyf ′′(x)χ(y) + if(x)χ′(y)− yf ′(x)χ′(y).

With our calculations so far, and writing Sν instead of Sν(x + iy) in the following
calculation for better readability, we obtain for any η ∈ (0, 1] (note also that f depends
on η):∫

f(λ)ν(dλ) =
1

2π

∫
R

∫
R

[iyf ′′(x)χ(y) + if(x)χ′(y)− yf ′(x)χ′(y)]Sνdydx

=
1

2π

∫
R

∫
R
iyf ′′(x)χ(y)(ReSν + i ImSν)dydx+

i

2π

∫
R

∫
R

[f(x) + iyf ′(x)]χ′(y)Sνdydx

= − 1

2π

∫
R

∫
R
f ′′(x)χ(y)y ImSνdydx

+
i

2π

∫
R

∫
R
f ′′(x)χ(y)yReSνdydx+

i

2π

∫
R

∫
R

[f(x) + iyf ′(x)]χ′(y)Sνdydx

= − 1

2π

∫
R

∫
|y|≤η

f ′′(x)χ(y)y ImSνdydx− 1

2π

∫
R

∫
|y|>η

f ′′(x)χ(y)y ImSνdydx

+
i

2π

∫
R

∫
R
f ′′(x)χ(y)yReSνdydx+

i

2π

∫
R

∫
R

[f(x) + iyf ′(x)]χ′(y)Sνdydx.
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6 The Local Law for Curie-Weiss Type Ensembles

Step 3: Bounding the difference of smoothed indicators
In particular, the last calculation yields for ŝN ..= sN − s (where as before, sN = SσN and
s = Sσ): ∫

f(λ)σN(dλ)−
∫
f(λ)σ(dλ)

= − 1

2π

∫
R

∫
|y|≤η

f ′′(x)χ(y)y Im ŝN(x+ iy)dydx (T1)

− 1

2π

∫
R

∫
|y|>η

f ′′(x)χ(y)y Im ŝN(x+ iy)dydx (T2)

+
i

2π

∫
R

∫
R
f ′′(x)χ(y)yRe ŝN(x+ iy)dydx. (T3)

+
i

2π

∫
R

∫
R
(f(x) + iyf ′(x))χ′(y)ŝN(x+ iy)dydx. (T4)

Now, we pick ε ∈ (0, 1/4) and D > 0 arbitrarily and let η decay at a rate compatible
with our weak local law: For all N ∈ N, let η = η(N) ..= 1

N
1
4−ε

. We then know from

the simultaneous weak local law (Theorem 6.15 with γ = 1 − (1/4 − ε)) that there is a
constant Cε,D ≥ 0, which is independent of N , such that the set

AN ..=

{
|sN(x+ iy)− s(x+ iy)| ≤ N ε

(N |y|) 1
4

, |x| ≤ 10, |y| ∈ [η, 10]

}

has high probability, namely P(AN) > 1 − Cε,D
ND . Here, we used that for any Stieltjes

transform Sν of a probability measure ν we have Sν(x− iy) = Sν(x+ iy) by Lemma 5.2.
Next, we want to bound the terms (T1), (T2), (T3) and (T4) on AN .

We begin with the term (T4). Considering that χ′ has support in J ..= [−2, 2]\(−1, 1),
|f | and |f ′| and are bounded by 1 and C1/η (respectively), both have support in [−4, 4],
where the support of f ′ has Lebesgue measure of at most 2η, we obtain on AN :

|(T4)| ≤ 1

2π

∫
[−4,4]

∫
J

(|f(x)|+ |y||f ′(x)|)|χ′(y)||ŝN(x+ iy)|dydx

≤ 1

2π

∫
[−4,4]

∫
J

(1 + 2|f ′(x)|)C3
N ε

(N |y|) 1
4︸ ︷︷ ︸

≤Nε/N1/4=η

dydx

≤ ηC3

2π

(∫
[−4,4]

∫
J

1dydx+

∫
[−4,4]

|f ′(x)|
∫
J

2dydx

)
≤ ηC3

2π

(
16 + 4

∫
[−4,4]

|f ′(x)|dx
)

≤ ηC3

2π
(16 + 8C1) ≤ ηC3(4 + 2C1).
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Next, we will bound (T3). To this end, notice that the left hand side of the equation
in the beginning of Step 3 (in which (T1), (T2), (T3) and (T4) were defined) is a real
number. On the right hand side of this equation, (T1) and (T2) are both real, so we must
have Im (T3) = − Im (T4). Since Re (T3) = 0, we have (T3) = i Im (T3) and conclude

|(T3)| = |i Im (T3)| = |Im (T4)| ≤ |(T4)| ≤ ηC3(4 + 2C1).

Let us turn to (T1). If ν is any probability measure on (R,B), then the expression
|y||ImSν(x+ iy)| is non-decreasing in |y| for any x ∈ R. To see this, we calculate:

|y||ImSν(x+ iy)| = |y|
∣∣∣∣∫

R

y

(a− x)2 + y2
ν(da)

∣∣∣∣
=

∫
R

|y|2

(a− x)2 + |y|2
ν(da),

which is clearly non-decreasing in |y| for any x ∈ R. Therefore, on AN we have for all
y ∈ R with |y| ≤ η and all x ∈ [−4, 4] :

|y||Im ŝN(x+ iy)| ≤ |y| (|Im sN(x+ iy)|+ |Im s(x+ iy)|)
≤ η (|Im sN(x+ iη)|+ |Im s(x+ iη)|)
≤ η (|sN(x+ iη)|+ |s(x+ iη)|)
≤ η (|sN(x+ iη)− s(x+ iη)|+ 2|s(x+ iη)|)

≤ η

(
N ε

(Nη)
1
4

+ 32

)
≤ 33η,

where in the fifth step we used Theorem 5.16 and in the last step that

N ε

(Nη)
1
4

=
N ε

N ( 3
4

+ε) 1
4

=
N

3
4
ε

N
3
4
· 1
4

≤ 1, (6.7)

recalling that ε ∈ (0, 1/4). Now to bound (T1) we calculate

|(T1)| ≤ 1

2π

∫
[−4,4]

∫
|y|≤η
|f ′′(x)||y||Im ŝN(x+ iy)|dxdy

≤ 1

2π

∫
[−4,4]

|f ′′(x)|
∫
|y|≤η

33ηdydx

≤ 66

2π
η2

∫
[−4,4]

|f ′′(x)|dx

≤ 66

2π
η2 2C2

η

≤ 22ηC2.
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6 The Local Law for Curie-Weiss Type Ensembles

Next, we will bound (T2). With sN and s, also ŝN = sN − s is holomorphic on C\R.
We will write

ŝN(x+ iy) = u(x, y) + iv(x, y)

where u, v : R2 → R. Further, denote by ux(x, y), uy(x, y), vx(x, y) and vy(x, y) the
corresponding partial derivatives. We now obtain that

ŝN(x− iy) = ŝN(x+ iy) = u(x, y)− iv(x, y)

where we applied Lemma 5.2 iv) to both summands of s− sN . In particular, we obtain

u(x, y) = u(x,−y), thus uy(x, y) = −uy(x,−y).

Since ŝN is holomorphic, we know that vx(x, y) = −uy(x, y). In the following calculation,
in order to get rid of the second derivative of f , we integrate by parts with respect to x
and then with respect to y (also, keeping in mind that χ is an even function):

−2π(T2) =

∫
R

∫
|y|>η

f ′′(x)χ(y)y Im ŝN(x+ iy)dydx

=

∫
|y|>η

χ(y)y

∫
R
f ′′(x)v(x, y)dxdy

=

∫
|y|>η

χ(y)y

(
[f ′(x)v(x, y)]+∞x=−∞ −

∫
R
f ′(x)vx(x, y)dx

)
dy

=

∫
|y|>η

∫
R
χ(y)yf ′(x)uy(x, y)dxdy

=

∫
R
f ′(x)

∫
|y|>η

χ(y)yuy(x, y)dydx

= 2

∫
R
f ′(x)

∫ ∞
η

χ(y)yuy(x, y)dydx

= 2

∫
R
f ′(x)

(
[u(x, y)χ(y)y]∞y=η −

∫ ∞
η

u(x, y)χ(y)dy −
∫ ∞
η

u(x, y)χ′(y)ydy

)
dx

= −2

∫
R
f ′(x)u(x, η)χ(η)ηdx− 2

∫
R

∫ ∞
η

f ′(x)u(x, y)χ(y)dydx

− 2

∫
R

∫ ∞
η

f ′(x)u(x, y)χ′(y)ydydx,

and therefore with |u(x, y)| = |Re ŝN(x+ iy)| ≤ |ŝN(x+ iy)|

|(T2)| ≤ 1

π

∫
[−4,4]

|f ′(x)ŝN(x+ iη)χ(η)η|dx (T5)

+
1

π

∫
[−4,4]

∫ ∞
η

|f ′(x)ŝN(x+ iy)χ(y)|dydx (T6)

+
1

π

∫
[−4,4]

∫ ∞
η

|f ′(x)ŝN(x+ iy)χ′(y)y|dydx. (T7)
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Now to bound (T5), (T6) and (T7) on AN is easy for once: For (T5) we find immediately

(T5) ≤ 2η

π
C1 ≤ ηC1,

where we used that |ŝN(x+ iη)| ≤ 1 on AN for all relevant x, which follows from (6.7).
For (T6) we calculate

(T6) ≤ 1

π

∫
[−4,4]

|f ′(x)|
∫ 2

η

N ε

(Ny)
1
4

dydx,

and since ∫ 2

η

N ε

N
1
4

1

y
1
4

dy = η

[
4

3
y

3
4

]2

η

≤ 4η,

we conclude

(T6) ≤ 4η

π

∫
[−4,4]

|f ′(x)|dx ≤ 8ηC1

π
≤ 3ηC1.

Lastly, considering that the support of χ′ lies in [−2, 2]\(−1, 1), we obtain

(T7) ≤ C3

π

∫
[−4,4]

|f ′(x)|
∫ 2

1

N ε

(Ny)
1
4

ydydx ≤ 2ηC3

π

∫
[−4,4]

|f ′(x)|dx ≤ 4ηC1C3

π
≤ 2ηC1C3,

where we used ∫ 2

1

N ε

(Ny)
1
4

ydy = η

∫ 2

1

y
3
4 dy = η

[
4

7
y

7
4

]2

1

≤ 2η.

Putting things together, on the high-probability set AN we find that for an arbitrary
interval I ⊆ [−3, 3] (note that f depends on I and η, and η depends on N):∣∣∣∣∫ f(λ)σN(dλ)−

∫
f(λ)σ(dλ)

∣∣∣∣
≤ |(T1)|+ |(T2)|+ |(T3)|+ |(T4)|
≤ |(T1)|+ |(T3)|+ |(T4)|+ (T5) + (T6) + (T7)

≤ 22ηC2 + ηC3(4 + 2C1) + ηC3(4 + 2C1) + ηC1 + 3ηC1 + 2ηC1C3

= Kη

for a constant K ≥ 0 that does not depend on N , I or η.
Step 4: ”Unsmoothing” of the indicators

We need to translate the integration over smoothed indicator functions back to inte-
gration over ”regular” indicator functions. We fix an I ∈ I([−3, 3]). Then we have on
AN :

σN(I) ≤
∫
fI,η(λ)σN(dλ) ≤

∫
fI,η(λ)σ(dλ) +Kη ≤ σ(I) +

2η

π
+Kη ≤ σ(I) + (K + 1)η,
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6 The Local Law for Curie-Weiss Type Ensembles

where the third inequality is due to the fact that the density of the semicircle distribution
is bounded by 1/π. On the other hand, define the (possibly empty) intervals I∗η ⊆ [−3, 3]
as I∗η

..= {x ∈ R : dist(x, Ic) ≥ η}, then we obtain

σN(I) ≥
∫
fI∗η ,η(λ)σN(dλ) ≥

∫
fI∗η ,η(λ)σ(dλ)−Kη ≥ σ(I)− 2η

π
−Kη ≥ σ(I)− (K+1)η.

Therefore, on AN we obtain for all intervals I ⊆ [−3, 3] that

|σN(I)− σ(I)| ≤ (K + 1)η.

In particular, we obtain the useful information that on AN ,

σN([−2, 2]c) = 1 + σ([−2, 2])− σN([−2, 2])− σ([−2, 2])

≤ |σ([−2, 2])− σN([−2, 2])| ≤ (K + 1)η,

where we used that σ is a probability measure with σ([−2, 2]) = 1. This is helpful: Let
I ⊆ R now be an arbitrary interval, then we obtain on AN :

|σN(I)− σ(I)|
= |σN(I ∩ [−2, 2]) + σN(I ∩ [−2, 2]c)− σ(I ∩ [−2, 2])− σ(I ∩ [−2, 2]c)|
≤ |σN(I ∩ [−2, 2])− σ(I ∩ [−2, 2])|+ σN(I ∩ [−2, 2]c)

≤ (K + 1)η + σN([−2, 2]c)

≤ 2(K + 1)η

We have seen that on AN , for all intervals I ⊆ R it holds

|σN(I)− σ(I)| ≤ 2(K + 1)η = 2(K + 1)
N ε

N
1
4

,

so in particular

P

(
sup
I∈I(R)

|σN(I)− σ(I)| ≤ 2(K + 1)
N ε

N
1
4

)
> 1− Cε,D

ND
.

But D > 0 and ε ∈ (0, 1/4) were arbitrary, yielding

sup
I∈I(R)

|σN(I)− σ(I)| ≺ 2(K + 1)

N
1
4

,

where we used Remark 6.6, thus with Lemma 6.7 vii):

sup
I∈I(R)

|σN(I)− σ(I)| ≺ 1

N
1
4

.

This is the first statement of the theorem, which we wanted to show rigorously.
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For the second statement, we will discuss the changes to be made to the proof we just
conducted: Let θ ∈ (0, 1) be fixed. We notice that the intervals I for which we consider
the smoothed indicators f = fI,η are elements of I([−2+θ, 2−θ]). Let such an I be fixed.
In the third step as above, we then pick an ε ∈ (0, 1/2) and D > 0 arbitrarily and set
η = η(N) ..= 1/N1/2−ε. Note that due to the smoothing of the indicators by f , the support
of f may come closer to the edge than θ. To account for this, we need to allow ourselves
a little room of θ/2: Theorem 6.15 implies with Lemma 6.7 that for γ ..= 1− (1/2− ε) we
have

sup
z∈DN (γ)

|Re(z)|≤2−θ/2

|sN(z)− s(z)|
1√

N Im(z)||Re(z)|−2|

≺
√
θ/2,

where we just restricted the domain DN(γ) on the left hand side of ≺ and multiplied
the right hand side of ≺ by a positive constant. But since in the supremum above,
||Re(z)| − 2| is lower bounded by θ/2, we immediately obtain

sup
z∈DN (γ)

|Re(z)|≤2−θ/2

|sN(z)− s(z)|
1√

N Im(z)

≺ 1.

With γ and η = η(N) as we just defined, we obtain a constant Cε,D ≥ 0 independent of
N such that for all N ∈ N the set

AN ..=

{
|sN(x+ iy)− s(x+ iy)| ≤ N ε√

N |y|
, |x| ≤ 2− θ

2
, |y| ∈ [η, 10]

}

has high probability, namely P(AN) > 1 − Cε,D
ND . This is the new set AN on which we

will operate, but we will not give it a new name to preserve familiarity to the first part
of the proof (just as we are considering a newly defined scale parameter η here). Since
I ∈ I([−2 + θ, 2 − θ]) and η = η(N) = 1

N1/2−ε where ε ∈ (0, 1/2), we obtain that f , f ′

and f ′′ all have support in [−2 + θ/2, 2 − θ/2] for all N ≥ N(ε), where N(ε) is so large
that η(N(ε)) = 1/(N(ε))1/2−ε ≤ θ/2. Note that N(ε) also depends on θ, but θ is a super-
parameter in the statement of the theorem. Note also that I ⊆ [−2 + θ, 2− θ] ⊆ [−4, 4],
which we mention so that we can follow the notation as in the first part of the proof. In
what follows, we will operate on AN for all N ≥ N(ε) (which suffices by Remark 6.6).

The bounds of (T1), (T2), (T3) and (T4) will take place on AN for all N ≥ N(ε).
Also notice that integrals for the real part over [−4, 4] are actually just integrals over
[−2 + θ/2, 2− θ/2], since f and its derivatives are not supported elsewhere. In addition,
we can use bounds on ŝ given by operating on AN . When bounding |(T4)|, we use
the following upper bound (note that as before, integration with respect to y is over
[−2, 2]\(−1, 1)):

|ŝN(x+ iy)| ≤ N ε√
N |y|

≤ N ε

√
N

=
1

N
1
2
−ε

= η.

This leaves the final bound of |(T4)| unchanged. When bounding |(T3)|, nothing changes.
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In the analysis of |(T1)|, we obtain that on AN we have for all y ∈ R with |y| ≤ η and
all x ∈ [−2 + θ/2, 2− θ/2]:

|y||Im ŝN(x+ iy)| ≤ η

(
N ε

√
Nη

+ 32

)
≤ 33η,

where we used that
N ε

√
Nη

=
N ε

N ( 1
2

+ε) 1
2

=
N

1
2
ε

N
1
2
· 1
2

≤ 1,

recalling that ε ∈ (0, 1/2). Then in the bound of |(T1)|, we again use that f ′′ has support
in [−2 + θ/2, 2 − θ/2] for all N ≥ N(ε), so we can use above bound of |y||Im ŝ(x+ iy)|.
The final bound of |(T1)| will remain unchanged.

Now bounding |(T2)| will as before lead to bounding (T5), (T6) and (T7). In all these
three terms, we use that for N ≥ N(ε), f ′ has support in [−2 + θ/2, 2 − θ/2], so we can
use that we operate on AN . Now the bound for (T5) will remain unchanged, considering
that for all x ∈ [−2 + θ/2, 2− θ/2], we have on AN that

|ŝ(x+ iη)| ≤ N ε

√
Nη

=
N ε

N ( 1
2

+ε) 1
2

=
N

1
2
ε

N
1
2
· 1
2

≤ 1.

For (T6) we obtain

(T6) ≤ 1

π

∫
[−4,4]

|f ′(x)|
∫ 2

η

N ε

(Ny)1/2
dydx,

and since ∫ 2

η

N ε

N
1
2

1

y
1
2

dy = η
[
2y

1
2

]2

η
≤ 4η,

we may leave the bound for (T6) unchanged. The bound for (T7) can be left unchanged
as well using ∫ 2

1

N ε

(Ny)
1
2

ydy = η

∫ 2

1

y
1
2 dy = η

[
2

3
y

3
2

]2

1

≤ 2η.

Finally, putting things together, we obtain that for any interval I ⊆ [−2 + θ, 2 − θ] and
for all N ≥ N(ε), on AN it holds∣∣∣∣∫ f(λ)σN(dλ)−

∫
f(λ)σ(dλ)

∣∣∣∣ ≤ Kη

for a constant K ≥ 0 independent of N , I and η, which can be chosen as in the proof
of the first statement of the theorem. Proceeding as before, this will entail that for all
N ≥ N(ε) and all intervals I ∈ I([−2 + θ, 2− θ]) we have on AN that

|σN(I)− σ(I)| ≤ (K + 1)η = (K + 1)
N ε

N
1
2

,
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so in particular

P

(
sup

I∈I([−2+θ,2−θ])
|σN(I)− σ(I)| ≤ (K + 1)

N ε

N
1
2

)
> 1− Cε,D

ND
,

But D > 0 and ε ∈ (0, 1/2) were arbitrary, yielding

sup
I∈I([−2+θ,2−θ])

|σN(I)− σ(I)| ≺ (K + 1)

N
1
2

,

where we used Remark 6.6, thus with Lemma 6.7 vii):

sup
I∈I([−2+θ,2−θ])

|σN(I)− σ(I)| ≺ 1

N
1
2

,

which is what we wanted to show.

Having just proved Theorem 6.19, let us see how we may interpret it: It says in partic-
ular that for any ε ∈ (0, 1/4) and D > 0 we find a constant Cε,D ≥ 0 such that

∀N ∈ N : P

(
sup
I∈I(R)

|σN(I)− σ(I)| ≤ N
3
4

+ε

N

)
> 1− Cε,D

ND
, (6.8)

This tells us that when predicting interval probabilities of σN by those of σ, the absolute
error will be bounded by 1/N1/4−ε with a probability that grows arbitrarily polynomially
fast to 1. We just used σ(I) as a predictor for σN(I) (note that this viewpoint is exactly
opposite from statistics). Alternatively, this can be translated directly to estimating the
number of eigenvalues in a given interval I, NσN(I), by Nσ(I). Then (6.8) allows to
control an absolute error of N3/4+ε out of N eigenvalues, where we just multiplied the
inequality inside the probability by N . We will switch back and fourth between these
views, depending on what is needed for the argument we would like to make.

Inspecting (6.8), we ask: For which kind of intervals is this a good statement? Imagine
I to be very small in comparison to 1/N (for example, with diameter of order e−N), so
that there is only very little chance that an eigenvalue falls into this interval (the average
distance of eigenvalues of a well-behaved ensemble is of order 1/N , so it is likely that
eigenvalues miss an interval with diameter of order e−N). Then still, (6.8) only allows us
to predict the number of eigenvalues in I by Nσ(I) up to N3/4+ε out of N eigenvalues,
which is then not a useful estimate. In other words, (6.8) holds uniformly over all intervals,
but it does not take into account the size of the interval. The natural way to account for
the size of the interval is to divide both sides of the inequality inside the probability by it
(since in well-behaved ensembles, the expected number of eigenvalues should be roughly
proportional to the diameter of the interval). Since we want the right hand side to be
non-increasing (eventually, we want to keep it slightly decreasing so we can underbid
any given positive number), for any fixed ε ∈ (0, 1/4) we can afford intervals of length
|I| ≥ 1/N1/4−ε (by |I| we will denote the diameter of an interval I ⊆ R). This yields
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6 The Local Law for Curie-Weiss Type Ensembles

the following theorem, which for Tao and Vu actually constitutes ”The Local Semicircle
Law” (instead of a statement as our Theorem 6.10 involving Stieltjes transforms), see
their Theorem 7 in [60, p. 7] and our Remark 6.22.

Theorem 6.20 (Interval-Type Weak Semicircle Laws). Let θ ∈ (0, 1) be fixed.

i) For all ε ∈ (0, 1/4) and D > 0, there is a constant Cε,D ≥ 0, such that for all N ∈ N:

P

 sup
I∈I(R)

|I|≥ 1

N1/4−ε

|σN(I)− σ(I)|
|I|

>
1

N
ε
2

 ≤ Cε,D
ND

.

ii) For all ε ∈ (0, 1/2) and D > 0 there is a constant C ′ε,D such that for all N ∈ N:

P

 sup
I∈I([−2+θ,2−θ])
|I|≥ 1

N1/2−ε

|σN(I)− σ(I)|
|I|

>
1

N
ε
2

 ≤ C ′ε,D
ND

.

iii) For all ε ∈ (0, 1/2) and D > 0 there is a constant C ′′ε,D such that for all N ∈ N:

P

 sup
I∈I([−2+θ,2−θ])
|I|≥ 1

N1/2−ε

∣∣∣∣σN(I)

σ(I)
− 1

∣∣∣∣ > 1

N
ε
2

 ≤ C ′′ε,D
ND

.

Proof. To prove the first statement, let ε ∈ (0, 1/4) and D > 0 be given. From the first
statement of Theorem 6.19 we find that for the events (AN)N with

∀N ∈ N : AN ..=

{
sup
I∈I(R)

|σN(I)− σ(I)| ≤ 1

N
1
4
− ε

2

}
,

there is a constant Cε/2,D ≥ 0 such that

∀N ∈ N : P(AN) > 1−
Cε/2,D
ND

.

Now let N ∈ N be arbitrary and I ⊆ R be an interval with |I| ≥ 1/N1/4−ε, then on AN :

|σN(I)− σ(I)|
|I|

≤ |σN(I)− σ(I)|
1/N1/4−ε ≤ N

1
4
−ε

N
1
4
− ε

2

=
1

N
ε
2

.

Therefore:

∀N ∈ N : P

 sup
I∈I(R)

|I|≥ 1

N1/4−ε

|σN(I)− σ(I)|
|I|

≤ 1

N
ε
2

 ≥ P(AN) > 1−
Cε/2,D
ND

,
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which concludes the proof of the first statement by using the constants (ε,D) 7→ Cε/2,D.
The proof of the second statement can be carried out analogously, using the second
statement of Theorem 6.19 instead of the first. We will now proceed to rigorously prove
the third statement, which is very similar to the second. So to start, we assume that
θ ∈ (0, 1) is fixed and choose ε ∈ (0, 1/2) and D > 0 arbitrarily. Then the density fσ
of the semicircle distribution σ is lower bounded on [−2 + θ, 2 − θ] by some constant
βθ > 0. Therefore, for any interval I ⊆ [−2+θ, 2−θ] we find σ(I) ≥ βθ|I|. By the second
statement of Theorem 6.19 and Lemma 6.7 vii), we have

sup
I∈I([−2+θ,2−θ])

|σN(I)− σ(I)| ≺ βθ

N
1
2

.

In particular, we find that for the sets A′N with

∀N ∈ N : A′N
..=

{
sup

I∈I([−2+θ,2−θ])
|σN(I)− σ(I)| ≤ βθ

N
1
2
− ε

2

}
,

there exists are a constant Cε/2,D ≥ 0 such that

∀N ∈ N : P(A′N) > 1−
Cε/2,D
ND

.

Now let N ∈ N be arbitrary and I ⊆ [−2 + θ, 2 − θ] be an interval with |I| ≥ 1/N
1
2
−ε.

Then on A′N :∣∣∣∣σN(I)

σ(I)
− 1

∣∣∣∣ = |σN(I)− σ(I)| · 1

σ(I)
≤ |σN(I)− σ(I)| 1

βθ|I|
≤ βθ

N
1
2
− ε

2

· N
1
2
−ε

βθ
=

1

N
ε
2

.

Therefore:

∀N ∈ N : P

 sup
I∈I(R)

|I|≥ 1

N1/2−ε

∣∣∣∣σN(I)

σ(I)
− 1

∣∣∣∣ ≤ 1

N
ε
2

 ≥ P(A′N) > 1−
Cε/2,D
ND

,

which concludes the proof of the third statement by using the constants (ε,D) 7→ Cε/2,D.

Statement iii) of Theorem 6.20 is very interesting. It allows conclusions about the
relative deviation σN(I)/σ(I) for all intervals I in the bulk with a minimal length and
thus resolves the problems discussed before Theorem 6.20. In particular, we now know
exactly for which intervals I, σN(I) can be sensibly predicted by σ(I), and which relative
error to expect.
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Remark 6.21. Let us now investigate how far we would get by squeezing as much out
of the global law as possible. We remember that the global law merely states that σN
converges to σ weakly in probability (or almost surely). Denote by FσN and Fσ the
corresponding distribution functions, then since Fσ is continuous, we obtain that ‖FσN −
Fσ‖∞ → 0 in probability. To see this, let I ⊆ N be an arbitrary subsequence and d
be a metric on the space of probability measures that metrizes weak convergence, then
d(σN , σ) → 0 in probability for N ∈ I, so for some subsequence J ⊆ I, d(σN , σ) → 0
almost surely for N ∈ J , that is, this happens on a measurable set A with P(A) = 1. Then
for all ω ∈ A we find σN(ω)→ σ weakly for N ∈ J, but this entails that ‖FσN (ω)−Fσ‖∞ →
0 for N ∈ J , since Fσ is continuous (see [34, p. 141]). So indeed, the global semicircle
law in probability yields ‖FσN − Fσ‖∞ → 0 in probability (since any subsequence has
an almost surely convergent subsequence). However, we know nothing about the rate of
convergence. We will be pragmatic and assume a Cε/N -rate, which means that for all
ε > 0 there is a Cε ≥ 0 such that

∀N ∈ N : P (‖FσN − Fσ‖∞ ≤ ε) ≥ 1− Cε
N
. (6.9)

This is a valid probabilistic statement, that is, ‖FσN − Fσ‖∞ is measurable, since

sup
x∈R
|FσN (x)− Fσ(x)| = sup

x∈R
|σN((−∞, x])− σ((−∞, x])|

= sup
x∈Q
|σN((−∞, x])− σ((−∞, x])|,

where the last equation follows easily from continuity of probability measures. Thus,
measurability of ‖FσN −Fσ‖∞ is due to the measurability of |σN((−∞, x])− σ((−∞, x])|
for each x ∈ Q.

Now if ‖FσN − Fσ‖∞ ≤ ε, this entails that for any interval I ⊆ R, |σN(I)− σ(I)| ≤ 2ε.
To show this, it is easily verified that the bound is even ε instead of 2ε for intervals of the
type (−∞, x], (−∞, x), [x,∞) and (x,∞), where x ∈ R. This is then used to derive the
2ε-bound for all other interval types. Therefore, from (6.9) it follows that

∀N ∈ N : P

(
sup
I∈I(R)

|σN(I)− σ(I)| ≤ 2ε

)
≥ 1− Cε

N
.

Renaming our constants Cε, we find in particular that for all ε ∈ (0, 1),

∀N ∈ N : P

(
sup
I∈I(R)

|σN(I)− σ(I)| ≤ εN

N

)
≥ 1− Cε

N
. (6.10)

What that means now is that when estimating σN(I) by σ(I) under knowledge of the
global law, we can merely control an error of ε independent of N . In contrast to the small
scale results from the local law, a growing N will not yield more accurate predictability of
σN(I) by σ(I). Likewise, when it comes to predicting the number of eigenvalues in a given
interval I, we can only do so up to a number of eigenvalues proportional to N , namely
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εN , and the probability that our forecast does not fall within these bounds decays only
at a rate of Cε/N (by assumption) instead of arbitrarily polynomially fast. Likewise, for
any fixed θ ∈ (0, 1) and ε, c > 0, we may conclude that there is a constant Kε,c > 0 such
that

P

 sup
I∈I([−2+θ,2−θ])

|I|≥c

∣∣∣∣σN(I)

σ(I)
− 1

∣∣∣∣ > ε

 ≤ Kε,c

N
. (6.11)

To see this, denote by βθ > 0 the minimum of fσ on [−2 + θ, 2− θ] and set

∀N ∈ N : AN ..=

{
sup
I∈I(R)

|σN(I)− σ(I)| ≤ εcβθ

}
.

Then on AN , for any I ⊆ [−2 + θ, 2− θ] with |I| > c, we obtain∣∣∣∣σN(I)

σ(I)
− 1

∣∣∣∣ = |σN(I)− σ(I)| 1

σ(I)
≤ εcβθ

1

βθ|I|
≤ ε.

Since P(AN) ≥ 1 − Cεcβθ/N , setting Kε,c
..= Cεcβθ , we obtain (6.11). Note the slow

convergence speed of O(1/N), which stems from our assumption in (6.9). Note also that
the size of the intervals is not allowed to decrease as N →∞, but that |I| ≥ c is required.
In other words, the global law truly is not a local law.

Remark 6.22. In this remark, we would like to mention what kind of improvements can
be made to all of the above theorems if the stronger local law as in [9] were known. In the
weak local law, Theorem 6.10, the error term on the right hand side of ≺ could be replaced
by 1/Nη. Accordingly, in the simultaneous weak local law, the denominator on the left
hand side of ≺ can be replaced by the term 1/Nη. In Corollary 6.16, the denominator on
the right hand side of ≺ can be replaced by 1/Nγ. Further, in Corollary 6.17, the term
Nγ/4 inside the probability can be replaced by Nγ. In the semicircle law on small scales,
Theorem 6.19, the first statement of ≺ can be improved in such a way that the right
hand side is replaced by 1/N . The second ≺ statement will then be redundant. In the
interval-type weak semicircle law, Theorem 6.20, in all these statements we may consider
ε ∈ (0, 1) instead of ε ∈ (0, 1/4) or ε ∈ (0, 1/2). Further, in all statements, intervals of
length |I| ≥ N ε−1 may be considered, rendering statement ii) redundant. As mentioned
before, these statements are in the spirit of ”The Local Semicircle Law” as formulated by
Tao and Vu in [60, p. 7].

Having discussed the weak local law, Theorem 6.10, and its consequences in this chapter,
we will now move on to prove it.
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6 The Local Law for Curie-Weiss Type Ensembles

6.4 Proof of The Weak Local Law

The proof of Theorem 6.10 is obtained through five steps, thus it is carried out in the
following five subsections (actually, we choose an argumentation that already yields the
stronger simultaneous version, Theorem 6.15). We follow the line of the sketched proof
in Chapter 7 of [27] as inspiration. Our proof accommodates the setting of Curie-Weiss
type ensembles. Further, we incorporate some ideas as in [9]. For example, we prefer the
initial estimate as in [9], since it is simplified and sufficient.

At first, a purely deterministic (but very thorough) stability analysis will analyze the
equation in m ∈ C

m+
1

z +m
= 0

for fixed z ∈ [−10, 10]× i(0, 10]. We know from Theorem 5.16 that if an m satisfies this
equation, then m ∈ {s(z), 1/s(z)}. The question is, if m almost satisfies this equation
(which means that |m+ 1/(z +m)| is small), then how far is m from s(z) or 1/s(z)? In
the second step, an initial estimate for the local law will be derived. To be more precise,
it will be proved to be valid on the smaller (and N -independent) domain DI instead of
DN(γ). In the third step, with help of bootstrap and continuity arguments, the validity
of the local law will be extended to the domain DN(γ).

In the analysis that follows we will use the notational convention that exponents bind
stronger than other operations, for example, if Y is an invertible N ×N matrix and tr is
the trace operator, then trY −1 = tr[Y −1].

6.4.1 Step 1: Deterministic Stability Analysis

The Landau symbol O is well-known: For functions f and g we write f = O(g), if
|f | ≤ C · g for some constant C > 0. To be more precise in the following, we specifically
write f = OC(g) with C > 0, if |f | ≤ C · g.

Now to start with our analysis, we need the following lemma:

Lemma 6.23. Let (XN)N be a Curie-Weiss type ensemble and (sN)N the Stieltjes trans-
forms of the ESDs of (XN)N . Then if z = E + iη where E ∈ R and η > 0, we obtain:

∀N ∈ N : sN(z) =
1

N

N∑
k=1

1

−z − sN(z) + Ωk

,

where

Ωk = XN(k, k)− Zk +O1

(
1

Nη

)
and Zk =

∑
i 6=j

xk(i)(X
(k)
N − z)−1(i, j)xk(j).

In particular, the terms Ωk, Zk and xk all depend on N , which is dropped from the
notation. Here, X

(k)
N denotes the k-th principle minor of XN and xk denotes the k-th

column of XN without the k-th entry.
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6.4 Proof of The Weak Local Law

Proof. For N ∈ N, Theorem 5.19 yields

sN(z) = SσN (z) =
1

N

N∑
k=1

1

XN(k, k)− z − x∗k(X
(k)
N − z)−1xk

.

Now for k ∈ {1, . . . , N} arbitrary we find, considering that entries of XN are ±1/
√
N -

valued,

XN(k, k)− z − x∗k(X
(k)
N − z)−1xk

= XN(k, k)− z −
∑
i 6=j

xk(i)(X
(k)
N − z)−1(i, j)xk(j)︸ ︷︷ ︸

=Zk

− 1

N
tr(X

(k)
N − z)−1

= XN(k, k)− z − Zk − sN(z) + sN(z)− 1

N
tr(X

(k)
N − z)−1︸ ︷︷ ︸

|...|≤ 1
Nη

by Theorem 5.19

= −z − sN(z) +XN(k, k)− Zk +O1

(
1

Nη

)
︸ ︷︷ ︸

=Ωk

,

We should obtain

sN(z) =
1

N

N∑
k=1

1

−z − sN(z) + Ωk

≈ 1

N

N∑
k=1

1

−z − sN(z)
=

1

−z − sN(z)

if we can show that all Ωk are small, which then should entail

sN(z) ≈ s(z).

The following lemma and theorem show us how we can make this rigorous, see also pages
41 through 43 in [27]:

Theorem 6.24 (Geometric Series Expansion). In the situation above, if

sN(z) =
1

N

N∑
k=1

1

−z − sN(z) + Ωk

and
maxk |Ωk|
|z + sN(z)|

≤ 1

2
,

then ∣∣∣∣sN(z) +
1

z + sN(z)

∣∣∣∣ ≤ 2 maxk |Ωk|
|z + sN(z)|2

.
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Proof. First, we make a general observation: If x ∈ C with |x| < 1, then

1

1− x
=
∑
n∈N0

xn = 1 + x+
∑
n≥2

xn = 1 + x+ x2
∑
n∈N0

xn = 1 + x+
x2

1− x
,

thus
1

1− x
= 1 + x+R(x), |R(x)| = |x|2

|1− x|
≤ |x|2

1− |x|
.

Now,

sN(z) =
1

N

N∑
k=1

1

−z − sN(z) + Ωk

=
1

N

N∑
k=1

1

−z − sN(z)

1

1− Ωk
z+sN (z)

=
1

N

N∑
k=1

1

−z − sN(z)

(
1 +

Ωk

z + sN(z)
+R

(
Ωk

z + sN(z)

))
.

Therefore,∣∣∣∣sN(z) +
1

z + sN(z)

∣∣∣∣ ≤ 1

N

N∑
k=1

(
|Ωk|

|z + sN(z)|2
+

1

|z + sN(z)|

∣∣∣∣R( Ωk

z + sN(z)

)∣∣∣∣)

≤ maxk |Ωk|
|z + sN(z)|2

+
1

N

N∑
k=1

1

|z + sN(z)|

|Ωk|2
|z+sN (z)|2

1− |Ωk|
|z+sN (z)|

≤ maxk |Ωk|
|z + sN(z)|2

+
maxk |Ωk|
|z + sN(z)|2

·
maxk |Ωk|
|z+sN (z)|

1− maxk |Ωk|
|z+sN (z)|

≤ 2
maxk |Ωk|
|z + sN(z)|2

,

where we used that a 7→ a2

1−a and a 7→ a
1−a are isotonic on [0, 1) and

1
2

1− 1
2

= 1.

Next, if z ∈ C+ is fixed, we want to answer the following question: If |m+ 1
z+m
| ≤ δ ≤ 1

for some δ ∈ [0, 1], then how close is m to one of the roots of the equation

m2 + zm+ 1 = 0

in dependence of δ? By Theorem 5.16, we know the roots to be s(z) and 1
s(z)

, so the
question is to find an upper bound on

min

(
|m− s(z)|,

∣∣∣∣m− 1

s(z)

∣∣∣∣)
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in dependence of δ. If δ = 0, above equation is satisfied by m, so m is exactly s(z) or 1
s(z)

and thus

min

(
|m− s(z)|,

∣∣∣∣m− 1

s(z)

∣∣∣∣) = 0.

For general δ ∈ [0, 1], the following theorem helps. Although deterministic in nature, it
constitutes one of the key ingredients for the proof of the local law.

Theorem 6.25 (Proximity Theorem). There is a CP > 0, so that the following holds: If
z ∈ [−10, 10] + i(0, 10] and m ∈ C are arbitrary with∣∣∣∣m+

1

z +m

∣∣∣∣ ≤ δ

for a δ ∈ [0, 1], then it follows

min

{
|m− s(z)|,

∣∣∣∣m− 1

s(z)

∣∣∣∣} ≤ CP δ√
κ+ η + δ

≤ CP
√
δ.

where E = E(z) = Re(z), η = η(z) = Im(z) and κ = ||E| − 2|.

Proof. Clearly, we only need to show the first inequality. The proof will be subdivided
into three steps:
Step 1: It holds that |m| ≤ 17.

We find∣∣∣∣m+
1

z +m

∣∣∣∣ ≤ δ ≤ 1, thus m+
1

z +m
= x for some x ∈ C with |x| ≤ 1.

It follows with |z| ≤ 15 that

m2 + zm+ 1 = zx+mx

⇒ m2 + (z − x)m+ 1− zx = 0

⇒ m1,2 = −z − x
2
±
√

(z − x)2

4
− 1 + zx

⇒ |m| ≤ |z|+ |x|
2

+

√
(|z|+ |x|)2

4
+ 1 + |z|

≤ 16

2
+
√

64 + 16

≤ 17.

Step 2: Bounding the Product of the Terms in the Minimum

Let again x = m+ 1
z+m

, then |x| ≤ δ ≤ 1. Since

s(z) +
1

z + s(z)
= 0,
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it follows

s(z) +
1

z + s(z)
− x = −x

⇒ s(z) +
1

z + s(z)
−m− 1

z +m
= −x

⇒ m− s(z)− m− s(z)

(z +m)(z + s(z))
= x

⇒ (m− s(z))

[
1− 1

(z +m)(z + s(z))

]
= x

⇒ (m− s(z))

[
m+ z − 1

z + s(z)

]
= x(m+ z).

Now

z − 1

z + s(z)
= z + s(z) = − 1

s(z)
,

where we used for both equalities that s(z) + 1/(z + s(z)) = 0. We obtain

|m− s(z)|
∣∣∣∣m− 1

s(z)

∣∣∣∣ = |x(m+ z)| ≤ 32δ = Dδ, (6.12)

where we set D ..= 32. From this we obtain through s(z) = s(z)2/s(z):

|m− s(z)|
∣∣∣∣m− s(z)− 1− s(z)2

s(z)

∣∣∣∣ ≤ Dδ (6.13)

Step 3: Proof of Statement by Case-by-Case Analysis
Throughout this step, we will use Theorem 5.16 on page 129 and the constant Cs therein.
We set

C ′ ..= Cs

√
D

2
, then 2

(
C ′

|s(z)|

)2

≥ D, since |s(z)| ≤ Cs. (6.14)

1. Case: |1− s(z)2| ≤ C ′
√
δ

Then (6.13) implies

|m− s(z)| ≤ 2C ′
√
δ

|s(z)|
.

To see this, if |m− s(z)| > 2C′
√
δ

|s(z)| were true, it would follow for the second factor in (6.13)
that ∣∣∣∣m− s(z)− 1− s(z)2

s(z)

∣∣∣∣ ≥ |m− s(z)| −
∣∣∣∣1− s(z)2

s(z)

∣∣∣∣ > C ′
√
δ

|s(z)|
.

Therefore, the l.h.s. of (6.13) would be strictly larger than 2
(

C′

|s(z)|

)2

δ, which is a contra-

diction due to (6.14). We conclude

|m− s(z)| ≤ 2C ′
√
δ

|s(z)|
≤ 2C ′Cs

√
δ.

178



6.4 Proof of The Weak Local Law

From Theorem 5.16 and the case assumption it also follows√
κ+ η + δ ≤

√
κ+ η +

√
δ ≤ C2

s |1− s(z)2|+
√
δ ≤ C2

sC
′
√
δ +
√
δ = (C2

sC
′ + 1)

√
δ.

Therefore,
(
√
κ+ η + δ)|m− s(z)| ≤ 2C ′Cs(C

2
sC
′ + 1) · δ,

which shows the statement with constant C
(1)
p

..= 2C ′Cs(C
2
sC
′ + 1).

2. Case: |1− s(z)2| > C ′
√
δ

Then with Theorem 5.16 we obtain

√
κ+ η ≥ 1

C2
s

|1− s(z)2| > C ′

C2
s

√
δ,

and using this to bound
√
δ from above we obtain√

κ+ η + δ ≤
√
κ+ η +

√
δ ≤

(
C2
s

C ′
+ 1

)√
κ+ η,

which we will use in the following two subcases:

1. Subcase: |m− s(z)| ≤ 1
2
|1−s(z)2|
|s(z)| .

Then it holds for the second factor in (6.13), that∣∣∣∣m− s(z)− 1− s(z)2

s(z)

∣∣∣∣ ≥ ∣∣∣∣1− s(z)2

s(z)

∣∣∣∣− |m− s(z)|

≥ 1

2

∣∣∣∣1− s(z)2

s(z)

∣∣∣∣
≥ 1

2

1

Cs

√
κ+ η

≥ 1
C2
s

C′
+ 1
· 1

2

1

Cs

√
κ+ η + δ.

We deduce in combination with (6.13) that

|m− s(z)| ≤ 2DCs

(
C2
s

C ′
+ 1

)
δ√

κ+ η + δ
,

which shows the statement with constant C
(2)
p

..= 2DCs(C
2
s/C

′ + 1).

2. Subcase: |m− s(z)| > 1
2
|1−s(z)2|
|s(z)|

Then as above,

|m− s(z)| ≥ 1

2

|1− s(z)2|
|s(z)|

≥ 1
C2
s

C′
+ 1
· 1

2

1

Cs

√
κ+ η + δ

and it follows with (6.12) that∣∣∣∣m− 1

s(z)

∣∣∣∣ ≤ 2DCs

(
C2
s

C ′
+ 1

)
δ√

κ+ η + δ
,
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which again shows the statement with constant C
(2)
p as defined above. Setting CP ..=

max
{
C

(1)
p , C

(2)
p

}
concludes the proof.

The results we obtained in this section so far allow us to prove a very important lemma,
which we will heavily draw upon:

Lemma 6.26 (Deterministic Root Approximation). In the situation of Lemma 6.23,
assume z ∈ [−10, 10] + i(0, 10] is arbitrary so that in particular,

sN(z) =
1

N

∑
k∈[N ]

1

−z − sN(z) + Ωk

.

If we have
maxk |Ωk|
|z + sN(z)|

,
maxk |Ωk|
|z + sN(z)|2

≤ 1

2
,

then it follows that

min

{
|sN(z)− s(z)|,

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣} ≤ CDet min

{
maxk |Ωk|√
κ|z + sN(z)|2

,

√
maxk |Ωk|
|z + sN(z)|2

}
,

where CDet = 2CP , and CP is the constant from Theorem 6.25.

Proof. Due to Theorem 6.24 we have∣∣∣∣sN(z) +
1

z + sN(z)

∣∣∣∣ ≤ 2 maxk |Ωk|
|z + sN(z)|2

=: δ ≤ 1.

With Theorem 6.25 we obtain

min

{
|sN(z)− s(z)|,

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣} ≤ CP min

{
δ√
κ
,
√
δ

}
= CP min

{
2 maxk |Ωk|√
κ|z + sN(z)|2

,

√
2 maxk |Ωk|
|z + sN(z)|2

}

≤ 2CP︸︷︷︸
=:CDet

min

{
maxk |Ωk|√
κ|z + sN(z)|2

,

√
maxk |Ωk|
|z + sN(z)|2

}

6.4.2 Step 2: Large Deviations Estimates

In the setting of Lemma 6.23, we would like to show the smallness of

max
k
|Ωk| = max

k

∣∣∣∣XN(k, k)− Zk +O1

(
1

Nη

)∣∣∣∣ .
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Since |XN(k, k)| = 1√
N

, the only component left to analyze is

max
k
|Zk| = max

k

∣∣∣∣∣∑
i 6=j

xk(i)(X
(k)
N − z)−1(i, j)xk(j)

∣∣∣∣∣ .
To this end, we need a small collection of large deviation inequalities. We would like to
emphasize that the term ”large deviation inequality” in the local law literature is not
used in the sense of the standard probabilistic theory of large deviations. Rather, these
inequalities are meant to establish bounds on the deviations of random variables in the
sense of stochastic domination ≺. In the following, for p ≥ 1 the norm ‖ · ‖p shall denote
the Lp(P)-seminorm, so for any random variable Y : (Ω,A,P) −→ C, ‖Y ‖p = (E|Y |p)1/p.

Theorem 6.27 (Marcinkiewicz-Zygmund Inequality). If Y1, . . . , YN are independent, cen-
tered and complex-valued random variables with existing absolute moments, then for every
p ≥ 1 there exists a positive constant Ap which depends only on p, such that∥∥∥∥∥

N∑
i=1

Yi

∥∥∥∥∥
p

≤ Ap

∥∥∥∥∥∥
(

N∑
i=1

|Yi|2
) 1

2

∥∥∥∥∥∥
p

Proof. In [18, p. 386], the statement is proved for independent real-valued random vari-
ables. As was also shown in [7, p. 33], the statement easily carries over to the complex
case by the following calculation, where we assume A′p to be the constants in the real case:∥∥∥∥∥

N∑
i=1

Yi

∥∥∥∥∥
p

≤

∥∥∥∥∥
N∑
i=1

ReYi

∥∥∥∥∥
p

+

∥∥∥∥∥
N∑
i=1

ImYi

∥∥∥∥∥
p

≤ A′p

∥∥∥∥∥∥
(

N∑
i=1

|ReYi|2
) 1

2

∥∥∥∥∥∥
p

+ A′p

∥∥∥∥∥∥
(

N∑
i=1

|ImYi|2
) 1

2

∥∥∥∥∥∥
p

≤ 2A′p

∥∥∥∥∥∥
(

N∑
i=1

|Yi|2
) 1

2

∥∥∥∥∥∥
p

.

Therefore, the statement is true for the complex case with constants Ap = 2A′p.

The following three lemmas (and their proofs) are taken from [9] and are included for
completeness and convenience.

Lemma 6.28. Let Y1, . . . , YN be independent, complex-valued random variables which are
centered and uniformly ‖ · ‖p-bounded by constants µp for all p ≥ 2. Then it holds for any
complex numbers b1, . . . , bN that

∀p ≥ 2 :

∥∥∥∥∥
N∑
i=1

biYi

∥∥∥∥∥
p

≤ Apµp

(
N∑
i=1

|bi|2
) 1

2

,

where Ap is a constant depending only on p, which can be chosen as in Theorem 6.27.
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Proof. We may assume that not all bi vanish. Setting

β2 ..=
N∑
i=1

|bi|2 > 0,

we calculate, using Theorem 6.27 (and the constant Ap therein) and convexity of t 7→ |t|p/2
for p ≥ 2, that

E

∣∣∣∣∣
N∑
i=1

biXi

∣∣∣∣∣
p

≤ App · E

∣∣∣∣∣
N∑
i=1

|bi|2|Xi|2
∣∣∣∣∣
p
2

= App · βp · E

∣∣∣∣∣
N∑
i=1

|bi|2

β2
|Xi|2

∣∣∣∣∣
p
2

≤ App · βp ·
N∑
i=1

|bi|2

β2
E|Xi|p

≤ App · βp · µpp.

Lemma 6.29. Let Y1, . . . YN , Z1, . . . ZN be independent, complex-valued random variables
which are centered and uniformly ‖ · ‖p-bounded by constants µp for all p ≥ 2. Then it
holds for any complex numbers (ai,j)i,j∈[N ] that

∀ p ≥ 2 :

∥∥∥∥∥
N∑

i,j=1

ai,jYiZj

∥∥∥∥∥
p

≤ A2
pµ

2
p

(
N∑

i,j=1

|ai,j|2
) 1

2

,

where Ap is a constant depending only on p, which can be chosen as in Theorem 6.27.

Proof. We set for all j = 1, . . . , N :

Bj
..=

N∑
i=1

ai,jYi,

so that
N∑

i,j=1

ai,jYiZj =
N∑
j=1

BjZj.

Now define B ..= (B1, . . . , BN) and Z ..= (Z1, . . . , ZN) as vector-valued random variables,
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6.4 Proof of The Weak Local Law

then B and Z are independent, which allows us to conclude with Fubini and Lemma 6.28:

E

∣∣∣∣∣
N∑

i,j=1

ai,jYiZj

∣∣∣∣∣
p

= E

∣∣∣∣∣
N∑
j=1

BjZj

∣∣∣∣∣
p

=

∫ ∣∣∣∣∣
N∑
j=1

bjzj

∣∣∣∣∣
p

dP(Z,B)(z, b)

=

∫ ∫ ∣∣∣∣∣
N∑
j=1

bjzj

∣∣∣∣∣
p

dPZ(z)dPB(b) =

∫
E

∣∣∣∣∣
N∑
j=1

bjZj

∣∣∣∣∣
p

dPB(b)

≤
∫
App · µpp ·

(
N∑
j=1

|bj|2
) p

2

dPB(b) = App · µpp · E

(
N∑
j=1

|Bj|2
) p

2

.

We conclude∥∥∥∥∥
N∑

i,j=1

ai,jYiZj

∥∥∥∥∥
p

≤ Ap · µp ·

E( N∑
j=1

|Bj|2
) p

2

 1
p

= Ap · µp ·

∥∥∥∥∥
N∑
j=1

|Bj|2
∥∥∥∥∥
p
2

 1
2

≤ Ap · µp ·

(
N∑
j=1

‖Bj‖2
p

) 1
2

≤ Ap · µp ·

(
N∑
j=1

A2
p · µ2

p ·
N∑
i=1

|ai,j|2
) 1

2

= A2
p · µ2

p ·

(
N∑

i,j=1

|ai,j|2
) 1

2

,

where in the fourth step we used Lemma 6.28 again.

Lemma 6.30. Let Y1, . . . , YN be independent, complex-valued random variables which are
centered and uniformly ‖ · ‖p-bounded by constants µp for all p ≥ 2. Then it holds for any
complex numbers (ai,j)i,j∈[N ] that

∀p ≥ 2 :

∥∥∥∥∥
N∑

i 6=j=1

ai,jYiYj

∥∥∥∥∥
p

≤ 4A2
pµ

2
p

(
N∑

i 6=j=1

|ai,j|2
) 1

2

,

where Ap is a constant depending only on p, which can be chosen as in Theorem 6.27.

Proof. We begin with noting that for all i, j ∈ [N ] with i 6= j, we obtain

1 =
1

ZN

∑
I∪̇J=[N ]

1I(i)1J(j),

where the sum ranges over all partitions of [N ] = {1, . . . , N} into two sets, and ZN ..=
2N−2. To see that this is true, we just have to count all possible partitions of [N ] into sets
I and J such that i ∈ I and j ∈ J , where i 6= j are fixed elements in [N ]. To this end, we
must count all subsets of [N ] containing i but not j. Finally, these are exactly all sets of
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the form A ∪ {i} for subsets A ⊆ [N ]\{i, j}, and these are 2N−2. Now, we calculate for
p ≥ 2 : ∥∥∥∥∥

N∑
i 6=j=1

ai,jYiYj

∥∥∥∥∥
p

=
1

ZN

∥∥∥∥∥∥
∑

i 6=j∈[N ]

∑
I∪̇J=[N ]

1I(i)1J(j)ai,jYiYj

∥∥∥∥∥∥
p

=
1

ZN

∥∥∥∥∥∥
∑

I∪̇J=[N ]

∑
i∈I,j∈J

ai,jYiYj

∥∥∥∥∥∥
p

≤ 1

ZN

∑
I∪̇J=[N ]

∥∥∥∥∥ ∑
i∈I,j∈J

ai,jYiYj

∥∥∥∥∥
p

≤ 2N

2N−2
A2
pµ

2
p

(
N∑

i 6=j=1

|ai,j|2
) 1

2

,

where in the last step we used Lemma 6.29. To see why the lemma is applicable, note that
I and J are disjoint, and that complementing families of independent random variables
with constant zero-variables will again yield independent families.

The next theorem generalizes Lemma 6.28, Lemma 6.29 and Lemma 6.30 to independent
random variables with a common expectation t ∈ C, which is different from zero. Note
that if t=0, we obtain exactly the statements of the Lemmas mentioned, so that the next
theorem is a true generalization. Theorem 6.31 is a key step to obtaining the local law for
Curie-Weiss type ensembles and thus a key contribution of this part of the dissertation.

Theorem 6.31. Let N ∈ N be arbitrary, (ai,j)i,j∈[N ] and (bi)i∈[N ] be deterministic complex
numbers, (Yi)i∈[N ] and (Zi)i∈[N ] be complex-valued random variables with common expec-
tation t ∈ C, so that the whole family W ..= {Yi | i ∈ [N ]} ∪ {Zi | i ∈ [N ]} is independent.
Further, we assume that for all p ≥ 2 there exists a µp ∈ R+ such that ‖W − t‖p ≤ µp for
all W ∈ W. Then we obtain for all p ≥ 2:

i)

∥∥∥∥∥ ∑i∈[N ]

biYi

∥∥∥∥∥
p

≤
(
Apµp +

√
N |t|

)√ ∑
i∈[N ]

|bi|2,

ii)

∥∥∥∥∥ ∑i,j∈[N ]

ai,jYiZj

∥∥∥∥∥
p

≤
(
A2
pµ

2
p + 2Apµp

√
N |t|+N |t|2

)√ ∑
i,j∈[N ]

|ai,j|2,

iii)

∥∥∥∥∥∥∥
∑

i,j∈[N ]
i 6=j

ai,jYiYj

∥∥∥∥∥∥∥
p

≤
(

4A2
pµ

2
p + 2Apµp

√
N |t|+N |t|2

)√ ∑
i,j∈[N ]
i 6=j

|ai,j|2.

where Ap ∈ R+ is the constant from Theorem 6.27, which depends only on p.
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Proof. Surely, (Yi − t)i and (Zi − t)i are centered and uniformly ‖ · ‖p-bounded by µp for
all p ≥ 2.
We first show that iii) holds, which is the most important statement for our purposes.
For p ≥ 2 we find:∥∥∥∥∥∥∥∥

∑
i,j∈[N ]
i 6=j

ai,jYiYj

∥∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥∥
∑
i,j∈[N ]
i 6=j

ai,j[(Yi − t) + t][(Yj − t) + t]

∥∥∥∥∥∥∥∥
p

=

∥∥∥∥∥∥∥∥
∑
i,j∈[N ]
i 6=j

ai,j[(Yi − t)(Yj − t) + t(Yj − t) + t(Yi − t) + t2]

∥∥∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥∥∥
∑
i,j∈[N ]
i 6=j

ai,j(Yi − t)(Yj − t)

∥∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥∥
∑
i,j∈[N ]
i 6=j

ai,jt(Yj − t)

∥∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥∥
∑
i,j∈[N ]
i 6=j

ai,jt(Yi − t)

∥∥∥∥∥∥∥∥
p

+

∥∥∥∥∥∥∥∥
∑
i,j∈[N ]
i 6=j

ai,jt
2

∥∥∥∥∥∥∥∥
p

=: T1 + T2 + T3 + T4.

We will now proceed to analyze the four terms separately. Note that in general, T2 6= T3.
Their bounds can be derived in the same manner, though. To bound T1, we have by
Lemma 6.30, that

T1 ≤ 4A2
pµ

2
p

√√√√ ∑
i,j∈[N ]
i 6=j

|ai,j|2.

For T2 we obtain through Lemma 6.28 that

T2 = |t|

∥∥∥∥∥∥
∑
j∈[N ]

 ∑
i∈[N ]\{j}

ai,j

 (Yj − t)

∥∥∥∥∥∥
p

≤ |t|Apµp

√√√√√∑
j∈[N ]

∣∣∣∣∣∣
∑

i∈[N ]\{j}

ai,j

∣∣∣∣∣∣
2

≤
√
N |t|Apµp

√√√√ ∑
i,j∈[N ]
i 6=j

|ai,j|2,
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where we used that for any j ∈ [N ] we find∣∣∣∣∣∣
∑

i∈[N ]\{j}

ai,j

∣∣∣∣∣∣
2

≤ N ·
∑

i∈[N ]\{j}

|ai,j|2

by the Cauchy-Schwarz inequality (and N − 1 ≤ N). The bound we just derived for T2

analogously holds for T3, thus

T2 + T3 ≤ 2
√
N |t|Apµp

√√√√ ∑
i,j∈[N ]
i 6=j

|ai,j|2.

Lastly, using the Cauchy-Schwarz inequality again, we obtain

T4 =

∣∣∣∣∣∣∣∣
∑
i,j∈[N ]
i 6=j

ai,jt
2

∣∣∣∣∣∣∣∣ = |t|2

∣∣∣∣∣∣∣∣
∑
i,j∈[N ]
i 6=j

ai,j

∣∣∣∣∣∣∣∣ ≤ |t|
2

√√√√ ∑
i,j∈[N ]
i 6=j

|ai,j|2 ·
√
N2 = N |t|2

√√√√ ∑
i,j∈[N ]
i 6=j

|ai,j|2.

This shows that iii) holds. Now ii) is shown analogously to iii), with the difference that
sums over i and j are always over [N ] without further restrictions such as i 6= j. In
addition, instead of using Lemma 6.30 to bound T1, we then use Lemma 6.29 (where
constants are smaller, thus we can replace 4A2

pµ
2
p by A2

pµ
2
p).

To show that i) holds, we calculate for p ≥ 2:∥∥∥∥∥∥
∑
i∈[N ]

biYi

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[N ]

bi((Yi − t) + t)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[N ]

bi(Yi − t)

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[N ]

bit

∥∥∥∥∥∥
p

≤ Apµp

√∑
i∈[N ]

|bi|2 + |t|

∣∣∣∣∣∣
∑
i∈[N ]

bi

∣∣∣∣∣∣
≤ (Apµp + |t|

√
N)

√∑
i∈[N ]

|bi|2,

where in the third step we used Lemma 6.28, and in the fourth step we used the Cauchy-
Schwarz inequality.

We proceed to show the main large deviations result in relation to the stochastic order
relation ≺. Together with Theorem 6.31, this is the key contribution in order to obtain
the local law for Curie-Weiss type ensembles. We show more than we need for this thesis.
In particular, statement ii) of the following theorem is needed to obtain the stronger local
law as in [9]. Work on this generalization is ongoing as this thesis is handed in.
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6.4 Proof of The Weak Local Law

Theorem 6.32. Let for all N ∈ N, Y and W be N-dependent objects (Y = Y (N),W =
W (N)) that satisfy the following for all N ∈ N:

• W = W (N) is a finite index set.

• YW = (Yi)i∈W = (Y
(N)
i )i∈W (N) = Y

(N)

W (N) is a tuple of random variables of de-Finetti
type with mixture µN satisfying the moment decay condition (6.3) on page 148.

Further, denote for all subsets K ⊆ W by FW ({±1}K) the set of tuples C = (Ci)i∈W ,
where for each i ∈ W , Ci : {±1}K → C is a complex-valued function. Analogously, define
for all subsets K ⊆ W by FW×W ({±1}K) the set of tuples C = (Ci,j)i,j∈W , where for all
i, j ∈ W , Ci,j : {±1}K → C is a complex-valued function. Then we obtain the following
large deviation bounds:

i)
∑
i∈I
Bi[YK ]Yi ≺

√∑
i∈I
|Bi[YK ]|2, uniformly over all pairwise disjoint subsets I,K ⊆ W

with #I ≤ N , and B ∈ FW ({±1}K).

ii)
∑

i∈I,j∈J
YiAi,j[YK ]Yj ≺

√ ∑
i∈I,j∈J

|Ai,j[YK ]|2, uniformly over all pairwise disjoint subsets

I, J,K ⊆ W with #I = #J ≤ N , and A ∈ FW×W ({±1}K).

iii)
∑

i,j∈I,i 6=j
YiAi,j[YK ]Yj ≺

√ ∑
i,j∈I,i 6=j

|Ai,j[YK ]|2, uniformly over all pairwise disjoint sub-

sets I,K ⊆ W with #I ≤ N , and A ∈ FW×W ({±1}K).

Proof. We prove iii) first: Let ε,D > 0 be arbitrary and choose p ∈ N with p ≥ 2 so large
that pε > D. Now, we pick an N ∈ N, then choose pairwise disjoint subsets I,K ⊆ W (N)

with #I ≤ N and A ∈ FW×W ({±1}K) arbitrarily. To avoid division by zero, we define
the set:

A3
..=

{
yK ∈ {±1}K |

∑
i,j∈I,i 6=j

|Ai,j[yK ]|2 > 0

}
.

Then we conduct the following calculation (explanations are found below the calculation;
the sums over ”i 6= j” are over all i, j ∈ I with i 6= j):
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P

∣∣∣∣∣∑
i 6=j

YiAi,j[YK ]Yj

∣∣∣∣∣ > N ε

(∑
i 6=j

|Ai,j[YK ]|2
) 1

2


= P


∣∣∣∣∣∣∣
∑

i 6=j YiAi,j[YK ]Yj(∑
i 6=j |Ai,j[YK ]|2

) 1
2

∣∣∣∣∣∣∣
p

1A3(YK) > Npε


≤ 1

Npε
E

∣∣∣∣∣∣∣
∑

i 6=j YiAi,j[YK ]Yj(∑
i 6=j |Ai,j[YK ]|2

) 1
2

∣∣∣∣∣∣∣
p

1A3(YK)

=
1

Npε

∫
[−1,1]

∫
{±1}I∪K

∣∣∣∣∣∣∣
∑

i 6=j yiAi,j[yK ]yj(∑
i 6=j |Ai,j[yK ]|2

) 1
2

∣∣∣∣∣∣∣
p

1A3(yK)dP⊗I∪Kt (yI∪K)dµN(t)

=
1

Npε

∫
[−1,1]

∫
{±1}K

∫
{±1}I

∣∣∣∣∣∣∣
∑

i 6=j yiAi,j[yK ]yj(∑
i 6=j |Ai,j[yK ]|2

) 1
2

∣∣∣∣∣∣∣
p

dP⊗It (yI)1A3(yK)dP⊗Kt (yK)dµN(t)

≤ 1

Npε

∫
[−1,1]

∫
{±1}K

[
4A2

pµ
2
p + 2Apµp

√
N |t|+N |t|2

]p
dP⊗Kt (yK)dµN(t)

=
1

Npε

∫
[−1,1]

[
C1 + (C2

√
N +N |t|)|t|

]p
dµN(t)

=
1

Npε

∫
[−1,1]

p∑
l=0

(
p

l

)
Cp−l

1 (C2

√
N +N |t|)l|t|ldµN(t)

=
1

Npε

∫
[−1,1]

p∑
l=0

(
p

l

)
Cp−l

1

(
l∑

k=0

(
l

k

)
(C2

√
N)l−k(N |t|)k

)
|t|ldµN(t)

=
1

Npε

∫
[−1,1]

p∑
l=0

l∑
k=0

(
p

l

)(
l

k

)
Cp−l

1 C l−k
2 N

l+k
2 |t|l+kdµN(t)

=
1

Npε

p∑
l=0

l∑
k=0

(
p

l

)(
l

k

)
Cp−l

1 C l−k
2 N

l+k
2

∫
[−1,1]

|t|l+kdµN(t)

≤ 1

Npε

p∑
l=0

l∑
k=0

(
p

l

)(
l

k

)
Cp−l

1 C l−k
2 N

l+k
2

√∫
[−1,1]

|t|2(l+k)dµN(t)

≤ 1

Npε

p∑
l=0

l∑
k=0

(
p

l

)(
l

k

)
Cp−l

1 C l−k
2 N

l+k
2

√
K2(l+k)

N
l+k
2

=
1

Npε

p∑
l=0

l∑
k=0

(
p

l

)(
l

k

)
(4A2

pµ
2
p)
p−l(2Apµp)

l−k√K2(l+k)

≤ 1

ND
· const(p(ε,D)),
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6.4 Proof of The Weak Local Law

where the first step follows from the fact that for

∣∣∣∣∣∑
i 6=j

YiAi,j[YK ]Yj

∣∣∣∣∣ > N ε

(∑
i 6=j

|Ai,j[YK ]|2
) 1

2

to hold, not all Ai,j[YK ] may vanish, in the third step we used Lemma 6.3, in the fourth
step Fubini, in the fifth step we used part iii) of Theorem 6.31 (notice that the ±1-valued
coordinates (yi)i∈I are independent under P⊗It and have expectation t ∈ [−1, 1], thus
(
∫
{±1} |yi − t|

pdPt(yi))
1/p ≤ 2, which makes Theorem 6.31 applicable with µp = 2 for any

t ∈ [−1, 1]. Further, #I ≤ N), in the sixth step we set temporarily for the duration of
above calculation C1

..= 4A2
pµ

2
p and C2

..= 2Apµp, in the seventh and eighth step we used
the binomial theorem, in the eleventh step Cauchy-Schwarz, and in the twelfth step we
used the moment decay property (6.3). Lastly,

const(p(ε,D)) ..=

p∑
l=0

l∑
k=0

(
p

l

)(
l

k

)
(4A2

pµ
2
p)
p−l(2Apµp)

l−k√K2(l+k)

denotes a constant which depends only on p, which in turn depends only on the choices
of ε and D, as is obvious in the beginning of the proof. In particular, this constant does
not depend on the choice of N ∈ N, the sets I and K or the function tuple A. This shows
iii).

To show ii), we can proceed analogously to the proof of part iii), with the following
minor modifications: Instead of A3, we use the set

A2
..=

{
yK ∈ {±1}K |

∑
i∈I,j∈J

|Ai,j[yK ]|2 > 0

}
.

The summation in the beginning is over i ∈ I, j ∈ J instead of i, j ∈ I, i 6= j. This leads
to the term P⊗I∪J∪Kt (yI∪J∪K) in the third step and the term P⊗I∪Jt (yI∪J)P⊗Kt (yK) in the
fourth step. In the fifth step, we use part ii) of Theorem 6.31 instead of part iii), giving
slightly different constants.

It is left to show part i). Let again ε,D > 0 be arbitrary and choose p ∈ N with
p ≥ 2 so large that pε > D. Now pick N ∈ N arbitrarily, then pairwise disjoint subsets
I,K ⊆ W (N) with #I ≤ N and B ∈ FW ({±1}K) arbitrarily. We define the set

A1
..=

{
yK ∈ {±1}K |

∑
i∈I

|Bi[yK ]|2 > 0

}
.

Then we calculate (where again, explanations are found below the calculation, and the
summation over i means summing over i ∈ I):
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6 The Local Law for Curie-Weiss Type Ensembles

Now

P

∣∣∣∣∣∑
i

Bi[YK ]Yi

∣∣∣∣∣ > N ε

(∑
i

|Bi[YK ]|2
) 1

2


= P

(∣∣∣∣∣
∑

iBi[YK ]Yi

(
∑

i |Bi[YK ]|2)
1
2

∣∣∣∣∣
p

1A1(YK) > Npε

)

≤ 1

Npε
E

∣∣∣∣∣
∑

iBi[YK ]Yi

(
∑

i |Bi[YK ]|2)
1
2

∣∣∣∣∣
p

1A1(YK)

=
1

Npε

∫
[−1,1]

∫
{±1}I∪K

∣∣∣∣∣
∑

iBi[yK ]yi

(
∑

i |Bi[yK ]|2)
1
2

∣∣∣∣∣
p

1A1(yK)dP⊗I∪Kt (yI∪K)dµN(t)

=
1

Npε

∫
[−1,1]

∫
{±1}K

∫
{±1}I

∣∣∣∣∣
∑

iBi[yK ]yi

(
∑

i |Bi[yK ]|2)
1
2

∣∣∣∣∣
p

dP⊗It (yI)1A1(yK)dP⊗Kt (yK)dµN(t)

≤ 1

Npε

∫
[−1,1]

∫
{±1}K

[
Apµp +

√
N |t|

]p
dP⊗Kt (yK)dµN(t)

=
1

Npε

∫
[−1,1]

p∑
l=0

(
p

l

)
(Apµp)

p−l(
√
N |t|)ldµN(t)

=
1

Npε

p∑
l=0

(
p

l

)
(Apµp)

p−lN
l
2

∫
[−1,1]

|t|ldµN(t)

=
1

Npε

p∑
l=0

(
p

l

)
(Apµp)

p−lN
l
2

√∫
[−1,1]

|t|2ldµN(t)

≤ 1

Npε

p∑
l=0

(
p

l

)
(Apµp)

p−lN
l
2

√
K2l

N
l
2

≤ 1

Npε

p∑
l=0

(
p

l

)
(Apµp)

p−l
√
K2l

≤ 1

ND
const′(p(ε,D)),

where in the third step we used Lemma 6.3, in the fourth step Fubini, in the fifth
step we used part i) of Theorem 6.31 (again, we notice that the ±1-valued coordinates
(yi)i∈I are independent under P⊗It and have expectation t ∈ [−1, 1], thus for any such t,
(
∫
{±1} |yi − t|

pdPt(yi))
1/p ≤ 2, which makes Theorem 6.31 applicable with µp = 2 and any

t ∈ [−1, 1]. Further, #I ≤ N), in the sixth step we used the binomial theorem, in the
eighth step Cauchy-Schwarz, and in the ninth step we used the moment decay property
(6.3). Lastly,

const′(p(ε,D)) ..=

p∑
l=0

(
p

l

)
(Apµp)

p−l
√
K2l
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6.4 Proof of The Weak Local Law

denotes a constant which depends only on p, which in turn depends only on the choices
of ε and D, as is obvious in the beginning of the proof of i). In particular, this constant
does not depend on the choice of N ∈ N, the sets I and K or the function tuple B. This
shows i).

Remark 6.33. We would like to portray the calculations in Theorem 6.32 in a different
light, which might also be used to expand our ideas to other situations, but at least will
make these calculations very intuitive. First of all, it is clear that ≺-statements pertain
only to the distributions of the random variables involved and have nothing to do with
the underlying probability space on which the random variables are defined. Therefore,
one can construct the probability space in a favourable way that reveals probabilistic
structure. For example, let µ be a probability measure on [−1, 1], W be a finite non-
empty index set. Let P⊗Wt

..= ⊗i∈WPt be the stochastic kernel from ([−1, 1],B([−1, 1])) to(
{±1}W ,P

(
{±1}W

))
as in Definition 6.1, where the notation for the σ-algebras should be

clear. Then define the probability space
(
[−1, 1]× {±1}W , µ(dt)⊗ P⊗Wt

)
, where µ(dt)⊗

P⊗Wt =: P is the product the probability measure µ and the kernel P⊗Wt . On this space,
define the random variable M , which is just the projection of the first coordinate to [−1, 1],
thus µ-distributed, and YW = (Yi)i∈W , which is the projection of the second coordinate to
{±1}I and thus µ(dt)◦P⊗Wt -distributed (composition of probability measure and kernel),
which exactly means (6.1). Therefore, we have effectively constructed random variables of
de-Finetti type with mixture µ. But in addition, we have also generated a mixing variable
M . The clou is that YI are conditionally independent given M . And this was actually
the starting point in the beginning of our investigations for Theorem 6.32. In the setting
of the theorem, given pairwise disjoint subsets K, I ⊆ W , we repeat the calculation with
only slightly different – yet more intuitive – notation:

P

∣∣∣∣∣∑
i 6=j

YiAi,j[YK ]Yj

∣∣∣∣∣ > N ε

(∑
i 6=j

|Ai,j[YK ]|2
) 1

2


≤ 1

Npε
E

∣∣∣∣∣∣∣
∑

i 6=j YiAi,j[YK ]Yj(∑
i 6=j |Ai,j[YK ]|2

) 1
2

∣∣∣∣∣∣∣
p

1A3(YK)

=
1

Npε

∫
[−1,1]

∫
{±1}I∪K

∣∣∣∣∣∣∣
∑

i 6=j yiAi,j[yK ]yj(∑
i 6=j |Ai,j[yK ]|2

) 1
2

∣∣∣∣∣∣∣
p

1A3(yK)dP(YI ,YK)|M=t(yI , yK)dPM(t)

=
1

Npε

∫
[−1,1]

∫
{±1}K

∫
{±1}I

∣∣∣∣∣∣∣
∑

i 6=j yiAi,j[yK ]yj(∑
i 6=j |Ai,j[yK ]|2

) 1
2

∣∣∣∣∣∣∣
p

dPYI |M=t(yI)1A3(yK)dPYK |M=t(yK)dPM(t)

≤ . . .

In the third step of above calculation we used conditional independence.
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6 The Local Law for Curie-Weiss Type Ensembles

Theorem 6.32 is very powerful. It is an analog to Theorem 3.6 in [9] which is a key
ingredient to the full local law. Statement iii) of our Theorem 6.32 is all that is needed
for the proof of the weak local law, whereas for the proof of the stronger local law as in
[9] (which is ongoing work), we will also need statement ii). For our purposes, statement
iii) immediately yields the following corollary:

Corollary 6.34. In the setting of Lemma 6.23, we find

∑
i 6=j∈[N−1]

(
√
Nxk(i))(X

(k)
N −z)−1(i, j)(

√
Nxk(j)) ≺

 ∑
i 6=j∈[N−1]

|(X(k)
N − z)−1(i, j)|2

 1
2

, z∈C+,
k∈[N ]

Proof. Note that for all N ∈ N and k ∈ [N ], the vector
√
Nxk is (N − 1)-dimensional

with distinct entries out of the family (
√
NXN(i, j))1≤i≤j≤N , which is of de-Finetti type

with mixture µN satisfying the moment decay condition (6.3) on page 148. Further, for

any z ∈ C+ and i 6= j ∈ [N − 1] we have that (X
(k)
N − z)−1(i, j) is a complex function of

variables in (
√
NXN(i, j))1≤i≤j≤N disjoint from those in

√
Nxk. Therefore, the statement

follows with Theorem 6.32.

We would like to remind the reader that the eventual goal is to be able to analyze
the magnitude of the error terms Zk as laid out in the beginning of this section. We
have already come very far, but need a last ingredient before we can finally turn to
Theorem 6.36, which is the main stochastic large deviations estimate we are after. The
missing ingredient is the Ward identity:

Lemma 6.35 (Ward Identity). Let N ∈ N, H be an Hermitian N×N- matrix, z = E+iη
with E ∈ R and η > 0 and G be the resolvent of H at z, that is, G = (H − z)−1. Then
for any i ∈ [N ]: ∑

j∈[N ]

|Gij|2 =
ImGii

η
.

Proof. Since H is Hermitian, it has real eigenvalues λ1, . . . , λN and we find corresponding
orthonormal eigenvectors u1, . . . , uN so that

H =
∑
j∈[N ]

λjuju
∗
j .

By simple calculation, we find

(GG∗)ii =
∑
j∈[N ]

GijG
∗
ji =

∑
j∈[N ]

GijGij =
∑
j∈[N ]

|Gij|2.

By the spectral theorem, we have

(GG∗)ii =

∑
j∈[N ]

1

|λj − z|2
uju

∗
j


ii

=
∑
j∈[N ]

1

|λj − z|2
|uj(i)|2.
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6.4 Proof of The Weak Local Law

This clearly shows ∑
j∈[N ]

|Gij|2 =
∑
j∈[N ]

1

|λj − z|2
|uj(i)|2.

It remains to see that this coincides with the right hand side of the Ward identity. We
calculate

1

η
ImGii =

1

η
Im

∑
j∈[N ]

1

λj − z
uju

∗
j


ii

=
1

η
Im
∑
j∈[N ]

1

λj − z
|uj(i)|2

=
1

η

∑
j∈[N ]

η

(λj − E)2 + η2
|uj(i)|2

=
∑
j∈[N ]

1

(λj − E)2 + η2
|uj(i)|2

=
∑
j∈[N ]

1

|λj − z|2
|uj(i)|2.

Now, we are equipped to show the main stochastic large deviations estimate of this
section:

Theorem 6.36. We find

max
k∈[N ]

|Zk(z)| ≺ 1√
Nη

√
Im sN(z) +

1

Nη
, z ∈ C+.

Proof. By Lemma 6.7, it suffices to show the statement for a fixed k and reveal that the
constants Cε,D do not depend on k. We know that

Zk(z) =
∑
i 6=j

xk(i)(X
(k)
N − z)−1(i, j)xk(j) =

1

N

∑
i 6=j

(
√
Nxk(i))(X

(k)
N − z)−1(i, j)(

√
Nxk(j)).

Therefore, by Corollary 6.34 and Lemma 6.7 it follows for all k ∈ [N ], that

|Zk(z)|2 ≺ 1

N2

∑
i 6=j

∣∣∣(X(k)
N − z)−1(i, j)

∣∣∣2 , z ∈ C+,

where the constants Cε,D do not depend on k ∈ [N ]. But now
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6 The Local Law for Curie-Weiss Type Ensembles

1

N2

∑
i 6=j

∣∣∣(X(k)
N − z)−1(i, j)

∣∣∣2
≤ 1

N2

∑
i,j

∣∣∣(X(k)
N − z)−1(i, j)

∣∣∣2
=

1

N2η

∑
i

Im(X
(k)
N − z)−1(i, i)

=
1

N2η
[Im tr(XN − z)−1 + Im tr(X

(k)
N − z)−1 − Im tr(XN − z)−1)]

≤ 1

Nη
Im sN(z) +

1

N2η

∣∣∣tr(X(k)
N − z)−1 − tr(XN − z)−1

∣∣∣
≤ 1

Nη
Im sN(z) +

1

N2η2
,

where in the second step we used the Ward identity (Lemma 6.35) and in the last step
we used Corollary 5.25. We conclude

|Zk(z)| ≺ 1√
Nη

√
Im sN(z) +

1

Nη
, z ∈ C+,

by taking the square root on both sides, and where the constants Cε,D are independent of
k ∈ [N ]. This is what we wanted to show.

6.4.3 Step 3: The Initial Estimate

In this section we prove a preliminary version of the weak local law, namely:

Theorem 6.37. In the situation of Theorem 6.10, we find

|sN(z)− s(z)| ≺ min

(
1

(Nη)
1
4

,
1√
Nηκ

)
, z ∈ DI .

Proof. Step 1 We show that uniformly on DI ,

maxk |Ωk|
|z + sN(z)|

≺ 1√
N

and
maxk |Ωk|
|z + sN(z)|2

≺ 1√
N
.

To see this, note that since η ≥ 1 on DI , we have on DI :

0 < Im sN(z) ≤ 1

η
≤ 1 and

1

Nη
≤ 1

N
.

Hence, it follows with Theorem 6.36 uniformly over z ∈ DI :

max
k∈[N ]

|Zk| ≺
1√
Nη

√
Im sN(z) +

1

Nη
≤ 1√

N
+

1

N
≺ 2√

N
≺ 1√

N
,
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where we used Lemma 6.7 here and will do so tacitly for the remainder of the proof. Since
|XN(i, i)| = 1√

N
, we find

max
k∈[N ]

|Ωk| ≤ max
k∈[N ]

(
|Zk|+ |XN(k, k)|+O1

(
1

Nη

))
≺ 1√

N
+

1√
N

+
1

N
≺ 1√

N
.

Since Im(z + sN(z)) ≥ η ≥ 1, we have 1
|z+sN (z)| ≤ 1 and 1

|z+sN (z)|2 ≤ 1, so that on DI :

maxk |Ωk|
|z + sN(z)|

≺ 1√
N

and
maxk |Ωk|
|z + sN(z)|2

≺ 1√
N
.

Step 2 The second step consists of utilizing the deterministic root approximation lemma,
Lemma 6.26, to show

min

{
|sN(z)− s(z)|,

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣} ≺ min

(
1

(Nη)
1
4

,
1√
Nηκ

)
, z ∈ DI .

We know that uniformly over z ∈ DI ,

maxk |Ωk|
|z + sN(z)|

≺ 1√
N

and
maxk |Ωk|
|z + sN(z)|2

≺ 1√
N
.

so that also

max

(
maxk |Ωk|
|z + sN(z)|

,
maxk |Ωk|
|z + sN(z)|2

)
≺ 1√

N
, z ∈ DI .

Now let ε,D > 0 be arbitrary, then w.l.o.g. ε ≤ 1/4 with Remark 6.6. Denote by AN the
set

AN ..=

{
maxk |Ωk|
|z + sN(z)|

≤ N ε

√
N

and
maxk |Ωk|
|z + sN(z)|2

≤ N ε

√
N

}
.

Then there is a Cε,D > 0 such that for all N ∈ N : P(AN) ≥ 1− Cε,D
ND .

For all N ≥ 16, we find that Nε
√
N
≤ 1

N
1
4
≤ 1

2
, so that on AN we have

maxk |Ωk|
|z + sN(z)|

≤ N ε

√
N
≤ 1

2
and

maxk |Ωk|
|z + sN(z)|2

≤ N ε

√
N
≤ 1

2
.

for all N ≥ 16. Hence, we conclude via Lemma 6.26 that for all N ≥ 16, we have on the
set AN that

min

(
|sN(z)− s(z)|,

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣} ≤ CDet min

(
maxk |Ωk|√
κ|z + sN(z)|2

,

√
maxk |Ωk|
|z + sN(z)|2

)

≤ CDet min

(
N ε

√
κN

,

√
N ε

√
N

)

≤ N εCDet min

(
1√
κN

,
1

N
1
4

)
.

195



6 The Local Law for Curie-Weiss Type Ensembles

It follows that

min

(
|sN(z)− s(z)|,

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣) ≺ CDet min

(
1√
κN

,
1

N
1
4

)
, z ∈ DI .

Therefore, with Lemma 6.7, we conclude that uniformly over z ∈ DI :

min

(
|sN(z)− s(z)|,

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣) ≺ 1

10
min

(
1√
κN

,
1

N
1
4

)
≤ min

(
1√
κNη

,
1

(Nη)
1
4

)
,

since η ≤ 10 over DI .
Step 3 In this last step, we wish to conclude from

min

(
|sN(z)− s(z)|,

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣) ≺ min

(
1

(Nη)
1
4

,
1√
Nηκ

)
, z ∈ DI , (6.15)

that actually

|sN(z)− s(z)| ≺ min

(
1

(Nη)
1
4

,
1√
Nηκ

)
, z ∈ DI .

To this end, note that for all N ∈ N and z ∈ DI ,∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣ = |sN(z) + s(z) + z| > η ≥ 1 ≥ N
1
4 min

(
1

(Nη)
1
4

,
1√
Nηκ

)
.

As a result, for ε > 0 with ε ≤ 1
4

and D > 0 arbitrary, we find for all N ∈ N:

P

(
|sN(z)− s(z)| > N ε min

(
1

(Nη)
1
4

,
1√
Nηκ

))

= P

(
|sN(z)− s(z)| > N ε min

(
1

(Nη)
1
4

,
1√
Nηκ

)

and

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣ > N ε min

(
1

(Nη)
1
4

,
1√
Nηκ

))

= P

(
min

(
|sN(z)− s(z)|,

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣) > N ε min

(
1

(Nη)
1
4

,
1√
Nηκ

))
≤ Cε,D

ND

for a suitable constant Cε,D due to (6.15). This concludes the Initial Estimate.

Before we continue, we would like to apply Theorem 6.12 and Lemma 6.14 to Theo-
rem 6.37 to increase uniformity in the statement, which we will use in a later step. To
this end we use the abbreviation

RN(z) ..= min

(
1

(Nη)
1
4

,
1√
Nηκ

)
.
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Theorem 6.38. In the situation of Theorem 6.10, we find

sup
z∈DI

|sN(z)− s(z)|
RN(z)

≺ 1.

Proof. We know from Theorem 6.37 that

|sN(z)− s(z)| ≺ RN(z), z ∈ DI .

Lemma 6.14 yields that |sN(z)− s(z)| is 2N2-Lipschitz on DI , whereas RN(z) is 10N -
Lipschitz and lower bounded by 1/(10

√
N) on DI as in the proof of Theorem 6.15. The

statement now follows with Theorem 6.12 with L = 4, C2 = 2, d2 = 2, C3 = 10, d3 = 1,
C4 = 10 and d4 = 1/2, G4

N = D4
I .

6.4.4 Step 4: The Bootstrap Argument

As in Lemma 6.14, we set for all z ∈ [−10, 10] + i(0, 10]:

SN(z) ..= min

{
|sN(z)− s(z)|,

∣∣∣∣sN(z)− 1

s(z)

∣∣∣∣} and RN(z) ..= min

{
1√
Nηκ

,
1

(Nη)
1
4

}
.

From the initial estimate, we know that

SN(z) ≺ RN(z), z ∈ DI (6.16)

and even that
|sN(z)− s(z)| ≺ RN(z), z ∈ DI . (6.17)

In this part of the proof we wish to see that (6.16) actually holds uniformly over all z ∈
DN(γ), even simultaneously. The strategy we will follow is to fix a real part E ∈ [−10, 10]
and to show that

SN(z(N, k)) ≺ RN(z(N, k)), k = 0, 1, . . . ,m(N), (6.18)

where for all N ∈ N,
m(N) ..= bN4 −N3+γc

and
z(N, k) ..= zE(N, k) ..= E + i(1− kN−4), k = 0, 1, . . . ,m(N).

We will show that the choice of the constants Cε,D in (6.18) does not depend on E ∈
[−10, 10], so that actually, we obtain

SN(z) ≺ RN(z), z ∈ D4
N(γ) ∩ ([−10, 10] + i(0, 1]),

and since the initial estimate will give us

SN(z) ≺ RN(z), z ∈ D4
N(γ) ∩ ([−10, 10] + i[1, 10]),
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we will have
SN(z) ≺ RN(z), z ∈ D4

N(γ),

thus by Theorem 6.12

sup
z∈DN (γ)

SN(z)

RN(z)
≺ 1, (6.19)

so in particular
SN(z) ≺ RN(z), z ∈ DN(γ).

Then later, in Step 5 of the proof, we will use (6.19) and a continuity argument to improve
(6.17) to the statement

|sN(z)− s(z)| ≺ RN(z), z ∈ DN(γ).

But let us get started with the bootstrapping argument. We fix an E ∈ [−10, 10] and
define as above:

z(N, k) ..= E + i(1− kN−4), k = 0, 1, . . . ,m(N).

The initial estimate tells us that

SN(z(N, 0)) ≺ RN(z(N, 0)). (6.20)

By reducing the imaginary part by very small increments, we wish to see that for N large
enough (i.e. N ≥ N(ε, γ)), we will have

SN(z(N, k)) ≺ RN(z(N, k)), k = 0, 1, . . . ,m(N),

where the constants do not depend on the previously fixed E.
This is done by showing that each small decrease of the imaginary part will only forfeit

a negligible amount of probability. Here, the large deviations estimate from Step 2 will
play a big role. The next two theorems make up the heart of the bootstrapping argu-
ment. Theorem 6.40 will analyze how target quantities change when the imaginary part
is decreased by one step, that is, by N−4. Then, Theorem 6.41 will analyze how the high
probability (certainty) which we initially obtained through (6.20), decays with each step.
In order for these two theorems to work, we will need to fix certain constants a priori,
which is done in the following remark.

Remark 6.39. For the next three theorems we fix a parameter γ ∈ (0, 1) and define the
following constants:

• We fix c ≥ 3 such that |s|, |1
s
|, | 1

s2
| are bounded by c on [−10, 10] + i(0, 10]. This

choice is possible due to Theorem 5.16. In particular, SN is then cN2-Lipschitz on
DN by Lemma 6.14.

• Let C ..= CP denote the constant from the Proximity Theorem, Theorem 6.25.

• Let C1
..= 8C(1 + c)5/2.
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Further, for any ε > 0 (and the previously fixed γ ∈ (0, 1)) we choose N(ε, γ) so large,
that for all N ≥ N(ε, γ) the following statements hold:

1. c
(
C1

N
ε
4

+ c
N2

)
< 1,

2. 0 < c

1−c( C1

N
ε
4

+ c
N2 )
≤ c+ 1.

3. 4N−
3γ
20 (1 + c)

5
2 ≤ 1

2
.

Note that instead of N(ε, γ) we could just write N(ε), since γ is a super-parameter in
our model. However, we write N(ε, γ) to clarify to the reader that the choice also depends
on γ. We will now conduct a one-step deviation analysis.

Theorem 6.40. Let E ∈ [−10, 10] and N ≥ N(ε, γ) be fixed. Let ε ∈ (0, γ/10) and
η ≥ 1

N1−5ε (for example, this holds if η ≥ 1
N1−γ ) be arbitrary so that η − N−4 ≥ N−1.

Define z ..= E + iη and z1
..= z − iN−4 (then z, z1 ∈ DN). Suppose it holds that

SN(z) ≤ C1N
εRN(z).

Then it follows:

i) SN(z1) ≤ C1N
εRN(z) + c

N2 ≤ C1
1

N
ε
4

+ c
N2 .

ii) |Im sN(z1)| ≤ 1 + c.

iii) 1
|z1+sN (z1)| ≤ 1 + c.

Proof. We use that sN and s are N2-Lipschitz and SN is cN2-Lipschitz on DN , see
Lemma 6.14. i)

SN(z1) ≤ |SN(z1)− SN(z)|+ SN(z) ≤ c

N2
+ C1N

εRN(z)

≤ c

N2
+ C1N

ε 1

(Nη)
1
4

≤ c

N2
+ C1N

ε 1

(N5ε)
1
4

=
c

N2
+ C1

1

N
ε
4

.

ii) We have

|sN(z1)| ≤ |s(z1)|︸ ︷︷ ︸
≤c

+|sN(z1)− s(z1)|

and

|sN(z1)| ≤
∣∣∣∣ 1

s(z1)

∣∣∣∣︸ ︷︷ ︸
≤c

+

∣∣∣∣sN(z1)− 1

s(z1)

∣∣∣∣ ,
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which entails with i) that

|Im sN(z1)| ≤ |sN(z1)| ≤ c+ SN(z1) ≤ c+
c

N2
+
C1

N
ε
4

≤ c+ 1,

since c ≥ 3 and already c
(

c
N2 + C1

N
ε
4

)
< 1 per choice of N(ε, γ).

iii) We have by choice of c (and Theorem 5.16) that∣∣∣∣ 1

z1 + s(z1)

∣∣∣∣ = |s(z1)| ≤ c and
1∣∣∣z1 + 1
s(z1)

∣∣∣ =
1

|s(z1)|
≤ c,

so ∣∣∣∣ 1

z1 + sN(z1)

∣∣∣∣ ≤ ∣∣∣∣ 1

z1 + s(z1)

∣∣∣∣+

∣∣∣∣ 1

z1 + sN(z1)
− 1

z1 + s(z1)

∣∣∣∣
≤ c+

|s(z1)− sN(z1)|
|z1 + sN(z1)||z1 + s(z1)|

≤ c+ c
|s(z1)− sN(z1)|
|z1 + sN(z1)|

.

Analogously, ∣∣∣∣ 1

z1 + sN(z1)

∣∣∣∣ ≤
∣∣∣∣∣ 1

z1 + 1
s(z1)

∣∣∣∣∣+

∣∣∣∣∣ 1

z1 + sN(z1)
− 1

z1 + 1
s(z1)

∣∣∣∣∣
≤ c+ c

∣∣∣ 1
s(z1)
− sN(z1)

∣∣∣
|z1 + sN(z1)|

.

Therefore, combining our results:∣∣∣∣ 1

z1 + sN(z1)

∣∣∣∣ ≤ c+ c
SN(z1)

|z1 + sN(z1)|
.

We arrive at
1

|z1 + sN(z1)|
(1− cSN(z1)) ≤ c.

Per choice of N(ε, γ) and by using the bound on SN(z1) given by i), this allows the
conclusion

1

|z1 + sN(z1)|
≤ c

1− cSN(z1)
≤ c

1− c( C1

N
ε
4

+ c
N2 )
≤ c+ 1.

We now arrive at the heart of the bootstrap argument:
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6.4 Proof of The Weak Local Law

Theorem 6.41. Let E ∈ [−10, 10] be fixed and for all N ∈ N and k = 0, 1, . . . ,m(N) let
z(N, k) ..= E + i(1− kN−4) and

A(N, k) ..= {SN(z(N, k)) ≤ C1N
εRN(z(N, k))} .

Then for any ε ∈ (0, γ/10) and D > 0, there exists a constant Cε,D ≥ 0 (independent of
E), such that for all N ≥ N(γ, ε) and k = 0, 1, . . . ,m(N):

P(A(N, k)c) ≤ (k + 1)Cε,D
ND

.

Proof. Let N ≥ N(ε, γ), ε ∈ (0, γ/10) and D > 0 be fixed throughout the proof. For
better readability in formulas below, we define zk ..= z(N, k) and ηk ..= Im z(N, k) for
k = 0, 1, . . . ,m(N). For all k ∈ {1, . . . ,m(N)}, we set

D(N, k) ..=

{
∀ i ∈ [N ] : |Zi(zk)| ≤ N ε 1√

Nηk

√
Im sN(zk) +

N ε

Nηk

}
and

Ã(N, k) = A(N, 0) ∩
k⋂
j=1

D(N, j),

where an empty intersection shall yield the ground set Ω, in particular, Ã(N, 0) = A(N, 0).
We proceed to show that it holds for all k = 0, . . . ,m(N), that

On Ã(N, k) : SN(zk) ≤ C1N
εRN(zk),

so that in particular,
Ã(N, k) ⊆ A(N, k).

We use induction in k and Theorem 6.40.
Induction basis: The statement is true for k = 0.

The statement is clear since Ã(N, 0) = A(N, 0).
Induction hypothesis:

We assume the statement to be valid for all k′ ≤ k, where k ∈ {0, 1, . . . ,m(N) − 1} is
fixed.

Induction step: k → k + 1

We find ηk, ηk+1 ≥ 1
N1−γ ≥ 1

N1−5ε . On Ã(N, k + 1) it holds (since Ã(N, k + 1) ⊆ Ã(N, k)):

SN(zk) ≤ C1N
εRN(zk),

where we used the induction hypothesis. Therefore, it follows with Theorem 6.40 that on
Ã(N, k + 1),

• |Im sN(zk+1)| ≤ 1 + c

• 1
|zk+1+sN (zk+1)| ≤ 1 + c
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• |Ωi(zk+1)| ≤ |Zi(zk+1)|+ 1√
N

+ 1
Nηk+1

≤ Nε√
Nηk+1

√
Im sN(zk+1)+ Nε

Nηk+1
+ 1√

N
+ 1

Nηk+1
≤

4Nε√
Nηk+1

√
1 + c

• maxi |Ωi(zk+1)|
|zk+1+sN (zk+1)| ,

maxi |Ωi(zk+1)|
|zk+1+sN (zk+1)|2 ≤

4Nε√
Nηk+1

(1 + c)
5
2 ≤ 1

2
,

where the last inequality holds since ηk+1 ≥ 1/N1−γ ≥ 1/N1−γ/2 and by choice of N(ε, γ)
right before Theorem 6.40, we find

N ε

√
Nηk+1

≤ N
γ
10

√
N

γ
2

= N
γ
10
− γ

4 = N−
3γ
20 .

Using the Deterministic Root Approximation (Lemma 6.26), we find on Ã(N, k + 1):

SN(zk+1) ≤ CDet min

{
maxi |Ωi|√

κ|zk+1 + sN(zk+1)|2
,

√
maxi |Ωi|

|zk+1 + sN(zk+1)|2

}

≤ 2C min

4N ε(1 + c)
5
2

√
κ
√
Nηk+1

,

√
4N ε(1 + c)

5
2

√
Nηk+1


≤ 2 · C · 4 ·N ε · (1 + c)

5
2 min

{
1√

κNηk+1

,
1

(Nηk+1)
1
4

}
≤ C1N

εRN(zk+1).

In particular, we have Ã(N, k+ 1) ⊆ A(N, k+ 1). This concludes the induction. We have
shown:

∀ k = 0, . . . ,m(N) : Ã(N, k) ⊆ A(N, k).

Since N ≥ N(ε, γ) was arbitrary, we obtain

∀N ≥ N(ε, γ) : ∀ k = 0, . . . ,m(N) : Ã(N, k) ⊆ A(N, k).

We still want to show that for all such N and k we have

P (A(N, k)c) ≤ (k + 1)Cε,D
ND

,

where the constant Cε,D does not depend on E, which we fixed in the statement of the
theorem. It suffices to show the inequality for the sets Ã(N, k).

But our large deviations estimate Theorem 6.36 yields a constant C ′ε,D, such that in
particular for all N ≥ N(ε,D) and k = 0, 1, . . . ,m(N):

P(D(N, k)c) ≤
C ′ε,D
ND

,

whereas the initial estimate yields a constant C∗ε,D such that in particular for these N and
k we have

P(A(N, 0)c) ≤
C∗ε,D
ND

.
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and the constants C∗ε,D and C ′ε,D are independent of E. Since we also have for all such N
and k that

Ã(N, k) = A(N, 0) ∩
k⋂
i=1

D(N, i),

we find, setting Cε,D ..= max(C∗ε,D, C
′
ε,D) that

P (A(N, k)c) ≤ P(Ã(N, k)c) = P

(
A(N, 0)c ∪

k⋃
i=1

D(N, i)c

)

≤ P(A(N, 0)c) +
k∑
i=1

P(D(N, i)c)

≤
C∗ε,D
ND

+
kC ′ε,D
ND

≤ (k + 1)
Cε,D
ND

.

Theorem 6.41 now allows us to conclude the main theorem of this part of the proof:

Theorem 6.42. In the setting above (in particular in the setting of Theorem 6.10), we
find

sup
z∈DN (γ)

SN(z)

RN(z)
≺ 1,

thus in particular,
SN(z) ≺ RN(z), z ∈ DN(γ).

Proof. Since the constants Cε,D in Theorem 6.41 did not depend on the choice of E ∈
[−10, 10], we find with zE(N, k) ..= E + i(1− kN−4) that for all ε ∈ (0, γ/10), D > 0 and
N ≥ N(ε, γ):

sup
E∈[−10,10]

sup
k∈{0,1,...,m(N)}

P(SN(zE(N, k)) > N εC1RN(zE(N, k))) ≤ N4Cε,D+4

ND+4
≤ Cε,D+4

ND
,

where we used that m(N) ≤ N4 − 1. We conclude with Remark 6.6 that

SN(z) ≺ RN(z), z ∈ D4
N(γ) ∩ ([−10, 10] + i(0, 1]).

Since the intial estimate especially yields

SN(z) ≺ RN(z), z ∈ D4
N(γ) ∩ ([−10, 10] + i[1, 10]),

we conclude (again with Remark 6.6) that

SN(z) ≺ RN(z), z ∈ D4
N(γ).
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6 The Local Law for Curie-Weiss Type Ensembles

With Theorem 6.12 we conclude

sup
z∈DN (γ)

SN(z)

RN(z)
≺ 1,

since it was shown in the proof of Theorem 6.15 that RN is lower bounded by 1
10
√
N

on
DN , and SN and RN are suitably Lipschitz on DN by Lemma 6.14.

6.4.5 Step 5: The Continuity Argument

By Theorem 6.42, we know that

sup
z∈DN (γ)

SN(z)

RN(z)
≺ 1. (6.21)

In this step, we wish to conclude that

sup
z∈DN (γ)

|sN(z)− s(z)|
RN(z)

≺ 1, (6.22)

which immediately yields the weak local law (in fact, this is even the statement of the
Simultaneous Weak Local Law, Theorem 6.15).

By the uniform initial estimate, Theorem 6.38, we know

sup
z∈DI

|sN(z)− s(z)|
RN(z)

≺ 1. (6.23)

Due to knowledge of (6.23), it suffices to show

sup
z∈GN

|sN(z)− s(z)|
RN(z)

≺ 1, (6.24)

where

GN ..=

{
z = E + iη ∈ C | |E| ≤ 10,

1

N1−γ ≤ η ≤ 1

}
.

Pick ε > 0 and D > 0 arbitrarily, and define for all N ∈ N the set

H(N) ..= {∀z ∈ GN : SN(z) ≤ N εRN(z)}
∩ {∀E ∈ [−10, 10] : |s(E + i)− sN(E + i)| ≤ N εRN(E + i)} .

By (6.21) and (6.23), H(N) has high probability, that is, there exists a Cε,D > 0, such
that

∀N ∈ N : P(H(N)c) ≤ Cε,D
ND

.

We will show:

∀N ∈ N : On H(N): ∀ z ∈ GN : |sN(z)− s(z)| ≤ (2C2
s + 1)N εRN(z), (6.25)
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where Cs is the constant from Theorem 5.16, such that for all z ∈ [−10, 10] + i(0, 10] we
have

1

Cs

√
κ+ η ≤

∣∣∣∣s(z)− 1

s(z)

∣∣∣∣ ≤ Cs
√
κ+ η.

To show (6.25), we fix an N ∈ N and an E ∈ [−10, 10] arbitrarily. Then we set

∀ η > 0 : z(η) ..= E + iη.

We know (6.25) already for z(1) = E + i and we would like to see it be true for all
η ∈ [1/N1−γ, 1]. As we drop η from 1 down to 1/N1−γ, we analyze what happens to the
validity of the inequality

2N εRN(z(η)) <
1

Cs

√
κ+ η. (6.26)

We notice that both sides of (6.26) are continuous in η, and that through decreasing η,
the l.h.s. increases and the r.h.s. decreases. Therefore, if (6.26) is violated for some η,
then also for all η′ ≤ η. It follows that we can partition the interval [1/N1−γ, 1] into
two intervals, the lower part L and the upper part U , where on U , (6.26) holds, and on
L, (6.26) is violated. L or U are allowed to be empty, indicating that (6.26) holds or is
violated on the entire interval [1/N1−γ, 1].

Now let η′ ∈ [1/N1−γ, 1] be arbitrary. Since [1/N1−γ, 1] = L∪̇U , we consider two cases:
Case 1: η′ ∈ U . This indicates that U is not empty and that, in particular, [η′, 1] ⊆ U .
This means that for all η ∈ [η′, 1], on H(N):

SN(z(η)) ≤ N εRN(z(η)) ≤ 2N εRN(z(η)) <
1

Cs

√
κ+ η ≤

∣∣∣∣s(z(η))− 1

s(z(η))

∣∣∣∣ . (6.27)

This is now a very important inequality. It tells us that over H(N) and [η′, 1], sN(z(·))
remains closer either to s(z(·)) or to 1/s(z(·)) and cannot change this alignment. In
mathematical terms, we find on H(N):

Either: ∀ η ∈ [η′, 1] : |sN(z(η))− s(z(η))| <
∣∣∣∣sN(z(η))− 1

s(z(η))

∣∣∣∣ ,
or: ∀ η ∈ [η′, 1] :

∣∣∣∣sN(z(η))− 1

s(z(η))

∣∣∣∣ < |sN(z(η))− s(z(η))|.

This is the case, since otherwise, due to continuity, there would be an η0 ∈ [η′, 1], such
that

|sN(z(η0))− s(z(η0))| =
∣∣∣∣sN(z(η0))− 1

s(z(η0))

∣∣∣∣ ,
and then ∣∣∣∣s(z(η0))− 1

s(z(η0))

∣∣∣∣ ≤ |s(z(η0))− sN(z(η0))|+
∣∣∣∣sN(z(η0))− 1

s(z(η0))

∣∣∣∣
= SN(z(η0)) + SN(z(η0))

≤ 2N εRN(z(η0)),
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which is a contradiction to (6.27). Now since we are on H(N) and with (6.27), we know
that

∣∣∣∣sN(z(1))− 1

s(z(1))

∣∣∣∣ =

∣∣∣∣sN(z(1))− s(z(1)) + s(z(1))− 1

s(z(1))

∣∣∣∣
≥
∣∣∣∣s(z(1))− 1

s(z(1))

∣∣∣∣− |sN(z(1))− s(z(1))|

> 2N εRN(z(1))−N εRN(z(1))

= N εRN(z(1)) ≥ |sN(z(1))− s(z(1))|,

and therefore, on H(N), for all η ∈ [η′, 1],

|sN(z(η))− s(z(η))| = SN(z(η)) ≤ N εRN(z(η)) ≤ (2C2
s + 1)N εRN(z(η)),

and especially, this inequality holds for η′, what we wanted to show.
Case 2: η′ ∈ L This implies that η′ violates (6.26), such that

2N εRN(z(η′)) ≥ 1

Cs

√
κ+ η′.

But this implies

2C2
sN

εRN(z(η′)) ≥ Cs
√
κ+ η′ ≥

∣∣∣∣s(z(η′))− 1

s(z(η′))

∣∣∣∣ .
Then if SN(z(η′)) = |s(z(η′))− sN(z(η′))|, we find on H(N):

|s(z(η′))− sN(z(η′))| ≤ N εR(z(η′)) ≤ (2C2
s + 1)N εRN(z(η′)),

and if SN(z(η′)) = |sN(z(η′))− 1/s(z(η′))|, we find on H(N):

|sN(z(η′))− s(z(η′))| ≤
∣∣∣∣sN(z(η′))− 1

s(z(η′))

∣∣∣∣+

∣∣∣∣ 1

s(z(η′))
− s(z(η′))

∣∣∣∣
≤ N εRN(z(η′)) + 2C2

sN
εRN(z(η′))

= (2C2
s + 1)N εRN(z(η′)).

Thus, we have finally shown (6.25) (since E ∈ [−10, 10] was arbitrary), and with the
inequality preceding (6.25), we find that

sup
z∈GN

|sN(z)− s(z)|
RN(z)

≺ 2C2
s + 1,

from which (6.24) follows immediately with Lemma 6.7.
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6.5 Ongoing and Future Research

The results obtained in this chapter can be greatly expanded. First of all, with help of
our large deviation results from Theorem 6.32 and methods outlined in [9], it should be
possible to expand our weak local law firstly to the matrix-valued weak local law as in
Proposition 5.1 in [9], and secondly to the stronger local law as in Theorem 2.6 in [9]. The
first expansion will allow conclusions about the behavior of eigenvectors of Curie-Weiss
type ensembles, while the second expansion will derive optimal error bounds (up to factors
of N ε in the ≺-formalism) in the statement of the local law.

Further, combining our techniques with techniques outlined in [43], it is likely that one
can broaden the concept of Curie-Weiss type ensembles to allow for Curie-Weiss entries
with an inverse temperature β > 1 and still obtain local semicircle laws.

Lastly, one turn to other limit laws in random matrix theory, such as the Marchenko-
Pastur law for covariance matrices, and analyze how the techniques developed in this
thesis can be applied to those settings.

All of the points mentioned so far are ongoing research as this dissertation is handed
in. On the other hand, future research endeavors that are planned lead into two direc-
tions: Firstly, we would like to investigate how to obtain results about local gap statistics
of eigenvalues using the local laws that we derived. Secondly, by methods similar to our
Theorem 6.31, we will investigate if more general types of random matrices with exchange-
able entries can be analyzed towards local law results, and not just those with values in
the set {±1}.
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List of Symbols

The following list contains not all, but most of the mathematical symbols which are used
in this thesis. The page number references the location in the text where the symbol
is defined and/or used in context. Note that some symbols have multiple meanings.
However, in their relative context their use is unambiguous.

Symbol Description Page

∅ empty set 28
#M number of elements in the set M 54
M c complement of M in contextual superset 22
N set of natural numbers, {1, 2, 3, . . .} 16
N0 extended set of natural numbers, {0, 1, 2, . . .} 41
Z set of integers 150
Q set of rational numbers 172
R set of real numbers 12
R+ set of non-negative real numbers 29
C set of complex numbers 117
C+ set {z ∈ C, Im(z) > 0} 117
K field, K ∈ {R,C} 36
Matn(K) set of n× n matrices over K 36
SMatn(K) set of self-adjoint n× n matrices over K 36
λXi i-th smallest eigenvalue of self-adjoint matrix X 37
tr trace functional on sets of matrices 36
diag(x1, . . . , xn) diagonal matrix with entries x1, . . . , xn 36
�n alternative notation for {1, . . . , n} × {1, . . . , n} 39
[n] aternative notation for {1, . . . , n} 63
[n]k k-fold cartesian product of [n] 72
[n]kb b-relevant tuples in [n]k 72
1A indicator function of set A 12
C(R) the set of real-valued continuous functions on R 15
Cb(R) set of all bounded f ∈ C(R) 15
C0(R) set of all f ∈ C(R) that vanish at ∞ 15
Cc(R) set of all compactly supported f ∈ C(R) 15
supp(f) support of the function f 15
(X , d) metric space with ground set X and metric d 31
Bδ(z) open δ-ball around z in contextual metric space 15
φR,L continuous cutoff function 16
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List of Symbols

Symbol Description Page
‖ · ‖∞ supremum norm for real or complex valued functions 15
‖ · ‖op operator norm for linear maps, including matrices 19
‖ · ‖ euclidian norm for vectors in Kn 36
‖ · ‖p Lp(P) norm, ‖Y ‖p = (E|Y |p)1/p 181
M(R) space of measures on (R,B) 18
Mf (R) space of finite measures on (R,B) 18
M≤1(R) space of sub-probability measures on (R,B) 18
M1(R) space of probability measures on (R,B) 18
B Borel σ-algebra over R 15
BK Borel σ-algebra over K ∈ {R,C} 15

B(n2)
s Borel σ-algebra over SMatn(K) 37
〈µ, f〉 alternative notation for

∫
f dµ 18〈

µ, xk
〉

alternative notation for
∫
xk µ(dx) 18

δx Dirac measure in x 20
dM metric on the space of probability measures 24
EX expectation of the random variable X 29
Eµ expected measure of random measure µ 30
VX variance of the random variable X 71
Cov(X, Y ) covariance between the random variables X and Y 64
P underlying probability measure 27
PX distribution of (or push-forward of P under) X 64
σn empirical spectral distribution of n× n (random) matrix 38
σ semicircle distribution on (R,B) 39
fσ Lebesgue density function of σ 39
mσ
k k-th moment of σ 46

Cn n-th Catalan number 48
(an)n triangular scheme 54
(bn)n bandwidth sequence 57
(hn)n halfwidth sequence 98
(abn)n periodic band matrices based on bandwidth b 57
Xn n× n random matrix 40
XP
n periodic n× n random band matrix 98

XNP
n non-periodic n× n random band matrix 98

X
(k)
n k-th principal minor of Xn 134

xk k-th column of Xn without k-th entry 134
∼ asymptotic equivalence of sequences 58
Curie-Weiss(β, n) Curie-Weiss distribution with n spins at temperature 1/β 62
PP(k) set of all pair partitions of {1, . . . , k} 65
N (µ,Σ) multi-dimensional normal distribution 64
fµ,Σ Lebesgue density of N (µ,Σ) 64
CovMat(α) Sequences of specific covariance matrices 63
t tuple in [n]k 72
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Symbol Description Page
(Vt, Et, φt) Eulerian graph based on tuple t 72
κ(t) profile of tuple t 73
κl(t) l-th element of profile κ(t) 73
`(t) number of loops in t 73
T (s) equivalence class of tuple s 75
T k

2
+1(s) equivalence class of s with k/2 + 1 nodes 80

T≤ k
2
(s) equivalence class of s with at most k/2 nodes 80

T (s, s′) equivalence class of tuple pairs 76
T d(s, s′) equivalence class of disjoint tuple pairs 76
T c(s, s′) equivalence class of overlapping tuple pairs 76
T cl (s, s′) equivalence class of tuple pairs with l overlaps 76
B(hn) band area depending on halfwidth 101
T (hn) triangular area depending on halfwidth 101
S(hn) nontrivial entries depending on halfwidth 102
dBL bounded Lipschitz metric 114
Sµ Stieltjes transform of µ 117
Re(z) real part of complex number z 118
Im(z) imaginary part of complex number z 117
E real part of contextual complex number z 149
η imaginary part of contextual complex number z 149
κ ||E| − 2| for contextual complex number z 149
λλ Lebesgue measure on (R,B) 39
fλλ measure with Lebesgue density f 39
µ ∗ ν convolution of µ and ν 122
µ⊗ ν product measure of µ and ν 122
f ∗ ν convolution of f and ν 123
f ∗ g convolution of f and g 123
Pη Cauchy kernel with bandwidth η 125√
z complex root with non-negative imaginary part 129

s(z) Stieltjes transform of semicircle distribution 129
sn(z) Stieltjes transfrom of contextual ESD 133
Pt probability measure on {−1, 1} with expectation t 143
P⊗It I-fold product measure of the Pt 143
≺ stochastic domination 144
DI the set [−10, 10]× i[1, 10] 149
DN(γ) the set [−10, 10]× i[Nγ−1, 10] 149
DN the set [−10, 10]× i[N−1, 10] 149
I(A) set of intervals I ⊆ A ⊆ R 160
|I| length of interval I 169
Ωk error term in local law analysis 174
Zk error term in local law analysis 174
CΦ(δ1,...,δl) constants for condition (AAU1) 55
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List of Symbols

Symbol Description Page

C
(l)
n constants for condition (AAU2) 55

D
(l)
n constants for condition (AAU3) 55

Kl,m constants for (AU1) 60

K
(l)
n constants for (AU2) 60

Zβ,n Curie-Weiss normalization constant 62
Cκ(s) constants for condition (AAU1) 82
Cs constant for bounds on s = Sσ 129
Kβ,p constants for Curie-Weiss moment decay 144
Cε,D constants for ≺ 144
Kp constant for Curie-Weiss type moment decay 148
CP constant for proximity analysis 177
CDet constant for root approximation 180
¬ mathematical negation 99
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Gaussian Matrices with Correlated Entries”. In: Journal of Statistical Physics 163.2
(Apr. 2016), pp. 280–302.
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