Contents

Preface	***************************************	VII
	Dooge — Curriculum vitae	IX
	Pooge — List of publications	XI
	ontributors	
PART A	. HYDROLOGICAL PROCESSES	
171141 71	. ITTDROLOGICAL TROCESSES	
Chapter	r 1. Linear theory of open channel flow	
	by Jarosław J. Napiórkowski	3
Abstract	L	3
1. Intr	oduction	3
2. Line	earization of the St. Venant equations	4
3. Solu	tion for finite channel reach	6
4. The	generalized linear channel response	10
4.1.	Cumulants of generalized channel response	10
4.2.	Amplitude and phase characteristics	12
5. Simp	olified forms of St. Venant equations	13
Con	clusions	14
Referen	ces	14
Chapter	2. Analytical and numerical modelling of unsaturated flow	
	by Q.J. Wang	17
Abstract		17
	oduction	17
Phys	ics of soil moisture flow	18
3. Red	uced form of Richards' equation	19
Clos	ed form solutions for constant D and linear K^* model	20
5. Effe	ct of assumptions on D and K^* functions	23
6. A pr	oposed hybrid solution scheme for future research	24
Reference	es	25
Chapter	3. The hydrology of milled peat production	
pici	by J. Philip O'Kane	27
Abstract	by 3. Thinp O Kane	27
	duction	27
	peat-water system	28
1110	pour mutot ajotetti	•

XXVI	Contents

	2.1.	Peat as a fuel	28
	2.2.	The peat-air-water system	29
	2.3.	Water content and heating value	30
3.		er movement in a peat column	31
	3.1.	Equations of motion and of continuity	31
	3.2.	Potential energy and the phase-partitioning of water	32
	3.3.	Liquid and vapour conductivities	33
4.	Bou	ndary conditions at the pedon scale	34
	4.1.	The drainage boundary condition at the bottom	34
	4.2.	Surface boundary condition for infiltration of rain	35
	4.3.	Surface boundary condition for isothermal evaporation	36
5.	The	drying of a layer of milled peat	37
	5.1.	Modelling milling and harrowing	37
	5.2.	Numerical treatment	38
	5.3.	The two phases of evaporation	39
	5.4.	The role of harrowing	41
6.	Con	clusions	43
Acl	cnow	ledgements	44
Rei	eren	ces	45
Ch	aptei	tated surfaces	
		by Gordon A. McBean	47
Ab		·	47
Ab:	Intro	oduction	47 47
	Intro Effic	oductionciency of evaporation	47 48
1.	Intro Efficience	oduction	47
1. 2.	Intro Efficient Con Imp	oduction	47 48
1. 2. 3.	Intro Efficient Con Imperate	oduction	47 48 50
1. 2. 3. 4.	Intro Efficient Con Impetate Con	coduction	47 48 50 53
1. 2. 3. 4.	Intro Efficient Con Impetate Con	coduction	47 48 50 53 55
1. 2. 3. 4. 5. Re:	Intro Efficient Con Impetate Con	coduction	47 48 50 53 55 56
1. 2. 3. 4. 5. Re:	Intro Efficiency Con Imp etate Con feren	ciency of evaporation	47 48 50 53 55
1. 2. 3. 4. 5. Re:	Intro Efficient Con Imp etate Con feren aptei	ciency of evaporation cept of active and passive scalars act of K_E/K_H ratio on traditional methods of estimating evaporation from veged surfaces cluding remarks ces r.5. On the weights of precipitation stations by M. Sugawara	47 48 50 53 55 56 59
1. 2. 3. 4. 5. Re:	Intro Efficience Con tent Con feren apter Strace	coduction ciency of evaporation cept of active and passive scalars act of K_E/K_H ratio on traditional methods of estimating evaporation from veged surfaces cluding remarks ces r.5. On the weights of precipitation stations by M. Sugawara t. Thiessen polygon method is illogical	47 48 50 53 55 56
1. 2. 3. 4. 5. Res	Intro Efficient Con Imp etate Con feren apter strace The Wei	coduction cept of evaporation act of K_E/K_H ratio on traditional methods of estimating evaporation from veged surfaces cluding remarks ces 7. On the weights of precipitation stations by M. Sugawara Thiessen polygon method is illogical ghts should be determined considering the reliability of observed data	47 48 50 53 55 56 59
1. 2. 3. 4. 5. Re: Ch	Intro Efficient Con Imp etate Con feren apter strace The Wei Wei	cept of active and passive scalars act of K_E/K_H ratio on traditional methods of estimating evaporation from veged surfaces cluding remarks ces 7. On the weights of precipitation stations by M. Sugawara Thiessen polygon method is illogical ghts should be determined considering the reliability of observed data ghts of precipitation stations should be determined to obtain good results in	47 48 50 53 55 56 59 59 59
1. 2. 3. 4. 5. Re: Ch	Intro Efficient Con Imp etate Con feren apter Strace Wei Wei disc	cept of active and passive scalars act of K_E/K_H ratio on traditional methods of estimating evaporation from veged surfaces cluding remarks ces r. 5. On the weights of precipitation stations by M. Sugawara t. Thiessen polygon method is illogical ghts should be determined considering the reliability of observed data ghts of precipitation stations should be determined to obtain good results in harge calculation or flood forecasting.	47 48 50 53 55 56 59 59 59
1. 2. 3. 4. 5. Re: Ch	Intro Effic Con Imp etate Con feren apter Wei Wei disc How	coduction	47 48 50 53 55 56 59 59 59 61
1. 2. 3. 4. 5. Re: Ch Ab 1. 2. 3.	Intro Effic Con Imp etate Con feren apter Strack The Wei disc How	coduction	47 48 50 53 55 56 59 59 59 61 62
1. 2. 3. 4. 5. Res Ch Ab 1. 2. 3. 4.	Intro Efficient Con Implementation Conferent Apter Weight Weight Weight How The	coduction	47 48 50 53 55 56 59 59 61 62 63
1. 2. 3. 4. 5. Re: 4. 5. 6. 7.	Intro Con Imp etate Con Imp etate Con Strack The Weight Weight How The The	coduction	47 48 50 53 55 56 59 59 61 62 63 65
1. 2. 3. 4. 5. Re: Ch Ab 1. 2. 3. 4. 5. 6.	Intro Efficient Con Implementation Conferent Apter Weight Weight Weight The The Factor The Factor Conference The Factor Conference The Factor Conference Conference The Factor Conference C	coduction	47 48 50 53 55 56 59 59 61 62 63 65 66

Contents	XXVII
Contents	XX

10. The precipitation weights	. 72
11. The determination of the cut-off point k'	. 74
References	
Chapter 6. A Neyman-Scott shot noise model for the generation of daily stream- flow time series	•
by P.S.P. Cowpertwait and P.E. O'Connell	. 75
Abstract	
1. Introduction	. 75
2. Definition of a second order Neyman-Scott shot noise (NSSN) model	. 76
3. Some moments of the Neyman-Scott shot noise model	
4. Some special cases	
5. Fitting the NSSN model to historical daily flows	
5. Model validation	
7. Discussion and epilogue	
Acknowledgements	
References	
PART B. LARGE-SCALE HYDROLOGY	
face process models by Alfred Becker Abstract Introduction	97
Scales in hydrology and related categories of hydrological modelsCritical concepts in macroscale hydrological modelling at land surfaces	
Hydrologically sound structuring of macroscale models	
. Basic types of areal heterogeneity at land surfaces and assessment of landscape	
patchiness	
Hierarchy in the areal discretization of land surfaces for modelling	
. Criteria to delineate zones of uniform climate forcing	
deferences	110
Chapter 8. The construction of continental scale models of the terrestrial hydro-	
logical cycle: an analysis of the state of-the-art and future prospects	
by L.S. Kuchment	=
bstract	113
. Introduction	113
. Time-space scales and main research directions	114
Continental scale hydrological models with present-day space resolution of GCMs	
(100–300 km)	117
Modelling of the terrestrial hydrological cycle for a horizontal scale of 30–100 km .	122 123
4.1. Basin schematisation	

XXVIII Contents

	4.2. Input to finite elements
	4.3. Soil moisture transfer and point evapotranspiration
	4.4. Rainfall excess
	4.5. Average surface depression interception for each finite element
	4.6. Surface overland flow
5.	Opportunities for developing parameterisations of the hydrological cycle for horizontal resolutions of less than 30 km
A =	
	knowledgements
Re	ferences
Ch	apter 9. A rainfall-runoff scheme for use in the Hamburg climate model
	by L. Dümenil and E. Todini
Αb	stract
1.	Introduction
2.	Runoff in the context of general circulation models
	2.1. Motivation
	2.2. The ECHAM Model
3.	Description of the Arno scheme
	3.1. Derivation of the equations
	3.2. Modifications for use in the OAGCM
4.	The simulated hydrological cycle
	4.1. Precipitation
	4.2. Local runoff
	4.3. Soil water
	4.4. River gauge data
5.	
Ac	knowledgement
	ferences
Ch	apter 10. Transient response of a coupled ocean-atmosphere-land surface
	model to increasing atmospheric carbon dioxide
	by S. Manabe, R.J. Stouffer, M.J. Spelman and K. Bryan
Αb	stract
1.	Introduction
2.	Model structure
3.	Numerical experiments
4.	Temperature change
	4.1. Annual mean response
	4.2. Seasonal dependence
5.	Hydrologic change
	5.1 Annual mean response
	5.2. Seasonal dependence
6.	Summary and concluding remarks
Re	ferences

Contents XXIX

PART C.	THE PAST A	AND THE	FUTURE
---------	------------	---------	--------

Chapter 11. Quantitative hydrology in Scandinavia in the 18th cent	tury	
by Lars Gottschalk		177
Abstract		177
1. Introduction		177
2. Hydrometeorological observations		178
2.1. Observations of temperature and precipitation		178
2.2. Evaporation experiments	1	179
3. Water balance studies		180
4. The origin of springs		182
4.1. Rain or "underground channels"?		183
4.2. "Disappearance of water"	1	85
5. Conclusions		186
References	1	87
Chapter 12. Hydrology and hydrologists — reflections		
by J.E. Nash		91
Abstract		91
1. Introduction		91
2. The alleged failure of engineering hydrology		92
3. Science or technology		.93
4. Empirical hydrology		94
5. The two pillars of hydrology		94
6. The real failure of engineering hydrology		95
7. The future for hydrology		96
8. The education and training of hydrologists		96
9. Environmental awareness		98
References		99
Chapter 13. Hydrology and the real world	2	Δ1
by J.R. Philip		01
Abstract		01
1. Introduction		01
2. Hydrology and non-linearity		01
3. Natural science and trans-science		02
4. Scientific hydrology and professional practice		03
5. Hydrology and the real world		05
6. Hydrology and faith		05
Acknowledgments		06
References	20	06
Chantan 14 W. 4		
Chapter 14. Water and soil: circulation and risks of pollution	24	^
by George Vachaud and Michel Vauclin		09 09
(AVOLIGIA)		

XXX Contents

1.	Introduction	209
2.	Presentation of the problem	210
3.	Circulation of water in the soil	211
	3.1. The microscopic scale of the pore	211
	3.2. The macroscopic scale: the laboratory column	211
	3.3. Megascopic scale: the landscape	213
4.	Transport of dissolved substances	214
5.	Conclusion	217
	ferences	217
CL	apter 15. Global change, a catalyst for the development of hydrologic science	
CI	by Peter S. Eagleson	219
Αt	ostract	219
1.	Introduction	220
2.	Historical development of hydrologic science	221
3.	The geophysical basis of hydrologic science	223
<i>4</i> .	The biogeochemical basis of hydrologic science	225
7 . 5.	Some global change issues in hydrologic science	226
۶.	5.1. How do we aggregate the dynamics at various space—time scales in the presence	220
	of great heterogeneity?	227
	5.2. What are the feedback sensitivities of atmospheric dynamics and climate to	221
	changes in landsurface hydrology?	228
		220
	5.3. What are the sensitivities of the methane productivity of wetlands to climate change?	229
	5.4. What is the physical basis for the observed geographical distribution of the	
	major vegetation types on earth's continents?	230
	5.5. Can the dynamics of multistable nonlinear systems suggest new physical in-	250
	sights into the patterns of annual rainfall time series?	231
6.	Hydrologic science is a distinct geoscience	233
0. 7.	Needed actions	234
		235
	knowledgements	
ĸe	ferences	235
Cł	apter 16. The theory of the hydrologic model, or: the struggle for the soul of	
	hydrology	
	by M.B. Abbott	237
Αt	ostract	237
1.	Introduction: maintaining continuity in thinking through a discontinuity in thought	237
2.	Navigating through a world of models: the function of the sign	238
3.	Understanding through the ordering of signs	241
4.	Hydrological rhetoric and its ordering in grammar	244
5.	The struggle for the soul of hydrology	247
6.	Does the future hold out any hope at all?	251
Re	ferences	252