Inhaltsverzeichnis

	Lineare Algebra	1
1	Matrizen	1
	1.1 Ein einführendes Beispiel	1
	1.2 Definition einer Matrix	2
	1.3 Transponierte einer Matrix	4
	1.4 Spezielle quadratische Matrizen	5
	1.4.1 Diagonalmatrix	6
	1.4.2 Einheitsmatrix	6
	1.4.3 Dreiecksmatrix	7
	1.4.4 Symmetrische Matrix	7
	1.4.5 Schiefsymmetrische Matrix	8
	1.5 Gleichheit von Matrizen	9
	1.6 Rechenoperationen für Matrizen	9
	1.6.1 Addition und Subtraktion von Matrizen	9
	1.6.2 Multiplikation einer Matrix mit einem Skalar	10
	1.6.3 Multiplikation von Matrizen	11
,	Determinanten	17
4		17
	2.1 Ein einführendes Beispiel	18
	2.2 Zweireihige Determinanten	18
	2.2.1 Definition einer zweireihigen Determinante	20
	2.2.2 Eigenschaften zweireihiger Determinanten	20 26
	2.3 Dreireihige Determinanten	
	2.3.1 Definition einer dreireihigen Determinante	26
	2.3.2 Entwicklung einer dreireihigen Determinante nach	20
	Unterdeterminanten (Laplacescher Entwicklungssatz)	28
	2.4 Determinanten höherer Ordnung	32
	2.4.1 Definition einer <i>n</i> -reihigen Determinante	32
	2.4.2 Laplacescher Entwicklungssatz	36
	2.4.3 Rechenregeln für <i>n</i> -reihige Determinanten	37
	2.4.4 Regeln zur praktischen Berechnung einer n-reihigen	•
	Determinante	39
3	B Ergänzungen	43
	3.1 Reguläre Matrix	43
	3.2 Inverse Matrix	44
	3.3 Rang einer Matrix	46

11	Anw	endungen der komplexen Rechnung	189
	11.1	Symbolische Darstellung von Schwingungen im Zeigerdiagramm	189
		komplexen Zeiger	189
		11.1.2 Ungestörte Überlagerung von Schwingungen gleicher Frequenz	193
		11.1.3 Anwendungsbeispiele aus Mechanik und Elektrotechnik	196
		11.1.3.1 Überlagerung zweier harmonischer Schwingungen	196
		11.1.3.2 Überlagerung gleichfrequenter Wechselspannungen	198
	11.2	Symbolische Berechnung eines Wechselstromkreises	199
		11.2.1 Das Ohmsche Gesetz der Wechselstromtechnik	199
		11.2.2 Widerstands- und Leitwertoperatoren	201
		11.2.3 Ein Anwendungsbeispiel: Der Wechselstromkreis in Reihen-	
		schaltung	205
12	Ortsk	turven	209
	12.1	Ein einführendes Beispiel	209
		Ortskurve einer parameterabhängigen komplexen Größe (Zahl)	210
		Anwendungsbeispiele: Einfache Netzwerkfunktionen	213
		12.3.1 Reihenschaltung aus einem ohmschen Widerstand und einer	
		Induktivität (Widerstandsortskurve)	213
		12.3.2 Parallelschaltung aus einem ohmschen Widerstand und einer	
		Kapazität (Leitwertortskurve)	214
	12.4	Inversion einer Ortskurve	215
		12.4.1 Inversion einer komplexen Größe (Zahl)	
		12.4.2 Inversionsregeln	217
		12.4.3 Ein Anwendungsbeispiel: Inversion einer Widerstandsortskurve .	219
Übı	ıngsau	fgaben	222
	- 100		
IV		erential- und Integralrechnung für Funktionen von mehreren ablen	229
	vari	auten	229
13	Funk	tionen von mehreren Variablen und ihre Darstellung	229
	13.1	Definition einer Funktion von mehreren Variablen	229
	13.2	Darstellungsformen einer Funktion	232
		13.2.1 Analytische Darstellung	
		13.2.2 Graphische Darstellung	
		13.2.2.1 Darstellung einer Funktion als Fläche im Raum	
		13.2.2.2 Schnittkurvendiagramme	238

Inhaltsverzeichnis X			ΧI
14	Partie	elle Differentiation	243
••		Partielle Ableitungen 1. Ordnung	
		Partielle Ableitungen höherer Ordnung	
		Das totale oder vollständige Differential einer Funktion	
	14.3		
		14.3.1 Geometrische Betrachtungen	255
		14.3.2 Definition des totalen oder vollständigen Differentials	259
	14.4	Anwendungen	
		14.4.1 Implizite Differentiation	
		14.4.2 Linearisierung einer Funktion	
		14.4.3 Relative oder lokale Extremwerte	265
15	Mehr	fachintegrale	271
	15.1	Doppelintegrale	272
		15.1.1 Definition und geometrische Deutung eines Doppelintegrals	272
		15.1.2 Berechnung eines Doppelintegrals	275
		15.1.2.1 Doppelintegral in kartesischen Koordinaten	275
		15.1.2.2 Doppelintegral in Polarkoordinaten	282
		15.1.3 Anwendungen	287
		15.1.3.1 Flächeninhalt	288
		15.1.3.2 Schwerpunkt einer Fläche	294
		15.1.3.3 Flächenmomente (Flächenträgheitsmomente)	299
	15.2	Dreifachintegrale	305
	15.2	15.2.1 Definition eines Dreifachintegrals	
		15.2.2 Berechnung eines Dreifachintegrals	
		15.2.2.1 Dreifachintegral in kartesischen Koordinaten	
		15.2.2.2 Dreifachintegral in Zylinderkoordinaten	
		15.2.3 Anwendungen	
		15.2.3.1 Volumen und Masse eines Körpers	
		15.2.3.2 Schwerpunkt eines Körpers	
15.2.3.3 Massenträgheitsmomente		15.2.3.3 Massenträgheitsmomente	328
16	Linie	n- oder Kurvenintegrale	334
		Vektordarstellung einer Kurve	
		Differentiation eines Vektors nach einem Parameter	
		Kraft- und Vektorfelder	
		Das Linien- oder Kurvenintegral	344
	10.4	16.4.1 Ein einführendes Beispiel	
		16.4.2 Definition eines Linien- oder Kurvenintegrals	
		16.4.3 Wegunabhängigkeit eines Linienintegrals	351
	16.5	Das Arbeitsintegral mit Anwendungsbeispielen	355
	10.3	16.5.1 Das Arbeitsintegral	355
			356
		16.5.2 Elektronen im Magnetfeld	220
		16.5.3 Arbeit im Gravitationsfeld (Berechnung der Flucht-	250
		geschwindigkeit)	358
Übı	ungsau	ıfgaben	360

•

V	Gew	öhnliche Differentialgleichungen	373
17	Grun	dbegriffe	373
	17.1	Ein einführendes Beispiel	373
		Definition einer gewöhnlichen Differentialgleichung	
		Lösungen einer Differentialgleichung	
	17.4	Anfangs- und Randwertprobleme	378
18	Diffe	rentialgleichungen 1. Ordnung	38.
	18.1	Geometrische Betrachtungen	382
	18.2	Differentialgleichungen mit trennbaren Variablen	386
		Integration einer Differentialgleichung durch Substitution	
		Lineare Differentialgleichungen 1. Ordnung	
		18.4.1 Definition einer linearen Differentialgleichung 1. Ordnung	392
		18.4.2 Integration der homogenen linearen Differentialgleichung	392
		18.4.3 Integration der inhomogenen linearen Differentialgleichung	394
		18.4.3.1 Variation der Konstanten	394
		18.4.3.2 Aufsuchen einer partikulären Lösung	397
	18.5	Lineare Differentialgleichungen 1. Ordnung mit konstanten	
		Koeffizienten	400
	18.6	Anwendungsbeispiele	404
		18.6.1 Radioaktiver Zerfall	404
		18.6.2 Freier Fall unter Berücksichtigung des Luftwiderstandes	405
		18.6.3 Wechselstromkreis	407
19	Linea	re Differentialgleichungen 2. Ordnung mit konstanten Koeffizienten	411
	19.1	Definition einer linearen Differentialgleichung 2. Ordnung mit	
		konstanten Koeffizienten	412
	19.2	Allgemeine Eigenschaften der homogenen linearen Differential-	
		gleichung	413
	19.3	Integration der homogenen linearen Differentialgleichung	419
	19.4	Integration der inhomogenen linearen Differentialgleichung	425
20	Anwe	endungen	435
	20.1	Mechanische Schwingungen	435
		20.1.1 Allgemeine Schwingungsgleichung der Mechanik	435
		20.1.2 Freie ungedämpfte Schwingung	437
		20.1.3 Freie gedämpfte Schwingung	440
		20.1.3.1 Schwache Dämpfung (Schwingungsfall)	441
		20.1.3.2 Starke Dämpfung (aperiodische Schwingung,	
		Kriechfall)	443
		20.1.3.3 Aperiodischer Grenzfall	
		20.1.3.4 Zusammenfassung	
		20.1.4 Erzwungene Schwingung	451

Inhaltsverzeichnis 2		
20.2.	romagnetische Schwingungen 1 Schwingungsgleichung eines elektromagnetischen Reihenschwingkreises	461
	2 Freie elektromagnetische Schwingung	464
20.2	3 Erzwungene elektromagnetische Schwingung	466
Übungsaufgaben	·	470
VI Grundzüge	e der Fehler- und Ausgleichsrechnung	483
21 Fehlerarten	. Aufgaben der Fehler- und Ausgleichsrechnung	483
22 Statistische	Verteilung der Meßwerte und Meßfehler	485
	gkeitsverteilungen	485
22.2 Gauß	sche Normalverteilung	488
23 Mittelwert	und mittlerer Fehler einer Meßreihe	494
24 Das Gaußsc	he Fehlerfortpflanzungsgesetz	502
25.1 Ein ei	urven inführendes Beispiel eichung nach dem Prinzip der kleinsten Quadrate	510 510 512
-	eichs- oder Regressionsgerade	515
Übungsaufgaber	1	521
Anhang: Lösu	ıngen der Übungsaufgaben	527
I Lineare Alg	ebra	527
II Taylor- und	l Fourier-Reihen	536
III Komplexe	Zahlen und Funktionen	545
-	l- und Integralrechnung für Funktionen von mehreren Variablen	
	he Differentialgleichungen	
	der Fehler- und Ausgleichsrechnung	
11 Grandzuge	uei a emei- unu rausseionoicemung	203
Literaturhinw	reise	591
Sachwortverz	eichnis	592