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Abstract

This thesis consists of three parts each dealing with different questions related to population
genetics. We start with the study of the effect of natural selection on genealogies. We
make use of the theory on tree-valued Fleming-Viot processes that describe the evolution of
genealogical trees to compute the Laplace-transform of the tree length both in the neutral
and in the selective setting. We show that trees are shorter in the selective case (under the so-
called Laplace-transform-order) than trees under neutrality – an assumption already widely
believed to be true in the field of biology. In the second part we work with a mutation-selection
model in a fluctuating environment by introducing a modifier locus determining the mutation
rate at a second locus. Fitness acts on the second locus and changes as the environment
fluctuates. For a fast fluctutating environment, we obtain limit results for the evolution of
allele frequencies and apply them to a two-type setting in which we compute the fixation
probability for the higher mutation rate. The last part focuses on analysing human DNA
samples and estimating their heritage. The aim is to extend the already existing models for
inferring individual admixture proportions – a vector of which each entry corresponds to the
fraction of one’s genome originating from a certain population. We develop a method that
delivers individual admixture proportions of an individual’s parents. This enables us to test
whether the admixture of two populations has occured only recently or several generations ago.
We apply both the already existing method and our new method to the 1000 genomes dataset
and test the accuracy of their outputs by computing the distance to their true admixture
proportions.
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Introduction

In population genetics, one aims to understand phenomena that are observed in the genetic
structure of populations. Factors affecting genetic variation between either genes, several
individuals or even whole populations are among others natural selection, mutation and mi-
gration. In Chapter 1 and 2 we will be working with a special type of Markov processes,
called Fleming-Viot processes. We will describe our desired dynamics in terms of generators
and obtain the corresponding processes as solutions of a martingale problem.

In Chapter 1 we will rely on the tree-valued Fleming-Viot process with mutation and selection
(TFVMS) introduced in Depperschmidt et al. (2012). As the name suggests the TFVMS de-
scribes the evolution of genealogical trees in a population affected by mutational and selective
events. As an application, Depperschmidt et al. (2012) manage to quantitatively analyse a
widely held assumption in the field of biology, namely that genealogical distances are shorter
in the presence of selection. The heuristics are the following: In a population with different
types that are unequally fit, there will be at least one type that will be favored by nature.
The consequence is that this fitter type reproduces faster and therefore genealogical distances
get shorter because randomly picked individuals now have a more recent common ancestor
due to the quick reproduction of the fitter type. Depperschmidt et al. (2012) assume a setting
in which an individual carries an allele of either type • or type • where • is chosen to be the
fitter one. Their machinery then allows them to compute the Laplace-transform of pairwise
genealogical distances in the selective case for small selection coefficients α and compare them
to distances in the neutral case with no selection. In this two-type setting pairwise distances
are in fact shorter under selection in the so-called Laplace-transform-order. We will make
use of the findings of Depperschmidt et al. (2012) and compare genealogical trees spanned by
n ≥ 2 individuals under selection to those under neutrality. We find that, again, tree lengths
tend to be shorter in the selective case.

In Chapter 2 we continue with another biologically motivated subject. Phenomena witnessed
in nature are complex and very much intertwined such that when modeling certain processes,
we always need to make assumptions that might not completely reflect the observed but that
allow us to focus on these very processes that we wish to analyse in more detail. For instance,
in Chapter 1 we assume that we have a population in which mutation rates and selection
coefficients are fixed. The assumption is that the environment does not change and therefore
we have one type that has a fitness advantage – a condition which does not change in the
course of time. In reality, this is obviously not the case. The environment is a major factor
that influences the fitness of different types. Type • might be fitter in one environment but it
might be less fit in another. Therefore, depending on which environment we are in, it might
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be more beneficial to be the other type. In a world where the environment undergoes changes,
fitness of an individual might not be mirrored only by the type of one specific allele but also
by the ability to respond to these changes and to produce offspring that are better adapted
to the new environment. In other words, during times of adaptation individuals with higher
mutation rates are needed to produce mutations of which some have the required fitness to
survive and establish themselves in the new surroundings. These individuals that have higher
mutation rates are called mutators and have been gaining more and more attention especially
in microbial evolution. Mutators are observed in many experiments where a bacterial popu-
lation is exposed to some environment-changing mutagen. After the exposure the frequency
of the mutators visibly increases before decreasing again once they have produced a type that
is well-adapted to the new environment and that has taken over the population. Chapter 2
focuses on this exact process of changing evironments and the resulting changes in the fitness
of individuals. We will obtain results on limiting processes in a fast fluctuating environment
and fixation probabilities in the special case where we only consider two types.

In Chapter 1 and Chapter 2 we have studied population models by looking at results that
can be observed after a long time period: The evolving genealogical trees and their lengths
in equilibrium as well as the role of mutators in a fast fluctuating environment and their
fate in form of fixation probabilities. The last chapter deals with more recent events. For
an enormous amount of positions on the DNA, their functions have been identified today
due to advances in DNA sequencing. Some parts of the DNA indicate population-dependent
frequencies which are crucial when analyzing DNA samples with the objective of inferring the
owner’s genetic heritage. In Chapter 3 we are interested in the detecting of recent admix-
tures by investigating DNA samples of people with parents originating from two (genetically
isolated) populations. We will introduce a model which we will call recent-admixture model
and is specifically designed for detecting recent admixture between two populations. Given
a DNA sample of an individual, we will obtain the individual admixture (IA) of both the
parents. This is an extention of the already existing models, which we will refer to as admix-
ture models, that give IA of the individual itself rather than those of the parents. With the
help of the parents’ IA, we obtain additional information on the history of admixture leading
eventually to the IA of the child.



Notation

We give a short list with the notation that will be used primarily in Chapter 1 and 2.

1. For a complete and separable metric space, i.e. a Polish space, (E, r), we denote by

M(E) the space of measurable,

B(E) the space of bounded, measurable,

Cb(E) the space of bounded, continuous

real-valued functions on E (equipped with convergence of uniform on compacta) and
for L > 0 by

CL(E) the space of bounded, real-valued functions with Lipschitz constant L.

We denote by P(E) the space of probability measures on (the Borel sets of) E, equipped
with the topology of weak convergence denoted by ⇒.

2. For A ⊆ R (equipped with the Euclidean topology) we denote by DE(A) the set of
continuous càdlàg functions A→ E (equipped with the Skorohod topology).

3. For product spaces X × Y × ..., we denote by πX , πY , ... the projection operators.

4. For a random variable Z with distribution ν we write Z ∼ ν.

5. For another Polish space (E′, r′), a measure µ ∈ P(E) and some ϕ : E → E′, the image
measure of µ under ϕ is denoted by ϕ∗µ. Moreover for f ∈M(E), we write

〈µ, f〉 :=

∫
f(u)µ(du), (0.0.1)

if the right-hand side exists.

6. We will be using the Landau symbol O(·).
For functions g and h that depend on α, we write

g(α) = h(α) +O(αn) as α→ 0

if lim sup
α→0

|(g(α)− h(α))/αn| <∞.

1





Chapter 1

Genealogical distances under low levels of se-
lection

As mentioned in the Introduction, the goal of this chapter is to compute the tree length of
genealogies under weak selection. In a population where individuals carry different types
of alleles it seems reasonable to assume that beneficial alleles spread quicker due to their
fitness advantage and therefore genealogical distances between randomly chosen individuals
get shorter as the fitter alleles spread. In spite of its rather simple reasoning this widely held
assumption is in fact quite difficult to prove.

1.1 Introduction

Classical works on population genetic models focus on describing allelic frequencies by diffu-
sions in the large population limit. In the early 1980s, the study of genealogical trees started
to gain more and more attention. Coalescent theory can for instance be used to produce
theoretical genealogies in order to compare them to observed data. The earliest contributions
on this topic can be ascribed to Kingman (1982). The analysis of genealogical trees is carried
out by looking at coalescents backward in time. Starting with the sample of interest, the tree
is traced back until enough coalescence events have occurred and we find ourselves at the most
recent common ancestor. The coalescent describing the genealogy of a sample in a population
under neutrality, i.e. no selection, is called the Kingman’s coalescent. The study of coalescent
theory involves the incorporation of other dynamics that shape the population structure such
as mutation or recombination and so on. The object of our interest in the following chapter is
the analysis of selection and its effect on genealogical trees, in particular the effect selection
has on the tree length. While the mutation process is independent of the genealogical tree
and hence, mutational events can be added quite simply by superposing a Poisson process
onto the tree, selection affects the coalescent in a more complex way. We speak of selection
whenever we observe specific traits that come in different types, that is, we have multiple alle-
les of which some are fitter than others. A lot of research has been done on this topic (see e.g.
Wakeley, 2010 for a review). Krone and Neuhauser (1997) and Neuhauser and Krone (1997)
introduce the Ancestral Selection Graph (ASG) describing genealogical trees under selection.
When looking backward in time on the ASG we encounter splitting events indicating possible
ancestry. Beneficial alleles tend to have more offspring meaning that they are more likely to
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4 Chapter 1. Genealogical distances under low levels of selection

be the true ancestor. Therefore, in order to find the true ancestor we need to additionally go
forward in time to fix the types so one can decide which of the possible ancestors is true.

Both the Kingman’s coalescent and the ASG focus on fixing one specific time point and
analyzing the resulting genealogical tree. Depperschmidt et al. (2012) use a different approach
in which instead of looking at a specific genealogical tree that captures allele frequencies at
some fixed time they are interested in the evolution of such trees. As time passes the popu-
lation evolves and with that the relationships of individuals within that population change.
They introduce a tree-valued Markov process describing this evolution of genealogies under
mutation, selection and random reproduction under stochastically evolving random type dis-
tributions and geanealogical distances and call it the tree-valued Fleming-Viot process with
mutation and selection (TFVMS). In order to investigate genealogical trees and the distances
of individuals, the trees are interpreted as metric spaces where the metric corresponds to the
genealogical distances. Furthermore, as we are interested in incorporating the effects of selec-
tion we need to implement a set of types – we will call this set I – that mark the individuals.
These metric spaces are finally equipped with a probability measure allowing us to randomly
sample points from our tree turning them to marked metric measure spaces (mmm-spaces)
which is an extention of the metric measure spaces (mm-spaces), the state space of the tree-
valued Fleming-Viot process under neutrality analysed in Greven et al. (2008). In the setting
of bi-allelic mutation and low levels of selection, they use generator calculations to obtain
the second order Laplace-transform of genealogical distances for small selection coefficients α,
generalising the results on the first order Laplace-transform of Krone and Neuhauser. Their
results reaffirm the ones from Krone and Neuhauser: The pairwise genealogical distance under
selection is in fact shorter compared to the neutral case.

We will apply the same machinery to extend this result to the total tree length spanned by
a sample of n ≥ 2 individuals again for small selection coefficients α.

The chapter is structured as follows: In Section 1.2, we introduce the model we are going to
study, i.e. genealogies in the large population limit for a Moran model under additive selection
and we give some definitions needed to define the TFVMS given in Section 1.3. Theorem 1.15
and Corollary 1.20 are the main results of Section 1.4 and give the Laplace-transform of the
genealogical tree and the expected tree length, respectively. Next in Section 1.5, we extend
the results of Section 1.4 to other modes of dominance and again give the Laplace-transform
and the expectation of tree lengths in this new case (Theorem 1.26 and Corollary 1.28). Sec-
tion 1.6 contains all proofs.

This chapter is joint work with Peter Pfaffelhuber and all results have been published in Huss
and Pfaffelhuber (2019).

1.2 Graphical description

Before we give formal definitions we will look at a graphical representation of the so-called tree-
valued Moran model with mutation and selection (TMMMS), a model capturing the effects of
resampling, mutation and selection in a population with finitely many individuals. Detailed
descriprions of this model can be found in Depperschmidt et al. (2012). Figure 1.1 illustrates
the evolution of genealogical trees in the setting of a TMMMS with population size N = 5.
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Figure 1.1: Graphical construction of a TMMMS with population size N = 5. In the left
part of the figure one can see the dynamic interaction happening between the
individuals. Bullet points indicate mutation events from the beneficial type • to
• and and grey points indicate mutations in the other direction. Grey arrows
denote neutral resampling events. Selective events are depicted as black arrows
and only take effect if the arrows starts at the beneficial (black) type. Selective
arrows starting with the deleterious type cannot be used and are indicated by a
cross. On the right, genealogical trees for the population (N = 5) at times s and
t are drawn.

Remark 1.1 (Dynamics of the Moran model). Each line in the graphical respresentation
stands for one of the N (haploid) individuals in the Moran model. The color of the line
depicts the type of the individual. In our case, we have the type set I = {•, •} where • is
advantageous with selection coefficient α. Mutation events happen in both directions. The
dynamics are the following:

1. Every pair of individuals resamples at rate γ; upon such a resampling event, one of the
two individuals involved dies, the other one reproduces.

2. Every line is hit by a mutation event from • to • at a rate ϑ•/2 > 0, and by a mutation
event from • to • at a rate ϑ•/2 > 0.

3. Every line of type • places an offspring on a randomly chosen line at a rate α.

The evolution of trees mentioned in the introduction is captured comprehensively in Fig-
ure 1.1. On the left, the relationships within the population change and these changes are
visible in the genealogical trees evolving in time illustrated on the right.

The limit N →∞ gives us the tree-valued Fleming-Viot process with mutation and selection
(TFVMS) (see Depperschmidt et al., 2012 for a more detailed description).
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1.3 TFVMS

In Theorem 1.8 we will obtain the TFVMS as a solution of a so-called martingale problem.

Definition 1.2 (Martingale Problem). For some complete and separable metric space (E, r),
some linear G : D(G) ⊆ Cb(E) → Cb(E) and µ ∈ P(E), we say that an E-valued process X
solves the (G,D(G), µ)-martingale problem if X0 ∼ µ and(

f(Xt)−
∫ t

0
Gf(Xs)ds

)
t≥0

is a martingale for every f ∈ D(G). We say that the (G,D(G), µ)-martingale problem is
well-posed if there is a unique (in law) process X which solves this martingale problem. We
call D(G) the domain of G.

First of all, we will look at the state space of the TFVMS. The state space of this process is
called the I-marked metric measure spaces (mmm-spaces) where I denotes the set of types. As
already mentioned, the metric spaces will represent our genealogical trees where the metric
relates to the genealogical distances of individuals. For any Polish space I we define the
marked metric measure space as follows:

Definition 1.3 (mmm-space). (1) An I-marked metric measure space, I-mmm-space or
mmm-space, for short, is a triple (X, r, µ) such that (X, r) is a complete and seperable
metric space and µ ∈ P(X × I). Without loss of generality we assume that X ⊆ R.

(2) An mmm-space (X, r, µ) is called compact if (supp((πX)∗µ), r) is compact. It is called
ultrametric if (supp((πX)∗µ), r) is ultrametric.

(3) Two mmm-spaces (X, rX , µX) and (Y, rY , µY ) are measure-preserving isometric and
I-preserving (or equivalent), if there exists a measurable map ϕ : X → Y such that
rX(x, x′) = rY (ϕ(x), ϕ(x′)) for all x, x′ ∈ supp((πX)∗µX) and ϕ̃∗µX = µY for ϕ̃(x, u) =
(ϕ(x), u). The equivalence class of an mmm-space (X, r, µ) is denoted by (X, r, µ).

(4) We define
MI := {(X, r, µ) : (X, r, µ) mmm-space}.

Moreover

MI
c := {(X, r, µ) : (X, r, µ) compact mmm-space},

UI := {(X, r, µ) : (X, r, µ) ultrametric mmm-space},
UIc := MI

c ∩ UI .

Generic elements of MI (UI) are denoted by x , y , ... (u, ...).

Definition 1.4 (Marked distance matrix distribution). Let (X, r, µ) be an mmm-space, x :=
(X, r, µ) ∈MI and

R(X,r) :

{
(X × I)N → R(N2)

+ × IN,
((xi, ui)i≥1) 7→ ((r(xi, xj))1≤i<j , (uk)k≥1).

(1.3.1)
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The marked distance matrix distribution of x is given by

νx := (R(X,r))∗µ
N ∈ P(R(N2)

+ × IN).

A very common way of describing a Markov process is by defining what happens in infinites-
imal time. The changes we observe are described by a generator :

Definition 1.5 (Generator). Let X = (Xt)t≥0 be a Markov process. The generator GX of
X is defined as (

GXf
)

(x) := lim
t→0

Ex[f(Xt)− f(x)]

t
(1.3.2)

for all f for which the right-hand side exists. The set of all functions f for which (GXf)(x)
exists for all x ∈ E, is called the domain of GX and is denoted by D(GX).

In the case of TFVMS, the domain consists of so-called polynomials.

Definition 1.6 (Polynomials).

(1) For any n, k ∈ N we denote by

Bn := Bn(R(N2)
+ × IN), C̄n := Cn(R(N2)

+ × IN), C̄kn := C̄kn(R(N2)
+ × IN)

the sets of bounded measurable, continuous as well as continuous and k times continu-

ously differentiable (with respect to all variables in R(N2)
+ ) functions φ on R(N2)

+ ×IN, such
that (r, u) 7→ φ(r, u) depends on the first

(
n
2

)
variables in r and the first n in u only. If

n = 0, the spaces consist of constant functions.

(2) A function Φ : MI → R is a polynomial if for some n ∈ N, there exists φ ∈ Bn such that
for all x ∈MI ,

Φ(x ) := Φn,φ = 〈νx , φ〉 =

∫
φ(r, u)νx (dr,du). (1.3.3)

(Recalling the notation given in (0.0.1).)

(3) The degree of a polynomial Φ is the smallest number n for which there exists φ ∈ Bn
such that (1.3.3) holds.

(4) Writing C̄0
n := C̄n, we set

Π :=
∞⋃
n=0

Πn, Πn := {Φn,φ : φ ∈ Bn},

Πk :=
∞⋃
n=0

Πk
n, Πk

n := {Φn,φ : φ ∈ C̄kn}, k = 0, 1.

(1.3.4)

In the following, we will define the generator G for the TFVMS. With Theorem 1.8 we will
establish that the (P0, G,Π1)-martingale is well-posed for P0 ∈M1(UI).

There are four types of dynamics that influence the tree-valued process: the growth of the
tree as time passes, resampling, mutation and selection events. Hence, the generator of the
TFVMS is of the form

G := Ggrow +Gres +Gmut +Gsel (1.3.5)
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where the operators Ggrow, Gres, Gmut and Gsel describe the above dynamics. For Φ := Φn,φ ∈
Π1
n the different terms are given as follows:

(A) Growth operator: During times when neither resampling nor mutation nor selection
events happen, the tree grows deterministically. Looking at 2 individuals their tree
grows with speed 2 (as the tree length corresponds to the 2 lines in the graphical
representation). The change we observe is thus given by

GgrowΦ(u) := 〈νu , 〈∇rφ, 2〉〉

with

〈∇rφ, 2〉 = 2
∑

1≤i<j

∂φ

∂rij
(r, u).

(B) Resampling operator: At rate γ, a resampling event occurs and replaces every unordered
pair k 6= l meaning that l is replaced by an offspring of k, or k is replaced by an offspring
of l. The probability of either one is 1

2 . Therefore one can say that for each ordered pair
k 6= l, l is replaced by an offspring of k at rate γ

2 . The resampling operator is given by

GresΦ(u) :=
γ

2

n∑
k,l=1

〈νu , φ ◦ θk,l − φ〉

with θk,l(r, u) = (r̃, θ̂k,l(u)) and

r̃ij :=


rij , if i, j 6= l,

ri∧k,i∨k, if j = l,

rj∧k,j∨k, if i = l

and the replacement operator θ̂k,l is the map which replaces the l-th component of an
infinite sequence by the k-th; that is, for u = (u1, u2, ...),

θ̂k,l(u) := uukl ,

uvl := (u1, ..., ul−1, v, ul+1, ...).

(C) Mutation operator: In our setting an individual of type • mutates to • at a rate ϑ•/2
and from • to • at a rate ϑ•/2. The mutation stochastic kernel β(·, ·) on I is then given
by

ϑ̄

2
· β(u,dv) =

ϑ•
2
1{v=•} +

ϑ•
2
1{v=•} (1.3.6)

with mutation rate ϑ̄ := ϑ• + ϑ• and we get

GmutΦ(u) :=
ϑ̄

2

n∑
k=1

〈νu , βkφ− φ〉,

such that

(βkφ)(r, u) :=

∫
φ(r, uvk)β(uk, dv).
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(D) Selection operator : The impact of selection on the genealogical tree depends on the type
carried by an individual. For the definition of the selection operator we therefore need
to introduce a so-called fitness function defined on the set of types, i.e. a function of the
form χ : I → [0, 1]. We only have two types, • and •, where • is the fitter type meaning
that selection only occurs when the individual is of type •. The fitness function is thus
given by χ(u) = 1{u=•}. We recall here the graphical representation given in Figure 1.1
where the selective arrows (black arrows) are used only when they start from a black
line, hence from an individual of type •. We say that the k-th individual has fitness
αχk := αχ(uk), and χ is the fitness function. As for resampling, selective events occur
in a pair of one individual k giving birth and the other, individual l, dying, as given
through the function θk,l from (B).

GselΦ(u) := α

∞∑
l<k

〈νu , χk (φ ◦ θk,l − φ)〉

where we can ignore the summands with l > n as φ only depends on the first n individ-
uals leading to

= α
∑
l<k
l≤n

〈νu , χk (φ ◦ θk,l − φ)〉

where the summands with k ≤ n only give a negligible effect and hence only summands
with k > n are of interest. Without loss of generality we choose k = n+ 1 and obtain

≈ α
n∑
l=1

〈νu , χn+1 (φ ◦ θn+1,l − φ)〉

which gives by permuting sampling order of l and n+ 1 in the first term

= α

n∑
l=1

〈νu , χl · φ− χn+1 · φ〉. (1.3.7)

Definition 1.7 (Generator of TFVMS). Let Ggrow, Gres, Gmut and Gsel given as in (A)-(D).
The generator of TFVMS is the linear operator on Π with domain Π1, given by

G := Ggrow +Gres +Gmut +Gsel. (1.3.8)

The next two theorems are results from Depperschmidt et al. (2012), Theorem 1, Theorem 4
and Lemma 8.1.

Theorem 1.8 (Martingale problem is well-posed). Let P0 ∈ M1(UI), Π1 be as in (1.3.4)
and G as in (1.3.8).

(1) The (P0, G,Π
1)-martingale problem is well-posed. The unique solution U := (Ut)t≥0 is

called the tree-valued Fleming-Viot process with mutation and selection (TFVMS).

(2) U has the following properties:
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(a) P(t 7→ Ut is continuous) = 1,

(b) P(Ut ∈ UIc for all t > 0) = 1,

(c) U is strong Markov.

Theorem 1.9 (The long-time behaviour and continuity of TFVMS). Let U = (Ut)t≥0 be the
TFVMS from Theorem 1.8 with U0 = u. Then

(a) there exists an UIc-valued random variable Uα∞ with

Ut
t→∞
===⇒ Uα∞. (1.3.9)

(b) The law of Uα∞ is the unique invariant distribution of U . It depends on all the model
parameters but is independent of the initial state.

(c) For Φ ∈ Π1,
E [Φ (Uα∞)]− E[Φ(U0

∞)] = O(α) as α→ 0. (1.3.10)

Remark 1.10 (Other modes of dominance). In Section 1.5 we will be treating a more general
case leading to a selection operator denoted by Gsel,h instead of Gsel where h is called the
dominance coefficient. The results from Depperschmidt et al. (2012) are in fact proved for
this general case and, hence, Theorem 1.8 and Theorem 1.9 also hold in Section 1.5. We will
denote the limiting process in the case of other modes of dominiance by Uα,h∞ .

Remark 1.11 (Notation). In order to simplify the notation and still be able to distinguish
between the computation of expectations unter selection and neutrality, we write Pα(·) for
the distribution of TFVMS under the selection coefficient α and P0(·) for the neutral case,
respectively. Eα[·] and E0[·] will denote the corresponding expectations. More precisely,

Eα [Φ] := E[Φ(Uα∞)] and E0 [Φ] := E[Φ(U0
∞)]. (1.3.11)

1.4 Main results

In this section, we finally get to study the object of our interest: the length of genealogical
trees. For this we recall some parameters and define an additional Θ.

Remark 1.12 (Relevant parameters). Let

α, γ, h, ϑ•, ϑ• ≥ 0, and ϑ̄ = ϑ• + ϑ•, Θ :=
ϑ•
ϑ̄

where h is the dominance coefficient, a parameter appearing in results stated in Section 1.5
when handling other modes of dominance.

Up to this point, the form of the functions Φ ∈ Π1 is kept quite general. The only premise we
make is the fact that the functions solely depend on a finite sample. To compute the Laplace-
transforms of the length of genealogical trees we need to choose our functions appropriately.
Let us sample n + j points from the ultra-metric tree u with n, j ≥ 0. For some 0 ≤ i ≤ n
and λ ≥ 0 we define the function φnij

φnij(r, u) := e−λLn(r) · 1{u1=•} · · ·1{ui=•} · 1{un+1=•} · · ·1{un+j=•} (1.4.1)
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where Ln denotes the length of the genealogy spanned by n points. By definition, φnij is

a function only dependent of n + j points so we have Φn
ij := Φn+j,φnij ∈ C̄1

n+j . Taking the
expectation of this function, i.e. Eα[Φn

ij ] gives us the Laplace-transform of the subtree length
spanned by n of the total n+ j sampled points where i points within and j points outside the
subsample are of type •. We recall that the subject of our interest is the Laplace-transform
of the length of a tree spanned by n points, hence we wish to compute

Eα [Φn
00] = E

[
e−λLn(r)

]
. (1.4.2)

Applying the generator G from (1.5.1) on Φn
ij gives the following:

(A) Tree growth: By simply deriving φnij with respect to r gives

GgrowΦn
ij = −nλΦn

ij1{n≥2}.

(B) Resampling: For resampling events we first define the sets I = {1, ..., i}, H = {i+1, ..., n}
and J = {n+ 1, ..., n+ j}. We need to distinguish between coalescence events

1.) among I at rate
(
i
2

)
;

2.) among I ∪H with at most one partner within I at rate i(n− i) +
(
n−i

2

)
;

3.) with one partner within I and the second among J at rate ij;

4.) with one partner in H and the second among J at rate (n− i)j;
5.) and among J at rate

(
j
2

)
.

Only if two individuals among I ∪H coalesce, n decreases. This gives

GresΦn
ij = γ

((
i

2

)(
Φn−1
i−1,j − Φn

ij

)
+ i(n− i)

(
Φn−1
ij − Φn

ij

)
+

(
n− i

2

)(
Φn−1
ij − Φn

ij

)
+ ij

(
Φn
i,j−1 − Φn

ij

)
+ (n− i)j

(
Φn
i+1,j−1 − Φn

ij

)
+

(
j

2

)(
Φn
i,j−1 − Φn

ij

))
.

(C) Mutation: Mutation events do not have any effects on the length of the tree but on the
number of individuals of different types. Mutations from • to • happen at rate ϑ•/2
and from • to • at rate ϑ•/2, hence the effects we observe are

GmutΦn
ij = i

1

2

(
ϑ•Φ

n
i−1,j − ϑ̄Φn

ij

)
+ j

1

2

(
ϑ•Φ

n
i,j−1 − ϑ̄Φn

ij

)
.

(D) Selection: For selection we have

GselΦn
i,j(u) = α

n+j∑
k=1

〈νu , χk · φni,j − χn+j+1 · φni,j〉

= α

(
n+j∑
k=1

〈νu , χk · φni,j〉 − (n+ j)〈νu , χn+j+1 · φni,j〉

)
.
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For 1 ≤ k ≤ i we have

χk · φni,j = 1{uk=•} · e−λLn · 1{u1=···=uk=···=ui=un+1=···=un+j=•} = φni,j .

Similarly we get

χk · φni,j = φni+1,j for i+ 1 ≤ k ≤ n,

χk · φni,j = φni,j for n+ 1 ≤ k ≤ n+ j,

χn+j+1 · φni,j = φni,j+1.

Overall it holds

GselΦn
i,j = α ·

(
(i+ j)Φn

ij + (n− i)Φn
i+1,j − (n+ j)Φn

i,j+1

)
= α ·

(
(i+ j)

(
Φn
ij − Φn

i,j+1

)
+ (n− i)

(
Φn
i+1,j − Φn

i,j+1

))
.

Remark 1.13 (Effect of G on Φn
ij). Overall we have the following total effect of

GΦn
ij =− nλΦn

ij1n≥2 + i
1

2

(
ϑ•Φ

n
i−1,j − ϑ̄Φn

ij

)
+ j

1

2

(
ϑ•Φ

n
i,j−1 − ϑ̄Φn

ij

)
+ γ

((
i

2

)(
Φn−1
i−1,j − Φn

ij

)
+ i(n− i)

(
Φn−1
ij − Φn

ij

)
+

(
n− i

2

)(
Φn−1
ij − Φn

ij

)
+ ij

(
Φn
i,j−1 − Φn

ij

)
+ (n− i)j

(
Φn
i+1,j−1 − Φn

ij

)
+

(
j

2

)(
Φn
i,j−1 − Φn

ij

))
+ α

(
(i+ j)

(
Φn
ij − Φn

i,j+1

)
+ (n− i)

(
Φn
i+1,j − Φn

i,j+1

))
.

Remark 1.14 (Tree length under neutrality). We note that in the absence of selection, Ln
does not depend on the mutational mechanism and Ln ∼ Law (

∑n
k=2 kTk) in equilibrium,

where Tk ∼ Exp(µk) with µk =
(
k
2

)
γ, k = 2, ..., n are the inter-coalescence times in the tree

(see e.g. (3.25) in Wakeley, 2008). It holds

E
[
etTk

]
=

µk
µk − t

=

(
k
2

)
γ(

k
2

)
γ − t

=
k(k − 1)γ

k(k − 1)γ − 2t
(1.4.3)

for t < µk. In particular, for λ ≥ 0,

fn := E0
[
e−λLn

]
= E0

[
e−λ

∑n
k=2 kTk

]
=

n∏
k=2

E0
[
e−λkTk

]
=

n∏
k=2

k(k − 1)γ

k(k − 1)γ + 2λ
=

n∏
k=2

(k − 1)γ

(k − 1)γ + 2λ
(1.4.4)

with f1 = 1 since the empty product is defined to be 1.

We are now ready to give our first main result, which gives a recursion for an approximation
of the Laplace-transform of the tree length under selection for small α.
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Theorem 1.15 (Genealogical distances under additive selection ). Let λ ≥ 0 and α, γ, ϑ̄
and Θ be given as in Remark 1.12 and Ln denote the total tree length of a sample of size n.
Further we define

xn := Eα[e−λLn ]− E0[e−λLn ].

Then as α→ 0, x1, x2, ... satisfy the recursion x1 = 0 and(
γ

(
n

2

)
+ nλ

)
· xn = γ

(
n

2

)
· xn−1 + α2n · an, (1.4.5)

where a1, a2, ... satisfy the recursion a1 = 0 and(
γ

(
n+ 1

2

)
+
ϑ̄

2
+ nλ

)
· an = γ

(
n

2

)
· an−1 + Θ(1−Θ)bn +O(α), (1.4.6)

where b1, b2, ... satisfy the recursion b1 = 0 and(
γ

(
n+ 2

2

)
+ ϑ̄+ nλ

)
· bn = γ

(
n

2

)
· bn−1 + γ

(
n

2

)
· cn−1 + γ(n− 1) · dn (1.4.7)

where c1, c2, ... satisfy the recursion c1 = 0 and(
γ

(
n+ 2

2

)
+ ϑ̄+ nλ

)
· cn = γ

(
n

2

)
· cn−1 + 2γ · en + γdn, (1.4.8)

where e1, e2, ... satisfy a recursion e1 = 0 and(
γ

(
n+ 1

2

)
+ ϑ̄+ nλ

)
· en = γ

(
n

2

)
· en−1 + γdn (1.4.9)

and finally (recall (1.4.4))

dn = fn−1 − fn − gn−1 + gn (1.4.10)

with g1 = 1/(1 + 2ϑ̄) and

gn =
2(n+ 1)

(n− 1)

n∑
i=2

1

(i+ 1)i
·
i−1∏
k=2

(k − 1)γ

(k − 1)γ + 2λ
·
n∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)
. (1.4.11)

Remark 1.16 (Solving the recursions). All recursions for xn, an, bn, cn, en, hn are of the form

µn = γn · µn−1 + νn

with µ1 = 0 and can readily be solved by writing

µn = νn + γn · (νn−1 + γn−1 · (νn−2 + γn−2 · (· · · ν2 + γ2 · 0)))

=
n∑
k=2

νk

n∏
m=k+1

γm

with
∏
∅ := 1.
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In the proof of Theorem 1.15 we will be looking at coalescents of size (n + j) and their
first-step decompositions. To be able to clarify the size of the coalescent at any point of the
computations we will introduce some notation. We will use a superscript (n+ j) to indicate
the size of the coalescent studied at the moment.

Remark 1.17 (Notation). Starting with an (n+ j)-coalescent where k, l ∈ {1, ..., n+ j} with

k 6= l and uk = ul = •, let I
(n+j)
k,l denote the number of individuals in the coalescent right

before individual k and l coalesce.
Then the genealogical distance between individual k and l is given by

R
(n+j)
kl :=

n+j∑
i=I

(n+j)
kl

Ti.

Note that
R

(n+j)
kl = Tn+j +R

(n+j−1)
kl . (1.4.12)

A graphic showing the (n+ j)-coalescent as described above is depicted below:

n+ j

Ik,l

uk ul

Tn+j

T
I

(n+j)
k,l

Furthermore we have the probability

P0({uk = ul = •})

=
(

1− e−
ϑ̄
2
R

(n+2)
kl

)2

·Θ2 + 2 ·
(

1− e−
ϑ̄
2
R

(n+2)
kl

)
· e−

ϑ̄
2
R

(n+2)
kl ·Θ2 + e−ϑ̄R

(n+2)
kl ·Θ

=
(

1− 2e−
ϑ̄
2
R

(n+2)
kl + e−ϑ̄R

(n+2)
kl + 2e−

ϑ̄
2
R

(n+2)
kl − 2e−ϑ̄R

(n+2)
kl

)
·Θ2 + e−ϑ̄R

(n+2)
kl ·Θ

=
(

1− e−ϑ̄R
(n+2)
kl

)
·Θ2 + e−ϑ̄R

(n+2)
kl ·Θ

=Θ2 + Θ(1−Θ) · e−ϑ̄R
(n+2)
kl .

Hence we get

E
[
e−λLn · 1{uk=ul=•}

]
= Θ2 · E

[
e−λLn

]
+ Θ(1−Θ) · E

[
e−λLn · e−ϑ̄R

(n+2)
kl

]
. (1.4.13)

Remark 1.18 (Interpretations). During the proof of Theorem 1.15 we will obtain explicit
formulas for an, bn, cn, ... which are given by

an :=
1

α
Eα [Φn

10 − Φn
01] = Eα

[
e−λLn

(
1{u1=•} − 1{un+1=•}

)]
,

bn := E0 [(n− 1)Φn
20 − 2nΦn

11 + (n+ 1)Φn
02]



1.4. Main results 15

= E0
[
e−λL

(n+2)
n

(
(n− 1)e−ϑ̄R

(n+2)
12 − 2ne−ϑ̄R

(n+2)
1,n+1 + (n+ 1)e−ϑ̄R

(n+2)
n+1,n+2

)]
,

cn := E0
[
e−λL

(n+1)
n−1

(
e−ϑ̄R

(n+1)
12 − 2e−ϑ̄R

(n+1)
1,n + e−ϑ̄R

(n+1)
n,n+1

)]
, (1.4.14)

dn := E0
[(
e−λL

(n+1)
n−1 − e−λL

(n+1)
n

)(
1− e−ϑ̄R

(n+1)
12

)]
,

en := E0
[
e−λL

(n+1)
n

(
e−ϑ̄R

(n+1)
12 − e−ϑ̄R

(n+1)
1,n+1

)]
,

gn := E0
[
e−λLne−ϑ̄R12

]
.

Moreover, in Theorem 1.26, another quantity will arise, which is

hn = en − cn = E0
[
e−λL

(n+2)
n

(
e−ϑ̄R

(n+2)
1,n+1 − e−ϑ̄R

(n+2)
n+1,n+2

)]
. (1.4.15)

The absence of any superscripts indicating the size of the coalescent in the definition of gn is
no mistake but intentional. We will see in the proof that gn is actually of the form

gn := E0
[
e−λL

(n+1)
n e−ϑ̄R

(n+1)
12

]
.

However, since all relevant parameters such as the tree length (Ln) and the genealogical

distance of indivudual 1 and 2 (R
(n+1)
12 ) are given within the sample n, we can omit the

superscript (n + 1) as it makes no difference in which coalescent the above expression is
computed in. This follows from an application of the subsampling formula given in Saunders
et al. (1984) where the authors examine the behaviour of the number of distinct ancestors in
a subsample in a larger sample.

We also note that only an is computed in the model with selection while all other expressions
are determined within the neutral model (as indicated by the superscripts α and 0).

The initial value d2 is given through the initial condition f1 = 1, as well as f2 = γ
γ+2λ , g1

and g2.

Remark 1.19 (Comparing neutral and selective genealogies). 1. We note that for α = 0,
(1.4.5) gives precisely (1.4.4). Moreover, there is no linear term in α in the recursion
(1.4.5) which is consistent with the results of Theorem 4.26 in Krone and Neuhauser
(1997) and Theorem 5 in Depperschmidt et al. (2012). For other modes of dominance,
however, a linear term arises (see Theorem 1.26).

2. While xn and an are quantities within the selected genealogies, all other quantities can
be computed under neutrality. However, if one would like to obtain finer results, i.e.
specify the O(α3)-term in (1.4.5), more quantities within selected genealogies would
have to be computed. In principle, this is straightforward using our approach to the
proof of Theorem 1.15.

3. With the recursions given in Theorem 1.15 we can tackle the question of whether ge-
nealogies in selective models are shorter compared to ones in neutral models or not.
We recall that in order for genealogical distances under selection to be shorter in the
Laplace-transform-order it needs to hold

Eα
[
e−λLn

]
≥ E0

[
e−λLn

]
, (1.4.16)
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in other words xn := Eα[e−λLn ] − E0[e−λLn ] needs to be positive. The positivity of xn
ultimately depends on the positivity of dn which can be easily shown: For gn we have
that

gn =
2(n+ 1)

(n− 1)

n∑
i=2

1

(i+ 1)i
·
i−1∏
k=2

(k − 1)γ

(k − 1)γ + 2λ
·
n∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)

=
2(n+ 1)

(n− 1)
· n
n
· (n− 2)

(n− 2)
· n(n− 1)γ

n(n− 1)γ + 2(nλ+ ϑ̄)

·
n−1∑
i=2

1

(i+ 1)i
·
i−1∏
k=2

(k − 1)γ

(k − 1)γ + 2λ
·
n−1∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)

+
2(n+ 1)

(n− 1)
· 1

(n+ 1)n
·
n−1∏
k=2

(k − 1)γ

(k − 1)γ + 2λ
· n(n− 1)γ

n(n− 1)γ + 2(nλ+ ϑ̄)

=
(n+ 1)(n− 2)γ

n(n− 1)γ + 2(nλ+ ϑ̄)
· gn−1 +

2γ

n(n− 1)γ + 2(nλ+ ϑ̄)
· fn−1.

Further for any k ∈ N

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)
≤ (k − 1)γ

(k − 1)γ + 2λ
.

Therefore it holds

gn ≤
2(n+ 1)

(n− 1)
·
n∑
i=2

1

(i+ 1)i
· fn = fn.

Overall we get

dn = fn−1 − fn − gn−1 + gn

= fn−1 −
(n− 1)γ

(n− 1)γ + 2λ
· fn−1 − gn−1

+
(n+ 1)(n− 2)γ

n(n− 1)γ + 2(nλ+ ϑ̄)
· gn−1 +

2γ

n(n− 1)γ + 2(nλ+ ϑ̄)
· fn−1

=

(
1− (n− 1)γ

(n− 1)γ + 2λ
+

2γ

n(n− 1)γ + 2(nλ+ ϑ̄)

)
· fn−1

−
(

1− (n+ 1)(n− 2)γ

n(n− 1)γ + 2(nλ+ ϑ̄)

)
· gn−1

=

(
2λ

(n− 1)γ + 2λ
+

2γ

n(n− 1)γ + 2(nλ+ ϑ̄)

)
· fn−1 −

(2γ

n(n− 1)γ + 2(nλ+ ϑ̄)
· gn−1

≥
(

2λ

(n− 1)γ + 2λ
+

2γ

n(n− 1)γ + 2(nλ+ ϑ̄)
− (2γ

n(n− 1)γ + 2(nλ+ ϑ̄)

)
· fn−1

=
2λ

(n− 1)γ + 2λ
· fn−1

≥ 0.

Therefore we can show that for small α > 0 the genealogical tree is in fact shorter than
under neutrality under the Lapace-transform-order.
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Since we can directly obtain expected tree lengths from the Laplace-transforms in Theo-
rem 1.15, we obtain also a recursion for expected tree lengths by using that E0[Ln]−Eα[Ln] =
∂
∂λxn|λ=0.

Corollary 1.20 (Expected tree length under additive selection). With α, γ, ϑ̄,Θ and Ln as
in Theorem 1.15, let

x̃n := E0[Ln]− Eα[Ln].

Then, x̃1, x̃2, ... satisfy the recursion x̃1 = 0 and

γ

(
n

2

)
· x̃n = γ

(
n

2

)
· x̃n−1 + α2n · ãn, n = 2, 3, ...

where ã1, ã2, ... satisfy the recursion ã1 = 0 and(
γ

(
n+ 1

2

)
+
ϑ̄

2

)
· ãn = γ

(
n

2

)
· ãn−1 + Θ(1−Θ) · b̃n +O(α), n = 2, 3, ...

where b̃1, b̃2, ... satisfy the recursion b̃1 = 0 and(
γ

(
n+ 2

2

)
+ ϑ̄

)
· b̃n = γ

(
n

2

)
· b̃n−1 + γ

(
n

2

)
· c̃n−1 + γ(n− 1) · d̃n

where c̃1, c̃2, ... satisfy the recursion c̃1 = 0 and(
γ

(
n+ 2

2

)
+ ϑ̄

)
· c̃n = γ

(
n

2

)
· c̃n−1 + 2γ · ẽn + γd̃n,

where ẽ1, ẽ2, ... satisfy a recursion ẽ1 = 0 and(
γ

(
n+ 1

2

)
+ ϑ̄

)
· ẽn = γ

(
n

2

)
· ẽn−1 + γd̃n

and finally

d̃n =
2

(n− 1)γ
− g̃n−1 + g̃n (1.4.17)

with g̃1 = 0 and

g̃n =
−4(n+ 1)

(n− 1)

n∑
i=2

1

(i+ 1)i

[(
1

γ
·
i−1∑
k=2

1

(k − 1)

)
·
n∏
k=i

k(k − 1)γ

k(k − 1)γ + 2ϑ̄
(1.4.18)

+
n∑
k=i

k2(k − 1)γ

(k(k − 1)γ + 2ϑ̄)2
·
n∏
l=i
l 6=k

k(k − 1)γ

k(k − 1)γ + 2ϑ̄

 .
The following result, the special case n = 2, was already obtained in Theorem 5 of Depper-
schmidt et al. (2012).
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Corollary 1.21 (Genealogical distance of two individuals under additive selection). With
α, γ, ϑ̄,Θ and Ln as in Theorem 1.15,

Eα[e−λL2 ] =
γ

γ + 2λ

+ 8α2λ
Θ(1−Θ)γϑ̄(2γ + 2λ+ ϑ̄)

(6γ + 4λ+ 2ϑ̄)(6γ + 2λ+ 2ϑ̄)(γ + 2λ)2(γ + ϑ̄)(γ + 2λ+ ϑ̄)
+O(α3),

Eα[L2] =
1

γ

(
2− 8α2 Θ(1−Θ)ϑ̄(2γ + ϑ̄)

(6γ + ϑ̄)2(γ + ϑ̄)2

)
+O(α3).

Proof. Applying Theorem 1.15, we get

g2 =
γ

γ + 2λ+ ϑ̄
,

d2 = 1− γ

γ + 2λ
− γ

γ + ϑ̄
+

γ

γ + 2λ+ ϑ̄
=

2λ

γ + 2λ
− 2γλ

(γ + ϑ̄)(γ + 2λ+ ϑ̄)

=
2λϑ̄(2γ + 2λ+ ϑ̄)

(γ + ϑ̄)(γ + 2λ)(γ + 2λ+ ϑ̄)
,

a2 =
Θ(1−Θ)

3γ + 2λ+ ϑ̄
2

· b2 +O(α) =
2Θ(1−Θ)

6γ + 4λ+ ϑ̄
· γ

6γ + 2λ+ ϑ̄
d2 +O(α),

x2 =
2α2

γ + 2λ
· an =

8α2Θ(1−Θ)γλϑ̄(2γ + 2λ+ ϑ̄)

(6γ + 4λ+ ϑ̄)(6γ + 2λ+ ϑ̄)(γ + ϑ̄)(γ + 2λ)2(γ + 2λ+ ϑ̄)
+O(α3).

Overall we get

Eα
[
e−λL2

]
= E0

[
e−λL2

]
+ x2

=
γ

(γ + 2λ)
+

8α2Θ(1−Θ)γλϑ̄(2γ + 2λ+ ϑ̄)

(6γ + 4λ+ ϑ̄)(6γ + 2λ+ ϑ̄)(γ + ϑ̄)(γ + 2λ)2(γ + 2λ+ ϑ̄)
+O(α3)

which shows the first equation.
The second equation follows with

Eα[L2] = − ∂

∂λ
Eα
[
e−λL2

] ∣∣∣∣∣
λ=0

=
2γ

(γ + 2λ)2

∣∣∣∣∣
λ=0

− 8α2Θ(1−Θ)γϑ̄(2γ + 2λ+ ϑ̄)

(6γ + 4λ+ ϑ̄)(6γ + 2λ+ ϑ̄)(γ + ϑ̄)(γ + 2λ)2(γ + 2λ+ ϑ̄)

∣∣∣∣∣
λ=0

−
(
λ · ∂

∂λ

8α2Θ(1−Θ)γϑ̄(2γ + 2λ+ ϑ̄)

(6γ + 4λ+ ϑ̄)(6γ + 2λ+ ϑ̄)(γ + ϑ̄)(γ + 2λ)2(γ + 2λ+ ϑ̄)

) ∣∣∣∣∣
λ=0

+O(α3)

=
2

γ
− 8α2Θ(1−Θ)ϑ̄(2γ + ϑ̄)

(6γ + ϑ̄)2γ(γ + ϑ̄)2
+O(α3).

1.5 Other modes of dominance

In this following section we will try to generalise the results of the previous section by chang-
ing the fitness function to capture additional modes of dominance. To do so, we introduce a
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dominance coefficient h ∈ (−∞,∞) and replace 3. from Remark 1.1 by the following inter-
pretation:

3’. Every line picks a random partner and if the pair is a heterozygote, it has fitness
advantage αh, and if it is homozygous for •, it has fitness advantage α.

By introducing h we are now able to study different degrees of dominance. The cases h = 1
and h = 0 describe cases of complete dominance: If h = 1 we have that • is the dominant
allele and if h = 0, type • is the dominant one. The cases 0 < h < 1, h > 1 and h < 0 describe
cases of incomplete dominance, overdominance and underdominance, respectively. We refer
to Chapter 3 from Gillespie (2004) for further details on the topic of natural selection. We
assume that h ≥ 0 in order to obtain positive transition rates, but some modifications also
allow for h < 0.

Before we can formulate results analogous to Theorem 1.15 and Corollary 1.20 we need
to adjust the generator to our new situation. The dynamics of tree growth, resampling and
mutation events are not affected by the introduction of the dominance coefficient h. Only the
selection operator needs to be changed in the following way:

(D’) Selection operator under other modes of dominance: As we are now dealing with diploid
selection we need to consider a fitness function of the form

χ : I × I → [0, 1]

with χ(u, v) = χ(v, u) for all u, v ∈ I.
We recall that n is our sample size. In order to define a fitness function reflecting the
action described in 3’. we randomly pick a haploid individual m. Since n <∞, we have
that m is outside the sample with high probability, i.e. m > n. For any 1 ≤ k ≤ n we
have the fitness function

χk,m =


1, uk = um = •,
h, uk 6= um,

0, uk = um = •,

which can be rewritten as follows

χk,m = 1{uk=um=•} + h1{uk 6=um}

= 1{uk=um=•} + h
(
1{uk=•} · 1{um=•} + 1{uk=•} · 1{um=•}

)
= 1{uk=um=•} + h

(
1{uk=•} · (1− 1{um=•}) + (1− 1{uk=•}) · 1{um=•}

)
= (1− 2h)1{uk=um=•} + h

(
1{uk=•} + 1{um=•}

)
.

Just like in the additive case, selective events occur in a pair of one individual m giving
birth and the other, individual k, dying, again, as given through the function θm,k from
(D) in Section 1.3.

The same reasoning as in (1.3.7) then gives us

Gsel,hΦ(u) := α
∞∑

k<m,m′

〈νu , χm,m′ (φ ◦ θm,k − φ)〉
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where we can ignore the summands with k > n as φ only depends on the first n
individuals leading to

= α
∑
k<m
k≤n

〈νu , χm,m+1 (φ ◦ θm,k − φ)〉

where the summands with m ≤ n only give a negligible effect and hence only summands
with m > n are of interest. Without loss of generality we choose m = n+ 1 and obtain

≈ α
n∑
k=1

〈νu , χm+1,m+2 (φ ◦ θn+1,k − φ)〉

which gives by permuting sampling order of l and n+ 1 in the first term

= α

n∑
k=1

〈νu , χk,n+1 · φ− χn+1,n+2 · φ〉.

Definition 1.22 (Generator of TFVMS under other modes of dominance). Let Ggrow, Gres

and Gmut given as in (A), (B) and (C). Let Gsel,h be as in (D’). The generator of TFVMS
with dominance coefficient h is the linear operator on Π with domain Π1, given by

Gh := Ggrow +Gres +Gmut +Gsel,h. (1.5.1)

Remark 1.23 (Link to additive selection). A more general form of fitness functions is the
following:

χ′ : I × I × R+ → [0, 1]

with χ′(u, v, r) = χ(v, u) for all u, v ∈ I, r ∈ R+ The form of the fitness function arises as
we have a process that encodes the type distribution as well as the genealogical tree. Hence,
we deal with diploid selection depending also on genealogical distance. χ′(u, v, r) gives us
the fitness of a diploid individual with genotype {u, v} if the genealogical distance of the two
haploids forming the diploid individual is r. We define

χ′k,l(r, u) := χ′(uk, ul, rk∧l,k∨l).

If χ′(u, v, r) does not depend on r, and if there exists a function χ : I → [0, 1] such that

χ′(u, v, r) = χ(u) + χ(v),

we say that selection is additive and conclude that with

χk(r, u) = χ(uk).

We obtain

GselΦ(u) = α

n∑
k=1

〈νu , φ · χ′k,n+1 − φ · χ′n+1,n+2〉 = α

n∑
k=1

〈νu , φ · χk − φ · χn+1〉.

Additive selection describes the case that the selective advantage of an individual which is
homozygous for • is twice the advantage of a heterozygote. In other words, the fitness of the
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heterozygote is exactly intermediate between the fitness of the homozygotes. Indeed, for 2α
and h = 1/2 we have

χk,m =
1

2

(
1{uk=•} + 1{um=•}

)
=

1

2
(χk + χm)

leading to

Gsel,1/2Φ(u) = α
n∑
k=1

〈νu , χk · φ− χn+1 · φ〉 = GselΦ(u).

Hence the case h = 1/2 describes the case of additive selection we studied in Section 1.3.

We recall Remark 1.10 and denote the the limiting process of the TFVMS under other modes
of dominance by Uα,h∞ .

Remark 1.24 (Notation). We extend the notation introduced in Remark 1.11 and denote
the distribution of TFVMS under the selection coefficient α and dominance coefficient h by
Pα,h(·). Eα,h[·] will denote the corresponding expectation. More precisely

Eα,h [Φ] := E[Φ(Uα,h∞ )]. (1.5.2)

Recalling that Pα(·) and Eα[·] are the corresponding operators for additive selection, we have,
according to Remark 1.23 and using the above notation,

Pα(·) = P2α,1/2(·).

To be able to study the Laplace-transform of tree lengths we quickly investigate the effect Gh

has on the function Φn
ij := Φn+j,φnij ∈ C̄1

n+j with

φnij(r, u) := e−λLn(r) · 1{u1=•} · · ·1{ui=•} · 1{un+1=•} · · ·1{un+j=•}. (1.5.3)

Tree growth, resampling and mutation have the same effects as in the in the case of additive
selection and we are left to look at the selection operator Gsel,h:

Gsel,hΦn
i,j(u) = α

n+j∑
k=1

〈νu , χk,n+j+1 · φni,j − χn+j+1,n+j+2 · φni,j〉

= α

(
n+j∑
k=1

〈νu , χk,n+j+1 · φni,j〉 − (n+ j)〈νu , χn+j+1,n+j+2 · φni,j〉

)
.

For 1 ≤ k ≤ i and U := {u1 = · · · = um = · · · = ui = un+1 = · · · = un+j = •} we have

χk,n+j+1 · φni,j
=
(

(1− 2h)1{uk=un+j+1=•} + h
(
1{uk=•} + 1{un+j+1=•}

))
· e−λLn · 1U

=(1− 2h)φni,j+1 + h
(
φni,j + φni,j+1

)
.

Similarly we get

χk,n+j+1 · φni,j = (1− 2h)φni+1,j+1 + h
(
φni+1,j + φni,j+1

)
for i+ 1 ≤ k ≤ n,
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χk,n+j+1 · φni,j = (1− 2h)φni,j+1 + h
(
φni,j + φni,j+1

)
for n+ 1 ≤ k ≤ n+ j,

χn+j+1,n+j+2 · φni,j = (1− 2h)φni,j+2 + 2hφni,j+1.

Overall it holds

Gsel,hΦn
i,j(u) = α ·

(
i((1− 2h)Φn

i,j+1 + h(Φn
ij + Φn

i,j+1))

+ (n− i) · ((1− 2h)Φn
i+1,j+1 + h(Φn

i+1,j + Φn
i,j+1))

+ j · ((1− 2h)Φn
i,j+1 + h(Φn

ij + Φn
i,j+1))

− (n+ j) · ((1− 2h)Φn
i,j+2 + 2hΦn

i,j+1)
)

= α · Eα,h
[
(i+ j)hΦn

ij + (i(1− h) + (n− i)h+ j(1− h)− 2(n+ j)h)Φn
i,j+1

+(n− i)hΦn
i+1,j + (n− i)(1− 2h)Φn

i+1,j+1 − (n+ j)(1− 2h)Φn
i,j+2

]
.

Remark 1.25 (Effect of Gh on Φn
ij ). Together with Ggrow, Gres and Gmut we have

GhΦn
ij =− nλΦn

ij1n≥2 + i
1

2

(
ϑ•Φ

n
i−1,j − ϑ̄Φn

ij

)
+ j

1

2

(
ϑ•Φ

n
i,j−1 − ϑ̄Φn

ij

)
+ γ

((
i

2

)(
Φn−1
i−1,j − Φn

ij

)
+ i(n− i)

(
Φn−1
ij − Φn

ij

)
+

(
n− i

2

)(
Φn−1
ij − Φn

ij

)
+ ij

(
Φn
i,j−1 − Φn

ij

)
+ (n− i)j

(
Φn
i+1,j−1 − Φn

ij

)
+

(
j

2

)(
Φn
i,j−1 − Φn

ij

))
+ α ·

[
(i+ j)hΦn

i,j + (i+ j)Φn
i,j+1 − (n+ 2i+ 3j)hΦn

i,j+1

+ (n− i)hΦn
i+1,j + (n− i)(1− 2h)Φn

i+1,j+1 − (n+ j)(1− 2h)Φn
i,j+2

]
.

With this we are now ready to give an analogous result on the Laplace-transform of the tree
length of a sample of size n under any form of dominance.

Theorem 1.26 (Genealogical distances under any form of dominance). Let λ ≥ 0 and
α, γ, h, ϑ̄ and Θ be given as in Remark 1.12 and Ln denote the total tree length of a sample
of size n. Further we define

yn := Eα,h[e−λLn ]− E0[e−λLn ].

Then as α→ 0, y1, y2, ... satisfy the recursion y1 = 0 and(
γ

(
n

2

)
+ nλ

)
· yn = γ

(
n

2

)
· yn−1 + αn(1− 2h)Θ(1−Θ) · hn +O(α2),

where h1, h2, ... satisfy the recursion h1 = 0 and(
γ

(
n+ 2

2

)
+ ϑ̄+ nλ

)
· hn = γ

(
n

2

)
· hn−1 + γ(n− 1) · en, (1.5.4)

and en was given in Theorem 1.15.
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Remark 1.27 (Comparing genealogies). 1. Most interestingly, neutral trees differ from
trees under additive selection only in order α2, whereas the difference is in order α for
other forms of dominance. While this may be counter-intuitive at first, it can be easily
explained. Note that the model actually does not change if we replace α by −α and h
by 1− h at the same time. By doing so, we just interchange the roles of allele • and •.
For h = 1/2, this means that our results have to be identical for α and −α, leading to
a vanishing linear term in (1.4.5). For h 6= 1/2, this symmetry does not have to hold,
leading to a linear term in α.

2. Similar to our reasoning in Remark 1.19.3, the sign of hn in the recursion for yn deter-
mines if tree lengths are shorter or longer under selection. We see that the behaviour
changes at h = 1/2. By construction, hn is positive because en is positive which again
follows from the positivity of dn (from Theorem 1.15) which we have proved in Re-
mark 1.19.3. So if h < 1/2, then yn is positive as well and we see that trees are shorter
under selection (in the Laplace-transform-order). If h > 1/2, the reverse is true and
trees are longer under selection. This result is not surprising for over-dominant selection,
h > 1, since the advantage of the heterozygote leads to maintenance of heterozygosity
or balancing selection, which in turn is known to produce longer genealogical trees.

Corollary 1.28 (Expected tree length under any form of dominance). With α, γ, h, ϑ̄,Θ and
Ln as in Theorem 2.9, let

ỹn := E0[Ln]− Eα,h[Ln].

Then, ỹ1, ỹ2, ... satisfy the recursion ỹ1 = 0 and(
n

2

)
· ỹn =

(
n

2

)
· ỹn−1 + αn(1− 2h) · h̃n +O(α2),

where h̃1, h̃2, ... satisfy the recursion h̃1 = 0 and((
n+ 2

2

)
+ 2ϑ̄

)
· h̃n =

(
n

2

)
· h̃n−1 + (n− 1) · ẽn, (1.5.5)

and ẽn was given in Corollary 1.20.

As an application we give an analogous result on the pairwise distance given in Corollary 1.21.

Corollary 1.29 (Genealogical distance of two individuals under any form of dominance).
With α, h, ϑ̄,Θ and Ln as in Theorem 1.26,

Eα,h[e−λL2 ] =
γ

γ + 2λ
+

4αλ(1− 2h)Θ(1−Θ)ϑ̄γ2(2γ + 2λ+ ϑ̄)

(γ + 2λ)2(6γ + 2λ+ ϑ̄)(3γ + 2λ+ ϑ̄)(γ + ϑ̄)(γ + 2λ+ ϑ̄)
+O(α2),

Eα,h[L2] =
2

γ
− 4α(1− 2h)Θ(1−Θ)ϑ̄(2γ + ϑ̄)

(1 + 2ϑ̄)2(6γ + ϑ̄)(3γ + ϑ̄)(γ + ϑ̄)2
+O(α2).

Proof of Corollary 1.29. Applying Theorem 2.9 and with d2 from the proof of Corollary 1.21,
we get

e2 =
γ

3γ + 2λ+ ϑ̄
· d2, h2 =

γ

6γ + 2λ+ ϑ̄
· e2,
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and it follows

y2 =
2α(1− 2h)Θ(1−Θ)

γ + 2λ
· h2 +O(α2)

=
4α(1− 2h)Θ(1−Θ)λϑ̄γ2(2γ + 2λ+ ϑ̄)

(γ + 2λ)2(6γ + 2λ+ ϑ̄)(3γ + 2λ+ ϑ̄)(γ + ϑ̄)(γ + 2λ+ ϑ̄)
+O(α2).

Therefore we have

Eα,h
[
e−λL2

]
= E0

[
e−λL2

]
+ y2

=
γ

(γ + 2λ)
+

4α(1− 2h)Θ(1−Θ)λϑ̄γ2(2γ + 2λ+ ϑ̄)

(γ + 2λ)2(6γ + 2λ+ ϑ̄)(3γ + 2λ+ ϑ̄)(γ + ϑ̄)(γ + 2λ+ ϑ̄)
+O(α2).

As in the proof of Corollary 1.20 we compute Eα,h[L2] = − ∂
∂λE

α,h
[
e−λL2

] ∣∣∣
λ=0

and obtain

the desired expression.

We conclude this section with Figure 1.2 illustrating the results from Corollary 1.20 and
Corollary 1.28. In Figure 1.2.(a) we see the effect of additive selection for n = 50. We observe
a maximum at ϑ̄ ≈ 0.5 which can be explained as follows: In a population with a very small
mutation rate, the beneficial type will almost always be present and hence, there will be
no significant difference to the neutral case. Then again, a very high mutation rate causes
selection to be inefficient and we are again close to neutrality. We note that Θ(1 − Θ) has
a linear effect on the change in tree length. Figure 1.2(b) depicts the difference in expected
tree length for h = 0 and variable n. For other dominance coefficients h we obatin similar
graphs as 1− 2h only has a linear effect on the recursions.

1.6 Proofs

The proofs of Theorem 1.15 and Theorem 1.26 are based on the following equality:

E[GΦ(Uα∞)] = 0 (1.6.1)

for Φ ∈ Π1. We recall that U is the solution of the (P0, G,Π
1)-martingale problem, i.e.

(MΦ
t )t≥0 :=

(
Φ(Ut)− Φ(U0)−

∫ t

0
GΦ(Us)ds

)
t≥0

is a martingale for Φ ∈ Π1. Since, according to Theorem 1.9, Ut
t→∞
===⇒ Uα∞ and the law of Uα∞

is an invariant distribution of U , (1.6.1) follows easily from the fact that MΦ
t has expectation

zero for all t ≥ 0.

Proof of Theorem 1.15. Let xn := Eα[Φn
00]− E0[Φn

00].
With equation (1.6.1) we have that

0 = E
[
G0

(
Φn

00(Uα∞)− Φn
00(U0

∞)
)]

= −nλEα [Φn
00] + γ

(
n

2

)
Eα
[
Φn−1

00 − Φn
00

]
+ αnEα [Φn

10 − Φn
01]
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Figure 1.2: Using the recursions from Corollary 1.20 and Corollary 1.28, we see differences in
expected tree length. (a) For genic selection and large samples, the effect changes
with the total mutation rate ϑ̄ and is linear in Θ(1−Θ). (b) Plot of the change in
total tree length for small values of α with h = 0, dependent on the sample size,
and three parameters of ϑ̄.

+ nλE0 [Φn
00] + γ

(
n

2

)
E0
[
Φn−1

00 − Φn
00

]
= −

(
nλ+ γ

(
n

2

))(
Eα[Φn

00]− E0[Φn
00]
)

+ γ

(
n

2

)(
Eα[Φn−1

00 ]− E0[Φn−1
00 ]

)
+ αnEα [Φn

10 − Φn
01] .

Defining an := 1
αE

α [Φn
10 − Φn

01] we get(
nλ+ γ

(
n

2

))
xn = γ

(
n

2

)
xn−1 + α2n · an.

Again with (1.6.1) and additionally (1.3.10) as well as n+
(
n
2

)
=
(
n+1

2

)
we obtain

0 = Eα [G(Φn
10 − Φn

01]

= −nλEα [Φn
10] +

1

2

(
ϑ•Eα [Φn

00]− ϑ̄Eα [Φn
10]
)

+ γ

(
(n− 1)Eα

[
Φn−1

10 − Φn
10

]
+

(
n− 1

2

)
Eα
[
Φn−1

10 − Φn
10

])
+ α

(
Eα [Φn

10 − Φn
11] + (n− 1)Eα [Φn

20 − Φn
11]
)

+ nλEα [Φn
01]− 1

2

(
ϑ•Eα [Φn

00]− ϑ̄Eα [Φn
01]
)
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− γ
((

n

2

)
Eα
[
Φn−1

01 − Φn
01

]
+ nEα [Φn

10 − Φn
01]

)
− α (Eα [Φn

01 − Φn
02] + nEα [Φn

11 − Φn
02])

= −
(
nλ+

ϑ̄

2
+ γ

(
n+ 1

2

))
Eα [Φn

10 − Φn
01] + γ

(
n

2

)
Eα
[
Φn−1

10 − Φn−1
01

]
+ αEα [Φn

10 − Φn
01] + αEα [(n− 1)Φn

20 − 2nΦn
11 + (n+ 1)Φn

02]︸ ︷︷ ︸
=E0[(n−1)Φn20−2nΦn11+(n+1)Φn02]+O(α)

= −
(
nλ+

ϑ̄

2
+ γ

(
n+ 1

2

))
Eα [Φn

10 − Φn
01] + γ

(
n

2

)
Eα
[
Φn−1

10 − Φn−1
01

]
+ αE0 [(n− 1)Φn

20 − 2nΦn
11 + (n+ 1)Φn

02] +O(α2)

= −
(
nλ+

ϑ̄

2
+ γ

(
n+ 1

2

))
Eα [Φn

10 − Φn
01] + γ

(
n

2

)
Eα
[
Φn−1

10 − Φn−1
01

]
+ αΘ(1−Θ)E0

[
e−λL

(n+2)
n ((n− 1)e−ϑ̄R

(n+2)
12 − 2ne−ϑ̄R

(n+2)
1,n+1 + (n+ 1)e−ϑ̄R

(n+2)
n+1,n+2)

]
+O(α2)

where we use (1.4.13) and the fact that (n− 1)− 2n+ (n+ 1) = 0, in the last step.

With bn := E0
[
e−λL

(n+2)
n ((n− 1)e−ϑ̄R

(n+2)
12 − 2ne−ϑ̄R

(n+2)
1,n+1 + (n+ 1)e−ϑ̄R

(n+2)
n+1,n+2)

]
we have(

nλ+
ϑ̄

2
+ γ

(
n+ 1

2

))
an = γ

(
n

2

)
an−1 + Θ(1−Θ)bn +O(α).

In order to obtain a recursion for bn, consider a coalescent with n + 2 lines and distinguish
the following cases for the first step:

1. Coalescence of lines among the first n lines, except for lines 1,2 (rate
(
n
2

)
− 1);

2. Coalescence of lines 1,2 (rate 1);

3. Coalescence of lines n+ 1 and 1 (rate 1);

4. Coalescence of lines n+ 1 and one of 2, ..., n (rate n− 1);

5. Coalescence of lines n+ 1 and n+ 2 (rate 1);

6. Coalescence of lines n+ 2 and one of 1, ..., n (rate n).

As all following quantities are computed under neutrality, i.e. α = 0, we will write E[·] instead
of E0[·].

E
[
e−λL

(n+2)
n

(
(n− 1)e−ϑ̄R

(n+2)
12 − 2ne−ϑ̄R

(n+2)
1,n+1 + (n+ 1)e−ϑ̄R

(n+2)
n+1,n+2

)]
=

((
n
2

)
− 1
)(

n+2
2

) E
[
e−nλTn+2e−λL

(n+1)
n−1

(
(n− 1)e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12

−2ne−ϑ̄Tn+2e−ϑ̄R
(n+1)
1,n + (n+ 1)e−ϑ̄Tn+2e−ϑ̄R

(n+1)
n,n+1

)]
+

1(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n−1

(
(n− 1)e−ϑ̄Tn+2

−2ne−ϑ̄Tn+2e−ϑ̄R
(n+1)
1,n + (n+ 1)e−ϑ̄Tn+2e−ϑ̄R

(n+1)
n,n+1

)]
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+
1(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
(n− 1)e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12

−2ne−ϑ̄Tn+2 + (n+ 1)e−ϑ̄Tn+2e−ϑ̄R
(n+1)
1,n+1

)]
+

(n− 1)(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
(n− 1)e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12

−2ne−ϑ̄Tn+2e−ϑ̄R
(n+1)
12 + (n+ 1)e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1

)]
+

1(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
(n− 1)e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12

−2ne−ϑ̄Tn+2e−ϑ̄R
(n+1)
1,n+1 + (n+ 1)e−ϑ̄Tn+2

)]
+

n(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
(n− 1)e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12

−2ne−ϑ̄Tn+2e−ϑ̄R
(n+1)
1,n+1 + (n+ 1)e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1

)]
=

E
[
e−nλTn+2e−ϑ̄Tn+2

]
(
n+2

2

)
·

{(
n

2

)
· E
[
e−λL

(n+1)
n−1

(
(n− 1)e−ϑ̄R

(n+1)
12 − 2ne−ϑ̄R

(n+1)
1,n + (n+ 1)e−ϑ̄R

(n+1)
n,n+1

)]
+ (n− 1)E

[
e−λL

(n+1)
n−1

(
1− e−ϑ̄R

(n+1)
12

)]
+ E

[
e−λL

(n+1)
n ·

[(
(n− 1) + (n− 1)(n− 1− 2n) + (n− 1) + n(n− 1)

)
· e−ϑ̄R

(n+1)
12

+
(
(n+ 1) + (n− 1)(n+ 1)− 2n+ n(−2n+ n+ 1)

)
· e−ϑ̄R

(n+1)
1,n+1

+
(
− 2n+ (n+ 1)

)]]}

=
1(
n+2

2

) · γ
(
n+2

2

)
γ
(
n+2

2

)
+ (nλ+ ϑ̄)

·

{(
n

2

)
· E
[
e−λL

(n+1)
n−1

(
(n− 1)e−ϑ̄R

(n+1)
12 − 2ne−ϑ̄R

(n+1)
1,n + (n+ 1)e−ϑ̄R

(n+1)
n,n+1

)]
+ (n− 1)E

[
e−λL

(n+1)
n−1

(
1− e−ϑ̄R

(n+1)
12

)]
+ E

[
e−λL

(n+1)
n

(
(n− 1)e−ϑ̄R

(n+1)
12 − (n− 1)

)]}
=

γ

γ
(
n+2

2

)
+ (nλ+ ϑ̄)

·

{(
n

2

)
· E
[
e−λL

(n+1)
n−1

(
(n− 2)e−ϑ̄R

(n+1)
12 − 2(n− 1)e−ϑ̄R

(n+1)
1,n + ne−ϑ̄R

(n+1)
n,n+1

)]
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+

(
n

2

)
· E
[
e−λL

(n+1)
n−1

(
e−ϑ̄R

(n+1)
12 − 2e−ϑ̄R

(n+1)
1,n + e−ϑ̄R

(n+1)
n,n+1

)]
+ (n− 1)E

[(
e−λL

(n+1)
n−1 − e−λL

(n+1)
n

)(
1− e−ϑ̄R

(n+1)
12

)]}
.

With

cn := E
[
e−λL

(n+1)
n−1

(
e−ϑ̄R

(n+1)
12 − 2e−ϑ̄R

(n+1)
1,n + e−ϑ̄R

(n+1)
n,n+1

)]
and

dn := E
[(
e−λL

(n+1)
n−1 − e−λL

(n+1)
n

)(
1− e−ϑ̄R

(n+1)
12

)]
we get (

γ

(
n+ 2

2

)
+ nλ+ ϑ̄

)
· bn = γ

(
n

2

)
· bn−1 + γ

(
n

2

)
· cn−1 + γ(n− 1) · dn.

For cn, we use the same coalescent, and by distinguishing the six cases, we write

E
[
e−λL

(n+2)
n

(
e−ϑ̄R

(n+2)
12 − 2e−ϑ̄R

(n+2)
1,n+1 + e−ϑ̄R

(n+2)
n+1,n+2

)]
=

(
n
2

)
− 1(

n+2
2

) · E [e−nλTn+2e−λL
(n+1)
n−1

(
e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12

−2e−ϑ̄Tn+2e−ϑ̄R
(n+1)
1,n + e−ϑ̄Tn+2e−ϑ̄R

(n+1)
n,n+1

)]
+

1(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n−1

(
e−ϑ̄Tn+2 − 2e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n + e−ϑ̄Tn+2e−ϑ̄R

(n+1)
n,n+1

)]
+

1(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12 − 2e−ϑ̄Tn+2 + e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1

)]
+

(n− 1)(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12

−2e−ϑ̄Tn+2e−ϑ̄R
(n+1)
12 + e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1

)]
+

1(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12 − 2e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1 + e−ϑ̄Tn+2

)]
+

n(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12

−2e−ϑ̄Tn+2e−ϑ̄R
(n+1)
1,n+1 + e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1

)]
=
E
[
e−(nλ+ϑ̄)Tn+2

]
(
n+2

2

)
·

{(
n

2

)
· E
[
e−λL

(n+1)
n−1

(
e−ϑ̄R

(n+1)
12 − 2e−ϑ̄R

(n+1)
1,n + e−ϑ̄R

(n+1)
n,n+1

)]
+ E

[
e−λL

(n+1)
n−1

(
1− e−ϑ̄R

(n+1)
12

)]
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+ E
[
e−λL

(n+1)
n

((
1− (n− 1) + 1 + n

)
· e−ϑ̄R

(n+1)
12

+
(
1 + (n− 1)− 2− n

)
· e−ϑ̄R

(n+1)
1,n+1 − 1

)]}

=
1(
n+2

2

) · γ
(
n+2

2

)
γ
(
n+2

2

)
+ (nλ+ ϑ̄)

·

{(
n

2

)
· E
[
e−λL

(n+1)
n−1

(
e−ϑ̄R

(n+1)
12 − 2e−ϑ̄R

(n+1)
1,n + e−ϑ̄R

(n+1)
n,n+1

)]
+ E

[
e−λL

(n+1)
n−1

(
1− e−ϑ̄R

(n+1)
12

)]
+ 2E

[
e−λL

(n+1)
n

(
e−ϑ̄R

(n+1)
12 − e−ϑ̄R

(n+1)
1,n+1

)]
+ E

[
e−λL

(n+1)
n

(
1− e−ϑ̄R

(n+1)
12

)]}
=

γ

γ
(
n+2

2

)
+ (nλ+ ϑ̄)

·

{(
n

2

)
· E
[(
e−λL

(n+1)
n−1 − e−λL

(n+1)
n

)(
e−ϑ̄R

(n+1)
12 − 2e−ϑ̄R

(n+1)
1,n + e−ϑ̄R

(n+1)
n,n+1

)]
+ E

[
e−λL

(n+1)
n−1

(
1− e−ϑ̄R

(n+1)
12

)]
+ 2E

[
e−λL

(n+1)
n ·

(
e−ϑ̄R

(n+1)
12 − e−ϑ̄R

(n+1)
1,n+1

)]}
.

We define

en := E
[
e−λL

(n+1)
n

(
e−ϑ̄R

(n+1)
12 − e−ϑ̄R

(n+1)
1,n+1

)]
and get (

γ

(
n+ 2

2

)
+ nλ+ ϑ̄

)
· cn = γ

(
n

2

)
· cn−1 + γdn + 2γen.

For dn we compute

P(I
(n)
12 = i) =

(
n
2

)
− 1(
n
2

) ·
(
n−1

2

)
− 1(

n−1
2

) · · ·
(
i+1

2

)
− 1(

i+1
2

) · 1(
i
2

) =
1(
i
2

) · n∏
k=i+1

(
k
2

)
− 1(
k
2

)
=

2

i(i− 1)
·

n∏
k=i+1

(k + 1)(k − 2)

k(k − 1)
=

2(n+ 1)

(n− 1)(i+ 1)i
.

Then we have (by omitting the superscript (n+ 1) as explained in Remark 1.18)

gn := E
[
e−λLne−ϑ̄R12

]
= E

[
e−λ

∑n
k=2 kTke

−ϑ̄
∑n

k=I
(n)
12

Tk
]

= E

e−
(
λ
∑I

(n)
12 −1

k=2 kTk+
∑n

k=I
(n)
12

(kλ+ϑ̄)Tk

)
=

n∑
i=2

P(I
(n)
12 = i) ·

i−1∏
k=2

k(k − 1)γ

k(k − 1)γ + 2kλ
·
n∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)
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=
2(n+ 1)

(n− 1)

n∑
i=2

1

(i+ 1)i
·
i−1∏
k=2

(k − 1)γ

(k − 1)γ + 2λ
·
n∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)

and we obtain that
dn = fn−1 − fn − gn−1 + gn.

For g1 we have

g1 = E
[
e−ϑ̄T2

]
=

γ

γ + ϑ̄
.

Finally, for en, we again use a recursion. Consider a coalescent with n + 1 lines and make a
first-step-analysis. In this first step, we distinguish four cases:

1. Coalescence of lines 1 or 2 with one of 3, ..., n; rate
(
n
2

)
− 1

2. Coalescence of lines 1 and 2; rate 1

3. Coalescence of lines n+ 1 and 1; rate 1

4. Coalescence of lines n+ 1 and one of 2, ..., n; rate n− 1.

E
[
e−λL

(n+1)
n ·

(
e−ϑ̄R

(n+1)
12 − e−ϑ̄R

(n+1)
1,n+1

)]
=

(
n
2

)
− 1(

n+1
2

) · E [e−nλTn+1e−λL
(n)
n−1 ·

(
e−ϑ̄Tn+1e−ϑ̄R

(n)
12 − e−ϑ̄Tn+1e−ϑ̄R

(n)
1,n

)]
+

1(
n+1

2

) · E [e−nλTn+1e−λL
(n)
n−1 ·

(
e−ϑ̄Tn+1 − e−ϑ̄Tn+1e−ϑ̄R

(n)
1,n

)]
+

(
n
2

)
− 1(

n+1
2

) · E [e−nλTn+1e−λL
(n)
n ·

(
e−ϑ̄Tn+1e−ϑ̄R

(n)
12 − e−ϑ̄Tn+1

)]
+

(
n
2

)
− 1(

n+1
2

) · E [e−nλTn+1e−λL
(n)
n ·

(
e−ϑ̄Tn+1e−ϑ̄R

(n)
12 − e−ϑ̄Tn+1e−ϑ̄R

(n)
12

)]

=
E
[
e−(nλ+ϑ̄)Tn+1

]
(
n+1

2

) ·

{(
n

2

)
· E
[
e−λL

(n)
n−1 ·

(
e−ϑ̄R

(n)
12 − e−ϑ̄R

(n)
1,n

)]
+ E

[
e−λL

(n)
n−1 ·

(
1− e−ϑ̄R

(n)
12

)]
− E

[
e−λL

(n)
n ·

(
1− e−ϑ̄R

(n)
12

)]}
=

γ

γ
(
n+1

2

)
+ nλ+ ϑ̄

·

{(
n

2

)
· E
[
e−λL

(n)
n−1 ·

(
e−ϑ̄R

(n)
12 − e−ϑ̄R

(n)
1,n

)]
+ E

[(
e−λL

(n)
n−1 − e−λL

(n)
n

)
·
(

1− e−ϑ̄R
(n)
12

)]}
.

Hence we have (
γ

(
n+ 1

2

)
+ nλ+ ϑ̄

)
· en = γ

(
n

2

)
· en−1 + γdn.
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Proof of Corollary 1.20. We first note that

xn|λ=0 = an|λ=0 = bn|λ=0 = cn|λ=0 = dn|λ=0 = en|λ=0 = 0.

We define x̃n := E0[Ln]− Eα[Ln] and observe

x̃n =
∂

∂λ
xn

∣∣∣∣∣
λ=0

=
∂

∂λ

(
γ
(
n
2

)
γ
(
n
2

)
+ nλ

xn−1 + α2 · n

γ
(
n
2

)
+ nλ

an

)∣∣∣∣∣
λ=0

=

(
∂

∂λ

γ
(
n
2

)
γ
(
n
2

)
+ nλ

)∣∣∣∣∣
λ=0

· xn−1|λ=0 +
γ
(
n
2

)
γ
(
n
2

)
+ nλ

∣∣∣∣∣
λ=0

·
(
∂

∂λ
xn−1

) ∣∣∣∣∣
λ=0

+ α2 ·

[(
∂

∂λ

n

γ
(
n
2

)
+ nλ

)∣∣∣∣∣
λ=0

· an|λ=0 +
n

γ
(
n
2

)
+ nλ

∣∣∣∣∣
λ=0

·
(
∂

∂λ
an

) ∣∣∣∣∣
λ=0

]

=

(
∂

∂λ
xn−1

) ∣∣∣∣∣
λ=0

+ α2 n

γ
(
n
2

) · ( ∂

∂λ
an

) ∣∣∣∣∣
λ=0

.

With

ãn :=

(
∂

∂λ
an

) ∣∣∣∣∣
λ=0

we get

γ

(
n

2

)
x̃n = γ

(
n

2

)
x̃n−1 + α2nãn.

With the same steps as before for the computation of x̃n we obtain(
γ

(
n+ 1

2

)
+
ϑ̄

2

)
ãn = γ

(
n

2

)
ãn−1 + b̃n +O(α),(

γ

(
n+ 2

2

)
+ ϑ̄

)
b̃n = γ

(
n

2

)
b̃n−1 + γ

(
n

2

)
c̃n−1 + γ(n− 1)d̃n,(

γ

(
n+ 2

2

)
+ ϑ̄

)
c̃n = γ

(
n

2

)
c̃n−1 + 2γẽn + γd̃n,(

γ

(
n+ 1

2

)
+ ϑ̄

)
ẽn = γ

(
n

2

)
ẽn−1 + γd̃n,

with

b̃n :=

(
∂

∂λ
bn

) ∣∣∣∣∣
λ=0

, c̃n :=

(
∂

∂λ
cn

) ∣∣∣∣∣
λ=0

, d̃n :=

(
∂

∂λ
dn

) ∣∣∣∣∣
λ=0

, ẽn :=

(
∂

∂λ
en

) ∣∣∣∣∣
λ=0

.
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For the computation of d̃n we first define f̃n :=
(
∂
∂λfn

)
|λ=0 as well as g̃n :=

(
∂
∂λgn

)
|λ=0. We

recall that

fn =

n∏
k=2

(k − 1)γ

(k − 1)γ + 2λ
=

(n− 1)γ

(n− 1)γ + 2λ
· fn−1

so with fn|λ=0 = 1 we obtain

f̃n :=

(
∂

∂λ
fn

) ∣∣∣∣∣
λ=0

=

(
∂

∂λ

(n− 1)γ

(n− 1)γ + 2λ

) ∣∣∣∣∣
λ=0

· fn−1|λ=0 +
(n− 1)γ

(n− 1)γ + 2λ

∣∣∣∣∣
λ=0

·
(
∂

∂λ
fn−1

) ∣∣∣∣∣
λ=0

= − 2

(n− 1)γ
+ f̃n−1

= −2

γ

n∑
k=2

1

(k − 1)
.

With equation (1.4.10) we obtain

d̃n = f̃n−1 − f̃n − g̃n−1 + g̃n =
2

(n− 1)γ
− g̃n−1 + g̃n.

Further with(
∂

∂λ

n∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)

)∣∣∣∣∣
λ=0

=

(
∂

∂λ

n(n− 1)γ

n(n− 1)γ + 2(nλ+ ϑ̄)

) ∣∣∣∣∣
λ=0

·
n−1∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)

∣∣∣∣∣
λ=0

+
n(n− 1)γ

n(n− 1)γ + 2(nλ+ ϑ̄)

∣∣∣∣∣
λ=0

·

(
∂

∂λ

n−1∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)

)∣∣∣∣∣
λ=0

=
−2n · n(n− 1)γ

(n(n− 1)γ + 2ϑ̄)2
·
n−1∏
k=i

k(k − 1)γ

k(k − 1)γ + 2ϑ̄

+
n(n− 1)γ

n(n− 1)γ + 2ϑ̄
·

(
∂

∂λ

n−1∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)

)∣∣∣∣∣
λ=0

=− 2
n∑
k=i

k2(k − 1)γ

(k(k − 1)γ + 2ϑ̄)2
·
n∏
l=i
l 6=k

k(k − 1)γ

k(k − 1)γ + 2ϑ̄

we get

g̃n =
2(n+ 1)

(n− 1)

n∑
i=2

1

(i+ 1)i

[(
∂

∂λ

i−1∏
k=2

(k − 1)γ

(k − 1)γ + 2λ

)∣∣∣∣∣
λ=0

·
n∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)

∣∣∣∣∣
λ=0
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+

i−1∏
k=2

(k − 1)γ

(k − 1)γ + 2λ

∣∣∣∣∣
λ=0

(
∂

∂λ

n∏
k=i

k(k − 1)γ

k(k − 1)γ + 2(kλ+ ϑ̄)

)∣∣∣∣∣
λ=0

]

=
−4(n+ 1)

(n− 1)

n∑
i=2

1

(i+ 1)i

[(
1

γ
·
i−1∑
k=2

1

(k − 1)

)
·
n∏
k=i

k(k − 1)γ

k(k − 1)γ + 2ϑ̄

+
n∑
k=i

k2(k − 1)γ

(k(k − 1)γ + 2ϑ̄)2
·
n∏
l=i
l 6=k

k(k − 1)γ

k(k − 1)γ + 2ϑ̄

]
.

Proof of Theorem 1.26. Let yn := Eα,h[Φn
00]− E0[Φn

00].

Again with (1.6.1) and (1.3.10) we have

0 = E
[
Gα,hΦn

00(Uα∞)−Gα,hΦn
00(U0

∞)
]

= −nλEα,h [Φn
00] + γ

(
n

2

)(
Eα,h

[
Φn−1

00

]
− Eα,h [Φn

00]
)

+ α · Eα,h
[
− nhΦn

0,1 + nhΦn
1,0 + n(1− 2h)Φn

1,1 − n(1− 2h)Φn
0,2

]
+ nλE0 [Φn

00] + γ

(
n

2

)(
E0
[
Φn−1

00

]
− E0 [Φn

00]
)

= −
(
nλ+ γ

(
n

2

))(
Eα,h[Φn

00]− E0[Φn
00]
)

+ γ

(
n

2

)(
Eα,h[Φn−1

00 ]− E0[Φn−1
00 ]

)
+ αn

(
hEα,h [Φn

10 − Φn
01] + (1− 2h)Eα,h [Φn

11 − Φn
02]
)

= −
(
nλ+ γ

(
n

2

))(
Eα,h[Φn

00]− E0[Φn
00]
)

+ γ

(
n

2

)(
Eα,h[Φn−1

00 ]− E0[Φn−1
00 ]

)
+ αn

(
hE0 [Φn

10 − Φn
01] + (1− 2h)E0 [Φn

11 − Φn
02] +O(α)

)
= −

(
nλ+ γ

(
n

2

))(
Eα,h[Φn

00]− E0[Φn
00]
)

+ γ

(
n

2

)(
Eα,h[Φn−1

00 ]− E0[Φn−1
00 ]

)
+ αn

(
hE0 [Φn

10 − Φn
01]

+(1− 2h)Θ(1−Θ)E0
[
e−λL

(n+2)
n · e−ϑ̄R

(n+2)
1,n+1 − e−λL

(n+2)
n · e−ϑ̄R

(n+2)
n+1,n+2

]
+O(α)

)
where we use (1.4.13) in the very last step.

Defining hn := E0
[
e−λL

(n+2)
n · e−ϑ̄R

(n+2)
1,n+1 − e−λL

(n+2)
n · e−ϑ̄R

(n+2)
n+1,n+2

]
we get(

nλ+ γ

(
n

2

))
yn = γ

(
n

2

)
yn−1 + αn(1− 2h)Θ(1−Θ) · hn +O(α2).

We use the same notation as in the proof of Theorem 1.15. Consider a coalescent with n+ 2
lines . We distinguish the following cases:

1. Coalescence of lines among the first n lines (rate
(
n
2

)
);

2. Coalescence of lines n+ 1 and 1 (rate 1);
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3. Coalescence of lines n+ 1 and one of 2, ..., n (rate n− 1);

4. Coalescence of lines n+ 1 and n+ 2 (rate 1);

5. Coalescence of lines n+ 2 and one of 1, ..., n (rate n).

Again writing E[.] instead of E0[.] we obtain

E
[
e−λL

(n+2)
n

(
e−ϑ̄R

(n+2)
1,n+1 − e−ϑ̄R

(n+2)
n+1,n+2

)]
=

(
n
2

)(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n−1

(
e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n − e−ϑ̄Tn+2e−ϑ̄R

(n+1)
n,n+1

)]
+

1(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
e−ϑ̄Tn+2 − e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1

)]
+

(n− 1)(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
e−ϑ̄Tn+2e−ϑ̄R

(n+1)
12 − e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1

)]
+

1(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1 − e−ϑ̄Tn+2

)]
+

n(
n+2

2

) · E [e−nλTn+2e−λL
(n+1)
n

(
e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1 − e−ϑ̄Tn+2e−ϑ̄R

(n+1)
1,n+1

)]

=
E
[
e−(nλ+ϑ̄)Tn+2

]
(
n+2

2

)
·

{(
n

2

)
E
[
e−λL

(n+1)
n−1

(
e−ϑ̄R

(n+1)
1,n − e−ϑ̄R

(n+1)
n,n+1

)]
+ E

[
e−λL

(n+1)
n ·

(
(n− 1) · e−ϑ̄R

(n+1)
12 +

(
− 1− (n− 1) + 1

)
· e−ϑ̄R

(n+1)
1,n+1

)]}

=
1(
n+2

2

) · γ
(
n+2

2

)
γ
(
n+2

2

)
+ nλ+ ϑ̄

·

{(
n

2

)
E
[
e−λL

(n+1)
n−1

(
e−ϑ̄R

(n+1)
1,n − e−ϑ̄R

(n+1)
n,n+1

)]
+ (n− 1)E

[
e−λL

(n+1)
n

(
e−ϑ̄R

(n+1)
12 − e−ϑ̄R

(n+1)
1,n+1

)]}
.

Hence we have (
γ

(
n+ 2

2

)
+ nλ+ ϑ̄

)
· hn = γ

(
n

2

)
· hn−1 + γ(n− 1) · en.

Proof of Corollary 1.28. As in Corollary 2.13 we first note that

yn|λ=0 = 0 and hn|λ=0 = 0
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and define

ỹn :=
∂

∂λ
yn

∣∣∣∣∣
λ=0

and h̃n :=
∂

∂λ
hn

∣∣∣∣∣
λ=0

.

The same calculations as in the proof of Corollary 2.13 give

ỹn = ỹn−1 + α(1− 2h)
n

γ
(
n
2

) h̃n
h̃n =

γ
(
n
2

)
γ
(
n+2

2

)
+ ϑ̄

h̃n−1 +
(n− 1)

γ
(
n+2

2

)
+ ϑ̄

ẽn.





Chapter 2

Modifiers of mutation rate in selectively fluc-
tuating environments

2.1 Introduction

In order for evolution to take place it is necessary that new alleles are created to drive genetic
diversity. The main force behind this process are mutations which are DNA copying errors
that can result in the creation of such new types. The understanding of mutation and the
rates at which they occur is therefore of great importance when trying to understand evolu-
tionary processes. In population genetic models such as the Moran model, the Wright-Fisher
diffusion or the Fleming-Viot process, a common assumption is a constant mutation rate
which is furthermore presumed to be quite low. The reasoning behind this is the following:
Most mutations have been detected as being deleterious (Fisher, 1930). An individual with a
high mutation rate would therefore be at a disadvantage relative to ones that rarely mutate as
they would produce too many types that are not able to compete with the others. However,
this argument is only adequate when we assume that these individuals live in an environment
which does not undergo any changes. Having a low mutation rate causes individuals that
are well-adapted to maintain their selective advantage while individuals with high mutation
rates fail to establish themselves within that population as they produce too many deleterious
mutations. The assumption of a constant low mutation rates therefore comes together with
the assumption of an environment which continuously prefers one type over the other and has
long been the subject of discussion. One of the earliest works dealing with this subject goes
back to Sturtevant (1937) discussing the fact that mutation rates can differ even within taxa
and that genes affecting the mutation rate succumb to selection. Many experiments show
that populations which are exposed to environmental changes exhibit an increasing frequency
in individuals with high mutation rates, also often called mutators. In an environment that
challenges the population by exposing it to new surroundings that call for different and new
types, mutators are necessary in order to increase the chance of creating individuals with
traits needed to survive under the new circumstances (Denamur and Matic, 2006). Though
once the environment has found a constant state, higher mutation rates are no longer needed
and lower mutation rates are again favored (Wielgoss et al., 2013). The study of the rise and
fall in frequency of these mutators and their role in adaptive evolution has been gaining more
and more attention over the years especially for microbial evolution, see e.g. Tenaillon et al.
(2001) for a review. In an early experiment, Mao et al. (1997) observe a complete takeover

37
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of an Escherichia coli population by mutators after successive exposure to a mutagen. After
only four rounds of treatments, the population consists to 100% of mutators.
Wielgoss et al. (2013) investigated the long-term effect on mutators. In Lenski’s Long-Term
Evolution Experiment, 12 populations of E. coli have been evolving in a glucose-limited
medium for, by now, more than 60000 generations. In one of the populations Wielgoss et al.
(2013) notice a decrease in the mutation rate after mutators had established themselves for
about 10000 generations. These are only few of many other experiments where the assumption
of a constant mutation rate is not appropriate. A fluctuating environment requires individ-
uals that are able to produce new types in order to create a population capable of survival.
Motivated by this perception and the above insights from biology, our goal is to complement
the view of constant mutation rates by assuming that the mutation rate itself is driven by
evolution by using modifier theory, where an additional neutral modifier locus determines the
mutation rate at a second locus.

This chapter is structured as follows: In section 2.2 we will first derive a bivariate process that
describes the mutation rate and type space in the first variable and the fitness of the type
in the second variable which will act according to a fluctuating environment. The process is
defined as a solution to a well-posed martingale problem and is called a Fleming-Viot process
with mutation modifier and fluctuating selection. Our first result is the convergence of this
process to a unique limit in the case of a fast fluctuating environment (Theorem 2.6).
To show how the results can be applied we continue in section 2.3 with a special 2-type case
where only two mutation rates and two types at the second locus exist. In Theorem 2.12, we
compute the fixation probability of the high mutating type depending on the two mutation
rates.

This chapter relies on joint work with Peter Pfaffelhuber and Franz Baumdicker. All results
have been submitted and are under review. A preprint is available in Baumdicker et al. (2019).

As this chapter deals with so-called Feller processes, we recall some definitions. For a more
detailed elaboration of this topic we refer to Kallenberg (2002) and Ethier and Kurtz (1986).

For a Markov process X we can define a family of operators (St)t≥0 by

Stf(x) := Ex[f(Xt)] (2.1.1)

for a bounded measuralbe function f on E. The Chapman-Kolmogorov equation states that
it holds

StSs = St+s. (2.1.2)

Families of operators satisfying (2.1.2) are called semigroups. Further (St)t≥0

1. is a contraction if ||Stf || = supEx[f(Xt)] ≤ ||f ||,

2. and positive if Stf(x) = Ex[f(Xt)] ≥ 0 for f ≥ 0,

3. and is said to have a conservative generator if St1 = 1.

If it further holds Stf(x) = Ex[f(Xt)]
t→0−−→ f(x), then the semigroup is called strongly

continuous.
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Remark 2.1 (Feller process). A positive, strongly continuous contraction semigroup with
conservative generator and Stf a continuous function on E for all t ≥ 0 and continuous
functions f on E is called a Feller semigroup. Reversely, if E is locally compact and separable,
a Feller semigroup corresponds to a strong Markov process with sample paths in DE([0,∞));
see Ethier and Kurtz (1986), Section 4.3. Such processes are therefore also called Feller
processes.

2.2 A Fleming-Viot system with mutation modifier and fast
fluctuating selection

The model we will be dealing with includes mutation and selection and additionally a fluctu-
ating environment. More precisely, individuals in a large population are assumed to have a
modifier locus (A-locus) determining the mutation rate u ∈ [0, ϑ] at a second locus (B-locus)
with types v ∈ [0, 1]. In addition, the environment fluctuates, meaning that individual types
change their fitness at some high rate. Fitness only depends on the type of the B-locus.
First of all will derive a bivariate process describing this very scenario. The first variable will
correspond to the two loci and the second variable to the fitness of the type at the B-locus.
We will be working with a Markov process (X,Z), or rather a sequence of such processes
and its limiting process with state space E := P([0, ϑ] × I) × CL(I) for some L > 0 and
I := [0, 1]. Let (u, v) be some sample from the first variable Xt ∈ P([0, ϑ] × I) at time t
where u denotes the allele at the first locus (which we call A-locus), while v is the allele at
the second locus (the B-locus). The variable u takes values in [0, ϑ] and equals the mutation
rate of the sampled individual at the B-locus. Upon a mutation (which happens at rate u)
the allele at the B-locus is drawn according to a transition kernel β(v, .) on I. The second
variable Zt ∈ CL(I) corresponds to the fitness function according to which selection acts on
the B-locus. Fluctuations in the environment have impact on the fitness function Zt which
changes along a Poisson process to independent draws from ν ∈ P(CL(I)). We assume that
Eν [Z(v)] = 0 for all v ∈ I, i.e. on average, no allele at the B-locus has a fitness advantage.

We collect all assumptions and some notation in the following remark.

Remark 2.2 (Assumption, state space and notation).

1. Let

ϑ ≥ 0, (maximal mutation rate at B-locus),

α ≥ 0, (selection intensity),

L ≥ 0, (Lipschitz constant for fitness function),

σ > 0, (rate of environmental change),

ν ∈ P(CL(I)), (distribution of random fitness),

and β a transition kernel from I to I (mutation kernel at the B-locus). Throughout,
we assume that

Eν [Z(v)] = 0, v ∈ I. (2.2.1)
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2. The state space of the Markov process in the next definition will be E := P([0, ϑ]×I)×
CL(I). This space is equipped with the product topology, where CL(I) is equipped with
the topology of uniform convergence, and P([0, ϑ]× I) is equipped with the topology of
weak convergence. Note that E is locally compact.

3. For (u, v) ∈ [0, ϑ]× I, we say that u is the allele at the A-locus and v is the allele at the
B-locus. Denote by πA : [0, ϑ]× I → [0, ϑ] and πB : [0, ϑ]× I → I the projections on the
first and second coordinate, i.e. the A- and B-locus, respectively. More generally, for
k = 1, ..., n, πk,A (πk,B) is the projection of ([0, ϑ]× I)n to the k-th entry at the A-locus
(B-locus).

4. For a transition kernel β from I to I and φ ∈ C(([0, ϑ]× I)n), we set, for u ∈ [0, ϑ]n,

βk,Bφ(u, v1, ..., vn) :=

∫
β(vk,dv

′)φ(u, v1, ..., vk−1, v
′, vk+1, ..., vn)

5. For z ∈ CL(I) and v ∈ In, we set zk(v) := z(vk).

We give the martingale problem for the process (XN , ZN ) for some N = 1, 2, ... We refer to
Remark 1.2 for a definition of a martingale problem.

Definition 2.3 (Martingale problem for the Fleming-Viot process with mutation modifier
and fluctuating selection). For (u, v) ∈ ([0, ϑ]× I)n with u = (u1, ...., un), v = (v1, ..., vn) and
1 ≤ k, l ≤ n, we set

θk,l(u) := (u1, ..., ul−1, uk, ul, ..., un−1), θk,l(u, v) := (θk,l(u), θk,l(v)).

For the domain of the generator of (XN , ZN ), we define the set of functions

Π := {(x, z) 7→ Φ(x)Ψ(z) : Φ(x) = Φn,φ(x) = 〈xn, φ〉,Ψ(z) = Ψm,u(z) = z(u1) · · · z(um),

m, n = 1, 2, ..., φ ∈ C(([0, ϑ]× I)n), u = (u1, ..., um) ∈ Im}.

The generator then reads

GN = Gres +Gmut +N ·Gsel +N2 ·Genv

with

GresΦ(x)Ψ(z) = Ψ(z) ·
n∑

k,l=1

〈xn, φ ◦ θkl − φ〉,

GmutΦ(x)Ψ(z) = Ψ(z) ·
n∑
k=1

〈xn, πk,A · (βk,Bφ− φ)〉,

GselΦ(x)Ψ(z) = Ψ(z) · α
n∑
k=1

〈xn+1, φ · (zk − zn+1)〉,

GenvΦ(x)Ψ(z) = Φ(x) · σ · (Eν [Ψ(Z)]−Ψ(z)).

Then, for E := P([0, ϑ]× I)× C(I) and µ ∈ P(E), we call every E-valued process (XN , ZN )
such that (XN (0), ZN (0)) ∼ µ and(

Φ(XN
t )Ψ(ZNt )−

∫ t

0
GNΦ(XN

s )Ψ(ZNs )
)
t≥0
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is a martingale, the Fleming-Viot process with mutation modifier and fluctuating selection.
Its martingale problem is called the (GN ,Π, µ)-martingale problem.

Remark 2.4 (Some notes on the generator terms). 1. We have already seenGres andGsel

in Chapter 1.

2. For the mutation operator, we note that

(πk,A · βk,Bφ)(u, v) = uk ·
∫
β(vk,dv

′)φ(u, v1, ..., vk−1, v
′, vk+1, ..., vn).

Hence, the state at the A-locus, uk, equals the mutation rate at the B-locus.

3. The generator describing the change in environment is the common generator for a
Poisson process with rate σ; see Ethier and Kurtz (1986), Section 4.2.

Before moving on to our results for fast fluctuating environments we briefly check the well-
posedness of the martingale problem given in Definition 2.3.

Lemma 2.5. For N = 1, 2, ... and µ ∈ P(E), the (GN ,Π, µ)-martingale problem is well-

posed. This solution (XN , ZN ) is strongly continuous, i.e. (XN
t , Z

N
t )

t→0
==⇒ (XN

0 , Z
N
0 ) and has

the Feller property, i.e. x 7→ Ex[f(XN
t , Z

N
t )] is continuous for every f ∈ C(E).

Proof. First, fix N and let (XN , ZN ) be some solution of the (GN ,Π, µ)-martingale problem.
By setting Φ = 1 we obtain that(

Ψ(ZNt )−N2σ

∫ t

0
(Eν [Ψ(Z)]−Ψ(ZNs ))ds

)
t≥0

is a martingale problem. As mentioned in Remark 2.4, this is the usual generator of a Poisson
process. More precisely, ZN is a Markov jump process, which jumps from z to Z ∼ ν at rate
N2σ. Next, we construct XN conditional on ZN . The process ZN is a piece-wise constant
process with constant jump rate N2σ, hence jump points do not accumulate, i.e. ZN is non-
explosive. Therefore we can solve the resulting martingale problem for XN (conditional on
ZN ) uniquely between jumps of ZN . This means that we only require the well-posedness of
the martingale problem for σ = 0 which is again a classical result in mathematical population
genetics; see e.g. Ethier and Kurtz (1993). In summary, by this two-step procedure, we obtain
existence and uniqueness of the (GN ,Π, µ)-martingale problem.

In the next theorem we obtain general limit results for the evolution of the allele frequency
distribution for rapidly fluctuating environments.

Theorem 2.6 (Convergence for fast fluctuating environment). Given that XN
0

N→∞
====⇒ X0 ∼

µ1 and 6α2/σ < 1, we find that XN N→∞
====⇒ X, the unique solution of the (G,Π1, µ1) martingale

problem, where

Π1 := {x 7→ Φ(x) : Φ(x) = Φn,φ(x) = 〈xn, φ〉, n = 1, 2, ..., φ ∈ C(([0, ϑ]× [0, 1])n)}

and, setting

χk,l(v) := χ(vk, vl) := Eν [Z(vk)Z(vl)],
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with

G = Gres +Gmut +G
sel

where Gres and Gmut are as in Definition 2.3 and, for Φ = Φn,φ,

G
sel

Φ(x) =
α2

σ

n∑
k,l=1
k 6=l

〈
xn+2, φ · (χkl − χn+1,n+2)

〉
+ 2n

α2

σ

n∑
k=1

〈
xn+2, φ · (χn+1,n+2 − χk,n+1

〉

+
α2

σ

n∑
k=1

〈
xn+2, φ · (χkk − χn+1,n+1)

〉
.

(2.2.2)

The proof of Theorem 2.6 requires a corollary from Ethier and Kurtz (1986) that deals with
the approximation of strongly continuous contraction semigroups.

Corollary 2.7 (Corollary 1.7.8, Ethier and Kurtz (1986)). Let us briefly recall this result.
For some locally compact and separable (E, r), let L := Cb(E), equipped with the topology of
uniform convergence on compacts. For operators Gi with domain D(Gi), i = 0, 1, 2, assume
the following:

1. G2 generates a strongly continuous contraction semigroup (St)t≥0 on L, such that

lim
λ→0+

λ

∫ ∞
0

e−λtStfdt =: Pf exists for all f ∈ L;

2. D := D(G0) ∩ D(G1) ∩ D(G2) is a core for G2;

3. For N sufficiently large, G0+N ·G1+N2 ·G2 generates a strongly continuous contraction
semigroup (TN (t))t≥0 on L.

For f ∈ D ⊆ {f : D(G0) ∩ D(G1) : G2f = 0}, set

Df := {h ∈ D : G2h = −G1f}

and define for any f ∈ D and h ∈ Df

Ḡf = PG0f + PG1h. (2.2.3)

Then, Ḡ is dissipative and if its closure generates a strongly continuous contraction semigroup

(T (t))t≥0 on D̄, then TN (t)f
N→∞−−−−→ T (t)f for all t ≥ 0, uniformly on bounded intervals.

Remark 2.8 (Outline of the proof). Before actually moving on to the proof of Theorem 2.6,
we will give a short sketch of what needs to be done.

1. For the desired convergence we need to apply Corollary 2.7 the following way: We are
dealing with the special situation that E = E1 × E2,

(A1) G2 has the form
G2f(x, z) = σ

(
Eν [f(x, Z)]− f(x, z)

)
for some ν ∈ P(E2) and σ > 0,
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(A2) G1 satisfies Eν [G1f(x, Z)] = 0 if f only depends on x.

In this situation, G2 generates a strongly continuous contraction semigroup (St)t≥0 on
Cb(E), which has the form

Stf(x, z) = e−σtf(x, z) + (1− e−σt)Eν [f(x, Z)].

Clearly, since Stf(x, z) = e−σtf(x, z) + (1− e−σt)Eν [f(x, Z)],

λ

∫ ∞
0

e−λtStf(x, z)dt =
λ

λ+ σ
(f(x, z)− Eν [f(x, Z)]) + λ

∫ ∞
0

e−λtEν [f(x, Z)]dt

λ→0−−−→ Eν [f(x, Z)] =: Pf(x, z).

For any (x, z) 7→ f(x, z) only dependent on x with G2f = 0, we choose h = 1
σG1f . By

(A1) and (A2) it holds

G2h(x, z) =
1

σ
·G2G1f(x, z) =

1

σ
· σ
(
Eν [G1f(x, Z)]−G1f(x, z)

)
= −G1f(x, z),

i.e. h = 1
σG1f is a solution of G2h = −G1f . In total, we find that (abusing notation by

writing x 7→ f(x) if f only depends on x), (2.2.3) transforms to

Ḡf(x) = Eν
[
G0f(x, Z) + 1

σG1G1f(x, Z)
]
. (2.2.4)

To show convergence we need to prove that Ḡ generates a strongly continuous contrac-
tion semigroup which is implied by well-posedness of the (Ḡ,D)-martingale problem.

2. It remains to show well-posedness of the Ḡ-martingale problem as well as the Feller
property. At least, existence of a solution of the martingale problem follows by general
theory; see Chapter 4.5 of Ethier and Kurtz (1986), provided that the Markov processes
XN with semigroups TN satisfy the compact containment condition. Indeed, since

|| 1
N h||

N→∞−−−−→ 0 and

(G0 +N ·G1 +N2 ·G2)(f + 1
N h) = G0f(x) +G1h(x, z) +N · (G1f +G2h) + o(1)

= G0f(x) +G1h+ o(1),

we find generator convergence.
For uniqueness and the Feller property, we will be using a duality argument (see Chapter
4.4 in Ethier and Kurtz (1986)). Duality has been proven to be a useful tool when
having to characterise certain processes. One very important application is the case
when proving uniqueness of a solution of a martingale problem. Recall that X (i.e. a
solution of the (Ḡ,D)-martingale problem) is dual to some stochastic process Y with
(separable) state space Υ with respect to H : E ×Υ→ R bounded and measurable, if

Ex[H(Xt, y)] = Ey[H(x, Yt)]

for all t, x, y. Proposition 4.4.7 of Ethier and Kurtz (1986) states that the existence of
a dual process Y is sufficient to guarantee the uniqueness of X: If Π := {H(., y) : y ∈
Υ} ⊆ D and Y is a Markov process with generator GY , and if H(x, .) is in the domain
of GY for all x, the latter equality is implied by

ḠH(., y)(x) = GYH(x, .)(y), (2.2.5)
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since
d

ds
E[H(Xs, Yt−s)] = E[ḠH(., Yt−s)(Xs)−GYH(Xs, .)(Yt−s)] = 0

on a probability space where X and Y are independent. If Π is separating, existence of
Y implies uniqueness of the (Ḡ,D)-martingale problem. Moreover, if H is bounded and
continuous, we find that x 7→ Ex[H(Xt, y)] = Ey[H(x, Yt)] is continuous by dominated
convergence. If Π is convergence determining and Y is Feller, this implies that X is
Feller as well.

Proof of Theorem 2.6. We use Remark 2.8.1 with

E1 = P([0, ϑ]× I), E2 = CL(I),

G0 = Gres +Gmut, G1 = GselG2 = Genv.

(A1) obviously holds due to the form of Genv in Definition 2.3. If Φ only depends on x,
(A2) is satisfied since GselΦ depends on z only linearly and because of (2.2.1). If ΦΨ ∈ Π
with Φ = Φn,φ,Ψ = Ψm,u only depends on x, we have that Ψ = const and as in Remark 2.8
h = − 1

σG
selΦ solves Genvh = −GselΦ. Therefore, (2.2.4) gives

ḠΦ(x) = GresΦ(x) +GmutΦ(x) +
1

σ
Eν [GselGselΦ(x, Z)].

In order to compute that last term, we define for v ∈ In

χk,l(v) := χ(vk, vl) := Eν [Z(vk)Z(vl)].

Using the symmetry relationship 〈xn+2, φ ·Zn+1〉 = 〈xn+2, φ ·Zn+2〉 we obtain for φ depending
only on the first n coordinates at both loci

G
sel

Φ(x) :=
1

σ
Eν [GselGselΦ(x, Z)]

=
α

σ

n∑
l=1

Eν
[
Gsel

〈
xn+1, φ · (Zl − Zn+1)

〉]
=
α2

σ

n∑
l=1

n+1∑
k=1

Eν
[〈
xn+2, φ · (Zl − Zn+1) · (Zk − Zn+2)

〉]
=
α2

σ

n∑
k,l=1
k 6=l

〈
xn+2, φ · (χkl − 2χk,n+1 + χn+1,n+2)

〉

+
α2

σ

n∑
l=1

〈
xn+2, φ · (χl,l − 2χl,n+1 + 2χn+1,n+2 − χn+1,n+1)

〉
=
α2

σ

n∑
k,l=1
k 6=l

〈
xn+2, φ · (χkl − χn+1,n+2 − 2χk,n+1 + 2χn+1,n+2)

〉

+
α2

σ

n∑
l=1

〈
xn+2, φ · (χl,l − χn+1,n+1 − 2χl,n+1 + 2χn+1,n+2)

〉
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=
α2

σ

n∑
k,l=1
k 6=l

〈
xn+2, φ · (χkl − χn+1,n+2)

〉
+ 2n

α2

σ

n∑
k=1

〈
xn+2, φ · (χn+1,n+2 − χk,n+1

〉

+
α2

σ

n∑
k=1

〈
xn+2, φ · (χkk − χn+1,n+1)

〉
.

This corresponds to the term given in (2.2.2). Existence of the (G,Π1)-martingale problem
follows as in Remark 2.8.2.

For uniqueness, we use duality. The dual process will be similar to the one of the TFVMS
given in Depperschmidt et al. (2012). The goal is to use (2.2.5), and therefore, we have to
rewrite the generator terms. We define for u = (u1, u2, ...)

ᾱl(u) = (ui−1{i>l}) = (u1, ..., ul, ul, ul+1, ...),

αl(u) = (ui+1{i≥l}) = (u1, ..., ul−1, ul+1, ul+2, ...).

We note that, for φ depending only on the first n coordinates, and 1 ≤ k 6= l ≤ n

〈xn, φ ◦ θkl〉 = 〈xn−1, φ ◦ θkl ◦ ᾱl〉,
Eν [〈xn+1, φ · Zn+1〉] = Eν [〈xn+1, (φ ◦ αk) · Zk〉],
〈xn+2, φ · χn+1,n+2〉 = 〈xn+2, (φ ◦ αk) · χk,n+2〉 = 〈xn+2, (φ ◦ αk ◦ αl) · χk,l〉,

holds, since integrating with respect to the product measure xn does not depend on the order
of coordinates.

Therefore, we can write for Φ = Φn,φ

Gres〈xn, φ〉 =
n∑

k,l=1
k 6=l

〈xn−1, φ ◦ θk,l ◦ ᾱl〉 − 〈xn, φ〉,

Gmut〈xn, φ〉 = ϑ ·
n∑
k=1

〈
xn,

πk,A
ϑ
· βk,Bφ+

(
1−

πk,A
ϑ

)
· φ
〉
− 〈xn, φ〉,

G
sel〈xn, φ〉 =

α2

σ

n∑
k,l=1
k 6=l

(〈xn+2, φ · χkl + (φ ◦ αk ◦ αl) · (1− χkl)〉 − 〈xn, φ〉)

+ 2n
α2

σ

n∑
k=1

(〈xn+2, (φ ◦ αk) · χk,n+2 + φ · (1− χk,n+2)〉 − 〈xn, φ〉)

+
α2

σ

n∑
k=1

(
〈xn+2, (φ · χk,k + (φ ◦ αk) · (1− χk,k)〉 − 〈xn, φ〉).

(2.2.6)

With this reformulation, we can construct a dual process Ξ = (ξt)t≥0 which will be function-
valued. The state space is

Υ =
∞⋃
n=0

Υn with Υn = C(([0, ϑ]× [0, 1])n).
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The process Ξ is a pure jump process with transitions from ξ ∈ Υn to

ξ ◦ θk,l ◦ ᾱl ∈ Υn−1 at rate 1 for each unordered pair 1 ≤ k 6= l ≤ n,
πk,A
ϑ · βk,B · ξ +

(
1− πk,A

ϑ

)
· ξ ∈ Υn at rate ϑ for each 1 ≤ k ≤ n,

ξ · χkl + (ξ ◦ αk ◦ αl) · (1− χkl) ∈ Υn+2 at rate α2

σ for each unordered pair 1 ≤ k 6= l ≤ n,
(ξ ◦ αk) · χk,n+2 + ξ · (1− χk,n+2) ∈ Υn+2 at rate 2nα

2

σ for each 1 ≤ k ≤ n,
ξ · χk,k + (ξ ◦ αk) · (1− χk,k) ∈ Υn+1 at rate α2

σ for each 1 ≤ k ≤ n.

Then, for the duality function H(·, ·) with

H : E ×Υ→ R
(x, ξ) 7→ 〈xn, ξ〉, for ξ ∈ Υn,

we have established (2.2.5), i.e. the generator of Ξ for ξ ∈ Υn is (Gres + Gmut + G
sel

)〈xn, ξ〉
with Gres, Gmut and G

sel
as the right-hand sides in (2.2.6). In other words, Ξ and X, a solu-

tion of the G-martingale problem are dual, provided that existence for Ξ can be guaranteed.
Here, we have to take into account that the number of dependent variables, n, can explode.
This number decreases at rate n(n − 1) and increases by two at rate (n(n − 1) + 2n2)α2/σ
and by one at rate α2/σn. Therefore, explosion cannot occur for 6α2/σ < 1 and from Propo-
sition 4.4.7 of Ethier and Kurtz (1986), uniqueness for the G-martingale problem follows in
this case. Since {H(., ξ) : ξ ∈ Υ} is separating and convergence determining (see e.g. Exam-
ple 5 in Depperschmidt et al., 2019), we have shown that Ḡ generates a strongly continuous
contraction semigroup and the proof of Theorem 2.6 is complete; see Remark 2.8.2.

2.3 Specialization to a finite dimensional system

We will now specialise Theorem 2.6 to a finite-dimensional system. Precisely, since we have
two loci, the minimal number of dimensions is 2 × 2. So, only four types will be present,
which will be denoted `0, `1, h0, h1. For 0 ≤ ϑ` ≤ ϑh ≤ ϑ, their frequencies are given through
x ∈ P([0, ϑ]× I) by

xai := Φai(x) := x({ϑa} × {i}) = 〈x, 1{ϑa}×{i}〉, (a, i) ∈ {`, h} × {0, 1}.

For mutation, we consider the case that each mutation event (either at rate ϑ` or ϑh) results
in type 0 at the B-locus with probability r ∈ [0, 1]. For selection, let z : {0, 1} → {−1

2 ,
1
2} be

given by z(0) = 1
2 , z(1) = −1

2 and

ν = 1
2(δz + δ−z).

Consider the solution XN of the martingale problem from Definition 2.3 in this case, which
exists uniquely by Lemma 2.5. Letting XN

ai , (a, i) ∈ {`, h}×{0, 1} be as above, using the mar-
tingale representation theorem (see e.g. Theorem 16.12. of Kallenberg, 2002), it is straight-
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forward to see that XN = (XN
`0 , X

N
`1 , X

N
h0, X

N
h1) is a weak solution of the system of SDEs

dXN
`0 = αNZNXN

`0X
N
1 dt+ ϑ`(rX

N
`1 − (1− r)XN

`0)dt

+
√
XN
`0X

N
`1dW1 +

√
XN
`0X

N
h0dW2 +

√
XN
`0X

N
h1dW3,

dXN
`1 = −αNZNXN

`1X
N
0 dt+ ϑ`((1− r)XN

`0 − rXN
`1)dt

−
√
XN
`1X

N
`0dW1 +

√
XN
`1X

N
h0dW4 +

√
XN
`1X

N
h1dW5,

dXN
h0 = αNZNXN

h0X
N
1 dt+ ϑh(rXN

h1 − (1− r)XN
h0)dt

−
√
XN
h0X

N
`0dW2 −

√
XN
h0X

N
`1dW4 +

√
XN
h0X

N
h1dW6,

dXN
h1 = −αNZNXN

h1X
N
0 dt+ ϑh((1− r)XN

h0 − rXN
h1)dt

−
√
XN
h1X

N
`0dW3 −

√
XN
h1X

N
`1dW5 −

√
XN
h1X

N
h0dW6,

(2.3.1)

with XN
i = XN

hi + XN
`i , i = 0, 1, independent Brownian motions W1, ...,W6, and ZN (the

fitness difference between types 0 and 1) changes from −1 to +1 and back at rate N2 σ
2 .

Theorem 2.9 (Convergence for fast fluctuating environment). For weak solutions
(XN )N=1,2,... of (2.3.1), assume that XN (0)

n→∞
===⇒ X0 and 2α2/σ < 1. Then,

(XN
`0 , X

N
`1 , X

N
h0, X

N
h1)

N→∞
====⇒ X = (X`0, X`1, Xh0, Xh1) which is the unique weak solution of

dX`0 = α2

σ X`0X1(X1 −X0)dt+ θ`(rX`1 − (1− r)X`0)dt

+
√
X`0X`1dW1 +

√
X`0Xh0dW2 +

√
X`0Xh1dW3 + α

√
2/σX`0X1dW,

dX`1 = α2

σ X`1X0(X0 −X1)dt+ θ`((1− r)X`0 − rX`1)dt

−
√
X`1X`0dW1 +

√
X`1Xh0dW4 +

√
X`1Xh1dW5 − α

√
2/σX`1X0dW

dXh0 = α2

σ Xh0X1(X1 −X0)dt+ θh(rXh1 − (1− r)Xh0)dt

−
√
Xh0X`0dW2 −

√
Xh0X`1dW4 +

√
Xh0Xh1dW6 + α

√
2/σXh0X1dW,

dXh1 = α2

σ Xh1X0(X0 −X1)dt+ θh((1− r)Xh0 − rXh1)dt

−
√
Xh1X`0dW3 −

√
Xh1X`1dW5 −

√
Xh1Xh0dW6 − α

√
2/σXh1X0dW,

(2.3.2)

with independent Brownian motions W,W1, ...,W6 and some initial condition X0.

Remark 2.10 (Evolution of Xh and X0). Writing Xh = Xh0 + Xh1 and X` = 1 − Xh, we
also have

dXh =
α2

σ
(Xh0X`1 −Xh1X`0)(X1 −X0)dt (2.3.3)

+
√
XhX`dW

′ + α
√

2/σ(Xh0X`1 −Xh1X`0)dW,

with independent Brownian motions W,W ′. In the same way we can set X0 = Xh0 +X`0 and
X1 = 1−X0, and get

dX0 =
α2

σ
X0X1(X1 −X0)dt+ ϑ`(r −X0) + (ϑh − ϑ`)(rXh1 − (1− r)Xh0)dt

+
√
X0X1dW ′′ + α

√
2/σX0X1dW

with independent Brownian motions W,W ′′.
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Remark 2.11 (Comparison with Gillespie (1981)). Gillespie has considered a similar diffusion
for a mutation modifier locus in diploids Gillespie (1981). While the mutation rates differ in
Gillespie’s model compared to the as we do not consider heterozygotes in our haploid model,
the remaining diffusion terms of a symmetric semi-dominant model from Gillespie are similar
to our setting.

To see this consider equation (5) in Gillespie (1981). The variable p1 = 1− q1 corresponds
to our X0, and p2 = 1− q2 to Xh. In the symmetric semi-dominant model Gillespie set A = 0
and B = 2. Thus, ignoring all terms with mutation rates, we get

dp1 = p1q1

(
A+B

(
1

2
− p1

))
+ p1q1dW

= X0X1(X1 −X0)dt+X0X1dW,

and

dp2 = D

(
A+B

(
1

2
− p1

))
dt+DdW = D(X1 −X0)dt+DdW

for linkage disequilibrium D := (Xh0X`1−Xh1X`0). Furthermore, we can use Itô’s lemma to
get

d(Xh0X`1) = X`1Xh0(X1 −X0)2dt−Xh0X1X`1X0dt+Xh0X`1(X1 −X0)dW

and

dD = d(Xh0X`1 −Xh1X`0)

= (Xh0X`1 −Xh1X`0)(X1 −X0)2dt− (Xh0X`1 −Xh1X`0)X1X0dt

+ (Xh0X`1 −Xh1X`0)(X1 −X0)dW

= D(q1 − p1)2dt−Dp1q1dt+D(p1 − q1)dW.

The special case presented here is thus a haploid version of the symmetric semi-dominant
model in Gillespie’s work.

Proof of Theorem 2.9. Since XN weakly solves (2.3.1) if and only if it solves the martingale
problem from Definition 2.3, we need to show that a solution of the limiting martingale
problem from Theorem 2.6 solves (2.3.2). By the martingale representation Theorem (see e.g.
Theorem 16.12. of Kallenberg, 2002), it is enough to show that (withX = (X`0, X`1, Xh0, Xh1)
a solution of the limiting martingale problem) X is a semimartingale with X = X0 +M +A,
where A = (A`0, A`1, Ah0, Ah1) is a process of finite variation with

Aa0(t) =

∫ t

0
ϑa(rXa,1(s)− (1− r)Xa0(s)) +

α2

σ
Xa0(s)X1(s)(X1(s)−X0(s))ds,

Aa1(t) =

∫ t

0
ϑa((1− r)Xa0(s)− rXa1(s)) +

α2

σ
Xa1(s)X0(s)(X0(s)−X1(s))ds,

(2.3.4)

and M = (M`0,M`1,Mh0,Mh1) is a martingale with covariation
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[Mai,Mbj ](t)

=

∫ t

0

(
(δai,bj −Xai(s))Xbj(s) + (−1)i+j

2α2

σ
Xai(s)Xbj(s)X1−i(s)X1−j(s)

)
ds. (2.3.5)

As a general fact (see e.g. Corollary 4.6 in Depperschmidt et al., 2012),

Aai(t) =

∫ t

0
GΦai(X(s))ds, (2.3.6)

[Mai,Mbj ](t) =

∫ t

0
GΦaiΦbj(X(s))

− Φai(X(s))GΦbj(X(s))− Φbj(X(s))GΦai(X(s))ds. (2.3.7)

While the first term in (2.3.4) is due to Gmut, the first term in (2.3.5) is due to Gres. For the
remaining terms, we need to evaluate the operator Ḡsel. First, for v ∈ {0, 1}n and Z ∼ ν,

χkl(v) = Eν [Z(vk)Z(v`)] = 1
4

(
1{vk=vl} − 1{vk 6=vl}

)
= 1

21{vk=vl} −
1
4 .

Plugging this into (2.2.2), we obtain

G
sel

Φai(x) =
α2

σ
〈x3,1{ϑa}×{i}(u1, v1)(1{v2=v3} − 1{v1=v2})〉,

=
α2

σ

(
xai(1− 2x0x1)− xaixi

)
=
α2

σ
xai(x1−i − 2xix1−i)) =

α2

σ
xaix1−i(x1−i − xi),

which shows (2.3.4) due to (2.3.6) and

G
sel

ΦaiΦbj(x)− Φai(x)G
sel

Φbj(x)− Φbj(x)G
sel

Φai(x)

=
α2

σ

(
〈x2, 1{ϑa}×{i}(u1, v1)1{ϑb}×{j}(u2, v2)1v1=v2〉 − xaixbj(1− 2x0x1)

+ xaixbj(x1−i(x1−i − xi) + x1−j(x1−j − xj))
)

=
α2

σ
xaixbj(δij − 1 + x2

1−i + x2
1−j).

Now, for i = j, this gives

=
2α2

σ
xaixbix

2
1−i,

whereas for i 6= j, we have

=
α2

σ
xaixbj(−1 + x2

0 + x2
1) = −2α2

σ
xaixbjx0x1,

which gives in total for arbitrary i, j ∈ {0, 1}

= (−1)i+j
2α2

σ
xaixbjx1−ix1−j ,

which finally gives (2.3.5) due to (2.3.7) and the proof is complete.
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Recall Xh = Xh0 + Xh1 and X` = 1 −Xh. We now give a result on the fixation probability
of Xh.

Theorem 2.12 (Fixation probability). Let X be the solution of (2.3.2) with initial condition

Xh(0) = x, Xh0(0) = px, X`0(0) = q(1− x),

X`(0) = (1− x), Xh1(0) = (1− p)x, X`1(0) = (1− q)(1− x).

Let r ∈ [0, 1] be the probability that a mutation event results in type 0. Then,

lim
α2

σ
→0

σ

α2
(P(Xh(∞) = 1)− x)

=x(1− x)

·
[

(2r − 1)(q − r)(1 + 2ϑ`)

(1 + ϑ`)(3 + 2ϑ`)
− (2r − 1)(p− r)(1 + 2ϑh)

(1 + ϑh)(3 + 2ϑh)
(2.3.8)

+ 2

(
(1− x)

(q − r)2

3 + 2ϑ`
− x(p− r)2

3 + 2ϑh
+ (2x− 1)

(p− r)(q − r)
3 + ϑ` + ϑh

+ r(1− r)
(

1

3 + 2ϑ`
− 1

3 + 2ϑh

))]
.

Actually, a straightforward calculation leads to a different form of the last formula.

Corollary 2.13 (Different form of the fixation probability). For the same situation as in
Theorem 2.12, (2.3.8) can also be written as

lim
α2

σ
→0

σ

α2
(P(Xh(∞) = 1)− x)

=x(1− x)

·
[
(p− q) ·

(
(1− 2r)(1 + 2ϑl)

(3 + 2ϑl)(1 + ϑl)
+

2(1− x)(r − q)
(3 + 2ϑl)

+
2x(r − p)
(3 + 2ϑh)

)
−(1− 2r)(r − p)(ϑh − ϑl) (2.3.9)

·
(

(2− ϑhϑl)
(2 + ϑl)(1 + ϑl)(2 + ϑh)(1 + ϑh)

− 2(7 + 2ϑl + 2ϑh)

(2 + ϑh)(3 + 2ϑh)(2 + ϑl)(3 + 2ϑl)

)
+

2(r − q)(r − p)(ϑh − ϑl)
(3 + ϑh + ϑl)

·
(

(1− x)

(3 + 2ϑl)
+

x

(3 + 2ϑh)

)
+

4r(1− r)(ϑh − ϑl)
(3 + 2ϑl)(3 + 2ϑh)

]
.

Remark 2.14 (Checking the fixation probability). Some symmetries in (2.3.8) (or equiva-
lently in (2.3.9)) can directly be seen:

• The right-hand side changes sign if we exchange ϑh ↔ ϑ`, p ↔ q and x ↔ 1− x, since
the roles of Xh and X` are simply exchanged.

• If p = q = r = 0 or p = q = r = 1, the right-hand side is 0.

• If ϑh = ϑ` = 0, the result does not depend on r since there are no mutations.

• If ϑh = ϑ` and p = q, the right-hand side is 0 since Xh and X` are the same (in
distribution).
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Another interesting case is p = q = r, which means that both Xh and X` are in their
mutational balance already at time 0. In this case, we find that

P(Xh(∞) = 1) ≈ x+ 4x(1− x)
α2

σ

r(1− r)(ϑh − ϑl)
(3 + 2ϑl)(3 + 2ϑh)

for small α2/σ. This means that the fixation probability of Xh is greater than under neutrality
(i.e. for α2 = 0) if and only if ϑh > ϑ`.

Remark 2.15 (Computing moments under neutrality). In the proof of Theorem 2.12, we will
have to compute moments ofX under neutral evolution, i.e. α2/σ = 0 in (2.3.2). Since the evo-
lution of X is only driven by mutation and resampling then, such moments can be computed
using the coalescent (Durrett, 2008), which is dual to the solution of (2.3.2). Assume we aim
to compute an n-th moment of X(t), i.e. E[Xa1i1(t) · · ·Xanin(t)] for some a1, ..., an ∈ {`, h}
and i1, ..., in ∈ {0, 1}. Then, the coalescent starts with n lineages, any (unordered) pair of
lineages coalesces independently at rate 1, and the resulting lineages, stopped after having
evolved for time t, are assigned some type, randomly chosen from X(0). Mutations are mod-
eled on top of this tree structure, and we have to deal with all cases such that lineage k
is assigned type akik, for k = 1, ..., n. Since there is no mutation transforming ` to h and
back, lineages assigned with ` must not coalesce with lineages with h, and ancestors of ` (h)
must be of type ` (h). On all such events, mutation from 0 to 1 and back (at rates ϑh and
ϑ`, depending on the type at the first locus) determines types at the second locus. These
arguments will be used below starting in (2.3.11).

Proof of Theorem 2.12. We will use the equality (recall (2.3.3))

Px(Xh(∞) = 1) = Ex[Xh(∞)] = x+

∫ ∞
0

E[GXh(t)]dt (2.3.10)

= x+
α2

σ

∫ ∞
0

E[(Xh0(t)X`1(t)−Xh1(t)X`0(t))(X1(t)−X0(t))]dt,

together with

(Xh0X`1 −Xh1X`0)(X1 −X0)

=(Xh0X`1 +Xh0X`0 −Xh1X`0 −Xh0X`0)(1− 2X0)

=(X`Xh0 −XhX`0) + 2((XhXh0X`0 −X`Xh0X`0) + (XhX
2
`0 −X`X

2
h0)).

Since we are studying the case of low α2/σ, and the integral in (2.3.10) is continuous in
α2/σ, we only need to evaluate the integral at α2/σ = 0. From (2.3.2), we see that we
need to study neutral evolution with the same mutation mechanism. We will write P(.) for
the corresponding probability measure and E[.] for the expectation under neutral evolution.
Following Remark 2.15, we start with

E[Xh(t)] = Xh(0), E[X`(t)] = X`(0)

E[Xh0(t)] = e−ϑhtXh0(0) + (1− e−ϑht)rXh(0) = x(r + e−ϑht(p− r)), (2.3.11)

E[X`0(t)] = (1− x)(r + e−ϑ`t(q − r)),

since either no mutation at the B-locus happened by time t and the ancestor at time 0
had type 0, or a mutation occurred which resulted in a type 0 at the B-locus. Then, for
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E[X`(t)Xh0(t)], note that coalescence of the two corresponding lines must not have occurred
by time t since mutation cannot transform ` to h or back. The same argument applies to
E[Xh(t)X`0(t)], hence∫ ∞

0
E[X`(t)Xh0(t)−Xh(t)X`0(t)]dt

=

∫ ∞
0

e−t((1− x)x(r + e−ϑht(p− r))− x(1− x)(r + e−ϑ`t(q − r))dt

= x(1− x)
( p− r

1 + ϑh
− q − r

1 + ϑ`

)
. (2.3.12)

For E[XhXh0X`0 − X`Xh0X`0], coalescence may occur between the two h-lines in the first
and the two `-lines in the second term. However, on the event that such a coalescence occurs,
E[XhXh0X`0, coal] = E[Xh0X`0, coal] = E[X`Xh0X`0, coal], i.e. this case cancels. Hence,∫ ∞

0
E[Xh(t)Xh0(t)X`0(t)−X`(t)Xh0(t)X`0(t)]dt

=

∫ ∞
0

e−3tx(1− x)(2x− 1)(r + e−ϑht(p− r))(r + e−ϑ`t(q − r))dt

= x(1− x)(2x− 1)
(r2

3
+
r(p− r)
3 + ϑh

+
r(q − r)
3 + ϑ`

+
(p− r)(q − r)
3 + ϑh + ϑ`

)
. (2.3.13)

For E[Xh(t)X`0(t)2−X`(t)Xh0(t)2], either no coalescence occurs, or colescence occurs between
the two `-lins (h-lines) in the first (second) term. In this case, either no mutation occurs on
both branches to the most recent common ancestor, and this has type `0 (h0), or mutation
occurs on exactly on one branch, or on both branches. So,∫ ∞

0
E
[
Xh(t)X`0(t)2 −X`(t)Xh0(t)2

]
dt

=

∫ ∞
0

e−3tx(1− x)
(

(1− x)(r + e−ϑ`t(q − r))2 − x(r + e−ϑht(p− r))2
)

dt

+

∫ ∞
0

∫ t

0
e−3se−(t−s)

·
[
x
(
e−2ϑ`sE[X`0(t− s)] + 2e−ϑ`s(1− e−ϑ`s)rE[X`0(t− s)] + (1− e−ϑ`s)2r2(1− x)︸ ︷︷ ︸

=(1−e−ϑ`s)r(2X`0(t)−(1−e−ϑ`s)r(1−x))

)
− (1− x)

(
e−2ϑhsE[Xh0(t− s)] + 2e−ϑhs(1− e−ϑhs)rE[Xh0(t− s)]

+ (1− e−ϑhs)2r2x
)]

dsdt

= x(1− x) (2.3.14)

·
(

(1− 2x)
r2

3
+ (1− x)

(
2r(q − r)

3 + ϑ`
+

(q − r)2

3 + 2ϑ`

)
− x

(
2r(p− r)

3 + ϑh
+

(p− r)2

3 + 2ϑh

))
(2.3.15)

+ x(1− x)

[∫ ∞
0

∫ ∞
s

e−3se−(t−s)
(
e−2ϑ`s(r + e−ϑ`(t−s)(q − r)) (2.3.16)

−e−2ϑhs(r + e−ϑh(t−s)(p− r))
)

dtds

+r

∫ ∞
0

∫ ∞
s

e−3se−(t−s)
(

2(1− e−ϑ`s)(r + e−ϑ`t(q − r))− (1− e−ϑ`s)2r (2.3.17)
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−2(1− e−ϑhs)(r + e−ϑht(p− r)) + (1− e−ϑhs)2r
)

dtds
]
.

Now, for (2.3.16)∫ ∞
0

∫ ∞
s

e−3se−(t−s)
(
e−2ϑ`s(r + e−ϑ`(t−s)(q − r))− e−2ϑhs(r + e−ϑh(t−s)(p− r))dtds

=

∫ ∞
0

∫ ∞
0

e−3se−t
(
e−2ϑ`s(r + e−ϑ`t(q − r))− e−2ϑhs(r + e−ϑht(p− r))dtds

=
1

3 + 2ϑ`

(
r +

q − r
1 + ϑ`

)
− 1

3 + 2ϑh

(
r +

p− r
1 + ϑh

)
=

rϑ` + q

(3 + 2ϑ`)(1 + ϑ`)
− rϑh + p

(3 + 2ϑh)(1 + ϑh)
(2.3.18)

and for (2.3.17),∫ ∞
0

∫ ∞
s

e−3se−(t−s)
(

2(1− e−ϑ`s)(r + e−ϑ`t(q − r))− (1− e−ϑ`s)2r

− 2(1− e−ϑhs)(r + e−ϑht(p− r)) + (1− e−ϑhs)2r)
)

dtds

=

∫ ∞
0

∫ ∞
s

e−2se−t
(

2(1− e−ϑ`s)e−ϑ`t(q − r)− e−2ϑ`sr

− 2(1− e−ϑhs)e−ϑht(p− r) + e−2ϑhsr)
)

dtds

=

∫ ∞
0

e−3s
(

2(1− e−ϑ`s) 1

1 + ϑ`
e−ϑ`s(q − r)− e−2ϑ`sr

− 2(1− e−ϑhs)e−ϑhs 1

1 + ϑh
(p− r) + e−2ϑhsr)

)
dtds

=
2(q − r)
1 + ϑ`

( 1

3 + ϑ`
− 1

3 + 2ϑ`

)
− 2(p− r)

1 + ϑh

( 1

3 + ϑh
− 1

3 + 2ϑh

)
+

r

3 + 2ϑh
− r

3 + 2ϑ`

=
2ϑ`(q − r)

(1 + ϑ`)(3 + ϑ`)(3 + 2ϑ`)
− 2ϑh(p− r)

(1 + ϑh)(3 + ϑh)(3 + 2ϑh)
+

r

3 + 2ϑh
− r

3 + 2ϑ`
.

(2.3.19)

Summing (2.3.12) + 2 · (2.3.13) + 2 · (2.3.15) + 2x(1− x) · (2.3.18) + 2x(1− x)r · (2.3.19) gives∫ ∞
0

E[(Xh0(t)X`1(t)−Xh1(t)X`0(t))(X1(t)−X0(t))]dt

= x(1− x)

·
[
p− r

1 + ϑh
− q − r

1 + ϑ`
+ 2

(
r(q − r)
3 + ϑ`

+ (1− x)
(q − r)2

3 + 2ϑ`

)
− 2

(
r(p− r)
3 + ϑh

+ x
(p− r)2

3 + 2ϑh

)
+ (2x− 1)

2(p− r)(q − r)
3 + ϑ` + ϑh

+ 2

((
rϑ` + q

(3 + 2ϑ`)(1 + ϑ`)
+
r(1− r)− r

3 + 2ϑ`

)
−
(

rϑh + p

(3 + 2ϑh)(1 + ϑh)
+
r(1− r)− r

3 + 2ϑh

)
+

4ϑ`r(q − r)
(1 + ϑ`)(3 + ϑ`)(3 + 2ϑ`)

− 4ϑhr(p− r)
(1 + ϑh)(3 + ϑh)(3 + 2ϑh)

)]
= x(1− x)



54 Chapter 2. Modifiers of mutation rate in selectively fluctuating environments

·
[
p− r

1 + ϑh
− q − r

1 + ϑ`
+ 2

(
(1− x)

(q − r)2

3 + 2ϑ`
− x(p− r)2

3 + 2ϑh
+ (2x− 1)

(p− r)(q − r)
3 + ϑ` + ϑh

)
+

2r(q − r)
3 + ϑ`

(
1 +

2ϑ`
(1 + ϑ`)(3 + 2ϑ`)︸ ︷︷ ︸
=

(1+2ϑ`)(3+ϑ`)

(1+ϑ`)(3+2ϑ`)

)
− 2r(p− r)

3 + ϑh

(
1 +

2ϑh
(1 + ϑh)(3 + 2ϑh)

)

+ 2

(
q − r

(3 + 2ϑ`)(1 + ϑ`)
− p− r

(3 + 2ϑh)(1 + ϑh)
+ r(1− r)

(
1

3 + 2ϑ`
− 1

3 + 2ϑh

))]
= x(1− x)

·
[

(p− r)(1 + 2ϑh)

(1 + ϑh)(3 + 2ϑh)
− (q − r)(1 + 2ϑ`)

(1 + ϑ`)(3 + 2ϑ`)

+ 2

(
(1− x)

(q − r)2

3 + 2ϑ`
− x(p− r)2

3 + 2ϑh
+ (2x− 1)

(p− r)(q − r)
3 + ϑ` + ϑh

)
+

2r(q − r)(1 + 2ϑ`)

(1 + ϑ`)(3 + 2ϑ`)
− 2r(p− r)(1 + 2ϑh)

(1 + ϑh)(3 + 2ϑh)
+ 2r(1− r)

(
1

3 + 2ϑ`
− 1

3 + 2ϑh

)]
= x(1− x)

·
[

(2r − 1)(q − r)(1 + 2ϑ`)

(1 + ϑ`)(3 + 2ϑ`)
− (2r − 1)(p− r)(1 + 2ϑh)

(1 + ϑh)(3 + 2ϑh)

+ 2

(
(1− x)

(q − r)2

3 + 2ϑ`
− x(p− r)2

3 + 2ϑh
+ (2x− 1)

(p− r)(q − r)
3 + ϑ` + ϑh

+ r(1− r)
(

1

3 + 2ϑ`
− 1

3 + 2ϑh

))]
which together with (2.3.10) shows (2.3.8).



Chapter 3

Recent-admixture model

3.1 Introduction

The human genome consists of a little over three billion base pairs that are composed of
two nucleobases and form the building blocks of the DNA. Sequences of these base pairs are
called genes that code for either proteins or RNA. By sequencing DNA samples from multiple
people one can detect single-nucleotide changes that are responsible for the variation we see in
humans. Single-nucleotide changes of which two or more variations are present in at least 1%
of the population are classified as so-called single-nucleotide polymorphisms (SNPs). Either on
its own or in combination with other SNPs, they determine susceptibility to various diseases,
the way of responding to specific drugs and many other things. Therefore the detecting and
the understanding of SNPs and their impact are of great importance. As a result of major
technological advances in the past decades leading to faster and more inexpensive ways of
reading off the DNA we have been able to identify more and more SNPs.

The sheer amount of data nowadays enables us to analyse the human genome in various
aspects. The aspect we want to focus on in this chapter is the study of biogeographical
ancestry. Among those SNPs, one can find some whose frequencies are highly dependent on
the population where the individual carrying the SNP comes from. These are called ancestry-
informative markers (AIMs) and these are the very markers at the DNA which are used when
analysing DNA samples with special focus on genetic ancestry. When talking about genetic
ancestry we make a clear distinction between biogeographical ancestry and ethnicity, the latter
being more of a social construct independent from genetics. Genetic ancestry is a very broad
term that tackles various problems found in population genetics such as identifying population
structure, assigning individuals to specific populations and so on; see Liu et al. (2013) for a
more detailed review. In this chapter we will focus on the issue of inferring one’s individual
admixture (IA) proportions, i.e. we would like to assign to each ancestral population the
fraction of our genome originating from that very population. One can observe an increasing
interest of the general public caused by, amongst others, companies such as 23andMe that
deliver information on the genetic ancestry of their customers. However, inference of IA
also has application in, for instance, forensics where DNA traces left at the crime scene are
investigated. Due to the increasing amount of available DNA data, this approach has become
a well-established research field in forensic genetics (see e.g. Phillips et al. (2016); Eduardoff
et al. (2016); Kidd et al. (2017)).

structure, which is a Bayesian approach using MCMC developed by Pritchard et al.

55
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(2000), is probably the most widely used program when estimating IA proportions, later fol-
lowed by software such as admixture by Alexander et al. (2009) and frappe by Tang et al.
(2005), which use the faster likelihood-based approach. Their models are based on the idea
that allelic states at each marker are indepentent from each other - also known as the Hardy-
Weinberg equilibrium. However, when we have an individual whose parents come from two
different populations, this individual’s genome will exhibit a high frequency of heterozygotes
also known as the Wahlund effect (Wahlund (1928)). Hence, the Hardy-Weinberg assump-
tion does not apply in cases of recently admixed individuals. In this chapter, we extend the
likelihood-model behind structure or admixture and frappe in order to account for
recent admixture. We do so by introducing two IA vectors, one for the mother and the other
for the father. In doing so, we deliberately use the information that each marker of a child’s
genome consists of one allele passed on by the mother and the other passed on by the father.

This chapter is structured as follows: We will first introduce the admixture model on which
softwares such as structure, admixture and frappe rely on. We then extend this model
as described above and call it the recent-admixture model. The rest of this chapter deals
with the application of our method on the 1000 genomes dataset and the comparison of the
results obtained by the admixture model and the recent-admixture model.

This chapter is based on a collaboration with Peter Pfaffelhuber, Franz Baumdicker, Fabian
Staubach and Denise Syndercombe-Court which is still work in progress. The implementation
of our methods can be downloaded from https://github.com/pfaffelh/recent-admixture.

3.2 Theory

In this section we will first recall the admixture model, which is the basis for the sofware
structure, admixture and frappe. First we write down the admixture model and derive a
method to estimate IA in the case when allele frequencies within populations are not updated.
Secondly, we introduce the recent-admixture model, where an individual is allowed to have
parents with different admixture proportions. We take the following notation for the reference
database:

K : number of ancestral populations,

M : number of markers,

pmk : frequency of allele 1 at (bi-allelic) marker m in population k.

In addition, we consider one additional diploid genome (Gm1, Gm2)m=1,...,M , or (Gm)m=1,...,M

with Gm = Gm1 +Gm2 if phase is not known. The goal is to estimate admixture proportions
(qk)k=1,...,K (or (qMk )k=1,...,K , (q

P
k )k=1,...,K) of this additional genome, where qk (and qMk and

qPk ) is the fraction of the genome originating from population k.

Remark 3.1 (Estimation of allele frequencies). Beside the estimation of IA, programs such as
structure, admixture and frappe also aim to simultaneously update the allele frequencies
in ancestral populations meaning that a new trace - which we wish to obtain information on
ancestry from - changes allelic frequencies in the acestral populations during the runtime. As
a result, these programs require long computation times. In our recent-admixture model, we
will skip this step and we will only update our IAs. Our reasoning is the following: In forensics

https://github.com/pfaffelh/recent-admixture
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we mostly have a large reference database and only one or a few new traces, therefore, the
impact of these new traces on the allelic frequencies is negligible. In other words, we take the
computationally easier way and take allele frequencies for ancestral populations as fixed, and
only change the IAs of the new traces during the runtime.

3.2.1 The admixture model

Suppose we observe (Gma)m=1,...,M ;a=1,2. The main goal of the admixture model is to find
an IA vector q = (qk)k=1,...,K that maximises the log-likelihood (see also (1) and (2) of Tang
et al. (2005))

`(q|G) =
M∑
m=1

∑
a=1,2

log

(
K∑
k=1

αmakqk

)
,

where

αmak :=

{
pmk, if Gma = 1,

1− pmk, if Gma = 0
(3.2.1)

is the frequency of the observed allele in copy a = 1, 2 of marker m in population k. (Note
that e`(q|G) is the probabiltiy of observing (Gma)m=1,...,M ;a=1,2, if every allele is picked inde-
pendently from population k with probability qk.) Assuming that phase is not known, and
with

αmkl := αm1kαm2l =


pmkpml, if Gm1 +Gm2 = 2,

pmk(1− pml) + (1− pmk)pml, if Gm1 +Gm2 = 1,

(1− pmk)(1− pml), if Gm1 +Gm2 = 0,

(3.2.2)

note that the log-likelihood can as well be written as

`(q|G) =
M∑
m=1

log

 K∑
k,l=1

αmklqkql

 .

Provided that each allele observed in the trace comes from population k with probability qk,
the probability to observe allele 1 at marker m is βm(q) :=

∑
k pmkqk. By distinguishing

between the three states for Gm we easily obtain

K∑
k,l=1

αmklqkql =


βm(q)2, for Gm = 2,

2βm(q)(1− βm(q)), for Gm = 1,

(1− βm(q))2, for Gm = 0,

(3.2.3)

such that

`(q|G) =
M∑
m=1

log

((
2

Gm

)
βm(q)Gm(1− βm(q))2−Gm

)
. (3.2.4)

Lemma 3.2. The maximum of q 7→ `(q|G) under the constraint
∑K

k=1 qk = 1 solves

1

M

M∑
m=1

K∑
l=1

αmklql∑K
k′,l′=1 αmk′l′qk′ql′

= 1, k = 1, ...,K. (3.2.5)
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Remark 3.3. 1. Let us add a set of Ancestry Uninformative Markers, i.e. a set of markers
m̃ = 1, ..., M̃ , with frequencies not depending on the population, i.e. αm̃kl = αm̃k′l′ = αm̃
for k, l, k′, l′ = 1, ...,K. Ideally, adding such a set of marker should not influence the
maximum of our likelihood function. Indeed this holds since

M̃∑
m̃=1

K∑
l=1

αm̃klql∑K
k′,l′=1 αm̃k′l′qk′ql′

=

M̃∑
m̃=1

αm̃
∑K

l=1 ql

αm̃
∑K

k′,l′=1 qk′ql′
= M̃.

2. Fixing βm :=
∑K

k=1 pmkqk, we take a look at the left-hand side of (3.2.5).

For Gm = 2, it holds

K∑
l=1

αmklql∑
k′,l′ αmk′l′qk′ql′

=

K∑
l=1

pmkpmlql∑
k′,l′ pmk′pml′qk′ql′

=
pmk
βm

,

for Gm = 1, we have

K∑
l=1

αmklql∑
k′,l′ αmk′l′qk′ql′

=

K∑
l=1

(pmk(1− pml) + (1− pmk)pml)ql∑
k′,l′(pmk′(1− pml′) + (1− pmk′)pml′)qk′ql′

=
pmk(1− βm) + (1− pmk)βm

2βm(1− βm)
=

1

2

(pmk
βm

+
1− pmk
1− βm

)
and finally for Gm = 0

K∑
l=1

αmklql∑
k′,l′ αmk′l′qk′ql′

=
K∑
l=1

(1− pmk)(1− pml)ql∑
k′,l′(1− pmk′)(1− pml′)qk′ql′

=
1− pmk
1− βm

.

Therefore, the maximum q we are looking for in Lemma 3.2 needs to solve

1

2M

M∑
m=1

(
Gm

pmk
βm

+ (2−Gm)
1− pmk
1− βm

)
= 1. (3.2.6)

3. With the help of (3.2.6), we can turn the maximization problem from (3.2.5) into the
fixation problem where we search for q̂ = (q̂k)k=1,...,K such that q̂ = fk(q̂) for

fk(q) =
1

2M

M∑
m=1

(
Gm

pmk
βm

+ (2−Gm)
1− pmk
1− βm

)
qk, k = 1, ...,K. (3.2.7)

A solution can be computed by iteratively computing qn+1 = (fk(qn))k=1,...,K until
convergence. (In our implementation, we continue the iteration until |qn+1− qn| < ε for
ε = 10−6.) We note that this approach is essentially the same as in the EM-algorithm
from Tang et al. (2005), but without carrying out the maximization step.

Proof of Lemma 3.2. We use the theory of Lagrange multipliers which is a method for finding
local extrema under certain constraints. In our case we need to maximise ` over q under the
constraint

∑
k qk = 1. We recall that

`(q|G) =

M∑
m=1

log

 K∑
k,l=1

αmklqkql


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and we obtain

∂`(q|G)

∂qk
=

M∑
m=1

K∑
l=1

αmklql∑K
k′,l′=1 αmk′l′qk′ql′

.

We therefore have to solve the system of equations

λ =

M∑
m=1

K∑
l=1

αmklql∑K
k′,l′=1 αmk′l′qk′ql′

, k = 1, ...,K,

1 =
K∑
k=1

qk.

(3.2.8)

It is easy to eliminate λ, since using both equations from (3.2.8) gives

λ = λ

K∑
k=1

qk =

M∑
m=1

K∑
k,l=1

αmklqkql∑K
k′,l′=1 αmk′l′qk′ql′

= M.

Dividing both sides by M , we are left with finding q = (qk)k=1,...,K such that

1

M

M∑
m=1

K∑
l=1

αmklql∑K
k′,l′=1 αmk′l′qk′ql′

= 1, k = 1, ...,K. (3.2.9)

3.2.2 The recent-admixture model

In the previous admixture model we obtain an IA vector q = (qk)k=1,...,K . We extend this
model by distinguishing between maternally and paternally inherited alleles meaning that for
each new trace, we will not only find an IA vector q but two IA vectors, one belonging to the
mother and the other belonging to the father. The maternally inherited alleles come with
IA qM , and the paternally inherited alleles with qP . In Section 3.4 we will see that taking
the average of qM and qP , we obtain IA which is highly similar to q in the admixture model
in non-admixed and admixed individuals. Furthermore the IA estimated from the recent-
admixture model in recently admixed individuals, in particular if the two parents come from
different populations, is more accurate than for the admixture model. As we estimate not
only the IA of the individual but the IAs of the parents we obtain even more information
on the heritage of the individual and we also gain information on the form of recent admixture.

As we said, our next goal is to find IAs, qM = (qMk )k=1,...,K , q
P = (qPk )k=1,...,K , of the sampled

individual’s parents. The new log-likelihood is then

`(qM , qP |G) =

M∑
m=1

log
( K∑
k,l=1

αmklq
M
k q

P
l

)
,

where αmkl is given as in (3.2.2).
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Choosing qM = qP = q we have that `(qM , qP |G) = `(q|G). Thus the admixture model is
a special case in the recent-admixture model. qM = qP = q in the recent-admixture model
gives the admixture model.

Just like in the admixture model (see (3.2.3)), we can rewrite the log-likelihood and we get

`(qM , qP |G) =

M∑
m=1

log
(

1Gm=2βm(qM )βm(qP )

+ 1Gm=1(βm(qM )(1− βm(qP )) + (1− βm(qM ))βm(qP ))

+ 1Gm=0(1− βm(qM ))(1− βm(qP ))
)
.

(3.2.10)

Lemma 3.4. The maximum of q 7→ `(qP , qM , G) under the constraint
∑K

k=1 q
M
k =

∑K
k=1 q

P
k =

1 solves for k = 1, ...,K

1

M

M∑
m=1

K∑
l=1

αmklq
M
l∑K

k′,l′=1 αmk′l′q
M
k′ q

P
l′

=
1

M

M∑
m=1

K∑
l=1

αmklq
P
l∑K

k′,l′=1 αmk′l′q
P
k′q

M
l′

= 1. (3.2.11)

Remark 3.5. 1. Note that (3.2.11) is symmetric in qM and qP , i.e. if (qM , qP ) solves
(3.2.11), another solution is given by (qP , qM ).

2. As in Remark 3.3 we have a closer look at the left-hand side of (3.2.11). For βm(q) :=∑
k pmkqk, we have for Gm = 2

K∑
l=1

αmklq
M
l∑K

k′,l′=1 αmk′l′q
M
k′ q

P
l′

=
pmkβm(qM )

βm(qM )βm(qP )
=

pmk
βm(qP )

,

for Gm = 1

K∑
l=1

αmklq
M
l∑K

k′,l′=1 αmk′l′q
M
k′ q

P
l′

=
pmk(1− βm(qM )) + (1− pmk)βm(qM )

βm(qM )(1− βm(qP )) + (1− βm(qM ))βm(qP )

and finally for Gm = 0

K∑
l=1

αmklq
M
l∑K

k′,l′=1 αmk′l′q
M
k′ q

P
l′

=
(1− pmk)(1− βm(qM ))

(1− βm(qM ))(1− βm(qP ))
=

1− pmk
1− βm(qP )

.

3. Just like in the admixture model, we can turn (3.2.11) into fixed point equations to find
q̂M , q̂P such that q̂P = fk(q̂

M , q̂P ) and q̂M = fk(q̂
M , q̂P ) for f(q, q′) = (fk(q, q

′))k=1,...,K

with

fk(q, q
′) :=

1

M

M∑
m=1

(
1{Gm=2}

pmk
βm(q′)

(3.2.12)

+ 1{Gm=1}
(pmk(1− βm(q)) + (1− pmk)βm(q))

βm(q)(1− βm(q′)) + (1− βm(q))βm(q′)

+ 1{Gm=0}
(1− pmk)
1− βm(q′)

)
q′k.
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In our implementation, we iteratively compute

qPn+1 = f(qMn , q
P
n ) and qMn+1 = f(qPn+1, q

M
n )

until convergence.

Proof of Lemma 3.4. Again, we use Lagrange multipliers. Since

∂`(qP , qM |G)

∂qPk
=

M∑
m=1

K∑
l=1

αmakq
M
l∑

k′,l′ αmk′l′q
P
k′q

M
k′
,

∂`(qP , qM |G)

∂qMk
=

M∑
m=1

K∑
l=1

αmakq
P
l∑

k′,l′ αmk′l′q
P
k′q

M
k′
,

we have to solve the system of equations

λ =

M∑
m=1

K∑
l=1

αmakq
M
l∑

k′,l′ αmk′l′q
P
k′q

M
k′
, k = 1, ...,K,

ρ =
M∑
m=1

K∑
l=1

αmakq
P
l∑

k′,l′ αmk′l′q
P
k′q

M
k′
, k = 1, ...,K,

1 =

K∑
k=1

qPk =

K∑
k=1

qMk .

(3.2.13)

Again, it is easy to eliminate λ and ρ, since with (3.2.13) we have

λ = λ
K∑
k=1

qPk =
M∑
m=1

K∑
k,l

αmklq
P
k q

M
l∑K

k′,l′ αmk′l′q
P
k′q

M
l′

= M,

ρ = ρ

K∑
k=1

qMk =
M∑
m=1

K∑
k,l

αmklq
P
k q

M
l∑K

k′,l′ αmk′l′q
P
k′q

M
l′

= M.

Dividing by M , we are left with finding qP and qM such that

1

M

M∑
m=1

αmklq
P
l∑K

k′,l′ αmk′l′q
P
k′q

M
l′

= 1, k = 1, ...,K,

1

M

M∑
m=1

αmklq
M
l∑K

k′,l′ αmk′l′q
P
k′q

M
l′

= 1, k = 1, ...,K.

3.3 Application to data

Now that we have introduced both the admixture and the recent-admixture models we want
to apply these methods to real data. We used the 1000 Genomes data to produce admixed
individuals and test the accuracy of both models.
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3.3.1 Human data

We downloaded the 1000 Genomes data (phase 3) from ftp://ftp.1000genomes.ebi.ac.uk/

vol1/ftp/release/20130502/, as well as information on the sampling locations from ftp://

ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.

20130502.ALL.panel 1000 Genomes Project Consortium et al. (2015). This data consists of

661 Africans (AFR),

347 Admixed Americans (AMR),

504 East Asians (EAS), (3.3.1)

503 Europeans (EUR),

489 South-East Asians (SAS).

In the following we will be excluding all Admixed Americans (AMRs) since they are known
to have an admixed background (Eduardoff et al. (2016); Pfaffelhuber et al. (2019)). The
dataset comes with approximately 80 million SNPs. We will be using two subsets known
as the EUROFORGENE AIMset (Phillips et al. (2014)) and the Kidd AIMset (Kidd et al.
(2014)), respectively. The EUROFORGENE AIMset contains 128 SNPs that are able to
distinguish between continental groups. Since our models are only designed for bi-allelic
SNPs, we will ignore all the tri-allelic SNPs (rs17287498, rs2069945, rs2184030, rs433342,
rs4540055, rs5030240), as well as rs12402499, which is not available in the 1000 Genomes
dataset. The Kidd AIMset consists of 55 bi-allelic SNPs all available in the 1000 Genomes
dataset.

3.3.2 Obtaining admixed individuals in silico

As mentioned above, we created admixed individuals from the 1000 Genomes dataset to
be able to test our method. To do so, we first choose genomes G̃ = (G̃m)m=1,...,M from
population k and Ḡ = (Ḡm)m=1,...,M from population k′ as the parents. We then obtain the
genome G = (Gm)m=1,...,M of a first generation admixed individual from populations k and
k′ by

Gm = Xm + Ym

where

Xm =

{
1 with probability G̃m/2,

0 with probability (2− G̃m)/2,
Ym =

{
1 with probability Ḡm/2,

0 with probability (2− Ḡm)/2.
(3.3.2)

We note that by iterating this procedure we can also model second generation admixed indi-
viduals etc. in silico.

Remark 3.6 (Notation). For a second generation admixed individual with maternal grand-
parents coming from population K1 and K2 and paternal grandparents coming from popula-
tion K3 and K4 we denote the heritage of this second generation admixed individual as

K1,K2/K3,K4.

Remark 3.7 (Second generation heritage). Using the population labels AFR, EAS, EUR,
SAS as in (3.3.1) and the notation from Remark 3.6, all cases for second generation admixed
individuals fall into one of the following seven categories:

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/integrated_call_samples_v3.20130502.ALL.panel
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(A) 4 non-admixed cases, e.g. AFR, AFR/ AFR, AFR;

(B) 6 admixed cases with admixture ratio 50:50, where both parents are non-admixed, e.g.
AFR, AFR/ EAS, EAS;

(C) 6 admixed cases with admixture ratio 50:50, where both parents are admixed, e.g. AFR,
EAS/ AFR, EAS;

(D) 12 admixed cases with admixture ratio 75:25, e.g. AFR, AFR/ AFR, EAS;

(E) 12 admixed cases with admixture ratio 50:25:25, where one parent is non-admixed, e.g.
AFR, AFR/ EAS, EUR;

(F) 12 admixed with admixture ratio 50:25:25, where both parents are admixed, e.g. AFR,
EAS/ AFR, EUR;

(G) 3 admixed with admixture ratio 25:25:25:25, e.g. AFR, EAS/ EUR, SAS.

In total we have 55 cases for which we each simulated 500 individuals in silico by picking
four grand-parents at random from the populations, creating mother and father from the
grand-parents, and creating a new individual from the parents, as described in (3.3.2).

3.4 Results

3.4.1 Comparing results from admixture and recent-admixture

With the help of the admixture and the recent-admixture model we are able to estimate IA
of individual and obtain admixture proportions q = (qk)k=1,...,K and qM = (qMk )k=1,...,K and
qP = (qPk )k=1,...,K , respectively. In the following we want to investigate how accurate the
inferred admixture proportions actually are. To do so we define for k = 1, ...,K

qMP
k := 1

2(qMk + qPk )

which gives the fractions of the genome coming from population k in the recent-admixture
model. With qMP

k we have a quantity that can be compared to qk from the admixture model.
The vectors q and qMP = (qMP

k )k=1,...,K are then compared to the true admixture proportions.
Clearly, the true ancestry depends on which of the seven cases (A)-(G) we are in. In case
(A), i.e. for a non-admixed individual, we have qtrue

k = 1 for some k, and in case (B), i.e. an
admixed individual with parents from populations k and k′, we have qtrue

k = qtrue
k′ = 0.5, and

similarly for all other cases (C)-(G). The true admixture proportions of the remaining cases
can be found in Remark 3.7. The distances to the true IA for the admixture model and the
recent-admixture model are∑

k

|qk − qtrue
k | and

∑
k

|qMP
k − qtrue

k |, (3.4.1)

respectively.

Remark 3.8. Above we defined qMP
k := 1

2(qMk + qPk ) in order to be able to compare the
results obtained from the recent-admixture model to the ones obtained from the admixture
model. We need to point out though, that in the recent-admixture model, we in fact receive
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information on qM and qP , the admixture proportions of the parents, separately, such that
even more information than qMP is contained in the estimates for this model. Looking at
Remark 3.7, we can see that individuals from (B) and (C) all have admixture ratios 50:50
but clearly case (B) covers first generation admixture and case (C) corresponds to second
generation admixture. In the best scenario, the admixture model delivers in both cases a
vector q where two entries are close to 1/2. The recent-admixture model, however, gives us
the vectors qM and qP where in case of

(B), both qM and qP have each one entry close to 1, and

(C), both qM and qP have each two entries close to 1/2.

So we can see that the recent-admixture model is in fact especially designed to detect recent
admixture events in data.

Figure 3.1 give boxplots of the distances to the true IA for first-generation and second-
generation admixtures using the 1000 genomes dataset.

(a) (b)
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Figure 3.1: For all first generation admixed samples (a) and second generation admixed
samples (b), we computed IA from the admixture and recent-admixture model.
The distance to the true IA is computed as in (3.4.1). The cases in (B) are as
described above.

As can be seen in Figure 3.1.(a), the recent-admixture estimates outperform admixture es-
timates in all cases for first generation admixed individuals. For second generation admixed
individuals, Figure 3.1.(b), the situation is similar but depends on the type of admixture; see
cases (B)–(G) above. (A full list of 55 cases is displayed in Figure 3.3 in Section 3.5.) In
Figure 3.1.(b), note that column A gives non-admixed samples, and we see that estimates
of IA are essentially as accurate in the admixture model and the recent-admixture model.
Figure 3.5 depicts the same boxplots for the Kidd AIMset and contains similar results.
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3.4.2 A Likelihood-ratio test for recent admixture

Suppose we have a new trace with data G = (Gm)m=1,...,M . We want to test if G fits
significantly better to the recent-admixture model than to the admixture model. Since the
admixture model is identical to the recent-admixture model for qM = qP = q, we are testing
the hypothesis

H0 : qM = qP against H1 : qM 6= qP .

For this, we take the estimators q̂ of q from iteration of (3.2.7), and q̂M , q̂P of qM and qP

from iteration of (3.2.12) and compute the difference of the log-likelihoods

∆` := `(q̂M , q̂P |G)− `(q̂|G)

with `(qM , qP |G) from (3.2.10) and `(q|G) from (3.2.4). The larger the ∆`, the better the
trace fits to the recent-admixture model. Therefore, we need to specify some x to obtain
following decision rule

if ∆` > x⇒ we reject H0

and if ∆` ≤ x⇒ we accept H0.

In order to find x, we fix a p-value (1%, say), and set x equal to the p-quantile of the empirical
distribution for data in the reference database, meaning, if p = 1% and the reference dataset
contains 1000 samples, we compute all values for ∆` for all samples, and set x to be the 10-th
smallest value we obtained.

3.4.3 Power of the Likelihood-ratio test for recent admixture

When fixing the maximal p-value for significance of the likelihood-ratio test for recent-
admixture, we obtain the power of the test for all cases of recent admixture. Displaying
the false positives (i.e. positively tested non-admixed) against true positives (i.e. positively
tested admixed) in cases (B)–(G) for all possible values of p, we obtain the Receiver-Operation-
Characteristic (ROC) curve. The optimal curve nearly hits 0 false positives with 100% true
positives and has an AUC (Area Under the Curve) of 1. As we see in Figure 3.2, the power
of the test differs with the kind of admixture. For first generation admixed (case (B)), one
non-admixed parent (case (E)) and all grandparents from different continents (case (G)), the
test is nearly perfect in distinguishing recent-admixture from admixture. If only half of the
genome has two different ancestries (cases (D) and (F)), the power is reduced. If the individ-
ual is not recently-admixed in first generation, but both parents are (case (C)), power drops
even more. In fact, the latter case is not recent-admixture as in our definition, since qM = qP

should technically hold. For the overall performance of the test, we give some examples in
Table 3.1, in particular the power at p = 1% and AUC in all cases. Results for the Kidd
AIMset are similar and given in the SI in Figure 3.6 and Table 3.3.
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G, e.g.  AFR, EAS/ EUR, SAS

Figure 3.2: Using the EUROFORGEN AIMset, we plot false positives (i.e. positive non-
admixed individuals, as in case (A) above, against true positives for all cases
of admixture in second generation.

Case B C D E F G

AUC 0.99 0.637 0.872 0.983 0.928 0.99
Power at p = 0.01 0.94 0.23 0.51 0.9 0.62 0.9

Table 3.1: Using the same data as in Figure 3.2, we e.g. see that the test for recent admixture
turns out to have a p-value below 1% in 94% cases of first generation admixed
individuals.
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3.4.4 Detecting recent admixture in the 1000 genomes dataset

Running both the admixture and the recent-admixture model on the 1000 genomes dataset,
we were able to detect samples with large ∆`, i.e. individuals that show clear signs for being
admixed individuals rather than ancestral.

There are six Africans from population ASW (Americans from Southwest USA), and two
from South Asia, one from GIH (Gujarati Indian from Houston, Texas) and one from BEB
(Bengali from Bangladesh). We note that it is known that the ASW population is admixed
(Eduardoff et al., 2016), but until now, it has not been tested if admixture is recent.

In Table 3.2, we list the following eight most extreme cases which show highly significant
results for recent admixture for both AIMsets:

• NA20278: Giving the most significant results for both datasets, this male most probably
has parents from African and European ancestry. Note also that qMP and q are very
similar for both AIMsets.

• NA20342, NA19625, NA20355: Clearly, one parent has African ancestry. The other
parent is most likely partly European.

• NA20274: Our test indicates two parents of different ancestry, one mostly African, the
other mostly East-Asian.

• NA20299: Interestingly, the results for both AIMsets differ in this example. One parent
has most likely African ancestry, the other is European according to the EUROFORGEN
AIMset and South-East Asian according to the Kidd AIMset.

• HG03803: Most likely, one parent of South-East Asian, the other has East-Esian ances-
try.

• NA20864: Most likely, one parent of South-East Asian, the other has European ancestry.
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NA20278, AFR, ASW

EURO ad q

∆` = 6.69 r-ad
qMP

qM , qP

Kidd ad q

∆` = 9.98 r-ad
qMP

qM , qP

NA20342, AFR, ASW

EURO ad q

∆` = 1.82 r-ad
qMP

qM , qP

Kidd ad q

∆` = 3.66 r-ad
qMP

qM , qP

NA20274, AFR, ASW

EURO ad q

∆` = 6.56 r-ad
qMP

qM , qP

Kidd ad q

∆` = 2.68 r-ad
qMP

qM , qP

NA19625, AFR, ASW

EURO ad q

∆` = 1.52 r-ad
qMP

qM , qP

Kidd ad q

∆` = 1.6 r-ad
qMP

qM , qP

NA20355, AFR, ASW

EURO ad q

∆` = 1.11 r-ad
qMP

qM , qP

Kidd ad q

∆` = 1.55 r-ad
qMP

qM , qP

NA20299, AFR, ASW

EURO ad q

∆` = 6.31 r-ad
qMP

qM , qP

Kidd ad q

∆` = 1.52 r-ad
qMP

qM , qP

HG03803, SAS, BEB

EURO ad q

∆` = 1.01 r-ad
qMP

qM , qP

Kidd ad q

∆` = 1.12 r-ad
qMP

qM , qP

NA20864, SAS, GIH

EURO ad q

∆` = 0.87 r-ad
qMP

qM , qP

Kidd ad q

∆` = 0.95 r-ad
qMP

qM , qP

Table 3.2: The most extreme individuals in the 1000 genomes dataset in terms of a signal for
recent admixture. For all individuals, we give IA from the admixture model (ad),
given by q, the recent-admixture model (r-ad) qM , qP , qMP = 1

2(qM + qP ), for the
analysis with the EUROFORGEN and Kidd AIMset. Difference in log-likelihoods
for both models is given by ∆`. Colors are AFR , EAS , EUR , SAS .
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3.5 Additional results

We complement the results from Section 3.4 by giving the analogous results obtained by using
the Kidd AIMset and listing all possible admixed individuals.

3.5.1 Estimation accuracy

For second generation admixed individuals, we have 55 cases, depending on the origin of the
grandparents. With the population labels AFR, EAS, EUR, SAS we obtain the following
admixtures:

(A) 4 non-admixed cases (with IA 100:0): (AFR, AFR/ AFR, AFR), (EAS, EAS/ EAS,
EAS), (EUR, EUR/ EUR, EUR), (SAS, SAS/ SAS, SAS);

(B) 6 admixed cases with admixture ratio 50:50, where both parents are non-admixed:
(AFR, AFR/ EAS, EAS), (AFR, AFR/ EUR, EUR), (AFR, AFR/ SAS, SAS), (EAS,
EAS/ EUR, EUR), (EAS, EAS/ SAS, SAS), (EUR, EUR/ SAS, SAS);

(C) 6 admixed cases with admixture ratio 50:50, where both parents are admixed: (AFR,
EAS/ AFR, EAS), (AFR, EUR/ AFR, EUR), (AFR, SAS/ AFR, SAS), (EAS, EUR/
EAS, EUR), (EAS, SAS/ EAS, SAS), (EUR, SAS/ EUR, SAS);

(D) 12 admixed cases with admixture ratio 75:25: (AFR, AFR/ AFR, EAS), (AFR, AFR/
AFR, EUR), (AFR, AFR/ AFR, SAS), (EAS, EAS/ EAS, AFR), (EAS, EAS/ EAS,
EUR), (EAS, EAS/ EAS, SAS), (EUR, EUR/ EUR, AFR), (EUR, EUR/ EUR, EAS),
(EUR, EUR/ EUR, SAS), (SAS, SAS/ SAS, AFR), (SAS, SAS/ SAS, EAS), (SAS,
SAS/ SAS, EUR);

(E) 12 second generation admixed with admixture ratio 50:25:25, where one parent is non-
admixed: (AFR, AFR/ EAS, EUR), (AFR, AFR/ EAS, SAS), (AFR, AFR/ EUR,
SAS), (EAS, EAS/ AFR, EUR), (EAS, EAS/ AFR, SAS), (EAS, EAS/ EUR, SAS),
(EUR, EUR/ AFR, EAS), (EUR, EUR/ AFR, SAS), (EUR, EUR/ EAS, SAS), (SAS,
SAS/ AFR, EAS), (SAS, SAS/ AFR, EUR), (SAS, SAS/ EAS, EUR);

(F) 12 second generation admixed with admixture ratio 50:25:25, where both parents are
admixed: (AFR, EAS/ AFR, EUR), (AFR, EAS/ AFR, SAS), (AFR, EUR/ AFR,
SAS), (EAS, AFR/ EAS, EUR), (EAS, AFR/ EAS, SAS), (EAS, EUR/ EAS, SAS),
(EUR, AFR/ EUR, EAS), (EUR, AFR/ EUR, SAS), (EUR, EAS/ EUR, SAS), (SAS,
AFR/ SAS, EAS), (SAS, AFR/ SAS, EUR), (SAS, EAS/ SAS, EUR);

(G) 3 second generation admixed with admixture ratio 25:25:25:25: (AFR, EAS/ EUR,
SAS), (AFR, EUR/ EAS, SAS), (AFR, SAS/ EAS, EUR);

Figure 3.3, Figure 3.4 and Figure 3.5 give the distance to the true IA for all of the above
cases. See also Figure 3.1 from Section 3.4.
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Figure 3.5: Same as in Figure 3.1, but using the Kidd AIMset.



3.5. Additional results 73

3.5.2 Power of the Likelihood-ratio test using the Kidd AIMset

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

positives in case A

po
si

tiv
es

 in
 c

as
es

 B
,..

.,G

B, e.g.  AFR, AFR/ EAS, EAS
C, e.g.  AFR, EAS/ AFR, EAS
D, e.g.  AFR, AFR/ AFR, EAS
E, e.g.  AFR, AFR/ EAS, EUR
F, e.g.  AFR, EAS/ AFR, EUR
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Figure 3.6: Same as in Figure 3.2, but using the Kidd AIMset.

Case B C D E F G

AUC 0.982 0.655 0.855 0.983 0.921 0.982
Power at p = 0.01 0.92 0.29 0.5 0.89 0.65 0.89

Table 3.3: Same as Table 3.1, but using the Kidd AIMset.
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Phillips, C., Santos, C., Fondevila, M., Ángel Carracedo, and Lareu, M. V. (2016). Inference
of Ancestry in Forensic Analysis I: Autosomal Ancestry-Informative Marker Sets. In Foren-
sic DNA Typing Protocols, volume 1420 of Methods in Molecular Biology, pages 233–253.
Springer, New York.

Pritchard, J., Stephens, M., and Donnelly, P. (2000). Inference of population structure using
multilocus genotype data. Genetics, 155:945–954.
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