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The theory of random matrices was introduced by
John Wishart (1898-1956) in 1928. The theory was
then developed within the field of nuclear physics
from 1955 by Eugene Paul Wigner (1902-1995) and
later by Freeman John Dyson, who were both con-
cerned with the statistical description of heavy atoms
and their electromagnetic properties. In this snap-
shot, we show how mathematical properties can have
unexpected links to physical phenomenena. In partic-
ular, we show that the eigenvalues of some particular
random matrices can mimic the electrostatic repul-
sion of the particles in a gas.

1 Mathematical background

In order to define and talk about random matrices and their properties, we
must first give a crash-course in linear algebra.

1.1 Linear algebra

Let us first recall that an (n x m)-matriz is a table of real numbers with n
rows and m columns. We use the notation R™"*™ to refer to the collection of



all n x m matrices with real-number entries. For example, if we let
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M= [10 2.5 475 0 V6]’

] , and N = [
then M is a 2 x 2 matrix, while N is a 2 x 3 matrix. If the number of columns
is 1, we have a vector in R™.

We will only need matrices with the same number of rows and columns, also
called square matrices, we denote this number by d and call it the dimension
of the matrix. For example, the matrix M above is of dimension 2. If two
matrices M and N have the same dimension d then it is possible to define their
sum and product in the following way:

'm m n n
M= | 12 o (M M2l
|21 22 n21  N22

MiN = ‘'mi1 +mn11 Mg+ nie
|21 +N21 Moz + Nag
MN =

mM11N11 + MigN21  Mi1Ni2 + Mi2No2
|M21111 + M22N21 M21M11 + Ma2N21

The example above is for dimension 2; the definition can be extended in a
natural way to all dimensions d > 0. In fact, the product can be defined for
any (n x m) matrix M and (m x k) matrix N, and the product M N will be a
matrix of dimension (n x k). We now give a list of the other definitions and
properties of matrices that we will need.

e The identity matriz I; is the square matric of dimension d with 1s on the
diagonal and Os everywhere else. For example, in dimension 3 it is given by

100
Ib=10 1 0
00 1

e A square matrix M of dimension d is said to be invertible if there exists a
matrix M ~! with the property that

MM '=M"1'M=1,.

e The transpose M? of a matrix M is the matrix obtained by switching the
rows and columns of M:
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t
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m31 M32 133 mi3 M23 MM33

Notice that the entries on the diagonal are unchanged by the transposition
operation.



e If a matrix M has the property that M = M?, we say that M is symmetric.

e If instead the matrix M has the property that M! = M~! that is,
that MM?! = I;, we say that M is orthogonal. Here is an example of
an orthogonal matrix:
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e If there exists a non-zero vector x in R™ such that
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for some scalar A, then A is called an eigenvalue for M with eigenvector x.
The set of all eigenvalues of a matrix M is called the spectrum of M and
denoted by Spec(M). For a square matrix of dimension d, there are d
eigenvalues (although they may not all be different). The eigenvalues of
a matrix are extremely important for many applications in physics and
engineering where we have a matrix that comes from a system of equations.
We shall shortly see their importance for an application in atomic physics.

We are interested in studying the properties a symmetric matrix can retain
when an “orthogonal transformation” is applied. That is, given a symmetric
matrix M and an orthogonal matrix U, what do M and U* MU have in common?
It turns out that the eigenvalues of M and U*MU are equal. We say that
the eigenvalues are invariant under orthogonal transformation. Furthermore,
a symmetric matrix M can always be decomposed in the form M = UDU?
where D is a diagonal matrix whose entries are the eigenvalues of M and U is
an orthogonal matrix. For example:

oY o[, 3 -

In this example, the spectrum Spec(M) = {1,5}. This process of writing a
symmetric matrix in terms of the diagonal matrix of its eigenvalues is referred
to as spectral decomposition.

1.2 Probability theory

Now we need to consider some concepts from probability theory, which will give
us the “random” part of the theory of random matrices. We will extensively

We refer to http://mathworld.wolfram.com/Eigenvalue.html for more information on
eigenvalues and how to calculate them.


http://mathworld.wolfram.com/Eigenvalue.html

use the concept of a “random variable”. The best way to picture this notion
is to consider a six-sided die. Every time we roll a die, we generate an integer

number between 1 and 6 and each number is equally likely to appear, that is,
the probability is p = % for each face of the die. Figure 1 shows the simulation

of 1000 dice rolls and the frequency of outcome for each number.
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Figure 1: Simulation (light blue) and distribution (red) of a dice roll.

More generally, a random variable is a variable whose possible values are the
outcome of a random phenomenon. This phenomenon can be genuinely random,
as in the rolling of a die example, or randomness that is the result of incomplete
knowledge of a system. Random variables can be either discrete if they can take
only finitely many values (as in the die example), or continuous if they take
infinitely many values. The probability distribution of a discrete random variable
is a list of all its possible values together with the respective probabilities of
obtaining them. For a continuous random variable, the probability distribution
is instead given by the integral of a function (called the “probability density”). If
the values of a random variable are all equally likely, we say it follows a uniform
distribution. This is the case for a random variable that models rolling a die,
or, for a continuous example, a random number generator on an interval (a,b).
Obviously not all random variables are uniformly distributed; the most common
example of one that is not is the “Gaussian” random variable, which behaves
according the Gaussian distribution function, denoted by A (u, 0?) and pictured
in Figure 2. Here p is the mean value, that is, the value with the highest
probability of outcome, and o2 is the variance, which is a measure of how the
values spread around the mean. A special case is the variable A/(0, 1), called the
standard Gaussian. It can be shown that any other Gaussian distribution can



be obtained through the relation y + oN(0,1). A Gaussian variable N (u, 0?)
takes values in an interval [a,b] with probability
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Figure 2 shows the simulation of two different Gaussian variables and the
frequencies of the realizations. We see how a smaller variance makes the
observations less spread out around the mean. We say two random variables are
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Figure 2: Simulations of a A/(0,1) variable and a N(10,5) (light blue and
orange respectively) and their theoretical distributions (red and blue
respectively).

independent if knowledge about one of them doesn’t carry information about
the other. For example, if we roll two ordinary six-sided dice together, the
score on one die is independent of the score on the other. We say two random
variables have the same distribution if they assign the same probability to the
same outcomes. For instance, the dice from the previous example have the same
distribution.

Sometimes it is useful to study a sequence of random variables as a mathe-
matical object in its own right; we refer to this sequence as a random process.
Consider this simple example: Start from 0 and flip a coin. If the coin shows
heads add +1, and if the coin shows tails, add —1. Repeat this process as many
times as you like. We call this particular example of a process a random walk,
as it can be imagined as an object “walking” on the integers, forward when
adding 1 and backwards when adding —1. We can describe it more precisely

5



with the following recurrence relations:

Wy =0,

Wi = W1+ Ck—1,
where k£ > 0 is the integer number of coin tosses, Wy, is the position at time k
and Cj_1 is the coin toss at step k¥ — 1 which yields either +1 or —1. What
does Wy, look like? And what happens if we repeat the same construction

multiple times? Figure 3 shows the simulation of a single trajectory and a
sample of multiple realizations.
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Figure 3: Simulations of random walks with 1000 steps.

It is also common to define random processes with continuous recurrence
relations. One important example is “Brownian motion”, which can be defined
as follows: We begin the process with the value 0 and for every increment of
time dt we add the value given by one outcome of the Gaussian variable A/(0, dt).
We say the Brownian motion has “independent Gaussian increments” and we
write

BO :07
Bt+dt = Bt + \/%N(O, 1)

The Brownian motion described by the system of equations above is depicted
in Figure 4, which shows a simulation of a single trajectory and a sample of
multiple realizations. This process is used to model a great variety of natural
phenomena, from the motion of tiny particles in a fluid to the motion of massive
bodies in space responding to gravitational forces from surrounding stars.



Trajectory of a Brownian motion Trajectories of 100 Brownian motions
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Figure 4: Simulations of Brownian motions.

The simulations of the random walk and of Brownian motion look surprisingly
similar. This is not a coincidence and the relationship between the two can be
explained. Let us fix an integer n and set dt = % Then consider the Brownian
motion B E and the rescaled random walk V% defined as follows:

1
By=0, Br =Bk +7~N(0,1),
n ™ n
Wo=0, V - W
0o—Y %_\/’ﬁ k>

where now k < n. If we let n increase to infinity, then these two processes will
have the same distribution. Figure 5 illustrates this phenomenon.

1.3 Gaussian ensemble and symmetric Brownian motion

We are now prepared to introduce our main topic. A random matriz is defined
to be a matrix whose entries are random variables, and a matriz process is
defined to be a sequence of random matrices. Let us also define the Gaussian
Orthogonal Ensemble (GOE), which is the set of all random matrices H which
are symmetric (recall that this means they have the property H' = H), and
which satisfy

V2-N(0,1) ifi=j.

In other words, the GOE is the set of all symmetric random matrices whose
entries are independent standard Gaussian variables, and rescaled Gaussian

o ind {N(0,1> if i # j,
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Figure 5: Rescaled random walks and Brownian motions where n = 1000.

variable along the diagonal. If H belongs to the GOE then the eigenvalues of H,
which will be random variables themselves. Wishart [3] gave an explicit form
for the distribution of these eigenvalues, which was an important step forward
in the theory of random matrices. Wishart’s work was subsequently developed
by Wigner [2], who showed that when the dimension d grows to infinity, the
distribution of each of the eigenvalues is given by the semi-circular law, which
assigns probability

b
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to an interval [a,b] C [—1,1]; see Figure 6 to see where the name of this
distribution comes from. In particular, this means that all the eigenvalues have
the same distribution. Dyson [1] generalises the GOE in the same way as the
Brownian motion generalises a Gaussian variable. We can define the symmetric
Brownian motion to be the matrix process .S; whose entries are the independent
Brownian motions
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rescaled inversely with the square root of the dimension d of the matrices By
that form the process. Note also the rescaling by /2 along the diagonal, as
in the GOE case shown above. We denote by A; = Spec(S;) the process of
eigenvalues of S; (where we recall that each eigenvalue of a random matrix



Histogram of eigenvalues of GOE matrices
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Figure 6: Simulation of eigenvalues from a GOE of dimension d = 50 (light
blue) and semi-circular distribution (red).

is itself a random variable). Figure 7 shows how these eigenvalues evolve in
time. The fascinating aspect of the dynamics of A; is not only the fact that the
eigenvalues do not cross each other, but they also repel each other when they
are too close (like equal poles of two magnets). For example, let us have a closer
look at the two upper curves in Figure 7 (the ones drawn in red and black). If
we zoom into the graph, we see that the red curve always remains above the
black curve, that is, they never intersect. Furthermore, when at some point
the curves get very close, shortly after that they start to move away from each
other again. If we inspect any other pair of neighbouring curves we will observe
the same behaviour. Dyson [1] gave a rigorous mathematical description of
these dynamics using the following model

P =0,

(i) 4 / 1
t+dt P N 0 1 Z P P(j)

P(l)

The process P; describes a set of particles which follow the trajectory of indepen-
dent Brownian motions under the effect of mutual repulsion. We call this model
a Dyson Brownian motion or Dyson Gas. Figure 8 shows a simulation of the
system. The particles are characterized by numbers on the real line, thus the
gas formed of the ensemble of these particles is confined to a one dimensional
space (the line). Notice the striking resemblance between Figures 7 and 8.
Dyson proved that the process A; of the eigenvalues of S; and the process P;
given by the Dyson gas have the same distribution. This is remarkable because



Eigenvalues of Symmetric Brownian motion
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Figure 7: Eigenvalues of the symmetric Brownian motion with d = 50.

the symmetric Brownian motion S; is a process of random matrices whose
entries are independent Brownian motions, there is no interaction going on,
the only constraint is the symmetry of the matrices. One might think the
eigenvalues should follow independent Brownian motions themselves, maybe
non-intersecting Brownian motions? as in Figure 9, but that is not the case.
The non-intersecting Brownian motions do not spread as much as the eigenvalues
of the symmetric Brownian motion, both around zero and from each Brownian
motion to the other (see Figure 9 and compare to Figure 7). What is then causing
this unexpected behaviour? It is the symmetry structure, the emergence of the
repulsion between the eigenvalues is an intrinsic consequence of the invariance
under orthogonal transformations.

2 Wigner postulate and Dyson interpretation

The original motivation for the development of random matrix theory was
atomic physics. In the 1950s, physicists were trying to develop a model which
would accurately predict the energy spectrum of “heavy atoms”.

Atoms are constituted by a nucleus and one or several electrons, which are
particles much smaller and lighter than the nucleus. The nucleus is the core

Non-intersecting Brownian motions are a system of N independent Brownian motions
Bi(t),...,Bn(t) indexed on a interval [0, T'] with the additional condition By (t) < ... < By (¢)
for all ¢ in [0,T]. Non-intersecting Brownian motions can also be called ordered Brownian
motions because the non-intersecting condition requires these Brownian motions to keep the
same order for all ¢ in [0, 7.
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Gas with electrostatic repulsion
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Figure 8: A simulation of the Dyson gas with d = 50 particles.

of the atom, it is stable and barely moves when the atom is at rest. The
electrons surround the nucleus, and they constitute the most reactive part of the
atom. For example, when particles of light (photons) hit an atom, these can be
absorbed by it; when this happens, the energy of some of the atom’s electrons
increases by the exact amount of energy carried by the photons. The rules of
quantum physics — which describe the behaviour of microscopic components of
matter such as atoms — give only a few specific possible values for the energy
levels of atoms. We say that the atomic energy levels are discrete. If the photon
hits the atom with an energy that is not precisely the difference between two
energy levels of the atom, then nothing actually happens. But if the energy
of the photon is exactly this difference of energy, then it is absorbed by the
atom and one electron of the atom will pick this difference in energy, causing
the atom to reach a new energy state. The set of the possible energy levels
of an atom is called its spectrum. The spectrum of the Hydrogen atom — the
only atom with a single electron — can be computed analytically. However, for
the other atoms (the heavy atoms), only approximate values can be obtained
for their energy spectrum, and the more electrons that an atom has, the more
difficult is this calculation, and the more imprecise are the values obtained.
Computing these spectra meant finding the eigenvalues of enormously large
matrices (called “Hamiltonian matrices”), which was computationally impossible,
only the lowest energy levels could be modelled with any accuracy in this way.
Given the intractability of this problem, researchers then began to consider
the statistical distribution of the energy levels. Wigner had the idea that the
Hamiltonian matrices could be treated as arrays of random numbers with some
symmetry properties, since the individual entries in the matrices seemed to
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Non-intersecting Brownian Motions
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Figure 9: Simulation of d = 50 non-intersecting Brownian motions.

have no obvious correlations. As we have seen, simply imposing symmetry
structure on random matrices is enough to produce the behaviour that is seen
experimentally.
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