Albert Benveniste Michel Métivier Pierre Priouret ## Adaptive Algorithms and Stochastic Approximations Translated from the French by Stephen S. Wilson With 24 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona ## Contents | Introduction Part I. Adaptive Algorithms: Applications | | 1 | |--|---|-----| | | | 7 | | 1. | General Adaptive Algorithm Form | 9 | | | 1.1 Introduction | 9 | | | 1.2 Two Basic Examples and Their Variants | | | | 1.3 General Adaptive Algorithm Form and Main Assumptions | 23 | | | 1.4 Problems Arising | | | | 1.5 Summary of the Adaptive Algorithm Form: Assumptions (A) | 31 | | | 1.6 Conclusion | | | | 1.7 Exercises | | | | 1.8 Comments on the Literature | 38 | | 2. | Convergence: the ODE Method | 40 | | | 2.1 Introduction | 40 | | | 2.2 Mathematical Tools: Informal Introduction | 41 | | | 2.3 Guide to the Analysis of Adaptive Algorithms | 48 | | | 2.4 Guide to Adaptive Algorithm Design | 55 | | | 2.5 The Transient Regime | | | | 2.6 Conclusion | 76 | | | 2.7 Exercises | 76 | | | 2.8 Comments on the Literature | 100 | | 3. | Rate of Convergence | 103 | | | 3.1 Mathematical Tools: Informal Description | 103 | | | 3.2 Applications to the Design of Adaptive Algorithms with | | | | Decreasing Gain | 110 | | | 3.3 Conclusions from Section 3.2 | | | | 3.4 Exercises | | | | 3.5 Comments on the Literature | | X Contents | 4. | Tracking Non-Stationary Parameters | 120 | |----|--|-----| | | 4.1 Tracking Ability of Algorithms with Constant Gain | | | | 4.2 Multistep Algorithms | | | | 4.3 Conclusions | 158 | | | 4.4 Exercises | | | | 4.5 Comments on the Literature | 163 | | 5. | Sequential Detection; Model Validation | 165 | | | 5.1 Introduction and Description of the Problem | | | | 5.2 Two Elementary Problems and their Solution | | | | 5.3 Central Limit Theorem and the Asymptotic Local Viewpoint | | | | 5.4 Local Methods of Change Detection | | | | 5.5 Model Validation by Local Methods | | | | 5.6 Conclusion | | | | 5.7 Annex: Proofs of Theorems 1 and 2 | 188 | | | 5.8 Exercises | | | | 5.9 Comments on the Literature | 197 | | 6. | Appendices to Part I | 199 | | | 6.1 Rudiments of Systems Theory | 199 | | | 6.2 Second Order Stationary Processes | 205 | | | 6.3 Kalman Filters | 208 | | P | art II. Stochastic Approximations: Theory | 211 | | 1. | O.D.E. and Convergence A.S. for an Algorithm with | | | | Locally Bounded Moments | 213 | | | 1.1 Introduction of the General Algorithm | 213 | | | 1.2 Assumptions Peculiar to Chapter 1 | 219 | | | 1.3 Decomposition of the General Algorithm | 220 | | | 1.4 L ² Estimates | 223 | | | 1.5 Approximation of the Algorithm by the Solution of the O.D.E. | 230 | | | 1.6 Asymptotic Analysis of the Algorithm | | | | 1.7 An Extension of the Previous Results | | | | 1.8 Alternative Formulation of the Convergence Theorem | 238 | | | 1.9 A Global Convergence Theorem | | | | 1.10 Rate of L^2 Convergence of Some Algorithms | 243 | | | 111 Comments on the Literature | 240 | Contents xi | 2. | $ \begin{array}{llllllllllllllllllllllllllllllllllll$ |) | |----|--|-----------------------| | 3. | Analysis of the Algorithm in the General Case289 3.1 New Assumptions and Control of the Moments289 3.2 L^q Estimates293 3.3 Convergence towards the Mean Trajectory298 3.4 Asymptotic Analysis of the Algorithm301 3.5 "Tube of Confidence" for an Infinite Horizon305 3.6 Final Remark. Connections with the Results of Chapter 1306 3.7 Comments on the Literature306 | 3 1 5 5 | | 4. | Gaussian Approximations to the Algorithms3074.1 Process Distributions and their Weak Convergence3084.2 Diffusions. Gaussian Diffusions3124.3 The Process $U^{\gamma}(t)$ for an Algorithm with Constant Step Size3144.4 Gaussian Approximation of the Processes $U^{\gamma}(t)$ 3214.5 Gaussian Approximation for Algorithms with Decreasing
Step Size3274.6 Gaussian Approximation and Asymptotic Behaviour
of Algorithms with Constant Steps3344.7 Remark on Weak Convergence Techniques3414.8 Comments on the Literature341 | 3
2
1
1
7 | | 5. | Appendix to Part II: A Simple Theorem in the "Robbins-Monro" Case 345 5.1 The Algorithm, the Assumptions and the Theorem 345 5.2 Proof of the Theorem 346 5.3 Variants 346 | 3 | | Bi | bliography 349 |) | | Su | bject Index to Part I | L | | Su | bject Index to Part II | 1 |