### Contents

#### CHAPTER 1

| A New Perspective for Drug Delivery Research                       |             |
|--------------------------------------------------------------------|-------------|
| R.L. JULIANO                                                       | 1           |
| A. Promises Realized: A Recent History of Controlled Drug Delivery | 1           |
| I. Sustained Delivery Systems: A Clinical and Commercial Success   | 1           |
| 1. Implantable Systems                                             | 2           |
| 2. Transdermal Systems                                             |             |
| II. Microparticulate Delivery Systems                              | 2<br>3<br>3 |
| 1. Solving Old Problems                                            | 3           |
| 2. Clinical Evaluation                                             | 4           |
| B. The Opening Door: Molecular Biology Generates New               |             |
| Opportunities and Challenges for Drug Delivery Research            | 5           |
| I. Using the Body's Own Pharmaceuticals                            | 5           |
| II. Endocrine Vs Paracrine: A Drug Targeting Problem               | 5           |
| C. An Overview of this Volume: Building on the Past and Looking    |             |
| Toward the Future                                                  | 6           |
| D. Drug Targeting Research in the Twenty-First Century:            |             |
| A New Perspective                                                  | 7           |
| References                                                         | 8           |

| Internalization and Sorting of Macromolecules: Endocytosis |    |
|------------------------------------------------------------|----|
| T.E. McGRAW and F.R. MAXfield. With 3 Figures              | 11 |
| A. Introduction                                            | 11 |
| B. Pathways of Endocytosis in Nonpolarized Cells           | 13 |
| I. Endosomes                                               |    |
| II. Properties of Endosomes                                |    |
| 1. Acidification                                           |    |
| 2. Endosome Fusion and Sorting                             | 20 |
| 3. Maturation of Endosomes                                 | 23 |
| C. Molecular Basis of Endocytosis                          |    |



| 1. Required Receptor Sequences             |        |
|--------------------------------------------|--------|
|                                            | 28     |
| 2. Clathrin-Coated Pit Clustering Proteins |        |
| 3. Formation of Endocytic Vesicles         | <br>28 |
| II. Intracellular Routing                  | <br>29 |
| D. Noncoated Pit Internalization           | <br>31 |
| E. Endocytosis in Polarized Cells          | <br>32 |
| F. Summary                                 | <br>34 |
| References                                 | <br>34 |

| Tra         | ansport of Macromolecules Across the Capillary Endothelium  |    |
|-------------|-------------------------------------------------------------|----|
| <b>K</b> .] | L. AUDUS and R.T. BORCHARDT. With 3 Figures                 | 43 |
| Α.          | Introduction                                                | 43 |
| Β.          | Pathways for the Passage of Macromolecules Across Capillary |    |
|             | Endothelium                                                 | 43 |
|             | I. Capillary Endothelium                                    | 43 |
|             | II. Fenestrations                                           | 45 |
|             | III. Large Pores                                            | 45 |
|             | IV. Intercellular Junctions                                 | 46 |
|             | V. Endocytosis and Phagocytosis                             | 46 |
| С.          |                                                             | 48 |
| D.          | Experimental Model Systems                                  | 49 |
|             | I. Brain Perfusion Model                                    | 50 |
|             | II. Isolated Capillaries                                    | 50 |
|             | III. Tissue Culture Systems                                 | 51 |
| E.          |                                                             |    |
|             | Endothelial Cell Transport of Macromolecules                | 53 |
|             | I. Kinetics of Marker Molecules                             | 53 |
|             | 1. Lucifer Yellow                                           | 54 |
|             | 2. Lectins                                                  | 54 |
|             | II. Large Peptides                                          | 55 |
|             | 1. Transferrin                                              | 55 |
|             | 2. Insulin and Insulin-Like Growth Factor                   | 56 |
|             | 3. Atrial Natriuretic Factor                                | 57 |
|             | 4. Modified Albumins                                        | 57 |
|             | III. Small Peptides                                         | 58 |
|             | IV. Regulation of the Permeability of Capillary Endothelium | 59 |
|             | 1. Astrocytes                                               | 59 |
|             | 2. Vasoactive Peptides                                      | 61 |
| F.          | *                                                           | 63 |
| Re          | eferences                                                   | 64 |

| Pharmacokinetics of Drug Targeting:<br>Specific Implications for Targeting via Prodrugs |     |
|-----------------------------------------------------------------------------------------|-----|
| V.J. STELLA and A.S. KEARNEY. With 18 Figures                                           | 71  |
| A. Introduction                                                                         | 71  |
| B. Pharmacokinetic Models and Drug Targeting                                            | 72  |
| I. Defining Drug Targeting                                                              | 72  |
| II. Testing Targeting Hypotheses Using Classical                                        |     |
| or Compartmental Pharmacokinetic Models                                                 | 73  |
| III. Testing Targeting Hypotheses Using Physiological                                   |     |
| Pharmacokinetic Models                                                                  | 78  |
| 1. Perfusion Models                                                                     | 78  |
| 2. Trafficking and Cellular Uptake Limitations                                          | 81  |
| 3. Specific Examples of Models Used to Evaluate                                         |     |
| and Predict Targeting Strategies                                                        | 82  |
| C. Prodrug-Mediated Targeted Drug Delivery                                              | 85  |
| I. Prodrugs in General                                                                  | 85  |
| II. Site-Specific Drug Delivery via Prodrugs                                            | 87  |
| 1. Indirect Drug Targeting via Prodrugs                                                 | 88  |
| 2. Direct Drug Targeting via Prodrugs                                                   | 93  |
| References                                                                              | 100 |

| Sol | uble Polymers as Targetable Drug Carriers                     |     |
|-----|---------------------------------------------------------------|-----|
| N.I | L. KRINICK and J. KOPEČEK. With 13 Figures                    | 105 |
|     | Introduction                                                  | 105 |
| Β.  | Consequences of Drug Binding to Macromolecular Carriers:      |     |
|     | Cellular Level                                                | 106 |
|     | I. Pinocytosis                                                | 106 |
|     | 1. Receptor-Mediated Endocytosis                              | 108 |
|     | II. Endosomes                                                 | 111 |
|     | III. Lysosomes                                                | 113 |
| C.  |                                                               | 116 |
|     | I. Principles of Biodegradability                             | 117 |
|     | II. Influence of Substitution on the Degradability            |     |
|     | e .                                                           | 118 |
|     | 1. Polysaccharides                                            | 118 |
|     | 2. Polyamino Acids                                            | 119 |
|     | III. Elimination of Macromolecular Carriers from the Organism | 121 |
|     | 1. Structural Factors Influencing the Fate of Macromolecules  | 122 |
| D.  | Release of Drugs                                              | 124 |
|     | I. Release of Drugs by Hydrolysis                             | 124 |
|     |                                                               |     |

| II. Disulfide Spacers                                    | 125 |
|----------------------------------------------------------|-----|
| III. Release of Drugs by Enzymes                         | 125 |
| 1. Release of Drug Models from HPMA Copolymers           |     |
| by Chymotrypsin                                          | 126 |
| 2. Cleavage by Lysosomal Enzymes                         | 128 |
| IV. Relationship Between Susceptibility to Enzymatically |     |
| Catalyzed Hydrolysis and Biological Activity             | 131 |
| E. Targeting                                             | 134 |
| I. Principles of Targeting                               | 134 |
| II. Obstacles to Targeted Drug Delivery                  | 135 |
| 1. Multidrug Resistance                                  | 137 |
| III. Targeting Lysosomes with Carbohydrate Moieties      | 137 |
| 1. Asialoglycoproteins                                   | 138 |
| 2. Lysosomal Hydrolases                                  | 138 |
| 3. Glycoconjugates                                       | 139 |
| 4. Synthetic and Natural Polymers                        | 140 |
| IV. Antibodies                                           | 143 |
| 1. Antibody-Drug Conjugates                              | 143 |
| 2. Antibody-Synthetic Polymer-Drug Conjugates            | 149 |
| 3. Antibody-Natural Polymer-Drug Conjugates              | 152 |
| V. Hormones                                              | 154 |
| VI. Other Targeting Systems                              | 155 |
| F. Photosensitization: Activation by Light               | 156 |
| I. Photodynamic Therapy                                  | 157 |
| 1. Double Targeting                                      | 158 |
| 2. Uptake of Photosensitizer Conjugates                  | 160 |
| G. Decreased Toxicity and Immunogenicity of Drug-Polymer |     |
| Conjugates                                               | 161 |
| I. Toxicity of Drug-Polymer Conjugates                   | 161 |
| II. Immunogenicity of Polymer-Drug Conjugates            | 162 |
| H. Soluble Polymers for Site Specific Oral Drug Delivery | 163 |
| I. Enzyme Controlled Site Specific Drug Release          | 163 |
| II. Bioadhesion of Polymeric Carriers                    | 164 |
| III. Two Fold Specificity in Oral Drug Delivery          | 165 |
| I. Concluding Remarks                                    | 166 |
| References                                               | 166 |

| Systemic Delivery of Pharmacologically Active Molecules Across the Skin |     |
|-------------------------------------------------------------------------|-----|
| Y.W. CHIEN. With 33 Figures                                             | 181 |
| A. Biomedical Logic of Transdermal Drug Delivery                        | 181 |
| I. Introduction                                                         | 181 |
| II. The Skin Site for Percutaneous or Transdermal Drug Delivery         | 182 |
| III. Mechanisms and Kinetics of TDD                                     | 184 |

| В. | Historic Development of TDD                                      | 187 |
|----|------------------------------------------------------------------|-----|
|    | Transdermal Delivery of Pharmacologically Active Organic         |     |
|    | Molecules                                                        | 191 |
|    | I. Nitroglycerin-Releasing TDD System                            | 193 |
|    | 1. Membrane Permeation-Controlled Drug Delivery                  | 193 |
|    | 2. Matrix Diffusion-Controlled Drug Delivery                     | 196 |
|    | 3. Interfacial Partitioning-Controlled Drug Delivery             | 198 |
|    | II. Scopolamine-Releasing TDD System                             | 201 |
|    | III. Clonidine-Releasing TDD System                              | 201 |
|    | IV. Estradiol-Releasing TDD System                               | 202 |
|    | V. Determination of TDD Kinetics                                 | 205 |
|    | 1. In Vitro Drug Release Kinetics                                | 206 |
|    | 2. In Vitro Transdermal Permeation Kinetics                      | 208 |
|    | 3. In Vivo Transdermal Permeation Kinetics                       | 210 |
|    | 4. In Vitro and In Vivo Correlations                             |     |
|    | of Transdermal Permeation Kinetics                               | 213 |
|    | VI. Optimization of Transdermal Controlled Drug Delivery         | 214 |
| D. | Transdermal Delivery of Pharmacologically Active Peptide/Protein |     |
|    | Molecules                                                        | 217 |
| E. | Conclusion                                                       | 226 |
| Re | ferences                                                         | 227 |

| Chemical Delivery Systems                               |     |
|---------------------------------------------------------|-----|
| N. Bodor and M.E. Brewster. With 40 Figures             | 231 |
| A. Introduction                                         | 231 |
| B. Site and Stereospecific Drug Delivery to the Eye     |     |
| C. Brain-Targeting Drug Delivery                        |     |
| I. Background                                           | 237 |
| II. Dihydronicotinate CDSs                              | 239 |
| 1. Brain-Targeting of Neurotransmitters and Amino Acids | 241 |
| 2. Brain-Enhanced Delivery of Antiviral Agents          | 248 |
| 3. Application of the Brain-Targeting CDS to Estrogens  | 260 |
| 4. Conclusion                                           | 278 |
| References                                              | 279 |

-

| In Vivo Behavior of Liposomes:                                             |     |
|----------------------------------------------------------------------------|-----|
| Interactions with the Mononuclear Phagocyte System and Implications        |     |
| for Drug Targeting<br>G.L. Scherphof                                       | 285 |
| <ul><li>A. Introduction</li><li>B. Interactions with Body Fluids</li></ul> |     |

#### Contents

| Interactions with Cells                      | 288                                                                                                                                                                                                                                                           |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Anatomical Barriers                          | 290                                                                                                                                                                                                                                                           |
| Factors Influencing Liposome Uptake by Cells | 293                                                                                                                                                                                                                                                           |
| I. Liposome Size                             | 295                                                                                                                                                                                                                                                           |
| II. Liposome Composition                     | 296                                                                                                                                                                                                                                                           |
| III. Cholesterol and Opsonization            | 297                                                                                                                                                                                                                                                           |
| IV. Prolonged Circulation Time               | 300                                                                                                                                                                                                                                                           |
| Surface Modification                         | 302                                                                                                                                                                                                                                                           |
| Intracellular Processing of Liposomes        | 305                                                                                                                                                                                                                                                           |
| Implications for Drug Targeting              | 307                                                                                                                                                                                                                                                           |
| Concluding Remarks                           | 312                                                                                                                                                                                                                                                           |
| ferences                                     | 313                                                                                                                                                                                                                                                           |
|                                              | Factors Influencing Liposome Uptake by CellsI. Liposome SizeII. Liposome CompositionIII. Cholesterol and OpsonizationIV. Prolonged Circulation TimeSurface ModificationIntracellular Processing of LiposomesImplications for Drug TargetingConcluding Remarks |

#### CHAPTER 9

# Antisense Oligonucleotides as Pharmacological Modulators of Gene Expression

| G. DEGOLS, JP. LEONETTI, and B. LEBLEU. With 2 Figures                                                                                          | 329 |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|
| <ul><li>A. General Principles and Historical Background</li><li>B. Artificial Control of Gene Expression by Synthetic Oligonucleotide</li></ul> |     |  |  |  |  |
| An Overview of Problems and Potential                                                                                                           | 331 |  |  |  |  |
| C. Oligonucleotide Chemistry and Modifications                                                                                                  | 332 |  |  |  |  |
| I. Modifications of the Phosphodiester Backbone                                                                                                 | 332 |  |  |  |  |
| 1. Nonionic Oligonucleotides                                                                                                                    | 332 |  |  |  |  |
| 2. Isoelectric Oligonucleotides                                                                                                                 |     |  |  |  |  |
| 3. Phosphoramidate Oligonucleotides                                                                                                             |     |  |  |  |  |
| II. Modifications of the Sugar Moiety                                                                                                           |     |  |  |  |  |
| 1. Sugar-Modified Oligonucleotides                                                                                                              | 334 |  |  |  |  |
| 2. Oligoribonucleotide Analogues                                                                                                                | 335 |  |  |  |  |
| III. Functionalization of Oligonucleotide Ends                                                                                                  | 336 |  |  |  |  |
| D. Internalization Pathway of Antisense Oligonucleotides and                                                                                    |     |  |  |  |  |
| Alternative Methods to Increased Cellular Uptake                                                                                                | 337 |  |  |  |  |
| I. Mechanism of Uptake of Oligonucleotides in Cells                                                                                             | 337 |  |  |  |  |
| II. Modifications of Oligonucleotides to Increase Cell Uptake                                                                                   | 338 |  |  |  |  |
| E. Mechanism of Action of Antisense Oligonucleotides                                                                                            | 340 |  |  |  |  |
| F. Biological Potential of Synthetic Oligonucleotides                                                                                           | 342 |  |  |  |  |
| G. Prospectives of In Vivo Utilization of Antisense Oligonucleotides .                                                                          | 345 |  |  |  |  |
| References                                                                                                                                      |     |  |  |  |  |
|                                                                                                                                                 |     |  |  |  |  |
|                                                                                                                                                 |     |  |  |  |  |

| Subject Index. |  |  |  |  | 355 |
|----------------|--|--|--|--|-----|
|----------------|--|--|--|--|-----|

#### XIV