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1. Introdu'ction.

In classical dynamics and field theory the Hamiltonian nature of the evolution equa-
tions is a consequence of the underlying variational brinciple. It plays an important role
in the construction of the corresponding quantum theory. In particular, it ensures the
unitarity of the quantum evolution.

For field theories with constraints the splitting of the field equations into the evolution
equations and the constraint equations is somewhat arbitrary off the constraint set. One
can always modify the evolution equations by terms 'fhich vanish on the constraint set. In
the case of Yang-Mills fields such a decomposition of the field equations is usually obtained
in terms of the chosen 3 + 1 splitting of the space-tirhe into the product of the space and
the time axis. It leads to the evolution equations 1

8tA = E + grad <I>- [<1>,A] ,

8tE = -curlB - [Ax, B] L [<1>,E] ,

and the constraint equation 1

div E + [A; E] = 01 . (1.3)

Here, A is the vector potential of the Yang-Mills field and <I>is the scalar potential, (both
potentials have values in the Lie algebra g of the st~ucture group G of the theory), [-,.]
denotes the bracket in g, while xand. denote the cJoss product and the dot product in
IR 3, respectively. I

The time evolution of the scalar potential <I>is not determined by the field equations.
In order to make the evolution equations deterministi~ one prescribes <I>in terms of a gauge
condition. If the scalar potential is chosen as a givenlfunction of the space-time variables,
<I>= <I>(x, t), then the evolution equations are Hamiltonian with the Hamiltonian

H~(A, E) = !1M (E' + B')d3X + 1M k(grad q, - [A, q,])d3X •

and the symplectic form
w = de, (1.5)

where e is given by
(O(A, E)I(M, oE)) ~ Li'M d3x , (1.6)

and M is the domain in IR 3 accessible to the fields. In particular, for the temporal gauge
condition

one gets the usual Hamiltonian

<1>=0, (1. 7)

Ho(A, E, '1T) = ~ 1M (E2 +1 B2)d3x . (1.8)

In order to make the above heuristic arguments more precise we have to specify the
space of functions in which the evolution is taking ~lace and to show that the evolution
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equations have solutions in this space. The existeilce and uniqueness of solutions of the
Yang-Mills evolution equations has been studied in seferal papers, [1] through [8].However,
all of them prove the existence of solutions for non-Hamiltonian evolution equations. The
methods of proof are based on the theory of perturbations of linear semigroups, [9]. In par-
ticular, it requires the elimination of the longitudinal component of E from the linearized
equations; for a comprehensive discussion of this p~oblem see [4] where this problem is
solved by a non-Hamiltonian modification of the original evolution equations off the con-
straint. In [8] we showed that by an apropriate gaug~ transformation one can get ~ to be
the solution of the Neumann problem in M.

ß ~ = -div E and n(grad ~) = -nE with 1M ~ d3x = 0 , (1.9)

where n(grad ~) denotes the normal component of grad ~ on the boundary 8M of M.
With this choice of ~ we proved the exis tence and rniqueness of solutions of the mixed
problem for the evolution equations of minimally inüeraeting Yang-Mills and Dirae fields
in bounded domains with inhomogeneous boundary bonditions, [8].

For the gauge eondition (1.9) the sealar potenti~l ~ depends on the dynamical vari-
able E. Henee, the evolution equations (1.1) and (11.2) are not Hamiltonian. However,
the Hamiltonian H~, given by (1.4), generates the ~volution equations in whieh (1.1) is
replaeed by

8tA(x) = E(x) + grad ~(x) - [~(x), A(x)]
r ' ( ,8~(x') [(') 8<I>(x')]) ,+ 1ME(x) grad 8E(x) - J4. x , 8E(x) d3x ,

the gradient under the integral sign is taken with reJpect to the variahle x'.
On the constraint set, given by Eq. (1.3), all tlie evolution equations are equivalent

and are Hamiltonian. Henee, one eould argue that the form of the evolution equations
off the eonstraint set is not important. However, the Hamiltonian nature of the evolution
equations (also off the eonstraint set) is essential if Olilewants to compare the classical and
the quantum reduetion procedures, [la), [11]. I

In this paper we discuss the existenee and the 1!lniquenessof solutions of the Hamil-
tonian evolution equations (1.10) and (1,2), in the sJaee

P(M) = {(A, E) E H2(M, g) lH1(M, g)} , (1.11)

where M is a bounded contractible domain in IR 3, lnd Hk denotes the Sobolev space of
fields whieh are square integrable over M together w~th their partial derivatives up to the
order k, see (12), and <I>is the solution of the followi~g Neumann problem:

ß<I>= -~ div E and n(grad~) = -~ nE with 1M <I>d3x = 0 . (1.12)

The main result is given in the next section. Seetion 3 eontains an outline of the proof.
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2. Statement of Results.

We consider a bounded contractible domain M in IR3 with smooth boundary 8M.
For the Yang-Mills vector potential A, the boundarYj condition is given by specifying the
tangential to 8M component of the curl of A, denoted by t(curlA). For A E H2(M,g),
t(curlA) E H1/2(8M,g).

Theorem
Let A(t) be a differentiable curve of the boundary data in H1/2(8M, g). For every

I
to E IR and the initial data (Ao, Eo) E H2(M, g) x H1(M, g) such that

I
t(curlAo) = A(to) , (2.1)

there exists a maximal T > 0 and a unique cur+

[to, to + T) ~ H2(M, g) x H1(Mi, g) : t ~ (A(t), E(t)) (2.2)

satisfying the evolution equations

a,A = E + grad <11- [<11,A] +LE(jad' ;: - [A, ;:])d3X' .

8tE = -curl B - [Ax, BI ] - [<I>,E] ,

the initial conditions
A(O) = Ao , E(Op = Eo,

and the boundary conditions

tcurl (A(t)) = A(t) ,

(2.3)

(2.4)

(2.5)

(2.6)

where <I>is the solution of the Neumann problem

~<I>= -~ div E , n(grad<I» = -~ nE ,1M <I>d3x = O. (2.7)

3. Outline of Proof.

Let A(t) be a differentiable curve of the boundafy data in H1/2(8M, g). We choose a
differentible curve Ab (t) of vector potentials in H2 (MI' g) satisfying the boundary condition

t(curlAb(t)) = A(Y . (3.1)

Such a choice of a background field is always possiblr, in particular one can take Ab(t) to
be the solution of ~Ab(t) = 0 which satisfies (3.1), [13]. Then, the difference

I

a(t) = A( t) - Ab(lt) (3.2)

I

I
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satisfies the homogeneous boundary condition

(3.3)t( curl a(t)) = 0

if and only if A(t) satisfies (2.6). Moreover,

B = curlA + [A, xA] = curla + CUrlAi + [Ab + a, xAb + a] . (3.4)

If we rewrite the evolution equations (2.3) and (2.4) in terms of the variables
(a(t), E(t)), and consider first the linear approximJtion in which the terms depending
on the background field are omitted, we obtain

(3.8)

(3.7)E = EL +ET,

where the longitudinal part is a gradient

EL = grad'!/J,

ö,a = E + gr.diP + 1ME(grr';:)dd , (3.5)

OtE = -curl(curl(a)). (3.6)

Here epis given by (2.7). Gur aim is to prove that Eqs!. (3.5) and (3.6) determine a continu-
ous one parameter semigroup of bounded linear transformations in an appropriate function
space. To this end we start with the Hodge decompo~ition of the Lie algebra valued vector
fields E,

1M '!/J d3x = 0 . (3.10)

Moreover, if E E Hk(M,g) then '!/JE E Hk+l(M,g), [13]. Taking the divergence of (3.7)
and taking into account (3.8) through (3.10), we see tihat '!/JE is the solution of the following
Neumann problem:

and the transverse part is divergence free and has jVaniShingnormal component on the
boundary

div ET = 0 , nET I" 0 . (3.9)

Since M is simply connected, the potential '!/Jis umiquely determined by (3.8) and the
condition

ß '!/JE = div E , n(grad'!/JE) = nE , 1M '!/JEd3x = 0 .

Comparing this with (2.7) we see that

(3.11)

(3.12)

so that the scalar potential satisfies

gradep = -~ EL . (3.13)
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Therefore 6 6
6Egrad cI> = 6EL grad cI> ,

and the non-local term in (3.5) is

1M E(grad'~:)d3X' = 1M EL(x'){6E~(X)gFad'cI>(x')}d3X'

= -! 1M EL(x'){6(x - x')}d3x' = -!EL(x) .

Substituting (3.7), (3.13) and (3.15) into (3.5) we get

8ta = ET .

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)

(3.25)

Hence, the linearised equations (3.5) and (3.6) dec0mposed into the transverse and the
longitudinal components are I

8taT = ET , 8tET = -cud(curl(aT)) ,

8taL = 0 , 8tEL I o.
Let

HT = {(aT, ET) E H1(M, g) x L2(M, g)} , (3.19)

HL = {(aL, EL) E H2(M, g) ~ H1(M, g)} . (3.20)

Eq. (3.17) defines a continuous one parameter semigJoup exp(tT) of bounded linear trans-
formations in HT with the generator I

T(aT,ET) = (ET,-curl(curl(aT)) (3.21)

defined on the domain

D = {(aT, ET) E H2(M, g) x H1(M, g) I t(curl (aT)) = O} , (3.22)

for details see [6]. Similarly, Eq. (3.18) defines the identity transformation in HL.
The full evolution equations (2.3) and (2.4) ca~ be split into the transverse and the

longitudinal components, and rewritten in the form

8t(aT,ET) = T(aT,ET) +FT(pL,EL,aT,ET) , (3.23)
8t(aL,EL) = FL(aL,EL,aT,Er) , (3.24)

where FT and FL denote the nonlinear and the background dependent parts of the right
hand sides of (2.3) and (2.4). In order to complete the proof of the theorem it suffices to
show that the following properties of the nonlinear terms FT and FL, [14].
(a) FL treated as a map from HL x D to HL is a Icontinuous and locally Lipschitz map

with respect to the following norm in HL X D ,

II(VL, VT)lh := IIVLIIHL + IIJTIIHT + IITVTIIHT ,
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where we have used the notation VL = (aL, EL) and VT = (aT, ET).
( b) FT treated as a map from H L X D to HT is a continuous differentiable map with

respect to the norm (3.25).
(c) The map lC: HL x D X HT _ HT, given by

where

lC1(VL, VT) = DFT(VL, Vf)(FL(VL, VT),O) ,
lC2(VL, VT,vT) = DFT(VL, VT)(O,vT) ,

is locally Lipschitz with respect to the following norm in H L X D X HT

(3.26)

(3.27)
(3.28)

II(VL, VT,vT)lh = IIVLIIHL + IIVTIIHT 111TVTIIHT + IlvTllHT . (3.29)

Most of the estimates involved in verifying these properties are given in [8]. The only
new term appearing here is

r (') [ ( ') 15 <I> ( x') ]d,r [ ,( ') (')] 15 <I> ( x') I
JMEx Ax 'bE(x) 3X =- JMEx ,Ax bE(x)d3x

wbere A = a + Ab, Tbe vaxiational derivative of<p J tbe direction €,

I r b<I>(x') L I
X(x) = JM bE(x) € (x)d3x,

(3.30)

(3.31)

satisfies the equation
2grad X = _€L . (3.32)

By construction,

1M x(x')d3x' = 0 ,

and X E Hk+1(M, g) if € E Hk(M, g).
The Hodge decomposition of the O-form (scalar function) [E, A] yields

[E, A] = div Z + @ ,

where
nZ = 0 , C = const .
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(3.36)

Si~ce M is bounded and simply connected Z is uni<[ue and is in Hk+1(M, g) if [E, A] E
H (M,g). Hence,

IM {/M[E(x'), A(x')] ~~~~?€L(x)d3x' }d3x = YM {div' Z(x') + C}X(x')d3x' =
I

= r {-Z(x')grad' X(x') + CX(x') }d3x' + ~ nZ(x')x(x')dS' =1M 1bM
=! IM Z(x')€L(x')d3x' ;

in the last equality we have used (3.32) through (3.35). Therefore,

r [ ( ,) (,)]8 <P(x') , 1 L
1MEx ,Ax 8E(x)d3x ="2Z (x).

For k = 1,2, Eq. (3.34) implies that

II[E, A]lIiIk-l = Ildiv ZlliIk-l + 2 r CC'divZ d3x + IIClli2 . (3.37)
1M I

Since, div Z is L2-orthogonal to the constants and IIClli2 2 0, it follows that Ildiv ZlliIk-l ~
II[E, A]lliIk-l' Hence,

This estimate and the estimates given in [8] suffice to verify the conditions (a) through
(c), which completes the proof.

4. Concluding Remarks.

Consider the evolution space

and the 2- form

(4.1)

(4.2)

where Hip is by (1.4) and cI>is given by (1.12). The boundary conditions .\(t) determines
a submanifold

£),. = {(A, E, t) E H2(M, g) x H1(M, g) x IR I tcurlA = .\(t)} . (4.3)

By construction, our solution curve (A(t), E(t)) givls a curve c(t) = (A(t), E(t), t) in £>...
Let fh denote the pull back of n to S>... The tangent rector of the evolution curve, denoted
by c( t), satisfies the Hamiltonian evolution equations

(4.4)
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A choice of a background field Ab satisfying tHe boundary condition, cf. Eq. (3.1),
leads to a reparametrization of BA in terms of the vJriables (a, E, t), where a satisfies the
boundary condition

t(curla) = 0 .

These variables define in CA a product structure:

(4.5)

(4.6)

where
Po(M) = ((a,E) E H2(M,g) x H1(M,g) I t(curla) = O} . (4.7)

Since the background field is Ab is fixed, the variatidn DA in Eq. (1.6) can be replaced by
Da. Hence, the restriction to Po(M) of the I-form 0 dan be written as

90 = 1M E. 6adJ. (4.8)

Its exterior differential
Wo = dOo (4.9)

is a weakly symplectic form in Po(M). The evolution Fquations (4.4) lead to the usual time
dependent Hamiltonian eqautions in Po(M) with the time-dependent Hamiltonian

Ho(a, E, t) = H<p(a + Ab(t), E) =

- ~ 1M (E' + (curla + curIAb(t) + [a1Ab(t), xa + Ab(t)])'}d3x (4.10)

+1E(grad<I> - [a + Ab(t~, <I>])d3x .

For time independent bound: data A, we can ch~ose independent of time background
field Ab. In this case the above Hamiltonian is constant in time, and we have a usual time
independent Hamiltonian formulation of the theory.1

Using the results of [8] we could generalize our Theorem to the case of minimally
interaeting Yang-Mills and Dirae fields, with the Dirac field \lJ satisfying the boundary
eonditions

(i"/nk - I)\lJ(t) IBM = J-l(t) and (i'lnk - I)D\lJ(t)j8M = v(t) . (4.11)

Here I is the identity matrix in Ve @ (C\ IBM denoJes the restrietion to the boundary,

o' ID = -"( bl8j + ir) (4.12)

is the free Dirae operator in 1R3, and J-l(t) E H3/2(8M, Ve@(C4) and v(t) E H1/2(8M, Ve@
(C4) are the boundary data satisfying the conditions

(4.13)

>'.
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(4.15)

I

'-

In a similar way we could extend the validity of ur Theorem to the minimally inter-
acting Yang-Mills and Dirac fields in the Minkowski Ispace-time. In this case there are no
boundary conditions and Eq. (2.7) should be replaceä by

LI. <l>= -!div E, r <l>(x)(l j X
2)-2d3x ~ 0 ,

JJR3

for details see [15].
There are two important quest ions which have to be answered. The first is whether

our Hamiltonian system is complete, that is if the solptions exist for all time t. Even if the
system is incomplete, and solutions develop singularities in finite time, the set of Cauchy
data in Po(M) for which the solutions exist up to tÜne T is open in Po(M), [16]. Hence,
they can be studied in terms of the same Hamiltonianl structure. The second problem is the
developement of a corresponding quantum theory. This involves the physical interpretation
of the boundary data.
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