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Abstract

In this thesis, we investigate the consequences of isospin symmetry breaking on hadronic
matrix elements based on combined calculations in Quantum Chromodynamics (QCD)
and Quantum Electrodynamics (QED). We employ the lattice regularisation for quantum
field theories, which enables the access of both the perturbative and the non-perturbative
regime of a coupling constant. The inclusion of isospin-breaking corrections in lattice
QCD calculations is required to improve the theoretical prediction of hadronic contribu-
tions to high-precision observables, such as the muon anomalous magnetic moment aµ and
the running of the fine-structure constant α, which are determined from correlation func-
tions of electromagnetic currents. We relate QCD+QED to isosymmetric QCD via Monte
Carlo reweighting and formulate a perturbative expansion of correlation functions around
isosymmetric QCD. Expansion parameters are the differences of the bare quark masses and
their isosymmetric counterparts, a shift of the inverse strong coupling and the electromag-
netic coupling. Expectation values with respect to isosymmetric QCD are evaluated by
means of Monte Carlo simulations based on gauge ensembles generated with a Nf = 2 + 1
O(a)-improved Wilson fermion action and tree-level improved Lüscher-Weisz gauge action.
The handling of the manifest infrared divergence of non-compact lattice QED is addressed
in this thesis. We regularise the divergence using the QEDL prescription. We derive the
lattice photon propagator for open and periodic temporal boundary conditions in Feyn-
man and Coulomb gauge. The perturbative expansion is truncated at leading order, so
that the electromagnetic coupling does not renormalise. Further expansion parameters are
fixed via a hadronic renormalisation scheme based on masses of pseudo-scalar mesons. In
our calculation, we only consider isospin breaking effects in the valence quark sector and
focus on quark-connected contributions. We derive the axial and vector Ward identity
for continuum QCD+QED. A conserved vector current is deduced from the vector Ward
identity for the particular lattice regularisation of QCD+QED considered in this thesis.
We determine the masses of pseudo-scalar octet mesons including leading isospin breaking
corrections and describe the application of the procedure to baryon masses. We provide a
detailed discussion of the renormalisation of the local vector current in QCD+QED taking
operator mixing into account. We further determine the leading isospin breaking correc-
tion for the renormalised HVP function, which is related to the hadronic contribution of
the running of the of the fine-structure constant α and the anomalous magnetic moment of
leptons. The presented formalism is finally used to compute the hadronic vacuum polari-
sation contribution to the anomalous magnetic moment of the muon aµ including leading
isospin breaking corrections. The knowledge of a precise Standard Model prediction for
the latter is of particular interest, as it offers a probe for new physics. The calculations
are performed on three Monte Carlo ensembles with pion masses of 354, 216 and 282 MeV
and lattice spacings of 0.086, 0.076 and 0.064 fm.
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1. Introduction

The Standard Model of particle physics (SM) is a unified quantum field theory incor-
porating three fundamental interactions: the strong, the electromagnetic and the weak
interaction. It was developed and established in several steps during the second half of the
20th century, based on the formulation of the strong interaction [1] as a Yang-Mills the-
ory [2], the electroweak unification, known as the Glashow-Weinberg-Salam theory [3–5],
and the Englert-Brout-Higgs mechanism [6–8], which is a method to achieve spontaneous
symmetry breaking in gauge theories. The existence of several elementary particles pre-
dicted by the SM was confirmed experimentally. The existence of the charm quark, which
is essential for the Glashow-Iliopoulos-Maiani mechanism [9], was inferred from the dis-
covery of the J/Ψ meson [10, 11] at SLAC and BNL in 1974. The massive gauge bosons
W± [12, 13] and Z [14, 15], responsible for mediation of the weak interaction, were found
at the SPS at CERN in 1983. This series of discoveries finally culminated with the Higgs
boson, which was found at the ATLAS and CMS experiments at CERN [16, 17] in 2012.

Despite its success, the SM leaves several experimental and theoretical issues unan-
swered: Firstly, the SM does not include gravity, which is the remaining of the four known
fundamental interactions. The formulation of general relativity as a quantum field theory
is a highly non-trivial task, as it is a perturbatively non-renormalisable theory [18, 19].
Secondly, the SM treats neutrinos as massless, chiral Weyl fermions [20], although it is
already known by neutrino oscillation experiments that neutrinos are massive, being either
Dirac or Majorana particles. Thirdly, in today’s universe matter dominates anti-matter.
The CP- and baryon number violating processes predicted by the SM are not capable of
explaining the strength of baryogenesis. Furthermore, the SM describes the properties of
only a small fraction of the matter in the universe, as evidenced by cosmological obser-
vations. Lastly, the SM depends on 18 fundamental parameters [20], which have to be
determined by experiments. If the SM is understood as a low-energy effective description
of a theory valid at higher scales, these parameters are not necessarily independent.

There are two main categories of experiments to probe the SM. Direct searches aim at the
detection of unknown particles produced in particle colliders or in cosmic events, whereas
indirect search experiments try to measure quantities with high accuracy to find deviations
from the model predictions. One promising quantity for the investigation of physics beyond
the SM is the anomalous magnetic moment of the muon [21, 22]. For the leptons l = e, µ, τ
the Dirac theory [23, 24] predicts a Landé-factor, which relates the magnetic moment of
a particle with its spin, of gl = 2. Quantum field theoretical corrections, first predicted
by Schwinger [25] and parametrised by the anomalous contribution al = 1

2(gl − 2), alter
this value. The anomalous magnetic moment of the muon is one of the most precisely
measured quantities in physics. The currently most accurate experimental determination,
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1. Introduction

obtained at BNL [26], is

aµ = 11659209.1(5.4)(3.3) · 10−10 (1.1)

with a precision of 0.5 ppm. A reduction of the overall uncertainty by a factor of four
is planned by experiments at Fermilab [27] and JPARC [28]. Comparing the experimen-
tal determination with the SM prediction, one finds a deviation of about 3-4σ [29]. The
largest source of uncertainty of the theory prediction stems from hadronic effects, in partic-
ular the contributions from the hadronic vacuum polarisation and hadronic light-by-light
scattering [29]. The former can be determined with a phenomenological approach from
the cross section of positron-electron collisions forming hadrons, from Dyson-Schwinger
equations [30] or as a first principles calculation from lattice QCD [31–33]. A determina-
tion of the hadronic vacuum polarisation contribution with a relative precision of 0.2% is
required to achieve the target accuracy of the upcoming experiments. This can only be
attained in lattice simulations based on non-isosymmetric QCD including the effects of
non-degenerate light quark masses and electromagnetism [34].

p n

m [MeV] 938.272081(6) 939.565413(5)

I 1/2 1/2

I3 1/2 −1/2

q [e] 1 −1

Table 1.1.: Masses and electromagnetic charges of the proton and neutron forming an
isospin doublet [35].

The concept of isospin predates the developement of the SM and was originally intro-
duced in 1932 by Heisenberg [36] under the name isotopic spin. Experiments showed that
the excitation spectra of mirror nuclei, for which the number of protons and neutrons are
interchanged, resemble each other. Heisenberg suggested that both the proton and the
neutron form manifestations of the same state, the nucleon. Mathematically, this concept
is described by a SU(2)I symmetry acting on a two dimensional space, in which the proton
was interpreted as a state with I3 = +1/2 and the neutron with I3 = −1/2, depicted in
table 1.1. In 1954, the attempt by Yang and Mills to interpret isospin symmetry as a local
gauge symmetry [2] lead to the construction of non-Abelian gauge theories. At the time,
this theory was not confirmed experimentally. Nevertheless, it laid the theoretical and
mathematical foundations for the formulation of the strong and electro-weak interactions.

Although the concept of isospin was an early ancestor of the SM, the former is not
strictly compatible with the latter. Neglecting the effects of the weak interaction, induced
by the Cabibbo-Kobayashi-Maskawa matrix [37], the SM obeys isospin symmetry only in
the limit in which the masses and the electric charges of the up and the down quarks
are equal. Empirically, it is known that isospin symmetry is broken only on small scales
relative to energies determined by the strong interaction, such as the hadron spectrum,
as can be seen in tables 1.1 and 1.2 for the nucleons and the light pseudo-scalar mesons.
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π± π0 K± K0

m [MeV] 139.57039(18) 134.9768(5) 493.677(16) 497.611(13)

I 1 1 1/2 1/2

I3 ±1 0 ±1/2 ∓1/2

q [e] ±1 0 ±1 0

Table 1.2.: Masses and electromagnetic charges of the light pseudo-scalar mesons forming
isospin multiplets [35].

u d

m [MeV] 2.16+0.49
−0.26 4.67+0.48

−0.17

I 1
2

1/2

I3 1/2 −1/2

q [e] 2/3 −1/3

Table 1.3.: Masses and electromagnetic charges of up and down quarks determined in
the mass-independent subtraction scheme MS at a renormalisation scale of
µ = 2 GeV [35].

On the level of elementary particles, the situation is different. The difference of light
quark masses is of the same order of magnitude as the masses themselves, c.f. table 1.3.
Nevertheless, the quark mass splitting is of O(1%) compared to a typical energy scale of
QCD [38]. Similarly, the typical relative size of electromagnetic corrections is given by
the fine-structure constant αem = 7.2973525693(11) · 10−3 [35], which is also O(1%) [38].
Consequently, the general assumption is, that observables which are not invariant under
isospin rotations are approximated by the isosymmetric theory with an O(1%) relative
systematic error [38, 39].

The breaking of isospin symmetry is of great importance in nature. The magnitude
of this symmetry violation influences the composition of nuclear and atomic matter in
the universe [40]. In particular, the sign and magnitude of the mass splitting of the
proton and the neutron ensure, that the proton and the hydrogen atom become physically
stable [40, 41]. If the relative neutron-proton mass difference was smaller than one third of
the observed value mn−mp = 1.2933321(5) MeV [35], the hydrogen atom would decay via
an inverse beta decay into neutrons [41]. However, if the mass difference was considerably
larger than the observed value, neutrons would decay faster and therefore, the formation
of heavy elements in stars would have become more difficult [41].

Lattice QCD Monte Carlo simulations serve as a tool to compute hadronic observables
from first principles, such as the hadronic spectrum, hadron form factors and charges
as well as the hadronic contributions to the anomalous magnetic moment of leptons.
These simulations are commonly performed in an isosymmetric setup, mainly for technical
reasons. It is computationally less demanding to evaluate the quark determinant of two
quarks with degenerate masses compared to a setup with non-degenerate masses [42].
The systematic error due to the assumption of isospin symmetry and the absence of the
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1. Introduction

electromagnetic interaction was, for decades, negligible in comparison to the stochastic
error associated with Monte Carlo simulations. During recent years, the development of
more efficient simulation algorithms and the substantial progress in the provision of high-
performance computing facilities enabled the community to reduce the stochastic errors
to the percent level in several standard observables [39]. As a result, the assumption of
isospin symmetry became a dominant and non-negligible source of systematic uncertainty
in many hadronic observables [39]. Due to their partly compensating nature and the equal
order of magnitude, both the quark mass splitting and the electromagnetic interaction have
to be included into up-to-date lattice simulations [39, 43, 44].

This thesis lays the foundations for the inclusion of isospin breaking effects in calcula-
tions using the gauge ensembles generated by the CLS effort [45] based on a perturbative
expansion around the isosymmetric limit [46]. It does not aim for a complete prediction
of an observable including isospin breaking effects at the physical point, i.e. with per-
formed extrapolations to the continuum and physical quark masses. It rather focusses on
the formulation and implementation of the required theoretical and computational setup.
Nevertheless, we will give first results on pseudo-scalar meson masses, which are used to fix
the free parameters of the theory, on the renormalisation factors of the local discretisation
of flavour neutral vector currents, on the hadronic vacuum polarisation function and on the
hadronic vacuum contribution to the anomalous magnetic moment of the muon including
leading isospin breaking effects at non-physical quark masses and finite lattice spacings.
As a computational simplification, we only focus on quark-connected contributions. The
concepts introduced and discussed in this thesis can be used in various future projects,
such as the determination of isospin splittings in the baryon octet and decuplet [41, 47],
the determination of isospin corrections in the hadronic contributions to the running of
the fine-structure constant α and the weak mixing angle θW, as well as the determination
of the masses of the up and down quark [48], which is relevant in the context of the strong
CP problem [40, 49, 50].

We organise this work as follows: In Part I, we introduce relevant aspects of Euclidean
field theories focussing on field transformations and symmetries. We further discuss prop-
erties of combined Euclidean QCD and QED under the aspect of symmetries, Ward iden-
tities and β-functions. Part II deals with the construction of lattice field theories as a
regularisation of continuum field theories and with Monte Carlo simulations as a method
to stochastically evaluate the path integral. We summarise the simulation setup for CLS
gauge ensembles and introduce the setup for combined lattice QCD and QED, used for
the determination of isospin corrections. We also discuss computational strategies for the
evaluation of correlation functions and aspects of data analysis, applied to the results of
Monte Carlo simulations. In Part III, we introduce the hadronic renormalisation scheme
for combined QCD and QED utilised to fix the bare parameters and discuss hadron spec-
troscopy for mesons and baryons. Part IV covers the vector current renormalisation, the
hadronic vacuum polarisation function and a discussion of hadronic contributions to the
anomalous magnetic moment of the muon. We end this part with the final conclusion and
outlook.
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Part I.

Continuum QCD+QED
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2. Euclidean field theories

In this chapter, we give a brief introduction into Euclidean field theories, which are essen-
tial for the application of Monte Carlo techniques. We discuss the Euclidean path integral
formalism with a focus on boundary conditions, field transformations, symmetries, anoma-
lies and Ward-Takahashi identities. This introduction is based on the standard text books
by Peskin and Schroeder [51], Srednicki [52], Mandl and Shaw [53], Weinberg [54, 55]
and Pokorski [56], which deal with field theories in Minkowski spacetime. Path integrals
and quantum anomalies are discussed in Fujikawa and Suzuki [57], renormalisation in
Collins [58]. The text books by Zinn-Justin [59] and Wipf [60] put a particular emphasis
on Euclidean field theories. This chapter is partly inspired by the PhD theses [61–65].

2.1. Analytic continuation and Wick rotation of Minkowskian
field theories

Euclidean field theories [66, 67] are derived from Minkowskian field theories by an analytic
continuation of the fields and a Wick rotation of the time variable [68]. Starting with
a Minkowski metric with tensor gM = diag(1,−1,−1,−1) the partition function of a
quantum field theory in Minkowski spacetime reads

ZM =

∫
DΥM exp

(
i

∫
d4xM LM[ΥM]

)
. (2.1)

The coordinate transformation from Minkowski to Euclidean spacetime is given by xµ2

E =
ΛWick

µ2
µ1x

µ1

M with the transformation matrix ΛWick = diag(−i, 1, 1, 1). The integration
measure of the spacetime integral transforms as d4xM = −i d4xE. Absorbing an additional
overall minus sign into the definition of the Euclidean Lagrange density LE, which orig-
inates from the transformation of the metric tensor, one defines the Euclidean partition
function

ZE =

∫
DΥE exp

(
−
∫

d4xE LE[ΥE]
)
. (2.2)

In comparison to the partition function in Minkowski spacetime, the integrand is now
real and positive for a real action. This fact is of central relevance when Monte Carlo
techniques are utilised for the evaluation of the path integral as the Boltzmann factor
exp(−SE[ΥE]) is used as a probability weight.

In principle, correlation functions evaluated in the Euclidean formalism can also be ana-
lytically continued back to Minkowski spacetime. This is, however, highly non-trivial, as a
unique analytic continuation demands the knowledge of the value of a function evaluated
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2. Euclidean field theories

for an infinite set of points, which possesses a limit point. Consequently, if correlation
functions are calculated by numeric methods, one has only direct access to the spacelike
region. Nevertheless, an analytic continuation can be performed in this case, e.g. under
model assumptions.

2.2. Euclidean path integral formalism

This work is based on the Euclidean path integral formalism for the evaluation of corre-
lation functions of Euclidean quantum field theories. For simplicity, we only consider a
field theory with a bosonic field Φ in this section, as a discussion for fermionic fields is
more involved. Performing a Wick rotation to imaginary time requires also a modification
of the quantum mechanical interpretation of a quantum field theory. The time evolution
operator for quantum mechanics with imaginary time propagating a state from time t1
to time t2 becomes exp(−H(t2 − t1)), where H is a time independent Hamilton operator.
For the subsequent discussion, we consider a complete set of normalised eigenstates of
the field operator Φ. We denote these states in the Schrödinger picture with |Φ, t〉 and
in Heisenberg picture with |Φ〉. We match the Heisenberg and the Schrödinger picture
at t = 0, i.e. |Φ, 0〉 = |Φ〉. We consider two different types of temporal boundary condi-
tions: fixed boundary conditions, where the fields take a fixed predetermined value and
(anti-)periodic boundary conditions, where bosonic fields are continued periodically and
fermionic fields antiperiodically. We usually omit the explicit reference to the boundary
condition, i.e. leave the domain of integration in field space unspecified and denote the
partition function Z and the expectation value of an operator 〈O[Φ]〉.

2.2.1. Partition functions and expectation values for fixed temporal boundary
conditions

In the following, we consider a field theory of a bosonic field Φ that is defined on a
spacetime with a time extent [0, T ]. The field fulfils the boundary conditions Φ(0) = Φ1

and Φ(T ) = Φ2, i.e. the field is in the eigenstate of the field operator |Φ1〉 at time t = 0
and in |Φ2〉 at time t = T . We define the partition function

Z = 〈Φ2, T |Φ1, 0〉 = 〈Φ2| exp(−HT )|Φ1〉

=

∫ Φ(T )=Φ2

Φ(0)=Φ1

DΦ exp(−S[Φ]). (2.3)

The measure DΦ is of formal character at this stage. Correlation functions of time-ordered
operators are evaluated according to

〈O[Φ]〉 =
〈Φ2, T |O[Φ]|Φ1, 0〉
〈Φ2, T |Φ1, 0〉

=
〈Φ2| exp(−HT )O[Φ]|Φ1〉
〈Φ2| exp(−HT )|Φ1〉

=
1

Z

∫ Φ(T )=Φ2

Φ(0)=Φ1

DΦ exp(−S[Φ])O[Φ], (2.4)

where the expectation value is normalised such that 〈1〉 = 1.
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2.3. Field transformations and symmetries

2.2.2. Partition functions and expectation values for periodic temporal
boundary conditions

We now consider periodic boundary conditions, which can be related to the results of
fixed boundary conditions by choosing the same boundary field at t = 0 and t = T and a
subsequent integration over all boundary fields with measure D′Φ. We define the partition
function [42]

Z =

∫
D′Φ1〈Φ1, T |Φ1, 0〉 = tr(exp(−HT ))

=

∫
D′Φ1

∫ Φ(T )=Φ1

Φ(0)=Φ1

DΦ exp(−S[Φ]) =

∫

Φ(0)=Φ(T )
DΦ exp(−S[Φ]) (2.5)

and the expectation value of time-ordered operators [42]

〈O[Φ]〉 =

∫
D′Φ1〈Φ1, T |O[Φ]|Φ1, 0〉∫
D′Φ1〈Φ1, T |Φ1, 0〉

=
tr(exp(−HT )O[Φ])

tr(exp(−HT ))

=
1

Z

∫

Φ(0)=Φ(T )
DΦ exp(−S[Φ])O[Φ], (2.6)

where the expectation value is again normalised such that 〈1〉 = 1.

2.3. Field transformations and symmetries

In this section, we summarise how partition functions and expectation values transform
under field transformations. We also briefly recapitulate the notion of quantum symme-
tries and quantum anomalies as special cases of field transformations. Eventually, we
derive a general formula giving Ward-Takahashi identities for arbitrary field transfor-
mations. Ward-Takahashi identities are the quantum analogon of Noether’s theorem in
classical theories. The consideration of field transformations is particularly relevant for
the determination of the mixing behaviour of operators under renormalisation. Opera-
tors are grouped into classes with the same transformational behaviour under a specific
symmetry transformation. Operators from distinct classes are assumed not to mix under
renormalisation as the renormalisation procedure should not spoil the symmetries of the
theory [58].

2.3.1. Field transformations

In the following, we consider a general bijective differentiable field transformation T

T : Υ 7→ T[Υ]. (2.7)

Examples for such field transformations are global and local gauge transformations, flavour
rotations, spacetime coordinate transformations, translations and rotations. A key ingre-
dient of the following discussion is the theorem of multivariate coordinate transformations
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2. Euclidean field theories

for integrals over superfields Υ = (ΥΦ,ΥΨ). The latter combine bosonic degrees of free-
dom ΥΦ and fermionic degrees of freedom ΥΨ. We consider an invertible linear map of
superfields represented by a supermatrix A [59, 69, 70]. For the further discussion, we
decompose the map into bosonic and fermionic degrees of freedom

(
Υ′Φ
Υ′Ψ

)
=

(
AΦΦ AΦΨ

AΨΦ AΨΨ

)(
ΥΦ

ΥΨ

)
. (2.8)

Similar to matrices over real or complex numbers, it is possible to define a determinant for
supermatrices, the so called superdeterminant, which is also known as the Berezinian [59,
69, 70]. It is defined as

sdet(A) = det(AΦΦ −AΦΨ(AΨΨ)−1AΨΦ) det(AΨΨ)−1. (2.9)

The latter expression consists only of determinants of matrices with values in the com-
muting numbers and is therefore well defined. For linear maps that do not mix bosonic
and fermionic degrees of freedom, i.e. AΦΨ = 0 and AΨΦ = 0, we obtain sdet(A) =
det(AΦΦ) det(AΨΨ)−1. The theorem of multivariate coordinate transformations for inte-
grals [59, 70] is given by

∫
DΥ f [Υ] =

∫
DΥ sdet

(δT[Υ]

δΥ

)
f [T[Υ]], (2.10)

where we assume that the set of field configurations which the functional integral integrates
over is invariant under the transformation. Otherwise, one would have to explicitly state
the respective sets. For the special case, in which the transformation T does not mix
bosonic and fermionic degrees of freedom, i.e. δ(T[Υ])Ψ

δΥΦ
= 0 and δ(T[Υ])Φ

δΥΨ
= 0, we obtain the

well known transformation behaviour of ordinary integrals and Grassmann integrals [42,
59].

As the choice of coordinates of the field space is to some degree arbitrary, it is interesting
to investigate the behaviour of an expectation value of a general operator O[Υ] under a
field transformation. Making use of the theorem eq. (2.10), we find:

〈O[T[Υ]]〉 =
1

Z

∫
DΥ exp(−S[Υ])O[T[Υ]]

=
1

Z

∫
DΥ sdet

(δT−1[Υ]

δΥ

)
exp(−S[T−1[Υ]])O[Υ]

=
〈

sdet
(δT−1[Υ]

δΥ

)
exp(−(S[T−1[Υ]]− S[Υ]))O[Υ]

〉
, (2.11)

i.e. not only the transformational behaviour of the operator is relevant, but also the
change of the action, as well as the change of the path integral integration measure, that
is encoded in the functional determinant of the field transformation. In addition, the set of
field configurations which the functional integral integrates over must be invariant under
the transformation, i.e. the boundary conditions are compatible with the transformation.
It is essential to remark that the application of this theorem is only meaningful if the path
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2.3. Field transformations and symmetries

integral measure has been regulated appropriately. Naive calculations, that only have
formal character, can lead to incorrect results. The most prominent example is the chiral
transformation and the related derivation of the chiral anomaly [57]. Of particular interest
are field transformations that leave the expectation value of general operators invariant.
We will consider this class of transformations in the next section.

2.3.2. Quantum symmetries and quantum anomalies

In classical field theories, symmetries of the action, also known as off-shell symmetries, are
defined as field transformations that leave the action invariant [51], i.e. a bijective field
transformation T is a symmetry of the action if and only if

S[T[Υ]] = S[Υ] ∀Υ, (2.12)

where the symmetry transformation might have to be compatible with given boundary
conditions. Since δS[T[Υ]]

δΥ = δS[Υ]
δΥ ∀Υ, it immediately follows that all off-shell symmetries

are in fact also symmetries of the classical equations of motion δS[Υ]
δΥ = 0, i.e. on-shell

symmetries as solutions of the equation of motion are mapped to other solutions. Having
discussed symmetries of the action, we are lead to the question, when a field transformation
is a symmetry not only of the classical theory, but also of the related quantum field theory.
Making use of eq. (2.11), we see that the expectation value of any operatorO[Υ] is invariant
under the transformation T, if

sdet
(δT−1[Υ]

δΥ

)
exp(−(S[T−1[Υ]]− S[Υ])) = 1. (2.13)

For this class of transformations, we find

〈O[T[Υ]]〉 = 〈O[Υ]〉, (2.14)

which characterises a quantum symmetry. A sufficient condition, that is usually consid-
ered, is

S[T−1[Υ]] = S[Υ] and sdet
(δT−1[Υ]

δΥ

)
= 1, (2.15)

i.e. T is a symmetry of the action and the path integral measure is invariant under this
transformation. Symmetries of the action that do not leave the path integral measure
invariant are called anomalous symmetry transformations or quantum anomalies, as the
classical symmetry is broken by quantum effects. In order to tell whether a symmetry is
anomalous, a regularisation of the path integral measure compatible with that symmetry
has to be chosen, i.e. the resulting action of the regulated theory still has to be invariant
under the transformation.

An important application of symmetry transformations is to prove that particular cor-
relation functions vanish. We discuss a simple example, which we use later to rule out
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2. Euclidean field theories

combinations of operators with vanishing expectation values to save computer time. Nev-
ertheless, a vanishing operator combination might serve as a consistency check. Assuming
that we have found a quantum symmetry transformation T obeying

T[O[Υ]] = −O[Υ] (2.16)

for a particular operator O[Υ], it is easy to show, with the help of eq. (2.14), that the
expectation value of this operator vanishes:

〈O[Υ]〉 = 〈T[O[Υ]]〉 = −〈O[Υ]〉. (2.17)

2.3.3. Ward-Takahashi identities

In the following, we derive a general formula describing Ward-Takahashi identities for
general field transformations. In standard textbooks [51, 52], one usually finds derivations
only for specific transformations. We consider a class of bijective field transformations
(T[ε])ε, parametrised by a real scalar field ε

T[ε] : Υ 7→ T[ε][Υ]. (2.18)

We demand that ε parametrises distance of T[ε] to the identity transformation, i.e.

T[ε][Υ]
∣∣
ε=0

= Υ, (2.19)

and that T is differentiable at ε = 0. Applying the transformation theorem for multivariate
integrals eq. (2.10), we find
∫
DΥ exp(−S[Υ])O[Υ] =

∫
DΥ sdet

(δT[ε][Υ]

δΥ

)
exp(−S[T[ε][Υ]])O[T[ε][Υ]]. (2.20)

We now differentiate this equation with respect to εx and evaluate the derivative at ε = 0:

0 =
δ

δεx

∫
DΥ sdet

(δT[ε][Υ]

δΥ

)
exp(−S[T[ε][Υ]])O[T[ε][Υ]]

∣∣∣
ε=0

=

∫
DΥ

δ

δεx
sdet

(δT[ε][Υ]

δΥ

)∣∣∣
ε=0

exp(−S[T[ε][Υ]])O[T[ε][Υ]]

+ exp(−S[T[ε][Υ]])
δ

δεx
S[T[ε][Υ]]

∣∣∣
ε=0
O[T[ε][Υ]]

+ sdet
(δT[ε][Υ]

δΥ

)
exp(−S[T[ε][Υ]])

δ

δεx
O[T[ε][Υ]]

∣∣∣
ε=0

=

∫
DΥ exp(−S[Υ])

( δ

δεx

(
sdet

(δT[ε][Υ]

δΥ

)
− S[T[ε][Υ]]

)∣∣∣
ε=0
O[Υ]

+
δO[T[ε][Υ]]

δεx

∣∣∣
ε=0

)
.

(2.21)

Dividing the latter equation by the partition function Z leads to the Ward-Takahashi iden-
tity with respect to the class of field transformations T expressed in terms of a correlation
function:

0 =
〈( δ

δεx
sdet

(δT[ε][Υ]

δΥ

)∣∣∣
ε=0
− δS[T[ε][Υ]]

δεx

∣∣∣
ε=0

)
O[Υ] +

δO[T[ε][Υ]]

δεx

∣∣∣
ε=0

〉
. (2.22)
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2.4. Wick’s theorem for path integrals

We will apply this theorem later in the context of continuum QCD+QED in section 3.5
and in the context of lattice QCD+QED in section 6.4.

2.4. Wick’s theorem for path integrals

An important method for the evaluation of path integrals is the application of Wick’s
theorem. Considering a free field theory, i.e. a theory in which the action is either quadratic
in the field or bilinear in the field and its conjugate, Wick’s theorem allows us to express
expectation values of field operators in terms of propagators, which are Green’s functions
of the operator appearing in the action. We revise Wick’s theorem for bosons and fermions,
which we will apply to the photon and quark fields in chapter 6.

2.4.1. Wick’s theorem for bosons

We consider a real non-interacting bosonic theory, i.e. the action is bilinear in the bosonic
field Φ and its dynamics is described by the operator ∆. The field Φ may have spatial and
internal degrees of freedom denoted by the multi-index c. We introduce a metric tensor
gc2c1 , which allows us to raise and lower indices. In the defining representation of the
field, the metric tensor is unity. In this setup, the free action of a bosonic field is given by

S[Φ] =
1

2
Φc2∆c2

c1Φc1 . (2.23)

The tensor ∆c2
c1 is contracted with the symmetric tensor Φc2Φc1 , such that its antisym-

metric part is projected to zero. We therefore assume that ∆ is a symmetric tensor, i.e.
∆c2

c1 = ∆c1
c2 . We define the generating functional Z by [59]

Z[J ] =

∫
DΦ exp(−S[Φ] + JcΦc), (2.24)

where J is a source for the field Φ and DΦ denotes the path integral measure with respect
to the defining representation of the field Φ

DΦ =
∏

c

dΦc. (2.25)

Correlation functions of the field Φ can then be expressed up to normalisation in terms of
derivatives of the generating functional at vanishing source [59]:

〈Φcn . . .Φc1〉 =
1

Z[0]

δnZ[J ]

δJcn . . . δJc1

∣∣∣∣∣
J=0

. (2.26)

Our aim is now to derive a simple and closed expression for correlation functions in terms
of the operator ∆. For the following calculation, it is, however, convenient to introduce
the propagator Σ as its inverse:

Σc3
c2∆c2

c1 = δc3c1 . (2.27)
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2. Euclidean field theories

The symmetry property Σc2
c1 = Σc1

c2 is inherited from ∆. It is important to note that,
if Φ is a gauge field, the operator ∆ is only invertible for a completely gauge fixed theory.
Otherwise, ,the propagator is not well defined as ∆ is a singular operator. We define a
field transformation

T[Φc2 ] = Φc2 − Σc2
c1J

c1 , (2.28)

which shifts the field variables linearly and therefore fulfils sdet
( δT[Φ]

δΦ

)
= 1, i.e. the

path integral measure is invariant. Completing the square and making use of the latter
field transformation in combination with eq. (2.10) and the symmetry property of Σ, the
generating functional can be rewritten as

Z[J ] =

∫
DΦ exp

(
− 1

2
(Φc3 − Jc4Σc4

c3)∆c3
c2(Φc2 − Σc2

c1J
c1) +

1

2
Jc2Σc2

c1J
c1
)

=

∫
DΦ exp

(
− 1

2
Φc3∆c3

c2Φc2 +
1

2
Jc2Σc2

c1J
c1
)

= Z[0] exp
(1

2
Jc2Σc2c1Jc1

)
. (2.29)

The derivatives in eq. (2.26) can now be easily applied to the partition function. The
general expression for an arbitrary but even number n of fields is known as Wick’s theo-
rem [59]

〈Φcn . . .Φc1〉 =
∑

σ∈Pn

Σcσ(n)cσ(n−1) . . .Σcσ(2)cσ(1) , (2.30)

where the sum runs over the set of pairings Pn.

2.4.2. Wick’s theorem for fermions

We consider a non-interacting fermionic theory of a pair of conjugated Grassmann fields
Ψ and Ψ with an action that is bilinear in the fields. The dynamics are described by the
operator D. Again, the fields Ψ and Ψ may have spatial and internal degrees of freedom
denoted by the multi-indices a and b. The action is given by

S[Ψ,Ψ] = ΨbD
b
aΨa. (2.31)

We define the generating functional Z by [59]

Z[η, η] =

∫
DΨDΨ exp(−S[Ψ,Ψ] + ηaΨa + Ψbη

b), (2.32)

where η and η are sources for the fields Ψ and Ψ, respectively. DΨDΨ denotes the
combined path integral measure with respect to the defining representation of the fields
Ψ and Ψ

DΨDΨ =
∏

a

dΨadΨa, (2.33)
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2.4. Wick’s theorem for path integrals

where the order is relevant due to the anti-commutating nature of Grassmann numbers.
Expectation values can be related to the generating functional via [59]

〈ΨbnΨan . . .Ψb1Ψa1〉 = (−1)n
1

Z[0, 0]

δ2nZ[η, η]

δηanδη
bn . . . δηa1δη

b1

∣∣∣∣∣
η=η=0

. (2.34)

We define a field transformation

T[(Ψa2 ,Ψb2)] = (Ψa2 − Sa2
b1η

b1 ,Ψb2 − ηa1S
a1

b2), (2.35)

which shifts the field variables linearly and therefore fulfils sdet
( δT[(Ψ,Ψ)]

δ(Ψ,Ψ)

)
= 1. Completing

the squares and making use of the field transformation in combination with eq. (2.10), the
generating function can be rewritten as

Z[η, η] =

∫
DΨDΨ exp(−(Ψb2 − ηa3S

a3
b2)Db2

a2(Ψa2 − Sa2
b1η

b1) + ηaS
a
bη

b)

=

∫
DΨDΨ exp(−Ψb2D

b2
a2Ψa2 + ηaS

a
bη

b)

= Z[0, 0] exp(ηaS
a
bη

b). (2.36)

As in the bosonic case, the derivatives in eq. (2.34) can be applied to the latter represen-
tation of the partition function. The general expression for an arbitrary number n of pairs
of conjugated fields is known as Wick’s theorem [59]

〈ΨbnΨan . . .Ψb1Ψa1〉 = (−1)n
∑

σ∈Sn

sgn(σ)Saσ(n)
bn . . . S

aσ(1)
b1 , (2.37)

where the sum runs over the set of permutations Sn.
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3. Euclidean QCD+QED

In this chapter, we discuss properties of QCD+QED on Euclidean spacetime that are
relevant for lattice Monte Carlo simulations, later covered in this thesis. We will briefly
introduce the relevant gauge groups, specify the field content of the theory, give the full
QCD+QED action and discuss the gauge invariance. We further discuss properties of β-
functions for QCD+QED and their consequences for the existence of the continuum limit
of a theory regulated by means of a spacetime lattice. We consider flavour symmetries
and conserved charges and finally derive the vector and axial Ward identity for the theory.
This chapter is partly inspired by the PhD theses [61–65].

3.1. Gauge groups

In this thesis, we consider two different gauge groups. The Abelian gauge group U(1)
of QED represents the electromagnetic interaction between electrically charged particles,
mediated by the photon field, whereas the non-Abelian gauge group SU(3) of QCD rep-
resents the strong interaction between colour charged particles, mediated by the gluon
field.

3.1.1. U(1) gauge group

The defining representation of the Abelian gauge group U(1) is the set of complex numbers
with unit norm, or equivalent the set of complex unitary numbers, which form a group
under ordinary multiplication:

U(1) = {Ω ∈ C1×1|Ω† = Ω−1}. (3.1)

The associated Lie algebra u(1) is given by the real numbers R. Each element Ω of the
compact Lie group U(1) can be represented as an exponentiated element ω ∈ R

Ω = exp(iω). (3.2)

3.1.2. SU(3) gauge group

The defining representation of the non-Abelian gauge group SU(3) is the set of complex
unitary 3 × 3 matrices with unit determinant, which also form a group under matrix
multiplication:

SU(3) = {Ω ∈ C3×3|Ω† = Ω−1,det(Ω) = 1}. (3.3)
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3. Euclidean QCD+QED

The associated Lie algebra su(3) is given by the set of complex, hermitian and traceless
3× 3 matrices:

su(3) = {T ∈ C3×3|T † = T, tr(T ) = 0}. (3.4)

As Lie algebras form vector spaces, one may choose a set of basis vectors, called gener-
ators T a with a ∈ {1, . . . , 8} in the case of su(3). The generators T a obey the defining
commutation relation

[T a1 , T a2 ] = ifa1a2a3T a3 , (3.5)

where fa1a2a3 are the completely anti-symmetric structure constants of SU(3), as well as
the orthogonality condition

tr(T a1T a2) =
1

2
δa1a2 . (3.6)

Each element Ω of the compact Lie group SU(3) can be represented as an exponentiated
element T = ωaT a of the Lie algebra su(3) with real numbers ωa:

Ω = exp(iωaT a). (3.7)

A standard choice of generators is T a = 1
2λ

a, where λa are the set of Gell-Mann matrices,
defined as [20]

λ1 =




0 1 0
1 0 0
0 0 0


 , λ2 =




0 −i 0
i 0 0
0 0 0


 , λ3 =




1 0 0
0 −1 0
0 0 0


 ,

λ4 =




0 0 1
0 0 0
1 0 0


 , λ5 =




0 0 −i
0 0 0
i 0 0


 , λ6 =




0 0 0
0 0 1
0 1 0


 ,

λ7 =




0 0 0
0 0 −i
0 i 0


 , λ8 =

1√
3




1 0 0
0 1 0
0 0 −2


 . (3.8)

3.2. QCD+QED

The field content of QCD+QED, considered in this thesis, is given by the bosonic spin-1
su(3)-valued gluon field Ag, the bosonic spin-1 R-valued photon field Ae and the fermionic
spin-1/2 quark fields Ψ and Ψ, which combine quark fields of different flavours. As we focus
on low-energy physics, we only consider the three lightest quark flavours u, d and s. We
ignore all other electromagnetically charged particles, i.e. the heavy quarks, the charged
leptons and the W± bosons. The theory is characterised by the couplings g for the strong
and e for the electromagnetic interaction. The matrix of fractional quark charges

Q = diag(qu, qd, qs) (3.9)
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3.2. QCD+QED

encodes the transformational behaviour of the quark fields under U(1) gauge transforma-
tions. The mass matrix for the quark fields reads

M = diag(mu,md,ms). (3.10)

Q and M are simultaneously diagonal. We conveniently group all relevant parameters in
the quantity

ε = (mu,md,ms, g
2, e2) (3.11)

and understand the action as a function of this tuple of parameters.

3.2.1. QCD+QED Action

We decompose the action of Euclidean QCD+QED, called S[Ψ,Ψ, Ag, Ae], into three parts:

S[Ψ,Ψ, Ag, Ae] = Sg[Ag] + Se[Ae] + Sq[Ψ,Ψ, Ag, Ae]. (3.12)

Sg[Ag] describes the gauge action of the strong interaction, Se[Ae] the gauge action of
the electromagnetic interaction and Sq[Ψ,Ψ, Ag, Ae] the quark action, which includes the
coupling to the strong and electromagnetic gauge fields. The Yang-Mills gauge action [2]
for an SU(3) gauge theory reads

Sg[Ag] =
1

2

∫
d4x

∑

µ2,µ1

tr(F xµ2µ1
g F xµ2µ1

g ) (3.13)

with the field strength tensor

F xµ2µ1
g =

−→
∂ µ2Aµ1

g −
−→
∂ µ1Aµ2

g − ig[Aµ2
g , Aµ1

g ]. (3.14)

The photon action is given by

Se[Ae] =
1

4

∫
d4xF xµ2µ1

e F xµ2µ1
e (3.15)

with the electromagnetic field strength tensor

F xµ2µ1
e =

−→
∂ µ2Aµ1

e −
−→
∂ µ1Aµ2

e . (3.16)

The quark action, describing the interaction of the quarks with the gauge fields, the kinetic
term as well as the quark mass, reads

Sq[Ag, Ae,Ψ,Ψ] =

∫
d4x

(
Ψ
(1

2
γµ
(−→
Dµ −←−Dµ

)
+M

)
Ψ
)x
, (3.17)

where we use the right-acting and left-acting covariant derivatives

−→
Dµ =

−→
∂ µ + igAµg + ieQAµe , (3.18)

←−
Dµ =

←−
∂ µ − igAµg − ieQAµe , (3.19)
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3. Euclidean QCD+QED

respectively. The covariant derivatives are related to the field strength tensors in eqs. (3.14)
and (3.16) by

[
−→
Dµ2 ,

−→
Dµ1 ] = [

←−
Dµ2 ,

←−
Dµ1 ] = igF xµ2µ1

g + ieQF xµ2µ1
e . (3.20)

We make use of a symmetric definition of the quark action with respect to the covariant
derivatives such that Ψ and Ψ are treated in a similar way in algebraic calculations. The

standard form, based on
−→
Dµ only, is retrieved by partial integration. The definition of

left-acting covariant derivatives becomes also relevant, when lattice gauge theories with a
higher rate of convergence towards the continuum limit are systematically constructed. We
will cover this topic later in chapter 4. We further utilise Euclidean Dirac matrices γµ in
a chiral representation given in eq. (3.28), which will be discussed further in section 3.2.3.

3.2.2. Gauge symmetries

The QCD+QED action eq. (3.12) obeys a combined gauge symmetry SU(3)c⊗U(1). We
parametrise the QCD gauge transformations Gg,Ω by the SU(3) matrix field Ωx, belonging
to the gauge group. The gauge transformations act on the fields according to

Gg,Ω[(Aµxg , Aµxe ,Ψx,Ψx)] =
(

ΩxAµxg (Ωx)† +
1

g
i(∂µΩ)x(Ωx)†, Aµxe ,ΩxΨx,Ψx(Ωx)†

)
.

(3.21)

In contrast, we parametrise the QED gauge transformations Ge,α by the scalar field αx,
belonging to the Lie algebra of the gauge group. This parametrisation is more convenient
to account for the different electromagnetic charges of the quarks. The action of the gauge
transformations on the fields reads

Ge,α[(Axµg , Axµe ,Ψx,Ψx)] = (Axµg , Axµe − (∂µα)x, exp(ieQαx)Ψx,Ψx exp(−ieQαx)). (3.22)

To check the invariance of the action under both types of gauge transformations one
investigates the transformational behaviour of the covariant derivatives from eqs. (3.18)
and (3.19)

Gg,Ω[
−→
Dµ] = Ω

−→
DµΩ†, Ge,Ω[

−→
Dµ] = exp(ieQα)

−→
Dµ exp(−ieQα), (3.23)

Gg,Ω[
←−
Dµ] = Ω

←−
DµΩ†, Ge,Ω[

←−
Dµ] = exp(ieQα)

←−
Dµ exp(−ieQα). (3.24)

and of the field strength tensors from eqs. (3.14) and (3.16)

Gg,Ω[Fµ2µ1
g ] = ΩFµ2µ1

g Ω†, Ge,α[Fµ2µ1
g ] = Fµ2µ1

g , (3.25)

Gg,Ω[Fµ2µ1
e ] = Fµ2µ1

e , Ge,α[Fµ2µ1
e ] = Fµ2µ1

e . (3.26)

3.2.3. Euclidean Dirac matrices

The Euclidean Dirac matrices are a set of 4× 4 matrices γµ for µ = 0, 1, 2, 3, which obey
the anti-commutation relation

{γµ1 , γµ2} = 2δµ1µ21. (3.27)
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3.2. QCD+QED

From this definition it is possible to construct a uniquely determined minimal group that
encloses the Dirac matrices. In fact, the anti-commutation relation can be rewritten as
multiplication laws for group elements. From these laws one can successively construct
a finite matrix group with 32 elements. All linear representations of a finite group are
equivalent through basis change to a unitary representation. In addition, one can show
that all four-dimensional representations are equivalent to each other [71], i.e. there is
only one four-dimensional representation up to basis change.

Chiral representation

A unitary representation commonly used is the chiral representation. This name does not
uniquely define a set of Dirac matrices, but refers to a specific property. In this thesis, we
use the convention from [72], which is also applied in the software package openQCD [73]
utilised to numerically solve the Dirac equation for quarks. We define the Euclidean Dirac
matrices in the chiral representation as [72]

γµ =

(
0 −iσµ

(−iσµ)† 0

)
µ = 0, 1, 2, 3 (3.28)

with the anti-hermitian matrix σ0 and the hermitian Pauli matrices σ1, σ2 and σ3 reading

σ0 =

(
−i 0
0 −i

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.29)

As made obvious in the definition, all Dirac matrices are hermitian, unitary and self-inverse
in this representation:

γµ = (γµ)† = (γµ)−1 µ = 0, 1, 2, 3. (3.30)

We further define a fifth Dirac matrix [72]

γ5 = γ0γ1γ2γ3 =

(
1 0
0 −1

)
, (3.31)

which is also hermitian, unitary and self-inverse in this particular representation,

γ5 = (γ5)† = (γ5)−1, (3.32)

and fulfils the anti-commutation relation

{γµ, γ5} = 0 µ = 0, 1, 2, 3. (3.33)

We also define the matrices

σµ2µ1 =
i

2
[γµ2 , γµ1 ]. (3.34)

The charge conjugation matrix in this representation reads [72]

C = iγ0γ2. (3.35)

It is also hermitian, self-inverse and unitary:

C = C† = C−1 = (C†)−1. (3.36)
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3. Euclidean QCD+QED

Figure 3.1.: Conjectured phase diagram of QCD. Figure extracted from [74].

3.2.4. Colour confinement and the QCD phase diagram

An important property of QCD, which should be mentioned for completeness, is colour
confinement. Although quarks and gluons carry colour charge, only colour neutral states
have been observed in experiments. In the hadronic phase, depicted in fig. 3.1, quarks and
gluons form bound states. The situation changes, when the temperature and the baryon
number density are increased. The deconfinement phase transition is crossed, and quarks
and gluons exist as quasi-free particles in the quark-gluon plasma [75].

3.3. QCD+QED β-functions

β-functions encode the dependence of renormalised couplings on the renormalisation scale
µ. Studying the β-functions of a theory is relevant to decide whether it is possible to
remove the regularisation cutoff by sending it to infinity, i.e. whether a theory is asymp-
totically safe. A theory is called asymptotically safe if the corresponding renormalisation
group possesses an ultra-violet fixed point. A special case of this scenario is the Gaussian
fixed point, in which the coupling vanishes, when the cutoff is sent to infinity. This class
of theories is called asymptotically free. Gross and Wilczek proved that QCD is asymp-
totically free [76]. For QED as a theory with an uncharged gauge boson, the situation is
completely different.

3.3.1. QCD β-function

The β-function of QCD βs is obtained from the scale derivative of the running coupling

µ2 ∂

∂µ2

αs(µ
2)

4π
= βs

(αs(µ
2)

4π

)
. (3.37)
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3.3. QCD+QED β-functions

Figure 3.2.: Summary of measurements of αs as a function of the energy scale Q. The
respective degree of QCD perturbation theory used in the extraction of αs

is indicated in brackets. Figure extracted from [35].

In perturbation theory, it is expressed as a power series in the coupling, reading in the
conventions of [77]

βs

(αs

4π

)
=
(αs

4π

)2
∞∑

i=0

βs,i

(αs

4π

)i
. (3.38)

So far, the coefficients βs,i for i = 0, . . . , 4 have been determined [77]. We only give the first
two coefficients βs,0 [76] and βs,1 [78] in the MS renormalisation scheme [79], depending on
the number of Dirac fermion species nf present in the theory. They read in the conventions
of [77]

βs,0 = −11 +
2

3
nf , βs,1 = −102 +

38

3
nf . (3.39)

βs is negative for all values of αs, also when all known higher order contributions are
included. As a consequence, αs goes to zero for larger renormalisation scales µ2, i.e.
QCD is asymptotically free [76]. In this high energy regime, perturbative calculations are
self-consistent, as the running coupling is much smaller than 1. At the other hand, the
coupling becomes large at small energy scales. A first-order solution of eq. (3.37), which
relates αs(µ

2) to the value of the coupling αs(µ
2
0) at a scale µ2

0, is given in the conventions
of [77] by [51]

αs(µ
2) =

αs(µ
2
0)

1 +
αs(µ2

0)
4π

(
11− 2

3nf

)
log
(
µ2

µ2
0

) . (3.40)
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3. Euclidean QCD+QED

From the latter solution we deduce that the coupling diverges at the scale

µ2
Landau = µ2

0 exp

(
− 1

αs(µ2
0)

4π (11− 2
3nf)

)
(3.41)

and is not defined for µ2 < µ2
Landau. The exact value depends on the order of the calculation

and the applied renormalisation scheme. In non-perturbative calculations, e.g. lattice
QCD, it is possible to determine αs also at small energy scales [80]. Hence, the low-
energy Landau-pole of QCD is a pure artefact of perturbation theory. In the latter, the
power series expansion becomes inconsistent for couplings with size of O(1) and larger.
An overview over experimental determinations of the running strong coupling αs is shown
in fig. 3.2.

3.3.2. QED β-function

Similar to QCD, the QED β-function is implicitly defined by

µ2 ∂

∂µ2

αem(µ2)

4π
= βem

(αem(µ2)

4π

)
. (3.42)

Again, we express the β-function as a power series reading:

βem

(αem

4π

)
=
(αem

4π

)2
∞∑

i=0

βem,i

(αem

4π

)i
. (3.43)

Currently, the coefficients βem,i for i = 0, . . . , 5 are known [81]. Again, we only give the
first two coefficients βem,0 and βem,1 in the MS renormalisation scheme [79], depending on
the number nf of Dirac fermion species with charges qi for i = 1, . . . , nf . They read in the
conventions of [77]

βem,0 =
4

3

nf∑

i=1

q2
i , βem,1 = 4

nf∑

i=1

q4
i . (3.44)

βem is positive for all values of αem, also when all known higher order contributions are
included. As a result, αem grows arbitrarily for larger energy scales. A first-order solution
of eq. (3.42), which relates αem(µ2) to the value of the coupling αem(µ2

0) at a scale µ2
0, is

given by

αem(µ2) =
αem(µ2

0)

1− αem(µ2
0)

4π
4
3

∑nf
i=1 q

2
i log

(
µ2

µ2
0

) . (3.45)

From the latter solution, we deduce that the coupling diverges at the scale

µ2
Landau = µ2

0 exp

(
1

αem(µ2
0)

4π
4
3

∑nf
i=1 q

2
i

)
(3.46)
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and is not defined for µ2 > µ2
Landau. However, non-perturbative studies of QED, based

on the lattice regularisation, indicate that the Landau pole in QED is not a perturbative
artefact [82–84]. The setup was based on non-compact lattice QED, which we will discuss
in chapter 4, with staggered fermions. The simulations showed that by altering the bare
dimensionless mass am, where a denotes the lattice spacing, it is not possible to generate
an arbitrarily small value of the renormalised dimensionless mass amR. Hence, it is also
not possible to perform calculations at arbitrarily small a. The theory provides itself a
minimal cutoff by chiral symmetry breaking [82–84].

3.3.3. QCD+QED β-functions

Having discussed QCD and QED as separate theories, we now investigates QCD+QED
as a combined theory. In this case, the running of the strong and the electromagnetic
coupling is described by the system of ordinary differential equations with respect to the
renormalisation scale µ in the conventions of [77]:

µ2 ∂

∂µ2

(αs(µ
2)

4π

)
= βs

(αs(µ
2)

4π
,
αem(µ2)

4π

)
, (3.47)

µ2 ∂

∂µ2

(αem(µ2)

4π

)
= βem

(αs(µ
2)

4π
,
αem(µ2)

4π

)
. (3.48)

A combined power series expansion of βs and βem in terms of the couplings αs and αem

reads

βs

(αs

4π
,
αem

4π

)
=
(αs

4π

)2
∞∑

i,j=0

βs,ij

(αs

4π

)i(αem

4π

)j
, (3.49)

βem

(αs

4π
,
αem

4π

)
=
(αem

4π

)2
∞∑

i,j=0

βem,ij

(αs

4π

)i(αem

4π

)j
. (3.50)

The coeffients βs,i0 describe the strong contributions to the running of αs, whereas βem,0i

describe the electromagnetic contributions to the running of αem. The coeffients βs,ij for
j 6= 0 and βs,ij for i 6= 0 describe the reciprocal influence of the interactions. The leading
coefficients were determined in [85, 86] in the MS-scheme [79]. In the conventions of [77],
the coefficients for βs are given by

βs,00 = −11 +
2

3
nq, βs,10 = −102 +

38

3
nf , βs,01 = 2

nq∑

i=1

q2
q,i (3.51)

and for βem they read

βem,00 =
4

3

(
3

nq∑

i=1

q2
q,i +

nl∑

i=1

q2
l,i

)
, βem,01 = 4

(
3

nq∑

i=1

q4
q,i +

nl∑

i=1

q4
l,i

)
,

βem,10 = 64

nq∑

i=1

q2
q,i. (3.52)
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nq denotes the number of quark flavours and nl the number of charged lepton species.
The fractional charges are labelled with qq,i and ql,i, respectively. For nq = 6 and nl = 3,
we find the β-functions

βs

(αs

4π
,
αem

4π

)
= −7

(αs

4π

)2
− 26

(αs

4π

)3
+

10

3

(αs

4π

)2(αem

4π

)
+O((αs, αem)4), (3.53)

βem

(αs

4π
,
αem

4π

)
=

32

3

(αem

4π

)2
+

176

9

(αem

4π

)3
+

320

3

(αs

4π

)(αem

4π

)2
+O((αs, αem)4). (3.54)

As all coefficients of βem are positive, we find a positive βem for all values of αs and αem.
Hence, αem also possesses a high-energy Landau pole similar to pure QED. As the two
interactions are coupled, αs diverges at the same energy scale. The strong interaction
induces an even stronger growth of αem, such that the Landau pole is shifted to smaller
energy scales. For small energies, βs is negative due to the weakness of the electromagnetic
interaction. Consequently, αs increases for smaller energies, such that the perturbative
expansion breaks down. As a consequence of the high-energy Landau pole, QCD+QED
is a trivial theory, i.e. all renormalised and bare couplings have to be set to zero in order
to have a well-defined theory. In this case, only a non-interacting theory of free quarks
and leptons remains. Nevertheless, it is possible to interpret QCD+QED as an effective
theory, which is valid for energy scales much smaller than the high-energy Landau pole.

In this thesis, we will truncate the perturbative expansion in αem at first-order, i.e. at
tree-level such that the system of β-functions simplifies to

βs

(αs

4π
,
αem

4π

)
=
(αs

4π

)2(
− 7− 26

(αs

4π

)
+

10

3

(αem

4π

))
+O((αs, αem)4), (3.55)

βem

(αs

4π
,
αem

4π

)
= 0. (3.56)

At this order, no Landau pole associated to αem is formed. In addition, the electromagnetic
correction of βs is independent of the value of αs too small to spoil its negativity assuming
a value of αem = 1

137.035... . Consequently, in this setup the cutoff µ2 can be sent to infinity
and therefore completely removed. In terms of the lattice regularisation, for which one
could perform a similar calculation, this means that the continuum limit of combined
QCD and tree-level QED exists. The arguments of this section also apply when only the
three light quarks are considered, as the qualitative behaviour of the β-functions does not
change.

3.4. Flavour symmetries and conserved charges

In order to obtain a deeper insight into QCD+QED, we discuss symmetries of the theory
depending on particular choices of the parameters of the action in eq. (3.11). We remind,
that a sufficient condition for a quantum symmetry is the invariance of the regulated action
and of the regulated path integral measure, c.f. eq. (2.13). We investigate the vector and
the axial transformation. We consider a group of vector transformations GV, which is
defined as a product of the groups U(n) and SU(n). The vector transformations act on
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the fields according to

TGV
(α)[(Ψx,Ψx, Axs , A

x
e )] =

(
exp

(
i
∑

i

T iGV
αi
)

Ψx,

Ψx exp
(
− i
∑

i

T iGV
αi
)
, Axs , A

x
e

)
,

(3.57)

where T iGV
are the generators of the particular symmetry group, spanning its Lie algebra,

and αi are real parameters, parametrising the transformation group. The generators T iGV

only act on the flavour indices of the quark fields. To evaluate the transformational
behaviour of the path integral measure, one in principle has to regulate the theory first,
e.g. with a covariant regularisation based on a heat-kernel as discussed by Fujikawa in
[57, 87, 88]. We omit this step, as it is known that the vector transformations are non-
anomalous. It can be shown that the action of QCD+QED is invariant under the group
GV, if

[M,T iGV
] = 0, e[Q,T iGV

] = 0 (3.58)

for all generators T iGV
. Similarly, we consider a group of axial transformations GA, which

act on the fields as

TGA
(α)[(Ψx,Ψ

x
, Axs , Ae)

x] =
(

exp
(

iγ5
∑

i

T iGA
αi
)

Ψx,

Ψx exp
(

iγ5
∑

i

T iGA
αi
)
, Axs , A

x
e

)
.

(3.59)

An additional γ5 matrix was introduced compared to eq. (3.83). Consequently, the field
transformation does not only mix quark field components in flavour space but also in spin
space. To determine the transformational behaviour of the path integral measure we follow
the steps of Fujikawa in [57, 87, 88] and modify the calculation such that it is valid for
QCD+QED. As the latter is lengthy, we only give the result. The axial transformation is
non-anomalous if all generators of the group are traceless

tr(T iGA
) = 0. (3.60)

The action of QCD+QED is invariant under GA if

{M,T iGA
} = 0, e{Q,T iGA

} = 0 (3.61)

for all generators T iGA
.

We will label the generators and the corresponding transformations with an index, which
tells the flavours manipulates by the generator. In addition, we denote a generator with
the index 1 if it belongs to the singlet representation, i.e. the generator T is proportional
to unity, and with an index 8 if the transformation belongs to the octet representation,
i.e. the generator T is traceless.
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3. Euclidean QCD+QED

3.4.1. QCD+QED

For the most general choice of action parameters

ε = (mu,md,ms, g
2, e2), (3.11)

the theory is invariant under the combined symmetry group

U(1)V,u ⊗ U(1)V,d ⊗ U(1)V,s. (3.62)

The generators for the vector transformations TU(1)V,f
with quark flavours f = u,d, s read

TU(1)V,u
=




1 0 0
0 0 0
0 0 0


 , TU(1)V,d

=




0 0 0
0 −1 0
0 0 0


 , TU(1)V,s

=




0 0 0
0 0 0
0 0 −1


 . (3.63)

The related conserved charges are upness U , downness D and strangeness S, describing
the flavour-wise quark number conservation. The minus signs in the definition of the
generators appear due to different conventions for up- and down-like quark flavours with
respect to the sign of the quark numbers. Consequently, the total quark number N =
U −D−S, the baryon number B = 1

3(U −D−S) and the electric charge Q = 2
3U + 1

3D+
1
3S are also conserved. For parameter choices with larger symmetry groups, the latter
transformations are always present as a subgroup.

3.4.2. Isosymmetric QCD

Isosymmetric QCD, which we denote QCDiso in this work, is characterised by the param-
eter tuple eq. (3.11)

ε = (mud,mud,ms, g
2, 0), (3.64)

i.e. the up and down quark masses are degenerate mud = mu = md and the electromag-
netic coupling vanishes, such that the photon field decouples from the theory. Due to the
absence of the electromagnetic interaction not only the bare but also the renormalised up
and down quark masses are equal. In this limit, the theory is invariant under the combined
symmetry group

U(1)V,ud ⊗ SU(2)V,ud8 ⊗ U(1)V,s. (3.65)

The generator of TU(1)V,ud
reads

TU(1)V,ud
=

1

2




1 0 0
0 1 0
0 0 0


 (3.66)

and the related conserved charge is U −D. The generators for the isospin transformations
SU(2)V,ud8 are given by

T iSU(2)V,ud8
=

1

2
λi i = 1, 2, 3 (3.67)
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with conserved charges I and I3 = U + D. Although isospin symmetry is not realised in
nature it is an approximate symmetry commonly assumed in lattice QCD simulations. In
the isosymmetric limit all members of hadronic isospin multiplets possess the same mass
such as the triplet of π± and π0, the doublet p and n as well as the doublet K+ and K0

as well as K− and K
0
.

3.4.3. Chiral QCD

Restricting the set of parameters even further, one investigates chiral QCD, which is
characterised by vanishing bare quark masses with the parameter tuple eq. (3.11)

ε = (0, 0, 0, g2, 0). (3.68)

In fact, not only the bare quark masses but also the renormalised quark masses vanish.
This parameter set maximises the symmetry group to

U(1)V,1 ⊗ SU(3)V,uds8 ⊗ SU(3)A,uds8, (3.69)

with the vector generators

TU(1)V,1
=

1√
6
1, T iSU(3)V/A,uds8

=
1

2
λi i = 1, . . . , 8. (3.70)

The appearance of the axial symmetry group SU(3)A,uds8 is directly related to the van-
ishing quark masses. Although the axial singlet transformation U(1)V,1 with generator

TU(1)A,1
=

1√
6
1 (3.71)

is a symmetry of the action, it is not a symmetry of the path integral measure and therefore
a quantum anomaly.

Chiral symmetry and its spontaneous breaking in QCD is an important concept to
understand the lightness of π±, π0, K± and η, which form the pseudo-scalar meson octet,
compared to other hadronic states. Although the chiral symmetry is a quantum symmetry
of the theory considered, it can be shown that the ground state of the Hamiltonian at
vanishing temperature is not invariant under chiral transformations by investigating the
chiral condensate [42, 89]

〈ΨxT iAΨx〉 (3.72)

as an order parameter of the chiral phase transition. In this situation, the Goldstone
theorem [90, 91] predicts a number of pseudo-scalar massless states appearing in the QCD
spectrum, the so-called Goldstone bosons, equal to the number of generators of the broken
symmetry. In the three flavour theory we have eight generators corresponding to the eight
pseudo-scalar octet mesons. Hence, the chiral point can be characterised by vanishing
quark masses or by vanishing masses of pseudo-scalar octet mesons. In fact, chiral QCD
is not realised in nature. The light quarks possess a mass compared to hadronic scales.
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3. Euclidean QCD+QED

This leads to an explicit breaking of chiral symmetry. The Goldstone bosons, now called
pseudo-Goldstone bosons, consequently also become massive but their masses are still
noticeably smaller compared to other hadronic state.

Chiral symmetry breaking is fundamental for the construction of chiral perturbation
theory [92], which is an effective field theory for the description of the interaction of
hadronic states. In addition, the notion of chiral symmetry is of particular relevance for
the construction of lattice discretised quark actions as we will see later and it is common
to impose renormalisation conditions for composite operators in lattice QCD simulations
in the chiral limit.

3.4.4. Chiral QCD with massive strange quark

In lattice QCD simulations, it is not always possible to choose the masses of the light and
strange quarks independently [45]. It is therefore not possible to obtain massless light and
strange quarks simultaneously. Hence, the chiral point is defined via vanishing up and
down quark masses in the presence of a massive strange quark with the parameter tuple
eq. (3.11)

ε = (0, 0,ms, g
2, 0). (3.73)

The mass of the strange quark has to be fixed by an additional condition. The symmetry
group is reduced compared to chiral QCD and enlarged compared to massive isosymmetric
QCD:

U(1)V,ud ⊗ SU(2)V,ud8 ⊗ U(1)V,s ⊗ SU(2)A,ud8. (3.74)

Again, assuming chiral symmetry breaking, the Goldstone theorem [90, 91] predicts three
massless pseudo-scalar mesons linked to the three generators of the broken SU(2)A,ud8

symmetry, the π+, π0 and π−. Consequently, the chiral point in the presence of a massive
strange quark can be characterised by vanishing masses of the pion triplet.

3.4.5. Chiral QCD+QED

Introducing the QED interaction with eq. (3.11)

ε = (0, 0, 0, g2, e2) (3.75)

reduces the symmetry group compared to chiral QCD due to the individual electromagnetic
charges of the quarks. The remaining symmetry group is given by

U(1)V,u ⊗ U(1)V,ds ⊗ SU(2)V,ds ⊗ U(1)A,uds8 ⊗ SU(2)A,ds8, (3.76)

with generators

TU(1)V,ds
=

1

2




0 0 0
0 1 0
0 0 1


 , TU(1)A,ds

=
1

2



−2 0 0
0 1 0
0 0 1


 (3.77)
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and

T 1
SU(2)V/A,ds

=
1

2
λ6, T 2

SU(2)V/A,ds
=

1

2
λ7, T 3

SU(2)V/A,ds
=

1

2




0 0 0
0 1 0
0 0 −1


 . (3.78)

Assuming that U(1)A,uds⊗SU(2)A,ds is spontaneously broken, the Goldstone theorem [90,

91] predicts four massless pseudo-scalar mesons K0, K
0
, π0 and η. The SU(2)V,ds symme-

try predicts mπ+ = mK+ and mπ− = mK− . Together with charge conjugation symmetry
we see that only four particles of the pseudo-scalar meson octet are massive and they
all possess the same mass. These findings are known as Dashen’s theorem [93]. Nowa-
days, this theorem is proved by means of the chiral effective theory [94]. Corrections to
Dashen’s theorem due to explicit breaking of the chiral symmetry by massive quarks are
parametrised by the parameter ε [39]

ε =
(m2

K+ −m2
K0)QED − (m2

π+ −m2
π0)QED

m2
π+ −m2

π0

, (3.79)

where the superscript QED denotes corrections caused by the electromagnetic interaction
only. Predictions of the breaking parameter ε are available based on the chiral effective
theory [94] as well as lattice QCD+QED [46, 48, 95].

3.4.6. Chiral QCD+QED with massive strange quark

We again consider the situation of the last section in the presence of a massive strange
quark with parameters eq. (3.11)

ε = (0, 0,ms, g
2, e2). (3.80)

Compared to chiral QCD+QED the symmetry group is broken to

U(1)V,u ⊗ U(1)V,d ⊗ U(1)V,s ⊗ U(1)A,ud8. (3.81)

A spontaneous breaking of the remaining chiral symmetry U(1)A,ud8 with generator

TU(1)A,ud8
=

1

2
λ3 (3.82)

results in a vanishing π0 mass via the Goldstone theorem [90, 91].

3.5. Ward-Takahashi identities in Euclidean QCD+QED

Ward-Takahashi identities are commonly discussed in the literature for multi-flavour QCD
and single-flavour QED separately. As we consider combined QCD and QED, we discuss
the two Ward-Takahashi identities most relevant for this work, namely the vector Ward
identity and the axial Ward identity, also known as the chiral Ward identity. Continuum
Ward-Takahashi identities play an important role for the improvement of the convergences
to the continuum limit of a lattice field theory. We will discuss the concept of improvement
later in section 4.1.2 when we have introduced the lattice regularisation.
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3. Euclidean QCD+QED

3.5.1. Vector Ward identity

The vector Ward identity is derived from the set of field transformations of the form

T[αx][(Ψx,Ψx, Axs , A
x
e )] = (exp(iTαx)Ψx,Ψx exp(−iTαx), Axs , A

x
e ), (3.83)

where T is a Hermitian matrix acting only on flavour indices of the quark fields and α
is a scalar field, such that the U(nf) phases exp(iTαx) and exp(−iTαx) become space
dependent. Naively, the path integral measure is invariant under the transformations
considered, as

sdet
(δT[α][Υ]

δΥ

)
= sdet(




exp(iTα)
exp(−iTα)

1
1


) = 1, (3.84)

From the discussion in section 3.4 we know, that the vector transformations are non-
anomalous, i.e. the invariance of path integral measure also holds in an appropriately
regularised theory. Accordingly, there is no contribution from the Jacobian to the Ward
identity:

δ

δαx
sdet

(δT[α][Υ]

δΥ

)∣∣∣
α=0

= 0. (3.85)

The derivative of the transformed action with respect to αx reads

δS[T[α][Υ]]

δαx

∣∣∣
α=0

= −i
(

(∂µ(ΨγµTΨ))x +
(

Ψ
[
T,

1

2
γµ(
−→
Dµ −←−Dµ) +M

]
Ψ
)x)

= −i((∂µ(ΨγµTΨ))x −Ψx[M,T ]Ψx − ieAxµe Ψxγµ[Q,T ]Ψx). (3.86)

Combining the last two equations with eq. (2.22) we obtain the vector Ward identity:
〈

(∂µ(ΨγµTΨ))xO[Υ]
〉

=
〈

(Ψx[M,T ]Ψx + ieAxµe Ψxγµ[Q,T ]Ψx)O[Υ]

+ i
δO[T[α][Υ]]

δαx

∣∣∣
α=0

〉
.

(3.87)

Associated to the partially conserved current (ΨγµTΨ)x, one defines a partially conserved
charge

Qx0

T =

∫
d3x(ΨγµTΨ)x. (3.88)

For vanishing electromagnetic quark charges Q = 0, we reobtain the standard QCD vector
Ward identity [42]. For flavour-diagonal T , in particular for T = Q, we find that the
expectation values of flavour-neutral vector currents are also conserved up to contact
terms in combined QCD and QED as all commutators vanish:

〈
(∂µ(ΨγµTΨ))xO[Υ]

〉
=
〈

i
δO[T[α][Υ]]

δαx

∣∣∣
α=0

〉
. (3.89)
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3.5. Ward-Takahashi identities in Euclidean QCD+QED

This is a conceptually important result, especially for the electromagnetic current. The
vector Ward identity in pure QCD ensures that the renormalisation of the electromagnetic
coupling only depends on the field strength renormalisation of the photon field, i.e. on the
vacuum polarisation. Contributions from the vertex and mass renormalisation cancel to all
orders, which can be shown using the vector Ward identity and its renormalised analogue.
The latter argument can also be applied in the situation of the combined QCD and QED
as the electromagnetic vector current fulfils the same Ward identity. The renormalisation
of the electromagnetic coupling comes only from the vacuum polarisation. In a tree-
level QED calculation, the vacuum polarisation is absent and hence, the electromagnetic
coupling does not renormalise even in the presence of full QCD. In fact, not only the
electromagnetic current is conserved but also any flavour-neutral vector current, for which
T is a diagonal matrix.

3.5.2. Axial Ward identity

The axial Ward identity is derived from the set of field transformations of the form

T[α][(Ψx,Ψx, Axs , A
x
e )] = (exp(iTγ5αx)Ψx,Ψx exp(iTγ5αx), As, Ae), (3.90)

where T is a Hermitian matrix acting on flavour indices and α is a scalar field, such
that we again have local U(nf) transformations. An additional γ5 matrix was introduced
compared to eq. (3.83). We do not demand that T is traceless. To determine the Jacobian
of the axial transformation, we follow the steps of Fujikawa in [57, 87, 88] and modify the
calculation for QCD+QED. As this calculation is very lengthy, we only give the result.
The contribution from the Jacobian to the Ward identity is given by

δ

δαx
det
(δT[α][Υ]

δΥ

)∣∣∣
α=0

= i
1

16
εµ4µ3µ2µ1(g2 tr(T ) tr(Fs

µ4µ3Fs
µ2µ1)

+ 3e2 tr(TQ2)Fe
µ4µ3Fe

µ2µ1).

(3.91)

The derivative of the transformed action with respect to αx reads

δS[T[α][Υ]]

δαx

∣∣∣
α=0

= −i
(

(∂µ(Ψγµγ5TΨ))x +
(

Ψ
{
γ5T,

1

2
γµ(
−→
Dµ −←−Dµ) +M

}
Ψ
)x)

= −i((∂µ(Ψγµγ5TΨ))x −Ψxγ5{M,T}Ψx

− ieAxµe Ψxγµγ5[Q,T ]Ψx).

(3.92)

Combining the last two equations with eq. (2.22) we obtain the axial-vector Ward identity,
which is also known as the partially conserved axial vector (PCAC) relation:
〈

(∂µ(Ψγµγ5TΨ))xO[Υ]
〉

=
〈

(Ψx{M,T}γ5Ψx + ieAe
xµΨxγµγ5[Q,T ]Ψx

+
1

16
εµ4µ3µ2µ1(g2 tr(T ) tr(Fs

µ4µ3Fs
µ2µ1)

+ 3e2 tr(TQ2)Fe
µ4µ3Fe

µ2µ1))O[Υ]

+ i
δO[T[α][Υ]]

δαx

∣∣∣
α=0

〉
.

(3.93)
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For vanishing electromagnetic quark charges Q = 0, we reobtain the standard QCD axial
Ward identity [42]. The PCAC relation takes an important role for the definition of quark
masses, which renormalise multiplicatively in lattice calculations [42]. Measuring both
sides of the PCAC relation gives access to the quark mass matrix. Probing the PCAC
relation for different T , linear combinations of entries of M can be extracted.
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4. Lattice field theories

In this chapter, we summarise the formulation of field theories on spacetime lattices. We
discuss the lattice regularisation of continuum field theories, introduce the notion of gauge
symmetries on the lattice and present gauge and fermion actions with a focus on the Wil-
son fermion discretisation in the context of lattice QCD. We further discuss subtleties of
non-compact lattice QED related to the manifest infrared divergence. We describe Monte
Carlo simulations as a stochastic tool to compute the path integral. We finally comment
on systematic errors of lattice Monte Carlo simulations. In this chapter, we follow the
standard text books of Montvay and Münster [96], Gattringer and Lang [42], Rothe [97],
DeGrand and DeTar [98], Smit [99], Wipf [60] and Creutz [100]. Further helpful introduc-
tory texts were published by Gupta [101], Wiese [102] and Lüscher [103, 104]. Text books
with focus on the application of lattice QCD in combination with advanced computational
techniques are [105, 106]. This chapter is partly inspired by the PhD theses [61–65].

4.1. Lattice regularisation

For the quantisation of an interacting Euclidean quantum field theory, a regularisation
procedure has to be applied. Wilson suggested to restrict a continuum field theory to a
discretised version of Euclidean spacetime, a spacetime lattice [107]. In this thesis, we
deal with lattices with a finite number of sites. Infinite lattices are not suited for Monte
Carlo simulations as computers can only deal with a finite number of degrees of freedom.
We consider a hypercubic lattice [42]

Λ = {x ∈ R4|xµ = anµ, nµ ∈ {0, 1, . . . , Nµ − 1}, µ ∈ {0, 1, 2, 3}} (4.1)

with equal lattice spacings in all directions. The extent is commonly chosen equal for all
spatial dimension, N1 = N2 = N3, such that the lattice is compatible with the octahedral
symmetry group. The restriction to a finite volume requires the definition of boundary
conditions. To understand the implication of a finite spacetime lattice, we consider a
generic lattice field Φ and decompose it into its Fourier modes, assuming periodic boundary
conditions for simplicity:

Φx =
∑

p

√
a

Xµ
exp

(
i
∑

µ

pµxµ
)

Φp, Φp =
∑

x

√
a

Xµ
exp

(
− i
∑

µ

pµxµ
)

Φx. (4.2)

The definition of the momenta is invariant under shifts by multiples of 2π
a , i.e. the mo-

mentum lattice is also periodic. It is common to shift the momenta to the first Brillouin
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zone [42]:

Λ̃ =
{
p ∈ R4

∣∣∣pµ =
2π

a

nµ

Nµ
, nµ ∈

{
− Nµ

2
+ 1, . . . , 0, . . . ,

Nµ

2

}
, µ ∈ {0, 1, 2, 3}

}
. (4.3)

The minimum distance between two lattice sites a induces a sharp cutoff in momentum
space at π

a in each direction. Loop integrals known from continuum perturbation theory
are replaced by a finite sum over the lattice momenta, i.e. the spacetime lattice serves as
a UV regulator of a quantum field theory. Lattice perturbation theory calculations can
also be performed on infinite lattices. In this case, the momenta form a continuous set
but are also bound to the first Brillouin zone. Anisotropic lattices with a smaller lattice
spacing in the temporal direction are relevant for finite-temperature calculations.

4.1.1. Lattice actions and lattice operators

If a spacetime lattice is used to regularise a continuum quantum field theory, lattice coun-
terparts have to be constructed for all ingredients of the continuum theory. In detail, a
lattice action Slat and lattice operators Olat have to be constructed that converge to there
continuum counterparts Scont and Ocont, when the lattice cutoff is removed:

lim
a→0

Slat = Scont, lim
a→0

Olat = Ocont. (4.4)

It is clear, that these requirements do not uniquely define Slat and Olat. This fact can be
used to influence the rate of convergence towards the continuum limit.

4.1.2. Symanzik improvement programme

The formulation of lattice quantum field theories as discretised versions of continuum
quantum field theories can be altered in such a way that the rate of the convergence
towards continuum, which is measured in powers of the lattice spacing a, is increased.
A systematic approach was formulated by Symanzik [108, 109]. Close to the continuum,
the lattice theory can be understood as an effective theory and be expanded in terms of
a [42, 110]:

S =

∫
d4xLx0 +

n−1∑

i=1

aiLxi +O(an). (4.5)

L(0) denotes the Lagrange density of the corresponding continuum theory. The densities
Lxi consist of linear combinations of local operators with mass dimension 4 + i, which are
compatible with the symmetries of the lattice action:

Lxi =

li∑

k=1

cikLxik. (4.6)

The lattice action is now modified in such a way that these contributions vanish to the
desired order. This is achieved by adding discretised versions of

∫
d4xLxik to the lattice
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4.2. Lattice gauge theories

action. The corresponding improvement coefficients cik have to be tuned appropriately.
In order to obtain improved correlation functions, the improvement also has to be applied
to operators. The procedure is completely analogous. Improvement coefficients can be
determined by means of perturbation theory. Nevertheless, a non-perturbative determi-
nation is preferred. This can be achieved by imposing Ward-Takahashi identities of the
continuum theory on lattice correlation functions [110, 111]. The improvement coefficients
are tuned such that lattice artefacts in the identity vanish to the desired order.

4.2. Lattice gauge theories

Lattice gauge theories are defined on a spacetime lattice and possess a gauge symmetry.
In particular, they provide gauge-invariant non-perturbative regularisations of continuum
gauge theories. A typical application is the investigation of low-energy QCD, where per-
turbation theory breaks down. In addition, lattice gauge theories also offer the possibility
to perform a strong and a weak coupling expansion [96, 97].

4.2.1. Local gauge transformations

Local gauge transformations GΩ, where Ωx ∈ G and G denotes the gauge group, act on
lattice fermion fields Ψ and Ψ similar to the continuum [42]

GΩ[(Ψx,Ψx)] = (ΩxΨx,Ψx(Ωx)†). (4.7)

A local combination of the conjugated pair of fermion fields is gauge invariant [42],

GΩ[ΨxΨx] = Ψx(Ωx)†ΩxΨx = ΨxΨx, (4.8)

i.e. a gauge invariant mass term can directly be constructed. This situation is different
for the kinetic term of a lattice field theory. Lattice derivatives require the combination of
fields at different lattice sites such that gauge invariance is spoiled. An object from con-
tinuum field theory which can be used to define gauge-invariant combinations of displaced
lattice fields is the parallel transporter Ux2x1

P along a path P connecting the points x1 and
x2. It is defined as [42]

Ux2x1
P = P

[
exp

(
ig

∫

P
dxµAxµ

)]
, (4.9)

where P denotes the path ordering operator and g is the coupling of the gauge field to the
fermions. Under a local gauge transformation, the parallel transporter transforms as [42]

GΩ[Ux2x1
P ] = Ωx2Ux2x1

P (Ωx1)†, (4.10)

i.e. a term of the form [42]

GΩ[Ψx2Ux2x1
P Ψx1 ] = Ψx2(Ωx2)†Ωx2Ux2x1

P (Ωx1)†Ωx1Ψx1 = Ψx2Ux2x1
P Ψx1 (4.11)
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4. Lattice field theories

is gauge invariant. So far, the gauge transporter is defined on the basis of a gauge field
in continuous spacetime. For the lattice discretisation, we define gauge links Uxµ ∈ G,
which connect neighbouring lattice sites x and x+ aµ̂ and transform in the same way as
the parallel transporter [42, 98]:

GΩ[Uxµ] = ΩxUxµ(Ωx+aµ̂)†. (4.12)

They can be understood as discretised versions of the parallel transporter between two
neighbouring lattice sites:

Ux,x+aµ̂
P = P

[
exp

(
ig

∫

P
dxµAxµ

)]
= exp(igaAxµ) +O(a). (4.13)

In lattice gauge theories, the gauge links U , which are elements of the gauge group, form
the fundamental fields. The path integral quantisation is performed with respect to an
integration over the gauge links U , which we will introduce in section 4.2.3. Nevertheless,
it is possible to implicitly define a lattice gauge field A, which is an element of the Lie
algebra of the gauge group, by the exponential map [42, 98]

Uxµ = exp(igaAxµ). (4.14)

4.2.2. Gauge invariant objects

As we aim for the construction of gauge invariant actions, we discuss elementary gauge
invariant building blocks composed from gauge links and fermion fields. We consider an
ordered product of gauge links, which are defined along a path (x0, x1 = x0+aµ̂0, . . . , xn =
xn−1 + aµ̂n−1):

P [U ] = Ux0µ0Ux1µ1 . . . Uxn−1µn−1 =
n−1∏

i=0

Uxiµi . (4.15)

It is convenient to define Ux,−µ = (Ux−aµ̂,µ)† to allow for paths in the −µ̂ direction. The
product of gauge links along a path transforms under gauge transformations as [42]

GΩ[P [U ]] = Ωx0P [U ](Ωxn)†. (4.16)

We can build gauge invariant objects if we attach fermion and conjugated fermion fields
at both ends of an arbitrary path [42]:

GΩ[Ψx0P [U ]Ψxn ] = Ψx0(Ωx0)†Ωx0P [U ](Ωxn)†ΩxnΨxn = Ψx0P [U ]Ψxn . (4.17)

For a closed path, i.e. x0 = xn, we obtain a gauge invariant object when taking the
trace [42]:

GΩ[tr(P [U ])] = tr(Ωx0P [U ](Ωx0)†) = tr((Ωx0)†Ωx0P [U ]) = tr(P [U ]). (4.18)
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4.3. Lattice gauge actions

4.2.3. The path integral measure for compact gauge groups

In order to construct the path integral over link variables, a path integral measure DU
has to be introduced. It is defined as the product of Lie group measures dU for each site
x and direction µ [42]:

DU =
∏

x

3∏

µ=0

dUxµ. (4.19)

An essential requirement for this measure is its invariance under gauge transformations.
For compact Lie groups G, there exists a unique measure, the so called Haar measure,
with the properties [42]

dU1 = d(U1U2) = d(U2U1) ∀U2 ∈ G,
∫

G
dU = 1, (4.20)

i.e. the measure is invariant under right- and left-translations and normalised. The transla-
tional invariance ensures the demanded gauge invariance of the path integral measure [42]:

d(G[Uxµ]) = d(ΩxUxµ(Ωx+aµ̂)†) = dUxµ. (4.21)

Group elements U of the Lie groups SU(n) and U(n) can be represented as U = exp(iωaT a),
where the ωa are real numbers and the T a denote the Lie group generators. On the Lie
group, a metric tensor g = g(ω)a2a1dωa2dωa1 can be constructed with entries [42]

g(ω)a2a1 = tr
(∂U(ω)

∂ωa2

∂U(ω)†

∂ωa1

)
. (4.22)

The Haar measure of the group is then defined by [42]

dU = c
√

det(g(ω))
∏

a

dωa, (4.23)

where the constant c is determined by the normalisation condition. A proof that this
measure fulfils the properties in eq. (4.20) can be found in [42].

4.3. Lattice gauge actions

In general, lattice gauge actions can be constructed from closed paths of gauge links. In
this section, we describe the construction of two lattice gauge actions that reproduce the
Yang-Mills action in the continuum limit a→ 0.

4.3.1. Wilson gauge action

The shortest non-trivial closed path on the lattice is a square in the µ1-µ2-plane. It is
defined by the corner points x, x + aµ̂1, x + aµ̂1 + aµ̂2 and x + aµ̂2. The corresponding
ordered product of gauge links is the so-called plaquette P xµ2µ1 , which reads [42, 98]

P xµ1µ2 = Uxµ1Ux+aµ̂1,µ2(Ux+aµ̂2,µ1)†(Ux,µ2)†. (4.24)
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4. Lattice field theories

Using the identification between gauge links and gauge fields in eq. (4.14), one finds [42, 98]

P xµ2µ1 = exp(ia2F xµ2µ1 +O(a3)) = 1+ ia2F xµ2µ1 − 1

2
a4(F xµ2µ1)2 +O(a3), (4.25)

i.e. the plaquette is directly related to the field strength tensor of the continuum theory.
This observation allows to construct the Wilson gauge action. Assuming a SU(3) gauge
theory, it is defined as [42, 98, 107]

S[U ] =
β

3

∑

x

∑

µ2<µ1

Re tr
(
1− P xµ2µ1

)
(4.26)

with the inverse coupling β = 6
g2 . The definition ensures that in the limit a → 0 the

continuum action is obtained [42]:

S[U ] =
2a4

g2

∑

x

∑

µ2,µ1

tr((F xµ2µ1)2) +O(a2). (4.27)

4.3.2. Lüscher-Weisz gauge action

The Symanzik improvement programme, as discussed in section 4.1.2, can be applied to the
Wilson gauge action to eliminate lattice artefacts to the desired order. Lüscher and Weisz
derived a gauge action that is tree-level O(a2)-improved [112, 113], i.e. the improvement
coefficients are determined at the classical level neglecting corrections from quantum loops.
In this setting, the improvement coefficients do not depend on the inverse coupling β. We
will apply this gauge action for the simulation of QCD in this thesis. In addition to the
plaquette, the rectangle in the µ1-µ2-plane has to be added to the action [65]:

Rµ2µ1 = Uxµ1Ux+aµ̂1,µ2Ux+aµ̂1+aµ̂2,µ2(Ux+2aµ̂2,µ1)†(Ux+aµ̂2,µ2)†)(Ux,µ2)†. (4.28)

The tree-level on-shell improved Lüscher-Weisz gauge action is defined as [73, 112, 113]

Sg[U ] =
β

6

∑

x

∑

µ2>µ1

(c0 Re tr(1− Pµ1µ2) + c1 tr(1−Rµ1µ2 + 1−Rµ2µ1) (4.29)

with the coefficients c0 = 5
3 and c1 = − 1

12 . For the choice c0 = 3.648 and c1 = −0.331 the
renormalisation group-inspired [98] Iwasaki gauge action is obtained [114].

4.4. Lattice fermion actions

In addition to the gauge action, the formulation of a lattice gauge theory also requires
a discretised fermion action. In this section, we discuss the fermion doubling problem,
present O(a)-improved Wilson fermions, which are used in this theses, and summarise
alternative lattice fermion formulations. A helpful review on the topic of chiral symmetry
on the lattice and lattice fermion formulations is [115].
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4.4. Lattice fermion actions

4.4.1. Lattice derivatives

Kinetic terms for lattice field theory actions can be constructed by means of the lattice
counterpart of derivative operators. These discrete derivative operators are commonly
denoted as lattice derivatives or finite differences. We define the right-acting forward and
backward derivatives acting on a generic field Φ as [72, 97]

(
−→
∂ µFΦ)x =

1

a
(Φx+aµ̂ − Φx),

−→
∂ µF

x2
x1 =

1

a
(δx2+aµ̂
x1

− δx2
x1

),

(
−→
∂ µBΦ)x =

1

a
(Φx − Φx−aµ̂),

−→
∂ µB

x2
x1 =

1

a
(δx2
x1
− δx2−aµ̂

x1
), (4.30)

and the left-acting forward and backward derivatives as [72]

(Φ
←−
∂ µF)x =

1

a
(Φx+aµ̂ − Φx),

←−
∂ µF

x2
x1 =

1

a
(δx2
x1+aµ̂ − δx2

x1
),

(Φ
←−
∂ µB)x =

1

a
(Φx − Φx−aµ̂),

←−
∂ µB

x2
x1 =

1

a
(δx2
x1
− δx2

x1−aµ̂), (4.31)

respectively. Making use of the Taylor expansion, we find O(a) lattice artefacts for the

forward and backward derivatives. Considering a lattice of finite extent,
−→
∂ µF and

←−
∂ µB as

well as
−→
∂ µB and

←−
∂ µF are related to each other via partial integration including boundary

terms [97].

4.4.2. Gauge covariant lattice derivatives

The construction of lattice gauge theories requires a discretised version of the continuum
gauge covariant derivative. Introducing parallel transporters, i.e. the gauge links U ,
the discrete derivatives in eqs. (4.30) and (4.31) can be modified so that they transform
covariantly under gauge transformations. We define the right-acting forward and backward
covariant lattice derivatives as [72]

(
−→
Dµ

FΨ)x =
1

a
(UxµΨx+aµ̂ −Ψx),

−→
Dµ

F
x2
x1 =

1

a
(Ux2µδx2+aµ̂

x1
− δx2

x1
),

(
−→
Dµ

BΨ)x =
1

a
(Ψx − (Ux−aµ̂,µ)†Ψx−aµ̂),

−→
Dµ

B
x2
x1 =

1

a
(δx2
x1
− (Ux2−aµ̂,µ)†δx2−aµ̂

x1
), (4.32)

and the left-acting covariant lattice derivatives as [72]

(Ψ
←−
Dµ

F)x =
1

a
(Ψx+aµ̂(Uxµ)† −Ψx),

←−
Dµ

F
x2
x1 =

1

a
(δx2
x1+aµ̂(Ux1µ)† − δx2

x1
),

(Ψ
←−
Dµ

B)x =
1

a
(Ψx −Ψx−aµ̂Ux−aµ̂,µ),

←−
Dµ

B
x2
x1 =

1

a
(δx2
x1
− δx2

x1−aµ̂U
x1−aµ̂,µ)), (4.33)

respectively. Making use of the Taylor expansion and the relation between the gauge
links and gauge fields in eq. (4.14), it is straightforward to show, that the covariant lattice
derivatives fulfil the correct continuum limit up to O(a). Similar as in the previous section,

the derivatives
−→
Dµ

F and
←−
Dµ

B as well as
−→
Dµ

B and
←−
Dµ

F are related to each other via partial
integration including boundary terms.
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4.4.3. Naive fermion action and doubling of fermion species

A straightforward discretisation of the continuum fermion action is obtained by replacing
the continuum covariant derivatives by lattice covariant derivatives [42, 116], defined in
eq. (4.32), ensuring that the continuum action is restore in the limit a → 0. It is clear
that this choice is not unique, as additional terms which vanish in the continuum limit can
always be added. We write the fermion action as a bilinear form in the pair of conjugated
fermion fields:

S[U,Ψ,Ψ] = ΨbD[U ]baΨa. (4.34)

D[U ] denotes the Dirac operator, which depends on the gauge links U . For quark fields
in the defining representation, we have a,b ≡ xfcs, where x denotes the spacetime, f the
flavour, c the colour and s the spin index. Using a symmetric combination of forward and
backward covariant derivatives, the naive Dirac operator is given by [42, 116]

Dnaive[U ] =
1

2

(∑

µ

γµ(
−→
Dµ

F +
−→
Dµ

B)
)

+M (4.35)

with the mass matrix M . A straightforward calculation shows that the Dirac operator
possesses the correct continuum limit and lattice artefacts are of O(a2) [42]. Applying a
Fourier transformation and assuming a unit gauge background Uxµ = 1, the naive Dirac
operator can be written as [42, 116]

Dnaive
p2
p1 =

( i

a

∑

µ

γµ sin(apµ1 ) +M
)
δp2
p1
. (4.36)

The quark propagator, which is the inverse of the Dirac operator, possesses a pole whenever
pµ ∈ {0, πa} for all µ = 0, . . . , 3 [42, 116]. Consequently, there are in total 16 poles in the
first Brillouin zone, i.e. 16 fermion flavours are present in the theory instead of one with
a pole at p = 0. The additional 15 fermion flavours are referred to as fermion doublers.
The presence of fermion doublers is a fundamental issue in the formulation of discretised
fermion actions, which is directly related to the preservation of chiral symmetry on the
lattice. A fundamental theorem which summarises these issues was formulated by Nielsen
and Ninomiya.

4.4.4. Nielsen-Ninomiya-Theorem

We phrase the Nielsen-Ninomiya theorem [117–120] in the version of [121]. No lattice Dirac
operator D can be constructed which simultaneously fulfils the following four properties:

1. D(p) is an analytic function in the momenta p with periodicity 2π
a .

2. D(p) = iγµpµ + O(ap2) for |p| � π
a , i.e. D shows the correct behaviour in the

continuum limit.

3. D(p) is invertible for p 6= 0 mod 2π
a .
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4. D anti-commutes with γ5, i.e. {D, γ5} = 0, which is required such that the fermion
action is invariant under continuous chiral transformations.

All existing lattice fermion discretisations have to violate at least one of the four properties.
Common formulations rely on an explicit breaking of chiral symmetry, on the introduction
of a lattice version of chiral symmetry or on a partial reduction of fermion doublers. In
the following, we will present several lattice fermion formulations.

4.4.5. Wilson fermion action

Wilson removed the fermion degeneracy by adding an irrelevant, dimension-5 operator
which vanishes in the continuum limit [107]. This modification gives the fermion doublers
an additive mass, which diverges in the continuum limit, such that they eventually de-
couple from the theory. In order to distinguish the doubler modes with poles at p 6= 0
from the physical mode with a pole at p = 0, it is useful to introduce a mass term which
depends on the momentum. The mass term has to vanish at p = 0 and diverge in the
continuum limit for the unphysical poles. A suitable choice for this purpose is the gauge

covariant Laplace operator
∑

µ

−→
Dµ

B

−→
Dµ

F. The Wilson-Dirac operator DW is defined as the
sum of the naive Dirac operator in eq. (4.35) and the Wilson term:

DW[U ] =
1

2

∑

µ

γµ(
−→
Dµ

F +
−→
Dµ

B)− 1

2

∑

µ

−→
Dµ

B

−→
Dµ

F +M. (4.37)

Making use of the definitions of the lattice covariant derivatives in terms of gauge links
and of partial integration, the Wilson-Dirac operator can also be written in a symmetric
fashion, which we will use in this thesis:

DW[U ] =
1

4

∑

µ

(
(
−→
Dµ

F −
←−
Dµ

B)(γµ + 1) + (
−→
Dµ

B −
←−
Dµ

F)(γµ − 1)
)

+M. (4.38)

Applying a Fourier transformation and assuming a unit gauge background Uxµ = 1, the
Wilson-Dirac operator becomes [42, 116]

DW
p2
p1 =

( i

a

∑

µ

γµ sin(apµ1 ) +
1

a
1
∑

µ

(1− cos(apµ1 )) +M
)
δp2
p1
. (4.39)

The Wilson term vanishes only at p = 0. The remaining 15 fermion doublers acquire an
additional mass contribution, which is proportional to 1/a. The major drawback of this
construction is the fact that the Wilson term explicitly breaks chiral symmetry even for
massless fermions. In addition, a vanishing bare mass m = 0 does not lead to a vanishing
renormalised fermion mass due to the additive mass renormalisation caused by the Wilson
term. The Wilson fermion action also only approaches the continuum limit with a rate of
O(a) instead of O(a2) as for the naive fermion formulation. Lüscher was able to prove the
existence of a self-adjoint, strictly positive transfer matrix for the Wilson plaquette gauge
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action in combination with the Wilson fermion action [122]. n important property of the
Wilson-Dirac operator D[U,A] is its γ5-hermiticity [42]:

DW[U ] = γ5(DW[U ])†γ5, (4.40)

γ5-hermiticity implies that the eigenvalues of D[U ] are either real or appear as complex
conjugated pairs [42].

4.4.6. O(a)-improved Wilson fermion action

The Symanzik improvement program, introduced in section 4.1.2, can also be applied to
the Wilson fermion action, leading to an O(a)-improved Wilson fermion action. This
fermion discretisation will be used for the quark fields later in this thesis. We summarise
the improvement procedure for the isosymmetric 2-flavour case. In total, there are five
dimension-5 operators, which are compatible with the symmetries of continuum QCD [42,
72]:

Lx1 =
∑

µ2,µ1

Ψxσµ2µ1Fµ2µ1Ψx, (4.41)

Lx2 =
∑

µ

Ψx(
−→
Dµ−→DµΨ)x +

∑

µ

(Ψ
←−
Dµ←−Dµ)xΨx, (4.42)

Lx3 = m
∑

µ2,µ1

tr(F xµ2µ1F xµ2µ1), (4.43)

Lx4 =
∑

µ

Ψxγµ(
−→
DµΨ)x +

∑

µ

(Ψ
←−
Dµ)xγµΨx, (4.44)

Lx5 = m2ΨxΨx. (4.45)

Making use of the on-shell improvement condition in form of the continuum field equation

(γµ
−→
Dµ +m)Ψ = 0, one finds that the operators are not independent [42, 72]:

L1 − L2 + 2L5 = 0, L4 + 2L5 = 0. (4.46)

These relations can be used to eliminate the operators L2 and L4, such that only L1, L3

and L5 are left [42, 72]. However, L1 is proportional to the gauge action term and L5 is
proportional to the quark mass term. The bare parameters m and β are just rescaled,
g2 → g2(1 + c3am) and m → m(1 + c5am), such that one can omit these operators as
well. The only operator which has to be added to the action is L1 [42, 72], the so called
Pauli, Clover or Sheikholeslami-Wohlert term. The Wilson-Dirac operator in eq. (4.38) is
altered to

DIW[U ] =
1

4

∑

µ

(
(
−→
Dµ

F −
←−
Dµ

B)(γµ + 1) + (
−→
Dµ

B −
←−
Dµ

F)(γµ − 1)
)

+M + cSWa
∑

µ1<µ2

1

2
σµ1µ2F̂µ1µ2

s .

(4.47)
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F̂ denotes a lattice discretisation of the continuum field strength tensor. A common choice
is [42, 72]

F̂ xµ1µ2 = − i

8a2
(Qxµ1µ2 −Qxµ2µ1). (4.48)

Qxµ1µ2 is the sum of the plaquettes in the µ1-µ2 plane of which x is a corner point:

Qxµ1µ2 = Uxµ1µ2 + Uxµ2,−µ1 + Ux,−µ1,−µ2 + Ux,−µ2µ1 . (4.49)

cSW is the Sheikholeslami-Wohlert coefficient [123]. As cSW is a function of β, it has to be
determined for each lattice spacing separately. This computation can either be performed
perturbatively or non-perturbatively. To lowest order in perturbation theory, cSW = 1.
The non-perturbative determination commonly relies on the imposition of the continuum
PCAC relation [72, 110], which required also the improvement of the axial current and
the pseudo-scalar density operators [72, 110]. For multi-flavour QCD with non-degenerate
quark masses, the improvement program turns out to be more sophisticated, as a larger
number of irrelevant operators has to be considered and the corresponding improvement
coefficients have to be determined [111].

4.4.7. Alternative lattice fermion actions

Ginsparg and Wilson formulated a relaxed version of the anti-commutation condition
of D and γ5, responsible for the preservation of chiral symmetry of the lattice fermion
action [124]. The Ginsparg-Wilson relation allows a massless Dirac operator DGW,0 to
break chiral symmetry in the form of a lattice artefact:

DGW,0γ
5 + γ5DGW,0 = aDGW,0γ

5DGW,0. (4.50)

The right-hand side vanishes in the continuum limit, i.e. the chiral symmetry is restored.
Lüscher constructed a U(1) group of transformations Tα [121], reading

Tα[(Ψ,Ψ)] =
(

exp
(

iαγ5
(
1− a

2
D
))

Ψ,Ψ exp
(

iα
(
1− a

2
D
)
γ5
))
, (4.51)

which reduces to the standard chiral transformation in the continuum limit a→ 0. Fermion
actions with Dirac operators satisfying the Ginsparg-Wilson relation are invariant under
these transformations [121]. Thus, it is possible to construct a doubler free lattice fermion
theory that still obeys a lattice version of the continuum chiral symmetry. In contrast, the
path integral measure is not invariant and an anomalous term in the axial Ward identity
appears, which is a discretised version of the Adler-Bell-Jackiw anomaly [42]. It is further
possible to construct massive fermions from a massless Ginsparg-Wilson Dirac operator
DGW,0 [125]:

DGW,m = DGW,0 +m
(
1− a

2
D
)

=
(

1− am

2

)
DGW,0 +m1. (4.52)
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Two established realisations of Ginsparg-Wilson fermions are domain wall fermions [126–
129] and overlap fermions [130, 131]. However, both fermion discretisations are computa-
tionally expensive such that other fermion formulations are commonly preferred.

Another discretisation that is based on a doublet of Wilson fermions and also breaks
chiral symmetry is the twisted-mass fermion formulation, in which a chirally twisted mass
term iµγ5τ3 is added to the Wilson action [132, 133]. The corresponding Dirac operator is
protected from zero modes, such that numerical simulations are stabilised, and the fermion
determinant is strictly positive. In addition, the theory is O(a)-improved at maximal twist,
i.e. the twisting angle α = arctan(µ/m) is set to π/2 and the bare fermion mass m to its
critical value [134, 135]. A significant drawback of the formulation is the explicit breaking
of isospin symmetry, which is, however, restored in the continuum limit [42, 135].

A lattice fermion formulation that preserves a remnant chiral symmetry is staggered
fermions [136]. A transformation that mixes spinor and spacetime indices is used to
distribute the four components of a Dirac spinor over the spacetime lattice. This reduces
the number of fermion doublers from 16 to 4. A further reduction of the number of species
is achieved by computing roots of the fermion determinant [42]. A major advantage of
staggered fermions are the reduced computational costs. However, a discussion about the
conceptual issues related to the rooting of the determinant is on-going [137, 138].

4.5. Non-compact lattice QED

In the case of an Abelian gauge theory, a different type of lattice gauge action can be
defined, which depends on the gauge fields and not on gauge links. Derivatives in the
continuum gauge action are replaced by their discrete counterparts. On the lattice, the
photon action is given by

Sγ [A] =
1

4

∑

x

∑

µ1,µ2

F xµ1µ2F xµ1µ2 (4.53)

with the discretised field strength tensor [97]

Fµ1µ2 =
−→
∂ µ1

F Aµ2 −−→∂ µ2

F Aµ1 , (4.54)

where we used the lattice derivatives defined in eq. (4.30). Using the relations between
the right-acting and left-acting derivatives, we can rewrite the action as a bilinear form in
the photon field, reading

Sγ [A] =
1

2
Ac2∆c2

c1A
c1 (4.55)

with the photon difference operator

∆µ2
µ1 =

(∑

µ

←−
∂ µF
−→
∂ µF

)
δµ2
µ1
−←−∂ µ1

F

−→
∂ µ2

F . (4.56)
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4.5. Non-compact lattice QED

c ≡ xµ in position space representation and the metric tensor, which is used to raise and
lower indices of the photon field and of the photon difference operator, is g(xµ)2(xµ)1

=

δx2
x1
δµ2
µ1 , i.e. A(xµ)2

= g(xµ)2(xµ)1
A(xµ)1

= A(xµ)2 . We have not included a specific gauge
fixing term yet, which will become relevant for two reasons: Without gauge fixing the path
integral is divergent as one integrates over an infinite set of equivalent photon field con-
figurations. In addition, the perturbative photon propagator is ill-defined. The existence
of gauge symmetries is related to a non-trivial kernel of the photon difference operator,
such that the inverse does not exist. Non-compact lattice QED suffers from several con-
ceptual problems which we will discuss in the following. In general, one is interested in a
lattice discretisation of a continuum theory which possesses a transfer matrix for a rigor-
ous quantum mechanical interpretation of the lattice field theory as well as the possibility
of applying the Symanzik improvement program to remove lattice artefacts successively
order by order. Helpful review articles for this topic are [38, 43, 44, 139].

4.5.1. Inconsistency of electrodynamics on periodic volumes and IR problem
of lattice QED

In lattice Monte Carlo simulations it is necessary to define boundary conditions as only a
finite number of lattice sites, i.e. a finite volume, can be simulated on the computer. A
straight forward choice is the application of periodic boundary conditions in the spatial
directions. In order to understand the effect of this choice, we consider classical electrody-
namics in the continuum on a periodic volume, e.g. a three-dimensional torus T3 [44, 140].
It is easy to show that this setup leads to unwanted problems. The total electric charge
enclosed in the periodic volume can be related to the divergence of the electric field via
Gauss’s law [44, 140]:

Q =

∫

T3

d3x ρ =

∫

T3

d3x ∂iEi =

∫

∂T3

dSiEi = 0. (4.57)

Due to the periodic boundary conditions the electric flux over the toroidal surface van-
ishes, i.e. the periodic volume is incompatible with a total non-vanishing charge. This
contradicts the aim of studying unbounded charged particles.

In order to further investigate the problem related to the periodic boundary condi-
tions, we consider the action of Euclidean QED on a four-dimensional torus with periodic
boundary conditions and investigate its gauge symmetries. The QED action reads

S[A,Ψ,Ψ] =

∫
d4x

1

4

∑

µ2,µ1

F xµ2µ1F xµ2µ1 + Ψx((γµDµ +m)Ψ)x, (4.58)

where Dµ = ∂µ + ieAµ is the covariant derivative and Fµ2µ1 = ∂µ2Aµ1 − ∂µ1Aµ2 the field
strength tensor. The periodic boundary conditions are implemented as

Ax|xµ=0 = Ax|xµ=Xµ , Ψx|xµ=0 = Ψx|xµ=Xµ , Ψx|xµ=0 = Ψx|xµ=Xµ (4.59)

for µ = 0, 1, 2, 3. Similar as in infinite volume, we find that the action is invariant under
the gauge transformation G of the form

G[(Axµ,Ψx,Ψx)] = (Axµ − (∂µα)x, exp(ieαx)Ψx,Ψx exp(−ieαx)), (4.60)
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4. Lattice field theories

if α is a periodic function. In fact, demanding α to be a periodic function is far to
restrictive. Inserting the gauge transformed fields into eq. (4.59) we find the two conditions

(∂µα)x|xµ=0 = (∂µα)x|xµ=Xµ , exp(ieαx)|xµ=0 = exp(ieαx)|xµ=Xµ . (4.61)

Due to the 2πi-periodicity of the exponential function, the conditions are equivalent to

(∂µα)x|xµ=0 = (∂µα)x|xµ=Xµ , αx|xµ=0 = αx|xµ=Xµ − 2π

e
nµ, (4.62)

where n ∈ Z4. A simple solution to eq. (4.62) is given by the choice αx = 2πnµ

eXµ xµ, i.e. the
respective gauge transformation reads

G[(Axµ,Ψx,Ψx)] =
(
Axµ − 2πnµ

eXµ
, exp

(
ie

2πnµ

eXµ
xµ
)

Ψx,Ψx exp
(
− ie

2πnµ

eXµ
xµ
))
. (4.63)

For the photon field, this type of gauge transformation is a shift symmetry as the value
of the entire field is shifted homogeneously [41]. From the previous discussion, it is clear
that a gauge transformation, which satisfies eq. (4.62), can always be decomposed into a
gauge transformation with periodic α and a non-periodic remainder for some n ∈ Z4:

αx = αxper +
2πnµ

eXµ
xµ. (4.64)

Gauge transformations which are characterised by a non-periodic α are referred to as large
gauge transformations.

In general, gauge symmetries cause a non-trivial kernel of the photon differential oper-
ator. The large gauge transformations, defined in eq. (4.63), shift the value of the photon
field by a constant. Hence, the photon propagator possesses a divergence at p = 0. In order
to invert the photon differential operator, the gauge freedom has to be fixed. Commonly,
one uses local gauge-fixing conditions that do not relate different sites of the gauge field.
However, according to [44], large gauge transformations survive local gauge-fixing proce-
dures as they are not continuously connected to the identity transformation. Therefore,
a global gauge constraint has to be imposed in addition. There are several proposals to
remove or avoid the problematic zero mode. In principle, there are two distinct solutions:
Either one alters the action by excluding field modes manually or one chooses boundary
conditions that avoid the zero mode [44].

4.5.2. QEDTL

QEDTL [141] is a particular infrared regularisation of non-compact lattice QED on a
periodic lattice based on the action eq. (4.55). The photon field is restricted to field
configurations satisfying

∑

x

Axµ = 0 ∀µ ∈ {0, 1, 2, 3} (4.65)
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4.5. Non-compact lattice QED

on all Euclidean components of the photon field. The name convention describes the fact
that the summation in the constraint is both over the temporal and spatial directions.
The latter condition is equivalent to demanding a vanishing zero-mode in Fourier space

Apµ|p=0 = 0 ∀µ ∈ {0, 1, 2, 3}, (4.66)

i.e. the mode is removed as a dynamical degree of freedom from the theory, such that
the photon difference operator can be inverted and the infrared singularity in the photon
propagator is avoided. It is commonly argued that removing a set of modes with measure
zero in the infinite-volume limit does not alter the theory in this limit [44]. QEDTL

was used in early QCD+QED simulations [141, 142], but also in the original setup of
the BMW collaboration for the investigation of isospin breaking [47] and of the Rome
approach [46, 143], which will be relevant later in this work. Despite its simplicity, QEDTL

suffers from several conceptual problems [44, 47, 140], such that the application of this
type of lattice QED discretisation is nowadays avoided. The constraint connects fields
at arbitrary times and spoils reflection positivity. As a consequence, this prevents the
construction of a transfer matrix [41]. In addition, charged particle propagators are ill-
behaved if the time extent of the box is sent to infinity while keeping its spatial size fixed:
The effective mass for charged states at fixed order in e2 diverges in the infinite time
limit [41].

4.5.3. QEDL

A significant improvement with regard to the conceptual problems of QEDTL is offered
by QEDL, which was introduced by Hayakawa and Uno [140], featuring a more restrictive
constraint on the field variables

∑

~x

Axµ = 0 ∀µ ∈ {0, 1, 2, 3} ∀x0 ∈ {0, . . . , X0 − a}, (4.67)

i.e. the spatial zero mode is removed from the theory on each timeslice

Apµ|~p=0 = 0 ∀µ ∈ {0, 1, 2, 3} ∀ p0. (4.68)

The constraint is local in time and respects reflection positivity. Hence, the existence of a
transfer matrix is guaranteed [41]. In [44] the QEDL constraint is applied to a φ4 scalar
field theory in order to investigate its consequences with respect to the renormalisability
of higher-dimensional operators. It was observed that the required counterterms possess
non-local contributions, such that the operator product expansion, the Symanzik effective-
theory description of the lattice theory close to the continuum and the related improvement
program break down. This leads to the assumption that an O(a)-improved version of
QEDL, which removes leading lattice artefacts, cannot be constructed. According to [44],
it is possible to avoid these conceptual problems if one restricts the calculations to leading
order considerations. In [139], it is further suggested to also modify modes beyond the
spatial zero modes in order to eliminate the leading finite-volume corrections to hadron
masses.
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4. Lattice field theories

4.5.4. QEDM

Another approach is to regulate the divergence of the photon propagator by introducing
a finite photon mass mγ after fixing the gauge to Rξ-gauge, similar to the procedure in
continuum QED [144, 145]. In this setup, the photon difference operator reads

∆QEDM

µ2
µ1 =

(∑

µ

←−
∂ µF
−→
∂ µF +m2

γ

)
δµ2
µ1

+
(1

ξ
− 1
)←−
∂ µ1

F

−→
∂ µ2

F . (4.69)

As QEDM employs two IR regulators, the photon mass and the finite volume, it is impor-
tant to realise that the limits do not commute, which makes the extrapolation challenging.
In order to recover infinite-volume QED, first one has to perform the infinite volume ex-
trapolation of the observable and then extrapolate to vanishing photon mass. According
to [44], if mγ is too small in comparison with the lattice volume, the effective mass of
charged particles will show the same problems as for QEDTL. In [144, 145], it is argued
that hadron masses can, however, be reliably estimated in the regime mγ/mπ ≤ 1 and
mγL ≥ 1.

4.5.5. QEDC

So far, we have discussed solutions to the IR problem of non-compact lattice QED based
on an alteration of the theory. A different approach is to modify the boundary conditions,
such that large gauge transformations are spoiled. We briefly discuss QEDC [146–148],
which was introduced to the lattice community after this project had been started. QEDC

is defined by applying spatial C-parity boundary conditions instead of periodic boundary
conditions in the spatial directions µ = 1, 2, 3, i.e.

Ax|xµ=0 = −Ax|xµ=Xµ , Ψx|xµ=0 = C−1(Ψx)T |xµ=Xµ , (4.70)

where C = iγ0γ2 is the charge conjugation matrix for Dirac spinors. For this choice, an
argument similar to eq. (4.57) cannot be constructed, as the electric and flavour charge can
flow in and out at the boundaries. However, charge and flavour symmetries are partially
broken by the boundary conditions, such that charge and flavour quantum numbers are
not conserved. In fact, only the quantum numbers (−1)Q and (−1)F are conserved,
such that states with charges differing by multiples of 2 have non-vanishing overlap [146–
148]. E.g. a Ξ− baryon can decay into a proton [44]. The major disadvantage of QEDC

is the requirement of the generation of completely new gauge ensembles, which is very
costly. A code for lattice simulations of (QCD+QED)C based on the openQCD library is
available [149, 150], where isospin breaking is treated non-perturbatively.

4.6. Monte Carlo simulations for gauge theories

The large number of degrees of freedom, which have to be integrated over in order to
evaluate the path integral, makes standard numerical integration methods inapplicable [42,
60]. A straightforward numerical computation using quadrature formulas is too expensive
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4.6. Monte Carlo simulations for gauge theories

in terms of computing time. A solution to this problem is the application of Monte Carlo
integration, i.e. the integral is stochastically estimated by the average of the integrand,
evaluated at randomly chosen values of the integration variable.

4.6.1. Importance sampling

The expectation value of an observable, which depends on the gauge field U , can be
estimated by

〈O[U ]〉 ≈ 1

n

n∑

i=1

exp(−S[Ui])O[Ui], (4.71)

where the Ui are drawn from a flat distribution. This method is rather inefficient, as a
gauge configuration Ui only contributes very little to the path integral if the correspond-
ing Boltzmann weight exp(−S[Ui])/Z is small. A more efficient approach is importance
sampling, in which the Ui are sampled according to the probability density distribution

dP (U) =
exp(−S[U ])

Z
DU. (4.72)

The path integral over the gauge field U can then be approximated by a summation over
the set of gauge configurations (Ui)i=1,...,n:

〈O[U ]〉 ≈ 1

n

n∑

i=1

O[Ui]. (4.73)

According to the central limit theorem, the statistical error of the result scales with
1/
√
n [42].

4.6.2. Markov chains

The generation of gauge configurations (Ui)i=1,...,n can be performed by means of a Markov
chain. Starting from a given U1, Ui+1 is obtained from Ui in a Monte Carlo update step.
The Markov chain is characterised by the transition probability T (U ′|U), which describes
the probability to obtain a configuration U ′ from U within an update step. The Markov
chain is in equilibrium if the probability distribution of the gauge configurations P (U)
fulfils the balance equation [42, 60]

∑

U

T (U ′|U)P (U) =
∑

U

T (U |U ′)P (U ′). (4.74)

A more restrictive solution to the latter equation is the detailed balance condition [42, 60]

T (U ′|U)P (U) = T (U |U ′)P (U ′). (4.75)

In section 4.6.5 we present the Hybrid Monte Carlo algorithm, which is used to generate
gauge configurations based on Markov chains and the detailed balance condition.
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4.6.3. Effective gauge action

So far, we have only considered an action that depends on the gauge field U . In practice,
one is interested to simulate theories with additional fields, which we described by the
field Υ. We consider an action

SΥ[U,Υ] = Sg[U ] + SΥ[U,Υ], (4.76)

where Sg[U ] describes the self-interaction of U and SΥ[U,Υ] the remaining interactions.
The theory is described by the partition function and expectation value

Z =

∫
DUDΥ exp(−Sg[U ]− SΥ[U,Υ]), (4.77)

〈O[U,Υ]〉 =
1

Z

∫
DUDΥ exp(−Sg[U ]− SΥ[U,Υ])O[U,Υ]. (4.78)

In the following, we assume that are able to integrate over the field Υ, i.e. we can evaluate
the partition function and expectation value

ZΥ[U ] =

∫
DΥ exp(−SΥ[U,Υ]), (4.79)

〈O[U,Υ]〉Υ =
1

ZΥ

∫
DΥ exp(−SΥ[U,Υ])O[U,Υ], (4.80)

which both depend on the background gauge field U . Assuming that the partition function
ZΥ is positive, we may define the effective gauge action [151, 152]

Seff [U ] = Sg[U ]− log(ZΥ[U ]). (4.81)

We also define the corresponding objects of the Υ, which are defined on a background
gauge field U :

〈Oeff [U ]〉eff =
1

Zeff

∫
DU exp(−Seff [U ])Oeff [U ], (4.82)

Zeff =

∫
DU exp(−Seff [U ]). (4.83)

By construction, the two partition functions Z and Zeff are identical:

Z =

∫
DUDΥ exp(−Sg[U ]− SΥ[U,Υ]) =

∫
DU exp(−Sg[U ])ZΥ[U ] = Zeff . (4.84)

The expectation value of the full and the effective action are related through

〈O[U,Υ]〉 =
1

Z

∫
DUDΥ exp(−Sg[U ]− SΥ[U,Υ])O[U,Υ]

=
1

Z

∫
DU exp(−Seff [U ])

1

ZΥ[U ]

∫
DΥ exp(−SΥ[U,Υ])O[U,Υ]

=
1

Zeff

∫
DU exp(−Seff [U ]) 〈O[U,Υ]〉Υ = 〈〈O[U,Υ]〉Υ〉eff , (4.85)
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i.e. as a first step Oeff [U ] = 〈O[U,Υ]〉Υ is evaluated for each value of the gauge field U
and then the expectation value with respect to the effective action 〈Oeff [U ]〉eff is taken.
Oeff [U ] is an effective operator, which only depends on the gauge field U . The Monte Carlo
estimation is now performed with respect to the effective gauge action Seff . Equation (4.73)
is altered to

〈O[U,Υ]〉 ≈ 1

n

n∑

i=1

〈O[Ui,Υ]〉Υ (4.86)

and the gauge configurations are generated with respect to the distribution

dP (U) =
exp(−Seff [U ])

Z
DU =

exp(−Sg[U ])ZΥ[U ]

Z
DU, (4.87)

i.e. the partition function ZΥ[U ] becomes part of the Boltzmann weight.

4.6.4. Monte Carlo simulations for fermion fields

We consider a fermion action which is bilinear in the conjugated fermionic fields Ψ and
Ψ, reading

S[Ψ,Ψ] = ΨaD
a
bΨb. (4.88)

The Dirac operator D depends on a background gauge field U , which we suppress for better
readability. For this action, it is possible to formally compute the partition function Z, as
the integral over the Grassmann variables can be performed algebraically [59, 151–153]:

Z =

∫
DΨDΨ exp(−S[Ψ,Ψ]) = det(−D). (4.89)

For a γ5-hermitian Dirac operator, e.g. the Wilson Dirac operator in eq. (4.40), the
partition function is real [42]:

Z = det(−D) = det(−γ5Dγ5) = det(−D†) = det(−D)∗ = (Z)∗. (4.90)

To include the fermion partition function into the weight factor, as discussed in sec-
tion 4.6.3, Z has to be positive. If we consider a doublet of mass-degenerate fermions with
flavours 1 and 2, the Dirac operator is block-diagonal D = diag(D1, D2) and D1 = D2.
Hence, the partition function is not only real but positive semi-definite [42]:

Z = det(−D) = det(−D1) det(−D2) = (det(−D1))2

= det(−D1) det(−D†1) = det(D1D
†
1) ≥ 0. (4.91)

Assuming D has no zero eigenvalues, det(D1D
†
1) can be evaluated by an integration over

complex bosonic fields Φ and Φ†, which are commonly referred to as pseudo-fermions [42]:

det(D1D
†
1) =

1

πΛ

∫
DΦDΦ† exp(−Φ†(D1D

†
1)−1Φ). (4.92)
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Λ denotes the total number of lattice sites. For single fermion species with a Dirac operator
D1, a rooting trick can be applied, assuming that the quark determinant is positive. In
this case, it can be represented by an integral over pseudofermion fields, reading

det(D1) = det(
√
D2

1) = det
(√

D1

√
D1
†)

=
1

πΛ

∫
DΦDΦ† exp(−Φ†(

√
D1

√
D1
†
)−1Φ). (4.93)

Technically,
√
D1 is approximates by a polynomial [154] or rational [155, 156] function in

D1. We will discuss this in more detail in section 5.2.4. Another possibility to compute
the single fermion determinant assuming a spectrum with positive real parts, which does
not apply to the Wilson-Dirac operator, is discussed in [157, 158].

4.6.5. Hybrid Monte Carlo algorithm

The Hybrid Monte Carlo (HMC) algorithm [159] is a tool to generate gauge configurations
(Ui)i=1,...,n for a lattice gauge theory including fermion fields. For simplicity, we assume
to have a doublet of mass-degenerate Wilson fermions with a single flavour Dirac operator
D[U ], for which the partition function ZΥ[U ] is positive. We understand the gauge links
U as a function of the Markov time τ , which parametrises the Markov chain, and identify
Ui with U(i∆τ). The gauge links

Uxµ = exp(i
∑

i

QxµiT i) (4.94)

are parametrised by the real coefficients Qxµi, where T i are the generators of the gauge
group. For each coordinate Qxµi a conjugate momentum P xµi is introduced. The Hamilton
function of the molecular dynamics, which describes the time evolution of the coordinates
Q and momenta P with respect to τ , is defined as [42]

H[Q,P ] =
1

2

∑

x,µ,i

(P xµi)2 + Sg[U [Q]]− φ†(D[U [Q]] (D[U [Q]])†)−1φ. (4.95)

From the corresponding Hamilton equations one derives the equations of motion [42]

d

dτ
P xµi = −∂H[Q,P ]

∂Qxµi
= −F [U [Q], φ]xµi, (4.96)

d

dτ
Qxµi =

∂H[Q,P ]

∂P xµi
= P xµi (4.97)

with the force term [42]

F [U [Q], φ]xµi =
∂

∂Qxµi
(Sg[U [Q]] + φ†(D[U [Q]] (D[U [Q]])†)−1φ). (4.98)

The HMC algorithm generates a new gauge configuration Ui+1 from a gauge configuration
Ui in the following way [42]: The gauge configuration U(i∆τ) is translated into coordinates
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Q(i∆τ). A pseudofermion field φ = Dξ is generated, where ξ is distributed according to
exp(−ξ†ξ). The initial random conjugated fields P (i∆τ) are drawn from a Gaussian dis-
tribution exp(− trP 2). Q(i∆τ) and P (i∆τ) are used as initial values for the integration
of the molecular dynamics equations of motion. The latter are integrated numerically over
a distance ∆τ , leading to coordinates Q((i + 1)∆τ) and momenta P ((i + 1)∆τ). From
Q((i + 1)∆τ) a new gauge configuration Ui+1 is constructed. The numerical integrator
requires the computation of the force term for each step. This is the most expensive part of
the HMC algorithm, as the Dirac equation has to be solved [42]. The HMC algorithm only
fulfils the detailed balance equation in eq. (4.75) if the numerical integration scheme satis-
fies two requirements [42]: The integration measure is area preserving and the integration
scheme is reversible. A class of integration schemes, which satisfy these conditions, are
leapfrog integration schemes [42]. Due to translation invariance with respect to Markov
time, the value of the Hamilton function is, in principle, conserved along a solution of the
equation of motion. However, the numerical integration will lead to deviations from the
exact solution. To correct for this violation, a Monte Carlo accept-reject step is added to
the algorithm [42]. The suggested gauge configuration Ui+1 is only accepted if a random
number r, which is drawn from the interval [0, 1), satisfies

r < exp(H[Pi+1, Qi+1]−H[Pi, Qi]). (4.99)

The new configuration Ui+1 is rejected otherwise. Instead, the initial gauge configuration
is reused a second time, Ui+1 = Ui. In order to obtain a high acceptance rate, the step
size of the numerical integration scheme has to be chosen small. However, this leads to a
smaller number of generated gauge configuration at equal computational cost. To find the
optimal choice of parameters is non-trivial and depends on the lattice spacing, the bare
masses and the lattice volume.

4.6.6. Thermalisation

The HMC algorithm has to be started from an initial gauge configuration U0. This can
be a random gauge configuration or a gauge field, which is generated from a different
HMC run with similar parameters [42]. The generated gauge configurations will not
immediately fulfil the desired equilibrium probability distribution. This is only the case
after a thermalisation time, which depends on the bare parameters, the lattice size and
the investigated observable.

4.6.7. Monte Carlo reweighting

Depending on the specific theory, the generation of gauge configurations can be extremely
computationally demanding. In particular, the consideration of dynamical fermions is
computationally expensive. The reweighting method [160, 161], which we discuss in the
following, was introduced by Ferrenberg and Swendsen. It allows to reuse existing gauge
configurations of a gauge field U , generated with respect to an effective action Seff,1,
for a similar theory with an effective action Seff,2 correcting the Boltzmann weights of
the gauge configurations. In the following discussion, we only consider effective actions,
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assuming that all degrees of freedom but the gauge field, which is sampled by the Monte
Carlo simulation, have already been integrated out by the path integral. We consider
two effective actions Seff,i for i = 1, 2. The corresponding partition functions Zeff,i and
expectation values 〈O[U ]〉eff,i read

Zeff,i =

∫
DU exp(−Seff,i[U ]), (4.100)

〈O[U ]〉eff,i =
1

Zeff,i

∫
DU exp(−Seff,i[U ])O[U ]. (4.101)

The expectation value of the second action can be related to the expectation value of the
first action by

〈O[U ]〉eff,2 =

∫
DU exp(−Seff,2[U ])O[U ]∫
DU exp(−Seff,2[U ])

=

∫
DU exp(−Seff,1[U ])

exp(−Seff,2[U ])
exp(−Seff,1[U ]) O[U ]

∫
DU exp(−Seff,1[U ])

exp(−Seff,2[U ])
exp(−Seff,1[U ])

=
〈R[U ]O[U ]〉eff,1

〈R[U ]〉eff,1
. (4.102)

We have introduced the reweighting factor R[U ], given by

R[U ] =
exp(−Seff,2[U ])

exp(−Seff,1[U ])
, (4.103)

which corrects for the wrong statistical weight of each gauge configuration with respect to
the new action. The estimation of the reweighting factor introduces additional statistical
noise. It can also be very expensive to evaluate the reweighting factor, depending on the
physical content of the two theories and their difference. One typical application is the
modification of bare parameters after the gauge configurations have been generated. In
finite-temperature simulations, the observables have to be computed for various values
of the temperature to explore the phase diagram. The temperature is related to the
temporal lattice extent and therefore to the lattice spacing, which depends on the inverse
coupling β. It is usually too expensive to generate gauge ensembles for each desired value
of the temperature and its corresponding β, such that the inverse coupling β is altered
by reweighting [162]. A chemical potential can be treated in the same way [162]. The
quark masses can also be fine-tuned by means of the reweighting method [157, 163, 164].
Another example is the alteration of the entire physical theory. Non-degenerate quark
masses can be introduced on isosymmetric ensembles by means of reweighting [158] or
even an additional interaction such as QED [165]. This will become important in this
thesis.

4.7. Systematic errors of lattice Monte Carlo simulations

In this section, we briefly discuss various potential systematic errors which accompany
lattice gauge theory calculations.
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Finite lattice spacing

Lattice field theory calculations compute physical observables at finite lattice spacing. A
prediction at the physical point is only possible when the results from different lattice spac-
ings are extrapolated to the continuum by means of a fit. The Symanzik improvement
programme [108, 109] allows to systematically remove lattice artefacts order by order.
Nevertheless, smaller lattice spacings require a larger number of lattice sites to keep the
physical volume constant, which significantly increases the computational cost [42]. The
rotational symmetry of the continuum theory is clearly broken by the lattice discretisa-
tion. Nevertheless, it is possible to relate irreducible representations of the octahedral
group, which is the rotational symmetry group of a spatial cubic lattice, to irreducible
representations of the continuum rotation group SO(3) [166].

Unphysical quark masses

The relation between the bare parameters and the quantities defining the renormalisation
scheme is non-trivial and can only be determined via the lattice simulation. Therefore,
it is not possible to know the correct bare parameters at the physical point in advance.
Simulations are commonly performed at various values of the bare parameters. To obtain
results at the physical point, fits in terms of the quantities belonging to the renormal-
isation scheme, so-called chiral extrapolations, are performed. The required fit models
can be motivated by chiral perturbation theory. In addition, lattice simulations are of-
ten performed preferably at unphysically large quark masses as the computational cost is
significantly reduced [42].

Finite volume effects

Numerical results which are obtained from lattice Monte Carlo simulations suffer from
finite volume effects as computer simulations can only deal with a finite number of lattice
points. In principle, it is possible to simulate the same theory on systems with different
box sizes to investigate the dependence on the physical volume. The extrapolation can
then be performed as a fit in powers of 1

L , where L describes the spatial extent of the
lattice [42]. For a systematic expansion, chiral perturbation theory on finite volumes can
be used [98]. Hadronic masses are altered by an interaction around the spatial torus, which
leads to exponential corrections O(exp(−mL)) [42] for pure QCD. This is most relevant for
the smallest accessible mass of the theory, i.e. mπ. One usually chooses mπL > 4 [45] such
that finite volume corrections are negligible at the level of current statistical precisions. For
simulations involving QED the situation is different. QED does not possess a spectral gap
and the interaction is long-ranged. One therefore expects relevant finite size corrections
depending on the simulated volume [139].

Excited state effects

Spectroscopy calculations rely on fitting procedures to correlation functions. In interacting
theories, interpolation operators usually do not create a pure eigenstate of the Hamilton
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operator when applied to the vacuum state, but a superposition of eigenstates. It is not
always possible to reliably isolate the desired state, such that the value of the corresponding
mass or matrix element is biased. Nevertheless, it is possible to optimise interpolation
operators in a variational analysis, reducing excited state effects [42].

(Partial) Quenching of the fermion determinant and disregard of Feynman diagrams

The computation of the fermion determinant Zq[U ] in the process of the gauge ensemble
generation is computationally expensive. It was common to neglect the sea quark con-
tribution in lattice Monte Carlo simulations completely, i.e. the quark determinant was
set to unity, which is equivalent of having infinitely heavy sea quarks. This procedure is
referred to as the quenched approximation [42] and leads to various unphysical results.
In particular, the η′ becomes a pseudo-Goldstone boson [42] as the contribution to the
mass caused by the anomaly, which is related to sea quark loops [98, 105], is missing. In
addition, exceptional configurations characterised by small or negative eigenvalues of the
Dirac operator appear more often [42]. A further simplification in lattice simulations is to
focus on Feynman diagrams, which are computationally easy to handle. The evaluation
of quark-disconnected diagrams demands a much higher computational effort compared
to quark-connected diagrams [42], which usually form the dominant contribution. Nev-
ertheless, quark-disconnected diagrams are relevant to correctly predict various physical
phenomena, such as the mass of the η meson and the value of the η−η′ mixing angle [167].
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QCDiso

The gauge configurations used in this thesis for Monte Carlo simulations are provided by
the CLS effort. They are generated with respect to a lattice gauge theory describing QCD
with Nf = 2+1 dynamical quark flavours, i.e. the quark masses of the two lightest quarks
are degenerate. The setup and the production strategy are discussed in [45], based on the
simulation concepts introduced in [168]. In this chapter, we will briefly discuss the lattice
action, give details on the treatment of fermions and the fermion determinants, describe
the determination of required reweighting factors, present the renormalisation scheme and
the scale setting and finally give an overview over generated gauge ensembles. This chapter
mainly summerises the most important aspects of the publications [45, 168–172] and is
partly inspired by the PhD thesis [65].

5.1. Action and boundary conditions

Gauge ensembles generated within the CLS effort are characterised by the following ac-
tion: For the SU(3) gauge fields the Lüscher-Weisz gauge action is employed, given in
eq. (4.29). The fermion discretisation is based on O(a)-improved Wilson fermions includ-
ing the Sheikholeslami-Wohlert term, c.f. eq. (4.47). The required improvement coefficient
cSW is determined non-perturbatively in [172], based on the evaluation of the PCAC rela-
tion. Simulations are performed with the three quark flavours up, down and strange and
degenerate up and down quark masses, i.e. the isosymmetric limit is considered.

Periodic boundary conditions are the most common choice in lattice QCD, as they
preserve translational invariance. In simulations performed at smaller lattice spacings
a freezing of the topological charge was observed [173], which is an integer number on
periodic lattices. As a consequence, autocorrelation times grow, as the HMC algorithm
is not able to sweep trough many topological sectors and the representativeness of the
generated gauge configurations has to be questioned. In particular, the ergodicity of the
simulation algorithm cannot be assured when approaching the continuum limit [169]. A
way to alleviate the topology freezing is to alter the temporal boundary conditions. In [173]
the introduction of open temporal boundary conditions is suggested, imposing Dirichlet
boundary conditions on components of the quark fields and demanding the colour-electric
field to vanish. On this geometry, the topological charge is not an integer, but a real
number, and it can flow into and out of the lattice during the HMC process, i.e. the
topological barriers are removed. In the CLS effort, ensembles with both types of boundary
conditions, i.e. periodic temporal and open temporal are generated. We will discuss the
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two types of boundary conditions and their actual implementation in more detail in the
context of combined QCD and QED in section 6.2.

5.2. Algorithmic setup

Several advanced computational techniques are applied to speed up the HMC algorithm,
in particular to compute the fermion determinant, which is the most expensive part.

5.2.1. Even-odd preconditioning for light quarks

The calculation of the light quark determinant is not performed by considering the single
flavour γ5-hermitian Dirac-Wilson operator D, but the hermitian operator [45]

Q = γ5D. (5.1)

A simplification of the calculation called even-odd preconditioning [174] is achieved by
decomposing the lattice into even and odd lattice sites

Q =

(
Qee Qeo

Qoe Qoo

)
. (5.2)

As the operator Q involves only self-interactions and nearest neighbour interactions Qee

and Qoo are diagonal matrices for which both the inverse and the diagonal can directly be
calculated. In order to calculate the determinant of Q it is convenient to decomposed Q
further into

Q =

(
1 Qeo(Qoo)−1

0 1

)(
Q̂ 0
0 Qoo

)(
1 0

(Qoo)−1Qoe 1

)
, (5.3)

where we have introduced the asymmetric even-odd preconditioned Schur complement

Q̂ = Qee −Qeo(Qoo)−1Qoe. (5.4)

Making use of the fact that the determinants of the leftmost and rightmost matrices in
the above decomposition are unity, the squared quark determinant can be written as a
product of squared determinants of Qoo and of the Schur complement Q̂ [45]:

det(Q2) = det((Qoo)2) det(Q̂2). (5.5)

The determination of det(Q̂2) is computationally simplified compared to det(Q2) as Q̂2 is
an operator on a lattice with only half the number of sites.

5.2.2. Twisted mass reweighting for light quarks

The Wilson Dirac operator does not only possess eigenvalues equal or larger than the bare
quark mass. Consequently, field space is divided by surfaces of zero eigenvalue, which
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cannot be crossed by the HMC algorithm due to the infinite action [45]. The introduction
of a small twisted mass term makes the spectrum of the Wilson Dirac operator strictly
positive. In addition, it reduces the fluctuations of the forces to be integrated, such
that a larger step widths in the HMC integrator can be applied and therefore makes the
simulations cheaper and more reliable. The squared light quark determinant is written
as [45]

det(Q2) = det((Qoo)2) det(Q̂2) = W0 det((Qoo)2) det

(
Q̂2 + µ2

0

Q̂2 + 2µ2
0

)
det(Q̂2 + µ2

0), (5.6)

where we have introduced the twisted-mass reweighting factor

W0 = det

(
(Q̂2 + 2µ2

0)Q̂2

(Q̂2 + µ2
0)2

)
(5.7)

that compensates for the twisted mass term. A larger choice of the twisted-mass parameter
µ0 leads to a more stable performance of the HMC algorithm as force fluctuations are
removed but reintroduces larger fluctuations in the reweighting factor. W0 is removed
from the quark action used to generate the gauge configurations. To correct for the wrong
statistical weight of the generated gauge configurations due to the altered quark action a
reweighting according to section 4.6.7 is performed, where W0 appears as the reweighting
factor. W0 is later stochastically estimated by means of pseudofermion fields [45].

5.2.3. Factorisation of the light quark determinant

A further reduction of the fluctuation of the forces in the HMC algorithm can be achieved
by a determinant factorisation [175] with different values for the twisted masses [176]. The
twisted mass quark determinant is decomposed as [45]

det(Q̂2 + µ2
0) = det(Q̂2 + µ2

n)
n∏

i=1

det

(
Q̂2 + µ2

i−1

Q̂2 + µ2
i−1

)
(5.8)

with µ0 < . . . < µn. Each determinant is estimated by its own pseudofermion field. Hence,
the integrator step width in the HMC algorithm can be optmised for each pseudofermion
force and larger step widths become feasible. The values were chosen with equal distance
on the logarithmic scale and can be found in [45].

5.2.4. Rational approximation of strange quark determinant

The quark determinant for the strange quark has to be treated differently compared to
the doublet of light quarks, for which the combined light quark determinant is considered.
The strange quark determinant is evaluated by approximating the square root of Q̂2 by a
rational function [155, 156] with np poles [45]

det(Q) = det(Qoo) det(

√
Q̂2) = det(Qoo) det

(
A−1

np∏

i=1

Q̂2 + µ̄2
i

Q̂2 + ν̄2
i

)
W1 (5.9)
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with an optimal choice of the parameters ν̄i and µ̄i and µ̄1 < . . . < µ̄np . In addition, a
reweighting factor W1 has to be introduced, which absorbs the inaccuracy of the rational
approximation. Similar to the twisted-mass reweighting factor W0 for the light quark de-
terminant, W1 is removed from the simulated action and later reintroduced by reweighting.
It is also estimated by means of pseudofermion fields. The determinant of the rational
function is further split into several factors [45]:

det

( np∏

i=1

Q̂2 + µ̄2
i

Q̂2 + ν̄2
i

)
=

n′p∏

i=1

det

(
Q̂2 + µ̄2

i

Q̂2 + ν̄2
i

)
det

( np∏

i=n′p+1

Q̂2 + µ̄2
i

Q̂2 + ν̄2
i

)
. (5.10)

The first n′p terms with smallest µ̄i, i = 1, . . . , n′p are evaluated by individual pseud-
ofermion fields, whereas the determinant of the remaining factors is evaluated by a single
pseudofermion field. Again, this determinant factorisation allows for an optimisation of
the HMC algorithm with respect to the step width applied, when integrating individual
pseudofermion forces. As mentioned above, the Wilson Dirac operator can possess neg-
ative eigenvalues. Consequently, the determinant can have a negative sign on particular
gauge configurations. It is possible to correct for this sign, investigating the spectrum of
the Dirac operator on each gauge configuration [177] and including the missing sign in the
reweighting factor W1. This issue is absent for the light quark determinant, as a pair of
degenerate quarks is considered.

5.2.5. Integration of molecular dynamics

Gauge and fermion forces vary over several orders of magnitude and their evaluation is of
different computational effort. To achieve a high acceptance rate of the gauge configuration
it is computationally more efficient to treat individual forces in the HMC, which we have
discussed in section 4.6.5, by suitable integration schemes [178]. For the generation of
CLS gauge ensembles, a three-level integration scheme is applied [45, 169]. They are
integrated by the first-level integrator, which is based in a forth-order integration scheme
by Omelyan, Mryglod and Folk (OMF) [179]. Due to the large magnitude of the gauge
forces, the step width has to be chosen small and hence, a high number of evaluations
of the forces has to be performed. This is computationally feasible, as the gauge forces
are cheap to compute. The majority of the fermion forces is treated by the second-level
integrator, which is also based on a forth-order OMF integration scheme. Due to the
costly evaluation of the fermion forces, the step is chosen larger compared to the first-
level integrator. Small components of the fermion forces are treated by the third-level
integrator, which integrates with the largest step width and is based on a second-order
OMF integration scheme.

5.2.6. Solver

In order to compute the fermionic forces in the HMC algorithm, the Dirac equationDΨ = η
has to be solved for Ψ for a given source η. The computation of a solution by means of
a direct method is computationally too demanding due to the large system size. Hence,
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iterative solvers have to be applied. Aiming for smaller quark masses am, one observes
that the condition number of the Dirac operator increases, which is reflected by a rise
in the iteration count [169]. Several methods were developed to speed up the numerical
determination of the solution. For the generation of CLS gauge ensembles, a locally
deflated solver [180] is applied. Deflation techniques remove the lowest eigenmodes of
the Dirac operator from the Dirac equation. On the deflation subspace spanned by the
lowest eigenmodes, the system can be solved exactly. The iterative solver is only used to
determine the solution on the complementary subspace. It was observed that when the
lattice volume is increased, the number of considered lowest eigenmodes has to be increased
to keep the condition number of the Dirac operator fixed [169, 180]. However, the exact
determination of a larger number of eigenmodes is computationally too expensive for large
lattices. The computational cost can be reduced when a domain-decomposed deflation
subspace is used, i.e. the eigenmodes are computed on local sublattices, approximating
the global eigenmodes [180]. A further improvement is obtained from the application of
the Schwarz alternating procedure as a preconditioner of the Dirac equation [181]. The
deflated, Schwarz preconditioned Dirac equation is then solved by means of the generalized
conjugate residual (GCR) algorithm [181], which belongs to the class of Krylov subspace
solvers and is mathematically equivalent to the generalized minimal residual methods
(GMRES) [182].

5.3. Renormalisation scheme, chiral trajectory and scale setting

In order to relate the bare parameters of the lattice action with observables determined
in experiments, a hadronic renormalisation scheme is utilised. For a given strong inverse
coupling β, the bare quark masses are tuned such that the observables included in the
hadronic renormalisation scheme take their physical values. Commonly, gauge ensembles
with different sets of bare parameters are generated and the theory predictions, deter-
mined on each ensemble, are then extrapolated to the physical point. The lattice spacing
corresponding to the value of β is determined by relating an additional dimensionful ob-
servable to its experimental value. In the following, we present the strategy applied for
the generation of CLS gauge ensembles [45].

5.3.1. Renormalisation scheme

The isosymmetric pion and kaon masses are used as a hadronic renormalisation scheme
in order to determine the bare quark masses. Lattices with different lattice spacings are
matched via the dimensionless quantities [45]

φ2 = 8t0m
2
π, φ4 = 8t0

(
m2
K +

1

2
m2
π

)
, (5.11)

where the scale t0 is the Wilson flow parameter [183, 184], discussed later in this chapter. In
leading chiral perturbation theory, these two quantities can be related to the quark masses
and are proportional to sums of those, φ2 ∝ (mu + md) and φ4 ∝ (mu + md + ms) [45].
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The physical point is characterised by the masses of the pion and kaon in the isosymmetric
limit without electromagnetic contributions [45], reading

mphys
π = 134.8(3) MeV, mphys

K = 494.2(4) MeV. (5.12)

These values can be translated into

φphys
2 = 0.0801(27), φphys

4 = 1.117(38). (5.13)

5.3.2. Chiral trajectory

As the CLS setup is based on an O(a)-improved action, the bare strong coupling g also has
to be improved. The bare improved coupling gI in terms of the bare coupling g reads [45]

g2
I = g2

(
1 +

1

3
bga
∑

f

(mf −mcr)
)
. (5.14)

In order to keep the lattice spacing constant, when varying the bare quark masses, the
improved coupling constant has to be kept fixed. However, the improvement coefficient bg
is not known non-perturbatively [45]. The improved coupling stays constant, if the bare
quark masses are varied on a trajectory, implicitly defined by the equation [45]

∑

f=u,d,s

mf = 3msym (5.15)

with mu = md, i.e. the kaon mass becomes a function of the pion mass and vice versa. This
trajectory can be uniquely characterised by the bare quark mass at the SU(3) symmetric
point msym.

5.3.3. Scale setting

As computer calculations are always performed in dimensionless units, only dimensionless
quantities such as am, where m is a mass and a denotes the lattice spacing, are accessible.
In order to give to a a physical meaning, and consequently to be able to extract a dimen-
sionful mass m from the simulation, a has to be related to an experimentally determined
observable. A common possibility is based on an additional hadron mass, mH , such that
a = (amH)(mphys

H )−1 and amH is determined in a lattice simulation. Alternatively, other
dimensionful quantities, e.g. decay constants, can be used.

The scale setting of the CLS ensembles relies on a more elaborated procedure described
in [171]. This procedure is performed in two steps. In a first step, a physical observable,
namely a combination of decay constants of the pion fπ and the kaon fK

fπK =
2

3

(
fK +

1

2
fπ

)
(5.16)

based on the decay constants [45]

fphys
π = 130.4(2) MeV, fphys

K = 156.2(7) MeV (5.17)

66



5.4. CLS Nf = 2 + 1 gauge ensembles

is related to a theory scale, the Wilson flow parameter t0 [183, 184]. Theory scales such
as t0, w0 or the Sommer parameter r0 [185], which have no physical counterpart, usually
have the advantage that they can be easily determined in simulations with high statis-
tical precision [186]. The dimensionless quantities

√
t0/a and afπK are determined on

each ensemble. The product
√
t0fπK is dimensionless and independent of a. Combin-

ing the results from different ensembles, a chiral extrapolation to physical pion and kaon

masses is performed, resulting in (
√
t0fπK)phys. In order to obtain

√
tphys
0 , fphys

πK is used
as experimental input:

√
tphys
0 =

(
√
t0fπK)phys

fphys
πK

. (5.18)

The result is given by [171]

√
8tphys

0 = 0.415(4)(2) fm. (5.19)

Alternatively, one may use the Wilson flow parameter determined at the symmetric
point [171],

√
8tsym

0 = 0.413(5)(1) fm, (5.20)

which is compatible with

√
8tphys

0 within errors, i.e. t0 changes very mildly along the

chiral trajectory. Therefore, one may in practice omit the determination of t0/a
2 for each

ensemble and just use the value computed at the symmetric point tsym
0 /a2 for a given value

of β. The lattice spacing a in physical units is finally obtained from

a =

√
tsym
0

tsym
0 /a2

. (5.21)

We give the results for tsym
0 /a2 and a as a function of β in the next section.

5.4. CLS Nf = 2 + 1 gauge ensembles

During the years, a large set of CLS Nf = 2 + 1 gauge ensembles has been generated [45].
The parameters used for these ensembles are listed in table 5.1. The dimensionless Wilson
flow time tsym

0 /a2 and the lattice spacings a as a function of the inverse strong coupling β
are listed in table 5.2. An overview over the gauge ensembles with respect to the pion mass
and the lattice spacing is displayed in fig. 5.1. The generation of additional gauge ensembles
with physical light- and strange-quark masses is in progress [188]. In addition to the
gauge ensembles with trM = const, ensembles with fixed strange quark mass and Nf = 3
ensembles with completely degenerated quark masses have been produced [189, 190], which
we, however, do not use in this thesis. Nevertheless, a second chiral trajectory is beneficial
to cross-check extrapolation strategies.
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Table 5.1.: β, lattice layout L3 × T , lattice spacing a, hopping parameters κl and κs

for light and strange quarks, pion and kaon masses mπ and mK , mπL as a
measure for QCD finite volume effects and physical extent L of the simulated
volume of various CLS 2+1 flavour ensembles. Table taken from [187] and
extended by the entry D450.
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β tsym
0 /a2 a [fm]

3.4 2.860(11)(03) 0.08636(98)st(40)sys[106]tot

3.46 3.659(16)(03) 0.07634(92)st(31)sys[97]tot

3.55 5.164(18)(03) 0.06426(74)st(17)sys[76]tot

3.7 8.595(29)(02) 0.04981(56)st(10)sys[57]tot

Table 5.2.: Dimensionless Wilson flow time tsym
0 /a2 at the symmetric point and lattice

spacing a as a function of the inverse strong coupling β from [171]. The
total error is determined by adding the statistical and the systematic errors
in quadrature. Only the total error is considered in this work.
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Figure 5.1.: Pion mass mπ, lattice spacing a and mπL as a measure for QCD finite
volume effects of various CLS 2+1 flavour ensemble.
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In this chapter, we introduce the setup for QCD+QED lattice Monte Carlo simulations
performed in this thesis, which is based on the discussions in chapters 4 and 5. We specify
the QCD+QED action and describe the boundary conditions. We introduce the rele-
vant symmetries of lattice QCD+QED and discuss Ward-Takahashi identities. We relate
QCD+QED to QCDiso by reweighting and further expand QCD+QED perturbatively
around QCDiso [46, 143]. We derive a set of corresponding Feynman rules to investi-
gate leading isospin breaking effects. We formulate QEDL [41, 44, 140] on a lattice with
open temporal boundary conditions [173] and derive the Fourier representation of the
free photon propagator for Feynman and Coulomb gauge on periodic temporal and open
temporal boundary conditions. Similar computations of QCD+QED, which are based
on twisted mass, domain wall and staggered fermions, are performed by the RM123 col-
laboration [46, 143, 191, 192], the RBC-UKQCD collaboration [193–199] and the BMW
collaboration [200], respectively.

6.1. Lattice QCD+QED action

The lattice action for QCD+QED, which is employed in this thesis, is oriented at the
QCDiso action used to generate the CLS gauge ensembles. It is constructed so that in the
isosymmetric limit the QCDiso action is restored. We split the action S into components

S[U,A,Ψ,Ψ] = Sg[U ] + Sγ [A] + Sq[U,A,Ψ,Ψ], (6.1)

where Sg describes the QCD gauge action with the QCD gauge links U , Sγ the QEDL gauge
action with the photon field A and Sq the quark action with the quark and antiquark fields
Ψ and Ψ. Considering only the lightest three quark flavours, the theory is characterised
by the five bare parameters

ε = (mu,md,ms, β, e
2). (6.2)

Later, we want to apply weak coupling perturbation theory for isospin breaking effects.
Hence, we use e2 as a parameter instead of the corresponding inverse squared coupling. For
the QCD gauge action Sg we use the Lüscher-Weisz gauge action, described in eq. (4.29),
which is predetermined by the setup of the gauge ensembles generated within the CLS
effort. We utilise a non-compact lattice photon action and use the QEDL prescription
to regularise the manifest IR divergence, as discussed in section 4.5.3. The QEDL action
including a gauge fixing term is given by the bilinear form

Sγ [A] =
1

2
Ac2∆c2

c1A
c1 . (4.55)
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6. Lattice QCD+QED

The QEDL constraint to the photon field reads
∑

~x

Axµ = 0 µ ∈ {0, 1, 2, 3} ∀x0. (4.67)

We consider two different types of gauges: Feynman gauge, which is easy to implement
due to its simple structure, and Coulomb gauge, for which a transfer matrix can be con-
structed [41]. We add a gauge fixing term Sγgf to the photon action:

Sγ [A] =
1

4

∑

x

∑

µ1,µ2

F xµ1µ2F xµ1µ2 + Sγgf [A]

=
1

2

∑

x

∑

µ1,µ2

(
(Aµ1

←−
∂ µ2

F )x(
−→
∂ µ2

F Aµ1)x − (Aµ1
←−
∂ µ2

F )x(
−→
∂ µ1

F Aµ2)x
)

+ Sγgf [A]. (6.3)

We have used the discretised photon field strength tensor

Fµ1µ2 =
−→
∂ µ1

F Aµ2 −−→∂ µ2

F Aµ1 . (4.54)

To obtain Feynman gauge, the gauge fixing term is chosen as [97]

Sγgf [A] =
1

2

∑

x

(∑

µ

(
−→
∂ µBA

µ)x
)2

=
1

2

∑

x

∑

µ1,µ2

(Aµ1
←−
∂ µ2

F )x(
−→
∂ µ1

F Aµ2)x. (6.4)

We used partial integrations to transform
−→
∂ µB into

−→
∂ µF. Combining eqs. (6.3) and (6.4),

we can read of the the photon difference operator ∆ in Feynman gauge:

∆µ2
µ1 =

(∑

µ

←−
∂ µF
−→
∂ µF

)
δµ2
µ1
. (6.5)

The Coulomb gauge condition is a constraint to the photon field:
−→
∂ µBA

µ = 0. To enforce
strict Coulomb gauge, we use the gauge fixing term for generalised Coulomb gauge:

Sγgf [A] =
1

2ξ

∑

x

(∑

µ6=0

(
−→
∂ µBA

µ)x
)2

=
1

2ξ

∑

x

∑

µ1,µ2 6=0

(Aµ1
←−
∂ µ2

F )x(
−→
∂ µ1

F Aµ2)x. (6.6)

ξ denotes the gauge fixing parameter. In the limit ξ → 0, the exponential of the gauge
fixing term creates a delta distribution in the path integral such that the photon field

obeys
−→
∂ µBA

µ = 0. Combining eqs. (6.3) and (6.6), the photon difference operator ∆ in
generalised Coulomb gauge becomes

∆µ2
µ1 =




∑
µ 6=0

←−
∂ µF
−→
∂ µF −←−∂ 1

F

−→
∂ 0

F −←−∂ 2
F

−→
∂ 0

F −←−∂ 3
F

−→
∂ 0

F

−←−∂ 0
F

−→
∂ 1

F

∑
µ

←−
∂ µF
−→
∂ µF

−←−∂ 0
F

−→
∂ 2

F

∑
µ

←−
∂ µF
−→
∂ µF

−←−∂ 0
F

−→
∂ 3

F

∑
µ

←−
∂ µF
−→
∂ µF




µ2

µ1

+
(1

ξ
− 1
)



0 ←−
∂ 1

F

−→
∂ 1

F

←−
∂ 2

F

−→
∂ 1

F

←−
∂ 3

F

−→
∂ 1

F←−
∂ 1

F

−→
∂ 2

F

←−
∂ 2

F

−→
∂ 2

F

←−
∂ 3

F

−→
∂ 2

F←−
∂ 1

F

−→
∂ 3

F

←−
∂ 2

F

−→
∂ 3

F

←−
∂ 3

F

−→
∂ 3

F




µ2

µ1

.

(6.7)
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6.2. Boundary conditions

The lattice discretisation for the quark fields is also predetermined by the CLS setup, i.e. in
the isosymmetric limit an O(a)-improvement Wilson fermion action has to be reobtained.
In order to introduce the electromagnetic interaction, we replace the QCD gauge links
Uxµ in the Dirac operator by the combined gauge links [41]

W xµ = Uxµ exp
(
iaeQAxµ). (6.8)

The quark action is given in bilinear form as

Sq[U,A,Ψ,Ψ] = ΨaD[U,A]abΨb (6.9)

with the Wilson-Dirac operator

D[U,A] =
1

4

∑

µ

(
(
−→
Dµ

F −
←−
Dµ

B)(γµ + 1) + (
−→
Dµ

B −
←−
Dµ

F)(γµ − 1)
)

+M + cSWa
∑

µ1<µ2

1

2
σµ1µ2F̂µ1µ2

s .

(6.10)

The lattice covariant derivatives, defined in eqs. (4.32) and (4.33) depend on the combined
gauge links W . The discretisation of the QCD field strength tensor F̂ s only depends on
the QCD gauge links U . The matrix of fractional quark charges and the mass matrix are
given by Q = diag(qu, qd, qs) and M = diag(mu,md,ms). The value of the Sheikholeslami-
Wohlert coefficient cSW is adopted from QCDiso. Hence, this action is only O(a)-improved
for QCDiso, i.e. a deviation form QCDiso leads to a violation of the O(a2)-convergence to
the continuum. To obtain a fully O(a)-improved action, one in principle has to add an
additional QED Sheikholeslami-Wohlert term, which depends on the electromagnetic field
strength tensor. A corresponding Sheikholeslami-Wohlert coefficient has to be introduced
and the improvement coefficients recomputed.

6.2. Boundary conditions

We will perform Monte Carlo simulations on lattices with two different types of boundary
conditions, which we will discuss in the following. The spacetime manifold [0, T ] × T3

L

describes a continuous spacetime with fixed temporal boundary conditions, whereas S1
T ×

T3
L possesses (anti-)periodic boundary conditions depending on the field type. In both

cases the boundary conditions in spatial directions are periodic. We consider a lattice
discretisation of [0, T ]×T3

L and of S1
T ×T3

L of the form

Λ = {x ∈ R4|xµ = anµ, nµ ∈ {0, 1, . . . , Nµ − 1}, µ ∈ {0, 1, 2, 3}}. (6.11)

The lattice layout is determined by the software package openQCD [73], which is used to
generate CLS gauge configuration [45]. We will now further specify both types of boundary
conditions. In particular, the boundary conditions will become relevant when we derive
the free lattice photon propagator in sections 6.7 and 6.8.
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6. Lattice QCD+QED

6.2.1. Spatial boundary conditions

For the spatial directions µ ∈ {1, 2, 3}, we make use of periodic boundary conditions. The
extent in spatial directions reads [73]

L = Xµ = aNµ µ = 1, 2, 3. (6.12)

i.e. we have to specify the values of the fields at xµ = −a and xµ = Xµ. All fields are
continued periodically [73], i.e.

Ux|xµ=−a = Ux|xµ=Xµ−a, Ux|xµ=Xµ = Ux|xµ=0, (6.13)

Ax|xµ=−a = Ax|xµ=Xµ−a, Ax|xµ=Xµ = Ax|xµ=0, (6.14)

Ψx|xµ=−a = Ψx|xµ=Xµ−a, Ψx|xµ=Xµ = Ψx|xµ=0, (6.15)

Ψx|xµ=−a = Ψx|xµ=Xµ−a, Ψx|xµ=Xµ = Ψx|xµ=0. (6.16)

6.2.2. (Anti-)periodic temporal boundary conditions

One possible choice for the temporal direction µ = 0, which we consider in this thesis, are
periodic boundary conditions for bosonic fields and anti-periodic boundary conditions for
fermionic fields. The extent of the lattice in the temporal direction is given by [73]

T = X0 = aN0, (6.17)

i.e. we have to specify the values of the fields at x0 = −a and x0 = X0. We continue
bosonic fields periodically [73],

Ux|x0=−a = Ux|x0=X0−a Ux|x0=X0 = Ux|x0=0, (6.18)

Ax|x0=−a = Ax|x0=X0−a Ax|x0=X0 = Ax|x0=0, (6.19)

and fermionic fields anti-periodically [73],

Ψx|x0=−a = −Ψx|x0=X0−a, Ψx|x0=X0 = −Ψx|x0=0, (6.20)

Ψx|x0=−a = −Ψx|x0=X0−a, Ψx|x0=X0 = −Ψx|x0=0. (6.21)

6.2.3. Open temporal boundary conditions

The second option are open temporal boundary conditions, for which the temporal extent
is reduced by one unit [73], reading

T = X0 − a = a(N0 − 1), (6.22)

i.e. we have to specify the values of the fields at x0 = −a and x0 = X0−a. Open boundary
conditions are imposed by demanding that the colour electrical field, which itself is not an
observable, vanishes at the temporal boundaries [173], i.e.

F x0µ
s |x0=−a = 0, F x0µ

s |x0=X0−a = 0 (6.23)
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6.2. Boundary conditions

for µ = 1, 2, 3. As the continuum QCD field strength tensor Fs transforms under a gauge
transformation according to GΩ[F xµ2µ1 ] = ΩxF xµ2µ1(Ωx)†, this boundary condition is
QCD gauge invariant [173]. In terms of gauge links, open temporal boundary conditions
are imposed by vanishing gauge links at the temporal boundaries [73]:

Ux0µ|x0=−a = 0, Ux0µ|x0=X0−a = 0. (6.24)

In analogy to the boundary condition for the QCD gauge fields, we demand that the

components of the electromagnetic field strength tensor Fµ2µ1 =
−→
∂ µ2

F Aµ1 − −→∂ µ1

F Aµ2 ,
which represent the electric field, vanish at the temporal boundaries, i.e.

F x0µ|x0=−a = 0, F x0µ|X0−a = 0 (6.25)

for µ = 1, 2, 3. This choice will lead to a consistent and rigorous extension of QCD defined
on open boundary conditions [173]. The boundary conditions for the field strength tensor
can be satisfied by imposing homogeneous Dirichlet boundary conditions on the temporal
component A0 and homogeneous Neumann boundary conditions on the spatial components
Aµ for µ = 1, 2, 3

Ax0|x0=−a = 0, Ax0|x0=X0−a = 0, (6.26)

(
−→
∂ 0

FA
µ)x|x0=−a = 0, (

−→
∂ 0

FA
µ)x|x0=X0−a = 0. (6.27)

We can easily check that the electric components of F x0µ for µ = 1, 2, 3 vanish at the
temporal boundary:

F x0µ|x0=−a,X0−a = (
−→
∂ 0

FA
µ)x|x0=−a,X0−a − (

−→
∂ µFA

0)x|x0=−a,X0−a

= (
−→
∂ 0

F0)|x0=−a,X0−a − 0 = 0. (6.28)

The imposition of the boundary conditions on the vector potential is a partial gauge fixing.
Hence, one should in principle prove, that a vector field, for which the boundary conditions
of the field strength tensor are satisfied, can be gauge transformed such that the boundary
conditions eqs. (6.26) and (6.27) hold. In order to introduce open temporal boundary
conditions for quark and antiquark fields one defines the projectors [73, 173]

P 0
± =

1

2
(1± γ0). (6.29)

The boundary conditions read

P 0
+Ψx|x0=0 = 0, P 0

−Ψx|x0=X0−a = 0, (6.30)

ΨxP 0
−|x0=0 = 0, ΨxP 0

+|x0=X0−a = 0. (6.31)

One can show that the state represented by the fields Ψ, Ψ ,U and A evaluated at the
temporal boundary is invariant under QCD gauge transformations, spatial rotations, the
parity transformation, time reflection and the vector flavour transformations [173, 201],
which we will discuss in the next section 6.3, i.e. the boundary state has the same quantum
numbers as the vacuum state [173]. Open boundary conditions spoil the O(a)-improved
QCDiso action. Nevertheless, it is possible to alter the action at the temporal boundaries
to restore O(a)-improvement. We refer to [73, 173] for further details.
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6. Lattice QCD+QED

6.3. Symmetries of lattice QCD+QED

In this section, we discuss spacetime and internal symmetries of lattice QCD+QED, i.e.
Euclidean reflections, spatial parity and time reflection, translational invariance, the charge
conjugation symmetry and flavour symmetries.

6.3.1. Charge conjugation

The charge conjugation transformation is a field transformation which maps fields to their
anti-fields including additional phases and vice versa. Uncharged fields are eigenfunc-
tions of the charge conjugation transformation. The latter acts on the elementary fields
according to [42, 72]

C[(Uµx, Axµ,Ψx,Ψx)] =
(

(Uµx)†T ,−Axµ, C−1(Ψx)T ,−(Ψx)TC
)
, (6.32)

where we made use of the charge conjugation matrix

C = iγ0γ2. (3.35)

This transformation is a symmetry of the QCD+QED action. It is compatible with both
periodic and open temporal boundary conditions and leaves the path integral measure
invariant. For a discussion for lattice QCD with Wilson fermions we refer to [42]. A proof
for QCD+QED can be performed in an analogous manner.

6.3.2. Euclidean reflections, spatial parity and time reflection

For a more compact and convenient notation in the following discussion we define the
symbol (−1)µ2µ1

(−1)µ2µ1 =

{
1 for µ2 = µ1

−1 for µ2 6= µ1

. (6.33)

For periodic boundary ensembles, the Euclidean reflection Pµ transforms a coordinate
tuple x according to

(Pµ(x))ν = (−1)µνxν , (6.34)

i.e. all components of the coordinates but the µ-th component are reflected. The defini-
tion holds modulo the lattice extent in periodic directions. For open temporal boundary
conditions, Pµ6=0 reflects with respect to the time slice located in the middle of the tem-
poral direction. The Euclidean reflection is self-inverse (Pµ)−1 = Pµ. We demand that
the elementary lattice fields transform under Pµ according to [42]

Pµ[Ψx] = γµΨP(x), Pµ[Ψx] = Ψ
P(x)

γµ,

Pµ[Uxν ] = (UP(x)−aν̂,ν)† ∀ν 6= µ, Pµ[Axν ] = −AP(x)−aν̂,ν ∀ν 6= µ,

Pµ[Uxµ] = UP(x)µ, Pµ[Axµ] = AP(x)µ. (6.35)
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6.4. Ward-Takahashi identities in lattice QCD+QED

It can be shown that this transformation is in fact a symmetry of the action and that
it leaves the path integral measure invariant. For a proof for pure QCD we again refer
to [42]. The spatial parity transformation P and the time reversal transformation T can
be expressed in terms of concatenations of Euclidean reflections:

P = P0, T = P1P2P3. (6.36)

According to [173], open boundary conditions were designed such that they are compatible
with parity symmetry and time reflection symmetry.

6.3.3. Translation invariance

As periodic boundary conditions are applied in the spatial directions, the theory is invari-
ant under spatial translations. Consequently, spatial momentum is a conserved quantity.
The same holds for (anti-)periodic boundary conditions in the time direction. However,
open temporal boundary conditions break the translational invariance in the time direc-
tion.

6.3.4. Flavour symmetries and conserved charges

We have discussed flavour symmetries in great detail for the continuum QCD+QED action
in section 3.4. As the Wilson lattice discretisation of fermions breaks the axial symmetry
explicitly, only the vector symmetries remain. For the latter class of symmetries the same
results hold as derived in section 3.4.

6.4. Ward-Takahashi identities in lattice QCD+QED

We have derived two Ward-Takahashi identities for continuum QCD+QED in section 3.5.
The question, whether the Ward identities are altered, naturally arises when we introduce
a lattice regularisation for a quantum field theory. In fact, both the vector and the
axial Ward identity will change significantly. The naive point-like vector-current, known
from continuum field theory, does not satisfy the lattice identity. It is, however, possible
to define a lattice discretisation of the continuum vector current, which fulfils a Ward
identity. For lattice QCD with Wilson fermions it is known that no partially conserved
axial current can be defined [202]. Therefore, we only focus on the vector Ward identity.

6.4.1. Vector Ward identity

In order to derive the vector Ward identity for lattice QCD+QED we consider the same
class of field transformations as in the continuum

T[ε][(U,A,Ψ,Ψ)]x = (U,A, exp(iTεx)Ψx,Ψx exp(−iTεx)) (3.83)

with a Hermitian generator T acting on flavour indices of the quark fields and a scalar field
ε. We can directly evaluate the transformation behaviour of the path integral measure as
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6. Lattice QCD+QED

we work in the regularised theory, where the path integral measure is meaningful. As we
have defined the theory on a finite spacetime lattice, the path integral measure is in fact
the measure of an ordinary multi-dimensional integral. Hence, the Jacobian of the field
transformation is a finite-dimensional matrix and its determinant is well defined. The path
integral measure is invariant under this transformation as in the continuum eq. (3.84), i.e.
there is no contribution from the Jacobian to the Ward identity:

δ

δεx
det
(δT[ε][Υ]

δΥ

)∣∣∣
ε=0

= 0. (6.37)

The contribution from the derivative of the action, defined in eqs. (6.9) and (6.10), is given
by

δS[T[ε][Υ]]

δεx

∣∣∣
ε=0

= −i
(1

4

3∑

µ=0

(
(Ψ(
←−
Dµ

F −
−→
Dµ

B)T (1+ γµ)Ψ)x

+ (ΨT (
←−
Dµ

B −
−→
Dµ

F)(1− γµ)Ψ)x
)

−Ψx[M,T ]Ψx
)
.

(6.38)

In order to be able to define a conserved vector current we rewrite the former expression
in terms of commutators and anticommutators of the covariant derivatives and T :

δS[T[ε][Υ]]

δεx

∣∣∣
ε=0

= −i
(1

4

3∑

µ=0

(
(Ψ{←−Dµ

F −
−→
Dµ

B, T}(γµ + 1)Ψ)x

+ (Ψ{−→Dµ
F −
←−
Dµ

B, T}(γµ − 1)Ψ)x
)

−Ψx[M,T ]Ψx

−1

4

3∑

µ=0

(
(Ψ[
−→
Dµ

B −
←−
Dµ

F, T ](γµ + 1)Ψ)x

+ (Ψ(γµ − 1)[
−→
Dµ

F −
←−
Dµ

B, T ]Ψ)x
)
.

(6.39)

The first part of eq. (6.39) can now be expressed as a derivative of a lattice discretisation
of the vector current

1

4

3∑

µ=0

(
(Ψ{←−Dµ

F −
−→
Dµ

B, T}(γµ + 1)Ψ)x + (Ψ{−→Dµ
F −
←−
Dµ

B, T}(γµ − 1)Ψ)x
)

=

3∑

µ=0

(1

4

(
Ψx+aµ̂{(W xµ)†, T}(γµ + 1)Ψx + Ψx{W xµ, T}(γµ − 1)Ψx+aµ̂

)

− 1

4

(
Ψx{(W x−aµ̂,µ)†, T}(γµ + 1)Ψx−aµ̂ + Ψx−aµ̂{W x−aµ̂,µ, T}(γµ − 1)Ψx

))

=

3∑

µ=0

(
−→
∂ µBV

µ
F)x =

3∑

µ=0

(
−→
∂ µFV

µ
B)x, (6.40)
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6.4. Ward-Takahashi identities in lattice QCD+QED

where we have introduced the forward point-split vector current VF reading

VxµF =
1

4

(
Ψx+aµ̂{(W xµ)†, T}(γµ + 1)Ψx + Ψx{W xµ, T}(γµ − 1)Ψx+µ

)

=
1

4

(
Ψx+aµ̂(Uxµ)†{exp(−iaeQAxµ), T}(γµ + 1)Ψx

−ΨxUxµ{exp(iaeQAxµ), T}(γµ − 1)Ψx+µ
)

(6.41)

and the backward point-split vector current VB which is just a displaced forward point-split
vector current:

VxµB = Vx−aµ̂,µF . (6.42)

These definitions fulfil the correct classical continuum limit for both flavour diagonal and
flavour non-diagonal vector currents in the presence of QED. For vanishing electromagnetic
quark charges Q = 0, the anticommutators in eq. (6.41) equal 2T and we reobtain the
standard definition of the partially conserved vector current in QCD [42, 202]. In order
to understand the meaning of the third part of eq. (6.39), we express it in terms of gauge
links:

1

4

3∑

µ=0

(
(Ψ[
−→
Dµ

B −
←−
Dµ

F, T ](γµ + 1)Ψ)x + Ψx(γµ − 1)([
−→
Dµ

F −
←−
Dµ

B, T ]Ψ)x
)

=
1

4

3∑

µ=0

(
Ψx+aµ̂[T, (W xµ)†](γµ + 1)Ψx + Ψx[W xµ, T ](γµ − 1)Ψx+aµ̂)

+ Ψx[T, (W x−aµ̂,µ)†](γµ + 1)Ψx−aµ̂ + Ψx−aµ̂[W x−aµ̂,µ, T ](γµ − 1)Ψx
)

=
1

4

3∑

µ=0

(
Ψx+aµ̂(Uxµ)†[T, exp(−iaeQAxµ)](γµ + 1)Ψx

+ ΨxUxµ[exp(iaeQAxµ), T ](γµ − 1)Ψx+aµ̂)

+ Ψx(Ux−aµ̂,µ)†[T, exp(−iaeQAx−aµ̂,µ)](γµ + 1)Ψx−aµ̂

+ Ψx−aµ̂Ux−aµ̂,µ[exp(iaeQAx−aµ̂,µ), T ](γµ − 1)Ψx
)

= iX x. (6.43)

The operator X x defined above is in fact a lattice discretisation of the continuum operator
eAe

xµΨxγµ[Q,T ]Ψx, which we find in eq. (3.86). We combine all intermediate results with
eq. (2.22) and obtain the vector Ward identity for lattice QCD+QED, which reads

〈 3∑

µ=0

(
−→
∂ µBV

µ
F)xO[Υ]

〉
=
〈

(Ψx[M,T ]Ψx + iXx)O[Υ] + i
δO[T[ε][Υ]]

δεx

∣∣∣
ε=0

〉
. (6.44)

We observe that the vector Ward identity on the lattice has the same form as in the con-
tinuum eq. (3.87), however with replaced operators. For vanishing electromagnetic quark
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6. Lattice QCD+QED

charges Q = 0, we have X = 0, such that we reobtain the standard lattice QCD vector
Ward identity [42, 202]. Considering transformations for which T is flavour diagonal, the
expression for the vector current can be simplified to

VxµF =
1

2

(
Ψx+aµ̂(W xµ)†T (γµ + 1)Ψx + ΨxW xµT (γµ − 1)Ψx+µ

)
. (6.45)

Comparing eq. (6.41) with eq. (6.45), we see that we have removed the anti-commutators,
as the gauge links W and the matrices T commute. We find that the expectation value of
flavour-neutral currents is also conserved in combined lattice QCD and QED up to contact
terms:

〈 3∑

µ=0

(
−→
∂ µBV

µ
F)xO[Υ]

〉
=
〈

i
δO[T[ε][Υ]]

δεx

∣∣∣
ε=0

〉
. (6.46)

Our annotations with regard to the renormalisation of the electromagnetic charge in con-
tinuum QCD+QED in section 3.5.1 do also apply for lattice QCD+QED. Consequently,
in a tree-level lattice QED calculation, the vacuum polarisation is absent and the electro-
magnetic coupling does not renormalise even in the presence of full lattice QCD.

6.5. Relating QCD+QED and QCDiso via reweighting

For our QCD+QED calculation we want to make use of existing QCDiso gauge configura-
tions generated by the CLS effort discussed in chapter 5. In order to relate QCD+QED to
QCDiso, we make use of Monte Carlo reweighting introduced in section 4.6.7 as first sug-
gested in [46, 143] for the twisted-mass lattice fermion discretisation [132, 133]. Although
we apply the concept developed in the latter publications, we formulate the following
derivations and results in a different way that allows for an easier interpretation of the in-
dividual components of equations as well as for the straightforward definition of Feynman
rules.

6.5.1. QCD+QED and QCDiso

Starting from the lattice QCD+QED action

S[U,A,Ψ,Ψ] = Sg[U ] + Sγ [A] + Sq[U,A,Ψ,Ψ], (6.1)

we define the partition function and expectation value

Z =

∫
DUDADΨDΨ exp(−S[U,A,Ψ,Ψ]), (6.47)

〈O[U,A,Ψ,Ψ]〉 =
1

Z

∫
DUDADΨDΨ exp(−S[U,A,Ψ,Ψ])O[U,A,Ψ,Ψ]. (6.48)
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6.5. Relating QCD+QED and QCDiso via reweighting

The action eq. (6.1) representing QCD+QED like theories can be parametrised by the tuple
ε [46, 143], which contains the bare quark masses, the squared inverse strong coupling and
the squared electromagnetic coupling:

ε = (mu,md,ms, β, e
2). (6.2)

A particular type of QCD+QED like theories is formed by QCDiso theories, with an
additional free, decoupled photon field. These theories are characterised by the choice of
parameters

ε(0) = (m
(0)
ud ,m

(0)
ud ,m

(0)
s , β(0), 0), (6.49)

i.e. the light quarks have the same bare mass m
(0)
ud = m

(0)
u = m

(0)
d and the electromagnetic

coupling vanishes (e2)(0) = 0, such that the quarks lose their electromagnetic charge. As
a consequence, the light quarks also have the same renormalised quark mass. As the
relation between the bare and the renormalised strong coupling constant is different in
QCDiso compared to QCD+QED, it is reasonable to also allow for an altered value of the
bare inverse strong coupling β(0).

6.5.2. Reweighting

In principle, it is possible to generate gauge ensembles of the combined QCD+QED intro-
duced in this chapter. The BMW collaboration followed this approach with the staggered
fermion discretisation to compute the proton-neutron mass difference form first princi-
ples [41]. However, this strategy is computationally demanding, as the generation of
gauge ensembles accounts for a large amount of the total computer time. Hence, it is rea-
sonable to use a computational strategy that allows for the reuse of existing QCDiso gauge
ensembles. The idea to introduce the electromagnetic interaction on existing unquenched
QCD gauge ensembles by means of the reweighting technique [160, 161], as described in sec-
tion 4.6.7, was already suggested in 2004 by [165]. The first lattice QCD+QED simulations
were performed in the quenched approximation by Duncan, Eichten and Thacker [141, 142]
in 1996, neglecting sea-quark effects. In this setup, QCD and QED gauge configurations
can be generated independently. The gauge configurations are only combined at the stage
when the valence-quark propagator is computed. Later efforts were based on unquenched
QCD combined with quenched QED [203, 204], which still allows for an independent gen-
eration of gauge configurations. The CLS gauge configurations possess mass-degenerate
up and down quarks. Consequently, the reweighting should not only introduce the elec-
tromagnetic interaction but also allow for an alteration of the quark masses, as suggested
in [157, 163, 164]. The strong gauge action should also be reweighted to absorb the shift
in the inverse strong coupling. This overall strategy was first used by the RM123 collab-
oration [46, 143].

In the following, we derive the reweighting factor that relates QCD+QED to QCDiso

for the lattice action used in this thesis. The existing QCDiso gauge configurations are
generated with respect to the effective isosymmetric gauge action

S
(0)
eff [U ] = S(0)

g [U ]− log(Z(0)
q [U ]), (6.50)
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which is used to evaluate the expectation value

〈O[U ]〉(0)
eff =

1

Z
(0)
eff

∫
DU exp(−S(0)

eff [U ])O[U ]. (6.51)

Z
(0)
eff and Z

(0)
q [U ] denote the partition functions corresponding to the isosymmetric effective

gauge action S
(0)
eff and to a free isosymmetric fermion theory on a fixed gauge background

U with action S
(0)
q , respectively:

Z
(0)
eff =

∫
DU exp(−S(0)

eff [U ]), (6.52)

Z(0)
q [U ] =

∫
DΨDΨ exp(−S(0)

q [U,Ψ,Ψ]). (6.53)

Our aim is to express the expectation of QCD+QED eq. (6.48) in terms of the expectation
value of the effective isosymmetric gauge action eq. (6.51). In order to introduce the
photon field into our calculation and allow for arbitrary quark masses, we define a partition
function Zqγ [U ] in analogy to eq. (6.53) and the corresponding expectation value, which
now describes quarks and photons on a given gauge background U ,

Zqγ [U ] =

∫
DADΨDΨ exp

(
−Sγ [A]− Sq[U,A,Ψ,Ψ]

)
, (6.54)

〈O[U,A,Ψ,Ψ]〉qγ =
1

Zqγ [U ]

∫
DADΨDΨ exp(−Sγ [A]− Sq[U,A,Ψ,Ψ])

· O[U,A,Ψ,Ψ].

(6.55)

Defining the effective gauge action with respect to the perturbed gauge action and the
partition function Zqγ [U ],

Seff [U ] = Sg[U ]− log(Zqγ [U ]), (6.56)

we introduce the partition function and the corresponding expectation value

Zeff =

∫
DU exp(−Seff [U ]), (6.57)

〈O[U ]〉eff =
1

Zeff

∫
DU exp(−Seff [U ])O[U ]. (6.58)

From the last definitions we immediately see that we can reobtain the QCD+QED parti-
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6.5. Relating QCD+QED and QCDiso via reweighting

tion function and the corresponding expectation value given in eqs. (6.47) and (6.48):

Zeff =

∫
DU exp(−Sg[U ])Zqγ [U ]

=

∫
DUDADΨDΨ exp(−S[U,A,Ψ,Ψ]) = Z, (6.59)

〈〈O[U,A,Ψ,Ψ]〉qγ〉eff =
1

Zeff

∫
DU exp(−Sg[U ])Zqγ [U ] 〈O[U,A,Ψ,Ψ]〉qγ

=
1

Z

∫
DUDADΨDΨ exp(−S[U,A,Ψ,Ψ])O[U,A,Ψ,Ψ]

= 〈O[U,A,Ψ,Ψ]〉. (6.60)

Having two effective actions S
(0)
eff [U ] in eq. (6.50) and Seff [U ] in eq. (6.56), which belong

to distinct physical theories with the same gauge field U , we are now just in the situation
discussed in section 4.6.7, when we introduced the reweighting technique. Equation (4.102)
allows us to relate these two theories via

〈O[U,A,Ψ,Ψ]〉 = 〈〈O[U,A,Ψ,Ψ]〉qγ〉eff =
〈R[U ]〈O[U,A,Ψ,Ψ]〉qγ〉(0)

eff

〈R[U ]〉(0)
eff

. (6.61)

According to eq. (4.103), the reweighting factor is given by the ratio of the Boltzmann
weights of the two theories:

R[U ] =
exp(−Seff [U ])

exp(−S(0)
eff [U ])

=
exp(−Sg[U ])Zqγ [U ]

exp(−S(0)
g [U ])Z

(0)
q [U ]

. (6.62)

The latter factor replaces the Boltzmann weight of the unperturbed strong gauge action

exp(−S(0)
g [U ]) by the Boltzmann weight of the perturbed strong gauge action exp(−Sg[U ])

and the partition function Z
(0)
q [U ] of a free and isosymmetric fermionic theory on a back-

ground gauge field U by the partition function Zqγ [U ] describing QED on a background
gauge field U .

6.5.3. Determination of the reweighting factor and the inner expectation
value

The ratio of Boltzmann weights
exp(−Sg[U ])

exp(−S(0)
g [U ])

in eq. (6.62) can be computed directly, as

it is cheap to evaluate the two actions Sg and S
(0)
g on a given gauge configuration U .

In contrast, the determination of the expectation value 〈O[U,A,Ψ,Ψ]〉qγ and the ratio

of partition functions
Zqγ [U ]

Z
(0)
q [U ]

is rather involved and computationally non-trivial. There

are in principle two options: The two quantities can either be evaluated using stochastic
estimators [157, 163–165] or by means of a perturbative expansion as suggested in [46, 143].
A common simplification is to neglect isospin breaking effects in the sea-quark sector,
which is known as the electro-quenched setup [203, 204]. This is equivalent to assume
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Zqγ [U ] = Z
(0)
q [U ]Z

(0)
γ , where Z

(0)
γ =

∫
DA exp(−S(0)

γ [A]) is the partition function of
the free photon field. In this thesis, we treat isospin breaking effects perturbatively, as
they are expected to be of small magnitude. A major advantage is, that we can work in
leading order in e2, such that we can avoid having to deal with the renormalisation of the
electromagnetic coupling.

6.6. Feynman rules for QCD+QED as a perturbation of QCDiso

As discussed in the previous section, we treat isospin breaking effects in the framework
of weak coupling perturbation theory [46, 143]. In order to evaluate 〈O[U,A,Ψ,Ψ]〉qγ
in eq. (6.61) and R[U ] given in eq. (6.62), we expand the latter expressions in terms
of ∆ε = ε − ε(0) around ε(0). Our aim is to formulate Feynman rules that allow for a
diagrammatic representation of the expansions of 〈O[U,A,Ψ,Ψ]〉qγ and R[U ]. First, we
define the quark and photon propagators in the isosymmetric theory. In order to derive
expressions for the vertices, we expand the Wilson-Dirac operator around its isosymmetric
counterpart. To be able to construct Feynman diagrams, we introduce corresponding
graphical representations for propagators and vertices. As usual, for each closed fermion
loop and for each crossing of fermion lines we have to multiply the amplitude by a factor
of −1. We also have to divide by the appropriate symmetry factor of the diagram. We
finally determine the expansion of the reweighting factor R[U ] and discuss the expansion
of a generic correlation function.

6.6.1. Isosymmetric quark and photon propagators

We use the standard graphical representations for the isosymmetric quark propagator on
a fixed gauge background U

S(0)[U ]ba = (D(0)[U ]−1)ba = a
b

(6.63)

and for the photon propagator

Σc2
c1 = (∆−1)c2c1 = c1c2 . (6.64)

We will give more details on how we compute the isosymmetric quark propagator in
section 7.1 and the photon propagator in sections 6.7 and 6.8.

6.6.2. Expansion of the Wilson-Dirac operator

For the definition of vertices involving quark fields, we expand the Wilson-Dirac operator
D[U,A] of QCD+QED defined in eq. (6.10) around the Wilson-Dirac operator D(0)[U ] of
QCDiso. Formally, this expansion reads

D[U,A]ab = D(0)[U ]ab −
∑

f

∆mfVqqf [U ]ab

− eVqqγ [U ]abcA
c − 1

2
e2Vqqγγ [U ]abc2c1A

c2Ac1 +O(e3),

(6.65)
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which implicitly defines the quark-antiquark vertex Vqqf , photon-quark-antiquark vertex
Vqqγ and the 2-photon-quark-antiquark vertex Vqqγγ . Due to the exponential form of the
QED gauge links exp(iaeQA), we find contributions to the electromagnetic interaction to
all orders in e. This is typical for lattice perturbation theory calculations. A truncation
of this expansion has to be consistent with the order of the entire calculation [97]. We
truncate the expansion at O(e3) as we are only interested in leading isospin breaking
effects, i.e. in contributions up to order e2. The minus sign introduced in front of the
vertices in eq. (6.65) is due to the minus sign in the Boltzmann weight factor exp(−S) in
Euclidean spacetime. In Minkowskian spacetime factors of i and −i would appear instead.
The factor 1

2 in front of Vqqγγ ensures the correct determination of the symmetry factor
in Feynman diagrams. We represent the vertices by the diagrams

V qqf [U ]ab = ba
f

, (6.66)

Vqqγ [U ]abc =
ba

c

, (6.67)

V qqγγ [U ]abc2c1 =
ba

c1c2

. (6.68)

For a better readability we omit colour and spinor indices and leave them implicit in the
following discussion. Inserting the definition of the lattice covariant derivatives, defined in
eqs. (4.32) and (4.33), into the definition of the Wilson-Dirac operator in eq. (6.10), the
left-hand side of eq. (6.65) becomes

D[U ](xf)2
(xf)1

= δf2

f1

((
4a+m

(0)
f1

+ ∆mf1 + cSWa
∑

µ1<µ2

1

2
σµ1µ2F̂ x2µ1µ2

s

)
δx2
x1

− 1

2

∑

µ

(
(1− γµ)Ux2µ exp(iaeqf1A

xµ)δx2+aµ̂
x1

+ (1+ γµ)(W x1µ)† exp(−iaeqf1A
xµ)δx2−aµ̂

x1

))
.

(6.69)

In order to expand D[U,A] around its isosymmetric counterpart D(0)[U ], given by

D(0)[U ](xf)2
(xf)1

= δf2

f1

((
4 +m

(0)
f1

+ cSWa
∑

µ1<µ2

1

2
σµ1µ2F̂ x2µ1µ2

s

)
δx2
x1

− 1

2

∑

µ

(
(1− γµ)Ux2µδx2+aµ̂

x1

+ (1+ γµ)(Ux1µ)†δx2−aµ̂
x1

))
,

(6.70)

we expand the QED gauge links up to O(e2):

exp(iaeQAxµ) = 1+ iaeQAxµ − 1

2
a2e2Q2(Axµ)2 +O(e3), (6.71)

exp(−iaeQAxµ) = 1− iaeQAxµ − 1

2
a2e2Q2(Axµ)2 +O(e3). (6.72)
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The definition of the vertices can now be read off from eq. (6.65) order by order in the
expansion parameters ∆ε. The quark-antiquark vertex Vqqf used for the explicit detuning
of the mass of the quark field with flavour f is given by

Vqqf [U ](xf)2
(xf)1

= −δx2
x1
δf2

f δ
f2

f1
. (6.73)

As the mass detuning vertex is a point-like vertex, it is in fact independent of the QCD
gauge links U . The photon-quark-antiquark vertex Vqqγ reads

Vqqγ [U ](xf)2
(xf)1(xµ)3

=
i

2
aqf1δ

f2

f1

(
− (1− γµ3)Ux2µ3δx2+aµ̂3

x1
δx2
x3

+ (1+ γµ3)(Ux1µ3)†δx2−aµ̂3
x1

δx1
x3

)
.

(6.74)

Finally, the 2-photon-quark-antiquark vertex Vqqγγ is given by

Vqqγγ [U ](xf)2
(xf)1(xµ)4(xµ)3

=
1

2
a2q2

f1
δf2

f1

(
(1− γµ3)Ux2µ3δx2+aµ̂3

x1
δµ3
µ4
δx2
x4
δx2
x3

+ (1+ γµ3)(Ux1µ3)†δx2−aµ̂3
x1

δµ3
µ4
δx1
x4
δx1
x3

)
.

(6.75)

The γ5-hermiticity of the Wilson-Dirac operator in eq. (4.40) is passed on to the vertices
in the following way: Applying the γ5-hermiticity to eq. (6.65) and comparing order by
order in the expansion parameters we can derive the γ5-hermiticity relations for the vertices
contracted with photon fields:

Vqqf
(fx)2

(fx)1
= γ5(Vqqf

(fx)1
(fx)2

)†γ5, (6.76)

Vqqγ
(fx)2

(fx)1cA
c = γ5(Vqqγ

(fx)2
(fx)1cA

c)†γ5, (6.77)

Vqqγγ
(fx)2

(fx)1c2c1A
c = γ5(Vqqγ

(fx)1
(fx)2c2c1A

c2Ac1)†γ5. (6.78)

As the photon field is a real field, i.e. Axµ = (Axµ)∗ in position space representation, we
can also deduce the γ5-hermiticity for the vertices themselves:

Vqqγ
(fx)2

(fx)1(xµ)3
= γ5(Vqqγ

(fx)1
(fx)2(xµ)3

)†γ5, (6.79)

Vqqγγ
(fx)2

(fx)1(xµ)4(xµ)3
= γ5(Vqqγγ

(fx)1
(fx)2(xµ)4(xµ)3

)†γ5. (6.80)

It is straight forward to proof the correctness of these relations by a direct computation.

6.6.3. Expansion of the reweighting factor

In order to expand the reweighting factor

R[U ] =
exp(−Sg[U ])Zqγ [U ]

exp(−S(0)
g [U ])Z

(0)
q [U ]

, (6.62)
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we treat the contributions from the QCD gauge action and the partition functions sepa-
rately. For the first part, we introduce a vertex V g[U ], which accounts for the expansion
in ∆β = β − β(0),

exp(−Sg[U ])

exp(−S(0)
g [U ])

= 1 + ∆β V g[U ] +O(∆β2), (6.81)

and which we represent by

V g[U ] = ∆β . (6.82)

Making use of the relation Sg[U ] = β
β(0)S

(0)
g [U ], i.e. Sg[U ] and S

(0)
g [U ] only differ by the

value of the strong coupling, which enters linearly into the gauge action, we find the simple
definition

V g[U ] = − 1

β(0)
S(0)

g [U ]. (6.83)

The second part in eq. (6.62) can be calculated using the standard perturbative expansions

of the partition function Zqγ around the free partition functions Z
(0)
γ =

∫
DA exp(−S(0)

γ [A])

and Z
(0)
q [U ] [59]. Consequently, the graphical representation of the reweighting factor up

to order ∆ε reads

R[U ] = Z(0)
γ

(
1 +

∑

f

∆mf
f + ∆β ∆β

+ e2
(

+ +
)

+O(∆ε2)
)
.

(6.84)

6.6.4. Expansion of a correlation function

According to eq. (6.61), a generic correlation function 〈O[U,A,Ψ,Ψ]〉 is evaluated by

C = 〈O[U,A,Ψ,Ψ]〉 =
〈R[U ] 〈O[U,A,Ψ,Ψ]〉qγ〉(0)

eff

〈R[U ]〉(0)
eff

. (6.61)

In this section, we formally expand the latter perturbatively up to first order in ∆ε:

C = C(0) +
∑

l

∆εlC
(1)
l +O(∆ε2). (6.85)

It is important to note that the operator O[U,A,Ψ,Ψ] itself may depend on e via the
QED gauge links exp(iaeQA). Therefore, it also has to be expanded:

O = O(0) + eO( 1
2

)

e2
+

1

2
e2O(1)

e2
+O(e3). (6.86)
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The zeroth-order contribution to the correlation function is given by

C(0) = (〈O〉)(0) =
〈(R[U ])(0)(〈O(0)〉qγ)(0)〉(0)

eff

〈(R[U ])(0)〉(0)
eff

. (6.87)

The first-order contributions for the expansion parameters l = ∆mu,∆md,∆ms read

(〈O〉)(1)
l =

〈(R[U ])(0)(〈O(0)〉qγ)
(1)
l 〉

(0)
eff

〈(R[U ])(0)〉(0)
eff

+
〈(R[U ])

(1)
l (〈O(0)〉qγ)(0)〉(0)

eff

〈(R[U ])(0)〉(0)
eff

− 〈(R[U ])
(1)
l 〉

(0)
eff

〈(R[U ])(0)〉(0)
eff

〈(R[U ])(0)(〈O(0)〉qγ)(0)〉(0)
eff

〈(R[U ])(0)〉(0)
eff

.

(6.88)

For the expansion parameter e2 we find

(〈O〉)(1)
e2

=
〈(R[U ])(0)(〈O(0) + eO( 1

2
)

e2
+ 1

2e
2O(1)

e2
〉qγ)

(1)
e2
〉(0)
eff

〈(R[U ])(0)〉(0)
eff

+
〈(R[U ])

(1)
e2

(〈O(0)〉qγ)(0)〉(0)
eff

〈(R[U ])(0)〉(0)
eff

− 〈(R[U ])
(1)
e2
〉(0)
eff

〈(R[U ])(0)〉(0)
eff

〈(R[U ])(0)(〈O(0)〉qγ)(0)〉(0)
eff

〈(R[U ])(0)〉(0)
eff

.

(6.89)

As the expansion parameter ∆β is only present in the reweighting factor R[U ], the first-
order contribution from the correlation function 〈O〉qγ is absent:

(〈O〉)(1)
∆β =

〈(R[U ])
(1)
∆β(〈O(0)〉qγ)(0)〉(0)

eff

〈(R[U ])(0)〉(0)
eff

−
〈(R[U ])

(1)
∆β〉

(0)
eff

〈(R[U ])(0)〉(0)
eff

〈(R[U ])(0)(〈O〉qγ)(0)〉(0)
eff

〈(R[U ])(0)〉(0)
eff

.

(6.90)

We will give diagrammatic representations of these equations in chapters 11 to 13, when
we discuss meson and baryon spectroscopy as well as the hadronic vacuum polarisation
function.

6.7. The free photon propagator on temporal periodic boundary
conditions

In the following section, we introduce a basis transformation that is compatible with
periodic boundary conditions in spatial and temporal directions and block-diagonalises the
photon difference operator ∆. In this new basis, the photon propagator can be obtained
by a simple algebraic inversion. The key transformation for this purpose is the discrete
Fourier transform (DFT), which we will introduce now.
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6.7.1. Discrete Fourier transform

We define the one-dimensional discrete Fourier transform [205] Fµ and its inverse (Fµ)−1

in direction µ as

Fµ
pµ
xµ =

√
a

Xµ
exp(−ipµxµ), (F−1

µ )x
µ

pµ =

√
a

Xµ
exp(ipµxµ) (6.91)

with xµ ∈ {0, . . . , Xµ− a} and pµ ∈ 2π
aXµ {0, . . . , Xµ− a}. We make use of a normalisation

which ensures the unitarity of the Fourier transform in integer coordinates nµ = xµ

a and

mµ = pµXµ

2π . This is convenient for the implementation on the computer, where integer
coordinates have to be applied. We define the negative value of a momentum as −pµ ≡

2π
aXµ − pµ, which is consistent with the fact that the Fourier transform and its inverse are
2π
aXµ -periodic with respect to pµ. The simulation code is based on the implementation of
the DFT in the FFTW3 library [205]. The inverse discrete Fourier transform F−1 fulfils
the periodic boundary condition for all components of the photon field A at the spatial
boundaries, defined in eq. (6.14), and at the temporal boundaries, defined in eq. (6.19):

(F−1
µ )−apµ =

√
a

Xµ
exp(−ipµ(−a)) =

1√
Xµ

exp(−ipµ(Xµ − a)) = (F−1
µ )X

µ−a
pµ , (6.92)

(F−1
µ )X

µ

pµ =

√
a

Xµ
exp(−ipµXµ) =

1√
Xµ

exp(−ipµ0) = (F−1
µ )0

pµ , (6.93)

where we made use of the key identity

exp(−ipµXµ) = 1 ∀pµ ∈ 2π

aXµ
{0, . . . , Xµ − a}. (6.94)

6.7.2. Transformation of first-order difference operators

We now consider the transformation properties of first-order difference operators under
the Fourier transform. For a more convenient notation, we introduce the lattice momenta
pµF and pµB, which are up to a coefficient i eigenvalues of the first-order difference operators:

pµF = − i

a
(exp(iapµ)− 1), pµB = − i

a
(1− exp(−iapµ)). (6.95)

In the limit a → 0 the continuum momentum is restored as pµF → pµ and pµB → pµ. The
lattice momenta fulfil the following identities:

pµF = (pµB)∗ = −(−pµ)B, pµB = (pµF)∗ = −(−pµ)F. (6.96)

There are two combinations of lattice derivatives and Fourier transforms that will be
relevant:

−→
∂ µF

xµ2
xµ1

(F−1
µ )x

µ
1 pµ = ipµF(F−1

µ )x
µ
2 pµ , Fµ

pµ

xµ2

←−
∂ µF

xµ2
xµ1

= −ipµBFµ
pµ

xµ2
. (6.97)
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We illustrate the computation on the first example,

−→
∂ 0

F
x0

2
x0

1
(F−1)x

0
1
p0 =

1

a

√
a

Xµ
(exp(ipµxµ2 )− exp(ipµ(xµ2 + a)))

=
1

a

√
a

Xµ
exp(ipµxµ2 )(1− exp(ipµa)) = ipµF(F−1

µ )x
µ
2 pµ . (6.98)

6.7.3. Basis change of the photon field

We define a basis change for the photon field that relates the momentum space and the
position space representation:

A(pµ)2 = B(pµ)2
(xµ)1

A(xµ)1 , A(xµ)2 = (B−1)(xµ)2
(pµ)1

A(pµ)1 . (6.99)

The basis change matrices B and B−1 read

B(pµ)2
(xµ)1

= δµ2
µ1

3∏

µ=0

Fµ
pµ2
xµ1
, (B−1)(xµ)2

(pµ)1
= δµ2

µ1

3∏

µ=0

(F−1
µ )x

µ
2
pµ1
. (6.100)

The metric tensor for the photon field in the defining position space representation reads

g(xµ)2(xµ)1
= δx2

x1
δµ2
µ1
, (6.101)

such that Axµ = Axµ. However, in momentum space representation it is not equal to unity
as

g(pµ)3(pµ)1
= g(xµ)4(xµ)2

(B−1)(xµ)4
(pµ)3

(B−1)(xµ)2
(pµ)1

= δ−p3
p1

δµ3
µ1
, (6.102)

i.e. one has to distinguish photon fields with lowered and raised indices in momentum
space representation and Apµ = A−pµ.

6.7.4. Basis change of the photon difference operator

The Fourier transform of second-order difference operators leads to products of the lattice
momenta, given in eq. (6.95). The two relevant combinations can be simplified to

pµ2

B pµ1

F =
4

a2
exp

( ia(pµ1 − pµ2)

2

)
sin
(apµ1

2

)
sin
(apµ2

2

)
, (6.103)

pµBp
µ
F =

4

a2

(
sin
(apµ

2

))2
. (6.104)

We transform the photon difference operator, which maps photon fields on photon fields,
according to

∆(pµ)4
(pµ)1

= B(pµ)4
(xµ)3

∆(xµ)3
(xµ)2

(B−1)(xµ)2
(pµ)1

(6.105)

with the basis change matrices given in eq. (6.100).
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Feynman gauge

The photon difference operator ∆ in Feynman gauge, defined in eq. (6.5), reads

∆(pµ)2
(pµ)1

=
∑

µ

p1
µ
Bp1

µ
Fδ

p2
p1
δµ2
µ1

(6.106)

in momentum space representation. It is diagonal both in the momentum p and in the
Euclidean index µ. Hence, its inverse, the photon propagator Σ, can directly be obtained:

Σ(pµ)2
(pµ)1

=
1∑

µ p1
µ
Bp1

µ
F

δp2
p1
δµ2
µ1
. (6.107)

According to the QEDL prescription only momenta p with non-vanishing spatial momen-
tum ~p 6= ~0 are considered such that the manifest divergence of the propagator at p = 0 is
avoided.

Coulomb gauge

Making use of eq. (6.7), the momentum space representation of ∆ in generalised Columb
gauge reads

∆pµ2
pµ1 =




∑
µ6=0 p

µ
Bp

µ
F −p1

Bp
0
F −p2

Bp
0
F −p3

Bp
0
F

−p0
Bp

1
F

∑
µ p

µ
Bp

µ
F

−p0
Bp

2
F

∑
µ p

µ
Bp

µ
F

−p0
Bp

3
F

∑
µ p

µ
Bp

µ
F




µ2

µ1

+
(1

ξ
− 1
)



0
p1

Bp
1
F p2

Bp
1
F p3

Bp
1
F

p1
Bp

2
F p2

Bp
2
F p3

Bp
2
F

p1
Bp

3
F p2

Bp
3
F p3

Bp
3
F




µ2

µ1

,

∆(pµ)2
(pµ)1

= 0 p2 6= p1. (6.108)

To obtain the photon propagator in generalised Coulomb gauge, we invert the photon
difference operator in momentum space representation by means of a computer algebra
program. As the expression is lengthy, we only give the result in Coulomb gauge, where
the limit ξ → 0 has been performed already:

Σpµ2
pµ1 =

1

(
∑

µ p
µ
Bp

µ
F)(
∑

µ6=0 p
µ
Bp

µ
F)

·




∑
µ p

µ
Bp

µ
F

p2
Bp

2
F + p3

Bp
3
F −p2

Bp
1
F −p3

Bp
1
F

−p1
Bp

2
F p1

Bp
1
F + p3

Bp
3
F −p3

Bp
2
F

−p1
Bp

3
F −p2

Bp
3
F p1

Bp
1
F + p2

Bp
2
F




µ2

µ1

,

Σ(pµ)2
(pµ)1

= 0 p2 6= p1. (6.109)
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A useful cross check for a computer implementation of the photon propagator in Fourier
representation is the projection property

Σpµ2
pµ1p

µ1

F =
(∑

µ

pµBp
µ
F

)



p0
F

0
0
0




µ2

, (6.110)

i.e. the vector pF is a zero-eigenvector of the photon propagator in Coulomb gauge for
vanishing temporal momentum p0 = 0.

6.8. The free photon propagator on temporal open boundary
conditions

The calculation of the free photon propagator on temporal open boundary conditions
and spatial periodic boundary conditions is more sophisticated compared to the purely
periodic case, but in principle works in the same manner. The main task is to find a basis
transformation which allows for the block diagonalisation of the photon difference operator
and which is at the same time compatible with the open temporal boundary conditions.
This can be achieved by the discrete sine transformation (DST) and the discrete sine
transformation (DCT) combined with the discrete Fourier transform.

6.8.1. Discrete sine and cosine transformations

The discrete sine and cosine transformations are the real valued counterparts of the com-
plex valued discrete Fourier transform. Depending on the boundary conditions, there
exist different types of discrete sine and discrete cosine transformations [205]. We apply
a modified version of the discrete sine transformation of type DST-I and the discrete co-
sine transformation of types DCT-II and DCT-III, which are suitable for open temporal
boundary conditions, as we will see later. Consequently, we introduce for the temporal
direction the one-dimensional discrete sine transformations S0 and its inverse S−1

0

S0
p0

x0 = (S−1
0 )x

0

p0 =

√
2a

X0
sin(p0(x0 + a)) (6.111)

with x0 ∈ {0, . . . , X0 − 2a} and p0 ∈ π
aX0 {a, . . . ,X0 − a}, and the discrete cosine trans-

formation C0 and its inverse C−1
0

C0
p0

x0 = (C−1
0 )x

0

p0 =

{√
a
X0 p0 = 0√
2a
X0 cos(p0(x0 + a

2 )) p0 6= 0
(6.112)

with x0 ∈ {0, . . . , X0 − a} and p0 ∈ π
aX0 {0, . . . , X0 − a}. It is important to point out,

that the domain for x0 and p0 is different in comparison to the Fourier transforms. We
use a particular normalisation that also includes the independent normalisation factor of
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6.8. The free photon propagator on temporal open boundary conditions

C0 for p0 = 0 and that differs from the standard definition of the DST-I, the DCT-II and
the DCT-III [205]. However, it ensures the orthogonality of the transformations in integer

coordinates n0 = x0

a and m0 = p0X0

π . This is again convenient for the implementation on
the computer. The simulation code is based on the implementations of the DST and the
DCT in the FFTW3 library [205]. The inverse discrete sine transformation S−1

0 fulfils
the open boundary condition for the temporal component of the photon field A0 at the
temporal boundaries, defined in eq. (6.26), i.e. Dirichlet boundary conditions:

(S−1
0 )−ap0 =

√
2a

X0
sin(0) = 0, (6.113)

(S−1
0 )X

0−a
p0 =

√
2a

X0
sin(p0X0) = 0. (6.114)

The discrete cosine transformation C−1
0 fulfils the open boundary condition for the spatial

component of the photon field Aµ for µ = 1, 2, 3 at the temporal boundaries, defined in
eq. (6.27), i.e. Neumann boundary conditions:

(
−→
∂ 0

F)−ax0(C−1
0 )x

0

p0 =

{√
a
X0 −

√
a
X0 p0 = 0√

2a
X0 (cos(p0 a

2 )− cos(−p0 a
2 )) p0 6= 0

= 0, (6.115)

(
−→
∂ 0

F)X
0−a

x0(C−1
0 )x

0

p0 =

{√
a
X0 −

√
a
X0 p0 = 0√

2a
X0 (cos(p0(X0 + a

2 ))− cos(p0(X0 − a
2 ))) p0 6= 0

= 0. (6.116)

6.8.2. Transformation of first-order difference operators

We can express first-order lattice derivatives applied to cosine transforms in terms of sine
transforms, which are multiplied by a factor, and vice versa. For this purpose, we define
the generalised lattice momenta p0

FSC and p0
BCS:

p0
FSC =

2i

a
sin
(ap0

2

)
, p0

BCS = −2i

a
sin
(ap0

2

)
. (6.117)

The generalised lattice momenta fulfil the following identities:

p0
FSC = (p0

BCS)∗ = −(−p0)FSC, p0
BCS = (p0

FSC)∗ = −(−p0)BCS. (6.118)

There are four combinations of lattice derivatives and sine and cosine transforms that will
be relevant:

−→
∂ 0

F
x0

2
x0

1
(S−1)x

0
1
p0 = ip0

FCS(C−1)x
0
2+a

p0 , Sp0

x0
2

←−
∂ 0

F
x0

2
x0

1
= −ip0

BSCC
p0

x0
1+a, (6.119)

−→
∂ 0

F
x0

1
x0

2
(C−1)x

0
2
p0 = ip0

BCS(S−1)x
0
1
p0 , Cp

0

x0
2

←−
∂ 0

F
x0

2
x0

1
= −ip0

FSCS
p0

x0
1
. (6.120)
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We illustrate the computation on the third example,

−→
∂ 0

F
x0

2
x0

1
(C−1)x

0
1
p0 =

1

a

√
2a

X0

(
cos
(
p0
(
x0

2 +
3a

2

))
− cos

(
p0
(
x0

2 +
a

2

)))

= −2

a

√
2a

X0
sin(p0(x0

2 + a)) sin
(ap0

2

)

= −(S−1)x
0
2
p0

2

a
sin
(ap0

2

)
= ip0

FSC(S−1)x
0
2
p0 , (6.121)

where we made use of the identity cos(α)− cos(β) = −2 sin(α+β
2 ) sin(α−β2 ).

6.8.3. Basis change of the photon field

We again introduce a convenient basis change transformation for the photon field, relating
the generalised momentum space representation with the position space representation:

A(pµ)2 = B(pµ)2
(xµ)1

A(xµ)1 , A(xµ)2 = (B−1)(xµ)2
(pµ)1

A(pµ)1 . (6.99)

We define the basis change matrices B and B−1 as

Bpµ2
xµ1 =




S0
p0

x0

C0
p0

x0

C0
p0

x0

C0
p0

x0




µ2

µ1

·
∏

µ 6=0

Fµ
pµ
xµ ,

(B−1)pµ2
xµ1 =




(S−1
0 )p

0

x0

(C−1
0 )p

0

x0

(C−1
0 )p

0

x0

(C−1
0 )p

0

x0




µ2

µ1

·
∏

µ6=0

(F−1
µ )p

µ

xµ .

(6.122)

The choice of transformations depends on the Euclidean index, as different components of
the photon field satisfy different boundary conditions. The metric tensor for the photon
field in this generalised momentum space representation reads

g(pµ)3(pµ)1
= g(xµ)4(xµ)2

(B−1)(xµ)4
(pµ)3

(B−1)(xµ)2
(pµ)1

= δ−~p3

~p1
δ
p0

3

p0
1
δµ3
µ1
, (6.123)

i.e. one has to distinguish photon fields with lowered and raised indices in generalised
momentum space representation as Apµ = A(p0,−~p)µ.

6.8.4. Basis change of the photon difference operator

The sine and cosine transforms of second-order difference operators lead to products of
the generalised lattice momenta, given in eq. (6.117). There is one relevant combination,
which can be simplified to

p0
BCSp

0
FSC =

4

a2

(
sin
(apµ

2

))2
. (6.124)
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We again transform the photon difference operator ∆ according to

∆(pµ)4
(pµ)1

= B(pµ)4
(xµ)3

∆(xµ)3
(xµ)2

(B−1)(xµ)2
(pµ)1

, (6.105)

but now make use of the basis change matrices defined in eq. (6.122).

Feynman gauge

The photon difference operator ∆ in Feynman gauge, defined in eq. (6.5), reads

∆(pµ)2
(pµ)1

=
(
p1

0
BCSp1

0
FSC +

∑

µ 6=0

p1
µ
Bp1

µ
F

)
δp2
p1
δµ2
µ1

(6.125)

in generalised momentum space representation. Thus, the photon propagator Σ is given
by

∆pµ2
pµ1 =

1

p1
0
BCSp1

0
FSC +

∑
µ6=0 p1

µ
Bp1

µ
F

δp2
p1
δµ2
µ1
. (6.126)

Coulomb gauge

For ∆ in generalised Columb gauge, given in eq. (6.7), we obtain

∆pµ2
pµ1 =




∑
µ 6=0 p

µ
Bp

µ
F −p1

Bp
0
FSC −p2

Bp
0
FSC −p3

Bp
0
FSC

−p0
BCSp

1
F p0

BCSp
0
FSC +

∑
µ 6=0 p

µ
Bp

µ
F

−p0
BCSp

2
F p0

BCSp
0
FSC +

∑
µ6=0 p

µ
Bp

µ
F

−p0
BCSp

3
F p0

BCSp
0
FSC +

∑
µ6=0 p

µ
Bp

µ
F




µ2

µ1

+
(1

ξ
− 1
)



0
p1

Bp
1
F p2

Bp
1
F p3

Bp
1
F

p1
Bp

2
F p2

Bp
2
F p3

Bp
2
F

p1
Bp

3
F p2

Bp
3
F p3

Bp
3
F




µ2

µ1

,

∆(pµ)2
(pµ)1

= 0 p2 6= p1. (6.127)

We proceed as in the case for temporal periodic boundary conditions. After taking the
limit ξ → 0, the photon propagator in Coulomb gauge reads

Σpµ2
pµ1 =

1

(p0
BCSp

0
FSC +

∑
µ6=0 p

µ
Bp

µ
F)(
∑

µ6=0 p
µ
Bp

µ
F)

·




p0
BCSp

0
FSC +

∑
µ6=0 p

µ
Fp

µ
B

p2
Bp

2
F + p3

Bp
3
F −p2

Bp
1
F −p3

Bp
1
F

−p1
Bp

2
F p1

Bp
1
F + p3

Bp
3
F −p3

Bp
2
F

−p1
Bp

3
F −p2

Bp
3
F p1

Bp
1
F + p2

Bp
2
F




µ2

µ1

,

Σ(pµ)2
(pµ)1

= 0 p2 6= p1. (6.128)
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7. Computation strategies for correlation
functions

In this chapter, we introduce strategies to evaluate correlation functions which are relevant
for this thesis. We briefly discuss the infeasibility to compute the full quark propagator and
the need of quark sources. We describe the stochastic treatment of the all-to-all photon
propagator, which is used in some Feynman diagrams. Finally, we introduce reusable
building blocks to evaluate Feynman diagrams in QCD+QED.

7.1. Infeasibility of computing the full quark propagator

The quark propagator S is defined as the inverse of the Dirac operator D, i.e. S is obtained
as a solution of the linear equation

Da2
bS

b
a1 = δa2

a1
. (7.1)

S and D both have to be understood as functions of the gauge field U . The full determi-
nation of the all-to-all propagator S on a given gauge configuration U , which describes the
propagation from any lattice site to another, is computationally unattainable [42], even if
fast iterative solvers are used. For a single quark flavour, S is a full matrix of dimensions
(V · 12) × (V · 12), where V denotes the number of lattice sites. The currently available
CLS ensembles possess volumes of V of O(107− 109), c.f. table 5.1. To determine the full
quark propagator, one would have to solve V systems of linear equations of system size
V . In fact, it is only computationally feasible to solve the Dirac equation

Da
bΨ[η]b = ηa, (7.2)

where Ψ[η] denotes the propagator with respect to the source η, as Ψ[η]b = Sb
aη

a, for
a small number of quark sources η. To solve the Dirac equation for a given source, we
apply the generalized conjugate residual (GCR) algorithm to the deflated, Schwarz pre-
conditioned Dirac equation, as discussed in section 5.2.6 for the generation of gauge con-
figurations. There are several types of sources used to evaluate correlation functions. The
choice of the source type depends on the particular correlation function to be computed.
In this thesis, we mainly apply two types of quark sources, which are used to evaluate
quark-connected contributions to two-point functions: point sources, which have support
on a single lattice site, and stochastic sources with support on one timeslice. We will give
more details on the sources when we discuss the computation of mesonic and baryonic
two-point functions in chapters 11 and 12, respectively.
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7.2. Stochastic treatment of all-to-all photon propagators

The photon difference operator ∆ is a sparse matrix of dimensions (V · 4) × (V · 4). In
the considered Feynman diagrams, the photon propagator may connect two different ver-
tices such that all entries of the photon propagator are required in the calculation. The
computation of the full photon propagator matrix in position space representation is im-
practical for the same reasons as for the quark propagator. Therefore, we make use of a
stochastic estimation of the photon propagator, which we will discuss below. The major
difference between a quark and a photon propagator is that the photon propagator can
be computed algebraically by a convenient basis transformation, such that the necessity
to solve a linear system of equations by means of a fast iterative solver can be avoided.
The case in which the photon propagator is attached to the same vertex with both ends
can be treated without stochastic sources, as only the diagonal elements in position space
representation are required. Due to periodic spatial boundary conditions, we can apply
translational invariance and further reduce the number of entries which have to be deter-
mined. The implementation of the simulation code is based on data structures provided
by the QDP++ library [206].

7.2.1. Standard stochastic estimation

We introduce general stochastic sources for the photon field J , which satisfy the relation

〈Jc2(Jc1)∗〉 = δc1c2 , (7.3)

where the sources can be either real- or complex-valued. We further define a propagated
source as an abbreviation by

A[J ]c2 = Σc2c1Jc1 . (7.4)

The photon propagator can be estimated stochastically via the expectation value of a
source and the corresponding propagated source:

〈A[J ]c3(Jc1)∗〉 = Σc3c2〈Jc2Jc1∗〉 = Σc3c2δc1c2 = Σc3c1 . (7.5)

In order to determine the stochastic estimate of the photon propagator in position space
representation, we calculate the propagated source by performing a basis change to mo-
mentum coordinates 6.99, in which we know the algebraic form of the photon propagator:

A[J ]x2µ2 = (B−1)(xµ)4
(pµ)3

Σ(pµ)3
(pµ)2

B(pµ)2
(xµ)1

J (xµ)1 . (7.6)

For a given set of sources (Ji)i=1...n the propagator is then estimated via

Σ(xµ)2(xµ)1 ≈ 1

n

n∑

i=1

A[Ji]
(xµ)2(Ji

(xµ)1)∗. (7.7)
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7.2.2. Improved stochastic estimation

A general disadvantage of the latter stochastic estimate is the fact that the symmetry
property of the photon propagator Σc2c1 = Σc1c2 is not preserved due to the introduction
of stochastic noise. The most straight forward way to overcome this disadvantage is to
project out the anti-symmetric part of the estimate, redefining Σc2c1 as only its symmetric
part

Σc2c1 =
1

2n

n∑

i=1

(A[Ji]
c2(Ji

c1)∗ + Ji
c2(A[Ji]

c1)∗). (7.8)

However, with this improved estimator, the computational cost grows by a factor between
one and two, as all sequential propagators over photon sources and photon fields have to
be computed twice per photon source.

Let us assume we can construct the square root of the photon propagator
√

Σ, which
we will refer to as a half-propagator,

Σc3
c1 =

√
Σc3

c2

√
Σc2

c1 , (7.9)

and let us further assume that it is a symmetric tensor, i.e.
√

Σc2
c1 =

√
Σc1

c2 . (7.10)

We introduce stochastic sources satisfying the relation

〈Jc2Jc1〉J = gc2c1 , (7.11)

where g is the metric tensor, which is used to raise and lower indices of the photon fields,
and we define, similar to eq. (7.4), the half-propagated photon source A[J ] as

A[J ]c2 =
√

Σc2
c1J

c1 . (7.12)

If we determine the expectation value of two half-propagated photon sources A[J ] with
respect to the stochastic source J , we can reconstruct the photon propagator:

〈A[J ]c4A[J ]c2〉J = 〈
√

Σc4
c3J

c3
√

Σc2
c1J

c1〉J = 〈
√

Σc4
c3J

c3
√

Σc1
c2Jc1〉J

=
√

Σc4
c3〈Jc3Jc1〉J

√
Σc1

c2 =
√

Σc4
c3g

c3c1
√

Σc1
c2

= Σc4c2 . (7.13)

Similar to eq. (7.6), we compute the half-propagated photon source in position space
representation via a basis change:

A[J ]x2µ2 = (B−1)(xµ)4
(pµ)3

√
Σ(pµ)3

(pµ)2
B(pµ)2

(xµ)1
J (xµ)1 . (7.14)

The estimated photon propagator for a given set of sources (Ji)i=1...n is now manifestly
symmetric, reading

Σ(xµ)2(xµ)1 ≈ 1

n

n∑

i=1

A[Ji]
(xµ)2A[Ji]

(xµ)1 . (7.15)
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A major advantage of this construction is the fact that the fields A[J ]xµ are real-valued
for real-valued sources Jxµ. This becomes relevant for the application of the generalised
one-end trick, introduced in chapter 11, where the γ5-hermicity of the quark propagator
S and the quark-photon vertices is used. In this construction, the photon field Axµ has to
be invariant under complex conjugation.

7.2.3. The free photon half-propagator on temporal periodic boundary
conditions

In the following, we will explicitly construct the photon half-propagators for Feynman and
Coulomb gauge on a lattice with periodic temporal boundary conditions.

Feynman gauge

As the photon propagator in Feynman gauge is diagonal, real-valued and positive,

Σ(pµ)2
(pµ)1

=
1∑

µ p1
µ
Fp1

µ
B

δp2
p1
δµ2
µ1
, (6.107)

the construction of the photon half-propagator, i.e. the square root of the photon propa-
gator, is simple,

√
Σ(pµ)2

(pµ)1
=

1√∑
µ p1

µ
Fp1

µ
B

δp2
p1
δµ2
µ1
, (7.16)

such that eq. (7.9) is obviously fulfilled.

Coulomb gauge

The construction of the photon half-propagator in Coulomb gauge is more sophisticated,
as the propagator is not diagonal but only block-diagonal:

Σpµ2
pµ1 =

1

(
∑

µ p
µ
Bp

µ
F)(
∑

µ 6=0 p
µ
Bp

µ
F)

·




∑
µ p

µ
Bp

µ
F

p2
Bp

2
F + p3

Bp
3
F −p2

Bp
1
F −p3

Bp
1
F

−p1
Bp

2
F p1

Bp
1
F + p3

Bp
3
F −p3

Bp
2
F

−p1
Bp

3
F −p2

Bp
3
F p1

Bp
1
F + p2

Bp
2
F




µ2

µ1

,

Σ(pµ)2
(pµ)1

= 0 p2 6= p1. (6.109)

As Σp
p is a hermitian matrix, we can construct a unitary basis change matrix U(p) =

(u0(p), u1(p), u2(p), u3(p)) which diagonalises Σp
p. Assuming p1 6= 0 or p2 6= 0, an or-
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thonormal basis of eigenvectors is given by

u0(p) =




1
0
0
0


 , u2(p) =

1√
(p1

Bp
1
F + p2

Bp
2
F)(
∑

µ 6=0 p
µ
Bp

µ
F)




0
−p3

Bp
1
F

−p3
Bp

2
F

p1
Bp

1
F + p2

Bp
2
F


 ,

u1(p) =
1√

p1
Bp

1
F + p2

Bp
2
F




0
−p2

B

p1
B

0


 , u3(p) =

1√∑
µ6=0 p

µ
Bp

µ
F




0
p1

F

p2
F

p3
F


 . (7.17)

The diagonalised propagator in Coulomb gauge, which is positive semi-definite, reads

(U(p))−1Σp
pU(p) = diag

(
1∑

µ 6=0 p
µ
Bp

µ
F

,
1∑

µ p
µ
Bp

µ
F

,
1∑

µ p
µ
Bp

µ
F

, 0

)
. (7.18)

Consequently, we define the half-propagator
√

Σp
p as

√
Σp

p = U(p) diag

(
1√∑

µ6=0 p
µ
Bp

µ
F

,
1√∑
µ p

µ
Bp

µ
F

,
1√∑
µ p

µ
Bp

µ
F

, 0

)
(U(p))−1. (7.19)

In the remaining case p1 = 0 and p2 = 0, the photon propagator in eq. (6.109) is diagonal.
Hence, we choose U(p) = 1, for which the half-propagator is also given by eq. (7.19).

7.2.4. The free photon half-propagator on temporal open boundary conditions

The construction for temporal open boundary conditions is analogue to temporal periodic
boundary conditions.

Feynman gauge

The photon propagator in Feynman gauge reads

Σpµ2
pµ1 =

1

p1
0
BCSp1

0
FSC +

∑
µ6=0 p1

µ
Bp1

µ
F

δp2
p1
δµ2
µ1
. (6.126)

Hence, the photon half-propagator is given by

√
Σ(pµ)2

(pµ)1
=

1√
p1

0
BCSp1

0
FSC +

∑
µ6=0 p1

µ
Bp1

µ
F

δp2
p1
δµ2
µ1
. (7.20)
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Coulomb gauge

The photon propagator in Coulomb gauge is defined as

Σpµ2
pµ1 =

1

(p0
BCSp

0
FSC +

∑
µ6=0 p

µ
Bp

µ
F)(
∑

µ6=0 p
µ
Bp

µ
F)

·




p0
BCSp

0
FSC +

∑
µ6=0 p

µ
Fp

µ
B

p2
Bp

2
F + p3

Bp
3
F −p2

Bp
1
F −p3

Bp
1
F

−p1
Bp

2
F p1

Bp
1
F + p3

Bp
3
F −p3

Bp
2
F

−p1
Bp

3
F −p2

Bp
3
F p1

Bp
1
F + p2

Bp
2
F




µ2

µ1

,

Σ(pµ)2
(pµ)1

= 0 p2 6= p1. (6.128)

We may utilise the same unitary basis change matrices U(p) to diagonalise Σpµ2
pµ1 as in

the case of temporal periodic boundary conditions, i.e. for p1 6= 0 or p2 6= 0 we make
use of the eigenvectors in eq. (7.17) and for p1 = 0 and p2 = 0 we define U(p) = 1. The
half-propagator reads

√
Σp

p = U(p) diag

(
1√∑

µ 6=0 p
µ
Bp

µ
F

,
1√

p0
BCSp

0
FSC +

∑
µ 6=0 p

µ
Bp

µ
F

,

1√
p0

BCSp
0
FSC +

∑
µ 6=0 p

µ
Bp

µ
F

, 0

)
(U(p))−1.

(7.21)

7.3. Sequential quark sources and sequentially propagated
sources

The numerical evaluation of a Feynman diagram can be broken down to building blocks,
which appear in the evaluation process of various diagrams. We distinguish two types
of building blocks. Propagated sources, which are composed of a quark propagator and
a quark source, and sequential sources, which themselves can by composed of a vertex
attached to a propagated source. We introduce various sequential sources and sequential
propagators with different vertices inserted. As we consider leading isospin breaking ef-
fects, we maximally find one mass detuning vertex Vqqf , one 2-photon vertex Vqqγγ or two
1-photon vertices Vqqγ in our diagrams. In general, all objects discussed in the following
depend on the QCD gauge background U . For better readability, we suppress this depen-
dence. Spin and colour indices are kept implicit. The implementation of the simulation
code is based on data structures provided by the QDP++ library [206].
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7.3.1. No vertex

The most simple object, appearing in isosymmetric calculations, is the quark propagator
Ψ[η] of a source η, which is defined by

Ψ[η]b = S(0)b
aη

a = a
b

ηa. (7.22)

With regard to a computer implementation, attaching a propagator to a source always
means that a Dirac equation of the form

D(0)a
bΨ[η]b = ηa (7.23)

has to be solved for Ψ[η].

7.3.2. One mass detuning vertex

In order to evaluate diagrams which exhibit a mass detuning vertex Vqqf , we define the
sequential source

ηVqqf
[η]a2 = V qqf

a2
bΨ[η]b = a1

a2
ηa1 , (7.24)

where the mass detuning vertex in eq. (6.73) is applied to Ψb according to

Vqqf
(xf)1

bΨb = −δf1

f Ψ(xf)1 . (7.25)

We also define the corresponding propagated sequential source

ΨVqqf
[η]b = Sb

aηVqqf
[η]a = a

b
ηa, (7.26)

which is calculated according to eq. (7.23).

One integrated 2-photon vertex

Diagrams with a 2-photon vertex Vqqγγ combined with a photon propagator Σ, which is
attached to both photon legs of the vertex, require the determination of

η
(0)
VqqγγΣ[η]a2 =

1

2
Vqqγγ

a2
bc2c1Σc2c1Ψ[η]b =

a1
a2 ηa1 , (7.27)

where the integrated 2-photon vertex VqqγγΣ in eq. (6.75) is applied to Ψ and according
to

Vqqγγ
xf

bc2c1Σc2c1Ψb =
1

2
a2q2

f

∑

µ

(
(1− γµ)UxµΨx+aµ̂,fΣxµxµ

+ (1+ γµ)(Ux−aµ̂,µ)†Ψx−aµ̂,fΣx−aµ̂,µ,x−aµ̂,µ
)
.

(7.28)
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In order to evaluate the shifted fields in the latter expression, the chosen boundary condi-
tions have to be considered as discussed in section 6.2. We also define the corresponding
propagated sequential source

ΨVqqγγΣ[η]b = Sb
aη

(0)
VqqγγΣ[η]a =

a
b ηa, (7.29)

which is calculated according to eq. (7.23).
The definition of the integrated 2-photon vertex VqqγγΣ requires the computation of

the diagonal elements of the photon propagator in position space representation Σxµxµ.
Making use of translation invariance for periodic boundary conditions, we find Σxµxµ =
Σ0µ0µ, i.e. we only have to evaluate the photon propagator at a single lattice site. We
compute the photon propagator by means of the diagonal representation:

Σ0µ4
0µ1 = (B−1)0µ2

(pµ)3
Σ(pµ)3

(pµ)2
B(pµ)2

0µ1 . (7.30)

The basis change matrices B and B−1 for periodic boundary conditions are defined in
eq. (6.100). Σ(pµ)3

(pµ)2
is either given by eq. (6.107) for Feynman gauge or by eq. (6.109)

for Coulomb gauge.
If open temporal boundary conditions are applied, the translational symmetry in the

temporal direction is spoiled. Hence, we can only relate sites located on the same timeslice
and find Σxµxµ = Σ(x0,~0)µ(x0,~0)µ. Consequently, the photon propagator has to be evaluated
on each timeslice x0 = 0, . . . , X0 − a:

Σ(x0,~0)µ4
0µ1 = (B−1)0µ2

(pµ)3
Σ(pµ)3

(pµ)2
B(pµ)2

(x0,~0)µ1
. (7.31)

The basis change matrices B and B−1 for temporal open boundary conditions are defined
in eq. (6.122). Σ(pµ)3

(pµ)2
is either given by eq. (6.126) for Feynman gauge or by eq. (6.128)

for Coulomb gauge. The evaluation of the latter equation for each timeslice of the lattice
is time consuming. To safe computation time, we precompute the results and write them
to disk such that they can be reused for every execution of the simulation program.

7.3.3. One 1-photon vertex

Sequential sources with one 1-photon vertex Vqqγ are defined as

η
(0)

Vqqγ

√
Σ

[J, η]a2 = V qqγ
a2

bc2Ψ[η]b
√

Σc2
c1J

c1 =
a1

a2

c

1/2 Jc1ηa1 . (7.32)

The vertex defined in eq. (6.74) is applied to Ψb and Ac1 =
√

Σc2
c1J

c1 according to

Vqqγ
xf

bcΨbAc =
i

2
aqf

∑

µ

(
− (1− γµ)UxµΨx+aµ̂,fAxµ

+ (1+ γµ)(Ux−aµ̂,µ)†Ψx−aµ̂,fAx−aµ̂,µ
)
.

(7.33)
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Again, the boundary conditions discussed in section 6.2 have to be considered in order to
evaluate this expression. We also define the corresponding propagated sequential source

Ψ
(0)

Vqqγ

√
Σ

[J, η]b = Sb
aη

(0)

Vqqγ

√
Σ

[J, η]a =
a

b

c

1/2 Jcηa, (7.34)

which is calculated according to eq. (7.23).

7.3.4. Two 1-photon vertices

In some Feynman diagrams, the two 1-photon vertices Vqqγ appear on the same quark line
next to each other. We define the corresponding sequential source as

η
(0)

Vqqγ

√
ΣVqqγ

√
Σ

[J2, J2, η]a2 = V qqγ
a2

bc2ΨVqqγ

√
Σ[η]b

√
Σc2

c1J
c1

=
a1

a2

c1c2

1/21/2 Jc2
2 Jc1

1 ηa1 . (7.35)

We may directly contract the two photon half-propagators in the latter diagram, making
use of eq. (7.11)

〈Jc2Jc1〉J = gc2c1 , (7.11)

i.e. we insert the same stochastic photon source J = J1 = J2 in eq. (7.35) and take the
expectation value. Consequently, we define the sequential source

η
(0)
VqqγΣVqqγ

[η]a2 =
〈
η

(0)

Vqqγ

√
ΣVqqγ

√
Σ

[η, J, J ]a2

〉
J

=
a1

a2 ηa1 . (7.36)

In practice, the latter expectation value is estimated on each QCDiso gauge configura-
tion U only for a small number of stochastic sources J . In addition, we introduce the
corresponding propagated sequential source

Ψ
(0)
VqqγΣVqqγ

[J, η]b = Sb
aη

(0)
VqqγΣVqqγ

[J, η]a =
a

b ηa. (7.37)

7.3.5. Combined calculation of one 2-photon vertex and two 1-photon
vertices with photon propagator

Combining the calculation of sequential propagators with one 2-photon vertex Vqqγγ and
two 1-photon vertices Vqqγ contracted with a photon propagator Σ allows us to significantly
reduce the number of inversions of the Dirac equation eq. (7.23), which is the most time
consuming part of the calculation. The last quark propagator can be applied after the
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expectation value over the photon sources is taken and after the two sequential sources
are added up:

(ΨVqqγγΣ + ΨVqqγΣVqqγ )[η]b = Sb
a

(
η

(0)
VqqγγΣ[η]a + η

(0)
VqqγΣVqqγ

[η]a
)

=
a

b +
a

b . (7.38)
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In this chapter we introduce and discuss methods required for the analysis of data gen-
erated within Monte Carlo simulations. We will apply these methods intensively in the
following chapters. We also briefly discuss relevant software packages. The textbooks
Gattringer and Lang [42] and DeGrand and DeTar [98] as well as [207] and [104] pro-
vide helpful introductory remarks. A textbook on resampling methods, which we use for
the estimation of statistical errors, is Efron [208]. Helpful guides for regression analysis
are [209, 210].

8.1. Software for data analysis

The data analysis is performed using Python3 [211]. Hdf5 files containing the Monte
Carlo simulation results are read by means of the Python3 package h5py [212]. The data
is processed using the Python3 libraries NumPy [213] and SciPy [214] and displayed by
matplotlib [215]. Input files are stored in the json format and read by the Python3 package
json [216]. Random numbers used within the analysis are generated with the Mersenne
Twister random number generator package random [217] of Python3.

8.2. Error estimation via resampling methods

In the following, we consider an observable O[U ] that depends on the gauge field U . Its
expectation value 〈O[U ]〉eff with respect to the effective action Seff is estimated via a
Monte Carlo simulation, as discussed in section 4.6. In the latter, a finite set of gauge
configurations (UnM)nM=1,...,NM

is generated. We define the nM-th measurement OnM as
the evaluation of the observable O on the nM-th gauge configuration UnM

OnM = O[UnM ]. (8.1)

The average of the measurements is then an estimator for the expectation value 〈O[U ]〉U [42],
reading

OM =
1

NM

NM∑

nM=1

OnM . (8.2)

As OM is a stochastic estimate, it is important to quantify the related estimation error.
In principle, one could determine the error from N individual averages (OM,n)n=1,...,N

generated from N individual sets of NM measurements [42]. This procedure is usually far
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too costly and therefore infeasible. A solution to this problem is offered by resampling
methods. They allow an error estimation from the same set of measurements used to esti-
mate the expectation value. In the following we will describe two resampling techniques,
bootstrap and jackknife resampling [218]. A more detailed introduction can be found in
the book of Efron [208].

8.2.1. Bootstrap for primary quantities

Given NM measurement samples (OM,nM
)n=1,...,NM

of a quantity O one constructs NB

bootstrap samples (OB,nB
)n=1,...,NB

by drawing with replacement NM times from the NM

measurements and averaging [42, 98, 207]. This procedure can be implemented according
to [207]

OB,nB
=

1

NM

NM∑

nM=1

θnBnMOM,nM
, (8.3)

where we have introduced integer numbers θnBnM ∈ N+
0 with the constraint

NM∑

nM=1

θnBnM = NM. (8.4)

θnBnM
NM

is the statistical weight of the nM-th measurement in the nB-th bootstrap sample.
The numbers θnBnM are generated by a random generator once for an entire bootstrap
analysis. The main advantage of bootstrap resampling is that the number of samples
can be chosen independently of the number of measurements. It is therefore possible to
combine results of gauge ensembles with differing numbers of measurements in the same
analysis. In this thesis we work with NB = 500 bootstrap samples. The bootstrap estimate
of the expectation value reads [42, 98, 207]

OB =
1

NB

NB∑

nB=1

OB,nB
. (8.5)

However, one commonly uses the average of the measurements eq. (8.2) as an estimator.
The bootstrap estimate of the error is given by [42, 207]

σO,B =

√√√√ 1

NB

NB∑

nB=1

(OB,nB
−OM)2, (8.6)

where we have used eq. (8.2). It is also possible to estimate the covariance between various
quantities Oi like, e.g. correlation functions with operators evaluated at different times.
The bootstrap estimate of the covariance matrix reads

Covi2i1B =
1

NB

NB∑

nB=1

(Oi2B,nB
−Oi2M)(Oi1B,nB

−Oi1M). (8.7)

For the diagonal elements of CovB we have CoviiB = (σOi,B)2.
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8.2.2. Jackknife for primary quantities

In contrast to the bootstrap resampling, the jackknife method does not depend on random
numbers. Here, we will focus on the delete-1 jackknife for which the sample number is
equal to the number of measurements. We have implemented jackknife resampling as a
cross check for our analysis software based on bootstrap resampling. The NJ jackknife
samples (OJ,nJ

)n=1,...,NJ
are computed according to [42, 98, 207]

OJ,nJ
=

1

NJ − 1

NM∑

nM=1
nM 6=nJ

OM,nM
. (8.8)

By construction NJ = NM. In contrast to bootstrap resampling, results of gauge en-
sembles with differing numbers of measurements cannot be combined, which is a major
disadvantage. The jackknife estimate for the expectation value reads [42, 98, 207]

OJ =
1

NJ

NJ∑

nJ=1

OJ,nJ
. (8.9)

A simple calculation shows that for primary quantities this estimate is identical to the
average of the measurements OJ = OM in eq. (8.2). The jackknife estimate of the error is
given by [42, 98, 207]

σO,J =

√√√√NJ − 1

NJ

NJ∑

nJ=1

(OJ,nJ
−OM)2 (8.10)

and the estimate for the covariance matrix is

Covi2i1J =
NJ − 1

NJ

NJ∑

nJ=1

(Oi2J,nJ
−Oi2M)(Oi1J,nJ

−Oi1M). (8.11)

Compared to the corresponding bootstrap estimators, an additional prefactor has to be
introduced for a bias correction.

8.2.3. Resampling for derived quantities

Usually, we are not interested in primary quantities, i.e. correlation functions, but in
derived quantities, such as hadron masses obtained from fits to a correlation function,
evaluated at different times, or ratios and products of correlation functions. Let us assume
that the derived quantity O′(O1, . . . , On) depends on the primary quantities O1, . . . , On.
The different Oi may be the same type of correlation function, where the operators have
only changed their time position, or correlation functions of different types. It can be
shown that the best estimate for the mean of the derived quantity is given by the plug-in
result [208]

O′(O1, . . . , On) = O′(O1, . . . , On) (8.12)
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as it is free of any estimation bias. The error ofO′ can be estimated by resampling methods.
From the samples forO1, . . . , On, namely (O1,R,nR)nR=1,...,NR , . . . , (O1,R,nR)nR=1,...,NR , where
R denotes the resampling method using B for bootstrap and J for jackknife, we construct
samples ((O′(O1, . . . , On))R,nR)nR=1,...,NR for the derived quantity O′ by means of the
plug-in result [208]:

(O′(O1, . . . , On))R,nR = O′(O1,R,nR , . . . , On,R,nR). (8.13)

The error and the covariance matrix can now be determined from the derived samples in
the same manner as for primary samples. However, non-linear functions O′ will in general
introduce a small bias in the error estimate. Additionally, it should be noted that the
jackknife resampling method is only applicable for error propagation if the derived quantity
is a smooth function with respect to the relevant primary quantities [208]. The statistical
bootstrap is also able to cope with a functional dependence that is not smooth [208].

8.2.4. Pseudo-resampling of input parameters with associated errors

In order to introduce an input parameter equipped with an error into the analysis, it is
convenient to create a pseudo-resampling distribution that mimics a resampling distri-
bution and yields the value of the input parameter and its associated error. Assuming
that the distribution of the quantity O is approximated by a Gaussian distribution with
central value O and width σO, one can construct pseudo-resampling distributions fR(O)
from which the correct estimate for the mean OR and the error σO,R can be derived. For
bootstrap resampling the corresponding probability density reads

fB(O) =
1√

2πσO
exp

(
− 1

2

(
O −O
σO

)2)
. (8.14)

For jackknife resampling a factor for bias correction has to be introduced:

fJ(O) =

√
NJ − 1√
2πσO

exp

(
− 1

NJ − 1

1

2

(
O −O
σO

)2)
. (8.15)

The correctness of these formula can easily be checked numerically.

8.2.5. Partial errors

Often, the analysis requires the input of quantities determined by experiments or by other
Monte Carlo simulations. These input parameters are usually equipped with errors and
it is natural to ask how this particular error influences the final result of the analysis in
addition to further errors inherent to the analysis. We again consider a derived quantity
O′(O1, . . . , On). The quantities Oi are represented by resampling or pseudo-resampling
samples (Oi,R,nR)n=1,...,NR . The partial error σO′,Oi of the derived quantity O′ with respect
to the input parameter Oi is then estimated from the resampling distribution

(O′(O1, . . . , On))R,Oi,nR = O(O1, . . . , Oi,R,nR , . . . , On), (8.16)
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ensemble Ncnfg Ncnfg/blk Nblk

N200 1712 4 428

D450 500 2 250

H102 2004 4 501

Table 8.1.: Number of gauge configurations Ncnfg, the block size Ncnfg/bin and the result-
ing number of blocks Nblk.

i.e. only the quantity Oi is represented by the resampling samples. The total error is
not necessarily given by the square root of the sum of the squared partial errors due
to correlations between the different input parameters. However, deviations should only
appear if a complete resampling analysis was performed such that valid correlations can
form. Quantities from different resampling distributions are uncorrelated and therefore
the corresponding errors added in quadrature should equal the total error.

8.3. Autocorrelation analysis

As gauge configurations are derived from each other sequentially by a deterministic com-
puter algorithm, we have to assume that the measurements of a quantity on these gauge
configurations are not statistically independent. This type of intrinsic correlation of Monte
Carlo simulations is called autocorrelation. The strength of the autocorrelations depends
on the particular algorithm used for the generation of the gauge configurations and on the
quantity investigated. Autocorrelations lead to an underestimation of the statistical error.
A simple way to investigate the influence of autocorrelations is to vary the effective algo-
rithmic distance between sequential gauge configurations [42, 219]. This can be achieved
by binning/blocking sequential measurements on the Markov chain and investigating the
behaviour of the error estimate as a function of the bin/block size. We list the block
sizes for the considered gauge ensembles in table 8.1. A more sophisticated method to
determine errors including effects due to autocorrelations is the Γ-method [219], which we
do not apply in this thesis. A Python program for the implementation of the Γ-method
for Monte Carlo simulations is also available [220].

8.4. Regression analysis

In order to extract physically meaningful results from Monte Carlo simulations, it is often
useful to employ regression analysis. In many cases, an analytically derived model with
free parameters is known predicting the outcome of Monte Carlo simulations. Regression
analysis allows the prediction of these model parameters in the presence of the intrinsic
statistical noise.
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8. Data analysis for Monte Carlo simulations

8.4.1. The χ2-function

Let us assume that we have independent variables X = (X1, . . . , Xm) and a dependent
variable Y that are related by an unknown functional dependence of the form

Y = f(X) + ε, (8.17)

where ε is assumed to be a Gaussian random noise. This relation is probed by a statistical
experiment, such as a Monte Carlo simulation, resulting in n individual measurements
(xi, yi) = ((x1,i, . . . , xm,i), yi) for i = 1, . . . , n. In general, these n determinations are not
statistically independent. In a typical situation, a correlation function determined by a
Monte Carlo simulation is fitted to its asymptotic form for different time separations. In
this example, the time separation is the independent variable X, and the value of the
correlation function is the dependent variable Y . The latter is equipped with random
noise caused by the Monte Carlo simulation. Considering a set of model functions fa
parametrised by a = (a1, . . . , al), the task of a regression analysis is now to determine
the optimal choice aopt of these parameters. The fit problem is characterised by the
χ2-function [42, 98]

χ2
a =

n∑

i,j=1

(yi − fa(xi))(Cov−1)ij(yj − fa(xj)), (8.18)

where Cov is the covariance matrix, encoding the correlations between different data points
(xi, yi). The solution of the fit problem is the given by the value aopt, which minimises
the function χ2

a:

aopt = arg min
a∈Rl

χ2
a. (8.19)

Only for specific types of regression models, it is possible to calculate the optimal parame-
ter choice aopt analytically. In general, the minimisation has to be performed numerically.
We make use of suitable minimisation routines provided by scipy.optimize.minimize [221].
For a comparison of regression models with different numbers of fit parameters it is com-
mon to define the reduced χ2-function χ2

red [209]

χ2
red = χ2/dof =

χ2

N −M , (8.20)

where N is the number of measurements and M is the number of fit parameters. It should
be noted that the number of degrees of freedom N−M is not always a well defined quantity
for non-linear regression models [209].

The value of χ2
red for a regression model can be used as a measure of the fit quality,

assuming that we have access to a good stochastic estimate of the covariance matrix Cov.
A χ2

red ≈ 1 is an indicator for a suitable regression model [209]. If χ2
red > 1 the regression

model does not represent the data and if χ2
red < 1 the data is overfitted, i.e. the number

of free model parameters in the regression model is too high. χ2
red can also be used to

discriminate two distinct fit models. The more suitable regression model is characterised
by χ2

red that is closer to one [209].
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8.4. Regression analysis

8.4.2. Inversion of the covariance matrix

The covariance matrix is by construction a real, symmetric, positive semi-definite matrix.
Poor statistical estimates due to a limited amount of measurements can possess eigenval-
ues that are very close to zero or even negative due to numerical rounding errors, which
makes the numerical inversion of the covariance matrix unstable [98, 222]. A method to
numerically invert the covariance matrix in a controlled fashion is a singular value decom-
position based on numpy.linalg.svd. For a real symmetric matrix Cov the decomposition
ensures the existence of real, orthogonal matrices U and V , such that

Cov = UΣV T , Σ = diag(σ1, . . . , σn), (8.21)

where σ1 ≥ . . . ≥ σn ≥ 0 are the singular values and σi = |λi| for i = 1, . . . , n with λi
are the eigenvalues of Cov. For positive definite matrices we have V = U and σi = λi
for i = 1, . . . , n. If singular values that are very close to zero exist, it can be reasonable
to apply a truncation [98] or smoothing procedure [223]. In the first case singular values
below a certain threshold λmin are set to zero in Σ and Σ−1, which is to be understood as
a pseudo-inverse [98]. In the second case, singular values below the threshold are fixed to
a small value computed from the average of the modified singular values [223]. After this
singular value modification the inverse covariance matrix is expressed as

Cov−1 = V Σ−1UT . (8.22)

Modifying singular values one has to check that the choice of λmin does not severely
influence the fit results. By choosing fit intervals that are not too wide, we avoid completely
the use of these methods, but stress that a badly estimated covariance matrix may result
in a fit that does not reproduce the data. Another common simplification for regression
models is the truncation of the covariance matrix to its diagonal components if the latter
cannot be estimated safely. This procedure corresponds to an uncorrelated fit, which only
weights values with their respective errors but neglects cross correlations between different
values. As the interpretation of uncorrelated fits is less obvious we avoid this practice.

8.4.3. Multilinear regression models

Multilinear regression models are characterised by a model function which is multilinear
in the fit parameters a, i.e.

fa(X) =

l∑

k=1

akgk(X), (8.23)

whereX = (X1, . . . , Xm) denotes the set of random variables, and the functions (gk)k=1,...,m

determine the particular fit model. We will give more details on this at the end of the
section. The advantage of this type of model is that the solution to the fit problem can be
determined analytically. Having n individual measurements (xi, yi) = ((x1,i, . . . , xm,i), yi)
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8. Data analysis for Monte Carlo simulations

for i = 1, . . . , n, the χ2 function reads:

χ2
a =

n∑

i,j=1

(
yi −

l∑

k=1

akgk(xi)
)

(Cov−1)ij

(
yj −

l∑

k=1

akgk(xj)
)
. (8.24)

In order to solve the minimisation problem, we determine the first and second derivatives
of χ2

a with respect to the model parameters a using the fact that the covariance matrix
and its inverse are symmetric:

∂χ2
a

∂ap
= −2

n∑

i,j=1

gp(xi)(Cov
−1)ij

(
yj −

m∑

l=1

algl(xj)
)
, (8.25)

∂χ2
a

∂ap∂aq
= 2

n∑

i,j=1

gp(xi)(Cov
−1)ijgq(xj). (8.26)

As the covariance matrix and so its inverse are positive definite matrices we can see from

the form of ∂χ2
a

∂ap∂aq
that any critical point is a local minimum. The optimal choice for the

fit parameters aopt is found by solving the system of linear equations ∂χ2
a

∂ap
|a=aopt = 0, i.e.

m∑

l=1

( n∑

i,j=1

xk,i(Cov
−1)ijxl,j

)
aopt,l =

n∑

i,j=1

xk,i(Cov
−1)ijyj k = 1, . . . ,m (8.27)

with numpy.linalg.solve.
We briefly give some examples on how to define the functions (gk)k=1,...,l in dependence

of the shape of the model function. For a fit to a function fa(X) with parameters a1, . . . , al,
which is multilinear in the arguments X1, . . . , Xl, we choose gk(X) = Xk for k = 1, . . . , l.
To fit an affine linear function with the parameters a1 and a2, which depends on a single
random variable X = (X1), we use g1(X) = 1 and g2(X) = X1. This can be generalised
to a polynomial model function with degree l−1 based on fit parameters a1, . . . , al, which
is obtained by setting gk(X) = (Xk)

k−1 for k = 1, . . . , l.

8.4.4. Linearisation of non-linear fit models by variable substitution

As we have seen, the fit problem associated with multilinear fit models can be solved
analytically. This is in general not the case for non-linear fit models, for which iterative
solvers have to be used. More computing time has to be spent and initial guesses have
to be made for the fit parameters. In some cases, it is, however, possible to perform a
variable substitution such that the transformed fit problem is linear. A typical example is
a single-exponential fit to a correlation function. It is of the form

C(t) = c exp(−mt), (8.28)

where a and m are fit parameters. We can easily linearise this model by applying the
logarithm, assuming that the correlation function is positive:

log(C(t)) = log(c)−mt. (8.29)
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8.4. Regression analysis

For a negative correlation function one simply multiplies the equation with −1 before
applying the logarithm. Measurements (t, C) are translated into measurements of the
linearised model (x, y) = (t, log(C)). The model function of the linearised model, given
by fa(X) = a1 − a2X with a1 = log(c) and a2 = m, is linear in the parameters a and
describes an affine linear function in X.
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Part III.

Hadronic renormalisation scheme,
scale setting and hadron masses
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9. Hadronic renormalisation scheme and
scale setting

As in the case of QCDiso, discussed for CLS ensembles in chapter 5, the bare parameters of
combined lattice QCD and QED have to be fixed by the application of a renormalisation
scheme and a scale setting prescription. In this chapter, we describe the settings currently
applied in this work, the formulation of the scheme in the context of the perturbative
expansion and potential alternatives.

9.1. Hadronic renormalisation scheme and scale setting

We suggest to fix the bare parameters for combined QCD and QED by a hadronic renor-
malisation consisting of the value of the average pion mass 1

2(mπ+ +mπ0), of the average
kaon mass 1

2(mK+ +mK0) and of the kaon mass splitting mK+−mK0 . There is no need to
refer to the scheme utilised for the CLS QCDiso simulations, which is based on the isosym-
metric pion and kaon massesmπ = 134.8(3) MeV andmK = 494.2(4) MeV [45] as discussed
in chapter 5, because the bare parameters of QCD+QED and QCDiso are in principle un-
related. Only the imposition of an intermediate scheme introduces relations among them.
Although pseudo-scalar decay constants are used for the scale setting in QCDiso, this is
a inconvenient choice for QCD+QED. The determination of isospin breaking corrections
to decay constants is demanding, as infrared divergences appear in intermediate stages of
the computation. They only cancel taking virtual photons exchanged between quarks and
charged decay products as well as emitted real final state photons into account [224–227].
Instead, the scale should be set by an additional hadron mass, e.g. the mass of a baryon.
As a first simplification, we neglect the influence of isospin breaking effects to the scale,
such that the latter is still determined via 2

3(fK + 1
2fπ) in the isosymmetric limit. This

will be changed in a more comprehensive future effort. Only taking into account leading
order QED effects, the electromagnetic coupling can be defined via the electromagnetic
fine-structure constant in the Thomson limit [46]. Otherwise, the bare electromagnetic
coupling may be fixed by the inclusion of e.g. the pion mass difference into the hadronic
scheme or by determining the corresponding renormalised coupling from the QED Wilson
flow [41, 184].

In addition to the definition of the physical point after a continuum extrapolation, we
also utilise the latter renormalisation scheme as an intermediate scheme, which relates
QCDiso and QCD+QED at finite lattice spacing and unphysical quark masses on each en-
semble. This is necessary, as we cannot perform an extrapolation to the physical point due
to the limit number of gauge ensembles that we consider in this thesis. We suggest to deter-
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9. Hadronic renormalisation scheme and scale setting

mine the shifts of the bare dimensionless parameters ∆ε = (a∆mu, a∆md, a∆ms,∆β, e
2)

by demanding

amπ+ + amπ0 = (amπ+)(0) + (amπ0)(0),

amK+ + amK0 = (amK+)(0) + (amK0)(0),

amK+ − amK0 = a(mphys
K+ −mphys

K0 ). (9.1)

The scale a should then be determined at a later stage by the mass mB of an additional
baryon, i.e. a = amB

mphys
B

. The ∆β coefficient can be used to correct for a renormalisation of

the strong coupling due to the electromagnetic interaction, i.e. for a shift in the scale due
to isospin corrections. A tuning allows for a determination of isospin breaking effects at a
fixed lattice spacing. As we neglect the latter effects, we set ∆β = 0. The electromagnetic
coupling does not renormalise at this order and can be fixed to ∆εe2 = e2 = 4παem. In
order to rewrite eq. (9.1) in terms of a perturbative expansion, we expand the hadron
masses in terms of ∆ε:

am = (am)(0) +
∑

l

∆εl(am)
(1)
l +O(∆ε2). (9.2)

In total, we obtain a system of linear equations that determines the full set of expansion
parameters ∆ε:

∑

l

∆εl((amπ+)
(1)
l + (amπ0)

(1)
l ) = 0,

∑

l

∆εl((amK+)
(1)
l + (amK0)

(1)
l ) = 0,

∑

l

∆εl((amK+)
(1)
l − (amK0)

(1)
l ) = a(mphys

K+ −mphys
K0 ),

∆ε∆β = ∆β = 0,

∆εe2 = e2 = 4παem. (9.3)

In this scheme, a summation of zeroth- and first-order contributions is avoided. This is
advantageous, as first-order contributions can be smaller in magnitude than the statistical
errors of the respective zeroth-order contributions. We discuss the required computational
steps to determine hadron masses in chapter chapter 10 and apply them to mesons and
baryons in chapter 11 and chapter 12, respectively. The relevant quantities to solve the sys-
tem of linear equations eq. (9.3) can be found in eqs. (11.55), (11.58), (11.67) and (11.70).
The determined expansion parameters for the ensemble N200 read:

a∆mu = −0.0090866(23)st(18)a[29]tot,

a∆md = −0.0020158(25)st(18)a[31]tot,

a∆ms = −0.002280(9)st[9]tot,

∆β = 0.0,

e2 = 0.091701237. (9.4)
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9.2. Discussion and Outlook

The error with respect to the scale appears, as the dimensionful number mphys
K+ −mphys

K0

from eq. (9.3) has to be translated into a dimensionless quantity. Considering leading
order contributions, the expansion parameter a∆ms does not depend on the kaon mass
splitting.

9.2. Discussion and Outlook

The results for the expansion parameters for the ensembles N200, D450 and H102 are
listed in table 9.1. We observe that all mass detunings are negative. This can be under-
stood considering the fact that the latter also serve as counterterms. They absorb the
electromagnetic self-energy contribution to the quark masses. For ensembles with smaller
lattice spacings we find smaller, negative quark mass detunings. This is consistent with
the fact that self-energy contribution to the quark mass diverges, when the lattice cutoff is
removed. It is clear that the values of these expansion parameters are scheme dependent
and therefore possess very limited physical meaning. E.g. a distinction of electromag-
netic effects from strong isospin breaking effects is non-trivial. Nevertheless, different
schemes offer different technical advantages. In [228] it is discussed that in a certain class
of schemes one can separate mass isospin corrections from electromagnetic corrections.
Those schemes are constructed in a way, such that scheme-ambiguities are higher order
effects within this class. They are based on the evaluation and matching of renormalised
quark masses determined by means of the axial Ward identity. In particular, a determi-
nation of ZA and ZS in QCD+QED is required. The latter renormalisation factors have
not been determined in this work such that we cannot follow this suggestion.

Another possible matching and renormalisation scheme may rely on an unaltered π0

mass. In section 3.4.6, we discussed that in chiral QCD+QED in the presence of a massive
strange quark the π0 forms a Goldstone boson. In chiral QCD with a massive strange
quark, which is the corresponding isosymmetric theory, covered in section 3.4.4, π0, π+

and π− form the enlarged set of Goldstone bosons. The π0 mass vanishes in both chiral
theories. This equality can be imposed even for non-vanishing renormalised quark masses
such that one obtains a matching condition that is compatible with a chiral extrapolation.
The remaining parameters can be determined by matching the mases of K0 and K+. This
scheme could be of particular relevance for the renormalisation of composite operators, e.g.
the local vector current, which is commonly defined with respect to the chiral limit [72,
111, 229], as discussed in section 13.5.

Instead of setting the electromagnetic coupling by the Thomson limit, one may also
think about using a hadronic scheme for the latter. A suitable quantity is the pion mass
splitting, which, at leading order, only depends on the electromagnetic coupling and not
on any further expansion parameter [46]. Such a scheme would at least to some degree
take QED finite size corrections automatically into account, as the value of the bare
electromagnetic coupling becomes volume dependent.
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9. Hadronic renormalisation scheme and scale setting

a∆mu −0.0090866(23)st(18)a[29]tot

a∆md −0.0020158(25)st(18)a[31]tot

a∆ms −0.002280(9)st[9]tot

∆β 0.0
e2 0.091701237

(a) N200 (a = 0.064 fm, mπ = 282 MeV)

a∆mu −0.0088818(24)st(26)a[35]tot

a∆md −0.0018500(21)st(26)a[33]tot

a∆ms −0.002255(6)st[6]tot

∆β 0.0
e2 0.091701237

(b) D450 (a = 0.076 fm, mπ = 216 MeV)

a∆mu −0.0087214(86)st(27)a[91]tot

a∆md −0.0018148(76)st(27)a[81]tot

a∆ms −0.0021630(84)st[84]tot

∆β 0.0
e2 0.091701237

(c) H102 (a = 0.086 fm, mπ = 354 MeV)

Table 9.1.: Expansion parameters.
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10. Hadron spectroscopy

The spectrum of hadronic states can be determined by investigating two-point correlation
functions of the form

C(t2, t1) = 〈O2(t2)O1(t1)〉, (10.1)

where the operators O1 and O2 are referred to as creation and annihilation operators,
respectively. These interpolation operators have to be chosen such that the quantum
numbers of the operators coincide with the quantum numbers of the hadronic state to be
studied. In this chapter we classify interpolation operators, perform a spectral decompo-
sition of two-point correlation functions distinguishing between fixed and (anti-)periodic
temporal boundary conditions and discuss methods for mass extraction.

10.1. Interpolation operators

Interpolation operators are functionals of lattice field operators and serve to manipulate
a quantum mechanical state such that a superposition of states with corresponding sym-
metry properties are added or removed. A general operator creating or removing a state
centred at the position x can be written as

Ox =
1

n!

1

n!
O[U,A]xan...a1

bn...b1Ψan
. . .Ψa1Ψbn . . .Ψb1 . (10.2)

The tensorO may depend on the gauge fields U and A, if gauge invariant or gauge covariant
interpolation operators shall be constructed. Due to the anticommutative nature of the
fermion fields Ψ and Ψ, only the part of the tensor O that is fully antisymmetric in
the indices an . . .a1 and fully antisymmetric in the indices bn . . .b1 contributes to the
interpolation operator, while all remaining parts are projected to zero. In order to exploit
the Feynman diagram technique efficiently, it is convenient to demand the tensor to have
the above mentioned symmetry properties, and to introduce a corresponding normalisation
factor of 1

n!
1
n! . Interpolation operators can be classified depending on how they change

the baryon number of the state. One distinguishes between mesonic operators, where
the baryon number stays unchanged, and single- and multi-baryonic operators, which
increase or diminish the baryon number by an integer. From the fact that each operator
Ψ decreases the baryon number by 1

3 and each operator Ψ increases the baryon number
by 1

3 we can deduce, that the baryon number is changed by ∆B = 1
3(n−n). Interpolation

operators are further classified with respect to their transformational behaviour under field
transformations and with respect to quantum numbers associated to the symmetries of
the theory. This classification is relevant in order to assign operators to experimentally
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observed particles. We will discuss this in more detail for mesonic interpolation operators
in section 11.1.

10.2. Euclidean two-point correlation functions in the continuum

For the following discussion, we consider a complete orthonormal set of eigenstates (|n〉)n∈N0

of a Hamilton operator H with energies E0 < E1 ≤ . . . and |0〉 is the unique ground state
of the theory. For this setup, we find the relations

H|n〉 = En|n〉, 1 =
∑

n

|n〉〈n|, 〈n2|n1〉 = δn2,n1 . (10.3)

We match the Schrödinger and Heisenberg picture at t = 0 such that the time evolution
of an operator is given by

O(t) = exp(tH)O exp(−tH). (10.4)

10.2.1. Fixed boundary conditions

Making use of eq. (2.4), a two-point function with fixed boundary conditions |i〉 at time
t = 0 and |f〉 at time t = T can be expressed as

C(t2, t1) =
〈f | exp(−TH)O2(t2)O1(t1)|i〉

〈f | exp(−TH)|i〉 . (10.5)

Inserting complete sets of eigenstates of the Hamilton operator

C(t2, t1) =

∑
n1,n2,n3

〈f |n3〉〈n3|O2|n2〉〈n2|O1|n1〉〈n1|i〉
· exp(−(T − t2)En3 − t1En1) exp(−(t2 − t1)En2)∑

n〈f |n〉〈n|i〉 exp(−TEn)
. (10.6)

The correlation function is obviously not invariant under translations in the time direction.
For large time extents T and large time distances T −t2 and t1−T , we find the asymptotic
behaviour

C(t2, t1)→

∑
n〈f |0〉〈0|O2|n〉〈n|O1|0〉〈0|i〉
· exp(−(T − (t2 − t1))E0 − (t2 − t1)En)

〈f |0〉〈0|i〉 exp(−TE0)

=
∑

n

〈0|O2|n〉〈n|O1|0〉 exp(−(t2 − t1)(En − E0)), (10.7)

where we have assumed that the vacuum state has non-vanishing overlap with the bound-
ary states. In this asymptotic regime, translational invariance in the time coordinate is
restored. In principle, it is also possible to consider not only consider the overlap between
the boundary state and the vacuum but also between the boundary state and higher ex-
citations. This results in an improved asymptotic description of the correlation function,
i.e. the time interval for which the asymptotic behaviour is a good description is longer.
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10.2.2. Periodic boundary conditions

For periodic boundary conditions we start from eq. (2.4):

C(t2, t1) =

∑
n〈n| exp(−TH)O2(t2)O1(t1)|n〉∑

n〈n| exp(−TH)|n〉 . (10.8)

The spectral decomposition in this setup becomes [42]

C(t2, t1) =

∑
n1,n2
〈n1|O2|n2〉〈n2|O1|n1〉 exp(−T

2 (En2 + En1))

· exp((T2 − (t2 − t1))(En2 − En1))∑
n exp(−TEn)

. (10.9)

The correlation function only depends on the time difference t2− t1. Thus, it is manifestly
invariant under time translations, i.e. it becomes a one-argument function C(t2, t1) =
C(t2− t1, 0). As the asymptotic behaviour is independent of the boundary states, we find
the same relation for periodic boundary conditions as for fixed boundary conditions:

C(t2, t1)→
∑

n

〈0|O2|n〉〈n|O1|0〉 exp(−(t2 − t1)(En − E0)). (10.7)

Assuming that the operators O2 and O1 fulfil the condition

〈n1|O2|n2〉〈n2|O1|n1〉 = 〈n2|O2|n1〉〈n1|O1|n2〉, (10.10)

which is for example the case for O2 = ±O1, the spectral decomposition of the correlation
function can be further simplified to

C(t2, t1) =

∑
n1,n2
〈n1|O2|n2〉〈n2|O1|n1〉 exp(−T

2 (En2 + En1))

· cosh(((t2 − t1)− T
2 )(En2 − En1))∑

n exp(−TEn)
, (10.11)

i.e. the correlation function is symmetric under a reflection at t = T
2 .

10.3. Mass determination by fitting the correlation function

For interpolation operators that create and annihilate states of zero momentum the energy
differences En − E0 can be interpreted as the masses of excitations of the vacuum.

10.3.1. Asymptotic behaviour for large time extents

Assuming 0� t1 � t2 � T the asymptotic behaviour eq. (10.7) translates further into

C(t2, t1)→ c exp(−m(t2 − t1)). (10.12)

In this regime, only the lowest eigenstate compatible with the operators and boundary
conditions is accessible, i.e. the relevant overlaps do not vanish. As we treat isospin
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breaking effects perturbatively, the respective expansion also has to be applied to the
asymptotic behaviour. We expand the parameters

c = c(0) +
∑

l

∆εlc
(1)
l +O(∆ε2), m = m(0) +

∑

l

∆εlm
(1)
l +O(∆ε2) (10.13)

as well as the correlation function

C(t2, t1) = C(0)(t2, t1) +
∑

l

∆εlC
(1)
l (t2, t1) +O(∆ε2). (6.85)

For the zeroth-order contribution we find

C(0)(t2, t1)→ c(0) exp(−m(0)(t2 − t1)) (10.14)

and for the first-order contribution

C
(1)
l (t2, t1)→ (c

(1)
l − c(0)m

(1)
l (t2 − t1)) exp(−m(0)(t2 − t1)). (10.15)

10.3.2. Periodic temporal boundary conditions and symmetric correlation
functions

For periodic temporal boundary conditions and a symmetric correlation function, we find
in the asymptotic regime 0� t1 � t2 � T , starting from eq. (10.11), that

C(t2, t1)→ c cosh
(
m
(

(t2 − t1)− T

2

))
. (10.16)

Similarly, as in the previous section, we perform the perturbative expansion which, yields
the zeroth-order contribution

C(0)(t2, t1)→ c(0) cosh
(
m(0)

(
(t2 − t1)− T

2

))
(10.17)

and the first-order contribution

C
(1)
l (t2, t1)→ c

(1)
l cosh

(
m(0)

(
(t2 − t1)− T

2

))

+ c(0)m
(1)
l

(
(t2 − t1)− T

2

)
sinh

(
m(0)

(
(t2 − t1)− T

2

))
,

(10.18)

respectively.

10.4. Mass determination by fitting the effective mass

Another way to extract the lowest accessible mass, which we have implemented as a cross
check, is to consider the so called effective mass of the correlation function [42, 98]. It is
defined as

meff(t2, t1) =
1

a
log
( C(t2, t1)

C(t2 + a, t1)

)
, (10.19)
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10.4. Mass determination by fitting the effective mass

where a denotes the minimal distance between two time slices. The prefactor 1
a has to

be introduced for dimensional reasons. In the limit a → 0, the effective mass becomes
meff(t2, t1)→ − d

dt2
log(C(t2, t1)). In principle it is also possible to define effective masses

for time differences that are integer multiples of a. This is of particular relevance for
staggered fermions. Making use of eq. (10.12), it is straightforward to show, that the
effective mass has in the regime 0� t1 � t2 � T the asymptotic behaviour

meff(t2, t1)→ 1

a
log
( c exp(−m(t2 − t1))

c exp(−m(t2 + a− t1))

)
=

1

a
log
( 1

exp(−am)

)
= m. (10.20)

In order to derive the perturbative expansion of the effective mass

meff(t2, t1) = (meff(t2, t1))(0) +
∑

l

∆εl(meff(t2, t1))
(1)
l +O(∆ε2), (10.21)

we utilise eq. (10.19) and eq. (6.85). The zeroth-order contribution is then given by [194]

(meff(t2, t1))(0) = log
( (C(t2, t1))(0)

(C(t2 + a, t1))(0)

)
→ m(0) (10.22)

and the first-order contribution [194]

(meff(t2, t1))
(1)
l =

(C(t2, t1))
(1)
l

(C(t2, t1))(0)
− (C(t2 + a, t1))

(1)
l

(C(t2 + a, t1))(0)
→ m

(1)
l . (10.23)
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In chapter 9, we stated that we want to utilise pseudo-scalar meson masses as a hadronic
renormalisation scheme to fix the bare parameters of QCD+QED. In this chapter, we
describe how to construct interpolation operators and two-point functions that can be
used to determine the mesonic spectrum. We give the diagrammatic expansion of mesonic
two-point functions and describe how we evaluate the quark-connected contributions. We
discuss our findings for pseudo-scalar meson masses on the basis on one ensemble in more
detail.

11.1. Mesonic interpolation operators

In order to extract masses of mesonic states from the QCD+QED spectrum, we con-
sider two-point correlation functions with mesonic interpolation operators. According to
the discussion in section 10.1, the simplest form of a zero-momentum projected operator
interpolating a mesonic state is constructed with one quark and one antiquark operator:

Mx0
=

1√
|Λ123|

∑

~x

ΨaM [U,A]xabΨb. (11.1)

11.1.1. Point-like mesonic interpolation operators

A particular simple subset of interpolation operators is formed by point-like interpolation
operators. The interpolation operator defined at a site x only depends on the fields at
this particular site. It is further convenient to express the spin and flavour structure of
the interpolation operator in terms of matrices Λ, which acts on the flavour indices of the
field operators, and Γ, which acts on the spin indices. Λ determines the flavour quantum
numbers of the annihilated meson and Γ its spin and parity. In its most general form, the
point-like zero-momentum projected interpolation operator is given by [42]

Mx0
=

1√
|Λ123|

∑

~x

ΨxΓΛΨx, (11.2)

where we have omitted spin and flavour indices. In order to create a state that is an-
nihilated by the operator Mx0

we apply the charge conjugation transformation. Using
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11. Meson masses

J P Γ O
0 + 1, γ0 S,V0

0 − γ5, γ5γ0 P,A0

1 − γ1, γ2, γ3, σ01, σ02, σ03 V1,V2,V3, T 01, T 02, T 03

1 + γ5γ1, γ5γ2, γ5γ3 A1,A2,A3

2 + σ12, σ23, σ31 T 12, T 23, T 31

Table 11.1.: Classification of the Γ matrices and the corresponding operatorsO according
to the transformation properties under Euclidean transformations.

(p, q) I I3 Y U D S Q Λ

(0, 0) 0 0 0 0 0 0 0 Λ0 = 1√
6
1

(1, 1) 1 1 0 1 1 0 1 Λud = 1
2(λ1 + iλ2)

(1, 1) 1 0 0 0 0 0 0 Λ3 = 1
2λ

3

(1, 1) 1 −1 0 −1 −1 0 −1 Λdu = 1
2(λ1 − iλ2)

(1, 1) 0 0 0 0 0 0 0 Λ8 = 1
2λ

8

(1, 1) 1
2

1
2 1 1 0 1 1 Λus = 1

2(λ4 + iλ5)
(1, 1) 1

2 −1
2 1 0 −1 −1 −1 Λsu = 1

2(λ4 − iλ5)

(1, 1) 1
2 −1

2 −1 0 1 1 0 Λds = 1
2(λ6 + iλ7)

(1, 1) 1
2

1
2 −1 −1 0 −1 0 Λsd = 1

2(λ6 − iλ7)

Table 11.2.: Classification of Λ matrices according to the approximate SU(3) flavour
symmetry in the representation (p, q) with eigenvalues of the operators I,
I3, Y with Q = 2

3U + 1
3D + 1

3S, I3 = 1
2(U + D), Y = 1

3(U + D − 2S). In
QCD+QED only U , D, S and Q are good quantum numbers.

eq. (6.32) we find that Mx0
transforms via

C[Mx0
] = − 1√

|Λ123|
∑

~x

(Ψx)TCΓC−1Λ(Ψx)T

=
1√
|Λ123|

∑

~x

Ψx(CΓC−1)TΛTΨx, (11.3)

where we have utilised the anti-commutation property of fermion fields. Accordingly, the
creation operator is obtained from the annihilation operator by replacing Λ with ΛT and
Γ with (CΓC−1)T with C = iγ0γ2.

11.1.2. Classification of interpolation operators

In order to find suitable interpolation operators for physical states, we classify the inter-
polation operators according to their behaviour under spacetime and charge conjugation
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11.2. Mesonic two-point functions

transformations and with respect to their quark content. We distinguish scalar S, pseudo-
scalar P, vector V, axial-vector A and tensor operators T :

Sx = Ψ
x
ΛΨx, (11.4)

Px = Ψ
x
γ5ΛΨx, (11.5)

Vxµ = Ψ
x
γµΛΨx, (11.6)

Axµ = Ψ
x
γ5γµΛΨx, (11.7)

T xµ2µ1 = Ψ
x
σµ2µ1ΛΨx. (11.8)

Making use of eqs. (6.35) and (6.36) we can determine the transformational behaviour of
Mx0

under the spatial parity transformation:

P[Mx0
] =

1√
|Λ123|

∑

~x

Ψxγ0Γγ0ΛΨx. (11.9)

For the operators defined in eqs. (11.4) to (11.8) this means

P[Sx] = SP(x), (11.10)

P[Px] = −PP(x), (11.11)

P[Vxµ] = (−1)µ0VP(x)µ, (11.12)

P[Axµ] = −(−1)µ0AP(x)µ, (11.13)

P[T xµ2µ1 ] = (−1)µ20(−1)µ10TP(x), (11.14)

where the symbol (−1)µ2µ1 is defined as

(−1)µ2µ1 =

{
1 for µ2 = µ1

−1 for µ2 6= µ1

. (6.33)

In addition, we classify the operators according to their behaviour under SU(3)V trans-
formations. The transformation characteristics are determined by the flavour matrices Λi.
We distinguish the nine matrices Λi for i = 0, 3, 8,ud, du, ds, sd, us, su, which are classi-
fied according to the flavour quantum numbers U , D and S. In table 11.2 the relevant
properties are described.

11.2. Mesonic two-point functions

In the following, we consider correlation functions of the form

CM2M1(x0
2, x

0
1) = 〈Mx0

2
2 M

x0
1

1 〉 (11.15)

with point-like zero-momentum projected interpolation operators defined in eq. (11.2),
which have support on the time slices x0

2 and x0
1 respectively.
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Γ2,Γ1 1 γ0 γ5γ1 γ5γ2 γ5γ3 σ12 σ23 σ31

1 • •
γ0 • •
γ5γ1 •
γ5γ2 •
γ5γ3 •
σ12 •
σ23 •
σ31 •

Table 11.3.: Spin matrix combinations (Γ2,Γ1) with potentially non-vanishing mesonic

two-point functions CM2M1(x0
2, x

0
1) = 〈Mx0

2
2 M

x0
1

1 〉 with parity-even opera-

tors Mx0

i = 1√
|Λ123|

∑
~x ΨxΛiΓiΨ

x for i = 1, 2 are marked with a dot •.

Γ2,Γ1 γ5 γ5γ0 γ1 γ2 γ3 σ01 σ02 σ03

γ5 • •
γ5γ0 • •
γ1 • •
γ2 • •
γ3 • •
σ01 • •
σ02 • •
σ03 • •

Table 11.4.: Spin matrix combinations (Γ2,Γ1) with potentially non-vanishing mesonic

two-point functions CM2M1(x0
2, x

0
1) = 〈Mx0

2
2 M

x0
1

1 〉 with parity-odd operators

Mx0

i = 1√
|Λ123|

∑
~x ΨxΛiΓiΨ

x for i = 1, 2 are marked with a dot •.
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11.2. Mesonic two-point functions

Λ2,Λ1 Λ0 Λ3 Λ8 Λud Λdu Λds Λsd Λus Λsu

Λ0 • • •
Λ3 • • •
Λ8 • • •
Λud •
Λdu •
Λds •
Λsd •
Λus •
Λsu •

Table 11.5.: Flavour matrix combinations (Λ2,Λ1) with potentially non-vanishing

mesonic two-point functions CM2M1(x0
2, x

0
1) = 〈Mx0

2
2 M

x0
1

1 〉 with operators

Mx0

i = 1√
|Λ123|

∑
~x ΨxΛiΓiΨ

x for i = 1, 2 are marked with a dot •.

11.2.1. Operator combinations

In order to utilise computing time efficiently, we determine which combinations of Γ and
Λ matrices lead to non-vanishing expectation values applying symmetry arguments based
on section 2.3.2. Considering the global QCD+QED symmetry transformations

TU(1)V,f
(π)[(As, Ae,Ψ,Ψ)] = (As, Ae, exp(iπTU(1)V,f

)Ψ,Ψ exp(−iπTU(1)V,f
)) (11.16)

for f = u,d, s with the generators defined in eq. (3.63), which generate −1 factors for
flavour charged operators, one can argue that all combinations but 15 have vanishing
expectation values. The combinations are listed in table 11.5. In contrast to QCDiso,
all combinations of flavour-neutral operators based on Λ0, Λ3 and Λ8 potentially lead
to non-vanishing expectation values. In the isosymmetric limit, an overlap between Λ3

and Λ0 or Λ8 is excluded due to the conservation of isospin. Similarly, we construct
Euclidean spacetime lattice transformations that generate factors of −1 based on the
parity transformation P = P0 and reflections Rµ along the spatial µ-axis

Rµ =
3∏

ν=0
ν 6=µ

Pν . (11.17)

Pν denote the Euclidean reflections defined in eq. (6.35). We find 10 potentially non-
vanishing combinations of parity-even operators, listed in table 11.3, and 16 potentially
non-vanishing combinations of parity-odd operators, given in table 11.4. The combination
of a parity-even and a parity-odd operator vanishes in QCD+QED as parity is a symmetry,
i.e. only 26 out of the 256 combinations have to be considered in the computation.

133



11. Meson masses

11.2.2. Diagrammatic expansion

The generic expansion of the correlation function up to first order reads

C = C(0) +
∑

l

∆εlC
(1)
l +O(∆ε2). (6.85)

In order to determine the perturbative expansion of the correlation function, we expand
the interpolation operators according to

O = O(0) + eO( 1
2

)

e2
+

1

2
e2O(1)

e2
+O(e3). (6.86)

As the point-like operators do not depend on eA, we have M1 = (M1)(0) and M2 =
(M2)(0). We represent the vertex M (0)x0

associated with the operator (Mx0
)(0) by the

diagram

M (0)x0a
b = b

a

M (0)x0 . (11.18)

The zeroth-order contribution is calculated via eq. (6.87) and reads in terms of Feynman
diagrams

(CM2M1)(0) =

〈
M

(0)
1M

(0)
2 + M

(0)
1M

(0)
2

〉(0)

eff

(11.19)

The first-order contribution is calculated according to eq. (6.88). In terms of Feynman
diagrams, the first-order contribution due to a shift in the quark mass ∆mf reads

(CM2M1)
(1)
∆mf

=

〈
M

(0)
1M

(0)
2

f

+ M
(0)
1M

(0)
2

f

+ M
(0)
1M

(0)
2 + M

(0)
1M

(0)
2

+

(
M

(0)
1M

(0)
2 + M

(0)
1M

(0)
2

)
f

〉(0)

eff

−
〈

M
(0)
1M

(0)
2 + M

(0)
1M

(0)
2

〉(0)

eff

〈
f

〉(0)

eff

.

.

(11.20)

134



11.2. Mesonic two-point functions

A detuning in the strong inverse coupling ∆β results in a first-order contribution

(CM2M1)
(1)
∆β =

〈(
M

(0)
1M

(0)
2 + M

(0)
1M

(0)
2

)
∆β

〉(0)

eff

−
〈

M
(0)
1M

(0)
2 + M

(0)
1M

(0)
2

〉(0)

eff

〈
∆β

〉(0)

eff

.

(11.21)

The first-order contribution due to a non-vanishing electromagnetic coupling e2 reads

(CM2M1)
(1)
e2

=

〈
M

(0)
1M

(0)
2

+ M
(0)
1M

(0)
2 + M

(0)
1M

(0)
2

+ M
(0)
1M

(0)
2 + M

(0)
1M

(0)
2

+

M
(0)
1M

(0)
2

+
M

(0)
1M

(0)
2

+ M
(0)
1M

(0)
2

+ M
(0)
1M

(0)
2 + M

(0)
1M

(0)
2

+ M
(0)
1M

(0)
2 + M

(0)
1M

(0)
2

(11.22)
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+

M
(0)
1M

(0)
2

+
M

(0)
1M

(0)
2

+

(
M

(0)
1M

(0)
2 + M

(0)
1M

(0)
2

)

·
(

+ +

)〉(0)

eff

−
〈

M
(0)
1M

(0)
2 + M

(0)
1M

(0)
2

〉(0)

eff

·
〈

+ +

〉(0)

eff

.

In this thesis, we only consider quark-connected contributions in our calculation. We
translate the corresponding Feynman diagrams into contracted tensor-structures of inter-
polation operators, quark and photon propagators and vertices. This is relevant to ensure
the correct application of minus signs and symmetry factors. For the zeroth-order diagram
we have

M
(0)
1M

(0)
2 = −

(
Sb1

a2M
(0)
2

a2
b2S

b2
a1M

(0)
1

a1
b1

)
. (11.23)

Diagrams with first-order contributions due to the quark mass detuning read

M
(0)
1M

(0)
2

f

= −
(
Sb1

a3M
(0)
2

a3
b3S

b3
a2V qqf

a2
b2S

b2
a1M

(0)
1

a1
b1

)
, (11.24)

M
(0)
1M

(0)
2

f

= −
(
Sb1

a3V qqf
a3

b3S
b3

a2M
(0)
2

a2
b2S

b2
a1M

(0)
1

a1
b1

)
. (11.25)
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Diagrams with first-order contributions due to the electromagnetic interaction read

M
(0)
1M

(0)
2 = −Σc2c1

(
Sb1

a4Vqqγ
a4

b4c2S
b4

a3M
(0)
2

a3
b3

· Sb3
a2Vqqγ

a2
b2c1S

b2
a1M

(0)
1

a1
b1

)
,

(11.26)

M
(0)
1M

(0)
2 = −1

2
Σc2c1

(
Sb1

a3M
(0)
2

a3
b3

· Sb3
a2Vqqγγ

a2
b2c2c1S

b2
a1M

(0)
1

a1
b1

)
,

(11.27)

M
(0)
1M

(0)
2 = −Σc2c1

(
Sb1

a4M
(0)
2

a4
b4S

b4
a3Vqqγ

a3
b3c2

· Sb3
a2Vqqγ

a2
b2c1S

b2
a1M

(0)
1

a1
b1

)
,

(11.28)

M
(0)
1M

(0)
2 = −1

2
Σc2c1

(
Sb1

a3Vqqγγ
a3

b3c2c1S
b3

a2M
(0)
2

a2
b2

· Sb2
a1M

(0)
1

a1
b1

)
,

(11.29)

M
(0)
1M

(0)
2 = −Σc2c1

(
Sb1

a4Vqqγ
a4

b4c2S
b4

a3Vqqγ
a3

b3c1

· Sb3
a2M

(0)
2

a2
b2S

b2
a1M

(0)
1

a1
b1

)
.

(11.30)

The only contribution from the reweighting factor that we consider is

∆β = V g. (11.31)

11.3. Computation of quark-connected Feynman diagrams

We introduce two methods to evaluate quark-connected Feynman diagrams with different
types of quark sources, continuing the discussion of section 7.1. A first implementation
of quark-connected Feynman diagrams was based on point sources. We later changed to
stochastic sources, which allow for a more efficient evaluation of quark-connected con-
tributions to mesonic two-point functions on large lattices compared to point sources.
We discuss both setups for the zeroth-order quark-connected Feynman diagram defined
eq. (11.23) in more detail and later generalise to the remaining quark-connected Feynman
diagrams. The implementation of the simulation code is based on data structures provided
by the QDP++ library [206].

11.3.1. Point sources

A flavour-colour-spin linked point source ηx0 , located at the lattice site x0, is a matrix in
flavour, colour and spin space and a vector in spacetime. The location x0 is written as an
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additional index, but the value of x0 is fixed and characterises the source. The source is
given by [42]

η
(xfcs)2

x0,(fcs)1
= δx2

x0
δf2

f1
δc2c1δ

s2
s1 . (11.32)

We define the corresponding propagated source Ψ[η]x0 , which depends on the point source
ηx0 , by solving the Dirac equation

Da
bΨ[η]bx0fcs = ηax0,fcs. (11.33)

Ψ[η]x0 again is a matrix in flavour, colour and spin space and a vector in spacetime. Point
sources can be used, whenever a correlation function can be expressed in terms of a set
of point-to-all propagators Sxx0 = Ψ[η]xx0

, which start at a small number of fixed source
locations x0. The diagram in eq. (11.23) with two point-like zero-momentum projected
mesonic operators M2 and M1, which habe support on the time slices x0

2 and x0
1, can be

evaluated by means of Ψ[η]x0 :

〈
M

(0)
1M

(0)
2

〉(0)

eff

=
〈
− 1

|Λ123|
∑

~x2,~x1

tr
(
Sx1

x2Λ2Γ2S
x2
x1Λ1Γ1

)〉(0)

eff

=
〈
− 1

|Λ123|
∑

~x2,~x1

tr
(
S(x0

1,~x0)
(x0

2,~x2−~x1+~x0)Λ2Γ2S
(x0

2,~x2−~x1+~x0)
(x0

1,~x0)Λ1Γ1

)〉(0)

eff

=
〈
−
∑

~x

tr
(
S(x0

1,~x0)
(x0

2,~x)Λ2Γ2S
(x0

2,~x)
(x0

1,~x0)Λ1Γ1

)〉(0)

eff

=
〈
−
∑

~x

tr
(
γ5(S(x0

2,~x)
(x0

1,~x0))
†γ5Λ2Γ2S

(x0
2,~x)

(x0
1,~x0)Λ1Γ1

)〉(0)

eff

=
〈
−
∑

~x

tr
(
γ5(Ψ[η]

(x0
2,~x)

x0 )†γ5Λ2Γ2Ψ[η]
(x0

2,~x)
x0 Λ1Γ1

)〉(0)

eff
. (11.34)

We omitted flavour, colour and spin indices. In the calculation, we made use of transla-
tional invariance in the spatial directions, which only holds after the gauge expectation
value is taken, and of the γ5-hermiticity of the quark propagator. We are able to evaluate
all combinations of Γ and Σ matrices at the same time for a single propagated point source
Ψ[η]x0 . Per point source, the single-flavour Dirac equation has to be solved Nf · Nc · Ns

times. In fact, it is also possible to project the two-point function to a set of momenta
with the same quark source [42]. As we are only interested in zero-momentum two-point
functions, we do not draw any advantage from this feature. For a better decorrelation it
is common to use different quark source positions x0 at different gauge configurations. In
addition, one uses several quark source positions on the same gauge configuration and av-
erages over those to better exploit the gauge configuration and reduce the overall statistical
uncertainty.
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11.3.2. Stochastic sources

As already anticipated, only early versions of the simulation program were based on the
point source setup. We later changed to stochastic sources [230–233], which we will discuss
in this section. For an efficient evaluation of quark-connected two-point functions with
various interpolation operators, which differ in their spin and flavour structure, we make
use of the generalised one-end trick, also known as linked source method [234–236]. In this
setup flavour-spin-linked stochastic quark sources, which have support on a single time
slice, are combined with the γ5-hermiticity of the quark propagator. The usage of this type
of stochastic sources allows to evaluate mesonic two-point functions for all combinations
of Λ- and Γ-matrices at the same time, minimising the number of required inversions of
the Dirac operator. In addition, our sources are also colour-linked, which is, however,
not required, as all considered interpolation operators possess the same colour structure.
A flavour-colour-spin-linked stochastic quark source with support on the time slice x0 is
defined as

η
(xfcs)2

x0,(fcs)1
= δ

x0
2

x0ξ
~x2δf2

f1
δc2c1δ

s2
s1 , (11.35)

where ξ is a three-dimensional stochastic field satisfying

〈ξ~x2(ξ†)~x1
〉ξ = δ~x2

~x1
. (11.36)

Computing the expectation value of the stochastic source η and its adjoint η† we find

〈η(xfcs)4

x0,(fcs)3
(η†)

x0,(fcs)1

(xfcs)2
〉η = δ

x0
4

x0δ
x0

x0
1
〈ξ~x2(ξ†)~x1

〉ξδf4

f1
δc4c1δ

s4
s1 = δ

x0
4

x0δ
x0

x0
1
δ~x4
~x1
δf4

f1
δc4c1δ

s4
s1 . (11.37)

Only the identity with respect to the spatial indices ~x4 and ~x1 is only fulfilled in the
stochastic limit. With respect to all other indices, the identity is explicit. Various choices
for the stochastic field ξ can be made. It was common to make use of Gaussian random
fields. In [231] it is argued, that the stochastic variance introduced by the stochastic
sources can be minimised, when Zn noises are used. The presented argument also holds
for U(1) noise, which we use in our setup, i.e. we draw random numbers from the complex
unit circle

ξx2 ∈ U(1)∀~x2 ∈ Λ123. (11.38)

The propagated source Ψ[η]x2

x0 = Sx2
x1η

x1

x0 is computed via eq. (11.33). We again illustrate
the method with the diagram in eq. (11.23), assuming that the operators have support on
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the time slices x0
2 and x0

1:

M
(0)
1M

(0)
2

= − 1

|Λ123|
∑

~x2,~x1

tr
(
Sx1

x2 Λ2Γ2 S
x2
x1 Λ1Γ1

)

=
〈
− 1

|Λ123|
∑

~x2,~x1

∑

x4,x3

tr
(
γ5 (Sx2

x4)† γ5Λ2Γ2 S
x2
x3η

x3

x0
1
(η†)

x0
1
x4 Λ1Γ1

)〉
η

=
〈
− 1

|Λ123|
∑

~x2

∑

x4,x3

tr
(
γ5 (Sx2

x4η
x4

x0
1
)† γ5Λ2Γ2 S

x2
x3η

x3

x0
1

Λ1Γ1

)〉
η

=
〈
− 1

|Λ123|
∑

~x2

tr
(
γ5 (Ψ[η]x2

x0
1
)† γ5Λ2Γ2 Ψ[η]x2

x0
1

Λ1Γ1

)〉
η
. (11.39)

We have commuted the adjoint source η† through the product of matrices Λ1Σ1γ
5, which

is possible because η† is proportional to the identity matrix in flavour and spin space.
The correlation function is entirely expressed in terms of the propagator Ψ[η]x2

x0
1
, which is

the key property of the generalised one-end trick. The application of stochastic sources
has several advantages over the usage of point sources. The stochastic source has support
on a complete time slice and not only on a single lattice site. As a consequence, the
propagated source becomes a superposition of several columns of the full quark propagator
matrix, such that the final estimate is less dependent on local fluctuations in the gauge
field [236]. In comparison, a propagated point source is just a single column of the full
quark propagator matrix. In order to achieve a volume average a larger number of sources
have to be distributed within a time slice, which results in larger computational costs
due to the larger number of solves of the Dirac equation. In addition, it can be shown,
that the usage of stochastic sources for the evaluation of a pion two-point function leads
to a reduced statistical error in the large volume limit [104]. A drawback of stochastic
sources is, however, that the computed two-point function cannot be projected on several
momenta for one stochastic source without additional solves of the Dirac equation. For
each momentum a separate calculation is required [236], as the desired momentum has to
be considered in the Fourier transform at both operators. In addition, stochastic sources
turn out to be an inferior choice for baryonic two-point functions [237].

11.3.3. Computation of quark-connected Feynman diagrams with stochastic
sources

In this section, we generalise the setup based on stochastic volume U(1)-quark η sources
to the remaining quark-connected Feynman diagrams. The photon propagator is evalu-
ated stochastically, as discussed in section 7.2, using stochastic real Z2-photon sources J .
In table 11.6, we give more details on the number of evaluated gauge configurations, the
number of quark and photon sources, as well as the timeslices, where the quark sources
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11.3. Computation of quark-connected Feynman diagrams

ensemble Ncnfg Nqsrc Npsrc x0
qsrc

N200 1712 16 2 37,39,41,43,45,47,49,51,
76,78,80,82,84,86,88,90

D450 500 16 1 random

H102 2004 32 2 28,29,30,31,32,33,34,35,
60,61,62,63,64,65,66,67

Table 11.6.: Number of gauge configurations Ncnfg, quark sources per configuration
Nqsrc, photon sources per quark source Npsrc and timeslices x0

qsrc the quark
sources have support on. Ensemble D450 possesses temporal periodic
boundary conditions. The quark sources can therefore be spread randomly.

are located. Making use of this computational setup, we may express the quark-connected
Feynman diagrams in eqs. (11.23) to (11.30) in terms of the propagator Ψ(0)[η] and the se-

quential propagators Ψ
(0)
Vqqf

[η], Ψ
(0)
VqqγγΣ[η], Ψ

(0)

Vqqγ

√
Σ

[η, J ] and Ψ
(0)

Vqqγ

√
ΣVqqγ

√
Σ

[η, J, J ], which

are constructed from the quark and photon sources η and J according to the discussion
in section 7.3. Considering sequential quark propagators we now make use of the γ5-
hermiticity of both the quark propagator and the vertices. The obtained expressions can
be considerably simplified by the definition of a contraction stencil:

H
x0

2x
0
1

M
(0)
2 M

(0)
1

[Ψ2,Ψ1] = − 1

|Λ123|
∑

~x2∈Λ123

tr
(
γ5 (Ψ2

x2

x0
1
)† γ5Λ2Γ2 Ψ1

x2

x0
1

Λ1Γ1

)
. (11.40)

The overall minus sign reflects the closed fermion loop as in eqs. (11.23) to (11.30). All
considered diagrams are now evaluated in terms of this contraction stencil:

M
(0)
1M

(0)
2 =

〈
H
x0

2x
0
1

M
(0)
2 M

(0)
1

[Ψ(0)[η],Ψ(0)[η]]
〉
η
, (11.41)

M
(0)
1M

(0)
2

f

=
〈
H
x0

2x
0
1

M
(0)
2 M

(0)
1

[Ψ(0)[η],Ψ
(0)
Vqqf

[η]]
〉
η
, (11.42)

M
(0)
1M

(0)
2

f

=
〈
H
x0

2x
0
1

M
(0)
2 M

(0)
1

[Ψ
(0)
Vqqf

[η],Ψ(0)[η]]
〉
η
, (11.43)
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11. Meson masses

U D S Q mphys [MeV]

η′ 0 0 0 0 957.78(6)

π+ 1 1 0 1 139.57039(18)
π0 0 0 0 0 134.9768(5)
π− −1 −1 0 −1 139.57039(18)

η 0 0 0 0 547.862(17)

K+ 1 0 1 1 493.677(16)
K0 0 −1 1 0 497.611(13)

K
0

0 1 −1 0 497.611(13)
K− −1 0 −1 −1 493.677(16)

Table 11.7.: Quantum numbers and experimentally determined masses of pseudo-scalar
singlet and octet mesons [35].

M
(0)
1M

(0)
2 =

〈〈
H
x0
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0
1

M
(0)
2 M

(0)
1

[Ψ
(0)

Vqqγ

√
Σ

[η, J ],Ψ
(0)

Vqqγ

√
Σ

[η, J ]]
〉
η,

〉
J

(11.44)
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(0)
2 =
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M
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√
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〉
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M
(0)
1M
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0
1

M
(0)
2 M
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1

[Ψ
(0)
VqqγγΣ[η],Ψ(0)[η]]

〉
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, (11.47)

M
(0)
1M
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2 =
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H
x0
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0
1

M
(0)
2 M
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1

[Ψ
(0)

Vqqγ

√
ΣVqqγ

√
Σ

[η, J, J ],Ψ(0)[η]]
〉
η

〉
J
. (11.48)

The symmetry factors in eqs. (11.27) and (11.29) were absorbed in the definition of the se-

quential propagator Ψ
(0)
VqqγγΣ[η] and sequential source η

(0)
VqqγγΣ[η] from eqs. (7.27) and (7.29).

11.4. Pseudo-scalar singlet and octet mesons

As discussed in chapter 9, we use pseudo-scalar meson masses to construct a renormal-
isation scheme for combined QCD and QED. We therefore determine the masses of π+,
π−, π0, K+, K−, K0 and K0 as well as the mass averages and mass differences within
the corresponding isospin multiplets. In table 11.7, we display the quantum numbers and
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Figure 11.1.: Parameters of the fit to the correlation function (CPduPud)(0) and relative
deviation between the correlation function and the corresponding fit on
N200. The selected fit is marked in grey. The grey lines enclose the fit
interval.

experimentally determined masses of the considered mesons. The interpolation operators
are chosen such that the flavour quantum numbers of the operators are suitable to in-
terpolate the desired physical state taking tables 11.2 and 11.5 into account. In order
to extract the ground state masses, we perform correlated fits to the correlation function
based on its asymptotic behaviour as introduced in chapter 8. We only take a single state
into account, i.e. we fit

C(0)(t2, t1)→ c(0) exp(−m(0)(t2 − t1)) (10.14)

to the zeroth-order contribution, based on a linearised fit model as introduced in sec-
tion 8.4.4. The results for c(0) and m(0) are then used to fit

C
(1)
l (t2, t1)→ (c

(1)
l − c(0)m

(1)
l (t2 − t1)) exp(−m(0)(t2 − t1)) (10.15)

to the first-order contributions. The fit intervals are chosen, so that χ2
cor/dof is closest

to 1 and the fit parameters are stable under the variation of both fit interval boundaries.
This minimises exited state and boundary effects. In the following, we discuss the results
obtained on the ensemble N200 in more detail.

11.4.1. π+, π−, π0

Mass mπ+ = mπ−

The mass mπ+ is extracted from the ground state of the correlation function CPduPud .
Figures 11.1 and 11.2 show the fit to the zeroth- and first-order contribution, respectively.
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(1)
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deviation between the correlation function and the corresponding fit on
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interval.

As a result of the fits we obtain amπ+ in dimensionless units:

amπ+ = 0.09178(31)

+ 6.96(10) a∆mu + 6.96(10) a∆md

− 8.1(8) ∆β + 0.847(12) e2.

(11.49)

As we expand around the isosymmetric limit, the coefficients in front of a∆mu and a∆md

are equal. The signs of the coefficients are consistent with the fact that an increase of
the bare quark mass should leads to an increase of the mass of the particle. Inserting the
values for the expansion parameters in eq. (9.4), we find:

amπ+ = (0.09178(31)st[31]tot)
(0) + (0.000363(17)st(0)a[17]tot)

(1)

= 0.09215(31)st(0)a[31]tot. (11.50)

Converting to dimensionful units, mπ+ is given by:

mπ+ = (281.8(9)st(3.3)a[3.4]tot)
(0) + (1.116(54)st(13)a[55]tot)

(1)

= 283.0(9)st(3.3)a[3.4]tot. (11.51)

Mass mπ0

The mass mπ0 is extracted from the ground state of the correlation function CP 3P 3 . Fig-
ures 11.3 and 11.4 show the fit to the zeroth- and first-order contribution, respectively. As
a result of the fits we obtain amπ0 in dimensionless units:

amπ0 = 0.09178(31)

+ 6.96(10) a∆mu + 6.96(10) a∆md

− 8.1(8) ∆β + 0.839(12) e2.

(11.52)

145



11. Meson masses

−1.66

−1.64

−1.62

−1.60

c(
0)

×10−2

P 3P 3

x0
max

28

29

30

31

32

33

34

35

36

37

38

39

409.10

9.20

9.30

m
(0

)

×10−2

16 18 20 22 24 26 28
x0

min

10−1

100

101

χ
2 co

r/
d

of

x0
min = 24

x0
max = 30

0 8 16 24 32 40 48 56 64
x0

−0.04

−0.02

0.00

0.02

0.04

(C
fi

t(0
)
−
C

(0
) )/
C

(0
)

c(0) = −0.03216(20)

m(0) = 0.09178(31)

χ2
cor/dof = 0.991

P duP ud

Figure 11.3.: Parameters of the fit to the correlation function (CP 3P 3)(0) and relative
deviation between the correlation function and the corresponding fit on
N200. The selected fit is marked in grey. The grey lines enclose the fit
interval.

Again, we find consistent coefficients in front of a∆mu and a∆md. Inserting the values
for the expansion parameters in eq. (9.4), we find:

amπ0 = (0.09178(31)st[31]tot)
(0) + (−0.000363(17)st(0)a[17]tot)

(1)

= 0.09142(31)st(0)a[31]tot. (11.53)

Converting to dimensionful units, mπ0 is given by:

mπ0 = (281.8(9)st(3.3)a[3.4]tot)
(0) + (−1.116(54)st(13)a[55]tot)

(1)

= 280.7(1.0)st(3.2)a[3.4]tot. (11.54)

Mass difference mπ+ −mπ0

The pion mass difference in dimensionless units reads:

amπ+ − amπ0 = 0.0079(4) e2. (11.55)

At leading order it is a purely electromagnetic effect [46]. Consequently, the charged π+

must be heavier than the neutral π0 due to the self-energy associated with the charge.
Inserting the values for the expansion parameters in eq. (9.4), we find:

amπ+ − amπ0 = (0.000727(35)st[35]tot)
(1)

= 0.000727(35)st[35]tot. (11.56)

Converting to dimensionful units, the pion mass difference is given by:

mπ+ −mπ0 = (2.232(107)st(26)a[109]tot)
(1)

= 2.232(107)st(26)a[109]tot. (11.57)
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Figure 11.4.: Parameters of the fit to the correlation function (CP 3P 3)
(1)
l and relative

deviation between the correlation function and the corresponding fit on
N200. The selected fit is marked in grey. The grey lines enclose the fit
interval.

Mass average 1
2(mπ+ +mπ0)

The pion mass average in dimensionless units reads:

1

2
(amπ+ + amπ0) = 0.09178(31)

+ 6.96(10) a∆mu + 6.96(10) a∆md

− 8.1(8) ∆β + 0.843(12) e2.

(11.58)

Inserting the values for the expansion parameters in eq. (9.4), we find:

1

2
(amπ+ + amπ0) = (0.09178(31)st[31]tot)

(0)

= 0.09178(31)st[31]tot. (11.59)

Converting to dimensionful units, the pion mass average is given by:

1

2
(mπ+ +mπ0) = (281.8(9)st(3.3)a[3.4]tot)

(0)

= 281.8(9)st(3.3)a[3.4]tot (11.60)

11.4.2. K+, K−, K0, K0

Mass mK+ = mK−

The mass mK+ is extracted from the ground state of the correlation function CP suPus .
Figures 11.5 and 11.6 show the fit to the zeroth- and first-order contribution, respectively.
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deviation between the correlation function and the corresponding fit on
N200. The selected fit is marked in grey. The grey lines enclose the fit
interval.

As a result of the fits we obtain amK+ in dimensionless units:

amK+ = 0.15049(16)

+ 4.20(4) a∆mu + 4.204(28) a∆ms

− 5.2(6) ∆β + 0.514(4) e2.

(11.61)

The coefficients in front of a∆mu and a∆ms are positive as expected. There are, how-
ever, not of equal magnitude, as the expansion is not performed around a SU(3) flavour
symmetric theory. Inserting the values for the expansion parameters in eq. (9.4), we find:

amK+ = (0.15049(16)st[16]tot)
(0) + (−0.000641(0)st(7)a[7]tot)

(1)

= 0.149845(155)st(7)a[156]tot. (11.62)

Converting to dimensionful units, mK+ is given by:

mK+ = (462.1(5)st(5.3)a[5.4]tot)
(0) + (−1.9685)(1)

= 460.1(5)st(5.3)a[5.4]tot. (11.63)

Mass mK0 = mK0

The mass mK0 is extracted from the ground state of the correlation function CP sdPds .
Figures 11.7 and 11.8 show the fit to the zeroth- and first-order contribution, respectively.
As a result of the fits we obtain amK0 in dimensionless units:

amK0 = 0.15049(16)

+ 4.20(4) a∆md + 4.204(28) a∆ms

− 5.2(6) ∆β + 0.2039(15) e2.

(11.64)
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Figure 11.8.: Parameters of the fit to the correlation function (CP sdPds)
(1)
l and relative

deviation between the correlation function and the corresponding fit on
N200. The selected fit is marked in grey. The grey lines enclose the fit
interval.

Inserting the values for the expansion parameters in eq. (9.4), we find:

amK0 = (0.15049(16)st[16]tot)
(0) + (0.000641(0)st(7)a[7]tot)

(1)

= 0.151127(155)st(7)a[155]tot. (11.65)

Converting to dimensionful units, mK0 is given by:

mK0 = (462.1(5)st(5.3)a[5.4]tot)
(0) + (1.9685)(1)

= 464.1(5)st(5.4)a[5.4]tot. (11.66)

Mass difference mK+ −mK0

The kaon mass difference in dimensionless units reads:

amK+ − amK0 = 4.20(4) a∆mu − 4.20(4) a∆md

+ 0.3101(28) e2.

(11.67)

As the kaon mass difference depends also on a∆mu and a∆md, the charged kaon K+ is not
necessarily heavier than the neutral kaon K0. The coefficient of e2 is, however, positive
as expected. Inserting the values for the expansion parameters in eq. (9.4), we find:

amK+ − amK0 = (−0.001282(0)st(15)a[15]tot)
(1)

= −0.001282(0)st(15)a[15]tot. (11.68)

Converting to dimensionful units, the kaon mass difference is given by:

mK+ −mK0 = (−3.9370)(1) MeV

= −3.9370 MeV. (11.69)
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Mass average 1
2(mK+ +mK0)

The kaon mass average in dimensionless units reads:

1

2
(amK+ + amK0) = 0.15049(16)

+ 2.102(19) a∆mu + 2.102(19) a∆md + 4.204(28) a∆ms

− 5.2(6) ∆β + 0.3590(29) e2.

(11.70)

Inserting the values for the expansion parameters in eq. (9.4), we find:

1

2
(amK+ + amK0) = (0.15049(16)st[16]tot)

(0)

= 0.15049(16)st(0)a[16]tot. (11.71)

Converting to dimensionful units, the kaon mass average is given by:

1

2
(mK+ +mK0) = (462.1(5)st(5.3)a[5.4]tot)

(0) MeV

= 462.1(5)st(5.3)a[5.4]tot MeV (11.72)

11.4.3. π0, η, η′

A reliable determination of the masses of the three flavour-neutral pseudo-scalar mesons
π0, η and η′ is more difficult than for the electrically and flavour charged pseudo-scalar
mesons. In QCD+QED these three mesons cannot be strictly classified according to
isospin symmetry or even SU(3) flavour symmetry. As a consequence, there is no strict
correspondence between the operators P0, P3 and P8 and the above states. In fact, all
correlation functions included in the matrix

Ci2,i1(x0
2, x

0
1) = 〈Px

0
2

i2
Px

0
1

i1
〉 (11.73)

for i = 0, 3, 8 have overlap with the states mentioned, i.e. the masses of π0, η and η′

appear in the respective tower of exponentials. The reason why we were able to extract
mπ0 reliably from 〈P3P3〉 is that π0 is the lightest state of the three and the overlap factor
with respect to P3 is large compared to other states, i.e. π0 is almost an isospin eigenstate
with I = 1 and I3 = 0. Consequently, its contribution can be extracted safely at late
times. The situation is different for η and η′, as they are not the lightest states. To
reliably extract the three lowest accessible states from the matrix of correlation functions,
we may perform a combined fit or use the generalised eigenvalue problem (GEVP) for
the extraction of masses [238, 239]. The latter method is a generalised construction of
an effective mass for matrices of correlation functions. It can also be combined with a
perturbative expansion as discussed in [240], which is required in this work.

We do not present the results of this analysis in detail, as we have only dealt with quark-
connected contributions. Our GEVP analysis leads to two degenerate mass states with a
mass of the π0 and a heavier state, which contradicts empirical findings. This is consistent
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with the discussion in [167], which states that, considering only quark-connected contri-

butions, π0 and η have the same mass and η′ possesses a mass of about
√

2M2
K −M2

π .

However, it is known from experiments that both the η and η′ mesons are much heavier
than the π0. This effect dominantly originates from zeroth-order quark-disconnected con-
tributions [105, 167, 241, 242]. For the π0 the latter contribution vanishes exactly in an
isosymmetric theory.

Nevertheless, the application of the GEVP combined with a perturbative expansion on
the flavour-neutral pseudo-scalar mesons was a good test case for future calculations. In
particular, an analysis based on a matrix of correlations functions will be relevant for the
determination of masses in the baryonic sector, which we will give an introduction to in
chapter 12.

11.5. Discussion and Outlook

We give an overview of the results for pseudo-scalar masses, mass averages and differences
obtained on the ensembles N200, D450 and H102 in table 11.8. For all determined meson
masses mπ+ , mπ0 , mK+ and mK0 , we find that the first-order correction is smaller than
the error of the zeroth-order contribution, which is dominated by the scale uncertainty.
The first-order correction is, however, larger than the statistical error of the zeroth-order
contribution. Hence, in order to have a significant correction caused by isospin breaking
effects, one needs to reduce the dominant scale uncertainty. In conclusion, the systematic
error of neglecting isospin breaking corrections in meson masses is smaller than the error
introduced by the scale setting. For the pion mass splitting, which is not used as an input
parameter in the calculation, we find the correct behaviour, i.e. it increases for diminished
average pion masses. For the estimation of the photon all-to-all propagator, we also varied
the type of sources. We tested µ-linked photon sources, where the Euclidean index µ is
diluted, but we did not find any gain in statistical precision keeping the computation time
fixed. This is compatible with the findings of [194].

In this thesis, we only consider quark-connected contributions. In fact, we have ex-
tended the calculation in a trial computation also considering zeroth-order isosymmet-
ric quark-disconnected contributions and first-order quark-disconnected QED-connected
contributions to the mesonic two-point correlation function, i.e. we have included the
zeroth-order diagram

M
(0)
1M

(0)
2 (11.74)
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mπ+ [MeV] (281.8(9)st(3.3)a[3.4]tot)
(0) + (1.116(54)st(13)a[55]tot)

(1)

= 283.0(9)st(3.3)a[3.4]tot

mπ0 [MeV] (281.8(9)st(3.3)a[3.4]tot)
(0) + (−1.116(54)st(13)a[55]tot)

(1)

= 280.7(1.0)st(3.2)a[3.4]tot

mπ+ −mπ0 [MeV] (2.232(107)st(26)a[109]tot)
(1)

1
2(mπ+ +mπ0) [MeV] (281.8(9)st(3.3)a[3.4]tot)

(0)

mK+ [MeV] (462.1(5)st(5.3)a[5.4]tot)
(0) + (−1.9685)(1)

= 460.1(5)st(5.3)a[5.4]tot

mK0 [MeV] (462.1(5)st(5.3)a[5.4]tot)
(0) + (1.9685)(1)

= 464.1(5)st(5.4)a[5.4]tot

mK+ −mK0 [MeV] (−3.9370)(1)

1
2(mK+ +mK0) [MeV] (462.1(5)st(5.3)a[5.4]tot)

(0)

(a) N200 (a = 0.064 fm, mπ = 282 MeV)

mπ+ [MeV] (216.7(6)st(2.7)a[2.8]tot)
(0) + (1.657(39)st(21)a[43]tot)

(1)

= 218.3(6)st(2.7)a[2.8]tot

mπ0 [MeV] (216.7(6)st(2.7)a[2.8]tot)
(0) + (−1.657(39)st(21)a[43]tot)

(1)

= 215.0(7)st(2.7)a[2.8]tot

mπ+ −mπ0 [MeV] (3.31(8)st(4)a[9]tot)
(1)

1
2(mπ+ +mπ0) [MeV] (216.7(6)st(2.7)a[2.8]tot)

(0)

mK+ [MeV] (475.55(24)st(5.92)a[5.91]tot)
(0) + (−1.9685)(1)

= 473.58(24)st(5.89)a[5.91]tot

mK0 [MeV] (475.55(24)st(5.92)a[5.91]tot)
(0) + (1.9685)(1)

= 477.52(24)st(5.94)a[5.91]tot

mK+ −mK0 [MeV] (−3.9370)(1)

1
2(mK+ +mK0) [MeV] (475.55(24)st(5.92)a[5.91]tot)

(0)

(b) D450 (a = 0.076 fm, mπ = 216 MeV)

mπ+ [MeV] (353.8(9)st(4.3)a[4.3]tot)
(0) + (0.984(35)st(12)a[37]tot)

(1)

= 354.8(9)st(4.3)a[4.4]tot

mπ0 [MeV] (353.8(9)st(4.3)a[4.3]tot)
(0) + (−0.984(35)st(12)a[37]tot)

(1)

= 352.8(9)st(4.2)a[4.3]tot

mπ+ −mπ0 [MeV] (1.968(70)st(24)a[74]tot)
(1)

1
2(mπ+ +mπ0) [MeV] (353.8(9)st(4.3)a[4.3]tot)

(0)

mK+ [MeV] (438.3(7)st(5.3)a[5.3]tot)
(0) + (−1.9685)(1)

= 436.3(7)st(5.2)a[5.3]tot

mK0 [MeV] (438.3(7)st(5.3)a[5.3]tot)
(0) + (1.9685)(1)

= 440.3(7)st(5.3)a[5.3]tot

mK+ −mK0 [MeV] (−3.9370)(1)

1
2(mK+ +mK0) [MeV] (438.3(7)st(5.3)a[5.3]tot)

(0)

(c) H102 (a = 0.086 fm, mπ = 354 MeV)

Table 11.8.: Masses, mass averages and mass differences of pseudo-scalar mesons.
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and the first-order electromagnetic diagrams

M
(0)
1M

(0)
2

,
M

(0)
1M

(0)
2

, (11.75)

M
(0)
1M

(0)
2 . (11.76)

The quark-disconnected correlation functions were computed using U(1)-stochastic quark
sources with support on the entire spacetime lattice. We performed simulations in this
setup for the ensembles H102 and H105 for the pseudo-scalar channel and discussed the
results in [243]. As a main result we found that the diagram in eq. (11.76) contributes to
the pion mass splitting and leads to a decrease of the latter by about O(10%) on these
two ensembles. The diagrams in eq. (11.75) contribute to the pion and kaon masses but
have no significant influence at our level of precision. The quark-disconnected diagram
in eq. (11.74) only contributes to flavour neutral states. It vanishes in the isosymmetric
limit, such that it does not contribute to the π0 state.

At this stage, we have not applied any finite volume corrections to account for the long
range of the electromagnetic interaction due to the absence of a mass gap. For periodic
temporal boundary conditions a QEDL finite volume correction for both elementary and
composite spin-0 particles is known [41]:

m2
0(T, L) ∼

T,L→+∞
m2
(

1− q2α
( κ

mL

(
1 +

2

mL

)))
κ = 2.837297(1). (11.77)

This correction formula should be applied to the determined masses to correct for leading
QED finite volume effects.

Not only the pseudo-scalar operator S, but also the temporal component of the axial
operator A0, feature an overlap with pseudo-scalar states. It is therefore interesting to
investigate whether a combined GEVP analysis could result in a reduction of excited state
effects, such that the fit interval for the extraction of the pseudo-scalar ground state can
be further prolonged.
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12. Baryon masses

As discussed in chapter 9, baryon masses can be used to set the scale in lattice simulations.
E.g., lattice spacing determinations have been performed using the Ω baryon [244, 245].
Other candidates are the Λ and Σ baryons, where mixing has to be considered [246] in a
similar way to describe to the system formed by π0, η and η′ discussed in section 11.4.3.
In this chapter, we briefly describe the application of the approach used in this thesis to
determine leading isospin breaking effects as introduced in chapter 6 to the calculation of
baryon masses and discuss a first setup for a first feasibility test. A calculation for the
prediction of the proton-neutron mass difference based on the twisted-mass fermion lattice
regularisation was performed for pure QCD [191, 192], where a perturbative expansion
around QCDiso was applied. This work was later extended in the thesis [247] also taking
leading electromagnetic effects into account. The determined mass splitting therein is
compatible with zero, which may be a result of a suboptimal computational setup.

12.1. Baryonic interpolation operators

From the discussion in section 10.1, we deduce that the zero-momentum projected operator

Bx0
=

1√
|Λ123|

∑

~x

1

6
B[U,A]xb3b2b1Ψb3Ψb2Ψb1 (12.1)

diminishes the baryon number by one and the operator

Bx0
=

1√
|Λ123|

∑

~x

1

6
B[U,A]xa3a2a1Ψa3Ψa2Ψa1 (12.2)

increases the baryon number by one, i.e. this pair of operators is suitable for the construc-
tion of a two-point function used for single baryon spectroscopy.

12.2. Baryon two-point functions

In the following, we consider correlation functions of the form

CBB(x0
2, x

0
1) = 〈Bx0

2Bx0
1〉. (12.3)

In order to determine the perturbative expansion of the correlation function, we expand
the interpolation operators according to

O = O(0) + eO( 1
2

)

e2
+

1

2
e2O(1)

e2
+O(e3). (6.86)
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12. Baryon masses

For now, we do not further specify the actual shape of the operators, but assume that
they are independent of eA, i.e. B = (B)(0) and B = (B)(0), which is the case for point-like
interpolation operators.

12.2.1. Diagrammatic expansion

The generic expansion of the correlation function up to first order reads

C = C(0) +
∑

l

∆εlC
(1)
l +O(∆ε2). (6.85)

The zeroth-order contribution is calculated via eq. (6.87) and reads in terms of Feynman
diagrams

(CBB)(0) =

〈
B(0)B(0)

〉(0)

eff

. (12.4)

The first-order contribution is calculated according to eq. (6.88). In terms of Feynman
diagrams, the first-order contribution due to a shift in the quark mass ∆mf reads

(CBB)
(1)
∆mf

=

〈
B(0)B(0)

f

+ B(0)B(0)
f

〉(0)

eff

−
〈

B(0)B(0)

〉(0)

eff

〈
f

〉(0)

eff

.

(12.5)

A detuning in the strong inverse coupling ∆β results in a first-order contribution

(CBB)
(1)
∆β =

〈
B(0)B(0)

∆β

〉(0)

eff

−
〈

B(0)B(0)

〉(0)

eff

〈
∆β

〉(0)

eff

.

(12.6)
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12.2. Baryon two-point functions

The first-order contribution due to a non-vanishing electromagnetic coupling e2 reads

(CBB)
(1)
e2

=

〈
B(0)B(0)

+ B(0)B(0)

+ B(0)B(0)
+

B(0)B(0)

+ B(0)B(0)

(
+ +

)〉(0)

eff

−
〈

B(0)B(0)

〉(0)

eff

·
〈

+ +

)〉(0)

eff

.

(12.7)

Making use of interpolation operators with antisymmetric tensors reduces the number of
Feynman diagrams considerably. For general interpolation operators, there are in total 6
zeroth-order diagrams, 24 first-order diagrams for the detuning of quark masses, 6 first-
order diagrams for the detuning of the strong coupling and 90 first-order diagrams for
electromagnetic effects.

In this thesis, we only consider quark-connected contributions in our calculation. We
translate the corresponding Feynman diagrams into contracted tensor-structures of inter-
polation operators, quark and photon propagators and vertices. This is relevant to ensure
the correct application of minus signs and symmetry factors. For the zeroth-order diagram
we have

B(0)B(0)
=

1

6
B(0)

b1b2b3S
b3

a3S
b2

a2S
b1

a1B
(0)a3a2a1 . (12.8)

The first-order contribution to the quark mass detuning reads

B(0)B(0)

f

=
1

2
B(0)

b1b2b3S
b3

a3S
b2

a2

·
(
Sb1

a4V qqf
a4

b4S
b4

a1

)
B(0)a3a2a1 .

(12.9)
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Diagrams with first-order contributions due to the electromagnetic interaction read

B(0)B(0)
=

1

2
Σc2c1B(0)

b1b2b3S
b3

a3

(
Sb2

a5V qqγ
a5

b5c1S
b5

a2

)

·
(
Sb1

a4V qqγ
a4

b4c1S
b4

a1

)
B(0)a3a2a1 ,

(12.10)

B(0)B(0)
=

1

2
Σc2c1B(0)

b1b2b3S
b3

a3S
b2

a2

·
(
Sb1

a5V qqγ
a5

b5c1S
b5

a4V qqγ
a4

b4c1S
b4

a1

)

·B(0)a3a2a1 ,

(12.11)

B(0)B(0)
=

1

4
Σc2c1B(0)

b1b2b3S
b3

a3S
b2

a2

·
(
Sb1

a4V qqγγ
a4

b4c2c1S
b4

a1

)
B(0)a3a2a1 .

(12.12)

The only contribution from the reweighting factor that we consider is

∆β = V g. (12.13)

12.3. Discussion and Outlook

Although we do not present any results in this chapter, we have performed a first fea-
sibility test for the determination of baryon masses including leading isospin breaking
effects. We investigated a two-point function based on point-like, non-smeared inter-
polation operators for the proton Bx = 1

2(1 + γ0)εc3c2c1Ψxuc3((Ψxuc2)TCγ5Ψxdc1) and
Bx = εc3c2c1(Ψxuc2Cγ5(Ψxdc1)T )Ψxuc3 1

2(1 + γ0) [42, 248], evaluated by means of point
sources, which we discussed in section 11.3.1, similar to the setup in [247], which we men-
tioned in the introduction of this chapter. The resulting two-point function was evaluated
by means of point sources. We performed simulations on the ensemble H102 (a = 0.086 fm,
mπ = 354 MeV), considering only a limited number of gauge configurations. We were able
to observe the correct asymptotic behaviour of the zeroth- and first-order contribution to
the correlation function. For periodic temporal boundary conditions a QEDL finite volume
correction for both elementary and composite spin-1

2 particles is known [41] and should
be applied to future results:

m 1
2
(T, L) ∼

T,L→+∞
m
(

1− q2α
( κ

2mL

(
1 +

2

mL

)
− 3π

(mL)3

))
κ = 2.837297(1). (12.14)

It is desirable to extent this first test to a full calculation of octet and decuplet baryon
masses. Instead of point-like interpolation operators, smeared operators [249] should be
used, as they possess a larger overlap with the baryon ground state. This results in an
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12.3. Discussion and Outlook

earlier onset of the asymptotic behaviour of the correlation function, which is particu-
larly relevant for baryon two-point functions due to the signal-to-noise problem present at
larger time distances [42]. The fitting range can be chosen with a longer extension, such
that local fluctuations in the time direction are smoothed out in the fitting procedure. A
promising setup used in nucleon form factor and nucleon charge calculations [250, 251]
is a combination of Wuppertal smearing for the quark fields [252] and APE smearing for
the gauge links [253]. This smearing formulation is completely gauge covariant and can in
principle be also applied to QCD+QED simulations in terms of the combined gauge links
in eq. (6.8). However, the expansion of the smeared interpolation operators in terms of eA
is non-trivial due to its iterative nature. It is not clear whether a simple and computation-

ally efficient iterative expression for O( 1
2

)

e2
and O(1)

e2
can be derived. Another possibility is

to use a smearing setup that is QCD-covariant but QED-non-covariant, i.e. one uses only
the QCD gauge links in the smearing procedure. As the gauge of the photon field is fixed,
expectation values of QED-non-covariant combinations of operators do not necessarily
vanish. A clear disadvantage of the latter strategy is that correlation functions are gauge
dependent even for electromagnetically neutral interpolation operators, such that one can-
not use a change in the gauge fixing condition as a cross check of the correctness of the
computational implementation. Making use of fully covariant interpolation operators, a

different approach is to calculate the contributions O( 1
2

)

e2
and O(1)

e2
via a numerical differen-

tiation in e. The modified computational setup based on smeared interpolation operators
is also beneficial for the determination of meson masses, where a point-like shape of the
interpolation operators is not required. This is different in the context of the hadronic
vacuum polarisation function, which we will discuss in chapter 14.

A considerable increase in computational efficiency can be obtained applying all-mode-
averging [254–256], where the Dirac equation is solved with a reduced number of iterations
for a large number of quark sources. A potential bias caused by this reduced numerical
precision can be estimated by calculating the difference of the correlation function evalu-
ated with reduced and full precision for a small number of quark sources. This strategy is
particularly fruitful for correlation functions for which a signal-to-noise problem is present.
In addition, it is desirable to apply a set of interpolation operators that is constructed in
more rigorous manner under aspects of spacetime and flavour symmetries. Candidates
are the Clebsch-Gordan based construction in [257] and a group theoretical construction
in [258].
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Part IV.

The hadronic vacuum polarisation
function and hadronic contributions
to the anomalous magnetic moment

of the muon
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13. Vector current renormalisation

In quantum field theories bare operators have to be renormalised in order to become
physically meaningful quantities. The renormalisation pattern of an operator does not
necessarily have to be purely multiplicative, but can also exhibit mixing with other oper-
ators. It is commonly assumed that two operators can only mix renormalisation if they
show the same behaviour under symmetry transformations, i.e the renormalised theory
possesses the same symmetries as the bare theory [58]. In addition, in a theory with di-
mensionful couplings such as masses, an operator will only mix with operators of the same
or smaller mass dimension [58]. In theories in which all couplings are dimensionless the
mixing is further restricted to operators of equal mass dimension [58].

In textbooks, it is commonly argued that conserved currents are protected from non-
trivial renormalisation by Ward-Takahashi identities, such that they do not mix under
renormalisation with other operators and the renormalisation factor is one [51, 56, 98].
In fact, for the electromagnetic current operator in the presence of the photon field, it is
shown in [259] that the latter mixes with the four-divergence of the photon field-strength
tensor under renormalisation. In the most recent publications of the lattice QCD+QED
community this mixing is neither mentioned nor discussed [194, 200, 245]. We also assume
a simplified renormalisation structure not taking the mixing with the four-divergence of
the photon field-strength tensor into account.

In this chapter, we describe a method to determine the mixing pattern and the relevant
renormalisation factors for point-like flavour neutral vector currents, which are the most
straightforward discretisation of continuum flavour neutral currents. In section 6.4.1 we
have derived another discretisation of the flavour neutral vector currents, namely the con-
served vector currents, which satisfy a Ward-Takahashi identity and renormalise trivially
under the assumption described in the previous section. The renormalisation procedure
is based on the comparison of correlation functions and matrix elements under the re-
placement of local and conserved vector currents [98, 260]. A related effort was performed
in [194] for domain wall fermions. However, a different basis for the flavour neutral currents
was chosen and operator mixing was not considered.

13.1. Lattice discretisations of the electromagnetic and flavour
diagonal vector currents

The construction of lattice discretisations of continuum operators is ambiguous, as one
only has to reobtain the correct operator in the continuum limit. There are two commonly
used discretisations of the electromagnetic vector current. The most simple and straight
forward discretisation is the local vector current Vγl , which only depends on the fields at
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13. Vector current renormalisation

the same site,

Vγxµl = ΨxQγµΨx, (13.1)

with the matrix of fractional quark charges Q = diag
(

2
3 ,−1

3 ,−1
3

)
. Despite its simple

structure, which allows for a more efficient computation of correlation functions, one ma-
jor disadvantage of this particular discretisation is its nontrivial renormalisation. As we
will see later, this operator mixes under renormalisation with other flavour neutral local
vector currents. In order not having to determine non-trivial renormalisation factors, it is
favourable to make use of the conserved forward point-split vector current Vγc = VγF from
eq. (6.45) as a lattice discretisation of the continuum electromagnetic vector current. It is
given by

Vγxµc =
1

2

(
Ψx+aµ̂(W xµ)†Q(γµ + 1)Ψx + ΨxQ(γµ − 1)W xµΨx+aµ̂

)
, (13.2)

where we make use of the combined QCD+QED gauge links

W xµ = Uxµ exp(iaeQAxµ). (6.8)

As we will see later in the context of renormalisation, it is convenient to decompose the
electromagnetic current into a linear combination of flavour diagonal vector currents [261]

Vγ = V3 +
1√
3
V8, (13.3)

where we make use of the local vector currents V il

Vxµil = ΨxΛiγµΨx (13.4)

and the conserved vector currents V ic from eq. (6.45)

Vxµic =
1

2

(
Ψx+aµ̂(W xµ)†Λi(γµ + 1)Ψx + ΨxΛi(γµ − 1)W xµΨx+aµ̂

)
. (13.5)

The flavour diagonal matrices Λ0 = 1√
6
1 and Λi = 1

2λ
i for i = 3, 8 read

Λ0 =




1√
6

0 0

0 1√
6

0

0 0 1√
6


 , Λ3 =




1
2 0 0
0 −1

2 0
0 0 0


 , Λ8 =




1
2
√

3
0 0

0 1
2
√

3
0

0 0 − 1√
3


 . (13.6)

For flavour non-diagonal matrices Λ, the definition of the vector current eq. (13.5) is not
unique, as the gauge links W xµ and a general Λ do not commute in a theory which is not
fully flavour symmetric. In fact, the current defined above is conserved if and only if W xµ

and Λ commute.
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13.2. The bare vector-vector correlation function

13.2. The bare vector-vector correlation function

In the following section, we discuss the evaluation of the bare vector-vector correlation
function on the lattice, taking leading isospin breaking effects into account. We consider
the correlation function of two zero-momentum projected vector currents

Vx0µi
d =

1√
|Λ123|

∑

~x

Vxµid (13.7)

averaged over the spatial components reading

CVi2d2V
i1
l

(x0
2, x

0
1) =

1

3

3∑

µ=1

〈Vx
0
2µi2

d2
Vx

0
1µi1

l 〉 d2 = l, c i2, i1 = 0, 3, 8. (13.8)

One vector current operator is fixed to the local discretisation. For the second operator,
both the local and the conserved discretisation are used. We allow for combinations of
flavour diagonal vector currents V0, V3 and V8. We will see latter that two currents are
only prone to mixing if the corresponding overlap does not vanish. Rotations by multiples
of π/2 along a spatial axis are symmetries of the action. Thus, we average over the spatial
components of the vector currents for noise reduction.

13.2.1. Diagrammatic expansion of the bare vector-vector correlation
function

We will now discuss how to derive the diagrammatic expansion of the correlation function
eq. (13.8) according to

C = C(0) +
∑

l

∆εlC
(1)
l +O(∆ε2). (6.85)

As the vector current operators may be functions of the combined QCD+QED gauge links
and consequently of e depending on the particular lattice discretisation, we have to expand
the latter in order to derive the diagrammatic expansion. We find

V = V(0) + eV( 1
2

)

e2
+

1

2
e2V(1)

e2
+ V(e3). (13.9)

The expansion of the gauge links given in eq. (6.8) and their adjoints is

W xµ = Uxµ
(
1+ iaeQAxµ − 1

2
a2e2Q2(Axµ)2

)
+O(e3), (13.10)

(W xµ)† = (Uxµ)†
(
1− iaeQAxµ − 1

2
a2e2Q2(Axµ)2

)
+O(e3), (13.11)

where the photon field A and the charge matrices Q are real. As the local vector current
does not depend on these gauge links, the expansion is trivial:

(Vx0µi
l )(0) = ΨaV

(0)x0µia
l bΨb = Vx0µi

l , (13.12)

(Vx0µi
l )

( 1
2

)

e2
= ΨaV

( 1
2

)x0µi

l
a
bcΨbAc = 0, (13.13)

(Vx0µi
l )

(1)
e2

= ΨaV
(1)x0µi
c

a
bc2c1ΨbAc2Ac1 = 0. (13.14)
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We represent the vertex V
(0)x0µi
l associated with the operator (Vx0µi

l )(0) by the diagram

V
(0)x0µia
l b = b

a

V
(0)x0µi
l

. (13.15)

For the conserved vector current we, however, obtain the non-trivial expansion

(Vx0µi
c )(0) = ΨaV

(0)x0µi
c

a
bΨb

=
1√
|Λ123|

∑

~x

1

2

(
Ψx+aµ̂(Uxµ)†Λi(γµ + 1)Ψx

+ ΨxΛi(γµ − 1)UxµΨx+aµ̂
)
,

(13.16)

(Vx0µi
c )

( 1
2

)

e2
= ΨaV

( 1
2

)x0µi
c

a
bcΨbAc

=
1√
|Λ123|

∑

~x

i

2
a
(
−Ψx+aµ̂(Uxµ)†QΛi(γµ + 1)Ψx

+ ΨxΛiQ(γµ − 1)UxµΨx+aµ̂
)
Axµ,

(13.17)

(Vx0µi
c )

(1)
e2

= ΨaV
(1)x0µi
c

a
bc2c1ΨbAc2Ac1

=
1√
|Λ123|

∑

~x

−1

2
a2
(
Ψx+aµ̂(Uxµ)†Q2Λi(γµ + 1)Ψx

+ ΨxΛiQ2(γµ − 1)UxµΨx+aµ̂
)
(Axµ)2.

(13.18)

We also introduce diagrammatic representations for the vertices V
(0)x0µi

c , V
( 1

2
)x0µi

c and

V
(1)x0µi

c , which are related to the operators (Vx0µi
c )(0), (Vx0µi

c )
( 1

2
)

e2
and (Vx0µi

c )
(1)
e2

:

V (0)x0µi
c

a
b = b

a

V (0)x0µi
c

, (13.19)

V
( 1

2
)x0µi

c
a
bc = b

a

c

V
( 12 )x

0µi
c

, (13.20)

V (1)x0µi
c

a
bc2c1 = b

a

c2 c1

V (1)x0µi
c

. (13.21)

The operators (Vx0µi
c )

( 1
2

)

e2
and (Vx0µi

c )
(1)
e2

lead to additional Feynman diagrams in the di-
agrammatic expansion of a mesonic two-point function, which we have not considered

so far. In detail, the first-order electromagnetic contribution (CM2M1)
(1)
e2

in eq. (11.22)
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receives additional contributions from the diagrams

〈
M

(0)
1M

( 12 )
2 + M

(0)
1M

( 12 )
2

+
M

(0)
1M

( 12 )
2

+ M
(0)
1M

(1)
2

+ M
(0)
1M

( 12 )
2 + M

(0)
1M

( 12 )
2

+
M

(0)
1M

( 12 )
2

+ M
(0)
1M

(1)
2

〉
.

(13.22)

As in section 11.2.2, we translate the additional quark-connected diagrams into contracted
tensor-structures of the interpolation operators, quark and photon propagators and ver-
tices. They read

M
(0)
1M

( 12 )
2 = −Σc2c1

(
Sb1

a3M
( 1

2
)

2
a3

b3c2

· Sb3
a2Vqqγ

a2
b2c1S

b2
a1M

(0)
1

a1
b1

)
,

(13.23)

M
(0)
1M

( 12 )
2 = −Σc2c1

(
Sb1

a3Vqqγ
a3

b3c2S
b3

a2M
( 1

2
)

2
a2

b2

· Sb2
a1M

(0)
1

a1
b1

)
,

(13.24)

M
(0)
1M

(1)
2 = −1

2
Σc2c1

(
Sb1

a2M
(1)
2

a2
b2c1c2S

b2
a1M

(0)
1

a1
b1

)
. (13.25)

13.3. Computation of quark-connected Feynman diagrams

For the computation of quark-connected contributions to the vector-vector two-point func-
tion, we use the same setup as for mesonic two-point functions described in section 11.3.
In fact, the same quark and photon sources, as well as quark propagators in eq. (7.22) and
sequential quark propagators in eqs. (7.26), (7.29), (7.34) and (7.37) are used, such that
no additional solutions of the Dirac equation have to be computed. Only the contraction
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stencils have to be adapted, which we discuss in the following. It is, however, important to
point out that we cannot place a conserved vector current at the mesonic source, i.e. for
the operator M1. To include a point-split interpolation operator at the mesonic source,
the computational setup has to be changed considerably.

13.3.1. Local vector current

For the quark-connected diagrams, required for the evaluation of the correlation function
of two local vector currents, we utilise the contraction stencil derived for mesonic two-

point functions with point-like operators defined in eq. (11.40) setting, M
(0)
1 = V

(0)(x0µi)1

l

and M
(0)
2 = V

(0)(x0µi)2

l . The quark-connected diagrams are then evaluated according to
eqs. (11.41) to (11.48).

13.3.2. Conserved vector current

For the quark-connected diagrams, required for the evaluation of the correlation function of
one conserved and one local vector current, we define three additional contraction stencils.
The first stencil describes quark-connected diagrams originating from correlation functions
of the operators (Vc)

(0) and (Vl)
(0):

H
(x0µi)2(x0µi)1

V
(0)
c V

(0)
l

[Ψ2,Ψ1]

= − 1

|Λ123|
∑

~x2∈Λ123

(1

2
tr
(
γ5 (Ψ2

x2+aµ̂2

x0
1

)† γ5(Uxµ2)†Λi2(γµ2 + 1) Ψ1
x2

x0
1

Λi1γµ1

)

+
1

2
tr
(
γ5 (Ψ2

x2

x0
1
)† γ5Λi2(γµ2 − 1)Uxµ2 Ψ1

x2+aµ̂2

x0
1

Λi1γµ1

))
.

(13.26)

The overall minus sign reflects the closed fermion loop as in eqs. (11.23) to (11.30). This
stencil is utilised to evaluate a large number of diagrams, both of zeroth and first-order:

V
(0)
lV (0)

c =
〈
H
V

(0)
c V

(0)
l

[Ψ(0)[η],Ψ(0)[η]]
〉
η
, (13.27)

V
(0)
lV (0)

c

f

=
〈
H
V

(0)
c V

(0)
l

[Ψ(0)[η],Ψ
(0)
Vqqf

[η]]
〉
η
, (13.28)

V
(0)
lV (0)

c

f

=
〈
H
V

(0)
c V

(0)
l

[Ψ
(0)
Vqqf

[η],Ψ(0)[η]]
〉
η
, (13.29)
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V
(0)
lV (0)

c =
〈
H
V

(0)
c V

(0)
l

[Ψ(0)[η],Ψ
(0)
VqqγγΣ[η]]

〉
η
, (13.30)

V
(0)
lV (0)

c =
〈〈
H
V

(0)
c V

(0)
l

[Ψ(0)[η],Ψ
(0)

Vqqγ

√
ΣVqqγ

√
Σ

[η, J, J ]]
〉
η

〉
J
, (13.31)

V
(0)
lV (0)

c =
〈
H
V

(0)
c V

(0)
l

[Ψ
(0)
VqqγγΣ[η],Ψ(0)[η]]

〉
η
, (13.32)

V
(0)
lV (0)

c =
〈〈
H
V

(0)
c V

(0)
l

[Ψ
(0)

Vqqγ

√
ΣVqqγ

√
Σ

[η, J, J ],Ψ(0)[η]]
〉
η

〉
J
, (13.33)

V
(0)
lV (0)

c =
〈〈
H
V

(0)
c V

(0)
l

[Ψ
(0)

Vqqγ

√
Σ

[η, J ],Ψ
(0)

Vqqγ

√
Σ

[η, J ]]
〉
η

〉
J
. (13.34)

The second stencil is used to compute diagrams with one photon line attached to the
conserved vector current:

H
(x0µi)2(x0µi)1

V
( 1
2 )

c V
(0)
l

[Ψ2,Ψ1, A]

= − 1

|Λ123|
∑

~x2∈Λ123

·
(
− i

2
a tr

(
γ5 (Ψ2

x2+aµ̂2

x0
1

)† γ5(Uxµ2)†QΛi2(γµ2 + 1) Ψ1
x2

x0
1

Λi1γµ1

)
Axµ2

+
i

2
a tr

(
γ5 (Ψ2

x2

x0
1
)† γ5Λi2Q(γµ2 − 1)Uxµ2 Ψ1

x2+aµ̂2

x0
1

Λi1γµ1

)
Axµ2

)
.

(13.35)

In particular, it is used to evaluate the two diagrams

V
(0)
lV

( 12 )
c =

〈〈
H
V

( 1
2 )

c V
(0)
l

[Ψ(0)[η, J ],Ψ
(0)

Vqqγ

√
Σ

[η, J ], A[J ]]
〉
η

〉
J
, (13.36)

V
(0)
lV

( 12 )
c =

〈〈
H
V

( 1
2 )

c V
(0)
l

[Ψ
(0)

Vqqγ

√
Σ

[η, J ],Ψ(0)[η, J ], A[J ]]
〉
η

〉
J
. (13.37)
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The third stencil describes the class of quark-connected diagrams with a photon loop
attached to the conserved vector current:

H
(x0µi)2(x0µi)1

(Vc)
(1)

e2
Σ(Vl)(0)

[Ψ2,Ψ1]

= −1

2

1

|Λ123|
∑

~x2∈Λ123

·
(
− 1

2
a2 tr

(
γ5 (Ψ2

x2+aµ̂2

x0
1

)† γ5(Uxµ2)†Q2Λi2(γµ2 + 1) Ψ1
x2

x0
1

Λi1γµ1

)
Σxµ2xµ2

− 1

2
a2 tr

(
γ5 (Ψ2

x2

x0
1
)† γ5Λi2Q2(γµ2 − 1)Ux2µ Ψ1

x2+aµ̂2

x0
1

Λi1γµ1

)
Σxµ2xµ2

)
.

(13.38)

The factor −1
2 appears due to the closed fermion loop and the symmetry factor associated

to the photon loop attached to the same vertex as in eq. (13.25). There is only one diagram
for which this stencil is used:

V
(0)
lV (1)

c =
〈
H

(Vc)
(1)

e2
Σ(Vl)(0) [Ψ

(0)[η],Ψ(0)[η]]
〉
η
. (13.39)

13.4. Renormalisation of the local electromagnetic current

In order to calculate the HVP using local electromagnetic current operators, we have
to determine the renormalisation pattern of Vγl . In QCD+QED, local flavour-neutral
vector currents are not protected from mixing under renormalisation. Treating isospin-
breaking effects perturbatively, it is reasonable to consider an operator basis with definite
transformation behaviour under isospin rotations. It is convenient to consider the operator
basis introduced in eq. (13.4). V0

l and V8
l are isosinglet vector currents, whereas V3

l

belongs to the isotriplet vector currents. For a given µ, the flavour-neutral vector currents
V iµl with i = 0, 3, 8 are prone to mixing under renormalisation, such that we have to
introduce a matrix of renormalisation factors with entries ZVi2l,RV

i1
l

and i2, i1 = 0, 3, 8 to

ensure the correct multiplicative renormalisation. In vector-matrix notation, the bare and
renormalised vector currents are related by

VR = ZVRVV. (13.40)

The latter choice for the operator basis is convenient, because it leads to vanishing entries
in the zeroth-order mixing matrix. Due to lattice symmetries, the renormalisation factors
of the spatial components of the vector current are identical. This is not necessarily
the case for the temporal component, as the temporal extent of the lattice differs from
the spatial one. Equality should, however, be found in the large volume limit. In the
following discussion, we only consider the spatial components, as only those are required
for the computation of the hadronic vacuum polarisation (HVP) function via the time-
momentum representation [33]. In the case of open boundary conditions, the translational
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13.4. Renormalisation of the local electromagnetic current

invariance in the temporal direction is broken. Considering vector currents located far
away from the boundaries, we expect the renormalisation factors to have negligible time
dependency. As the conserved vector current Vc is assumed to renormalise trivially, the
corresponing renormalisation matrix is unity:

ZVc,RVc = 1. (13.41)

Combining eqs. (13.3) and (13.40), we can relate the renormalised electromagnetic current
to the bare flavour diagonal vector currents, defined in eqs. (13.4) and (13.5):

VγR = V3
R +

1√
3
V8

R =
∑

i=0,3,8

(
ZV3

RVi
+

1√
3
ZV8

RVi
)
V i. (13.42)

Making use of eq. (13.41), we check consistency, if the renormalised conserved electromag-
netic current is in fact identical to the bare conserved electromagnetic current:

Vγc,R = V3
c,R +

1√
3
V8

c,R =
∑

i=0,3,8

(
ZV3

c,RVic
+

1√
3
ZV8

c,RVic

)
V ic

= V3
c +

1√
3
V8

c = Vγc . (13.43)

13.4.1. Renormalisation condition

In order to fix the renormalisation factors in eq. (13.40), we have to introduce a renor-
malisation condition. This renormalisation condition is by no means unique. We demand
that the matrix element 〈0|VR|V 〉 of the renormalised operators is the same for both
discretisations [98, 260],

〈0|Vc,R|V 〉 = 〈0|Vl,R|V 〉, (13.44)

where |V 〉 denotes the lowest accessible excitation of the vacuum created by the operators

Vc and Vl. This matrix element can be extracted from the correlation function 〈Vx
0
2

R V
x0

1
R 〉

for large time distances x0
1 � x0

2, i.e. the renormalisation condition becomes

〈Vx
0
2

c,RV
x0

1
l,R〉 − 〈V

x0
2

l,RV
x0

1
l,R〉 → 0. (13.45)

The renormalised correlation functions are related with their bare counterparts via the
renormalisation factors matrices defined in eq. (13.40). Therefore, we find

ZVc,RVc〈V
x0

2
c Vx

0
1

l 〉ZVl,RVl

T − ZVl,RVl
〈Vx

0
2

l V
x0

1
l 〉ZVl,RVl

T → 0. (13.46)

Multiplying by the inverse of ZVl,RVl
T from the right, we obtain the asymptotic condition

〈Vx
0
2

c Vx
0
1

l 〉 − ZVl,RVl
〈Vx

0
2

l V
x0

1
l 〉 → 0. (13.47)
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on N200. The selected fits are marked in grey.

After averaging eq. (13.47) over the spatial components of the vector currents, we can
express the latter in terms of the correlation functions defined in eq. (13.8), reading

Ccl(t2, t1)− ZVl,RVl
Cll(t2, t1)→ 0. (13.48)

In order to extract the renormalisation constants from the correlation functions Cll and
Ccl, first we define, similar to the effective mass in section 10.4, a matrix of effective
time-dependent renormalisation factors

Zeff,Vl,RVl
(t2, t1) = Ccl(t2, t1)

(
Cll(t2, t1)

)−1 → ZVl,RVl
. (13.49)

As we treat isospin breaking effects perturbatively, we have to expand this definition order
by order, finding for the zeroth-order contribution

(Zeff,Vl,RVl
)(0)(t2, t1) = (Ccl(t2, t1))(0)

(
(Cll(t2, t1))(0)

)−1 → (ZVl,RVl
)(0). (13.50)

and for the first-order contribution

(Zeff,Vl,RVl
(t2, t1))

(1)
l = (Ccl(t2, t1))

(1)
l

− (Ccl(t2, t1))(0)
(
(Cll(t2, t1))(0)

)−1
(Cll(t2, t1))

(1)
l )
(
(Cll(t2, t1))(0)

)−1

→ (ZVl,RVl
)
(1)
l . (13.51)

Second, we fit the effective renormalisation factor to a constant. The fit intervals are
chosen so that χ2

cor/dof is closest to 1 and the fit parameters (ZVl,RVl
)(0) and (ZVl,RVl

)(1)

are stable under the variation of both fit interval boundaries. This minimises existed state
and boundary effects.

In the following, we discuss the results in more detail on the basis of computations on
the ensemble N200. Figures 13.1 to 13.9 and figs. 13.10 to 13.18 show the fit to the zeroth-
and first-order contributions, respectively. The zeroth-order contribution to the matrix of
renormalisation factors reads

(ZVl,RVl
)(0) =




0.6681(4) 0.0 0.00311(23)
0.0 0.6703(5) 0.0

0.00311(23) 0.0 0.66598(22)


 . (13.52)
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Figure 13.11.: Parameters of the fits to the effective renormalisation factor (Zeff,V0
l,RV
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on N200. The selected fits are marked in grey.
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Figure 13.13.: Parameters of the fits to the effective renormalisation factor (Zeff,V3
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on N200. The selected fits are marked in grey.
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Figure 13.14.: Parameters of the fits to the effective renormalisation factor (Zeff,V3
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Figure 13.15.: Parameters of the fits to the effective renormalisation factor (Zeff,V3
l,RV
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on N200. The selected fits are marked in grey.
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Figure 13.16.: Parameters of the fits to the effective renormalisation factor (Zeff,V8
l,RV
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on N200. The selected fits are marked in grey.
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Figure 13.18.: Parameters of the fits to the effective renormalisation factor (Zeff,V8
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on N200. The selected fits are marked in grey.
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The vanishing entries are consistent with the fact that vector currents with different isospin
quantum numbers do not mix in the isosymmetric theory, as already anticipated in sec-
tion 13.4. Only the isosinglet vector currents V0

l and V8
l have non-vanishing mixing factors.

This is still the case when quark-disconnected contributions are considered in addition.
The various first-order contributions to the renormalisation matrix read

(ZVl,RVl
)
(1)
∆amu

=



−0.15(7) −0.18(8) −0.11(5)
−0.18(8) −0.22(10) −0.13(6)
−0.11(5) −0.13(6) −0.075(34)


 , (13.53)

(ZVl,RVl
)
(1)
∆amd

=



−0.15(7) 0.18(8) −0.11(5)
0.18(8) −0.22(10) 0.13(6)
−0.11(5) 0.13(6) −0.075(34)


 , (13.54)

(ZVl,RVl
)
(1)
∆ams

=



−0.1895(11) 0.0 0.2679(15)

0.0 0.0 0.0
0.2679(15) 0.0 −0.3789(21)


 , (13.55)

(ZVl,RVl
)
(1)
∆β =




1.81(21) 0.0 0.12(5)
0.0 1.89(17) 0.0

0.12(5) 0.0 1.74(26)


 , (13.56)

(ZVl,RVl
)
(1)
e2

=



−0.041(8) −0.024(6) −0.012(6)
−0.024(6) −0.049(12) −0.017(4)
−0.012(6) −0.017(4) −0.033(4)


 . (13.57)

Vanishing components in (ZVl,RVl
)
(1)
∆ms

may receive contributions from quark-disconnected
diagrams, which have not been considered. Inserting the values for the expansion param-
eters in eq. (9.4), we find:

ZVl,RVl
=




0.6681(4) 0.0 0.00311(23)
0.0 0.6703(5) 0.0

0.00311(23) 0.0 0.66598(22)




(0)

+



−0.0016593(16) −0.000919(34) −0.0005236(14)
−0.000919(34) −0.0020295(6) −0.000650(24)
−0.0005236(14) −0.000650(24) −0.0012894(27)




(1)

=




0.6664(4) −0.000919(34) 0.00258(23)
−0.000919(34) 0.6683(5) −0.000650(24)

0.00258(23) −0.000650(24) 0.66469(22)


 . (13.58)

13.5. Discussion and Outlook

In this chapter, we have computed renormalisation factors for flavour-neutral local vector
currents including operator mixing. We give an overview of the results for the ensembles
N200, D450 and H102 in table 13.1. We find that the first-order corrections are larger
than the error of the zeroth-order contribution, such that isospin breaking effects cannot
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13. Vector current renormalisation

ZVl,RVl




0.6681(4) 0.0 0.00311(23)
0.0 0.6703(5) 0.0

0.00311(23) 0.0 0.66598(22)




(0)

+



−0.0016593(16) −0.000919(34) −0.0005236(14)
−0.000919(34) −0.0020295(6) −0.000650(24)
−0.0005236(14) −0.000650(24) −0.0012894(27)




(1)

=




0.6664(4) −0.000919(34) 0.00258(23)
−0.000919(34) 0.6683(5) −0.000650(24)

0.00258(23) −0.000650(24) 0.66469(22)




(a) N200 (a = 0.064 fm, mπ = 282 MeV)

ZVl,RVl




0.642505(13) 0.0 0.005615(23)
0.0 0.646530(14) 0.0

0.005615(23) 0.0 0.63922(6)




(0)

+



−0.001542(19) −0.000871(20) −0.000511(12)
−0.000871(20) −0.0019977(23) −0.000592(27)
−0.000511(12) −0.000592(27) −0.001243(5)




(1)

=




0.640963(31) −0.000871(20) 0.005103(11)
−0.000871(20) 0.644533(12) −0.000592(27)
0.005103(11) −0.000592(27) 0.63798(5)




(b) D450 (a = 0.076 fm, mπ = 216 MeV)

ZVl,RVl




0.61737(35) 0.0 0.001623(6)
0.0 0.61856(28) 0.0

0.001623(6) 0.0 0.61585(35)




(0)

+



−0.001533(5) −0.0008691(34) −0.000527(10)
−0.0008691(34) −0.001910(5) −0.0006145(24)
−0.000527(10) −0.0006145(24) −0.001167(20)




(1)

=




0.61583(35) −0.0008691(34) 0.001097(16)
−0.0008691(34) 0.61665(27) −0.0006145(24)

0.001097(16) −0.0006145(24) 0.61468(33)




(c) H102 (a = 0.086 fm, mπ = 354 MeV)

Table 13.1.: Renormalisation factors for flavour-neutral local vector currents.
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be neglected. Comparing the diagonal entries of the matrix of renormalisation factors with
respect to the lattice spacing, we find that the smaller the lattice spacing the larger the
renormalisation factors. This is consistent with the fact that the renormalisation factors
should approach 1 in the continuum limit [229].

The main advantage of the chosen renormalisation condition is that no additional cor-
relation functions had to be computed. The vector-vector correlation function is both
used for the determination of the renormalisation factors, as well as for the the hadronic
vacuum polarisation. The major disadvantage of this condition is the fact, that it relies
on a correlation function which suffers from a signal-to-noise problem at long time dis-
tances, where the renormalisation factors are extracted. This problem becomes manifest
in some of the first-order contributions to the effective renormalisation factor, where it is
not completely clear whether the asymptotic plateau has already been reached due to the
loss of the signal.

We have tried to extent the analysis of the vector-vector correlation function not only
considering quark-connected contributions, but also zeroth-order isosymmetric quark-
disconnected and first-order quark-disconnected QED-connected contributions. We have
described this effort in section 11.5 and [262]. For the vector-vector correlation function,
we applied an additional noise reduction technique based on hierarchical probing [263].
In contrast to the pseudo-scalar channel, we were not able to extract a signal at the con-
sidered level of stochastic precision. The vector channel is much noisier compared to the
pseudoscalar channel, such that more stochastic quark sources and Hadamard vectors [263]
have to be used. Compared to pure QCDiso, QCD+QED calculations based on our com-
putational setup become very expensive due to the additional solves of the Dirac equation,
which are required for the computation of sequential propagators. Therefore, we omit the
results for this particular calculation. To reduce the computational costs to an acceptable
level, we suggest to apply frequency-splitting estimators for the quark-disconnected dia-
grams [264, 265]. In [262], we gave an outlook on how to apply this concept to calculations
including leading isospin breaking effects.

As already mentioned in the beginning of section 13.4.1, the choice of renormalisation
conditions is not unique. A condition that avoids the signal-to-noise ratio problem of the
vector-vector correlator would let us determine the renormalisation factors more reliably,
and thus would be preferable. In pure lattice QCD, the fact that the conserved vector cur-
rent fulfils the vector Ward identity [202] can be used to define a renormalisation condition
for the point-like vector current. This method is based on the evaluation of a three-point
correlation function with two pseudo-scalar operators and one vector operator, as well
as a two-point correlation function of two pseudo-scalar operators. As the calculation is
performed in the pseudo-scalar channel, the signal-to-noise problem for large time sepa-
rations is absent. This method was used in the Nf = 2 CLS determination of the HVP
contribution to the anomalous magnetic moment of the muon [266, 267], as well as in the
corresponding Nf = 2 + 1 calculations [187, 261, 268], where on-shell O(a)-improvement
was deployed [229]. As the flavour diagonal conserved vector current in QCD+QED de-
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13. Vector current renormalisation

fined in eqs. (13.2) and (13.5) also fulfils a vector Ward identity

〈 3∑

µ=0

(
−→
∂ µBV

µ
F)xO[Υ]

〉
=
〈

i
δO[T[ε][Υ]]

δεx

∣∣∣
ε=0

〉
, (6.46)

we propose to apply the method described above for the determination of the renor-
malisation factors excluding O(a)-improvement. Full O(a)-improvement of QCD+QED
is non-trivial due to the large number of additional improvement coefficients. Also, it is
questionable whether the Symanzik improvement programme can be applied to QEDL [44]
as already mentioned in section 4.5.3. The perturbative expansion of correlation functions
with three mesonic operators, which are required for the Ward identity method, leads to an
even larger number of diagrams with a more complex structure in comparison to two-point
functions, such that the evaluation becomes also expensive with respect to computing re-
sources. Nevertheless, such a determination would result in the precise knowledge of

(ZVl,RVl
)(0) to O(a2) and (ZVl,RVl

)
(1)
l to O(a), i.e. the overall determination is O(a2, a∆ε).
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14. The hadronic vacuum polarisation
function

The vacuum polarisation function, built from two electromagnetic currents, quantifies
the polarisability of the vacuum by the passage of a photon, i.e. the magnitude of the
creation and annihiliation of pairs of virtual particles and anti-particles depending on the
photon’s momentum. In particular, we are interested in the case in which these virtual
particles are quarks. This hadronic contribution to the vacuum polarisation function is
a crucial ingredient in various high-precision determinations of physical observables [269,
270], such as the anomalous magentic moment of the muon [31–33] and the running of the
electromagnetic coupling [271, 272]. For large momenta, the hadronic vacuum polarisation
(HVP) function can be calculated by perturbation theory, making use of the asymptotic
freedom of QCD. For low energies, it can be determined from experimental measurements
of cross-sections via a dispersion relation [270]. We aim at a first-principle computation by
means of lattice QCD including leading isospin breaking effects, based on the vector-vector
correlation functions introduced in chapter 13.

14.1. The hadronic vacuum polarisation function

The hadronic vacuum polarisation tensor in Euclidean continuum spacetime in QCD+QED
is defined as the QCD-connected expectation value

ΠVγµ2Vγµ1 (p) =

∫
d4x exp(ipµxµ)〈Vγxµ2Vγ0µ1〉QCD−con (14.1)

of two electromagnetic currents

Vγxµ = ΨxQγµΨx. (14.2)

The restriction to the QCD-connected part of the expectation value has the following
reason: The hadronic vacuum polarisation tensor is a building block for the construction
of the dressed photon propagator in a perturbative expansion with respect to QED. QCD-
disconnected QED-connected diagrams contribute to dressed photon propagators with
multiple insertions of the HVP tensor. Due to the QCD+QED vector Ward identity,
we have pµ2ΠVγµ2Vγµ1 (p) = 0, i.e. ΠVγµ2Vγµ1 (p) is proportional to the projector δµ2µ1 −
pµ2pµ1/p2. Consequently, the vacuum polarisation tensor can be written as a product of
the Euclidean structure and the dimensionless vacuum polarisation function ΠVγVγ (p2):

ΠVγµ2Vγµ1 (p) = (p2δµ2µ1 − pµ1pµ2)ΠVγVγ (p2). (14.3)
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14. The hadronic vacuum polarisation function

ΠVγVγ is logarithmically divergent and has to be renormalised [33]. We define the sub-
tracted vacuum polarisation function Π̂VγVγ

Π̂VγVγ (p2) = ΠVγVγ (p2)−ΠVγVγ (0), (14.4)

which satisfies the on-shell renormalisation condition Π̂VγVγ (0) = 0, i.e. the polarisation
contribution of the vacuum to the dressed photon propagator vanishes in the infrared
limit.

14.2. Time-momentum representation of the hadronic vacuum
polarisation function in the continuum

In principle, eq. (14.1) can be evaluated on a spacetime lattice replacing the continuum
Fourier transform by its discrete counterpart. In order to calculate the subtracted vac-
uum polarisation function Π̂VγVγ , ΠVγVγ (0) has to be determined in the regulated theory.
ΠVγVγ (0) cannot directly be extracted from ΠVγµ2Vγµ1 (p) as the factor (p2δµ2µ1 − pµ1pµ2),
which relates the two quantities, vanishes at p = 0. Π̂VγVγ (0) can only be obtained by an
extrapolation from small momenta. In this approach one faces two issues: The statistical
accuracy deteriorates for smaller p2. In addition, on a spacetime lattice only a finite set
of momenta is accessible. A possibility to overcome the latter problem is the introduction
of twisted boundary conditions [273–275].

In this thesis, we follow a different approach. It is possible to represent the sub-
tracted hadronic vacuum polarisation function in continuum and Euclidean infinite-volume
QCD+QED in the time-momentum representation [270], reading

Π̂VγVγ (p2) δµ2µ1 =

∫ ∞

0
dx0K(p2, x0)

∫
dx3 〈Vγxµ2Vγ0µ1〉QCD−con (14.5)

with the integration kernel

K(p2, t) = − 1

p2

(
p2t2 − 4 sin2

(pt
2

))
. (14.6)

Relying on this representation, one avoids the requirement to determine Π̂VγVγ (0), as
Π̂VγVγ is computed directly. Although the computation of the subtracted hadronic vacuum
polarisation function is conceptually simple in this approach, one faces the problem that
the vector-vector correlation function suffers from a signal to noise problem at large time
distances, i.e. the IR problem, which is also present for small momenta in the computation
based on the Fourier transform, persists.
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14.3. The renormalised hadronic vacuum polarisation function in
lattice QCD+QED

In order to define the renormalised hadronic vacuum polarisation function, we have to
express Π̂VγRV

γ
R

in terms of the bare correlation functions CVi2d2V
i1
l

, reading

CVi2d2V
i1
l

(x0
2, x

0
1) =

1

3

3∑

µ=1

〈Vx
0
2µi2

d2
Vx

0
1µi1

l 〉 d2 = l, c i2, i1 = 0, 3, 8. (13.8)

The correlation function CVγd2,RV
γ
l,R

of two renormalised electromagnetic currents is ob-

tained from eq. (13.8) applying the renormalisation factors from eq. (13.42):

CVγd2,RV
γ
l,R

=
∑

i2,i1

(
ZV3

d2,R
Vi2d2

+
1√
3
ZV8

d2,R
Vi2d2

)(
ZV3

l,RV
i1
l

+
1√
3
ZV8

l,RV
i1
l

)
CVi2d2V

i1
l

. (14.7)

As we can only access the correlation function CVγRV
γ
R

(x0
2, x

0
1) on a discrete set of time

separations, we replace the integration in eq. (14.5) by a discrete summation. In principle,
it is also possible to approximate the integration by a higher-order quadrature [266], such
as the trapezoidal rule or the analytic integration of a spline interpolation, but there
is no relevant advantage over performing a simple summation. In chapter 13, we have
observed that the vector-vector correlation function shows a noise problem at large time
distances. For the determination of the hadronic polarisation function we, however, have
to integrate over the entire time range. The naive integral possesses a growing uncertainty,
such that no information can be extracted. A possibility to circumvent this problem is
the reconstruction of the correlation function at large time distances. As discussed in
chapter 10, all Euclidean two-point correlation functions can be decomposed into linear
combinations of exponential functions, whose decay rates are characterised by the masses of
the corresponding states. At large time distances, only the states with the smallest masses
contribute, such that the behaviour of the correlation function can be entirely described in
terms of these states. In this thesis, we reconstruct the vector-vector correlation function
only considering the ground state contribution, i.e. the correlation function is replaced in
the integration by its zeroth-order reconstruction

(CVγRV
γ
R,rec(t2, t1))(0) = c(0) exp(−m(0)(t2 − t1)) (14.8)

and its first-order reconstruction

(CVγRV
γ
R,rec(t2, t1))

(1)
l = (c

(1)
l − c(0)m

(1)
l (t2 − t1)) exp(−m(0)(t2 − t1)). (14.9)

We denote the time at which we switch from the measured correlation function to its
reconstruction as x0

swi. In addition, as the lattice is finite in the temporal direction, we
have to truncate the infinite summation, before boundary effects set in. We call the
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14. The hadronic vacuum polarisation function

time separation, at which we truncate the summation, x0
cut. Eventually, we compute the

zeroth-order contribution of the hadronic vacuum polarisation function according to

(Π̂VγRV
γ
R

(p2))(0) =

x0
swi∑

x0=0

K(p2, x0)(CVγRV
γ
R

(x0, 0))(0)

+

x0
cut∑

x0=x0
swi+1

K(p2, x0) (CVγRV
γ
R,rec(x

0, 0))(0).

(14.10)

For the expansion parameters l = ∆mu,∆md,∆ms,∆β the first-order contribution reads

(Π̂VγRV
γ
R

(p2))
(1)
l =

x0
swi∑

x0=0

K(p2, x0)(CVγRV
γ
R

(x0, 0))
(1)
l

+

x0
cut∑

x0=x0
swi+1

K(p2, x0) (CVγRV
γ
R,rec(x

0, 0))
(1)
l .

(14.11)

In contrast, we have to additionally substract the QCD-disconnected part [276] for the
expansion parameters l = e2:

(Π̂VγRV
γ
R

(p2))
(1)
e2

=

x0
swi∑

x0=0

K(p2, x0)(CVγRV
γ
R

(x0, 0))
(1)
e2

+

x0
cut∑

x0=x0
swi+1

K(p2, x0) (CVγRV
γ
R,rec(x

0, 0))
(1)
e2

−
(

(Π̂VγRV
γ
R

(p2))(0)
)2
.

(14.12)

As stated in chapter 13, we only consider quark-connected contributions to the vector-
vector correlation function. Hence, we do not have to manually subtract the QCD-
disconnected part for the moment, as it is absent in our current analysis.

14.3.1. Π̂VγRV
γ
R

from CVγc,RV
γ
l,R

The subtracted hadronic vacuum polarisation function Π̂VγRV
γ
R

can be extracted from the
correlation function CVγc,RV

γ
l,R

, where both the local and conserved vector current have been

used. Hence, the renormalisation factors for the local vector current contribute only once
in eq. (14.7). As discussed in the previous section, we first determine the mass and the
proportionality factor of the lowest accessible state of CV γc,RV

γ
l,R

in order to reconstruct the

correlation function at long time differences. The relevant fits are depicted in figs. 14.1
and 14.2 for the zeroth-order and first-order contribution, respectively. We obtain the fit
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N200. The selected fit is marked in grey. The grey lines enclose the fit
interval.

results c and am in dimensionless units:

c = − 0.00032(6)

− 0.0034(16) a∆mu − 0.00024(12) a∆md + 0.0065(7) a∆ms

+ 0.044(19) ∆β − 0.00031(17) e2,

(14.13)

am = 0.258(9)

+ 2.9(4) a∆mu + 0.210(32) a∆md − 0.11(15) a∆ms

− 14(7) ∆β + 0.31(4) e2.

(14.14)

We insert the results into eqs. (14.8) and (14.9) and determine the reconstrcution of cor-
relation function CVγc,RV

γ
l,R,rec according to eqs. (14.10) to (14.12). We determine x0

swi and

x0
cut observing the dependence of Π̂Vγc,RV

γ
l,R

evaluated at p2 = 1 GeV2 on the latter quan-

tities. The results are displayed in figs. 14.3 and 14.4. x0
swi is selected within the interval

used to fit the asymptotic behaviour, avoiding the growing noise. x0
cut has to be cho-

sen large enough, such that the excluded contributions from even larger time separations
are negligible compared to the overall statistical precision. The results are depicted in
figs. 14.5 and 14.6 for the zeroth- and the individual first-order contributions, respectively.
We observe that an increase in the quark masses consistently leads to a decrease in the
vacuum polarisation function for all quark flavours. The total first-order contribution,
including the expansion parameters ∆ε, is displayed in fig. 14.6.

14.3.2. Π̂VγRV
γ
R

from CVγl,RV
γ
l,R

Similarly, Π̂VγRV
γ
R

can also be extracted from the correlation function CVγl,RV
γ
l,R

. In this

setup, the matrix of renormalisation factors ZVl,RVl
enters twice in eq. (14.7), as both
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vector currents renormalise non-trivially. We omit a detailed discussion, which does not
give any new insights, and refer to the next section for the results.

14.4. Discussion and Outlook

In this chapter, we have determined the quark-connected contributions to the hadronic
vacuum polarisation function. An overview of the results for the ensembles N200, D450
and H102 is displayed in fig. 14.8 and in table 14.1. For small energies, the results of
the two considered discretisations are compatible, whereas they start to differ for larger
energies. This is not a sign of an inconsistency, as no extrapolation to the continuum limit
was performed, i.e. the two discretisations may differ by lattice artifacts. Nevertheless,
the definition of the renormalisation condition of the local vector current, which depends
on the lightest state accessible via the vector-vector correlation function, ensures that
both discretisations lead to compatible results for the HVP function in the low energy
regime. We are able to determine the isosymmetric contribution to the hadronic vacuum
polarisation function (Π̂VγRV

γ
l,R

)(0) with a relative statistical precision of O(1%) at 1 GeV2.

The dominant contribution to the total error comes from the scale setting uncertainty.
The first-order corrections (Π̂VγRV

γ
l,R

)(1) are O(1%) of the isosymmetric contribution at

1 GeV2, such that they are of the same order of magnitude as the error of the isosymmetric
contribution. First-order effects are equipped with an error between O(10%) and O(100%),
depending on the considered ensemble.

In this thesis, we neglect isosymmetric quark-disconnected contributions, which con-
tribute with a magnitude of O(5−10)% of the quark-connected isosymmetric contribution
at 1 GeV2 [277]. Contributions from the charm quark, which can only be treated in the
quenched approximation, as the gauge configurations were generated without a dynami-
cal charm quark, are of similar magnitude [277]. Both contributions should be added for
completeness in the future. Further neglected subleading contributions arise form first-
order quark-disconnected diagrams, which presumably give corrections smaller than the
considered first-order quark-connected diagrams [200].

In this analysis, we have used a very simple model for the reconstruction of the vector-
vector correlation function at large time distances, as we only consider a single state to
describe the asymptotic behaviour of the correlation function. In principle, it is possible to
improve the reconstruction by taking further states into account [261, 268]. For ensembles
with light pion masses, the observed asymptotic state is in fact a superposition of multi-
pion states with relative angular momentum. These states are associated with the ρ0

and ω resonances. We cannot entangle these states directly, as the signal deteriorates too
fast. Nevertheless, a dedicated GEVP spectroscopy analysis based on an extended set
of interpolation operators suited for multi-pion states can be performed at least in the
isosymmetric theory [64, 278].

Another approach to deal with the signal-to-noise problem of the vector-vector cor-
relation function at large time distances is the bounding method [245, 279]. Instead of
replacing the correlation function by a reconstruction for times larger than x0

swi, one de-
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p2 [GeV2] Π̂V γl,RV
γ
l,R

[1] Π̂V γc,RV
γ
l,R

[1]

1.0 (0.03117(21)st(36)a[41]tot)
(0)

+ (0.000054[19]tot)
(1)

(0.03071(22)st(35)a[41]tot)
(0)

+ (0.000054[20]tot)
(1)

3.0 (0.04918(23)st(39)a[45]tot)
(0)

+ (0.000094[21]tot)
(1)

(0.04779(23)st(36)a[42]tot)
(0)

+ (0.000081[21]tot)
(1)

5.0 (0.05781(23)st(39)a[45]tot)
(0)

+ (0.000114[21]tot)
(1)

(0.05555(24)st(34)a[41]tot)
(0)

+ (0.000090[21]tot)
(1)

7.0 (0.06352(24)st(39)a[46]tot)
(0)

+ (0.000129[22]tot)
(1)

(0.06044(24)st(33)a[40]tot)
(0)

+ (0.000095[21]tot)
(1)

9.0 (0.06779(24)st(39)a[46]tot)
(0)

+ (0.000141[22]tot)
(1)

(0.06394(24)st(32)a[39]tot)
(0)

+ (0.000098[21]tot)
(1)

(a) N200 (a = 0.064 fm, mπ = 282 MeV)

p2 [GeV2] Π̂V γl,RV
γ
l,R

[1] Π̂V γc,RV
γ
l,R

[1]

1.0 (0.03266(15)st(39)a[42]tot)
(0)

+ (0.000138[29]tot)
(1)

(0.03200(16)st(37)a[41]tot)
(0)

+ (0.000120[29]tot)
(1)

3.0 (0.05052(16)st(41)a[44]tot)
(0)

+ (0.000188[30]tot)
(1)

(0.04861(17)st(37)a[41]tot)
(0)

+ (0.000154[30]tot)
(1)

5.0 (0.05900(16)st(41)a[44]tot)
(0)

+ (0.000212[30]tot)
(1)

(0.05597(17)st(35)a[39]tot)
(0)

+ (0.000164[31]tot)
(1)

7.0 (0.06458(16)st(41)a[44]tot)
(0)

+ (0.000229[30]tot)
(1)

(0.06053(17)st(33)a[37]tot)
(0)

+ (0.000169[31]tot)
(1)

9.0 (0.06871(16)st(41)a[44]tot)
(0)

+ (0.000242[30]tot)
(1)

(0.06375(17)st(31)a[36]tot)
(0)

+ (0.000173[31]tot)
(1)

(b) D450 (a = 0.076 fm, mπ = 216 MeV)
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p2 [GeV2] Π̂V γl,RV
γ
l,R

[1] Π̂V γc,RV
γ
l,R

[1]

1.0 (0.02876(10)st(35)a[36]tot)
(0)

+ (0.000112[11]tot)
(1)

(0.02797(11)st(33)a[35]tot)
(0)

+ (0.000104[11]tot)
(1)

3.0 (0.04562(11)st(38)a[39]tot)
(0)

+ (0.000155[12]tot)
(1)

(0.04339(12)st(33)a[35]tot)
(0)

+ (0.000129[12]tot)
(1)

5.0 (0.05366(11)st(38)a[40]tot)
(0)

+ (0.000176[12]tot)
(1)

(0.05017(12)st(31)a[33]tot)
(0)

+ (0.000136[12]tot)
(1)

7.0 (0.05891(12)st(37)a[39]tot)
(0)

+ (0.000192[12]tot)
(1)

(0.05432(12)st(29)a[31]tot)
(0)

+ (0.000140[13]tot)
(1)

9.0 (0.06277(12)st(37)a[39]tot)
(0)

+ (0.000203[13]tot)
(1)

(0.05721(12)st(27)a[29]tot)
(0)

+ (0.000142[13]tot)
(1)

(c) H102 (a = 0.086 fm, mπ = 354 MeV)

Table 14.1.: Zeroth- and first-order contribution to the hadronic vacuum polarisation
function (Π̂VγRV

γ
R

)(0) and (Π̂VγRV
γ
R

)(1) from the discretisations Π̂VγRV
γ
l,R

and

Π̂Vγl,RV
γ
l,R

.

rives, based on the spectral decomposition of C, for x0
swi ≤ x0 the inequalities

0 < C(x0
swi) exp(−meff(x0

swi) (x0 − x0
swi)) ≤ C(x0), (14.15)

C(x0) ≤ C(x0
swi) exp(−m0(x0 − x0

swi)), (14.16)

which limit C(x0) from below and above. meff denotes the effective mass associated to
the correlation function C and m0 is the smallest mass of the spectral representation of
C. It is not obvious that the bounding method can be applied for individual contributions
of the perturbative expansion. Nevertheless, it is applicable to the combined zeroth- and
first-order contributions, after the expansion parameters ∆ε have been fixed. Similar to
the reconstruction method, additional states can be considered in the inequality to narrow
the bounds.

In the literature, various treatments of finite volume effects with regard to the hadronic
vacuum polarisation function are discussed [34, 280]. One possibility is to correct for
QCD finite volume effects using chiral perturbation theory [281, 282], assuming that the
effect can be mainly described by a two-pion state. This framework can also be extended
to QCD+QED. In particular, finite volume effects associated with the electromagnetic
interaction can be treated by scalar QED [199], also taking the electromagnetic charge of
the pions into account. Other approaches to treat QCD finite volume effects [200, 277]
rely on the Lellouch-Lüscher formalism [283–285] in combination with the timelike pion
form factor and the Gounaris-Sakurai parametrisation [286].

As already anticipated in the introduction of this chapter, the hadronic vacuum polari-
sation function Π̂VγVγ is relevant for the computation of several high-precision observables.
It is directly related to the renormalisation of the electromagnetic charge, and hence to the
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14. The hadronic vacuum polarisation function

running of the fine-structure constant αem. In the on-shell scheme, the running coupling
is parametrised as [272, 277]

αem(p2) =
αem

1−∆αem(p2)
, (14.17)

where ∆αem(p2) is the sum of leptonic and hadronic contributions. Leptonic contributions
are commonly calculated by means of perturbation theory. As lattice simulations are
performed in Euclidean spacetime, only spacelike momenta can be accessed in the hadronic
contribution. The latter can be expressed in terms of the hadronic vacuum polarisation
function as

(∆αem)had(−p2) = 4πα Π̂VγVγ (p2). (14.18)

Other quantities, related to the hadronic vacuum polarisation function, are the hadronic
contributions to the anomalous magnetic moments of the leptons e, µ and τ . We will
discuss the case of the muon in more detail in chapter 15.

The hadronic vacuum polarisation function is derived from the expectation value of
two electromagnetic currents, which only couple to quarks. A similar calculation can
be performed in order to determine hadronic contributions to the running of the weak
mixing angle [271, 272, 277, 287–289]. In the on-shell scheme, its energy dependence is
parametrised by

sin2 θW(p2) = sin2 θW(1 + ∆ sin2 θW(p2)), (14.19)

where sin2 θW denotes the value in the low energy limit. Hadronic contributions to
∆ sin2 θW(p2) can be related to the vacuum polarisation function Π̂VZVγ (p2), which de-
scribes the kinetic mixing between the photon on the Z-boson. The vector part of the
current associated to the Z-boson can be decomposed into [288]

VZ = V3 − sin2 θWVγ . (14.20)

Having computed the correlation functions CVi2Vi1 for all i2, i1 = 0, 3, 8, we can easily
construct the correlation function CV3Vγ , which is required for the evaluation of Π̂VZVγ (p2)
in addition to CVγVγ . The hadronic contribution to the running of the weak mixing angle
is then obtain by

(∆ sin2 θW)had(−p2) = − e2

sin2 θW
Π̂VZVγ (p2). (14.21)
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15. The HVP contribution to the muon
anomalous magnetic moment

The anomalous magnetic moment of the muon aµ, which is currently known with a preci-
sion of 0.5 ppm [26], serves as a probe for physics beyond the Standard Model. Comparing
the most accurate theoretical and experimental determinations, one finds a discrepancy
of about 3-4σ [29]. In this chapter, we compute leading isospin breaking effects of the
hadronic vacuum polarisation contribution to aµ, which is the leading order contribution
from QCD and dominates the overall uncertainty. The introductory part of this chapter
is based on the recent review articles [33, 34, 280], the summary article of the Muon g-2
Theory Initiative [29] and the textbook by Jegerlehner [22].

15.1. The anomalous magnetic moment of the muon

The magnetic moment of the muon ~M is related to its spin angular momentum ~S by

~M = gµ
e

2mµ

~S, (15.1)

where gµ denotes the gyromagnetic ratio. The Dirac equation predicts a value of gµ = 2.
Quantum field theoretical effects lead to an alteration of gµ. One defines the anomalous
magnetic moment

aµ =
gµ − 2

2
, (15.2)

which measures the deviation from the Dirac prediction.

15.1.1. Experimental determination

The anomalous magnetic moment of the muon has been measured in three experiments at
CERN [290–292], beginning in the 1960s. The most up-to-date experimental determination
of aµ was made by the E821 experiment at Brookhaven National Laboratory in 2006 [26],
where a value of

a(exp)
µ = 11659208.0(6.3) · 10−10 (15.3)

was found with an uncertainty of 0.54 ppm. In this experiment, accelerated protons are
scattered at a Nickel target. In this process, charged pions are emitted, which decay into
muons and antineutrinos in a decay channel. The muons, which are spin-polarised in this
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15. The HVP contribution to the muon anomalous magnetic moment

decay, feature a spin parallel to the direction of flight. They are injected into a storage
ring in the horizontal plane, which possesses a vertical homogeneous magnetic field ~B.
The muons circulate in the storage ring with the cyclotron angular frequency [22, 26, 293]

~ωc = − q ~B

mµγ
. (15.4)

As the spin of the muon is not aligned with the magnetic field, it starts a Larmor precession
in the horizontal plane with the spin angular frequency [22, 26, 293]

~ωs = −gµq
~B

2mµ
− (1− γ)

q ~B

γm
. (15.5)

The anomalous precession frequency ~ωa describes the precession relative to the muon
momentum and is given by the difference of the cyclotron and the spin frequency [22, 26,
293]

~ωa = ~ωs − ~ωc = −aµ
q ~B

mµ
. (15.6)

In the E821 experiment, electric quadrupoles are used to vertically focus the muon beam in
the storage ring. In the muon rest frame, this electric field is seen as an additional magnetic
field, which affects the spin precession frequency. For a velocity β perpendicular to ~E and
~B, the expression for the anomalous precession frequency is altered to [22, 26, 293]

~ωa = − q

m

(
aµ ~B −

(
aµ −

1

γ2 − 1

) ~β × ~E

c

)
. (15.7)

If one chooses γ = 29.3, which is equivalent to a ”magic” muon momentum of 3.094 GeV/c,
the coefficient

(
aµ − 1

γ2−1

)
vanishes. In this case, the magnetic field ~B of the storage ring

determines the precession frequency alone [22, 26, 293]. The muon finally decays into an
electron, a neutrino and an anti-neutrino. The direction of the electron trajectory and
of the muon spin are correlated due to maximal parity violation of the weak decay. The
electrons are finally detected by an electromagnetic calorimeter. The magnetic field ~B is
measured using nuclear magnetic resonance. It is proportional to the Larmor frequency
of stationary protons ωp = gp

eB
2mp

[293]. The average magnetic field seen by the muons is
described by ω̃p. The anomalous magnetic moment of the muon can now be determined
from [22, 26]

aµ =
ωa

ωL − ωa
=

ωa/ω̃p
ωa/ω̃L − ωa/ω̃p

, (15.8)

where ωL denotes the Larmor precession frequency of the muon. In the experiment the
ration ωa/ω̃L is determined. ωa/ω̃L is extracted from the hyperfine structure of muo-
nium [22, 26, 293].

Currently, there are two new experiments aiming for a reduction of the overall exper-
imental uncertainty by a factor of four: the E989 experiment at Fermilab [294], which
started in 2018, and the E34 experiment at J-PARC, which plans to start in 2024 [295].
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HVP

(a) LO-HVP

HLbL

(b) HLbL

Figure 15.1.: LO-HVP and HLbL contributions to the anomalous magnetic moment of
the muon aµ.

15.1.2. Theoretical prediction

Contribution aµ × 1011 Ref.

QED (order O(α5)) 116 584 718.93± 0.10 [296, 297]
Electroweak 153.6± 1.0 [298, 299]
QCD

HVP (LO) 6 931± 40 [300–305]
HVP (NLO) −98.3± 0.7 [305]
HVP (NNLO) 12.4± 0.1 [306]
HLbL 94± 19 [29, 307]

Total (theory) 116 591 810± 43 [29]

Experiment 116 592 089± 63 [26]

Table 15.1.: Standard Model contributions to the anomalous magnetic moment of
the muon aµ in comparison to the experimental value. Table extracted
from [280].

The Standard Model prediction of the anomalous magnetic moment of the muon [29]

a(theo)
µ = 116591810(43) · 10−11 (15.9)

is known with an uncertainty of 0.39 ppm. It can be split up into the three contributions

aµ = aQED
µ + aQCD

µ + aEW
µ (15.10)

from the electromagnetic, the strong and the electro-weak interaction. The magnitudes of
the various contributions are presented in table 15.1. The largest contribution is given by
QED, which is known up to O(α5) and possesses the smallest absolute and relative error.
The second largest contribution comes from QCD, which contributes most to the overall
error of aµ. The electro-weak contribution is the smallest. The dominant QCD contribu-
tion is given by the LO-HVP contribution, which is proportional to α2 and depicted in
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FHM ’19

Mainz ’19

PACS ’19
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RBC/UKQCD ’18

R-ratio

a
hvp
µ

× 10
10

Figure 15.2.: Left: Results from lattice QCD and the R-ratio for the LO-HVP con-
tribution. The blue band represent the value from table 15.1. Right:
Components of the LO-HVP contribution to aµ from lattice QCD. Figures
extracted from [280].

fig. 15.1. Higher-order QCD contributions entering at α3 are the hadronic light-by-light
(HLbL), depicted in fig. 15.1, and the NLO-HVP contributions, which are represented by
Feynman diagrams with multiple insertions of the HVP function.

Comparing the theoretical prediction and the experimental value in fig. 15.2, one finds
a discrepancy of about 3-4σ [29], such that aµ is a candidate to search for physics beyond
the SM. To achieve a similar precision of the SM prediction as planned for the upcoming
experiments at Fermilab [27] and JPARC [28], the LO-HVP contribution aµ,HVP has to be
determined with a precision of 0.2% [34]. Figure 15.2 depicts the results for the determi-
nations of aµ,HVP. The most accurate predictions originate from a data-driven approach
based on the optical theorem and the dispersion integral [29]

aµ,HVP =
α2

3π2

∫ ∞

m2
π

ds
K(s)

s
R(s). (15.11)

The kernel function is given by [29]

K(s) =
x2

2
(2− x2) +

(1 + x2)(1 + x)2

x2

(
log(1 + x)− x+

x2

2

)
+

1 + x

1− xx
2 log(x) (15.12)

with x =
1−βµ
1+βµ

and βµ =

√
1− 4m2

µ

s . The R-ratio [29]

R(s) =
σ(e+e− → hadrons(+γ))

4πα2

3s

(15.13)

is determined from the cross section σ(e+e− → hadrons(+γ)), which is measured experi-
mentally. However, it is preferable to determine aµ,HVP from an ab-initio calculation based
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15.2. The time-momentum representation of the hadronic vacuum polarisation contribution

on lattice QCD. Only the BMW results from 2020 [200] possess a precision similar to the
approach based on the R-ratio, as depicted in fig. 15.2. Commonly, the LO-HVP con-
tribution to aµ is split into several parts: The connected light, strange and charm quark
contributions, the disconnected contributions and the isospin breaking contribution. The
relative sizes of the various contributions are depicted in fig. 15.2. In this thesis, we are
mainly interested in the isospin breaking contribution, which is of O(1%), but we also
compute the sum of the strange and the light quark contributions, which are defined in
the isosymmetric limit. We do not consider charm and quark-disconnected contributions.

15.2. The time-momentum representation of the hadronic
vacuum polarisation contribution

Making use of the time-momentum representation, the LO-HVP contribution aµ,HVP can
be represented by [266]

aµ,HVP =
(α
π

)2
∫ ∞

0
dx0 K̃(x0,mµ)

∫
dx3〈V γxµ2V γ0µ1〉QCD−con (15.14)

with the integration kernel [266]

K̃(t,mµ) = −8π2

∫ ∞

0

dω

ω
K(ω2,mµ)

(
ω2t2 − 4 sin2

(ωt
2

))
, (15.15)

K(ω2,mµ) =
1

m2
µ

ŝZ(ŝ)3 1− ŝZ(ŝ)

1 + ŝZ(ŝ)2
, (15.16)

Z(ŝ) = − ŝ−
√
ŝ2 + 4ŝ

2ŝ
, ŝ =

s

m2
µ

. (15.17)

We only consider the QCD-connected part of the vector-vector correlation function to
retrieve the LO-HVP contribution to aµ. The full vector-vector correlation function in

QCD+QED also includes a contribution to NLO-HVP. mphys
µ = 105.66 MeV denotes the

mass of the muon, which enters as the only scale into the kernel function. In practice, the
kernel K̃ is evaluated numerically by an approximation described in [266].

15.3. The hadronic vacuum polarisation contribution from
lattice QCD+QED

The kernel function K̃ depends explicitly on the muon mass mµ. In order to compute
aµ,HVP on a particular ensemble, using only dimensionless quantities, mµ has to be ex-
pressed in terms of amµ, i.e. we have to multiply the physical value of the muon mass with
the lattice spacing of the particular ensemble. In principle, the scale has to be expanded in

terms of ∆ε, such that the first-order contribution (aµ,HVP)
(1)
l also depends on the partial

derivative of K̃ with repsect to mµ and on (a)
(1)
l . However, as stated in chapter 9, we
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15. The HVP contribution to the muon anomalous magnetic moment

neglect isospin breaking effects in the scale setting in this thesis. To evaluate the integral
which determines aµ,HVP we proceed similar to the HVP function. We replace the time
integration by a discrete summation, switch from the renormalised vector-vector correla-
tion function CVγRV

γ
R

to its reconstruction CVγRV
γ
R,rec at time x0

swi and truncate the infinite

summation at x0
cut. We obtain the expression

(aµ,HVP)(0) =
(α
π

)2
x0

swi∑

x0=0

K̃(x0,mµ)(CVγRV
γ
R

(x0, 0))(0)

+
(α
π

)2
x0

cut∑

x0=x0
swi+1

K̃(x0) (CVγRV
γ
R,rec(x

0, 0))(0)

(15.18)

for the zeroth-order contribution. The first-order contributions for l = ∆mu,∆md,∆ms,∆β
read

(aµ,HVP)
(1)
l =

(α
π

)2
x0

swi∑

x0=0

K̃(x0,mµ)(CVγRV
γ
R

(x0, 0))
(1)
l

+
(α
π

)2
x0

cut∑

x0=x0
swi+1

K̃(x0) (CVγRV
γ
R,rec(x

0, 0))
(1)
l .

(15.19)

For the expansion parameters l = e2, we have to subtract the QCD-disconnected part
similar to the HVP function. As we only deal with quark-connected contributions, we can
avoid this step. For further details we refer to [276]. In a second strategy, we rescale the
muon mass mµ, which enters the kernel function [261, 308]. We choose the pion decay
constant fπ, neglecting isospin breaking effects on this quantity. fπ increases with the pion
mass, such that the mπ-dependence of aµ becomes weaker and the chiral extrapolation to
a physical pion mass flatter, which makes the extrapolation better to control. On each
gauge ensemble the muon mass is altered according to [261]

amµ =
mphys
µ

fphys
π

afπ = 1.144 · afπ, (15.20)

where afπ is determined on the particular ensemble. The rescaling removes the explicit
dependency of aµ,HVP on the scale a. However, it reenters the results when a continuum
extrapolation is performed.

15.3.1. aµ,HVP from CVγc,RV
γ
l,R

The leading hadronic contribution to the muon anomalous magnetic moment aµ,HVP,Vγc,RV
γ
l,R

is extracted from the integral over CVγc,RV
γ
l,R
· K̃. Figures 15.3 and 15.4 show the integrand

and the integral for the zeroth-order and first-order contribution, respectively. We observe
a significant noise problem in the first-order integrands for the expansion parameters ∆mu,
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Figure 15.3.: Integrand (CV γc,RV
γ
l,R

)(0) · K̃ and reconstruction on N200. (aµ,HVP,V γc,RV
γ
l,R

)(0)

in dependence of x0
swi and x0

cut. The selected value is marked in grey.

∆md, ∆β and e2, which underlines the necessity to reconstruct the correlation function
at large time distances. We determine x0

swi and x0
cut in the same way as described in

chapter 14. On N200, we obtain

aµ,HVP,V γc,RV
γ
l,R

=
(

488(9)st(10)a[14]tot

+ 49000(29700)st(1000)a[29800]tot ∆β

− 1312(169)st(27)a[171]tot a∆md

− 6190(60)st(130)a[140]tot a∆ms

− 18300(2400)st(400)a[2400]tot a∆mu

− 1990(240)st(40)a[240]tot e
2
)
· 1010.

(15.21)

Inserting the values for the expansion parameters in eq. (9.4), we find:

aµ,HVP,V γc,RV
γ
l,R

=
(

(488(9)st(10)a[14]tot)
(0) + (−0.1[7]tot)

(1)
)
· 1010

=
(

488(9)st(10)a[13]tot

)
· 1010. (15.22)

For the second approach with the rescaled muon mass, we find on N200

aµ,HVP,V γc,RV
γ
l,R

=
(

526(10)st(4)fπ [11]tot

+ 52600(31900)st(400)fπ [31900]tot ∆β

− 1410(181)st(10)fπ [182]tot a∆md

− 6660(60)st(50)fπ [80]tot a∆ms

− 19640(2530)st(140)fπ [2530]tot a∆mu

− 2143(256)st(16)fπ [256]tot e
2
)
· 1010.

(15.23)
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15.4. Discussion and Outlook

The scale dependency is now replaced by the dependency on the pion decay constant fπ.
Inserting the values for the expansion parameters in eq. (9.4), we find

aµ,HVP,V γc,RV
γ
l,R

=
(

(526(10)st(4)fπ [11]tot)
(0) + (−0.1[8]tot)

(1)
)
· 1010

=
(

525(10)st(4)fπ [10]tot

)
· 1010. (15.24)

15.3.2. aµ,HVP from CVγl,RV
γ
l,R

Similarly, aµ,HVP can also be extracted from the correlation function CVγl,RV
γ
l,R

. As in the

case of Π̂Vγl,RV
γ
l,R

we omit a detailed discussion and refer to the next section for the results.

15.4. Discussion and Outlook

We have computed the leading order hadronic vacuum polarisation contribution to the
anomalous magentic moment of the muon including leading order isospin breaking effects.
An overview of the results for the ensembles N200, D450 and H102 is given in table 15.2 for
the unrescaled muon mass and in table 15.3 for the rescaled muon mass. We find that the
results for both dicretisations of the vector-vector correlation function aµ,HVP,Vγc,RV

γ
l,R

and

aµ,HVP,Vγl,RV
γ
l,R

coincide within errors. Comparing the unrescaled with the rescaled results,

we observe that the rescaling procedure reduces the overall error. This is in accordance
with the findings in [261]. The leading isospin breaking correction is 0.6%, at most, of the
isosymmetric contribution. The error of the zeroth-order contribution is of the same order
of magnitude as the first-order contribution, albeit larger.

Other collaborations find isospin breaking corrections of similar relative size [200, 245,
309, 310]. A strict comparison of the total QCD+QED results can only be made after
an extrapolation to the continuum and to physical quark masses has been performed. A
comparison of the isospin breaking correction further requires that the renormalisation
schemes, which are used to separate QCD+QED and QCDiso, are compatible.

Further improvements of the analysis are directly related to the discussion concerning
the HVP function in section 14.4, as both aµ,HVP and Π̂VγRV

γ
,R

are computed from CVγRV
γ
R

.

In particular, the inclusion of zeroth-order quark-disconnected diagrams as well as charm
quark contributions, which account each for 2% of the total value [280], should be added
to the analysis. Minor contributions are expected from first-order quark-disconnected
diagrams [200]. Improvements with respect to the large time distance reconstruction of
CVγRV

γ
l,R

also affect aµ,HVP [261]. Similar to Π̂VγRV
γ
R

, the bounding method [245, 279] can

also be applied for aµ,HVP.
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15. The HVP contribution to the muon anomalous magnetic moment

aµ,HVP,Vγc,RV
γ
l,R

(
(488(9)st(10)a[14]tot)

(0) + (−0.1[7]tot)
(1)
)
· 1010

=
(

488(9)st(10)a[13]tot

)
· 1010

aµ,HVP,Vγl,RV
γ
l,R

(
(491(8)st(11)a[13]tot)

(0) + (−0.3[7]tot)
(1)
)
· 1010

=
(

491(8)st(11)a[13]tot

)
· 1010

(a) N200 (a = 0.064 fm, mπ = 282 MeV)

aµ,HVP,Vγc,RV
γ
l,R

(
(541(8)st(12)a[15]tot)

(0) + (2[1]tot)
(1)
)
· 1010

=
(

543(9)st(12)a[15]tot

)
· 1010

aµ,HVP,Vγl,RV
γ
l,R

(
(546(8)st(12)a[15]tot)

(0) + (2[1]tot)
(1)
)
· 1010

=
(

548(8)st(13)a[15]tot

)
· 1010

(b) D450 (a = 0.076 fm, mπ = 216 MeV)

aµ,HVP,Vγc,RV
γ
l,R

(
(440(4)st(10)a[10]tot)

(0) + (2.3[4]tot)
(1)
)
· 1010

=
(

442(4)st(10)a[11]tot

)
· 1010

aµ,HVP,Vγl,RV
γ
l,R

(
(445(4)st(10)a[10]tot)

(0) + (2.2[4]tot)
(1)
)
· 1010

=
(

448(4)st(10)a[11]tot

)
· 1010

(c) H102 (a = 0.086 fm, mπ = 354 MeV)

Table 15.2.: LO-HVP contribution to aµ.
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aµ,HVP,Vγc,RV
γ
l,R

(
(526(10)st(4)fπ [11]tot)

(0) + (−0.1[8]tot)
(1)
)
· 1010

=
(

525(10)st(4)fπ [10]tot

)
· 1010

aµ,HVP,Vγl,RV
γ
l,R

(
(529(9)st(4)fπ [10]tot)

(0) + (−0.3[7]tot)
(1)
)
· 1010

=
(

529(9)st(4)fπ [10]tot

)
· 1010

(a) N200 (a = 0.064 fm, mπ = 282 MeV)

aµ,HVP,Vγc,RV
γ
l,R

(
(525(8)st(5)fπ [9]tot)

(0) + (2[1]tot)
(1)
)
· 1010

=
(

527(9)st(5)fπ [10]tot

)
· 1010

aµ,HVP,Vγl,RV
γ
l,R

(
(530(7)st(5)fπ [9]tot)

(0) + (2[1]tot)
(1)
)
· 1010

=
(

532(8)st(5)fπ [9]tot

)
· 1010

(b) D450 (a = 0.076 fm, mπ = 216 MeV)

aµ,HVP,Vγc,RV
γ
l,R

(
(491(4)st(5)fπ [7]tot)

(0) + (2.5[4]tot)
(1)
)
· 1010

=
(

493(4)st(5)fπ [7]tot

)
· 1010

aµ,HVP,Vγl,RV
γ
l,R

(
(497(4)st(5)fπ [6]tot)

(0) + (2.4[4]tot)
(1)
)
· 1010

=
(

499(4)st(5)fπ [7]tot

)
· 1010

(c) H102 (a = 0.086 fm, mπ = 354 MeV)

Table 15.3.: LO-HVP contribution to aµ with rescaled muon mass.
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16. Conclusion and Outlook

In this thesis, we investigated the consequences of isospin symmetry breaking on hadronic
matrix elements. An observable of special interest is the anomalous magnetic moment
of the muon aµ, which is currently known with a precision of 0.5 ppm [26] and serves
as a probe for physics beyond the Standard Model (SM). Comparing the experimental
determination with the SM prediction, one finds a deviation of about 3-4σ [29]. Upcoming
experiments at Fermilab [27] and JPARC [28] aim for a reduction of the overall uncertainty
by a factor of four. To achieve a similar precision of the SM prediction, the hadronic
vacuum polarisation (HVP) contribution aµ,HVP has to be determined with a precision of
0.2% [34]. This desired precision can only be obtained from lattice QCD simulations, if
non-degenerate light quark masses and electromagnetic effects are included.

We described a strategy, which enables us to perform QCD+QED computations based
on QCDiso Monte Carlo simulations using CLS Nf = 2 + 1 gauge ensembles [45, 168–172].
The latter were generated with an O(a)-improved Wilson fermion action and a tree-level
improved Lüscher-Weisz gauge action. We related QCD+QED to QCDiso by Monte Carlo
reweighting [160, 161] and introduced a perturbative expansion of QCD+QED correlation
functions around QCDiso [46, 143, 191, 192], which we adapted to the applied lattice
fermion discretisation. The expansion is formulated in terms of the parameters ∆ε =
(∆mu,∆md,∆ms,∆β, e

2). ∆mf denotes the detuning of the bare quark mass, ∆β the
detuning of the bare inverse strong coupling and e2 the bare electromagnetic coupling.
We regulated the manifest infrared divergence of non-compact lattice QED via the QEDL

prescription [41, 44, 140], which removes the spatial zero-modes on each timeslice from
the theory. We derived Ward identities for continuum QCD+QED as well as for the
considered lattice regularisation. We further derived analytic expressions for the lattice
photon propagator for open and periodic temporal boundary conditions in Feynman and
Coulomb gauge, based on discrete Fourier, sine and cosine transforms. The QCD+QED
simulations were performed in Coulomb gauge and the photon boundary conditions were
chosen in accordance with the boundary conditions of the gauge ensembles. Feynman
gauge served as a cross-check of the implementation applied to gauge invariant correlation
functions. As we only investigated leading isospin breaking effects, we truncated the
perturbative expansion at first order. We focussed on quark-connected contributions,
taking only isospin breaking effects in the valence quark sector into account. We performed
computations on the gauge ensembles H102 (a = 0.086 fm, mπ = 354 MeV), D450 (a =
0.076 fm, mπ = 216 MeV) and N200 (a = 0.064 fm, mπ = 282 MeV).

We determined the masses mπ+ , mπ0 , mK+ and mK0 as well as the corresponding mass
differences mπ+ −mπ0 and mK+ −mK0 and averages 1

2(mπ+ +mπ0) and 1
2(mK+ +mK0)

within the isospin multiplets. We suggested a hadronic renormalisation scheme based on
1
2(mπ+ + mπ0), 1

2(mK+ + mK0) and mK+ − mK0 , which served to fix the bare quark
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mass detunings ∆mu, ∆md and ∆ms. We matched QCD+QED and QCDiso on each
gauge ensemble demanding equal pion and kaon mass averages. The kaon mass difference
was set to its physical value. Considering a leading order calculation, we discussed the
non-renormalisation of the electromagnetic coupling [46, 143] in QCD+QED due to the
vector Ward identity. Consequently, we fixed the bare electromagnetic coupling via the
fine-structure constant, i.e. e2 = 4πα. Isospin breaking effects in the scale setting were
neglected. We found that the first-order contributions to the masses mπ+ , mπ0 , mK+ and
mK0 are smaller than the error associated with the zeroth-order contribution. The latter
is dominated by the scale setting uncertainty. We determined the pion mass splitting on
the three gauge ensembles with a precision of O(5%). The latter is not an input parameter
with respect to the chosen renormalisation scheme.

We discussed the renormalisation procedure of the local and conserved vector current
Vl and Vc in QCD+QED. We demanded that the matrix element of the renormalised
vector current 〈0|VR|V 〉, where |V 〉 denotes the lowest accessible state created by VR

from the vacuum |0〉, is the same for both discretisations [260]. In the computation of
the matrix of renormalisation factors ZVl,RVl

we took operator mixing into account. The
leading isospin breaking correction was significant compared to the statistical uncertainty
associated with the isosymmetric contribution. We computed the leading isospin breaking
correction for the renormalised HVP function Π̂VγRV

γ
R

. It is proportional to the HVP
contribution to the running of the fine-structure constant α. In the considered energy
range between 1 GeV2 and 9 GeV2, the leading isospin breaking correction was in the
range of 0.7% and 0.3% of the isosymmetric contribution. The error of the isosymmetric
contribution, which is dominated by the scale setting uncertainty, was of the same order of
magnitude as the leading isospin breaking correction. We further computed the LO-HVP
contribution to the anomalous magnetic moment of the muon aµ,HVP in QCD+QED. The
leading isospin breaking correction was 0.6% and less of the isosymmetric contribution.
Again, the error of the isosymmetric contribution, which was dominated by scale setting
uncertainty, was of the same order of magnitude as the leading isospin breaking correction.
Other collaborations find corrections of similar relative size [200, 245, 309, 310]. However,
it has to be pointed out that a strict comparison of the total QCD+QED result can only
be made after an extrapolation to the continuum and to physical quark masses has been
performed. In addition, the comparison of isospin breaking corrections is only possible if
the same renormalisation scheme, which is used to separate QCD+QED and QCDiso, is
used.

In this thesis, we have developed a concept for the computation of isospin breaking cor-
rections on the basis of CLS gauge ensembles. We demonstrated that a determination of
the latter for phenomenologically relevant observables is, in principle, feasible. However,
further computational efforts are required to enable a precise prediction of the HVP contri-
bution to the muon anomalous magnetic moment and to the running of the fine-structure
constant at the physical point. A strategy on how this target can be achieved by means
of existing methods has been outlined in the above paragraphs.

We were not able to perform a continuum and chiral extrapolation to the physical point,
due to the limited number of analysed gauge ensembles. Particularly relevant ensembles
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to be considered are J303 (a = 0.050 fm, mπ = 257 MeV), which allows to investigate the
effect of even smaller lattice spacings, and E250 (a = 0.076 fm, mπ = 130 MeV), which
is an ensemble possessing physical pion and kaon masses. To study finite volume effects
of QCD and especially QED, it is reasonable to investigate the two ensembles H105 and
N101 (a = 0.086 fm, mπ = 282 MeV), which only differ in the simulated volume.

Compared to the QCDiso computations of the Mainz group [187, 229, 261, 268, 277], we
find considerably lower values of aµ,HVP on the analysed ensembles. This effect is caused
by the different renormalisation condition used to renormalise the local vector current and
the absence of O(a)-improvement of the operators. To be able to combine the results, it
is important to harmonise the setup of QCD+QED computations of aµ,HVP and Π̂VγRV

γ
R

,
used in this thesis, with the setup of the corresponding QCDiso computations of the Mainz
group [187, 229, 261, 268, 277]. In particular, this means that the renormalisation factors
ZVl,RVl

have to be determined by a renormalisation condition based on the vector Ward
identity in QCD+QED as performed in QCDiso [229]. In addition, all operators should be
O(a)-improved with respect to QCDiso. Consequently, the computed observables would
converge with O(a2, a∆ε) to the continuum limit. Due to the perturbative character of
the isospin breaking correction, the violation of the O(a2) convergence can be assumed to
be mild and the construction of operators improved with respect to QCD+QED, which is
rather tedious, can presumably be avoided.

As the leading isospin breaking corrections of dimensionful quantities, which we com-
puted in this thesis, are of the same order of magnitude as the error of the isosymmetric
contribution, which is dominated by the scale uncertainty, a major focus of future efforts
has to be put on the reduction of the latter. An improvement of the theoretical prediction
can only be achieved if the precision of the scale setting is increased and if isospin breaking
effects are included in the scale setting. The computation of hadronic decay constants for
leptonic decays including isospin breaking effects is highly non-trivial due to the photon
exchange between the quarks of the decaying particle and the charged lepton as well as in-
frared finale state photons [224–227]. In addition, uncertainties associated with the CKM
matrix enter the experimental determinations of mesonic decay constants. By contrast,
the measurements of the low-lying baryon masses are unaffected by such additional un-
certainties. Therefore, it is advisable to perform the scale setting for QCD+QED based
on the mass of a baryon belonging to the baryon octet or decuplet.

In the future, two main types of simulation programs to study leading isospin break-
ing effects in hadronic observables should be developed. The first program computes
quark-connected contributions to mesonic and baryonic two-point functions with interpo-
lation operators based on smeared quark fields. The latter type of operators has a larger
overlap with the interpolated ground state and allows for a more reliable extraction of
the corresponding mass. This program computes all relevant quantities for the hadronic
renormalisation scheme and is used to determine the values of the expansion parameters
∆ε. The second program is an extension of the currently existing code and is based on
point-like interpolation operators. It should compute quark-connected contributions to
both mesonic two- and three-point functions. The calculation of leading isospin breaking
effects in mesonic three-point functions is expensive due to the large number of diagrams
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and sequential propagators with up to four solves of the Dirac equation. Therefore, an
emphasis has to be put on potential code optimisations. The HVP functions Π̂VγRV

γ
R

and

Π̂VZRV
γ
R

, as well as the HVP contribution to the running of the fine-structure constant α,
to the weak mixing angle θW and to the anomalous magnetic moment of the muon aµ
can be computed from the mesonic two-point functions. In addition, PCAC quark masses
can be extracted from the two-point functions, which may serve to define the chiral point
in QCD+QED and to determine the additive mass renormalisation of Wilson quarks in
the presence of the electromagnetic interaction. The three-point function, in combination
with the two-point function, allows for the calculation of the renormalisation factors of
the local vector current based on the Ward identity method. Combining the computation
of two- and three-point functions is advantageous, as building blocks computed for the
two-point functions can be reused for three-point functions. For future runs, a consider-
able increase in computational efficiency can be obtained by the application of all-mode-
averging [254–256], which can be easily integrated into the analysis framework. Other
collaborations, performing combined QCD+QED computations based on the perturba-
tive expansion around the isosymmetric limit, rely on low-mode averaging [198, 200, 311].
A major problem one has to face when calculating the HVP is the signal-to-noise problem
for large time distances. First promising results for a noise reduction in the vector channel
were obtained in investigations of multi-level integration techniques for fermions [312–317].

The set of Feynman diagrams in this work and also in the two simulation programs
suggested above is restricted to quark-connected diagrams for both zeroth- and first-order
contributions. To reduce systematic effects, further diagrams have to be included into
the analysis. In particular, for the HVP function the zeroth-order quark-disconnected
diagram has to be considered. This diagram was recently computed in the Mainz group
on a large set of ensembles, based on frequency-splitting estimators of single-propagator
traces [264, 265]. The remaining first-order quark-disconnected diagrams, which presum-
ably are of little relevance, can be split into two categories: Diagrams which describe
isospin corrections only in the valence sector and diagrams that also consider the effect on
sea quarks. In both cases, the frequency-splitting technique can be applied for this class of
diagrams [262]. The computation is, however, considerably more expensive compared to
other contributions. Other collaborations made use of low-mode averaging [198, 200, 311]
to compute disconnected contributions.

For a more complete investigation, it is necessary to remove finite volume effects from
meson and baryon masses, as well as the HVP, considering both QCD and the electro-
magnetic correction. A common method, which can be applied to QCD+QED, is the
derivation of analytic corrections based on chiral perturbation theory, which includes the
electromagnetic interaction [199, 281, 282].

Compared to pure QCDiso computations, the number of fits performed in QCD+QED,
where leading isospin breaking effects are considered, is increased by a factor of six. This
amounts to a very large number of fits, which were analysed by hand. The usage of Akaike’s
information criterion [318] allows for a considerable reduction of manual effort. Akaike’s
information criterion facilitates the combination of the results of several fits weighted
according to their Akaike weights [319], which depend on χ2 and the number of parameters
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of the model [41], such that not a single representative fit has to be chosen by hand.
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Electromagnetic Corrections to Meson Masses and the HVP, PoS LATTICE2016
(2016) 172 [1612.05962].

[194] P. Boyle, V. Gülpers, J. Harrison, A. Jüttner, C. Lehner, A. Portelli et al., Isospin
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of the hadronic contributions to the running of the QED coupling and the weak
mixing angle, PoS LATTICE2015 (2015) 110 [1511.04751].

[273] P. F. Bedaque, Aharonov-Bohm effect and nucleon nucleon phase shifts on the
lattice, Phys. Lett. B 593 (2004) 82 [nucl-th/0402051].

[274] G. de Divitiis, R. Petronzio and N. Tantalo, On the discretization of physical
momenta in lattice QCD, Phys. Lett. B 595 (2004) 408 [hep-lat/0405002].

[275] M. Della Morte, B. Jager, A. Juttner and H. Wittig, Towards a precise lattice
determination of the leading hadronic contribution to (g − 2)µ, JHEP 03 (2012)
055 [1112.2894].

[276] B. Chakraborty, C. T. Davies, J. Koponen, G. P. Lepage and R. S. Van de Water,
Higher-Order Hadronic-Vacuum-Polarization Contribution to the Muon G-2 from
Lattice QCD, Phys. Rev. D 98 (2018) 094503 [1806.08190].

246

https://arxiv.org/abs/1302.4018
https://doi.org/10.1140/epjc/s10052-019-7049-0
https://arxiv.org/abs/1903.10447
https://doi.org/10.22323/1.363.0157
https://arxiv.org/abs/2001.08783
https://doi.org/10.1007/JHEP10(2017)020
https://arxiv.org/abs/1705.01775
https://doi.org/10.1051/epjconf/201817506031
https://arxiv.org/abs/1710.10072
https://arxiv.org/abs/1911.04733
https://doi.org/10.1088/0954-3899/29/1/311
https://arxiv.org/abs/hep-ph/0104304
https://doi.org/10.1140/epja/i2011-11148-6
https://arxiv.org/abs/1107.4388
https://doi.org/10.1007/JHEP11(2015)215
https://arxiv.org/abs/1505.03283
https://arxiv.org/abs/1511.04751
https://doi.org/10.1016/j.physletb.2004.04.045
https://arxiv.org/abs/nucl-th/0402051
https://doi.org/10.1016/j.physletb.2004.06.035
https://arxiv.org/abs/hep-lat/0405002
https://doi.org/10.1007/JHEP03(2012)055
https://doi.org/10.1007/JHEP03(2012)055
https://arxiv.org/abs/1112.2894
https://doi.org/10.1103/PhysRevD.98.094503
https://arxiv.org/abs/1806.08190


Bibliography
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[312] M. Cè, L. Giusti and S. Schaefer, A local factorization of the fermion determinant
in lattice QCD, Phys. Rev. D 95 (2017) 034503 [1609.02419].
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