
  

Connectomic analysis of apical dendrite 

innervation in pyramidal neurons of mouse 

cerebral cortex 

 

 

Dissertation 

zur Erlangung des Doktorgrades 

der Naturwissenschaften 

 

vorgelegt beim Fachbereich Biowissenschaften 

der Johann Wolfgang Goethe - Universität 

in Frankfurt am Main 

 

von 

Ali Karimi 

aus 

Mashhad, Iran 

 

Frankfurt am Main, 2020 

(D 30) 

  



 

II 

Vom Fachbereich Biowissenschaften der 

Johann Wolfgang Goethe - Universität als Dissertation angenommen. 

 

 

 

Dekan: Prof. Dr. med. Sven Klimpel 

 

Erstgutachter : Prof. Dr. Amparo Acker-Palmer 

Zweitgutachter : Prof. Dr. Moritz Helmstaedter 

 

 

 

Datum der Disputation : 

  



 

III 

 

 

 

 

 

 

 

 

 

 

To Maryam and Mohammad-Hossein. 

Thank you for all the memories. 

 

 

 

 

 

 

 

 

  



 

IV 

1. Acknowledgements 

This scientific endeavor would not have been possible without the help of my 

colleagues at the Connectomics Department. I think this has been the most intense 

learning period in my life. To be around such wonderful group of smart, humble 

individuals was extremely gratifying. The conversations we had shaped every aspect 

of my professional and personal life. 

First, I would like to thank Moritz Helmstaedter for giving me this opportunity 

and his continuous support and guidance during the past 4 years. I wish to thank 

Florian Drawitsch, Jakob Straehle, Anjali Gour, Meike Schurr, Yunfeng Hua and Philip 

Laserstein for discussions regarding multiple aspects of the experimental procedure 

from sample preparation to dataset acquisition. Manuel Berning, Benedikt Staffler, 

Alessandro Motta, Martin Schmidt, Sahil Loomba and Emmanuel Klinger for their 

support regarding various aspects of our data analysis pipeline and help with 

implementation of the various analysis procedures and aberration adjustment software 

package.  

In addition to the ACC dataset, Jan Odenthal provided a large fraction of the 

skeleton annotations and the initial version of the analysis routines. Our discussions 

were always a way for me to figure out new directions for the apical dendrite analysis 

project. Additionally, the LPtA and S1 datasets were provided by Florian Drawitsch and 

Kevin Boergens, respectively. The FluoEM code repository provided by Florian 

Drawitsch significantly eased the challenging process of identifying long-range 

projections in correlative light and electron microscopic datasets. 

In addition, I would like to thank Dr. Kevin Briggman and Prof. Dr. Amparo 

Acker-Palmer who provided guidance and constructive feedback throughout my 

doctoral research as members of the thesis advisory board. 

Jakob Straehle, Sahil Loomba, Kun Song, Vijayan Gangadharan and Marcel 

Beining provided information and overview images of their datasets acquired using the 

automated aberration adjustment software. Jakob Straehle helped implement the initial 

version of the software on the Verios microscope. Our conversations helped the design 

of multiple experimental and analysis procedures during my PhD. 



 

V 

We thank M. S. E. A. Aly, L. Bezzenberger, A. B. Brandt, B. Heftrich, A. C. Rix, 

B. L. Stiehl, C. Arras, C. M. Schumm, D. E. Celik, D. J. Goffitzer, J. Buß, K. M. Trares, 

K. Weber, L. Buxmann, L. Decker, L. C. R. Kreppner, M. S. Kronawitter, N. M. 

Böffinger, N. Plath, S. M. Bohne, S. Reichel, T. Engelmann, T. Ernst, T. Winkelmeier, 

V. C.  Kalbert, K. Kramer, L. Präve, M. Präve, N. Berghaus, O. J. Brandt, S. S. 

Wehrheim for neurite reconstructions, Heiko Wissler, Susanne Babl, Lisa 

Bezzenberger, Alexander Brandt, Raphael Jakoby, Raphael Kneißl and Marc 

Kronawitter for annotator training and task management and Heiko Wissler for support 

with visualizations. 

Comments on the initial version of the thesis at hand were provided by Martin 

Schmidt, Sahil Loomba, Kun Song, Jan Odenthal and Renee Hartig. Martin Schmidt 

translated the summary of the thesis to German. 

Finally, I would also like to thank my family and friends for helping me during 

this intense phase and apologize for my lack of presence. I would like to specifically 

thank my wife, Renee, for her patience, grace and positivity when mine was gone. 

  



 

VI 

2. Table of Contents 

 1. Acknowledgements ..................................................................................................... IV 

 2. Table of Contents ........................................................................................................ VI 

 3. Index of Figures and Tables ........................................................................................ X 

 4. Summary (English) ..................................................................................................... XII 

 5. Zusammenfassung / Summary (German)  ............................................................... XIV 

 6. Introduction .................................................................................................................. 1 

6.1. Cerebral cortex in mammalian brains ...................................................................... 1 

6.2. Wiring in cerebral cortex: canonical cortical circuit model ........................................ 2 

6.3. Functional properties of pyramidal neurons and their apical dendrites..................... 3 

6.4. Role of dendritic spines in pyramidal neurons ......................................................... 6 

6.5. Inhibitory innervation of apical dendrites .................................................................. 6 

6.6. Balance between excitation and inhibition in pyramidal neurons ............................. 7 

6.7. Methods to generate connectivity data in the cerebral cortex .................................. 8 

6.8. Automated aberration adjustment for SBEM...........................................................14 

6.9. Sample preparation for 3D electron microscopy .....................................................16 

6.10. Analysis of 3D-EM volumes for connectivity ........................................................18 

6.11. Impact of long-range input on pyramidal neurons (case study in S1) ..................19 

6.12. FluoEM: an ideal method to map long-range input in 3D-EM ..............................21 

6.13. Long-range input to posterior parietal cortex (PPC) ............................................23 

6.14. Outlook and contributions ...................................................................................24 

 7. Materials and Methods ................................................................................................25 

7.1. Volumetric electron microscopy imaging of cortex ..................................................25 

7.1.1. Animal experiments ............................................................................................25 

7.1.2. S1, LPtA sample preparation ..............................................................................25 

7.1.3. Transcardial perfusion ........................................................................................25 

7.1.4. Cortical region targeting and tissue extraction .....................................................26 



 

VII 

7.1.5. Electron microscopy dataset names ...................................................................26 

7.1.6. En-bloc sample preparation for 3D electron microscopy .....................................26 

7.1.7. Serial block-face electron microscopy (SBEM) ....................................................27 

7.1.8. Image alignment .................................................................................................28 

7.1.9. Estimating EM beam aberration parameters using image autocorrelation ...........30 

7.1.10. The detection of large objects in EM micrographs .............................................30 

7.2. Cell-type specific innervation of apical dendrites ....................................................31 

7.2.1. Skeleton reconstruction and synapse annotation ................................................31 

7.2.2. Apical dendrite (AD) definition and classification .................................................31 

7.2.3. Identification of layer 2 marginal (L2MN) and slender-tufted layer 5 (L5st) neurons

 .....................................................................................................................................33 

7.2.4. Complete synaptic input mapping of apical dendrites ..........................................34 

7.2.5. Inhibitory input fraction mapping in upper cortex .................................................35 

7.2.6. Distance to soma and synapse composition at the main bifurcation ....................36 

7.2.7. Inhibitory fraction along L2 apical dendrites ........................................................36 

7.2.8. Identity estimation for shaft and spine synapses .................................................36 

7.2.9. Synapse size estimation .....................................................................................37 

7.2.10. Spine apparatus at the main AD bifurcation ......................................................37 

7.2.11. Apical dendrite diameter and synapse density per unit surface area .................37 

7.2.12. Conditional innervation probability of inhibitory axons .......................................37 

7.2.13. Dirichlet-multinomial model for postsynaptic targeting probability ......................38 

7.2.14. Multiple innervation of an AD by inhibitory axons ..............................................38 

7.2.15. Distribution of pre- and post-synaptic neurites along cortical depth ...................39 

7.2.16. Visualization of neurites and their synapses ......................................................39 

7.2.17. Statistics ...........................................................................................................40 

7.2.18. Data and software availability............................................................................41 

7.3. Correlative volumetric light and electron microscopy ..............................................42 

7.3.1. Viral injection into M2 and V1 cortices.................................................................42 

7.3.2. Sample preparation and confocal laser scanning light microscopy (LM) .............43 

7.3.3. Alignment of long-range axons between 3D-LM and EM.....................................43 

7.3.4. Extracting distribution of postsynaptic targets .....................................................43 

 8. Results .........................................................................................................................45 

8.1. Synaptic composition in apical dendrites of pyramidal neurons ..............................45 

8.1.1. Synaptic composition at the main bifurcation of layer 2 (L2) and deep layer (L3/5) 

pyramidal neurons ........................................................................................................45 

8.1.2. More detailed definition of cell types in datasets containing layers 1-5 ................48 



 

VIII 

8.1.3. Layer 2 marginal neurons (L2MN) and slender-tufted layer 5 (L5st) neurons ......52 

8.1.4. Synaptic composition at the main bifurcation of L2-5 pyramidal neurons ............54 

8.1.5. Distal apical dendrites’ synaptic composition in layer 1 for L2-5 pyramidal neurons

 .....................................................................................................................................56 

8.1.6. Distance to the soma as a determining factor for inhibitory fraction at the main 

bifurcation .....................................................................................................................58 

8.1.7. Depth dependence of synapse composition for pyramidal neurons .....................60 

8.1.8. Synapse size and spine properties around the main bifurcation ..........................62 

8.1.9. Postsynaptic dendritic targets of excitatory and inhibitory synapses and the effect 

on the estimation of synapse densities .........................................................................64 

8.1.10. Synapse density normalized to surface area of dendrite ...................................65 

8.2. Innervation profile of AD-targeting inhibitory axons in layer 2 of neocortex .............68 

8.2.1. Cell-type innervation specificity of AD-targeting axons in layer 2 .........................68 

8.2.2. Distribution of pre- and postsynaptic targets across cortex .................................70 

8.2.3. Multiple innervation of apical dendrites by inhibitory axons .................................71 

8.2.4. Comparing inhibitory axon innervation preference across mouse cortex .............73 

8.3. Correlative 3D-EM in the posterior parietal cortex ..................................................74 

8.3.1. Automatic aberration adjustment of long-term SBEM experiments ......................74 

8.3.2. Application of FluoEM to input from secondary motor (M2) and primary visual (V1) 

areas to posterior parietal cortex (PPC) ........................................................................76 

 9. Discussion ...................................................................................................................82 

9.1. Cell-type specific synaptic innervation in apical dendrites of pyramidal neurons .....82 

9.1.1. Cell-type specific synaptic composition on apical dendrites ................................82 

9.1.2. Non-specific volume transmission and inhibition of L5 apical dendrites ...............84 

9.1.3. Distance to soma as a determining factor of inhibitory strength at the main 

bifurcation of pyramidal neurons ...................................................................................85 

9.1.4. Definition of L5 pyramidal neuron subtypes.........................................................86 

9.1.5. Composition of synapses onto shaft and spine of apical dendrites ......................86 

9.1.6. Synapse density normalized to the surface area of apical dendrites ...................87 

9.1.7. Specific innervation of L2 and L3/5 ADs ..............................................................88 

9.1.8. Multi-innervation of apical dendrites by inhibitory axons ......................................88 

9.1.9. Quantitative consistency of axonal innervation across cortical regions................89 

9.2. EM connectomic analysis of long-range input to posterior parietal cortex (PPC) ....90 

9.2.1. Importance of image quality control routines in long-term high throughput 

volumetric 3D-EM .........................................................................................................90 

9.2.2. Cell-type specific innervation of neurons in PPC by long-range input from M2 and 

V1 .................................................................................................................................91 



 

IX 

 10. Tables ...........................................................................................................................93 

 11. References ................................................................................................................. 100 

 12. Curriculum vitae (CV) ................................................................................................ 117 

 

 

  



 

X 

3. Index of Figures and Tables 

Figure 1. Coupling of input to the distal apical dendrite and basal input regions for layer 5 

pyramidal neurons ................................................................................................................. 5 

Figure 2. Methods for 3D reconstruction of neuronal circuits using electron microscopes ....11 

Figure 3. Conceptual summary of FluoEM as a method for mapping long-range innervation 

using combined 3D light and electron microscopy ................................................................22 

Figure 4. 3D electron microscopy datasets of size ~106 µm3 used for analysis .....................46 

Figure 5. Complete synaptic input mapping of the main bifurcation of apical dendrites in 

pyramidal neurons ................................................................................................................47 

Figure 6. Datasets used for detailed cell-type specific analysis ............................................49 

Figure 7. Reconstruction of apical dendrites of pyramidal neurons used in cell-type specific 

analysis ................................................................................................................................51 

Figure 8. Classification of L5 neurons into slender-tufted and thick-tufted subtypes. ............53 

Figure 9. Cell-type specific inhibitory size at the main bifurcation of apical dendrites ............55 

Figure 10. Inhibitory fraction at the distal apical dendrite tuft of L2-5 pyramidal neurons ......57 

Figure 11. Distance of the dendritic segment to soma controls inhibitory fraction .................59 

Figure 12. Complete synaptic input map of segments of layer 2-5 pyramidal neurons ..........60 

Figure 13. Synaptic densities across upper cortex for pyramidal neurons.............................61 

Figure 14. Properties of synapses and spines around the main bifurcation ..........................63 

Figure 15. The dendritic target of excitatory and inhibitory synapses and its effect on the 

fraction of inhibitory synapses ..............................................................................................65 

Figure 16. Apical dendrite diameter and synapse density normalized to the surface area of 

dendrites ..............................................................................................................................67 

Figure 17. Cell-type specific innervation of apical dendrites by inhibitory axons in layer 2 of 

neocortex .............................................................................................................................69 

Figure 18. Spatial distribution of main bifurcation of ADs and axons across the upper cortical 

layers ...................................................................................................................................70 

Figure 19. Multiple innervations of apical dendrites by inhibitory axons ................................72 



 

XI 

Figure 20. Consistent innervation profile of inhibitory axons across the neocortex ...............73 

Figure 21. Design of software for automatic adjustment of objective lens and stigmators in 3D 

electron microscopy .............................................................................................................75 

Figure 22. Example datasets acquired by colleagues using automatic aberration adjustment 

software................................................................................................................................76 

Figure 23. Application of FluoEM, correlated light and electron microscopy, to motor (M2) 

and visual (V1) input to posterior parietal cortex (PPC) ........................................................77 

Figure 24. The depth profile of cell bodies in PPC innervated by axons from secondary motor 

(M2) and visual (V1) cortices ................................................................................................79 

Figure 25. Cortical depth of soma for postsynaptic targets of individual axons from V1 and 

M2 cortical regions ...............................................................................................................81 

 

Table 1. Experimental details ...............................................................................................94 

Table 2. Temperature and times of dehydration and embedding steps for 3D-EM samples .95 

Table 3. Data analysis ..........................................................................................................96 

Table 4. Fraction of spine-preferring (excitatory) input on spine and shaft of apical dendrites

 .............................................................................................................................................97 

Table 5. The somatic depth of pyramidal neurons relative to pial surface .............................98 

Table 6. Datasets acquired using automated aberration adjustment .....................................99 

  



 

XII 

4. Summary (English) 

The central goal of this study was to generate synapse-resolution maps of local 

and long-range innervation on apical dendrites (AD) in mouse cerebral cortex. We used 

three-dimensional electron microscopy (3D-EM) to first measure the cell-type specific 

balance in the excitatory and inhibitory input on ADs. Further, we found two inhibitory 

axon populations with preference for apical dendrites originating from layer 2 and 3/5. 

Additionally, we used a combination of large-scale volumetric light and electron 

microscopy to investigate the innervation preference of long-range cortical projections 

onto ADs. To generate such large-scale 3D-EM datasets, we also developed a 

software package to automate aberration adjustment. 

The balance of excitation and inhibition defines the computational properties of 

neurons. We, therefore, generated 6 datasets and annotated 26,548 excitatory and 

inhibitory synapses to map the relative inhibitory strength on the AD of pyramidal 

neurons in layers 1 and 2 (L1 and 2) of the cortex. We found consistent and cell-type 

specific patterns of inhibitory strength along the apical dendrite of L2-5 pyramidal 

neurons in primary somatosensory (S1), secondary visual (V2), posterior parietal 

(PPC) and anterior cingulate (ACC) cortices. L2 and L5 pyramidal neurons had 

inhibitory hot-zones at their main bifurcation and distal apical dendrite tuft, respectively. 

In contrast, L3 neurons had a baseline (~10%) level of inhibition along their apical 

dendrite. As controls, we quantified the effect of synapse strength (size), dendrite 

diameter, AD classification and synapse identification methods on the cell-type specific 

synapse densities. To classify L5 pyramidal subtypes, we performed hierarchical 

clustering using morphological properties that were described to differentiate slender- 

and thick-tufted L5 neurons. 

We also investigated the distance to soma as a predictor of fractional inhibition 

around the main bifurcation of apical dendrites. Interestingly, we found a strong 

exponential relationship that was absent in density of either synapse type. This 

suggests a distance dependent control mechanism designed specifically for the 

balance (in synapse numbers) of excitation and inhibition. 
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Next, we focused on the inhibitory innervation preference for apical dendrite of 

pyramidal neuron. We, therefore, annotated 5,448 output synapses of AD-targeting 

inhibitory axons and found two populations specific for either L2 or L3/5 apical 

dendrites. Together with previous findings on preferential innervation of sub-cellular 

structures by inhibitory axons, this suggests two distinct inhibitory circuits for control of 

AD activity in L2 vs. deep-layer pyramidal neurons. This innervation preference was 

surprisingly consistent across S1, V2, PPC and ACC cortices. 

3D-EM data acquisition is a laborious process that is made easier and more 

popular everyday by technical progress in the laboratory and industrial settings. To 

make data acquisition robust using our custom-built 3D-EM microscopes, an automatic 

aberration software was implemented to adjust the objective lens and the stigmators 

of the electron microscope. This method was used in multiple month-long experiments 

across 2 microscopes and 10 datasets. The aberration adjustment used the reduction 

in image details (high-frequency elements) to estimate the level of deviation from 

optimal focus and stigmator parameters. However, large objects in EM micrographs 

such as blood vessel and nuclei cross-sections generated anomalous results. We, 

therefore, added image processing routines based on edge detection combined with 

morphological operations to exclude such large objects. 

Finally, we performed a correlative three-dimensional (3D) light (LM) and 

electron (EM) microscopy experiment to map the long-range primary visual (V1) and 

secondary motor (M2) cortical input to ADs in layer 1 of PPC using the “FluoEM” 

approach. This method allows for identification of the long-range source of projection 

axons in EM volumes without the need for EM-dense label conversion or heat-induced 

markings. The long-range source of an axon in EM is identified based on the 

fluorescent protein that is expressed in its LM counterpart. In comparison to M2 input, 

Long-range axons from V1 had a higher tendency to target L3 pyramidal neurons in 

PPC according to our preliminary analysis. In combination with the difference observed 

in the synapse composition of L2 and L3 apical dendrites, this suggests the need for 

separate functional and structural analysis of L2 and 3 pyramidal neurons. 
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5. Zusammenfassung / Summary (German) 1 

Das zentrale Ziel dieser Studie war die Erstellung synapsenaufgelöster 

Verschaltungskarten der lokalen und langreichweitigen Innervation apikaler Dendriten 

(AD) von Pyramidenzellen in der Großhirnrinde von Mäusen. Zu diesem Zweck 

nutzten wir die dreidimensionale Elektronenmikroskopie (3D-EM) zur Aufnahem 6 

kortikaler Volumina und ermittelten das zelltypspezifische Gleichgewicht in den 

exzitatorischen und inhibitorischen Inputs. Darüber hinaus untersuchten wir die lokale 

inhibitorische Präferenz der Innervation von ADs in Pyramidenzellen der Schichten 2-

5 (L2-5). Zudem nutzten wir eine Kombination von großskaliger volumetrischer Licht- 

und Elektronenmikroskopie zur Untersuchung der Innervationspräferenz von 

langreichweitigen, kortikalen Projektionen auf kortikale Neuronen. Um diese großen 

3D-EM-Datensätze zu generieren, haben wir ein Softwarepaket zur Automatisierung 

der Aberrationsanpassung entwickelt. 

Das Gleichgewicht von Exzitation und Inhibition definiert die rechnerischen 

Eigenschaften von Neuronen. Wir haben daher sechs 3D-EM Datensätze aus 5 

verschiedenen kortikalen Regionen aufgenommen und 26,548 exzitatorische und 

inhibitorische Synapsen annotiert, um die relative inhibitorische Innervation 

der apikalen Dendriten in den Schichten 1 und 2 (L1 und 2) des Kortex abzubilden. In 

Primären Somatosensorischen (S1), Sekundären Visuellen (V2), Posterioren 

Parietalen (PPC) und Anterioren Zingulären (ACC) Kortizes fanden wir konsistente 

und zelltypspezifische Muster der relativen inhibitorischen Stärke entlang des apikalen 

Dendriten von L2-5-Pyramidenzellen. 

L2 Pyramidenzellen wiesen an ihrer AD Hauptbifurkation eine Inhibitionszone 

auf. Der Anteil an Inhibition war im Vergleich zum Grundniveau der Inhibition (10%) in 

L3/5 Pyramidenzellen um das Dreifache erhöht. Erhöhte inhibitorische und verringerte 

exzitatorische Synapsendichten tragen beide zu einer Inhibitionszone an der L2 AD 

Hauptbifurkation bei. Im Gegensatz dazu zeigten L5 thick-tufted (L5tt) 

Pyramidenzellen eine erhöhte relative Inhibition an ihrem distalen AD tuft. Die 

                                                           

1 Translated to German by Martin Schmidt 
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geringe exzitatorische Synapsendichte im Vergleich zur Hauptbifurkation stellte sich 

als der wesentliche Faktor dieser distalen Inhibitionszone von L5tt-Neuronen 

heraus. Die distale Inhibtionszone könnte möglicherweise den Erregungsgrad um 

die Hauptbifurkation gezielt steuern. Interessanterweise zeigten L3 Neuronen eine 

Grundinhibition (~10%) über ihren gesamten apikalen Dendriten in L1-3. Diese 

Ergebnisse weisen auf das Gleichgewicht von Exzitation und Inhibition (der 

Synapsenanzahl) als zelltypspezifisches Merkmal von Pyramidenzellen in L1-3 des 

Kortex hin, was ihnen einzigartige rechnerische und integrierende Eigenschaften 

verleiht. 

Als Kontrollen verglichen wir die Synapsengrößen und Häufigkeiten von 

Zweifachinnervationen der Dornfortsätze durch inhibitorische Axone zwischen L2 und 

L3/5 AD Hauptbifurkationen. In früheren Veröffentlichungen wurde die Korrelation 

zwischen Synapsengröße und Synapsenstärke bereits gezeigt. Die inhibitorischen 

Synapsen waren an der Hauptbifurkation der L2 ADs größer (und entsprechend 

wahrscheinlich stärker). Zusätzlich wurde ein größerer Anteil von L2 AD 

Dornfortsätzen im Vergleich zu den Dornfortsätzen von L3/5-ADs mit einer 

inhibitorischen Synapse co-innerviert. Insgesamt deuten die Synapsenanzahl, -größe 

und -doppelinnervation der Dornfortsätze auf ein erhöhtes Maß an Inhibtion an der 

Hauptbifurkation von L2 ADs hin. 

Die Eingangsimpedanz eines Dendriten ist proportional zur Amplitude 

der elektrischen Spannung der postsynaptischen Zelle. Der AD-Durchmesser (und die 

Oberfläche) steuern die Eingangsimpedanz. Wir haben deshalb den Durchmesser 

und die Oberfläche von ADs gemessen und fanden einen circa zweifach reduzierten 

Durchmesser der distalen Dendriten im Vergleich zu Dendritendurchmessern an der 

Hauptbifurkation. Darüber hinaus hatten slender-tufted L5-Neuronen (L5st) die 

dünnsten ADs im Vergleich zu anderen Pyramidenzellen. Die zelltypspezifischen 

Unterschiede in der Synapsendichte, normalisiert mit der Apikaldendritlänge, wurden 

ebenfalls beobachtet wenn mit der Oberfläche statt der Länge normalisiert wurde. 

Wir klassifizierten zunächst Synapsen auf dem dendritischen Schaft und die 

dendritischen Dornfortsätze von ADs als inhibtorisch bzw. exzitatorisch. Um den 

Fehler dieser Klassifizierung zu quantifizieren, rekonstruierten wir in L1-2 eine 
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Teilmenge von Axonen die Schaft oder Dornenfortsatz von ADs innervieren. Unser Ziel 

war es festzustellen, ob das präsynaptische Axon inhibitorisch (schaftpräferierend) 

oder exzitatorisch (dornenfortsatzpräferierend) war. Wir haben 

daher die Präferenz für Dornenfortsätze für jedes rekonstruierte Axon innerhalb des 

EM-Volumens quantifiziert. Interessanterweise war die Innervationspräferenz fast 

binär, d.h. Axone bevorzugten entweder Schaft oder Dornfortsätzen von 

ADs. Entsprechend lag die durchschnittliche Klassifizierungsfehlerrate für alle 

Neuronentypen mit Ausnahme von L5st-Neuronen unter 25%. 

Pyramidenzellen werden traditionell anhand der kortikalen Schicht klassifiziert, 

in der sich ihr Soma befindet. Wir haben diesen Ansatz verwendet, um L2-, L3- und 

L5- Neuronen zu unterscheiden. Es wurde anderswo jedoch auch über 

morphologische und funktionelle Subtypen von Neuronen berichtet, die sich in 

derselben Schicht befinden. Deshalb suchten wir speziell nach 

L2 marginalen Neuronen (L2MN) mit einem schrägen Apikaldendriten (oblique AD) 

relativ zur pia mater. Wir führten zudem eine Analyse der Synapsendichte um die AD 

Hauptbifurkation durch. Unsere vorläufige Analyse (n = 2) ergab keinen signifikanten 

Unterschied zwischen den L2 und L2MN Pyramidenzellen. 

Als nächstes untersuchten wir die Unterschied in der Synapsendichte zwischen 

L5tt und L5st Pyramidenzellen. Zunächst verwendeten wir die zuvor 

veröffentlichte Anzahl von schrägen Apikaldendriten, die kortikale Tiefe der 

Hauptbifurkation, Soma- und AD Schaftdurchmesser, um L5 Subtypen zu 

klassifizieren. L5st-Neuronen hatten einen kleineren Soma- und AD-

Schaftdurchmesser. Darüber hinaus war der Ort der AD Hauptbifurkation in L1-3 und 

es gab eine geringere Anzahl von schrägen (oblique) Dendriten im Vergleich zu L5tt-

Neuronen. Die morphologischen Merkmale von L5 Pyramidenzellen lassen jedoch auf 

ein Spektrum kontinuierlicher Subtypen mit unterschiedlichem Grad an „thick-

tuftedness“ schließen. Interessanterweise hatte die Dichte der exzitatorischen 

Synapsen eine positive lineare Beziehung zur „thick-tuftedness“ von L5 

Neuronen. Dies führt zu einem verringerten inhibitorischen Anteil an L5tt Neuronen im 

Vergleich zu L5st Neuronen. 



 

XVII 

Wir untersuchten auch den Abstand zum Soma als Prädiktor für die anteilige 

Inhibition der Hauptbifurkation apikaler Dendriten. Interessanterweise fanden wir eine 

starke exponentielle Beziehung, die in keiner Einzelsynapsendichte (exzitatorisch 

bzw. inhibitorisch) vorhanden war. Dies legt einen abstandsabhängigen 

Kontrollmechanismus nahe, der für das Gleichgewicht (der Synapsenanzahl) von 

Exzitation und Inhibtion spezifisch ist. 

Als nächstes konzentrierten wir uns auf die Präferenz der inhibitorischen 

axonalen Innervation für den apikalen Dendrit von Pyramidenzellen. Wir annotierten 

5448 Ausgabesynapsen von AD-innervierenden inhibitorischen Axonen 

und quantifizierten ihre Präferenz nach AD-Typen. Wir fanden zwei Populationen, die 

entweder für L2 oder für L3/5 Apikaldendriten spezifisch sind. Zusammen mit früheren 

Befunden zu präferentieller Innervation subzellulärer Strukturen durch inhibitorische 

Axone, legt dies zwei unterschiedliche inhibitorische Schaltkreise für die Kontrolle der 

AD-Aktivität in L2 vs. L3/5-Pyramidenzellen nahe. Die Innervationspräferenz war 

überraschend konsistent über S1-, V2-, PPC- und ACC-Kortizes. 

Um zu untersuchen, ob eine geometrische Trennung zu einer solchen 

Innervationsspezifität führen kann, untersuchten wir die zelltypspezifische kortikale 

Tiefenverteilung der AD Hauptbifurkationen und der AD invervierenden inhibitorischen 

Axone. Wir fanden, dass ihre Tiefenverteilung ähnlich ist, was darauf hindeutet, dass 

die geometrische Trennung die spezifische Innervation von L2- und L3/5- ADs nicht 

erklären kann. 

Es wurde berichtet, dass inhibitorische Axone Apikaldendriten geclustert 

und multisynaptisch innervieren. Daher haben wir solche Mehrfachinnervationen von 

Apikaldendriten durch einzelne inhibitorische Axone innerhalb unserer EM-Volumina 

von S1, V2, PPC und ACC annotiert. Wir stellten fest, dass ~80% der AD-Innervation 

durch inhibitorische Axone innerhalb der EM-Volumina (~106 µm3) monosynaptisch 

sind. Daher wurde die Innervationsspezifität von AD-Typen nur geringfügig 

beeinflusst, wenn die mehrfache Innervation desselben postsynaptischen Ziels 

ignoriert wurde. 

Die 3D-EM-Datenerfassung ist ein arbeitsaufwändiger Prozess, der durch den 

technischen Fortschritt im Labor und in der Industrie einfacher und populärer wird. Um 
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die Datenerfassung unserer spezialangefertigten 3D-EM Mikroskope robuster zu 

machen, wurde eine Software zur automatischen Detektion und Korrektur von 

Abbildungsfehlern implementiert, die die Parameter der Objektivlinse und der 

Stigmatoren des Elektronenmikroskops anpasst. Die Software erwies sich in 

mehrmonatigen Experimenten mit 2 Mikroskopen und 10 Datensätzen von 5 

Experimentatoren als robust. 

Die Aberrationsanpassung verwendete die Verringerung der Bilddetails 

(Hochfrequenzelemente), um den Grad der Abweichung von den optimalen Fokus- 

und Stigmatorparametern abzuschätzen. Große Objekte in EM-Aufnahmen wie 

Blutgefäß- und Zellkernquerschnitte führten jedoch zu anomalen Ergebnissen. Wir 

haben deshalb Bildverarbeitungsroutinen hinzugefügt, die auf Kantenerkennung in 

Kombination mit morphologischen Operationen basieren, um somit große Objekte 

auszuschließen. 

In Veröffentlichungen wurde gezeigt, dass die auf die Schicht 1 des Kortex 

einwirkende langreichweitigen Innervationen die Aktivität von Pyramidenzellen in 

vitro und in vivo steuert. Daher wurden korrelative dreidimensionales (3D) Licht- (LM) 

und Elektron- (EM) Mikroskopien durchgeführt, um die langreichweitigen 

Verbindungen des Primären Visuellen (V1) und des Sekundären Motorkortex (M2) zu 

Schicht 1 des posterior parietalen Kortex (PPC) zu vermessen. Der „FluoEM“ 

Ansatz ermöglicht die Identifizierung der Quelle von langreichweitigen Verbindungen 

von Projektionsaxonen in EM, ohne dass eine EM-dichte Markierungsumwandlung 

oder wärmeinduzierte Markierungen erforderlich wären. Die Identifizierung der Quelle 

eines Axons basiert auf dem fluoreszierenden Protein, das in seinem LM-Gegenstück 

exprimiert wird. Das fluoreszierende Proteingen wird durch Virusinjektion in die 

Quellregionen abgegeben. 

PPC ist ein Assoziationskortex mit reziproken Verbindungen zu sensorischen 

und multimodalen kortikalen Regionen. Es wird angenommen, dass er an 

verschiedenen Aspekten der sensomotorischen Transformationen im Kortex beteiligt 

ist. Daher wollten wir die Muster der langreichweitigen Innervation von Neuronen 

im PPC durch den Sekundären Motorcortex (M2) und den Primären Visuellen Cortex 

(V1) verstehen. Unsere vorläufige Analyse der postsynaptischen Ziele von 24 
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langreichweitigen Axonen legt nahe, dass der V1 Input eine höhere Tendenz aufweist, 

L3 Pyramidenzellen im PPC zu innervieren als M2 Projektionsaxone. In Kombination 

mit den beobachteten Abweichungen in der lokalen inibitorischen Innervation von L2 

und L3 Apikaldendriten resultiert die Notwendigkeit der getrennten Betrachtung von 

L2 und L3 Pyramidenzellen, die traditionell als ein einziger Zelltyp klassifiziert wurden. 

Abschließend ergibt unsere Analyse der synaptischen Innervation in apikalen 

Dendriten von Pyramidenzellen der kortikalen Schichten 1-3 ein zelltypspezifisches 

Gleichgewicht in Exzitation und Inhibition. Inhibitorische Axone zeigen auch 

bevorzugte Innervation von L2 und L3/5 Apikaldendriten. Zusätzlich ergab auch die 

Analyse langreichweitiger Innervation der kortikalen Neuronen 

zelltypspezifische Präferenzen. Zusammengenommen legen diese Ergebnisse nicht-

zufällige, spezifische Verschaltung von apikalen tuft Dendriten nahe. Dies erlaubt 

rechnerisch einzigartige Eigenschaften von L2, L3 und L5 Pyramidenzellen.  

 

  



 

1 

6. Introduction 

6.1. Cerebral cortex in mammalian brains  

Santiago Ramón y Cajal first described neurons as the discrete cellular 

components of the brain by using the Golgi staining method to visualize their structure 

(Cajal 1899). Neurons receive and convey electrical signals through dendritic and 

axonal protrusions which are connected through electrical and chemical synapses 

(Colonnier 1968). The human brain consists of a network of ~86 billion such 

interconnected neurons. About ~16 billion of these neurons are located in the cerebral 

cortex which covers the surface of the brain (Herculano-Houzel 2009). Neocortex with 

its six layers of cell bodies has been implicated in a wide variety of functions from 

sensory processing (Hubel and Wiesel 1959) to motor control (Cheney 1985, Brecht, 

Schneider et al. 2004) and cognition (Glickfeld, Histed et al. 2013, Guo, Li et al. 2014, 

Kato, Gillet et al. 2015).  

There has been considerable progress in understanding several aspects of 

single cortical neuron properties since the anatomical investigation of Ramón y Cajal 

(Cajal 1899, Cajal, DeFelipe et al. 1988). The functional properties of single neurons 

and their ion channels have been described using patch-clamp recording techniques 

(Neher and Sakmann 1976, Hamill, Marty et al. 1981) and two-photon laser scanning 

microscopy (Denk, Strickler et al. 1990). To image activity of neurons, calcium sensors 

have been used (Svoboda, Denk et al. 1997). In addition, intervention in neuronal 

activity using light-sensitive ion channels (Boyden, Zhang et al. 2005) and 

neurotransmitter precursors (Denk 2006) were used to investigate the causal 

relationship between neuronal activity and various phenotypes. Molecular and cellular 

tools have also allowed us to investigate the basic properties of neurons, such as, 

synaptic transmission (Südhof 2013) and protein expression (Holt and Schuman 

2013). 

An average neuron receives about 10,000 synaptic inputs, and outputs a similar 

number of synapses to its neighbors (Megıás, Emri et al. 2001). It is therefore 

postulated that a missing link in achieving a mechanistic understanding of the brain is 

the lack of knowledge about the structure of these networks (Denk, Briggman et al. 
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2012). However, methods to investigate the activity of biological neuronal networks, 

such as electroencephalography (EEG, (Berger 1929)) and functional magnetic 

resonance-imaging (f-MRI, (Ogawa, Lee et al. 1990)), suffer from poor resolution. A 

cubic millimeter (approximate size of an f-MRI voxel) contains about a hundred 

thousand neurons and a billion synapses. Therefore, brain connectivity at the single-

cell resolution remained poorly understood until recently (Logothetis 2008, 

Helmstaedter 2013). The goal of electron microscopy (EM)-based connectomics is to 

fill this gap.  

6.2. Wiring in cerebral cortex: canonical cortical circuit model 

The general flow of information in the cortex gives rise to the simplified 

“canonical” wiring model of cortical layers within each “cortical column” (Douglas and 

Martin 2004). The two most studied cortical regions for this model are the primary 

visual (Hubel and Wiesel 1959) and somatosensory cortices (Mountcastle 1957, 

Woolsey and Van der Loos 1970). The canonical wiring model describes information 

flow in a simple feedforward manner, where sensory information is delivered to the 

mid-section of cortex (centered on layer 4 (L4)) from the sensory thalamic input areas 

(Wimmer, Bruno et al. 2010). This input is then relayed to the cortical output neurons 

in layers 5 and 6 via L2/3 pyramidal neurons. The barrel-shaped thalamic input and 

cell body arrangement in L4 of mouse somatosensory cortex is the most well-defined 

demonstration of the cortical column concept. Additional support for this model was 

generated by the reconstruction of L2/3 axons that converge on L5/6 neurons 

(Narayanan, Egger et al. 2015). 

Significant divergences from the canonical circuit model were observed in vivo. 

For example, it was shown that sensory thalamic input directly activates cortical output 

neurons in L5/6 (Constantinople and Bruno 2013). This is because pyramidal neurons 

extend their dendritic trees beyond the cortical layer that their soma resides (Larkum, 

Petro et al. 2018). 
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6.3. Functional properties of pyramidal neurons and their apical 

dendrites 

Pyramidal neurons make up the majority of neurons (70-85%) in the mammalian 

cerebral cortex and are also found in subcortical structures, such as, hippocampus and 

amygdala (Cajal 1899, Spruston 2008). They are known to be glutamatergic excitatory 

neurons (Conti, Rustioni et al. 1987) with spiny dendrites (Cajal 1899, Larkman 1991) 

that receive most of the excitatory input. Their subtypes have been historically defined 

by the layer where their cell body resides. However, it is important to note that the 

extent of input and output regions of these cells is much larger and is not restricted to 

their cell body layer (Narayanan, Egger et al. 2015, Larkum, Petro et al. 2018). In 

addition, recent single-cell transcriptomic and functional studies have found distinct 

subtypes within the same cortical layer (Economo, Viswanathan et al. 2018, Tasic, Yao 

et al. 2018). 

Active changes in the membrane conductance of neurons were first described 

in giant squid axons (Hodgkin and Huxley 1952). Pyramidal neurons contain ligand- 

and voltage-gated ion-channels both in their dendrites and somata (Stuart and 

Sakmann 1994, Migliore and Shepherd 2002). These ion channels are involved in the 

active regeneration of membrane voltage transients. Investigation of ion channels was 

only made possible by the patch-clamp technique (Neher and Sakmann 1976).  

One of the most significant morphological features of pyramidal cells is their 

apical dendrite (AD). This dendrite emanates from the apex of the pyramidal soma and 

is directed towards the surface of the cortex. It bifurcates at the level of layer 2 

generating the apical tuft dendrite within layer 1 of the upper cortex for most pyramidal 

neurons (Larkman and Mason 1990, Ito, Kato et al. 1998). The role of the apical tuft 

dendrite has been a mystery since the long apical dendrite trunk (up to 1 mm in rats) 

acts as a low-pass filter attenuating the distal synaptic input. It was therefore postulated 

that this signal needs to be amplified at the main bifurcation of apical dendrites (W. A. 

Spencer 1959). Layer 5 pyramidal neurons are exceptional as their basal input region 

receives the primary sensory input in layer 4 (Wimmer, Bruno et al. 2010) and the AD 

tuft region gets the higher order (associative) cortical and thalamic feedback in layer 1 

(Coogan and Burkhalter 1990, Cauller, Clancy et al. 1998). Hence, L5 neurons are 



 

4 

hypothesized to be the cellular substrate for combining the cortical input streams and 

a possible solution to the problem of “binding” distributed feature representation of a 

percept (object) in the brain (Larkum 2013). Additionally, feature-binding could allow 

the cortical neuronal networks to discern percepts from each other (Crick and Koch , 

Treisman 1996). 

The existence of such active amplification of distal electrical input to apical 

dendrites was confirmed using optical fluorescent calcium imaging (Yuste, Gutnick et 

al. 1994) and whole-cell dendritic patch-clamp recordings (Stuart, Dodt et al. 1993, 

Stuart and Sakmann 1994). These studies identified a region around the main 

bifurcation of ADs with increased calcium response to electrical input in layer 5 

pyramidal neurons (Helmchen, Svoboda et al. 1999, Larkum and Zhu 2002). 

Therefore, these neurons contain a secondary spike initiation zone that amplifies the 

input to the AD tuft. 

Apical dendrites of L2/3 (Svoboda, Denk et al. 1997, Svoboda, Helmchen et al. 

1999, Waters, Larkum et al. 2003) and L6 (Ledergerber and Larkum 2010) pyramidal 

neurons also display non-linear calcium spike events in response to concurrent input 

to their basal and AD tuft input domains. L5 neurons, however, are unique in the 

strength of their response to simultaneous synaptic input to their basal and AD tuft 

dendrites (Ledergerber and Larkum 2012).  

Two seminal in vitro studies demonstrated that L5 pyramidal neurons act as 

biological coincidence detectors (Figure 1, (Larkum, Zhu et al. 1999, Larkum, Zhu et 

al. 2001)). Interestingly, Active back-propagation of somatic action potentials (APs) 

reduced the threshold for generation of calcium spikes around the main AD bifurcation. 

Furthermore, coupling a somatic action potential with sub-threshold input to the main 

AD bifurcation generates a burst of action potentials at the soma. The coupling strength 

between somatic and dendritic spike initiation zones was shown to depend on dendritic 

morphology (Schaefer 2003). 
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Figure 1. Coupling of input to the distal apical dendrite and basal input regions 

for layer 5 pyramidal neurons 

(a) A biocytin-filled L5 pyramidal neuron, with the recording pipette positions 

shown. Cortical layers indicated on the left. Scale bar, 200 µm. (b) Current 

injection with peak amplitude of 0.3 nA at the distal pipette (red trace, bottom) 

produced only a small signal at the soma. It did not reach threshold for either a 

Ca2+-AP or a Na+-AP. Istim refers to traces representing injected current and Vm 

the recorded potential. Note that positive current creates intracellular 

depolarization. The color matches the corresponding electrode in the diagram. 

(c) Current injection above the Na+ spike at the soma (black trace) evoked a 

single AP. (d) The combination of the injections used in (b) and (c) separated 

by an interval of 5 ms evoked a burst of APs following the onset of the Ca2+-AP 
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in the distal dendrite. Scale bars in (c) also apply to (b, d). (e) A similar dendritic 

Ca2+-AP to (d) could be evoked by a far larger current injection alone at the 

distal dendritic electrode (1.2 nA). Reprinted with permission from Springer 

nature: Nature (Larkum, Zhu et al. 1999), copyright 1999. 

6.4. Role of dendritic spines in pyramidal neurons 

Most excitatory synapses are formed onto small dendritic spine protrusions in 

pyramidal neurons (Gray 1957, Chen, Villa et al. 2012). They form separate electrical 

compartments from the rest of the dendritic shaft and create localized calcium 

responses (Yuste and Denk 1995). The spine and shaft of a dendrite are coupled by a 

time constant of 20-100 ms (exponential diffusion) and a resistance of 4-50 MOhms, 

as measured by photo-conversion of fluorescent markers (Svoboda, Tank et al. 1996). 

In addition, back-propagating somatic action potentials invade spines, allowing them 

to detect the coincidence of post- and pre-synaptic activity during plasticity events 

(Markram, Lübke et al. 1997). The spine apparatus is a specialized form of 

endoplasmic reticulum found in spines; it was suggested to have a role in the release 

of calcium within the spine and the local synthesis of proteins (Špaček 1985, Segal, 

Vlachos et al. 2010). 

6.5. Inhibitory innervation of apical dendrites 

Inhibitory neurons are involved in a wide variety of cortical circuits and control 

various aspects of neuronal activity, even though they account for only ~12% of  

neurons ((Braitenberg and Schüz 1998), for a review see (Feldmeyer, Qi et al. 2018)). 

They also demonstrate a wide variety of morphological and electrophysiological 

properties (Markram, Toledo-Rodriguez et al. 2004). Their output is mostly localized 

around their cell body of origin (interneurons), even though evidence for long-range 

(projection) inhibitory neurons were recently reported (Yamawaki, Li et al. 2019).  

Inhibitory neurons are known to target specific subcellular regions of pyramidal 

neurons. The chandelier cells, for example, almost exclusively target the initial axon 

segment of L2/3 pyramidal neurons (Somogyi 1977). Basket and Martinotti 

interneurons are known to target peri-somatic and apical tuft sub-regions, respectively 

(Kubota, Karube et al. 2016). However, their innervation specificity is not as extreme 
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as compared to chandelier cells. A recent dense connectomic reconstruction of 5 x 105 

µm3 of layer 4 in mouse somatosensory cortex demonstrated quantitatively that at least 

58% of all inhibitory axons were specific in their innervation of subcellular targets 

(Motta, Berning et al. 2019).  

Interneurons release gamma-Aminobutyric acid (GABA) as their main 

neurotransmitter to inhibit the activity of their postsynaptic targets. GABA activates the 

ionotropic GABAA receptors in synapses with fast kinetics and specificity (synaptic 

transmission). In addition, GABA released to the extracellular space can activate the 

more sensitive metabotropic GABAB receptors with slower kinetics in a non-specific 

manner (volume transmission). Interneuron subtypes engage in either or both 

inhibitory transmission types (Tamás, Lőrincz et al. 2003). Neurogliaform neurons that 

are specialized in volumetric release of GABA inhibit ~85% of neurons within their 

dense axonal arbor (Oláh, Füle et al. 2009). EM connectomics allows the 

reconstruction of complete synaptic inhibitory wiring diagrams. However, no 

straightforward method to predict volume transmission has been described using only 

EM image volumes. 

Since input to apical dendrites effects the output of neurons, it is not surprising 

that inhibitory input modulates non-linear calcium spikes observed both in vitro 

(Larkum, Zhu et al. 1999) and in vivo (Takahashi, Oertner et al. 2016, Abs, Poorthuis 

et al. 2018). Specific inhibitory circuits within cortex were described to modulate AD 

activity through synaptic inhibition in L1-3 (Jiang, Wang et al. 2013) and L5 (Silberberg 

and Markram 2007). In addition, the direct interaction between the GABAB receptors 

and voltage-gated calcium channels has been implied in long-lasting blockage (~400 

ms) of dendritic calcium spikes through volume transmission (Pérez-Garci, Gassmann 

et al. 2006, Pérez-Garci, Larkum et al. 2013). To understand the innervation patterns 

of AD-targeting inhibitory neurons, we reconstructed their axons in four cortical 

regions. 

6.6. Balance between excitation and inhibition in pyramidal neurons 

The spatial distribution of excitatory and inhibitory synapses has been shown to 

affect the activity and computational properties of neurons (Rall 1959, Rall and Rinzel 

1973). Interaction of inhibitory and excitatory input can implement logical operations, 
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such as AND, NOT, as demonstrated in simulated neurons (Koch, Poggio et al. 1983, 

Bush and Sejnowski 1994). A biological implementation of this logical operation was 

found in the direction selectivity circuit of ganglion neurons in the mammalian retina. 

The inhibitory input from the starburst amacrine to ganglion neurons was effective in a 

directional manner, which results in their direction-selectivity (Fried, Münch et al. 

2002). In addition, 3D-EM reconstruction of the same circuit demonstrated the 

existence of such direction-selective inhibitory innervation patterns (Briggman, 

Helmstaedter et al. 2011).  

In cultured rat hippocampal cells, neurons controlled their inhibitory input ratio 

locally within each dendrite by using a feedback regulatory mechanism (Liu 2004). The 

implementation of circuit remodelling during experience-related plasticity was also 

investigated in both inhibitory and excitatory synapses (Harvey and Svoboda 2007, 

Chen, Villa et al. 2012). Interestingly, individual synapse strength is modulated by the 

activity of neighbouring synapses in a clustered manner. 

The distribution of synapses has been used to suggest and provide evidence 

for a two-stage model of synaptic integration in pyramidal neurons. This model 

suggests that synaptic input is first summed linearly within each branch to generate a 

local dendritic spike (most likely NMDA type (Larkum, Nevian et al. 2009)). Next, the 

somatic Na+ spike initiation zone responds to the sum of the input from all dendritic 

branches (Polsky, Mel et al. 2004, Katz, Menon et al. 2009).  

We, therefore, aimed to measure the distribution of excitatory and inhibitory 

synapses across the upper cortical layers for layer 2-5 pyramidal neurons’ apical 

dendrite. The goal was to reveal the cell-type specific innervation patterns (see below). 

Next, we will describe the challenges to acquire and analyze 3D-EM datasets used for 

cellular resolution connectomics (Kleinfeld, Bharioke et al. 2011). 

6.7. Methods to generate connectivity data in the cerebral cortex  

The goal of electron microscopy-based connectomics is to obtain a detailed 

cellular-resolution description of all neuronal wiring. The first step is to image a volume 

large enough to contain the whole dendritic and axonal arbors involved in a functional 

circuit at a sufficient resolution (About 1 mm3 in mouse cortex, (Briggman and Bock 
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2012, Kornfeld and Denk 2018)). However, the largest cubes densely reconstructed 

so far have an edge length of about 100 µm. Furthermore, the resolution should allow 

for reconstruction of the thinnest processes in axons and dendrites (spine necks, ~50 

nm thick). To cover such thin processes with at least 2 voxels, one needs a resolution 

smaller than ~25 nm along all three dimensions (Helmstaedter 2013). 

In microscopes, the resolution (d) is related to the wavelength (λ) of the imaging 

agent used (photon or electron) and the numerical aperture of the objective lens 

system (NA) using the following relationship (Abbe 1883): 

𝑑 =  
λ

2 ×  𝑁𝐴
 

 Light microscopy (LM) uses photons and is thus limited by the visible light’s 

wavelength (300-700 nm). Therefore, the resolution limit for a traditional light 

microscope is about 200 nm in-plane and 500 nm axially (Gaussian beam under 

Abbe’s criterion). Point objects closer than the limit cannot be resolved by a light 

microscope since their diffraction pattern overlaps. LM is therefore not currently used 

for dense reconstruction of cortical neuronal circuits. In combination with sparse 

labelling of neurons, LM could be used to study the structure of single neurons 

(Larkman and Mason 1990). For example, neuronal expression of fluorescent proteins 

is commonly used to map its regional brain-wide connectivity, also known as the 

“mesoscopic connectome” (Bohland, Wu et al. 2009, Oh, Harris et al. 2014). 

Furthermore, imaging by multiphoton excitation (Denk, Strickler et al. 1990) has made 

great strides in recording activity of large neuronal populations (Helmchen and Denk 

2005, Weisenburger, Tejera et al. 2019). These methods in combination with the 

development of genetically encoded calcium sensors (Nakai, Ohkura et al. 2001, 

Chen, Wardill et al. 2013) allow investigators to monitor the activity of neurons in a 

wide variety of behavioral states (Dombeck, Khabbaz et al. 2007, Helmchen, Denk et 

al. 2013). 

Recently, there has been a focus on overcoming the diffraction limit by 

combining optical and computational methods (Huang, Bates et al. 2009). These LM 

techniques rely on either a combination of spatially patterned excitation and stimulated 

emission (STED, (Hell and Wichmann 1994, Klar and Hell 1999)) or localization of 
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single molecules (PALM, STORM, (Betzig, Patterson et al. 2006, Hess, Girirajan et al. 

2006, Rust, Bates et al. 2006)). In addition, expansion microscopy allows for resolution 

improvement by physically expanding fluorescent tissue labels using polymer 

substrates (Chen, Tillberg et al. 2015). However, technical challenges must be 

overcome before one or a combination of these methods satisfies the resolution limit 

(~25 nm) for dense circuit reconstruction (Huang, Bates et al. 2009, Helmstaedter 

2013). Physical ultra-thin sectioning of the sample is used in array tomography to 

improve the axial resolution of light microscopy. This method is also used to combine 

light and electron microscopy imaging of the same set of brain sections (Micheva and 

Smith 2007, Bloss, Cembrowski et al. 2016). 

Electron beams have a de Broglie wavelength that is proportional to the inverse 

square root of the voltage used to accelerate them (de Broglie 1925). The wavelength 

of electrons with energies of 1 and 100 keV is about 39 and 3.7 pm, the common 

energies used in scanning and transmission electron microscopy, respectively (Denk, 

Briggman et al. 2012). Therefore, electron microscopes (EMs) allow the imaging of 

neuronal circuits for dense reconstruction.  

EMs are generally divided into transmission (Knoll and Ruska 1932) and 

scanning subtypes (von Ardenne 1938). Both types utilize the interaction of electrons 

with heavy metals deposited in the sample during the staining process as the contrast 

agent. In transmission electron microscopy (TEM), electrons passing through a thin 

sheath of the sample are diffracted differentially based upon the density of heavy 

nuclei. The final image is formed by the impact of electrons on the detector’s surface. 

A charged-coupled device (CCD) detector is used in modern TEMs (example: (Bock, 

Lee et al. 2011)). Scanning electron microscopes (SEM) operate on the principle of 

raster-scanning a sufficiently small electron beam across the region of interest. 

Detection through transmission is used in special use cases (Pennycook and Nellist 

2011). Backscattered or secondary electrons generated through beam interaction with 

a sample’s atomic content is detected by a solid-state detector (backscattered electron 

detection) or a photomultiplier (secondary and back-scattered electrons, e.g. Everhart-

Thornley detector (ETD), (Goldstein, Newbury et al. 2017)). 
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Electrons were reported to scatter significantly by biological tissue stained with 

heavy metals using Monte Carlo simulations (Hennig and Denk 2007). For example, 

Most electrons with an acceleration voltage of 6 kV have lost their ballistic path within 

the first 1 µm of  the sample surface (Kubota, Sohn et al. 2018). Even though high-

voltage acceleration of electrons (400 keV) was used to reconstruct structures in “thick” 

(1-2 µm) sections by single-axis tomography, this method never gained popularity due 

to difficulties associated with back-projection reconstruction (Soto, Young et al. 1994). 

Therefore, current volumetric electron microscopy (3D-EM) methods combine serial 

imaging with ultra-thin (<50 nm) sectioning of the region of interest (Briggman and 

Denk 2006, Briggman and Bock 2012). One classification scheme for 3D-EM methods 

is based on whether the sectioning happens before (“serial section” methods, Figure 

2a,b) or after (“block-face” methods, Figure 2c,d) imaging. 

 

 

Figure 2. Methods for 3D reconstruction of neuronal circuits using electron 

microscopes  
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(a) TEMCA: Classical serial sectioning combined with high speed CCD camera 

arrays in TEM. (b) ATUM-SEM: tape support is used to automate section 

collection. The imaging is done by an SEM. (c) SBEM: Imaging steps are 

interlaced with removal of an ultra-thin section from the top of tissue block. 

Sectioning is performed by a diamond-knife microtome placed inside the SEM 

chamber. This is the method of choice in the thesis at hand. (d) FIB-SEM: similar 

to (c), but uses a focused ion beam to remove the ultra-thin section. Reprinted 

with permission from Elsevier: Current Opinion in Neurobiology (Briggman and 

Bock 2012), copyright 2012.  

The classic serial section TEM (ssTEM) method relies on manually mounting 

ultra-thin sections (~40-50 nm) of a sample on TEM imaging grids (Figure 2a). First 

used in the 1950s to reconstruct the 3D ultrastructure of cellular components (Birch-

Andersen 1955, Bang and Bang 1957), ssTEM was then utilized to reconstruct the 

complete connectome of the nematode C.elegans in a seminal study by White et al. 

(White, Southgate et al. 1986). In addition, ssTEM was the method of choice for 

investigation of the fine structural features of neurons, such as, synapses and dendritic 

spines (White and Hersch 1982, Harris and Stevens 1988).  

ssTEM gained a significant boost in imaging speed with the addition of  charge-

coupled device (CCD) camera arrays (Bock, Lee et al. 2011) and methods to automate 

the laborious manual section collection using tape-based (similar to ATUM, see below) 

or accurate robotic systems (J. Lee, Kumar et al. 2018, Graham, Hildebrand et al. 

2019). Sample loading into the microscope also benefited from reel-to-reel systems, 

which allow controlled random access to sections of interest (Mikula 2017). 

EM-based connectomics was revolutionized by the addition of 3D-EM methods 

using scanning electron microscopes. SEMs, with their detection of back-reflected 

electrons from the sample surface, allow for imaging the block-face of a tissue before 

sectioning (Figure 2c, d). The initial block-face method used a miniaturized diamond 

knife ultra-microtome inside the chamber of a scanning electron microscope (SBEM, 

(Leighton 1981, Denk and Horstmann 2004)). The process of 3D volume acquisition 

then starts with imaging the block-face of a sample, followed by removal of the top 

ultra-thin section of the tissue block (typically ~20-35 nm). To reduce the axial 
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resolution below 25 nm, focused ion beams (FIB) were used to abrade thinner films of 

tissue (FIB-SEM, down to 4 nm in thickness, (Heymann, Hayles et al. 2006, Knott, 

Marchman et al. 2008)).  

One significant break-through in serial sectioning was automation of section 

collection by using a tape-reel system added to a traditional ultra-microtome (ATUM, 

(Hayworth, Kasthuri et al. 2006)). ATUM allows for more reliable section collection and 

processing. Since the electrons cannot transmit through the tape, ATUM is used in 

combination with an SEM. ATUM is especially compatible with the current multi-beam 

SEMs that allow for large-scale imaging projects (volumes of about 1 mm3). Multi-beam 

SEMs increase the imaging speed 61-91X by increasing the number of parallel electron 

beams impinging on the sample surface (Eberle, Mikula et al. 2015).  

The features of each 3D-EM method should be understood before choosing one 

for an experiment. Several reviews can guide your decision making process (Briggman 

and Bock 2012, Titze and Genoud 2016, Kornfeld and Denk 2018). In short, block-face 

imaging techniques benefit from reduced image deformations since the images are 

taken from the same block of tissue before any deformations are introduced by 

sectioning. You can approach the best isotropic resolution with FIB-SEM. However, 

this method is limited to tens of micrometers in-plane due to inconsistencies in the 

milling process for larger fields-of-view (FOVs). This limit could be overcome by reliable 

partitioning of the tissue into appropriate blocks with an ultra-sonicated, lubricated and 

heated (60 °C) diamond knife (Hayworth, Xu et al. 2015).  

Recently, gas ion clusters were used to abrade large areas consistently with an 

axial resolution of ~10 nm (Hayworth, Peale et al. 2019). The prototype has shown 

promising results for isotropic (<10 nm) imaging of small volumes (tens of microns on 

each side). This method can, in principle, be applied to imaging of a 1 mm3. 

On the other hand, the serial section methods (both ssTEM and ATUM-SEM) 

allow for repeated imaging of the same section unlike block-face approaches. This 

allows investigators to image the same tissue multiple times in case of microscope 

failure or to improve image quality (Kasthuri, Hayworth et al. 2015).  
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One method to improve signal and resolution in SEMs is to decelerate the 

electron beam by a negative bias on the sample. This bias reduces the solid angle of 

electron-backscattering that increases the probability of their collection by the solid-

state detector’s surface. The backscattered electrons are also accelerated towards the 

detector’s surface, which increases the signal produced by their impact. In addition, 

low-energy secondary electrons (<50 keV) could be detected with an in-lens detector 

since the negative bias collimates them along the optical axis. Furthermore, this 

method reduces the chromatic and spherical aberrations, thus, increasing the 

achievable resolution for low-voltage imaging (Paden and Nixon 1968, Frank and 

Müllerová 1999, Phifer, Tuma et al. 2009, Titze and Denk 2013). 

The diamond-knife block-face SEM method (SBEM) currently gives a balanced 

trade-off between resolution, volume and image quality. The main advantage is the full 

automation of the 3D image acquisition, nearly isotropic voxel size and limited 

deformation/artifacts in the image. The effective imaging speed for a single-beam 

SBEM has been pushed to about 6 x 106 voxels/s using a combination of fast detection 

and piezo actuated continuous sample movement (Schmidt, Gour et al. 2017). The 

main disadvantage of SBEM is the accumulation of the sections cut from the sample 

block-face within the microscope chamber. This results in debris-beam interaction and 

requires careful failure detection software and microscope maintenance that are 

discussed in the following section. 

6.8. Automated aberration adjustment for SBEM 

A SBEM set-up requires error-free operation over a few weeks to multiple 

months, depending on the volume and effective imaging speed. SBEM is a destructive 

method where previous sections cannot be imaged again. Therefore, errors where 

multiple sections are lost or imaged at low-quality would be catastrophic for the 

reconstructability of neurites. The thickness of lost tissue determines the thinnest 

process that can be reconstructed. Hence, the most common issues that are 

detrimental to SBEM experiments are: EM failures, such as, electron beam shutoff, 

stage motor failures, section cutting failures and image aberrations. Our goal was to 

correct for image aberrations automatically in SBEM during dataset acquisition. 
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The area of the beam cross-section at the surface of the sample should match 

the desired pixel size to get an optimal image in SEM. A larger beam area deteriorates 

the image resolution by averaging the signal over a larger sample volume. To achieve 

the best results in SEM, the beam area is minimized at the sample surface by changing 

the focal length of the objective lens and the strength of two stigmators. The stigmators 

allow for correction of the beam’s rotational symmetry (second-order Zernike 

aberrations) by changing the magnitude of a quadrupole electromagnetic field 

perpendicular to the beam (Binding, Mikula et al. 2013). These aberrations affect the 

modulation transfer function (MTF) of the images by dampening the high-frequency 

spatial details of the image in a symmetric (defocus) or non-symmetric (destigmation) 

manner. 

The manual process to monitor image quality in a SBEM set-up is to review the 

output images frequently, interrupt the acquisition process when the aberration levels 

have dropped under a subjective threshold and adjust the focus and stigmation 

parameters accordingly. This is a huge burden on the experimenter during month-long 

SBEM experiments and can only be used in systems where the failure rate is low. 

The task of monitoring aberration levels in an EM depends on the robustness of 

the microscope to parameter changes. A major factor is the depth-of-focus where 

image resolution is acceptable. This is proportional to the beam’s convergence angle 

(α). The gun brightness (β) relates the depth-of-focus to the current (i) and cross-

section (d) of the beam at the sample surface: 

β =  
4 𝑖

𝜋2𝑑2α2
 

EM systems designed to increase imaging speed by supplying high beam 

current (e.g., Magellan and Verios SEMs, FEI, USA) would have a smaller depth-of-

focus (~3 µm vs. ~10 µm for high-current vs low-current SEMs) assuming the same 

beam cross-section area. Therefore, high-current systems are less robust against 

changes in focus parameters. Additionally, immersion fields were introduced in high-

current SEMs to decrease the solid angle and increase the energy of back-scattered 

electrons, which increases the signal generated in the solid-state detectors. However, 

immersion fields could possibly be distorted with electric fields emanating from charged 
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debris produced by the in-chamber sectioning process of SBEM. Moreover, large in-

plane imaging requires multiple focus values for different parts since the sample 

surface is not fully orthogonal to the beam direction. Henceforth, automated adjustment 

of focus and stigmation parameters is necessary in high-current SEMs. 

Binding and colleagues introduced two methods for estimating aberrations in 

EM images (Binding, Mikula et al. 2013). The Bayesian approach (“MAPFoSt”) is 

beyond the scope of this thesis. We focus on a “heuristic algorithm” that uses the shape 

of the image autocorrelation to estimate three image aberration parameters (1 focus, 

2 stigmators). This method has been additionally implemented in volume imaging 

software packages used for SBEM and FIB-SEM (Xu, Hayworth et al. 2017, Titze, 

Genoud et al. 2018). In addition to the microscope aberration parameters, the shape 

of the autocorrelation depends on the frequency spectrum of the imaged tissue. 

Therefore, the heuristic algorithm is sensitive to low-frequency features, such as, blood 

vessels and nuclei in 3D-EM images of neuronal tissue. To avoid these structures, we 

combined an edge detector with morphological operations to detect neuropil. 

We describe a MATLAB (MathWorks, USA) implementation of the heuristic 

algorithm for the automatic adjustment of beam aberrations in SBEM (see Methods for 

details). Our method is the first, to our knowledge, to combine this algorithm with the 

masking of low-frequency blood vessels and cell nuclei.  

6.9. Sample preparation for 3D electron microscopy 

The process of sample preparation begins with the vascular perfusion of 

aldehyde fixatives to preserve the ultrastructure of the brain tissue (usually a 

combination of paraformaldehyde and glutaraldehyde, (Hayat 1981)). Next, the tissue 

of interest is extracted and stained using the contrast agent (heavy metals) for electron 

microscopy. 

The fraction of diffracted electrons increases monotonically with the atomic 

number of the elemental composition of sample. This factor is utilized to generate 

contrast in both 3D-SEM and TEM methods (Goldstein, Newbury et al. 2017). 

Therefore, the staining procedure aims to deposit heavy metals on cellular structures 

of interest, essentially lipids and proteins comprising the phospholipid membrane and 
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synapses. These structures allow for the reconstruction of neurites and their synapses. 

The heavy metals routinely used for EM staining of biological tissue are osmium (Os, 

(Palade 1952)), uranium (U, (Watson 1958)) and lead (Pb, (Venable and Coggeshall 

1965)).  

Application of the staining material can be performed on ultra-thin sections for 

ATUM and ssTEM, as the sectioning precedes imaging (Sato 1968). However, the 

staining material could cause sporadic damage to the sections and generate electron 

dense precipitates that hinder high-quality imaging (Kasthuri, Hayworth et al. 2015, 

Zheng, Lauritzen et al. 2018). Additionally, these methods are not compatible with 

block-face imaging. Therefore, a significant effort was put forth to improve en-bloc 

staining methods, which allow for staining the full volume of interest (Tapia, Kasthuri 

et al. 2012).  

The method of choice for en-bloc staining of neuronal tissue was a sequential 

application of osmium tetroxide (initially reduced) interleaved with thiocarbohydrazide 

(TCH) as a linker agent until recently (ROTO, (Seligman, Wasserkrug et al. 1966, 

Willingham and Rutherford 1984)). This method was improved with the addition of 

uranium and lead staining steps and used in a seminal connectomic study of the retina 

(Walton 1979, Briggman, Helmstaedter et al. 2011). In ROTO, the penetration depth 

of the staining material is restricted to ~200 µm, even though it generates a high level 

of membrane contrast within this penetration depth. The likely cause of the penetration 

limit is the generation of an electron dense barrier in the sample (Mikula, Binding et al. 

2012, Hua, Laserstein et al. 2015). ROTO should be improved to allow for investigation 

of millimeter-sized neuronal circuits of the mammalian cortex. 

A combination of reagent substitution and elongation of incubation steps was 

used to stain the whole mouse brain (Mikula and Denk 2015). However, this protocol 

requires ~2-3 months of staining for a single brain and a simple reduction of the 

incubation times does not result in proper staining of a cubic millimeter-sized sample 

(Genoud, Titze et al. 2018). Therefore, an initiative focused on modifying the osmium 

and uranium staining steps to increase penetration depth to 500 µm, which allows for 

high-quality staining of samples with a diameter of 1 mm (Hua, Laserstein et al. 2015). 

The stained tissue is then dehydrated in a graded ethanol solution and infiltrated with 
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monomers of a plastic resin that polymerize in higher temperatures (e.g. Spurr’s resin 

(Spurr 1969)). 

6.10. Analysis of 3D-EM volumes for connectivity 

After acquisition of the 3D-EM volume, raw image files need to be aligned into 

a coherent 3D volume to reconstruct the 3D morphology of neuronal structures. Initial 

3D-EM studies relied on manual contouring of the neuronal structures on printed EM 

images (White, Southgate et al. 1986). These methods were improved by computer 

software which allowed for manual alignment of images (Fiala 2005). A major 

breakthrough in automated alignment was the combination of shift vector 

measurement between neighboring image tiles with a global least-square relaxation 

process to find the optimal location for each tile (Preibisch, Saalfeld et al. 2009, 

Scheffer, Karsh et al. 2013). The shift vectors are usually estimated using error-prone 

cross-correlation or local feature detection. To improve shift vector estimation, learned 

algorithms were recently introduced (Mitchell, Keselj et al. 2019, Buniatyan, Popovych 

et al. 2020). 

Next, the structures of interest need to be morphologically reconstructed and 

their synaptic connections of interest detected. Since, the detection of electrical 

synapses requires resolutions beyond current 3D-EM approaches (Rash, Yasumura 

et al. 1998) or the preservation of extracellular space (Pallotto, Watkins et al. 2015), 

we focus on the chemical synapses. The minimum volume required to extract cellular 

connectivity is dictated by the volume of dendritic and axonal arbors of connected 

neurons. The volume is about 1 mm3 in the mouse neocortex (Helmstaedter 2013). 

This is also the goal of the Intelligence Advanced Research Projects Activity (IARPA) 

initiative to reverse-engineer cortical circuits to improve machine intelligence 

(MICRONS, (Helmstaedter 2015)). 1 mm3 is expected to contain about 92,000 

neurons, 7 km of wiring (4 km of axons, 1 km dendrites and 2 km dendritic spines) and 

1 billion synapses (Braitenberg and Schuz 1991, Staffler, Berning et al. 2017). Manual 

contouring requires about 200-400 human-hours per mm neurite length (Helmstaedter, 

Briggman et al. 2011) and the total time required to densely reconstruct a cubic mm 

would be about 240,000 human-years. Manual synapse annotation speed by volume 

https://www.iarpa.gov/index.php/research-programs/microns
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search is about 0.1h/µm3, which adds an additional 11,500 human-years. Therefore, 

methods to automate reconstruction are crucial for dense volume annotation. 

A ~50-fold increase in neurite reconstruction speed was introduced by using the 

graph-like skeleton representation of neurons instead of the contouring approach 

(KNOSSOS, (Helmstaedter, Briggman et al. 2011)). A browser-based variant of 

KNOSSOS was developed, which allows for an egocentric flight through the EM 

volume without the need to switch between different orthogonal slices of the data 

(webKnossos, (Boergens, Berning et al. 2017). Almost all the data generated in the 

current study is by skeleton reconstructions and synapse annotations in webKnossos 

since fully automatic reconstruction of neuronal structures is still under development.  

To reach the goal of fully automated reconstruction of neural circuits, machine 

learning systems are developed. Machine learning is the study of learning algorithms 

for digital computers to perform a specific task without explicit instructions (Samuel 

1959). One graphical model inspired by brain structure, and frequently used in machine 

learning, is artificial neural networks (Rosenblatt 1958). These networks consist of 

multiple layers of artificial neurons which act as non-linear operators on the weighted 

sum of their input (see (Lecun, Bengio et al. 2015) for a comprehensive review). A 

variant of this technique called convolutional neural networks (CNN, (LeCun, Boser et 

al. 1989)) has gained significant attention due to its superior performance in computer 

vision tasks (Krizhevsky, Sutskever et al. , Krizhevsky, Sutskever et al. 2012). This 

approach uses shared weights between neighboring elements in the hidden layers of 

the neuronal network to reduce the number of features that need to be learned (LeCun, 

Boser et al. 1989). The CNNs also surpassed other approaches in 3D segmentation of 

biological neuronal structures (Jain, Murray et al. 2007, Andres, Köthe et al. 2008, 

Berning, Boergens et al. 2015). The dense reconstruction of EM volumes, however, 

still requires correction by human annotators (Motta, Berning et al. 2019).  

6.11. Impact of long-range input on pyramidal neurons (case study 

in S1) 

Projection neurons send long-range axons to cortical and subcortical regions 

and can be classified by their projection patterns in the brain (Winnubst, Bas et al. 

2019). Interestingly, the majority (70-90%) of synapses within a cortical column have 
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a non-local source which highlights the importance of understanding long-range 

innervation patterns in cortex (Stepanyants, Martinez et al. 2009). One of the best 

studied models of long-range projections is the somatosensory whisker system in 

rodents (S1, (Aronoff, Matyas et al. 2010)).  

In S1, sensory input from the thalamus mainly targets cortical layer 4 and the 

top-down feedback from other cortical/thalamic areas contact the apical dendrites of 

pyramidal neurons in layer 1 (Petreanu, Mao et al. 2009, Wimmer, Bruno et al. 2010). 

Additionally, L2/3 and L5 neurons in S1 were shown to control the activity of pyramidal 

neurons in the contralateral hemisphere through callosal projections. To inhibit their 

contralateral counterparts, L5 neurons recruit inhibitory interneurons in L1 to provide 

GABAB-mediated inhibition to apical dendrites (Petreanu, Huber et al. 2007, Palmer, 

Schulz et al. 2012). 

A combination of anatomical and functional experiments revealed secondary 

somatosensory (S2) and primary motor (M1) cortices as two regions with prominent 

reciprocal connections to S1 (Mao, Kusefoglu et al. 2011, Ni and Chen 2017).  The 

interaction between M1 and S1 extracts motor-related information, such as whisker 

position, movement initiation and adjustment of motor plans (Mao, Kusefoglu et al. 

2011, Petreanu, Gutnisky et al. 2012, Ebbesen, Doron et al. 2017). In contrast, the 

interaction between S1 and S2 generates choice-related context from sensory 

information (Chen, Voigt et al. 2016, Ni and Chen 2017). Therefore, coordination of 

these three cortical regions is important for successful task completion.  

Nevertheless, the functional description of long-range connectivity patterns 

across cortex lacks the cell-type specific wiring information that can be acquired using 

3D-EM. This is because full mammalian brains are too large to be imaged using current 

3D-EM techniques. Therefore, methods that supplement local synaptic wiring 

information in 3D-EM with the long-range source of axons are crucial for understanding 

cortical circuitry. The next sections describe “FluoEM”, a method to combine light and 

electron microscopy to achieve this goal and its application to posterior parietal cortex.  
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6.12. FluoEM: an ideal method to map long-range input in 3D-EM 

Mammalian brain volumes that are large enough to contain complete long-range 

innervations cannot be imaged routinely with our current 3D-EM approaches 

(Briggman and Bock 2012). However, light microscopy is usually used to extract such 

information by expression of fluorescent proteins (Oh, Harris et al. 2014). A method to 

combine these two approaches without the need for label conversion (Gray and 

Hamlyn 1962, Zhang, Lee et al. 2019) or fiducial markings on the tissue (Bishop, Nikić 

et al. 2011) were not developed until recently. 

The FluoEM method applies 3D fluorescent light (LM) and electron microscopy 

(EM) to a cortical region of interest (Drawitsch, Karimi et al. 2018). Axons within this 

block are labeled by anterograde fluorescent tracers injected into two or more input 

regions. Therefore, the long-range source of an axon is identified by the excitation 

wavelength of the fluorophore expressed in LM. Furthermore, all synaptic innervation 

information can be extracted from EM (Figure 3b). In FluoEM, the LM and EM datasets 

are initially aligned using markers, such as, blood vessels and/or neuronal cell bodies 

(Figure 3c). Axons annotated in the LM dataset are transformed into the EM coordinate 

system using the coarse registration (LMT). Next, the corresponding axon in EM is 

found by annotation of all axons contained within a bounding box surrounding the LMT 

using only structural constraints (Figure 3d, e). FluoEM, therefore, allows for 

identification of the long-range source of axons in a limited EM volume by utilization of 

color-space in LM. 
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Figure 3. Conceptual summary of FluoEM as a method for mapping long-range 

innervation using combined 3D light and electron microscopy 
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(a) Brain regions can be mapped densely using modern 3D-EM methods with 

the source of most long-range input from other brain regions unknown, such as, 

Cortex (Cx), Thalamus (Thal.), Hippocampus (HC) and Substantia Nigra (SNi). 

(b) A block of tissue containing fluorescently labeled axons first imaged by 

confocal laser scanning light microscopy (LM), followed by 3D-EM. The 

fluorescently labeled axons are matched solely based on structural constraints 

without the need for electron-dense label conversion or fiducial markers. (c) The 

FluoEM approach starts with a coarse registration between EM and LM datasets 

using blood vessel and nuclei locations. (d,e) Axons are reconstructed in LM 

and transformed into the EM coordinate system using the transformation from 

(c). All axons within a bounding box surrounding the transformed axon are 

reconstructed in the EM dataset to find the unique axon with a matching 

trajectory. This figure is reproduced from (Drawitsch, Karimi et al. 2018) and is 

licensed under the CC BY 4.0.  

6.13. Long-range input to posterior parietal cortex (PPC) 

The parietal cortex is defined as a set of cortical regions covered by the parietal 

bone. It is divided into the anterior somatosensory and posterior parietal cortex (PPC, 

(Whitlock, Sutherland et al. 2008)). PPC is located posterior to somatosensory and 

anterior to secondary visual areas, and it has reciprocal connections to both. It is 

defined in different animal models by cyto- and myelo-architecture (Krieg 1946), 

expression patterns of various neurotransmitters (Palomero-Gallagher and Zilles 

2015), and most importantly, by its connectivity pattern to thalamus and other cortical 

areas (Kolb and Walkey 1987, Reep, Chandler et al. 1994).  

PPC receives input from the associative thalamic nuclei (lateral posterior 

nucleus) and lacks unimodal somatosensory and visual thalamic input. In addition, 

PPC has reciprocal connectivity to almost all primary sensory cortices (e.g. 

somatosensory, auditory, and visual) and some associative cortices, such as 

retrosplenial cortex. PPC cortex is also connected to its contralateral counterpart 

through the callosum (Reep, Chandler et al. 1994, Harvey, Coen et al. 2012).  

PPC is involved in various aspects of spatial perception. Human patients with 

lesions in PPC show a lack of spatial understanding (Lynch 1980). In non-human 
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primates, electrophysiological recordings of PPC neurons demonstrated their role in 

decision making (Gold and Shadlen 2007), spatial attention (Bisley and Goldberg 

2010) and action planning. Similarly in rodents, PPC was shown to be involved in 

various aspects of navigation and decision making (Nitz 2006, Harvey, Coen et al. 

2012, Whitlock, Pfuhl et al. 2012). A recent study recorded activity of neurons in PPC, 

primary visual (V1) and premotor (M2) cortices during a memory-guided visual 

discrimination task (Goard, Pho et al. 2016). Neurons in V1 and M2 encode stimulus 

and choice information, respectively, with PPC neurons encoding the mixture. We, 

therefore, decided to map long-range innervation to PPC from these two input cortical 

regions (see results below). 

6.14. Outlook and contributions 

The superficial cortical layers are an interesting region for connectivity analysis 

as the apical tuft dendrites of pyramidal neurons coincide within the same spatial region 

innervated by different excitatory and inhibitory axons (Figure 5a). We, therefore, 

acquired six 3D-EM datasets from 5 cortical regions2 and annotated 31,996 synapses 

formed by the apical dendrites or the inhibitory axons innervating them3. Our goal was 

to understand whether inhibitory axons innervate different apical dendrite types in a 

specific manner by measuring their conditional innervation probability. We also 

quantified the distribution of excitatory and inhibitory synapses onto apical dendrites 

across the upper cortex to reveal cell-type specific innervation patterns. Finally, we 

analyzed the cell-type preference of long-range projections to posterior parietal cortex 

using a combination of large-scale volumetric light and electron microscopy. 

  

                                                           

2 The LPtA, ACC and S1 datasets were acquired by Florian Drawitsch, Jan Odenthal and Kevin 
Boergens, respectively. All other datasets were acquired by the author. 
 
3 All skeleton reconstructions and synapse annotations were performed in collaboration (equal 
contributions) with Jan Odenthal. All analysis and figure preparations were done by the author with 
input from colleagues (see acknowledgements). 
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7. Materials and Methods 

7.1. Volumetric electron microscopy imaging of cortex 

7.1.1. Animal experiments 

Performance of all experimental procedures was in accordance with the law of 

animal experimentation issued by the German Federal Government under the 

supervision of local ethics committees and according to the guidelines of the Max 

Planck Society. The experimental procedures were approved by the 

Regierungspräsidium in Darmstadt, under protocol ID V54 - 19c20/15 F126/1015 

(LPtA, PPC-2) or V54 – 19 c 20/15 – F126/1002 (V2, PPC, ACC). Preparation of the 

S1 sample followed experimental procedures approved by the Regierung von 

Oberbayern, 55.2-1-54-2532.3-103-12. 

7.1.2. S1, LPtA sample preparation 

The experimental and computational procedures for preparation of the S1 

(Figure 4, acquired by Kevin Boergens) and LPtA (Figure 6, acquired by Florian 

Drawitsch) datasets were described previously in (Berning, Boergens et al. 2015) and 

(Drawitsch, Karimi et al. 2018), respectively. The V2, PPC, ACC (Figure 4, acquired 

by Jan Odenthal) and PPC-2 samples were processed as follows. 

7.1.3. Transcardial perfusion  

Wild-type adult mice (species: C57BL/6J, age (postnatal days): 56 – 57) were 

injected with general analgesia (0.1 mg/kg buprenorphine (Buprenovet, Recipharm, 

France and 100 mg/kg Metamizol (Metamizol WDT, WDT, Germany)). Animals were 

then anesthetized by inhalation of isoflurane (3 – 3.5% in carbogen) and perfused with 

15 ml of cacodylate buffer (150 mM, Serva, Heidelberg, Germany, pH = 7.4) followed 

by 30 ml of fixative solution through the left ventricle (flow rate of 10 ml/min). The 

fixative solution was 2.5% PFA (Sigma-Aldrich, Germany), 1.25% glutaraldehyde 

(Serva) and 0.5% CaCl2 (Sigma-Aldrich) in 80 mM cacodylate buffer (pH = 7.4). The 

animal was decapitated and the skull was removed to expose the brain. The exposed 

brain was then submerged in fixative solution overnight at 4 °C.  
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7.1.4. Cortical region targeting and tissue extraction 

A coronal slice containing the region (600 µm thick) of interest was acquired 

using a vibrating microtome (Microm HM 650V, Thermo Fisher Scientific, USA), guided 

by a reference atlas (Franklin and Paxinos 2008). We then used a biopsy punch (1 mm 

in diameter, KAI medicals, USA) to extract a cylindrical block of cortex containing layers 

1-3. This block was then incubated for 3 - 4 hours (V2, PPC and ACC) or overnight 

(PPC-2) in cacodylate buffer. The remainder of the coronal slice was sectioned at a 

thickness of 100-150 µm and imaged by a wide-field light microscope (Leica MZ10 F, 

Leica, Germany) for post-hoc qualitative comparison to the reference atlas (Figure 4c, 

Figure 6b). The approximate coordinate of each dataset relative to bregma is given in 

Table 1. The PPC-2 sample was also subjected to confocal laser scanning light 

microscopy as described below. 

7.1.5. Electron microscopy dataset names 

Dataset names match the cortical region from which they were sampled from. 

The exception was the larger of the two datasets taken from posterior parietal cortex 

(PPC and PPC-2, Figure 4 and 6, respectively).  

7.1.6. En-bloc sample preparation for 3D electron microscopy 

Samples were stained and embedded in plastic for serial block-face electron 

microscopy, following an en-bloc technique slightly modified from (Hua, Laserstein et 

al. 2015). Note that all procedures were performed at room temperature in 2 ml reaction 

tubes (Eppendorf, Germany) unless stated otherwise. In addition, the initial incubation 

steps (until dehydration) were performed with the aid of an automatic microwave tissue 

processor (Leica EM AMW, Leica, Germany, V2, PPC, and ACC samples) or manually 

(PPC-2). 

In short, cortical tissue was rinsed in cacodylate buffer for 30 min before any 

staining material was applied. Next, it was transferred to 2% OsO4 (Serva, Germany) 

in cacodylate buffer for 90 min. The sample was then treated with 2.5% ferrocyanide 

(Potassium hexacyanoferrate trihydrate, Sigma-Aldrich, Germany) in cacodylate buffer 

for 90 min and 2% buffered OsO4 for 45 min. We then rinsed the tissue in cacodylate 

and ultrapure water for 30 min each. Osmium content of the sample was amplified by 
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treatment with saturated aqueous thiocarbohydrazide (TCH, Sigma-Aldrich, Germany) 

and 2% aqueous OsO4 for 60 and 90 min, respectively. Subsequently, the sample was 

moved to 2% uranyl acetate solution for overnight incubation at 4 °C. The following 

day, the tissue, still in uranyl acetate, was heated to 50 °C for 120 min in an oven 

(Memmert, Germany). This was followed by incubation in lead aspartate at 50 °C for 

120 min. The lead aspartate solution was prepared by dissolving 0.066 g lead nitrate 

(Sigma-Aldrich, Germany) in a 10 ml 0.03 M aspartic acid (Serva, Germany) solution 

and adjusting the pH to 5.0 (pH error < 0.1). Treatment steps (from TCH application) 

were interleaved with two 30 min washing steps in ultrapure water (Biochrom, 

Germany). 

Next, the cortical tissue was dehydrated by incubation in 50%, 75% and 100% 

ethanol solutions (Serva, Germany). This was followed by at least three 20-45 min 

incubation steps in acetone (Serva, Germany). The sample was then transferred to a 

1:1 mixture of acetone and Spurr’s resin (4.1 g ERL 4221, 0.95 g DER 736 and 5.9 g 

NSA, 113 µl DMAE, Sigma-Aldrich, Germany) for 3-4 hours. Tubes were opened to 

allow for acetone evaporation overnight (V2, PPC and ACC samples). At this stage, 

the PPC-2 sample was transferred to a 3:1 mixture of Spurr’s resin and acetone. The 

following day, the sample was further incubated for two 3-hour (PPC-2) or one 6-hour 

(V2, PPC, ACC) period in undiluted Spurr’s resin mixture. The tissue was then 

transferred to a flat-embedding mold and cured at 70 °C for at least 48 hours. Specific 

time and temperature of dehydration and embedding steps are detailed in Table 2. 

7.1.7. Serial block-face electron microscopy (SBEM) 

The samples were removed from the resin block using a rotating saw blade in 

the trimming machine (Leica EM TRIM2, Leica, Germany) and mounted onto a 

cylindrical aluminum pin (designed to fit the sample holder on the SBEM microtome) 

using epoxy glue (Uhu plus schnellfest, Uhu, Germany). The block-face of the sample 

was trimmed down to an area of ~ 750 µm x 750 µm using a diamond-head trimming 

machine (Leica EM TRIM2). In addition, tissue was sputter coated with a 100 - 200 nm 

layer of gold (Leica ACE600 Sputter Coater, Leica, Germany) to increase surface 

conductivity and reduce the artifacts from local charge accumulation. 
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The SBEM microtome (courtesy of W. Denk) was fit inside the door of a 

scanning electron microscope (Table 1, FEI, Thermo Fisher Scientific, USA). The 

microtome and microscope were controlled using custom-written software during the 

volume imaging process; focus and stigmation were corrected either manually (V2, 

PPC, ACC and LPtA) or by using custom-written auto-correction routines (see below, 

S1, PPC-2). The region of interest was imaged using overlapping image tiles and 

cutting direction was along the tangential (S1, V2, PPC, ACC, PPC-2) or radial (LPtA) 

cortical axes. The region-of-interest was targeted close to the layer 1/2 border (S1, V2, 

PPC and ACC, Figure 4a). The final imaged volume and the nominal voxel size is 

detailed in Table 1. Note that the LPtA and PPC-2 datasets were adjacent to low-

resolution datasets extending to the middle of layer 5 (voxel dimensions of 22.48 x 

22.48 x 30 and 44.96 x 44.96 x 120 nm3 for PPC-2 and LPtA, respectively). 

The dataset from PPC intended for the correlative light and electron microscopy 

(“FluoEM”) study (PPC-2) was composed of two high-resolution (voxel size: 11.24 x 

11.24 x 30 nm3, volumes: 200 x 185 x 200 and 200 x 370 x 100 μm3) and one low-

resolution (voxel size: 22.48 x 22.48 x 30 nm3, volume: 250 x 581 x 200 μm3) adjacent 

cubes (Figure 6a, right panel). The PPC-2 dataset was continuous along the cutting 

direction with one exception: scanning electron microscopy repair procedures resulted 

in a discontinuity at ~177 μm depth (between image planes 5886 and 5887), such that 

only dendrites thicker than ~1 μm (e.g. apical dendrites) were traceable.  

7.1.8. Image alignment 

The alignment of the PPC, V2 and ACC datasets was done using custom-written 

MATLAB (Mathworks, USA) routines (Briggman, Helmstaedter et al. 2011), which 

roughly followed (Preibisch, Saalfeld et al. 2009). In short, we used cross-correlation 

or speeded up robust feature (SURF) detection in the overlap region to measure the 

relative shift between image patches. These patches were full image tiles (V2, ACC) 

or tile sub-regions (PPC, 256 x 256 pixels). The position of each patch was then 

globally optimized using least-square regression.  

Regions with high residual error were inspected for erroneous feature matches. 

Miscalculated shift vectors were down-weighted and the global least square was 

repeated until the highest residual was below a specific threshold (~10-20 pixels). The 
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image volume was then partitioned into 1024x1024x1024 voxel blocks and 

transformed into webKnossos-wrapper format files (WKW) for efficient 3D access. It 

was then transferred to the data store accessible by webKnossos  for in-browser 

skeleton reconstruction and annotation (Boergens, Berning et al. 2017).  

The PPC-2 dataset was aligned using a modified version of an affine alignment 

method. In short, this algorithm uses a gradient ascent on the cross-correlation result 

of the overlapping region between two image tiles while one is deformed. The ensuing 

matched features are point-pairs. These point-pairs are then used as constraints in a 

parallel implementation of a least squares algorithm to find the optimal affine 

transformation for each image tile (Scheffer, Karsh et al. 2013). 

The C++ routines were modified to give unique affine transformations to each 

sub-region of size 1868x2148 pixels2 (2x2 sub region per tile, 200 pixels of overlap, 

original tile size: 4096x3536 pixels2). This allows for non-affine transformations on the 

scale of a full tile, yet corrected with locally affine transformations. We also added 

MATLAB routines to generate WKW files from the final dataset for efficient 3D access. 

In addition, we extracted a mask for blood vessels and cell nuclei by using the 

Canny edge detector (Canny 1986) and morphological operations from the OpenCV 

library (version 3.4.1). Nuclei and blood vessels are larger structures, detectable as 

blobs with a lower density of edges compared to the surrounding neuropil (Figure 21d, 

EM micrographs of nuclei and neuropil). These regions are excluded since they 

generate erroneous feature matches between neighboring image tiles. Furthermore, 

we added the option to output intermediate results at each step of the mask creation 

to allow for optimizing the algorithm parameters (n = 7) for new datasets. However, 

convolutional neural networks trained to detect blood vessels and nuclei with higher 

accuracy and robustness against differences between datasets would be the 

reasonable next step (e.g. see (Januszewski, Kornfeld et al. 2018)).  

We used this pipeline to also align a dataset from the hippocampal dentate 

gyrus (Table 6, acquired and aligned by Dr. Marcel Beining, voxel size: 11.24 x 11.24 

x28 nm3, dataset dimensions: 322 x 207 x 200 μm3). Furthermore, a modified version 

of this pipeline was successfully used to align a dataset of size ~0.5 mm3 (acquired 

and aligned by Meike Schurr). 

https://github.com/scalableminds/webknossos-wrap
https://opencv.org/
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7.1.9. Estimating EM beam aberration parameters using image autocorrelation 

Our approach closely follows the “heuristic algorithm” reported in (Binding, 

Mikula et al. 2013) that makes use of the way aberration changes the Fourier spectrum 

of images. Focus and astigmatism result in rotationally symmetric and asymmetric loss 

of higher frequencies in the image, respectively (Figure 21a-b). To get an unbiased 

estimator of the three actual aberrations (1 defocus and 2 astigmatism), two images 

were acquired with test (T) aberrations (T+ and T- images with a defocus of +0.6 and 

-0.6 µm). In SBEM experiments, sequential slices were used since 0.6 µm of defocus 

has a negligible effect on image quality.  

The images were then cropped to a region of 1024 x 1024 pixels2 to calculate 

the autocorrelation avoiding blood vessels and nuclei (see section below for neuropil 

detection). Next, the dot-product of a central 64 x 64 pixel region of the autocorrelation 

image was calculated against six weight masks (2 per aberration, Figure 21c). The 

masks were designed to capture the shape of the autocorrelation image and dot-

product pairs were used to estimate single-image defocus and astigmatism.  

The difference of the single-image aberrations between two test images (T+ and 

T-) were uncalibrated estimators of the actual aberrations. We, therefore, needed to 

experimentally measure the calibration parameter for each estimator. However, the 

estimated linear relationship to actual aberrations was dependent on the sample’s 

frequency spectrum and microscope settings. In our experience, the method was 

robust against minor changes in image texture between brain regions (Figure 21, Table 

6). Furthermore, the two astigmation parameters were rotated to match the coordinate 

system of the microscope’s stigmator elements, which differ between individual 

microscopes.  

The objective lens has a variable distance to the sample surface that is tilted 

relative to the path of electron beam. Therefore, it was necessary to allow for individual 

focus parameters in ~100 x 100 μm2 sub-regions of the imaging field-of-view.  

7.1.10. The detection of large objects in EM micrographs 

 The frequency dependence of the aberration adjustment software allowed for 

spurious result when the imaged sub-region was a large object, such as, blood vessels 
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and nuclei. It was, therefore, necessary to detect and avoid these objects. First, we 

smoothed the image using a Gaussian kernel (100x100 nm2, standard deviation = 90 

nm) and applied the Canny edge detector (Canny 1986). Next, we used morphological 

operations based on heuristics to create a binary mask for the nuclei and blood 

vessels. The binary mask was distance-transformed and the pixel region used for 

automatic aberration adjustment was centered on the maximum distance from binary 

mask in the image tile (Figure 21d). All software for automated aberration and detection 

of large objects were written in MATLAB 2014-2016a (Mathworks, USA). 

7.2. Cell-type specific innervation of apical dendrites 

7.2.1. Skeleton reconstruction and synapse annotation 

Skeleton reconstructions are tree-like graph representations (collection of 

nodes and edges) of the path neurites take in 3D space (e.g. Figure 7). In webKnossos, 

each reconstruction node accepts a comment string used to note the location of cellular 

structures, such as, synapses. The skeleton reconstruction and synapse annotations 

were downloaded as NML files (XML-based file format). NML files were subsequently 

parsed into a MATLAB class (MathWorks, USA, release 2014b-2019a) containing 

node and edge properties of each neurite. These properties were used to visualize 

(e.g. Figure 9a) and extract various features of the annotations (e.g. Figure 5c-f, 

number of synapses and path length). 

7.2.2. Apical dendrite (AD) definition and classification 

In PPC-2 and LPtA datasets, pyramidal neurons were identified by the pyramid 

shape of their cell body, their axon initial segment’s (AIS) direction towards white 

matter (WM), spiny dendrites (apart from peri-somatic region) and their apical dendrite 

trunk directionality (towards pial surface) and diameter (~1-3 µm, Figure 16b, d, e, 

(Larkman and Mason 1990)). Next, the AD shaft was reconstructed around the main 

bifurcation (Figure 9) or distal apical dendrite tuft (Figure 10) for local dense synaptic 

input mapping. The range of depth used for classifying pyramidal neurons into layers 

2-5 subtypes was reported in Table 5. Note that, LPtA and PPC cortical regions do not 

possess a prominent layer 4 (Kolb and Walkey 1987). 

https://docs.webknossos.org/reference/data_formats#nml
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The difference between nominal and actual cutting thickness in the LPtA dataset 

resulted in compression of spherical somata into ellipsoids along the cutting axis. 

Therefore, the section thickness was corrected (by a factor of 1.49) to obtain an 

accurate estimate of somatic depth relative to pial surface, assuming spherical somatic 

shape.  

To get a direct estimate of the pial surface in the PPC-2 dataset, we used the 

difference in auto-fluorescence of the fixed brain tissue and its surrounding buffer. 

Using this brightness difference, we placed nodes on the approximate location of the 

pial surface. We next transformed the nodes into EM space and regressed their 

coordinates to estimate pia as a 2D linear plane. The Euclidean distance to the pial 2D 

plane was used as the somatic depth (Table 5). Additionally, we estimated the L1/2 

border surface using the PPC-2 dataset following a similar procedure. 

Within the S1, V2, PPC and ACC datasets, ADs were classified depending on 

the existence of soma in the image volume (Figure 4a). ADs with soma in the image 

volume were classified as layer 2 (L2) and other apical dendrites were classified as 

deep layer (L3/5, DL) ADs. The deep class of ADs was only identified based on their 

radial direction and diameter (Figure 4a, 5b). To augment the diversity of ADs analyzed 

within this study, we specifically searched for layer 2 and 5 pyramidal subtypes where 

ADs were either obliquely directed or thin. We identified two subtypes for L2 and L5 

pyramidal neurons (Figure 9, also see below). 

The main bifurcation of apical dendrites was defined as the branching point with 

two daughter branches of similar thickness and branching angle (resulting in a “Y” 

shape, Figure 5b). 

The ACC dataset was used to reconstruct all ADs within one EM volume (Figure 

5a, blue-green). They were detected by examining the dataset border facing WM for 

deeper layer ADs (n = 152), and by identifying all L2 pyramidal neurons for the L2 ADs 

(n = 61). The AD locations were used as seed points for manual annotation by student 

annotators ignoring spines. 
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7.2.3. Identification of layer 2 marginal (L2MN) and slender-tufted layer 5 (L5st) 

neurons 

Our goal was to find known subtypes of apical dendrites that were not 

investigated due to our AD identification process described above. AD morphology, 

contained in the low- and high-resolution EM volume, was reconstructed for all 

investigated neurons in LPtA and PPC-2 datasets (Figure 7). We then specifically 

searched for layer 2 marginal (L2MN) and slender-tufted layer 5 pyramidal neurons 

(L5st). 

To identify L2MN neurons, we searched the L1/2 border region for pyramidal 

neurons that have an AD obliquely directed relative to pial surface (Figure 7a, 9a, black 

reconstructions (Larkman and Mason 1990, Luo, Hasegawa et al. 2017)). 

We also reconstructed additional L5 neurons with a slender apical dendrite tuft 

morphology (Figure 7, blue reconstructions). We used soma diameter, AD trunk 

diameter, number of oblique dendrites and the depth of main bifurcation as parameters 

that were previously reported to distinguish L5 subtypes (Larkman and Mason 1990, 

Groh, Meyer et al. 2009). Our goals was to classify L5 neurons by agglomerative 

hierarchical clustering. We, therefore, used the correlation coefficient between height 

of the link between clusters (cophenetic distance) and their actual distance in the 4-

dimensional feature space to find the optimal linking function. We found the average 

of “cosine” distance (One minus the cosine of the angle between points) to create the 

most consistent tree with the distance of clusters in the original feature space. 

We then created two clusters containing L5st (n = 11) and L5tt (n = 7) neurons. 

The feature distribution of the two clusters corresponded to previous definition of L5 

neuronal subtypes (Hübener and Bolz 1988, Hübener, Schwarz et al. 1990, Manns, 

Sakmann et al. 2004). The L5tt neurons had a larger soma and AD diameter with 

higher number of oblique dendrites and a deeper bifurcation relative to pial surface as 

compared to L5st neurons (Figure 8a). To approximate the soma volume using an 

ellipsoid, we measured the diameter along the three Cartesian dimensions of the 

dataset. We then calculated the diameter of the sphere that has an equivalent volume. 

To measure AD diameter, we determined the diameter of the circle that has an 
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equivalent area to the ellipse approximation of the AD trunk cross-section. The 

diameter was measured about 50 μm from the cell body. 

We also performed principal component analysis (PCA) on the morphological 

features of L5 neurons. The first principal component (PC 1) was correlated with thick-

tuftedness of pyramidal neurons (Figure 8b, d). Therefore, PC 1 was used to 

investigate the correlation of synaptic densities and the morphology of L5 neurons. We 

fitted linear models to each synaptic density. Additionally, we used a fraction of two 

linear models to explain the relationship between fraction of inhibitory synapses and 

L5 morphology (Figure 8e, solid black line). To understand the variance explained by 

individual synapse densities, we used the linear model fit to either or both synapse 

densities to create predictions on the inhibitory fraction (Figure 8e, dashed lines). In 

these models, the average of the other synapse density was used to calculate the 

inhibitory fraction. Finally, we compared the spine density and somatic depth of L5 

pyramidal neurons (Figure 8c, f). 

7.2.4. Complete synaptic input mapping of apical dendrites 

Apical dendrites and their dendritic spines were skeleton-reconstructed and the 

synapses on their shaft and spines were annotated within a bounding box of size 20 x 

20 x 20 µm3 around the main bifurcation (Figure 5, 9, n = 20 for S1, V2, PPC, n = 40 

for PPC-2, n = 22 for ACC) or distal apical dendrite tuft (Figure 10a, n = 6 L5st group 

in PPC-2). Further, we also performed dense synapse annotation throughout the high-

resolution EM datasets for a few ADs by an expert annotator (Figure 10a (except for 

the L5st group), n = 11 for LPtA, n = 6 for ACC, n = 4 for S1, V2 and PPC). See Figure 

12 for all annotated synapses. 

Chemical synapses were identified within the data set based upon the presence 

of vesicle cloud and postsynaptic density, as described previously (Gray 1957, 

Schmidt, Gour et al. 2017). We also noted cases where spine neck or head received 

an additional synapse (Figure 14c). The co-innervation of spines with excitatory and 

inhibitory synapses was reported for thalamic input to cortex (Kubota, Hatada et al. 

2007). Shaft synapses, synapses on spine necks and secondary spine head 

innervations were counted as inhibitory synapses, and primary spine innervations were 

counted as excitatory synapses for majority of neuron types. Justification for the 
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identification criteria of synapses were provided using structural constraints below 

(Total error rate was below 4% with the exception of L5st neurons, Figure 5, 9, 10).  

Synapse and skeleton annotations were done in collaboration with Jan 

Odenthal. In our analysis, we only included possible synapses that met our criteria 

according to both expert annotators (AK and JO).  

The fraction of inhibitory synapses was defined as the number of inhibitory 

synapses divided by the total number of synapses for individual ADs (Figure 5e, f, 9b, 

10b, 13b). The inhibitory and excitatory synapse density was calculated by dividing the 

number of synapses by the path length of the apical dendrite shaft (Figure 5c, d, 9c, 

10c, 13a). Shaft path length was measured by removing the spine necks from the 

skeleton reconstructions and summing the lengths of the remaining edges. Note that 

inhibitory input was measured separately for each distal tuft branch in the LPtA and 

PPC-2 datasets, resulting in 9, 7, 9, 6 dendritic segments for L2, 3, 5tt and 5st cells, 

respectively (Figure 10). 

7.2.5. Inhibitory input fraction mapping in upper cortex 

We first estimated the location of each dataset relative to pia by measuring the 

distance to pial surface in the coronal overview EM images. Distances were 125, 215, 

170, 110, 10, 20 µm for S1, V2, PPC, ACC, PPC-2 and LPtA, respectively (Figure 4, 

6). We then transformed all the dense synaptic input maps into a common coordinate 

system with the second dimension (Y-axis) representing the distance to pia (Figure 

12). Next, we partitioned the reconstructions (n = 141, total AD shaft path length = 14.1 

mm) into virtual 100 µm thick cortical tangential sections. This process resulted in 

dendritic segments at each depth bin. We then combined synapse counts and path 

lengths from all segments within each virtual cortical section to calculate the pooled 

mean for inhibitory fraction and synapse densities at that depth (lines in Figure 13a-b). 

We also used the 95% bootstrap confidence interval to estimate the dependence of 

the pooled average on the sample composition (shades in Figure 13a-b, n = 10,000 

bootstrap samples).  



 

36 

7.2.6. Distance to soma and synapse composition at the main bifurcation 

We annotated the path between soma and main bifurcation within the high- and 

low-res EM data volumes for the L2 (n = 51, datasets: S1, V2, PPC, ACC, PPC-2), 

L2MN (n = 2, PPC-2), L3 (n = 10, PPC-2), L5tt (n = 7, PPC-2), and L5st (n = 11, PPC-

2) pyramidal cells. The path distance between soma and main bifurcation was plotted 

against the synaptic densities at the main bifurcation (Figure 11a-c). 

7.2.7. Inhibitory fraction along L2 apical dendrites 

The excitatory and inhibitory synapses were binned based on their path 

distance to soma in the reconstructed L2 pyramidal ADs (n = 61, n = 12,532 synapses, 

bin size = 10 µm), allowing us to measure the fraction of inhibitory synapses as a 

function of dendritic path distance to the soma (Figure 11d-e, 10-330 µm distance 

range). Soma distance bins with less than 4 synapses were merged to their immediate 

neighbors that contained at least 4 synapses. This was done to avoid extreme values 

introduced by computing the inhibitory ratio in bins with low synapse count.  

7.2.8. Identity estimation for shaft and spine synapses  

A random subset of axons targeting shaft or dendritic spines of ADs was 

reconstructed in layers 1 and 2 (n = 142, 288, respectively, Figure 15a). The 

postsynaptic targets were identified for 2 to 405 additional targets of each axon 

(median of 7 synapses). Next, we classified the postsynaptic target as single-

innervated spine head or shaft/non-spine that included spine neck, double-innervated 

spine and soma innervation. Next, we plotted the histogram (bin size = 0.1) and the 

probability density estimate (bandwidth = 0.0573) of the fraction of single-innervated 

spines (Figure 15b). 

We used a threshold (=0.5) on the single-innervated spine innervation fraction 

to classify axons into excitatory (spine-preferring) and inhibitory (shaft/non-spine 

preferring) types (Figure 15b, dashed lines). Next, we measured the prediction 

accuracy of the presynaptic axon (spine- vs. shaft-preferring) based on the location of 

the synapse on the dendrite (spine vs. shaft, Figure 15c, Table 4). Since the L5st 

neurons had a significant spine-preferring (likely excitatory) input to their shafts, we 
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corrected their synaptic densities using our prediction accuracies (Figure 9, 10, grey 

and blue crosses are values pre- and post-correction). 

7.2.9. Synapse size estimation 

A random subset of synapses onto shaft and dendritic spines (n = 41 per AD 

type) were used to compare the synaptic interface area between L2 and deep layer 

AD main bifurcations (Figure 14b, S1, V2, PPC and ACC datasets). For this, an expert 

annotator placed two edges along the longest dimension of the synapse and its 

approximate orthogonal direction. These two edges were used as the minor and major 

axes of an ellipse to estimate the contact area (Figure 14a, 𝑎𝑟𝑒𝑎 = 𝜋 ∗ 𝑠𝑒𝑚𝑖 −

𝑚𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 ∗ 𝑠𝑒𝑚𝑖 − 𝑚𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠).  

7.2.10. Spine apparatus at the main AD bifurcation 

We inspected a randomly selected subset of spines from the main bifurcation of 

L2, L3 and L5tt neurons for presence of spine apparatus (n = 20 per cell type, PPC-2 

dataset). We reported the fraction and density (per μm shaft path length of AD) of 

spines with an apparatus (Figure 14d). 

7.2.11. Apical dendrite diameter and synapse density per unit surface area 

The apical dendrite diameter was measured every ~2-3 µm along the path used 

for dense synaptic input mapping (Figure 16a). The average diameter (Figure 16b, d, 

e), in combination with the path length of the dendrite, was used to calculate the 

surface area of the dendrite (AD surface= π x path length x average diameter). Next, 

the synapse number was normalized to the surface area of the dendrite to generate 

synapse density per unit surface (Figure 16c, d, e).  

7.2.12. Conditional innervation probability of inhibitory axons 

We selected a random subset of shaft synapses (the “seed” synapses) from 

layer 2 (n = 21, 20, 21, 30 for S1, V2, PPC and ACC) and deep layer ADs (n = 19, 20, 

20, 32 for S1, V2, PPC and ACC). An expert annotator reconstructed the path and 

annotated all synapses and postsynaptic partners of the pre-synaptic axon.  The 

reconstructions were then revised by another annotator for morphological irregularities, 
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such as, sharp branching angles and untraced endings. All axon reconstructions were 

done in collaboration with Jan Odenthal. 

The postsynaptic targets were categorized into one of the following: layer 2 or 

deep layer apical dendrite (shaft and dendritic spine of AD trunk and primary 

branches), shaft, single- or double-innervated spine (including neck targeting) of other 

dendrites, layer 2 cell body, axon initial segment (AIS) or glia. Next, we measured the 

fractional innervation of an axon by dividing the vector of synapse numbers for each 

group by the total (minus the seed synapse). The seed synapse biases our estimation 

of the seed AD fractional innervation, especially with axonal segments with low 

synapse numbers. The innervation fractions were averaged over axons seeded from 

each AD type (Figure 17c, e). Each dataset average (S1, V2, PPC and ACC cortices) 

was also computed separately (Figure 20). 

7.2.13. Dirichlet-multinomial model for postsynaptic targeting probability 

Dirichlet-multinomial models allow for defining distributions over the multinomial 

probability parameter vector. Therefore, we modeled the generative process for the 

axonal postsynaptic target counts using this distribution. With Dirichlet-multinomial 

models, a multinomial probability vector is drawn from a Dirichlet distribution for each 

sample (AD-targeting axon). Next, the synapse targeting count is generated as a 

multinomial sample of this probability vector. Next, we used a Newton-iteration 

implementation (Minka 2000) to find the maximum-likelihood estimate (MLE) of the 

Dirichlet-multinomial distribution for axonal targeting count. The mean of the MLE 

Dirichlet distribution was reported as the axonal innervation probability for layer 2 and 

deep ADs. In addition, we reported the fraction (in percent) of AD targeting probability 

(Figure 17b).  

7.2.14. Multiple innervation of an AD by inhibitory axons 

We next annotated cases where an AD was innervated multiple times by an AD-

targeting inhibitory axon (Figure 19a), and then measured the average number of 

synapses onto L2 and deep layer targets by each axon (Figure 19b). Axons with no 

synapses (excluding the seed synapses) on L2 (n = 18, 46 for L2 and deep AD-seeded 

axons, respectively) or deep ADs (n = 48, 24 for L2 and deep AD-seeded axons, 
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respectively) were excluded since averages are not defined on empty sets. In addition, 

we plotted the histogram for the number of synapses on AD targets, as separated by 

the AD seed-type of axons (Figure 19d), and the number of times the seed structure is 

targeted (Figure 19e). To quantify the effect of multiple targeting on fractional AD 

innervation, we reported the average fraction of synapses (Figure 19c, upper panel, 

n=183 axons) and individual AD targets ignoring multiple innervation of the same target 

(Figure 19c, lower panel, n=159 axons). 

7.2.15. Distribution of pre- and post-synaptic neurites along cortical depth 

The depth of the main bifurcation relative to pia was determined by transforming 

the S1, V2, PPC and ACC datasets into a common coordinate system (n = 82, as seen 

in Figure 12). Next, we created a histogram (bin size of 20 µm) and probability density 

estimate (bandwidth: 25 µm) for main bifurcation densities along the cortical depth 

(Figure 18b). Note that this is only a subset of main bifurcations within each image 

volume. 

We used the same datasets to estimate the density of AD-targeting inhibitory 

axons. The axonal annotations contained additional nodes used for marking synapses, 

which were removed before measuring the path length. We then computed the 

average fraction of the axonal path within 20 µm tangential cortical slices for each 

datasets (Figure 18c, error bars indicate mean ± SEM over datasets, n = 4).  

7.2.16. Visualization of neurites and their synapses 

The surface of the main bifurcation of PPC and S1 apical dendrite shafts and 

axons was extracted by segmenting the image volumes using SegEM (Berning, 

Boergens et al. 2015) and collecting all the segments of the neurites. The segment 

was then imported to MATLAB, binarized and smoothed using a 9 x 9 x 9 voxel3 

Gaussian convolution kernel with a standard deviation of 8 voxels. The surface mesh 

was then constructed at a threshold of 0.2 (Figure 5b, 17d).  

For the V2 and ACC datasets, the volume of the main bifurcation of AD shafts 

was generated by tracing the dendrite outlines using the volume-tracing mode in 

webKnossos; the 3D data were processed in a similar fashion (Figure 5b).  
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Skeleton reconstructions of axonal (Figure 15a) and dendritic paths (Figure 5a-b, 7, 

8d, 9a, 10a, 12) were represented by cylindrical tubes. Additional spheres were added 

to represent input (Figure 5b, 10a, 12) and output (Figure 15a, 17d) synapses. 

The EM ultra-structure of an AD, synapses and cell bodies was demonstrated 

by electron micrographs of their cross-sections in the PPC dataset (Figure 5b, 14a,c-

d, 15a, 16a). Overview EM images and low-res EM data were used to demonstrate the 

location and size of datasets (Figure 4a-b, 6a). The visualizations were generated 

using MATLAB (MathWorks, USA) and Amira (Thermo Fisher Scientific, USA). 

7.2.17. Statistics  

The significance of difference between L2 and deep layer AD excitatory and 

inhibitory synapse densities (Figure 5c-d), inhibitory fractions (Figure 5e-f), synapse 

size (Figure 14b), double innervation of spines (Figure 14c), AD innervation fraction 

(Figure 17c), and L5 subtype comparisons (Figure 8c) were tested using the non-

parametric Wilcoxon rank-sum test. In addition, the rank-sum test was used to test for 

the fraction of inhibitory and excitatory/inhibitory synapse densities between the main 

bifurcation and the distal tuft area for each pyramidal cell type (Figure 10d). 

Difference in the inhibitory fraction between L2 (with L2MN), 3, 5tt and 5st apical 

dendrites at the main bifurcation and on the distal tufts was tested using the non-

parametric Kruskal-Wallis test to account for the small sample size (n = 12, 10, 7, 11 

main bifurcations and n = 9, 7, 9, 6 distal tuft branches for L2, 3, 5tt, 5st, respectively, 

Figure 9b, 10b). It was followed by Tukey’s post-hoc range test to find significantly 

different pairs. 

To identify differences in the axonal innervation fractions, a bootstrap test was 

designed. The identity of axonal groups was randomly shuffled and 10,000 bootstrap 

resamples (with replacement) were drawn matching the number of axons in the 

sample. The mean difference in each bootstrap resample between L2 and deep layer 

groups was compared to the sample’s mean difference. The p value was calculated as 

the fraction of bootstrap resamples that had a value more extreme. The significance 

threshold was set to 0.05 with Bonferroni correction for 8 comparisons (Figure 17e). 
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To compare innervation fractions of AD-targeting axons across cortical regions, 

a multivariate analysis of variance (MANOVA) test was applied to 6 postsynaptic 

innervation fractions (AD, soma, spine and shaft of other dendrites). Axon initial 

segment (AIS) and glia groups were excluded since they had very few synapses that 

resulted in singular matrices when the MANOVA test was applied (0.8%, 0.04% of total 

synapses, respectively). The null hypothesis states that the cortical region does not 

affect the mean fractional innervations. We followed the MANOVA test when the null 

hypothesis was rejected (Figure 20c, L2 AD seeded axons) with multiple comparisons 

using Bonferroni-corrected one-way ANOVA tests to determine the target 

innervation(s) which vary across the cortex. 

To investigate the possible exponential relationship between synaptic 

composition at the main bifurcation and its distance to the soma, single-term 

exponential models (with offset) of the form 𝑖𝑛ℎ. 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 = 𝑐 + 𝑎 ∗ 𝑒𝑏∗𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 were fit 

to the data from layers 2-5. The coefficient of determination (R2) was used as the 

goodness-of-fit measure. We also used R2 to compare models explaining the 

relationship between morphology and synapse density of L5 pyramidal neurons 

(Figure 8). To understand the relationship between morphology and synapse density 

of L5 neurons, we fitted a linear model to individual synapse densities and a non-linear 

model (form: 
𝑎𝑥+𝑏

𝑐𝑥+𝑑
) to their inhibitory fraction. 

7.2.18. Data and software availability 

All analysis software for the cell-type specific apical tuft dendrite innervation 

analysis is available under the MIT license using the following link: 

https://gitlab.mpcdf.mpg.de/connectomics/apicaltuftpaper 

All 6 datasets are available for browsing at demo.webknossos.org using the 

following links: 

S1: Hyperlink 

V2: Hyperlink 

PPC: Hyperlink 

https://gitlab.mpcdf.mpg.de/connectomics/apicaltuftpaper
https://demo.webknossos.org/annotations/Explorational/5c1e4da3010000087d8c3127?token=KSxA79wFowRm9XYTMIrODA#2904,2196,7082,0,3.89,96311
https://demo.webknossos.org/annotations/Explorational/5c1e4d110100001a7f8c3124?token=kvxyzHI7Zr7gd8XpBopGvg#2675,6420,3280,0,4.80,166571
https://demo.webknossos.org/annotations/Explorational/5c1e4e08010000927e8c312a?token=xv115CgJbh1Bsb57oWegoA#2111,8612,2685,0,0.49,129032
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ACC: Hyperlink 

LPtA: Hyperlink 

PPC-2: Hyperlink 

7.3. Correlative volumetric light and electron microscopy 

7.3.1. Viral injection into M2 and V1 cortices 

Our injection approach closely followed FluoEM (Figure 23a, (Drawitsch, Karimi 

et al. 2018)). We anesthetized a wild-type C57BL/6J mouse (age: 35 postnatal days, 

weight: 17.8 g) by inhalation of 2-4% isoflurane in Carbogen (CO2 in medical oxygen). 

The body temperature was maintained at 37 °C using a heating pad (feedback-

controlled, DC Temperature Control System, FHC, USA) and fixed in a stereotaxic 

frame (Kopf Instruments, USA). Systemic analgesia, a combination of 2 and 100 mg/kg 

Meloxicam (Metacam, Boeringer-Ingelheim, Germany) and Metamizol (Metamizol 

WDT, WDT, Germany), was injected subcutaneously 1 hour prior to operation in 

addition to local anesthesia during surgery (16.7 mg/kg Ropivacaine (Naropin, 

AstraZeneca, Switzerland) injected under the scalp). To label projection axons 

anterogradely in M2 (1 mm lateral, 1.4 mm anterior relative to bregma, right 

hemisphere) and V1 (2.5 mm lateral, 4.2 mm posterior to bregma, right hemisphere), 

we injected adeno-associated viruses (AAV) expressing eGFP (AAV1. CAG. Flex. 

eGFP. WPRE. bGH (Allen Institute 854), 1.71 x 1013 genome count (GC)/ml, Penn 

Vector Core, USA) and tdTomato (AAV1. CAG. Flex. tdTomato. WPRE. bGH (Allen 

Institute 864), 1.07 x 1013 GC/ml, Penn Vector Core, USA). The fluorescent AAV was 

mixed in a 2:1 ratio with AAV.Cre solution (AAV1.CamKII0.4.Cre.SV40, 2.3 x 1013 

GC/ml, Penn Vector Core, USA). The injection (~50 nl) was performed 500 µm below 

cortical surface using a pressure injection system (PDES, NPI, Germany).  

We performed the transcardial perfusion 3 weeks after the injections to allow for 

expression of fluorescent proteins in projection neurons of V1 and M2 (postnatal day 

57). The perfusion was performed as described above with the addition of DiD (1,1'-

Dioctadecyl-3,3,3',3'-Tetramethylindodicarbocyanine) to the initial buffer for labelling 

blood vessels (5 µM, Thermo Fisher, USA) 

https://demo.webknossos.org/annotations/Explorational/5c1e4fb4010000c77f8c3145?token=JGD70wi8eg2UlFxEvTDF1Q#1829,10686,2,0,4.15,598140
https://demo.webknossos.org/annotations/Explorational/5c2f78870100009f288ca0a2?token=OWKN1Vw-8tpJLFiGYhZdyA#23153,23067,634,0,0.37,212827
https://demo.webknossos.org/annotations/Explorational/5c1e4e48010000647d8c312e?token=U0GhWPrj3aMK4ri3O18wGA#8945,14017,4672,0,0.31,2227
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7.3.2. Sample preparation and confocal laser scanning light microscopy (LM) 

In FluoEM, it was crucial that sample preparation would allow for imaging of the 

same volume in both LM and EM. We sliced the brain along the coronal plane to 

generate a 600 µm thick slice containing PPC (2 mm posterior and 1.7 lateral to 

bregma). Next, we separated the PPC cuboid from the rest of the section using a 

surgical razor. One of the edges of the cuboid was intentionally oblique to allow for 

determining the side of block being imaged (LSM 880, Zeiss, Germany). 

The PPC sample was transferred to a buffer-filled imaging chamber (Grace Bio-

Labs, USA) used for inverted confocal laser-scanning microscopy (LSM 880, Zeiss, 

Germany). We imaged three channels (eGFP and tdTomato labelled axons and DiD 

labelled blood vessels) of 1130 x 909 x 94 µm3 (voxel size: 115 x 115 x 444 nm3, Figure 

23), using a 40X water objective (C-Apochromat 40x/1.2 W Korr FCS M27, Zeiss, 

Germany). The sample preparation for electron microscopy and 3D-EM imaging was 

detailed in the section above (PPC-2 sample, Figure 23b). 

7.3.3. Alignment of long-range axons between 3D-LM and EM 

We followed the previously reported matching process for fluorescently labelled 

axons in 3D-LM to their counterparts in the 3D-EM dataset (Drawitsch, Karimi et al. 

2018). In short, blood vessel bifurcations were used to constrain an initial, coarse affine 

alignment between LM and EM datasets (2.7±0.9 µm residual Euclidian distance error, 

mean ± SD, n = 23 control points). Next, we iteratively matched LM axons to their EM 

counterparts and used their boutons as control points to refine the transformation 

(Figure 23c-d, 1.5±0.8 µm vs. 86±100 nm for final affine and freeform transformations, 

respectively, mean ± SD, n = 348 control points)  

7.3.4. Extracting distribution of postsynaptic targets 

The source of 24 long-range axons from M2 (n = 12) and V1 (n = 12) was 

determined by the matching to their LM counterparts. We first measured the density of 

synapses normalized to the path length of the axons (Figure 23e). Next, we annotated 

all the postsynaptic targets of the long-range axons (n = 1619 synapses) and asked 

student annotators to reconstruct the dendrite. Students were instructed to note the 

soma location within the dataset boundaries (annotation redundancy = 3). About half 
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of the postsynaptic targets’ soma (804/1619) was identified within the volume (Figure 

24d-e, 25).  

We noted the locations of pia and layer 1 by fitting a surface through a set of 

coordinates extracted from the surface annotations in LM and EM data, respectively. 

In addition, we used the cyto-architecture of L2-5 to find an approximate depth map for 

cortical layer borders (145, 245, 410, 460 µm from pial surface for L1/2, L2/3, L3/4 and 

L4/5 borders, respectively). 
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8. Results 

8.1. Synaptic composition in apical dendrites of pyramidal neurons 

In the following section, we describe the composition of excitatory and inhibitory 

synapses on the apical dendrite surface of pyramidal neurons at the superficial cortical 

layers. 

8.1.1. Synaptic composition at the main bifurcation of layer 2 (L2) and deep 

layer (L3/5) pyramidal neurons  

We used serial block-face scanning electron microscopy (SBEM, (Denk and 

Horstmann 2004)) to acquire electron microscopy image volumes from the layer 1/2 

border region (L1/2) of primary somatosensory (S1), secondary visual (V2), posterior 

parietal (PPC) and anterior cingulate (ACC) cortices in mouse (Figure 4). The regions 

represent a mixture of primary sensory and higher-order cortices (Figure 4c-d) 

(Woolsey and Van der Loos 1970, Kolb and Walkey 1987). The datasets were acquired 

at a nominal resolution of 11.24-12 x 11.24-12 x 28-30 nm3 and were approximately 

the size of a cube with an edge length of 100 µm (Figure 4b, 9.4-1.2 x 106 µm3).  

Apical dendrites (ADs) from most layer 2-5 (L2-5) pyramidal neurons bifurcate 

in the L1/2 border region and branch further in L1 to generate the apical tuft dendrite 

(Figure 4a, 5a, (Larkman and Mason 1990)). Our goal was to measure and compare 

the inhibitory input size at the main bifurcation of ADs (Larkum, Zhu et al. 1999, 

Ledergerber and Larkum 2012). While ADs originating from cell bodies within the EM 

volume were classified as layer 2 (L2), deep layer (L3/5) ADs were from cell bodies 

residing deeper within the cortex (i.e. layers 3 and 5) (Figure 4a, 5, grey and orange 

reconstructions represent L2 and L3/5, respectively). Note that layer 4 is either not 

prominent (association cortical areas, (Kolb and Walkey 1987)) or most L4 neurons do 

not possess an apical dendrite (spiny stellate neurons in S1, (Feldmeyer, Egger et al. 

1999)). 

 



 

46 

 

Figure 4. 3D electron microscopy datasets of size ~106 µm3 used for analysis 

(a) EM overview of datasets from primary somatosensory (S1), secondary 

visual (V2), posterior parietal (PPC) and anterior cingulate (ACC) cortices. (b) 

Volume representation of the datasets with their respective dimensions. Note 

that datasets were about 106 µm3. (c) Coronal sections of the mouse brain 

section (100-1000 µm in thickness) from which S1, V2, PPC and ACC datasets 

were extracted. Stars indicate the sample location. (d) The horizontal illustration 

of the mouse cortex with the approximate location of each dataset. ACC and S1 

datasets were acquired by Jan Odenthal and Kevin Boergens, respectively. This 

figure is reproduced with modifications from (Karimi, Odenthal et al. 2019) and 

is licensed under the CC-BY-NC-ND 4.0. 

Next, we annotated all chemical input synapses about 10 µm around the main 

bifurcation of L2 (n = 41) and L3/5 (n = 41) ADs (Figure 5b, n = 5148, 1092 for excitatory 

and inhibitory synapses, respectively. Total dendritic length analyzed: 3.33 mm). The 

inhibitory synapse density normalized to dendritic shaft path length was larger for L2 

as compared to L3/5 pyramidal neurons (Figure 5c, 0.42±0.02 vs. 0.22±0.02 synapses 

per µm for L2 and L3/5, respectively, mean ± SEM, n = 82, Wilcoxon rank-sum test, p 
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< 10-7). Combined with the higher excitatory input density in L3/5 pyramidal neurons 

(Figure 5c, 1.09±0.1 vs. 2.12±0.15 synapses per µm for L2 and L3/5, respectively, 

mean ± SEM, n = 82, Wilcoxon rank-sum test, p < 10-6), the inhibitory fraction was 

about 3 fold higher for the main bifurcation of L2 neurons (Figure 5e, 33.6±17.9 % vs 

9.9±5.1 % of synapses for L2 and L3/5, respectively, mean ± SD, Wilcoxon rank-sum 

test, p < 10-11). The increase in inhibitory input density and fraction for L2 neurons was 

consistently present across the cortical regions investigated (S1, V2, PPC and ACC, 

(Figure 5d, f)).  

 

Figure 5. Complete synaptic input mapping of the main bifurcation of apical 

dendrites in pyramidal neurons 
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(a) Skeleton representation of all ADs contained in the ACC dataset volume 

(blue-green, n = 61 layer 2 and n = 152 deep layer ADs, respectively) and a 

subset of inhibitory axons innervating them (n = 62, yellow-orange). Note that 

most pyramidal neuron types stretch their apical dendrite to the L1/2 border 

region. (b) Excitatory (red spheres) and inhibitory (blue spheres) synaptic input 

maps of apical dendrite main bifurcations for deep layer (orange) and layer 2 

(grey) pyramidal cells (example synapses, inset). (c) Boxplot of inhibitory (blue 

crosses) and excitatory (red crosses) synapse densities normalized to AD shaft 

path length (µm) for L2 (n = 41, left) and deep layer ADs (n = 41, right) in S1, 

V2, PPC and ACC datasets. Wilcoxon rank-sum test, p < 10-6 for both synapse 

types. (e) Boxplot of the fraction of inhibitory synapses at the main bifurcation 

of deep (orange) and layer 2 (grey) ADs; individual ADs shown (crosses). (d,f) 

Same as in (c,e) separately reported by cortical region (n = 20 for S1, V2 and 

PPC, n = 22 for ACC). Asterisks indicate significance level of the Wilcoxon rank-

sum test (*p < 0.05, **p < 0.01, ***p < 10-3, ****p < 10-4). Scale bars: 0.5 µm 

(inset in c). This figure is reproduced with modifications from (Karimi, Odenthal 

et al. 2019) and is licensed under the CC-BY-NC-ND 4.0. 

8.1.2. More detailed definition of cell types in datasets containing layers 1-5 

We aimed to distinguish layer 3 and 5 apical dendrites by imaging a larger 

volume of the neocortex. Large volumes, imaged at the same resolution, require longer 

imaging times and increase the probability of failure. We, therefore, imaged layers 1-5 

in PPC and LPtA cortices (Figure 6b, c, PPC-2 and LPtA datasets) by a combination 

of high- (voxel size: 11.24 x 11.24 x 30 nm3 for both datasets) and low-resolution 3D-

EM (Figure 6a, voxel size: 22.48x22.48x30 nm3, 44.96x44.96x120 nm3 for PPC-2 and 

LPtA). The high-resolution EM volume was targeted to layers 1 and 2, where the distal 

apical dendrite tuft and main bifurcation of most L2-5 neurons reside (Figure 6a, LPtA 

and PPC-2 contain L1 and L1/2, respectively). The low-resolution EM volume covered 

the cortical depth to the middle of layer 5. 
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Figure 6. Datasets used for detailed cell-type specific analysis  

(a) Two orthogonal cross-sections of the dataset from LPtA cortex (left) and 

volume representation of the dataset from PPC cortex (PPC-2). Note that the 

LPtA and PPC-2 datasets have high-resolution EM in layers 1 and 1 / 2, 

respectively. (b) Coronal sections from which LPtA and PPC-2 datasets were 

extracted. (c) Schematics demonstrating the approximate location of each 

dataset on the surface of mouse cortex. The LPtA dataset (a) was acquired and 

provided by Florian Drawitsch. The panel (b) is reproduced with modifications 

from (Karimi, Odenthal et al. 2019) and is licensed under the CC-BY-NC-ND 

4.0. 
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Figure 7. Reconstruction of apical dendrites of pyramidal neurons used in cell-

type specific analysis 

(a) Skeleton reconstruction of apical dendrites of layer 2 (grey traces, n = 10), 

2MN (black, n = 2), 3 (green, n = 10), 5tt (magenta, n = 7), 5st (blue, n = 11) 

pyramidal cells in PPC-2 dataset (PPC cortex). Black / red rectangles indicate 

the main bifurcation area used for synaptic input mapping in each annotation. 

The same L5st (blue) neurons are used for distal AD synaptic input mapping. 

Also see Figure 9a.  (b) Same as in (a) for neurons used for distal apical dendrite 

tuft synaptic input mapping in the LPtA cortex. The border between the high- 

and low-resolution EM datasets is indicated by a dotted line. See Also Figure 

10. The dashed and solid lines indicate pia and the layer 1/2 border, 

respectively. The cell body location of each neuron is indicated by a circle.   

Next, we reconstructed the apical dendrite’s trunk within the EM volumes 

followed by dense synaptic input mapping at the main bifurcation (Figure 7a, PPC-2 

dataset) or distal apical dendrite tuft (Figure 7b, LPtA and PPC-2 datasets). Each 

neuron’s layer of origin was defined by its soma depth relative to pial surface (Table 5, 

also see methods). Layer 2 marginal neurons (L2MN) and slender-tufted layer 5 (L5st) 

pyramidal neurons were distinguished from other L2 and 5 neurons using additional 

morphological features described in the following section. 
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8.1.3. Layer 2 marginal neurons (L2MN) and slender-tufted layer 5 (L5st) 

neurons 

A subset of layer 2 neurons with cell bodies on the L1/2 border, possess a less 

prominent (obliquely directed) apical dendrite and are sometimes called marginal 

neurons (L2MN, (Larkman and Mason 1990, Luo, Hasegawa et al. 2017)). We 

identified two L2MN neurons and measured their inhibitory fraction to compare to other 

L2 neurons (Figure 7, 9, black annotations with red boxes marking their main 

bifurcation). 

Slender-tufted layer 5 pyramidal neurons (L5st) are known to be 

morphologically (Larkman and Mason 1990) and functionally (Rojas-Piloni, Guest et 

al. 2017) different from other thick-tufted L5 neurons. We distinguished slender- and 

thick-tufted L5 neurons by hierarchical clustering using four morphological features 

(Figure 8b, upper panel). Consistent with previous reports, L5st neurons had thinner 

dendrites, smaller soma and AD trunk diameter and superficial main bifurcations as 

compared to L5tt neurons (Figure 8a). We also found lower spine density in L1/2 region 

for L5st neurons when compared to their L5tt counterparts (Figure 8c, 1.4±0.23 vs. 

0.59±0.13 spines per µm path length for L5tt (n = 16) and L5st (n = 17), respectively, 

mean ± SEM, Wilcoxon rank sum test, p = 0.004). 

Next, we investigated the relationship between morphological features of L5 

neurons and the density of synapses around the main bifurcation. Interestingly, the first 

principal component (PC 1) of the four dimensional morphological feature space 

correlated with the level of thick-tuftedness in L5 neurons (Figure 8d). We found a 

strong linear relationship between excitatory synapse density of L5 neurons and their 

thick-tuftedness (Linear model, R2 = 0.75, p < 10-5). This resulted in a non-linear anti-

correlation between fraction of inhibitory synapses and the thick-tuftedness of L5 

neurons (Figure 8e, solid black line, fraction of two linear expression model, R2 = 0.74, 

p < 10-7). Using only the linear excitatory synapse density and the average inhibitory 

synapse density, we were able to explain most of the variance in the inhibitory fraction 

(Figure 8e, dashed red line, R2 = 0.61, compare to only inhibitory (dashed blue line, R2 

= -0.57) and combined models (dashed black line, R2 = 0.39)). 
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Layer 5 pyramidal neurons were previously classified into L5A (superficial) and 

L5B (deep), based upon the cortical depth of their soma (Ahissar, Sosnik et al. 2001, 

Manns, Sakmann et al. 2004). We were, however, unable to find the same separation 

between the cell bodies of L5tt and L5st neurons (Figure 8f, 556±20 vs. 557±39 µm 

relative to pia for L5tt and L5st, respectively, mean ± SEM, n=18).  

 

Figure 8. Classification of L5 neurons into slender-tufted and thick-tufted 

subtypes. 

(a) Sketch illustrating four morphological features of L5 neurons used for their 

hierarchical classification. Insets show histograms of each feature for the L5tt 

(magenta, n = 7) and L5st (blue, n = 11) neurons. (b) Agglomerative hierarchical 

linkage tree (upper panel) and scatter plot of the first two principal components 
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(lower panel) for neurons in (a). Numbers in lower panel indicate the L5 neurons 

plotted in (d). (c) Boxplot of spine density for L5tt (magenta) and L5st (blue) 

neurons around their main bifurcation and at their distal apical dendrite tuft in 

L1/2. (d) Reconstruction of the apical dendrite of neurons indicated in (b). Note 

the correlation between first principle component and the thick-tuftedness of L5 

neurons. (e) Relationship between thick-tuftedness (PC 1) of L5 neurons (n = 

18) and the inhibitory fraction at their main AD bifurcation. The solid black lines 

indicate a linear (𝐸𝑑𝑒𝑛𝑠𝑖𝑡𝑦 = 0.45 × 𝑃𝐶1 + 1.4, R2 = 0.75, p < 10-5, 𝐼𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =

0.016 × 𝑃𝐶1 + 0.13, R2 = 0.26, p = 0.017) or a non-linear (𝐼𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 =

0.035×𝑃𝐶1+0.12

0.58×𝑃𝐶1+1.42
, R2 = 0.74, p <10-7) model fit. Dashed lines indicate relationships 

between PC1 and inhibitory fraction using only linear model fits to excitatory 

(red), inhibitory (blue) or both (black) synapse densities. Insets are the scatter 

plot of excitatory and inhibitory synapse density relative to the thick-tuftedness 

of L5 neurons. (f) Sketch illustrating the soma depth measure (upper). 

Histogram of soma depth for L5tt and L5st neurons (lower).   

8.1.4. Synaptic composition at the main bifurcation of L2-5 pyramidal neurons 

We reconstructed the ADs of a random subset of L2, 2MN, 3, 5tt and 5st 

pyramidal cell bodies to find their main bifurcation in high-resolution EM (Figure 9a). 

Next, we mapped all the input synapses around the main apical dendrite bifurcation of 

these neurons (n=40). The L2 main bifurcations had an increased inhibitory synapse 

fraction as compared to L3 and thick-tufted L5 (L5tt) neurons (Figure 9b, 0.38±0.048, 

0.08±0.008, 0.09±0.01 for L2/2MN, 3, 5tt, respectively, mean ± SEM, n=40, Kruskal-

Wallis test, p <10-4, Post-hoc Tukey’s range test, p = 0.001 and 2.7 x 10-5 for L2 vs. L3 

and L5tt, respectively).  

To understand the effect of each individual synapse type on the inhibitory 

fraction, we investigated synapse densities normalized to the dendritic path length of 

ADs (Figure 9c). Inhibitory synapse density was lower in the L3 and 5 groups as 

compared to L2 (0.63±0.04, 0.27±0.05 and 0.2±0.02 inhibitory density per μm for 

layers 2/2MN, 3 and 5tt, respectively, mean ± SEM, Kruskal-Wallis test, p < 10-5, 

followed by Tukey’s range test with  = 0.05). The excitatory synapse density was 

increased for L3 neurons as compared to L2/2MN neurons (1.29±0.21, 3.17±0.4 and 
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1.88±0.22 for layers 2/2MN, 3 and 5tt, respectively, mean ± SEM, Kruskal-Wallis test, 

p < 10-4, followed by Tukey’s range test with  = 0.05). This demonstrates that deep 

(L3 and L5tt) pyramidal neurons have similar synapse compositions at their main 

bifurcations. 

Preliminary analysis of L2MN neuron inhibitory fraction at the main bifurcation 

showed similarities to other L2 pyramidal neurons (Figure 9b, 53.2% and 27.7% 

inhibitory fraction for L2MN, n = 2). We, therefore, combined L2 and L2MN neurons in 

our analysis above. L5st neurons had slightly increased inhibitory fraction at the main 

bifurcation as compared to L5tt neurons (Figure 9b, 0.15±0.03 and 0.09±0.01 inhibitory 

fraction for L5st (n = 11) and L5tt (n = 7), Wilcoxon rank-sum test, p = 0.1). Note that 

the synapse densities of L5st neurons were corrected with the synaptic identification 

error estimates as described below (Figure 9b-c, 15, grey lines connect pre- and post-

correction densities). 

 

Figure 9. Cell-type specific inhibitory size at the main bifurcation of apical 

dendrites  

(a) Skeleton reconstruction of apical dendrites contained within the high- and 

low-resolution volume of the PPC dataset. Main bifurcation (black/red 

rectangles) of ADs and their soma of origin (circles), marked for L2 (grey), L2MN 

(black), L3 (green), L5tt (magenta) and L5st (blue) neurons. (b) Boxplot of 

inhibitory synapse fraction around the main bifurcation of apical dendrites from 

layer 2 (grey, n = 10), 2MN (black, n = 2, boxplot shared with L2 group), 3 (green, 

n = 10), 5tt (magenta, n = 7), and 5st (blue, n = 11) pyramidal cells. Synaptic 
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input composition is distinct for each neuronal type at the main bifurcation. 

Kruskal-Wallis test, p < 10-4. (c) Boxplot for density of excitatory (red) and 

inhibitory (blue) synapses around the same main bifurcations as in (b). Crosses 

indicate individual ADs. Panels (b-c) are reproduced with modifications from 

(Karimi, Odenthal et al. 2019) and licensed under the CC-BY-NC-ND 4.0. 

8.1.5. Distal apical dendrites’ synaptic composition in layer 1 for L2-5 pyramidal 

neurons 

The composition of synapses in the distal segments of apical dendrites in L1 

was also investigated since spine densities were reported to be ~5-fold lower as 

compared to the apical dendrite trunk for the hippocampal pyramidal neuron (Bannister 

and Larkman 1995, Megıás, Emri et al. 2001). Therefore, we annotated synapses in 

14 distal tuft dendrites (n=31 individual branches) of L2-5 pyramidal neurons in LPtA 

and PPC-2 datasets (Figure 10a). 

Interestingly, we were unable to find a significant difference between the 

inhibitory synapse densities of L2 (n = 9 branches), L3 (n = 7), L5tt (n = 9) and L5st (n 

= 6) neurons in their distal AD tuft (Figure 10c, 0.13±0.02 – 0.22±0.03 inhibitory 

synapses per μm shaft path length, p = 0.08, Kruskal-Wallis test). However, the 

excitatory synapse densities were significantly higher for L2 and 3 cells, as compared 

to L5 pyramidal subtypes (Figure 10c, 1.84±0.16 and 1.91±0.18 vs. 0.70±0.04 and 

0.3±0.02 excitatory synapses per μm shaft length for L2/3 vs. L5tt/st cells, respectively. 

p < 10-4, Kruskal-Wallis test). Thus, the inhibitory fraction was higher for L5 pyramidal 

sub types as compared to L2 and 3 pyramidal neurons in this region (Figure 10b, 11.3 

± 1.3% and 10.2 ± 0.9% vs. 22.5 ± 1.7% and 31.3 ± 1.7% inhibitory fraction for L2/3 

vs. L5tt/st cells, respectively. p < 10-4, Kruskal-Wallis test). 

Compared to the main bifurcation, L5 neurons exhibited about 2.5 fold drop in 

their excitatory synapse density. In combination with their relatively similar inhibitory 

synapse density, this meant that the inhibitory fraction was reduced by a factor of more 

than 2 fold for slender- and thick-tufted L5 neurons (Figure 10d, compare Figure 9c 

and Figure 10c). This pattern of synaptic composition follows the previous reports for 

hippocampal neurons (Bannister and Larkman 1995, Megıás, Emri et al. 2001).  
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L2 pyramidal neurons reduced their inhibitory fraction about 3.4 fold in layer 1 

compared to their main bifurcation by ~1.4 fold reduction of inhibitory and ~2.8 fold 

increase in excitatory synapse densities. This resulted in inhibitory hot-zones around 

the main bifurcation and in distal apical dendrite tuft for L2 and L5 pyramidal neurons, 

respectively (Figure 10d). L3 pyramidal neurons had a consistent inhibitory fraction 

(~10%) along their apical dendrite. Therefore, each apical dendrite type had its unique 

pattern of inhibitory input fraction in the upper cortex allowing for different functional 

and computational properties (Figure 10d). 

 

Figure 10. Inhibitory fraction at the distal apical dendrite tuft of L2-5 pyramidal 

neurons 

(a) Excitatory (red, n = 3,812) and inhibitory synapses (cyan, n = 694) for 14 

ADs within the high-resolution EM image volume in layer 1 of LPtA (L2, L3, L5tt) 

and PPC (L5st) cortex. Grey line indicates the skeleton representation of the 

AD shaft. (b) Boxplot for fraction of inhibitory synapses at the distal apical 

dendrite site (a) from layer 2 (n = 9 individual branches, grey crosses), 3 (n = 7, 

green crosses), 5tt (n = 9, magenta crosses) and 5st (n = 6, blue crosses) 
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pyramidal cells. (c) Same as in (b) for density of excitatory (red crosses) and 

inhibitory (blue crosses) synapses. Note the clear distinction of synaptic input 

composition in the distal tuft for L2 and L3 vs. L5 pyramidal cells (Kruskal-Wallis 

test, p < 10-4). (d) Summary of distinct inhibitory input fraction for four main 

classes of apical dendrites in the cerebral cortex. Note that L3 neurons are the 

only cell-type with homogeneous ratio of inhibitory and excitatory synaptic 

inputs along their apical dendrite. Error bars indicate mean ± SEM. This figure 

is reproduced with modifications from (Karimi, Odenthal et al. 2019) and is 

licensed under the CC-BY-NC-ND 4.0. 

8.1.6. Distance to the soma as a determining factor for inhibitory fraction at the 

main bifurcation 

Next, we asked whether the apparent difference between L2 and L3/5 inhibitory 

fraction at their main bifurcation could be generated through a mechanism that 

depends on the distance between this structure and the cell body of origin (Figure 11a). 

We therefore measured the path distance between the cell body and main bifurcation 

for each AD type and inspected the relationship with the inhibitory size at the main 

bifurcation (Figure 11b). The inhibitory fraction had a strong exponential relationship 

for almost all pyramidal cell types with the exception of L5st neurons (R2 = 0.73, p < 

10-22, exponential model). The exponential relationship was also observed within the 

L2 neurons. This suggests a possible soma-dependent mechanism to control the 

fractional number of inhibitory synapses. Interestingly, this relationship was not as 

strong for individual synapse densities (R2 = 0.009, 0.55 for exponential model fits to 

excitatory and inhibitory synapse densities, respectively). 

We were also wondering if there was a general distance-to-soma dependence 

of the inhibitory fraction along the apical dendrite of pyramidal neurons in regions other 

than the main bifurcation. To investigate this, we focused on the layer 2 pyramidal 

neurons where we had dense synaptic input mappings covering the first ~330 µm of 

the path distance to soma. We then measured the inhibitory fraction at 10 µm distance 

bins from soma for all L2 annotations (Figure 11d). A strong exponential relationship 

between the inhibitory fraction and the distance to soma was observed (Figure 11e). 
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This meant that the inhibitory fraction (starting at about 100%) exponentially decreased 

within the first ~100 µm path distance from the soma to reach its baseline level (~10%). 

 

Figure 11. Distance of the dendritic segment to soma controls inhibitory fraction 

(a) Schematic demonstrating the distance between soma (in low-resolution EM) 

and AD main bifurcation (in high-resolution EM). (b) Relationship between 

distance of main bifurcation to soma and inhibitory fraction at the main 

bifurcation for layer 2 (n = 51, grey), 2MN (n = 2, black), 3 (n = 10, green), 5tt (n 

= 7, magenta), 5st (n = 11, blue) ADs. Black line indicates single exponential 

regression (𝐼𝑚𝑏 = 1.56 ∗ 𝑒−0.046∗ 𝑑𝑀𝐵 + 0.1, R2 = 0.73, p < 10-22). (c) Same as in 

(b) for individual inhibitory (upper panel) and excitatory (lower panel) synapse 

densities at the main bifurcation. (d) Schematic demonstrating the path distance 

of a dendritic segment to cell body of a layer 2 pyramidal neuron. (e)  Scatter 

plot demonstrating the relationship between dendritic distance to soma (d) and 

the fraction of inhibitory synapses on L2 apical dendrites (n = 61, S1, V2, PPC, 

ACC, PPC-2 and LPtA datasets, n = 12,532 synapses). Each cross represents 

the inhibitory fraction (i/(i+e)) for a single apical dendrite within a 10 µm path 

length range (dAD) to cell body of origin. This figure is reproduced with 
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modifications from (Karimi, Odenthal et al. 2019) and is licensed under the CC-

BY-NC-ND 4.0. 

8.1.7. Depth dependence of synapse composition for pyramidal neurons 

Our next goal was to understand the relationship between the cortical depth and 

inhibitory fraction in pyramidal cell types. To perform this analysis, we transformed all 

the annotations into a common coordinate system where distance to pia was matched 

to one of the axes (Figure 12). Next, we virtually sliced the annotations (slice thickness 

= 100 µm, depth range from pia = 10-330 µm) and measured the synaptic composition 

along the superficial layers of cortical surface (Figure 13a-b). We also reported the 

number of unique ADs and total path length for each cell type (Figure 13c).  

 

Figure 12. Complete synaptic input map of segments of layer 2-5 pyramidal 

neurons 

Complete synapse annotation for 141 unique layer 2, 3, 5 ADs (red: excitatory, 

n = 22,825, cyan: inhibitory n = 3,723, total AD shaft path length = 14.1 mm). 

Four datasets containing layer 2 (n = 20, 20, 22, 28 for S1, V2, PPC, ACC, 

respectively), one dataset from layer 1 (n = 11, LPtA), and one containing both 

layers (n = 40, PPC-2) was used. Note the difference in synapse densities 

(red/cyan sphere density) for layer 2, 3, 5tt, 5st and deep (L3/5) ADs at different 
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cortical depths relative to pia. Horizontal location of the skeleton reconstructions 

is adjusted for illustration. All annotations were done in collaboration with Jan 

Odenthal (equal contributions). This figure is reproduced with modifications from 

(Karimi, Odenthal et al. 2019) and is licensed under the CC-BY-NC-ND 4.0. 

We found that similar to our targeted analysis of main bifurcation and distal AD, 

the synaptic composition is unique for each AD type. L2 pyramidal neurons had higher 

inhibitory input around the main bifurcation area (depth range: 100-200 µm) as 

compared to distally in L1 (Figure 13b, grey line). Alternatively, L5 neurons had their 

increased inhibitory input in their distal AD region (depth range: 0-100 µm). L3 neurons 

had consistently low inhibitory input along their apical dendrites (depth range: 0-200 

µm). 

 

Figure 13. Synaptic densities across upper cortex for pyramidal neurons 

(a) Spatial distribution of excitatory (dashed line) and inhibitory synapse 

densities (solid line) for L2 (gray), 3 (green), 5tt (magenta), 5st (blue) and 3/5 

(deep, orange) ADs in upper cortex as shown in Figure 12 (bin size=100 µm). 

Lines and shades indicate the total average and 95% bootstrap confidence 

interval (n = 10,000 resamples) for data combined across all datasets, 

respectively. (b) Same as in (a) for fraction of inhibitory synapses. (c) Histogram 

of the number of dendrites and total AD shaft path length within each cortical 
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depth bin. This figure is reproduced with modifications from (Karimi, Odenthal 

et al. 2019) and is licensed under the CC-BY-NC-ND 4.0. 

8.1.8. Synapse size and spine properties around the main bifurcation 

To ensure that synapse strength did not compensate for the synapse number 

differences between the main bifurcation of L2 and deep (L3/5) ADs, we measured the 

synapse size, which is indicated to predict synapse strength (Harris and Stevens 1989, 

Buchs and Muller 1996, Cheetham, Barnes et al. 2014, Holler-Rickauer, Koestinger et 

al. 2019). We assumed an elliptical shape for each synapse and measured the two 

axes in the EM volume to estimate the interface area (Figure 14a). We found the L2 

and deep AD spine synapse (excitatory) interface areas to be similar in the S1, V2, 

PPC and ACC datasets (Figure 14b, n = 41 per AD type, p = 0.12, Wilcoxon rank-sum 

test). Interestingly, the shaft synapses (inhibitory) were slightly larger in L2 ADs where 

their density is higher as well (Figure 14b, p = 0.02, Wilcoxon rank-sum test, n = 41 

per AD type). 

In addition, we measured the fraction of spines which were innervated by two 

axonal boutons. These double-innervated spines were previously reported to receive 

both excitation and inhibition (Kubota, Hatada et al. 2007). The double-innervation of 

spines in L2 AD main bifurcations was increased as compared to deep layer ADs 

(Figure 14c, n = 41 AD main bifurcations per AD type, p = 0.01, Wilcoxon rank-sum 

test). This meant that synapse number, size and double innervation of spines all point 

towards an increased inhibition in L2 pyramidal neurons around their main bifurcation 

in the cortical region investigated (Figure 5d, 14a-c).  

Spine apparatus were first observed in EM micrographs of dendritic spines and 

their role has been enigmatic ever since (Gray and Guillery 1963) (Figure 14d, EM 

micrograph example). It has been suggested that the apparatus is involved in protein 

synthesis as well as synaptic maturation and stabilization (Špaček 1985, Segal, 

Vlachos et al. 2010). We, therefore, annotated a subset of spines for the existence of 

spine apparatus (Figure 14d). Our preliminary results (n = 20 individual spines per AD 

type) showed a ~2-fold variation in the fraction of spines containing apparatus between 

pyramidal cell types, with L2 ADs having the highest (65%) and L5tt having the lowest 

apparatus-containing fraction (25%) (Figure 14d, upper panel). Alternatively, the 
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density of spines possessing a spine apparatus (per µm AD shaft path length) is largest 

for L3 ADs since they have the highest spine density as well (Figure 14d, lower panel. 

Also see Figure 9c for spine (excitatory synapse) densities).  

 

 

Figure 14. Properties of synapses and spines around the main bifurcation 

(a) Elliptic estimation of synapse area (right) by annotating the two axis of a 

synaptic interface. Example EM micrographs (left). (b) Synaptic interface area 

for synapses onto deep (n = 41, orange crosses) and layer 2 (n = 41, grey 

crosses) ADs. (c) Fraction of double-innervated spines in the main bifurcation 

of deep (orange, n = 41) and layer 2 (grey, n = 41) neurons. Spine with inhibitory 

(shaft-preferring, blue arrow) and excitatory (spine-preferring, red arrow) inputs 

(inset). (d) Bar plots of fraction (upper panel) and density (lower panel, per µm 

AD shaft length) of spines with a spine apparatus (example EM micrograph, left) 

in L2, L3 and L5tt neurons (n = 20 spines per cell type). Asterisks indicate 

significance level of the Wilcoxon rank-sum test (not significant (n.s.): p > 0.05,* 

p < 0.05). Panels (b-c) are reproduced with modifications from (Karimi, Odenthal 

et al. 2019) and licensed under the CC-BY-NC-ND 4.0. 
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8.1.9. Postsynaptic dendritic targets of excitatory and inhibitory synapses and 

the effect on the estimation of synapse densities 

We identified excitatory and inhibitory axons based upon their previously 

reported preference to target spine and shaft of apical dendrites, respectively (White 

and Rock 1980, White and Hersch 1982, Kubota, Hatada et al. 2007, Chen, Villa et al. 

2012). However, exceptions to this structural distinction of inhibitory and excitatory 

synapses has been reported (Kwon, Merchán-Pérez et al. 2018, Santuy, Rodriguez et 

al. 2018).  

Therefore, we reconstructed a subset of the axons innervating spine and shaft 

of ADs to discover their excitatory or inhibitory identity. Our goal was to use the 

additional synapses within the EM-volume to estimate the distribution of the spine-

preference for axons seeded from each cell type (Figure 15a, 7 synapses per axon, 

median, range: 2-405 synapses). This would allow us to classify axons into shaft- and 

spine-preferring groups that likely correspond to inhibitory and excitatory, respectively. 

We found an almost binary preference with axons targeting either spine or shaft of 

dendrites in layers 1 and 2 (Figure 15b, dashed line indicates the 50% threshold). This 

suggests a low overall error rate of less than 4%, if synapses are classified by their 

spine vs. shaft incidence locations (Figure 15c, Table 4).  

Interestingly, L5st neurons had a significant proportion of excitatory input on 

their AD shafts in L1/2 (44-60% of shaft synapses were targeted by spine-preferring 

axons, likely excitatory). This meant that synaptic identification based on location of 

synapse (spine vs. shaft) would have resulted in an over-estimation of their inhibitory 

fraction in L1 and 2. Therefore, we corrected the synapse densities based on the 

synapse type prediction errors (Figure 9, 10, pre-correction values (grey crosses) were 

connected to the post-correction synapse densities (blue crosses)). 
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Figure 15. The dendritic target of excitatory and inhibitory synapses and its 

effect on the fraction of inhibitory synapses 

(a) Synapses of axons (red and blue sphere: spine and shaft/non-spine, 

respectively) seeded from shaft (grey trace) and spine (black) of apical 

dendrites in PPC. Note the stark difference in spine preference between the two 

axons. Example EM cross-section of spine (red arrows) and shaft (blue arrows) 

synapses (inset). Stars indicate the seed synapse. (b) Histogram of the fraction 

of synapses made onto single-innervated spines for axons seeded from deep 

(orange), L2 (grey), L3 (green), L5tt (magenta) and L5st (blue) apical dendrite’s 

shaft or spines. Annotations are from layer 1 (n = 142, LPtA, PPC-2 dataset) 

and layer 2 (n = 288, S1, V2, PPC, PPC-2 and ACC datasets); probability 

density estimations and synapse identity threshold (0.5) as solid and dashed 

lines, respectively. (c) Scattered plot for prediction accuracy of the type of 

presynaptic axon (spine- vs. shaft-preferring) from the location of synapse on 

the apical dendrite (spine vs. shaft). Note the highly bimodal distribution in (c), 

which results in low prediction error rates when classifying synapses based on 

their location on the dendrite. Scale bar inset (a): 1 µm. Panel (b) is reproduced 

with modifications from (Karimi, Odenthal et al. 2019) and is licensed under the 

CC-BY-NC-ND 4.0.  

8.1.10. Synapse density normalized to surface area of dendrite 

The AD diameter was slightly larger for L2 as compared to deep ADs around 

the main bifurcation in S1, V2, PPC and ACC (Figure 16a-b, 2.16 ± 0.06 vs 1.77 ± 0.04 

µm for L2 and deep ADs, respectively, mean ± SEM, n=82, Wilcoxon rank sum test, p 
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< 10-4). However, the synapse density differences, normalized to the path length, were 

not affected in a significant manner after normalization to the surface area (compare 

Figure 16c and Figure 5c). For example, the inhibitory synapse density was still higher 

for the L2 main bifurcations as compared to L3/5 (Figure 16c, 61% vs. 86% more 

inhibitory synapses for density normalized to surface and length of dendrite, 

respectively).  

We performed the same analysis for cell-type specific synaptic input maps 

around the main bifurcation (Figure 16d, see also Figure 9) and in distal apical tuft 

dendrite (Figure 16e, see also Figure 10). L2 ADs were again larger in diameter as 

compared to other ADs, especially the L5st main bifurcations (Figure 16d, left panel, 

1.78±0.06, 1.38±0.09, 1.76±0.1, 0.88±0.04 µm for L2, L3, L5tt and L5st, respectively, 

n=45, Kruskal-Wallis test, p < 10-4). In distal apical tufts, L2/3 neurons had thicker 

dendrites compared to L5 subtypes (Figure 16e, left panel, 0.89±0.05, 0.93±0.05 vs. 

0.67±0.02, 0.50±0.02 µm for L2, L3, L5tt and L5st, respectively, n=31 tuft branches, p 

< 10-4, Kruskal-Wallis test). However, the difference between cell types was less 

distinct for path length and surface normalized densities (Right panels in Figure 16d, 

e, compare to Figure 10c, 9c).  
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Figure 16. Apical dendrite diameter and synapse density normalized to the 

surface area of dendrites 

(a) Sketch illustrating the measurement of AD diameter (left panel) and the 

surface area (right panel) used for synapse density normalization. (b) Boxplot 

of the average diameter of layer 2 (grey, n = 41) and deep (orange, n = 41) ADs 

around their main bifurcation in S1, V2, PPC and ACC (p < 10-4, Wilcoxon rank-

sum test). (c) Boxplot of inhibitory and excitatory synapse densities (per µm2 of 

AD shaft surface area, blue and red crosses, respectively) for L2 (n = 41, left) 

and L3/5 ADs (n = 41, right). Wilcoxon rank-sum test, p < 10-6 for both densities. 

(d) Same as (b, c) for the main AD bifurcation of L2/2MN (n = 12), L3 (n = 10), 

L5tt (n = 7), L5st (n = 11) pyramidal neurons in PPC-2 dataset. Kruskal-Wallis 

test, AD diameter: p < 10-5, synapse densities: p < 10-4. (e) Same as (b, c) for 

the distal apical dendrite tuft of L2 (n = 9), L3 (n = 7), L5tt (n = 9), L5st (n = 6) 

pyramidal neurons in LPtA and PPC-2 dataset. Kruskal-Wallis test, AD 

diameter: p < 10-4, excitatory: p < 10-4, inhibitory density: p = 0.43. Scale bar in 

inset (a): 1 µm 
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8.2. Innervation profile of AD-targeting inhibitory axons in layer 2 of 

neocortex 

In the following section, we investigated the targeting of subcellular structures 

in layer 2 of mouse neocortex by AD-targeting inhibitory axons. 

8.2.1. Cell-type innervation specificity of AD-targeting axons in layer 2 

After finding the difference in the inhibitory innervation of AD types (Figure 5), 

we wanted to understand whether inhibitory axons targeting apical dendrites were 

specific for the type of AD. Our approach was to measure the conditional innervation 

probability of L2 and deep ADs conditioned on the target of the seed synapse (Figure 

17a, conditional innervation P (B|A), A: AD target type of seed (first) synapse, B: AD 

target type of other synapses).  

Next, we reconstructed axons that were randomly seeded from inhibitory shaft 

synapses of L2 and deep ADs in S1, V2, PPC and ACC cortex (target “A”, Figure 17a, 

d). The other synaptic targets of these axons were identified and classified within the 

EM volume. AD-targeting axons innervated apical dendrites with ~20% of all their 

synapses (Figure 17b, e, n=183). To estimate the conditional innervation probability, 

we calculated the fraction of targets belonging to a specific AD type (see also methods 

above). The innervation showed about a 3-fold conditional dependence on the seed 

AD type, rejecting a model of indiscriminate innervation (Figure 17a-c): Axons seeded 

from deep ADs comprised 15.4±1.6% (mean ± SEM) of their other output synapses 

(“B” targets) onto deep apical dendrites (i.e. 71.2% of AD synapses) and only 5.2±0.8% 

(mean ± SEM) onto L2 ADs (28.8% of AD synapses, Figure 17b (second row), c 

(orange crosses), n=91, Wilcoxon rank-sum test, p < 10-8). In contrast, L2 AD-seeded 

axons only targeted deep ADs 4.1±0.6% (mean ± SEM, n = 92). They rather innervate 

layer 2 apical dendrites (15.9 ± 1.4 %, mean ± SEM, i.e. 77.4% of AD synapses). 

Next, we identified the other postsynaptic targets of the AD-targeting inhibitory 

axons and quantified their innervation fraction (P (B|A)). As previously reported 

(Kubota, Hatada et al. 2007), the spine targets of inhibitory axons were almost always 

co-innervated by an additional (likely excitatory) synapse. In addition, we found L2-

seeded axons to be ~2-fold more likely to target layer 2 somata as compared to their 
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deep-seeded counterparts (Figure 17e, 19.5±1.7% vs. 11±1.7% of postsynaptic 

targets for axons seeded from L2 and deep ADs, mean ± SEM, n = 183). This can, at 

least partly, be explained by the differences in soma innervation fraction between 

cortical regions (Figure 20c, see also below). 

 

 

Figure 17. Cell-type specific innervation of apical dendrites by inhibitory axons 

in layer 2 of neocortex 

(a) Sketch illustrating extreme examples of two innervation models for AD-

targeting inhibitory axons: innervation could be selective for the type of AD (L2 

vs L3/5 pyramidal cells, green), or rather indiscriminate for the type of AD 

(black). In the latter case, conditional dependence of targeting p(B|A) would be 

expected to be absent. (b) Conditional dependence of synaptic innervation 

p(B|A) shown as the mean probability of deep and layer 2 AD targeting (target 

“B”) given the target of the first synapse of an axon (target “A”). Probabilities are 

the maximum-likelihood estimate mean of a Dirichlet-multinomial fit to the data. 

Numbers represent the absolute and fractional (in percent) innervation 
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probability for ADs. (c) Boxplot of AD fractional innervation for axons seeded 

from layer 2 (n = 92, grey crosses) and deep (n = 91, orange crosses) ADs, 

corresponding to the entries in the innervation matrix (b). P values are from the 

Wilcoxon rank-sum test. Note the innervation preference for AD types. (d) Two 

example axons targeting layer 2 (grey) and deep layer (orange) apical dendrites 

preferentially. Blue spheres indicate the location of all their output synapses in 

the PPC dataset. (e) Mapping of axonal output onto subcellular targets. Error 

bars indicate mean ± SEM; asterisks: significance of bootstrapping test with 

=0.05 and Bonferroni correction. This figure is reproduced with modifications 

from (Karimi, Odenthal et al. 2019) and is licensed under the CC-BY-NC-ND 

4.0. 

8.2.2. Distribution of pre- and postsynaptic targets across cortex 

One possible way to implement innervation specificity is to physically separate 

the pre- or post-synaptic targets along the depth of the cortex (Figure 18a). Therefore, 

we mapped the density of pre- and postsynaptic partners along the cortical depth in 

S1, V2, PPC and ACC. Pre-synaptically, we found the density of the investigated main 

bifurcation to be similar across the upper cortex (Figure 18b, n = 41 per AD type). In 

addition, the density of axonal path was nearly identical across the same cortical depth 

(Figure 18c, 18.1 vs. 16.7 mm for deep and L2, respectively, n = 183). This suggests 

connectivity specificity beyond geometric separation of synaptic partners. 

 

Figure 18. Spatial distribution of main bifurcation of ADs and axons across the 

upper cortical layers 
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(a) Sketch illustrating how geometric separation could result in targeting 

preference of AD-targeting inhibitory axons. (b) Distribution of analyzed main 

bifurcations along the cortical depth (n = 41 per AD type; probability density 

estimates, lines). (c) Distribution of axonal path length along cortical depth. (n = 

183 axons, of these n = 92 seeded at L2 (gray) and n = 91 seeded at deep layer 

ADs (orange)). Note that neither the pre- nor the post-synaptic targets are sorted 

along the cortical axis, excluding simple layering effects (a) for the conditional 

innervation (Figure 17a-c). Error bars indicate mean ± SEM over cortical region 

(S1, V2, PPC and ACC). Panels  (b-c) are reproduced with modifications from 

(Karimi, Odenthal et al. 2019) and licensed under the CC-BY-NC-ND 4.0. 

8.2.3. Multiple innervation of apical dendrites by inhibitory axons 

Axons are known to innervate pyramidal neurons multiple times in a clustered 

manner (Schmidt, Gour et al. 2017, Bloss, Cembrowski et al. 2018). We, therefore, 

quantified the extent of multiple-innervation of ADs by inhibitory axons and its impact 

on innervation specificity (Figure 19a). Interestingly, inhibitory axons mostly target 

apical dendrites by a single synapse within a volume of about 106 μm3 in S1, V2, PPC 

and ACC (Figure 19d, 75.6% vs 79.1% of total targets for axons seeded from L2 and 

deep ADs, respectively). We also measured the average number of synapses onto 

individual ADs for each axon and found it to be similar between L2- and deep-seeded 

axons (Figure 19b, 1.32±0.05 vs. 1.28±0.04 synapses per AD target for axons seeded 

from L2 and deep layer ADs, respectively, Wilcoxon rank sum test, p = 0.83). To 

understand the effect of multiple innervation on AD innervation preference, we 

measured the fraction of individual L2 and L3/5 AD targets ignoring multiple innervation 

of the same AD (Figure 19c, 70±3.6% vs. 35.2±4.1% individual L2 target fraction for 

axons seeded from L2 and deep layer ADs, respectively, mean ± SEM, n=159, 

Wilcoxon rank sum test, p < 10-7).  

It is more likely to select axons that target the seed AD multiple times if the 

process is random on the individual synapse level. Interestingly, we found the 

distribution of the number of times the seed structure was innervated to be skewed 

towards multi-innervation, as compared to the other targets (compare Figure 19d,e, 

59.5% vs. 21% of single-innervation for seed vs. other targets). Therefore, we removed 
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all the seed synapses to calculate the individual AD innervation fraction (Figure 19c, 

bottom matrix). 

 

Figure 19. Multiple innervations of apical dendrites by inhibitory axons 

(a) Sketch illustrating multiple innervation of one apical dendrite by the same 

axon. (b) Boxplot of the average number of synapses on L2 (left) and deep AD 

targets (right). Wilcoxon rank-sum test, p = 0.54, 0.20 for axons with first 

synapse on L2 (grey) and deep (orange) ADs, respectively. (c) Matrix of 

conditional targeting probability of an AD type (target “B”, also see Figure 17a-

b), given the type of AD the axon is seeded from (target “A” or seed, rows). The 

probability is given using two methods: 1. Average over fractional innervation of 

individual axons (top matrix, only first seed (“A”) synapse excluded). 2. Multiple 

innervations of the same AD target ignored (bottom matrix, all seed innervations 

excluded). (d) Histogram of the number of synapses per AD target for axons 

seeded from L2 (left panel) and deep (right) ADs. Note the majority of targets 

receive one synapse (75.6% and 79.1% of targets for axons seeded from L2 

and deep ADs, respectively). (e) Histogram of the seed “A” targeting multiplicity 

of inhibitory axons. Note the longer tail compared to (d) due to the seeding 

process (see text above). 
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8.2.4. Comparing inhibitory axon innervation preference across mouse cortex 

Across four cortical regions, we found the distribution of postsynaptic 

innervation probability for L2- and deep-seeded inhibitory axons to be quantitatively 

consistent (Figure 20a-c). We only found the somatic innervation by the deep-seeded 

axons to be significantly different across cortical regions (Figure 20b-c, MANOVA test, 

followed by multiple one-way ANOVAs with Bonferroni correction). 

 

Figure 20. Consistent innervation profile of inhibitory axons across the 

neocortex 

(a) Sketch of the mouse cortex with the four regions investigated (S1, V2, ACC 

and PPC). See also Figure 4a-c. (b,c) Comparative analysis across cortical 

regions. Postsynaptic target specificity for axons seeded from (b) layer 2 ADs 

(n = 21, 20, 21, 30 for S1, V2, PPC and ACC, respectively) and (c) deep layer 

ADs (n = 19, 20, 20, 32 for S1, V2, PPC and ACC, respectively). Note the 

quantitative consistency of synaptic innervation across cortices with one 

exception: somatic innervation in axons seeded from deep layer ADs. Error bars 

indicate mean ± SEM. *p < 0.05 MANOVA test followed by multiple one-way 

ANOVA tests with Bonferroni correction. This figure is reproduced with 

modifications from (Karimi, Odenthal et al. 2019) and is licensed under the CC-

BY-NC-ND 4.0. 
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8.3. Correlative 3D-EM in the posterior parietal cortex 

In the following section, we describe the analysis of long-range input to posterior 

parietal cortex (PPC) and the automated aberration adjustment software used to 

acquire an SBEM dataset spanning layers 1-5 of PPC. 

8.3.1. Automatic aberration adjustment of long-term SBEM experiments 

To acquire a dataset spanning layers 1-5 of neocortex, it was essential to 

implement an automated routine to monitor aberrations of the electron microscope 

(EM). The EM beam cross-section needs to be minimized at the surface of the sample 

to get the highest image resolution. To achieve this goal, the strength of the objective 

lens and two stigmator elements are usually optimized by imaging a sacrificial area 

repeatedly (Figure 21a). This was not possible in heat-sensitive SBEM samples with 

repetitive ultra-thin sectioning. Therefore, we implemented a previously reported 

heuristic approach using the shape of the autocorrelation of SBEM images (Figure 21b, 

(Binding, Mikula et al. 2013), “heuristic algorithm”).  

The autocorrelation of an image is dependent on the level of detail (high-

frequency elements) present. We, therefore, excluded large objects by a combination 

of edge detection and morphological heuristics in EM-micrographs (Figure 21d). We 

next cropped a pixel region containing neuropil and calculated its autocorrelation 

(Figure 21b, example EM micrographs and their autocorrelation). Subsequently, a set 

of 6 masks was used to get an uncalibrated estimator for the aberrations present in the 

EM image (2 masks per aberration, Figure 21c). Finally, we used test images with 

known aberrations to calibrate these estimators for each microscope. This software 

package was successfully used across two microscopes to acquire 10 datasets from 

3 animal models by 5 experimenters (Figure 22, Table 6). 
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Figure 21. Design of software for automatic adjustment of objective lens and 

stigmators in 3D electron microscopy 

(a) Illustration of symmetric (left) and asymmetric (right) beam cross-section 

around the focal point of the beam. (b) EM micrographs (top row) and the 

corresponding center of the autocorrelation image (bottom row) for images with 

best manual focus/stigmation (1), 100 µm defocus (2), 10 µm under (3) and over 

(4) focus with one of the EM stigmators deviated from optimum. Numbers match 

the schematics in (a). Note the asymmetric loss of image details in 3 and 4. (c) 

Weight functions used for obtaining deviation coefficients for focus and 

stigmation from the autocorrelation of an image. Note that the shape of these 

weight functions is suitable for determining symmetric (focus) and asymmetric 

(stigmation) aberrations. (d) Image processing pipeline for avoiding large 

objects (blood vessels and nuclei) using edge detection, heuristic morphological 

operation and a distance transform. The detected edges were dilated for 

visualization purposes (second panel from left). The cropped region is used for 

aberration estimation. Panel (a) is reprinted with permission from Springer 
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Science and Bus Media BV: Scanning Electron Microscopy and X-Ray 

Microanalysis (Goldstein, Newbury et al. 2017), copyright 2018. 

 

Figure 22. Example datasets acquired by colleagues using automatic aberration 

adjustment software 

(a-c) Datasets acquired using the automated aberration adjustment software 

from layer 4 of primary somatosensory cortex (S1) in mouse (a), macaque 

monkey (b), and medial temporal gyrus of human (c). Datasets were acquired 

and their overview image here provided by Kun Song (a), Jakob Straehle and 

Sahil Loomba (b,c). See Table 6 for details. 

8.3.2. Application of FluoEM to input from secondary motor (M2) and primary 

visual (V1) areas to posterior parietal cortex (PPC) 

We applied the correlative fluorescent light and electron microscopy technique 

developed in our lab to investigate the synaptic targets of long-range innervation to 

PPC (Figure 23, FluoEM, (Drawitsch, Karimi et al. 2018)). The long-range axons from 

V1 and M2 expressed the fluorescent proteins eGFP (green) and tdTomato (red) by 

targeted injection of adeno-associated viruses (AAVs). We next acquired a correlated 

volume of 216 x 162 x 93 μm3 in PPC using 3D confocal laser scanning microscopy 

and SBEM (Figure 23b). The fluorescently labelled axons were matched to their EM 

counterparts using the “FluoEM” approach (Drawitsch, Karimi et al. 2018). FluoEM 
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matches axons across LM and EM datasets using morphological constraints, such as, 

axonal path and bouton placement. 

We matched 24 axons between the two datasets using 384 axonal boutons as 

control points (Figure 23c-d, residual error: 1.5±0.8 µm vs. 86±100 nm for affine and 

freeform transformations, respectively, mean ± SD). We next mapped all the synapses 

of long-range axons within the EM volume and found the synapse density to match the 

previously reported cortico-cortical excitatory axons (Figure 23e, see also (Motta, 

Berning et al. 2019)). 

 

Figure 23. Application of FluoEM, correlated light and electron microscopy, to 

motor (M2) and visual (V1) input to posterior parietal cortex (PPC) 

(a) Illustration of experimental steps: injection of wild-type C57BL/6 mouse with 

adeno-associated viruses (AAVs) for expression of fluorescent proteins in 

secondary motor (M2, AAV.eGFP, green) and primary visual cortices (V1, 

AAV.tdTomato, red) at postnatal day 35 (P35). Sample was extracted from 

posterior parietal cortex (PPC, black) for 3D fluorescent confocal light (LM) and 

electron microscopy (EM). Illustration of the approximate location of input and 

target cortical regions in horizontal view of the mouse cortex (inset). (b) High 

and low-resolution 3D-EM data (right, voxel size of 11.24 x 11.24 x 30 and 22.48 

x 22.48 x 30 nm3, respectively) and the corresponding LM dataset (left, voxel 

size: 115 x 115 x 444 nm). Voxels inside axons expressing eGFP and tdTomato 
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are green and red, respectively. Blood vessels (blue) were perfused with DiD 

for coarse registration. (c) Overlay of EM skeleton reconstruction of 24 axons 

(grey) and their matched affine-transformed LM counterpart (red, green traces). 

The transformation was constrained using axonal boutons and their 

corresponding synapses in EM (spheres, n=348 control points). Note that some 

synapses in EM are not detected as boutons in LM. (d) Boxplot of residual 

Euclidian distance between matched control points in (c) for affine and freeform 

transformations. (e) Preliminary analysis of bouton density for long-range axons 

from V1 (red, n = 12) and M2 (green, n = 12). Panel (a) is reproduced with 

modifications from (Drawitsch, Karimi et al. 2018) and is licensed under the CC 

BY 4.0. 

All postsynaptic targets of the long-range axons from M2 and V1 were annotated 

and handed to student annotators for reconstruction (Figure 24a-b, n = 407 and 1212 

for axons from M2 and V1, respectively). The students were asked to reconstruct the 

dendrite fully within the dataset and note the location of soma. About half the 

postsynaptic targets were found within the volume in our preliminary analysis (Figure 

24c-d, 804/1619 targets with at least 1 redundant annotation reporting the cell body 

location).  

We next mapped the location of postsynaptic targets for long-range input 

(Figure 24e, n = 660, 144 for V1 and M2, respectively). Our goal was to determine 

whether long-range axons carrying sensory or motor information were specific for the 

neuronal type of their target. Our initial analysis showed that synaptic input from V1 

was more likely to innervate neurons with their soma residing in layer 3 of PPC as 

compared to input from M2 (Figure 24e-g) 
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Figure 24. The depth profile of cell bodies in PPC innervated by axons from 

secondary motor (M2) and visual (V1) cortices 

(a) Skeleton reconstruction of axons in EM with their long-range source 

extracted using FluoEM (n = 24, M2: green, V1: red). (b) Location of synapses 

formed by long-range input from M2 (green, n = 407) and V1 (red, n = 1212). 

Note that V1 synapses cover a larger area of the dataset in L2-5. (c) Example 

reconstruction of L2 (grey), L3 (black) and L5 (magenta) pyramidal dendrite 

targets of synapses from long-range M2 (green sphere) and V1 (red sphere) 

input. (d) Bar plot indicating the fraction of redundant annotations (n = 3) that 

reported the location of cell body for their postsynaptic targets; 49.66% 

(804/1619) of postsynaptic targets had their soma location reported by at least 

one student annotator. (e) Soma depth of postsynaptic targets of axons from 

M2 (n = 144) and V1 (n = 660). Note the difference in the propensity of V1 and 

M2 axons to target L3 neurons. (f) Histogram of the fraction of postsynaptic 

targets (somata, same as in (e)) at each cortical depth (bin size = 20 µm) for 

synapses located in L1 (left, n = 579), L2-5 (center, n = 225) and L1-5 (right, n 
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= 804). Lines indicate the probability density estimate. Insets in each figure 

demonstrate the cortical depth of long-range synapses used to generate the 

corresponding histogram. (g) Fraction of soma targets located within each 

cortical layer for (e). Lines and error bars indicate the gross average and 95% 

bootstrap confidence interval (n = 10,000 resamples), respectively. Star 

indicates non-overlapping bootstrap confidence intervals. Dataset boundary 

and cortical layers were noted with dotted and dashed lines respectively (b,e,f). 

We also asked whether the location of synapses formed could generate such a 

difference in the innervation specificities along the cortex. Therefore, we restricted our 

analysis to long-range synapses formed in layer 1 and found a similar tendency for V1 

axons to target neurons deeper in L2/3 (Figure 24f, left panel).  

To find the cortical layers with differential innervation by long-range axons, we 

compared the bootstrap distributions of postsynaptic target fractions across cortical 

layers (Figure 24g, left panel, error bars indicate the 95% bootstrap confidence interval, 

n = 10,000 resamples). L3 neurons were receiving significantly higher fractional input 

from V1 as compared to M2 (23% vs. 5% of total postsynaptic targets for V1 and M2, 

respectively). Furthermore, this innervation preference was also observed in targets of 

individual long-range axons (Figure 25). 
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Figure 25. Cortical depth of soma for postsynaptic targets of individual axons 

from V1 and M2 cortical regions 

(a) Postsynaptic targets of individual long-range axons in PPC from M2 cortex 

(green spheres, n = 12). (b) Same as in (a) for axons originating from projection 

neurons in V1 (n = 12). Dataset boundary and cortical layers were noted with 

dotted and dashed lines, respectively. Note the difference in the innervation of 

L3 neurons by V1 and M2 long-range axons.  
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9. Discussion 

9.1. Cell-type specific synaptic innervation in apical dendrites of 

pyramidal neurons 

We applied 3D-EM imaging to acquire the first quantitative synaptic innervation 

map of apical dendrites (ADs) in six image volumes from S1, V2, PPC, ACC and LPtA 

(Figure 4, 6). The pattern of inhibitory/excitatory synaptic composition on the surface 

of ADs was distinct for L2, L3, L5tt and L5st pyramidal neurons in layers 1 and 2 (Figure 

5, 9, 10, 12, 13). We quantified, or estimated, the effect of the factors that confound or 

mediate the differences between cell types: distance between soma and point-of-

interest on AD (Figure 11), synapse strength (size), double-innervation of dendritic 

spines (Figure 14), classification criteria (Figure 15), and dendrite diameter (Figure 16). 

Subsequently, we investigated the innervation specificity in AD-targeting inhibitory 

axons in S1, V2, PPC and ACC (Figure 17, 20). As controls, we measured the 

geometric distribution of pre- and postsynaptic structures (Figure 18) and multi-

innervation of ADs (Figure 19). In the following sections, the details and context of 

these results are discussed. 

9.1.1. Cell-type specific synaptic composition on apical dendrites 

We used 3D-EM to find distinct patterns of inhibition for the apical dendrites of 

L2, 3, 5tt and 5st pyramidal neurons in the upper cortex. We focused on measurement 

of the fraction of inhibitory synapses since the balance between excitation and 

inhibition controls cellular activity (Koch, Poggio et al. 1983, Liu 2004). Further, 

inhibitory neurons comprise about 10% of cells in the mammalian cortex (Meyer, 

Schwarz et al. 2011). Assuming a similar number of local synapses per neuron, the 

“baseline” fraction of inhibitory synapses within a volume of cortex should also be 

~10% (Braitenberg and Schüz 1998). Previously, the dendrites of pyramidal neurons 

were reported to contain a balanced inhibitory/excitatory ratio (Iascone, Li et al. 2018). 

Our goal was to find regions where this balance was modified. 

We found the inhibition along the apical dendrite to be cell-type specific. L2 

pyramidal neurons receive about a ~3-fold increase in inhibition around the main 
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bifurcation of their apical dendrites. In contrast, L5 neurons receive a ~2-fold increase 

in the fraction of inhibitory synapses in layer 1. Only L3 has a homogenous baseline 

fraction of inhibitory synapses around the main bifurcation and more distally in L1. In 

addition, our preliminary analysis of slender-tufted neurons in L5 (L5st) shows a neuron 

subtype with increased inhibitory fraction and low excitatory synapse density along its 

apical dendrite. The pattern of inhibition was surprisingly consistent across S1, V2, 

PPC and ACC (Figure 10, 12, 13). 

We detected the main bifurcation of the apical dendrite for layer 3 and 5 

pyramidal neurons by two methods based upon the size and location of the dataset. In 

datasets containing only layer 2, we examined the main bifurcation of apical dendrites 

arising from somata located in deeper cortical layers (Figure 4, 5). The second 

approach used the larger datasets containing layers 2-5 to find the main bifurcation by 

the apical dendrite reconstruction of a subset of neurons in each layer (Figure 6, 7, 9). 

The distribution of synaptic densities of L3/5 AD main bifurcations (deep, method I, 

Figure 5c-f: orange) were similar to that of L3 and L5tt groups combined (method II, 

Figure 9b-c: green and magenta, respectively). This suggests unbiased sampling of 

the L3 and L5tt AD types. However, our sample of deep (L3/5) main bifurcations did 

not include slender-tufted L5 ADs. The reason we didn’t detect L5st ADs is most likely 

due to a combination of our sampling method and L5st’s thin diameter (Figure 16d, e). 

In addition, we specifically searched for L2 marginal neurons using the oblique 

direction of their apical dendrite relative to pia. In our preliminary analysis, we 

measured the synaptic densities at the main bifurcation of two L2MN neurons and 

found similar inhibitory fraction to other L2 neurons (Figure 9).  

We expected to see significant inhibitory input to the main bifurcation of layer 5 

thick-tufted pyramidal neurons where the amplification of distal input by calcium spikes 

occurs (Helmchen, Svoboda et al. 1999, Larkum and Zhu 2002, Larkum, Senn et al. 

2004). Surprisingly, we found the location with increased inhibitory input, above 

baseline, to be the distal tuft of apical dendrites in layer 1. This is in agreement with 

the theoretical investigation demonstrating the effectiveness of distal inhibition on a hot 

zone of excitatory input around the main bifurcation (Gidon and Segev 2012). 

Conversely, the L2/3 neurons lacked such distal inhibition. 
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Across behavioral states, electrical recordings from L2/3 neurons showed a 

~10-fold reduced firing frequency as compared to L5 pyramidal neurons (de Kock and 

Sakmann 2009). Therefore, L2/3 encodes sensory stimuli in a sparser manner 

compared to L5 (de Kock and Sakmann 2009, Barth and Poulet 2012). The differences 

in the synapse densities along the AD (Figure 10d) could contribute to the physiological 

properties of neurons. However, active membrane currents could modify or even 

reverse the synapse density difference and should be taken into account in a realistic 

biophysical model (Waters, Larkum et al. 2003, Ledergerber and Larkum 2012). 

It is important to note the power of 3D electron microscopy where even the 

smallest spines and synapses are detectable (Helmstaedter 2013). In light microscopic 

studies, the general approach is to detect spines and assume each spine has an 

excitatory synapse (Iascone, Li et al. 2018). Inhibitory synapses are detected by Teal-

Gephyrin tagging. However, these methods are error-prone, depending on the size of 

the synapses. For example, Chen et al. (Chen, Villa et al. 2012) reported missing 20% 

of spines. In addition, 3D-EM allows for accurate measurement of certain 

(confounding) features of spines and synapses, such as synapse size, double-

innervated spines and spine apparatus (Figure 14). To conclude, these methods can 

replace 3D-EM if the error-rate tolerance of the scientific question is higher.  

9.1.2. Non-specific volume transmission and inhibition of L5 apical dendrites 

The neurogliaform (NGF) inhibitory interneurons were described to inhibit 

almost all pyramidal neurons within their axonal arborization (Tamás, Lőrincz et al. 

2003, Oláh, Füle et al. 2009). This is done through non-specific volume transmission, 

which has slower kinetics compared to synaptic inhibition. In contrast to specific 

synaptic inhibition activating GABAA receptors, NGF cells activate extra-synaptic 

GABAB receptors by increasing the GABA concentration in the extracellular space. The 

activation of GABAB receptors on the surface of thick-tufted L5 apical dendrites was 

shown to directly inhibit voltage-gated calcium channels involved in Ca2+ spike 

generation (Pérez-Garci, Gassmann et al. 2006, Pérez-Garci, Larkum et al. 2013, Abs, 

Poorthuis et al. 2018). Together, with our finding of baseline inhibition levels around 

the main bifurcation of L5tt neurons, this points towards the importance of volume 

transmission in the inhibition of calcium spikes in L5tt ADs at their main bifurcation. 
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9.1.3. Distance to soma as a determining factor of inhibitory strength at the 

main bifurcation of pyramidal neurons 

Surprisingly, we found significant differences in the inhibitory fraction at the main 

bifurcation of neurons from the upper (L2) and lower (L3) segments of the supra-

granular cortex (Figure 5, 9). These neurons are generally grouped together under 

L2/3 pyramidal type both functionally (Petersen and Crochet 2013) and anatomically 

(Larkman and Mason 1990) even though certain properties were reported to depend 

on the somatic depth. For example, Svoboda et al. (Svoboda, Denk et al. 1997, 

Svoboda, Helmchen et al. 1999) reported that the location of the peak of calcium 

response along the AD depends on the somatic depth in L2/3 neurons.  

We found an exponential relationship between the inhibitory fraction at the main 

bifurcation and the distance between soma and this structure. This relationship was 

present even within the L2 neuron population. In contrast, L5st neurons were the only 

cell-type that did not follow this relationship. Therefore, pyramidal cells in L2/3 have 

different synaptic composition at their main bifurcation, depending on the length of their 

apical dendrite trunk before the main bifurcation (Figure 11a-b). Interestingly, the 

exponential relationship is not as strongly present in either inhibitory or excitatory 

synapse densities (Figure 11c). This implies a cellular control mechanism specific for 

the relative inhibitory size that allows for variability in either synapse density.  

We also mapped the inhibitory synaptic strength’s relationship to cortical depth 

relative to pial surface (Figure 12). The inhibitory hot-zone for the main bifurcation of 

L2 pyramidal neurons was also observed in layer 2 (Figure 13a-b). However, cortical 

depth is not the ideal predictor of inhibitory strength since apical oblique dendrites at 

the same cortical depth tend to have a higher level of excitatory input. Therefore, such 

depth analysis discards the difference between inhibitory strength of oblique dendrites 

and the main trunk of apical dendrites. 

Our mapping of synaptic inputs to apical dendrites in 6 EM-datasets allowed us 

to measure the relative inhibitory size along the apical dendrite of L2 pyramidal neurons 

before and after the main bifurcation (Figure 11d-e). We found a relationship where 

fraction of inhibitory synapses decreased exponentially with increasing distance to 

soma. The relationship is similar to the decrease in inhibitory fraction at the main 
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bifurcation of L2-5 ADs with distance to soma (Compare Figure 11a-b and d-e), which 

suggests a possible similar origin. 

9.1.4. Definition of L5 pyramidal neuron subtypes 

We defined the pyramidal cell types based upon the layer origin of their cell 

bodies. In layer 5, we found a cell variant with slender AD morphology, small cell body, 

AD diameter, and superficial main bifurcation as previously reported (Figure 8, 

(Larkman and Mason 1990, Groh, Meyer et al. 2009)). These cells were reported to 

have different physiological and structural properties as compared to their thick-tufted 

counterparts (Feldmeyer, Roth et al. 2005, Economo, Viswanathan et al. 2018). We 

also found L5st spine density to be significantly lower than their L5tt. Interestingly, the 

cell body depth was not different between the two cell types as hypothesized previously 

(L5A vs. L5B). This means that cells with different synaptic properties can coexist 

within the same cortical layer. 

We also found a linear relationship between excitatory synapse density and the 

“thick-tuftedness” of pyramidal neurons. The thick-tuftedness was the first principal 

component of four morphological features used for classification of L5 subtypes. Our 

goal was to investigate whether the synaptic and morphological L5 subtypes differ in a 

gradual or sudden manner. Surprisingly, we see a graded change from slender-tufted 

to thick-tufted L5 types suggesting a possible continuum of L5 neuronal types. 

9.1.5. Composition of synapses onto shaft and spine of apical dendrites 

Excitatory synapses (asymmetric) are distinguished in EM micrographs from 

inhibitory synapses (symmetric) as based upon existence of features, such as, 

prominent postsynaptic density and round presynaptic vesicle shape (Gray 1957, 

Colonnier 1968). However, the resolution of the 3D-EM datasets did not allow for 

unambiguous distinction of these two synapse types (see examples in Figure 15a). In 

Gray’s original account and subsequent reports, excitatory (Braitenberg and Schüz 

1998) and inhibitory synapses (Kubota, Karube et al. 2016) were described to target 

spines and shafts of dendrites, respectively. Additional reports also confirm this 

structural tendency for two synapse types to varying degrees, depending on the 

dendrite type investigated (White and Rock 1980, White and Hersch 1982, Chen, Villa 
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et al. 2012). Initially, we used this structural definition to distinguish excitatory and 

inhibitory synapse types. 

However, reports suggested the possibility of excitatory input onto the shaft of 

pyramidal neurons (Parnavelas, Sullivan et al. 1977, Kwon, Merchán-Pérez et al. 

2018). We, therefore, measured the tendency of axons to prefer spine and shaft of 

ADs, and found it to be almost binary with the exception of L5st neurons (Figure 15). 

These cells had significant spine-preferring input onto the shaft of their dendrites. Our 

results, combined with previous reports, suggest that location of synapse (spine vs. 

shaft) could be used to identify synapses (excitatory vs. inhibitory) in most cortical 

pyramidal neurons with few errors (<4%). Finally, double-innervated spines were 

reportedly innervated by one excitatory and one inhibitory input (Kubota, Hatada et al. 

2007). We annotated all spines with double innervation to add them to both inhibitory 

and excitatory synapse groups (Figure 14c). 

9.1.6. Synapse density normalized to the surface area of apical dendrites 

The input impedance of a dendrite is inversely correlated with its diameter and 

surface area (Rall and Rinzel 1973, Rinzel and Rall 1974). This means that activation 

of the same number of synapses along the unit length of two dendrites creates a larger 

voltage change across the dendrite with smaller diameter (assuming other factors, 

such as, driving force remain constant). Therefore, synapse densities have been 

normalized to the unit surface area of dendrites to account for the larger surface area 

and lower input impedance of thicker dendrites (Bloss, Cembrowski et al. 2016). 

Additionally, apical dendrites are known to taper towards their distal tuft branches with 

the thick main bifurcation generating Ca2+ spikes in response to NMDA spikes in thin 

distal tuft branches (Katz, Menon et al. 2009, Larkum, Nevian et al. 2009). 

We observed a ~2-fold reduction in average apical diameter between the main 

bifurcation and tuft branches of pyramidal cells, similar to previous light microscopic 

reports (Figure 16d,e, compare panels, (Larkum, Nevian et al. 2009)). This means that 

activation of a similar number of synapses could be more effective in distal tuft 

branches. Interestingly, L2 ADs (largest) were about ~2-fold larger in diameter as 

compared to L5st AD (smallest, Figure 16b, e). L3 and L5tt neurons had distributions 

between the L2 and L5st.  
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Next, we normalized the synapse densities to the surface area of ADs. Our main 

findings regarding cell-type specific synapse density difference were robust against 

surface area normalization (compare Figure 16 with Figure 5, 9, 10). Finally, the 

fraction of inhibitory synapses, which represents the relative possible inhibitory 

strength, is unaffected by diameter change. 

9.1.7. Specific innervation of L2 and L3/5 ADs  

Inhibitory neurons are known for targeting specific subcellular structures, such 

as, axon initial segments (Somogyi 1977), apical dendrites and cell bodies (for a review 

see (Kubota, Karube et al. 2016). We, therefore, reconstructed AD-targeting inhibitory 

axonal segments in our 3D-EM data, and found two subpopulations preferring either 

L2 or L3/5 pyramidal neurons. The preference for both subpopulations was about 3-

fold (Figure 17). This adds to previous physiological work, suggesting separate circuits 

controlling distinct populations of pyramidal neurons (Jiang, Wang et al. 2013).  

As a control, we measured the pre- and postsynaptic target densities along the 

depth of the cortex to understand whether geometric separation could explain any of 

the observed innervation preferences (Figure 18). We found no such spatial separation 

of the ADs or the inhibitory axons innervating them. 

In addition, we annotated other postsynaptic targets of pyramidal neurons into 

a total of 8 postsynaptic types (Figure 17e). Other than AD targeting preference, the 

L2 and L3/5(deep)-seeded populations were only different in their somatic innervation 

probability. This is, at least partly, caused by cortical region differences (see below).  

9.1.8. Multi-innervation of apical dendrites by inhibitory axons 

Inhibitory axons were previously shown to innervate apical dendrites by multiple 

synaptic contacts to control their electrical activity (~9 contacts per AD, (Silberberg and 

Markram 2007, Gidon and Segev 2012)). Our analysis of multi-innervation by inhibitory 

AD-targeting axons demonstrated that mono-innervation dominates within volumes of 

about 106 µm3. Only ~20% of ADs were targeted by multiple synapses of the same 

axonal segment (Figure 19). Reconstruction of complete inhibitory axons in a larger 

volume could determine whether the majority of the innervation is with a single synapse 

or multi-innervation happens across larger volumes.  
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We found that AD-type specific innervation was robust against removal of 

multiple targets on the same AD (Figure 19). Therefore, inhibitory axons preferentially 

innervate either L2 or deep ADs mostly through mono-synaptic innervation without 

generation of multiple contacts. However, we saw a slight drop in fractional innervation 

by inhibitory axons seeded from L2 (Figure 19c). Interestingly, the random selection 

process for the seed synapse was biased towards multi-innervating axons (compare 

Figure 19d and e). This generated a slight inflation in our fractional innervation of the 

L2 type, which was decreased by removal of all seed synapses. 

9.1.9. Quantitative consistency of axonal innervation across cortical regions 

To understand the variation of inhibitory innervation across the cortex, we 

applied our analysis to axons of S1, V2, PPC and ACC. Innervation probability was 

quantitatively consistent for 8 postsynaptic targets of AD-targeting axons across the 

cortical regions investigated (Figure 20). To our knowledge, this is the first report of 

such innervation consistency across multiple cortical regions, including primary 

sensory and high-order cortices.  

The only variability between cortical regions was in innervation probability of L2 

cell bodies by L3/5 AD-preferring axons (Figure 20c). In addition to variability between 

cortical regions, confounders, such as dataset location, could generate such L2 cell 

body innervation preferences (see Figure 4a for dataset location comparison of 

datasets). 

In conclusion, we found specific inhibitory innervation of apical dendrites of 

pyramidal neurons in the upper layers of the mouse cortex. This suggests separate 

inhibitory neuronal circuitry involved in controlling apical dendrite activity. In addition, 

the cell-type specific pattern of inhibitory and excitatory input implies variable 

computational capabilities for apical dendrites of L2, L3 and L5 pyramidal neurons. 
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9.2. EM connectomic analysis of long-range input to posterior 

parietal cortex (PPC) 

9.2.1. Importance of image quality control routines in long-term high 

throughput volumetric 3D-EM 

Block-face volumetric imaging techniques, such as SBEM, are gaining 

popularity due to their mostly automatic process for 3D imaging. Currently, they are 

commercially available from the two most popular EM vendors: Zeiss (FIB-SEM) and 

FEI (ThermoFisher Scientific, VolumeScope). SBEM is well-suited for imaging sub-

cubic millimeter samples. However, errors resulting in section loss are fatal in an SBEM 

experiment. One important source of error is defocus and astigmation of electron beam 

due to factors, such as, daily temperature oscillations in the environment. Commercial 

focus and astigmation correction software available in traditional SEMs depend on 

sequential imaging of a sacrificial area that creates a significant overhead for long-

running experiments.  

We, therefore, implemented a previously reported heuristic approach (Binding, 

Mikula et al. 2013) to aberration correction with an additional image processing step to 

avoid large objects, such as, blood vessels and nuclei (Figure 21). The autocorrelation-

based approach to aberration estimation generates spurious results when applied to 

such large objects that lack detail (high frequency elements). This aberration correction 

routine was used to image 10 datasets across two microscopes by five experimenters 

(Figure 22, Table 6). The parameters for calibration of the aberration estimates needed 

to be corrected for each individual microscope. However, they were stable for imaging 

samples from different brain regions. Conversely, the heuristic parameters for the 

morphological operations to detect large objects were sensitive to variations of image 

texture from different experiments. Therefore, they need to be optimized for each 

dataset.  The need for such parameter optimization would be removed with the use of 

convolutional neural networks for detection of large objects (LeCun, Boser et al. 1989, 

Dorkenwald, Schubert et al. 2017). These methods are robust against variability 

present in their training data. 
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9.2.2. Cell-type specific innervation of neurons in PPC by long-range input from 

M2 and V1 

PPC is an associative cortical region involved in visual decision making 

processes (Harvey, Coen et al. 2012). PPC neurons encode for both sensory and 

motor variables by receiving long-range cortical input (Goard, Pho et al. 2016). The 

importance of long-range innervation has been studied extensively in the primary 

somatosensory cortex of mice (Aronoff, Matyas et al. 2010). Long-range motor input 

was reported to encode whisker movement and touch variables (Petreanu, Gutnisky 

et al. 2012). Such motor information could be sampled by the apical dendrite of 

pyramidal neurons in S1 and interact with the Ca2+ spike initiation site to alter their 

output.  In addition, inactivation of long-range motor input to S1 was shown to hamper 

non-declarative (perceptual) memory retention processes during sleep (Miyamoto, 

Hirai et al. 2016).  

However, the cell-type specific innervation of cortical neurons by long-range 

innervation has not been extensively studied at the synaptic level. Imaging and 

analysis of even sub-cubic millimeter 3D-EM volumes was technically challenging until 

recently (Motta, Berning et al. 2019). To image long-range innervation using only 3D-

EM requires volume sizes that are large fractions of the whole mouse brain. Even 

though efforts exist to image the full mouse brain (Mikula 2016), such volumetric 

imaging is beyond current technology available to most labs.  

Thus, we applied a correlative light and electron microscopy approach to map 

long-range input to PPC from secondary motor (M2) and primary visual (V1) cortices 

(FluoEM, (Drawitsch, Karimi et al. 2018)). This technique uses the full color spectrum 

of the fluorescence light microscope. The advantage of FluoEM is the matching 

process of fluorescently labelled axons to their EM counterparts using the unique 

morphological fingerprint of each axon. Therefore, there’s no need for laborious and 

error-prone electron-dense label conversion or infra-red fiducial marking. The matching 

process becomes progressively faster as more control points refine the transformation 

between two datasets.  

Our preliminary analysis of layer-specific innervation of neurons in PPC by long-

range innervation showed motor (M2) input’s tendency to target only superficial 
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neurons in L2/3 (Figure 24, 25). L3 neurons comprised only 5% of the postsynaptic 

targets of long-range input from M2. In comparison, L3 neurons accounted for ~23% 

of the total postsynaptic targets of axons from V1 (~4-fold higher as compared to M2). 

This adds to our previous evidence suggesting significant differences in the innervation 

of L2 vs. L3 pyramidal neurons at their main bifurcation (Figure 9). However, multiple 

confounding factors, such as the spatial distribution of long-range axonal paths, errors 

in reconstruction, and the effect of dataset shape, require further investigation to 

confirm this finding. 
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10. Tables 

 S1 V2* PPC* ACC LPtA PPC-2 

Mouse age 
(postnatal days) 

28 56 56 56 46 57 

Sample location (in 
mm) relative to 
bregma (AP,ML) 

(-1.2, -3.9) (-2.6,1.7) (-2,-1.7) (0.8,-0.15) (-2.1, -1.3) (-2, -1.5) 

Sample section 
thickness (µm) 

1000 600 600 600 1000 600 

SEM type (FEI, 
USA) 

Magellan Quanta Quanta Quanta Verios Magellan 

Electron landing 
energy (keV) 

2.8 2.8 2.8 2.8 2.8 2.8 

Beam current (nA) 3.2 0.2 0.2 0.11-0.2 0.8 1.6 

Beam dwell time 
(µs) 

0.1 2.1 - 2.8 2.3 2.1 - 2.8 0.5 0.2 

Tile configuration 
in plane (x, y) 

3 x 3 1 x 2 1 x 2 1 x 3 4 x 5 5x5, 5x10 

Overlap between 
tiles (x, y) 

(21%, 11%) (N/A, 8%) (N/A, 6%) (N/A, 4.5%) (8%, 12%) (6%, 7%) 

Single tile 
resolution  (pixels) 

3072x2048 6144x4096 6144x4096 6144x4096 3072x2048 4096x3536 

voxel size (nm3) 11.24x11.24x28 12x12x30 12x12x30 12x12x30 11.24x11.24x30 11.24x11.24x30 

Final high-
resolution volume 

(µm3) 

66x89x202 72x91x153 72x93x141 70x141x98 130x110x85 200x185x200
200x370x100 

Dataset distance  
from pia (µm) 

125 215 170 110 20 10 

Low-resolution EM 
** 

    X X 
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Staining approach Manual AMW 
assistance 

AMW 
assistance 

AMW 
assistance 

AMW 
assistance 

Manual 

Staining protocol Conventio-
nal 

Modified Hua Modified 
Hua 

Modified 
Hua 

Modified 
Hua 

Modified 
Hua 

Table 1. Experimental details 

This table summarizes the experimental parameters used for sample 

preparation and volumetric electron microscopy in 6 datasets from 5 cortical 

regions. *From opposing hemispheres of same animal, **Used for finding the 

apical dendrite’s cell body of origin and apical dendrite reconstruction. This table 

is reproduced with modifications from (Karimi, Odenthal et al. 2019) and is 

licensed under the CC-BY-NC-ND 4.0. 
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 V2 PPC ACC PPC-2 

50% Ethanol 30 min @ 4°C 30 min @ 4°C 30 min @ 4°C 30 min @ RT 
(cooled) 

75% Ethanol 45 min @ 4°C 45 min @ 4°C 45 min @ 4°C 30 min @ RT 
(cooled) 

100% Ethanol 45 min @ RT 45 min @ RT 45 min @ RT 2 times, 30 min 
@ RT 

Pure acetone 3 times , 45 min 
each @ RT 

3 times , 45 min 
each @ RT 

3 times , 45 min 
each @ RT 

4 times, 20 min 
each @ RT 

50% Spurr’s 
resin in acetone 

3 hr @ RT (no 
rotation, closed 

tube). Next, open 
tube for 90 min 
initial rotation + 
overnight @ RT 

3 hr @ RT (no 
rotation, closed 

tube). Next, open 
tube for 90 min 
initial rotation + 
overnight @ RT 

3 hr @ RT (no 
rotation, closed 

tube). Next, open 
tube for 90 min 
initial rotation + 
overnight @ RT 

4 hr @ RT, 
closed tube cap, 

slow rotation 

75% Spurr’s 
resin 

N/A N/A N/A Overnight @ RT. 
Slow rotation, 
closed caps. 

100% Spurr’s 
resin 

6 hr @ RT 6 hr @ RT 6 hr @ RT 2 times, 3 hr @ 
RT each. No 

rotation 

Table 2. Temperature and times of dehydration and embedding steps for 3D-EM 

samples 

Time and duration of each dehydration and embedding step for samples from 3 

cortical regions (n = 4). This table is reproduced with modifications from (Karimi, 

Odenthal et al. 2019) and is licensed under the CC-BY-NC-ND 4.0. 
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 S1 V2* PPC* ACC LPtA PPC-2 

Main bifurcation input 
mapping  

X X X X  X 

Dense apical dendrite 
reconstruction  

   X   

Synapse size estimation  X X X X   

Spine innervation fraction  X X X X  

Double spine fraction  X X X X   

Fractional innervation of 
inhibitory axons  

X X X X   

Cell type comparisons of 
inhibitory fraction  

X (only L2) X(only L2) X(only L2) X(only L2) X X 

Path distance to soma 
dependency  

X (only L2) X(only L2) X(only L2) X(only L2) X X 

Profile of inhibitory 
fraction along upper 

cortex 

X X X X X X 

Table 3. Data analysis 

Summary of analyses carried out in all 6 datasets. This table is reproduced with 

modifications from (Karimi, Odenthal et al. 2019) and is licensed under the CC-

BY-NC-ND 4.0. 
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Dataset layer 
origin 

L1 L2 

Seed structure Shaft Spine Shaft Spine 

Layer 2 14,29 (n = 14) 100 (n = 5) 0 (n = 92) 97,1 (n = 35) 

Layer 3 3,7 (n = 27) 100 (n = 16) N/A N/A 

Layer 5tt 22,5 (n = 40) 93,3 (n = 30) N/A N/A 

Deep (Layer 3/5) N/A N/A 1,1 (n = 91) 98,4 (n = 61) 

Layer 5st 60 (n=10) N/A 44,44 (n = 9) N/A 

Table 4. Fraction of spine-preferring (excitatory) input on spine and shaft of 

apical dendrites 

The percentage of spine-preferring (excitatory) synapses onto the shaft and 

spine of apical dendrites for L2-5 pyramidal cell types in layers 1 and 2. Number 

of axons used to calculate the fraction is given inside the parenthesis.  
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 Somatic depth relative to pia (µm) 

Dataset name PPC-2 LPtA 

Layer 2 208-250 268-295 

Layer 2MN 166-172 N/A 

Layer 3 304-376 327-442 

Layer 5tt 524-582 621-657 

Layer 5st 507-620 N/A 

Table 5. The somatic depth of pyramidal neurons relative to pial surface 

Somatic depth of pyramidal neurons residing in layers 2-5 (n = 40, 11 for PPC-

2 and LPtA, respectively). See also Figure 7.  
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Microscope 

type (FEI) 

Experimenter Species Age Sex 
Brain region 

(layer) 

Dimensions 

(µm3) 

Verios 

Jakob 
Straehle 

Human 

41 
years 

Female 
Medial temporal 

gyrus 
110x130x100 
(Figure 22c) 

63 
years 

Male 
Superior temporal 

gyrus 
140x120 x100 

Non-
human 
primate 

(Macaque) 

7 years N/A 
Primary 

somatosensory 
cortex (L4) 

180x170x150 
(Figure 22b) 

7 years N/A 
Primary 

somatosensory 
cortex (L2/3) 

224x176x100 

Vijayan 
Gangadharan 

Mouse 

(C57BL/6) 

168 
days 

Male 

Anterior cingulate 
cortex (L1-3) 

225x175x120 

168 
days 

Primary 
somatosensory 
cortex (L3-4) 

225x175x200 

112 
days 

Medial entorhinal 
cortex (L2/3) 

225x175x120 

Magellan 

Kun Song 27 days 
Primary 

somatosensory 
cortex (L4-5) 

280x240x280 
(Figure 22a) 

Marcel 
Beining 

28 days Dentate gyrus 322x207x200 

Ali Karimi 57 days PPC (L1-5) 
200x185x200 

200x370x100 

Table 6. Datasets acquired using automated aberration adjustment 

Properties of 10 datasets acquired using the automated aberration adjustment 

software from 3 species by 5 experimenters. 
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