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1. Introduction.

In classical dynamics and field theory the Hamiltonian nature of the evolution equa-
tions is a consequence of the underlying variational principle. It plays an important role
in the construction of the corresponding quantum theory. In particular, it ensures the
unitarity of the quantum evolution.

For field theories with constraints the splitting of|the field equations into the evolution
equations and the constraint equations is somewhat arbitrary off the constraint set. One
can always modify the evolution equations by terms which vanish on the constraint set. In
the case of Yang-Mills fields such a decomposition of the field equations is usually obtained
in terms of the chosen 3 + 1 splitting of the space-time into the product of the space and
the time axis. It leads to the evolution equations

OA=FE +grad® - [D, 4], (1.1)
OFE = —curl B — [Ax,B| - [®, E], (1.2)

and the constraint equation 1
divE+[A;E]=0. (1.3)

Here, A is the vector potential of the Yang-Mills field and @ is the scalar potential, (both
potentials have values in the Lie algebra g of the stfucture group G of the theory), [, ]
denotes the bracket in g, while xand- denote the cross product and the dot product in
IR3, respectively.

The time evolution of the scalar potential ® is not determined by the field equations.
In order to make the evolution equations deterministi¢ one prescribes @ in terms of a gauge
condition. If the scalar potential is chosen as a given |function of the space-time variables,
® = &(z,t), then the evolution equations are Hamiltonian with the Hamiltonian

He(AE) = % / (E% 4+ B*)d3x +/ E(grad ® — (A, ®])dsz . (1.4)
M M
and the symplectic form
w=df, (1.5)
where 0 is given by
(0(A, E)|(64,6E)) = / E-6A dsz | (1.6)
M

and M is the domain in IR3 accessible to the fields. In particular, for the temporal gauge
condition

=0, _ (1.7)
one gets the usual Hamiltonian
Ho(A,E,¥) =1 / (E? 4+ B%)dax . (1.8)
M

In order to make the above heuristic arguments more precise we have to specify the
space of functions in which the evolution is taking place and to show that the evolution
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equations have solutions in this space. The existence and uniqueness of solutions of the
Yang-Mills evolution equations has been studied in several papers, [1] through [8]. However,
all of them prove the existence of solutions for non-Hamiltonian evolution equations. The
methods of proof are based on the theory of perturbat:ions of linear semigroups, [9]. In par-
ticular, it requires the elimination of the longitudinal component of E from the linearized
equations; for a comprehensive discussion of this problem see [4] where this problem is
solved by a non-Hamiltonian modification of the original evolution equations off the con-
straint. In [8] we showed that by an apropriate gauge transformation one can get ® to be
the solution of the Neumann problem in M.

A ®=-divE and n(grad®) = -nE| with / bdyx=0, (1.9)
M

where n(grad ®) denotes the normal component of jgrad ® on the boundary M of M.
With this choice of ® we proved the exis tence and uniqueness of solutions of the mixed
problem for the evolution equations of minimally interacting Yang-Mills and Dirac fields
in bounded domains with inhomogeneous boundary conditions, [8].

For the gauge condition (1.9) the scalar potential ® depends on the dynamical vari-
able E. Hence, the evolution equations (1.1) and (1.2) are not Hamiltonian. However,
the Hamiltonian Hg, given by (1.4), generates the evolution equations in which (1.1) is
replaced by

9, A(x) = E(z) + grad ®(z) — [®(z), A(z)]

! 102(z’) , 62(z") !
; /M B(&')(arad ' s ~ A), GposDdse’

the gradient under the integral sign is taken with respect to the variable x'.

On the constraint set, given by Eq. (1.3), all the evolution equations are equivalent
and are Hamiltonian. Hence, one could argue that [the form of the evolution equations
off the constraint set is not important. However, the Hamiltonian nature of the evolution
equations (also off the constraint set) is essential if one wants to compare the classical and
the quantum reduction procedures, [10], [11].

In this paper we discuss the existence and the uniqueness of solutions of the Hamil-
tonian evolution equations (1.10) and (1,2), in the space

P(M)={(A,E) € H*(M,g) x H'(M,g)} , (1.11)

(1.10)

where M is a bounded contractible domain in IR?>, de H* denotes the Sobolev space of
fields which are square integrable over M together with their partial derivatives up to the

order k, see [12], and ® is the solution of the followir|1g Neumann problem:

Ad=—-1divE and n(grad®)= —% nE | with / ® dsx=0. (1.12)
' M

The main result is given in the next section. Section|3 contains an outline of the proof.




2. Statement of Results.

We consider a bounded contractible domain M

in R® with smooth boundary oM.

For the Yang-Mills vector potential A, the boundary condition is given by specifying the

tangential to &M component of the curl of A, deno
t(curl A) € HY2(0M, g).

Theorem
Let A(t) be a differentiable curve of the bound

to € IR and the initial data (Ao, Eo) € H%(M, g) x H(M, g) such that

t(curl Ao) = /\(to) s

there exists a maximal 7' > 0 and a unique curv
[to, to + T) — H*(M,g) x H'(M

satisfying the evolution equations

0,A=F + grad ® — [<I>,A]+/ E(grad'— —[A

"

e

,9) +t — (A(2), E(t))

o [

OF "6E

O:E = —curl B — [Ax, B] - [®, E],

the initial conditions

A(0) = Ay , E(0)=

and the boundary conditions

teurl (A(t)) = A

where ® is the solution of the Neumann problem

AP =—3divE , n(grad®) = —

3. Outline of Proof.

Let A(t) be a differentiable curve of the boundar
differentible curve A®(t) of vector potentials in H?(M|

t(curl Ab(t)) = At

%nE ,/ <I>d3:1::0.
M

])dgxl .

ted by t(curl A). For A € H%(M,g),

ary data in HY/2(dM,g). For every

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

ry data in H'/2(0M, g). We choose a
, g) satisfying the boundary condition

).

(3.1)

Such a choice of a background field is always possible, in particular one can take A°(t) to

be the solution of AA®(t) = 0 which satisfies (3.1), [13]. Then, the difference

alt) = A(t) - A*(

t)

(3.2)




satisfies the homogeneous boundary condition
t(curla(t)) =0

if and only if A(t) satisfies (2.6). Moreover,

B =curl A + [A, xA] = curla + curl A

If we rewrite the evolution equations (2.3) a

(3.3)

» +[A° +a,xA° +q] . (3.4)

nd (2.4) in terms of the variables

(a(t), E(t)), and consider first the linear approximation in which the terms depending

on the background field are omitted, we obtain

dia = E+grad<1>+/ E(gr

M

OF = —curl (curl(a
Here ® is given by (2.7). Our aim is to prove that Eqs

ous one parameter semigroup of bounded linear trans

60®

23t 9= !
ad' 2=)dsa’ (3.5)

) - (3.6)

. (3.5) and (3.6) determine a continu-
formations in an appropriate function

space. To this end we start with the Hodge decomposition of the Lie algebra valued vector

fields FE,
E=E"+E",

where the longitudinal part is a gradient
El = grady,

and the transverse part is divergence free and has

bound
ey divET =0 , nET

(3.7)

(3.8)

vanishing normal component on the

0. (3.9)

Since M is simply connected, the potential ¢ is uniquely determined by (3.8) and the

condition

/Mw dsx =0 .

Moreover, if E € H*(M,g) then vg € H**1(M, g)
and taking into account (3.8) through (3.10), we see t
Neumann problem:

A Y =divE | n(gradyg) =nE

Comparing this with (2.7) we see that

®=—-5YE

2

so that the scalar potential satisfies

L
grad® = -1 EY|.

(3.10)
[13]. Taking the divergence of (3.7)
hat ¢ g is the solution of the following

M

(3.12)

(3.13)




Therefore

) )
sp&red®=sorgrad®, (3.14)
and the non-local term in (3.5) is
/ E(grad"s—@)dg,x' = / EL(2"){ tad ' ®(z’) }dzz’
o 5E u SEL(z)® 3 (5.15)
=-1 /M EL(2'){6(z — 2')}ds2’ = -1 EX(x) .

Substituting (3.7), (3.13) and (3.15) into (3.5) we get

da=ET . (3.16)

Hence, the linearised equations (3.5) and (3.6) decomposed into the transverse and the

longitudinal components are

8.aT = ET |, 8,ET = —curl (curl (aT)) , (3.17)
dat=0, EL=0. (3.18)
Let
HT = {(a",E") € H'(M,g) x L*(M,g)} , (3.19)
HY = {(a®, E") € H*(M,g) x H'(M, )} - (3.20)

Eq. (3.17) defines a continuous one parameter semigr
formations in HT with the generator

T(a¥,ET) = (ET, —curl
defined on the domain
D = {(a",ET) € H*(M,g) x H'(M,

for details see [6]. Similarly, Eq. (3.18) defines the id

oup exp(t7) of bounded linear trans-

curl (aT)) (3.21)

g) | t(curl (a™)) = 0} ,

entity transformation in HZ.

(3.22)

The full evolution equations (2.3) and (2.4) can be split into the transverse and the

longitudinal components, and rewritten in the form

du(aT,ETY = T(a”,ET) + FT(
8y (aX, ELy = FL(ak, EL,a" E

L pL ,T pT
a7E’a’E)7

N

(3.23)
(3.24)

where T and FL denote the nonlinear and the background dependent parts of the right
hand sides of (2.3) and (2.4). In order to complete the proof of the theorem it suffices to

show that the following properties of the nonlinear t
(a) FL treated as a map from HE x D to H: is a

with respect to the following norm in H L'xD

IVE VDl = I1VElae + 1V lar + 1TV g

erms FT and FL, [14].

continuous and locally Lipschitz map

(3.25)




where we have used the notation VX = (af, EL) and VT = (a7, ET).
(b) FT treated as a map from HL x D to HT is a continuous differentiable map with

respect to the norm (3.25).
(¢) The map K : HL x D x HT — HT, given by

K(WVE VT WT) = K (VE,VT)
where

Ki(vEvT)y=DFT(VLV
Ko(VE, VT wT) = DFT(VE,V

+ ’CQ(VL, VT, ’UT),

Iy(FEWvE VT, 0),
Do,7),

is locally Lipschitz with respect to the following|norm in HY x D x HT

IVE VT oDl = IVEae + IV et 4 1TV gz + 10" (|7

(3.29)

Most of the estimates involved in verifying these properties are given in [8]. The only

new term appearing here is

§®(z’)

/ / 5@(3;1) ' Y ’ ’
/M B(@)[A), g Jdoa = —/M[L(m ) A g o

where A = a + A®. The variational derivative of ® in the direction e,

N 5®(z")
W)= [, GEe e

satisfies the equation
2grad xy = —eb .

By construction,

/ x(z')dzz' =0,
M

and x € H*t1(M, g) if e € H*(M, g).
The Hodge decomposition of the 0-form (scalar

[E, A] = div Z +

where
nZ =0, C = conc

.L‘)dg.’l? y

function) [E, A] yields

~
?

st .

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)




Since M is bounded and simply connected Z is unique and is in H**1(M,g) if [E, Al €

H*(M, g). Hence,

[{[ 1B 41550

b [ 2@ @)’
M

02(2') 1

SE(z) (x)dsa’ }dsz =

2
in the last equality we have used (3.32) through (3.3

[ 186, AN
M

5E(z) 3°
For k = 1,2, Eq. (3.34) implies that

/

(B, Allpees = v ZIs +2 [

Since, div Z is L2-orthogonal to the constants and ||C |
I[E, A]||3+-.. Hence,

125 e < Nldiv Zl|ge-s < IE, Alll

This estimate and the estimates given in [8] suffice
(c), which completes the proof.

4. Concluding Remarks.

Consider the evolution space

E=H*M,g)x H(Mjg)x R

and the 2-form
Q=w+dt NdH

where Hgp is by (1.4) and @ is given by (1.12). The
a submanifold

Ex={(A,E,t)€ H*(M,g) x H'(M,g) x IR |tcurl A = A(t)} .

By construction, our solution curve (A(t), E(t)) give
Let ) denote the pull back of Q to S,. The tangent
by é(t), satisfies the Hamiltonian evolution equation:

t)_|Qx=0.

Jgrad'x(z') + Cx(z')}daz’ + /
oM

[ {div'z(@) + Opx(a)daa’ =

nZ(z')x(z')dS’ =

5). Therefore,

1 ZEz) . (3.36)

odiv Z daz + ||C|32 . (3.37)

> 0, it follows that ||div Z{|%,c_, <

e-1 < || Al g2 || El g (3.38)

to verify the conditions (a) through

(4.1)

o (4.2)

boundary conditions A(t) determines

(4.3)

s a curve c(t) = (A(t), E(t),t) in Ex.
vector of the evolution curve, denoted
S

(4.4)
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A choice of a background field A® satisfying the boundary condition, cf. Eq. (3.1),
leads to a reparametrization of S in terms of the variables (a, E, t), where q satisfies the
boundary condition

t(curla) = 0. (4.5)
These variables define in £, a product structure:
Ex~P(M)x R, (4.6)
where
Po(M) = {(a,E) € H*(M,g) x H' (M, g) | t(curla) = 0} . (4.7)

Since the background field is A® is fixed, the variation §A in Eq. (1.6) can be replaced by
§a. Hence, the restriction to Po(M) of the 1-form 6 can be written as

00 = / E- 6ad31 . (48)
M

Its exterior differential
wo = dbo (4.9)

is a weakly symplectic form in Po(M). The evolution equations (4.4) lead to the usual time
dependent Hamiltonian eqautions in Py(M) with the time-dependent Hamiltonian

Ho(a, E,t) = Hg(a+ A%(t),E) =

=1 /M (E2 + (curla + curl A%(t) + [a + A%(2), >.<a +A°(t)])*}ds (4.10)

+ / E(grad® — [a + A°(t), ®])dsz .
M

For time independent boundary data A, we can cho’ose independent of time background

field A®. In this case the above Hamiltonian is constant in time, and we have a usual time
independent Hamiltonian formulation of the theory.

Using the results of [8] we could generalize our Theorem to the case of minimally
interacting Yang-Mills and Dirac fields, with the Dirac field ¥ satisfying the boundary
conditions

(iv*ng — I)W(t)|OM = p(t) and (iv*ng — DY (1)|OM = v(t) . (4.11)
Here I is the identity matrix in Vg @ € 4 |OM denotes the restriction to the boundary,
D = —4%(478; + im) (4.12)

is the free Dirac operator in IR %, and p(t) € H3/2(dM,Ve®€*) and v(t) € HY*(OM,Ve®
C*) are the boundary data satisfying the conditions

(iv*nk + Hp(t) =0 and (iv*ns + Du(t) =0 . (4.13)




In a similar way we could extend the validity of
acting Yang-Mills and Dirac fields in the Minkowski
boundary conditions and Eq. (2.7) should be replace

A@:--;-divE,/
R3

for details see [15].

®(z)(1+ 22)"2dzz =0,

our Theorem to the minimally inter-

space-time. In this case there are no
] by

(4.15)

There are two important questions which have to be answered. The first is whether

our Hamiltonian system is complete, that is if the solutions exist for all time ¢. Even if the

system is incomplete, and solutions develop singularities in finite time, the set of Cauchy
data in Po(M) for which the solutions exist up to time T is open in Py(M), [16]. Hence,

they can be studied in terms of the same Hamiltonian
developement of a corresponding quantum theory. Th
of the boundary data.
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