Albert Benveniste Michel Métivier Pierre Priouret

Adaptive Algorithms and Stochastic Approximations

Translated from the French by Stephen S. Wilson

With 24 Figures

Springer-Verlag
Berlin Heidelberg New York
London Paris Tokyo
Hong Kong Barcelona

Contents

Introduction Part I. Adaptive Algorithms: Applications		1
		7
1.	General Adaptive Algorithm Form	9
	1.1 Introduction	9
	1.2 Two Basic Examples and Their Variants	
	1.3 General Adaptive Algorithm Form and Main Assumptions	23
	1.4 Problems Arising	
	1.5 Summary of the Adaptive Algorithm Form: Assumptions (A)	31
	1.6 Conclusion	
	1.7 Exercises	
	1.8 Comments on the Literature	38
2.	Convergence: the ODE Method	40
	2.1 Introduction	40
	2.2 Mathematical Tools: Informal Introduction	41
	2.3 Guide to the Analysis of Adaptive Algorithms	48
	2.4 Guide to Adaptive Algorithm Design	55
	2.5 The Transient Regime	
	2.6 Conclusion	76
	2.7 Exercises	76
	2.8 Comments on the Literature	100
3.	Rate of Convergence	103
	3.1 Mathematical Tools: Informal Description	103
	3.2 Applications to the Design of Adaptive Algorithms with	
	Decreasing Gain	110
	3.3 Conclusions from Section 3.2	
	3.4 Exercises	
	3.5 Comments on the Literature	

X Contents

4.	Tracking Non-Stationary Parameters	120
	4.1 Tracking Ability of Algorithms with Constant Gain	
	4.2 Multistep Algorithms	
	4.3 Conclusions	158
	4.4 Exercises	
	4.5 Comments on the Literature	163
5.	Sequential Detection; Model Validation	165
	5.1 Introduction and Description of the Problem	
	5.2 Two Elementary Problems and their Solution	
	5.3 Central Limit Theorem and the Asymptotic Local Viewpoint	
	5.4 Local Methods of Change Detection	
	5.5 Model Validation by Local Methods	
	5.6 Conclusion	
	5.7 Annex: Proofs of Theorems 1 and 2	188
	5.8 Exercises	
	5.9 Comments on the Literature	197
6.	Appendices to Part I	199
	6.1 Rudiments of Systems Theory	199
	6.2 Second Order Stationary Processes	205
	6.3 Kalman Filters	208
P	art II. Stochastic Approximations: Theory	211
1.	O.D.E. and Convergence A.S. for an Algorithm with	
	Locally Bounded Moments	213
	1.1 Introduction of the General Algorithm	213
	1.2 Assumptions Peculiar to Chapter 1	219
	1.3 Decomposition of the General Algorithm	220
	1.4 L ² Estimates	223
	1.5 Approximation of the Algorithm by the Solution of the O.D.E.	230
	1.6 Asymptotic Analysis of the Algorithm	
	1.7 An Extension of the Previous Results	
	1.8 Alternative Formulation of the Convergence Theorem	238
	1.9 A Global Convergence Theorem	
	1.10 Rate of L^2 Convergence of Some Algorithms	243
	111 Comments on the Literature	240

Contents xi

2.	$ \begin{array}{llllllllllllllllllllllllllllllllllll$)
3.	Analysis of the Algorithm in the General Case289 3.1 New Assumptions and Control of the Moments289 3.2 L^q Estimates293 3.3 Convergence towards the Mean Trajectory298 3.4 Asymptotic Analysis of the Algorithm301 3.5 "Tube of Confidence" for an Infinite Horizon305 3.6 Final Remark. Connections with the Results of Chapter 1306 3.7 Comments on the Literature306	3 1 5 5
4.	Gaussian Approximations to the Algorithms3074.1 Process Distributions and their Weak Convergence3084.2 Diffusions. Gaussian Diffusions3124.3 The Process $U^{\gamma}(t)$ for an Algorithm with Constant Step Size3144.4 Gaussian Approximation of the Processes $U^{\gamma}(t)$ 3214.5 Gaussian Approximation for Algorithms with Decreasing Step Size3274.6 Gaussian Approximation and Asymptotic Behaviour of Algorithms with Constant Steps3344.7 Remark on Weak Convergence Techniques3414.8 Comments on the Literature341	3 2 1 1 7
5.	Appendix to Part II: A Simple Theorem in the "Robbins-Monro" Case 345 5.1 The Algorithm, the Assumptions and the Theorem 345 5.2 Proof of the Theorem 346 5.3 Variants 346	3
Bi	bliography 349)
Su	bject Index to Part I	L
Su	bject Index to Part II	1