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Abstract 

Extracellular vesicles (EVs) facilitate intercellular communication by transferring molecules 

from a donor to a recipient cell. It is proposed that EVs from regenerative cells as a therapeutic 

tool can help to overcome the leading role of cardiovascular diseases as cause of death. 

Accordingly, this thesis aimed to evaluate the suitability of EVs from regenerative human 

cardiac-derived adherent proliferating (CardAP) cells as an allogenic cell-free approach to treat 

heart diseases. For that purpose, we isolated EVs by differential centrifugation from the 

conditioned medium that was derived either in the presence or absence of a pro-inflammatory 

cytokine cocktail (IFNγ, TNFα, and IL-1β). Afterwards, isolated EVs were analysed in vitro for 

their phenotypical characteristics, therapeutic effects, and immunological compatibility.  

Isolated EVs from CardAP cells exhibited vesicular structures with diameters mostly of 

exosomes (d < 100 nm), known EV-associated proteins (e.g. tetraspanins) as well as miRNAs 

(e.g. miRNA 146-5p). Interestingly, cytokine stimulated EVs were observed to have significantly 

smaller diameters and a greater repertoire of transported miRNAs than their unstimulated 

counterpart. Nevertheless, both unstimulated as well as cytokine stimulated EVs were equally 

internalized by murine cardiac cells, namely HL-1 and MHEC5-T cells, and protected murine 

cardiomyocytes from reactive oxygen species or starvation induced apoptosis. Virus induced 

apoptosis was, however, only reduced by treatment with unstimu-lated EVs. Deviations 

between both EVs were also determined for their pro-angiogenic effect. Human umbilical vein 

endothelial cells (HUVECs) increased the release of different pro-angiogenic factors when 

treated with unstimulated EVs (e.g. VEGF) or cytokine stimulated EVs (e.g. IL-8). Nonetheless, 

both EVs were capable to amplify the tube formation capabilities of treated HUVECs. The 

exposure of both EVs to unstimulated peripheral blood mono-nuclear cells (PBMCs) did 

neither induce T cell activation, T cell proliferation nor the release of IFNγ. Additionally, 

isolated EVs demonstrated immune modulating features in induced immune responses of 

stimulated PBMCs as observed by diminished T cell proliferation, higher frequencies of 

regulatory T cells, and a weakened inflammatory milieu (e.g. decreased IFNγ concentrations). 

Moreover, it was shown that CD14+ cells are essential for this desired immune modulating effect 

of isolated EVs. In particular, isolated EVs interacted predominantly with CD14+ cells, which 

consequently acquired a regulatory immune phenotype (e.g. reduced expression of HLA-DR, 

increased expression of PD-L1). Moreover, EVs solely modulated induced immune responses 

of isolated T cells when EV-primed CD14+ cells were present. 

Overall, EVs derived from CardAP cells appear to convey beneficial characteristics that could 

contribute to an enhanced regeneration in damaged cardiac tissue by limiting unwanted 

inflammatory processes, enhancing angiogenesis, decreasing apoptosis and their immune-logical 

compatibility. Future in vivo studies are necessary to validate this indicated suitability of EVs as 

cell-free allogenic therapeutic approach. In addition, some molecules transported by EVs (e.g. 

galectin-1 or miRNA 302d-5p) are hypothesized to contribute to the observed beneficial 

features. In future, these molecules could be used to achieve a more efficient therapeutic 

approach by further selection of isolated EVs.   

Keywords: cardiac EVs, regenerative therapies, immunomodulation, angiogenesis 



 

 

 

Zusammenfassung 

Von einer Spenderzelle freigesetzten extrazellulären Vesikel (EVs) können wichtige Prozesse in 

einer Empfängerzelle beeinflussen. Es wird angenommen, dass durch die Behandlung mit EVs 

regenerativer Zellen die führende Stellung von Herz-Kreislauf-Erkrankungen als Todesursache 

reduziert werden könnte. In diesem Zusammenhang untersuchte die vorliegende Dissertation, 

ob EVs von regenerativen humanen kardialen adhärenten proliferierenden (CardAP) Zellen 

geeignet wären Herzerkrankungen in einem allogenen zellfreien Ansatz zu behandeln. Dazu 

wurden EVs aus dem konditionierten Medium von CardAP Zellen, die mit oder ohne pro-

inflammatorischen Zytokin-Cocktail (IFNγ, TNFα und IL-1β) kultiviert wurden, durch 

Differentialzentrifugation gewonnen. Im Anschluss wurden die isolierten EVs in vitro bezüglich 

ihrer phänotypischen Eigenschaften, therapeutischen Wirkungen und immunologischen 

Verträglichkeit charakterisiert. 

Generell besaßen die isolierten EVs vesikuläre Strukturen, hauptsächlich mit Durchmessern 

von Exosomen (d <100 nm), bekannte EV-assoziierte Proteine (z.B. Tetraspanine) und 

miRNAs (z.B. miRNA 146-5p). Interessanterweise wiesen stimulierte EVs kleinere Durch-

messer sowie ein größeres Repertoire an transportierten miRNAs gegenüber unstimulierten 

EVs auf. Dennoch wurden EVs beider Biogenesebedingungen gleichermaßen von kardialen 

Mauszellen internalisiert und sie reduzierten sowohl die durch reaktive Sauerstoffspezies als 

auch durch Nährstoffmangel induzierte Apoptose von murinen Kardiomyozyten. Im Gegen-

satz dazu konnten ausschließlich unstimulierte EVs die Virus-induzierte Apoptose verringern. 

Ebenso zeigten humane Endothelzellen der Nabelschnurvene (HUVECs) Unterschiede in der 

Freisetzung proangiogener Faktoren nach Kontakt mit unstimulierten EVs (z.B. vaskuläre 

endotheliale Wachstumsfaktor) oder stimulierten EVs (z.B. IL-8). Allerdings konnten EVs 

beider Biogenesebedingungen die Netzwerkausbildung von HUVECs in vitro deutlich erhöhen. 

Immunzellen, die mononuklearen Zellen des peripheren Blutes (PBMCs), reagierten auf 

isolierte EVs weder mit einer Aktivierung noch einer Proliferation von T Zellen oder der 

Freisetzung von pro-inflammatorischem IFNγ. Allerdings, konnte die induzierte 

Immunantwort von PBMCs durch beide EVs moduliert werden, was sowohl die verminderte 

Proliferation von T Zellen, den erhöhten Anteil regulatorischer T Zellen und ein gemindertes 

entzündliches Milieu umfasste. Es wurde zudem gezeigt, dass die untersuchten EVs vor allem 

mit CD14+ Zellen in PBMC Kulturen interagierten und diese Zellen infolgedessen einen 

regulatorischen Immunphänotyp annahmen (z.B. verringerte Expression von HLA-DR, 

erhöhte Expression von PD-L1). Darüberhinaus konnte die induzierte Immunreaktion von 

isolierten T Zellen nur in Anwesenheit von EV-behandelten CD14+ Zellen moduliert werden.  

EVs von CardAP Zellen erscheinen durch ihre immunmodulativen, pro-angiogenen und anti-

apoptotischen Effekte bei gleichzeitiger immunologischer Kompatibilität durchaus geeignet, 

geschädigtes Herzgewebe zu regenerieren, was in künftigen in vivo Studien zu validieren ist. 

Darüber hinaus wurden Moleküle (z.B. Galectin-1 oder miRNA 302d-5p) identifiziert, die 

vermutlich diese gewünschten Eigeneschaften vermitteln. Dies bietet die Möglichkeit EVs mit 

potentiell erhöhter Funktionalität spezifisch aufzureinigen. 

Schlagwörter: kardiale EVs, Regenerative Therapie, Immunmodulation, Angiogenese
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1. Introduction 

1.1 Cardiovascular diseases 

Disorders of the heart and blood vessels, such as arrhythmia, stroke, thrombosis, or heart 

failure, are summarized as cardiovascular diseases (CVDs). Although some CVDs appear as an 

acute event, their underlying cause can be of chronic nature. A pre-existing atherosclerosis, for 

example, can eventually lead to the acute blockage of blood vessels in the heart (= myocardial 

infarction), brain (= stroke) or other parts of the body (= thrombosis, acute kidney disease, 

etc.). In contrast, bacteria or virus induced myocarditis are examples of actual acute CVDs. 

Accordingly, therapies range from antibiotic treatment to address bacterial causes to anti-

coagulating drugs, bypass surgeries, application of stents to support the interrupted flow of the 

blood, as well as long term behavioural changes of the patient itself [1,2]. One disadvantage of 

the current therapies for CVDs is that they can solely limit or halt disease progression [3,4]. 

Thus, final options for severely damaged cardiovascular tissue are narrowed down to remove 

non-essential parts, replace it by artificial devices, or by donor organs. Although the number of 

donors increased in Germany in the last two years, the demand outnumbers available donor 

organs [5]. For that reason, the life of these patients is not only considerably deteriorated but 

also comes along with a poor prognosis. Indeed, CVDs are the worldwide leading cause of 

death, which is illustrated by the fact that in 2016 more than 40,800 people died daily due to a 

CVD and estimates even predict to surpass 53,000 daily deceased in 2030 [6,7]. Moreover, the 

economic burden caused by CVDs weighs heavy on society. Health costs, productivity losses 

of patients and relatives as informal care takers are predicted to exceed the mark of US$ 1,000 

billion of worldwide annual CVD related expenses already in 2025 [8]. What this all amounts to 

is that there is an urgent need to overcome these multiple harms caused by CVDs. 

1.2 Ways to minimize damages of CVDs 

In general, the impact of CVDs on communities and indiduals is intended to be reduced via two 

general strategies. On the one hand, an approach concentrates on the prevention of CVDs, for 

example by highlighting and educating people about the impact of risk factors, such as obesity 

or smoking [6]. On the other hand, the focus is put on improving existing or developing novel 

therapies. As such, pre-clinical and clinical trials are investigating how damaged tissue can be 

replaced with 3D printed grafts, decellularized or biologically inactive tissue that was, for 

example, obtained by improved cryopreservation techniques [9–13]. Additionally, the 

application of regenerative cells is a widley studied therapeutic approach that is hypothesized to 

represent an treatment option with disease reverting properties [4,11,14–16]. Herein, different 

traits were identified to influence the regenerative process in damaged cardiovasculatere tissue, 

which are in the following exemplarily discussed for heart tissue affected by an acute myocardial 

infarction and the subsequent following resolution phases. This particular disease was chosen 

as a representative, because it is not only one of the most frequent CVDs but also has a high 

incidence to manifest heart failure as subsequent illness [17].  
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1.2.1 Myocardial infarction and its untreated resolution  

The acute event of a myocardial infarction describes the clogging of the coronary artery or 

arteries by atherosclerotic plaques. It abruptly obstructs the blood flow and consequently 

disrupts the supply with oxygen and nutrients [2]. This ischemic condition causes oxygen-

sensitive cells to perish immediately. For example Cheng et al. showed that up to three million 

cardiomyocytes had died in the infarcted cardiac tissue of rats during the first two hours [18]. 

Consequently, the heart function is impaired due to the death or apoptotsis of cardiomyocytes 

in animal models as well as humans [2,18]. Other cells, like cardiac fibroblasts, survive this 

ischemic environment by adapting their metabolism respectively [19]. In order to resolve the 

caused injury in the affected cardiac tissue, different processes will take place that can roughly 

be summarized as three phases: the inflammatory, the proliferative, and the remodelling phase 

(Figure 1). 

 

 
Figure 1: Schematic illustration how scar tissue is formed after an acute myocardial infarction. 
Myocardial infarction leads to the interruption of oxygen and nutrient supply (= ischemia) of the affected cardiac 
area. For the resolution of the caused damage, three phases lead to a scar formation. At first, a pro-inflammatory 
phase takes place, which includes impaired heart function due to dead cardiomyocytes and the establishment of a 
pro-inflammatory immune response (e.g. infiltration of immune cells, polarization of pro-inflammatory immune 
cells, and release of pro-inflammatory cytokines/chemokines). Then, the proliferative phase leads to the exchange 
of immune cells by endothelial cells, fibroblasts and myofibroblasts. Accordingly, angiogenesis, migration, 
proliferation, and extracellular matrix (ECM) remodelling are major processes during that phase. Finally, a scar 
tissue will be formed in the remodelling phase. Here, myofibroblasts will vanish nearly completely, whereas the 
ECM will be strengthen via exchange of collagen type II with collagen type I and crosslinking. Surviving 
cardiomyocytes (mostly in the neighboring boarder zone) will enlarge.  

The inflammatory phase is characterized by the infiltration of neutrophils, monocytes and 

other immune cells that contribute to the clearance of apoptotic cells and extracellular matrix 

debris [20]. As a matter of fact, immune cells are attracted by released mediators of apoptotic 

cells, such as danger signals, the so-called danger/damage-associated molecular patterns, or 

chemokines and cytokines, like interferon γ (IFNγ) or the stromal cell-derived factor 1 α 

(SDF-1α) [21,22]. At the same time, cardiac fibroblasts express matrix metalloproteinases to 
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enable an enhanced accessibility of the damaged area for infiltrating immune cells [23]. It was 

shown that during this phase an increased number of pro-inflammatory M1-type macrophages 

were observed in the affected cardiac tissue [20]. Furthermore, concentrations of pro-

inflammatory cytokines, such as interleukin 1ß (IL-1ß), tumour necrosis factor alpha (TNFα) 

and IL-6, were elevated in the respective tissue and its periphery [20,24–26]. For the 

proliferative phase, it is vital that the inflammatory immune response is dampened, which 

consequently results in fewer infiltrated immune cells in the tissue [20,27,28]. In order to avoid 

a rapture of the ventricular wall due to the missing biomass of immune cells and the pressure 

of the still contracting heart, newly migrated or already present fibroblasts and myofibroblasts 

proliferate and additionally strengthen the affected cardiac wall by expressing extracellular 

matrix (ECM) proteins, such as collagen III [19]. Fibroblasts and myofibroblasts are supplied 

with oxygen and nutrients by newly formed vascularized networks that were formed by migrated 

and proliferated endothelial cells (Jaffer et al. 2006; Deb and Ubil 2014; Frangogiannis 2014). 

These endothelial cells are attracted and supported in their network formation by the still 

prevailing hypoxic condition that results in the release of pro-angiogenic factors, like vascular 

endothelial growth factor (VEGF) [21]. Additionally, anti-inflammatory M2-type macrophages 

are recruited or polarized towards this immune cell subset in the damaged cardiac tissue [20,29]. 

These immune cells contribute by releasing mediators, including growth factors and 

chemokines, to an environment that favours proliferation, migration, and enhanced 

angiogenesis [28,30,31]. Finally, the remodelling phase leads to the formation of a scar that 

allows for a higher stability to elevate the contraction capacity and strength, however, to a lower 

extent than before the acute myocardial infarction. Herein, a deposition of the ECM takes place, 

like the replacement of collagen type III with collagen type I or the LOX-catalysed crosslinking 

of ECM proteins [19]. On the cellular level, surviving cardiomyocytes will enlarge, while the 

number of myofibroblasts will significantely decrease [25].  

1.2.2 Desired regenerative effects 

Different complementing strategies can be chosen for a regenerative approach within the whole 

process of resolving the damage caused by myocardial infarction. Despite which approach is 

selected, cardiomyocytes are a crucial component for the overall therapeutic success.  Although, 

it was shown that new cardiomyocytes are formed at an annual rate of approximately 0.3 - 1% 

by hypoxic conditioned cardiomyocytes, this turnover of cardiomyocytes is, however, not 

sufficient enough to replace the dead cardiomyocytes in the damaged cardiac tissue [32]. Thus, 

the heart has, in contrast to the liver, only a very limited regenerative potential and vanished 

cardiomyocytes crucially contribute to the decreased heart function during and after myocardial 

infarction [2,18,33]. For that reason, it appears attractive for therapeutic approaches to either 

prevent apoptosis of cardiomyocytes, reduce already induced apoptosis of cardiomyocytes, or 

even to replace dead cardiomyocytes with viable ones. It was for example shown in a rodent 

myocardial infarction model by Wang and colleauges that the cardiac function improved 

significantely when patches of decellularized porcrine matrix with seeded embryonic cardiac 

progenitor cells were transplanted onto the outer surface of the myocardial affected tissue [34]. 

But in general, all three options are capable to diminish the level of impaired heart function, 

which would subsequently enhance the prognosis of myocardial infarction patients.  

https://link.springer.com/article/10.1007/s00441-016-2431-9#ref-CR52
https://link.springer.com/article/10.1007/s00441-016-2431-9#ref-CR23
https://link.springer.com/article/10.1007/s00441-016-2431-9#ref-CR32


Chapter I                                                                                                                                   INTRODUCTION 

 

4 

 

In order to influence the apoptosis of cardiomyocytes, treatments can increase the expression 

of survival signals, block the cascaded activation of caspases, or target other components of the 

intrinsic or extrinsic apoptotic pathway, for example via the delivery of micro ribonucelic acids 

(miRNAs) [35–37]. Such an apoptotic influencing feature also appears attractive to possibly 

enhance current therapies, like bypass surgeries or the application of stents. Although both 

treatment options help to resolve the shortage of nourishment in the infarcted area by 

reperfusion, they come along with a sudden oxygen increase and a subsequent formation of so-

called reactive oxygen species (ROS). These charged radicals can cause cells, especially 

cardiomyocytes, to undergo apoptosis in beforehand not severely damaged areas, so-called 

boarder zones, which can lead to a myocardial reperfusion injury [38,39]. Notably, apoptosis is 

not only induced via ROS but also by the ischemic condition in the infarcted cardiac area [21,40]. 

For that reason, the abolishment of ischemia by supporting angiogenesis, neovascularization, or 

endothelial repair would have beneficial therapeutic effects. This is also emphasized by studies 

showing that the later a treatment for a better oxygen and nutrient supply was initiated, the 

severer was the damage caused by CVDs [41,42].  

As previously mentioned, the immune system plays a key role in the resolution of the damage 

caused by myocardial infarction. The pro-inflammatory response is essential for the initiation 

of the processes, however, a persisting inflammation opposes the proliferative phase and 

consequently lead to a greater impairment of heart functions [27]. Regenerative therapies could 

therefore facilitate immunomodulation, which describes the capability to modify ongoing 

immune responses, mainly pro-inflammatory ones, towards a lesser inflammatory state or even 

to convert it towards an anti-inflammatory response. Herein, it would be possible that the 

therapeutic tool enhances the polarization or the infiltration of immune responses regulating 

immune cells, such as M2-type macrophages, tolerogenic DCs, or regulatory T cells, that were 

shown to contribute to enhanced regeneration of damaged tissue [20,29,30,43,44]. Lastly, the 

ECM plays a crucial role in strengthening the damaged cardiac tissue to resist rupturing due to 

the applied force by the steady contraction of the heart. However, the ECM remodelling can 

also develop very stiff tissue as a consequence of accelerated fibrosis that is susceptible towards 

increased heart pressure. Different approaches are working on the replacement of scar tissue 

with synthetically produced ECM, decellularized tissue, or regenerative tools that own anti-

fibrotic effects to avoid the unwanted stiffness of the tissue [19,45,46]. 

1.3 Cell therapy as a regenerative approach 

Researchers are trying to incorporate at least one of the above listed features for a therapeutic 

approach to diminish the caused cardiac damage. The administration of regenerative cells is one 

example of an approach that combines several principles of action.  

1.3.1 Autologous and allogenic cell therapy 

Human regenerative cells can be either obtained from the same person receiving the treatment 

(= autologous cell therapeutic approach) or from a donor (= allogenic cell therapeutic 

approach). Both options have advantages and disadvantages [47–50]. As such, autologous cells 

do vary across donors in their yield, purity and potency to influence regenerative effects, which 

is related to the fact that the biological starting material, like bone marrow, of each individual 
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patient comes in different qualities, quantities and with different donor-specific confounding 

factors, such as gender, disease status, or age. Additionally, the isolation of this starting material 

can bear risks for the patient itself due to invasive procedures. Instead, allogenic cells can be 

obtained without any invasive procedure, too, like from post-natal tissue of the placenta, the 

amniotic fluid or the umbilical cord blood. Furthermore, in contrast to autologous cells, 

allogenic ones appear relatively robust in their desired characteristics, purities and potencies. 

Additionally, allogenic cells are storable by cryopreservation. Thus, their immediate availability, 

also in acute situations, contrasts the time-consuming process of isolating and expanding 

autologous cells until their administration to the patient. However, the autologous cell 

therapeutic approach prevents the risks of pathogen transmission from donor to recipient as 

well as undesired immune rejections. Indeed, one of the major worries of an allogenic 

therapeutic cell approach is that the immune competent recipient will develop an immune 

response towards the applied allogenic cells, which could lead to severe complications [16].  

In general, the immune system is capable to distinguish between foreign antigens that could 

originate from bacteria or viruses, and antigens from the host itself. While auto-antigens shall 

not induce a reaction, foreign material will trigger a cascade of responses involving processes 

and cells of the naïve as well as of the adaptive immune system to eliminate the pathogen. In 

the case of an immune rejection, the administrated allogenic cells are recognized as foreign and 

danger material, which consequentely leads to a comparable processes as against pathogen 

invasions. Crucial for the induction of the immune response or rejection is the presentation of 

the foreign antigens by major histocompatibility complex (MHC) molecules, which are called 

human leukocyte antigen (HLA) in humans. All nucleated cells constitutively express MHC class 

I molecules (e.g. HLA-ABC), whereas immune cells, like professional antigen presenting cells 

(APCs), additionally express MHC class II molecules (e.g. HLA-DR). Non-professional APCs, 

like endothelial cells, were also shown to induce expression of HLA-DR in the presence of pro-

inflammatory cytokines [51].  

Three different proposed mechanisms about how foreign cells are recognized exist (Figure 2A): 

i) donor antigens (e.g. processed proteins) are presented either directly by HLA molecules of 

the donor APCs, ii) indirectly by MHC molecules of the recipient APCs, or iii) in a semi direct 

manner when recipient APCs present the antigen via HLA molecules that were transferred from 

donor APCs [52,53]. Importantly, antigens presented on HLA-ABC molecules will be 

specifically recognized by CD8+ T cells, whereas CD4+ T cell responses are triggered by the 

presentation via HLA-DR molecules. For a sufficient activation, not only the HLA molecule 

presenting the antigen will bind to the T cell receptor and to the CD4 or CD8 molecule, 

respectively, but also co-stimulating molecules from the APC side, such as CD80 or CD86, will 

interact with the co-receptor CD28 on the T cell side (Figure 2B) [54].  
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Figure 2: Schematic overview of 
ways immune reactions towards 
applied allogenic donors cells are 
initiated. 
Allogenic cells can be recognized as 
foreign cells by donor’s immune system. 
(A): Antigens (red) are presented via 
HLA molecules either directly (left) via 
antigen presenting cells (APCs) of the 
donor, in a semi direct manner (middle) 
via HLA molecules of the donor that 
were transferred to recipient APCs, or 
in-directly by the recipient APCs itself. 
(B): T cells are activated by the binding 
of different receptors to their ligands, 
including the T cell receptor (TCR) with 
the HLA molecule that presents the 
antigen, CD8 or CD4 with the HLA 
molecule, and co-stimulatory molecules 
(like CD80, CD86) with the co-receptor 
CD28.  

 

Thereafter, a pro-inflammatory T cell response against the administrated allogenic cells is 

induced. It includes the elevated release of pro-inflammatory cytokines, such as IFNy or TNFα, 

the activation and expansion of antigen specific T helper cells, and induced cytotoxicity of CD8+ 

T cells, while the activation state of T cells can be traced by the expression of certain surface 

molecules, namely CD69, CD25 and HLA-DR as early, intermediate, or late activation marker, 

respectively [55]. Also other immune cells, such as B cells and natural killer cells, are involved 

in the rejection response towards the applied allogenic cells. Overall, the immune rejection will 

not only lead to the clearence of donor cells but also impairs or even abolishes the desired 

therapy.  

1.3.2 Chronology of regenerative cell therapy 

Crucial for autologous and allogenic cell therapy was the discovery of mesenchymal stromal 

cells (MSCs). These cells, which were originally extracted from the bone marrow and later on 

from other sources, such as adipose tissue or umbilical cord blood, are adherent 

non-hematopoietic cells that were shown to own capacity to differentiate in the presence of 

specific growth factors into osteoblasts, chondrocytes, or adipocytes [50,56,57]. Soon after, 

investigators examined the heart for such a regenerative cell type with the rationale to derive 

with these cells a therapeutic tool that could replace vanished cardiomyocytes in damaged 

cardiac tissue. This step was necessary, since it was long thought that MSCs are not capable to 

differentiate into cardiomyocytes. As a matter of fact, it needed nearly 30 years until the 

discovery of MSCs to discover the exact supplements and conditions to derive cardiomyocytes 

from embryonic stem cells or MSCs [58]. Several different cardiac cells were isolated from 

human or rodent cardiac tissue, including cardiosphere-derived cells (CDCs), cardiac progenitor 

cells (CPCs), or human cardiac-derived adherent proliferating (CardAP) cells [59–62]. In 

contrast to MSCs, these cardiac cells have the advantage to be already primed by this particular 

tissue, the heart. Wang and colleagues could, for example, show that histone modifications of 

cardiac-specific genes differed between murine cardiac-derived cells and bone marrow derived 
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MSCs. Moreover, these changes correlated with a greater propability to induce 

cardiomyogenesis by cardiac derived cells than MSCs [63].  

Preclinical studies of CardAP cells, which were outgrown from endomyocardial biopsies, 

demonstrated that these cells supress apoptosis, support angiogenesis, and modulate induced 

immune responses in vitro [13,64,65]. Furthermore, their administration in rodent CVD disease 

models impaired immune responses and improved the cardiac function significantly [13,60]. 

Beside these beneficial effects, CardAP cells have an additional advantage in comparison to the 

other regenerative cardiac cell types. A retrospective analysis of a clinical study showed that the 

therapeutic benefit of administrated CDCs was negatively influenced by the expression of their 

membrane glycoprotein Cluster of Differentiation 90 (CD90) [66]. In contrast to other 

mesenchymal and cardiac mesenchymal-like cells, CardAP cells were found to be predominantly 

negative for CD90 [67]. But not only CardAP cells were shown to have cardio protective 

features. Also CPCs, CDCs, and other cardiac cell types exhibited desired features for the 

treatment of CVDs, including anti-fibrotic, pro-angiogenic, anti-apoptotic and immune 

modulating effects, in preclinical studies [3,11,14,61,62,68–70]. However, clinical trials showed 

solely limited to moderate effects of applied bone marrow cells, MSCs or CPCs [61,69,71,72]. 

For a better understanding, why results from clinical trials did not meet the expectations built 

by the encouraging results from previous preclinical studies, comprehensive mechanistic studies 

were conducted.  

In the beginning, it was mechanistically suggested that the applied regenerative cells differentiate 

into the desired cell type and integrate into the appropriate damaged tissue, like their 

differentiation into cardiomyocytes and integration into the damaged heart [73–75]. However, 

studies failed to show a sufficient retention of therapeutically applied cells in the myocardium 

[73,76] and no evidence could be provided for this theory. Moreover, it was shown that 

intravenous injected MSCs were rather trapped in lungs than at the site of the desired damaged 

organ [77]. Nowadays, it is considered that regenerative cells facilitate their beneficial effects in 

a paracrine manner. Initial investigations compared cells with their conditioned medium. In fact, 

it was observed that already the conditioned medium contained the information for enhanced 

regeneration in animal myocardial infarction models [78–80]. Later on, the different 

components of the conditioned medium, including cytokines, chemokines, growth factors, and 

extracellular vesicles (EVs), were investigated for their therapeutic potential of regenerative cells.  

1.4 Extracellular vesicles as regenerative cell-free approach 

In 1946, Cargaff and West observed pro-coagulated particles in platelet isolations, which Wolf 

referred to as “platelet dust” according to their appearance in electron microscopic images 

[81,82]. Today, these vesicular structures with a lipid bilayer are called EVs. 

In total, three types of EVs can be distinguished according to their biogenesis and size: apoptotic 

bodies, microvesicles, and exosomes (Figure 3) [83–89]. The largest EVs are apoptotic bodies 

(diameter (d) > 1000 nm), which occur as consequence of the programmed cell death in which 

the plasma membrane dissembles. Microvesicles range in their size between 100 to 1000 nm 

and therefore occupy the middle position in terms of diameter. This subset is budded directly 

from the plasma membrane into the extracellular space. The smallest EVs are the exosomes 
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with diameters less than 100 nm. They are generated intracellularly in the endosomal 

compartment, where exosomes are called intraluminal bodies contained in multivesicular bodies 

(MVBs). When MVBs eventually fuse with the plasma membrane, exosomes are released into 

the extracellular space. Although major progress was achieved in the research field of EVs, 

distinct proteins are still missing to distinguish between exosomes and microvesicles. 

Nevertheless, a number of EV-associated proteins were identified [85]. It includes next to 

transmembrane or plasma membrane anchored proteins, such as integrins or representatives 

from the tetraspanin family (e.g. CD9), also cytosolic proteins, like heat shock proteins (HSPs), 

syntenin, or annexins to name just a few. Apoptotic bodies additionally contain typical cell 

organelle proteins, such as calnexin, cytochrome C, or cytokeratin 18. Moreover, recent studies 

showed that the isolation by differential centrifugation purifies EVs together with a non-EV 

compartment, which includes next to apo-lipoproteins A1/2, also fibronectin or the RNA 

binding protein Argonaute-2 [90–92]. 

Figure 3: Schematic illustration of the biogenesis of the three EV types. 
EVs can be differentiated by their biogenesis and size into apoptotic bodies, microvesicles and exosomes. During 
apoptosis, the plasma membrane dissembles, which leads to the formation of apoptotic bodies (> 1,000 nm). A 
viable cell buddes microvesicles (100-1,000 nm) directly from the plasma membrane, whereas exosomes (<100 nm) 
are formed in endosomes as intraluminal bodies (ILB) contained in multivesicular bodies (MVBs). Fusion of MVBs 
finally release exosomes into the extracellular space.  

Interestingly, not only the most investigated mammalian cells but also parasites, gram-negative 

bacteria and fungi were observed to release these vesicular structures into the extracellular space 

[93,94]. The reason for such an omnipresent behaviour lies in the capability of EVs to function 

as intercellular communicator. Multiple processes, such as differentiation, angiogenesis, or 

migration, were shown to be influenced in recipient cells upon interaction with EVs and their 

transported molecules [95–97]. It has to be highlighted that EVs do not only carry lipids and 

proteins but also RNA molecules, such as messenger (mRNA) or micro RNA (miRNA), as well 

as small signalling molecules [88,89,98–102]. 

At present, EVs are evaluated for their potential as medical tool, including as biomarkers for 

diseases or as therapeutic option. In context of CVDs, several studies could already prove that 

EVs from MSCs, CPCs, and cardiac fibroblasts are capable to improve cardiac function in 

rodent MI disease models [37,40,100–103]. In these studies, mechanistic studies were included 

that demonstrated that the cardio protection could be attributed to EV-mediated reduction of 

fibrosis, inhibition of apoptosis, support of angiogenesis, and modulation of immune responses. 

As such, it was discovered that MSC-EVs diminished T cell proliferation[104–107], the release 

of pro-inflammatory cytokines, such as IFNy or IL-1ß [104–107], or enhanced the frequency of 

regulatory T cells [107,108] in induced immune reactions in vitro. Also APCs gained a tolerogenic 
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or anti-inflammatory phenotype when treated with EVs derived from MSCs as observed for 

dendritic cells, monocytes as well as macrophages [109–111]. Herein, this phenotype included 

an amplified expression of programmed cell death 1 ligand 1 (PD-L1), the macrophage mannose 

receptor (CD206) on their cell surface, while, in contrast, other surface proteins, such as the co-

stimulatory molecule CD86, HLA-DR or activation markers, like CD83, were significantly 

reduced.  

Yet, no satisfying answer can be given on how EVs from regenerative cells facilitate their 

beneficial effects. Some studies indicate that their transported RNA molecules have a superior 

role. The anti-apoptotic or proliferative inducing effect of MSC-EVs could be shown to be 

abolished when EVs were treated with RNase [112]. Likewise, Zou and colleagues could provide 

evidence that the RNase treatment of MSC-EVs also eliminated the pro-angiogenic effect [113]. 

In the last years, several miRNAs transported by EVs were identified as potential candidates to 

trigger beneficial effects, such as miRNA 126, miRNA 146 or miRNA 149 to name just a few 

[16]. But also mRNAs can be transferred from an EV to a recipient cell. Herein, it was 

demonstrated that murine cells expressed human proteins, like the DNA-directed RNA 

polymerase II 23 kDA polypeptide (POLR2E) or the small ubiquitin-related modifier 1 (SUMO-

1), when treated with human MSC-EVs [112]. Additionally, EVs were shown to transport 

proteins with crucial enzymatic function for immunomodulation. Clayton et al. showed that EVs 

from different human cancer cells (colon, breast and prostate) own ATP hydrolytic activity via 

their transported ectonucleoside triphosphate diphosphohydrolase-1 (CD39) and CD73 . 

Moreover, it was revealed that this enzymatic activity of EVs contribute to the modulation of 

induced immune responses, like the decrease of T cell proliferation or IL-2 production, in vitro 

[114]. Also the pro-angiogenic effect of EVs was shown to be influenced by their transported 

proteins, such as VEGF or other molecules [95,113]. Up to now, the field of EV transported 

lipids is scarely studied, but future investigations will elucidate whether lipids have an impact on 

beneficial therapeutic effects or on the delivery to certain target cells. Additionally, mechanistic 

analysis becomes increasingly complex when considering that the cell source and especially the 

milieu during the biogenesis of EVs determines which molecules will be transported. For 

example, EVs from MSCs cultivated under normoxic versus hypoxic conditions revealed that 

hypoxia enhances the pro-angiogenic feature of these generated EVs significantly in comparison 

to their normoxic counterpart [115]. Likewise, a pro-inflammatory stimulation with IL-3 

favoured the angiogenesis promoting features of EVs from endothelial cells [116].  

Investigations will also elucidate key molecules of these EVs and hopefully provide insight into 

the underlying mechanism for the various beneficial effects needed for treating CVDs. Most 

importantly, EVs derived from regenerative cells provide an attractive alternative for cell 

therapy. One advantage is that EVs do not, in contrast to their originating regenerative cell, bear 

the risk of teratoma formation. Additionally, it is proposed that EVs could be used as an 

“emergency” therapeutic tool, since they are storable and thus immediately available for 

administration to the patient without any time-consuming preparation. Nevertheless, before 

CVD patients can be treated with EVs from regenerative cells, certain challenges have to be 

explored. This includes question about dosing, delivery routes, and identity markers of EVs, but 

also innovations for isolation procedures that allow obtaining large amounts of EVs as well as 

evaluation of potential off-target effects of administrated EVs.  
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2. Aim and purpose 
Over the last decade, several regenerative mesenchymal cells have been demonstrated to release 

EVs that play an important role in mediating regenerative effects. Although cardio protective 

properties have already been shown in preclinical studies for human CardAP cells, it has not yet 

been clarified whether this specific cell type is able to mediate its regenerative effect through its 

released EVs. For that reason, the major aim of the present work was to evaluate the suitability 

of EVs from CardAP cells as a future allogenic cell-free treatment for heart diseases. It 

additionally included the assessment of two different EV biogenesis conditions, namely the 

presence or absence of a pro-inflammatory cytokine cocktail consisting of IFNγ, TNFα and IL-

1β in otherwise serum free medium. Both conditions were included to gather knowledge under 

what conditions CardAP cells release the most effective EVs in context of regenerative features.  

Therefore, the following aspects were addressed: 

• What are the characteristics of isolated EVs? 

Obtained EV preparations were studied for their concentration, diameter, transported 

repertoire of proteins and miRNAs, and subsequently these characteristics were 

compared between cytokine stimulated and unstimulated EVs.   

• Do EVs influence important processes of tissue regeneration in vitro? 

Obtained EV preparations were firstly assessed for their interaction capability with cells, 

and their intra- or extracellular location 24 h after an interaction with murine cells.  

Thereafter, isolated unstimulated and cytokine stimulated EVs were analysed in a 

comparative manner for their impact on the angiogenic behaviour of human endothelial 

cells, the induced apoptotic behaviour of murine cardiomyocytes, and on typical 

characteristics of induced immune responses (e.g. T cell proliferation). Furthermore, 

immune responses were not only investigated with stimulated human isolated peripheral 

blood mononuclear cells (PBMCs) but also with respective subpopulations of PBMCs, 

namely CD14+ and CD3+ cells, to provide further mechanistic insights.  

• Do EVs induce adverse immune reactions and contraindicate an allogenic 

approach? 

The exposure of unstimulated and cytokine stimulated EVs to otherwise unstimulated 

human immune cells was analysed for signs of adverse immune responses, which 

included next to T cell activation and T cell proliferation also a more detailed 

investigation of CD14+ cells. 
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3. Materials and methods 

3.1 Material 

3.1.1 Cells, cell medium and supplements for cell culture 

Table 1: Overview of all cells used during this study. 

Cells Acronym Supplier 

Human cardiac-derived adherent proliferating 

cells 

CardAP cells Isolated and kindly provided by lab group 

of Prof. Sittinger (Charité) 

Human umbilical vein endothelial cells HUVECs Cascade Biologics®, Thermo Fisher 

Scientific, Rochester, NY, USA and 

Lonza, Wakersville, MD, USA 

Human immune cells: 

• Peripheral blood mononuclear cells 

• Monocytes 

• T cells 

 

PBMCs 

CD14+ cells 

CD3+ cells 

 

All immune cells are isolated from 

healthy blood donors either freshly or 

from Buffy coats 

Murine atrial tumour cells HL-1 cells Both cell line kindly provided by the lab 

group of PD Dr. Van Linthout (Charité) Murine cardiac endothelial cells MHEC5-T cells 

 

Table 2: Cell culture medium, supplements, and coating reagents used during this study. 

Components for culture culture Supplier  

Animal free human epidermal growth factor 

(rhEGF)  

PeproTech Germany, Hamburg, Germany 

Animal free human fibroblast growth factor 

(rhFGF) 

PeproTech Germany, Hamburg, Germany  

Claycomb medium Sigma-Aldrich Chemie GmbH, St. Louis, MO, USA 

Corning® Matrigel® Basement Membrane 

Matrix, LDEV-Free 

Discovery Labware Inc., Bedford, MA, USA 

Coxsackievirus B3 (CVB3; Nancy strain) Kindly provided by lab group of Prof. Rauch (Charité) 

Dulbecco‘s Modified Eagle Medium 

(DMEM) 

Biochrom GmbH, Berlin, Germany 

EBM2 medium       Lonza, Wakersville, MD, USA 

EGM2 BulletKit (e.g. hEGF, VEGF, R3-

IGF-1) 

Lonza, Wakersville, MD, USA 

Fibronectin from bovine plasma Sigma-Aldrich Chemie GmbH, St. Louis , MO, USA 

Gelatin from bovine skin, type B Sigma-Aldrich Chemie GmbH, St. Louis , MO, USA 

Ham‘s F12 Medium Biochrom GmbH, Berlin, Germany 

Human IFNγ1b; IL-1ß; TNFß; and VEGF Miltenyi Biotec GmbH, Bergisch Gladbach, Germany 

Human Serum  Kindly provided by lab group of Prof. Sittinger, Charité (here 

supplied from Deutsches Rotes Kreuz, Berlin, Germany) 

HyClone™ Foetal Bovine Serum (FCS) Lonza Group AG, Basel, Switzerland 

Iscove’s Modified Dulbecco‘s Medium 

(IMDM)  

Biochrom GmbH, Berlin, Germany 

L-Glutamine (L-Glut) 100x Gibco™  Thermo Fisher Scientific, Carlsbad, CA, USA 

Norepinephrine Sigma-Aldrich Chemie GmbH, St. Louis, MO, USA 

Penicillin/Streptomycin (P/S) solution, 

100x, Gibco™  

Thermo Fisher Scientific, Carlsbad, CA, USA 

VLE-RPMI-Medium 1640 Medium Biochrom GmbH, Berlin, Germany 
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Table 3: Composition of the different cell culture media used during this study 

Cell Culture medium 

All cells Freezing medium: FBS + 10% DMSO 

CardAP cells Stock IDH medium mixture: Equal parts of IMDM, DMEM, and Ham´s F12 + 1% P/S; 

immediately before use + 0.2 µL/mL EGF (stock c 100 ng/µL) + 0.5 µL/mL FGF (stock 

c 20 ng/µL) 

Complete IDH medium (cIDH): IDH medium + 5% human serum  

Centrifuged IDH medium (cenIDH): IDH medium + 10% centrifuged human serum  

Isolation IDH medium (isoIDH ± cyt): IDH medium ± 10 ng/mL of each: IFNγ, TNFα, 

and IL-1β 

HL-1 cells 

 

complete Claycomb medium (cClaycomb): Claycomb medium + 1% P/S, + 1% L-Glut, 

+ 1% noradrenalin (stock c 10mM), + 10% FCS 

DMEM 11966 medium (starvation medium): DMEM11966 medium + 5mM glucose, + 

0.1% FCS 

HUVECs 

 

EGM2 medium: EBM medium + EGM-2 Bulletkit, + 1% P/S, + 10% centrifuged human 

serum 

EBM medium: EBM medium + 1% P/S, + 10% centrifuged human seru 

Immune cells Complete RPMI medium (cRPMI): RPMI medium + 1% P/S, + 1% L-Glut, + 10% 

centrifuged human serum 

MHEC5-T cells Complete DMEM medium (cDMEM): DMEM medium + 1% P/S, + 1% L-Glut, + 10% 

FC 

 
3.1.2 Off-the-shelf solutions, buffers and kit-based test systems 

Table 4: Kit-based test systems used during this study 

Test  systems Supplier 

Advanced miRNA Assay, Applied Biosys-tems®, 

(human miRNAs: 494-3p, 146a-5p, 132-3p, 26b-5p, 

199a-3p, 186-5p, ans 302-3p) 

Life Technologies Corporation, Pleasanton, CA, USA 

Caspase-Glo®  3/7 Assay Kit Promega, Madison, WI, USA 

CFSE Cell Division Tracker Kit   BioLegend, San Diego, CA, USA 

ELISA kit, human IFNy, Max™ Deluxe Biolegend, San Diego, CA, USA 

ELISA kit, human IL-6, Max™ Deluxe Biolegend, San Diego, CA, USA 

ELISA kit, human IL-8, Max™ Deluxe Biolegend, San Diego, CA, USA 

FoxP3-Transcription Factor Staining Buffer Set, 

eBiosciences™ 

Thermo Fisher Scientifics, Waltham, MS, USA 

LEGEND Max™ Total TGF-β1 ELISA Kit with 

Pre-coated Plates 

BioLegend, Fell, Germany 

LEGENDplex™ human inflammation panel or 

human monocytes/macrophages panel 

BioLegend, San Diego, Ca, USA 

LEGENDplex™ human monocytes and 

macrophages panel 

BioLegend, San Diego, Ca, USA 

LIVE/DEAD® Fixable Aqua Dead Cell Stain Kit, 

Invitrogen® 

Thermo Fisher Scientific, Eugene, OR, USA 

miRNeasy Micro Kit (50 samples) Qiagen GmbH, Hilden, Germany 

nCounter® Human v2 miRNA expression assay kit NanoString Technologies, Seattle, WA, USA 

Pierce™ BCA Protein Assay Kit Thermo Fisher Scientific, Rockford, IL, USA 

PKH26 Red Fluorescent Cell Linker Kits for 

General Cell Membrane Labelling 

Sigma Aldrich Chemie GmbH, St. Louis, MO, USA 

Quantikine® ELISA kit for human VEGF-A R&D Systems, Biotechne brand, Mineapolis, MN, USA 

TaqMan™ Advanced miRNA cDNA Synthesis Kit, 

Applied Biosystems®  

Life Technologies Corporation, Pleasanton, CA, USA 
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Table 5: Off-the-shelf solutions and buffers used during this study 

Reagents Supplier 

7-amino-actinomycin D (7AAD) Viability 

Staining Solution 

BioLegend, San Diego, CA, USA 

Accutase® , StemPro®, Gibco™ Thermo Fisher Scientific, Carlsbad, CA, USA 

AnnexinV binding buffer BioLegend, San Diego, CA, USA 

Bicoll separation solution Biochrom GmbH, Berlin, Germany 

Descosept AF Dr. Schumacher GmbH, Malsfeld, Germany 

Dulbecco’s phosphate buffered saline (PBS), 

without calcium (Ca2+) and magnesium (Mg2+) 

Biochrom GmbH, Berlin, Germany 

ELISA stop solution (2N sulphuric acid) Sigma-Aldrich Chemie GmbH, St. Louis, Mo, USA 

Fix/Perm buffer, Perm buffer (both from 

FoxP3-Transcription Factor Staining Buffer 

Set), eBiosciences™ 

Thermo Fisher Scientifics, Waltham, MS, USA 

Hydrogen peroxide solution 30% (w/w)  Sigma-Aldrich Chemie GmbH, St. Louis , MO, USA 

Incidin™ Extra N Ecolab Deutschland GmbH, Monheim am Rhein, Germany 

QIAzol Lysis Reagent Qiagen GmbH, Hilden, Germany 

Softaskin® B. Braun Melsungen AG, Melsungen, Germany 

Sterillium® classic pure BODE Chemie GmbH, Hamburg (GER) 

TaqMan™ Fast Advanced Master Mix, 

Applied Biosysystems® 

Life Technologies Corporation, Pleasanton, CA, USA 

Trypsin 0.5% (Trypsin-EDTA solution 10 x) 

Gibco™ 

Thermo Fisher Scientific, Carlsbad, CA, USA 

Vybrant® DiD cell label solution (DiD = 1,1′-

dioctadecyl-3,3,3′,3′-tetramethylindodi-carbo-

cyanine perchlorate)  

Invitrogen™, Molecular Probes, Eugene, OR, USA 

 

3.1.3 Consumables, reagents, prepared buffers and antibodies 

Table 6: Reagents used during this study 

 

 

Reagents Supplier 

AKASOLV Aqua Care (blue indicator) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Aldehyde/Sulphate Latex Beads (4% w/v; 

4 µm) 

Invitrogen™, Thermo Fisher Scientific, Eugene, OR, USA 

Ampuva water Sigma-Aldrich Chemie GmbH, St. Louis , MO, USA 

Chloroform Sigma-Aldrich Chemie GmbH, St. Louis , MO, USA 

Crystal violet Sigma-Aldrich Chemie GmbH, St. Louis , MO, USA 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Chemie GmbH, St. Louis, MO, USA 

Ethanol 96% Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ethanol 70% Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Ethylenediamintetra acetic acid (EDTA) Sigma-Aldrich Chemie GmbH, St. Louis , MO, USA 

Goat serum Sigma-Aldrich Chemie GmbH, St. Louis , MO, USA 

Isopropanol Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

Paraformaldehyde (PFA) Carl Roth GmbH & Co. KG, Karlsruhe, Germany 

SDS Sigma-Aldrich Chemie GmbH, St. Louis , MO, USA 

Trifluoroacetic acid (TFA) Fluka, St. Louis, MO, USA 

Trypsin (in 50 mM ammonium bicarbonate) Promega, Madison, WI, USA 

Tween® 20 Sigma-Aldrich Chemie GmbH, St. Louis, MO, USA 
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Table 7: Consumables used during this study 

Consumable Supplier 

Amico filters (10kDA cut off)  Merck, Darmstadt, Germany 

BD Vacutainer® LH 170 I.U. Pluss Blood Collection 

Tubes 

Becton, Dickinson and Company (BD), Belliver 

Industrial Estate, Plymouth, UK 

BD Vacutainer® One Use Holder BD, Belliver Industrial Estate, Plymouth, UK 

BD Vacutainer® Safety-Lok™ Blood Collection Set BD, Franklin Lakes, NJ, USA 

Combi tips advanced® (5, 10, 12.5 mL) Eppendorf AG, Hamburg, Germany 

Corning® clear steril flat-bottom culture plates (96-, 46-

, 24-, or 6-well plates) 

Corning, Corning, NY, USA 

CryoPure tubes (1.6 mL) Sarstedt AG &Co., Nümbrecht, Germany 

Eppendorf tubes® (5 mL) Eppendorf AG, Hamburg, Germany 

Express Plus Stericup® filter systems (0.1 or 0.22 µm) Merck, Shanghai, China 

Falcon® Cell culture flasks (25; 75; 175 cm2)  Corning, Oneonta, NY, USA 

Falcon® FACS tubes (5 mL) Corning, Reynosa, Mexico 

Falcon® Polypropylene tubes (15; 50 mL) Corning, Tamaulipas, Mexico 

Falcon® Serological pipettes (5; 10; 25 mL) Corning, Corning, NY, USA 

Formavor-carbon coated EM grids Electron Microscopy Sciences, Hatfield, PA, USA 

MACS® separation coluums (LS) Miltenyi Biotec GmbH, Bergisch Gladbach, 

Germany 

MicroAmp® Optical 8-cap strip Applied Biosystems, Foster City, CA, USA 

MicroAmp™ Optical Adhesive Film Kit Applied Biosystems; Life Technologies 

Corporation, Carlsbad, CA, USA 

Mr. Frosty™  Thermo Scientific Nalgene, Schwerte, Germany 

Nunc™ MaxiSorp™ ELISA plates Thermo Fisher Scientific, Rochester, NY, USA 

Parafilm® M Bemis Company, Inc., Menasha, WI, USA 

Pipette tips (10; 200; 1000 µL) Eppendorf AG (Hamburg)/ Sarstedt AG &Co. 

(Nümbrecht) /Greiner Bio-One GmbH 

(Frickenhausen); all three from Germany 

Safe Seal Tips Premium steril (2.5; 10; 200; 1000 µL) Biozym Scientific GmbH, Oldendorf, Germany 

Safe-lock tubes (0.5; 2; 1.5 mL) Eppendorf AG, Hamburg, Germany 

SafeSeal low binding micro tubes (1.5 mL) Sarstedt AG &Co., Nümbrecht, Germany 

Steriflip® filter systems (0.22 µm) Merck, Shanghai, China 

Transfer pipettes (6 mL) Sarstedt AG &Co., Nümbrecht, Germany 

Ultra-Clear tubes for centrifugation Beckman Coulter, Inc., Brea, CA, USA 

White flat-bottom 96-well plates Greiner Bio-One GmbH, Frickenhausen, Germany 

 

Reagents and consumables used either for electron microscopy were kindly provided by the 

Charité Electron Microscopy Core facility or for liquid/electron ionization mass spectrometry 

(L/ESI-MS) were kindly provided by the Charité Cardioproteomic Unit, such as trypsin, TFA 

and others. 

Table 8: Buffers that were prepared during this study. 

Buffers Composition of buffers 

FACS buffer PBS + 1% FCS  

MACS buffer PBS + 1% FCS, + 2mM EDTA 

4% PFA solution 500 µL H2O + 0.4g PFA, + 25 µL 1N NaOH and 9.5 mL PBS 

0.5% PFA fixation solution Dilution of 4% PFA with FACS buffer, e.g. 100µL + 700µL respectively 

Blocking buffer FACS buffer + 5 % goat serum 
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Table 9: Antibodies used during this study, while the exact dillutions for cell, EVs, EV-cell interaction is 
enlisted in the following sections, respectively. 

Supplier Human specific antibodies (if not indicated otherwise) 

Biolegend  AnnexinV-FITC, CD105 FITC, CD106 PE, CD120b PE-Cy7, CD127 APC-Cy7, 

CD144 PE, CD163 FITC, CD206 APC, CD25 PerCP-Cy5.5, CD273 (PD-L2) APC, 

CD274 (PD-L1) PE-Cy7, CD3 FITC, CD4 APC, CD54 APC, CD54 FITC, CD62L 

APC-Cy7, CD8a PE-Cy7, CD81 FITC, CD81 PE, CD86 PE, CD9 FITC, CD90 

APC, HLA-ABC FITC, HLA-ABC APC-Cy7, HLA-DR APC, HLA-DR PR, HLA-

DR APC, (isotype controls: IgG1 FITC, IgG1 PE, IgG2a FITC, IgG1 APC-Cy7)  

BD Biosciences CD14 APC-Cy7, CD19 V450, CD3 PerCPCy5.5, CD44 PE, (isotype control: IgG1 

PErCPCy5.5, IgG2a APC) 

Miltenyi Biotech CD69 PE, CD8 PE, (isotype control: IgG1 PE, IgG2a PE, IgG1 APC) 

R&D Systems CD121a APC 

Novus Galectin1 APC, GM130 (without fluorescence) 

Molecular Probes AF488 (anti goat; secondary antibody) 

 

3.1.4 Hardware, software, and databases 

Table 10: Software or data bases used during this study  

 

 

 

 

 

 

 

 

Software Supplier 

Axio Vision Release (Version 4.7.2) Carl Zeiss, Jena, Germany 

Columbus™ Image Data Storage Perkin Elmer, Waltham, MA, USA 

FACS Diva Software BD Bioscience, San Jose, CA, USA 

FlowJo for Windows 7/10 (Version: 10.4.2) TreeStar Inc., Ashland, OR, USA 

Functional Enrichment Analysis Tool 

(FunRich; version 3.1.3) 

Analysis tool developed at La Trobe University, Melbourne, 

Australia [117,118] (available at http://www.funrich.org)  

GraphPad Prism™ (Version: 5.03) GraphPad Software Inc, La Jolla/San Diego, CA, USA 

Harmony® Imaginang and analysis Perkin Elmer, Waltham, MA, USA 

ImageJ1.50i  Wayne Rasband, NIH, USA 

ImageSP Viewer (Version:1.2.7.11) SYS-PROG, Minsk, Belarus 

LEGENDplex™ version 7.1 VirgineTech Inc., Carlisle, MA, USA 

Mascot software (version number 2.2) Matrix Sience, Boston, MA, USA 

Mendeley Desktop (Version: 1.19.1) RELX Group, London, UK 

MikroWin Version 4.41 Berthold Technologies, Bad Wildbach, Germany 

MS® Office System 2016 Microsoft, Unterschleißheim, Germany 

nSolver software (version 4.0) NanoString Technologies, Seattle, WA, USA 

String database (version 10.5) ELIXIR Core Data Recources (available at http://string-

db.org) 

SwissProt database  For analysis: human 553474 sequences and 198069095 

residues, Cambridgeshire, UK 

http://www.funrich.org/
http://string-db.org/
http://string-db.org/
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Table 11: Hardware used during this study 

Hardware Supplier 

AxioObserver Zeiss, Jena, Germany 

CASY® Cell Counter & Analyzer OLS OMNI Life Science GmbH & Co KG, Bremen, 

Germany 

Centrifuges: i) Allegra™ X-15R, ii) Allegra™ X-

22R, iii) Ultracentrifuge L7-55, and iv) Optima L-

80 XP  

All from Beckman Coulter, Inc., Brea, CA, USA 

ESI-QTOF mass spectrometer  Impact II, bruker daltonics, Billerica, MA, USA 

FACS Canto II (flow cytometer) Becton Dickinson, Heidelberg, Germany 

Flow hood Hera Safe and Safe 2020 Thermo Fisher Scientific, Rockford,  IL, USA 

Freezer (-80°C) UF 756 Dometic WAECO International GmbH, Emsdetten, 

Germany) 

Freezer and fridges (4°C and/or -20°C) Liebherr-International Deutschland GmbH, Bierbach an 

der Riß, Germany 

Ice machine AF80 Scotsman Ice S.r.L., Milano, Italy 

Innova® CO2-incubator (CO-170) New Brunswick™, Eppendorf AG, Hamburg, Germany 

Liquid nitrogen tanks BIOSAFE® MD with 

BIOSAFE®-Control β 

Cryotherm GmbH & Co. KG, Kirchen/Sieg, Germany 

MACS Quant (flow cytometer) Miltenyi Biotec GmbH, Bergisch Gladbach, germany 

Microscope DMIL Leica Microsystems GmbH, Wetzlar, Germany 

Midi MACS Separator Miltenyi Biotec GmbH, Bergisch Gladbach, Germany 

Mithras LB 940 micro-plate reader  Berthold Technologies GmbH & Co.KG, Bad Wildbad, 

Germany 

Multipipette HandyStep® Eppendorf AG, Hamburg, Germany 

NanoDrop 2000 spectrophotometer  Thermo Fisher Scientific, Waltham, MA, USA 

nCounter® Digital Analyzer NanoString Technologies, Seattle, WA, USA 

PIPETBOY/PIPETGIRL acu Integra Biosciences AG, Zizers, Switzerland 

Pipettes (2.5/ 10/ 20/ 100/ 200/ 1000 µL) Eppendorf AG, Hamburg, Germany 

QuantStudio 6 Flex Real-Time PCR machine  Applied Biosystems/Thermo Fisher Scientific, 

Darmstadt, Germany 

TissueRuptor Quiagen, Hilden, Germany 

UPLC Dionex Ultimate 3000 ThermoFisher, Waltham, MA, USA  

VacuSafe  Integra Biosciences AG, Zizers, Switzerland 

Vortex mixers: i) Vortex-Genie 2, ii) neoVortex® 

and iii) Sunlab® Mini Vortex Mixer (SU1900) 

i): Beckman Coulter, Inc., Brea, CA, USA; ii-iii): neoLab 

Migge GmbH, Heidelberg, Germany 

Water bath 1003 Gesellschaft für Labortechnik mbH, Burgwedel, Germany 

Zeiss LEO 906 Transmission electron microscope Carl Zeiss Microscopy GmbH, Jena, Germany 

ZETAView® Particle Metrix, Meerbusch, Germany 

Thermocycler Eppendorf AG, Hamburg, Germany 

Cell strainer (40; 70 µm) BD Biosciences, NJ, USA 
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3.2 Methods 

3.2.1 Cell biological methods  

3.2.1.1 Isolation of human cells 

Isolation of cardiac-derived adherent proliferating (CardAP) cells: Endomyocardial 

biopsies from the right or left ventricular side of the interventricular septum were obtained 

according to the local guidelines of the Charité-Universitätsmedizin Berlin and the study was 

approved by the ethics committee of the Charité-Universitätsmedizin Berlin (No. 

EA2/140/16). These biopsies were used to isolate CardAP cells by outgrowth culture 

conditions as previously published [67]. For this study, cryopreserved CardAP cells were kindly 

provided by the lab of Prof. Sittinger.  

Isolation of human immune cells: Human peripheral blood mononuclear cells (PBMCs) were 

derived from buffy coats (German Red Cross, Berlin, Germany) or from fresh blood of healthy 

volunteers with their written informed consent according to approved protocols by the ethics 

committee of the Charité-Universitätsmedizin Berlin (EA1/226/14, EA2/139/10). At the start, 

a 1:1 (v/v) mixture of blood and PBS was prepared and then layered on top of 15 mL Biocoll 

in 50 mL falcon tubes. After a centrifugation at 800 x g for 30 min at RT without breaks, 

erythrocytes and the majority of granulocytes were beneath the Biocoll, while PBMCs were 

present in an interphase between Biocoll and an upper phase consisting of plasma and 

thrombocytes. The PBMC interphase was cautiously collected into a 50 mL falcon tube already 

filled with 10 mL ice-cold PBS and centrifuged at 300 x g for 10 min and 4°C. The cell pellet 

was washed at least four times with ice-cold PBS and isolated PBMCs were either cryopreserved 

(see section 3.2.1.1), separated into different immune cell subtypes (see section 3.2.3.5), or 

experimentally used (see sections 3.2.1.4/5/6).   

3.2.1.2 Cell culture  

All cell culture experiments were performed in a laminar flow hood to enable sterile conditions. 

Furthermore, unsterile materials were autoclaved at 120°C and one bar before usage. Primary 

cells and cell lines were cultivated in aseptic incubators at 37°C, 21% O2, and 5% CO2 in their 

appropriate medium as enlisted in Table 3. In order to limit the influence of EVs from serum 

sources, ultracentrifuged human serum was used in the medium for functional assays or for the 

expansion of CardAP cells. 

Preparation of centrifuged human serum: Serum was mixed with the same volume of the 

appropriate medium needed for cell culture (isoIDH medium for CardAP cells, RPMI medium 

for PBMCs, EBM medium for HUVECs) and centrifuged for 24 h at 100,000 x g and 4 °C. The 

next day, the supernatant (= centrifuged human serum) was collected and stored at -20°C till 

further usage.  

Cell cryopreservation: Cells were regularly cryopreserved by taking them up in freezing 

medium (1 - 4 x 106 cells/mL). The cell suspension was immediately transferred into cryotubes, 

which were placed in Mr. Frosty™ freezing containers and stored at -80°C. The next day, 

samples were transferred to -160°C tanks for long-time storage. 
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Cell thawing: Cryopreserved cells were defrosted by shortly thawing them in a 37°C heated 

water bath. Then, the cells were transferred to a 50 mL falcon tube filled with 10 mL of the 

respective complete medium. The cryotube was rinsed with PBS for three to four times and 

transferred to the same 50 mL falcon tube. Then, the suspension was centrifuged for 10 min at 

300 x g and 4°C. The obtained cell pellet was taken up in 10 - 20 mL complete medium, and 

cell number and viability were accessed with a cell counter, namely Casy® Cell Counter. 

Cell passaging: Cultured cells were passaged when a confluence of approximately 80 % was 

reached, except for HL-1 cells. These cells were passaged at a confluence of 100 % to avoid 

their dedifferentiation. Suspension cells were collected immediately into a 50 mL falcon tube 

and centrifuged for 10 min at 300 x g and 4°C. Adherent cells needed to be detached from the 

surface of the culture plastic by treatment with trypsin or accutase. In general, the medium was 

removed and cells were washed once with PBS. Afterwards, cells were incubated at 37 °C either 

for three min in a trypsin/EDTA solution or for 30 to 45 min in an accutase containing solution. 

The proteolytic activity was inhibited by adding the double volume of the respective medium. 

Detached and floating cells were collected in 50 mL falcon tubes and centrifuged as previously 

described. Lastly, the obtained cell pellet was suspended in 10 - 20 mL medium and the cell 

number and viability were determined with a Casy® Cell Counter. 

3.2.1.2.1 Human cells 

Human cardiac-derived adherent proliferating (CardAP) cells: Cryopreserved CardAP 

cells from seven donors were thawed and cultured in cIDH medium at a density of 4,000 

cells/cm². Afterwards, CardAP cells were cultured and passaged at the same density for up to 

eight times with cenIDH medium, if not stated otherwise. Some characteristics of all used 

CardAP donors are displayed in Table 12.  

Table 12: Characteristics of the seven CardAP donors used during this study. 

CardAP donor IDs Frequency CD90+ cells Sex Age [years] 

36 14.5 % Male 49 

48 21.7 % Female 63 

52 23.2 % Female 39 

50 15.0 % Male 24 

63 26.4 % Male 57 

64 14.7 % Male 63 

69 15.5 % Female 52 

 

Human umbilical vein endothelial cells (HUVECs): Cryopreserved or cultured HUVECs 

were seeded at a density of 1,000 – 2,000 cells/cm² in EGM2 medium, if not stated otherwise. 

Cells were included into functional assays until passage six.  

Human immune cells: Cryopreserved or freshly isolated human immune cells were cultured 

in cRPMI medium. The exact cell concentrations are highlighted in the description of the T cell 

proliferation assay (see section 3.2.1.5) or regulatory T cell assay (see section 3.2.1.6), respectively.  
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3.2.1.2.2 Murine cells 

Murine cardiac endothelial cells (MHEC5-T cells): Cryopreserved or cultured MHEC5-T 

cells were grown in cDMEM medium and seeded at a density of about 10,000 cells/cm². During 

this study, MHEC5-T cells were used between passage three and six. 

Murine cardiomyocytes (HL-1 cells): Cryopreserved or cultured HL-1 cells were seeded at a 

density of 40,000 cells/cm² in cClaycomb medium on gelatine (0.2 mg/mL) and fibronectin 

(0.0125 mg/mL) coated culture dishes. The coating solution was prepared in two steps. Firstly, 

0.1 g gelatine was mixed with 50 mL PBS and heated in the microwave to solubilize. Secondly, 

44.375 mL PBS was mixed with 625 µL (1mg/mL) fibronectin and 5 mL of the previously 

prepared gelatine solution. This final coating solution was used to coat culture dishes for 30 min 

at 37°C. Afterwards, the remaining coating solution was collected and reused at least twice. 

Reused coating solution was stored at 4°C for up to six weeks, while stock solutions and unused 

final coating solutions were stored at -20°C. During this study, HL-1 cells were used between 

passages 24 and 29. 

3.2.1.3 Isolation of EVs by differential centrifugation 

Unlabelled as well as fluorescence labelled EVs were isolated via differential centrifugation of 

the conditioned cell culture medium (Figure 4) by an adapted protocol from Théry et al. [89]. 

 

Figure 4: Steps of differential centrifugation to isolate EVs 
from the conditioned medium of CardAP cells. 
CardAP cells were washed twice with PBS after a confluence of 
80% was reached. Then, isoIDH medium with or without pro-

inflammatory cytokines (10ng/mL of IFNγ, TNFα and IL-1β) was 
applied for 20 h. The conditioned medium was collected and 
subjected to a differential centrifugation protocol to isolate small 
EVs. Therefore, the supernatant was centrifuged at 300 x g for 10 
min (exclusion of cells and cell debris), at 2,000 x g for 20 min 
(exclusion of small cell debris and apoptotic bodies), at 12,000 x g 
for 45 min (exclusion of most microvesicles) and at 100,000 x g for 
165 min (small EV pellet). Protein contaminations were limited by 
washing the obtained small EV pellet with 0.1 µm filtered PBS. 
Finally, EVs were suspended in 0.1 µm filtered PBS and stored 
at -80°C until further analysis. 

 

 

Isolation of unlabelled EVs: CardAP cells were grown in cenIDH medium to a confluence 

of about 80%. Then, CardAP cells were washed twice with PBS and isoIDH medium with or 

without a pro-inflammatory cytokine cocktail (10 ng/mL of TNFα, IFNγ as well as IL-1β) was 

applied for 20 h. The conditioned medium was collected and stepwise centrifuged at 300 x g 

for 10 min, 2,000 x g for 20 min, 12,000 x g for 45 min and 100,000 x g for 165 min. Each step 

was performed to exclude cells, cell fragments, apoptotic bodies, and the majority of 

microvesicles (as indicated in Figure 4) to obtain mainly exosomes, the smallest EV type. To 

minimize protein contaminations, a washing step was performed by suspending the received 

EV pellet in 0.1 µm filtered PBS and repeating the last centrifugation step. Finally, EVs were 
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stepwise suspended in a total of 500 µL of 0.1 µm filtered PBS, transferred to low-binding tubes, 

and stored at -80°C till further usage.  

Isolation of fluorescence labelled EVs: Lipids of EVs were labelled with lipophilic 

fluorescent dyes, namely PKH26 or DiD. Therefore, the pellet of EVs after the first 100,000 x 

g centrifugation step was suspended in 6 mL PBS and supplemented with either 6 µL Vybrant® 

DiD cell label solution or 3 µL PKH26 for 10 min on ice prior to the final centrifugation step. 

Additionally, a negative control for each of the fluorescence dye was prepared to identify false 

positive signals by proceeding with unconditioned isoIDH medium. All samples were 

reconstituted in a total of 500 µL of 0.1 µm filtered PBS, transferred to low-binding tubes and 

stored at -80 °C till further usage. 

Importantly, CardAP cells were harvested by accutase treatment after each EV isolation 

procedure to determine the cell number by Casy® Cell Counter. Afterwards, cells were used for 

surface protein analysis by flow cytometry (see section 3.2.3.1.1) as well as for reseeding in cenIDH 

medium for the next EV isolation procedure until passage eight.  

3.2.1.4 EV-cell interaction assay 

The interaction of EVs with different potential target cells was accessed by using either 

fluorescence labelled or unlabelled EVs.  

EV-cell interaction assay with fluorescence labelled EVs: HUVECs, HL-1, or MHEC5-T 

cells were seeded according to Table 13 and allowed to adhere to the culture dish for 24 h. The 

next day, medium was discarded and fresh medium was added with either 6 µg/mL DiD or 

PKH26 labelled EVs or the equal volume of the negative control for DiD or PKH26. In 

contrast, PBMCs were seeded and immediately treated with 12 µg/mL of fluorescence labelled 

EVs and corresponding controls. After certain incubation times (Table 13), cells were either 

analysed by flow cytometry (see section 3.2.3.1) or by microscopy (see section 3.2.3.2).  

Table 13: Culturing conditions to investigate the interaction of DiD+ EVs with target cells and conducted 
staining for analysis by flow cytometry (FC) or by microscopy (M) 

 

EV-cell interaction assay with unlabelled EVs: HL-1 or MHEC5-T cells were seeded in 

48-well plates (2 × 105 cells/well). After 24 h, the medium was changed and cells were treated 

either with 6 µg/mL of unlabelled unstimulated or cytokine stimulated EVs or they were left 

untreated. After another 24 h, cells were harvested by accutase treatment and proceeded for 

Target cell Cells cultured Culture period [h] Staining 

PBMCs 
5 × 105 cells/well in    6-

well-plate 
48 (FC and M) 

M: DAPI (1:100) and 

CD14 APC-Cy7 (1:50) 

FC: CD14 PE, CD3 FITC, 

CD19 V450, CD56 PE-Cy7, 

liefe/dead marker V510  

HL-1 
2 × 105 cells/well in 48-

well-plate 

0, 2, 7, 19 and 24 (FC 

and M) 

M: DAPI (1:100) 

FC: Dead/viable marker 

MHEC5-T 
2 × 105 cells/well in 48-

well-plate 
0, 2, 7, 19 and 24 (FC) FC: Dead/viable marker 

HUVECs 
2 × 105 cells/well in 24-

well-plate 

24 (FC) 

0, 2, 24 (M) 

M: DAPI (1:100) 

FC: Dead/viable marker 
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analysis by flow cytometry to assess the occurrence of human EV proteins on the surface of 

cells by an extracellular staining or within murine cells by an intracellular staining (see sections 

3.2.3.1.1/3).  

3.2.1.5 T cell proliferation assay  

The immunogenicity or the immune modulating feature of EVs was determined by their 

capability to initiate or to alter T cell proliferation, respectively. By flow cytometry, the frequency 

of proliferated T cells was monitored via the fading fluorescent signal of carboxyfluorescein 

succinimidyl ester (CFSE). Two different set-ups were conducted for the T cell proliferation 

assay with either PBMCs (Figure 5A) or separated immune cell subtypes (Figure 5B).  
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Figure 5: The two configurations of  performed T cell proliferation assays. 
At the beginning of each assay, PBMCs were isolated from the blood of healthy volunteers by Biocoll gradient. 
Then T cell proliferation assays were performed either with PBMCs (A) or with separated immune cell 
subpopulations (B), namely CD14+ and CD3+ cells. (A): PBMCs were labelled with CFSE, cultured in 96-well 
plates (3x105 cells/well), treated with unstimulated or cytokine stimulated EVs, with PBS in equal volumes of EVs 
or they were left untreated. Furthermore, those cultures were either left unstimulated to examine the 
immunogenicity or immune responses were provoked with anti-CD3 stimulation to monitor immunomodulation. 
(B): CD3+ and CD14+ cells were isolated from PBMCs by magnetic activated cell sorting (MACS) and kept 
separately for two days. CD14+ cells were treated with unstimulated or cytokine stimulated EVs, PBS, or were left 
untreated, whereas CD3+ cells were left untreated after they had been labelled with CFSE. After two days, 
monocultures of CD3+ cells were treated with unstimulated or cytokine stimulated EVs, PBS or were left untreated. 
Additionally, a T cell response was induced by applying anti-CD3 as trigger. Besides, CD3+ T cells were co-cultured 
with beforehand primed CD14+ cells (ratio one to five) and treated with anti-CD3 or left untreated. After each 
assay, the conditioned medium was collected to determine cytokines and chemokine concentrations, while cells 
were harvested for analysis by Flow cytometry (e.g. T cell proliferation).  
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CFSE labelling: Prior to an assay, 1x106 PBMCs or CD3+ cells were labelled with 5.0 µM 

CFDA in 1 mL PBS for three min in the dark at RT. The reaction was inhibited by adding 5 

mL cRPMI medium and the suspension was centrifuged at 300 x g for 10 min at 4°C. After the 

cells were washed again in cRPMI medium, the cell number was determined and different assays 

were conducted as described in the following. 

T cell proliferation assay with PBMCs: CFSE+ PBMCs were seeded in 96-well plates (3 × 105 

cells/well) and stimulated with 12.5 ng/mL anti-CD3 for immunomodulation assays or left 

unstimulated to determine the immunogenicity. Additionally, these PBMC cultures were treated 

with up to 12 µg/mL unstimulated or cytokine stimulated EVs, PBS in equal volumes to EVs 

or they were left untreated. The needed amount of EV protein were initially investigated in 

establishment assays and later on solely conducted with one concentration. 

T cell proliferation assay with separated immune subsets: PBMCs from fresh blood of 

healthy donors were used to separate CD3+ and CD14+ cells by magnetic activated cell sorting 

(MACS, see section 3.2.3.5). Afterwards, CD14+ cells were seeded in 6-well plates (1x106 

cells/well) and additionally treated with 12 µg/mL of either unstimulated or cytokine stimulated 

EVs, PBS in equal volumes of EVs, or they were left untreated. CFSE+ CD3+ cells were seeded 

in 6-well plates (2 - 3 x 106 cells/well) without any further treatment. Both immune cell subtypes 

were then cultured for two days. It allowed CD14+ cells to interact with EVs and CD3+ cells to 

be completely free of contaminations with CD14+ cells, which were observed directly after 

MACS sort at highest frequencies of about 2 %. After this incubation, supernatants of CD14+ 

cells were collected and stored at -80°C until further investigation for their released cytokines 

and chemokines (see section 3.2.3.4). Then, CD14+ cells were harvested by accutase treatment, 

while CD3+ cells were harvested as suspension cells. The different pre-incubated CD14+ cells 

were co-cultured with CFSE+ CD3+ cells in a 48-well flat-bottom plate in a ratio of one to five 

(0.1 x 106 CD14+ cells with 0.5 x106 CD3+ cells/well). Furthermore, pre-incubated CD14+ cells 

were investigated for surface protein expression analysis of cells by flow cytometry (see section 

3.2.3.1.1). Additionally, a monoculture of CD3+ cells served as assay control. Therefore, CFSE+ 

CD3+ cells were seeded in 48-well plates (0.5 x106 cells/ well) and treated either with 12.0 µg/mL 

unstimulated or cytokine stimulated EVs, PBS in equal volumes of EVs or they were left 

untreated. Monocultures as well as co-cultures were either stimulated with 12.5 ng/mL anti-

CD3 or they were left unstimulated for three days.  

Analysis: After three days for immunomodulation assays or five days for immunogenicity 

assays, the supernatants were collected and stored at -80°C until further investigation of the 

released cytokines and chemokines (see sections 3.2.3.3/4). Then after, the cells were harvested by 

accutase treatment and proceeded for surface protein expression analysis by flow cytometry (see 

section 3.2.3.1.1). 

3.2.1.6 Regulatory T cell assay  

The immune modulating feature of EVs was furthermore characterized for their ability to affect 

regulatory T cells. Here, the frequency of viable CD3+ CD4+ CD127- CD25++ Foxp3+ cells was 

determined by flow cytometry in induced immune responses of immune cell cultures of T cell 

proliferation assays. The T cell proliferation assay of separated immune subsets was performed 
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as previously described, while total PBMCs were seeded in 48-well plates (0.6 x 106 cells/well), 

treated with either 12 µg/mL of unstimulated or cytokine stimulated EVs, PBS in equal volumes 

of EVs or they were left untreated and additionally stimulated with anti-CD3, as previously 

described. The immune response was allowed to take place for three days at 37°C and 5% CO2. 

Afterwards, immune cells were harvested by accutase treatment and proceeded for the 

investigation of intracellular and extracellular protein expression analysis by flow cytometry (see 

section 3.2.3.1.3). 

3.2.1.7 Apoptosis assay 

Apoptosis was determined via changes of the cell plasma membrane by flow cytometry or via 

the activity of caspases by luminescence. CardAP cells were investigated for the different culture 

conditions, while HL-1 cells were provoked via different triggers to undergo apoptosis. 

3.2.1.7.1 7AAD/AnnexinV-FITC detection assay  

By flow cytometry, AnnexinV-FITC was used to detect phosphatidylserine present on the 

extracellular side of early and late apoptotic cells, while 7AAD can solely cross the porous 

plasma membrane and intercalate with the DNA of late apoptotic or necrotic cells. 

Preparation HL-1 cells: Cultured HL-1 cells were passaged and reseeded in 6-well plates 

(1x106 cells/well). Additionally, these cells were treated with 6 µg/mL of either unstimulated or 

cytokine stimulated EVs, PBS in equal volumes of EVs or they were left untreated. After 24 h, 

HL-1 cells were washed once with PBS and then 1 mL 0.5 mM H2O2 containing cClaycomb 

medium was applied for 60 min at 37°C. A negative control was incorporated by adding solely 

cClaycomb medium to untreated HL-1 cells. Afterwards, the media was removed, HL-1 cells 

were washed twice with PBS and 1 mL cClaycomb medium was applied for 23 h.  

Preparation CardAP cells: CenIDH medium was used to seed CardAP cells in 6-well plates 

(1x106 cells/well). After 24 h, CardAP cells were washed once with PBS and then cultured for 

20 h in 1 mL of cenIDH, cIDH or iso IDH medium with or without cytokine cocktail.  

Procedure: The next day, suspension cells were collected in 5 mL FACS falcon tubes. Adherent 

cells were harvested by accutase treatment and collected into the respective falcon tube. The 

cells were centrifuged for 10 min at 300 x g and 4°C, followed by an additional washing step 

with AnnexinV binding buffer. Then, each cell pellet was suspended in 50 µL AnnexinV binding 

buffer containing 2 µL 7ADD and 2 µL AnnexinV-FITC. The staining was performed for 15 

min at RT in the dark and abolished by adding 250 µL ice cold AnnexinV binding buffer. 

Samples were acquired within 45 min at a flow cytometer (MACSQuant).  

Analysis: The frequency of apoptotic cells was determined with the help of FlowJo Software. 

Accordign to published guidelines, cell debris and solely single cells were incorporated in the 

analysis (Figure 6). In total, four different populations are possible to determine: non-apoptotic 

cells (7AAD- AnnexinV-FITC-), early apoptotic cells (7AAD- AnnexinV-FITC+), late apoptotic 

cells (7AAD+ AnnexinV-FITC+) and necrotic cells (7AAD+ AnnexinV-FITC-). 
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Figure 6: Gating strategy for evaluating cell death by flow cytometry via 7AAD and AnnexinV-FITC 
staining. 
Apoptosis of HL-1 cells or CardAP cells was determined by measuring the signal of AnnexinV-FITC and 7AAD 
via flow cytometry. For that purpose, harvested cells were stained with AnnexinV-FITC and 7AAD, measured at 
the MACSQuant and analysed by FlowJo Software. The gating strategy is shown representatively here for HL-1 
cell treated with 2 mM H2O2. Firstly, cell debris were excluded (left), single cells determined (middle) and then 
analysed for their fluorescence of AnnexinV-FITC and 7AAD (right). Herein, cells can be distinguished as non-
apoptotic cells (AnnexinV-FITC- 7ADD-), early apoptotic cells (AnnexinV-FITC+ 7ADD-), late apoptotic cells 
(AnnexinV-FITC+ 7ADD+), and necrotic cells (AnnexinV-FITC- 7ADD+). FCS = forward scatter, SCA = side 
scatter, -A = area, -H = height. 

3.2.1.7.2 Caspase 3/7 apoptosis assay  

Intrinsic and extrinsic apoptotic pathways lead to a cascaded activation of caspases, starting with 

caspase 8, 9 or 10, which will cleave and thereby activate effector caspases, such as caspase 3, 7 

and 6. For that reason, it is possible to determine apoptosis by the activity of caspases. In this 

study, the Caspase-Glo® 3/7 Assay from Promega was used to determine the activity of caspase 

3 and 7 by luminescence through a proluminescent caspase 3/7 DEVD-aminoluciferin 

substrate. 

Preparation: White as well as transparent gelatine and fibronectin coated 96-well plates were 

seeded with HL-1 cells and treated with either 6 µg/mL unstimulated or cytokine stimulated 

EVs, PBS in equal volumes of EVs or they were left untreated. Each treatment was at least 

performed in quadruplicates. Cell concentrations and further details are enlisted in Table 14 for 

each apoptotic trigger.  

Table 14: Experimental set-up for the different apoptotic triggers.   

 

After one day, HL-1 cells were washed once with PBS before applying the different apoptotic 

treatments, which are described in the following: 

• Reactive oxygen species (ROS): 100 µL 0.5 mM H2O2 containing cClaycomb medium 

was applied for 60 min to HL-1 cells at 37°C. Additionally, a negative control was 

incorporated by adding solely cClaycomb medium to untreated HL-1 cells. Afterwards, the 

Apoptotic trigger Executed by Seeded HL-1 cells 

Starvation Starvation medium 2x104 cells/well 

Virus infection Coxsackievirus B3 infection 2x104 cells/well 

Reactive oxygen species 0.5 mM H2O2 1x104 cells/well 
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media was removed, HL-1 cells were washed twice with PBS and 100 µL cClaycomb 

medium was applied for 23 h at 37°C. 

• Starvation: 25 µL starvation medium was applied for 60 min to HL-1 cells at 37°C. 

Afterwards, the media was removed, HL-1 cells were washed twice with PBS and 100 µL 

cClaycomb medium was applied for 23 h at 37°C. 

• Viral infection: Starvation medium was supplemented with coxsackievirus B3 (CVB3) at 

a 100,000 multiplicity of infection (m.o.i.). Then, 25 µL CVB3 containing starvation 

medium was applied for 60 min to HL-1 cells at 37°C. Afterwards, the media was removed, 

HL-1 cells were washed twice with PBS and 100 µL cClaycomb medium was applied for 

23 h at 37°C. 

Analysis: Caspase 3/7 reagent was freshly prepared by mixing same volumes of caspase-glo 

buffer with caspase-glo substrate. The equivalent volume of media (~ 100 µL) was added from 

the caspase 3/7 reagent to each well of the white 96-well flat-bottom plate. The plate was stored 

at RT and the luminescence was determined after 60, 120, or 180 min at the Mithras LB 940 

micro-plate reader. The determined luminescence of 120 min time point was related to the cell 

concentration, which was determined by crystal violet assays of transparent 96-well plates (see 

section 3.2.2.2).  

3.2.1.8 Endothelial cell tube formation assay 

Endothelial cells will form capillary-like structures and networks when they were applied to 

appropriate extracellular matrix, such as matrigel. This tube formation assay recreate the 

reorganization stage of angiogenesis in vitro and can help to identify compounds with enhancing 

or inhibiting properties. After several establishment assays, the tube formation assay was 

conducted as described in the following. 

Preparation: Thawed HUVECs were cultured in EGM2 medium at relatively low passage 

number (one till three) for up to five days and several culture medium changes. 24 h prior to an 

assay, HUVECs were passaged and 1 mL of cells in EGM2 medium were seeded in 6-well plates 

(1.9 x 105 cells/ well). Before cells were left for 24 h at 37°C in aseptic incubators, they were 

treated with either 6 µg/mL unstimulated or cytokine stimulated EVs, PBS in equal volumes of 

EVs or they were left untreated. 

Procedure: For the assay itself, a pre-cooled 24-well plate was coated with matrigel (200 

µL/well) on ice. The gel was then allowed to solidify for 30 min at 37°C. Pre-incubated 

HUVECs were harvested by accutase treatment and seeded in 400 µL cEBM medium (0.16 x 

105 cells/well) after wells were shortly washed with PBS. Each treatment was performed at least 

in duplicates. Untreated HUVECs were either left unstimulated or stimulated with 10 ng/mL 

VEGF during the tube formation assay. The matrigel-coated plates with the different stimulated 

HUVECs were put in the aseptic incubator for up to 24 h.  

Analysis: The formation of tubular structures was documented over the course of time by 

microscopy (AxioObserver microscope). Images of the 20 h time point were observed to be 

most suitable for the quantitative analysis by Angiogenesis Analyzer plugin of ImageJ software 

[119]. Therefore, five to eight random brightfield images were taken of each well, these images 

were converted into suitable formats (here: RGD) and the tubular network was quantified by 
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Angiogenesis Analyser with following settings: minimum object size = 10 pixel (px), minimum 

branch = 25 px, artifactual loop size = 850 px, isolated element threshold = 25 px, master 

segment size threshold = 30 px, and iteration number = 3. Two parameters, namely the number 

of junctions and the total branching length, were chosen and displayed in this thesis as 

quantification of thedetermined tube formation. 

3.2.1.9 Pro-angiogenic factor release assay 

Endothelial cells release factors that can enhance or reduce their angiogenic behaviour. Whether 

HUVECs change their secreted pro-angiogenic factors upon EV exposure was elucidated in 

pro-angiogenic factor release assays.  

Cultured HUVECs (passage number three) were seeded in 96-well plates (0.5 x 106 cells/ well) 

and treated in triplicates with either 6 µg/mL unstimulated or cytokine stimulated EVs, PBS in 

equal volumes of EVs or they were left untreated. After 24 h, the cells were washed once with 

PBS and fresh cEBM medium was applied for another 24 h. The conditioned medium was 

collected and stored in low binding tubes at -80°C until determination for IL-6, IL-8 and VEGF 

concentrations by ELISAs (see section 3.2.3.3), while the cells were used for crystal violet assays 

to determine a cell correction factor (see section 3.2.2.2). Relative concentrations of the different 

factors were obtained by relating determined concentrations to the corresponding cell 

correction factor.  

3.2.2 Molecular biological methods  

3.2.2.1 Bicinchoninic acid (BCA) protein assay  

The BCA protein assay uses the ability of proteins to reduce copper ions in alkaline solutions. 

This reduction can be tracked by a colorimetric detection of a purple coloured complex that is 

formed between bicinchoninic acid and reduced copper ions. Concentrations ranging from 

1,000 to 12.5 µg/mL of bovine serum albumin (BSA) were used for a standard curve that helped 

to determine the protein concentrations of EVs.  

Procedure: BSA standard stock solution (2,000 µg/mL) and BCA reagents were provided by 

the Pierce™ BCA protein Assay Kit. For each assay, a working solution was freshly prepared 

consisting of 50 parts of BCA reagent A (sodium carbonate, sodium bicarbonate, bicinchoninic 

acid and sodium tartrate in 0.1 M sodium hydroxide) and one part of BCA reagent B (4 % cupric 

sulphate). Per well and sample, 200 µL working solution was mixed with 25 µL of standards or 

EV preparations in transparent 96-well plates. After 30 min at 60°C with short shacking after 

each 10 min, the absorbance was measured at 570 nm with the Mithras LB 940 microplate 

reader. 

Analysis: The protein concentration of EV samples was calculated with the help of the BSA 

standard curve. Furthermore, the determined protein concentrations of EVs were normalized 

to 1x106 CardAP cells, since cell number varied within isolations. 

3.2.2.2 Crystal violet assay 
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Ribose type molecules, such as DNA, and proteins can be stained by crystal violet. Since the 

amount of staining is directly proportional to the amount of cells or the biomass, it is possible 

to use crystal violet assays in order to derive a cell correction factor.  

Procedure: Identical stimulations and treatments were performed in parallel for caspase 3/7 

assays (see section 3.2.1.7.2) or pro-angiogenic factor release assays (see section 3.2.1.9) in transparent 

96-well plates. At the end of the incubation time, the cells were fixed with 200 µL 4 % PFA 

overnight at 4 °C. The next morning, each well was washed twice with 200 µL H2O and then 

incubated with 100 µL 10% (w/v) crystal violet in H2O solution for 30 min at RT in the dark. 

Afterwards, each well was washed three times with H2O and then 100 µL 1 % SDS in H2O 

solution was applied for 60 min with short shacking after each 10 min at RT.  

Analysis: The absorbance was measured at 595 nm with the Mithras LB 940 microplate reader. 

The mean of at least triple determination (= cell correction factor) was used to calculate the 

relative luminescent unit (RLU) of caspase activity or the relative released concentrations of 

pro-angiogenic factors by HUVECs, respectively. 

3.2.2.3 Transmission electron microscopy (TEM) 

EVs were evaluated for its morphology and diameter by TEM at the electron microscopy facility 

of the Charité-Universitätsmedizin Berlin. All steps and measurements were performed together 

with Mrs. Petra Schrade, technician and person in charge of the EM facility at the Virchow 

Campus of the Charité Universitätsmedizin.  

Procedure: Unstimulated and cytokine stimulated EVs from three different CardAP donors 

(36, 48, and 50) as well as PBS controls were investigated by TEM according to an adapted 

method for positive-negatively stained EVs [89]. Formavor-carbon coated copper EM grids 

were incubated for 20 min with 20 µL of sample. Afterwards, following steps were performed: 

20 min in 2 % PFA solution, shortly wiping residual drops on a tissue, five min in 1 % 

glutaraldehyde, followed by six washing steps with H2O. Then the samples were positive-

negatively stained for 10 min in freshly prepared 4 % uranyl acetate 2 % methylcellulose solution 

in the dark at 4°C. After residual staining solution was wiped off, the samples were dried 

overnight in the dark at RT.  

Analysis: Samples were analysed with the transmission electron microscope Zeiss Leo 906. Up 

to 21 images of each sample were accessed for diameter of EVs by ImageSP Viewer. Here, 

vesicular structures exposing a lipid bilayer, visible as two distinct lines, were measured by 

drawing a line from both outer layers through the centre. These diameters are displayed as 

individual points as well as diameter distributions for each EV isolation condition in this study. 

3.2.2.4 Nanoparticle tracking analysis (NTA) 

Nanoparticle tracking analysis (NTA) is a method to determine the concentration and diameter 

of particles in a solution. The basic principle of this method is the dependency of a particle´s 

size and its Brownian molecular motion. By tracking the motion of each particle, for example 

through detecting scattered light, conclusions can be drawn about their diameters as well as 

concentrations. EVs from four different CardAP donors (36, 48, 50, and 46) were analysed at 

the ZetaView® with 14 different camera levels and according to the manufacture´s manual. 
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Water, 0.1 µm filtered PBS and a calibration with 100 nm sized styrolbeads was conducted 

before EV samples were characterized in at least two different dilutions (1 to 1,000 or 2,000) 

and in triplicate measurements. Determined particle concentrations of EVs were related to the 

derived number of CardAP cells after each isolation procedure, accordingly to protein amount 

determination of EVs. 

3.2.2.5 Liquid/electron spray ionization mass spectrometry (LC/ESI-MS) 

Liquid chromatography/electron spray ionization-mass spectrometry (LC/ESI-MS) was used 

to gather a broader overview of proteins transported by isolated EVs. Samples were processed 

and measured at the Cardioproteomics/Tissue Typing Unit at Charité Universitätsmedizin 

Berlin under the supervision of Dr. Oliver Klein.  

Procedure: EVs from three different CardAP donors (36, 48, and 69) either in unstimulated or 

cytokine stimulated conditions were transferred to 10 kDA cut off amico filters followed by an 

overnight digestion with trypsin at 37°C. Peptide samples were extracted with 0.1 % TFA and 

measured by a mass spectrometer (here: UPLC ESI-QTOF).  

Analysis: The obtained mass spectra were analysed by searching the SwissProt database with 

Mascot software. The following parameters were set for analysis: i) taxonomy = homo sapiens 

(human; 20175 sequences); ii) proteolytic enzyme = trypsin; iii) maximum of accepted missed 

cleavages = 1; iv) mass value = monoisotopic; v) peptide mass tolerance = 10 ppm; vi) fragment 

mass tolerance = 0.05 Da; and vii) variable modifications = oxidation. Afterwards, identified 

proteins were considered for further analysis if scores corresponded to p < 0.05 and if at least 

one detected peptide were determined in at least two from three donors. By String database, 

networks of interactions between the identified proteins were analysed and visualized as 

connecting line, when they fulfilled a high confidence interaction (0.77) of active interaction 

sources by experiments, databases, co-expression and co-occurrences. 

3.2.2.6 Micro RNA expression assays  

MiRNAs are a post-transcriptional tool of a cell to abolish the translation of mRNAs into 

proteins, which crucially influence thereby processes such as differentiation, proliferation or 

apoptosis [120]. Since EVs can also transport miRNAs to recipient cells, it was of interest to 

gather a broader overview of the transported miRNAs by EVs from CardAP cells. For that 

reason, total RNA was isolated and analysed by an nCounter miRNA expression assay. Some 

obtained miRNA results were additionally verified by quantitative real-time polymerase chain 

reaction (qPCR).  

3.2.2.6.1 Isolation of RNA from EVs  

Total RNA was isolated from unstimulated and cytokine stimulated EVs from three different 

CardAP donors (36, 48, and 50) by miRNeasy Mini Kit according to the manufacture´s protocol. 

EV pellets from the final centrifugation step during EV isolation were suspended in 700 µL 

QIAzol Lysis Reagent instead of filtered PBS. This suspension was homogenized for 25 sec on 

ice at highest level. The lysates were transferred to low binding tubes and stored at -80°C. After 

all samples were collected, the lysates were gently thawed at RT and mixed with 140 µL 

chloroform. After a centrifugation for 15 min at 12,000 x g and 4°C, the aqueous phase (upper 
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layer) was collected and transferred to RNeasy Mini columns. These columns were washed with 

different provided washing buffers until the RNA was eluted with 30 µL RNase free water. 

Absorbance at 260 nm and 280 nm were measured at a NanoDrop 2000 spectrophotometer to 

evaluate the purity and concentration of isolated RNAs.  

3.2.2.6.2 NCounter® Human v2 miRNA expression assay  

This method allows to identify the expression of almost 700 different miRNAs in one sample 

by four different steps at an nCounter® Digital Analyzer. Firstly, unique oligonucleotide tags are 

ligated to previously isolated miRNAs. Secondly, tagged miRNAs are hybridised to reporter and 

capture probes. Finally, unbound probes are removed and the expression of miRNAs can be 

detected through the previous barcoding of tagged miRNAs with bound probes. Those steps 

were kindly performed by Dr. Maria Schneider according to the manufacturer’s protocol.  

Analysis: The gathered raw data of detected miRNAs was analysed with the help of nSolver 

software (version 4.0, NanoString Technologies). Firstly, the data was normalized using the top 

100 most abundant miRNAs in all samples as well as the positive controls to normalize for any 

differences in preparation, hybridization, and processing efficiency. Secondly, the mean plus 

two standard derivations of the negative control was subtracted from each sample to derive 

normalized background corrected data. Finally, miRNAs were considered to be present in EVs 

when a count of ten or more copy numbers was measurable in at least two of the three donors 

from either unstimulated or cytokine stimulated conditions. Enrichment analysis, such as for 

biological pathways, was performed by an open-source software called Functional Enrichment 

Analysis Tool [117,118]. 

3.2.2.6.3 Quantitative real-time polymerase chain reaction (qPCR)  

Some selected miRNAs were additionally quantified for their expression level by a different 

method, the quantitative real-time PCR. This method allows the detection of specifically 

amplified target sequences by fluorescence in real-time. Here, the miRNA will be transcribed 

into complementary DNA (cDNA), which serves as template strands for the annealing and 

amplification phase of fluorescence labelled probes, binding forward and reverse primers in the 

PCR process. The annealed probe does not emit its fluorescence on the 5´-end due to a present 

quencher on the 3´-end. During the amplification, the DNA polymerase will not only synthesize 

the new strand but also cleave probes that hybridized to the template strand beforehand. 

Thereby, the fluorescence dye will be separated from its quencher, which can now be detected 

and monitored over a given time period and cycle numbers (CT). Since the emitted fluorescence 

is directly proportional to the amount of miRNA product in each PCR cycle, a retrograde 

quantification of the initial target miRNA expression is allowed.  

Preparation: 10 ng of the previously isolated total RNA from EV samples as well as a negative 

control (solely RNase-free water) was reverse transcribed into cDNA with TaqMan® Advanced 

miRNA cDNA Synthesis Kit according the manufacture´s protocol. At the start, the miRNA 

and negative control undergoes a poly(A) tailing reaction followed by an adaptor ligation 

reaction. Afterwards, the reverse transcription (RT) and the amplification of miRNAs was 

performed by using a miRNA primer mix. The obtained cDNA samples were stored at -20°C 

until further analysis or immediately diluted in TE buffer ( one to ten) for qPCR.  



Chapter III                                                                                                                      MATERIALS & METHODS 

 

30 

 

Procedure: TaqMan™ Fast Advanced Master Mix, seven different TaqMan™Advanced 

miRNA Assays (human miRNAs for 494-3p, 146a-5p, 132-3p, 26b-5p, 199a-3p, 186-5p, and 

302d-3p) and RNase-free water were mixed for each PCR mix (Table 15). Master mixes of each 

miRNA Assays were distributed to 384-well plates (15 µL/well), while three technical replicates 

were performed for each sample. Then after, cDNA samples were added (5.0 µL/well), the plate 

was sealed with an adhesive foil, shortly vortexed and centrifuged at 300 x g for 60 sec at 4°C. 

The plate was cautiously transferred to the QuantStudio 6 Flex Real-Time PCR machine and 

the PCR run was immediately started with the thermal cycling condition as shown in Table 16. 

After the run was finished, the CT threshold was set at 0.2 and the values were analysed as 

described in the following.  

Table 15: PCR reaction mix.       
 

 

 

 

 

Table 16: PCR thermal cycling conditions for QuantStudio 
 

 

 

 

 

 

 

Analysis: The delta-delta CT (∆∆ CT) method was used to analyse the expression data.  Firstly, 

samples, which were always performed as three technical replicates, were normalized (∆ CT) to 

the expression of the median of miRNA26b-5p and miRNA199a-3p. Both miRNAs were 

identified to be the most stable in EV preparations according to NormFinder [121]. Then the 

fold change (∆∆ CT) of target miRNA expression was calculated for unstimulated EVs in 

relation to the corresponding cytokine stimulated EV reference sample.  

3.2.3 Immunological methods  

3.2.3.1 Flow cytometry 

Flow cytometry allows the analysis of different features of a cells, including their size, granularity 

or presence of proteins when stained with fluorescence labelled antibodies. In a flow cell, 

suspension of cells or EV-bound particles is channelled through a micro-cuvette . It ensures the 

screening of single events by an optic system consisting of laser and diverse filters. The optical 

signals are converted into electrical signals, which are amplified and can be analysed with suitable 

software programs. 

3.2.3.1.1 Surface proteins on cells  

Detection of surface proteins can help to monitor changed expression upon different 

stimulations as well as to distinguish between different cell subsets. Although diverse cells were 

Component Mix for one reaction 

TaqMan™ Fast Advanced Master Mix (2x) 10 µL 

TaqMAn™ Advanced miRNA Assay (20x) 1 µL 

RNase-free water 4 µL 

PCR Reaction Mix 15 µL 

Step Temperature [°C] Time [sec] Cycles [#] 

Enzyme activation 95 20 1 

Denature 95 1 
40 

Anneal/Extension 60 20 

Stop 4 ∞ 1 
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investigated in this study, an identical procedure was conducted to elucidate the repertoire of 

surface proteins. 

Procedure: Harvested cells were collected in 5 mL FACS tubes (e.g. CardAP cells 2 x 104 

cells/tube). The cell suspension was topped up with up with 4 mL FACS buffer and centrifuged 

at 300 x g for 10 min at 4°C. Afterwards, the supernatant was discarded and cells were 

suspended in 50 µL FACS buffer with a mix of human specific fluorescence labelled antibodies. 

Furthermore, single staining for the incorporated fluorescence as well as an unstained control 

were conducted in parallel. The composition and dilutions of master mixes are shown in Table 

17 for immune cells of the conducted T cell proliferation assays or in Table 18 for CardAP cells 

after the EV isolation process.  

Table 17: Fluorescence labelled human specific antibody mixes for immune cells 

 
Table 18: Fluorescence labbeld human specific antibody mixes for CardAP cells 

 

Afterwards, cells were washed with 3 mL FACS buffer, fixed with 200 µL 0.5% PFA-

supplemented FACS buffer and stored in the dark at 4°C until measurement at the flow 

cytometer (Canto II). 

Analysis: Acquired flow cytometry data were in general analysed with the help of FlowJo 

Software by gating on the particular population of interest. As such, the frequency of 

proliferated CD4+ or CD8+ T cells (= diluted CFSE signal) was obtained by the gating strategy 

shown in Figure 7A. These obtained frequencies were related for each sample and individually 

for each assay to the respective untreated immune cell control (immunogenicity = unstimulated; 

immunomodulation = anti-CD3 stimulated). The geometrical mean fluores-cence intensity 

(MFI) served as value of the expression of surface proteins. Cells were at least gated on living 

single cells (Figure 7B) or when applicable for included subpopulations, like CD14+ cells in 

PBMC cultures (Figure 7A). These obtained MFIs were related to their respective unstained 

control and displayed as normalized MFIs. Additionally, the freuquency of the expressing 

Assay set-up Assay Antibody mix 

PBMCs, CD3+ cells, 

or CD3+ with CD14+ 

cells (anti-CD3 or 

unstimulated) 

 

T cell 

proliferation 

CD19 V450 (1:1000), CD14 APCCy7 (1:50), CD8 PECy7 

(1:50), CD4 PerCPCy5.5 (1:75), CD56 PacificBlue™ (1:50) 

and live/dead marker V510 (1:100) 

PBMCs 

(unstimulated) 

 

Expression 

analysis of CD14+ 

cell markers 

CD86 PE (1:100), PD-L1 PerCPCy5.5 (1:50), HLA-DR 

PECy7 (1:1000), CD206 APC (1:100), CD14 APCCy7 (1:50) 

and live/dead marker V510 (1:100); if cells were not CFSE 

labelled also CD163 FITC (1:50) was included 

Targeting Human specific antibody mix 

Tetraspanins CD63 PE (1:1000), CD81 FITC (1:1000),  CD81 PE (1:1000),  CD9 FITC (1:1000) 

Cytokine receptors CD120c PECy7 (1:50), CD119 PE (1:50) and CD121a APC (1:50) 

Immunological markers PD-L2 APC (1:50), PD-L1 PerCPCy5.5 (1:50), CD54 APC (1:50), HLA-ABC FITC 

(1:100), HLA-DR APC (1:50), CD86 PE (1:50), CD80 FITC (1:20), CD106 PE 

(1:100) 

Mesenchymal markers CD90 APC (1:50), CD44 PECy7 (1:100), CD73 APC (1:50), CD29 PE (1:200) 
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population were valuated (Figure 7B), when a clear positive and negative population was 

detectable. 

 

Figure 7: Gating strategies to measure T cell proliferation or expression of surface proteins. 
Flow cytometry allows, for example, to identify proliferated T cells as well as the expression of surface proteins in 
distinct subpopulations. (A): The gating strategy is shown here exemplarily for anti-CD3 stimulated PBMC cultures 
to determine T cell proliferation. Firstly, all detected events were narrowed down towards a lymphocyte gate. 
Afterwards, cell aggregates and dead cells were avoided by the shown gating for single and living cells. Other cell 
types than T cells were excluded (NK cells, B cells or monocytes and macrophages). CD4+ as well as CD8+ cells 
were identified and each subset individually subjected for their CFSE signal. The proliferating cell frequency was 
determined by using a gate for the fading/dilluted CFSE signal. (B): Expression of surface proteins was accessed 
by gating at least on single viable cells and determining the geometrical mean fluorescence intensity (MFI) of the 
invesitgated target (red line). The relation between unstained and stained sample gave clue about the expression. 
In some cases also the frequency of protein expressing cells was determined, when a clear differentiation between 
expressing and non-expressing cells was detectable (blue line). FCS = forward scatter, SSC = sideward scatter,  -A 
= area, -H = height. 

3.2.3.1.2 Surface proteins on EVs 

Specialized methods as well as equipment is recommended to measure EVs by flow cytometry. 

To overcome this issue, we chose an indirect measurement by binding EVs to beads before 

measurement. Therefore, two drops of aldehyde/sulphate latex beads were given to 4 mL PBS 

and centrifuged at 300 x g for 10 min. Afterwards, the supernatant was carefully discarded and 

the bead pellet was suspended in 400 µL PBS. For one staining, 15 µL of beads were incubated 

with 2 µg of EV protein for 15 min at RT. Afterwards, the solution was topped up with PBS to 

a total volume of 1 mL and incubated with 50 x rpm shaking for 60 min at RT. Afterwards, 

beads with or without bound EVs were centrifuged at 300 x g for 10 min, washed once in FACS 

buffer, and then stained with fluorescence labelled human-specific antibodies (Table 19) for 30 

min at 4 °C in the dark.  

 

 

 

CD14
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 cells  Lymphocytes    Single cells 

x = FCS-A     
y = SSC-A 

CD4
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 or 

CD8
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 cells Proliferation 
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x = FCS-A   
y = life/dead 
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CD19
- 

CD56
-
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Living cells 

Cells w/o 
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cells 

A 
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cells 
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MFI/Frequency 

stain protein A (MFI)  ___ 

stain protein B (frequency) ___ 

x = FCS-A     
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Table 19: Fluorescence labelled human specific antibody mixes for EVs from CardAP cells 

 

Several controls were incorporated: i) stained beads without EVs to elucidate unspecific 

antibody binding, ii) unstained EV-bound beads to measure auto-fluorescence, and iii) EV-

bound beads stained with antibody´s appropriate isotype controls to evaluate unspecific 

binding/false positive results. Afterwards, all samples were washed, fixed in 0.5% PFA-

supplemented FACS buffer and stored at 4°C until measurement at the flow cytometer 

(MACSQuant). Acquired flow cytometry data were analysed by gating on single beads and 

extracting the MFI (as shown in Figure 8) with the help of FlowJo Software. The obtained 

MFIs were normalized/related to the respective unstained EV-bound bead control.  

 

 

 

 

 

 

 

Figure 8: Gating strategy for determining protein expression of EVs bound to beads. 
Different surface proteins were detected by flow cytometry on EVs that were previously bound to 
aldehyde/sulphate latex beads and then stained with human specific fluorescence labelled antibodies. The used 
gating strategy is shown. The geometrical mean fluorescence intensity (MFI, histogram on the right) were 
determined from single beads (left). Normalized MFIs were calculated by relating stained towards unstained bead-
bound EV samples. 

An exception from the general staining procedure was the determination of the presence of 

GM130 on EVs. Here, a two-step staining protocol was performed. Bead-bound EVs and 

controls were firstly stained with a polyclonal rabbit GM130 antibody (1:100) for 30 min at 4°C. 

After a washing step with FACS buffer, the samples were blocked with 5 % (v/v) goat serum 

supplemented FACS buffer. Secondly, the samples were labelled with a fluorescence labelled 

anti-rabbit antibody (goat anti-rabbit AF488; 1:100) for another 30 min at 4°C. Afterwards, they 

were washed, fixed, measured and analysed as previously mentioned. Additional controls served 

to determine false positive signals by solely performing the second staining step with samples. 

The general success of the staining for GM130 (Figure 9) was verified by performing the 

previous stated procedure with apoptotic bodies, collected after the 2,000 x g centrifugation 

step of the conducted EV isolation procedure, instead of EV preparations. 

 

Targeting Mix Human specific antibody mix 

Tetraspanins, 

immunological 

and mesenchymal 

proteins 

1 
CD81 PE (1:50), CD9 FITC (1:50), CD90 APC (1:50), PD-L1 

PerCPCy5.5 (1:50) 

2 CD63 PE (1:50), HLA ABC FITC (1:100), CD73 APC (1:50) 

3 CD29 PE (1:100),  PD-L2 APC (1:50), CD105 FITC (1:50) 

4 CD144 PE (1:50), CD54 APC (1:50)  

5 HLA-DR APC (1:50), CD44 PE (1:100), CD106 PE (1:100) 

Single beads                                 MFI 

Bead-bound EVs stained 
Bead-bound EVs unstained 
AB-negative control ….…...... 

x = FSC-A    x = fluorescence  
y = SSC-A         y = % of mode 
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Figure 9: Positive control for GM130 staining protocol. 
During the EV isolation process, a pellet of the apoptotic body fraction (2000 x g centrifugation step) was collected 
and stained for GM130 for analysis by flow cytometry. Here, the apoptotic bodies were bound to latex/sulphate 
beads, stained with the anti-GM130 antibody. Before the secondary antibody anti-rabbit AF488 was applied, a 
blocking step with goat serum containing FACS buffer was performed. Finally, the samples were washed, fixed in 
0.5% PFA-supplemented FACS buffer and measured at MACSQuant. GM130 was detected on apoptotic bodies 
bound to beads when staining was performed with primary and secondary antibody (red line), while no unspecific 
binding was detected for the staining with the secondary antibody alone (blue line) as compared to the unstained 
controls (apoptotic body-bound beads = black line, or beads alone = grey filled area).  

3.2.3.1.3 Intracellular proteins in cells and EVs 

Intracellularly located proteins, such as transcription factors, were investigated by permeablizing 

the cell´s plasma membrane in advance to the respective staining via the Foxp3/Transcription 

Factor Staining Buffer Set according to the manufacture´s manual. It was performed during this 

study for regulatory T cell assays (see section 3.2.1.6) as well as for EV-cell interaction of unlabelled 

EVs with murine cells (see section 3.2.1.4).  

Regulatory T cell assays: Immune cells were harvested by accutase treatment, washed with 

FACS buffer and stained on their surface for 15 min at RT with CD127 APC-Cy7 (1:50). Then, 

cells were additionally stained with CD3 FITC (1:200; when not CFSE labelled immune cells 

were used), CD19 V450 (1:50), CD56 Pacific Blue (1:20), CD11b V450 (1:100), CD8 PE-Cy7 

(1:100), CD25 PerCP-Cy5.5 (1:100), CD14 APC-Cy7 (1:100), CD69 PE (1:50) and live/dead 

marker 510 (1:100) for another 15 min at 4°C. After cells were washed in FACS buffer, 500 µL 

freshly prepared fixation/permeabilzation reagent was applied on the cells for 30 min at 4°C in 

the dark. Freshly prepared premeabilization buffer was used to wash cells and perform an 

intracellular staining with FoxP3 Alexa647 (1:400) for 30 min at 4°C in the dark. After two 

washing steps, the samples were immediately analysed at the flow cytometer (ContoII). The 

obtained data were analysed for the frequency of regulatory T cells according to the gating 

strategy shown in Figure 10 with the help of FlowJo software. Importantly, gates for CD127 

and FoxP3 were set with respect to conducted fluorescence minus one (FMO) controls. 

x = GM130, y = % of max 

GM130 + AF488 

AF488 
unstained 

beads 
alone 
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Figure 10: Gating strategy for determining the frequency of regulatory T cells in stimulated immune cell 
cultures by flow cytometry. 
Stimulated PBMCs or co-cultures of EV-primed CD14+ cells with CD3+ T cells were investigated by flow 
cytometry for the frequency of regulatory T cells. The gating strategy is shown here exemplarily for anti-CD3 
stimulated PBMC cultures. Firstly, all detected events were narrowed down towards a lymphocyte gate. Afterwards, 
cell aggregates and dead cells were avoided by the shown gating for single and living/viable cells. Other cell types 
than CD3+ T cells were excluded (NK cells, B cells or monocytes and macrophages). CD8+ cells and CD8- (and 
therefore respectively CD4+ T cells) were identified. The CD4+ subset was further excluded for expression of 
CD127 via fluorescence minus one (FMO) controls. Then the frequency of CD25++ FoxP3+ cells (= regulatory T 
cells) was determined as shown in the last flow cytometry dot plot. The signal for FoxP3 was gated with the help 
of FMO controls. FCS = forward scatter, SSC = sideward scatter,  -A = area, -H = height.  

EV-cell interaction: Murine cells were harvested by accutase treatment and washed with FACS 

buffer. Importantly, one sample was distributed in at least four different 5 mL FACS tubes 

(stained/unstained sample for either the intra- or extracellular protocol). For the extracellular 

staining, cells were stained with human-specific antibodies for CD73 APC, CD63 PE and CD81 

FITC (all 1:50), and a live/dead marker V510 (1:100) for 30 min and 4°C in the dark. For the 

intracellular staining, cells were firstly stained with the live/dead marker V510 as previously 

described. Secondly, washed cells were permeabilized as described beforehand. Finally, cells 

were stained intracellularly with the same antibodies used for the extracellular stain except the 

live/dead marker V510. Afterwards, stained cells were washed, fixed with 0.5 % PFA containing 

FACS buffer and immediately acquired at the flow cytometer (CantoII). The obtained data were 

analysed for the MFIs of human EV proteins on or within murine cells by gating on single viable 

murine cells with the help of FlowJo software (according to previously shown gating strategy in 

Figure 7 B). The MFIs were normalized to the respective unstained control. Furthermore, EV 

treated cells were stained by both protocols with isotope control antibodies (mouse IgG1, kappa 

APC for CD73 APC, mouse IgG1, kappa PE for CD63 PE, mouse IgG1, kappa FITC for 

CD81 FITC) to exclude false positive signals. 
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3.2.3.2 Immunofluorescence staining assay 

EV-cell interaction assays were not solely determined by flow cytometry but also by microscopy. 

In order to identify cells or specific cell subsets, an immunofluorescence staining was conducted 

by washing adherent cells twice with PBS. Then after, the cells were fixed with 4% PFA for 15 

min at RT. Afterwards, a staining with 4´, 6-diamidino-2-phenylindole (DAPI) was performed 

for 20 min at 4°C to visualize the nucleus of cells and human specific antibodies as stated for 

each individual assay in Table 13. Afterwards, the samples were carefully washed with PBS and 

examined at an AxioObserver microscope or the High Content Screener. 

3.2.3.3 Enzyme-linked immunosorbent assay (ELISA) 

In this study, concentrations of cytokines and other soluble factors were determined by enzyme-

linked immunosorbent assays (ELISAs). The soluble factors are bound by immobilized 

(monoclonal) capture antibodies and by detection antibodies, which are already enzyme-linked 

or can be spotted through enzyme-linked fusion proteins. The activity of enzymes can be 

tracked by a colorimetric approach or luminescence. In this study, commercially available 

ELISA kits were used according to the manufacturer’s protocol for different assays (Table 20).  

In brief, ELISA microplates were coated overnight with the capture antibody (1:200) and 

followed by several washing steps with 0.05% Tween 20 in PBS on the next day. Microplates 

were blocked with the blocking buffer for at least 180 min. Next, samples and freshly prepared 

standards were added to the wells for an overnight incubation at 4°C. On the next day, the plate 

was washed several times and the detection antibody (1:200) was applied for additional 120 min. 

After washing, the avidin-HRP conjugate (1:1000) was added to each well and washed away 

after 60 min by thorough washing. Fresh TMB substrate was added to the wells and incubated 

for 15 to 20 minutes. The reaction was stopped with stop solution and the absorbance was 

measured at 450 nm and 570 nm on a Mithras LB 940 microplate reader. Similar to the BCA 

protein detection assay, a standard curve for each individual cytokine or factor was used to 

calculate the concentrations in the collected conditioned medium, respectively. 

Table 20: Summary of used ELISAs during this study   

 

3.2.3.4 Multiplex bead-based soluble factor determination assay 

The principle of ELISAs was transferred towards a flow cytometry approach in so called 

multiplex bead-based assays. Here, capture and detection antibodies are labelled with 

fluorescence dyes, while capture antibodies are additionally coupled to beads (partially with 

different sizes). In this study, LEGENDplex™ bead-based assays were purchased from 

BioLegend, and partially customized for the purpose to investigate TNFα, IL-1β, IL-17a, and 

IL-10 concentrations in supernatants from diverse T cell proliferation assays. Supernatants from 

CD14+ cells incubated for 24 h with EVs from CardAP cells were subjected to a different set 

Conditioned medium samples from ELISAs Notes  

T cell proliferation assay 
Human IFNγ Samples were diluted 1:2 or 1:4 

Active human TGFβ Samples were used undiluted  

Pro-angiogenic factor release assay 

Human IL-6 Samples were diluted 1:5, 1:10 and 1:20 

Human IL-8 Samples were diluted 1:5, 1:10 and 1:20 

Human VEGF Samples were diluted 1:5 and 1:10 
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of cytokines and chemokines, namely IL12p70, TNFα, IL-4, MCP1, IL-10, IL1-ß, IL-8, TARC, 

IL-1RA, IL-6, IL-23, IFNγ, and IP-10. Samples as well as standards are proceeded according to 

the manufacturer’s protocol, and finally measured at a flow cytometer (CantoII). The analysis 

was conducted according to supplier´s protocol with the help of the provided software 

(LEGENDplex™ version 7.1). 

3.2.3.5 Magnetic activated cell sorting  

Magnetic bead-coupled antibodies allow the separation of desired subsets from a heterogenic 

population. This magnetic activated cell sorting (MACS) was used during this study to derive 

relatively pure population of CD14+ or CD3+ cells. Therefore, freshly isolated PBMCs were 

incubated with human specific CD3 or CD14 microbeads in MACS buffer for 15 min at 4°C 

(buffy coats: 1 mL MACS buffer + 250 µL microbeads). Then, the cells were washed and loaded 

on magnetically active LS Columns, which enabled a collection of negative and positive 

fractions. After several washing steps, the cells were counted and either used for T cell 

proliferation assays, cryopreserved, or stained for flow cytometry to determine the achieved 

purity. Indeed, purities for CD3+ cell isolation were obtained ≥ 97.5 % and for CD14+ ≥ 96.4 %. 

3.2.4 Statistical Analysis 

In this study, non-parametric data are shown as median with data range and parametric data are 

shown as mean with data range. Statistical analysis was performed using GraphPad Prism 6.0 

software. A parametric distribution of data was tested with Shapiro-Wilk normality tests for 

considering appropriate statistical analysis. It was further differentiated for either two or more 

than two groups with one variable. The performed statistical analysis are shown in Table 21. 

Results were considered significant with * p < 0.05, ** p < 0.01, *** p < 0.001.  

Table 21: Statistical analysis performed during this study 

 

Number of 

groups 

Paired or 

unpaired  
Distribution of data Analysis with following statistical test 

More than two 

Paired 

Non-parametric 
Friedma´s test with Dunn´s multiple comparison 

post hoc test 

Parametric 
Repeated measures ANOVA with Bonferroni´s post 

hoc test 

Unpaired Non-parametric 
Kruskal-Wallis test with  Dunn´s multiple 

comparison post hoc test 

Two 

 

Paired 

 

Non-parametric Wilcoxon matched-signed rank test 

Parametric  Paired T Test 

Unpaired 

 

Non-parametric Mann-Whitney test 

Parametric Unpaired T Test 
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4. Results 
Previous data from our and collaborating research groups emphasized the suitability of human 

CardAP cells as regenerative therapeutic tool to treat CVDs. For other regenerative cell types, 

such as MSCs, it was recently demonstrated that their released EVs play a major role for their 

therapeutic potential. It can be speculated that CardAP cells release EVs with beneficial 

therapeutic effects, which would enable a cell-free therapeutic approach. In order to answer this 

question, EVs were isolated from the conditioned medium of CardAP cells that were cultured 

for 20 h in serum free medium with or without a pro-inflammatory cytokine cocktail of IFNγ, 

TNFα as well as IL-1β (each 10 ng/mL). Both culture conditions were chosen, because a pro-

inflammatory milieu was present when CardAP cells exhibited its anti-apoptotic, immune 

modulating as well as cardio protective feature [13,60,65] but not when CardAP cells 

demonstrated their pro-angiogenic effect [64]. Furthermore, serum free medium was chosen to 

avoid contamination of EVs originating from the serum source. 

4.1 The influence of both EV biogenesis conditions on CardAP cells 

It was not yet known how CardAP cells respond towards the two applied EV biogenesisis 

conditions. For that reason, unstimulated and cytokine stimulated CardAP cells were 

characterized in more detail for their apoptotic behaviour, morphology, and expression of 

surface proteins. 

4.1.1 Both EV biogenesis conditions maintain the spindle-shaped 
morphology, while cytokine stimulation induces a mild apoptosis 
of CardAP cells 

Starvation and cytokines, like TNFα, can initiate a cell to undergo the programmed cell death. 

It was of interest whether apoptosis of CardAP cells is initiated upon such culture conditions 

applied to derive the further investigated EVs. In total, four different culture conditions were 

investigated: IDH medium with human serum (cIDH), centrifuged human serum (cenIDH), 

serum free isolation IDH medium with or without a pro-inflammatory cytokine cocktail 

(isoIDH ± cyt). The later two were used to derive conditioned medium for the EV isolation 

procedure, while both serum supplemented media were used for the thawing and expansion of 

CardAP cells. The frequencies of neither non-apoptotic (7AAD- AnnexinV-FITC-; Figure 11A) 

nor early apoptotic (7AAD- AnnexinV-FITC+-; Figure 11B) CardAP cells were significantly 

influenced upon either EV biogeneisis condition in comparison to both expansion media. 

However, cytokine stimulated CardAP cells displayed a trend of a reduced non-apoptotic cell 

population in comparison to the other three culture conditions, such as cenIDH cultured 

CardAP cells (median frequency of non-apoptotic cells: isoIDH + cyt = 79.30 %; cenIDH = 

86.00 %; Figure 11A). In fact, cytokine stimulation caused a significant increase in the frequency 

of late apoptotic (7AAD+ AnnexinV-FITC+; Figure 11C) cells in comparison to cenIDH 

cultured CardAP cells but not to cIDH nor isoIDH cultured CardAP cells (median frequency 

of late apoptotic cells (range): isoIDH + cyt = 5.22 (1.71 - 9.64) %; cenIDH = 1.70 (1.28 - 3.97) 

%; cIDH = 2.38 (1.62 - 4.14) %; isoIDH = 4.84 (2.28 – 5.40) %). Although apoptosis was mildly 

induced, the spindle-shaped morphology of CardAP cells was never affected by either of the 

conditions as determined by microscopy (Figure 11D).  
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Figure 11: CardAP cells preserved their morphology, while apoptosis was solely mildly induced in the 
presence but not in the absence of cytokine stimulation during the EV biogenesis. 
CardAP cells were cultured in 6-well plates (1x106 cells/well) with centrifuged serum IDH (cenIDH) medium. 
After 24 h, CardAP cells were washed twice with PBS and then cultured either in complete (cIDH), cenIDH, or 
serum free isolation IDH medium with or without cytokines (isoIDH ± cyt). After 20 h, the morphology of 
CardAP cells was analysed by light microscopy (AxioObserver). Afterwards, cells and cell debris were harvested, 
stained with AnnexinV-FITC and 7AAD for 15 min and immediately measured at a flow cytometer (Canto II) to 
determine the level of apoptosis by flow cytometry. (A-C): The individual frequencies of 7AAD-AnnexinV-FITC+ 
cells (A), 7AAD+AnnexinV-FITC+ cells (B) or 7AAD- AnnexinV-FITC- cells (C) are shown as median with data 
range for all four conditions (n = 5, four different CardAP donors). (D): Representative brightfield images are 
shown with 100 µm scale bars (n = 4; four different CardAP donors).Statistical analysis was performed by 
Friedman´s test with Dunn´s multiple comparison post hoc test; (*p < .05). Mild apoptosis of CardAP cells is solely 
induced by the EV biogenesis condition that was supplemented with cytokines (isoIDH +cyt), while the 
morphology appeared unaffected by the different applied biogenesis conditions. 

cIDH 

isoIDH 

cenIDH 

isoIDH + cyt 

D 
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4.1.2 The expression of surface proteins on CardAP cells differs 
between both EV biogenesis conditions  

Cytokine stimulated and unstimulated CardAP cells were further characterized for a set of 

surface proteins by flow cytometry after their exposure to both EV biogenesis conditionds. A 

responsiveness of CardAP cells towards the pro-inflammatory trigger was verified by the 

expression of IFNγ-receptor type I (IFNγ-RI), TNF-receptor type II (TNF-RII), and by a lower 

expression level for IL-1 receptor type I (IL-1-RI; Figure 12A). From these three receptor 

subunits solely TNF-RII showed a clear elevated trend in its expression under cytokine 

stimulation (median normalized MFI unstimulated versus (vs.) cytokine stimulated: TNF-RII: = 

3.01 vs. 5.52; IFNγ-RI = 7.93 vs. 8.51; IL-1-RI = 1.40 vs. 1.44; Figure 12B). In contrast, the 

expression of several immunological relevant surface proteins was significantly enhanced 

(Figure 12C), such as vascular cell adhesion protein-1 (CD106), programmed death ligand 1 

and 2 (PD-L1/2), or the intercellular adhesion molecule-1 (CD54;; median normalized MFI 

unstimulated vs. cytokine stimulated: CD106= 1.13 vs. 6.57; PD-L1 = 6.50 vs. 14.93; PD-L2 = 

5.67 vs. 22.21 ; CD54 = 31.07 vs. 72.69). HLA-ABC solely showed an increased trend in its 

expression (median normalized MFI unstimulated vs. cytokine stimulated = 15.07 vs. 20.80). 

Moreover, CardAP cells from both conditions displayed an absence or very low expression for 

HLA-DR as well as for the co-stimulatory molecules CD80 and CD86 (highest normalized MFI: 

HLA-DR = 1.40; CD80 = 1.71; CD86 = 1.17). Typical mesenchymal surface proteins, such as 

ecto-5’-nucleotidase (CD73), integrin ß1 (CD29), and an adhesion molecule CD44 were 

detected on the surface of CardAP cells (Figure 12D). Upon cytokine stimulation the 

expression was just by trend increased for CD44 or decreased for CD73, whereas CD29 

exhibited comparable expression levels under both EV biogenesis conditions (median 

normalized MFI unstimulated vs. cytokine stimulated: CD44 = 56.15 vs. 98.23; CD73 = 262.90 

vs. 166.30; CD29 = 192.2 vs. 198.6). In contrast to other mesenchymal cells, CardAP cells 

exhibited very low CD90 expression independent of the culture condition (highest normalized 

MFI = 7.58; Figure 12D), which is also reflected by low CD90+ cell frequencies of maximal 

26.4 % (Table 12). Within the analysed set of molecules of the tetraspanin family, solely CD9 

was significantly lower expressed on cytokine stimulated CardAP cells in comparison to their 

unstimulated counterpart (median normalized MFI unstimulated vs. cytokine stimulated = 24.60 

vs. 10.70; Figure 12D). Two other tetraspanins, namely CD63 and CD81, showed solely a 

comparable trend for reduced expression upon cytokine stimulation (median normalized MFI 

unstimulated vs. cytokine stimulated: CD63 = 73.29 vs. 34.95; CD81 = 50.26 vs. 32.53; Figure 

12D).  



Chapter IV                                                                                                                       RESULTS 

 

 

41 

 

0 2 4 6 8 10 50 100 200 400 600 800

CD9

CD81

CD63

CD29

CD73

**

CD44

CD90

Normalized MFI

0 2 4 10 20 30 40 200 400

CD80

CD86

HLA-DR

HLA-ABC

PD-L1

PD-L2

CD106

CD54 *

*

**

***

Normalized MFI

C D

cytokine stimulated

unstimulated,

, cytokine stimulated

unstimulated,

,

A

Fluorescence

IFN-RI TNF-RII IL1-RI

%
 o

f 
M

a
x

unstained

specifically stained

B

....
cytokine stimulated

unstimulated,

,

0

1

2

3
4

8

12

16

20

IFN-RI TNF-RII IL-1-RI

N
o

rm
a
li
ze

d
 M

F
I

 
Figure 12: The expression of several surface proteins differed between unstimulated and cytokine 
stimulated CardAP cells after applying both EV biogenesis conditions. 
Cultured CardAP cells were exposed for 20 h to isoIDH medium with cytokines (cytokine stimulated) or without 
cytokines (unstimulated). EVs were isolated from the conditioned medium, while CardAP cells were harvested by 
accutase treatment and analysed by flow cytometry. Therefore, 2x104 harvested CardAP cells were stained with 
human specific fluorescence labelled antibodies. After a washing step, cells were fixed with 0.5% PFA and 
measured at a flow cytometer (CantoII). Detected geometrical mean fluorescence intensities (MFI) of surface 
proteins were normalized to the unstained control by calculating the ratio between stained and unstained sample. 
The normalized MFI for the unstained control (MFI = 1) is indicated as dotted line in the graph. (A): 
Representative histograms are shown for stained and unstained CardAP cells cultured under unstimulated 
condition for the cytokine receptor subunits IFNy-RI, TNF-RII and IL-1-RI. (B-D): Individual normalized MFIs 
are shown as median with data range for the cytokine receptor subunits (n = 6 - 10; four different CardAP donors; 
(B)), for the immunological relevant proteins CD106, PD-L1/2, CD54, HLA-ABC/DR, CD86, and CD80 (n = 6 
- 10, four different CardAP donors; (C)), for the mesenchymal proteins CD90, CD44, CD73, and CD29, as well 
as proteins of the tetraspanin family, namely CD63, CD81, and CD9 (n = 6 - 10; four different CardAP donors; 
(D)). Statistical analysis was performed with Mann-Whitney U test (*p<.05; **p<.01; ***p<.005). CardAP cells 
replied upon cytokine stimulation by enhancing or inducing the expression of immunological relevant proteins, 
whereas mesenchymal proteins exhibited equal expression levels. 
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4.2 The Phenotype of EVs 

4.2.1 Cytokine stimulation causes the release of smaller but not more 
EVs from CardAP cells 

Isolated EVs from both EV biogenesis conditions were examined for their diameter (d) by TEM 

and NTA to obtain information whether they belong to the exosome (d < 100 nm), microvesicle 

(d = 100 - 1000 nm) or apoptotic body (d > 1000 nm) compartment. Morphological analysis by 

TEM revealed sphere-like shapes of dehydrated unstimulated as well as cytokine stimulated 

EVs, while no structures nor shapes were detectable in corresponding PBS controls (Figure 

13A). The diameters of EVs were assessed for both EV biogenesis conditions from three 

different CardAP donors for a quantitative analysis. Here, an asymmetrical distribution of EV 

diameters demonstrated that most unstimulated EVs (77.9 %) as well as cytokine stimulated 

EVs (90.9 %) are smaller than 100 nm (Figure 13B). Strikingly, unstimulated EVs presented 

significantly larger diameters overall in comparison to their cytokine stimulated counterpart 

(median diameter (range): EVs = 64.4 (6.3 - 875.8) nm; EVs(cyt) = 39.5 (6.2 - 853.2) nm; Figure 

13C). This difference between both conditions was able to be verified by NTA for different EV 

sample preparations. Unstimulated EVs peaked at an larger particle diameter than cytokine 

stimulated EVs, although the correlation between diameter and amount of particles contrasted 

previous TEM results by displaying a normal distribution with less than one third of 

unstimulated EVs (28.9 %) or cytokine stimulated EVs (31.4 %) smaller than 100 nm in their 

particle diameters (Figure 13D). Nevertheless, unstimulated EVs were significantly larger than 

cytokine stimulated EVs in the measurements of their mean particle diameter (mean particle 

diameter (± SD): EVs = 125.2 (± 12.2) nm, EVs(cyt) = 118.8 (± 10.5) nm; Figure 13E).  
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Figure 13: Smaller EVs are released by CardAP cells under cytokine stimulation, while dehydrated EVs 
of both EV biogenesis condition displayed sphere-like shapes in TEM. 
Unstimulated (EVs) and cytokine stimulated (EVs(cyt)) EVs were fixed on cupper formavor grids, stained positive-
negatively and analysed by TEM at the Zeiss Leo electron microscope. (A): Representative images are shown for 
EVs (left), EVs(cyt) (middle) and PBS (right) as an overview and enlarged region of interest (white square) with scale 
bars of 100 nm. (B-C): The diameters of EVs determined by ImageSPViewer Software from at least 18 individual 
images per sample are shown for its distribution (B) as histograms for EVs (light blue) and EVs(cyt) (dark blue) or 
as individual data points (C) summarized as median with data range (n = 7770, three different Card-AP donors). 
Additionally, the diameter of particles was measured by NTA. Here, EV samples were diluted 1000-fold and 
analysed on up to 12 different camera levels at the ZetaView. (D-E): The mean of diameter of particles is plotted 
as histograms (D) in correlation to the number (#) of particles for EVs (light blue) and EVs(cyt) (dark blue; n = 8, 
four different CardAP donors). From each camera level a mean particle diameter was recorded after each 
measurement. These individual results (E) are summarized for both EV types as mean with data range (n = 100; 
four different CardAP donors). The statistical analysis was performed for parametric data by unpaired T test, or 
for non-parametric by Mann Whitney U Test (***p < 0.001). TEM and NTA results emphasize the higher 
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proportion of smaller diameters of vesicles in cytokine stimulated EV preparations than in comparison to the 
unstimulated counterpart. 

NTA not only allowed to characterize EV preparations for their particle diameters but also for 

their particle concentration. Since the number of CardAP cells varied after each isolation 

procedure, the examined concentrations were correlated to 1x106 CardAP cells. This was also 

conducted for an additional mean of concentration by accessing the protein content of EV 

preparations with the help of BCA protein assays. Neither the EV protein amount (Figure 14A) 

nor the particle concentration (Figure 14B) released by 1x106 CardAP cells was statistically 

different between unstimulated and cytokine stimulated EV preparations (median protein 

amount: EVs = 2.16 µg; EVs(cyt) = 2.16 µg; median particle concentration: EVs = 8,875 

particles*cm-3; EVs(cyt) = 6,953 particles*cm-3). 

Figure 14: The amount of released EVs was comparable between both biogenesis conditions. 
Unstimulated (EVs) and cytokine stimulated EVs (EVs(cyt)) were investigated for their protein content by BCA 
assay as well as for their particle concentration by NTA. (A): The individual EV protein amounts that were released 
from 1x106 CardAP cells under either of both conditions are shown as median with data range (n = 10-21, six 
different CardAP donors). (B): Individual particle concentrations released by 1x106 CardAP cells under either of 
both conditions are presented as median with data range (n = 6, four different CardAP donors). Statistical analysis 
was performed with Mann-Whitney U test. Neither of both EV biogenesis condition influenced the amount of 
released EVs. 

4.2.2 The majority of transported proteins are identical between 
unstimulated and cytokine stimulated EVs 

CardAP cells were already shown to alter their protein expression upon cytokine stimulation. In 

order to elucidate if similar changes occur on their released EVs, this set of surface proteins was 

analysed on EVs bound to latex/sulphate beads by flow cytometry. Likewise to their originating 

cell, surface proteins, such as CD73, CD29, CD44, and all three tetraspanins, but not HLA-DR 

were possible to detect on EVs released from CardAP cells (Figure 16). Although all the above 

mentioned proteins were not significantly altered between both EV biogenesis conditions, a 

reduced trend for their protein levels were recognizable for CD9, CD81, CD29, and CD73 on 

cytokine stimulated EVs in comparison to unstimulated EVs (median normalized MFI EVs vs. 

EVs(cyt): CD9 = 6.13 vs. 4.32; CD81= 6.20 vs. 2.86; CD29 = 75.1 vs. 44.9; CD73 = 7.86 vs. 4.82). 

Notably, CD63 showed not only one of the highest determined normilized MFIs but also no 

difference between both applied conditions (median normalized MFI EVs vs. EVs(cyt) = 64.5 vs. 

61.8). In contrast to their originating cells, other immunological proteins, namely HLA-ABC, 
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CD106, and PD-L1, were not or only at very low levels detectable on EVs and did not show 

any difference between both EV biogenesis conditions (Figure 15). A significant change was 

solely observed for CD54, which was significantly decreased on unstimulated EVs in 

comparison to cytokine stimulated EVs (median normalized MFI EVs vs. EVs(cyt) = 1.21 vs. 

3.53). Three additional surface proteins were included for a more thorough analysis of isolated 

EV preparations. A potential contamination with cell organelles was investigated by staining for 

a Golgi matrix protein, namely golgin subfamily A member 2 (GM130). In fact, GM130 was 

not detectable on neither unstimulated nor cytokine stimulated EVs (Figure 15) but on 

apoptotic body preparations, which served as positive control (Figure 9). Furthermore, two 

proteins with potential beneficial therapeutic effects, namely galectin 1 (Gal-1) and CXC-motive 

chemokine receptor 4 (CXCR4, CD184), were observed at comparable levels on unstimulated 

and cytokine stimulated EVs from CardAP cells (median normalized MFI EVs vs. EVs(cyt): 

CD184 = 3.12 vs. 2.22; Gal-1 = 1.81 vs. 1.62; Figure 15).  
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Figure 15: Solely CD54 was significantly increased on cytokine stimulated EVs in comparison to 
unstimulated EVs from a total of 15 investigated surface proteins. 
Unstimulated (EVs) and cytokine stimulated EVs (EVs(cyt)) were analysed by flow cytometry for a set of surface 
proteins. EVs were bound to aldehyde/sulphate beads, stained with human specific fluorescence labelled 
antibodies and then measured at a flow cytometer (MACSQuant). Normalized geometrical mean fluorescence 
intensities (normalized MFI) for each fluorochrome/surface protein were calculated as ratio of stained to the 
corresponding unstained bead-bound EV sample. The dotted line (y = 1) indicates the normalized MFI of the 
unstained control itself. The results are presented for individual data points summarized as median with data range 
for proteins of the tetraspanin family (CD9, CD63, and CD81), immunological relevant proteins (CD54, PD-L1, 
CD106, Gal-1, CD184, HLA-ABC, and HLA-DR), mesenchymal proteins (CD29, CD73, CD44, and CD90), and 
the Golgi matrix protein GM-130 (n = 3 - 21; three up till six different CardAP donors). Statistical significance was 
tested by Mann Whitney U-test (*p < 0.05). Typical EV-associated proteins were detected on both unstimulated 
and cytokine stimulated EVs, while just CD54 was determined at significant higher levels on cytokine stimulated 
EVs. 

A liquid chromatograph/electron spray ionisation mass spectrometry (LC/ESI-MS) approach 

for unstimulated and cytokine stimulated EVs from three different CardAP donors revealed a 
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broader overview of the transported proteins. The majority of proteins (164 out of total 

identified 186 proteins) were identical for both EV biogenesis condition, while only 15 or seven 

proteins were exclusive for unstimulated or cytokine stimulated EVs, respectively (Figure 16A). 

35 proteins were selected for a comparative illustration via their determined exponentially 

modified protein abundance index (emPAI). Indeed, some proteins, such as CD73 or integrins, 

were omnipresent despite donor variabilities and some proteins were exclusive for each EV 

biogenesis condition (Figure 16B). TNFα inducible protein 3 was for example only detectable 

in cytokine stimulated EVs, while tyrosine-protein kinase Yes was observed exclusively in 

unstimulated EV preparations. All identified proteins were further explored via a String network 

database analysis, which not only allowed one to visualize the interaction between each protein 

as grey connecting lines but also allowed suggestions about the localization and involvement in 

biological processes of each protein (Figure 17; all listed in Appendix Table 1). As anticipated, 

the majority of proteins (156 out of 186 proteins) could be assigned to the extracellular exosome 

compartment, of which some were connected to therapeutic beneficial effects, such as 

angiogenesis (e.g. heparan sulphate proteoglycan 2, neuropillin), wound healing (e.g. endoglin, 

annexin-5), or the regulation of immune system processes (e.g. annexin-1 or Gal-1; Figure 17).  
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Figure 16: Most transported proteins were shared by 
both EV biogenesis conditions. 
Unstimulated EVs (EVs) and cytokine stimulated EVs 
(EVs(cyt)) from three different CardAP donors were 
prepared for liquid chromatograph/electron spray 
ionisation mass spectrometry (LC/ESI-MS). EVs were 
loaded on amicon filters and digested by trypsin in an 
overnight step. The derived peptides were then analysed 
by LC/ESI-MS. The obtained mass spectra were 
evaluated by MASCOT software searching for protein 
matches in the SwissProt 51.9 database. A protein was 
considered to be present in unstimulated (EVs) or 
cytokine stimulated EVs (EVs(cyt)), when at least two of 
three CardAP donors exhibited a signal. (A): All 
identified proteins (n = 187) are illustrated in a Venn 
diagram to display shared as well as exclusively identified 
proteins in EVs and EVs(cyt). (B): The obtained 
exponentially modified protein abundance index (emPai) 
values of 35 selected proteins are shown as heatmap for 
the individual three CardAP donors (D1, D2, and D3). 
Undetected proteins correspond to an emPAI value of 0 
(black).. ANAXA1/2/5/6 = annexin I/II/V/VI; G3P = 
glyceraldehyde-3-phosphate dehydro-genase; RALA = 
Ras-related protein Ral-A; 5NTD = CD73; AMPN = 
aminopeptidase N; ITAV = integrin α-V; ITB1 = integrin 
β-1; HSP7C = heat shock cognate 71 kDA protein; 
GNAI3 = guanine nucleotide-binding protein G(i) 
subunit α; PGBM = basement membrane-specific 
heparin sulfate proteoglycan core protein; PPIA = 
peptidyl-prolyl cis-trans isomerase A; MVP = major vault 
protein; SDCB1  = syntenin-1; LEG1 = galectin-1; 
LG3BP = galectin-3-binding protein; MOES = moesin; 
NRP1 = neuropilim-1a; PRDX5 = peroxiredoxin-5; 
PXDN = peroxidasin homolog; EGLN = endoglin; 
RAB13 = Ras-related protein Rab-13; SYWC = 
tryptophan-tRNA ligase; DPP4 = Dipeptidyl peptidase 4; 
TNAP3 = TNFα induced protein 3; TNFA = TNFα; 
NIBL1 = niban-like protein 1; LOXL2 = lysyl oxidase 
homolog 2; 1433G = 14-3-3 protein γ; YES = tyrosine-
protein kinase Yes; RAB34 = ras-related protein Rab-34; 
TCPB = T-complex protein 1 subunit β. In general, most 
identified proteins are identical between unstimulated 
and cytokine stimulated EVs 
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Figure 17: By LC/ESI-MS identified proteins of EVs can be mainly assigned to the extracellular exosome 
compartment with diverse predicted biological function. 
Unstimulated and cytokine stimulated EVs from three different CardAP donors were analysed by LC/ESI-MS. 
The interaction of all identified proteins (186) was visualized with the help of String network database analysis, 
where proteins are shown as nodes and known protein interactions are shown as grey connecting lines. The colour 
of the node represents biological processes or the localisation as following: extracellular exosome = red, positive 
regulation of cellular process = green, angiogenesis = yellow, wound healing = blue, regulation of immune system 
process = magenta. Isolated EVs of CardAP cells transport proteins belonging to extracellular exosome 
compartment and possibly mediate desired biological functions for treating CVDs. 

 

4.2.3 More miRNAs are transported by cytokine stimulated EVs 

An overview of transported miRNAs by unstimulated and cytokine stimulated EVs was 

achieved by nCounter® Human miRNA expression assay. In total 205 human miRNAs were 

identified in EVs (all listed in Appendix Table 2) from an assay that allows the detection of 

nearly 800 human miRNAs. Interestingly, cytokine stimulated EVs showed more miRNAs (n 

= 89) than unstimulated EVs (n = 14) that were exclusive to the respective EV biogenesis 

condition (Figure 18A). The comparative illustration of 40 selected miRNAs for their obtained 

copy number revealed that several miRNAs, such as miRNA 125b-5p or miRNA 146a-5p, were 

omnipresent in unstimulated as well as cytokine stimulated EVs at comparable high copy 

numbers despite of donor variabilities. Other miRNAs were solely observed in unstimulated 

EVs, such as miRNA 148b-3p, or observed at higher expression levels than in cytokine 

stimulated EVs, such as miRNA 302d-3p. Vice versa, miRNA 494-3p was solely determined in 

cytokine stimulated EVs. Seven selected miRNAs were validated by real-time qPCR (Figure 

18C). In accordance to previous results of the nCounter miRNA expression assay, the miRNA 

302d-3p could also be shown by qPCR to be significantly enhanced in unstimulated EVs related 

to the cytokine stimulated counterpart (median relative expression of EVs to EVs(cyt) (range) = 

2.48 (1.12 – 5.59)). Although miRNA 494-3p was detectable in unstimulated EVs by qPCR but 

not by nCounter® miRNA expression assay, cytokine stimulated EVs exhibited a significantly 

enhanced relative expression level for this particular miRNA (median relative expression of EVs 
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to EVs(cyt) (range) = 0.61 (0.14 – 1.04)). Other miRNAs were determined at similar levels in 

unstimulated and cytokine stimulated EVs, including miRNA 186-5p, 146-5p, and 132-3p 

(median relative expression of EVs to EVs(cyt): miRNA 186-5p = 1.19; miRNA 146-5p = 1.06; 

miRNA 132-3p = 0.85). 

Figure 18: Cytokine stimulation increased the repertoire of miRNAs transported by EVs, while the 
expression of individual miRNAs, like miRNA 302d-3p, varied significantely between both EV biogenesis 
conditions. 
Unstimulated EVs (EVs) and cytokine stimulated EVs (EVs(cyt)) were analysed for their miRNA content by 
nCounter® Human miRNA expression assay according to the manual. The obtained data of miRNA copies was 
analysed with the help of nSolver software (version 4.0, NanoString Technologies) by firstly normalizing it to the 
top 100 most abundant miRNAs in all samples as well as the positive controls, followed by a background correction 
via subtracting the mean plus two standard derivations of the negative control from each sample. Finally, a miRNA 
was considered to be present in either EV biogenesis condition, when at least two from three CardAP donors 
exhibited more than 10 copies.  (A): All identified miRNAs (n = 205) are illustrated in a Venn diagram to display 
shared and exclusively identified miRNAs in EVs and EVs(cyt). (B): 40 selected miRNAs are displayed for their 
expression (as log2 data) as heatmap for the individual three CardAP donors (D1, D2, and D3), including 
undetected miRNAs (un, black). (C): Additionally, seven miRNAs were validated by qPCR. By NormFinder 
analysis two miRNAs, miRNA26b-5p and miRNA199a-3p, were identified to be most suitable for normalization. 
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The relative expression of miRNAs, as determined by ΔΔCt analysis for unstimulated EVs in correlation to EVs(cyt) 

(black dotted line), is shown as median with interquartile range (n = 8–9, three different CardAP donors). Statistical 
analysis was performed with a Wilcoxon signed rank test (** p < 0.01, * p< 0.05). More individual miRNAs were 
identified in cytokine stimulated EV preparations, whereas the expression level of individual miRNAs could differ 
between both EV biogenesis conditions. 

By a comparative analysis with FUNRICH software, differences in potential biological pathways 

were revealed between the miRNA sets of cytokine stimulated versus unstimulated EVs. Indeed, 

cytokine stimulated EVs were highly enriched in biological pathways of signal regulatory protein 

(SIRP) family interactions and tumour necrosis factor related apoptosis inducing ligand 

(TRAIL) signalling, whereas being depleted in diverse other biological pathways to unstimulated 

EVs, such as cytosolic sulfonation of small molecules, AKT-mediated inactivation of forkhead 

box protein O1 (FOXO1A), cyclic AMP-reponsive element binding protein (CREB) 

phosphorylation or epidermal growth factor receptor (EGFR) interaction with phospholipase 

C-γ (PLC-γ; Figure 19A). Furthermore, FUNRICH analysis allowed to identify genes that could 

be potentially affected by the determined miRNAs of either unstimulated or cytokine stimulated 

EVs. Both sets of genes could be assigned to different entities in processes and pathways of the 

immune system, including the adaptive and innate immune system as well as the cytokine 

signalling in the immune system, but also of the ECM organization and apoptosis by performing 

an overrepresentation analysis with the reactome.org platform (Figure 19B). Interestingly, more 

than 40% of total registered entities were influenced in the processes of apoptosis and ECM 

organization. Additionally, comparable levels of overrepresentation in the individual processes 

were observed for both unstimulated and cytokine stimulated EVs. 

 



Chapter IV                                                                                                                       RESULTS 

 

 

51 

 

Figure 19: Identified miRNAs of both EVs from CardAP cells seem to influence important  processes for 
regeneration.  
Unstimulated (EVs) and cytokine stimulated EVs (EVs(cyt)) from three different CardAP donors were ana-lysed for 
its transported miRNA content by nCounter® Human miRNA ex-pression assay according to the manual. These 
identified miRNAs were then analysed for their plausible impli-cation in biological processes. (A): The miRNA 
repertoire of EVs(cyt) was analysed versus the repertoire of EVs by FUNRICH analysis for their impact on specific 
biological pathways. The fold change is presented for the most affected pathways to show enriched processes for 
EVs (light blue) or EVs(cyt) (dark blue). (B): Target genes of both miRNA sets were identified by FUNRICH 
analysis and further used for an overrepresentation analy-sis via the reactome.org plat-form. Here, entities in 
different pathways were identified that could be influenced by EVs (light blue) or by EVs(cyt) (dark blue) in 
comparison to all registered entities (grey). Both unstimulated and cytokine stimulated EVs from CardAP cells 
seem to influence therapeutic relevant pathways in recipient cells via their transported miRNAs. 
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4.3 EV-cell interaction 

The capability of an EV to interact with a recipient cell marks an essential step for its paracrine 

action. As the focus of this study lay on the evaluation of a therapeutic approach for CVDs, 

well-characterized murine cardiac cell lines, representing cardiac endothelial cells (MHEC5-T 

cells) or cardiomyocytes (HL-1 cells), were used to investigate the interaction with fluorescence 

labelled or unlabelled EVs.   

4.3.1 Fluorescence labelled EVs get in contact with different murine 
cardiac cell types 

For the conduction of a time series analysis of EV-cell interaction, DiD labelled EVs (DiD+ 

EVs) were applied to cultured murine cells for various time points and subsequently analysed 

by flow cytometry. In fact, the frequency of DiD+ HL-1 cells as well as DiD+ MHEC5-T cells 

constantly increased in the course of time (Figure 20A). After one day, nearly all HL-1 cells as 

well as MHEC5-T cells displayed a DiD+ signal (median frequency (range): DiD+ HL-1 cells = 

93.5 (73.7 - 95.6) %; DiD+ MHEC5-T cells = 93.7 (90.4 - 97.7) %; Figure 20B). Additionally, 

cells were treated with a DiD negative control, which was derived by labelling differential 

centrifuged unconditioned medium with DiD in the same manner as EVs. No or very low levels 

of DiD (highest determined frequency of DiD+ cells = 0.024 %) were recorded for the DiD 

negative control at the different time points (Figure 20B). 

Figure 20: EVs 
interacted equally with 
murine cardiomyocytes 
and cardiac endothelial 
cells.  
DiD labelled EVs (DiD+ 

EVs) as well as DiD nega-
tive con-trols (DiD neg. 
ctrl.) were applied to cul-
tured HL-1 or MHEC5-T 
cells in 48-well plates (2 × 
105 cells/well). At dif-
ferent time points (0, 2, 7, 
19, and 24 h) cells were 
washed, harvested by ac-
cutase treatment, labelled 
with a dead/viable mar-
ker, and analysed by flow 
cytometry at the Canto II. 
(A): Representative dot 
plots are shown for HL-1 
cells (upper raw) and 
MHEC5-T cells (lower 
raw) treated either with 
DiD+ EVs or DiD neg. 
ctrl. for different time 
points. (B): The frequen-
cy of DiD+ HL-1 cells 
(right, n = 4, four different 

CardAP donors) and DiD+ MHEC5-T cells (left, n = 6, three different CardAP donors) is shown in relation to the 
time (h) as median with interquartile range for treatment with either DiD+ EVs (blue) or DiD neg. ctl. (black). 
Murine cardiac cells were shown to accumulate the signal of fluorescence labelled EVs after one day. 
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For an equivalent approach by fluorescence microscopy, lipids of EVs were labelled with 

PKH26 instead of DiD to optimize sensitivity towards EV detection. Likewise to flow 

cytometry, an increase of PKH26+ EVs but not for the fluorescence negative control (PKH26 

neg. ctrl.) was detectable over the time period of one day (Figure 21). Interestingly, some HL-1 

cells showed an accumulation of separate single PKH26+ signals for EVs in the proximity of 

their nucleus at the end point, while other cells displayed no signal (ROI in Figure 21).  

 

Figure 21: EVs seemed to 
accumulate in some murine 
cardiomyocytes after one 
day.  
HL-1 cells were labelled with 
DiD and seeded in 48-well 
plates (2 × 105 cells/well). 
After 24 h, DiD+ HL-1 cells 
were treated with PKH26 
labelled EVs (PKH26+ EVs) 
and PKH26 negative controls 
(PKH26 neg. ctrl.). At differ-
rent time points (2, 7, and 24 h) 
cells were washed with PBS, 
fixed with 4% PFA and stained 
with DAPI. The EV-cell inter-
action was analysed by fluores-
cence microscopy. Represen-
tative images are shown for 
each time point with scale bars 
of 50 µm as overlay of HL-1 
cells (DiD+, pink), nucleus 
(DAPI, grey pseudo-coloured) 
and EVs (PKH26+, yellow) or 
as overlay of the brightfield 
(BF) images with EVs 

(PKH26+, yellow). Additionally, a region of interest (dotted rectangle in 24 h PKH26+ EVs) is shown for detected 
EV signals (white arrows) with a 20 µm scale bar (n = 3, two different CardAP donors). Isolated EVs from CardAP 
cells seem to accumulate in some but not all murine cardiomyocytes after one day. 

 

4.3.2 EVs are taken up by murine cells 

A more thorough insight of the observed EV-cell interaction was achieved by integrating a novel 

flow cytometry method in EV research. Key component of this method is to use recipient cell 

and EV releasing donor cells of different species. Thus, it is possible to discriminate the location 

of EVs whitin or on recipient cells by appropriate staining methods that use fluorescence 

labelled antibodies species specific for proteins of the donor cell and consequently their released 

EVs.  

In this study, murine HL-1 and MHEC5-T cells were treated with EVs from human CardAP 

cells for one day. Afterwards, they were stained with human specific fluorescence labelled 

antibodies, which were already shown in the phenotypical characterization to be present on 

isolated EVs. Indeed, human proteins, such as human CD63, were solely detected when HL-1 

or MHEC5-T cells have been treated with EVs (Figure 22A). Strikingly, the signal of human 
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CD63, CD73, and CD81 was observed rather intracellularly than on the surface of EV treated 

HL-1 cells (median normalized MFI intracellular vs. extracellular: CD63 EVs = 19.05 vs. 1.38; 

CD63 EVs(cyt) = 8.68 vs. 1.24; CD73 EVs = 1.67 vs. 1.12; CD73 EVs(cyt) = 1.28 vs. 1.09; CD81 

EVs = 1.53 vs. 1.10; CD81 EVs(cyt) = 1.40 vs. 1.05; Figure 22B). Likewise, the treatment of 

MHEC5-T cells with EVs resulted in an enhanced detection of all three human proteins within 

than on the surface of these murine cardiac endothelial cells (median normalized MFI 

intracellular vs. extracellular: CD63 EVs = 3.01 vs. 1.05; CD63 EVs(cyt) = 2.80 vs. 1.05; CD73 

EVs = 2.56 vs. 0.87; CD73 EVs(cyt) = 2.56 vs. 0.97; CD81 EVs = 1.41 vs. 1.05; CD81 EVs(cyt) = 

1.43 vs. 1.04; Figure 22C). The intracellular detection of these human proteins did not differ 

significantly between unstimulated and cytokine stimulated EVs, although a tendency for lower 

normalized MFI values for cytokine stimulated EVs in HL-1 cells were detected in comparison 

to the unstimulated EV treated counterpart. Additionally, higher normalized MFIs for CD63 

were detected within HL-1 cells for both treatments with EVs than the respective samples of 

MHEC5-T cells (Figure 22B and C). 



Chapter IV                                                                                                                       RESULTS 

 

 

55 

 

1.0

2.0

3.0

4.0

5.0

*

EVs

EVs
(cyt)

Intracellular Surface

+
+
- -

- -
+

+
- -

- -

0.0

0.5

1.0

1.5

2.0

3.0

4.0

5.0

30.0

60.0

90.0

*
*

EVs

EVs
(cyt)

Intracellular Surface

+
+
- -

- -
+

+
- -

- -

0.0

0.5

1.0

1.5

2.0

3.0

4.0

5.0

30.0

60.0

90.0

EVs

EVs
(cyt)

Intracellular Surface

+
+
- -

- -
+

+
- -

- -

**

0.0

0.5

1.0

1.5

2.0

2.5

*
*

EVs

EVs
(cyt)

Intracellular Surface

+
+
- -

- -
+

+
- -

- -

Intracellular Surface

x = CD63, y = % of max

EVs

EVs(cyt)

untreated

EVs + isotype control

H
L
-1

c
e
lls

M
H

E
C

5
-T

c
e
lls

A

B

N
o

rm
a
li
ze

d
 M

FI
 f

o
r 

H
L-

1
 c

e
ll
s

1.0

2.0

3.0

4.0

5.0

*

EVs

EVs
(cyt)

Intracellular Surface

+
+
- -

- -
+

+
- -

- -

C

0.0

0.5

1.0

1.5

2.0

2.5

*

EVs

EVs
(cyt)

Intracellular Surface

+
+
- -

- -
+

+
- -

- -

CD63 CD73 CD81

N
o

rm
a
li
ze

d
 M

FI
 f

o
r 

M
H

E
C

5
-T

 c
e
ll
s CD63 CD73 CD81

 
Figure 22: EVs were internalized by cardiac murine cells after an exposure of one day.  
HL-1 or MHEC5-T cells were seeded in a 48-well plate (2 × 105 cells/well). After 24 h, cells were treated with 
unstimulated (EVs), cytokine stimulated (EVs(cyt)) EVs, or left untreated. After 24 h, harvested cells from each 
condition were distributed to at least four different FACS tubes. They served either as unstained/stained sample 
for the intracellular or a cell surface staining with human specific fluorescence labelled antibodies. After samples 
were measured at a flow cytometer (Canto II), the mean fluorescence intensity (MFI) of each investigated protein 
was normalized to the respective unstained control. (A): Representative histograms of HL-1 (upper row) or 
MHEC5-T cells (lower row) treated with EVs (blue line), EVs(cyt) (dark blue line) or they were untreated (dotted 
black line) are displayed for human CD63 via intracellular (left) or surface (right) staining in comparison to the 
isotype control (EVs + isotype control, grey filled area). (B-C): Individual normalized MFIs are shown for human 
CD63 (left), CD73 (middle) and CD81 (right) on or within HL-1 (B) or MHEC5-T cells (C) for the three different 
treatments as median with interquartile range (n = 4 -5, three different CardAP donors). Statistical analysis was 
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performed by Kruskal-Wallis test with Dunn’s post hoc test (* p < 0.05; **p < 0.01). After one day, EVs from human 
cardiac cells are found rather in murine cardiac cells than on their surface. 

4.4 The influence of EVs on apoptotic cell behaviour 

The reduction of the programmed cell death in damaged cardiac tissue would be one of the 

desired effects for a therapeutic approach to treat CVDs. For that reason, isolated EVs were 

investigated for their capability to influence the in vitro apoptotic behaviour of murine 

cardiomyocytes. For that purpose, HL-1 cells were allowed to sufficiently take up the isolated 

EVs or its vehicle control (here: PBS) for one day prior to an assay. Then, the apoptosis was 

provoked by three different apoptotic triggers and the apoptosis was monitored after an 

additional cultivation day.  

4.4.1 EVs exhibit a general anti-apoptotic effect although cytokine 
stimulated EVs failed to reduce virus induced apoptosis 

One scenario in the heart that leads to apoptosis of cells, is the formation of  radical oxygen 

species. It was recreated in in vitro experiments through the timely limited supplementation of 

the culture medium with hydrogen peroxide (H2O2). The ROS induced apoptosis was 

characterized by changes of the cell´s plasma membrane as detected by flow cytometry, which 

allowed to determine the frequency of apoptotic (AnnexinV-FITC+ cells) and non-apoptotic 

cells, respectively (7AAD- AnnexinV-FITC- cells; Figure 23A). The treatment with 

unstimulated EVs led to a significant reduction of apoptotic cells as well as to a significant 

increase of non-apoptotic cells in comparison to the PBS control, while the treatment with 

cytokine stimulated EVs displayed a likewise trend of diminished or enhanced cell population, 

respectively (median frequency of  apoptotic cells (range): PBS = 33.1 (14.1 - 38.6) %; EVs = 

24.7 (8.3 - 32.2) %; EVs(cyt) = 28.8 (9.8 - 35.9) %; median frequency of anti-apoptotic cells 

(range): PBS = 61.1 (55.3 - 70.9) %; EVs = 68.7 (60.0 - 77.35) %; EVs(cyt) = 63.6 (55.0 - 70.2) 

%; Figure 23B). Nevertheless, cytokine stimulated EVs demonstrated an anti-apoptotic effect 

when apoptosis was determined by a different method. The measurement of the caspase3/7 

activity showed significantly reduced levels in HL-1 cells treated with cytokine stimulated EVs 

as well as unstimulated EVs in comparison to the PBS controls (median caspase 3/7 activity 

(range): PBS = 1.15 (0.88 - 1.90) RLU; EVs = 0.85 (0.71 - 1.35) RLU; EVs(cyt) = 0.83 (0.42 - 

0.96) RLU; Figure 23C).  

Another investigated apoptotic trigger was the lack of nutrients, which was mimicked in vitro by 

applying starvation medium for one hour. Likewise to ROS-induced apoptosis, the treatment 

of HL-1 cells with unstimulated as well as cytokine stimulated EVs reduced significantly their 

caspase 3/7 activity in comparison to PBS treated controls (median enzyme activity (range): 

PBS = 1.08 (1.00 - 1.54) RLU, EVs = 0.84 (0.38 - 1.15) RLU, EVs(cyt) = 0.76 (0.56 - 0.96) RLU; 

Figure 23C). The third investigated apoptotic trigger was the infection of HL-1 cells with the 

Coxsackievirus B3 (CVB3). This apoptotic trigger was chosen, because CVB3 are the major 

viral cause of sever myocarditis in humans [122]. Moreover, a previous study already 

demonstrated that CardAP cells themselfes limited CVB3 induced apoptosis in vitro and in vivo 

[13]. Interestingly, this anti-apoptotic effect was solely reproducible for EVs from CardAP cells 

derived under the absence of cytokine stimulation. In fact, the caspase activity was significantly 
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reduced in HL-1 cells treated with unstimulated EVs but not with cytokine stimulated EVs in 

comparison to the PBS treated controls (median enzyme activity (range): PBS = 1.08 (0.50 - 2.4) 

RLU; EVs = 0.74 (0.17 - 1.4) RLU; EVs(cyt) = 1.09 (0.48 - 2.29) RLU; Figure 23C). 

 

Figure 23: EVs reduced apoptosis 
in murine cardiomyocytes.  
HL-1 cells were seeded in 6-well plates 
(1x106 cells/well) for flow cytometry 
analysis or in 96-well plates (1-2x105 
cells/well) for caspase 3/7 activity 
determination, treated with 6 µg/mL 
of unstimulated EVs (EVs), cytokine 
stimulated EVs (EVs(cyt)), PBS in 
corresponding volumes of EVs (PBS), 
or they were left untreated. The next 
day, apoptosis was induced by ROS 
(0.5 mM H2O2), starvation (starvation 
medium), or virus (CVB3; at a 100,000 
m.o.i.) for 60 min. Then after, washed 
cells recieved cClaycomb medium for 
another 23 h. For flow cytometry 
analysis ROS induced HL-1 cells were 
stained with AnnexinV-FITC and 
7AAD and analysed at a flow 
cytometer (MACSQuant). (A): 
Representative AnnexinV-
FITC/7AAD dot plots are shown of 
ROS induced apoptotic HL-1 cells 
treated with either PBS (left), EVs 
(middle) or EVs(cyt) (right). (B): The 
individual frequencies of apoptotic 
cells (AnnexinV+ cells) as well as non-
apoptotic cells (7AAD- AnnexinV- 

cells) are shown as median with data 
range for ROS induced apoptotic HL-
1 cells, while the median of the 
untreated con-trols is indicated as 
dotted line (n = 7, five different 
CardAP donors). For analysis of 
caspase 3/7 activity, HL-1 cells of all 
three apoptotic triggers received 
proluminate caspase3/7 sub-strate 
(100 µL/well) and the luminescence 
was measured after 120 min at a 
microplate reader (Mithras). The 

luminescence was related to the cell concentration factor (absorbance of crystal violet stained cell lysates) as relative 
luminesce unit (RLU). (C): The individual caspase 3/7 activity as RLU is shown as median with data range for 
ROS induced apoptotic HL-1 cells (n = 6, five different CardAP donors), starved HL-1 cells (n = 7, four different 
CardAP donors), and virus infected HL-1 cells (n = 7, four different CardAP donors). Statistical analysis was 
performed by Friedman´s test with Dunn´s multiple comparison post hoc test (*p < 0.05; **p < 0.01). ROS, 
starvation and virus induced apoptosis of HL-1 cells was lessened by treatment with unstimulated EVs, while 
cytokine stimulated EVs solely reduced starvation, ROS but not virus induced apoptosis of HL-1 cells. 
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4.5 Influence of EVs on angiogenesis 

Another desired beneficial therapeutic effect for the treatment of CVDs would be the support 

of angiogenesis in the damaged cardiac tissue. Interestingly, the conditioned medium of CardAP 

cells was already shown to support angiogenesis in vitro, thus, first evidence is provided for a 

paracrine mechanism [64]. In order to clarify whether their released EVs convey a pro-

angiogenic feature, tube formation assays were conducted with human endothelial cells (here: 

HUVECs). 

4.5.1 EVs enhance tube formation capabilities of HUVECs 

In order to allow time for a sufficient EV-cell interaction, HUVECs were treated with either 

unstimulated EVs, cytokine stimulated EVs, or PBS, which served as EV vehicle control, one 

day prior to an assay. Indeed, the success of this EV-cell interaction could be verified when DiD 

labelled EVs (DiD+ EVs) were applied for the same time to HUVECs (Figure 25A). The DiD 

signal of HUVECs significantly enhanced in EV treated speciments in comparison to the DiD 

negative control (median frequency of  DiD+ HUVECs (range): DiD+ EVs = 97.3 (62.1 – 99.4) 

%; DiD+ EVs(cyt) = 96.5 (87.7 – 99.7) %; DiD negative control = 0.7 (0.04 – 5.8) %; Figure 

25B).  

Figure 24: DiD labelled EVs were capable to interact with HUVECs.  
HUVECs were seeded in 6-well plates (1.9 × 105 cells/well) and treated with DiD labelled EVs derived from 
unstimulated (DiD+ EVs) or cytokine stimulated conditions (DiD+ EVs(cyt)) or with a DiD negative control (DiD 
neg. ctrl.). After 24 h, HUVECs were washed twice with PBS, harvested, and labelled with a dead/viable marker 
(V510) for 20 min and fixed with 0.5% PFA after a washing step. All samples were measured at a flow cytometer 
(CantoII) and analysed by flow cytometry. (A): Representative histograms are shown for HUVECs of all three 
different treatments. (B): The individual frequencies of DiD+ HUVECs are shown as median with interquartile 
range for the three different treatments (n = 6 - 13, four different CardAP donors). Statistical analysis was 
performed by Kruskal-Wallis test with Dunn´s multiple comparison post hoc test (*** p < 0.001). After one day, 
nearly all HUVECs showed an interaction with fluorescence labelled EVs from CardAP cells despite of their EV 
biogenesis condition. 

For the tube formation assay itself, treated HUVECs were harvested, seeded on Matrigel-coated 

wells, and their tube formation was documented for the next 20 hours by light microscopy. As 

shown in representative images, HUVECs formed more networks when treated with 

unstimulated or cytokine stimulated EVs in comparison to the PBS control (Figure 25A). 
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Quantitative analysis revealed that the total branching length as well as the number (#) of 

junctions was significantly increased for HUVECs treated with unstimulated or cytokine 

stimulated EVs in comparison to the PBS control (mean number of junctions (± SD): PBS = 

38 (± 19); EVs = 58 (± 21); EVs(cyt) = 51 (± 13); mean total branching length (± SD): PBS = 

6,416 (± 3,158) px; EVs = 9,302 (± 2,757) px; EVs(cyt) = 8,232 (± 1,907) px; Figure 25B). 

Interestingly, unstimulated EVs showed a trend towards a greater pro-angiogenic effect than 

their cytokine stimulated counterpart. 

 

Figure 25: EVs enhanced the tube 
formation capability of HUVECs.  
HUVECs were seeded in 6-well 
plates (1.9 × 105 cells/well) and then 
treated with 6 µg/mL of 
unstimulated (EVs), cytokine 
stimulated EVs (EVs(cyt)), or PBS in 
corresponding volumes of EVs 
(PBS). After 24h, harvested 
HUVECs were applied to Matri-gel 
coated 48-well plates (0.16 × 105 
cells/well). The tube forma-tion was 
documented after 20 h by light 
microscopy and images were 
analysed quantitatively with the help 
of the ImageJ Angiogen-esis Plugin. 
(A): Representative images are 
shown for HUVECs of the three 
different treatments with scale bars 
representing 500 µm.  (B): The 
quantitative analysis of the tube 
formation is repre-sented for the 
individual total branching length and 
number (#) of junctions as median 
with data range (n = 16, six different 
Card-AP donors). Statistical analysis 
was performed by repeated mea-
sures ANOVA with Bonferroni post 
hoc test (*** p < 0.001, * p < 0.05). 
HUVECs treated with unstimulated 
or cytokine stimulated EVs showed 
elevated tube formation capabilities. 

 

4.5.2 HUVECs release different pro-angiogenic factors upon treatment 
with either unstimulated or cytokine stimulated EVs 

In a next step, it was investigated whether and how the EV treatment influences the release of 

typical pro-angiogenic factors by HUVECs. In order to reflect a similar experimental set-up as 

in the performed tube formation assays, HUVECs were treated with PBS, unstimulated or 

cytokine stimulated EVs for one day. Then after, cells were washed and fresh medium was 

applied for another 20 hours. This derived conditioned medium was investigated for the 

concentrations of VEGF, IL-6, and IL-8, while HUVECs were used to determine the cell 

correction factor by crystal violet staining.  
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Remarkably, the conditioned media from HUVECs treated with unstimulated EVs contained 

significantly more VEGF (increase by 1.7-fold) than the PBS control, while the respective 

sample for cytokine stimulated EVs solely exhibited a trend of higher VEGF concentrations 

(median VEGF concentration (range): PBS = 60.6 (53.3 – 66.28) pg/mL; EVs = 103.1 (75.0 – 

153.8) pg/mL; EVs(cyt) = 68.3 (59.5 – 74.5) pg/mL; Figure 26). However, cytokine stimulated 

EVs directed to a nearly 4-fold significant increase of released IL-8 by HUVECs in comparison 

to PBS controls, whereas unstimulated EVs induced merely a moderate but not significant 

increase of IL-8 concentrations in the respective sample (median IL-8 concentration (range): 

EVs = 493.4 (394.0 – 1,279.0) pg/mL; EVs(cyt) = 1,564.0 (350.7 – 2,348.0) pg/mL; PBS = 399.0 

(163.4 – 476.0) pg/mL; Figure 26). Although both EV treatments significantly increased the 

IL-6 secretion by HUVECs in comparison to PBS treated HUVECs, cytokine stimulated EVs 

appeared to have a greater impact than their unstimulated counterpart (median IL-6 

concentration (range): EVs = 250.3 (138.1 - 929.3) pg/mL; EVs(cyt) = 669.5 (79.0 - 1074) pg/mL; 

PBS =97.5 (80.7 - 120.9) pg/mL; Figure 26).  

 

 

Figure 26: The interaction of HUVECs with unstimulated or cytokine stimulated EVs triggered the 
release of different pro-angiogenic factors.  
HUVECs were seeded in 6-well plates (1.9 × 105 cells/well) and treated with 6 µg/mL of either unstimulated 
(EVs), cytokine stimulated EVs (EVs(cyt)) or PBS in volumes corresponding to that of the EVs. The next day, 
HUVECs were washed twice and fresh medium was applied for 20 h. Then, the medium was collected for detecting 
IL-6, IL-8, and VEGF by ELISA. The cell correction factor was determined by crystal violet staining. The 
individual cytokine concentrations in relation to the cell correction factor are shown for VEGF (left; n = 4, four 
different CardAP donors), IL-6 (middle; n = 7, four different CardAP donors), and IL-8 (right; n = 7, four different 
CardAP donors) as median with interquartile range. Statistical analysis was performed by Friedman´s test with 
Dunn´s multiple comparison post hoc test (*** p < 0.001, ** p < 0.01, * p < 0.05). HUVECs enhance their release 
of different pro-angiogenic factors upon treatment with unstimulated EVs (VEGF and IL-6) or cytokine stimulated 
EVs (IL-6 and IL-8) from CardAP cells. 

In order to illustrate the potential of one of the investigated factors, tube formation assays were 

performed with untreated HUVECs that were stimulated with 10 ng/mL human recombinant 

VEGF (+VEGF) or HUVECs were left unstimulated (un). As anticipated, the addition of 

VEGF supported the tube formation capabilities of HUVECs, as shown in representative 

images (Figure 27A). In fact, the total tube length as well as number (#) of junctions was 

significantely increased in VEGF stimulated HUVECs in comparison to the unstimulated 

counterpart (mean of total tube length (± SD): + VEGF = 8,138 (± 3,573) px; un = 6,108 (± 

3,725); mean of junctions (± SD): + VEGF = 53.3 (± 24.6); un = 37.2 (± 22.9); Figure 27B). 
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Figure 27: Treatment with VEGF enhanced the tube formation capabilities of HUVECs.  
HUVECs were seeded in 6-well plates (1.9 × 105 cells/well) and harvested the next day to be reseeded on Matrigel-
coated 48-well plates (0.16 × 105 cells/well). HUVECs were either left unstimulated (un) or treated with 10 ng/mL 
VEGF (+ VEGF). After 20 h, images were taken by light microscopy to document the tube formation and images 
were analysed quantitatively with the help of the ImageJ Angiogenesis Plugin. (A): Representative pictures are 
shown for unstimulated or VEGF stimulated HUVECs with scale bars representing 500 µm. (B): Individual data 
points are shown for the total branching length (left) and for the number (#) of junctions (right) as median with 
interquartile range (n = 17). Statistical analysis was performed by paired T test (*** p < 0.001, ** p < 0.01). The 
addition of VEGF during a tube formation assay resulted in increased network formation of HUVECs. 

4.6 Influence of EVs on human immune cells and immune 
responses  

Two features in the context with the immune system are very important for a future allogenic 

therapeutic application of EVs from CardAP cells. On the one hand, the therapy shall not 

induce any adverse immune reactions in the recipient and thus avoid unwanted side effects. On 

the other hand, the modulation of immune responses aid to vanquish the inhibiting effect of 

chronic inflammation for the regenerative process in damaged tissue. In order to estimate the 

immunogenicity and the immune modulating capabilities of isolated EVs, appropriate human 

immune cell assays were conducted., which were already described as a useful instruments in 

regenerative medicine [123,124]. 

4.6.1 EVs display a low immunogenicity 

From healthy donors isolated human PBMCs were exposed for up to five days to either 

unstimulated EVs, cytokine stimulated EVs, PBS in equal volumes to EVs, or immune cells 

were left untreated. Thereafter, the immunogenicity of isolated EVs was valuated by 

determining possible induced immune cell reactions of PBMCs towards the isolated EVs. 

Herein, neither CD4+ nor CD8+ T cell proliferation was induced in these immune cell cultures 

due to the exposure with unstimulated EVs nor cytokine stimulated EVs in comparison to the 

PBS or untreated control (median frequency of proliferated CD8+ T cells: un = 1.40 %; PBS = 

1.35 %; EVs = 1.16  %; EVs(cyt) = 1.41 %; median frequency of proliferated CD4+ T cells: un = 

1.12 %; PBS = 0.83 %, EVs =0.82 %, EVs(cyt) = 1.10 %; Figure 28A). While pro-inflammatory 

IFNγ was not detectable in neither of these immune cell cultures (data not shown), significant 
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enhanced concentrations of IL-10 were determined in PBMC cultures treated with unstimulated 

as well as cytokine stimulated EVs in comparison to controls (median IL-10 concentration 

(range): un = 40.26 (8.24 - 47.57) pg/mL; PBS = 38.86 (6.74 - 120.6) pg/mL; EVs = 210.5 

(61.80 - 537.80) pg/mL; EVs(cyt) = 547.80  (172.3 - 768.2) pg/mL; Figure 28B). 

 

 
Figure 28: Isolated EVs did not induce T cell proliferation but elevated concentrations of IL-10 in 
otherwise unstimulated PBMC cultures after five days. 
PBMCs were seeded in 96-well plates (3x105 cells/well) and treated with 12 µg/mL unstimulated (EVs), cytokine 
stimulated EVs (EVs(cyt)), PBS in equal volumes as EVs (PBS), or they were left untreated (un). After five days, 
cells were harvested, stained with human specific fluorescence labelled antibodies and measured at a flow cytometer 
(Canto II) to obtain frequencies of proliferated T cells by flow cytometry. (A): Individual data are shown as median 
with data range for CD4+ T cells (left) as well as for CD8+ T cells (right; n = 8, five different CardAP donors). (B): 
Supernatants from unstimulated PBMCs were determined for the concentration of IL-10 by ELISA. Individual 
data points are shown as median with data range (n = 6; four different CardAP donors). Statistical analysis was 
performed by Friedman´s test with Dunn´s multiple comparison post hoc test (* p < 0.05). Neither unstimulated nor 
cytokine stimulated EVs induced T cell proliferation but enhanced significantly the concentration of IL-10 in 
otherwise unstimulated PBMC cultures. 

Furthermore, control and EV treated PBMC cultures were examined for the expression level of 

surface proteins on CD4+ T cells that are associated with the activation status of T cells (Figure 

29). These proteins included the early T-cell activation antigen p60 (CD69), the IL-2 receptor 

subunit α (CD25) as intermediate activation marker, as well as an late activation marker, namely 

HLA-DR. Notably, neither of these markers were increased in response towards the exposure 

of unstimulated or cytokine stimulated EVs in comparison to PBS and untreated controls 

(median normalized MFI HLADR: un = 1.35; PBS = 1.32; EVs = 1.43; EVs(cyt) = 1.46; median 

MFI CD25: un = 5.50; PBS = 5.22; EVs = 5.70; EVs(cyt) = 5.32; median MFI CD69: un = 1.74; 

PBS = 1.63; EVs = 2.22; EVs(cyt) = 1.58). Nevertheless, the frequency of CD25+ CD4+ T cells 

was significantly enhanced in PBMC cultures treated with unstimulated EVs in comparison to 

PBS treated controls, while treatment with cytokine stimulated EVs solely displayed a likewise 

trend (median frequency of CD25+ CD4+ T cells (range): un = 4.05 (1.76 - 6.05) %; PBS = 4.07 

(1.44 - 5.17) %); EVs = 5.11 (2.33 - 7.91) %; EVs(cyt) = 5.82 (2.86 - 7.86) %; Figure 29). In 

contrast, the frequencies of HLA-DR+ or CD69+ CD4+ T cells were comparable between EV 

treated PBMCs and the respective controls (frequency of HLA-DR+ CD4+ T cells: un = 6.75 
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%; PBS = 6.47 %; EVs = 8.19 %; EVs(cyt) = 6.86 %; frequency of CD69+ CD4+ T cells: un = 

1.49 %; PBS = 1.69 %; EVs = 1.87 %; EVs(cyt) = 1.74 %). 

 

Figure 29: CD4+ T cells were 
unchanged in their surface 
expression of activation 
markers when exposed to 
isolated EVs in unstimu-
lated PBMC cultures. 
PBMCs were seeded in 96-well 
plates (3x105 cells/well), treated 
with 12 µg/mL unstimulated 
(EVs), cytokine stimulated EVs 
(EVs(cyt)), PBS in equal volumes 
as EVs (PBS), or they were left 
untreated (un). After five days, 
cells were harvested and ana-
lysed by flow cytometry. The 
expression as geometrical mean 
fluorescence intensity (MFI) 
and frequency of CD69, CD25, 
and HLA-DR were determined 
for the CD4+ T cell population 
in these unstimulated PBMC 
cultures. The obtained MFIs 
were additionally normalized to 
the respective unstained 
control. Individual data point 
of the normalized MFI (upper 
row) or frequencies (lower row) 

are shown as median with data range for CD69 (left), CD25 (middle) and HLA-DR (right; n = 8, five different 
CardAP donors). Statistical analysis was performed by Friedman´s test with Dunn´s multiple comparison post hoc 
test (* p < 0.05). Exposure of unstimulated and cytokine stimulated EVs did not induce the expression of typical 
activation molecules on CD4+ T cells.  

Further analysis revealed that the increase of CD25+ CD4+ T cells correlated with a co-

expression of L-selectin (CD62L) in this particular immune subset (Figure 30A). The treatment 

with unstimulated EVs as well as cytokine stimulated EVs significantly enhanced the frequency 

of the CD62L+ CD25+ CD4+ T cell compartment in comparison to the PBS and untreated 

control (median frequency of CD62L+ CD25+ CD4+ T cells (range):  un = 3.73 (3.01 – 4.68) %; 

PBS = 3.70 (3.29 – 3.07) %; EVs = 5.42 (4.91 – 6.83) %; EVs(cyt)= 5.54 (5.06 – 7.57) %; Figure 

30B). Coherently, significantly enhanced CD62L+ frequencies were obtained for CD4+ T cells 

in PBMC cultures treated with unstimulated or cytokine stimulated EVs in comparison to the 

PBS control (median frequency of CD62L+ CD25+ CD4+ T cells (range):  un =  78.29 (75.63 – 

78.37)%; PBS = 77.71 (77.21 – 78.22) %; EVs = 79.66 (77.81 – 80.61) %; EVs(cyt) = 79.78 (78.67 

– 83.20) %; Figure 30B). 
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Figure 30: Unstimulated and cytokine stimulated EVs significantly enhanced the frequency of CD25+ 
CD62L+ CD4+ T cells in otherwise unstimulated PBMC cultures. 
PBMCs were seeded in 96-well plates (3x105cells/well) and treated with 12 µg/mL unstimulated (EVs), cytokine 
stimulated EVs (EVs(cyt)), PBS in equal volumes as EVs (PBS), or they were left untreated (un). After five days, 
cells were harvested and analysed by flow cytometry. (A): Representative dot plots of all four different groups are 
shown for the expression of CD62L and CD25 on single living CD3+ CD4+ T cells. (B): The summarized 
individual frequencies of CD62L+ or CD62L+ CD25+ CD4+ T cells are shown as median with data range (n = 5, 
four different CardAP donors). Statistical analysis was performed by Friedman´s test with Dunn´s multiple 
comparison post hoc test (** p < 0.01, * p < 0.05). The frequency of CD62L+ CD25+ CD4+ T cells was significantly 
enhanced in PBMC cultures that were exposed to either unstimulated or cytokine stimulated EVs. 

 

4.6.2 EVs modulate induced immune responses 

The immune modulating capacity of isolated EVs were accessed in pro-inflammatory immune 

responses that were induced by stimulation with anti-CD3. A comparative analysis and the 

determination of affected parameters, such as T cell proliferation, was enabled by treating these 

PBMC cultures simultaneously with either unstimulated EVs, cytokine stimulated EVs, PBS in 

equal volumes to EVs, or these stimulated PBMC cultures were left untreated. The frequencies 

of proliferated CD4+ as well as CD8+ T cells were significantly reduced in anti-CD3 stimulated 

PBMC cultures treated with both unstimulated or cytokine stimulated EVs from CardAP cells 

in comparison to the PBS control (Figure 31A). Interestingly, cytokine stimulated EVs 

diminished normalized CD4+ and CD8+ T cell proliferation even greater than their unstimulated 

counterpart, although both EV treatments exhibited significant diminishing effects in 

comparison to the PBS control (median normalized CD4+ T cell proliferation (range): PBS = 

0.983 (0.764 – 1.23), EVs = 0.928 (0.524 – 1.00), EVs(cyt) = 0.855 (0.548 – 0.983), ; median 

normalized CD8+ T cell proliferation (range):  PBS = 1.00 (0.711 – 1.16); EVs = 0.903 (0.472 – 

0.993); EVs(cyt) = 0.929 (0.544 – 1.06); Figure 31B). 
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Figure 31: EVs diminished anti-CD3 
induced T cell pro-liferation in PBMC 
cultures. 
CFSE labelled PBMCs (3x105 cells/well) 
were stimulated with anti-CD3, and 
treated with 12 µg/mL unstimulated 
(EVs), cytokine stimulated EVs (EVs(cyt)), 
PBS in equal volumes as EVs (PBS), or 
they were left untreated. After five days, 
harvested cells were analysed by flow 
cytometry. Obtained T cell proliferation 
frequencies were normalized to the 
untreated control. (A): Representative 
flow cytometry plots display the 
frequencies of proliferated CD4+ and 
CD8+ T cells in anti-CD3 stimulated 
PBMCs. (B): The normalized CD4+ or 
CD8+ T cell proliferation in anti-CD3 
stimulated PBMC cultures is presented as 
median with data range (n = 9; four 
different CardAP donors; five different 
PBMC donors). Statistical analysis was 
performed by Friedman´s test with 
Dunn´s multiple comparison post hoc test 
(*** p < 0.001, * p < 0.05). Unstimulated 
and cytokine stimulated EVs reduce the T 
cell proliferation in anti-CD3 provoced 
immune responses of human isolated 
PBMCs. 

 

 

CD4+ T cells of anti-CD3 stimulated PBMC cultures were analysed in more detail for some 

activation markers. As anticipated, the expression of CD25 as well as CD69 was enhanced on 

CD4+ T cell in anti-CD3 stimulated PBMC cultures (Figure 32A) in comparison to previous 

results in unstimulated PBMC cultures (Figure 29). Notably, treatments with unstimulated or 

cytokine stimulated EVs did not changed neither the expression level nor the frequency of these 

activation markers in comparison to PBS treated or untreated controls (median normalized MFI 

CD69: un = 2.61; PBS = 2.76; EVs = 2.74; EVs(cyt) = 2.49; median normalized MFI CD25: un 

= 14.78; PBS = 14.33; EVs = 16.82; EVs(cyt) = 14.96; median normalized frequency CD69: un 

= 18.25; PBS = 25.74; EVs = 18.59; EVs(cyt) = 20.70; median normalized frequency CD25: un 

= 91.40; PBS = 88.20; EVs = 90.70; EVs(cyt) = 90.70; Figure 32A). Since the activation of CD4+ 

T cells was obtained at comparable levels between all treatments, it was of further interest 

whether the subset of regulatory T cells were affected by the treatment with isolated EVs. This 

is alo reasoned by the fact that this specific subset of T helper cells would be beneficial for the 

treatment of damaged cardiac tissue with prolonged or chronic inflammation. Indeed, PBS 

treated PBMC cultures exhibited lower frequencies of Tregs (viable, single CD3+ CD4+ CD127- 

CD25+ Foxp3+) in comparison to both EV treatments (Figure 32B). Although both EVs 

significantely enhanced the frequency of Tregs, unstimulated EVs exhibited a greater trend to 

enhance frequency of regulatory T cells than cytokine stimulated EVs (median frequency of 
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Tregs (range): PBS = 1.68 (1.05 – 2.68) %; EVs = 2.55 (1.96 – 3.38) %; EVs(cyt) =2.40 (1.75 – 

2.81) %; Figure 32B). 

 

Figure 32: EVs increased the frequency of regulatory T cells, while CD4+ T cells showed comparable 
expression of activation markers in anti-CD3 induced PBMC cultures. 
CFSE labelled PBMCs (6x105 cells/well) were stimulated with anti-CD3 treated with 12 µg/mL unstimulated 
(EVs), cytokine stimulated EVs (EVs(cyt)), PBS in equal volumes as EVs (PBS), or they were left untreated (un). 
After three days, cells were harvested and analysed by flow cytometry. (A): The frequency and expression as 
geometrical mean fluorescence (MFI) were determined for CD25 and CD69 in the CD4+ T cell population in these 
anti-CD3 stimulated PBMC cultures. The obtained MFIs were additionally normalized to the respective unstained 
control. Individual data point of the normalized MFI (upper graphs) or frequencies (lower graphs) are shown as 
median with data range for CD69 (left), CD25 (middle) and HLA-DR Obtained individual geometrical mean 
fluorescence intensities (MFI) are displayed as median with data range for an early activation (CD69), mediate 
activation (CD25). (B): Representative flow cytometry plots (left) show the frequencies of regulatory T cells 
(CD25+ Foxp3+ T cells with previous gating on viable single CD3+ CD4+ CD127-) in anti-CD3 stimulated PBMCs. 
The individual frequencies of regulatory T cells (viable single CD3+ CD4+ CD127- CD25+ Foxp3+ T cells) as 
median with data range (n = 8; five different CardAP donors; five different PBMC donors). Statistical analysis was 
performed by Friedman´s test with Dunn´s multiple comparison post hoc test (* p < 0.05). Unstimulated and 
cytocine stimulated EVs enhanced the frequency of regulatory T cells without affecting the general activation level 
of total CD4+ T cells in anti-CD3 stimulated PBMC cultures. 

Moreover, the treatment with isolated EVs contributed towards a reduced pro-inflammatory 

cytokine profile in anti-CD3 stimulated PBMC cultures (Figure 33). Two pro-inflammatory 
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cytokines, namely IFNγ and TNFα, were significantly lowered up to 30% in its concentration 

in anti-CD3 stimulated PBMCs treated with unstimulated EVs or cytokine stimulated EVs in 

comparison to the PBS treated control (median IFNγ concentration (range): PBS = 28.82 (9.17 

- 77.93) µg/mL;  EVs = 18.49 (5.78 - 80.24) µg/mL; EVs(cyt) = 21.86 (5.08 - 44.56) µg/mL; 

median TNFα concentration (range): PBS = 1.36 (0.32 - 2.92) µg/mL; EVs = 0.76 (0.20 - 1.66) 

µg/mL; EVs(cyt) = 0.49 (0.12 - 1.98) µg/mL). Not only concentrations of pro-inflammatory but 

also anti-inflammatory cytokines were affected in these stimulated immune responses. Anti-

CD3 stimulated PBMC cultures exhibited significantly more active TGFβ in cultures treated 

with unstimulated EVs or cytokine stimulated EVs in comparison to the PBS control (median 

TGFβ concentrations (range): PBS = 15.06 (2.2 - 20.57) pg/mL; EVs = 22.57 (3.56 - 26.29) 

pg/mL; EVs(cyt) = 22.84 (7.38 - 26.47) pg/mL). Interestingly, significantly more IL-10 was 

measured upon treatment with cytokine stimulated EVs in anti-CD3 stimulated PBMC cultures 

in comparison to the respective PBS control, while unstimulated EVs enhanced solely by trend 

the IL-10 concentration in the respective samples (median IL-10 concentrations (range): PBS = 

159.10 (23.76 - 369.10) pg/mL; EVs = 204.70 (23.66 - 369.10) pg/mL; EVs(cyt) =  232.40 (37.90 

- 379.90) pg/mL; Figure 33). In addition IL-17a and IL-1ß were also investigated for the 

respective concentrations. While comparable results were determined for IL-17a, a reduced 

tendency of IL-1ß concentrations were detected in anti-CD3 stimulated PBMC cultures treated 

with unstimulated or cytokine stimulated EVs (median IL-1ß concentrations: PBS = 660.80 

pg/mL; EVs = 496.40 pg/mL; EVs(cyt) = 469.30 pg/mL; median IL-1ß concentrations: PBS = 

164.10 pg/mL; EVs = 188.10 pg/mL; EVs(cyt) = 197.4 pg/mL; Figure 33).  

 

Figure 33: EVs attenuated the in-flammatory milieu in anti-CD3 stimulated PBMC cultures. 
PBMCs (3x105/well) were stimulated with anti-CD3, treated with 12 µg/mL unstimulated (EVs), cytokine stimula-
ted EVs (EVs(cyt)), PBS in equal volumes as EVs (PBS), or they were left untreated. After three days, the conditioned 

medium was collected and the concentrations of released cytokines investigated by ELISAs (IFNγ, active TGFβ) 

or bead-based Multiplex assay (IL-10, TNFα, IL-17a, IL-1β). The obtained individual cytokine concentrations are 
displayed as median with data range (n = 8, four different CardAP donor, four different PBMC donors). Statistical 
analysis was performed by Friedman´s test with Dunn´s multiple comparison post hoc test (** p < 0.01, * p < 0.05). 
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Treatment with unstimulated and cytokine stimulated EVs resulted in a reduced pro-inflammatory cytokine milieu 
of anti-CD3 stimulated PBMC cultures. 

4.6.3 EVs modulate induced immune responses in a CD14+ cell 
dependent manner 

As an initial step to understand how EVs facilitate the immune modulating feature, it was 

investigated with which immune cells EVs are interacting in PBMC cultures. For that reason, 

EV-cell interaction assays were performed with DiD labelled EVs (DiD+EVs), DiD negative 

control (DiD neg. ctrl.) and unstimulated PBMCs. The interaction was allowed for one day, as 

previous results from murine and human cells emphasized a sufficient interaction. The included 

DiD negative control exhibited solely neglectable signals of PBMC cultures as analysed by flow 

cytometry (highest determined frequency of DiD+ cells = 0.22 %; Figure 34A). Interestingly, 

the same analysis by flow cytometry revealed that DiD+EVs were predominantly interacting 

with CD14+ cells rather than with CD14- cells in these unstimulated PBMC cultures (median 

frequency of DiD+ cells (range): CD14+ cells = 90.9 (86.0 – 96.9) %; CD14- cells = 1.9 (1.5 – 

3.4) %; Figure 34A). Additionally, this observation could be verified by a co-localization of 

CD14 and EV signal in a fluorescence microscopic approach (Figure 34B).  

 
Figure 34: EVs interacted predominantly with CD14+ cells in PBMC cultures. 
PBMCs were seeded in 6-well plates (1x106 cells/well) and treated with 20 µg/mL DiD labelled EVs (DiD+ EVs) 
or DiD negative control (DiD neg. ctrl.). After 24 h, this EV-cell interaction was analysed by microscopy or flow 
cytometry. (A): Representative histograms and summarized individual frequency of DiD+ cells are shown for 
CD14+ and CD14- immune cells as determined by flow cytometry (n = 5; four different CardAP donors; three 
different PBMC donors). (B): Representative images are illustrating the co-localization (white arrows) of DiD+EVs 
(magenta) with CD14+ PBMCs (green) in total PBMCs (pseudo coloured white for DAPI) with scale bars 
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representing 10 µm (n = 3; three different CardAP donors, two different PBMC donors). Statistical analysis was 
performed with Mann Whitney U test (*** p <0.001). CD14+ cells are the major interaction partner of isolated 
EVs. 

As a next step, the effect of isolated EVs on their predominant recipient cell was analysed in 

detail. Firstly, it was observed that the frequency of CD14+ cells was significantly increased in 

unstimulated PBMC cultures treated with unstimulated EVs as well as with cytokine stimulated 

EVs in comparison to the PBS control (median frequency of CD14+ cells (range): PBS = 3.35 

(1.83 – 9.22) %, EVs = 7.39 (3.18 – 20.30) %, EVs(cyt) = 11.10 (3.56 – 29.20) %; Figure 35A). 

Secondly and foremost, these EV-primed CD14+ cells exhibited an intensely changed surface 

protein expression pattern in PBMC cultures. Antigen presenting proteins, namely HLA-DR 

and CD86, were significantly reduced on CD14+ cells upon EV treatment, (Figure 35B). The 

expression of HLA-DR was more than halved under treatment with unstimulated EVs or with 

cytokine stimulated EVs in comparison to the PBS control, while the expression of CD86 was 

halved by cytokine stimulated EVs and reduced by one third upon treatment with unstimulated 

EV in comparison to the PBS control (median normalized MFI HLA-DR (range): PBS = 1.08 

(0.74 – 1.23), EVs = 0.38 (0.13 – 0.78), EVs(cyt) = 0.25 (0.10 – 0.97); median normalized MFI 

CD86 (range): PBS = 1.03 (0.72 – 1.34); EVs = 0.67 (0.29 – 1.35); EVs(cyt) = 0.50 (0.29 – 1.02)). 

Unstimulated EVs also caused a significantly reduced surface expression of the scavenger 

receptor cysteine-rich type 1 protein M130 (CD163) on CD14+ cells as compared to the PBS 

treated CD14+ cells. The treatment with cytokine stimulated EVs, however, caused just by trend 

a reduced surface expression of CD163 (median normalized MFI CD163 (range): PBS = 1.05 

(0.74 – 1.20); EVs = 0.45 (0.27 – 0.98); EVs(cyt) = 0.46 (0.23 – 1.43)). Moreover, the treatment 

with either unstimulated as well as cytokine stimulated EVs significantly enhanced the 

expression of PD-L1, CD14 and the macrophage mannose receptor 1 (CD206) in comparison 

to the PBS treated control (median normalized MFI PD-L1 (range): PBS = 1.08 (0.85 – 1.31); 

EVs = 1.77 (0.84 – 3.6); EVs(cyt) = 2.07 (1.29 – 7.51); median normalized MFI CD14 (range): 

PBS = 0.91 (0.55 – 1.12); EVs = 1.40 (0.38 – 2.00); EVs(cyt) = 1.52 (0.51 – 1.93); median 

normalized MFI CD206 (range): PBS = 0.94 (0.64 – 2.24); EVs = 1.96 (0.95 – 5.22); EVs(cyt) = 

3.82 (1.37 – 6.95); Figure 35B). 
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Figure 35: CD14+ cells changed significantly their phenotype after interaction with EVs. 
PBMCs were seeded in 96-well plates (3x105 cells/well) and treated with 12 µg/mL unstimulated (EVs), cytokine 
stimulated EVs (EVs(cyt)), PBS in equal volumes as EVs (PBS), or they were left untreated (un). After three days, 
cells were harvested and analysed by flow cytometry. (A): The frequency of CD14+ cells in unstimulated PBMC 
cultures is shown as representative flow cytometry plots (left) and as summarized individual data as median with 
range (right; n = 13; six different CardAP donors; 9 different PBMC donors). (B): The expression as geometrical 
mean fluorescence (MFI) was determined on CD14+ cells in unstimulated PBMC cultures for HLA-DR, CD86, 
CD163, PD-L1, CD206, and CD14. The obtained MFI values were normalized to the respective unstained sample. 
The individual normalized MFIs are displayed as median with range (n = 10 – 13; at least five different CardAP 
donors; seven different PBMC donors). Statistical analysis was performed by Friedman´s test with Dunn´s multiple 
comparison post hoc test (* p < 0.05; ** p < 0.01; *** p < 0.001). Unstimulated and cytokine stimulated EVs do not 
only enhance the frequency of CD14+ cells but also change the expression profile of different surface molecules 
on CD14+ cells. 

In order to unravel whether EV-primed CD14+ cells contribute to the previously observed 

immunomodulation, the immune modulation assay was adjusted. For that purpose, immune 

responses of purified CD3+ T cells were provoked with anti-CD3 either in a monoculture set-

up or as co-culture set-up together with CD14+ cells that interacted with isolated EVs two days 

prior to an assay. Additionally, purified CD3+ T cell monocultures treated with isolated EVs 

simultaneously with the stimulating agent served as control. Monocultures of CD3+ T cells 

treated with either unstimulated or cytokine stimulated EVs exhibited comparable normalized 
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CD4+ or CD8+ T cell proliferation levels compared with the PBS control (median normalized 

CD4+ T cell proliferation: PBS = 0.957; EVs = 0.960; EVs(cyt)= 0.988;  median normalized CD4+ 

T cell proliferation: PBS = 0.975; EVs = 0.936; EVs(cyt) = 0.939; Figure 36A). On the contrary, 

co-cultures of CD3+ T cells together with EV-primed CD14+ cells resulted in a significant 

reduction of normalized CD4+ as well as CD8+ T cell proliferation, while cytokine stimulated 

EVs showed a greater influence than their unstimulated counterpart (median normalized CD4+ 

T cell proliferation (range): PBS =1.029 (0.951 – 1.056); EVs = 0.946 (0.835 – 1.005); EVs(cyt) = 

0.923 (0.839 – 0.987); median normalized CD4+ T cell proliferation (range): PBS = 1.017 (0.941 

– 1.035); EVs = 0.945 (0.916 – 1.008); EVs(cyt) = 0.932 (0.835 – 0.986); Figure 36B). 

 
Figure 36: EVs diminished T cell 
proliferation of purified CD3+ T cells 
solely in the presence of CD14+ cells. 
By MACS purified CD14+ and CD3+ cells 
from isolated PBMCs were cultured in 6-
well plates for two days. CD14+ cells (1x106 

cells/well) were additionally treated with 12 
µg/mL unstimulated (EVs) or cytokine 
stimulated (EVs(cyt)), PBS in equal volume 
of the EVs (PBS), or they were left 
untreated, while CD3+ cells were labelled 
with CFSE and left untreated (1x106 

cells/well). Afterwards, CD14+ cells were 
co-cultured one to five with CD3+ T cells 
and stimulated with anti-CD3. As control, 
monocultures of CD3+ T cells were 
stimulated with anti-CD3 and additionally 
treated with 12 µg/mL EVs, EVs(cyt), PBS 
in equal volume of the EVs, or left 
untreated. After three days, the cells were 
harvested and analysed by flow cytometry. 
(A-B): Representative flow cytometry plots 
display the frequencies of proliferated 
CD4+ and CD8+ T cells in anti-CD3 
stimulated monocultures of CD3+ cells (A) 
or co-cultures of CD3+ and EV-primed 
CD14+ cells (B). The T cell proliferation 
frequencies were normalized to the 
untreated control. These obtained 
normalized proliferation of CD4+ and 
CD8+ T cells in anti-CD3 stimulated 
monocultures of CD3+ cells (A) or in co-
culture CD3+ and EV-primed CD14+ cells 
(B) is presented for the three treatments as 
median with data range (n = 8 - 6; five 
differ-rent CardAP donors; five differ-rent 
PBMC donors). Statistical analysis was 
performed by Friedman´s test with Dunn´s 
multiple comparison post hoc test (*p < 0.05; 
**p < 0.01; ***p < 0.001). Unstimulated 
and cytokine stimulated EVs diminished T 
cell proliferation in a CD14+ cell dependent 
manner. 
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Coherently, the concentrations of released pro-inflammatory cytokines, namely IFNγ as well as 

TNFα, were diminished in co-cultures of CD3+ T cells with EV-primed CD14+ cells but not in 

the monoculture setting of CD3+ T cells (Figure 37A, B). Treatment with cytokine stimulated 

EVs significantly reduced the level of both cytokines in co-cultures, while unstimulated EVs 

exhibited solely a trend for reduced concentrations in comparison to the PBS control (median 

IFNγ concentration (range): PBS = 11.74 (3.62 – 17.62) µg/mL; EVs = 10.28 (0.24 – 10.74) 

µg/mL; EVs(cyt) = 3.87 (2.06 – 6.36) µg/mL; median TNFα concentration (range): PBS = 2.56 

(1.73 – 4.30) µg/mL, EVs = 2.21 (0.58 – 4.35) µg/mL, EVs(cyt) = 1.41 (0.74 – 2.95) µg/mL; 

Figure 37B). Interestingly, the IL-10 level was found to be significantly reduced in co-cultures 

with CD14+ cells that were primed by cytokine-stimulated EVs, whereas active TGFß was 

detectable on very low levels (median IL-10 concentrations (range): PBS = 322 (246 – 370) 

pg/mL; EVs = 286 (77 – 339) pg/mL; EVs(cyt) = 152 (97 – 279) pg/mL; Figure 37B). In anti-

CD3 stimulated CD3+ T cell monoculture neither pro-inflammatory nor anti-inflammatory 

cytokines were altered upon treatment with isolated EVs (median active TGFβ concentrations: 

PBS = 3.93 pg/mL, EVs =5.38 pg/mL, EVs(cyt) = 7.20 pg/mL; median TNFα concentrations: 

PBS =142.50 pg/mL; EVs = 90.89 pg/mL; EVs(cyt) = 116.00 pg/mL; median IL-10 

concentrations: PBS = 15.81 pg/mL; EVs = 9.89 pg/mL; EVs(cyt) = 11.93 pg/mL; median IFNγ 

concentration: PBS = 3.27 µg/mL, EVs = 2.89 µg/mL, EVs(cyt) = 4.09 µg/mL; Figure 37A). 
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Figure 37: EVs attenuate anti-CD3 
induced pro-inflammatory cyto-kine 
release only in co-cultures of CD14+ cells 
with CD3+ T cells but not in monocultures 
of CD3+ T cells. 
By MACS purified CD14+ and CD3+ cells 
from isolated PBMCs were cultured in 6-well 
plates for two days. CD14+ cells (1x106 

cells/well) were additionally treated with 12 
µg/mL unstimulated (EVs) or cytokine 
stimulated (EVs(cyt)), PBS in equal volume of 
the EVs (PBS), or they were left untreated, 
while CD3+ cells were labelled with CFSE and 
left untreated (1x106 cells/well). Afterwards, 
CD14+ cells were co-cultured one to five with 
CD3+ T cells and stimulated with anti-CD3. 
As control, monocultures of CD3+ T cells 
were stimulated with anti-CD3 and 
additionally treated with 12 µg/mL EVs, 
EVs(cyt), PBS in equal volume of the EVs, or 
left untreated. After three days, the 
supernatants were collected and cytokine 
concentrations were analysed by ELISA 

(IFNγ, active TGFβ) or by Multiplex bead-

based assays (IL-10, TNFα). (A-B): 
Concentrations for all tested cytokines are 
presented for anti-CD3 stimulated 
monoculture of CD3+ T cells (A) or co-
cultures of CD3+ T cells with CD14+ T cells 
(B) as median with data range (co-culture: n = 
6 - 7, five different CardAP donors, five 
different PBMC donors; monoculture: n = 7 - 
11; four different CardAP donors, four 
different PBMC donors). Statistical analysis 
was performed by Friedman´s test with 
Dunn´s multiple comparison post hoc test (* p 
< 0.05; ** p < 0.01). Pro-inflammatory 
cytokines were solely significantly reduced in 
anti-CD3 stimulated co-cultures of CD3+ T 
cells and CD14+ cells that were primed by 
cytokine stimulated EVs, while the 
corresponding culture with unstimulated EVs 
showed a likewise tendency.  

 

Additionally it was observed that the frequency of regulatory T cells was significantly enhanced 

in co-cultures with EV-primed CD14+ cells in comparison to the control setting of PBS-treated 

CD14+ cells (median frequency of Tregs (range): PBS = 3.39 (2.19 – 5.63) %; EVs = 4.65 (2.87 

– 8.42) %; EVs(cyt) = 4.43 (3.10 – 7.44) %; Figure 38A, B). Analysis of supernatants of the 

primed CD14+ cells showed that interleukin 1 receptor antagonist (IL-1RA) was significantly 

enhanced, while IL-1β, IFNγ and IL-10 were not detectable in those supernatants (median IL-

1RA concentrations (range): PBS = 236.7 (35.4 – 331.9) pg/mL; EVs = 330.5 (56.91 – 384.3) 

pg/mL; EVs(cyt) = 331.1 (39.6 – 397.1) pg/mL; Figure 38C). 
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Figure 38: The frequency of 
regulatory T cells is enhanced in 
anti-CD3 stimulated co-cultures of 
CD3+ cells with EV-primed CD14+ 
cells. 
By MACS purified CD14+ and CD3+ 
cells from isolated PBMCs were 
cultured in 6-well plates for two days. 
CD14+ cells (1x106 cells/well) were 
additionally treated with 12 µg/mL 
unstimulated (EVs) or cytokine 
stimulated (EVs(cyt)), PBS in equal 
volume of the EVs (PBS), or they 
were left untreated, while CD3+ cells 
were labelled with CFSE and left 
untreated (1x106 cells/well). 
Afterwards, CD14+ cells were co-
cultured one to five with CD3+ T cells 
and stimulated with anti-CD3. As 
control, monocultures of CD3+ T 
cells were stimulated with anti-CD3 
and additionally treated with 12 
µg/mL EVs, EVs(cyt), PBS in equal 
volume of the EVs, or left untreated. 
After three days, cells were analysed 
by flow cytometry. (A) Representative 
flow cytometry plots display the 
frequencies of regulatory T cells 
(single viable CD4+CD127-

CD25+Foxp3+ cells) in anti-CD3 stimulated co-cultures of CD3+ cells and CD14+ cells primed with PBS (left), 
EVs (middle) or EVs(cyt) (right). (B): Quantification of regulatory T cell frequency is shown for the individual 
frequencies as median with data range for the three different treatments (n = 6; four different CardAP donors; four 
different PBMC donors). (C): The supernatants of EV-primed CD14+ cells were investigated for the concentration 
of released IL-1RA, which is shown for the individual concentrations as median with data range (n = 7, four 
different CardAP donors, four different PBMC donors). Statistical analysis was performed by Friedman´s test with 
Dunn´s multiple comparison post hoc test (***p < 0.001, **p < 0.01, *p < 0.05). Unstimulated and cytokine 
stimulated EVs enhanced the release of IL-1RA by CD14+ cells and the frequency of regulatory T cells in co-
cultures of CD3+ cells and EV-primed CD14+ cells. 
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5. Discussion 
New therapeutic approaches with disease reverting properties are desperately needed to limit 

and evade the health-related but also sociological and economical burdens of CVDs. Different 

pre-clinical trials demonstrated that the application of diverse regenerative cells exhibited 

desirable effects including the inhibition of apoptosis, the modulation of pro-inflammatory 

immune responses, and the significant improvement of cardiac function [11,14,16,34,62,70]. 

However, clinical trials failed to reproduce the promised therapeutic potential or solely just 

demonstrated limited therapeutic success of some already tested regenerative cells, namely, bone 

marrow mononuclear cells, MSCs, and CPCs, in patients suffering from ischemic heart diseases 

[61,69,71,72]. Mechanistic analysis revealed that not the previously hypothesized integration of 

the cell itself into the damaged tissue contributed to the beneficial effects but rather paracrine 

mediators released by the applied cell source [78–80]. Thorough analysis of the conditioned 

medium disclosed that the contained EVs were the major driving force to diminish symptoms 

in animals suffering from myocardial infarction or other ischemic diseases [37,101,103,125–

127]. Since a pro-angiogenic feature was observed for the conditioned medium of CardAP cells 

[64], it seems likely that this regenerative cell type uses also a paracrine mechanism.  

In this thesis we assessed whether CardAP cells release EVs suitable for an allogenic cell-free 

approach to treat CVDs by performing a series of in vitro studies. For that purpose, EVs were 

isolated by differential centrifugation from the conditioned medium of CardAP cells cultivated 

either in the presence or absence of a pro-inflammatory cytokine cocktail. It was not clear yet 

under which condition CardAP cells release regenerative EVs. For that reason we chose these 

two EV biogenesis conditions, because CardAP cells exhibited immune modulating, anti-

apoptotic and in vivo cardio protective capacity [13,60,65] but not their pro-angiogenic effect 

[13,64] in an inflammation driven milieu. Furthermore, the immune modulating capacity of 

MSCs, cardiac derived cells and especially EVs from MSCs was boosted by pro-inflammatory 

stimulation [104,128–131]. It has to be highlighted that in order to avoid contaminations of EVs 

from the serum source, expansion of CardAP cells as well as all functional assays were 

consequently performed with centrifuged human serum. Additionally, any serum source was 

omitted during their EV biogenesis. For that reason, it can be excluded that further discussed 

experimental data are influenced by contaminations of EVs from a serum source. 

5.1 Does the biogenesis condition affect CardAP cells to release 
EVs with different characteristics? 

The general success of the performed EV isolation procedure could be confirmed by different 

observations, such as the visualization of small vesicular lipid bilayer structure by TEM or the 

detection of typical transported molecules, such as proteins and miRNAs, in generated and 

tested EV preparations. It was also observed that one million CardAP cells released comparable 

quantities of EVs despite of the applied biogenesis condition as neither protein amount nor 

particle concentrations differed between unstimulated and cytokine stimulated EV preparations 

(Figure 14). Studies from MSC EVs emphasize that the efficacy always needs an individual 

examination and do not follow a general pattern upon cytokine stimulation, as results range 
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from similar [107] or higher [132] protein content of EVs from IFNγ stimulated MSCs to a 

lower particle concentrations upon IFNγ/TNFα stimulation of MSCs [130]. 

In accordance with the guidelines from the international society of extracellular vesicles (ISEV) 

[83,85,89,133], it was indeed possible to detect anticipated EV proteins from different cellular 

locations in unstimulated as well as cytokine stimulated EVs from CardAP cells by flow 

cytometry or LC/ESI-MS. Three tetraspanins, namely CD9, CD63, and CD81, as well as 

different integrin proteins, such as CD29 or ITAV, are just some representatives from detected 

transmembrane proteins, while syntenin and proteins of the annexin family exemplify cytosolic 

proteins (Figure 15 and 16). Also, non-EV categorized proteins were co-isolated in our EV 

preparations as observed by the detection of fibronectin by LC/ESI-MS. Importantly, an 

intracellular protein, namely GM-130, was not detectable in unstimulated and cytokine 

stimulated EVs neither by flow cytometry nor LC/ESI-MS. The lack of GM-130 is especially 

vital when taking into consideration that CardAP cells displayed an increase of about 4% late 

apoptotic cells upon cytokine stimulation in comparison to its expansion medium. Although 

this mild apoptosis was induced, it seems doubtful that isolated EV preparations are containing 

apoptotic bodies. Firstly, GM-130 was solely detectable in apoptotic body fractions (Figure 9) 

but not in further investigated EV preparations (Figure 15). Secondly, diameters of EV 

preparations never grasped the size of an apoptotic body (d > 1,000 nm) as 875.8 nm was the 

biggest determined diameter of isolated EVs.  

A study by Jeppsesen et al. in 2019 achieved a better understanding about proteins transported 

by small EVs and their co-contaminations as a non-exosomal compartment from EV 

preparations derived from glioblastoma or colon cell lines [90]. Proteins of EVs from CardAP 

cells identified by LC/ESI-MS were composed of both the small EV (e.g. annexinA2/V, 

syntenin-1, ALIX, HSC70, aldolase A, enolase 1, CD73, ITGB1, or ITAV) and the non-

exosomal compartment (e.g. GAPDH, MVP, calthrin, histone h2a, or fibronectin; see Figure 

16 and Appendix Table 1). This observation can be accredited as a consequence of our applied 

isolation procedure, which did not include a gradient or affinity step to separate both 

components exclusively. Furthermore, studies of manufactured liposomes or nanovesicles 

showed that they are surrounded by a shell of proteins, also referred to as corona, after being 

exposed to protein containing liquid, such as plasma/serum [134–136]. Yet, it is not clear 

whether the proteins of the non-exosomal compartment reflect corona proteins of EVs, since 

this subject just gained attention in the last years of EV research [137]. In context of the current 

study, it seems likely that isolated EVs from CardAP cells are also surrounded by a protein 

corona. Firstly, EVs are released into a protein containing solution, since CardAP cells release 

next to EVs also soluble proteins into their conditioned medium. Secondly, the applied 

differential centrifugation allowed the reduction of protein contaminations but not its separation 

from small EVs, as indicated by the detection of the previously mentioned fibronectin.  

Nevertheless, it was possible to allocate the majority of LC/ESI-MS identified proteins (n = 

156/186) of EVs from CardAP cells by String Database analysis to the extracellular exosome 

compartment, while some proteins, such as TNFα induced protein 3 or Rab-34, were exclusively 

observed for cytokine stimulated or unstimulated EVs, respectively. The pro-inflammatory 

cytokine cocktail already caused CardAP cells to enhance or even induce the expression of 
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immunological relevant proteins on its surface, such as PD-L1, PD-L2, CD54 or CD106 

(Figure 12). In contrast, their released EVs solely exhibited a significant upregulation of CD54 

on cytokine stimulated EVs as measured by flow cytometry, while other markers, such as 

PD-L1, remained underneath the detection limit or exhibited minor alterations upon cytokine 

stimulation. Interestingly, CD54 was also shown to be enriched on EVs from IFNγ/TNFα 

stimulated MSCs in comparison to their unstimulated counterpart [130]. In a different study, it 

was revealed that a blockage of CD54 or its receptor impaired interaction of EVs from bone 

marrow derived dendritic cells with dendritic cells of a different mice strain [138]. However, the 

importance of the upregulation of CD54 on EVs from regenerative cell sources is still elusive 

and needs further investigations. 

Striking differences between unstimulated and cytokine stimulated EVs from CardAP cells were 

determined with respect to their transported miRNAs by nCounter® miRNA expression assay, 

which was used to study nearly 800 different human miRNAs. Half of the identified miRNAs 

(102 out of 205 miRNAs) were observed to be present in both unstimulated and cytokine 

stimulated EVs. Unstimulated EVs solely exhibited 14 uniquely detected miRNAs, while 89 

miRNAs were exclusively observed in cytokine stimulated EVs (Figure 18). Though, results by 

qRT PCR elucidated that a previously exclusive cytokine stimulated miRNA, miRNA 494-3p, 

was also to a lower extent detectable in unstimulated EVs. For that reason, it cannot be ruled 

out that the high number of 89 exclusively transported miRNAs by cytokine stimulated EVs 

will be corrected after additional experiments, such as including more CardAP donors or 

verifying all results by qRT-PCR. Recent studies showed that the separation of small EVs from 

its co-isolated proteins correlated with the identification of RNA binding proteins in the non-

EV compartment [90,91]. Thus, additional changes in the isolation procedure of our CardAP 

EVs will enable the differentiation whether miRNAs belong to the small EV or non-EV 

compartment. Nonetheless, it can be excluded that artefacts of miRNA from the serum source 

or available serum free supplements as previously reported  were determined in the current 

miRNA assays due to the fact that EVs from CardAP cells were released in serum free IDH 

medium [139,140]. Interestingly, the pro-inflammatory cytokine stimulation, most likely the 

TNFα stimulation, can be retraced in affected genes by miRNAs from cytokine stimulated EVs, 

as they were significantly enriched in tumour necrosis factor related apoptosis inducing ligand 

(TRAIL) signalling than genes from detected miRNAs of unstimulated EVs (Figure 19). 

Corroborating evidence for CardAP cells altering their released EVs upon cytokine stimulation 

was obtained by measuring diameters of isolated EVs. Although the majority of EVs from both 

biogenesis conditions exhibited diameters of exosomes (d < 100 nm) as measured by TEM, 

cytokine stimulated EVs were found to have a significantly smaller mean diameter than their 

unstimulated counterpart (Figure 13). NTA results likewise showed that the majority of 

cytokine stimulated EVs were smaller than unstimulated EVs (Figure 13). However, solely a 

minority of EVs of both biogenesis conditions appeared in NTA to be smaller than 100 nm in 

their particle diameter. The discrepancy between determined diameters of NTA and TEM are 

reasoned by several factors. Firstly, our TEM protocol included a dehydration step, which 

causes the dehydration of naïve EVs that consequently appeared as sphere-like shapes. 

Secondly, NTA allows the measurement of all contained particles in the solution that are bigger 
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than 40 nm, which includes next to isolated EVs also aggregates of EVs with each other or with 

proteins, protein aggregates and dust particles. Thirdly and most importantly, isolated EVs from 

CardAP cells were not separated from their protein corona. While TEM allows the measurement 

of the vesicle itself through its lipid bilayer, NTA does not distinguish between EVs and their 

surrounding protein corona [141]. Most likely, NTA measurements are even greater influenced, 

as the diameter of particles are determined in an aqueous solution (here PBS), which additionally 

adds a hydrate shape. In contrast to our observation, IFNγ stimulated MSCs were observed to 

release EVs with larger mean diameters than unstimulated MSCs as determined by TEM [132]. 

But, the diameter distribution illustrates that stimulated EVs conveyed two unequally distributed 

peaks instead of a single peak as observed for their unstimulated counterpart. Comparing the 

main peak (≥ 75% of determined EVs), it also seems that stimulated EVs would be smaller than 

unstimulated EVs, similar to our result, even if a different cell source and different settings for 

the acquisition of EVs were chosen. In another study from 2020, EVs were generated from 

umbilical cord mesenchymal stromal cells cultured in the presence or absence of the same 

cytokine cocktail as CardAP cells and additionally under hypoxia or normoxia [142]. Further 

analysis did not display differences between diameters obtained by NTA, while TEM data were 

solely shown for hypoxic and normoxic unstimulated EVs without any quantification. 

Excitingly, this study applied a highly sensitive proximity extension array to elucidate cytokines 

and chemokines transported by isolated EVs. Here, it was demonstrated that cytokine 

stimulated MSCs release EVs independent of the oxygen levels with significantly increased 

protein expression levels for CSF-1, MCP4, IL-13, IFNγ, CXCL5, as well as significantly 

reduced levels of CXCL10 in comparison to their unstimulated counterpart. It remains to be 

investigated whether isolated EVs from CardAP cells display similar changes upon cytokine 

stimulation, since our performed ESI/LC-MS approach did not cover the determination of 

either cytokines or chemokines. 

It can be hypothesized that the determined differences between unstimulated and cytokine 

stimulated EVs from CardAP cells are a result of a shift in the proportion of different released 

small EV species. Studies from other groups support this theory. Herein, small EV preparations 

were subjected to an additional gradient separation (e.g. top to bottom vs. bottom to top) or 

tetraspanin affinity purification. Qualitative and quantitative proteomic analysis revealed that 

some proteins were exclusively detected in one separated EV subset, while most proteins were 

omnipresent in all separated EV subsets [88,143,144]. For that reason, it is assumed that the 

term small EVs or exosomes relates to a rather heterogeneous than homogenous population of 

EVs. Although we do not know yet how many different populations of small EVs will be 

necessary to be considered in future, yet the current study clearly underlines that the milieu 

during EV biogenesis of CardAP cells has significantly influenced the phenotype of the released 

EVs as well as their composition of transported miRNA molecules. 
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5.2 Do CardAP cells release EVs under both EV biogenesis 
conditions that have valuable properties for an allogenic 
approach to treat CVDs? 

In order to use the generated EVs from CardAP cells as a cell-free allogenic therapeutic 

approach, two requirements are essential for their future clinical application. On the one hand, 

EVs have to own properties that may contribute to the improvement of the heart cell function. 

On the other hand, the therapy needs to be safe for the prospective patients. The risk of an 

allogenic approach would especially be an adverse immune reaction between donor and 

recipient. In the current study, both issues were in depth analysed via different in vitro approaches 

and are discussed in the following. 

5.2.1 Could both isolated CardAP EVs enhance the cardiac function by 
preventing apoptosis of cardiomyocytes and supporting vascular 
nutrient supply?   

Some characteristics of the used cellular source for the further investigated EVs would already 

favour them as therapeutic tool for treating CVDs. CardAP cells exhibited low expression levels 

of CD90 with at least 73% of CD90neg. cells (Figure 12 and Table 9). This unique feature of 

an otherwise mesenchymal-like phenotype might be valuable for their therapeutic usage, since 

the reduction of scar sizes after myocardial infarction was negatively correlated with CD90 

expression of administrated CPCs [66]. In the present study, we showed that released EVs from 

CardAP cells also presented either no CD90 or just very low levels on their surface as 

determined by flow cytometry (Figure 15). For EVs from MSCs, Di Trapiani et al. documented 

also CD90 on their surface [130]. However, due to methodological differences (e.g. isolation, 

flow cytometry) it cannot be evaluated whether EVs from CardAP cells show lesser or 

comparable levels of CD90 than EVs from MSCs.  

Also other surface proteins, which indicated beneficial effects for their intended therapeutic use, 

were assessed on EVs from CardAP cells by flow cytometry. One of them was CXCR4 

(CD184), which was equally detected on unstimulated and cytokine stimulated EVs from 

CardAP cells (Figure 15). Interestingly, this chemokine receptor is capable of binding SDF-1α, 

which is an overexpressed factor in ischemic tissues [22]. Thus, the presence of CXCR4 on 

isolated EVs might be advantageous for their delivery towards ischemic cardiac tissue in vivo. In 

fact, it was shown by Ciullo et al. that the overexpression of CXCR4 by CPCs generated EVs 

with higher efficiency to interact with damaged cardiomyocytes in vitro than EVs from 

unmodified CPCs [126]. Moreover, these CXCR4 modified EVs reduced ischemia/reperfusion 

symptoms in vivo more sufficiently than their unmodified counterpart. Since apoptotic cells 

contribute significantly to the impairment of heart function [2], this plausible functional 

mechanism was also investigated in this study by measuring the impact of EVs derived from 

unmodified or modified CPCs on staurosporine induced apoptosis of HL-1 cells. In line with 

their in vivo observations, EVs derived from CXCR4-overexressing CPCs exhibited an even 

greater anti-apoptotic effect than EVs from unmodified CPCs. In the current study, we were 

also able to demonstrate anti-apoptotic effects of unstimulated and cytokine stimulated EVs 

from CardAP cells (Figure 23). In contrast to Ciullo et al., three different triggers were tested 
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to induce apoptosis of HL-1 cells. On the one hand, HL-1 cells were starved to mimic the 

lacking nutrient supply caused by myocardial infarction, or they were treated with hydrogen 

peroxide to induce ROS formation. This scenario happens as consequence of bypass surgeries, 

which foster cells to perish in the boarder zones of the myocardial infarction by a sudden 

increase of oxygen and subsequently an increased formation of ROS [38,39]. Both starvation 

and ROS induced apoptosis were equally reduced in HL-1 cells treated with either unstimulated 

or cytokine stimulated EVs from CardAP cells. On the other hand, HL-1 cells were infected 

with CVB3, which is not only able to cause apoptosis but also severe myocarditis in humans 

[145]. It was already shown that CardAP cells are able to diminish CVB3 induced apoptosis in 

vitro and in vivio [13]. In the present work, we discovered that unstimulated but not cytokine 

stimulated EVs from CardAP cells are capable to significantly reduce caspase 3/7 activity 

(Figure 23). It seems likely that CXCR4 does not play a major role in reducing CVB3 induced 

apoptosis, since unstimulated and cytokine stimulated EVs exhibited similar protein levels on 

their surface and therefore are unlikely the reason for this discrepancy. Nevertheless, future 

experiments applying overexpression or knockdowns can elucidate whether the anti-apoptotic 

effect of ROS or starvation stimulated HL-1 cells are CXCR4 dependent. Other proteins 

identified in EVs from CardAP cells could also contribute to their anti-apoptotic effect. Heat 

shock proteins (HSP), namely HSP70 and HSP90, were identified in unstimulated as well as 

cytokine stimulated EVs from CardAP cells by LC/ESI-MS (Appendix Table 1). These two 

proteins have been shown to reduce the extrinsic apoptotic pathway of cells by different means, 

like promoting NF-κB activity, inhibition of pro-inflammatory cytokines or ROS-mediated 

apoptosis, including binding of apoptotic protease activating factor 1 (ARAF1) or other pro-

apoptotic factors to inhibit the respective signalling function [146]. Additionally, not only 

proteins but also miRNAs transported by EVs can transmit anti-apoptotic signalling in recipient 

cells. As such, a recent study revealed that murine MSCs transfected with miR-320d generated 

EVs that were capable to diminish apoptosis in a STAT3-dependent manner [147]. Interestingly, 

in this study apoptosis was induced in mice via atrial fibrillation and the isolated murine 

cardiomyocytes were afterwards treated with EVs. In the present study, this particular miRNA 

was also found in EV preparations from CardAP cells, while being predominantly detected in 

cytokine stimulated than in unstimulated EVs (Appendix Table 2). But further investigations 

are needed to elucidate whether this miRNA-320d or other miRNAs play a role in the working 

mechanism of EVs from CardAP cells to reduce apoptosis. However, it seems unlikely to reduce 

their anti-apoptotic effect to a single transported molecule after several molecule classes were 

identified in isolated EVs from CardAP cells.  

It could be argued that solely the detection of miRNAs in our isolated EVs is not enough 

evidence to proof their actual involvement in beneficial effects, since miRNAs need to be 

transferred into a recipient cell for influencing the transcription of proteins. In order to gather 

a better insight of EV-cell interaction, we established a novel methodology in EV research to 

define between uptake and surface interaction of EVs with cells. At first, we performed time 

series experiments with fluorescently labelled EVs (DiD+ or PKH26+ EVs). In accordance to 

previous studies [40,148,149],  an interaction with recipient cells was visualized by tracking the 

fluorescence signal in recipient cells by flow cytometry (Figure 20) or microscopy (Figure 21). 

In addition, the signal of labelled EVs amplified in treated cells over time and reached a plateau 
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after one day. The corresponding dye control did not exhibit a likewise effect, which is very 

crucial due to the fact that dyes, such as the utilized PKH26, were shown to form vesicle-like 

compartments and subsequently can cause false positive signals [148]. We also observed that 

the interaction of EVs took place independently of the species of the recipient cell and with a 

comparable efficacy. In a second step, we conducted an interaction study of the isolated human 

EVs with murine cell lines to answer whether EVs have crossed the plasma membrane of the 

recipient cell. Therefore, common methods for intracellular staining of transcription factors and 

extracellular staining of surface proteins were used to measure after one day human proteins 

within or on murine cells, respectively. Due to the initial phenotypic EV characterization it was 

already known that unstimulated and cytokine stimulated EVs present certain proteins, such as 

CD63 (Figure 15). It was indeed possible to detect these EV-originating proteins rather within 

than on the surface of murine cells treated with EVs (Figure 22). These observations would 

advocate for an internalization of CardAP EVs, which consequently would allow the delivery 

of their transported miRNAs to their cellular site of action.  

The intracellular uptake of isolated EVs from a human cardiac cell type does not appear to be 

limited to murine cells. This conclusion can be drawn from another investigated regenerative 

feature. In fact, unstimulated and cytokine stimulated EVs significantly enhanced in vitro tube 

formation capabilities of HUVECs by enhancing the release of different pro-angiogenic factors 

(Figure 25 and 26). One of the determined factors was VEGF, which was significantly 

enhanced by HUVECs treated with unstimulated EVs but not with cytokine stimulated EVs. 

Interestingly, unstimulated EVs were also observed to show significantly enriched miRNA 

302d-3p levels compared to cytokine stimulated EVs by miRNA expression assay and qRT PCR 

(Figure 18). A study from Jiang et al. demonstrated that this precise miRNA possessed pro-

angiogenic features [150]. Here, it was shown that HUVECs increased in response to miRNA 

302d-3p their tube formation capabilities and release of VEGF, which could be abolished by 

siRNA and specific pathway inhibitors. In context of the current study, one could assume that 

the higher copy number of miRNA302d-3p in unstimulated EVs correlates to their induced 

amplified VEGF release by HUVECs. Subsequently, this would imply that EVs from CardAP 

cells and their transported miRNAs were indeed internalized by the influenced human 

endothelial cells.  

Next to VEGF also IL-6 and IL-8 were investigated in the current study to elucidate the pro-

angiogenic effect from CardAP EVs, because all three factors were already described to support 

angiogenesis as well as being involved in EV transmitted pro-angiogenic effects [95,151,152]. 

Unstimulated EVs from CardAP cells mediated not only a significant increased release of VEGF 

by HUVECs in vitro but also of IL-6 (Figure 26). In contrast, cytokine stimulated EVs induced 

a significantly enhanced release of IL-6, IL-8 and solely a trend of augmented VEGF release by 

HUVECs (Figure 26). The fact that HUVECs also tended to release more VEGF under the 

treatment with cytokine stimulated EVs would further implicate the involvement of their 

transported miRNA 302-3p. This miRNA was found to be present in cytokine stimulated EVs, 

however, to a significantly lower amount than in unstimulated EV preparations (Figure 18). It 

has to be addressed in future experiments whether the induction of different pro-angiogenic 

factors is related to the tendency of cytokine stimulated EVs to enhance tube formation abilities 
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of HUVECs to a lesser extent than unstimulated EVs. Up to now, it could only be shown in 

the current study that the supplementation with VEGF resulted in enhanced tube formation 

capabilities of HUVECs in comparable manners as EV treatment (Figure 27). In addition, it 

cannot be excluded that HUVECs released other angiogenesis influencing factors after 

treatment with EVs from CardAP cells. In that case it would be intersting to investigate known 

supporters of angiogenesis, such as the epidermal growth factor or the platelet-derived growth 

factor (PDGF) [95,153]. Nonetheless, it has not yet been shown that for differently derived EVs 

from either cardiac cells or MSCs induce the release of different pro-angiogenic factors by 

HUVECs or other endothelial cells. 

It seems once more unlikely that a single molecule is exclusively accountable for this determined 

regenerative feature of EVs from CardAP cells. For instance, the miRNA repertoire impacting 

angiogenesis is not limited to miRNA 302-3p. Also, other candidates were determined in 

isolated EVs from CardAP cells, which included miRNA 146a-5p, 132-3p, 125a, 214, 126, and 

miRNA 210 (Figure 18 and Appendix Table 2). These miRNAs were already shown by other 

groups to impact angiogenesis via different ways, such as increased VEGF release, expression 

of PDGF receptor, or suppressing GTPase activating proteins RASA1 [36,154–156]. 

Interestingly, a miRNA with inconsistent roles in angiogenesis, namely miRNA 494-3p, was 

observed to be enriched in cytokine stimulated EVs as determined by nCounter® miRNA 

expression assay and qPCR (Figure 18). It is not clear under which condition this miRNA 

enhances or inhibits angiogenesis [157,158]. Neither is clear what function the miRNA executes 

in isolated EVs from CardAP cells or whether it might be accountable for the inferior pro-

angiogenic effect of cytokine stimulated EVs in comparison to unstimulated EVs. Beyond that, 

the angiogenesis supporting feature of CardAP EVs could also be facilitated by their transported 

proteins. One example is the tetraspanins CD63, which was detected on equally high levels on 

unstimulated and cytokine stimulated EVs by flow cytometry (Figure 15). Tugues et al. showed 

that the loss of CD63 expression in endothelial cells resulted in disturbed sprouting and tube 

structure formation during angiogenesis due to the missing promoting activity of CD63 to form 

complexes between VEGFR2 and Integrin ß1 [159]. It could be hypothesized that the uptake 

of CardAP EVs and their presented CD63 by HUVECs might be another plausible mechanism 

how an increased tube structures were induced. Although several other proteins, such as 

endoglin, neuropilin, Rab-13, or tenascin, to name just a few, in EVs from CardAP cells could 

be listed as proteins with angiogenesis supportive features as detected by LC/ESI-MS 

(Appendix Table 1), one particular protein attracted attention in the context of a regenerative 

approach using our isolated EVs. The carbohydrate-binding protein galectin 1 was confirmed 

to be equally present on unstimulated and cytokine stimulated EVs from CardAP cells as 

determined by flow cytometry as well as LC/ESI-MS (Figure 15 and 16). This protein does not 

only play a role in enhancing angiogenesis, migration, and growth but also in modulating 

immune responses [160–164]. An immune modulating feature would be a great benefit for a 

therapeutic approach, such as the application of allogenic EVs, to treat MI, heart failure or other 

CVDs involving a chronic inflammation [165]. This is reasoned by the fact that prolonged or 

chronic inflammation severely opposes the regenerative process in damaged cardiac tissue [27]. 

Hence, a reduced inflammatory milieu in the damaged cardiac tissue would subsequently 

increase the regenerative process and eventually also the cardiac function. 
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5.2.2 Could both isolated CardAP EVs enhance the cardiac function by 
modulating inflammatory immune responses?    

In order to investigate this important feature for the intended allogenic approach, the interaction 

of EVs from CardAP cells with cells of the immune system and their impact on key immune 

responses was analysed in detail by different in vitro settings.  

Indeed, a significantly reduced inflammatory immune response profile was observed for PBMCs 

treated with either unstimulated or cytokine stimulated EVs from CardAP cells when their T 

cell was engaged via the simultaneous application of anti-CD3. The main effects included next 

to reduced CD4+ and CD8+ T cell proliferation (Figure 31), increased frequencies of regulatory 

T cells (Figure 32), also reduced concentrations of pro-inflammatory cytokines, and enhanced 

concentrations of anti-inflammatory cytokines (Figure 33). Herein, cytokine stimulated EVs 

presented by trend a stronger attenuating effect on induced immune responses than their 

unstimulated counterpart. Furthermore, the immune modulating capability of EVs from 

CardAP cells does not seem to depend on the immune stimulating agent, since similar effects 

regarding cytokine profile and T cell proliferation have also been demonstrated in lectin 

stimulated PBMC cultures (Appendix Figure 1).   

In general, it is controversially discussed how EVs from regenerative cells influence T cell 

proliferation in induced immune responses, since they were shown to diminishing or unchanged 

the induced proliferation [62,105,107,109,110,127,130,166]. Despite heterogeneities within 

studies, likr different EV isolation procedures, assay settings, or sources of immune cells, all 

studies documented lowered pro-inflammatory cytokine concentrations of at least one of the 

following cytokines: IFNγ, TNFα, IL-1β, or IL-17 [108,127,130,167]. In accordance, EVs from 

CardAP cells were also significantly reducing the concentration of IFNγ, TNFα and by trend 

also IL-1ß (Figure 33). Moreover, EV treatment resulted in significantly enhanced 

concentrations of active TGFß, while cytokine stimulated EVs also significantly accelerated 

another anti-inflammatory cytokine, namely IL-10, in those induced immune responses (Figure 

33). Elevated IL-10 and TGFß concentrations are a well-described phenomenon in studies of 

stimulated immune cells treated with EVs from MSCs or glioma stem cells [108,110,166]. In vivo 

studies of CardAP cells itself documented that their application already enhanced IL-10 

concentrations [60], which in light of the current study seems to be facilitated in a paracrine 

manner by their released EVs.  

Furthermore, galectin 1 may play a crucial role in all these cumulative immune modulating 

observations. For example, Gieseke et al. revealed that otherwise immune modulating MSCs 

failed to reduce T cell proliferation or pro-inflammatory cytokine release in induced immune 

responses of PBMCs in vitro when their galectin-1 expression was abolished [164]. Moreover, 

the binding of galectin 1 to an early activation marker on T cells, namely CD69, was shown to 

initiate a signalling cascade that leads to the promotion of regulatory T cell development and 

reduced pro-inflammatory Th1/Th17 T cell activation as recently reviewed [168]. A likewise 

shift in the T helper cell population can be hypothesized for the treatment of stimulated PBMC 

cultures with EVs from CardAP cells. This is supported on the one hand by reduced pro-

inflammatory cytokine concentrations, which may originate from pro-inflammatory Th1/Th17 



Chapter V                                                                                                                       DISCUSSION 

 

 

84 

 

population. On the other hand, it was possible to show significantly increased frequencies of 

regulatory T cells (CD3+ CD4+ CD127- CD25++ Foxp3+ cells) upon treatment with CardAP EVs 

(Figure 32). The increased levels of IL-10 and active TGF-ß in anti-CD3 stimulated PBMC 

cultures upon CardAP EV treatment already hinted towards a possible increase of regulatory T 

cells, because both cytokines are known to be highly expressed by this certain T cell subset 

[169,170]. The application of CardAP cells itself in an angiotensin II systolic heart failure model 

significantly increased the number of regulatory T cells [60]. Taking results from the current 

study into consideration, it seems plausible that CardAP cells facilitated this effect also in a 

paracrine manner. Nevertheless, it is not a novel observation that EVs from regenerative cells 

boost regulatory T cell frequencies in immune cell cultures, as several studies illustrated this 

feature for EVs from MSCs [108,127,167]. However, our present study demonstrated that 

CD14+ immune cells are essential for the immune modulating feature of cardiac derived  EVs. 

CD14+ cells were not only observed to be the major recipient of fluorescently labelled EVs from 

CardAP cells in unstimulated PBMC cultures (Figure 34), but also that their surface expression 

profile changed significantly after exposure to EVs. Those changes included the significant 

upregulation of CD14, PD-L1, CD206 as well as the significant downregulation of HLA-DR, 

CD86, and CD163 (Figure 35). Co-cultures of fluorescently labelled MSCs with PBMCs in a 

trans-well culture system already showed that CD14+ cells are the main immune cell population 

that exhibited fluorescence signals of paracrine released factors from MSCs [130]. This 

observation was further corroborated by results from interaction analysis of isolated EVs from 

MSCs with PBMCs [108]. Moreover, studies from other groups presented similar changes of 

CD14 expressing monocytes or macrophages on protein or mRNA level of at least one of the 

above mentioned markers upon treatment with EVs from glioma stem cells [166] or MSCs 

[109,171]. IT for example includes the significantly increased CD206 expression on isolated 

macrophages upon treatment with EVs from MSCs [171]. Already the phagocytosis of MSCs 

shifted the monocyte phenotype towards a similar immune regulatory phenotype with higher 

mRNA expression levels for PD-L1 and CD206 [172]. Likewise, in a study by Dam et al. the co-

culturing of human CPCs with monocytes led to a significantly reduced expression of HLA-DR 

and CD86 [70]. Although the findings on those two proteins match our observations, a 

contrarily decreased expression for CD206 on the surface of monocytes was determined. 

Whether this observation is a consequence of a direct cell-cell interaction needs further 

exploration. However, it seems likely in reflection to our results that CPCs preferentially use a 

paracrine mechanism to downregulate HLA-DR and CD86. Interestingly, the study from Dam 

et al. also observed that the down-regulation was facilitated independent of a IFN pre-treatment 

of CPCs [70], which is consistent with our results of isolated EVs from a different regenerative 

cardiac cell type. The so far described in vitro effects were also possible to be verified in in vivo 

models by the application of MSC EVs [171]. Here, markers characteristic for anti-inflammatory 

macrophages, referred to as M2-type macrophages, were increased after the treatment with MSC 

EVs in a murine cardio-toxin induced injury model. Furthermore, the enhanced regenerative 

potential of skeletal muscles was associated with the induction of those macrophages by MSC 

EVs. 
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In the present study, also the treatment of CD14+ cells with either unstimulated or cytokine 

stimulated CardAP EVs induced a phenotype similar to anti-inflammatory macrophages. First 

of all, we did not hindered the differentiation of CD14+ cells within unstimulated PBMC 

cultures towards macrophages, which was for example prevented by others via blocking the 

adherence of monocytes to the tissue culture plate [172]. Secondly, the changed expression of 

surface proteins would support evidence of an M2-type of the CD14+ cells (Figure 35). In 

accordance to our flow cytometry results, other studies showed that M2-type macrophages 

significantly increased CD14 itself on mRNA level, significantly reduced the surface expression 

of HLA-DR and CD86, while expressing higher amounts of surface CD206 and PD-L1 

[30,31,43,173,174]. In the current study, the scavenger receptor CD163 was found to be 

significantly reduced in its expression. This observation does not necessarily contradict an 

induction of M2-type macrophages by CardAP EVs, since this receptor is not restricted to this 

macrophage subset [175]. Thirdly, PBMC cultures demonstrated significantly elevated IL-10 

concentrations when exposed to isolated CardAP EVs (Figure 33). This anti-inflammatory 

cytokine was shown to promote the polarization of M2-type macrophages and fibroblast 

activation in vivo [29]. Moreover, a rather anti-inflammatory environment is illustrated when 

taking into account that pro-inflammatory cytokines, such as IFNy, were not detectable in these 

immune cell cultures. Further evidence for a provoked M2-type macrophage type is provided 

by the treatment of purified CD14+ cells with isolated CardAP EVs. Although IL-10 was not 

detectable under a shorter treatment period, a significantly enhanced release of IL-1RA (Figure 

38) and a likewise phenotypical change (Appendix Figure 2) was determined for cultures of 

purified CD14+ cells treated with CardAP EVs. The immunosuppressive molecule IL-1RA is 

described to be used by M2-type macrophages itself [30] as well as by MSCs to polarize 

macrophages towards this macrophage type [176]. Overall, it would be advantageous for a 

potential therapeutic approach of CardAP EVs to facilitate a M2-type polarization, because 

these macrophages not only secrete anti-inflammatory cytokines and chemokines but also 

growth factors [177]. Moreover, it was shown that these macrophages and their released factors 

enhanced the myocardial repair including via resolved inflammation [28,29,178,179]. Despite of 

all these beneficial effects, further studies must be conducted to clarify the extent to which they 

have the potential to induce unwanted fibrosis. As such, it was shown for CD206+ macrophages 

to promote fibrosis [180], which can have detrimental effects on the heart function by enhanced 

stiffness of the tissue [45].   

This raises the question how CardAP EVs facilitated the M2-type macrophage polarization. 

Again, the identified galectin-1 on CardAP EVs may play a role, as monocytes or macrophages 

significantly diminished HLA-DR expression, diminished their NO and IL-6 release, and 

increased arginase release even in the presence of IFNγ stimulation when the medium was 

supplemented with galectin-1 [181,182]. In order to investigate whether galectin-1 transported 

by CardAP EVs contribute to the changes of CD14+ cells, competitive binding assays were 

performed by supplementing the culture medium with thiodigalactoside (TDG). It was already 

shown that the binding of TDG to galectin-1 supresses its feature in tumor progression or in 

the fat metabolism of adipocytes in vivo [183,184]. Although the expression of HLA-DR could 

be restored and even elevated in CD14+ cells treated with CardAP EVs by TDG addition, it 

cannot be concluded that galectin-1 inhibition was the trigger (Appendix Figure 2). This is 
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reasoned by the fact that already the treatment with TDG and its vehicle solution (here DMSO) 

increased the expression of HLA-DR on CD14+ cells. Likewise, CD206 was upregulated on 

CD14+ cells treated with CardAP EVs, however, the supplementation of TDG or DMSO alone 

showed already on its own an induction of this particular protein. Future experiments hopefully 

can overcome this issue, for example, by separating galectin-1 positive and negative EVs via 

affinity purification or  by performing similar assays with the recent published DNA aptomere 

inhibitor for galectin-1 [185] .  

It can be speculated that also other transported proteins are involved in priming M2-type 

macrophages by CardAP EVs, like annexin 1 that was identified by LC/ESI-MS. This particular 

member of the annexin family has been shown to enable a polarization towards M2-type 

macrophages [186,187]. The tetraspanins transported by EVs from CardAP cells could own a 

probable role, since they are involved in antigen-presentation and internalization of HLA-DR 

[188]. EVs derived from melanoma or glioblastoma stem cells demonstrated an upregulation of 

PD-L1 on macrophages or immature myeloid cells via phosphorylated STAT3 that was already 

transported by the EVs or in a TLR4 dependent manner [174]. Once more, next to proteins 

also different miRNAs were described to contribute to the process of macrophage polarization 

[43]. Different studies showed that M2-type macrophages upregulate miRNA 146a, miRNA 

132, miRNA 342-3p and miRNA 494 [189–191]. Interestingly, these miRNAs were also found 

in isolated CardAP EVs at comparable or for miRNA 494 at significantly increased levels in 

cytokine stimulated EVs as determined by miRNA expression assay and qRT-PCR (Figure 18). 

It could be hypothesized that the delivery of those transported miRNAs by CardAP EVs to 

CD14+ cells affects their polarization. EVs from MSCs and CPCs were also shown to transport 

diverse miRNAs including miRNA 146a [103,110,154,156,192]. The spectrum of transported 

miRNAs is not limited to affect monocytes, as such, miRNA 29a/b, which both were identified 

in CardAP EVs (Appendix Table 2), were shown to target T-bet, Eomes and IFNγ in T cells 

that subsequently suppressed the polarization towards the T cell subset of Th1 cells [193]. 

Although CardAP EVs were found to interact predominantly with CD14+ cells, an inferior 

interaction with T cells was detected (Appendix Figure 4). Thus, it appears plausible that 

miRNA could be transferred to T cells and thereby affecting this cell population directly.    

The consequences of CD14+ cell priming by CardAP EVs for induced T cell responses was 

investigated in the current study by an adaptation of the performed in vitro immunomodulation 

assay that used purified CD14+ and CD3+ cells instead of complete PBMCs. Anti-CD3 

stimulated monocultures of purified T cells failed to replicate the immune modulating effects 

under CardAP EV treatment as neither T cell proliferation (Figure 36) nor cytokine release 

(Figure 37) were affected. However, the immune modulating features of EVs were restored 

when anti-CD3 stimulated T cells were co-cultured with CardAP EV primed CD14+ cells. It 

included reduced CD4+ and CD8+ T cell proliferation (Figure 36) as well as reduced pro-

inflammatory cytokines (Figure 37). Cosenza et al. noted for murine MSC EVs a likewise effect 

in PBMCand purified T cell cultures [107]. Although no EV-cell interaction assays were 

conducted in this study, we could hypothesize that the missing T cell proliferation mediation by 

EVs from MSCs in purified T cell cultures is linked to the absence of CD14+ cells as major 

immune modulator of EVs. Murine melanoma EVs were recently shown to upregulate PD-L1 
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on mouse immature myeloid cells [194]. Interestingly, this upregulation was shown to contribute 

significantly to reduced CD8+ T cell proliferation in anti-CD3/anti-CD28 stimulated co-cultures 

of purified CD8+ T cells with primed immature myeloid cells. Also we observed a significant 

increased expression of PD-L1 on the surface of CD14+ cells treated with unstimulated and 

cytokine stimulated EVs from CardAP cells (Figure 35), which might be contributed to the 

observed reduced T cell proliferation in both PBMC cultures as well as in co-cultures of primed 

CD14+ cells with purified T cells. It is well-known that the binding of PD-L1 with the 

corresponding receptor PD-1 on T cells mediates the suppression of T cell proliferation and 

induction of apoptosis [195]. Although we were not able to detect PD-L1 on isolated CardAP 

EVs, it was indeed shown that EVs of MSCs present this molecule on their surface with a 

supposed function in immunomodulation [163]. Furthermore, the downregulation of HLA-DR 

and CD86 would impair the antigen-presenting features of monocytes/macrophages within co-

cultures with T cells or in complete PBMC cultures. Additionally, the suppression of immune 

responses might be mediated by primed CD14+ cells in a paracrine manner, which includes next 

to cytokines and chemokines also EVs released by the immune cell itself that interact with the 

other immune cell subsets [97]. In the current study, we were able to show that primed CD14+ 

cells elevated the concentrations of IL-1RA (Figure 38). Beside several other functions, this 

receptor antagonist has been also shown to induce regulatory T cell development [196]. Indeed, 

we were able to observe higher frequencies of regulatory T cells not only in PBMC cultures 

treated with CardAP EVs but also in cultures with EV primed monocytes cultivated with 

isolated T cells (Figure 38). This enhanced frequency appeared to be independent of accelerated 

IL-10 concentrations as this cytokine could not be detected in primed monocyte cultures and 

IL-10 was significantly reduced in co-cultures of T cells with CD14+ cells that were primed with 

cytokine stimulated EVs from CardAP cells (Figure 37). One study already proposed a 

monocyte-dependent mechanism how MSC EVs induce regulatory T cell 

proliferation/frequencies [167], which we could verify for EVs from cardiac mesenchymal-like 

cells.  

Overall, it seems like unstimulated as well as cytokine stimulated EVs from CardAP cells are 

potent immune modulators of inflammatory immune responses by promoting an anti-

inflammatory phenotype of CD14+ cells. For that reason it seems plausible that CardAP EVs 

can contribute to an enhanced regenerative process in damaged and chronic inflamed cardiac 

tissue. 

5.2.3 Would an allogenic approach be feasible for the isolated CardAP 
EVs? 

After several therapeutically valuable features were identified to be facilitated by isolated 

CardAP EVs, it remained to be answered whether they would be suitable for an allogenic 

approach. Already, CardAP cells itself indicated their usage as an allogenic therapeutic tool by 

their low immunogenicity. This was indicated by the absent surface expression of HLA-DR, 

which persists even after a three-day exposure to the pro-inflammatory cytokine cocktail of 

IFNγ, TNFα and IL-1β (data not shown). Indeed, this low immunogenic phenotype was 

preserved for their released EVs. Unstimulated as well as cytokine stimulated EVs showed very 

low levels of HLA-ABC and a complete absence of HLA-DR and other HLA molecules as 
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analysed by flow cytometry (Figure 15) or LC/ESI-MS (Appendix Table 1). Moreover, the in 

vitro exposure of EVs from different CardAP donors to diverse PBMC donors did not cause 

any pro-inflammatory immune response. Neither unstimulated nor cytokine stimulated CardAP 

EVs provoked the proliferation of CD4+ or CD8+ T cells in otherwise unstimulated PBMC 

cultures (Figure 28), which would strengthen the proof of a low immunogenicity of CardAP 

EVs. In accordance to our observation, also no induction of T cell proliferation was observed 

for EVs from MSCs in mouse spleenocyte cultures [167] nor in human PBMC cultures exposed 

to EVs from amniotic fluid stem cells [197]. Additionally, we investigated CD4+ T cells for 

changes of early (CD69), immediate (CD25) and late (HLA-DR) activation markers upon 

CardAP EV treatment. Indeed, neither unstimulated nor cytokine stimulated EVs from CardAP 

cells induced CD4+ T cell activation as no marker was altered in its expression level (Figure 

29). The absence of T cell activation additionally supports the lack of an adverse immune 

reaction towards allogenic EVs. Interestingly, the treatment of unstimulated PBMCs with 

CardAP EVs was accompanied by a significant enhanced frequency of CD4+ CD25+ CD62L+ 

cells (Figure 30). Earlier studies termed this subset “regulatory T cells” and demonstrated their 

immune modulating capacities by enhanced protection from severe graft versus host disease 

[198–200]. Further evidence for a safe use of CardAP EVs is indicated by the observation that 

the pro-inflammatory cytokine IFNγ could not be detected in neither unstimulated nor cytokine 

stimulated EV treated PBMC or purified CD14+ cultures. In contrast, anti-inflammatory 

molecules, such as IL-10 or IL-1RA, were determined in these cultures (Figure 29 and 38). 

Interestingly, higher frequencies of CD14+ cells were observed in PBMC cultures treated with 

EVs after five days (Figure 35). This is especially surprising when taking into account that IL-10 

concentrations were upregulated in those cultures. Normally IL-10 secretion triggers apoptosis 

of the secreting monocyte [201]. We hypothesize that the galectin 1 transported by EVs from 

CardAP cells abolishes the IL-10 induced apoptosis, as reports documented the anti-apoptotic 

feature of galectin-1 in this scenario in vitro [202]. So far, no information is available whether 

allogenic EVs from regenerative cells induce adverse effects in vivo. In initial experiments, we 

have not observed adverse effects in the application of two different concentrations of CardAP 

EVs to C57black/6 mice. The treated mice did not lose weight nor did their cardiac tissue 

exhibit elevated mRNA expression levels for pro-inflammatory cytokines or fibrotic markers 

(Appendix Figure 3). Thus, it seems as if CardAP EVs do not provoke an adverse immune 

reaction in vitro and in vivo, which would subsequently support an allogenic therapeutic approach.  

5.3 Summary & Outlook 

In conclusion, we could demonstrate that unstimulated as well as cytokine stimulated EVs from 

CardAP cells exhibit a low immunogenicity, are in vitro capable to modulate inflammatory 

immune responses, diminish apoptosis and enhance angiogenesis. This combination of features 

would enable their future safe usage in allogenic therapies for the treatment of cardiac diseases, 

such as myocardial infarct or heart failure. Moreover, their capability to derive a pro-regenerative 

phenotype of CD14+ cells as well as to enhance regulatory T cells could be valuable for the 

treatment of adverse immune processes. However, it needs to be further elucidated when a 

therapy is contraindicated. For example, do EVs have beneficial or tremendous effect for co-

morbidities of CVDs? What happens when the patient is suffering from an infection with 
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pathogens or cancer? Should it be avoided since the induced anti-inflammatory milieu 

contributes to the survival of pathogens or tumours due to a reduced immune defence? Only 

future experiments in different animal disease models will provide the final conclusion on 

whether clinical trials with CardAP EVs should be advanced and under which circumstances it 

would be contraindicated. Furthermore, potent targets, such as galectin 1, CXCR4, miRNA 

302d-3p, and others, were identified to play a major role in the induced beneficial effects by our 

current and other studies. A prospect advanced approach could probably enhance efficacy by 

selecting and enhancing those targets either via modifications of the cellular source or via 

adapted purification of EVs, e.g. positive negative selection for surface proteins. Moreover, new 

targets could be identified in isolated EVs from CardAP cells by evaluating other transported 

molecules, such as lipids, mRNA, growth factors, or chemokines, which were so far neglected 

in the current study. A methodological change in the isolation procedure would enhance the 

knowledge whether small EVs or their co-isolated proteins are the driving force for each 

beneficial effect. It seems likely that at least the immune modulating feature might be caused by 

the small EVs, since a recent study observed this feature for small EVs but not for their co-

isolated proteins [203]. However, the field of corona proteins will also gain more attention in 

the future of EV research, because the protein corona of synthesized particles has been 

observed to influence the efficiency as well as the delivery to target cells [135,136]. A targeted 

and sufficient delivery of EVs to the desired recipient cells might solve different obstacles in 

EV research. As such, it could help to overcome the need of great amounts of isolated EVs for 

therapeutic approaches, especially allogenic ones, in humans. 

In order to further characterize the functional effects of CardAP EVs, it would be interesting 

to elucidate whether they can affect tissue resident immune cells or so far neglected immune 

cell subsets, such as natural killer cells or eosinophils. A side by side comparison with EVs from 

CardAP cells and MSCs could deliver valuable information whether similar or different 

pathways are used to achieve the same beneficial effects. These results could probably enrich 

the repertoire of potent target molecules transported by EVs. Additionally, the application of 

different conditions during the EV biogenesis would be a promising future experiment. In the 

current study, we solely investigated the impact of an inflammatory milieu on released cardiac 

EVs. Other scenarios could for example include the reduction of oxygen. EVs from MSCs 

showed an even greater pro-angiogenic feature than their normoxic counterpart [115], which 

we could also demonstrate for EVs from another cardiac cell type (unpulished data). Current 

and future studies on EVs from regenerative cells will help to uncover their therapeutic potential 

and thus overcome the consequences of the pandemic of cardiovascular diseases.



Chapter VI                                                                                                                       REFERENCES 

 

90 

 

6. List of references 
1.  Haddad, F.; Berry, G.; Doyle, R.L.; Martineau, P.; Leung, T.K.; Racine, N. Active Bacterial 

Myocarditis: A Case Report and Review of the Literature. J. Hear. Lung Transplant. 2007, 26, 745–
749. 

2.  Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute myocardial infarction. Lancet 2017, 389, 197–210. 
3.  Van Linthout, S.; Stamm, C.; Schultheiss, H.-P.; Tschöpe, C. Mesenchymal stem cells and 

inflammatory cardiomyopathy: cardiac homing and beyond. Cardiol. Res. Pract. 2011, 2011, 
757154. 

4.  Leong, Y.Y.; Ng, W.H.; Ellison-Hughes, G.M.; Tan, J.J. Cardiac Stem Cells for Myocardial 
Regeneration: They Are Not Alone. Front. Cardiovasc. Med. 2017, 4. 

5.  Statistiken zur Organspende für Deutschland und Europa Available online: 
https://www.organspende-info.de/zahlen-und-fakten/statistiken.html (accessed on Aug 23, 
2020). 

6.  World Health Organization World Health Statistics 2018: Monitoring Health for the SDGs. Sustainable 
development goals.; 1st ed.; Geneva, 2018; ISBN 9789241565585. 

7.  Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 
2030. PLoS Med. 2006, 3, e442. 

8.  Bloom, D.E.; Cafiero, E.; Jané-Llopis, E.; Abrahams-Gessel, S.; Bloom, L.R.; Fathima, S.; Feigl, 
A.B.; Gaziano, T.; Hamandi, A.; Mowafi, M.; et al. The Global Economic Burden of Noncommunicable 
Diseases; 2011; 

9.  Schneider, M.; Stamm, C.; Brockbank, K.G.M.; Stock, U.A.; Seifert, M. The choice of 
cryopreservation method affects immune compatibility of human cardiovascular matrices. Sci. 
Rep. 2017, 7, 1–14. 

10.  Becker, M.; Maring, J.A.; Schneider, M.; Martin, A.X.H.; Seifert, M.; Klein, O.; Braun, T.; Falk, 
V.; Stamm, C. Towards a novel patch material for cardiac applications: Tissue-specific 
extracellular matrix introduces essential key features to decellularized amniotic membrane. Int. J. 
Mol. Sci. 2018, 19, 1032. 

11.  Madonna, R.; Van Laake, L.W.; Botker, H.E.; Davidson, S.M.; De Caterina, R.; Engel, F.B.; 
Eschenhagen, T.; Fernandez-Aviles, F.; Hausenloy, D.J.; Hulot, J.S.; et al. ESC working group 
on cellular biology of the heart: Position paper for Cardiovascular Research: Tissue engineering 
strategies combined with cell therapies for cardiac repair in ischaemic heart disease and heart 
failure. Cardiovasc. Res. 2019, 115, 488–500. 

12.  Ke, N.; Pi, L.H.; Liu, Q.; Chen, L. Long noncoding RNA SNHG7 inhibits high glucose-induced 
human retinal endothelial cells angiogenesis by regulating miR-543/SIRT1 axis. Biochem. Biophys. 
Res. Commun. 2019, 514, 503–509. 

13.  Miteva, K.; Haag, M.; Peng, J.; Savvatis, K.; Becher, P.M.; Seifert, M.; Warstat, K.; Westermann, 
D.; Ringe, J.; Sittinger, M.; et al. Human cardiac-derived adherent proliferating cells reduce 
murine acute coxsackievirus B3-induced myocarditis. PLoS One 2011, 6, (article e28513)1-16. 

14.  Montanari, S.; Dayan, V.; Yannarelli, G.; Billia, F.; Viswanathan, S.; Connelly, K.A.; Keating, A. 
Mesenchymal stromal cells improve cardiac function and left ventricular remodeling in a heart 
transplantation model. J. Hear. Lung Transplant. 2015, 34, 1481–1488. 

15.  Martin-Rendon, E.; Gyöngyösi, M. Mesenchymal stromal cell therapy as treatment for ischemic 
heart failure: the MSC-HF study. Cardiovasc. Diagn. Ther. 2017, 7, S69–S72. 

16.  Malliaras, K.; Li, T.S.; Luthringer, D.; Terrovitis, J.; Cheng, K.; Chakravarty, T.; Galang, G.; 
Zhang, Y.; Schoenhoff, F.; Van Eyk, J.; et al. Safety and efficacy of allogeneic cell therapy in 
infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 2012, 125, 
100–112. 

17.  Minicucci, M.F.; Azevedo, P.S.; Polegato, B.F.; Paiva, S.A.R.; Zornoff, L.A.M. Heart Failure 
After Myocardial Infarction: Clinical Implications and Treatment. Clin. Cardiol. 2011, 34, 410–
414. 

18.  Cheng, W.; Kajstura, J.; Nitahara, J.A.; Li, B.; Reiss, K.; Liu, Y.; Clark, W.A.; Krajewski, S.; Reed, 
J.C.; Olivetti, G.; et al. Programmed myocyte cell death affects the viable myocardium after 
infarction in rats. Exp. Cell Res. 1996, 226, 316–327. 



Chapter VI                                                                                                                       REFERENCES 

 

91 

 

19.  Humeres, C.; Frangogiannis, N.G. Fibroblasts in the Infarcted, Remodeling, and Failing Heart. 
JACC Basic to Transl. Sci. 2019, 4, 449–467. 

20.  Yan, X.; Anzai, A.; Katsumata, Y.; Matsuhashi, T.; Ito, K.; Endo, J.; Yamamoto, T.; Takeshima, 
A.; Shinmura, K.; Shen, W.; et al. Temporal dynamics of cardiac immune cell accumulation 
following acute myocardial infarction. J. Mol. Cell. Cardiol. 2013, 62, 24–35. 

21.  Li, X.; Ren, Y.; Sorokin, V.; Poh, K.K.; Ho, H.H.; Lee, C.N.; de Kleijn, D.; Lim, S.K.; Tam, J.P.; 
Sze, S.K. Quantitative profiling of the rat heart myoblast secretome reveals differential responses 
to hypoxia and re-oxygenation stress. J. Proteomics 2014, 98, 138–149. 

22.  Hu, X.; Dai, S.; Wu, W.J.; Tan, W.; Zhu, X.; Mu, J.; Guo, Y.; Bolli, R.; Rokosh, G. Stromal cell-
derived factor-1α confers protection against myocardial ischemia/reperfusion injury: Role of the 
cardiac stromal cell-derived factor-1α-CXCR4 axis. Circulation 2007, 116, 654–663. 

23.  Westermann, D.; Savvatis, K.; Schultheiss, H.P.; Tschöpe, C. Immunomodulation and matrix 
metalloproteinases in viral myocarditis. J. Mol. Cell. Cardiol. 2010, 48, 468–473. 

24.  Gwechenberger, M.; Mendoza, L.H.; Youker, K.A.; Frangogiannis, N.G.; Wayne Smith, C.; 
Michael, L.H.; Entman, M.L. Cardiac myocytes produce interleukin-6 in culture and in viable 
border zone of reperfused infarctions. Circulation 1999, 99, 546–551. 

25.  Ono, K.; Matsumori, A.; Shioi, T.; Furukawa, Y.; Sasayama, S. Cytokine Gene Expression After 
Myocardial Infarction in Rat Hearts. Circulation 1998, 98, 149–156. 

26.  Ong, S.B.; Hernández-Reséndiz, S.; Crespo-Avilan, G.E.; Mukhametshina, R.T.; Kwek, X.Y.; 
Cabrera-Fuentes, H.A.; Hausenloy, D.J. Inflammation following acute myocardial infarction: 
Multiple players, dynamic roles, and novel therapeutic opportunities. Pharmacol. Ther. 2018, 186, 
73–87. 

27.  de Lemos, J.A.; Morrow, D.A.; Blazing, M.A.; Jarolim, P.; Wiviott, S.D.; Sabatine, M.S.; Califf, 
R.M.; Braunwald, E. Serial Measurement of Monocyte Chemoattractant Protein-1 After Acute 
Coronary Syndromes: Results From the A to Z Trial. J. Am. Coll. Cardiol. 2007, 50, 2117–2124. 

28.  ter Horst, E.N.; Hakimzadeh, N.; van der Laan, A.M.; Krijnen, P.A.J.; Niessen, H.W.M.; Piek, 
J.J. Modulators of Macrophage Polarization Influence Healing of the Infarcted Myocardium. Int. 
J. Mol. Sci. 2015, 16, 29583–29591. 

29.  Jung, M.; Ma, Y.; Iyer, R.P.; DeLeon-Pennell, K.Y.; Yabluchanskiy, A.; Garrett, M.R.; Lindsey, 
M.L. IL-10 improves cardiac remodeling after myocardial infarction by stimulating M2 
macrophage polarization and fibroblast activation. Basic Res. Cardiol. 2017, 112, 1–14. 

30.  Shapouri-Moghaddam, A.; Mohammadian, S.; Vazini, H.; Taghadosi, M.; Esmaeili, S.A.; Mardani, 
F.; Seifi, B.; Mohammadi, A.; Afshari, J.T.; Sahebkar, A. Macrophage plasticity, polarization, and 
function in health and disease. J. Cell. Physiol. 2018, 233, 6425–6440. 

31.  Mantovani, A.; Biswas, S.K.; Galdiero, M.R.; Sica, A.; Locati, M. Macrophage plasticity and 
polarization in tissue repair and remodelling. J. Pathol. 2013, 229, 176–185. 

32.  Kimura, W.; Xiao, F.; Canseco, D.C.; Muralidhar, S.; Thet, S.; Zhang, H.M.; Abderrahman, Y.; 
Chen, R.; Garcia, J.A.; Shelton, J.M.; et al. Hypoxia fate mapping identifies cycling 
cardiomyocytes in the adult heart. Nature 2015, 523, 226–230. 

33.  Bergmann, O.; Bhardwaj, R.D.; Bernard, S.; Zdunek, S.; Barnabé-Heide, F.; Walsh, S.; Zupicich, 
J.; Alkass, K.; Buchholz, B.A.; Druid, H.; et al. Evidence for cardiomyocyte renewal in humans. 
Science (80-. ). 2009, 324, 98–102. 

34.  Wang, L.; Meier, E.M.; Tian, S.; Lei, I.; Liu, L.; Xian, S.; Lam, M.T.; Wang, Z. Transplantation of 
Isl1+ cardiac progenitor cells in small intestinal submucosa improves infarcted heart function. 
Stem Cell Res. Ther. 2017, 8, 230. 

35.  Hu, G.; Ma, L.; Dong, F.; Hu, X.; Liu, S.; Sun, H. Inhibition of microRNA-124-3p protects 
against acute myocardial infarction by suppressing the apoptosis of cardiomyocytes. Mol. Med. 
Rep. 2019, 20, 3379–3387. 

36.  Emanueli, C.; Shearn, A.I.U.; Angelini, G.D.; Sahoo, S. Exosomes and exosomal miRNAs in 
cardiovascular protection and repair. Vascul. Pharmacol. 2015, 71, 24–30. 

37.  Xiao, J.; Pan, Y.; Li, X.H.; Yang, X.Y.; Feng, Y.L.; Tan, H.H.; Jiang, L.; Feng, J.; Yu, X.Y. Cardiac 
progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 
by targeting PDCD4. Cell Death Dis. 2016, 7, e2277. 

38.  Yellon, D.M.; Hausenloy, D.J. Myocardial reperfusion injury. N. Engl. J. Med. 2007, 357, 1121. 



Chapter VI                                                                                                                       REFERENCES 

 

92 

 

39.  Bolli, R.; Jeroudi, M.O.; Patel, B.S.; DuBose, C.M.; Lai, E.K.; Roberts, R.; McCay, P.B. Direct 
evidence that oxygen-derived free radicals contribute to postischemic myocardial dysfunction in 
the intact dog. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, 4695–4699. 

40.  Chen, L.; Wang, Y.; Pan, Y.; Zhang, L.; Shen, C.; Qin, G.; Ashraf, M.; Weintraub, N.; Ma, G.; 
Tang, Y. Cardiac progenitor-derived exosomes protect ischemic myocardium from acute 
ischemia/reperfusion injury. Biochem. Biophys. Res. Commun. 2013, 431, 566–71. 

41.  Honan, M.B.; Harrell, F.E.; Reimer, K.A.; Califf, R.M.; Mark, D.B.; Pryor, D.B.; Hlatky, M.A. 
Cardiac rupture, mortality and the timing of thrombolytic therapy: A meta-analysis. J. Am. Coll. 
Cardiol. 1990, 16, 359–367. 

42.  Hanifi, N.; Rezaee, E.; Rohani, M. Time-to-Treatment and Its Association With Complications 
and Mortality Rate in Patients With Acute Myocardial Infarction: A Prospective Cohort Study. J. 
Emerg. Nurs. 2020. 

43.  Wang, N.; Liang, H.; Zen, K. Molecular mechanisms that influence the macrophage M1-M2 
polarization balance. Front. Immunol. 2014, 5, 614. 

44.  Shiraishi, M.; Shintani, Y.; Shintani, Y.; Ishida, H.; Saba, R.; Yamaguchi, A.; Adachi, H.; Yashiro, 
K.; Suzuki, K. Alternatively activated macrophages determine repair of the infarcted adult murine 
heart. J. Clin. Invest. 2016, 126, 2151–2166. 

45.  Tschöpe, C.; Van Linthout, S. New Insights in (Inter)Cellular Mechanisms by Heart Failure with 
Preserved Ejection Fraction. Curr. Heart Fail. Rep. 2014, 11, 436–444. 

46.  Rienks, M.; Papageorgiou, A.P. Novel regulators of cardiac inflammation: Matricellular proteins 
expand their repertoire. J. Mol. Cell. Cardiol. 2016, 91, 172–178. 

47.  MM, L.; L, M.; C, P.; D, F.; BW, W.; JC, M.; J, G.; DJ, S. Safety of cell therapy with mesenchymal 
stromal cells (SafeCell): a systematic review and meta-analysis of clinical trials. PLoS One 2012, 7. 

48.  Berglund, A.K.; Fortier, L.A.; Antczak, D.F.; Schnabel, L. V. Immunoprivileged no more: 
Measuring the immunogenicity of allogeneic adult mesenchymal stem cells. Stem Cell Res. Ther. 
2017, 8. 

49.  Hoogduijn, M.J.; Dor, F.J.M.F. Mesenchymal stem cells: Are we ready for clinical application in 
transplantation and tissue regeneration? Front. Immunol. 2013, 4, 1–2. 

50.  Jin, H.; Bae, Y.; Kim, M.; Kwon, S.-J.; Jeon, H.; Choi, S.; Kim, S.; Yang, Y.; Oh, W.; Chang, J. 
Comparative Analysis of Human Mesenchymal Stem Cells from Bone Marrow, Adipose Tissue, 
and Umbilical Cord Blood as Sources of Cell Therapy. Int. J. Mol. Sci. 2013, 14, 17986–18001. 

51.  Denton, M.D.; Geehan, C.S.; Alexander, S.I.; Sayegh, M.H.; Briscoe, D.M. Endothelial cells 
modify the costimulatory capacity of transmigrating leukocytes and promote CD28-mediated 
CD4+ T cell alloactivation. J. Exp. Med. 1999, 190, 555–566. 

52.  Ingulli, E. Mechanism of cellular rejection in transplantation. Pediatr. Nephrol. 2010, 25, 61–74. 
53.  Auchincloss, H.; Lee, R.; Shea, S.; Markowitz, J.S.; Grusby, M.J.; Glimcher, L.H. The role of 

“indirect” recognition in initiating rejection of skin grafts from major histocompatibility complex 
class II-deficient mice. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 3373–3377. 

54.  Wang, P.; Liu, Z.; Wu, C.; Zhu, B.; Wang, Y.; Xu, H. Evaluation of CD86/CD28 and 
CD40/CD154 Pathways in Regulating Monocyte-Derived CD80 Expression During Their 
Interaction With Allogeneic Endothelium. Transplant. Proc. 2008, 40, 2729–2733. 

55.  Reddy, M.; Eirikis, E.; Davis, C.; Davis, H.M.; Prabhakar, U. Comparative analysis of lymphocyte 
activation marker expression and cytokine secretion profile in stimulated human peripheral blood 
mononuclear cell cultures: An in vitro model to monitor cellular immune function. J. Immunol. 
Methods 2004, 293, 127–142. 

56.  Friedenstein, A.J.; Chailakhjan, R.K.; Lalykina, K.S. THE DEVELOPMENT OF 

FIBROBLAST COLONIES IN MONOLAYER CULTURES OF GUINEA‐PIG BONE 
MARROW AND SPLEEN CELLS. Cell Prolif. 1970, 3, 393–403. 

57.  Caplan, A.I. Mesenchymal stem cells: Time to change the name! Stem Cells Transl. Med. 2017, 6, 
1445–1451. 

58.  Mummery, C.; Ward-van Oostwaard, D.; Doevendans, P.; Spijker, R.; Van den Brink, S.; Hassink, 
R.; Van der Heyden, M.; Opthof, T.; Pera, M.; Brutel de la Riviere, A.; et al. Differentiation of 
human embryonic stem cells to cardiomyocytes: Role of coculture with visceral endoderm-like 
cells. Circulation 2003, 107, 2733–2740. 



Chapter VI                                                                                                                       REFERENCES 

 

93 

 

59.  Detert, S.; Stamm, C.; Beez, C.; Diedrichs, F.; Ringe, J.; Van Linthout, S.; Seifert, M.; Tschöpe, 
C.; Sittinger, M.; Haag, M. The atrial appendage as a suitable source to generate cardiac-derived 
adherent proliferating cells for regenerative cell-based therapies. J. Tissue Eng. Regen. Med. 2018, 
12, e1404–e1417. 

60.  Miteva, K.; Van Linthout, S.; Pappritz, K.; Müller, I.; Spillmann, F.; Haag, M.; Stachelscheid, H.; 
Ringe, J.; Sittinger, M.; Tschöpe, C. Human Endomyocardial Biopsy Specimen-Derived Stromal 
Cells Modulate Angiotensin II-Induced Cardiac Remodeling. Stem Cells Transl. Med. 2016, 5, 
1707–1718. 

61.  Makkar, R.R.; Demaria, A.; Traverse, J.H.; Marbán, L.; Pogoda, J.M.; Henry, T.D.; Lima, J.A.; 
Smith, R.R.; Schatz, R.; Francis, G.S.; et al. ALLogeneic Heart STem Cells to Achieve Myocardial 
Regeneration (ALLSTAR) Trial: Rationale and Design. Cell Transplant. 2016, 26, 205–214. 

62.  van den Akker, F.; Vrijsen, K.R.; Deddens, J.C.; Buikema, J.W.; Mokry, M.; van Laake, L.W.; 
Doevendans, P.A.; Sluijter, J.P.G. Suppression of T cells by mesenchymal and cardiac progenitor 
cells is partly mediated via extracellular vesicles. Heliyon 2018, 4, e00642. 

63.  Wang, M.; Yu, Q.; Wang, L.; Gu, H. Distinct patterns of histone modifications at cardiac-specific 
gene promoters between cardiac stem cells and mesenchymal stem cells. Am. J. Physiol. Physiol. 
2013, 304, C1080–C1090. 

64.  Haag, M.; Ritterhoff, J.; Dimura, A.; Miteva, K.; Van Linthout, S.; Tschöpe, C.; Ringe, J.; Sittinger, 
M. Pro-Angiogenic Effect of Endomyocardial Biopsy-Derived Cells for Cardiac Regeneration. 
Curr. Tissue Eng. 2013, 2, 154–159. 

65.  Haag, M.; Stolk, M.; Ringe, J.; Linthout, S. Van; Tschöpe, C.; Sittinger, M.; Seifert, M. Immune 
attributes of cardiac-derived adherent proliferating (CAP) cells in cardiac therapy. J. Tissue Eng. 
Regen. Med. 2013, 7, 362–370. 

66.  Cheng, K.; Ibrahim, A.; Hensley, M.T.; Shen, D.; Sun, B.; Middleton, R.; Liu, W.; Smith, R.R.; 
Marban, E. Relative Roles of CD90 and c-Kit to the Regenerative Efficacy of Cardiosphere-
Derived Cells in Humans and in a Mouse Model of Myocardial Infarction. J. Am. Heart Assoc. 
2014, 3, e001260–e001260. 

67.  Haag, M.; Van Linthout, S.; Schröder, S.E.A.; Freymann, U.; Ringe, J.; Tschöpe, C.; Sittinger, M. 
Endomyocardial biopsy derived adherent proliferating cells - A potential cell source for cardiac 
tissue engineering. J. Cell. Biochem. 2010, 109, 564–575. 

68.  Savvatis, K.; van Linthout, S.; Miteva, K.; Pappritz, K.; Westermann, D.; Schefold, J.C.; Fusch, 
G.; Weithäuser, A.; Rauch, U.; Becher, P.-M.; et al. Mesenchymal stromal cells but not cardiac 
fibroblasts exert beneficial systemic immunomodulatory effects in experimental myocarditis. 
PLoS One 2012, 7, (article e41047)1-16. 

69.  Gerstenblith, G.; Johnston, P. V; Marbán, L.; Bonow, R.O.; Marbán, E.; Mendizabal, A.; Lardo, 
A.C.; Malliaras, K.; Wu, E.; Smith, R.R.; et al. Intracoronary Cardiosphere-Derived Cells After 
Myocardial Infarction. J. Am. Coll. Cardiol. 2013, 63, 110–122. 

70.  Dam, N.; Hocine, H.R.; Palacios, I.; DelaRosa, O.; Menta, R.; Charron, D.; Bensussan, A.; El 
Costa, H.; Jabrane-Ferrat, N.; Dalemans, W.; et al. Human Cardiac-Derived Stem/Progenitor 
Cells Fine-Tune Monocyte-Derived Descendants Activities toward Cardiac Repair. Front. 
Immunol. 2017, 8, (article 1413)1-16. 

71.  Marbán, E.; Malliaras, K. Mixed results for bone marrow-derived cell therapy for ischemic heart 
disease. JAMA - J. Am. Med. Assoc. 2012, 308, 2405–2406. 

72.  Fischer-Nielsen, A.; Ekblond, A.; Kofoed, K.F.; Haack-Sørensen, M.; Qayyum, A.A.; Mathiasen, 
A.B.; Kastrup, J.; Helqvist, S.; Jørgensen, E. Bone marrow-derived mesenchymal stromal cell 
treatment in patients with severe ischaemic heart failure: a randomized placebo-controlled trial 
(MSC-HF trial). Eur. Heart J. 2015, 36, 1744–1753. 

73.  Toma, C.; Pittenger, M.F.; Cahill, K.S.; Byrne, B.J.; Kessler, P.D.; Toma, C.; Pittenger, M.F.; 
Cahill, K.S.; Byrne, B.J.; Kessler, P.D. Human Mesenchymal Stem Cells Differentiate to a 
Cardiomyocyte Phenotype in the Adult Murine Heart. 2002, 93–98. 

74.  Wang, T.; Xu, Z.; Jiang, W.; Ma, A. Cell-to-cell contact induces mesenchymal stem cell to 
differentiate into cardiomyocyte and smooth muscle cell. Int. J. Cardiol. 2006, 109, 74–81. 

75.  Antonitsis, P.; Ioannidou-Papagiannaki, E.; Kaidoglou, A.; Papakonstantinou, C. In vitro 
cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role 



Chapter VI                                                                                                                       REFERENCES 

 

94 

 

of 5-azacytidine. Interact. Cardiovasc. Thorac. Surg. 2007, 6, 593–597. 
76.  Müller-Ehmsen, J.; Krausgrill, B.; Burst, V.; Schenk, K.; Neisen, U.C.; Fries, J.W.U.; Fleischmann, 

B.K.; Hescheler, J.; Schwinger, R.H.G. Effective engraftment but poor mid-term persistence of 
mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. 
J. Mol. Cell. Cardiol. 2006, 41, 876–884. 

77.  Eggenhofer, E.; Benseler, V.; Kroemer, A.; Popp, F.C.; Geissler, E.K.; Schlitt, H.J.; Baan, C.C.; 
Dahlke, M.H.; Hoogduijn, M.J. Mesenchymal stem cells are short-lived and do not migrate 
beyond the lungs after intravenous infusion. Front. Immunol. 2012, 3, 297. 

78.  He, J.; Cai, Y.; Luo, L.-M.; Liu, H.-B. Hypoxic adipose mesenchymal stem cells derived 
conditioned medium protect myocardial infarct in rat. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 
4397–4406. 

79.  Hynes, B.; Kumar, A.H.S.; O’Sullivan, J.; Klein Buneker, C.; Leblond, A.-L.; Weiss, S.; 
Schmeckpeper, J.; Martin, K.; Caplice, N.M. Potent endothelial progenitor cell-conditioned 
media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial 
infarction are mediated by insulin-like growth factor-1. Eur. Heart J. 2013, 34, 782–789. 

80.  Gnecchi, M.O.; He, H.; Liang, O.D.; Melo, L.G.; Morello, F.; Mu, H.; Noiseux, N.; Zhang, L.; 
Pratt, R.E.; Ingwall, J.S.; et al. Paracrine action accounts for marked protection of ioschemic heart 
by Akt-modified mesenchymal stem cells. Nat. Med. Swiss Med Wkly. Transplant. Nat. Neurol. Eur. 
J. Immunol. Reischl, I.G. al. Immunol. Lett 2005, 11, 367–368. 

81.  Chargaff, E.; West, R. The biological significance of the thromboplastic protein of blood. J Biol 
Chem 1946, 166, 189–97. 

82.  Wolf, P. The nature and significance of platelet products in human plasma. Br. J. Haematol. 1967, 
13, 269–288. 

83.  Lötvall, J.; Hill, A.F.; Hochberg, F.; Buzas, E.I.; Vizio, D. Di; Gardiner, C.; Gho, Y.S.; Kurochkin, 
I. V.; Mathivanan, S.; Quesenberry, P.; et al. Journal of Extracellular Vesicles. 2014,. 

84.  Fleury, A.; Martinez, M.C.; Le Lay, S. Extracellular vesicles as therapeutic tools in cardiovascular 
diseases. Front. Immunol. 2014, 5. 

85.  Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; 
Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of 
extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for 
Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7. 

86.  Osteikoetxea, X.; Balogh, A.; Szabó-Taylor, K.; Németh, A.; Szabó, T.G.; Pálóczi, K.; Sódar, B.; 
Kittel, Á.; György, B.; Pállinger, É.; et al. Improved characterization of EV preparations based 
on protein to lipid ratio and lipid properties. PLoS One 2015, 10. 

87.  Crescitelli, R.; Lässer, C.; Szabó, T.G.; Kittel, A.; Eldh, M.; Dianzani, I.; Buzás, E.I.; Lötvall, J. 
Distinct RNA profiles in subpopulations of extracellular vesicles: Apoptotic bodies, 
microvesicles and exosomes. J. Extracell. Vesicles 2013, 2. 

88.  Kowal, J.; Arras, G.; Colombo, M.; Jouve, M.; Morath, J.P.; Primdal-Bengtson, B.; Dingli, F.; 
Loew, D.; Tkach, M.; Théry, C. Proteomic comparison defines novel markers to characterize 
heterogeneous populations of extracellular vesicle subtypes. Proc. Natl. Acad. Sci. 2016, 113, 
E968–E977. 

89.  Théry, C.; Clayton, A.; Amigorena, S.; Raposo, G. Isolation and Characterization of Exosomes 
from Cell Culture Supernatants. In Current protocols in cell biology; John Wiley &Sons, Inc., 2006; 
Vol. Chapter 3, pp. 1–29 ISBN 1934-2616 (Electronic)r1934-2616 (Linking). 

90.  Jeppesen, D.K.; Fenix, A.M.; Franklin, J.L.; Higginbotham, J.N.; Zhang, Q.; Zimmerman, L.J.; 
Liebler, D.C.; Ping, J.; Liu, Q.; Evans, R.; et al. Reassessment of Exosome Composition. Cell 
2019, 177, 428-445.e18. 

91.  Van Deun, J.; Mestdagh, P.; Sormunen, R.; Cocquyt, V.; Vermaelen, K.; Vandesompele, J.; 
Bracke, M.; De Wever, O.; Hendrix, A. The impact of disparate isolation methods for 
extracellular vesicles on downstream RNA profiling. J. Extracell. Vesicles 2014, 3. 

92.  Sódar, B.W.; Kittel, Á.; Pálóczi, K.; Vukman, K. V.; Osteikoetxea, X.; Szabó-Taylor, K.; Németh, 
A.; Sperlágh, B.; Baranyai, T.; Giricz, Z.; et al. Low-density lipoprotein mimics blood plasma-
derived exosomes and microvesicles during isolation and detection. Sci. Rep. 2016, 6. 

93.  Liu, Y.; Defourny, K.A.Y.; Smid, E.J.; Abee, T. Gram-positive bacterial extracellular vesicles and 



Chapter VI                                                                                                                       REFERENCES 

 

95 

 

their impact on health and disease. Front. Microbiol. 2018, 9. 
94.  Rizzo, J.; Rodrigues, M.L.; Janbon, G. Extracellular Vesicles in Fungi: Past, Present, and Future 

Perspectives. Front. Cell. Infect. Microbiol. 2020, 10, 346. 
95.  Todorova, D.; Simoncini, S.; Lacroix, R.; Sabatier, F.; Dignat-George, F. Extracellular vesicles in 

angiogenesis. Circ. Res. 2017, 120, 1658–1673. 
96.  Sluijter, J.P.G.; Verhage, V.; Deddens, J.C.; Van Den Akker, F.; Doevendans, P.A. Microvesicles 

and exosomes for intracardiac communication. Cardiovasc. Res. 2014, 102, 302–311. 
97.  Théry, C.; Ostrowski, M.; Segura, E. Membrane vesicles as conveyors of immune responses. Nat. 

Rev. Immunol. 2009, 9, 581–593. 
98.  Andreu, Z.; Yáñez-Mó, M. Tetraspanins in extracellular vesicle formation and function. Front. 

Immunol. 2014, 5, (article 442)1-12. 
99.  Kowal, J.; Tkach, M.; Théry, C. Biogenesis and secretion of exosomes. Curr. Opin. Cell Biol. 2014, 

29, 116–125. 
100.  Sluijter, J.P.G.; Van Rooij, E. Exosomal MicroRNA Clusters Are Important for the Therapeutic 

Effect of Cardiac Progenitor Cells. Circ. Res. 2015, 116, 219–221. 
101.  Barile, L.; Milano, G.; Vassalli, G. Beneficial effects of exosomes secreted by cardiac-derived 

progenitor cells and other cell types in myocardial ischemia. Stem Cell Investig. 2017, 4, (article 
93)1-13. 

102.  Gray, W.D.; French, K.M.; Ghosh-Choudhary, S.; Maxwell, J.T.; Brown, M.E.; Platt, M.O.; 
Searles, C.D.; Davis, M.E. Identification of Therapeutic Covariant MicroRNA Clusters in 
Hypoxia-Treated Cardiac Progenitor CElls Exosomes Using Systems Biology. Circ. Res. 2015, 
116, 255–263. 

103.  Barile, L.; Lionetti, V.; Cervio, E.; Matteucci, M.; Gherghiceanu, M.; Popescu, L.M.; Torre, T.; 
Siclari, F.; Moccetti, T.; Vassalli, G. Extracellular vesicles fromhuman cardiac progenitor cells 
inhibit cardiomyocyte apoptosis and improve cardiac function aftermyocardial infarction. 
Cardiovasc. Res. 2014, 103, 530–541. 

104.  Harting, M.T.; Srivastava, A.K.; Zhaorigetu, S.; Bair, H.; Prabhakara, K.S.; Toledano Furman, 
N.E.; Vykoukal, J. V.; Ruppert, K.A.; Cox, C.S.; Olson, S.D. Inflammation-Stimulated 
Mesenchymal Stromal Cell-Derived Extracellular Vesicles Attenuate Inflammation. Stem Cells 
2018, 36, 79–90. 

105.  Pachler, K.; Ketterl, N.; Desgeorges, A.; Dunai, Z.A.; Laner-Plamberger, S.; Streif, D.; Strunk, 
D.; Rohde, E.; Gimona, M. An In Vitro Potency Assay for Monitoring the Immunomodulatory 
Potential of Stromal Cell-Derived Extracellular Vesicles. Int. J. Mol. Sci. 2017, 18, (article 1413)1-
11. 

106.  Burrello, J.; Monticone, S.; Gai, C.; Gomez, Y.; Kholia, S.; Camussi, G. Stem Cell-Derived 
Extracellular Vesicles and Immune-Modulation. Front. Cell Dev. Biol. 2016, 4, (article 83)1-10. 

107.  Cosenza, S.; Toupet, K.; Maumus, M.; Luz-Crawford, P.; Blanc-Brude, O.; Jorgensen, C.; Noël, 
D. Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles 
in inflammatory arthritis. Theranostics 2018, 8, 1399–1410. 

108.  Giorda, E.; Scapaticci, M.; Luciano, R.; Fierabracci, A.; Del Fattore, A.; Pascucci, L.; Muraca, M.; 
Goffredo, B.M. Immunoregulatory Effects of Mesenchymal Stem Cell-Derived Extracellular 
Vesicles on T Lymphocytes. Cell Transplant. 2015, 24, 2615–2627. 

109.  Gonçalves, F. da C.; Luk, F.; Korevaar, S.S.; Bouzid, R.; Paz, A.H.; López-Iglesias, C.; Baan, C.C.; 
Merino, A.; Hoogduijn, M.J. Membrane particles generated from mesenchymal stromal cells 
modulate immune responses by selective targeting of pro-inflammatory monocytes. Sci. Rep. 
2017, 7, (article 12100)1-13. 

110.  Reis, M.; Mavin, E.; Nicholson, L.; Green, K.; Dickinson, A.M.; Wang, X.N. Mesenchymal 
stromal cell-derived extracellular vesicles attenuate dendritic cell maturation and function. Front. 
Immunol. 2018, 9, 2538. 

111.  Sicco, C. Lo; Reverberi, D.; Balbi, C.; Ulivi, V.; Principi, E.; Pascucci, L.; Becherini, P.; Bosco, 
M.C.; Varesio, L.; Franzin, C.; et al. Mesenchymal stem cell-derived extracellular vesicles as 
mediators of anti-inflammatory effects: Endorsement of macrophage polarization. Stem Cells 
Transl. Med. 2017, 6, 1018–1028. 

112.  Bruno, S.; Grange, C.; Deregibus, M.C.; Calogero, R.A.; Saviozzi, S.; Collino, F.; Morando, L.; 



Chapter VI                                                                                                                       REFERENCES 

 

96 

 

Busca, A.; Falda, M.; Bussolati, B.; et al. Mesenchymal Stem Cell-Derived Microvesicles Protect 
Against Acute Tubular Injury. J. Am. Soc. Nephrol. 2009, 20, 1053–1067. 

113.  Zou, X.; Gu, D.; Xing, X.; Cheng, Z.; Gong, D.; Zhang, G.; Zhu, Y. Human mesenchymal 
stromal cell-derived extracellular vesicles alleviate renal ischemic reperfusion injury and enhance 
angiogenesis in rats. Am. J. Transl. Res. 2016, 8, 4289–4299. 

114.  Clayton, A.; Al-Taei, S.; Webber, J.; Mason, M.D.; Tabi, Z. Cancer Exosomes Express CD39 and 
CD73, Which Suppress T Cells through Adenosine Production. J. Immunol. 2011, 187, 676–683. 

115.  Almeria, C.; Weiss, R.; Roy, M.; Tripisciano, C.; Kasper, C.; Weber, V.; Egger, D. Hypoxia 
Conditioned Mesenchymal Stem Cell-Derived Extracellular Vesicles Induce Increased Vascular 
Tube Formation in vitro. Front. Bioeng. Biotechnol. 2019, 7, 292. 

116.  Lombardo, G.; Dentelli, P.; Togliatto, G.; Rosso, A.; Gili, M.; Gallo, S.; Deregibus, M.C.; 
Camussi, G.; Brizzi, M.F. Activated Stat5 trafficking Via Endothelial Cell-derived Extracellular 
Vesicles Controls IL-3 Pro-angiogenic Paracrine Action. Sci. Rep. 2016, 6, 25689. 

117.  Pathan, M.; Keerthikumar, S.; Chisanga, D.; Alessandro, R.; Ang, C.S.; Askenase, P.; Batagov, 
A.O.; Benito-Martin, A.; Camussi, G.; Clayton, A.; et al. A novel community driven software for 
functional enrichment analysis of extracellular vesicles data. J. Extracell. Vesicles 2017, 6, 1321455. 

118.  Pathan, M.; Keerthikumar, S.; Ang, C.-S.; Gangoda, L.; Quek, C.Y.J.; Williamson, N.A.; 
Mouradov, D.; Sieber, O.M.; Simpson, R.J.; Salim, A.; et al. FunRich: An open access standalone 
functional enrichment and interaction network analysis tool. Proteomics 2015, 15, 2597–2601. 

119.  C. Carpentier, M. Martinelli, J. Courtey, I. Cascone, . Angiogenesis Analyser for ImageJ. In 
Proceedings of the 4th ImageJ user and developer conference proceedings.; Mondorf-les-Bains, 
Luxemburg, 2012; p. 198.201. 

120.  Collino, F.; Bruno, S.; Deregibus, M.C.; Tetta, C.; Camussi, G. MicroRNAs and Mesenchymal 
Stem Cells. Vitam. Horm. 2011, 87, 291–320. 

121.  Andersen, C.L.; Jensen, J.L.; Ørntoft, T.F. Normalization of Real-Time Quantitative Reverse 
Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes 
Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Res. 2004, 64, 
5245–5250. 

122.  Batra, A.S.; Lewin, A.B. Acute myocarditis. Curr. Opin. Pediatr. 2001, 13, p 234-239. 
123.  Lener, T.; Gimona, M.; Aigner, L.; Börger, V.; Buzas, E.; Camussi, G.; Chaput, N.; Chatterjee, 

D.; Court, F.A.; del Portillo, H.A.; et al. Applying extracellular vesicles based therapeutics in 
clinical trials - An ISEV position paper. J. Extracell. Vesicles 2015, 4, (article 30087)1-31. 

124.  Ketterl, N.; Brachtl, G.; Schuh, C.; Bieback, K.; Schallmoser, K.; Reinisch, A.; Strunk, D. A robust 
potency assay highlights significant donor variation of human mesenchymal stem/progenitor cell 
immune modulatory capacity and extended radio-resistance. Stem Cell Res. Ther. 2015, 6, 236. 

125.  Zhang, R.; Liu, Y.; Yan, K.; Chen, L.; Chen, X.-R.; Li, P.; Chen, F.-F.; Jiang, X.-D. Anti-
inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in 
experimental traumatic brain injury. J. Neuroinflammation 2013, 10, 871–883. 

126.  Ciullo, A.; Biemmi, V.; Milano, G.; Bolis, S.; Cervio, E.; Fertig, E.T.; Gherghiceanu, M.; Moccetti, 
T.; Camici, G.G.; Vassalli, G.; et al. Exosomal expression of CXCR4 targets cardioprotective 
vesicles to myocardial infarction and improves outcome after systemic administration. Int. J. Mol. 
Sci. 2019, 20, 1–24. 

127.  Chen, W.; Huang, Y.; Han, J.; Yu, L.; Li, Y.; Lu, Z.; Li, H.; Liu, Z.; Shi, C.; Duan, F.; et al. 
Immunomodulatory effects of mesenchymal stromal cells-derived exosome. Immunol. Res. 2016, 
64, 831–840. 

128.  Sheng, H.; Wang, Y.; Jin, Y.; Zhang, Q.; Zhang, Y.; Wang, L.; Shen, B.; Yin, S.; Liu, W.; Cui, L.; 
et al. A critical role of IFNγ in priming MSC-mediated suppression of T cell proliferation through 
up-regulation of B7-H1. Cell Res. 2008, 18, 846–857. 

129.  Renner, P.; Eggenhofer, E.; Rosenauer, A.; Popp, F.C.; Steinmann, J.F.; Slowik, P.; Geissler, E.K.; 
Piso, P.; Schlitt, H.J.; Dahlke, M.H. Mesenchymal Stem Cells Require a Sufficient, Ongoing 
Immune Response to Exert Their Immunosuppressive Function. Transplant. Proc. 2009, 41, 2607–
2611. 

130.  Di Trapani, M.; Bassi, G.; Midolo, M.; Gatti, A.; Kamga, P.T.; Cassaro, A.; Carusone, R.; Adamo, 
A.; Krampera, M.; Takam Kamga, P.; et al. Differential and transferable modulatory effects of 



Chapter VI                                                                                                                       REFERENCES 

 

97 

 

mesenchymal stromal cell-derived extracellular vesicles on T, B and NK cell functions. Sci. Rep. 
2016, 6, 24120. 

131.  Diedrichs, F.; Stolk, M.; Jürchott, K.; Haag, M.; Sittinger, M.; Seifert, M. Enhanced 
Immunomodulation in Inflammatory Environments Favors Human Cardiac Mesenchymal 
Stromal-Like Cells for Allogeneic Cell Therapies. Front. Immunol. 2019, 10, 1716. 

132.  Varkouhi, A.K.; Jerkic, M.; Ormesher, L.; Gagnon, S.; Goyal, S.; Rabani, R.; Masterson, C.; 
Spring, C.; Chen, P.Z.; Gu, F.X.; et al. Extracellular Vesicles from Interferon-γ-primed Human 
Umbilical Cord Mesenchymal Stromal Cells Reduce Escherichia coli-induced Acute Lung Injury 
in Rats. Anesthesiology 2019, 130, 778–790. 

133.  Witwer, K.W.; Buzás, E.I.; Bemis, L.T.; Bora, A.; Lässer, C.; Lötvall, J.; Nolte-’t Hoen, E.N.; 
Piper, M.G.; Sivaraman, S.; Skog, J.; et al. Standardization of sample collection, isolation and 
analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2013, 2, 1–25. 

134.  Hadjidemetriou, M.; Al-Ahmady, Z.; Mazza, M.; Collins, R.F.; Dawson, K.; Kostarelos, K. In 
Vivo Biomolecule Corona around Blood-Circulating, Clinically Used and Antibody-Targeted 
Lipid Bilayer Nanoscale Vesicles. ACS Nano 2015, 9, 8142–8156. 

135.  Gupta, M.N.; Roy, I. How Corona Formation Impacts Nanomaterials as Drug Carriers. Mol. 
Pharm. 2020, 17, 725–737. 

136.  Arrighetti, N.; Corbo, C.; Evangelopoulos, M.; Pastò, A.; Zuco, V.; Tasciotti, E. Exosome-like 
Nanovectors for Drug Delivery in Cancer. Curr. Med. Chem. 2018, 26, 6132–6148. 

137.  Geeurickx, E.; Tulkens, J.; Dhondt, B.; Van Deun, J.; Lippens, L.; Vergauwen, G.; Heyrman, E.; 
De Sutter, D.; Gevaert, K.; Impens, F.; et al. The generation and use of recombinant extracellular 
vesicles as biological reference material. Nat. Commun. 2019, 10, 1–12. 

138.  Morelli, A.E.; Larregina, A.T.; Shufesky, W.J.; Sullivan, M.L.G.; Stolz, D.B.; Papworth, G.D.; 
Zahorchak, A.F.; Logar, A.J.; Wang, Z.; Watkins, S.C.; et al. Endocytosis, intracellular sorting, 
and processing of exosomes by dendritic cells. Blood 2004, 104, 3257–3266. 

139.  Tosar, J.P.; Cayota, A.; Eitan, E.; Halushka, M.K.; Witwer, K.W. Ribonucleic artefacts: are some 
extracellular RNA discoveries driven by cell culture medium components? J. Extracell. Vesicles 
2017, 6. 

140.  Auber, M.; Fröhlich, D.; Drechsel, O.; Karaulanov, E.; Krämer-Albers, E.M. Serum-free media 
supplements carry miRNAs that co-purify with extracellular vesicles. J. Extracell. Vesicles 2019, 8, 
1656042. 

141.  Varga, Z.; Fehér, B.; Kitka, D.; Wacha, A.; Bóta, A.; Berényi, S.; Pipich, V.; Fraikin, J.L. Size 
Measurement of Extracellular Vesicles and Synthetic Liposomes: The Impact of the Hydration 
Shell and the Protein Corona. Colloids Surfaces B Biointerfaces 2020, 192, 111053. 

142.  Hyland, M.; Mennan, C.; Wilson, E.; Clayton, A.; Kehoe, O. Pro-Inflammatory Priming of 
Umbilical Cord Mesenchymal Stromal Cells Alters the Protein Cargo of Their Extracellular 
Vesicles. Cells 2020, 9, 726. 

143.  Bobrie, A.; Colombo, M.; Krumeich, S.; Raposo, G.; Théry, C. Diverse subpopulations of vesicles 
secreted by different intracellular mechanisms are present in exosome preparations obtained by 
differential ultracentrifugation. J. Extracell. Vesicles 2012, 1. 

144.  Willms, E.; Johansson, H.J.; Mäger, I.; Lee, Y.; Blomberg, K.E.M.; Sadik, M.; Alaarg, A.; Smith, 
C.I.E.; Lehtiö, J.; El Andaloussi, S.; et al. Cells release subpopulations of exosomes with distinct 
molecular and biological properties. Sci. Rep. 2016, 6, 1–12. 

145.  Esfandiarei, M.; McManus, B.M. Molecular Biology and Pathogenesis of Viral Myocarditis. Annu. 
Rev. Pathol. Mech. Dis. 2008, 3, 127–155. 

146.  Ikwegbue, P.C.; Masamba, P.; Oyinloye, B.E.; Kappo, A.P. Roles of heat shock proteins in 
apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals 2018, 11. 

147.  Liu, L.; Zhang, H.; Mao, H.; Li, X.; Hu, Y. Exosomal miR-320d derived from adipose tissue-
derived MSCs inhibits apoptosis in cardiomyocytes with atrial fibrillation (AF). Artif. Cells, 
Nanomedicine, Biotechnol. 2019, 47, 3976–3984. 

148.  Pužar Dominkuš, P.; Stenovec, M.; Sitar, S.; Lasič, E.; Zorec, R.; Plemenitaš, A.; Žagar, E.; Kreft, 
M.; Lenassi, M. PKH26 labeling of extracellular vesicles: Characterization and cellular 
internalization of contaminating PKH26 nanoparticles. Biochim. Biophys. Acta - Biomembr. 2018, 
1860, 1350–1361. 



Chapter VI                                                                                                                       REFERENCES 

 

98 

 

149.  Matula, Z.; Németh, A.; Lőrincz, P.; Szepesi, Á.; Brózik, A.; Buzás, E.I.; Lőw, P.; Német, K.; 
Uher, F.; Urbán, V.S. The Role of Extracellular Vesicle and Tunneling Nanotube-Mediated 
Intercellular Cross-Talk Between Mesenchymal Stem Cells and Human Peripheral T Cells. Stem 
Cells Dev. 2016, 25, 1818–1832. 

150.  Jiang, C.; Xie, P.; Sun, R.; Sun, X.; Liu, G.; Ding, S.; Zhu, M.; Yan, B.; Liu, Q.; Chen, X.; et al. c-
Jun-mediated microRNA-302d-3p induces RPE dedifferentiation by targeting p21Waf1/Cip1. 
Cell Death Dis. 2018, 9, 451. 

151.  Li, A.; Dubey, S.; Varney, M.L.; Dave, B.J.; Singh, R.K. IL-8 directly enhanced endothelial cell 
survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J. 
Immunol. 2003, 170, 3369–76. 

152.  Cohen, T.; Nahari, D.; Cerem, L.W.; Neufeld, G.; Levin, B.Z. Interleukin 6 induces the 
expression of vascular endothelial growth factor. J. Biol. Chem. 1996, 271, 736–741. 

153.  Anderson, J.D.; Johansson, H.J.; Graham, C.S.; Vesterlund, M.; Pham, M.T.; Bramlett, C.S.; 
Montgomery, E.N.; Mellema, M.S.; Bardini, R.L.; Contreras, Z.; et al. Comprehensive proteomic 
analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear 
factor-kappaB signaling. Stem Cells 2016, 34, 601–613. 

154.  Zhu, K.; Pan, Q.; Zhang, X.; Kong, L.-Q.; Fan, J.; Dai, Z.; Wang, L.; Yang, X.-R.; Hu, J.; Wan, 
J.-L.; et al. MiR-146a enhances angiogenic activity of endothelial cells in hepatocellular carcinoma 
by promoting PDGFRA expression. Carcinogenesis 2013, 34, 2071–2079. 

155.  Lei, Z.; van Mil, A.; Brandt, M.M.; Grundmann, S.; Hoefer, I.; Smits, M.; el Azzouzi, H.; Fukao, 
T.; Cheng, C.; Doevendans, P.A.; et al. MicroRNA-132/212 family enhances arteriogenesis after 
hindlimb ischaemia through modulation of the Ras-MAPK pathway. J. Cell. Mol. Med. 2015, 19, 
1994–2005. 

156.  Seo, H.-H.; Lee, S.-Y.; Lee, C.Y.; Kim, R.; Kim, P.; Oh, S.; Lee, H.; Lee, M.Y.; Kim, J.; Kim, 
L.K.; et al. Exogenous miRNA-146a Enhances the Therapeutic Efficacy of Human 
Mesenchymal Stem Cells by Increasing Vascular Endothelial Growth Factor Secretion in the 
Ischemia/Reperfusion-Injured Heart. J. Vasc. Res. 2017, 54, 100–108. 

157.  Mao, G.; Liu, Y.; Fang, X.; Liu, Y.; Fang, L.; Lin, L.; Liu, X.; Wang, N. Tumor-derived 
microRNA-494 promotes angiogenesis in non-small cell lung cancer. Angiogenesis 2015, 18, 373–
382. 

158.  Chen, S.; Zhao, G.; Miao, H.; Tang, R.; Song, Y.; Hu, Y.; Wang, Z.; Hou, Y. MicroRNA-494 
inhibits the growth and angiogenesis-regulating potential of mesenchymal stem cells. FEBS Lett. 
2015, 589, 710–717. 

159.  Tugues, S.; Honjo, S.; König, C.; Padhan, N.; Kroon, J.; Gualandi, L.; Li, X.; Barkefors, I.; 
Thijssen, V.L.; Griffioen, A.W.; et al. Tetraspanin CD63 promotes vascular endothelial growth 
factor receptor 2-β1 integrin complex formation, thereby regulating activation and downstream 
signaling in endothelial cells in Vitro and in Vivo. J. Biol. Chem. 2013, 288, 19060–19071. 

160.  Thijssen, V.L.; Griffioen, A.W. Galectin-1 and -9 in angiogenesis: A sweet couple. Glycobiology 
2014, 24, 915–920. 

161.  Thijssen, V.L.J.L.; Postel, R.; Brandwijk, R.J.M.G.E.; Dings, R.P.M.; Nesmelova, I.; Satijn, S.; 
Verhofstad, N.; Nakabeppu, Y.; Baum, L.G.; Bakkers, J.; et al. Galectin-1 is essential in tumor 
angiogenesis and is a target for antiangiogenesis therapy. Proc. Natl. Acad. Sci. 2006, 103, 15975–
15980. 

162.  Tang, D.; Gao, J.; Wang, S.; Ye, N.; Chong, Y.; Huang, Y.; Wang, J.; Li, B.; Yin, W.; Wang, D. 
Cancer-associated fibroblasts promote angiogenesis in gastric cancer through galectin-1 
expression. Tumor Biol. 2016, 37, 1889–1899. 

163.  Mokarizadeh, A.; Delirezh, N.; Morshedi, A.; Mosayebi, G.; Farshid, A.A.; Mardani, K. 
Microvesicles derived from mesenchymal stem cells: Potent organelles for induction of 
tolerogenic signaling. Immunol. Lett. 2012, 147, 47–54. 

164.  Gieseke, F.; Böhringer, J.; Bussolari, R.; Dominici, M.; Handgretinger, R.; Müller, I. Human 
multipotent mesenchymal stromal cells use galectin-1 to inhibit immune effector cells. Blood 2010, 
116, 3770–3779. 

165.  Seropian, I.M.; González, G.E.; Maller, S.M.; Berrocal, D.H.; Abbate, A.; Rabinovich, G.A. 
Galectin-1 as an Emerging Mediator of Cardiovascular Inflammation: Mechanisms and 



Chapter VI                                                                                                                       REFERENCES 

 

99 

 

Therapeutic Opportunities. Mediators Inflamm. 2018, 2018. 
166.  Domenis, R.; Cesselli, D.; Toffoletto, B.; Bourkoula, E.; Caponnetto, F.; Manini, I.; Beltrami, 

A.P.; Ius, T.; Skrap, M.; Di Loreto, C.; et al. Systemic T Cells Immunosuppression of Glioma 
Stem Cell-Derived Exosomes Is Mediated by Monocytic Myeloid-Derived Suppressor Cells. 
PLoS One 2017, 12, e0169932. 

167.  Zhang, B.; Yin, Y.; Lai, R.C.; Tan, S.S.; Choo, A.B.H.; Lim, S.K. Mesenchymal Stem Cells Secrete 
Immunologically Active Exosomes. Stem Cells Dev. 2014, 23, 1233–1244. 

168.  Cibrián, D.; Sánchez-Madrid, F. CD69: from activation marker to metabolic gatekeeper. Eur. J. 
Immunol. 2017, 47, 946–953. 

169.  Groux, H.; O’Garra, A.; Bigler, M.; Rouleau, M.; Antonenko, S.; De Vries, J.E.; Roncarolo, M.G. 
A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997, 
389, 737–742. 

170.  Jutel, M.; Akdis, M.; Budak, F.; Aebischer-Casaulta, C.; Wrzyszcz, M.; Blaser, K.; Akdis, C.A. IL-
10 and TGF-β cooperate in the regulatory T cell response to mucosal allergens in normal 
immunity and specific immunotherapy. Eur. J. Immunol. 2003, 33, 1205–1214. 

171.  Franzin, C.; Ulivi, V.; Pascucci, L.; Bosco, M.C.; Pozzobon, M.; Principi, E.; Varesio, L.; 
Becherini, P.; Reverberi, D.; Balbi, C.; et al. Mesenchymal Stem Cell-Derived Extracellular 
Vesicles as Mediators of Anti-Inflammatory Effects: Endorsement of Macrophage Polarization. 
Stem Cells Transl. Med. 2017, 6, 1018–1028. 

172.  de Witte, S.F.H.; Luk, F.; Sierra Parraga, J.M.; Gargesha, M.; Merino, A.; Korevaar, S.S.; Shankar, 
A.S.; O’Flynn, L.; Elliman, S.J.; Roy, D.; et al. Immunomodulation By Therapeutic Mesenchymal 
Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells. Stem Cells 
2018, 36, 602–615. 

173.  Martinez, F.O.; Gordon, S.; Locati, M.; Mantovani, A. Transcriptional Profiling of the Human 
Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of 
Gene Expression. J. Immunol. 2006, 177, 7303–7311. 

174.  Gabrusiewicz, K.; Li, X.; Wei, J.; Hashimoto, Y.; Marisetty, A.L.; Ott, M.; Wang, F.; Hawke, D.; 
Yu, J.; Healy, L.M.; et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and 
PD-L1 expression on human monocytes. Oncoimmunology 2018, 7, e1412909. 

175.  Barros, M.H.M.; Hauck, F.; Dreyer, J.H.; Kempkes, B.; Niedobitek, G. Macrophage polarisation: 
An immunohistochemical approach for identifying M1 and M2 macrophages. PLoS One 2013, 8. 

176.  Luz-Crawford, P.; Djouad, F.; Toupet, K.; Bony, C.; Franquesa, M.; Hoogduijn, M.J.; Jorgensen, 
C.; Noël, D. Mesenchymal Stem Cell-Derived Interleukin 1 Receptor Antagonist Promotes 
Macrophage Polarization and Inhibits B Cell Differentiation. Stem Cells 2016, 34, 483–492. 

177.  Vannella, K.M.; Wynn, T.A. Mechanisms of Organ Injury and Repair by Macrophages. Annu. 
Rev. Physiol. 2016, 79, 593–617. 

178.  Courties, G.; Heidt, T.; Sebas, M.; Iwamoto, Y.; Jeon, D.; Truelove, J.; Tricot, B.; Wojtkiewicz, 
G.; Dutta, P.; Sager, H.B.; et al. In vivo silencing of the transcription factor IRF5 reprograms the 
macrophage phenotype and improves infarct healing. J. Am. Coll. Cardiol. 2014, 63, 1556–1566. 

179.  Kambara, K.; Ohashi, W.; Tomita, K.; Takashina, M.; Fujisaka, S.; Hayashi, R.; Mori, H.; Tobe, 
K.; Hattori, Y. In vivo depletion of CD206+ M2 macrophages exaggerates lung injury in 
endotoxemic mice. Am. J. Pathol. 2015, 185, 162–171. 

180.  Bellón, T.; Martínez, V.; Lucendo, B.; del Peso, G.; Castro, M.J.; Aroeira, L.S.; Rodríguez-Sanz, 
A.; Ossorio, M.; Sánchez-Villanueva, R.; Selgas, R.; et al. Alternative activation of macrophages 
in human peritoneum: implications for peritoneal fibrosis. Nephrol. Dial. Transplant. 2011, 26, 
2995–3005. 

181.  Abebayehu, D.; Spence, A.; Boyan, B.D.; Schwartz, Z.; Ryan, J.J.; McClure, M.J. Galectin-1 
promotes an M2 macrophage response to polydioxanone scaffolds. J. Biomed. Mater. Res. - Part A 
2017, 105, 2562–2571. 

182.  Barrionuevo, P.; Beigier-Bompadre, M.; Ilarregui, J.M.; Toscano, M.A.; Bianco, G.A.; Isturiz, 
M.A.; Rabinovich, G.A. A Novel Function for Galectin-1 at the Crossroad of Innate and 
Adaptive Immunity: Galectin-1 Regulates Monocyte/Macrophage Physiology through a 
Nonapoptotic ERK-Dependent Pathway. J. Immunol. 2007, 178, 436–445. 

183.  Ito, K.; Scott, S.A.; Cutler, S.; Dong, L.-F.; Neuzil, J.; Blanchard, H.; Ralph, S.J. Thiodigalactoside 



Chapter VI                                                                                                                       REFERENCES 

 

100 

 

inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, 
angiogenesis and protection against oxidative stress. Angiogenesis 2011, 14, 293–307. 

184.  Mukherjee, R.; Kim, S.W.; Park, T.; Choi, M.S.; Yun, J.W. Targeted inhibition of galectin 1 by 
thiodigalactoside dramatically reduces body weight gain in diet-induced obese rats. Int. J. Obes. 
2015, 39, 1349–1358. 

185.  Tsai, Y.T.; Liang, C.H.; Yu, J.H.; Huang, K.C.; Tung, C.H.; Wu, J.E.; Wu, Y.Y.; Chang, C.H.; 
Hong, T.M.; Chen, Y.L. A DNA Aptamer Targeting Galectin-1 as a Novel Immunotherapeutic 
Strategy for Lung Cancer. Mol. Ther. - Nucleic Acids 2019, 18, 991–998. 

186.  Sheikh, M.H.; Solito, E. Annexin A1: Uncovering the many talents of an old protein. Int. J. Mol. 
Sci. 2018, 19. 

187.  Li, Y.; Cai, L.; Wang, H.; Wu, P.; Gu, W.; Chen, Y.; Hao, H.; Tang, K.; Yi, P.; Liu, M.; et al. 
Pleiotropic regulation of macrophage polarization and tumorigenesis by formyl peptide receptor-
2. Oncogene 2011, 30, 3887–3899. 

188.  Saiz, M.L.; Rocha-Perugini, V.; Sánchez-Madrid, F. Tetraspanins as Organizers of Antigen-
Presenting Cell Function. Front. Immunol. 2018, 9, 1074. 

189.  Zhang, S.; He, K.; Zhou, W.; Cao, J.; Jin, Z. MiR‑494‑3p regulates lipopolysaccharide‑induced 
inflammatory responses in RAW264.7 cells by targeting PTEN. Mol. Med. Rep. 2019, 49, 4288–
4296. 

190.  Dang, T.M.; Wong, W.C.; Ong, S.M.; Li, P.; Lum, J.; Chen, J.; Poidinger, M.; Zolezzi, F.; Wong, 
S.C. MicroRNA expression profiling of human blood monocyte subsets highlights functional 
differences. Immunology 2015, 145, 404–416. 

191.  Liu, F.; Li, Y.; Jiang, R.; Nie, C.; Zeng, Z.; Zhao, N.; Huang, C.; Shao, Q.; Ding, C.; Qing, C.; et 
al. MiR-132 inhibits lipopolysaccharide-induced inflammation in alveolar macrophages by the 
cholinergic anti-inflammatory pathway. Exp. Lung Res. 2015, 41, 261–269. 

192.  Lindoso, R.S.; Collino, F.; Bruno, S.; Araujo, D.S.; Sant’Anna, J.F.; Tetta, C.; Provero, P.; 
Quesenberry, P.J.; Vieyra, A.; Einicker-Lamas, M.; et al. Extracellular Vesicles Released from 
Mesenchymal Stromal Cells Modulate miRNA in Renal Tubular Cells and Inhibit ATP Depletion 
Injury. Stem Cells Dev. 2014, 23, 1809–1819. 

193.  Steiner, D.F.; Thomas, M.F.; Hu, J.K.; Yang, Z.; Babiarz, J.E.; Allen, C.D.C.; Matloubian, M.; 
Blelloch, R.; Ansel, K.M. MicroRNA-29 Regulates T-Box Transcription Factors and Interferon-
γ Production in Helper T Cells. Immunity 2011, 35, 169–181. 

194.  Fleming, V.; Hu, X.; Eline Weller, C.; Weber, R.; Groth, C.; Riester, Z.; H€ User, L.; Sun, Q.; 
Nagibin, V.; Kirschning, C.; et al. Tumor Biology and Immunology Melanoma Extracellular 
Vesicles Generate Immunosuppressive Myeloid Cells by Upregulating PD-L1 via TLR4 
Signaling. 2019. 

195.  Boussiotis, V.A.; Chatterjee, P.; Li, L. Biochemical Signaling of PD-1 on T Cells and Its 
Functional Implications. Cancer J. 2014, 20, 265–271. 

196.  Cunningham, E.K.; Jackson, M. V; McAuley, D.F.; O’Kane, C.M.; Krasnodembskaya, A.D.; 
Morrison, T.J.; Kissenpfennig, A. Mesenchymal Stromal Cells Modulate Macrophages in 
Clinically Relevant Lung Injury Models by Extracellular Vesicle Mitochondrial Transfer. Am. J. 
Respir. Crit. Care Med. 2017, 196, 1275–1286. 

197.  Balbi, C.; Piccoli, M.; Barile, L.; Papait, A.; Armirotti, A.; Principi, E.; Reverberi, D.; Pascucci, L.; 
Becherini, P.; Varesio, L.; et al. First Characterization of Human Amniotic Fluid Stem Cell 
Extracellular Vesicles as a Powerful Paracrine Tool Endowed with Regenerative Potential. Stem 
Cells Transl. Med. 2017, 6, 1340–1355. 

198.  Florek, M.; Schneidawind, D.; Pierini, A.; Baker, J.; Armstrong, R.; Pan, Y.; Leveson-Gower, D.; 
Negrin, R.; Meyer, E. Freeze and thaw of CD4+CD25+Foxp3+ regulatory T cells results in loss 
of CD62L expression and a reduced capacity to protect against graft-versus-host disease. PLoS 
One 2015, 10. 

199.  Fu, S.; Yopp, A.C.; Mao, X.; Chen, D.; Zhang, N.; Chen, D.; Mao, M.; Ding, Y.; Bromberg, J.S. 
CD4+ CD25+ CD62+ T-Regulatory Cell Subset Has Optimal Suppressive and Proliferative 
Potential. Am. J. Transplant. 2004, 4, 65–78. 

200.  Ermann, J.; Hoffmann, P.; Edinger, M.; Dutt, S.; Blankenberg, F.G.; Higgins, J.P.; Negrin, R.S.; 
Fathman, C.G.; Strober, S. Only the CD62L + subpopulation of CD4 +CD25 + regulatory T 



Chapter VI                                                                                                                       REFERENCES 

 

101 

 

cells protects from lethal acute GVHD. Blood 2005, 105, 2220–2226. 
201.  Bzowska, M.; Guzik, K.; Barczyk, K.; Ernst, M.; Flad, H.D.; Pryjma, J. Increased IL-10 

production during spontaneous apoptosis of monocytes. Eur. J. Immunol. 2002, 32, 2011–2020. 
202.  Cheng, D.E.; Chang, W.A.; Hung, J.Y.; Huang, M.S.; Kuo, P.L. Involvement of IL10 and 

granulocyte colonystimulating factor in the fate of monocytes controlled by galectin1. Mol. Med. 
Rep. 2014, 10, 2389–2394. 

203.  Monguió-Tortajada, M.; Roura, S.; Gálvez-Montón, C.; Pujal, J.M.; Aran, G.; Sanjurjo, L.; 
Franquesa, M.; Sarrias, M.R.; Bayes-Genis, A.; Borràs, F.E. Nanosized UCMSC-derived 
extracellular vesicles but not conditioned medium exclusively inhibit the inflammatory response 
of stimulated T cells: Implications for nanomedicine. Theranostics 2017, 7, 270–284. 



Chapter VII                                                                                                                 LIST OF PUBLICATIONS 

102 

 

7. List of publications 
Articles: 

Maring JA, Beez CM, FalkV, Seifert M, Stamm C. Myocardial Regeneration via Progenitor Cell-Derived 

Exosomes. Stem Cells Int. 2017;2017:7849851. doi:10.1155/2017/7849851. Epub 2017 Nov 23. PMID: 29333167 

(Review article) 

Detert S, Stamm C, Beez C, Diedrichs F, Ringe J, Van Linthout S, Seifert M, Tschöpe C, Sittinger M, Haag M. 

The Atrial Appendage as a Suitable Source to Generate Cardiac-derived Adherent Proliferating Cells for 

Regenerative Cell-based Therapies. J Tissue Eng Regen Med. 2018 Mar;12(3):e1404-e1417. doi:10.1002/term.2528. 

Epub 2017 Nov 21. PMID: 28752609 (Original Research) 

Beez CM, Haag M, Klein O, Van Linthout S, Sittinger M, Seifert M. Extracellular Vesicles from Regenerative 

Human Cardiac Cells Act as Potent Immune Modulators by Priming Monocytes. J Nanobiotechnology. 2019 May 

27;17(1):72. doi: 10.1186/s12951-019-0504-0. PMID: 31133024 (Original Research) 

Wolf M, Vári B, Blöchl C, Raninger AM, Poupardin R, Beez CM, Hoog A, Brachtl G, Eminger E, Binder H-M, 

Oeller M, Spittler A, Heuser T, Obermayer A, Seifert M, Huber CG, Schallmoser K, Volk H-D, Strunk D. 

Extracellular Vesicles from Therapeutic Grade Allogenic Human Placental Stromal Cells Induce Angiogenesis and 

Modulate Immunity. PREPRINT 2019 Oct. doi: 10.1101/808808 (Original Research) 

Andrzejewska A, Catar R, Schoon J, Qazi TH, Sass FA, Jacobi D, Blankenstein A, Reinke S, Krüger D, Streitz M, 

Schlickeiser S, Richter S, Souidi N, Beez C, Kamhieh-Milz J, Krüger U, Zemojtel T, Jürchott K, Strunk D, Reinke 

P, Duda G, Moll G, Geissler S. Multi-parameter Analysis of Biobanked Human Bone Marrow Stromal Cells Shows 

Little Influence for Donor Age and Mild Comorbidities on Phenotypic and Functional Properties. Front Immunol. 

2019 Nov 8;10:2474. doi: 10.3389/fimmu.2019.02474.eCollection 2019. PMID: 31781089 (Original Research) 

Beez CM, Schneider M, Haag M, Pappritz K, Van Linthout S, Sittinger M, Seifert M. Cardiac Extracellular Vesicles 

(EVs) Released in the Presence or Absence of Inflammatory Cues Support Angiogenesis in Different Manners. Int 

J Mol Sci. 2019 Dec 17;20(24):636. doi: 10.3390/ijms20246363. PMID: 31861211 (Original Research) 

Nazari-Shafti TZ, Neuber S, Duran AG, Exarchos V, Beez CM, Meyborg H, Krüger K, Wolint P, Buschmann J, 

Böni R, Seifert M, Falk V, Emmert MY. MiRNA Profiles of Extracellular Vesicles Secreted by Mesenchymal 

Stromal Cells – Can They Predict Potential Off-target Effects?. Biomolecules. 2020 (accepted; Original Research)  

Presentations: 

➢  Oral presentations: 

• Lecture series of the Institute of medical Immunology (2015, 2016, and 2019 in Berlin, 

Germany) 

• Springmeeting(s) of the working group immunology of transplantation funded by  DGFI (2017 

in Berlin and 2019 in Mainz, both in Germany) 

• World conference of the International Society of Tissue Engineering and Regenerative Medicine 

(2018 in Kyoto, Japan) 

• Meeting of the German and Austrian Society of Extracellular Vesicles (2019 in Freising, 

Germany) 

 

➢ Poster presentations: 

• BSRT Symposium (2015 and 2016 in Berlin, Germany) 

• Meeting of the International Society of Extracellular Vesicles (2016 in Rotterdam, Netherlands) 

• European conference of the International Society of Tissue Engineering and 

Regenerative Medicine ( 2017 in Davos, Switzerland)  

• EMBL course on extracellular vesicles (2016 in Heidelberg, Germany) 

 



Chapter VIII                                                                                                       STATUTORY DECLARATION 

103 

 

8. Statutory declaration 
I declare that I have authored this thesis independently, that I have not used other than the 

declared sources/recources, and that I have explicity marked all materials which have been 

quoted either literally or by content from the used sources. 

In addition, I declare that all texts, figures, and tables included in the following manuscripts: 

- Beez CM, Haag M, Klein O, Van Linthout S, Sittinger M, Seifert M. Extracellular Vesicles from 

Regenerative Human Cardiac Cells Act as Potent Immune Modulators by Priming Monocytes. J 

Nanobiotechnology. 2019 May 27;17(1):72. doi: 10.1186/s12951-019-0504-0. PMID: 31133024 (Original 

Research) 

- Beez CM, Schneider M, Haag M, Pappritz K, Van Linthout S, Sittinger M, Seifert M. Cardiac 

Extracellular Vesicles (EVs) Released in the Presence or Absence of Inflammatory Cues Support 

Angiogenesis in Different Manners. Int J Mol Sci. 2019 Dec 17;20(24):636. doi: 10.3390/ijms20246363. 

PMID: 31861211 (Original Research) 

Were generated by myself. Prof. Dr. Martina Seifert primarily supervised the PhD project work. 

Listed co-authors were involved in experimental support or proofreading of the manuscripts. 

On this account, excerpts and text passages, figures and figure legends as well as tables from 

both manuscripts were used partly or modified in the present thesis work. Permissions to use 

the manuscript material was further asked and obtained from Nanobiotechnology and the 

International Journal of Molecular Sciences. 

 

 

 

 

 

……………………..                                                ……………………………………….. 

Place & date                                                               Christien M. Beez 



Chapter IX                                                                                                                     ACKNOWLEDGEMENT 

104 

 

 

9. Acknowledgement 
First, I would like to thank my supervisors, reviewers and mentors of this PhD thesis: Prof. Dr. 

Martina Sefert, Prof. Dr. Hans-Dieter Volk, PD Dr. Irina Nazarenko, Prof. Dr. York Winter, 

Prof. Dr. Enrico Klotzsch, Prof. Dr. Michael Sittinger and PD Dr. Sophie Van Linthout. 

Thank you Martina for giving me the opportunity to work on this really interesting and 

challenging project – about the world of extracellular vesicles and not electric cars – in your 

research group, for your guidance during my doctoral thesis, for the intellectual support, and 

continual encouragement through the project. Moreover, thank you for being a superior 

dedicated to a professional and pleasant working atmosphere but also a person always honestly 

interested in staff beyond the work, which created a familiar basis in the group.  

I also want to thank Prof. Hans-Dieter Volk and PD Dr. Irina Nazarenko for reviewing my 

thesis, and Prof. Dr. York Winter and Prof. Dr. Enrico Klotzsch for immediately agreeing to 

be part of the evaluation board. As a member of the BSRT graduate school, I also would like to 

thank Sabine Bartosch for her continuous help and interesting tasks like interview the new ones 

of the BSRT, as well as my supervisor and mentor throughout this project, Prof. Dr. Michael 

Sittinger and PD Dr. Sophie Van Linthout. I highly appreciate that both of you always made 

time available when there was need to critically discuss results, plans,  pleasant annually progress 

report meetings, or that papers about CardAP EVs needed to be reviewed. A special thanks also 

goes to Dr. Sven Geißler, whom made it possible that I could work on project´s of his group 

together and that he funded me the last months in 2019  

All my present and former colleagues from the Transplantation Immunology lab of Prof. Dr. 

Martina Seifert, namely Dr. Maria Schneider, Dr. Naima Souidi, Falk Diedrichs, Meaghan Stolk, 

all our former Master and Bachelor students, especially Niklas Fellmer, whom performed his 

Bachelor thesis under the supervision of Martina and me: THANKS A LOT for the nice time 

in the lab, lab meetings, and outside of the lab, suggestions what to read, where to eat, and in 

general it was a great time.  

Also a big thank you to Dr. Marion Haag, Anja Fleischmann, Dr. Oliver Klein, Petra Schrade, 

Dr. Maria Schneider, Satpal Nijjar, Dr. Kathleen Pappritz, Kerstin Puhl for superb technical 

support, Q&A sessions, or performance of experimental parts as outlined in the Material & 

Method section. Also a big thank you to AG Tschöpe, whom I somehow became an inofficial 

member.  

Mille grazie/Arigato goza machta/Muchas Gracias/Vielen lieben Dank/Thanks a lot to all my 

friends whom accompanied me not only through the years of the PhD but also every other 

condition of life. And a special thanks to Eileenchen, Schwesterherz, and Marion for 

proofreading the thesis, stating from an artistic point of view whether the figures are acceptable. 

Dicken Knutscha. 

MY very special gratitude goes to my Mom and my Inselaffe. Thank you both so much for all 

the moral and emotional support, four your patience and love. Even though we had to incour 

many backstrokes and had some painful losses, we always stuck together. 



Chapter X                                                                                                                      APPENDIX 

105 

 

10. Appendix 
 

 

Appendix Figure 1: Unstimulated and cytokine stimulated EVs diminished PHA induced immune 
responses in PBMC cultures. 
CFSE labelled PBMCs (3x105 cells/well) were stimulated with 0.5 µg/mL PHA (Sigma Aldrich, St. Louis, MO, 
USA) and treated with 6 µg/mL unstimulated (EVs), cytokine-stimulated (EVs(cut)) EVs, PBS in equal volume of 
the EVs (PBS), or cells were left untreated. After three days, cells were investigated by flow cytometry, whereas the 
supernatant was colleted to be analysed by ELISA or bead-based Multiplex assay for cytokine concentrations. (A): 
Representative flow cytometry plots display the frequencies of proliferated CD4+ and CD8+ T cells in PHA 
stimulated PBMCs. T cell proliferation frequencies were normalized to the untreated control and the calculated 
normalized proliferation of CD4+ (left) and CD8+ (right) T cells in PHA stimulated PBMCs is presented as median 
with data range (PHA: n = 11; four different CardAP donors; five different PBMC donors). (B): The individual 
determined cytokine concentrations of IFNγ, TNFα, IL-10, and active TGFβ are displayed as median with data 
range for PHA stimulated PBMC cultures (n = 6 – 7; four different CardAP donors; five different PBMC donors). 
Statistical analysis was performed by Friedman´s test with Dunn´s multiple comparison post hoc test (*** p < 0.001, 
** p < 0.01; * p < 0.05). Unstimulated as well as cytokine stimulated EVs were capable to reduce T cell proliferation 
and lower the inflammatory cytokine milieu in PHA stimulated PBMC cultures. 
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Appendix Figure 2: Competitive binding of galectin-1 by Thiodiolgalectoside (TDG) could not be 
explicity shown to influence the impact of EVs on the phenotype of  isolated CD14+ cells.  
By MACS purified CD14+ cells from isolated PBMCs were cultured in 6-well plates (1x106 cells/well) and treated 
with 12 µg/mL unstimulated (EVs) or cytokine stimulated (EVs(cyt)), and PBS in equal volume of the EVs (PBS).  
Additionally, each of these groups were supplemented with TDG (Cayman Chemical, Ann Arbor, MG, USA) 
solved in DMSO as a competitive binding molecule and with DMSO alone. After two days, cells were harvested, 
stained with human specific fluorescence labelled antibodies, and analysed by flow cytometry. The expression of 
the surface proteins CD206 and HLA-DR are shown as the geometrical mean fluorescence intensity (MFI) for the 
respective treatments as median with data range (CD206: n = 5 - 8; three different CardAP donors, four different 
PBMC donors). Statistical analysis was performed by Friedman´s test with Dunn´s multiple comparison post hoc 
test (* p < 0.05; ** p < 0.01; *** p < 0.001). Unstimulated and cytokine stimulated EVs induced an altered 
expression of  CD206 and HLA-DR on CD14+ cells, but the influence of transported galectin1 by EVs could not 
yet be sufficiently clarified via a competitive binding assay with TDG. 
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Appendix Figure 3: The administration of isolated EVs to mice did not show signs of adverse effects. 
The in vivo compatibility of isolated EVs was investigated by administrating intravenous 10 µg or 30 µg of 
unstimulated EVs (EV batch of three CardAP donors) to six 8-week old C57BL6/j mice (Charles Rivers), while 
one day prior, mice received an intraperitoneal injection with PBS (day 0) as a control for the virus application 
group. The weight of animals was checked daily and after one week, mice were sacrificed and the left ventricle (LV) 
examined for the expression of mRNA, by homogenizing LV material, isolating RNA, performing a reverse 
transcription and performing real time qRT-PCRs with murine RNA specific primers, respectively. (A): Design of 
the animal experiment with indicated time line. PBS at day 0 was injected as a control for the virus application 
group throughout the entire animal study. (B): The difference of weights during the animal experiment as 
calculated by subtracting the starting weight from the weight after one week is displayed as individual data for all 
six animals per group as median with data range (n = 6, EVs were a batch of three different CardAP donors). (C):  
The relative expression is shown for mRNA of IL-1ß, TNFα, LoxL2 (lysyl oxidase homolog 2), and col3a1 (collagen 
alpha-1(III) for the individual data as median with data range (n =5 – 6; EVs were a batch of three different CardAP 
donors). Statistical analysis was performed by Friedman´s test with Dunn´s multiple comparison post hoc test. 
Unstimulated EVs did not cause severe side effects in mice that received two different concentrations of EVs. 
Application of two concentrations of unstimulated EVs into mice did not significantly changed the animal weight 
nor the expression of pro-inflammatory cytokines or important extracellular matrix proteins. 
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Appendix Figure 4: Fluorescence labelled EVs interacted with CD62L+CD4+ T cells in unstimulated 
PBMC cultures. 
Unlabelled PBMCs (3x105 cells/well) were treated with 6 µg/mL DiD labelled EVs, either unstimulated (EVs) or 
cytokine stimulated (EVs(cut)), PBS in equal volumes as EVs (PBS), or with a DiD negative control in equal volume 
as EVs (DiD neg. ctrl.). After two days, cells were measured at a flow cytometer (CantoII) and analysed for the 
occurrence of DiD signal of isolated EVs in PBMC cultures by flow cytometry. Representative flow cytometry 
plots display the frequencies of DiD + cells in the compartment of CD4+ CD62L+ T cells in otherwise unstimulated 
PBMC cultures (n= 2, two different CardAP donors, two different PBMC donors). Unstimulated as well as 
cytokine stimulated EVs were capable to interact to minor extent with CD4+ CD62L+ T cells in unstimulated 
PBMC cultures. 

 

 

Appendix Table 1: Isolated EVs were enriched with proteins of the extracellular compartment.  
Peptides were derived from unstimulated EVs and cytokine stimulated EVs of three different CardAP donors by 
an overnight digestion with trypsin. Mass spectra obtained by liquid chromatography/electron spray ionization 
mass spectrometry (LC/ES MS) were evaluated by MASCOT software searching for protein matches in the 
SwissProt 51.9 database. In total 186 proteins were identified, which were further analysed with the help of String 
database to acquire information of their localisation and their involvement in biological processes. Successful 
assignment to wound healing, positive regulation of biological processes, angiogenesis, regulation of immune 
system processes and extracellular exosome compartment is indicated by a blue cross (x). 
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CALX   
   

x Calnexin  

CAP1 x x 
  

x Adenylyl cyclase-associated protein 1  

CATB   x 
 

x x Cathepsin B  

CD276   
   

x CD276 antigen  

CDC42 x x x x x Cell division control protein 42 homolog  

CDCP1   
   

  CUB domain-containing protein 1  

CLH1   
   

x Clathrin heavy chain 1  

CN37   
   

x 2';3'-cyclic-nucleotide 3'-phosphodiesterase  

CO3 x x 
 

x x Complement C3  

CO6A1   
   

x Collagen alpha-1(VI) chain  

CO6A3   
   

x Collagen alpha-3(VI) chain  

COF1 x 
  

x x Cofilin-1  

CPNE1   x 
  

x Copine-1  

CPNS1   x 
  

x Calpain small subunit 1  

CTL2   x 
  

x Choline transporter-like protein 2  

CTNA1   
   

  Catenin alpha-1  

CTNB1   x x x x Catenin beta-1  

DEST   x 
  

  Destrin  

DPP4   x 
 

x x Dipeptidyl peptidase 4  

DSA2D   
   

  Putative dispanin subfamily A member 2d  

DYHC1   
   

x Cytoplasmic dynein 1 heavy chain 1  

DYSF x 
   

x Dysferlin  

EF1A1   
   

  Elongation factor 1-alpha 1  

EF2   x 
  

x Elongation factor 2  

EGLN x x x 
 

  Endoglin  

EHD2 x x 
  

x EH domain-containing protein 2  

ENOA   x 
  

x Alpha-enolase  

EVA1B   
   

  Protein eva-1 homolog B  

FAS   x 
  

x Fatty acid synthase  

FLNA x x 
  

x Filamin-A  

FSCN1   
   

x Fascin  

G3P   
   

x Glyceraldehyde-3-phosphate dehydrogenase  

G6PD   
   

x Glucose-6-phosphate 1-dehydrogenase  

GBG12   
   

x Guanine nucleotide-binding protein G(I)/G(S)/G(O) 

GDIB   x 
  

x Rab GDP dissociation inhibitor beta  

GELS x 
  

x x Gelsolin  

GNA11 x 
   

x Guanine nucleotide-binding protein subunit alpha-11  

GNA13 x x x 
 

x Guanine nucleotide-binding protein subunit alpha-13  

GNAI2 x x 
  

x Guanine nucleotide-binding protein G(i) subunit alpha-2  

GNAI3 x 
   

x Guanine nucleotide-binding protein G(k) subunit alpha  

GSTP1   x 
  

x Glutathione S-transferase P  

GTR1   
   

x Solute carrier family 2; facilitated glucose transporter member 1  

H90B2   
   

  Putative heat shock protein HSP 90-beta 2  

HS71A   x 
  

x Heat shock 70 kDa protein 1A  

HSP7C   
   

  Heat shock cognate 71 kDa protein  
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IQGA1   x 
  

x Ras GTPase-activating-like protein IQGAP1  

IST1   
  

x x IST1 homolog  

ITA5 x x x 
 

x Integrin alpha-5  

ITAV x x x 
 

x Integrin alpha-V  

ITB1 x 
 

x x x Integrin beta-1  

ITM2B   
   

x Integral membrane protein 2B  

K1C9   
   

x Keratin; type I cytoskeletal 9  

K22E   
   

x Keratin; type II cytoskeletal 2 epidermal  

K2C1   x 
 

x x Keratin; type II cytoskeletal 1  

K2C5   
   

x Keratin; type II cytoskeletal 5  

KAP0 x x 
  

  cAMP-dependent protein kinase type I-alpha regulatory subunit  

KPYM x 
   

x Pyruvate kinase PKM  

LAMA4   
   

  Laminin subunit alpha-4  

LAMB1   x 
  

x Laminin subunit beta-1  

LAMC1   x 
  

x Laminin subunit gamma-1  

LAMP1   x 
 

x x Lysosome-associated membrane glycoprotein 1  

LAMP2 x 
   

x Lysosome-associated membrane glycoprotein 2  

LDHA   x 
  

x L-lactate dehydrogenase A chain  

LDHB   
   

x L-lactate dehydrogenase B chain  

LEG1   
  

x x Galectin-1  

LG3BP   
   

x Galectin-3-binding protein  

LOXL2   x x 
 

  Lysyl oxidase homolog 2  

LRC4C   
   

  Leucine-rich repeat-containing protein 4C  

MAP1B   x 
  

  Microtubule-associated protein 1B  

MMP14   
 

x 
 

  Matrix metalloproteinase-14  

MOES   x 
 

x x Moesin  

MVP   
   

x Major vault protein  

MYH9 x x x 
 

x Myosin-9  

MYL6   
   

x Myosin light polypeptide 6  

MYL9 x 
   

  Myosin regulatory light polypeptide 9  

MYO1B   
   

x Unconventional myosin-Ib  

MYO1C   x 
 

x x Unconventional myosin-Ic  

NDKB   
   

x Nucleoside diphosphate kinase B  

NIBL1   
   

x Niban-like protein 1  

NID1   x 
  

x Nidogen-1  

NID2   
   

x Nidogen-2  

NRP1   x x 
 

  Neuropilin-1  

PA1B2   x 
  

x Platelet-activating factor acetylhydrolase IB subunit beta  

PAI1   
   

  Plasminogen activator inhibitor 1  

PCBP1   
   

x Poly(rC)-binding protein 1  

PCBP2   
  

x x Poly(rC)-binding protein 2  

PDC6I   x 
  

x Programmed cell death 6-interacting protein  

PDIA1   
   

x Protein disulfide-isomerase  

PDIA3   
   

x Protein disulfide-isomerase A3  

PGBM   
 

x 
 

x Basement membrane-specific heparan sulfate proteoglycan core 

protein  

PGK1   x 
  

x Phosphoglycerate kinase 1  

PLAK   x 
  

x Junction plakoglobin  

PLS1 x x 
 

x x Phospholipid scramblase 1  

PLST   
   

  Plastin-3  

PLXB2   x 
  

x Plexin-B2  

PPIA x x 
  

x Peptidyl-prolyl cis-trans isomerase A  

PRDX5   x 
  

x Peroxiredoxin-5; mitochondrial  

PROF1 x x 
  

x Profilin-1  

PSME1   
  

x x Proteasome activator complex subunit 1  

PXDN   
   

x Peroxidasin homolog  

RAB10   
   

x Ras-related protein Rab-10  

RAB13   
   

x Ras-related protein Rab-13  

RAB14   
   

x Ras-related protein Rab-14  

RAB1A   x 
  

x Ras-related protein Rab-1A  

RAB34   
   

x Ras-related protein Rab-34  

RAB35   
   

x Ras-related protein Rab-35  
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RAB3B   x 
  

x Ras-related protein Rab-3B  

RADI   x 
  

x Radixin  

RALA   x 
  

x Ras-related protein Ral-A  

RAP1A x x 
  

  Ras-related protein Rap-1A  

RB22A   
   

x Ras-related protein Rab-22A  

RFTN1   x 
 

x x Raftlin  

RHOA x x 
  

x Transforming protein RhoA  

RHOC x x 
  

x Rho-related GTP-binding protein RhoC  

RRAS   x 
  

x Ras-related protein R-Ras  

RRAS2   
   

x Ras-related protein R-Ras2  

S10AB   
   

x Protein S100-A11  

S10AG   
   

x Protein S100-A16  

S12A2   
   

x Solute carrier family 12 member 2  

S38A2   
   

  Sodium-coupled neutral amino acid transporter 2  

SCRB2   
   

x Lysosome membrane protein 2  

SDCB1   x 
  

x Syntenin-1  

SEPR x x x 
 

x Prolyl endopeptidase FAP  

SEPT2   
   

x Septin-2  

SERPH   
  

x x Serpin H1  

STOM   
  

x x Erythrocyte band 7 integral membrane protein  

SYG   
   

x Glycine--tRNA ligase  

SYWC   
 

x 
 

x Tryptophan--tRNA ligase; cytoplasmic  

TAGL2   
   

x Transgelin-2  

TBA1A   
   

x Tubulin alpha-1A chain  

TBB2A   
   

x Tubulin beta-2A chain  

TBB5   
   

x Tubulin beta chain  

TBB6   
   

  Tubulin beta-6 chain  

TCPB   
   

x T-complex protein 1 subunit beta  

TCPE   
   

x T-complex protein 1 subunit epsilon  

TCPZ   
   

x T-complex protein 1 subunit zeta  

TENA   x 
  

  Tenascin  

TERA   x 
  

x Transitional endoplasmic reticulum ATPase  

TGM2   x 
  

x Protein-glutamine gamma-glutamyltransferase 2  

TLN1 x 
   

x Talin-1  

TNAP3   x 
 

x x Tumor necrosis factor alpha-induced protein 3  

TNFA   
   

  Tumor necrosis factor  

TPIS   
   

  Triosephosphate isomerase  

TSN14   x 
  

  Tetraspanin-14  

TSN3   
   

x Tetraspanin-3  

TSP1 x x x x x Thrombospondin-1  

TTYH3   
   

x Protein tweety homolog 3  

UBA1   
   

x Ubiquitin-like modifier-activating enzyme 1  

VAT1   
   

x Synaptic vesicle membrane protein VAT-1 homolog  

VATB2   
   

x V-type proton ATPase subunit B; brain isoform  

VIME   x 
  

x Vimentin  

VINC x       x Vinculin  

VP37B   x 
  

x Vacuolar protein sorting-associated protein 37B  

WDR1 x x 
  

x WD repeat-containing protein 1  

YES x 
  

x x Tyrosine-protein kinase Yes  
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Appendix Table 2: More miRNAs were detected in cytokine than in unstimulated EVs. 
Unstimulated EVs (EVs) and cytokine stimulated EVs (EVs(cyt)) from three CardAP donors (D1, D2, and D3) 
were analysed for their miRNA content by nCounter® Human miRNA expression assay according to the manual. 
The obtained data of miRNA copies was analysed with the help of nSolver software (version 4.0, NanoString 
Technologies) by firstly normalizing it to the top 100 most abundant miRNAs in all samples as well as the positive 
controls, followed by a background correction via subtracting the mean plus two standard derivations of the 
negative control from each sample. These normalized and background corrected data are shown in the table as 
copy number for identified miRNAs  

EVs EVs(cyt)  
D1 D2 D3 D1 D2 D3 

hsa-miR-4454+hsa-miR-7975 4224 7429 2848 10484 6965 3454 
hsa-miR-125b-5p 2213 4998 2380 8714 4588 1437 
hsa-miR-100-5p 871 6140 1185 4617 3645 1134 
hsa-miR-29b-3p 443 7199 272 5626 3129 739 
hsa-miR-199a-3p+hsa-miR-199b-3p 387 5046 255 3134 1936 361 
hsa-let-7b-5p 1029 3801 738 6321 2915 1143 
hsa-miR-222-3p 35 2962 62 868 1173 146 
hsa-let-7a-5p 222 2561 166 3925 1819 421 
hsa-miR-23a-3p 447 1934 261 2172 1082 427 
hsa-miR-29a-3p 173 1842 134 2637 1223 193 
hsa-let-7i-5p 46 1772 122 1418 1252 394 
hsa-miR-146a-5p 268 1491 107 3277 1283 210 
hsa-miR-181a-5p 108 1280 156 1222 906 327 
hsa-miR-127-3p 132 1171 102 555 591 107 
hsa-miR-25-3p 134 871 146 1217 582 253 
hsa-miR-191-5p 247 671 155 723 425 164 
hsa-miR-16-5p 58 799 138 1207 742 303 
hsa-miR-22-3p 48 826 102 1010 641 193 
hsa-miR-150-5p 0 546 94 0 545 164 
hsa-miR-376a-3p 87 433 0 135 175 14 
hsa-miR-221-3p 304 379 42 1517 332 60 
hsa-miR-302d-3p 196 232 238 0 85 134 
hsa-miR-24-3p 99 318 0 454 300 41 
hsa-miR-93-5p 176 220 0 442 209 11 
hsa-miR-15b-5p 0 325 52 591 168 83 
hsa-miR-574-5p 0 327 45 188 139 114 
hsa-let-7d-5p 166 340 28 627 279 65 
hsa-miR-612 218 166 130 103 156 115 
hsa-miR-145-5p 223 111 0 578 240 0 
hsa-let-7g-5p 0 291 18 183 190 84 
hsa-miR-630 0 227 58 0 274 100 
hsa-miR-34a-5p 0 173 63 136 122 89 
hsa-miR-99b-5p 55 203 79 410 190 44 
hsa-miR-890 187 32 0 108 141 0 
hsa-miR-23b-3p 0 186 31 167 121 51 
hsa-miR-19b-3p 58 138 0 157 73 0 
hsa-miR-323b-3p 161 17 0 91 98 0 
hsa-let-7e-5p 0 148 13 273 159 33 
hsa-miR-551a 128 31 0 85 114 0 
hsa-miR-98-5p 67 92 0 150 126 11 
hsa-miR-532-5p 142 15 0 88 113 0 
hsa-miR-548q 0 40 111 0 50 80 
hsa-miR-151a-3p 97 53 0 152 94 0 
hsa-miR-363-5p 133 17 0 53 106 0 
hsa-miR-543 0 124 22 0 51 19 
hsa-miR-944 121 23 0 59 136 0 
hsa-miR-20a-5p+hsa-miR-20b-5p 74 70 0 120 89 0 
hsa-miR-892a 126 16 0 68 91 0 
hsa-miR-4286 70 99 42 253 74 28 
hsa-miR-606 124 13 0 37 89 0 
hsa-miR-186-5p 0 80 56 0 33 88 
hsa-miR-451a 37 98 0 0 95 0 
hsa-miR-548a-3p 89 44 0 41 85 0 
hsa-miR-98-3p 111 21 0 68 108 0 
hsa-miR-1290 0 49 83 0 48 100 
hsa-miR-3164 117 13 0 37 97 0 
hsa-miR-1910-3p 110 18 0 61 116 0 
hsa-miR-548l 95 30 0 48 95 0 
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hsa-miR-548n 82 44 0 44 97 0 
hsa-miR-875-3p 103 22 0 69 133 0 
hsa-miR-3180-5p 94 26 0 41 72 0 
hsa-miR-499a-5p 121 42 18 78 150 0 
hsa-miR-1180-3p 83 37 0 56 89 0 
hsa-miR-152-3p 82 37 0 43 79 0 
hsa-miR-708-5p 104 13 0 75 102 0 
hsa-miR-3690 103 14 0 46 117 0 
hsa-miR-1255a 0 29 88 0 30 102 
hsa-miR-193a-5p+hsa-miR-193b-5p 66 50 0 148 112 0 
hsa-miR-1244 101 12 0 54 101 0 
hsa-miR-342-3p 55 58 0 49 101 0 
hsa-miR-99a-5p 0 95 15 136 37 66 
hsa-miR-28-5p 0 70 39 0 35 39 
hsa-miR-1247-5p 95 11 0 29 56 0 
hsa-miR-548y 0 29 78 0 23 107 
hsa-miR-654-3p 90 16 0 39 74 0 
hsa-miR-31-5p 36 70 0 25 79 0 
hsa-miR-523-3p 92 12 0 74 58 0 
hsa-miR-548ah-5p 0 40 64 0 32 98 
hsa-miR-132-3p 0 75 26 27 97 42 
hsa-miR-520d-5p+hsa-miR-527+hsa-miR-518a-5p 88 13 0 44 61 0 
hsa-miR-374b-5p 70 29 0 43 48 0 
hsa-miR-105-5p 83 16 0 29 68 0 
hsa-miR-610 85 11 0 37 91 0 
hsa-miR-2117 76 19 0 100 90 0 
hsa-let-7f-5p 0 75 19 72 58 41 
hsa-miR-4521 76 18 0 44 73 0 
hsa-miR-1-3p 77 15 0 0 36 0 
hsa-miR-1183 72 18 0 0 56 0 
hsa-miR-299-5p 0 51 39 0 13 64 
hsa-miR-548d-5p 75 13 0 27 59 0 
hsa-miR-450a-1-3p 63 22 0 47 29 0 
hsa-miR-125a-5p 0 48 33 154 76 0 
hsa-miR-431-5p 63 17 0 56 52 0 
hsa-miR-3136-5p 68 11 0 20 90 0 
hsa-miR-548j-3p 57 22 0 37 50 0 
hsa-miR-1197 0 20 56 0 24 74 
hsa-miR-1260a 0 61 14 0 48 15 
hsa-miR-548e-5p 0 17 55 0 0 68 
hsa-miR-450a-2-3p 0 21 46 0 19 78 
hsa-miR-30e-5p 0 40 26 0 19 38 
hsa-miR-4458 54 10 0 0 35 0 
hsa-miR-1305 0 10 52 0 0 74 
hsa-miR-183-5p 0 22 37 0 27 91 
hsa-miR-328-5p 0 21 37 0 0 82 
hsa-miR-1228-3p 0 10 47 0 0 29 
hsa-miR-887-5p 0 16 40 0 40 105 
hsa-miR-939-5p 0 16 37 0 11 56 
hsa-miR-301a-5p 0 22 28 0 0 52 
hsa-miR-26b-5p 0 30 18 0 10 64 
hsa-miR-32-5p 29 16 0 0 53 0 
hsa-miR-873-3p 0 15 30 0 0 0 
hsa-miR-615-3p 0 16 29 0 15 69 
hsa-miR-1285-5p 0 12 31 0 0 52 
hsa-miR-155-5p 0 23 17 122 0 33 
hsa-miR-411-5p 0 16 14 0 0 23 
hsa-miR-148b-3p 0 12 13 0 0 0 
hsa-miR-494-3p 0 0 0 457 834 0 
hsa-miR-21-5p 0 1079 0 557 449 64 
hsa-miR-130a-3p 0 303 0 180 147 68 
hsa-let-7c-5p 0 125 0 189 76 37 
hsa-miR-382-5p 0 258 0 88 108 0 
hsa-miR-3614-3p 126 0 0 78 97 0 
hsa-miR-365a-3p+hsa-miR-365b-3p 0 60 0 174 39 34 
hsa-miR-15a-5p 0 94 0 80 76 0 
hsa-miR-524-3p 131 0 0 56 95 0 
hsa-miR-545-3p 95 0 0 55 96 0 
hsa-miR-92a-3p 86 0 0 87 62 0 
hsa-miR-1248 96 0 0 60 84 0 
hsa-miR-1910-5p 99 0 0 53 90 0 
hsa-miR-3192-5p 136 0 0 56 87 0 
hsa-miR-553 105 0 0 47 94 0 
hsa-miR-671-3p 83 0 0 69 70 0 
hsa-miR-520f-3p 72 0 0 44 95 0 
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hsa-miR-887-3p 112 0 0 37 102 0 
hsa-miR-1233-3p 97 0 0 39 98 0 
hsa-miR-5010-5p 88 0 0 55 80 0 
hsa-miR-617 76 0 0 17 116 0 
hsa-miR-601 86 0 0 49 82 0 
hsa-miR-874-5p 77 0 0 46 82 0 
hsa-miR-942-3p 104 0 0 52 76 0 
hsa-miR-548o-3p+hsa-miR-548ah-3p+hsa-miR-548av-3p 93 0 0 56 72 0 
hsa-miR-409-3p 0 63 0 60 64 0 
hsa-miR-619-3p 71 0 0 37 87 0 
hsa-miR-940 89 0 0 27 91 0 
hsa-miR-152-5p 97 0 0 50 67 0 
hsa-miR-596 100 0 0 36 81 0 
hsa-miR-1908-5p 74 0 0 30 85 0 
hsa-miR-1469 68 0 0 38 76 0 
hsa-miR-153-3p 70 0 0 31 82 0 
hsa-miR-767-3p 91 0 0 38 75 0 
hsa-miR-3918 92 0 0 56 54 0 
hsa-miR-561-3p 106 0 0 29 79 0 
hsa-miR-1291 97 0 0 32 76 0 
hsa-miR-580-3p 83 0 0 37 70 0 
hsa-miR-491-5p 90 0 0 18 89 0 
hsa-miR-3161 58 0 0 36 70 0 
hsa-miR-556-3p 108 0 0 26 79 0 
hsa-miR-130b-3p 73 0 0 39 66 0 
hsa-miR-513b-5p 70 0 0 41 64 0 
hsa-miR-4421 96 0 0 53 47 0 
hsa-miR-3202 81 0 0 20 80 0 
hsa-miR-199a-5p 0 88 0 79 46 24 
hsa-miR-490-5p 66 0 0 19 78 0 
hsa-miR-576-5p 94 0 0 18 77 0 
hsa-miR-4435 64 0 0 22 73 0 
hsa-miR-567 51 0 0 30 64 0 
hsa-miR-574-3p 0 11 0 60 0 33 
hsa-miR-374a-5p 0 216 0 34 66 34 
hsa-miR-539-5p 60 0 0 33 54 0 
hsa-miR-133b 66 0 0 13 73 0 
hsa-miR-1245b-3p 77 0 0 26 60 0 
hsa-miR-1288-3p 78 0 0 29 56 0 
hsa-miR-320d 79 0 0 32 52 0 
hsa-miR-1204 76 0 0 21 62 0 
hsa-miR-578 73 0 0 27 55 0 
hsa-miR-367-3p 39 0 0 21 61 0 
hsa-miR-1271-3p 61 0 0 21 60 0 
hsa-miR-3150b-3p 42 0 0 13 66 0 
hsa-miR-3140-3p 61 0 0 17 62 0 
hsa-miR-548ar-3p 0 0 35 0 10 66 
hsa-miR-6503-3p 47 0 0 13 62 0 
hsa-miR-615-5p 87 0 0 24 50 0 
hsa-miR-519e-3p 31 0 0 23 50 0 
hsa-miR-514a-5p 29 0 0 17 55 0 
hsa-miR-381-5p 49 0 0 14 58 0 
hsa-miR-196a-5p 60 0 0 15 55 0 
hsa-miR-1306-5p 62 0 0 19 50 0 
hsa-miR-124-3p 58 0 0 21 48 0 
hsa-miR-320b 57 0 0 17 51 0 
hsa-miR-3074-3p 0 0 0 33 35 0 
hsa-miR-4787-3p 73 0 0 25 42 0 
hsa-miR-1276 44 0 0 21 45 0 
hsa-miR-128-1-5p 50 0 0 10 53 0 
hsa-miR-525-5p 0 0 33 0 10 51 
hsa-miR-29c-3p 12 0 0 12 49 0 
hsa-miR-519b-5p+hsa-miR-519c-5p+hsa-miR-523-
5p+hsa-miR-518e-5p+hsa-miR-522-5p+hsa-miR-519a-5p 

61 0 0 15 44 0 

hsa-miR-1299 11 0 0 10 48 0 
hsa-miR-208b-5p 80 0 0 17 39 0 
hsa-miR-3196 65 0 0 12 44 0 
hsa-miR-525-3p 75 0 0 25 31 0 
hsa-miR-1306-3p 0 0 41 0 10 43 
hsa-miR-337-5p 0 140 0 0 24 21 
hsa-miR-26a-5p 0 39 0 0 16 21 
hsa-miR-331-3p 0 51 0 10 15 26 
hsa-miR-320e 0 0 15 0 12 14 
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