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The present thesis investigates the usage of higher order accurate time integrators together 
with appropriate error estimators for small and finite dynamic (visco)plasticity. Therefore, a 
general (visco)plastic problem is defined which serves as a basis to create closed-form solu-
tion strategies. A classical access towards small and finite (visco)plasticity is integrated into 
this concept. This approach is based on the idea, that the balance of linear momentum is for-
mulated in a weak sense and the material laws are included indirectly. Thus, separate time 
discretizations are implemented and an appropriate coupling between them is necessary. 
Limitations for the usage of time integrators are the consequence. In contrast, an alternative 
multifield formulation is derived, adapting the principle of Jourdain. The idea is to assume 
that the balance of energy - taking into account a pseudopotential representing dissipative 
effects – resembles a rate-type functional, whose stationarity condition leads to the equa-
tions describing small or finite dynamic (visco)plasticity. Accordingly, the material laws and 
the balance of linear momentum can be solved on the same level and only one single time 
discretization has to be performed. A greater freedom in the choice of time integrators is 
obtained and the application of higher order accurate schemes - such as newmark’s method, 
fully implicit as well as diagonally implicit Runge-Kutta schemes, and continuous as well as 
discontinuous Galerkin methods - is facilitated. An analysis and a comparison of the clas-
sical and the multifield formulation is accomplished by means of distinct examples. In this 
context, a dynamic benchmark problem is developed, which allows to focus on the effect of 
different time integrators. For this investigation, a variety of time discretization error estima-
tors are formulated, evaluated, and compared.
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Zusammenfassung

Die vorliegende Arbeit befasst sich mit der Anwendbarkeit höhergenauer Zeitintegrationsver-
fahren sowie den dazugehörigen Fehlerschätzern auf die dynamische (Visko)plastizität im Be-
reich kleiner und großer Deformationen. In diesem Zusammenhang wird ein allgemeines
elasto(visko)plastisches Problem definiert, welches auf orts- und zeitabhängigen Variations-
ungleichungen und Variationsgleichungen basiert. Mit dieser Definition werden ganzheitliche
Lösungsstrategien entwickelt, die die (Visko)plastizität bei großen und kleinen Deformationen
als Ein- oder Mehrfeldproblem betrachten. Während für Variationsgleichungen ein Newton-

Raphson Verfahren angewendet wird, werden für Variationsungleichungen die Vorteile halbglat-
ter Newton Verfahren ausgenutzt. Beide Strategien benötigen jedoch spezielle Linearisierungs-
techniken. Zu diesem Zweck wird eine räumliche Diskretisierung, welche ein semidiskretes
Gleichungssystem liefert, mittels der Finiten Elemente Methode unter Verwendung kontinuier-
licher und diskontinuierlicher Ansätze durchgeführt. Danach findet das Konzept der Gâteaux

Ableitung beziehungsweise das der generalisierten Gradienten Anwendung, um das allgemeine
elasto(visko)pastische Problem in eine linearisierte semidiskrete Form zu überführen. Um da-
raus schließlich ein lineares Gleichungssystem zu generieren, muss zusätzlich noch eine Zeit-
diskretisierung angewendet werden. Dazu werden verschiedene höhergenaue Zeitintegratoren
wie zum Beispiel das Newmark Verfahren, voll und diagonal implizite Runge-Kutta Ver-
fahren sowie kontinuierliche und diskontinuierliche Galerkin Methoden eingesetzt.
Des Weiteren wird in dieser Arbeit eine klassische Betrachtungsweise der dynamischen (Visko)-
plastizität im Bereich kleiner und großer Deformationen dargelegt und in das Lösungskonzept des
allgemeinen elasto(visko)plastischen Problems eingebettet. Der konventionelle Ansatz basiert
auf der Idee die Impulsbilanz schwach zu formulieren und die Materialgleichungen der (Visko)-
plastizität nur indirekt zu berücksichtigen. Das Verschiebungsfeld wird an Finiten Element
Knoten bestimmt, während (visko)plastische Größen nur am Integrationspunkt ermittelt wer-
den. Daher muss eine separate Zeitintegration des Beschleunigungsterms in der Impulsbilanz
sowie der Materialgleichungen realisiert werden. Eine adequate Kopplung beider Ebenen erfolgt
mittels des Radial Return Map Algorithmus. Damit geht jedoch die Limitierung auf gewisse
Zeitintegratoren einher.
Im Gegensatz dazu wird eine alternative Mehrfeldformulierung hergeleitet. Zu diesem Zweck
wird das Prinzip von Jourdain erweitert. Die Idee dahinter ist, die Energiebilanz bestehend
aus der kinetischen, inneren und äußeren Energie sowie einem Potential, welches dissipativen Ef-
fekten Rechnung trägt, als ein Raten abhängiges Funktional anzunehmen. Die Gleichungen der
Elasto(visko)plastizität bei kleinen und großen Deformationen stellen dann die stationäre Stelle
dieses Funktionals dar. Demzufolge können die Materialgleichungen und die Bilanzgleichungen
gleichzeitig an Finiten Element Knoten gelöst werden. Somit ist nur noch eine einzige Zeitin-
tegration durchzuführen. Eine größere Freiheit bei der Wahl der Zeitintegratoren ist die Folge
und die Anwendung höhergenauer Verfahren wird erleichtert.
Die Analyse und der Vergleich der klassischen und der Mehrfeldformulierung erfolgt im Zuge ver-
schiedener Beispiele unter Berücksichtigung von großen und kleinen Deformationen. In diesem
Kontext wird ein dynamisches Benchmarkproblem entwickelt, welches mit einer begrenzten An-
zahl an räumlichen Freiheitsgraden auskommt und es so ermöglicht den Fokus auf die Effekte
höhergenauer Zeitintegratoren zu legen. Für die damit einhergehenden Untersuchungen werden
eine Vielzahl von verschiedenen Fehlerschätzern formuliert, ausgewertet und verglichen. Letzt-
endlich werden die wichtigsten Ergebnisse zusammengefasst und offen gebliebene Fragestellungen
werden thematisiert.



Abstract

The present thesis aims at investigating the applicability of higher order accurate time integra-
tion schemes together with appropriate error estimators in the context of small and finite strain
dynamic (visco)plasticity. Therefore, a general elasto(visco)plastic problem is defined, whereby
it is assumed that it is based on space and time-dependent variational equalities or inequal-
ities. This definition serves as a basis to create closed-form solution strategies for small and
finite strain (visco)plasticity as a single- or a multifield problem. While a Newton-Raphson

scheme is applied to variational equalities, variational inequalities are treated taking advantage
of a semi-smooth Newton scheme. Both approaches, however, require special linearization tech-
niques. For this purpose, a spatial discretization is carried out with the help of the finite element
method exploiting continuous or discontinuous approximations, leading to a semidiscrete system
of equations. Afterwards, the concept of Gâteaux derivatives or rather generalized gradients is
explored, before a linearized semidiscrete form of the general elasto(visco)plastic problem is ob-
tained. In order to generate a linear system of equations, an appropriate time discretization has
to be applied. Therefore, distinct higher order accurate schemes such as Newmark’s method,
fully implicit as well as diagonally implicit Runge-Kutta schemes, and continuous as well as
discontinuous Galerkin methods are elaborated.
In the scope of this thesis, a classical access towards small and finite elasto(visco)plasticity is
presented and integrated into the solution concept of the general elasto(visco)plastic problem.
This approach is based on the idea, that the balance of linear momentum is formulated in a weak
sense and the material laws of elasto(visco)plasticity are only included indirectly. The displace-
ment field is determined at the finite element nodes, while (visco)plastic quantities are solved on
integration point level. Thus, a separate time discretization is implemented - on the one hand
for the acceleration term of the balance of linear momentum, and for the material equations on
the other hand. An appropriate coupling of both discretization levels is created by means of the
radial return map. Limitations for the usage of time integrators are the consequence.
In contrast, an alternative multifield formulation is derived. In order to do so, the principle of
Jourdain is adapted. The idea is to assume that the balance of energy - taking into account
the kinetic energy, the internal as well as the external energy, as well as a pseudopotential repre-
senting dissipative effects - resembles a rate-type functional, whose stationarity condition leads
to the equations describing small or finite dynamic (visco)plasticity. Accordingly, the material
laws and the balance of linear momentum can be solved on the same level at finite element nodes
and only one single time discretization scheme has to be performed. A greater freedom in the
choice of time discretization schemes is obtained and the application of higher order accurate
schemes is facilitated.
An analysis and a comparison of the classical and the multifield formulation is accomplished by
means of distinct examples in the small and the finite strain regime. In this context, a dynamic
elasto(visco)plastic benchmark problem is developed as well, which comes along with a limited
number of spatial degrees of freedom and, hence, allows to focus on the effect of different higher
order accurate time integration methods. For this investigation, a variety of time discretization
error estimators are formulated, evaluated, and compared. Last but not least, the main results
are summarized and remaining questions are addressed.
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δĊ
−1
p test function related to the rate of the plastic strain field

δu̇ test function related to the rate of the displacement field
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1. Introduction

1.1. Motivation

Scientific research is often shaped by social and economic conditions as well as an environmental
conscience. In the engineering field, this leads to high performance products with striking aspira-
tions with regard to security aspects, lightweight constructions and resource efficient production
strategies. Creating new multi-materials by cleverly combining existing ones in a single forming
process step may be seen as a specific example, cf. (Fleischer, 2014). A different approach is
to conceive hybrid materials by using joining techniques that are based on the exploitation of
plastic deformations, cf. (Liewald, 2012). But there are also new fabrication scenarios in the
regime of monomaterials, that lead to noteworthy results regarding the desired objectives. Thus,
electromagnetic supported sheet metal deep drawing with different forming speeds leads to an
optimized utilization of material as well as to an extended formability, cf. (Reese, 2008). Func-
tionally graded structures for which material properties are adjusted in an application-oriented
manner can be obtained by an integrated thermodynamical forming process, cf. (Steinhoff et al.,
2009).
But apart from high demands in the context of production engineering, challenges concerning
the simulation of these fabrication sequences as well as the simulation of the obtained products’
application have to be overcome. The common ground within the previously described exam-
ples is that the manufacturing process or the products’ application is characterized by both
(visco)plastic deformations and dynamic effects. To demonstrate this, the integrated thermo-
mechanical process of (Steinhoff et al., 2009) is analyzed explicitly. For metallic products, the
production procedure is mainly characterized by three subsequent stages, see Figure 1.1.

Figure 1.1.: Integrated thermomechanical forming process, cf. (Steinhoff et al., 2009)

In the first step, a heterogenous temperature distribution is achieved throughout a local inductive
heating. Afterwards, the workpiece is mechanically formed and simultaneously cooled due to
the contact with the forming die. This is followed by a partial cooling with a high pressured air
stream, whereby a further adjustment of the material characteristics is obtained, cf. (Steinhoff
et al., 2009). The second task of this innovative fabrication sequence is considerably influenced by
finite thermo(visco)plastic deformations and inertia effects due to the fast closing of the forming
die. Hence, in order to simulate such a forming process, adequate models and implementation
strategies have to be established.
Basic aspects for a continuum mechanical modeling of finite strains are provided by (Altenbach,
2012; Bonet and Wood, 2009; Haupt, 2000; Holzapfel, 2000; Wriggers, 2008). Therein, it is espe-
cially the balance equations that are necessary to describe the forming process mathematically
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that are derived. Apart from field equations appropriate constitutive laws, characterizing elastic
and (visco)plastic effects, have to be formulated. Within the finite strain regime, different kine-
matic relations have been formulated to describe elasto(visco)plastic behavior. A multiplicative
split of the deformation gradient in a (visco)plastic and an elastic part was also considered as an
additive split of the strain tensor, cf. (Lubliner, 2006; Naghdi, 1990; Simo and Ortiz, 1985). In
the context of solid mechanics, it is customary to formulate the balance equations using quanti-
ties associated to the reference configuration, but there is no analogous concept for the material
laws. Formulations in the reference configuration are just as common as a description in the
current or even in a third, the intermediate configuration, cf. (Casey and Naghdi, 1988; Haupt,
2000; Lubliner, 2006; Miehe, 1995; Quint, 2011; Simo, 1998; Wriggers, 2008). If the considered
deformation process is constituted by small strains, a geometric linearization can be carried out
so that this distinction can be neglected and all configurations coincide, cf. (Altenbach, 2012;
Haupt, 2000).
Concerning the modeling of metal plasticity, there are several approaches for small as well as for
finite strains. While some models are based on phenomenological aspects, others acknowledge
the microstructure as a starting point for a macroscopic modeling, cf. (Chaboche, 2008; Haupt,
2000; Mahnken et al., 2011, 2012; Ostwald et al., 2010). Furthermore, additional aspects such as
directional-dependent material properties, hardening assumptions, or temperature dependencies
are taken into account, cf. (Chaboche, 2008; Mahnken and Schneidt, 2009; Miehe, 1995; Schröder
et al., 2002; Simo and Miehe, 1992; Svendsen, 2007; Tsakmakis, 1996a,b; Vladimirov et al., 2010).
There is a similar variety regarding the numerical realization. Since analytical solutions are only
rarely available for elasto(visco)plastic behavior, numerical solution procedures experience an
enhanced interest. They are generally based on nonlinear solution strategies together with spatial
and temporal discretization methods. In the finite thermo(visco)plastic regime, for example,
one attempt is to formulate the balance laws weakly, apply the finite element method using the
displacement and the temperature field as primary variables, and to evaluate the material laws
on integration point level, cf. (Dhondt, 2004; Hughes, 2000; Simo, 1998; Zienkiewicz and Taylor,
2000). Due to the often occurring volume preserving constraint of the plastic flow, and in the
context of nearly incompressible materials, multifield approaches emerged, cf. (De Souza Neto
et al., 2008; Simo and Miehe, 1992; Wriggers et al., 1992). Moreover, further independent
fields like stresses or generalized forces came to attention through the explicit exploitation of
the maximum principle of dissipation or of dissipational potentials, (Carstensen et al., 2002;
Hackl, 1997; Halphen and Nguyen, 1975). These assessments also gained popularity in the
context of small strain plasticity involving or disregarding thermal effects, cf. (Comi and Perego,
1995; De Borst and Mühlhaus, 1992; Miehe, 2011; Simo et al., 1989; Stainier, 2013). The
common framework to derive these multifield settings within the finite and the small regime is
an incremental variational formulation. The term dissipational potential may refer to different
expressions - depending on the respective author. A mathematical analysis acknowledging some
aspects of multifield plasticity is carried out in (Carstensen et al., 2002; Han and Reddy, 1999;
Mielke, 2004; Reddy and Martin, 1994) and the references therein.
Apart from the spatial discretization, a temporal one has to be performed as well. In the
scope of dynamic thermo(visco)plasticity, this is necessary due to two reasons. First, the heat
conduction equation may take non-stationary effects into account, and the balance of linear
momentum inherits an acceleration term, which is associated to the prevalent inertia effects.
For high deformation speeds, these phenomena influence the resulting strain field and cannot
be neglected. Hence, their temporal discretization plays an important role. However, they
are often not taken into account and quasi-static circumstances are examined. The second
argument for a time discretization is the modeling of (visco)plastic effects. They are often
characterized by material laws which include constitutive as well as evolution equations. The
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latter allow for mathematical descriptions of materials that possess a memory, thus linking their
behavior to past events, cf. (Hartmann, 2008; Schreiber, 1997). This can be done using rate-
dependent formulations where the strain rate influences the response of the material. If the same
deformation state is obtained, despite considering distinct deformation speeds, rate-independent
models are necessary, cf. (Hartmann, 2008; Haupt, 2000; Simo and Hughes, 1997).
Due to the various possible combinations of spatial and temporal discretizations, there are a lot
of distinct numerical implementations. A commonly applied approach for the time discretization
is the backward Euler scheme, cf. (Comi and Perego, 1995; Simo et al., 1989; Simo and Miehe,
1992; Zienkiewicz and Taylor, 2000), but also generalized midpoint rules, exponential time inte-
grators, Runge-Kutta methods, Newmark schemes, and Galerkin methods are employed
- either to discretize the evolution or the balance equations, cf. (Alberty and Carstensen, 2002;
Auricchio and Taylor, 1999; Ellsiepen and Hartmann, 2001; Hager and Wohlmuth, 2009; Mohr
et al., 2008; Simo, 1998; Simo and Hughes, 1997; Wriggers, 2008).
The important issue, with regard to dynamic plasticity, is that the time discretization of the
material laws and the one of the balance equation are coupled appropriately. Furthermore,
it must be assured that the yield condition is not violated at the calculated time step. In
this context, a series of procedures has been developed. For conventional plasticity, where the
displacement field is the only unknown, return mapping algorithms are established, cf. (Han
and Reddy, 1999; Simo, 1998; Simo and Hughes, 1997). Therein, a trail state is defined for
each integration point. This state is accepted if elastic behavior prevails, otherwise the yield
condition is violated and a projection of the stress state back onto the yield surface is carried
out. In (Ellsiepen and Hartmann, 2001; Hartmann, 2005) the link between the element and
the integration point level and, hence, the fulfillment of the yield condition is obtained via a
nested Newton method, a so called multilevel Newton algorithm. A further access towards
the numerical implementation of plasticity is to use tools that are known from optimization.
A reconsideration of the radial return map, leading to the application of sequential quadratic
programming methods, is one consequence, cf. (Wieners, 2007). The numerical exploitation of
variational inequalities by means of semi-smooth Newton methods is another, cf. (Christensen,
2002; Hager and Wohlmuth, 2009; Seitz et al., 2014). However, the actual realizations vary
concerning the number and kind of considered primary variables. Hence, in this context, a
variety of different multifield formulations prevails.
The algorithmic demands for dynamic viscoplasticity are different from those regarding the plas-
tic case. Within viscoplasticity, the yield condition can be violated, since stress states outside the
yield surface are permitted. Hence, the problem formulation loses its constraint, cf. (Hartmann
et al., 1997). This behavior is often modeled using regularization techniques, whereby the limit
case leads to the original formulation of plasticity, cf. (Alberty and Carstensen, 2000; Alberty
et al., 1999; Ebobisse and Reddy, 2004). The consequence is that many classical algorithms
can be applied to viscoplasticity and plasticity, cf. (Ellsiepen and Hartmann, 2001; Simo and
Hughes, 1997). However, schemes known from optimization, for example semi-smooth Newton

methods, are not necessary anymore. Nonetheless, the derivation of alternative methods like
least-square formulations is enabled, cf. (Schwarz et al., 2009). However, an adequate coupling
between the material laws and the balance equation is still an important aspect.
Despite the individuality of the previously described numerical schemes, all these methods are
always accompanied by numerical errors. Apart from technically caused rounding errors, there
are also approximation errors due to the spatial and temporal discretization. To assess the
influence of the latter distinct error estimators are developed. In the context of (visco)plasticity,
the spatial error estimation is analyzed in (Bangerth and Rannacher, 2003; Han and Reddy,
1999; Repin and Xanthis, 1996; Schmidt, 2001; Stein, 2003) using dual, residual, or recovery-
based techniques. Specific plasticity-inherent procedures are taken into account as well. The
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time discretization error of elastoplastic problems is examined in (Alberty and Carstensen, 2000;
Eidel and Kuhn, 2015; Hartmann and Bier, 2007; Mielke et al., 2010). Thereby, theoretical as
well as numerical investigations are performed.
In the following thesis, a selection of the previously mentioned topics will be outlined in detail.
Motivated by the integrated thermomechanical forming process of (Steinhoff et al., 2009), two
widespread models of elasto(visco)plasticity - one for the finite and one for the small strain
regime - as well as their conventional implementations using the radial return map are pre-
sented, cf. (Simo, 1998; Simo and Hughes, 1997). Furthermore, a new approach and its con-
sistent mathematical formulation towards these models is derived. The concept is to create a
time-continuous variational multifield formulation which enables a simple implementation of a
wide class of higher order accurate time integration schemes on balance and on material law
level at the same time. Thus, lavish coupling algorithms can be disregarded. To achieve this,
the ideas of a dissipational potential, cf. (Carstensen et al., 2002; Hackl, 1997; Halphen and
Nguyen, 1975; Reddy and Martin, 1994), are interpreted in a broader sense and unified with
the incremental multifield formulations of (Comi and Perego, 1995; Miehe, 2011). To simplify
this way of proceeding, thermal effects will be neglected continuously. In the end, the classical
and the variational procedure are compared. In order to do so, a dynamic benchmark problem
with a viscoplastic and a plastic variant for the small and the finite strain regime is designed
and implemented, and detailed results are provided. The distinct variants of the benchmark
problem allow for a variety of numerical studies, including the analysis of distinct higher order
accurate time integration schemes concerning their time discretization errors.

1.2. Outline

Chapter 2 is devoted to a short summary of the background of continuum mechanics, intro-
ducing all necessary kinematic and kinetic quantities as well as their meaning. Additionally, the
crucial balance equations are depicted and explained. Furthermore, an insight into the topic of
small strains derived by means of a linearization of finite deformation measurements is provided.
In Chapter 3, a general elasto(visco)plastic problem is defined. It is based on a nonlinear space-
and time-dependent initial boundary value problem in its weak form. This general framework
enables the mutual treatment of distinct model formulations as well as solution concepts. While
the former are treated in Chapter 4 and Chapter 6, the latter lie in the focus of this chapter.
A classical ansatz employing only variational equalities is followed together with an approach
that also takes inequalities into account. For the latter formulation, a semi-smooth Newton

procedure is depicted, which rests on the notion to redraft the inequalities into equalities by using
complementarity functions as well as creating active and inactive sets. In contrast, a Newton-

Raphson scheme is presented for the classical approach. Both solution strategies, however, are
founded on the idea of applying the finite element method for spatial discretization. Hence,
important aspects including the parametrization, numerical integration, and the exploitation
of both continuous and discontinuous approximations of primary variables are explored. The
consequence is that the weak form of the nonlinear space- and time-dependent problem is trans-
formed into a system of ordinary differential or differential algebraic equations. To solve this
time-dependent problem, various time discretization schemes are employed. Hereby, only higher
order accurate one-step time integration methods are considered, which are also appropriate for
differential algebraic systems. This leads to fully or diagonally implicit Runge-Kutta schemes
as well as to the Newmark class. A detailed description for distinct types of Galerkin time
discretization methods is carried out, likewise. In the end, a system of linear equations has to be
solved. Moreover, the reasons for errors appearing in the previously described solution schemes
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are discussed, giving high priority to the time discretization error. Its quantification is depicted
by means of three distinct procedures. Therefore, the h-, the residual as well as the embedded
error estimation are explained and error characterizing quantities are defined.
Chapter 4 is concerned with the material modeling and the numerical implementation of small
strain elasto(visco)plasticity. The first part of this chapter presents an introduction and a com-
mon known access towards the elasto(visco)plastic material laws. Additionally, their numerical
realization is derived. In this context, the initial boundary value problem of Chapter 3 is sub-
stantiated and the described solution procedures are augmented by the radial return mapping
method. The latter aims at incorporating (visco)plastic effects into standard elastic computa-
tion schemes on integration point level by exploiting appropriate time integrators. In the second
part of this chapter, an alternative derivation strategy for the already known elasto(visco)plastic
material equations is depicted. It is based on the assumption that the virtual power reaches a
stationary point. By exploiting aspects of functional analysis and optimization, a second initial
boundary value problem describing elasto(visco)plastic phenomena is determined. Therein, the
(visco)plastic quantities are changed into quantities on structural level, enabling a simple ap-
plication of a wide range of higher order accurate time integrators to all unknowns. Again, the
solution procedures of Chapter 3 are elaborated to yield a numerical implementation strategy
for the obtained variational approach.
In Chapter 5, numerical results for different model problems determined by the classical and
the variational approach are presented. To start off with, a quasi-static benchmark problem from
the literature is used to validate the implementation of the classical approach and the derivation
as well as the numerical realization of the variational approach. Afterwards, a new dynamic
benchmark problem with an adaptation for plasticity and viscoplasticity is established. In the
first step, a quasi-static analysis of a displacement-driven deformation process of an axisymmetric
shaft is carried out. Afterwards, the same model is investigated considering inertia effects. This
allows to characterize distinct time integrators in the context of elasto(visco)plastic problems.
On the one hand, the time discretization error of different field variables is estimated for the
Newmark method as well as for some Galerkin and Runge-Kutta schemes. On the other
hand, the orders of consistency and the orders of convergence are portrayed for the respective
procedures.
Chapter 6 can be interpreted as the extension of Chapter 4 with regard to the finite strain
regime. A classical approach towards material modeling and numerical implementation of fi-
nite elasto(visco)plasticity is summed up together with the corresponding variational multifield
approach exploiting the principle of Jordain. The latter procedure serves to enable a simple
usage of higher order accurate time integrators, not only in the small but also in the finite strain
regime.
The validation of the numerical realization of finite elasto(visco)plasticity within the classical
and the variational approach is performed in Chapter 7. Therein, both variants of the newly
created dynamic benchmark problem are studied in the finite strain regime. Again, various
time integrators are analyzed concerning their resultant errors within distinct field variables.
Moreover, the obtainable orders of convergence and consistency are estimated.
In Chapter 8 and Chapter 9, the obtained results are summarized, and open questions are
addressed - together with further research objectives.
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2. Basic Aspects of Continuum Mechanics

The second fabrication step of the integrated thermomechanical forming process portrayed in
Chapter 1, see Figure 1.1, is characterized by large thermo(visco)plastic deformations as well
as by inertia effects. This aspect is to be seen as a motivation for this thesis. The idea is to
develop new algorithms for an easy implementation of a wide range of higher order accurate
time integration schemes taking plastic and viscoplastic deformations into account. To simplify
the analysis, temperature effects will not be considered at all. This leads to a purely continuum
mechanical framework, whose basic aspects are depicted in the proceeding chapter. Thereby,
the integration of plastic phenomena is emphasized, bearing in mind that the same line of
reasoning can be followed for viscoplastic effects. Furthermore, only three-dimensional cartesian
coordinate systems are considered if not indicated otherwise. Important information concerning
the tensor calculus can be found in Appendix A. For more detailed explanations concerning
continuum mechanical theory and tensor calculus see (Altenbach, 2012; De Boer, 1982; Grinfeld,
2013; Haupt, 2000; Holzapfel, 2000; Kelly, 2015; Talpaert, 2002; Wriggers, 2008).

2.1. Kinematics and Kinetics of a Continuum

In order to describe the deformation process of a continuum mechanical object, adequate kine-
matical as well as kinetical quantities have to be defined. Considering a general body B -
consisting of different material points and possessing the volume V , the surface area A, as well
as the density ρ0 - then the variable X denotes the location vector of one specific material point
P at time t1, see Figure 2.1. The unambiguous differentiable assignment of position vectors
to all material points at this time is called reference configuration, cf. (Altenbach, 2012). If,
furthermore, an imposed movement or deformation process of this body B is assumed, x indi-
cates the new position vector of point P at time t. This yields the current configuration. The
possibly resulting new properties like volume, surface area, and density are denoted by v, a,
and ρ, respectively. The difference between both location vectors of point P is defined as the
displacement vector

u(X, t) = x(X, t)−X or u(x, t) = x−X(x, t), (2.1)

which can be expressed in dependence of the current or the reference configuration. The corre-
sponding designation will be kept within the forthcoming analysis, due to its importance. For
all other quantities defined further on, the spatial and temporal dependencies will be dropped
in favor of a shorter notation. In order to describe the changes of size and shape of a material
body, the transformation of an infinitesimal line element dX of the reference configuration into
the current configuration dx is examined. Due to the unambiguous differentiable relationship
between the current position vector x and the reference location vector X, a total differential

dx =
∂x(X, t)

∂X
· dX = F · dX with detF = J > 0 (2.2)

can be formulated, leading to the material deformation gradient F and its determinant J , cf.
(Altenbach, 2012; Haupt, 2000). With the help of the deformation gradient, a variety of strain
measures can be derived. The basic idea is to evaluate the difference between the squared lengths
of line elements of the current and the reference configuration, cf. (Hartmann, 1993; Haupt, 2000;
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2.1. Kinematics and Kinetics of a Continuum

reference configuration current configuration
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u(X, t)/u(x, t)

Figure 2.1.: Definition of the displacement vector u(X, t)

Holzapfel, 2000). Hence, the right Cauchy-Green tensor C and the Green-Lagrange strain
tensor E can be defined by

C = FT · F , E =
1

2
[C − I] , (2.3)

exploiting the second order unity tensor I = δij gi ⊗ gj with the Kronecker symbol δij and
the cartesian basis vectors gi with i, j = 1, ..., 3. Both measurements operate on line elements of
the reference configuration and are thus associated to the latter. In contrast, the left Cauchy-

Green tensor b and the Euler-Almansi strain tensor e

b = F · FT, e =
1

2

[
I − b−1

]
(2.4)

operate on the current configuration. If (visco)plastic effects are taken into account for the
continuum mechanical modeling as well, the kinematic relations have to be extended. A classical
approach is to consider a further, intermediate configuration, which is associated to an unstressed
state in which only (visco)plastic deformations prevail. This state is obtained by cutting the
body B into small elements E and removing all applied stresses instantly, leading to elastic
deformations described by F e as well as to residual ones represented by F p, cf. (Haupt, 2000;
Lee and Liu, 1967; Lubliner, 2006; Simo and Ortiz, 1985). Hence, the material deformation
gradient F is split multiplicatively into

F = F e · F p, (2.5)

with the corresponding determinants

J = JeJp, Je = det(F e), Jp = det(F p).

Due to the local unloading, the different elements E change their shape and can thus not be
fitted together to form the body B again. Accordingly, the individual parts of the deformation
gradient cannot be determined by gradients of corresponding elastic and (visco)plastic displace-
ment fields, cf. (Lee and Liu, 1967). From a micromechanical point of view, the elastic part F e
represents the lattice distortion, whereas the (visco)plastic part F p is linked to the dislocation
flow, cf. (Simo, 1998).
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2. Basic Aspects of Continuum Mechanics

Alternative points of departure to describe plastic or viscoplastic effects are presented in (Casey
and Nagdhi, 1980; Green and Nagdhi, 1965; Kleiber, 1975; Lee, 1969; Lee and Liu, 1967; Naghdi,
1990; Nemat-Nasser, 1982; Xiao et al., 2006), where, for example, an additive decomposition of
the Green-Lagrange strain tensor or the deformation velocity tensor into an elastic and a
(visco)plastic part is proposed. A unifying concept of these approaches is established in (Simo
and Ortiz, 1985). A similar strategy is followed here, drawing on information provided in (Xiao
et al., 2006).
The multiplicative split leads to a number of further strain measures characterizing elastic and
(visco)plastic effects. Operating on the reference configuration, the (visco)plastic right Cauchy-

Green tensor Cp and the (visco)plastic Green-Lagrange tensor Ep

Cp = FT
p · F p, Ep =

1

2
[Cp − I] (2.6)

can be defined. Formally, also an elastic Green-Lagrange tensor Ee can be constructed by

Ee =
1

2
[C −Cp] = E −Ep. (2.7)

Hence, with a multiplicative decomposition of the deformation gradient an additive decompo-
sition of the Green-Lagrange strain tensor can be obtained too. Similar expressions can be
acquired if the quantities associated to the current configuration are enhanced. If the elastic left
Cauchy-Green tensor is denoted by

be = F e · FT
e , (2.8)

the (visco)plastic as well as the elastic Euler-Almansi strain tensors result in

ep =
1

2

[
b−1

e − b−1
]
, ee = e− ep =

1

2

[
I − b−1

e
]
. (2.9)

Moreover, if the intermediate configuration is introduced, additional measures like the (visco)-
plastic left Cauchy-Green tensor b̂p and the elastic right Cauchy-Green tensor Ĉe are
obtained

b̂p = F p · FT
p , Ĉe = FT

e · F e.

Associated strain measurements are the consequence

Ê =
1

2

[
Ĉe − b̂

−1

p

]
, Êp =

1

2

[
I − b̂

−1

p

]
, Êe = Ê − Êp =

1

2

[
Ĉe − I

]
.

For the explicit transformation between these quantities and their link to the configurations
see Figure 2.2. A detailed embedding of these relationships in the context of dual variables is
performed in (Hartmann, 1993; Haupt, 2000), whereas a connection to tensor calculus aspects
is noted in (Holzapfel, 2000). Apart from having to establish strain tensors, adequate stress
measurements have to be formulated as well. Within this thesis, only the reference and the
current configuration are of importance. For the corresponding stress tensor formulations in the
intermediate configuration see (Haupt, 2000; Simo, 1998).
It is assumed that arbitrary volume or surface loads are applied on the continuum mechanical
body B. In order to analyze their effects on a material point P a cut through this is performed
in order to disclose the internal forces. By determining the quotient of the latter and the corre-
sponding surface element of the cutting plane in the current configuration, the Cauchy stress
vector t can be defined. The first Piola-Kirchhoff stress vector T results from the actual
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Figure 2.2.: Overview of strain measures at distinct configurations

force vector and an appropriate surface element associated to the reference configuration. An al-
ternative Piola-Kirchhoff stress vector p can be generated by relating the surface element in
the reference configuration to a fictitious force vector, whereby the latter is obtain by transform-
ing the actual force vector into the reference configuration using Equation (2.2), cf. (Altenbach,
2012). Furthermore, the outward normal vector n, perpendicular to the cutting plane in the
current configuration is determined. Its analogue related to the reference configuration is de-
noted as N . If now three distinct cuts with non-coplanar normal vectors are performed, the
stress state in point P is uniquely defined. It can be described by the Cauchy stress tensor σ
related to the Cauchy stress vector t, the first Piola-Kirchhoff stress tensor P linked to
the first Piola-Kirchhoff stress vector T , or the second Piola-Kirchhoff stress tensor S
connected to the second Piola-Kirchhoff stress vector p via

t = σ · n, T = P ·N , p = S ·N . (2.10)

The transformations between the distinct stress tensors read as follows:

S = F−1 · Jσ · F−T = F−1 · P . (2.11)

With the presented quantities at hand, it is possible to describe the mechanical behavior of a
continuum mechanical body. This is done by means of balance equations, which will be presented
in the next section.
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2. Basic Aspects of Continuum Mechanics

2.2. Balance Equations

Balance equations represent material-independent laws which describe the effects of external
influences on continuum mechanical properties, cf. (Altenbach, 2012). For the mass in a closed
system, this means that it is conserved over time. Using terms associated to the reference
configuration yields

ρ0 = ρJ. (2.12)

In contrast, the balance of angular momentum equilibrates the temporal change of the rotational
momentum and the applied torques. The resulting key statement concerning the continuum me-
chanical theory is the symmetry of the Cauchy stress tensor σ = σT, (Holzapfel, 2000). For
problems involving (visco)plastic effects, the balance of linear momentum is of great importance.
It can be expressed in terms of quantities operating on the reference configuration

ρ0ü(X, t) = ∇X · P + ρ0f , (2.13)

where ü(X, t) denotes the second time derivative of the displacement vector and f embodies
the mass forces. The nabla operator ∇X = ∂

∂X represents the derivatives with respect to the
reference configuration. The equivalent equation expressed by measures associated to the current
configuration is formulated as follows:

ρü(x, t) = ∇x · σ + ρf .

Therein, ∇x = ∂
∂x represents the spatial derivative with respect to the current configuration.

For the definitions of the nabla operators and their interrelations see Appendix A. Generally,
the balance of linear momentum states that the change of translational momentum equals the
sum of all applied forces. For detailed derivations see (Altenbach, 2012; Haupt, 2000; Holzapfel,
2000; Kelly, 2015). Moreover, (visco)plastic phenomena are accompanied by dissipative effects
which influence the energy in the analyzed system. Consequently, also the first and second law
of thermodynamics, in form of the dissipation inequality, have to be considered. This implies
that the difference between the stress power S : Ċ or Jσ : l and the rate of energy per volume
ė has to be non-negative, cf. (Haupt, 2000; Simo and Hughes, 1997). In terms of quantities of
the reference configuration

Dint =
1

2
S : Ċ − ė ≥ 0 (2.14)

is obtained. As an appropriate reformulation into the current configuration

Dint = Jσ : l− ė ≥ 0

can be derived (Simo, 1998), wherein l denotes the symmetric part of the deformation velocity
tensor, determined by

l =
1

2

[
Ḟ · F−1 +

[
Ḟ · F−1

]T]
.

2.3. Reduction to Small Strains

The continuum mechanical aspects presented so far are universally applicable and, thus, take
the appearance of large deformations into account. In the following chapters, the first step is to
derive specific methodologies based on small strains - later to be adapted to finite strains. This
practice requires a simplification of the continuum mechanical theory. This is done following the
ideas of (Altenbach, 2012; Casey, 1985; Hartmann, 1993; Holzapfel, 2000; Lee and Liu, 1967).
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2.3. Reduction to Small Strains

2.3.1. Kinematics and Kinetics

In order to determine the size of prevailing deformations, the spatial change of the displacement
vector has to be estimated. Therefore, the norm of the displacement gradient ξ

ξ =

∥∥∥∥∂u(X, t)

∂X

∥∥∥∥ =
√

∂u(X, t)

∂X
:
∂u(X, t)

∂X
= ‖F − I‖ � 1 (2.15)

is evaluated. Small deformations are predominant if the deformation gradient differs only slightly
from the identity tensor or rather the norm of the material displacement gradient is essentially
smaller than one, cf. (Altenbach, 2012; Haupt, 2000). The consequence is that the gradients of
the displacement field connected to the reference and the current configuration

∂u(X, t)

∂X
≈ ∂u(x, t)

∂x
with

∂x

∂X
≈ I (2.16)

are identical, cf. (Altenbach, 2012).The aim is now to reformulate the quantities in Equations (2.3)
and (2.4) in such a way that all terms of order O(ξn) with n ≥ 2 are neglected, cf. (Altenbach,
2012). For the right Cauchy-Green tensor

C = I +

[
∂u(X, t)

∂X
+

[
∂u(X, t)

∂X

]T]
+O(ξ2) = I + 2ε+O(ξ2) (2.17)

is obtained, wherein ε represents the linearized strain tensor. An analogous expression can be
obtained for the left Cauchy-Green tensor, whereas its inverse leads to

b−1 = I −
[
∂u(x, t)

∂x
+

[
∂u(x, t)

∂x

]T]
+O(ξ2). (2.18)

Inserting Equations (2.17) as well as (2.18) in (2.3)2 and (2.4)2 and exploiting Equation (2.16)
yields

E ≈ e ≈ ε =
1

2

[
∂u(X, t)

∂X
+

[
∂u(X, t)

∂X

]T]
.

(2.19)

Accordingly, in the small strain regime, both the Green-Lagrange and the Euler-Almansi

tensor are equivalent and the linearized strain tensor ε can be derived. A similar line of reasoning
can be followed if (visco)plastic effects are considered and both elastic as well as (visco)plastic
strains are small. For the sake of argument, it is assumed that an infinitely small material
element E is analyzed - which undergoes successive homogeneous deformations as depicted in
Figure 2.3, cf. (Lee, 1969; Lubliner, 2006; Simo and Hughes, 1997). Hence, the occurring map-
pings are postulated to be continuous and differentiable and the displacement field is additively
decomposed, cf. (Backman, 1964; Bonet and Wood, 2009; Kleiber, 1975; Lee, 1969; Lee and Liu,
1967),

u(X, t) = ue(X, t) + up(X, t). (2.20)

These properties are surely true in two cases: either if a purely elastic deformation prevails,
or if a complete and instantaneous (visco)plastic process is carried out. Considering the latter
instance

F e = I, x̂ = x, u(X, t) = up(X, t)
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Figure 2.3.: Hypothetical homogeneous deformation of a small material element E

holds and

F = F p =
∂x̂

∂X
=

∂up(X, t)

∂X
+ I (2.21)

is obtained. Following the ideas in (Casey, 1985; Hartmann, 1993), both elastic as well as
(visco)plastic strains are considered as small if the analogous formulation to Equation (2.15)

ξe/p = max

(
sup

∥∥∥∥∂up(X, t)

∂X

∥∥∥∥ , sup
∥∥∥∥∂ue(x̂, t)

∂x̂

∥∥∥∥
)

� 1 (2.22)

for the appropriate gradients is fulfilled. This yields for the (visco)plastic right Cauchy-Green

tensor

Cp = I +

[
∂up(X, t)

∂X
+

[
∂up(X, t)

∂X

]T]
+O(ξ2e/p) = I + 2εp +O(ξ2e/p). (2.23)

The identification of the linearized (visco)plastic strain tensor εp ensues the concept of Equa-
tion (2.19). Neglecting terms of O(ξn

e/p) with n ≥ 2 and inserting Relations (2.19), (2.23) in
Equations (2.6)2 as well as (2.7) together with (2.20) and (2.16)2 results in

Ep = εp, Ee =
1

2

[
∂ue(X, t)

∂X
+

[
∂ue(X, t)

∂X

]T]
= ε− εp = εe = 0.

Acknowledging a purely elastic deformation, leads to:

F p = I, x̂ = X, u = ue

together with

F−1 = F−1
e =

∂x̂

∂x
= I − ∂ue(x, t)

∂x
. (2.24)
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The inverse elastic left Cauchy-Green tensor can then be recast into

b−1
e = I −

[
∂ue(x, t)

∂x
+

[
∂ue(x, t)

∂x

]T]
+O(ξ2e/p) = I − 2εe +O(ξ2e/p), (2.25)

exploiting Equations (2.22) and (2.16)2. If again terms of O(ξn
e/p) with n ≥ 2 are disregarded

and Relations (2.25) as well as (2.19) are inserted in (2.9)

ee = εe, Ep =
1

2

[
∂up(x, t)

∂x
+

[
∂up(x, t)

∂x

]T]
= ε− εe = εp = 0.

can be derived, taking (2.20) and (2.16)2 into account.
Hence, if either completely elastic or purely (visco)plastic deformations prevail in the small strain
regime, the two limits are characterized by

Ee = εe = ee, Ep = εp = ep

and one of the terms is equal to zero. In these cases, the respective quantities of the current and
the reference configuration are identical to the linearized strain measurements, and the additive
decomposition

ε = εe + εp (2.26)

can be established. For a general material body B with non-homogeneous deformations it
cannot be assumed that the mappings towards the intermediate configuration are continuous
and differentiable due to the lack of material continuity, (Haupt, 2000; Lee and Liu, 1967;
Lubliner, 2006; Simo and Hughes, 1997). Accordingly, the elastic and (visco)plastic deformation
gradients can only be considered as linear transformations between line elements and not as
partial derivatives as in (2.21) and (2.24), cf. (Kleiber, 1975; Lee and Germain, 1974; Lee and
Liu, 1967). For small strains, in analogy to the previously mentioned limiting cases, it seems to
be appropriate to identify the Green-Lagrange and the Euler-Almansi tensors with their
linearized counterparts, although they might not be interpreted as gradients of a displacement
field. The resulting additive decomposition in (2.26) is furthermore experimentally motivated
and generates the kinematic basis for small strain (visco)plasticity models, cf. (Chaboche, 2008;
De Souza Neto et al., 2008; Lubliner, 2006; Simo and Hughes, 1997). For a thermodynamic
derivation of the additive decomposition see (Reddy and Martin, 1994).

2.3.2. Balance Equations

The geometric linearization of the kinematic quantities in Section 2.3.1 influences the notion of
the balance equations derived in Section 2.2. From Equation (2.16)2 it can be followed, that the
current and the reference configuration are almost identical, cf. (Altenbach, 2012). Hence, for
a stress-free reference configuration, there is no need to distinguish between the different stress
measurements as is done in Equation (2.11), cf. (Hartmann, 1993). Moreover, Relation (2.15)
indicates that for the deformation gradient’s determinant J ≈ 1 holds. This leads, following
Equation (2.12), to the correspondence of the density in both configurations. For small strains,
the balance of linear momentum and the dissipation inequality can thus be stated as:

ρ0ü(X, t) = ∇X · σ + ρ0f , Dint = σ : ε̇− ė ≥ 0, (2.27)

where also small strain rates in the sense of (2.15) are assumed.
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2. Basic Aspects of Continuum Mechanics

2.4. Summary

As a starting point to introduce the substantial ideas of continuum mechanics, the term con-
figuration is defined and two different types - the reference and the current configuration - are
characterized. This distinction is realized with the help of the deformation gradient and allows
to model large deformations. The incorporation of (visco)plastic aspects in addition to elastic
ones is achieved using a multiplicative split of the deformation gradient. Thus, a third inter-
mediate configuration is generated. With these three configurations at hand, it is possible to
define distinct quantities, that describe the motion of continuum mechanical bodies and take
elasto(visco)plastic characteristics into account. For the specification of the appearing internal
forces, distinct types of stress tensors are established. In order to reflect the physics of a general
continuum mechanical body, the law of conservation of mass, the balance of angular and linear
momentum, as well as the dissipation inequality are formulated. Apart from large deformations,
small ones are of interest as well. Hence, a linearization strategy is portrayed that incorporates
this reduction step. The result is that the multiplicative split of the deformation tensor turns
into an additive split of the linearized strain tensor and the balance equations as well as the
dissipation inequality can be simplified.
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3. Numerical Realization of Multifield Problems

Investigations involving small elasto(visco)plastic strains are characterized by material nonlin-
earities. If finite strains are considered as well, geometric nonlinearities play an important role
too. For both cases, analytical solutions are only rarely at hand, so that it is inevitable to de-
velop and apply numerical strategies. First approaches in that direction were made by (Marcal
and King, 1967; Zienkiewicz, 1984; Zienkiewicz et al., 1969), who calculated the displacement
field and, thereafter, estimated the variables determining plastic effects using different incremen-
tal procedures. Recent advances for example from (Carstensen et al., 2002; Comi and Perego,
1995; Miehe, 2011; Simo and Hughes, 1997) follow a different ansatz. They introduce plastic or
viscoplastic measurements as additional unknown field quantities apart from the displacements.
In order to establish a common framework for these different solution procedures as well as for
the distinct model formulations, it is assumed that a general elasto(visco)plastic problem can
be defined by

δW1 :=

∫
Ω

δz1(X) ◦ r1(ẅ (X, t) ,ẇ (X, t) ,w (X, t) ,∇Xw (X, t)) dV −
∫

Γr∗

δz1(X) ◦ r∗(X, t) dA = 0, (3.1)

δW2 :=

∫
Ω

[δλ(X)− λ(X, t)] r2 (w(X, t)) dV ≤ 0 (3.2)

with λ(X, t) ∈ w (X, t) as well as δλ(X), λ(X, t) ≥ 0 and the initial conditions

w1 = w (X, t1) , ẇ1 = ẇ (X, t1) . (3.3)

It includes a description of a general three-dimensional continuum mechanical body occupying
the domain Ω and its elasto(visco)plastic behavior in the small or finite strain regime obeying
the nonlinear tensor- or vector-valued function r1 (ẅ(X, t) ,ẇ(X, t) ,w(X, t) ,∇Xw(X, t)). The
expression w (X, t) denotes the vector of primary variables, depending on the spatial coordi-
nate X as well as on time t. The underlying coordinate system is assumed to be of cartesian
type, so that the gradient of the vector of primary variables is symbolized by ∇Xw (X, t),
see Chapter A. The terms ẇ (X, t) as well as ẅ (X, t) represent the corresponding first and
second time derivatives. Possibly applied surface loads on Γr∗ are characterized by r∗ (X, t)
and labeled as Neumann type boundary conditions. In contrast, inhomogeneous Dirichlet

boundary conditions with w (X, t) = w∗ ∀X on Γw are considered directly within the vector of
primary variables. Hence, for the domain’s boundary Γ = Γw ∩ Γr∗ holds.
By introducing the variational inequality in (3.2) the modeling of an elastoplastic material be-
havior by means of inequality constraints is considered as well. In this context, a nonlinear
scalar-valued convex or concave function r2(w (X, t)) is assumed together with a Lagrange

multiplier field λ(X, t). Apart from the described functions and variables the conjunction op-
erator ’◦’ is established. It represents the necessary mathematical operator needed to link the
respective variables and functions with distinct valencies appropriately.
The expression δz1(X) represents arbitrary infinitely small tensor-, vector- or scalar-valued test
functions. The test function δλ(X) however is assumed to be scalar-valued. While δz1(X) is
generally supposed to be non zero, δλ(X) ≥ 0 has to hold. Only for Dirichlet type boundaries
δz1 = 0 ∀X on Γw is adapted.
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Furthermore, it is emphasized that the integral representation of the general elasto(visco)plastic
problem in (3.1)-(3.2) is especially useful for numerical solution procedures. Some of them are
presented in the consecutive sections, highlighting the applicability of different time integration
schemes. For explicit examples of generating weak forms in the context of arbitrary physical
problems see (Euler, 1894; Finlayson and Scriven, 1966; Hamilton, 1834, 1835; Lagrange, 1894;
Lambermont and Lebon, 1972; Lemaitre and Chaboche, 1990; Tonti, 1984; Zienkiewicz and Tay-
lor, 2000). For the considered general elasto(visco)plastic problem distinct derivation strategies
will be presented in Chapter 4 and Chapter 6.

3.1. The Finite Element Method for Space Discretization

In order to solve the initial boundary value problem in (3.1)-(3.3) it is necessary to approximate
the spatial and temporal course of the primary variable and its time and space derivatives. In
the scope of this thesis, the spatial discretization will always be done by means of the finite
element method. This scheme is based on the idea of splitting the considered domain into
small non-overlapping subdomains, which are spanned and characterized by nodal quantities as
well as by shape functions, cf. (Hughes, 2000; Zienkiewicz and Taylor, 2000). Moreover, it is
assumed that the initial boundary value problem in (3.1)-(3.3) has to be fulfilled at each of these
segments. Hence, a semidiscrete form can be derived.
An overview of the most important steps needed for the numerical implementation of elasto-
(visco)plastic problems is drawn in the following sections. Therein, always a fix cartesian coordi-
nate system with ND dimensions will be assumed together with the space and time-independent
unit basis vectors gi with i = 1, ..., ND. Additionally, basic aspects of the finite element method
in terms of mathematical analysis and application can be found in (Ciarlet, 1978; Turner et al.,
1956; Wriggers, 2008; Zienkiewicz, 1984; Zienkiewicz and Taylor, 2000). Other aspects like the
consideration of multifield formulations are treated in (Arnold et al., 2007; Braess, 2010; Brezzi
and Bathe, 1990; Brezzi and Fortin, 1991; Han and Reddy, 1999; Miehe, 2011; Zienkiewicz and
Taylor, 2000).

3.1.1. General Application

For the application of the finite element method a material body B is examined, whose elasto-
(visco)plastic behavior is described by the nonlinear expressions in (3.1)-(3.2) and the initial
conditions in (3.3). In the context of the spatial discretization, this continuum with domain Ω
is divided into a number NE of non-overlapping elements E with domain Ω̄e with e = 1, ..., NE,
so that for the union of all elements

Ω =

NE⋃
e=1

Ω̄e, with Ω̄i ∩ Ω̄j = ∅ for i, j ∈ [1, NE] (3.4)

holds, see Figure 3.1. The geometry of each subdomain can be approximated by a number
NN of special material position vectors Xei, so-called nodes, and by mapping functions N̂ i(ξ).
Likewise, spatial location vectors xei can be used to describe the deformed configuration, yielding

Xe ≈
NN∑
i=1

XeiN̂ i(ξ), xe ≈
NN∑
i=1

xeiN̂ i(ξ). (3.5)

The consequence is that any finite element is transformed into a standard element with domain
Ωe based on natural coordinates ξ, where ξj ∈ [−1, 1] with j = 1, ..., ND represents the j-th
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Γr∗

Γw
(a)

B

E

(b)

Figure 3.1.: (a) Material body with boundary conditions, (b) Element E of a continuum

component of ξ for ND dimensions. The relation between both configurations is established
via the deformation gradient in (2.2). In order to derive a proper approximation rule, the
gradient of Expression (3.5)2 is calculated - and it is beneficial that the nodal quantities xei

with i = 1, ..., NN and the included unit basis vectors gi with i = 1, ..., ND are constant. This
leads to:

F e ≈
NN∑
i=1

xei ⊗∇XN̂
i(ξ), (3.6)

with ∇XN̂
i(ξ) as the gradient of the respective mapping function. In an isoparametric setting,

the primary variables and their derivatives

we ≈
NN∑
i=1

weiN̂ i(ξ), ∇Xw
e ≈

NN∑
i=1

wei ⊗∇XN̂
i(ξ), (3.7)

ẇe ≈
NN∑
i=1

ẇeiN̂ i(ξ), ẅe ≈
NN∑
i=1

ẅeiN̂ i(ξ) (3.8)

are approximated in the same manner, cf.(Wriggers, 2008). Thereby, it is again taken into
account that the nodal quantities and the included unit basis vectors do not depend on the
spatial coordinate. Thus, the mapping functions do not only transfer physical quantities into
natural ones, but are also implemented to describe the primary variables themselves. Therefore,
they are also called shape functions, cf. (Szabó and Babuška, 1991). If additionally also the test
functions δz1 and δλ are interpreted element-wise and assumed to be approximated by

δze1 ≈
NN∑
i=1

δzei1 N̂
i(ξ), δλe ≈

NN∑
i=1

δλeiN̂ i(ξ), (3.9)

then the finite element method in question is known as a Bubnov-Galerkin scheme, (Hughes,
2000). On the contrary, a distinct approximation of the test function compared to the primary
variables results in a Petrov-Galerkin method, cf. (Eriksson et al., 2005; Gleim and Kuhl,
2013; Matthies and Schieweck, 2011). The latter approach will not be considered for spatial
discretization, but it will play an important role within the context of Galerkin time integration
schemes, see Section 3.4.3.
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Apart from the division of the continuum mechanical body B into elements E and the approxi-
mation of the characterizing quantities, the finite element method states

δW1 =
NE⋃
e=1

δW e
1 and δW2 =

NE⋃
e=1

δW e
2 . (3.10)

Hence, it is assumed that the weak forms in (3.1)-(3.2) do not only apply to the whole material
body B but also to each element E . The consequence is the following reformulation:
∫
Ω̄e

δze
1(X

e)◦r1(ẅe(Xe, t) ,ẇe(Xe, t) ,we(Xe, t) ,∇Xwe(Xe, t)) dV̄ e−
∫
Γ̄e

δze
1(X

e)◦r∗(Xe, t) dĀe = 0, (3.11)

∫
Ω̄e

[δλe(Xe)− λe(Xe, t)] r2 (w
e(Xe, t)) dV̄ e ≤ 0, (3.12)

where the primary variables and the test functions are substituted by their finite dimensional
counterparts of Equations (3.5)-(3.9). Besides, the observed volume V̄ e and the area Āe refer to
the respective element quantities.
Unlike to the discontinuous spatial finite element method, where the element boundary terms are
approximated in each element by fluxes, the element boundary terms here are only considered
if they belong to the boundary of the outer domain Ω, cf. (Cockburn et al., 2000; Hesthaven
and Wartburton, 2000). Otherwise, they are neglected.

3.1.2. Shape Functions and their Derivatives

The remaining issue of the spatial discretization is the qualification of the general shape functions
and the related derivatives. Their determination has a significant influence on the quality of the
spatial discretization. This is the reason why a variety of distinct approaches exists. Generally,
shape functions form a nodal basis associated to a set of degrees of freedom on a standard
element which, in the isoparametric approach, allows to approximate the geometry, the primary
variables, and the test functions, cf. (Braess, 2010; Ciarlet, 1978; Szabó and Babuška, 1991). In
the non-isoparametric setting, additional mapping functions have to be introduced to establish
the link between the standard element and the actually considered finite element’s geometry, cf.
(Boffi et al., 2013; Szabó and Babuška, 1991).
The choice of appropriate shape and mapping functions and the accompanying degrees of free-
dom often depends on the physical problem under consideration. For a general introduction
to the derivation of elements see (Boffi et al., 2013; Ciarlet, 1978). Saddle point problems,
where the election of element conception may influence the stability of the numerical scheme
are treated in (Boffi et al., 2013; Braess, 2010). Thereby, attention is also given to noncon-
forming and mixed methods. While the first approach considers finite element spaces which are
not included in the space of the variational problem, the latter enables the usage of distinct
approximation ansatzes for different field variables. In the context of electromagnetic analysis,
special care has to be taken concerning the primary variables’ tangential components. This is
achieved, for example, by using Nédélec elements or formulations which are based on special
hierarchical shape functions, cf. (Monk, 1993; Schöberl and Zaglmayr, 2005). A different type
of the latter can be applied for structural computations. All kinds of hierarchical elements
exploit Legendre polynomials for their construction and consider nodal values as well as ad-
ditional modes as their related degrees of freedom, cf. (Kuhl, 2004; Szabó and Babuška, 1991;
Zienkiewicz and Taylor, 2000). Other commonly used elements in the structural mechanical
regime are Lagrange and Serendipity elements. Their shape functions are based on Lagrange
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polynomials, and the degrees of freedom are only affiliated to the points of support of these func-
tions, cf. (Hughes, 2000; Kuhl, 2004; Szabó and Babuška, 1991; Zienkiewicz and Taylor, 2000).
Another difference appears if the elements’ geometry is investigated. In the two-dimensional case,
both quadrilateral and triangular elements are commonly used.Within the three-dimensional
case, tetrahedra, hexahedra, and pentahedra are widespread, cf.(Macneal, 1994; Szabó and
Babuška, 1991; Zienkiewicz and Taylor, 2000).
In the course of this work, a diversity of formulations involving elasto(visco)plastic effects is
investigated based on the general problem definition in (3.1)-(3.2). While some of them will
be embedded in the isoparametric setting, others may be included in a mixed finite element
framework. Nevertheless, only two distinct types of quadrilateral or hexahedral Lagrange

elements will be considered for spatial discretization. Hence, the general shape function N̂ can
be selected as N yielding continuous or as N̄ leading to discontinuous approximations. The
actual choice is made in the context of the individual formulation. The mapping function,
however, is always assumed to rest on a continuous material distribution.

3.1.2.1. Continuous inter-elemental Lagrange Approximations

In the one-dimensional case, Lagrange shape functions of polynomial degree p can be deter-
mined by

N i(ξ1) =

NN∏
k = 1
k �= i

ξk1 − ξ1

ξk1 − ξi1
, ξj1 =

2 [j − 1]

p
− 1 with i, j = 1, ..., NN. (3.13)

Therein, NN embodies the number of points of support needed to generate the shape function
N i(ξ1). The variable ξi1 is the coordinate of a specific node for which the shape function is
generated, and ξk1 represents the coordinates of all other element nodes. The consequence of
this construction rule is that each shape function fulfills the interpolation property

N i(ξk1 ) = δik with i, k = 1, ..., NN. (3.14)

Hence, the shape function associated to node i is one at this node, while it is zero at all other
element nodes. The determination rule in (3.13)2 for ξj1 governs the position of the points
of support and ensures their uniform distribution. Additionally, it is crucial for establishing
continuous approximations. These nodes are connected to the element’s geometry and its degrees
of freedom. As an example for polynomial degree p = 1 see Figure 3.2. Since not only the

ξ11 = −1 ξ21 = 1

N1(ξ1)
1

0

(a)

ξ11 = −1 ξ21 = 1

N2(ξ1)
1

0

(b)

Figure 3.2.: (a) One-dimensional linear Lagrange shape function associated to node 1,
(b) One-dimensional linear Lagrange shape function associated to node 2
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geometry can be approximated by these shape functions but also the primary variable and its
gradient, the first derivative of Relation (3.13) is also employed here:

∂N i(ξ1)

∂ξ1
= N i

;1(ξ1) =

NN∑
l = 1
l �= i

−1

ξl1 − ξi1

NN∏
k = 1
k �= i
k �= l

ξk1 − ξ1

ξk1 − ξi1 .
(3.15)

This derivative, however, is no longer continuous, and it leads to jumps over element boundaries.
Figure 3.3 shows the result for polynomial degree p = 1.

ξ11 = −1 ξ21 = 1

N1
;1(ξ1)

−1

2

(a)

ξ11 = −1 ξ21 = 1

N2
;1(ξ1) 1

2

(b)

Figure 3.3.: (a) Derivative of one-dimensional Lagrange shape function associated to node 1,
(b) Derivative of one-dimensional Lagrange shape function associated to node 2

Multidimensional Lagrange shape functions can now be formulated by exploiting the fact that
Equation (3.13) holds for each direction ξj with j = 1, ..., ND. For the most general three-
dimensional case, a multiplication of these one-dimensional approaches leads to

N i(ξ1, ξ2, ξ3) = Nk(ξ1)N
l(ξ2)N

m(ξ3) with i = 1, ..., NN, (3.16)

where k = 1, ..., NN1, l = 1, ..., NN2 and m = 1, ..., NN3 represent the number of nodes in the
individual direction and NN = NN1NN2NN3 depicts the number of total element nodes. In this
manner, for each spatial direction a distinct polynomial degree can be used for approximation.
The interpolation property of Equation (3.14) remains unaffected and is only extended to

N i(ξk) = δik with i, k = 1, ..., NN (3.17)

for the three-dimensional case. Analogous considerations as for multi-dimensional shape func-
tions can be performed to obtain multi-dimensional derivatives. For the most general three-
dimensional case,

∂N i(ξ1, ξ2, ξ3)

∂ξd
= N i

;d(ξ1, ξ2, ξ3) =
∂(Nk(ξ1)N

l(ξ2)N
m(ξ3))

∂ξd
d = 1, ..., 3 (3.18)

is obtained, whereby the derivative in the respective direction can be calculated using Equa-
tion (3.15). For the two-dimensional case, it is possible to reformulate (3.16) and (3.18) by
neglecting the third dimension.
If these shape functions are used to determine the field variable’s gradient ∇Xw

e (Xe, t), which
might even be discontinuous, an additional step has to be carried out. A link between the
derivatives in natural coordinates to those in physical ones has to be constituted. Therefore,
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Equation (3.5)1 is differentiated with respect to natural coordinates, providing the Jacobian

matrix

Je =
∂Xe

∂ξ
≈

NN∑
i=1

Xei ⊗∇ξN
i(ξ). (3.19)

Accordingly,

∇XN i(ξ) =
∂N i (ξ (Xe))

∂Xe =
∂N i (ξ (Xe))

∂ξ
· ∂ξ

∂Xe = Je−T · ∇ξN
i(ξ)

is obtained.
In order to evaluate the weak forms in (3.11)-(3.12), the only missing aspect is the transformation
of the finite element’s volume and the area to amounts of the standard element. This is achieved
by adapting the limits of the integrals with respect to the regime of natural coordinates ξ and
by taking advantage of the Jacobian matrix’s determinant.

dV̄ e = |Je|dV e, dĀe = |Je,red|dAe. (3.20)

Herein, it is assumed that the boundary integral of Equation (3.11) is approximated by an
element whose dimension is one less than the one used to model the volumetric part. For the
three-dimensional case, this means that a two-dimensional element is considered and that the
reduced Jacobian matrix Je,red is obtained by taking only the transformation of the respective
plane into account. An alternative approach is described in (Gleim, 2016; Ottosen and Petersson,
1992).

3.1.2.2. Discontinuous inter-elemental Lagrange Approximations

Lagrange shape functions as described in Section 3.1.2.1 lead to continuous approximations
at common nodes of neighboring elements. This characteristic is appropriate for the geometry’s
description. For other quantities contained in the vector of primary variables, it may be an
advantage to allow jumps between element boundaries. In the one-dimensional case, this can
be acknowledged by Equation (3.13)1. However, the determination rule in (3.13)2 has to be
modified so that elemental nodes and the respective degrees of freedom are not allowed to lie at
the boundaries. Selecting Gauss-Legendre points as points of support ξj1 is one possibility, see
Section 3.3.1. In Figure 3.4, as an example, the linear case - where ξ11 = −1/

√
3 and ξ21 = 1/

√
3

are chosen - is analyzed for two elements, including a comparison to the continuous approach.
In the continuous case, the unknowns are calculated at three different positions - while four
positions are significant for the discontinuous case and, thus, jumps over the element boundary
are modeled. Nevertheless, the interpolation property in (3.14) stays fulfilled. The extension to
multi-dimensional shape functions is equally stated by Equation (3.16), except that again only
nodes which are not situated at the boundary are taken into account.

3.2. Nonlinear Solution Strategies

By applying the finite element method to the general elasto(visco)plastic problem in (3.1)-
(3.2), it is converted into a semidiscrete form consisting of solely time-dependent equations and
inequalities. In a further step, this nonlinear form has to be solved. Thus, widespread methods
are Newton schemes, cf. (Alt, 2011; Geiger and Kanzow, 2002; Luenberger, 1973; Zienkiewicz
and Taylor, 2000). Their basic idea is to generate an iterative procedure by guessing a solution,
linearizing the nonlinear equations and inequalities at this point, solving them, and taking the
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obtained result as a new starting value. This procedure is carried out until a user-defined
criterion is reached. The incorporation of the semidiscrete forms in (3.11)-(3.12) in such a
solution strategy is derived in the next sections.

ξ11 = −1 ξ21 = 1

ξ21 = 1ξ11 = −1

N1(ξ1) N2(ξ1) N1(ξ1) N2(ξ1)1 1 1

(a)

ξ11 = − 1√
3

ξ21 =
1√
3

ξ11 = − 1√
3

ξ21 =
1√
3

N̄1(ξ1) N̄2(ξ1) N̄1(ξ1) N̄2(ξ1)

1 1 1 1

(b)

Figure 3.4.: (a) Continuous linear approach for two one-dimensional elements, (b) Discontinuous
linear approach for two one-dimensional elements

3.2.1. The Newton-Raphson Scheme

In a first step, it is assumed that there are formulations which model elasto(visco)plastic prob-
lems solely by equations of the kind (3.11). In order to solve this nonlinear system of equations,
it is linearized with respect to the vector of unknowns we (Xe, t), its time derivatives ẇe (Xe, t),
ẅe (Xe, t), as well as its gradient ∇Xw

e (Xe, t). Therefore, a Taylor series expansion, which
is aborted after the linear term, is carried out around the points we,k (Xe, t), ẇe,k (Xe, t),
ẅe,k (Xe, t) and ∇Xw

e,k (Xe, t). Hence, summands of higher order are neglected. For better
clarity, the spatial and temporal dependencies are dropped in what follows, yielding

δW e
1 = δW e,k

1 +ΔδW e
1 =

=

∫
Ωe

δze1 ◦ r1
(
ẅe,k, ẇe,k,we,k,∇Xw

e,k
)
|Je|dV e −

∫
Γe

δze1 ◦ r∗,k|Je,red|dAe+

+

∫
Ωe

δze1 ◦
[
Dk

ẅer1 + Dk
ẇer1 + Dk

wer1 + Dk
∇wer1

]
|Je|dV e = 0,

(3.21)
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where the abbreviation

Dk
ser1 =

d

dψ
r1

(
se,k + ψΔse

) ∣∣∣∣
ψ=0

=
∂r1(s

e)

∂se

∣∣∣∣
k

◦Δse with Δse = se,k+1 − se,k (3.22)

stands for the Gâteaux derivative of the respective general variable se, while all other quantities
are assumed to be constant. Hence, the main ingredient for the applicability of this Newton-

Raphson scheme is the Gâteaux differentiability of the nonlinear vector- or tensor-valued
function r1.
Expanding the approximations in (3.7)-(3.9) to the respective increments and inserting them
together with (3.9)1 into (3.21) results in the linearized semidiscrete form

NN∑
i=1

NN∑
j=1

δzei1 ◦ [meij ◦Δẅej + deij ◦Δẇej + keij ◦Δwej
]
=

NN∑
i=1

δzei1 ◦
[
r∗,ei1 − rei1

]

on element level. The terms therein embody suitable tangent matrices meij ,deij ,keij , the ex-
ternal load vector r∗,ei1 , and the internal load vector rei1 . They are defined by

keij =

∫
Ωe

N̂ iN̂ j ∂r1
∂we

∣∣∣∣
k

|Je|dV e +

∫
Ωe

N̂ i ∂r1
∂∇Xw

e

∣∣∣∣
k

· ∇XN̂
j |Je|dV e, (3.23)

meij =

∫
Ωe

N̂ iN̂ j ∂r1
∂ẅe

∣∣∣∣
k

|Je|dV e, deij =

∫
Ωe

N̂ iN̂ j ∂r1
∂ẇe

∣∣∣∣
k

|Je|dV e, (3.24)

r∗,ei1 =

∫
Γe

N̂ i r∗|Je,red|dAe, rei1 =

∫
Ωe

N̂ i rk1 |Je|dV e,

wherein all arguments of functions are abandoned. A Gauss-Legendre quadrature is used for
the explicit calculation of the integrals, as explained in Section 3.3.
The partition of the continuum mechanical body B into finite elements in Section 3.1 enables a
local evaluation of the nonlinear Equation (3.1) as well as the finite-dimensional approximation
of the quantities that characterize the problem. The engineering issue, however, is to determine
the primary variables of the entire material body. By exploiting the fact that Equation (3.10)
holds, assembly operators can be established, sorting all quantities in respective matrices and
vectors. Thereby, inherent connectivities are taken into account. For the test function, the
primary variable, its derivatives, and the load vectors, this is formulated by

Δẅ =

NE
NN⋃
j = 1
e= 1

Δẅej , Δẇ =

NE
NN⋃
j = 1
e= 1

Δẇej , Δw =

NE
NN⋃
j = 1
e= 1

Δwej ,

δz1 =

NE
NN⋃
i = 1
e= 1

δzei1 , R∗
1 =

NE
NN⋃
i = 1
e= 1

r∗,ei1 , R1 =

NE
NN⋃
i = 1
e= 1

rei1 .

(3.25)

If now only continuous inter-elemental approximations are considered, see Section 3.1.2.1, com-
mon nodes of distinct elements are only considered once in the assembly process. Hence, their
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associated degrees of freedom only appear once in the assembled quantities in (3.25), cf. (Hughes,
2000; Zienkiewicz and Taylor, 2000). For discontinuous approximations, see Section 3.1.2.2, there
are no common nodes, so that no special care has to be taken. An analogous assembly procedure
has to be carried out for the tangential matrices in (3.23)-(3.24), with

M =

NE
NN
NN⋃
i = 1
j = 1
e= 1

meij , D =

NE
NN
NN⋃
i = 1
j = 1
e= 1

deij , K1 =

NE
NN
NN⋃
i = 1
j = 1
e= 1

keij . (3.26)

Here, a combination of the entries at common nodes has to be performed for continuous inter-
elemental approximations, while the discontinuous case does not require a distinction between
the individual nodes. Exploiting the fact that the test function’s nodal values are arbitrary but
non-zero, the linearized semidiscrete equation

MΔẅ +DΔẇ +K1Δw = R∗
1 −R1 (3.27)

is obtained. Together with Equation (3.3), it forms the initial boundary value problem. Therein,
the variable M represents the generalized mass matrix, D the generalized damping matrix,
K1 the generalized stiffness matrix, R1 the generalized load vector of internal, and R∗

1 the
generalized load vector of external forces.
The last step in solving Equation (3.27) is the temporal discretization, where a relationship
between the primary variable vector Δw and its time derivatives is stated. Different methods
concerning this topic are described in Section 3.4. In the subsequent passage, it is assumed that
this interdependence is known and Equation (3.27) can be reformulated into

KeffΔw = reff, (3.28)

wk+1 = Δw +wk,

where Keff embodies the effective generalized stiffness matrix and reff the effective generalized
load vector. In the context of the Newton-Raphson scheme, Equation (3.28) is solved with
respect to the increment, which in return is used to update the primary variable vector. The
latter, though, is employed to determine a new effective generalized stiffness matrix. This
iterative process is carried out until a certain termination criterion, for example

ηw =
‖Δw‖

‖wk+1 −wk=1‖ ≤ η,

is matched. Hence, the discrepancy between successive iteration steps is related to the change
with regard to the first iteration. If the starting value is chosen to be near the solution, a
quadratic rate of convergence can be obtained, cf. (Geiger and Kanzow, 2002). Alternative types
of termination criteria and adaptations of the Newton-Raphson procedure can be found in the
literature, cf. (Carstens, 2013; Wriggers, 2008; Zienkiewicz and Taylor, 2000). Eventually, an
algorithmic scheme for this local Newton-Raphson scheme can be established, see Figure 3.5.

3.2.2. A Semi-Smooth Newton Method

An alternative solution procedure has to be followed if the most general elasto(visco)plastic prob-
lem in (3.11)-(3.12) is considered.The idea is to reformulate the included variational inequality
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loop over iteration k while ηw > η

next iteration k

loop over elements e = 1, ..., NE

next element e

loop over Gausspoints ln = 1, ..., NG with n = 1, ..., ND

next Gausspoint ln

loop over element nodes i = 1, ..., NN

next element node i

generate shape functions & derivatives N̂ i(ξ),∇XN̂ i(ξ)

determine Jacobian matrix Je

loop over element nodes i = 1, ..., NN

next element node i

determine primary variables ẅ, ẇ,w,∇Xw

determine coordinates X

loop over element nodes i = 1, ..., NN

next element node i

loop over element nodes j = 1, ..., NN

next element node j

generate element matrices meij ,deij ,keij

generate load vector rei1 , r
∗,ei
1

assembly of structural entries M,D,K1,R1,R
∗
1

determine effective quantities with time integration scheme Keff, reff

solve effective system of equations KeffΔw = reff

update primary variables & derivatives wk+1 = Δw +wk, ẅk+1, ẇk+1

validate convergence ηw ≤ η

Figure 3.5.: Algorithm scheme for a Newton-Raphson method
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into an equality and to enable the application of a Newton scheme similar to the one described
in Section 3.2.1, cf. (Facchinei and Pang, 2003; Geiger and Kanzow, 2002; Hintermüller et al.,
2003; Popp et al., 2009). Therefore, in the first step, the Inequality (3.12) is transferred to the
standard element and the approximations in (3.7)-(3.9) are inserted, leading to

NN∑
i=1

[
δλei − λei

]
rei2 ≤ 0 with λei ∈ wei and δλei, λei ≥ 0. (3.29)

The abbreviation therein is defined by

rei2 =

∫
Ωe

N̂ i r2 |Je|dV e,

whereby the function’s dependencies are dropped for better clarity. For the explicit calculation
of the integral, a Gauss-Legendre quadrature is used as described in Section 3.3.
Following the approach in (Geiger and Kanzow, 2002), it can be shown that the solutions λei of
the variational inequality in (3.29) solve the nonlinear complementarity problem

λei ≥ 0, rei2 ≤ 0, λeirei2 = 0 (3.30)

at each element node i. A similar way of proceeding is performed in Equations (4.63)-(4.64).
The terms in Equation (3.30) are also known as Karush-Kuhn-Tucker conditions. They can be
restated into a non-smooth nonlinear complementarity function of the following kind

Ci
(
λei,we

)
= 0 with Ci

(
λei,we

)
= λei −max

(
0, λei + c rei2

)
, (3.31)

where c > 0 holds for an arbitrary constant. The constant’s influence is analyzed in (Hüeber
and Wohlmuth, 2005; Popp et al., 2009) in the context of contact problems. Therein, it is
emphasized that it is a purely algorithmic constant which does not affect the accuracy of the
result. In (Schröder and Kuhl, 2016), this statement is reinforced and the constant’s influence on
the number of iterations within an example of elastoplasticity is investigated. In the context of
other plasticity problems, completely different complementarity functions are exploited together
with additional stabilization parameters, cf. (Hager and Wohlmuth, 2009; Seitz et al., 2014).
Further examples for nonlinear complementarity functions can be taken from (Facchinei and
Pang, 2003; Geiger and Kanzow, 2002).
A closer look at the apparent complementarity function in (3.31) reveals a case distinction due
to the maximum operator. Its evaluation leads directly to the discrete Karush-Kuhn-Tucker
Conditions (3.30). Instead of dealing with an inequality, the nonlinear Equation (3.31) can be
added to Equation (3.11).
Since the complementarity function is continuous but non-smooth, due to the maximum op-
erator, it is not possible to carry out a simple linearization as in Section 3.2.1. As a remedy,
advantage is taken of the concept of a generalized Jacobian, which aims at extending the no-
tion of differentiability to non-smooth functions, cf. (Clarke, 1990; Hintermüller, 2010; Qi and
Sun, 1993). Following the approach in (Hintermüller, 2010; Qi and Sun, 1993), picking out one
specific element of this generalized Jacobian is sufficient to construct a semi-smooth New-

ton method. For the present case, this means that a generalized gradient ∂h of the maximum
operator h = max(0, s) depending on an arbitrary variable s

∂sh(s) :=

{
0 if s ≤ 0

1 if s > 0
(3.32)
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3.2. Nonlinear Solution Strategies

is defined, cf. (Popp et al., 2009). The linearization of the complementarity function in (3.31)
can then be accomplished similarly to Section 3.2.1 by a Taylor series expansion, which is
aborted after the linear term

D̄k
λeiC

i + D̄k
weCi + Ci

(
λei,k,we,k

)
= 0 (3.33)

with a kind of generalized derivative D̄k
sC

i of the respective variable s and the increment
Δs = sk+1 − sk. For an explicit determination of the quantities in Equation (3.33), the case
distinction of the maximum operator’s generalized gradient in (3.32) has to be considered. Thus,
for

λei,k + c rei,k2 ≤ 0 =⇒ λei,k+1 = 0

is obtained, while for

λei,k + c rei,k2 > 0 =⇒ keij2 ◦Δwej = rei2 with keij2 = −
∫
Ωe

N̂ iN̂ j ∂r2
∂we

∣∣∣∣
k

|Je|dV e

holds. Thus, the argument in the maximum operator serves as criterion to decide whether the
node i has to be considered in the solution process and belongs to the active set A - or whether
it can be neglected and is associated to the set of inactive nodes I. This distinction has to
be made in each iteration step k. Apart from the Inequality (3.29), the weak form in (3.11) is
linearized. This is done as shown in Section 3.2.1.
In order to describe the behavior of the complete general elasto(visco)plastic body B, the elemen-
tal quantities are assembled on structural level. Therefore, the expressions in Equations (3.25)-
(3.26) are extended to:

λ =

NE
NN⋃
j = 1
e= 1

λej , R2 =

NE
NN⋃
i = 1
e= 1

rei2 , K2 =

NE
NN
NN⋃
i = 1
j = 1
e= 1

keij2 , (3.34)

whereby λ ∈ w is assumed to hold. This leads to the system

MΔẅ +DΔẇ+K1Δw=R∗
1 −R1, (3.35)

K2Δw=−R2, (3.36)

λi,k+1 =0 ∀i ∈ Ik, (3.37)

Ak+1 :={i ≤ NNS|λei,k+1 + c rei,k+1
2 > 0}, (3.38)

Ik+1 :={i ≤ NNS|λei,k+1 + c rei,k+1
2 ≤ 0}. (3.39)

Equation (3.35) is already known from the Newton-Raphson approach in Section 3.2.1. Equa-
tions (3.36)-(3.39) form the counterpart of Equation (3.33) on structural level with the additional
tangential matrix K2 and the corresponding internal load vector R2. Hence, Equation (3.36)
only refers to nodes belonging to the active set Ak, while (3.37) is linked to the inactive set Ik.
The maximum number of nodes included in a set is limited to the number of total structural
nodes NNS.
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3. Numerical Realization of Multifield Problems

The last step before the vector of primary variables can be determined is to create a link between
itself and its time derivatives. This is accomplished by corresponding time integration schemes
as depicted in Section 3.4. Thus, the system of Equations (3.35)-(3.37) can be reformulated to

KeffΔw = reff, (3.40)

λi,k+1 = 0 ∀i ∈ Ik, (3.41)

wk+1 = Δw +wk, (3.42)

Ak+1 := {i ≤ NNS|λei,k+1 + c rei,k+1
2 > 0}, (3.43)

Ik+1 := {i ≤ NNS|λei,k+1 + c rei,k+1
2 ≤ 0}. (3.44)

Therein Keff embodies the effective generalized stiffness matrix and reff depicts the effective
generalized load vector. In the context of a semi-smooth Newton scheme, the system of
Equations (3.40)-(3.41) is solved with respect to the increment, exploiting a starting guess of the
primary variable vector wk and of the active and inactive sets Ak as well as Ik. Afterwards, an
update of all these quantities is performed. This iterative process is carried out until a specific
termination criterion is matched. Therefore,

ηw =
‖Δw‖

‖wk+1 −wk=1‖ ≤ η

could be taken into account. Hence, the discrepancy between successive iteration steps is related
to the change with regard to the first iteration.
In contrast to the Newton-Raphson scheme, the semi-smooth Newton method is not always
characterized by a quadratic convergence rate, even though the starting value is chosen to be
near the solution. Depending on the characteristics of the Equations (3.1) and (3.2), the outcome
can be a linear, superlinear, or quadratic convergence, cf. (Facchinei and Pang, 2003; Geiger and
Kanzow, 2002; Hager and Wohlmuth, 2009; Hintermüller et al., 2003). Eventually, an algorithmic
scheme for this local semi-smooth Newton scheme can be elaborated, see Figure 3.6.

3.3. Quadrature Rules

The general elasto(visco)plastic problem is defined by the weak forms in (3.1)-(3.2). Due to the
application of the finite element method as described in Section 3.1, the integrals of these terms
are transferred to unit integrals, where for each spatial direction ξi ∈ [−1, 1] with i = 1, ..., ND
is assumed. To be able to apply a nonlinear solution procedure as shown in Section 3.2, the
distinct integrals have to be evaluated. This is done numerically by using a quadrature rule:

1∫
−1

h(ξ1) dξ1 ≈
NG1∑
i=1

αi1 h(ξ
i
1). (3.45)

It approximates the integral of an arbitrary function h(ξ1) by a sum of integrands evaluated
at the points ξi1 and weighted by factors αi1, where i = 1, .., NG1 represents the number of
quadrature points. For an integration in ND spatial directions, an adequate extension of the
one-dimensional case (3.45) has to be carried out. For the most complicated three-dimensional
case, this means

∫
Ωe

h(ξ1, ξ2, ξ3) dξ1dξ2dξ3 ≈
NG1∑
i=1

NG2∑
j=1

NG3∑
k=1

αi1α
j
2α

k
3 h(ξi1, ξ

j
2, ξ

k
3 ).
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3.3. Quadrature Rules

loop over iteration k while ηw > η

next iteration k

loop over elements e = 1, ..., NE

next element e

loop over Gausspoints ln = 1, ..., NG with n = 1, ..., ND

next Gausspoint ln

loop over element nodes i = 1, ..., NN

next element node i

generate shape functions & derivatives N̂ i(ξ),∇XN̂ i(ξ)

determine Jacobian matrix Je

loop over element nodes i = 1, ..., NN

next element node i

determine primary variables ẅ, ẇ,w,∇Xw

determine coordinates X

loop over element nodes i = 1, ..., NN

next element node i

loop over element nodes j = 1, ..., NN

next element node j

generate element matrices meij ,deij ,keij ,keij
2

generate load vector rei1 , r
∗,ei
1 , rei2

assembly of structural entries M,D,K1,K2,R1,R
∗
1,R2

determine effective quantities Keff, reff

solve effective system of equations
KeffΔw = reff

λi,k+1 = 0 ∀i ∈ Ik

update primary variables, derivatives & sets

wk+1 = Δw +wk, ẅk+1, ẇk+1

Ak+1 := {i ≤ NNS|λei,k+1 + c rei,k+1
2 > 0}

Ik+1 := {i ≤ NNS|λei,k+1 + c rei,k+1
2 ≤ 0}

validate convergence ηw ≤ η

Figure 3.6.: Algorithm scheme for a semi-smooth Newton method
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3. Numerical Realization of Multifield Problems

The integral of the arbitrary function h(ξ1, ξ2, ξ3) is now estimated by three sums, where NGd

with d = 1, ..., 3 embodies the number of quadrature points in the respective spatial direction.
The latter and the weighting coefficients are identical to those used in the one-dimensional case.
The two-dimensional case is treated similarly. Depending on the choice of weighting constants
and quadrature points, different integration accuracies can be obtained. Hence, different types
of quadrature rules exist and can be applied.

3.3.1. Gauss-Legendre

The idea of the Gauss-Legendre quadrature is to choose weighting coefficients and nodal
points in such a way that polynomials of order p are approximated as well as possible. This is
achieved if the considered nodal points ξid with i = 1, ..., NGd and d = 1, ..., ND are the roots of
the Legendre polynomials, while the weighting coefficients are determined by the integral of the
corresponding Lagrange interpolants, cf. (Meister, 2010). For NGd nodal points, a polynomial
of order p ≤ 2NGd−1 can be approximated exactly. The following Table 3.1 shows an exemplary
list of the Gauss-Legendre quadrature parameters. For further values see (Abramowitz and
Stegun, 1972; Casio Computer Co. LTD, 2016; Szabó and Babuška, 1991).

3.3.2. Radau

The nodal points of the Gauss-Radau quadrature are also related to the Legendre polyno-
mials. The same is true for the weighting factors, cf. (Abramowitz and Stegun, 1972; Gautschi,
1999; Rose, 2007; Stroud, 1974; Weisstein, 2016). The difference to the Gauss-Legendre

quadrature, however, is that one nodal point is prescribed beforehand. Here, only the case
ξNGd
d = 1 with d = 1, ..., ND is considered. Due to this, for NGd nodal points only a polynomial

of order p ≤ 2NGd−2 can thus be approximated exactly, (Matthies and Schieweck, 2011; Ueber-
huber, 1997). A few quadrature parameters are listed in Table 3.2, cf. (Matthies and Schieweck,
2011; Weisstein, 2016).

3.3.3. Lobatto

The Gauss-Lobatto quadrature is also based on Legendre polynomials, and it is character-
ized by the fact that the two nodal points ξ1d = −1 as well as ξNGd

d = 1 with d = 1, ..., ND are
always considered, cf. (Abramowitz and Stegun, 1972). Accordingly, for NGd nodal points only
a polynomial of order p ≤ 2NGd − 3 can be approximated exactly, (Matthies and Schieweck,
2011; Ueberhuber, 1997). Table 3.3 depicts a list of quadrature parameters, cf. (Casio Computer
Co. LTD, 2016; Szabó and Babuška, 1991).

3.4. Time Discretization

The nonlinear solution strategies of Section 3.2 yield a set of linearized semidiscrete equations,
which are characterized by the primary variable vector w and its time derivatives ẇ and ẅ. At
a certain step of the solution procedure a link between these quantities has to be established.
This is achieved by time discretization schemes.
To be able to start from a common ground Equations (3.27) and (3.35)-(3.36) are aggregated in

MΔẅ +DΔẇ +KΔw = R∗ −R. (3.46)
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3.4. Time Discretization

Therein, M represents the linearized generalized mass matrix and D the generalized damping
matrix. The generalized stiffness matrix K is identical to the matrix K1 if the problem formula-
tion is only identified by equalities - otherwise, the matrix K2 is incorporated as well. A similar
course of action is followed concerning the generalized load vectors R and R∗.
Subsequently, different approaches will be presented to solve the generalized Equation (3.46)
in time. As a starting point for all methods, it is assumed that the time period of interest of
the general elasto(visco)plastic lies between [t1, T ]. In the next step, this interval is subdivided
into a number NT of time steps [tn, tn+1] with n = 1, ..., NT . The time step size is denoted as
Δt = tn+1 − tn. Hence, Equation (3.46) is exclusively evaluated at discrete points in time, which
are dictated by the chosen time discretization technique. Another analogy of the consecutive
schemes is that they all belong to the class of implicit one-step methods. Thus, the time deriva-
tives of the primary variable vector only depend on quantities of the currently analyzed time step.

Table 3.1.: Gauss-Legendre

parameters

NGd ξid αid

2 − 1√
3

1

− 1√
3

1

3 −
√

3

5

5

9

−0
8

9

−
√

3

5

5

9

4 −
√

3

7
+

2

7

√
6

5

18−√
30

36

−
√

3

7
− 2

7

√
6

5

18 +
√
30

36

−
√

3

7
− 2

7

√
6

5

18 +
√
30

36

−
√

3

7
+

2

7

√
6

5

18−√
30

36

Table 3.2.: Radau

parameters

NGd ξid αid

2 −1

3

3

2

−1
1

2

3 −1

5

(
1 +

√
6
) 1

18

(
16−√

6
)

−1

5

(
1−√

6
) 1

18

(
16 +

√
6
)

−1
2

9

4 −0.822824 0.440924

−0.181066 0.776387

−0.575319 0.657689

−1 0.125

Table 3.3.: Lobatto

parameters

NGd ξid αid

2 −1 1

−1 1

3 −1
1

3

−0
4

3

−1
1

3

4 −1
1

6

−0.447213
5

6

−0.447213
5

6

−1
1

6

3.4.1. The Newmark Method

Originally, the Newmark method was derived for structural dynamics considering forces and
displacements, cf. (Newmark, 1959). The time discretization is based on the idea of determining
the unknown velocity at the end of a time step by means of a weighted linear combination of
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3. Numerical Realization of Multifield Problems

the accelerations at the beginning and at the end of the time step. The unknown displacements
are treated analogously. Transforming this concept to the general elasto(visco)plastic problem
in (3.46) with the vector of unknowns w yields the approximations

Mn+1Δẅn+1 +Dn+1Δẇn+1 +Kn+1Δwn+1 = R∗
n+1 −Rn+1, (3.47)

wn+1 = wn +Δtẇn +
Δt2

2
[[1− 2β] ẅn + 2βẅn+1] , (3.48)

ẇn+1 = ẇn +Δt [[1− γ] ẅn + γẅn+1] , (3.49)

whereby the indices represent the points in time where the respective quantity is calculated,
e.g. wn+1 = w(tn+1). The variables β and γ resemble the Newmark parameters and influence
the stability as well as the accuracy of the method. For details on these topics and an in-depth
analysis concerning the Newmark method see (Bathe, 2002; Hughes, 1983; Neundorf, 2013;
Newmark, 1959; Strehmel et al., 2012). In this thesis, Equation (3.47) is to be solved with
respect to the vector of primary variables wn+1, which is why Equations (3.48)-(3.49) have to
be reformulated. To obtain a term for the second time derivative, Equation (3.48) is rearranged.
Afterwards, the resulting expression is inserted in (3.49), leading to

ẇn+1 =
γ

βΔt
[wn+1 −wn]− γ − β

β
ẇn − γ − 2β

2β
Δtẅn, (3.50)

ẅn+1 =
1

βΔt2
[wn+1 −wn]− 1

βΔt
ẇn − 1− 2β

2β
ẅn. (3.51)

Therein, only quantities of the last time step are included. For the first time step t1 the primary
variable vector w1 and its first derivative ẇ1 are given, due to the initial conditions in (3.3).
The generalized accelerations ẅ1 have to be determined in a preprocessing step by solving the
general elasto(visco)plastic problem in (3.1)–(3.2) at t1 directly.
Inserting the linearizations of Expressions (3.50)- (3.51) in Equation (3.47) yields the linear
system of equations

KeffΔwn+1 = reff,

Keff =
1

βΔt2
Mn+1 +

γ

βΔt
Dn+1 +Kn+1,

reff = R∗
n+1 −Rn+1,

(3.52)

which is represented by Equation (3.28) or (3.40) in Section 3.2. In the following, the nonlinear
solution strategies can thus be carried out to determine the unknown quantities. The time
derivatives can be updated in each iteration by utilizing Equations (3.50)-(3.51).
For a potential choice of the numerical parameters β, γ, and the respective analysis see (Bathe,
2002; Chung and Hulbert, 1993; Hilber et al., 1977; Hughes, 1983; Newmark, 1959; Wood et al.,
1980). In the examples investigated in the course of this thesis, only

β =
1

4
, γ =

1

2
(3.53)

are taken into account, leading to a second order accurate time discretization scheme. For
the accompanying algorithmic implementation scheme see Figure 3.7. Further combinations of
parameters are listed in (Gleim, 2016; Kuhl, 2004).
To enable a better control of the amount of numerical dissipation and dispersion, enhancements
of the Newmark time integration scheme are developed in (Hilber et al., 1977; Wood et al.,
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1980) by introducing additional numerical parameters. Further abstractions and investigations
of these time integration schemes are performed in (Chung and Hulbert, 1993) emanating in the
generalized Newmark -α method.

insert initial conditions w1, ẇ1, ẅ1

loop over time steps n = 1, ..., NT

next time step n

loop over iteration k while ηw > η

next iteration k

determine linearized generalized matrices Mn+1,Dn+1,Kn+1

determine generalized vectors R∗
n+1,Rn+1

generate effective quantities Keff, reff

solve effective system of equations and update primary variables & derivatives:

Newton-Raphson scheme semi-smooth Newton

KeffΔwn+1 = reff

λi,k+1
n+1 = 0 ∀i ∈ Ik

n+1

wk+1
n+1 =Δwn+1 +wk

n+1, ẅ
k+1
n+1, ẇ

k+1
n+1

Ak+1
n+1 :={i ≤ NNS|λei,k+1

n+1 + c rei,k+1
2,n+1 >0}

Ik+1
n+1 :={i ≤ NNS|λei,k+1

n+1 + c rei,k+1
2,n+1 ≤0}

KeffΔwn+1=reff

wk+1
n+1=Δwn+1 +wk

n+1, ẅ
k+1
n+1, ẇ

k+1
n+1

validate convergence ηw ≤ η

Figure 3.7.: Algorithm scheme for the Newmark method

3.4.2. Runge-Kutta Schemes

One of the oldest classes of time integration schemes are the Runge-Kutta methods. Their
beginning rests on the idea of solving first order differential equations by a reformulation into
corresponding integral counterparts. To obtain higher orders of convergence, these integrals
are approximated by a linear combination of trapezoidal rules, cf. (Butcher, 1996; Runge,
1895). In a next step, this rather inductive approach is generalized by assuming an arbitrary
quadrature rule, whose coefficients and supporting points are determined using a Taylor se-
ries expansion to obtain a prescribed order of convergence, cf. (Butcher and Wanner, 1996;
Heun, 1900). Todays Runge-Kutta procedures include a further modification exploiting addi-
tional parameters to generate greater flexibility in their design, cf. (Butcher and Wanner, 1996;
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Kutta, 1901). While the original schemes were solely of explicit nature, the search for even
higher orders of convergence led to the creation of implicit schemes. Because of their advanta-
geous stability issues, they gained further popularity, despite their greater computational effort,
cf. (Alexander, 1977; Butcher, 1963, 1964, 2008; Butcher and Wanner, 1996; Cash, 1979; Hairer
and Wanner, 2002; Prothero and Robinson, 1974; Strehmel et al., 2012). Additionally, the
possibility to determine the time discretization error efficiently is of great practical interest.
Hence, schemes using incorporated error estimates resemble useful tools. For their derivation
and investigation see (Cash, 1979; Dormand and Prince, 1980; Fehlberg, 1970).
Due to the different numerical demands - such as efficiency, order of convergence, stability, or
error quantification - a variety of Runge-Kutta schemes emerged. In the following sections,
only a few special cases from this range of methods are treated in detail.

3.4.2.1. Stiffly Accurate Fully Implicit Runge-Kutta Methods (IRK)

Apart from a few exceptions, e.g. the Nyström schemes cf. (Hairer et al., 2008), Runge-

Kutta methods were originally derived for first order ordinary differential equations. Thus,
Equation (3.46) is transformed into

MniΔv̇ni +DniΔvni +KniΔwni = R∗
ni −Rni, (3.54)

ẇni = vni, (3.55)

whereby the indices represent the points in time where the respective quantity is calculated, e.g.
wni = w(tni). These specific moments lie within the time step [tn, tn+1] and are denoted as
stages. They are determined by

tni = tn + ciΔt,

with the coefficients ci ∈ [0, 1] and i = 1, ..., s, where s embodies the maximum number of stages.
Hence, the general elasto(visco)plastic problem in (3.46) is not only solved at the end of the
time step, but also in-between. The link between the primary variable vectors w,v, and their
time derivatives is established by exploiting the fundamental theorem of calculus

wn+1 = wn +

∫ tn+1

tn

ẇ(t) dt, vn+1 = vn +

∫ tn+1

tn

v̇(t) dt (3.56)

as well as by approximating the appearing integrals in Equation (3.56) using the particular
quadrature rules

wn+1 = wn +Δt
s∑
i=1

bi ẇni, vn+1 = vn +Δt
s∑
i=1

bi v̇ni, (3.57)

with weighting coefficients bi. To figure out the new unknowns ẇni, v̇ni, further quadratures

wni = wn +Δt
s∑
j=1

aij ẇnj , vni = vn +Δt
s∑
j=1

aij v̇nj , (3.58)

with weighting coefficients aij are applied, emanating in a fully coupled system of linear equations
for the stage values wni,vni. The concept behind these nested quadrature rules is to obtain a
variety of parameters which enable the creation of time integration methods with relatively
arbitrary orders of convergence. The actual determination of these coefficients can be carried
out by comparing the Taylor series expansion of the method with the one of the exact solution,
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cf. (Butcher, 2008; Hairer et al., 2008). But apart from accuracy, these parameters also influence
the stability of the method, cf. (Butcher, 2008; Hairer et al., 2008; Hairer and Wanner, 2002;
Kutta, 1901). To provide a better overview of the chosen quadrature parameters, they are
conventionally sorted into a Butcher tableau, see Figure 3.8.

(a)

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

(b)

c1 a11

c2 a21 a22

...
...

...
. . .

cs as1 as2 · · · ass

b1 b2 · · · bs

(c)

c A

bT

Figure 3.8.: (a) Implicit Runge-Kutta method, (b) Diagonally implicit Runge-Kutta

scheme, (c) Short notation of the Butcher tableau

The classification of Runge-Kutta schemes is mainly performed by the form of the coefficient
matrix A consisting of entries aij . If this matrix has a lower triangular structure, a diagonally
implicit method is obtained, which will be described in detail in Section 3.4.2.2. In contrast, a
completely dense structure leads to fully implicit Runge-Kutta procedures. Moreover, in this
thesis, only Runge-Kutta schemes will be considered, where

asi = bi (3.59)

holds. This results in the correspondence of Equations (3.57) and (3.58) for the last stage.
Hence, the last stage equals the end of the time step tns = tn+1. These methods are denoted
as stiffly accurate. This property is especially important if algebraic equations are included in
Equation (3.46), as it is the case for the model problem in (3.35)-(3.39). Nevertheless, this char-
acteristic will also play an important role for the general elasto(visco)plastic scheme in (3.27).
Condition (3.59) enforces the algebraic equations to be fulfilled at the end of the time step.
For an arbitrary choice of Runge-Kutta parameters bi, this is not ensured, cf. (Ellsiepen
and Hartmann, 2001; Hairer and Wanner, 2002). With these assumptions, each stage value is
represented by a linear combination of all respective time derivatives at the different stages, see
Figure 3.9.
Aggregating the stage values in the vector wt = [wn1, ...,wns], the corresponding time derivatives
in ẇt = [ẇn1, ..., ẇns] and enhancing the vector wt,n by s copies of wn, leads to a reformulation
of the equations in (3.58) into

wt = wt,n +Δt Atẇt, vt = vt,n +Δt Atv̇t, (3.60)

if the variables connected to v are treated analogously. The matrix At consists of an extension
of the coefficient matrix A

At =

⎡
⎢⎢⎢⎣

a11 · · · a11 a12 · · · a12 · · · a1s · · · a1s
a21 · · · a21 a22 · · · a22 · · · a2s · · · a2s
...

...
...

...
...

. . .
...

as1 · · · as1 as2 · · · as2 · · · ass · · · ass

⎤
⎥⎥⎥⎦
,
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tn tni tni+1 tns = tn+1

wn

ẇn

wni

ẇni

wni

ẇni

wni+1

ẇni+1

wns

ẇns

Δt

Figure 3.9.: Stage value location for stiffly accurate Runge-Kutta schemes

where the individual entries are duplicated to take the sizes of the vectors wt, ẇt,vt, v̇t into
account. Transferring these ideas to the first order system of Equations (3.54)-(3.55) yields

MtΔv̇t +DtΔvt +KtΔwt = R∗
t −Rt, (3.61)

Δẇt = Δvt. (3.62)

Analogously, the linearizations

Δwt = Δt AtΔẇt, Δvt = Δt AtΔv̇t, (3.63)

are determined, if Δwt,n = 0 and Δvt,n = 0 are exploited as well. In the following, it will
always be assumed, that the coefficient matrix A is invertible and, hence, also its extension At.
By taking advantage of the aforementioned properties, Equations (3.61)-(3.63) can be combined
to derive the linear system of equations

KeffΔwt = reff,

Keff =
1

Δt2
MtA

−1
t A−1

t +
1

Δt
DtA

−1
t +Kt,

reff = R∗
t −Rt,

depending only on the vector of unknowns wt. Thus, the system of equations is reduced, a
direct solution with regard to the only primary variable vector wt is enabled, and the nonlinear
solution strategies described in Section 3.2 can be carried out. The time derivatives can be
updated in each iteration by utilizing reformulated forms of the equations in (3.60). Due to the
stiff accuracy, evaluations of the corresponding expressions in (3.57) are obsolete. The solution
at the end of the time step is already contained in the vector wt.
While a system of NEQ number of equations has to be solved in the Newmark method, the
system of equations for the fully implicit Runge-Kutta schemes is s-times bigger - as a result
of the additional stage values. However, the latter possess the ability to be constructed as
procedures of an arbitrary order of convergence q, cf. (Butcher, 2008; Hairer et al., 2008; Hairer
and Wanner, 2002). In the examples investigated in the course of this thesis, only the parameter
constellations in Figure 3.10 and Figure 3.11 are considered. For the accompanying algorithmic
implementation scheme see Figure 3.12.
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Figure 3.10.: (a) Radau IIA(2) (q = 3), (b) Radau IIA(3) (q = 5)
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Figure 3.11.: (a) Lobatto IIIC(2) (q = 2), (b) Lobatto IIIC(3) (q = 4),
(c) Lobatto IIIC(4) (q = 6)

3.4.2.2. Stiffly Accurate Diagonally ImplicitRunge-Kutta Schemes (DIRK)

A special class of stiffly accurate fully implicit Runge-Kutta schemes are those with a lower
triangular matrix A. They are denoted as stiffly accurate diagonal implicit Runge-Kutta

methods. If the coefficient matrix A remains invertible, the time discretization of Equation (3.46)
can be carried out as described in the previous Section 3.4.2.1. Alternatively, the decoupling
property of A can be exploited. Due to the lower triangular structure, each stage value only
depends on its own and on previous stage derivatives, see the equations in (3.58). Therefore,
it is not necessary to solve a system of equations consisting of s · NEQ equations. Instead, a
system of equations with NEQ equations can be solved s-times. This leads to slight changes in
the algorithmic treatment compared to the fully implicit case. The equations in (3.58) can be
reformulated to

wni = w̃ni +Δt aii ẇni, vni = ṽni +Δt aii v̇ni, (3.64)
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insert initial conditions w1, ẇ1, ẅ1

loop over time steps n = 1, ..., NT

next time step n

initialize stage quantities wt, ẇt, ẅt

loop over iteration k while ηw > η

next iteration k

loop over stages i = 1, ..., s

next stage i

determine generalized matrices of aggregated stage nodes Mt,Dt,Kt

determine generalized vectors of aggregated stage nodes R∗
t ,Rt

generate effective quantities Keff, reff

solve effective system of equations and update primary variables & derivatives:

Newton-Raphson scheme semi-smooth Newton

KeffΔwt = reff

λi,k+1
t = 0 ∀i ∈ Ik

t

wk+1
t =Δwt +wk

t , ẅ
k+1
t , ẇk+1

t

Ak+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t > 0}

Ik+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t ≤ 0}

KeffΔwt=reff

wk+1
t =Δwt +wk

t , ẅ
k+1
t , ẇk+1

t

validate convergence ηw ≤ η

update time step end values wn+1, ẇn+1, ẅn+1

Figure 3.12.: Algorithm scheme for fully implicit Runge-Kutta methods

with

w̃ni = wn +Δt

i−1∑
j=1

aij ẇnj , ṽni = vn +Δt

i−1∑
j=1

aij v̇nj . (3.65)

Linearizing the expressions in (3.64) and taking advantage of Δw̃ni = 0 as well as Δṽni = 0
yields

Δwni = Δt aiiΔẇni, Δvni = Δt aiiΔv̇ni, (3.66)

68



3.4. Time Discretization

as counterparts to the equations in (3.63). Hence, the equations in (3.66) can be combined with
the Relationships (3.54)-(3.55) to derive the linear system of equations

KeffΔwni = reff,

Keff =
1

a2iiΔt2
Mni +

1

aiiΔt
Dni +Kni,

reff = R∗
ni −Rni,

(3.67)

which corresponds to Equation (3.28) or (3.40). Hence, the nonlinear solution strategies de-
scribed in Section 3.2 can be carried out to determine the unknown quantities. The time deriva-
tives can be updated in each iteration by utilizing reformulated forms of the equations in (3.64).
The quantities at the end of the time step are obtained automatically, due to the stiff accuracy.
Correspondingly, the equations in (3.57) are obsolete. Compared to the Newmark method,
these methods have a s-times higher computational effort, because the solution procedure has
to be carried out for all s stages. The benefit, however, is that higher orders of convergence can
be achieved. In contrast to the fully implicit Runge-Kutta schemes, the computational costs
per solution procedure are reduced, since the number of equations is s-times less. However, at
least s-times more iterations have to be performed.
In the examples investigated in the course of this thesis, only the parameter constellations in
Figure 3.13 are considered:
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Figure 3.13.: (a) DIRK(1) (q = 1), (b) DIRK(2) (q = 2), (c) DIRK(3) (q = 3)

For the accompanying algorithmic implementation scheme see Figure 3.14.

3.4.3. Galerkin Time Discretization Scheme

Another class of time discretization schemes are the Galerkin time integrators. They are based
on the idea of adapting the concept of the finite element method for space discretizations to the
time domain. Hence, the differential equation, which has to be solved in time, is reformulated
into a corresponding weak form by a premultiplication with a test function and an integration
over the time domain. The primary variables as well as the test functions are then approximated
using appropriate interpolations. Carrying out a numerical integration allows to determine
the required unknowns in the time domain. Early approaches in this context are performed
in (Argyris and Scharpf, 1969; Fried, 1969; Oden, 1969). Further applications consider the
heat conduction equation, linear elastodynamics, rigid body movements, and optimal control
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3. Numerical Realization of Multifield Problems

problems with algebraic constraints as the target of investigation, cf. (Aziz and Monk, 1989;
Borri et al., 1990; Botasso and Ragazzi, 2000; Huang and Costanzo, 2002; Hulber and Hughes,
1990; Hulbert, 1992). By utilizing distinct shape functions and quadrature rules to estimate
the appearing integrals, a whole bundle of parameterizations of Galerkin integrators can
be generated. For Runge-Kutta procedures, an analogous influence within the variation of
the numerical integration scheme is perceptible, see Section 3.4.2. These similarities between
both Runge-Kutta and Galerkin methods as well as their link to collocation methods are
considered in (Ascher and Petzold, 1998; Aziz and Monk, 1989; Botasso, 1997; Estep and Stuart,
2001; Hulme, 1972a; Matthies and Schieweck, 2011; Zhao and Wei, 2013).

insert initial conditions w1, ẇ1, ẅ1

loop over time steps n = 1, ..., NT

next time step n

loop over stages i = 1, ..., s

next stage i

loop over iteration k while ηw > η

next iteration k

determine generalized matrices Mni,Dni,Kni

determine generalized vectors R∗
ni,Rni

generate effective quantities Keff, reff

solve effective system of equations and update primary variables & derivatives

Newton-Raphson scheme semi-smooth Newton

KeffΔwni = reff

λi,k+1
ni = 0 ∀i ∈ Ik

ni

wk+1
ni =Δwni +wk

ni, ẅ
k+1
ni , ẇk+1

ni

Ak+1
ni :={i ≤ NNS|λei,k+1

ni + c rei,k+1
2,ni >0}

Ik+1
ni :={i ≤ NNS|λei,k+1

ni + c rei,k+1
2,ni ≤0}

KeffΔwni=reff

wk+1
ni =Δwni +wk

ni, ẅ
k+1
ni , ẇk+1

ni

validate convergence ηw ≤ η

update time step end values wn+1, ẇn+1, ẅn+1

Figure 3.14.: Algorithm scheme for diagonally implicit Runge-Kutta methods
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Due to these connections, it is obvious, that since the family of Runge-Kutta schemes can
be derived in principle for arbitrary orders, this also has to hold for the class of Galerkin

time discretization schemes. Mathematical investigations concerning these convergence rates
and in terms of error estimates as well as stability aspects are performed in (Aziz and Monk,
1989; Eriksson et al., 2005; Hulme, 1972a,b; Matthies and Schieweck, 2011; Schieweck, 2009;
Thomée, 1997). In the following sections, only selected combinations of quadrature rules and
interpolatory functions are treated in detail.

3.4.3.1. Continuous Galerkin Two-Field Setting (cG2(pt))

There are various possibilities to solve Equation (3.46) by applying the finite element method in
the time domain. Since a large number of analyses has been carried out with regard to systems
of first order in time, cf. (Eriksson et al., 2005; Matthies and Schieweck, 2011; Thomée, 1997),
this approach is considered here as well. Therefore, Equation (3.46) is transformed to

MΔv̇ +DΔv +KΔw = R∗ −R, (3.68)

Δẇ −Δv = vk − ẇk, (3.69)

taking into account that the linearization of ẇ = v is included as an additional velocity con-
straint. In the next step, a temporal weak form is generated by multiplying Equations (3.68)-
(3.69) with arbitrary vector-valued test functions δt1, δt2 and carrying out an integration over
one time step for each equation, cf. (Matthies and Schieweck, 2011; Thomée, 1997). In general,
identical test functions δt1 and δt2 could be chosen. Here, the distinction is made in order to
take differences concerning physical units into account. Furthermore, a weighting of both equa-
tions is not considered in contrast to the approaches in (Carstens, 2013; Gleim, 2016). Adding
up the resulting equations yields the relationship

δWt =

∫ tn+1

tn

δt1 [MΔv̇ +DΔv +KΔw −R∗ +R] dtn +

+

∫ tn+1

tn

δt2 I
[
Δẇ −Δv − vk + ẇk

]
dtn = 0.

(3.70)

Therein, the unity matrix I is of the size of the considered number of degrees of freedom. In the
next step, it is assumed that the primary variables are approximated continuously using shape
functions N i

t (ξt) with i = 1, ..., pt + 1, where pt ≥ 2 represents the polynomial degree. The test
functions, however, are approximated discontinuously by functions N̄ i

t (ξt) with i = 1, ..., p̄t + 1
but of polynomial degree p̄t = pt − 1. Thus, following the wording in (Matthies and Schieweck,
2011) a continuous Petrov-Galerkin method in the two-field setting is derived.
As in the spatial finite element analysis, see Section 3.1, for Galerkin type time integrators
a parametrization of every time element [tn, tn+1] with n = 1, ..., NT is realized to form a
standard time element based on natural coordinates ξt ∈ [−1, 1]. The element time tn is hence
approximated analogously to Equation (3.5)1 by

tn ≈
pt+1∑
i=1

tniN i
t (ξt), (3.71)

where tni represents the respective time element node i and N i
t (ξt) the corresponding shape

function, cf. (Gleim and Kuhl, 2013; Kuhl, 2004; Stangenberg et al., 2009). Due to the one-
dimensional character and the proportional positioning of the arbitrary and the standard finite
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element nodes, Equation (3.71) can be simplified to the linear relation

tn ≈ Δt

2
ξt +

tn + tn+1

2 .
(3.72)

The primary variables, their time derivatives, their increments, and the test functions, however,
are treated as follows

w ≈
pt+1∑
i=1

wiN i
t (ξt), ẇ ≈

pt+1∑
i=1

wiN i
t,t(ξt), Δw≈

pt+1∑
i=1

ΔwiN i
t (ξt), Δẇ≈

pt+1∑
i=1

ΔwiN i
t,t(ξt),

v ≈
pt+1∑
i=1

viN i
t (ξt), v̇ ≈

pt+1∑
i=1

viN i
t,t(ξt), Δv ≈

pt+1∑
i=1

ΔviN i
t (ξt), Δv̇ ≈

pt+1∑
i=1

ΔviN i
t,t(ξt),

δt1≈
p̄t+1∑
i=1

δti1N̄
i
t (ξt), δt2≈

p̄t+1∑
i=1

δti2N̄
i
t (ξt).

(3.73)

Thereby, the abbreviation N i
t,t(ξt) with

N i
t,t(ξt) =

∂N i
t (ξt)

∂ξt

∂ξt
∂tn

= N i
t;t(ξt)J

−1
t (3.74)

illustrates the derivative of the shape function with respect to the physical time. The derivative
with respect to the natural coordinate is denoted as N i

t;t(ξt), while Jt embodies the Jacobian

in time. The latter can be determined as

Jt ≈
pt+1∑
i=1

N i
t;t(ξt)t

ni =
Δt

2 ,
(3.75)

with the Simplification (3.72). Furthermore, the generalization of the Galerkin time marching
process is carried out by transforming the integrals of arbitrary time elements in Equation (3.70)
into standard ones

δWt =

∫ 1

−1
δt1 [MΔv̇ +DΔv +KΔw −R∗ +R] Jt dξt +

+

∫ 1

−1
δt2 I

[
Δẇ −Δv − vk + ẇk

]
Jt dξt = 0.

(3.76)

Inserting the approximations of (3.73) in Equation (3.76) yields the fully discrete form
p̄t+1∑
i=1

pt+1∑
j=2

δti
[
dijt + kijt

]
Δyj =

p̄t+1∑
i=1

δti
[
r∗,it − rit

]
.

Therein, it is taken into consideration that the quantities at the first time node j = 1 are
known and, thus, their respective increments are zero. The primary variables as well as the test
functions are summarized in

Δy =

[
Δw
Δv

]
,

δt =

[
δt1
δt2

]
(3.77)

and the other terms are defined by:

dijt =

1∫
−1

N̄ i
t (ξt)N

j
t,t(ξt)

[
0 M
I 0

]
Jt dξt, kijt =

1∫
−1

N̄ i
t (ξt)N

j
t (ξt)

[
K D
0 −I

]
Jt dξt,

r∗,it =

1∫
−1

N̄ i
t (ξt)

[
R∗

0

]
Jt dξt, rit =

1∫
−1

N̄ i
t (ξt)

[
R

vk − ẇk

]
Jt dξt.

(3.78)
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The assembly of the quantities in (3.77)-(3.78) into respective hypermatrices or vectors results in

Δyt =
pt + 1⋃
i=2

Δyi, δtt =
p̄t + 1⋃
i=1

δti, Kt =

pt + 1
p̄t + 1⋃
i=1
j=2

kijt ,

Dt =

pt + 1
p̄t + 1⋃
i=1
j=2

dijt , R∗
t =

p̄t + 1⋃
i=1

r∗,it , Rt =
p̄t + 1⋃
i=1

rit,

(3.79)

wherein the entries associated to j = 1 are dropped, since the linked increments of the primary
variables Δy1 are zero. Thus, the linear system of equations

KeffΔyt = reff,

Keff = Dt +Kt,

reff = R∗
t −Rt

is established and the nonlinear solution strategies described in Section 3.2 can be performed.
The necessary time derivatives are determined in each iteration by evaluating the forms in (3.73)
at ξt = 1. However, due to the two-field setting, the solution vector automatically covers the
first time derivative of the primary variable vector ẇ.
To eventually characterize the previously described continuous Galerkin two-field setting com-
pletely, appropriate shape functions and corresponding quadrature rules to calculate the ap-
pearing integrals have to be chosen, see Section 3.3. As in the case of the spatial finite element
method, various realizations exist. Concerning the shape functions, isogeometric approaches
can be used just as well as Hermite or Lagrange interpolants, cf. (Fried, 1969; Gleim and
Kuhl, 2013; Kuhl, 2004; Matthies and Schieweck, 2011; Schäuble, 2013). With respect to nu-
merical integrations, Gauss-Legendre, Radau or Lobatto quadrature rules are applied in
the time finite element context, cf. (Carstens, 2013; Gleim, 2016; Matthies and Schieweck, 2011;
Schieweck, 2009).
In the course of this thesis, a specific Radau quadrature together with specific Lagrange shape
functions will be used for all examples based on the continuous Galerkin two-field setting.
The necessary quadrature parameters are depicted in Table 3.2 in Section 3.3. The idea is to
choose the number of quadrature points as NGt = pt and to form the vector ξ̄t = [ξ1t , ..., ξ

NGt
t ]

containing the corresponding Radau nodes. Furthermore, the vector ξt = [−1, ξ̄t] is established.
The Lagrange approaches are now formulated in such a way that, for the test functions, the
entries of ξ̄t are considered as interpolation points, since p̄t = pt−1 holds. For the approximation
of the primary variables, their derivatives and increments, however, the quantities of ξt are taken
into account. This leads to the formulations

N i
t (ξt) =

pt+1∑
l = 1
l �= i

−1

ξlt − ξit

pt+1∏
k = 1
k �= i

ξkt − ξt

ξkt − ξit
ξjt ∈ ξt with j = 1, ..., NGt + 1, (3.80)

N̄ i
t (ξt) =

p̄t+1∏
k = 1
k �= i

ξkt − ξt

ξkt − ξit
ξjt ∈ ξ̄t with j = 1, ..., NGt, (3.81)

N i
t;t(ξt)=

pt+1∑
l = 1
l �= i

−1

ξlt − ξit

pt+1∏
k = 1
k �= i
k �= l

ξkt − ξt

ξkt − ξit
ξjt ∈ ξt with j = 1, ..., NGt + 1. (3.82)
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For the derivative of the shape functions N i
t,t(ξt) with respect to the physical coordinates, the

evaluation of the Jacobian in time is needed as well. Although the application of Radau

quadrature points as interpolation points yields to non-equidistant nodes, Equation (3.71) can
be formulated as the affine linear relationship in (3.72) between the physical time t and the
natural time ξt so that Jt = Δt/2 still has to hold (Babuška and Strouboulis, 2001; Matthies
and Schieweck, 2011; Szabó and Babuška, 1991).
Due to the dependency of the selected number of Radau quadrature points on the polynomial
degree, the entries of the generalized time damping matrix Dt are integrated exactly. For
the generalized time stiffness matrix Kt this is, because of the integration accuracy of Radau

schemes, not the case. Nevertheless, this strategy has the benefit that the points in time where
the spatial quantities are evaluated, are identical to the time nodes. This is especially important
if algebraic equations have to be considered, as it is the case within the semi-smooth Newton

method in Section 3.2.2. Otherwise, these equations would not necessarily be fulfilled at the
time nodes. Hence, the semi-smooth Newton method is evaluated at each time node. This
argument is similar to the necessity of stiffly accurate Runge-Kutta methods, see Section 3.4.2
and (Hairer and Wanner, 2002). Another analogy to the Runge-Kutta schemes is that the
order of convergence is not limited to two as in the Newmark case. Within the continuous
Galerkin two-field setting, it can be increased by varying the polynomial degree of the shape
functions, cf. (Matthies and Schieweck, 2011; Thomée, 1997). But because of this enhancement
and the two-field formulation, the linear system of equations which has to be solved is 2(p̄t +1)-
times bigger as in the Newmark case and two-times bigger as for a fully implicit Runge-Kutta

scheme with s = p̄t + 1 stages. For the accompanying algorithmic implementation scheme see
Figure 3.16.

3.4.3.2. Discontinuous Galerkin Two-Field Setting (dG2(p̄t))

An alternative approach towards solving the respective first order reformulations in (3.68)-
(3.69) of Equation (3.46) by means of Galerkin time discretization schemes is to permit the
primary variables to be discontinuous at the beginning of each time step tn. This is described by

t1 = tn ti ti+1 tpt+1 = tn+1

wn
vn

wi

vi
wi+1

vi+1

wn+1

vn+1

Δt

(a)

t1 = tn ti ti+1 tpt+1 = tn+1

w+
n

v+
n

w−
n

v−
n

wi

vi
wi+1

vi+1

w−
n+1

v−
n+1

w+
n+1

v+
n+1

Δt

(b)

Figure 3.15.: (a) Continuous Galerkin time integrator, (b) Discontinuous Galerkin time in-
tegrator

introducing the jump terms

[[w]] = w+
n −w−

n = 0, [[v]] = v+
n − v−

n = 0, (3.83)
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insert initial conditions w1, ẇ1,v1, v̇1

loop over time steps n = 1, ..., NT

next time step n

initialize nodal quantities wt, ẇt,vt, v̇t

loop over iteration k while ηw > η

next iteration k

loop over Radau quadrature points l = 1, ..., NGt

next quadrature point l

loop over time element nodes i = 1, ..., pt + 1 and j = 1, ..., p̄t + 1

next element node i and j

generate shape functions & derivatives N̄ j
t (ξ

l
t),N i

t (ξ
l
t), N

i
t,t(ξ

l
t)

loop over time element nodes i = 1, ..., pt + 1

next element node i

determine time, primary variables & derivatives tn,w, ẇ,v, v̇

determine generalized quantities M,D,K,R∗,R

loop over element nodes i = 1, ..., pt + 1

next element node i

loop over element nodes j = 1, ..., p̄t + 1

next element node j

determine generalized matrices of aggregated time nodes Dt,Kt

determine generalized vectors of aggregated time nodes R∗
t ,Rt

generate effective quantities Keff, reff

solve effective system of equations and update primary variables & derivatives:

Newton-Raphson scheme semi-smooth Newton

KeffΔyt = reff

λi,k+1
t = 0 ∀i ∈ Ik

t

yk+1
t =Δyt + yk

t , ẏ
k+1
t

Ak+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t > 0}

Ik+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t ≤ 0}

KeffΔyt=reff

yk+1
t =Δyt + yk

t , ẏ
k+1
t

validate convergence ηw ≤ η

update time step end values wn+1, ẇn+1,vn+1, v̇n+1

Figure 3.16.: Algorithm scheme for the continuous Galerkin two-field setting
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which embody the difference between the primary variables at the end of the last w−
n ,v

−
n and

at the beginning of the current time step w+
n ,v

+
n , see Figure 3.15. These continuity conditions

can be weighted and linearized to obtain

MΔv+ +M[[vk]] = 0, IΔw+ + I[[wk]] = 0. (3.84)

The weighting matrices are chosen as in (Matthies and Schieweck, 2011) and assumed to be
constant. Other possibilities are described in (Gleim and Kuhl, 2013; Thomée, 1997).
If the temporal weak form of Equations (3.68)-(3.69) is now generated as described in Sec-
tion 3.4.3.1, the discontinuities of the primary variables have to be considered. This is achieved
by including the expressions of (3.84) in the extended temporal weak form

δWt =

∫ tn+1

tn

δt1 [MΔv̇ +DΔv +KΔw −R∗ +R] dtn +

+

∫ tn+1

tn

δt2
[
IΔẇ − IΔv − vk + ẇk

]
dtn +

+ δt+1 MΔv+ + δt+1 M[[vk]] +

+ δt+2 I Δw++ δt+2 I[[wk]] = 0,

(3.85)

where δt+1 , δt
+
2 represent the evaluated test functions at the beginning of the time step tn. In this

case, both the primary variables and the test functions are approximated by shape functions
N̄ i(ξt) with i = 1, ..., p̄t + 1 where p̄t ≥ 1 represents the polynomial degree. The result is a
discontinuous Bubnov-Galerkin method in the two-field setting, cf. (Gleim and Kuhl, 2013;
Kuhl, 2004; Matthies and Schieweck, 2011; Thomée, 1997; Zhao and Wei, 2013). Again, identical
test functions δt1 and δt2 could be chosen - but the distinction in this case only serves to take
differences concerning physical units into account.
To generalize the weak form in (3.85) to a standard time finite element, the procedure in Sec-
tion 3.4.3.1 is followed and a parametrization of the arbitrary time element is carried out ac-
cording to Equation (3.72). The approximations in Equation (3.73) are changed slightly, since
in the discontinuous method the same shape functions are used for all quantities:

w ≈
p̄t+1∑
i=1

wiN̄ i
t (ξt), ẇ ≈

p̄t+1∑
i=1

wiN̄ i
t,t(ξt), Δw ≈

p̄t+1∑
i=1

ΔwiN̄ i
t (ξt), Δẇ ≈

p̄t+1∑
i=1

ΔwiN̄ i
t,t(ξt),

v ≈
p̄t+1∑
i=1

viN̄ i
t (ξt), v̇ ≈

p̄t+1∑
i=1

viN̄ i
t,t(ξt), Δv ≈

p̄t+1∑
i=1

ΔviN̄ i
t (ξt), Δv̇ ≈

p̄t+1∑
i=1

ΔviN̄ i
t,t(ξt),

tn ≈
p̄t+1∑
i=1

tniN̄ i
t (ξt), δt1≈

p̄t+1∑
i=1

δti1N̄
i
t (ξt), δt2 ≈

p̄t+1∑
i=1

δti2N̄
i
t (ξt),

δt+1≈
p̄t+1∑
i=1

δti1N̄
i
t (−1), δt+2≈

p̄t+1∑
i=1

δti2N̄
i
t (−1), Δw+≈

p̄t+1∑
i=1

ΔwiN̄ i
t (−1), Δv+≈

p̄t+1∑
i=1

ΔviN̄ i
t (−1).

(3.86)

The Term (3.74) has to be adjusted analogously:

N̄ i
t,t(ξt) =

∂N̄ i
t (ξt)

∂ξt

∂ξt
∂tn

= N̄ i
t;t(ξt)J

−1
t , (3.87)

while the Jacobian remains as Jt = Δt/2, as before. Inserting the Approximations (3.86)
together with the Abbreviations (3.77) and exploiting the transformation to a standard finite
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3.4. Time Discretization

element in time yields the fully discrete form

p̄t+1∑
i=1

p̄t+1∑
j=1

δti
[
dijt + kijt + d̄

ij
t

]
Δyj =

p̄t+1∑
i=1

δti
[
r∗,it − rit − r̄it [[y

k]]
]
,

where

dijt =

1∫
−1

N̄ i
t (ξt)N̄

j
t,t(ξt)

[
0 M
I 0

]
Jt dξt, kijt =

1∫
−1

N̄ i
t (ξt)N̄

j
t (ξt)

[
K D
0 −I

]
Jt dξt,

r∗,it =

1∫
−1

N̄ i
t (ξt)

[
R∗

0

]
Jt dξt, rit =

1∫
−1

N̄ i
t (ξt)

[
R

vk − ẇk

]
Jt dξt,

d̄
ij
t = N̄ i

t (−1)N̄ j
t (−1)

[
0 M
I 0

]
,

r̄it = N̄ i
t (−1)

[
0 M
I 0

]

(3.88)

holds. Therein, the quantities with the superscript (•)+ are replaced by the linear combination
of their nodal counterparts evaluated at the left boundary of the time element ξt = −1. The
assembly of the distinct parts

Δyt =
p̄t + 1⋃
i=1

Δyi, δt =
p̄t + 1⋃
i=1

δti, Dt =

p̄t + 1
p̄t + 1⋃
i=1
j=1

dijt ,

Kt =

p̄t + 1
p̄t + 1⋃
i=1
j=1

kijt , R∗
t =

p̄t + 1⋃
i=1

r∗,it , Rt =
p̄t + 1⋃
i=1

rit,

D̄t =

p̄t + 1
p̄t + 1⋃
i=1
j=1

d̄
ij
t , R̄t =

p̄t + 1⋃
i=1

r̄it,

(3.89)

results in the linear system of equations

KeffΔyt = reff,

Keff = Dt +Kt + D̄t,

reff = R∗
t −Rt − R̄t.

Since this is almost identical to Equation (3.28) or (3.40), the nonlinear solution strategies
described in Section 3.2 can be carried out to deduce the unknown quantities. Their time
derivatives can be updated in each iteration by utilizing the forms in (3.86). However, due to
the two-field setting, the solution vector automatically covers the first time derivative of the
primary variable vector ẇ.
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3. Numerical Realization of Multifield Problems

insert initial conditions w1, ẇ1,v1, v̇1

loop over time steps n = 1, ..., NT

next time step n

initialize nodal quantities wt, ẇt,vt, v̇t

loop over iteration k while ηw > η

next iteration k

loop over Lobatto quadrature points l = 1, ..., NGt

next quadrature point l

loop over element nodes i = 1, ..., p̄t + 1

next element node i

generate shape functions & derivatives N̄ i
t (ξ

l
t), N̄

i
t,t(ξ

l
t)

loop over element nodes i = 1, ..., p̄t + 1

next element node i

determine time, primary variables & derivatives tn,w, ẇ,v, v̇

determine generalized quantities M,D,K,R∗,R

loop over element nodes i = 1, ..., p̄t + 1

next element node i

loop over element nodes j = 1, ..., p̄t + 1

next element node j

determine generalized matrices of aggregated time nodes Dt,Kt

determine generalized vectors of aggregated time nodes R∗
t ,Rt

determine jump quantities D̄t, r̄t

generate effective quantities Keff, reff

solve effective system of equations and update primary variables & derivatives:

Newton-Raphson scheme semi-smooth Newton

KeffΔyt = reff

λi,k+1
t = 0 ∀i ∈ Ik

t

yk+1
t =Δyt + yk

t , ẏ
k+1
t

Ak+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t > 0}

Ik+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t ≤ 0}

KeffΔyt=reff

yk+1
t =Δyt + yk

t , ẏ
k+1
t

validate convergence ηw ≤ η

update time step end values wn+1, ẇn+1,vn+1, v̇n+1

Figure 3.17.: Algorithm scheme for the discontinuous Galerkin two-field setting
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3.4. Time Discretization

The last step to completely describe this discontinuous Galerkin approach is to define the
shape functions and to choose a suitable quadrature rule to determine the integrals in (3.88)
numerically. Following the course of action in Section 3.4.3.1, only Lagrange shape functions
will be taken into account. However, in contrast to the continuous Galerkin two-field setting, a
Lobatto quadrature with the parameters listed in Table 3.3 is applied. Moreover, the number
of considered quadrature points is fixed to NGt = p̄t + 1 and the corresponding supporting
points are summarized in the vector ξ̄t = [ξ1t , ..., ξ

NGt
t ]. The entries of this vector serve as the

interpolatory nodes of the Lagrange shape functions. Thus, similar to Equations (3.80) and
(3.82), these can be formulated by

N̄ i
t (ξt) =

p̄t+1∏
k = 1
k �= i

ξkt − ξt

ξkt − ξit
ξjt ∈ ξ̄t with j = 1, ..., NGt, (3.90)

N̄ i
t;t(ξt)=

p̄t+1∑
l = 1
l �= i

−1

ξlt − ξit

p̄t+1∏
k = 1
k �= i
k �= l

ξkt − ξt

ξkt − ξit
ξjt ∈ ξ̄t with j = 1, ..., NGt. (3.91)

The derivative of the shape functions with respect to physical coordinates N̄ i
t,t(ξt) is determined

by exploiting the Jacobian to be Jt = Δt/2 - presuming that the same arguments as in
Section 3.4.3.1 hold.
Due to the accuracy of the applied Lobatto quadrature and the limitation of the quadrature
points by the polynomial degree, the entries of the generalized time damping matrix Dt are
integrated exactly. For the generalized time stiffness matrix Kt no exact integration is performed
- and a similar presumption also applies to the continuous Galerkin method. In both cases, the
discrepancy is supposed to serve as a basis for a strategy that benefits from the characteristic that
the quadrature points where the spatial quantities are evaluated are identical to the time nodes.
Within the discontinuous Galerkin two-field setting the order of accuracy can be increased
by varying the polynomial degree of the shape functions, cf. (Matthies and Schieweck, 2011;
Thomée, 1997). However, due to this enhancement and the two-field formulation, the linear
system of equations which has to be solved is 2(p̄t + 1)-times bigger as in the Newmark case
and two-times bigger as for a fully implicit Runge-Kutta scheme with s = p̄t + 1 stages. For
the accompanying algorithmic implementation scheme see Figure 3.17.

3.4.3.3. Continuous Galerkin Single-Field Setting (cG1(pt))

In order to reduce the size of the system of linear equations which has to be solved in the end,
the knowledge about the continuous and discontinuous Galerkin two-field settings is used to
construct a continuous Galerkin scheme in the one-field setting. Once again, test functions
N̄ i(ξt) with i = 1, ..., p̄t + 1 with polynomial degree p̄t ≥ 1 are therefore assumed. The primary
variables, in contrast, are approximated by shape functions N i(ξt) for i = 1, ..., pt + 1 with
polynomial degree pt = p̄t + 1. The resulting continuity assumption, however, is not necessarily
fulfilled for the first time derivative, see Figure 3.18.
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3. Numerical Realization of Multifield Problems

t1 = tn ti ti+1 tpt+1 = tn+1

wn

wi

wi+1 wn+1

Δt

(a)

t1 = tn ti ti+1 tpt+1 = tn+1

ẇ+
n

ẇ−
n

ẇi

ẇi+1

ẇ−
n+1

ẇ+
n+1

Δt

(b)

Figure 3.18.: (a) Continuous course of the primary variable w, (b) Discontinuous course of the
first derivative of the primary variable ẇ

Analogously to Section 3.4.3.2, the appearing discontinuities are considered by allowing the first
derivative of the primary variable to jump at the beginning of each time step. Thus, the term

[[ẇ]] = ẇ+
n − ẇ−

n = 0 (3.92)

is established similar to Equation (3.83). Performing a linearization and a weighting as in (3.84)
results in

MΔẇ+ +M[[ẇk]] = 0. (3.93)

If now Equation (3.46) is formulated in a weak sense, Equation (3.93) has to be accounted for
properly. This leads to the temporal weak form

δWt =

∫ 1

−1
δt [MΔẅ +DΔẇ +KΔw −R∗ +R] Jtdξt +

+ δt+ MΔẇ+ + δt+M[[ẇk]] = 0,

(3.94)

with the test function δt and its at the beginning of the time step tn evaluated counterpart δt+.
The parametrization, the approximation of the time and the determination of the Jacobian

are carried out as described in Section 3.4.3.1. Alternative formulations and further derivation
strategies can be found in (Gleim and Kuhl, 2013; Gleim et al., 2015; Hughes and Hulbert, 1988;
Matthies and Schieweck, 2011; Thomée, 1997).
To derive the fully discrete system of equations, the primary variables, their time derivatives,
and their increments have to be approximated

w ≈
pt+1∑
i=1

wiN i
t (ξt), ẇ ≈

pt+1∑
i=1

wiN i
t,t(ξt), ẅ ≈

pt+1∑
i=1

ΔwiN i
t,tt(ξt),

Δw≈
pt+1∑
i=1

ΔwiN i
t (ξt), Δẇ≈

pt+1∑
i=1

ΔwiN i
t,t(ξt), Δẅ ≈

pt+1∑
i=1

ΔwiN i
t,tt(ξt),

δt ≈
p̄t+1∑
i=1

δtiN̄ i
t (ξt), δt+ ≈

p̄t+1∑
i=1

δtiN̄ i
t (−1), Δẇ+≈

pt+1∑
i=1

ΔwiN i
t,t(−1).

(3.95)
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3.4. Time Discretization

These terms are similar to those in Equation (3.73), except that in this case, due to the one-field
setting, second derivatives appear and jump terms are taken into account instead of a further
primary variable v. Hence, apart from Equations (3.74) as well as (3.75), the connection between
the natural and physical second derivative must be formulated:

N i
t,tt(ξt) =

∂N i
t,t(ξt)

∂ξt

∂ξt
∂tn

= N i
t;tt(ξt)

[
J−1

t
]2

+N i
t;t(ξt)

[
J−1

t
]
,t . (3.96)

Finally, inserting the quantities of (3.95) into (3.94) results in the system of linear equations
p̄t+1∑
i=1

pt+1∑
j=2

δti
[
mij

t + dijt + kijt + d̄
ij
t

]
Δwj=

p̄t+1∑
i=1

δti
[
r∗,it − rit − r̄it[[ẇ

k]]
]
,

where

mij
t =

1∫
−1

N̄ i
t (ξt)N

j
t,tt(ξt) M Jt dξt, dijt =

1∫
−1

N̄ i
t (ξt)N

j
t,t(ξt) D Jt dξt,

kijt =

1∫
−1

N̄ i
t (ξt)N

j
t (ξt) K Jt dξt, r∗,it =

1∫
−1

N̄ i
t (ξt) R∗ Jt dξt,

rit =

1∫
−1

N̄ i
t (ξt) R Jt dξt,

d̄
ij
t = N̄ i

t (−1)N j
t,t(−1) M, r̄it = N̄ i

t (−1) M

holds. The quantities with the superscript (•)+ are replaced by the linear combination of their
nodal counterparts evaluated at the left boundary ξt = −1 of the time element. The assembly
of the distinct parts is implemented by exploiting the respective terms in (3.79) augmented by

Mt =

pt + 1
p̄t + 1⋃
i=1
j=2

mij
t , D̄t =

pt + 1
p̄t + 1⋃
i=1
j=2

d̄
ij
t , R̄t =

p̄t + 1⋃
i=1

r̄it, Δwt =
pt + 1⋃
i=2

Δwi.

Again, the quantities linked to j = 1 are neglected since the associated increments Δw1 are
zero. The effective quantities can thus be determined, yielding the linear system of equations

KeffΔwt = reff,

Keff = Mt +Dt +Kt + D̄t,

reff = R∗
t −Rt − R̄t,

which can be solved using the nonlinear solution strategies described in Section 3.2. The respec-
tive time derivatives can be updated in each iteration by utilizing the forms in (3.95).
The last step in constructing this continuous Galerkin one-field setting is to choose a quadra-
ture rule and adequate shape functions. Here again, like in the continuous Galerkin two-field
approach in Section 3.4.3.1, a Radau quadrature is applied and, hence, the Lagrange shape
functions as well as their first derivatives are used as formulated in (3.80)-(3.82). Additionally,
the second derivative is stated by

N i
t;tt(ξt) =

pt+1∑
m = 1
m �= i

−1

ξmt − ξit

pt+1∑
l = 1
l �= i
l �=m

−1

ξlt − ξit

pt+1∏
k = 1
k �= i
k �= l
k �=m

ξkt − ξt
ξkt − ξit

ξjt ∈ ξt with j = 1, ..., NGt + 1.
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insert initial conditions w1, ẇ1, ẅ1

loop over time steps n = 1, ..., NT

next time step n

initialize nodal quantities wt, ẇt, ẅt

loop over iteration k while ηw > η

next iteration k

loop over Radau quadrature points l = 1, ..., NGt

next quadrature point l

loop over time element nodes i = 1, ..., pt + 1 and j = 1, ..., p̄t + 1

next element node i and j

generate shape functions & derivatives N̄ j
t (ξ

l
t),N i

t (ξ
l
t), N

i
t,t(ξ

l
t), N

i
t,tt(ξ

l
t)

loop over time element nodes i = 1, ..., pt + 1

next element node i

determine time, primary variables & derivatives tn,w, ẇ, ẅ

determine generalized quantities M,D,K,R∗,R

loop over element nodes i = 1, ..., pt + 1

next element node i

loop over element nodes j = 1, ..., p̄t + 1

next element node j

determine generalized matrices of aggregated time nodes Mt,Dt,Kt

determine generalized vectors of aggregated time nodes R∗
t ,Rt

determine jump quantities D̄t, r̄t

generate effective quantities Keff, reff

solve effective system of equations and update primary variables & derivatives:

Newton-Raphson scheme semi-smooth Newton

KeffΔwt = reff

λi,k+1
t = 0 ∀i ∈ Ik

t

wk+1
t =Δwt +wk

t , ẅ
k+1
t , ẇk+1

t

Ak+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t > 0}

Ik+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t ≤ 0}

KeffΔwt=reff

wk+1
t =Δwt +wk

t , ẅ
k+1
t , ẇk+1

t

validate convergence ηw ≤ η

update time step end values wn+1, ẇn+1, ẅn+1

Figure 3.19.: Algorithm scheme for the continuous Galerkin one-field setting
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In order to calculate the corresponding derivatives with respect to physical coordinates,
Equation (3.96) has to be evaluated. Here, it is possible to take advantage of the fact that
Equation (3.72) leads to the constant Jacobian Jt = Δt/2, cf.(Babuška and Strouboulis, 2001;
Matthies and Schieweck, 2011; Szabó and Babuška, 1991). Hence, to transform the second
derivatives from natural to physical coordinates, only a multiplication with the square of the
inverse Jacobian has to be performed.
Apart from one exception, the properties of the developed continuous Galerkin one-field proce-
dure are identical to those of its two-field counterpart, see Section 3.4.3.1. The resulting system
of linear equations is half the size as in the two-field case. Hence, it is only p̄t + 1 times bigger
than the Newmark scheme, and it is identical to a fully implicit Runge-Kutta method with
s = p̄t + 1 stages. For the accompanying algorithmic implementation scheme see Figure 3.19.

3.4.3.4. Discontinuous Galerkin Single-Field Setting (dG1(p̄t))

Analogously to the previous Section 3.4.3.3, also the discontinuous Galerkin two-field setting
is reworded to a one-field approach. As in the discontinuous Galerkin two-field setting, see
Section 3.4.3.2, it is again assumed that both the test functions and the primary variables are
approximated using functions N̄ i(ξt) with i = 1, ..., p̄t+1, where p̄t ≥ 2 represents the polynomial
degree. The discontinuities of the primary variable have to be accounted for by introducing jump
terms, cf. (Gleim and Kuhl, 2013; Matthies and Schieweck, 2011; Thomée, 1997). This is done
as in Equations (3.83) and (3.92) by

[[w]] = w+
n −w−

n = 0, [[ẇ]] = ẇ+
n − ẇ−

n = 0. (3.97)

The linearization and weighting of (3.97) in accordance to (3.84) results in

MΔẇ+ +M[[ẇk]] = 0, DΔw+ +D[[wk]] = 0.

To obtain convergence, the relationship

MΔw+ +M[[wk]] = 0

is considered additionally. With these supplementary and modified expressions, the discon-
tinuous Galerkin two-field temporal weak form in (3.85) can be adapted to its single-field
counterpart

δWt =

∫ 1

−1
δt [MΔẅ +DΔẇ +KΔw −R∗ +R] Jtdξt +

+ δt+ MΔẇ+ + δt+M[[ẇk]] +

+ δt+ DΔw+ + δt+D[[wk]] +

− δṫ
+

MΔw+ − δṫ
+
M[[wk]] = 0.

(3.98)

While the test function is indicated by δt, the variable δt+ represents the test function evaluated
at the beginning ξt = −1 of the time step tn. Its time derivative is denoted by δṫ

+. The terms
involving this time derivative are inserted to obtain convergence. This choice is founded on
the approaches in (Botasso, 1997; Botasso and Ragazzi, 2000), where the connection between
Runge-Kutta and Galerkin schemes is treated, since in the linear case and for a polynomial
degree of p̄t = 2 the discontinuous Galerkin scheme degenerates into the fully implicit Runge-

Kutta Lobatto IIIC(3) method. The parametrization, the approximation of the time, and the
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determination of the Jacobian are carried out as described in Section 3.4.3.2. An alternative
discontinuous one-field strategy with different weighting factors is depicted in (Gleim and Kuhl,
2013; Hulber and Hughes, 1990). All further quantities in (3.98) are approximated by

w ≈
p̄t+1∑
i=1

wiN̄ i
t (ξt), ẇ ≈

p̄t+1∑
i=1

wiN̄ i
t,t(ξt), ẅ ≈

p̄t+1∑
i=1

ΔwiN̄ i
t,tt(ξt),

Δw≈
p̄t+1∑
i=1

ΔwiN̄ i
t (ξt), Δẇ ≈

p̄t+1∑
i=1

ΔwiN̄ i
t,t(ξt), Δẅ ≈

p̄t+1∑
i=1

ΔwiN̄ i
t,tt(ξt),

δt ≈
p̄t+1∑
i=1

δtiN̄ i
t (ξt), δṫ ≈

p̄t+1∑
i=1

δtiN̄ i
t,t(ξt), δt+ ≈

p̄t+1∑
i=1

δtiN̄ i
t,t(−1),

δṫ
+ ≈

p̄t+1∑
i=1

δtiN̄ i
t,t(−1), Δw+≈

p̄t+1∑
i=1

ΔwiN̄ i
t (−1), Δẇ+≈

p̄t+1∑
i=1

ΔwiN̄ i
t,t(−1).

(3.99)

Some of the approximations herein are already known from (3.86). They are only repeated for
a better understanding and to yield a closed-form description of the method.
The terms of Equation (3.99) contain, as for the continuous Galerkin one-field setting, second
order derivatives. Hence, apart from the relationships between the natural and physical first
derivatives in (3.87), the connection between the second derivatives in (3.96) has to be taken
into account. Finally, inserting the quantities of (3.99) in (3.98) results in the system of linear
equations

p̄t+1∑
i=1

p̄t+1∑
j=1

δti
[
mij

t + dijt + kijt + d̄
ij
t

]
Δwj=

p̄t+1∑
i=1

δti
[
r∗,it − rit − r̄i1t[[ẇ

k]]− r̄i2t[[w
k]]
]
,

where

mij
t =

1∫
−1

N̄ i
t (ξt)N̄

j
t,tt(ξt)M Jt dξt, dijt =

1∫
−1

N̄ i
t (ξt)N̄

j
t,t(ξt) D Jt dξt,

kijt =

1∫
−1

N̄ i
t (ξt)N̄

j
t (ξt) K Jt dξt, r∗,it =

1∫
−1

N̄ i
t (ξt) R∗ Jt dξt,

rit =

1∫
−1

N̄ i
t (ξt) R Jt dξt,

d̄
ij
t = N̄ i

t (−1)N̄ j
t,t(−1)M+ N̄ i

t (−1)N̄ j
t (−1)D− N̄ i

t,t(−1)N̄ j
t (−1)M,

r̄i1t = N̄ i
t (−1)M, r̄i2t = N̄ i

t (−1)D− N̄ i
t,t(−1)M

hold. The quantities with the superscript (•)+ are replaced by the linear combination of their
nodal counterparts evaluated at the left boundary ξt = −1 of the time element tn. The assembly
of the distinct parts is achieved by exploiting the respective terms in (3.89) augmented by

Mt =

pt + 1
p̄t + 1⋃
i=1
j=1

mij
t , R̄1t =

p̄t + 1⋃
i=1

r̄i1t, R̄2t =
p̄t + 1⋃
i=1

r̄i2t, Δwt =
p̄t + 1⋃
i=1

Δwi.
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insert initial conditions w1, ẇ1, ẅ1

loop over time steps n = 1, ..., NT

next time step n

initialize nodal quantities wt, ẇt, ẅt

loop over iteration k while ηw > η

next iteration k

loop over Radau quadrature points l = 1, ..., NGt

next quadrature point l

loop over time element nodes i = 1, ..., p̄t + 1

next element node i

generate shape functions & derivatives N̄ i
t (ξ

l
t), N̄

i
t,t(ξ

l
t), N̄

i
t,tt(ξ

l
t)

loop over time element nodes i = 1, ..., p̄t + 1

next element node i

determine time, primary variables & derivatives tn,w, ẇ, ẅ

determine generalized quantities M,D,K,R∗,R

loop over element nodes i = 1, ..., p̄t + 1

next element node i

loop over element nodes j = 1, ..., p̄t + 1

next element node j

determine generalized matrices of aggregated time nodes Mt,Dt,Kt

determine generalized vectors of aggregated time nodes R∗
t ,Rt

determine jump quantities D̄t, R̄1t, R̄2t

generate effective quantities Keff, reff

solve effective system of equations and update primary variables & derivatives:

Newton-Raphson scheme semi-smooth Newton

KeffΔwt = reff

λi,k+1
t = 0 ∀i ∈ Ik

t

wk+1
t =Δwt +wk

t , ẅ
k+1
t , ẇk+1

t

Ak+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t > 0}

Ik+1
t :={i ≤ NNS|λei,k+1

t + c rei,k+1
2,t ≤ 0}

KeffΔwt=reff

wk+1
t =Δwt +wk

t , ẅ
k+1
t , ẇk+1

t

validate convergence ηw ≤ η

update time step end values wn+1, ẇn+1, ẅn+1

Figure 3.20.: Algorithm scheme for the discontinuous Galerkin one-field setting
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The effective quantities can thus be determined, yielding the linear system of equations

KeffΔwt = reff,

Keff = Mt +Dt +Kt + D̄t,

reff = R∗
t −Rt − R̄1t − R̄2t.

Since this is almost identical to Equation (3.28) or (3.40), the nonlinear solution strategies
described in Section 3.2 can be carried out to deduce the unknown quantities. The respective
time derivatives can be updated in each iteration by utilizing the forms in (3.99).
The last step in constructing this discontinuous Galerkin one-field setting is the choice of a
quadrature rule and of shape functions. Here again, like in the discontinuous Galerkin two-field
approach in Section 3.4.3.2, a Lobatto quadrature is applied and, hence, the Lagrange shape
functions as well as their first derivatives are used as formulated in (3.90)-(3.91). Additionally,
the second derivative is stated by

N̄ i
t;tt(ξt) =

p̄t+1∑
m = 1
m �= i

−1

ξmt − ξit

p̄t+1∑
l = 1
l �= i
l �=m

−1

ξlt − ξit

p̄t+1∏
k = 1
k �= i
k �= l
k �=m

ξkt − ξt
ξkt − ξit

ξjt ∈ ξ̄t with j = 1, ..., NGt.

In order to calculate the corresponding derivatives with respect to physical coordinates,
Equation (3.96) has to be evaluated as described, for example, in Section 3.4.3.3. The com-
putational properties of the developed discontinuous Galerkin one-field procedure are similar
to those of the two-field counterpart, see Section 3.4.3.2. The only exception is that the resulting
system of linear equations is half the size as in the two-field case. Hence, it is only p̄t + 1 times
bigger than the Newmark scheme and identical to a fully implicit Runge-Kutta method with
s = p̄t + 1 stages. For the accompanying algorithmic implementation scheme see Figure 3.20.

3.5. Time Discretization Error

In the context of the numerical implementations of elasto(visco)plastic problems, the estimation
of appearing errors is one key ingredient. In fact, the occurrence of errors within the simulations
of real life processes is manifold. While first deviations are already induced in the modeling
phase, imprecisions in the identification of necessary parameters lead to even more discrepancies.
Last but not least, the numerical realization leads to additional errors. Contributions to this
category stem from the spatial as well as the temporal discretization, the application of numerical
quadratures, solver tolerances and round off errors, cf. (Eriksson et al., 2005; Schmidt, 2001).
While the influence of the latter aspects is out of the scope of this thesis, the main focus lies
on estimating errors caused by the time discretization and the related time integration schemes.
Discrepancies due to the spatial discretization are analyzed by mesh refinement.
For an overview and a classification of further error estimators in this field see (Ainsworth and
Oden, 1997; Braess, 2010; Zienkiewicz and Taylor, 2000). A supplementary analysis on recovery-
based error estimators in the context of spatial discretization is presented in (Ainsworth and
Craig, 1997; Grätsch and Bathe, 2005), while goal-oriented error estimators are discussed in
(Bangerth and Rannacher, 2003; Grätsch and Bathe, 2005). For topics concerning residual er-
ror estimates see (Babuška and Miller, 1987; Babuška and Rheinboldt, 1978; Eriksson et al.,
2005), and a special treatment of elastoplasticity related to purely spatial discretization er-
rors is performed in (Alberty et al., 1999; Repin and Xanthis, 1996; Schmidt, 2001; Schröder
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3.5. Time Discretization Error

and Wiedemann, 2011; Wiberg et al., 1996). Approaches taking the time discretization error
additionally into account can be found in (Alberty and Carstensen, 2000; Mielke et al., 2010).
While the spatial discretization in this thesis is always performed using the finite element method,
a variety of schemes is used for time integration, see Section 3.4. This diversity is also repre-
sented by the different types of estimates for the time discretization error. In this thesis, three
kinds of estimators are treated. While the h-error estimation is applicable to all procedures,
embedded ones are only applied to diagonally implicit Runge-Kutta schemes. The residual
error estimator, however, is reserved for Galerkin time integration schemes.
A similar picture is drawn in the literature, where individual error estimates are formulated
for specific schemes. For example for Newmark time integration methods, the error may be
determined by assuming a linear combination of acceleration quantities at different points in
time, cf. (Kuhl, 2004; Li et al., 1993; Zienkiewicz and Xie, 1991). A mathematical analysis
of error estimates linked to Galerkin schemes is outlined in (Johnson, 1988; Matthies and
Schieweck, 2011), while optimal error estimates for space-time finite elements are predicted in
(Hughes and Hulbert, 1988). For an application of the dual weighted residual method in the
context of time finite elements see (Kizio, 2008).

3.5.1. h-Error Estimation

In order to motivate the current error quantity, the linearized semidiscrete form of the general
elasto(visco)plastic problem in (3.46) is considered. Due to the already performed spatial dis-
cretization, only a system of ordinary differential equations is left, which is characterized by the
time-dependent primary variable vector w. Now, it is assumed that the exact solution wex

n+1

and a numerically calculated solution wn+1 at the point in time tn+1 are known. Thus, the local
error eh,n+1 can be stated as

eh,n+1 = wex
n+1(wn)−wn+1(wn). (3.100)

The term local time discretization error implies the determination of the numerical solution be
means of the exact initial condition wex

n . Hence, the quantity in (3.100) refers to the error within
one single time step. Moreover, it is supposed that the norm of the local error can be linked to
the time step size by

‖eh,n+1‖ ≤ CΔtq+1, (3.101)

whereby C denotes an arbitrary constant. The variable q embodies the order of consistency.
For detailed explanations and necessary conditions see (Eriksson et al., 2005; Hairer et al.,
2008; Strehmel et al., 2012). Equation (3.100), however, cannot be evaluated since for general
cases the exact solution is unknown. Hence, a proper approximation has to be found. Since,
Inequality (3.101) states that the error gets smaller with decreasing time step size, the local
h-error can be estimated as

eh,n+1 ≈ w
Δt/m
n+1 (wn)−wn+1(wn). (3.102)

Therein, the numerical comparative solution w
Δt/m
n+1 is computed by using the time step size Δt,

reduced by an arbitrary factor m = 2, 3, ..., cf. (Gleim, 2016; Kuhl, 2004). To estimate the
local time discretization error of the simulation performed with the time step size Δt within one
time step, Equation (3.102) is evaluated. If, afterwards, the solution obtained using the bigger
time step size is passed as an initial condition to the simulation performed with the time step
size Δt/m to determine the next comparative solution, the local time discretization error of the
simulation performed with the time step size Δt can be estimated for the next time step. Hence,
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3. Numerical Realization of Multifield Problems

a series of local time discretization error estimates is created. Figure 3.21 shows a schematic
implementation. The usage of Equation (3.102) enables a numerical estimation of the local time
discretization error for all presented time integration procedures of Section 3.4.

Δt
w1 w2 wn wn+1

Δt

m
w

Δt/m
1 w

Δt/m
2 w

Δt/m
n w

Δt/m
n+1

w1,

ẇ1,

ẅ1

w2,

ẇ2,

ẅ2
eh,2

wn,

ẇn,

ẅn
eh,n

wn+1,

ẇn+1,

ẅn+1
eh,n+1

Figure 3.21.: Illustration of the h-error estimator with m= 3

Opposed to the local error, a global error can be formulated. Therein, the exact solution is
compared to a numerical one at an arbitrary point in time,

eglob
h,n+1 = wex

n+1(w0)−wn+1(w0), (3.103)

whereby the initial condition is only fulfilled at the beginning, see Figure 3.22. Differences may
appear within intermediate time steps, cf. (Gleim, 2016; Strehmel et al., 2012). Thus, a link
between the global error and the time step size can be established∥∥∥eglob

h,n+1

∥∥∥
max

≤ cΔtq,

whereby c denotes an arbitrary constant and q denotes the order of convergence. Assuming
that the preconditions defined in (Strehmel et al., 2012) are valid, the order of convergence can
be determined exploiting the order of consistency. However, as already known from the local

Δt

(n− 1)Δt

nΔt

w1 w2

w1 wn

w1 wn+1

Δt

m
w

Δt/m
1 w

Δt/m
2 w

Δt/m
n w

Δt/m
n+1

w1,

ẇ1,

ẅ1
eglob

h,2 eglob
h,n eglob

h,n+1

Figure 3.22.: Illustration of the global h-error estimator with m= 3

error definition, Equation (3.103) cannot be evaluated since the exact solution is not known for
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3.5. Time Discretization Error

general cases. Analogously to Equation (3.102), the approximation

eglob
h,n+1 ≈ w

Δt/m
n+1 (w0)−wn+1(w0)

is settled. The differences between both definitions are, firstly, that only the initial condition is
passed for the global h-error, while the results of various intermediate time steps are transferred
for the local h-error, and, secondly, that the considered comparative solution w

Δt/m
n+1 (w0) is iden-

tical for all analyzed vectors wn+1(w0). The drawback of both the local and the global h-error
estimation is the high computational effort, since two simulations with or without interchanging
data after each time step have to be carried out simultaneously, see Figure 3.21 or Figure 3.22.
To reduce the costs, procedure-dependent estimates are introduced.

3.5.2. Embedded Error Estimation

The h-error estimation is based on the influence of the time step size on the error. Follow-
ing Inequality (3.101), the error can also be manipulated by the order parameter q. This
fact can easily be exploited in the context of diagonally implicit Runge-Kutta schemes, see
Section 3.4.2. They are based on performing the time integration of the linearized semidiscrete
form of the general elasto(visco)plastic problem in (3.46) by applying distinct quadrature rules,
see Equations (3.57)-(3.58). The choice of quadrature parameters, however, determines the or-
der of the procedure and, hence, affects the variable q in (3.101), cf. (Butcher, 2008; Strehmel
et al., 2012). The idea is now to construct two Runge-Kutta schemes with an identical coef-
ficient matrix A, but with different parameter vectors b and b̌ leading to distinct orders q as
well as q̌, cf. (Butcher, 2008; Cash, 1979; Ellsiepen and Hartmann, 2001; Strehmel et al., 2012).
Throughout this procedure, the calculated stage variables of the two schemes remain identical
but the time step end values vary. Therefore, these schemes are denoted as embedded Runge-

Kutta methods. The local error can thus be defined by

eem,n+1 ≈ w̌n+1 −wn+1 = Δt
s∑
i=1

[
b̌i − bi

]
wni, (3.104)

wherein the solution w̌n+1 is obtained with the scheme of order q̌ and wn+1 is determined by the
procedure with accuracy q. The dominant order of the error in (3.104) in the sense of (3.101) is
always the lower one, see (Strehmel et al., 2012).
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Figure 3.23.: (a) DIRK(2) (q = 2, q̌ = 1), (b) DIRK(3) (q = 3, q̌ = 2)
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3. Numerical Realization of Multifield Problems

The computational effort compared to the h-error estimation is clearly lower, since no simulta-
neous calculation has to be performed solely a weighted sum has to be evaluated. In the course
of this thesis, the parameter constellations in Figure 3.23 are analyzed. The last rows of the
schemes in Figure 3.23 represent the entries of the parameter vector b̌, yielding a Runge-Kutta

scheme of order q̌ = q−1. It can be observed that, while the reference method is stiffly accurate,
this is not true for the error estimating procedure. A schematic implementation of this error
estimation is depicted in Figure 3.24.

Δt
w1 w2 wn wn+1

eem,1 eem,n eem,n+1

Figure 3.24.: Illustration of the embedded error estimator

3.5.3. Residual Error Estimation

While the embedded and the h-error estimator are both based on defining the local error by
subtracting approximated versions of the primary variable vector, the residual error estima-
tor rests on a distinct principle. Originally, the linearized semidiscrete form of the general
elasto(visco)plastic problem in (3.46) has to be fulfilled at each point in time. By introducing
a time discretization scheme, this assumption is weakened by demanding only a point-wise ac-
complishment. The residual error estimator takes advantage of this discrepancy by being stated
as:

er,n+1 ≈
tn+1∫
tn

[R∗ −R] dt, (3.105)

whereby it is assumed that a converged Newton-Raphson or semi-smooth Newton scheme
is based on equilibrated internal and external forces. The local deviations from the point-wise
fulfillment can be measured by evaluating the integral over one time step. Typical applications
of this kind of error estimation are Galerkin type time integrators. There, Equation (3.105)
degenerates to a weighted sum of residua, which can be determined with low computational
effort, cf. (Gleim, 2010, 2016; Gleim et al., 2015). A comparative calculation as in the case of
the h-error estimator is not needed. The implementation is schematically depicted in Figure 3.25.
The motivation for Equation (3.105) stems from the field of spatial error estimates, and it can
be considered in the widest sense as a numerical evaluation of an adaptation of the approach
in (Babuška and Rheinboldt, 1978). For further aspects on residual estimators within space
discretization see (Ainsworth and Oden, 1997; Babuška and Miller, 1987) and the references
therein. Moreover, it should be noted here that, to the best knowledge of the author, no
coherence between the order of consistency of the residual error in time and Galerkin time
integration schemes has been mathematically proven.

Δt
w1 w2 wn wn+1

er,1 er,n er,n+1

Figure 3.25.: Illustration of the residual error estimator
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3.5.4. Error Characterizing Quantities

Apart from defining the time discretization errors, it is necessary to establish error characterizing
quantities that allow to evaluate the error course, the order of consistency, and the order of
convergence for a given problem. There are many possibilities to do so. In (Eidel and Kuhn,
2015), a weighted global error estimator is determined at specific points in time. (Grafenhorst
et al., 2017) examine the maximum value of a global error estimator, and (Gleim, 2016) analyses
the mean value of a local error estimator. In the present thesis, similar error quantities are
investigated.
In order to be able to make a statement regarding the total time discretization error of distinct
unknowns, the norm of the respective error vector is evaluated for various time step sizes at
common points in time. Correspondingly, the following quantity is established and can be
calculated for the previously described h-error, the embedded error, and the residual error
estimator

en+1 = ‖en+1‖ . (3.106)

An assembly of the quantity in (3.106) at distinct time steps yields the corresponding vector

e = [e1, ..., en+1] . (3.107)

Sometimes, it may also be useful to generate relative errors by correlating the obtained quantities
of Equation (3.106) to some reference values. One example would be the maximum of the primary
variable vector ‖w‖max or the sum over all residual errors

∑NT
n=1 ‖er,n+1‖. For further options

see (Gleim, 2016; Kuhl, 2004).
To estimate the order of consistency or the order of convergence numerically, a measure has to
be defined to characterize the temporal evolution of the error estimates in (3.107), so that a
relation to a fixed time step size can be established. For this purpose, three different methods
are developed, which can be taken into account for all described local and global error estimators

qmaxe = linear fit (log(Δt), log (max (e(Δt)))) , (3.108)

qmean = linear fit (log(Δt), log (mean (e(Δt)))) , (3.109)

qmean = mean (linear fit (log(Δt), log (en+1(Δt)))) . (3.110)

The idea behind the approaches in (3.108)-(3.110) is to calculate the respective error estimator
for a variety of time step sizes, install a link to the latter by choosing a specific error characterizing
value, and to identify the resulting slope by a linear regression in the logarithmic space as the
order of consistency or convergence. The only difference between the three Equations (3.108)-
(3.110) is the selected error-characterizing quantity. While the maximum is taken into account
in Equation (3.108), as it is done by (Grafenhorst et al., 2017) for the global error, (3.109)
exploits the mean value as it is followed in (Gleim, 2016). The method in (3.110) is adapted in
(Eidel and Kuhn, 2015). Therein, however, the global h-error is estimated at distinct points in
time - and the order of convergence is investigated only at those points. Here, the mean value
over all considered points in time is chosen.
In this thesis, the expression order of consistency will always refer to the accuracy of a procedure
estimated using a local error formulation. In contrast, the order of convergence is determined
directly by a global error estimator.
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3.6. Summary

Elasto(visco)plastic problems are characterized by a diversity of distinct types of material for-
mulations and implementation schemes. Hence, one of the main ingredients of this chapter is
to establish a common variational framework which is capable of taking these different aspects
into account. In this context, the general elasto(visco)plastic problem is defined. In addition
to nonlinear space- and time-dependent variational equalities, it even acknowledges inequalities
and, thus, allows for a mutual treatment of dynamic finite as well as small strain plasticity and
viscoplasticity. In addition, single or multifield formulations can be examined.
Due to the definition of this general elasto(visco)plastic problem, a sound solution process can
be developed. It is based on a sequential space-time discretization. In the first step, the spa-
tial discretization is carried out using the finite element method. For the primary variables’
discretization, Lagrange polynomials with arbitrary polynomial degree and arbitrarily cho-
sen supporting points are employed. Accordingly, continuous and discontinuous inter-elemental
approximations can be constructed for the distinct unknowns, as required. The established
triangulation is applicable to problems of arbitrary spatial dimension, and it is founded on
Lagrange elements with arbitrary polynomial degrees as well.
In the next step, the nonlinear characteristic of the obtained semidiscrete form of the general
elasto(visco)plastic problem is faced. This is done by deriving Newton-type algorithms. If
solely variational equalities persist, a classical Newton-Raphson scheme is performed. This
is based on the idea of creating an iterative process where the semidiscrete form is linearized at
a guessed starting point. Afterwards, the resulting system of linear equations is solved and the
obtained result is taken as a new point for linearization. This procedure is carried out until a
user-defined criterion is reached. If variational inequalities prevail, an extension of this strategy, a
semi-smooth Newton method, is adapted. Its concept is to recast all inequalities into equalities,
so that the solution process can be carried out following the Newton-Raphson scheme. To
obtain this modification, complementarity functions are constructed which possess the same
solutions as the corresponding variational inequalities, but consist only of combinations of active
and inactive equations. The resulting drawback is that they inherit a non-smooth character and
cannot be differentiated easily. A special linearization treatment, taking the case distinction
between active and inactive sets into account, is the consequence. If this is considered, an
iterative solution procedure based on updated linearizations as within the Newton-Raphson

scheme is gained. Hence, variational equalities and inequalities can be solved jointly.
After performing the linearization, and before the linear system of equations can be solved,
two more issues have to be considered. First, the spatial integrals included in the linearized
semidiscrete form have to be evaluated. This is achieved by utilizing a Gauss-Legendre

quadrature rule. Therein, the integrals are converted into weighted sums, whereby the integrants
are determined at specific points in space.
Secondly, the linearized semidiscrete form has to be discretized in time. This means that the
time period of interest is divided into time steps, a link between the primary variable vector
and its time derivatives is established, and the linearized semidiscrete form is evaluated only at
discrete points in time dictated by the chosen time integrator. A further central point within
this chapter is the generation and application of distinct classes of higher order accurate implicit
time discretization schemes to the general elasto(visco)plastic problem. All of them are capable
of treating differential algebraic systems, since the linearized semidiscrete form may contain
algebraic equations.
The second order accurate Newmark scheme formulates the primary variable vector in depen-
dence of distinct linear combinations of its corresponding first and second time derivatives of
the last and the current time step. Hence, the general elasto(visco)plastic problem is solved at
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the end of the time step, and all included algebraic equations are fulfilled.
Arbitrary orders of convergence can be obtained employing Runge-Kutta methods. In this
thesis, stiffly accurate diagonally implicit Runge-Kutta methods are analyzed together with
stiffly accurate fully implicit Runge-Kutta schemes. The core goals of all these procedures are
to recast differential equations into their integral counterpart and to approximate these integrals
using quadrature rules whose coefficients as well as supporting points are chosen in such a way
that prescribed orders of convergence are obtained. The stiffly accurate behavior ensures that
all equations, including algebraic ones, are fulfilled at the end of each time step.
This property is also preserved in the class of continuous and discontinuous Galerkin time inte-
grators. Their functioning is founded on the idea of formulating the linearized semidiscrete form
weakly in the time domain - and approximating the test functions, the primary variable vector,
and its time derivatives using shape functions. Depending on the selection of the quadrature
rule for the resulting time integral and the choice of the approximations, continuous or discon-
tinuous, one-field or two-field settings are obtained. In this chapter, the procedures to derive the
distinct schemes are constructed. The main focus is to create reliable schemes with arbitrary
orders of convergence, which are able to treat algebraic equations intrinsically. This is achieved
by adapting specially deduced combinations of Lobatto and Radau quadrature rules together
with specific Lagrange polynomials in time.
An essential feature within this chapter is the natural implementation of different higher order
accurate time discretization schemes to the general elasto(visco)plastic problem. Various error
estimators are defined in order to assess the quality of the applied time integration schemes.
While the time-step-based local and global h-error estimator can be employed for the New-

mark, the Runge-Kutta, and the Galerkin schemes, the latter two methods come along
with individual error estimators. Diagonally implicit Runge-Kutta schemes can possess an
embedded error estimator. It exploits the fact that varying orders of convergence can be ob-
tained by employing different weighting coefficients. The computational effort is drastically lower
than within the h-error estimation, since only an additional summation has to be carried out -
instead of a simultaneous computation with a smaller time step. For the Galerkin methods
a residual error estimator can be established. Therein, the integral of the residuum within one
time step is evaluated using the quadrature rule implemented in the Galerkin scheme. Again,
the computational effort is lower than for the h-error estimator since only a weighted sum has to
be determined. With these error estimates at hand, it is possible to specify error-characterizing
quantities that allow to determine the order of consistency and convergence.
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As is apparent from Figure 1.1, the integrated thermomechanical forming process is founded on
the deformation of a metal steel shaft. Its material behavior is characterized by elastic, plastic,
or viscoplastic properties. Purely elastic behavior is based on a reversible process, whereby
an applied load leads to deformations which disappear after unloading. Hence, the strain is
completely determined by the stress, cf. (Han and Reddy, 1999). Microscopically, this can be
explained by the atomistic structure of most metals. In general, metallic materials consist of an
aggregate of crystal grains, forming a polycrystalline structure in which the atoms are placed
at specific lattice positions, cf. (Hill, 1983). If the lattice experiences only small shear defor-
mations, an elastic behavior is the consequence. Otherwise, irreversible plastic or viscoplastic
deformations occur, cf. (Bargel and Schulze, 2005). Lattice defects such as dislocations, point
defects, and grain, or phase boundaries tend to promote this effect. While dislocations repre-
sent the main reason for plastic behavior, point defects and grain or phase boundaries result in
viscous properties, cf. (Kröner and Teodosiu, 1974). Mostly, however, all three material states
prevail simultaneously, cf. (Kröner and Teodosiu, 1974).
In order to perform specific numerical simulations of elasto(visco)plastically influenced processes,
these characteristics have to be described mathematically. Some approaches considering the ac-
tual microstructure of the specimen are itemized in (El Hajj et al., 2009; Mahnken et al., 2009;
Mahnken and Wilmanns, 2011) and the references therein. Another approach towards plastic
and viscoplastic features is the idea that the microstructure has to be considered only by its in-
fluence on the specimen itself. Thus, a homogenization to the macroscopic scale is accomplished.
The plasticity is then defined by the existence of a stress threshold which distinguishes between
elastic and plastic effects. Furthermore, viscous properties are included by taking into account
the distance to this threshold in the inelastic regime, cf. (Maugin, 1992). This rather standard
course of action can be found e.g. in (Han and Reddy, 1999; Haupt, 2000; Simo, 1998; Simo and
Hughes, 1997; Wriggers, 2008). Due to the drastically reduced modeling and implementation
effort, this is the way elasto(visco)plasticity will be treated in the scope of this thesis. Moreover,
in a first approach only small elastic as well as inelastic deformations will be considered. The
extension to the finite strain regime is performed in Chapter 6.

4.1. Classical Approach

To specify the equations of the general elasto(visco)plastic problem, a continuum mechanical
body B with spatial domain Ω in the time domain [t1, T ] is considered. Its displacement field
u(X, t) and the corresponding strain tensor ε are defined by Equations (2.1) and (2.19), respec-
tively. The occurring stresses are denoted by σ. Hence, the body’s boundary Γ = Γu ∪ Γt∗ can
be divided into a part Γu, where the displacements are prescribed, and a part Γt∗ , where the
stresses are known

u(X, t) = u∗ ∀X ∈ Γu, σ(X, t) · n(X, t) = t∗ ∀X ∈ Γt∗ . (4.1)

These boundary conditions and possibly applied volume forces ρ0f lead to the deformation
process described by Equation (2.27)1 for X ∈ Ω, supplemented by the initial conditions

u1 = u(X, t1) ∀X ∈ Ω, u̇1 = u̇(X, t1) ∀X ∈ Ω. (4.2)
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4.1. Classical Approach

Equations (2.27)1, (4.1) and (4.2) form the basis of the strong, local initial boundary value
problem. The remaining issue is the determination of the stress-strain relationship considering
elasto(visco)plastic effects. Hence, two distinct cases, the elastoplastic and the elastoviscoplastic
one, have to be accounted for. In what follows, the temporal and spatial dependencies are
dropped for the sake of simplicity.

4.1.1. Elastoplasticity

Macroscopically, metal plasticity is characterized in the stress space by an elastic region Se and
a plastic domain Sp. Both areas are separated by a stress-dependent threshold. Due to the
physical behavior most metals show after passing this brink, it is commonly denoted as yield
surface. Thus, the elastic domain

Se := {σ|f(σ) < 0} (4.3)

is constrained by the yield function f(σ) defining the corresponding plane. The plastic domain,
however, is restricted to the boundary of Se and is therefore identical to the yield surface

Sp := {σ|f(σ) = 0}.

Stress states outside both domains are prohibited in classical elastoplasticity, cf. (Han and
Reddy, 1999; Simo, 1998; Simo and Hughes, 1997). Thus, the union S = Se ∪ Sp depicts the
area of admissible stresses. For the examples treated in the course of this thesis, only the von

Mises yield surface

f(σ) = ‖dev (σ)‖ −
√

2

3
σy with σy > 0 (4.4)

will be taken into account. It is continuous as well as convex, (Simo and Hughes, 1997). The
variable σy, therein represents a material-dependent yield stress and

dev (σ) = σ − 1

3
tr (σ) I,

denotes the deviatoric part of the Cauchy stress tensor with the trace operator tr (•). In general,
the yield stress could depend on the loading history. This is achieved by introducing additional
hardening or softening parameters, cf. (Haupt, 2000; Maugin, 1992; Simo and Hughes, 1997;
Tsakmakis, 1994). For the sake of simplicity, these aspects are neglected herein and only ideal
elastoplasticity is considered. In (Wieners, 2007), this approach is denoted as Prandtl-Reuss

plasticity.
To characterize the elastic as well as the plastic regime, proper kinematic quantities have to be
considered. Therefore, the additive decomposition of the strain tensor into an elastic εe and
a plastic part εp as in Equation (2.26) is exploited. Assuming that the internal energy of the
continuum mechanical body only depends on elastic quantities, cf. (De Souza Neto et al., 2008;
Halphen and Nguyen, 1975; Maugin, 1992; Simo and Hughes, 1997), it can be determined by

e =
1

2
[ε− εp] : Ce : [ε− εp] . (4.5)

The variable Ce represents the isotropic constitutive tensor representing linear elasticity. It can
be calculated by

Ce = κ I ⊗ I + 2μ I, (4.6)
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4. Small Strain Elastoplasticity and Viscoplasticity

using the Lamé parameters κ, μ as well as the fourth order unity tensor

I =
1

2
[δikδjl + δilδjk] gi ⊗ gj ⊗ gk ⊗ gl with i, j, k, l = 1, ..., 3.

A strategy to derive Equation (4.5) without considering the dependence on purely elastic terms
is described in (Han and Reddy, 1999). To ensure thermodynamical consistency, the constitu-
tive equations describing elastoplastic material properties are determined, taking advantage of
the dissipation inequality in (2.27)2. Equation (4.5) is differentiated with respect to time and
inserted together with (2.26) in (2.27)2 leading to

Dint =

[
σ − ∂e

∂εe

]
: ε̇e + σ : ε̇p ≥ 0. (4.7)

Exploiting the fact that Inequality (4.7) is fulfilled if the term in brackets is equal to zero, the
constitutive equation

σ =
∂e

∂εe
= Ce : [ε− εp] (4.8)

is defined. To determine the evolution equation of the plastic strains, the postulate of maximum
plastic work or maximum plastic dissipation

Dint = sup
σ

{σ : ε̇p
∣∣f(σ) ≤ 0} (4.9)

is considered. Hence, it is assumed that, from among all admissible stresses, the state of maximal
stresses σ is the preferable one - and that the dissipation in the material reaches a maximum.
The models obtained in this context are referred to as associative plasticity, cf. (Han and
Reddy, 1999; Miehe, 2011; Simo and Miehe, 1992). An explanation of this postulate concerning
the microstructure is given in (Bishop and Hill, 1951). Alternative postulates forming the
starting point for the derivation of the evolution equation are mentioned in (Junker et al., 2013;
Lubliner, 2006; Reddy and Martin, 1994). Following the approach in (Simo and Hughes, 1997),
Equation (4.9) can be reformulated using ideas associated to optimization. This results in the
Lagrange function

L = σ : ε̇p − λf(σ), (4.10)

with the Lagrange multiplier λ ≥ 0 and the yield function f(σ) ≤ 0 as a considered inequal-
ity constraint, cf. (Geiger and Kanzow, 2002; Luenberger, 1973). The necessary optimality
conditions for a stationary point

∂L
∂σ

= 0 and λf(σ) = 0

with dev (σ) �= 0, yield

ε̇p = λ
∂f(σ)

∂σ
= λ

dev (σ)
‖dev (σ)‖ with λ ≥ 0, f(σ) ≤ 0, λf(σ) = 0. (4.11)

Therein, Equation (4.11)1 resembles the evolution equation characterizing plastic strains as
purely deviatoric. This fact is related to the observation that in metal plasticity the volume
change is only linked to elastic deformations. Plastic ones are assumed to be volume insensitive,
cf. (Han and Reddy, 1999; Hartmann, 2008). On the contrary, Equation (4.11)2 comprises
the Karush-Kuhn-Tucker conditions. If purely elastic deformations prevail, they state that
f < 0 and λ = 0 hold. For plastic deformations, the examined stress state has to be on the yield
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surface f = 0, and the Lagrange multiplier is λ ≥ 0. If λ = 0 endures, elastic unloading or
neutral loading can pertain. Plastic loading takes place for λ > 0. In order to prove that these
choices always lead to a fulfilled dissipation inequality (4.7), Equation (4.11)1 is inserted and
the condition for the Lagrange multiplier in (4.11)2 is applied.
In general, the standard optimality conditions and, thus, Equation (4.11) are only valid for
continuous differentiable functions f(σ), cf. (Geiger and Kanzow, 2002). For an extension to the
non-differentiable case, the derivative of f(σ) is exchanged by the subdifferential, cf. (Clarke,
1990). Here, this generalization is not needed, although the yield function is differentiable
everywhere - except for the zero stress state ‖dev (σ)‖ = 0. But at that point, due to the yield
function in (4.4), only elastic properties prevail and the rate of plastic strains has to disappear
anyway. An alternative possibility to derive Equation (4.11) using convex analysis is done in
in (Eve et al., 1990; Reddy and Martin, 1994).
To be able to solve Equation (4.11), a proper initial condition

εp,1 = εp(t1) (4.12)

has to be chosen. To complete the material model for elastoplasticity, only the equation needed
to determine the Lagrange multiplier is missing. Therefore, the consistency condition

λḟ = 0 (4.13)

is elaborated, (Simo and Hughes, 1997). For the current model formulation, Equation (4.13) is
evaluated. In the case of plastic loading λ > 0, the yield function’s time derivative is calculated
and set to zero. After inserting (4.8) as well as (4.11), the Lagrange multiplier

λ =

∂f(σ)

∂σ
: Ce : ε̇

∂f(σ)

∂σ
: Ce :

∂f(σ)

∂σ

is determined. Hence, the stress-strain rate relationship can be formulated to

σ̇ = Cp : ε̇,

Cp :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ce for λ = 0

Ce −

[
Ce :

∂f(σ)

∂σ

]
⊗
[
Ce :

∂f(σ)

∂σ

]
∂f(σ)

∂σ
: Ce :

∂f(σ)

∂σ

for λ > 0.

(4.14)

For the case λ = 0, it is identical to the purely elastic case. In the plastic case, because of the
linear dependence on the strain rate in (4.14), the time variable can be exchanged by any other
monotonously increasing function, cf. (Hartmann, 2008; Simo and Hughes, 1997). This is the
reason why this kind of model is also referred to as rate-independent plasticity.

4.1.2. Viscoplasticity

In cyclic experiments performed with different strain rates, it can be observed that some metals
show a rate-dependent stress-strain behavior, cf. (Haupt, 2000). This characteristic is termed
viscoplasticity, and it can be seen as an enhancement of the previously described elastoplastic
theory. For other approaches towards modeling viscoplastic effects see the references in (Haupt,
2000). In the viscoplastic model formulation of this thesis, the stress state again embodies an
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4. Small Strain Elastoplasticity and Viscoplasticity

elastic region (4.3) which is bounded by the yield function in (4.4). In contrast to the elastoplastic
model of Section 4.1.1, the viscous states are not enforced to lie on the yield surface. Stress states
beyond this are also permitted. Thus, the whole stress space constitutes admissible stresses. The
additive decomposition of the strain tensor in (2.26) is preserved, as well as the corresponding
energy in (4.5) with the elastic constitutive tensor in (4.6). But the index p therein now refers
to viscous relations. The constitutive equation in (4.8) is maintained too. The postulate of
maximum plastic dissipation, however, has to be adapted. It is still assumed that, from among
all admissible stresses, the state of maximal stresses σ is the preferable one. Yet, due to the fact
that the region outside the yield surface contributes admissible stresses as well, the inequality
constraint imposed by the yield function can be weakened. This is achieved by following the
approach in (Simo and Hughes, 1997) and by introducing a penalization term

Dint = sup
σ

{
σ : ε̇p − 1

χ
h (f(σ))

}
. (4.15)

The former Lagrange multiplier as well as the inequality constraint are now replaced by a
continuous differentiable function

h (f(σ)) :=

⎧⎪⎨
⎪⎩
1

2
[f(σ)]2 for f(σ) ≥ 0

0 for f(σ) < 0.

(4.16)

and the viscosity parameter χ > 0. Hence, stress states outside the yield surface are penal-
ized according to their distance and with respect to the viscosity parameter χ. The smaller
this parameter, the greater its penalization. If it tends to zero, χ → 0, the rate-dependent
elastoviscoplastic problem degenerates to the rate-independent elastoplastic problem, cf. (Simo
and Hughes, 1997). For basic aspects and proofs of general penalty methods see (Alt, 2011;
Luenberger, 1973). For an alternative approach towards plasticity as a limit of viscoplasticity
see (Haupt, 2000).
By taking into account (4.15) as well as (4.16), the Lagrange function in (4.10) can be modified
to

L = σ : ε̇p − 1

χ
h (f(σ)) .

The stationarity condition

∂L
∂σ

= 0

results with

∂ h (f(σ))

∂(f(σ))
= 〈f(σ)〉 :=

⎧⎨
⎩
f(σ) for f(σ) ≥ 0

0 for f(σ) < 0.
(4.17)

in the evolution equation with the prescribed Lagrange multiplier

ε̇p = λ
∂f(σ)

∂σ
= λ

dev (σ)
‖dev (σ)‖ with λ =

1

χ
〈f(σ)〉. (4.18)

As an initial condition to solve Equation (4.18), the Term (4.12) is chosen as in the elastoplastic
case.
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Because of the extension of the domain of admissible stresses to the exterior of the yield surface,
the consistency condition in (4.13) is obsolete. The stress-strain rate relationship can now be
formulated to

σ̇ = Cp : ε̇,

Cp :=

⎧⎨
⎩
Ce for λ = 0

Ce − 1

χ
〈f(σ)〉 Ce :

∂f(σ)

∂σ
: ε̇−1 for λ > 0.

(4.19)

For the case λ = 0, it is identical to the purely elastic situation. If viscoplastic effects prevail and
λ > 0 holds, there is apparently no longer a linear dependence on the strain rate in (4.19). This
stands in contrast to the elastoplastic case defined in Equation (4.14) and, hence, underlines the
rate-dependence of the material model.

4.1.3. Numerical Realization

A general elastoplastic or elastoviscoplastic problem consists of the balance equation in (2.27)1,
the constitutive equation in (4.8), the evolution equations in (4.11) or (4.18) together with the
yield function in (4.4) and the appropriate boundary (4.1) as well as initial conditions (4.2),
(4.12). The corresponding scheme is depicted in Figure 4.1.

u

independent variable

σ = C : [ε− εp]

ε̇p = λ
∂f(σ)

∂σ

f(σ) = ‖devσ‖ −
√

2

3
σy

λ =
1

χ
〈f(σ)〉

material laws
σ

dependent variable

ρ0ü−∇X · σ − ρ0f = 0

balance equation

ε =
1

2

[∇Xu
T +∇Xu

]kinematics

u1 = u(t1), u̇1 = u̇(t1)

initial conditions

εp,1 = εp(t1)

initial condition

u(X, t) = u∗ ∀X ∈ Γu σ · n = t∗ ∀X ∈ Γt∗

boundary conditions

Figure 4.1.: Initial boundary value problem of the classical approach in the small strain regime
with entries in blue referring to expressions needed only in the viscoplastic case

It can be observed that, due to the yield function a differential algebraic system is obtained. This
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requires a special numerical treatment concerning the time discretization methods, cf. (Büttner
and Simeon, 2002; Hairer and Wanner, 2002; Strehmel et al., 2012). A more detailed explanation
is given in Section 4.1.3.4.
In order to solve this initial boundary value problem for arbitrarily shaped continuum mechanical
bodies with distinct kinds of dead-loads, a numerical solution scheme has to be derived as well as
applied. Therefore, the numerical strategies of Chapter 3 are considered and specified. It has
to be emphasized that, in this context, a fix cartesian coordinate system will always be assumed
- with the space- and time-independent unit basis vectors gi with i = 1, ..., 3.

4.1.3.1. Generation of the Weak Formulation

The methods in Chapter 3 are based on the general weak forms in (3.1)-(3.2). Hence, the
first step to solve the classical elasto(visco)plastic initial boundary value problem is to gen-
erate a corresponding weak formulation - for which the principle of virtual work is exploited,
cf. (Finlayson, 1972; Holzapfel, 2000; Kelly, 2015; Lagrange, 1788; Wriggers, 2008). The idea
therein is to multiply the balance of linear momentum in (2.27)1 with an arbitrary vector-
valued test function δu �= 0 with δu = 0 only on Γu and to integrate the resulting expression
over the domain Ω of the investigated continuum mechanical body B. The Neumann bound-
ary condition in (4.1)2 is treated analogously, except that the integration is performed over the
boundary Γt∗ of B. An addition of both terms yields

δW =

∫
Ω

δu · [ρ0ü−∇X · σ − ρ0f ] dV +

∫
Γt∗

δu · [σ · n− t∗] dA = 0. (4.20)

By applying the product rule

δu · [∇X · σ] = ∇X · [δu · σ]−∇Xδu : σ, (4.21)

the divergence theorem∫
Ω

∇X · [δu · σ] dV =

∫
Γt∗

δu · σ · n dA (4.22)

and the relationship

∇Xδu : σ = δ∇Xu : σ = δε : σ

with σ = σT, Equation (4.20) can be reformulated into

δW =

∫
Ω

δu · ρ0ü dV +

∫
Ω

δε : σ dV −
∫
Ω

δu · ρ0f dV −
∫
Γt∗

δu · t∗ dA = 0. (4.23)

The Dirichlet boundary conditions are considered in a strong sense. Because the test functions
are arbitrary but non zero, the fundamental lemma of variational calculus states that the weak
and the strong forms are equivalent, cf. (Holzapfel, 2000). By comparing Equation (4.23) to the
general weak forms in (3.1)-(3.2), it can be recognized that if

δz1 =

[
δu
δε

]
=

[
δu
δ∇Xu

]
,

r1 =

[
ρ0ü− ρ0f

σ

]
,

r∗ =
[
t∗

0

]
,

w = u (4.24)

is set and the variational inequality is neglected, they are identical. Nonetheless, some attention
has to be paid to the second entries of δz1 and r1, since they are not vector-valued but tensors
of second order. Furthermore, the primary variable vector w only consists of the displacement
field u as the solely unknown quantity. With these definitions, the numerical realization of
Chapter 3 can be applied one-to-one to the weak form in (4.23).
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4.1.3.2. Linearized SpatiallyDiscrete System of Equations on Structural Level

The first step towards solving the weak form in (4.23) according to Chapter 3 is the spatial
discretization by means of the finite element method. Therefore, the continuum mechanical
body’s domain Ω is partitioned following (3.4) into small elements Ω̄e, and the geometry is
approximated by (3.5). The approximation of the primary variable u and related terms is
performed exploiting Equations (3.7)-(3.8). Equation (3.9) is applied for the test function.
Here, it is necessary to take care - since, in agreement with (4.24), the vector of test functions
δz1 contains a gradient expression which has to be acknowledged properly. The appearing
shape functions are assumed to be of Lagrange type leading to continuous approximations,
so that they can be determined by Equation (3.16) together with (3.13). Their derivatives are
obtained by evaluating (3.18) together with Relation (3.15). Thus, only rectangular or hexahedra
elements of arbitrary polynomial degree are admitted for the two- and three-dimensional case. By
exploiting Equation (3.10), the weak form in (4.23) is transferred to the element level analogously
to Equation (3.11). For a better understanding, the spatial and temporal dependencies are
introduced in this reformulation.

δW e =

∫
Ω̄e

δue(Xe) · ρ0üe(Xe, t) dV̄ e+

∫
Ω̄e

δεe(Xe) : σ(εe(Xe, t)) dV̄ e−

−
∫
Ω̄e

δue(Xe) · ρ0f(Xe, t) dV̄ e −
∫
Γ̄e

t∗

δue(Xe) · t∗(Xe, t) dĀe =0.

(4.25)

Since the stresses are not considered as primary variables, they can only be approximated indi-
rectly. Section 4.1.3.4 addresses the question how this is done in an explicit manner.
The next step towards the linearized semidiscrete system of equations is the application of the
Newton-Raphson scheme, which serves to convert the nonlinear Equation (4.25) on element
level into a series of linear equations on structural level, see Section 3.2.1. It is not necessary
to consider a semi-smooth Newton method, because no inequalities are taken into account.
Consequently, the linearization in terms of (3.21) and (3.22) is performed, leading to

NN∑
i=1

NN∑
j=1

δuei · [meij ·Δüej + keij ·Δuej
]
=

NN∑
i=1

δuei ·
[
r∗,ei1 − rei1

]
(4.26)

with the suitable tangent matrices and load vectors

meij =

∫
Ωe

ρ0N
iN j I |Je| dV e,

keij =

∫
Ωe

∇XN
i · ∂σ

∂εe

∣∣∣∣
k

· ∇XN
j |Je| dV e,

r∗,ei1 =

∫
Ωe

N i ρ0f
k |Je|dV e +

∫
Γe
t∗

N i t∗,k |Je| dAe,

rei1 =

∫
Ωe

N i ρ0ü
e,k |Je|dV e +

∫
Ωe

σk · ∇XN
i |Je| dV e.
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Furthermore, the Relationship (3.20) together with (3.19) and the symmetry of the stress tensor
σ = σT are employed. The appearing integrals are numerically determined using the Gauss-

Legendre quadrature. Afterwards, the individual constituents of (4.26) are assembled accord-
ing to (3.25) as well as (3.26), yielding the spatial semidiscrete equation on structural level

MΔü+K1Δu = R∗
1 −R1. (4.27)

4.1.3.3. Time Discretization on Structural Level

In order to be able to solve the presented elasto(visco)plastic problem, two issues remain. On
the one hand, a temporal integration of the semidiscrete Equation (4.27) has to be performed,
and on the other hand, the material laws have to be included. But these aspects can only partly
be treated separately, since the evolution equation demands a time discretization too. Hence,
an appropriate coupling with special requirements concerning the time integration method is
needed. This will be addressed in Section 4.1.3.4.
In the literature, this challenge is often circumvented by considering a quasi-static elasto(visco)-
plastic problem. Therein, the forces of inertia are neglected and the second time derivative of the
primary variable vector in Equation (4.27) is dropped, cf. (Christensen, 2002; De Souza Neto
et al., 2008; Ellsiepen and Hartmann, 2001; Lubliner, 2006; Simo, 1998; Simo et al., 1988, 1989;
Wieners, 2007). As a result, only the time integration of the evolution equation is left. In
contrast, examples where dynamic effects are treated can be found in (Hager and Wohlmuth,
2009; Ortiz et al., 1983). In (Hager and Wohlmuth, 2009), a Newmark scheme is applied to the
balance equation and an implicit Euler to the evolution equation, while in (Ortiz et al., 1983)
the implicit Euler as well as the trapezoidal rule are exploited for all equations at the same
time - and this concept is pursued in this thesis as well. Here, however, only the Newmark

scheme of Section 3.4.1 and the stiffly accurate diagonally implicit Runge-Kutta methods of
Section 3.4.2.2 are utilized. With the latter schemes, Equation (4.27) can be recast similar to
(3.67) into

KeffΔuni = reff,

Keff =
1

a2iiΔt2
Mni +K1,ni,

reff = R∗
1,ni −R1,ni,

(4.28)

where the parameters are chosen as depicted in Figure 3.13. Consequently, the weak form of the
balance equation has to be evaluated at each Runge-Kutta stage. Applying the Newmark

method leads to a reformulation
KeffΔun+1 = reff,

Keff =
1

βΔt2
Mn+1 +K1,n+1,

reff = R∗
1,n+1 −R1,n+1,

(4.29)

as in (3.52) with the parameters in (3.53). Thus, the evaluation is only performed at the end
of the time step. The benefits of these two time integration schemes will be explained in the
context of the radial return map in the next section.

4.1.3.4. Radial Return Map

The last step within the numerical realization is the incorporation of elastoplastic or viscoplastic
effects. Despite the differences in their physical interpretation and their mathematical formula-
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tion, the numerical implementation of both phenomena is similar. The corresponding material
laws have to be linked to the weak form of the balance of linear momentum. This is achieved by
means of the tangential stiffness matrix and the internal load vector in Equation (4.26). Both
require the stress state to be determined in dependence of the strains, which is achieved by the
constitutive equation in (4.8). Nevertheless, the (visco)plastic strains contained therein have to
be calculated beforehand. Therefore, on the one hand, it has to be decided whether (visco)plastic
flow prevails while, on the other hand, its evolution has to be calculated by discretizing Equations
(4.11) or (4.18) in time.
These two aspects are classically covered within the radial return mapping algorithm, also de-
noted as closest point projection,cf.(Büttner and Simeon, 2002; Christensen, 2002; De Souza Neto
et al., 2008; Krieg and Krieg, 1977; Simo, 1998; Simo and Hughes, 1997; Wieners, 2007; Wilkins,
1963). A generalization of this method in terms of product formulas, where an elastic and a
plastic operator are defined to yield a solution strategy, is introduced in (Ortiz et al., 1983;
Simo and Hughes, 1997). Alternative approaches towards the solution of elastoplastic problems
implying facets from convex analysis are analyzed in (Alberty et al., 1999; Carstensen, 1997;
Wieners, 2007), while the application of non-smooth Newton methods is described in (Chris-
tensen, 2002; Hager and Wohlmuth, 2009). In (Ellsiepen and Hartmann, 2001; Wriggers, 2008) a
multi-level Newton procedure is performed to couple the material laws to the balance equation.
The time discretization schemes included in all these distinct procedures range from the most
frequently used backward Euler over the trapezoidal rule to various Runge-Kutta methods,
cf. (Büttner and Simeon, 2002; De Souza Neto et al., 2008; Eidel and Kuhn, 2015; Ellsiepen
and Hartmann, 2001; Hager and Wohlmuth, 2009; Ortiz et al., 1983; Simo and Govindjee, 1991;
Simo and Hughes, 1997).
Within the course of this thesis, the classical approach will always embody the radial return
map, and the same time integration method is applied to the balance law as well as to the
evolution equation. Hence, in accordance to Equations (4.28) and (4.29), the closest point
projection is derived for stiffly accurate diagonally implicit Runge-Kutta schemes as well as
for the Newmark method. This course of action is adapted from the literature, cf. (Ellsiepen
and Hartmann, 2001; Simo and Hughes, 1997), and, because of its wide dispersal, it will serve
as a reference scheme for numerical validation.

4.1.3.4.1. Elastoplasticity: Newmark’s method and DIRK Schemes

Due to the high amount of similarities between the radial return map for stiffly accurate DIRK
schemes and for the Newmark method, both approaches are treated simultaneously. The
distinct indices indicate the evaluated point in time for the respective procedure.
To derive the radial return map in a first step, the constitutive equation in (4.8) is reformulated
together with (4.6) to obtain a split of the stress tensor in a spherical and a deviatoric part

σkni/n+1 =
3κ+ 2μ

3
tr
(
εe,kni/n+1

)
I + dev

(
σkni/n+1

)
,

dev
(
σkni/n+1

)
= 2μ dev

(
εe,kni/n+1 − εp,ni/n+1

)
.

(4.30)

The evaluation of Equation (4.30) is performed for every iteration k of the Newton-Raphson

procedure at each Runge-Kutta stage or at the end of the time step for the Newmark

method. The stress states are required at those points in time to determine the tangential
stiffness matrix and the load vector. Since the plastic strains are not updated within this global
iteration scheme, the index k is thereby dropped. Furthermore, it is emphasized that, due to
the numerical integration, the stress state is determined only at Gauss-Legendre quadrature
points.
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4. Small Strain Elastoplasticity and Viscoplasticity

In the next step, the evolution equation in (4.11) has to be appraised. Applying a stiffly accurate
diagonally implicit Runge-Kutta scheme yields

εp,ni = ε̃p,ni +Δt aii ε̇p,ni with ε̃p,ni = εp,n +Δt
i−1∑
j=1

aij ε̇p,nj , (4.31)

analogously to Equation (3.64) with (3.65). Using Equation (3.50) of the Newmark method,
whereby the included second time derivatives are neglected, results in

εp,n+1 = ε̃p,n +Δt
β

γ
ε̇p,n+1 with ε̃p,n = εp,n +Δt

γ − β

γ
ε̇p,n. (4.32)

Comparing Equations (4.31)1 and (4.32)1 yields the general formulation

εp,ni/n+1 = ε̃p,ni/n +Δt Θ ε̇p,ni/n+1 with Θ =

⎧⎪⎨
⎪⎩
aii for DIRK

β

γ
for Newmark.

(4.33)

Inserting the general Relationship (4.33) in (4.30) leads to the definition of the trial state

dev
(
σk,trialni/n+1

)
:= 2μ dev

(
εe,kni/n+1 − ε̃p,ni/n

)
= dev

(
σkni/n+1

)
+ 2μ Δt Θ ε̇p,ni/n+1. (4.34)

It depends on the actual total strains, but only on plastic strains from previous stages or time
steps. Its norm can be derived by exploiting the evolution equation in (4.11) together with the
fact that the time integration parameter Θ, the time increment Δt, and the material property
μ are always positive

∥∥∥dev
(
σk,trialni/n+1

)∥∥∥ =
∥∥∥dev

(
σkni/n+1

)
+ 2μ Δt Θ ε̇p,ni/n+1

∥∥∥ =

=

∥∥∥∥∥∥
dev
(
σkni/n+1

)
∥∥∥dev

(
σkni/n+1

)∥∥∥
[∥∥∥dev

(
σkni/n+1

)∥∥∥+ 2μ Δt Θλni/n+1

]∥∥∥∥∥∥ =

=
∥∥∥dev

(
σkni/n+1

)∥∥∥+ 2μ Δt Θλni/n+1.

(4.35)

Additionally, Equation (4.34) is recast into

dev
(
σk,trialni/n+1

)
=
[∥∥∥dev

(
σkni/n+1

)∥∥∥+ 2μ Δt Θλni/n+1

] dev
(
σkni/n+1

)
∥∥∥dev

(
σkni/n+1

)∥∥∥ =

=
∥∥∥dev

(
σk,trialni/n+1

)∥∥∥ dev
(
σkni/n+1

)
∥∥∥dev

(
σkni/n+1

)∥∥∥
(4.36)

using the evolution equation in (4.11) and the link between the norms in (4.35), to obtain the
definition

nkp :=
dev
(
σkni/n+1

)
∥∥∥dev

(
σkni/n+1

)∥∥∥ =
dev
(
σk,trialni/n+1

)
∥∥∥dev

(
σk,trialni/n+1

)∥∥∥
.

(4.37)
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4.1. Classical Approach

Hence, the plastic strains do not only evolve normal to the yield surface - as the trial state lies
in that direction too. For a further geometric interpretation see (Han and Reddy, 1999; Simo
and Hughes, 1997). By computing the yield function in (4.4) at the trial state

f trial(σk,trialni/n+1) =
∥∥∥dev

(
σk,trialni/n+1

)∥∥∥−
√

2

3
σy with σy > 0 (4.38)

a criterion for the switching point between elastic and plastic behavior is established. If the
difference between the current total strains and the previous plastic strains leads to a negative
value of the trial yield function f trial(σk,trialni/n+1) < 0, elastic properties prevail. Thus, the plastic
strains, their rates, the stress state, and the algorithmic constitutive tensor can be determined
by

ε̇p,ni/n+1 = 0,

εp,ni/n+1 = ε̃p,ni/n,

dev
(
σkni/n+1

)
= dev

(
σk,trialni/n+1

)
,

σkni/n+1 =
3κ+ 2μ

3
tr
(
εe,kni/n+1

)
I + dev

(
σkni/n+1

)
,

G :=
∂σni/n+1

∂εni/n+1

∣∣∣∣
k

= Ce.

(4.39)

For values of the trial yield function that are greater or equal to zero f trial(σk,trialni/n+1) ≥ 0,
the real stress state is calculated by projecting the trial state back onto the yield surface,
cf. (Simo and Hughes, 1997). Consequently, the current stress state σkni/n+1 is situated on the
yield function. Taking advantage of the connection between the distinct stress state norms in
(4.35) leads to the relationship

f(σkni/n+1) =
∥∥∥dev

(
σk,trialni/n+1

)∥∥∥− 2μ Δt Θλni/n+1 −
√

2

3
σy = 0. (4.40)

The Lagrange multiplier can, henceforth, be denoted in the explicit form

λni/n+1 =

∥∥∥dev
(
σk,trialni/n+1

)∥∥∥−
√

2

3
σy

2μ Δt Θ
. (4.41)

Accordingly, it is assured that at each stage tni or at each time step tn+1, where the semidiscrete
balance equation in (4.28) or (4.29) is assessed, the resulting stress state is an admissible one
included in the set S, cf. (Ellsiepen and Hartmann, 2001). It should be remarked that the last
stage of the applied stiffly accurate diagonally implicit Runge-Kutta schemes is identical to
the end of the time step. In the case of a more complicated yield function, Equation (4.40)
might be solved using a local Newton-Raphson scheme, cf. (Simo, 1998; Simo and Hughes,
1997). Ultimately, the plastic strains, their time derivatives, the stress state, and the algorithmic
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4. Small Strain Elastoplasticity and Viscoplasticity

constitutive tensor can be determined by

ε̇p,ni/n+1 = λni/n+1 n
k
p,

εp,ni/n+1 = ε̃p,ni/n +Δt Θε̇p,ni/n+1,

dev
(
σkni/n+1

)
= dev

(
σk,trialni/n+1

)
− 2μ Δt Θλni/n+1n

k
p,

σkni/n+1 =
3κ+ 2μ

3
tr
(
εe,kni/n+1

)
I + dev

(
σkni/n+1

)
,

G =
3κ+ 2μ

3
I ⊗ I +

⎡
⎣2μ− 4μ2 Δt Θλni/n+1∥∥∥dev

(
σk,trialni/n+1

)∥∥∥
⎤
⎦[I− 1

3
I ⊗ I − nkp ⊗ nkp

]
.

4.1.3.4.2. Viscoplasticity: Newmark’s method and DIRK Schemes

If viscoplastic effects are considered instead of elastoplastic ones, Equations (4.30)-(4.38) can be
applied identically. In the elastic case for negative values of the trial yield function f trial(σk,trialni/n+1),

even Equation (4.39) remains valid. However, for the case f trial(σk,trialni/n+1) ≥ 0, the Lagrange

multiplier has to be determined following Equation (4.18)2. Exploiting the connection between
the different stress state norms in (4.35) results in

λni/n+1 =

∥∥∥dev
(
σk,trialni/n+1

)∥∥∥−
√

2

3
σy

χ+ 2μ Δt Θ
. (4.42)

With the Lagrange multiplier in (4.42), stress states outside the yield surface are permitted,
as is common in the scope of the viscoplastic theory. Furthermore, it can be recognized that for
χ = 0 the elastoplastic multiplier in (4.41) is obtained. Ultimately, the viscoplastic strains, their
time derivatives, the stress state, and the algorithmic constitutive tensor can be determined by

ε̇p,ni/n+1 = λni/n+1 n
k
p,

εp,ni/n+1 = ε̃p,ni/n +Δt Θε̇p,ni/n+1,

dev
(
σkni/n+1

)
= dev

(
σk,trialni/n+1

)
− 2μ Δt Θλni/n+1n

k
p,

σkni/n+1 =
3κ+ 2μ

3
tr
(
εe,kni/n+1

)
I + dev

(
σkni/n+1

)
,

G =
3κ+ 2μ

3
I ⊗ I +

⎡
⎣2μ− 4μ2 Δt Θλni/n+1∥∥∥dev

(
σk,trialni/n+1

)∥∥∥
⎤
⎦[I− 1

3
I ⊗ I

]
−

− 2μ

⎡
⎣ 2μΔt Θ

χ+ 2μΔt Θ
+

2μ Δt Θλni/n+1∥∥∥dev
(
σk,trialni/n+1

)∥∥∥
⎤
⎦nkp ⊗ nkp.

(4.43)

Figure 4.2 shows an algorithmic implementation of the general elastoplastic and viscoplastic
problem concerning stiffly accurate diagonally implicit Runge-Kutta schemes or the New-

mark method.
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insert initial conditions u1, u̇1, ü1

loop over time steps n = 1, ..., NT

next time step n

loop over DIRK stages i = 1, ..., s || for Newmark s = 1

next stage i

loop over iteration k while ηu > η

next iteration k

loop over elements e = 1, ..., NE

next element e

loop over Gausspoints ln = 1, ..., NG with n = 1, ..., ND

next Gausspoint ln

Radial Return Map (including time discretization)

dev
(
σk,trial

ni/n+1

)
= 2μ dev

(
εe,kni/n+1 − ε̃p,ni/n

)

if f trial(σk,trial
ni/n+1) < 0

dev
(
σk

ni/n+1

)
= dev

(
σk,trial

ni/n+1

)
G = Ce

else

elastoplastic case

λni/n+1 =
f trial(σk,trial

ni/n+1)

2μ Δt Θ
nk

p =
dev

(
σk,trial

ni/n+1

)
∥∥∥dev

(
σk,trial

ni/n+1

)∥∥∥
dev

(
σk

ni/n+1

)
= dev

(
σk,trial

ni/n+1

)
− 2μ Δt Θλni/n+1n

k
p

G =
3κ+ 2μ

3
1⊗ 1+

⎡
⎣2μ− 4μ2 Δt Θλni/n+1∥∥∥dev

(
σk,trial

ni/n+1

)∥∥∥
⎤
⎦[

I− 1

3
1⊗ 1− nk

p ⊗ nk
p

]

viscoplastic case

λni/n+1 =
f trial(σk,trial

ni/n+1)

χ+ 2μ Δt Θ
nk

p =
dev

(
σk,trial

ni/n+1

)
∥∥∥dev

(
σk,trial

ni/n+1

)∥∥∥
dev

(
σk

ni/n+1

)
= dev

(
σk,trial

ni/n+1

)
− 2μ Δt Θλni/n+1n

k
p

G =
3κ+ 2μ

3
1⊗ 1+

⎡
⎣2μ− 4μ2 Δt Θλni/n+1∥∥∥dev

(
σk,trial

ni/n+1

)∥∥∥
⎤
⎦[

I− 1

3
I ⊗ Ip

]

−2μ

⎡
⎣ 2μΔt Θ

χ+ 2μΔt Θ
+

2μ Δt Θλni/n+1∥∥∥dev
(
σk,trial

ni/n+1

)∥∥∥
⎤
⎦nk

p ⊗ nk
p

assembly of structural entries Mni/n+1,K1,ni/n+1,R
∗
1,ni/n+1,R1,ni/n+1

generate effective quantities Keff, reff

solve effective system of equations KeffΔuni/n+1 = reff

update primary variables & derivatives uk+1
ni/n+1 = Δuni/n+1 + uk

ni/n+1, ü
k+1
ni/n+1, u̇

k+1
ni/n+1

validate convergence ηu ≤ η

update time step end values un+1, u̇n+1, ün+1

Figure 4.2.: Classical algorithm scheme involving DIRK schemes or the Newmark method
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4.1.4. Elastoplasticity vs. Viscoplasticity

For a better understanding of elastoplastic and viscoplastic phenomena as well as their differ-
ences, the previously described material models and their classical implementations are analyzed
with the help of a one-dimensional example. Both material models are compared concerning
their local material behavior without considering the balance of linear momentum. This can be
done since the balance of linear momentum describes the movement of all continuum mechanical
bodies in general. For its evaluation, an arbitrary link between stresses and strains can be con-
sidered. The difficulty arising in the implementation of both models is that, due to the idea of
defining a material that has a memory, non-smooth or rate-type equations have to be taken into
account. Hence, strategies to transform these equations into adequate stress-strain relations
have to be employed. For the comparison, a uniaxial stress state with the Lamé parameter
κ = 0 is assumed. Thus, the stress, the strain, and the plastic strain tensor have the following
structure, cf. (Schreiber, 1997)

σ =

⎡
⎣ σ11 0 0

0 0 0
0 0 0

⎤
⎦ ε =

⎡
⎣ ε11 0 0

0 ε22 0
0 0 ε33

⎤
⎦ εp =

⎡
⎣ εp,11 0 0

0 −1
2εp,11 0

0 0 −1
2εp,11

⎤
⎦
.

With these simplifications, the von Mises yield function in Equation (4.4) can be recast into

f(σ11) =

√
2

3
|σ11| −

√
2

3
σy with σy > 0.

Additionally, the internal energy can be reformulated into

e = μ [ε11 − εp,11]
2 .

Evaluating the dissipation inequality in (4.7) for the one-dimensional case leads to the material
laws

σ11 = 2μ [ε11 − εp,11] ε̇p,11 =

√
2

3
λ sgn (σ11) , (4.44)

where sgn (•) refers to the sign function. In the elastoplastic case, the Karush-Kuhn-Tucker

conditions

λ ≥ 0, f(σ11) ≤ 0, λf(σ11) = 0

have to be fulfilled and the Lagrange multiplier is determined to

λ =

√
3

2
sgn (σ11) ε̇11, (4.45)

using the consistency condition in (4.13). In contrast, in the viscoplastic case, the Lagrange

multiplier is prescribed explicitly by

λ =
1

χ
〈f(σ11)〉, (4.46)

based on Equation (4.18)2. Inserting Equations (4.45) as well as (4.46) into the material laws or
the respective time derivative in (4.44) serves as a basis for the comparison in Table 4.1. Therein,
two main aspects become apparent. First, as was already shown for the general three-dimensional
case in Sections 4.1.1 and 4.1.2, the rate-type constitutive equation for the elastoplastic model
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shows no dependency on the strain rate within the constitutive factor Cp �= Cp(ε̇11). In this
case, the time can hence be replaced by any other monotonous function τ

dσ11
dt

=
∂σ11
∂τ

∂τ

∂t
= Cp

∂ε11
∂τ

∂τ

∂t
=>

∂σ11
∂τ

= Cp
∂ε11
∂τ .

This is the reason why elastoplasticity is also denoted as rate-independent plasticity. In the
viscoplastic case, Cp = Cp(ε̇11) holds and, thus, the included time derivatives pertain their
physical meaning. The result is a rate-dependent model.

Table 4.1.: Comparison of elastoplastic and elastoviscoplastic characteristics

elastoplasticity elastoviscoplasticity

evolution equation ε̇p,11 = ε̇11 ε̇p,11 =
√

2
3

sgn (σ11)

χ
〈f(σ11)〉

rate-type
constitutive equation σ̇11 = Cp ε̇11

constitutive factor Cp :=

{
2μ for λ = 0

0 for λ > 0
Cp :=

⎧⎨
⎩
2μ for λ = 0

2μ

[
1−

√
2
3

sgn (σ11)

χ

〈f(σ11)〉
ε̇11

]
for λ > 0

The second difference between plasticity and viscoplasticity, which can be observed within the
one-dimensional example, is that the stress rate is zero in the plastic case. Accordingly, for ideal
plasticity an increase in the stresses is not possible after yielding. In the viscoplastic regime, this
is not the case. There, the stresses may grow after yielding, because of the fact that stress states
beyond the yield surface are permitted but penalized by the parameter χ. The same behavior
can be observed in the three-dimensional case if the symmetry of the elastic constitutive tensor
Ce is taken into account.

Table 4.2.: Comparison of the radial return map implementation of plasticity and viscoplasticity

elastoplasticity elastoviscoplasticity

(visco)plastic
strain εp,11,n+1 = ε̇p,11,n+1Δt+ εp,11,n =

√
2
3λn+1

σ11,n+1

|σ11,n+1|Δt+ εp,11,n

trial state |σtrial
11,n+1| = |σ11,n+1|+ 2μ

√
2
3Δtλn+1

(visco)plastic
strain direction

σtrial
11,n+1

|σtrial
11,n+1|

=
σ11,n+1

|σ11,n+1|

Lagrange

multiplier λn+1 =
|σtrial

11,n+1| − σy

2μ
√

2
3Δt

λn+1 =
|σtrial

11,n+1| − σy√
3
2χ+ 2μ

√
2
3Δt

In order to investigate not only the rates involved in elastoplasticity and viscoplasticity but
also their discrete counterparts, the radial return map presented in Section 4.1.3.4 is elaborated
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using the backward Euler scheme. Equations (4.31), (4.34), (4.35), (4.37), (4.38), (4.41), and
(4.42) are adapted to fit the one-dimensional case. The main results are depicted in Table 4.2,
where the rate-independence of elastoplasticity becomes apparent again. Inserting the La-

grange multiplier into the plastic strain relation yields a formulation that is independent of
the time increment in the plastic case. Within viscoplasticity, however, the time increment
cannot be cancelled out in the viscoplastic strain formulation due to the parameter χ. How-
ever, if this parameter is small, the elastoplastic formulation is retrieved. Figure 4.3 shows the
resulting differences between the models for a one-dimensional example where the Lamé pa-
rameter μ = 1 · 105 N/mm2 and the yield stress σy = 900 N/mm2 are set. Moreover, the strain
ε11 = 0.08 sin(ωt) is prescribed, whereby the parameter ω is varied to simulate distinct strain
rates. As initial condition for the plastic strain εp,11,1 = 0 is assumed. For all cases, a time step
size of Δt = 1 · 10−6 s is chosen and a time span T = 0.005 s is computed.
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Figure 4.3.: Discrepancies between plasticity and viscoplasticity in the stress-strain curve:
(a) Variation of the strain rate in plasticity, (b) Variation of the strain rate in
viscoplasticity, (c) Variation of the viscosity parameter in viscoplasticity

Figure 4.3 (a) depicts stress-strain curves for the plasticity model with various strain rates.
Since the same time span is simulated for all strain rates, the graphs end at distinct strains.
Nevertheless, there are apparently no further discrepancies apart from these deviations. This
is due to the rate-independence of the formulation. Analogously, Figure 4.3 (b) depicts stress-
strain curves for the viscoplastic model with a viscosity parameter χ = 5 Ns/mm2. Here,
differences can be seen in the viscoplastic zone. Higher strain rates lead to higher stresses well
above the yield stress, and it is only for increasing strains that the curves tend to fall back to
reach the yield stress. In Figure 4.3 (c), the viscoplastic approach is again applied for a constant
strain rate ω = 1000 1/s, and the viscosity parameter is varied. As predicted, if the viscosity
parameter decreases the stress-strain curves assimilate to the elastoplastic case.

4.2. Variational Multifield Approach

Section 4.1 focuses on a classical approach towards elasto(visco)plasticity. Therein, the principle
of virtual work is exploited to generate a purely displacement-based weak form of the balance
of linear momentum. The material laws, accounting for elasto(visco)plastic properties, are
considered implicitly via the evaluation of the appearing integrals on Gauss-Legendre point
level. Thus, the standard solution procedure covers the structural as well as the integral level,
each characterized by appropriate methods and time integration schemes. Here, the difficulty is
to establish a proper coupling between the two levels of time integration.
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In contrast, this section is devoted to derive a novel approach that enables the usage of a wide
class of higher order accurate time integration schemes for the balance of linear momentum and
the material laws within one single-level time integration scheme. Therefore, a variational pro-
cedure is developed where the displacements form only one part of the unknown field variables.
Variational principles rest on the idea that a physical system can be described by a specific
functional and its stationary conditions achieved by differentiating this functional, cf. (Euler,
1894; Finlayson and Scriven, 1966; Hamilton, 1834, 1835; Jeltsch-Fricker, 2007; Lagrange, 1894;
Tonti, 1984; Zeidler, 1985). In the scope of plasticity-related considerations, these properties are
taken into account to different degrees. In (Mosler and Bruhns, 2010; Ortiz and Stainier, 1999;
Stainier, 2013) minimization principles are established to construct update procedures for the
material laws. On the structural level, stationarity conditions can be exploited to generate weak
forms. Equation (4.23) of the classical approach can be seen as one example of Hamilton’s
variational principle. If the considered functional depends on multiple variables and, hence,
its variation involves distinct stationary conditions, a variety of further weak forms can be
deduced. For plasticity or viscoplasticity, this is performed in (Comi and Perego, 1991, 1995;
Hackl, 1997; Miehe, 2011; Simo and Hughes, 1997; Simo et al., 1989). Such extended weak forms
have also been used for mathematical analysis concerning error estimates or solvability aspects,
cf. (Anzellotti and Luckhaus, 1987; Capurso and Maier, 1970; Chelmiński, 2001; Duvaut and
Lions, 1972; Johnson, 1976; Schröder and Wiedemann, 2011; Suquet, 1978). Moreover, due to
their consideration of multiple variables, variational principles build the framework for multifield
finite element applications, where on the structural level more than one field variable is taken
into account as unknown, cf. (Christensen, 2002; Hager and Wohlmuth, 2009; Miehe, 2011;
Schröder and Wiedemann, 2011; Welschinger, 2011). In the following section, a physically
motivated variational principle will be presented and extended to the elastoplastic as well as to
the viscoplastic case, respectively. The resulting weak form will be exploited to derive a new
numerical solution scheme for ideal elasto(visco)plasticity, enabling the simple usage of higher
order accurate time integrators.

4.2.1. The Principle of Jourdain

In 1909, in the context of the analysis of point masses, Jourdain established a principle to fill the
gap between d’Alembert’s principle of virtual work and Gauss’ principle of least constraints,
cf. (Bremer, 1993; Jourdain, 1909; Piedbœuf, 1993). This principle is therefore often denoted
as principle of Jourdain or principle of virtual power, cf. (Moon, 1998; Piedbœuf, 1993). Its
adaptation to problems of continuum mechanics is performed in (Germain, 1972, 1973; Maugin,
1980), where the virtual power is generally defined by a continuous linear form consisting of
forces and virtual velocities. Furthermore, it is assumed that the virtual power of all internal,
external, and inertia forces is zero. As examples for the principle’s application, micromorphic
structures, higher order gradient continua, and electromagnetic continua are outlined. A distinct
extension of the principle of Jourdain is carried out in (Yunt, 2014), where rigid body systems
in conjunction with dissipative processes are investigated. Further, dissipative mechanisms in
the regime of plasticity for continua are analyzed in (Miehe, 2011; Simo and Hughes, 1997; Simo
et al., 1989), although only time-discrete variants of the principle of virtual power are evaluated
there. In contrast to that, the next sections are devoted to deducing elasto(visco)plastic models
by directly exploiting the principle of Jourdain and its rate-type characteristic. At the same
time, this course of action allows to consider inertia effects together with a natural formulation
of dissipative behavior. Thus, an altered initial boundary value problem is obtained, which
facilitates the application of higher order accurate time discretization methods. First approaches
in that direction are already presented in (Gleim et al., 2017; Schröder and Kuhl, 2015a,b).
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4.2.1.1. The Principle of Virtual Power for Elastoplasticity

In order to construct the principle of Jourdain for dissipative continua, the first step is to
consider the balance of energy

P (u̇, ε̇p,σ, λ) = K̇ + Ė + P ∗ +D = 0,

indicating that the total power P of a body B with domain Ω is zero, cf. (Altenbach, 2012; Yunt,
2014). The included variable K denotes the kinetic energy, the term E the internal energy, and
P ∗ the power due to external forces. The quantity D represents a pseudopotential embodying
dissipative effects, characterizing plastic deformations, amongst other things, cf. (Miehe, 2011;
Yunt, 2014). Additionally, it is assumed that the total power P reaches a stationary point,
whereby at the same time the prevalent stress state lies within the von Mises yield surface
of Equation (4.4). This approach is similar to the one followed in (Miehe, 2012), enhanced by
acknowledging inertia effects. Hence, the stationarity problem

stat
u̇,ε̇p

sup
σ

inf
λ≥0

P (u̇, ε̇p,σ, λ), (4.47)

with the balance of energy as a rate-type functional, is postulated to hold. In the case of a
general elastoplastic continuum, the listed quantities are specified by

K̇ =

∫
Ω

ρ0ü · u̇ dV, (4.48)

Ė =

∫
Ω

ė(ε, εp) dV =

∫
Ω

[ε̇ : Ce : [ε− εp] + ε̇p : Ce : [εp − ε]] dV, (4.49)

P ∗=−
∫
Ω

ρ0u̇ · f dV −
∫
Γ

u̇ · t∗ dA, (4.50)

D =

∫
Ω

σ : ε̇p dV −
∫
Ω

λf(σ) dV with λ ≥ 0. (4.51)

Thereby, the used volume-specific energy e in (4.49) is identical to the one formulated in
Equation (4.5) of the classical approach. A closer look at the expression D reveals that it
includes the yield function as a sort of inequality constraint within the Lagrange multiplier
theory, cf. (Burger, 2003; Dür and Martin, 2005; Ito and Kunisch, 2008; Zeidler, 1985). Fur-
thermore, it possesses a respective analogue within the conventional procedure. It is the integral
version of the postulate of maximum plastic work (4.9). Hence, for ideal associative elastoplas-
ticity, the depicted pseudopotential actually serves as a measure for the internal dissipation of a
system in the context of the dissipation inequality (2.27)2. For further details on this topic see
(Hildebrand, 2013; Miehe, 2002; Miehe et al., 2002).
The concept of formulating the dissipation pseudopotential in this way is also followed in (Eve
et al., 1990; Han and Reddy, 1999; Miehe, 2011; Reddy and Martin, 1994; Simo and Miehe,
1992; Welschinger, 2011). Additional pseudopotential assumptions are discussed in (Eve et al.,
1990; Han and Reddy, 1999; Reddy and Martin, 1994) to derive a variety of formulations within
elastoplasticity. Even in (Halphen and Nguyen, 1975; Moreau, 1970), the idea of using potential
functions for plastic and viscoplastic effects is already prevalent.
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4.2. Variational Multifield Approach

In the next step, a reformulation of (4.47) into

stat
u̇,ε̇p

sup
σ

inf
λ≥0

P (u̇, ε̇p,σ, λ)=stat
u̇,ε̇p

sup
σ

inf
λ

⎡
⎣K̇+Ė+P ∗+

∫
Ω

σ : ε̇p dV −
∫
Ω

[λf(σ)−ψI(λ)] dV

⎤
⎦, (4.52)

is carried out, cf. (Burger, 2003; Zeidler, 1985), exploiting the indicator function

ψI(λ) =

{
0 for λ ≥ 0

∞ for λ < 0.
(4.53)

In order to determine the solution of Problem (4.52), the course of action in (Burger, 2003;
Rockafellar, 1970; Zeidler, 1985) is followed defining the stationarity condition

0 ∈ ∂P (u̇, ε̇p,σ, λ) := ∂u̇P + ∂ε̇pP + ∂σP + ∂λP (4.54)

of the virtual power ∂P . The operator ∂(•) represents the subdifferential or superdifferential
with regard to the respective quantity. The search for an infimum or a supremum and, hence,
the treatment of convex or concave functions is the difference between both formulations, cf.
(Rockafellar, 1970). For the cases in (4.54) where only stationarity is required, the functionals
are Gâteaux differentiable with respect to the necessary quantity and, hence, no distinction
between the super- and subdifferential has to be made.
An alternative interpretation of the inclusions in (4.54) can be given by considering the im-
pressions in (Germain, 1973; Maugin, 1980). There, the virtual power of a system is directly
stated and assumed to be zero. Thus, an evaluation of the stationary conditions of a rate-type
functional is not necessary. Although inertia effects are taken into account in this approach,
dissipative mechanisms are neglected. For the isothermal case of linear elasticity, the similarity
between both procedures is shown in (Germain, 1973). Special care has to be taken in non-
isothermal processes, cf. (Germain, 1973; Maugin, 1980). Adaptations in that direction as well
as extensions to dissipative media are considered in (Junker et al., 2013; Stainier, 2013). Therein,
material laws are deduced using optimization strategies on local level. The quasi-static balance
laws are treated separately. However, such thermal modifications are out of the scope of this
thesis.
Before the virtual power is determined, the subdifferential of an arbitrary, convex functional
k(x) on the space X is defined by

∂k(x) = {x∗ ∈ X
′
: k(y) ≥ k(x) + 〈x∗, y − x〉 ∀ y ∈ X}, (4.55)

where X is assumed to be a proper normed vector space with its topological dual X ′ with the
corresponding scalar product 〈•, •〉. If the functional k(x) is now considered to be concave, the
superdifferential can be established analogously to Inequality (4.55), but reversing the inequality
sign, cf. (Rockafellar, 2001). For detailed explanations on sub- and superdifferentials and related
topics see (Han and Reddy, 1999; Rockafellar, 1970; Zeidler, 1985). In the following, it will be
assumed that the necessary conditions for Definition (4.55) are fulfilled. Hence, the spaces can
be chosen appropriately and the functionals possess the demanded properties. If, furthermore,
the Gâteaux Derivative (3.22) of the functional k(x) exists, then

∂k(x) = {Dxk(x)} =: δk(x) (4.56)

has to hold, cf. (Han and Reddy, 1999; Zeidler, 1985). The application of (4.55)-(4.56) to the
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4. Small Strain Elastoplasticity and Viscoplasticity

rate-type functional in (4.52) yields in a first step

∫
Ω

ρ0δu̇ · ü dV +

∫
Ω

[δε̇ : Ce : [ε− εp]] dV −
∫
Ω

ρ0δu̇ · f dV −
∫
Γt∗

δu̇ · t∗ dA = 0, (4.57)

∫
Ω

[δε̇p : Ce : [εp − ε] + δε̇p : σ] dV = 0, (4.58)

∫
Ω

[λ f(δσ)− λ f(σ)] dV −
∫
Ω

ε̇p : [δσ − σ] dV ≥ 0, (4.59)

∫
Ω

[ψI(δλ)− ψI(λ)] dV −
∫
Ω

f(σ) [δλ− λ] dV ≥ 0, (4.60)

whereby the symmetry of the elastic constitutive tensor Ce is exploited together with the inter-
changeability of variation and differentiation. For a better numerical treatment, the obtained
variational inequalities are reformulated. Therefore, their strong counterparts are derived. Ap-
plying the definition of the superdifferential following (4.55) to the Inequality (4.59) yields the
inclusion

ε̇p ∈ λ ∂f(σ), (4.61)

while exploiting the properties of the indicator function in (4.53) and the subdifferential in (4.55)
in the context of Inequality (4.60) leads to the abbreviated version

∫
Ω

f(σ) [δλ− λ] dV ≤ 0 ∀δλ ≥ 0, λ ≥ 0. (4.62)

Dividing the elastoplastic region Ω into a plastic subsection Ωp := {X|λ > 0} and an elastic one
Ωe := {X|λ = 0}, admits the two conclusions

∀δλ ≥ 0with δλ = λ on Ωp :

∫
Ωe

f(σ)δλ ≤ 0, (4.63)

∀δλ ≥ 0with δλ = λ on Ωe :

∫
Ωp

f(σ) [δλ− λ] ≤ 0. (4.64)

From (4.63) it can be followed that f(σ) ≤ 0, λ = 0 and λf(σ) = 0 has to hold on Ωe. On the
contrary, (4.64) results in f(σ) = 0, λ > 0 as well as f(σ)λ = 0 on Ωp. Hence, the Karush-

Kuhn-Tucker conditions f(σ) ≤ 0, λ = 0, λf(σ) = 0 are valid on the entire domain Ω. Their
characteristics can be used to recast the Relationship (4.61) into

ε̇p :=

⎧⎨
⎩λ

∂f(σ)

∂σ
for ‖dev (σ)‖ �= 0

{0} for ‖dev (σ)‖ = 0
(4.65)

and, thus, transform the variational inequality in (4.59) into a variational equality. Finally, the
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general elastoplastic problem can be described by∫
Ω

ρ0δu̇ · ü dV +

∫
Ω

[δε̇ : Ce : [ε− εp]] dV −
∫
Ω

ρ0δu̇ · f dV −
∫
Γt∗

δu̇ · t∗ dA = 0, (4.66)

∫
Ω

[δε̇p : Ce : [εp − ε] + δε̇p : σ] dV = 0, (4.67)

∫
Ω

[
δσ : ε̇p − λδσ :

∂f(σ)

∂σ

]
dV = 0, (4.68)

∫
Ω

f(σ) [δλ− λ] dV ≤ 0, (4.69)

with δλ ≥ 0, λ ≥ 0 and ‖dev (σ)‖ �= 0, if for dev (σ) = 0 the Lagrange multiplier λ is sim-
ply set to zero. To demonstrate the identity of the models derived by the principle of virtual
power and those established in the classical approach, the weak forms in (4.66)-(4.69) are recast
into their strong counterparts. This was already performed for (4.68)-(4.69), resulting in the
Karush-Kuhn-Tucker conditions and the evolution equation in (4.65). They are equal to those
settled within the classical approach in (4.11). Equation (4.67) can be recast by taking into ac-
count that the variations δε̇p are arbitrary as well as non zero. Applying the lemma of variational
calculus yields the constitutive law in (4.8). Inserting this relationship into Equation (4.66), per-
forming some tensor calculus and exploiting the divergence theorem∫

Ω

∇X · [σ · δu̇] dV =

∫
Γt∗

δu̇ · σ · n dA

results, together with the symmetry σ = σT, in∫
Ω

ρ0δu̇ · ü dV −
∫
Ω

δu̇ · [∇X · σ] +
∫
Γt∗

δu̇ · [σ · n− t∗] dA−
∫
Ω

ρ0δu̇ · f dV = 0.

Utilizing the lemma of variational calculus and considering that the variations δu̇ are arbitrary as
well as non zero leads to the balance of linear momentum in (2.27)1 and the Neumann boundary
condition in (4.1)2. Hence, identical strong formulations are obtained, although the weak forms
of the classical and the variational multifield approach are completely different. In the latter, not
only the balance of linear momentum is enforced in a weak sense, but also the material laws as
well as the Karush-Kuhn-Tucker conditions. Thereby, the plastic strains, the stresses, and
the Lagrange multiplier are introduced as additional unknown field quantities which have to
be determined. Since this is achieved by exploiting variational methods, this alternative ansatz
is denoted as the variational multifield approach.
The idea of demanding only a weak fulfillment of the yield condition was already applied to
gradient plasticity, cf. (De Borst and Mühlhaus, 1992; Mühlhaus and Aifantis, 1991; Pamin,
1994). The weak consideration of further equations such as material laws or even hardening
aspects in an incremental fashion is performed in (Comi and Perego, 1991, 1995; Miehe, 2011,
2012; Simo and Hughes, 1997; Simo et al., 1989; Welschinger, 2011) and the references therein.
A time-continuous procedure containing rates is presented in (Hackl, 1997), but inertia terms
are neglected there. Another approach to determine the weak forms in (4.66)-(4.69) could be
an extension of Hamilton’s principle. In (Kim et al., 2013), a Rayleigh dissipation term is

115



4. Small Strain Elastoplasticity and Viscoplasticity

added. A proper redefinition of this addition could enable the derivation of the viscoplastic
Equations (4.70)-(4.72) of the next chapter. Ways to consider variational inequalities or inclu-
sions within Hamilton’s principle are discussed in (Buliga, 2009; Leine and Aeberhard, 2008).
These approaches could lead to an alternative derivation strategy compared to the principle of
Jourdain.
However, in this thesis, the principle of virtual power will be followed up due to its intuitive
evaluation process. The sole input argument for this variational approach is the formulation of
the rate-type functional, all other equations or inequalities result automatically. A judgement
concerning mathematical properties concerning distinct variational approaches is out of the
scope of this thesis. Here, the focus lies on a systematic derivation strategy that takes dynamic
effects into account. By choosing this rate-type formulation, the material laws are elevated
on structural level. Thus, all sorts of equations containing time derivatives can be temporally
discretized simultaneously, enabling a straightforward application of higher order accurate time
integrators. The numerical realization can be carried out as described in Chapter 3. Special
care has to be taken because of the introduced variational inequality, which is at the same time
an algebraic inequality. Before this topic is treated in detail in Section 4.2.2, the next step is to
find a viscoplastic extension of the multifield approach.

4.2.1.2. The Principle of Virtual Power for Elastoviscoplasticity

In the classical approach in Section 4.1.2, viscoplastic effects are considered by a regularization
of the postulate of maximum plastic work. Thereby, the constraint established by the yield
function is weakened by introducing a penalization term, leading to the internal dissipation
in (4.15). A similar procedure is performed in the context of the variational multifield approach.
As in the elastoplastic case, the stationarity problem in (4.47) is taken into account, whereby the
kinetic energy, the internal energy, and the power due to external forces are formulated identical
to Equations (4.48)-(4.50). The dissipative pseudopotential in (4.51), however, is adapted to

D =

∫
Ω

σ : ε̇p − 1

χ
h(f(σ)) dV,

including the continuous differentiable function h(f(σ)) as described in Equation (4.16) and the
viscosity parameter χ. In the next step, it is again assumed that the physical state where the
power within the elastoviscoplastic continuum reaches a stationary point is the preferable one,
cf. (Miehe, 2011, 2012). Hence, the stationarity condition

0 ∈ ∂P (u̇, ε̇p,σ) := ∂u̇P + ∂ε̇pP + ∂σP

is obtained. Due to the regularization in the pseudopotential, a smoothening effect is introduced
- and the evaluation of a subdifferential with respect to λ as in the elastoplastic case becomes
superfluous. The results are the weak forms∫

Ω

ρ0δu̇ · ü dV +

∫
Ω

δε̇ : Ce : [ε− εp] dV −
∫
Ω

ρ0 δu̇ · f dV −
∫
Γt∗

δu̇ · t∗ dA= 0, (4.70)

∫
Ω

[δε̇p : Ce : [εp − ε] + δε̇p : σ] dV= 0, (4.71)

∫
Ω

[
δσ : ε̇p − δσ :

1

χ
〈f(σ)〉∂f(σ)

∂σ

]
dV= 0, (4.72)
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where 〈f(σ)〉 denotes the ramp function in (4.17). The critical point ‖dev (σ)‖ = 0, where
the superdifferential ∂σf(σ) would actually be multivalued, is ruled out by the differentiability
condition of the function h(f(σ)) and the positivity of the yield stress σy > 0.
In order to prove that the obtained model is identical to that of the classical approach, the
weak forms in (4.70)-(4.72) are reformulated into their strong counterparts by following the same
procedure as in Section 4.2.1.1. Equation (4.70) yields the balance of linear momentum in (2.27)1
and the Neumann boundary condition in (4.1)2. Equation (4.71) leads to the constitutive law
in (4.8), and the Relationship (4.72) embodies the evolution equation in (4.18). Despite the
distinct proceedings, the same strong forms are derived in the classical and the variational
approach. The weak forms, however, are completely different.

4.2.2. Implementation Strategy for Multifield Elastoplasticity

By generalizing the principle of virtual power in order to include dissipative effects and by
demanding that it results from the stationarity of a rate-type functional, a physically sound
basis for the multifield formulation is created, cf. (Germain, 1973; Maugin, 1980; Miehe, 2012;
Yunt, 2014). The consequent maintaining of the power type structure enables the treatment of
material laws as balance equations, leading to an altered initial boundary value problem, see
Figure 4.4. A changed numerical implementation is the consequence.

w = [u, εp,σ, λ]
T

independent variables

0 = ρ0ü−∇X · σ − ρ0f

σ = Ce : [ε− εp]

ε̇p = λ
∂f(σ)

∂σ

f(σ) = ‖devσ‖ −
√

2

3
σy

balance laws

u1 = u(t1), u̇1 = u̇(t1), εp,1 = εp(t1)

initial conditions

u(X, t) = u∗ ∀X ∈ Γu σ · n = t∗ ∀X ∈ Γt∗

boundary conditions

Figure 4.4.: Initial boundary value problem of the variational approach for elastoplasticity in
the small strain regime
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4.2.2.1. Weak Formulation of Multifield Elastoplasticity

In the classical approach for small strain elastoplasticity, depicted in Section 4.1.1, the point of
departure is the formulation of the material laws and the balance of linear momentum in a strong
sense. Only within the context of numerical realization, the balance equation is transformed
into its weak counterpart to enable a finite element analysis. The material laws, however,
remain unchanged. Their spatial discretization is only performed indirectly, due to the numerical
integration applied to the weak form of the balance of linear momentum. Hence, it is mandatory
that the material laws are fulfilled point-wise at the Gauss-Legendre quadrature points. An
approximation of the plastic quantities by means of nodal values and associated shape functions
is not carried out. In contrast, the multifield approach follows a completely different strategy.
Therein, a variational principle is taken as the point of departure, directly creating a weak
form of the balance of linear momentum and the material laws. Thus, concerning the numerical
realization, no additional step has to be performed - and Equations (4.66)-(4.69) can immediately
be integrated into the solution procedures described in Chapter 3. If, moreover, the relations

δz1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

δu̇

δε̇

δε̇p

δσ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

r1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0ü− ρ0f

Ce : [ε− εp]

Ce : [εp − ε] + σ

ε̇p − λ
∂f(σ)

∂σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

r∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

t∗

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

u

εp

σ

λ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

r2 = f(σ)

are taken into account, the identity to the general weak form in (3.1)-(3.2) becomes apparent.
It is to be kept in mind that the quantities of the general weak form consist of a mixture of
tensor-, vector-, and scalar-valued functions. Hence, the connection in between these terms must
be defined properly. Additionally, further aspects have to be considered. Due to the inequality
constraint, a semi-smooth Newton procedure is necessary and, as Figure 4.4 illustrates, the
material laws do not possess boundary terms, cf. (Miehe, 2011). This is founded in the fact
that they are algebraic equations or first order differential equations in time but not in space.

4.2.2.2. Linearized Spatial Semidiscrete System of Equations

The first step to solve the elastoplastic problem defined by Equations (4.66)-(4.69), following the
solution procedure in Chapter 3, is the spatial discretization. Its realization will subsequently
be demonstrated with the help of the most general case of a three-dimensional continuum me-
chanical body B. By means of the finite element method, a partition of the body’s domain
into subdomains Ω̄e characterized by Equation (3.4) is carried out. The resulting geometry
can then be approximated exploiting the relations in (3.5) together with Lagrange shape
functions derived in (3.16) as well as (3.13). The same shape functions are chosen to interpo-
late the displacement field, its time derivatives, and the corresponding test function following
Equations (3.7)-(3.9). Due to the symmetry of the elastic constitutive tensor, the strain tensor
and the respective test function are approximated by (3.7)2 together with the derivatives of
the Lagrange shape functions (3.18) and (3.15). The plastic strains, their time derivatives,
the stresses, the Lagrange multiplier, and the associated test functions are approximated
by (3.7)1, but taking special Lagrange shape functions into account here. They are gener-
ated using Equations (3.13)1 as well as (3.16), however, the supporting points are chosen in
dependence of the polynomial degree so that they match the Gauss-Legendre quadrature
points listed in Table 3.1. Thus, the interpolation property (3.17) is fulfilled at each quadra-
ture point and the quantities may jump between neighboring elements. The shape functions
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generating continuous approximations are denoted as N i, while those leading to discontinuous
inter-elemental approximations are characterized by N̄ i. With this choice of finite element grid,
the same spatial discretization as in the classical approach is obtained. Other choices of shape
functions are presented in (Comi and Perego, 1991, 1995; Pinsky, 1987; Simo et al., 1989) and
the references therein.
In the next step, the semi-smooth Newton method is applied and all appearing equalities are
linearized as within the standard Newton-Raphson procedure, see Section 3.2.1. The included
inequality is first transformed into an equality by means of the nonlinear complementarity func-
tion in (3.31). Afterwards, a special kind of linearization is performed, introducing an active
set strategy, see Section 3.2.2. The result is the following system of equations at iteration k on
element level, whereby the ’◦’-operator is implied to embody a proper product operator for the
distinct entries:

NN∑
i, j = 1
l, n ∈ Ak

⎡
⎢⎢⎢⎢⎢⎢⎣

δu̇ei

δε̇eip

δσei

δλel

⎤
⎥⎥⎥⎥⎥⎥⎦
◦

⎡
⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎢⎢⎢⎣

meij
uu 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

◦

⎡
⎢⎢⎢⎢⎢⎢⎣

Δüej

Δε̈ejp

Δσ̈ej

Δλ̈en

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 deijsp 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
◦

⎡
⎢⎢⎢⎢⎢⎢⎣

Δu̇ej

Δε̇ejp

Δσ̇ej

Δλ̇en

⎤
⎥⎥⎥⎥⎥⎥⎦
+

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

keijuu keijup 0 0

keijpu keijpp keijps 0

0 0 keijss keinsλ

0 0 keljλs 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
◦

⎡
⎢⎢⎢⎢⎢⎢⎣

Δuej

Δεejp

Δσej

Δλen

⎤
⎥⎥⎥⎥⎥⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎦
=

NN∑
i = 1
l ∈ Ak

⎡
⎢⎢⎢⎢⎢⎢⎣

δu̇ei

δε̇eip

δσei

δλel

⎤
⎥⎥⎥⎥⎥⎥⎦
◦

⎡
⎢⎢⎢⎢⎢⎢⎣

r∗,eiu − reiu

−reip

−reis

−relλ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

λen,k+1 =0 ∀n ∈ Ik.

(4.73)

The indices l, n therein are introduced to distinguish between element nodes characterized by
plastic or elastic effects. Nodes inheriting plastic properties are gathered in the active set Ak,
while the inactive set Ik contains all elastic nodes. These sets are updated after each iteration
k with

Ak+1 := {l|λel,k+1 + c rel,k+1
λ > 0},

Ik+1 := {l|λel,k+1 + c rel,k+1
λ ≤ 0},

where c > 0 is assumed. The individual entries in (4.73) are defined by:

meij
uu=

∫
Ωe

ρ0N
iN j I |Je|dV e, deijsp =

∫
Ωe

N̄ i
I N̄ j |Je|dV e,

keijuu =

∫
Ωe

∇XN
i · Ce · ∇XN

j |Je|dV e, keijup=−
∫
Ωe

∇XN
i · Ce N̄

j |Je|dV e,

keijpu =−
∫
Ωe

N̄ i
Ce · ∇XN

j |Je|dV e, keijpp=

∫
Ωe

N̄ i
Ce N̄

j |Je|dV e,

keijss =−
∫
Ωe

N̄ iλe,k
∂2f(σe)

∂[σe]2

∣∣∣∣
k

N̄ j |Je|dV e, keljλs =−
∫
Ωe

N̄ l ∂f(σ
e)

∂σe

∣∣∣∣
k

N̄ j |Je|dV e,
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keinsλ =−
∫
Ωe

N̄ i∂f(σ
e)

∂σe

∣∣∣∣
k

N̄n |Je|dV e, keijps =

∫
Ωe

N̄ i
I N̄ j |Je|dV e,

reip =

∫
Ωe

N̄ i
[
σe,k + Ce :

[
εe,kp − εe,k

]]
|Je|dV e, relλ =−

∫
Ωe

N̄ l f(σe,k)|Je|dV e,

r∗,eiu =

∫
Ωe

N i ρ0f
k |Je|dV e +

∫
Γe
t∗

N i t∗,k |Je|dAe, reis =

∫
Ωe

N̄ i

[
εe,kp − λe,k

∂f(σe)

∂σe

∣∣∣∣
k

]
|Je|dV e,

reiu =

∫
Ωe

N i ρ0ü
k |Je|dV e +

∫
Ωe

∇XN
i ·
[
Ce :
[
εe,k − εe,kp

]]
|Je|dV e.

The included integrals are determined numerically as in the classical approach by means of the
Gauss-Legendre quadrature. In order to create a solvable system of equations on structural
level, the tensor-valued entries have to be sorted. The unknown tensors of second order, such as
the plastic strains and the stresses, are rearranged in a vector. The tensors of third as well as
fourth order are recast into matrices. Then, the assembly operators in (3.25) - (3.26) and (3.34)
can be applied, resulting in

MΔẅ +DΔẇ +KΔw = R∗
1 −R1, (4.74)

wk+1 = Δw +wk, (4.75)

λi,k+1 = 0 ∀i ∈ Ik, (4.76)

Ak+1:={i|λei,k+1 + c rei,k+1
λ > 0}, (4.77)

Ik+1:={i|λei,k+1 + c rei,k+1
λ ≤ 0}. (4.78)

For explicit realizations of the sorting see Sections 5.1.2 as well as 5.2.2. Furthermore, it is
emphasized that in Equation (4.74) only the active entries of the assembled parts of keljλs ,k

ein
sλ

and relλ are taken into account. Thereby, it is emphasized that, as a result of the choice of shape
functions, one node may only be part of one element. An alternative solution procedure in the
context of a predictor corrector multifield method is presented in (Comi and Perego, 1995).

4.2.2.3. Time discretization on Structural Level

Equations (4.74)-(4.78) represent the linearized semidiscrete form of an arbitrary three-dimension-
al elastoplastic problem. The last step towards their solution is the time discretization of
Equation (4.74) and the evaluation of Equations (4.75)-(4.78) at the respective points in time.
Due to the identity of Equation (4.74) and Equation (3.46), all time integration schemes of
Section 3.4 can be applied directly without further adaptation. However, the utilization of com-
pletely arbitrary time integration schemes is only partly possible. If Equation (4.67) as well as
Inequality (4.69) are examined closer, it becomes apparent that these are algebraic constituents.
Thus, Equation (4.74) illustrates a differential-algebraic system which has to be solved. This is
the explanation for the choice of time integration schemes presented in Section 3.4. In all meth-
ods, the weak forms in (4.66)-(4.69), including the algebraic ones, are fulfilled at the end of the
time step. For the application of Runge-Kutta schemes in the context of differential-algebraic
systems see the explanations in (Hairer and Wanner, 2002). Moreover, within the Galerkin

schemes, the quadrature points in time are chosen to be identical to the temporal nodes. Hence,
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4.2. Variational Multifield Approach

the algebraic equations are automatically fulfilled at the time nodes and no projection steps for
the determination of the active sets have to be performed. In contrast to the classical approach
towards elastoplasticity in Section 4.1.3.3, only one single time discretization has to be carried
out. In the multifield approach, an explicit coupling between the material laws and the balance
of linear momentum exists, so that the radial return map with its separate time integration
scheme and the projection step is completely superfluous.

4.2.3. Implementation Strategy for Multifield Viscoplasticity

A similar but simpler way compared to the numerical realization of multifield plasticity can be
accomplished for multifield viscoplasticity. The big and only difference between both models
is that the Lagrange multiplier is not determined within the solution process of the latter,
but prescribed at the beginning. Hence, the corresponding initial boundary value problem
depicted in Figure 4.5 shows only small changes compared to the scheme in Figure 4.4. The
classical approach towards viscoplasticity, however, is characterized by a completely distinct
structure, see Figure 4.1. Therein, the only unknown quantity is the displacement field. Within
the variational ansatz, the plastic strains and the stresses are considered as additional primary
variables. Consequently, a totally new structure is obtained, leading to a distinct numerical
realization characterized by a single time discretization.

w = [u, εp,σ]
T

independent variables

0 = ρ0ü−∇X · σ − ρ0f

σ = Ce : [ε− εp]

ε̇p = λ
∂f(σ)

∂σ
λ =

1

χ
〈f(σ)〉

f(σ) = ‖devσ‖ −
√

2

3
σy

balance laws

u1 = u(t1), u̇1 = u̇(t1), εp,1 = εp(t1)

initial conditions

u(X, t) = u∗ ∀X ∈ Γu σ · n = t∗ ∀X ∈ Γt∗

boundary conditions

Figure 4.5.: Initial boundary value problem of the variational approach for viscoplasticity in the
small strain regime
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4. Small Strain Elastoplasticity and Viscoplasticity

4.2.3.1. Weak Formulation of Multifield Viscoplasticity

Analogously to the multifield elastoplastic approach, the modeling of viscoplastic effects is based
on a variational concept. Accordingly, the weak forms in (4.70)-(4.72) are automatically obtained
and can be incorporated directly into the solution procedure of Chapter 3. To accomplish the
general weak form in (3.1), the following definitions

δz1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

δu̇

δε̇

δε̇p

δσ

⎤
⎥⎥⎥⎥⎥⎥⎦
,

r1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0ü− ρ0f

Ce : [ε− εp]

Ce : [εp − ε] + σ

ε̇p − 1

χ
〈f(σ)〉∂f(σ)

∂σ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

r∗ =

⎡
⎢⎢⎢⎢⎢⎢⎣

t∗

0

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

w =

⎡
⎢⎢⎢⎣
u

εp

σ

⎤
⎥⎥⎥⎦

are settled. Thereby, it is important to know that the test function δz1 consists of a mixture of
tensor- and vector-valued functions. Hence, the connection to the nonlinear function r1 must be
defined properly. Again, the material laws do not possess boundary terms as in the elastoplastic
formulation depicted in Figure 4.4, cf. (Miehe, 2011).

4.2.3.2. Spatial Semidiscrete Linearized System of Equations

In order to solve the weak forms in (4.70)-(4.72), a spatial discretization has to be carried out.
For the sake of simplicity, the subsequent sections consistently address the most general case
of a three-dimensional continuum mechanical body. On the one hand, it is assumed that the
analyzed viscoplastic body’s domain can be partitioned, following (3.4), into a finite number of
elements. On the other hand, Equation (3.10) yields the validity of the weak forms (4.70)-(4.72)
on element level. These subdomains enable the description of the body’s geometry exploiting
Equation (3.5). The included shape functions are supposed to be of Lagrange type, derived
by the Terms (3.16) as well as (3.13). Hence, a continuous approximation of the geometry is
carried out. The identical ansatz is pursued for the displacement field, its time derivatives, and
the corresponding test function following Equations (3.7)-(3.9). Due to the symmetry of the
elastic constitutive tensor, the strain tensor and the respective test function are approximated
by (3.7)2 together with the derivatives of the Lagrange shape functions (3.18) and (3.15). For
the evolution of the other primary variables, a spatially discontinuous course is permitted. Thus,
they are approximated as in the elastoplastic multifield approach by (3.7)1 using Lagrange

shape functions, which are constructed in such a way that the interpolation property (3.17) is
fulfilled, depending on the polynomial degree, at the Gauss-Legendre quadrature points listed
in Table 3.1. The shape functions generating continuous approximations are denoted as N i,
while those leading to discontinuous inter-elemental approximations are characterized by N̄ i.
By adopting this procedure, it is possible to obtain the same spatial discretization explicitly as
it is implicitly available in the classical approach.
The next step is to extend the nonlinear semidiscrete forms to the structural level and to solve
the resulting system. Since there are only variational equalities in the viscoplastic case, a
conventional Newton-Raphson procedure can by applied as described in Section 3.2.1. The
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4.2. Variational Multifield Approach

result is the following system of equations at iteration k on element level:

NN∑
i,j=1

⎡
⎢⎢⎢⎣
δu̇ei

δε̇eip

δσei

⎤
⎥⎥⎥⎦◦
⎡
⎢⎢⎢⎣
⎡
⎢⎢⎢⎣
meij

uu 0 0

0 0 0

0 0 0

⎤
⎥⎥⎥⎦ ◦

⎡
⎢⎢⎢⎣
Δüej

Δε̈ejp

Δσ̈ej

⎤
⎥⎥⎥⎦+
⎡
⎢⎢⎢⎣

0 0 0

0 0 0

0 deijsp 0

⎤
⎥⎥⎥⎦ ◦

⎡
⎢⎢⎢⎣
Δu̇ej

Δε̇ejp

Δσ̇ej

⎤
⎥⎥⎥⎦+

+

⎡
⎢⎢⎢⎣
keijuu keijup 0

keijpu keijpp keijps

0 0 keijss

⎤
⎥⎥⎥⎦ ◦
⎡
⎢⎢⎢⎣
Δuej

Δεejp

Δσej

⎤
⎥⎥⎥⎦
⎤
⎥⎥⎥⎦=

NN∑
i=1

⎡
⎢⎢⎢⎣
δu̇ei

δε̇eip

δσei

⎤
⎥⎥⎥⎦ ◦

⎡
⎢⎢⎢⎣
r∗,eiu − reiu

−reip

−reis

⎤
⎥⎥⎥⎦
.

(4.79)

The ’◦’-operator therein embodies a proper product operator for the distinct vector- and tensor-
valued entries. The differences between the included quantities can be recognized by considering
the respective definitions:

meij
uu=

∫
Ωe

ρ0N
iN j I |Je|dV e, deijsp =

∫
Ωe

N̄ i
I N̄ j |Je|dV e,

keijuu =

∫
Ωe

∇XN
i · Ce · ∇XN

j |Je|dV e, keijup=−
∫
Ωe

∇XN
i · Ce N̄

j |Je|dV e,

keijpu =−
∫
Ωe

N̄ i
Ce · ∇XN

j |Je|dV e, keijpp=

∫
Ωe

N̄ i
Ce N̄

j |Je|dV e,

keijss =−
∫
Ωe

N̄ i ∂

∂σe

[
1

χ
〈f(σe)〉∂f(σ

e)

∂σe

] ∣∣∣∣
k

N̄ j |Je|dV e, keijps =

∫
Ωe

N̄ i
I N̄ j |Je|dV e,

reip =

∫
Ωe

N̄ i
[
σe,k + Ce :

[
εe,kp − εe,k

]]
|Je|dV e,

reis =

∫
Ωe

N̄ i

[
εe,kp − 1

χ
〈f(σe,k)〉∂f(σ

e)

∂σe

∣∣∣∣
k

]
|Je|dV e,

r∗,eiu =

∫
Ωe

N i ρ0f
k |Je|dV e +

∫
Γe
t∗

N i t∗,k |Je|dAe,

reiu =

∫
Ωe

N i ρ0ü
k |Je|dV e +

∫
Ωe

∇XN
i ·
[
Ce :
[
εe,k − εe,kp

]]
|Je|dV e.

Similar to the handling described in Section 4.2.2.2 for the variational elastoplastic approach, the
included integrals are determined numerically by means of the Gauss-Legendre quadrature,
and a matrix vector product form is created by an appropriate realignment of the distinct tensor-
valued quantities. Thus, the assembly operators in (3.25) - (3.26) and (3.34) can be employed
to generate the linearized semidiscrete form

MΔẅ +DΔẇ +KΔw = R∗
1 −R1,

wk+1 = Δw +wk

of the viscoplastic model within the multifield approach. For an explicit realization of the sorting
see Section 5.1.2 and 5.2.2.
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4. Small Strain Elastoplasticity and Viscoplasticity

4.2.3.3. Time Discretization on Structural Level

The last step within the solution procedure described in Chapter 3 is the time discretization.
Due to the variational multifield setting, the material laws are transferred to structural level
so that their time discretization can be performed simultaneously to the one of the balance of
linear momentum. A return mapping procedure as in the classical approach in Section 4.1 is not
necessary. Hence, all time integration schemes presented in Section 3.4 can be employed directly.
Nevertheless, an extension to include further time discretization schemes has to be carried out
with care. A closer look at Equations (4.70)-(4.72) reveals that an algebraic equation is included.
This has to be taken into account within the choice of time discretization schemes. The ones
presented in Section 3.4 exhibit the special characteristics that all considered equations, even
the algebraic ones, are fulfilled at the end of the time step. For a discussion on the application
of Runge-Kutta schemes to differential algebraic systems see (Hairer and Wanner, 2002).

4.3. Summary

In this chapter, the previously defined general elasto(visco)plastic problem is specified for the
small strain regime. Therefore, a macroscopic point of view for material modeling is adapted
and two distinct approaches are followed.
The classical ansatz is widespread, so that the aim of its presentation is to enable the generation
of reference solutions. The starting point of the classical approach is the balance of linear
momentum with inherent inertia effects. This ansatz derives the mathematical formulations for
plasticity as well as viscoplasticity in a strong sense, based on the dissipation inequality. Thereby,
strain rate-dependent viscoplasticity results from a regularization of rate-independent plasticity.
To integrate the classical approach in the solution process of the general elasto(visco)plastic
problem, the balance of linear momentum is formulated weakly. The material laws, however,
stay in their strong form. Hence, their coupling to the balance of linear momentum requires
an additional step to the general procedure depicted in Chapter 3. The incorporation of
the material laws is carried out using the radial return map. On integration point level, this
determines whether elastic or (visco)plastic properties will prevail, and a time discretization of
the evolution equations is performed if needed. With the prevalent external conditions of this
thesis, this supplementary step reduces the applicable time integrators to diagonally implicit
Runge-Kutta schemes and the Newmark method. Furthermore, two levels of time integration
are introduced. The balance of linear momentum is temporally discretized on structural level,
while the evolution equations are temporally discretized on integration point level.
To counteract these phenomena, a novel variational multifield approach is generated. Therefore,
the principle of Jourdain is extended to dissipative continua, creating a rate-type functional
whose stationarity conditions yield the weak formulations of the balance of linear momentum
and the material laws of elasto(visco)plasticity in a natural fashion. On the one hand, this
strategy neutralizes the distinction between balance equations as well as material formulations.
On the other hand, it enables a mutual time integration of all contributors due to its time
continuous property. Thus, the utilization of higher order accurate time discretization schemes
within dynamic elasto(visco)plasticity is standardized, substantially simplifying the application
of distinct classes of time integrators. However, with this approach, an altered initial boundary
value problem with more unknown field variables is derived, despite the fact that the material
behavior is identical to the classical approach. The multifield form can be integrated one-to-one
into the context of the general elasto(visco)plastic problem, leading to the numerical realization
as portrayed in Chapter 3.
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5. Numerical Examples for Small Strain Elasto(visco)plasticity

For a numerical analysis of the algorithmic implementations of small strain elasto(visco)plasticity,
described in Chapter 4, different examples are treated. They serve, on the one hand, to verify
the applicability of the classical and the variational approach, and, on the other hand, allow for
a comparison between both procedures in terms of solution accuracy as well as of convergence
properties.

5.1. Rectangular Strip with a Hole in the Plane Strain Case

The first numerical example in this thesis is based on a benchmark problem extensively studied
in (Stein, 2003). Therein, the quasi-static elastic-perfectly plastic behavior of a quadratic plate
with a central circular hole under a uniformly applied distributed load is analyzed, see Figure 5.1.
Here, the focus lies on the evolution of the displacements and the stress field at certain specific
points of the geometry. Due to the two-dimensional character of the plate and the uniaxial
loading a plane strain state

ε =

⎡
⎢⎢⎢⎣
ε11 0 ε13

0 0 0

ε13 0 ε33

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂u1
∂X

0
1

2

[
∂u3
∂X1

+
∂u1
∂X3

]
0 0 0

1

2

[
∂u3
∂X1

+
∂u1
∂X3

]
0

∂u3
∂X3

⎤
⎥⎥⎥⎥⎥⎥⎦

with the displacement field u(X) = [u1, u3] can be assumed, resulting in the corresponding
three-dimensional stress state

σ =

⎡
⎢⎢⎢⎣
σ11 0 σ13

0 σ22 0

σ13 0 σ33

⎤
⎥⎥⎥⎦
.

The necessary dimensions, the loading path, and the simulation parameters can be inferred
from Figure 5.1. With the help of the presented benchmark, a validation of the classical and
the variational approach in the quasi-static case is performed.

5.1.1. Classical Approach towards Elastoplasticity

A conventional model for perfect von Mises elastoplasticity is derived in Section 4.1.1, while its
general three-dimensional numerical implementation is presented in Section 4.1.3. The identical
model is now taken into account in the context of the example depicted in Figure 5.1. However,
because of the plane strain condition and the quasi-static analysis, the numerical realization can
be simplified. In order to do so, the tangential quantities in (4.26) are modified. The second
order stress and strain tensors are rearranged in vectors of the same length, and the fourth order
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Figure 5.1.: (a) Plate geometry and evaluation points.
1©:X1=9mm, X3=0mm, 2©:X1=10mm, X3=10mm, 3©:X1=0mm, X3=10mm,
4©:X1=6.1953mm, X3=3.8047mm, (b) Loading path, (c) Simulation parameters

algorithmic constitutive tensor is rewritten in matrix representation

ε =

⎡
⎢⎢⎣
ε11
0
ε33
ε13

⎤
⎥⎥⎦
,

σ =

⎡
⎢⎢⎣

σ11
σ22
σ33
2σ13

⎤
⎥⎥⎦
,

G =

⎡
⎢⎢⎣

G1111 G1122 G1133 2G1113

G2211 G2222 G2233 2G2213

G3311 G3322 G3333 2G3313

2G1311 2G1322 2G1333 4G1313

⎤
⎥⎥⎦
.

(5.1)

Additionally, the spatially discrete connection between the displacement field u(X) = [u1, u3]
and the strain tensor is expressed via a matrix vector multiplication, exploiting the B-operator

ε =

NN∑
i=1

Biui, Bi =

⎡
⎢⎢⎣

∂N i

∂X1
0 0

1

2

∂N i

∂X3

0 0
∂N i

∂X3

1

2

∂N i

∂X1

⎤
⎥⎥⎦

T

.

(5.2)

Furthermore, the density is set to zero, and the mass matrix as well as the respective parts in
the load vector can be neglected. Thus, for Equation (4.26) the adapted tangential quantities

keij =

∫
Ωe

[
Bi
]T

G
k
Bj |Je|dV e,

r∗,ei1 =

∫
Γe

N i t∗,k |Je|dAe, rei1 =

∫
Ωe

[
Bi
]T

σ
k |Je|dV e

are obtained.
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5.1.2. Multifield Approach towards Elastoplasticity

Another approach towards solving the benchmark problem is described in Section 4.2. A distinct
derivation strategy of the material model presented in Section 4.1.1 is offered, accompanied by an
alternative numerical realization. A three-dimensional point of view is followed in this context.
Concerning the benchmark problem, similar simplifications as portrayed in Section 5.1.1 can
be performed, regarding the tangential quantities in the system of Equations (4.73). But apart
from the rearrangement of the strain and stress tensors in (5.1), the plastic strain tensor as well
as the derivative of the yield function have to be resorted together with a diversity of fourth
order tensors

εp=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εp,11

εp,22

εp,33

εp,13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ce =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ce,1111 Ce,1122 Ce,1133 2Ce,1113

Ce,2211 Ce,2222 Ce,2233 2Ce,2213

Ce,3311 Ce,3322 Ce,3333 2Ce,3313

2Ce,1311 2Ce,1322 2Ce,1333 4Ce,1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1111 I1122 I1133 2I1113

I2211 I2222 I2233 2I2213

I3311 I3322 I3333 2I3313

2I1311 2I1322 2I1333 4I1313

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f(σ)

∂σ11

∂f(σ)

∂σ22

∂f(σ)

∂σ33

2
∂f(σ)

∂σ13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f(σ)

∂σ11∂σ11

∂2f(σ)

∂σ11∂σ22

∂2f(σ)

∂σ11∂σ33
2

∂2f(σ)

∂σ11∂σ13

∂2f(σ)

∂σ22∂σ11

∂2f(σ)

∂σ22∂σ22

∂2f(σ)

∂σ22∂σ33
2

∂2f(σ)

∂σ22∂σ13

∂2f(σ)

∂σ33∂σ11

∂2f(σ)

∂σ33∂σ22

∂2f(σ)

∂σ33∂σ33
2

∂2f(σ)

∂σ33∂σ13

2
∂2f(σ)

∂σ13∂σ11
2

∂2f(σ)

∂σ13∂σ22
2

∂2f(σ)

∂σ13∂σ33
4

∂2f(σ)

∂σ13∂σ13

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The Relationship (5.2) between the displacement field and the strain tensor remains valid. Hence,
the tangential quantities in (4.73) can be recast into

deijsp =

∫
Ωe

N̄ i I N̄ j |Je|dV e =
[
keijps
]T
,

keijuu =

∫
Ωe

[
Bi
]T

CeB
j |Je|dV e, keijup =−

∫
Ωe

[
Bi
]T

Ce N̄
j |Je|dV e =

[
keijpu
]T
,

keijpp =

∫
Ωe

N̄ iCe N̄
j |Je|dV e, keijss =−

∫
Ωe

N̄ iλe,kF
e,k

N̄ j |Je|dV e,

keljλs =−
∫
Ωe

N̄ l/i

[
f
e,k
]T
N̄ j/n |Je|dV e=

[
keinsλ
]T
,

reis =

∫
Ωe

N̄ i

[
ε
e,k
p − λe,kf

e,k
]
|Je|dV e,

reip =

∫
Ωe

N̄ i
[
σ
e,k

+Ce

[
ε
e,k
p − ε

e,k
]]
|Je|dV e, relλ =−

∫
Ωe

N̄ l f(σe,k)|Je|dV e,

r∗,eiu =

∫
Γe
t∗

N i t∗,k |Je|dAe, reiu =

∫
Ωe

[
Bi
]T[

Ce

[
ε
e,k − ε

e,k
p

]]
|Je|dV e,

whereby the terms including the density are neglected due to the quasi-static characteristic of
the benchmark problem. Furthermore, different shape functions are chosen for the distinct fields.
While N i lead to continuous inter-elemental approximations, N̄ i characterize discontinuous ones
as specified in Section 4.2.2.2.
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5.1.3. Classical vs. Variational Approach

With the help of the implementation schemes of the classical and the variational approach
presented in Sections 5.1.1 as well as 5.1.2, the quasi-static benchmark problem of a plate with
a circular hole introduced in Section 5.1 can be calculated. For both proposals, a fixed spatial
discretization of the geometry consisting of NE = 1504 second order Lagrange elements is
applied. For the displacement field, biquadratic approximations are used, likewise. For the
stresses, the plastic strains and the Lagrange multiplier in the variational approach discontinu-
ous approximations are established. Therefore, biquadratic Lagrange shape functions, with
the Gauss-Legendre quadrature points listed in Table 3.1 as supporting points, are chosen.
The temporal discretization is carried out using the second order accurate diagonally implicit
Runge-Kutta scheme depicted in Figure 3.13 (b) together with a constant time step size of
Δt = 1/288 s. For the multifield ansatz, the exemplary von Mises stress distributions depicted
in Figure 5.2 are obtained.

t=0.25 s t=0.5 s t=0.75 s t=1.0 s
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Figure 5.2.: Contour plots of the von Mises stress at distinct points in time

It can be observed that, due to the intrinsic hole, an inhomogeneous stress distribution is appar-
ent in all demonstrated points in time. For the case where the maximal tensional or compres-
sional load is applied, the middle part of the plate is characterized by plastic effects. Meanwhile,
an elastic spot is formed near the hole. In contrast, the plate behaves predominantly elastically
in the depicted unloading steps - except for a small plastic region near the hole. The corre-
sponding deformed states are shown in Figure 5.3. As can be seen here, and in Figure 5.2, the
plasticity depends on the history. Although no external loads are applied at the points in time
t = 0.5 s and t = 1 s, there are deformed states characterized by von Mises stresses that are
not zero.

t=0.25 s t=0.5 s t=0.75 s t=1.0 s

Figure 5.3.: Deformation states at distinct points in time scaled by factor 20

128
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For the conventional approach, identical results are obtained. In order to quantify the appearing
errors, the stress and displacement evolution at the selected points 1© - 4© of Figure 5.1 of the
classical and the multifield procedure are compared to the reference solution provided by (Stein,
2003). The respective developments are shown in Figure 5.4.
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Figure 5.4.: Comparison of the solutions of the classical/variational approach to the reference
solution at the evaluation points 1©- 4©: (a)-(c)Displacement-load diagrams,
(d)-(e) Stress-load diagrams

Therein, it can be seen that the conventional and the variational approach yield identical graphs.
If the maximal absolute discrepancy between both is determined and compared to the result
of the classical procedure, the biggest value does not exceed 4 · 10−4%. Performing the same
analysis concerning the reference solutions, larger deviations are retrieved. For a detailed review
see Appendix D. While the difference in the evolution of the stress σ33( 1©) is of about 0.6%,
the stress σ11( 4©) already varies around 3.5%. For the distinct displacement courses u1( 3©) ,
u3( 2©) as well as u1( 1©), errors of circa 0.2%, 0.04% and even 10.0% prevail. These comparably
huge disagreements stem from the poorly chosen spatial discretization. While, due to the high
computational effort of the variational approach, only NE = 1504 elements are considered in the
present example, the reference solution in (Stein, 2003) is derived using NE = 65 536 elements.
Nevertheless, the gathered results demonstrate that the classical and the multifield approach
are suitable to determine appearing displacement and stress fields involving plastic effects in the
context of a quasi-static analysis. With this benchmark problem, the derived algorithms and
their implementations are validated. In the next step, a second benchmark problem is formulated
to extend the analysis towards dynamic (visco)plasticity and to enable the investigation of
corresponding time discretization schemes.
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5.2. Displacement Driven Deformation of an Axisymmetric Steel Shaft

While Section 5.1 is based on a static benchmark problem, which aims at validating the de-
rived algorithms, the following passage focuses on a new example that aims to examine dynamic
aspects of plastic and viscoplastic phenomena. First studies with this example are already pub-
lished in (Schröder and Kuhl, 2018), since it enables a deep analysis on the occurring effects and
permits to investigate different time discretization schemes. The background for the creation
of the dynamic benchmark problem is in the widest sense guided by the integrated thermome-
chanical forming process depicted in Figure 1.1 in Chapter 1. Correspondingly, an appropriate
model of the steel shaft is derived whereby the appearing thermal effects are neglected.
Motivated by the shaft’s rotational symmetry, a polar coordinate system with the basis vector gR
in radial, gZ in axial, and gΦ in tangential direction is introduced, see Figure 5.5. For a better
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Figure 5.5.: (a) Steel shaft in the reference configuration, (b) Deformed steel shaft,
(c) Sketch of the steel shaft and its dimensioning, (d) Axisymmetric model of the
steel shaft and its dimensioning

distinction between cartesian and polar coordinates, the indices referring to spatial directions
are now determined by letters instead of numbers. Additionally, it is assumed that there is
only a symmetrically applied displacement-based load u∗Z pointing in the shaft’s longitudinal
direction gZ. Due to both, the workpiece geometry as well as its load state, the displacement
field is solely characterized by its radial and axial components u(X) = [uR, uZ], cf. (Göldner
et al., 1991; Kreißig and Benedix, 2002). Furthermore, these two aspects lead to the fact that
an arbitrary meridian half plane with Φ = const. can be taken into account to describe the steel
shaft’s properties. Hence, for all derivatives ∂(•)/∂Φ = 0 has to hold and the location vector
reduces to X = [R,Z]. These modifications cause small adaptations of the formerly introduced
continuum mechanical theory and its numerical realization. The result is an axisymmetric strain
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state

ε =

⎡
⎢⎢⎢⎣
εRR 0 εRZ

0 εΦΦ 0

εRZ 0 εZZ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂uR

∂R
0

1

2

[
∂uZ

∂R
+

∂uR

∂Z

]

0
uR

R
0

1

2

[
∂uZ

∂R
+

∂uR

∂Z

]
0

∂uZ

∂Z

⎤
⎥⎥⎥⎥⎥⎥⎦
.

(5.3)

For a detailed derivation and further aspects concerning polar coordinates see Appendix C.
Together with the material laws in Chapter 4, an axisymmetric stress state

σ =

⎡
⎢⎢⎢⎣
σRR 0 σRZ

0 σΦΦ 0

σRZ 0 σZZ

⎤
⎥⎥⎥⎦ (5.4)

is generated, cf. (Kreißig and Benedix, 2002). Exploiting the symmetry with respect to the
gR - axis yields the axisymmetric model of the steel shaft, consisting of one quarter of a meridian
plane equipped with appropriate boundary conditions, see Figure 5.5. Thus, the number of
unknowns can be reduced drastically compared to a general three-dimensional case.

5.2.1. Classical Approach towards Elastoplasticity

In order to be able to apply the classical approach of small strain elastoplasticity of Section 4.1
to the described axisymmetric example, modifications of the tangential quantities in (4.26) have
to be performed. In the first step, the fact that there are zero entries in the stress (5.4) and
strain tensor (5.3) is exploited for a rearrangement into

ε =

⎡
⎢⎢⎣
εRR
εΦΦ

εZZ
εRZ

⎤
⎥⎥⎦
,

σ =

⎡
⎢⎢⎣

σRR
σΦΦ

σZZ
2σRZ

⎤
⎥⎥⎦
,

G =

⎡
⎢⎢⎣

GRRRR GRRΦΦ GRRZZ 2GRRRZ
GΦΦRR GΦΦΦΦ GΦΦZZ 2GΦΦRZ
GZZRR GZZΦΦ GZZZZ 2GZZRZ
2GRZRR 2GRZΦΦ 2GRZZZ 4GRZRZ

⎤
⎥⎥⎦
.

(5.5)

Consequently, the algorithmic constitutive tensor G is recast too. Furthermore, it is taken into
account that the dimension of the tangential mass matrix is reduced, compared to the general
three-dimensional case, since the axisymmetric displacement vector only consists of the two
unknowns u(X) = [uR, uZ]. The displacement-based load leads to the fact that the volume
forces and the surface forces within the load vector can be neglected. But the greatest change
has to be carried out within the tangential stiffness matrix. Due to the introduction of polar
coordinates and their position-dependent basis vectors, an additional term has to be considered
concerning gradient impaired quantities, see Appendix C. This is achieved by expressing the
strains using the B-operator in conjunction with the displacement vector u

ε =

NN∑
i=1

Biui, Bi =

⎡
⎢⎢⎢⎣

∂N i

∂R

N i

R
0

1

2

∂N i

∂Z

0 0
∂N i

∂Z

1

2

∂N i

∂R

⎤
⎥⎥⎥⎦

T

.

(5.6)
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Thus, for Equation (4.26) the adapted tangential quantities

meij =

∫
Ωe

ρ0N
iN j I |Je|dV e, (5.7)

keij =

∫
Ωe

[
Bi
]T

G
k
Bj |Je|dV e, (5.8)

rei1 =

∫
Ωe

N i ρ0ü
e,k |Je|dV e +

∫
Ωe

ρ0
[
Bi
]T

σ
k |Je|dV e (5.9)

are obtained, whereby the included element volume is specified as dV e = 2πRedRedZe. For the
realization of the previously described axisymmetric implementation strategy, the simulation
parameters in Figure 5.6 (b) are exploited, unless stated otherwise. The prescribed displacement
u∗Z is characterized by a time-dependent sinusoidal function with frequency ω, see Figure 5.6 (c).
The obtained simulation results are investigated on various levels. While the complete set of
field variables is needed for the time discretization analysis, the spatial discretization will mainly
be examined by considering the discrete points 1© and 2© or the horizontal and vertical sections
a-a and b-b in Figure 5.6 (a).
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Figure 5.6.: (a) Evaluation cuts and points of the axisymmetric model:
1©: R = 1mm, Z = 1mm, 2©: R = 14mm, Z = 99mm, (b) Simulation parameter,
(c) Prescribed displacement u∗Z

5.2.1.1. Quasi-Static Analysis

Generally, an elastoplastic problem is influenced by two kinds of dynamic effects. On the one
hand, the plastic strains are described by means of an evolution equation - while, on the other
hand, inertia effects are considered in the balance of linear momentum. In a first step towards
a proper access to the axisymmetric ideal elastoplastic benchmark problem the latter phenom-
ena are neglected. This will facilitate the classification of the appearing effects in dynamic
elastoplasticity later on. Within the numerical implementation, this is achieved by setting the
density of the entire elastoplastic body to zero ρ0 = 0 kg/mm3. Hence, the time included in the
inhomogeneous boundary condition u∗Z can be regarded as a pseudotime, exchangeable by any
other monotonous function, cf. (Hartmann, 2008; Stein, 2003). The time increments can then
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5.2. Displacement Driven Deformation of an Axisymmetric Steel Shaft

be interpreted as a kind of load factor. However, because of the extension to the dynamic and
the viscoplastic case later on, the terminus time and time increment will be preserved. For an
exemplary mesh consisting of NER = 1 and NEZ = 10 bilinear continuous Lagrange elements
in the gR and the gZ-direction, Figure 5.7 shows the temporal progress of the model charac-
terizing quantities at the evolution points 1© / 2©. For the time discretization, the backward
Euler scheme is used with a time step size of Δt = 1 · 10−5 s.
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Figure 5.7.: Evaluation for NER = 1, NEZ = 10 at points 1©/ 2©: (a) Stress-time diagram,
(b) Plastic strain-time diagram, (c) Lagrange multiplier-time diagram,
(d) Stress-strain diagram, (e) Deviatoric stress-strain diagram

Additionally, to improve convergence, a step size control is applied, following the strategy de-
scribed in (Kanzow, 2007). It is based on the Armijo rule, stating that in each Newton-

Raphson iteration the inequality

1

2

∥∥∥reff(u
k
ni + uΔuni)

∥∥∥2 ≤ 1

2

∥∥∥reff(u
k
ni)
∥∥∥− u g

[
reff(u

k
ni)

TKeff(u
k
ni)
]
Δuni (5.10)

has to be fulfilled. The included parameters are in a first step chosen in an echo of (Kanzow,
2007) as u = 0.8 and g = 10−2. While the variable g is held constant, u is halved as long as
Inequality (5.10) is violated.
Figure 5.7 (a)-(c) show the evolution of the σZZ component of the stress tensor, the εp,ZZ com-
ponent of the plastic strain tensor, and the Lagrange multiplier over time. Figure 5.7 (d)-(e)
demonstrate the stress-strain diagram as well as the deviatoric stress-strain diagram. Due to
the sinusoidally applied displacement boundary condition u∗Z, a cyclic deformation process is in-
duced, which can be seen in Figure 5.7 (a)-(e). By considering the sign of the stress component
σZZ in Figure 5.7 (a), a clear distinction of the tension and compression state can be realized.
The switching point between elastic and plastic behavior is apparent from Figure 5.7 (c). If

133



5. Numerical Examples for Small Strain Elasto(visco)plasticity

the Lagrange multiplier is zero, purely elastic behavior prevails. In these regimes, the plastic
strain component εp,ZZ remains constant, see Figure 5.7 (b). The graph in the stress-strain
diagram Figure 5.7 (d) reveals that the yield stress of σy = 900 N/mm2 is reached in the entire
plastic regime. This indicates that, despite the axisymmetric modeling, a uniaxial stress state
in the gZ-direction is obtained, cf. (Hartmann, 2008). The same conclusion can be drawn from
Figure 5.7 (e). Another important aspect becomes apparent if the curves in evaluation point
1© and 2© are compared. Although both points are situated on opposite sides of the model,
the graphs are identical throughout the deformation process. This suggests that a homogeneous
stress state exists at any point in time.
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Figure 5.8.: Contour plot of the von Mises stress for NER = 1, NEZ = 10

The contour plots of the von Mises stress at various points in time in Figure 5.8 confirm this.
Therein, the results of the entire steel shaft are depicted by mirroring. While the stress states at
t1, t3, t5 exhibit a purely elastic behavior, all elements at t2, t4 deform purely plastically. Further-
more, Figure 5.8 shows the simulated displacement field, scaled by the factor 20, highlighting
the instantaneous deformation of the whole elastoplastic body if the applied load is changed.
This phenomenon can be attributed to the lack of inertia effects.
In order to determine the influence of the spatial discretization, the number of elements in
the gR- as well as in the gZ-direction is varied. The consequences with respect to the model-
characterizing quantities are analyzed in Figure 5.9. Since Figure 5.7 demonstrates that there is
no difference between the evaluation points 1© / 2©, only point 1© is investigated. Moreover, it
suffices to consider the stress-strain relationship and the evolution of the plastic strains, because
their course is decisive for ideal plastic effects. In Figure 5.9 (a)-(b), the number of elements in
the radial direction is varied, while the discretization in axial direction is held constant. Neither
the stress-strain diagram nor the plastic strain-time diagram show discrepancies between the
distinct element variations. Figure 5.9 (c)-(d) show identical results, although they contain
alterations in the number of elements in gZ-direction. Hence, the spatial discretization has no
importance at all.
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To illustrate the influence of the polynomial degree p of the applied Lagrange elements, an
exemplary biquadratic mesh with about the same number of nodes as the standard bilinear mesh
with NER = 1 and NEZ = 10 is used for the axisymmetric elastoplastic continuum. A selection
of results obtained by exploiting the biquadratic mesh with NER = 1,NEZ = 5 and p = 2
is depicted in Figure 5.10. Thereby, the stresses, the strains, the Lagrange multiplier and
the displacement field of the linear and the quadratic approach are interrelated at evaluation
point 1©. Regardless of the material state, whether elastic or plastic behavior prevails, the
graphs for the polynomial degrees p = 1 and p = 2 in Figure 5.10 are identical. Thus, in
this example, also the polynomial degree of the considered Lagrange shape functions has no
impact. Due to the spatial analysis of the quasi-static axisymmetric model, a mesh dependence
of the solutions is ruled out. Furthermore, the occurrence of a homogeneous uniaxial stress state
is elaborated. The problematic nature of ideal elastoplasticity concerning localization effects
can thus be neglected, cf. (Ebobisse and Reddy, 2004; Moreau, 1976; Pamin, 1994; Suquet,
1978). The next step is to investigate the influence of the employed backward Euler scheme
as time discretization method of the evolution equation. In order to do so, the local h-error of
Equation (3.102) is determined for the displacement field, the stress field, and the plastic strain
field for three distinct time step sizes. Figure 5.11 shows the respective error evolutions over
time for the standard linear mesh with NER = 1 and NEZ = 10 elements.
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Figure 5.11.: Evaluation of the displacement, the stress and the Lagrange multiplier time
discretization error for NER = 1, NEZ = 10: (a) Displacement error-time diagram,
(b) Plastic strain error-time diagram, (c) Stress error-time diagram

In Figure 5.11 (a) it can be seen that the local displacement error increases during plastic
behavior and decreases in the elastic regime. Furthermore, it decreases with decreasing time
step sizes. For a time step size of 5μs, it oscillates around the order of 1 · 10−13 - while smaller
time step sizes cause the error curves to lie on top of each other. The local plastic strain error
diagram in Figure 5.11 (b) reveals greater differences between the distinct time step sizes - but,
once again, decreasing time step sizes also lead to a decrease in the error. Since the plastic
strain field is necessary to determine the stress tensor, strong similarities between the two local
error curves in Figure 5.11 (b)-(c) can be recognized. Due to these generally small errors,
the backward Euler scheme with the chosen time step size of Δt = 1 · 10−5s can be seen as a
possibility to obtain adequate results in the quasi-static subproblem of the dynamic elastoplastic
benchmark. With this analysis, fundamental impressions of the axisymmetric model’s behavior
are obtained and can serve as preliminary considerations. From now on the original dynamic
problem formulation will be investigated together with an analysis of the higher order accurate
schemes presented in Section 3.4.
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5.2.1.2. Dynamic Analysis

While the previous paragraph is concerned with the quasi-static case of ideal elastoplasticity,
inertia effects will be treated in what follows. Once more, the axisymmetric model of the steel
shaft in Figure 5.6 forms the foundation of the analysis. This time, however, it is necessary
to also define appropriate initial conditions. At the beginning, the displacement field is set to
zero in the entire shaft. In contrast, the velocity field varies linearly in the shaft’s longitudinal
direction, whereby the course depicted in Figure 5.17 is applied to the outer nodes. First, the
spatial discretization is analyzed - again based on the exemplary mesh consisting of NER = 1
and NEZ = 10 bilinear elements in gR as well as gZ-direction. For the time discretization, the
backward Euler scheme with a time step size Δt = 1 · 10−5s is applied. As an initial approach
to evaluate the obtained results, the temporal progress of the material characterizing quantities
in the evaluation points 1© / 2© are depicted in Figure 5.12.
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Figure 5.12.: Evaluation for NER = 1, NEZ = 10 at points 1©/ 2©:
(a) Stress-time diagram, (b)Plastic strain-time diagram, (c)Lagrange multiplier-
time diagram, (d) Stress-strain diagram, (e)Deviatoric stress-strain diagram

Figure 5.12 (a) shows the evolution of the stress component σZZ over time. It reveals a sim-
ilar characteristic as in Figure 5.7 (a), where the quasi-static case is analyzed. However, in
Figure 5.12 (a) differences between the stress evolution at the evaluation points 1© / 2© are per-
ceptible, and for both points the ideal plastic regime is marked by oscillations. The temporal
progress of the plastic strain εp,ZZ and the Lagrange multiplier in Figure 5.12 (b)-(c) have
even less common ground with their quasi-static counterparts in Figure 5.7 (b)-(c). The dis-
crepancies between the graphs at evolution point 1© and the ones at evolution point 2© increase
too. Figure 5.12 (d) portrays the stress-strain diagram of the ZZ-components, whereby the ideal
plastic regime is characterized by oscillations. Moreover, it can be recognized that the switch-
ing point between elastic and plastic behavior clearly depends on the analyzed spatial position.
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This effect is also to be seen in Figure 5.12 (e), where the evolution of the ZZ-component of
the stress deviator is depicted over the ZZ-component of the strain tensor. Therein, even jumps
from the plastic into the elastic regime can be observed, if evolution point 1© is considered.
The corresponding diagrams of the quasi-static case in Figure 5.7 (d)-(e) do not show equivalent
phenomena. In order to analyze these aspects further on, the spatial discretization is varied.
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Figure 5.13.: Evaluation point 1©:
(a) Stress-strain diagram, (b) Plastic strain-time diagram for varying NEZ,
(c) Stress-strain diagram, (d) Plastic strain-time diagram for varying NER

Figure 5.13 shows the stress-strain diagram of the ZZ-components as well as the evolution of the
ZZ-component of the plastic strain over time at the evolution point 1© for a varying number of
elements in gR- as well as gZ-direction. Similar results are obtained for evaluation point 2©. In
Figure 5.13 (a), it can be recognized that the jumps from the plastic into the elastic regime are
caused by the spatial discretization. By increasing the number of elements in gZ-direction, these
jumps disappear and only small oscillations in the plastic region remain. However, extending
only the number of elements in gZ-direction leads to an increased stress σZZ. If the number
of elements in gR-direction is increased at the same time, this phenomenon is counteracted.
This can be seen in Figure 5.13 (c). A similar effect is perceptible concerning the evolution of
the plastic strain εp,ZZ. While the diagrams in Figure 5.13 are based on simulations involving
bilinear elements, biquadratic Lagrange shape functions are taken into account in Figure 5.14.
In the latter, again the stress-strain diagram of the ZZ-components and the evolution of the ZZ-
component of the plastic strain over time are depicted for a varying number of elements. A
comparison of Figure 5.14 (a) and Figure 5.13 (c) shows that the result for a bilinear mesh
with NER = 6 and NEZ = 50 elements is alike to a biquadratic mesh with NER = 1 and
NEZ = 10 elements. However, the number of nodes changes from NN = 357 to NN = 22.
Moreover, Figure 5.14 (a) does not show an increase in the stress if the number of elements
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is extended in gZ-direction, as it is the case in Figure 5.13 (a). A variation of the number of
elements in gR-direction results in only small changes in the stress-strain diagram as well as
in the plastic strain-time diagram, see Figure 5.14 (c)-(d). Hence, the investigated biquadratic
meshes represent a good spatial discretization. For a further analysis, the horizontal section a-a
and the vertical section b-b of Figure 5.6 (a) are considered for a variety of biquadratic meshes.
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Figure 5.14.: Evaluation point 1©:
(a) Stress-strain diagram, (b) Plastic strain-time diagram for varying NEZ,
(c) Stress-strain diagram, (d) Plastic strain-time diagram for varying NER

Figure 5.15 and Figure 5.16 represent the courses of the normed axial displacement as well as the
normed radial displacement in these sections at two arbitrarily chosen points in time t = 1.2ms
and t = 2.8ms. Figure 5.15 (a) as well as Figure 5.16 (a) demonstrate the expected result that
the equally applied inhomogeneous boundary condition leads to a constant axial displacement
in section a-a. The radial displacement in this section follows a linear behavior at both points
in time, see Figure 5.15 (c) and Figure 5.16 (c). Within the section b-b, however, nonlinearities
are perceptible which can be attributed to the prevalent inertia effects, see Figure 5.15 (b)/(d)
and Figure 5.16 (b)/(d). Nevertheless, the influence of the spatial discretization on the results
obtained in sections a-a and b-b is negligible. Together with the results depicted in Figure 5.13
and Figure 5.14 it can be seen that a biquadratic mesh containing NER = 2 as well as NEZ = 15
elements leads to a spatially convergent solution. Hence, only this spatial configuration will be
investigated in the following.
In order to emphasize the differences between the quasi-static and the dynamic analysis, a
series of contour plots for 16 selected points in time is displayed. These points are marked by
black circles in Figure 5.17, where the applied inhomogeneous boundary condition and its time
derivatives can be observed. Thus, it can be recognized that t1 − t3 and t10 − t11 coincide with
a compression of the steel shaft, whereas t5 − t8 embody a tensional deformation. The points t4
as well as t9 are reversal points.
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in axial direction, (c) Radial displacement over radius, (d) Radial displacement in
axial direction
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Figure 5.17.: Temporal course of the applied boundary condition and its time derivatives

Figure 5.18 (a) shows the corresponding deformation process of the steel shaft over time, scaled
by the factor 20, together with the contour plots of the von Mises stress. While at the beginning
of the simulation at t1 a purely elastic behavior can be observed, the point in time t2 is already
characterized exclusively by plastic effects. Such homogeneous stress distributions can be recog-
nized in Figure 5.8 within the quasi-static case as well. The contour plot at the point in time t3,
however, clearly portrays an inhomogeneous stress distribution. Despite the continuously per-
formed compression, a local unloading within the steel shaft can be observed. This phenomenon
occurs because inertia effects are considered. Due to the high frequency of ω = 1000 1/s included
in the boundary condition and the linked inertia forces, an elastic wave front is induced to move
through the shaft. When the reversal point of the applied boundary condition t4 is reached
and the shaft’s deformation is characterized by elongation, a repeated plastification takes place
- leading to homogeneous plastic von Mises stress states in the points t6 − t7. By approaching
the next reversal point t9 of the boundary condition, the formation of another elastic wave arises.
In contrast, the point in time t11 is again coined by homogeneous plastic effects. This interaction
of elastic and plastic phenomena decreases if the frequency included in the applied boundary
condition is reduced. Figure 5.18 (b) shows contour plots of the resulting von Mises stress
distribution at the points in time where the amplitudes of the displacement boundary condition
are identical to those assigned at the points in time of Figure 5.18 (a). However, the frequency
under consideration is changed to ω = 200 1/s, leading to almost entirely homogeneous stress
distributions. To demonstrate that these unloading and reloading phenomena are not induced
by the spatial discretization, the contour plot of Figure 5.18 (a) at t4 is examined in detail. In
Figure 5.19, different spatial discretizations are compared, constituting that the width of the
elastic zone is not influenced by the mesh size. This stands in strong contrast to the localization
aspects known from static ideal elastoplasticity, cf. (Pamin, 1994). The variation of the time
step size results in similar effects. The position and the width of the elastic regime remains
unaffected.
Thus, due to the application of high-frequency dependent boundary conditions, local unloading
and reloading effects can be recognized, which do not lead to mesh or time step size dependencies.
Similar circumstances concerning the generation and the evolution of plastic and elastic wave
fronts and the corresponding effects are analyzed in (Chakrabarty, 2000; Cristescu, 1967; Kolsky,
1963; Lubliner, 2006; Wood, 1952). Therein, large parts of the investigations are linked to
different types of wave fronts resulting, for example, from impulsive loads, which are connected
to impact problems of elastoplastic solids.
After the analysis of the spatial discretization and the explanation of the appearing effects within
the benchmark problem of dynamic elastoplasticity, the time discretization schemes described
in Section 4.1.3.3 are investigated. For this purpose, the quadratic mesh consisting of NER = 2

141



5. Numerical Examples for Small Strain Elasto(visco)plasticity

(a)
t1 = 0.5μs[mm]

100

50

0

−50

−100

−150

−25 0 [mm]

t2 = 0.4ms

−25 0 [mm]

t3 = 1.2ms

−25 0 [mm]

t4 = 1.6ms

−25 0 [mm]

t5 = 2.0ms

−25 0 [mm]

t6 = 2.8ms

−25 0 [mm]

t7 = 3.6ms

−25 0 [mm]

t8 = 4.4ms

−25 0 [mm]

t9 = 4.8ms

−25 0 [mm]

t10 = 5.2ms

−25 0 [mm]

t11 = 6.0ms

−25 0 [mm]

[
N

mm2

]

700

600

500

400

300

200

100

0

(b)

t1 = 2.5μs[mm]

100

50

0

−50

−100

−150

−25 0 [mm]

t2 = 2.0ms

−25 0 [mm]

t3 = 6.0ms

−25 0 [mm]

t4 = 8.0ms

−25 0 [mm]

t5 = 10ms

−25 0 [mm]

t6 = 14ms

−25 0 [mm]

t7 = 18ms

−25 0 [mm]

t8 = 22ms

−25 0 [mm]

t9 = 24ms

−25 0 [mm]

t10 = 26ms

−25 0 [mm]

t11 = 30ms

−25 0 [mm]

[
N

mm2

]

700

600

500

400

300

200

100

0

Figure 5.18.: Contour plot of the von Mises stress for NER = 2, NEZ = 15, p = 2,
(a) ω = 1000 1/s, (b) ω = 200 1/s

as well as NEZ = 15 elements constitutes the basis for a series of simulations, wherein the
DIRK(1), DIRK(2), DIRK(3), and the Newmark scheme are applied for distinct time step
sizes. Exemplary solutions for the displacements, the stresses, the plastic strains, and the La-

grange multiplier for the DIRK(3) method with a time step size of Δt = 1 · 10−5s are listed
in Appendix E. In order to evaluate the accuracy of the time integration methods, the local
error estimators defined in Section 3.5.1 and 3.5.2 are exploited. Figure 5.20 demonstrates the
obtained results for the local h-error estimator concerning the displacement, the plastic strain,
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Figure 5.19.: Contour plot of the von Mises stress for different spatial discretizations at time t4,
p = 2, ω = 1000 1/s

and the stress field for four distinct time step sizes. Figure 5.20 (a)-(c) can be assigned to the
backward Euler scheme, while Figure 5.20 (d)-(f) represent the DIRK(2) method. The graphs
in Figure 5.20 (g)-(i) are obtained exploiting the DIRK(3) method, and Figure 5.20 (k)-(m)
characterize the Newmark scheme. It can be seen that for all time integrators a decreasing
time step size leads to a decreasing local h-error of the respective field variable. Furthermore, a
decrease of the local h-error can be identified if the error curves for the DIRK(1)-DIRK(3) meth-
ods are compared for a constant time step size. The local h-error of the Newmark approach
for the same time step size lies in between the DIRK(1) and the DIRK(2) method. Generally,
it can be stated that the local h-error of the stress field is higher than the one of the plastic
strains. The latter, however, is greater than the one of the displacement field. Similar properties
are observed for the local embedded error estimator portrayed in Figure 5.21 (a)-(d). Thereby,
Figure 5.21 (a)-(b) are connected to the DIRK(2) scheme, while Figure 5.21 (c)-(d) correspond
to the DIRK(3) method and the respective field variables. For the other two schemes, no embed-
ded error estimator can be established, see Section 3.5.2. Since within the conventional approach
towards elastoplasticity the stress field is not temporally differentiated, an embedded error es-
timator cannot be evaluated. For the displacement and the plastic strain field, the embedded
error estimator shows that a decreasing time step size yields a decreasing error. Moreover, the
local embedded error of the plastic strains is greater than the one of the displacement field.
Additionally, the local embedded errors for the DIRK(3) method are smaller than those for the
DIRK(2) scheme for a constant time step size.
The results depicted in Figure 5.20-5.21 can now be exploited to estimate the orders of conver-
gence of the respective procedures. In order to do so, the possibilities described in Section 3.5.4
based on (Eidel and Kuhn, 2015; Grafenhorst et al., 2017) are taken into account. The obtained
quantities founded on the local error are listed in Table 5.1. A comparison of the values of the
distinct measurements in the individual columns shows that the way the order of consistency is
determined influences the result - no matter whether the embedded or the h-error estimator is
considered. For the displacement field, the calculated quantities are still similar. The backward
Euler scheme almost reaches the theoretical order of one, and the DIRK(2) as well as the
Newmark method reach roughly the theoretical order of two. Just the DIRK(3) scheme is
scarcely above order two, although its theoretical order is three. Huge discrepancies, however,
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Figure 5.20.: Local time discretization error of the h-method for the displacement, the plastic
strain, and the stress field for distinct time integration methods within the classical
approach:(a)-(c) DIRK(1), (d)-(f) DIRK(2), (g)-(i) DIRK(3), (k)-(m)Newmark
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Figure 5.21.: Local embedded time discretization error for the displacement and the plastic strain
field for distinct time integration methods within the classical approach:
(a)-(b) DIRK(2), (c)-(d) DIRK(3)

appear for the different measurements concerning the plastic strain and the stress field. While
their mean orders of consistency behave like those of the displacement field, the maximum mea-
sure leads, in the worst case, to a reduction of more than one order. A similar performance
can be observed for the local embedded error estimator. However, this is an additional order
below the corresponding h-error estimator, due to the fact that the embedded schemes possess
by construction an order lower, see Section 3.5.2.
On the other hand, the orders of convergence are estimated directly by means of the global
error, see Table 5.2. The obtained results are comparable to the values included in Table 5.1.
Again, discrepancies between the two calculation procedures can be recognized, although they
are smaller than within the local considerations. Concerning the achievement of the theoretical
order, the global estimations turn out analogous to their local counterparts, except for the
DIRK(3) method. In the global framework, the difference regarding the theoretical order for the
plastic strain and the stress field is smaller. For a discussion on the possible sources for these
order deviations see Section 5.2.2.
In order to reduce the expenditure for the evaluations in the following sections, only the mean
consistency as well as the mean convergence order are treated. This decision can be justified
by analyzing Figure 5.20, where it can be seen that increasing stage orders cause the error level
to get smaller and to decrease faster. This observation is not represented by qmax

h . Thus, this
quantity seems to be too strict to compare the particular time integrators, since it focusses on a
single value. A similar argumentation holds for the respective embedded and global quantities.
At best, the estimators qh as well as qem seem to reflect the properties depicted in the graphs
in Figure 5.20-5.21. Hence, for the following examples, the order of consistency or convergence
will only be determined using Equation (3.110).
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Table 5.1.: Estimation of the order of consistency using distinct measurements

qh(u) qh(εp) qh(σ) qmax
h (u) qmax

h (εp) qmax
h (σ) qem(u) qem(εp) qmax

em (u) qmax
em (εp)

DIRK(1) 0.84 0.73 0.74 0.96 0.66 0.75 − − − −
DIRK(2) 1.86 1.91 1.82 1.88 1.33 1.40 0.98 0.96 0.98 0.65

DIRK(3) 2.46 2.59 2.36 2.12 1.09 1.06 1.68 1.36 1.73 0.73

Newmark 1.91 1.30 1.38 1.88 0.66 0.62 − − − −

Table 5.2.: Estimation of the order of convergence for different field variables

qglob
h (u) qglob

h (εp) qglob
h (σ) qglob,max

h (u) qglob,max
h (εp) qglob,max

h (σ)

DIRK(1) 1.04 0.97 0.83 0.93 0.91 0.84

DIRK(2) 1.91 1.73 1.48 1.88 1.61 1.31

DIRK(3) 2.47 2.31 2.09 2.43 2.09 1.91

Newmark 1.92 1.69 1.34 1.96 1.60 1.16

5.2.2. Variational Approach towards Dynamic Elastoplasticity

In the context of the classical approach, a profound investigation of the displacement-driven
deformation of an axisymmetric steel shaft is carried out. Now, this knowledge is used to
validate the variational multifield approach for elastoplasticity derived in Section 4.2. The
equivalence between the classical and the multifield approach concerning quasi-static aspects
was already demonstrated in the scope of the benchmark problem in Section 5.1. To investigate
the differences if inertia effects are considered, the dynamic benchmark problem in Section 5.2
is taken into account. For a simulation using the variational approach, the tangential quantities
in the system of Equations (4.73) have to be simplified in analogy to the classical approach in
Section 5.2.1, taking the axisymmetric properties of the example into account. Accordingly, the
expressions for the axisymmetric strain and stress state in Equations (5.3) and (5.4) remain as
valid as their respective reformulations into vector-valued quantities in (5.5)1 and (5.5)2. The
relation between the strain field vector and the displacement field established in Equation (5.6)
prevails too. Additionally, the following recasts

εp =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εp,RR

εp,ΦΦ

εp,ZZ

εp,RZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Ce =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ce,RRRR Ce,RRΦΦ Ce,RRZZ 2Ce,RRRZ

Ce,ΦΦRR Ce,ΦΦΦΦ Ce,ΦΦZZ 2Ce,ΦΦRZ

Ce,ZZRR Ce,ZZΦΦ Ce,ZZZZ 2Ce,ZZRZ

2Ce,RZRR 2Ce,RZΦΦ 2Ce,RZZZ 4Ce,RZRZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(5.11)
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f =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f(σ)

∂σRR

∂f(σ)

∂σΦΦ

∂f(σ)

∂σZZ

2
∂f(σ)

∂σRZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IRRRR IRRΦΦ IRRZZ 2IRRRZ

IΦΦRR IΦΦΦΦ IΦΦZZ 2IΦΦRZ

IZZRR IZZΦΦ IZZZZ 2IZZRZ

2IRZRR 2IRZΦΦ 2IRZZZ 4IRZRZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(5.12)

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f(σ)

∂σRR∂σRR

∂2f(σ)

∂σRR∂σΦΦ

∂2f(σ)

∂σRR∂σZZ
2

∂2f(σ)

∂σRR∂σRZ

∂2f(σ)

∂σΦΦ∂σRR

∂2f(σ)

∂σΦΦ∂σΦΦ

∂2f(σ)

∂σΦΦ∂σZZ
2

∂2f(σ)

∂σΦΦ∂σRZ

∂2f(σ)

∂σZZ∂σRR

∂2f(σ)

∂σZZ∂σΦΦ

∂2f(σ)

∂σZZ∂σZZ
2

∂2f(σ)

∂σZZ∂σRZ

2
∂2f(σ)

∂σRZ∂σRR
2

∂2f(σ)

∂σRZ∂σΦΦ
2

∂2f(σ)

∂σRZ∂σZZ
4

∂2f(σ)

∂σRZ∂σRZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

have to be performed to yield the modified tangential quantities

meij
uu=

∫
Ωe

N iN j I ρ0 |Je|dV e, deijsp =

∫
Ωe

N̄ i I N̄ j |Je|dV e =
[
keijps
]T
,

keijuu =

∫
Ωe

[
Bi
]T

CeB
j |Je|dV e, keijup =−

∫
Ωe

[
Bi
]T

Ce N̄
j |Je|dV e =

[
keijpu
]T
,

keijpp =

∫
Ωe

N̄ iCe N̄
j |Je|dV e, keijss =−

∫
Ωe

N̄ iλe,k F
e,k

N̄ j |Je|dV e,

keljλs =−
∫
Ωe

N̄ l/i

[
f
e,k
]T
N̄ j/n |Je|dV e=

[
keinsλ
]T
, reis =

∫
Ωe

N̄ i

[
ε
e,k
p − λe,kf

e,k
]
|Je|dV e,

reip =

∫
Ωe

N̄ i
[
σ
e,k

+Ce

[
ε
e,k
p − ε

e,k
]]
|Je|dV e, relλ = −

∫
Ωe

N̄ i f(σe,k)|Je|dV e,

reiu =

∫
Ωe

N i ρ0ü
e,k |Je|dV e +

∫
Ωe

[
Bi
]T[

Ce

[
ε
e,k − ε

e,k
p

]]
|Je|dV e.

It is emphasized that the included unity matrix I is a two-dimensional one, and the parts of the
load vector related to volume or surface loads are neglected due to their irrelevance. Different
shape functions are chosen for the distinct fields. While N i represent continuous approximations,
N̄ i characterize discontinuous ones as specified in Section 4.2.2.2. A similar approach is followed
in (Schröder and Kuhl, 2015a). With these expressions at hand, the dynamic benchmark problem
depicted in Figure 5.6 can be solved.
Therefore, again a biquadratic mesh consisting of NER = 2 elements in radial and NEZ = 15
elements in axial direction is taken into account. As discussed in Section 5.2.1, this spatial
discretization - together with biquadratic Lagrange shape functions for the displacement field
- leads to a convergent spatial solution within the conventional approach. Hence, these aspects
are taken into account for the variational ansatz as well. Additionally, the other unknown field
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variables are approximated discontinuously by using biquadratic Lagrange shape functions
with the Gauss-Legendre quadrature points listed in Table 3.1 as supporting points. For the
time integration, the first step is to apply a backward Euler scheme with a time step size
of Δt = 1 · 10−5 s. Figure 5.22 shows a comparison between the classical and the variational
method concerning the evolution of the stress, the plastic strain, and the Lagrange multiplier
over time for the evaluation point 1©. Furthermore, the stress-strain and the deviatoric stress-
strain diagram are represented therein.
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Figure 5.22.: Comparison of the classical and the variational approach at evaluation point 1©:
(a) Stress-time diagram, (b) Plastic strain-time diagram, (c) Lagrange multiplier-
time diagram, (d) Stress-strain diagram, (e) Deviatoric stress-strain diagram

It can be seen that the curves for the classical and the variational approach overlay exactly.
Moreover, the solutions for the entire displacement field, the stress field, the plastic strain field,
and the Lagrange multiplier are compared at each point in time. Thereby, the maximal
absolute deviation is determined and related to the corresponding result of the conventional
approach. The greatest obtained value does not exceed 3 · 10−3%. Identical contour plots with
equivalent phenomena to those depicted in Figure 5.18 (a) are the consequence. Thus, it can
be concluded that the chosen mesh contributes also within the multifield ansatz to a spatially
convergent solution and, consequently, a variation in the spatial discretization leads to identical
results as within the classical method in Section 5.2.1.
The same line of reasoning can be drawn with respect to the time discretization error. To prove
this, the time discretization studies performed in Section 5.2.1 are repeated for the variational
approach, resulting in identical curves as depicted in Figure 5.20-5.21 as well as in the same
quantities as listed in Table 5.1-Table 5.2. To confirm this, local orders of consistency at discrete
points in time are shown in Figure 5.23. It can be observed that the graphs for the conventional
and the multifield approach lie above each other. Hence, for identical underlying conditions,
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both approaches can be considered as coincident, despite the necessarily higher computational
costs needed for the variational ansatz.
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Figure 5.23.: Local orders of consistency for the h-method at distinct points in time

The first evaluated point in time at 50μs in Figure 5.23 resembles a purely elastic state of the de-
formation process, the point in time 1.6ms represents a mixed elastoplastic state, and the point
in time 2.8ms embodies a homogeneously plastic state. If purely elastic properties prevail, the
DIRK(1), DIRK(2) and the Newmark method almost achieve the ideal order of consistency.
The DIRK(3) scheme with about qh = 2.7 is further away. Within the mixed and the purely
plastic case, the orders of consistency decrease for all schemes. Additionally, for the plastic
strain field and the stress field, non-uniform consistency curves appear. Similar effects are al-
ready documented in (Büttner and Simeon, 2002; Eidel and Kuhn, 2011, 2015; Ellsiepen, 1999;
Ellsiepen and Hartmann, 2001; Grafenhorst et al., 2017; Hartmann and Bier, 2007; Wieners,
1999). In (Eidel and Kuhn, 2015) three explanations are given in the context of fully coupled
Runge-Kutta schemes. Therein, the phenomenon is linked to an error founded in an incon-
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sistent interpolation of the strains before the plastic quantities on spatial integration point level
are determined. Since Figure 5.23 refers to solutions which are determined by DIRK methods -
where the stages are calculated consecutively leading to proper predictions for the strains - this
is not an adequate answer within the present context. The second reason given in (Eidel and
Kuhn, 2015) is supported by (Ellsiepen and Hartmann, 2001; Grafenhorst et al., 2017; Wieners,
1999), stating that the lack of non-smoothness or regularity in ideal elastoplasticity leads to the
order reduction. In (Eidel and Kuhn, 2015) this is demonstrated by contrasting distinct harden-
ing assumptions. Depending on the hardening law, the strain curve is smoothed, favoring higher
orders of convergence. However, none of the authors gives a proof - and while (Eidel and Kuhn,
2015; Ellsiepen and Hartmann, 2001; Grafenhorst et al., 2017) observe an order reduction to sec-
ond order, (Wieners, 1999) elaborates one to first order. Additionally, in (Hartmann and Bier,
2007) order reduction is detected within viscoplasticity even though the mathematical structure
of the problem is a different one. The last argument formulated in (Eidel and Kuhn, 2015) is
that an overstepping of the switching point between elastic and plastic behavior deteriorates the
order of consistency. A similar line of reasoning is also followed in (Büttner and Simeon, 2002).
Another analysis of this argument is performed in (Schröder and Kuhl, 2018), where the order
of consistency and convergence are determined for an elasto(visco)plastic example assuming a
yield stress close to zero. With this supposition, an instantaneous (visco)plastic deformation
is achieved, and the switching point disappears virtually. However, an order reduction can be
observed for this case as well. Furthermore, even discrepancies between the locally determined
order of consistency and the globally calculated order of convergence prevail. To circumvent the
switching point dilemma, (Bär and Groß, 2016) follow an endochronic approach, resulting in a
convergence rate of four if hardening is considered as well. The idea behind this is, to model
the elastic region already using a plasticity model. Hence, there is, per definition, no switching
point. As a side effect, the problem is smoothed automatically. Concerning the current prob-
lem’s order reduction, the discussion above gives only hints. A final answer cannot be given at
all, and it is necessary to carry out further investigations.
As part of this, the next step is to analyze higher order accurate time integration schemes
within the multifield approach. Their applicability to the classical ansatz is to some extend
demonstrated in (Eidel and Kuhn, 2015). However, due to the additional effort concerning
various implementation aspects, this possibility is not followed here. Figure 5.24 depicts the local
h-error curves obtained for different time step sizes for the displacement field, the plastic strains
and the stresses within four distinct fully implicit Runge-Kutta procedures. The first row
depicts the results for the Lobatto IIIC(2) method, followed by those achieved using the
Lobatto IIIC(3) scheme. Row three is linked to the Radau IIA(2) method, while the last row
inherits results for the Radau IIA(3) scheme. What all procedures have in common is that the
error of the respective field variables decreases with decreasing time step size. Furthermore, the
methods based on three stages are characterized by smaller error heights than those consisting
of two stages. If schemes with identical stage orders are compared, Radau IIA is the preferable
choice concerning the error level. For the achieved orders of consistency and convergence of
the individual procedures see Table 5.3. Considering the local estimates, it becomes apparent
that the Lobatto IIIC(2) method is quite far away from its theoretical order of two. In
contrast, the Lobatto IIIC(3) schemes almost reaches its theoretical order of four for all field
variables. A similar behavior can be recognized within the Radau IIA schemes. The three-stage
approach tends to the theoretical order of five, while the Radau IIA(2) method hardly achieves
order three. Analyzing the corresponding global measurements in Table 5.3, however, yields a
deviating picture. Apart from the Lobatto IIIC(2) scheme, all methods are estimated to reach
orders well above two but not more. However, the Lobatto IIIC(2) scheme is the only method
where the order of convergence is in some cases higher than the order of consistency.
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Figure 5.24.: Local time discretization error of the h-method for the displacement, the plastic
strain, and the stress field for distinct time integration methods within the elasto-
plastic multifield approach: (a)-(c) Lobatto IIIC(2), (d)-(f)Lobatto IIIC(3),
(g)-(i)Radau IIA(2), (k)-(m)Radau IIA(3)
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Figure 5.25.: Local time discretization error of the h-method for the displacement, the plas-
tic strain, and the stress field for distinct time integration methods within the
elastoplastic multifield approach: (a)-(c) cG1(2), (d)-(f) cG1(3), (g)-(i) cG2(2),
(k)-(m) cG2(3)
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Figure 5.26.: Local residual time discretization error for the displacement, the plastic strain,
and the stress field for distinct time integration methods within the elastoplastic
multifield approach: (a)-(c) cG1(2), (d)-(f) cG1(3), (g)-(i) cG2(2), (k)-(m) cG2(3)
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In addition to the Runge-Kutta schemes, also Galerkin procedures are adapted to the mul-
tifield approach of ideal elastoplasticity. The resultant h-error curves for the displacement,
the plastic strain, and the stress field for some continuous representatives are portrayed in
Figure 5.25. While the first row therein is connected to a one-field setting of polynomial de-
gree two, based on Lagrange shape functions with Radau sampling points, the second row is
characterized by a polynomial degree of three. For all graphs in Figure 5.25 (a)-(f), it can be
observed that the error decreases with decreasing time step size. Furthermore, an increase in the
polynomial degree results in a decrease of the error level, although augmented oscillations are
prevalent. Figure 5.25 (g)-(m) represent the corresponding two-field formulations with similar
error curves as depicted in Figure 5.25 (a)-(f). Small differences can only be recognized if the
orders of consistency and convergence are compared, see Table 5.3. Both the continuous one-
field and the two-field setting with polynomial degree two, roughly reach the order of three. In
contrast, the two continuous Galerkin approaches with polynomial degree three almost reach
a local order of five. The coincidence between the orders of the continuous Galerkin schemes
and the implicit Radau IIA methods might be attributed to the matching quadrature points.
Additional parallelisms between both time integration families can be drawn concerning the
globally determined order of convergence. The continuous Galerkin procedures also attain or-
ders well above two - but not more. A dissimilarity, however, is that it is possible to formulate a
residual error estimator for the Galerkin approach. The corresponding graphs for the four pre-
viously described Galerkin schemes are portrayed in Figure 5.26. While again with decreasing
time step size a decreasing error can be observed for all cases, the curves’ characteristics vary
drastically. Nevertheless, the orders of consistency gathered in Table 5.3 deviate only slightly.
Surprisingly, the order of consistency determined by the residual error of the displacement and
the plastic strain field is about one for all schemes. An order of around two is estimated for
the stress field. This stands in strong contrast to the results obtained in (Gleim, 2016), where a
correlation between the polynomial degree and the residual error is obtained. Therein, however,
the Galerkin procedures are assumed to be built on distinct shape functions, no inhomoge-
neous boundary conditions are taken into account, and the errors of the different field variables
are summed up.
The last analyzed time integration class in this thesis is based on discontinuous Galerkin

schemes with Lobatto sampling points. Similar to the continuous Galerkin context, the
one-field and the two-field setting for polynomial degrees two and three are investigated. The
accompanying local h-error curves for the displacement, the plastic strain, and the stress field
are illustrated in Figure 5.27. While the first two rows are associated to the one-field setting,
the last two represent the two-field setting. The correlation between the first and the third
row, as well as between the second and the fourth row, stems from choosing the identical
polynomial degree of two or rather three. Apart from these agreements, it can be observed that
for a decreasing time step size the error decreases disregarding the field variable and the time
integration scheme. However, with increasing polynomial degree, oscillations become apparent.
Moreover, the error of the plastic strains and the stress field tends to higher oscillations than
the one of the displacement field. The numerically estimated orders of convergence are listed in
Table 5.3. Comparing the results for the one and the two-field discontinuous Galerkin setting
yields the insight that the two-field approach performs slightly better. Between the various
field variables, however, almost no difference can be recognized. The locally estimated orders of
consistency lie in the range of four for polynomial degree two and of five for polynomial degree
three. To reach such orders with the implicit Runge-Kutta Lobatto IIIC methods, at least a
three-stage scheme is necessary. But if a Lobatto IIIC(4) Runge-Kutta procedure is chosen,
a theoretical order of six should be obtained. Hence, despite that the discontinuous Galerkin

approach and the Lobatto IIIC(4) scheme are based on identical supporting points, the reached
orders deviate. Considering the global orders of convergence of the discontinuous Galerkin
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Figure 5.27.: Local time discretization error of the h-method for the displacement, the plas-
tic strain, and the stress field for distinct time integration methods within the
elastoplastic multifield approach: (a)-(c) dG1(2), (d)-(f) dG1(3), (g)-(i) dG2(2),
(k)-(m) dG2(3)
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Figure 5.28.: Local residual time discretization error for the displacement, the plastic strain,
and the stress field for distinct time integration methods within the elastoplastic
multifield approach: (a)-(c) dG1(2), (d)-(f) dG1(3), (g)-(i) dG2(2), (k)-(m) dG2(3)
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Table 5.3.: Estimation of the order of consistency/convergence for small strain plasticity

qh(u) qh(εp) qh(σ) qr(u) qr(εp) qr(σ) qglob
h (u) qglob

h (εp) qglob
h (σ)

Lobatto IIIC(2) 1.54 1.51 1.38 − − − 1.89 1.76 1.22

Lobatto IIIC(3) 3.76 3.87 3.65 − − − 2.33 2.34 2.84

Radau IIA(2) 2.58 2.69 2.48 − − − 2.51 2.40 2.24

Radau IIA(3) 4.77 4.98 4.71 − − − 2.22 2.19 2.48

cG1(2) 2.58 2.60 2.48 1.00 1.00 2.13 2.51 2.40 2.24

cG1(3) 4.51 4.66 4.59 1.00 1.00 2.36 2.20 2.19 2.46

cG2(2) 2.58 2.53 2.48 1.00 1.00 2.28 2.51 2.36 2.24

cG2(3) 4.74 4.73 4.71 1.00 1.02 2.61 2.23 2.15 2.48

dG1(2) 3.42 3.49 3.33 1.00 1.00 2.87 2.28 2.34 2.79

dG1(3) 4.49 4.79 4.75 1.00 0.99 3.92 1.16 1.04 1.49

dG2(2) 3.76 3.78 3.65 1.00 1.02 2.45 2.33 2.30 2.84

dG2(3) 5.19 5.22 5.32 1.00 1.00 2.73 1.22 1.03 1.54

methods, a variation between one and two can be recognized. Thereby, it is emphasized that
the discontinuous procedures with polynomial degree three inherit the lower order. In addition
to the local h-error, the residual error is examined. The results are depicted in Figure 5.28.
It can once again be seen that decreasing time step sizes lead to a decreasing error. However,
in contrast to the h-error curves, almost no differences can be detected between the schemes.
Deviations are only seen for the stress field. A similar picture can be drawn for the correspond-
ing orders of consistency. Apart from those linked to the stresses, all measurements indicate
an order of one, as it is the case for the continuous Galerkin schemes. The identical residual
error formulation is adapted in (Gleim, 2016) in the electromagnetic context. Therein, however,
a link between the error and the polynomial degree is concluded, which cannot be confirmed
here. The reason may be founded in the differences within the model problem and the analyzed
Galerkin approaches. There are however still open questions concerning the theoretically ob-
tainable orders of convergence of both the continuous and discontinuous Galerkin schemes
regarding the h-error estimation. In (Gleim, 2016) the order of convergence for Galerkin

procedures using Lagrange shape functions and a Gauss-Legendre quadrature rule are de-
termined numerically to be equal to the applied polynomial degree. In (Matthies and Schieweck,
2011) a mathematical proof is given for the error estimation taking Lobatto quadratures for
continuous and Radau quadratures for discontinuous Galerkin schemes into account. Fur-
ther mathematical estimations are depicted in (Aziz and Monk, 1989). Another approach to
ascertain the order of convergence is followed in (Botasso, 1997; Carstens, 2013; Hulme, 1972b;
Zhao and Wei, 2013). Therein, the similarities between Runge-Kutta schemes and Galerkin

procedures are exploited. Some of these relationships would most probably hold for the methods
analyzed in this thesis as well.
All in all, it can be summarized that introducing the multifield approach of elastoplasticity, is
an elegant way to incorporate higher order accurate schemes, like fully implicit Runge-Kutta

or Galerkin methods. Due to their application, local orders of consistency of about five can be
obtained and the error level is reduced drastically. Nevertheless, an order of convergence greater
than three could not be numerically determined on global level. In the scope of this thesis, it can
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not be ascertained whether it is simple not measurable or whether it is not reached due to special
characteristics of the elastoplastic problem. For further aspects see Section 5.2.3. Moreover, the
applicability of embedded and residual error estimators can be deduced by the previous studies.
While the embedded schemes can be used for a time adaptive simulation strategy to judge the
accuracy within and in between DIRK procedures, the residual error estimator can’t serve to
draw conclusions about the polynomial degree in question. However, both variants clearly have
lower computational costs compared to the h-error estimator.

5.2.3. Classical Approach to Dynamic Elastoviscoplasticity

An alternative way to model the steel shaft’s behavior within the integrated thermomechanical
forming process depicted in Figure 1.1 in Chapter 1 is to account for viscoplastic effects. Apart
from a change in the considered physical phenomena, this modification implies a regularization
of the material model’s mathematical structure, see Section 4.1.2. To elucidate the appearing
influences, the dynamic benchmark problem of the ideal elastoplastic case is adapted. Since only
the constitutive laws on integration point level are changed within the viscoplastic modeling,
Equations (5.3)-(5.9) pertain their validity to describe an axisymmetric problem appropriately.
Only the entries of the algorithmic constitutive tensor and of the stress tensor have to be modified
taking Equations (4.42)-(4.43) into account. Furthermore, the geometry and the parameters are
chosen as depicted in Figure 5.6. Initially, the viscosity parameter χ is varied to demonstrate
its influence. The simulation is carried out with the same biquadratic spatial mesh consisting
of NER = 2 as well as NEZ = 15 elements as within the elastoplastic model. For the time
discretization, a backward Euler scheme with a time step size Δt = 1 · 10−5 s is applied.
Figure 5.29 shows the evolution of the axial component of the stress and the plastic strain
for the distinct models over time at evaluation point 1©. Additionally, the deviatoric stress-
strain diagram is illustrated. It can be seen that a growth in χ causes the stress state to
increasingly leave the yield surface. Hence, the corresponding plastic strains decrease. To ensure
comparability between the elastoplastic and the viscoplastic approach concerning the analysis
of time integration schemes, the viscosity parameter χ = 0.001 Ns/mm2 is selected.
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Figure 5.29.: Comparison of the elastoplastic and the viscoplastic model at evaluation point 1©:
(a) Stress-time diagram, (b) Plastic strain-time diagram, (c) Deviatoric stress-
strain diagram

In a more precise look the maximal absolute deviations of the stress, the displacement as well
as the plastic strain field are determined. Their relation to the elastoplastic approach reveals
that values greater than 0.7% are not reached. Hence, this kind of spatial discretization is
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not only adequate to yield a comparable solution to the elastoplastic case, but it can also be
assumed to embody a convergent spatial solution of the viscoplastic problem with the chosen
parameter setting. In the forthcoming analysis also the multifield approach will be presented in
the viscoplastic context and different time integration schemes are examined. All other necessary
parameters will be held constant, so that a further influence of the viscosity parameter on the
model formulation is not investigated. A possible interrelation between its choice and the spatial
as well as the temporal discretization is not investigated either.

5.2.4. Multifield Approach to Dynamic Elastoviscoplasticity

Apart from the ideal elastoplastic behavior, the multifield approach of Section 4.2 is also able
to take viscoplastic properties into account. To confirm this, the dynamic benchmark problem
of Section 5.2 is modified to reflect viscoplastic effects by including the viscosity parameter
χ = 0.001Ns/mm2. Additionally, the implementation strategy of the viscoplastic variational
approach of Section 4.2.3 has to be modified to suffice the demands of an axisymmetric prob-
lem. In this context, the tangential quantities in the system of Equations (4.79) are simplified
exploiting the relations in Equations (5.3) and (5.4) together with the rearrangements in (5.5)1,
(5.5)2 as well as (5.11)-(5.12). To determine the approximated strains, the matrix vector relation
of the displacement field and the shape functions derivatives in (5.6) are used. Furthermore, the
additional statement
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is established to yield the modified tangential quantities

meij
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Therein, the variable I represents a two-dimensional unity matrix, and the parts of the load
vector related to volume or surface loads are neglected due to their irrelevance. Different shape
functions are chosen for the distinct fields. While N i represent continuous approximations, N̄ i

characterize discontinuous ones - as specified in Section 4.2.3.2.
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5. Numerical Examples for Small Strain Elasto(visco)plasticity

5.2.5. Classical vs. Variational Approach for Viscoplasticity

The viscoplastic variant of the dynamic benchmark problem can be simulated using the previ-
ously determined quantities. In order to ensure comparability between the time discretization
results between the classical and the variational approach, the identical spatial discretization
consisting of a quadratic mesh with NER = 2 and NEZ = 15 elements is considered. For both
approaches, the displacement field is approximated continuously with the help of biquadratic
Lagrange shape functions. In the variational ansatz, the stresses and the plastic strains are
approximated discontinuously. Therefore, biquadratic Lagrange shape functions, with Gauss-

Legendre quadrature points as supporting points, are exploited. This yields for a multifield
simulation implying the DIRK(3) method, together with a time step size of Δt = 1 · 10−5 s,
to a maximum deviation in the displacement, the stress, and the plastic strain field of about
0.02% in relation to the results obtained by the classical approach. Due to the small deviations
between the classical and the variational approach as well as between the elastoplastic and the
viscoplastic model for the distinct field variables, a spatially convergent solution can be assumed
for the multifield approach as well. In the next step, particular attention is paid to the time
discretization error. Therefore, distinct time integrators are applied together with distinct time
step sizes.
Figure 5.30 (a)-(f) show the h-error curves of the displacement, the stress, as well as the plas-
tic strain field for the DIRK(3) scheme within the conventional and the multifield approach.
Figure 5.30 (g)-(m) demonstrate the corresponding courses of the embedded error. A portrait
of the stress field’s embedded error in the conventional approach is missing, since no time dis-
cretization of the stress field is performed. For all error estimations, it can be observed that for
a decreasing time step size the error always decreases. By comparing the graphs of the classical
and the variational procedure, an agreement between both can be identified. Identical results are
stated for the matching error curves in the elastoplastic context in Figure 5.20 and Figure 5.21.
Comparing the results of the elastoplastic and the viscoplastic approach reveals corresponding
characteristics, too.

Table 5.4.: Estimation of the order of consistency/convergence for small strain viscoplasticity

qh(u) qh(εp) qh(σ) qr(u)/ qr(εp)/ qr(σ)/ qglob
h (u) qglob

h (εp) qglob
h (σ)

qemb(u) qemb(εp) qemb(σ)

DIRK(3) con 2.47 2.36 2.23 1.68 1.37 − 2.44 2.32 2.10

DIRK(3) multi 2.47 2.36 2.23 1.68 1.37 1.08 2.24 2.11 2.07

Lobatto IIIC(2) 1.55 1.52 1.39 − − − 1.91 1.78 1.24

Radau IIA(2) 2.58 2.59 2.40 − − − 2.52 2.43 2.25

cG1(2) 2.57 2.50 2.40 1.00 1.00 2.71 2.52 2.43 2.25

dG1(2) 3.43 3.33 3.12 1.00 1.00 2.86 2.25 2.33 2.79

In addition to the diagonally implicit Runge-Kutta schemes, fully implicit Runge-Kutta

schemes and Galerkin methods are analyzed within the multifield approach in the viscoplastic
regime. However, only a small extent of the time discretization methods used in the elastoplastic
benchmark problem is analyzed. The respective h-error or residual error curves for the displace-
ment, the stress and the plastic strain field are shown in Figure 5.32 as well as in Figure 5.31. If
again a comparison to the elastoplastic analogues in Figure 5.24-Figure 5.28 is performed, huge
similarities between the viscoplastic and elastoplastic time discretization errors can be observed.
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5.2. Displacement Driven Deformation of an Axisymmetric Steel Shaft
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Figure 5.30.: Local time discretization error of the h- and the embedded method for the displace-
ment, the viscoplastic strain, and the stress field within conventional and multifield
elastoviscoplasticity: (a)-(c) h-error DIRK(3) conventional,(d)-(f) h-error DIRK(3)
multifield, (g)-(i) embedded error DIRK(3) conventional, (k)-(m) embedded error
DIRK(3) multifield
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5. Numerical Examples for Small Strain Elasto(visco)plasticity
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Figure 5.31.: Local time discretization error of the h- and the residual method for the displace-
ment, the viscoplastic strain, and the stress field for distinct time integration meth-
ods within multifield elastoviscoplasticity: (a)-(c) h-error cG1(2), (d)-(f) residual
error cG1(2), (g)-(i) h-error dG1(2), (k)-(m) residual error dG1(2)
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5.3. Summary

This is also represented by the order of consistency or the order of convergence. For the viscoplas-
tic example problem, the estimates are listed in Table 5.4, while for the elastoplastic approach
Table 5.1-Table 5.3 have to be accounted for. Examining the distinct entries shows that only
slight differences prevail. Even in the viscoplastic adaptation of the benchmark problem global
orders above 2.5 are not obtained, although, locally orders well above three are achieved. Ob-
viously, the regularization and, thus, the smoothening of the problem does not cure the effect
of global order reduction. In (Hartmann and Bier, 2007), this phenomenon is observed for
DIRK methods. Thus, it is necessary to carry out a profound mathematical analysis of dynamic
elasto(visco)plasticity to clarify why the theoretical orders of convergence cannot be obtained,
although this is possible for similar problems, cf. (Butcher, 2008; Eidel and Kuhn, 2015; Hairer
and Wanner, 2002). This, however, is beyond the scope of this thesis. Although not all time
integrators of the elastoplastic benchmark problem are applied in the viscoplastic context, the
previous statements suggest that identical results are obtainable also for the unrealized schemes.
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Figure 5.32.: Local time discretization error of the h-method for the displacement, the viscoplas-
tic strain, and the stress field for distinct time integration methods within multifield
elastoviscoplasticity: (a)-(c) Lobatto IIIC(2), (d)-(f) Radau IIA(2)

5.3. Summary

In order to check the programming of the classical approach, a standard benchmark problem
from small strain quasi-static ideal elastoplasticity, the rectangular strip with a hole in the plain
strain case, is investigated. Additionally, the variational approach is applied to this problem and
both strategies are compared to the reference solution of (Stein, 2003). The deviations between
the classical and the variational multifield approach are smaller than 10−3%. The differences
with respect to the reference solution lie between 0.04% − 10% depending on the evaluated
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5. Numerical Examples for Small Strain Elasto(visco)plasticity

quantity. Since a 40 times higher number of spatial elements is used to determine the reference
solution, these relative errors are acceptable. Hence, the classical and the variational approach
are able to adequately represent small strain quasi-static ideal elastoplastic problems.
For the analysis of distinct time discretization schemes in the context of small strain dynamic
ideal elasto(visco)plasticity, an additional benchmark problem is developed. As motivation, the
displacement-driven deformation of an axisymmetric steel shaft is taken into account. The aim
of this new benchmark problem is to model a highly dynamic process which makes it possible
to concentrate on time integrators and, at the same time, to create a problem consisting of
relatively few degrees of freedom.
To gain a better understanding of this novel benchmark problem, a quasi-static investigation is
performed within small strain ideal elastoplasticity using the classical approach. A homogeneous
stress distribution within the steel shaft is the result. Moreover, a variation of the spatial
discretization concerning the number of elements and the polynomial degree has no influence on
the solution, and the time discretization errors are too small for a deep analysis.
This stands in strong contrast to the dynamic analysis. The frequency dependency in the
applied sinusoidal boundary condition leads to elasto-plastic wave fronts, creating an inhomo-
geneous stress distribution. The spatial discretization drastically influences the solution until
convergence is obtained for a biquadratic mesh consisting of NER = 2 elements in radial as well
as NEZ = 15 elements in axial direction. Within the classical and the variational approach,
the displacement field is approximated continuously with the help of biquadratic Lagrange

shape functions. For the multifield ansatz, however, the stresses, the plastic strains, and the
Lagrange multiplier are approximated discontinuously using biquadratic Lagrange shape
functions with Gauss-Legendre quadrature points as supporting positions. For an identical
time discretization scheme, the deviations between the classical and the variational approach
are smaller than 10−2%.
Within both strategies, stiffly accurate diagonally Runge-Kutta schemes and the Newmark

method are applied. Furthermore, the time discretization error of the displacement, the stress,
and the plastic strain field are evaluated using the h-error and the embedded error estimator. The
orders of convergence and consistency are determined. Again, both approaches yield identical
results. Applying the h-error estimator for all three fields, the backward Euler scheme almost
reaches the theoretical order of one. The DIRK(2) as well as the Newmark method reach a
theoretical order of approximately two. Only the DIRK(3) scheme is hardly above order two,
although its theoretical order is three. With the embedded error estimator, the achieved orders
of consistency are one order lower.
Within the multifield approach, stiffly accurate fully implicit Runge-Kutta schemes of Lo-

batto IIIC and Radau IIA type with distinct numbers of stages are applied as well. The
orders of consistency are calculated for the displacement, the stress, and the plastic strain field
exploiting the h-error estimator. If the number of stages is increased, higher orders of consis-
tency are obtained. Moreover, Radau IIA schemes lead to orders of consistency of roughly
around five, while Lobatto IIIC methods only reach orders of consistency of about four.
Furthermore, continuous as well as discontinuous Galerkin methods in their one- and two-
field formulation with varying polynomial degree are employed. Again, the orders of consistency
for the displacement, the stress, and the plastic strain field are determined taking the h-error
estimator into account. With increasing polynomial degree, the orders of consistency grow. In
the continuous case, the one- and the two-field setting reach similar orders of consistency, which
are at best well above four. If discontinuous Galerkin schemes are considered, deviations in
the orders of consistency between the single- and the two-field setting are perceptible. The
latter implementation reaches orders of consistency well above five, while the one-field setting
only reaches orders of consistency well above four.
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5.3. Summary

For all Galerkin schemes, the residual error estimator is also applied to the displacement, the
stress, and the plastic strain field. Therein, however, similar orders of consistency are attained
for all polynomial degrees as well as for the one-field and the two-field setting. Only the stress
field shows a non-systematic variation of the order of consistency. Hence, the residual error
estimator is apparently not capable of estimating orders of consistency.
Additionally, for the fully implicit Runge-Kutta schemes as well as for the Galerkin meth-
ods, the orders of convergence for the displacement, the stress, and the plastic strain field are
determined directly using the global h-error estimator. Therein, only orders a little bit higher
than two are ascertained. Thus, locally high orders are obtainable but they cannot be preserved
globally. Nevertheless, the error level decreases with increasing theoretical order of convergence.
The adaptation of the benchmark problem to small strain dynamic elastoviscoplasticity leads
to identical results as in the plastic case. However, the studied variants of time integrators are
reduced.
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6. Large Strain Elastoplasticity and Viscoplasticity

In Chapter 4, a frequently used elastoplastic material model in the small strain regime as
well as its viscoplastic extension are described. Furthermore, their numerical implementations
are analyzed with the help of a newly created benchmark problem, which is motivated by
the integrated thermomechanical forming process of Chapter 1. This production sequence,
however, is clearly characterized by finite deformations. Hence, the ideas in the small strain
regime will be extended in the following sections.
Plastic flow is micromechanically motivated by the movement of dislocations, while elastic prop-
erties are accounted to lattice distortions. The explicit consideration of these microstructural
effects in the area of finite strains is carried out in (Carstensen et al., 2002; Miehe et al., 2004,
2002; Mielke, 2003; Nemat-Nasser et al., 1980), whereby the mathematical analysis is one of the
key aspects. Other approaches adopt a point of view according to which (visco)plastic prop-
erties are only modeled by their effects on macroscopic length scales, cf. (Molinari and Ortiz,
2002; Simo, 1998; Simo and Hughes, 1997). In this context, anisotropic behavior is examined in
(Schröder et al., 2002; Seitz et al., 2014; Vladimirov et al., 2010), while (Helm, 2006; Reese, 1998;
Simo and Miehe, 1992; Stainier and Ortiz, 2010) treat thermomechanical extensions. The deter-
mination of plastic effects due to phase transformations is realized in (Mahnken and Schneidt,
2009; Mahnken et al., 2012).
In this thesis, however, one of the simplest finite deformation models is presented, since the aim is
not an exact modeling - but to enable the application of higher order accurate time integration
methods in finite elasto(visco)plasticity. This classical model can be found, for example, in
(Dhondt, 2004; Simo, 1988, 1998; Simo and Miehe, 1992).

6.1. Classical Approach

The kinematics and kinetics of an elasto(visco)plastic material body B at finite strains can be
described by Equations (2.1)-(2.10). Moreover, the balance of linear momentum (2.13) in the
reference configuration characterizes its deformation process, resulting from the applied volume
forces ρ0f or the boundary conditions

u(X, t) = u∗ ∀X ∈ Γu, F · S ·N = T ∗ ∀X ∈ Γt∗ . (6.1)

Therein, the body’s boundary Γ = Γu ∪ Γt∗ is divided into a part Γu, where the displacements
are prescribed, and a part Γt∗ , where the stresses are known. The necessary initial conditions
are denoted as

u1 = u(X, t1) ∀X ∈ Ω, u̇1 = u̇(X, t1) ∀X ∈ Ω.

While the balance of linear momentum (2.13) is valid for arbitrary material assumptions, specific
ones are introduced throughout the connection between stresses and strains. If elasto(visco)-
plastic behavior is considered, two distinct cases - the elastoplastic and the elastoviscoplastic -
have to be accounted for. The derivation of the corresponding equations is performed analogously
to the small strain case. Within the theory of finite strains, however, a distinction between the
reference and a series of current configurations of the material body B is made, see Chapter 2.
Hence, the very same material model can be depicted using different quantities associated to
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these configurations. It is remarked that all quantities in this chapter are defined on the reference
configuration and are expressed depending on material coordinates X. Approaches using further
configurations can be found in (Hartmann and Bier, 2007; Haupt, 2000; Simo and Miehe, 1992)
to name only a few.

6.1.1. Finite Elastoplasticity

The main idea of modeling finite elastoplastic behavior is the same as in the small strain case,
see Section 4.1.1. If a continuum mechanical body’s stress state reaches a material-dependent
threshold, the stresses of the analyzed specimen are limited. Mathematically, this can be ex-
pressed by creating the set of admissible stresses

S := {S|f(S,C) ≤ 0},

whereby f(S,C) represents the yield surface. For negative values, the stress state behaves
elastically. If the yield function is equal to zero, plastic properties prevail. Stress states outside
the yield surface are not allowed. Within the theory of ideal finite von Mises plasticity, this
yield function is convex concerning the Piola-Kirchhoff stress tensor S, see Appendix B,
and it can be determined by

f(S,C) =
√

[DEV (S) ·C] : [C · DEV (S)]−
√

2

3
σy with σy > 0. (6.2)

The deviator with respect to the reference configuration, cf. (Simo, 1988), is defined as

DEV (S) = S − 1

3
[C : S]C−1. (6.3)

For the necessity of special demands on the yield surface see (Simo, 1988, 1998). In general,
Equation (6.2) might be enhanced by appropriate hardening variables, cf. (Simo, 1988; Simo
and Miehe, 1992). These aspects are neglected in this thesis to keep the model as simple as
possible.
The next step is to derive the material laws. The idea is to exploit the dissipation inequality
in (2.14) and, hence, to enforce thermodynamic consistency automatically. Therefore, it is
assumed that the internal energy of an isotropic elastoplastic body can be stated as

e(C,C−1
p ) =

3κ+ 2μ

6

[
1

2

[
J2J−1

p
]− ln(JJ−1

p )

]
+

μ

2

[
J− 2

3J
2
3
p
[
C : C−1

p
]− 3

]
, (6.4)

following the ansatz in (Simo and Miehe, 1992; Wriggers, 2008) with the Lamé parameters κ, μ.
Inserting the time derivative of expression (6.4) together with the relationship

∂e

∂C−1
p

= C · ∂e

∂C
·Cp, (6.5)

into the dissipation inequality in (2.14) yields

Dint =
1

2
S: Ċ − ∂e

∂C
: Ċ − ∂e

∂C−1
p

: Ċ
−1
p =

[
1

2
S − ∂e

∂C

]
: Ċ − ∂e

∂C
:
[
C · Ċ−1

p ·Cp

]
≥ 0. (6.6)

Thereby, the symmetry of the right Cauchy-Green tensor and the plastic right Cauchy-

Green tensor is used. For further explanations see Appendix A.
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In order to guarantee that Inequality (6.6) is always fulfilled, the material laws

S = 2
∂e

∂C
=

3κ+ 2μ

6

[
J2J−1

p − 1
]
C−1+ μJ− 2

3J
2
3
p

[
C−1

p − 1

3

[
C : C−1

p
]
C−1

]
,

(6.7)

Ċ
−1
p = −2λC−1 · ∂f(S,C)

∂S
·C−1

p = −2λ
DEV (S) ·C ·C−1

p√
[DEV (S) ·C] : [C · DEV (S)]

(6.8)

are established. The included parameter λ is denoted as consistency parameter, which is asso-
ciated to the Karush-Kuhn-Tucker conditions

λ ≥ 0, f(S,C) ≤ 0, λf(S,C) = 0, (6.9)

to enable the distinction between elastic and plastic behavior. If λ = 0, holds purely elastic
properties prevail and f(S,C) < 0 is true. For λ > 0 the plastic right Cauchy-Green tensor
evolves and plastic effects are prevalent. At the same time, it must be ensured that the stress
state lies on the yield surface. Hence, f(S,C) = 0 is demanded. With the constitutive law
in (6.7), the term in brackets in Inequality (6.6) vanishes, while inserting the evolution equation
in (6.8) results in

Dint = − ∂e

∂C
:
[
C · Ċ−1

p ·Cp

]
= λS :

∂f(S,C)

∂S
= λ

[
f(S,C) +

√
2

3
σy

]
≥ 0. (6.10)

Thereby, the symmetry of the right Cauchy-Green tensor and the Piola-Kirchhoff stress
tensor is exploited. Furthermore, the case C ·DEV (S) = 0, is excluded. This is legitimate since
a purely elastic behavior still prevails, due to the definition of the yield function (6.2). Hence,
the dissipation inequality in (6.6) is always fulfilled. An alternative derivation strategy for the
evolution equation in (6.8) is provided if the postulate of maximum plastic work is acknowledged

Dint = sup
S

{−S :
1

2

[
C · Ċ−1

p ·Cp

] ∣∣f(S,C) ≤ 0}. (6.11)

Thus, it is assumed that within all admissible stresses the dissipation in the material reaches a
maximum with respect to the stresses S. An analogous procedure is carried out in the small
strain regime, see Section 4.1.1. Following approaches known from optimization or convex anal-
ysis, cf. (Luenberger, 1973; Zeidler, 1985), Expression (6.11) can be restated into a Lagrange

function

L = −S :
1

2

[
C · Ċ−1

p ·Cp

]
− λf(S,C), (6.12)

with the Lagrange multiplier λ ≥ 0 and the yield function f(S,C) ≤ 0 as a considered
inequality constraint. The necessary optimality conditions for a stationary point

∂L
∂S

= 0 and λf(S,C) = 0 (6.13)

with C ·DEV (S) �= 0, yield the evolution Equation (6.8) with the Karush-Kuhn-Tucker con-
ditions in (6.9). In general, the standard optimality conditions in (6.13) and, thus, Equation (6.8)
are only valid for continuous differentiable functions f(S,C), cf. (Geiger and Kanzow, 2002).
For an extension to the non-differentiable case, the derivative of f(S,C) is exchanged by the
subdifferential, cf. (Clarke, 1990). Here, this generalization is not needed, although the yield
function is differentiable everywhere except for C · DEV (S) = 0. However, at that point, due to
the yield function (6.2), only elastic properties prevail, and the rate of plastic strains disappears
anyway. To complete the material laws, an appropriate initial condition

C−1
p,1 = C−1

p (t1) (6.14)

has to be chosen for the evolution equation in (6.8).
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6.1.2. Finite Viscoplasticity

The previously presented elastoplastic model is characterized by a rate-independent behavior.
Hence, on material law level, it does not matter at which speed the deformation process is carried
out. To take this aspect into account, a rate-dependent model has to be established. Therefore,
a viscoplastic extension of the finite strain elastoplastic model is performed - similar to the small
strain case in Section 4.1.2. Hence, it is again assumed that there is a convex elastic set in the
stress space defined by the yield function in (6.2). Now, however, appearing stress states are
not longer limited to the yield surface and its interior. Correspondingly, viscoplastic properties
prevail for stress states lying on the outside of the latter. The internal energy of the analyzed
viscoplastic body is supposed to be represented by (6.4). Since thermodynamic consistency is
demanded, the dissipation inequality has to be fulfilled and the constitutive equation in (6.7)
remains valid, but the index p therein now refers to viscous relations. To derive the evolution
equation, the postulate of maximum plastic work (6.11) has to be adapted by weakening the
inherent inequality constraint. This is achieved throughout introducing a penalization term

Dint = sup
S

{
−S :

1

2

[
C · Ċ−1

p ·Cp

]
− 1

χ
h (f(S,C))

}
.

Therein, the parameter χ > 0 embodies the viscosity parameter, while

h (f(S,C)) :=

⎧⎪⎨
⎪⎩
1

2
[f(S,C)]2 for f(S,C) ≥ 0

0 for f(S,C) < 0

represents a continuous differentiable function. Correspondingly, stress states outside the yield
surface are penalized according to their distance and with respect to the viscosity parameter χ.
If this parameter tends to zero, the rate-dependent elastoviscoplastic problem degenerates to
the rate-independent elastoplastic problem, cf. (Simo and Hughes, 1997). For basic aspects and
proofs of general penalty methods see (Alt, 2011; Luenberger, 1973). As a result, the Lagrange

function in (6.12) is modified to

L = −S :
1

2

[
C · Ċ−1

p ·Cp

]
− 1

χ
h (f(S,C)) ,

with the stationarity condition

∂L
∂S

= 0.

Exploiting the characteristic of the derivative

∂ h (f(S,C))

∂(f(S,C))
= 〈f(S,C)〉 :=

⎧⎨
⎩
f(S,C) for f(S,C) ≥ 0

0 for f(S,C) < 0.

yields the evolution equation

Ċ
−1
p = −2λ

DEV (S) ·C ·C−1
p√

[DEV (S) ·C] : [C · DEV (S)]
with λ =

1

χ
〈f(S,C)〉. (6.15)

While the parameter λ has to be determined separately within the elastoplastic model, it is
prescribed at the beginning in the viscous case. Formally, this is the only distinction between
both approaches. Hence, the reduced dissipation inequality in (6.6) remains valid, and inserting
the evolution equation as well as the Lagrange multiplier in (6.15) proves thermodynamic
consistency. By formulating a proper initial condition analogously to Equation (6.14), the finite
strain elastoviscoplastic model is completed.
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6.1.3. Numerical Realization

In the finite strain regime, elasto(visco)plastic problems include both material and geometric
nonlinearities. However, an analytical solution is usually not possible and numerical strategies
have to be employed.

u

independent variable

S =2
∂e

∂C

Ċ
−1
p =−2λC−1 · ∂f(S,C)

∂S
·C−1

p

f =
√
[DEV(S)·C]:[C ·DEV(S)]−

√
2

3
σy

λ =
1

χ
〈f(S,C)〉

material laws
S

dependent variable

ρ0ü−∇X · [F · S]− ρ0f = 0

balance equation

E=
1

2

[∇XuT+∇Xu+∇XuT·∇Xu
]kinematics

u1 = u(t1), u̇1 = u̇(t1)

initial conditions
C−1

p,1 = C−1
p (t1)

initial condition

u(X, t) = u∗ ∀X ∈ Γu F · S ·N = T ∗ ∀X ∈ Γt∗

boundary conditions

Figure 6.1.: Initial boundary value problem of the classical approach in the finite strain regime
with entries in blue referring to expressions needed only in the viscoplastic case

Before the basics described in Chapter 3 are considered and specified, the complete initial
boundary value problem is schematically depicted, see Figure 6.1. It is emphasized that the
numerical treatment is always based on a fixed cartesian coordinate system with the space and
time-independent unit basis vectors gi with i = 1, ..., 3.

6.1.3.1. Generation of the Weak Formulation

In order to apply the solution strategies presented in Chapter 3, the finite elasto(visco)plastic
problem has to be recast into an equivalent weak form. This is achieved by applying the princi-
ple of virtual work, cf. (Finlayson, 1972; Holzapfel, 2000; Kelly, 2015; Lagrange, 1788; Wriggers,
2008). Thereby, the balance of linear momentum in (2.13) is multiplied with an arbitrary vector-
valued test function δu(X) �= 0 with δu(X) = 0 only on the Dirichlet boundary Γu. In the
next step, the resulting equation is integrated over the domain Ω of the investigated continuum
mechanical body B. The respective Neumann boundary condition in (6.1)2 is treated analo-
gously, except that the integration is performed over the boundary Γt∗ of B. The addition of
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both expressions leads to

δW =

∫
Ω

δu · [ρ0ü−∇X · [F · S]− ρ0f ] dV +

∫
Γt∗

δu · [F · S ·N − T ∗] dA = 0. (6.16)

For better clarity, the dependency of the test function on the spatial coordinate X is dropped. In
the forthcoming analysis, it will be advantageous to consider the prefix δ not only as an indicator
for an arbitrary test function, but as a mathematical operator linked to the Gâteaux derivative
with respect to the displacement field u. Hence, a test function δF as virtual counterpart of
the deformation gradient can be derived by

δF = DuF =
d

dψ

[
∂ [u+ ψδu]

∂X
+ I

] ∣∣∣∣
ψ=0

= ∇Xδu = δ∇Xu, (6.17)

whereby the commutativity of the Gâteaux derivative and the gradient is exploited,
cf. (Holzapfel, 2000). A similar procedure can be carried out concerning the virtual Green-

Lagrange strain tensor

δE =
1

2

[
δFT · F + FT · δF ] . (6.18)

Both Definitions (6.17)-(6.18) can be connected, yielding the implications

∇Xδu : [F ·S] = δF : [F ·S] = [FT ·δF ] :S =
1

2

[
δFT ·F + FT · δF ] :S = δE :S. (6.19)

In turn, they can be used to reformulate Equation (6.16) into

δW =

∫
Ω

δu · ρ0ü dV +

∫
Ω

δE : S dV −
∫
Ω

δu · ρ0f dV −
∫
Γt∗

δu · T ∗ dA = 0. (6.20)

Additionally, the product rule (4.21), the divergence theorem (4.22), and the symmetry of the
second Piola-Kirchhoff tensor S = ST have to be applied. The Dirichlet boundary
conditions are considered in a strong sense.
Interpreting Equation (6.20) in the context of the general weak form (3.1), it can be recognized
that if

δz1 =

[
δu
δE

]
,

r1 =

[
ρ0ü− ρ0f

S

]
,

r∗ =
[
T∗

0

]
,

w = u

is set, they are identical. Special care must be taken because the Green-Lagrange strain
tensor and the second Piola-Kirchhoff stress tensor are not vector-valued, but tensors of
second order. Nevertheless, the numerical realization of Chapter 3 can be applied one-to-one
to the weak form (6.20) with the displacement field as the only unknown.

6.1.3.2. Derivation of the Spatial Semidiscrete Equation on Structural Level

In the first step, following the solution procedure in Chapter 3, the spatial discretization of
the weak form (6.20) is carried out by means of the finite element method. Hereby, only the
three-dimensional case will be analyzed since all other possibilities can be considered as special
instances. The elasto(visco)plastic body’s domain Ω is partitioned following Relation (3.4) into
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small elements Ω̄e. By taking Equation (3.10) into account, the weak form (6.20) is transferred
to element level

δW e=

∫
Ω̄e

δue(Xe)·ρ0üe(Xe, t)dV̄ e +

∫
Ω̄e

[
F e,T(Xe, t)·δF e(Xe)

]
:S(Ee(Xe, t))dV̄ e−

−
∫
Ω̄e

δue(Xe) · ρ0f(Xe, t) dV̄ e−
∫
Γ̄e

t∗

δue(Xe) · T ∗(Xe, t) dĀe =0,

(6.21)

whereby Definition (6.18) and the symmetry of the Piola-Kirchhoff stress tensor are ex-
ploited. For a better understanding, the spatial and temporal dependencies are introduced in
this reformulation. The geometry is approximated by (3.5), while (3.7)-(3.8) are used for the pri-
mary variable and its derivatives. For the test function δue(Xe), Equation (3.9) is applied. The
approximation of the deformation gradient is performed by (3.6) while its virtual counterpart is
defined by

δF e ≈
NN∑
i=1

δuei ⊗∇XN
i(ξ).

The chosen shape functions are of Lagrange type, leading to continuous approximations of the
primary variable over element boundaries. Hence, they can be determined by Equation (3.16)
together with (3.13). Their derivatives are obtained by evaluating (3.18) together with (3.15).
The stress tensor S in (6.21) is not considered as a primary variable. Thus, it can only be
approximated indirectly. An explicit explanation is presented in Section 6.1.3.4.
Due to the material and geometric nonlinearities, a nonlinear solution strategy has to be per-
formed. Since the spatial discrete weak form (6.21) only comprises a variational equality, a
Newton-Raphson scheme can be applied as described in Section 3.2.1. Consequently, the
linearization in terms of (3.21) and (3.22) is performed, leading to

NN∑
i=1

NN∑
j=1

δuei · [meij ·Δüej + keij ·Δuej
]
=

NN∑
i=1

δuei ·
[
r∗,ei1 − rei1

]
, (6.22)

with the suitable tangent matrices

meij =

∫
Ωe

ρ0N
iN j I |Je|dV e,

keij =

∫
Ωe

[
F e,k ⊗∇XN

i
]
:
∂S

∂E

∣∣∣∣
k

:

[
∇XN

j ⊗
[
F e,k
]T] |Je|dV e

+

∫
Ωe

∇XN
i · Sk · ∇XN

j I |Je|dV e,

and the load vectors

r∗,ei1 =

∫
Ωe

N i ρ0f
k |Je|dV e +

∫
Γe
t∗

N i T ∗,k|Je,red|dAe,

rei1 =

∫
Ωe

N i ρ0ü
e,k |Je|dV e +

∫
Ωe

F e,k · Sk · ∇XN
i |Je|dV e.
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For the necessary derivatives and the corresponding tensor calculus see Appendix A. The
appearing integrals are numerically determined using the Gauss-Legendre quadrature. After-
wards, the individual constituents of (6.22) are assembled according to (3.25) as well as (3.26),
yielding the spatial semidiscrete equation

MΔü+K1Δu = R∗
1 −R1 (6.23)

on structural level.

6.1.3.3. Time Discretization on Structural Level

For the complete implementation of the finite elasto(visco)plastic problem, two issues remain
unresolved. On the one hand, the material laws have to be accounted for properly while, on
the other hand, the time discretization of the balance of linear momentum and the evolution
equation has to be carried out. Both aspects, however, cannot be treated separately. By applying
a certain time discretization scheme, the semidiscrete Equation (6.23) is evaluated at specific
points in time. Hence, the stress tensor and its derivative have to be determined there too. The
same is true for (visco)plastic properties, since they are modeled throughout a characteristic
stress-strain relationship. Correspondingly, the time discretization of the evolution equation is
coupled to the one of the balance of linear momentum. Furthermore, in the elastoplastic case, the
yield function has to be fulfilled. Thus, apart from the evolution equation as ordinary differential
equation, an algebraic equation has to be solved. In order to ensure that the yield function is not
violated at the end of the time step, this point in time has to be explicitly included as solution
point, cf. (De Souza Neto et al., 2008; Ellsiepen and Hartmann, 2001; Hairer and Wanner, 2002).
This approach will be adopted in the following sections. Moreover, to keep the coupling between
the time integration procedure on structural and on integration point level as simple as possible,
identical time discretization schemes are applied. To circumvent additional interpolation steps,
only the stiffly accurate diagonally implicit Runge-Kutta schemes of Section 3.4.2.2 and the
Newmark method of Section 3.4.1 are analyzed, cf. (Eidel and Kuhn, 2015). With the latter
scheme, Equation (6.23) can be recast, similar to (3.52), into

KeffΔun+1 = reff,

Keff =
1

βΔt2
Mn+1 +K1,n+1,

reff = R∗
1,n+1 −R1,n+1

(6.24)

with the parameters in (3.53). Thus, the evaluation is only performed at the end of the time step.
Applying stiffly accurate diagonally implicit Runge-Kutta schemes leads to a reformulation

KeffΔuni = reff,

Keff =
1

a2iiΔt2
Mni +K1,ni,

reff = R∗
1,ni −R1,ni

(6.25)

as in (3.67) where the parameters are chosen as in Figure 3.13. Consequently, the weak form of
the balance equation has to be evaluated at each Runge-Kutta stage.
The literature offers various time integration schemes and distinct combinations of time stepping
procedures for structural and integration point level. In (Mohr et al., 2008), Galerkin time
integration schemes are applied to the balance of linear momentum, while the material laws are
integrated via an exponential update procedure. This procedure is also followed by (Meng and
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Laursen, 2002a,b; Noels et al., 2008), however, for the time discretization of the balance law,
procedures from the energy momentum family are taken into account. A combination of the
Newmark scheme and the exponential update is performed in (Molinari and Ortiz, 2002). In
(Simo and Miehe, 1992), the implicit Euler is exploited on both time integration levels. Quasi-
static approaches, where the inertia effects within the balance law are neglected, are carried out
in (Hartmann and Bier, 2007; Helm, 2006; Seitz et al., 2014). Thereby, exponential updates as
well as Runge-Kutta schemes are used for the material laws.

6.1.3.4. Radial Return Map

The incorporation of elasto(visco)plastic phenomena in the context of the presented numerical
strategy requires the time discretization of the evolution equation and a detection strategy for
the switching point between elastic and plastic behavior. These two aspects are realized in (Seitz
et al., 2014) via an exponential update for the time discretization and a semi-smooth Newton

process to distinguish between elastic and plastic properties as well as the determination of the
corresponding quantities. In (Hartmann, 1993; Hartmann and Bier, 2007), a multilevel Newton

procedure is developed. Therein, an elastic trial state is defined to determine the switching
point. In the case of evolving plastic effects, a local Newton-Raphson scheme is performed to
obtain the respective quantities as well as a consistent linearization for the tangential stiffness
matrix. The results are then transferred to the global Newton-Raphson scheme. Similar
predictor-corrector strategies are considered within return mapping procedures as in (Armero,
2006; Auricchio and Taylor, 1999; Meng and Laursen, 2002b; Mohr et al., 2008; Schröder et al.,
2002; Simo and Miehe, 1992). Thereby, again an elastic trial state is established, and a local
Newton-Raphson scheme is employed to determine the accompanying quantities in the case
of plastic behavior. The viscoplastic case is treated analogously. The results are then again
transferred to the global Newton-Raphson scheme.
There are two possible options to determine the derivative of the stress tensor with respect to
some strain measures. It might be calculated algorithmically, cf. (Armero, 2006; Auricchio and
Taylor, 1999), but there are also analytical approaches, cf. (Armero, 2006; Schröder et al., 2002;
Simo and Miehe, 1992). In the following, the procedure presented in (Simo and Hughes, 1997;
Simo and Miehe, 1992) with an analytic tangent will be analyzed using, in accordance with
Equation (6.25) and (6.24), stiffly accurate diagonally implicit Runge-Kutta schemes (DIRK)
as well as the Newmark method. This approach is selected due to its simplicity and its analogy
to the small strain case, see Section 4.1.3.4. Additionally, in much the same way as for small
deformations, the viscoplastic and the plastic model will be partly treated together due to their
similar mathematical structure.
Before the different time integration schemes are applied, some reformulations are performed.
On the one hand, the evolution equation in (6.8) and (6.15) is recast into

Ċ
−1
p = −2λJ

2
3

√
[DEV (S) ·C] : [C · DEV (S)]

μ
C−1 ·Np ·Np−

2λTr
(
C−1

p
)

3
C−1 ·Np (6.26)

with

Np =
C · DEV (S)√

[DEV (S) ·C] : [C · DEV (S)]
,

exploiting the split of the inverse plastic right Cauchy-Green tensor into a deviatoric and a
spherical part. Following the course of action in (Simo and Miehe, 1992), the first term in (6.26)
is neglected further on. On the other hand, the stress tensor of Equation (6.7) is expressed by

S =
3κ+ 2μ

6

[
J2 − 1

]
C−1 + DEV (S) with DEV (S) = μJ− 2

3 DEV
(
C−1

p
)
. (6.27)
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Therefore, the definition of the deviator with respect to the reference configuration (6.3) is used,
and the plastic flow is assumed to be isochoric with Jp = 1, cf. (Simo and Hughes, 1997;
Simo and Miehe, 1992). Apparently, the stress tensor depends on the plastic right Cauchy-

Green tensor and the right Cauchy-Green tensor. The tangential stiffness matrix, however,
is influenced by the derivative of the stress tensor with respect to the Green-Lagrange strain
tensor. Hence, the relationship

∂S

∂E
= 2

∂S

∂C

is of great importance.
It is emphasized that the stresses and their derivatives need to be determined only at the Gauss-

Legendre integration points, since this numerical integration procedure is employed to evaluate
the integrals of the weak form in (6.22). The same holds for the plastic quantities. However,
they are not updated within the global iteration scheme and, hence, the iteration index k is
dropped.

6.1.3.4.1. Finite Elastoplasticity: Newmark’s Method and DIRK Schemes

If diagonally implicit Runge-Kutta schemes or the Newmark method are used for the time
discretization of the linearized semidiscrete form in (6.23), it is necessary to evaluate the stress
relation in (6.27) at each stage tni or at the end of the time step tn+1

Skni/n+1 =
3κ+ 2μ

6

[[
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]2 − 1

] [
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]−1
+μ
[
Je,k
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3
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DEV

(
C−1

p,ni/n+1

)
. (6.28)

Applying the same time integration methods to the evolution equation in (6.26) yields

C−1
p,ni = C̃

−1
p,ni +Δt aii Ċ

−1
p,ni with C̃

−1
p,ni = C−1

p,n +Δt
i−1∑
j=1

aij Ċ
−1
p,nj , (6.29)

analogously to Equation (3.64) with (3.65) for stiffly accurate diagonally implicit Runge-Kutta

schemes. Using Equation (3.50) of the Newmark method, whereby the included second time
derivatives are neglected, results in

C−1
p,n+1 = C̃

−1
p,n +Δt

β

γ
Ċ

−1
p,n+1 with C̃

−1
p,n = C−1

p,n +Δt
γ − β

γ
Ċ

−1
p,n. (6.30)

Comparing Equations (6.29)1 and (6.30)1 enables the general formulation

C−1
p,ni/n+1 = C̃

−1
p,ni/n +Δt Θ Ċ

−1
p,ni/n+1 with Θ =

⎧⎪⎨
⎪⎩
aii for DIRK

β

γ
for Newmark.

(6.31)

By combining the general Relationship (6.31) and the evolution equation in (6.26) determined
at tni or tn+1

C−1
p,ni/n+1 = C̃

−1
p,ni/n+1 −

2

3
ΔtΘλni/n+1Tr

(
C−1

p,ni/n+1

) [
Ce,k
ni/n+1

]−1 ·Nk
p (6.32)

can be obtained. Taking the trace of (6.32) leads to the identity

Tr
(
C−1

p,ni

)
= Tr

(
C̃

−1
p,ni

)
. (6.33)
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Furthermore, inserting Equations (6.32) and (6.33) in (6.28) enables the definition of a trial
state
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(
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)
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]− 2
3
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=
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(
C̃
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p,ni/n

) [
Ce,k

ni/n+1

]−1

·Nk
p

]
,

(6.34)

which depends on the actual total deformation state, but only on previous plastic strains. By
computing the yield function (6.2) at this state

f trial(Sk,trialni/n+1,C
e,k
ni/n+1) =

√[
DEV(Sk,trialni/n+1)·Ce,k

ni/n+1

]
:
[
Ce,k
ni/n+1 ·DEV(Sk,trialni/n+1)

]
−
√

2

3
σy (6.35)

with σy > 0, a criterion for the switching point between elastic and plastic behavior is established.
If the trial yield function f trial(Sk,trialni/n+1,C

e,k
ni/n+1) is smaller than zero, elastic properties prevail.

Otherwise, plastic characteristics have to be admitted. A multiplication of Equation (6.34) with
Ce,k
ni/n+1 leads, together with the second summand in Relation (6.28), to

=
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]
:
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with

Nk,trial
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Ce,k
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(
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)
√[
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]
:
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]
.

By comparing the left and right side of Equation (6.36), the additional relationships regarding
the trial state

Nk,trial
p = Nk

p (6.37)

√[
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ni/n+1)·Ce,k
ni/n+1

]
:
[
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= (6.38)

=

√[
DEV(Sk

ni/n+1)·Ce,k
ni/n+1

]
:
[
Ce,k

ni/n+1 ·DEV(Sk
ni/n+1)

]
+
2

3
ΔtΘλni/n+1μ

[
Je,k
ni/n+1

]− 2
3

Tr
(
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)
are generated. On the one hand, these expressions can be exploited to formulate the evolution
equation in (6.32) solely in terms of quantities with respect to the trial state. On the other
hand, the yield function in (6.2) can be reformulated into

f(Sk,trialni/n+1,C
e,k
ni/n+1)=

√[
DEV(Sk,trialni/n+1)·Ce,k
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]
:
[
Ce,k
ni/n+1 ·DEV(Sk,trialni/n+1)

]
−

−2

3
ΔtΘλni/n+1μ

[
Je,kni/n+1

]− 2
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)
−
√
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3
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Therein, it is taken into account that, at each stage tni or at the end of the time step tn+1 where
plastic deformation take place, the corresponding stress state has to lie on the yield surface.
Hence, a closed form statement for the Lagrange multiplier

λni/n+1 =

√[
DEV(Sk,trialni/n+1)·Ce,k

ni/n+1

]
:
[
Ce,k
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−
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3
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2

3
μ ΔtΘ

[
Je,kni/n+1

]− 2
3 Tr
(
C̃

−1
p,ni/n

) (6.39)

can be derived.
Thus, for stiffly accurate diagonal implicit Runge-Kutta schemes or the Newmark method,
the radial return map can be stated as follows: In the first step, the trial state in (6.34) is
determined with current total deformations and previous plastic strains. The obtained quantity
is used to determine the value of the trial yield function in (6.35). If f trial(Sk,trialni/n+1,C

e,k
ni/n+1) < 0

holds, elastic properties are predicted and the plastic strains, the stress state, and the algorithmic
constitutive tensor can be determined by
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(6.40)

whereby the general constitutive tensor G is determined in Appendix A.
For values f trial(Sk,trialni/n+1,C

e,k
ni/n+1) ≥ 0, the trial stress state lies outside the yield surface and

plastic effects are predicted. The real stress state is calculated by projecting the trial state back
onto the yield surface, cf. (Simo and Hughes, 1997). Consequently, the plastic strains, the stress
state, and the algorithmic constitutive tensor can be calculated by
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and the terms in Appendix A.
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insert initial conditions u1, u̇1, ü1
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assembly of structural entries Mni/n+1,K1,ni/n+1,R
∗
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generate effective quantities Keff, reff

solve effective system of equations KeffΔuni/n+1 = reff

update primary variables & derivatives uk+1
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validate convergence ηu ≤ η

update time step end values un+1, u̇n+1, ün+1

Figure 6.2.: Classical algorithm scheme for finite elasto(visco)plasticity involving DIRK schemes
and the Newmark method
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6.1.3.4.2. Finite Viscoplasticity: Newmark’s Method and DIRK Schemes

If viscoplastic effects are considered - instead of elastoplastic ones - the derivations in (6.28)-
(6.38) can be applied identically. In the elastic case for negative values of the trial yield func-
tion, even Equation (6.40) remains valid. However, for values f trial(Sk,trialni/n+1,C

e,k
ni/n+1) ≥ 0, the

Lagrange multiplier has to be determined following Equation (6.15)2. Together with the Def-
inition (6.38), this results in
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Apparently, the elastoplastic model is obtained for χ = 0. Ultimately, the viscoplastic strains,
the stress state, and the algorithmic constitutive tensor can be determined by
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Figure 6.2 shows an algorithmic implementation of the general finite elastoplastic and viscoplas-
tic problem concerning stiffly accurate diagonally implicit Runge-Kutta schemes and the New-

mark method.

6.2. The Principle of Jourdain for a Variational Multifield Approach

For the small strain regime, two distinct approaches concerning the implementation of elasto-
(visco)plastic models are presented in Chapter 4. The classical ansatz is based on an implicit
coupling between material laws and the balance equation, leading to a system of nested time
integration schemes in conjunction with specific projection algorithms. In contrast, the multi-
field approach rests on the idea of treating material laws and the balance law equivalently, so
that an explicit coupling between them is established and the number of primary variables is
extended. This strategy enables the application of arbitrary time integration schemes suitable
for differential algebraic systems. The underlying background is built up by taking the principle
of virtual power as a variational principle and adapting it to dissipative phenomena.
Both kinds of formulations can be transferred to the finite strain regime. While the classical
approach is elaborated in Section 6.1, the variational setting is derived further on. Distinct
aspects in this direction can be found in the literature. The idea of deducing finite elastoplastic
models by means of unified functionals is demonstrated in (Hackl, 1997). In (Miehe et al., 2004,
2002; Mosler and Bruhns, 2010; Ortiz and Stainier, 1999), the modeling and implementation
of material laws is based on extremum principles related to dissipative potentials, whereby
the concept of a dissipative potential within the finite strain regime was already established by
(Halphen and Nguyen, 1975). Mathematical considerations concerning these variational methods
are analyzed in (Carstensen et al., 2002; Mielke, 2003, 2004).
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6.2.1. The Principle of Virtual Power for Finite Elastoplasticity

Following the procedure in Section 4.2.1.1, the variational multifield approach for finite elasto-
plasticity can be derived. In the first step, it is ascertained that the balance of energy of a
continuum mechanical body B can be formulated by

P = K̇ + Ė + P ∗ +D = 0, (6.41)

stating that the power within a system is equal to zero. The included quantities are furthermore
assumed to be defined by

K̇ =

∫
Ω

ρ0ü · u̇ dV, (6.42)

Ė =

∫
Ω

ė(C,C−1
p ) dV =

∫
Ω

[
∂e

∂C
: Ċ +

∂e

∂C−1
p

: Ċ
−1
p

]
dV, (6.43)

P ∗=−
∫
Ω

ρ0u̇ · f dV −
∫
Γt∗

u̇ · t∗ dA, (6.44)

D =

∫
Ω

−S :
1

2

[
C · Ċ−1

p ·Cp

]
dV −

∫
Ω

λf(S,C) dV with λ ≥ 0. (6.45)

Therein, Ω denotes the domain comprised by the elastoplastic body and Γt∗ embodies the part of
its boundary, where external boundary forces operate on. While the term for the time derivative
of the kinetic energy K̇ is identical to the one of the small strain regime in (4.48), the volume-
specific energy e is stated as in the classical approach in Equation (6.4). Thus, the corresponding
derivatives
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∂C
=
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[
C − 1

3

[
C : C−1

p
]
Cp

]

are obtained, whereby again an isochoric plastic flow with Jp = 1 is assumed, cf. (Simo and
Miehe, 1992). The variable P ∗ represents the power due to external forces and D the dissipation
pseudopotential. Another possible formulation of the dissipation potential is stated in (Schröder
and Kuhl, 2013) - but, due to its dependence on quantities of the current configuration, this
conception seems to be ineffective.
Moreover, it is supposed that an elastoplastic body strives for a state in which the balance of
energy reaches a stationary point and, at the same time, the von Mises yield function in (6.2) is
fulfilled. Henceforth, the balance of energy in (6.41) is assumed to hold - and it is also considered
as a rate-type functional that has to be stationary. The stationarity problem

stat
u̇,Ċ

−1
p

sup
S

inf
λ≥0

P (u̇, Ċ
−1
p ,S, λ), (6.46)

is the consequence, which is the finite strain extension of the procedure described in Section 4.2.1.1.
In the next step, the inequality constraint in (6.46) is incorporated into the stationarity problem
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p
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p ·Cp

]
+λf(S,C)−ψI(λ)dV

⎤
⎦. (6.47)
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In order to determine the solution of Problem (6.47), the course of action in (Burger, 2003;
Rockafellar, 1970; Zeidler, 1985) is followed to define the stationarity condition

0 ∈ ∂P (u̇, Ċ
−1
p ,S, λ) := ∂u̇P + ∂

Ċ
−1
p
P + ∂SP + ∂λP, (6.48)

where the operator ∂(•) represents the sub- or superdifferential with regard to the respective
quantity. Together with the definition of the sub- or superdifferential in (4.55) and their link to
the Gâteaux derivative in (4.56), an evaluation of (6.48) yields:∫

Ω

ρ0 δu̇ · ü dV +

∫
Ω

∂e

∂C
: δĊ dV −

∫
Ω

ρ0 δu̇ · f dV −
∫
Γt∗

δu̇ · T ∗ dA= 0, (6.49)

∫
Ω

[
∂e

∂C−1
p

− 1

2
CT · S ·CT

p

]
: δĊ

−1
p dV = 0, (6.50)

∫
Ω

[λ f(δS,C)− λ f(S,C)] dV +

∫
Ω

1

2
C · Ċ−1

p ·Cp : [δS − S] dV ≥.0, (6.51)

∫
Ω

[ψI(δλ)− ψI(λ)] dV −
∫
Ω

f(S,C) [δλ− λ] dV ≥ 0. (6.52)

Although the weak forms in (6.49)-(6.52) are completely different to the weak form of the
classical approach in (6.20), identical strong forms can be derived. Following the statements
in Section 4.2.1.1, Inequality (6.52) yields the Karush-Kuhn-Tucker conditions as in Equa-
tion (6.9)

λ ≥ 0, f(S,C) ≤ 0, λf(S,C) = 0. (6.53)

Inequality (6.51) can be transferred to the inclusion

1

2
C · Ċ−1

p ·Cp ∈ −λ∂Sf(S,C).

If furthermore the Karush-Kuhn-Tucker conditions in (6.53), the properties of the yield
function in (6.2), and some basic tensor calculus are taken into account, the evolution equation

Ċ
−1
p = −2λC−1 · ∂f(S,C)

∂S
·C−1

p ,

is obtained. Therein, the previously needed superdifferential is replaced by the respective gradi-
ent. This is possible, since at the point

√
[DEV (S) ·C] : [C · DEV (S)] = 0, where the superdif-

ferential can have multiple values, the Lagrange multiplier is always zero. The same expression
for the evolution of plastic strains is used in the classical approach in (6.8). Equation (6.50) can
be converted into its strong counterpart by exploiting that the test function δĊ

−1
p is arbitrary

but non-zero. The connection between the derivatives of the internal energy in (6.5) as well as
the symmetry of the plastic right Cauchy-Green tensor and the right Cauchy-Green tensor
lead to the constitutive law

S = 2C−1 · ∂e

∂C−1
p

·C−1
p = 2

∂e

∂C
(6.54)

already known from Equation (6.7). The nonlinear balance of linear momentum in (2.13) and
the corresponding Neumann boundary condition in (6.1)2 can be derived from Equation (6.49).
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Therefore, the identity of the Gâteaux derivatives δĊ = 2 δĖ has to be inserted together with
the constitutive equation in (6.54). Furthermore, the symmetry of the second Piola-Kirchhoff

stress tensor and the Relationship (6.19) are equally needed, as well as the divergence theorem
in (4.22) and the product rule in (4.21). Thus, both the variational and the classical approach
are based on the same strong formulations concerning the balance equation and the material
laws.
By considering some ideas used to deduce these strong forms, the weak forms in (6.49)-(6.52) can
be simplified. The definition of the indicator function in (4.53), the constitutive law in (6.54),
and the property that the product of the yield function’s superdifferential and the Lagrange

multiplier is always single-valued lead to the set of equations∫
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ρ0 δu̇ · ü dV +
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]
: δS
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∫
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f(S,C) [δλ− λ] dV ≤ 0. (6.58)

with δλ ≥ 0, λ ≥ 0 and
√

[DEV (S) ·C] : [C · DEV (S)] �= 0. In the forthcoming analysis,
Equation (6.57) will be changed to the form

∫
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[
3
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p + λTr

(
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p
) DEV (S)√

[DEV (S) ·C] : [C · DEV (S)]

]
: δS dV = 0, (6.59)

which is deduced in Section 6.1.3.4 and is based on the formulation of (Simo and Miehe, 1992).
Throughout this, the same material model as in the conventional approach is generated, and a
comparison between the classical and the variational procedure by means of numerical examples
is enabled.
Hence, a variational multifield approach of the ideal elastoplastic problem similar to the small
strain case is established. The next step is to generate its viscoplastic extension.

6.2.2. The Principle of Virtual Power for Finite Elastoviscoplasticity

In order to incorporate viscoplastic effects in the multifield approach presented above the dis-
sipation pseudopotential in (6.45) has to be regularized. This is done in accordance with the
classical approach in Section 6.1.2, leading to

D =

∫
Ω

−S :
1

2

[
C · Ċ−1

p ·Cp

]
− 1

χ
h (f(S,C)) dV.

The variable χ therein represents a viscosity parameter, while the function h (f(S,C)) is con-
tinuously differentiable, as defined in (4.16). By performing these adaptations, viscoplastic
phenomena are modeled, since stress states outside the yield surface are tolerated but penalized.
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The time derivatives of the kinetic energy and the internal energy as well as the power of ex-
ternal forces are identical to the terms stated in (6.42)-(6.44). Furthermore, the stationarity
of the balance of energy (6.41) is assumed to derive the variational multifield approach for an
elastoviscoplastic continuum. Thus, the physical state where the total power including dissipa-
tive effects reaches a stationary point is the preferable one. The corresponding mathematical
demand is the inclusion

0 ∈ ∂P (u̇, Ċ
−1
p ,S) := ∂u̇P + ∂

Ċ
−1
p
P + ∂SP,

which results in the general weak form∫
Ω

ρ0 δu̇ · ü dV +

∫
Ω

∂e

∂C
: δĊ dV −

∫
Ω

ρ0 δu̇ · f dV −
∫
Γt∗

δu̇ · T ∗ dA= 0, (6.60)

∫
Ω

[
2
∂e

∂C
− S

]
: δĊ

−1
p dV = 0, (6.61)

∫
Ω

[
3

2
Ċ

−1
p +

1

χ
〈f(S,C)〉Tr

(
C−1

p
) DEV (S)√

[DEV (S) ·C] : [C · DEV (S)]

]
: δS dV =.0, (6.62)

whereby 〈f(S,C)〉 denotes the ramp function defined in (4.17). For the derivation of Equa-
tion (6.62), a reformulation as in Equation (6.59) is taken into account additionally. Compared
to the elastoplastic case of the previous Section 6.2.1, Equations (6.60)-(6.61) remain unaltered.
Hence, they embody, analogously, the balance of linear momentum, the accompanying Neumann

boundary condition, and the constitutive law as their strong counterparts. By considering that
the virtual stresses δS are arbitrary but non-zero, Relation (6.62) can be transformed into the
simplified strong form known from the standard ansatz in Section 6.1.3.4. The viscoplastic multi-
field approach is thus governed by the same equations as the classical procedure of Section 6.1.2,
but it possesses a completely different weak form.

6.2.3. Implementation Strategy for Multifield Finite Elastoplasticity

Although the classical and the variational ansatz for finite elastoplasticity are characterized by
the same set of equations, differences prevail: While the displacement field is the only unknown
quantity in the standard approach, the multifield procedure considers the plastic Cauchy-

Green tensor, the second Piola-Kirchhoff stress tensor, and the Lagrange multiplier
as additional primary variables. An altered initial boundary value problem, as depicted in
Figure 6.3, is the consequence, wherein the material laws are considered as balance equations.
With this reinterpretation, a single level time integration for all unknown field variables is
enabled, paving the way for the application of higher order accurate time integrators. To solve
this altered initial boundary value problem, the methods discussed in Chapter 3 are applied
as described in the subsequent sections.

6.2.3.1. Weak Formulation of Multifield Finite Elastoplasticity

The classical scheme towards finite elastoplasticity is based on a local formulation of the material
laws and the balance of linear momentum. In a further step, an integral representation of the
latter is elaborated to enable the usage of the finite element method as one part of the solution
strategy. The equations prescribing material properties maintain their local character and are
never formulated in a weak sense.
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w = [u,C−1
p ,S, λ]T

independent variables

0 = ρ0ü−∇X · [F · S]− ρ0f

S = 2
∂e

∂C

Ċ
−1
p = −2

3
λ

Tr
(
C−1

p
)
DEV (S)√

[DEV (S) ·C] : [C · DEV (S)]

f(S,C) =
√

[DEV (S) ·C] : [C · DEV (S)]−
√

2

3
σy

balance laws

u1 = u(t1), u̇1 = u̇(t1),C
−1
p,1 = C−1

p (t1)

initial conditions

u(X, t) = u∗ ∀X ∈ Γu F · S ·N = T ∗ ∀X ∈ Γt∗

boundary conditions

Figure 6.3.: Initial boundary value problem of the variational approach for finite elastoplasticity

In contrast, the point of departure of the multifield scheme is to require that the rate-type func-
tional, derived from the balance of energy, has a stationary point. Consequently, an elastoplastic
continuum is directly portrayed by means of weak formulations, consisting of the balance law
and the material equations. Hence, no additional step has to be carried out to embed the vari-
ational approach consisting of Equations (6.55)-(6.56) and (6.58)-(6.59) in the solution strategy
of Chapter 3. A comparison to the general weak form (3.1)-(3.2) yields the relations

δz1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

δu̇

δĊ

δĊ
−1
p

δS

⎤
⎥⎥⎥⎥⎥⎥⎦
,

r1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ0ü− ρ0f

∂e

∂C

2
∂e

∂C
− S

3

2
Ċ

−1
p +

λTr
(
C−1

p
)
DEV (S)√

[DEV (S) ·C] : [C · DEV (S)]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

r2 = f(S,C),

r∗ =

⎡
⎢⎢⎢⎢⎢⎣

T∗

0

0

0

⎤
⎥⎥⎥⎥⎥⎦
,

w =

⎡
⎢⎢⎢⎢⎢⎣

u

C−1
p

S

λ

⎤
⎥⎥⎥⎥⎥⎦
.

(6.63)
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The entries of the general weak form’s quantities consist of a mixture of tensor-, vector-, and
scalar-valued functions, so that their connection has to be defined properly.

6.2.3.2. Spatial Semidiscrete Linearized System of Equations

To solve a finite elastoplastic problem based on the weak forms (3.1)-(3.2) with the quantities
specified in (6.63), the semi-smooth Newton procedure described in Chapter 3 is applied.
Therefore, the most general three-dimensional case is assumed. The spatial discretization is
performed using the finite element method, partitioning the body’s domain into subdomains Ω̄e

fulfilling Equation (3.4). Thus, the geometry can be approximated continuously exploiting Re-
lation (3.5) together with the Lagrange shape functions N i derived in (3.16) as well as (3.13).
Identical shape functions are considered to interpolate the displacement field, its time deriva-
tives, and the corresponding test function δu̇e following Equations (3.7)-(3.9). The approxi-
mation of the test function δĊ is not needed explicitly since the corresponding expression in
Equation (6.55) can be reformulated by

δĊ :
∂e

∂C
= 2δĖ :

∂e

∂C
=
[
δḞ

T · F + FT · δḞ
]
:
∂e

∂C
= 2
[
FT · δḞ

]
:
∂e

∂C .
(6.64)

Therein, the symmetry of the derivative is exploited - as well as the fact that the variation is
only calculated with respect to rate expressions. Hence, the deformation gradient and its virtual
rate have to be approximated. This is achieved by Equation (3.6) as well as by

δḞ
e ≈

NN∑
i=1

δu̇ei ⊗∇XN
i(ξ), (6.65)

together with the derivatives of the Lagrange shape functions in (3.18) and (3.15). The plas-
tic right Cauchy-Green tensor, the second Piola-Kirchhoff stress tensor, the Lagrange

multiplier, and the associated test functions are also approximated by (3.7)1. However, dis-
continuities are allowed and Lagrange shape functions N̄ i are taken into account, which are
constructed using (3.13)1 and (3.16). The supporting points, however, are chosen to be equal
to the Gauss-Legendre quadrature points, see Table 3.1, which are also used later on for the
numerical integration of the weak forms. These kinds of shape functions enable jumps of the
interpolated quantities between neighboring elements, whereby the same properties as in the
classical approach are maintained. In the next step, the included inequality is reformulated into
an equality by means of a nonlinear complementarity function as in (3.31). Thus, a system
of nonlinear equations is obtained. Afterwards, a semi-smooth Newton method is generated.
This includes the appropriate linearization of all apparent equations and the introduction of an
active set strategy to account for the case distinction contained in the complementarity function.
The result is the linearized semidiscrete form

NN∑
i, j= 1
l, n∈Ak

⎡
⎢⎢⎢⎢⎢⎣
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δĊ
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Δüej

ΔC̈
−1,ej

p

ΔS̈
ej

Δλ̈en

⎤
⎥⎥⎥⎥⎥⎦+
⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 deij
sp 0 0

0 0 0 0

⎤
⎥⎥⎥⎥⎦ ◦

⎡
⎢⎢⎢⎢⎢⎣

Δu̇ej

ΔĊ
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NN∑
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δĊ
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⎡
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−reip
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⎤
⎥⎥⎥⎥⎦

λen,k+1 = 0 ∀n ∈ Ik.

(6.66)
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The indices l, n therein are introduced to distinguish between element nodes characterized by
plastic or elastic effects. Nodes inheriting plastic properties are gathered in the active set Ak,
while the inactive set Ik contains all elastic nodes. These sets are updated after each iteration
k with

Ak+1:={l|λel,k+1 + c rel,k+1
λ > 0},

Ik+1 :={l|λel,k+1 + c rel,k+1
λ ≤ 0},

(6.67)

where c > 0 is assumed. Furthermore, the following abbreviations are used:

meij
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∫
Ωe

ρ0N
iN j I |Je|dV e, deij
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3

2
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∫
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The appearing integrals are assumed to be determined numerically using the Gauss-Legendre

quadrature, leading to quantities which are characterized by distinct tensor orders. Since the
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primary variables and the corresponding test functions in (6.66) are scalar- as well as, vector- and
tensor-valued, distinct types of products have to be considered to establish their relationships
correctly. This special property is emphasized by the ’◦’-operator.
In order to solve the finite elastoplastic problem based on Equations (6.66) as well as (6.67) with
conventional routines, a realignment of the tensor-valued primary variables and test functions
into vector-valued ones has to be performed. All other affected entries in Equation (6.66) have
to be transformed in a suitable manner too. Moreover, the element-expressions are extended to
the structural level using the assembly operators in (3.25) - (3.26) as well as (3.34), resulting in
the global system of equations

MΔẅ +DΔẇ +KΔw = R∗
1 −R1, (6.68)

wk+1 = Δw +wk, (6.69)

λi,k+1 = 0 ∀i ∈ Ik, (6.70)

Ak+1:={i|λei,k+1 + c rei,k+1
λ > 0}, (6.71)

Ik+1:={i|λei,k+1 + c rei,k+1
λ ≤ 0}. (6.72)

For explicit realizations of the sorting see Section 7.2. Furthermore, it is emphasized that in
Equation (6.68) only the active entries of the assembled parts of keljλu ,k

elj
λs ,k

ein
sλ and relλ are taken

into account.

6.2.3.3. Time discretization on Structural Level

The final aspect within the multifield implementation strategy of the finite elastoplastic problem
is its temporal integration. Therefore, all methods included in Section 3.4 can be applied directly
to the semidiscrete linearized forms in (6.68)-(6.72). However, an extension to even more arbi-
trary time integration schemes has to be carried out with care. An analysis of Equation (6.66)
reveals, that there are algebraic equations inherent. For a proper solution strategy, their exact
fulfillment at the end of the time step is of great importance, cf. (Ellsiepen and Hartmann, 2001;
Hairer and Wanner, 2002). All time integration methods presented in this thesis take this into
account. Another demanding task for the time integration scheme is the adequate considera-
tion of the active set strategy. Despite these limitations, a larger variety of time discretization
procedures can simply be applied to this multifield ansatz than to the conventional approach
in Section 6.1.3.3. In the latter, the difficulty of taking algebraic equations into account also
persists due to the yield function. Furthermore, an appropriate coupling strategy is needed to
connect the time integration of the material laws to the one applied to the balance of linear
momentum. Within the multifield approach, this coupling is realized automatically, due to its
structure.

6.2.4. Implementation Strategy for Multifield Finite Viscoplasticity

In the classical approach in Section 6.1.3, similar numerical realizations are used for the treat-
ment of finite elastoplastic and finite viscoplastic deformations. The main difference between
both procedures lies in the determination of the Lagrange multiplier and, hence, affects only
the evaluation of the material laws on integration point level. The generation of the weak form
as well as its discretization, however, remain completely unchanged. In order to consider finite
viscoplastic effects in a variational multifield setting, the system of equations compared to the
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elastoplastic case is modified, see Sections 6.2.1 and 6.2.2. The Lagrange multiplier is no longer
regarded as an unknown quantity, and the altered initial boundary value problem in Figure 6.4
is the consequence. Nevertheless, also in the viscoplastic formulation, all field variables can be
temporally discretized simultaneously using higher order accurate schemes. The initial bound-

w = [u,C−1
p ,S]T

independent variables

0 = ρ0ü−∇X · [F · S]− ρ0f

S = 2
∂e

∂C

Ċ
−1
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χ
〈f(S,C)〉 Tr

(
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p
)
DEV (S)√

[DEV (S)·C]: [C ·DEV (S)]

f(S,C) =
√

[DEV (S)·C]: [C ·DEV (S)]−
√

2

3
σy

balance laws

u1 = u(t1), u̇1 = u̇(t1),C
−1
p,1 = C−1

p (t1)

initial conditions

u(X, t) = u∗ ∀X ∈ Γu F · S ·N = T ∗ ∀X ∈ Γt∗

boundary conditions

Figure 6.4.: Initial boundary value problem of the variational approach for viscoplasticity in the
finite strain regime

ary value problem’s detailed solution strategy is described in the subsequent sections, whereby
the fundamentals are explained in Chapter 3.

6.2.4.1. Weak Formulation of Multifield Finite Viscoplasticity

As in the finite elastoplastic multifield case, its viscoplastic adaptation is based on a weak
formulation. This stands in strong contrast to the classical approach, where the first step of the
numerical solution procedure is the generation of a weak form. Within the variational framework,
Equations (6.60)-(6.62) can hence be directly embedded into the solution strategy of Chapter 3
by comparing the distinct entries to the general weak form in (3.1). As a consequence, the

188



6.2. The Principle of Jourdain for a Variational Multifield Approach

following relations are obtained:

δz1=

⎡
⎢⎢⎢⎢⎢⎣
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δĊ
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S

⎤
⎥⎦
.

Special care has to be taken concerning their multiplicative connections, since tensor- and vector-
valued terms are prevalent. Nonetheless, as opposed to the elastoplastic multifield approach
in Section 6.2.1, the viscoplastic ansatz does not contain an inequality, so that the standard
Newton-Raphson scheme suffices as solution strategy.

6.2.4.2. Spatial Semidiscrete Linearized System of Equations

As discussed in Chapter 3, the first step to solve the finite viscoplastic problem in (6.60)-
(6.62) is to carry out a spatial discretization. This is done on the basis of an arbitrary three-
dimensional continuum mechanical body representing the most general case. The finite ele-
ment method is used to partition the body’s domain, fulfilling Equation (3.4), into subdomains
Ω̄e. The subdomains’ geometry is approximated continuously by Equation (3.5) together with
the Lagrange shape functions derived in (3.16) as well as in (3.13). The same shape func-
tions N i are exploited to approximate, together with Equations (3.7)-(3.9), the displacement
field, its time derivatives, and the corresponding test function. For the test function δĊ the
Relations (6.64) - (6.65) are taken into account as well as the derivatives of the Lagrange shape
functions in (3.18) and (3.15). In contrast to that, the plastic right Cauchy-Green tensor, the
second Piola-Kirchhoff stress tensor, and the associated test functions are approximated
discontinuously by (3.7)1 with the Lagrange shape functions N̄ i. Again, Equations (3.13)1
and (3.16) are employed to generate them. However, the necessary supporting points are chosen
to be identical to the Gauss-Legendre quadrature points, see Table 3.1. Due to this selection,
the approximated quantities may perform jumps across element boundaries. These assumptions
are identical to those taken into account in the finite elastoplastic case in Section 6.2.3.2.
The next step within the solution strategy requires an appropriate linearization as derived in
Equation (3.21), resulting in
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δĊ
−1,ei

p

δSei

⎤
⎥⎥⎦ ◦

⎡
⎢⎣
⎡
⎢⎣
meij

uu 0 0

0 0 0

0 0 0

⎤
⎥⎦ ◦

⎡
⎢⎢⎣
Δüej
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pu keij

pp keij
ps

keij
su keij

sp keij
ss

⎤
⎥⎥⎦ ◦
⎡
⎢⎣
Δuej

ΔC−1,ej
p

ΔSej

⎤
⎥⎦
⎤
⎥⎦= NN∑

i=1

⎡
⎢⎢⎣
δu̇ei

δĊ
−1,ei

p

δSei

⎤
⎥⎥⎦ ◦

⎡
⎢⎣
r∗,eiu − reiu

−reip

−reis

⎤
⎥⎦
.

(6.73)
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Therein, the following abbreviations are used:

meij
uu =

∫
Ωe

ρ0N
iN j I |Je|dV e,

deij
sp =

3

2

∫
Ωe

N̄ i
I N̄ j |Je|dV e,

keij
pu =

∫
Ωe

N̄ i ∂

∂Ce

[
4

∂e

∂Ce

] ∣∣∣∣
k

:
[
∇XN j ⊗ F e,k,T

]
|Je|dV e,

keij
ps =−

∫
Ωe

N̄ i
I N̄ j |Je|dV e,

keij
up =

∫
Ωe

[
F e,k ⊗∇XN i

]
:

∂

∂C−1,e
p

[
2

∂e

∂Ce

] ∣∣∣∣
k

N̄ j |Je|dV e,

keij
pp =

∫
Ωe

N̄ i ∂

∂C−1,e
p

[
2

∂e

∂Ce

] ∣∣∣∣
k

N̄ j |Je|dV e,

keij
ss =

∫
Ωe

N̄ i ∂

∂Se

[
1

χ
〈f(Se,Ce)〉 Tr

(
C−1,e

p
)
DEV (Se)√

[DEV (Se)·Ce]: [Ce ·DEV (Se)]

] ∣∣∣∣
k

N̄ j |Je|dV e,

keij
sp =

∫
Ωe

N̄ i 1

χ
〈f(Se,k,Ce,k)〉 ∂

∂C−1,e
p

[
Tr
(
C−1,e

p
)
DEV (Se)√

[DEV (Se)·Ce]: [Ce ·DEV (Se)]

] ∣∣∣∣
k

N̄ j |Je|dV e,

keij
uu =

∫
Ωe

[
F e,k⊗∇XN i

]
: 4

∂e2

∂Ce∂Ce

∣∣∣∣
k

:
[
∇XN j ⊗ F e,k,T

]
|Je|dV e+

∫
Ωe

∇XN i ·Se,k ·∇XN j I |Je|dV e,

keij
su =

∫
Ωe

N̄ i ∂

∂Ce

[
1

χ
〈f(Se,Ce)〉 2Tr

(
C−1,e

p
)
DEV (Se)√

[DEV (Se)·Ce]: [Ce ·DEV (Se)]

] ∣∣∣∣
k

:
[
∇XN j ⊗ F e,k,T

]
|Je|dV e,

reis =

∫
Ωe

N̄ i

⎡
⎢⎢⎣32
[
Ċ

e,k

p

]−1

+
1

χ
〈f(Se,k,Ce,k)〉

Tr
([

Ce,k
p

]−1
)

DEV
(
Se,k
)

√[
DEV

(
Se,k
)
·Ce,k

]
:
[
Ce,k ·DEV

(
Se,k
)]
⎤
⎥⎥⎦ |Je|dV e,

reip =

∫
Ωe

N̄ i

[
2

∂e

∂Ce

∣∣∣∣
k

− Se,k

]
|Je|dV e,

r∗,eiu =

∫
Ωe

N i ρ0f |Je|dV e +

∫
Γe
t∗

N i T ∗|Je,red|dAe,

reiu =

∫
Ωe

N i ρ0ü
e,k |Je|dV e +

∫
Ωe

F e,k · 2 ∂e

∂Ce

∣∣∣∣
k

· ∇XN i |Je|dV e.

The included integrals are calculated numerically with the help of a Gauss-Legendre quadra-
ture. However, care has to be taken since the different entries of Equation (6.73) are vector-
and tensor-valued, so that their appropriate multiplicative connection is established by the
’◦’-operator. In order to be able to solve this finite viscoplastic problem with conventional
solvers, a realignment of the tensor-valued primary variables and test functions into vector-
valued ones has to be performed. All other affected entries have to be transformed in a suitable
manner too. Moreover, the elemental expressions are extended to the structural level using the
assembly operators in (3.25) - (3.26), resulting in the global system of equations

MΔẅ +DΔẇ +KΔw = R∗
1 −R1, (6.74)

wk+1= Δw +wk.
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6.3. Summary

6.2.4.3. Time discretization on Structural Level

Before the unknown primary variables of the linear semidiscrete system of Equations (6.74) can
be calculated, a time integration procedure has to be applied. This can be done in accordance
with Section 3.4 using the described methods. However, it should be emphasized that the system
of Equations (6.74) contains algebraic equations, although the yield surface is no longer included
as an inequality constraint as in the elastoplastic case. Therefore, special demands are made on
the time discretization schemes, since the algebraic equations have to be fulfilled at the end of the
time step, cf. (Ellsiepen and Hartmann, 2001; Hairer and Wanner, 2002). All time integration
methods presented in this thesis take this into account. In the variational approach, a greater
variety of time discretization schemes can be applied in a simpler manner than in the case of
the conventional scheme. Therein, the time integration methods of the balance law and of the
material laws have to be coupled exploiting specific strategies. In the multifield approach, this
is not necessary.

6.3. Summary

The general elasto(visco)plastic problem is defined to enable a uniform numerical treatment of
distinct material formulations considering inelastic effects. This chapter brings this concept to
life. Herein, widespread models for elastoplasticity as well as for viscoplasticity in the finite
strain context are presented and integrated into this systematic framework. For the derivation
and the implementation of these material laws, two approaches are followed.
The classical ansatz is based on the balance of linear momentum as balance equation, describing
the movement of general continuum mechanical bodies. The equations describing the corre-
sponding (visco)plastic material behavior are settled on a multiplicative split of the deformation
gradient and exploit the fact that the dissipation inequality in the reference configuration has
to be fulfilled. While plastic properties are characterized by a rate-independent formulation,
viscoplastic features are controlled by the speed of the deformation process. For sufficiently slow
displacement rates, both models yield identical results. Hence, viscoplasticity can be considered
as a regularization of plasticity. The numerical realization within the classical approach focusses
on the weak formulation of the balance of linear momentum. A comparison with the general
elasto(visco)plastic problem enables a solution strategy as mentioned in Chapter 3. Only the
embedding of the material laws leads to a deviation. The material laws are exclusively evaluated
at integration point level and, thus, require a special treatment. Their time integration is cou-
pled to the one of the balance of linear momentum by exploiting a radial return map algorithm
together with diagonally implicit Runge-Kutta schemes as well as the Newmark method.
In contrast to this course of action, an enhanced variational multifield approach is developed.
It is founded on the principle of Jourdain, wherein the stationarity conditions of a rate-type
functional are calculated. As a result, the balance of linear momentum and the material laws
are formulated in a weak sense. Hence, it is not necessary to incorporate a distinction between
the balance law and the material expressions in the solution procedure, allowing for a direct
application of the schemes established in Chapter 3. Due to the equal treatment of both types
of formulations, the number of unknowns is increased - but a variety of higher order accurate
time integrators can be applied directly to all field variables. The limitation to diagonally im-
plicit Runge-Kutta schemes or the Newmark method and the necessity of special projection
strategies is neutralized, although the considered material models are identical to those of the
classical approach.
With the approaches presented in this chapter, a straightforward extension of the small strain
procedures depicted in Chapter 4 is accomplished, whereby the derivation and the implemen-
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6. Large Strain Elastoplasticity and Viscoplasticity

tation strategies remain identical. The result is that - within the variational multifield approach,
not only in the small strain regime but also within finite strains - a variety of distinct classes of
higher order accurate time discretization schemes can be applied.
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7. Deformation of an Axisymmetric Steel Shaft in Finite Strain
(Visco)plasticity

As in the small strain case, both the classical and the variational approach are compared in
the finite strain regime - with regard to their applicability, their solution accuracy, and their
convergence behavior. Therefore, the dynamic benchmark problem established in Section 5.2 is
extended appropriately. The quasi-static analyses carried out in the same Chapter 5 are not
transferred to finite deformations, since no further insight can be gained and since the focus lies
on implementing higher order accurate time integration schemes.
The thermomechanical deformation process depicted in Chapter 1 served as motivation to
construct a benchmark problem for small strain dynamic elasto(visco)plasticity. Due to the
appearing large deformations, the enhancement to the finite strain regime is closely related. In
order to generate a corresponding benchmark problem as a real extension to the small strain case,
the essential parameters of the problem statement in Section 5.2 are maintained. This includes
that the process-inherent thermal effects are neglected. Hence, the forging process of the steel
shaft is again modeled exploiting an axisymmetric ansatz, leading to a displacement field solely
characterized by its radial and axial components u(X) = [uR, uZ]. Due to the introduction of
polar coordinates and their position-dependent basis vectors, the material deformation tensor is
expressed in an echo of Equation (5.3) by

F =

⎡
⎢⎢⎢⎣
FRR 0 FRZ

0 FΦΦ 0

FZR 0 FZZ

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1 +

∂uR

∂R
0

∂uR

∂Z

0 1 +
uR

R
0

∂uZ

∂R
0 1 +

∂uZ

∂Z

⎤
⎥⎥⎥⎥⎥⎦
,

(7.1)

while, in accordance with Equation (5.4), the second Piola-Kirchhoff tensor can be restated
into

S =

⎡
⎢⎢⎢⎣
SRR 0 SRZ

0 SΦΦ 0

SRZ 0 SZZ

⎤
⎥⎥⎥⎦
.

(7.2)

For additional information concerning polar coordinates see Appendix C. The respective
model specifications concerning the material parameters, geometric aspects, and load condi-
tions, are chosen as shown in Figure 5.6.

7.1. Classical Approach towards the Dynamic Analysis of Finite
Elastoplasticity

In order to solve the finite strain variant of the dynamic benchmark problem using the classi-
cal approach described in Section 6.1, the tangential quantities in Equation (6.22) have to be
adapted. This is crucial to take the example’s axisymmetric nature into account. Moreover, it is
convenient to reduce the computational effort by exchanging the tensor calculus by matrix vector
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multiplications. In this context, the greatest modifications have to be performed with regard to
the tangential stiffness matrix. Therefore, the deformation tensor in (7.1) is exploited to form
the right Cauchy-Green tensor and the Green-Lagrange strain tensor of Equation (2.3).
The existence of zero entries and prevailing symmetry aspects can then be employed to generate
the vector-valued quantities

C =

⎡
⎢⎢⎣
CRR
CΦΦ

CZZ
CRZ

⎤
⎥⎥⎦
,

E =

⎡
⎢⎢⎣
ERR
EΦΦ

EZZ
ERZ

⎤
⎥⎥⎦
,

F =

⎡
⎢⎢⎢⎢⎣
FRR
FΦΦ

FZZ
FRZ
FZR

⎤
⎥⎥⎥⎥⎦
.

(7.3)

The reformulation of the second Piola-Kirchhoff stress tensor is twofold. On the one hand,
a vector-valued quantity is of interest - while, on the other hand, a matrix-like expression is
needed

S =

⎡
⎢⎢⎣
SRR
SΦΦ

SZZ
2SRZ

⎤
⎥⎥⎦
,

S =

⎡
⎢⎢⎢⎢⎣
SRR 0 0 SRZ 0
0 SΦΦ 0 0 0
0 0 SZZ 0 SRZ

SRZ 0 0 SZZ 0
0 0 SRZ 0 SRR

⎤
⎥⎥⎥⎥⎦
.

(7.4)

In accordance with the small strain case, the algorithmic constitutive tensor G can be recast
into

G =

⎡
⎢⎢⎣

GRRRR GRRΦΦ GRRZZ 2GRRRZ
GΦΦRR GΦΦΦΦ GΦΦZZ 2GΦΦRZ
GZZRR GZZΦΦ GZZZZ 2GZZRZ

2GRZRR 2GRZΦΦ 2GRZZZ 4GRZRZ

⎤
⎥⎥⎦
.

(7.5)

Additionally, the restructuring of the terms related to shape functions has to be performed. For
this purpose, the abbreviations

Bi
g=

⎡
⎢⎢⎢⎣
∂N i

∂R

N i

R
0

∂N i

∂Z
0

0 0
∂N i

∂Z
0

∂N i

∂R

⎤
⎥⎥⎥⎦

T

,

Bi
m=

⎡
⎢⎢⎢⎣
FRR

∂N i

∂R
FΦΦ

N i

R
FRZ

∂N i

∂Z

1

2

[
FRR

∂N i

∂Z
+ FRZ

∂N i

∂R

]

FZR
∂N i

∂R
0 FZZ

∂N i

∂Z

1

2

[
FRR

∂N i

∂Z
+ FRZ

∂N i

∂R

]
⎤
⎥⎥⎥⎦

T

(7.6)

are introduced.
Concerning the tangential mass matrix, only the unity matrix’s dimension has to be reduced,
in contrast to the general three-dimensional case, since the axisymmetric displacement vector
only consists of two unknowns. Within the load vector, the volume forces and the surface forces
can be neglected due to the displacement based load. Thus, for Equation (6.22) the adapted
tangential quantities

meij =

∫
Ωe

N iN j I |Je|dV e, (7.7)

keij =

∫
Ωe

[
Bi

m
]T

2 G
k
Bj

m |Je|dV e +

∫
Ωe

[
Bi

g
]T

S
k

Bj
g |Je|dV e, (7.8)

rei1 =

∫
Ωe

N i ρ0ü
e,k |Je|dV e +

∫
Ωe

[
Bi

m
]T

S
k |Je|dV e (7.9)

are obtained.
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7.2. Variational Approach towards the Dynamic Analysis of Finite
Elastoplasticity

In order to simulate the dynamic benchmark problem of finite elastoplasticity also using the
multifield setting, similar simplifications as in the classical approach have to be considered.
Therefore, the tangential quantities included in Equation (6.66) are reformulated into

meij
uu =

∫
Ωe

ρ0N
iN j I |Je|dV e, deij

sp =
3

2

∫
Ωe

N̄ i I N̄ j |Je|dV e, keij
pu =

∫
Ωe

N̄ i4G
e,k

1 Bj
m|Je|dV e, (7.10)

keij
ps = −

∫
Ωe

N̄ i I N̄ j |Je|dV e, keij
up =

∫
Ωe

[
Bi

m

]T
2G

e,k

2 N̄ j |Je|dV e, keij
pp =

∫
Ωe

N̄ i2G
e,k

2 N̄ j |Je|dV e, (7.11)

keij
uu =

∫
Ωe

[
Bi

g

]T
S

e,k

Bj
g|Je|dV e +

∫
Ωe

[
Bi

m

]T
4G

e,k

1 Bj
m|Je|dV e, (7.12)

keij
sp =

∫
Ωe

N̄ iλe,kG
e,k

8 N̄ j |Je|dV e, keij
su =

∫
Ωe

N̄ iλe,k2G
e,k

9 Bj
m|Je|dV e, kelj

λs = −
∫
Ωe

N̄ lG
e,k,T
6 N̄ j |Je|dV e,

kelj
λu =−

∫
Ωe

2N̄ lG
e,k,T
7 Bj

m|Je|dV e, keij
ss =

∫
Ωe

N̄ iλe,kG
e,k

5 N̄ j |Je|dV e, kein
sλ =

∫
Ωe

N̄ iG
e,k

4 N̄n|Je|dV e,

while the load vectors can be recast into

reip =

∫
Ωe

N̄ i

[
2G

e,k

11 −S
e,k
]
|Je|dV e, reiu =

∫
Ωe

N i ρ0ü
e,k|Je|dV e +

∫
Ωe

F e,kS
e,k∇XN i|Je|dV e, (7.13)

reis =

∫
Ωe

N̄ i

[
3

2
G

e,k

10 +λe,kG
e,k

4

]
|Je|dV e, relλ = −

∫
Ωe

N̄ if(Se,k,Ce,k)|Je|dV e.

Here, it is a useful feature that no volume forces or surface loads are applied - only internal
forces. Furthermore, the axisymmetric properties reduce the inherited unity matrix I to a
two-dimensional one and allow the tensor-valued quantities to be recast into matrix or vector
formulations

G1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂CRR

[
∂e

∂CRR

]
∂

∂CΦΦ

[
∂e

∂CRR

]
∂

∂CZZ

[
∂e

∂CRR

]
2

∂

∂CRZ

[
∂e

∂CRR

]
∂

∂CRR

[
∂e

∂CΦΦ

]
∂

∂CΦΦ

[
∂e

∂CΦΦ

]
∂

∂CZZ

[
∂e

∂CΦΦ

]
2

∂

∂CRZ

[
∂e

∂CΦΦ

]
∂

∂CRR

[
∂e

∂CZZ

]
∂

∂CΦΦ

[
∂e

∂CZZ

]
∂

∂CZZ

[
∂e

∂CZZ

]
2

∂

∂CRZ

[
∂e

∂CZZ

]

2
∂

∂CRR

[
∂e

∂CRZ

]
2

∂

∂CΦΦ

[
∂e

∂CRZ

]
2

∂

∂CZZ

[
∂e

∂CRZ

]
4

∂

∂CRZ

[
∂e

∂CRZ

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂C−1
p,RR

[
∂e

∂CRR

]
∂

∂C−1
p,ΦΦ

[
∂e

∂CRR

]
∂

∂C−1
p,ZZ

[
∂e

∂CRR

]
2

∂

∂C−1
p,RZ

[
∂e

∂CRR

]

∂

∂C−1
p,RR

[
∂e

∂CΦΦ

]
∂

∂C−1
p,ΦΦ

[
∂e

∂CΦΦ

]
∂

∂C−1
p,ZZ

[
∂e

∂CΦΦ

]
2

∂

∂C−1
p,RZ

[
∂e

∂CΦΦ

]

∂

∂C−1
p,RR

[
∂e

∂CZZ

]
∂

∂C−1
p,ΦΦ

[
∂e

∂CZZ

]
∂

∂C−1
p,ZZ

[
∂e

∂CZZ

]
2

∂

∂C−1
p,RZ

[
∂e

∂CZZ

]

2
∂

∂C−1
p,RR

[
∂e

∂CRZ

]
2

∂

∂C−1
p,ΦΦ

[
∂e

∂CRZ

]
2

∂

∂C−1
p,ZZ

[
∂e

∂CRZ

]
4

∂

∂C−1
p,RZ

[
∂e

∂CRZ

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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I =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IRRRR IRRΦΦ IRRZZ 2IRRRZ

IΦΦRR IΦΦΦΦ IΦΦZZ 2IΦΦRZ

IZZRR IZZΦΦ IZZZZ 2IZZRZ

2IRZRR 2IRZΦΦ 2IRZZZ 4IRZRZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G3 =
Tr

(
[Cp]

−1)DEV (S)√
[DEV (S)·C]: [C ·DEV (S)]

, G4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G3,RR

G3,ΦΦ

G3,ZZ

2G3,RZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂G3,RR

∂SRR

∂G3,RR

∂SΦΦ

∂G3,RR

∂SZZ
2
∂G3,RR

∂SRZ

∂G3,ΦΦ

∂SRR

∂G3,ΦΦ

∂SΦΦ

∂G3,ΦΦ

∂SZZ
2
∂G3,ΦΦ

∂SRZ

∂G3,ZZ

∂SRR

∂G3,ZZ

∂SΦΦ

∂G3,ZZ

∂SZZ
2
∂G3,ZZ

∂SRZ

2
∂G3,RZ

∂SRR
2
∂G3,RZ

∂SΦΦ
2
∂G3,RZ

∂SZZ
4
∂G3,RZ

∂SRZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G6 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f(S,C)

∂SRR

∂f(S,C)

∂SΦΦ

∂f(S,C)

∂SZZ

2
∂f(S,C)

∂SRZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂f(S,C)

∂CRR

∂f(S,C)

∂CΦΦ

∂f(S,C)

∂CZZ

2
∂f(S,C)

∂CRZ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G8 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂G3,RR

∂C−1
p,RR

∂G3,RR

∂C−1
p,ΦΦ

∂G3,RR

∂C−1
p,ZZ
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.

Apart from these terms, the expressions in (7.3)-(7.6) are taken into account. Concerning the
spatial approximation of the distinct fields, different shape functions are chosen. While N i repre-
sent continuous approximations with Lagrange shape functions, N̄ i characterize discontinuous
ones. With these modifications at hand, a numerical comparison between the classical and the
multifield approach can be carried out with the help of the dynamic benchmark problem.

7.3. Classical vs. Variational Approach of Finite Elastoplasticity

In accordance with the small strain regime for both approaches, an exemplary mesh consisting
of NER = 2 and NEZ = 15 biquadratic elements in gR- as well as in gZ-direction is taken into
account. The displacement field is approximated continuously using biquadratic Lagrange

shape functions. Within the variational approach, the stresses, the plastic strains, and the
Lagrange multiplier are approximated using biquadratic Lagrange shape functions which
are based on the Gauss-Legendre quadrature points in Table 3.1. Thus, the realization of
spatial discontinuities over element boundaries is enabled. For the time discretization, the
DIRK(3) scheme with a time step size of Δt = 1 · 10−5s is applied. For this case, exemplary
solutions are listed in Appendix E.
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7.3. Classical vs. Variational Approach of Finite Elastoplasticity

In the first step, the finite strain solution obtained by the classical setting is opposed to the corre-
sponding small strain result. In Figure 7.1, the temporal progress of the material characterizing
quantities is analyzed at evaluation point 1©.
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Figure 7.1.: Evaluation for NER = 2, NEZ = 15 at point 1© for the small strain case (red) and the
finite strain case (black): (a) Stress-time diagram, (b) Plastic strain-time diagram,
(c) Lagrange multiplier-time diagram, (d) Strain-time diagram, (e) Stress-strain
diagram, (f) Deviatoric stress-strain diagram

Figure 7.1 (a) shows the evolution of the stress component σZZ and the part SZZ of the sec-
ond Piola-Kirchhoff stress tensor over time. The temporal progress of the plastic strains
εp,ZZ/Ep,ZZ, the Lagrange multiplier and the strains εZZ/EZZ is depicted in
Figure 7.1 (b)-(d). Figure 7.1 (e) portrays the stress-strain diagram of the ZZ-components
within both regimes. The corresponding deviatoric stress evolution can be observed in Figure 7.1
(f). While the stresses only exhibit minor differences between the small and the finite strain
regime, remarkable deviations can be observed for the strain equivalent quantities and the La-

grange multiplier, although the biggest depicted strains do not exceed 5%. The considered
nonlinearities are clearly mirrored in the total and plastic strain courses in Figure 7.1 (b) and
(d), demonstrating the necessity of finite strain models. Identical graphs as obtained by the
classical finite strain approach are achieved within the variational setting. Thereby, the maxi-
mum deviation in the displacement, the stress, and the plastic strain field is of about 0.005%
compared to the classical approach.
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7. Deformation of an Axisymmetric Steel Shaft in Finite Strain (Visco)plasticity
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Figure 7.2.: Local time discretization error of the h- and the embedded method for the dis-
placement, the plastic strain, and the stress field within the conventional and the
multifield approach: (a)-(c) h-error DIRK(3) conventional, (d)-(f) h-error DIRK(3)
multifield, (g)-(i) embedded error DIRK(3) conventional, (k)-(m) embedded error
DIRK(3) multifield
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7.3. Classical vs. Variational Approach of Finite Elastoplasticity

In the next step, the time discretization error of both finite strain schemes related to the DIRK(3)
method is compared. Distinct error curves for various time step sizes are depicted in Figure 7.2.
Figure 7.2 (a)-(c) show the h-error of the displacement field, the second Piola-Kirchhoff

stresses and the plastic Cauchy-Green strains for the conventional approach.Figure 7.2(d)-(f)
yield the graphs for the corresponding quantities in the multifield approach. For all error es-
timations, it can be observed that the error always decreases for a decreasing time step size.
While a comparison between both settings of the quantities linked to the displacement field
results in no differences, the course of the h-error of the stresses and the plastic strains diverges.
This phenomenon can also be seen in Table 7.1 within the orders of consistency determined
by local error estimates. For the stresses and the plastic strains, the multifield approach leads
to consistency rates which are one order lower than within the conventional ansatz. For the
embedded error, however, these differences do not appear. The accompanying graphs for the
conventional approach can be seen in Figure 7.2 (g)-(i). The multifield setting is evaluated in
Figure 7.2 (k)-(m). A portray of the stress field’s embedded error in the conventional approach
is missing, since no time discretization of the stress field is performed there.
The benefit of the multifield approach, however, is the simple applicability of higher order accu-
rate schemes as already shown in the small strain context in Chapter 5. Hence, another imple-
mentation strategy for the DIRK(3) method can be followed. Therein, a reformulated diagonally
implicit Runge-Kutta scheme (rDIRK(3)) is created, resulting in a solution procedure where
all stages of one time step are solved simultaneously as it is the case within fully implicit Runge-

Kutta methods. In the DIRK(3) method, in contrast, each stage is solved one after another,
exploiting the information of previous stages. This is also the implemented form used within
the classical approach. The resulting h-error curves for the displacement, the stress, and the
plastic strain field of the reformulated rDIRK(3) scheme are illustrated in Figure 7.3 (g)-(i).
Comparing those to the graphs of the conventional approach in Figure 7.2 (a)-(c), demonstrates
that the discrepancies disappear and the reduction of the order of consistency of the multifield
approach is cured, cf. Table 7.1. Correspondingly, within the multifield approach the DIRK(3)
method suffers from order reduction phenomena while the rDIRK(3) scheme does not. In the
small strain regime, this kind of order reduction cannot be observed, see Section 5.2.2. Despite,
the orders of convergence determined by the global h-error are identical for all methods.

Table 7.1.: Estimation of the order of consistency/convergence for finite strain plasticity

qh(u) qh(C
−1
p ) qh(S) qr(u)/ qr(C

−1
p )/ qr(S)/ qglob

h (u) qglob
h (C−1

p ) qglob
h (S)

qemb(u) qemb(C
−1
p ) qemb(S)

DIRK(3) con 2.46 2.59 2.37 1.66 1.36 − 2.38 2.23 2.12

DIRK(3) multi 2.45 1.59 1.54 1.66 1.33 1.05 2.41 2.22 2.12

rDIRK(3) 2.46 2.59 2.38 1.66 1.36 1.08 2.41 2.23 2.12

Lobatto IIIC(2) 1.53 1.50 1.37 − − − 1.90 1.81 1.24

Radau IIA(2) 2.57 2.59 2.50 − − − 2.55 2.37 2.27

cG1(2) 2.57 2.49 2.50 0.99 2.62 0.03 2.55 2.37 2.27

dG1(2) 3.43 3.51 3.36 1.00 2.63 2.71 2.20 2.39 2.79

In addition to the diagonal implicit Runge-Kutta schemes, further more general higher order
accurate time integrators are analyzed in the multifield framework. Figure 7.3 shows the h-
method error curves for the displacement field, the second Piola-Kirchhoff stresses, and the
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7. Deformation of an Axisymmetric Steel Shaft in Finite Strain (Visco)plasticity

plastic Cauchy-Green strains for the fully implicit Runge-Kutta schemes Lobatto IIIC(2)
and Radau IIA(2). Again, it can be observed that the error decreases with decreasing time
step sizes, while the error in the stress field is higher than in the displacement and in the plastic
strain field. The obtained orders of consistency are listed in Table 7.1. It can be noticed that
the theoretical orders are not obtained and the highest order of consistency lies well below three,
however, these discrepancies are identical to those of the small strain case. The orders of conver-
gence determined by global error estimates are listed in Table 7.1, too. For the Radau IIA(2)
scheme, their range is similar to the orders of consistency. For the Lobatto IIIC(2) method,
the orders of convergence are even higher than the orders of consistency.
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Figure 7.3.: Local time discretization error of the h-method for the displacement, the plastic
strain, and the stress field for distinct time integration methods within the multifield
approach:(a)-(c)Lobatto IIIC(2), (d)-(f)Radau IIA(2), (g)-(i) rDIRK(3)
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Figure 7.4.: Local time discretization error of the h- and the residual method for the displace-
ment, the plastic strain, and the stress field for distinct time integration methods
within the multifield approach: (a)-(c) h-error cG1(2), (d)-(f) residual error cG1(2),
(g)-(i) h-error dG1(2), (k)-(m) residual error dG1(2)
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7. Deformation of an Axisymmetric Steel Shaft in Finite Strain (Visco)plasticity

Figure 7.4 (a)-(c) show the h-error curves of the the displacement field, the second Piola-

Kirchhoff stresses and the plastic Cauchy-Green strains for the continuous Galerkin

method in the one-field setting. Figure 7.4 (d)-(f) depict the corresponding residual error
curves. Figure 7.4 (g)-(i) and (k)-(m) show the analogous curves for the discontinuous Galerkin

method in the one-field setting. Both schemes are based on a polynomial degree of two. Except
for the residual error of the stress field within the continuous Galerkin scheme, all error curves
decrease with decreasing time step size. The achieved orders of consistency and convergence are
listed in Table 7.1. While the continuous Galerkin scheme reaches orders of consistency well
above two for the h-error, the discontinuous approach reaches orders well above three. With
increasing order of consistency, the error level decreases. The corresponding orders of conver-
gence, however, are all just well above order two. Comparing Table 7.1 to its counterpart in the
small strain regime, Table 5.3 shows huge similarities. Only the orders of consistency for the
residual error of the stress and the plastic strain field diverge drastically.
Because of the high computational effort, all other time integrators applied within the small
strain regime are not analyzed in the finite strain case. However, due to the substantial analogies
demonstrated, comparable results are expected.

7.4. Classical Approach towards the Dynamic Analysis of Finite
Elastoviscoplasticity

Analogously to the small strain case, the viscoplastic regularization is taken into account within
the conventional approach also in the finite strain regime. The numerical analysis is carried out
concerning the same dynamic example as in elastoplasticity, see Section 7.3. Thus, the terms
in Equations (7.1)-(7.9) remain valid. Only the algorithmic constitutive tensor G is subject to
changes due to the viscoplastic adaptation, see Section 6.1.2. To ensure a comparability between
the elastoplastic and the viscoplastic approach, the same biquadratic spatial mesh consisting of
NER = 2 as well as NEZ = 15 elements and the identical Lagrange approximations as within
the elastoplastic model are chosen. The viscosity parameter χ = 0.001 Ns/mm2 is selected to
be small. The suitability of this choice is demonstrated in Figure 7.5.
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Figure 7.5.: Comparison of the elastoplastic and the viscoplastic model at evaluation point 1©:
(a) Stress-time diagram, (b) Plastic strain-time diagram, (c) Deviatoric stress-strain
diagram

Therein, the evolution of the axial component of the stress and the plastic strain for both the
elastoplastic and the viscoplastic model is portrayed over time at evaluation point 1©. Addi-
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tionally, the deviatoric stress strain diagram is illustrated. For the time discretization of both
models, a DIRK(3) scheme with a time step size Δt = 1 · 10−5 s is applied. This demonstrates
that the results of both models are identical. A more precise examination serves to determine
the maximal absolute deviations of the stress, the displacement, as well as the plastic strain
field. Their relation to the elastoplastic approach reveals that values greater than 0.2% are not
obtained.

7.5. Variational Approach for the Dynamic Analysis of Finite
Elastoviscoplasticity

In order to investigate the effect of higher order accurate time integrators in the context of finite
elastoviscoplasticity, the multifield approach is also analyzed within this dynamic benchmark
problem. Due to the axisymmetric characteristics, a recast of the formulations in (6.73) is
carried out. Therefore, the terms (7.10)-(7.13) of the elastoplastic case can be exploited because
of their identity. Additionally, the quantities

keijsp =

∫
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N̄ i 1

χ
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together with the abbreviations
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have to be taken into account. With these modifications at hand, a numerical comparison
between the classical and the multifield approach as well as an investigation of the functionality
of various time integration schemes can be performed.
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7.6. Classical vs. Variational Approach of Finite Elastoviscoplasticity

Exploiting the relations in Section 7.5 as well as 7.4 allows to evaluate the finite strain elas-
toviscoplastic benchmark problem within the classical and the multifield approach. As spatial
discretization, a biquadratic mesh consisting of NER = 2 as well as NEZ = 15 elements is
used together with a continuous approximation of the displacement field taking biquadratic La-

grange shape functions into account. For the variational approach, additional discontinuous
approximations are established for the stresses and the strains, whereby Lagrange shape func-
tions with Gauss-Legendre quadrature points serve as a basis. In a first step, both strategies
are compared applying a DIRK(3) scheme with a time step size Δt = 1 · 10−5 s. The maxi-
mum deviation in the displacement, the stress, and the plastic strain field lies at about 0.0001%
compared to the classical approach, so that both solutions can be considered as identical.
In a further step, the applied DIRK(3) time discretization scheme is analyzed in detail. The cor-
responding h-error curves of the displacement field, the second Piola-Kirchhoff stresses, and
the plastic Cauchy-Green strains are depicted in Figure 7.6 (a)-(c) for the conventional and in
Figure 7.6 (d)-(f) for the multifield approach. Additionally, Figure 7.6 (g)-(i) and (k)-(m) show
the results for the embedded error estimator. A portrait of the stress field’s embedded error in
the conventional approach is missing, since no time discretization of the stress field is performed
there. It can be seen that the error decreases for all graphs with decreasing time step size. Fur-
thermore, the error of the stress field is higher than for the plastic strain and the displacement
field. If the h-error of the second Piola-Kirchhoff stresses and the plastic Cauchy-Green

strains of the distinct approaches are opposed directly, it becomes apparent that discrepancies
prevail. These can also be recognized within the orders of consistency in Table 7.2. While the
conventional ansatz reaches orders of consistency well above two, the multifield setting does not
even come close. This phenomenon is already known from the elastoplastic model in the finite
strain regime in Section 7.3. Therein, the staggered DIRK(3) scheme is exchanged by its refor-
mulated rDIRK(3) counterpart in order to cure this problem. Following the same idea in the
elastoviscoplastic case yields the same result. The order reduction is cancelled out. The linked
plots can be observed in Figure 7.7 (g)-(f). The orders of convergence determined by the global
h-error, also listed in Table 7.2, do not have this characteristic. There, the orders of the three
methods are almost identical. With this analysis, it is demonstrated that, despite the higher
numerical effort of the multifield approach, higher or equivalent orders of consistency compared
to the classical ansatz are not necessarily obtained.

Table 7.2.: Estimation of the order of consistency/convergence for finite strain viscoplasticity

qh(u) qh(C
−1
p ) qh(S) qr(u)/ qr(C

−1
p )/ qr(S)/ qglob

h (u) qglob
h (C−1

p ) qglob
h (S)

qemb(u) qemb(C
−1
p ) qemb(S)

DIRK(3) con 2.46 2.36 2.22 1.66 1.36 − 2.40 2.23 2.12

DIRK(3) multi 2.46 1.53 1.50 1.68 1.33 1.03 2.38 2.22 2.12

rDIRK(3) 2.46 2.36 2.23 1.67 1.36 1.08 2.43 2.23 2.12

Lobatto IIIC(2) 1.54 1.50 1.38 − − − 1.91 1.82 1.26

Radau IIA(2) 2.57 2.56 2.40 − − − 2.56 2.38 2.27

cG1(2) 2.57 2.27 2.40 1.00 2.00 0.77 2.56 2.38 2.27

dG1(2) 3.42 3.33 3.21 1.00 1.82 2.69 2.27 2.44 2.79
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Figure 7.6.: Local time discretization error of the h- and the embedded method for the displace-
ment, the viscoplastic strain, and the stress field within conventional and multifield
elastoviscoplasticity: (a)-(c) h-error DIRK(3) conventional, (d)-(f) h-error DIRK(3)
multifield, (g)-(i) embedded error DIRK(3) conventional, (k)-(m) embedded error
DIRK(3) multifield
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However, the multifield setting is derived to enable the application of further higher order ac-
curate schemes. Figure 7.7 (a)-(c) show the time discretization h-error results of the displace-
ment field, the stresses, and the plastic strains for the fully implicit Lobatto IIIC(2) and in
Figure 7.7 (d)-(f) for the Radau IIA(2) scheme.
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Figure 7.7.: Local time discretization error of the h-method for the displacement, the vis-
coplastic strain, and the stress field for distinct time integration methods within
multifield elastoviscoplasticity: (a)-(c) Lobatto IIIC(2), (d)-(f) Radau IIA(2),
(g)-(i) rDIRK(3)

Figure 7.8 (a)-(c) and Figure 7.8 (g)-(i) illustrate the respective curves for the continuous as
well as the discontinuous Galerkin cG1(2) and dG1(2) method. Additionally, the residual
error estimates are exemplified in Figure 7.8 (d)-(f) and (k)-(m). For all curves in the men-
tioned figures, the error decreases with decreasing time step size. This is also the case for the
residual error of the stress field within the continuous Galerkin scheme. In the finite strain
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Figure 7.8.: Local time discretization error of the h- and the residual method for the displace-
ment, the viscoplastic strain, and the stress field for distinct time integration meth-
ods within multifield elastoviscoplasticity: (a)-(c) h-error cG1(2), (d)-(f) residual
error cG1(2), (g)-(i) h-error dG1(2), (k)-(m) residual error dG1(2)
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elastoplastic model, a distinct behavior is observed. The orders of consistency and convergence
of the displacement field, the stresses, and the plastic strains shown in Table 7.2, are almost
identical to those determined in the finite elastoplastic context. The discontinuous Galerkin

scheme yields, with well above three, the highest order of consistency concerning the h-error.
All other methods result in orders of consistency well above two. Only the Lobatto IIIC(2)
scheme hardly reaches orders of consistency of two. If the global h-error is considered, however,
the highest results are orders well above two. Once again, the viscoplastic regularization hence
has no improving effect on the time discretization error.

7.7. Summary

The derivation of novel numerical approaches is only one side of the coin. Their application and
validation are other aspects to be considered. To take this into account, Chapter 7 adapts the
dynamic benchmark problem of Section 5.2 to the finite strain regime with an elastoplastic as well
as an elastoviscoplastic variant. It is founded on the displacement-driven deformation process
modeled in Chapter 5 for small strains and thus represents its straightforward extension within
the geometrically nonlinear theory. The high dynamic characteristic of the chosen benchmark
problem demands the utilization and enables the evaluation of distinct time integrators also
within finite strains.
As a starting point, the classical approach is used for the elastoplastic problem. The obtained
solution is compared to the small strain case, yielding small deviations concerning the stresses
but large ones considering the strains and the Lagrange multiplier. Hence, a geometrically
nonlinear analysis should even be performed for strains smaller than 5%.
The variational multifield ansatz is equally employed within the elastoplastic benchmark prob-
lem. For the same mesh, a corresponding approximation quality and the identical time dis-
cretization scheme with fixed time step size, the differences related to the classical strategy do
not exceed 0.005%. However, if the orders of consistency determined by the local h-error are
compared, dissimilarities prevail. Within the multifield approach, diagonally implicit Runge-

Kutta schemes can be applied in a monolithic and a staggered fashion. If the latter imple-
mentation is followed for a DIRK(3) scheme, the orders of consistency of the stresses and the
plastic strains do not reach two, despite the fact that the classical approach yields an order of
almost three. If a monolithic treatment is employed, the orders of consistency of all field vari-
ables within both approaches are identical. Thus, even with the higher numerical effort within
the multifield procedure, a lower order of consistency is the result. The orders of convergence
directly determined by the global h-error, however, are always the same. The same statement
holds for the orders of consistency estimated by the embedded error.
Nevertheless, the benefit of the multifield approach is that further time integrators can be
applied. For the elastoplastic variant of the benchmark problem, the fully implicit Runge-

Kutta schemes, Lobatto IIIC(2) and Radau IIA(2), as well as a continuous Galerkin and
a discontinuous Galerkin method in the one-field setting are adapted. With the latter time
discretization scheme, the h-error estimator even leads to orders of consistency well above three
for all field variables. With increasing order of consistency, the error level of the local h-error
decreases. Additionally, Galerkin procedures possess a residual error estimator. Within this
elastoplastic problem, however, this error estimator cannot be used to determine the order of
consistency, since distinct solutions are obtained for all field variables. Its usage for a time
adaptive scheme is, hence, also questionable. Despite the variety of time integrators used within
the multifield approach, the orders of convergence attained are far away from three.
In the viscoplastic benchmark problem, equivalent investigations are performed, whereby a small
viscosity parameter is assumed. The obtained results are indistinguishable to those of the plastic
problem. Hence, the regularization has no positive effect.
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8. Conclusion

In the preceding thesis, a novel ansatz towards small and finite strain elasto(visco)plasticity is de-
rived, enabling a straightforward application of higher order accurate time integration schemes.
Furthermore, the advantages of fully coupled implicit Runge-Kutta schemes, diagonally im-
plicit Runge-Kutta schemes, the Newmark method, and continuous as well as discontinuous
Galerkin methods are analyzed.
As a motivation, the integrated forming process of (Steinhoff et al., 2009) is taken into account.
The appearing elasto(visco)plastic effects are modeled by widespread continuum mechanical
approaches in the small and the finite strain regime, stated for example in (Simo, 1998; Simo
and Hughes, 1997). In order to permit an integral treatment of the distinct formulations, a
general elasto(visco)plastic problem is created. Additionally, the focus is on the corresponding
numerical implementation. In this thesis, two main approaches are described. The necessary
theoretical background concerning the nonlinear solution strategies as well as the spatial and
temporal discretization is stated in the context of the general elasto(visco)plastic problem. In
order to enable the investigation of higher order accurate time integrators, these two approaches
are substantiated and utilized within suitable benchmark problems for the small and the finite
strain case of elasto(visco)plasticity.
The first procedure uses the finite element method for the spatial discretization of the balance
of linear momentum. The (visco)plastic constitutive laws are incorporated on integration point
level by exploiting the radial return map algorithm. The resulting system of nonlinear equations
is solved by a Newton-Raphson scheme. This treatment contributes to an imminent multilevel
time integration, due to the separate time discretization of the balance equation and the material
laws. Here, only diagonally implicit Runge-Kutta schemes or the Newmark method are
applied. This classical course of action is followed to generate reference solutions.
The multifield approach is derived to establish a simple algorithmic treatment for different
classes of higher order accurate time integrators. The procedure’s corner stones are installed
by exploiting the principle of virtual power to deduce the necessary fundamental equations. In
contrast to the classical procedure, the constitutive laws and the balance of linear momentum are
gathered in a system of equations, so that this time both types of formulations can be spatially
discretized by the finite element method. Hence, the (visco)plastic quantities are no longer
solved on integration point level but by means of a nodal basis. This concept permits a single-
level time integration for all unknown quantities and, thus, enables the applicability of higher
order accurate time integration schemes like fully implicit Runge-Kutta schemes or Galerkin

methods to the balance equation and the constitutive laws at the same time. In this context, the
algorithmic treatment of Radau IIA, Lobatto IIIC as well as of continuous and discontinuous
Galerkin schemes founded on Radau and Lobatto integration rules are elaborated. In some
cases, however, this implementation strategy involves a semi-smooth Newton scheme.
To validate the implementation of the classical and the multifield procedure, a rectangular strip
with a hole in the plane strain case is calculated, and the obtained results are compared to
the literature, cf. (Stein, 2003). The influence of different time integrators is determined by a
dynamic benchmark problem in the small and the finite strain regime, explicitly derived for this
purpose. It embodies, drawing on the forging process of (Steinhoff et al., 2009), an axisymmetric
model of a steel shaft with an inhomogeneous time-dependent boundary condition. The time
integrators’ characteristics are evaluated using various local as well as global error formulations

209



8. Conclusion

for the displacement, the plastic strain, and the stress field. With their help, the orders of
consistency and of convergence are estimated, respectively.
Considering only small strains, it can be observed that identical results are achieved for the
dynamic benchmark problem, within the classical and the multifield approach, for time inte-
grators that are applied to both procedures. Hence, in these cases, the multifield approach
has no advantages at all compared to the classical approach. Indeed, it is characterized by a
greater numerical effort. Nevertheless, the derivation of the multifield approach is inevitable.
It allows for a consistent application of higher order accurate fully implicit Runge-Kutta or
Galerkin schemes, whose implementation in the classical approach is accompanied by a series
of difficulties, cf. (Alberty and Carstensen, 2002; Büttner and Simeon, 2002; Eidel and Kuhn,
2015).
Independent of the chosen procedure, time integrator, or error estimator, a decreasing time step
size leads to a decreasing error level within the displacement, the plastic strain, and the stress
field. For an elastoplastic material model, the best order of consistency is about qh = 5.32
for all analyzed field variables obtained by the two-field discontinuous Galerkin scheme with
polynomial order p̄t = 3. Following the argumentations in (Strehmel et al., 2012), the order of
consistency is identical to the order of convergence. Within small strain elastoplasticity, how-
ever, this line of reasoning is apparently not applicable. Estimating the order of convergence
directly by evaluating the global h-error leads to orders of at best 2.51 for the Radau IIA(3) or
the continuous cG1(2) method. The two-field discontinuous Galerkin scheme with polynomial
order three solely attains first order convergence. Accordingly, the theoretical orders of conver-
gence are not accessed. Similar properties are reported in (Büttner and Simeon, 2002; Eidel and
Kuhn, 2015; Grafenhorst et al., 2017). The explanations of the reasons given therein include
non-smooth strain paths as well as missing switching point determination strategies. However,
as demonstrated in (Eidel and Kuhn, 2015), the latter are only able to partly cure the order
reduction phenomenon - and the non-smoothness can merely be seen as half of the truth. If a
viscoplastic regularization is analyzed instead of an ideal elastoplastic material model, identical
orders of consistency and convergence are obtained within the preceding dynamic benchmark
problem. Thus, not even a smoothening of the problem formulation leads to better orders of
convergence. The same observation is reported in (Hartmann and Bier, 2007). Hence, the identi-
fication of the sources of order reduction in elasto(visco)plasticity is not completed, (Grafenhorst
et al., 2017). A deeper mathematical analysis is necessary - but this is beyond the scope of this
thesis. Despite the lack of orders of convergence well above two, the implementation of higher
order accurate schemes still has its benefits. The mean error level decreases with increasing
theoretical order of convergence.
Apart from the h-error, which is mainly used to estimate order properties, this thesis also
investigates the local embedded as well as the local residual error if applicable. Both proposals
intend to generate numerically cheap error estimates for adaptive schemes. Their suitability is
determined in the context of the dynamic benchmark problem. Thereby, it is noticed that, for
both error estimates, the error decreases with decreasing time step size. However, only with the
embedded error different orders of consistency are obtained for procedures inheriting distinct
theoretical orders of convergence. The residual error results in identical orders of convergence,
although opposing polynomial degrees are taken into account. Its applicability to p-adaptivity
has, hence, to be investigated separately.
In the finite strain regime, analogous analyzes are performed as for the small strain case - with
the consequence that similar conclusions can be drawn. Again, a dynamic benchmark problem is
calculated. Only the extent of the applied time discretization schemes is reduced. However, for
the methods used for the small and the finite strain regime, the orders of convergence and con-
sistency are similar for both the elastoplastic and the elastoviscoplastic case. Small differences
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only appear for the residual error estimators and the DIRK(3) scheme. The staggered implemen-
tation of the third order diagonally implicit Runge-Kutta method in the elasto(visco)plastic
multifield approach suffers from order reduction phenomena in the second Piola-Kirchhoff

stresses and the plastic Cauchy-Green strains. The displacement field remains unaffected. A
reformulation of this time discretization scheme into a monolithic method cures the problem of
order reduction. Nevertheless, this represents a further inconvenience of the multifield setting.
In the finite strain regime, it is characterized, apart from a higher numerical effort by additional
order reduction phenomena. In general, however, the applicability of higher order accurate
schemes are still to be considered as an advantage.
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9. Outlook

The conclusions drawn in the previous chapter open up space for a bunch of further possi-
ble investigations and improvements. First, a profound mathematical analysis of the general
elasto(visco)plastic problem, focussing on the phenomenon of order reduction, should be carried
out. Although this thesis covers a successful implementation of a multifield approach towards
elasto(visco)plasticity in the small as well as the finite strain regime - thus including the us-
age of higher order time integrators of Galerkin and Runge-Kutta type - only orders of
convergence of at best 2.51 are reached for representative examples. Hence, it is an essential
goal to determine why locally obtained orders of consistency up to 5.32 cannot be transferred
to the global error characteristics, even though the applicability of Runge-Kutta schemes in
the context of differential-algebraic systems is shown in (Hairer and Wanner, 2002; Strehmel
et al., 2012) without order reduction. Even if a viscoplastic regularization is carried out, no
enhancements are achieved - neither in the small nor in the finite strain regime. The question
whether strategies to resolve the elastoplastic switching point precisely will cure this problem,
as demonstrated in (Eidel and Kuhn, 2015) for some cases, comes along with that.
Despite the lack of higher orders of convergence, the multifield approach and the implemented
time discretization schemes permit a significant reduction of the error level compared to the
classical approach. The price for this benefit, however, is an increased numerical effort. The
quantification of its actual amount in dependence of the obtained accuracy is still an open task
which has to be performed before the efficiency of the multifield approach can be assessed. This
fact is accompanied by striving for embedding methods to accelerate the variational approach.
An investigation of distinct nonlinear complementarity functions to find a procedure leading
to a reduced number of semi-smooth Newton iterations is one possibility, cf. (Geiger and
Kanzow, 2002; Seitz et al., 2014). Another alternative enhancement of the multifield approach
may be the contraction of the resulting system of linear equations by applying static condensa-
tion, cf. (Hüeber and Wohlmuth, 2005; Schröder and Kuhl, 2015b). Following the procedure in
(Hüeber and Wohlmuth, 2005) would lead to the requirement that special shape functions have
to be chosen to ensure a fast and easy static condensation. In the multifield context, however,
a prescribed choice of shape functions for certain unknowns can lead to difficulties. On the one
hand, the problem formulation itself may require special concurrent properties on the shape
functions, cf. (Comi and Perego, 1995), while, on the other hand, stability aspects may urge
for certain limitations, cf. (Braess, 2010). Hence, the investigation of distinct combinations of
approximations for the different field variables considering various topics is of increased interest.
Concerning the stability of the general variational elasto(visco)plastic problem, the contempla-
tion of the shape functions only comprises a small part of the necessary analysis. A variety
of distinct aspects has to be taken into account as well. This includes, for example, mathe-
matical topics such as existence and uniqueness of solutions. For these investigations, a closer
look at the structure of the multifield approach would be inevitable. Due to the application
of the principle of virtual power for derivation, an extremum principle with side conditions is
involved. As a consequence, the problem formulation exhibits saddle-point-like characteristics.
One question arising in this context would be whether the obtained similarities are linked to
single- or multifold generalized saddle point problems, cf. (Ciarlet Jr. et al., 2003; Walking-
ton and Howell, 2011). Another one is concerned with solvability conditions, which affect the
variational approach at different sides. At first, the corresponding stationarity problem should
be analyzed using methods of functional or convex analysis to characterize its existence and
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uniqueness properties, cf. (Zeidler, 1985). In a further step, the results should be associated to
the weak forms, which should be examined with respect to these topics as well. This implies
aspects such as the necessity and the applicability of the continuity, the definiteness, or the
inf-sup condition, cf. (Boffi et al., 2013; Braess, 2010; Brezzi and Bathe, 1990). Then, the same
study should be performed with regard to the spatially discretized problem - leading, amongst
other things, to mathematically sound assumptions for the shape functions of the distinct field
variables. An additional point of interest in the scope of the previously described examinations
is the consideration of the dynamic behavior. This thesis takes almost entirely inertia effects into
account. Their contribution to solvability arguments should be reviewed, likewise. A possible
approach could be based on a series of time incremental problem formulations, cf. (Han and
Reddy, 1999; Mielke, 2004).
This way of proceeding requires the utilization of a time discretization scheme as it is the case
within the solution strategy of the general elasto(visco)plastic problem. Hence, the impos-
ing question is how the solvability conditions are influenced by the time integrator in ques-
tion - and whether there are certain stability criteria which have to be fulfilled for dynamic
elasto(visco)plasticity. The order reduction phenomenon observed for higher order time dis-
cretization schemes may be analyzed in this context, too. In order to carry out these studies, a
profound understanding of the distinct time integrators involved in this thesis is necessary. While
Runge-Kutta schemes have been examined widely and a general framework is established , cf.
(Butcher, 2008; Hairer and Wanner, 2002; Strehmel et al., 2012), Galerkin methods in time
are rarely investigated and mostly by means of special cases, cf. (Matthies and Schieweck, 2011;
Thomée, 1997). For the shape functions and quadrature rules applied in this thesis, no theoret-
ical background for the determination of the procedures’ order of convergence could be found.
Furthermore, there is a lack of mathematical theory regarding the question how the incorporated
weighting has to be chosen to create Galerkin schemes with good convergence. Examples with
distinct weighting matrices together with an adaptation of a Gauss-Legendre quadrature can
be found in (Carstens, 2013; Gleim and Kuhl, 2013) in the context of diffusion and elastic prob-
lems. A direct transfer of these methods to the elasto(visco)plastic case, however, comes along
with further investigations regarding the treatment of differential algebraic systems within the
Galerkin theory. Within the Gauss-Legendre quadrature, the supporting points do not lie
at the end of the interval, hence, the system matrices and loads are not explicitly evaluated at
the end of the time step. In the multifield approach, this leads to the fact that the semi-smooth
Newton procedure has to be extended by a projection step and the consistency condition is
no longer fulfilled at the end of the time step. A similar practice is carried out in (Simo and
Govindjee, 1991). Nonetheless, the benefit of such formulations still has to be explored.
But apart from investigations of numerical or mathematical nature, aspects of modeling should
be examined as well. In order to keep the derivation of the multifield approach and the implemen-
tation of higher order accurate time integration schemes as simple as possible, only elementary
material models are considered. Hardening mechanisms as well as thermal effects are consis-
tently neglected. Their integration in the variational approach is, hence, of great importance.
Compared to the classical approach, this adaptation will be accompanied by large changes in the
code and an even higher numerical effort, since the material equations are defined on structural
level. Strategies to accelerate the multifield approach will thus gain more significance. This
could also imply the application of adaptive space and time discretization schemes, along with
new effective error estimators. One example could be a residual error estimator for fully implicit
Runge-Kutta schemes.
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A. Tensor Calculus

This chapter provides the fundamental aspects of tensor algebra and analysis, which are needed
for the understanding of this thesis. For further detailed explanations see (De Boer, 1982;
Ehlers, 2009; Holzapfel, 2000; Talpaert, 2002; Wriggers, 2008) and the references therein. In the
course of this chapter, four distinct groups of quantities and their respective notations will be
distinguished.

1. zeroth order tensors, scalars a, b, c

2. first order tensors, vectors a, b, b

3. second order tensors A,B,C

4. third order tensors A,B,C

5. fourth order tensors A,B,C

Table A.1.: Exemplified notations

These types of notations cannot be extended to the rest of the thesis. Therein, the different
quantities are generally denoted using designations common in the literature. The distinction
between the tensor orders is accomplished due to the physical or numerical interpretation and
application. Furthermore, uppercase bold-face Latin letters are considered, which always refer
to specially assembled arrays.
The order of the tensor indicates how many unit basis vectors gi with i = 1, ..., 3 are needed to
define the corresponding tensor. If no further information is given, always a cartesian basis is
considered. Thus, the variants in Table A.1 can be expressed by

a =a,

a =
3∑
i=1

ai gi =ai gi,

A=

3∑
i=1

3∑
j=1

Aij gi ⊗ gj =Aij gi ⊗ gj ,

A=

3∑
i=1

3∑
j=1

3∑
k=1

Aijk gi ⊗ gj ⊗ gk =Aijk gi ⊗ gj ⊗ gk,

A=

3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

Aijkl gi ⊗ gj ⊗ gk ⊗ gl=Aijkl gi ⊗ gj ⊗ gk ⊗ gl,

(A.1)

where the operator ⊗ denotes the dyadic product. It is defined by its property

(a⊗ b)c = (b · c)a

for arbitrary vectors a, b, c with the dot operator · referring to the standard scalar product of
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vectors, cf. (De Boer, 1982; Holzapfel, 2000). Hence, it is in general not commutative

a⊗ b �= b⊗ a.

Since all appearing sums in (A.1) have the same limits, they are dropped for simplification. This
fact is denoted as the summation convention of Einstein. In the following sections, various
useful relationships for the calculation with tensors are presented. For the necessary proofs see
the special literature, e. g. (De Boer, 1982; Talpaert, 2002).

A.1. Tensor Algebra

Important arithmetic operations for first order tensors are:

a+ b = b+ a, (A.2)
[a+ b] + c = a+ [b+ c], (A.3)

a− a = 0. (A.4)

Taking also scalars into account yields

[ab]a = a [ba], (A.5)
[a+ b]a = aa+ ba, (A.6)
a [a+ b] = aa+ a b. (A.7)

For the inner product, the properties

a · b = b · a,
a · [a b+ b c] = a [a · b] + b [b · c],

a · a > 0 ⇔ a �= 0 and a · a = 0 ⇔ a = 0.

are valid. Applying the scalar product to the basis vectors

gi · gj = δij =

{
1 if i = j

0 if i �= j

results in the definition of the Kronecker delta δij . For second order tensors, Equa-
tions (A.2)-(A.7) can be adapted identically. Moreover, the dot product between a first and
a second order tensor can be defined by

A · b = Aijbk gi ⊗ gj · gk = Aijbkδjk gi = Aijbj gi, (A.8)

while the double contraction is determined using

A : B = AijBkl gi ⊗ gj : gk ⊗ gl = AijBklδjlδik = AijBij . (A.9)

This proceeding can be adapted to define the Frobenius norm

‖A‖ =
√
A : A. (A.10)

A change in the sorting of the basis vectors of a second order tensor A leads to the transpose
tensor

AT = Aij gj ⊗ gi. (A.11)
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If

AT = A (A.12)

holds, the tensor A is called symmetric. Of special importance in the context of second order
tensors is the symmetric unity tensor

I = δijgi ⊗ gj = gi ⊗ gi = IT.

With its help, the inverse of the second order tensor A is established

A ·A−1 = I.

Additionally, performing the double contraction as in Equation (A.9) yields the definition of the
trace operator tr (•)

tr (A) = A : I = Aijδklgi ⊗ gj : gk ⊗ gl = Aijδklδjlδik = Aii.

This enables the split of an arbitrary tensor A into a deviatoric dev (A) and a volumetric part
sph (A)

A = dev (A) + sph (A)

with

sph (A) =
1

3
tr (A) I, dev (A) = A− 1

3
tr (A) I

as well as the properties

tr (dev (A)) = 0, dev (tr (A) I) = 0.

In the finite strain case, see Chapter 2, it is useful to consider a second deviatoric operator
and a second trace operator

DEV (A) = A− 1

3
[C : A]C−1, Tr (A) = C : A.

The idea thereby is to exploit the transformation properties between the current and the refer-
ence configuration

dev
(
F ·A · FT) = F · DEV (A) · FT, tr

(
F ·A · FT) = Tr (A) .

Another important operator in the context of second order tensors is the determinant det (•)
and the corresponding relations

det (A ·B) = detA · detB, detA = detAT, detA detA−1 = 1.

Since third order tensors are of secondary interest in this thesis, it is only emphasized that the
Relations (A.2)-(A.7) are applicable, too. The last category of tensors treated in this section are
those of fourth order. They also follow the rules in Equations (A.2)-(A.7). Moreover, analogously
to Equations (A.8) as well as (A.9), they can be part of a single and a double contraction. As
examples, the fourth and second order tensors

A ·B = AijklBmn gi ⊗ gj ⊗ gk ⊗ gl · gm ⊗ gn = AijklBln gi ⊗ gj ⊗ gk ⊗ gn,

A : B = AijklBmn gi ⊗ gj ⊗ gk ⊗ gl : gm ⊗ gn = AijklBkl gi ⊗ gj
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are obtained. Acknowledging the idea of changing basis vectors as in Equation (A.11) generates
a series of possibilities. The most important ones are

A
T = Aijkl gk ⊗ gl ⊗ gi ⊗ gj ,

A

12
T = Aijkl gj ⊗ gi ⊗ gk ⊗ gl,

A

23
T = Aijkl gi ⊗ gk ⊗ gj ⊗ gl,

A

24
T = Aijkl gi ⊗ gl ⊗ gk ⊗ gj ,

whereby all others can be constructed similarly. These expressions can even be applied to third
order tensors. The benefit of such symmetry conditions is demonstrated in the recast

[a⊗ b] : A = a · [b · A] , if A = A

12
T .

An example of a fourth order tensor is the special unity tensor

I =
1

2
[δikδjl + δilδjk] gi ⊗ gj ⊗ gk ⊗ gl,

with its symmetrizing effect

A : I =
1

2

[
A+AT] = 1

2

[
A+AT]T .

A.2. Tensor Analysis

In the field of material theory and its numerical implementation, apart from purely algebraic
manipulations of different tensorial quantities, the introduction and analysis of tensor functions
is inevitable. A tensor function or a tensor field is a scalar-, vector-, or tensor-valued function
depending on one or more tensorial quantities, cf. (De Boer, 1982; Holzapfel, 2000). Certain
interest lies in the derivatives of these functions with respect to the tensorial quantities. As
examples, the following relationships can be considered, cf. (Ehlers, 2009; Holzapfel, 2000):

∂A

∂A
= I,with A = AT

∂A

∂A
= [I ⊗ I]

23
T ,

∂AT

∂A
= [I ⊗ I]

24
T ,

∂[aa]

∂b
= a⊗ ∂a

∂b
+ a

∂a

∂b
,

∂[aA]

∂B
= A⊗ ∂a

∂B
+ a

∂A

∂B
,

∂ tr (A)

∂A
= I,

∂ [A ·B]

∂A
=
[
I ⊗BT]23T ,

∂ [A ·B]

∂B
= [A⊗ I]

23
T ,

∂
[
AT ·A]
∂A

=
[
AT ⊗ I

]23T
+ [I ⊗A]

24
T ,

∂
[
A ·AT]
∂A

= [A⊗ I]
24
T + [I ⊗A]

23
T ,

∂ [A ·B ·C]

∂B
=
[
A⊗CT]23T ,
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∂ [A · b]
∂B

=

⎡
⎢⎣
[
∂A

∂B

]24T⎤⎥⎦
23
T

· b+A · ∂b

∂B
,

∂ [A · b]
∂A

= [I ⊗ I] · b,

∂ [B ·A · b]
∂A

= [B ⊗ I] · b, ∂A−1

∂A
= − [A−1 ⊗A−T]23T ,

∂[A : B]

∂C
=

[
∂A

∂C

]T
: B +

[
∂B

∂C

]T
: A,

∂
√
detA

∂A
=

1

2

√
det (A)A−1,

∂ [A ·B]

∂C
=

⎡
⎢⎣[∂A

∂C

]24T
·B

⎤
⎥⎦

24
T

+

⎡
⎢⎣[∂B

∂C

]14T
·AT

⎤
⎥⎦

14
T

.

Therein, it is assumed that all appearing expressions depend on the respective tensorial quanti-
ties. If the derivative is carried out with respect to a location vector x or X, see Chapter 2,
particular operators can be defined. For the following derivations in this section, only cartesian
coordinate systems will be admitted. An introduction towards cylindrical coordinates is given
in Appendix C. For an arbitrary scalar-valued function f

∇xf =
∂f

∂x
=

∂f

∂xi
gi, ∇Xf =

∂f

∂X
=

∂f

∂Xi
gi

are achieved introducing the Nabla operators

∇x = g1

∂

∂x1
+ g2

∂

∂x2
+ g3

∂

∂x3
, ∇X = g1

∂

∂X1
+ g2

∂

∂X2
+ g3

∂

∂X3
. (A.13)

Their application to first and second order tensor functions permits a supplementary variety.
While their dyadic use leads to the gradient operators

∇xa=[∇x ⊗ a]T =
∂ai
∂xj

gi ⊗ gj , ∇Xa=[∇X ⊗ a]T =
∂ai
∂Xj

gi ⊗ gj , (A.14)

∇xA=[∇x ⊗A]
13
T =

∂Aij
∂xk

gi ⊗ gj ⊗ gk, ∇XA=[∇X ⊗A]
13
T =

∂Aij
∂Xk

gi ⊗ gj ⊗ gk, (A.15)

the divergence operators

∇x · a= ∂ai
∂xj

gi · gj=
∂ai
∂xi

, ∇X · a= ∂ai
∂Xj

gi · gj=
∂ai
∂Xi

, (A.16)

∇x ·A=
∂Aij
∂xk

gi ⊗ gj · gk=
∂Aij
∂xj

gi, ∇X ·A=
∂Aij
∂Xk

gi ⊗ gj · gk=
∂Aij
∂Xj

gi (A.17)

are constructed using the dot product. The deformation gradient F = ∇Xx, see Chapter 2,
can be considered as a special case of Term (A.14)2. Moreover, the expressions in (A.14)-(A.17)
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can be linked by applying the chain rule or the product rule as well as the deformation gradient F

∇x ·A =
∂Aij

∂Xk

∂Xl

∂xm

[
gi⊗gj⊗gk · gl

]· gm=
∂Aij

∂Xk

∂Xk

∂xj
gi =∇XA :F−T,

∇XA =
∂Aij

∂xl

∂xm

∂Xk
gi⊗gj⊗gl · gm⊗gk =

∂Aij

∂xl

∂xl

∂Xk
gi ⊗ gj ⊗ gk =∇xA · F ,

∇x ·[A·B] =
∂ [AijBjk]

∂xk
gi =

∂Aij

∂xk
Bjkgi +

∂Bjk

∂xk
Aijgi=∇xA :B +A ·[∇x ·B] ,

∇X ·[A·B]=
∂ [AijBjk]

∂Xk
gi =

∂Aij

∂Xk
Bjkgi +

∂Bjk

∂Xk
Aijgi=∇XA :B +A ·[∇X ·B] ,

∇X ·[A·b] =∂ [Aijbj ]

∂Xi
=
∂Aij

∂Xi
bj +

∂bj
∂Xi

Aij =[∇X ·AT] ·b+AT:∇Xb.

(A.18)

For further connections see (Ehlers, 2009; Holzapfel, 2000; Kelly, 2015).

A.3. Applications

For the mathematical formulations of the distinct elasto(visco)plastic problems, the tensor cal-
culus is essential. If the numerical implementation is performed using Newton-like procedures,
tangential matrices have to be determined, see Section 3.2. This can be accomplished numer-
ically, cf. (Wriggers, 2008), or explicitly by exploiting the rules listed in Appendix A.2. In
this thesis, the explicit fashion is chosen. Thus, in the following, the derivatives needed for the
tangential quantities of the distinct models and approaches are illustrated.

A.3.1. Small Strain Elasto(visco)plasticity - Classical Approach

In the classical approach towards small strain elasto(visco)plasticity, the only unknowns are
the displacements, see Chapter 4. Hence, the tangential stiffness matrix is the only nonlinear
expression that has to be linearized in the context of Newton-like procedures. Conventionally,
this implies that, in each iteration and for all required points in time, the derivative of the stress
tensor is calculated with respect to the strain tensor, see Section 4.1.3.2. In the purely elastic
case, this results in the constitutive tensor Ce. For the plastic or viscoplastic case, the following
essential derivatives are elaborated, whereby the spatial as well as temporal dependencies will
be dropped for simplicity.

Derivatives in Plasticity with Stiffly Accurate DIRK Schemes or the Newmark
Method

The basis for the tangential stiffness matrix in elastoplasticity is the derivative of the stress
tensor

∂σni/n+1

∂εeni/n+1

∣∣∣∣
k

=
∂sph

(
σkni/n+1

)
∂εe,kni/n+1

+
∂dev

(
σkni/n+1

)
∂εe,kni/n+1

(A.19)

together with the definitions of the individual quantities in (4.30)-(4.38) and (4.41). Exploiting
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the relations in Appendix A.1 and Appendix A.2 yields the necessary derivatives

∂sph
(
σkni/n+1

)
∂εe,kni/n+1

=
3κ+ 2μ

3
I ⊗ I, (A.20)

∂dev
(
σtrial,k
ni/n+1

)
∂εe,kni/n+1

= 2μ

[
I− 1

3
I ⊗ I

]
, (A.21)

∂
[
λni/n+1n

k
p
]

∂εe,kni/n+1

= nkp ⊗ ∂λni/n+1

∂εeni/n+1

+ λni/n+1

∂nkp

∂εe,kni/n+1

, (A.22)

∂nkp

∂εe,kni/n+1

= − 2μ∥∥∥dev
(
σk,trialni/n+1

)∥∥∥n
k
p ⊗ nkp+

2μ∥∥∥dev
(
σk,trialni/n+1

)∥∥∥
[
I− 1

3
I ⊗ I

]
, (A.23)

∂λni/n+1

∂εe,kni/n+1

=
1

Δt Θ
nkp (A.24)

and the algorithmic constitutive tensor

G =
3κ+ 2μ

3
I ⊗ I +

⎡
⎣2μ− 4μ2 Δt Θλni/n+1∥∥∥dev

(
σk,trialni/n+1

)∥∥∥
⎤
⎦[I− 1

3
I ⊗ I − nkp ⊗ nkp

]
.

Derivatives in Viscoplasticity with Stiffly Accurate DIRK Schemes or the New-
mark Method

If, instead of the elastoplastic problem, the viscoplastic problem is considered within the classical
approach, the necessary derivatives are identical to those in Equations (A.19)-(A.23). Only the
Lagrange multiplier is determined alternatively - leading to the derivative

∂λni/n+1

∂εe,kni/n+1

=
2μ

χ+ 2μ Δt Θ
nkp

and the algorithmic constitutive tensor

G=
3κ+ 2μ

3
I ⊗ I +

⎡
⎣2μ− 4μ2 Δt Θλni/n+1∥∥∥dev

(
σk,trialni/n+1

)∥∥∥
⎤
⎦[I− 1

3
I ⊗ I

]
−

−2μ

⎡
⎣ 2μΔt Θ

χ+ 2μΔt Θ
+

2μ Δt Θλni/n+1∥∥∥dev
(
σk,trialni/n+1

)∥∥∥
⎤
⎦nkp ⊗ nkp.

A.3.2. Small Strain Elasto(visco)plasticity - Variational Approach

Within the variational approach of small strain elasto(visco)plasticity, the displacements, the
plastic strains, the stresses, and the Lagrange multiplier embody the unknown primary vari-
ables. Hence, if Newton-like procedures are applied as solution strategies, a linearization with
respect to all these quantities has to be performed. In the conventional ansatz, the lineariza-
tion demands that a proper time discretization scheme is chosen beforehand, to establish the
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coupling between the balance law and the material equations. In the multifield approach, the
time integration can be carried out afterwards, due to the equivalence of the distinct types of
equations. In the following, the derivatives of the elastoplastic and the viscoplastic case will
thus be listed without paying attention to the point in time where an evaluation is taking place.

Derivatives in Variational Elastoplasticity

The starting points for the linearization of the multifield elastoplastic model are the weak forms
in (4.66)-(4.69) in their spatially discretized setting on element level. Furthermore, the tensor
calculus introduced in Appendix A.1-Appendix A.2 is applied. In the following, the essential
derivatives are summarized

Dk
üeüe,k =I : Δüe, Dk

σeσe,k = I : Δσe, (A.25)

Dk
εe

[
Ce :
[
εe,k − εe,kp

]]
=Ce : Δεe, Dk

εe
p

[
Ce :
[
εe,k − εe,kp

]]
=−Ce : Δεep, (A.26)

Dk
ε̇e
p
ε̇e,kp =I : Δε̇p

e, (A.27)

Dk
λe

[
∂f(σe)

∂σe

∣∣∣∣
k

λe,k

]
=

dev
(
σe,k
)

‖dev (σe,k)‖Δλe,

Dk
σe

[
∂f(σe)

∂σe

∣∣∣∣
k

λe,k

]
=λe,k

[
−dev

(
σe,k
)⊗ dev

(
σe,k
)

‖dev (σe,k)‖3
+

1

‖dev (σe,k)‖
[
I− 1

3
I ⊗ I

]]
: Δσe,

whereby the spatial as well as temporal dependencies are dropped for simplicity.

Derivatives in Variational Viscoplasticity

Within the variational viscoplastic approach, the weak forms in (4.70)-(4.72) in their spatially
discretized setting on element level have to be linearized. Hence, the Equations (A.25)-(A.27)
must be considered, too. Furthermore, the penalization function substituting the Lagrange

multiplier has to be accounted for

Dk
σe

[
1

χ
〈f(σe,k)〉∂f(σ

e)

∂σe

∣∣∣∣
k

]
=

1

χ
〈f(σe,k)〉

[
−dev

(
σe,k
)⊗ dev

(
σe,k
)

‖dev (σe,k)‖3
+

1

‖dev (σe,k)‖
[
I− 1

3
I ⊗ I

]]
: Δσe+

+
1

2χ

[[
1 +

f(σe,k)

|f(σe,k)|
]

dev
(
σe,k
)

‖dev (σe,k)‖ ⊗ dev
(
σe,k
)

‖dev (σe,k)‖

]
: Δσe.

A.3.3. Finite Strain Elasto(visco)plasticity - Classical Approach

Within the finite strain regime, a series of tensor operations has to be performed on distinct
levels. While in the small strain regime elasto(visco)plastic problems are solely characterized by
material nonlinearities, finite deformations involve geometric nonlinearities as well. This leads
to a profound application of tensor calculus already in the area of model derivation. Further
usage is made in the field of numerical implementation.
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Tensor Operations in the Context of the Finite Elasto(visco)plastic Model Deriva-
tion

In order to establish the elasto(visco)plastic material laws, the relationships between various
derivatives of the internal energy are necessary

∂e

∂C
=

∂e

∂Ĉe
:
∂Ĉe

∂C
,

∂e

∂C
=F−1

p · ∂e

∂Ĉe
· F−T

p ,

∂e

∂F−1
p

=
∂e

∂Ĉe
:

∂Ĉe

∂F−1
p

,
∂e

∂F−1
p

=2C · F−1
p · ∂e

∂Ĉe
,

∂e

∂F−1
p

=
∂e

∂C−1
p

:
∂C−1

p

∂F−1
p

,
∂e

∂F−1
p

=2
∂e

∂C−1
p

· F−1
p .

With the balance of linear momentum and the material laws at hand, the numerical solution
procedure of an elasto(visco)plastic problem can be started. If general Newton schemes are
used in this context, a linearization process has to be carried out due to the material and
geometric nonlinearities.

Linearization of the Weak Form of the Finite Elasto(visco)plastic Model

In this thesis, the finite element method is generally, used for the spatial resolution of the primary
variables’ course. Hence, as a starting point, the nonlinear weak form of the balance of linear
momentum is obtained. It has to be linearized before a conventional linear equation solver can
be applied. Therefore, the following steps are performed

Dk
üeüe,k =I : Δüe, (A.28)

Dk
F e

[[
F e,T · δF e

]
: S
] ∣∣∣∣
k

=Dk
F e

[[
δF e · F e,T] : S] ∣∣∣∣

k

=

=
[
F e,k,T · δF e,k

]
:
∂S

∂E

∣∣∣∣
k

:
[
ΔF e,T ·F e,k

]
+
[
δF e,k,T ·ΔF e

]
:Sk. (A.29)

Furthermore, a series of derivations has to be performed to obtain the tangential stiffness matrix.

Derivatives in Finite Elastoplasticity with Stiffly Accurate DIRK Schemes and the
Newmark method

The application of diagonal implicit Runge-Kutta schemes or the Newmark method leads in
the general elastoplastic case to the stress tensor of Equation (6.28) consisting of a volumetric
part Sk,vol

ni/n+1 and a deviatoric part. The latter can be divided into

DEV
(
Skni/n+1

)
= DEV

(
Sk,trialni/n+1

)
+ DEV

(
Sk,plas
ni/n+1

)
. (A.30)

The trial state therein is defined by

DEV
(
Sk,trialni/n+1

)
= μ
[
Je,kni/n+1

]− 2
3 DEV

(
C̃

−1
p,ni/n

)
, (A.31)

which is used to define the attached expression

Bk,trial
1 =

√[
DEV(Sk,trialni/n+1) ·Ce,k

ni/n+1

]
:
[
Ce,k
ni/n+1 · DEV(Sk,trialni/n+1)

]
.

(A.32)
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If plastic deformations occur

DEV
(
Sk,plas

ni/n+1

)
=−2

3
ΔtΘλni/n+1μ

[
Je,k
ni/n+1

]− 2
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)
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=

=

⎡
⎢⎢⎣
√

2

3
y

Bk,trial
1

− 1

⎤
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(
Sk,trial

ni/n+1

) (A.33)

has to be considered together with the Lagrange multiplier of Equation (6.39). To deter-
mine the tangential stiffness matrix, the stress tensor’s derivative with respect to the right
Cauchy-Green tensor has to be calculated. Hence, with the expressions in Appendix A.2,
the following terms are obtained:

∂Svol
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∂Ce
ni/n+1

∣∣∣∣
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=
3κ+ 2μ
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⊗
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, (A.34)
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(A.36)

Additionally, the abbreviations

Bk,trial
2 = DEV(Sk,trialni/n+1) ·Ce,k

ni/n+1 · DEV(Sk,trialni/n+1), (A.37)

Bk,trial
3 =

[
Ce,k
ni/n+1 ·DEV(Sk,trialni/n+1)·Ce,k

ni/n+1

]
, (A.38)

are taken into account.
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Derivatives in Finite Viscoplasticity with Stiffly Accurate DIRK Schemes and the
Newmark method

In the case of viscoplastic deformations, the Relations (A.30)-(A.31) can still be applied. Hence,
also the derivatives in (A.34) and (A.35) remain valid. However, the Lagrange multiplier is
modified - yielding
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Thus, the derivative (A.36) has to be adapted to
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A.3.4. Finite Strain Elasto(visco)plasticity - Variational Approach

The multifield ansatz towards finite strain plasticity is based on the weak formulation of the
balance of linear momentum and the material laws. As main ingredients for an accurate solution
strategy in this thesis, the finite element method is applied together with a series of distinct
time integration schemes. Moreover, Newton-like procedures are exploited to convert the
obtained systems of nonlinear equations into linear ones. Therefore, various derivatives have to
be calculated. In the classical approach to (visco)plasticity, their evaluation at a specific point
in time is necessary to couple the material laws to the balance of linear momentum. Within
the variational ansatz, this is superfluous, since an explicit link between the different equations
prevails. In the following, the derivatives are thus presented without an index indicating the
considered point in time. Furthermore, the isochoric flow property with Jp = 1, cf. (Simo and
Hughes, 1997; Simo and Miehe, 1992), is exploited.
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Derivatives in Variational Finite Elastoplasticity

The solution process of the multifield approach towards finite elastoplasticity rests on a semi-
smooth Newton procedure. This includes a number of linearizations on element level exploiting
the Gâteaux derivative in (3.22) and the generalized gradient in (3.32).
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The introduction of the abbreviation

B1 =
√

[DEV(S) ·C] : [C · DEV(S)], (A.43)

in analogy to (A.32) results in further derivatives
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Within these expressions, further derivations have to be performed:
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Derivatives in Variational Finite Viscoplasticity

In contrast to the elastoplastic multifield approach, the viscoplastic ansatz can be solved by an
ordinary Newton-Raphson scheme. This is grounded in the lack of a variational inequality
in the model formulation. Nevertheless, a series of Gâteaux derivatives as in (3.22) has to be
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A.3. Applications

determined during the solution process. While Equations (A.39)-(A.42) remain unchanged
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have to be considered additionally together with the abbreviation

B4 = 〈f(S,C)〉DEV (S) .
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B. Convexity of the Yield Function in Finite Strain
(Visco)plasticity

A function k(x) defined on a proper vector space X is called convex if

k(cx1 + (1− c)x2) ≤ ck(x1) + (1− c)k(x2) (B.1)

holds for ∀x1, x2 in X and 0 ≤ c ≤ 1. To prove the convexity of the yield function in (6.2)
with respect to the second Piola-Kirchhoff stress tensor S, Equation (6.2) is reformulated
applying the definition of the right Cauchy-Green tensor and the Frobenius norm (A.10),
leading to

f(S,F ) =
√

[DEV (S)·C] : [C ·DEV (S)]−
√

2

3
σy=

∥∥∥∥F ·S ·FT− 1

3

[
F ·S ·FT] : I∥∥∥∥−

√
2

3
σy. (B.2)

Exploiting the left hand side of Relation (B.1) together with the triangle inequality yields the
convexity of the yield function
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∥∥∥∥F ·[cS1+[1− c]S2]·FT− 1

3
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3
σy +
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3

[
F ·S2 ·FT] : I∥∥∥∥− [1− c]

√
2

3
σy =

=cf(S1,F ) +[1− c]f(S2,F ).
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C. Polar Coordinates

For some applications it is recommendable to formulate the model problem using cylindrical
coordinates instead of cartesian ones. Due to the tensor notation in use this change of basis
leads to no modifications in terms of the general continuum mechanical aspects or the material
modeling. However, care has to be taken if an explicit evaluation has to be carried out. The
same is true in the field of numerical implementation. To demonstrate the differences between
the two basis systems, their relation is derived. In order to do so, a continuum mechanical
body B in the reference configuration is considered, which is generated by rotating an arbitrary
plane geometry in the g1 − g3 plane around the g3-axis. As an example, a rectangle leading to
a cylinder can be taken into account, see Figure C.1.

B

g3

g1

(a)

B

g2

g1

gR

PR

Φ

(b)

gΦ

Figure C.1.: Definition of cylindrical coordinates: (a) Geometry in the g1 − g3 plane,
(b) Geometry rotated around the g3-axis

To describe the location of an arbitrary point P within this material body B a cartesian co-
ordinate system with the orthogonal basis vectors g1, g2, g3 can be introduced, leading to the
location vector X = [X1, X2, X3]. On the contrary, a cylindrical coordinate system with the
orthogonal basis vectors gR, gΦ, gZ can be exploited, creating the location vector X = [R,Φ, Z],
cf. (Kreißig and Benedix, 2002; Specht, 2005). Thereby, the identity of the g3 and the gZ axis
is assumed. Furthermore, it is stipulated that the point P lies on the gR-axis, which is rotated
by an angle Φ around the gZ direction with respect to the g1 axis, see Figure C.1. This yields
the relations

g1 = gR cos(Φ)− gΦ sin(Φ) g2 = gR sin(Φ) + gΦ cos(Φ) g3 = gZ (C.1)

gR = g1 cos(Φ) + g2 sin(Φ) gΦ = −g1 sin(Φ) + g2 cos(Φ) g3 = gZ. (C.2)
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C. Polar Coordinates

Analogously, the coordinates of point P

X1 = R cos(Φ) X2 = R sin(Φ) X3 = Z (C.3)

R =

√
[X1]

2 + [X2]
2 Φ = arctan

(
X2

X1

)
Z = X3 (C.4)

can be established. An important difference between both coordinate systems is that, while the
cartesian one is fix, the cylindrical one depends on the investigated position. With a modification
in the angle Φ, a change in the basis vectors gR and gΦ is implied, (Kelly, 2015). Hence, the
derivatives

∂gR
∂Φ

= gΦ

∂gΦ

∂Φ
= −gR (C.5)

can be determined. These expressions gain special importance for the gradient of a vector- or
tensor field. Therefore, in a first step the Nabla Operator (A.13)2 in cartesian coordinates is
transformed to the cylindrical system:

∇R = gR
∂

∂R
+ gΦ

1

R

∂

∂Φ
+ gZ

∂

∂Z
. (C.6)

This is accomplished by inserting the chain rules
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∂X1
=

∂R

∂X1

∂

∂R
+

∂Φ

∂X1

∂

∂Φ
+

∂Z

∂X1

∂

∂Z

∂

∂X2
=

∂R

∂X2

∂

∂R
+

∂Φ

∂X2

∂

∂Φ
+

∂Z

∂X2

∂

∂Z

∂

∂X3
=

∂R

∂X3

∂

∂R
+

∂Φ

∂X3

∂

∂Φ
+

∂Z

∂X3

∂

∂Z

together with the definitions (C.1) and (C.5) as well as the derivatives
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= 0 (C.8)

∂Z

∂X1
= 0

∂Z

∂X2
= 0

∂Z

∂X3
= 1. (C.9)

into the definition of the Nabla Operator (A.13)2.
Applying the Nabla Operator (C.6) to a vector field as in (A.14)2, results in
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(C.10)
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A similar procedure is performed to adapt the divergence operator of (A.16)2 to polar coordi-
nates, yielding

∇R · a =

[
gR

∂

∂R
+ gΦ

1
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∂Φ
+ gZ

∂
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]
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=
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R
+

1

R

∂aΦ
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+
∂aZ

∂Z
.

(C.11)

For higher order tensors, the procedure has to be carried out analogously. To derive equivalent
equations to (C.10) as well as (C.11), but considering the current configuration of the material
body B, the location vector x has to be expressed using cartesian as well as polar coordinates.
For this purpose, the same suppositions as for the reference configuration are employed, but the
location vector is denoted as x = [x1, x2, x3] = [r, φ, z] in the respective bases, cf. (Wu et al.,
1992). Henceforth, Equations (C.1)-(C.11) have to be rewritten accordingly, generating
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and

∇r · a =

[
gr

∂

∂r
+ gΦ

1
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For higher order tensors and for the derivation of the Relationships (A.18), the application of
the polar Nabla operator has to be carried out analogously.
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D. Nodal Solutions for a Rectangular Strip with a Hole in
Plane Strain Case

In the course of the investigations performed in (Stein, 2003) concerning the analysis of methods
aimed at solving elastoplastic problems, different benchmark problems are treated. One example
is a rectangular strip with a hole in the plane strain case. For this problem, a list of nodal
solutions is published in (Stein, 2003), which were generated using a spatial mesh consisting of
65, 536 Q2/P1 elements and 205 load steps. An abbreviated version is depicted in Table D.1
and Table D.2. These reference solutions are compared to the solutions obtained exploiting the
classical and the variational approach established in this thesis. Thereby, it is emphasized that
the difference between the latter two methods is smaller than 4 · 10−4%. Thus, in view of the
results, no distinction is made.

Table D.1.: Exemplary solutions for the displacement field

t∗[N/mm2] u1( 1©)[mm] u2( 2©)[mm] u1( 3©)[mm]

reference
solution

classical/
variational
approach

reference
solution

classical/
variational
approach

reference
solution

classical/
variational
approach

100.00 4.7312 · 10−04 4.7311 · 10−04 4.6559 · 10−03 4.6559 · 10−03 1.7057 · 10−03 1.7057 · 10−03

175.00 8.2765 · 10−04 8.2764 · 10−04 8.1479 · 10−03 8.1479 · 10−03 2.9850 · 10−03 2.9850 · 10−03

200.00 9.3757 · 10−04 9.3780 · 10−04 9.3143 · 10−03 9.3143 · 10−03 3.4103 · 10−03 3.4103 · 10−03

225.00 1.0284 · 10−03 1.0293 · 10−03 1.0485 · 10−02 1.0485 · 10−02 3.8336 · 10−03 3.8336 · 10−03

250.00 1.0927 · 10−03 1.0947 · 10−03 1.1661 · 10−02 1.1661 · 10−02 4.2544 · 10−03 4.2545 · 10−03

275.00 1.1247 · 10−03 1.1285 · 10−03 1.2844 · 10−02 1.2844 · 10−02 4.6722 · 10−03 4.6723 · 10−03

300.00 1.1200 · 10−03 1.1258 · 10−03 1.4034 · 10−02 1.4034 · 10−02 5.0867 · 10−03 5.0869 · 10−03

325.00 1.0761 · 10−03 1.0827 · 10−03 1.5232 · 10−02 1.5232 · 10−02 5.4973 · 10−03 5.4975 · 10−03

350.00 9.8518 · 10−04 9.9275 · 10−04 1.6441 · 10−02 1.6440 · 10−02 5.9032 · 10−03 5.9034 · 10−03

400.00 9.9872 · 10−04 1.0068 · 10−03 1.9123 · 10−02 1.9122 · 10−02 6.6019 · 10−03 6.6023 · 10−03

412.50 1.0693 · 10−03 1.0769 · 10−03 1.9948 · 10−02 1.9947 · 10−02 6.7130 · 10−03 6.7135 · 10−03

425.00 1.1983 · 10−03 1.2031 · 10−03 2.0944 · 10−02 2.0943 · 10−02 6.7555 · 10−03 6.7562 · 10−03

437.50 1.4408 · 10−03 1.4350 · 10−03 2.2310 · 10−02 2.2307 · 10−02 6.6502 · 10−03 6.6514 · 10−03

450.00 1.9071 · 10−03 1.8748 · 10−03 2.4585 · 10−02 2.4579 · 10−02 6.1802 · 10−03 6.1827 · 10−03

425.00 1.7888 · 10−03 1.7565 · 10−03 2.3421 · 10−02 2.3415 · 10−02 5.7537 · 10−03 5.7562 · 10−03

400.00 1.6705 · 10−03 1.6382 · 10−03 2.2257 · 10−02 2.2251 · 10−02 5.3273 · 10−03 5.3298 · 10−03

375.00 1.5522 · 10−03 1.5199 · 10−03 2.1093 · 10−02 2.1087 · 10−02 4.9009 · 10−03 4.9034 · 10−03

350.00 1.4340 · 10−03 1.4016 · 10−03 1.9929 · 10−02 1.9923 · 10−02 4.4744 · 10−03 4.4769 · 10−03

325.00 1.3157 · 10−03 1.2834 · 10−03 1.8765 · 10−02 1.8759 · 10−02 4.0480 · 10−03 4.0505 · 10−03

300.00 1.1974 · 10−03 1.1651 · 10−03 1.7601 · 10−02 1.7595 · 10−02 3.6216 · 10−03 3.6241 · 10−03

275.00 1.0791 · 10−03 1.0468 · 10−03 1.6437 · 10−02 1.6431 · 10−02 3.1951 · 10−03 3.1976 · 10−03

250.00 9.6084 · 10−04 9.2853 · 10−04 1.5273 · 10−02 1.5267 · 10−02 2.7687 · 10−03 2.7712 · 10−03

Table D.1 – Continued on next page
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Table D.1 – Continued from previous page

225.00 8.4256 · 10−04 8.1026 · 10−04 1.4109 · 10−02 1.4103 · 10−02 2.3423 · 10−03 2.3448 · 10−03

200.00 7.2428 · 10−04 6.9198 · 10−04 1.2945 · 10−02 1.2939 · 10−02 1.9158 · 10−03 1.9183 · 10−03

175.00 6.0600 · 10−04 5.7370 · 10−04 1.1781 · 10−02 1.1775 · 10−02 1.4894 · 10−03 1.4919 · 10−03

150.00 4.8772 · 10−04 4.5542 · 10−04 1.0617 · 10−02 1.0611 · 10−02 1.0630 · 10−03 1.0655 · 10−03

125.00 3.6942 · 10−04 3.3713 · 10−04 9.4532 · 10−03 9.4472 · 10−03 6.3653 · 10−04 6.3903 · 10−04

100.00 2.5196 · 10−04 2.1957 · 10−04 8.2887 · 10−03 8.2826 · 10−03 2.1036 · 10−04 2.1286 · 10−04

75.00 1.3803 · 10−04 1.0549 · 10−04 7.1228 · 10−03 7.1168 · 10−03 −2.1520 · 10−04 −2.1270 · 10−04

50.00 2.9997 · 10−05 −2.9802 · 10−06 5.9551 · 10−03 5.9491 · 10−03 −6.3994 · 10−04 −6.3746 · 10−04

25.00 −7.0368 · 10−05 −1.0347 · 10−04 4.7854 · 10−03 4.7793 · 10−03 −1.0637 · 10−03 −1.0612 · 10−03

0.00 −1.6094 · 10−04 −1.9412 · 10−04 3.6132 · 10−03 3.6072 · 10−03 −1.4864 · 10−03 −1.4839 · 10−03

−25.00 −2.3980 · 10−04 −2.7302 · 10−04 2.4383 · 10−03 2.4323 · 10−03 −1.9078 · 10−03 −1.9054 · 10−03

−100.00 −3.8748 · 10−04 −4.2513 · 10−04 −1.1051 · 10−03 −1.1107 · 10−03 −3.1635 · 10−03 −3.1612 · 10−03

−125.00 −4.0298 · 10−04 −4.4328 · 10−04 −2.2931 · 10−03 −2.2986 · 10−03 −3.5789 · 10−03 −3.5767 · 10−03

−150.00 −4.0055 · 10−04 −4.4362 · 10−04 −3.4849 · 10−03 −3.4902 · 10−03 −3.9925 · 10−03 −3.9904 · 10−03

−175.00 −3.7947 · 10−04 −4.2502 · 10−04 −4.6807 · 10−03 −4.6858 · 10−03 −4.4043 · 10−03 −4.4022 · 10−03

−200.00 −3.3917 · 10−04 −3.8729 · 10−04 −5.8810 · 10−03 −5.8860 · 10−03 −4.8140 · 10−03 −4.8120 · 10−03

−225.00 −2.8108 · 10−04 −3.3215 · 10−04 −7.0870 · 10−03 −7.0919 · 10−03 −5.2211 · 10−03 −5.2191 · 10−03

−250.00 −2.2723 · 10−04 −2.8206 · 10−04 −8.3060 · 10−03 −8.3107 · 10−03 −5.6223 · 10−03 −5.6204 · 10−03

−275.00 −2.0393 · 10−04 −2.6214 · 10−04 −9.5553 · 10−03 −9.5591 · 10−03 −6.0103 · 10−03 −6.0088 · 10−03

−300.00 −2.1097 · 10−04 −2.7384 · 10−04 −1.0850 · 10−02 −1.0852 · 10−02 −6.3790 · 10−03 −6.3782 · 10−03

−325.00 −2.5838 · 10−04 −3.2528 · 10−04 −1.2210 · 10−02 −1.2211 · 10−02 −6.7202 · 10−03 −6.7197 · 10−03

−350.00 −3.5820 · 10−04 −4.3164 · 10−04 −1.3672 · 10−02 −1.3672 · 10−02 −7.0189 · 10−03 −7.0190 · 10−03

−400.00 −8.7048 · 10−04 −9.5740 · 10−04 −1.7267 · 10−02 −1.7266 · 10−02 −7.3458 · 10−03 −7.3462 · 10−03

−412.50 −1.1177 · 10−03 −1.2030 · 10−03 −1.8472 · 10−02 −1.8469 · 10−02 −7.3052 · 10−03 −7.3060 · 10−03

−425.00 −1.4405 · 10−03 −1.5167 · 10−03 −1.9933 · 10−02 −1.9930 · 10−02 −7.1616 · 10−03 −7.1629 · 10−03

−437.50 −1.8542 · 10−03 −1.9130 · 10−03 −2.1810 · 10−02 −2.1805 · 10−02 −6.8510 · 10−03 −6.8529 · 10−03

−450.00 −2.3814 · 10−03 −2.4182 · 10−03 −2.4444 · 10−02 −2.4434 · 10−02 −6.2376 · 10−03 −6.2413 · 10−03

−425.00 −2.2632 · 10−03 −2.3000 · 10−03 −2.3280 · 10−02 −2.3270 · 10−02 −5.8111 · 10−03 −5.8149 · 10−03

−400.00 −2.1449 · 10−03 −2.1817 · 10−03 −2.2116 · 10−02 −2.2106 · 10−02 −5.3847 · 10−03 −5.3884 · 10−03

−375.00 −2.0266 · 10−03 −2.0634 · 10−03 −2.0952 · 10−02 −2.0942 · 10−02 −4.9583 · 10−03 −4.9620 · 10−03

−350.00 −1.9083 · 10−03 −1.9451 · 10−03 −1.9788 · 10−02 −1.9778 · 10−02 −4.5318 · 10−03 −4.5356 · 10−03

−325.00 −1.7900 · 10−03 −1.8268 · 10−03 −1.8624 · 10−02 −1.8614 · 10−02 −4.1054 · 10−03 −4.1091 · 10−03

−300.00 −1.6718 · 10−03 −1.7086 · 10−03 −1.7460 · 10−02 −1.7450 · 10−02 −3.6790 · 10−03 −3.6827 · 10−03

−275.00 −1.5535 · 10−03 −1.5903 · 10−03 −1.6296 · 10−02 −1.6286 · 10−02 −3.2525 · 10−03 −3.2563 · 10−03

−250.00 −1.4352 · 10−03 −1.4720 · 10−03 −1.5132 · 10−02 −1.5123 · 10−02 −2.8261 · 10−03 −2.8298 · 10−03

−225.00 −1.3169 · 10−03 −1.3537 · 10−03 −1.3968 · 10−02 −1.3959 · 10−02 −2.3997 · 10−03 −2.4034 · 10−03

−200.00 −1.1986 · 10−03 −1.2355 · 10−03 −1.2804 · 10−02 −1.2795 · 10−02 −1.9732 · 10−03 −1.9770 · 10−03

−175.00 −1.0804 · 10−03 −1.1172 · 10−03 −1.1640 · 10−02 −1.1631 · 10−02 −1.5468 · 10−03 −1.5505 · 10−03

−150.00 −9.6208 · 10−04 −9.9890 · 10−04 −1.0476 · 10−02 −1.0467 · 10−02 −1.1204 · 10−03 −1.1241 · 10−03

−125.00 −8.4378 · 10−04 −8.8060 · 10−04 −9.3123 · 10−03 −9.3027 · 10−03 −6.9393 · 10−04 −6.9767 · 10−04

−100.00 −7.2632 · 10−04 −7.6305 · 10−04 −8.1477 · 10−03 −8.1381 · 10−03 −2.6776 · 10−04 −2.7150 · 10−04

−75.00 −6.1239 · 10−04 −6.4897 · 10−04 −6.9819 · 10−03 −6.9723 · 10−03 1.5779 · 10−04 1.5406 · 10−04

−50.00 −5.0437 · 10−04 −5.4051 · 10−04 −5.8142 · 10−03 −5.8046 · 10−03 5.8253 · 10−04 5.7882 · 10−04
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−25.00 −4.0402 · 10−04 −4.4004 · 10−04 −4.6444 · 10−03 −4.6348 · 10−03 1.0063 · 10−03 1.0026 · 10−03

0.00 −3.1351 · 10−04 −3.4944 · 10−04 −3.4722 · 10−03 −3.4627 · 10−03 1.4290 · 10−03 1.4253 · 10−03

Table D.2.: Exemplary solutions for the stress field

t∗[N/mm2] σ33( 4©)[N/mm2] σ11( 5©)[N/mm2]

reference
solution

classical/
variational
approach

reference
solution

classical/
variational
approach

100.00 3.0796 · 102 3.0860 · 102 −4.0299 · 100 −4.0375 · 100
175.00 5.0755 · 102 5.0731 · 102 −7.0549 · 100 −7.0682 · 100
200.00 5.1188 · 102 5.1195 · 102 −8.1055 · 100 −8.1205 · 100
225.00 5.1508 · 102 5.1524 · 102 −9.2310 · 100 −9.2471 · 100
250.00 5.1717 · 102 5.1726 · 102 −1.0447 · 101 −1.0464 · 101
275.00 5.1844 · 102 5.1844 · 102 −1.1766 · 101 −1.1783 · 101
300.00 5.1918 · 102 5.1904 · 102 −1.3199 · 101 −1.3215 · 101
325.00 5.1963 · 102 5.1935 · 102 −1.4755 · 101 −1.4773 · 101
350.00 5.1988 · 102 5.1952 · 102 −1.6466 · 101 −1.6487 · 101
400.00 5.2007 · 102 5.1967 · 102 −2.5751 · 101 −2.5753 · 101
412.50 5.2008 · 102 5.1970 · 102 −3.2869 · 101 −3.2764 · 101
425.00 5.2008 · 102 5.1975 · 102 −5.1517 · 101 −5.0898 · 101
437.50 5.2008 · 102 5.1978 · 102 −5.4243 · 101 −5.3654 · 101
450.00 5.2008 · 102 5.1969 · 102 −5.2568 · 101 −5.1398 · 101
425.00 4.4309 · 102 4.4254 · 102 −5.1560 · 101 −5.0389 · 101
400.00 3.6610 · 102 3.6539 · 102 −5.0553 · 101 −4.9380 · 101
375.00 2.8910 · 102 2.8824 · 102 −4.9545 · 101 −4.8370 · 101
350.00 2.1211 · 102 2.1109 · 102 −4.8538 · 101 −4.7361 · 101
325.00 1.3512 · 102 1.3394 · 102 −4.7530 · 101 −4.6351 · 101
300.00 5.8129 · 101 5.6784 · 101 −4.6523 · 101 −4.5342 · 101
275.00 −1.8863 · 101 −2.0367 · 101 −4.5515 · 101 −4.4333 · 101
250.00 −9.5855 · 101 −9.7518 · 101 −4.4508 · 101 −4.3323 · 101
225.00 −1.7284 · 102 −1.7467 · 102 −4.3500 · 101 −4.2314 · 101
200.00 −2.4983 · 102 −2.5182 · 102 −4.2493 · 101 −4.1304 · 101
175.00 −3.2683 · 102 −3.2897 · 102 −4.1485 · 101 −4.0295 · 101
150.00 −4.0382 · 102 −4.0612 · 102 −4.0478 · 101 −3.9286 · 101
125.00 −4.6613 · 102 −4.6636 · 102 −3.9470 · 101 −3.8276 · 101
100.00 −4.8090 · 102 −4.8202 · 102 −3.8452 · 101 −3.7256 · 101
75.00 −4.9339 · 102 −4.9449 · 102 −3.7410 · 101 −3.6213 · 101
50.00 −5.0275 · 102 −5.0374 · 102 −3.6338 · 101 −3.5139 · 101
25.00 −5.0950 · 102 −5.1010 · 102 −3.5229 · 101 −3.4029 · 101
0.00 −5.1394 · 102 −5.1418 · 102 −3.4081 · 101 −3.2879 · 101

−25.00 −5.1666 · 102 −5.1666 · 102 −3.2889 · 101 −3.1684 · 101
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−100.00 −5.1953 · 102 −5.1925 · 102 −2.9012 · 101 −2.7807 · 101
−125.00 −5.1979 · 102 −5.1944 · 102 −2.7611 · 101 −2.6407 · 101
−150.00 −5.1993 · 102 −5.1954 · 102 −2.6153 · 101 −2.4949 · 101
−175.00 −5.2000 · 102 −5.1959 · 102 −2.4634 · 101 −2.3430 · 101
−200.00 −5.2004 · 102 −5.1961 · 102 −2.3047 · 101 −2.1841 · 101
−225.00 −5.2006 · 102 −5.1963 · 102 −2.1371 · 101 −2.0165 · 101
−250.00 −5.2007 · 102 −5.1964 · 102 −1.9455 · 101 −1.8250 · 101
−275.00 −5.2008 · 102 −5.1965 · 102 −1.6919 · 101 −1.5725 · 101
−300.00 −5.2008 · 102 −5.1967 · 102 −1.3407 · 101 −1.2240 · 101
−325.00 −5.2008 · 102 −5.1970 · 102 −8.3747 · 100 −7.2317 · 100
−350.00 −5.2008 · 102 −5.1976 · 102 −5.8370 · 10−1 4.8530 · 10−1

−400.00 −5.2008 · 102 −5.2015 · 102 4.9090 · 101 4.8841 · 101
−412.50 −5.2008 · 102 −5.2029 · 102 5.7428 · 101 5.6738 · 101
−425.00 −5.2008 · 102 −5.2036 · 102 5.6882 · 101 5.6939 · 101
−437.50 −5.2008 · 102 −5.2030 · 102 5.6364 · 101 5.5974 · 101
−450.00 −5.2008 · 102 −5.2006 · 102 5.4813 · 101 5.3559 · 101
−425.00 −4.4309 · 102 −4.4291 · 102 5.3806 · 101 5.2550 · 101
−400.00 −3.6610 · 102 −3.6576 · 102 5.2798 · 101 5.1540 · 101
−375.00 −2.8910 · 102 −2.8861 · 102 5.1791 · 101 5.0531 · 101
−350.00 −2.1211 · 102 −2.1146 · 102 5.0783 · 101 4.9521 · 101
−325.00 −1.3512 · 102 −1.3431 · 102 4.9776 · 101 4.8512 · 101
−300.00 −5.8131 · 101 −5.7158 · 101 4.8768 · 101 4.7503 · 101
−275.00 1.8860 · 101 1.9993 · 101 4.7761 · 101 4.6493 · 101
−250.00 9.5851 · 101 9.7144 · 101 4.6753 · 101 4.5484 · 101
−225.00 1.7284 · 102 1.7430 · 102 4.5746 · 101 4.4474 · 101
−200.00 2.4983 · 102 2.5145 · 102 4.4738 · 101 4.3465 · 101
−175.00 3.2683 · 102 3.2860 · 102 4.3731 · 101 4.2456 · 101
−150.00 4.0382 · 102 4.0575 · 102 4.2723 · 101 4.1446 · 101
−125.00 4.6613 · 102 4.6598 · 102 4.1716 · 101 4.0437 · 101
−100.00 4.8090 · 102 4.8165 · 102 4.0698 · 101 3.9417 · 101
−75.00 4.9339 · 102 4.9412 · 102 3.9656 · 101 3.8374 · 101
−50.00 5.0275 · 102 5.0337 · 102 3.8583 · 101 3.7300 · 101
−25.00 5.0950 · 102 5.0972 · 102 3.7475 · 101 3.6189 · 101

0.00 5.1393 · 102 5.1381 · 102 3.6327 · 101 3.5039 · 101
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This chapter lists exemplary values for the strain field, the stresses, the plastic strains, and the
Lagrange multiplier for the displacement-driven deformation of an axisymmetric steel shaft
in small and finite strain elastoplasticity. They are determined using the conventional approach
for small and finite strain elastoplasticity together with the DIRK(3) method and a time step
size of Δt = 1 · 10−5s. The solutions for the multifield approaches as well as for the viscoplastic
adaptations with χ = 0.001 Ns/mm2 are not shown explicitly due to the huge similarities.

Table E.1.: Exemplary solutions for the strain, the stress, the Lagrange multiplier, and the
plastic strain field at evolution point 1© for small strain elastoplasticity

uZ[mm] εZZ( 1©)[-]σZZ( 1©)[N/mm2] εp,ZZ( 1©)[-] λ( 1©)[1/s]

0.0000 0.0000 0.0000 0.0000 0.0000

-0.2989 -0.0030 -600.0000 0.0000 0.0000

-0.5910 -0.0060 -1011.5965 -0.0009 15.1283

-0.8699 -0.0090 -870.0603 -0.0046 35.9829

-1.1293 -0.0120 -873.1094 -0.0076 17.5264

-1.3633 -0.0150 -973.2176 -0.0101 29.3150

-1.5667 -0.0180 -812.2761 -0.0140 23.4950

-1.7348 -0.0210 -963.2054 -0.0162 23.8073

-1.8641 -0.0240 -893.9042 -0.0196 36.9014

-1.9514 -0.0271 -853.0823 -0.0228 19.9340

-1.9950 -0.0303 -990.9310 -0.0254 20.8121

-1.9937 -0.0324 -796.5242 -0.0284 34.3352

-1.9477 -0.0358 -890.1490 -0.0313 39.9873

-1.8579 -0.0361 -671.4195 -0.0327 0.0000

-1.7264 -0.0333 -113.6446 -0.0327 0.0000

-1.5561 -0.0300 556.8003 -0.0327 0.0000

-1.3509 -0.0274 897.0199 -0.0319 19.1284

-1.1154 -0.0255 876.8880 -0.0299 37.1075

-0.8548 -0.0238 837.5331 -0.0280 17.9959

-0.5750 -0.0215 928.1603 -0.0261 20.0362

-0.2822 -0.0185 852.1704 -0.0228 28.0723

0.0168 -0.0160 930.2361 -0.0207 16.1889

0.3155 -0.0133 930.0613 -0.0179 28.8722

0.6071 -0.0117 867.8574 -0.0160 13.2575

0.8850 -0.0095 941.4862 -0.0142 20.6775

1.1431 -0.0073 866.1839 -0.0116 14.3288

1.3755 -0.0055 906.2744 -0.0100 13.0075

1.5771 -0.0033 910.1963 -0.0078 21.2658
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1.7432 -0.0013 865.6619 -0.0056 14.2728

1.8701 0.0007 925.7299 -0.0040 11.1963

1.9551 0.0024 862.3757 -0.0019 21.8332

1.9961 0.0041 867.6291 -0.0003 1.6708

1.9923 0.0064 921.2012 0.0018 3.6235

1.9438 0.0082 852.1891 0.0039 14.0364

1.8516 0.0090 739.9943 0.0053 0.0000

1.7179 0.0055 40.8023 0.0053 0.0000

1.5455 0.0028 -500.7802 0.0053 0.0000

1.3385 -0.0009 -938.5350 0.0038 20.4099

1.1014 -0.0028 -921.9784 0.0018 25.5279

0.8395 -0.0062 -826.7332 -0.0020 21.2573

0.5588 -0.0090 -999.2352 -0.0040 26.2449

0.2656 -0.0120 -828.1474 -0.0078 29.6963

-0.0336 -0.0149 -913.7364 -0.0103 13.2967

-0.3321 -0.0175 -938.7406 -0.0128 23.9929

-0.6231 -0.0201 -804.6280 -0.0161 23.5509

-0.9001 -0.0235 -971.2926 -0.0187 26.2951

-1.1569 -0.0269 -870.6547 -0.0225 31.8593

-1.3877 -0.0297 -889.3909 -0.0253 14.5961

-1.5873 -0.0326 -954.8881 -0.0278 26.5994

-1.7513 -0.0353 -828.5083 -0.0311 22.0102

-1.8760 -0.0378 -939.1455 -0.0331 13.3265

-1.9585 -0.0403 -869.9944 -0.0359 22.1292

-1.9971 -0.0428 -846.8255 -0.0385 8.9222

-1.9908 -0.0456 -938.1260 -0.0409 3.4168

-1.9398 -0.0478 -794.2501 -0.0439 19.1472

-1.8452 -0.0498 -631.5134 -0.0467 0.0000

-1.7092 -0.0466 12.2701 -0.0467 0.0000

-1.5348 -0.0439 554.7917 -0.0467 0.0000

-1.3259 -0.0397 927.7298 -0.0443 14.5836

-1.0873 -0.0368 914.8764 -0.0414 32.0225

-0.8242 -0.0326 844.8506 -0.0368 21.5269

-0.5427 -0.0290 1012.4285 -0.0341 27.0321

-0.2489 -0.0255 836.6737 -0.0297 30.2398

0.0504 -0.0221 945.1646 -0.0268 15.3505

0.3487 -0.0189 944.5911 -0.0237 33.1567

0.6390 -0.0156 833.4138 -0.0198 25.1670

0.9151 -0.0120 992.9657 -0.0169 30.5769

1.1706 -0.0083 879.0420 -0.0127 33.3000

1.3997 -0.0052 914.9478 -0.0098 19.1886

1.5975 -0.0022 960.1204 -0.0070 29.6703

1.7594 0.0007 833.6431 -0.0035 22.6071
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1.8818 0.0034 953.7643 -0.0014 16.2789

1.9619 0.0061 866.3420 0.0017 26.4644

1.9979 0.0089 859.5879 0.0046 10.9190

1.9891 0.0119 933.9341 0.0072 24.6871

1.9356 0.0145 786.2009 0.0106 17.3495

1.8387 0.0167 590.0253 0.0138 0.0000

1.7004 0.0136 -31.8564 0.0138 0.0000

1.5240 0.0108 -603.8524 0.0138 0.0000

1.3133 0.0061 -941.7573 0.0108 8.1423

1.0731 0.0029 -888.5935 0.0074 40.0490

0.8089 -0.0015 -855.0086 0.0027 25.8542

0.5265 -0.0053 -997.5802 -0.0003 28.6482

0.2322 -0.0090 -827.8482 -0.0049 29.2595

-0.0672 -0.0127 -957.8640 -0.0079 18.1727

Table E.2.: Exemplary solutions for the strain, the stress, the Lagrange multiplier, and the
plastic strain field at evolution point 1© for finite strain elastoplasticity

uZ[mm] EZZ( 1©)[-]SZZ( 1©)[N/mm2] Ep,ZZ( 1©)[-] λ( 1©)[1/s]

0.0000 0.0000 0.0000 0.0000 0.0000

-0.2989 -0.0030 -603.5160 0.0000 0.0000

-0.5910 -0.0061 -1023.5293 -0.0009 15.0718

-0.8699 -0.0091 -888.4206 -0.0047 36.0906

-1.1293 -0.0122 -891.3157 -0.0077 17.9402

-1.3633 -0.0153 -1006.4801 -0.0101 29.2807

-1.5667 -0.0185 -842.9667 -0.0139 24.4065

-1.7348 -0.0217 -998.9709 -0.0162 22.9538

-1.8641 -0.0250 -954.2680 -0.0195 36.6020

-1.9514 -0.0283 -894.2506 -0.0228 19.7516

-1.9950 -0.0314 -1042.5791 -0.0250 16.4727

-1.9937 -0.0348 -897.3134 -0.0287 39.2595

-1.9477 -0.0382 -946.5712 -0.0315 50.2580

-1.8579 -0.0379 -629.9781 -0.0326 0.0000

-1.7264 -0.0351 -63.0727 -0.0326 0.0000

-1.5561 -0.0315 642.4008 -0.0326 0.0000

-1.3509 -0.0288 969.2134 -0.0316 11.8408

-1.1154 -0.0268 922.3756 -0.0297 32.8555

-0.8548 -0.0252 871.2768 -0.0280 15.6484

-0.5750 -0.0228 993.1647 -0.0265 24.6745

-0.2822 -0.0198 875.5723 -0.0232 27.2347

0.0168 -0.0178 967.9392 -0.0218 9.7754

0.3155 -0.0154 960.9982 -0.0196 22.5655
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0.6071 -0.0142 873.6825 -0.0180 11.5156

0.8850 -0.0124 985.7770 -0.0169 17.4634

1.1431 -0.0108 864.1490 -0.0148 11.7949

1.3755 -0.0095 926.7186 -0.0139 5.1844

1.5771 -0.0083 926.6588 -0.0128 15.4189

1.7432 -0.0074 847.7580 -0.0115 4.6208

1.8701 -0.0067 937.1158 -0.0113 4.1576

1.9551 -0.0062 835.8275 -0.0104 9.5253

1.9961 -0.0059 842.6958 -0.0100 0.0000

1.9923 -0.0057 863.2811 -0.0100 1.0160

1.9438 -0.0054 797.3776 -0.0094 9.8504

1.8516 -0.0056 759.0233 -0.0094 0.0000

1.7179 -0.0090 76.7003 -0.0094 0.0000

1.5455 -0.0118 -488.4606 -0.0094 0.0000

1.3385 -0.0155 -1044.7133 -0.0103 16.9011

1.1014 -0.0179 -1009.7869 -0.0127 36.4348

0.8395 -0.0199 -856.0199 -0.0154 7.5890

0.5588 -0.0216 -1065.5392 -0.0159 10.2538

0.2656 -0.0227 -838.8846 -0.0181 17.4227

-0.0336 -0.0242 -912.1285 -0.0191 1.3692

-0.3321 -0.0254 -979.1755 -0.0199 19.4784

-0.6231 -0.0265 -791.1451 -0.0218 7.4777

-0.9001 -0.0277 -980.1612 -0.0220 0.2150

-1.1569 -0.0292 -871.6930 -0.0239 21.7284

-1.3877 -0.0305 -861.2630 -0.0251 0.0000

-1.5873 -0.0313 -987.5613 -0.0252 9.0612

-1.7513 -0.0323 -803.1236 -0.0270 7.6793

-1.8760 -0.0330 -921.8597 -0.0271 0.0000

-1.9585 -0.0341 -900.7152 -0.0282 17.4527

-1.9971 -0.0354 -816.0989 -0.0297 0.1182

-1.9908 -0.0366 -951.1507 -0.0301 1.4568

-1.9398 -0.0383 -830.2712 -0.0322 2.1164

-1.8452 -0.0387 -562.5971 -0.0337 0.0000

-1.7092 -0.0352 131.3981 -0.0337 0.0000

-1.5348 -0.0326 639.0492 -0.0337 0.0000

-1.3259 -0.0288 993.7726 -0.0318 11.9438

-1.0873 -0.0262 1044.8267 -0.0298 27.4832

-0.8242 -0.0226 878.0510 -0.0258 22.6801

-0.5427 -0.0196 1062.3861 -0.0240 10.8997

-0.2489 -0.0170 899.2932 -0.0209 26.3927

0.0504 -0.0143 928.0104 -0.0186 9.1694

0.3487 -0.0121 998.1378 -0.0168 22.1185

0.6390 -0.0092 838.5533 -0.0134 23.9891
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0.9151 -0.0062 989.5759 -0.0112 22.1034

1.1706 -0.0031 924.6983 -0.0079 32.0135

1.3997 -0.0006 890.3888 -0.0053 13.4837

1.5975 0.0019 992.9828 -0.0034 21.3140

1.7594 0.0040 843.3404 -0.0006 19.7878

1.8818 0.0060 937.6860 0.0009 9.8965

1.9619 0.0078 899.9491 0.0030 21.4590

1.9979 0.0096 832.1313 0.0051 16.9579

1.9891 0.0113 922.0275 0.0064 24.2247

1.9356 0.0135 822.8865 0.0092 23.2706

1.8387 0.0149 822.6814 0.0106 0.0000

1.7004 0.0114 121.5125 0.0106 0.0000

1.5240 0.0086 -438.9167 0.0106 0.0000

1.3133 0.0053 -889.6594 0.0095 15.0077

1.0731 0.0029 -946.8217 0.0073 42.0122

0.8089 -0.0005 -790.1569 0.0031 30.6060

0.5265 -0.0043 -1027.2081 0.0004 24.0935

0.2322 -0.0077 -876.8850 -0.0038 35.9840

-0.0672 -0.0116 -914.2330 -0.0074 23.1742
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The present thesis investigates the usage of higher order accurate time integrators together 
with appropriate error estimators for small and finite dynamic (visco)plasticity. Therefore, a 
general (visco)plastic problem is defined which serves as a basis to create closed-form solu-
tion strategies. A classical access towards small and finite (visco)plasticity is integrated into 
this concept. This approach is based on the idea, that the balance of linear momentum is for-
mulated in a weak sense and the material laws are included indirectly. Thus, separate time 
discretizations are implemented and an appropriate coupling between them is necessary. 
Limitations for the usage of time integrators are the consequence. In contrast, an alternative 
multifield formulation is derived, adapting the principle of Jourdain. The idea is to assume 
that the balance of energy - taking into account a pseudopotential representing dissipative 
effects – resembles a rate-type functional, whose stationarity condition leads to the equa-
tions describing small or finite dynamic (visco)plasticity. Accordingly, the material laws and 
the balance of linear momentum can be solved on the same level and only one single time 
discretization has to be performed. A greater freedom in the choice of time integrators is 
obtained and the application of higher order accurate schemes - such as Newmark’s method, 
fully implicit as well as diagonally implicit Runge-Kutta schemes, and continuous as well as 
discontinuous Galerkin methods - is facilitated. An analysis and a comparison of the clas-
sical and the multifield formulation is accomplished by means of distinct examples. In this 
context, a dynamic benchmark problem is developed, which allows to focus on the effect of 
different time integrators. For this investigation, a variety of time discretization error estima-
tors are formulated, evaluated, and compared.
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