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Summary 

This thesis focuses on three climate-related aspects of Para rubber (Hevea brasiliensis) cultivation 

in areas where altitudes and latitudes higher than its endemic range create conditions which are 

labeled nontraditional, suboptimal or marginal for rubber cultivation: 1. rubber yield in relation 

to the meteorological conditions preceding harvest events, 2. potential geographical shifts in 

rubber cultivation through climate change and 3. assessment of climate driven susceptibility to 

South American leaf blight (Pseudocercospora ulei) of rubber. 

Linear mixed models were developed and used to predict rubber yield in Xishuangbanna China 

(22°N 100°E and 900 m above sea level) based on the meteorological conditions to which rubber 

trees had been exposed for periods ranging from one day to two months prior to tapping events. 

Serial autocorrelation in the latex yield measurements was accounted for using random effects 

and a spatial generalization of the autoregressive error covariance structure suited to data 

sampled at irregular time intervals. Information theoretics was used to select models with the 

greatest strength of support in the data from a set of competing candidate models. The predictive 

performance of the selected best model was evaluated using both leave-one-out cross-validation 

and an independent test set. Moving averages of precipitation, minimum and maximum 

temperature, and maximum relative humidity with a 30-day lead period were identified as the 

best yield predictors. Prediction accuracy expressed in terms of the percentage of predictions 

within a measurement error of 5 g for cross-validation and also for the test dataset was above 99 

%. 

The second study focused on the potential shifts of rubber cultivation as a consequence of ongoing 

climate change within the Greater Mekong Subregion (GMS). Rule-based classification was 

applied to a selection of nine gridded climatic data projections (precipitation and temperature, 

and global circulation models (GCMs)). These projections were used to form an ensemble model 

set covering the representative concentration pathways (RCPs) 4.5 and 8.5 of the Fifth 

Assessment Report of the Intergovernmental Panel on Climate Change at three future time 

sections: 2030, 2050 and 2070. A post classification ensemble formation technique based on the 

majority outcome of the classification was used to not only provide an ensemble projection but 

also to spatially track and weight the disagreements between the classified GCMs. A similar 

approach was used to form an ensemble model aggregating the involved climatic factors. The level 

of agreement between the ensemble projections and GCM products was assessed for each climatic 

factor separately, and also at the aggregate level. Shifting zones with high confidence were 

clustered based on their land use composition, physiographic attributes and proximity. Following 
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the same ensemble formation technique and by setting a 28 °C threshold for annual mean 

temperature, areas prone to exposure to potentially excessive heat levels were mapped. Almost 

the entire shift projected with high certainty was in the form of expansion, associated with 

temperature and temporally limited to the 2030 time window, during which the total area 

conducive to rubber cultivation in the GMS is projected to exceed 50% by 2030 (from 44.3% at 

the turn of the century). The largest detected cluster (41% of the total shifting area), which also is 

the most ecologically degraded, corresponds to Northern Vietnam and Guangxi Autonomous 

Region of China. The area exposed to potentially excessive heat is projected to undergo a 25-fold 

increase under RCP4.5 by 2030 from 14568 km2 at the baseline. 

The third study focuses on South American leaf blight (SALB) of Para rubber trees. SALB is a 

serious fungal disease that hinders rubber production in the Americas and sustains concerns over 

the future of rubber cultivation in Asia and Africa. The existing evidence on the influence of 

weather conditions on SALB outbreaks in Brazil has prompted a number of assessment studies 

seeking to produce risk maps that reflect this relationship. Emerging hot spot analysis was applied 

to three decades of gridded daily precipitation and surface relative humidity data to illuminate 

the temporal and geographical patterns of these two factors in relation to the occurrence of 

weather conditions linked to SALB emergence. Inferential improvements through inclusion of the 

uncertainties and fine-scaled temporal breakdown of the evaluation were achieved in this section. 

Our findings support the notion that plenty of low risk areas exist within the rubber growing areas 

outside of the 10° equatorial belt.  

With the work done over the course of the three studies on rubber presented within this thesis, I 

have been able to shed more light on a number of challenges and opportunities that the 

continuous production of this important natural and renewable resource is facing. Thorough 

assessment of preferable locations for optimal latex production is crucial for decision-makers in 

order to both maximize the yield and minimize unnecessary and undesirable impacts on the 

landscape level from poor choices of location. The approaches developed and presented are 

transferable to different regions and cropping systems if needed.  
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Zusammenfassung 

Untersucht wurden im Rahmen der Dissertation drei klimabezogene Aspekte des 

Kautschukanbaus (Hevea brasiliensis) in Gebieten, die im Allgemeinen auf Grund ihrer 

geographischen Lage (nördl./südl. des 10. Breitengrades) als suboptimal, nicht-traditionell oder 

wenig geeignet beschrieben werden. Dabei stand die Bildung von Ertragsmodellen in direkter 

Abhängigkeit von lokalen Wetterbedingungen und die durch den Klimawandel entstehenden 

Optionen zur Expansion und/oder Reduktion der Flächen für den Kautschukanbau auf 

überregionaler Ebene, sowie die globale Risikobewertung für die Infektionswahrscheinlichkeit 

mit der südamerikanischen Blattfallkrankheit (Pseudocercospora ulei) im Zentrum der Arbeit. 

Linear gemischte Modelle wurden verwendet, um den Latexertrag in der Präfektur 

Xishuangbanna, Provinz Yunnan, VR China (22°N 100°E und 900 m ü. d. M.) in Abhängigkeit der 

lokalen Wetterbedingungen zu prognostizieren. Hierfür wurde auch untersucht, welche 

Zeitintervalle der Wetterbeobachtung, von einem bis 60 Tagen vor dem Erntezeitpunkt, den 

ausschlaggebendsten Einfluss auf den Latexertrag haben. Um das Problem der Autokorrelation 

der Latexertragsmessungen zu bewältigen wurden „random effects“ und eine räumliche 

Verallgemeinerung der autoregressiven Fehlerkovarianzstruktur innerhalb der in 

unregelmäßigen Zeitabständen gesammelten Daten angewandt. Aus einer Reihe von 

konkurrierenden Modellen wurden daraufhin diejenigen mit der stärksten Erklärungskraft 

ausgewählt. Die Vorhersagekraft der Modelle wurde durch 'leave-one-out' Kreuzvalidierung 

sowie unter Zuhilfenahme eines unabhängigen Datensatzes evaluiert. Die gleitenden 

Durchschnitte von Niederschlag, Tageshöchst- und Tagesmindesttemperatur sowie die maximale 

Luftfeuchtigkeit, alle gemittelt über einen Zeitraum von 30 Tagen vor der Ernte, wurden als beste 

Ertragsprädiktoren identifiziert. Die prognostizierte Treffsicherheit, ausgedrückt als 

Prozentanteil der Vorhersagen innerhalb von 5 g Messungenauigkeit, war für die 

Kreuzvalidierung und den Testdatensatz jeweils mehr als 99 %. 

Eine weitere Studie behandelte die klimawandel-bedingte Expansion oder Kontraktion der 

potentiell für den Kautschukanbau geeigneten Flächen im erweiterten Einzugsgebiet des Mekong 

(Greater Mekong Subregion, GMS). Rasterbasierte Temperatur- und Niederschlagsprognosen, 

hergeleitet aus einer Auswahl aus neun globalen Zirkulationsmodellen (GCMs) wurden 

regelbasiert klassifiziert. Die Zusammenführung der Zirkulationsmodelle stellte ein Ensemble-

Model-Set dar, das die repräsentativen Kohlendioxid Konzentrationspfade (RCPs) 4.5 und 8.5 aus 

dem fünften Bericht des Zwischenstaatlichen Ausschusses für Klimaänderungen (IPCC) in drei 

zukünftigen Zeitabschnitten umfasst: 2030, 2050 und 2070. Dafür wurde eine Methode zum 
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Aufbau eines Modellensembles nach der Klassifizierung entwickelt, die in der Lage ist nicht nur 

die Zusammenstellung des Ensembles zu gewährleisten, sondern darüber hinaus auch die 

Entwicklung der GCMs und der Abweichungen zwischen den GCMs räumlich nachzuverfolgen und 

zu gewichten. Ein ähnlicher Ansatz wurde verfolgt, um die Zusammenstellung des 

Modellensembles für die beteiligten Klimakomponenten durchzuführen. Für jeden Klimafaktor 

wurde, sowohl separat als auch aggregiert, der Grad an Übereinstimmung zwischen den 

Projektionen der Ensembles und den GCMs untersucht. Zonen, in denen eine Änderung der 

Eignung für den Kautschukanbau mit hoher Sicherheit prognostiziert wurden, zeichneten sich 

durch die Bildung von Clustern hinsichtlich der Zusammenstellung der Landnutzung, physio-

geographischer Attribute und Nähe zueinander aus.  

Die gleiche Methodik wurde angewandt, um Gebiete mit einem prognostizierten erhöhten Risiko 

für übermäßige Hitze, basierend auf einem Schwellenwert von 28°C 

Jahresdurchschnittstemperatur, zu identifizieren. Die Auswertung ergab, dass der größte Anteil 

an erwartbarem Wandel in der potentiell nutzbaren Fläche für eine mögliche Expansion des 

Kautschukanbaus liegt. Mit hoher Sicherheit lässt sich sagen, dass bis zum Jahr 2030 die potentiell 

nutzbare Fläche (temperaturbedingt) innerhalb der GMS von 44.3% auf über 50% ansteigen wird. 

Das größte räumliche Kontinuum innerhalb dieser Übergangszone (41% des gesamten Wandels) 

befindet sich in den ökologisch am stärksten degradierten Gebieten Nordvietnams und der 

Autonomen Region Guangxi, VR China. Gleichzeitig deuten die Prognosen auf einen Anstieg der 

durch übermäßige Hitze gefährdeten Gebiete um das 25-fache, basierend auf dem RCP4.5 für 

2030. 

Die Südamerikanische Blattfallkrankheit beim Kautschuk (South American leaf blight, SALB) ist 

eine schwerwiegende Pilzerkrankung die den Kautschukanbau in Nord und Südamerika stark 

einschränkt und als eine ernste Bedrohung für den Kautschukanbau in Asien und Afrika 

anerkannt ist. Eine Reihe von Studien, basierend auf Belegen das bestimmte 

Witterungsverhältnisse einen ausschlaggebenden Einfluss auf großflächige Ausbrüche von SALB 

in Brasilien hatten, wurden durchgeführt, um eine Kartierung für das Infektionsrisiko zu 

erstellen,. Um kleinräumige Muster innerhalb von Untersuchungsobjekten mit sowohl 

dynamischen als auch zyklischen räumlichen und zeitlichen Eigenschaften erkennen zu können, 

müssen sowohl die zugrundeliegenden Daten als auch die Ergebnisse eine ausreichend feine 

räumliche Auflösung und temporäre Granulation aufweisen. Technische Barrieren wie 

unzureichender Zugang zu Daten oder geringe Rechenleistung, die bisher als Grund für die 

Nutzung von tendenziell zu stark generalisierten Proxi-Variablen herangezogen wurden, sind in 

letzter Zeit zunehmend abgebaut worden. In dieser Studie wurde eine „Emerging Hot Spot“ 

Analyse angewendet, um basierend auf einer Zeitreihe von 30 Jahren an täglichen Daten zu 
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Niederschlag und relativer Luftfeuchtigkeit, die zeitlichen und geographischen Muster dieser 

Faktoren im Zusammenhang mit dem Erscheinen von Wetterbedingungen, die einen Ausbruch 

von SALB unterstützen würden, zu beleuchten. Durch den konsequenten Umgang mit 

Unsicherheiten und einer detaillierten zeitlichen Aufschlüsselung der Auswertung konnte so eine 

deutliche Verbesserung der wissenschaftlichen Schlussfolgerungen erreicht werden. Die 

Ergebnisse unterstützen die Annahme, dass „SALB sichere“ Anbaugebiete außerhalb des 10. 

Breitengrades und innerhalb der für den Kautschukanbau nutzbaren Zonen weltweit existieren.  

Im Rahmen der drei Studien die innerhalb dieser Doktorarbeit vorgestellt wurden war ich in der 

Lage auf eine Reihe von Herausforderungen und Möglichkeiten einzugehen, die für den 

andauernden und zukünftigen Anbau dieser wichtigen, nachwachsenden Ressource von 

Bedeutung sind. Die Untersuchung umweltgerechter und geeigneter Anbaugebiete und -standorte 

für eine optimale und nachhaltige Latexproduktion können einen entscheidenden Informations- 

und Diskussionsbeitrag für Politiker und Entscheidungsträger auf lokaler und regionaler Ebene 

darstellen. Die Methoden, die im Rahmen dieser Studie entwickelt und vorgestellt wurden sind 

sowohl auf andere Weltregionen anwendbar, als auch wenn gewünscht, transferierbar auf andere 

Acker- und Waldbausysteme.  
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1 General introduction 

1.1 Rubber boom and its socio-economic and environmental impacts  

Natural rubber is an important industrial commodity for which Para rubber tree (Hevea 

brasiliensis Muell. Arg.) is currently the only viable source. In spite of its tropical origin, the 

Amazon, H. brasiliensis possesses considerable climatic adaptability (Alam et al. 2005; Kositsup et 

al. 2009; Rao and Kole 2016) and has been cultivated in altitudes exceeding 1000m a.s.l. and 

latitudes over 25° (Priyadarshan et al. 2005) (see Figures 1.1 to 1.3). Driven by the growing global 

demand for this high-value raw material, rubber cultivation has been and still is quickly expanding 

in the tropics and subtropics, replacing forests and traditional agricultural practices (Chen et al. 

2016b; Sarathchandra et al. 2018; Chakraborty et al. 2018; Xiao et al. 2019).  

Although an overwhelming majority of the global rubber cultivation is in the hands of 

smallholders (Fox and Castella 2013), most often the spatial pattern in which rubber cultivation 

expands and solidifies its dominance over many tropical and subtropical landscapes, has 

undeniable similarities to typical large-scale commercial plantations: vast monocultures engulfing 

fragmented, shrinking and disconnected pieces of forest. Of course, large commercial plantations 

play a role too, as less developed countries such as Cambodia, Laos and Myanmar grant land 

concessions to foreign investments to establish large rubber plantations. Grogan et al. (2019) used 

remote sensing to reveal that more than 20% of the national forest cover in Cambodia has been 

cleared between 2001 and 2015, a fifth of which has been converted to rubber plantations.. 

This rubber boom has been accompanied by significant environmental and socio-economic 

change. Disturbed equilibrium in ecosystem functions and services caused by habitat and 

biodiversity loss (Li et al. 2013; He and Martin 2015; Warren-Thomas et al. 2015; Liu et al. 2016; 

Zhang et al. 2017; Rembold et al. 2017), deterioration of carbon stocks (de Blécourt et al. 2013; 

Yang et al. 2016; Min et al. 2019), soil erosion (Liu et al. 2015b, 2018c), hydrological cycle 

imbalance (Tan et al. 2011; Hardanto et al. 2017; Tarigan et al. 2018), and land and water pollution 

by fertilizers, pesticides and herbicides (Abdullah 1995) are only some of the environmental 

problems associated with this transformation. From the socio-economic point of view, poverty 

alleviation has been achieved through rubber production to different degrees (Liu et al. 2006; Fox 

and Castella 2013; Lu 2017; Andriesse and Tanwattana 2018). Yet, issues such as food insecurity 

due to subsistence crops being abandoned in favor of rubber (Behera et al. 2016; Thanichanon et 

al. 2018), income insecurity as a result of severe fluctuations in rubber price (Andriesse and 

Tanwattana 2018), and particularly in land concession cases, human rights violations (land 
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grabbing, poor working conditions and migrant workforce issues) have been documented 

(Kenney-Lazar 2012; Global Witness 2013; Baird et al. 2019). 

 

Figure 1.1 Rubber dominated landscapes 

 

 

Figure 1.2 Land use conversion to rubber 
Freshly cleared hilltops in Xishuangbanna (China) with rubber seedlings in foreground 
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Figure 1.3 An example of land use change from forest to rubber cultivation in elevations verging 1000m a.s.l. in Xishuangbanna during the last decade. 
Screenshots were collected from Google Earth™. For more information on the location illustrated above, see Figure 2.1. The bird eye viewpoint is identical of all panels. Dual scale bars are 
used due to the non-vertical viewpoint. Contour lines were generated from STRM data (www.usgs.gov) using ArcGIS 10.2.2. The different components of the Figure were combined and 
arranged in Inkscape 0.92.

http://www.usgs.gov/


4 

 

1.2 Mitigation of the negative environmental impacts of monoculture 

rubber cultivation 

Ahrends et al. (2015) estimated that 57% of the continental Southeast Asian rubber cultivation is 

not sustainable. Production of natural rubber to meet raw material demand and mitigation of rural 

poverty, should not be at the cost of compromising current and coming generations' access to 

other ecosystem functions and services.  

Policy makers and stakeholders have recently started to react to the environmental concerns 

raised through academic discourse on the expansion of rubber monocultures. Guidelines, action 

plans and initiatives have been proposed. The International Rubber Study Group (IRSG), an 

international organization based in Singapore, is composed of stakeholders involved in different 

parts of the natural rubber value chain. They introduced a set of standards in 2014 dubbed 

Sustainable Natural Rubber Initiative (SNRi), which seeks sustainability across the natural rubber 

sector (IRSG 2014). More recently, another collection of guidelines has been published by the 

Chinese Chamber of Commerce for Metals, Minerals and Chemicals Importers and Exporters 

(CCCMC) and seeks the same goal (CCCMC 2017). There is still a long way to go for such campaigns 

to translate to widespread practices and enforced standards.  

Meanwhile researchers have been investigating more diversified and environmentally friendly 

ways to cultivate rubber through agroforestry schemes, such as  exploring the possibility for 

rubber intercropping with other species, such as perennial tree crops (Righi et al. 2007, 2008, 

2013; Snoeck et al. 2013; Partelli et al. 2014; Araújo et al. 2016; Novais et al. 2017), timber species 

(Somboonsuke et al. 2011; Jongrungrot and Thungwa 2013; Jongrungrot et al. 2014; 

Langenberger et al. 2017) and legumes as cover crop (Watson et al. 1964; Broughton 1976; 

Clermont-Dauphin et al. 2016, 2018). Besides contribution to the development of a more balanced 

ecosystem, intercropping can provide farmers with additional income sources and compensate 

some of the losses occurring due to rubber price fluctuations. Being able to reliably evaluate the 

feasibility of such plans and estimate the revenues from each of these cultivation methods in the 

context of the existing local environmental conditions, is essential for the exploration of 

alternatives, decision-making and land use planning. However, there are some significant 

knowledge gaps in regards to different aspects of rubber cultivation at high altitudes and latitudes, 

not only for the agroforestry schemes, but also for H. brasiliensis. This is a barrier to exploring 

more diversified cultivation systems. 
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1.3 Research gaps 

This thesis addresses some of the research gaps existing in three identified domains in relation to 

rubber cultivation in mainland Southeast Asia.  

A robust and parsimonious statistical model for estimation of latex yield in the above mentioned 

areas has so far been lacking. Some of the assumptions of normal regression methods, on top of 

them the independence of residuals, are typically missing in rubber yield data, which dictate the 

use of additional/alternative measures for such a purpose. 

Studies investigating the effects of climate change on rubber cultivation and its potential spatial 

distribution are rare. Furthermore, some essential aspects of this topic have so far not been 

covered, including the uncertainties that can be traced through the disagreements among 

different climate change projections. Areas expected to be soon exposed to heat levels potentially 

harmful to rubber trees have not been mapped. 

Risk assessment for introduction of South American leaf blight (SALB), the most serious disease 

known to H. brasiliensis, responsible for insignificant share of American tropics, to Asia and Africa 

have until recently not been made spatially explicit through the use of geographic information 

systems. Two major aspect of this issue have not yet been adequately addressed: the time steps 

involved in trend analysis, they need to be broken down to a reasonably fine scale, and the 

implausibly dichotomous 'safe' and 'risky' classifications should be revised by allowing for an 

'uncertain' class. 

1.4 Objectives 

This thesis pursues the following objectives with geographical focus on continental Southeast 

Asia: 

1. Modeling rubber yield in relation to meteorological conditions through  

1.1. identification of the meteorological covariates most influential in predicting rubber yield 

1.2. determination of the optimal lead periods to capture the lagged effects for covariates 

1.3. finding the appropriate way to account for serial autocorrelation in the latex yield data 

1.4. construction and validation of a robust and parsimonious rubber yield predicting model   

2. Ensemble assessment of the expected impacts of climate change on the rubber cultivating area 

by 

2.1. mapping potential shifts of rubber cultivation  

2.2. geographically delineating the potential exposure to excessive heat levels 
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2.3. assessing the agreement level among the ensemble members 

2.4. presenting the uncertainties raising from the ensemble members 

3. Mapping the climate-driven susceptibility to South American Leaf Blight of rubber 

1.5 Outline of the thesis 

As a cumulative thesis, this dissertation is composed of a general introduction (current section), 

three chapters which have been published or submitted for publication as peer-reviewed articles 

(Chapters 2 to 4) and a general discussion (Chapter 5). 

Chapter 2 presents modeling of rubber yield based on weather conditions occurring before 

harvest events using time series data and linear mixed models for rubber cultivating areas in high 

altitudes and altitudes of continental Southeast Asia. 

Chapter 3 investigates the effects of climate change on potential spatial changes in areas 

conducive to rubber cultivation in continental Southeast Asia within the next five decades using 

an ensemble of gridded climatic data projections. 

Chapter 4 focuses on the climate driven global risk assessment of exposure to South American leaf 

blight which is the most serious disease of rubber trees in a spatial context using emerging hotspot 

analysis on historical gridded data with daily temporal granulation. 

Chapter 5 concludes this thesis by discussing the findings presented in Chapters 2 to 4 and their 

implications in a joint context.  
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Abstract 

Linear mixed models were developed and used to predict rubber (Hevea brasiliensis) yield based 

on meteorological conditions to which rubber trees had been exposed for periods ranging from 1 

day to 2 months prior to tapping events. Predictors included a range of moving averages of 

meteorological covariates spanning different windows of time before the date of the tapping 

events. Serial autocorrelation in the latex yield measurements was accounted for using random 

effects and a spatial generalization of the autoregressive error covariance structure suited to data 

sampled at irregular time intervals. Information theoretics, specifically the Akaike information 

criterion (AIC), AIC corrected for small sample size (AICc), and Akaike weights, was used to select 

models with the greatest strength of support in the data from a set of competing candidate models. 

The predictive performance of the selected best model was evaluated using both leave-one-out 

cross-validation (LOOCV) and an independent test set. Moving averages of precipitation, 

minimum and maximum temperature, and maximum relative humidity with a 30-day lead period 

were identified as the best yield predictors. Prediction accuracy expressed in terms of the 

percentage of predictions within a measurement error of 5 g for cross-validation and also for the 

test dataset was above 99 % 

Keywords 

Hevea brasiliensis, Yield, Prediction, Meteorological conditions, Mixed models, Multi-model 

inference 
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2.1  Introduction 

The rubber tree Hevea brasiliensis (Willd. ex A. Juss.) Muell. Arg. is an important industrial crop 

which occupies more than 10 million ha of the terrestrial surface of the earth (Rivano et al. 2013) 

and provides more than 11 million tons of natural rubber per year (FAOSTAT 2015; IRSG 2015). 

The tree is a member of the family Euphorbiaceae and is native to the southern part of the Amazon 

basin (Priyadarshan and Goncalves 2003). Since the 1870s, attempts have been made to cultivate 

rubber outside of the South American humid tropics owing to the limitation of rubber cultivation 

by South American leaf blight (SALB) caused by the fungus Microcyclus ulei, recently renamed 

Pseudocercospora ulei (Henn.) by Hora Júnior et al. (2014). Rubber cultivation in the southern 

plateau of Brazil, where low temperatures and humidity create “escape areas” from SALB, has 

been practiced and studied since the 1980s (Ortolani et al. 1998; Clément-Demange et al. 2007). 

Today, nearly 97 % of the total global production comes from outside the Tropical Americas (Asia, 

91.9 %, and Africa, 5.0 %) (FAOSTAT 2015). 

Especially during the last decades and in response to driving forces such as increasing market 

demand, high value of natural rubber, governmental desire for self-sufficiency, and regional 

development policies (Rao et al. 1998; Fox and Castella 2013; Xu et al. 2014; Fox et al. 2014), 

rubber cultivation has expanded to areas farther away from suitable climatic conditions of the 

humid tropics. For example, according to Li and Fox (2012), more than 1 million ha of rubber 

plantations had been established in 2012 in nontraditional rubber-cultivating areas of China, Laos, 

Myanmar, Thailand, Vietnam, and Cambodia. This accounts for about 12 % of the total rubber-

growing area in Southeast Asia, which is predicted to quadruple by 2050 (Fox et al. 2012). 

Southern China and the northeastern states of India are the northernmost areas associated with 

rubber cultivation (Priyadarshan et al. 2005). Climatic conditions in continental southern margins 

of China are subtropical, fully humid in the eastern side (Guangxi and Guangdong), and subtropical 

winter dry in the central and western parts (southern Yunnan). Southern Yunnan Province has a 

hilly topography and hence strongly contrasts with the other subtropical Chinese rubber-

producing regions. This results in considerable spatial variability in climatic conditions and 

potentially substantial changes in climate and microclimate-related qualities of land influencing 

rubber yield. Thus, for example, it is an established phenomenon that the gestation period (the 

time required by rubber trees to reach maturity as a perennial crop) increases from 5 years in 

optimal conditions of the equatorial belt (10° S to 10° N) to up to 8 years in sub-optimal areas with 

cold and dry month. Besides genotype, husbandry, and soil conditions, mainly the climatic setting 

defines the output of latex (Rao et al. 1998). Modeling the relationships between 
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climatic/meteorological covariates and rubber yield can therefore help differentiate and rank 

locations according to their potential for economic rubber production and guide land use 

planning. 

Priyadarshan (2011) has reviewed the findings of a number of studies that have examined the 

optimal abiotic environmental conditions for rubber growth and development, net 

photosynthesis, and latex formation and latex flow at tapping (Pushparajah 1983; Haridas 1985; 

Monteny et al. 1985; Shangphu 1986; Shuochang and Yagang 1990; Sanjeeva Rao and Vijayakumar 

1992; Ong et al. 1998). However, far fewer attempts have been made to predict rubber yield based 

on the environmental conditions to which rubber trees are exposed (Jiang 1988; Rao et al. 1998; 

Raj et al. 2005; Yu et al. 2014). Yu et al. (2014) studied the relationships between the rubber yield 

and climatic conditions using partial least squares (PLS) regression and classification and 

regression tree analysis (CART). Other methods used to predict latex yield consisted of correlation 

analysis, stepwise multiple regression, and identification of the ranges of meteorological variables 

associated with high yields. To investigate the lagged effects of meteorological conditions on 

rubber yield, some studies have introduced the standard moving average (SMA) variants of the 

meteorological variables as predictors in their models (Rao et al. 1998; Raj et al. 2005). 

Findings of different studies have been mixed regarding the meteorological factors they have 

identified as being the most influential or best in predicting rubber yield. Meteorological factors 

identified as being the most predictive of latex yield include minimum and maximum 

temperatures (Rao et al. 1998), mean temperature (Jiang 1988; Raj et al. 2005; Yu et al. 2014), 

diurnal temperature variation (Jiang 1988; Raj et al. 2005; Yu et al. 2014), precipitation (Jiang 

1988; Yu et al. 2014), soil moisture storage (Raj et al. 2005), evaporation (Rao et al. 1998; Raj et 

al. 2005), vapor pressure deficit (Rao et al. 1998), relative humidity (Ortolani et al. 1998; Yu et al. 

2014), sunshine hours (Jiang 1988; Ortolani et al. 1998; Yu et al. 2014), and wind speed 

(Priyadarshan and Goncalves 2003). This is not surprising if differences inherent in the 

characteristics of the investigated genotypes (e.g., level of their resistance to different stress 

factors) and locations (e.g., soil and climate conditions) across different study sites are considered. 

A mechanistic understanding of how the influence of variation in meteorological covariates on 

latex yield is modified by the interaction between genotypes and the environment is essential for 

developing predictive models for rubber yield but is still in its infancy. Even so, several recent 

studies have focused on understanding the mechanisms through which fluctuations in particular 

climactic variables influence latex yield. So, for example, the effect of rainfall seasonality, mediated 

through seasonality in soil water status, has been associated with a strong seasonality in activities 

of different parts of the root system of H. brasiliensis. Most of the water and nutrient uptake by 
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this species takes place in the top soil where the highest concentration of fine roots is present, 

whereas the deep roots show high water uptake activity during the dry season, with a peak in 

water uptake coinciding with the transition period between the dry and rainy seasons 

(Gonkhamdee et al. 2009; Carr 2012; Liu et al. 2014; Kobayashi et al. 2014). This seasonality 

apparently underlies the stronger relationship between the fine root dynamics of H. brasiliensis in 

eastern Thailand and monthly meteorological data than finer-resolution (e.g., weekly) data, 

particularly soil water status, recently documented by Chairungsee et al. (2013). As a result, the 

generalizability of models for predicting rubber yield from meteorological covariates would seem 

to be limited both by the specific genotypes and geographical contexts considered. 

Harvesting latex from rubber trees is always carried out repeatedly on the same trees over time. 

Therefore, if interest centers on latex yield from each harvest event (as in the present case), then 

the collection of data on the same measurement units (rubber trees) over time is inevitable. The 

resulting longitudinal data are thus likely to be serially correlated, requiring the use of mixed 

models to account for the autocorrelation. 

In this study, we exploit the flexibility provided by mixed models, information-theoretic model 

selection criteria, and multi-model inference to identify the meteorological covariates most 

influential in predicting rubber yield in the southern Yunnan Province of China. The selected 

meteorological covariates are used to construct an empirical model for predicting rubber yield 

and the predictive accuracy of the model assessed by both cross-validation and an independent 

test dataset. 

2.2  Materials and methods 

2.2.1 Data collection 

Data collection took place in the central part of the Naban River Watershed National Nature 

Reserve (NRWNNR), Xishuangbanna (XSBN), China (Figure 2.1). Data were obtained from two, 

15-year-old rubber plantations of the cold-resistant clone GT1 at a density of about 470 trees per 

ha. Trees which provided the training dataset were located on a 41° south-facing slope at 900 m 

above sea level (m a.s.l.) (22° 9′ 45″, 100° 39′ 26″), while the test dataset was gathered on a 37° 

southeast-facing slope at 680 m a.s.l. (22° 10′ 02″, 100° 39′ 37″). Soil type was identified as an 

acrisol with clay (C) texture in the top 20 cm and silty clay (SiC) in the 20–77 cm depth (Wolff and 

Zhang 2010).  
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Figure 2.1 Location of the study area 
The orthographic projection in the upper left corner is modified from Wikipedia 
(http://commons.wikimedia.org). Other maps were generated using ESRI ArcMap 10, and the shape files of 
the administrative borders are available at the website of Global Administrative Areas Project 
(http://www.gadm.org) 

Rubber trees (n = 18) were randomly selected from each plantation. We chose girth at breast 

height (GBH) at 130 cm aboveground close to 55 cm (average girth for rubber trees of clone GT1 

at age 15 as we found in a pilot study covering over 3000 trees in central NRWNNR) as a 

requirement for selection of the study trees. Rubber was planted in the mid-1990s and went 

through their 7th and 8th year of tapping during the data collection period (March 2009 to 

November 2010). Plantations were subject to comparable management regimes including tapping 

frequency, harvest time, and fertilization regime. These two plantations could also be considered 

representative of smallholder rubber cultivation practices in the region except for yield 

stimulation by bark treatment with Ethephon, a plant growth regulator stimulating latex flow. 

Upon our request, this treatment was not applied to trees selected for this study. The influence of 

the tapping practice on rubber yield has been reported to dominate the effects of genetics and the 

annual phenological stages (Silva et al. 2012). If tapping is carried out by different persons with 

differing skill levels, then this introduces an additional source of variation to the yield data which 

needs to be accounted for by prediction models. Accordingly, only one person experienced in 

tapping carried out all the tappings in the two plantations for consistency. We randomly assigned 

data from one of the plantations to the training set and the other dataset to the test set. 

http://commons.wikimedia.org/
http://www.gadm.org/
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Fresh latex obtained from each tapping event was weighed at latex collection time (around 10 

a.m.) on site using a hanging scale (Kern HDB 5K5N) with ±5 g precision. A mobile weighing 

station was used to avoid vibration while weighing. The changes in the length of the tapping line 

of each tree were measured throughout the harvest season. The latex yield from each tapping 

event for each tree was divided by the length of the corresponding tapping line used on the 

tapping day to correct for the effect of the length of injured area on yield. Latex yield for each tree 

is expressed as the weight of the fresh latex per tapping per unit length of the trees’ tapping line 

(g cm−1 day−1). Dry matter content (DMC) of the fresh latex and its fluctuations influence the 

economic yield of rubber. If rubber is delivered in the form of fresh latex to processing factories 

or to middle men, it is regularly controlled for its viscosity, which, in turn, reflects the rubber 

content. To quantify latex dry matter content and its fluctuations during the data collection period, 

we collected weekly latex samples from rubber trees which were dried as thin films in glass petri 

dishes in an electric oven at 60 °C for 24 h. As the frequency of the DMC records was not equal to 

that of the latex data, we did not combine the two datasets prior to model building and prediction 

of dry matter yield. Nevertheless, the empirical estimates of the central tendency and dispersion 

for the dry matter content of latex are useful for estimating the expected ranges within which the 

dry matter content of the predicted latex yield should lie. 

Temperature (T) and relative humidity (RH) at 3 m in height aboveground inside the leaf canopy 

were logged on an hourly basis by digital sensor-data loggers (Voltcraft DL-120TH). Daily 

precipitation (P) at the site was measured using graduated buckets on a 2-m-high platform in an 

open area next to the plantation. From the hourly logged temperature and relative humidity data, 

corresponding vapor pressure deficit (VPD) values were calculated. Likewise, the diurnal mean 

(Me), maximum (Mx), minimum (Mn), and the diurnal variation (daily maximum-minimum 

difference) (d) values were derived from the hourly logged T, RH, and VPD data, for a total of 13 

daily covariates. The usual latex collection time (10 a.m.) was chosen as the beginning of each daily 

cycle. 

As tapping is an activity usually repeated every 2 to 3 days, rubber yield and the factors 

responsible for its fluctuation are embedded in time. We accounted for potential cumulative, 

lagged, or delayed effects of variation in the climatic variables on latex yield using moving 

averages (SMA) of the meteorological variables (denoted as M) in our models. The moving average 

(𝑚𝑡)for each of the 13 predictor variables (𝑥𝑡) for day t was computed as 
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𝑚𝑡 (𝑘) =  
1

𝑘
 ∑ 𝑥𝑡−𝑖+1

𝑘+1

 𝑖=2

 (1) 

where −𝑖 + 1 is the lag in days from the date of the tapping events and 𝑘 is the width in days of 

the time window covered by the moving average. Five window sizes without lag (𝑘 = 3, 7, 15, 30, 

and 60 days and 𝑙 = 𝑖 − 0) and two window sizes with lags (𝑘 = 15, 𝑙 = 𝑖 −15, and 𝑘 = 30, 𝑙 =

𝑖 − 30) were considered. Hereafter, variables are subscripted by (𝑘, 𝑙) to make the size of the 

window spanned by the moving average and the lag period explicit. Note that, using this notation, 

𝑀(30,0) = 1 2⁄ ( 𝑀(15,0) + 𝑀(15,15)) and that 𝑀(60,0) = 1 2⁄ (𝑀(30,0) + 𝑀(30,30)). A total of 104 

predictor variables (13 covariates plus 91 moving averages; i.e., 13 covariates × (5 SMAs without 

lags + 2 SMAs with lags)) were derived and used to relate latex yield to the meteorological 

covariates 

2.2.2 Model development 

Using the derived set of predictor variables, mixed models with single predictors were 

constructed. The multi-model inference (MMI) approach (Burnham and Anderson 2002) was used 

to select and evaluate the relative importance of the selected predictor variables. Specifically, the 

Akaike information criterion (AIC, (Akaike 1973)) and its second-order variant, AIC corrected for 

small sample size (AICc) (Sugiura 1978; Hurvich and Tsai 1989), were used. The maximum 

likelihood (ML) method was used to compute the information criteria used to select all the fixed 

effects (covariates). In contrast, the restricted (residual) maximum likelihood (REML) method 

was used to select the random effects and variance-covariance structures and to estimate 

parameters of the selected best model. REML is not suitable for selecting fixed effects because it 

eliminates fixed effects by construction (Wolfinger 1993). 

The model with the smallest Akaike information criterion AIC𝑚𝑖𝑛 was considered as the best 

fitting model within the set of candidate models, and the relative information loss associated with 

the other models AIC𝑖 in comparison with the best model (known as Kullback-Leibler or K-L 

distance) was quantified as 

Δ𝑖 = AIC𝑖 − AIC𝑚𝑖𝑛 (2) 

As AIC is -2 times the maximized log likelihood of the estimated model, the likelihood of each 

model (g𝑖), given the data, was recovered by 
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ℒ(g𝑖|data) = exp(− 1 2⁄ Δ𝑖) (3) 

The Akaike weights (w𝑖) of the models, which are the likelihoods of the models scaled to add up 

to one, were then calculated as 

𝑤𝑖 =
exp(− 1 2⁄ Δ𝑖)

∑ exp(− 1 2⁄ Δ𝑖)𝑅
𝑖=1

 (4) 

where w𝑖 is the weight of evidence in favor of the model g𝑖, being the actual K-L best model within 

the set of R candidate models given the data at hand and Δ𝑖 is defined as in (2). To formally 

evaluate the strength of evidence for models, evidence ratios were calculated as 

ℒ(g𝑖|data) ℒ(g𝑗|data)⁄ = 𝑤𝑖/𝑤𝑗 (5) 

We selected the most predictive of the 104 derived meteorological covariates using a two stage 

process. In the first stage, the time window associated with the best fit was selected separately for 

each predictor using Akaike weights (w𝑖) for models containing only the predictor or one of its 

moving averages (𝑚𝑡 (𝑘)) calculated as in (1) as the only fixed effect. Models based on the same 

predictor but differing only in terms of the span of the time window 𝑘 over which the moving 

averages of the meteorological covariates (without lag) were computed were grouped together 

(13 groups corresponding to MnT, MeT, MxT, dT, MnRH, MeRH, MxRH, dRH, MnVPD, MeVPD, 

MxVPD, dVPD and P). For instance, MxT(k,l) (with 𝑘 = 3, 7, 15, 30 and 60 days and 𝑙 = 𝑖 − 0) formed 

one such group denoted as RMxT in (4). We ranked the models according to the Akaike weights 

(w𝑖) within each group and selected the time window associated with the best ranks across the 

groups as the best supported time window for use in fitting the subsequent multiple regression 

model incorporating all the best supported covariates in the second stage. Selection of one time 

window ensured that only variables from groups distinguished by different non-overlapping 

window sizes were selected. For example, the two variables MnT(30,0) and MxT(60,0) do not have 

non-overlapping window sizes because 𝑘 =30 for the former is fully nested within 𝑘 =60 for the 

latter. We thus expect variables averaged over the larger window to contain part of the 

information contained in the variables averaged over the shorter window, leading to undesirable 

redundancy.  

The preceding procedure selected the best supported time window over which moving averages 

were calculated for each covariate. Since each selected time window was associated with only one 

of the 13 initial predictors, selection of a time window was equivalent to limiting the candidate 
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set of predictors to 13 covariates. The 13 selected variables were used to build an a priori set of 

multivariate regression models. We avoided data dredging by considering the likely influences of 

the predictor variables on the biology of latex production or the strength of correlations between 

the predictor variables before using them in different combinations to build full candidate models 

in the second stage. For example, while we simultaneously used maximum and minimum 

temperature as predictors in a number of candidate multivariate models, we avoided using mean 

temperature (MeT) in the same models with MnT and MxT because they are correlated by 

construction. By the same reasoning, the group of vapor pressure deficit variables was not used 

in candidate models containing both temperature and relative humidity from which they were 

derived. 

To gain insights into the relative importance of the predictors (within the selected time window) 

inference was based on the whole set of candidate models (univariate regression models from the 

first stage and multiple regression models from the second stage), by accounting for model 

selection uncertainty and summing the Akaike weights across all models. The sum of Akaike 

weights over all models that include the predictor variable 𝑗, denoted 𝑤+(𝑗), is given by 

𝑤+(𝑗) = ∑ 𝑤𝑖𝐼𝑗(g𝑖)

𝑅

𝑖=1

 (6) 

where 𝐼𝑗(gi) is the indicator function and equals 1 if variable 𝑗 is in model g𝑖, and 0 otherwise 

(Burnham and Anderson 2002). The resultant additional evidence for importance or triviality of 

each predictor was used to further reduce the final set of predictors from the initial set of 13. To 

evaluate the potential impact of lagged effects on the selected models, the evidence ratios for the 

selected models relative to those for models containing the same but lagged forms of the 

predictors were calculated and compared. The preceding multi model inference steps were 

repeated using AICc and the results compared with those for AIC to infer potential influences of 

sample size on the selected best model. To check for collinearity among the selected predictors, a 

variance inflation factor (VIF) for the selected predictors was calculated using 

𝑉𝐼𝐹𝑗 =
1

1 − 𝑅𝑗
2  (7) 

where 𝑅𝑗
2 is the multiple coefficient of determination for variable 𝑗 when it is regressed against 

other predictor variables, one at a time. 
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2.2.3 Covariance structure selection using likelihood ratio tests 

The covariance structure which was used to account for serial autocorrelation in the yield records 

was a combination of random intercepts and spatial power (SP POW) covariance structure which 

is a spatial generalization of the first-order autoregressive error model appropriate for 

longitudinal measurements made at irregular time points. As harvest events occurred at unequal 

time intervals, other autoregressive covariance structures which require equal time steps 

between measurements (e.g., AR(1) and ARMA(1,1)) were ruled out of consideration. Likelihood 

ratio test was used to compare support for the models assuming (i) perfect independence of 

observations, (ii) added variance component due to random tree effects, and (iii) random tree 

effects plus serially autocorrelated residual errors. Within these three models, each of the more 

complex covariance structures contained the simpler ones, and therefore, the compared models 

were nested. 

In case of random intercepts (random tree effects), the additional parameter in the model is a 

variance component which by definition is non-negative. This puts the parameter under the null 

hypothesis (H0: variance component = 0) on the boundary of the parameter space (if a standard χ2 

distribution is used for the likelihood ratio (LR) test) which is not permissible. Under such 

conditions, a nonstandard mixture of two χ2 distributions has to be used instead (Self and Liang 

1987; Stram and Lee 1994; Verbeke and Molenberghs 2000). The test statistic in case (i) vs. (ii) is 

the difference in the REML estimates of −2 log likelihoods of two nested models which follows a 

mixture of two equally weighted (50:50) χ2 distributions with 0 (has all its mass or probability at 

zero) and 1 degrees of freedom and denoted as χ0:1
2 . For the spatial power part of the covariance 

structure in case (iii), the additional model parameter is a correlation coefficient which is not 

subject to the boundary problem. Nevertheless, in all the LR tests comparing pairs of cases (i) to 

(iii), at least one component of a pair used in the LR tests had the boundary problem. Mixture χ2 

distributions appropriate for LR tests comparing covariance structures (ii) vs. (iii) and (i) vs. (iii) 

were therefore χ1:2
2  and χ0:2

2 , respectively. Following Wolfinger (1993), we used only models 

saturated with respect to the fixed effects, including all the fixed effects deemed to be relevant, 

when selecting the covariance structure using LRT. 

2.2.4 Parameter estimation 

Once the final covariance structure and fixed effects were selected, the final model parameters 

were estimated using the REML method. Residual diagnostics for the final model were performed 

on normal quantiles of raw residuals and studentized marginal and conditional residuals and 

influence diagnostics using studentized deleted residuals (i.e., residuals standardized by their 
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standard deviation and excluding the ith observation) to assess the influence of individual 

observations and potential violation of the model assumptions, namely normality, 

homoscedasticity of residuals, and linearity of the assumed regression relationship (Su et al. 

2012). Wilcoxon rank-sum test was used to compare the predictor variables between the training 

and test datasets. The predictive accuracy of the model was evaluated using leave-one-out cross-

validation (LOOCV) (Stone 1974) on both the training and test sets. The mean absolute error 

(MAE), root mean square error (RMSE), and the percentage of predictions from the final model 

with measurement errors less than 5 g in absolute value were calculated to further assess the 

predictive power and robustness of the final model. The denominator degrees of freedom for 

significance tests of the fixed effects were synthesized using the method of Kenward and Roger 

(1997). All the models were fitted in the SAS procedures MIXED, GLIMMIX, and NPAR1WAY (SAS 

2011). 

2.3  Results 

An overview of the latex yield records (training dataset) and the meteorological conditions during 

the data collection period is provided in Figure 2.2. A comparison of the monthly weather 

conditions in the study period with the weather conditions prevailing over the 20 years spanning 

1989–2008 is provided in Appendix Figure A2.1. The annual harvest season for rubber in XSBN 

usually starts at the end of March. Due to logistical constraints, our yield measurements only 

started in the last week of May 2009 and mid-April for 2010. A total of 158 harvest events were 

recorded from the rubber plantations which provided the training dataset (64 events in 2009 and 

73 events in 2010). Mean ± 1 SD values of latex yield (grams of fresh latex collected from 1 cm of 

tapped bark per day) over the course of the data collection periods were 4.82 ± 2.18 for the 

training set and 5.49 ± 1.82 for the test set. Mean ± 1 SD values of the length of the tapping line 

were 34.0 ± 3.53 and 31.6 ± 2.89 cm, respectively. There was an unusual rainfall shortage at the 

beginning of the harvest season in 2010 (April), which extended up to the month of July and 

seemed to be associated with a change in latex yield. This coincided with the first 29 records in 

2010 (training set). This fact motivated the idea of testing for the need of a class variable 

representing three levels for the three resulting periods (2009 and wet and dry periods in 2010) 

in the regression model. 

Subdivision of the study period into three blocks, allowing fitting of a model with three levels for 

the study period turned out to be significant only for regression models with fixed effects 

consisting of the daily variables or moving averages with short window spans (up to 2 weeks). 

Even so, the supported models had poorer fits than those consisting of predictors averaged over 
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either 30 or 60 days. For the models with predictors averaged over 30 days, the weight of evidence 

in favor of models with three levels for the study period was merely about one quarter of those 

for the models with only one level. 

Weekly collected and oven-dried latex samples (388 samples from 23 tapping events) had 

mean ± 1 SD dry matter contents (%) of 33.1 ± 8.90 in 2009, 37.2 ± 9.77 in the dry period of 2010, 

and 33.7 ± 8.46 for the rest of the harvest season in 2010. A plot of the DMC against time (Appendix 

Figure A2.2) suggested no significant temporal pattern. 

 

Figure 2.2 Temporal variation in the yield records and two of the meteorological variables over 
the course of the data collection periods 
The dotted line shows the daily mean temperature, the gray-shaded area shows the diurnal temperature 
range, and the dots show the mean of the latex yield from 18 trees (standard deviation given as error 
bars). Daily rainfall is presented in the lower panel 

Model selection identified models with moving averages of the meteorological covariates 

calculated over 30-day window spans as having the strongest support in the data in six out of the 

total of 13 candidate time windows considered. The three top-tanked covariates were MnT(30,0), 

MeT(30,0), and dT(60,0). The 60-day window was selected as the best in four of the 13 time window-

differentiated groups of models. This was reaffirmed by the Akaike weights of 0.887 for the 30-

day window and 0.123 for the 60-day window. The two Akaike weights jointly constitute a 100 % 

confidence set on the selected best models and thus virtually preclude all the other models from 

consideration. Because the weight of evidence for the models for the 30-day window alone is 

almost 90 %, we limited the candidate set of predictors considered in subsequent model selection 

steps to the moving averages of covariates computed over this time window alone. 
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We attempted to establish if the selected time window represented lagged effects which acted 

additively or independently. We did this by first subdividing the 30-day window for the best-

supported models into smaller component windows and then comparing the support for the 

model based on the 30-day window vs. the multiple regression model containing all the resultant 

component windows, each treated as a separate variable. For simplicity and brevity, we only 

considered a partition of the 30-day window into two parts of 15-day span each. Comparing the 

single-predictor 30-day models with their 15 + 15-day counterparts, Akaike weights showed 

weaker support for the models containing the 13 covariates based on the 30-day span (0.09) than 

for the models containing the same covariates but represented by two separate 15-day 

components (0.91). This supports the hypothesis of independent over additive lagged effects or 

using covariates based on the two 15-day component windows separately rather than the 

combined 30-day window. Despite the greater support for the partitioned lags in simpler models, 

the Akaike weights of models with 15 + 15-day predictors diminished heavily when multiple 

regression models were added to the set of models compared within the MMI scheme (0.868 vs. 

0.132 in favor of the 30-day time window). As a result, we opted to retain the covariates based on 

the 30-day windows in the MMI evaluation of the multiple regression models. 

The a priori set of candidate multiple regression models (without interaction) consisted of 55 

models. Two models had the strongest support within the set of the 30-day multiple regression 

models. They differed only in that one had one less fixed effect (P(30,0)) and hence lower weight of 

evidence (0.403 vs. 0.595) than the other. 

We chose to keep the precipitation effect (P(30,0)) in the candidate variable set while exploring 

potential interactions between the covariates in the final model. Inclusion of the interaction effect 

MnT(30,0) × P(30,0) improved model fit the most compared to all the other interactions considered 

(with Δi = 5.1 compared to the next best fitting model). We then kept this interaction in the model 

and added the next best-supported interaction effect to the model. The improvement in model fit 

due to adding further interaction terms did not exceed the selection threshold of Δi = 2. Therefore, 

we retained MnT(30,0) × P(30,0) as the only interaction effect among the fixed effects in the final 

model. This increased the number of candidate model set to 56, with a confidence set on models 

exceeding 98.8 %. The covariates selected by multi-model inference are presented in Table 2.1 as 

mean ± 1 SD for both the training and test sets together with the Wilcoxon rank-sum tests 

comparing the two datasets. 
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Table 2.1 Descriptive statistics for the predictor variables selected for the final model 

Variable name† 
Training set Test set Wilcoxon rank-sum test 

Mean (SD) Mean (SD) P value 

P(30,0) 5.10 (2.76) 5.38 (2.95) 0.47 

MnT(30,0) 20.80 (1.93) 21.04 (1.81) 0.18 

MxT(30,0) 28.70 (2.52) 28.66 (1.45) 0.051 

MxRH(30,0) 90.92 (2.43) 91.75 (3.15) 6.5×10-05 

†Daily precipitation (P), minimum daily temperature (MnT), maximum daily temperature (MxT) and 
maximum relative humidity (MxRH) averaged over the 30 days leading to the tapping event with no lag 
(30,0) were the selected predictors for the final model. Wilcoxon rank-sum test checks if the weather 
conditions prevailing in the two plantations were similar 

The coefficients for the predictor variables estimated using the REML method are presented in 

Table 2.2 and in Eq. 8. Coefficients for the standardized covariates are also provided as a means 

for comparing the relative contribution of the fixed effects to the total fit (as coefficient sizes are 

not affected by the measurement scale of individual variable) and to simplify their potential use 

with future datasets with standardized covariates. Since one model scored more than 90 % of the 

total Akaike weights, this ruled out the need for model averaging. VIF related to the predictors are 

presented in Table 2.2. More details such as significance tests and confidence intervals for the 

fixed effect coefficients are available in Appendix Table A2.1. 

Yield = 23.6 − 0.37 × MnT30,0 − 0.05 × MxT30,0 − 0.11 × MxRH30,0 + 0.6 × P30,0 − 0.03 × MnT30,0 × P30,0 (8) 

Table 2.2 Coefficient estimates for fixed effects 

Fixed Effect 
Original variables Standardized variables 

VIF 
Estimate SE Estimate SE 

Intercept 23.593 1.875 4.733 0.234 – 

MnT(30,0) -0.366 0.038 -29.859 3.100 2.33 

MxT(30,0) -0.051 0.013 -6.068 1.551 1.57 

MxRH(30,0) -0.109 0.021 -12.884 2.523 4.22 

P(30,0) 0.633 0.185 84.151 24.640 1.92 

MnT(30,0)*P(30,0) -0.028 0.008 -83.725 25.434 – 

Coefficients estimated for selected model parameters (daily precipitation (P), minimum daily 
temperature (MnT), maximum daily temperature (MxT) and maximum relative humidity (MxRH) 
averaged over 30 days leading to the tapping event with no lag (30,0)). Coefficients for standardized 
variables were computed from models incorporating covariates standardized to zero mean and unit 
variance.  

LR tests which were performed to choose an appropriate variance-covariance structure strongly 

supported a variance-covariance structure consisting of random tree effects (denoted as RandInt) 

plus a SP POW structure for accounting for serial autocorrelation. Further enrichment of the 

variance-covariance structure by adding random slopes for individual trees did not lead to any 

discernible improvement in model fit. Table 2.3 presents the LR test results for the three models 

for the variance-covariance, including (i) a fixed effects-only model with no random effects and 

homogeneous residual errors (denoted as fixed), (ii) fixed + RandInt model, and (iii) 
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fixed + RandInt + SP POW model. As the fixed + RandInt + SP POW model contains the 

fixed + RandInt model, which, in turn, contains the fixed effects-only model, an LR test is 

permissible. The estimated covariance component (for random intercepts for rubber trees) 

equaled 0.92, whereas the temporal autocorrelation parameter was 0.76d, where d is the time in 

days separating a pair of latex measurements. AIC and AICc had identical performance in all steps 

of the model selection. 

Table 2.3 Likelihood ratio (LR) tests for variance-covariance structure selection 

Variance-covariance structure -2 ln (λN) 
Asymptotic null 

distribution  
P value 

Fixed  vs.  Fixed+RandInt  584.1 𝜒0:1
2  5.6×10-130 

Fixed+RandInt vs.  Fixed+RandInt+SP(POW) 737.0 𝜒1:2
2  3.6×10-162 

Fixed  vs.  Fixed+RandInt+SP(POW) 1321.1 𝜒0:2
2  2.4×10-289 

The contrast between candidate covariance structures is tested in three levels. Simpler covariance 
structures are nested in the more complex covariance structures. The test statistic -2 ln (λN) is -2 times 
the difference between the maximized restricted log likelihoods of the two candidate models being 
compared. The asymptotic null distribution of -2 ln (λN) is a mixture of two equally weighted chi-square 
distributions used for the LR test with the indicated degrees of freedom.  

Residual and influence diagnostics suggested no violation of model assumptions (normality, 

homoscedasticity, and linearity of residuals) (Appendix Figure A2.3). Variance inflation factors 

were all below the threshold value of 10 (Table 2), suggesting an absence of substantial 

multicollinearity. Results of the LOOCV of the full model and its reduced forms consisting only of 

single predictors are summarized in Table 2.4. All the five models in Table 2.4 are based on the 

same variance-covariance structure selected as described above. 

Table 2.4 Evaluation of the prediction performance of the final model and its reduced forms in leave-
one-out cross-validation 

Model 
components 

Correlation Mean absolute 
error (MAE) 

Root mean 
square error 

(RMSE) 

% of predictions 
within ± 5g range of 
the measured yield rPearson ρSpearman 

Full model 0.78 0.78 0.95 1.32 99.56 

MnT(30,0) 0.78 0.78 0.98 1.36 99.53 

MxT(30,0) 0.70 0.72 1.10 1.55 98.89 

MxRH(30,0) 0.71 0.74 1.08 1.52 98.98 
P(30,0) 0.72 0.73 1.05 1.45 99.25 

Performance of the full model and its reduced forms consisting of individual covariates based on the 
correlation between the measured and the predicted yield, prediction error indices (MAE and RMSE) 
and the percentage of predictions within the measurement accuracy range of the weighting scale used 
in the field of 5 grams. 
 

Predicted vs. measured latex yields showed a fairly uniform error distribution over the prediction 

range (Figures 2.3 and A2.4 for the measurement-unit-specific plots). To assess the uniformity in 

prediction across different rubber trees, we visually inspected the tree-specific prediction errors. 

The behavior of the measurement units under cross-validation is depicted in Figure 2.4. No 

obvious pattern or grouping was noticeable. The full model had the smallest prediction error with 

99.5 % of the predictions falling within the expected measurement accuracy range of 5 g (Table 
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4). The single-predictor models had larger prediction errors. Nevertheless, their predictions fell 

within the expected measurement error range of 5 g, and hence, their performance was not that 

much inferior to that of the full model. 

 

Figure 2.3 Predicted vs. measured latex yield 
The dashed lines are the pointwise 95 % prediction bands obtained by leave-one-out cross-validation 
and subjected to spline smoothing 

The Wilcoxon rank-sum tests (Table 1) failed to reject the null hypothesis of equal means for the 

training and test datasets for precipitation and maximum and minimum temperatures but 

rejected this hypothesis for the maximum relative humidity. Application of the model coefficients 

obtained from the training dataset to assess model performance on the external (test) dataset 

would be reasonable if corresponding variables in both datasets come from the same underlying 

population, but the contrary would justify validation on the test dataset using the fixed effects at 

hand and re-estimating the model coefficients. Predictive accuracy of the developed model was 

evaluated by both approaches to account for the potential type I error: direct application of 
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coefficients obtained from the training dataset to the test dataset and a round of LOOCV on the 

test dataset. Prediction accuracy on the test dataset (percentage of predictions within the 

expected measurement error range of 5 g) was 99.36 % when model parameters were those 

estimated on the training dataset and 99.81 % when the model parameters were re-estimated. 

 

Figure 2.4 Distributions of tree-specific absolute model error in the test dataset 
 

2.4  Discussion 

In this study, we used daily latex yield data from rubber trees and records of the meteorological 

conditions prevailing in the plantations to identify suitable meteorological predictors of rubber 

yield. Model selection and multi-model inference techniques were used as aids in building a 

predictive model within a mixed model framework. We assessed the predictive accuracy of the 

resulting model using both cross-validation and a test dataset. We identified four meteorological 

variables, namely daily minimum and maximum temperatures, maximum relative humidity, and 

rainfall, all averaged over 30-day windows before tapping events as the best-supported predictors 

among the suite of 13 variables we investigated. The mean and diurnal variation in temperature 

(ranked by Akaike weights as the second and third best models in univariate regressions, 

respectively) and relative humidity were clearly outperformed by the selected predictors as were 

also the predictors measuring vapor pressure deficits. Minimum temperature, precipitation, and 

their interaction explained the largest part of the variation in the yield data. Precipitation was the 
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only factor with a positive effect on rubber yield, but its interaction with minimum temperature 

had a substantial and negative influence on yield (see coefficient estimates for the standardized 

fixed effects in Appendix Table A2.1). This suggests that the positive effect of rainfall on latex yield 

can be reduced or even negated under conditions of both high precipitation and low minimum 

temperatures within the range of values experienced by the rubber trees. Such significant 

interactions between different climatic factors influencing latex yield have only recently been 

indirectly suggested by Yu et al. (2014) using regression trees but have otherwise been largely 

overlooked by several earlier studies (Jiang 1988; Rao et al. 1998; Raj et al. 2005). The negative 

association we observed between the rubber yield and minimum temperature reinforces similar 

findings by Raj et al. (2005) and Yu et al. (2014). The regression trees developed by Yu et al. (2014) 

identified the mean temperature over the 30-day period preceding tapping events to be the most 

important factor in determining yield. However, their PLS yield prediction model identified the 

minimum temperature both a day before taping and averaged over the month leading to a tapping 

event to be the most influential (had the largest standardized coefficients) of all the predictors 

they considered. Our model also identified the 30-day average minimum temperature, but not the 

30-day averaged mean temperature, as a relevant and important predictor of latex yield. 

Other climatic factors that have been shown to have positive correlations with rubber yield are 

diurnal temperature variation and sunshine hours (Jiang 1988; Yu et al. 2014). Despite emerging 

as the third best-ranked factor in our univariate regression phase of model selection, diurnal 

temperature range had too weak a support in the multiple regression phase of model selection to 

merit inclusion in the final, selected best model. The negative relationship between the rubber 

yield and increase in minimum temperature most probably operates through diurnal temperature 

difference. Higher net gains occur as a result of efficient photosynthesis in the daytime and limited 

respiration in the nighttime due to low temperature, provided that the minimum and maximum 

temperatures remain within their tolerable limits (Jiang 1988) and that sufficient soil moisture is 

available to the plants during the warm hours of the day (Lotti et al. 2012). 

Besides the photosynthetic (Satheesan et al. 1984; Senevirathna et al. 2003; Rodrigo 2007; 

Kositsup et al. 2009; Gunasekera et al. 2013) and phenological (Renner 2007; Yeang 2007; 

Guardiola‐Claramonte et al. 2008, 2010) roles of solar radiation on rubber, there is clearly a strong 

correlation between the temperature and sunshine hours (Bristow and Campbell 1984; Thornton 

et al. 2000), which merits consideration especially if their mean over longer periods is to be used 

as a predictor variable. Rao et al. (1998), for instance, have reported Pearson correlation 

coefficients of as high as 0.86 between the 7-day mean of sunshine duration and the weekly mean 

maximum temperature in Kottayam (India). Our study did not measure sunshine duration due to 
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logistical constraints, thus precluding corroboration of the reported correlation for our study 

period and site. Nevertheless, the considerably high correlations reported by earlier studies imply 

that care needs to be taken to avoid including both temperature and sunshine in the same model 

or to adopt modeling strategies able to adequately handle high multicollinearity. Our modeling 

strategy aimed to identify the best and most parsimonious model for predicting rubber yield from 

meteorological covariates while also accounting for potential serial autocorrelation. Given the 

high correlation between the temperature and sunshine duration, it is likely that temperature and 

sunshine effects are substitutable so that the latter is likely to be excluded from models that 

already include temperature, as our best model did. 

Models incorporating moving averages of metrological covariates computed over the 30-day 

window had stronger support in terms of the weight of evidence (𝑤i) and provided more accurate 

predictions than the other competing models. Also, partitioning the study period into three 

temporally distinct blocks distinguished by levels of rainfall or humidity did not enhance 

predictive accuracy relative to models including predictors with moving averages computed over 

shorter window spans, but with the study period not subdivided into finer time blocks. This is 

noteworthy and implies temporal generalizability and robustness of the selected best model to 

marked temporal variation in the meteorological covariates. 

It is also noteworthy that moving average techniques are smoothing methods which are most 

often employed to reveal the underlying trends in time series subject to fluctuations. In such cases, 

the time series of interest is often the response, whereas in our work (but see also (Rao et al. 1998; 

Raj et al. 2005)), the SMA technique has been applied to the raw data to identify appropriate 

predictor variables (Eq. 1). The moving averages selected as the best predictors mean that 𝑘 

equally weighted consecutive measurements of a predictor variable 𝑥𝑗  are used to predict latex 

yield. This provides a simple and biologically meaningful way of accounting for lagged effects as 

each of the 𝑘 measurements are lagged by 1 to 𝑘 time units (e.g., 1 to 30 days in the case of a 

predictor such as MnT(30,0)). 

The clearly superior support for covariates averaged over the 30-day window and, to a far lesser 

extent over the 60-day window, argued for using 30-day averaged covariates in building the final 

model for prediction and also suggested that considering windows wider than 60-days would 

seem unnecessary. This contrasts with and is somewhat longer than the 15–20-day lag reported 

for the yield of rubber trees in Agartala, Northeast India (Raj et al. 2005). Note that when the size 

of the time window over which moving averages are calculated increases, the information 

contained in the smoothed data tends to diminish due to stronger smoothing. Therefore, shorter 

time windows should be preferred. Comparing the M(30,0) class of models with those with separate 
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effects of M(15,0) + M(15,15), the latter class of models allow for unequal weights for the two 

component windows. However, this increased flexibility comes at the cost of a larger number of 

parameters to be estimated and, therefore, higher penalty in calculating the corresponding AIC 

values, which adversely affect the Akaike weights of the models. The better fit of the 

M(15,0) + M(15,15) class of models compared with the M(30,0) class was limited to the single-predictor 

models, but the M(30,0) covariates performed better in the multiple regression context, which is 

unsurprising, as M(15,0) + M(15,15) models are far less parsimonious than the M(30,0) models. This 

points to redundancy of some of the differentially weighted lagged effects. 

Likelihood ratio tests revealed substantial differences between the fixed effects-only model and 

its mixed model variants which we used to approximate the data. Random intercepts were used 

to estimate the added variance in latex yield measurements due to random variation among 

individual trees, including variation due to potentially influential but unmeasured tree-specific 

effects. However, adding random tree-specific regression slopes for predictors to the model for 

the variance-covariance structure did not improve model fit. Regarding the spatial power 

component of the covariance structure, the estimated correlation between consecutive records 

(ρ = 0.7d where d is the time in days separating a pair of records) supported the initial expectation 

that serial correlation was an important issue in the data that needed to be accounted for. 

2.4.1 Strengths and limitations of the modeling approach 

This study demonstrates how to exploit the power and versatility of mixed models and model 

selection based on information-theoretic criteria and the multi-model inferential paradigm to 

obtain valid prediction and minimize violations of model assumptions. 

The data we used were observational, which naturally raises the question of whether the observed 

range of values and combinations of the variables observed at the data collection period can be 

considered as representative of the underlying truth. Since setting up an experimental study that 

mimics the particulars of a study such as the current one is likely to be very challenging, if not 

impractical, using data collected over long periods of time would seem to be the most promising 

path to improve the reliability of latex predictions. 

This study was carried out on only one rubber genotype—the GT1—which is one of the old and 

internationally well-known clones often used by breeders as a reference to evaluate the 

performance of new genotypes (Clément-Demange et al. 2007; Gouvêa et al. 2013). Although 

expansion of this study to include more clones would help establish the generality of our results, 

we presume that the current results based on the preeminent clone (GT1) may be similarly 

applied to other clones based on the existing knowledge with success. 
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The hanging scales used in the field for data collection (fresh latex weight) were selected to match 

field conditions and yet have an acceptable measurement precision. A compromise between these 

two constraints led us to choose scales with an accuracy of 5 g. It is worth stressing that our 

evaluation of prediction quality as the percentage of the forecasts falling within the measurement 

precision of 5 g is bound to this sensitivity level. In other words, using a scale with higher 

sensitivity would lead to a narrower band, potentially covering a reduced number of predictions. 

When technical improvements permit higher precision in field measurements, it would be 

desirable to test the model prediction accuracy under stricter conditions. We acknowledge that 

our inferences are probably limited to the set of investigated variables and the data at hand, but 

the approach we present is very general and should be applicable in a variety of settings. 

2.5  Conclusions 

We present a modeling approach and a model able to accurately predict rubber yield (99 % of 

predictions within 5 g accuracy) using meteorological conditions prevailing during the 30 days 

immediately preceding tapping events. The model was calibrated and validated for the 

environmental setting in our study site in Xishuangbanna, China. Precipitation, minimum and 

maximum temperatures, and maximum relative humidity were identified as the best predictors 

from a set of candidate covariates. This study also highlights the relevance of interactions between 

meteorological variables as rubber yield predictors and confirms the necessity of accounting for 

serial autocorrelation in the latex yield data. 
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Abstract 

In order to map potential shifts of rubber (Hevea brasiliensis) cultivation as a consequence of the 

ongoing climate change in the Greater Mekong Subregion, we applied rule-based classifications to 

a selection of nine gridded climatic data projections (precipitation and temperature, Global 

Circulation Models (GCMs)). These projections were used to form an ensemble model set covering 

the Representative Concentration Pathways (RCPs) 4.5 and 8.5 of the Fifth Assessment Report of 

the Intergovernmental Panel on Climate Change at three future time sections: 2030, 2050 and 

2070. We used a post classification ensemble formation technique based on majority outcome of 

the classification to not only provide an ensemble projection but also to spatially track and weight 

the disagreements between the classified GCMs. A similar approach was used to form an ensemble 

model aggregating the involved climatic factors. The level of parsimony between the ensemble 

projections and GCM products was assessed for each climatic factor separately, and also at the 

aggregate level. Shifting zones with high confidence were clustered based on their land use 

composition, physiographic attributes and proximity. Following the same ensemble formation 
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technique and by setting a 28°C threshold for annual mean temperature, we mapped areas prone 

to exposure to potentially excessive heat levels. Almost the entire shift projected with high 

certainty was in form of expansion, associated with temperature components of climate and 

temporally limited to the 2030 time window where the total area conducive to rubber cultivation 

in the GMS is projected to exceed 50% by 2030 (from 44.3% at the turn of the century). The largest 

detected cluster (41% of the total shifting area), which also is the most ecologically degraded, 

corresponds to Northern Vietnam and Guangxi Autonomous Region of China. The area exposed to 

potentially excessive heat is projected to undergo a 25-fold increase under RCP4.5 by 2030 from 

14568 km2 at the baseline. 

Keywords 

Multi-model ensemble, mapping of rubber, Para rubber tree, cash crops, geographic information 

systems, biodiversity, deforestation, Mekong Region, Mainland Southeast Asia 

 

3.1 Introduction 

Natural rubber is a key industrial commodity with wide application in manufacturing of a very 

diverse range of products. Although rubber-bearing plant species such as Taraxacum kok-saghyz 

and Parthenium argentatum have lately reemerged on the research and development scene as 

potential alternative sources of natural rubber (van Beilen and Poirier 2007a, b; Rasutis et al. 

2015; Kreuzberger et al. 2016; Dong et al. 2017; Ramirez-Cadavid et al. 2017; Soratana et al. 

2017), the Para rubber tree (Hevea brasiliensis) has retained its status as the sole viable source of 

natural rubber, which does not seem to change in the close future (Cornish 2017). Global 

consumption of natural rubber has exceeded 12 million metric tons in the last three years 

according to the International Rubber Study Group (IRSG 2017). Raising demand has been 

matched and to some extent surpassed by increases in production. Global trends of the natural 

rubber production and consumption and the harvested area are illustrated in Figure 3.1. 

Recent decades have been associated with expansion (and to some extent shift) of rubber 

cultivation zones from the traditional rubber growing regions (the 10°S to 10°N equatorial belt) 

to higher latitudes and longitudes (Priyadarshan et al. 2005; Ziegler et al. 2009; Li and Fox 2012; 

Ahrends et al. 2015; Chen et al. 2016a, b). Thailand, the leading rubber producing country since 

1990, which also has had the highest share of the global area converted each year to rubber 

cultivation (30% on average since the turn of the century), can well illustrate the situation (Figure 

3.2).  
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Figure 3.1 Global trends for consumption, production and area under rubber cultivation 
Segmented regression lines reveal the shifts in trends: 1996 is the estimated year before which a 118.9 
thousand ton increase per year explained the growing consumption trend, accelerating to 220.4 thereafter 
while for production, the slope has shifted from 122.3 to 304.9 thousand tons per year by 1998 and year 
2002 appears to be the most efficient breakpoint explaining the increasing trend of the global area under 
rubber cultivation, surging from 89.3 to 287.9 thousand hectares added each year. We have used R package 
'segmented' (Muggeo 2003) version 0.5-1.4 to generate this figure from FAOSTAT (production and area) 
and IRSG (consumption) data (FAOSTAT 2017; IRSG 2017). Inkscape 0.91 was used for visual optimization. 

 

Figure 3.2 Temporal dynamics of the expansion of rubber cultivation in Thailand 
The provincial share of the Thai national increase in the area under rubber cultivation in two time sections: 
from 1993 to 2007 (3158 km2) and from 2007 to 2015 (12485 km2). The 1993 Thailand Agricultural Census 
(NSO 1994) and the agricultural statistics yearbooks of Thailand (2009 and 2015) data (available at 
www.oae.go.th) and the GADM administrative divisions' shapefiles (2.8) were used. Maps were generated in 
ArcGIS 10.2.2 and visually optimized in Inkscape 0.92.  

http://www.oae.go.th/
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The Greater Mekong Subregion (GMS) is an economic cooperation program consisting of six 

nations: China (Yunnan province and Guangxi autonomous region), Vietnam, Thailand, Laos, 

Myanmar and Cambodia. The GMS covers more than 2.5 million km2 of the Mainland Southeast 

Asia (MSEA), about 84% of which overlaps with the Indo-Burmese mega biodiversity hotspot 

((Myers et al. 2000; Mittermeier et al. 2004); Figure 3.3). It stands for a substantial share of global 

rubber production (46.7% in 2014)1 almost exclusively coming from monocultures. Since its 

inception in the early 1990s, the GMS has in general, and its formerly isolated members 

(Myanmar, Laos and Cambodia) in particular, been undergoing rapid socio-economic change 

through regional development programs and transboundary investments in all conceivable 

sectors. At the same time, ecological degradation through accelerated landscape transformation 

has been observed. Heavy expansion of rubber monocultures and their spread to new areas have 

had a notable contribution to deforestation, habitat fragmentation and biodiversity loss (Li et al. 

2007; Ahrends et al. 2015; He and Martin 2015; Häuser et al. 2015). 

In response to concerns about the ecological implications of the rapid expansion of rubber 

monocultures mostly replacing forests and swidden agriculture in MSEA, remote sensing 

techniques are regularly used to monitor land use conversion to rubber cultivation (e.g. (Li and 

Fox 2011a, b, 2012; Dong et al. 2012, 2013; Senf et al. 2013; Fan et al. 2015; Grogan et al. 2015; Li 

et al. 2015; Chen et al. 2016a, b; Kou et al. 2017)). More recently, remote sensing has been used to 

track additional details such as the rubber plantation age (Koedsin and Huete 2015; Kou et al. 

2015; Beckschäfer 2017; Trisasongko 2017). 

Climate is one of the defining factors of the potential geographic extent for cultivation of any crop, 

and Para rubber is no exception. Momentous ongoing change in Earth’s climate attributed to 

human activity (Collins et al. 2013; Kirtman et al. 2013; Lewandowsky et al. 2016; Thorne 2017; 

Medhaug et al. 2017; Berger et al. 2017) is comprehensively acknowledged by the scientific 

community (Cook et al. 2016). Some forecasts of the future potential geographical range for Para 

rubber in different parts of MSEA, mainly based on ecological niche modeling (Ray et al. 2014, 

2016a, b; Ahrends et al. 2015; Liu et al. 2015a) and bioclimatic stratification (Zomer et al. 2014) 

have recently been published.  

 

1 This figure is mainly based on FAOSTAT data. As two Chinese provinces of Hainan and Guangdong 
contribute to the Chinese national production, their share (46.2% in 2014 as mentioned in the China 
Statistical Yearbook 2016 www.stats.gov.cn) has been deducted. In case of Laos for which FAO data is not 
available, United Nations Commodity Trade Statistics Data (comtrade.un.org) was used in combination with 
the historical commodity prices (www.indexmundi.com) to estimate the national rubber production: 56 
thousand tons. 

http://www.stats.gov.cn/
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Figure 3.3 Geographical extent covered by this study 
The orthographic projection in the upper left corner is modified from Wikipedia (http://commons.wikimedia.org). 
Other maps were generated using ESRI ArcMap 10, and the shape files of the administrative borders are available at the 
website of Global Administrative Areas Project (http://www.gadm.org) 

Gridded data of climatic factors simulating likely future conditions are essential inputs for 

forecasts. Global Circulation Models (GCMs) are useful sources of information commonly 

exploited to assess the potential impacts of climate change. Various institutions are engaged in 

creating such datasets and provide dozens of potential choices as input. Variations among GCMs, 

which mainly rise from structural and parameterization differences (Semenov and Stratonovitch 

2010), can help to provide a means to capture and explore some of the projection uncertainties 

which have to be accounted for in order to obtain a realistic and scientifically sound image. 

Variabilities observed in sets of comparable simulations prompt some key choice questions, 

starting with whether a single simulation would suffice or a multi-member ensemble is needed 

http://commons.wikimedia.org/
http://www.gadm.org/
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for a reasonably robust forecast. In the latter case, can using the largest possible ensemble be a 

legitimate decision or could a reduced set of simulations perform better while minimizing the 

computational cost? Based on what criteria should a shortlisting take place? Should an average of 

all set members be used as ensemble or (considering the spatial nature of the data) is there a 

better option? How to handle the uncertainties (dispersion) inherent in the input differences (an 

important but so far overlooked factor)? And how to communicate these uncertainties in a 

comprehensive and useful way? 

Potential phytosanitary deficiencies as well as growth and yield failures due to crop exposure to 

excessive levels of ambient temperature are some of the more unsettling aspects of climate 

change. Despite the existing evidence for this matter (Abd Karim 2008; Kositsup et al. 2009; Yu et 

al. 2014; Golbon et al. 2015; Jayasooryan et al. 2015; Nguyen and Dang 2016), setting a clear-cut 

threshold for heat stress is still a debatable subject. 

Here, we apply rule-based geographical classification to a selection of the downscaled IPCC AR5 

climatic projections in order to map the potential geographical zones projected to be climatically 

suitable for Para rubber cultivation, or exposed to excessive heat, in MSEA in three time sections 

centered on 2030, 2050 and 2070 while accounting for and presenting the classification 

uncertainty. 

 

3.2 Data and methods 

3.2.1 Data  

We used the WorldClim dataset (version 1.4, (Hijmans et al. 2005)) to generate the baseline 

climatic map and an ensemble of nine GCMs under the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC AR5) as simulations forecasting the climatic 

conditions for three 20-year time periods centered on 2030, 2050 and 2070. Facing the choice 

questions mentioned in the introduction section 3.1, we referred to McSweeney et al. (2015), 

which ranked IPCC AR5 GCMs according to their regional performances and recommended a 

subset of 8-10 GCMs, avoiding the least realistic models while retaining the maximum plausible 

dispersion. Nine GCMs were selected using the regional plausibility rankings: ACCESS1.0 (Bi et al. 

2013; Dix et al. 2013), CCSM4 (Gent et al. 2011), IPSL-CM5A-LR (Dufresne et al. 2013), NorESM1-

M (Bentsen et al. 2013), GFDL CM3 (Donner et al. 2011), BCC_CSM1.1 (Xin et al. 2013), MRI-CGCM3 

(Yukimoto et al. 2012), HadGEM2-ES (Martin et al. 2011) and MPI-ESM-LR (Giorgetta et al. 2013). 

The GCM data were provided by the Climate Change and Food Security (CCAFS) Program data 
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portal of the International Center for Tropical Agriculture (CIAT) (available at www.ccafs-

climate.org) and were downscaled to 30 arc sec (∼1 km) resolution using delta method (Ramirez-

Villegas and Jarvis 2010). Two of the four main climate change scenarios recognized by the IPCC 

AR5 were considered in this study: Representative Concentration Pathways (RCPs) 8.5 and 4.5. 

RCP 8.5 is a high greenhouse gas (GHG) emission scenario comprising no stabilization of the 

atmospheric GHG concentrations leading to 8.5 Wm−2 of radiative forcing by 2100 and a globe 

over 4°C warmer than the pre-industrial era. RCP 4.5 is a moderate scenario accommodating GHG 

concentration stabilization by 2070 and radiative forcing of 4.5 Wm−2 (2.5° C temperature rise) 

by the end of the 21st century (Riahi et al. 2011; Thomson et al. 2011). Land use data (see 7 

Appendix Figure A3.1 available at stacks.iop.org/ERL/13/084002/mmedia , (Hoskins et al. 

2016)), the Biodiversity Intactness Index (BII) created by Newbold et al ((Newbold et al. 2016), 

Appendix Figure A3.2) and the USGS GTOPO30 digital elevation model were used to cluster and 

describe the potential future expansion/retraction zones. We have also used the administrative 

divisions (GADM) shapefiles (available at www.gadm.org) in this study. 

3.2.2 Methods 

Five climatic suitability criteria adapted from Rivano et al. (2015) listed in Table 3.1 were used in 

this study. As mentioned by Thompson et al. (2013) and Stephens et al. (2012) it is essential to 

avoid averaging for ensemble formation as it leads to information loss on variation. Here we 

conducted the complete classification process on the involved gridded variables separately for 

each GCM and formed the ensemble product by the majority outcome for each grid cell overlaid 

with a simple uncertainty measure reflecting the strength of the majority. The total annual 

precipitation and the mean annual temperature layers were directly categorized to optimal, 

suboptimal and prohibitive ranges for each GCM, time section and scenario. The ensemble 

suitability projections were generated for each 'criterion × time section × scenario' combination 

consisting of the suitability class returned by the majority of the GCMs for every grid cell and a 

corresponding uncertainty layer reflecting the strength of the consensus on the class assigned to 

each ensemble grid cell ranging from full agreement (9/9) to mere majority (5/9). The monthly 

mean temperature and the monthly precipitation gridded data went through a similar process 

with two additional steps (see Figure 3.4), summarizing the intra-annual distribution of 

precipitation and temperature. 

 

 

 

http://www.ccafs-climate.org/
http://www.ccafs-climate.org/
http://stacks.iop.org/ERL/13/084002/mmedia
http://www.gadm.org/
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Table 3.1 Criteria and thresholds for classification of the gridded climatic data 

Climatic criterion 
Range 

Prohibitive Suboptimal Optimal Excessive 

Annual mean temperature (°C) < 23 23-25 25-28 > 28 

Number of months with mean temperature 
below 23°C 

> 5 1-5 0 - 

Annual precipitation (mm) < 1100 1100-1500 > 1500 - 

Number of months with precipitation below 
50mm 

> 5 4-5 0-3 - 

Thresholds used in this study are adapted from Rivano et al. (2015). The number of months with mean 
temperature below 23°C is referred to as intra annual temperature distribution and the number of months 
with precipitation below 50mm as intra annual precipitation distribution.  
 

By overlaying the classification outcomes of the climatic layers, each grid cell was assigned one of 

the following summarizing classes: 'AllOpt' where all climatic layers returned an optimal 

classification, 'SubOpt' where at least one layer was described as suboptimal and none as 

prohibitive, 'SingProh' where only one layer was in prohibitive range and 'MultProh' with more 

than one climatic criterion in the prohibitive range. The aggregate uncertainty layers were also 

overlaid to produce an aggregate uncertainty layer in four levels: 1) full agreement among GCMs 

for all four criteria, 2) only one criterion projected with 7 or 8 from 9 majority (and all other 

criteria possessing stronger consensus), 3) only one criterion projected with 5 or 6 from 9 

majority (and stronger consensus in all other criteria) and 4) two or more criterion projected with 

5 or 6 from 9 majority. 

A point shapefile representing grid cells in the raster data was created for the shift zones with 

high aggregate certainty (levels 1 and 2) to which the corresponding land use, BII, altitude, slope, 

longitude and latitude values both in original and standardized form were extracted. We used the 

Grouping Analysis tool of the ArcGIS 10.2.2 to form clusters based on the standardized attributes 

and illustrated the outcome using 'ggplot2' 2.1.0 package in R. 

Sankey diagrams are illustration tools suitable for description of multidimensional and 

hierarchical categorical data and are most often used to show material or energy flows through 

network systems. Geographical classification dynamics over time can also be very efficiently 

presented by Sankey diagrams. As demonstrated by Cuba (2015), Sankey diagrams are superior 

to cross-tabulation matrices in reflecting land use dynamics, particularly when multiple time 

sections are of interest. We generated Sankey diagrams to illustrate the climatic suitability class 

shifts projected to occur under RCP 4.5 and RCP 8.5 for each adjacent pair of time sections using 

the D3.js JavaScript library developed by Bostock et al. (2011). 
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Figure 3.4 Steps involved in intra-annual temperature distribution suitability classification (as 
illustration case) 
Continuous monthly mean temperature gridded data (Representative Concentration Pathway 4.5 for the 20 year period 
centered on 2030) ⓐ were used to generate binary layers ⓑ by setting a stress threshold ① (23° C). All 12 binary 
layers originating from the same Global Circulation Model (GCM) were summed ② to produce the layers reflecting the 
number of months projected to be below the threshold ⓒ (abbreviations AC to NO denote the corresponding GCMs). 

These layers were reclassified ③ to three levels: optimal, suboptimal and prohibitive ⓓ. The ensemble classification 

map ⓔ was generated by extracting the majority outcome of all GCMs for each grid cell ④. The uncertainty layer ⓕ 
reflects the consensus level among GCMs leading to the ensemble and was produced by counting the number of GCMs 
participating in the formation of the majority for each given grid cell ⑤. Panel ⓖ shows the geographic extents of the 
frame selected for illustration. All layers used in each step were assigned equal weights and the arrow color difference 
is only for visual clarity. ArcGIS 10.2.2 and Inkscape 0.91 were used for generation of this figure. 

Using the ensemble formation technique, we created an 'excessive heat' layer distinguishing the 

area associated with annual mean temperature exceeding 28°C at the baseline and traced its 

potential expansion under the two RCPs overlaid with corresponding uncertainty layers. This 

criterion, however, was not used as an upper limit for transition to suboptimal or prohibitory 

conditions in the former steps. 
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3.3  Results 

3.3.1 Single criterion classification 

Climatic conditions in the study area at the baseline and the ensemble projections for the four 

climatic criteria (separately classified) are presented in Figures 3.5 and 3.6. Largest projected 

shifts (expressed as proportion of the total studied area) are observed for the annual mean 

temperature and the intra-annual temperature distribution moving from baseline to the 20 year 

time window centered on 2030. Considering the annual mean temperature, 25.13 % of the total 

area (642416 km2 from 2556370 km2) is projected (21.79 % projected with full GCM consensus) 

to migrate from prohibitive and suboptimal range to classes more conducive to rubber cultivation 

under RCP 4.5. The RCP 8.5 ensemble projection suggests this figure to be 28.55 % (23.38 % with 

full agreement). For intra-annual temperature distribution, 20.18 % (16.59 % with full 

agreement) of the total area is observed to experience such a transition under RCP 4.5 and 23.96 

% (17.67 %) under RCP 8.5 from baseline to the 2030 period. Moving to 2050 and 2070 time 

periods, the emerging more suitable areas regarding the two aforementioned factors are of much 

smaller size and paired with higher degrees of uncertainty. The persistence of the new conditions 

in an area which has gone through climatic shift is relevant but not necessarily traceable in Sankey 

diagrams (Figure 3.5). Considering annual mean temperature under RCP 4.5, 14.17 % of the total 

area is projected with high certainty to remain in the new class after shifting from prohibitive to 

suboptimal or suboptimal to optimal range and 16.58 % under RCP 8.5. For the intra-annual 

temperature distribution, these figures are projected to be 14.17 % and 16.55 % respectively. 

Unlike temperature components of climate, the projected shifts observed in precipitation 

components were bilateral, associated with low certainty (i.e. high disagreement among GCMs) 

and smaller in size. The largest area projected to experience shifts in the precipitation class by 

2030 was observed for intra-annual precipitation distribution summing to 7.02 % of the total 

investigated area (6.01 % moving from prohibitive to suboptimal or suboptimal to optimal and 

1.01 % vice versa). 80.63 % of it (equal to 5.66% of the total area) has been projected by mere 

majority (i.e. the lowest possible certainty level). 

Comparing single criterion GCM projections with their corresponding ensembles (Table 2) reveals 

that ACCESS1.0 has returned the closest single criterion maps to the ensemble with an average 

overlap of 92.42 % across all 24 possible criterion-RCP-time period combinations followed by 

BCC_CSM1.1, MPI-ESM-LR and CCSM4. 
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Figure 3.5 Baseline and projected single criterion climatic class dynamics maps 
The classification dynamics for the climatic criteria considered in this study cover baseline and the ensemble future projections. Each panel contains seven (1+3+3) layers of information: 
suitability class at the baseline (×1), projected class shifts between the four time sections (×3), and the strength of the ensemble majority suggesting the change/no-change (×3). Please 
view this figure in original resolution and consult the usage guide provided in the Appendix (Figure A3.10) for clarifications. Maps were generated in ArcGIS 10.2.2 and visually optimized 
in Inkscape 9.2.



40 

 

 

Figure 3.6 Baseline and projected single criterion climatic class dynamics 
The classification dynamics for the area associated with the climatic criteria considered in this study at the baseline 
(2000) and the ensemble future projections correspond to the maps presented in Figure 3.5. For more details on the 
use of Sankey diagrams in illustration of geographic shifts, view the dedicated article: Cuba (2015). Sankey charts were 
produced in D3.js JavaScript library (Bostock et al. 2011) and visually optimized in Inkscape 9.2. 

3.3.2 Aggregate classification 

The geographical and temporal dynamics of the projected climatic suitability classes at the 

aggregate level are illustrated in Figures 3.7 and 3.8. The area projected to retain its aggregate 

climatic class across the investigated time span (by 2070) is projected to be 72.83% of the total 

area under RCP 4.5 and 66.23% under RCP 8.5. By the time window centered on 2050 these 

projections sum to 74.98% and 72.89% and by 2030 to 77.63% and 78.22% of the total area 

respectively. From the total projected class-shifting area by 2030, 26.78% (6.01% of the studied 

area) was projected with maximum certainty (i.e. full agreement among GCMs in all four criteria) 

under RCP 4.5 and 26.50% (5.77%) under RCP 8.5. It was projected to decline to 14.09% (3.53%) 

and 17.39% (4.71%) for the baseline to 2050 time period and further reduction to 9.49% (2.58%) 

and 7.10% (2.40%) for 2070 respectively. Performance similarity of single GCM aggregate 
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classification maps with the ensemble is presented in Table 3.3 where ACCESS1.0 returned the 

closest results to the ensemble. 

Table 3.2 Classification agreement between the single criterion climatic data simulations and their 
ensemble 

Criteria RCP Period 
    Climatic data simulations     

AC BC MP CC NO MG IP HE GF 

A
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4.5 

2030 93.9 91.2 93.7 89.6 89.8 90.3 94.7 88.1 85.8 

2050 93.7 94.6 91.5 91.7 89 89.1 90.1 90.7 88.0 

2070 92.6 85.7 91.1 93.8 83.2 92.8 90.5 86.7 91.7 

8.5 

2030 94.0 88.7 91.1 88.8 88.8 89.7 92.7 88.5 84.6 

2050 93.2 92.7 90.0 92.2 90.6 87.6 89.1 88.1 84.7 

2070 89.2 84.1 88.6 89.6 85.9 92.5 87.2 83.2 89.1 
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4.5 

2030 90.5 85.0 91.0 84.7 89.5 92.6 88.2 92.5 79.1 

2050 91.1 88.6 87.8 87.0 89.6 90.7 86.3 87.7 85.4 

2070 90.4 81.1 89.2 89.7 84.5 87.3 87.1 89.2 87.1 

8.5 

2030 92.4 87.2 90.6 88.0 89.3 83.6 75.2 88.2 86.3 

2050 92.6 83.3 90.7 88.1 79.4 91.6 72.5 83.3 88.0 

2070 91.7 87.5 86.2 86.4 81.9 87.9 64.7 84.0 82.5 
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4.5 

2030 91.5 99.2 82.3 91.3 92.2 90.3 87.5 90.1 86.4 

2050 91.2 99.3 89.0 91.9 93.6 88.7 88.6 85.4 80.8 

2070 81.5 99.2 86.4 95.9 92.8 90.7 86.3 73.2 77.0 

8.5 

2030 96.6 96.5 97.8 92.2 87.3 85.0 90.2 89.5 93.4 

2050 91.6 95.7 98.8 90.3 89.1 80.7 86.9 85.5 87.8 

2070 92.1 93.7 98.6 86.2 85.5 78.0 87.6 80.6 89.7 
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4.5 

2030 97.0 96.1 92.4 98.2 96.1 95.0 94.7 96.7 94.0 

2050 96.0 96.5 92.2 97.4 96.4 93.3 96.0 93.3 90.8 

2070 90.5 96.6 92.1 97.7 96.1 92.8 95.2 86.8 88.8 

8.5 

2030 95.7 95.8 97.0 98.6 94.7 93.6 96.5 93.9 96.7 

2050 94.6 93.5 97.3 96.1 94.3 89.9 96.1 92.3 93.7 

2070 94.4 95.2 98.7 94.7 93.5 88.9 96.4 91.1 95.6 
Resemblance of the climatic classification by each of the nine simulations used in this study with their ensemble is 
expressed as proportion (%) of the sum of the areas with matching classification to the total area. Color-code reflects 
five levels: below 75%, 75 - 90%, 90.1 - 95%, 95.1 - 99% and above 99%. Maximum and minimum of each row are 
underlined. Nine IPCC AR5 simulations of representative concentration pathways RCP 4.5 and RCP 8.5 were used, here 
abbreviated as AC: ACCESS1.0 (Bi et al. 2013; Dix et al. 2013), CC: CCSM4 (Gent et al. 2011), IP: IPSL-CM5A-LR (Dufresne 
et al. 2013), NO: NorESM1-M (Bentsen et al. 2013), GF: GFDL CM3 (Donner et al. 2011), BC: BCC_CSM1.1 (Xin et al. 
2013), MG: MRI-CGCM3 (Yukimoto et al. 2012), MP: MPI-ESM-LR (Giorgetta et al. 2013) and HE: HadGEM2-ES (Martin 
et al. 2011). Each time period corresponds to a 20 year (averaged) time section centered on the mentioned year. GCMs 
are rank-sorted from left to right by their overall resemblance to ensemble.  

Restricting the investigated time window to the 20 year period centered on 2030 and the area to 

where climatic conditions are projected with high (the upper two levels) certainty to shift from 

prohibitive to rubber cultivation to suboptimal or optimal, our projections detected 195928 km2 

(7.70% of the total investigated area) under RCP 4.5 and 238734 km2 (9.38%) under RCP 8.5 

which are presented in Figure 3.8. Using Grouping Analysis we detected eight major clusters based 

on land use composition, physiographic attributes and proximity. Northernmost potential 

expansion was projected to verge on 27°N of the Irrawaddy basin and the altitudinal limit to 

exceed 1400 m a.s.l. in clusters 7 (Bilauktaung range Thailand-Myanmar border between 15.56 

°N and 18.10 °N) and 8 (Cardamom Mountains of Cambodia) (Figure 3.9). The overall baseline 
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state of biodiversity in these clusters is presented in Figure 3.10 using the biodiversity intactness 

index (BII). (Steffen et al. 2015) have proposed a safe limit value of 0.9 (maximum 10% decline) 

for BII. The largest cluster (cluster 1) corresponding to Guangxi Autonomous Region of China and 

Northern Vietnam is the most ecologically degraded and accommodates 92.47% of the area 

already below the safe threshold. 

 
Figure 3.7 Aggregate climatic classification maps 
Panels (a) and (d) reflect four (1+3) layers of information: the aggregate suitability class at the baseline (×1) and the 
projected class shifts between the four time sections (×3). Panels (b) and (e) demonstrate the strength of the ensemble 
majority suggesting the change/no-change (×3) between temporally adjacent time sections. Aggregate classification 
layers (a) and (d), and the corresponding uncertainty layers (b) and (e) are overlaid to produce panels (c) and (f). Please 
view this figure in original resolution and consult the usage guide provided in the Appendix (Figure A3.10) for 
clarifications. Maps were generated in ArcGIS 10.2.2 and visually optimized in Inkscape 9.2. 
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Figure 3.8 Baseline and projected aggregate climatic suitability dynamics 
Baseline (2000) classification and future projections for three time sections under two IPCC AR5 representative 
concentration pathways 4.5 and 8.5 are reflected proportional (%) to the total investigated area. Inter-nod connections 
(flows) smaller than 0.05 % are not demonstrated. For more details on the use of Sankey diagrams in illustration of 
geographic shifts, view the dedicated article: Cuba (2015). Sankey diagram was produced in D3.js JavaScript library 
(Bostock et al. 2011) and visually optimized in Inkscape 9.2. 

 
Table 3.3 Classification agreement between the data simulations and their ensemble at the 
aggregate level 

RCP Period 
Climatic data simulations 

AC CC BC MP NO MG GF HE IP 

4.5 
2030 90.22 88.27 89.60 85.82 90.66 85.92 78.39 89.99 89.89 
2050 92.48 88.77 92.30 83.26 90.90 85.61 82.34 85.76 89.00 
2070 89.39 93.02 87.31 86.32 88.76 86.11 84.45 81.24 87.45 

8.5 

2030 92.87 89.35 88.20 90.73 89.27 84.20 84.89 83.19 76.61 

2050 91.20 88.66 87.58 91.69 82.76 87.11 86.60 79.35 74.54 

2070 91.21 88.41 88.57 88.06 83.26 84.48 82.52 78.32 65.90 

Resemblance of the aggregate climatic classification by each of the nine simulations used in this study with their 
ensemble is expressed as proportion (%) of the sum of the areas with matching classification to the total area. Color-
code reflects five levels: below 75%, 75 - 80%, 80.1 - 85%, 85.1 - 90% and above 90%. Nine IPCC AR5 simulations of 
representative concentration pathways RCP 4.5 and RCP 8.5 were used, here abbreviated as AC: ACCESS1.0 (Bi et al. 
2013; Dix et al. 2013), CC: CCSM4 (Gent et al. 2011), IP: IPSL-CM5A-LR (Dufresne et al. 2013), NO: NorESM1-M (Bentsen 
et al. 2013), GF: GFDL CM3 (Donner et al. 2011), BC: BCC_CSM1.1 (Xin et al. 2013), MG: MRI-CGCM3 (Yukimoto et al. 
2012), MP: MPI-ESM-LR (Giorgetta et al. 2013) and HE: HadGEM2-ES (Martin et al. 2011). Each time period corresponds 
to a 20 year (averaged) time section centered on the mentioned year. GCMs are rank-sorted from left to right by their 
overall resemblance to ensemble. 
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Figure 3.9 Areas projected with high certainty to become climatically suitable for rubber cultivation 
by 2030 
Land use composition (Hoskins et al. 2016), physiographic composition (USGS GTOPO30) and biodiversity intactness 
index (BII) (Newbold et al. 2016) were used to group the parts of the study area which were projected with high 
ensemble consensus to become climatically suitable for rubber cultivation into eight clusters using the Grouping 
Analysis tool of ArcGIS 10.2.2. Violin plots (bottom panel) were generated using the 'ggplot2' 2.1.0 R package and 
visually optimized in Inkscape 9.2. Terms primary and secondary habitat represent 'undisturbed natural' and 
'recovering, previously disturbed natural' habitats respectively. Variables shown above are adjusted to share zero mean 
and unit variance. For original scale, please see Appendix Figures A3.4 to A3.6. 
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Figure 3.10 Biodiversity Intactness Index in high certainty shift zones 
Biodiversity intactness index (BII) from Newbold et al. (2016) extracted for Areas projected with high certainty to 
become climatically suitable for rubber cultivation by 2030. See Appendix Figure A3.2 for complete frame coverage. 
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3.3.3 Exposure to excessive heat  

Projected exposure to annual mean temperature levels exceeding 28°C in the study area is 

presented in Figure 3.11. Based on WorldClim data, total baseline area with this characteristic is 

limited to 14570 km2 (less than 0.6 % of the total investigated area) located between 12.33 °N, 

100°E and 16.33 °N, 101.50 °E in Thailand. Ensemble projections based on 7/9 to 9/9 majority 

classification suggest that by 2030, under RCP 4.5 this area may increase 25 fold (14.3% of GMS) 

and 35 fold (20.5% of GMS) under RCP 8.5 stretching northwards to 22°N in the central parts of 

the Irrawaddy basin. By 2050 however, this criterion may be associated with 23.2% of the total 

area under RCP 4.5 and 31.2 % under RCP 8.5 increasing respectively by 2070 to 26.5% and 

38.9%. 

 
Figure 3.11 Baseline and projected extent of the exposure to mean annual temperature above 28°C 
Each panel contains seven (1+3+3) layers of information: exposure to mean annual temperature above 28°C at the 
baseline (×1), projected shifts between the four time sections (×3), and the strength of the ensemble majority suggesting 
the shift/no-shift(×3). Please view this figure in original resolution and consult the usage guide provided in the 
Appendix (Figure 3.10) for clarifications. 
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3.4  Discussion 

3.4.1 Contrasts and conjunctions with comparable studies 

Zomer et al. (2014) conducted a study focusing on the potential changes in the area conducive to 

rubber cultivation in Xishuangbanna, Yunnan, China using environmental stratification while 

averaging all four AR5 RCPs which suggested an increase from 33.5% to 74.5% of the total 

prefecture area by 2050. Our findings for the same temporal and spatial frame are 52.5% (43.7% 

with high certainty) under RCP 4.5 and 83.1% (60.1%) under RCP 8.5. Ray et al. (2016a, b) used 

MaxEnt ecological niche modeling tool exploring the rubber producing Western Ghats and the 

North-East regions of India and noted a substantial attachment of the projection outcome to the 

region used for calibration. If Amazonia was used for model calibration, only a very limited 

southern part of Western Ghats was returned as suitable by MaxEnt while established rubber 

growing regions were left out. They observed the same limited transferability pattern while 

calibrating MaxEnt with each of two Indian rubber producing regions projecting for the other, one 

at a time. They reached plausible projections only by pooled occurrence points for parameter 

estimation. Ahrends et al. (2015) investigated the expansion trends of rubber cultivation in 

roughly the same geographical frame as this study and concluded that this land use is stretching 

into increasingly less suitable zones jeopardizing biodiversity and landscape functions. They 

included a typhoon damage risk assessment based on historical tropical cyclone tracks which, 

when compared with the area projected with high certainty in this study to become climatically 

conducive to rubber cultivation by 2030, suggests current typhoon risk zones to overlap only with 

parts of clusters one (13.2%) and three (2.2%). This overlapping area in cluster one is limited to 

a 50 km inland buffer of the Guangxi coastline between 106.50°E and 109.66°E. Recent studies on 

the influence of climate change on western North Pacific tropical cyclone tracks however project 

reductions in both frequency and intensity of typhoons in future for our area of interest mainly 

due to northward diversion (Colbert et al. 2015; Kossin et al. 2016; Zhang and Wang 2017). Liu et 

al. (2015a) projected the change in the area with potential for Para rubber cultivation in China 

covering all five provinces with rubber cultivation background (Hainan, Yunnan, Guangdong, 

Guangxi and Fujian) using ecological niche modeling to and reported a 15% increase by 2050 from 

about 400000 km2 in 2010. 

With the exception of cluster 1, which encompasses a major biotically compromised (BII<0.9) area 

share, most of the regions projected to gain climatic potential for rubber cultivation are chiefly 

composed of intact primary habitats (Figure 3.10 and Appendix Figure A3.4). In these areas land 

use modifications of significant scale require serious attention to the potential impacts on the 
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ecological integrity and ecosystem functions and services. The ongoing improvements in the 

scientific understanding and practice of concepts such as rubber based agroforestry systems 

(Langenberger et al. 2017) and Green rubber eco-certification (Kennedy et al. 2017) offer 

promising options for environmentally friendly rubber cultivation, particularly as support from 

smallholder side for participation in ecosystem protection appears to grow (Wigboldus et al. 

2017; Min et al. 2018). 

3.4.2 Strengths and limitations of the projection approach 

Hevea brasiliensis is not only a plant and therefore a sessile species but also a crop subject to non-

natural sources of influence (e.g. breeding and crop management), which may affect the reliability 

of species distribution models if based on biased presence and pseudo-absence records. From our 

point of view rule-based models tend to be less prone to circular reasoning but risk engaging non-

accurate classification rising from misestimated or dated tolerance thresholds (e.g. due to 

breeding). 

We chose to assign equal weights to the climatic criteria involved in this study, and also to the 

GCMs forming the ensemble single criteria layers. However, we acknowledge that a non-equal 

weight approach based on justified quantification of the influence associated with each criterion 

or its ensemble projection homogeneity (in case of GCMs, based on data quality) is plausible.  

Non-climatic factors (e.g. soil conditions, land physiography, labor and market access) which are 

known to be decisive in suitability for rubber cultivation were not involved in this study. Coverage 

of a broad range of suitability determining factors in a single study faces serious technical 

challenges. Different variables can often not be processed with a general approach as the scale 

relevant for some factors may not necessarily match the scale suitable for the others. The 

availability and quality of data in a standardized form are also two crucial limiting features. 

However, some factors relevant in smaller scale (e.g. soil properties) can be nested in those 

relevant in larger scale (e.g. climatic conditions) by subsequent localized assessments. This 

requires the provision of the outputs of studies such as this in a modular form exploitable for third 

parties. The KMZ files accompanying this manuscript do not only provide the findings unchained 

from resolution loss, but can also be used by future studies as a base to expand upon.  

Although recent trajectories of GHG emissions are closest to the RCP 8.5 (Appendix Figure A3.7), 

this climate change scenario incorporates some assumptions concerning the use of fossil energy 

resources which are in the long-run technically improbable (Capellán-Pérez et al. 2016; Ritchie 

and Dowlatabadi 2017a, b; Wang et al. 2017). In view of the concerns and evidence regarding 

rapid changes in land use and climate, it is counterintuitive to use the early years of the last decade 
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as baseline. Nevertheless, most required underlying data components are being revised not with 

emphasis on updating but on resolution (e.g. (Newbold et al. 2016)) or precision (e.g. (Fick and 

Hijmans 2017)). 

Compared with the lower temperature tolerance limits known for Para rubber, upper thresholds 

and consequences of exposure to high levels of ambient temperature are not well understood. The 

global area already exposed to annual mean temperature above 28° C (Appendix Figure A3.9) 

does not match typical rubber growing regions. In case of the GMS, a comparison between Figures 

3.2 and 3.11 underlines this point. Mesocosm experiments (Stewart et al. 2013; Bestion et al. 

2015; Fordham 2015) and other manipulation methods which have recently gained prominence 

in studies aiming at a better understanding of the responses of the organisms to a warming climate 

can illuminate the way for H. brasiliensis as well.  

The methods developed in this article are applied to a relatively restricted case study, rubber 

cultivation in the GMS. Nevertheless, the potential for transferability to other world regions and 

other cropping systems is very high, as the vast majority of datasets used is freely available for 

scientific purposes. The phenological and physiological crop specific background data for other 

crop plants can be collected from text books and literature reviews. Potential applications that 

come to mind might be the potential suitability for oil palm plantation systems, coffee agroforestry 

or bio-economically important crops such as sugar cane and maize and its´ potential northern 

distribution limits.  

In order to broaden the audience of this study and to facilitate the use of its outputs for potential 

decision makers, we have produced two KMZ files (one for each RCP) which summarize the 

information behind Figures 3.5, 3.7 and 3.11, covering the baseline and the 2030s time windows. 

These files can easily be loaded in Google Earth™ to check the conditions for a given location by 

clicking. The KMZ files and all of the figures in high resolution are available on zenodo.org 

(https://doi.org/10.5281/zenodo.1312769). 

 

3.5  Conclusion 

Even though the climatic change in the GMS is projected to be predominantly in the direction of 

higher suitability for rubber cultivation, the expansion of climatically optimal area is projected to 

be minimal. When including the exposure to annual mean temperatures exceeding 28°C (current 

estimate of excessive heat for Hevea rubber), as a limiting factor, then even a heavy reduction in 

the total climatically optimal area is likely to occur (see Figure 3.8). 

http://iopscience.iop.org/article/10.1088/1748-9326/aad1d1/www.zenodo.org
https://doi.org/10.5281/zenodo.1312769
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Across the time span investigated in this study (limited to 2070), about half of the new area with climatic 

potential for rubber cultivation is projected to emerge by 2030, near half of which is ecologically pristine 

(see Figure 3.10). This pattern, in combination with factors encouraging rubber cultivation in higher 

altitudes and latitudes underscores the urgency and importance of careful future land use planning. Local 

and regional decision-makers can use mid- to (more cautiously) long-term assessment such as this to 

develop policy guidelines and decision support mechanism that can take the occurrence of potential new 

land use and land management systems into account. Either to prepare a certain region for potential 

innovations regarding the demands to local infrastructure, or to put necessary guidelines and rules into 

place to “soften the blow” these innovations might have on traditional systems or biodiversity and nature 

conservation.  

Acknowledgements 

The authors want to thank the German Ministry of Science and Technology for supporting the research 

that led to this publication under the LILAC and SURUMER projects (grant numbers FKZ 0330797A 

and FKZ 01 LL 0919) as well as for funding its open access publication. We deeply appreciate the raw 

data provision by all sources mentioned in this article. We are grateful to Kevin Thellmann, Benjamin 

Warth and the anonymous referees for their constructive criticisms and insights which helped us improve 

an earlier draft of this paper. 

Competing Interests: The authors declare they have no competing interests. 

 

  



51 

4 Global Assessment of Climate Driven Susceptibility to South 

American Leaf Blight of Rubber using Emerging Hot Spot 

Analysis and Gridded Historical Daily Data 

Reza Golbon1*, Marc Cotter1, Mehdi Mahbod2 and Joachim Sauerborn1 

1 University of Hohenheim, Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-
Institute), Agroecology in the Tropics and Subtropics Garbenstr. 13, 70599, Stuttgart, Germany 

2 Department of Water Sciences & Engineering, College of Agriculture, Jahrom University, Jahrom 
74131-88941, Iran 

*Correspondence: golbon@uni-hohenheim.de

Received: date; Accepted: date; Published: date 

Abstract: 

South American leaf blight (SALB) of Para rubber trees (Hevea brasiliensis Muell. Arg.) is a serious 

fungal disease that hinders rubber production in the Americas and raises concerns over the future 

of rubber cultivation in Asia and Africa. The existing evidence of the influence of weather 

conditions on SALB outbreaks in Brazil has motivated a number of assessment studies seeking to 

produce risk maps that illustrate this relationship. Subjects with dynamic and cyclical 

spatiotemporal features need to embody sufficiently fine spatial resolution and temporal 

granulation for both input data and outputs in order to be able to reveal the desired patterns. 

Here, we apply emerging hot spot analysis to three decades of gridded daily precipitation and 

surface relative humidity data to depict their temporal and geographical patterns in relation to 

the occurrence of weather conditions that may lead to the emergence of SALB. Inferential 

improvements through improved handling of the uncertainties and fine-scaled temporal 

breakdown of the analysis have been achieved in this study. We have overlaid maps of the 

potential distribution of rubber plantations with the resulting dynamic and static maps of the 

SALB hot spot analysis to highlight regions of distinctly high and low climatic susceptibility for the 

emergence of SALB. Our findings highlight the extent of low-risk areas that exist within the rubber 

growing areas outside of the 10° equatorial belt. 

Keywords: Pseudocercospora ulei, Microcyclus ulei phytopathology, geographic information 

systems, GIS 
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4.1 Introduction 

Natural rubber is an essential raw material for the production of a wide range of goods and also 

the provision of numerous services (transportation above all). The Para rubber tree (Hevea 

brasiliensis Muell. Arg.) remains the unrivaled source for natural rubber. Although rubber trees 

originate from the Amazon basin, the Americas contribute only a fraction of the global rubber 

production (4.3% of 14.2 million tons in 2017) (FAOSTAT 2019). This is due to South American 

leaf blight (SALB), the most serious disease affecting rubber trees. It is caused by the fungus 

Pseudocercospora ulei P. Henn. (Hora Júnior et al. 2014), which induces lesions on young leaves, 

leading to defoliation that, in multiple cycles, weakens and eventually destroys the trees. SALB has 

so far been confined to the Americas, but its threat haunts Asian and African rubber production. 

The established high-yielding clones that are the source for most of the rubber produced 

worldwide have a very narrow genetic base (Besse et al. 1994; Le Guen et al. 2000). They originate 

from a region in Para state of Brazil where the natural resistance to SALB among wild rubber trees 

is the lowest compared to populations growing in other areas within the endemic range of H. 

brasiliensis (Le Guen et al. 2002, 2003, 2015). The genetic erosion associated with decades of 

selection and breeding in a SALB-free environment has also contributed to the vulnerability of the 

Asian clones (Varghese 1992; Onokpise 2004; Priyadarshan 2016). By contrast, the evolutionary 

potential of P. ulei has been observed to be vigorous (Barrès et al. 2012). The ongoing genetic 

improvement programs aiming to develop genotypes with stable resistance to SALB have yet to 

overcome this challenge (Guyot and Le Guen 2018). The destructive capacity of SALB, paired with 

the importance of its target crop (Häuser et al. 2015) and the lack of effective and both 

environmentally and economically (Evans 2002; Le Guen et al. 2008) acceptable countermeasures 

have earned P. ulei the status of a latent biological agent (Onokpise and Louime 2012; Miedaner 

2017). Asian rubber-producing countries have implemented various measures to prevent the 

introduction of SALB and have developed contingency plans for its control in the case of an 

outbreak (LebaiJuri et al. 1997; Evans 2002; Asna and Ho 2005; Hashim 2012). Regional 

conferences and workshops backed by the FAO (Asia and Pacific Plant Protection Commission) 

have aimed to increase knowledge sharing and action harmonization among the participating 

countries. 

In the 1970s and 1980s, a series of programs encouraging natural rubber production (Programa 

de Incentivo à Produção de Borracha Vegetal—PROBOR) was conducted by the Brazilian 

government to increase national self-sufficiency, and although not successful, revealed that 

rubber trees could be grown in some areas of Brazil (mainly in some parts of São Paulo State) 

without being affected by SALB (Furtado et al. 2015). These “escape zones” are colder and 
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experience an annual dry period that coincides with the refoliation period of the rubber trees 

(Rivano et al. 2015).  

The ‘disease triangle + time’ conceptual model in plant pathology (Francl 2001; Agrios 2005) 

describes disease emergence as the result of the convergence of a susceptible host and a 

pathogen under favorable environmental conditions over a sufficient period of time. The 

absence of any of those elements would restrain disease development. Humidity, temperature, 

and light conditions have been reported to play a role in creating the conditions for SALB 

infection by influencing release, viability, and germination of spores and facilitating penetration 

of host tissues  (Langford 1945; Holliday 1969; Chee 1976a; Gasparotto and Junqueira 1994; 

Evans 2002; Guyot et al. 2010, 2014). Among them, long lasting humid conditions leading to 

several hours of continuous “leaf wetness” is the point on which consensus among old and new 

literature exists.  

Mature rubber trees go through an annual defoliation and refoliation cycle as opposed to 

seedlings, which within the first four to five years produce multiple leaf flushes throughout the 

growing season. Young rubber leaves are susceptible to SALB until up to three weeks after bud-

break (Marattukalam and Saraswathyamma 1992; Lieberei 2007; Priyadarshan 2011) when they 

reach their physiological and structural maturity (Garcia et al. 1995; Fang et al. 2016). 

A few studies based in geographic information systems (GIS) exist that focus on mapping SALB 

“escape zones”, but on a relatively small scale (de Camargo et al. 2003; Silva et al. 2013; Rivano et 

al. 2015; Jaimes et al. 2016). Roy et al. (2017) expanded the covered geographical evaluation span 

to a global scale and took the effects of different phenological behavior of mature and immature 

trees into consideration. However, the limitation in this study is the time steps, which are monthly, 

and considering the pace at which the refoliation process and SALB infection evolve, lacks the 

requisite detail. The annual and monthly variables and their corresponding thresholds used in 

comparable studies are practically used as proxies attempting to capture the effects of the 

underlying daily variations. However, thanks to improved access to spatiotemporal historical data 

with finer temporal granulation (see Section 4.2.1) and an increase in computational power, the 

use of such proxies is more and more avoidable. Extraction of trends from weather records should 

account for and present the inherent uncertainties for highly dynamic variables, such as 

precipitation. 

In this study, we applied emerging hot spot analysis, which is based on the Getis-Ord Gi* 

statistic (Getis and Ord 1992; Ord and Getis 1995), to three decades of gridded daily precipitation 
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and surface relative humidity data in order to reveal temporal (in daily steps over the yearly 

cycle) and geographical patterns that link weather conditions to the likelihood of SALB 

emergence. 

4.2 Data and Methods 

4.2.1 Data 

We used the CPC (Climate Prediction Center) global unified gauge-based analysis of daily 

precipitation data (CPC 2018) and the NCEP (National Center for Environmental Prediction) 

global reanalysis daily surface relative humidity data (NCEP 2018), which are both available at 

the website of the Physical Sciences Division of the Earth System Research Laboratory under the 

Office of Oceanic and Atmospheric Research—National Oceanic and Atmospheric Administration 

(NOAA/OAR/ESRL PSD). These two data sources have been evaluated and used for long-term 

trend analysis of humidity and precipitation with reasonable results in different parts of the world 

(Dessler and Davis 2010; You et al. 2015; Ashouri et al. 2015; Cui et al. 2017; Villamil-Otero et al. 

2018). The CPC precipitation data and the NCEP relative humidity data have spatial resolutions of 

0.5 and 2.5 decimal degrees, respectively. We chose a 30-year period from 1988 to 2017 as the 

time frame for our input data. Based on the global climatic suitability map for rubber cultivation 

(Figure 4.1), we limited the geographical coverage of this study to the 30° north and south 

latitudes in which 0.5 decimal degrees range from about 55.6 km at the equator to 47.3 km at 30°. 

 

Figure 4.1 Global distribution of climatic suitability for rubber cultivation. 
This map is based on four temperature and precipitation criteria: annual mean temperature, intra-annual temperature 
distribution, annual precipitation, and intra-annual precipitation distribution Rivano et al. (2015) applied to Worldclim 
V2 (Fick and Hijmans 2017) gridded climatic data. The process for generation of this map is described in detail in Golbon 
et al. (2018). 

4.2.2 Methods 

Our aim here is to explore the spatiotemporal patterns for high relative humidity and rainfall, 

which, when combined, represent the long-lasting hours of leaf wetness, facilitating SALB 
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establishment. Daily precipitation and relative humidity records in the continuous form were 

extracted from the NetCDF (Network Common Data Form) files. Surface relative humidity layers 

were resampled to match the spatial resolution of the precipitation data. Using conditional 

expressions applying thresholds of 1 mm for precipitation (representing precipitation incidence 

regardless of the quantity) and 90% for relative humidity (standing for close to saturation air 

humidity) (Roy et al. 2017), we converted the continuous data to binary layers (0 for values lower 

than the threshold and 1 for otherwise). These binary raster files were converted to point 

shapefiles. The points corresponding to waterbodies and areas with latitudes beyond 30° N and 

30° S were eliminated. We added a new date-type field to the attribute table of each point shapefile 

and populated it with the corresponding date value. Point shapefiles affiliated with each day of 

the year (e.g., all the 30 files related to Jan 01 from 1988 to 2017) were merged, and the resulting 

shapefile was projected using the Hammer–Aitoff projection, which is metric and global. The 

Emerging Hot Spot Analysis (EHSA) tool of ArcGIS does not process the usual raster and vector 

inputs directly. Point shapefiles containing the temporal information (described above) need to 

be aggregated into NetCDF data structures called space-time cubes, which in addition to the 

coordinates, stores the time dimension information. This three-dimensional data structure has 

spatial units (bins) that can be in the form of either squares or hexagons. The projected point 

shapefiles were used to create space-time cubes containing the temporal and spatial information 

on events of precipitation and high surface relative humidity. We chose the hexagonal form for 

the space-time bins and, based on the resolution of the precipitation data (see Section 4.2.1), fixed 

the neighborhood distance (the height of the hexagons) to 90 km. The space-time cubes were used 

as input for the EHSA.  

EHSA uses the Getis-Ord Gi* statistic (Getis and Ord 1992; Ord and Getis 1995) to evaluate the 

spatiotemporal patterns of occurrence/absence of an event of interest (precipitation and high 

relative humidity in the current case), verifying them versus the probability of the observations 

being outcomes of random processes (Getis and Ord 1992; Nelson and Boots 2008; Harris et 

al. 2017). EHSA returns three possible main categories for each space-time bin: cold spot, hot 

spot, or no pattern. In the context of this study, area units (hexagons) defined as hot spots are 

rendered to be associated with conditions favorable to the pathogen activity (incidence of 

rainfall or high relative humidity) as opposed to cold spots, for which the investigated criterion 

was detected not to be within the favorable range for the pathogen. The ‘no pattern’ category 

allows for the indeterminate conditions in which the data at hand supports neither a hot nor a 

cold spot category. The cold and hot spots were each divided into eight subcategories differing 

in their observed temporal stability and if applicable, the shifting direction detected for them 
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over time. However, for the purposes of this study, we focused on the hot and cold spots with 

significant trends (Mann-Kendall trend test z-scores with p-values smaller than 0.05) regardless 

of their subcategories in the subsequent steps and referred to them with acronyms “HS” (hot 

spot) and “CS” (cold spot), respectively. We handled the areas for which no pattern was 

detected and those with statistically nonsignificant trends equally and labeled them with “NS” 

(no pattern/nonsignificant trend). The EHSA output attributes were simplified from the original 

17 possible outcomes to these three simplified categories. In order to homogenize the day by 

day changes in the geographical delineation of the HS/CS/NS hexagons, we extracted the 

majority outcome for each hexagon over a moving seven-day time window centered on the 

target day of the year (e.g., 28 Dec to 04 Jan for 01 Jan).  

The day-to-day maps for both relative humidity and precipitation were date-tagged, laid out and 

exported as image files. We used Blender 2.79 to render an animated map with these 365 frames 

to be played as a 15 second long video. We further simplified the dynamic map in two steps. First, 

by adding a new field to the attribute table of each shapefile and merging the HS/CS/NS 

information of both criteria from which six possible classes ensued (HS + HS, HS + NS, NS + NS, CS 

+ NS, CS + CS, and HS + CS). Finally, we added another field to the attribute tables and populated 

them with two possible classes: hexagons for which at least one of the two criteria was a 

significant cold spot (=1) and otherwise (=0) as the alternative. Finally, the resulting binary values 

for each hexagon were summed up over the whole year and for the refoliation periods to produce 

two static summary maps. In order to secure the coverage of the refoliation periods, we applied 

the time window of Feb–Apr for the Northern Hemisphere and Aug–Oct for the Southern 

Hemisphere. We have also created keyhole markup language zipped (KMZ) files corresponding to 

all of the daily maps from which the three mentioned videos were produced. 

4.3 Results 

The key outputs of this study are the daily spatial classifications presented as three animated 

maps (Videos A4.1 to A4.3), which require some direct engagement by the users (navigating 

through the time frames for an area of interest) to reveal the desired information. Video A4.1 

presents the detected trends for both relative humidity and precipitation, while Video A4.2 

simplifies that content by reflecting only the six possible class combinations regardless of their 

origin (i.e., which class belongs to which criterion). Video A4.3 focuses on the significant cold spots 

and combines the hot spots with the no pattern/not significant class. Although further 

compression of the outputs into single frame maps summarizing the patterns occurring over 
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longer time periods may seem to be in conflict (by forcing potentially arbitrary time frames and 

risking overgeneralization) with the goals of such a study, it is prudent to describe the extremes 

observed over the complete year cycle and the approximate leaf flushing period (Figure 4.2). 

Areas for which no significant cold spots (for neither of the two criteria) were detected across the 

yearly cycle were confined to the Asian and American tropics between 9° N and 8° S (Figure 4.2a). 

The other extreme outcome—the entire yearly cycle covered by a significant cold spot for at least 

one of the two criteria—was mostly returned for Asian, Pacific, and Caribbean islands and 

peninsular relatively narrow land strips.  

 

Figure 4.2 Summary maps of the cold spot occurrence 
Days for which at least one of the two criteria considered in this study was detected to be a significant cold spot from 
the complete year cycle (a) and the approximate refoliation period (b) (Feb–Apr for the Northern Hemisphere and Aug–
Oct in the Southern Hemisphere) are reflected in a proportional form. In this figure, similar to Video A4.3, we have 
pooled hot spots and the uncertain areas distinguishing them from cold spots which form an ‘unsafe/uncertain’ vs. ‘safe’ 
dichotomy. Therefore, 0% cold spot means 100% hot spot/uncertain. The non-hatched area reflects the zones 
climatically conducive to rubber cultivation (for more details see Figure 4.1) 

Limiting the time window of interest to the approximate refoliation period for mature trees 

(Figure 4.2b), we found an increase in the area for which no significant cold spots were detected 

in the American tropics from the equator to the 8° N latitude. Within the same temporal frame, 

this pattern emerged around the African equatorial line from longitudes 8° E to 20° E. The 

outcome for the aforementioned insular and peninsular areas was very similar to findings on the 

annual cycle. In addition to what was indicated for the year-round summary, the following areas 

were found to be characterized throughout the refoliation period by at least one of the two criteria 

as a significant cold spot: in Asia, coastlines of the two Indian states of Kerala and Karnataka (8° 
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N to 14° N) and the eastern Indian coasts from 11° N to 13° N and 18° N to 21° N; in Africa, the 

area enclosed within 11° N, 15° W and 31° E, 4° N and at the eastern African coastlines from 5° S 

to 8° S (Tanzania) and 17–18° S (Mozambique); and in South America, northern Venezuela, 

Brazilian coastline from 6° S to 18° S and 42° W to 50° W stretching deep into Maranhão and Pará 

states and a large cluster in the southern parts of Mato Grosso state. In general, the share of the 

two extremes (all days vs. no days associated with a significant cold spot) from the total area 

climatically conducive to rubber cultivation is larger for the refoliation period than the annual 

cycle, reflected by the higher contrasts in panel b than a of Figure 4.2 and the transition from 

potential risk zones to safe zones occurs in shorter distances. 

4.4 Discussion 

The climatic risk analysis of SALB by Roy et al. (2017) is the only publication comparable to this 

study in regards to the time dimension during data processing and inference, the similarities in 

the covered geographical span, and the similarly rough spatial resolution of the input data. That 

study diverges from this work in three major points: exclusion of temperature variables from 

analysis, data processing method (EHSA vs. rule-based classification), and the level of temporal 

granulation (daily vs. monthly time slices). The temperature ranges reported in scientific 

literature for P. ulei (Holliday 1970; Chee 1976b; Liyanage and Jacob 1992) focus mainly on the 

optimal conditions for the pathogen, which cannot be used as impeding thresholds. Moreover, low 

temperature appears not to be a limiting factor for P. ulei within the geographical range that is 

climatically suitable/bearable for H. brasiliensis (Langford 1945). Figure A4.1 in the Appendix 

demonstrates how the spatial limits set by relative humidity and precipitation are completely 

nested within the space outlined by the temperature limits. Therefore, temperature turns to a 

superfluous criterion. There are precedents for the temporary loss of immunity to SALB in some 

established Brazilian ‘escape zones’ due to unusually humid weather conditions (Furtado et al. 

2015), but cases relating to temperature anomalies have not been reported.  

We chose to use EHSA, which not only accommodates temporal trends but also can allow for 

uncertainties and avoid potentially overgeneralized inferences based on vague dichotomies. 

Technical barriers, such as insufficient access to data and computational power, which are often 

the reasons for resorting to using proxy variables, are being progressively alleviated thanks to 

recent advances. 

As opposed to small-scale and local studies, investigations with global coverage help provide a 

bigger picture. This broad overview comes at the cost of the potential loss of details compared to 

the reality, such as missed smaller but not necessarily insignificant pockets of land with conditions 
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contrasting the dominant neighboring land use and shifts in some of the detected borderlines. The 

broad overview mentioned above is helpful in evaluating the plausibility of the findings and the 

performance consistency of the data and methods in a general glimpse and also as an informal 

cross-validation. For instance, persistent cold spots assigned to the Caribbean and small Asian 

islands (see Figure 4.1 and Videos A4.1 to A4.3 on page 96) are dubious considering the stagnation 

of the class attributed to them over the year cycle and in relation to the conditions reflected in 

their immediate vicinity. This situation is probably caused by spatial isolation (shortage of 

neighboring points) of the corresponding space-time bins. 

Ideally, a map that encapsulates the trends for the approximate annual refoliation period should 

restrict the summarized values assigned to each grid cell to the dates specifically relevant for the 

corresponding location. The surprisingly scarce and to some extent speculative literature that 

exists in regards to the processes and triggers of the phenological behavior of Para rubber (de 

Lemos Filho et al. 1993, 1997; Yeang 2007) does not aggregate to a solid base to link refoliation 

to the geography through the natural annual cycles. As an alternative, metadata gathered from 

studies that report both refoliation dates and the corresponding geographical coordinates from 

different locations should serve as an alternative for producing a time map for refoliation. The 

existing literature which report both refoliation dates and coordinates (Whaley 1948; Montény et 

al. 1985; Ortolani et al. 1998; Priyadarshan et al. 2001; Omokhafe 2004; Fernando et al. 2012; Liu 

et al. 2014; Maeght et al. 2015; Zhai et al. 2017; Liyanage et al. 2018) are not abundant enough 

and the indicated refoliation dates are often formulated in too much a loose range to be applicable 

to our purpose. As a result, the map which summarizes the situation over the refoliation period 

(Figure 4.2b) inevitably suffers from overgeneralization of the time frame. Nevertheless, this 

problem is tackled using the dynamic maps (Videos A4.1 to A4.3 on page 96). This requires users 

to navigate through the dates (video frames) of interest for a given area. A media player that 

permits the frame by frame viewing of the video should be used for that purpose. We suggest GOM 

media player (available at www.gomlab.com), which permits frame by frame navigation by 

pressing the ‘f’ key on the keyboard. 

Roy et al. (2017) reported all mature trees in Indian rubber growing areas to be safe from SALB. 

Our findings support this assessment for the Western Ghats, where cold spots disappear in mid-

May and reappear in November, and for the Odisha State where the low humidity period is even 

longer, stretching from October to June. However, the identified trends in the northeastern region 

of India are associated with considerable uncertainty. Moving further to the east, Roy et al. (2017) 

describe most of the rubber growing areas in China, Thailand, Cambodia, Laos, and Vietnam as 

low-risk, and parts of Philippines, Malaysia, and Indonesia as high-risk zones. We reached 

http://www.gomlab.com/
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comparable outcomes for these areas. For the continental parts of Southeast Asia, however, the 

time gap between the end of the refoliation period and the start of the humid season tends to be 

narrow. Roy et al. (2017) applied a blanket refoliation time window of February–March for their 

assessment of SALB risk for mature rubber trees in Africa. In areas south of the equator, this is not 

consistent with their refoliation rule of thumb, March–May for the Northern Hemisphere and 

September–November for the Southern Hemisphere. With using the dual time window, our 

findings suggest that the conditions during the refoliation season over large areas north of 5° N 

from Guinea to the Central African Republic and east of 30° E from Mozambique to Kenya (Figure 

4.2b) tend to not support leaf wetness. 

The thresholds applied in this study represent conditions leading to long hours of leaf wetness 

through the coincidence of rainfall and high relative humidity. However, other conditions causing 

leaf wetness (e.g. dew in place of rainfall) are also possible. Despite the fact that by the three levels 

of simplification applied to the dynamic maps some flexibility for more stringent examination of 

the outputs has been preserved, the thresholds applied to the raw data are fixed. 

For studies relating to subjects concerning alien species, such as this one, the following seven 

measures suggested by Groom et al. (2017) should be followed: (1) creation of data management 

plans, (2) increasing interoperability of information sources, (3) documentation of data through 

metadata, (4) formatting data using existing standards, (5) adoption of controlled vocabularies, 

(6) increasing data availability, and (7) ensuring long-term data preservation. We have achieved 

points (2) and (4) by providing the KMZ outputs of our study to the public, and points (3), (5), (6), 

and (7) by archiving these files on zenodo.org (https://doi.org/10.5281/zenodo.2576857) data 

repository. These KMZ files can be used by any interested party regardless of their expertise, 

examined by individuals of no familiarity with geographic information systems (dragging and 

dropping in GoogleEarth™), or exploited by GIS-savvy researchers for further developments. 

4.5 Conclusions 

Incorporation of daily time steps in the risk evaluation is a tedious process but achievable. The 

uncertainties rising from the natural overtime variabilities in observations can be accounted for 

using EHSA. For rubber trees past their multiple-leaf-flush life stage, several areas safe from SALB 

(regarding the leaf wetness during the refoliation period) appear to exist in the areas outside of 

the 10° equatorial belt. 

 

 

https://doi.org/10.5281/zenodo.2576857
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5 General discussion  

This thesis is devoted to three aspects of rubber cultivation in regions of the world which are 

considered suboptimal for rubber cultivation due to climatic characteristics different from the 

origin of Para rubber tree. Yield modeling for rubber based on meteorological conditions was 

pursued in the first study (Chapter 2). Meteorological covariates most influential in predicting 

rubber yield were identified, the optimal lead periods that capture the lagged effects for the 

predictor covariates were determined, serial autocorrelation in the input time series data was 

corrected, and a model was constructed and validated. Potential spatial shifts in rubber cultivation 

under the influence of climate change in continental Southeast Asia were investigated in the 

second study (Chapter 3) using an ensemble set of climate projections for the approaching five 

decades. Exposure of rubber trees to potentially excessive heat levels and also uncertainties 

inherent in the disagreements among the ensemble members were presented. In order to convey 

these contents efficiently to all readers regardless of their academic background, innovative 

methods were developed for both spatial data processing and output illustration. Finally, in 

Chapter 3, the climate-driven susceptibility to South American Leaf Blight of rubber was 

investigated on a global scale using 30 years of gridded precipitation and surface relative humidity 

data with daily temporal granulation. As each of the above mentioned chapters is a complete and 

independent work containing a dedicated discussions subsection, the rest of this general 

discussion will focus only on the common thread running through Chapters 2-4 and their 

collective implications while taking the relevant literature into consideration. 

Humankind modifies ecosystems in order to harvest higher levels of provisioning services and 

boost the economic gains. However, short-sighted and inadequately informed decisions which do 

not take the true capacities and tolerance limits of ecosystems into account, endanger and destroy 

the resilience of ecosystems. Various computer models have been developed in recent years (see 

Christin et al. 2016; Dunford et al. 2017; Grêt-Regamey et al. 2017) that try to represent natural 

and man-made conditions and processes in a simplified and workable manner, facilitating the 

exploration of competing scenarios. This is in order to detect or develop plans which, in the ideal 

case, when implemented, result in a balanced and resilient system, redressing potential 

underperformance in gains from provisional ecosystem services or, at the other side of the 

spectrum, mitigate the negative effects of overexploitation through implementation of well-

chosen tradeoffs among different ecosystem services in land management. 

Ecosystem service assessment models require parameterization and therefore depend on 

statistical models that capture and quantify relationships between variables relevant for them. 
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Chapter 2 takes part in this domain by providing a validated instrument of rubber yield estimation 

in connection with climatic settings in high altitudes and latitudes of mainland Southeast Asia. The 

modeling method used in Chapter 2 (e.g. correction for autocorrelation and inclusion of random 

effects) yield robust models which compared with modeling methods missing these measures are 

more generalizable and less likely to produce widely outlying estimates once tried in 

circumstances varying from its training dataset. Yet, further spatiotemporal broadening of the 

input data (i.e. time series data collected over longer time periods from a broad range of locations) 

would add to this robustness. Applying the same methods in a standardized way to non-

monoculture rubber growing alternatives in order to model their performance, is essential to the 

validity of the comparisons. 

Finding the applicability thresholds for each variable space and spatiotemporal frame within 

which inferences are valid is also a crucial prerequisite for putting models to practice (Václavík et 

al. 2016). A direct connection between Chapters 2 and 3 is their complementary role respecting 

the similarity between areas projected to become climatically conducive to rubber cultivation by 

2030 (Figure 3.9, clusters 2 and 3), with the site conditions from which the yield prediction model 

(Chapter 2) was constructed and validated. It means that the yield predicting statistical model is 

a good candidate for evaluation of the revenues which are to be expected from rubber cultivation 

in these areas. Yet, as it is acknowledged in subsection 3.4.1, non-climatic factors influencing the 

suitability of a location for rubber cultivation also need to be considered.  

Besides climate change, further developments in genomics and breeding (Cheng et al. 2015, 2018; 

Deng et al. 2017; Nóia Júnior et al. 2018; Chen et al. 2019) are expected to contribute to the 

expansion of the geographical extent conducive to rubber cultivation by higher cold tolerance. 

Following this parallel, Figure 3.9 can be used to look for directions and approximate areas which 

may become host to prospective more cold-resistant genotypes. 

By overlaying the delineations of the emerging cultivable areas with the current land use 

composition (Figure A 3.1) and the associated biodiversity losses (Figure A 3.2), any given location 

will be recognizable somewhere on a spectrum ranging from pristine to heavily degraded. Rubber 

plantations in their currently widespread form (monocultures) are rated to be ecologically 

inferior to forest but preferable to arable land use (Blagodatsky et al. 2016; Cotter et al. 2017). It 

would mean that in heavily degraded areas (e.g. cluster 1 in Figure 3.10) rubber cultivation, even 

in the conventional monoculture form, may lead to a more balanced relationship between 

ecosystem services. Conversely, conversion of ecologically pristine areas (e.g. clusters 2 and 3 in 

Figure 3.10) replaces a natural equilibrium with a man-made system which, when not composed 

carefully of appropriate components into a proper spatial configuration, will be imbalanced and 
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in the long run counterproductive (Liu and Slik 2014). Effects of the spatial configuration of 

manipulated ecosystems are still under vigorous debate (see Fletcher et al. 2018 and Fahrig et al. 

2019). Tarigan et al. (2018) found that a minimum of 30% forest cover is needed for sustainable 

water flow regulation of a watershed in areas subject to cultivation of natural rubber and oil palm. 

After finding a 'common denominator' value for the share of undisturbed original land use (which 

would be in most cases related to our topic, forest) from the total area to satisfy the necessary 

balance between all ecosystem services, the challenge of selection of the best spatial configuration 

of land use mosaics and landscape matrix needs to be settled.  

Tables 3.2 and 3.3 reflect the level of similarity between ensemble members and the ensemble 

itself. This ex post evaluation of similarities can be used as a basis in comparable studies to further 

reduce the number of ensemble members especially when limited time and high computational 

costs (low processing power) impose a compromise.  

The validity of the inferences made on the potential geographical shifts due to climate change in 

the areas suitable for rubber cultivation (Chapter 3) are contingent upon the quality of the input 

ensemble members. Having used a set of projections which themselves are nominated by virtue 

of their high regional plausibility was a measure to minimize the risk of a biased outcome. 

Nevertheless, if the majority of the ensemble members happen to be biased to the same direction, 

use of multiple inputs will not mitigate the problem. Whether the ensemble set of climatic 

projections used here suffers from this problem will be clarified over time. 

Other plant sources of natural rubber such as Russian dandelion Taraxacum kok-saghyz (van 

Beilen and Poirier 2007a, b; Kreuzberger et al. 2016; Ramirez-Cadavid et al. 2017; Panara et al. 

2018), guayule Parthenium argentatum (van Beilen and Poirier 2007a, b; Rasutis et al. 2015; 

Soratana et al. 2017; Ilut et al. 2017; Kajiura et al. 2018; Bates and Cornish 2018; Stonebloom and 

Scheller 2019) and hardy rubber tree Eucommia ulmoides Oliver  (Chen et al. 2012; Wang et al. 

2016; Liu et al. 2018b) have received, specially recently, broad attention as potential alternatives 

for Para rubber. However, the struggle to overcome the inefficiency gap between them and H. 

brasiliensis has yet to come to a tangible success.   

The '-omics' branches of biology have picked up the challenge of natural rubber biosynthesis using 

modified microorganisms (Steinbüchel 2003; Yang et al. 2012; Liu et al. 2018a; Men et al. 2019) 

and also its in vitro production (Yamashita et al. 2016). If these efforts lead to a breakthrough, the 

subsequent developments may turn the tables on the natural rubber business in a fashion that 

would be, to a degree, reminiscent of the paradigm shift which followed the discovery of Haber’s 

process (generating ammonia from the atmospheric nitrogen). 
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The approach used in Chapter 4 is in essence spatiotemporal trend analysis applied to gridded 

time series to detect the annually recurring weather conditions which permit the outbreak of 

South American Leaf Blight (SALB), across the tropical and subtropical zones of the world. This 

chapter has contributed to a better understanding of SALB risk through three main technical 

improvements: use of a reasonably fine temporal granulation (daily time steps) for analysis, global 

coverage and permitting not just for 'risky' and 'safe' classes but also an 'uncertain' category for 

spatially explicit risk assessment. The findings of this chapter suggest much of the areas dubbed 

climatically suboptimal for rubber cultivation, to be unfavorable for SALB development within the 

susceptible annual refoliation period. 

It is important to make findings and outputs of scientific studies truly accessible and open to 

future development. In cases involving spatial data analysis, if outputs are presented only in form 

of conventional maps with resolution imposed by the limited capacities of paper and ink, the 

potential for further development will reach a dead-end and important details will be lost. 

Fortunately, we are no more limited to paper and ink to deliver the outputs of spatial studies. 

Advanced but easy-to-use means such as KMZ files (see Chapters 3 and 4) make it possible to 

retain and deliver the spatial resolution of the original data to the end user.  Depending on their 

needs and skills, users may benefit from these files as simple, but free of resolution loss maps or 

in case of more advanced users, they may further process the maps for their purposes. 

The gridded time series used in Chapter 4 continue to grow by time. A cloud-based GIS application 

capable of streamlined processing of the up-to-date data which also permits its users to modify 

the applied thresholds deserves to exist. This would make the maps updateable and the methods 

accessible not only to similar spatial assessments for other crops but also to a wide range of topics 

concerning climate-driven stresses sources for different living beings.  
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Appendix 

Figure A2.1 Comparison of monthly weather conditions in the study site during the data collection 
period with the local historical climatic records 
Solid lines and error bars are the mean and standard deviation of 20 years (1989-2008) of mean monthly 
climatic records (XSBN Airport data), dashed lines and dash-dotted lines show the 2009 and 2010 
weather conditions, respectively. Rainfall is shown as vertical bars and temperature conditions as a 
curvilinear plot 

Figure A2.2 Temporal variation in the Latex dry matter content of the weekly dried samples 
across the 2009 and 2010 data collection 
Error bars show the standard deviation of the weekly records 
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Table A2.1 Coefficient estimates for the fixed effects 

Fixed effect 
Coefficient 
estimate 

SE 
95% confidence interval 

DF 
T-

value 
P>|T| 

Lower Upper 

ra
w

 v
a

ri
a

b
le

s
 

Intercept 23.593 1.875 19.915 27.271 1965.1 12.58 5.8×10-35 

MnT(30,0) -0.366 0.038 -0.441 -0.292 1895.2 -9.63 1.8×10-21 

MxT(30,0) -0.051 0.013 -0.077 -0.025 1908.6 -3.91 0.0001 

MxRH(30,0) -0.109 0.021 -0.151 -0.067 1869.8 -5.11 3.6×10-7 

P(30,0) 0.633 0.185 0.27 0.997 1952.4 3.42 0.0007 

MnT(30,0)*P(30,0) -0.028 0.008 -0.045 -0.011 1946.4 -3.29 0.001 

s
ta

n
d

a
rd

iz
e
d

 v
a

ri
a

b
le

s
 

Intercept 4.733 0.234 4.24 5.226 17 20.25 2.5×10-13 

MnT(30,0) -29.859 3.1 -35.939 -23.78 1895.2 -9.63 1.8×10-21 

MxT(30,0) -6.068 1.551 -9.111 -3.026 1908.6 -3.91 0.0001 

MxRH(30,0) -12.884 2.523 -17.831 -7.937 1869.8 -5.11 3.6×10-07 

P(30,0) 84.151 24.64 35.827 132.474 1952.3 3.42 0.0007 

MnT(30,0)*P(30,0) -83.725 25.434 -133.606 -33.844 1946.4 -3.29 0.001 

Coefficients estimated for selected model parameters (daily precipitation (P), minimum daily 
temperature (MnT), maximum daily temperature (MxT) and maximum relative humidity (MxRH) 
averaged over 30 days leading to the tapping event with no lag (30,0)). Coefficients for z-scores were 
calculated after standardizing the raw covariates to zero mean and unit variance. The t-statistic is the 
estimate divided by its standard error. The significance column shows the two-tailed p-value 
corresponding to the t-value and associated degrees of freedom (identical to the Kenward-Roger 
denominator degrees of freedom used in the F-tests). Confidence intervals equal the estimate ± 
2×standard error. 

Figure A2.3 Regression diagnostics for the final model
Studentized deleted residuals (jackknife residuals) are used to generate the graphs 



Figure A2.4 Rubber tree specific scatter plots of the predicted vs. measured latex yield obtained 
by leave-one-out cross-validation on the training dataset 
Dashed lines are the smoothed 95% pointwise confidence bands obtained by leave-one-out cross-
validation . 
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Figure A3.1 Land use composition of the study area in 2005 
Gridded data provided by (Hoskins et al. 2016) were used to generate this figure. Originally, the data are composed of 

five layers (we have left out the urban land use) which sum up to 100 % for each grid cell. Grid cells from the panels (a) 

to (d) with minimum value of 40 (%) have been integrated to the panel (e) to produce a map reflecting the dominant 

land use. Terms primary and secondary habitat represent 'undisturbed natural' and 'recovering, previously disturbed 

natural' habitats respectively. 

Figure A3.2 Biodiversity intactness in the study area 
Biodiversity Intactness Index (BII) is a measure of habitat disturbance defined as the "total abundance of originally 

occurring species, as a percentage of their total abundance in minimally disturbed primary vegetation" (Newbold et al. 

2016) based on the original concept by (Scholes and Biggs 2005). A safe limit of 0.9 (maximum 10% decline) has been 

proposed for BII (Steffen et al. 2015). We have used the gridded data produced by (Newbold et al. 2016) to generate 

this map in ArcGIS 10.2.2. Inkscape 0.92 was used for visual optimization. 
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Figure A3.3 Uncertainty in climatic projections for GMS 
Number of GCMs forming the majority (ensemble) outcome for each grid cell for the four climatic factors: (a) annual 

precipitation, (b) intra-annual precipitation distribution, (c) annual mean temperature and (d) intra-annual 

temperature distribution aggregating to (e) which is their overlaid semitransparent product. 



Figure A3.4 Land use composition of the clusters 
Terms primary and secondary habitat represent 'undisturbed natural' and 'recovering, previously disturbed natural' 

habitats respectively. Diamonds and whiskers reflect mean and standard deviation respectively. R package 'ggplot2' 

2.1.0 was used to generate this figure. 

Figure A3.5 Physiographic conditions of the clusters 
Diamonds and whiskers reflect mean and standard deviation respectively. R package 'ggplot2' 2.1.0 was used to 

generate this figure. 
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Figure A3.6 Biodiversity intactness index (BII) in clusters 
Diamonds and whiskers reflect mean and standard deviation respectively. R package 'ggplot2' 2.1.0 was used to 

generate this figure. 

Figure A3.7 Historic and projected trajectories for the main GHGs 
Historic (1984 - 2016) global emission records (black dots) for CO2 (Dlugokencky and Tans 2017) and CH4 

(Dlugokencky 2017) vs. AR5 projections (Meinshausen et al. 2011) 
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Figure A3.8 Forest cover (2000) and deforestation (2001-2016) in GMS 

Produced from the Global Forest Change data (Hansen et al. 2013) version 1.4 (2017 update, available at 

http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.4.html) which extends the 

temporal coverage of the remote sensing to 2016. Panel Ⓐ shows the forest cover in year 2000 with the color ramp 

reflecting the canopy closure for grid cells. Panel Ⓑ illustrates the forest cover loss and its spatiotemporal trend since 

2000. Panel Ⓒ reflects the annual increments of the newly deforested area for each year broken down by the 

administrative divisions (not cumulative). 

http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.4.html
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Figure A3.9 Global distribution of annual mean surface temperature above 28°C 
This figure is generated from WorldClim 2.0 data (Fick and Hijmans 2017) using ArcGIS 10.2.2 and visually optimized in Inkscape 9.1. 



Figure A3.10 Ilustration consept used in climatic class dynamics maps 
This schematic diagram provides supplementary examples to further clarify the innovative graphical concept used in 

the illustration of the maps presented in Figures 3.5, 3.7 and 3.11. Sections denoted by (a), (e) and (m) are projected to 

retain the baseline climatic class across the whole time span covered in this study with all involved GCMs agreeing upon 

the classification outcome. In other parts of the diagram, the diamond-shaped pattern suggests a projected change in 

class by time, absence of full agreement in the ensemble or a combination the two. The solid diamonds reflect the 

baseline class, while the hollow diamonds wrapping the solid diamonds delineate the future projections. Wherever a 

class shift is projected by a non-consensus ensemble majority, the concerned projected transition is overlaid with 

crosses or dots partially covering the two involved periods (the respective diamonds). Compared with the section (a), 

section (b) is projected to shift from Prohibitive class to Suboptimal first at the 2050 to 2070 time step, while projections 

associated with time sections after 2030 are both based on a (7 or 8 from 9) strong majority. For section (c) this 

transition is projected to happen one time period earlier (2030 to 250 time step) with full ensemble agreement (hence 

the absence of crosses), while a strong majority suggests the Prohibitive class to be retained until the end of the 2030 

period. In section (d), transition from Prohibitive to Suboptimal class at the 2030 time step is projected with full 

ensemble agreement. Section (f) is projected to retain its Sup-optimal class by 2070, with full ensemble agreement until 

2050 and with strong majority at the 2050 to 2070 time step. Compared with section (f), section (g) loses the full 

agreement at the 2030 to 2050 time step to strong majority which for section (h), covers the baseline to 2030 time step. 

Section (h) is also assigned the Optimal class by 2070 by a weak (5 or 6 from 9) majority. For zones marked with (i) and 

(j), transition to Optimal class is Projected to occur one time step earlier (2030 to 2050), both projected with weak 

majority to retain their Suboptimal class by 2030, while the 2030 to 2050 transition from Suboptimal to Optimal class 

is supported by weak ensemble majority for (i) and strong majority for (j). Zones (k) and (l) are projected to transit 

from Suboptimal to Optimal by 2030, with strong majority transition projection for (k) and full ensemble agreement for 

(l). They both are projected with full ensemble agreement to retain their Optimal status thereafter. Inkscape 9.2 was 

used to generate this figure. 
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Figure A4.1 The de facto redundancy of monthly mean temperature in detection of areas climatically suitable for formation of South American Leaf
Blight (SALB) 
This figure based on Roy et al. (2017), maps the potential area climatically conducive to rubber for the Indian subcontinent. The following criteria and thresholds were considered by Roy 
et al. (2017) to be necessary for SALB infection: monthly total precipitation (P ≥ 63 mm), monthly mean relative humidity (RH > 65 %) and monthly mean temperature (18.5°C ≤ T < 36.5°C). 
The area accommodating each single criterion for each month of the year is reflected in panels (a) to (c) and the area matching all three criteria yields panel (d). We have produced panels 
(e) to (g) which evaluate the relevance/redundancy of the variables by checking the area rendered by a subset of two criteria at each turn against the third criterion. It can be seen in panel 
(e) that the area of red shade (related to variable 'T') completely engulfs the area retuned by the two other criteria and therefore has no contribution to the determination of the spatial 
span of the final outcome. Inkscape 0.92 has been used for the vectorization of the source image and also for its further processing.
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Video A4.1 Trends for humidity and precipitation in relation to outbreak risk of South American 
Leaf Blight 
Spatiotemporal patterns demonstrated here are extracted from 30 years of gridded historical data using 
Emerging Hot Spot Analysis. Applied thresholds stand for conditions leading to continuous leaf wetness 
which paves the way to South American Leaf Blight outbreak. Still frames were generated using ArcGIS 
Desktop 10.6 and rendered to video using Blender 2.79. 
 

 

Video A4.2 Simplified trends for humidity and precipitation in relation to outbreak risk of South 
American Leaf Blight 
This is a simplified view of Video 1 in which the variables behind the patterns are not distinguished. HS, CS 
and NS stand for 'hot spot', 'cold spot' and 'no pattern/pattern not significant' respectively. Still frames were 
generated using ArcGIS Desktop 10.6 and rendered to video using Blender 2.79. 
 

 

Video A4.3 Significant risk cold spots for South American Leaf Blight outbreak overlaid with 
climatically optimal and suboptimal areas for rubber cultivation 
This is a simplified view of Videos 1 and 2 overlaid with the geographical extents of climatically optimal and 
suboptimal areas for rubber cultivation (see Figure 4.1). Area×day combinations for which at least one of 
the two criteria considered in this study (relative humidity and precipitation) is found by Emerging Hot 
Spot Analysis to be a significant cold spot (as defined in the methods section 4.2.2), and thus potentially low 
risk 'points in time' for South American Leaf Blight are reflected in brown. Still frames were generated using 
ArcGIS Desktop 10.6 and rendered to video using Blender 2.79 
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This PhD thesis focuses on three climate-related aspects of Para
rubber (Hevea brasiliensis) cultivation in areas where altitudes
and latitudes higher than its endemic range create conditions
which are labeled nontraditional, suboptimal or marginal for
rubber cultivation: 1. rubber yield in relation to the meteorological
conditions preceding harvest events, 2. potential geographical
shifts in rubber cultivation through climate change and 3.
assessment of climate driven susceptibility to South American
leaf blight (Pseudocercospora ulei) of rubber.




