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ON CO-MINIMAL PAIRS IN ABELIAN GROUPS

ARINDAM BISWAS AND JYOTI PRAKASH SAHA

ABSTRACT. A pair of non-empty subsets (W, W’) in an abelian group G is a complement
pair if W + W’ = G. W' is said to be minimal to W if W + (W' \ {w'}) # G,Vw' € W'.
In general, given an arbitrary subset in a group, the existence of minimal complement(s)
depends on its structure. The dual problem asks that given such a set, if it is a minimal
complement to some subset. We study tightness property of complement pairs (W, W’) such
that both W and W’ are minimal to each other. These are termed co-minimal pairs and we
show that any non-empty finite set in an arbitrary free abelian group belongs to some co-
minimal pair. We also construct infinite sets forming co-minimal pairs. Finally, we remark
that a result of Kwon on the existence of minimal self-complements in Z, also holds in any
abelian group.
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1. INTRODUCTION

Let (G,-) be a group and let A, B be non-empty subsets of G with A- B = G. Then the
set A is said to be a left complement of B in G (respectively, B is a right complement of A
in G) and the pair (A, B) is said to be a complement pair in G. A complement pair in which
at least one subset is minimal will be called a minimal pair.

In the case of abelian groups, a left complement of a subset is also a right complement
to that subset and vice versa. Also, any non-empty subset A is always a part of some
complement pair (for instance, consider the pair (4, G)).

A left (resp. right) complement A of some non-empty subset B of G is said to be minimal
if A- B =G (respectively B- A= G) and (A \{a}) - B # G (respectively B - (A\ {a}) # G)
for each a € A. The notion of minimal complements was first introduced by Nathanson in
[Nat11] in the course of his study of natural arithmetic analogues of the metric concept of
nets in the setting of groups.

The situation becomes interesting when we ask whether a given subset admits a minimal
complement or not, and also the dual question whether a given subset could be a minimal
complement to some subset. In the case of Z, Kwon showed that any non-empty finite subset
is a minimal complement to some set in Z (see [Kwol9, Theorem 9]). Here, we show that

Theorem 1.1. Any non-empty finite subset of a free abelian group (not necessarily of finite
rank) is a minimal complement to some subset.

In fact, one can go further and study tightness property of a set and its minimal comple-
ment. For this, we introduce the notion of a co-minimal pair —

2010 Mathematics Subject Classification. 11B13, 05E15, 05B10, 11P70.
Key words and phrases. Additive complements, Minimal complements, Sumsets, Additive number theory.
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2 ARINDAM BISWAS AND JYOTI PRAKASH SAHA

Definition 1.2 (Co-minimal pair). Let A, B C G be two non-empty subsets. Then the pair
(A, B) is defined to be a co-minimal pair if A is a left minimal complement of B and B is a
right minimal complement of A.

Thus, a co-minimal pair is a complement pair in which both the subsets are minimal. The
existence of co-minimal pairs is a tricky question. We show that

Theorem 1.3. Any non-empty finite subset of an arbitrary free abelian group is a part of
some co-minimal pair. Moreover, if S is a two element subset of a group G, then (S, R), (L, S)
are co-minimal pairs for some subsets L, R of G.

In section 3, we study the behaviour of co-minimal pairs under cartesian products of groups.
Next, we turn our attention to infinite subsets A, B C G forming co-minimal pairs. For this,
the notion of spiked subsets (see Definition and also section is useful. If G1,Go are
subgroups of an abelian group G such that the multiplication map G; X G2 — G defined by
(91,92) — g1g2 is an isomorphism, then it turns out that the subsets of G of the form B x G,
with B C G is a part of a co-minimal pair in G if and only if B is part of a co-minimal pair
in G (see Lemma . More generally, an appropriate analogue of this statement also holds
for spiked subsets.

Theorem 1.4 (Theorem . Let G1,G9 denote two subgroups of an abelian group G. Let
X be a (u,p)-bounded spiked subset of G with respect to G1, G2 and with base B. If u admits
a p-moderation, then X is a part of a co-minimal pair in G1Gs of the form (X, M,) where
M, is the graph of the restriction of a moderation v of u to some subset M of G1 if and only
if X is equal to BG2 and B is a part of a co-minimal pair in G.

Roughly speaking, the above theorem classifies all the spiked subsets which can be a part
of a co-minimal pair of certain form.

On the other hand, if we take A = N? in G = Z%, then A can never have a minimal
complement and is also not a minimal complement to any set in G. Thus it is in a sense
the other extreme to being a part of a co-minimal pair. We discuss generalisations of this
in Proposition [5.3] This leads to a discussion on co-minimality and infinite approximate
subgroups and asymptotically approximate subgroups. See section

Finally, in the section on concluding remarks (see section @), we look at self—complementﬂ
in arbitrary abelian groups and remark that a set A is a minimal self-complement iff A does
not contain any non-trivial 3 term arithmetic progression.

2. FINITE SUBSETS AND CO-MINIMALITY

We begin this section by indicating a property of co-minimal pairs, and a subtle difference
between the notions of minimal pair and co-minimal pair.

Lemma 2.1. If (A, B) is a co-minimal pair in a group G, then (g-A, B-h) forms a co-minimal
pair for any two elements g,h of G.

Proof. 1t follows since multiplication by an element g from the left induces a bijection from
G to G and multiplication by an element h from the right also induces a bijection. O

Lemma 2.2. There exists a non-empty subset A C Z such that A has a minimal complement,
but A is not a minimal complement to any set. Thus, A can belong to a minimal pair, but
can never belong to a co-minimal pair.

1A non-empty set A is a self-complement iff A- A = G. If, in addition, A is minimal, then it’s called a
minimal self-complement or a co-minimal pair (A, A).
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Proof. Consider the subset A = 2Z U {1} C Z. Then inf A = —co and sup A = +o00. By
a result of Chen—Yang [CY12, Theorem 1], the set A admits a minimal complement in Z.
However, A itself cannot be a part of a co-minimal pair. Otherwise, suppose (A, B) is a
co-minimal pair for some subset B of Z. If all the elements of B have the same parity, then
replacing B by B + 1 if necessary, we may assume that B is a subset of 2Z. Since A + B is
equal to Z, it follows that B is equal to 2Z. However, 2ZU{1} is not a minimal complement to
2Z since the subset {0, 1} of 2Z U {1} is a complement to 2Z. Let us assume that B contains
two elements of different parity. Let B, (resp. B,) denote the subset of B consisting of the
even (resp. odd) elements of B. Note that the subsets 2Z+ B, and 2Z+ B, of A+ B contains
27 and 1+ 27Z respectively. Since B is a minimal complement to A, it follows that B., B, are
singleton sets. Note that the subset 27Z of A is a complement to B, U B, = B. Hence A is not
a minimal complement to B. Consequently, A cannot be a part of a co-minimal pair. [l

Further, co-minimal pairs do not escape from subgroups in the sense that for a subset A of
a group G, it is a part of a co-minimal pair or not accordingly as it is a part of a co-minimal
pair in any subgroup H of G containing A.

Lemma 2.3. Let A be a non-empty subset of a group G. Then the following statements are
equivalent.
(1) The subset A of G is a part of a co-minimal pair in G.
(2) For any subgroup H of G containing A, the subset A of H is part of a co-minimal
pair in H.
(3) For some subgroup H of G containing A, the subset A of H is part of a co-minimal
pair in H.

Proof. Let B be a subset of G such that (A, B) is a co-minimal pair in G. Let H be a
subgroup of G containing A. Let B’ denote the set of elements b € B such that A -b is
contained in H. Then (A, B) is a co-minimal pair.

Assume that for some subgroup H of G containing A, there exists a subset C of H such
that (A, C) is a co-minimal pair in H. Let {g)}ca denote a set of right coset representatives
of Hin G,ie., G=|]ycp(H-gx). Then (A, [3cA(C - gx)) is a co-minimal pair in G.

Hence the implications (1) = (2),(3) = (1) follow. The implication (2) = (3) is
immediate. O

Next, we will proceed to prove Theorems [I.1]

Proposition 2.4. Given a non-empty finite subset S of Z" for n > 2, there exists an au-
tomorphism ¢ of the group Z™ such that the image of the set ¢(S) under the projection
map

71 : Z" — 7 (onto the first coordinate)
contains exactly #S5 elements.
Proof. We show it by induction. The base case is for n = 2. Suppose S is a non-empty
finite subset of Z2. Then for some positive integer m, the image of the set ¢,,(S) under the
projection map

71 : Z2 — Z (onto the first coordinate)

contains #S elements where ¢, denotes the automorphism of Z? defined by

(1 m
Pm=\o 1)
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Otherwise, there exist infinitely many positive integers m; < mo < mg < --- and two distinct
elements s,t in S such that
(1) T1(m;(s)) = m1(om, (1)) for any i > 1.

Let s (resp. t) be equal to (a1, az2) (resp. (b1,b2)). So any integer ¢ > 1, we obtain
a1 + mias = by + my;bo.

Note that ag # by (otherwise a; = by and hence s = ¢). Thus the equality in Equation
cannot hold for infinitely many positive integers m;. So the image of the set ¢,,(S) under
the projection map

71 : Z* — 7 (onto the first coordinate)

contains #S5 elements for some positive integer m, i.e., the Proposition holds for n = 2.

Suppose the Proposition also holds for n = r for some positive integer » > 2. Let S be
a non-empty finite subset of Z"*1. Then for some positive integer m, the image of the set
©m(S) under the projection map

7 :Z"" — 7" (onto the first r-coordinates)

contains #S elements where ,, denotes the automorphism of Z"+! defined by

10 -+ 0 m
01 -+ 0 m
om = :

00 1 m

00 1 (r+1)x(r+1)
Otherwise, there exist infinitely many positive integers m; < mo < ms < --- and two distinct
elements s,t in S such that
(2) T(m;(s)) = m(pm, (1)) for any i > 1.
Let s (resp. t) be equal to (ai,ag, -+ ,ar41) (vesp. (b1, ,br41)). So any integer ¢ > 1 and

1 < ¢ <r, we obtain

ag +miar41 = by +m;bry1.
Note that a,+1 # byy1 (otherwise ay = by for 1 < ¢ < r and hence s = t). Thus the above
equality in Equation cannot hold for infinitely many positive integers m;. So the image
of the set ¢, (S) under the projection map

7 :Z"" — 7" (onto the first r-coordinates)

contains #.S elements for some positive integer m. By the induction hypothesis, there exists
an element A € GL,(Z) such that the image of 7(¢;,,(S)) under A contains #m (., (S)) = #S
elements.
Let A denote the automorphism of Z"™! = Z" x Z which acts by A on the first factor Z" and
acts trivially on the second factor Z. Then the image of (A o ¢,,)(S) under the projection
map

7 : Z' — 7 (onto the first coordinate)

contains exactly #S elements. Hence the Proposition follows. [l

Lemma 2.5. Let S be a nonempty finite subset of an abelian group G. Suppose G1 is a
group, and w : G — Gy is a surjective group homomorphism such that w(S) contains #S
elements. Then S is a minimal complement to some subset of G if the subset w(S) of Gy is
a minimal complement to some subset W of G1.
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Proof. Since G is abelian, it follows that S is a complement to 7~ (). Moreover, since S
is a minimal complement to W and the image of S under 7 : G — G contains #.S elements,
the set S is a minimal complement to 7 (). O

Proof of Theorem [1.1]. Let S be a nonempty finite subset of a free abelian group G. If G
has finite rank, then we identify G with Z" with n = rkG. When n is equal to one, the result
follows from [Kwol9, Theorem 9]. Moreover, when n > 2, by Proposition there exists an
automorphism ¢ of G = Z" such that the image of ¢(.S) under the the projection map

7 Z" — 7Z (onto the first coordinate)

contains exactly #S elements. Note that w(p(S)) contains #¢(S) elements and by [Kwol9,
Theorem 9], the subset m(¢(S)) of Z is a minimal complement to some subset of Z. Hence
by Lemma ©(S) is a minimal complement to some subset W of Z", and hence S is a
minimal complement to ¢~!(W). Consequently, any non-empty subset of any free abelian
group of finite rank is a minimal complement to some subset.

Moreover, when G has infinite rank, i.e., when G is isomorphic to the direct product Z!
for an infinite set I, it follows that for some finite subset J of I, the image of S under the
projection map 7 : Z! — Z”7 (obtained by restricting the elements of Z! (considered as the
group of all functions from I to Z) to J) contains exactly #S elements. Indeed, if for each
pair (s,t) with s, € S, choose an element is; € I such that s,t take different values at i,
then J can be taken to be

J={ist|(s,t) € S xS, s#t}.

By the conclusion of the previous paragraph, it follows that 7(.S) is a minimal complement
to some subset of Z”. Hence by Lemma it follows that S is a minimal complement to
some subset of G. This completes the proof of Theorem O

Now, we turn our attention to co-minimal pairs (cf. Definition [1.2)) which measures the
tightness property of a set and its complement. To show Theorem we need a result from
a prior work.

Theorem 2.6 ([BS18, Theorem 2.1]). Let G be an arbitrary group with S a nonempty finite
subset of G. Then every complement of S in G contains a minimal complement to S.

This implies that a non-empty finite set S C G belongs to some minimal pair. Using the
above Theorem Proposition and Lemma [2.5] we shall show that it also belongs to a
co-minimal pair when G is a free abelian group. This will establish Theorem

Proof of Theorem [1.3, Let A be a non-empty subset of a free abelian group G. By Theo-
rem|[I.1] A is a minimal complement to some subset B of G. By Theorem [2.6] any complement
C of a non-empty finite subset W of a group contains a minimal complement to W. Con-
sequently, B contains a minimal complement B’ of A. Since A + B’ = G, A is a minimal
complement to B and B contains A, it follows that A is a minimal complement to B’ . Hence
(A, B’) is a co-minimal pair.

Let S = {g,h} be a two-element subset of a group G. Then S is a minimal complement
to G\ {hg~'}. Indeed,

9-(G\{g'h}) =G\ {n}
and

he G\{hg~'h} = (G-h)\{hg™'h} = h- (G\ {g~"'h}),
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which implies that S is a minimal left complement to G'\ {g~'h}. By [BSI8, Theorem 2.1],
G\ {g7'h} contains a minimal right complement to S. Hence (S, R) is a co-minimal pair for
some subset R of G.

Note that the proof of [BS18, Theorem 2.1] can be suitably adapted to prove that for a
non-empty finite subset S of a group G, every left complement to S contains a minimal left
complement to S. Using this result and an argument similar to the above, it follows that
(L, S) is a co-minimal pair for some subset L of G. O

Remark 2.7. Theorem gives us co-minimal pairs (A, B) with A = a non-empty finite set
and B = an infinite set. Co-minimal pairs can also occur with both A and B being infinite
subsets, as we explain in the following paragraph. It is clear that the third case, i.e., A and
B both finite sets forming a co-minimal pair cannot occur inside an infinite group G.

Remark 2.8. Let G be a finitely generated abelian group isomorphic to the direct product of
its torsion part Giors and a free abelian group F. If A is a non-empty finite subset of G such
that it is contained in a single coset of F' in GG, then Lemma [2.1] combined with Theorems
imply that A is a minimal complement to some subset of G and it is a part of some
co-minimal pair in G.

We shall now provide constructions of infinite subsets A, B forming co-minimal pairs. Let
A, B be two infinite subgroups of an abelian G such that A x B is isomorphic to G (under the
product of inclusion maps), then (A, B), (B, A) are co-minimal pairs. For instance, if M is
an idempotent element of GL,(Z) other than the identity, then the subsets A = ker M, B =
ker(I, — M) of Z™ form a co-minimal pair. There are examples of co-minimal pairs which
are not of this form. For instance, if H is a subgroup of a group G and {g)} ca is a set of
distinct left coset representatives of H in G, then ({gx}xea, H) is a co-minimal pair.

3. CARTESIAN PRODUCTS AND CO-MINIMALITY
Co-minimal pairs are preserved under cartesian products.

Proposition 3.1. Let n > 2 be a natural number. If we have n co-minimal pairs (Ay, By),
(Aa,Ba), -+, (An, By) in groups G1,Ga, - -+ , Gy, respectively, then (A1 X Ay X -+ X Ay, By X
By x --- x By) is a co-minimal pair in G = Gy X Gg X -+ x Gp,.

Proof. The proof is similar to [BSI8, Proposition 5.1]. We use induction on n. To avoid
confusion, just for the proof of this proposition, we denote complement pairs and co-minimal
pairs both using [, | instead of the usual (, ). For n = 2, let [Ay, B1] and [As, Bs] be two
co-minimal pairs in the groups G; and G2 respectively. Then

A1 - By =G1, (A1\{a}) - B1 C Gy Vaeg Ay and Ay - (B \{b}) S G1Vbe By,
Ag - By = Go, (A2\{a}) - Ba C Gy Vae Ay and Ay - (By\ {b}) C G2 Vb € Bs.
Now Ay x Ag, B1 X By C G1 X GGo. It is clear that
(A; X Ay) - (By X By) = (A1 - By) x (A2 - By) = G1 X Gs.

Thus [A; X Ay, By X Bs] forms a complement pair in G; x Gs.

Next, we show that [A; x Ag, By X Bsg| is co-minimal. Remove an element (by,b2) from
B1 x By and look at the set B := By x Ba \ {(b1,b2)}. We show that B is not a complement
to A1 x Ag in G1 X G, i.e., (A1 X Ag)- B C G1 X Go. Since By is a minimal complement to
A1, dag € A1, g1 € G1 such that the only way of representing ¢g; in Ay - By is a1b;. Similarly,
Jdag € Az, g2 € Go with gy = agby. It is clear that (g1, 92) ¢ (A1 X Ag) - B because (g1, g2)
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can only be represented in (A; x Ag) - (B1 X Ba) as (a1b1, agb2). Thus By x Bz is a minimal
complement to Ay X As. An exactly similar argument shows that A; x A is also a minimal
complement to By X Bg. Thus [4; X Ag, B; X Bs] is a co-minimal pair.

To prove the general case we use induction. Without loss of generality, let us assume that
the statement is true for k groups G1,Go, -+ , Gy with k < n. We show that the statement
holds for (k + 1)-groups. By hypothesis,

Al-BlzGl, (Al\{a})-BlgGl VaEAl and Al(Bl\{b})gGl VbEBl,
A2'32:G27 (AQ\{(L})-BQQGQ VaEAQ and AQ(BQ\{b})gGQ VbEBQ,

Ag - By =Gy, (Ax\{a}) By S Gy Va € Ag and Ay - (B \ {b}) S Gy Vb € By,
Agy1 - Birr = Gry1, (Agpr \{a}) - Bre1 © Gryr Va € Agyy and Agyg - (Byr \ {b)) € Gig1 Vb € By

By the inductive assumption, [A, B] = [A; X - -+ X Ay, By X - - - X By] forms a co-minimal pair
in Gp X -+ X Gg. To show that [A X A1, B X Bgy1] is a co-minimal pair in Gy X - - - X Ggy1,
we argue as in the n = 2 case. This proves the fact for n = k£ + 1 and by induction we are
done. 0

We mention that one can actually establish a stronger statement.

Proposition 3.2. Let I be a non-empty indexing set and (A;, B;),i € I be co-minimal pairs
in groups G, i € I respectively. Then ([ [;c; Ai, [ Licr Bi) s a co-minimal pair in G = [[;¢; Gi.

4. SPIKED SUBSETS AND CO-MINIMALITY

The above construction of co-minimal pairs was in the context of cartesian product of
groups. If instead we take product groups, then the following can be established. Suppose
(1, G9 are subgroups of an abelian group G such that the map

G1 x Gy = G defined by (g1, 92) — 9192

is an isomorphism. We identify the group G with G x G via this isomorphism. The subsets
of G of the form B x B’, more specifically, the subsets of G of the form B x G4 are one of
the simplest subsets of G.

Lemma 4.1. The subsets of G of the form B x Go with B C Gy is a part of a co-minimal
pair in G if and only if B is a part of co-minimal pair in Gy.

Proof. Suppose B x G is a part of a co-minimal pair (B x G2, S) in G. Denote the projection
map G — G by 7. Note that the image 7(.5) is a minimal complement to B. Since B x G is
a minimal complement to S, it follows that B is a minimal complement to 7(S). So (B, (S5))
is a co-minimal pair.

Suppose (B, M) is a co-minimal pair for some subset M of G1. Then (B x Go, M x {0})
is a co-minimal pair. O

The subsets of G of the form B x G2 are examples of a more general class of subsets, called
‘spiked subsets’ as introduced in [BS19]. For the sake of completeness, we recall its definition.
A subset X of ZFt! is called a spiked subset if

BxZCX C(BxZ)| | (Usezms ({2} x (—00,u(2))))

holds for some nonempty subset B of Z* and some function u : Z¥ — Z. The set B is called
the base of X. We will say that such a set X is a u-bounded spiked subset with base B.
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By [BSI19, Lemma 4.5], any function u : ZF — 7 admits a moderation v, i.e., a function
v : ZF — Z such that for each z¢ € Z*, the function

x = u(x) + v(zrg — )

defined on Z* is bounded above. It turns out that any (or some) u-bounded spiked subset
with base B admits a minimal complement in Z**1 if and only if the base B admits a minimal
complement in ZF (see [BS19, Theorems 4.6, 5.6]).

More generally, for an abelian group G as above with subgroups G, Gy such that Gg is
free and the multiplication map from G; X Gy — G is injective, the notion of ‘spiked subsets’
can be extended (cf. [BSI9, Definitions 5.1, 5.2]).

Definition 4.2. A subset X of an abelian group G is said to be a (u,)-bounded spiked
subset with respect to subgroups G1,Go of G if

(1) Gy is a finitely generated free abelian group of positive rank,
(2) the homomorphism G1 x Go — G defined by (g1, g2) — g192 is injective,

and there exists a function v : G1 — Go and an isomorphism ¢ : Go = 7'%G2 gych that

B, X cBG || L] o (7 (2%%0))
g1€G1\B

holds for some non-empty subset B of G1. The set B is called the base of X.

The notion of moderation extends to such a context (cf. [BS19, Definition 5.3]). More-
over, when G is finitely generated, it follows that v admits a p-moderation v (cf. [BS19,
Proposition 5.4]). Furthermore, if G is finitely generated, then a (u, ¢)-bounded spiked sub-
set of G with respect to G1,Go having base B admits the graph of the restriction of some
p-moderation of u to some subset of G as a minimal complement in G1Gs if and only if the
base B admits a minimal complement in G; (see [BS19, Theorem 5.6]).

The following result states that an appropriate formulation of Lemma also holds for
spiked subsets, and thereby classifies all the spiked subsets which can be a part of a co-minimal
pair of certain form.

Theorem 4.3. Let G1, Gy denote two subgroups of an abelian group G. Let X be a (u,)-
bounded spiked subset of G with respect to G1, Go and with base B. If u admits a p-moderation,
then X is a part of a co-minimal pair in G1Gy of the form (X, M,) where M, is the graph
of the restriction of a moderation v of u to some subset M of G if and only if X s equal to
BGo and B is a part of a co-minimal pair in G.

Proof. Assume that there exists a ¢-moderation v of u such that (X, M,) is co-minimal pair
in G1G2 where M, denotes the graph of the restriction of v of v to some subset M of Gj.
Since M, is a minimal complement to X, it follows that M is a minimal complement to B.
By [BS19, Theorem 5.6], M, is a minimal complement to BG3 in G1G2. Since (X, M,) is a
co-minimal pair in G1G4, we conclude that X cannot be larger than BGs. Hence X is equal
to BGo. If B is not a minimal complement to M, then BGs is not a minimal complement to
M,. Since (X, M,) is a co-minimal pair in G1Ga, it follows that B is a minimal complement
to M, i.e., B is a part of a co-minimal pair in G;.

Suppose B is a part of a co-minimal pair (B, M) in G;. Let v denote a p-moderation of w.
Then the graph M, of the restriction of v to M is a minimal complement to BG3 by [BS19,
Theorem 5.6]. If BG5 were not a minimal complement to M, then the set (BG3) \ {b + ¢}
would be a complement to M for some elements b € B and ¢t € G5. Since B is a minimal



ON CO-MINIMAL PAIRS IN ABELIAN GROUPS 9

complement to M, it follows that M contains an element m such that b+ m does not belong
to (B\ {b}) + M. This implies that ((BG2) \ {b+ t}) + M, does not contain the element
b+ m+t+v(m) of G1G2. Consequently, BG5 is a minimal complement to M,. O

5. SEMILINEAR SETS, APPROXIMATE SUBGROUPS AND NON CO-MINIMALITY

We conclude the discussion on co-minimal pairs by mentioning subsets which are in a sense
the other extreme of being part of a co-minimal pair, i.e., they do not belong to any minimal
pair. In other words, they are not a minimal complement to any subset and also no subset
can be a minimal complement to one of these sets. For this we recall the well-defined notion
of an arithmetic progression in an abelian group.

Definition 5.1 (Arithmetic progressions). A subset X of an abelian group (G,+) is an
unbounded arithmetic progression in G if there exist a € G and b € G\ {e} such that

X =P(a,b) :={a+nb|n € Z>p}.

A subset Y of G is a bounded arithmetic progression if there exist a,b € G and m € Z>g
such that

Y = P,(a,b) :={a+nb|n € [0,m]NZ}.
More generally, we will use the following objects.

Definition 5.2 (Generalised arithmetic progressions). An infinite subset X of an abelian
group (G,+) is an unbounded generalised arithmetic progression of dimension d with respect
to by, -+ ,bg € G if there exists an element a € G such that X is equal to

{a +n1by + -+ 4+ ngbg | n; runs over F;}

for some subsets I, - -+ , Fy of Z where each F; is either an unbounded arithmetic progression
in Z or a finite set. A subset Y of G is a bounded generalised arithmetic progression of
dimension d if there exist a,by,--- ,bg € G and m € Z>q such that

Y :Pm17...7md(a,bl,‘-- ,bd) = {a+n1b1 +~-'+ndbdlni S [O,mz] ﬁZ,l glg d}

A generalised arithmetic progression is also known as a linear set. A finite union of un-
bounded linear sets is called a semilinear set.

Proposition 5.3. Let G be a free abelian group and A be a non-empty subset of G. The
following are true
(1) If A = Pp(a,b) or in general if A = Py .. my(a,bi,--- ,bgq), then A is always a
minimal complement to some subset of G and also A has a minimal complement.
(2) If A = P(a,b), or more generally, if A is an unbounded generalised arithmetic pro-
gression of dimension d with respect to by,--- ,bg € G and by,--- ,by generate a free
subgroup of G of rank d, then A is neither a minimal complement to any subset of G,
nor does it have a minimal complement in G.
(3) If G = 7', A = P(a,b)! where 1 is some indexing set and P(a,b) C Z, then A
18 neither a minimal complement to any subset of G, nor does it have a minimal
complement in G.

Thus the subsets in (2) and (3) above, can never belong to a minimal pair.

Proof. (1) Note that A is a non-empty finite subset in G. It follows by Theorem that A is
a minimal complement to some subset and by Theorem that A has a minimal complement.
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(2) Suppose A is an unbounded generalised arithmetic progression of dimension d with
respect to by, -+ ,bg € G and by, - - -, bg generate a subgroup of G of rank d. Then

A={a+niby + -+ ngbg | n; runs over F;}

for some element a € G and some subsets F}, - - - , F,; of Z where each Fj is either an unbounded
arithmetic progression in Z or a finite set. Reordering the elements by, - -- , by (if necessary),
we assume that Fi,--- , F, are unbounded arithmetic progressions in Z with 1 < e < d and
the remaining F;’s are finite. Replacing a by a suitable element of G, we can assume that
the initial term of each of Fi, -+, F, is equal to zero. Let b),--- , b, denote nonzero elements
of Z such that F; is equal to Z>ob} for 1 < i < e. Note that A + b} b; is a proper subset of A
and hence A is not a minimal complement to any subset of G.

It remains to show that A does not have a minimal complement in G. Replacing A by a
translate of A (if necessary), we can assume a = 0. By [BS19, Theorem 2.3], it is enough to
show that A does not admit a minimal complement in the subgroup (611, -+ ,b.be, b1, , ba)-
Hence, the elements b b1, -+ ,bLbe, bes1,- - , by could be identified with eq, - -+ , e and A could
be thought of as a subset of Z¢. If e is equal to d, then A is equal to the subset Zio of 7.
By [BS18, Corollary 3.2(2)], the set A does not admit a minimal complement in Z¢. Suppose
e is less than d. Let

m 2% = Z° and o : Z% — Z4°
denote the projections onto the first e coordinates and onto the last d — e coordinates respec-
tively. Suppose Fei1,---,Fy are contained in the intervals [peyi,ges1], -, [Pd, qd] respec-
tively. Let us assume that B C Z¢ is a minimal complement of A. For each

V€ [—Get1, —Det1] X -+ X [—qa, —Pd]

such that the set BN, ' (v) is non-empty, choose an element (1, - - - , Zye) in 71 (BN, L (v)).
Since B is a minimal complement to A, it follows that the set 71 (B N 7' (v)) does not
contain any point whose i-coordinate is less than or equal to x,; — 1 for each 1 < i < e.
Since (—1,---,—1, 0,---,0 ) belongs to Z% = B + A, it follows that the set B N7, ' (v) is

—_———— ——

e-times (d—e)-times
non-empty for some
V€ [~Get1, —Pet1] X+ X [~qd, —pa)-

For each 1 < i < e, define

T; = min (Tyi — 1).
VE[—Get1,—Pet1]X X [—qq,—pa], BNy ' (v)#D
Note that (z1,---,e, 0,---,0 ) does not belong to B + A = Z%. Hence A does not admit
———
(d—e)-times

any minimal complement.

(3) Let f € Z' denote the constant function which takes the value b. Then A + f is a
proper subset of A and hence A cannot be a minimal complement to some subset of Z!. Let
us assume that b is positive and a is equal to 0. Suppose A admits a minimal complement
B in Z'. Let {c;}ic1 denote an element of B. Since B is a complement to A and B + A
contains {¢; — 1}¢r, it follows that B contains an element {d; };cy with d; < ¢; —1 for all ¢ € L.
Note that B\ {{c¢;}ic1} is also a complement to A. Hence A does not admit any minimal
complement in Z. [l

As a corollary, we deduce the following fact.
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Corollary 5.4. There exist semilinear sets A such that A is neither a minimal complement
to any subset of G, nor does it have a minimal complement in G.

Proof. Take A to be one of the sets described in (2) of Proposition O

The above Proposition and Corollary shed light on subtle differences in existence
and inexistence of minimal complements in general abelian groups. We have seen that a
proper subgroup H in any group G is always a minimal complement to any of its coset class
and it also admits a minimal complement. However, the fact does not remain necessarily
true when we pass to subsets which are close to being subgroups. Let us recall the notion of
an approximate subgroup.

Definition 5.5 (K-approximate subgroup). Let G be a group and K > 1 be some parameter.
A finite set A C G is called a K-approximate group if

(1) Identity of G, e € A.

(2) It is symmetric, i.e., ifa € A then a™! € A.

(3) There is a symmetric subset X lying in A- A with | X| < K such that A-AC X - A.

The formal definition of an approximate subgroup was introduced by Tao in [Tao0§]. In-
formally these sort of subsets have been studied since the time of Freiman [Fre64]. Nathanson
considered a more general notion of an approximate group. For him, the set A need not be
finite, nor symmetric, nor contain the identity.

Definition 5.6 ((r,l)-approximate group [Natl8]). Let r,l € N with r > 2. A non-empty
subset A C G is an (r,l)-approximate group if there exists a set X C G such that

|X|<land A" C X - A.

Any finite approximate subgroup always belongs to a minimal pair (by [BSI8, Theorem
2.1]), while inside free abelian groups they always belong to some co-minimal pair by Theorem
When we pass to infinite approximate subgroups (in the sense of Nathanson), this is
not necessarily the case. By (2) of Proposition there exist unbounded linear sets which
can never belong to a minimal pair while Corollary concludes the same about semilinear
sets. Unbounded linear sets are however examples of approximate subgroups in the sense of
Definition [5.61

We mention briefly that in the same paper [Natl8], Nathanson introduced the notion of
an asymptotic approximate group, which is a subset A C G such that every sufficiently large
power of A is an (r,l)-approximate group.

Definition 5.7 (Asymptotic (r,l)-approximate group). Let r,l € N, with r > 2. A subset A
of a group (G,-) is an asymptotic (r,l)-approximate group if there exists a threshold hy € N
such that for each natural number h > hg, there exists a subset X of G satisfying

| Xp| <1 and A" C X3, - AP

(1) Nathanson in [Natl8] showed that any finite subset in an abelian group is an asymp-
totic (r,[)-approximate group for some 7,/ € N.
(2) In [BM19], it was shown that unbounded linear sets and also semilinear sets are
asymptotic (r,[)-approximate groups for some r,l € N.
In the first case, the sets belong to co-minimal pairs while in the second case, as a consequence
of Corollary they do not necessarily belong to even minimal pairs, let alone co-minimal
pairs. Thus, in general, it is also not true that asymptotic approximate groups will be part
of some co-minimal pair.
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6. CONCLUDING REMARKS

The above discussion motivates one to consider co-minimal pairs with A = B, i.e., non-
empty subsets A of an abelian group G with A+ A = G and A+ A\ {a} € G,Va € A.
These type of sets have also been considered by Kwon in the context of G = Z (minimal
self-complements). He showed that such a set exists if and only if A avoids 3 term arithmetic
progressions. We remark that this holds in the context of an arbitrary abelian group.

Proposition 6.1. Let G be an abelian group. Then for a subset A of G, (A, A) is a co-
minimal pair if and only if A avoids non-trivial 3-term arithmetic progressions.

Proof. 1t is clear that the proof of Kwon for G = Z (see [Kwol9, Theorem 10]) also extends
to general abelian groups. O
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