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Abstract

People spend up to 90 % of their lifetime in buildings. The design and operation of
buildings therefore have a significant impact on our quality of life. Thermal indoor
conditions are particularly important in order to create a pleasant atmosphere, which
makes air-conditioning to the central objective of building operation also referred to
as building control. Two main questions arise from this objective: What does thermal
comfort mean and how can it be achieved by appropriate control strategies? Common
control approaches address these questions by the use of standardized temperature set-
points for the whole building. The compliance with this target temperature is usually
monitored by few sensors, where one measurement value represents the conditions
of a large thermal zone. In reality, this control strategy often entails discomfort due
to notable but unconsidered spatial temperature differences, e. g. by means of solar
loads, as well as the very subjective thermal expectations. Consequently, this thesis
forms the basis for an optimized building control strategy that aims for an improved
comfort level to the satisfaction of all users that is able to quantify and evaluate spatial
conditions based on the air-conditioning operation and at the same time accounts for
the comfort requirements of individual occupants.

The spatial thermal conditions are the result of complex flow effects which are mainly
driven by the air-conditioning system, the position and size of the windows as well as
internal loads. Accurate representations of these effects by means of computational
fluid dynamics simulations are computationally expensive and therefore not suited
for control design. Hence, simplified data-driven models for the prediction of the
stationary temperature field are developed in the first part of this thesis. A key
difficulty for the selection of a suitable modeling approach is the limited data base.
The available input parameters are restricted to commonly accessible sensor data
consisting of discrete temperature measurements and the operational mode of the air-
conditioning system. Under these prerequisites, a Gaussian Process regression model is
derived which improves the prediction of the temperature field by up to 60 % compared
to the standard assumption of well-mixed conditions. The predictive ability is even
further improved by an optimized sensor setup. Two optimal placement approaches are
compared which either focus on the reduction of the prediction error or the variance
of the model. Compared to other modeling approaches with a similar degree of
detail, the derived data-driven approach provides more detailed information about the
spatial thermal conditions with significantly smaller computational or implementation
effort which makes it applicable to real-time control concepts. Moreover, this data-
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based approach enables an online model adaptation to constantly changing conditions
commonly occurring in office buildings, for example changes of the floor plan.

The second part of this thesis focuses on the definition of individual thermal comfort.
Although well-established models exist for the design and operation of building air-
conditioning systems, most of them are not suitable for predicting the personal comfort
sensation. Comparing these models with the collected user feedback results in an
unsatisfactory individual predictability. Therefore, alternative models are investigated
and derived which lead to a better accordance. The main challenge originates from
the high uncertainty of the user data that are collected during the daily working
routine. The low system excitation of the everyday operation limits the data quality
so that the developed comfort model structure and the identification process must
ensure physically feasible prediction models. Polynomial basis functions serve as easily
interpretable trial functions which are reduced using combinational feature selection
and LASSO regression to avoid overfitting. The resulting well generalizing model
characteristic is particularly important for the subsequent integration in optimization-
based control concepts. The best model structure for the considered test group is a
linear basis function in combination with a Gaussian process model which depends on
the parameters air temperature, fan level, humidity, outside temperature, and daytime.
This personalized approach improves the individual prediction accuracy by over 50 %
compared to standard models.

Based on the personal comfort models, control strategies are deduced for optimizing
the individual thermal comfort. Apart from temperature control, additional ceiling
fans are installed for the local actuation of air movement. In a first approach, the
comfort models are used to define an optimal combination of temperature and air
velocity for the entire user group. The personalized models are constantly adapted
during the operation to account for individual and group-related changes. Thus,
modifications are always included in the comfort optimization. The complementary
cooling effect by increased air velocities incorporates an energy saving potential of
approx. 20% while enhancing the individual comfort. Since changing occupancy
causes dynamical variations of the comfort requirements, concepts for a reasonable
consideration of these variations are devised. The proposed concept demonstrates an
improvement of the average comfort level by additional 6 %. Eventually, all results
are combined to extend the temperature and air velocity optimization to a model
predictive control strategy that makes use of the underlying room dynamic. This
allows to account for coupling effects between the comfort factors in the control concept
which yields a further improvement of the overall thermal comfort.
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Kurzfassung

Menschen verbringen bis zu 90 % ihrer Lebenszeit in geschlossenen Raumen. Dement-
sprechend haben die Auslegung, das Design und der Betrieb von Gebduden einen
entscheidenden Einfluss auf unsere Lebensqualitiat. Insbesondere die thermischen
Raumbedingungen tragen entscheidend zu einer angenehmen Atmosphére bei, sodass
eine komfortable Klimatisierung zum zentralen Ziel der Gebduderegelung wird. Aus
diesem Ziel ergeben sich vor allem zwei Fragestellungen: Was bedeutet thermischer
Komfort fiir den Einzelnen und wie kann dieser durch geeignete Regelungskonzepte
sichergestellt werden? Ublicherweise angewandte Regelstrategien adressieren diese
Fragen, indem sie gebdudeiibergreifend standardisierte Temperaturvorgaben zugrunde
legen. Die Einhaltung dieser Vorgaben wird dann iiber wenige Sensoren iiberwacht,
wobei ein Messwert meist eine verhaltnisméfig grofle thermische Zone reprasentiert.
Diese Regelstrategie flihrt allerdings héufig zu Diskomfort, da die tatséchlichen, ort-
lich verteilten Bedingungen stark vom gemessenen Referenzwert abweichen kénnen,
z. B. durch solare Einfliisse, und auch die subjektive thermische Wahrnehmung der
Nutzer grofle Unterschiede aufweist. Daher wird in dieser Arbeit die Basis fir eine
komfortoptimierte Regelstrategie gelegt, die zum einen in der Lage ist, die ortlich
verteilten Einfliisse des Klimasystems miteinzubeziehen und zum anderen individuelle
Komfortanforderungen berticksichtigt.

Die ortlich verteilten thermischen Bedingungen im Raum sind das Resultat komplexer
Stromungseffekte, die hauptséichlich durch das Beliiftungssystem, die Lage und Grofle
der Fenster aber auch interne Lasten beeinflusst werden. Da die Simulation dieser Ef-
fekte sehr rechenaufwendig ist, werden im ersten Teil der Arbeit Modelle entwickelt, die
eine vereinfachte Pridiktion der stationidren Temperaturverteilung erméglichen. Eine
der wesentlichen Herausforderungen bei der Auswahl eines passenden Modellansatzes
liegt in der limitierten Datenbasis, da sich die verfiigbaren Eingangsparameter auf
iblicherweise verfiighare Sensormessungen beschrinken, d.h. diskrete Temperaturwerte
sowie der Betriebszustand des Beliiftungssystems. Unter diesen Voraussetzungen wird
ein Gauflprozessmodell entwickelt, welches die Pradiktion der ortlich verteilten Tem-
peratur um bis zu 60 % verbessert gegeniiber der Standardannahme einer homogenen
Temperaturverteilung. Durch eine optimierte Sensorplatzierung kann der Pradiktions-
fehler weiter reduziert werden, wofir zwei Ansétze untersucht werden, die sich auf
Fehler- bzw. Varianzminimierung fokussieren. Im Vergleich zu Modellen mit &hnlichem
Detaillierungsgrad erlaubt der vorgestellte datengetriebene Ansatz detailliertere Infor-
mationen lber die verteilten thermischen Bedingungen im Raum zu erhalten jedoch
mit deutlich geringerem Implementierungs- und Instandhaltungsaufwand. Auflerdem




ermoglicht die datenbasierte Herangehensweise eine Adaption des Modells wahrend
der Betriebszeit, da Anderungen der Raumaufteilung oder Ausstattung besonders in
Biirogebduden keine Seltenheit sind.

Der zweite Teil der Arbeit konzentriert sich auf die Definition von individuellem thermi-
schen Komfort. Auch wenn es bereits etablierte Komfortmodelle fiir die Auslegung und
den Betrieb der Gebaudeklimatisierung gibt, sind diese fiir die Bestimmung der persén-
lichen Bediirfnisse meist ungeeignet. Der Abgleich dieser Modelle mit den vorliegenden
Nutzerdaten ergibt eine unzureichende individuelle Pradizierbarkeit. Daher werden
alternative Modellierungsansétze untersucht und abgeleitet, die zu einer besseren
Ubereinstimmung fiithren. Die groBte Herausforderung ergibt sich dabei aus der hohen
Unsicherheit der unter alltdglichen Arbeitsbedingungen gesammelten Nutzerdaten.
Die geringe Systemanregung im Tagesbetrieb limitiert die Datenqualitét, weshalb die
Komfortmodellstruktur und der Identifikationsprozess mit dem Ziel entwickelt werden
robuste Komfortvorhersagen zu treffen. Als Ansatzfunktionen werden verschiedene
leicht interpretierbare Polynomansétze verglichen, die mit Hilfe von kombinatorischer
Merkmalsauswahl sowie LASSO-Regression reduziert werden um Uberanpassung zu
vermeiden, sodass sich nur physikalisch sinnvolle Schatzmodelle ergeben. Die daraus
resultierende, gut generalisierende Modellcharakteristik ist besonders relevant fiir die
spéatere Integration in optimierungsbasierte Regelungskonzepte. Als beste Ansatz-
struktur ergibt sich fiir die betrachteten Nutzerdaten eine lineare Basisfunktion in
Kombination mit einem Gaufiprozessmodell, welches von den Parametern Lufttempe-
ratur, Ventilatorstufe, Feuchtigkeit, Aulentemperatur und Tageszeit abhingt. Dieser
personalisierte Ansatz verbessert die individuelle Vorhersagegenauigkeit gegeniiber
einem Standardansatz um tiber 50 %.

Basierend auf den personalisierten Komfortmodellen werden anschlieBend Regelungs-
strategien abgeleitet, die den individuellen Komfort optimieren. Dabei werden, neben
der Temperaturregelung, Deckenventilatoren eingesetzt, die einen lokalen Einfluss auf
die Luftgeschwindigkeit haben. In einem ersten Ansatz werden die Komfortmodelle ge-
nutzt um eine optimale Kombination aus Temperatur und Luftgeschwindigkeit fiir die
gesamte Nutzergruppe zu bestimmen. Die personalisierten Nutzermodelle werden wéh-
rend der Laufzeit adaptiert, sodass personen- sowie gruppenbezogene Veranderungen
stets fiir die Komfortoptimierung berticksichtigt werden. Der zusétzliche Kiithlungs-
effekt durch erhohte Luftgeschwindigkeiten ermoglicht eine Energieeinsparung von
ca. 20 % bei verbessertem individuellem Komfort. Da wechselnde Belegungsprofile
eine dynamische Verdnderung der Komfortanforderungen verursachen, werden zu-
dem Konzepte entwickelt, die eine sinnvolle Beriicksichtigung dieser ermdéglichen,
wodurch das durchschnittliche Komfortlevel um weitere 6 % gesteigert werden kann.
Abschliefend wird die Optimierung der Lufttemperatur und -geschwindigkeit auf
ein modellpradiktives Regelungskonzept erweitert, welches auch die Raumdynamik
mitberticksichtigt. Dadurch kénnen Kopplungseffekte zwischen den Komfortfaktoren
in die Regelstrategie miteinbezogen werden, wodurch eine zusétzliche Verbesserung
des thermischen Komforts erreicht wird.
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1 Introduction

The main goal for building operation is the occupants’ health and comfort. In
particular, since the major part of our lives - impressive 90 % [63] - takes place in
buildings, comfortable indoor conditions play a major role for the quality of life.
Furthermore in commercial and office buildings, the well-being of the occupants is
directly related to their productivity and work performance [69]. Therefore, the main
interest of the building owner or manager is the improvement of comfort. Consequently,
it is no surprise that the control of Heating Ventilation and Air Conditioning (HVAC)
systems is an extensively discussed research topic, e.g. [1, 18, 75]. Apart from the
comfort target on the lower level, the high-level requirement is given by reducing
the energy consumption of a building. With about 35 %, the building sector has
the largest share in final energy consumption, thus incorporates a great potential
for improvement to accomplish the intended climate targets [54]. In addition to
occupant awareness, insulation, more efficient HVAC components and integration
of renewable energies, intelligent control strategies are promising approaches for a
sustainable development [7]. The growing energy demand is mainly driven by the
developing Asian economies and an increasing demand for space cooling [54]. Satisfying
the different stakeholders requires the development of building operation strategies
that combine the specifications motivated by the global climate targets as well as
guaranteeing the work performance and health of the occupants. Although contrary
requirements can arise from energy reduction and comfort improvement, the two
objectives are not necessarily mutually exclusive [65]. Hence, the challenge is to
develop sustainable control concepts which are able to jointly fulfill comfort and
energy requirements.

A holistic understanding of the system is a necessary prerequisite to allow for in-
telligent building control. This further involves system models that provide a valid
representation of the real conditions. Multiple methods are investigated, reaching
from white over gray to black box models, to map the indoor conditions and the inter-
action between the HVAC components [7]. Most approaches focus on the components
and assume uniform conditions within the controlled zone. Nevertheless, external
and internal disturbances can affect the indoor conditions locally [41]. Furthermore,
thermal comfort is usually addressed by standardized comfort assumptions which
provide a fixed design/target temperature or admissible temperature range. However,
individual thermal sensation can vary significantly from these standard conditions [42].
Therefore, the following guiding questions arise:
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1. How can indoor conditions be represented on the room level with a complexity
that is suitable for control design?

2. How can personal thermal comfort be defined and integrated in the control
strategy?

Answering the first question aims to get a more detailed understanding how the
HVAC system affects the room locally. The second question tackles the limited
validity of standard models to represent the diverse individual perception [42]. Both
aspects are important steps towards a comprehensive system understanding and hence
comfort-based control approaches including the target of energy efficiency.

1.1 State of the Art

Building automation encompasses multiple domains including the control of the HVAC
system, energy management, fault detection, security and access control as well as
life safety and fire detection. While all aspects aim for the occupants’ well-being and
satisfaction, their thermal comfort is mainly a result of the HVAC operation. Due to
the great amount of involved devices, this is one of the most complex tasks and thus
commonly designed in a hierarchical manner as outlined in Figure 1.1. The lowest
layer is represented by the field devices such as sensors, valves, switches and other
local actuators. These devices are controlled by unitary controllers whose operation is
usually independent from each other. The next level are the supervisory controllers
that adapt the central building components or unitary controller set-points based on
schedules, weather conditions or occupancy. The server applications build the top
layer where all data are collected and processed for reasons of monitoring and possibly
optimization [99]. Most often the control approach for the supervisory layer is rule-
based due to its simple implementation of best practices. The main problem in this
context are poorly tuned unitary controllers and the great variety of buildings which
require diverse operational strategies [76]. Therefore, rule-based controllers always
lead to a suboptimal operation. Due to the increased interest in energy efficiency, the
advances in recent years focused on predictive control approaches. Particularly, Model
Predictive Control (MPC) dominates the building applications [1] because of its ability
to handle input and output constraints which are a decisive limitation for building
systems [7]. These approaches incorporate a significant energy saving potential, e. g. [23,
77, 93], but always require a valid building model. The available modeling approaches
can be classified in three categories: white box, data-driven and hybrid modeling
methods [7]. White box models rely on physical relations and properties where the
complex heat and flow equations are solved based on Finite Volume Methods (FVMs)
or Finite Element Methods (FEMs). The data-driven approaches do not require a
physical system model but use input-output data to identify the building characteristics.
System identification methods, such as Autoregressive-Moving Average (ARMA), state-
space models, or Machine Learning (ML) techniques, like Artificial Neural Networks
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Figure 1.1: Hierarchical control architecture for a common HVAC system with unitary
controllers (UC) for the local actuators (A) using the sensor signals (S),
inspired by [75].

(ANNSs) and Support Vector Machines (SVMs), are used for the modeling task in this
case. Hybrid approaches are often gray box methods which combine physical and
data-driven concepts. Lumped parameter or Resistance-Capacitance (RC) models are
common examples.

The white box models mostly result in a high complexity and require detailed knowledge
about the building properties and boundary conditions. While simulation software, like
EnergyPlus, TrnSys or Modelica, provides a useful tool for system design or demand
estimation, the underlying models are most often too complex for a direct application
to controller design. Therefore, simplified gray box approaches are preferred for
control-oriented modeling [7]. The most common method is the RC network approach
due to its good physical interpretability where an analogy between electrical and
thermal systems is established. The deduced general heat transfer equation
- T T,

0=-" (1)
allows to rewrite the conductive, convective, radiation and advective heat transfer
respectively:

. 1
Qcond = Ceond A(T; — T N Reopd = ——— 1.2a
con con ( % ]) con Coond A ( )
. 1
Qconv = OéconvA(Ti — Tj) — Reony = — (1-2b)
aconvA
. 1
Qrad = ad A(T; — T — Rog=—— 1.2¢
rad rad ( 7 ]) rad aradA ( )
. . 1
Qadv = cpm(Ti - Tj) — Radv = - (1'2d)
cpm
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where A denotes the cross-sectional area of the body perpendicular to the heat transfer
direction, acong and aconv are the conductive and convectional heat transfer coefficient
respectively, 7 the mass flow and «.,q the linearized radiation heat transfer coefficient.
The temperatures T; and T either represent the temperatures of the involved fluid
or solid. The thermal capacitance of a component is defined by the specific heat
coefficient cp, its volume V' and density p

C =cppV. (1.3)

Refer to [7, 53] for more detailed explanations. Finally, the dynamical heat transfer
equation for an arbitrary thermal node with N neighboring nodes results in

(1.4)

The number of thermal nodes and resistors defines the accuracy of the model. The
model parameters can either be identified based on measurements or computed using
(1.2) and (1.3). Exclusively using the physical properties of the materials to define the
parameter values results in a white box approach. However, detailed knowledge about
the exact construction properties is mostly not available such that system identification
must be used to specify the unknown parameters. This, on the other hand, requires
measurement data with a sufficient frequency content. Hence, a combination of both is
often applied to obtain a reasonable compromise between the model’s complexity and
the requirements on the measurement data. Additionally, the physical interpretation
helps to evaluate the identified values.

Although the RC network approach is suitable for control design and enables various
levels of detail, it only uses at most one node to represent the air conditions of a zone.
This common approach for modeling the zone conditions relies on the assumption
that the room air is well mixed so that the temperature (and humidity) differences
within the zone can be neglected [99]. For small zones without significant local loads,
this assumption is a valid approximation. Considering large open-plan offices, on the
other hand, entails a higher risk of violating this simplification. Local disturbance
impacts, e.g. due to solar loads or very distinct occupancy, can lead to significant
temperature differences accompanied by thermal discomfort. An unfavorably placed
sensor for monitoring the overall room conditions can further impair the situation by
supplying a non-representative measurement to the HVAC controller or for the system
identification process. As a result, a better representation of the room conditions must
be found to fully answer the first guiding question of Chapter 1.




1.1 State of the Art

1.1.1 Modeling of the Room Conditions

Generally, room models can be divided into three groups: well-mixed, zonal and
Computational Fluid Dynamics (CFD) models. The most detailed resolution of the
room conditions is attained by CFD simulations. The temperature field and the
spatial flow conditions are represented by the Navier-Stokes equations

dp -
EJrV (pv)=0 (1.5a)
%+V-(pva+prT) = pg (1.5b)
Q( (e+1v2)>+v'< v(h—i—va)—‘rwJ—)\VT)* ‘v (1.5¢)
ot \P\°T 2 r 2 — '

which describe the conservation of mass (1.5a), momentum (1.5b) and energy (1.5¢) [70],
where v denotes the velocity vector, p the fluid pressure, I the unit matrix, 7 the
stress tensor, e the specific internal energy, h the specific enthalpy and A the thermal
conductivity. For solving these nonlinear partial differential equations 12 additional
equations are required: one thermal and two caloric equations of state as well as 9
equations for the normal and shear stress terms. An analytical solution can only
be found for very few special cases but not for the general 3-dimensional case with
arbitrary boundary conditions as it occurs in buildings. Therefore, only numerical
solutions can be obtained for the considered application which are usually implemented
using the FVM. In particular directly solving (1.5) for turbulent flows entails a high
computational effort because the volume elements of the mesh must be very small for
being able to resolve the smallest turbulences. Most often this results in unreasonable
computing times for technical applications [70]. Therefore, CEFD simulation software
commonly solves the Reynolds-averaged Navier-Stokes (RANS) equations where the
velocities are separated in a low- and a high-frequency component at which the
high-frequency share, thus the small turbulences, are mapped by turbulence models.
Although this simplification allows to solve flow processes within a reasonable time
period, real-time applications are unattainable yet. Achieving a consistent, stable
and converging solution still requires a fine discretization, as exemplary sketched
in Figure 1.2a, and consequently involves a great implementation effort as well as
computation time. Another challenge regarding the application of CFD simulations in
the context of building control is the generally limited knowledge of the exact boundary
conditions during the daily operation. Extensive measurements would be required to
allow for a quantitative accordance between the CFD simulation results and the real
world conditions. In summary, the high complexity and missing real-time capability
makes this approach unsuitable for an application in building control. However, the
detailed simulation output regarding the local flow effects and the consequent impact
on the temperature field provides a useful reference for the evaluation of alternate
modeling approaches and is therefore used accordingly in the following.
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(a) Exemplary mesh for a CFD simulation (b) Separation into sub-zones for a zonal
of a simple room. modeling approach.

Figure 1.2: Examples for a more detailed resolution of the room conditions.

The high computational effort of CFD simulations is mainly due to the need for very
fine grids (Figure 1.2a). Coarser partitioning reduces the computing time significantly
but requires alternative formulations of the flow equations. For this reason, different
zonal models were developed which separate the zone in multiple sub-zones and define
the laws for the air exchange between the adjacent zones. An exemplary partitioning
for a zonal approach is depicted in Figure 1.2b. The power law model

)

is a commonly used approach to define the air mass flow between the sub-zones,
e.g. [11, 46, 52], where g denotes the gravitational acceleration, p the density of air
and 1) the discharge coefficient. It is based on the Bernoulli equation and uses the
height difference Az;;, the pressure difference Ap;; and the common area A;; between
two zones i and j to calculate the mass exchange. Due to the dissipation of the
air flow within the zones, alternate zone formulations for driving air flows [80, 86],
like jets or plumes, are necessary and require prior knowledge of the airflow pattern.
Another approach uses the momentum equation to avoid the inclusion of the prior
knowledge of the flow conditions [40, 102] by introducing the air velocity as a zone
property. A similar approach is pursued by the velocity propagating zonal model
(VEPZO) model [81], where a viscous loss model is proposed as representation of the
air flow. Although the computation time and complexity is significantly reduced by
these approaches, the models still require thoughtful calibration by measurements
and are sensitive to a change of the room layout. However, particularly commercial
buildings are commonly exposed to changes of the floor plan due to a rearrangement of
offices or furniture. Adapting these models to a new setup involves a great effort and
expert knowledge which is usually an exclusion criteria for large-scale applications.
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The limited applicability of physically motivated approaches and the trend towards
digitization afford an opportunity for data-based models. Instead of using a (purely)
physically motivated structure, an arbitrary mapping function f(-) can be selected that
is able to reflect the general system behavior. For the identification of the unknown
model parameters, sufficient training data are required. These data usually come
from distributed sensor measurements or simulation results of more complex models.
The simplest example would be a linear regression between the distributed sensor
values. However, for mapping the impact of varying inputs, e. g. different ventilation
conditions, a suitable relation must be chosen to define the effect of different model
inputs. Since flow conditions and resulting room temperatures are a result of a
highly nonlinear process, ML techniques proved to be a useful tool in this context.
Previous research explored the practicability of an ANN [74] and Gaussian Process
(GP) regression [29, 66, 79] to estimate the temperature distribution. The latter
approach is most commonly used due to good interpretability, the possibility to
directly consider measurement noise and the additional output information about the
uncertainty of the prediction. Therefore, the data-based modeling approach based on
GP regression is adopted for the temperature field prediction in this work, whereby
the focus is set on mapping the interaction between the indoor conditions and the
HVAC system.

1.1.2 Thermal Comfort Modeling

More detailed room models allow to develop advanced control concepts that ensure
comfortable conditions over the entire space. However, they also need a target
conditions. This arises the question of how to set the indoor conditions that thermal
comfort is achieved. Generally, comfort standards, such as DIN EN ISO 7730 [26]
or ANSI/ASHRAE Standard 55 [2], are used to assess the comfort requirements.
These standards target to reflect an averaged comfort level based on empirical studies.
Although these models are physically motivated by the human’s heat balance, the
validity for the individual is very limited due to the very subjective perception [42,
51]. It can also be observed that the personal preferences are even more distinct than
usually occurring temperature differences within an open space due to deficient HVAC
control and unconsidered disturbance effects. As a result, a reliable representation of
the desired conditions is a crucial step towards the improvement of thermal comfort.

The most commonly used approach is the Predicted Mean Vote (PMV) introduced
by Fanger [30]. The popularity of this approach originates from its embedding in
the mentioned comfort standards [2, 26] and the great data base for validation.
The interaction between the human body and the environment is modeled by its
stationary heat balance and takes into account convective and evaporative heat losses,
heat loss via the skin and by respiration as well as metabolism. The different heat
flows are defined by a combination of physical and empirical equations and require
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detailed knowledge about a specific person regarding height, weight, surface area etc.
Therefore, standardized values were derived for a generalized estimation of comfort
and multiple extensions of this approach were proposed to improve its validity in
real-world applications [24, 51].

More detailed modeling approaches extend the description of the human body to
multiple nodes or segments. The two node model, for example, differentiates between
a core and a skin compartment and incorporates increased metabolism due to shiv-
ering [36]. Even more detailed models, distinguish multiple body zones to map the
influence of non-uniform conditions (displacement ventilation, floor heating, radiative
heating cooling etc.) [33]. Although these models extend the PMV and allow for a
more accurate representation of the thermal interaction of a human being, the main
challenge for an application in real buildings is the limited sensor data. The more
detailed the model describes the human body, the more prior knowledge about the
specific user must be available. For an application based on commonly accessible data,
the usage of these models is very confined.

Most mentioned comfort modeling approaches target to find a universal representation
of the human’s thermal sensation so that the proposed models map the average
perception of a large user group. While these standardized models are very useful
for system design, their application to individualized comfort-optimizing control is
bounded due to the high complexity that goes along with an individualization and
the limited validity. Therefore, data-based modeling approaches are explored in more
recent developments. They start with a personalized parameter estimation of standard
models like the PMV [42, 105] and apply different ML techniques, such as GP [32,
42] regression, SVMs, Random Forests (RFs) [31, 61] and ANNs [56]. The data base
that is used for predicting thermal comfort corresponds mainly to the physically
motivated models and is adjusted according to the respective system prerequisites.
The training is then performed based on measurements and user feedback. These
data-based approaches are particularly popular for personal comfort modeling and
thus revisited in this work.

1.1.3 Comfort-Based Control

Numerous research can be found regarding the control of HVAC systems. As mentioned
above, the main focus in this context is generally on energy consumption and thermal
comfort. While energy consumption is mainly examined on building level without the
inclusion of detailed room models, all thermal comfort-oriented control approaches
face two challenges: Limited knowledge about the actual physical and psychological
state of the occupant and underactuation of the occupied building areas.

The most common approach to address the first challenge is the use of standardized
assumptions on unknown parameter values. This leads for instance to PMV-based
control strategies where the standard model is applied to define a comfortable range for
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the operation whereby the energy consumption is reduced within this range, e.g. [34,
62]. However, optimal control concepts based on standardized comfort models do
not lead to individual thermal comfort [42]. Therefore, the second method targets a
better understanding of the occupant’s preferences for example by the use of wearable
sensor devices which provide more detailed information about the actual user state.
This allows for a better representation of the individual and thus improved target
conditions [71]. Nevertheless, in most cases the building operation system does not
have access to occupant-related sensor data so that a control concept that is easily
applicable to arbitrary buildings can only use usually available measurements of
the environmental conditions. As a consequence, control approaches based on user
feedback mostly only consider the relation between temperature and thermal sensation
but neglect the coupling to further comfort-influencing factors. The agent-based [57]
or fuzzy logic [55] control approaches are examples for this kind of personalized control
strategy.

The reduction of thermal comfort to a common optimal temperature level is explained
by the second challenge, namely underactuation. Most buildings are designed to
maintain one temperature level in all zones and local differences cannot be realized
due to a low number of actuators and dominant mixing effects. Therefore, ongoing
research investigates local actuation regarding its potential for better individualization.
Thermally adjustable chairs are one example for so called Personal Comfort Systems
(PCSs) [59]. While these systems have the potential to improve the individual comfort
significantly, they require a great investment in retrofitting. An alternative approach
is given by locally elevated air movement to enable additional cooling effects and thus
personalized indoor conditions. Since this idea is adopted in the present thesis, a more
detailed discussion of the associated effects is provided below.

1.1.4 Elevated Air Velocities

Mechanical ventilation provides another locally effective actuation method which can
be retrofitted with a relatively low expenditure. The increased convective heat transfer
between the human body and the environment for a higher air velocity is also known
as wind chill and can be used to adjust the thermal sensation without changing the
air temperature. Since energy efficiency is highly related to the required cooling power
in hot climates, elevated air movement incorporates not only the possibility of local
and individualized actuation but has also a significant energy saving potential. These
prospects explain the great interest in capturing the actual effect of air velocity on
thermal comfort. Although the PMV and most other comfort models include this
effect, they are often proven to overestimate the real impact [73, 94]. Particularly in hot
and humid environments, the acceptability of increased air movement is significantly
higher than suggested by European studies. However, dominant differences were
determined between the individuals. Figure 1.3 emphasizes the different identified
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Figure 1.3: Comparison of different literature results that investigate how the air
velocity changes the thermal sensation vote.

sensitivities of the thermal sensation vote as a function of air velocity based on selected
literature. Chow et al. (2010) [19] investigated the perception of subjects from Hong
Kong, Zhai et al. analyzed the sensation of a Chinese group in [104] and regarded
international subjects in [103]. While the results from the international test group [103]
are similar to Fanger’s PMV model, the field studies with Chinese subjects lead to
significantly lower sensitivities. Although air speed variations can have a very distinct
effect on the individual user [91], it provides additional cooling and thus allows for local
actuation, especially under the assumption of well mixed conditions with a common
temperature set-point. This property is therefore applied for individualization of the
room conditions.

1.2 Objective and Outline

This thesis targets to lay a foundation for control approaches that allow for individu-
alized thermal comfort in shared office spaces. This requires a suitable representation
how the HVAC system affects the spatial room conditions as well as a valid prediction
model for personal thermal comfort. As discussed above, most available approaches
either rely on inaccessible sensor data or require expensive equipment such that an
application to existing buildings is almost impossible. Therefore, three crucial aspects
are addressed in this work to pave the way towards individual thermal comfort in
office buildings:

v' A data-based modeling approach for a more detailed representation of the spatial
room conditions to enable the possibility of localized temperature control without
the need for exact knowledge about the boundary conditions and expensive CFD
simulations.

10
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v" A methodology for the derivation of well predicting personal thermal comfort
models is developed based on real world voting data. A scalable modeling
approach is derived that can be used in the context of optimal control.

v' Optimization-based control approaches are devised for improving the individual
thermal comfort in a shared office space by the use of multiple ceiling fans.

Chapter 2 covers the first aspect. Multiple CFD scenarios with various ventilation
conditions are used as ground truth for the spatially heterogeneous room conditions
of a large open-plan office. A GP regression model is derived to represent the impact
of different HVAC operation modes on the stationary temperature profile based on
a sensor network. Since the sensor configuration has a direct impact on the model’s
quality, optimal sensor placement strategies are derived and transferred to general
placement rules.

Chapter 3 addresses the second objective where a better understanding of individual
comfort is obtained. Commonly applied standard models are investigated according
to their ability to map the subjective thermal sensation. To cope with the revealed
disadvantages of existing models, a generalizable structure is defined and different
feature selection algorithms are applied to specify a commonly optimal approach.

The previously derived models are then adopted in Chapter 4.2 to find the best
compromise between all occupants. A trajectory planning algorithm is developed based
on the individual comfort models. It incorporates the ability to learn the occupants
thermal preferences online and adapts new input from ongoing user feedback. The
trajectory generation as well as the modeling process are designed under the premise
to ensure robust and physically feasible solutions based on limited knowledge of the
occupants’ physical and psychological state. Furthermore, the building dynamics
are considered as a black-box where only measurements serve as an interface to the
room conditions. Therefore, the trajectory planning algorithm can be considered as a
retrofit solution that is nearly independent from the building system.

Chapter 4.3 combines the comfort model with a physical room model so that the
trajectory generation is replaced by an MPC approach. This allows for a coupled
consideration of the system dynamics and the personal comfort. Since the system as
well as the comfort prediction models are nonlinear and complicate the MPC algorithm,
a linearization is performed for an application of simpler, linear concepts. Subsequently,
the performance of the nonlinear and linear MPC approach are compared to the results
from the trajectory planning approach.

Chapter 5 summarizes all results and provides some perspectives about potential
development opportunities.
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2 Temperature Field Prediction

For the control of the thermal conditions in commercial buildings, the building is
commonly separated in multiple zones. Most often one room corresponds to one zone
and the room air is assumed to be well-mixed which leads to a uniform temperature
distribution within this zone. However, influences like changing occupancy, solar radi-
ation or internal loads from computers and other devices affect the room temperature
locally and can lead to diverse conditions within one zone. Moreover, unfavorable
setup of partitions and desks or adverse location and operation of the Air Conditioning
(AC) system can further exacerbate the heterogeneity of the indoor conditions. While
these effects are commonly neglected in building operation, they can have a significant
impact on the occupants’ satisfaction. A more detailed representation of the room
conditions can be either achieved by physically motivated models representing the
fluid dynamics or by additional sensing. The high complexity, implementation and
computation effort as well as the limited validity are still an exclusion criterion of
physical models for user-friendly, large-scale applications in commercial buildings [7].
The trend towards the Internet of Things (IoT), on the other hand, opens up opportu-
nities for the deployment of more sensors that can be used to reconstruct the indoor
conditions. Data-based models are the logical consequence to this development. The
great advantage of this approach over physical models is the inherent adaptivity to
system changes. The physical approach needs detailed knowledge about the boundary
conditions and the geometric information. However, the former is difficult to obtain
due to limited measurements (particularly of dynamic disturbances, e. g. occupancy,
open doors etc.) and the latter is often subject to changes during the lifetime of a
building. The data-based approach can be updated continuously based on the current
measurements so that system changes and disturbance patterns are adapted online.
This idea builds the basis for the following modeling approach. The model is derived
and evaluated based on CFD simulations that provide very detailed information about
the spatial room conditions.

In the following, the terms inlet and supply refer to the opening at the system boundary
of the room where conditioned air enters the space and are used equivalently. Similarly
outlet and exhaust are used equipollent. Furthermore, parts of the consecutive results
are published in [41] and [44].
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2.1 CFD Simulation Setup

A CFD simulation of a large open-plan office serves as a reference for the data-based
modeling of the temperature field. All CFD results are taken from [8] where more
detailed descriptions about the exact simulation settings (solver, meshing etc.) can
be found. Figure 2.1 illustrates the simulation setup and an exemplary temperature
field. It represents a typical shared office space with numerous desks, occupants and a
partition. The downward facing side is a window facade as indicated in Figure 2.1a.
The internal heat sources are given by the 16 occupants, 24 light modules and
computers placed in front of each occupant. The conditioned air is introduced by 14
ceiling swirl diffuser inlets and discharged by 3 outlets, as depicted in Figure 2.1a.
The mass flows collected in the vector rhsyp are varied to excite the room in multiple
ways. The corresponding supply temperatures Tsyp are set to 17 °C when rhsup > 0
and otherwise represent the local room temperature. The exhaust conditions, given
by Texn and mheyp, are a results of the supplied mass flows to satisfy the conservation
equations for mass, momentum and energy (1.5).

For defining the various AC operational scenarios, the office is divided in three similarly
sized zones and each zone is operated with different Air Changes per Hour (ACH)
as described in Figure 2.2. Zone 1 and 2 are separated by a partition. Each zone
has multiple inlets and one outlet. In most cases, the middle zone 2 is operated
with an air change rate of 3 ACH. Simultaneously, the air change rate of the outer
zones is gradually increased from 1 to 5 ACH. Each operational mode is combined
with one out of three outlet setups where either the outlet in zone 1 or 2 is closed.
Additionally, one extreme operational mode is added where the air change rate in
zone 2 is reduced to 1 ACH and the outer zones are operated with the maximum mass
flow of 5 ACH. This inlet condition is also combined with the three different outlet
setups. Figure 2.2 illustrates how inlet and outlet conditions are combined for the
simulations. Furthermore, four unidirectional ventilation conditions are investigated
where the outer zones are operated dominantly and either the supplies or the exhaust of
a zone are activated. ANSYS Fluent is used to simulate the steady-state temperature
and flow conditions of the N.¢q = 18 different ventilation scenarios which serve as a
reference for the following model derivation.

Only the supply and exhaust conditions are varied in the different simulation setups
while all other boundary conditions, such as occupancy, lights, computers and outside
conditions are maintained. Since the simulated office space is surrounded by other
offices all internal walls are assumed to be adiabatic except for the window facade.
The external boundary conditions correspond to an exemplary sunny day in Stuttgart
at the end of March. Solar radiation enters the office through the window front
and is computed for a sun position around noon. The resulting solar influences are
calculated based on Fluent’s solar ray tracing algorithm [5]. The outside temperature
is 15°C. These boundary conditions in combination with the different ventilation
setups of Figure 2.2 lead to average room temperatures that vary between 23.2 °C and

14



2.1 CFD Simulation Setup

Zone 1 1 Zone 2 1 Zone 3
i i
1
z1 ) © outlets |
— o inlets : —
° ' °
xr3 1
1
[ ] ( L 1]
1 1
1 1
1 1
) [ |
[ C VI C C ] ! [
° ° : Y O : ° 10m
o o » @o o G0 o i
1 1
: ) I ) ; ) —)
! — =
oo o Po@o o@ Go O
=X A—i 0 | ; HI = == =) F
e ) f ° ° | R
i T
1 . 1
occupants ! window facade ! light modules

20.4m

(a) Top view of CFD simulation setup.
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(b) Exemplary result for the temperature distribution where zone 1 and 3 are
operated with 4 ACH and the outlet of zone 2 is closed [41].

Figure 2.1: CFD simulation of open-plan office used as reference for data-based mod-
eling.
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Inlet conditions
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Figure 2.2: Combination of inlet and outlet conditions for the different ventilation
scenarios.
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31.6 °C depending on the applied air change rate. A more detailed description of the
ventilation setups and the corresponding room conditions is provided in Appendix A.2.

One exemplary simulation output for the temperature distribution is shown in Fig-
ure 2.1b. The pictured temperature field corresponds to the ventilation condition
where zone 1 and 3 are operated with an air change rate of 4 ACH and zone 2 with
3 ACH whereas the outlet in zone 2 is closed. As a result, the outer zones with a higher
ventilation rates have lower temperatures, especially in zone 1 where the partition
partially blocks the air exchange.

2.2 Data-Based Modeling of Temperature Field

CFD simulations give a very detailed representation of the room conditions but are
computationally expensive and require a high implementation effort. Furthermore,
the knowledge of the exact room geometries, materials or boundary conditions are
often unknown, not to mention disturbances by moving occupants, changing weather
conditions and varying usage of devices. This disqualifies the application of CFD on
building level for most control approaches. Zonal models, as presented in [81] and [102],
can provide a higher resolution of the room conditions but require careful calibration
including detailed measurements and a high expert knowledge for implementation.
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Both, zonal models and CFD, are very sensitive to changes in the room layout, such as
restructuring of work stations, desks and partitions what can happen regularly in office
buildings. This introduces a high complexity for large-scale commercial buildings and
the need for monitoring the exact room setup throughout the operational life. Besides
the high computational effort and complexity, disproportionate many sensors and
advanced monitoring systems would be necessary to provide all required information
for an application of these approaches for building control. However, the available
measurements on room level are commonly limited to air temperatures Ty, and inlet
or outlet conditions. Consequently, the room temperature is commonly assumed to
be uniformly distributed so that one or the average of multiple sensor measurements
serves as representative temperature value for further control actions. Certainly, an
increasing number of sensors improves the knowledge about the spatial room conditions
but enhanced control methods also require information how to interpolate between the
discrete measurements and how changing AC operation affects the local conditions.
To overcome the challenges of the described physics-based models, a purely data-based
room model is designed which only uses available measurements instead of requiring
universal knowledge about the building geometry, materials, operation and usage. The
local temperature measurements can be considered as samples of a specific probability
distribution and estimating the hidden spatial process - here the temperature field -
refers to sampling from this distribution. Due to its beneficial properties, a commonly
applied distribution is the multivariate Gaussian distribution

P(T) = (2n) # |Kp| Fexp (— (T — ) K (T - ) (21)

where T represents the vector of temperature samples and D indexes the n dimensional
set of all considered observations. Using the multivariate Gaussian distribution allows
for a concise formulation based on the mean vector p and the covariance matrix Kp
as well as efficient interference to define conditional distributions [66]. The GP
regression approach provides the framework to specify g and Kp based on a finite set
of observations. It further enables to incorporate prior assumptions on smoothness
or other known process characteristics and thus is especially useful for an estimation
based on uncertain or limited data. This describes also the main advantage over other
ML methods, for example ANN. The GP method provides a better understanding how
the predictions work, thus leads to well-interpretable results. Moreover, measurement
noise can be taken into account and each prediction value is inherently associated
with a variance information. This explains why GP regression was successfully applied
earlier for predicting spatial temperature distributions [29, 66]. Therefore, this method
is adapted in the following and extended for mapping the influence of inlet and
outlet conditions while only easily accessible environmental measurements are used
[41]. Since the sensor amount and location directly define the available training data,
intelligent sensor placement strategies are developed subsequently. Different strategies
are compared and evaluated according to their predictive qualities.
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Figure 2.3: Monitoring points and possible sensor locations for the office space placed
in the height of 2 = 1.2m [41].

2.2.1 Gaussian Process Model

The steady-state temperature field based on a specific ventilation setup is a location-

dependent variable T'(x), where x = [1:1 o l‘g}T denotes the Cartesian coordi-
nates. Generally, the area of interest for the AC task is limited to the occupied
zone which corresponds to the lower part of the room. For simplicity and due to
mostly small vertical temperature differences within this zone, the 3D temperature
distribution is represented by the 2D plane in the height of z9 = 1.2m according to
the colored surface in Figure 2.1b. Consequently, the location vector can be reduced to

X = [ml a:g,] T for the following analysis. Furthermore, the temperature is monitored
by multiple sensors distributed over the space. It is assumed that these sensors are
located within the occupied zone. Figure 2.3 illustrates the Nm = 192 considered
monitoring points in the xz1-x3-plane which represent all possible sensor locations.

Modeling the effect of different ventilation scenarios requires additional knowledge
about the varied boundary conditions. The actual temperature is consequently a
function of the location as well as the supply and exhaust conditions, occupancy,
internal heat sources, weather conditions and possible other disturbance effects. Thus,
modeling the temperature field aims to find a mapping function®

T= f(2) (2.2)

2Generally, GP regression includes the Gaussian noise term e ~ N (0,0, ) so that T = f(z) +e.
However, since all measurement data are extracted from CFD simulations, they can be considered
as noise-free and € is neglected hereinafter.
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where all influencing factors are collected in the vector z. Assuming every finite
collection of local temperature measurements T; = T'(z;) is normally distributed, the
latent function f(z) can be defined using GP regression [66].

The observation probability density of the temperature P(T'|f(z)) given by the prior

of the GP can be conditioned on a set of observations D = {(z;,7;) |t =1,...,n} [84].

T
The observed temperatures T; are collected in the vector T' = [Tl Tn] and

the corresponding inputs z; (referred to as regression or feature vectors) in the matrix

T
of observations Z = [zl zn] . Since a GP is used as a prior on f, the joint

distribution of the function values f = [ flz1) ... f (zn)} T is multivariate Gaussian
P(fID) =N (p, K) (2.3)

with mean p and covariance matrix K [67]. The mean

p=p(Z)=[u(z1)...p(zn)]" (24)

and the covariance function x(2;,2;) that specifies the matrix

k(z1,21) ... K(z1,2n)
K=K(Z,2)= ; : : (2.5)

k(zn,z1) ... K(Zn,2zn)

provide multiple degrees of freedom for the modeling. For the temperature prediction
task, a deterministic mean p is assumed which can either be prespecified as an overall
average of the room temperatures or identified during the model training based on the
available measurements. Both approaches are applied and compared in Section 2.2.3.
The selection of the covariance function (2;,2;) is a structural decision that defines
the process properties. It can be interpreted as a similarity measure that defines the
degree of correlation between the outputs based on the distance of the inputs. Five
commonly applied candidates for the covariance function [84], as listed in Table 2.1,
are considered and compared according their ability to adequately represent the
spatial temperature field. Each kernel depends on the hyperparameters 6 which
control its properties and provide a further degree of freedom. The hyperparameters 6
encompass the characteristic length scale o, the signal standard deviation oy and
the scale-mixture parameter (. These parameters are defined by maximizing the log
likelihood function of the GP regression model [10]

In P(T|0) = —% In|K|— %(T — )T KT~ )~ 2 in2). (2.6)
The hyperparameters @ are a structural model decision which is why the full knowledge

about the room conditions is used for identifying € of each kernel candidate. Thus, the
complete set of available observations is applied so that all Ny, monitoring points are
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Table 2.1: Kernel function candidates (z;,2;) for the temperature prediction model,

where HAzinQ = \/(zi—zj)T (zi —zj).

Kernel function Definition for x(z;,2;)
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20?
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considered. Note that (2.6) can also be evaluated based on a subset of observations
which will be the case for a real-world application where the available number of
measurements is limited. However, full knowledge is used for the kernel selection to
separate this step from the sensor placement problem. Since the evaluation of different
kernels can only be performed when the model input z is selected, a comparison of the
covariance function candidates is conducted in combination with the feature selection
in the following section.

The GP modeling approach enables predictions of an unknown output temperature Tpre
by considering the joint Gaussian distribution

T N w(Z) K Kk(Z,zpre)
{Tpre} N ( Ll(zpre)} ’ [”(Zpreaz) ’f(zprevzpre)]> ’ 27)

The sought estimate of Tpre at a test point zpre is then given by the posterior mean
and variance

ppre = (1 Zpre) + K(2pre, Z)K (T — p(2)) (2.82)
agm = k(Zpre, Zpre) — K(Zpre, Z)K_llc(Z,zpre) (2.8b)

which is derived in Appendix A.1.
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2.2.2 Selection of Kernel Function and Model Input Definition

The input vector z € R™= for the GP model can be chosen in different ways. The defi-
nition of the optimal input combination (feature selection) is an important part of the
modeling process and a crucial impact factor for the predictive model capabilities [47].
The more data are available the better the trained prediction model. However, using
the wrong (irrelevant) data can lead to overfitting and poorly generalizing models.
Hence, the relevance and composition of potential model inputs is considered in
addition to the structural decision regarding mean value p and covariance function k.
For the following analysis, the temperature prediction task is divided into two levels
of complexity:

1. Spatial temperature prediction with fixed HVAC operation (mapping function
for one CFD scenario),

2. Spatial temperature prediction with varying HVAC operation (mapping function
for all CFD scenarios).

The model’s input selection for the first task is trivial because the steady-state tem-
perature T, resulting from the ventilation scenario r only depends on the location x;
when all other boundary conditions are constant. In this case, the set of Ngens sensors
distributed over the room for monitoring the local temperature provides the training
data Tr ={(x;, Tir)|i = 1,..., Nsens } and the GP model has the form

Ty = fr(xy)-

Predicting the local temperature based on varying HVAC operation, on the other hand,
requires additional knowledge about the boundary conditions. Instead of training
separate models f; for each ventilation scenario r, the target model ought to map the
temperature profile for an arbitrary HVAC mode. Thus, the observed temperature

Tir = f(zir)

also depends on the supply conditions and occurring disturbances, where disturbances
refer to occupancy, boundary and weather conditions as well as internal loads. Mea-
surements of the inlet and outlet conditions are commonly monitored in commercial
buildings and thus can be included in the list of potential model inputs. Although
internal and external disturbances have a significant impact on the temperature profile
of a real-world office space, they are not varied over the considered CFD simulation
setups and therefore neglected for the following analysis. Nevertheless, the modeling
approach and corresponding analysis can be easily extended by additional inputs for
mapping the influence of further parameters.

In a first analysis, each ventilation scenario is considered separately. This corresponds
to the task of mapping one of the simulation setups outlined in Figure 2.2. Hence, the
GP model only needs to represent the steady-state profile due to one specific supply
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Table 2.2: Comparison of different kernel functions x(z;,z;) for the setup-specific
temperature prediction model based on the prediction error of over 140
random sensor placements.

GP MSE | Squared Rational Exp. Matérn Matérn Teens
model Exp. Quadratic 3/2 5/2
ave. 0.300 0.285 0.291 0.286 0.288 0.354

fr(x;)  min. 0.235 0.229 0.233 0.231 0.232 0.339
max. 0.457 0.338 0.431 0.395 0.423 0.394

and exhaust condition. Since all boundary conditions are constant and the HVAC
system is operated in a fixed mode, the only necessary input information is given by the
location x; and the model input is set to z; = x;. With this input definition, all kernels
of Table 2.1 are applied and compared according to their predictive performance. After
identifying the setup-specific hyperparameters 6, and prior mean u, based on (2.6)
using the full data set Dr = {(x;,Tir)|¢ =1,..., Nm}, the prediction accuracy of the
different kernel functions is compared for multiple random sensor placements. The GP
model is trained with the tuples of the sensor location and the corresponding output
temperature 7 = {(x;, Tir)|i = 1,..., Nsens} and then used to predict the remaining
room temperatures based on (2.8a). Figure 2.4 illustrates the model training process
when further sensors are added to the setup and provide supplementary observations,
thus improve the prediction of the spatial room conditions. The GP prediction
Tap,ir = fr(x;) is compared to the ground truth Torp i by evaluating the average
Mean Squared Error (MSE)

Netd N
1 1 )
MSE = — T —T1ap i) . 2.9
N ;:1 o ;:1( CFD,ir — TGP ir) (2.9)

As described above, the training data 7, comprise the Nsens sensor measurements.
This means that each sensor setup j results in a different training set 7,; which
is represented by a particular matrix of observations Z,; and corresponding vector
of outputs T',;. Consequently, the sensor setup inevitably influences the prediction
accuracy, as illustrated in Figure 2.4, and can also lead to a different ranking of the
kernel candidates. Therefore, more than 140 random sensor configurations of 5 to 10
sensors are evaluated and the average prediction error of all configurations is used
for the selection of the kernel function. Note that using more sensors generally leads
to lower prediction errors. The random configurations are chosen based on 5 to 10
sensors because particularly the performance for realistically sized sensor networks is
of interest for a later application of this method. Table 2.2 lists the average, minimum
and maximum MSE for the applied sensor setups. The range between the minimum
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Figure 2.4: Visualization of the training process while increasing the number of sensors
using the Rational Quadratic Kernel and Setup 18 (see Appendix A.2).
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and maximum MSE clearly demonstrates the importance of the sensor locations
and emphasizes that unfavorably placed sensors provide a poor data base for the
corresponding model. However, unfavorably selected sensor positions also affect the
performance of the benchmark assumption of well-mixed conditions where the average
sensor temperature

NSGIIS

1
Tsens,ir (2.10)

NSQDS

Tsens,r -

serves as the best guess for a uniform temperature field. According to Table 2.2, all GP
models outperform this standard approach regarding the average MSE. Furthermore,
the achievable prediction accuracy is comparable for all applied kernels. Only the
maximum error, which is related to the worst sensor placement, reveals some differences.
Here, the Rational Quadratic Kernel shows the most beneficial properties by leading
to lower predictions errors even for unfavorable sensor setups. In summary, this
kernel yields the best results regarding the average, best and worst case performance
and is therefore chosen for the following analysis. The suitability of this covariance
function, can also be explained by the expected characteristic of the temperature
profile: The Rational Quadratic Kernel is equivalent to an infinite sum of Squared
Exponential Kernels with varying length scales o; and hence suitable for functions
that vary smoothly across different length scales. The scale-mixture ¢ defines the
weighting of the different length scales at which a small value allows for mapping
local variations while larger scale trends can be still captured by o;. For { — oo,
the Rational Quadratic Kernel equals the Squared Exponential Kernel. Similarly to
the described kernel characteristics, temperature is expected to vary smoothly over
the room due to relatively high mixing effects what suggests a large length scale.
However, local heat sources, like electrical devices, occupants or supplies, influence
the temperature distribution selectively as it can be observed in Figure 2.4. These
effects can be incorporated by a smaller value (.

A comparison between the GP model prediction Tgp and the average sensor tempera-
ture Tsens by means of one exemplary setup is depicted in Figure 2.5. The partition at
approximately 1 = 0 reduces the mixing effects and produces a significant temperature
gradient within the office space. As a consequence, the assumption of well-mixed
conditions does not provide a good representation of the room conditions. The GP
regression approach interpolates between the sensor measurements and improves the
prediction by over 60 % so that the overall temperature profile is mapped appropri-
ately. Only the temperature peaks at local heat sources cannot be captured yet due
to the limited number of measurement samples. Mapping these effects would require
additional sensors at the corresponding locations.

Another benefit of the GP regression approach originates from the associated pre-
diction variance (2.8b). This can be interpreted as an indicator for the certainty of
the prediction. Hence, a high variance points to a high risk of an incorrect estimate.
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Figure 2.5: Comparison of the GP model prediction Tgp and the average sensor
temperature Tsens for estimating the ground truth Topp of Setup 18.

The 95 % confidence interval (£20(x)), shown in Figure 2.4, highlights the higher
uncertainty for few sensors and the narrowing bounds while the training set is ex-
tended by additional observations. Consequently, the variance of the GP prediction
does not only indicate the prediction quality but also points towards good or bad
sensor configurations which is revisited for the optimization of sensor locations in the
consecutive section.

The previous results show the general validity of the regression method and allow for
spatial temperature predictions based on a specific ventilation condition. However,
intelligent control approaches require a mapping how the operation mode influences the
temperature profile. In contrast to the previous evaluation, the final model should be
able to map the temperature distribution resulting from various ventilation conditions.
Hence, the temperature does not only depend on the location but also on the supply
and exhaust setup. Therefore, the model input is extended by the supply and exhaust
conditions given in terms of the corresponding vector of inlet and outlet temperatures,
T'sup and Texp, as well as the mass flows, 1irsup and ey :

" (2.11a)

mT

— [T T . T T
Zx = [X Tsup Mgup Texh exh

Furthermore, a second approach for the input definition is considered. Instead of using
T

the Cartesian coordinates x = [xl a:g] , the location can be alternatively defined

based on distances to the corresponding inlets and outlets. This relative definition of

the location is outlined in Figure 2.6. The motivation for this alternative representation
is based on the assumption that the impact of an actuator or a disturbance source is
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outlet

L

Figure 2.6: Distance-based model generation for predicting T; [41].

connected to the distance between the point of interest and the source. Consequently,
a second input vector is taken into account for the GP regression model:

T T . T T T .7 1T
5= [JSUP TSUP Mgsup 6cxh Tcxh mcxh] (2'11b)

where dsup contains the distances to all supplies and doxp, to the exhausts. Equivalently
to the previous separate setup consideration, the five different stationary kernels
presented in Table 2.1, are again compared regarding their ability of mapping the
temperature profile but now including various ventilation conditions. Hence in this case,
the training set encompasses the input and output data from all ventilation scenarios
T={(zir,Tir)|i=1,...,Nsens, 7 =1,...,Netq}. Since the input vector elements of
zir do not have the same unit/scale, the columns of the corresponding matrix of
observations Z are standardized to ensure an equivalent impact on the Euclidean
norm ||Azij||2 in the kernel function x(z;,2;). The previously considered > 140
sensor configurations are applied and evaluated for the various kernel functions.
Table 2.3 lists the resulting average MSE for the two input vector definitions (2.11).
Comparing the results of the approaches T;,. = f(z(,)mn) to the previous separate
approach T;, = fr(x;) (according to Table 2.2) shows that the prediction error is lower
for the scenario-specific models. The reason for this result is the higher complexity of
the second modeling goal. Finding one model that describes the spatial relations for
various boundary conditions is more difficult than only mapping one fixed temperature
profile. The differences between the different kernels are again relatively small but
remarkable deviations are visible for the maximum prediction errors. Regarding the
average, minimum and maximum MSE for both, the location- and distance-based input
combinations, the Rational Quadratic Kernel leads once more to the best performance
and is consequently retained for the following analysis where the two approaches are
evaluated in more detail.

A comparison of the MSE values in Table 2.3 supports that the selected elements
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Table 2.3: Comparison of different kernel functions (z;,z;) for the temperature
prediction models based on the prediction error of over 140 random sensor

placements.
GP MSE | Squared Rational Exp. Matérn Matérn Taens
model Exp. Quadratic 3/2 5/2
ave. 0.485 0.273 0.314 0.331 0.372 0.354

f(zx,ir) min. 0.257 0.229 0.240 0.235 0.242 0.339
max. | 1.276 0.386 0.578 0.827 0.925 0.394

ave. 5.058 0.301 0.312 0.309 0.320 0.354
f(zs) min. | 4.951 0.240 0.246 0.243 0.245 0.339
max. | 5.222 0.423 0.586 0.769 0.620 0.394

of the input vector z have a significant impact on the prediction quality. To define
the best feature vector, not only the two vectors (2.11) are considered but also their
condensed forms

. T
2P =xT Tip mhdp) (2.12a)

. T
2P = [0dup Toup M) (2.12b)
where the exhaust conditions are neglected. Accordingly, four different input com-
binations are compared regarding their influence on the prediction accuracy of the
resulting GP model:

TP =FET) Te=flx) GP=/(5P) and T = f(z).

The evaluation is again conducted based on the performance of the > 140 sensor
setups to obtain a representative result. Since the optimal hyperparameters 6 depend
on the applied input vector, 6 is identified separately for each modeling approach
where the input z;,. is replaced by the model-specific representation. The training
data are provided by the monitored outputs of the assumed sensor configuration, thus
T ={(zir,Tir)|li=1,...,Nsens, 7 = 1,..., Negq }. Subsequently, the trained models are
utilized to predict the temperature at every points of interest for all ventilation
scenarios and the MSE (2.9) serves as indicator for the model performance. Each
prediction is further associated with a variance, according to (2.8b), to indicate the
general prediction certainty. Therefore, the average prediction variance

1 Neta 1 Nm

_2 2

o= — E — E o (z; 2.13
chd — Nm — ( ”") ( )
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Figure 2.7: Comparison of location- and distance-based GP model approaches and
different definitions of the mean. The MSE and variance are averaged over
all monitoring points and ventilation scenarios.

is introduced as additional measure for the model quality. The dark blue bars of
Figure 2.7 show the average mean and variance values over all monitoring points and
ventilation scenarios according to (2.9) and (2.13) respectively. Similarly to the out-
come of Table 2.3, it can be observed that all GP approaches (2.11) and (2.12) improve
the temperature profile estimation compared to Tsens. However, the resulting MSE is
also similar for all feature vector candidates. The actual benefit becomes obvious when
the model variance 52 is considered. Comparing the variance of the average sensor
temperature Tuens with the GP model results reveals the significant improvement of
certainty. Furthermore, the model variance using the larger feature vectors (2.11)
is higher than for (2.12) where Ty, and mhey, are neglected. Consequently, the
inlet conditions are not only important but also sufficient for the temperature field
estimation. The outlet conditions do not provide significant information content that
outweighs the uncertainty of the higher dimensional input combination. The higher
number of features introduces a risk of overfitting which increases the variance of
the predictions [47]. This effect is also visible when the location- and distance-based
models are compared. The greater number of model parameters for the distance-based
approaches, (2.11b) and (2.12b), results in a higher variance although the average
prediction accuracy is almost identical.

The achievable prediction accuracy is related to the present ventilation condition.
The individual results for each CFD simulation scenario r € {1,..., N¢tq} are depicted
in Figure 2.8. It contrasts the MSE for the different GP models with the average
sensor temperature Tsens. In most cases, the GP models perform better but occasional
outliers occur, e. g. due to inadequate model extrapolation when sensors are placed
unfortunately. The data-based GP model only learns the effects that are part of the
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Figure 2.8: Comparison of different GP models for the N.¢q considered ventilation
scenarios.

training data. Therefore, the small number of sensors limits the information content
captured by the observations such that low system excitation at the sensor positions
can occur for some of the simulated ventilation scenarios and sensor setups. For
measuring the actual benefit of the GP model compared to the benchmark Tsens, the
reduction of the average MSE

. MSE(Tsens,r) - MSE(TGP,T)

— -100% 2.14
MSE(Tsens, ) ’ (2.14)

T

is examined. The first half of Table 2.4 lists the corresponding average, minimum
and maximum values of D,. Although the difference between the averaged MSE for
the GP model and Tsens (see Figure 2.7) is relatively small, the estimation error for
a specific ventilation scenario can be reduced by up to 56 % using the model T5".
Moreover, this value is based on the average MSE of > 140 sensor configurations and
even includes the impact of unfortunate setups. On the other hand, the worst case
scenario introduces a deterioration of up to —51 % for the model Tj. In this case, the
training data do not include enough information that the high dimensional, distance-
based GP model allows for valid interpolation between the sensor measurements for
the considered ventilation condition. Combining the observed results suggests that
the model T)S(Llp is the best compromise between accuracy, variance and worst case
assessment. This approach provides the best average prediction accuracy and the
lowest variance. Furthermore, it incorporates the highest improvement compared
to the average sensor temperature Tsens. Although this model already yields an
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Table 2.4: Minimum and maximum improvement D, (2.14) for all GP model ap-
proaches compared to the sensor average.

| T TR Ty T | AT ATRP ATy AP

X

NN D %) | 127 190 70 174 | 187 196 213 218
min(D,) (%] | -106  -3.2  -50.9 -193 | 32 11 1.0 28
T

max (D) %] | 543 558 51.6 517 | 46.7 496 511 535
T

average improvement of 19 %, some outliers still degrade the predominant advantages.
Figure 2.8 reveals that the prediction error of the GP model is similar and even
worse than the benchmark Tsens for the ventilation setups 9 to 11. Referring to the
corresponding temperature profiles depicted in Figure A.1 exposes that these scenarios
result in generally higher temperatures due to the lower ACHs. Furthermore, the local
temperature differences are small such that Teens already results in a valid estimation
and the actual potential of improvement is relatively small. Additionally, the prior
mean of the GP model, which is based on all ventilation scenarios, is not a good
presumption for these setups. This entails the problem that the GP prediction seeks
towards the prior mean where no training data are available. Thus, the estimated
temperature for locations far away from the observation samples differs from the actual
temperature level. Therefore, a modified assumption on the prior mean is examined
for further improvement.

2.2.3 Analysis of Different GP Mean Definitions

So far, it is assumed that the mean of the GP model is constant and fixed for all
ventilation scenarios. As observed in Figure 2.8, this is only a good assumption if
the target room temperature is always set to a similar value. However, the target
value can vary depending on seasons or comfort requirements [3]. In particular, the
average room temperature for the simulated cases varies between 23.2 °C and 31.6 °C.
Therefore, it is meaningful to imply the available knowledge of the average room
temperature by setting the prior GP mean to pu = Tuens instead of one fixed value for
any air conditioning mode. This corresponds to the modeling approach

Ty = Tsens + AT (2ir) (2.15)

where only the temperature deviations AT(z;) must be mapped by the GP model.
Hence, AT(z;) can be modeled by a GP with zero mean:

P(AT = f|Z,0) =N (0,K).
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Figure 2.7 shows that using the prior knowledge about the general temperature level
allows for additional 5 to 10 % reduction of the MSE. Furthermore, the variance is
notably reduced, particularly for the distance-based approaches what makes them
competitive to the location-based model. Table 2.4 reveals the substantial benefit of
including a scenario dependent mean, thus modeling temperature deviations instead of
the absolute temperatures. The worst case, namely ming (D), is improved significantly
and extrapolation errors are reduced to a great extent. Now, the GP models outperform
the benchmark Tgens for all ventilation setups as indicated by the positive minimum
improvement. The best input combination for mapping the temperature deviation
is given by zgup. This approach leads to the lowest MSE and 52 as well as to the
greatest improvement D, compared to the benchmark. Thus, it is preferred over the
model T)S(up and serves as modeling assumption for further investigations.

The previous analysis was performed based on multiple random sensor placements
to prove the applicability and superiority of the GP approach even for little thought
out sensor setups. Therefore, the evaluation also includes sensor configurations that
are disadvantageous and thus increase the average prediction error. Revisiting the
values for the minimum MSE in Table 2.3 shows the true potential of the GP model.
Although none of the applied sensor configurations is optimal, an average improvement
over all ventilation scenarios of more than 30 % can be observed for the best sensor
setup. To exploit the full potential of the GP modeling approach, optimal sensor
placement strategies are derived in the next section.

2.3 Optimal Sensor Placement

The sensor locations are crucial for the prediction accuracy because they are the only
source for training data. This can be illustrated by the scenario where all sensors are
located close to heat sources such that an overestimation of the room temperature is
very likely. Defining the best sensor configuration requires a combinational analysis
incorporating ( NI\S[::]S) evaluations. This can only be evaluated for a low amount of
sensors or a small set of possible sensor locations. For example in the present case,
over one million setup evaluations are necessary for placing three sensors whereas
placing five sensors already encompasses over two billion possible combinations. To
circumvent the infeasible computational effort, greedy optimization algorithms provide
a useful alternative to solve such kind of optimization problems [47]. In this context,
forward or backward stepwise optimization are commonly applied algorithms to find
the most suitable set. More detailed information about their functional principle can
be found in Appendix A.3.

In the following, three different optimization approaches are applied and compared
for the optimal sensor placement task:

- Stepwise forward selection (Algorithm A.1)
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- Stepwise backward selection (Algorithm A.2)
- Differential Evolution (DE) [92].

DE is a population-based genetic algorithm for global optimization [12, 14] and serves
as comparative reference for the quality of the greedy optimization results. The DE
optimization is initialized with the results from the greedy algorithm and the iteration
is limited to 1000.

Still unanswered is the question how to define the objective cost to evaluate a specific
sensor setup. Generally, the information content that is observed by the sensors must
be maximized. This can be done by optimizing the training data so that either the
prediction error or the uncertainty about the prediction is minimized. Therefore, two
approaches are applied in the following and subsequently compared regarding their
placement results.

2.3.1 Optimal Sensor Placement based on MSE

The most intuitive choice as measure for optimal placement targets to minimize the
MSE of the temperature estimation based on a specific sensor setup s. Using the
MSE as placement criterion, the vector of optimal locations is given by

Necta N
. .1 1 9
sysE = argmin MSE(s) = argmin —— —_ Z(TCFDJT — T(}P71'T(S)) (2.16)
seM seM chd —1 Nm i1

where Tgp i (8) = Tgp (2ir, Z(8)) refers to the predicted temperature which is a result
of the available training data coming from the sensor measurements Z(s) and the
considered actual input z;.. M defines the set of all Ny, possible sensor locations,
thus monitoring points as shown in Figure 2.3. The best locations for a uniform
temperature assumption, for example, results in a sensor setup where the average
sensor temperature matches the mean room temperature as closely as possible for all
considered ventilation scenarios.

The optimization problem (2.16) is solved using the three introduced algorithms.
Figure 2.9 shows the average MSE and the variance of the GP predictions for optimized
placements. As expected, the prediction accuracy increases when more sensors are
placed within the room. Increasing the amount of sensors from 1 to 20 reduces
the MSE from 0.4 to 0.1K2. A comparison of the forward and backward greedy
results reveals that the backward selection outperforms the forward selection for large
sensor networks but is less suitable for a low number of sensors (<7). The global
optimum refers to the evaluation of the complete combinatorics and is computed for
the placement of up to three sensors. A comparison to the DE algorithm shows that
the genetic algorithm results in the same or at least a competitive solution to the
global optimum. The placement of the first 14 sensors surpasses the greedy algorithms
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Figure 2.9: Average MSE and standard deviation for optimized sensor positions based
on the different optimization methods. The shaded area indicates maximum
and minimum values over all ventilation scenarios.

but matches the outcome of the backward selection for a larger amount of sensors.
Consequently, no better locations can be found within the defined iteration limit of
the DE.

The corresponding model variance decreases monotonically when sensors are added to
the network. However, the percentage of improvement is highest for placing the second
sensor. Adding more sensors still reduces the variance but with lower associated
benefit. Although the forward selection leads to a slightly lower variance compared to
the other algorithms, the applied optimization method does not impact the model
uncertainty remarkably.

The superiority of the combinational optimization or the DE becomes obvious when
the results for the first optimal location are compared. Since the first evaluation
of the forward selection is identical to the combinational analysis and the number
of iterations for the DE are sufficient, placing one sensor leads to the same (and
optimal) position for all approaches except for the backward selection as shown in
Figure 2.10. This location corresponds to the spot where the temperature is closest to
the average temperature for all ventilation scenarios. The backward selection method
has deficits for a small amount of sensors since useful locations are already excluded
in previous steps and cannot contribute anymore. The disadvantage of the stepwise
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Figure 2.10: Optimized sensor positions for minimizing the MSE based on four different
optimization algorithms.

forward greedy algorithm opposed to the global optimum is explained by the fixed
first position such that the additional degree of freedom of placing two sensors cannot
be used in full extent. While the global optimum requires replacing the first optimal
sensor, the forward algorithm must proceed based on the previous setup and thus
leads to suboptimal placement. Nevertheless, similarities can be observed for all
results. The first sensor is placed centralized within the occupied zone and close to
the window. Due to its proximity to the internal heat sources, this sensor incorporates
a great amount of information how the heat transfer is affected by the ventilation
condition. Furthermore, the central location is a good representative for the overall
room condition because the middle zone is mainly operated moderately while the outer
zones are exposed to more extreme conditions. Subsequently, additional sensors are
added to the unexplored corners and result in a uniformly distributed sensor network.
Before a more detailed evaluation of general placement strategies is performed, another
definition of optimality for sensor positioning is introduced in the following.
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2.3.2 Maximizing Mutual Information

One major drawback of the MSE-based sensor placement optimization is the need for
detailed ground truth data. The evaluation of (2.16) requires reference measurements
with a high resolution of the actual spatial temperature profile. Therefore, a direct
application of this method to large commercial buildings is usually not practicable
unless general placement strategies can be derived from the MSE-based approach.
However, the structural properties of the GP model allow for an alternative considera-
tion which uses entropy as measure for the information content. Given the random
variables X1, X9,..., Xn, the joint entropy of a multivariate Gaussian distribution is
given by [20]

1
H(X1, X, Xn) = 5 log (2re)"|K|), |K|=detK (2.17)

and thus fully defined by the covariance matrix K. In the GP regression framework
K only depends on the matrix of observations Z and can be evaluated for arbitrary
inputs without the knowledge of the actual output. Subsequently, the entropy of the
GP model can be computed for all potential sensor configurations although the output
temperatures are unknown. An optimal sensor setup maximizes the information
content that is captured by the sensor measurements. This information content can be
quantified in terms of Mutual Information (MI), e.g. proposed by Krause (2008) [66].
MI defines the reduction of uncertainty about a random variable X when another
random variable Y is known. It can be expressed by the marginal entropies H(X),
and H(Y) and the conditional entropies H(X|Y), and H(Y|X) as

MI(X;Y) = H(X) - H(X|Y) = H(Y) — H(Y|X). (2.18)

Assuming Ngens < Nm sensors are placed on a subset S C M, the covariance matrix
of the room can be decomposed into

Ks Ks ams
Ky = ’ 2.19
M Kyns,s Kans (2.19)

where K g contains the covariances associated with the sensor locations, K M\S
the covariances of the remaining unmonitored points, and Ks a5 or K\ s,s the
coupled covariances. Using (2.18) to (2.19) allows to rewrite the expression for MI of
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the sensor and remaining room data:
MI(Xs; Xans) = H(Xs)—H(Xsjam\s)
= Jlog((@meyVer|Ks]) - Slog ((2me) | K spans
~Slog (|K 5 Ksjans])
- %bg (‘KEI (KS - KS,M\SK;/}\SKM\S,S) D

1 - ~
~5log <|I7KleS’M\SKAj\SKM\S’SD. (2.20)

In general, (2.18) permits two ways to compute MI. Choosing H(Xs) — H(Xs|a\s)
over H(X pn\s) — H(Xaq\s5)s) is beneficial for this application because it results in a
lower dimensional matrix for the calculation of the determinant in (2.20) due to the
generally valid relation Ngens < Nm — Nsens-

An optimal sensor setup achieves the highest reduction of uncertainty and therefore
maximizes (2.20). The optimal sensor locations are obtained by

sy = argmax MI(s) = argmin [T — KglKS,M\SKH\SKM\&S\. (2.21)
seM seM

As already mentioned above, this placement method has a crucial advantage over the
previously applied MSE criterion. The computation of MI only requires the covariance
matrix K of the GP model. Since K is fully defined by the hyperparameters 8 and
the matrix of observations Z, the sensor placement assessment can be performed
as soon as the hyperparameters are determined, e.g. based on a known process
characteristic. A possible implementation of this method for a real office space is
depicted in Figure 2.11. An arbitrary initial sensor setup sg can be deployed for the
collection of training data 7. Based on this first data set, the hyperparameters 6
are identified by maximizing the log marginal likelihood (2.6). Note that these
two steps could be skipped if a valid first guess of the hyperparameters is already
available, for example due to prior measurements in office spaces with a similar layout.
Extending the matrix of observation Z with all input vectors that correspond to a
potential sensor position allows to compute the optimal sensor configuration sy using
(2.21). The sensor setup is then rearranged accordingly to improve the quality of the
new observation data. After collecting additional training data, the first guess or
computation of the hyperparameters can be revised or verified based on the increasing
data set. If necessary, the GP model is adjusted and the sensor setup recomputed with
the improved model structure. As soon as the monitored data provide a good basis
for the identification of @ no further model update is needed and the final optimal
setup sy is obtained. Hence, defining the optimal sensor setup does not require
extensive measurements for collecting reference values as required for evaluating (2.16).
One update of the sensor configuration can already lead to satisfying results.
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Initial sensor setup sg

[ Collect training data 7o ]
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extend training data with [ Update hyperparameters ]
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0 still good choice?

. - .
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Figure 2.11: Application strategy for the optimal sensor placement based on maximiz-
ing MI.

Excursus: Greedy Optimization based on Mutual Information

Before comparing the optimal sensor setups for MSE- and MI-based placement,
an important property of the greedy MI-optimization is highlighted. Due to the
equality (2.18), the stepwise forward and stepwise backward algorithm solve the
equivalent but inverse optimization problem. This can be pictured by exchanging
MA\S with & which results in an equality of the forward selection of S and the
backward selection of M\ S and vice versa. The equality is emphasized by Figure 2.12.
The resulting values for MI are equivalent when one result is flipped vertically around
Nsens/2 = 96 sensors. Furthermore, a problem arises when applying the forward stepwise
algorithm: Since training data are only provided from active sensors, the number of
observations is given by Nc¢q - Nsens. The number of features, thus the dimension of

z,is Nz = Nsup(2+ Nsens). Therefore, the matrix of observations Z has fewer rows

than columns for Nsens < #“‘A‘fw) = 7 such that the influence of different features
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Figure 2.12: Comparison of forward and backward sensor selection for maximizing MI
based on (2.21).

cannot be distinguished due to missing observations. As a consequence, the optimum
is not unique and supposedly optimal locations result in high prediction errors as
depicted in Figure 2.12. Moreover, as soon as a sensor location is selected, its position
is fixed and unfavorable locations are carried along while the forward selection process
is continued. The backward selection, on the other hand, ensures meaningful positions
for a low number of sensors because the resulting configuration already incorporates
knowledge about the overall system by definition. The algorithm starts with full
system knowledge and excludes positions with low information content. This avoids
the problem of unknown cause-and-effect relationships. Since the MI values for forward
and backward selection are comparable and the prediction quality is significantly
better with backward selection for the relevant amount of sensors, only the latter is
used for the following comparison of MSE- and MI-based optimization.

2.3.3 Comparison of MSE and MI criterion

The predictive quality of the MI-optimized models is compared to the MSE-based
results. Figure 2.13a depicts the prediction error, variance and corresponding MI
for both approaches. The error made by the assumption of a uniform temperature,
thus averaging the sensor measurements, is also shown to highlight the benefit of a
higher resolving temperature model. It can be observed that the average prediction
accuracy of the maximized MI solution is lower than the achievable accuracy given by
minimizing the MSE, although the difference is relatively small for 2 to 8 sensors. While
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2.3 Optimal Sensor Placement

the gap between the prediction errors of the two methods increases with additional
sensors, the process variance of the MI solution undercuts the MSE approach. This
property highlights the fundamental idea of MI, reduction of uncertainty, and is further
demonstrated by the difference in mutual information for more than 7 sensors.

A more detailed analysis of the sensor positions reveals additional differences between
the two methods. These considerations allow to derive general relations for optimal
placement strategies that can be applied when a detailed computational evaluation is
not possible. To get a general idea of where sensors should be located, the monitored
temperature ranges of optimally placed sensors are further investigated. Therefore, the
normalized deviations from the present average temperature level depending on the
sensor amount are evaluated. The normalized temperature deviation for a ventilation
scenario r is defined as

AT, (s) = Terp,r(s) —Tr (2.22)

TTIIla.X _ T/Irflln
'R 1 N min . max
where  Tr = §=> . "  Tcrp,ir, Tr'" = min Teppir, Tp ™ = maxTepp i
m iEM ieM

The normalized temperature ranges at the optimized sensor locations are evaluated
according to (2.22) and visualized in Figure 2.13b. The marks represent the average
normalized sensor temperature deviation over all CFD results:

Neta Nsens

= 1 1
AT = AT (s5). 2.23
N ; ; r(59) (2:23)

TMsens

The shaded area shows the range between averaged minimum and maximum sensor
temperatures:

1 Necta
ATin = in AT, 2.24
N 2 e r(s) (2.24)

r—

- Neta
ATmax = max ATr(s). (2.25)

Nega SES
r=1

A value close to zero of AT suggests sensor positions close to the average room
temperature whereas a high range advises to choose sensor locations that cover a
large range of occurring temperatures. A normalized temperature of +1 refers to a
sensor location at the global extreme values. Figure 2.13b compares the placement
characteristics for both approaches and illustrates their main difference. High precision
of the predictions requires a sensor network that monitors a large range of the present
temperatures. Reduction of uncertainty, on the other hand, is based on locations
that are within the region of average conditions. The corresponding optimized sensor
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Figure 2.13: Comparison of MSE-based and MI-based optimization [44].

40



2.3 Optimal Sensor Placement

locations are given in Figure 2.13e for three and ten sensors. The positions of the three
sensors are uniformly distributed and similar for both methods. This matches the
resemblance regarding prediction accuracy (Figure 2.13a) and covered temperature
range (Figure 2.13b). However, placing ten sensors reveals the impact of the different
objectives. While MI-based positioning continues with a uniform sensor distribution
that minimizes the uncertainty, MSE-based optimization concentrates additional
sensors around areas with high temperature gradients and leads to sensor clusters.
This effect is also visible in Figure 2.13d and results in lower average distances between
the sensors for an increasing sensor amount. Adding more sensors to locations with
higher gradients improves the predictive quality of the GP’s posterior mean but does
not reduce the uncertainty about the holistic room conditions in an analogous extent.
Moreover, the clustering and biased average sensor temperature explains the increasing
error of the average sensor temperature estimate Thens depicted in Figure 2.13a.

The question of how many sensors are required for temperature sensing, cannot
be answered universally. The decision is always based on accuracy as well as cost
requirements. However, Figure 2.13c provides an indication about a meaningful
amount. It shows the percentage of the MSE improvement when another sensor is
added to the network in relation to using only one sensor. The highest improvement
is achieved by the first three to four sensors. In particular for the MI criterion, using
more than six sensors does not lead to a significant improvement. Note that a network
of more than 20 sensors certainly improves the predictive properties (also for the
MI-based placement) but a trade-off between required precision and the cost related
to additional sensors must be chosen. Moreover, a larger number of sensors is not
(yet) realistic for an office environment. The presented analysis leads to different
suggestions for different system requirements. If only a low number of sensors is
available, the placement strategy should rely on the identification of locations that
represent average conditions and hence have a sufficient distance from supplies, internal
heat or other disturbance sources. For the considered office space, already 4 sensors are
able to provide a reliable temperature field prediction for various ventilation scenarios
and reduce the maximum error significantly compared to the uniform temperature
assumption. In the case that a larger amount of sensors can be distributed, two possible
strategies are proposed depending on the required outcome. A good representation
of the overall room conditions can be achieved by uniformly distributed sensors. An
optimization based on MI can even be performed without extensive measurements
but only identifying feasible hyperparameters. If a higher accuracy is desired while
accepting an increased uncertainty about the validity of the prediction, the sensors can
be separated into two sets. The first set should be distributed uniformly to form a well
predicting basis, whereas the second set should be focused on areas where disturbance
effects occur.
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2.4 Conclusion

The discussed modeling approach enables a more detailed mapping of room condi-
tions in large open spaces. It allows for an evaluation of the spatial effects due to
room geometries and HVAC system operation and provides an easily implementable
alternative to physically motivated models. The GP model copes with the majority of
problems which physical models cannot overcome. The main challenges encompass
the limited knowledge of the room geometry, furniture and boundary conditions as
well as non-measurable disturbances and layout changes during the lifetime. The
possibilities to include these effects in physical models are limited and/or involve a
significant implementation effort. Moreover, the high computation time disqualifies
them mainly for real-time applications.

The data-based GP modeling approach closes the gap between complex CFD simula-
tions and the often invalid simplification of uniform room conditions. The relation
between the HVAC mode and temperature profile can be learned online during the
daily operation based on a relatively low number of sensors while only accessible
sensor data are used. No exact knowledge of room geometry is required apart from
sensor locations and the HVAC actuator setup. A connected sensor network, that
is able to exchange information about its location and affiliation (component type),
even enables an automated setup initialization. Consequently, no additional expert
knowledge is necessary to commission the prediction model.

Since sensor measurements are the only data source for the training of the GP model,
a favorable sensor configuration is a crucial design decision. The presented placement
algorithms lead to different placement strategies which can be integrated during the
system design. However, solving the optimization problem for a real-world application
is only possible for the MI-based approach because the MSE cannot be evaluated due to
missing knowledge about the true reference values. Therefore, the MI criterion provides
a useful tool to optimize the sensor positions for arbitrary rooms but should be checked
against the general placement strategy that was derived from the MSE approach. This
avoids choosing disadvantageous locations originating from the smoothing character
of the GP model.

The error made by the standard assumption of a uniform room temperature can be
reduced significantly by the GP approach and allows for a more reliable representation
of the indoor conditions. This asset can be used to improve the thermal comfort of
the occupants locally. However, it also leads to the question which conditions generate
thermal comfort. Although standardized conditions are given by comfort standards
such as DIN EN ISO 7730 [26] or ASHRAE 55 [2], the individual perception can vary
significantly. Consequently, a profound analysis of thermal comfort is performed to
clarify the requirements and to pave the way for personalized comfort control.
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The analysis of Chapter 2 showed how the spatial temperature profile can be mapped
by a data-based GP regression model. Making use of this additional knowledge
requires the definition of target conditions, where generally two main goals drive
the design of HVAC systems: energy efficiency and thermal comfort. The former
objective is mainly motivated by environmental goals to combat climate change and
cope with the increasing demand for infrastructure and buildings [96]. Since the
building sector is one of the largest consumers with a share of about 40% of the
world’s energy consumption [83], governments continuously exacerbate the building
code related laws to push the industry. The building owner or operator, on the other
side, is rather interested in the well-being of the occupants because cost savings due
to a reduced energy demand is generally incommensurable with the costs related to
the users’ salary. Thus in particular in existing office buildings, the focus lies on
thermal comfort to ensure productivity and health of the employees [69, 98]. While
temperature differences within one thermal zone are often relatively small (< 1°C),
the individual perception of thermal comfort can vary significantly regarding gender,
cultural background, physical or even psychological conditions [15]. Comfort standards,
such as the ISO 7730 norm [26] and the ASHRAE Standard 55 [2], try to find a
compromise between the individual modes of perception. They define guidelines which
represent an averaged user sensation so that the majority of users is satisfied. The
basis for these comfort models is provided by Fanger (1970) [30] where he presents
the comfort measure called Predicted Mean Vote (PMV) in combination with the
Predicted Percentage of Dissatisfied (PPD). His approach is based on the heat balance
of the human body and is one of the best validated and reviewed comfort models. The
7-point thermal sensation scale, as shown in Table 3.1, is used for the quantification
of thermal comfort. However, significant deviation between model and field data were
identified by many consecutive studies [51]. In some cases, the neutral temperature®
can deviate by more than 3.6 °C from the actual thermal perception. Furthermore,
better prediction accuracy was identified in stationary air conditioned environments
than in naturally ventilated buildings [82]. Moreover, a direct model transfer to
tropical areas led to a poor validity because the model was developed based on data
from subjects of temperate climates [101]. To improve the poor predictive ability,
adaptive adjustments of the PMV were proposed, such as an adjustment based on
outdoor conditions [25] or introducing a bias [51]. However, the high variance over

2Temperature that corresponds to a zero vote and thus represents comfortable conditions.

43



3 Personal Thermal Comfort Modeling

Table 3.1: 7-point thermal sensation scale used for comfort evaluation in the test-bed.

Vote v | Perceived Comfort

3 | Much too warm
2 | Too warm
1 | Comfortably warm
0 | Comfortable
—1 | Comfortably cool
—2 | Too cool
—3 | Much too cool

different comfort studies suggests a prior analysis of the applicability of the PMV to
the considered test bed.

To enable the application of control concepts that focus on personal thermal comfort,
a model for the individual sensation is derived in the following chapter. Due to
the diverse results found in literature, existing comfort modeling approaches are
investigated firstly if and to what extend they can be used as measure for personal
comfort. Individualized versions of the PMV are compared to alternative regression-
based formulations according to their ability of mapping the personal thermal sensation.
In this context a thorough feature selection is performed to identify the most important
comfort-influencing factors. The modeling procedure is designed to ensure resilient
comfort predictions based on voting data that are collected under daily working
conditions. Since physical or psychological states are not measurable, the derived
model identification process must rely on environmental data which comprise limited
system excitation as well as non-measurable subjective influences.

The following results and presented methods are partly published in [42, 43] but based
on a different data set.

3.1 Test-Bed

The regarded test environment consists of two mid-sized open-plan offices (~ 65 m?
each) located in Singapore. Each office is occupied by 7-10 employees and equipped
with four additional ceiling fans. The fans serve as a supplementary degree of freedom
for individualized comfort conditions. Most systems are designed to actuate the room
holistically such that personalized conditions cannot be realized due to substantial
mixing effects of the air and underactuation. Commonly, only the state of the supplied
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‘Window

Figure 3.1: Test-bed layout with seating positions represented by black circles, loca-
tions of indoor air quality sensors shown in green and positioning of ceiling
fans indicated in gray.

air can be manipulated for thermal actuation and limits the capabilities for comfort-
oriented building control. In order to address this challenge, the system is extended
by locally controlled air movement by means of ceiling fans. Moreover, using the
cooling effect of mechanical ventilation establishes energy saving potential [6] by
allowing an increased temperature set-point [78]. Additionally, elevated air velocities
can improve the perceived comfort [104] and consequently achieve a higher self-
reported productivity [73]. As depicted in Figure 3.1, each ceiling fan is shared by
2-3 employees. Ten Libelium sensors [72] (five in each office) monitor the indoor
conditions. The Sensirion temperature and humidity sensors [90] measure air and
mean radiant temperatures, Tyir and Ty respectively, as well as relative humidity RH.
A weather station on the considered building records the local outdoor conditions,
such as outside temperature Tout, humidity RHoyt and solar radiation Iy, More
detailed specifications of the sensor setup can be found in Appendix B.1.

The thermal comfort of the occupants is monitored by a desktop application as shown
in Figure 3.2. The personal comfort level is measured on a 7-point sensation scale
in accordance with the common comfort standards [2, 26] and similar to the PMV.
The user feedback is collected every 20-60 min during the daily working routine. The
comfort study was conducted over six month from September until February with
training periods of various temperature and fan levels during the everyday working
hours. The number of occupants in the offices varied over the period due to leaving
employees and interns or new entrants. The voting feedback of 16 employees is
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Figure 3.2: Voting application for thermal comfort evaluation.

considered in the following analysis and consists on average of 237 votes per user.
However, due to various attendance times, the individual sample size varies between 50
and 551 observations. Appendix B.2 provides further insights about the content of the
collected voting data. To ensure acceptance of the employees during the test phase,
the system excitation had to be limited to tolerable room conditions.

3.2 PMV Calculation

Many physical and psychological factors influence the heat transfer between the human
body and its surroundings, thus the perceived thermal comfort. The interaction
between the body and the environment is sketched in Figure 3.3. The body’s heat
production is given by the metabolic rate M less the accomplished mechanical work W.
The heat is transferred to the environment through the skin surface and by respiration,
qsk and gres respectively. Moreover, stored heat gsto changes the body temperature.
This leads to the heat balance of the human body [3]

M =W = g™ + g5t + g0 + g5 + g + gl + aSin® . (3.1)
—_——
gsk Qres gsto

As illustrated in Figure 3.3, the heat transfer over the skin gg can be separated
in convective g5, radiation qgﬁd and evaporative ¢5* losses. Similarly, the heat
eV

transfer through the respiratory tract gres encompasses the evaporative gree and
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Figure 3.3: Interaction between the human body and the environment, inspired by [3].

convective gres * losses. Furthermore, the heat storage rate is either assigned to the

skin ¢S or the core ¢S2'® compartment.

The PMV generalizes the comfort prediction based on the human’s sensible and latent
heat balance and introduces empirical expressions for the different heat exchange
rates [3]. According to Fanger [30], thermal comfort can be expressed in terms of an
imbalance between the actual heat exchange of the body with the environment and
the required heat flow for a neutral sensation at a given metabolism rate M. This
imbalance is represented by the thermal load L which defines the difference between
the actual heat flow M — W and the required heat flow that produces thermal comfort.
Section B.3 states the equations for computing L. In conclusion, only six comfort
factors remain for the computation of the imbalance L: metabolism M, clothing
insulation I, air temperature T,i,, radiation temperature Tmr, air velocity vair and
humidity RH,jy [2]. Finally, Fanger relates the comfort vote to the thermal load L
and the current activity level M according to

PMV = (0.3036‘00361‘4 —I—0.0QS) L (3.2)

The relation (3.2) predicts the average comfort vote of occupants under steady-state
conditions based on the voting scale of Table 3.1. A more detailed description how
the various terms for the PMV calculation are formed is provided in [3].

Since the PMYV is still the most popular comfort model, a validation with the collected
test data is performed to evaluate its validity and applicability for the considered test

group.
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Table 3.2: Standard parameter values for office work and light business clothing [26].

Parameter Standard Value ‘ Unit
Metabolic rate M 70 W/m?
Clothing level I 0.09 m® K/w
Air velocity Vair V0 + Can - lfan m/g

3.3 Evaluation of PMV Calculation

The six PMV comfort factors can be separated in personal and environmental param-
eters. Clothing insulation I and metabolism M are characteristics of the occupants
and can vary over time and between the individuals. Assuming rather stationary con-
ditions and similar work tasks, these parameters are commonly set to constant values
based on look-up tables provided by the comfort standards [2, 26]. The standardized
values for office work and light business clothes are given in Table 3.2. The metabolic
rate usually varies between 55 and 80 W/m? for office activities [3]. Here, the value is
set to 70 W/m? because most occupants make use of height-adjustable tables so that
a variation between seated and standing work positions is assumed. The remaining
environmental factors are measured by the indoor air quality sensors.

One exception is the measurement of air velocity. The application of distributed air
velocity measurements is usually not realizable in large office buildings due to the
associated sensor costs. Nevertheless, the cooling effect of increased air velocities
received closer attention in multiple studies during the last years, particularly in
comfort analyses for tropical environments [21, 88] due to its energy saving potential.
The actual air velocity varies significantly depending on the fan type, the distance
to the fan and blockages by furniture. For quantifying the effect of the ceiling fan
operation on the perceived comfort, a relation between the measurable fan level lg,,
and the resulting average air velocity va,iy is identified at each seating position in
the regarded offices. Local air velocity measurements are used to approximate the
desk-specific fan-velocity relations. Figure 3.4 shows the measurement results in a box
plot for all seating positions and fan levels. The relation between the fan level and
the measured air velocity is dominantly linear. Hence, it can be approximated by

Vair & V0 + Cfan  lfan- (33)
The large range of the velocity measurements highlights the variance of the actual

location-dependent air speed which is particularly increasing for higher fan levels. The
zero crossing vy denotes the mean air velocity based on natural and forced convection
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Figure 3.4: Identified relation between fan level and air velocity.

during the normal air conditioning operation. The solid line in Figure 3.4 indicates
the linear regression result

Tair = 0.140.050ga, (3.4)

combining all measurements, thus defining an average relation for all desks. The
identified coefficients in (3.4) provide an idea about the general impact of the ceiling
fans. However, the approximation v,j; does not provide a suitable representation for
all seating positions as emphasized by the wide ranges in Figure 3.4. Therefore, the
desk-specific measurements are used to fit the coefficient cf,;,, for each seat separately
whereas the base air velocity vg is set to 0.1 according to the overall average for
deactivated fans. The individual approximations are then used to calculate an air
velocity equivalent for each user based on his seating position and the monitored fan
level. The PMV can now be evaluated based on environmental measurements and the
office-related standard parameters of Table 3.2. The following analysis is performed
similarly to [42] but uses a different voting data set.

The collected voting data set of each user j € {1,..., Nocc} with n; observations is
used to compute the PMV prediction accuracy based on the Root Mean Squared
Error (RMSE)

nj
1
RMSE; = n—jZ(PMVu —ij)2, (3.5)
=1

where v;; denotes the recorded vote of user j corresponding to the observation
i€{1,...,n;}. The standard PMV, denoted as PMVq, is calculated using the indoor
air quality measurements of Thir, Tmr and RH, the standardized values for M and
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1.1, and the individually identified fan coefficients cg,,. The achieved accuracy over
all users is depicted by the first box plot of Figure 3.5a and results in an average error
of 1.4 steps on the voting scale. Two users even show an offset of over 2.7 such that
supposedly comfortable conditions lead to an unacceptable true sensation on the far
end of the thermal comfort scale. The distribution of the identified fan coefficients is
shown in Figure 3.5b which vary between 0.002 and 0.14 depending on the seating
position.

Obviously, using standardized values is not a realistic assumption for the representation
of personal comfort. User-specific activity levels and clothing styles can result in
significant deviations from the standard values of Table 3.2. Moreover, the perception
of increased air velocities is very subjective and varying sensitivity can be found within
different test groups, e.g based on diverse cultural backgrounds [103, 104]. Therefore,
in a second analysis, the PMV parameters are identified and adjusted individually
based on the following optimization problem

g
. 2
Cfax;,jr,l,l]\?},[dﬂ Zl(PMVzJ (Cfan,j, ij-[Cl,j) _ V’L])
1=
s.t. Cfan,j € [0,02] (36)

Mj € [46,110]
[CIJ 6[0.05,0.11].

The constraints are added to define physically feasible ranges according to [26] and
the subjective sensation of increased air movement is captured by a personalized fan
coefficient cg,,,. The second box plot of Figure 3.5a visualizes the prediction error of
the customized vote prediction PMV;(can,j, Mj, 11 ;). Compared to the standard
PMYV, the average RMSE is reduced by 22 % to 1.1. The distribution of the associated
individualized parameters is visualized in Figure 3.5b. Although the average values
for metabolic rate and clothing level show only a small bias compared to the standard
assumption, the personally optimized values cover almost the complete permissible
range. Furthermore, the impact of the fan level is almost tripled compared to the
experimental measurement results. A possible explanation for the increased cooling
effect is given by strong turbulences [35] whereas the measured average air velocity is
relatively low [17]. However, the higher than expected influence of the fan level can
more likely be traced back to a general offset of the PMV model for the considered
user group and the climatic conditions [51]. Previous research often identified biased
PMYV predictions such that the increased effect of the fan potentially compensates
for a generally overestimated PMV [39]. Therefore, this assumption is adapted and
included as additional user-related offset parameter b; to the evaluation. Consequently,
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the biased standard PMYV is investigated according to
nj
. 2
min Z (PMVga i +bj —vi5) (3.7)
3 o\ —
i=1 PMVia,p,i5(bj)
where PMVq 4.4;(b;) represents an individually biased standard PMV using the
assumptions of Table 3.2. The corresponding prediction error is given by the third
box plot of Figure 3.5a. Interestingly, the introduced bias achieves a similar accuracy
compared to the personalized parameter identification and hence supports previous
findings. The associated bias is depicted in Figure 3.5b and varies between 0.2 and
—1.4. The user average of —0.7 clarifies that the standard PMV over-predicts the
actual vote for most of the occupants.

A best predictive quality is attained by the individualization of all four parameters
Can, M, I) and b;. This leads to the extended objective
nj

: 2
. Z(PMVij(Cfan,ijj,]ch)+bj _Vij)

bj,Cran,j  Mj,Ic1j 4
=1

PMV5,i5(bj,ctan, 5, Mjlel,5)

st b eR (3.8)
Cfan,j € [0»0-2]
M;  €[46,110]
Ia; €[0.05,0.11]

and yields a RMSE reduction of 27 % in relation to using standard parameters. The
last box plots of Figure 3.5 describe the error and parameter distributions for the
considered user group. Although this approach stands for the highest individualization,
the mean error is still greater than 0.8 and thus only a moderate representation for
personal thermal comfort. Analyzing the corresponding parameters reveals a high
variance over the test subjects. The average metabolic rate, clothing insulation and
fan impact are all higher than the expected value but cover the complete permitted
range. Consequently, the bias also shows a greater scattering than for (3.8) although
its mean stays on an identical level. The previous observations lead to two conclusions:

» The individual perception and comfort parameters vary in a wide range that
standardized values are a bad assumption for personal vote prediction.

» Fanger’s PMV model is not able to capture the complexity of individual thermal
comfort in a real-world environment.

Besides the bad individualization of the PMV, the average values of the previous
analysis still support the standardized parameters so that average comfort require-
ments can be mapped appropriately, particularly when allowing a bias. However,
personalization requires a modified modeling approach.

51



3 Personal Thermal Comfort Modeling

d

W

m

Metabolic rate M [

Fan level coefficient cgyy,

100

80

60

<
o

o
=
5

o
=

0.05 -

I
°
> ° . .
E 9| F - -Irange without outliers
5 T - [__Jinterquartile range
= N ‘ T e outlier
2] |
= - x mean
1 |
e — 1 [
! T + +
& ) & &
Py, Py
%y /%0 &,0;6/6 6/6)0
"2 2 %,
% "y
/j e
«)
(a) RMSE of PMV prediction.
° — —
X —
L E 0151 | (]
* x =z |
i ERN ‘ -
5 1
" " w x x
- N
|
L - S 0054 T
. _ - - T
! I I
| |
- ! |
_ _ | 2
D] 20 < x
! ! 3 o
| | 2 E
.= ]
m -2
| !
L 1 L 1 | | | |
& b & 2 & 2 & 2
Yy Py Py Py
W g, g v, i
%, 2 s @ S e %, 2 s @ e
< Y., < Y
L7, < </ T
<« v

(b) Range of individually identified PMV parameters.

Figure 3.5: Accuracy and parameter ranges for individually optimized PMV parame-

ters.
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3.4 Modeling Individual Thermal Comfort

Recently, a great amount of research has been published considering thermal com-
fort [28], amongst others, due to the difficulties experienced with existing methods.
Consequently, new developments focus on data-based approaches to cope with the high
complexity. Almost the whole spectrum of ML techniques was applied to the comfort
prediction problem where ANN, k-Nearest Neighbors (kNN) [16, 31, 61] and GP
regression [9, 32, 42] are only a few examples. However, most models use the same pa-
rameter base as the PMV. This entails a sensing problem for most application-oriented
approaches. The monitored variables are commonly limited to environmental and
building related states, like temperatures, humidity and mass flows. Occupant-related
variables, such as individual metabolism, clothing or even psychological conditions are
rarely available for comfort-based building control. Currently applied physics-based
models handle this issue by using standardized values for all unknowns, similarly to
the assumptions of Table 3.2. However, as discussed in Section 3.3, the success for
personal comfort modeling is very limited.

Purely data-based approaches, on the other hand, are directly trained based on
user feedback to map the individual sensation. Due to the high subjectivity, these
approaches either require a very large data base or detailed monitoring of user-
specific parameters to result in feasible prediction models. Including useful prior
knowledge about well-known comfort relations ameliorates the situation. Therefore,
an application-oriented compromise between known physical relations and data-based
modeling for successful individualization is derived in the following. As a start, the
PMYV is analyzed regarding the relations between the environmental conditions and
the resulting model output to derive a reasonable personal comfort model structure.

3.4.1 Impact of PMV Comfort Factors

Although Section 3.3 proved a limited validity of the PMV for individual thermal
comfort prediction, useful characteristics about how specific comfort factors influence
the thermal sensation can be derived. This information is used to define a simplified
but meaningful model structure and allows to incorporate prior knowledge for robust
predictions. Therefore, the dependencies between the PMV and air temperature Tyiy,
velocity vair and mean radiant temperature Ty are evaluated based on the standard-
ized parameters of Table 3.2. The PMV is computed according to Appendix B.3
and shown in Figure 3.6 where either Taiy and Tmr or Tair and v,y are varied. A
clear linear relation of the vote and the air temperature can be observed. The shift
introduced by a changing mean radiant temperature is also approximately linear such
that PMV o Tyir o Tir is a valid assumption, as visualized in Figure 3.6a. While
Tair can be usually directly manipulated by the HVAC system, Ty is a result of
surrounding surface temperatures, solar influences and location-related viewing factors.
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Figure 3.6: Effect of mean radiant temperature Tmr and air velocity vair on the PMV
under the assumption of office-related parameters for metabolic rate M
and clothing level I according to Table 3.2.

Consequently, detailed knowledge about the room geometry and boundary conditions
is necessary to allow for a model-based estimation of the mean radiant temperature.
To simplify the computation of Ty for prediction purposes, an empirical relation can
be derived for the considered test-bed. Due to the orientation of the office, direct
solar radiation rarely influences the indoor conditions and a dominant linear relation
between the air and the mean radiant temperature is observed. Appendix B.4 discusses
this relation in more detail and allows to substitute Tmr = 2.38 + 0.987T,;; according
to (B.6). The influence of air velocity is shown in Figure 3.6b and reveals a dead
band with no velocity impact due to the case discrimination in (B.3). Then, a leveling
cooling effect is exposed which is more dominant for lower temperatures.

The last environmental factor that impacts the PMV is relative humidity RH. It
influences the heat exchange between the human body and the environment. Higher
RH reduces the heat loss by evaporation, thus sweating. The realistic range for the
considered air conditioned building is 40 to 60 % such that the PMV is maximally
shifted by 0.2. The predominant range for humidity in the test-bed is even lower and
varies mainly between 50 and 52 %. For these small variations, no significant impact
on the PMV can be noted.

The modeling goal is the derivation of a suitable approach for the prediction of the
individual thermal comfort. The dominating linear relations between the PMV and
the comfort factors justify a first simple proposal for the Predicted Individual Vote
(PIV) model

PIV;(z = Tair) = Bo,j + Bj,1, Tair = [1 Tair] B; = ¢(Z)Tﬁj- (3.9)
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T
The model coefficients 8, = [6071' Bij,dir] are identified for each user j based on

2

. 2 .
I%ln Z (PIVij — l/ij) = rréln Z (qb(zi)T,Bj — l/ij) . (3.10)
The analytical solution for the least square approximation (3.10) is given by

-1
T T
B;= (zj zj) Zjv; (3.11)

where v; contains all thermal sensation votes v;; and Z; = [(ﬁ(zlj) ¢(znjj)} T
the corresponding observations. Solving (3.11) directly often leads to illogical coef-
ficients due to a low system excitation and limited voting data with high intrinsic
variance. To ensure feasibility, prior knowledge is included by introducing physically
motivated constraints. In this case, only a positive correlation between the vote and air
temperature results in reasonable models so that (3.10) is extended by the constraint

5Tair > 0.

Figure 3.7 compares the individual vote approximation PIV;(Tair), the PMV for
standardized values as well as the individualized PMV. This comparison emphasizes
once more the user-specific discrepancies discussed in Section 3.3. The individual
comfort models depicted in Figure 3.7b highlight the significant differences regarding
the comfort expectations of the test group. The previously identified bias between
the standard PMV and the actual voting data is again visible as a downward shift
of the average PIV. Although the individual comfort models PIV; exhibit diverse
characteristics, the slope of the average PIV is very similar to the PMV model besides
the offset. This supports the validity of the PMV model which aims to map an averaged
thermal sensation. However, the significant differences between the individual user
models emphasizes the dominant subjectivity that must be dealt with in personalized
comfort control concepts.

The achievable mapping accuracy between the voting data and the modeling ap-
proaches is shown in Figure 3.7a. The previous results for the standard PMV and the
individualized PMV are revisited and compared to the linear PIV model. Already the
simple approach (3.9) outperforms the personalized PMV and reduces the average
RMSE to 0.8. In conclusion, the linear regression approach, which only uses Ty, as
reference value, surpasses all investigated individualizations of the PMV and leads
to the best representation of the individual voting data. However, air temperature is
certainly not the only influencing factor that affects the thermal comfort. Therefore,
alternative and additional predictors are considered in the following to improve the
prediction accuracy.

55



3 Personal Thermal Comfort Modeling

3 3
:
hd 2
% 1 —— PMVgq (Uair = 0)
= 2 | _: - PMVstd(vair = 01)
I g0 === PMVa (vair = 0.2)
~ - - ?5_1 """"" PIV; = Bo,j + BTyie,i Taix
= . N
1 I q T ~ , + >N, Prv;
4 —
[
L T+ + 3t Ly
A@A@«CJL@L 20 22 24 26 28 30
AN Tarl°C)
v %, %) o,
;@ _J
"o
)

(a) Regression error of (b) Comparison between PMV prediction for different air velocities
PMYV and PIV. and individual linear comfort approximation.

Figure 3.7: Comparison of PMV, linear approximation PIV(T4iy) (3.9) and PIV(SET™)
(3.12).

3.4.2 Standard Effective Temperature = Better Comfort Reference?

The promising results of the linear regression approach support further attempts in
this direction. Obviously, thermal comfort is not only a function of temperature but
depends on more conditions as discussed in Section 3.2. Therefore, the individual
models of Figure 3.7 might vary, e. g. for changing humidity and air velocity values.
Environmental indices combine multiple parameters into one value that can be used
as comparable reference for defining thermal stress and thermoregulatory strain [3].
These indices are already commonly used as predictor for thermal sensation [37].
Hence, the first regression model (3.9) is replaced by an index-based approach and its
suitability is analyzed in this section.

The most common index is the Effective Temperature (ET*). It combines radiation,
air temperature and humidity in a single representing measure by computing a
temperature equivalent that results in the same heat loss for 50 % humidity. The
ET* further depends on the activity and clothing level due to different values for
skin wettedness and clothing moisture permeability. Hence, the Standard Effective
Temperature (SET*) is introduced that maps the ET* to standardized conditions.
The reference conditions for the SET* transformation are defined as

» 50 % relative humidity
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> air velocity vayr < 0.1%
> Tair =Tmr

. . . 2
» clothing insulation I} = 0.09 mWK

» metabolic rate M = 58.2 %

and the SET* defines the temperature equivalent where the heat loss of the human
body is equal to the heat loss in the current environment [2]. Previous research
supports an improved applicability of this measure in warm climates and identified a
proportionality between the thermal comfort vote and the SET* [49]. Therefore, the
SET™ is used as a substitute for Tyjy in (3.9) and tested according to its usability for
predicting the individual comfort of the considered test group. Thus, the modified
approach

PIV;(SET") = Bo,; + Bser-,; - SET" = [1  SET*| B, (3.12)

is evaluated for the given voting data. The SET* calculation is also based on the
heat balance (3.1) and requires the same six user-related parameters and ambient
conditions as the PMV computation. In contrast to the PMV, the evaporation of
sweat depending on the air velocity is taken into account so that the influence of a
higher air velocity is often better represented by the SET* [37]. The corresponding
model equations are described in [36] and the ASHRAE Standard 55 [2] suggests the
usage of the ASHRAFE Thermal Comfort Tool. For an evaluation of the modeling
approach (3.12), the observation data of each occupant are used to compute the SET*
value for each vote. Subsequently, the coefficients 3y ; and Bsgr+ ; are identified
for each user and the regression error is analyzed to decide on the suitability of this
modeling approach. The corresponding distribution of the user’s RMSEs is shown in
Figure 3.7a.

A more detailed comparison of the SET*-based approach (3.12) with the T,i,-based
model (3.9) is illustrated in Figure 3.8 for the voting data of two exemplary occupants.
The plot depicts the user comfort votes in relation to Ty and SET* respectively.
What catches the eye at first is the very high variance of the scattered user data.
Equal sensation votes cover a wide temperature range and the linear fits PIV ;(Tair)
and PIV;(SET") are only able to capture a general trend. Obviously, numerous
other factors affect the comfort vote which are not considered in both approaches.
However, if the substitution T, — SET™* achieves a reduction of the variance and
thus results in a narrower, clearer shaped point cloud in Figure 3.8, the SET* would
provide a better reference than Thi,. Although the SET* transformation causes a
shift of the scattered user data such that the corresponding linear regression model
exhibits a modified slope, a significant improvement cannot be observed. This is
further supported by the almost unchanged RMSE in Figure 3.7a where the prediction
error for PIV(T,j;) is approximately identical to the error of the advanced approach
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Figure 3.8: Comparison of SET* and Thi, as comfort predictor based on (3.9) and
(3.12).

PIV(SET"). Consequently, the increased complexity of the SET* calculation is not
rewarded by an enhanced prediction quality.

These results once more emphasize the complexity of individual comfort modeling
and explain the increasing interest in data-driven comfort models [60]. Since the
SET* does not provide a better regression parameter than air temperature, the model
structure for personal vote prediction is further modified.

3.4.3 Correlation Analysis

The previous analysis showed that standardized comfort models are not practicable
for the prediction of personal comfort. Furthermore, the much simpler temperature-
based regression approach (3.9) outperforms the standard models but leaves a lot of
potential for improvement. The described difficulties are often treated by an adaption
of the standard PMV and SET* models, e.g. [58]. However, approaches including
the calculation of PMV or SET* incorporate a high complexity which is a major
drawback for their usage in the framework of optimization-based control approaches.
While these physically motivated relations build a very important basis when no user
feedback is available, simpler data-driven approaches can efficiently replace the physical
models by combining empirical knowledge and user feedback. Although user-related
information about the physical or psychological state has a significant impact on the
thermal sensation, the available measurement equipment is restricted to environmental
monitoring. Therefore, only the accessible data can be taken into account for personal
comfort modeling and accordingly, leads to the question which measurable variables
are the most important. Apart from air temperature, for instance outdoor conditions
are proven to impact the thermal perception and expectations [50]. To identify the
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most essential comfort factors for the considered test group, a correlation analysis and
feature selection is performed. The available sensor measurements and thus the set of
possible comfort model inputs Z is given by

» air temperature Tyir,

mean radiant temperature Ty,

relative humidity RHajir,

fan levels of 8 ceiling fans lg,y, 4,4 =1,...,8 (4 in each office),
supply air temperature Tsup,

ambient temperature Toys,

global solar radiation Iy,

vV v vV vV V. VvYY

outside relative humidity RHqyt and
» time of day DT.

The correlation between the vote v and one arbitrary environmental variable z € Z
indicates important dependencies and reveals which parameters have the greatest
(linear) impact on the thermal perception. The correlation coefficient of v and z is
calculated by [48]

_ i (i —v)(zi—2)
\/22;1 (vi— ’7)2 Z?=1 (zi — 5)2

where v = %Z?:l v; and z = %Z?:l z;. Figure 3.9a shows the absolute correlation
coefficients |g| for the votes of the test group and the environmental conditions. The
absolute value is examined because the direction of impact can vary between different
subjects and a generalizing sign presumption contradicts the individualization target.
The median and average correlation are depicted to provide further insight regarding
the group’s characteristic. The median is less influenced by outliers such that a great
deviation between the two values indicates an inhomogeneous sensitivity of the different
test persons. The three most important parameters are Thir, Tmr and Tsup, followed
by RH,iy and DT. The significant effect of the indoor temperatures corresponds to
the natural intuition. However, the temperature values are strongly cross-correlated
which leads to a deviating result for the partial correlation coefficient gpartial. The
partial correlation defines the degree of dependency of two variables if the remaining
variables are set to a constant value [48]. Consequently, the effect of cross-correlations
is eliminated which changes the results remarkably. The influence of Thir, Tmr, Tsup
and DT are reduced significantly while the impact of the fan level lg,, gains more
relevance. The other variables largely maintain their level of correlation so that the
greatest importance based on gpartial can be associated with Ig,, and RHaip. Almost
no cross-correlation effect can be noted for RHair, Tout, Iso] and RHouy. The great

o=0(v,2) (3.13)
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Figure 3.9: Correlation analysis of vote and environmental conditions.

60



3.4 Modeling Individual Thermal Comfort

difference between the average and median correlation for nearly all considered factors
emphasizes once more the variance among the users and highlights the inconsistency of
impacting comfort factors. This observation is further supported by Figure 3.9b which
shows the distribution of the signed partial correlation for all users as a box plot. Here,
it becomes obvious that the individual coefficients vary widely and a direct reading of
the most important parameters is not possible. Some users even exhibit physically
inexplicable correlations, e. g. a negative influence of Tyj, or a positive impact of g,y .
Therefore, defining a meaningful model structure and a robust identification process
requires a well reasoned procedure that copes with high uncertainty of real world
voting data.

3.4.4 Model Structure

Previous research applied multiple data-driven (ML) approaches to the comfort predic-
tion problem [28]. Most of this research relies on test data gathered under well-defined
lab conditions. However, an application- and control-oriented approach introduces
some limitations and requirements on the model structure and data collection process:

1. Limited data: The collection of user-specific voting data implies a regular
distraction of the occupants during their daily working routine. User acceptance
can only be achieved when the amount of interruptions is minimized. This limits
the voting frequency significantly and thus the available observation data.

2. Low system excitation: The applicability of the final control setup crucially
depends on the acceptance of the occupants. This limits the possibilities of
system excitation drastically because large variations, which result in very
uncomfortable conditions, cannot be explored.

3. Adaptivity: Since user preferences can vary over time (e.g. due to varying
outside conditions, working tasks, clothing habits, changing metabolism or
psychological reasons), the model must be able to adopt the new characteristics.

4. Simplicity: Individualized comfort in commercial buildings requires a great
amount of computing power due to the high number of occupants. The data
collection and processing effort should be kept as low as possible.

5. Robustness: The high variance of real-world voting data incorporates a great
risk of overfitting and physically illogical predictions. A straightforward inter-
pretability and simple supervision of the model properties must be ensured to
avoid delusive model outputs.

To address the described challenges and due to a good interpretability, at first only
generalized linear function approaches of the form

PIV =¢"(2)B (3.14)
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are considered. This structure takes up the dominating linear relations observed in
Section 3.3 and 3.4.2 as well as in previous studies [2, 26, 49]. The following definitions
of the feature vector ¢(z) are evaluated according to their achievable prediction
accuracy:

1 1 ; 1
o1(2) = [z} Po(2)= | = P3(z) = 202 Pu(z)=| = (3.15)
2°2 o3 ZQ®z

where °F defines the k-th Hadamard (entrywise) product of the vector z, accordingly
2°2 = zo0z. The tensor product z® z extends the basis vector ¢ by all interactions
between the elements. This results in a maximum number of predictors

9 for ¢
2:9=18 for ¢,
3:-9=27 for ¢3
9+36=45 for ¢,

Nf=

under the assumption that the full variable set Z is used. Note that the coefficient By
for the constant bias is always part of the model and excluded from the predictor
count. Consequently, simply using ¢, would involve the identification of 46 (45 + bias)
model parameters per person and thus require a large amount of observations, where
a sufficiently high system excitation must be ensured for every independent model
dimension. This contradicts the requirement of a low voting frequency and a data
collection during the daily working routine where occupants should not be exposed
to very uncomfortable conditions. Furthermore, not all variables are relevant for
predicting comfort [64] such that an involvement unnecessarily increases the model’s
complexity. This and the redundancy introduced by the already discussed cross-
correlations entail a high risk of overfitting. Therefore, a detailed feature selection
analysis is performed to ensure robust predictions and a well generalizing model
structure.

Before the most important features are identified, another application-related restric-
tion is included in the modeling procedure. Due to the Multiple-Input-Single-Output
(MISO) model structure of (3.14), personalized thermal comfort can be achieved by nu-
merous combinations of inputs and corresponds to a hyperplane in the Ng-dimensional
room. Usually, only a subset of model parameters are manipulated variables so that
the considered comfort factors z € Z can be separated in measurable but immutable
disturbances d and controllable variables u:

PIV=0¢" (w,d)B=[1 éu* ¢4° bua’]B- (3.16)
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The manipulated variables u for the given test bed are T,j and lfanlb Both are
selected as fixed components of the model structure since both are directly related
to thermal comfort and required for a subsequent derivation of a comfort-optimal
trajectory. This is done by ensuring an occurrence of both in at least one feature. The
remaining potential comfort factors are collected in the disturbance vector d.¢ For
example, the linear model approach ¢, can be rewritten as

PIV=¢] (u,d)f=[1 «T d7]B, (3.17)

where the feature selection task searches for the best combination of disturbances
which represent the most beneficial extension of u and thus have the highest impact
on the individual thermal sensation.

3.4.5 Relevance Analysis of Comfort Factors and Feature Selection

The algorithmic tools for feature subset selection encompass multiple methods [47].
The optimal model can be found by evaluating the full combinational problem where
the predictive quality of every possible combination of k features is evaluated. The
subset with the best generalizing properties is the most suitable choice. Assuming
that k features are selected from the set of Ny possible features, the number of
required function evaluations is defined by (sz) This approach quickly leads to
a computational infeasible problem, particularly due to the unknown dimension of
the optimal feature space and alternative methods must be consulted. Generally,
the optimal amount of features can be found by cross-validation. For this, the
observation data D; = {(z;j,v;j),i=1,...,n;}, as presented in Appendix B.2, are
separated in multiple pairs of training 7; = {(24;,v45),i =1,...,n7 ;} and test sets
V; ={(zij,vij),i=1,...,np j}, so that D; = T;UV; and T;NV; = &. The training
data are used for the identification of the occupant-specific parameters 3; and the
corresponding test (validation) error defines the quality of the currently selected
structure. This procedure ensures that a well generalizing set of features is selected.
In the following, the designation MSE always refers to the average validation error.

Computing the unconstrained least square estimate (3.11) based on 7; directly returns
the user-specific coefficients 8;. However, the former analysis showed that simply
solving (3.11) can lead to illogical coefficients B; as also indicated by the partial
correlation coefficients in Figure 3.9b, e. g. due to a small set of available observations

PFrom the control theory perspective, Thi, is rather considered as a system state instead of a
manipulated variable. However in building control, this is the common manipulated state and
therefore taken as representative input which is independent from the actual AC system. Later
control concepts make the distinction in system state  and manipulated input .

¢Similarly to the purposive introduction of u, the disturbance vector d contains all measurable
conditions although some elements, e.g. RH,i,, are in fact room states. However, as long as no
dynamical room model is assumed, these variables are taken into account as disturbance effects
on the thermal comfort state.
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or insufficient system excitation during the data collection. Therefore, the good
interpretability of the linear model structure can be used to incorporate previous
knowledge about comfort relations, particularly regarding the partial gradients. For
example, temperature and radiation are known to be positively correlated to the
thermal sensation so that

Bj7Tair7 ﬁj7Tmr7 ﬁj7RHair7 BjaTsu;ﬂ /8j7lsol 2 0 (3‘18)

is a reasonable assumption. The cooling effect of higher air velocities is represented
by a negative coefficient:

Bjitan < 0. (3.19)

The coefficients 3; 7., 8, RH.., and 8, pT remain unconstrained because their impact
cannot be preset for certain. Some people are positively affected while other show
a reversed behavior [25, 50]. The model’s parameter identification is consequently
performed by solving the constrained optimization problem

n’T’7]
* . 2
B; =argmin Z (PIV(¢(zi5)) —vij)
B, i=1
) T
=argmin Z (¢ (zi)B; — Vij) (3.20)
B; i=1
) 2
=argmin  ||Z;8; —v,]|,
B;
s.t. ﬂmin S ﬂ7 S /Bmax

where 8,;, and B,,,, combine (3.18) and (3.19). The matrix of observations Z;
contains the currently selected set of features based on the training data 7;. In the
following, the solution of (3.20) is referred to as Ordinary Least Squares Solution

(OLSS).

The measure for the model’s quality is the validation error. Thus, the optimal feature
set minimizes the cross-validated MSE of the test data V; for user j:

ny,j

min 3 (07008 ) (3.21)
»oi=1

qb; = argmin

The resulting optimal feature vector ¢7 can vary between different users. For instance,
an occupant close to the window is more likely affected by solar radiation than someone
sitting in the rear part of the room. However, the goal of the subset selection is the
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definition of a perfect set that represents all the users without over- or underfitting of
the individual comfort functions. Therefore, (3.21) is generalized to

¢ = argdr)nin Z L Z (¢T(zij)ﬂ; — Vij>2~ (3.22)
j=1 1

The vector ¢* then contains a subset of all possible features depending on the selected
shape function basis ¢, k =1,...,4. For the following feature selection, only occupants
with more than 50 observations are taken into account which results in 16 valid user
data sets. Otherwise, outliers distort the result.

Combinational Feature Selection

For the simpler approaches ¢; and ¢, see (3.15), an evaluation of the combinatorics
is computationally feasible so that the global optimum of (3.22) can be evaluated.
A 10-fold cross-validation is performed and leads to a minimal accumulated MSE
for each Nfe€ {1,...,9} or Nr€ {1,...,18} considered features. Note that the first
two predictors are predefined by the elements containing Tyi, and lg,, respectively.
The achievable prediction error for each case is depicted in Figure 3.10. According
to the left plot, including more linear features to the model firstly improves the
prediction quality and subsequently leads to a slight deterioration for more than
Nt = 6 predictors. However, the cross-validation result for ¢; exposes favorable and
unfavorable combinations indicated by the vertical range of the scattered marks.
Nevertheless, the implemented constraints (3.18) and (3.19) already avoid significant
overfitting effects. Solving the unconstrained problem increases the range of the
scattered marks drastically as already indicated by the high variance of the user data,
e.g. shown in Figure 3.7b and 3.8. The respective optimal feature set for each model
dimension N¢ € {1,...,9} is listed in Table 3.3. The combination of linear features
minimizing the cross-validated MSE is given by

T
d)T = [1 Tair lfan Tmr RHair RHout DT] . (323)

The most beneficial disturbance parameters added to the input u is the time of day
DT. The importance of DT can be explained by its strong cross-correlation with
outside conditions, Tout, Iso] and RHoyt, as well as indoor humidity RH,ir so that this
parameter accumulates a high information content in one value. These correlations
are further discussed in Section B.5. Furthermore, daily variations of the activity level
due to recurring routines (e. g. lunch break, tiredness) can be captured by the daytime.
The substitution of DT by Tmr and RH,iy when using 4 instead of 3 predictors can be
also explained by the mentioned cross-correlation of these factors. Both are daytime-
dependent and capture repetitive disturbance effects based on outside conditions and
air conditioning operation. Furthermore, T is able to capture the impact of solar
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Figure 3.10: Accumulated average and median 10-fold cross-validated prediction error.

loads and provides a better reference for local differences and resulting sensitivities of
the occupants. The implication of RHoyt in the optimal feature combination (3.23)
can be explained by its high cross-correlations to the remaining outside conditions so
that it is a good representative for their influence. Moreover, one can argue that 5
predictors are sufficient, since the impact on the MSE is negligible. The respective
median error even increases for using 6 features. Therefore, the model’s dimension
can be reduced without remarkable effects on the estimation error.

Adding a second order term to the shape function candidates has the potential to
further enhance the achievable model accuracy. This is outlined in Figure 3.10 where
the cross-validated MSE for the optimal combinations of features based on ¢; and ¢,
are compared. The minimum MSE for ¢4 is identified for Ny =7 with the associated
vector

1r

T
¢3:[1 Tair T.f ltan Tmr RHaw RHout DT] . (3.24)

Comparing the optimal feature vector (3.24) to (3.23) reveals that the elements are
almost identical. Only the squared value of Thir is added to the optimal linear set ¢7.
The gray elements indicate the model components that are neglected in the optimal
6-dimensional vector (incl. bias). The reduced vector, too, matches the result for ¢,
with the only difference of using Tazir. Regarding the associated validation errors, any
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Table 3.3: Optimal feature selection for 2 to N¢ predictors based on ¢ with fixed
basis w = [Tair lfan}T.

Ne | Tur Tur RHar lon Tap Tow Lo RHow DT| o NS5
1] v 0.776 (0.683)
2 | v v 0.745 (0.661)
3| v v v | 0731 (0.641)
islv v v v 0.714 (0.617)
50 v v v v v 0.707 (0.608)
6| v v v v v | 0706 (0.610)
O Y Y v v | 0707 (0.617)
8| v v v v v v v v | 0707 (0.604)
olv v v v v v v v v | 07100600

model approach using 5 to 7 well-selected features can be justified. However, the risk
of over-fitting increases drastically for ¢ due to the larger selection of insignificant
features. This can lead to 8-dimensional combinations with average MSE of up to
1.6-107 when the worst feature combination is used as comfort mapping function.
Note that this is the reason why the combinational results for ¢, are not shown
in Figure 3.10. The required scale exceeds the meaningful range for a graphical
presentation. Eventually, the simpler linear feature set is the more robust choice when
little knowledge of the comfort factor importance is provided, as demonstrated by the
small range of the combinational result in Figure 3.10.

The presumption that u = [Tair lfan] T is a fixed part of the model can be justified by
previous comfort studies but obviously reduces the degrees of freedom. Therefore, an
equivalent analysis for the unconstrained combinatorics is performed in Appendix B.6.
However, the unconstrained combinational results lead to the same combinations
(3.23) and (3.24) and thus support the feasibility of this assumption. Small deviations
between the finding can only be noted for lower dimensional models.

LASSO Regression

For the handling of a greater amount of potential features, like ¢35 and ¢, a different
approach is introduced. According to the Gauss-Markov theorem, the regarded
least squares optimization results in the unbiased estimate with the lowest MSE
[47]. However, great validation errors for a bad feature selection occur especially for
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high dimensional feature vector candidates. Regarding the MSE of the applied PIV
estimator for predicting the true vote v

MSE(PIV) = Var(PIV) + Bias®(PIV) (3.25)

reveals the bias-variance trade-off. Although the OLSS is unbiased, a high variance can
lead to a higher MSE than a biased estimator might have. While the combinational
subset selection limits the variance by reducing the model parameters and thus the risk
of overfitting, regularization of the model coefficients also reduces the variance of (3.25)
but introduces an increased bias. A well balanced combination of bias and variance
has the potential to improve the cross-validated MSE performance compared to the
OLSS. Therefore, the optimization problem (3.20) can be extended by a regularization
of the model parameters ﬂj to directly counteract overfitting. Introducing an Lj-norm

on B; = [ﬂjo ﬁjNJT results in the Least Absolute Shrinkage and Selection
Operator (LASSO) [95] which is defined by

N¢
gy =argmin 3 ||2;8;—vs|[;+ 33 83

B; k=1
o , (3.26)
=argmin 5[ 2585 —vsll; + 24| L8]
j
s.t. Bin < /Bj < Bmax
where L = diag([0,1,...,1]). This shrinkage method incorporates a feature selection

functionality by forcing entries of 3; to zero depending on the new design parameters
A; > 0. The value of A; limits the error variance of the considered model where
Aj — 0 corresponds to the OLSS and \; — co to the average vote when only the
unpenalized bias 8o remains. The optimal choice of \; can be found by cross-
validation and may vary for different occupants just like the optimal set of features.
The advantage of shrinkage methods over a combinational analysis is the lower
computational complexity. Thereby, more complex shape vector candidates ¢ can
be taken into account where evaluating the combinatorics is infeasible. To ensure a
balanced regularization of 8jo,...,3;jn;, the columns of the observation matrix Z; are
standardized. An equivalent formulation of (3.26) is given by

) 1 2 . 1. 7_T T
B;:argﬁmm §||Zjﬂjfuj||2:ar%mlniﬁj Z;Z;B;—v;Z;B;
; ’

J

3.27
st el <6 27

ﬂmin < ﬂj < ;Bmax

where the \j-related penalty term is replaced by the bound §; which controls the
model parameters 3;. The value of {; defines the compromise between the model’s
variance and bias, hence its tendency of over- or underfitting [47].

68



3.4 Modeling Individual Thermal Comfort

However, while (3.20) is a standard Quadratic Program (QP) which can be solved
efficiently, the Li-norm adds a nonlinear and non differentiable penalty to the opti-
mization problem. Multiple algorithms for efficiently solving (3.26) and (3.27) were
developed to circumvent this problem [89]. One possible solution is the reformulation
as linearly constrained quadratic program where the nonlinear constraint ‘ ‘Lﬁ i | ‘ 1 < &j
is linearized by a decomposition in non-negative variables. Each parameter vector is
separated in a positive and negative part

Bik =B — B (3.28)
ﬁjﬁc,ﬁﬁczo, j=1...Noce, k=1...Ng

so that
_ 3t 4=
‘Bﬂc’ —ﬁjk +ﬁjk~ (3~29)
The separated parameters are collected in the vector
_ _ 1T
wi=[Bjo By - B B Bl (3.30)
and the original 8; can be recovered by the mapping function
1 0 ---
01 -1 0
Bj=Ww;=|0 0 0 1 10 - w. (3.31)
0o 1 -1
The linearized Li-regularization results in
T
||LB;||, =rL,wj=[0 1 - 1w, (3.32)

Substituting (3.31) and (3.32) in (3.27) leads to the transformed optimization problem

. 1 7T, T T
12’1;1 §wj W Z; Z;Ww;—v; Z;Ww;
——

H, i
7 75 (3.33)
s.t. Tgle <¢;
ﬁmin < ij < ﬂmax
which can be solved by a standard QP algorithm.

For the perfect user-specific model, the optimization (3.33) is performed for every user
separately based on the individual voting data. Depending on the choice of &;, the
corresponding model coefficients B; are regularized stronger or weaker. Figure 3.11
shows the results for two exemplary users when the linear shape function ¢; is applied.
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The trace plot of the coefficients as a function of ¢; is depicted in Figure 3.11a and
represents the effect of the regularization. While the least square estimate considers all
provided parameters (£; — 00), decreasing bound §; forces the entries of B; gradually
to zero. The resulting coefficient traces can be very distinct for different users as
demonstrated by the deviations between user A and B. While the comfort of user A
is firstly affected by Tsup, user B is dominated by Thir. The seating position of user A
is close to an outlet what explains his sensitivity to Tsup. Moreover, he is directly
located under a fan so that the fan level lg,, is another significant comfort factor
revealed by his trace plot. Each regularization value &; is associated with an average
cross-validation error as depicted in Figure 3.11c. The minimum MSE indicates the
optimal bound and results in the perfect combination of features for the two users
given by

* T

¢1,A = [1 Thair lfan Tinr Tsup Isol RHout DT] (3.34&)
* T

¢1,B = [1 Tair lfan Tmr RHair Tout RHout DT] . (334b)

A larger limit &; results in overfitting and increases the prediction error. The opposite
case, thus decreasing the bound ¢, induces the vanishing of more coefficients which,
on the one hand, allows for a reduction of the model’s dimension but on the other
hand increases the corresponding MSE. Assuming the OLSS (equivalent to §; — co)
using the full feature vector ¢ represents the desired benchmark, a reduced model
can be found that achieves the same validation accuracy. The corresponding minimum
model dimension results in the individual feature vectors

T
ﬁbfj: [1 ltan  Tmr  Tsup  Isol DT] (3.35&)
T
¢rle7% = [1 Tair  Tmr Tout RHout DT:I . (335b)

The corresponding regularization factor 5??513} can be extracted from Figure 3.11c,

where the MSE for d’ff{iA,B} is indicated. Regarding the trace plot of user A, the
coefficients for Tyi;r and RHyyut are excluded from the model. The maintained im-
portance of Ty and I ) in the reduced feature vector qﬁfg further highlights his
seating location close to the window where solar radiation is dominant. Contrarily,
user B is rarely affected by the fan level or solar radiation due to his desk shielded
from the fan and located in the rear part of the office. This is emphasized by the
small or even non-existent coefficients in (3.34b) and (3.35b) respectively. However,
his coefficient values cover a larger range compared to user A and expose a generally
higher sensitivity to the environmental conditions. Particularly, a high sensitivity
to Tair, Tout and RHoyt is revealed by his trace plot and the optimal feature vector
¢“1k p- Interestingly, the time of day plays an important role for both users. This
can be traced back to the high cross-correlations between DT and multiple other
comfort factors such that the daytime is a representative model parameter with a high
information content for the comfort models.
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(c) Cross-validated MSE with and without penalization of w.

Figure 3.11: Model coefficients and cross-validated MSE for two exemplary users when
solving (3.33) for different regularization limits &;.
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The combinational analysis showed that the fixed model component u = [Tair lfan] T
is a meaningful presumption. However, the Li- regularization can force the corre-
sponding model coefficients to zero as exemplary exposed in (3.35a) and (3.35b) for
Tair and lg,, respectively. This effect can occur for two reasons: Either a user is
not sensitive to the parameter itself (although the majority of users is as previously
proven) or the parameter is replaced by a highly cross-correlated variable, e. g. Thir is
substituted by Tmr. Since the modeling goal is a common model structure containing
the component u, the LASSO optimization problem can be adjusted to favor the
inclusion of u. Therefore, the regularization of the LASSO regression is modified
to avoid the disappearance of wanted model components by excluding the subset of
certainly significant coefficients from the penalty term | |Lﬁj | ‘1 <¢;. This is achieved
by adjusting the selection matrix L or equivalently the entries of rr,. As a result,
the feature selection is only applied to the remaining elements whereas the impact of
u and its cross-correlations are always inherently taken into account.

Eliminating the penalty for 8; 1,, and ;. leads to the user-related trace plots
of Figure 3.11b. It can be observed that in particular 8; r,, dominates the model
for a strict regularization of the remaining parameters. The corresponding cross-
validated MSE is very similar for user A but remarkably lower for user B where the
air temperature was already identified as a highly influential comfort factor. The
optimal vectors for a non-penalized u result in

T
O afixed= |1 Tair ltan Tmr Toup Isol [fowe DT (3.36a)
T
d)T,B,ﬁxed:[l Tair RHair Touww RHoug DT} . (3.36Db)

Although Ig,, is not included in the regularization term, the optimal set for user B
(3.36b) does not include the fan level. Referring to Figure 3.11b confirms that the
coefficient Bp ;,,  is even zero for the OLSS, thus this user’s comfort is unaffected

by the fan. The gray elements are neglected in qbfgxed according to (3.35) when a
reduced prediction accuracy is accepted which is equivalent to using the full vector
¢1. The optimal vector for user A (3.36a) is equal to the previous result (3.34a).
This is explained by the small coefficient 7,, and the consequently low impact of
the penalty. Therefore, the resulting coefficient values and the MSE are comparable.
However, a remarkable impact is visible for user B. The dominance of T,j; leads to a
significant error reduction and substitutes the impact of Tmr completely. To support
the beneficial usage of u as significant comfort factors, the corresponding coefficients
are always excluded from the regularization term in the following.

The feature selection property of the LASSO regression can now be applied to more
complex shape vectors. While cross-validation of the combinatorics is only feasible
for ¢y 2y, the shape vectors ¢3 41 can also be evaluated by this approach. The
user-specific optimization (3.33) leads to a perfect bound 5;-‘ and a corresponding
optimal model approach for each occupant. The cross-validation is performed for
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Figure 3.12: Cross-validated MSEave = ﬁ Z;V:"ic 1285 — VjH% and corresponding
variance of the user-related MSE for the feature vectors ¢ 5 3 4} accord-

ing to (3.15).

all users and feature vectors separately and the resulting average MSE as well as
the variance over all users are compared in Figure 3.12. It can be observed that the
achievable MSEave is similar for ¢ 1,2,3} with a comparable optimal bound & *x0.7.
The shape vector with the highest degree ¢35 requires stronger regularization and
reaches its minimum for a smaller bound. Moreover, both higher dimensional vectors
0} (3,4} involve a greater risk of overfitting, indicated by the rapid increase of MSEaye
for a relaxation of the bound £. Although higher order terms are beneficial for low
dimensional models (£ — 0), the best model accuracy is achieved by the linear approach
¢1. This result highlights the problem when many correlated variables are part of
the regression model such that the coefficients are poorly determined and opposing
coefficients cancel each other out.

The variance of the user-related MSE reveals how suitable the choice of (i)(_) and & is
for all considered subjects. The test group’s variance for ¢y 5 3 4} is again comparable
and corresponds to the shape of the cross-validated MSE. However, the activation of
less important features for an increasing bound £ deteriorates the prediction quality
and causes a higher model uncertainty. In particular the high dimensional approaches
¢(3,4) result in overfitting. This leads to the conclusion that interactions of the
elements of Z or higher order approaches are not more beneficial for comfort modeling
than the linear basis function. Furthermore, these results support the observations for
the combinational analysis and suggest the usage of the simplest approach ¢;.

However, the definition of a common reduced optimal feature set is not straightforward
for the individual LASSO regression (3.33). The user-specific, regularized coefficients
,6;‘» do not suppress the same elements. Counting the occurrence of features in the
user-specific optimal set leads to Table 3.4. Although the amount of occurrences
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Table 3.4: Occurrence of features in the optimal user-specific set of @7 5 5 for all 16
considered occupants.

Tair  ltan  Tmr  RHair Tsup  Tous  lsot  RHout DT

Feature TZ, 1}, Ta  RHE T2, T3 1301 RHZ, DT?

T B T RHY Ty Tow I3 RHY DT°

Occurrence 16 12 10 11 10 15 6 12 16
é1 S TR
Occurrence 16 11 6 10 7 12 4 11 16
o2 13 8 6 4 6 12 7 11 12
Occurrence 15 9 5 7 3 9 5 9 13
b3 12 7 7 3 7 10 5 11 11

13 7 4 4 5 9 6 7 13

gives a hint about the importance of specific features, an interpretation regarding a
common comfort approach is rather difficult. The count of occurrences is often similar,
in particular for the higher order feature vectors. Moreover, Table 3.4 only answers
the question which features are most beneficial for a user. However, the impact of a
feature neglect or substitution cannot be measured without additional computational
effort. Therefore, an optimization over all occupants must be performed to define the
best common set and to incorporate the importance of considered as well as the effect
of suppressed comfort factors.

Combining the individual optimization problems (3.33) requires some extensions and
modifications. Firstly, the objective function defines now the minimum error over all
occupants:

Noe
. T T
min Z_ o () Hywy+ 1wy

s.t. r%le <¢
Bmin S Ww; < Bax Vj=1...Nocc.

(3.37)

So far, solving (3.37) is equivalent to the individual optimization due to its decoupled
structure. In the next step, the problem must be coupled by an additional condition
to ensure that entries of ,Bj are either active or vanish for all users simultaneously.
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Thus, the k-th coefficient of an arbitrary user I, i, can only be active if 3,5 appears
in all personal comfort models j =1,..., Nocc, j # I. Furthermore, all active entries
of B; can have individual values to capture the occupant-related sensitivities. This
if-condition corresponds to the following equality constraint

Vk=1...Np: If |By| > €, then |Bjx| >€ Vj=1..Nocc,j#I (3.38)

where € > 0 is an arbitrary constant which defines the significance limit of a comfort
feature. An efficient solution of (3.37) under consideration of (3.38) requires a

T
reformulation. Introducing the binary vector w = |w1 ... wNJ , wg € {0,1} and
a suitable upper limit M allows to rewrite (3.38) so that the standard QP form of
(3.37) is maintained [100]:

(|8jk] =0,¥i=1...Noce) vV (|Bji| = € ¥j=1... Noce)
= c-wp <|Bjk| <M-wi, Vk=1...Np. (3.39)

Using (3.29) and (3.30) leads to

1 0
01 1 O
1B, =Waw;= [0 0 0 110y, (3.40)
0o 1 1
and (3.39) can be reformulated in matrix form
ew<Wow; <M w. (3.41)

This ensures that the user-specific coefficients of the k-th feature are either blocked
out or activated for all comfort models depending on wyg
Bjr =0 for wy, =0
Bjk € [e, M] for wy, = 1.
Adding the coupling condition (3.41) to the joint objective (3.37) leads to a Mixed
Integer Quadratic Program (MIQP)
min w' Hw+ fTw
w
st. Rpw<g
w< Ww<w (3.42)
e Qw < Waw < M- Quw
w; €{0,1}, Vi= Nocc(2Ns+1)+1,...,Nocc(2Ng+ 1) + Nt.
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where
o w B 8 ¢
w = . Qw=|:], = ||, w=|:|, €=|:],
w](:f’occ w E g é.
el P
Ry, = [diag ({,r.zl }Nocc) ONochNf] , [dlag ({W}Nocc) ONocc(NfJFl)XNf] ,

W = [diag ({Wa}Noce)  0Noce( Nf+1)fo}

The optimal vector w* contains the personalized model coefficients as well as the
information about the (de-)activated features. The significance bound € for the feature
activation is an additional design parameter that is chosen under consideration of
the occurring coefficient values. A large significance bound decreases the number of
activated features but risk the exclusion of users with generally low sensitivities, thus
small coefficient values. Decreasing e drives the joint optimization towards the separate
optimum because the coupling constraint of (3.42) is eliminated for ¢ — 0. Since the
sensitivity of different users can be very distinct, the maximum absolute values of
Bk vary between 0.1 and 1.1 depending on the individual. Therefore, the significance
level is set to € = 0.01 which is a reasonable compromise between limiting the feature
activation as well as including users with low sensitivity. The joint optimization (3.42)
is performed using the solver Gurobi [45].

The resulting cross-validated MSE based on ¢{17273} is depicted in Figure 3.13 and
compared to the results for the separate optimization (3.33). Two main differences
can be observed between the joint and the separate optimization results: Firstly, the
error for small regularization bounds is higher for the joint approach which is mainly
due to the significance level e. The influence of features is completely suppressed for
& < € whereas the user-specific optimization already allows for very small coefficient
values. Not until £ > ¢, additional predictors are activated which leads to a small
downward step of the MSE at £ =e. Note that also for the joint optimization, all
features containing the components of u are unpenalized. Thus, the error associated
with & — 0 corresponds to the model approach only using Thir and lg,, or their
higher order terms and results in an average prediction error of MSEave ~ 0.78. The
partly non-smooth characteristic of the joint optimization result is explained by the
discrete activation and deactivation of features that lead to sudden improvements or
deteriorations for the individual user models. Moreover, the separation in different
training sets for the cross-validation can cause distinct feature activation for the same
regularization parameter £ and hence impact the corresponding test error unequally.

The second difference is exposed by the achievable prediction error. As already
mentioned above, the compromise between all occupants raises the error for small
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Figure 3.13: Cross-validated MSE for the joint optimization (3.42) compared to the
separate optimization (3.33).

values of £&. However, relaxing the regularization incorporates the risk of overfitting,
especially for high dimensional model approaches as observed in Figure 3.12 for the
separate optimization. The greater data basis for the joint optimization counteracts
the influence of outliers and is consequently less sensitive to the right choice of &.
Therefore, the common user consideration involves an improved control of the model’s
variance so that the erroneous inclusion of features is avoided. This leads to better
generalizing models and thus reduces the average MSE of ¢ 2,3} for greater values of
& compared to the separate user consideration.

The binary variable w(€) directly defines the active set of features depending on the
regularization parameter. The minimum values for the joint optimization correspond
to the feature vectors

¢i=[1 Tur lan Twr RHair Top Tow Lot RHow DT]'  (3.43a)
¢5=[1 Toir Tir ltan lfan Tor Tie RHax RHZ

Towp Tout T2 Iso RHow RHZ, DT DT2]T (3.43b)
3=[1 Tair ltan In Twr Tiw Tiw RHax RHY

RHY: Tap Top Towt Towe Tou Isol

RHow RH2,. RH3,. DT DT? DT3]T. (3.43¢)

The most obvious difference to the previous combinational result is the optimal
model dimension. While the combinational optimum consists of 6-7 predictors, the
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Li-regularization adds more dimensions to the optimum and results in 9-21 features.
This effect can be traced back to two properties of the regularization that favor high
dimensional models. First, penalizing the model coefficients limits their absolute values
and balances the impact of outliers. Therefore, additional comfort factors can be
included without resulting in undesirable overfitting. Secondly, the regularization has
an equal effect on all model dimensions and as a consequence can cause an unwanted
limitation of a truly important model coefficient. This may activate additional features
to compensate for the limited absolute coefficient value.

The high dimensional feature vectors are not a surprise when Table 3.4 is revisited.
The heterogeneity of the test subjects is already indicated by the diverse distribution of
optimal comfort factors. Consequently, the compromise between all users incorporates
a wide range of the considered parameters. Nevertheless, a judgment about a perfect
predictor set based on the separate feature count is hardly possible. The strong
cross-correlations allow for a substitution of some features without a great loss of the
model’s accuracy. However, this interchangeability cannot be extracted from Table 3.4
and a final assessment can only be drawn from the joint optimization.

Comparing the optimal sets of predictors (3.43) reveals that the linear features are
included completely in all approaches. Although the additional higher order terms
in ¢35 5 can be beneficial for some users, the entailed risk of overfitting and increased
complexity does not justify a higher dimensional approach. The corresponding MSE
shows that the prediction quality for ¢] outperforms the more complex approaches
and leads to an almost identical performance as the separate optimization. It even
results in a slightly smaller cross-validated MSE of 0.687 than the combinational
optimum (3.23). This outcome emphasizes the benefit of the regularization term when
facing the uncertainty of user votes and furthermore implies that a linear shape vector
is sufficient and the most robust choice for the comfort predictions.

The effect on the individual user models is illustrated in Figure 3.14 where the results
according to Figure 3.11 are compared to the joint optimization. In accordance with
the observations in Figure 3.13, the impact on the individual MSE is relatively low
using the linear feature vector ¢p;. The only visible difference for user A are delayed
steps of the MSE due to the later activation of features. The separate optimization
allows for a smooth activation of an additional feature whereas searching for the best
overall compromise imposes a sudden switch of features. The activation of a common
subset can even be disadvantageous for the individual user which is particularly visible
for the piecewise increased MSE of user B. The trace plot of Tyiy and Tmr gives further
insight about the effect of the common optimization on the user-specific models. The
penalized coefficients are forced to zero until they are beneficial enough for the whole
group and exceed the significance bound e. The activation limit for the mean radiant
temperature Ty is £ ~ 0.08. User A directly profits from the activation and his MSE
steps back towards the separate optimum. Furthermore, the influence of Tmr even
surpasses the separate result. The higher value originates from compensation effects
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Figure 3.14: Effect of joint optimization on the exemplary user models and coefficients
for the linear feature vector ¢;.

for still deactivated predictors. The impact of Tmr on user B reveals some further
implications of the joint optimization. For 0.08 < ¢ <1, the mean radiant temperature
has a very low impact on this user that the common activation forces the corresponding
value to the minimum allowed value Bg T, = €. This also entails a small reduction of
BB,T.,- The previously identified cross-correlation between Tyjy and Tmr results in
a compensation for the other value respectively which is further highlighted by the
increased coefficient of the joint optimization when the other feature is activated.

Similarly to the separate user consideration, the model dimension can be reduced by
decreasing £&. The OLSS of the linear approach ¢; is again used as reasonable minimal
requirementd. The thereby allowed dimensional reduction leads to the feature vectors

=1 Tair ltan Twr RHar Tous RHous DT}T (3.44a)
¢5 =1 Tair Td lan Tor RHair Tou

T2 RHow RHZ, DT DT?" (3.44b)
G5 =1 Tar T ltan lfn T T Do

RHaiy Tows RHow RHZy DT DT2]T' (3.44c)

dThe OLSS for higher dimensional feature vectors does not provide a reasonable reference due to
the significant overfitting effects as visible in Figure 3.13.
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The reduced vectors (3.44) support the result of the combinatorics (3.23) and (3.24).
The components match the combinational result but also include the outside tempera-
ture Tout and some higher order terms. The supply temperature and solar radiation
are excluded from the optimal set as additionally supported by Table 3.4.

Although the achievable prediction accuracy is comparable for both subset selection
methods, the LASSO regression provides additional advantages for handling the
high uncertainty of the user data. Particularly when a detailed feature selection
analysis cannot be performed, the regularization term allows to use higher dimensional
shape functions without incorrect overfitting effects. Another strength of the LASSO
regression is the possibility to handle large feature vectors which cannot be investigated
by solving the combinatorics. The derived optimization method (3.42) for a common
feature selection can be transferred easily to analyze other test groups or shape
functions (that are linear in parameters). However, the high uncertainty of voting
data without occupant-related measurements suggests an application of simple shape
functions with straightforward interpretability. The simplest linear approach ¢;
provides the best compromise between accuracy and insensitivity against a badly
chosen feature combination. Including the regularization term suggests the usage
of the full set of accessible environmental conditions. The combinational optimum
(3.23), on the other hand, leads to a reduced feature vector with a similar performance
but without the need to define a reasonable value for £. Since low complexity is a
key requirement for good applicability in large commercial buildings, only the lower
dimensional combinational optimum (3.23) is considered for the subsequently derived
comfort-optimizing control strategies.

3.4.6 Hybrid Comfort Model

The analysis of comfort factors in Section 3.4.5 recommends the application of the
simplest linear feature vector. The limited system excitation and noisy voting data
require low dimensional and well-interpretable models for a robust identification process.
Furthermore, the results also showed that individual comfort predictions based on
environmental data incorporate a great amount of uncertainty. The identification of a
suitable polynomial model structure led to an achievable average prediction accuracy
of MSEnin =~ 0.7. Although this result is a notable improvement compared to using
standard approaches, it additionally exposes that many important influencing factors
are still either not available due to missing measurements or the tested shape functions
are not able to capture all dominant relations. Consequently, the high complexity of
personal comfort can hardly be mapped by these simple structures so that using more
complex trial functions would be the logical conclusion. To circumvent the dilemma
comfort complexity and robust identification, multiple ML techniques were applied in
the field of comfort modeling to capture the subjectivity more accurately [28]. The GP
regression method, as already used for the temperature field prediction in Section 2.2,
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also proved to be a useful approach for comfort predictions [32, 42]. Therefore, this
method is revisited and applied to capture the sophisticated impact of environmental
conditions on the personal thermal comfort.

The main problem regarding ML approaches is the limited interpretability of the
resulting black box models. In particular, the high uncertainty of voting data demands
for approaches which can be supervised easily to avoid physically illogical models.
This requirement contradicts the general characteristic of most purely data-driven
learning algorithms. Furthermore, the individual prediction models build the basis
for a comfort-oriented control strategy and a model inversion is required for defining
the optimal set-point based on current conditions and interferences. An incorrectly
identified model coefficient directly results in a wrong set-point. Hence, the proposed
approach combines the well-interpretable linear regression of Section 3.4.4 with a
GP model for being able to capture nonlinear effects. Based on the previous results,

T
it is assumed that the influence of u = [Tair lfan] can be approximated by a
linear relation while all other environmental conditions d can incorporate nonlinear
dependencies. The extended model structure is defined by

PIVgp,j(u,d) = [1 ] B;+Av;(d) (3.45)

where the linear approach represents the general individual comfort trend depending
on u and thus allows for a good supervision of the resulting base model. The sign con-
vention for 3; 7. (3.18) and ;... (3.19) ensures a physically feasible comfort relation.
The base model is again obtained by solving the constrained linear regression problem

(3.20) based on the input observations U; = [ulj ..,umj}T and the corresponding
user votes v;. Further deviations due to the influence of disturbances are accounted
for by the GP regression model Av;(d) ~ N (0,K ;). Referring to Section 2.2.1, K ;
defines the covariance matrix of the training data D; while the GP mean p; is set to
zero because the linear basis already adjusts the model’s intersection®. Since every
occupant can have a different model characteristic, the hyperparameters of the GP
model are identified separately for each subject. Hence, the kernel K ; contains the
user-specifically identified hyperparameters. The conditional mean serves as prediction
model for the disturbance-dependent vote deviation

Avj(d) =k (d)K; ' (v;—[1 U] B;)=r; (d)y;. (3.46)

Yi

The vector 7; only depends on the observation data and is fixed after the model
training. Therefore, the prediction step simply consists of a linear combination of
kernel evaluations [84], where the current disturbance state is compared to the training
data.

°This is equivalent to using a pure GP model with the linear basis function [1 uT} ﬂj.
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Different representatives for K (see Table 2.3) are tested and compared in Figure 3.15a.
Similarly to Section 3.4.5, a combinational analysis is performed for each kernel function
based on a (sub)set of 1 to 9 predictors from Z whereas the 1- and 2-dimensional
models correspond to the linear and disturbance-independent approaches

PIVLJ‘ (Tair) = [1 Tair] BJ
PIVy j(u) = [1 UT} 'Bj'

The lowest achievable MSE is used as a measure for the suitability of the applied kernel.
Figure 3.15a reveals that the exponential kernel yields the best result. Although the
overall minimum for 5 predictors is identical for the exponential, rational quadratic
and Matérn 3/2 kernel, the exponential kernel is less sensitive to adding additional
(unnecessary) features. Since the previous subset selection analysis emphasized the
high uncertainty when defining optimal comfort features, insensitivity to the right
feature subset is an important model property. Therefore, the exponential kernel is
selected for the further analysis.

For reasons of comparison, the extended model approach
PIVgp, j(u,d)=[1 u"]B;+A0;(u,d), Avj(u,d)~N(0,K;) (3.47)

is also taken into account. The inclusion of u in the GP model allows for a consideration
of potentially nonlinear influences related to the air temperature and the fan level.
A performance comparison of the different kernels based on (3.47) leads to a similar
result as for (3.45). Hence, the exponential kernel is applied accordingly.

The achievable prediction accuracy for both GP approaches is shown in Figure 3.15b
depending on the incorporated number of predictors N¢. Equivalently to the combina-
torics for the purely linear approach (Table 3.3), the third feature added to the hybrid
model is the time of day DT for both approaches. Moreover, only including up to
three features shows a better performance when nonlinearities can be mapped by the
GP model. Therefore, an inclusion of w in the GP deviation model is beneficial. While
the usage of more disturbances further improves the prediction accuracy, the simpler
hybrid approach (3.45) generalizes better and supports a purely linear consideration
of u. The global minimum is attained with 5 features and corresponds to the model

PIVGp j(u,d) = [1 u"|B;+Avj(d= [RHair Tous DT}T). (3.48)

Note that the MSE for 6 and 7 predictors is equal to the prediction error of (3.48).
However, the corresponding variance over all user models is smaller for a lower model
order and therefore reduces the risk of overfitting. Furthermore, a reduced model
complexity simplifies the following comfort optimization problem.

Comparing the hybrid model with the linear regression results of Section 3.4.5 reveals
the benefit of the GP extension. The minimum cross-validated MSE is reduced by
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0 PIVgp with squared exp. kernel 2 PIV(¢,)
- x- PIVgp with rat. quad. kernel - ©- PIV(¢y)
—e— PIVgp with exp. kernel —e— PIVgp with exp. kernel
-8--PIVgp with Matérn 3/2 kernel -x-PIVgp, with exp. kernel

0.75 0.75 |

MSE
MSE

0.7 0.7

0.65 0.65

Number of predictors Ng Number of predictors N¢

(a) Cross-validated MSE for different kernel (b) Comparison of cross-validated MSE for
functions for PIVgp ;(u,d) (3.45). the linear (3.16) and GP regression mod-
els (3.45) and (3.47).

Figure 3.15: Cross-validated MSE for different kernel functions and GP regression
approaches.

about 10 % from 0.71 to 0.64, as depicted in Figure 3.15b. Additionally, already fewer
predictors achieve better comfort representations and the optimal model dimension is
smaller compared to the linear approaches PIV((i){LQ}). The optimal feature sets of
(3.48) and ¢>{k172} (3.23) overlap partly. Besides u, both sets contain the parameters
RH,iy and DT. Moreover, the environmental conditions are represented by Tout in
(3.48) instead of RHoyt and the influence of Ty is neglected. However, increasing
the GP model dimension by one, leads to exactly the same model components as
identified for ¢] so that the optimal disturbance combination for 6 predictors is

given by d = [Tmr RH,iy RHgut DT} T. While the optimal model components
are comparable, the hybrid comfort model structure outperforms all purely linear
regression models and is a valuable enhancement. Furthermore, unreasonable model
predictions are structurally avoided due to the zero mean of the GP extension. This
ensures that predictions far from the training data result in a prediction value of
zero so that only the linear base model affects the comfort predictions. Since the
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identification of this model part is supervised by meaningful coefficient bounds, a
robust and physically feasible output can be guaranteed.

3.5 Conclusion

The previous discussion revealed many challenges that are involved by a personalized
user comfort model identification procedure. The subjectivity of thermal sensation in
combination with limited access to comfort-related measurements complicate the model
identification and incorporate a high uncertainty. This requires a careful selection of
the model structure to allow for a good supervision of the resulting model properties.
The following conclusions can be drawn and used for the subsequent control strategies:

» Simpler (linear) model structures lead to the most reliable predictions.

» High dimensional feature vectors incorporate a small potential for model im-
provement but a high risk of overfitting.

» The importance of influencing factors is very user-specific and a common optimal
subset definition varies depending on the selected learning method and considered
user group. The results for the given test-bed confirm the commonly known
importance of air temperature, air velocity and humidity and point towards a
major impact of outdoor conditions (represented by Tout or RHoyut) even for
the relatively steady weather conditions in Singapore. An inclusion of the time
of day can partly compensate for the missing user-related measurements by
capturing periodically recurrent activity levels due to daily routines.

» The dominating linear relation between Tyi; and the comfort vote is also sup-
ported by the presented results.

» The effect of elevated air velocities can be mapped by a personalized model by
directly using the fan level as model input without the need for a separate air
velocity measurement.

» A disturbance-dependent GP model is more beneficial than a polynomial model
extension. This method also avoids illogical model outputs due to inaccurate
extrapolation.

The main motivation for modeling individual thermal comfort in the considered
context is the personalization of indoor conditions so that the occupants’ satisfaction
is improved. Obviously, optimal comfort conditions always stand for a compromise
between all subjects. The personal comfort models give the possibility to measure the
current comfort state continuously although the user only provides irregular feedback.
In the next step, these individual prediction models serve as a basis for an optimal
control strategy that maximizes the overall thermal comfort.
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The main goal for building operation is maximizing the occupant’s comfort while
the required energy is minimized. Commonly, standardized comfort assumptions are
applied to define the acceptable temperature set-points or ranges [2, 26]. Since the
temperature requirements on room level can be achieved by multiple operational
strategies for the overall system, these additional degrees of freedom are used to find
the strategy with the minimum energy demand on system level [62]. However, as
discussed in Chapter 3, the standardized comfort assumptions are not sufficient to
ensure individual thermal comfort. Incorporating the derived personal comfort models
instead provides an appropriate access to account for the individual expectations in
the control approach. The block diagram in Figure 4.1 sketches the general control
structure. Common concepts only consider the inner loop consisting of the room
dynamics and the controller. To include personal preferences, two different user-in-
the-loop control concepts are derived for optimizing the individual thermal comfort.
For this, the control loop is extended by the occupant’s comfort which is available as
infrequent user feedback. As a result, the room is rather considered as actuator that
manipulates the thermal comfort of the occupants. The room states « are separated in
the component v and the comfort-influencing internal disturbances djnt which contain
the room conditions that are not controllable, e.g. relative humidity. The external
disturbances dext encompass the comfort-affecting weather conditions. Considering
the control objective of manipulating thermal comfort, the necessity for a valid personal
comfort model becomes clear again: Directly using the voting feedback as thermal
comfort sensor is not possible due to the time lag between the votes. Furthermore, the
number of interruptions by the voting tool should be as low as possible to ensure a
productive working environment what further restricts the available voting frequency.
Therefore, the results of Chapter 3 are now used to learn the individual thermal
comfort and then to define the optimal compromise between all occupants based on
the trained models. With this approach personalized office conditions can be achieved
whereas the manual voting can even be fully substituted by the comfort prediction
models.

At first, the linear regression model is applied and investigated to get a better
understanding how the model components influence the optimized room conditions.
For this purpose, the analysis starts with the disturbance-independent approaches

PIV, j(u) = ¢u"B,; =[1 ] B., (4.1a)

T
PIVpr,j(u,DT) ¢brBpr; =[1 w] DT| Bpr; (4.1b)
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Figure 4.1: Structure for comfort-based control concepts.

to gain knowledge about general temperature preferences as well as time-dependent
influences. On that basis, the best linear as well as the optimal hybrid model are
evaluated regarding their control performance:

T T
PIVii j(u,d) = ¢jin Brin; = [1 ] d'] Bin;
T
= [1 Tair lfan,j Tmr  RHair  RHout DT] ﬂlin,j (4.1c)
PIVgp j(u,d) = du " Bap ; +Avj(d)

=[1 T lfan,j]ﬂGP,j+AVj([RHair Tout DT]T> (4.1d)

where d comprises dint and dext.

The first proposed control approach is a feedforward controller that is independent
from the dynamical properties of the room and only relies on a static optimization
to account for the measurable disturbance inputs of the comfort model. As second
concept an MPC approach is implemented which allows for the consideration of the
dynamical constraints and their effect on the personal comfort estimates. To analyze
and evaluate the different approaches, a simulation model for the air-conditioned room
is derived which represents the most important dynamical properties of the regarded
offices.
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4.1 Simulation Model

The control concept aims for optimized individual thermal comfort in shared office
spaces, similarly to the two Singaporean offices depicted in Figure 3.1. Therefore,
the simulation model should map their main comfort-influencing characteristics. The
thermal conditions of the zone are modeled as an RC network with two nodes as shown
in Figure 4.2a and conceptually introduced in Section 1.1. The spatial temperature
differences are neglected because of the uniformly distributed ceiling diffusers that are
connected to the same Fan Coil Unit (FCU) and thus operated under identical supply
conditions. This leads to the valid approximation of well-mixed conditions in the
test-bed. The left node of Figure 4.2a describes the indoor air with temperature Tyiy
and thermal capacity Cz = cpm,. The temperature-dependency of the specific heat
coefficient cp is neglected due to small variations for the considered temperature range.
The associated heat load @, encompasses the influence of the AC system as well as
internal and external disturbances. The second node represents the walls surrounding
the zone with a representative temperature Ty and thermal capacity Cy. Figure 4.2b
sketches the interaction between the considered system components. The building’s
Ventilation and Air Conditioning (VAC) system has a central Air Handling Unit (AHU)
for preconditioning the outdoor air whose main task is dehumidification. However,
the dynamical properties of the AHU are not relevant for the comfort-oriented room
simulation and therefore neglected in the following. The precooled and dehumidified
air (primary air), with temperature Tpr and mass flow 7hpy, is then distributed to
the local FCUs which allow for further cooling Qpcy before the air enters each zone.
Condensation at the cooling coils of the FCU is neglected by presuming the mixed
air (Msup = Mpr + Mreturn) 1S never further cooled down than the corresponding dew
point temperature Tqewpoint- Lhe room temperature Tair is consequently controlled
by the FCU operation as well as the supplied amount of primary air. The heat balance
for the zone results in

Tw — Tair
Rint

UZ =Cp (mZTair + szair) = Hin - Hout + + Qdist (42)

Tinfl
Mreturn Zone <1—
Mexh £
=/
(a) Thermal network for the sim-  (b) Structure of the duct system with considered air
ulation model (single zone). flows.

Figure 4.2: Zone model for simulation.
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where U, denotes the change rate of the internal energy and H{in,out} the in or
outgoing enthalpy flow [53]. The enthalpy flows depend on the primary air flow ripy
and the infiltration rate m;,q. Furthermore, the mixing process of primary and return
air as well as the FCU are assumed to operate in steady-state. Under the assumption
that the zonal mass is maintained

Tha = Thpr + Tinfl — Mexh = 0, (4.3)
they result in
Hi —F out = Cp (mperr + minﬁTout - methair)
= Cpmpr(Tpr - Tair) + cpming (Tout - Tair)- (4-4)

According to DIN V 18599-2 [27], the infiltration rate 7hi,q depends on the VAC
operation mode and is assumed to be higher during the night when the system is
switched off. The corresponding values as well as all introduced parameters are given
in Table 4.1. The parameter values are either computed based on physical relations,
identified based on measurement data of the test-bed or taken from literature.

The disturbance heat flow Qgjst contains the effects of all internal disturbances
originating from occupancy, lighting, electrical devices etc. For the simulation model,
the internal disturbances are separated in the impact of solar radiation Iy, and an
occupant related heat gain Qoce:

Qdist =nlso1 + NOCCQOCC- (4.5)

The solar gain 7 determines what proportion of the global solar radiation enters the
room through the windows. The identified value according to Table 4.1 is relatively
small due to the office’s orientation and mostly closed blinds. The average total heat
generation of the human body for office work is approximately 130 W [3]. Furthermore,
technical devices and lights are assumed to be activated in relation to the occupancy
such that the overall occupancy-related heat gain Qoce is set to 200 W.

The wall node exchanges heat with the zone and the environment over the thermal
resistance Rint and Rext respectively. Similarly to (4.2), the heat balance for the wall
node results in

Tair —Tw + Tout —Tw ]

CwTw =
v Rint Rext

(4.6)

Another comfort-influencing factor is given by the relative humidity of the room. This
state is affected by the HoO generation of the occupants and the primary air flow. The
relative humidity RHaj, is transformed to the specific humidity Xy,o which defines
the mass proportion of water vapor my in the moist zone air [97] according to

my my _ Ra Dsat (Tair)RHair

Ko = ™ — _ Ra. @
’ My, My +Ma Ry Psat (Tair) RHair (% - 1) + Pamb
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The mass balance for humidity is then given by

Mz XH,0 = My
= Xu,0,prMpr + XH,0,0utMinfl — XH,0Mexh + NoceH,0 (4.8)
= 1hpr (X#,0,pr — XH,0) + Ming (X#,0,0ut — XH,0) + NoceH,0 -

The HoO generation rate per person for office work [85] can be estimated by the
equation

my,0 = —58+5.4-T ~ —58+5.4-27 = 87.8, [T'YLHQO] = 8/h-Pers (4.9)

using a design temperature T of 27 °C according to the average desired temperature
from Table 4.2.

The indoor air quality is also dependent on the CO2 concentration Xcp, which should
be kept below the level that is hazardous to the occupant’s health and well-being.
It is a result of the primary air supply and the COg generation of the occupants
Noceco,- The average CO2 generation rate of a person is [85]

meco, = 0.02m°/h- pao, = 0.02m®/h - 2kg/m?® = 0.04ke/h. (4.10)
Equivalently to (4.8), the mass balance for the CO2 generation results in

mzXco, = Mpr(Xco,.pr — XC0,) +Mind (X0, 0ut — Xc0,) + Nocelico, - (4.11)

Combining all heat and mass balances leads to the full simulation model

; . : Tw —Tai
CzTair =CpMpr (Tpr — Tair) + QFCU + WR' alr
int
+ cpminAl (Tout — Thair) + 1lsol + NoceQoce (4.12a
. Tair—Tw | Tous—T
CwT. = air w + out w 4.19b
v Rint Rext (

M2 X1,0 =Mpr (XH,0,pr — XH,0) + Minfl (XH,0,0ut — XH,0) + Nocerm, o (4.12¢

)
)
)
mzXco, =Mpr(Xco,,pr — XC0,) +Mind (XC0,,0ut — XC0,) + Nocetnco, - (4.12d)

This model captures all comfort-relevant dynamical properties of the regarded test
offices. Furthermore, it is suitable for a model-based control design and the universal
structure allows for simple transferability to other building applications. Therefore,
the following analysis of the different control strategies is based on (4.12) which also
provides the basis for the MPC approach.
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Table 4.1: Description of symbols and parameter values of the room model. The values
are identified based on measurements (i), computed physical properties (c)
or obtained from literature.

Symbol Description Value Unit Source
n Solar gain 1075 m? i
cp Specific heat coefficient of air 1005 J/kgK [97]
Cw Heat capacity of wall node 3.01-108 J/K i
Cz Heat capacity of zone node 3.25-10° J/K ¢
ma Mass of dry air - kg -
MCo, COg generation rate per person  0.04 kg/h [85]
MH,0 HoO generation rate per person  87.8 g/h Pers [85]
Minf Infiltration rate of zone 34126 g/s [27]
(day|night)
Mpr Ventilation rate of zone 70 g/s (27]
My Mass of water vapor - kg -
my Zonal mass 323 kg ¢
Noce Number of occupants - - -
Tair Zone temperature - °C -
Tw Wall temperature - °C -
Tor Primary air temperature 20 °C i
Pamb Ambient pressure 1013 - 102 hPa [97]
Dsat Saturation vapor pressure 611.2¢T5 134T Pa [97]
(Magnus eq.)
Qoce Heat gain of an occupant 200 W (3]
Ra Specific gas constant for air 287.1 J/kgK [97]
Rext External thermal resistance 2.44-1072 K/w i
Rint Internal thermal resistance 4.07-1073 K/w i
Ry Specific gas constant of water 461.5 J/kgK [97]
vapor
Xco, Carbon dioxide concentration - ppm -
Xco,,0ut Carbon dioxide concentration of 400 ppm i
outside air
Xco,,pr Carbon dioxide concentration of 400 ppm i
primary air
Xu,0 Specific humidity - 8/kg -
XH,0,0ut  Specific humidity of outside air - 8/kg -
XH,0,pr  Specific humidity of primary air 8.6 8/ke c
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4.2 Feedforward Comfort Control

Setting the indoor air conditions influences the thermal sensation of the occupants.
Therefore, the room can be considered as actor for thermal comfort where the con-
trollable room states should maintain a predefined comfort level. Commonly, this
level is transformed to a fixed desired temperature set-point for the whole building
that defines the cooling (and heating) demand on room level. Instead of defining a
standardized target temperature for all occupied zones, the personal comfort models
are used in the following to find the optimal conditions. Due to the high dimensionality
of building models, most often a hierarchical control concept is implemented where
the room control is separated from the building level [99]. The first approach targets a
solution that is independent from the underlying building and HVAC system. It only
uses the temperature set-point as interface to the building control. Additionally, the
ceiling fans are actuated for varying local air movement. Since the waste heat of their
electric drives can be neglected, these actuators only affect the thermal comfort but
not the thermal conditions of the zone. Hence, the fan actuation is decoupled from
room dynamics. Furthermore, switching the fan levels is performed without noticeable
delay so that it is considered as direct feedthrough input for comfort.

Under the assumption that the air conditioning system is fast enough to satisfy the
thermal comfort requirements on the room level, a cascaded structure according to
Figure 4.3 is proposed to allow for a separation of the comfort optimization and
the given air conditioning system. The control structure can be considered as an
adaptive feedforward controller for thermal comfort. Since the actual comfort level
of the occupants is not provided as a continuous feedback, it can only be used for
the adaption of the control algorithm. Hence, a feedforward command is computed
based on the individual comfort models which decouples the internal and external

disturbances d = [d?;lt d;fxt} T by defining the desired set-points for room temperature

and fan levels. As soon as new user votes are available, the personal comfort models

are updated with the new data. For the given office space, one temperature set-point
and four fan levels can be manipulated such that

T

u = [Tair lfanl lfanz lfang lfan4] (413)

Since the fans are acting locally, a fan mapping must be defined based on the seating
position. This results in a mapping function
uj =M, ju= L 0 0 0 0 u (4.14)

0 Wgan,,j Wiany,j Weans,j Wiany,j

which extracts the user-specific fan impact. The fan weights wg,y,. ; of the projection
matrix M, ; capture the influence of each fan in relation to the employee’s position

so that Zﬁ:l Wean,.,; = 1. The maximum comfort is achieved by forcing all user votes
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Figure 4.3: Cascaded structure for comfort-based feedforward control.

to zero. Assuming a personal comfort model structure based on linear regression
according to (3.14), the corresponding cost function can be formulated as

Noce Noce
J(uw,d) =" PIV}(u,d) (6" M B;)?
Jj=1 j=1
NOCC OCC
= o"MjB;BI M =9¢" [ > MIBBIM;|¢ (415
Jj=1 j=1
=¢"'B' B¢,

where ¢ = ¢(u,d) consists of the optimal model features defined in Section 3.4.5, B;
contains the identified user-specific model coefficients and M is a block diagonal
matrix composed of the selection matrix M,, ; and a unit matrix for the considered
disturbances. The optimal set-point u* is the constrained solution of the optimization
problem
u* =argmin ¢ B'B¢
u

s.t. Tmin < Tair < Tmax (416)

ltan, €{0,1,2,3,4}, Vr=1,...,4
The box constraint defined by Tiin and Tmax ensures that the optimal room tem-

perature stays within a feasible range. For a sufficiently large data base, these limits
are not necessary. However as demonstrated in Section 3.4, the high variance and
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uncertainty of the real-world voting data can lead to extreme set-points, particularly
during the early training phase. Therefore, including meaningful bounds is a robust
solution to incorporate common knowledge about general comfort ranges and to avoid
very uncomfortable settings. Since the fan levels cannot be selected continuously,
(4.16) is a MIQP which is solved using Gurobi [45].

For the hybrid model (3.45) consisting of the linear regression combined with the GP
model, the objective (4.16) is modified to include the disturbance-dependent shift:

Noce

ZPIV2ud
j=1

Noce
= (¢" (w)M] B;+Avj(d))?
j=1
Noce
¢ M B8] M;dp+24" M B, Av;+Av; (4.17)
Jj=1
OCC OCC NOCC
TS M8 M or20" [ Y MIBAy |+ A
j=1 j=1 j=1
=¢"B"Bop+2¢ b+c.

The optimal input is then given by
u* =argmin ¢TBTB¢+2¢Tb
u
s.t. Tmin < Tair < Tmax (4.18)
ltan, €{0,1,2,3,4}, Vr=1,...,4
For an application in the real world office environment, additional stronger assumptions

must be included to ensure meaningful optimization results:

» Only users with a minimum number of votes m are considered for the set-point
optimization to guarantee a well defined model parameter identification.

» Occupants with a small training set have a reduced impact on the optimization
until a required set size m is gained, introduced as a weight depending on the
amount of votes

Noce 0 for m; <m

J(u,d) = Z Wobs (M) - PIV?(u,d)7 Wobs(m;) = 7%__7% for m <mj; <m
Jj=1 1 for m; >m

(4.19)
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» Prior knowledge about expected sensitivities is included by narrowing the co-
efficient bounds for the individual user models to avoid infeasible coeflicients
due to bad voting data, e.g. B < By, < B or BN < By < B where

the bounds are selected based on known/common vote-parameter relations
(minimum and maximum expected slope for temperature and fan level impact).

The above mentioned parameters m, m, ﬂ?_“)in and B?fl)ax are design parameters and
can be used to adjust the conservativity of the comfort-based control.

The resulting optimal trajectory depends on the selected personal modeling approach.
As introductorily mentioned, the models (4.1) are analyzed and evaluated for the two
offices. The collected voting data are used for the individual model identification and
then applied for the definition of optimal room conditions. The comfort optimization
that is independent from the room and/or building model can also be interpreted
as a disturbance decoupling where the term disturbance refers to the parameters
which disturb the thermal comfort (not the room conditions). Inserting all comfort-
influencing and measurable but non-controllable room and environmental parameters
into (4.16) or (4.18) only leaves u as unknown which is subsequently computed as the
best compromise between the individual user models.

For the simulative analysis of the feedforward control approach, the required cooling
power of the VAC system is summarized in

Qac = cptipr(Tpr — Tair) + Qrcu. (4.20)

Consequently, the office temperature is controlled by a PI controller for the combined
cooling demand Qac. Equivalently to the real building, the fresh air ventilation
rate mpr is set to a constant value for each office (see Table 4.1) under the assumption
that it is sufficient to maintain acceptable COg2 levels even for full occupancy. Moreover,
the empirical relation between T,ir and Tmr, as derived in Appendix B.4, is included in
the simulation. A random occupancy profile is assumed and applied for the calculation
of internal disturbances. Monitored data from the weather station on top of the
considered office building in Singapore provide a realistic representation of the external
disturbances. The comfort-based set-point optimization is updated every 5 min such
that the room conditions are adjusted 12 1/h. This leads to piecewise constant control
inputs with a sampling time of ts = 5min.
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4.2.1 Disturbance-Independent Optimization

Before the optimal trajectories based on (4.1c) and (4.1d) are investigated, the
individually fitted and disturbance-independent basis function (4.1a)

PIV, j(w)=[1 ul] B, = duT B,

is evaluated for the considered occupants to gain a better understanding of the
following optimal set-points. Figure 4.4 sketches the resulting comfort planes PIV,, ;
corresponding to each personalized user model. The intersection of each plane with
PIV, ; =0 corresponds to the optimal combination of room temperature T and
fan level lg,, for the occupant j and is indicated by the thick lines. As visible by
the intersecting lines in the lower plots, the comfortable set-point combinations vary
significantly between different users and some lines of intersection even exceed the
plotted temperature range of 20 to 30 °C. Furthermore, the sensitivity to changes of
Tair and lg,,, differs notably. The variation regarding the fan speed is mostly dependent
on the seating position and thus the effective air movement as a result of the fan level
and distance. The high variance of the comfortable temperature mainly originates
from the subjective differences in combination with clothing habits and unconsidered
solar influences due to the occupants location. Moreover, the limited system excitation
results in some extreme profiles (planes that are shifted far upwards or downwards):
Assuming the temperature range of the observation data is in the range 23 to 26 °C
but the user prefers temperatures higher (lower) than this range, most votes are
concentrated below (above) the zero plane. This reduces the range of the output data
so that the fitted temperature slope is blurred by missing positive (negative) voting
data. Figure 4.4 vividly reveals the complexity of personal comfort mapping and
emphasizes the required care for a user-in-the-loop application. It can be observed
that no combination of u satisfies all occupants simultaneously.

The optimal set-point u* for each office can be directly derived solving the MIQP
(4.16) and inserting the feature vector ¢, of (4.1a). The solution for the two offices
based on the identified user profiles of Figure 4.4 is shown in Table 4.2. The first
row refers to the result for integer fan levels and the second row is the result when
the integer constraint is relaxed to allow for continuous fan speeds lg,y, € [0,4]. Note
that rounding the continuous optimal fan speeds matches the MIQP solution for
this case. Consequently, solving the corresponding QP, rounding the fan speeds and
then solving the reduced QP for Tyi, leads to the identical result as directly solving
the MIQP. Therefore, the MIQP could be validly approximated by solving two QPs.
Moreover, the box constraint for the fan levels always ensures feasible solutions for the
two-step solution. Nevertheless, the MIQP is solved sufficiently fast (< ts = 5min)
and a constraint relaxation not necessary.

Comparing the optimal fan levels for both offices exposes that lg.p, , is higher than
ltan, ,- Referring to Figure 3.1 reveals that fan 3 and 4 affect the users close to the
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Figure 4.4: Personal relation between the predicted thermal sensation vote PIV,, ;
(4.1a) and the inputs w (each color represents one user). Upper show
the plane PIV, ;(u) and the lower plots indicates the intersection line
PIV, ; = 0 representing thermal comfort.

window while fan 1 and 2 take care of the rear part of the offices. Since the window
side is more influenced by solar radiation, the corresponding fans must compensate
for these additional loads. Another interesting result is the relatively high desired
temperature of about 27 °C. This result exceeds the standardized assumptions [2] by
2-3K but corresponds to previous research in tropical regions [68].

The most beneficial disturbance feature for the 3-dimensional linear model is the usage
of the time of day (see Table 3.3). Extending (4.1a) by DT according to (4.1b)

T
PIVpr;(u,DT)=[1 wuj DT| Bpr,

leads to the daytime-dependent comfort profiles of Figure 4.5, where the depicted
time range is limited to the general office hours from 7am to 7:30 pm. The upper
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Table 4.2: Optimal set-points for the disturbance-independent comfort model.

Type of Office 1 Office 2

fan level Taiv  lfan, lan, lans  ltany | Tair  lfan;  lan,  lang  lfan,
Discrete 26.9 0 1 4 4 27.7 1 0 2 1
Continuous | 27.0 0 1.3 4 4 277 1.3 0.2 1.8 0.9

charts show the optimal temperature profiles and fan levels. The associated predicted
user votes are depicted below. The consideration of DT leads to larger deviations
between the optimal office conditions compared to (4.1a). Averaging the desired
temperature leads to a daily average of 27.0 °C for office 1 and 27.7 °C for office 2 such
that particularly the optimized conditions of office 2 change when DT is considered.

The optimal temperature profile of office 1 decreases monotonically over the day and
exhibits a remarkable step around the lunch break which usually started at 11:30 am.
Hence, the occupants of office 1 prefer higher temperatures in the morning and lower
temperatures after the lunch break. An explanation is given by higher solar loads in the
afternoon which increase the operative temperature, particularly close to the window.
As a consequence, the fan levels are increased during the afternoon to compensate
for radiation effects. Note that the algorithm incorporates the feature that a fan is
switched off when no occupants are present. Therefore, the fans are switched off for a
short period around noon due to the lunch break. The predicted votes give further
insight about the desired fan levels. Fan 4 of office 1, for example, runs permanently
on full speed because the only person mapped to this fan feels always too warm for
the optimal temperature compromise. Equivalently, fan 1 is primarily switched off
due to an assigned person that feels too cold. Fan level 3 is stepwise increased over
the day to balance the daytime-dependent user preferences. The second fan is shared
by three users and consequently operated by a compromise solution.

The desired temperature trend of the occupants in office 2 is reversed to office 1, thus
increases over the day. However, similarities can be identified such as the downward
step around lunch time. Furthermore, most occupants of office 2 are more sensitive to
varying fan levels, also indicated by the steeper slopes in Figure 4.4. This results in
more frequent and larger steps of the desired temperature trajectory when a fan level
is changed.

The previous analysis creates a first idea of the characteristics of the comfort-optimized
trajectories. However, the identified optimal model structures (4.1c) and (4.1d) require
the consideration of environmental disturbances d. Therefore, these influences are
included in the optimization in the next step.

97



4 Adaptive Thermal Comfort Control

Office 1 Office 2
28 — Tdesired 28 |-
o
o 27.5
~
27
! ! ! ! ! !
7 9 11 13 15 17 19
i C 3 1
| | ] ;
3L I l T
1 | i 1
1 | i 1
= ! I !
.i"é 2 - 1 | 2 R, f—
! [ ; |
! | H ! \
1k - 1 - ' |
! ' }
ob—1 ' | ! ! ! ! 0 ! ! ! ! [N
7 9 11 13 15 17 19 7 9 11 13 15 17 19

7 9 1 13 15 17 19 7 9 1 13 15 17 19
Time of day DT [h] Time of day DT [h]

Figure 4.5: Optimal daytime-dependent temperature and fan level profiles for the
personalized models (4.1b) (upper plots). The lower depictions show the
corresponding PIVs of all occupants where the colors match the mapped
fan for each user.
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4.2.2 Disturbance-Dependent Optimization

The consideration of the comfort disturbing parameters d is realized by simulating
the office conditions based on the derived temperature-controlled zone model (4.12).
Instead of the reduced disturbance-independent comfort model approaches, the full
linear PIVy;, (4.1c) and the GP approach PIVgp (4.1d) are evaluated using the corre-
sponding disturbance inputs. The optimal input trajectory is obtained by iteratively
solving for u* based on (4.16) and (4.18). It is assumed that the air conditioning
system is operated daily from 7am to 7:30 pm. Outside these limits, the desired
temperature is set to the current room conditions so that no control action is required
to satisfy the target of the comfort optimization. The weather data of two typical
Singaporean days are used for the simulation of the comfort-based feedforward control.
Figure 4.6 compares the resulting desired room conditions for the linear and the hybrid
modeling approach.

The main difference between the linear and the GP-based approach is the varying
influence of humidity. The coefficients of the linear comfort models result in a
strong reduction of the desired temperature Tqegireq for higher humidity levels which
corresponds to the decreased heat loss via evaporation. Due to the increasing humidity
during the night, when the VAC system is switched off, the desired morning set-point is
about 3 °C lower than in the afternoon. This effect mainly superimposes the daytime-
related trend observed in Figure 4.5. Only in the afternoon, the time-related downward
trend for office 1 and the upward trend for office 2 is still visible. Comparing these
observations to the GP model reveals that the impact of humidity is not as prominent
for PIVgp. A small upward trend during the morning can still be noted and explained
with the declining humidity. However, the nonlinear disturbance consideration of this
approach leads to generally smaller temperature variations during the day which are
not as easily interpretable as the linear model. Therefore, the desired temperatures
based on PIVgp are computed again while only one disturbance parameter is varied
and the fans are switched off. The corresponding results are shown in Figure 4.7.
The influence of daytime is very distinct for different users and consequently deviates
between the two offices. The linearized impact of DT was already discussed based
on Figure 4.5 which revealed a downward trend for office 1 and an upward trend for
office 2. This trend is also visible in Figure 4.7 but the GP approach is able to capture
the nonlinear relations and exposes several variation over the day. The occupants of
office 1 prefer increasing temperatures during the morning, a significant reduction
after lunch and a small raise in the afternoon. The second office’s daytime dependence
is rather low during the morning but exhibits a significant drop in the afternoon with
a subsequent strong rise. The impact of humidity RH,i; and outside temperature Tyys
shows a negative correlation regarding the desired temperature such that a higher
humidity and a higher outside temperature lead to lower temperature set-points and
vice versa. The reverse influence of RH,j, corresponds to the linear model and the
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Figure 4.6: Optimal desired trajectories for the disturbance-dependent comfort models
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Figure 4.7: Investigation of the nonlinear impact of d on the optimal trajectories for
the GP comfort model (4.1d) (results correspond to first day of Figure 4.6
and lg,, =0).

reduced evaporation rate. The negative impact of Toyt can be correlated to higher
thermal loads and thus a warmer sensation of the thermal conditions.

Furthermore, the investigation of the separated disturbance effects emphasizes the
weaknesses of a polynomial basis function compared to the GP approach. The
nonlinear relation between e.g. DT and vote, hence the desired temperature, would
require high dimensional shape functions entailing the identification of numerous
model parameters and a high risk of overfitting. The notable difference between the
solutions for PIV);, and PIVgp further highlights the sensitivity of the resulting
comfort optimum to the modeling assumptions. These differences are also visible for
the optimal fan levels. Although general similarities can be observed, particularly the
strong impact of the humidity for the linear approach results in higher fan speeds
in the morning. Moreover, another problem related to the discrete fan levels can
be noted for both models. The different user preferences and changing disturbance
effects lead to multiple switching commands for the fans within a short time period.
As a consequence, the corresponding temperature profile also exhibits discontinuous
steps that can never be realized by the AC system. To achieve realizable temperature
trajectories, a rate constraint

ATdesired = |Tdesired(t + tS) - Tair(t)| < ATmax (4'21)

can be added to (4.16) and (4.18). This smoothens the generated trajectory and
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remedies sudden steps so that dynamical limitations for the office temperature are
accounted for. An exemplary result for PIVgp with temperature rate constraint is
given in Appendix C.1. Note that the switching rate of the fan levels could be limited
equivalently. However, the reaction time of the fans is negligible small and immediate
changes are generally realizable.

The comparison of PIV};, and PIVgp revealed significant differences for the optimal
comfort trajectories. The highly nonlinear influences of the comfort parameters,
as demonstrated in Figure 4.7, and the improved prediction accuracy, as shown in
Figure 3.15b, suggest to focus on the hybrid comfort model approach (4.1d) for further
investigation. Therefore, all following results are based on PIVgp.

Comfort Benefit and Energy Saving Potential by Fan Operation

Comparing the optimal temperature levels of Figure 4.6 and Figure 4.7 already reveals
the cooling effect of the fans and hence the incorporated energy saving potential. The
constraint I, = 0 is equivalent to only optimizing the temperature set-point as a
compromise between all occupants of the office. Individualization is consequently only
possible in terms of office-related temperature levels. Local adjustments within one
office space cannot be realized due to missing local actuators.

The impact of missing or limited fan operation is compared in terms of the average
temperature levels and the thereby required average cooling demand. The values are
computed based on the disturbance situation for the two exemplary days of Figure 4.6.
The corresponding time interval Iop defines the operating hours from 7am to 7:30 pm
over the examined days and top the associated accumulated time period. Consequently,
the average desired temperature results in

- 1
Tesired = T Tiesired (t) dt (4'22)

op Iop

and the required cooling demand is given by

Quenana =3 [ [0ac(0lar (1.23)
I

op

Table 4.3 summarizes the results for different fan operation modes. The temperature
set-point must be decreased by more than 1K when no fans are available. This
results in an approximately 20 % higher cooling demand for each office. Furthermore,
individual preferences cannot be taken into account and worsen the comfort cost
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Table 4.3: Impact of fan operation on average temperature level and consequent
energy consumption. All values are averaged over the two exemplary days
of Figure 4.6.

Office | lan €404} lgn =0  lgan=4 max,(lfan,) =4
Tgesired °C 26.9 25.6 27.7 26.9

1 Qdomand 13’;’; 17.1 20.9 14.4 17.1
PIVave - 0.92 1.08 1.14 0.92
Tgesired °C 27.3 26.3 28.6 27.9

2 Quemand  Ga 15.7 188 12.1 13.7
PIVave - 0.62 0.66 0.71 0.64

significantly for both offices. The average predicted individual comfort level

Noce

- _ 1 5
PIV(t) = | 3 > PIVE@), (4.24a)
j=1
PlVave — —— | DPIV(t)dt (4.24b)
top Top

of the Noce occupants is a representative for the actual comfort state. The results
of Table 4.3 highlight how individualized air movement can improve the personal
comfort, particularly for a very diverse group of occupants. The predicted comfort level
without fan operation (l¢,, = 0) is worsened remarkably compared to individualized
fan operation.

The energy saving potential can even be further improved when the general air
velocity is set to the maximum level, here ls,,, = 4. This reduces the demand by
16-23 % compared to the most comfortable solution due to the increased temperature.
However, the high air movement results in discomfort such that the overall comfort
sensation suffers. Instead of fixed fan levels, a compromise between the extreme cases
is given by introducing the constraint that the maximum optimal fan level must always
reach the upper boundary: maxr (lf.y ) = 4. This still leaves degrees of freedom for
individualization but also includes the exploitation of the energy saving potential by
the ceiling fans. The compromise solution leads to comparable comfort levels as the
full personalization and reduces the energy consumption. However, the corresponding
results only differ from (4.18) when the comfort optimum does not already include
the maximum fan level. Hence, according to the optimal fan speeds in Figure 4.6,
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Figure 4.8: Development of average comfort temperature for the two offices over the
test period.

the result for office 1 is equal to (4.18) whereas a small potential can be exploited in
office 2 while the comfort level is almost maintained.

4.2.3 Development of Individual Comfort over the Test Period

So far, the analysis was performed on the accumulated data of all test subjects.
However, changes in personnel led to varying occupancy structures during the test
phase. Therefore, the corresponding desired comfort conditions evolve over time
and the adaptive algorithm adjusts to the current test group. The evolution of
the desired temperature level is depicted in Figure 4.8. For greater clarity, the
optimal temperatures are represented by their daily average. Note that the presented
temperatures are the result of a simultaneous fan level optimization according to
(4.18). Furthermore, no measurements are available during December due to a sensor
failure.

For the definition of the optimal conditions, a new employee is always added to the
computation as soon as his observation data reach the minimum required size m. Res-
ignations are automatically included by discarding a user from the comfort calculation
when he was inactive for more than 21 days.

Although the outside conditions are fairly constant in Singapore, the optimal indoor
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conditions vary significantly over time. This demonstrates the high subjectivity and
diversity of the dynamically changing test groups. Variations between 24.5 °C and
27.5°C can be observed during the monitored period. In this context, a constant
set-point of the air conditioning system appears as a rather bad approach regarding
the thermal well-being of the occupants. It also emphasizes the ability of the algorithm
to adapt to a changing occupancy structure. Additionally, the identified diversity
further supports the great benefit of individualized air movement, as discussed in
Section 4.2.2 because the corresponding additional degrees of freedom allow for better
compromise between the very distinct thermal sensation.

4.2.4 Influence of Occupancy

The computation of the optimal room conditions for the previous analysis always
considered all available comfort models independent whether or not a user was present.
In the case that the presence of specific occupants can be detected, comfort can
certainly be improved when only attendant users are considered in the optimization
algorithm. This can be realized by multiplying the predicted individual vote with the
binary presence value ¢,

NOCC
0 when user is absent
J(u,d) = - Wobs(m;) - PIVE (w,d,t), ¢ = 4.25
( ) ;SDJ obs(115) J( ) % {1 when user is present. ( )

However, (de-)activation of particular comfort functions has a similar or even more
pronounced effect as switching a fan level. The suddenly changing comfort requirements
cannot be fulfilled instantaneously due to the inertia of the thermal room dynamics.
Furthermore, the immediate reaction to a short absence (e. g. visit of the bathroom)
can be energetically unfavorable because multiple changes of the operating point is
most often accompanied by an additional energy demand. The already presented
rate constraint (4.21) is one possible approach to handle the fast switching of the
comfort requirements also for occupancy related variations of the comfort conditions.
Alternatively, the comfort models can be slowly faded in and out when a subject enters
or leaves the room. This smoothens the effects on the optimal temperature trajectory
and avoids unnecessary reaction to a short absence. Figure 4.9 demonstrates the latter
concept and shows an example using a first order low-pass filter with time constant
20min. The binary occupancy value for each user is transformed to a continuous
weighting function with PT1-behavior so that the cost function (4.25) is continuous.
Certainly, the first order filter can be replaced by higher order filters to ensure sufficient
continuous differentiability of the cost function.

Another aspect must be taken into account when occupancy is detected. Solving

u”* = argmin J (u,d)
u
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Figure 4.9: Concept of fading the occupancy signal for smoothing the cost function.

does not necessarily lead to a unique solution if a fan is unoccupied because it could
operate on any level without affecting the comfort level. Therefore, an upstream check
is included that determines unoccupied fans, switches them off and excludes them
from the optimization.

Figure 4.10 visualizes and compares the effect of the two different smoothing methods.
The desired temperature Tgesireq represents the optimal set-point as a result of (4.18).
However, the implemented room controller cannot always fulfill the desired command
such that the real (simulated) office temperature Ty deviates from Tyesireq- This
consequently results in a theoretically optimal value for PIVgesireq based on the
desired conditions and a realistic prediction PIV based on the actual room conditions.
Both predictions of the comfort level are depicted in Figure 4.10 and summarized in
Table 4.4 as averaged values for the two discussed days.

The solution without occupancy detection is used as benchmarking reference. The
theoretically optimal set-point is given by the direct consideration of the occupancy
according to (4.25). The deviation between the corresponding optimal temperature
set-points indicates the potential of taking occupancy into account. This theoretical
potential is quantified by a 20 % reduction of the average comfort vote PIV gesired
in Table 4.4 and illustrated in Figure 4.10. However, a direct consideration of the
occupancy results in large temperature steps over the day which also increases the
associated energy consumption. Particularly when the personal sensation is very
distinct between the occupants, the requirements change drastically and lead to an
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Table 4.4: Comparison of the averaged comfort levels and cooling demands depending
on the applied occupancy handling.?

Consideration of no direct faded direct with rate
occupancy constraint
PIV.ve desired 0.552 0.446 0.516 0.492
PIVave 0.555 0.538 0.526 0.522
Odemand {l%yh} 16.3 17.8 17.7 175

& Note that the general comfort level of Table 4.4 is better than in Table 4.3 because only the
PIV for present users is taken into account. This leads incidentally to a reduced average cost.

infeasible cooling demand. These steps primarily occur during lunch time and in
the evening when many employees are coming or leaving. This results in remarkable
deviations between the desired and real temperature which diminishes the potential
from 20 % to negligible 3 %. Moreover, it must be noted that the simulation uses
a well-tuned PI controller with an ideal AC system so that extreme overshoots are
already prevented. However, the real-world performance is likely to be even worse due
to often badly tuned room controllers.

Therefore, the filtered (faded) occupancy value can be used to achieve a more realizable
temperature command. Figure 4.10 shows the corresponding simulation results for a
filter time constant of 35 min. Comparing Tyegireq With the real temperature Togice
shows that large overshoots are reduced which decreases the difference between the
command and the office temperature and equivalently the difference between PIV gesired
and PIV. The ongoing/missing inclusion of already absent/present occupants in the
cost function downgrades the expected comfort levels PIV gegireq but results in a
trackable command so that the actual comfort level PIV is improved compared to the
direct (de-)activation based on occupancy. An adjustment of the applied filter and
time constant provides additional potential for improvement but also increases the
complexity of the algorithm design.

An even more intuitive adjustment is given by considering the actual occupancy but
including a rate constraint on temperature which represents the achievable change
rate of the real system. Consequently, the rate constraint has a clear technical
interpretation which simplifies the parameter selection. Accordingly, the calculated
optimal temperature can be tracked by the system and the theoretical optimum
corresponds to the real conditions. Taking into account the dynamical properties,
furthermore, allows for using the fans to compensate for the slower temperature
behavior. Choosing the change rate as 5 K/h not only reduces the deviation between
the theoretical and real optimum but additionally leads to the best actual comfort level
PIV. Moreover, the smoothened trajectory slightly reduces the required cooling power.
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However, the main driver for the energy consumption are the thermal preferences
of the present occupants. As a result, longer attendance times of users who prefer
warmer conditions will always lead to a reduction of the energy demand and vice versa.
Thus, Qgemand is mainly a result of the user’s comfort demands and the controller
design only has a subordinate impact. Note that the rate constraint is only applied
to the temperature command since fan levels can be directly accessed and changed
instantaneously with negligible delay. Moreover, unoccupied fans are switched off
immediately without affecting the remaining occupants to minimize the energy demand
of the ceiling fans.

Another interesting effect can be observed in Figure 4.10. Although the average
PIV desired is reduced when occupancy is taken into account, there are some short
periods during the day where the consideration of occupancy leads to a slightly worse
comfort level. This is explained by the neglect of the system dynamics and couplings
of comfort factors. A change of the room temperature has also an effect on the
relative humidity. This effect cannot be regarded as long as the control approach is
independent from the building and room dynamics. As a result, it can happen that the
supposedly beneficial change of the temperature involves a negative humidity-related
impact.

The discussed results investigated the potential as well as different aspects of applying
a comfort-based control algorithm. However, the neglect of the system dynamics
leads to partially suboptimal results. Although the rate constraint is a first step
towards an optimization which considers dynamical properties, an optimized control
approach must combine the comfort requirements, the room model and the impact of
disturbances. This is only achieved by regarding the Optimal Control Problem (OCP)
under consideration of dynamical constraints.
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Figure 4.10: Impact of the occupancy detection and different approaches for the
comfort optimization.
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4.3 Model Predictive Control for Optimizing Personal Comfort

The adaptive feedforward control of Chapter 4.2 is based on a hierarchical design, where
the temperature control is separated from the comfort-oriented set-point definition.
The room or building dynamics are considered as a black-box, where at most the
achievable temperature change rate could be defined. A model-based control approach
allows for the consideration of physical relations between the comfort-influencing
conditions, e.g. temperature and humidity. If desired, the pure thermal comfort
optimization can be extended to a combined optimization of individual comfort and
energy demand. Therefore, the feedforward control is replaced by an MPC approach
which takes into account the system dynamics, supply conditions and disturbances.
Figuratively, the room conditions as actuator for thermal comfort are now included in
the control concept.

The dynamical model assumption for the MPC formulation corresponds to the simula-
tion model (4.12). For control design, the nonlinear system dynamics are reformulated
in state-space form & = f(x,u,d), where & contains the room states, u the manipu-
lated variables of the AC system actuators and d the remaining external and internal
disturbances.

The system states of the room model are collected in
T
v=Tar Tw Xm0 Xco.| - (4.26)

Consequently, the room conditions, that were considered as internal comfort distur-
bances dint for the feedforward controller, are now part of the system model. Hence,
their dynamical relations are included during the comfort optimization.

Since the feedforward control is independent from the AC system, only the overall
cooling demand QA is taken into account which already incorporates the enthalpy
flow of the primary air supply. For the MPC approach, it is assumed that not only the
overall cooling demand Q¢ is controlled but the cooling power at the FCU Qpcy
as well as the primary mass flow mp; are manipulated variables. This provides an
additional degree of freedom to control the humidity and COz2 level apart from the
temperature. Furthermore, a demand driven fresh air supply does not only enable
the compliance with upper CO2 bounds but also entails energy saving potential.
Commonly, rpr is one of the most expensive components of the air conditioning task
in tropical regions due to the high latent heat losses by dehumidification. Therefore, it
is meaningful to reduce the primary air flow while harmless COg levels are maintained.
Thus, the extended vector of manipulated inputs results in
i ) T
U= [QFCU Mpr lfdn] (4.27)

All remaining parameters that influence the thermal comfort or the zone conditions
are collected in the redefined disturbance vector d. Hence, it consists of the occupancy,
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the supply conditions of the primary air and the outside conditions:

T
d= [NOCC Tpl‘ XHgO,pr XCOg,pr Tout sl XH2O,out XCOg,out] .
(4.28)

Equivalently to Section 4.2.2, the control of the zone is separated from the building
control. Therefore, the dynamic of the central AHU is neglected and the state of
the primary air (Tpr, Xg,0,pr and Xco, pr), Which also depends on the losses in
the duct system, is only considered as disturbance input for the local zone model.
Since preconditioning of the outside air in the AHU does not effect the COq level, the
primary air’s CO2 concentration Xco,,pr is equal to the outside concentration. For
the simulative analysis, both values are assumed to have a constant level of 400 ppm.
Moreover, temperature and humidity of the primary air are set to Tpr = 20°C and
XH,0,pr = 8.68/kg. For reasons of comparison, the same weather conditions and
occupancy profiles as used in Section 4.2.2 are adopted for the following analysis.

Substituting the entries of (4.26), (4.27) and (4.28) in the simulation model (4.12)
finally results in the system dynamics in state space form

T = f(mauad)
gi;%illt + %’; (u2(d2 — 1) + ina(ds —x1)) + %i + Clzd6 + QCOZCC dy
T1—T ds —xo
= CwRing ' CwRext . (4.29)

my ! (u(ds — 23) +1iina (d7 — 23) +1m,0d1)
my ! (ua(ds — x4) + 1hina (ds — 24) + 1m0, d1)

For the comfort-oriented control design, the system output of interest is not given
by the physical states x of the zone but by the current comfort level and hence the
predicted votes of the occupants:

y=PIV(z,u,d,t) (4.30)

where PIV(z,u,d,t) € RNece is a vector containing all predicted thermal sensation
votes of the considered occupants. The described system is bilinear with a nonlinear,
time-variant output due to the comfort relation using a GP model

PIV; (x,u,d,t) = [1 1 Uj] ﬁgp’j -l—AVj (z1,z3,d5,t)
:PIVQ—|—Bm;-rw+5u;ru+n;r(w,d7t)’yj (4.31)

where the input element u; corresponds to the user-assigned fan. The relation (4.31) is
separated in a linear component and the nonlinear kernel evaluation. The dependency
of Av; on the air temperature x1 and the mass fraction of water z3 originates from
the required relative humidity RHair of the GP term which is acquired by (4.7).
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4.3.1 Control Objective

The control aims for an operational strategy that finds the best compromise between
all considered users. Similarly to Chapter 4.2, this involves the maximization of
thermal comfort which can be expressed as minimization of the quadratic votes over
the control horizon t € [to,tf]. Hence, the objective function results in

J(:n,u,d,t):1

b T T
; / yT (@, u,d.0)Qy(x,u,d,t) +u" (t) Rul(t) dt (4.32)

to

where the diagonal matrix @ >~ 0 can be used to introduce diverse weighting on
the different user models. Furthermore, the objective function is extended by an
input-related penalty that is realized as quadratic cost due to its favorable properties
for the optimization. The matrix R allows to incorporate economic aspects as well as
it is used to ensure the existence of a unique optimal solution when particular entries
of u do not affect the output y. In contrast to the feedforward control, the OCP
incorporates the dynamic, state and input constraints so that defining an optimal
control strategy requires to solve

min J(z,u,d,t)

u
st.  @(t) = f(z,u,d), x(tg) =Tinit, tE€ [to,tf] (4.33)
rekX
uclu.

The admissible solution space defined by X and U satisfies the minimal requirements
for comfort and building physical aspects which are described in the following.

4.3.2 State and Input Constraints

One central reason for choosing an optimization-based control method is the straight-
forward inclusion of input and state constraints that are not negligible in the context of
building control. As already mentioned in Chapter 4.2, a bounded temperature range
can be introduced to ensure plausible temperature set-points e. g. originating from
a poor comfort model quality in the early training phase. However, for a sufficient
amount of voting data the temperature limits are not necessary which is why the
corresponding state constraint is neglected for the simulation.

The input constraints u € U depend on the system prerequisites. The FCU of the
considered test-bed only allows cooling such that the range for u; = Qprcy is defined
by the maximum cooling power QrcU,max = 21.6kW [13] and bounded by 0

_QFCU,max <u; <0. (4.34)
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For reasons of comparison, the subsequent simulative analysis extends the VAC system
to an HVAC system which also allows for heating so that (4.34) is modified to

—QFCU,max < U1 < QFCU, max- (4.35)

To differentiate between the two system characteristics, the terms VAC and HVAC
are used respectively to refer to the applied bounds on Qrcy. The available primary
air flow rate ug = rhpy allows for at most 3 ACH and cannot be negative, thus

0 < ug < Thpr,max ~ 0.27ke/s. (4.36)

The main purpose of the primary air supply is the maintenance of non-hazardous CO2
levels. Although, the human’s sensibility to variations of the CO2 concentration is
rather low and recommended ranges do not necessarily demand for strict compliance
with a fixed limit, long exposure to high CO5 concentrations can cause side effects
like headache or drowsiness [3]. Consequently, an upper bound

T4 = XCO2 < XCOg,max = 800 ppm (437)

is taken into account for the comfort optimization [85]. Directly including the con-
straints (4.36) and (4.37) can lead to an infeasible set for the OCP in the event that
the maximum primary air flow 1mpr,max cannot compensate for the CO2 generation of
the occupants. Therefore, (4.37) is reformulated in terms of the required air flow ripy
based on the steady-state equation for the CO2 level:

0 = 11pr XCOy,pr T Minfl X0, 0ut — X0, (Mpr +Ming) + Nocemco,
merCOQ ,pr + minﬂXCOQ,out + ]\/voccﬁlco2
mpr +minﬂ

= XCOQ,max >

) MinfA (X0, 0ut = XC0s,max) + NoceMco,
Thpr 2>
X(C0,,max — XCO.,pr
Mina (ds — XC0,,max) +d1mco,
XCOQ,max - d4

= mpr,min = (4.38)
In the case that this minimum required air flow is greater than the upper bound
Mpr,max, & violation of the CO2 bound (4.37) must be accepted. Therefore, (4.36)
and (4.38) are combined to ensure a feasible solution set and to redefine the lower and
upper bounds for the primary air flow

min(mprvmin,m})r,max) < ug < Mpr,max- (4.39)

In addition, the reformulation of the COg constraint entails the advantage that the
dynamic of Xco, can be excluded from the OCP. This simplifies the dynamical
constraint and reduces the computational effort.
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Eventually, as already known from the previous chapter, the fan levels can only take
integer values from 0 to 4

Upyo =lgn €{0,1,2,3,4}, r=1,...,4. (4.40)

Furthermore, latent heat loss by condensation is neglected and unwanted at the local
FCU. Hence, the mixing ratio of primary and return air in combination with the
applied cooling power QFCU must result in a relative humidity of the supply air RHsup
lower than 100 %. The steady-state mass balance for the mixer results in

msup = mpr + mreturn (441)

mp TNreturn
XHgO,sup XHQO,pr " +XHQO return
Mgsu Msup
_ d3ug + T3Mreturn

- (4.42)
U2 + Mreturn

Similarly, the steady-state heat balance leads to the temperature of the mixed air

Mreturn
Tmixed Tpr + Treturn

msu sup
_ doug + T1Mreturn

. (4.43)
U2 + Mreturn

such that the supply air temperature Tsup for steady-state operation of the FCU is
given by

QFCU _ d2u2 + xlmreturn + ul/Cp

TSUP = Thixed + - s
CpMsup U2 + Mreturn

(4.44)

Since the applied cooling power is directly scaled by the mass flow rhsup, the maximum
value for Qpcy without the risk of condensation can be achieved by maximizing the
amount of recirculated air. The maximum achievable mass flow trough the FCU
is 7sup,max = 1.26% [13] and consequently the maximum return flow results in
Mreturn = Msup,max — U2 (neglecting the impact of infiltration). To keep the relative
humidity of the supplied air RHsup below 100 %, the coupled state and input constraint
based on (4.7)

RHoup = % . PambXH,0,sup
o psat(Toup) (1+ (%} —1) XH,0,5up)
_ Ry Pamb (u2(d3 — x3) + T37sup, max)
 Ba peat (Toup) (sup,max + (F8 —1) (u2(d3 — 23) + 23Msup,max) )
<1 (4.45)

must be satisfied during the operation.
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Figure 4.11: Moving horizon prediction scheme.

4.3.3 Comfort-Based Optimal Control and Nonlinear MPC (NMPC)
Scheme

The computation of an optimal control input for the system (4.29) with output (4.30)
requires to solve the nonlinear OCP (4.33) over the prediction horizon tp =t —to.
This is done using direct multiple shooting implemented with the optimization tool
CasADi [4]. For this, the control input is parameterized in time intervals ¢s =ty 11 — g,
of piecewise constant values

u(t) =ulk], tE€[tp,tpr1)

and solved by stepwise numerical integration of the differential equation (4.29) as
well as the objective (4.32) using a Runge-Kutta scheme of order four. Continu-
ity of the states are ensured by additional equality constraints at the transition
points tg, k=0,...,Np —1, where Np denotes the number of prediction steps. To
avoid the computational burden of solving the underlying Mixed Integer Nonlinear
Program (MINLP), the solution is gained in two steps based on the corresponding
relaxed Nonlinear Program (NLP). In the first iteration, the NLP is solved allowing
continuous fan speeds lg,p, » € [0,4]. The resulting fan levels are then rounded to the
closest integer value and the reduced OCP is solved again with the predefined fan
levels. This procedure always leads to a feasible solution because of the box constraint
0 <lfan,r <4 and no notable loss of potential could be identified compared to more
elaborate branch and bound algorithms.

Optimality of the solution w* is only ensured if the modeling approach is a valid
representation of the reality and disturbances can be predicted for the considered
control horizon. Obviously, both assumptions are prone to error such that the control
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trajectory results in a sub-optimal system behavior. To cope with model and estimation
errors, the MPC scheme relies on the iterative solution of (4.33) using the plant model
(4.29) and disturbance predictions. Figure 4.11 sketches the moving horizon approach
of the optimization scheme. In each MPC iteration, the OCP is solved for the
finite prediction horizon tp = Np - ts. However, instead of applying the whole input
trajectory w*(t) only the first control segment is used. Subsequently, the optimization
is repeated based on the true system response using the updated state and disturbance
measurements or estimations. A commonly used notation indicates the considered
time step of the prediction k4 i as well as the time instance for the initialization k:

ulk] = [ulklk] ulk+1lK] ... wlk+Nplk)] . (4.46)

For reasons of brevity, the reference to the start time [-|k] of the prediction is omitted
in the following.

4.3.4 Comfort-Based Linear MPC (LMPC) Scheme

Although solving the nonlinear objective (4.33) with CasADi is already real-time
capable on an ordinary notebook for the regarded offices, scaling effects for large
commercial buildings result in a high and potentially infeasible computational effort.
Under the assumption that a linearization around the desired trajectory results in
valid predictions, this effort can be reduced significantly by applying linear control
concepts. Therefore, the bilinear system (4.29) with the nonlinear and time-varying
output (4.30) is linearized at an arbitrary operating point g and ug. Introducing

of of
A== B(d(t)) = ==
o0 @m=5
Zo,U0 Zo,U0
OPIV JOPIV
C = =
@o.n="" p="20
To, U0 Zo,U0
result in the linear approximation for the system dynamics
Fo(d(t))
&(t) = Az(t)+B(d(t)u(t) + f(xo, uo, d(t)) — Azo — B(d(t))uo
r YRing +Cp<cf‘z0,2+minﬂ) - éint 0 0
= Cw}%int - ﬁ ( Rilut + ijt ) 0 . 0 m(t)
0 0 _ u0,2’:minﬂ 0
0 0 0 ’ _u0,2t"Ming

[c7' ¢ ep(da(t)—201) 0000
0

0 0000
| 0 myds(t)—ros) 0000 | w(E)+Fold(t)) (4.47a)
| 0 m;'(da(t)—zo4) 0000
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go(d(t),t)
y(t) = C(d(t),t)z(t) + Du(t) + PIV(zo,uo,d(t),t) — C(d(t),t)xzo — Duo
T
OAv
(Bm,l + (‘31:1 ‘moyuo) 63,1
= : x(t)+ : u(t) +go(d(t),t)
T T
(B%NOCC N aAggocc wmuo) Bu.N,..

(4.47D)

with the initial conditions (tg) = Zinit and presumed validity of the linearization on
the time interval ¢ € [to,tf]. Note that all system matrices and drift terms except for A
and D depend on time via the disturbance vector d(t) or in case of the comfort output
y incorporate an explicit dependency on t. For better readability in the following, the
arguments are only shown when it directly influences the derivations.

The computation of C requires the gradient of (4.31) which is a combination of the
linear term depending on z; and uy3 4 5,6} and the GP model for the time-variant
vote deviation that is a function of z1, z3 and d4. Collecting the model inputs in
z= [RH(xl,azg) dy t} leads to the partial derivative of the GP prediction with
respect to the states xp,

6ij (Z) a T( ) 8 — I:I(Z,) T
—_— — . L= — - Ly -
O%n O%n ki (2)7; On, 0f,5¢ v

T
b (F;,j(z)oaR(z)> v, n=13 (4.48)

a1 Oxn

where R(z) = \/(Zj — Z)T (Zj — z) contains the Euclidean distances between the

observation data Z; = [RH(xl,ij,xgﬁij) dyij tij] of user j and the cur-

i=1,...,m;
rent condition z. The comfort model only uses the states x; and z3 such that the
matrix C has a rank of 2. The model’s dependency on wu is inherently linear so that
the feedthrough D is a constant matrix containing the user-specific coefficients for

the fan level.

The linearized system (4.47) is discretized to apply discrete-time linear MPC concepts.
The control input as well as the disturbances are assumed to be piecewise constant so
that the discrete representation of the differential equations results in

z[k+1] = Q“,ti w[k]+ A" (eAts - I) Blkuk]+ A" (e““ﬁ - I) Folk]  (4.49a)
A

Blk] Folk]
ylk+1] = Clk+ 1)k + 1]+ Dulk + 1]+ go[k +1] (4.49b)

117



4 Adaptive Thermal Comfort Control

where k = to + kts and ts denotes the sampling time. The discrete system equivalent
(4.49) is only well defined if the inverse of A exists, hence det(A) # 0. For the cases

. 1 Min int xt :
uQ,2 € 3 —MinfAl, — +CZ:(L Ri‘(fj_ R‘:ﬁ" ) }, two of the four eigenvalues of A become zero.

Both cases can be neglected since only positive values for the primary mass flow are
allowed so that the discretization is always well defined.

Using (4.49), the system behavior can be predicted for a given number of N time
steps:

z(k+1] = Az[k]+ Blklu[k] + fo k]
wlk+2] = A(Ax[k]+ Blklulk]+ fo[k]) + Bk + ulk +1] + Fo [k + 1]

m[kJer]:AN"w[kH{ANP”B[k} -« Blk+Np—1] o]u (4.50)
+[AN”‘1 I O}fo
where
fo=[Folkl - Folk+MNol]'.  go=[golk] - golk+Npl]".

Consequently, the predicted system output (linearized comfort) is given by

y[k] = C[k]z[k] + Dulk]

ylk+1] = Clk+1] (Az[k] + Blk|u[k] + fo[k]) + Dulk + 1]+ go[k +1]
(4.51)
ylk+ Np] = Clk+ Np] A P z[k]
+[C[k+Np]ANP‘1B[k] ... Clk+Np)Blk+Np—1] D|u

Sy

+ [C[k+Np]ANP‘1

Clk+Np] 0| fo+golk+Np]
Output controllability of (4.51) is ensured when
rank Sy = dimy.

A minimum rank is always defined by the feedthrough matrix which contains the
direct impact of the fan levels:

rank D = dimlg,, = dimy —4. (4.52)
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Hence, the remaining components of Sy must provide Nocc — 4 additional independent
rows or columns. This criterion can be transferred to the nonlinear system to show
local output controllability.

The vector containing all vote predictions for the current MPC iteration results in

y=[yl - ylk+Nol] = Falk]+ Hu+ G +go (4.53)
where
r Clk] 0
Clk+1]A Clk+1]_ 0
F— Clk+2A° . G= Clk+2]A Clk+2] 0 7
Lo+ Ny A Clh+ N A el N A2 Gl 0
M D 0
Clk+1)Bk] D 0
H= Clk+2]AB[k| Clk+2)Blk+1] D 0
_C[k+Np]}iNP*1§[k] c[mNp]ANP”B[kH] C’[k+Np]B[Ak+Np71] D

The LMPC cost for optimizing thermal comfort equals (4.32) whereas the integral is
replaced by a summation due to the discretization. The prediction vector y containing
the estimated comfort states should be forced to zero for achieving comfortable
conditions. The discrete cost is consequently given by

Np
1 1
Jdiscrete = E §PIVT[k]QPIV[k} + iuT [k]Ru[k]
k=1

_l.r . L. .
=5 . y+ 5 . u (4.54)

Q
T

where R corresponds to (4.32) and allows to introduce a penalty on the manipulated
inputs for defining a compromise between thermal comfort and energy consumption.
The comfort weighting matrix @ is the identity matrix if all comfort models are
included with equal importance for the optimization. When occupancy is considered,
different weights on the diagonal of @ > 0 can be used to exclude absent users. Using
(4.53) and omitting the terms that are independent of the control input leads to

1 - . -
Jatserete = 5" (HTQH + R) u+ (Fz[k] + Gy + g0) T OHu. (4.55)
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If HTQH—l—R > 0, this objective can be solved under consideration of the input
and state constraints using standard MIQP solvers. By definition, the positive semi-
definiteness of H TQH is already ensured. However, a unique solution can only be
found if H has full rank and Q does not decouple inputs completely due to the
exclusion of users (e.g. all users mapped to one specific fan). In the event of any of
the described scenarios, the input penalty matrix R is used to guarantee a positive
definite optimization matrix, thus uniqueness of the solution.

Linearization of Constraints

The linear constraints for the cooling power (4.34) and the primary air flow (4.39)
can be directly included in the LMPC problem description. This also allows for a
neglect of the COg concentration Xcp, and thus reduces the problem dimension by
a quarter. The nonlinear constraint to prevent condensation at the FCU (4.45), on
the other hand, must be linearized. For this purpose, a conservative estimate for the
maximum cooling power is derived. To ensure a relative humidity lower than 100 %
at the FCU, the supply air temperature Tsup must be higher than the dew point
temperature Tyewpoint- 1 herefore, the nonlinear relation between RHajir, Tyir and
XH,0 is replaced by a linear estimate for Tyewpoint as a function of Xg,0. Using the
Magnus equation for the saturation vapor pressure according to Table 4.1 [97] and (4.7)
leads to the relation shown in Figure 4.12. A linear and a nonlinear approximation
are derived to provide a simplified representation. The actually occurring supply
temperatures are assumed to stay in a range between 5°C < Tyyup < 28°C. Since only
cooling operation is possible, the supply temperature cannot be higher than the return
air temperature of the room and thus a feasible upper bound is chosen according
to expected room conditions. The lower limit is rather motivated by the minimum
achievable temperature of the fan coil unit. The nonlinear fit

Thawpoint = 48.13 %/ Xp1,0 — 12.101/Xg,0 — 51.20 (4.56)

provides a very accurate approximation for the considered temperature range. For
the application of linear control concepts, a conservative estimation is derived where
the expected supply temperature is assumed to stay in the region of 15 °C. Using the
resulting linear relation

Thopoint = 1.28-10% Xg,0 + 1.76 (4.57)

as lower bound for the supply temperature always ensures that condensation is avoided.
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Figure 4.12: Approximation of the dew point temperature Tqewpoint in relation to the
specific humidity Xy,0.
Combining (4.42), (4.44) and (4.57) limits the cooling power as follows

; oy (d2 — 1) +x17hs +u
THR oint =1.28-10% Xp1,0 + 1.76 < pr (2 —71) 21 sup ma 1/

Tsup,max

. W da —
= > ieupmax (1.2&10‘3 <"M +x3> —|—1.76—ac1) — 1 (dy — 1)

Cp Msup,max

u1 >cp (1’ (x1—da —1.28-10% (23 — d))

w
+ tsup,max(1.28- 107 23+ 1.76 — 1)) = u %’ (2, d, ).
(4.58)

where rip,” describes the worst case scenario for the unknown primary mass flow us.

Since the dew point is always defined by temperature and humidity, the worst case
depends on the multiplication factor w:

0, w<0
mg’;‘ = { arbitrary, w=0.
Mpr,max, w >0
The constraint (4.58) still depends on the state vector & and the disturbance vector d.
The unknown future states within the prediction horizon are approximated by the

operating point g so that the linear estimate for the time-dependent lower limit of
the cooling power results in

U1, min = Max <_QFCU,maxa urll?rgi?lnd (ﬂﬁovd(t),mngD . (459)
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In the following the nonlinear and the linear MPC approach are evaluated to analyze
and compare the corresponding control performances. Furthermore, the weighting
matrix @ of (4.32) and (4.55) is the identity matrix to include all users equally. As
mentioned above, the input weighting matrix R is selected to ensure a unique solution.
The uniqueness of the fan levels u(3 45 6} is always assured by a full rank of the
fan-related part of D. This is guaranteed if all fans are mapped to an active comfort
model (assuming the corresponding fan coefficient §; ;.. 7 0 which is ensured during
the identification process). Similarly to Section 4.2.4, unoccupied fans are set to 0
and excluded from the OCP. A unique solution for u(; oy, on the other hand, is not
generally guaranteed. The comfort output is coupled to the system inputs u{1,2} solely
through the room conditions, namely temperature and humidity. The cooling power
u1 has a direct impact on the room temperature. The primary air flow us affects the
room conditions in multiple ways. The temperature is changed by the corresponding
enthalpy flow depending on d2 = Ty and d3 = X§,0,pr- The humidity Xy, can only
be controlled within a certain range related to Xy,0,pr and the occupants’ humidity
generation. In the case that the water content Xp,0 approaches the primary air
water content Xy, 0 pr, controllability for humidity is lost. The thermally decoupled
humidity state cannot be changed via ug = rhpr which is also demonstrated by the
resulting zero rows in B of (4.47a). Consequently, as long as no input constraints
are active, the desired room temperature can be achieved by multiple combinations
of the cooling power u; and the enthalpy flow related to ue. To ensure uniqueness
of the optimal solution, a meaningful penalty for u; and/or us must be introduced.
Generally, arbitrary weights can be used to either penalize the required cooling power
uy or the primary air flow ug. Hereafter, only uso is penalized motivated by the goal
of reducing the required amount of fresh air because dehumidification of the outside
air is one of the most energy consuming factors of the air conditioning task.

4.3.5 Impact of Sampling Time on Comfort-Optimizing Control

In a first analysis the nonlinear offline OCP is considered to serve as benchmark for
the control performance, and to define a suitable sampling time ts for the control
parametrization. A large sampling time limits the reaction time towards disturbances
such that variations (e.g. immediate changes in occupancy) cannot be compensated
within one sampling step. Since the AC system is switched of during the night,
the benchmark solution is computed as optimum of (4.33) for the operating hours
over an entire day. It is assumed that all disturbances are perfectly known at the
beginning of each control interval u[k] for the whole prediction horizon from 7am
to 7:30pm. The associated OCP is solved for three different sampling intervals
ts = {5min, 15min,30min} and the simulation results are depicted in Figure 4.13. As
already identified in Chapter 4.2, the optimal temperature set-point varies approx-
imately between 26 °C and 28 °C whereas office 2 prefers higher temperatures than
office 1. The smaller the sampling time ts the higher is the variability of the input
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Table 4.5: Summary of control performance depending on ts. The two values refer to
the result for office 1 and 2 respectively averaged over the operating hours
of the two considered days according to Section 4.2.2.

:, fzop Z;V:Ofc PIV; dt flop |Qrcul dt flop Xc0, (>800ppm) dt
[min] PIVave top 2 top

5 | 0636]0562  -0.31[-0.65  1.76 ] 0.47 b 0.1]1.2ppm

15 | 06440565  -0.27 |-0.65  1.73]0.50 14.1 | 13.6 ppm
30 | 0.667]0.572  -0.20 |-0.65  1.58 0.4 S0 30.2 | 28.5ppm

u and a faster reaction to disturbances is possible. Since the disturbance is only
provided at the beginning of a control interval and then assumed to be constant,
the unconsidered disturbance variations (in particular in Nocc) lead to unwanted
temperature changes within the time interval. This is accompanied by a greater
discomfort for increasing sampling periods.

Furthermore, it can be observed that the primary mass flow rhpr always tries to
track the occupancy profile to maintain an acceptable CO2 level while minimizing
the demand for fresh air. However, due to occupancy changes during the control
interval, the precalculated boundaries according to (4.39) cannot ensure full compliance
with the upper limit of 800 ppm. Table 4.5 lists the average comfort state, cooling
demands and violations of the upper CO2 bound in relation to the sampling period
ts. The considered time period t € Iop denotes the two exemplary days as specified
in Section 4.2.2 where only the operation hours from 7am to 7:30 pm are taken into
account. The discomfort due to unconsidered disturbance changes results in a worsened
average comfort level PIV,ye for greater sampling periods. The same tendency is
visible for the CO2 level violation where frequent updates of the current occupancy
situation allow to balance the COg concentration more adequately. The required
cooling power is very similar for all sampling intervals but more numerous changes
can be observed for smaller ¢s in Figure 4.13 to account for varying disturbance effects.
In contrast, longer control intervals result in a smoothed command for the cooling

power QpcuyU-

The negativity of the sum of signed votes

NOCC
1
— [ > PVt
top Lop 521

indicates that the system restriction Qrcy < 0 is partly active. Optimal compliance
with the comfort requirements would require additional heating because the minimal
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Figure 4.13: Impact of sampling time ts on the achievable control performance based
on the first day as used in Section 4.2.2.
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primary air flow for maintaining acceptable COg levels already provides higher cooling
than needed. This allows for raising the primary air temperature which opens up
additional energy saving potential on the building level. Since the comfort preferences
of office 2 relate to even higher desired temperatures, the FCU is only activated in the
morning when occupancy is increasing rapidly. Otherwise, the fresh air supply leads
to more than sufficient cooling and the corresponding temperature trajectory is a
trade-off between the thermal preferences and requirements on the CO9 concentration.

Although only the solution for the nonlinear OCP (4.33) is considered in Figure 4.13
and Table 4.5, the sampling time ts also affects the quality of the linearization
(4.47) as well as the discretization (4.49) what influences the later considered LMPC
implementation. Since the system is always linearized around the current condition
(beginning of the next control interval), the validity of the linearization must be
maintained over the whole sampling period so that a smaller sampling time leads to
a better match between the linearization and the original model. Additionally, the
discretization is only valid for piecewise constant control and disturbance inputs which
is only ensured for the inputs u. Hence, the neglected disturbance variations lead to
discretization errors. Nevertheless, the linearization and discretization of the bilinear
system dynamics is valid in a large region around the operating point such that the
ts-related disturbance effects exceed the linearization and discretization errors. Only
the nonlinear comfort output is more sensitive to ts. The linearized GP model deviates
significantly with increasing distance to the operating point. This linearization error
can even cause an oscillating effect of the optimal conditions when the gradient of
a comfort model is very steep for the current conditions. As a consequence, the
linearized model over- or underestimates the future development of the user comfort
and results in an exaggerated control command for u;. In the next step, this command
must be balanced by a contrary control input. For unfortunate boundary conditions,
infeasible steps of the control trajectory are the result. To curb this effect, a rate
penalty for the cooling power u; is added to (4.55)

Tiiserote = Jdiscrete + Au’ RyAu (4.60)
where
Au=[Aulk] - Aulk+Np—1]]"
= [ulk+ 1] —ulk] - wlk+Np]—ulk+Np—1]]

and Rp is a zero matrix with weighting coefficients for Au; on the diagonal. A
weighting factor of 2- 10~% is able to suppress the oscillations in the optimal control
trajectory while ensuring satisfying comfort levels.

In summary, the final choice of ts is a trade-off between the disturbance rejection
ability and the desired computational effort. For the following analysis ts is set to
5 min because computation time is not a limiting factor.
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4.3.6 Influence of the Prediction Horizon on MPC Performance

Apart from the sampling time, the prediction horizon tp has a direct impact on
the closed-loop performance of the MPC approaches. So far, the optimal control
trajectory was the solution of the open-loop control problem computed based on known
disturbance inputs and optimized over the entire day. Usually, exact disturbance
predictions are not available and the moving horizon of the MPC implementation
(see Figure 4.11) changes the open-loop OCP to a closed-loop control scheme that
adjusts the control input based on measurements of the actual current state. Without
advanced prediction algorithms, a steady-state disturbance model d =0 is the best
guess for the next prediction horizon. The sampling time is already selected to ensure
a reasonable impact of the disturbance prediction errors. A meaningful length of the
prediction horizon ¢, = Np - ts, on the other hand, is related to the system dynamics.
Additionally, it must be long enough to allow for the consideration of the effect of
state and input constraints. For example, an early counteraction by the control may
be beneficial when the unconstrained optimum cannot be realized by the real system.

At first the NMPC approach is analyzed for three different prediction horizons:
Np ={1,5,10}. In Figure 4.14, the corresponding simulation results are compared
to the benchmark solution of Section 4.3.5. The resulting temperature trajectories
in Figure 4.14a are relatively similar for all prediction horizons but expose multiple
deviations mainly during the morning and the afternoon. These deviations affect the
average comfort level PIV negatively as emphasized in Figure 4.14b. Optimizing the
thermal comfort over a short prediction horizon leads to a temperature reduction
around 9am. The corresponding actual comfort cost is therefore even lower for
Np € {1,5}. However, the need for warmer conditions shortly after 9am cannot be
met by the system such that the successive comfort cost increases. A greater horizon
avoids premature cooling and leads to an overall improvement of the occupant’s
comfort. A similar effect is also visible around 8 am where N, =1 overestimates the
cooling demand but Np > 5 reduces the cooling earlier to meet the future requirements.
Only a prediction horizon of ¢, = 10-tp = 50min is able to account for this effect in
the afternoon and thus leads to a similar performance as the benchmark solution.

A more detailed analysis of the influence of the prediction horizon is given in Fig-
ure 4.15. It compares the overall impact on the comfort level and the resulting energy
consumption of the FCU for the two exemplary days. For better interpretability, the
results are evaluated for the VAC as well as the HVAC system according to (4.34)
and (4.35) respectively. Since the results of Table 4.5 already indicated that the
upper boundary for u; is repeatedly active, a comparison with the unconstrained
case gives further insight for the selection of the prediction horizon. Regarding the
comfort levels PIVayve for both systems shows that the HVAC system improves the
control performance because the overcooling effect of the primary air flow can be
compensated. This is also highlighted by the sum of votes, shown in the second
column of Figure 4.15. The higher values for the HVAC system demonstrate that the
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(a) Comparison of the resulting temperature trajectories for the two exemplary days of
Section 4.2.2.
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(b) Visualization of the differences during the morning of the second day, exemplary shown
for office 1.

Figure 4.14: Control performance for different prediction horizons ¢, = Np - bmin.

desired conditions cannot be fully achieved by the VAC system. Another indicator is
the higher energy demand of the HVAC system which incorporates the heating power
to balance the cooling effect from the fresh air supply.

The same analysis is conducted for the LMPC approach. The corresponding control
performance is also depicted in Figure 4.15. Compared to the nonlinear system, the
linear approach does not expose a great improvement for an increasing prediction
horizon. The propagated linearization error counterbalances the benefit of the gained
knowledge about future system states. For office 1, ¢, > 15min is already a suitable
choice. The linear approach for office 2 is even completely insensitive to the horizon
such that any choice of Np is appropriate.

The final decision regarding an appropriate prediction horizon requires a compromise
between different properties. As observed in Figure 4.14, only predicting one step
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Figure 4.15: Impact of the prediction horizon Np on the overall control performance
for ts = 5min.

ahead has the worst performance for (almost) all cases due to the missing knowledge
of the future requirements and the relatively inert system behavior. The time constant
of the office is defined by

TR OZ
Cp (u2 + minﬁ) +R

— (4.61)
int

thus depends on the primary air flow. Considering the boundaries for ug, the time
constant lies between 10 min and 22 min. Therefore, a prediction horizon of 5 min
cannot account for future effects of the currently optimal control input and leads to a
suboptimal comfort level. Increasing the prediction horizon enables the consideration
of repercussions and improves the overall comfort so that the NMPC almost matches
the benchmark solution. However, further extension of the prediction horizon does
not lead to additional benefits due to the incorrect disturbance estimate. The actual
optima depend on the underlying comfort models and the boundaries for the control
input. The limitation to cooling rewards longer prediction horizons because of the
possibility to reduce cooling earlier when higher target temperatures are desired in
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the near future. Considering the nonlinear optimization, this suggests a prediction
horizon greater than 50 min so that the effects of input constraints can be taken into
account in advance. When the system is extended by a heating mode, the horizon can
be reduced to 35min.

Henceforth, Ny is set to 10 as it is the minimum prediction horizon for a good NMPC
performance in office 1. All other cases would allow for fewer prediction steps but
do not suffer from a greater horizon. Therefore, any prediction horizon > 50min can
be justified which corresponds approximately to 2-5 times the response time of the
system. The average energy demand, as shown in the last column of Figure 4.15,
further supports this choice. The associated energy consumption mostly decreases
with a larger horizon and approaches the global optimum according to Table 4.5. A
shorter horizon augments the energy demand to balance former suboptimal control
inputs.

4.3.7 Simulative Comparison of MPC and Feedforward Control
Performance

Solving the MPC problems incorporates a higher computational effort than the static
feedforward control approach discussed in Chapter 4.2. Furthermore, an integra-
tion in large buildings entails up-scaling effects which affect the applicability of the
control method. Therefore, the following section investigates and compares the perfor-
mance of the nonlinear and linear MPC method as well as the feedforward control
approach to reveal the corresponding (dis-)advantages. Based on the results of Sec-
tion 4.3.5 and 4.3.6, the sampling time is set to ts = 5min with a prediction horizon
of tp = 50min (Np = 10).

To obtain comparability, the simulation of the adaptive feedforward control algorithm
from Section 4.2.2 must be slightly modified. The simplification that the combined
cooling demand Q A can be controlled directly does not account for occupancy-related
adaptions of the primary air flow. In contrast to Section 4.1, the primary air flow is
not assumed to be constant but uses the occupancy level to define the minimum air
flow 7hpr, min according to (4.38). This property is included to cause the same cooling
effect and to comply with the CO2 concentration limit. Accordingly, the PI controller
specifies the cooling demand Qpcy. Therefore, the following results deviate from
Section 4.2.2.

The optimized office conditions for all three approaches are shown in Figure 4.16. For
better readability the benchmark is not shown since it almost matches the NMPC
solution, as observed in Figure 4.14. Equivalently to the results from Section 4.3.6,
the main differences between the NMPC and the LMPC approach are due to the large
variations between 7 and 10 am. The main driver for these variations is the impact
of the relative humidity as well as the different arrival times of the occupants which
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lead to very distinct thermal expectations within this period. Both, the humidity
and the daytime, affect the predicted vote via the GP model. Therefore, the comfort
models exhibit dominant nonlinearities. This behavior explains the poor performance
of the LMPC approach during this period where the linearization of the comfort
output is only valid within a small region around the operating point. Therefore,
the quickly changing room conditions and time-varying comfort requirements imply
linearization errors that are propagated to the OCP. This results in an overestimated
cooling demand in the early morning, similarly to the optimal trajectory based on
the purely linear comfort model (4.1c) (see Figure 4.6). As a consequence, the overall
comfort level is slightly worse compared to the NMPC.

The cascade of the comfort-optimizing feedforward controller and the PI room controller
deviates significantly from the NMPC results. In particular, the coupling between the
humidity and the temperature is not taken into account by the feedforward control
algorithm. The algorithm only reacts to the measured humidity state so that the
interaction between the new desired temperature and the relative humidity is not
considered by the static optimization. Furthermore, the desired temperature cannot
be reached immediately but depends on the PI control performance. Neglecting
the coupling of comfort, temperature and humidity leads to visible deviations and a
worsened comfort level.

Table 4.6 summarizes the control performance for all approaches. The already observed
differences are reflected by the average comfort state PIVaye which deteriorates with
decreasing complexity of the applied algorithm. The small differences for office 2 can
be traced back to two reasons. Firstly, office 1 is optimized based on six valid comfort
models whereas office 2 defines a compromise for ten occupants. The higher number
of user models smoothens out the individual differences and leads to a more even
desired trajectory. Consequently, the corresponding control task can also be fulfilled
by simpler control concepts. The second factor is the missing heating mode. The
upper limit for the cooling power is mostly active, as emphasized by the very small
energy demand for office 2, and thus limits the control options. That the feedforward
control has a generally lower average cooling demand than the predictive approaches
for the exemplary days is only due to the higher desired temperatures which are
the result of the neglected coupling between Tyi and RH,iy. This energy saving is
accompanied by a deteriorated comfort level.

Generally, the differences between the approaches are relatively small and the resulting
comfort state PIVaye is maximally worsened by 4.6 % compared to the benchmark
for office 1. This corresponds to temperature deviations of approximately 0.5 K. Full
compliance with these desired trajectories are challenging for real applications such
that a test-bed application might even swallow the observed simulative advantages and
disadvantages of the different control approaches. Therefore, a more detailed analysis
of a real-world application must be performed to evaluate the different potentials where
the impact of so far neglected disturbances can lead to more distinct results. On the
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Figure 4.16: Comparison of the MPC and feedforward control results.
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Table 4.6: Comparison of the linear MPC, nonlinear MPC and the adaptive feedforward
control (office 1 | office 2).

Method PIVave mtax(PIV(t)) i/ T |Qrcul dt
Benchmark 0.636 | 0.562  0.796 | 0.666  1.76 | 0.47 570
NMPC 0.638 | 0.563  0.825 [ 0.666  1.84 | 0.56 S0
LMPC 0.649 | 0.565 0.812]0.694 1.59 | 0.68 S0
Feedforward control | 0.667 | 0.565 0.803 | 0.663  0.98 | 0.11 %70

other hand, building control concepts that incorporate more advanced system models
open up a great potential for the investigated MPC concepts. While most of the
available research focuses on energy savings, the presented methodologies can be easily
included to other linear as well as non-linear model-based control approaches and hence
enable a combined optimization of individual comfort as well as the overall energy
demand. In summary, the previous analysis proved the applicability and feasibility
of all comfort-driven control concepts at which the proposed personal comfort model
leads to reasonable trajectories although the collected user data incorporate a very
high uncertainty.

4.3.8 Potential Assessment for Thermal Sensation Based Seating

The achievable comfort level PIV (4.24) fluctuates approximately between 0.5 and
0.8 for both offices. The great diversity of the occupants’ thermal sensation and the
limited number of manipulated variables prevents further improvement. The only way
to bypass this issue is a comfort based office assignment. To evaluate the potential
of an intelligent seating approach, the test group is split according to their thermal
sensation. The boundary conditions and occupancy profiles are again copied from
Section 4.2.2. Therefore, six people are assigned to office 1 and ten to office 2 but
based on their thermal preferences. The variance of these preferences is minimized
when the smaller group in office 1 aims for colder conditions and office 2 contains the
group with warmer preferences.

Table 4.7 summarizes the performance indices for the intelligently divided occupants.
The main benefit is visible for the colder office. The average comfort level is improved
by about 60 % compared to the results for the original office affiliation. The resulting
average optimized temperature is reduced to 25°C from earlier 27 °C. Sorting the
occupants minimizes the range between the "coldest" and "warmest" user. This is
emphasized by the minimum and maximum values of the average individual comfort
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Table 4.7: Performance evaluation for thermal sensation based seating.

i, 1@reuldt [, Tu(t)dt
to

Office | PIVave m?X(PIV(t)) min|max PIViy ;

J J 5 P
1 0.26 0.50 -0.08 | 0.48 8.16 'k 25.2°C
2 0.63 0.76 -1.54 | 0.19 0.41 2 27.1°C

level of an occupant j

PlVin j = ti/ PIV; (t)dt. (4.62)

op Iop

While the original office assignment led to a thermal comfort sensation range between
min; PIV,ye j = —1.15 and max; PIV,ye ; = 0.76 for office 1, the optimized seating
positions reduce this range by over 70 %. The missing improvement for office 2 is
again due to the larger number of occupants which must be satisfied simultaneously
as well as the COg driven primary air supply. The centrally precooled air provides too
much cooling such that the maximum office temperature cannot become significantly
higher than 27 °C. A differently designed (downsized) air conditioning system would
also improve the result for the group with warmer preferences.

4.4 Conclusion

Generally, the previous analysis showed that a well tuned PI controller as well as an
MPC approach are able to achieve comfort-optimized conditions. The performance
differences between the discussed control approaches are small compared to the uncer-
tainty that is incorporated by the user comfort models. Therefore, the performance
under real conditions depends mainly on the dynamical properties of the HVAC
system which define the response time to variations of the comfort requirements. This
property is particularly important when occupancy detection is included so that the
control algorithm adjusts the conditions based on the presence of the occupants. In
this case, fast responding systems are beneficial to track the optimal trajectory. Since
the cooling system of the investigated simulation model is assumed to be ideal, such
that latencies or other dynamical properties of a real HVAC system are neglected,
all controllers accomplish fast responses and thus similar comfort levels. Therefore,
a subsequent evaluation in the real test-bed must be performed to challenge the
simulative results and to reveal additional bottlenecks.

Nevertheless, the exposed differences between the different control methods can be
traced back to multiple system properties. The knowledge base of the adaptive
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feedforward control algorithm is identical to the MPC approach except for the room
model. Both use current measurements of the system states and disturbances to
improve the indoor conditions. Only the interface between the algorithm and the
system is different. The feedforward control algorithm optimizes the temperature
set-point without any knowledge about the room dynamics whereas the MPC includes
the dynamical characteristics. Hence, both approaches result in the same conditions
except for two scenarios:

» The desired comfort trajectory brings the HVAC system to its (dynamical) limits
and a predictive control strategy allows for more comfortable air conditioning.

» The coupling between air temperature, humidity and supply conditions incorpo-
rates a great potential for improving the occupant’s comfort.

The first scenario is mainly important for selecting the prediction horizon of the
MPC algorithm. Although the feedforward controller misses the predictive property,
the system limits do not affect the results significantly. The appropriately tuned
Pl-controller already damps the output of the comfort-based feedforward control
and avoids infeasible steps in the control command. However, the tuning of the PI
controller is a crucial factor for the performance. In reality, badly tuned controllers are
most often the main issue when room conditions are not satisfying. The model-based
MPC approach with identified zone models provides a more intuitive interface for the
user and allows for simple consideration of input and state constraints as well as the
possibility to intuitively incorporate an energy saving goal. Consequently, a lot of
research is performed in this field [1, 75] and a combination of the personal comfort
model with more advanced MPC algorithms encompasses a promising potential for
real applications on building level. Since linear(ized) models are quite common for
building control, the linearized comfort implementation allows for a simple integration
to other approaches. Although the linearization error leads to small deviations from
the nonlinear evaluation, the resulting deterioration of the comfort level is negligible
compared to the uncertainty of the personal comfort models.

The second scenario is piecewise visible in Figure 4.16 where the coupling between
humidity and temperature leads to different optimal trajectories. Particularly during
the startup phase, when humidity and temperature change significantly, benefits occur
for the MPC approaches and lead to temperature deviations of up to 0.8 K. Hence, a
test group that is even more sensitive to humidity or a HVAC system that leads to
greater humidity variations are likely to emphasize the MPC performance. Furthermore,
tracking the desired conditions with the required accuracy is a challenging task for
real applications where measurement uncertainties impede the possible attainment so
that more advanced control approaches can achieve additional profits.

Independent from the controller design, the comfort-driven trajectory definition re-
vealed a great potential with respect to energy saving and user satisfaction. The
surprisingly high target temperatures indicate that the standard set-point of commonly
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24 °C is not desirable or necessary. In particular in combination with elevated air
movement, significantly higher set-points can be implemented which provides potential
for downsizing of the system components and remarkable energy savings during the
operation. Moreover, the carefully considered comfort model structure allows for an
intuitive supervision of the learning process. Including new users gradually according
to their available voting data ensures reasonable optimal trajectories although a high
uncertainty is incorporated by the real-world user feedback.

With the trend towards open and inspiring working conditions where employees
can choose their working place freely, an introduction of thermally different zones
incorporates a great potential for improving the individual thermal comfort. Apart from
the influence of the office facilities and equipment, individualized thermal conditions
promote the occupants’ productivity and working performance. Therefore, thermal
comfort profiling based on personalized trained models opens up multiple chances for
greater user satisfaction.
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The main objective of climate control is to satisfy the occupants of a building. Usually,
standardized assumptions are applied to translate the thermal comfort requirements to
air-conditioning target values. These target values are then used as fixed set-points for
the HVAC system operation. The building control is commonly based on a multi-zone
approach where it is separated into multiple zones that are assumed to be well-mixed.
Therefore, only a single (or averaged) sensor measurement is used as a feedback signal
for the AC system. Hence, local differences within the commonly large zones are
neglected. As a consequence, this approach entails two difficulties: limited knowledge
about the actual local room conditions and subjective differences regarding the true
relation between thermal comfort and indoor air conditions. Both problems were
addressed in this thesis by developing multiple methods to pave the way towards
personalized comfort control for shared office spaces.

The first objective stated in Section 1.2

V' A data-based modeling approach for a more detailed representation of the spatial
room conditions to enable the possibility of localized temperature control without
the need for exact knowledge about the boundary conditions and expensive CFD
simulations.

was addressed in the first part of this thesis by deriving a data-based modeling
approach to close the gap between complex CFD simulations and the assumption of
well-mixed conditions. A GP regression model was trained based on distributed sensor
measurements using location information and the operational mode of the HVAC
system as model input. This model was then able to predict the spatial temperature
field to obtain a more detailed representation of the actual room conditions and
local differences. It was shown that a well selected mean for the GP improved the
prediction quality significantly. Moreover, distance-based input data led to a better
match between the model output and the real conditions instead of using Cartesian
coordinates. The model quality could be even further improved by optimizing the
sensor placement. Since the training data was provided entirely by the discrete sensor
measurements, it was concluded that an intelligent sensor configuration increases the
information content of the training data. In order to evaluate this assumption, two
measures were applied and assessed based on CFD simulation results.

The first measure targeted to improve the prediction accuracy, hence reducing the
MSE between the estimated temperature field and the ground truth represented by the
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CFD data. For the evaluation of the MSE, holistic knowledge about the temperature
field is required. However, since the measurement equipment in real buildings is
usually limited, the analysis aimed to derive a general placement strategy that could
later be transferred to arbitrary applications: The corresponding MSE-based sensor
placement strategy depends on the amount of distributed sensors, i.e. a small sensor
network initially has to capture the average temperature level but with an increasing
number of sensors, local effects must be taken into account by building sensor clusters
in areas of high temperature gradients.

The second approach applied to optimize the sensor configuration maximized the
MI between the sensor data and the remaining room data. This optimal placement
method uses the structural properties of the GP modeling approach and can be
applied without extensive reference measurements. The MI method relies on the
incorporated covariance information of the GP and makes use of the interpretation
that entropy is a measure for uncertainty of the model output. The concept tries to
maximize the reduction of uncertainty about the room conditions by knowing local
sensor measurements. Since this approach focuses on the reduction of uncertainty that
is accompanied by a reduced variance, uniformly distributed sensor configurations
are the result and monitoring local effects is avoided. While both general placement
guidelines can be easily transferred to real-world applications, an optimization is only
feasible using the MI-based approach. Solely the hyperparameters of the GP model
must be identified for its evaluation which is realizable e.g. based on the available
sensor measurements. In conclusion, the GP model for temperature field estimation
provides an easily implementable advancement to the commonly applied room models
and does not require detailed knowledge about the exact boundary conditions and
geometry. It can be trained based on commonly available sensor data and allows an
online adaption due to its purely data-based structure. Therefore, the implementation
effort is minimized and the foundation for focused local actuation is created. Future
developments could target the extension to dynamic modeling. Furthermore, actuator
placement and optimal operational strategies can be developed if a greater data basis
from real applications is available.

The assumption that local actuation and individualization of indoor conditions is
only meaningful when personalized target states can be defined motivated the second
objective of this thesis:

v' A methodology for the derivation of well predicting personal thermal comfort
models is developed based on real world voting data. A scalable modeling approach
is derived that can be used in the context of optimal control.

The commonly applied models for thermal comfort in buildings aspire to define
the best compromise for a large group. Although these assumptions are suitable
for common building control algorithms, they contradict the idea of personalized
conditions. The main challenge for individual control is the highly subjective sensation
and the limited measurements of comfort-related variables. In the building context,
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environmental data only can usually be accessed whereas personal influencing factors
are invisible to the control algorithm. These limitations complicate the modeling of
individual thermal comfort. In the second part of this thesis, a detailed analysis of
suitable model structures and important comfort factors was performed to define a
modeling approach appropriate for comfort-based building control. Standard models
were evaluated regarding their transferability to personalized comfort prediction
but exhibited unsatisfactory accuracy by incorporating a high level of complexity.
Motivated by dominant linear relations between the thermal sensation vote and
environmental conditions, generalized linear regression approaches were investigated
regarding their suitability for personal comfort modeling. It was found that even
the simplest linear regression approaches result in a better individual predictability
than standard models. Moreover, this simple structure allows for good supervision
during the model training which is a crucial factor to ensure physically feasible
prediction models based on the extremely noisy voting data. A hybrid modeling
approach consisting of a linear basis model and a GP model further improved the
prediction quality. This extension combines the benefits of the linear approach with
the possibility to map the nonlinear relations between personal thermal comfort and
environmental conditions. A detailed feature selection process was performed to
find the best compromise between model complexity and prediction quality but also
to minimize the risk of overfitting. Different methods were derived for an optimal
definition of the common feature set. The analysis resulted in a control-oriented model
structure which allows for reliable online training and adaption while enabling a robust
application to optimization-based control approaches.

The last part of this thesis focused on the development of comfort-based control
strategies to address the third and last objective:

V' Optimization-based control approaches are devised for improving the individual
thermal comfort in a shared office space by the use of multiple ceiling fans.

Based on the previously derived comfort models, optimal conditions were deduced
by defining the best compromise between all users’ preferences and the available
manipulated variables. The controllable states for the regarded case were defined by
a common temperature set-point and the speed of additional ceiling fans providing
local actuation of the air velocity. On that basis, an adaptive feedforward control
algorithm was implemented which computes the optimal temperature and fan level
set-points based on the current office and outside conditions. This method considered
the room dynamics as a black box. As such it can be applied as retrofit option which
is independent from the present AC system. The impact of different comfort model
structures and the online learning process was investigated. An application in the
test-bed showed feasible performance for all model structures but further evaluation
regarding the required training data set size and online adaption will be necessary. An
additional challenge is the handling of changing occupancy. Sudden (de-)activation of
comfort models, when users leave or enter the room, results in steps of the comfort
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requirements. Thus, two different methods were proposed for a feasible handling of
occupancy changes. The resulting occupancy-based control trajectory was smoothed
so that the HVAC system was able to follow the comfort-optimal command. Apart
from optimizing the comfort level, this approach also revealed significant energy saving
potential as by-product. The desired temperature level turned out to be about 2-3 K
higher than the commonly applied standard set-point. Furthermore, the cooling
effect of the locally increased air movement incorporated two additional benefits:
improvement of the overall comfort level and further energy saving possibilities by
forcing the feedforward control algorithm to favor higher fan levels.

The adaptive feedforward control approach did not consider the building dynamics.
Control-performance, thus the comfort level, could be further improved by extending
the algorithm with a dynamical office model. Since input and state constraints as well
as disturbance effects are dominating aspects for building control, an MPC structure
was selected to fulfill the comfort-based control task. Hence, the comfort optimization
directly included the dynamical limitations and took into account the coupling between
system states and personal thermal comfort. Consequently, the considered coupling
between relative humidity and temperature improved the performance of the MPC ap-
proach compared to the feedforward control. The benefit of including input constraints
proved to be even more significant: The present system had no local heating device.
Therefore, the predictive strategy reduced cooling earlier when an input constraint
limited the future control options. This enhanced the overall comfort. Also a linear
MPC was implemented to investigate the feasibility and achievable performance when
computational effort is a limiting criteria for an application. The results proved
the general validity of this approach although small performance losses had to be
accepted. The thoughtful comfort modeling approach enabled well-performing control
approaches with all applied concepts so that the final way of implementation depends
on the system requirements. The retrofit option can be applied to any system with
low modeling effort whereas the MPC formulation allows for an integration to more
advanced model-based control strategies.

The presented work derived a large set of methods that allow for an integration
of individualized comfort-based control strategies. However, the voting data and
application was limited to a small group of employees in Singapore. Although modeling
approaches can be applied to different user groups, the optimal set of common features
and achievable comfort levels may vary for other test groups and locations. Particularly
the high desired temperatures likely differ for other subjects and an application in
distinct climatic circumstances. Furthermore, the air temperature in the considered
offices were bounded above due to the constant fresh air supply and the associated
fixed cooling enthalpy flow. Consequently, the training data do not include the
actual sensation for very high temperature set-points. It can be expected that these
extremely up- or downwards shifted personal comfort models are self-regulated if the
room controller is able to explore the full temperature range. These effects during the
model training and adaption must be investigated in future studies to define meaningful
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boundaries and relaxations for the model’s coefficient bounds. So far, the models
were included to the comfort optimization algorithm depending on the number of
available votes. However, further weighting strategies can be included for the comfort
optimization. For example, it can be meaningful to use the variance information of
the GP modeling approach and weight the comfort models according to their variance
so that certain predictions have a greater influence on the desired conditions than
uncertain estimations. Another open question remains in the reaction of the occupants
when the office temperature really varies notably during the day. Commonly, the
target conditions for buildings are based on maintaining constant conditions. Although
the optimization results suggest variations over the day, the voting data were collected
under predominantly steady conditions (due to the limited access to the AC control)
and only set-point changes over longer periods could be investigated. Consequently,
the actual impact of dynamic temperature trajectories on the users’ comfort must
be evaluated. Possibly, an automatic leveling of the daytime-dependent variations
could be observed when the optimal trajectories are applied over a longer test period.
An application to larger open office spaces with distributed actuation incorporates
a great potential for combining the derived temperature field prediction model and
the personal comfort optimization. Not only elevated air movement can be used
for personalization but also individually controllable supply conditions. Since local
changes of the supply conditions have a large radius of influence due to convective
mixing, these effects must be investigated and included for the comfort optimization
in future applications.
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A Appendix - Temperature Field Prediction

A.1 Derivation of Posterior Distribution for GP Model

The calculation of the predictive posterior distribution using a GP model is de-
rived in the following based on [38]. Given the training set of pairwise observations
D={(z;,T;)|i=1,...,m}, the m x m covariance matrix K and the mean u, the
conditional probability density

Z7Z*,K>

T,
PTT,Z, 20 K) = — 57 (A1)

can be evaluated to predict an unknown value T for a given input z4«. The joint
probability distribution function is given by

T _m+1 1 1 _
P < [T*] Z,z*,K) =(27)" 2 |Kpmt1| Zexp (finKm%Hy) (A.2)
with
K _ K K(Z,z«)| |K &
ML TG Z,20) K(zez)| KT K|
| T—p| |7
K| = det K.
Substituting P(T'|Z,K) and using (A.2) in (A.1) results in
K|? 1 - _
P(T«|T,Z,z+,K) = - K] — €xp (—5 (yTKm{,,_ly—TTK 17')) (A.3)
(2m)2 |[Kmy1| 2
Defining
1 A A
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A Appendix - Temperature Field Prediction

and using Km+1K;11+1 = I,,+1 leads to the following expressions

KA+ Ac=0 - A=-AK 'k (A.5)
KA+kAT =1, (A.5) A:K‘H—%AAT (A.6)
—1
KIA+rA=1 % A= (K—K',TK_]'I{) (A7)
A5, A. —K!
@5 AT, P (A8)

k—kTK 1k

The exponent of (A.3) can be expressed in terms of the inverse covariance matrix
(A.4) and in dependence of 7« as

y K, y—7 K 't =+ 220 77 + const. (A-9)

Using the results of (A.5) to (A.8) leads to the expression for the mean and covariance
of the normal predictive distribution P(T%|T,Z, K, z+)

px=p+r K 1 (A.10)
ol=k—k K k. (A.11)
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A.2 CFD Simulation Setups

A.2 CFD Simulation Setups

The reference data for the temperature field prediction model in Chapter 2 are provided
by multiple CFD simulations. According to Figure 2.1a, the office is separated in
3 zones and the zone-related supply and exhaust conditions are varied as listed in
Table A.1. Figure A.1 visualizes the resulting temperature distribution in the occupied
zone (z2 = 1.2m) for each simulation setup.

Table A.1: Description of CFD simulation setups.

Zone 1 2 3

AC mode inlet outlet inlet outlet inlet outlet
Setup 1 3ACH X 3ACH v 3ACH v
Setup 2 3ACH v 3ACH X 3ACH v
Setup 3 3ACH v 3ACH v 3ACH v
Setup 4 5ACH X 3ACH v 5ACH v
Setup 5 4 ACH v 3ACH X 4ACH v
Setup 6 5ACH v 3ACH X 5ACH v
Setup 7 4 ACH v 3ACH v 4ACH v
Setup 8 5ACH v 3ACH v 5ACH v
Setup 9 1ACH X 3ACH v 1ACH v
Setup 10 | 1ACH v 3ACH X 1ACH v
Setup 11 | 1ACH v 3ACH v 1ACH v
Setup 12 | 5 ACH X 1ACH v 5ACH v
Setup 13 | 5 ACH v 1ACH X 5ACH v
Setup 14 | 5 ACH v 1ACH v 5ACH v
Setup 15 | 5ACH X 0ACH v 5ACH X
Setup 16 | 0 ACH v 0ACH X 3ACH X
Setup 17 | 0 ACH v 0ACH X 8 ACH X
Setup 18 | 9ACH X 2ACH X 0ACH v
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Figure A.1: CFD simulation results for the temperature distribution under different
operation modes.
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A.3 Greedy Optimization Algorithms for Sensor Placement

A.3 Greedy Optimization Algorithms for Sensor Placement

To avoid the infeasible evaluation of the combinational analysis for the optimal sensor
placement, two greedy algorithms are introduced for the optimization. The pseudo
code of Algorithm A.1 and A.2 describes the working principle for stepwise forward
and backward selection respectively. The cost function J(S) denotes the objective

applied to rate the sensor setup S.

Algorithm A.1 : Sequential forward selection of sensor locations

ForwardSensorSelection (D, M);

Input :Observation data D= {(z;,T;)|i=1,...,m} from the distributed
sensors S C M.

Output :Define best set of sensor locations Sy, of k distributed sensors.

2 Initialize S = {0}, k = 0;

3 while £k < M do

Find best next sensor locations s}, = argmin (Z;n:1 J(Sk Usk)>;
skEM\Sk
Sk41 =Sk U Sz;
k=k+1;
end

Algorithm A.2 : Sequential backward selection of sensor locations

BackwardSensorSelection (D, M);

Input :Observation data D = {(z;,T;)|i=1,...,m} from the distributed
sensors S C M.

Output :Define best set of sensor locations Sy, of k distributed sensors.

2 Initialize S = M,k = M;

3 while £ >0 do

Find least useful sensor s, = argmax (Zm J(Sk\ sk)>;

SKESK =1
Sp—1 =Sk \ 8y, ;
k=k—1;
end
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B Appendix - Personal Thermal Comfort Modeling

B.1 Sensor Specifications

The thermal comfort test-bed is equipped with Libelium Waspmote sensor boards
[72] for indoor air quality measurement. It contains Sensirion air and mean radiant
temperature sensors [90] and the black globe thermometer THERMASGARD® RPTF

T™
2 [87]. The outdoor conditions are monitored by a Wireless Vantage Pro2  weather
station [22]. Table B.1 lists the main sensor specifications.

Table B.1: Sensor specifications

Sensor type Measurement range  Accuracy

Air temperature sensor 0 to 70°C +0.4°C

Humidity sensor 0 to 100% +1.8%

Black globe thermometer | —30 to 80°C DIN EN 60751, class B
Outdoor temperature —40 to 65°C +0.3°C

Solar radiation 0 to 1800 % +5%

B.2 Voting Data

The voting data that are used for the personal thermal comfort modeling are collected
during the daily working routine. The voting feedback of 16 occupants is considered
for the analysis. The associated sample sizes n and office assignments are given in
Table B.2. Figure B.1 shows the data ranges that were covered over the test period
from September until February for the 16 considered users. The occupants were
exposed to various temperature settings and fan levels. To maintain employable
room conditions the temperature ranges are mostly limited to acceptable conditions.
Therefore, over 50 % of the temperature values that correspond to a recorded vote are
within the interval of 25.0 °C and 26.5 °C. The range without outliers reaches from
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23.0°C to 28.5 °C. The Interquartile Ranges (IQRs) and ranges between the minimum
and maximum values without outliers, denoted as whiskers, for the accumulated voting
data are given in Table B.3. A data point is considered as outlier when it has a
distance of 1.5-IQR from the IQR upper or lower limits. Note that the ranges are not
listed for the discrete fan level g, because over 50 % of the data points are collected
for I,y = 1 such that the accumulated data range does not provide meaningful insights.

Table B.2: Sample size and office for each user.

User ‘ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

n 66 362 375 135 50 551 289 234 149 530 82 382 305 64 163 62
Office | 2 1 2 2 1 2 1 1 2 2 2 2 2 1 1 2

Table B.3: Accumulated ranges of recorded voting data.

Parameter Unit Interquartile range = Whiskers

Toir °C [25.1, 26.5] [23.1, 28.5]
Tonr °C [27.0,28.6] [24.8, 30.7]
RH.iy % [51.1,55.9] [44.0, 63.1]
Tsup °C [22.2, 25.4] [17.5, 28.6]
Tout °C [28.0, 30.4] [24.4, 33.6]
Iyl W/m? [213, 490] [0, 905]
RHout % (67.7, 81.4] [49.6, 98.0]
DT h [10.8, 16.3] [7.4,21.4]
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B.2 Voting Data

-0 F O - e W b - A
- F-CO---41% - -Co-H TR S e o I - T4
~ o d-[H == +HHe=- oo | =[O - i
w & — - O A - -+ ——t - - O A b- - A
£ = — - - T A b= - o e - eeme- - - A (Sl s
s & |- o A I S iy o i 2 I- -+
° g —-_—— -4 S - - —1S +---CIF 44 S - T—-4
B oH - o - FoDo-+ = b- T -
g = -k D |-~ —— - - T P - -
= = |- - - -3 -+ b S e R - A
E S o, ——r — LT A f-{O- =+ - ----CT3-A [ S
$ZS 8 P-4 w03 w0 F---CI3-4 w l--CT3-4
mm ¢ 5 - b --O3-4 FCO- A - —F - - T+ A F--C—T—34
£ =2 E o ceme b - {TI- 4- {O- - - -[T3- 4 O o s
0 i - +---CO-H (S s
N = O | k@ l p eeeedl =y [H i s S—
o e (=) (=) [ 0 [ 10 — 0 o [ o] o
(%] **Hy [Do] L [o5/ma] 197 [l za
im] o+ - I i Sl-CD-He-
F-Co -4 H8 |- - A S . I e EE T s s A R e R e mm LR B
+ O - o H - - I “FADA = e - -
ok D - b-m- - bo - -C— - - A [ m s b---CT3--4
= T e e = - =[O = i s b---CI 3 --4- == -3 --4
-oa- - -3 - bo - -C— - - A l--Co - - b- -3 - A
-0 ==+ 3 R mm e . I S R s ST R I e SRR
=~ = | D +- b---C—1T b--C1--4 gy i mm
F OO e FAD +- ——— b--CI3---4 F--CL3---4
- - A - -H . ---C—/ == I3~ ~ = F--CI3--4
-+ A - o ~O- A== . . I . F-- T3~ - - +- b---CT—- -4
(o B o (o s w0 . -0 b -m- w0 FOO-4 0
A=A - I- O 4 = I---C—3 O s F-TO--4
O e st (I} Aemmem . I . I-- LT3 - -+ s S
FA- - - -H I---C— == -~ A== b-- - 3F--4
| =4y - - | s t | ! t co bl = - | ee e
(o) 0 [ o 0 ) (o] — o [ 0 [ [en) o
[ar) N N N N [ N m 0 Ne)
[D0] ™z [Do] ™z [ (D] ™1 %] *oHy

15

10

15

10

User

User

Figure B.1: Distribution of the collected voting data for the 16 considered users.
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B Appendix - Personal Thermal Comfort Modeling

B.3 PMV Calculation

Fanger [30] considered the steady-state energy balance of the human body to derive
an equation for the prediction of thermal comfort. He used comfort voting data and
deduced empirical relations which represent comfortable conditions. As a consequence,
the right hand side of (3.1), namely the required heat flow for a neutral sensation is
evaluated such that the thermal load on the human body results in

L=M-W }  actual heat flow
— fo1 (3.96-107° (91 — Winr) + ctconv (Ter — Thir))
—3.05-10"% (5733 — 6.99(M — W) — pa)
—0.42(M — W —58.15) — 1.73- 10" ° M (5867 — pa)
—0.0014M (34 — Taiy).

required heat flow

(B.1)
All used symbols are explained in Table B.4 whereas [3] provides a more detailed
description how the equations are obtained. The clothing temperature T is found by
solving

Toy =35.7—0.028(M — W) — It fo (3.96 - 107° (98 — Iie ) + cony (Ter — Tair) )
(B.2)

where the heat transfer coefficient ccony and the clothing area factor f.; are calculated
by

2.38 7o) — Tair|| %% for 2.38|Te — Tair||%%° > 12.1\/0air
Qlconv = 0.25 (Bg)
12.1/vair for 2.38||Te) — Tairl|”° < 12.1\/Vair
1.00+1.2901 for I <0.078
fa= ¢ ¢ (B.4)
1.05+0.6451,, for I, >0.078.

The computation of the thermal load L consequently only depends on the parameters
metabolism M, clothing insulation I, air temperature Tyi;, radiation temperature Tmr,
air velocity vaiy and humidity RH,ir. The mechanical work W is 0 for normal office
activity and can be neglected for the performed analysis. The relation between L and
thermal comfort prediction is then given by (3.2).
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B.4 Mean Radiant Temperature in the Test-Bed

Table B.4: Nomenclature for PMV calculation.

Symbol Description Unit
M Metabolic rate W/m?
w Accomplished mechanical work W/m?
I Clothing insulation m® K/w
fal Clothing area factor

Toir |Oair  Air temperature °C|K
Twr|Y9mr  Mean radiant temperature °CIK
T |0l Surface temperature of clothing °CIK
Pa Partial water vapor pressure Pa
Qlconv Convectional heat transfer coefficient ~W/m?K

B.4 Mean Radiant Temperature in the Test-Bed

The calculation of mean radiant temperature usually requires detailed knowledge
about the considered room. View factors, window and wall properties as well as sun
position and orientation affect the radiation exchange. These properties are mainly
unknown and thus, introduce a high complexity to the system when mean radiant
temperature is needed for the comfort prediction. To reduce the complexity, a general
relation is identified for the considered test-bed. Analyzing the measurement data
reveals a strong relation between the mean radiant temperature Tmr and the air
temperature Tyiy. Furthermore, solar influences are expected to affect Tmr. Therefore,
all user-related observations described in Appendix B.2 as well as additional available
environmental measurements within the office spaces are combined to a data base
with over 4000 samples containing tuples of Tyiy, I5o) and Tmyr. Figure B.2 shows the
measured observation tuples as colored dots. Expressing the mean radiant temperature
in terms of air temperature and solar radiation leads to the least square fit

Tonr = ao + a1 Tair + a1 Lso) = 2.38 4 0.98Twir +6.82- 10 I, (B.5)

which corresponds to the surface in Figure B.2. Consequently, Tmr o Thiy whereas
Iso1 does not influence the mean radiant temperature for the considered office space.
Although the latter result is contrary to the natural intuition, it can be explained
by the orientation and location of the regarded offices. Due to their location on the
ground floor with plants in front of the windows and manually operated blinds, solar
radiation rarely enters the offices directly. Consequently, the simplified assumption
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Figure B.2: Relation between mean radiant temperature, solar radiation and air
temperature.

for the prediction of Ty results in

Tnr = 2.38+ 0.98T ;. (B.6)

B.5 Cross-Correlation between Comfort Predictors

Computing cross-correlations between the considered comfort factors gives further
insight on the reasons for the final feature selection or rather explains why specific
features are neglected. Table B.5 lists the cross-correlation values calculated by (3.13).

The optimal feature selection in Table 3.3 revealed that Tsup and Tout have the lowest
significance for predicting thermal comfort. The corresponding results in Table B.5
expose at least one or two strong cross-correlations to other parameters. The supply
temperature Tsup is highly correlated with Thir, Timr and RHajir such that its effects
are already captured by other model components. Furthermore, the impact of Tsup
on the room conditions and consequently on thermal comfort is expected to occur
delayed due to the inertia of the room dynamics. The outside temperature Toyut, on
the other hand, exhibits a remarkable correlation with RHoyut and Iy, what explains
its substitution by other parameters.
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B.6 Combinatorics of Comfort Factors without Predefined Predictors

Table B.5: Cross-correlation ¢ between the predictors of the linear feature vector ¢ .

Tair Trr RHair lfan Tsup Tout Isol RHout DT

Tair 1 0.95 -0.74 0.02 0.81 0.15 0.08 0.07 0.16
Tmr - 1 -0.78 -0.01 0.79 0.19 0.09 0.05 0.21
RHajir - - 1 -0.03 -0.55 -0.30 -0.09 0.15 -0.49
lfan - - - 1 0.03 -0.08 -0.07 0.10 -0.01
Tsup - - - - 1 0.02 -0.01 0.18 0.07
Tout - - - - - 1 0.56 -0.87 0.23
Iso1 - - - - - - 1 -054 -0.15
RHout - - - - - - - 1 -0.17
DT - - - - - - - - 1

B.6 Combinatorics of Comfort Factors without Predefined
Predictors

The evaluation in Section 3.4.5 is build on the control objective and thus includes

the manipulated variables u = [Tair lfan]T as fixed model components. However,
the combinational analysis of the comfort factors returns slightly different results if
no fixed basis is assumed. The corresponding validation errors and optimal feature
combinations for the linear feature vector ¢; are shown in Figure B.3 and Table B.6.
The minimum MSE is achieved with the feature vector

T
¢1=[1 Tar Twr RHair lan RHow DT . (B.7)

Since (B.7) contains the fixed input w, it is identical to the combinational optimum
(3.23) with predefined basis. According to Table B.6, only two combinations deviate
from the approach in Section 3.4.5. The best single predictor is given by Tsup. This
can be explained by the direct dependence between Tsup and Thir. Moreover, a low
supply temperature causes local draught effects that impact the thermal comfort of
the occupants sitting closer to the supplies. However, Figure B.3 also shows that the
use of Thi; leads to an almost identical model performance. The same is true for the
substitution of Tmr by Tair for the best combination of 3 predictors. Although using
the mean radiant temperature results in a slightly lower prediction error, replacing
Tmr by the air temperature instead is a valid exchange regarding the associated MSE
in Figure B.3.

The combinatorics for the quadratic shape function based on ¢, leads to the optimal
combination

T
¢)§ = [1 Tair TaQir Tmr RHair lfan RHgut DT} . (BS)
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Figure B.3: Accumulated average and median 10-fold cross-validated prediction accu-
racy without fixed model basis.

Table B.6: Optimal feature selection for 1 to N, predictors based on ¢;.

Np Tair Tr RHair lfan Tsup Tout [sol RHout DT meanlvgrsnEedian)
1 v 0.775 (0.706)
2 | v v 0.745 (0.661)
3 v v v 0.724 (0.676)
4| v v v v 0.714 (0.617)
5 | v v v v v 0.707 (0.608)
6 | v v v v v | 0.706 (0.610)
O N N v v | 0707 (0.617)
8 | v v v v VN v v | 0.707 (0.604)
9 | v Vv v v v Y v v | 0.710 (0.600)
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B.6 Combinatorics of Comfort Factors without Predefined Predictors

Equivalently to Section 3.4.5, the only difference between (B.7) and (B.8) is the
inclusion of the squared air temperature. In contrast to the small differences between
results for ¢; with and without fixed basis, the cross-validated MSE in Figure B.3
shows no visible deviations for ¢5.

In conclusion, the depicted prediction accuracy as well as the corresponding optimal
input combinations of Table 3.3 and Table B.6 reveal that the predefined inclusion of
u leads to almost identical results. Only feature vector dimensions < 4 substitute Tair
by Tsup or Tmr. Nevertheless, the cross-validated MSE is comparable and supports
the fixed usage of u as valid structural assumption. Moreover, the fixed basis reduces
the risk of overfitting due to unskillfully selected features notably. Comparing the
vertical range of the combinational results in Figure 3.10 and Figure B.3 shows that
the fixed inclusion of u avoids the upper point cloud such that a reasonable model
output is ensured for all possible linear combinations.
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C.1 Effect of Rate Constraint for the Feedforward Control
Algorithm

The trajectory generation based on disturbance-dependent comfort models entails
discontinuities of the temperature command due to sudden changes of the disturbance
values and even more pronounced steps originating from the discrete fan levels. While
fan levels can be switched immediately, the room temperature has a slower dynamic.
To avoid unrealizable temperature trajectories, a rate constraint

| Taesired (t +ts) — Tair (t)] < ATmax (C.1)

can be added to (4.18), such that the increment of the temperature profile from
time instant t to ¢ +ts is limited to feasible steps ATmax. Figure C.1 compares the
unconstrained with a rate constrained optimization, where ATmax is chosen to limit
the temperature variation to 5 °C/h. The underlying personal comfort model is PIVgp,
(4.1d).

The additional limitation smoothens the temperature trajectory and uses the fans to
balance the smaller temperature adjustments. The predicted voting is very similar to
the unlimited optimization but outperforms the unlimited approach for some time
periods. The resulting comfort level PIV (4.24) is increased because the optimization
incorporates more realistic dynamical assumptions such that the fan level can compen-
sate for the delayed temperature change. Metaphorically, choosing the rate constraint
according to the room dynamics is comparable to including the system dynamics
in the trajectory planning, hence solving the MPC problem as done in Chapter 4.3.
However, the control performance obviously depends on the right choice of ATmax
and can even worsen the result when it is chosen too conservatively, also visible in
Figure C.1.
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Figure C.1: Comparison of the trajectory generation with and without rate constraint.
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Acronyms

kNN

AC
ACH
AHU
ANN
ARMA

CFD
Ccv

DE
ET*
FCU
FEM
FVM
GP
HVAC

IoT
IQR

LASSO
LMPC

MI
MINLP
MIQP
MISO
ML

k-Nearest Neighbors

Air Conditioning

Air Changes per Hour

Air Handling Unit

Artificial Neural Network
Autoregressive-Moving Average

Computational Fluid Dynamics
Cross Validation

Differential Evolution
Effective Temperature

Fan Coil Unit
Finite Element Method
Finite Volume Method

Gaussian Process
Heating Ventilation and Air Conditioning

Internet of Things
Interquartile Range

Least Absolute Shrinkage and Selection Opera-
tor
Linear Model Predictive Control

Mutual Information

Mixed Integer Nonlinear Program
Mixed Integer Quadratic Program
Multiple-Input-Single-Output
Machine Learning
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Acronyms

MPC
MSE

NLP
NMPC

OCP
OLSS

PCS
PI
PID
PIV
PMV
PPD

QP

RANS
RC
RF
RMSE

SET*
SVM

VAC

Model Predictive Control
Mean Squared Error

Nonlinear Program
Nonlinear Model Predictive Control

Optimal Control Problem
Ordinary Least Squares Solution

Personal Comfort System
Proportional-Integral
Proportional-Integral-Derivative
Predicted Individual Vote
Predicted Mean Vote

Predicted Percentage of Dissatisfied

Quadratic Program
Reynolds-averaged Navier-Stokes
Resistance-Capacitance

Random Forest

Root Mean Squared Error

Standard Effective Temperature
Support Vector Machine

Ventilation and Air Conditioning
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List of Symbols

The following list contains all frequently used variables and parameters. Only locally
used symbols are explained at their first occurrence. Bold symbols represent vectors

and matrices.

Symbol

Description

Unit/Value

OPERATORS

Absolute value of a scalar or determinat of a matrix

Placeholder for arbitrary variable
Dot product

k-th Hadamard (entrywise) product

Li-norm
Lo-norm

Nabla operator V = [Bizl 6%2

Tensor product

SUPER- AND SUBSCRIPTS

*
adv
air
cond
conv
core
dist
eva
exh
ext
int
out
pr
rad
res
sens
sk
sto

Result of optimization
Advection

Air conditions
Conduction

Convection

Body core compartement
Disturbance effects
Evaporation

Exhaust air conditions
External

Internal

Outside conditions
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List of Symbols

Symbol Description Unit/Value

sup Supply air conditions -

w Wall -

z Zone -
GREEK LETTERS

e} Heat transfer coefficient W/m?2 K

B Regression coefficient -

X Cartesian coordinates x1, x2 and x3 -

é Distance between sensor location and actuator m

P Discharge coefficient -

€ Significance bound for common feature selection -

n Solar gain of the considered room/zone m?

k(z;,zj)  Covariance/kernel function -

A Thermal conductivity W/mK

I Mean value of GP -

w Binary variable -

o} Feature vector -

p Density of air kg/m?

0,0partial  (Partial) Pearson corrleation coefficient -

o Standard deviation -

T Stress tensor N/m?

(7] Hyperparameters of kernel function containing the -

characteristic length scale o;, the signal standard
deviation oy and the scale-mixture parameter ¢

v Thermal comfort vote -

I3 Regularisation bound for LASSO regression -
VARIABLES AND CONSTANTS

A Surface area m?

A State/system matrix -

B Input matrix -

Cfan Fan coefficient to define vair = v + Can * lfan -

Cp Specific heat coefficient of air I/kg K

C Heat capacity J/K

C Output matrix -

d Vector of disturbances -

D Observation data set -

D Feedthrough matrix -

DT Time of day h

e Specific internal energy J/kg
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List of Symbols

Symbol Description Unit/Value
fal Clothing area factor -
9,9 Gravitational acceleration (vector) m/s?
h Specific enthalpy I/kg
H Information entropy nats
H Enthalpy flow W
I Identity matrix -
I, Clothing insulation m® /K W
Iop The time interval defined by the operating hours of S
the AC system over the examinded days
Iso1 Global solar radation W/m?
J Objective/cost function -
K Covariance/kernel matrix -
lfan Fan level -
L Thermal load on the body W/m?
m Mass flow rate kg/s
Ma Mass of dry air kg
mco, COz2 generation rate of an occupant kg/s
MmH,0 Moisture generation of an occupant kg/s
MinA Inflitration rate of zone kg/s
My Mass of water vapor kg
M Nm dimensional set of monitoring points -
M Metabolic rate W/m?
n Number of observations/samples -
N Normal/Gaussian distribution -
Netd Number of considered CFD simulations 18
Nt Dimension of feature vector / number of predictors -
Nm Number of monitoring points / possible sensor loca- 192
tions
Noce Number of present occupants -
Np Number of prediction steps for MPC -
Nsens Number of sensors -
Nsup Number of supplies 14
N, Dimension of input vector z -
p Pressure Pa
Pa Partial water vapor pressure Pa
Pamb Ambient pressure Pa
Psat Saturation vapor pressure Pa
P Probability density function -
q Heat flux W/m?
Q Weight matrix for the system states -
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List of Symbols

Symbol Description Unit/Value
Q Heat flow rate \WY%
roc Heat gain of an occupant W
R Thermal resistance K/w
R Weight matrix for the inputs -
Ra Specific gas constant of air J/kg K
Ry Specific gas constant of water vapor J/kgK
RH Relative humidity -
S, 8 Sensor location and setup -
S Set of sensor locations -
t Time S
top Accumulatd operationg time of the AC system over 25h
the examinded days
tp Prediction horizon for MPC s
ts Sampling time for the control parametrization S
T Temperature °C
Ta Surface temperature of clothing °C
Tdesired Desired air temperature as a result of the thermal °C
comfort optimization
Tdewpoint ~Dew point temperature °C
Trmr Mean radiant temperature °C
Tsens Average sensor temperature °C
u Control input -
1% Validation data set -
v Vector of velocities m/s
\% Volume m?
w Accomplished mechanical work W/m?
T State vector -
Xco, Carbon dioxide concentration of air ppm
XH,0 Specific humidity of air kg/kg
z Model input vector -
zZ Set of potential comfort influencing factors -
VA Matrix of observations -
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