M.A. Van Hove W.H. Weinberg C.-M. Chan W-Energy Electron Diffraction

Experiment, Theory and Surface Structure Determination

With 213 Figures

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo

Contents

1.		e Relevance and Historical Development of LEED
	1.1	The Relevance of Surface Crystallography
	1.2	The Historical Development of LEED
		1.2.1 The Period Before Wave Mechanics
		1.2.2 The Discovery of Electron Diffraction
		1.2.3 The Aftermath of the Discovery of Electron Diffraction
		1.2.4 The Period 1930 – 1965
		1.2.5 The Renaissance of LEED: Experimental Advances in the
		Mid-1960s
		1.2.6 The Theoretical Solution: The Late 1960s and Early 1970s
		1.2.7 The Era of Structural Determination: The 1970s and 1980s
2.	The	LEED Experiment
		General Features of LEED Experiments 1
	2.2	Sample Mounting 1
	2.3	Electron Gun and Display System 1
		2.3.1 Electron Gun 1
		2.3.2 Display System
	2.4	Methods of Data Acquisition 2
		2.4.1 Faraday-Cup Collector and Spot Photometer 2
		2.4.2 Photographic Technique
		2.4.3 Vidicon Camera Method 2
		2.4.4 Position-Sensitive Detector 2
	2.5	Instrumental Response Function 2
		2.5.1 Basic Concepts 2
		2.5.2 Contributions to the Response Width 2
	2.6	Determination of Angle of Incidence
		2.6.1 Different Methods 3
		2.6.2 Theory
		2.6.3 An Example
	2.7	Determination of the Debye Temperature 4
		2.7.1 The Debye Temperature Normal to the Crystal Surface 4
		2.7.2 The Debye Temperature Parallel to the Crystal Surface 4
3.		lered Surfaces: Structure and Diffraction Pattern
	3.1	Two-Dimensional Periodicity and the LEED Pattern 4
		3.1.1 Miller and Miller-Bravais Indices

		3.1.2	Lattice and Basis	48
		3.1.3	Direct and Reciprocal Lattices	49
			attices at Surfaces	51
	3.3	Steppe	d and Kinked Surfaces	57
		3.3.1	The Step Notation	57
		3.3.2	The Microfacet Notation for Cubic Materials	59
		3.3.3	Unit Cells of Stepped and Kinked Surfaces	62
	3.4	Symme	etries and Domains at Surfaces	64
		3.4.1	Symmetries in Two Dimensions	64
		3.4.2	Domains	67
	3.5	Interp	retation of LEED Patterns	70
		3.5.1	Patterns with a Bravais Array of Spots	71
		3.5.2	Patterns with Multiple Bravais Arrays of Spots – Domains	74
		3.5.3	Patterns Exhibiting Extinctions Due to Glide-Plane	
			Symmetry	76
		3.5.4	Rationally Related Lattices and Coincidence Lattices	77
		3.5.5	An Instructive Example of Pattern Interpretation	80
		3.5.6	Incommensurate Lattices	82
		3.5.7	Split Spots	84
		3.5.8	An Example: Compact Structures vs. Antiphase Domain	
			Structures of Adsorbed Carbon Monoxide Overlayers	88
		3.5.9	Patterns with Multiple Specular Spots	89
		3.5.10	Laser Simulation of LEED Patterns	89
4.	Kin	ematic	LEED Theory and Its Limitations	91
	4.1	Definit	tion of Kinematic Theory	92
		4.1.1	Atomic Scattering Factor	92
		4.1.2	Elastic Scattering	92
		4.1.3	Amplitude of Diffraction	93
		4.1.4	Surface Sensitivity	93
		4.1.5	From Amplitudes to Intensities of Diffraction	94
	4.2	The Ki	nematic Structure Factor for Ordered Surfaces	95
		4.2.1	Two-Dimensional Bragg Conditions	95
		4.2.2	General Derivation of Two-Dimensional Bragg Conditions	
			in LEED from the Schrödinger Equation	98
		4.2.3	Plane Waves, Beams, and the LEED Pattern	99
		4.2.4	I-V, I- θ , I- ϕ , and Other Collections of Data	102
		4.2.5	Kinematic Diffraction by Bravais Lattices of Atoms	102
		4.2.6		105
		4.2.7	Surface Structures Deviating from the Bulk Structure	107
		4.2.8	Surfaces with Superlattices	108
		4.2.9	Modulated Structures	108
		4.2.10		110
		4.2.11	The Ewald Sphere	110
		4.2.12	Further Applications of the Kinematic Theory of LEED	114

.

	4.3	The So	cattering Processes in LEED	116
		4.3.1	Inelastic Scattering Processes	116
		4.3.2	Modeling the Effect of the Mean Free Path	117
		4.3.3	Spin Effects	120
	4.4	The El	astic Scattering Potential	120
		4.4.1	Atomic Potentials	121
		4.4.2	The Muffin-Tin Constant	122
		4.4.3	Potential Steps	124
	4.5	Atomi	c Scattering	124
		4.5.1	Spherical-Wave Scattering	125
		4.5.2	Plane Wave Scattering	126
		4.5.3	Phase Shifts	127
		4.5.4	Atoms as Point Scatterers	130
	4.6	The In	ner Potential and the Muffin-Tin Constant	132
	4.7	Tempe	erature Effects	132
		4.7.1	The Debye-Waller Factor	134
	4.8	From	Kinematic to Dynamical LEED	136
		4.8.1	Clean Crystals and Bragg Reflections in One Dimension	137
		4.8.2	Three-Dimensional Effects	142
		4.8.3	Overlayer Effects	143
5.			LEED Theory	145
			ble Scattering	145
	5.2		ction in Crystalline Lattices	146
		5.2.1	Expansion in Spherical Waves	147
		5.2.2	Expansion in Plane Waves	147
		5.2.3	Expansion in Bloch Waves	148
		5.2.4	Forward vs. Backward Scattering	149
	5.3		ble Scattering in the Spherical-Wave Representation –	
			onsistent Formalism	150
		5.3.1	Scattering by Two Atoms	150
		5.3.2	Scattering by N Atoms	153
		5.3.3	One Periodic Plane of Atoms	154
		5.3.4	Several Periodic Planes of Atoms	155
		5.3.5	Change to Plane-Wave Amplitudes	156
		5.3.6	Layer Diffraction Matrices for Plane Waves	157
	. .	5.3.7	One-Center Expansion	160
	5.4		bation Expansion of Multiple Scattering in the Spherical-	
			Representation: Reverse-Scattering Perturbation (RSP)	
		Metho		161
		5.4.1	The Principle of RSP	161
		5.4.2	The Formalism of RSP	163
		5.4.3	The Use of RSP	163
	5.5		ction by a Stack of Layers: Transfer-Matrix and Bloch-Wave	4.5.5
		Metho	d	164

ł

		5.5.1	The Bloch Condition	164
		5.5.2	The Bloch Functions	166
		5.5.3	The Transfer Matrix	166
		5.5.4	Wave Matching at the Surface	167
		5.5.5	Small Layer Spacings	168
		5.5.6	Relation to Band Structure	168
	5.6	Diffrac	ction by a Stack of Layers: Layer-Stacking and Layer-	
			ing Method	169
		5.6.1	The Case of Two Layers	169
		5.6.2	The Case of Many Layers	171
	5.7	Diffrac	ction by a Stack of Layers: Renormalized-Forward-	
			ing (RFS) Perturbation Method	172
		5.7.1	The Principle of RFS	172
		5.7.2	The Formalism of RFS	172
	5.8	Efficie	ncy of Computation and the Combined-Space Method	174
	5.9		attices and Domains	175
		5.9.1	Diffraction and Superlattices	175
		5.9.2	Domains	178
	5.10	Symme	etries	179
		5.10.1	Types of Symmetry	179
		5.10.2	The Formalism of Symmetrization	180
			Glide-Plane Symmetry	181
	5.11		al Effects	183
		5.11.1	Temperature-Dependent Phase Shifts	184
		5.11.2	Illustrations of Multiple-Scattering Effects	
			in Temperature-Dependent LEED	185
	5.12	Potent	ial Steps, Surface States, Surface Resonances and LEED	
			ructure	188
			Potential Steps	188
		5.12.2	Surface States, Surface Resonances and LEED Fine	
			Structure	189
			vistic and Spin-Dependent Effects in LEED	192
	5.14		Other Theoretical Techniques	195
			Bootstrapping	196
			The Chain Method	196
			Multiple Scattering in Disordered Systems	197
			Pseudopotentials	198
			A Semiclassical Theory of LEED	199
	5.15	Outsta	nding Theoretical Problems in LEED	200
			ation of LEED Theory to Other Electron Spectroscopies	201
	5.17	Compt	iter Programs	202
6.	Meth	ods of S	Surface Crystallography by LEED	205
	6.1	The Ki	nematic Approach to Surface Crystallography	206
		6.1.1	Kinematic Simulation of Intensity Data	206

		6.1.2	Layer Spacings from Sequences of Bragg Peaks	208
	6.2	Avera	ging Methods	209
		6.2.1	Constant-Momentum-Transfer Averaging (CMTA)	209
		6.2.2	CMTA with Azimuthal Averaging at Constant Energy	211
	6.3	Fourie	er-Transform Methods	214
		6.3.1	The Patterson Function	214
		6.3.2	The Convolution-Transform Method	219
		6.3.3	The Transform-Deconvolution Method	226
		6.3.4	Fourier Transform of Intensity Beats from Overlayer and	
			Substrate	227
	.6.4	The D	ynamical Approach to Surface Crystallography	231
		6.4.1	Dynamical Effects on Intensity Data	232
		6.4.2	Information Content of Measured Data	233
		6.4.3	Extraction of Structural Information	
			from Dynamical LEED Intensities	234
	6.5	Reliat	bility Factors (R-Factors)	237
		6.5.1	Various R-Factors	238
		6.5.2	Reliability of Reliability Factors	244
		6.5.3	Dealing with Different Experiments and Different Beams .	244
		6.5.4	Noise and Smoothing	245
		6.5.5	The Use of R-Factors	246
	6.6	Accur	acy and Precision of Structural Determination	251
7.	Rest	ilts of S	structural Analyses by LEED	254
7.	Rest 7.1		tructural Analyses by LEED	254 254
7.		Clean	Unreconstructed Surfaces	254 254 258
7.			Unreconstructed Surfaces	254
7.		Clean 7.1.1 7.1.2	Unreconstructed Surfaces	254 258 260
7.	7.1	Clean 7.1.1 7.1.2 Recon	Unreconstructed Surfaces	254 258 260 262
7.	7.1	Clean 7.1.1 7.1.2	Unreconstructed Surfaces	254 258 260
7.	7.1	Clean 7.1.1 7.1.2 Recon 7.2.1	Unreconstructed Surfaces The Rh(111) Surface Multilayer Relaxations Istructed Surfaces The Ir(110)-(1 × 2) Reconstructed Surface The Si(100)-(2 × 1) Reconstructed Surface	254 258 260 262 265
7.	7.1 7.2	Clean 7.1.1 7.1.2 Recom 7.2.1 7.2.2 7.2.3	Unreconstructed Surfaces	254 258 260 262 265 273
7.	7.1	Clean 7.1.1 7.1.2 Recom 7.2.1 7.2.2 7.2.3	Unreconstructed Surfaces The Rh(111) Surface Multilayer Relaxations Instructed Surfaces The Ir(110)-(1 × 2) Reconstructed Surface The Si(100)-(2 × 1) Reconstructed Surface The GaAs(110)-(1 × 1) Reconstructed Surface bed Atomic Layers	254 258 260 262 265 273 278
7.	7.1 7.2	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1	Unreconstructed SurfacesThe Rh(111) SurfaceMultilayer Relaxationsistructed SurfacesThe Ir(110)-(1 \times 2) Reconstructed SurfaceThe Si(100)-(2 \times 1) Reconstructed SurfaceThe GaAs(110)-(1 \times 1) Reconstructed Surfacebed Atomic LayersThe Ir(110)-(2 \times 2)-2S Atomic Overlayer	254 258 260 262 265 273 278 285
7.	7.1 7.2	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor	Unreconstructed Surfaces	254 258 260 262 265 273 278 285
7.	7.1 7.2	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1 7.3.2	Unreconstructed Surfaces The Rh(111) Surface Multilayer Relaxations The Ir(110)-(1 \times 2) Reconstructed Surface The Si(100)-(2 \times 1) Reconstructed Surface The GaAs(110)-(1 \times 1) Reconstructed Surface The GaAs(110)-(1 \times 1) Reconstructed Surface The GaAs(110)-(2 \times 2)-2S Atomic Overlayer The Ir(110)-(2 \times 2)-O and Ir(111)-(2 \times 2)-O Atomic Overlayers	254 258 260 262 265 273 278 285 290
7.	7.1 7.2	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1 7.3.2 7.3.3	Unreconstructed Surfaces The Rh(111) Surface Multilayer Relaxations The Ir(110)-(1 \times 2) Reconstructed Surface The Si(100)-(2 \times 1) Reconstructed Surface The GaAs(110)-(1 \times 1) Reconstructed Surface The GaAs(110)-(1 \times 1) Reconstructed Surface The Ir(110)-(2 \times 2)-2S Atomic Overlayer The Ir(110)-(2 \times 2)-O and Ir(111)-(2 \times 2)-O Atomic Overlayers The Ti(0001)-(1 \times 1)-N Atomic Underlayer	254 258 260 262 265 273 278 285 290 294
7.	7.17.27.3	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1 7.3.2 7.3.3	Unreconstructed Surfaces The Rh(111) Surface Multilayer Relaxations Instructed Surfaces The Ir(110)-(1 \times 2) Reconstructed Surface The Si(100)-(2 \times 1) Reconstructed Surface The GaAs(110)-(1 \times 1) Reconstructed Surface The GaAs(110)-(1 \times 1) Reconstructed Surface The Ir(110)-(2 \times 2)-2S Atomic Overlayer The Ir(110)-(2 \times 2)-O and Ir(111)-(2 \times 2)-O Atomic Overlayers The Ti(0001)-(1 \times 1)-N Atomic Underlayer bed Molecular Layers	254 258 260 262 265 273 278 285 290 294 303 305
7.	7.17.27.3	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1 7.3.2 7.3.3 Adsor 7.4.1	Unreconstructed Surfaces	254 258 260 262 265 273 278 285 290 294 303 305 309
7.	7.17.27.3	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1 7.3.2 7.3.3 Adsor 7.4.1 7.4.2	Unreconstructed Surfaces	254 258 260 262 265 273 278 285 290 294 303 305
7.	7.17.27.3	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1 7.3.2 7.3.3 Adsor 7.4.1	Unreconstructed Surfaces	254 258 260 262 265 273 278 285 290 294 303 305 309
	7.17.27.37.4	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1 7.3.2 7.3.3 Adsor 7.4.1 7.4.2 7.4.3	Unreconstructed Surfaces	254 258 260 262 265 273 278 285 290 294 303 305 309 312 314
	 7.1 7.2 7.3 7.4 Two 	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1 7.3.2 7.3.3 Adsor 7.4.1 7.4.2 7.4.3 Dimen	Unreconstructed Surfaces	254 258 260 262 265 273 278 285 290 294 303 305 309 312 314 318
	7.17.27.37.4	Clean 7.1.1 7.1.2 Recon 7.2.1 7.2.2 7.2.3 Adsor 7.3.1 7.3.2 7.3.3 Adsor 7.4.1 7.4.2 7.4.3 Dimen	Unreconstructed Surfaces	254 258 260 262 265 273 278 285 290 294 303 305 309 312 314

, 1

۰.

,

		8.1.2	Universality, Nonuniversality, Critical Exponents and	
			Scaling	321
		8.1.3	Applicability to Actual Surfaces	325
	8.2		nteraction of Hydrogen with the (111) Surface of Nickel	325
		8.2.1	An Optimum Case	325
		8.2.2	Experimental Results for Hydrogen Chemisorption on	
			Ni(111)	326
		8.2.3	Parameters for LEED Analysis	330
		8.2.4	The Geometry of Chemisorbed Hydrogen on Ni(111)	331
		8.2.5	Thermal Motion and Disorder in the Hydrogen Overlayer	335
		8.2.6	The Order-Disorder Phase Transition and Adatom-Adatom	
			Interaction Energies	339
		8.2.7	A Renormalization-Group Theory Description of the	
			Order-Disorder Transition of Hydrogen on Ni(111)	342
		8.2.8	A Cluster-Variational Description of the Order-Disorder	•
		0.2.0	Transition of Hydrogen on Ni(111)	343
		8.2.9	An Atomic Band Structure Description of Hydrogen on	
		0.2.72	Ni(111)	345
	8.3	The Ir	nteraction of Hydrogen with the (100) Surface of Palladium	348
	0.0	8.3.1	Significance of the H/Pd(100) System	348
		8.3.2	An Experimental Characterization of Hydrogen on	0.0
		0.5.2	Pd (100)	349
		8.3.3	The Order-Disorder Phase Transition	354
		8.3.4	The Connection Between the Ising Model and the Lattice-	55.
		0.5.4	Gas Model	356
		8.3.5	The Lattice-Gas Model with First- and Second-Neighbor	550
		0.5.5	Interactions	359
		8.3.6	Effects of Three-Body Interactions	360
		8.3.7	Effects of Third-Neighbor Interactions	362
		8.3.8	Comparison Between Experiment and Theory for	502
		0.5.0	Hydrogen on Pd(100)	364
	8.4	The Ir	iteraction of Hydrogen with the (110) Surface of Iron	367
	0.7	8.4.1	Significance of the H/Fe(110) System	367
		8.4.2	An Experimental Characterization of Hydrogen on	507
		0.4.2	Fe(110)	367
		8.4.3	LEED Observations and Order-Disorder Phase Transitions	507
		0.4.5	of Hydrogen on Fe(110)	369
		8.4.4	Theoretical Predictions: A Lattice Gas	507
		0.4.4	on a Centered-Rectangular Lattice	372
		8.4:5	Comparison Between Experiment and Theory	512
		0.4.3	for Hydrogen on Fe(110)	376
				370
9.	Che	mical R	eactions at Surfaces and LEED	378
	9.1	Monit	oring Surface Reactions by LEED	378
	9.2	The A	dsorption of Oxygen on Rh(111) at 335 K	379

		9.2.1	First-Order Langmuir Adsorption	380
		9.2.2	The Structure of Oxygen on Rh(111)	382
		9.2.3	LEED Intensity Proportional to Oxygen Coverage	384
	9.3,	The R	eaction Between Hydrogen and Ordered Oxygen on	
		Rh(11	1)	386
		9.3.1	Reaction Threshold Temperature	386
		9.3.2	First-Order Catalytic Reaction	386
		9.3.3	Model for the Catalytic Reaction	387
		9.3.4	Activation Energies and Preexponential Factors	389
		9.3.5	Experimental Determination	391
	9.4	The R	eaction Between Hydrogen and Both Ordered and	
		Disord	lered Oxygen on Rh(111)	395
		9.4.1	Order-Dependent Kinetics	395
		9.4.2	Relative Amounts of Ordered and Disordered Oxygen	396
10	Iclan	d Form	action of Adaposies and LEED	398
10.			ation of Adspecies and LEEDature of Islands on Surfaces	- 398 - 398
			Beam Profiles for Arrays of Ordered Islands	399
	10.2		Distributions of Islands	399
			One-Dimensional Overlayers	401
			Two-Dimensional Overlayers	403
			Dependence on Surface Coverage	407
			Summary of Theoretical Results for Beam Profiles	410
	10.3		Formation in a Real System: CO on Ru(0001)	411
	10.5		Conditions of Island Formation	411
			Experimental Results	411
			Analysis and Discussion of Results	419
		10.0.0	10.3.3a The Step-Limited Model of Island Formation	419
			10.3.3b Dissolution of Islands	422
		10.3.4	Summary of Island Formation Properties for	
			CO/Ru(0001)	426
				10-
11.			of LEED	427
	11.1		mental Outlook	427
			Improvements in Experimental Techniques	427 429
	11 7		New Experimental Directions	429
	11.2		etical Outlook	431
			Partial Multiple Scattering	431
			Developments in the Dynamical Theory	432
		11.2.3	11.2.3a Coherent Kinematic Summation of Amplitudes	433
			over Different Local Configurations	434
			11.2.3b Reduced Unit Cell	434
			11.2.3c Asymptotic Regime	435
		11 2 4	New Directions	436
		11.2.7		450

11.3 Progress in Structural Determination	438
11.3.1 Degree of Completeness of Structural Determinations	438
11.3.2 R-Factors and Structural Search Techniques	439
11.3.2a Projection Improvement	440
11.3.2b Functional Fitting of R-Factors	442
11.3.2c Steepest Descent	442
11.3.2d Least Squares	442
11.4 LEED vs. Other Surface-Sensitive Techniques	443
11.4.1 Individual Techniques	444
11.4.2 Comparisons Between Surface-Sensitive Techniques	460
11.4.3 Complementary and Competitive Techniques	464
12. Reference List and Table for Surface Structures	467
Appendix A: Acronyms of Techniques Related to Surface Science	525
Appendix B: A Computer Program to Determine the Angle of Incidence	520
in LEED	529
List of Major Symbols	545
References	549
Subject Index	587