# Plant Response to Stress

#### Functional Analysis in Mediterranean Ecosystems

Edited by

### John D. Tenhunen

Systems Ecology Research Group, San Diego State University San Diego, CA 92182, USA

### Fernando M. Catarino

Department of Plant Biology, Faculty of Sciences University of Lisbon, 1294 Lisbon, Portugal

## Otto L. Lange

Lehrstuhl für Botanik II der Universität Würzburg Mittlerer Dallenbergweg 64, 8700 Würzburg, FRG

## Walter C. Oechel

Systems Ecology Research Group, San Diego State University San Diego, CA 92182, USA



Springer-Verlag
Berlin Heidelberg New York London Paris Tokyo
Published in cooperation with NATO Scientific Affairs Division

## **CONTENTS**

1. METHODS AND EXPERIMENTAL STRATEGIES FOR ASSESSING MEDITERRANEAN PLANT FUNCTION AND RESPONSE TO STRESS

| of stress on leaves                                                                                                     | 3   |
|-------------------------------------------------------------------------------------------------------------------------|-----|
| Rapid assessment of stress effects on plant leaves by chlorophyll fluorescence measurements  U. Schreiber and W. Bilger | 27  |
| Leaf absorptance and leaf angle: mechanisms for stress avoidance                                                        | 55  |
| Methods for studying the mechanism of water stress effects on photosynthesis                                            | 77  |
| Coping with variability: Examples of tracer use in root function studies.  M. M. Caldwell and D. M. Eissenstat          | 95  |
| Approaches for studying the function of deep root systems                                                               | 107 |
| Use of nitrogen-15 to assess terrestrial nitrogen cycling processes                                                     | 129 |
| Application of computer methods in the field to assess ecosystem function and response to stress                        | 157 |
| Studying long term community dynamics using image processing                                                            | 165 |

## 2. PLANT WATER RELATIONS AND RESPONSE TO WATER STRESS

| Response of two perennial grasses to water availability in different habitats related to successional change under Mediterranean climate conditions                                                      | 175 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Changes in aboveground structure and resistances to water uptake in <i>Quercus coccifera</i> along a rainfall gradient                                                                                   | 191 |
| Root to shoot communication of the effects of soil drying, flooding or increased salinity. A case for the involvement of plant growth regulators in a multiple chemical signal                           | 201 |
| Stomatal conductance and water relations of shrubs growing at the chaparral-desert ecotone in California and Arizona                                                                                     | 223 |
| Regulation of water use by four species of <i>Cistus</i> in the scrub vegetation of the Serra da Arrábida, Portugal  O. Correia, F. Catarino, J.D. Tenhunen and O.L. Lange                               | 247 |
| Water use by <i>Quercus Ilex</i> L. in forests near Barcelona, Spain                                                                                                                                     | 259 |
| Soil drying and the resulting chemical and hydraulic effects on leaf growth                                                                                                                              | 267 |
| B. PHOTOSYNTHESIS AND PRIMARY PRODUCTION UNDER MEDITERRANEAN CLIMATE CONDITIONS                                                                                                                          |     |
| Gas exchange characteristics of representative species from the scrub vegetation of central Chile                                                                                                        | 279 |
| Changes during summer drought in leaf CO <sub>2</sub> uptake rates of macchia shrubs growing in Portugal: Limitations due to photosynthetic capacity, carboxylation efficiency, and stomatal conductance | 305 |

| Seasonal and diurnal patterns in leaf gas exchange of <i>Phillyrea angustifolia</i> growing in Portugal                              | 329  |
|--------------------------------------------------------------------------------------------------------------------------------------|------|
| A model of net photosynthesis for leaves of the sclerophyll  Quercus coccifera                                                       | 339  |
| Diurnal patterns of leaf internal CO <sub>2</sub> partial pressure of the sclerophyll shrub <i>Arbutus unedo</i> growing in Portugal | 355  |
| Effect of light on gas exchange parameters of sun and shade adapted leaves of Ceratonia siliqua, Coffea arabica and Malus domestica  | 369  |
| Photosynthesis and water relations of grapevines growing in Portugal - response to environmental factors                             | 379  |
| Chlorophyll fluorescence as an indicator of heat induced limitation of photosynthesis in <i>Arbutus unedo</i> L                      | 391  |
| Ecological implications of sun/shade-leaf differentiation in sclerophyllous canopies: Assessment by canopy modeling                  | 401  |
| I. CARBON CYCLING AND PLANT RESPONSE TO LIMITED NUTRESUPPLY                                                                          | IENT |
| Responses of plants to nutrient supply in mediterranean-type ecosystems                                                              | 415  |
| Nutrient use strategy by evergreen-oak (Quercus ilex ssp. ilex) in NE Spain                                                          | 429  |
| Seasonal photosynthate allocation of the Californian coast live oak <i>Quercus agrifolia</i>                                         | 437  |

| over a southern California fire cycle chronosequence                                                                              | 445 |
|-----------------------------------------------------------------------------------------------------------------------------------|-----|
| Effect of copper on water relations and growth of <i>Triticum</i>                                                                 | 459 |
| . MEDITERRANEAN PLANT GROWTH, STRUCTURE, DEVELOPMENT                                                                              | AND |
| Quantification of mediterranean plant phenology and growth                                                                        | 469 |
| Phenology of mediterranean plants in relation to fire season: with special reference to the Cape Province South Africa E. J. Moll | 489 |
| Comparative phenology of four mediterranean shrub species growing in Portugal                                                     | 503 |
| Observations on the phenology of two dominant plants of the Greek maquis                                                          | 515 |
| Crown structure of <i>Eucalyptus globulus</i> Labill. in a coppiced plantation                                                    | 521 |
| Vertical structure of <i>Halimium halimifolium</i> shrubs in Doñana National Park (SW Spain)                                      | 531 |
| Structural analysis of sclerophylly in eleven evergreen phanerophytes in Greece                                                   | 547 |
| The cost of growing and maintaining leaves of mediterranean plants                                                                | 553 |
| Features of seed germination in <i>Arbutus unedo</i> L. C.P.P. Ricardo and M.M. Veloso                                            | 565 |

## 6. FIRE EFFECTS ON MEDITERRANEAN PLANT POPULATIONS

| Postfire demography of resprouting and seedling establishment by <i>Adenostoma fasciculatum</i> in the California chaparral | 575 |
|-----------------------------------------------------------------------------------------------------------------------------|-----|
| A model of life history strategies of chaparral shrubs in relation to fire frequency                                        | 597 |
| Natural and prescribed fire: survival strategies of plants and equilibrium in mediterranean ecosystemsL. Trabaud            | 607 |
| 7. THE RESPONSE TO STRESS AT THE LANDSCAPE SCALE                                                                            |     |
| The effect of summer drought on vegetation structure in the mediterranean climate region of Australia                       | 625 |
| Landscape ecology, management and conservation of European and Levant Mediterranean uplandsZ. Naveh                         | 641 |
| 8. FUTURE DIRECTIONS                                                                                                        |     |
| The impact of environmental stress on plant performance in mediterranean climate ecosystems:  Differing levels of analysis  | 661 |