K.R. Parthasarathy

An Introduction to Quantum Stochastic Calculus

Birkhäuser Verlag Basel · Boston · Berlin

1992

Contents

Prefa	ace			
-	Chapter I Events, Observables and States 1			
· 1	From classical to quantum probability	. 1		
2	Notational preliminaries	. 2		
3	Finite dimensional quantum probability spaces	6		
4	Observables in a simple quantum probability space	. 9		
5	Variance and covariance	13		
6	Dynamics in finite dimensional quantum probability spaces	18		
7	Observables with infinite number of values and the Hahn-Hellinger Theorem	22		
8	Probability distributions on $\mathcal{P}(\mathcal{H})$ and Gleason's Theorem	31		
9	Trace class operators and Schatten's Theorem	43		
10	Spectral integration and Stone's Theorem on the unitary representations of \mathbb{R}^k	53		
11	Basic notions of the theory of unbounded operators	60		
12	Spectral integration of unbounded functions and von Neumann's Spectral Theorem	65		
13	Stone generators, characteristic functions and moments	73		
14	Wigner's Theorem on the automorphisms of $\mathcal{P}(\mathcal{H})$	82		
	pter II ervables and States in Tensor Products of Hilbert Spaces	91		
	Positive definite kernels and tensor products of Hilbert Spaces			

٦,

15	Positive definite kernels and tensor products of Hilbert Spaces
16	Operators in tensor products of Hilbert Spaces
17	Symmetric and antisymmetric tensor products 105
18	Examples of discrete time quantum stochastic flows 111
19	The Fock Spaces 123
20	The Weyl Representation 134
21	Weyl Representation and infinitely divisible distributions 152
22	The symplectic group of $\mathcal H$ and Shale's Theorem 162
23	Creation, conservation and annihilation operators in $\Gamma_a(\mathcal{H})$

hapter III tochastic Integration and Quantum Ito's Formula	79	
24 Adapted processes 17	79	
25 Stochastic integration with respect to creation, conservation and annihilation processes	83	
26 A class of quantum stochastic differential equations 20	07	
27 Stochastic differential equations with infinite degrees of freedom	21	
28 Evans-Hudson Flows 23	33	
29 A digression on completely positive linear maps and Stinespring's Theorem	50	
30 Generators of quantum dynamical semigroups and the Gorini, Kossakowski, Sudarshan, Lindblad Theorem 25	57	
References 2		
Index		
Author Index		

.